code
stringlengths 1
1.05M
| repo_name
stringlengths 6
83
| path
stringlengths 3
242
| language
stringclasses 222
values | license
stringclasses 20
values | size
int64 1
1.05M
|
|---|---|---|---|---|---|
/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __GSPI_OPS_H__
#define __GSPI_OPS_H__
/* follwing defination is based on
* GSPI spec of RTL8723, we temp
* suppose that it will be the same
* for diff chips of GSPI, if not
* we should move it to HAL folder */
#define SPI_LOCAL_DOMAIN 0x0
#define WLAN_IOREG_DOMAIN 0x8
#define FW_FIFO_DOMAIN 0x4
#define TX_HIQ_DOMAIN 0xc
#define TX_MIQ_DOMAIN 0xd
#define TX_LOQ_DOMAIN 0xe
#define RX_RXFIFO_DOMAIN 0x1f
/* IO Bus domain address mapping */
#define DEFUALT_OFFSET 0x0
#define SPI_LOCAL_OFFSET 0x10250000
#define WLAN_IOREG_OFFSET 0x10260000
#define FW_FIFO_OFFSET 0x10270000
#define TX_HIQ_OFFSET 0x10310000
#define TX_MIQ_OFFSET 0x1032000
#define TX_LOQ_OFFSET 0x10330000
#define RX_RXOFF_OFFSET 0x10340000
/* SPI Local registers */
#define SPI_REG_TX_CTRL 0x0000 /* SPI Tx Control */
#define SPI_REG_STATUS_RECOVERY 0x0004
#define SPI_REG_INT_TIMEOUT 0x0006
#define SPI_REG_HIMR 0x0014 /* SPI Host Interrupt Mask */
#define SPI_REG_HISR 0x0018 /* SPI Host Interrupt Service Routine */
#define SPI_REG_RX0_REQ_LEN 0x001C /* RXDMA Request Length */
#define SPI_REG_FREE_TXPG 0x0020 /* Free Tx Buffer Page */
#define SPI_REG_HCPWM1 0x0024 /* HCI Current Power Mode 1 */
#define SPI_REG_HCPWM2 0x0026 /* HCI Current Power Mode 2 */
#define SPI_REG_HTSFR_INFO 0x0030 /* HTSF Informaion */
#define SPI_REG_HRPWM1 0x0080 /* HCI Request Power Mode 1 */
#define SPI_REG_HRPWM2 0x0082 /* HCI Request Power Mode 2 */
#define SPI_REG_HPS_CLKR 0x0084 /* HCI Power Save Clock */
#define SPI_REG_HSUS_CTRL 0x0086 /* SPI HCI Suspend Control */
#define SPI_REG_HIMR_ON 0x0090 /* SPI Host Extension Interrupt Mask Always */
#define SPI_REG_HISR_ON 0x0091 /* SPI Host Extension Interrupt Status Always */
#define SPI_REG_CFG 0x00F0 /* SPI Configuration Register */
#define SPI_TX_CTRL (SPI_REG_TX_CTRL | SPI_LOCAL_OFFSET)
#define SPI_STATUS_RECOVERY (SPI_REG_STATUS_RECOVERY | SPI_LOCAL_OFFSET)
#define SPI_INT_TIMEOUT (SPI_REG_INT_TIMEOUT | SPI_LOCAL_OFFSET)
#define SPI_HIMR (SPI_REG_HIMR | SPI_LOCAL_OFFSET)
#define SPI_HISR (SPI_REG_HISR | SPI_LOCAL_OFFSET)
#define SPI_RX0_REQ_LEN_1_BYTE (SPI_REG_RX0_REQ_LEN | SPI_LOCAL_OFFSET)
#define SPI_FREE_TXPG (SPI_REG_FREE_TXPG | SPI_LOCAL_OFFSET)
#define SPI_HIMR_DISABLED 0
/* SPI HIMR MASK diff with SDIO */
#define SPI_HISR_RX_REQUEST BIT(0)
#define SPI_HISR_AVAL BIT(1)
#define SPI_HISR_TXERR BIT(2)
#define SPI_HISR_RXERR BIT(3)
#define SPI_HISR_TXFOVW BIT(4)
#define SPI_HISR_RXFOVW BIT(5)
#define SPI_HISR_TXBCNOK BIT(6)
#define SPI_HISR_TXBCNERR BIT(7)
#define SPI_HISR_BCNERLY_INT BIT(16)
#define SPI_HISR_ATIMEND BIT(17)
#define SPI_HISR_ATIMEND_E BIT(18)
#define SPI_HISR_CTWEND BIT(19)
#define SPI_HISR_C2HCMD BIT(20)
#define SPI_HISR_CPWM1 BIT(21)
#define SPI_HISR_CPWM2 BIT(22)
#define SPI_HISR_HSISR_IND BIT(23)
#define SPI_HISR_GTINT3_IND BIT(24)
#define SPI_HISR_GTINT4_IND BIT(25)
#define SPI_HISR_PSTIMEOUT BIT(26)
#define SPI_HISR_OCPINT BIT(27)
#define SPI_HISR_TSF_BIT32_TOGGLE BIT(29)
#define MASK_SPI_HISR_CLEAR (SPI_HISR_TXERR |\
SPI_HISR_RXERR |\
SPI_HISR_TXFOVW |\
SPI_HISR_RXFOVW |\
SPI_HISR_TXBCNOK |\
SPI_HISR_TXBCNERR |\
SPI_HISR_C2HCMD |\
SPI_HISR_CPWM1 |\
SPI_HISR_CPWM2 |\
SPI_HISR_HSISR_IND |\
SPI_HISR_GTINT3_IND |\
SPI_HISR_GTINT4_IND |\
SPI_HISR_PSTIMEOUT |\
SPI_HISR_OCPINT)
#define REG_LEN_FORMAT(pcmd, x) SET_BITS_TO_LE_4BYTE(pcmd, 0, 8, x)/* (x<<(unsigned int)24) */
#define REG_ADDR_FORMAT(pcmd, x) SET_BITS_TO_LE_4BYTE(pcmd, 8, 16, x)/* (x<<(unsigned int)16) */
#define REG_DOMAIN_ID_FORMAT(pcmd, x) SET_BITS_TO_LE_4BYTE(pcmd, 24, 5, x)/* (x<<(unsigned int)0) */
#define REG_FUN_FORMAT(pcmd, x) SET_BITS_TO_LE_4BYTE(pcmd, 29, 2, x)/* (x<<(unsigned int)5) */
#define REG_RW_FORMAT(pcmd, x) SET_BITS_TO_LE_4BYTE(pcmd, 31, 1, x)/* (x<<(unsigned int)7) */
#define FIFO_LEN_FORMAT(pcmd, x) SET_BITS_TO_LE_4BYTE(pcmd, 0, 16, x)/* (x<<(unsigned int)24)
* #define FIFO_ADDR_FORMAT(pcmd,x) SET_BITS_TO_LE_4BYTE(pcmd, 8, 16, x) */ /* (x<<(unsigned int)16) */
#define FIFO_DOMAIN_ID_FORMAT(pcmd, x) SET_BITS_TO_LE_4BYTE(pcmd, 24, 5, x)/* (x<<(unsigned int)0) */
#define FIFO_FUN_FORMAT(pcmd, x) SET_BITS_TO_LE_4BYTE(pcmd, 29, 2, x)/* (x<<(unsigned int)5) */
#define FIFO_RW_FORMAT(pcmd, x) SET_BITS_TO_LE_4BYTE(pcmd, 31, 1, x)/* (x<<(unsigned int)7) */
/* get status dword0 */
#define GET_STATUS_PUB_PAGE_NUM(status) LE_BITS_TO_4BYTE(status, 24, 8)
#define GET_STATUS_HI_PAGE_NUM(status) LE_BITS_TO_4BYTE(status, 18, 6)
#define GET_STATUS_MID_PAGE_NUM(status) LE_BITS_TO_4BYTE(status, 12, 6)
#define GET_STATUS_LOW_PAGE_NUM(status) LE_BITS_TO_4BYTE(status, 6, 6)
#define GET_STATUS_HISR_HI6BIT(status) LE_BITS_TO_4BYTE(status, 0, 6)
/* get status dword1 */
#define GET_STATUS_HISR_MID8BIT(status) LE_BITS_TO_4BYTE(status + 4, 24, 8)
#define GET_STATUS_HISR_LOW8BIT(status) LE_BITS_TO_4BYTE(status + 4, 16, 8)
#define GET_STATUS_ERROR(status) LE_BITS_TO_4BYTE(status + 4, 17, 1)
#define GET_STATUS_INT(status) LE_BITS_TO_4BYTE(status + 4, 16, 1)
#define GET_STATUS_RX_LENGTH(status) LE_BITS_TO_4BYTE(status + 4, 0, 16)
#define RXDESC_SIZE 24
struct spi_more_data {
unsigned long more_data;
unsigned long len;
};
#endif /* __GSPI_OPS_H__ */
|
2301_81045437/rtl8852be
|
include/gspi_ops.h
|
C
|
agpl-3.0
| 6,053
|
/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __SDIO_OPS_LINUX_H__
#define __SDIO_OPS_LINUX_H__
#endif
|
2301_81045437/rtl8852be
|
include/gspi_ops_linux.h
|
C
|
agpl-3.0
| 722
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __IEEE80211_H
#define __IEEE80211_H
#define MGMT_QUEUE_NUM 5
#define MAX_RF_PATH 4
#define RF_PATH_MAX MAX_RF_PATH
#define ETH_ALEN 6
#define ETH_TYPE_LEN 2
#define PAYLOAD_TYPE_LEN 1
#define NET80211_TU_TO_US 1024 /* unit:us */
#define DEFAULT_BCN_INTERVAL 100 /* 100 ms */
#ifdef CONFIG_AP_MODE
#define RTL_IOCTL_HOSTAPD (SIOCIWFIRSTPRIV + 28)
/* RTL871X_IOCTL_HOSTAPD ioctl() cmd: */
enum {
RTL871X_HOSTAPD_FLUSH = 1,
RTL871X_HOSTAPD_ADD_STA = 2,
RTL871X_HOSTAPD_REMOVE_STA = 3,
RTL871X_HOSTAPD_GET_INFO_STA = 4,
/* REMOVED: PRISM2_HOSTAPD_RESET_TXEXC_STA = 5, */
RTL871X_HOSTAPD_GET_WPAIE_STA = 5,
RTL871X_SET_ENCRYPTION = 6,
RTL871X_GET_ENCRYPTION = 7,
RTL871X_HOSTAPD_SET_FLAGS_STA = 8,
RTL871X_HOSTAPD_GET_RID = 9,
RTL871X_HOSTAPD_SET_RID = 10,
RTL871X_HOSTAPD_SET_ASSOC_AP_ADDR = 11,
RTL871X_HOSTAPD_SET_GENERIC_ELEMENT = 12,
RTL871X_HOSTAPD_MLME = 13,
RTL871X_HOSTAPD_SCAN_REQ = 14,
RTL871X_HOSTAPD_STA_CLEAR_STATS = 15,
RTL871X_HOSTAPD_SET_BEACON = 16,
RTL871X_HOSTAPD_SET_WPS_BEACON = 17,
RTL871X_HOSTAPD_SET_WPS_PROBE_RESP = 18,
RTL871X_HOSTAPD_SET_WPS_ASSOC_RESP = 19,
RTL871X_HOSTAPD_SET_HIDDEN_SSID = 20,
RTL871X_HOSTAPD_SET_MACADDR_ACL = 21,
RTL871X_HOSTAPD_ACL_ADD_STA = 22,
RTL871X_HOSTAPD_ACL_REMOVE_STA = 23,
};
/* STA flags */
#define WLAN_STA_AUTH BIT(0)
#define WLAN_STA_ASSOC BIT(1)
#define WLAN_STA_PS BIT(2)
#define WLAN_STA_TIM BIT(3)
#define WLAN_STA_PERM BIT(4)
#define WLAN_STA_AUTHORIZED BIT(5)
#define WLAN_STA_PENDING_POLL BIT(6) /* pending activity poll not ACKed */
#define WLAN_STA_SHORT_PREAMBLE BIT(7)
#define WLAN_STA_PREAUTH BIT(8)
#define WLAN_STA_WME BIT(9)
#define WLAN_STA_MFP BIT(10)
#define WLAN_STA_HT BIT(11)
#define WLAN_STA_WPS BIT(12)
#define WLAN_STA_MAYBE_WPS BIT(13)
#define WLAN_STA_VHT BIT(14)
#define WLAN_STA_HE BIT(15)
#define WLAN_STA_WDS BIT(16)
#define WLAN_STA_MULTI_AP BIT(17)
#define WLAN_STA_AMSDU_DISABLE BIT(18)
#define WLAN_STA_NONERP BIT(31)
#endif
#define IEEE_CMD_SET_WPA_PARAM 1
#define IEEE_CMD_SET_WPA_IE 2
#define IEEE_CMD_SET_ENCRYPTION 3
#define IEEE_CMD_MLME 4
#define IEEE_PARAM_WPA_ENABLED 1
#define IEEE_PARAM_TKIP_COUNTERMEASURES 2
#define IEEE_PARAM_DROP_UNENCRYPTED 3
#define IEEE_PARAM_PRIVACY_INVOKED 4
#define IEEE_PARAM_AUTH_ALGS 5
#define IEEE_PARAM_IEEE_802_1X 6
#define IEEE_PARAM_WPAX_SELECT 7
#define AUTH_ALG_OPEN_SYSTEM 0x1
#define AUTH_ALG_SHARED_KEY 0x2
#define AUTH_ALG_LEAP 0x00000004
#define IEEE_MLME_STA_DEAUTH 1
#define IEEE_MLME_STA_DISASSOC 2
#define IEEE_CRYPT_ERR_UNKNOWN_ALG 2
#define IEEE_CRYPT_ERR_UNKNOWN_ADDR 3
#define IEEE_CRYPT_ERR_CRYPT_INIT_FAILED 4
#define IEEE_CRYPT_ERR_KEY_SET_FAILED 5
#define IEEE_CRYPT_ERR_TX_KEY_SET_FAILED 6
#define IEEE_CRYPT_ERR_CARD_CONF_FAILED 7
#define IEEE_CRYPT_ALG_NAME_LEN 16
#define WPA_CIPHER_NONE BIT(0)
#define WPA_CIPHER_WEP40 BIT(1)
#define WPA_CIPHER_WEP104 BIT(2)
#define WPA_CIPHER_TKIP BIT(3)
#define WPA_CIPHER_CCMP BIT(4)
#define WPA_CIPHER_GCMP BIT(5)
#define WPA_CIPHER_GCMP_256 BIT(6)
#define WPA_CIPHER_CCMP_256 BIT(7)
#define WPA_CIPHER_BIP_CMAC_128 BIT(8)
#define WPA_CIPHER_BIP_GMAC_128 BIT(9)
#define WPA_CIPHER_BIP_GMAC_256 BIT(10)
#define WPA_CIPHER_BIP_CMAC_256 BIT(11)
#define WPA_SELECTOR_LEN 4
extern u8 RTW_WPA_OUI_TYPE[] ;
extern u16 RTW_WPA_VERSION ;
extern u8 WPA_AUTH_KEY_MGMT_NONE[];
extern u8 WPA_AUTH_KEY_MGMT_UNSPEC_802_1X[];
extern u8 WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X[];
extern u8 WPA_CIPHER_SUITE_NONE[];
extern u8 WPA_CIPHER_SUITE_WEP40[];
extern u8 WPA_CIPHER_SUITE_TKIP[];
extern u8 WPA_CIPHER_SUITE_WRAP[];
extern u8 WPA_CIPHER_SUITE_CCMP[];
extern u8 RSN_CIPHER_SUITE_GCMP[];
extern u8 RSN_CIPHER_SUITE_GCMP_256[];
extern u8 RSN_CIPHER_SUITE_CCMP_256[];
extern u8 WPA_CIPHER_SUITE_WEP104[];
#define RSN_HEADER_LEN 4
#define RSN_SELECTOR_LEN 4
#define RSN_PMKID_LEN 16
extern u16 RSN_VERSION_BSD;
extern u8 RSN_CIPHER_SUITE_NONE[];
extern u8 RSN_CIPHER_SUITE_WEP40[];
extern u8 RSN_CIPHER_SUITE_TKIP[];
extern u8 RSN_CIPHER_SUITE_WRAP[];
extern u8 RSN_CIPHER_SUITE_CCMP[];
extern u8 RSN_CIPHER_SUITE_WEP104[];
/* AKM suite type */
extern u8 WLAN_AKM_8021X[];
extern u8 WLAN_AKM_PSK[];
extern u8 WLAN_AKM_FT_8021X[];
extern u8 WLAN_AKM_FT_PSK[];
extern u8 WLAN_AKM_8021X_SHA256[];
extern u8 WLAN_AKM_PSK_SHA256[];
extern u8 WLAN_AKM_TDLS[];
extern u8 WLAN_AKM_SAE[];
extern u8 WLAN_AKM_FT_OVER_SAE[];
extern u8 WLAN_AKM_8021X_SUITE_B[];
extern u8 WLAN_AKM_8021X_SUITE_B_192[];
extern u8 WLAN_AKM_FILS_SHA256[];
extern u8 WLAN_AKM_FILS_SHA384[];
extern u8 WLAN_AKM_FT_FILS_SHA256[];
extern u8 WLAN_AKM_FT_FILS_SHA384[];
#define WLAN_AKM_TYPE_8021X BIT(0)
#define WLAN_AKM_TYPE_PSK BIT(1)
#define WLAN_AKM_TYPE_FT_8021X BIT(2)
#define WLAN_AKM_TYPE_FT_PSK BIT(3)
#define WLAN_AKM_TYPE_8021X_SHA256 BIT(4)
#define WLAN_AKM_TYPE_PSK_SHA256 BIT(5)
#define WLAN_AKM_TYPE_TDLS BIT(6)
#define WLAN_AKM_TYPE_SAE BIT(7)
#define WLAN_AKM_TYPE_FT_OVER_SAE BIT(8)
#define WLAN_AKM_TYPE_8021X_SUITE_B BIT(9)
#define WLAN_AKM_TYPE_8021X_SUITE_B_192 BIT(10)
#define WLAN_AKM_TYPE_FILS_SHA256 BIT(11)
#define WLAN_AKM_TYPE_FILS_SHA384 BIT(12)
#define WLAN_AKM_TYPE_FT_FILS_SHA256 BIT(13)
#define WLAN_AKM_TYPE_FT_FILS_SHA384 BIT(14)
/* IEEE 802.11i */
#define PMKID_LEN 16
#define PMK_LEN 32
#define PMK_LEN_SUITE_B_192 48
#define PMK_LEN_MAX 48
#define WPA_REPLAY_COUNTER_LEN 8
#define WPA_NONCE_LEN 32
#define WPA_KEY_RSC_LEN 8
#define WPA_GMK_LEN 32
#define WPA_GTK_MAX_LEN 32
/* IEEE 802.11, 8.5.2 EAPOL-Key frames */
#define WPA_KEY_INFO_TYPE_MASK ((u16) (BIT(0) | BIT(1) | BIT(2)))
#define WPA_KEY_INFO_TYPE_AKM_DEFINED 0
#define WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 BIT(0)
#define WPA_KEY_INFO_TYPE_HMAC_SHA1_AES BIT(1)
#define WPA_KEY_INFO_TYPE_AES_128_CMAC 3
#define WPA_KEY_INFO_KEY_TYPE BIT(3) /* 1 = Pairwise, 0 = Group key */
/* bit4..5 is used in WPA, but is reserved in IEEE 802.11i/RSN */
#define WPA_KEY_INFO_KEY_INDEX_MASK (BIT(4) | BIT(5))
#define WPA_KEY_INFO_KEY_INDEX_SHIFT 4
#define WPA_KEY_INFO_INSTALL BIT(6) /* pairwise */
#define WPA_KEY_INFO_TXRX BIT(6) /* group */
#define WPA_KEY_INFO_ACK BIT(7)
#define WPA_KEY_INFO_MIC BIT(8)
#define WPA_KEY_INFO_SECURE BIT(9)
#define WPA_KEY_INFO_ERROR BIT(10)
#define WPA_KEY_INFO_REQUEST BIT(11)
#define WPA_KEY_INFO_ENCR_KEY_DATA BIT(12) /* IEEE 802.11i/RSN only */
#define WPA_KEY_INFO_SMK_MESSAGE BIT(13)
struct ieee802_1x_hdr {
u8 version;
u8 type;
u16 length;
/* followed by length octets of data */
};
struct wpa_eapol_key {
u8 type;
/* Note: key_info, key_length, and key_data_length are unaligned */
u8 key_info[2]; /* big endian */
u8 key_length[2]; /* big endian */
u8 replay_counter[WPA_REPLAY_COUNTER_LEN];
u8 key_nonce[WPA_NONCE_LEN];
u8 key_iv[16];
u8 key_rsc[WPA_KEY_RSC_LEN];
u8 key_id[8]; /* Reserved in IEEE 802.11i/RSN */
u8 key_mic[16];
u8 key_data_length[2]; /* big endian */
/* followed by key_data_length bytes of key_data */
};
#define is_legacy_only(net_type) ((net_type) == ((net_type) & (WLAN_MD_11BG | WLAN_MD_11A)))
#define is_supported_24g(band_type) ((band_type) & BAND_CAP_2G ? _TRUE : _FALSE)
#define is_supported_5g(band_type) ((band_type) & BAND_CAP_5G ? _TRUE : _FALSE)
#define is_supported_6g(band_type) ((band_type) & BAND_CAP_6G ? _TRUE : _FALSE)
#define is_supported_tx_cck(net_type) ((net_type) & (WLAN_MD_11B) ? _TRUE : _FALSE)
#define is_suuported_tx_ofdm(net_type) ((net_type) & (WLAN_MD_11G | WLAN_MD_11A) ? _TRUE : _FALSE)
#define is_supported_ht(net_type) ((net_type) & (WLAN_MD_11N) ? _TRUE : _FALSE)
#define is_supported_vht(net_type) ((net_type) & (WLAN_MD_11AC) ? _TRUE : _FALSE)
#define is_supported_he(net_type) ((net_type) & (WLAN_MD_11AX) ? _TRUE : _FALSE)
typedef struct ieee_param {
u32 cmd;
u8 sta_addr[ETH_ALEN];
union {
struct {
u8 name;
u32 value;
} wpa_param;
struct {
u32 len;
u8 reserved[32];
u8 data[0];
} wpa_ie;
struct {
int command;
int reason_code;
} mlme;
struct {
u8 alg[IEEE_CRYPT_ALG_NAME_LEN];
u8 set_tx;
u32 err;
u8 idx;
u8 seq[8]; /* sequence counter (set: RX, get: TX) */
u16 key_len;
u8 key[0];
} crypt;
#ifdef CONFIG_AP_MODE
struct {
u16 aid;
u16 capability;
int flags;
u8 tx_supp_rates[16];
struct rtw_ieee80211_ht_cap ht_cap;
} add_sta;
struct {
u8 reserved[2];/* for set max_num_sta */
u8 buf[0];
} bcn_ie;
#endif
} u;
} ieee_param;
#ifdef CONFIG_AP_MODE
typedef struct ieee_param_ex {
u32 cmd;
u8 sta_addr[ETH_ALEN];
u8 data[0];
} ieee_param_ex;
struct sta_data {
u16 aid;
u16 capability;
int flags;
u32 sta_set;
u8 tx_supp_rates[16];
u32 tx_supp_rates_len;
struct rtw_ieee80211_ht_cap ht_cap;
u64 rx_pkts;
u64 rx_bytes;
u64 rx_drops;
u64 tx_pkts;
u64 tx_bytes;
u64 tx_drops;
};
#endif
#if WIRELESS_EXT < 17
#define IW_QUAL_QUAL_INVALID 0x10
#define IW_QUAL_LEVEL_INVALID 0x20
#define IW_QUAL_NOISE_INVALID 0x40
#define IW_QUAL_QUAL_UPDATED 0x1
#define IW_QUAL_LEVEL_UPDATED 0x2
#define IW_QUAL_NOISE_UPDATED 0x4
#endif
#define IEEE80211_DATA_LEN 2304
/* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
6.2.1.1.2.
The figure in section 7.1.2 suggests a body size of up to 2312
bytes is allowed, which is a bit confusing, I suspect this
represents the 2304 bytes of real data, plus a possible 8 bytes of
WEP IV and ICV. (this interpretation suggested by Ramiro Barreiro) */
#define IEEE80211_HLEN 30
#define IEEE80211_FRAME_LEN (IEEE80211_DATA_LEN + IEEE80211_HLEN)
/* this is stolen from ipw2200 driver */
#define IEEE_IBSS_MAC_HASH_SIZE 31
struct ieee_ibss_seq {
u8 mac[ETH_ALEN];
u16 seq_num;
u16 frag_num;
unsigned long packet_time;
_list list;
};
#if defined(PLATFORM_LINUX) || defined(PLATFORM_FREEBSD)
struct rtw_ieee80211_hdr {
u16 frame_ctl;
u16 duration_id;
u8 addr1[ETH_ALEN];
u8 addr2[ETH_ALEN];
u8 addr3[ETH_ALEN];
u16 seq_ctl;
u8 addr4[ETH_ALEN];
} __attribute__((packed));
struct rtw_ieee80211_hdr_3addr {
u16 frame_ctl;
u16 duration_id;
u8 addr1[ETH_ALEN];
u8 addr2[ETH_ALEN];
u8 addr3[ETH_ALEN];
u16 seq_ctl;
} __attribute__((packed));
struct rtw_ieee80211_hdr_qos {
u16 frame_ctl;
u16 duration_id;
u8 addr1[ETH_ALEN];
u8 addr2[ETH_ALEN];
u8 addr3[ETH_ALEN];
u16 seq_ctl;
u8 addr4[ETH_ALEN];
u16 qc;
} __attribute__((packed));
struct rtw_ieee80211_hdr_3addr_qos {
u16 frame_ctl;
u16 duration_id;
u8 addr1[ETH_ALEN];
u8 addr2[ETH_ALEN];
u8 addr3[ETH_ALEN];
u16 seq_ctl;
u16 qc;
} __attribute__((packed));
struct eapol {
u8 snap[6];
u16 ethertype;
u8 version;
u8 type;
u16 length;
} __attribute__((packed));
struct rtw_ieee80211s_hdr {
u8 flags;
u8 ttl;
u32 seqnum;
u8 eaddr1[ETH_ALEN];
u8 eaddr2[ETH_ALEN];
} __attribute__((packed));
/**
* struct rtw_ieee80211_rann_ie
*
* This structure refers to "Root Announcement information element"
*/
struct rtw_ieee80211_rann_ie {
u8 rann_flags;
u8 rann_hopcount;
u8 rann_ttl;
u8 rann_addr[ETH_ALEN];
u32 rann_seq;
u32 rann_interval;
u32 rann_metric;
} __attribute__((packed));
#endif
/* Some IEEE 802.11x packet types are corresponding to parsing_eapol_packet() */
enum eap_type {
EAP_PACKET = 0,
NON_EAPOL,
EAPOL_START,
EAPOL_LOGOFF,
EAPOL_KEY,
EAPOL_ENCAP_ASF_ALERT,
EAPOL_PACKET,
EAPOL_WPA_GROUP_KEY_1_2,
EAPOL_WPA_GROUP_KEY_2_2,
EAPOL_1_4,
EAPOL_2_4,
EAPOL_3_4,
EAPOL_4_4,
};
#define IEEE80211_3ADDR_LEN 24
#define IEEE80211_4ADDR_LEN 30
#define IEEE80211_FCS_LEN 4
#define MIN_FRAG_THRESHOLD 256U
#define MAX_FRAG_THRESHOLD 2346U
/* Frame control field constants */
#define RTW_IEEE80211_FCTL_VERS 0x0003
#define RTW_IEEE80211_FCTL_FTYPE 0x000c
#define RTW_IEEE80211_FCTL_STYPE 0x00f0
#define RTW_IEEE80211_FCTL_TODS 0x0100
#define RTW_IEEE80211_FCTL_FROMDS 0x0200
#define RTW_IEEE80211_FCTL_MOREFRAGS 0x0400
#define RTW_IEEE80211_FCTL_RETRY 0x0800
#define RTW_IEEE80211_FCTL_PM 0x1000
#define RTW_IEEE80211_FCTL_MOREDATA 0x2000
#define RTW_IEEE80211_FCTL_PROTECTED 0x4000
#define RTW_IEEE80211_FCTL_ORDER 0x8000
#define RTW_IEEE80211_FCTL_CTL_EXT 0x0f00
#define RTW_IEEE80211_FTYPE_MGMT 0x0000
#define RTW_IEEE80211_FTYPE_CTL 0x0004
#define RTW_IEEE80211_FTYPE_DATA 0x0008
#define RTW_IEEE80211_FTYPE_EXT 0x000c
/* management */
#define RTW_IEEE80211_STYPE_ASSOC_REQ 0x0000
#define RTW_IEEE80211_STYPE_ASSOC_RESP 0x0010
#define RTW_IEEE80211_STYPE_REASSOC_REQ 0x0020
#define RTW_IEEE80211_STYPE_REASSOC_RESP 0x0030
#define RTW_IEEE80211_STYPE_PROBE_REQ 0x0040
#define RTW_IEEE80211_STYPE_PROBE_RESP 0x0050
#define RTW_IEEE80211_STYPE_BEACON 0x0080
#define RTW_IEEE80211_STYPE_ATIM 0x0090
#define RTW_IEEE80211_STYPE_DISASSOC 0x00A0
#define RTW_IEEE80211_STYPE_AUTH 0x00B0
#define RTW_IEEE80211_STYPE_DEAUTH 0x00C0
#define RTW_IEEE80211_STYPE_ACTION 0x00D0
/* control */
#define RTW_IEEE80211_STYPE_CTL_EXT 0x0060
#define RTW_IEEE80211_STYPE_BACK_REQ 0x0080
#define RTW_IEEE80211_STYPE_BACK 0x0090
#define RTW_IEEE80211_STYPE_PSPOLL 0x00A0
#define RTW_IEEE80211_STYPE_RTS 0x00B0
#define RTW_IEEE80211_STYPE_CTS 0x00C0
#define RTW_IEEE80211_STYPE_ACK 0x00D0
#define RTW_IEEE80211_STYPE_CFEND 0x00E0
#define RTW_IEEE80211_STYPE_CFENDACK 0x00F0
/* data */
#define RTW_IEEE80211_STYPE_DATA 0x0000
#define RTW_IEEE80211_STYPE_DATA_CFACK 0x0010
#define RTW_IEEE80211_STYPE_DATA_CFPOLL 0x0020
#define RTW_IEEE80211_STYPE_DATA_CFACKPOLL 0x0030
#define RTW_IEEE80211_STYPE_NULLFUNC 0x0040
#define RTW_IEEE80211_STYPE_CFACK 0x0050
#define RTW_IEEE80211_STYPE_CFPOLL 0x0060
#define RTW_IEEE80211_STYPE_CFACKPOLL 0x0070
#define RTW_IEEE80211_STYPE_QOS_DATA 0x0080
#define RTW_IEEE80211_STYPE_QOS_DATA_CFACK 0x0090
#define RTW_IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0
#define RTW_IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0
#define RTW_IEEE80211_STYPE_QOS_NULLFUNC 0x00C0
#define RTW_IEEE80211_STYPE_QOS_CFACK 0x00D0
#define RTW_IEEE80211_STYPE_QOS_CFPOLL 0x00E0
#define RTW_IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0
/* sequence control field */
#define RTW_IEEE80211_SCTL_FRAG 0x000F
#define RTW_IEEE80211_SCTL_SEQ 0xFFF0
#define RTW_ERP_INFO_NON_ERP_PRESENT BIT(0)
#define RTW_ERP_INFO_USE_PROTECTION BIT(1)
#define RTW_ERP_INFO_BARKER_PREAMBLE_MODE BIT(2)
/* QoS,QOS */
#define NORMAL_ACK 0
#define NO_ACK 1
#define NON_EXPLICIT_ACK 2
#define BLOCK_ACK 3
#ifndef ETH_P_PAE
#define ETH_P_PAE 0x888E /* Port Access Entity (IEEE 802.1X) */
#endif /* ETH_P_PAE */
#define ETH_P_PREAUTH 0x88C7 /* IEEE 802.11i pre-authentication */
#define ETH_P_ECONET 0x0018
#ifndef ETH_P_80211_RAW
#define ETH_P_80211_RAW (ETH_P_ECONET + 1)
#endif
/* IEEE 802.11 defines */
#define P80211_OUI_LEN 3
#if defined(PLATFORM_LINUX) || defined(PLATFORM_FREEBSD)
struct ieee80211_snap_hdr {
u8 dsap; /* always 0xAA */
u8 ssap; /* always 0xAA */
u8 ctrl; /* always 0x03 */
u8 oui[P80211_OUI_LEN]; /* organizational universal id */
} __attribute__((packed));
#endif
#define SNAP_SIZE sizeof(struct ieee80211_snap_hdr)
#ifdef CONFIG_CORE_TXSC
#define WLHDR_SIZE sizeof(struct rtw_ieee80211_hdr)
#endif
#define WLAN_FC_GET_TYPE(fc) ((fc) & RTW_IEEE80211_FCTL_FTYPE)
#define WLAN_FC_GET_STYPE(fc) ((fc) & RTW_IEEE80211_FCTL_STYPE)
#define WLAN_QC_GET_TID(qc) ((qc) & 0x0f)
#define WLAN_GET_SEQ_FRAG(seq) ((seq) & RTW_IEEE80211_SCTL_FRAG)
#define WLAN_GET_SEQ_SEQ(seq) ((seq) & RTW_IEEE80211_SCTL_SEQ)
/* Authentication algorithms */
#define WLAN_AUTH_OPEN 0
#define WLAN_AUTH_SHARED_KEY 1
#define WLAN_AUTH_FT 2
#define WLAN_AUTH_SAE 3
#define WLAN_AUTH_CHALLENGE_LEN 128
#define WLAN_CAPABILITY_BSS (1<<0)
#define WLAN_CAPABILITY_IBSS (1<<1)
#define WLAN_CAPABILITY_CF_POLLABLE (1<<2)
#define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3)
#define WLAN_CAPABILITY_PRIVACY (1<<4)
#define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5)
#define WLAN_CAPABILITY_PBCC (1<<6)
#define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7)
#define WLAN_CAPABILITY_SHORT_SLOT (1<<10)
/* Status codes */
#define WLAN_STATUS_SUCCESS 0
#define WLAN_STATUS_UNSPECIFIED_FAILURE 1
#define WLAN_STATUS_CAPS_UNSUPPORTED 10
#define WLAN_STATUS_REASSOC_NO_ASSOC 11
#define WLAN_STATUS_ASSOC_DENIED_UNSPEC 12
#define WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG 13
#define WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION 14
#define WLAN_STATUS_CHALLENGE_FAIL 15
#define WLAN_STATUS_AUTH_TIMEOUT 16
#define WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA 17
#define WLAN_STATUS_ASSOC_DENIED_RATES 18
/* 802.11b */
#define WLAN_STATUS_ASSOC_DENIED_NOSHORT 19
#define WLAN_STATUS_ASSOC_DENIED_NOPBCC 20
#define WLAN_STATUS_ASSOC_DENIED_NOAGILITY 21
/* Reason codes */
#define WLAN_REASON_UNSPECIFIED 1
#define WLAN_REASON_PREV_AUTH_NOT_VALID 2
#define WLAN_REASON_DEAUTH_LEAVING 3
#define WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY 4
#define WLAN_REASON_DISASSOC_AP_BUSY 5
#define WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA 6
#define WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA 7
#define WLAN_REASON_DISASSOC_STA_HAS_LEFT 8
#define WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH 9
#define WLAN_REASON_IEEE_802_1X_AUTH_FAILED 23
#define WLAN_REASON_MESH_PEER_CANCELED 52
#define WLAN_REASON_MESH_MAX_PEERS 53
#define WLAN_REASON_MESH_CONFIG 54
#define WLAN_REASON_MESH_CLOSE 55
#define WLAN_REASON_MESH_MAX_RETRIES 56
#define WLAN_REASON_MESH_CONFIRM_TIMEOUT 57
#define WLAN_REASON_MESH_INVALID_GTK 58
#define WLAN_REASON_MESH_INCONSISTENT_PARAM 59
#define WLAN_REASON_MESH_INVALID_SECURITY 60
#define WLAN_REASON_MESH_PATH_NOPROXY 61
#define WLAN_REASON_MESH_PATH_NOFORWARD 62
#define WLAN_REASON_MESH_PATH_DEST_UNREACHABLE 63
#define WLAN_REASON_MAC_EXISTS_IN_MBSS 64
#define WLAN_REASON_MESH_CHAN_REGULATORY 65
#define WLAN_REASON_MESH_CHAN 66
#define WLAN_REASON_SA_QUERY_TIMEOUT 65532
#define WLAN_REASON_ACTIVE_ROAM 65533
#define WLAN_REASON_JOIN_WRONG_CHANNEL 65534
#define WLAN_REASON_EXPIRATION_CHK 65535
#define WLAN_REASON_IS_PRIVATE(reason) ( \
reason == WLAN_REASON_EXPIRATION_CHK \
|| reason == WLAN_REASON_JOIN_WRONG_CHANNEL \
|| reason == WLAN_REASON_ACTIVE_ROAM \
|| reason == WLAN_REASON_SA_QUERY_TIMEOUT \
)
/* Information Element IDs */
#define WLAN_EID_SSID 0
#define WLAN_EID_SUPP_RATES 1
#define WLAN_EID_FH_PARAMS 2
#define WLAN_EID_DS_PARAMS 3
#define WLAN_EID_CF_PARAMS 4
#define WLAN_EID_TIM 5
#define WLAN_EID_IBSS_PARAMS 6
#define WLAN_EID_COUNTRY 7
#define WLAN_EID_CHALLENGE 16
/* EIDs defined by IEEE 802.11h - START */
#define WLAN_EID_PWR_CONSTRAINT 32
#define WLAN_EID_PWR_CAPABILITY 33
#define WLAN_EID_TPC_REQUEST 34
#define WLAN_EID_TPC_REPORT 35
#define WLAN_EID_SUPPORTED_CHANNELS 36
#define WLAN_EID_CHANNEL_SWITCH 37
#define WLAN_EID_MEASURE_REQUEST 38
#define WLAN_EID_MEASURE_REPORT 39
#define WLAN_EID_QUITE 40
#define WLAN_EID_IBSS_DFS 41
/* EIDs defined by IEEE 802.11h - END */
#define WLAN_EID_ERP_INFO 42
#define WLAN_EID_HT_CAP 45
#define WLAN_EID_RSN 48
#define WLAN_EID_EXT_SUPP_RATES 50
#define WLAN_EID_MOBILITY_DOMAIN 54
#define WLAN_EID_FAST_BSS_TRANSITION 55
#define WLAN_EID_TIMEOUT_INTERVAL 56
#define WLAN_EID_RIC_DATA 57
#define WLAN_EID_HT_OPERATION 61
#define WLAN_EID_SECONDARY_CHANNEL_OFFSET 62
#define WLAN_EID_20_40_BSS_COEXISTENCE 72
#define WLAN_EID_20_40_BSS_INTOLERANT 73
#define WLAN_EID_OVERLAPPING_BSS_SCAN_PARAMS 74
#define WLAN_EID_MMIE 76
#define WLAN_EID_MESH_CONFIG 113
#define WLAN_EID_MESH_ID 114
#define WLAN_EID_MPM 117
#define WLAN_EID_RANN 126
#define WLAN_EID_EXT_CAP 127
#define WLAN_EID_PREQ 130
#define WLAN_EID_PREP 131
#define WLAN_EID_PERR 132
#define WLAN_EID_AMPE 139
#define WLAN_EID_MIC 140
#define WLAN_EID_VENDOR_SPECIFIC 221
#define WLAN_EID_GENERIC (WLAN_EID_VENDOR_SPECIFIC)
#define WLAN_EID_VHT_CAPABILITY 191
#define WLAN_EID_VHT_OPERATION 192
#define WLAN_EID_WIDE_BANDWIDTH_CHANNEL_SWITCH 194
#define WLAN_EID_CHANNEL_SWITCH_WRAPPER 196
#define WLAN_EID_VHT_OP_MODE_NOTIFY 199
#define WLAN_EID_EXTENSION 255
#define WLAN_EID_EXT_OWE_DH_PARAM 32
/* EID Extension */
#define WLAN_EID_EXTENSION_HE_CAPABILITY 35
#define WLAN_EID_EXTENSION_HE_OPERATION 36
#define WLAN_EID_EXTENSION_HE_MU_EDCA 38
#define WLAN_EID_EXT_CAP_MAX_LEN 10
#define IEEE80211_MGMT_HDR_LEN 24
#define IEEE80211_DATA_HDR3_LEN 24
#define IEEE80211_DATA_HDR4_LEN 30
#define IEEE80211_STATMASK_SIGNAL (1<<0)
#define IEEE80211_STATMASK_RSSI (1<<1)
#define IEEE80211_STATMASK_NOISE (1<<2)
#define IEEE80211_STATMASK_RATE (1<<3)
#define IEEE80211_STATMASK_WEMASK 0x7
#define IEEE80211_CCK_MODULATION (1<<0)
#define IEEE80211_OFDM_MODULATION (1<<1)
#define IEEE80211_24GHZ_BAND (1<<0)
#define IEEE80211_52GHZ_BAND (1<<1)
#define IEEE80211_CCK_RATE_LEN 4
#define IEEE80211_NUM_OFDM_RATESLEN 8
#define IEEE80211_CCK_RATE_1MB 0x02
#define IEEE80211_CCK_RATE_2MB 0x04
#define IEEE80211_CCK_RATE_5MB 0x0B
#define IEEE80211_CCK_RATE_11MB 0x16
#define IEEE80211_OFDM_RATE_LEN 8
#define IEEE80211_OFDM_RATE_6MB 0x0C
#define IEEE80211_OFDM_RATE_9MB 0x12
#define IEEE80211_OFDM_RATE_12MB 0x18
#define IEEE80211_OFDM_RATE_18MB 0x24
#define IEEE80211_OFDM_RATE_24MB 0x30
#define IEEE80211_PBCC_RATE_22MB 0x2C
#define IEEE80211_FREAK_RATE_22_5MB 0x2D
#define IEEE80211_OFDM_RATE_36MB 0x48
#define IEEE80211_OFDM_RATE_48MB 0x60
#define IEEE80211_OFDM_RATE_54MB 0x6C
#define IEEE80211_BASIC_RATE_MASK 0x80
#define IEEE80211_CCK_RATE_1MB_MASK (1<<0)
#define IEEE80211_CCK_RATE_2MB_MASK (1<<1)
#define IEEE80211_CCK_RATE_5MB_MASK (1<<2)
#define IEEE80211_CCK_RATE_11MB_MASK (1<<3)
#define IEEE80211_OFDM_RATE_6MB_MASK (1<<4)
#define IEEE80211_OFDM_RATE_9MB_MASK (1<<5)
#define IEEE80211_OFDM_RATE_12MB_MASK (1<<6)
#define IEEE80211_OFDM_RATE_18MB_MASK (1<<7)
#define IEEE80211_OFDM_RATE_24MB_MASK (1<<8)
#define IEEE80211_OFDM_RATE_36MB_MASK (1<<9)
#define IEEE80211_OFDM_RATE_48MB_MASK (1<<10)
#define IEEE80211_OFDM_RATE_54MB_MASK (1<<11)
#define IEEE80211_CCK_RATES_MASK 0x0000000F
#define IEEE80211_CCK_BASIC_RATES_MASK (IEEE80211_CCK_RATE_1MB_MASK | \
IEEE80211_CCK_RATE_2MB_MASK)
#define IEEE80211_CCK_DEFAULT_RATES_MASK (IEEE80211_CCK_BASIC_RATES_MASK | \
IEEE80211_CCK_RATE_5MB_MASK | \
IEEE80211_CCK_RATE_11MB_MASK)
#define IEEE80211_OFDM_RATES_MASK 0x00000FF0
#define IEEE80211_OFDM_BASIC_RATES_MASK (IEEE80211_OFDM_RATE_6MB_MASK | \
IEEE80211_OFDM_RATE_12MB_MASK | \
IEEE80211_OFDM_RATE_24MB_MASK)
#define IEEE80211_OFDM_DEFAULT_RATES_MASK (IEEE80211_OFDM_BASIC_RATES_MASK | \
IEEE80211_OFDM_RATE_9MB_MASK | \
IEEE80211_OFDM_RATE_18MB_MASK | \
IEEE80211_OFDM_RATE_36MB_MASK | \
IEEE80211_OFDM_RATE_48MB_MASK | \
IEEE80211_OFDM_RATE_54MB_MASK)
#define IEEE80211_DEFAULT_RATES_MASK (IEEE80211_OFDM_DEFAULT_RATES_MASK | \
IEEE80211_CCK_DEFAULT_RATES_MASK)
#define IEEE80211_NUM_OFDM_RATES 8
#define IEEE80211_NUM_CCK_RATES 4
#define IEEE80211_OFDM_SHIFT_MASK_A 4
enum MGN_RATE {
MGN_1M = 0x02,
MGN_2M = 0x04,
MGN_5_5M = 0x0B,
MGN_6M = 0x0C,
MGN_9M = 0x12,
MGN_11M = 0x16,
MGN_12M = 0x18,
MGN_18M = 0x24,
MGN_24M = 0x30,
MGN_36M = 0x48,
MGN_48M = 0x60,
MGN_54M = 0x6C,
MGN_MCS32 = 0x7F,
MGN_MCS0,
MGN_MCS1,
MGN_MCS2,
MGN_MCS3,
MGN_MCS4,
MGN_MCS5,
MGN_MCS6,
MGN_MCS7,
MGN_MCS8,
MGN_MCS9,
MGN_MCS10,
MGN_MCS11,
MGN_MCS12,
MGN_MCS13,
MGN_MCS14,
MGN_MCS15,
MGN_MCS16,
MGN_MCS17,
MGN_MCS18,
MGN_MCS19,
MGN_MCS20,
MGN_MCS21,
MGN_MCS22,
MGN_MCS23,
MGN_MCS24,
MGN_MCS25,
MGN_MCS26,
MGN_MCS27,
MGN_MCS28,
MGN_MCS29,
MGN_MCS30,
MGN_MCS31,
MGN_VHT1SS_MCS0,
MGN_VHT1SS_MCS1,
MGN_VHT1SS_MCS2,
MGN_VHT1SS_MCS3,
MGN_VHT1SS_MCS4,
MGN_VHT1SS_MCS5,
MGN_VHT1SS_MCS6,
MGN_VHT1SS_MCS7,
MGN_VHT1SS_MCS8,
MGN_VHT1SS_MCS9,
MGN_VHT2SS_MCS0,
MGN_VHT2SS_MCS1,
MGN_VHT2SS_MCS2,
MGN_VHT2SS_MCS3,
MGN_VHT2SS_MCS4,
MGN_VHT2SS_MCS5,
MGN_VHT2SS_MCS6,
MGN_VHT2SS_MCS7,
MGN_VHT2SS_MCS8,
MGN_VHT2SS_MCS9,
MGN_VHT3SS_MCS0,
MGN_VHT3SS_MCS1,
MGN_VHT3SS_MCS2,
MGN_VHT3SS_MCS3,
MGN_VHT3SS_MCS4,
MGN_VHT3SS_MCS5,
MGN_VHT3SS_MCS6,
MGN_VHT3SS_MCS7,
MGN_VHT3SS_MCS8,
MGN_VHT3SS_MCS9,
MGN_VHT4SS_MCS0,
MGN_VHT4SS_MCS1,
MGN_VHT4SS_MCS2,
MGN_VHT4SS_MCS3,
MGN_VHT4SS_MCS4,
MGN_VHT4SS_MCS5,
MGN_VHT4SS_MCS6,
MGN_VHT4SS_MCS7,
MGN_VHT4SS_MCS8,
MGN_VHT4SS_MCS9,
MGN_HE1SS_MCS0 = 0xd0,
MGN_HE1SS_MCS1,
MGN_HE1SS_MCS2,
MGN_HE1SS_MCS3,
MGN_HE1SS_MCS4,
MGN_HE1SS_MCS5,
MGN_HE1SS_MCS6,
MGN_HE1SS_MCS7,
MGN_HE1SS_MCS8,
MGN_HE1SS_MCS9,
MGN_HE1SS_MCS10,
MGN_HE1SS_MCS11,
MGN_HE2SS_MCS0,
MGN_HE2SS_MCS1,
MGN_HE2SS_MCS2,
MGN_HE2SS_MCS3,
MGN_HE2SS_MCS4,
MGN_HE2SS_MCS5,
MGN_HE2SS_MCS6,
MGN_HE2SS_MCS7,
MGN_HE2SS_MCS8,
MGN_HE2SS_MCS9,
MGN_HE2SS_MCS10,
MGN_HE2SS_MCS11,
MGN_HE3SS_MCS0,
MGN_HE3SS_MCS1,
MGN_HE3SS_MCS2,
MGN_HE3SS_MCS3,
MGN_HE3SS_MCS4,
MGN_HE3SS_MCS5,
MGN_HE3SS_MCS6,
MGN_HE3SS_MCS7,
MGN_HE3SS_MCS8,
MGN_HE3SS_MCS9,
MGN_HE3SS_MCS10,
MGN_HE3SS_MCS11,
MGN_HE4SS_MCS0,
MGN_HE4SS_MCS1,
MGN_HE4SS_MCS2,
MGN_HE4SS_MCS3,
MGN_HE4SS_MCS4,
MGN_HE4SS_MCS5,
MGN_HE4SS_MCS6,
MGN_HE4SS_MCS7,
MGN_HE4SS_MCS8,
MGN_HE4SS_MCS9,
MGN_HE4SS_MCS10,
MGN_HE4SS_MCS11 = 0xff,
MGN_UNKNOWN = 0xcc
};
#define IS_HT_RATE(_rate) ((_rate) >= MGN_MCS0 && (_rate) <= MGN_MCS31)
#define IS_VHT_RATE(_rate) ((_rate) >= MGN_VHT1SS_MCS0 && (_rate) <= MGN_VHT4SS_MCS9)
#define IS_CCK_RATE(_rate) ((_rate) == MGN_1M || (_rate) == MGN_2M || (_rate) == MGN_5_5M || (_rate) == MGN_11M)
#define IS_OFDM_RATE(_rate) ((_rate) >= MGN_6M && (_rate) <= MGN_54M && (_rate) != MGN_11M)
#define IS_HT1SS_RATE(_rate) ((_rate) >= MGN_MCS0 && (_rate) <= MGN_MCS7)
#define IS_HT2SS_RATE(_rate) ((_rate) >= MGN_MCS8 && (_rate) <= MGN_MCS15)
#define IS_HT3SS_RATE(_rate) ((_rate) >= MGN_MCS16 && (_rate) <= MGN_MCS23)
#define IS_HT4SS_RATE(_rate) ((_rate) >= MGN_MCS24 && (_rate) <= MGN_MCS31)
#define IS_VHT1SS_RATE(_rate) ((_rate) >= MGN_VHT1SS_MCS0 && (_rate) <= MGN_VHT1SS_MCS9)
#define IS_VHT2SS_RATE(_rate) ((_rate) >= MGN_VHT2SS_MCS0 && (_rate) <= MGN_VHT2SS_MCS9)
#define IS_VHT3SS_RATE(_rate) ((_rate) >= MGN_VHT3SS_MCS0 && (_rate) <= MGN_VHT3SS_MCS9)
#define IS_VHT4SS_RATE(_rate) ((_rate) >= MGN_VHT4SS_MCS0 && (_rate) <= MGN_VHT4SS_MCS9)
#define IS_1T_RATE(_rate) (IS_CCK_RATE((_rate)) || IS_OFDM_RATE((_rate)) || IS_HT1SS_RATE((_rate)) || IS_VHT1SS_RATE((_rate)))
#define IS_2T_RATE(_rate) (IS_HT2SS_RATE((_rate)) || IS_VHT2SS_RATE((_rate)))
#define IS_3T_RATE(_rate) (IS_HT3SS_RATE((_rate)) || IS_VHT3SS_RATE((_rate)))
#define IS_4T_RATE(_rate) (IS_HT4SS_RATE((_rate)) || IS_VHT4SS_RATE((_rate)))
#define MGN_RATE_STR(_rate) \
(_rate == MGN_1M) ? "CCK_1M" : \
(_rate == MGN_2M) ? "CCK_2M" : \
(_rate == MGN_5_5M) ? "CCK_5.5M" : \
(_rate == MGN_11M) ? "CCK_11M" : \
(_rate == MGN_6M) ? "OFDM_6M" : \
(_rate == MGN_9M) ? "OFDM_9M" : \
(_rate == MGN_12M) ? "OFDM_12M" : \
(_rate == MGN_18M) ? "OFDM_18M" : \
(_rate == MGN_24M) ? "OFDM_24M" : \
(_rate == MGN_36M) ? "OFDM_36M" : \
(_rate == MGN_48M) ? "OFDM_48M" : \
(_rate == MGN_54M) ? "OFDM_54M" : \
(_rate == MGN_MCS32) ? "MCS32" : \
(_rate == MGN_MCS0) ? "MCS0" : \
(_rate == MGN_MCS1) ? "MCS1" : \
(_rate == MGN_MCS2) ? "MCS2" : \
(_rate == MGN_MCS3) ? "MCS3" : \
(_rate == MGN_MCS4) ? "MCS4" : \
(_rate == MGN_MCS5) ? "MCS5" : \
(_rate == MGN_MCS6) ? "MCS6" : \
(_rate == MGN_MCS7) ? "MCS7" : \
(_rate == MGN_MCS8) ? "MCS8" : \
(_rate == MGN_MCS9) ? "MCS9" : \
(_rate == MGN_MCS10) ? "MCS10" : \
(_rate == MGN_MCS11) ? "MCS11" : \
(_rate == MGN_MCS12) ? "MCS12" : \
(_rate == MGN_MCS13) ? "MCS13" : \
(_rate == MGN_MCS14) ? "MCS14" : \
(_rate == MGN_MCS15) ? "MCS15" : \
(_rate == MGN_MCS16) ? "MCS16" : \
(_rate == MGN_MCS17) ? "MCS17" : \
(_rate == MGN_MCS18) ? "MCS18" : \
(_rate == MGN_MCS19) ? "MCS19" : \
(_rate == MGN_MCS20) ? "MCS20" : \
(_rate == MGN_MCS21) ? "MCS21" : \
(_rate == MGN_MCS22) ? "MCS22" : \
(_rate == MGN_MCS23) ? "MCS23" : \
(_rate == MGN_MCS24) ? "MCS24" : \
(_rate == MGN_MCS25) ? "MCS25" : \
(_rate == MGN_MCS26) ? "MCS26" : \
(_rate == MGN_MCS27) ? "MCS27" : \
(_rate == MGN_MCS28) ? "MCS28" : \
(_rate == MGN_MCS29) ? "MCS29" : \
(_rate == MGN_MCS30) ? "MCS30" : \
(_rate == MGN_MCS31) ? "MCS31" : \
(_rate == MGN_VHT1SS_MCS0) ? "VHT1SMCS0" : \
(_rate == MGN_VHT1SS_MCS1) ? "VHT1SMCS1" : \
(_rate == MGN_VHT1SS_MCS2) ? "VHT1SMCS2" : \
(_rate == MGN_VHT1SS_MCS3) ? "VHT1SMCS3" : \
(_rate == MGN_VHT1SS_MCS4) ? "VHT1SMCS4" : \
(_rate == MGN_VHT1SS_MCS5) ? "VHT1SMCS5" : \
(_rate == MGN_VHT1SS_MCS6) ? "VHT1SMCS6" : \
(_rate == MGN_VHT1SS_MCS7) ? "VHT1SMCS7" : \
(_rate == MGN_VHT1SS_MCS8) ? "VHT1SMCS8" : \
(_rate == MGN_VHT1SS_MCS9) ? "VHT1SMCS9" : \
(_rate == MGN_VHT2SS_MCS0) ? "VHT2SMCS0" : \
(_rate == MGN_VHT2SS_MCS1) ? "VHT2SMCS1" : \
(_rate == MGN_VHT2SS_MCS2) ? "VHT2SMCS2" : \
(_rate == MGN_VHT2SS_MCS3) ? "VHT2SMCS3" : \
(_rate == MGN_VHT2SS_MCS4) ? "VHT2SMCS4" : \
(_rate == MGN_VHT2SS_MCS5) ? "VHT2SMCS5" : \
(_rate == MGN_VHT2SS_MCS6) ? "VHT2SMCS6" : \
(_rate == MGN_VHT2SS_MCS7) ? "VHT2SMCS7" : \
(_rate == MGN_VHT2SS_MCS8) ? "VHT2SMCS8" : \
(_rate == MGN_VHT2SS_MCS9) ? "VHT2SMCS9" : \
(_rate == MGN_VHT3SS_MCS0) ? "VHT3SMCS0" : \
(_rate == MGN_VHT3SS_MCS1) ? "VHT3SMCS1" : \
(_rate == MGN_VHT3SS_MCS2) ? "VHT3SMCS2" : \
(_rate == MGN_VHT3SS_MCS3) ? "VHT3SMCS3" : \
(_rate == MGN_VHT3SS_MCS4) ? "VHT3SMCS4" : \
(_rate == MGN_VHT3SS_MCS5) ? "VHT3SMCS5" : \
(_rate == MGN_VHT3SS_MCS6) ? "VHT3SMCS6" : \
(_rate == MGN_VHT3SS_MCS7) ? "VHT3SMCS7" : \
(_rate == MGN_VHT3SS_MCS8) ? "VHT3SMCS8" : \
(_rate == MGN_VHT3SS_MCS9) ? "VHT3SMCS9" : \
(_rate == MGN_VHT4SS_MCS0) ? "VHT4SMCS0" : \
(_rate == MGN_VHT4SS_MCS1) ? "VHT4SMCS1" : \
(_rate == MGN_VHT4SS_MCS2) ? "VHT4SMCS2" : \
(_rate == MGN_VHT4SS_MCS3) ? "VHT4SMCS3" : \
(_rate == MGN_VHT4SS_MCS4) ? "VHT4SMCS4" : \
(_rate == MGN_VHT4SS_MCS5) ? "VHT4SMCS5" : \
(_rate == MGN_VHT4SS_MCS6) ? "VHT4SMCS6" : \
(_rate == MGN_VHT4SS_MCS7) ? "VHT4SMCS7" : \
(_rate == MGN_VHT4SS_MCS8) ? "VHT4SMCS8" : \
(_rate == MGN_VHT4SS_MCS9) ? "VHT4SMCS9" : "UNKNOWN"
typedef enum _RATE_SECTION {
CCK = 0,
OFDM = 1,
HT_MCS0_MCS7 = 2,
HT_MCS8_MCS15 = 3,
HT_MCS16_MCS23 = 4,
HT_MCS24_MCS31 = 5,
HT_1SS = HT_MCS0_MCS7,
HT_2SS = HT_MCS8_MCS15,
HT_3SS = HT_MCS16_MCS23,
HT_4SS = HT_MCS24_MCS31,
VHT_1SSMCS0_1SSMCS9 = 6,
VHT_2SSMCS0_2SSMCS9 = 7,
VHT_3SSMCS0_3SSMCS9 = 8,
VHT_4SSMCS0_4SSMCS9 = 9,
VHT_1SS = VHT_1SSMCS0_1SSMCS9,
VHT_2SS = VHT_2SSMCS0_2SSMCS9,
VHT_3SS = VHT_3SSMCS0_3SSMCS9,
VHT_4SS = VHT_4SSMCS0_4SSMCS9,
RATE_SECTION_NUM,
} RATE_SECTION;
RATE_SECTION mgn_rate_to_rs(enum MGN_RATE rate);
const char *rate_section_str(u8 section);
#define IS_CCK_RATE_SECTION(section) ((section) == CCK)
#define IS_OFDM_RATE_SECTION(section) ((section) == OFDM)
#define IS_HT_RATE_SECTION(section) ((section) >= HT_1SS && (section) <= HT_4SS)
#define IS_VHT_RATE_SECTION(section) ((section) >= VHT_1SS && (section) <= VHT_4SS)
#define IS_1T_RATE_SECTION(section) ((section) == CCK || (section) == OFDM || (section) == HT_1SS || (section) == VHT_1SS)
#define IS_2T_RATE_SECTION(section) ((section) == HT_2SS || (section) == VHT_2SS)
#define IS_3T_RATE_SECTION(section) ((section) == HT_3SS || (section) == VHT_3SS)
#define IS_4T_RATE_SECTION(section) ((section) == HT_4SS || (section) == VHT_4SS)
extern u8 mgn_rates_cck[];
extern u8 mgn_rates_ofdm[];
extern u8 mgn_rates_mcs0_7[];
extern u8 mgn_rates_mcs8_15[];
extern u8 mgn_rates_mcs16_23[];
extern u8 mgn_rates_mcs24_31[];
extern u8 mgn_rates_vht1ss[];
extern u8 mgn_rates_vht2ss[];
extern u8 mgn_rates_vht3ss[];
extern u8 mgn_rates_vht4ss[];
struct rate_section_ent {
u8 tx_num; /* value of RF_TX_NUM */
u8 rate_num;
u8 *rates;
};
extern struct rate_section_ent rates_by_sections[];
#define rate_section_to_tx_num(section) (rates_by_sections[(section)].tx_num)
#define rate_section_rate_num(section) (rates_by_sections[(section)].rate_num)
/* NOTE: This data is for statistical purposes; not all hardware provides this
* information for frames received. Not setting these will not cause
* any adverse affects. */
struct ieee80211_rx_stats {
/* u32 mac_time[2]; */
s8 rssi;
u8 signal;
u8 noise;
u8 received_channel;
u16 rate; /* in 100 kbps */
/* u8 control; */
u8 mask;
u8 freq;
u16 len;
};
/* IEEE 802.11 requires that STA supports concurrent reception of at least
* three fragmented frames. This define can be increased to support more
* concurrent frames, but it should be noted that each entry can consume about
* 2 kB of RAM and increasing cache size will slow down frame reassembly. */
#define IEEE80211_FRAG_CACHE_LEN 4
struct ieee80211_frag_entry {
u32 first_frag_time;
uint seq;
uint last_frag;
uint qos; /* jackson */
uint tid; /* jackson */
struct sk_buff *skb;
u8 src_addr[ETH_ALEN];
u8 dst_addr[ETH_ALEN];
};
#define SEC_KEY_1 (1<<0)
#define SEC_KEY_2 (1<<1)
#define SEC_KEY_3 (1<<2)
#define SEC_KEY_4 (1<<3)
#define SEC_ACTIVE_KEY (1<<4)
#define SEC_AUTH_MODE (1<<5)
#define SEC_UNICAST_GROUP (1<<6)
#define SEC_LEVEL (1<<7)
#define SEC_ENABLED (1<<8)
#define SEC_LEVEL_0 0 /* None */
#define SEC_LEVEL_1 1 /* WEP 40 and 104 bit */
#define SEC_LEVEL_2 2 /* Level 1 + TKIP */
#define SEC_LEVEL_2_CKIP 3 /* Level 1 + CKIP */
#define SEC_LEVEL_3 4 /* Level 2 + CCMP */
#define WEP_KEYS 4
#define WEP_KEY_LEN 13
#define BIP_MAX_KEYID 5
#define BIP_AAD_SIZE 20
#if defined(PLATFORM_LINUX)
struct ieee80211_security {
u16 active_key:2,
enabled:1,
auth_mode:2,
auth_algo:4,
unicast_uses_group:1;
u8 key_sizes[WEP_KEYS];
u8 keys[WEP_KEYS][WEP_KEY_LEN];
u8 level;
u16 flags;
} __attribute__((packed));
#endif
/*
802.11 data frame from AP
,-------------------------------------------------------------------.
Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
|------|------|---------|---------|---------|------|---------|------|
Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | frame | fcs |
| | tion | (BSSID) | | | ence | data | |
`-------------------------------------------------------------------'
Total: 28-2340 bytes
*/
struct ieee80211_header_data {
u16 frame_ctl;
u16 duration_id;
u8 addr1[6];
u8 addr2[6];
u8 addr3[6];
u16 seq_ctrl;
};
#define BEACON_PROBE_SSID_ID_POSITION 12
/* Management Frame Information Element Types */
#define MFIE_TYPE_SSID 0
#define MFIE_TYPE_RATES 1
#define MFIE_TYPE_FH_SET 2
#define MFIE_TYPE_DS_SET 3
#define MFIE_TYPE_CF_SET 4
#define MFIE_TYPE_TIM 5
#define MFIE_TYPE_IBSS_SET 6
#define MFIE_TYPE_CHALLENGE 16
#define MFIE_TYPE_ERP 42
#define MFIE_TYPE_RSN 48
#define MFIE_TYPE_RATES_EX 50
#define MFIE_TYPE_GENERIC 221
#if defined(PLATFORM_LINUX)
struct ieee80211_info_element_hdr {
u8 id;
u8 len;
} __attribute__((packed));
struct ieee80211_info_element {
u8 id;
u8 len;
u8 data[0];
} __attribute__((packed));
#endif
/*
* These are the data types that can make up management packets
*
u16 auth_algorithm;
u16 auth_sequence;
u16 beacon_interval;
u16 capability;
u8 current_ap[ETH_ALEN];
u16 listen_interval;
struct {
u16 association_id:14, reserved:2;
} __attribute__ ((packed));
u32 time_stamp[2];
u16 reason;
u16 status;
*/
#define IEEE80211_DEFAULT_TX_ESSID "Penguin"
#define IEEE80211_DEFAULT_BASIC_RATE 10
#if defined(PLATFORM_LINUX)
struct ieee80211_authentication {
struct ieee80211_header_data header;
u16 algorithm;
u16 transaction;
u16 status;
/* struct ieee80211_info_element_hdr info_element; */
} __attribute__((packed));
struct ieee80211_probe_response {
struct ieee80211_header_data header;
u32 time_stamp[2];
u16 beacon_interval;
u16 capability;
struct ieee80211_info_element info_element;
} __attribute__((packed));
struct ieee80211_probe_request {
struct ieee80211_header_data header;
/*struct ieee80211_info_element info_element;*/
} __attribute__((packed));
struct ieee80211_assoc_request_frame {
struct rtw_ieee80211_hdr_3addr header;
u16 capability;
u16 listen_interval;
/* u8 current_ap[ETH_ALEN]; */
struct ieee80211_info_element_hdr info_element;
} __attribute__((packed));
struct ieee80211_assoc_response_frame {
struct rtw_ieee80211_hdr_3addr header;
u16 capability;
u16 status;
u16 aid;
/* struct ieee80211_info_element info_element; supported rates */
} __attribute__((packed));
#endif
struct ieee80211_txb {
u8 nr_frags;
u8 encrypted;
u16 reserved;
u16 frag_size;
u16 payload_size;
struct sk_buff *fragments[0];
};
/* SWEEP TABLE ENTRIES NUMBER*/
#define MAX_SWEEP_TAB_ENTRIES 42
#define MAX_SWEEP_TAB_ENTRIES_PER_PACKET 7
/* MAX_RATES_LENGTH needs to be 12. The spec says 8, and many APs
* only use 8, and then use extended rates for the remaining supported
* rates. Other APs, however, stick all of their supported rates on the
* main rates information element... */
#define MAX_RATES_LENGTH ((u8)12)
#define MAX_RATES_EX_LENGTH ((u8)16)
#define MAX_NETWORK_COUNT 128
#define IEEE80211_SOFTMAC_SCAN_TIME 400
/* (HZ / 2) */
#define IEEE80211_SOFTMAC_ASSOC_RETRY_TIME (HZ * 2)
#define CRC_LENGTH 4U
#define MAX_WPA_IE_LEN (256)
#define MAX_WPS_IE_LEN (512)
#define MAX_OWE_IE_LEN (128)
#define MAX_P2P_IE_LEN (256)
#define MAX_WFD_IE_LEN (128)
#define NETWORK_EMPTY_ESSID (1<<0)
#define NETWORK_HAS_OFDM (1<<1)
#define NETWORK_HAS_CCK (1<<2)
#define IEEE80211_DTIM_MBCAST 4
#define IEEE80211_DTIM_UCAST 2
#define IEEE80211_DTIM_VALID 1
#define IEEE80211_DTIM_INVALID 0
#define IEEE80211_PS_DISABLED 0
#define IEEE80211_PS_UNICAST IEEE80211_DTIM_UCAST
#define IEEE80211_PS_MBCAST IEEE80211_DTIM_MBCAST
#define IW_ESSID_MAX_SIZE 32
#define DEFAULT_MAX_SCAN_AGE (15 * HZ)
#define DEFAULT_FTS 2346
#define MAC_FMT "%02x:%02x:%02x:%02x:%02x:%02x"
#define MAC_ARG(x) ((u8 *)(x))[0], ((u8 *)(x))[1], ((u8 *)(x))[2], ((u8 *)(x))[3], ((u8 *)(x))[4], ((u8 *)(x))[5]
#define MAC_SFMT "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx"
#define MAC_SARG(x) ((u8*)(x)),((u8*)(x)) + 1,((u8*)(x)) + 2,((u8*)(x)) + 3,((u8*)(x)) + 4,((u8*)(x)) + 5
#define IP_FMT "%d.%d.%d.%d"
#define IP_ARG(x) ((u8 *)(x))[0], ((u8 *)(x))[1], ((u8 *)(x))[2], ((u8 *)(x))[3]
#define PORT_FMT "%u"
#define PORT_ARG(x) ntohs(*((u16 *)(x)))
#define is_multicast_mac_addr(Addr) ((((Addr[0]) & 0x01) == 0x01) && ((Addr[0]) != 0xff))
#define is_broadcast_mac_addr(Addr) ((((Addr[0]) & 0xff) == 0xff) && (((Addr[1]) & 0xff) == 0xff) && \
(((Addr[2]) & 0xff) == 0xff) && (((Addr[3]) & 0xff) == 0xff) && (((Addr[4]) & 0xff) == 0xff) && \
(((Addr[5]) & 0xff) == 0xff))
#define is_zero_mac_addr(Addr) ((Addr[0] == 0x00) && (Addr[1] == 0x00) && (Addr[2] == 0x00) && \
(Addr[3] == 0x00) && (Addr[4] == 0x00) && (Addr[5] == 0x00))
#define CFG_IEEE80211_RESERVE_FCS (1<<0)
#define CFG_IEEE80211_COMPUTE_FCS (1<<1)
typedef struct tx_pending_t {
int frag;
struct ieee80211_txb *txb;
} tx_pending_t;
#define TID_NUM 16
#define IEEE_A (1<<0)
#define IEEE_B (1<<1)
#define IEEE_G (1<<2)
#define IEEE_MODE_MASK (IEEE_A | IEEE_B | IEEE_G)
/* Baron move to ieee80211.c */
int ieee80211_is_empty_essid(const char *essid, int essid_len);
int ieee80211_get_hdrlen(u16 fc);
#if 0
/* Action frame categories (IEEE 802.11-2007, 7.3.1.11, Table 7-24) */
#define WLAN_ACTION_SPECTRUM_MGMT 0
#define WLAN_ACTION_QOS 1
#define WLAN_ACTION_DLS 2
#define WLAN_ACTION_BLOCK_ACK 3
#define WLAN_ACTION_RADIO_MEASUREMENT 5
#define WLAN_ACTION_FT 6
#define WLAN_ACTION_SA_QUERY 8
#define WLAN_ACTION_WMM 17
#endif
/* Action category code */
enum rtw_ieee80211_category {
RTW_WLAN_CATEGORY_SPECTRUM_MGMT = 0,
RTW_WLAN_CATEGORY_QOS = 1,
RTW_WLAN_CATEGORY_DLS = 2,
RTW_WLAN_CATEGORY_BACK = 3,
RTW_WLAN_CATEGORY_PUBLIC = 4, /* IEEE 802.11 public action frames */
RTW_WLAN_CATEGORY_RADIO_MEAS = 5,
RTW_WLAN_CATEGORY_FT = 6,
RTW_WLAN_CATEGORY_HT = 7,
RTW_WLAN_CATEGORY_SA_QUERY = 8,
RTW_WLAN_CATEGORY_WNM = 10,
RTW_WLAN_CATEGORY_UNPROTECTED_WNM = 11, /* add for CONFIG_IEEE80211W, none 11w also can use */
RTW_WLAN_CATEGORY_TDLS = 12,
RTW_WLAN_CATEGORY_MESH = 13,
RTW_WLAN_CATEGORY_MULTIHOP = 14,
RTW_WLAN_CATEGORY_SELF_PROTECTED = 15,
RTW_WLAN_CATEGORY_WMM = 17,
RTW_WLAN_CATEGORY_VHT = 21,
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
RTW_WLAN_CATEGORY_TBTX = 25,
#endif
RTW_WLAN_CATEGORY_HE = 30,
RTW_WLAN_CATEGORY_PROTECTED_HE = 31,
RTW_WLAN_CATEGORY_P2P = 0x7f,/* P2P action frames */
};
#define CATEGORY_IS_GROUP_PRIVACY(cat) \
(cat == RTW_WLAN_CATEGORY_MESH || cat == RTW_WLAN_CATEGORY_MULTIHOP)
#define CATEGORY_IS_NON_ROBUST(cat) \
(cat == RTW_WLAN_CATEGORY_PUBLIC \
|| cat == RTW_WLAN_CATEGORY_HT \
|| cat == RTW_WLAN_CATEGORY_UNPROTECTED_WNM \
|| cat == RTW_WLAN_CATEGORY_SELF_PROTECTED \
|| cat == RTW_WLAN_CATEGORY_VHT \
|| cat == RTW_WLAN_CATEGORY_P2P)
#define CATEGORY_IS_ROBUST(cat) !CATEGORY_IS_NON_ROBUST(cat)
/* SPECTRUM_MGMT action code */
enum rtw_ieee80211_spectrum_mgmt_actioncode {
RTW_WLAN_ACTION_SPCT_MSR_REQ = 0,
RTW_WLAN_ACTION_SPCT_MSR_RPRT = 1,
RTW_WLAN_ACTION_SPCT_TPC_REQ = 2,
RTW_WLAN_ACTION_SPCT_TPC_RPRT = 3,
RTW_WLAN_ACTION_SPCT_CHL_SWITCH = 4,
RTW_WLAN_ACTION_SPCT_EXT_CHL_SWITCH = 5,
};
/* SELF_PROTECTED action code */
enum rtw_ieee80211_self_protected_actioncode {
RTW_ACT_SELF_PROTECTED_RSVD = 0,
RTW_ACT_SELF_PROTECTED_MESH_OPEN = 1,
RTW_ACT_SELF_PROTECTED_MESH_CONF = 2,
RTW_ACT_SELF_PROTECTED_MESH_CLOSE = 3,
RTW_ACT_SELF_PROTECTED_MESH_GK_INFORM = 4,
RTW_ACT_SELF_PROTECTED_MESH_GK_ACK = 5,
RTW_ACT_SELF_PROTECTED_NUM,
};
/* MESH action code */
enum rtw_ieee80211_mesh_actioncode {
RTW_ACT_MESH_LINK_METRIC_REPORT,
RTW_ACT_MESH_HWMP_PATH_SELECTION,
RTW_ACT_MESH_GATE_ANNOUNCEMENT,
RTW_ACT_MESH_CONGESTION_CONTROL_NOTIFICATION,
RTW_ACT_MESH_MCCA_SETUP_REQUEST,
RTW_ACT_MESH_MCCA_SETUP_REPLY,
RTW_ACT_MESH_MCCA_ADVERTISEMENT_REQUEST,
RTW_ACT_MESH_MCCA_ADVERTISEMENT,
RTW_ACT_MESH_MCCA_TEARDOWN,
RTW_ACT_MESH_TBTT_ADJUSTMENT_REQUEST,
RTW_ACT_MESH_TBTT_ADJUSTMENT_RESPONSE,
};
enum _PUBLIC_ACTION {
ACT_PUBLIC_BSSCOEXIST = 0, /* 20/40 BSS Coexistence */
ACT_PUBLIC_DSE_ENABLE = 1,
ACT_PUBLIC_DSE_DEENABLE = 2,
ACT_PUBLIC_DSE_REG_LOCATION = 3,
ACT_PUBLIC_EXT_CHL_SWITCH = 4,
ACT_PUBLIC_DSE_MSR_REQ = 5,
ACT_PUBLIC_DSE_MSR_RPRT = 6,
ACT_PUBLIC_MP = 7, /* Measurement Pilot */
ACT_PUBLIC_DSE_PWR_CONSTRAINT = 8,
ACT_PUBLIC_VENDOR = 9, /* for WIFI_DIRECT */
ACT_PUBLIC_GAS_INITIAL_REQ = 10,
ACT_PUBLIC_GAS_INITIAL_RSP = 11,
ACT_PUBLIC_GAS_COMEBACK_REQ = 12,
ACT_PUBLIC_GAS_COMEBACK_RSP = 13,
ACT_PUBLIC_TDLS_DISCOVERY_RSP = 14,
ACT_PUBLIC_LOCATION_TRACK = 15,
ACT_PUBLIC_MAX
};
#ifdef CONFIG_TDLS
enum TDLS_ACTION_FIELD {
TDLS_SETUP_REQUEST = 0,
TDLS_SETUP_RESPONSE = 1,
TDLS_SETUP_CONFIRM = 2,
TDLS_TEARDOWN = 3,
TDLS_PEER_TRAFFIC_INDICATION = 4,
TDLS_CHANNEL_SWITCH_REQUEST = 5,
TDLS_CHANNEL_SWITCH_RESPONSE = 6,
TDLS_PEER_PSM_REQUEST = 7,
TDLS_PEER_PSM_RESPONSE = 8,
TDLS_PEER_TRAFFIC_RESPONSE = 9,
TDLS_DISCOVERY_REQUEST = 10,
TDLS_DISCOVERY_RESPONSE = 14, /* it's used in public action frame */
};
#define TUNNELED_PROBE_REQ 15
#define TUNNELED_PROBE_RSP 16
#endif /* CONFIG_TDLS */
/* BACK action code */
enum rtw_ieee80211_back_actioncode {
RTW_WLAN_ACTION_ADDBA_REQ = 0,
RTW_WLAN_ACTION_ADDBA_RESP = 1,
RTW_WLAN_ACTION_DELBA = 2,
};
/* HT features action code */
enum rtw_ieee80211_ht_actioncode {
RTW_WLAN_ACTION_HT_NOTI_CHNL_WIDTH = 0,
RTW_WLAN_ACTION_HT_SM_PS = 1,
RTW_WLAN_ACTION_HT_PSMP = 2,
RTW_WLAN_ACTION_HT_SET_PCO_PHASE = 3,
RTW_WLAN_ACTION_HT_CSI = 4,
RTW_WLAN_ACTION_HT_NON_COMPRESS_BEAMFORMING = 5,
RTW_WLAN_ACTION_HT_COMPRESS_BEAMFORMING = 6,
RTW_WLAN_ACTION_HT_ASEL_FEEDBACK = 7,
};
/* BACK (block-ack) parties */
enum rtw_ieee80211_back_parties {
RTW_WLAN_BACK_RECIPIENT = 0,
RTW_WLAN_BACK_INITIATOR = 1,
RTW_WLAN_BACK_TIMER = 2,
};
/*20/40 BSS Coexistence element */
#define RTW_WLAN_20_40_BSS_COEX_INFO_REQ BIT(0)
#define RTW_WLAN_20_40_BSS_COEX_40MHZ_INTOL BIT(1)
#define RTW_WLAN_20_40_BSS_COEX_20MHZ_WIDTH_REQ BIT(2)
#define RTW_WLAN_20_40_BSS_COEX_OBSS_EXEMPT_REQ BIT(3)
#define RTW_WLAN_20_40_BSS_COEX_OBSS_EXEMPT_GRNT BIT(4)
/* VHT features action code */
enum rtw_ieee80211_vht_actioncode {
RTW_WLAN_ACTION_VHT_COMPRESSED_BEAMFORMING = 0,
RTW_WLAN_ACTION_VHT_GROUPID_MANAGEMENT = 1,
RTW_WLAN_ACTION_VHT_OPMODE_NOTIFICATION = 2,
};
enum EXT_CAP_INFO{
BSS_COEXT = 0, /* 20/40 BSS Coexistence Management Support */
EXT_CH_SWITCH = 2, /* Extended Channel Switching */
WNM_SLEEP_MODE = 17, /* WNM Sleep Mode */
BSS_TRANSITION = 19, /* BSS Transition */
MULTI_BSSID = 22, /* Multiple BSSID */
TIME_MEASUREMENT = 23, /* Timing Measurement */
SSID_LIST = 25, /* SSID List */
TDLS_PSM = 29, /* TDLS Peer PSM Support */
TDLS_CH_SWITCH = 30, /* TDLS channel switching */
INTERWORKING = 31, /* Interworking */
TDLS_SUPPORT = 37, /* TDLS Support */
WNM_NOTIFICATION = 46, /* WNM Notification */
OP_MODE_NOTIFICATION = 62, /* Operating Mode Notification */
FTM_RESPONDER = 70, /* Fine Timing Measurement Responder */
FTM_INITIATOR = 71, /* Fine Timing Measurement Initiator */
};
#define OUI_MICROSOFT 0x0050f2 /* Microsoft (also used in Wi-Fi specs)
* 00:50:F2 */
#define WME_OUI_TYPE 2
#define WME_OUI_SUBTYPE_INFORMATION_ELEMENT 0
#define WME_OUI_SUBTYPE_PARAMETER_ELEMENT 1
#define WME_OUI_SUBTYPE_TSPEC_ELEMENT 2
#define WME_VERSION 1
#define WME_ACTION_CODE_SETUP_REQUEST 0
#define WME_ACTION_CODE_SETUP_RESPONSE 1
#define WME_ACTION_CODE_TEARDOWN 2
#define WME_SETUP_RESPONSE_STATUS_ADMISSION_ACCEPTED 0
#define WME_SETUP_RESPONSE_STATUS_INVALID_PARAMETERS 1
#define WME_SETUP_RESPONSE_STATUS_REFUSED 3
#define WME_TSPEC_DIRECTION_UPLINK 0
#define WME_TSPEC_DIRECTION_DOWNLINK 1
#define WME_TSPEC_DIRECTION_BI_DIRECTIONAL 3
#define OUI_BROADCOM 0x00904c /* Broadcom (Epigram) */
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
#define OUI_REALTEK 0x00e04c /* Realtek */
#endif
#define VENDOR_HT_CAPAB_OUI_TYPE 0x33 /* 00-90-4c:0x33 */
#define MBO_OUI_TYPE 0x16
enum rtw_ieee80211_rann_flags {
RTW_RANN_FLAG_IS_GATE = 1 << 0,
};
/**
* enum rtw_ieee80211_preq_flags - mesh PREQ element flags
*
* @RTW_IEEE80211_PREQ_IS_GATE_FLAG: Gate Announcement subfield
* @RTW_IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield
*/
enum rtw_ieee80211_preq_flags {
RTW_IEEE80211_PREQ_IS_GATE_FLAG = 1 << 0,
RTW_IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1 << 2,
};
/**
* enum rtw_ieee80211_preq_target_flags - mesh PREQ element per target flags
*
* @RTW_IEEE80211_PREQ_TO_FLAG: target only subfield
* @RTW_IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield
*/
enum rtw_ieee80211_preq_target_flags {
RTW_IEEE80211_PREQ_TO_FLAG = 1<<0,
RTW_IEEE80211_PREQ_USN_FLAG = 1<<2,
};
/**
* enum rtw_ieee80211_root_mode_identifier - root mesh STA mode identifier
*
* These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode
*
* @RTW_IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default)
* @RTW_IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than
* this value
* @RTW_IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports
* the proactive PREQ with proactive PREP subfield set to 0
* @RTW_IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA
* supports the proactive PREQ with proactive PREP subfield set to 1
* @RTW_IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports
* the proactive RANN
*/
enum rtw_ieee80211_root_mode_identifier {
RTW_IEEE80211_ROOTMODE_NO_ROOT = 0,
RTW_IEEE80211_ROOTMODE_ROOT = 1,
RTW_IEEE80211_PROACTIVE_PREQ_NO_PREP = 2,
RTW_IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3,
RTW_IEEE80211_PROACTIVE_RANN = 4,
};
/**
* enum rtw_ieee80211_channel_flags - channel flags
*
* Channel flags set by the regulatory control code.
*
* @RTW_IEEE80211_CHAN_DISABLED: This channel is disabled.
* @RTW_IEEE80211_CHAN_PASSIVE_SCAN: Only passive scanning is permitted
* on this channel.
* @RTW_IEEE80211_CHAN_NO_IBSS: IBSS is not allowed on this channel.
* @RTW_IEEE80211_CHAN_RADAR: Radar detection is required on this channel.
* @RTW_IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel
* is not permitted.
* @RTW_IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel
* is not permitted.
*/
enum rtw_ieee80211_channel_flags {
RTW_IEEE80211_CHAN_DISABLED = 1 << 0,
RTW_IEEE80211_CHAN_PASSIVE_SCAN = 1 << 1,
RTW_IEEE80211_CHAN_NO_IBSS = 1 << 2,
RTW_IEEE80211_CHAN_RADAR = 1 << 3,
RTW_IEEE80211_CHAN_NO_HT40PLUS = 1 << 4,
RTW_IEEE80211_CHAN_NO_HT40MINUS = 1 << 5,
};
#define RTW_IEEE80211_CHAN_NO_HT40 \
(RTW_IEEE80211_CHAN_NO_HT40PLUS | RTW_IEEE80211_CHAN_NO_HT40MINUS)
/* Represent channel details, subset of ieee80211_channel */
struct rtw_ieee80211_channel {
/* enum ieee80211_band band; */
/* u16 center_freq; */
u16 hw_value;
u32 flags;
/* int max_antenna_gain; */
/* int max_power; */
/* int max_reg_power; */
/* bool beacon_found; */
/* u32 orig_flags; */
/* int orig_mag; */
/* int orig_mpwr; */
};
#define CHAN_FMT \
/*"band:%d, "*/ \
/*"center_freq:%u, "*/ \
"hw_value:%u, " \
"flags:0x%08x" \
/*"max_antenna_gain:%d\n"*/ \
/*"max_power:%d\n"*/ \
/*"max_reg_power:%d\n"*/ \
/*"beacon_found:%u\n"*/ \
/*"orig_flags:0x%08x\n"*/ \
/*"orig_mag:%d\n"*/ \
/*"orig_mpwr:%d\n"*/
#define CHAN_ARG(channel) \
/*(channel)->band*/ \
/*, (channel)->center_freq*/ \
(channel)->hw_value \
, (channel)->flags \
/*, (channel)->max_antenna_gain*/ \
/*, (channel)->max_power*/ \
/*, (channel)->max_reg_power*/ \
/*, (channel)->beacon_found*/ \
/*, (channel)->orig_flags*/ \
/*, (channel)->orig_mag*/ \
/*, (channel)->orig_mpwr*/ \
/* Parsed Information Elements */
struct rtw_ieee802_11_elems {
u8 *ssid;
u8 ssid_len;
u8 *supp_rates;
u8 supp_rates_len;
u8 *fh_params;
u8 fh_params_len;
u8 *ds_params;
u8 ds_params_len;
u8 *cf_params;
u8 cf_params_len;
u8 *tim;
u8 tim_len;
u8 *ibss_params;
u8 ibss_params_len;
u8 *challenge;
u8 challenge_len;
u8 *erp_info;
u8 erp_info_len;
u8 *ext_supp_rates;
u8 ext_supp_rates_len;
u8 *wpa_ie;
u8 wpa_ie_len;
u8 *rsn_ie;
u8 rsn_ie_len;
u8 *wme;
u8 wme_len;
u8 *wme_tspec;
u8 wme_tspec_len;
u8 *wps_ie;
u8 wps_ie_len;
u8 *power_cap;
u8 power_cap_len;
u8 *supp_channels;
u8 supp_channels_len;
u8 *mdie;
u8 mdie_len;
u8 *ftie;
u8 ftie_len;
u8 *timeout_int;
u8 timeout_int_len;
u8 *ht_capabilities;
u8 ht_capabilities_len;
u8 *ht_operation;
u8 ht_operation_len;
u8 *vendor_ht_cap;
u8 vendor_ht_cap_len;
u8 *vht_capabilities;
u8 vht_capabilities_len;
u8 *vht_operation;
u8 vht_operation_len;
u8 *vht_op_mode_notify;
u8 vht_op_mode_notify_len;
u8 *he_capabilities;
u8 he_capabilities_len;
u8 *he_operation;
u8 he_operation_len;
u8 *rm_en_cap;
u8 rm_en_cap_len;
#ifdef CONFIG_RTW_MESH
u8 *preq;
u8 preq_len;
u8 *prep;
u8 prep_len;
u8 *perr;
u8 perr_len;
u8 *rann;
u8 rann_len;
#endif
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
u8 *tbtx_cap;
u8 tbtx_cap_len;
#endif
};
typedef enum { ParseOK = 0, ParseUnknown = 1, ParseFailed = -1 } ParseRes;
ParseRes rtw_ieee802_11_parse_elems(u8 *start, uint len,
struct rtw_ieee802_11_elems *elems,
int show_errors);
u8 *rtw_set_fixed_ie(unsigned char *pbuf, unsigned int len, unsigned char *source, unsigned int *frlen);
u8 *rtw_set_ie(u8 *pbuf, sint index, uint len, const u8 *source, uint *frlen);
/*
* Represent Extention Channel Offset in HT Capabilities
* This is available only in 40Mhz mode.
* */
#if 0
typedef enum _EXTCHNL_OFFSET {
EXTCHNL_OFFSET_NO_EXT = 0,
EXTCHNL_OFFSET_UPPER = 1,
EXTCHNL_OFFSET_NO_DEF = 2,
EXTCHNL_OFFSET_LOWER = 3,
} EXTCHNL_OFFSET, *PEXTCHNL_OFFSET;
#endif
/*enum chan_offset*/
enum secondary_ch_offset {
IEEE80211_SCN = 0, /* no secondary channel */
IEEE80211_SCA = 1, /* the secondary channel is above the primary channel */
IEEE80211_SCB = 3, /* the secondary channel is below the primary channel */
};
u8 secondary_ch_offset_to_hal_ch_offset(u8 ch_offset);
u8 hal_ch_offset_to_secondary_ch_offset(u8 ch_offset);
u8 *rtw_set_ie_ch_switch(u8 *buf, u32 *buf_len, u8 ch_switch_mode, u8 new_ch, u8 ch_switch_cnt);
u8 *rtw_set_ie_secondary_ch_offset(u8 *buf, u32 *buf_len, u8 secondary_ch_offset);
u8 *rtw_set_ie_mesh_ch_switch_parm(u8 *buf, u32 *buf_len, u8 ttl, u8 flags, u16 reason, u16 precedence);
u8 *rtw_get_ie(const u8 *pbuf, sint index, sint *len, sint limit);
u8 rtw_update_rate_bymode(WLAN_BSSID_EX *pbss_network, u32 mode);
u8 *rtw_get_ie_ex(const u8 *in_ie, uint in_len, u8 eid, const u8 *oui, u8 oui_len, u8 *ie, uint *ielen);
u8 rtw_ies_update_ie(u8 *ies, uint *ies_len, uint ies_offset, u8 eid, const u8 *content, u8 content_len);
int rtw_ies_remove_ie(u8 *ies, uint *ies_len, uint offset, u8 eid, u8 *oui, u8 oui_len);
void rtw_set_supported_rate(u8 *SupportedRates, uint mode, u8 ch) ;
#define GET_RSN_CAP_MFP_OPTION(cap) LE_BITS_TO_2BYTE(((u8 *)(cap)), 6, 2)
#define MFP_NO 0
#define MFP_INVALID 1
#define MFP_OPTIONAL 2
#define MFP_REQUIRED 3
/*For amsdu mode */
#define GET_RSN_CAP_SPP_OPT(cap) LE_BITS_TO_2BYTE(((u8 *)(cap)), 10, 2)
#define SET_RSN_CAP_SPP(cap, spp) SET_BITS_TO_LE_2BYTE(((u8 *)(cap)), 10, 2, spp)
#define SPP_CAP BIT(0)
#define SPP_REQ BIT(1)
enum rtw_amsdu_mode {
RTW_AMSDU_MODE_NON_SPP = 0,
RTW_AMSDU_MODE_SPP = 1,
RTW_AMSDU_MODE_ALL_DROP = 2,
};
struct rsne_info {
u8 *gcs;
u16 pcs_cnt;
u8 *pcs_list;
u16 akm_cnt;
u8 *akm_list;
u8 *cap;
u16 pmkid_cnt;
u8 *pmkid_list;
u8 *gmcs;
u8 err;
};
int rtw_rsne_info_parse(const u8 *ie, uint ie_len, struct rsne_info *info);
unsigned char *rtw_get_wpa_ie(unsigned char *pie, int *wpa_ie_len, int limit);
unsigned char *rtw_get_wpa2_ie(unsigned char *pie, int *rsn_ie_len, int limit);
int rtw_get_wpa_cipher_suite(u8 *s);
int rtw_get_rsn_cipher_suite(u8 *s);
int rtw_get_wapi_ie(u8 *in_ie, uint in_len, u8 *wapi_ie, u16 *wapi_len);
int rtw_parse_wpa_ie(u8 *wpa_ie, int wpa_ie_len, int *group_cipher, int *pairwise_cipher, u32 *akm);
int rtw_parse_wpa2_ie(u8 *wpa_ie, int wpa_ie_len, int *group_cipher, int *pairwise_cipher, int *gmcs, u32 *akm, u8 *mfp_opt, u8* spp_opt);
int rtw_get_sec_ie(u8 *in_ie, uint in_len, u8 *rsn_ie, u16 *rsn_len, u8 *wpa_ie, u16 *wpa_len);
u8 rtw_is_wps_ie(u8 *ie_ptr, uint *wps_ielen);
u8 *rtw_get_wps_ie_from_scan_queue(u8 *in_ie, uint in_len, u8 *wps_ie, uint *wps_ielen, enum bss_type frame_type);
u8 *rtw_get_wps_ie(const u8 *in_ie, uint in_len, u8 *wps_ie, uint *wps_ielen);
u8 *rtw_get_wps_attr(u8 *wps_ie, uint wps_ielen, u16 target_attr_id , u8 *buf_attr, u32 *len_attr);
u8 *rtw_get_wps_attr_content(u8 *wps_ie, uint wps_ielen, u16 target_attr_id , u8 *buf_content, uint *len_content);
u8 *rtw_get_owe_ie(const u8 *in_ie, uint in_len, u8 *owe_ie, uint *owe_ielen);
void rtw_add_ext_cap_info(u8 *ext_cap_data, u8 *ext_cap_data_len, u8 cap_info);
void rtw_remove_ext_cap_info(u8 *ext_cap_data, u8 *ext_cap_data_len, u8 cap_info);
u8 rtw_update_ext_cap_ie(u8 *ext_cap_data, u8 ext_cap_data_len, u8 *ies, u32 *ies_len, u8 ies_offset);
void rtw_parse_ext_cap_ie(u8 *ext_cap_data, u8 *ext_cap_data_len, u8 *ies, u32 ies_len, u8 ies_offset);
/**
* for_each_ie - iterate over continuous IEs
* @ie:
* @buf:
* @buf_len:
*/
#define for_each_ie(ie, buf, buf_len) \
for (ie = (void *)buf; (((u8 *)ie) - ((u8 *)buf) + 1) < buf_len; ie = (void *)(((u8 *)ie) + *(((u8 *)ie)+1) + 2))
void dump_ies(void *sel, const u8 *buf, u32 buf_len);
#ifdef CONFIG_80211N_HT
#define HT_SC_OFFSET_MAX 4
extern const char *const _ht_sc_offset_str[];
#define ht_sc_offset_str(sc) (((sc) >= HT_SC_OFFSET_MAX) ? _ht_sc_offset_str[2] : _ht_sc_offset_str[(sc)])
void dump_ht_cap_ie_content(void *sel, const u8 *buf, u32 buf_len);
#endif
void dump_wps_ie(void *sel, const u8 *ie, u32 ie_len);
void rtw_ies_get_chbw(u8 *ies, int ies_len, u8 *ch, u8 *bw, u8 *offset, u8 ht, u8 vht);
void rtw_bss_get_chbw(WLAN_BSSID_EX *bss, u8 *ch, u8 *bw, u8 *offset, u8 ht, u8 vht);
bool rtw_is_chbw_grouped(u8 ch_a, u8 bw_a, u8 offset_a
, u8 ch_b, u8 bw_b, u8 offset_b);
void rtw_sync_chbw(u8 *req_ch, u8 *req_bw, u8 *req_offset
, u8 *g_ch, u8 *g_bw, u8 *g_offset);
u32 rtw_get_p2p_merged_ies_len(u8 *in_ie, u32 in_len);
int rtw_p2p_merge_ies(u8 *in_ie, u32 in_len, u8 *merge_ie);
void dump_p2p_ie(void *sel, const u8 *ie, u32 ie_len);
u8 *rtw_get_p2p_ie(const u8 *in_ie, int in_len, u8 *p2p_ie, uint *p2p_ielen);
u8 *rtw_get_p2p_attr(u8 *p2p_ie, uint p2p_ielen, u8 target_attr_id, u8 *buf_attr, u32 *len_attr);
u8 *rtw_get_p2p_attr_content(u8 *p2p_ie, uint p2p_ielen, u8 target_attr_id, u8 *buf_content, uint *len_content);
u32 rtw_set_p2p_attr_content(u8 *pbuf, u8 attr_id, u16 attr_len, u8 *pdata_attr);
uint rtw_del_p2p_ie(u8 *ies, uint ies_len_ori, const char *msg);
uint rtw_del_p2p_attr(u8 *ie, uint ielen_ori, u8 attr_id);
u8 *rtw_bss_ex_get_p2p_ie(WLAN_BSSID_EX *bss_ex, u8 *p2p_ie, uint *p2p_ielen);
void rtw_bss_ex_del_p2p_ie(WLAN_BSSID_EX *bss_ex);
void rtw_bss_ex_del_p2p_attr(WLAN_BSSID_EX *bss_ex, u8 attr_id);
#ifdef CONFIG_IGNORE_GO_AND_LOW_RSSI_IN_SCAN_LIST
int rtw_chk_p2p_wildcard_ssid(WLAN_BSSID_EX *bss_ex);
int rtw_chk_p2p_ie(WLAN_BSSID_EX *bss_ex);
#endif /*CONFIG_IGNORE_GO_AND_LOW_RSSI_IN_SCAN_LIST*/
void dump_wfd_ie(void *sel, const u8 *ie, u32 ie_len);
u8 *rtw_get_wfd_ie(const u8 *in_ie, int in_len, u8 *wfd_ie, uint *wfd_ielen);
u8 *rtw_get_wfd_attr(u8 *wfd_ie, uint wfd_ielen, u8 target_attr_id, u8 *buf_attr, u32 *len_attr);
u8 *rtw_get_wfd_attr_content(u8 *wfd_ie, uint wfd_ielen, u8 target_attr_id, u8 *buf_content, uint *len_content);
uint rtw_del_wfd_ie(u8 *ies, uint ies_len_ori, const char *msg);
uint rtw_del_wfd_attr(u8 *ie, uint ielen_ori, u8 attr_id);
u8 *rtw_bss_ex_get_wfd_ie(WLAN_BSSID_EX *bss_ex, u8 *wfd_ie, uint *wfd_ielen);
void rtw_bss_ex_del_wfd_ie(WLAN_BSSID_EX *bss_ex);
void rtw_bss_ex_del_wfd_attr(WLAN_BSSID_EX *bss_ex, u8 attr_id);
#define MULTI_AP_SUB_ELEM_TYPE 0x06
#define MULTI_AP_TEAR_DOWN BIT(4)
#define MULTI_AP_FRONTHAUL_BSS BIT(5)
#define MULTI_AP_BACKHAUL_BSS BIT(6)
#define MULTI_AP_BACKHAUL_STA BIT(7)
#ifdef CONFIG_RTW_MULTI_AP
void dump_multi_ap_ie(void *sel, const u8 *ie, u32 ie_len);
u8 rtw_get_multi_ap_ie_ext(const u8 *ies, int ies_len);
u8 *rtw_set_multi_ap_ie_ext(u8 *pbuf, uint *frlen, u8 val);
#endif
uint rtw_get_rateset_len(u8 *rateset);
struct registry_priv;
int rtw_generate_ie(struct registry_priv *pregistrypriv);
int rtw_get_bit_value_from_ieee_value(u8 val);
uint rtw_is_cckrates_included(u8 *rate);
uint rtw_is_cckratesonly_included(u8 *rate);
uint rtw_get_cckrate_size(u8 *rate,u32 rate_length);
int rtw_check_network_type(unsigned char *rate, int ratelen, int channel);
u8 rtw_check_invalid_mac_address(u8 *mac_addr, u8 check_local_bit);
void rtw_macaddr_cfg(u8 *out, const u8 *hw_mac_addr);
u16 rtw_ht_mcs_rate(u8 bw_40MHz, u8 short_GI, unsigned char *MCS_rate);
u8 rtw_ht_mcsset_to_nss(u8 *supp_mcs_set);
u32 rtw_ht_mcs_set_to_bitmap(u8 *mcs_set, u8 nss);
int rtw_action_frame_parse(const u8 *frame, u32 frame_len, u8 *category, u8 *action);
const char *action_public_str(u8 action);
u8 key_2char2num(u8 hch, u8 lch);
u8 str_2char2num(u8 hch, u8 lch);
void macstr2num(u8 *dst, u8 *src);
u8 convert_ip_addr(u8 hch, u8 mch, u8 lch);
int wifirate2_ratetbl_inx(unsigned char rate);
/* For amsdu mode. */
/*void rtw_set_spp_amsdu_mode(u8 mode, u8 *rsn_ie, int rsn_ie_len);*/
u8 rtw_check_amsdu_disable(u8 mode, u8 spp_opt);
#endif /* IEEE80211_H */
|
2301_81045437/rtl8852be
|
include/ieee80211.h
|
C
|
agpl-3.0
| 60,032
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __IEEE80211_EXT_H
#define __IEEE80211_EXT_H
#include <drv_conf.h>
#include <osdep_service.h>
#include <drv_types.h>
#define WMM_OUI_TYPE 2
#define WMM_OUI_SUBTYPE_INFORMATION_ELEMENT 0
#define WMM_OUI_SUBTYPE_PARAMETER_ELEMENT 1
#define WMM_OUI_SUBTYPE_TSPEC_ELEMENT 2
#define WMM_VERSION 1
#define WPA_PROTO_WPA BIT(0)
#define WPA_PROTO_RSN BIT(1)
#define WPA_KEY_MGMT_IEEE8021X BIT(0)
#define WPA_KEY_MGMT_PSK BIT(1)
#define WPA_KEY_MGMT_NONE BIT(2)
#define WPA_KEY_MGMT_IEEE8021X_NO_WPA BIT(3)
#define WPA_KEY_MGMT_WPA_NONE BIT(4)
#define WPA_CAPABILITY_PREAUTH BIT(0)
#define WPA_CAPABILITY_MGMT_FRAME_PROTECTION BIT(6)
#define WPA_CAPABILITY_PEERKEY_ENABLED BIT(9)
#define PMKID_LEN 16
#ifdef PLATFORM_LINUX
struct wpa_ie_hdr {
u8 elem_id;
u8 len;
u8 oui[4]; /* 24-bit OUI followed by 8-bit OUI type */
u8 version[2]; /* little endian */
} __attribute__((packed));
struct rsn_ie_hdr {
u8 elem_id; /* WLAN_EID_RSN */
u8 len;
u8 version[2]; /* little endian */
} __attribute__((packed));
struct wme_ac_parameter {
#if defined(CONFIG_LITTLE_ENDIAN)
/* byte 1 */
u8 aifsn:4,
acm:1,
aci:2,
reserved:1;
/* byte 2 */
u8 eCWmin:4,
eCWmax:4;
#elif defined(CONFIG_BIG_ENDIAN)
/* byte 1 */
u8 reserved:1,
aci:2,
acm:1,
aifsn:4;
/* byte 2 */
u8 eCWmax:4,
eCWmin:4;
#else
#error "Please fix <endian.h>"
#endif
/* bytes 3 & 4 */
u16 txopLimit;
} __attribute__((packed));
struct wme_parameter_element {
/* required fields for WME version 1 */
u8 oui[3];
u8 oui_type;
u8 oui_subtype;
u8 version;
u8 acInfo;
u8 reserved;
struct wme_ac_parameter ac[4];
} __attribute__((packed));
#endif
#define WPA_PUT_LE16(a, val) \
do { \
(a)[1] = ((u16) (val)) >> 8; \
(a)[0] = ((u16) (val)) & 0xff; \
} while (0)
#define WPA_PUT_BE32(a, val) \
do { \
(a)[0] = (u8) ((((u32) (val)) >> 24) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[2] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[3] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define WPA_PUT_LE32(a, val) \
do { \
(a)[3] = (u8) ((((u32) (val)) >> 24) & 0xff); \
(a)[2] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[0] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RSN_SELECTOR_PUT(a, val) WPA_PUT_BE32((u8 *) (a), (val))
/* #define RSN_SELECTOR_PUT(a, val) WPA_PUT_LE32((u8 *) (a), (val)) */
/* Action category code */
enum ieee80211_category {
WLAN_CATEGORY_SPECTRUM_MGMT = 0,
WLAN_CATEGORY_QOS = 1,
WLAN_CATEGORY_DLS = 2,
WLAN_CATEGORY_BACK = 3,
WLAN_CATEGORY_HT = 7,
WLAN_CATEGORY_WMM = 17,
};
/* SPECTRUM_MGMT action code */
enum ieee80211_spectrum_mgmt_actioncode {
WLAN_ACTION_SPCT_MSR_REQ = 0,
WLAN_ACTION_SPCT_MSR_RPRT = 1,
WLAN_ACTION_SPCT_TPC_REQ = 2,
WLAN_ACTION_SPCT_TPC_RPRT = 3,
WLAN_ACTION_SPCT_CHL_SWITCH = 4,
WLAN_ACTION_SPCT_EXT_CHL_SWITCH = 5,
};
/* BACK action code */
enum ieee80211_back_actioncode {
WLAN_ACTION_ADDBA_REQ = 0,
WLAN_ACTION_ADDBA_RESP = 1,
WLAN_ACTION_DELBA = 2,
};
/* HT features action code */
enum ieee80211_ht_actioncode {
WLAN_ACTION_NOTIFY_CH_WIDTH = 0,
WLAN_ACTION_SM_PS = 1,
WLAN_ACTION_PSPM = 2,
WLAN_ACTION_PCO_PHASE = 3,
WLAN_ACTION_MIMO_CSI_MX = 4,
WLAN_ACTION_MIMO_NONCP_BF = 5,
WLAN_ACTION_MIMP_CP_BF = 6,
WLAN_ACTION_ASEL_INDICATES_FB = 7,
WLAN_ACTION_HI_INFO_EXCHG = 8,
};
/* BACK (block-ack) parties */
enum ieee80211_back_parties {
WLAN_BACK_RECIPIENT = 0,
WLAN_BACK_INITIATOR = 1,
WLAN_BACK_TIMER = 2,
};
#ifdef PLATFORM_LINUX
struct ieee80211_mgmt {
u16 frame_control;
u16 duration;
u8 da[6];
u8 sa[6];
u8 bssid[6];
u16 seq_ctrl;
union {
struct {
u16 auth_alg;
u16 auth_transaction;
u16 status_code;
/* possibly followed by Challenge text */
u8 variable[0];
} __attribute__((packed)) auth;
struct {
u16 reason_code;
} __attribute__((packed)) deauth;
struct {
u16 capab_info;
u16 listen_interval;
/* followed by SSID and Supported rates */
u8 variable[0];
} __attribute__((packed)) assoc_req;
struct {
u16 capab_info;
u16 status_code;
u16 aid;
/* followed by Supported rates */
u8 variable[0];
} __attribute__((packed)) assoc_resp, reassoc_resp;
struct {
u16 capab_info;
u16 listen_interval;
u8 current_ap[6];
/* followed by SSID and Supported rates */
u8 variable[0];
} __attribute__((packed)) reassoc_req;
struct {
u16 reason_code;
} __attribute__((packed)) disassoc;
struct {
__le64 timestamp;
u16 beacon_int;
u16 capab_info;
/* followed by some of SSID, Supported rates,
* FH Params, DS Params, CF Params, IBSS Params, TIM */
u8 variable[0];
} __attribute__((packed)) beacon;
struct {
/* only variable items: SSID, Supported rates */
u8 variable[0];
} __attribute__((packed)) probe_req;
struct {
__le64 timestamp;
u16 beacon_int;
u16 capab_info;
/* followed by some of SSID, Supported rates,
* FH Params, DS Params, CF Params, IBSS Params */
u8 variable[0];
} __attribute__((packed)) probe_resp;
struct {
u8 category;
union {
struct {
u8 action_code;
u8 dialog_token;
u8 status_code;
u8 variable[0];
} __attribute__((packed)) wme_action;
#if 0
struct {
u8 action_code;
u8 element_id;
u8 length;
struct ieee80211_channel_sw_ie sw_elem;
} __attribute__((packed)) chan_switch;
struct {
u8 action_code;
u8 dialog_token;
u8 element_id;
u8 length;
struct ieee80211_msrment_ie msr_elem;
} __attribute__((packed)) measurement;
#endif
struct {
u8 action_code;
u8 dialog_token;
u16 capab;
u16 timeout;
u16 start_seq_num;
} __attribute__((packed)) addba_req;
struct {
u8 action_code;
u8 dialog_token;
u16 status;
u16 capab;
u16 timeout;
} __attribute__((packed)) addba_resp;
struct {
u8 action_code;
u16 params;
u16 reason_code;
} __attribute__((packed)) delba;
struct {
u8 action_code;
/* capab_info for open and confirm,
* reason for close
*/
u16 aux;
/* Followed in plink_confirm by status
* code, AID and supported rates,
* and directly by supported rates in
* plink_open and plink_close
*/
u8 variable[0];
} __attribute__((packed)) plink_action;
struct {
u8 action_code;
u8 variable[0];
} __attribute__((packed)) mesh_action;
} __attribute__((packed)) u;
} __attribute__((packed)) action;
} __attribute__((packed)) u;
} __attribute__((packed));
#endif
/* mgmt header + 1 byte category code */
#define IEEE80211_MIN_ACTION_SIZE FIELD_OFFSET(struct ieee80211_mgmt, u.action.u)
#endif
|
2301_81045437/rtl8852be
|
include/ieee80211_ext.h
|
C
|
agpl-3.0
| 7,435
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _LINUX_IF_ETHER_H
#define _LINUX_IF_ETHER_H
/*
* IEEE 802.3 Ethernet magic constants. The frame sizes omit the preamble
* and FCS/CRC (frame check sequence).
*/
#define ETH_ALEN 6 /* Octets in one ethernet addr */
#define ETH_HLEN 14 /* Total octets in header. */
#define ETH_ZLEN 60 /* Min. octets in frame sans FCS */
#define ETH_DATA_LEN 1500 /* Max. octets in payload */
#define ETH_FRAME_LEN 1514 /* Max. octets in frame sans FCS */
/*
* These are the defined Ethernet Protocol ID's.
*/
#define ETH_P_LOOP 0x0060 /* Ethernet Loopback packet */
#define ETH_P_PUP 0x0200 /* Xerox PUP packet */
#define ETH_P_PUPAT 0x0201 /* Xerox PUP Addr Trans packet */
#define ETH_P_IP 0x0800 /* Internet Protocol packet */
#define ETH_P_X25 0x0805 /* CCITT X.25 */
#define ETH_P_ARP 0x0806 /* Address Resolution packet */
#define ETH_P_BPQ 0x08FF /* G8BPQ AX.25 Ethernet Packet [ NOT AN OFFICIALLY REGISTERED ID ] */
#define ETH_P_IEEEPUP 0x0a00 /* Xerox IEEE802.3 PUP packet */
#define ETH_P_IEEEPUPAT 0x0a01 /* Xerox IEEE802.3 PUP Addr Trans packet */
#define ETH_P_DEC 0x6000 /* DEC Assigned proto */
#define ETH_P_DNA_DL 0x6001 /* DEC DNA Dump/Load */
#define ETH_P_DNA_RC 0x6002 /* DEC DNA Remote Console */
#define ETH_P_DNA_RT 0x6003 /* DEC DNA Routing */
#define ETH_P_LAT 0x6004 /* DEC LAT */
#define ETH_P_DIAG 0x6005 /* DEC Diagnostics */
#define ETH_P_CUST 0x6006 /* DEC Customer use */
#define ETH_P_SCA 0x6007 /* DEC Systems Comms Arch */
#define ETH_P_RARP 0x8035 /* Reverse Addr Res packet */
#define ETH_P_ATALK 0x809B /* Appletalk DDP */
#define ETH_P_AARP 0x80F3 /* Appletalk AARP */
#define ETH_P_8021Q 0x8100 /* 802.1Q VLAN Extended Header */
#define ETH_P_IPX 0x8137 /* IPX over DIX */
#define ETH_P_IPV6 0x86DD /* IPv6 over bluebook */
#define ETH_P_PPP_DISC 0x8863 /* PPPoE discovery messages */
#define ETH_P_PPP_SES 0x8864 /* PPPoE session messages */
#define ETH_P_ATMMPOA 0x884c /* MultiProtocol Over ATM */
#define ETH_P_ATMFATE 0x8884 /* Frame-based ATM Transport
* over Ethernet
*/
/*
* Non DIX types. Won't clash for 1500 types.
*/
#define ETH_P_802_3 0x0001 /* Dummy type for 802.3 frames */
#define ETH_P_AX25 0x0002 /* Dummy protocol id for AX.25 */
#define ETH_P_ALL 0x0003 /* Every packet (be careful!!!) */
#define ETH_P_802_2 0x0004 /* 802.2 frames */
#define ETH_P_SNAP 0x0005 /* Internal only */
#define ETH_P_DDCMP 0x0006 /* DEC DDCMP: Internal only */
#define ETH_P_WAN_PPP 0x0007 /* Dummy type for WAN PPP frames*/
#define ETH_P_PPP_MP 0x0008 /* Dummy type for PPP MP frames */
#define ETH_P_LOCALTALK 0x0009 /* Localtalk pseudo type */
#define ETH_P_PPPTALK 0x0010 /* Dummy type for Atalk over PPP*/
#define ETH_P_TR_802_2 0x0011 /* 802.2 frames */
#define ETH_P_MOBITEX 0x0015 /* Mobitex (kaz@cafe.net) */
#define ETH_P_CONTROL 0x0016 /* Card specific control frames */
#define ETH_P_IRDA 0x0017 /* Linux-IrDA */
#define ETH_P_ECONET 0x0018 /* Acorn Econet */
/*
* This is an Ethernet frame header.
*/
struct ethhdr {
unsigned char h_dest[ETH_ALEN]; /* destination eth addr */
unsigned char h_source[ETH_ALEN]; /* source ether addr */
unsigned short h_proto; /* packet type ID field */
};
struct _vlan {
unsigned short h_vlan_TCI; /* Encapsulates priority and VLAN ID */
unsigned short h_vlan_encapsulated_proto;
};
#define get_vlan_id(pvlan) ((ntohs((unsigned short)pvlan->h_vlan_TCI)) & 0xfff)
#define get_vlan_priority(pvlan) ((ntohs((unsigned short)pvlan->h_vlan_TCI))>>13)
#define get_vlan_encap_proto(pvlan) (ntohs((unsigned short)pvlan->h_vlan_encapsulated_proto))
#endif /* _LINUX_IF_ETHER_H */
|
2301_81045437/rtl8852be
|
include/if_ether.h
|
C
|
agpl-3.0
| 4,578
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _LINUX_IP_H
#define _LINUX_IP_H
/* SOL_IP socket options */
#define IPTOS_TOS_MASK 0x1E
#define IPTOS_TOS(tos) ((tos)&IPTOS_TOS_MASK)
#define IPTOS_LOWDELAY 0x10
#define IPTOS_THROUGHPUT 0x08
#define IPTOS_RELIABILITY 0x04
#define IPTOS_MINCOST 0x02
#define IPTOS_PREC_MASK 0xE0
#define IPTOS_PREC(tos) ((tos)&IPTOS_PREC_MASK)
#define IPTOS_PREC_NETCONTROL 0xe0
#define IPTOS_PREC_INTERNETCONTROL 0xc0
#define IPTOS_PREC_CRITIC_ECP 0xa0
#define IPTOS_PREC_FLASHOVERRIDE 0x80
#define IPTOS_PREC_FLASH 0x60
#define IPTOS_PREC_IMMEDIATE 0x40
#define IPTOS_PREC_PRIORITY 0x20
#define IPTOS_PREC_ROUTINE 0x00
/* IP options */
#define IPOPT_COPY 0x80
#define IPOPT_CLASS_MASK 0x60
#define IPOPT_NUMBER_MASK 0x1f
#define IPOPT_COPIED(o) ((o)&IPOPT_COPY)
#define IPOPT_CLASS(o) ((o)&IPOPT_CLASS_MASK)
#define IPOPT_NUMBER(o) ((o)&IPOPT_NUMBER_MASK)
#define IPOPT_CONTROL 0x00
#define IPOPT_RESERVED1 0x20
#define IPOPT_MEASUREMENT 0x40
#define IPOPT_RESERVED2 0x60
#define IPOPT_END (0 | IPOPT_CONTROL)
#define IPOPT_NOOP (1 | IPOPT_CONTROL)
#define IPOPT_SEC (2 | IPOPT_CONTROL | IPOPT_COPY)
#define IPOPT_LSRR (3 | IPOPT_CONTROL | IPOPT_COPY)
#define IPOPT_TIMESTAMP (4 | IPOPT_MEASUREMENT)
#define IPOPT_RR (7 | IPOPT_CONTROL)
#define IPOPT_SID (8 | IPOPT_CONTROL | IPOPT_COPY)
#define IPOPT_SSRR (9 | IPOPT_CONTROL | IPOPT_COPY)
#define IPOPT_RA (20 | IPOPT_CONTROL | IPOPT_COPY)
#define IPVERSION 4
#define MAXTTL 255
#define IPDEFTTL 64
/* struct timestamp, struct route and MAX_ROUTES are removed.
REASONS: it is clear that nobody used them because:
- MAX_ROUTES value was wrong.
- "struct route" was wrong.
- "struct timestamp" had fatally misaligned bitfields and was completely unusable.
*/
#define IPOPT_OPTVAL 0
#define IPOPT_OLEN 1
#define IPOPT_OFFSET 2
#define IPOPT_MINOFF 4
#define MAX_IPOPTLEN 40
#define IPOPT_NOP IPOPT_NOOP
#define IPOPT_EOL IPOPT_END
#define IPOPT_TS IPOPT_TIMESTAMP
#define IPOPT_TS_TSONLY 0 /* timestamps only */
#define IPOPT_TS_TSANDADDR 1 /* timestamps and addresses */
#define IPOPT_TS_PRESPEC 3 /* specified modules only */
#ifdef PLATFORM_LINUX
struct ip_options {
__u32 faddr; /* Saved first hop address */
unsigned char optlen;
unsigned char srr;
unsigned char rr;
unsigned char ts;
unsigned char is_setbyuser:1, /* Set by setsockopt? */
is_data:1, /* Options in __data, rather than skb */
is_strictroute:1, /* Strict source route */
srr_is_hit:1, /* Packet destination addr was our one */
is_changed:1, /* IP checksum more not valid */
rr_needaddr:1, /* Need to record addr of outgoing dev */
ts_needtime:1, /* Need to record timestamp */
ts_needaddr:1; /* Need to record addr of outgoing dev */
unsigned char router_alert;
unsigned char __pad1;
unsigned char __pad2;
unsigned char __data[0];
};
#define optlength(opt) (sizeof(struct ip_options) + opt->optlen)
#endif
struct iphdr {
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u8 ihl:4,
version:4;
#elif defined (__BIG_ENDIAN_BITFIELD)
__u8 version:4,
ihl:4;
#else
#error "Please fix <asm/byteorder.h>"
#endif
__u8 tos;
__u16 tot_len;
__u16 id;
__u16 frag_off;
__u8 ttl;
__u8 protocol;
__u16 check;
__u32 saddr;
__u32 daddr;
/*The options start here. */
};
#endif /* _LINUX_IP_H */
|
2301_81045437/rtl8852be
|
include/ip.h
|
C
|
agpl-3.0
| 4,040
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _LINUX_WIRELESS_H
#define _LINUX_WIRELESS_H
/***************************** INCLUDES *****************************/
#if 0
#include <linux/types.h> /* for __u* and __s* typedefs */
#include <linux/socket.h> /* for "struct sockaddr" et al */
#include <linux/if.h> /* for IFNAMSIZ and co... */
#else
#define __user
/* typedef uint16_t __u16; */
#include <sys/socket.h> /* for "struct sockaddr" et al */
#include <net/if.h> /* for IFNAMSIZ and co... */
#endif
/****************************** TYPES ******************************/
#ifdef CONFIG_COMPAT
struct compat_iw_point {
compat_caddr_t pointer;
__u16 length;
__u16 flags;
};
#endif
/* --------------------------- SUBTYPES --------------------------- */
/*
* For all data larger than 16 octets, we need to use a
* pointer to memory allocated in user space.
*/
struct iw_point {
void __user *pointer; /* Pointer to the data (in user space) */
__u16 length; /* number of fields or size in bytes */
__u16 flags; /* Optional params */
};
/* ------------------------ IOCTL REQUEST ------------------------ */
/*
* This structure defines the payload of an ioctl, and is used
* below.
*
* Note that this structure should fit on the memory footprint
* of iwreq (which is the same as ifreq), which mean a max size of
* 16 octets = 128 bits. Warning, pointers might be 64 bits wide...
* You should check this when increasing the structures defined
* above in this file...
*/
union iwreq_data {
/* Config - generic */
char name[IFNAMSIZ];
/* Name : used to verify the presence of wireless extensions.
* Name of the protocol/provider... */
struct iw_point data; /* Other large parameters */
};
/*
* The structure to exchange data for ioctl.
* This structure is the same as 'struct ifreq', but (re)defined for
* convenience...
* Do I need to remind you about structure size (32 octets) ?
*/
struct iwreq {
union {
char ifrn_name[IFNAMSIZ]; /* if name, e.g. "eth0" */
} ifr_ifrn;
/* Data part (defined just above) */
union iwreq_data u;
};
#endif /* _LINUX_WIRELESS_H */
|
2301_81045437/rtl8852be
|
include/linux/wireless.h
|
C
|
agpl-3.0
| 2,738
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __MLME_OSDEP_H_
#define __MLME_OSDEP_H_
extern void rtw_os_indicate_disconnect(_adapter *adapter, u16 reason, u8 locally_generated);
extern void rtw_os_indicate_connect(_adapter *adapter);
void rtw_os_indicate_scan_done(_adapter *padapter, bool aborted);
extern void rtw_report_sec_ie(_adapter *adapter, u8 authmode, u8 *sec_ie);
void rtw_reset_securitypriv(_adapter *adapter);
#endif /* _MLME_OSDEP_H_ */
|
2301_81045437/rtl8852be
|
include/mlme_osdep.h
|
C
|
agpl-3.0
| 1,073
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __OSDEP_INTF_H_
#define __OSDEP_INTF_H_
struct dvobj_priv *devobj_init(void);
void devobj_deinit(struct dvobj_priv *pdvobj);
u8 devobj_data_init(struct dvobj_priv *dvobj);
void devobj_data_deinit(struct dvobj_priv *dvobj);
u8 devobj_trx_resource_init(struct dvobj_priv *dvobj);
void devobj_trx_resource_deinit(struct dvobj_priv *dvobj);
u8 rtw_init_drv_sw(_adapter *padapter);
u8 rtw_free_drv_sw(_adapter *padapter);
u8 rtw_reset_drv_sw(_adapter *padapter);
void rtw_drv_stop_prim_iface(_adapter *adapter);
#if 0 /*#ifdef CONFIG_CORE_CMD_THREAD*/
u32 rtw_start_drv_threads(_adapter *padapter);
void rtw_stop_drv_threads(_adapter *padapter);
#endif
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
void rtw_cancel_dynamic_chk_timer(_adapter *padapter);
#endif
void rtw_cancel_all_timer(_adapter *padapter);
#ifdef PLATFORM_LINUX
int rtw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
int rtw_init_netdev_name(struct net_device *pnetdev, const char *ifname);
struct net_device *rtw_init_netdev(_adapter *padapter);
void rtw_os_ndev_free(_adapter *adapter);
int rtw_os_ndev_init(_adapter *adapter, const char *name);
void rtw_os_ndev_deinit(_adapter *adapter);
void rtw_os_ndev_unregister(_adapter *adapter);
void rtw_os_ndevs_unregister(struct dvobj_priv *dvobj);
int rtw_os_ndevs_init(struct dvobj_priv *dvobj);
void rtw_os_ndevs_deinit(struct dvobj_priv *dvobj);
u16 rtw_os_recv_select_queue(u8 *msdu, enum rtw_rx_llc_hdl llc_hdl);
int rtw_ndev_notifier_register(void);
void rtw_ndev_notifier_unregister(void);
void rtw_inetaddr_notifier_register(void);
void rtw_inetaddr_notifier_unregister(void);
#include "../os_dep/linux/rtw_proc.h"
#include "../os_dep/linux/nlrtw.h"
#ifdef CONFIG_IOCTL_CFG80211
#include "../os_dep/linux/ioctl_cfg80211.h"
#endif /* CONFIG_IOCTL_CFG80211 */
u8 rtw_rtnl_lock_needed(struct dvobj_priv *dvobj);
void rtw_set_rtnl_lock_holder(struct dvobj_priv *dvobj, _thread_hdl_ thd_hdl);
#endif /* PLATFORM_LINUX */
#ifdef PLATFORM_FREEBSD
extern int rtw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
#endif
void rtw_ips_dev_unload(_adapter *padapter);
#ifdef CONFIG_IPS
int rtw_ips_pwr_up(_adapter *padapter);
void rtw_ips_pwr_down(_adapter *padapter);
#endif
#ifdef CONFIG_CONCURRENT_MODE
struct _io_ops;
struct dvobj_priv;
u8 rtw_drv_add_vir_ifaces(struct dvobj_priv *dvobj);
void rtw_drv_stop_vir_ifaces(struct dvobj_priv *dvobj);
void rtw_drv_free_vir_ifaces(struct dvobj_priv *dvobj);
#endif
void rtw_ndev_destructor(_nic_hdl ndev);
#ifdef CONFIG_ARP_KEEP_ALIVE
int rtw_gw_addr_query(_adapter *padapter);
#endif
int rtw_suspend_common(_adapter *padapter);
int rtw_resume_common(_adapter *padapter);
int rtw_suspend_free_assoc_resource(_adapter *padapter);
#endif /* _OSDEP_INTF_H_ */
|
2301_81045437/rtl8852be
|
include/osdep_intf.h
|
C
|
agpl-3.0
| 3,423
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __OSDEP_SERVICE_H_
#define __OSDEP_SERVICE_H_
#define RTW_RX_HANDLED 2
#define RTW_RFRAME_UNAVAIL 3
#define RTW_RFRAME_PKT_UNAVAIL 4
#define RTW_RBUF_UNAVAIL 5
#define RTW_RBUF_PKT_UNAVAIL 6
#define RTW_SDIO_RECV_FAIL 7
#define RTW_ALREADY 8
#define RTW_RA_RESOLVING 9
#define RTW_ORI_NO_NEED 10
/* #define RTW_STATUS_TIMEDOUT -110 */
#ifdef PLATFORM_FREEBSD
#include <osdep_service_bsd.h>
#endif
#ifdef PLATFORM_LINUX
#include <linux/version.h>
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0))
#include <linux/sched/signal.h>
#include <linux/sched/types.h>
#endif
#include <osdep_service_linux.h>
#endif
/* #include <rtw_byteorder.h> */
#ifndef BIT
#define BIT(x) (1 << (x))
#endif
#ifndef BIT_ULL
#define BIT_ULL(x) (1ULL << (x))
#endif
#define CHECK_BIT(a, b) (!!((a) & (b)))
#define BIT0 0x00000001
#define BIT1 0x00000002
#define BIT2 0x00000004
#define BIT3 0x00000008
#define BIT4 0x00000010
#define BIT5 0x00000020
#define BIT6 0x00000040
#define BIT7 0x00000080
#define BIT8 0x00000100
#define BIT9 0x00000200
#define BIT10 0x00000400
#define BIT11 0x00000800
#define BIT12 0x00001000
#define BIT13 0x00002000
#define BIT14 0x00004000
#define BIT15 0x00008000
#define BIT16 0x00010000
#define BIT17 0x00020000
#define BIT18 0x00040000
#define BIT19 0x00080000
#define BIT20 0x00100000
#define BIT21 0x00200000
#define BIT22 0x00400000
#define BIT23 0x00800000
#define BIT24 0x01000000
#define BIT25 0x02000000
#define BIT26 0x04000000
#define BIT27 0x08000000
#define BIT28 0x10000000
#define BIT29 0x20000000
#define BIT30 0x40000000
#define BIT31 0x80000000
#define BIT32 0x0100000000
#define BIT33 0x0200000000
#define BIT34 0x0400000000
#define BIT35 0x0800000000
#define BIT36 0x1000000000
#ifndef GENMASK
#define GENMASK(h, l) \
(((~0UL) - (1UL << (l)) + 1) & (~0UL >> (BITS_PER_LONG - 1 - (h))))
#endif
extern int RTW_STATUS_CODE(int error_code);
#ifndef RTK_DMP_PLATFORM
#define CONFIG_USE_VMALLOC
#endif
/* flags used for rtw_mstat_update() */
enum mstat_f {
/* type: 0x00ff */
MSTAT_TYPE_VIR = 0x00,
MSTAT_TYPE_PHY = 0x01,
MSTAT_TYPE_SKB = 0x02,
MSTAT_TYPE_USB = 0x03,
MSTAT_TYPE_MAX = 0x04,
/* func: 0xff00 */
MSTAT_FUNC_UNSPECIFIED = 0x00 << 8,
MSTAT_FUNC_IO = 0x01 << 8,
MSTAT_FUNC_TX_IO = 0x02 << 8,
MSTAT_FUNC_RX_IO = 0x03 << 8,
MSTAT_FUNC_TX = 0x04 << 8,
MSTAT_FUNC_RX = 0x05 << 8,
MSTAT_FUNC_CFG_VENDOR = 0x06 << 8,
MSTAT_FUNC_MAX = 0x07 << 8,
};
#define mstat_tf_idx(flags) ((flags) & 0xff)
#define mstat_ff_idx(flags) (((flags) & 0xff00) >> 8)
typedef enum mstat_status {
MSTAT_ALLOC_SUCCESS = 0,
MSTAT_ALLOC_FAIL,
MSTAT_FREE
} MSTAT_STATUS;
#ifdef DBG_MEM_ALLOC
void rtw_mstat_update(const enum mstat_f flags, const MSTAT_STATUS status, u32 sz);
void rtw_mstat_dump(void *sel);
bool match_mstat_sniff_rules(const enum mstat_f flags, const size_t size);
void *dbg_rtw_vmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line);
void *dbg_rtw_zvmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line);
void dbg_rtw_vmfree(void *pbuf, const enum mstat_f flags, u32 sz, const char *func, const int line);
void *dbg_rtw_malloc(u32 sz, const enum mstat_f flags, const char *func, const int line);
void *dbg_rtw_zmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line);
void dbg_rtw_mfree(void *pbuf, const enum mstat_f flags, u32 sz, const char *func, const int line);
struct sk_buff *dbg_rtw_skb_alloc(unsigned int size, const enum mstat_f flags, const char *func, const int line);
void dbg_rtw_skb_free(struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line);
struct sk_buff *dbg_rtw_skb_copy(const struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line);
struct sk_buff *dbg_rtw_skb_clone(struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line);
int dbg_rtw_skb_linearize(struct sk_buff *skb, const enum mstat_f flags, const char *func, int line);
int dbg_rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line);
#ifdef CONFIG_RTW_NAPI
int dbg_rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line);
#ifdef CONFIG_RTW_GRO
gro_result_t dbg_rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line);
#endif
#endif /* CONFIG_RTW_NAPI */
void dbg_rtw_skb_queue_purge(struct sk_buff_head *list, enum mstat_f flags, const char *func, int line);
#ifdef CONFIG_USB_HCI
void *dbg_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma, const enum mstat_f flags, const char *func, const int line);
void dbg_rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma, const enum mstat_f flags, const char *func, const int line);
#endif /* CONFIG_USB_HCI */
#ifdef CONFIG_USE_VMALLOC
#define rtw_vmalloc(sz) dbg_rtw_vmalloc((sz), MSTAT_TYPE_VIR, __FUNCTION__, __LINE__)
#define rtw_zvmalloc(sz) dbg_rtw_zvmalloc((sz), MSTAT_TYPE_VIR, __FUNCTION__, __LINE__)
#define rtw_vmfree(pbuf, sz) dbg_rtw_vmfree((pbuf), (sz), MSTAT_TYPE_VIR, __FUNCTION__, __LINE__)
#define rtw_vmalloc_f(sz, mstat_f) dbg_rtw_vmalloc((sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_VIR, __FUNCTION__, __LINE__)
#define rtw_zvmalloc_f(sz, mstat_f) dbg_rtw_zvmalloc((sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_VIR, __FUNCTION__, __LINE__)
#define rtw_vmfree_f(pbuf, sz, mstat_f) dbg_rtw_vmfree((pbuf), (sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_VIR, __FUNCTION__, __LINE__)
#else /* CONFIG_USE_VMALLOC */
#define rtw_vmalloc(sz) dbg_rtw_malloc((sz), MSTAT_TYPE_PHY, __FUNCTION__, __LINE__)
#define rtw_zvmalloc(sz) dbg_rtw_zmalloc((sz), MSTAT_TYPE_PHY, __FUNCTION__, __LINE__)
#define rtw_vmfree(pbuf, sz) dbg_rtw_mfree((pbuf), (sz), MSTAT_TYPE_PHY, __FUNCTION__, __LINE__)
#define rtw_vmalloc_f(sz, mstat_f) dbg_rtw_malloc((sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_PHY, __FUNCTION__, __LINE__)
#define rtw_zvmalloc_f(sz, mstat_f) dbg_rtw_zmalloc((sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_PHY, __FUNCTION__, __LINE__)
#define rtw_vmfree_f(pbuf, sz, mstat_f) dbg_rtw_mfree((pbuf), (sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_PHY, __FUNCTION__, __LINE__)
#endif /* CONFIG_USE_VMALLOC */
#define rtw_malloc(sz) dbg_rtw_malloc((sz), MSTAT_TYPE_PHY, __FUNCTION__, __LINE__)
#define rtw_zmalloc(sz) dbg_rtw_zmalloc((sz), MSTAT_TYPE_PHY, __FUNCTION__, __LINE__)
#define rtw_mfree(pbuf, sz) dbg_rtw_mfree((pbuf), (sz), MSTAT_TYPE_PHY, __FUNCTION__, __LINE__)
#define rtw_malloc_f(sz, mstat_f) dbg_rtw_malloc((sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_PHY, __FUNCTION__, __LINE__)
#define rtw_zmalloc_f(sz, mstat_f) dbg_rtw_zmalloc((sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_PHY, __FUNCTION__, __LINE__)
#define rtw_mfree_f(pbuf, sz, mstat_f) dbg_rtw_mfree((pbuf), (sz), ((mstat_f) & 0xff00) | MSTAT_TYPE_PHY, __FUNCTION__, __LINE__)
#define rtw_skb_alloc(size) dbg_rtw_skb_alloc((size), MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#define rtw_skb_free(skb) dbg_rtw_skb_free((skb), MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#define rtw_skb_alloc_f(size, mstat_f) dbg_rtw_skb_alloc((size), ((mstat_f) & 0xff00) | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#define rtw_skb_free_f(skb, mstat_f) dbg_rtw_skb_free((skb), ((mstat_f) & 0xff00) | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#define rtw_skb_copy(skb) dbg_rtw_skb_copy((skb), MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#define rtw_skb_clone(skb) dbg_rtw_skb_clone((skb), MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#define rtw_skb_copy_f(skb, mstat_f) dbg_rtw_skb_copy((skb), ((mstat_f) & 0xff00) | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#define rtw_skb_clone_f(skb, mstat_f) dbg_rtw_skb_clone((skb), ((mstat_f) & 0xff00) | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#define rtw_skb_linearize(skb) dbg_rtw_skb_linearize((skb), MSTAT_TYPE_SKB, __func__, __LINE__)
#define rtw_netif_rx(ndev, skb) dbg_rtw_netif_rx(ndev, skb, MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#ifdef CONFIG_RTW_NAPI
#define rtw_netif_receive_skb(ndev, skb) dbg_rtw_netif_receive_skb(ndev, skb, MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#ifdef CONFIG_RTW_GRO
#define rtw_napi_gro_receive(napi, skb) dbg_rtw_napi_gro_receive(napi, skb, MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#endif
#endif /* CONFIG_RTW_NAPI */
#define rtw_skb_queue_purge(sk_buff_head) dbg_rtw_skb_queue_purge(sk_buff_head, MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#ifdef CONFIG_USB_HCI
#define rtw_usb_buffer_alloc(dev, size, dma) dbg_rtw_usb_buffer_alloc((dev), (size), (dma), MSTAT_TYPE_USB, __FUNCTION__, __LINE__)
#define rtw_usb_buffer_free(dev, size, addr, dma) dbg_rtw_usb_buffer_free((dev), (size), (addr), (dma), MSTAT_TYPE_USB, __FUNCTION__, __LINE__)
#define rtw_usb_buffer_alloc_f(dev, size, dma, mstat_f) dbg_rtw_usb_buffer_alloc((dev), (size), (dma), ((mstat_f) & 0xff00) | MSTAT_TYPE_USB, __FUNCTION__, __LINE__)
#define rtw_usb_buffer_free_f(dev, size, addr, dma, mstat_f) dbg_rtw_usb_buffer_free((dev), (size), (addr), (dma), ((mstat_f) & 0xff00) | MSTAT_TYPE_USB, __FUNCTION__, __LINE__)
#endif /* CONFIG_USB_HCI */
#else /* DBG_MEM_ALLOC */
#define rtw_mstat_update(flag, status, sz) do {} while (0)
#define rtw_mstat_dump(sel) do {} while (0)
#define match_mstat_sniff_rules(flags, size) _FALSE
void *_rtw_vmalloc(u32 sz);
void *_rtw_zvmalloc(u32 sz);
void _rtw_vmfree(void *pbuf, u32 sz);
void *_rtw_zmalloc(u32 sz);
void *_rtw_malloc(u32 sz);
void _rtw_mfree(void *pbuf, u32 sz);
struct sk_buff *_rtw_skb_alloc(u32 sz);
void _rtw_skb_free(struct sk_buff *skb);
#ifdef CONFIG_RTW_NAPI
int _rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb);
#ifdef CONFIG_RTW_GRO
gro_result_t _rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
#endif
#endif /* CONFIG_RTW_NAPI */
void _rtw_skb_queue_purge(struct sk_buff_head *list);
#ifdef CONFIG_USE_VMALLOC
#define rtw_vmalloc(sz) _rtw_vmalloc((sz))
#define rtw_zvmalloc(sz) _rtw_zvmalloc((sz))
#define rtw_vmfree(pbuf, sz) _rtw_vmfree((pbuf), (sz))
#define rtw_vmalloc_f(sz, mstat_f) _rtw_vmalloc((sz))
#define rtw_zvmalloc_f(sz, mstat_f) _rtw_zvmalloc((sz))
#define rtw_vmfree_f(pbuf, sz, mstat_f) _rtw_vmfree((pbuf), (sz))
#else /* CONFIG_USE_VMALLOC */
#define rtw_vmalloc(sz) _rtw_malloc((sz))
#define rtw_zvmalloc(sz) _rtw_zmalloc((sz))
#define rtw_vmfree(pbuf, sz) _rtw_mfree((pbuf), (sz))
#define rtw_vmalloc_f(sz, mstat_f) _rtw_malloc((sz))
#define rtw_zvmalloc_f(sz, mstat_f) _rtw_zmalloc((sz))
#define rtw_vmfree_f(pbuf, sz, mstat_f) _rtw_mfree((pbuf), (sz))
#endif /* CONFIG_USE_VMALLOC */
#define rtw_malloc(sz) _rtw_malloc((sz))
#define rtw_zmalloc(sz) _rtw_zmalloc((sz))
#define rtw_mfree(pbuf, sz) _rtw_mfree((pbuf), (sz))
#define rtw_malloc_f(sz, mstat_f) _rtw_malloc((sz))
#define rtw_zmalloc_f(sz, mstat_f) _rtw_zmalloc((sz))
#define rtw_mfree_f(pbuf, sz, mstat_f) _rtw_mfree((pbuf), (sz))
#define rtw_skb_alloc(size) _rtw_skb_alloc((size))
#define rtw_skb_free(skb) _rtw_skb_free((skb))
#define rtw_skb_alloc_f(size, mstat_f) _rtw_skb_alloc((size))
#define rtw_skb_free_f(skb, mstat_f) _rtw_skb_free((skb))
#define rtw_skb_copy(skb) _rtw_skb_copy((skb))
#define rtw_skb_clone(skb) _rtw_skb_clone((skb))
#define rtw_skb_copy_f(skb, mstat_f) _rtw_skb_copy((skb))
#define rtw_skb_clone_f(skb, mstat_f) _rtw_skb_clone((skb))
#define rtw_skb_linearize(skb) _rtw_skb_linearize(skb)
#define rtw_netif_rx(ndev, skb) _rtw_netif_rx(ndev, skb)
#ifdef CONFIG_RTW_NAPI
#define rtw_netif_receive_skb(ndev, skb) _rtw_netif_receive_skb(ndev, skb)
#ifdef CONFIG_RTW_GRO
#define rtw_napi_gro_receive(napi, skb) _rtw_napi_gro_receive(napi, skb)
#endif
#endif /* CONFIG_RTW_NAPI */
#define rtw_skb_queue_purge(sk_buff_head) _rtw_skb_queue_purge(sk_buff_head)
#ifdef CONFIG_USB_HCI
#define rtw_usb_buffer_alloc(dev, size, dma) _rtw_usb_buffer_alloc((dev), (size), (dma))
#define rtw_usb_buffer_free(dev, size, addr, dma) _rtw_usb_buffer_free((dev), (size), (addr), (dma))
#define rtw_usb_buffer_alloc_f(dev, size, dma, mstat_f) _rtw_usb_buffer_alloc((dev), (size), (dma))
#define rtw_usb_buffer_free_f(dev, size, addr, dma, mstat_f) _rtw_usb_buffer_free((dev), (size), (addr), (dma))
#endif /* CONFIG_USB_HCI */
#endif /* DBG_MEM_ALLOC */
void *rtw_malloc2d(int h, int w, size_t size);
void rtw_mfree2d(void *pbuf, int h, int w, int size);
void _rtw_memcpy(void *dec, const void *sour, u32 sz);
void _rtw_memmove(void *dst, const void *src, u32 sz);
int _rtw_memcmp(const void *dst, const void *src, u32 sz);
int _rtw_memcmp2(const void *dst, const void *src, u32 sz);
void _rtw_memset(void *pbuf, int c, u32 sz);
void _rtw_init_listhead(_list *list);
u32 rtw_is_list_empty(_list *phead);
void rtw_list_insert_head(_list *plist, _list *phead);
void rtw_list_insert_tail(_list *plist, _list *phead);
void rtw_list_splice(_list *list, _list *head);
void rtw_list_splice_init(_list *list, _list *head);
void rtw_list_splice_tail(_list *list, _list *head);
void rtw_list_delete(_list *plist);
void rtw_hlist_head_init(rtw_hlist_head *h);
void rtw_hlist_add_head(rtw_hlist_node *n, rtw_hlist_head *h);
void rtw_hlist_del(rtw_hlist_node *n);
void rtw_hlist_add_head_rcu(rtw_hlist_node *n, rtw_hlist_head *h);
void rtw_hlist_del_rcu(rtw_hlist_node *n);
void _rtw_init_queue(_queue *pqueue);
void _rtw_deinit_queue(_queue *pqueue);
u32 _rtw_queue_empty(_queue *pqueue);
u32 rtw_end_of_queue_search(_list *queue, _list *pelement);
systime _rtw_get_current_time(void);
u32 _rtw_systime_to_us(systime stime);
u32 _rtw_systime_to_ms(systime stime);
systime _rtw_ms_to_systime(u32 ms);
systime _rtw_us_to_systime(u32 us);
s32 _rtw_get_passing_time_ms(systime start);
s32 _rtw_get_remaining_time_ms(systime end);
s32 _rtw_get_time_interval_ms(systime start, systime end);
bool _rtw_time_after(systime a, systime b);
#ifdef DBG_SYSTIME
#define rtw_get_current_time() ({systime __stime = _rtw_get_current_time(); __stime;})
#define rtw_systime_to_us(stime) ({u32 __us = _rtw_systime_to_us(stime); typecheck(systime, stime); __us;})
#define rtw_systime_to_ms(stime) ({u32 __ms = _rtw_systime_to_ms(stime); typecheck(systime, stime); __ms;})
#define rtw_ms_to_systime(ms) ({systime __stime = _rtw_ms_to_systime(ms); __stime;})
#define rtw_us_to_systime(us) ({systime __stime = _rtw_us_to_systime(us); __stime;})
#define rtw_get_passing_time_ms(start) ({u32 __ms = _rtw_get_passing_time_ms(start); typecheck(systime, start); __ms;})
#define rtw_get_remaining_time_ms(end) ({u32 __ms = _rtw_get_remaining_time_ms(end); typecheck(systime, end); __ms;})
#define rtw_get_time_interval_ms(start, end) ({u32 __ms = _rtw_get_time_interval_ms(start, end); typecheck(systime, start); typecheck(systime, end); __ms;})
#define rtw_time_after(a,b) ({bool __r = _rtw_time_after(a,b); typecheck(systime, a); typecheck(systime, b); __r;})
#define rtw_time_before(a,b) ({bool __r = _rtw_time_after(b, a); typecheck(systime, a); typecheck(systime, b); __r;})
#else
#define rtw_get_current_time() _rtw_get_current_time()
#define rtw_systime_to_us(stime) _rtw_systime_to_us(stime)
#define rtw_systime_to_ms(stime) _rtw_systime_to_ms(stime)
#define rtw_ms_to_systime(ms) _rtw_ms_to_systime(ms)
#define rtw_us_to_systime(us) _rtw_us_to_systime(us)
#define rtw_get_passing_time_ms(start) _rtw_get_passing_time_ms(start)
#define rtw_get_remaining_time_ms(end) _rtw_get_remaining_time_ms(end)
#define rtw_get_time_interval_ms(start, end) _rtw_get_time_interval_ms(start, end)
#define rtw_time_after(a,b) _rtw_time_after(a,b)
#define rtw_time_before(a,b) _rtw_time_after(b,a)
#endif
void rtw_sleep_schedulable(int ms);
void rtw_msleep_os(int ms);
void rtw_usleep_os(int us);
u32 rtw_atoi(u8 *s);
#ifdef DBG_DELAY_OS
#define rtw_mdelay_os(ms) _rtw_mdelay_os((ms), __FUNCTION__, __LINE__)
#define rtw_udelay_os(ms) _rtw_udelay_os((ms), __FUNCTION__, __LINE__)
void _rtw_mdelay_os(int ms, const char *func, const int line);
void _rtw_udelay_os(int us, const char *func, const int line);
#else
void rtw_mdelay_os(int ms);
void rtw_udelay_os(int us);
#endif
void rtw_yield_os(void);
void rtw_init_timer(_timer *ptimer, void *pfunc, void *ctx);
__inline static unsigned char _cancel_timer_ex(_timer *ptimer)
{
u8 bcancelled;
_cancel_timer(ptimer, &bcancelled);
return bcancelled;
}
__inline static void _cancel_timer_nowait(_timer *ptimer)
{
_cancel_timer_async(ptimer);
}
#define _RND(sz, r) ((((sz)+((r)-1))/(r))*(r))
#define RND4(x) (((x >> 2) + (((x & 3) == 0) ? 0 : 1)) << 2)
__inline static u32 _RND4(u32 sz)
{
u32 val;
val = ((sz >> 2) + ((sz & 3) ? 1 : 0)) << 2;
return val;
}
__inline static u32 _RND8(u32 sz)
{
u32 val;
val = ((sz >> 3) + ((sz & 7) ? 1 : 0)) << 3;
return val;
}
__inline static u32 _RND128(u32 sz)
{
u32 val;
val = ((sz >> 7) + ((sz & 127) ? 1 : 0)) << 7;
return val;
}
__inline static u32 _RND256(u32 sz)
{
u32 val;
val = ((sz >> 8) + ((sz & 255) ? 1 : 0)) << 8;
return val;
}
__inline static u32 _RND512(u32 sz)
{
u32 val;
val = ((sz >> 9) + ((sz & 511) ? 1 : 0)) << 9;
return val;
}
__inline static u32 bitshift(u32 bitmask)
{
u32 i;
for (i = 0; i <= 31; i++)
if (((bitmask >> i) & 0x1) == 1)
break;
return i;
}
static inline int largest_bit(u32 bitmask)
{
int i;
for (i = 31; i >= 0; i--)
if (bitmask & BIT(i))
break;
return i;
}
static inline int largest_bit_64(u64 bitmask)
{
int i;
for (i = 63; i >= 0; i--)
if (bitmask & BIT_ULL(i))
break;
return i;
}
#define rtw_abs(a) ((a) < 0 ? -(a) : (a))
#define rtw_min(a, b) (((a) > (b)) ? (b) : (a))
#define rtw_max(a, b) (((a) > (b)) ? (a) : (b))
#define rtw_is_range_a_in_b(hi_a, lo_a, hi_b, lo_b) (((hi_a) <= (hi_b)) && ((lo_a) >= (lo_b)))
#define rtw_is_range_overlap(hi_a, lo_a, hi_b, lo_b) (((hi_a) > (lo_b)) && ((lo_a) < (hi_b)))
#ifndef MAC_FMT
#define MAC_FMT "%02x:%02x:%02x:%02x:%02x:%02x"
#endif
#ifndef MAC_ARG
#define MAC_ARG(x) ((u8 *)(x))[0], ((u8 *)(x))[1], ((u8 *)(x))[2], ((u8 *)(x))[3], ((u8 *)(x))[4], ((u8 *)(x))[5]
#endif
bool rtw_macaddr_is_larger(const u8 *a, const u8 *b);
void rtw_suspend_lock_init(void);
void rtw_suspend_lock_uninit(void);
void rtw_lock_suspend(void);
void rtw_unlock_suspend(void);
void rtw_lock_suspend_timeout(u32 timeout_ms);
void rtw_lock_traffic_suspend_timeout(u32 timeout_ms);
void rtw_resume_lock_suspend(void);
void rtw_resume_unlock_suspend(void);
#ifdef CONFIG_AP_WOWLAN
void rtw_softap_lock_suspend(void);
void rtw_softap_unlock_suspend(void);
#endif
void rtw_set_bit(int nr, unsigned long *addr);
void rtw_clear_bit(int nr, unsigned long *addr);
int rtw_test_and_clear_bit(int nr, unsigned long *addr);
int rtw_test_and_set_bit(int nr, unsigned long *addr);
/* File operation APIs, just for linux now */
#ifndef CONFIG_RTW_ANDROID
int rtw_is_dir_readable(const char *path);
int rtw_store_to_file(const char *path, u8 *buf, u32 sz);
#endif /* CONFIG_RTW_ANDROID */
int rtw_is_file_readable(const char *path);
int rtw_is_file_readable_with_size(const char *path, u32 *sz);
int rtw_readable_file_sz_chk(const char *path, u32 sz);
int rtw_retrieve_from_file(const char *path, u8 *buf, u32 sz);
void rtw_free_netdev(struct net_device *netdev);
u64 rtw_modular64(u64 x, u64 y);
u64 rtw_division64(u64 x, u64 y);
u32 rtw_random32(void);
/* Macros for handling unaligned memory accesses */
#define RTW_GET_BE16(a) ((u16) (((a)[0] << 8) | (a)[1]))
#define RTW_PUT_BE16(a, val) \
do { \
(a)[0] = ((u16) (val)) >> 8; \
(a)[1] = ((u16) (val)) & 0xff; \
} while (0)
#define RTW_GET_LE16(a) ((u16) (((a)[1] << 8) | (a)[0]))
#define RTW_PUT_LE16(a, val) \
do { \
(a)[1] = ((u16) (val)) >> 8; \
(a)[0] = ((u16) (val)) & 0xff; \
} while (0)
#define RTW_GET_BE24(a) ((((u32) (a)[0]) << 16) | (((u32) (a)[1]) << 8) | \
((u32) (a)[2]))
#define RTW_PUT_BE24(a, val) \
do { \
(a)[0] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[2] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_BE32(a) ((((u32) (a)[0]) << 24) | (((u32) (a)[1]) << 16) | \
(((u32) (a)[2]) << 8) | ((u32) (a)[3]))
#define RTW_PUT_BE32(a, val) \
do { \
(a)[0] = (u8) ((((u32) (val)) >> 24) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[2] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[3] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_LE32(a) ((((u32) (a)[3]) << 24) | (((u32) (a)[2]) << 16) | \
(((u32) (a)[1]) << 8) | ((u32) (a)[0]))
#define RTW_PUT_LE32(a, val) \
do { \
(a)[3] = (u8) ((((u32) (val)) >> 24) & 0xff); \
(a)[2] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[0] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_BE64(a) ((((u64) (a)[0]) << 56) | (((u64) (a)[1]) << 48) | \
(((u64) (a)[2]) << 40) | (((u64) (a)[3]) << 32) | \
(((u64) (a)[4]) << 24) | (((u64) (a)[5]) << 16) | \
(((u64) (a)[6]) << 8) | ((u64) (a)[7]))
#define RTW_PUT_BE64(a, val) \
do { \
(a)[0] = (u8) (((u64) (val)) >> 56); \
(a)[1] = (u8) (((u64) (val)) >> 48); \
(a)[2] = (u8) (((u64) (val)) >> 40); \
(a)[3] = (u8) (((u64) (val)) >> 32); \
(a)[4] = (u8) (((u64) (val)) >> 24); \
(a)[5] = (u8) (((u64) (val)) >> 16); \
(a)[6] = (u8) (((u64) (val)) >> 8); \
(a)[7] = (u8) (((u64) (val)) & 0xff); \
} while (0)
#define RTW_GET_LE64(a) ((((u64) (a)[7]) << 56) | (((u64) (a)[6]) << 48) | \
(((u64) (a)[5]) << 40) | (((u64) (a)[4]) << 32) | \
(((u64) (a)[3]) << 24) | (((u64) (a)[2]) << 16) | \
(((u64) (a)[1]) << 8) | ((u64) (a)[0]))
#define RTW_PUT_LE64(a, val) \
do { \
(a)[7] = (u8) ((((u64) (val)) >> 56) & 0xff); \
(a)[6] = (u8) ((((u64) (val)) >> 48) & 0xff); \
(a)[5] = (u8) ((((u64) (val)) >> 40) & 0xff); \
(a)[4] = (u8) ((((u64) (val)) >> 32) & 0xff); \
(a)[3] = (u8) ((((u64) (val)) >> 24) & 0xff); \
(a)[2] = (u8) ((((u64) (val)) >> 16) & 0xff); \
(a)[1] = (u8) ((((u64) (val)) >> 8) & 0xff); \
(a)[0] = (u8) (((u64) (val)) & 0xff); \
} while (0)
void rtw_buf_free(u8 **buf, u32 *buf_len);
void rtw_buf_update(u8 **buf, u32 *buf_len, const u8 *src, u32 src_len);
struct rtw_cbuf {
u32 write;
u32 read;
u32 size;
void *bufs[0];
};
bool rtw_cbuf_full(struct rtw_cbuf *cbuf);
bool rtw_cbuf_empty(struct rtw_cbuf *cbuf);
bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf);
void *rtw_cbuf_pop(struct rtw_cbuf *cbuf);
struct rtw_cbuf *rtw_cbuf_alloc(u32 size);
void rtw_cbuf_free(struct rtw_cbuf *cbuf);
struct map_seg_t {
u16 sa;
u16 len;
u8 *c;
};
struct map_t {
u16 len;
u16 seg_num;
u8 init_value;
struct map_seg_t *segs;
};
#define MAPSEG_ARRAY_ENT(_sa, _len, _c, arg...) \
{ .sa = _sa, .len = _len, .c = (u8[_len]){ _c, ##arg}, }
#define MAPSEG_PTR_ENT(_sa, _len, _p) \
{ .sa = _sa, .len = _len, .c = _p, }
#define MAP_ENT(_len, _seg_num, _init_v, _seg, arg...) \
{ .len = _len, .seg_num = _seg_num, .init_value = _init_v, .segs = (struct map_seg_t[_seg_num]){ _seg, ##arg}, }
int map_readN(const struct map_t *map, u16 offset, u16 len, u8 *buf);
u8 map_read8(const struct map_t *map, u16 offset);
struct blacklist_ent {
_list list;
u8 addr[ETH_ALEN];
systime exp_time;
};
int rtw_blacklist_add(_queue *blist, const u8 *addr, u32 timeout_ms);
int rtw_blacklist_del(_queue *blist, const u8 *addr);
int rtw_blacklist_search(_queue *blist, const u8 *addr);
void rtw_blacklist_flush(_queue *blist);
void dump_blacklist(void *sel, _queue *blist, const char *title);
/* String handler */
BOOLEAN is_null(char c);
BOOLEAN is_all_null(char *c, int len);
BOOLEAN is_eol(char c);
BOOLEAN is_space(char c);
BOOLEAN is_decimal(char chTmp);
BOOLEAN IsHexDigit(char chTmp);
BOOLEAN is_alpha(char chTmp);
char alpha_to_upper(char c);
int hex2num_i(char c);
int hex2byte_i(const char *hex);
int hexstr2bin(const char *hex, u8 *buf, size_t len);
/*
* Write formatted output to sized buffer
*/
#endif
|
2301_81045437/rtl8852be
|
include/osdep_service.h
|
C
|
agpl-3.0
| 24,533
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __OSDEP_BSD_SERVICE_H_
#define __OSDEP_BSD_SERVICE_H_
#include <sys/cdefs.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kdb.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/time.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_ratectl.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include "usbdevs.h"
#define USB_DEBUG_VAR rum_debug
#include <dev/usb/usb_debug.h>
#if 1 //Baron porting from linux, it's all temp solution, needs to check again
#include <sys/sema.h>
#include <sys/pcpu.h> /* XXX for PCPU_GET */
// typedef struct semaphore _sema;
typedef struct sema _sema;
// typedef spinlock_t _lock;
typedef struct mtx _lock;
typedef struct mtx _mutex;
typedef struct rtw_timer_list _timer;
struct list_head {
struct list_head *next, *prev;
};
struct __queue {
struct list_head queue;
_lock lock;
};
typedef struct mbuf _buffer;
typedef struct __queue _queue;
typedef struct list_head _list;
typedef struct ifnet * _nic_hdl;
typedef pid_t _thread_hdl_;
// typedef struct thread _thread_hdl_;
typedef void thread_return;
typedef void* thread_context;
typedef void timer_hdl_return;
typedef void* timer_hdl_context;
typedef struct work_struct _workitem;
typedef struct task _tasklet;
#define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c))
/* emulate a modern version */
#define LINUX_VERSION_CODE KERNEL_VERSION(2, 6, 35)
#define WIRELESS_EXT -1
#define HZ hz
//#define IFT_RTW 0xf9 //ifnet allocate type for RTW
#define free_netdev if_free
#define LIST_CONTAINOR(ptr, type, member) \
((type *)((char *)(ptr)-(SIZE_T)(&((type *)0)->member)))
#define container_of(p,t,n) (t*)((p)-&(((t*)0)->n))
/*lock - spinlock*/
static inline void _rtw_spinlock_init(_lock *plock)
{
mtx_init(plock, "", NULL, MTX_DEF | MTX_RECURSE);
}
static inline void _rtw_spinlock_free(_lock *plock)
{
mtx_destroy(plock);
}
static inline void _rtw_spinlock(_lock *plock)
{
mtx_lock(plock);
}
static inline void _rtw_spinunlock(_lock *plock)
{
mtx_unlock(plock);
}
#if 0
static inline void _rtw_spinlock_ex(_lock *plock)
{
mtx_lock(plock);
}
static inline void _rtw_spinunlock_ex(_lock *plock)
{
mtx_unlock(plock);
}
#endif
__inline static void _rtw_spinlock_irq(_lock *plock, unsigned long *flags)
{
mtx_lock(plock); /*{local_irq_save((x)); mtx_lock_spin((lock));}*/
}
__inline static void _rtw_spinunlock_irq(_lock *plock, unsigned long *flags)
{
mtx_unlock(plock);
}
__inline static void _rtw_spinlock_bh(_lock *plock)
{
mtx_lock(plock);/*{local_irq_save((x)); mtx_lock_spin((lock));}*/
}
__inline static void _rtw_spinunlock_bh(_lock *plock)
{
mtx_unlock(plock);
}
/*lock - semaphore*/
static inline void _rtw_init_sema(_sema *sema, int init_val)
{
sema_init(sema, init_val, "rtw_drv");
}
static inline void _rtw_free_sema(_sema *sema)
{
sema_destroy(sema);
}
static inline void _rtw_up_sema(_sema *sema)
{
sema_post(sema);
}
static inline u32 _rtw_down_sema(_sema *sema)
{
sema_wait(sema);
return _SUCCESS;
}
/*lock - mutex*/
static inline void _rtw_mutex_init(_mutex *pmutex)
{
mtx_init(pmutex, "", NULL, MTX_DEF | MTX_RECURSE);
}
static inline void _rtw_mutex_free(_mutex *pmutex)
{
sema_destroy(pmutex);
}
__inline static void _rtw_mutex_lock_interruptible(_mutex *pmutex)
{
mtx_lock(pmutex);
}
__inline static void _rtw_mutex_lock(_mutex *pmutex)
{
mtx_lock(pmutex);
}
__inline static void _rtw_mutex_unlock(_mutex *pmutex)
{
mtx_unlock(pmutex);
}
static inline void *_rtw_vmalloc(u32 sz)
{
void *pbuf;
pbuf = malloc(sz, M_DEVBUF, M_NOWAIT);
return pbuf;
}
static inline void *_rtw_zvmalloc(u32 sz)
{
void *pbuf;
pbuf = malloc(sz, M_DEVBUF, M_ZERO | M_NOWAIT);
return pbuf;
}
static inline void _rtw_vmfree(void *pbuf, u32 sz)
{
free(pbuf, M_DEVBUF);
}
static inline void *_rtw_malloc(u32 sz)
{
void *pbuf = NULL;
pbuf = malloc(sz, M_DEVBUF, M_NOWAIT);
return pbuf;
}
static inline void *_rtw_zmalloc(u32 sz)
{
return malloc(sz, M_DEVBUF, M_ZERO | M_NOWAIT);
}
static inline void _rtw_mfree(void *pbuf, u32 sz)
{
free(pbuf, M_DEVBUF);
}
#ifdef CONFIG_USB_HCI
static inline void *_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma)
{
return malloc(size, M_USBDEV, M_NOWAIT | M_ZERO);
}
static inline void _rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma)
{
free(addr, M_USBDEV);
}
#endif /* CONFIG_USB_HCI */
struct sk_buff *_rtw_skb_alloc(u32 sz);
void _rtw_skb_free(struct sk_buff *skb);
static inline struct sk_buff *_rtw_skb_copy(const struct sk_buff *skb)
{
return NULL;
}
static inline struct sk_buff *_rtw_skb_clone(struct sk_buff *skb)
{
return skb_clone(skb);
}
static inline int _rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb)
{
return (*ndev->if_input)(ndev, skb);
}
#ifdef CONFIG_RTW_NAPI
static inline int _rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb)
{
rtw_warn_on(1);
return -1;
}
#ifdef CONFIG_RTW_GRO
static inline gro_result_t _rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
{
rtw_warn_on(1);
return -1;
}
#endif /* CONFIG_RTW_GRO */
#endif /* CONFIG_RTW_NAPI */
/*
* Linux timers are emulated using FreeBSD callout functions
* (and taskqueue functionality).
*
* Currently no timer stats functionality.
*
* See (linux_compat) processes.c
*
*/
struct rtw_timer_list {
struct callout callout;
void (*function)(void *);
void *arg;
};
struct workqueue_struct;
struct work_struct;
typedef void (*work_func_t)(struct work_struct *work);
/* Values for the state of an item of work (work_struct) */
typedef enum work_state {
WORK_STATE_UNSET = 0,
WORK_STATE_CALLOUT_PENDING = 1,
WORK_STATE_TASK_PENDING = 2,
WORK_STATE_WORK_CANCELLED = 3
} work_state_t;
struct work_struct {
struct task task; /* FreeBSD task */
work_state_t state; /* the pending or otherwise state of work. */
work_func_t func;
};
//modify private structure to match freebsd
#define BITS_PER_LONG 32
union ktime {
s64 tv64;
#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
struct {
#ifdef __BIG_ENDIAN
s32 sec, nsec;
#else
s32 nsec, sec;
#endif
} tv;
#endif
};
#define kmemcheck_bitfield_begin(name)
#define kmemcheck_bitfield_end(name)
#define CHECKSUM_NONE 0
typedef unsigned char *sk_buff_data_t;
typedef union ktime ktime_t; /* Kill this */
void rtw_mtx_lock(_lock *plock);
void rtw_mtx_unlock(_lock *plock);
/**
* struct sk_buff - socket buffer
* @next: Next buffer in list
* @prev: Previous buffer in list
* @sk: Socket we are owned by
* @tstamp: Time we arrived
* @dev: Device we arrived on/are leaving by
* @transport_header: Transport layer header
* @network_header: Network layer header
* @mac_header: Link layer header
* @_skb_refdst: destination entry (with norefcount bit)
* @sp: the security path, used for xfrm
* @cb: Control buffer. Free for use by every layer. Put private vars here
* @len: Length of actual data
* @data_len: Data length
* @mac_len: Length of link layer header
* @hdr_len: writable header length of cloned skb
* @csum: Checksum (must include start/offset pair)
* @csum_start: Offset from skb->head where checksumming should start
* @csum_offset: Offset from csum_start where checksum should be stored
* @local_df: allow local fragmentation
* @cloned: Head may be cloned (check refcnt to be sure)
* @nohdr: Payload reference only, must not modify header
* @pkt_type: Packet class
* @fclone: skbuff clone status
* @ip_summed: Driver fed us an IP checksum
* @priority: Packet queueing priority
* @users: User count - see {datagram,tcp}.c
* @protocol: Packet protocol from driver
* @truesize: Buffer size
* @head: Head of buffer
* @data: Data head pointer
* @tail: Tail pointer
* @end: End pointer
* @destructor: Destruct function
* @mark: Generic packet mark
* @nfct: Associated connection, if any
* @ipvs_property: skbuff is owned by ipvs
* @peeked: this packet has been seen already, so stats have been
* done for it, don't do them again
* @nf_trace: netfilter packet trace flag
* @nfctinfo: Relationship of this skb to the connection
* @nfct_reasm: netfilter conntrack re-assembly pointer
* @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
* @skb_iif: ifindex of device we arrived on
* @rxhash: the packet hash computed on receive
* @queue_mapping: Queue mapping for multiqueue devices
* @tc_index: Traffic control index
* @tc_verd: traffic control verdict
* @ndisc_nodetype: router type (from link layer)
* @dma_cookie: a cookie to one of several possible DMA operations
* done by skb DMA functions
* @secmark: security marking
* @vlan_tci: vlan tag control information
*/
struct sk_buff {
/* These two members must be first. */
struct sk_buff *next;
struct sk_buff *prev;
ktime_t tstamp;
struct sock *sk;
//struct net_device *dev;
struct ifnet *dev;
/*
* This is the control buffer. It is free to use for every
* layer. Please put your private variables there. If you
* want to keep them across layers you have to do a skb_clone()
* first. This is owned by whoever has the skb queued ATM.
*/
char cb[48] __aligned(8);
unsigned long _skb_refdst;
#ifdef CONFIG_XFRM
struct sec_path *sp;
#endif
unsigned int len,
data_len;
u16 mac_len,
hdr_len;
union {
u32 csum;
struct {
u16 csum_start;
u16 csum_offset;
}smbol2;
}smbol1;
u32 priority;
kmemcheck_bitfield_begin(flags1);
u8 local_df:1,
cloned:1,
ip_summed:2,
nohdr:1,
nfctinfo:3;
u8 pkt_type:3,
fclone:2,
ipvs_property:1,
peeked:1,
nf_trace:1;
kmemcheck_bitfield_end(flags1);
u16 protocol;
void (*destructor)(struct sk_buff *skb);
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
struct nf_conntrack *nfct;
struct sk_buff *nfct_reasm;
#endif
#ifdef CONFIG_BRIDGE_NETFILTER
struct nf_bridge_info *nf_bridge;
#endif
int skb_iif;
#ifdef CONFIG_NET_SCHED
u16 tc_index; /* traffic control index */
#ifdef CONFIG_NET_CLS_ACT
u16 tc_verd; /* traffic control verdict */
#endif
#endif
u32 rxhash;
kmemcheck_bitfield_begin(flags2);
u16 queue_mapping:16;
#ifdef CONFIG_IPV6_NDISC_NODETYPE
u8 ndisc_nodetype:2,
deliver_no_wcard:1;
#else
u8 deliver_no_wcard:1;
#endif
kmemcheck_bitfield_end(flags2);
/* 0/14 bit hole */
#ifdef CONFIG_NET_DMA
dma_cookie_t dma_cookie;
#endif
#ifdef CONFIG_NETWORK_SECMARK
u32 secmark;
#endif
union {
u32 mark;
u32 dropcount;
}symbol3;
u16 vlan_tci;
sk_buff_data_t transport_header;
sk_buff_data_t network_header;
sk_buff_data_t mac_header;
/* These elements must be at the end, see alloc_skb() for details. */
sk_buff_data_t tail;
sk_buff_data_t end;
unsigned char *head,
*data;
unsigned int truesize;
ATOMIC_T users;
};
struct sk_buff_head {
/* These two members must be first. */
struct sk_buff *next;
struct sk_buff *prev;
u32 qlen;
_lock lock;
};
#define skb_tail_pointer(skb) skb->tail
static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
{
unsigned char *tmp = skb_tail_pointer(skb);
//SKB_LINEAR_ASSERT(skb);
skb->tail += len;
skb->len += len;
return tmp;
}
static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
{
skb->len -= len;
if(skb->len < skb->data_len)
printf("%s(),%d,error!\n",__FUNCTION__,__LINE__);
return skb->data += len;
}
static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
{
return __skb_pull(skb, len);
}
static inline u32 skb_queue_len(const struct sk_buff_head *list_)
{
return list_->qlen;
}
static inline void __skb_insert(struct sk_buff *newsk,
struct sk_buff *prev, struct sk_buff *next,
struct sk_buff_head *list)
{
newsk->next = next;
newsk->prev = prev;
next->prev = prev->next = newsk;
list->qlen++;
}
static inline void __skb_queue_before(struct sk_buff_head *list,
struct sk_buff *next,
struct sk_buff *newsk)
{
__skb_insert(newsk, next->prev, next, list);
}
static inline void skb_queue_tail(struct sk_buff_head *list,
struct sk_buff *newsk)
{
mtx_lock(&list->lock);
__skb_queue_before(list, (struct sk_buff *)list, newsk);
mtx_unlock(&list->lock);
}
static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
{
struct sk_buff *list = ((struct sk_buff *)list_)->next;
if (list == (struct sk_buff *)list_)
list = NULL;
return list;
}
static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
{
struct sk_buff *next, *prev;
list->qlen--;
next = skb->next;
prev = skb->prev;
skb->next = skb->prev = NULL;
next->prev = prev;
prev->next = next;
}
static inline struct sk_buff *skb_dequeue(struct sk_buff_head *list)
{
mtx_lock(&list->lock);
struct sk_buff *skb = skb_peek(list);
if (skb)
__skb_unlink(skb, list);
mtx_unlock(&list->lock);
return skb;
}
static inline void skb_reserve(struct sk_buff *skb, int len)
{
skb->data += len;
skb->tail += len;
}
static inline void __skb_queue_head_init(struct sk_buff_head *list)
{
list->prev = list->next = (struct sk_buff *)list;
list->qlen = 0;
}
/*
* This function creates a split out lock class for each invocation;
* this is needed for now since a whole lot of users of the skb-queue
* infrastructure in drivers have different locking usage (in hardirq)
* than the networking core (in softirq only). In the long run either the
* network layer or drivers should need annotation to consolidate the
* main types of usage into 3 classes.
*/
static inline void skb_queue_head_init(struct sk_buff_head *list)
{
_rtw_spinlock_init(&list->lock);
__skb_queue_head_init(list);
}
static inline u8 *rtw_skb_data(struct sk_buff *pkt)
{
return pkt->data;
}
static inline u32 rtw_skb_len(struct sk_buff *pkt)
{
return pkt->len;
}
unsigned long copy_from_user(void *to, const void *from, unsigned long n);
unsigned long copy_to_user(void *to, const void *from, unsigned long n);
struct sk_buff * dev_alloc_skb(unsigned int size);
struct sk_buff *skb_clone(const struct sk_buff *skb);
void dev_kfree_skb_any(struct sk_buff *skb);
#endif //Baron porting from linux, it's all temp solution, needs to check again
#if 1 // kenny add Linux compatibility code for Linux USB driver
#include <dev/usb/usb_compat_linux.h>
#define __init // __attribute ((constructor))
#define __exit // __attribute ((destructor))
/*
* Definitions for module_init and module_exit macros.
*
* These macros will use the SYSINIT framework to call a specified
* function (with no arguments) on module loading or unloading.
*
*/
void module_init_exit_wrapper(void *arg);
#define module_init(initfn) \
SYSINIT(mod_init_ ## initfn, \
SI_SUB_KLD, SI_ORDER_FIRST, \
module_init_exit_wrapper, initfn)
#define module_exit(exitfn) \
SYSUNINIT(mod_exit_ ## exitfn, \
SI_SUB_KLD, SI_ORDER_ANY, \
module_init_exit_wrapper, exitfn)
/*
* The usb_register and usb_deregister functions are used to register
* usb drivers with the usb subsystem.
*/
int usb_register(struct usb_driver *driver);
int usb_deregister(struct usb_driver *driver);
/*
* usb_get_dev and usb_put_dev - increment/decrement the reference count
* of the usb device structure.
*
* Original body of usb_get_dev:
*
* if (dev)
* get_device(&dev->dev);
* return dev;
*
* Reference counts are not currently used in this compatibility
* layer. So these functions will do nothing.
*/
static inline struct usb_device *
usb_get_dev(struct usb_device *dev)
{
return dev;
}
static inline void
usb_put_dev(struct usb_device *dev)
{
return;
}
// rtw_usb_compat_linux
int rtw_usb_submit_urb(struct urb *urb, uint16_t mem_flags);
int rtw_usb_unlink_urb(struct urb *urb);
int rtw_usb_clear_halt(struct usb_device *dev, struct usb_host_endpoint *uhe);
int rtw_usb_control_msg(struct usb_device *dev, struct usb_host_endpoint *uhe,
uint8_t request, uint8_t requesttype,
uint16_t value, uint16_t index, void *data,
uint16_t size, usb_timeout_t timeout);
int rtw_usb_set_interface(struct usb_device *dev, uint8_t iface_no, uint8_t alt_index);
int rtw_usb_setup_endpoint(struct usb_device *dev,
struct usb_host_endpoint *uhe, usb_size_t bufsize);
struct urb *rtw_usb_alloc_urb(uint16_t iso_packets, uint16_t mem_flags);
struct usb_host_endpoint *rtw_usb_find_host_endpoint(struct usb_device *dev, uint8_t type, uint8_t ep);
struct usb_host_interface *rtw_usb_altnum_to_altsetting(const struct usb_interface *intf, uint8_t alt_index);
struct usb_interface *rtw_usb_ifnum_to_if(struct usb_device *dev, uint8_t iface_no);
void *rtw_usb_get_intfdata(struct usb_interface *intf);
void rtw_usb_linux_register(void *arg);
void rtw_usb_linux_deregister(void *arg);
void rtw_usb_linux_free_device(struct usb_device *dev);
void rtw_usb_free_urb(struct urb *urb);
void rtw_usb_init_urb(struct urb *urb);
void rtw_usb_kill_urb(struct urb *urb);
void rtw_usb_set_intfdata(struct usb_interface *intf, void *data);
void rtw_usb_fill_bulk_urb(struct urb *urb, struct usb_device *udev,
struct usb_host_endpoint *uhe, void *buf,
int length, usb_complete_t callback, void *arg);
int rtw_usb_bulk_msg(struct usb_device *udev, struct usb_host_endpoint *uhe,
void *data, int len, uint16_t *pactlen, usb_timeout_t timeout);
void *usb_get_intfdata(struct usb_interface *intf);
int usb_linux_init_endpoints(struct usb_device *udev);
typedef struct urb * PURB;
typedef unsigned gfp_t;
#define __GFP_WAIT ((gfp_t)0x10u) /* Can wait and reschedule? */
#define __GFP_HIGH ((gfp_t)0x20u) /* Should access emergency pools? */
#define __GFP_IO ((gfp_t)0x40u) /* Can start physical IO? */
#define __GFP_FS ((gfp_t)0x80u) /* Can call down to low-level FS? */
#define __GFP_COLD ((gfp_t)0x100u) /* Cache-cold page required */
#define __GFP_NOWARN ((gfp_t)0x200u) /* Suppress page allocation failure warning */
#define __GFP_REPEAT ((gfp_t)0x400u) /* Retry the allocation. Might fail */
#define __GFP_NOFAIL ((gfp_t)0x800u) /* Retry for ever. Cannot fail */
#define __GFP_NORETRY ((gfp_t)0x1000u)/* Do not retry. Might fail */
#define __GFP_NO_GROW ((gfp_t)0x2000u)/* Slab internal usage */
#define __GFP_COMP ((gfp_t)0x4000u)/* Add compound page metadata */
#define __GFP_ZERO ((gfp_t)0x8000u)/* Return zeroed page on success */
#define __GFP_NOMEMALLOC ((gfp_t)0x10000u) /* Don't use emergency reserves */
#define __GFP_HARDWALL ((gfp_t)0x20000u) /* Enforce hardwall cpuset memory allocs */
/* This equals 0, but use constants in case they ever change */
#define GFP_NOWAIT (GFP_ATOMIC & ~__GFP_HIGH)
/* GFP_ATOMIC means both !wait (__GFP_WAIT not set) and use emergency pool */
#define GFP_ATOMIC (__GFP_HIGH)
#define GFP_NOIO (__GFP_WAIT)
#define GFP_NOFS (__GFP_WAIT | __GFP_IO)
#define GFP_KERNEL (__GFP_WAIT | __GFP_IO | __GFP_FS)
#define GFP_USER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
#define GFP_HIGHUSER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HARDWALL | \
__GFP_HIGHMEM)
#endif // kenny add Linux compatibility code for Linux USB
__inline static _list *get_next(_list *list)
{
return list->next;
}
__inline static _list *get_list_head(_queue *queue)
{
return (&(queue->queue));
}
#define LIST_CONTAINOR(ptr, type, member) \
((type *)((char *)(ptr)-(SIZE_T)(&((type *)0)->member)))
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
}
static inline void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
}
__inline static void rtw_list_delete(_list *plist)
{
__list_del(plist->prev, plist->next);
INIT_LIST_HEAD(plist);
}
static inline void timer_hdl(void *ctx)
{
_timer *timer = (_timer *)ctx;
rtw_mtx_lock(NULL);
if (callout_pending(&timer->callout)) {
/* callout was reset */
rtw_mtx_unlock(NULL);
return;
}
if (!callout_active(&timer->callout)) {
/* callout was stopped */
rtw_mtx_unlock(NULL);
return;
}
callout_deactivate(&timer->callout);
timer->function(timer->arg);
rtw_mtx_unlock(NULL);
}
static inline void _init_timer(_timer *ptimer, void *pfunc, void *cntx)
{
ptimer->function = pfunc;
ptimer->arg = cntx;
callout_init(&ptimer->callout, CALLOUT_MPSAFE);
}
__inline static void _set_timer(_timer *ptimer,u32 delay_time)
{
if (ptimer->function && ptimer->arg) {
rtw_mtx_lock(NULL);
callout_reset(&ptimer->callout, delay_time, timer_hdl, ptimer);
rtw_mtx_unlock(NULL);
}
}
__inline static void _cancel_timer(_timer *ptimer,u8 *bcancelled)
{
rtw_mtx_lock(NULL);
callout_drain(&ptimer->callout);
rtw_mtx_unlock(NULL);
*bcancelled = 1; /* assume an pending timer to be canceled */
}
__inline static void _init_workitem(_workitem *pwork, void *pfunc, PVOID cntx)
{
printf("%s Not implement yet! \n",__FUNCTION__);
}
__inline static void _set_workitem(_workitem *pwork)
{
printf("%s Not implement yet! \n",__FUNCTION__);
// schedule_work(pwork);
}
//
// Global Mutex: can only be used at PASSIVE level.
//
#define ACQUIRE_GLOBAL_MUTEX(_MutexCounter) \
{ \
}
#define RELEASE_GLOBAL_MUTEX(_MutexCounter) \
{ \
}
/* Atomic integer operations */
#define ATOMIC_T atomic_t
#define ATOMIC_INIT(i) { (i) }
static inline void ATOMIC_SET(ATOMIC_T *v, int i)
{
atomic_set_int(v, i);
}
static inline int ATOMIC_READ(ATOMIC_T *v)
{
return atomic_load_acq_32(v);
}
static inline void ATOMIC_ADD(ATOMIC_T *v, int i)
{
atomic_add_int(v, i);
}
static inline void ATOMIC_SUB(ATOMIC_T *v, int i)
{
atomic_subtract_int(v, i);
}
static inline void ATOMIC_INC(ATOMIC_T *v)
{
atomic_add_int(v, 1);
}
static inline void ATOMIC_DEC(ATOMIC_T *v)
{
atomic_subtract_int(v, 1);
}
static inline int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i)
{
atomic_add_int(v, i);
return atomic_load_acq_32(v);
}
static inline int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i)
{
atomic_subtract_int(v, i);
return atomic_load_acq_32(v);
}
static inline int ATOMIC_INC_RETURN(ATOMIC_T *v)
{
atomic_add_int(v, 1);
return atomic_load_acq_32(v);
}
static inline int ATOMIC_DEC_RETURN(ATOMIC_T *v)
{
atomic_subtract_int(v, 1);
return atomic_load_acq_32(v);
}
static inline bool ATOMIC_INC_UNLESS(ATOMIC_T *v, int u)
{
#error "TBD\n"
}
/*task*/
typedef void (*task_fn_t)(void *context, int pending);
#if 0 /*taskqueue -- asynchronous task execution*/
TASK_INIT(struct task *task, int priority, task_fn_t func,
void *context);
TASK_INITIALIZER(int priority, task_fn_t func, void *context);
TASKQUEUE_DECLARE(name);
TASKQUEUE_DEFINE(name, taskqueue_enqueue_fn enqueue, void *context,
init);
#endif
static inline void rtw_tasklet_init(_tasklet *t,task_fn_t func,
unsigned long data)
{
TASK_INIT(t, 0, func, padapter);
}
static inline void rtw_tasklet_kill(_tasklet *t)
}
static inline void rtw_tasklet_schedule(_tasklet *t)
{
}
static inline void rtw_tasklet_hi_schedule(_tasklet *t)
{
}
/*thread*/
static inline void rtw_thread_enter(char *name)
{
printf("%s", "RTKTHREAD_enter");
}
static inline void rtw_thread_exit(_completion *comp)
{
printf("%s", "RTKTHREAD_exit");
}
#include <sys/unistd.h> /* for RFHIGHPID */
static inline _thread_hdl_ rtw_thread_start(int (*threadfn)(void *data),
void *data, const char namefmt[])
{
_thread_hdl_ _rtw_thread = NULL;
struct proc *p;
struct thread *td;
_rtw_thread = kproc_kthread_add(mp_xmit_packet_thread, data,
&p, &td, RFHIGHPID, 0, namefmt, namefmt);
if (_rtw_thread < 0)
_rtw_thread = NULL;
return _rtw_thread;
}
static inline bool rtw_thread_stop(_thread_hdl_ th)
{
return _FALSE;
}
static inline void rtw_thread_wait_stop(void)
{
}
__inline static void flush_signals_thread(void)
{
}
#define rtw_dump_stack(void) do {} while (0)
#define rtw_bug_on(condition) do {} while (0)
#define rtw_warn_on(condition) do {} while (0)
#define rtw_sprintf(buf, size, format, arg...) do {} while (0)
#define rtw_netdev_priv(netdev) (((struct ifnet *)netdev)->if_softc)
#define rtw_free_netdev(netdev) if_free((netdev))
#define RTW_DIV_ROUND_UP(n, d) (((n) + (d - 1)) / d)
#define NDEV_FMT "%s"
#define NDEV_ARG(ndev) ""
#define ADPT_FMT "%s"
#define ADPT_ARG(adapter) ""
#define FUNC_NDEV_FMT "%s"
#define FUNC_NDEV_ARG(ndev) __func__
#define FUNC_ADPT_FMT "%s"
#define FUNC_ADPT_ARG(adapter) __func__
#define STRUCT_PACKED
#endif
|
2301_81045437/rtl8852be
|
include/osdep_service_bsd.h
|
C
|
agpl-3.0
| 26,298
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __OSDEP_LINUX_SERVICE_H_
#define __OSDEP_LINUX_SERVICE_H_
#include <linux/version.h>
#include <linux/spinlock.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/namei.h>
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 5))
#include <linux/kref.h>
#endif
/* #include <linux/smp_lock.h> */
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/skbuff.h>
#include <linux/circ_buf.h>
#include <asm/uaccess.h>
#include <asm/byteorder.h>
#include <asm/atomic.h>
#include <asm/io.h>
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 26))
#include <asm/semaphore.h>
#else
#include <linux/semaphore.h>
#endif
#include <linux/sem.h>
#include <linux/sched.h>
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <net/iw_handler.h>
#include <net/addrconf.h>
#include <linux/if_arp.h>
#include <linux/rtnetlink.h>
#include <linux/delay.h>
#include <linux/interrupt.h> /* for struct tasklet_struct */
#include <linux/ip.h>
#include <linux/kthread.h>
#include <linux/list.h>
#include <linux/vmalloc.h>
#ifdef CONFIG_RECV_THREAD_MODE
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 4, 0))
#include <uapi/linux/sched/types.h> /* struct sched_param */
#endif
#endif
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(2, 5, 41))
#include <linux/tqueue.h>
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0))
#include <uapi/linux/limits.h>
#else
#include <linux/limits.h>
#endif
#ifdef RTK_DMP_PLATFORM
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 12))
#include <linux/pageremap.h>
#endif
#include <asm/io.h>
#endif
#ifdef CONFIG_NET_RADIO
#define CONFIG_WIRELESS_EXT
#endif
/* Monitor mode */
#include <net/ieee80211_radiotap.h>
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24))
#include <linux/ieee80211.h>
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25) && \
LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 29))
#define CONFIG_IEEE80211_HT_ADDT_INFO
#endif
#ifdef CONFIG_IOCTL_CFG80211
/* #include <linux/ieee80211.h> */
#include <net/cfg80211.h>
#else
#ifdef CONFIG_REGD_SRC_FROM_OS
#error "CONFIG_REGD_SRC_FROM_OS requires CONFIG_IOCTL_CFG80211"
#endif
#endif /* CONFIG_IOCTL_CFG80211 */
#ifdef CONFIG_HAS_EARLYSUSPEND
#include <linux/earlysuspend.h>
#endif /* CONFIG_HAS_EARLYSUSPEND */
#ifdef CONFIG_EFUSE_CONFIG_FILE
#include <linux/fs.h>
#endif
#ifdef CONFIG_USB_HCI
#include <linux/usb.h>
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 21))
#include <linux/usb_ch9.h>
#else
#include <linux/usb/ch9.h>
#endif
#endif
#if defined(CONFIG_RTW_GRO) && (!defined(CONFIG_RTW_NAPI))
#error "Enable NAPI before enable GRO\n"
#endif
#if (KERNEL_VERSION(2, 6, 29) > LINUX_VERSION_CODE && defined(CONFIG_RTW_NAPI))
#undef CONFIG_RTW_NAPI
/*#warning "Linux Kernel version too old to support NAPI (should newer than 2.6.29)\n"*/
#endif
#if (KERNEL_VERSION(2, 6, 33) > LINUX_VERSION_CODE && defined(CONFIG_RTW_GRO))
#undef CONFIG_RTW_GRO
/*#warning "Linux Kernel version too old to support GRO(should newer than 2.6.33)\n"*/
#endif
#define ATOMIC_T atomic_t
#ifdef DBG_MEMORY_LEAK
extern ATOMIC_T _malloc_cnt;
extern ATOMIC_T _malloc_size;
#endif
static inline void *_rtw_vmalloc(u32 sz)
{
void *pbuf;
pbuf = vmalloc(sz);
#ifdef DBG_MEMORY_LEAK
if (pbuf != NULL) {
atomic_inc(&_malloc_cnt);
atomic_add(sz, &_malloc_size);
}
#endif /* DBG_MEMORY_LEAK */
return pbuf;
}
static inline void *_rtw_zvmalloc(u32 sz)
{
void *pbuf;
pbuf = _rtw_vmalloc(sz);
if (pbuf != NULL)
memset(pbuf, 0, sz);
return pbuf;
}
static inline void _rtw_vmfree(void *pbuf, u32 sz)
{
vfree(pbuf);
#ifdef DBG_MEMORY_LEAK
atomic_dec(&_malloc_cnt);
atomic_sub(sz, &_malloc_size);
#endif /* DBG_MEMORY_LEAK */
}
static inline void *_rtw_malloc(u32 sz)
{
void *pbuf = NULL;
#ifdef RTK_DMP_PLATFORM
if (sz > 0x4000)
pbuf = dvr_malloc(sz);
else
#endif
pbuf = kmalloc(sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
#ifdef DBG_MEMORY_LEAK
if (pbuf != NULL) {
atomic_inc(&_malloc_cnt);
atomic_add(sz, &_malloc_size);
}
#endif /* DBG_MEMORY_LEAK */
return pbuf;
}
static inline void *_rtw_zmalloc(u32 sz)
{
#if 0
void *pbuf = _rtw_malloc(sz);
if (pbuf != NULL)
memset(pbuf, 0, sz);
#else
/*kzalloc in KERNEL_VERSION(2, 6, 14)*/
void *pbuf = kzalloc( sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
#endif
return pbuf;
}
static inline void _rtw_mfree(void *pbuf, u32 sz)
{
#ifdef RTK_DMP_PLATFORM
if (sz > 0x4000)
dvr_free(pbuf);
else
#endif
kfree(pbuf);
#ifdef DBG_MEMORY_LEAK
atomic_dec(&_malloc_cnt);
atomic_sub(sz, &_malloc_size);
#endif /* DBG_MEMORY_LEAK */
}
#ifdef CONFIG_USB_HCI
typedef struct urb *PURB;
static inline void *_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
return usb_alloc_coherent(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma);
#else
return usb_buffer_alloc(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma);
#endif
}
static inline void _rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
usb_free_coherent(dev, size, addr, dma);
#else
usb_buffer_free(dev, size, addr, dma);
#endif
}
#endif /* CONFIG_USB_HCI */
/*lock - spinlock*/
typedef spinlock_t _lock;
static inline void _rtw_spinlock_init(_lock *plock)
{
spin_lock_init(plock);
}
static inline void _rtw_spinlock_free(_lock *plock)
{
}
static inline void _rtw_spinlock(_lock *plock)
{
spin_lock(plock);
}
static inline void _rtw_spinunlock(_lock *plock)
{
spin_unlock(plock);
}
#if 0
static inline void _rtw_spinlock_ex(_lock *plock)
{
spin_lock(plock);
}
static inline void _rtw_spinunlock_ex(_lock *plock)
{
spin_unlock(plock);
}
#endif
__inline static void _rtw_spinlock_irq(_lock *plock, unsigned long *flags)
{
spin_lock_irqsave(plock, *flags);
}
__inline static void _rtw_spinunlock_irq(_lock *plock, unsigned long *flags)
{
spin_unlock_irqrestore(plock, *flags);
}
__inline static void _rtw_spinlock_bh(_lock *plock)
{
spin_lock_bh(plock);
}
__inline static void _rtw_spinunlock_bh(_lock *plock)
{
spin_unlock_bh(plock);
}
/*lock - semaphore*/
typedef struct semaphore _sema;
static inline void _rtw_init_sema(_sema *sema, int init_val)
{
sema_init(sema, init_val);
}
static inline void _rtw_free_sema(_sema *sema)
{
}
static inline void _rtw_up_sema(_sema *sema)
{
up(sema);
}
static inline u32 _rtw_down_sema(_sema *sema)
{
if (down_interruptible(sema))
return _FAIL;
else
return _SUCCESS;
}
/*lock - mutex*/
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
typedef struct mutex _mutex;
#else
typedef struct semaphore _mutex;
#endif
static inline void _rtw_mutex_init(_mutex *pmutex)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
mutex_init(pmutex);
#else
init_MUTEX(pmutex);
#endif
}
static inline void _rtw_mutex_free(_mutex *pmutex)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
mutex_destroy(pmutex);
#else
#endif
}
__inline static int _rtw_mutex_lock_interruptible(_mutex *pmutex)
{
int ret = 0;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
/* mutex_lock(pmutex); */
ret = mutex_lock_interruptible(pmutex);
#else
ret = down_interruptible(pmutex);
#endif
return ret;
}
__inline static int _rtw_mutex_lock(_mutex *pmutex)
{
int ret = 0;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
mutex_lock(pmutex);
#else
down(pmutex);
#endif
return ret;
}
__inline static void _rtw_mutex_unlock(_mutex *pmutex)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
mutex_unlock(pmutex);
#else
up(pmutex);
#endif
}
/*completion*/
typedef struct completion _completion;
static inline void _rtw_init_completion(_completion *comp)
{
init_completion(comp);
}
static inline unsigned long _rtw_wait_for_comp_timeout(_completion *comp, unsigned long timeout)
{
return wait_for_completion_timeout(comp, timeout);
}
static inline void _rtw_wait_for_comp(_completion *comp)
{
return wait_for_completion(comp);
}
struct __queue {
struct list_head queue;
_lock lock;
};
typedef unsigned char _buffer;
typedef struct __queue _queue;
/*list*/
#define LIST_CONTAINOR(ptr, type, member) \
((type *)((char *)(ptr)-(SIZE_T)(&((type *)0)->member)))
typedef struct list_head _list;
/* Caller must check if the list is empty before calling rtw_list_delete*/
__inline static void rtw_list_delete(_list *plist)
{
list_del_init(plist);
}
__inline static _list *get_next(_list *list)
{
return list->next;
}
__inline static _list *get_list_head(_queue *queue)
{
return &(queue->queue);
}
#define rtw_list_first_entry(ptr, type, member) list_first_entry(ptr, type, member)
/* hlist */
typedef struct hlist_head rtw_hlist_head;
typedef struct hlist_node rtw_hlist_node;
#define rtw_hlist_for_each_entry(pos, head, member) hlist_for_each_entry(pos, head, member)
#define rtw_hlist_for_each_safe(pos, n, head) hlist_for_each_safe(pos, n, head)
#define rtw_hlist_entry(ptr, type, member) hlist_entry(ptr, type, member)
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
#define rtw_hlist_for_each_entry_safe(pos, np, n, head, member) hlist_for_each_entry_safe(pos, n, head, member)
#define rtw_hlist_for_each_entry_rcu(pos, node, head, member) hlist_for_each_entry_rcu(pos, head, member)
#else
#define rtw_hlist_for_each_entry_safe(pos, np, n, head, member) hlist_for_each_entry_safe(pos, np, n, head, member)
#define rtw_hlist_for_each_entry_rcu(pos, node, head, member) hlist_for_each_entry_rcu(pos, node, head, member)
#endif
/* RCU */
typedef struct rcu_head rtw_rcu_head;
#define rtw_rcu_dereference(p) rcu_dereference((p))
#define rtw_rcu_dereference_protected(p, c) rcu_dereference_protected(p, c)
#define rtw_rcu_assign_pointer(p, v) rcu_assign_pointer((p), (v))
#define rtw_rcu_read_lock() rcu_read_lock()
#define rtw_rcu_read_unlock() rcu_read_unlock()
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34))
#define rtw_rcu_access_pointer(p) rcu_access_pointer(p)
#endif
/* rhashtable */
#include "../os_dep/linux/rtw_rhashtable.h"
/*thread*/
typedef void *_thread_hdl_;
typedef int thread_return;
typedef void *thread_context;
struct thread_hdl{
_thread_hdl_ thread_handler;
u8 thread_status;
};
#define THREAD_STATUS_STARTED BIT(0)
#define THREAD_STATUS_STOPPED BIT(1)
#define RST_THREAD_STATUS(t) (t->thread_status = 0)
#define SET_THREAD_STATUS(t, s) (t->thread_status |= s)
#define CLR_THREAD_STATUS(t, cl) (t->thread_status &= ~(cl))
#define CHK_THREAD_STATUS(t, ck) (t->thread_status & ck)
typedef void timer_hdl_return;
typedef void *timer_hdl_context;
static inline void rtw_thread_enter(char *name)
{
allow_signal(SIGTERM);
}
static inline void rtw_thread_exit(_completion *comp)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 17, 0)
complete_and_exit(comp, 0);
#else
kthread_complete_and_exit(comp, 0);
#endif
}
static inline _thread_hdl_ rtw_thread_start(int (*threadfn)(void *data),
void *data, const char namefmt[])
{
_thread_hdl_ _rtw_thread = NULL;
_rtw_thread = kthread_run(threadfn, data, namefmt);
if (IS_ERR(_rtw_thread)) {
WARN_ON(!_rtw_thread);
_rtw_thread = NULL;
}
return _rtw_thread;
}
static inline bool rtw_thread_stop(_thread_hdl_ th)
{
return kthread_stop(th);
}
static inline void rtw_thread_wait_stop(void)
{
#if 0
while (!kthread_should_stop())
rtw_msleep_os(10);
#else
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
schedule();
set_current_state(TASK_INTERRUPTIBLE);
}
__set_current_state(TASK_RUNNING);
#endif
}
static inline void flush_signals_thread(void)
{
if (signal_pending(current))
flush_signals(current);
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24))
#define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
#endif
typedef unsigned long systime;
/*tasklet*/
typedef struct tasklet_struct _tasklet;
typedef void (*tasklet_fn_t)(unsigned long);
#if 1
static inline void rtw_tasklet_init(_tasklet *t, tasklet_fn_t func,
unsigned long data)
{
tasklet_init(t, func, data);
}
static inline void rtw_tasklet_kill(_tasklet *t)
{
tasklet_kill(t);
}
static inline void rtw_tasklet_schedule(_tasklet *t)
{
tasklet_schedule(t);
}
static inline void rtw_tasklet_hi_schedule(_tasklet *t)
{
tasklet_hi_schedule(t);
}
#else
#define rtw_tasklet_init tasklet_init
#define rtw_tasklet_kill tasklet_kill
#define rtw_tasklet_schedule tasklet_schedule
#define rtw_tasklet_hi_schedule tasklet_hi_schedule
#endif
/*skb_buffer*/
static inline struct sk_buff *_rtw_skb_alloc(u32 sz)
{
return __dev_alloc_skb(sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
}
static inline void _rtw_skb_free(struct sk_buff *skb)
{
dev_kfree_skb_any(skb);
}
static inline struct sk_buff *_rtw_skb_copy(const struct sk_buff *skb)
{
return skb_copy(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
}
static inline struct sk_buff *_rtw_skb_clone(struct sk_buff *skb)
{
return skb_clone(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
}
static inline int _rtw_skb_linearize(struct sk_buff *skb)
{
return skb_linearize(skb);
}
static inline struct sk_buff *_rtw_pskb_copy(struct sk_buff *skb)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36))
return pskb_copy(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
#else
return skb_clone(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
#endif
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 22))
/* Porting from linux kernel, for compatible with old kernel. */
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
return skb->tail;
}
static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
skb->tail = skb->data;
}
static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
skb->tail = skb->data + offset;
}
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
return skb->end;
}
#endif
static inline u8 *rtw_skb_data(struct sk_buff *pkt)
{
return pkt->data;
}
static inline u32 rtw_skb_len(struct sk_buff *pkt)
{
return pkt->len;
}
static inline void *rtw_skb_put_zero(struct sk_buff *skb, unsigned int len)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 13, 0)
return skb_put_zero(skb, len);
#else
void *tmp = skb_put(skb, len);
memset(tmp, 0, len);
return tmp;
#endif
}
/*timer*/
typedef struct rtw_timer_list _timer;
struct rtw_timer_list {
struct timer_list timer;
void (*function)(void *);
void *arg;
};
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0))
static inline void timer_hdl(struct timer_list *in_timer)
{
_timer *ptimer = from_timer(ptimer, in_timer, timer);
ptimer->function(ptimer->arg);
}
#else
static inline void timer_hdl(unsigned long cntx)
{
_timer *ptimer = (_timer *)cntx;
ptimer->function(ptimer->arg);
}
#endif
__inline static void _init_timer(_timer *ptimer, void *pfunc, void *cntx)
{
ptimer->function = pfunc;
ptimer->arg = cntx;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0))
timer_setup(&ptimer->timer, timer_hdl, 0);
#else
/* setup_timer(ptimer, pfunc,(u32)cntx); */
ptimer->timer.function = timer_hdl;
ptimer->timer.data = (unsigned long)ptimer;
init_timer(&ptimer->timer);
#endif
}
__inline static void _set_timer(_timer *ptimer, u32 delay_time)
{
mod_timer(&ptimer->timer , (jiffies + (delay_time * HZ / 1000)));
}
__inline static void _cancel_timer(_timer *ptimer, u8 *bcancelled)
{
*bcancelled = del_timer_sync(&ptimer->timer) == 1 ? 1 : 0;
}
__inline static void _cancel_timer_async(_timer *ptimer)
{
del_timer(&ptimer->timer);
}
/*work*/
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 5, 41))
typedef struct work_struct _workitem;
#else
typedef struct tq_struct _workitem;
#endif
static inline void _init_workitem(_workitem *pwork, void *pfunc, void *cntx)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20))
INIT_WORK(pwork, pfunc);
#elif (LINUX_VERSION_CODE > KERNEL_VERSION(2, 5, 41))
INIT_WORK(pwork, pfunc, pwork);
#else
INIT_TQUEUE(pwork, pfunc, pwork);
#endif
}
__inline static void _set_workitem(_workitem *pwork)
{
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 5, 41))
schedule_work(pwork);
#else
schedule_task(pwork);
#endif
}
__inline static void _cancel_workitem_sync(_workitem *pwork)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22))
cancel_work_sync(pwork);
#elif (LINUX_VERSION_CODE > KERNEL_VERSION(2, 5, 41))
flush_scheduled_work();
#else
flush_scheduled_tasks();
#endif
}
#ifdef CONFIG_PHL_CPU_BALANCE
typedef struct rtw_work_struct _workitem_cpu;
struct rtw_work_struct {
/*_workitem must put at top */
_workitem wk;
/*_workitem must put at top */
char work_name[32];
struct workqueue_struct *pwkq;
u8 cpu_id;
};
static inline void _config_workitem_cpu(_workitem_cpu *pwork, char *name, u8 cpu_id)
{
pwork->cpu_id = cpu_id;
strcpy(pwork->work_name, name);
}
static inline void _init_workitem_cpu(_workitem_cpu *pwork, void *pfunc, void *cntx)
{
INIT_WORK(&pwork->wk, pfunc);
pwork->pwkq = alloc_workqueue(pwork->work_name, WQ_HIGHPRI, 0);
}
__inline static void _set_workitem_cpu(_workitem_cpu *pwork)
{
queue_work_on(pwork->cpu_id, pwork->pwkq, &pwork->wk);
}
__inline static void _cancel_workitem_sync_cpu(_workitem_cpu *pwork)
{
cancel_work_sync(&pwork->wk);
}
#endif /*CONFIG_PHL_CPU_BALANCE*/
/*
* Global Mutex: can only be used at PASSIVE level.
* */
#define ACQUIRE_GLOBAL_MUTEX(_MutexCounter) \
{ \
while (atomic_inc_return((atomic_t *)&(_MutexCounter)) != 1) { \
atomic_dec((atomic_t *)&(_MutexCounter)); \
msleep(10); \
} \
}
#define RELEASE_GLOBAL_MUTEX(_MutexCounter) \
{ \
atomic_dec((atomic_t *)&(_MutexCounter)); \
}
typedef struct net_device *_nic_hdl;
static inline int rtw_netif_queue_stopped(struct net_device *pnetdev)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
return (netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 0)) &&
netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 1)) &&
netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 2)) &&
netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 3)));
#else
return netif_queue_stopped(pnetdev);
#endif
}
#ifdef CONFIG_HWSIM
int _rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb);
#else
static inline int _rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb)
{
#if defined(CONFIG_RTW_FC_FASTFWD)
extern int fwdEngine_wifi_rx(struct sk_buff *skb);
enum {
RE8670_RX_STOP=0,
RE8670_RX_CONTINUE,
RE8670_RX_STOP_SKBNOFREE,
RE8670_RX_END
};
int ret = 0;
skb->dev = ndev;
skb->data-=14;
skb->len+=14;
ret = fwdEngine_wifi_rx(skb);
if(ret==RE8670_RX_CONTINUE)
{
skb->data+=14;
skb->len-=14;
return netif_rx(skb);
}
else if(ret==RE8670_RX_STOP)
{
kfree_skb(skb);
}
return 0;
#else
skb->dev = ndev;
return netif_rx(skb);
#endif
}
#endif
#ifdef CONFIG_RTW_NAPI
static inline int _rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb)
{
skb->dev = ndev;
return netif_receive_skb(skb);
}
#ifdef CONFIG_RTW_GRO
static inline gro_result_t _rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
{
return napi_gro_receive(napi, skb);
}
#endif /* CONFIG_RTW_GRO */
#endif /* CONFIG_RTW_NAPI */
static inline void rtw_netif_wake_queue(struct net_device *pnetdev)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
netif_tx_wake_all_queues(pnetdev);
#else
netif_wake_queue(pnetdev);
#endif
}
static inline void rtw_netif_start_queue(struct net_device *pnetdev)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
netif_tx_start_all_queues(pnetdev);
#else
netif_start_queue(pnetdev);
#endif
}
static inline void rtw_netif_stop_queue(struct net_device *pnetdev)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
netif_tx_stop_all_queues(pnetdev);
#else
netif_stop_queue(pnetdev);
#endif
}
static inline void rtw_netif_device_attach(struct net_device *pnetdev)
{
netif_device_attach(pnetdev);
}
static inline void rtw_netif_device_detach(struct net_device *pnetdev)
{
netif_device_detach(pnetdev);
}
static inline void rtw_netif_carrier_on(struct net_device *pnetdev)
{
netif_carrier_on(pnetdev);
}
static inline void rtw_netif_carrier_off(struct net_device *pnetdev)
{
netif_carrier_off(pnetdev);
}
static inline int rtw_merge_string(char *dst, int dst_len, const char *src1, const char *src2)
{
int len = 0;
len += snprintf(dst + len, dst_len - len, "%s", src1);
len += snprintf(dst + len, dst_len - len, "%s", src2);
return len;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27))
#define rtw_signal_process(pid, sig) kill_pid(find_vpid((pid)), (sig), 1)
#else /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) */
#define rtw_signal_process(pid, sig) kill_proc((pid), (sig), 1)
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) */
/* Suspend lock prevent system from going suspend */
#ifdef CONFIG_WAKELOCK
#include <linux/wakelock.h>
#elif defined(CONFIG_ANDROID_POWER)
#include <linux/android_power.h>
#endif
/* limitation of path length */
#define PATH_LENGTH_MAX PATH_MAX
/* Atomic integer operations */
static inline void ATOMIC_SET(ATOMIC_T *v, int i)
{
atomic_set(v, i);
}
static inline int ATOMIC_READ(ATOMIC_T *v)
{
return atomic_read(v);
}
static inline void ATOMIC_ADD(ATOMIC_T *v, int i)
{
atomic_add(i, v);
}
static inline void ATOMIC_SUB(ATOMIC_T *v, int i)
{
atomic_sub(i, v);
}
static inline void ATOMIC_INC(ATOMIC_T *v)
{
atomic_inc(v);
}
static inline void ATOMIC_DEC(ATOMIC_T *v)
{
atomic_dec(v);
}
static inline int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i)
{
return atomic_add_return(i, v);
}
static inline int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i)
{
return atomic_sub_return(i, v);
}
static inline int ATOMIC_INC_RETURN(ATOMIC_T *v)
{
return atomic_inc_return(v);
}
static inline int ATOMIC_DEC_RETURN(ATOMIC_T *v)
{
return atomic_dec_return(v);
}
static inline bool ATOMIC_INC_UNLESS(ATOMIC_T *v, int u)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 15))
return atomic_add_unless(v, 1, u);
#else
/* only make sure not exceed after this function */
if (ATOMIC_INC_RETURN(v) > u) {
ATOMIC_DEC(v);
return 0;
}
return 1;
#endif
}
#define NDEV_FMT "%s"
#define NDEV_ARG(ndev) ndev->name
#define ADPT_FMT "%s"
#define ADPT_ARG(adapter) (adapter->pnetdev ? adapter->pnetdev->name : NULL)
#define FUNC_NDEV_FMT "%s(%s)"
#define FUNC_NDEV_ARG(ndev) __func__, ndev->name
#define FUNC_ADPT_FMT "%s(%s)"
#define FUNC_ADPT_ARG(adapter) __func__, (adapter->pnetdev ? adapter->pnetdev->name : NULL)
#define rtw_netdev_priv(netdev) (((struct rtw_netdev_priv_indicator *)netdev_priv(netdev))->priv)
struct rtw_netdev_priv_indicator {
void *priv;
u32 sizeof_priv;
};
struct net_device *rtw_alloc_etherdev_with_old_priv(int sizeof_priv, void *old_priv);
extern struct net_device *rtw_alloc_etherdev(int sizeof_priv);
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24))
#define rtw_get_same_net_ndev_by_name(ndev, name) dev_get_by_name(name)
#elif (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 26))
#define rtw_get_same_net_ndev_by_name(ndev, name) dev_get_by_name(ndev->nd_net, name)
#else
#define rtw_get_same_net_ndev_by_name(ndev, name) dev_get_by_name(dev_net(ndev), name)
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24))
#define rtw_get_bridge_ndev_by_name(name) dev_get_by_name(name)
#else
#define rtw_get_bridge_ndev_by_name(name) dev_get_by_name(&init_net, name)
#endif
static inline void rtw_dump_stack(void)
{
dump_stack();
}
#define rtw_bug_on(condition) BUG_ON(condition)
#define rtw_warn_on(condition) WARN_ON(condition)
#define RTW_DIV_ROUND_UP(n, d) DIV_ROUND_UP(n, d)
#define rtw_sprintf(buf, size, format, arg...) snprintf(buf, size, format, ##arg)
#define STRUCT_PACKED __attribute__ ((packed))
#endif /* __OSDEP_LINUX_SERVICE_H_ */
|
2301_81045437/rtl8852be
|
include/osdep_service_linux.h
|
C
|
agpl-3.0
| 24,587
|
/******************************************************************************
*
* Copyright(c) 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __PCI_OPS_H_
#define __PCI_OPS_H_
#ifdef RTK_129X_PLATFORM
#define PCIE_SLOT1_MEM_START 0x9804F000
#define PCIE_SLOT1_MEM_LEN 0x1000
#define PCIE_SLOT1_CTRL_START 0x9804EC00
#define PCIE_SLOT2_MEM_START 0x9803C000
#define PCIE_SLOT2_MEM_LEN 0x1000
#define PCIE_SLOT2_CTRL_START 0x9803BC00
#define PCIE_MASK_OFFSET 0x100 /* mask offset from CTRL_START */
#define PCIE_TRANSLATE_OFFSET 0x104 /* translate offset from CTRL_START */
#endif
#define PCI_BC_CLK_REQ BIT0
#define PCI_BC_ASPM_L0s BIT1
#define PCI_BC_ASPM_L1 BIT2
#define PCI_BC_ASPM_L1Off BIT3
//#define PCI_BC_ASPM_LTR BIT4
//#define PCI_BC_ASPM_OBFF BIT5
void PlatformClearPciPMEStatus(_adapter *adapter);
#ifdef CONFIG_64BIT_DMA
u8 PlatformEnableDMA64(_adapter *adapter);
#endif
#ifdef CONFIG_PCI_DYNAMIC_ASPM
void rtw_pci_set_aspm_lnkctl(_adapter *padapter, u8 mode);
void rtw_pci_set_l1_latency(_adapter *padapter, u8 mode);
static inline void rtw_pci_dynamic_aspm_set_mode(_adapter *padapter, u8 mode)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
struct pci_priv *pcipriv = &(pdvobjpriv->pcipriv);
if (mode == pcipriv->aspm_mode)
return;
pcipriv->aspm_mode = mode;
#ifdef CONFIG_PCI_DYNAMIC_ASPM_LINK_CTRL
rtw_pci_set_aspm_lnkctl(padapter, mode);
#endif
#ifdef CONFIG_PCI_DYNAMIC_ASPM_L1_LATENCY
rtw_pci_set_l1_latency(padapter, mode);
#endif
}
#else
#define rtw_pci_dynamic_aspm_set_mode(adapter, mode)
#endif
#endif /*__PCI_OPS_H_*/
|
2301_81045437/rtl8852be
|
include/pci_ops.h
|
C
|
agpl-3.0
| 2,097
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __PCI_OPS_LINUX_H__
#define __PCI_OPS_LINUX_H__
u8 os_pci_read8(struct dvobj_priv *dvobj, u32 addr);
u16 os_pci_read16(struct dvobj_priv *dvobj, u32 addr);
u32 os_pci_read32(struct dvobj_priv *dvobj, u32 addr);
int os_pci_write8(struct dvobj_priv *dvobj, u32 addr, u8 val);
int os_pci_write16(struct dvobj_priv *dvobj, u32 addr, u16 val);
int os_pci_write32(struct dvobj_priv *dvobj, u32 addr, u32 val);
#endif /*__PCI_OPS_LINUX_H__*/
|
2301_81045437/rtl8852be
|
include/pci_ops_linux.h
|
C
|
agpl-3.0
| 1,100
|
/******************************************************************************
*
* Copyright(c) 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __PHL_API_TMP_H_
#define __PHL_API_TMP_H_
#ifdef CONFIG_SDIO_HCI
static inline void rtw_hal_sd_f0_reg_dump(void *sel, void *h){ };
static inline void rtw_hal_sdio_local_reg_dump(void *sel, void *h){ };
#endif
static inline u32 rtw_hal_get_txdesc_len(void *h,
struct pkt_attrib *attrib){return 0;};
#ifdef CONFIG_PCI_HCI
static inline u8 rtw_hal_pci_check_enough_txdesc(void *h, u8 queue_id)
{
return 0;
}
#endif
#endif /*__PHL_API_TMP_H_*/
|
2301_81045437/rtl8852be
|
include/phl_api_tmp.h
|
C
|
agpl-3.0
| 1,107
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RECV_OSDEP_H_
#define __RECV_OSDEP_H_
u8 rtw_init_recv_info(_adapter *adapter);
sint rtw_init_recv_priv(struct dvobj_priv *dvobj);
void rtw_free_recv_priv(struct dvobj_priv *dvobj);
#if 0
extern s32 rtw_recv_entry(union recv_frame *precv_frame);
#endif
void rtw_rframe_set_os_pkt(union recv_frame *rframe);
extern int rtw_recv_indicatepkt(_adapter *adapter, union recv_frame *precv_frame);
extern void rtw_recv_returnpacket(_nic_hdl cnxt, struct sk_buff *preturnedpkt);
#ifdef CONFIG_WIFI_MONITOR
extern int rtw_recv_monitor(_adapter *padapter, union recv_frame *precv_frame);
#endif /* CONFIG_WIFI_MONITOR */
#ifdef CONFIG_HOSTAPD_MLME
extern void rtw_hostapd_mlme_rx(_adapter *padapter, union recv_frame *precv_frame);
#endif
struct sta_info;
extern void rtw_handle_tkip_mic_err(_adapter *padapter, struct sta_info *sta, u8 bgroup);
int rtw_os_recv_resource_init(struct recv_priv *precvpriv);
int rtw_os_recv_resource_alloc(union recv_frame *precvframe);
void rtw_os_recv_resource_free(struct recv_priv *precvpriv);
int rtw_os_alloc_recvframe(_adapter *padapter, union recv_frame *precvframe,
u8 *pdata, struct sk_buff *pskb);
int rtw_os_recvframe_duplicate_skb(_adapter *padapter,
union recv_frame *pcloneframe, struct sk_buff *pskb);
void rtw_os_free_recvframe(union recv_frame *precvframe);
#if 0
int rtw_os_recvbuf_resource_alloc(_adapter *padapter, struct recv_buf *precvbuf);
int rtw_os_recvbuf_resource_free(_adapter *padapter, struct recv_buf *precvbuf);
#endif
struct sk_buff *rtw_os_alloc_msdu_pkt(union recv_frame *prframe, const u8 *da, const u8 *sa
, u8 *msdu ,u16 msdu_len, enum rtw_rx_llc_hdl llc_hdl);
void rtw_os_recv_indicate_pkt(_adapter *padapter, struct sk_buff *pkt,
union recv_frame *rframe);
#ifdef PLATFORM_LINUX
#ifdef CONFIG_RTW_NAPI
#include <linux/netdevice.h> /* struct napi_struct */
int rtw_recv_napi_poll(struct napi_struct *, int budget);
#ifdef CONFIG_RTW_NAPI_DYNAMIC
void dynamic_napi_th_chk (_adapter *adapter);
#endif /* CONFIG_RTW_NAPI_DYNAMIC */
#endif /* CONFIG_RTW_NAPI */
#endif /* PLATFORM_LINUX */
#endif /* */
|
2301_81045437/rtl8852be
|
include/recv_osdep.h
|
C
|
agpl-3.0
| 2,755
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_ANDROID_H__
#define __RTW_ANDROID_H__
enum ANDROID_WIFI_CMD {
ANDROID_WIFI_CMD_START,
ANDROID_WIFI_CMD_STOP,
ANDROID_WIFI_CMD_SCAN_ACTIVE,
ANDROID_WIFI_CMD_SCAN_PASSIVE,
ANDROID_WIFI_CMD_RSSI,
ANDROID_WIFI_CMD_LINKSPEED,
ANDROID_WIFI_CMD_RXFILTER_START,
ANDROID_WIFI_CMD_RXFILTER_STOP,
ANDROID_WIFI_CMD_RXFILTER_ADD,
ANDROID_WIFI_CMD_RXFILTER_REMOVE,
ANDROID_WIFI_CMD_BTCOEXSCAN_START,
ANDROID_WIFI_CMD_BTCOEXSCAN_STOP,
ANDROID_WIFI_CMD_BTCOEXMODE,
ANDROID_WIFI_CMD_SETSUSPENDMODE,
ANDROID_WIFI_CMD_SETSUSPENDOPT,
ANDROID_WIFI_CMD_P2P_DEV_ADDR,
ANDROID_WIFI_CMD_SETFWPATH,
ANDROID_WIFI_CMD_SETBAND,
ANDROID_WIFI_CMD_GETBAND,
ANDROID_WIFI_CMD_COUNTRY,
ANDROID_WIFI_CMD_P2P_SET_NOA,
ANDROID_WIFI_CMD_P2P_GET_NOA,
ANDROID_WIFI_CMD_P2P_SET_PS,
ANDROID_WIFI_CMD_SET_AP_WPS_P2P_IE,
ANDROID_WIFI_CMD_MIRACAST,
#ifdef CONFIG_PNO_SUPPORT
ANDROID_WIFI_CMD_PNOSSIDCLR_SET,
ANDROID_WIFI_CMD_PNOSETUP_SET,
ANDROID_WIFI_CMD_PNOENABLE_SET,
ANDROID_WIFI_CMD_PNODEBUG_SET,
#endif
ANDROID_WIFI_CMD_MACADDR,
ANDROID_WIFI_CMD_BLOCK_SCAN,
ANDROID_WIFI_CMD_BLOCK,
ANDROID_WIFI_CMD_WFD_ENABLE,
ANDROID_WIFI_CMD_WFD_DISABLE,
ANDROID_WIFI_CMD_WFD_SET_TCPPORT,
ANDROID_WIFI_CMD_WFD_SET_MAX_TPUT,
ANDROID_WIFI_CMD_WFD_SET_DEVTYPE,
ANDROID_WIFI_CMD_CHANGE_DTIM,
ANDROID_WIFI_CMD_HOSTAPD_SET_MACADDR_ACL,
ANDROID_WIFI_CMD_HOSTAPD_ACL_ADD_STA,
ANDROID_WIFI_CMD_HOSTAPD_ACL_REMOVE_STA,
#if defined(CONFIG_GTK_OL) && (LINUX_VERSION_CODE < KERNEL_VERSION(3, 1, 0))
ANDROID_WIFI_CMD_GTK_REKEY_OFFLOAD,
#endif /* CONFIG_GTK_OL */
ANDROID_WIFI_CMD_P2P_DISABLE,
ANDROID_WIFI_CMD_SET_AEK,
ANDROID_WIFI_CMD_EXT_AUTH_STATUS,
ANDROID_WIFI_CMD_DRIVERVERSION,
#ifdef ROKU_PRIVATE
ANDROID_WIFI_CMD_ROKU_FIND_REMOTE,
#endif
ANDROID_WIFI_CMD_MAX
};
int rtw_android_cmdstr_to_num(char *cmdstr);
int rtw_android_priv_cmd(struct net_device *net, struct ifreq *ifr, int cmd);
#if defined(CONFIG_PNO_SUPPORT) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0))
int rtw_android_pno_enable(struct net_device *net, int pno_enable);
int rtw_android_cfg80211_pno_setup(struct net_device *net,
struct cfg80211_ssid *ssid, int n_ssids, int interval);
#endif
#if defined(RTW_ENABLE_WIFI_CONTROL_FUNC)
int rtw_android_wifictrl_func_add(void);
void rtw_android_wifictrl_func_del(void);
void *wl_android_prealloc(int section, unsigned long size);
int wifi_get_irq_number(unsigned long *irq_flags_ptr);
int wifi_set_power(int on, unsigned long msec);
int wifi_get_mac_addr(unsigned char *buf);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 18, 0))
void *wifi_get_country_code(char *ccode, u32 flags);
#else /* Linux kernel < 3.18 */
void *wifi_get_country_code(char *ccode);
#endif /* Linux kernel < 3.18 */
#else
static inline int rtw_android_wifictrl_func_add(void)
{
return 0;
}
static inline void rtw_android_wifictrl_func_del(void) {}
#endif /* defined(RTW_ENABLE_WIFI_CONTROL_FUNC) */
#endif /* __RTW_ANDROID_H__ */
|
2301_81045437/rtl8852be
|
include/rtw_android.h
|
C
|
agpl-3.0
| 3,595
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_AP_H_
#define __RTW_AP_H_
#ifdef CONFIG_AP_MODE
/* external function */
extern void rtw_indicate_sta_assoc_event(_adapter *padapter, struct sta_info *psta);
extern void rtw_indicate_sta_disassoc_event(_adapter *padapter, struct sta_info *psta);
void init_mlme_ap_info(_adapter *padapter);
void free_mlme_ap_info(_adapter *padapter);
u8 rtw_set_tim_ie(u8 dtim_cnt, u8 dtim_period
, const u8 *tim_bmp, u8 tim_bmp_len, u8 *tim_ie);
/* void update_BCNTIM(_adapter *padapter); */
void rtw_add_bcn_ie(_adapter *padapter, WLAN_BSSID_EX *pnetwork, u8 index, u8 *data, u8 len);
void rtw_remove_bcn_ie(_adapter *padapter, WLAN_BSSID_EX *pnetwork, u8 index);
void rtw_remove_bcn_ie_ex(_adapter *padapter, WLAN_BSSID_EX *pnetwork, u8 index, u8* pindex_ex, u8 index_ex_len);
void _update_beacon(_adapter *padapter, u8 ie_id, u8 *oui, u8 tx, u8 flags, const char *tag);
#define rtw_update_beacon(adapter, ie_id, oui, tx, flags) _update_beacon((adapter), (ie_id), (oui), (tx), (flags), __func__)
/*rtw_update_beacon - (flags) can set to normal enqueue (0) and RTW_CMDF_WAIT_ACK enqueue.
(flags) = RTW_CMDF_DIRECTLY is not currently implemented, it will do normal enqueue.*/
void expire_timeout_chk(_adapter *padapter);
void update_sta_info_apmode(_adapter *padapter, struct sta_info *psta);
void rtw_start_bss_hdl_after_chbw_decided(_adapter *adapter);
void start_bss_network(_adapter *padapter, struct createbss_parm *parm);
int rtw_check_beacon_data(_adapter *padapter, u8 *pbuf, int len);
void rtw_ap_restore_network(_adapter *padapter);
#if CONFIG_RTW_MACADDR_ACL
void rtw_macaddr_acl_init(_adapter *adapter, u8 period);
void rtw_macaddr_acl_deinit(_adapter *adapter, u8 period);
void rtw_macaddr_acl_clear(_adapter *adapter, u8 period);
void rtw_set_macaddr_acl(_adapter *adapter, u8 period, int mode);
int rtw_acl_add_sta(_adapter *adapter, u8 period, const u8 *addr);
int rtw_acl_remove_sta(_adapter *adapter, u8 period, const u8 *addr);
#endif /* CONFIG_RTW_MACADDR_ACL */
u8 rtw_ap_set_sta_key(_adapter *adapter, const u8 *addr, u8 alg, const u8 *key, u8 keyid, u8 gk);
u8 rtw_ap_set_pairwise_key(_adapter *padapter, struct sta_info *psta);
int rtw_ap_set_group_key(_adapter *padapter, u8 *key, u8 alg, int keyid);
int rtw_ap_set_wep_key(_adapter *padapter, u8 *key, u8 keylen, int keyid, u8 set_tx);
#ifdef CONFIG_NATIVEAP_MLME
void associated_clients_update(_adapter *padapter, u8 updated, u32 sta_info_type);
void bss_cap_update_on_sta_join(_adapter *padapter, struct sta_info *psta);
u8 bss_cap_update_on_sta_leave(_adapter *padapter, struct sta_info *psta);
void sta_info_update(_adapter *padapter, struct sta_info *psta);
u8 ap_free_sta(_adapter *padapter, struct sta_info *psta, bool active, u16 reason, bool enqueue, u8 disassoc);
int rtw_sta_flush(_adapter *padapter, bool enqueue);
int rtw_ap_inform_ch_switch(_adapter *padapter, u8 new_ch, u8 ch_offset);
void start_ap_mode(_adapter *padapter);
void stop_ap_mode(_adapter *padapter);
#endif
void rtw_ap_update_clients_rainfo(struct _ADAPTER *a, enum phl_cmd_type flag);
void rtw_ap_update_bss_chbw(_adapter *adapter, WLAN_BSSID_EX *bss, u8 ch, u8 bw, u8 offset);
u8 rtw_ap_chbw_decision(_adapter *adapter, u8 ifbmp, u8 excl_ifbmp
, s16 req_ch, s8 req_bw, s8 req_offset, struct rtw_chan_def *chdef);
#ifdef CONFIG_AUTO_AP_MODE
void rtw_auto_ap_rx_msg_dump(_adapter *padapter, union recv_frame *precv_frame, u8 *ehdr_pos);
extern void rtw_start_auto_ap(_adapter *adapter);
#endif /* CONFIG_AUTO_AP_MODE */
void rtw_ap_parse_sta_capability(_adapter *adapter, struct sta_info *sta, u8 *cap);
u16 rtw_ap_parse_sta_supported_rates(_adapter *adapter, struct sta_info *sta, u8 *tlv_ies, u16 tlv_ies_len);
u16 rtw_ap_parse_sta_security_ie(_adapter *adapter, struct sta_info *sta, struct rtw_ieee802_11_elems *elems);
void rtw_ap_parse_sta_wmm_ie(_adapter *adapter, struct sta_info *sta, u8 *tlv_ies, u16 tlv_ies_len);
void rtw_ap_parse_sta_ht_ie(_adapter *adapter, struct sta_info *sta, struct rtw_ieee802_11_elems *elems);
void rtw_ap_parse_sta_vht_ie(_adapter *adapter, struct sta_info *sta, struct rtw_ieee802_11_elems *elems);
void rtw_ap_parse_sta_he_ie(_adapter *adapter, struct sta_info *sta, struct rtw_ieee802_11_elems *elems);
void rtw_ap_parse_sta_multi_ap_ie(_adapter *adapter, struct sta_info *sta, u8 *ies, int ies_len);
void rtw_core_ap_start(_adapter *padapter, struct createbss_parm *parm);
void rtw_core_ap_swch_start(_adapter *padapter, struct createbss_parm *parm);
/* b2u flags */
#define RTW_AP_B2U_ALL BIT0
#define RTW_AP_B2U_GA_UCAST BIT1 /* WDS group addressed unicast frame, forward only */
#define RTW_AP_B2U_BCAST BIT2
#define RTW_AP_B2U_IP_MCAST BIT3
#define rtw_ap_src_b2u_policy_chk(flags, da) ( \
(flags & RTW_AP_B2U_ALL) \
|| ((flags & RTW_AP_B2U_BCAST) && is_broadcast_mac_addr(da)) \
|| ((flags & RTW_AP_B2U_IP_MCAST) && (IP_MCAST_MAC(da) || ICMPV6_MCAST_MAC(da))) \
)
#define rtw_ap_fwd_b2u_policy_chk(flags, da, gaucst) ( \
(flags & RTW_AP_B2U_ALL) \
|| ((flags & RTW_AP_B2U_GA_UCAST) && gaucst) \
|| ((flags & RTW_AP_B2U_BCAST) && is_broadcast_mac_addr(da)) \
|| ((flags & RTW_AP_B2U_IP_MCAST) && (IP_MCAST_MAC(da) || ICMPV6_MCAST_MAC(da))) \
)
void dump_ap_b2u_flags(void *sel, _adapter *adapter);
int rtw_ap_addr_resolve(_adapter *adapter, u16 os_qid, struct xmit_frame *xframe, struct sk_buff *pkt, _list *f_list);
int rtw_ap_rx_data_validate_hdr(_adapter *adapter, union recv_frame *rframe, struct sta_info **sta);
int rtw_ap_rx_msdu_act_check(union recv_frame *rframe
, const u8 *da, const u8 *sa
, u8 *msdu, enum rtw_rx_llc_hdl llc_hdl
, struct xmit_frame **fwd_frame, _list *f_list);
#ifdef CONFIG_BMC_TX_RATE_SELECT
void rtw_update_bmc_sta_tx_rate(_adapter *adapter);
#endif
void rtw_process_ht_action_smps(_adapter *padapter, u8 *ta, u8 ctrl_field);
void rtw_process_public_act_bsscoex(_adapter *padapter, u8 *pframe, uint frame_len);
#ifdef CONFIG_80211N_HT
int rtw_ht_operation_update(_adapter *padapter);
#endif /* CONFIG_80211N_HT */
u8 rtw_ap_sta_states_check(_adapter *adapter);
void rtw_ap_set_sta_wmode(_adapter *padapter, struct sta_info *sta);
#if defined(CONFIG_RTW_ACS) && defined(WKARD_ACS)
void rtw_acs_start(_adapter *padapter);
void rtw_acs_stop(_adapter *padapter);
#endif /* defined(CONFIG_RTW_ACS) && defined(WKARD_ACS) */
void rtw_ap_set_edca(_adapter *padapter, enum rtw_ac ac, u32 param);
#ifdef CONFIG_AP_CMD_DISPR
#define CMD_APSTART_ACQUIRE BIT0
#define CMD_APSTOP_ACQUIRE BIT1
#define CMD_APSTOP_STARTED BIT2
enum rtw_phl_status rtw_ap_start_cmd(struct cmd_obj *p);
enum rtw_phl_status rtw_ap_stop_cmd(struct cmd_obj *p);
enum rtw_phl_status rtw_free_bcn_entry(struct _ADAPTER *padapter);
#endif
#endif /* end of CONFIG_AP_MODE */
#endif /*__RTW_AP_H_*/
|
2301_81045437/rtl8852be
|
include/rtw_ap.h
|
C
|
agpl-3.0
| 7,389
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_BEAMFORMING_H_
#define __RTW_BEAMFORMING_H_
#ifdef CONFIG_BEAMFORMING
#define BEAMFORMING_HT_BEAMFORMER_ENABLE BIT(0) /*Declare sta support beamformer*/
#define BEAMFORMING_HT_BEAMFORMEE_ENABLE BIT(1) /*Declare sta support beamformee*/
#define BEAMFORMING_HT_BEAMFORMER_TEST BIT(2) /*Transmiting Beamforming no matter the target supports it or not*/
#define BEAMFORMING_HT_BEAMFORMER_STEER_NUM (BIT(4)|BIT(5)) /*Sta Bfer's capability*/
#define BEAMFORMING_HT_BEAMFORMEE_CHNL_EST_CAP (BIT(6)|BIT(7)) /*Sta BFee's capability*/
#define BEAMFORMING_VHT_BEAMFORMER_ENABLE BIT(0) /*Declare sta support beamformer*/
#define BEAMFORMING_VHT_BEAMFORMEE_ENABLE BIT(1) /*Declare sta support beamformee*/
#define BEAMFORMING_VHT_MU_MIMO_AP_ENABLE BIT(2) /*Declare sta support MU beamformer*/
#define BEAMFORMING_VHT_MU_MIMO_STA_ENABLE BIT(3) /*Declare sta support MU beamformer*/
#define BEAMFORMING_VHT_BEAMFORMER_TEST BIT(4) /*Transmiting Beamforming no matter the target supports it or not*/
#define BEAMFORMING_VHT_BEAMFORMER_STS_CAP (BIT(8)|BIT(9)|BIT(10)) /*Sta BFee's capability*/
#define BEAMFORMING_VHT_BEAMFORMEE_SOUND_DIM (BIT(12)|BIT(13)|BIT(14)) /*Sta Bfer's capability*/
#define BEAMFORMING_HE_BEAMFORMER_ENABLE BIT(0) /*Declare sta support beamformer*/
#define BEAMFORMING_HE_BEAMFORMEE_ENABLE BIT(1) /*Declare sta support beamformee*/
#define BEAMFORMING_HE_MU_MIMO_AP_ENABLE BIT(2) /*Declare sta support MU beamformer*/
#define BEAMFORMING_HE_MU_MIMO_STA_ENABLE BIT(3) /*Declare sta support MU beamformer*/
#define BEAMFORMING_HE_BEAMFORMER_TEST BIT(4) /*Transmiting Beamforming no matter the target supports it or not*/
#define BEAMFORMING_HE_BEAMFORMER_STS_CAP (BIT(8)|BIT(9)|BIT(10)) /*Sta BFee's capability*/
#define BEAMFORMING_HE_BEAMFORMEE_SOUND_DIM (BIT(12)|BIT(13)|BIT(14)) /*Sta Bfer's capability*/
void rtw_core_bf_watchdog(_adapter *padapter);
#endif
#endif /*__RTW_BEAMFORMING_H_*/
|
2301_81045437/rtl8852be
|
include/rtw_beamforming.h
|
C
|
agpl-3.0
| 2,656
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_BR_EXT_H_
#define _RTW_BR_EXT_H_
#if 1 /* rtw_wifi_driver */
#define CL_IPV6_PASS 1
#define MACADDRLEN 6
#define _DEBUG_ERR RTW_INFO
#define _DEBUG_INFO /* RTW_INFO */
#define DEBUG_WARN RTW_INFO
#define DEBUG_INFO /* RTW_INFO */
#define DEBUG_ERR RTW_INFO
/* #define GET_MY_HWADDR ((GET_MIB(priv))->dot11OperationEntry.hwaddr) */
#define GET_MY_HWADDR(padapter) (adapter_mac_addr(padapter))
#endif /* rtw_wifi_driver */
#define NAT25_HASH_BITS 4
#define NAT25_HASH_SIZE (1 << NAT25_HASH_BITS)
#define NAT25_AGEING_TIME 300
#ifdef CL_IPV6_PASS
#define MAX_NETWORK_ADDR_LEN 17
#else
#define MAX_NETWORK_ADDR_LEN 11
#endif
struct nat25_network_db_entry {
struct nat25_network_db_entry *next_hash;
struct nat25_network_db_entry **pprev_hash;
ATOMIC_T use_count;
unsigned char macAddr[6];
unsigned long ageing_timer;
unsigned char networkAddr[MAX_NETWORK_ADDR_LEN];
};
enum NAT25_METHOD {
NAT25_MIN,
NAT25_CHECK,
NAT25_INSERT,
NAT25_LOOKUP,
NAT25_PARSE,
NAT25_MAX
};
struct br_ext_info {
unsigned int nat25_disable;
unsigned int macclone_enable;
unsigned int dhcp_bcst_disable;
int addPPPoETag; /* 1: Add PPPoE relay-SID, 0: disable */
unsigned char nat25_dmzMac[MACADDRLEN];
unsigned int nat25sc_disable;
};
void nat25_db_cleanup(_adapter *priv);
#endif /* _RTW_BR_EXT_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_br_ext.h
|
C
|
agpl-3.0
| 1,997
|
/******************************************************************************
*
* Copyright(c) 2013 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifdef CONFIG_BTC
#ifndef __RTW_BTC_H__
#define __RTW_BTC_H__
#include <drv_types.h>
#define GET_STATUS_CODE_FROM_BT_MP_OPER_RET(RetCode) (RetCode & 0x0F)
#define CHECK_STATUS_CODE_FROM_BT_MP_OPER_RET(RetCode, StatusCode) (GET_STATUS_CODE_FROM_BT_MP_OPER_RET(RetCode) == StatusCode)
void rtw_btc_disp_btc_info(_adapter *, void* p_msgprn_hdl, u8 info_type);
void rtw_btc_set_dbg(_adapter *, u32 *pDbgModule);
u32 rtw_btc_get_dbg(_adapter *, u8 *pStrBuf, u32 bufSize);
#if 0
u16 rtw_btc_btreg_read(_adapter *padapter, u8 type, u16 addr, u32 *data);
u16 rtw_btc_btreg_write(_adapter *padapter, u8 type, u16 addr, u16 val);
#endif
#endif /* __RTW_BTC_H__ */
#endif /* CONFIG_BTC */
|
2301_81045437/rtl8852be
|
include/rtw_btc.h
|
C
|
agpl-3.0
| 1,344
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTL871X_BYTEORDER_H_
#define _RTL871X_BYTEORDER_H_
#if defined(CONFIG_LITTLE_ENDIAN) && defined (CONFIG_BIG_ENDIAN)
#error "Shall be CONFIG_LITTLE_ENDIAN or CONFIG_BIG_ENDIAN, but not both!\n"
#endif
#if defined(CONFIG_LITTLE_ENDIAN)
#ifndef CONFIG_PLATFORM_MSTAR389
#include <byteorder/little_endian.h>
#endif
#elif defined (CONFIG_BIG_ENDIAN)
#include <byteorder/big_endian.h>
#else
# error "Must be LITTLE/BIG Endian Host"
#endif
#endif /* _RTL871X_BYTEORDER_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_byteorder.h
|
C
|
agpl-3.0
| 1,145
|
/******************************************************************************
*
* Copyright(c) 2007 - 2020 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_CFG_H_
#define _RTW_CFG_H_
enum rtw_pwr_by_rate_setting {
RTW_PW_BY_RATE_ON = 0,
RTW_PW_BY_RATE_ALL_SAME = 1
};
enum rtw_pwr_limit_type {
RTW_PWLMT_BY_EFUSE = 0,
RTW_PWLMT_DISABLE = 1,
RTW_PWBYRATE_AND_PWLMT = 2
};
u8 rtw_load_dvobj_registry(struct dvobj_priv *dvobj);
uint rtw_load_registry(_adapter *adapter);
void rtw_core_update_default_setting (struct dvobj_priv *dvobj);
#define RTW_ADAPTIVITY_EN_DISABLE 0
#define RTW_ADAPTIVITY_EN_ENABLE 1
#define RTW_ADAPTIVITY_EN_AUTO 2
#define RTW_ADAPTIVITY_MODE_NORMAL 0
#define RTW_ADAPTIVITY_MODE_CARRIER_SENSE 1
void rtw_cfg_adaptivity_config_msg(void *sel, _adapter *adapter);
bool rtw_cfg_adaptivity_needed(_adapter *adapter);
#endif /*_RTW_CFG_H_*/
|
2301_81045437/rtl8852be
|
include/rtw_cfg.h
|
C
|
agpl-3.0
| 1,384
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_CMD_H_
#define __RTW_CMD_H_
#define C2H_MEM_SZ (16*1024)
#define MAX_CMDSZ 1024
#define MAX_RSPSZ 512
#define MAX_EVTSZ 1024
#define CMDBUFF_ALIGN_SZ 512
struct cmd_obj {
_adapter *padapter;
u16 cmdcode;
u8 res;
u8 *parmbuf;
u32 cmdsz;
u8 *rsp;
u32 rspsz;
struct submit_ctx *sctx;
u8 no_io;
/* _sema cmd_sem; */
_list list;
};
/* cmd flags */
enum {
RTW_CMDF_DIRECTLY = BIT0,
RTW_CMDF_WAIT_ACK = BIT1,
};
struct cmd_priv {
u8 cmd_seq;
u8 *cmd_buf; /* shall be non-paged, and 4 bytes aligned */
u8 *cmd_allocated_buf;
u8 *rsp_buf; /* shall be non-paged, and 4 bytes aligned */
u8 *rsp_allocated_buf;
u32 cmd_issued_cnt;
struct dvobj_priv *dvobj;
_mutex sctx_mutex;
ATOMIC_T event_seq;
u32 evt_done_cnt;
#if 0 /*#ifdef CONFIG_CORE_CMD_THREAD*/
_queue cmd_queue;
_sema cmd_queue_sema;
_sema start_cmdthread_sema;
ATOMIC_T cmdthd_running;
#endif
};
struct back_op_param {
unsigned int off_ch_dur;
unsigned int off_ch_ext_dur; /* extend when MGNT_TX */
unsigned int on_ch_dur;
};
#define init_h2fwcmd_w_parm_no_rsp(pcmd, pparm, code) \
do {\
_rtw_init_listhead(&pcmd->list);\
pcmd->cmdcode = code;\
pcmd->parmbuf = (u8 *)(pparm);\
pcmd->cmdsz = sizeof (*pparm);\
pcmd->rsp = NULL;\
pcmd->rspsz = 0;\
} while (0)
#define init_h2fwcmd_w_parm_no_parm_rsp(pcmd, code) \
do {\
_rtw_init_listhead(&pcmd->list);\
pcmd->cmdcode = code;\
pcmd->parmbuf = NULL;\
pcmd->cmdsz = 0;\
pcmd->rsp = NULL;\
pcmd->rspsz = 0;\
} while (0)
struct P2P_PS_Offload_t {
u8 Offload_En:1;
u8 role:1; /* 1: Owner, 0: Client */
u8 CTWindow_En:1;
u8 NoA0_En:1;
u8 NoA1_En:1;
u8 AllStaSleep:1; /* Only valid in Owner */
u8 discovery:1;
u8 rsvd:1;
#ifdef CONFIG_P2P_PS_NOA_USE_MACID_SLEEP
u8 p2p_macid:7;
u8 disable_close_rf:1; /*1: not close RF but just pause p2p_macid when NoA duration*/
#endif /* CONFIG_P2P_PS_NOA_USE_MACID_SLEEP */
};
struct P2P_PS_CTWPeriod_t {
u8 CTWPeriod; /* TU */
};
#ifdef CONFIG_P2P_WOWLAN
struct P2P_WoWlan_Offload_t {
u8 Disconnect_Wkup_Drv:1;
u8 role:2;
u8 Wps_Config[2];
};
#endif /* CONFIG_P2P_WOWLAN */
extern u32 rtw_enqueue_cmd(struct cmd_priv *pcmdpriv, struct cmd_obj *obj);
extern void rtw_free_cmd_obj(struct cmd_obj *pcmd);
#if 0 /*#ifdef CONFIG_CORE_CMD_THREAD*/
void rtw_stop_cmd_thread(_adapter *adapter);
thread_return rtw_cmd_thread(thread_context context);
#endif
u32 rtw_init_cmd_priv(struct dvobj_priv *dvobj);
void rtw_free_cmd_priv(struct dvobj_priv *dvobj);
#ifdef CONFIG_IOCTL_CFG80211
u8 rtw_mgnt_tx_cmd(_adapter *adapter, u8 tx_ch, u8 no_cck, const u8 *buf, size_t len, int wait_ack, u8 flags);
struct mgnt_tx_parm {
u8 tx_ch;
u8 no_cck;
const u8 *buf;
size_t len;
int wait_ack;
};
#endif
enum rtw_drvextra_cmd_id {
NONE_WK_CID, /*MCC_CMD_WK_CID*/
STA_MSTATUS_RPT_WK_CID,
#if 0 /*#ifdef CONFIG_CORE_DM_CHK_TIMER*/
DYNAMIC_CHK_WK_CID,
#endif
DM_CTRL_WK_CID,
PBC_POLLING_WK_CID,
#ifdef CONFIG_POWER_SAVING
POWER_SAVING_CTRL_WK_CID,/* IPS,AUTOSuspend */
#endif
LPS_CTRL_WK_CID,
ANT_SELECT_WK_CID,
P2P_PS_WK_CID,
CHECK_HIQ_WK_CID,/* for softap mode, check hi queue if empty */
C2H_WK_CID,
RESET_SECURITYPRIV, /* add for CONFIG_IEEE80211W, none 11w also can use */
FREE_ASSOC_RESOURCES, /* add for CONFIG_IEEE80211W, none 11w also can use */
DM_IN_LPS_WK_CID,
LPS_CHANGE_DTIM_CID,
DFS_RADAR_DETECT_WK_CID,
DFS_RADAR_DETECT_EN_DEC_WK_CID,
SESSION_TRACKER_WK_CID,
TEST_H2C_CID,
MP_CMD_WK_CID,
CUSTOMER_STR_WK_CID,
MGNT_TX_WK_CID,
REQ_PER_CMD_WK_CID,
SSMPS_WK_CID,
#ifdef CONFIG_CTRL_TXSS_BY_TP
TXSS_WK_CID,
#endif
AC_PARM_CMD_WK_CID,
#ifdef CONFIG_AP_MODE
STOP_AP_WK_CID,
#endif
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
TBTX_CONTROL_TX_WK_CID,
#endif
TSF_SYNC_DONE_WK_CID,
#ifdef ROKU_PRIVATE
FIND_REMOTE_WK_CID,
#ifdef CONFIG_P2P
HIDE_SSID_WK_CID,
#endif
#endif
MAX_WK_CID
};
enum LPS_CTRL_TYPE {
LPS_CTRL_SCAN = 0,
LPS_CTRL_JOINBSS = 1,
LPS_CTRL_CONNECT = 2,
LPS_CTRL_DISCONNECT = 3,
LPS_CTRL_SPECIAL_PACKET = 4,
LPS_CTRL_LEAVE = 5,
LPS_CTRL_TRAFFIC_BUSY = 6,
LPS_CTRL_TX_TRAFFIC_LEAVE = 7,
LPS_CTRL_RX_TRAFFIC_LEAVE = 8,
LPS_CTRL_ENTER = 9,
LPS_CTRL_LEAVE_CFG80211_PWRMGMT = 10,
LPS_CTRL_LEAVE_SET_OPTION = 11,
};
enum STAKEY_TYPE {
GROUP_KEY = 0,
UNICAST_KEY = 1,
TDLS_KEY = 2,
};
enum RFINTFS {
SWSI,
HWSI,
HWPI,
};
/*
Caller Mode: Infra, Ad-HoC(C)
Notes: To disconnect the current associated BSS
Command Mode
*/
struct disconnect_parm {
u32 deauth_timeout_ms;
};
/*
Caller Mode: AP, Ad-HoC(M)
Notes: To create a BSS
Command Mode
*/
struct createbss_parm {
bool adhoc;
/* used by AP/Mesh mode now */
u8 ifbmp;
u8 excl_ifbmp;
s16 req_ch;
s8 req_bw;
s8 req_offset;
u8 ifbmp_ch_changed;
u8 ch_to_set;
u8 offset_to_set;
u8 bw_to_set;
u8 do_rfk;
};
struct setopmode_parm {
u8 mode;
u8 rsvd[3];
};
/*
Caller Mode: Any
Notes: To set the auth type of RTL8711. open/shared/802.1x
Command Mode
*/
struct setauth_parm {
u8 mode; /* 0: legacy open, 1: legacy shared 2: 802.1x */
u8 _1x; /* 0: PSK, 1: TLS */
u8 rsvd[2];
};
/*
Caller Mode: Infra
a. algorithm: wep40, wep104, tkip & aes
b. keytype: grp key/unicast key
c. key contents
when shared key ==> keyid is the camid
when 802.1x ==> keyid [0:1] ==> grp key
when 802.1x ==> keyid > 2 ==> unicast key
*/
struct setkey_parm {
u8 algorithm; /* encryption algorithm, could be none, wep40, TKIP, CCMP, wep104 */
u8 keyid;
u8 set_tx; /* 1: main tx key for wep. 0: other key. */
u8 key[32]; /* this could be 40 or 104 */
};
/*
When in AP or Ad-Hoc mode, this is used to
allocate an sw/hw entry for a newly associated sta.
Command
when shared key ==> algorithm/keyid
*/
struct set_stakey_parm {
u8 addr[ETH_ALEN];
u8 algorithm;
u8 keyid;
u8 key[32];
u8 gk;
};
struct set_stakey_rsp {
u8 addr[ETH_ALEN];
u8 keyid;
u8 rsvd;
};
struct Tx_Beacon_param {
WLAN_BSSID_EX network;
};
/*
Notes: This command is used for H2C/C2H loopback testing
mac[0] == 0
==> CMD mode, return H2C_SUCCESS.
The following condition must be ture under CMD mode
mac[1] == mac[4], mac[2] == mac[3], mac[0]=mac[5]= 0;
s0 == 0x1234, s1 == 0xabcd, w0 == 0x78563412, w1 == 0x5aa5def7;
s2 == (b1 << 8 | b0);
mac[0] == 1
==> CMD_RSP mode, return H2C_SUCCESS_RSP
The rsp layout shall be:
rsp: parm:
mac[0] = mac[5];
mac[1] = mac[4];
mac[2] = mac[3];
mac[3] = mac[2];
mac[4] = mac[1];
mac[5] = mac[0];
s0 = s1;
s1 = swap16(s0);
w0 = swap32(w1);
b0 = b1
s2 = s0 + s1
b1 = b0
w1 = w0
mac[0] == 2
==> CMD_EVENT mode, return H2C_SUCCESS
The event layout shall be:
event: parm:
mac[0] = mac[5];
mac[1] = mac[4];
mac[2] = event's sequence number, starting from 1 to parm's marc[3]
mac[3] = mac[2];
mac[4] = mac[1];
mac[5] = mac[0];
s0 = swap16(s0) - event.mac[2];
s1 = s1 + event.mac[2];
w0 = swap32(w0);
b0 = b1
s2 = s0 + event.mac[2]
b1 = b0
w1 = swap32(w1) - event.mac[2];
parm->mac[3] is the total event counts that host requested.
event will be the same with the cmd's param.
*/
/* CMD param Formart for driver extra cmd handler */
struct drvextra_cmd_parm {
int ec_id; /* extra cmd id */
int type; /* Can use this field as the type id or command size */
int size; /* buffer size */
unsigned char *pbuf;
};
/*------------------- Below are used for RF/BB tunning ---------------------*/
struct addBaReq_parm {
unsigned int tid;
u8 addr[ETH_ALEN];
};
struct addBaRsp_parm {
unsigned int tid;
unsigned int start_seq;
u8 addr[ETH_ALEN];
u8 status;
u8 size;
struct ADDBA_request preq;
};
struct set_ch_parm {
u8 ch;
u8 bw;
u8 ch_offset;
u8 do_rfk;
};
struct SetChannelPlan_param {
enum regd_src_t regd_src;
enum rtw_regd_inr inr;
struct country_chplan country_ent;
bool has_country;
u8 channel_plan;
#if CONFIG_IEEE80211_BAND_6GHZ
u8 channel_plan_6g;
#endif
#ifdef CONFIG_80211D
/* used for regd_src == RTK_PRIV and inr == COUNTRY_IE */
struct country_ie_slave_record cisr;
bool has_cisr;
#endif
#ifdef PLATFORM_LINUX
bool rtnl_lock_needed;
#endif
};
struct get_channel_plan_param {
struct get_chplan_resp **chplan;
};
struct LedBlink_param {
void *pLed;
};
struct TDLSoption_param {
u8 addr[ETH_ALEN];
u8 option;
};
struct RunInThread_param {
void (*func)(void *);
void *context;
};
#define GEN_CMD_CODE(cmd) cmd ## _CMD_
/*
Result:
0x00: success
0x01: sucess, and check Response.
0x02: cmd ignored due to duplicated sequcne number
0x03: cmd dropped due to invalid cmd code
0x04: reserved.
*/
#define H2C_RSP_OFFSET 512
#define H2C_SUCCESS 0x00
#define H2C_SUCCESS_RSP 0x01
#define H2C_DUPLICATED 0x02
#define H2C_DROPPED 0x03
#define H2C_PARAMETERS_ERROR 0x04
#define H2C_REJECTED 0x05
#define H2C_CMD_OVERFLOW 0x06
#define H2C_RESERVED 0x07
#define H2C_ENQ_HEAD 0x08
#define H2C_ENQ_HEAD_FAIL 0x09
#define H2C_CMD_FAIL 0x0A
u8 rtw_create_ibss_cmd(_adapter *adapter, int flags);
u8 rtw_startbss_cmd(_adapter *adapter, int flags);
#define REQ_CH_NONE -1
#define REQ_CH_INT_INFO -2
#define REQ_BW_NONE -1
#define REQ_BW_ORI -2
#define REQ_OFFSET_NONE -1
u8 rtw_change_bss_chbw_cmd(_adapter *adapter, int flags
, u8 ifbmp, u8 excl_ifbmp, s16 req_ch, s8 req_bw, s8 req_offset);
struct sta_info;
extern u8 rtw_setstakey_cmd(_adapter *padapter, struct sta_info *sta, u8 key_type, bool enqueue);
extern u8 rtw_clearstakey_cmd(_adapter *padapter, struct sta_info *sta, u8 enqueue);
extern u8 rtw_joinbss_cmd(_adapter *padapter, struct wlan_network *pnetwork);
u8 rtw_disassoc_cmd(_adapter *padapter, u32 deauth_timeout_ms, int flags);
#ifdef CONFIG_AP_MODE
u8 rtw_stop_ap_cmd(_adapter *adapter, u8 flags);
#endif
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
u8 rtw_tx_control_cmd(_adapter *adapter);
#endif
extern u8 rtw_setopmode_cmd(_adapter *padapter, NDIS_802_11_NETWORK_INFRASTRUCTURE networktype, u8 flags);
extern u8 rtw_addbareq_cmd(_adapter *padapter, u8 tid, u8 *addr);
extern u8 rtw_addbarsp_cmd(_adapter *padapter, u8 *addr, u16 tid,
struct ADDBA_request *paddba_req, u8 status, u8 size,
u16 start_seq);
extern u8 rtw_delba_cmd(struct _ADAPTER *a, u8 *addr, u16 tid);
/* add for CONFIG_IEEE80211W, none 11w also can use */
extern u8 rtw_reset_securitypriv_cmd(_adapter *padapter);
extern u8 rtw_free_assoc_resources_cmd(_adapter *padapter, u8 lock_scanned_queue, int flags);
#if 0 /*#ifdef CONFIG_CORE_DM_CHK_TIMER*/
extern u8 rtw_dynamic_chk_wk_cmd(_adapter *adapter);
#endif
#ifdef ROKU_PRIVATE
extern u8 rtw_find_remote_wk_cmd(_adapter *adapter);
#ifdef CONFIG_P2P
extern u8 rtw_hide_ssid_wk_cmd(_adapter *adapter);
#endif
#endif
u8 rtw_lps_ctrl_wk_cmd(_adapter *padapter, u8 lps_ctrl_type, u8 flags);
u8 rtw_lps_ctrl_leave_set_level_cmd(_adapter *adapter, u8 lps_level, u8 flags);
#ifdef CONFIG_LPS_1T1R
u8 rtw_lps_ctrl_leave_set_1t1r_cmd(_adapter *adapter, u8 lps_1t1r, u8 flags);
#endif
u8 rtw_dm_in_lps_wk_cmd(_adapter *padapter);
u8 rtw_lps_change_dtim_cmd(_adapter *padapter, u8 dtim);
#ifdef CONFIG_ANTENNA_DIVERSITY
extern u8 rtw_antenna_select_cmd(_adapter *padapter, u8 antenna, u8 enqueue);
#endif
#ifdef CONFIG_POWER_SAVING
extern u8 rtw_ps_cmd(_adapter *padapter);
#endif
#if CONFIG_DFS
void rtw_dfs_ch_switch_hdl(_adapter *adapter);
#endif
#ifdef CONFIG_AP_MODE
u8 rtw_chk_hi_queue_cmd(_adapter *padapter);
#ifdef CONFIG_DFS_MASTER
u8 rtw_dfs_rd_cmd(_adapter *adapter, bool enqueue);
void rtw_dfs_rd_timer_hdl(void *ctx);
void rtw_dfs_rd_en_decision(_adapter *adapter, u8 mlme_act, u8 excl_ifbmp);
u8 rtw_dfs_rd_en_decision_cmd(_adapter *adapter);
#endif /* CONFIG_DFS_MASTER */
#endif /* CONFIG_AP_MODE */
#ifdef CONFIG_BTC
u8 rtw_btinfo_cmd(_adapter *padapter, u8 *pbuf, u16 length);
u8 rtw_btc_reduce_wl_txpwr_cmd(_adapter *adapter, u32 val);
#endif
u8 rtw_test_h2c_cmd(_adapter *adapter, u8 *buf, u8 len);
#if defined(RTW_PHL_DBG_CMD)
void core_cmd_phl_handler(_adapter *adapter, char *extra);
void core_add_record(_adapter *adapter, u8 type, void *p);
void phl_add_record(void *d, u8 type, void *p, u32 size);
#endif
u8 rtw_set_chbw_cmd(_adapter *padapter, u8 ch, u8 bw, u8 ch_offset, u8 flags);
u8 rtw_set_chplan_cmd(_adapter *adapter, int flags, u8 chplan, u8 chplan_6g, enum rtw_regd_inr inr);
u8 rtw_set_country_cmd(_adapter *adapter, int flags, const char *country_code, enum rtw_regd_inr inr);
#ifdef CONFIG_REGD_SRC_FROM_OS
u8 rtw_sync_os_regd_cmd(_adapter *adapter, int flags, const char *country_code, u8 dfs_region, enum rtw_regd_inr inr);
#endif
u8 rtw_get_chplan_cmd(_adapter *adapter, int flags, struct get_chplan_resp **chplan);
#ifdef CONFIG_80211D
u8 rtw_apply_recv_country_ie_cmd(_adapter *adapter, int flags, enum band_type band,u8 opch, const u8 *country_ie);
#endif
#ifdef CONFIG_RTW_LED_HANDLED_BY_CMD_THREAD
u8 rtw_led_blink_cmd(_adapter *padapter, void *pLed);
#endif
extern u8 rtw_set_csa_cmd(_adapter *adapter);
extern u8 rtw_tdls_cmd(_adapter *padapter, u8 *addr, u8 option);
u8 rtw_mp_cmd(_adapter *adapter, u8 mp_cmd_id, u8 flags);
#ifdef CONFIG_RTW_CUSTOMER_STR
u8 rtw_customer_str_req_cmd(_adapter *adapter);
u8 rtw_customer_str_write_cmd(_adapter *adapter, const u8 *cstr);
#endif
u8 rtw_c2h_packet_wk_cmd(_adapter *adapter, u8 *c2h_evt, u16 length);
u8 rtw_run_in_thread_cmd(_adapter *adapter, void (*func)(void *), void *context);
u8 rtw_run_in_thread_cmd_wait(_adapter *adapter, void (*func)(void *), void *context, s32 timeout_ms);
struct ssmps_cmd_parm {
struct sta_info *sta;
u8 smps;
};
u8 rtw_ssmps_wk_cmd(_adapter *adapter, struct sta_info *sta, u8 smps, u8 enqueue);
u8 session_tracker_chk_cmd(_adapter *adapter, struct sta_info *sta);
u8 session_tracker_add_cmd(_adapter *adapter, struct sta_info *sta, u8 *local_naddr, u8 *local_port, u8 *remote_naddr, u8 *remote_port);
u8 session_tracker_del_cmd(_adapter *adapter, struct sta_info *sta, u8 *local_naddr, u8 *local_port, u8 *remote_naddr, u8 *remote_port);
u8 set_txq_params_cmd(_adapter *adapter, u32 ac_parm, u8 ac_type);
#if defined(CONFIG_RTW_MESH) && defined(RTW_PER_CMD_SUPPORT_FW)
u8 rtw_req_per_cmd(_adapter * adapter);
#endif
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
u8 rtw_tbtx_chk_cmd(_adapter *adapter);
u8 rtw_tbtx_token_dispatch_cmd(_adapter *adapter);
#endif
#ifdef CONFIG_CTRL_TXSS_BY_TP
struct txss_cmd_parm {
struct sta_info *sta;
bool tx_1ss;
};
void rtw_ctrl_txss_update(_adapter *adapter, struct sta_info *sta);
u8 rtw_ctrl_txss(_adapter *adapter, struct sta_info *sta, bool tx_1ss);
void rtw_ctrl_tx_ss_by_tp(_adapter *adapter, u8 from_timer);
#ifdef DBG_CTRL_TXSS
void dbg_ctrl_txss(_adapter *adapter, bool tx_1ss);
#endif
#endif
u8 rtw_drvextra_cmd_hdl(_adapter *padapter, unsigned char *pbuf);
extern void rtw_disassoc_cmd_callback(_adapter *padapter, struct cmd_obj *pcmd);
extern void rtw_joinbss_cmd_callback(_adapter *padapter, struct cmd_obj *pcmd);
void rtw_create_ibss_post_hdl(_adapter *padapter, int status);
extern void rtw_readtssi_cmdrsp_callback(_adapter *padapter, struct cmd_obj *pcmd);
extern void rtw_setstaKey_cmdrsp_callback(_adapter *padapter, struct cmd_obj *pcmd);
extern void rtw_getrttbl_cmdrsp_callback(_adapter *padapter, struct cmd_obj *pcmd);
void rtw_run_cmd(_adapter *padapter, struct cmd_obj *pcmd, bool discard);
u32 rtw_get_turbo_edca(_adapter *padapter, u8 aifs, u8 ecwmin, u8 ecwmax, u8 txop);
enum rtw_cmd_id {
CMD_JOINBSS, /*0*/
CMD_DISCONNECT, /*1*/
CMD_CREATE_BSS,/*2*/
CMD_SET_OPMODE, /*3*/
CMD_SITE_SURVEY, /*4*/
CMD_SET_AUTH, /*5*/
#ifndef CONFIG_CMD_DISP
CMD_SET_KEY, /*6*/
CMD_SET_STAKEY, /*7*/
#endif
CMD_ADD_BAREQ, /*8*/
CMD_SET_CHANNEL, /*9*/
CMD_TX_BEACON, /*10*/
CMD_SET_MLME_EVT, /*11*/
CMD_SET_DRV_EXTRA, /*12*/
CMD_SET_CHANPLAN, /*13*/
CMD_LEDBLINK, /*14*/
CMD_SET_CHANSWITCH, /*15*/
CMD_TDLS, /*16*/
CMD_CHK_BMCSLEEPQ, /*17*/
CMD_RUN_INTHREAD, /*18*/
CMD_ADD_BARSP, /*19*/
CMD_RM_POST_EVENT, /*20*/
CMD_SET_MESH_PLINK_STATE, /* 21 */
CMD_DELBA, /* 22 */
CMD_GET_CHANPLAN, /*23*/
CMD_ID_MAX
};
#define CMD_FMT "cmd=%d,%d,%d"
#define CMD_ARG(cmd) \
(cmd)->cmdcode, \
(cmd)->cmdcode == CMD_SET_DRV_EXTRA ? ((struct drvextra_cmd_parm *)(cmd)->parmbuf)->ec_id : ((cmd)->cmdcode == CMD_SET_MLME_EVT ? ((struct rtw_evt_header *)(cmd)->parmbuf)->id : 0), \
(cmd)->cmdcode == CMD_SET_DRV_EXTRA ? ((struct drvextra_cmd_parm *)(cmd)->parmbuf)->type : 0
#ifdef CONFIG_CMD_GENERAL
void rtw_dynamic_chk_wk_sw_hdl(_adapter *padapter);
void rtw_dynamic_chk_wk_hw_hdl(_adapter *padapter);
#else
void rtw_dynamic_chk_wk_hdl(_adapter *padapter);
#endif
#endif /* _CMD_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_cmd.h
|
C
|
agpl-3.0
| 17,147
|
/******************************************************************************
*
* Copyright(c) 2019 - 2021 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_CSA_H_
#define __RTW_CSA_H_
#if CONFIG_DFS
#define CSA_IE_LEN 3 /* Length of Channel Switch element */
#define CSA_SWITCH_MODE 0
#define CSA_NEW_CH 1
#define CSA_SWITCH_COUNT 2
#define MAX_CSA_CNT 10
#define CS_WR_DATA_LEN 5 /* Length of Channel Switch Wrapper element */
void reset_csa_param(struct rf_ctl_t *rfctl);
bool rtw_get_csa_setting(struct dvobj_priv *d, s16 *req_ch, u8 *req_bw, u8 *req_offset);
#ifdef CONFIG_ECSA_PHL
#define MCC_ECSA_DELAY_START_TIME 30000 /* ms */
enum ecsa_state_t {
ECSA_ST_NONE,
ECSA_ST_SW_START, /* ready to switch */
ECSA_ST_SW_DONE /* switch done */
};
struct core_ecsa_info {
enum ecsa_state_t state;
u32 ecsa_allow_case;
u32 ecsa_delay_time;
/* @channel_width defined in 802.11-2016, Table 9-252 VHT operation information subfields
* 0 for 20 MHz or 40 MHz
* 1 for 80 MHz, 160 MHz or 80+80 MHz
* 2 for 160 MHz (deprecated)
* 3 for non-contiguous 80+80 MHz (deprecated)
*/
u8 channel_width;
struct createbss_parm *bss_param;
struct rtw_phl_ecsa_param phl_ecsa_param;
};
__inline static void set_ecsa_state(struct core_ecsa_info *ecsa_info, enum ecsa_state_t state)
{
ecsa_info->state = state;
}
__inline static bool check_ecsa_state(struct core_ecsa_info *ecsa_info, enum ecsa_state_t state)
{
if (ecsa_info->state == state)
return _TRUE;
return _FALSE;
}
#define SET_ECSA_STATE(adapter, state) set_ecsa_state(&((adapter)->ecsa_info), (state))
#define CHK_ECSA_STATE(adapter, state) check_ecsa_state(&((adapter)->ecsa_info), (state))
bool rtw_mr_is_ecsa_running(struct _ADAPTER *a);
void rtw_ecsa_update_probe_resp(struct xmit_frame *xframe);
void rtw_ecsa_update_beacon(void *priv, struct rtw_wifi_role_t *role);
bool rtw_ap_check_ecsa_allow(
void *priv,
struct rtw_wifi_role_t *role,
struct rtw_chan_def chan_def,
enum phl_ecsa_start_reason reason,
u32 *delay_start_ms
);
void rtw_ecsa_mr_update_chan_info_by_role(
void *priv,
struct rtw_wifi_role_t *role,
struct rtw_chan_def new_chan_def
);
bool rtw_ecsa_check_tx_resume_allow(void *priv, struct rtw_wifi_role_t *role);
void rtw_ecsa_complete(void *priv, struct rtw_wifi_role_t *role);
void rtw_trigger_phl_ecsa_start(struct _ADAPTER *a);
#endif /* CONFIG_ECSA_PHL */
#endif /* CONFIG_DFS */
#endif
|
2301_81045437/rtl8852be
|
include/rtw_csa.h
|
C
|
agpl-3.0
| 2,901
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_DEBUG_H__
#define __RTW_DEBUG_H__
/* driver log level*/
enum {
_DRV_NONE_ = 0,
_DRV_ALWAYS_ = 1,
_DRV_ERR_ = 2,
_DRV_WARNING_ = 3,
_DRV_INFO_ = 4,
_DRV_DEBUG_ = 5,
_DRV_MAX_ = 6
};
#define DRIVER_PREFIX "RTW: "
#define RTW_PRINT(x, ...) do {} while (0)
#define RTW_ERR(x, ...) do {} while (0)
#define RTW_WARN(x,...) do {} while (0)
#define RTW_INFO(x,...) do {} while (0)
#define RTW_DBG(x,...) do {} while (0)
#define RTW_PRINT_SEL(x,...) do {} while (0)
#define _RTW_PRINT(x, ...) do {} while (0)
#define _RTW_ERR(x, ...) do {} while (0)
#define _RTW_WARN(x,...) do {} while (0)
#define _RTW_INFO(x,...) do {} while (0)
#define _RTW_DBG(x,...) do {} while (0)
#define _RTW_PRINT_SEL(x,...) do {} while (0)
#define RTW_INFO_DUMP(_TitleString, _HexData, _HexDataLen) do {} while (0)
#define RTW_DBG_DUMP(_TitleString, _HexData, _HexDataLen) do {} while (0)
#define RTW_PRINT_DUMP(_TitleString, _HexData, _HexDataLen) do {} while (0)
#define RTW_DBG_EXPR(EXPR) do {} while (0)
#define RTW_DBGDUMP 0 /* 'stream' for _dbgdump */
#undef _dbgdump
#undef _seqdump
#if defined(PLATFORM_LINUX)
#define _dbgdump printk
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24))
#define KERN_CONT
#endif
#define _seqdump seq_printf
#elif defined(PLATFORM_FREEBSD)
#define _dbgdump printf
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24))
#define KERN_CONT
#endif
#define _seqdump(sel, fmt, arg...) _dbgdump(fmt, ##arg)
#endif
void RTW_BUF_DUMP_SEL(uint _loglevel, void *sel, u8 *_titlestring,
bool _idx_show, const u8 *_hexdata, int _hexdatalen);
void RTW_BUF_DUMP_SEL_ALWAYS(void *sel, u8 *_titlestring,
bool _idx_show, const u8 *_hexdata, int _hexdatalen);
#ifdef CONFIG_RTW_DEBUG
/*#ifndef _OS_INTFS_C_*/
extern uint rtw_drv_log_level;
/*#endif*/
#if defined(_dbgdump)
#ifdef PLATFORM_LINUX
#ifdef DBG_THREAD_PID
#define T_PID_FMT "(%5u) "
#define T_PID_ARG current->pid
#else /* !DBG_THREAD_PID */
#define T_PID_FMT "%s"
#define T_PID_ARG ""
#endif /* !DBG_THREAD_PID */
#ifdef DBG_CPU_INFO
#define CPU_INFO_FMT "[%u] "
#define CPU_INFO_ARG get_cpu()
#else /* !DBG_CPU_INFO */
#define CPU_INFO_FMT "%s"
#define CPU_INFO_ARG ""
#endif /* !DBG_CPU_INFO */
/* Extra information in prefix */
#define EX_INFO_FMT T_PID_FMT CPU_INFO_FMT
#define EX_INFO_ARG T_PID_ARG, CPU_INFO_ARG
#else /* !PLATFORM_LINUX */
#define EX_INFO_FMT "%s"
#define EX_INFO_ARG ""
#endif /* !PLATFORM_LINUX */
#define DBG_PREFIX EX_INFO_FMT DRIVER_PREFIX
#define DBG_PREFIX_ARG EX_INFO_ARG
/* with driver-defined prefix */
#undef RTW_PRINT
#define RTW_PRINT(fmt, arg...) \
do {\
if (_DRV_ALWAYS_ <= rtw_drv_log_level) {\
_dbgdump(DBG_PREFIX fmt, DBG_PREFIX_ARG, ##arg);\
} \
} while (0)
#undef RTW_ERR
#define RTW_ERR(fmt, arg...) \
do {\
if (_DRV_ERR_ <= rtw_drv_log_level) {\
_dbgdump(DBG_PREFIX "ERROR " fmt, \
DBG_PREFIX_ARG, ##arg);\
} \
} while (0)
#undef RTW_WARN
#define RTW_WARN(fmt, arg...) \
do {\
if (_DRV_WARNING_ <= rtw_drv_log_level) {\
_dbgdump(DBG_PREFIX "WARN " fmt, \
DBG_PREFIX_ARG, ##arg);\
} \
} while (0)
#undef RTW_INFO
#define RTW_INFO(fmt, arg...) \
do {\
if (_DRV_INFO_ <= rtw_drv_log_level) {\
_dbgdump(DBG_PREFIX fmt, DBG_PREFIX_ARG, ##arg);\
} \
} while (0)
#undef RTW_DBG
#define RTW_DBG(fmt, arg...) \
do {\
if (_DRV_DEBUG_ <= rtw_drv_log_level) {\
_dbgdump(DBG_PREFIX fmt, DBG_PREFIX_ARG, ##arg);\
} \
} while (0)
#undef RTW_INFO_DUMP
#define RTW_INFO_DUMP(_TitleString, _HexData, _HexDataLen) \
RTW_BUF_DUMP_SEL(_DRV_INFO_, RTW_DBGDUMP, _TitleString, _FALSE, _HexData, _HexDataLen)
#undef RTW_DBG_DUMP
#define RTW_DBG_DUMP(_TitleString, _HexData, _HexDataLen) \
RTW_BUF_DUMP_SEL(_DRV_DEBUG_, RTW_DBGDUMP, _TitleString, _FALSE, _HexData, _HexDataLen)
#undef RTW_PRINT_DUMP
#define RTW_PRINT_DUMP(_TitleString, _HexData, _HexDataLen) \
RTW_BUF_DUMP_SEL(_DRV_ALWAYS_, RTW_DBGDUMP, _TitleString, _FALSE, _HexData, _HexDataLen)
/* without driver-defined prefix */
#undef _RTW_PRINT
#define _RTW_PRINT(fmt, arg...) \
do {\
if (_DRV_ALWAYS_ <= rtw_drv_log_level) {\
_dbgdump(KERN_CONT fmt, ##arg);\
} \
} while (0)
#undef _RTW_ERR
#define _RTW_ERR(fmt, arg...) \
do {\
if (_DRV_ERR_ <= rtw_drv_log_level) {\
_dbgdump(KERN_CONT fmt, ##arg);\
} \
} while (0)
#undef _RTW_WARN
#define _RTW_WARN(fmt, arg...) \
do {\
if (_DRV_WARNING_ <= rtw_drv_log_level) {\
_dbgdump(KERN_CONT fmt, ##arg);\
} \
} while (0)
#undef _RTW_INFO
#define _RTW_INFO(fmt, arg...) \
do {\
if (_DRV_INFO_ <= rtw_drv_log_level) {\
_dbgdump(KERN_CONT fmt, ##arg);\
} \
} while (0)
#undef _RTW_DBG
#define _RTW_DBG(fmt, arg...) \
do {\
if (_DRV_DEBUG_ <= rtw_drv_log_level) {\
_dbgdump(KERN_CONT fmt, ##arg);\
} \
} while (0)
/* other debug APIs */
#undef RTW_DBG_EXPR
#define RTW_DBG_EXPR(EXPR) do { if (_DRV_DEBUG_ <= rtw_drv_log_level) EXPR; } while (0)
#endif /* defined(_dbgdump) */
#endif /* CONFIG_RTW_DEBUG */
#if defined(_seqdump)
/* dump message to selected 'stream' with driver-defined prefix */
#undef RTW_PRINT_SEL
#define RTW_PRINT_SEL(sel, fmt, arg...) \
do {\
if (sel == RTW_DBGDUMP)\
RTW_PRINT(fmt, ##arg); \
else {\
_seqdump(sel, fmt, ##arg) /*rtw_warn_on(1)*/; \
} \
} while (0)
/* dump message to selected 'stream' */
#undef _RTW_PRINT_SEL
#define _RTW_PRINT_SEL(sel, fmt, arg...) \
do {\
if (sel == RTW_DBGDUMP)\
_RTW_PRINT(fmt, ##arg); \
else {\
_seqdump(sel, fmt, ##arg) /*rtw_warn_on(1)*/; \
} \
} while (0)
/* dump message to selected 'stream' */
#undef RTW_DUMP_SEL
#define RTW_DUMP_SEL(sel, _HexData, _HexDataLen) \
RTW_BUF_DUMP_SEL(_DRV_ALWAYS_, sel, NULL, _FALSE, _HexData, _HexDataLen)
#define RTW_MAP_DUMP_SEL(sel, _TitleString, _HexData, _HexDataLen) \
RTW_BUF_DUMP_SEL(_DRV_ALWAYS_, sel, _TitleString, _TRUE, _HexData, _HexDataLen)
#define RTW_MAP_DUMP_SEL_ALWAYS(sel, _TitleString, _HexData, _HexDataLen) \
RTW_BUF_DUMP_SEL_ALWAYS(sel, _TitleString, _TRUE, _HexData, _HexDataLen)
#endif /* defined(_seqdump) */
#ifdef CONFIG_DBG_COUNTER
#define DBG_COUNTER(counter) counter++
#else
#define DBG_COUNTER(counter)
#endif
void dump_drv_version(void *sel);
void dump_log_level(void *sel);
void dump_drv_cfg(void *sel);
void rtw_sink_rtp_seq_dbg(_adapter *adapter, u8 *ehdr_pos);
#ifdef CONFIG_RECV_REORDERING_CTRL
struct sta_info;
void sta_rx_reorder_ctl_dump(void *sel, struct sta_info *sta);
#endif
struct dvobj_priv;
void dump_tx_rate_bmp(void *sel, struct dvobj_priv *dvobj);
void dump_adapters_status(void *sel, struct dvobj_priv *dvobj);
struct sec_cam_ent;
void dump_sec_cam_ent(void *sel, struct sec_cam_ent *ent, int id);
void dump_sec_cam_ent_title(void *sel, u8 has_id);
void dump_sec_cam(void *sel, _adapter *adapter);
void dump_sec_cam_cache(void *sel, _adapter *adapter);
bool rtw_del_rx_ampdu_test_trigger_no_tx_fail(void);
u32 rtw_get_wait_hiq_empty_ms(void);
void rtw_sta_linking_test_set_start(void);
bool rtw_sta_linking_test_wait_done(void);
bool rtw_sta_linking_test_force_fail(void);
#ifdef CONFIG_AP_MODE
u16 rtw_ap_linking_test_force_auth_fail(void);
u16 rtw_ap_linking_test_force_asoc_fail(void);
#endif
#ifdef CONFIG_PROC_DEBUG
ssize_t proc_set_write_reg(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_read_reg(struct seq_file *m, void *v);
ssize_t proc_set_read_reg(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#ifdef CONFIG_IGNORE_GO_AND_LOW_RSSI_IN_SCAN_LIST
int proc_get_ignore_go_and_low_rssi_in_scan(struct seq_file *m, void *v);
ssize_t proc_set_ignore_go_and_low_rssi_in_scan(struct file *file,
const char __user *buffer, size_t count, loff_t *pos, void *data);
#endif /*CONFIG_IGNORE_GO_AND_LOW_RSSI_IN_SCAN_LIST*/
ssize_t proc_set_mac_dbg_status_dump(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_fwstate(struct seq_file *m, void *v);
int proc_get_sec_info(struct seq_file *m, void *v);
int proc_get_mlmext_state(struct seq_file *m, void *v);
#ifdef CONFIG_LAYER2_ROAMING
int proc_get_roam_flags(struct seq_file *m, void *v);
ssize_t proc_set_roam_flags(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_roam_param(struct seq_file *m, void *v);
ssize_t proc_set_roam_param(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
ssize_t proc_set_roam_tgt_addr(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#endif /* CONFIG_LAYER2_ROAMING */
int proc_get_qos_option(struct seq_file *m, void *v);
int proc_get_ht_option(struct seq_file *m, void *v);
int proc_get_rf_info(struct seq_file *m, void *v);
int proc_get_scan_param(struct seq_file *m, void *v);
ssize_t proc_set_scan_param(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_scan_abort(struct seq_file *m, void *v);
ssize_t proc_set_scan_abort(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_survey_info(struct seq_file *m, void *v);
ssize_t proc_set_survey_info(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_ap_info(struct seq_file *m, void *v);
#ifdef ROKU_PRIVATE
int proc_get_infra_ap(struct seq_file *m, void *v);
#endif /* ROKU_PRIVATE */
ssize_t proc_reset_trx_info(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_trx_info(struct seq_file *m, void *v);
ssize_t proc_set_tx_power_offset(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_tx_power_offset(struct seq_file *m, void *v);
int proc_get_rate_ctl(struct seq_file *m, void *v);
int proc_get_wifi_spec(struct seq_file *m, void *v);
ssize_t proc_set_rate_ctl(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_bw_ctl(struct seq_file *m, void *v);
ssize_t proc_set_bw_ctl(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#ifdef DBG_RX_COUNTER_DUMP
int proc_get_rx_cnt_dump(struct seq_file *m, void *v);
ssize_t proc_set_rx_cnt_dump(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#endif
#ifdef CONFIG_AP_MODE
int proc_get_bmc_tx_rate(struct seq_file *m, void *v);
ssize_t proc_set_bmc_tx_rate(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#endif /*CONFIG_AP_MODE*/
int proc_get_ps_dbg_info(struct seq_file *m, void *v);
ssize_t proc_set_ps_dbg_info(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
ssize_t proc_set_del_rx_ampdu_test_case(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
ssize_t proc_set_wait_hiq_empty(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
ssize_t proc_set_sta_linking_test(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#ifdef CONFIG_AP_MODE
ssize_t proc_set_ap_linking_test(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#endif
int proc_get_rx_stat(struct seq_file *m, void *v);
int proc_get_tx_stat(struct seq_file *m, void *v);
#ifdef CONFIG_AP_MODE
int proc_get_all_sta_info(struct seq_file *m, void *v);
#endif /* CONFIG_AP_MODE */
#ifdef DBG_MEMORY_LEAK
int proc_get_malloc_cnt(struct seq_file *m, void *v);
#endif /* DBG_MEMORY_LEAK */
#ifdef CONFIG_FIND_BEST_CHANNEL
int proc_get_best_channel(struct seq_file *m, void *v);
ssize_t proc_set_best_channel(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#endif /* CONFIG_FIND_BEST_CHANNEL */
int proc_get_trx_info_debug(struct seq_file *m, void *v);
#ifdef CONFIG_HUAWEI_PROC
int proc_get_huawei_trx_info(struct seq_file *m, void *v);
#endif
int proc_get_rx_signal(struct seq_file *m, void *v);
ssize_t proc_set_rx_signal(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_hw_status(struct seq_file *m, void *v);
ssize_t proc_set_hw_status(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_mac_rptbuf(struct seq_file *m, void *v);
#ifdef CONFIG_80211N_HT
int proc_get_ht_enable(struct seq_file *m, void *v);
ssize_t proc_set_ht_enable(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_bw_mode(struct seq_file *m, void *v);
ssize_t proc_set_bw_mode(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_ampdu_enable(struct seq_file *m, void *v);
ssize_t proc_set_ampdu_enable(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
void dump_regsty_rx_ampdu_size_limit(void *sel, _adapter *adapter);
int proc_get_rx_ampdu(struct seq_file *m, void *v);
ssize_t proc_set_rx_ampdu(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
void rtw_dump_dft_phy_cap(void *sel, _adapter *adapter);
void rtw_get_dft_phy_cap(void *sel, _adapter *adapter);
void rtw_dump_drv_phy_cap(void *sel, _adapter *adapter);
int proc_get_rx_stbc(struct seq_file *m, void *v);
ssize_t proc_set_rx_stbc(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_stbc_cap(struct seq_file *m, void *v);
ssize_t proc_set_stbc_cap(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_ldpc_cap(struct seq_file *m, void *v);
ssize_t proc_set_ldpc_cap(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#ifdef CONFIG_BEAMFORMING
int proc_get_txbf_cap(struct seq_file *m, void *v);
ssize_t proc_set_txbf_cap(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#endif
int proc_get_rx_ampdu_factor(struct seq_file *m, void *v);
ssize_t proc_set_rx_ampdu_factor(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_tx_max_agg_num(struct seq_file *m, void *v);
ssize_t proc_set_tx_max_agg_num(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_rx_ampdu_density(struct seq_file *m, void *v);
ssize_t proc_set_rx_ampdu_density(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_tx_ampdu_density(struct seq_file *m, void *v);
ssize_t proc_set_tx_ampdu_density(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_tx_quick_addba_req(struct seq_file *m, void *v);
ssize_t proc_set_tx_quick_addba_req(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#ifdef CONFIG_TX_AMSDU
int proc_get_tx_amsdu(struct seq_file *m, void *v);
ssize_t proc_set_tx_amsdu(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_tx_amsdu_rate(struct seq_file *m, void *v);
ssize_t proc_set_tx_amsdu_rate(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#endif
#endif /* CONFIG_80211N_HT */
#ifdef CONFIG_80211AC_VHT
int proc_get_vht_24g_enable(struct seq_file *m, void *v);
ssize_t proc_set_vht_24g_enable(struct file *file, const char __user *buffer,
size_t count, loff_t *pos, void *data);
#endif
ssize_t proc_set_dyn_rrsr(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_dyn_rrsr(struct seq_file *m, void *v);
int proc_get_en_fwps(struct seq_file *m, void *v);
ssize_t proc_set_en_fwps(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#if 0
int proc_get_two_path_rssi(struct seq_file *m, void *v);
int proc_get_rssi_disp(struct seq_file *m, void *v);
ssize_t proc_set_rssi_disp(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#endif
#ifdef CONFIG_BTC
int proc_get_btc_dbg(struct seq_file *m, void *v);
ssize_t proc_set_btc_dbg(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_btc_info(struct seq_file *m, void *v);
#endif /* CONFIG_BTC */
#if defined(DBG_CONFIG_ERROR_DETECT)
int proc_get_sreset(struct seq_file *m, void *v);
ssize_t proc_set_sreset(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#endif /* DBG_CONFIG_ERROR_DETECT */
int proc_get_phy_adaptivity(struct seq_file *m, void *v);
ssize_t proc_set_phy_adaptivity(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#ifdef CONFIG_DBG_COUNTER
int proc_get_rx_logs(struct seq_file *m, void *v);
int proc_get_tx_logs(struct seq_file *m, void *v);
int proc_get_int_logs(struct seq_file *m, void *v);
#endif
#ifdef CONFIG_PCI_HCI
int proc_get_rx_ring(struct seq_file *m, void *v);
int proc_get_tx_ring(struct seq_file *m, void *v);
int proc_get_pci_aspm(struct seq_file *m, void *v);
int proc_get_pci_conf_space(struct seq_file *m, void *v);
ssize_t proc_set_pci_conf_space(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_pci_bridge_conf_space(struct seq_file *m, void *v);
ssize_t proc_set_pci_bridge_conf_space(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#ifdef DBG_TXBD_DESC_DUMP
int proc_get_tx_ring_ext(struct seq_file *m, void *v);
ssize_t proc_set_tx_ring_ext(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#endif
#endif
#ifdef CONFIG_WOWLAN
int proc_get_wow_enable(struct seq_file *m, void *v);
ssize_t proc_set_wow_enable(struct file *file, const char __user *buffer,
size_t count, loff_t *pos, void *data);
int proc_get_pattern_info(struct seq_file *m, void *v);
ssize_t proc_set_pattern_info(struct file *file, const char __user *buffer,
size_t count, loff_t *pos, void *data);
int proc_get_wakeup_event(struct seq_file *m, void *v);
ssize_t proc_set_wakeup_event(struct file *file, const char __user *buffer,
size_t count, loff_t *pos, void *data);
int proc_get_wakeup_reason(struct seq_file *m, void *v);
#endif
#ifdef CONFIG_GPIO_WAKEUP
int proc_get_wowlan_gpio_info(struct seq_file *m, void *v);
ssize_t proc_set_wowlan_gpio_info(struct file *file, const char __user *buffer,
size_t count, loff_t *pos, void *data);
#endif /*CONFIG_GPIO_WAKEUP*/
#ifdef CONFIG_P2P_WOWLAN
int proc_get_p2p_wowlan_info(struct seq_file *m, void *v);
#endif /* CONFIG_P2P_WOWLAN */
int proc_get_new_bcn_max(struct seq_file *m, void *v);
ssize_t proc_set_new_bcn_max(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#ifdef CONFIG_POWER_SAVING
int proc_get_ps_info(struct seq_file *m, void *v);
ssize_t proc_set_ps_info(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#ifdef CONFIG_WMMPS_STA
int proc_get_wmmps_info(struct seq_file *m, void *v);
ssize_t proc_set_wmmps_info(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#endif /* CONFIG_WMMPS_STA */
#endif /* CONFIG_POWER_SAVING */
#ifdef CONFIG_TDLS
int proc_get_tdls_enable(struct seq_file *m, void *v);
ssize_t proc_set_tdls_enable(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_tdls_info(struct seq_file *m, void *v);
#endif
int proc_get_monitor(struct seq_file *m, void *v);
ssize_t proc_set_monitor(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#ifdef DBG_XMIT_BLOCK
int proc_get_xmit_block(struct seq_file *m, void *v);
ssize_t proc_set_xmit_block(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#endif
#ifdef CONFIG_PREALLOC_RX_SKB_BUFFER
int proc_get_rtkm_info(struct seq_file *m, void *v);
#endif /* CONFIG_PREALLOC_RX_SKB_BUFFER */
#ifdef CONFIG_IEEE80211W
ssize_t proc_set_tx_sa_query(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_tx_sa_query(struct seq_file *m, void *v);
ssize_t proc_set_tx_deauth(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_tx_deauth(struct seq_file *m, void *v);
ssize_t proc_set_tx_auth(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_tx_auth(struct seq_file *m, void *v);
#endif /* CONFIG_IEEE80211W */
#endif /* CONFIG_PROC_DEBUG */
int proc_get_efuse_map(struct seq_file *m, void *v);
ssize_t proc_set_efuse_map(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_ack_timeout(struct seq_file *m, void *v);
ssize_t proc_set_ack_timeout(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_fw_offload(struct seq_file *m, void *v);
ssize_t proc_set_fw_offload(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#ifdef CONFIG_DBG_RF_CAL
int proc_get_iqk_info(struct seq_file *m, void *v);
ssize_t proc_set_iqk(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_lck_info(struct seq_file *m, void *v);
ssize_t proc_set_lck(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#endif /*CONFIG_DBG_RF_CAL*/
#ifdef CONFIG_CTRL_TXSS_BY_TP
ssize_t proc_set_txss_tp(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_txss_tp(struct seq_file *m, void *v);
#ifdef DBG_CTRL_TXSS
ssize_t proc_set_txss_ctrl(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_txss_ctrl(struct seq_file *m, void *v);
#endif
#endif
#ifdef CONFIG_LPS_CHK_BY_TP
ssize_t proc_set_lps_chk_tp(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_lps_chk_tp(struct seq_file *m, void *v);
#endif
#ifdef CONFIG_SUPPORT_STATIC_SMPS
ssize_t proc_set_smps(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_smps(struct seq_file *m, void *v);
#endif
int proc_get_defs_param(struct seq_file *m, void *v);
ssize_t proc_set_defs_param(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_chan(struct seq_file *m, void *v);
ssize_t proc_set_chan(struct file *file, const char __user *buffer,
size_t count, loff_t *pos, void *data);
int proc_get_mr_test(struct seq_file *m, void *v);
ssize_t proc_set_mr_test(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_deny_legacy(struct seq_file *m, void *v);
ssize_t proc_set_deny_legacy(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
int proc_get_tx_ul_mu_disable(struct seq_file *m, void *v);
ssize_t proc_set_tx_ul_mu_disable(struct file *file, const char __user *buffer, size_t count, loff_t *pos, void *data);
#define _drv_always_ 1
#define _drv_emerg_ 2
#define _drv_alert_ 3
#define _drv_crit_ 4
#define _drv_err_ 5
#define _drv_warning_ 6
#define _drv_notice_ 7
#define _drv_info_ 8
#define _drv_dump_ 9
#define _drv_debug_ 10
#define _module_rtl871x_xmit_c_ BIT(0)
#define _module_xmit_osdep_c_ BIT(1)
#define _module_rtl871x_recv_c_ BIT(2)
#define _module_recv_osdep_c_ BIT(3)
#define _module_rtl871x_mlme_c_ BIT(4)
#define _module_mlme_osdep_c_ BIT(5)
#define _module_rtl871x_sta_mgt_c_ BIT(6)
#define _module_rtl871x_cmd_c_ BIT(7)
#define _module_cmd_osdep_c_ BIT(8)
#define _module_rtl871x_io_c_ BIT(9)
#define _module_io_osdep_c_ BIT(10)
#define _module_os_intfs_c_ BIT(11)
#define _module_rtl871x_security_c_ BIT(12)
#define _module_rtl871x_eeprom_c_ BIT(13)
#define _module_hal_init_c_ BIT(14)
#define _module_hci_hal_init_c_ BIT(15)
#define _module_rtl871x_ioctl_c_ BIT(16)
#define _module_rtl871x_ioctl_set_c_ BIT(17)
#define _module_rtl871x_ioctl_query_c_ BIT(18)
#define _module_rtl871x_pwrctrl_c_ BIT(19)
#define _module_hci_intfs_c_ BIT(20)
#define _module_hci_ops_c_ BIT(21)
#define _module_osdep_service_c_ BIT(22)
#define _module_mp_ BIT(23)
#define _module_hci_ops_os_c_ BIT(24)
#define _module_rtl871x_ioctl_os_c BIT(25)
#define _module_rtl8712_cmd_c_ BIT(26)
/* #define _module_efuse_ BIT(27) */
#define _module_rtl8192c_xmit_c_ BIT(28)
#define _module_hal_xmit_c_ BIT(28)
#define _module_efuse_ BIT(29)
#define _module_rtl8712_recv_c_ BIT(30)
#define _module_rtl8712_led_c_ BIT(31)
#endif /* __RTW_DEBUG_H__ */
|
2301_81045437/rtl8852be
|
include/rtw_debug.h
|
C
|
agpl-3.0
| 25,319
|
/******************************************************************************
*
* Copyright(c) 2007 - 2020 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#if defined(CONFIG_MP_INCLUDED)
#ifndef __RTW_EFUSE_H__
#define __RTW_EFUSE_H__
#include <drv_types.h>
#include <rtw_mp.h>
#define RTW_MAX_EFUSE_MAP_LEN 2048
enum rtw_efuse_type {
RTW_EFUSE_WIFI = 0,
RTW_EFUSE_BT,
RTW_EFUSE_NONE,
};
/* PHL efuse command */
enum rtw_efuse_phl_cmdid {
RTW_EFUSE_CMD_WIFI_READ = 0,
RTW_EFUSE_CMD_WIFI_WRITE = 1,
RTW_EFUSE_CMD_WIFI_UPDATE = 2,
RTW_EFUSE_CMD_WIFI_UPDATE_MAP = 3,
RTW_EFUSE_CMD_WIFI_GET_OFFSET_MASK = 4,
RTW_EFUSE_CMD_WIFI_GET_USAGE = 5,
RTW_EFUSE_CMD_BT_READ = 6,
RTW_EFUSE_CMD_BT_WRITE = 7,
RTW_EFUSE_CMD_BT_UPDATE = 8,
RTW_EFUSE_CMD_BT_UPDATE_MAP = 9,
RTW_EFUSE_CMD_BT_GET_OFFSET_MASK = 10,
RTW_EFUSE_CMD_BT_GET_USAGE = 11,
RTW_EFUSE_CMD_WIFI_GET_LOG_SIZE = 12,
RTW_EFUSE_CMD_WIFI_GET_SIZE = 13,
RTW_EFUSE_CMD_WIFI_GET_AVL_SIZE = 14,
RTW_EFUSE_CMD_AUTOLOAD_STATUS = 15,
RTW_EFUSE_CMD_SHADOW_MAP2BUF = 16,
RTW_EFUSE_CMD_FILE_MAP_LOAD = 17,
RTW_EFUSE_CMD_FILE_MASK_LOAD = 18,
RTW_MP_EFUSE_CMD_GET_INFO = 19,
/* BT */
RTW_EFUSE_CMD_BT_GET_LOG_SIZE = 20,
RTW_EFUSE_CMD_BT_GET_SIZE = 21,
RTW_EFUSE_CMD_BT_GET_AVL_SIZE = 22,
RTW_EFUSE_CMD_BT_SHADOW_MAP2BUF = 23,
RTW_EFUSE_CMD_BT_FILE_MAP_LOAD = 24,
RTW_EFUSE_CMD_BT_FILE_MASK_LOAD = 25,
RTW_EFUSE_CMD_BT_READ_HIDDEN = 26,
RTW_EFUSE_CMD_BT_WRITE_HIDDEN = 27,
RTW_MP_EFUSE_CMD_WIFI_GET_MAP_FROM =28,
RTW_EFUSE_CMD_WIFI_GET_PHY_MAP = 29,
RTW_EFUSE_CMD_BT_GET_PHY_MAP = 30,
RTW_MP_EFUSE_CMD_WIFI_SET_RENEW = 31,
RTW_EFUSE_CMD_MAX,
};
struct rtw_efuse_phl_arg {
u8 mp_class;
u8 cmd;
u8 cmd_ok;
u8 status;
u8 io_type;
u16 io_offset;
u32 io_value;
u8 autoload;
u8 pfile_path[200];
u16 buf_len;
u8 poutbuf[1536];
};
enum RTW_EFUSE_MAP_STATUS {
RTW_DEFAULT_MAP = 0,
RTW_HW_LOG_MAP = 1,
RTW_FILE_MAP = 2,
RTW_EFUSE_UNKNOWN,
};
#define RTW_EFUSE_FROM2STR(status)\
(status == RTW_DEFAULT_MAP) ? "DEFAULT" :\
(status == RTW_HW_LOG_MAP) ? "HW_LOG_EFUSE" :\
(status == RTW_FILE_MAP) ? "FILE_EFUSE" :\
"UNknow"
s8 rtw_efuse_get_map_from(_adapter *padapter);
u32 rtw_efuse_get_map_size(_adapter *padapter , u16 *size , enum rtw_efuse_phl_cmdid cmdid);
u32 rtw_efuse_get_available_size(_adapter *padapter , u16 *size, u8 efuse_type);
u8 rtw_efuse_map_read(_adapter * adapter, u16 addr, u16 cnts, u8 *data, u8 efuse_type);
u8 rtw_efuse_map_write(_adapter * adapter, u16 addr, u16 cnts, u8 *data, u8 efuse_type, u8 bpg);
int rtw_ioctl_efuse_get(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_ioctl_efuse_set(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wdata, char *extra);
int rtw_ioctl_efuse_file_map_load(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_ioctl_efuse_file_mask_load(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_ioctl_efuse_bt_file_map_load(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_ioctl_efuse_bt_file_mask_load(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
u8 rtw_efuse_raw_map_read(_adapter * adapter, u16 addr,
u16 cnts, u8 *data, u8 efuse_type);
u8 rtw_efuse_bt_write_raw_hidden(_adapter * adapter, u16 addr,
u16 cnts, u8 *data);
#endif
#endif /*#if defined(CONFIG_MP_INCLUDED)*/
|
2301_81045437/rtl8852be
|
include/rtw_efuse.h
|
C
|
agpl-3.0
| 4,058
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_EVENT_H_
#define _RTW_EVENT_H_
/*
Used to report a bss has been scanned
*/
struct survey_event {
WLAN_BSSID_EX bss;
};
/*
Used to report that the requested site survey has been done.
bss_cnt indicates the number of bss that has been reported.
*/
struct surveydone_event {
unsigned int bss_cnt;
u8 activate_ch_cnt;
bool acs; /* aim to trigger channel selection */
};
/*
Used to report the link result of joinning the given bss
join_res:
-1: authentication fail
-2: association fail
> 0: TID
*/
struct joinbss_event {
struct wlan_network network;
};
/*
Used to report a given STA has joinned the created BSS.
It is used in AP/Ad-HoC(M) mode.
*/
struct stassoc_event {
unsigned char macaddr[6];
};
struct stadel_event {
unsigned char macaddr[6];
unsigned char rsvd[2]; /* for reason */
unsigned char locally_generated;
int mac_id;
};
struct wmm_event {
unsigned char wmm;
};
#endif /* _WLANEVENT_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_event.h
|
C
|
agpl-3.0
| 1,596
|
/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_FT_H_
#define __RTW_FT_H_
enum rtw_ieee80211_ft_actioncode {
RTW_WLAN_ACTION_FT_RESV,
RTW_WLAN_ACTION_FT_REQ,
RTW_WLAN_ACTION_FT_RSP,
RTW_WLAN_ACTION_FT_CONF,
RTW_WLAN_ACTION_FT_ACK,
RTW_WLAN_ACTION_FT_MAX,
};
enum _rtw_ft_sta_status {
RTW_FT_UNASSOCIATED_STA = 0,
RTW_FT_AUTHENTICATING_STA,
RTW_FT_AUTHENTICATED_STA,
RTW_FT_ASSOCIATING_STA,
RTW_FT_ASSOCIATED_STA,
RTW_FT_REQUESTING_STA,
RTW_FT_REQUESTED_STA,
RTW_FT_CONFIRMED_STA,
RTW_FT_UNSPECIFIED_STA
};
#define RTW_FT_ACTION_REQ_LMT 4
#define RTW_FT_MAX_IE_SZ 256
#define rtw_ft_chk_status(a, s) \
((a)->mlmepriv.ft_roam.ft_status == (s))
#define rtw_ft_roam_status(a, s) \
((rtw_to_roam(a) > 0) && rtw_ft_chk_status(a, s))
#define rtw_ft_authed_sta(a) \
((rtw_ft_chk_status(a, RTW_FT_AUTHENTICATED_STA)) || \
(rtw_ft_chk_status(a, RTW_FT_ASSOCIATING_STA)) || \
(rtw_ft_chk_status(a, RTW_FT_ASSOCIATED_STA)))
#define rtw_ft_set_status(a, s) \
do { \
((a)->mlmepriv.ft_roam.ft_status = (s)); \
} while (0)
#define rtw_ft_lock_set_status(a, s) \
do { \
_rtw_spinlock_bh(&(a)->mlmepriv.lock); \
((a)->mlmepriv.ft_roam.ft_status = (s)); \
_rtw_spinunlock_bh(&(a)->mlmepriv.lock); \
} while (0)
#define rtw_ft_reset_status(a) \
do { \
((a)->mlmepriv.ft_roam.ft_status = RTW_FT_UNASSOCIATED_STA); \
} while (0)
enum rtw_ft_capability {
RTW_FT_EN = BIT0,
RTW_FT_OTD_EN = BIT1,
RTW_FT_PEER_EN = BIT2,
RTW_FT_PEER_OTD_EN = BIT3,
RTW_FT_BTM_ROAM = BIT4,
RTW_FT_TEST_RSSI_ROAM = BIT7,
};
#define rtw_ft_chk_flags(a, f) \
((a)->mlmepriv.ft_roam.ft_flags & (f))
#define rtw_ft_set_flags(a, f) \
do { \
((a)->mlmepriv.ft_roam.ft_flags |= (f)); \
} while (0)
#define rtw_ft_clr_flags(a, f) \
do { \
((a)->mlmepriv.ft_roam.ft_flags &= ~(f)); \
} while (0)
#define rtw_ft_roam(a) \
((rtw_to_roam(a) > 0) && rtw_ft_chk_flags(a, RTW_FT_PEER_EN))
#define rtw_ft_valid_akm(a, t) \
((rtw_ft_chk_flags(a, RTW_FT_EN)) && \
(((t) == 3) || ((t) == 4)))
#define rtw_ft_roam_expired(a, r) \
((rtw_chk_roam_flags(a, RTW_ROAM_ON_EXPIRED)) \
&& (r == WLAN_REASON_ACTIVE_ROAM))
/* allow OTD while driver disconnect with current AP */
#if 1
#define rtw_ft_otd_roam_en(a) \
((rtw_ft_chk_flags(a, RTW_FT_OTD_EN)) \
&& ((a)->mlmepriv.ft_roam.ft_cap & 0x01))
#else
#define rtw_ft_otd_roam_en(a) \
((rtw_ft_chk_flags(a, RTW_FT_OTD_EN)) \
&& ((a)->mlmepriv.ft_roam.ft_roam_on_expired == _FALSE) \
&& ((a)->mlmepriv.ft_roam.ft_cap & 0x01))
#endif
#define rtw_ft_otd_roam(a) \
rtw_ft_chk_flags(a, RTW_FT_PEER_OTD_EN)
#define rtw_ft_valid_otd_candidate(a, p) \
((rtw_ft_chk_flags(a, RTW_FT_OTD_EN)) \
&& ((rtw_ft_chk_flags(a, RTW_FT_PEER_OTD_EN) \
&& ((*((p)+4) & 0x01) == 0)) \
|| ((rtw_ft_chk_flags(a, RTW_FT_PEER_OTD_EN) == 0) \
&& (*((p)+4) & 0x01))))
struct ft_roam_info {
u16 mdid;
u8 ft_cap;
/*b0: FT over DS, b1: Resource Req Protocol Cap, b2~b7: Reserved*/
u8 updated_ft_ies[RTW_FT_MAX_IE_SZ];
u16 updated_ft_ies_len;
u8 ft_action[RTW_FT_MAX_IE_SZ];
u16 ft_action_len;
struct cfg80211_ft_event_params ft_event;
u8 ft_roam_on_expired;
u8 ft_flags;
u32 ft_status;
u32 ft_req_retry_cnt;
bool ft_updated_bcn;
};
struct rtw_sta_ft_info_t {
u8 *rsn_ie;
u32 rsn_len;
u8 *md_ie;
u32 md_len;
u8 *ft_ie;
u32 ft_len;
};
void rtw_ft_info_init(struct ft_roam_info *pft);
int rtw_ft_proc_flags_get(struct seq_file *m, void *v);
ssize_t rtw_ft_proc_flags_set(struct file *file, const char __user *buffer,
size_t count, loff_t *pos, void *data);
u8 rtw_ft_chk_roaming_candidate(
_adapter *padapter, struct wlan_network *competitor);
void rtw_ft_update_stainfo(_adapter *padapter, WLAN_BSSID_EX *pnetwork);
void rtw_ft_reassoc_event_callback(_adapter *padapter, u8 *pbuf);
void rtw_ft_validate_akm_type(_adapter *padapter,
struct wlan_network *pnetwork);
void rtw_ft_update_bcn(_adapter *padapter, union recv_frame *precv_frame);
void rtw_ft_start_clnt_join(_adapter *padapter);
u8 rtw_ft_update_rsnie(
_adapter *padapter, u8 bwrite,
struct pkt_attrib *pattrib, u8 **pframe);
void rtw_ft_build_auth_req_ies(_adapter *padapter,
struct pkt_attrib *pattrib, u8 **pframe);
void rtw_ft_build_assoc_req_ies(_adapter *padapter,
u8 is_reassoc, struct pkt_attrib *pattrib, u8 **pframe);
u8 rtw_ft_update_auth_rsp_ies(_adapter *padapter, u8 *pframe, u32 len);
void rtw_ft_start_roam(_adapter *padapter, u8 *pTargetAddr);
void rtw_ft_issue_action_req(_adapter *padapter, u8 *pTargetAddr);
void rtw_ft_report_evt(_adapter *padapter);
void rtw_ft_report_reassoc_evt(_adapter *padapter, u8 *pMacAddr);
void rtw_ft_link_timer_hdl(void *ctx);
void rtw_ft_roam_timer_hdl(void *ctx);
void rtw_ft_roam_status_reset(_adapter *padapter);
void rtw_ft_peer_info_init(struct sta_info *psta);
void rtw_ft_peer_info_free(struct sta_info *psta);
int rtw_ft_update_sta_ies(_adapter *padapter,
struct cfg80211_update_ft_ies_params *pie);
void rtw_ft_update_assocresp_ies(struct net_device *net,
struct cfg80211_ap_settings *settings);
void rtw_ft_process_ft_auth_rsp(_adapter *padapter, u8 *pframe, u32 len);
void rtw_ft_build_assoc_rsp_ies(_adapter *padapter,
struct sta_info *psta, struct pkt_attrib *pattrib, u8 **pframe);
#endif /* __RTW_FT_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_ft.h
|
C
|
agpl-3.0
| 5,845
|
/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_HE_H_
#define _RTW_HE_H_
/* Set HE MAC Capabilities Information */
#define SET_HE_MAC_CAP_HTC_HE_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 0, 1, _val)
#define SET_HE_MAC_CAP_TWT_REQUESTER_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 1, 1, _val)
#define SET_HE_MAC_CAP_TWT_RESPONDER_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 2, 1, _val)
#define SET_HE_MAC_CAP_DYNAMIC_FRAG_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 3, 2, _val)
#define SET_HE_MAC_CAP_MAX_FRAG_MSDU_EXP(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 5, 3, _val)
#define SET_HE_MAC_CAP_MIN_FRAG_SIZE(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 0, 2, _val)
#define SET_HE_MAC_CAP_TRI_FRAME_PADDING_DUR(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 2, 2, _val)
#define SET_HE_MAC_CAP_MULTI_TID_AGG_RX_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 4, 3, _val)
#define SET_HE_MAC_CAP_LINK_ADAPT_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_2BYTE((_pEleStart) + 1, 7, 2, _val)
#define SET_HE_MAC_CAP_ALL_ACK_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 1, 1, _val)
#define SET_HE_MAC_CAP_TRS_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 2, 1, _val)
#define SET_HE_MAC_CAP_BRS_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 3, 1, _val)
#define SET_HE_MAC_CAP_BC_TWT_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 4, 1, _val)
#define SET_HE_MAC_CAP_32_BIT_BMP_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 5, 1, _val)
#define SET_HE_MAC_CAP_MU_CASCADE_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 6, 1, _val)
#define SET_HE_MAC_CAP_ACK_ENABLED_AGG_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 7, 1, _val)
#define SET_HE_MAC_CAP_OM_CTRL_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 3, 1, 1, _val)
#define SET_HE_MAC_CAP_OFDMA_RA_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 3, 2, 1, _val)
#define SET_HE_MAC_CAP_MAX_AMPDU_LEN_EXP_EXT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 3, 3, 2, _val)
#define SET_HE_MAC_CAP_AMSDU_FRAG_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 3, 5, 1, _val)
#define SET_HE_MAC_CAP_FLEX_TWT_SCHED_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 3, 6, 1, _val)
#define SET_HE_MAC_CAP_RX_CTRL_FRAME_TO_MULTI_BSS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 3, 7, 1, _val)
#define SET_HE_MAC_CAP_BSRP_BQRP_AMPDU_AGG(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 4, 0, 1, _val)
#define SET_HE_MAC_CAP_QTP_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 4, 1, 1, _val)
#define SET_HE_MAC_CAP_BQR_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 4, 2, 1, _val)
#define SET_HE_MAC_CAP_PSR_RESPONDER(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 4, 3, 1, _val)
#define SET_HE_MAC_CAP_NDP_FEEDBACK_RPT_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 4, 4, 1, _val)
#define SET_HE_MAC_CAP_OPS_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 4, 5, 1, _val)
#define SET_HE_MAC_CAP_AMSDU_NOT_UNDER_BA_IN_ACK_EN_AMPDU(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 4, 6, 1, _val)
#define SET_HE_MAC_CAP_MULTI_AID_AGG_TX_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_2BYTE((_pEleStart) + 4, 7, 3, _val)
#define SET_HE_MAC_CAP_HE_SUB_CH_SELECTIVE_TX(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 5, 2, 1, _val)
#define SET_HE_MAC_CAP_UL_2_996_TONE_RU_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 5, 3, 1, _val)
#define SET_HE_MAC_CAP_OM_CTRL_UL_MU_DATA_DISABLE_RX(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 5, 4, 1, _val)
#define SET_HE_MAC_CAP_HE_DYNAMIC_SM_POWER_SAVE(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 5, 5, 1, _val)
#define SET_HE_MAC_CAP_PUNCTURED_SND_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 5, 6, 1, _val)
#define SET_HE_MAC_CAP_HT_VHT_TRIG_FRAME_RX(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 5, 7, 1, _val)
/* Set HE PHY Capabilities Information */
#define SET_HE_PHY_CAP_SUPPORT_CHAN_WIDTH_SET(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 1, 7, _val)
#define SET_HE_PHY_CAP_PUNCTURED_PREAMBLE_RX(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 0, 4, _val)
#define SET_HE_PHY_CAP_DEVICE_CLASS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 4, 1, _val)
#define SET_HE_PHY_CAP_LDPC_IN_PAYLOAD(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 5, 1, _val)
#define SET_HE_PHY_CAP_SU_PPDU_1X_LTF_0_POINT_8_GI(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 6, 1, _val)
#define SET_HE_PHY_CAP_MIDAMBLE_TRX_MAX_NSTS(_pEleStart, _val) \
SET_BITS_TO_LE_2BYTE((_pEleStart) + 1, 7, 2, _val)
#define SET_HE_PHY_CAP_NDP_4X_LTF_3_POINT_2_GI(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 1, 1, _val)
#define SET_HE_PHY_CAP_STBC_TX_LESS_THAN_80MHZ(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 2, 1, _val)
#define SET_HE_PHY_CAP_STBC_RX_LESS_THAN_80MHZ(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 3, 1, _val)
#define SET_HE_PHY_CAP_DOPPLER_TX(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 4, 1, _val)
#define SET_HE_PHY_CAP_DOPPLER_RX(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 5, 1, _val)
#define SET_HE_PHY_CAP_FULL_BW_UL_MUMIMO(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 6, 1, _val)
#define SET_HE_PHY_CAP_PARTIAL_BW_UL_MUMIMO(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 7, 1, _val)
#define SET_HE_PHY_CAP_DCM_MAX_CONSTELLATION_TX(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 3, 0, 2, _val)
#define SET_HE_PHY_CAP_DCM_MAX_NSS_TX(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 3, 2, 1, _val)
#define SET_HE_PHY_CAP_DCM_MAX_CONSTELLATION_RX(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 3, 3, 2, _val)
#define SET_HE_PHY_CAP_DCM_MAX_NSS_RX(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 3, 5, 1, _val)
#define SET_HE_PHY_CAP_RX_PARTIAL_BW_SU_IN_20MHZ_MUPPDU(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 3, 6, 1, _val)
#define SET_HE_PHY_CAP_SU_BFER(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 3, 7, 1, _val)
#define SET_HE_PHY_CAP_SU_BFEE(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 4, 0, 1, _val)
#define SET_HE_PHY_CAP_MU_BFER(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 4, 1, 1, _val)
#define SET_HE_PHY_CAP_BFEE_STS_LESS_THAN_80MHZ(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 4, 2, 3, _val)
#define SET_HE_PHY_CAP_BFEE_STS_GREATER_THAN_80MHZ(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 4, 5, 3, _val)
#define SET_HE_PHY_CAP_NUM_SND_DIMEN_LESS_THAN_80MHZ(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 5, 0, 3, _val)
#define SET_HE_PHY_CAP_NUM_SND_DIMEN_GREATER_THAN_80MHZ(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 5, 3, 3, _val)
#define SET_HE_PHY_CAP_NG_16_SU_FEEDBACK(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 5, 6, 1, _val)
#define SET_HE_PHY_CAP_NG_16_MU_FEEDBACK(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 5, 7, 1, _val)
#define SET_HE_PHY_CAP_CODEBOOK_4_2_SU_FEEDBACK(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 6, 0, 1, _val)
#define SET_HE_PHY_CAP_CODEBOOK_7_5_MU_FEEDBACK(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 6, 1, 1, _val)
#define SET_HE_PHY_CAP_TRIG_SUBF_FEEDBACK(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 6, 2, 1, _val)
#define SET_HE_PHY_CAP_TRIG_MUBF_PARTIAL_BW_FEEDBACK(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 6, 3, 1, _val)
#define SET_HE_PHY_CAP_TRIG_CQI_FEEDBACK(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 6, 4, 1, _val)
#define SET_HE_PHY_CAP_PARTIAL_BW_EXT_RANGE(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 6, 5, 1, _val)
#define SET_HE_PHY_CAP_PARTIAL_BW_DL_MU_MIMO(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 6, 6, 1, _val)
#define SET_HE_PHY_CAP_PPE_THRESHOLD_PRESENT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 6, 7, 1, _val)
#define SET_HE_PHY_CAP_PSR_BASED_SR_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 7, 0, 1, _val)
#define SET_HE_PHY_CAP_PWR_BOOST_FACTOR_SUPPORT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 7, 1, 1, _val)
#define SET_HE_PHY_CAP_SU_MU_PPDU_4X_LTF_0_POINT_8_GI(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 7, 2, 1, _val)
#define SET_HE_PHY_CAP_MAX_NC(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 7, 3, 3, _val)
#define SET_HE_PHY_CAP_STBC_TX_GREATER_THAN_80MHZ(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 7, 6, 1, _val)
#define SET_HE_PHY_CAP_STBC_RX_GREATER_THAN_80MHZ(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 7, 7, 1, _val)
#define SET_HE_PHY_CAP_ERSU_PPDU_4X_LTF_0_POINT_8_GI(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 8, 0, 1, _val)
#define SET_HE_PHY_CAP_20M_IN_40M_HE_PPDU_IN_2G4(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 8, 1, 1, _val)
#define SET_HE_PHY_CAP_20M_IN_160C_160NC_HE_PPDU(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 8, 2, 1, _val)
#define SET_HE_PHY_CAP_80M_IN_160C_160NC_HE_PPDU(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 8, 3, 1, _val)
#define SET_HE_PHY_CAP_ERSU_PPDU_1X_LTF_0_POINT_8_GI(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 8, 4, 1, _val)
#define SET_HE_PHY_CAP_MIDAMBLE_TRX_2X_1X_LTF(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 8, 5, 1, _val)
#define SET_HE_PHY_CAP_DCM_MAX_RU(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 8, 6, 2, _val)
#define SET_HE_PHY_CAP_LONGER_THAN_16_HESIGB_OFDM_SYM(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 9, 0, 1, _val)
#define SET_HE_PHY_CAP_NON_TRIGGER_CQI_FEEDBACK(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 9, 1, 1, _val)
#define SET_HE_PHY_CAP_TX_1024_QAM_LESS_THAN_242_TONE_RU(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 9, 2, 1, _val)
#define SET_HE_PHY_CAP_RX_1024_QAM_LESS_THAN_242_TONE_RU(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 9, 3, 1, _val)
#define SET_HE_PHY_CAP_RX_FULLBW_SU_USE_MUPPDU_CMP_SIGB(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 9, 4, 1, _val)
#define SET_HE_PHY_CAP_RX_FULLBW_SU_USE_MUPPDU_NONCMP_SIGB(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 9, 5, 1, _val)
#define SET_HE_PHY_CAP_NOMINAL_PACKET_PADDING(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 9, 6, 2, _val)
/* Set Supported HE-MCS And NSS Set Information */
#define SET_HE_CAP_MCS_1SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 0, 2, _val)
#define SET_HE_CAP_MCS_2SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 2, 2, _val)
#define SET_HE_CAP_MCS_3SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 4, 2, _val)
#define SET_HE_CAP_MCS_4SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 6, 2, _val)
#define SET_HE_CAP_MCS_5SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 0, 2, _val)
#define SET_HE_CAP_MCS_6SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 2, 2, _val)
#define SET_HE_CAP_MCS_7SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 4, 2, _val)
#define SET_HE_CAP_MCS_8SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 6, 2, _val)
#define SET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_1SS(_pEleStart, _val) \
SET_HE_CAP_MCS_1SS(_pEleStart, _val)
#define SET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_2SS(_pEleStart, _val) \
SET_HE_CAP_MCS_2SS(_pEleStart, _val)
#define SET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_3SS(_pEleStart, _val) \
SET_HE_CAP_MCS_3SS(_pEleStart, _val)
#define SET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_4SS(_pEleStart, _val) \
SET_HE_CAP_MCS_4SS(_pEleStart, _val)
#define SET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_5SS(_pEleStart, _val) \
SET_HE_CAP_MCS_5SS(_pEleStart, _val)
#define SET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_6SS(_pEleStart, _val) \
SET_HE_CAP_MCS_6SS(_pEleStart, _val)
#define SET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_7SS(_pEleStart, _val) \
SET_HE_CAP_MCS_7SS(_pEleStart, _val)
#define SET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_8SS(_pEleStart, _val) \
SET_HE_CAP_MCS_8SS(_pEleStart, _val)
#define SET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_1SS(_pEleStart, _val) \
SET_HE_CAP_MCS_1SS(_pEleStart + 2, _val)
#define SET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_2SS(_pEleStart, _val) \
SET_HE_CAP_MCS_2SS(_pEleStart + 2, _val)
#define SET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_3SS(_pEleStart, _val) \
SET_HE_CAP_MCS_3SS(_pEleStart + 2, _val)
#define SET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_4SS(_pEleStart, _val) \
SET_HE_CAP_MCS_4SS(_pEleStart + 2, _val)
#define SET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_5SS(_pEleStart, _val) \
SET_HE_CAP_MCS_5SS(_pEleStart + 2, _val)
#define SET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_6SS(_pEleStart, _val) \
SET_HE_CAP_MCS_6SS(_pEleStart + 2, _val)
#define SET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_7SS(_pEleStart, _val) \
SET_HE_CAP_MCS_7SS(_pEleStart + 2, _val)
#define SET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_8SS(_pEleStart, _val) \
SET_HE_CAP_MCS_8SS(_pEleStart + 2, _val)
#define SET_HE_CAP_RX_MCS_160MHZ_1SS(_pEleStart, _val) \
SET_HE_CAP_MCS_1SS(_pEleStart + 4, _val)
#define SET_HE_CAP_RX_MCS_160MHZ_2SS(_pEleStart, _val) \
SET_HE_CAP_MCS_2SS(_pEleStart + 4, _val)
#define SET_HE_CAP_RX_MCS_160MHZ_3SS(_pEleStart, _val) \
SET_HE_CAP_MCS_3SS(_pEleStart + 4, _val)
#define SET_HE_CAP_RX_MCS_160MHZ_4SS(_pEleStart, _val) \
SET_HE_CAP_MCS_4SS(_pEleStart + 4, _val)
#define SET_HE_CAP_RX_MCS_160MHZ_5SS(_pEleStart, _val) \
SET_HE_CAP_MCS_5SS(_pEleStart + 4, _val)
#define SET_HE_CAP_RX_MCS_160MHZ_6SS(_pEleStart, _val) \
SET_HE_CAP_MCS_6SS(_pEleStart + 4, _val)
#define SET_HE_CAP_RX_MCS_160MHZ_7SS(_pEleStart, _val) \
SET_HE_CAP_MCS_7SS(_pEleStart + 4, _val)
#define SET_HE_CAP_RX_MCS_160MHZ_8SS(_pEleStart, _val) \
SET_HE_CAP_MCS_8SS(_pEleStart + 4, _val)
#define SET_HE_CAP_TX_MCS_160MHZ_1SS(_pEleStart, _val) \
SET_HE_CAP_MCS_1SS(_pEleStart + 6, _val)
#define SET_HE_CAP_TX_MCS_160MHZ_2SS(_pEleStart, _val) \
SET_HE_CAP_MCS_2SS(_pEleStart + 6, _val)
#define SET_HE_CAP_TX_MCS_160MHZ_3SS(_pEleStart, _val) \
SET_HE_CAP_MCS_3SS(_pEleStart + 6, _val)
#define SET_HE_CAP_TX_MCS_160MHZ_4SS(_pEleStart, _val) \
SET_HE_CAP_MCS_4SS(_pEleStart + 6, _val)
#define SET_HE_CAP_TX_MCS_160MHZ_5SS(_pEleStart, _val) \
SET_HE_CAP_MCS_5SS(_pEleStart + 6, _val)
#define SET_HE_CAP_TX_MCS_160MHZ_6SS(_pEleStart, _val) \
SET_HE_CAP_MCS_6SS(_pEleStart + 6, _val)
#define SET_HE_CAP_TX_MCS_160MHZ_7SS(_pEleStart, _val) \
SET_HE_CAP_MCS_7SS(_pEleStart + 6, _val)
#define SET_HE_CAP_TX_MCS_160MHZ_8SS(_pEleStart, _val) \
SET_HE_CAP_MCS_8SS(_pEleStart + 6, _val)
#define SET_HE_CAP_RX_MCS_80_80MHZ_1SS(_pEleStart, _val) \
SET_HE_CAP_MCS_1SS(_pEleStart + 8, _val)
#define SET_HE_CAP_RX_MCS_80_80MHZ_2SS(_pEleStart, _val) \
SET_HE_CAP_MCS_2SS(_pEleStart + 8, _val)
#define SET_HE_CAP_RX_MCS_80_80MHZ_3SS(_pEleStart, _val) \
SET_HE_CAP_MCS_3SS(_pEleStart + 8, _val)
#define SET_HE_CAP_RX_MCS_80_80MHZ_4SS(_pEleStart, _val) \
SET_HE_CAP_MCS_4SS(_pEleStart + 8, _val)
#define SET_HE_CAP_RX_MCS_80_80MHZ_5SS(_pEleStart, _val) \
SET_HE_CAP_MCS_5SS(_pEleStart + 8, _val)
#define SET_HE_CAP_RX_MCS_80_80MHZ_6SS(_pEleStart, _val) \
SET_HE_CAP_MCS_6SS(_pEleStart + 8, _val)
#define SET_HE_CAP_RX_MCS_80_80MHZ_7SS(_pEleStart, _val) \
SET_HE_CAP_MCS_7SS(_pEleStart + 8, _val)
#define SET_HE_CAP_RX_MCS_80_80MHZ_8SS(_pEleStart, _val) \
SET_HE_CAP_MCS_8SS(_pEleStart + 8, _val)
#define SET_HE_CAP_TX_MCS_80_80MHZ_1SS(_pEleStart, _val) \
SET_HE_CAP_MCS_1SS(_pEleStart + 10, _val)
#define SET_HE_CAP_TX_MCS_80_80MHZ_2SS(_pEleStart, _val) \
SET_HE_CAP_MCS_2SS(_pEleStart + 10, _val)
#define SET_HE_CAP_TX_MCS_80_80MHZ_3SS(_pEleStart, _val) \
SET_HE_CAP_MCS_3SS(_pEleStart + 10, _val)
#define SET_HE_CAP_TX_MCS_80_80MHZ_4SS(_pEleStart, _val) \
SET_HE_CAP_MCS_4SS(_pEleStart + 10, _val)
#define SET_HE_CAP_TX_MCS_80_80MHZ_5SS(_pEleStart, _val) \
SET_HE_CAP_MCS_5SS(_pEleStart + 10, _val)
#define SET_HE_CAP_TX_MCS_80_80MHZ_6SS(_pEleStart, _val) \
SET_HE_CAP_MCS_6SS(_pEleStart + 10, _val)
#define SET_HE_CAP_TX_MCS_80_80MHZ_7SS(_pEleStart, _val) \
SET_HE_CAP_MCS_7SS(_pEleStart + 10, _val)
#define SET_HE_CAP_TX_MCS_80_80MHZ_8SS(_pEleStart, _val) \
SET_HE_CAP_MCS_8SS(_pEleStart + 10, _val)
/* Set PPE Threshold */
#define SET_HE_CAP_PPE_NSTS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 0, 3, _val)
#define SET_HE_CAP_PPE_PU_IDX_BITMASK(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 3, 4, _val)
/* Get HE MAC Capabilities Information */
#define GET_HE_MAC_CAP_HTC_HE_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 0, 1)
#define GET_HE_MAC_CAP_TWT_REQUESTER_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 1, 1)
#define GET_HE_MAC_CAP_TWT_RESPONDER_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 2, 1)
#define GET_HE_MAC_CAP_DYNAMIC_FRAG_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 3, 2)
#define GET_HE_MAC_CAP_MAX_FRAG_MSDU_EXP(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 5, 3)
#define GET_HE_MAC_CAP_MIN_FRAG_SIZE(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 0, 2)
#define GET_HE_MAC_CAP_TRI_FRAME_PADDING_DUR(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 2, 2)
#define GET_HE_MAC_CAP_MULTI_TID_AGG_RX_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 4, 3)
#define GET_HE_MAC_CAP_LINK_ADAPT_SUPPORT(_pEleStart) \
LE_BITS_TO_2BYTE((_pEleStart) + 1, 7, 2)
#define GET_HE_MAC_CAP_ALL_ACK_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 1, 1)
#define GET_HE_MAC_CAP_TRS_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 2, 1)
#define GET_HE_MAC_CAP_BRS_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 3, 1)
#define GET_HE_MAC_CAP_BC_TWT_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 4, 1)
#define GET_HE_MAC_CAP_32_BIT_BMP_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 5, 1)
#define GET_HE_MAC_CAP_MU_CASCADE_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 6, 1)
#define GET_HE_MAC_CAP_ACK_ENABLED_AGG_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 7, 1)
#define GET_HE_MAC_CAP_OM_CTRL_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 1, 1)
#define GET_HE_MAC_CAP_OFDMA_RA_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 2, 1)
#define GET_HE_MAC_CAP_MAX_AMPDU_LEN_EXP_EXT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 3, 2)
#define GET_HE_MAC_CAP_AMSDU_FRAG_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 5, 1)
#define GET_HE_MAC_CAP_FLEX_TWT_SCHED_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 6, 1)
#define GET_HE_MAC_CAP_RX_CTRL_FRAME_TO_MULTI_BSS(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 7, 1)
#define GET_HE_MAC_CAP_BSRP_BQRP_AMPDU_AGG(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 4, 0, 1)
#define GET_HE_MAC_CAP_QTP_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 4, 1, 1)
#define GET_HE_MAC_CAP_BQR_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 4, 2, 1)
#define GET_HE_MAC_CAP_PSR_RESPONDER(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 4, 3, 1)
#define GET_HE_MAC_CAP_NDP_FEEDBACK_RPT_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 4, 4, 1)
#define GET_HE_MAC_CAP_OPS_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 4, 5, 1)
#define GET_HE_MAC_CAP_AMSDU_NOT_UNDER_BA_IN_ACK_EN_AMPDU(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 4, 6, 1)
#define GET_HE_MAC_CAP_MULTI_AID_AGG_TX_SUPPORT(_pEleStart) \
LE_BITS_TO_2BYTE((_pEleStart) + 4, 7, 3)
#define GET_HE_MAC_CAP_HE_SUB_CH_SELECTIVE_TX(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 5, 2, 1)
#define GET_HE_MAC_CAP_UL_2_996_TONE_RU_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 5, 3, 1)
#define GET_HE_MAC_CAP_OM_CTRL_UL_MU_DATA_DISABLE_RX(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 5, 4, 1)
#define GET_HE_MAC_CAP_HE_DYNAMIC_SM_POWER_SAVE(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 5, 5, 1)
#define GET_HE_MAC_CAP_PUNCTURED_SND_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 5, 6, 1)
#define GET_HE_MAC_CAP_HT_VHT_TRIG_FRAME_RX(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 5, 7, 1)
/* Get HE PHY Capabilities Information */
#define GET_HE_PHY_CAP_SUPPORT_CHAN_WIDTH_SET(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 1, 7)
#define GET_HE_PHY_CAP_PUNCTURED_PREAMBLE_RX(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 0, 4)
#define GET_HE_PHY_CAP_DEVICE_CLASS(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 4, 1)
#define GET_HE_PHY_CAP_LDPC_IN_PAYLOAD(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 5, 1)
#define GET_HE_PHY_CAP_SU_PPDU_1X_LTF_0_POINT_8_GI(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 6, 1)
#define GET_HE_PHY_CAP_MIDAMBLE_TRX_MAX_NSTS(_pEleStart) \
LE_BITS_TO_2BYTE((_pEleStart) + 1, 7, 2)
#define GET_HE_PHY_CAP_NDP_4X_LTF_3_POINT_2_GI(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 1, 1)
#define GET_HE_PHY_CAP_STBC_TX_LESS_THAN_80MHZ(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 2, 1)
#define GET_HE_PHY_CAP_STBC_RX_LESS_THAN_80MHZ(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 3, 1)
#define GET_HE_PHY_CAP_DOPPLER_TX(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 4, 1)
#define GET_HE_PHY_CAP_DOPPLER_RX(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 5, 1)
#define GET_HE_PHY_CAP_FULL_BW_UL_MUMIMO(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 6, 1)
#define GET_HE_PHY_CAP_PARTIAL_BW_UL_MUMIMO(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 7, 1)
#define GET_HE_PHY_CAP_DCM_MAX_CONSTELLATION_TX(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 0, 2)
#define GET_HE_PHY_CAP_DCM_MAX_NSS_TX(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 2, 1)
#define GET_HE_PHY_CAP_DCM_MAX_CONSTELLATION_RX(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 3, 2)
#define GET_HE_PHY_CAP_DCM_MAX_NSS_RX(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 5, 1)
#define GET_HE_PHY_CAP_RX_PARTIAL_BW_SU_IN_20MHZ_MUPPDU(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 6, 1)
#define GET_HE_PHY_CAP_SU_BFER(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 7, 1)
#define GET_HE_PHY_CAP_SU_BFEE(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 4, 0, 1)
#define GET_HE_PHY_CAP_MU_BFER(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 4, 1, 1)
#define GET_HE_PHY_CAP_BFEE_STS_LESS_THAN_80MHZ(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 4, 2, 3)
#define GET_HE_PHY_CAP_BFEE_STS_GREATER_THAN_80MHZ(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 4, 5, 3)
#define GET_HE_PHY_CAP_NUM_SND_DIMEN_LESS_THAN_80MHZ(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 5, 0, 3)
#define GET_HE_PHY_CAP_NUM_SND_DIMEN_GREATER_THAN_80MHZ(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 5, 3, 3)
#define GET_HE_PHY_CAP_NG_16_SU_FEEDBACK(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 5, 6, 1)
#define GET_HE_PHY_CAP_NG_16_MU_FEEDBACK(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 5, 7, 1)
#define GET_HE_PHY_CAP_CODEBOOK_4_2_SU_FEEDBACK(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 6, 0, 1)
#define GET_HE_PHY_CAP_CODEBOOK_7_5_MU_FEEDBACK(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 6, 1, 1)
#define GET_HE_PHY_CAP_TRIG_SUBF_FEEDBACK(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 6, 2, 1)
#define GET_HE_PHY_CAP_TRIG_MUBF_PARTIAL_BW_FEEDBACK(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 6, 3, 1)
#define GET_HE_PHY_CAP_TRIG_CQI_FEEDBACK(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 6, 4, 1)
#define GET_HE_PHY_CAP_PARTIAL_BW_EXT_RANGE(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 6, 5, 1)
#define GET_HE_PHY_CAP_PARTIAL_BW_DL_MU_MIMO(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 6, 6, 1)
#define GET_HE_PHY_CAP_PPE_THRESHOLD_PRESENT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 6, 7, 1)
#define GET_HE_PHY_CAP_PSR_BASED_SR_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 7, 0, 1)
#define GET_HE_PHY_CAP_PWR_BOOST_FACTOR_SUPPORT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 7, 1, 1)
#define GET_HE_PHY_CAP_SU_MU_PPDU_4X_LTF_0_POINT_8_GI(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 7, 2, 1)
#define GET_HE_PHY_CAP_MAX_NC(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 7, 3, 3)
#define GET_HE_PHY_CAP_STBC_TX_GREATER_THAN_80MHZ(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 7, 6, 1)
#define GET_HE_PHY_CAP_STBC_RX_GREATER_THAN_80MHZ(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 7, 7, 1)
#define GET_HE_PHY_CAP_ERSU_PPDU_4X_LTF_0_POINT_8_GI(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 8, 0, 1)
#define GET_HE_PHY_CAP_20M_IN_40M_HE_PPDU_IN_2G4(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 8, 1, 1)
#define GET_HE_PHY_CAP_20M_IN_160C_160NC_HE_PPDU(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 8, 2, 1)
#define GET_HE_PHY_CAP_80M_IN_160C_160NC_HE_PPDU(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 8, 3, 1)
#define GET_HE_PHY_CAP_ERSU_PPDU_1X_LTF_0_POINT_8_GI(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 8, 4, 1)
#define GET_HE_PHY_CAP_MIDAMBLE_TRX_2X_1X_LTF(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 8, 5, 1)
#define GET_HE_PHY_CAP_DCM_MAX_RU(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 8, 6, 2)
#define GET_HE_PHY_CAP_LONGER_THAN_16_HESIGB_OFDM_SYM(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 9, 0, 1)
#define GET_HE_PHY_CAP_NON_TRIGGER_CQI_FEEDBACK(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 9, 1, 1)
#define GET_HE_PHY_CAP_TX_1024_QAM_LESS_THAN_242_TONE_RU(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 9, 2, 1)
#define GET_HE_PHY_CAP_RX_1024_QAM_LESS_THAN_242_TONE_RU(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 9, 3, 1)
#define GET_HE_PHY_CAP_RX_FULLBW_SU_USE_MUPPDU_CMP_SIGB(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 9, 4, 1)
#define GET_HE_PHY_CAP_RX_FULLBW_SU_USE_MUPPDU_NONCMP_SIGB(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 9, 5, 1)
#define GET_HE_PHY_CAP_NOMINAL_PACKET_PADDING(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 9, 6, 2)
/* Get Supported HE-MCS And NSS Set Information */
#define GET_HE_CAP_MCS_1SS(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 0, 2)
#define GET_HE_CAP_MCS_2SS(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 2, 2)
#define GET_HE_CAP_MCS_3SS(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 4, 2)
#define GET_HE_CAP_MCS_4SS(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 6, 2)
#define GET_HE_CAP_MCS_5SS(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 0, 2)
#define GET_HE_CAP_MCS_6SS(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 2, 2)
#define GET_HE_CAP_MCS_7SS(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 4, 2)
#define GET_HE_CAP_MCS_8SS(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 6, 2)
#define GET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_1SS(_pEleStart) \
GET_HE_CAP_MCS_1SS(_pEleStart)
#define GET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_2SS(_pEleStart) \
GET_HE_CAP_MCS_2SS(_pEleStart)
#define GET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_3SS(_pEleStart) \
GET_HE_CAP_MCS_3SS(_pEleStart)
#define GET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_4SS(_pEleStart) \
GET_HE_CAP_MCS_4SS(_pEleStart)
#define GET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_5SS(_pEleStart) \
GET_HE_CAP_MCS_5SS(_pEleStart)
#define GET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_6SS(_pEleStart) \
GET_HE_CAP_MCS_6SS(_pEleStart)
#define GET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_7SS(_pEleStart) \
GET_HE_CAP_MCS_7SS(_pEleStart)
#define GET_HE_CAP_RX_MCS_LESS_THAN_80MHZ_8SS(_pEleStart) \
GET_HE_CAP_MCS_8SS(_pEleStart)
#define GET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_1SS(_pEleStart) \
GET_HE_CAP_MCS_1SS(_pEleStart + 2)
#define GET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_2SS(_pEleStart) \
GET_HE_CAP_MCS_2SS(_pEleStart + 2)
#define GET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_3SS(_pEleStart) \
GET_HE_CAP_MCS_3SS(_pEleStart + 2)
#define GET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_4SS(_pEleStart) \
GET_HE_CAP_MCS_4SS(_pEleStart + 2)
#define GET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_5SS(_pEleStart) \
GET_HE_CAP_MCS_5SS(_pEleStart + 2)
#define GET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_6SS(_pEleStart) \
GET_HE_CAP_MCS_6SS(_pEleStart + 2)
#define GET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_7SS(_pEleStart) \
GET_HE_CAP_MCS_7SS(_pEleStart + 2)
#define GET_HE_CAP_TX_MCS_LESS_THAN_80MHZ_8SS(_pEleStart) \
GET_HE_CAP_MCS_8SS(_pEleStart + 2)
#define GET_HE_CAP_RX_MCS_160MHZ_1SS(_pEleStart) \
GET_HE_CAP_MCS_1SS(_pEleStart + 4)
#define GET_HE_CAP_RX_MCS_160MHZ_2SS(_pEleStart) \
GET_HE_CAP_MCS_2SS(_pEleStart + 4)
#define GET_HE_CAP_RX_MCS_160MHZ_3SS(_pEleStart) \
GET_HE_CAP_MCS_3SS(_pEleStart + 4)
#define GET_HE_CAP_RX_MCS_160MHZ_4SS(_pEleStart) \
GET_HE_CAP_MCS_4SS(_pEleStart + 4)
#define GET_HE_CAP_RX_MCS_160MHZ_5SS(_pEleStart) \
GET_HE_CAP_MCS_5SS(_pEleStart + 4)
#define GET_HE_CAP_RX_MCS_160MHZ_6SS(_pEleStart) \
GET_HE_CAP_MCS_6SS(_pEleStart + 4)
#define GET_HE_CAP_RX_MCS_160MHZ_7SS(_pEleStart) \
GET_HE_CAP_MCS_7SS(_pEleStart + 4)
#define GET_HE_CAP_RX_MCS_160MHZ_8SS(_pEleStart) \
GET_HE_CAP_MCS_8SS(_pEleStart + 4)
#define GET_HE_CAP_TX_MCS_160MHZ_1SS(_pEleStart) \
GET_HE_CAP_MCS_1SS(_pEleStart + 6)
#define GET_HE_CAP_TX_MCS_160MHZ_2SS(_pEleStart) \
GET_HE_CAP_MCS_2SS(_pEleStart + 6)
#define GET_HE_CAP_TX_MCS_160MHZ_3SS(_pEleStart) \
GET_HE_CAP_MCS_3SS(_pEleStart + 6)
#define GET_HE_CAP_TX_MCS_160MHZ_4SS(_pEleStart) \
GET_HE_CAP_MCS_4SS(_pEleStart + 6)
#define GET_HE_CAP_TX_MCS_160MHZ_5SS(_pEleStart) \
GET_HE_CAP_MCS_5SS(_pEleStart + 6)
#define GET_HE_CAP_TX_MCS_160MHZ_6SS(_pEleStart) \
GET_HE_CAP_MCS_6SS(_pEleStart + 6)
#define GET_HE_CAP_TX_MCS_160MHZ_7SS(_pEleStart) \
GET_HE_CAP_MCS_7SS(_pEleStart + 6)
#define GET_HE_CAP_TX_MCS_160MHZ_8SS(_pEleStart) \
GET_HE_CAP_MCS_8SS(_pEleStart + 6)
#define GET_HE_CAP_RX_MCS_80_80MHZ_1SS(_pEleStart) \
GET_HE_CAP_MCS_1SS(_pEleStart + 8)
#define GET_HE_CAP_RX_MCS_80_80MHZ_2SS(_pEleStart) \
GET_HE_CAP_MCS_2SS(_pEleStart + 8)
#define GET_HE_CAP_RX_MCS_80_80MHZ_3SS(_pEleStart) \
GET_HE_CAP_MCS_3SS(_pEleStart + 8)
#define GET_HE_CAP_RX_MCS_80_80MHZ_4SS(_pEleStart) \
GET_HE_CAP_MCS_4SS(_pEleStart + 8)
#define GET_HE_CAP_RX_MCS_80_80MHZ_5SS(_pEleStart) \
GET_HE_CAP_MCS_5SS(_pEleStart + 8)
#define GET_HE_CAP_RX_MCS_80_80MHZ_6SS(_pEleStart) \
GET_HE_CAP_MCS_6SS(_pEleStart + 8)
#define GET_HE_CAP_RX_MCS_80_80MHZ_7SS(_pEleStart) \
GET_HE_CAP_MCS_7SS(_pEleStart + 8)
#define GET_HE_CAP_RX_MCS_80_80MHZ_8SS(_pEleStart) \
GET_HE_CAP_MCS_8SS(_pEleStart + 8)
#define GET_HE_CAP_TX_MCS_80_80MHZ_1SS(_pEleStart) \
GET_HE_CAP_MCS_1SS(_pEleStart + 10)
#define GET_HE_CAP_TX_MCS_80_80MHZ_2SS(_pEleStart) \
GET_HE_CAP_MCS_2SS(_pEleStart + 10)
#define GET_HE_CAP_TX_MCS_80_80MHZ_3SS(_pEleStart) \
GET_HE_CAP_MCS_3SS(_pEleStart + 10)
#define GET_HE_CAP_TX_MCS_80_80MHZ_4SS(_pEleStart) \
GET_HE_CAP_MCS_4SS(_pEleStart + 10)
#define GET_HE_CAP_TX_MCS_80_80MHZ_5SS(_pEleStart) \
GET_HE_CAP_MCS_5SS(_pEleStart + 10)
#define GET_HE_CAP_TX_MCS_80_80MHZ_6SS(_pEleStart) \
GET_HE_CAP_MCS_6SS(_pEleStart + 10)
#define GET_HE_CAP_TX_MCS_80_80MHZ_7SS(_pEleStart) \
GET_HE_CAP_MCS_7SS(_pEleStart + 10)
#define GET_HE_CAP_TX_MCS_80_80MHZ_8SS(_pEleStart) \
GET_HE_CAP_MCS_8SS(_pEleStart + 10)
/* Get PPE Threshold */
#define GET_HE_CAP_PPE_NSTS(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 0, 3)
#define GET_HE_CAP_PPE_PU_IDX_BITMASK(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 3, 4)
/* Set HE Operation element */
#define SET_HE_OP_PARA_DEFAULT_PE_DUR(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 0, 3, _val)
#define SET_HE_OP_PARA_TWT_REQUIRED(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 3, 1, _val)
#define SET_HE_OP_PARA_TXOP_DUR_RTS_THRESHOLD(_pEleStart, _val) \
SET_BITS_TO_LE_2BYTE(_pEleStart, 4, 10, _val)
#define SET_HE_OP_PARA_VHT_OP_INFO_PRESENT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 6, 1, _val)
#define SET_HE_OP_PARA_CO_HOSTED_BSS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 7, 1, _val)
#define SET_HE_OP_PARA_ER_SU_DISABLE(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 0, 1, _val)
#define SET_HE_OP_PARA_6GHZ_OP_INFO_PRESENT(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 2, 1, 1, _val)
#define SET_HE_OP_BSS_COLOR_INFO_BSS_COLOR(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 0, 6, _val)
#define SET_HE_OP_BSS_COLOR_INFO_PARTIAL_BSS_COLOR(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 6, 1, _val)
#define SET_HE_OP_BSS_COLOR_INFO_BSS_COLOR_DISABLE(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 7, 1, _val)
#define SET_HE_OP_BASIC_MCS_1SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 0, 2, _val)
#define SET_HE_OP_BASIC_MCS_2SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 2, 2, _val)
#define SET_HE_OP_BASIC_MCS_3SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 4, 2, _val)
#define SET_HE_OP_BASIC_MCS_4SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE(_pEleStart, 6, 2, _val)
#define SET_HE_OP_BASIC_MCS_5SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 0, 2, _val)
#define SET_HE_OP_BASIC_MCS_6SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 2, 2, _val)
#define SET_HE_OP_BASIC_MCS_7SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 4, 2, _val)
#define SET_HE_OP_BASIC_MCS_8SS(_pEleStart, _val) \
SET_BITS_TO_LE_1BYTE((_pEleStart) + 1, 6, 2, _val)
/* Values in HE spec */
#define TXOP_DUR_RTS_TH_DISABLED 1023
/* Get HE Operation element */
#define GET_HE_OP_PARA_DEFAULT_PE_DUR(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 0, 3)
#define GET_HE_OP_PARA_TWT_REQUIRED(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 3, 1)
#define GET_HE_OP_PARA_TXOP_DUR_RTS_THRESHOLD(_pEleStart) \
LE_BITS_TO_2BYTE(_pEleStart, 4, 10)
#define GET_HE_OP_PARA_VHT_OP_INFO_PRESENT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 6, 1)
#define GET_HE_OP_PARA_CO_HOSTED_BSS(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 7, 1)
#define GET_HE_OP_PARA_ER_SU_DISABLE(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 0, 1)
#define GET_HE_OP_PARA_6GHZ_OP_INFO_PRESENT(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 1, 1)
#define GET_HE_OP_BSS_COLOR_INFO_BSS_COLOR(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 0, 6)
#define GET_HE_OP_BSS_COLOR_INFO_PARTIAL_BSS_COLOR(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 6, 1)
#define GET_HE_OP_BSS_COLOR_INFO_BSS_COLOR_DISABLE(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 7, 1)
#define GET_HE_OP_BASIC_MCS_1SS(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 0, 2)
#define GET_HE_OP_BASIC_MCS_2SS(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 2, 2)
#define GET_HE_OP_BASIC_MCS_3SS(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 4, 2)
#define GET_HE_OP_BASIC_MCS_4SS(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 6, 2)
#define GET_HE_OP_BASIC_MCS_5SS(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 0, 2)
#define GET_HE_OP_BASIC_MCS_6SS(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 2, 2)
#define GET_HE_OP_BASIC_MCS_7SS(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 4, 2)
#define GET_HE_OP_BASIC_MCS_8SS(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 6, 2)
/* Get MU EDCA Parameter Set element */
#define GET_HE_MU_EDCA_QOS_INFO(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 0, 8)
#define GET_HE_MU_EDCA_QOS_INFO_UPDATE_CNT(_pEleStart) \
LE_BITS_TO_1BYTE(_pEleStart, 0, 4)
#define GET_HE_MU_EDCA_BE_AIFSN(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 0, 4)
#define GET_HE_MU_EDCA_BE_ACI(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 1, 5, 2)
#define GET_HE_MU_EDCA_BE_ECW_MIN_MAX(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 2, 0, 8)
#define GET_HE_MU_EDCA_BE_TIMER(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 3, 0, 8)
#define GET_HE_MU_EDCA_BK_AIFSN(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 4, 0, 4)
#define GET_HE_MU_EDCA_BK_ACI(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 4, 5, 2)
#define GET_HE_MU_EDCA_BK_ECW_MIN_MAX(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 5, 0, 8)
#define GET_HE_MU_EDCA_BK_TIMER(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 6, 0, 8)
#define GET_HE_MU_EDCA_VI_AIFSN(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 7, 0, 4)
#define GET_HE_MU_EDCA_VI_ACI(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 7, 5, 2)
#define GET_HE_MU_EDCA_VI_ECW_MIN_MAX(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 8, 0, 8)
#define GET_HE_MU_EDCA_VI_TIMER(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 9, 0, 8)
#define GET_HE_MU_EDCA_VO_AIFSN(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 10, 0, 4)
#define GET_HE_MU_EDCA_VO_ACI(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 10, 5, 2)
#define GET_HE_MU_EDCA_VO_ECW_MIN_MAX(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 11, 0, 8)
#define GET_HE_MU_EDCA_VO_TIMER(_pEleStart) \
LE_BITS_TO_1BYTE((_pEleStart) + 12, 0, 8)
/* HE variant HT Control */
#define HE_VAR_HTC 3
#define HE_VAR_HTC_CID_TRS 0
#define HE_VAR_HTC_CID_OM 1
#define HE_VAR_HTC_CID_HLA 2
#define HE_VAR_HTC_CID_BSR 3
#define HE_VAR_HTC_CID_UPH 4
#define HE_VAR_HTC_CID_BQR 5
#define HE_VAR_HTC_CID_CAS 6
/* Set HE variant HT Control field */
#define SET_HE_VAR_HTC(_pStart) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 0, 2, HE_VAR_HTC)
#define SET_HE_VAR_HTC_CID_TRS(_pStart) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 2, 4, HE_VAR_HTC_CID_TRS)
#define SET_HE_VAR_HTC_CID_OM(_pStart) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 2, 4, HE_VAR_HTC_CID_OM)
#define SET_HE_VAR_HTC_CID_HLA(_pStart) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 2, 4, HE_VAR_HTC_CID_HLA)
#define SET_HE_VAR_HTC_CID_BSR(_pStart) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 2, 4, HE_VAR_HTC_CID_BSR)
#define SET_HE_VAR_HTC_CID_UPH(_pStart) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 2, 4, HE_VAR_HTC_CID_UPH)
#define SET_HE_VAR_HTC_CID_BQR(_pStart) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 2, 4, HE_VAR_HTC_CID_BQR)
#define SET_HE_VAR_HTC_CID_CAS(_pStart) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 2, 4, HE_VAR_HTC_CID_CAS)
#define SET_HE_VAR_HTC_OM_RX_NSS(_pStart, _val) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 6, 3, _val)
#define SET_HE_VAR_HTC_OM_CH_WIDTH(_pStart, _val) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 6 + 3, 2, _val)
#define SET_HE_VAR_HTC_OM_UL_MU_DIS(_pStart, _val) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 6 + 5, 1, _val)
#define SET_HE_VAR_HTC_OM_TX_NSTS(_pStart, _val) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 6 + 6, 3, _val)
#define SET_HE_VAR_HTC_OM_ER_SU_DIS(_pStart, _val) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 6 + 9, 1, _val)
#define SET_HE_VAR_HTC_OM_DL_MU_MIMO_RR(_pStart, _val) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 6 + 10, 1, _val)
#define SET_HE_VAR_HTC_OM_UL_MU_DATA_DIS(_pStart, _val) \
SET_BITS_TO_LE_4BYTE((u8 *)_pStart, 6 + 11, 1, _val)
/* Get HE variant HT Control field */
#define GET_VAR_HTC(_pStart) \
LE_BITS_TO_1BYTE(_pStart, 0, 2)
#define GET_HE_VAR_HTC_CID(_pStart) \
LE_BITS_TO_1BYTE(_pStart, 2, 4)
#define HE_MCS_SUPP_MSC0_TO_MSC7 0x0 /* 2b00 */
#define HE_MCS_SUPP_MSC0_TO_MSC9 0x1 /* 2b01 */
#define HE_MCS_SUPP_MSC0_TO_MSC11 0x2 /* 2b10 */
#define HE_MSC_NOT_SUPP 0x3 /* 2b11 */
#define HE_MSC_NOT_SUPP_BYTE ((HE_MSC_NOT_SUPP << 6) | (HE_MSC_NOT_SUPP << 4) \
| (HE_MSC_NOT_SUPP << 2) | HE_MSC_NOT_SUPP)
#define HE_DEV_CLASS_A 1
#define HE_DEV_CLASS_B 0
/*
* HE_MAC_Cap (6)
* HE_PHY_Cap (11)
* HE_Support_MCS (4, 8 or 12)
* PPE_Thres (variable, max = 25)
*/
#define HE_CAP_ELE_MAC_CAP_LEN 6
#define HE_CAP_ELE_PHY_CAP_LEN 11
#define HE_CAP_ELE_SUPP_MCS_LEN_RX_80M 2
#define HE_CAP_ELE_SUPP_MCS_LEN_TX_80M 2
#define HE_CAP_ELE_SUPP_MCS_LEN_RX_160M 2
#define HE_CAP_ELE_SUPP_MCS_LEN_TX_160M 2
#define HE_CAP_ELE_SUPP_MCS_LEN_RX_80M_80M 2
#define HE_CAP_ELE_SUPP_MCS_LEN_TX_80M_80M 2
#define HE_CAP_ELE_SUPP_MCS_MAX_LEN (HE_CAP_ELE_SUPP_MCS_LEN_RX_80M \
+ HE_CAP_ELE_SUPP_MCS_LEN_TX_80M + HE_CAP_ELE_SUPP_MCS_LEN_RX_160M \
+ HE_CAP_ELE_SUPP_MCS_LEN_TX_160M + HE_CAP_ELE_SUPP_MCS_LEN_RX_80M_80M \
+ HE_CAP_ELE_SUPP_MCS_LEN_TX_80M_80M)
#define HE_CAP_ELE_PPE_THRE_MAX_LEN 25
#define HE_CAP_ELE_MAX_LEN (1 + HE_CAP_ELE_MAC_CAP_LEN + HE_CAP_ELE_PHY_CAP_LEN \
+ HE_CAP_ELE_SUPP_MCS_MAX_LEN + HE_CAP_ELE_PPE_THRE_MAX_LEN)
/* #define HE_CAP_MAC_CAP_OFFSET 0
#define HE_CAP_PHY_CAP_OFFSET 6
#define HE_CAP_SUPPORT_MCS_OFFSET 17
*/
/*
* HE_Ope_Para (3)
* BSS_Color (1)
* Basic_MCS (2)
* VHT_Op (0 or 3)
* CoHosted_Bssid_Ind (0 or 1)
* 6Ghz_Ope_Info (0 or 5)
*/
#define HE_OPER_PARAMS_LEN 3
#define HE_OPER_BSS_COLOR_INFO_LEN 1
#define HE_OPER_BASIC_MCS_LEN 2
#define HE_OPER_VHT_OPER_INFO_LEN 3
#define HE_OPER_MAX_COHOST_BSSID_LEN 1
#define HE_OPER_6G_OPER_INFO_LEN 5
#define HE_OPER_ELE_MAX_LEN (1 + HE_OPER_PARAMS_LEN + HE_OPER_BSS_COLOR_INFO_LEN \
+ HE_OPER_BASIC_MCS_LEN + HE_OPER_VHT_OPER_INFO_LEN \
+ HE_OPER_MAX_COHOST_BSSID_LEN + HE_OPER_6G_OPER_INFO_LEN)
/* #define HE_OPER_PARAS_OFFSET 0
#define HE_OPER_BSS_COLOR_OFFSET 3
#define HE_OPER_BASIC_MCS_OFFSET 4
*/
#define MAX_HE_GI_TYPE 3
#define MAX_HE_MCS_INDEX 12 * 2 /* 1SS + 2SS */
enum rtw_he_actrl_om_mask {
OM_RX_NSS = BIT0,
OM_CH_BW = BIT1,
OM_UL_MU_DIS = BIT2,
OM_TX_NSTS = BIT3,
OM_ER_SU_DIS = BIT4,
OM_DL_MU_RR = BIT5,
OM_UL_MU_DATA_DIS = BIT6
};
struct rtw_he_actrl_om_ele {
u8 rx_nss;
u8 channel_width;
u8 ul_mu_disable;
u8 tx_nsts;
u8 er_su_disable;
u8 dl_mu_mimo_rr;
u8 ul_mu_data_disable;
};
struct rtw_he_actrl_om {
/* om ctrl flag for normal tx pkt */
u8 actrl_om_normal_tx;
u8 actrl_om_normal_tx_cnt;
/* current om ctrl element content */
struct rtw_he_actrl_om_ele om_actrl_ele;
};
struct he_priv {
u8 he_option;
u8 he_cap[HE_CAP_ELE_MAX_LEN];
u8 he_op[HE_OPER_ELE_MAX_LEN];
u8 op_present;
u8 he_highest_rate;
u8 pre_he_muedca_cnt;
struct rtw_he_actrl_om om_info;
};
u16 rtw_he_mcs_to_data_rate(u8 bw, u8 gi, u8 he_mcs_rate);
void rtw_he_use_default_setting(_adapter *padapter);
void update_sta_he_info_apmode(_adapter *padapter, void *sta);
void update_hw_he_param(_adapter *padapter);
void HE_caps_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE);
void HE_operation_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE);
void HE_mu_edca_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE, u8 first);
u32 rtw_build_he_cap_ie(_adapter *padapter, u8 *pbuf);
struct protocol_cap_t;
struct phy_cap_t;
u32 rtw_get_dft_he_cap_ie(_adapter *padapter, struct phy_cap_t *phy_cap,
struct protocol_cap_t *proto_cap, u8 *pbuf);
u32 rtw_restructure_he_ie(_adapter *padapter, u8 *in_ie, u8 *out_ie, uint in_len, uint *pout_len, struct country_chplan *req_chplan);
void HEOnAssocRsp(_adapter *padapter);
void rtw_he_ies_attach(_adapter *padapter, WLAN_BSSID_EX *pnetwork);
void rtw_he_ies_detach(_adapter *padapter, WLAN_BSSID_EX *pnetwork);
u8 rtw_he_htc_en(_adapter *padapter, struct sta_info *psta);
void rtw_he_fill_htc(_adapter *padapter, struct pkt_attrib *pattrib, u32 *phtc_buf);
void rtw_he_set_om_info(_adapter *padapter, u8 om_mask, struct rtw_he_actrl_om *om_info);
void rtw_he_init_om_info(_adapter *padapter);
#endif /* _RTW_HE_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_he.h
|
C
|
agpl-3.0
| 43,305
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_HT_H_
#define _RTW_HT_H_
#define HT_CAP_IE_LEN 26
#define HT_OP_IE_LEN 22
struct ht_priv {
u8 ht_option;
u8 ampdu_enable;/* for enable Tx A-MPDU */
u8 tx_amsdu_enable;/* for enable Tx A-MSDU */
u8 bss_coexist;/* for 20/40 Bss coexist */
/* u8 baddbareq_issued[16]; */
u32 tx_amsdu_maxlen; /* 1: 8k, 0:4k ; default:8k, for tx */
u32 rx_ampdu_maxlen; /* for rx reordering ctrl win_sz, updated when join_callback. */
u8 rx_ampdu_min_spacing;
u8 ch_offset;/* PRIME_CHNL_OFFSET */
u8 sgi_20m;
u8 sgi_40m;
/* for processing Tx A-MPDU */
u8 agg_enable_bitmap;
/* u8 ADDBA_retry_count; */
u8 candidate_tid_bitmap;
u8 ldpc_cap;
u8 stbc_cap;
u8 beamform_cap;
u8 smps_cap; /*spatial multiplexing power save mode. 0:static SMPS, 1:dynamic SMPS, 3:SMPS disabled, 2:reserved*/
u8 op_present:1; /* ht_op is present */
struct rtw_ieee80211_ht_cap ht_cap;
u8 ht_op[HT_OP_IE_LEN];
};
#ifdef ROKU_PRIVATE
struct ht_priv_infra_ap {
/*Infra mode, only store AP's info , not intersection of STA and AP*/
u8 channel_width_infra_ap;
u8 sgi_20m_infra_ap;
u8 sgi_40m_infra_ap;
u8 ldpc_cap_infra_ap;
u8 stbc_cap_infra_ap;
u8 MCS_set_infra_ap[16];
u8 Rx_ss_infra_ap;
u16 rx_highest_data_rate_infra_ap;
};
#endif /* ROKU_PRIVATE */
typedef enum AGGRE_SIZE {
HT_AGG_SIZE_8K = 0,
HT_AGG_SIZE_16K = 1,
HT_AGG_SIZE_32K = 2,
HT_AGG_SIZE_64K = 3,
VHT_AGG_SIZE_128K = 4,
VHT_AGG_SIZE_256K = 5,
VHT_AGG_SIZE_512K = 6,
VHT_AGG_SIZE_1024K = 7,
} AGGRE_SIZE_E, *PAGGRE_SIZE_E;
#define LDPC_HT_ENABLE_RX BIT0
#define LDPC_HT_ENABLE_TX BIT1
#define LDPC_HT_TEST_TX_ENABLE BIT2
#define LDPC_HT_CAP_TX BIT3
#define STBC_HT_ENABLE_RX BIT0
#define STBC_HT_ENABLE_TX BIT1
#define STBC_HT_TEST_TX_ENABLE BIT2
#define STBC_HT_CAP_TX BIT3
/* ------------------------------------------------------------
* The HT Control field
* ------------------------------------------------------------ */
#define SET_HT_CTRL_CSI_STEERING(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart))+2, 6, 2, _val)
#define SET_HT_CTRL_NDP_ANNOUNCEMENT(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart))+3, 0, 1, _val)
#define GET_HT_CTRL_NDP_ANNOUNCEMENT(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart))+3, 0, 1)
/* 20/40 BSS Coexist */
#define SET_EXT_CAPABILITY_ELE_BSS_COEXIST(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)), 0, 1, _val)
#define GET_EXT_CAPABILITY_ELE_BSS_COEXIST(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)), 0, 1)
/* HT Capabilities Info field */
#define HT_CAP_ELE_CAP_INFO(_pEleStart) ((u8 *)(_pEleStart))
#define GET_HT_CAP_ELE_LDPC_CAP(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)), 0, 1)
#define GET_HT_CAP_ELE_CHL_WIDTH(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)), 1, 1)
#define GET_HT_CAP_ELE_SM_PS(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)), 2, 2)
#define GET_HT_CAP_ELE_GREENFIELD(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)), 4, 1)
#define GET_HT_CAP_ELE_SHORT_GI20M(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)), 5, 1)
#define GET_HT_CAP_ELE_SHORT_GI40M(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)), 6, 1)
#define GET_HT_CAP_ELE_TX_STBC(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)), 7, 1)
#define GET_HT_CAP_ELE_RX_STBC(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart))+1, 0, 2)
#define GET_HT_CAP_ELE_DELAYED_BA(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart))+1, 2, 1)
#define GET_HT_CAP_ELE_MAX_AMSDU_LENGTH(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart))+1, 3, 1)
#define GET_HT_CAP_ELE_DSSS_CCK_40M(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart))+1, 4, 1)
#define GET_HT_CAP_ELE_FORTY_INTOLERANT(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart))+1, 6, 1)
#define GET_HT_CAP_ELE_LSIG_TXOP_PROTECT(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart))+1, 7, 1)
#define SET_HT_CAP_ELE_LDPC_CAP(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)), 0, 1, _val)
#define SET_HT_CAP_ELE_CHL_WIDTH(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)), 1, 1, _val)
#define SET_HT_CAP_ELE_SM_PS(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)), 2, 2, _val)
#define SET_HT_CAP_ELE_GREENFIELD(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)), 4, 1, _val)
#define SET_HT_CAP_ELE_SHORT_GI20M(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)), 5, 1, _val)
#define SET_HT_CAP_ELE_SHORT_GI40M(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)), 6, 1, _val)
#define SET_HT_CAP_ELE_TX_STBC(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)), 7, 1, _val)
#define SET_HT_CAP_ELE_RX_STBC(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 1, 0, 2, _val)
#define SET_HT_CAP_ELE_DELAYED_BA(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 1, 2, 1, _val)
#define SET_HT_CAP_ELE_MAX_AMSDU_LENGTH(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 1, 3, 1, _val)
#define SET_HT_CAP_ELE_DSSS_CCK_40M(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 1, 4, 1, _val)
#define SET_HT_CAP_ELE_FORTY_INTOLERANT(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 1, 6, 1, _val)
#define SET_HT_CAP_ELE_LSIG_TXOP_PROTECT(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 1, 7, 1, _val)
/* A-MPDU Parameters field */
#define HT_CAP_ELE_AMPDU_PARA(_pEleStart) (((u8 *)(_pEleStart))+2)
#define GET_HT_CAP_ELE_MAX_AMPDU_LEN_EXP(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart))+2, 0, 2)
#define GET_HT_CAP_ELE_MIN_MPDU_S_SPACE(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart))+2, 2, 3)
#define HT_AMPDU_PARA_FMT "%02x " \
"MAX AMPDU len:%u bytes, MIN MPDU Start Spacing:%u"
#define HT_AMPDU_PARA_ARG(x) \
*((u8 *)(x)) \
, (1 << (13+GET_HT_CAP_ELE_MAX_AMPDU_LEN_EXP(((u8 *)x)-2)))-1 \
, GET_HT_CAP_ELE_MIN_MPDU_S_SPACE(((u8 *)x)-2)
#define SET_HT_CAP_ELE_MAX_AMPDU_LEN_EXP(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 2, 0, 2, _val)
#define SET_HT_CAP_ELE_MIN_MPDU_S_SPACE(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 2, 2, 3, _val)
/* Supported MCS Set field */
#define HT_CAP_ELE_SUP_MCS_SET(_pEleStart) (((u8 *)(_pEleStart))+3)
#define HT_CAP_ELE_RX_MCS_MAP(_pEleStart) HT_CAP_ELE_SUP_MCS_SET(_pEleStart)
#define GET_HT_CAP_ELE_RX_HIGHEST_DATA_RATE(_pEleStart) LE_BITS_TO_2BYTE(((u8 *)(_pEleStart))+13, 0, 10)
#define GET_HT_CAP_ELE_TX_MCS_DEF(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart))+15, 0, 1)
#define GET_HT_CAP_ELE_TRX_MCS_NEQ(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart))+15, 1, 1)
#define GET_HT_CAP_ELE_TX_MAX_SS(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart))+15, 2, 2)
#define GET_HT_CAP_ELE_TX_UEQM(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart))+15, 4, 1)
#define HT_RX_MCS_BMP_FMT "%02x %02x %02x %02x %02x%02x%02x%02x%02x%02x"
#define HT_RX_MCS_BMP_ARG(x) ((u8 *)(x))[0], ((u8 *)(x))[1], ((u8 *)(x))[2], ((u8 *)(x))[3], ((u8 *)(x))[4], ((u8 *)(x))[5], \
((u8 *)(x))[6], ((u8 *)(x))[7], ((u8 *)(x))[8], ((u8 *)(x))[9]
#define HT_SUP_MCS_SET_FMT HT_RX_MCS_BMP_FMT \
/* "\n%02x%02x%02x%02x%02x%02x" */\
" %uMbps %s%s%s"
#define HT_SUP_MCS_SET_ARG(x) HT_RX_MCS_BMP_ARG(x) \
/*,((u8 *)(x))[10], ((u8 *)(x))[11], ((u8 *)(x))[12], ((u8 *)(x))[13], ((u8 *)(x))[14], ((u8 *)(x))[15] */\
, GET_HT_CAP_ELE_RX_HIGHEST_DATA_RATE(((u8 *)x)-3) \
, GET_HT_CAP_ELE_TX_MCS_DEF(((u8 *)x)-3) ? "TX_MCS_DEF " : "" \
, GET_HT_CAP_ELE_TRX_MCS_NEQ(((u8 *)x)-3) ? "TRX_MCS_NEQ " : "" \
, GET_HT_CAP_ELE_TX_UEQM(((u8 *)x)-3) ? "TX_UEQM " : ""
/* TXBF Capabilities */
#define SET_HT_CAP_TXBF_RECEIVE_NDP_CAP(_pEleStart, _val) SET_BITS_TO_LE_4BYTE(((u8 *)(_pEleStart))+21, 3, 1, ((u8)_val))
#define SET_HT_CAP_TXBF_TRANSMIT_NDP_CAP(_pEleStart, _val) SET_BITS_TO_LE_4BYTE(((u8 *)(_pEleStart))+21, 4, 1, ((u8)_val))
#define SET_HT_CAP_TXBF_EXPLICIT_COMP_STEERING_CAP(_pEleStart, _val) SET_BITS_TO_LE_4BYTE(((u8 *)(_pEleStart))+21, 10, 1, ((u8)_val))
#define SET_HT_CAP_TXBF_EXPLICIT_COMP_FEEDBACK_CAP(_pEleStart, _val) SET_BITS_TO_LE_4BYTE(((u8 *)(_pEleStart))+21, 15, 2, ((u8)_val))
#define SET_HT_CAP_TXBF_COMP_STEERING_NUM_ANTENNAS(_pEleStart, _val) SET_BITS_TO_LE_4BYTE(((u8 *)(_pEleStart))+21, 23, 2, ((u8)_val))
#define SET_HT_CAP_TXBF_CHNL_ESTIMATION_NUM_ANTENNAS(_pEleStart, _val) SET_BITS_TO_LE_4BYTE(((u8 *)(_pEleStart))+21, 27, 2, ((u8)_val))
#define GET_HT_CAP_TXBF_EXPLICIT_COMP_STEERING_CAP(_pEleStart) LE_BITS_TO_4BYTE(((u8 *)(_pEleStart))+21, 10, 1)
#define GET_HT_CAP_TXBF_EXPLICIT_COMP_FEEDBACK_CAP(_pEleStart) LE_BITS_TO_4BYTE(((u8 *)(_pEleStart))+21, 15, 2)
#define GET_HT_CAP_TXBF_COMP_STEERING_NUM_ANTENNAS(_pEleStart) LE_BITS_TO_4BYTE(((u8 *)(_pEleStart))+21, 23, 2)
#define GET_HT_CAP_TXBF_CHNL_ESTIMATION_NUM_ANTENNAS(_pEleStart) LE_BITS_TO_4BYTE(((u8 *)(_pEleStart))+21, 27, 2)
/* HT Operation element */
#define GET_HT_OP_ELE_PRI_CHL(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)), 0, 8)
#define SET_HT_OP_ELE_PRI_CHL(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)), 0, 8, _val)
/* HT Operation Info field */
#define HT_OP_ELE_OP_INFO(_pEleStart) (((u8 *)(_pEleStart)) + 1)
#define GET_HT_OP_ELE_2ND_CHL_OFFSET(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)) + 1, 0, 2)
#define GET_HT_OP_ELE_STA_CHL_WIDTH(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)) + 1, 2, 1)
#define GET_HT_OP_ELE_RIFS_MODE(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)) + 1, 3, 1)
#define GET_HT_OP_ELE_HT_PROTECT(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)) + 2, 0, 2)
#define GET_HT_OP_ELE_NON_GREEN_PRESENT(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)) + 2, 2, 1)
#define GET_HT_OP_ELE_OBSS_NON_HT_PRESENT(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)) + 2, 4, 1)
#define GET_HT_OP_ELE_DUAL_BEACON(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)) + 4, 6, 1)
#define GET_HT_OP_ELE_DUAL_CTS(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)) + 4, 7, 1)
#define GET_HT_OP_ELE_STBC_BEACON(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)) + 5, 0, 1)
#define GET_HT_OP_ELE_LSIG_TXOP_PROTECT(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)) + 5, 1, 1)
#define GET_HT_OP_ELE_PCO_ACTIVE(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)) + 5, 2, 1)
#define GET_HT_OP_ELE_PCO_PHASE(_pEleStart) LE_BITS_TO_1BYTE(((u8 *)(_pEleStart)) + 5, 3, 1)
#define SET_HT_OP_ELE_2ND_CHL_OFFSET(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 1, 0, 2, _val)
#define SET_HT_OP_ELE_STA_CHL_WIDTH(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 1, 2, 1, _val)
#define SET_HT_OP_ELE_RIFS_MODE(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 1, 3, 1, _val)
#define SET_HT_OP_ELE_HT_PROTECT(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 2, 0, 2, _val)
#define SET_HT_OP_ELE_NON_GREEN_PRESENT(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 2, 2, 1, _val)
#define SET_HT_OP_ELE_OBSS_NON_HT_PRESENT(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 2, 4, 1, _val)
#define SET_HT_OP_ELE_DUAL_BEACON(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 4, 6, 1, _val)
#define SET_HT_OP_ELE_DUAL_CTS(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 4, 7, 1, _val)
#define SET_HT_OP_ELE_STBC_BEACON(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 5, 0, 1, _val)
#define SET_HT_OP_ELE_LSIG_TXOP_PROTECT(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 5, 1, 1, _val)
#define SET_HT_OP_ELE_PCO_ACTIVE(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 5, 2, 1, _val)
#define SET_HT_OP_ELE_PCO_PHASE(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(((u8 *)(_pEleStart)) + 5, 3, 1, _val)
#endif /* _RTL871X_HT_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_ht.h
|
C
|
agpl-3.0
| 12,333
|
/*
* Copyright(c) 2018 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*/
#ifndef __RTW_HWSIM_INTF_H_
#define __RTW_HWSIM_INTF_H_
#include <linux/skbuff.h>
#include <drv_types.h>
int rtw_hwsim_medium_tx(struct _ADAPTER *adapter, const void *tx_ctx,
u8 *buf, size_t buflen);
void rtw_hwsim_medium_pre_netif_rx(struct sk_buff *skb);
#endif /* __RTW_HWSIM_INTF_H__ */
|
2301_81045437/rtl8852be
|
include/rtw_hwsim_intf.h
|
C
|
agpl-3.0
| 1,045
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_IO_H_
#define _RTW_IO_H_
#ifdef CONFIG_PCI_HCI
#define MAX_CONTINUAL_IO_ERR 4
#endif
#ifdef CONFIG_USB_HCI
#define MAX_CONTINUAL_IO_ERR 4
#endif
#ifdef CONFIG_SDIO_HCI
#define SD_IO_TRY_CNT (8)
#define MAX_CONTINUAL_IO_ERR SD_IO_TRY_CNT
#endif
#ifdef CONFIG_GSPI_HCI
#define SD_IO_TRY_CNT (8)
#define MAX_CONTINUAL_IO_ERR SD_IO_TRY_CNT
#endif
int rtw_inc_and_chk_continual_io_error(struct dvobj_priv *dvobj);
void rtw_reset_continual_io_error(struct dvobj_priv *dvobj);
#endif /* _RTW_IO_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_io.h
|
C
|
agpl-3.0
| 1,170
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_IOCTL_H_
#define _RTW_IOCTL_H_
enum oid_type {
QUERY_OID,
SET_OID
};
struct oid_par_priv {
void *adapter_context;
uint oid;
void *information_buf;
u32 information_buf_len;
u32 *bytes_rw;
u32 *bytes_needed;
enum oid_type type_of_oid;
u32 dbg;
};
#if defined(PLATFORM_LINUX) && defined(CONFIG_WIRELESS_EXT)
extern struct iw_handler_def rtw_handlers_def;
#endif
extern void rtw_request_wps_pbc_event(_adapter *padapter);
#ifdef CONFIG_APPEND_VENDOR_IE_ENABLE
extern int rtw_vendor_ie_get_raw_data(struct net_device *, u32, char *, u32);
extern int rtw_vendor_ie_get_data(struct net_device*, int , char*);
extern int rtw_vendor_ie_get(struct net_device *, struct iw_request_info *, union iwreq_data *, char *);
extern int rtw_vendor_ie_set(struct net_device*, struct iw_request_info*, union iwreq_data*, char*);
#endif
#endif /* #ifndef __INC_CEINFO_ */
|
2301_81045437/rtl8852be
|
include/rtw_ioctl.h
|
C
|
agpl-3.0
| 1,544
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_IOCTL_QUERY_H_
#define _RTW_IOCTL_QUERY_H_
#endif
|
2301_81045437/rtl8852be
|
include/rtw_ioctl_query.h
|
C
|
agpl-3.0
| 721
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_IOCTL_SET_H_
#define __RTW_IOCTL_SET_H_
u8 rtw_set_802_11_authentication_mode(_adapter *pdapter, NDIS_802_11_AUTHENTICATION_MODE authmode);
u8 rtw_set_802_11_bssid(_adapter *padapter, u8 *bssid);
u8 rtw_set_802_11_add_wep(_adapter *padapter, NDIS_802_11_WEP *wep);
u8 rtw_set_802_11_disassociate(_adapter *padapter);
u8 rtw_set_802_11_infrastructure_mode(_adapter *padapter, NDIS_802_11_NETWORK_INFRASTRUCTURE networktype, u8 flags);
u8 rtw_set_802_11_ssid(_adapter *padapter, NDIS_802_11_SSID *ssid);
u8 rtw_set_802_11_connect(_adapter *padapter,
u8 *bssid, NDIS_802_11_SSID *ssid, u16 ch);
u8 rtw_validate_bssid(u8 *bssid);
u8 rtw_validate_ssid(NDIS_802_11_SSID *ssid);
u16 rtw_get_cur_max_rate(_adapter *adapter);
int rtw_set_scan_mode(_adapter *adapter, enum rtw_phl_scan_type scan_mode);
int rtw_set_channel_plan(_adapter *adapter, u8 channel_plan, u8 chplan_6g, enum rtw_regd_inr inr);
int rtw_set_country(_adapter *adapter, const char *country_code, enum rtw_regd_inr inr);
int rtw_set_band(_adapter *adapter, u8 band);
#endif
|
2301_81045437/rtl8852be
|
include/rtw_ioctl_set.h
|
C
|
agpl-3.0
| 1,713
|
/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_MBO_H_
#define _RTW_MBO_H_
#define MBO_CH_LIST_MAX_NUM 247
#define MBO_OCE_ELEMENT_MAX_LEN 255
#define MBO_CH_PREFER_NON_OP 0
#define MBO_CH_PREFER_NOT 1
#define MBO_CH_PREFER_OK 255
#define rtw_mbo_wifi_logo_test(a) \
(((a)->registrypriv.wifi_spec) == 1)
#define rtw_mbo_wifi_spec_test(a) \
(((a)->mlmepriv.mbo_attr.mbo_spec_test) == 1)
#define rtw_mbo_ap_assoc_disallow(a) \
(((a)->mlmepriv.mbo_attr.assoc_disallow) > 0)
#define rtw_mbo_add_internw_ext_cap(d, l) \
rtw_add_ext_cap_info(d, l, INTERWORKING)
#define rtw_mbo_wnm_notification_req(c, a) \
(((c) == RTW_WLAN_CATEGORY_WNM) && \
(((a) == RTW_WLAN_ACTION_WNM_NOTIF_REQ)))
/* IEEE Std 802.11-2016 Table 9-46 - Status codes */
#define RTW_ASSOC_DENIED_NO_MORE_STAS 17
#define RTW_ASSOC_REFUSED_TEMPORARILY 30
/* MBO-OCE Information Element */
#define RTW_MBO_EID WLAN_EID_VENDOR_SPECIFIC
#define RTW_MBO_OUI 0x506F9A
#define RTW_MBO_OUI_TYPE 0x16
/* MBO AP Capability Indication */
#define RTW_MBO_ATTR_AP_CAP_ID 0x1
/* Non-preferred Channel Report */
#define RTW_MBO_ATTR_NPREF_CH_RPT_ID 0x2
/* Cellular Data Capabilities */
#define RTW_MBO_ATTR_CELL_DATA_CAP_ID 0x3
/* Association Disallowed */
#define RTW_MBO_ATTR_ASSOC_DISABLED_ID 0x4
/* Transition Reason Code */
#define RTW_MBO_ATTR_TRANS_RES_ID 0x6
/* Transition Rejection Reason Code */
#define RTW_MBO_ATTR_TRANS_REJ_ID 0x7
/* Association Retry Delay */
#define RTW_MBO_ATTR_ASSOC_RETRY_DELAY_ID 0x8
#define RTW_MBO_MAX_CH_LIST_NUM MAX_CHANNEL_NUM
#define RTW_MBO_MAX_CH_RPT_NUM 32
#define RTW_MBO_TEST_CMD_REST 0x00
#define RTW_MBO_TEST_CMD_BTM_REQ_SEND 0xfd
#define RTW_MBO_TEST_CMD_BTM_REQ_SET 0xfe
#define RTW_MBO_TEST_CMD_NB_BSS_ADD 0xff
enum rtw_mbo_attri_type {
MBO_AP_CAPABILITY = 1,
NON_PREFER_CHANNEL_RPT = 2,
CELLULAR_DATA_CAPABILITY = 3,
ASSOCIATION_DISALLOW = 4,
CELLULAR_DATA_CONNECT_PREFER = 5,
TRANS_REASON_CODE = 6,
TRANS_REJECT_REASON_CODE = 7,
ASSOCIATION_RETRY_DELAY = 8
};
struct rtw_mbo_ch_list {
u8 op_class;
u8 channel;
u8 preference;
};
struct mbo_priv {
u8 enable;
u8 assoc_disallow;
u8 cellular_aware;
struct rtw_mbo_ch_list ch_list[MBO_CH_LIST_MAX_NUM];
u8 ch_list_num;
u8 mbo_oce_element[MBO_OCE_ELEMENT_MAX_LEN];
u8 mbo_oce_element_len;
};
struct mbo_user_btm_req_pkt {
struct btm_req_hdr hdr;
u32 candidate_cnt;
struct wnm_btm_cant btm_cants[RTW_MAX_NB_RPT_NUM];
u8 append_mbo_ie;
};
struct mbo_attr_info {
u8 mbo_spec_test;
u8 ap_cap_ind;
u8 assoc_disallow;
u8 cell_data_cap;
u8 reason;
u16 delay;
struct mbo_user_btm_req_pkt user_raw;
};
struct npref_ch {
u8 op_class;
u8 chs[RTW_MBO_MAX_CH_LIST_NUM];
size_t nm_of_ch;
u8 preference;
u8 reason;
};
struct npref_ch_rtp {
struct npref_ch ch_rpt[RTW_MBO_MAX_CH_RPT_NUM];
size_t nm_of_rpt;
};
void rtw_mbo_ie_handler(_adapter *padapter, struct mbo_priv *mbopriv,
const u8 *pbuf, uint limit_len);
struct sta_info;
void rtw_ap_parse_sta_mbo_element(_adapter *padapter,
struct sta_info *psta, u8 *ies_buf, u16 ies_len);
void rtw_mbo_fill_non_prefer_channel_list(_adapter *padapter, struct mbo_priv *mbopriv,
const u8 *pbuf, u8 len);
void rtw_mbo_build_cell_data_cap_attr(
_adapter *padapter, u8 **pframe, struct pkt_attrib *pattrib);
void rtw_mbo_update_ie_data(
_adapter *padapter, u8 *pie, u32 ie_len);
void rtw_mbo_build_supp_op_class_elem(
_adapter *padapter, u8 **pframe, struct pkt_attrib *pattrib);
void rtw_mbo_build_npref_ch_rpt_attr(
_adapter *padapter, u8 **pframe, struct pkt_attrib *pattrib);
void rtw_mbo_build_trans_reject_reason_attr(
_adapter *padapter, u8 **pframe, struct pkt_attrib *pattrib, u8 *pres);
u8 rtw_mbo_disallowed_network(struct wlan_network *pnetwork);
void rtw_mbo_build_extended_cap(
_adapter *padapter, u8 **pframe, struct pkt_attrib *pattrib);
ssize_t rtw_mbo_proc_non_pref_chans_set(
struct file *pfile, const char __user *buffer,
size_t count, loff_t *pos, void *pdata);
int rtw_mbo_proc_non_pref_chans_get(
struct seq_file *m, void *v);
ssize_t rtw_mbo_proc_cell_data_set(
struct file *pfile, const char __user *buffer,
size_t count, loff_t *pos, void *pdata);
int rtw_mbo_proc_cell_data_get(
struct seq_file *m, void *v);
ssize_t rtw_mbo_proc_attr_set(
struct file *pfile, const char __user *buffer,
size_t count, loff_t *pos, void *pdata);
int rtw_mbo_proc_attr_get(
struct seq_file *m, void *v);
void rtw_mbo_wnm_notification_parsing(
_adapter *padapter, const u8 *pdata, size_t data_len);
void rtw_mbo_build_wnm_notification(
_adapter *padapter, u8 **pframe, struct pkt_attrib *pattrib);
void rtw_mbo_build_probe_req_ies(
_adapter *padapter, u8 **pframe, struct pkt_attrib *pattrib);
void rtw_mbo_build_assoc_req_ies(
_adapter *padapter, u8 **pframe, struct pkt_attrib *pattrib);
void rtw_mbo_attr_info_init(_adapter *padapter);
void rtw_mbo_process_assoc_req(
_adapter *padapter, u8 *pie, int ie_len);
void rtw_mbo_build_beacon_ies(
_adapter *padapter, u8 **pframe, struct pkt_attrib *pattrib);
void rtw_mbo_build_probe_rsp_ies(
_adapter *padapter, u8 **pframe, struct pkt_attrib *pattrib);
void rtw_mbo_build_assoc_rsp_ies(
_adapter *padapter, u8 **pframe, struct pkt_attrib *pattrib);
void rtw_mbo_build_wnm_btmreq_reason_ies(
_adapter *padapter, u8 **pframe, struct pkt_attrib *pattrib);
#endif /* _RTW_MBO_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_mbo.h
|
C
|
agpl-3.0
| 5,975
|
/******************************************************************************
*
* Copyright(c) 2015 - 2020 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
|
2301_81045437/rtl8852be
|
include/rtw_mcc.h
|
C
|
agpl-3.0
| 656
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_MEM_H__
#define __RTW_MEM_H__
#include <drv_conf.h>
#include <basic_types.h>
#include <osdep_service.h>
#ifdef CONFIG_SDIO_HCI
#define MAX_RTKM_RECVBUF_SZ MAX_RECVBUF_SZ
#define MAX_RTKM_NR_PREALLOC_RECV_SKB NR_RECVBUFF
#else /* !CONFIG_SDIO_HCI */
#ifdef CONFIG_PLATFORM_MSTAR_HIGH
#define MAX_RTKM_RECVBUF_SZ (31744) /* 31k */
#else
#define MAX_RTKM_RECVBUF_SZ (15360) /* 15k */
#endif /* CONFIG_PLATFORM_MSTAR_HIGH */
#define MAX_RTKM_NR_PREALLOC_RECV_SKB 16
#endif /* !CONFIG_SDIO_HCI */
u16 rtw_rtkm_get_buff_size(void);
u8 rtw_rtkm_get_nr_recv_skb(void);
struct u8 *rtw_alloc_revcbuf_premem(void);
struct sk_buff *rtw_alloc_skb_premem(u16 in_size);
int rtw_free_skb_premem(struct sk_buff *pskb);
#endif /* __RTW_MEM_H__ */
|
2301_81045437/rtl8852be
|
include/rtw_mem.h
|
C
|
agpl-3.0
| 1,407
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_MI_H_
#define __RTW_MI_H_
void rtw_mi_update_union_chan_inf(_adapter *adapter, u8 ch, u8 offset , u8 bw);
u8 rtw_mi_stayin_union_ch_chk(_adapter *adapter);
u8 rtw_mi_stayin_union_band_chk(_adapter *adapter);
int rtw_mi_get_ch_setting_union_by_ifbmp(struct dvobj_priv *dvobj, u8 ifbmp, u8 *ch, u8 *bw, u8 *offset);
int rtw_mi_get_ch_setting_union(_adapter *adapter, u8 *ch, u8 *bw, u8 *offset);
int rtw_mi_get_ch_setting_union_no_self(_adapter *adapter, u8 *ch, u8 *bw, u8 *offset);
struct mi_state {
u8 sta_num; /* WIFI_STATION_STATE */
u8 ld_sta_num; /* WIFI_STATION_STATE && WIFI_ASOC_STATE */
u8 lg_sta_num; /* WIFI_STATION_STATE && WIFI_UNDER_LINKING */
#ifdef CONFIG_TDLS
u8 ld_tdls_num; /* adapter.tdlsinfo.link_established */
#endif
#ifdef CONFIG_AP_MODE
u8 ap_num; /* WIFI_AP_STATE && WIFI_ASOC_STATE */
u8 starting_ap_num; /*WIFI_FW_AP_STATE*/
u8 ld_ap_num; /* WIFI_AP_STATE && WIFI_ASOC_STATE && asoc_sta_count > 2 */
#endif
u8 adhoc_num; /* (WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE) && WIFI_ASOC_STATE */
u8 ld_adhoc_num; /* (WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE) && WIFI_ASOC_STATE && asoc_sta_count > 2 */
#ifdef CONFIG_RTW_MESH
u8 mesh_num; /* WIFI_MESH_STATE && WIFI_ASOC_STATE */
u8 ld_mesh_num; /* WIFI_MESH_STATE && WIFI_ASOC_STATE && asoc_sta_count > 2 */
#endif
u8 scan_num; /* WIFI_UNDER_SURVEY */
u8 scan_enter_num; /* WIFI_UNDER_SURVEY && !SCAN_DISABLE && !SCAN_BACK_OP */
u8 uwps_num; /* WIFI_UNDER_WPS */
#ifdef CONFIG_IOCTL_CFG80211
#ifdef CONFIG_P2P
u8 roch_num;
#endif
u8 mgmt_tx_num;
#endif
#ifdef CONFIG_P2P
u8 p2p_device_num;
u8 p2p_gc;
u8 p2p_go;
#endif
u8 union_ch;
u8 union_bw;
u8 union_offset;
};
#define MSTATE_STA_NUM(_mstate) ((_mstate)->sta_num)
#define MSTATE_STA_LD_NUM(_mstate) ((_mstate)->ld_sta_num)
#define MSTATE_STA_LG_NUM(_mstate) ((_mstate)->lg_sta_num)
#ifdef CONFIG_TDLS
#define MSTATE_TDLS_LD_NUM(_mstate) ((_mstate)->ld_tdls_num)
#else
#define MSTATE_TDLS_LD_NUM(_mstate) 0
#endif
#ifdef CONFIG_AP_MODE
#define MSTATE_AP_NUM(_mstate) ((_mstate)->ap_num)
#define MSTATE_AP_STARTING_NUM(_mstate) ((_mstate)->starting_ap_num)
#define MSTATE_AP_LD_NUM(_mstate) ((_mstate)->ld_ap_num)
#else
#define MSTATE_AP_NUM(_mstate) 0
#define MSTATE_AP_STARTING_NUM(_mstate) 0
#define MSTATE_AP_LD_NUM(_mstate) 0
#endif
#define MSTATE_ADHOC_NUM(_mstate) ((_mstate)->adhoc_num)
#define MSTATE_ADHOC_LD_NUM(_mstate) ((_mstate)->ld_adhoc_num)
#ifdef CONFIG_RTW_MESH
#define MSTATE_MESH_NUM(_mstate) ((_mstate)->mesh_num)
#define MSTATE_MESH_LD_NUM(_mstate) ((_mstate)->ld_mesh_num)
#else
#define MSTATE_MESH_NUM(_mstate) 0
#define MSTATE_MESH_LD_NUM(_mstate) 0
#endif
#define MSTATE_SCAN_NUM(_mstate) ((_mstate)->scan_num)
#define MSTATE_SCAN_ENTER_NUM(_mstate) ((_mstate)->scan_enter_num)
#define MSTATE_WPS_NUM(_mstate) ((_mstate)->uwps_num)
#if defined(CONFIG_IOCTL_CFG80211) && defined(CONFIG_P2P)
#define MSTATE_ROCH_NUM(_mstate) ((_mstate)->roch_num)
#else
#define MSTATE_ROCH_NUM(_mstate) 0
#endif
#ifdef CONFIG_P2P
#define MSTATE_P2P_DV_NUM(_mstate) ((_mstate)->p2p_device_num)
#define MSTATE_P2P_GC_NUM(_mstate) ((_mstate)->p2p_gc)
#define MSTATE_P2P_GO_NUM(_mstate) ((_mstate)->p2p_go)
#else
#define MSTATE_P2P_DV_NUM(_mstate) 0
#define MSTATE_P2P_GC_NUM(_mstate) 0
#define MSTATE_P2P_GO_NUM(_mstate) 0
#endif
#if defined(CONFIG_IOCTL_CFG80211)
#define MSTATE_MGMT_TX_NUM(_mstate) ((_mstate)->mgmt_tx_num)
#else
#define MSTATE_MGMT_TX_NUM(_mstate) 0
#endif
#define MSTATE_U_CH(_mstate) ((_mstate)->union_ch)
#define MSTATE_U_BW(_mstate) ((_mstate)->union_bw)
#define MSTATE_U_OFFSET(_mstate) ((_mstate)->union_offset)
#define rtw_mi_get_union_chan(adapter) adapter_to_dvobj(adapter)->iface_state.union_ch
#define rtw_mi_get_union_bw(adapter) adapter_to_dvobj(adapter)->iface_state.union_bw
#define rtw_mi_get_union_offset(adapter) adapter_to_dvobj(adapter)->iface_state.union_offset
#define rtw_mi_get_assoced_sta_num(adapter) DEV_STA_LD_NUM(adapter_to_dvobj(adapter))
#define rtw_mi_get_ap_num(adapter) DEV_AP_NUM(adapter_to_dvobj(adapter))
#define rtw_mi_get_mesh_num(adapter) DEV_MESH_NUM(adapter_to_dvobj(adapter))
u8 rtw_mi_get_assoc_if_num(_adapter *adapter);
/* For now, not return union_ch/bw/offset */
void rtw_mi_status_by_ifbmp(struct dvobj_priv *dvobj, u8 ifbmp, struct mi_state *mstate);
void rtw_mi_status(_adapter *adapter, struct mi_state *mstate);
void rtw_mi_status_no_self(_adapter *adapter, struct mi_state *mstate);
void rtw_mi_status_no_others(_adapter *adapter, struct mi_state *mstate);
/* For now, not handle union_ch/bw/offset */
void rtw_mi_status_merge(struct mi_state *d, struct mi_state *a);
void rtw_mi_update_iface_status(struct mlme_priv *pmlmepriv, sint state);
u8 rtw_mi_netif_stop_queue(_adapter *padapter);
u8 rtw_mi_buddy_netif_stop_queue(_adapter *padapter);
u8 rtw_mi_netif_wake_queue(_adapter *padapter);
u8 rtw_mi_buddy_netif_wake_queue(_adapter *padapter);
u8 rtw_mi_netif_carrier_on(_adapter *padapter);
u8 rtw_mi_buddy_netif_carrier_on(_adapter *padapter);
u8 rtw_mi_netif_carrier_off(_adapter *padapter);
u8 rtw_mi_buddy_netif_carrier_off(_adapter *padapter);
u8 rtw_mi_netif_caroff_qstop(_adapter *padapter);
u8 rtw_mi_buddy_netif_caroff_qstop(_adapter *padapter);
u8 rtw_mi_netif_caron_qstart(_adapter *padapter);
u8 rtw_mi_buddy_netif_caron_qstart(_adapter *padapter);
void rtw_mi_scan_abort(_adapter *adapter, bool bwait);
void rtw_mi_buddy_scan_abort(_adapter *adapter, bool bwait);
#if 0
u32 rtw_mi_start_drv_threads(_adapter *adapter);
u32 rtw_mi_buddy_start_drv_threads(_adapter *adapter);
void rtw_mi_stop_drv_threads(_adapter *adapter);
void rtw_mi_buddy_stop_drv_threads(_adapter *adapter);
#endif
void rtw_mi_cancel_all_timer(_adapter *adapter);
void rtw_mi_buddy_cancel_all_timer(_adapter *adapter);
void rtw_mi_reset_drv_sw(_adapter *adapter);
void rtw_mi_buddy_reset_drv_sw(_adapter *adapter);
u8 rtw_mi_hal_iface_init(_adapter *padapter);
void rtw_mi_suspend_free_assoc_resource(_adapter *adapter);
void rtw_mi_buddy_suspend_free_assoc_resource(_adapter *adapter);
#ifdef CONFIG_SET_SCAN_DENY_TIMER
void rtw_mi_set_scan_deny(_adapter *adapter, u32 ms);
void rtw_mi_buddy_set_scan_deny(_adapter *adapter, u32 ms);
#else
#define rtw_mi_set_scan_deny(adapter, ms) do {} while (0)
#define rtw_mi_buddy_set_scan_deny(adapter, ms) do {} while (0)
#endif
u8 rtw_mi_is_scan_deny(_adapter *adapter);
u8 rtw_mi_buddy_is_scan_deny(_adapter *adapter);
void rtw_mi_beacon_update(_adapter *padapter);
void rtw_mi_buddy_beacon_update(_adapter *padapter);
u8 rtw_mi_busy_traffic_check(_adapter *padapter);
u8 rtw_mi_buddy_busy_traffic_check(_adapter *padapter);
u8 rtw_mi_check_mlmeinfo_state(_adapter *padapter, u32 state);
u8 rtw_mi_buddy_check_mlmeinfo_state(_adapter *padapter, u32 state);
u8 rtw_mi_check_fwstate(_adapter *padapter, sint state);
u8 rtw_mi_buddy_check_fwstate(_adapter *padapter, sint state);
enum {
MI_LINKED,
MI_ASSOC,
MI_UNDER_WPS,
MI_AP_MODE,
MI_AP_ASSOC,
MI_ADHOC,
MI_ADHOC_ASSOC,
MI_MESH,
MI_MESH_ASSOC,
MI_STA_NOLINK, /* this is misleading, but not used now */
MI_STA_LINKED,
MI_STA_LINKING,
};
u8 rtw_mi_check_status(_adapter *adapter, u8 type);
void dump_dvobj_mi_status(void *sel, const char *fun_name, _adapter *adapter);
#ifdef DBG_IFACE_STATUS
#define DBG_IFACE_STATUS_DUMP(adapter) dump_dvobj_mi_status(RTW_DBGDUMP, __func__, adapter)
#endif
void dump_mi_status(void *sel, struct dvobj_priv *dvobj);
u8 rtw_mi_traffic_statistics(_adapter *padapter);
u8 rtw_mi_check_miracast_enabled(_adapter *padapter);
#ifdef CONFIG_XMIT_THREAD_MODE
u8 rtw_mi_check_pending_xmitbuf(_adapter *padapter);
u8 rtw_mi_buddy_check_pending_xmitbuf(_adapter *padapter);
#endif
#if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
u8 rtw_mi_sdio_dequeue_xmit(_adapter *padapter);
u8 rtw_mi_sdio_buddy_dequeue_xmit(_adapter *padapter);
#endif
void rtw_mi_adapter_reset(_adapter *padapter);
void rtw_mi_buddy_adapter_reset(_adapter *padapter);
u8 rtw_mi_dynamic_check_handlder(struct _ADAPTER *padapter);
#if 0 /*#ifdef CONFIG_CORE_DM_CHK_TIMER*/
u8 rtw_mi_dynamic_check_timer_handlder(_adapter *padapter);
u8 rtw_mi_buddy_dynamic_check_timer_handlder(_adapter *padapter);
#endif
extern void rtw_iface_dynamic_chk_wk_hdl(_adapter *padapter);
u8 rtw_mi_dynamic_chk_wk_hdl(_adapter *padapter);
u8 rtw_mi_buddy_dynamic_chk_wk_hdl(_adapter *padapter);
u8 rtw_mi_os_xmit_schedule(_adapter *padapter);
u8 rtw_mi_buddy_os_xmit_schedule(_adapter *padapter);
u8 rtw_mi_report_survey_event(_adapter *padapter, union recv_frame *precv_frame);
u8 rtw_mi_buddy_report_survey_event(_adapter *padapter, union recv_frame *precv_frame);
extern void sreset_start_adapter(_adapter *padapter);
extern void sreset_stop_adapter(_adapter *padapter);
u8 rtw_mi_sreset_adapter_hdl(_adapter *padapter, u8 bstart);
u8 rtw_mi_buddy_sreset_adapter_hdl(_adapter *padapter, u8 bstart);
#if defined(DBG_CONFIG_ERROR_RESET) && defined(CONFIG_CONCURRENT_MODE)
void rtw_mi_ap_info_restore(_adapter *adapter);
#endif
u8 rtw_mi_tx_beacon_hdl(_adapter *padapter);
u8 rtw_mi_buddy_tx_beacon_hdl(_adapter *padapter);
u8 rtw_mi_set_tx_beacon_cmd(_adapter *padapter);
u8 rtw_mi_buddy_set_tx_beacon_cmd(_adapter *padapter);
#ifdef CONFIG_P2P
u8 rtw_mi_stay_in_p2p_mode(_adapter *padapter);
u8 rtw_mi_buddy_stay_in_p2p_mode(_adapter *padapter);
#endif
_adapter *rtw_get_iface_by_id(_adapter *padapter, u8 iface_id);
_adapter *rtw_get_iface_by_macddr(_adapter *padapter, const u8 *mac_addr);
_adapter *rtw_get_iface_by_hwport(_adapter *padapter, u8 hw_port);
void rtw_mi_buddy_clone_bcmc_packet(_adapter *padapter, union recv_frame *precvframe);
#ifdef CONFIG_PCI_HCI
/*API be create temporary for MI, caller is interrupt-handler, PCIE's interrupt handler cannot apply to multi-AP*/
_adapter *rtw_mi_get_ap_adapter(_adapter *padapter);
#endif
u8 rtw_mi_get_ld_sta_ifbmp(_adapter *adapter);
u8 rtw_mi_get_ap_mesh_ifbmp(_adapter *adapter);
u8 rtw_mi_disconnect(_adapter *adapter);
u8 rtw_mi_buddy_disconnect(_adapter *adapter);
#endif /*__RTW_MI_H_*/
|
2301_81045437/rtl8852be
|
include/rtw_mi.h
|
C
|
agpl-3.0
| 10,729
|
/******************************************************************************
*
* Copyright(c) 2007 - 2021 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_MLME_H_
#define __RTW_MLME_H_
#define MAX_BSS_CNT 128
/* #define MAX_JOIN_TIMEOUT 2000 */
/* #define MAX_JOIN_TIMEOUT 2500 */
#define MAX_JOIN_TIMEOUT 6500
/* Commented by Albert 20101105
* Increase the scanning timeout because of increasing the SURVEY_TO value. */
#define SCANQUEUE_LIFETIME 20000 /* 20sec, unit:msec */
#define MAX_UNASSOC_STA_CNT 128
#define UNASSOC_STA_LIFETIME_MS 60000
/*pmlmepriv->fw_state*/
#define WIFI_NULL_STATE 0x00000000
#define WIFI_ASOC_STATE 0x00000001 /* Linked */
#define WIFI_REASOC_STATE 0x00000002
#define WIFI_SLEEP_STATE 0x00000004
#define WIFI_STATION_STATE 0x00000008
#define WIFI_AP_STATE 0x00000010
#define WIFI_ADHOC_STATE 0x00000020
#define WIFI_ADHOC_MASTER_STATE 0x00000040
#define WIFI_UNDER_LINKING 0x00000080
#define WIFI_UNDER_WPS 0x00000100
#define WIFI_MESH_STATE 0x00000200
#define WIFI_STA_ALIVE_CHK_STATE 0x00000400
#define WIFI_UNDER_SURVEY 0x00000800 /* under site surveying */
/*#define WIFI_UNDEFINED_STATE 0x00001000*/
/*#define WIFI_UNDEFINED_STATE 0x00002000*/
/*#define WIFI_UNDEFINED_STATE 0x00004000*/
/*#define WIFI_UNDEFINED_STATE 0x00008000*/
#define WIFI_MP_STATE 0x00010000
/*#define WIFI_UNDEFINED_STATE 0x00020000*/
/*#define WIFI_UNDEFINED_STATE 0x00040000*/
/*#define WIFI_UNDEFINED_STATE 0x00080000*/
/*#define WIFI_UNDEFINED_STATE 0x00100000*/
/*#define WIFI_UNDEFINED_STATE 0x00200000*/
/*#define WIFI_UNDEFINED_STATE 0x00400000*/
#define WIFI_OP_CH_SWITCHING 0x00800000
#define WIFI_UNDER_KEY_HANDSHAKE 0x01000000
/*#define WIFI_UNDEFINED_STATE 0x02000000*/
/*#define WIFI_UNDEFINED_STATE 0x04000000*/
/*#define WIFI_UNDEFINED_STATE 0x08000000*/
/*#define WIFI_UNDEFINED_STATE 0x10000000*/
/*#define WIFI_UNDEFINED_STATE 0x20000000*/
#define WIFI_CSA_UPDATE_BEACON 0x40000000
#define WIFI_MONITOR_STATE 0x80000000
#define MIRACAST_DISABLED 0
#define MIRACAST_SOURCE BIT0
#define MIRACAST_SINK BIT1
#define MIRACAST_MODE_REVERSE(mode) \
((((mode) & MIRACAST_SOURCE) ? MIRACAST_SINK : 0) | (((mode) & MIRACAST_SINK) ? MIRACAST_SOURCE : 0))
bool is_miracast_enabled(_adapter *adapter);
bool rtw_chk_miracast_mode(_adapter *adapter, u8 mode);
const char *get_miracast_mode_str(int mode);
void rtw_wfd_st_switch(struct sta_info *sta, bool on);
#define MLME_STATE(adapter) get_fwstate(&((adapter)->mlmepriv))
#define CHK_MLME_STATE(adapter, state) check_fwstate(&((adapter)->mlmepriv), (state))
#define MLME_IS_NULL(adapter) CHK_MLME_STATE(adapter, WIFI_NULL_STATE)
#define MLME_IS_STA(adapter) CHK_MLME_STATE(adapter, WIFI_STATION_STATE)
#define MLME_IS_AP(adapter) CHK_MLME_STATE(adapter, WIFI_AP_STATE)
#define MLME_IS_ADHOC(adapter) CHK_MLME_STATE(adapter, WIFI_ADHOC_STATE)
#define MLME_IS_ADHOC_MASTER(adapter) CHK_MLME_STATE(adapter, WIFI_ADHOC_MASTER_STATE)
#define MLME_IS_MESH(adapter) CHK_MLME_STATE(adapter, WIFI_MESH_STATE)
#define MLME_IS_MONITOR(adapter) CHK_MLME_STATE(adapter, WIFI_MONITOR_STATE)
#define MLME_IS_MP(adapter) CHK_MLME_STATE(adapter, WIFI_MP_STATE)
#ifdef CONFIG_P2P
#define MLME_IS_PD(adapter) rtw_p2p_chk_role(&(adapter)->wdinfo, P2P_ROLE_DEVICE)
#define MLME_IS_GC(adapter) rtw_p2p_chk_role(&(adapter)->wdinfo, P2P_ROLE_CLIENT)
#define MLME_IS_GO(adapter) rtw_p2p_chk_role(&(adapter)->wdinfo, P2P_ROLE_GO)
#else /* !CONFIG_P2P */
#define MLME_IS_PD(adapter) 0
#define MLME_IS_GC(adapter) 0
#define MLME_IS_GO(adapter) 0
#endif /* !CONFIG_P2P */
#define MLME_IS_MSRC(adapter) rtw_chk_miracast_mode((adapter), MIRACAST_SOURCE)
#define MLME_IS_MSINK(adapter) rtw_chk_miracast_mode((adapter), MIRACAST_SINK)
#define MLME_IS_SCAN(adapter) CHK_MLME_STATE(adapter, WIFI_UNDER_SURVEY)
#define MLME_IS_LINKING(adapter) CHK_MLME_STATE(adapter, WIFI_UNDER_LINKING)
#define MLME_IS_ASOC(adapter) CHK_MLME_STATE(adapter, WIFI_ASOC_STATE)
#define MLME_IS_OPCH_SW(adapter) CHK_MLME_STATE(adapter, WIFI_OP_CH_SWITCHING)
#define MLME_IS_WPS(adapter) CHK_MLME_STATE(adapter, WIFI_UNDER_WPS)
#if defined(CONFIG_IOCTL_CFG80211) && defined(CONFIG_P2P)
#define MLME_IS_ROCH(adapter) (rtw_cfg80211_get_is_roch(adapter) == _TRUE)
#else
#define MLME_IS_ROCH(adapter) 0
#endif
#ifdef CONFIG_IOCTL_CFG80211
#define MLME_IS_MGMT_TX(adapter) rtw_cfg80211_get_is_mgmt_tx(adapter)
#else
#define MLME_IS_MGMT_TX(adapter) 0
#endif
#define MLME_STATE_FMT "%s%s%s%s%s%s%s%s%s%s%s%s"
#define MLME_STATE_ARG(adapter) \
MLME_IS_STA((adapter)) ? (MLME_IS_GC((adapter)) ? " GC" : " STA") : \
MLME_IS_AP((adapter)) ? (MLME_IS_GO((adapter)) ? " GO" : " AP") : \
MLME_IS_ADHOC((adapter)) ? " ADHOC" : \
MLME_IS_ADHOC_MASTER((adapter)) ? " ADHOC_M" : \
MLME_IS_MESH((adapter)) ? " MESH" : \
MLME_IS_MONITOR((adapter)) ? " MONITOR" : \
MLME_IS_MP((adapter)) ? " MP" : "", \
MLME_IS_PD((adapter)) ? " PD" : "", \
MLME_IS_MSRC((adapter)) ? " MSRC" : "", \
MLME_IS_MSINK((adapter)) ? " MSINK" : "", \
MLME_IS_SCAN((adapter)) ? " SCAN" : "", \
MLME_IS_LINKING((adapter)) ? " LINKING" : "", \
MLME_IS_ASOC((adapter)) ? " ASOC" : "", \
MLME_IS_OPCH_SW((adapter)) ? " OPCH_SW" : "", \
MLME_IS_WPS((adapter)) ? " WPS" : "", \
MLME_IS_ROCH((adapter)) ? " ROCH" : "", \
MLME_IS_MGMT_TX((adapter)) ? " MGMT_TX" : "", \
(MLME_STATE((adapter)) & WIFI_SLEEP_STATE) ? " SLEEP" : ""
enum {
MLME_ACTION_UNKNOWN,
MLME_ACTION_NONE,
MLME_SCAN_ENABLE, /* WIFI_UNDER_SURVEY */
MLME_SCAN_ENTER, /* WIFI_UNDER_SURVEY && !SCAN_DISABLE && !SCAN_BACK_OP */
MLME_SCAN_DONE, /* WIFI_UNDER_SURVEY && (SCAN_DISABLE || SCAN_BACK_OP) */
MLME_SCAN_DISABLE, /* WIFI_UNDER_SURVEY is going to be cleared */
MLME_STA_CONNECTING,
MLME_STA_CONNECTED,
MLME_STA_DISCONNECTED,
MLME_TDLS_LINKED,
MLME_TDLS_NOLINK,
MLME_AP_STARTED,
MLME_AP_STOPPED,
MLME_ADHOC_STARTED,
MLME_ADHOC_STOPPED,
MLME_MESH_STARTED,
MLME_MESH_STOPPED,
MLME_OPCH_SWITCH,
};
enum dot11AuthAlgrthmNum {
dot11AuthAlgrthm_Open = 0,
dot11AuthAlgrthm_Shared,
dot11AuthAlgrthm_8021X,
dot11AuthAlgrthm_Auto,
dot11AuthAlgrthm_WAPI,
dot11AuthAlgrthm_MaxNum
};
/**
* enum mlme_auth_type - AuthenticationType
*
* @MLME_AUTHTYPE_OPEN_SYSTEM: Open System authentication
* @MLME_AUTHTYPE_SHARED_KEY: Shared Key authentication (WEP only)
* @MLME_AUTHTYPE_FT: Fast BSS Transition (IEEE 802.11r)
* @MLME_AUTHTYPE_NETWORK_EAP: Network EAP (some Cisco APs and mainly LEAP)
* @MLME_AUTHTYPE_SAE: Simultaneous authentication of equals
* @MLME_AUTHTYPE_FILS_SK: Fast Initial Link Setup shared key
* @MLME_AUTHTYPE_FILS_SK_PFS: Fast Initial Link Setup shared key with PFS
* @MLME_AUTHTYPE_FILS_PK: Fast Initial Link Setup public key
* @__MLME_AUTHTYPE_NUM: internal
* @MLME_AUTHTYPE_MAX: maximum valid auth algorithm
* @MLME_AUTHTYPE_AUTOMATIC: determine automatically (if necessary by trying
* multiple times); this is invalid in netlink -- leave out the attribute
* for this on CONNECT commands.
*/
enum mlme_auth_type {
MLME_AUTHTYPE_OPEN_SYSTEM,
MLME_AUTHTYPE_SHARED_KEY,
MLME_AUTHTYPE_FT,
MLME_AUTHTYPE_NETWORK_EAP,
MLME_AUTHTYPE_SAE,
MLME_AUTHTYPE_FILS_SK,
MLME_AUTHTYPE_FILS_SK_PFS,
MLME_AUTHTYPE_FILS_PK,
/* keep last */
__MLME_AUTHTYPE_NUM,
MLME_AUTHTYPE_MAX = __MLME_AUTHTYPE_NUM - 1,
MLME_AUTHTYPE_AUTOMATIC
};
#define WIFI_FREQUENCY_BAND_AUTO 0
#define WIFI_FREQUENCY_BAND_5GHZ 1
#define WIFI_FREQUENCY_BAND_2GHZ 2
#define rtw_band_valid(band) ((band) <= WIFI_FREQUENCY_BAND_2GHZ)
enum SCAN_RESULT_TYPE {
SCAN_RESULT_P2P_ONLY = 0, /* Will return all the P2P devices. */
SCAN_RESULT_ALL = 1, /* Will return all the scanned device, include AP. */
SCAN_RESULT_WFD_TYPE = 2 /* Will just return the correct WFD device. */
/* If this device is Miracast sink device, it will just return all the Miracast source devices. */
};
/*
there are several "locks" in mlme_priv,
since mlme_priv is a shared resource between many threads,
like ISR/Call-Back functions, the OID handlers, and even timer functions.
Each _queue has its own locks, already.
Other items are protected by mlme_priv.lock.
To avoid possible dead lock, any thread trying to modifiying mlme_priv
SHALL not lock up more than one locks at a time!
*/
#define traffic_threshold 10
#define traffic_scan_period 500
typedef struct _RT_LINK_DETECT_T {
u32 NumTxOkInPeriod;
u32 NumRxOkInPeriod;
u32 NumRxUnicastOkInPeriod;
BOOLEAN bBusyTraffic;
BOOLEAN bTxBusyTraffic;
BOOLEAN bRxBusyTraffic;
BOOLEAN bHigherBusyTraffic; /* For interrupt migration purpose. */
BOOLEAN bHigherBusyRxTraffic; /* We may disable Tx interrupt according as Rx traffic. */
BOOLEAN bHigherBusyTxTraffic; /* We may disable Tx interrupt according as Tx traffic. */
/* u8 TrafficBusyState; */
u8 TrafficTransitionCount;
u32 LowPowerTransitionCount;
} RT_LINK_DETECT_T, *PRT_LINK_DETECT_T;
#ifdef CONFIG_WFD
struct wifi_display_info {
u16 wfd_enable; /* Eanble/Disable the WFD function. */
u16 init_rtsp_ctrlport; /* init value of rtsp_ctrlport when WFD enable */
u16 rtsp_ctrlport; /* TCP port number at which the this WFD device listens for RTSP messages, 0 when WFD disable */
u16 tdls_rtsp_ctrlport; /* rtsp_ctrlport used by tdls, will sync when rtsp_ctrlport is changed by user */
u16 peer_rtsp_ctrlport; /* TCP port number at which the peer WFD device listens for RTSP messages */
/* This filed should be filled when receiving the gropu negotiation request */
u8 peer_session_avail; /* WFD session is available or not for the peer wfd device. */
/* This variable will be set when sending the provisioning discovery request to peer WFD device. */
/* And this variable will be reset when it is read by using the iwpriv p2p_get wfd_sa command. */
u8 ip_address[4];
u8 peer_ip_address[4];
u8 wfd_pc; /* WFD preferred connection */
/* 0 -> Prefer to use the P2P for WFD connection on peer side. */
/* 1 -> Prefer to use the TDLS for WFD connection on peer side. */
u8 wfd_device_type; /* WFD Device Type */
/* 0 -> WFD Source Device */
/* 1 -> WFD Primary Sink Device */
enum SCAN_RESULT_TYPE scan_result_type; /* Used when P2P is enable. This parameter will impact the scan result. */
u8 op_wfd_mode;
u8 stack_wfd_mode;
};
#endif /* CONFIG_WFD */
#ifdef CONFIG_IOCTL_CFG80211
struct cfg80211_roch_info {
u8 restore_channel;
struct ieee80211_channel remain_on_ch_channel;
enum nl80211_channel_type remain_on_ch_type;
unsigned int duration;
ATOMIC_T ro_ch_cookie_gen;
u64 remain_on_ch_cookie;
bool is_ro_ch;
struct wireless_dev *ro_ch_wdev;
systime last_ro_ch_time; /* this will be updated at the beginning and end of ro_ch */
};
#endif /* CONFIG_IOCTL_CFG80211 */
#ifdef CONFIG_P2P_WOWLAN
enum P2P_WOWLAN_RECV_FRAME_TYPE {
P2P_WOWLAN_RECV_NEGO_REQ = 0,
P2P_WOWLAN_RECV_INVITE_REQ = 1,
P2P_WOWLAN_RECV_PROVISION_REQ = 2,
};
struct p2p_wowlan_info {
u8 is_trigger;
enum P2P_WOWLAN_RECV_FRAME_TYPE wowlan_recv_frame_type;
u8 wowlan_peer_addr[ETH_ALEN];
u16 wowlan_peer_wpsconfig;
u8 wowlan_peer_is_persistent;
u8 wowlan_peer_invitation_type;
};
#endif /* CONFIG_P2P_WOWLAN */
struct wifidirect_info {
_adapter *padapter;
#ifdef CONFIG_WFD
struct wifi_display_info *wfd_info;
#endif
#ifdef CONFIG_P2P_WOWLAN
struct p2p_wowlan_info p2p_wow_info;
#endif /* CONFIG_P2P_WOWLAN */
enum P2P_ROLE role;
u8 listen_channel;
u8 support_rate[8];
u8 p2p_wildcard_ssid[P2P_WILDCARD_SSID_LEN];
u8 wfd_tdls_enable; /* Flag to enable or disable the TDLS by WFD Sigma */
/* 0: disable */
/* 1: enable */
u8 wfd_tdls_weaksec; /* Flag to enable or disable the weak security function for TDLS by WFD Sigma */
/* 0: disable */
/* In this case, the driver can't issue the tdsl setup request frame. */
/* 1: enable */
/* In this case, the driver can issue the tdls setup request frame */
/* even the current security is weak security. */
#ifdef CONFIG_P2P_PS
enum P2P_PS_MODE p2p_ps_mode; /* indicate p2p ps mode */
enum P2P_PS_STATE p2p_ps_state; /* indicate p2p ps state */
u8 noa_index; /* Identifies and instance of Notice of Absence timing. */
u8 ctwindow; /* Client traffic window. A period of time in TU after TBTT. */
u8 opp_ps; /* opportunistic power save. */
u8 noa_num; /* number of NoA descriptor in P2P IE. */
u8 noa_count[P2P_MAX_NOA_NUM]; /* Count for owner, Type of client. */
u32 noa_duration[P2P_MAX_NOA_NUM]; /* Max duration for owner, preferred or min acceptable duration for client. */
u32 noa_interval[P2P_MAX_NOA_NUM]; /* Length of interval for owner, preferred or max acceptable interval of client. */
u32 noa_start_time[P2P_MAX_NOA_NUM]; /* schedule expressed in terms of the lower 4 bytes of the TSF timer. */
#endif /* CONFIG_P2P_PS */
#ifdef ROKU_PRIVATE
u8 remote_mac_address[48]; /* For Roku find remote function */
u32 num_of_remote;
#endif
};
struct tdls_ss_record { /* signal strength record */
u8 macaddr[ETH_ALEN];
u8 RxPWDBAll;
u8 is_tdls_sta; /* _TRUE: direct link sta, _FALSE: else */
};
struct tdls_temp_mgmt {
u8 initiator; /* 0: None, 1: we initiate, 2: peer initiate */
u8 peer_addr[ETH_ALEN];
};
#ifdef CONFIG_TDLS_CH_SW
struct tdls_ch_switch {
u32 ch_sw_state;
ATOMIC_T chsw_on;
u8 addr[ETH_ALEN];
u8 off_ch_num;
u8 ch_offset;
u32 cur_time;
u8 delay_switch_back;
u8 dump_stack;
struct submit_ctx chsw_sctx;
};
#endif
struct tdls_info {
u8 ap_prohibited;
u8 ch_switch_prohibited;
u8 link_established;
u8 sta_cnt;
u8 sta_maximum; /* 1:tdls sta is equal (NUM_STA-1), reach max direct link number; 0: else; */
struct tdls_ss_record ss_record;
#ifdef CONFIG_TDLS_CH_SW
struct tdls_ch_switch chsw_info;
#endif
u8 ch_sensing;
u8 cur_channel;
u8 collect_pkt_num[MAX_CHANNEL_NUM];
_lock cmd_lock;
_lock hdl_lock;
u8 watchdog_count;
u8 dev_discovered; /* WFD_TDLS: for sigma test */
/* Let wpa_supplicant to setup*/
u8 driver_setup;
#ifdef CONFIG_WFD
struct wifi_display_info *wfd_info;
#endif
struct submit_ctx *tdls_sctx;
};
struct tdls_txmgmt {
u8 peer[ETH_ALEN];
u8 action_code;
u8 dialog_token;
u16 status_code;
u8 *buf;
size_t len;
};
/* used for mlme_priv.roam_flags */
enum {
RTW_ROAM_ON_EXPIRED = BIT0,
RTW_ROAM_ON_RESUME = BIT1,
RTW_ROAM_ACTIVE = BIT2,
};
struct beacon_keys {
u8 ssid[IW_ESSID_MAX_SIZE];
u32 ssid_len;
u8 ch;
u8 bw;
u8 offset;
u8 proto_cap; /* PROTO_CAP_XXX */
u8 rate_set[12];
u8 rate_num;
int encryp_protocol;
int pairwise_cipher;
int group_cipher;
u32 akm;
};
#define UNASOC_STA_SRC_RX_BMC 0
#define UNASOC_STA_SRC_RX_NMY_UC 1
#define UNASOC_STA_SRC_NUM 2
#define UNASOC_STA_MODE_DISABLED 0
#define UNASOC_STA_MODE_INTERESTED 1
#define UNASOC_STA_MODE_ALL 2
#define UNASOC_STA_MODE_NUM 3
#define UNASOC_STA_DEL_CHK_SKIP 0
#define UNASOC_STA_DEL_CHK_ALIVE 1
#define UNASOC_STA_DEL_CHK_DELETED 2
#ifdef CONFIG_RTW_MULTI_AP
struct unassoc_sta_info {
_list list;
u8 addr[ETH_ALEN];
u8 interested;
s8 recv_signal_power;
systime time;
};
#endif
#ifdef ROKU_PRIVATE
#define MAX_VENDOR_IE_NUM 10
#define MAX_VENDOR_IE_LEN 255
#define MAX_VENDOR_IE_PARAM_LEN MAX_VENDOR_IE_LEN + 2 /* vendor ie filter index + content maximum length */
#endif
struct mlme_priv {
_lock lock;
sint fw_state; /* shall we protect this variable? maybe not necessarily... */
u8 to_join; /* flag */
u16 join_status;
#ifdef CONFIG_LAYER2_ROAMING
u8 to_roam; /* roaming trying times */
struct wlan_network *roam_network; /* the target of active roam */
u8 roam_flags;
u8 roam_rssi_diff_th; /* rssi difference threshold for active scan candidate selection */
u32 roam_scan_int; /* scan interval for active roam (Unit:2 second)*/
u32 roam_scanr_exp_ms; /* scan result expire time in ms for roam */
u8 roam_tgt_addr[ETH_ALEN]; /* request to roam to speicific target without other consideration */
u8 roam_rssi_threshold;
systime last_roaming;
bool need_to_roam;
#endif
u32 defs_lmt_sta;
u32 defs_lmt_time;
u8 *nic_hdl;
u32 max_bss_cnt; /* The size of scan queue */
_list *pscanned;
_queue free_bss_pool;
_queue scanned_queue;
u8 *free_bss_buf;
u32 num_of_scanned;
NDIS_802_11_SSID assoc_ssid;
u8 assoc_bssid[6];
u16 assoc_ch; /* 0 reserved for no specific channel */
struct wlan_network cur_network;
struct wlan_network *cur_network_scanned;
/* bcn check info */
struct beacon_keys cur_beacon_keys; /* save current beacon keys */
#if CONFIG_DFS
u8 bcn_cnts_after_csa;
#endif
#ifdef CONFIG_ARP_KEEP_ALIVE
/* for arp offload keep alive */
u8 bGetGateway;
u8 GetGatewayTryCnt;
u8 gw_mac_addr[ETH_ALEN];
u8 gw_ip[4];
#endif
/* uint wireless_mode; no used, remove it */
u32 auto_scan_int_ms;
_timer assoc_timer;
uint assoc_by_bssid;
uint assoc_by_rssi;
_timer scan_to_timer; /* driver itself handles scan_timeout status. */
systime scan_start_time; /* used to evaluate the time spent in scanning */
#ifdef CONFIG_SET_SCAN_DENY_TIMER
_timer set_scan_deny_timer;
ATOMIC_T set_scan_deny; /* 0: allowed, 1: deny */
#endif
u8 wpa_phase;/*wpa_phase after wps finished*/
struct qos_priv qospriv;
#ifdef CONFIG_80211D
u8 *recv_country_ie;
u32 recv_country_ie_len;
#endif
#ifdef CONFIG_80211N_HT
/* Number of non-HT AP/stations */
int num_sta_no_ht;
/* Number of HT AP/stations 20 MHz */
/* int num_sta_ht_20mhz; */
int num_FortyMHzIntolerant;
struct ht_priv htpriv;
#endif
#ifdef CONFIG_80211AC_VHT
struct vht_priv vhtpriv;
#ifdef ROKU_PRIVATE
/*infra mode, used to store AP's info*/
struct vht_priv_infra_ap vhtpriv_infra_ap;
#endif /* ROKU_PRIVATE */
#endif
#ifdef CONFIG_80211AX_HE
struct he_priv hepriv;
#endif
#ifdef CONFIG_RTW_MBO
struct mbo_priv mbopriv;
#endif
#ifdef ROKU_PRIVATE
struct ht_priv_infra_ap htpriv_infra_ap;
#endif /* ROKU_PRIVATE */
#ifdef CONFIG_RTW_80211R
struct ft_roam_info ft_roam;
#endif
#if defined(CONFIG_RTW_WNM) || defined(CONFIG_RTW_80211K)
struct roam_nb_info nb_info;
u8 ch_cnt;
#endif
RT_LINK_DETECT_T LinkDetectInfo;
u8 acm_mask; /* for wmm acm mask */
enum rtw_phl_scan_type scan_mode; /* active: 1, passive: 0 */
u8 *wps_probe_req_ie;
u32 wps_probe_req_ie_len;
u8 ext_capab_ie_data[WLAN_EID_EXT_CAP_MAX_LEN];/*currently for ap mode only*/
u8 ext_capab_ie_len;
#if defined(CONFIG_AP_MODE) && defined (CONFIG_NATIVEAP_MLME)
/* Number of associated Non-ERP stations (i.e., stations using 802.11b
* in 802.11g BSS) */
int num_sta_non_erp;
/* Number of associated stations that do not support Short Slot Time */
int num_sta_no_short_slot_time;
/* Number of associated stations that do not support Short Preamble */
int num_sta_no_short_preamble;
ATOMIC_T olbc; /* Overlapping Legacy BSS Condition (Legacy b/g)*/
/* Number of HT associated stations that do not support greenfield */
int num_sta_ht_no_gf;
/* Number of associated non-HT stations */
/* int num_sta_no_ht; */
/* Number of HT associated stations 20 MHz */
int num_sta_ht_20mhz;
/* number of associated stations 40MHz intolerant */
int num_sta_40mhz_intolerant;
/* Overlapping BSS information */
ATOMIC_T olbc_ht;
#ifdef CONFIG_80211N_HT
int ht_20mhz_width_req;
int ht_intolerant_ch_reported;
u16 ht_op_mode;
u8 sw_to_20mhz; /*switch to 20Mhz BW*/
#endif /* CONFIG_80211N_HT */
#ifdef CONFIG_RTW_80211R
u8 *auth_rsp;
u32 auth_rsp_len;
#endif
u8 *assoc_req;
u32 assoc_req_len;
u8 *assoc_rsp;
u32 assoc_rsp_len;
/* u8 *wps_probe_req_ie; */
/* u32 wps_probe_req_ie_len; */
u8 *wps_beacon_ie;
u32 wps_beacon_ie_len;
u8 *wps_probe_resp_ie;
u32 wps_probe_resp_ie_len;
u8 *wps_assoc_resp_ie;
u32 wps_assoc_resp_ie_len;
u8 *p2p_beacon_ie;
u32 p2p_beacon_ie_len;
u8 *p2p_probe_req_ie;
u32 p2p_probe_req_ie_len;
u8 *p2p_probe_resp_ie;
u32 p2p_probe_resp_ie_len;
u8 *p2p_go_probe_resp_ie; /* for GO */
u32 p2p_go_probe_resp_ie_len; /* for GO */
u8 *p2p_assoc_req_ie;
u32 p2p_assoc_req_ie_len;
u8 *p2p_assoc_resp_ie;
u32 p2p_assoc_resp_ie_len;
_lock bcn_update_lock;
u8 update_bcn;
struct rtw_chan_def ori_chandef;
#ifdef CONFIG_80211AC_VHT
u8 ori_vht_en;
#endif
#endif /* #if defined (CONFIG_AP_MODE) && defined (CONFIG_NATIVEAP_MLME) */
#if defined(CONFIG_WFD) && defined(CONFIG_IOCTL_CFG80211)
u8 *wfd_beacon_ie;
u32 wfd_beacon_ie_len;
u8 *wfd_probe_req_ie;
u32 wfd_probe_req_ie_len;
u8 *wfd_probe_resp_ie;
u32 wfd_probe_resp_ie_len;
u8 *wfd_go_probe_resp_ie; /* for GO */
u32 wfd_go_probe_resp_ie_len; /* for GO */
u8 *wfd_assoc_req_ie;
u32 wfd_assoc_req_ie_len;
u8 *wfd_assoc_resp_ie;
u32 wfd_assoc_resp_ie_len;
#endif
#ifdef CONFIG_RTW_MBO
u8 *pcell_data_cap_ie;
u32 cell_data_cap_len;
struct mbo_attr_info mbo_attr;
#endif
#ifdef RTK_DMP_PLATFORM
/* DMP kobject_hotplug function signal need in passive level */
_workitem Linkup_workitem;
_workitem Linkdown_workitem;
#endif
#ifdef RTW_BUSY_DENY_SCAN
systime lastscantime;
#endif
#ifdef CONFIG_CONCURRENT_MODE
u8 scanning_via_buddy_intf;
#endif
#ifdef CONFIG_APPEND_VENDOR_IE_ENABLE
u32 vendor_ie_mask[WLAN_MAX_VENDOR_IE_NUM];
u8 vendor_ie[WLAN_MAX_VENDOR_IE_NUM][WLAN_MAX_VENDOR_IE_LEN];
u32 vendor_ielen[WLAN_MAX_VENDOR_IE_NUM];
#endif
#ifdef CONFIG_RTW_MULTI_AP
u8 unassoc_sta_mode_of_stype[UNASOC_STA_SRC_NUM];
_queue unassoc_sta_queue;
_queue free_unassoc_sta_queue;
u8 *free_unassoc_sta_buf;
u32 interested_unassoc_sta_cnt;
u32 max_unassoc_sta_cnt;
#endif
#ifdef ROKU_PRIVATE
u8 vendor_ie_filter[MAX_VENDOR_IE_NUM][MAX_VENDOR_IE_LEN];
u8 vendor_ie_len[MAX_VENDOR_IE_NUM];
u8 vendor_ie_filter_enable;
#endif
};
#define mlme_set_scan_to_timer(mlme, ms) \
do { \
/* RTW_INFO("%s set_scan_to_timer(%p, %d)\n", __FUNCTION__, (mlme), (ms)); */ \
_set_timer(&(mlme)->scan_to_timer, (ms)); \
} while (0)
#define rtw_mlme_set_auto_scan_int(adapter, ms) \
do { \
adapter->mlmepriv.auto_scan_int_ms = ms; \
} while (0)
#define set_assoc_timer(mlme, ms) \
do { \
/*RTW_INFO("%s set_assoc_timer(%p, %d)\n", __FUNCTION__, (mlme), (ms));*/ \
_set_timer(&(mlme)->assoc_timer, (ms)); \
} while (0)
#define cancel_assoc_timer(mlme) \
do { \
/*RTW_INFO("%s cancel_assoc_timer(%p)\n", __FUNCTION__, (mlme));*/ \
_cancel_timer_ex(&(mlme)->assoc_timer); \
} while (0)
#define RTW_AUTO_SCAN_REASON_UNSPECIFIED 0
#define RTW_AUTO_SCAN_REASON_2040_BSS BIT0
#define RTW_AUTO_SCAN_REASON_ACS BIT1
#define RTW_AUTO_SCAN_REASON_ROAM BIT2
#define RTW_AUTO_SCAN_REASON_MESH_OFFCH_CAND BIT3
void rtw_mlme_reset_auto_scan_int(_adapter *adapter, u8 *reason);
#ifdef CONFIG_AP_MODE
struct hostapd_priv {
_adapter *padapter;
#ifdef CONFIG_HOSTAPD_MLME
struct net_device *pmgnt_netdev;
struct usb_anchor anchored;
#endif
};
extern int hostapd_mode_init(_adapter *padapter);
extern void hostapd_mode_unload(_adapter *padapter);
#endif
extern void rtw_joinbss_event_prehandle(_adapter *adapter, u8 *pbuf, u16 status);
extern void rtw_joinbss_event_callback(_adapter *adapter, u8 *pbuf);
extern void rtw_stassoc_event_callback(_adapter *adapter, u8 *pbuf);
extern void rtw_stadel_event_callback(_adapter *adapter, u8 *pbuf);
extern void rtw_wmm_event_callback(_adapter *padapter, u8 *pbuf);
#ifdef CONFIG_IEEE80211W
void rtw_sta_timeout_event_callback(_adapter *adapter, u8 *pbuf);
#endif /* CONFIG_IEEE80211W */
extern void rtw_free_network_queue(_adapter *adapter, u8 isfreeall);
extern int rtw_init_mlme_priv(_adapter *adapter);/* (struct mlme_priv *pmlmepriv); */
extern void rtw_free_mlme_priv(struct mlme_priv *pmlmepriv);
extern sint rtw_select_and_join_from_scanned_queue(struct mlme_priv *pmlmepriv);
extern sint rtw_set_key(_adapter *adapter, struct security_priv *psecuritypriv, sint keyid, u8 set_tx, bool enqueue);
extern sint rtw_set_auth(_adapter *adapter, struct security_priv *psecuritypriv);
__inline static u8 *get_bssid(struct mlme_priv *pmlmepriv)
{
/* if sta_mode:pmlmepriv->cur_network.network.MacAddress=> bssid */
/* if adhoc_mode:pmlmepriv->cur_network.network.MacAddress=> ibss mac address */
return pmlmepriv->cur_network.network.MacAddress;
}
__inline static sint check_fwstate(struct mlme_priv *pmlmepriv, sint state)
{
if ((state == WIFI_NULL_STATE) &&
(pmlmepriv->fw_state == WIFI_NULL_STATE))
return _TRUE;
if (pmlmepriv->fw_state & state)
return _TRUE;
return _FALSE;
}
__inline static sint get_fwstate(struct mlme_priv *pmlmepriv)
{
return pmlmepriv->fw_state;
}
/*
* No Limit on the calling context,
* therefore set it to be the critical section...
*
* ### NOTE:#### (!!!!)
* MUST TAKE CARE THAT BEFORE CALLING THIS FUNC, YOU SHOULD HAVE LOCKED pmlmepriv->lock
*/
extern void rtw_mi_update_iface_status(struct mlme_priv *pmlmepriv, sint state);
static inline void set_fwstate(struct mlme_priv *pmlmepriv, sint state)
{
pmlmepriv->fw_state |= state;
rtw_mi_update_iface_status(pmlmepriv, state);
}
static inline void init_fwstate(struct mlme_priv *pmlmepriv, sint state)
{
pmlmepriv->fw_state = state;
rtw_mi_update_iface_status(pmlmepriv, state);
}
static inline void _clr_fwstate_(struct mlme_priv *pmlmepriv, sint state)
{
pmlmepriv->fw_state &= ~state;
rtw_mi_update_iface_status(pmlmepriv, state);
}
/*
* No Limit on the calling context,
* therefore set it to be the critical section...
*/
static inline void clr_fwstate(struct mlme_priv *pmlmepriv, sint state)
{
_rtw_spinlock_bh(&pmlmepriv->lock);
_clr_fwstate_(pmlmepriv, state);
_rtw_spinunlock_bh(&pmlmepriv->lock);
}
static inline void up_scanned_network(struct mlme_priv *pmlmepriv)
{
_rtw_spinlock_bh(&pmlmepriv->lock);
pmlmepriv->num_of_scanned++;
_rtw_spinunlock_bh(&pmlmepriv->lock);
}
u8 rtw_is_adapter_up(_adapter *padapter);
__inline static void down_scanned_network(struct mlme_priv *pmlmepriv)
{
_rtw_spinlock_bh(&pmlmepriv->lock);
pmlmepriv->num_of_scanned--;
_rtw_spinunlock_bh(&pmlmepriv->lock);
}
__inline static void set_scanned_network_val(struct mlme_priv *pmlmepriv, sint val)
{
_rtw_spinlock_bh(&pmlmepriv->lock);
pmlmepriv->num_of_scanned = val;
_rtw_spinunlock_bh(&pmlmepriv->lock);
}
extern u16 rtw_get_capability(WLAN_BSSID_EX *bss);
extern void rtw_disconnect_hdl_under_linked(_adapter *adapter, struct sta_info *psta, u8 free_assoc);
extern void rtw_generate_random_ibss(u8 *pibss);
struct wlan_network *_rtw_find_network(_queue *scanned_queue, const u8 *addr);
struct wlan_network *rtw_find_network(_queue *scanned_queue, const u8 *addr);
extern struct wlan_network *rtw_get_oldest_wlan_network(_queue *scanned_queue);
struct wlan_network *_rtw_find_same_network(_queue *scanned_queue, struct wlan_network *network);
struct wlan_network *rtw_find_same_network(_queue *scanned_queue, struct wlan_network *network);
extern void rtw_free_assoc_resources(_adapter *adapter, u8 lock_scanned_queue);
extern void rtw_indicate_disconnect(_adapter *adapter, u16 reason, u8 locally_generated);
extern void rtw_indicate_connect(_adapter *adapter);
void rtw_indicate_scan_done(_adapter *padapter, bool aborted);
u32 rtw_join_abort_timeout(_adapter *adapter, u32 timeout_ms);
int rtw_cached_pmkid(_adapter *adapter, u8 *bssid);
int rtw_rsn_sync_pmkid(_adapter *adapter, u8 *ie, uint ie_len, int i_ent);
extern int rtw_restruct_sec_ie(_adapter *adapter, u8 *out_ie);
#ifdef CONFIG_WMMPS_STA
void rtw_uapsd_use_default_setting(_adapter *padapter);
bool rtw_is_wmmps_mode(_adapter *padapter);
#endif /* CONFIG_WMMPS_STA */
extern int rtw_restruct_wmm_ie(_adapter *adapter, u8 *in_ie, u8 *out_ie, uint in_len, uint initial_out_len);
extern void rtw_init_registrypriv_dev_network(_adapter *adapter);
extern void rtw_update_registrypriv_dev_network(_adapter *adapter);
extern void rtw_get_encrypt_decrypt_from_registrypriv(_adapter *adapter);
extern void rtw_join_timeout_handler(void *ctx);
extern void rtw_iface_dynamic_check_handlder(struct _ADAPTER *a);
#ifdef CONFIG_CMD_GENERAL
void rtw_core_watchdog_sw_hdlr(void *drv_priv);
void rtw_core_watchdog_hw_hdlr(void *drv_priv);
#else
extern int rtw_dynamic_check_handlder(void *ctx, void* param, bool discard);
#endif
#if 0 /*#ifdef CONFIG_CORE_DM_CHK_TIMER*/
extern void rtw_dynamic_check_timer_handlder(void *ctx);
extern void rtw_iface_dynamic_check_timer_handlder(_adapter *adapter);
#endif
void rtw_free_mlme_priv_ie_data(struct mlme_priv *pmlmepriv);
#define MLME_BEACON_IE 0
#define MLME_PROBE_REQ_IE 1
#define MLME_PROBE_RESP_IE 2
#define MLME_GO_PROBE_RESP_IE 3
#define MLME_ASSOC_REQ_IE 4
#define MLME_ASSOC_RESP_IE 5
#if defined(CONFIG_WFD) && defined(CONFIG_IOCTL_CFG80211)
int rtw_mlme_update_wfd_ie_data(struct mlme_priv *mlme, u8 type, u8 *ie, u32 ie_len);
#endif
/* extern struct wlan_network* _rtw_dequeue_network(_queue *queue); */
extern struct wlan_network *_rtw_alloc_network(struct mlme_priv *pmlmepriv);
extern void _rtw_free_network(struct mlme_priv *pmlmepriv, struct wlan_network *pnetwork, u8 isfreeall);
extern void _rtw_free_network_nolock(struct mlme_priv *pmlmepriv, struct wlan_network *pnetwork);
extern void _rtw_free_network_queue(_adapter *padapter, u8 isfreeall);
extern sint rtw_if_up(_adapter *padapter);
sint rtw_linked_check(_adapter *padapter);
u8 *rtw_get_capability_from_ie(u8 *ie);
u8 *rtw_get_timestampe_from_ie(u8 *ie);
u8 *rtw_get_beacon_interval_from_ie(u8 *ie);
void rtw_joinbss_reset(_adapter *padapter);
#ifdef CONFIG_80211N_HT
void rtw_ht_get_dft_setting(_adapter *padapter,
struct protocol_cap_t *dft_proto_cap, struct role_cap_t *dft_cap);
void rtw_ht_use_default_setting(_adapter *padapter);
void rtw_build_wmm_ie_ht(_adapter *padapter, u8 *out_ie, uint *pout_len);
unsigned int rtw_restructure_ht_ie(_adapter *padapter, u8 *in_ie, u8 *out_ie, uint in_len, uint *pout_len, u8 channel, struct country_chplan *req_chplan);
void rtw_update_ht_cap(_adapter *padapter, u8 *pie, uint ie_len, u8 channel);
void rtw_issue_addbareq_cmd(_adapter *padapter, struct xmit_frame *pxmitframe, u8 issue_when_busy);
#endif
void rtw_append_extended_cap(_adapter *padapter, u8 *out_ie, uint *pout_len);
int rtw_is_same_ibss(_adapter *adapter, struct wlan_network *pnetwork);
int is_same_network(WLAN_BSSID_EX *src, WLAN_BSSID_EX *dst);
#ifdef CONFIG_LAYER2_ROAMING
#define rtw_roam_flags(adapter) ((adapter)->mlmepriv.roam_flags)
#define rtw_chk_roam_flags(adapter, flags) ((adapter)->mlmepriv.roam_flags & flags)
#define rtw_clr_roam_flags(adapter, flags) \
do { \
((adapter)->mlmepriv.roam_flags &= ~flags); \
} while (0)
#define rtw_set_roam_flags(adapter, flags) \
do { \
((adapter)->mlmepriv.roam_flags |= flags); \
} while (0)
#define rtw_assign_roam_flags(adapter, flags) \
do { \
((adapter)->mlmepriv.roam_flags = flags); \
} while (0)
void _rtw_roaming(_adapter *adapter, struct wlan_network *tgt_network);
void rtw_roaming(_adapter *adapter, struct wlan_network *tgt_network);
void rtw_set_to_roam(_adapter *adapter, u8 to_roam);
u8 rtw_dec_to_roam(_adapter *adapter);
u8 rtw_to_roam(_adapter *adapter);
int rtw_select_roaming_candidate(struct mlme_priv *pmlmepriv);
#else
#define rtw_roam_flags(adapter) 0
#define rtw_chk_roam_flags(adapter, flags) 0
#define rtw_clr_roam_flags(adapter, flags) do {} while (0)
#define rtw_set_roam_flags(adapter, flags) do {} while (0)
#define rtw_assign_roam_flags(adapter, flags) do {} while (0)
#define _rtw_roaming(adapter, tgt_network) do {} while (0)
#define rtw_roaming(adapter, tgt_network) do {} while (0)
#define rtw_set_to_roam(adapter, to_roam) do {} while (0)
#define rtw_dec_to_roam(adapter) 0
#define rtw_to_roam(adapter) 0
#define rtw_select_roaming_candidate(mlme) _FAIL
#endif /* CONFIG_LAYER2_ROAMING */
bool rtw_adjust_chbw(_adapter *adapter, u8 req_ch, u8 *req_bw, u8 *req_offset);
struct sta_media_status_rpt_cmd_parm {
struct sta_info *sta;
bool connected;
};
#ifdef CONFIG_RTW_MULTI_AP
void rtw_map_config_monitor_act_non(_adapter *adapter);
void rtw_map_config_monitor(_adapter *adapter, u8 self_act);
void rtw_unassoc_sta_set_mode(_adapter *adapter, u8 stype, u8 mode);
bool rtw_unassoc_sta_src_chk(_adapter *adapter, u8 stype);
void dump_unassoc_sta(void *sel, _adapter *adapter);
void rtw_del_unassoc_sta_queue(_adapter *adapter);
void rtw_del_unassoc_sta(_adapter *adapter, u8 *addr);
void rtw_rx_add_unassoc_sta(_adapter *adapter, u8 stype, u8 *addr, s8 recv_signal_power);
void rtw_add_interested_unassoc_sta(_adapter *adapter, u8 *addr);
void rtw_undo_interested_unassoc_sta(_adapter *adapter, u8 *addr);
void rtw_undo_all_interested_unassoc_sta(_adapter *adapter);
u8 rtw_search_unassoc_sta(_adapter *adapter, u8 *addr, struct unassoc_sta_info *ret_sta);
#endif
void rtw_sta_media_status_rpt(_adapter *adapter, struct sta_info *sta, bool connected);
u8 rtw_sta_media_status_rpt_cmd(_adapter *adapter, struct sta_info *sta, bool connected);
void rtw_sta_media_status_rpt_cmd_hdl(_adapter *adapter, struct sta_media_status_rpt_cmd_parm *parm);
void rtw_sta_traffic_info(void *sel, _adapter *adapter);
#define GET_ARP_HTYPE(_arp) BE_BITS_TO_2BYTE(((u8 *)(_arp)) + 0, 0, 16)
#define GET_ARP_PTYPE(_arp) BE_BITS_TO_2BYTE(((u8 *)(_arp)) + 2, 0, 16)
#define GET_ARP_HLEN(_arp) BE_BITS_TO_1BYTE(((u8 *)(_arp)) + 4, 0, 8)
#define GET_ARP_PLEN(_arp) BE_BITS_TO_1BYTE(((u8 *)(_arp)) + 5, 0, 8)
#define GET_ARP_OPER(_arp) BE_BITS_TO_2BYTE(((u8 *)(_arp)) + 6, 0, 16)
#define SET_ARP_HTYPE(_arp, _val) SET_BITS_TO_BE_2BYTE(((u8 *)(_arp)) + 0, 0, 16, _val)
#define SET_ARP_PTYPE(_arp, _val) SET_BITS_TO_BE_2BYTE(((u8 *)(_arp)) + 2, 0, 16, _val)
#define SET_ARP_HLEN(_arp, _val) SET_BITS_TO_BE_1BYTE(((u8 *)(_arp)) + 4, 0, 8, _val)
#define SET_ARP_PLEN(_arp, _val) SET_BITS_TO_BE_1BYTE(((u8 *)(_arp)) + 5, 0, 8, _val)
#define SET_ARP_OPER(_arp, _val) SET_BITS_TO_BE_2BYTE(((u8 *)(_arp)) + 6, 0, 16, _val)
#define ARP_SHA(_arp, _hlen, _plen) (((u8 *)(_arp)) + 8)
#define ARP_SPA(_arp, _hlen, _plen) (((u8 *)(_arp)) + 8 + (_hlen))
#define ARP_THA(_arp, _hlen, _plen) (((u8 *)(_arp)) + 8 + (_hlen) + (_plen))
#define ARP_TPA(_arp, _hlen, _plen) (((u8 *)(_arp)) + 8 + 2 * (_hlen) + (_plen))
#define ARP_SENDER_MAC_ADDR(_arp) ARP_SHA(_arp, ETH_ALEN, RTW_IP_ADDR_LEN)
#define ARP_SENDER_IP_ADDR(_arp) ARP_SPA(_arp, ETH_ALEN, RTW_IP_ADDR_LEN)
#define ARP_TARGET_MAC_ADDR(_arp) ARP_THA(_arp, ETH_ALEN, RTW_IP_ADDR_LEN)
#define ARP_TARGET_IP_ADDR(_arp) ARP_TPA(_arp, ETH_ALEN, RTW_IP_ADDR_LEN)
#define GET_ARP_SENDER_MAC_ADDR(_arp, _val) _rtw_memcpy(_val, ARP_SENDER_MAC_ADDR(_arp), ETH_ALEN)
#define GET_ARP_SENDER_IP_ADDR(_arp, _val) _rtw_memcpy(_val, ARP_SENDER_IP_ADDR(_arp), RTW_IP_ADDR_LEN)
#define GET_ARP_TARGET_MAC_ADDR(_arp, _val) _rtw_memcpy(_val, ARP_TARGET_MAC_ADDR(_arp), ETH_ALEN)
#define GET_ARP_TARGET_IP_ADDR(_arp, _val) _rtw_memcpy(_val, ARP_TARGET_IP_ADDR(_arp), RTW_IP_ADDR_LEN)
#define SET_ARP_SENDER_MAC_ADDR(_arp, _val) _rtw_memcpy(ARP_SENDER_MAC_ADDR(_arp), _val, ETH_ALEN)
#define SET_ARP_SENDER_IP_ADDR(_arp, _val) _rtw_memcpy(ARP_SENDER_IP_ADDR(_arp), _val, RTW_IP_ADDR_LEN)
#define SET_ARP_TARGET_MAC_ADDR(_arp, _val) _rtw_memcpy(ARP_TARGET_MAC_ADDR(_arp), _val, ETH_ALEN)
#define SET_ARP_TARGET_IP_ADDR(_arp, _val) _rtw_memcpy(ARP_TARGET_IP_ADDR(_arp), _val, RTW_IP_ADDR_LEN)
void dump_arp_pkt(void *sel, u8 *da, u8 *sa, u8 *arp, bool tx);
#define IPV4_SRC(_iphdr) (((u8 *)(_iphdr)) + 12)
#define IPV4_DST(_iphdr) (((u8 *)(_iphdr)) + 16)
#define GET_IPV4_IHL(_iphdr) BE_BITS_TO_1BYTE(((u8 *)(_iphdr)) + 0, 0, 4)
#define GET_IPV4_PROTOCOL(_iphdr) BE_BITS_TO_1BYTE(((u8 *)(_iphdr)) + 9, 0, 8)
#define GET_IPV4_SRC(_iphdr) BE_BITS_TO_4BYTE(((u8 *)(_iphdr)) + 12, 0, 32)
#define GET_IPV4_DST(_iphdr) BE_BITS_TO_4BYTE(((u8 *)(_iphdr)) + 16, 0, 32)
#define GET_UDP_SRC(_udphdr) BE_BITS_TO_2BYTE(((u8 *)(_udphdr)) + 0, 0, 16)
#define GET_UDP_DST(_udphdr) BE_BITS_TO_2BYTE(((u8 *)(_udphdr)) + 2, 0, 16)
#define GET_UDP_SIG1(_udphdr) BE_BITS_TO_1BYTE(((u8 *)(_udphdr)) + 8, 0, 8)
#define GET_UDP_SIG2(_udphdr) BE_BITS_TO_1BYTE(((u8 *)(_udphdr)) + 23, 0, 8)
#define TCP_SRC(_tcphdr) (((u8 *)(_tcphdr)) + 0)
#define TCP_DST(_tcphdr) (((u8 *)(_tcphdr)) + 2)
#define GET_TCP_SRC(_tcphdr) BE_BITS_TO_2BYTE(((u8 *)(_tcphdr)) + 0, 0, 16)
#define GET_TCP_DST(_tcphdr) BE_BITS_TO_2BYTE(((u8 *)(_tcphdr)) + 2, 0, 16)
#define GET_TCP_SEQ(_tcphdr) BE_BITS_TO_4BYTE(((u8 *)(_tcphdr)) + 4, 0, 32)
#define GET_TCP_ACK_SEQ(_tcphdr) BE_BITS_TO_4BYTE(((u8 *)(_tcphdr)) + 8, 0, 32)
#define GET_TCP_DOFF(_tcphdr) BE_BITS_TO_1BYTE(((u8 *)(_tcphdr)) + 12, 4, 4)
#define GET_TCP_FIN(_tcphdr) BE_BITS_TO_1BYTE(((u8 *)(_tcphdr)) + 13, 0, 1)
#define GET_TCP_SYN(_tcphdr) BE_BITS_TO_1BYTE(((u8 *)(_tcphdr)) + 13, 1, 1)
#define GET_TCP_RST(_tcphdr) BE_BITS_TO_1BYTE(((u8 *)(_tcphdr)) + 13, 2, 1)
#define GET_TCP_PSH(_tcphdr) BE_BITS_TO_1BYTE(((u8 *)(_tcphdr)) + 13, 3, 1)
#define GET_TCP_ACK(_tcphdr) BE_BITS_TO_1BYTE(((u8 *)(_tcphdr)) + 13, 4, 1)
#define GET_TCP_URG(_tcphdr) BE_BITS_TO_1BYTE(((u8 *)(_tcphdr)) + 13, 5, 1)
#define GET_TCP_ECE(_tcphdr) BE_BITS_TO_1BYTE(((u8 *)(_tcphdr)) + 13, 6, 1)
#define GET_TCP_CWR(_tcphdr) BE_BITS_TO_1BYTE(((u8 *)(_tcphdr)) + 13, 7, 1)
#ifdef CONFIG_STA_CMD_DISPR
enum rtw_phl_status rtw_connect_cmd(struct _ADAPTER *a,
struct _WLAN_BSSID_EX *network);
void rtw_connect_abort(struct _ADAPTER *a);
int rtw_connect_abort_wait(struct _ADAPTER *a);
void rtw_connect_req_free(struct _ADAPTER *a);
void rtw_connect_req_init(struct _ADAPTER *a);
enum rtw_phl_status rtw_connect_disconnect_prepare(struct _ADAPTER *a);
enum rtw_phl_status rtw_disconnect_cmd(struct _ADAPTER *a,
struct cmd_obj *pcmd);
int rtw_disconnect_abort_wait(struct _ADAPTER *a);
void rtw_disconnect_req_free(struct _ADAPTER *a);
void rtw_disconnect_req_init(struct _ADAPTER *a);
#endif /* CONFIG_STA_CMD_DISPR */
#endif /* __RTL871X_MLME_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_mlme.h
|
C
|
agpl-3.0
| 38,440
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_MLME_EXT_H_
#define __RTW_MLME_EXT_H_
/* Commented by Albert 20101105
* Increase the SURVEY_TO value from 100 to 150 ( 100ms to 150ms )
* The Realtek 8188CE SoftAP will spend around 100ms to send the probe response after receiving the probe request.
* So, this driver tried to extend the dwell time for each scanning channel.
* This will increase the chance to receive the probe response from SoftAP. */
#define SURVEY_TO (100) /*scan_ch_ms - ms*/
#define REAUTH_TO (300) /* (50) */
#define REASSOC_TO (300) /* (50) */
/* #define DISCONNECT_TO (3000) */
#define ADDBA_TO (2000)
#define LINKED_TO (1) /* unit:2 sec, 1x2 = 2 sec */
#define REAUTH_LIMIT (4)
#define REASSOC_LIMIT (4)
#define READDBA_LIMIT (2)
#ifdef CONFIG_GSPI_HCI
#define ROAMING_LIMIT 5
#else
#define ROAMING_LIMIT 8
#endif
/*net_type, pmlmeinfo->state, pstat->state*/
#define _HW_STATE_NOLINK_ 0x00
#define _HW_STATE_ADHOC_ 0x01
#define _HW_STATE_STATION_ 0x02
#define _HW_STATE_AP_ 0x03
#define _HW_STATE_MONITOR_ 0x04
#define WIFI_FW_NULL_STATE _HW_STATE_NOLINK_
#define WIFI_FW_STATION_STATE _HW_STATE_STATION_
#define WIFI_FW_AP_STATE _HW_STATE_AP_
#define WIFI_FW_ADHOC_STATE _HW_STATE_ADHOC_
#define WIFI_FW_PRE_LINK 0x00000800
#define WIFI_FW_AUTH_NULL 0x00000100
#define WIFI_FW_AUTH_STATE 0x00000200
#define WIFI_FW_AUTH_SUCCESS 0x00000400
#define WIFI_FW_ASSOC_STATE 0x00002000
#define WIFI_FW_ASSOC_SUCCESS 0x00004000
#define WIFI_FW_LINKING_STATE (WIFI_FW_AUTH_NULL | WIFI_FW_AUTH_STATE | WIFI_FW_AUTH_SUCCESS | WIFI_FW_ASSOC_STATE)
#define _1M_RATE_ 0
#define _2M_RATE_ 1
#define _5M_RATE_ 2
#define _11M_RATE_ 3
#define _6M_RATE_ 4
#define _9M_RATE_ 5
#define _12M_RATE_ 6
#define _18M_RATE_ 7
#define _24M_RATE_ 8
#define _36M_RATE_ 9
#define _48M_RATE_ 10
#define _54M_RATE_ 11
/********************************************************
MCS rate definitions
*********************************************************/
#define MCS_RATE_1R (0x000000ff)
#define MCS_RATE_2R (0x0000ffff)
#define MCS_RATE_3R (0x00ffffff)
#define MCS_RATE_4R (0xffffffff)
#define MCS_RATE_2R_13TO15_OFF (0x00001fff)
extern unsigned char RTW_WPA_OUI[];
extern unsigned char WMM_OUI[];
extern unsigned char WPS_OUI[];
extern unsigned char WFD_OUI[];
extern unsigned char P2P_OUI[];
extern unsigned char MULTI_AP_OUI[];
extern unsigned char WMM_INFO_OUI[];
extern unsigned char WMM_PARA_OUI[];
#if defined(ROKU_PRIVATE) && defined(CONFIG_P2P)
extern int rtw_go_hidden_ssid_mode;
enum {
MIRACAST = 0,
PAIRING_MODE = 1,
CAPTIVE_PORTAL = 2,
};
#define ALL_HIDE_SSID 0xff
#define MIRACAST_UNHIDE_SSID 0xfe
#endif
typedef struct _RT_CHANNEL_PLAN {
unsigned char Channel[MAX_CHANNEL_NUM];
unsigned char Len;
} RT_CHANNEL_PLAN, *PRT_CHANNEL_PLAN;
typedef enum _HT_IOT_PEER {
HT_IOT_PEER_UNKNOWN = 0,
HT_IOT_PEER_REALTEK = 1,
HT_IOT_PEER_REALTEK_92SE = 2,
HT_IOT_PEER_BROADCOM = 3,
HT_IOT_PEER_RALINK = 4,
HT_IOT_PEER_ATHEROS = 5,
HT_IOT_PEER_CISCO = 6,
HT_IOT_PEER_MERU = 7,
HT_IOT_PEER_MARVELL = 8,
HT_IOT_PEER_REALTEK_SOFTAP = 9,/* peer is RealTek SOFT_AP, by Bohn, 2009.12.17 */
HT_IOT_PEER_SELF_SOFTAP = 10, /* Self is SoftAP */
HT_IOT_PEER_AIRGO = 11,
HT_IOT_PEER_INTEL = 12,
HT_IOT_PEER_RTK_APCLIENT = 13,
HT_IOT_PEER_REALTEK_81XX = 14,
HT_IOT_PEER_REALTEK_WOW = 15,
HT_IOT_PEER_REALTEK_JAGUAR_CBVAP = 16,
HT_IOT_PEER_REALTEK_JAGUAR_CCVAP = 17,
HT_IOT_PEER_MAX = 18
} HT_IOT_PEER_E, *PHTIOT_PEER_E;
typedef enum _RT_HT_INF0_CAP {
RT_HT_CAP_USE_TURBO_AGGR = 0x01,
RT_HT_CAP_USE_LONG_PREAMBLE = 0x02,
RT_HT_CAP_USE_AMPDU = 0x04,
RT_HT_CAP_USE_WOW = 0x8,
RT_HT_CAP_USE_SOFTAP = 0x10,
RT_HT_CAP_USE_92SE = 0x20,
RT_HT_CAP_USE_88C_92C = 0x40,
RT_HT_CAP_USE_AP_CLIENT_MODE = 0x80, /* AP team request to reserve this bit, by Emily */
} RT_HT_INF0_CAPBILITY, *PRT_HT_INF0_CAPBILITY;
typedef enum _RT_HT_INF1_CAP {
RT_HT_CAP_USE_VIDEO_CLIENT = 0x01,
RT_HT_CAP_USE_JAGUAR_CBV = 0x02,
RT_HT_CAP_USE_JAGUAR_CCV = 0x04,
} RT_HT_INF1_CAPBILITY, *PRT_HT_INF1_CAPBILITY;
struct mlme_handler {
unsigned int num;
char *str;
unsigned int (*func)(_adapter *padapter, union recv_frame *precv_frame);
};
struct action_handler {
unsigned int num;
char *str;
unsigned int (*func)(_adapter *padapter, union recv_frame *precv_frame);
};
#ifdef CONFIG_TDLS
enum TDLS_option {
TDLS_ESTABLISHED = 1,
TDLS_ISSUE_PTI,
TDLS_CH_SW_RESP,
TDLS_CH_SW_PREPARE,
TDLS_CH_SW_START,
TDLS_CH_SW_TO_OFF_CHNL,
TDLS_CH_SW_TO_BASE_CHNL_UNSOLICITED,
TDLS_CH_SW_TO_BASE_CHNL,
TDLS_CH_SW_END_TO_BASE_CHNL,
TDLS_CH_SW_END,
TDLS_RS_RCR,
TDLS_TEARDOWN_STA,
TDLS_TEARDOWN_STA_NO_WAIT,
TDLS_TEARDOWN_STA_LOCALLY,
TDLS_TEARDOWN_STA_LOCALLY_POST,
maxTDLS,
};
#endif /* CONFIG_TDLS */
/*
* Usage:
* When one iface acted as AP mode and the other iface is STA mode and scanning,
* it should switch back to AP's operating channel periodically.
* Parameters info:
* When the driver scanned RTW_SCAN_NUM_OF_CH channels, it would switch back to AP's operating channel for
* RTW_BACK_OP_CH_MS milliseconds.
* Example:
* For chip supports 2.4G + 5GHz and AP mode is operating in channel 1,
* RTW_SCAN_NUM_OF_CH is 8, RTW_BACK_OP_CH_MS is 300
* When it's STA mode gets set_scan command,
* it would
* 1. Doing the scan on channel 1.2.3.4.5.6.7.8
* 2. Back to channel 1 for 300 milliseconds
* 3. Go through doing site survey on channel 9.10.11.36.40.44.48.52
* 4. Back to channel 1 for 300 milliseconds
* 5. ... and so on, till survey done.
*/
#if defined(CONFIG_ATMEL_RC_PATCH)
#define RTW_SCAN_NUM_OF_CH 2
#define RTW_BACK_OP_CH_MS 200
#else
#define RTW_SCAN_NUM_OF_CH 3
#define RTW_BACK_OP_CH_MS 400
#endif
#define RTW_IP_ADDR_LEN 4
#define RTW_IPv6_ADDR_LEN 16
struct mlme_ext_info {
u32 state;
u32 reauth_count;
u32 reassoc_count;
u32 link_count;
u32 auth_seq;
u32 auth_algo; /* 802.11 auth, could be open, shared, auto */
u16 auth_status;
u32 authModeToggle;
u32 enc_algo;/* encrypt algorithm; */
u32 key_index; /* this is only valid for legendary wep, 0~3 for key id. */
u32 iv;
u8 chg_txt[128];
u16 bcn_interval;
u16 capability;
u8 assoc_AP_vendor;
u8 slotTime;
u8 preamble_mode;
u8 WMM_enable;
u8 ERP_enable;
u8 ERP_IE;
u8 HT_enable;
u8 HT_caps_enable;
u8 HT_info_enable;
u8 HT_protection;
u8 SM_PS;
u8 agg_enable_bitmap;
u8 ADDBA_retry_count;
u8 candidate_tid_bitmap;
u8 dialogToken;
/* Accept ADDBA Request */
BOOLEAN bAcceptAddbaReq;
u8 bwmode_updated;
u8 hidden_ssid_mode;
u8 VHT_enable;
u8 HE_enable;
u8 ip_addr[RTW_IP_ADDR_LEN];
u8 ip6_addr[RTW_IPv6_ADDR_LEN];
struct ADDBA_request ADDBA_req;
struct WMM_para_element WMM_param;
struct HT_caps_element HT_caps;
struct HT_info_element HT_info;
WLAN_BSSID_EX network;/* join network or bss_network, if in ap mode, it is the same to cur_network.network */
#ifdef ROKU_PRIVATE
/*infra mode, store supported rates from AssocRsp*/
NDIS_802_11_RATES_EX SupportedRates_infra_ap;
u8 ht_vht_received;/*ht_vht_received used to show debug msg BIT(0):HT BIT(1):VHT */
#endif /* ROKU_PRIVATE */
};
enum {
RTW_CHF_NO_IR = BIT0,
RTW_CHF_DFS = BIT1,
RTW_CHF_LONG_CAC = BIT2,
RTW_CHF_NON_OCP = BIT3,
RTW_CHF_NO_HT40U = BIT4,
RTW_CHF_NO_HT40L = BIT5,
RTW_CHF_NO_80MHZ = BIT6,
RTW_CHF_NO_160MHZ = BIT7,
};
/* The channel information about this channel including joining, scanning, and power constraints. */
typedef struct _RT_CHANNEL_INFO {
u8 band; /* enum band_type */
u8 ChannelNum; /* The channel number. */
/*
* Bitmap and its usage:
* RTW_CHF_NO_IR, RTW_CHF_DFS: is used to check for status
* RTW_CHF_NO_HT40U, RTW_CHF_NO_HT40L, RTW_CHF_NO_80MHZ, RTW_CHF_NO_160MHZ: extra bandwidth limitation (ex: from regulatory)
* RTW_CHF_NON_OCP: is only used to record if event is reported, status check is still done using non_ocp_end_time
*/
u8 flags;
/* u16 ScanPeriod; */ /* Listen time in millisecond in this channel. */
/* s32 MaxTxPwrDbm; */ /* Max allowed tx power. */
/* u32 ExInfo; */ /* Extended Information for this channel. */
#ifdef CONFIG_FIND_BEST_CHANNEL
u32 rx_count;
#endif
#if CONFIG_IEEE80211_BAND_5GHZ && CONFIG_DFS
#ifdef CONFIG_DFS_MASTER
systime non_ocp_end_time;
#endif
#endif
u8 hidden_bss_cnt; /* per scan count */
#ifdef CONFIG_IOCTL_CFG80211
void *os_chan;
#endif
} RT_CHANNEL_INFO, *PRT_CHANNEL_INFO;
#define CAC_TIME_MS (60*1000)
#define CAC_TIME_CE_MS (10*60*1000)
#define NON_OCP_TIME_MS (30*60*1000)
#if CONFIG_TXPWR_LIMIT
bool rtw_rfctl_is_current_txpwr_lmt(struct rf_ctl_t *rfctl, const char *name);
#endif
int rtw_rfctl_init(struct dvobj_priv *dvobj);
void rtw_rfctl_deinit(struct dvobj_priv *dvobj);
void rtw_rfctl_decide_init_chplan(struct rf_ctl_t *rfctl,
const char *hw_alpha2, u8 hw_chplan, u8 hw_chplan_6g, u8 hw_force_chplan);
void rtw_rfctl_chplan_init(struct dvobj_priv *dvobj);
bool rtw_rfctl_is_disable_sw_channel_plan(struct dvobj_priv *dvobj);
void rtw_rfctl_update_op_mode(struct rf_ctl_t *rfctl, u8 ifbmp_mod, u8 if_op);
bool rtw_rfctl_reg_allow_beacon_hint(struct rf_ctl_t *rfctl);
u8 rtw_rfctl_get_dfs_domain(struct rf_ctl_t *rfctl);
u8 rtw_rfctl_dfs_domain_unknown(struct rf_ctl_t *rfctl);
#ifdef CONFIG_DFS_MASTER
struct rf_ctl_t;
#define CH_IS_NON_OCP(rt_ch_info) (rtw_time_after((rt_ch_info)->non_ocp_end_time, rtw_get_current_time()))
bool rtw_is_cac_reset_needed(struct rf_ctl_t *rfctl, u8 ch, u8 bw, u8 offset);
bool _rtw_rfctl_overlap_radar_detect_ch(struct rf_ctl_t *rfctl, u8 ch, u8 bw, u8 offset);
bool rtw_rfctl_overlap_radar_detect_ch(struct rf_ctl_t *rfctl);
bool rtw_rfctl_is_tx_blocked_by_ch_waiting(struct rf_ctl_t *rfctl);
bool rtw_chset_is_chbw_non_ocp(RT_CHANNEL_INFO *ch_set, u8 ch, u8 bw, u8 offset);
bool rtw_chset_is_ch_non_ocp(RT_CHANNEL_INFO *ch_set, u8 ch);
bool rtw_chset_update_non_ocp(RT_CHANNEL_INFO *ch_set, u8 ch, u8 bw, u8 offset);
bool rtw_chset_update_non_ocp_ms(RT_CHANNEL_INFO *ch_set, u8 ch, u8 bw, u8 offset, int ms);
void rtw_chset_chk_non_ocp_finish(struct rf_ctl_t *rfctl);
u32 rtw_get_ch_waiting_ms(struct rf_ctl_t *rfctl, u8 ch, u8 bw, u8 offset, u32 *r_non_ocp_ms, u32 *r_cac_ms);
void rtw_reset_cac(struct rf_ctl_t *rfctl, u8 ch, u8 bw, u8 offset);
u32 rtw_force_stop_cac(struct rf_ctl_t *rfctl, u32 timeout_ms);
#else
#define CH_IS_NON_OCP(rt_ch_info) 0
#define rtw_chset_is_chbw_non_ocp(ch_set, ch, bw, offset) _FALSE
#define rtw_chset_is_ch_non_ocp(ch_set, ch) _FALSE
#define rtw_rfctl_is_tx_blocked_by_ch_waiting(rfctl) _FALSE
#endif
bool rtw_choose_shortest_waiting_ch(struct rf_ctl_t *rfctl, u8 sel_ch, u8 max_bw
, u8 *dec_ch, u8 *dec_bw, u8 *dec_offset
, u8 e_flags, u8 d_flags, u8 cur_ch, bool by_int_info, u8 mesh_only);
struct get_chplan_resp {
enum regd_src_t regd_src;
enum rtw_regd_inr regd_inr;
char alpha2[2];
u8 channel_plan;
#if CONFIG_IEEE80211_BAND_6GHZ
u8 chplan_6g;
#endif
#if CONFIG_TXPWR_LIMIT
const char *txpwr_lmt_name[BAND_MAX];
#endif
u8 edcca_mode_2g;
#if CONFIG_IEEE80211_BAND_5GHZ
u8 edcca_mode_5g;
#endif
#if CONFIG_IEEE80211_BAND_6GHZ
u8 edcca_mode_6g;
#endif
#ifdef CONFIG_DFS_MASTER
u8 dfs_domain;
#endif
u8 proto_en;
u8 chset_num;
RT_CHANNEL_INFO chset[0];
};
void dump_cur_country(void *sel, struct rf_ctl_t *rfctl);
void dump_cur_chset(void *sel, struct rf_ctl_t *rfctl);
int rtw_chset_search_ch(RT_CHANNEL_INFO *ch_set, const u32 ch);
int rtw_chset_search_ch_by_band(RT_CHANNEL_INFO *ch_set, enum band_type band, const u32 ch);
u8 rtw_chset_is_chbw_valid(RT_CHANNEL_INFO *ch_set, u8 ch, u8 bw, u8 offset
, bool allow_primary_passive, bool allow_passive);
void rtw_chset_sync_chbw(RT_CHANNEL_INFO *ch_set, u8 *req_ch, u8 *req_bw, u8 *req_offset
, u8 *g_ch, u8 *g_bw, u8 *g_offset, bool allow_primary_passive, bool allow_passive);
bool rtw_mlme_band_check(_adapter *adapter, const u32 ch);
enum {
BAND_24G = BIT0,
BAND_5G = BIT1,
};
void RTW_SET_SCAN_BAND_SKIP(_adapter *padapter, int skip_band);
void RTW_CLR_SCAN_BAND_SKIP(_adapter *padapter, int skip_band);
int RTW_GET_SCAN_BAND_SKIP(_adapter *padapter);
bool rtw_mlme_ignore_chan(_adapter *adapter, const u32 ch);
/* P2P_MAX_REG_CLASSES - Maximum number of regulatory classes */
#define P2P_MAX_REG_CLASSES 10
/* P2P_MAX_REG_CLASS_CHANNELS - Maximum number of channels per regulatory class */
#define P2P_MAX_REG_CLASS_CHANNELS 20
/* struct p2p_channels - List of supported channels */
struct p2p_channels {
/* struct p2p_reg_class - Supported regulatory class */
struct p2p_reg_class {
/* reg_class - Regulatory class (IEEE 802.11-2007, Annex J) */
u8 reg_class;
/* channel - Supported channels */
u8 channel[P2P_MAX_REG_CLASS_CHANNELS];
/* channels - Number of channel entries in use */
size_t channels;
} reg_class[P2P_MAX_REG_CLASSES];
/* reg_classes - Number of reg_class entries in use */
size_t reg_classes;
};
struct p2p_oper_class_map {
enum hw_mode {IEEE80211G, IEEE80211A} mode;
u8 op_class;
u8 min_chan;
u8 max_chan;
u8 inc;
enum { BW20, BW40PLUS, BW40MINUS } bw;
};
struct mlme_ext_priv {
_adapter *padapter;
ATOMIC_T event_seq;
u16 mgnt_seq;
#ifdef CONFIG_IEEE80211W
u16 sa_query_seq;
#endif
/* struct fw_priv fwpriv; */
struct rtw_chan_def chandef;
unsigned char cur_wireless_mode; /* NETWORK_TYPE */
unsigned char basicrate[NumRates];
unsigned char datarate[NumRates];
#ifdef CONFIG_80211N_HT
unsigned char default_supported_mcs_set[16];
#endif
struct ss_res sitesurvey_res;
struct mlme_ext_info mlmext_info;/* for sta/adhoc mode, including current scanning/connecting/connected related info.
* for ap mode, network includes ap's cap_info */
/*_timer survey_timer;*/
_timer link_timer;
#ifdef CONFIG_RTW_80211R
_timer ft_link_timer;
_timer ft_roam_timer;
#endif
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
_timer tbtx_xmit_timer;
_timer tbtx_token_dispatch_timer;
#endif
#ifdef ROKU_PRIVATE
_timer find_remote_timer;
#ifdef CONFIG_P2P
_timer hide_ssid_timer;
#endif
#endif
systime last_scan_time;
u8 scan_abort;
bool scan_abort_to;
u8 join_abort;
u8 tx_rate; /* TXRATE when USERATE is set. */
u32 retry; /* retry for issue probereq */
u64 TSFValue;
u32 bcn_cnt;
u32 last_bcn_cnt;
u8 cur_bcn_cnt;/*2s*/
u8 dtim;/*DTIM Period*/
#ifdef DBG_RX_BCN
u8 tim[4];
#endif
#ifdef CONFIG_BCN_RECV_TIME
u16 bcn_rx_time;
#endif
#ifdef CONFIG_AP_MODE
unsigned char bstart_bss;
#endif
/* recv_decache check for Action_public frame */
u8 action_public_dialog_token;
u16 action_public_rxseq;
/* #ifdef CONFIG_ACTIVE_KEEP_ALIVE_CHECK */
u8 active_keep_alive_check;
/* #endif */
#ifdef DBG_FIXED_CHAN
u8 fixed_chan;
#endif
#ifdef CONFIG_SUPPORT_STATIC_SMPS
u8 ssmps_en;
u16 ssmps_tx_tp_th;/*Mbps*/
u16 ssmps_rx_tp_th;/*Mbps*/
#ifdef DBG_STATIC_SMPS
u8 ssmps_test;
u8 ssmps_test_en;
#endif
#endif
#ifdef CONFIG_CTRL_TXSS_BY_TP
u8 txss_ctrl_en;
u16 txss_tp_th;/*Mbps*/
u8 txss_tp_chk_cnt;/*unit 2s*/
bool txss_1ss;
#endif
u8 txss_bk;
#if CONFIG_DFS
_timer csa_timer;
#endif
};
struct support_rate_handler {
u8 rate;
bool basic;
bool existence;
};
static inline u8 check_mlmeinfo_state(struct mlme_ext_priv *plmeext, sint state)
{
if ((plmeext->mlmext_info.state & 0x03) == state)
return _TRUE;
return _FALSE;
}
#define mlmeext_msr(mlmeext) ((mlmeext)->mlmext_info.state & 0x03)
void init_mlme_default_rate_set(_adapter *padapter);
int init_mlme_ext_priv(_adapter *padapter);
int init_hw_mlme_ext(_adapter *padapter);
void free_mlme_ext_priv(struct mlme_ext_priv *pmlmeext);
extern struct xmit_frame *alloc_mgtxmitframe(struct xmit_priv *pxmitpriv);
struct xmit_frame *alloc_mgtxmitframe_once(struct xmit_priv *pxmitpriv);
void get_rate_set(_adapter *padapter, unsigned char *pbssrate, int *bssrate_len);
void set_mcs_rate_by_mask(u8 *mcs_set, u32 mask);
void UpdateBrateTbl(_adapter *padapter, u8 *mBratesOS);
void UpdateBrateTblForSoftAP(u8 *bssrateset, u32 bssratelen);
void change_band_update_ie(_adapter *padapter, WLAN_BSSID_EX *pnetwork, u8 ch);
void rtw_set_external_auth_status(_adapter *padapter, const void *data, int len);
void rtw_get_oper_chdef(_adapter *adapter, struct rtw_chan_def *chandef);
u8 rtw_get_oper_band(_adapter *adapter);
u8 rtw_get_oper_ch(_adapter *adapter);
u8 rtw_get_oper_bw(_adapter *adapter);
u8 rtw_get_oper_choffset(_adapter *adapter);
systime rtw_get_on_oper_ch_time(_adapter *adapter);
systime rtw_get_on_cur_ch_time(_adapter *adapter);
void set_channel_bwmode(_adapter *padapter,
unsigned char channel,
unsigned char channel_offset,
unsigned short bwmode,
u8 do_rfk);
void csa_timer_hdl(void *FunctionContext);
unsigned int decide_wait_for_beacon_timeout(unsigned int bcn_interval);
BOOLEAN IsLegal5GChannel(_adapter *adapter, u8 channel);
u8 collect_bss_info(_adapter *padapter, union recv_frame *precv_frame, WLAN_BSSID_EX *bssid);
void rtw_update_network(WLAN_BSSID_EX *dst, WLAN_BSSID_EX *src, _adapter *padapter, bool update_ie);
u8 *get_my_bssid(WLAN_BSSID_EX *pnetwork);
u16 get_beacon_interval(WLAN_BSSID_EX *bss);
int is_client_associated_to_ap(_adapter *padapter);
int is_client_associated_to_ibss(_adapter *padapter);
int is_IBSS_empty(_adapter *padapter);
unsigned char check_assoc_AP(u8 *pframe, uint len);
void get_assoc_AP_Vendor(char *vendor, u8 assoc_AP_vendor);
#ifdef CONFIG_RTS_FULL_BW
void rtw_parse_sta_vendor_ie_8812(_adapter *adapter, struct sta_info *sta, u8 *tlv_ies, u16 tlv_ies_len);
#endif/*CONFIG_RTS_FULL_BW*/
#ifdef CONFIG_80211AC_VHT
void get_vht_bf_cap(u8 *pframe, uint len, struct vht_bf_cap *bf_cap);
#endif
int WMM_param_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE);
#ifdef CONFIG_WFD
void rtw_process_wfd_ie(_adapter *adapter, u8 *ie, u8 ie_len, const char *tag);
void rtw_process_wfd_ies(_adapter *adapter, u8 *ies, u8 ies_len, const char *tag);
#endif
void WMMOnAssocRsp(_adapter *padapter);
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
u8 rtw_is_tbtx_capabilty(u8 *p, u8 len);
#endif
void HT_caps_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE);
#ifdef ROKU_PRIVATE
void HT_caps_handler_infra_ap(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE);
#endif
void HT_info_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE);
void HTOnAssocRsp(_adapter *padapter);
#ifdef ROKU_PRIVATE
void Supported_rate_infra_ap(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE);
void Extended_Supported_rate_infra_ap(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE);
#endif
void ERP_IE_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE);
void VCS_update(_adapter *padapter, struct sta_info *psta);
void update_ldpc_stbc_cap(struct sta_info *psta);
bool rtw_validate_value(u16 EID, u8 *p, u16 len);
bool is_hidden_ssid(char *ssid, int len);
bool hidden_ssid_ap(WLAN_BSSID_EX *snetwork);
void rtw_absorb_ssid_ifneed(_adapter *padapter, WLAN_BSSID_EX *bssid, u8 *pframe);
int rtw_get_bcn_keys(_adapter *adapter, u8 *pframe, u32 packet_len,
struct beacon_keys *recv_beacon);
int validate_beacon_len(u8 *pframe, uint len);
void rtw_dump_bcn_keys(void *sel, struct beacon_keys *recv_beacon);
int rtw_check_bcn_info(_adapter *adapter, u8 *pframe, u32 packet_len);
void update_beacon_info(_adapter *padapter, u8 *pframe, uint len, struct sta_info *psta);
#if CONFIG_DFS
void process_csa_ie(_adapter *padapter, u8 *ies, uint ies_len);
#endif
#ifdef CONFIG_80211D
bool rtw_iface_accept_country_ie(_adapter *adapter);
void process_country_ie(_adapter *adapter, u8 *ies, uint ies_len);
#endif
void update_capinfo(_adapter *adapter, u16 updateCap);
void update_wireless_mode(_adapter *padapter);
void update_tx_basic_rate(_adapter *padapter, u8 modulation);
void update_sta_basic_rate(struct sta_info *psta, u8 wireless_mode);
int rtw_ies_get_supported_rate(u8 *ies, uint ies_len, u8 *rate_set, u8 *rate_num);
/* for sta/adhoc mode */
void update_sta_info(_adapter *padapter, struct sta_info *psta);
void update_sta_ra_info(_adapter *padapter, struct sta_info *psta);
s8 rtw_get_sta_rx_nss(_adapter *adapter, struct sta_info *psta);
s8 rtw_get_sta_tx_nss(_adapter *adapter, struct sta_info *psta);
unsigned int update_basic_rate(unsigned char *ptn, unsigned int ptn_sz);
unsigned int update_supported_rate(unsigned char *ptn, unsigned int ptn_sz);
unsigned int receive_disconnect(_adapter *padapter, unsigned char *MacAddr, unsigned short reason, u8 locally_generated);
unsigned char get_highest_rate_idx(u64 mask);
unsigned char get_lowest_rate_idx_ex(u64 mask, int start_bit);
#define get_lowest_rate_idx(mask) get_lowest_rate_idx_ex(mask, 0)
u8 get_highest_bw_cap(u8 bwmode);
int support_short_GI(_adapter *padapter, struct HT_caps_element *pHT_caps, u8 bwmode);
unsigned int is_ap_in_tkip(_adapter *padapter);
unsigned int is_ap_in_wep(_adapter *padapter);
unsigned int should_forbid_n_rate(_adapter *padapter);
enum eap_type parsing_eapol_packet(_adapter *padapter, u8 *key_payload, struct sta_info *psta, u8 trx_type);
bool rtw_bmp_is_set(const u8 *bmp, u8 bmp_len, u8 id);
void rtw_bmp_set(u8 *bmp, u8 bmp_len, u8 id);
void rtw_bmp_clear(u8 *bmp, u8 bmp_len, u8 id);
bool rtw_bmp_not_empty(const u8 *bmp, u8 bmp_len);
bool rtw_bmp_not_empty_exclude_bit0(const u8 *bmp, u8 bmp_len);
#ifdef CONFIG_AP_MODE
bool rtw_tim_map_is_set(_adapter *padapter, const u8 *map, u8 id);
void rtw_tim_map_set(_adapter *padapter, u8 *map, u8 id);
void rtw_tim_map_clear(_adapter *padapter, u8 *map, u8 id);
bool rtw_tim_map_anyone_be_set(_adapter *padapter, const u8 *map);
bool rtw_tim_map_anyone_be_set_exclude_aid0(_adapter *padapter, const u8 *map);
#endif /* CONFIG_AP_MODE */
u32 report_join_res(_adapter *padapter, int aid_res, u16 status);
void report_survey_event(_adapter *padapter, union recv_frame *precv_frame);
void report_surveydone_event(_adapter *padapter, bool acs, u8 flags);
u32 report_del_sta_event(_adapter *padapter, unsigned char *MacAddr, unsigned short reason, bool enqueue, u8 locally_generated);
void report_add_sta_event(_adapter *padapter, unsigned char *MacAddr);
void report_wmm_edca_update(_adapter *padapter);
void beacon_timing_control(_adapter *padapter);
u8 chk_bmc_sleepq_cmd(_adapter *padapter);
extern u8 set_tx_beacon_cmd(_adapter *padapter, u8 flags);
unsigned int setup_beacon_frame(_adapter *padapter, unsigned char *beacon_frame);
void update_mgnt_tx_rate(_adapter *padapter, u8 rate);
void update_monitor_frame_attrib(_adapter *padapter, struct pkt_attrib *pattrib);
void update_mgntframe_attrib(_adapter *padapter, struct pkt_attrib *pattrib);
void update_mgntframe_attrib_addr(_adapter *padapter, struct xmit_frame *pmgntframe);
void dump_mgntframe(_adapter *padapter, struct xmit_frame *pmgntframe);
s32 dump_mgntframe_and_wait(_adapter *padapter, struct xmit_frame *pmgntframe, int timeout_ms);
s32 dump_mgntframe_and_wait_ack(_adapter *padapter, struct xmit_frame *pmgntframe);
s32 dump_mgntframe_and_wait_ack_timeout(_adapter *padapter, struct xmit_frame *pmgntframe, int timeout_ms);
#ifdef CONFIG_P2P
void issue_probersp_p2p(_adapter *padapter, unsigned char *da);
void issue_probereq_p2p(_adapter *padapter, u8 *da);
#endif /* CONFIG_P2P */
void issue_beacon(_adapter *padapter, int timeout_ms);
void issue_probersp(_adapter *padapter, unsigned char *da, u8 is_valid_p2p_probereq);
void _issue_assocreq(_adapter *padapter, u8 is_assoc);
void issue_assocreq(_adapter *padapter);
void issue_reassocreq(_adapter *padapter);
void issue_asocrsp(_adapter *padapter, unsigned short status, struct sta_info *pstat, int pkt_type);
void issue_auth(_adapter *padapter, struct sta_info *psta, unsigned short status);
void issue_probereq(_adapter *padapter, const NDIS_802_11_SSID *pssid, const u8 *da);
s32 issue_probereq_ex(_adapter *padapter, const NDIS_802_11_SSID *pssid, const u8 *da, u8 ch, bool append_wps, int try_cnt, int wait_ms);
int issue_nulldata(_adapter *padapter, unsigned char *da, unsigned int power_mode, int try_cnt, int wait_ms);
int issue_qos_nulldata(_adapter *padapter, unsigned char *da, u16 tid, u8 ps, int try_cnt, int wait_ms, u8 need_om);
int issue_deauth(_adapter *padapter, unsigned char *da, unsigned short reason);
int issue_deauth_ex(_adapter *padapter, u8 *da, unsigned short reason, int try_cnt, int wait_ms);
int issue_disassoc(_adapter *padapter, unsigned char *da, unsigned short reason);
void issue_action_spct_ch_switch(_adapter *padapter, u8 *ra, u8 new_ch, u8 ch_offset);
void issue_addba_req(_adapter *adapter, unsigned char *ra, u8 tid);
void issue_addba_rsp(_adapter *adapter, unsigned char *ra, u8 tid, u16 status,
u8 size, struct ADDBA_request *paddba_req);
u8 issue_addba_rsp_wait_ack(_adapter *adapter, unsigned char *ra, u8 tid,
u16 status, u8 size, struct ADDBA_request *paddba_req,
int try_cnt, int wait_ms);
void issue_del_ba(_adapter *adapter, unsigned char *ra, u8 tid, u16 reason, u8 initiator);
int issue_del_ba_ex(_adapter *adapter, unsigned char *ra, u8 tid, u16 reason, u8 initiator, int try_cnt, int wait_ms);
void issue_action_BSSCoexistPacket(_adapter *padapter);
#ifdef CONFIG_IEEE80211W
void issue_action_SA_Query(_adapter *padapter, unsigned char *raddr, unsigned char action, unsigned short tid, u8 key_type);
int issue_deauth_11w(_adapter *padapter, unsigned char *da, unsigned short reason, u8 key_type);
#endif /* CONFIG_IEEE80211W */
int issue_action_SM_PS(_adapter *padapter , unsigned char *raddr , u8 NewMimoPsMode);
int issue_action_SM_PS_wait_ack(_adapter *padapter, unsigned char *raddr, u8 NewMimoPsMode, int try_cnt, int wait_ms);
#ifdef ROKU_PRIVATE
int issue_action_find_remote(_adapter *padapter);
#endif
unsigned int send_delba_sta_tid(_adapter *adapter, u8 initiator, struct sta_info *sta, u8 tid, u8 force);
unsigned int send_delba_sta_tid_wait_ack(_adapter *adapter, u8 initiator, struct sta_info *sta, u8 tid, u8 force);
unsigned int send_delba(_adapter *padapter, u8 initiator, u8 *addr);
unsigned int send_beacon(_adapter *padapter);
void start_clnt_assoc(_adapter *padapter);
void start_clnt_auth(_adapter *padapter);
void start_clnt_join(_adapter *padapter);
void start_create_ibss(_adapter *padapter);
unsigned int OnAssocReq(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnAssocRsp(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnProbeReq(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnProbeRsp(_adapter *padapter, union recv_frame *precv_frame);
unsigned int DoReserved(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnBeacon(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnAtim(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnDisassoc(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnAuth(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnAuthClient(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnDeAuth(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnAction(_adapter *padapter, union recv_frame *precv_frame);
unsigned int on_action_spct(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnAction_qos(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnAction_dls(_adapter *padapter, union recv_frame *precv_frame);
#ifdef CONFIG_RTW_WNM
unsigned int on_action_wnm(_adapter *adapter, union recv_frame *rframe);
#endif
#define RX_AMPDU_ACCEPT_INVALID 0xFF
#define RX_AMPDU_SIZE_INVALID 0xFF
enum rx_ampdu_reason {
RX_AMPDU_DRV_FIXED = 1,
RX_AMPDU_BTCOEX = 2, /* not used, because BTCOEX has its own variable management */
RX_AMPDU_DRV_SCAN = 3,
};
u8 rtw_rx_ampdu_size(_adapter *adapter);
bool rtw_rx_ampdu_is_accept(_adapter *adapter);
bool rtw_rx_ampdu_set_size(_adapter *adapter, u8 size, u8 reason);
bool rtw_rx_ampdu_set_accept(_adapter *adapter, u8 accept, u8 reason);
u8 rx_ampdu_apply_sta_tid(_adapter *adapter, struct sta_info *sta, u8 tid, u8 accept, u8 size);
u8 rx_ampdu_size_sta_limit(_adapter *adapter, struct sta_info *sta);
u8 rx_ampdu_apply_sta(_adapter *adapter, struct sta_info *sta, u8 accept, u8 size);
u16 rtw_rx_ampdu_apply(_adapter *adapter);
unsigned int OnAction_back(_adapter *padapter, union recv_frame *precv_frame);
unsigned int on_action_public(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnAction_ft(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnAction_ht(_adapter *padapter, union recv_frame *precv_frame);
#ifdef CONFIG_IEEE80211W
unsigned int OnAction_sa_query(_adapter *padapter, union recv_frame *precv_frame);
#endif /* CONFIG_IEEE80211W */
unsigned int on_action_rm(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnAction_wmm(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnAction_vht(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnAction_he(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnAction_protected_he(_adapter *padapter, union recv_frame *precv_frame);
unsigned int OnAction_p2p(_adapter *padapter, union recv_frame *precv_frame);
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
unsigned int OnAction_tbtx_token(_adapter *padapter, union recv_frame *precv_frame);
#endif
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
void rtw_issue_action_token_req(_adapter *padapter, struct sta_info *pstat);
void rtw_issue_action_token_rel(_adapter *padapter);
#endif
#ifdef CONFIG_80211D
void rtw_joinbss_update_regulatory(_adapter *adapter, const WLAN_BSSID_EX *network);
#endif
void rtw_mlmeext_disconnect(_adapter *padapter);
int rtw_set_hw_after_join(struct _ADAPTER *a, int join_res);
void mlmeext_sta_del_event_callback(_adapter *padapter);
void mlmeext_sta_add_event_callback(_adapter *padapter, struct sta_info *psta);
int rtw_get_rx_chk_limit(_adapter *adapter);
void rtw_set_rx_chk_limit(_adapter *adapter, int limit);
void linked_status_chk(_adapter *padapter, u8 from_timer);
#define rtw_get_bcn_cnt(adapter) (adapter->mlmeextpriv.cur_bcn_cnt)
#define rtw_get_bcn_dtim_period(adapter) (adapter->mlmeextpriv.dtim)
void rtw_collect_bcn_info(_adapter *adapter);
void _linked_info_dump(_adapter *padapter);
void link_timer_hdl(void *ctx);
void addba_timer_hdl(void *ctx);
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
void rtw_tbtx_xmit_timer_hdl(void *ctx);
void rtw_tbtx_token_dispatch_timer_hdl(void *ctx);
#endif
#ifdef CONFIG_IEEE80211W
void sa_query_timer_hdl(void *ctx);
#endif /* CONFIG_IEEE80211W */
#if 0
void reauth_timer_hdl(_adapter *padapter);
void reassoc_timer_hdl(_adapter *padapter);
#endif
#ifdef ROKU_PRIVATE
void find_remote_timer_hdl(void *ctx);
#ifdef CONFIG_P2P
void hide_ssid_hdl(void *ctx);
#endif
#endif
#define set_link_timer(mlmeext, ms) \
do { \
/*RTW_INFO("%s set_link_timer(%p, %d)\n", __FUNCTION__, (mlmeext), (ms));*/ \
_set_timer(&(mlmeext)->link_timer, (ms)); \
} while (0)
#define cancel_link_timer(mlmeext) \
do { \
/*RTW_INFO("%s cancel_link_timer(%p)\n", __FUNCTION__, (mlmeext));*/ \
_cancel_timer_ex(&(mlmeext)->link_timer); \
} while (0)
#ifdef ROKU_PRIVATE
#define set_find_remote_timer(mlmeext, ms) \
do { \
/*RTW_INFO("%s set_find_remote_timer(%p, %d)\n", __FUNCTION__, (mlmeext), (ms));*/ \
_set_timer(&(mlmeext)->find_remote_timer, (ms)); \
} while (0)
#endif
bool rtw_is_cck_rate(u8 rate);
bool rtw_is_ofdm_rate(u8 rate);
bool rtw_is_basic_rate_cck(u8 rate);
bool rtw_is_basic_rate_ofdm(u8 rate);
bool rtw_is_basic_rate_mix(u8 rate);
extern int cckrates_included(unsigned char *rate, int ratelen);
extern int cckratesonly_included(unsigned char *rate, int ratelen);
extern void process_addba_req(_adapter *padapter, u8 *paddba_req, u8 *addr);
extern void update_TSF(struct mlme_ext_priv *pmlmeext, u8 *pframe, uint len);
#ifdef CONFIG_BCN_RECV_TIME
void rtw_rx_bcn_time_update(_adapter *adapter, uint bcn_len, u8 data_rate);
#endif
extern u8 traffic_status_watchdog(_adapter *padapter, u8 from_timer);
void rtw_process_bar_frame(_adapter *padapter, union recv_frame *precv_frame);
void rtw_join_done_chk_ch(_adapter *padapter, int join_res);
void survey_done_set_ch_bw(_adapter *padapter);
#ifdef RTW_BUSY_DENY_SCAN
#ifndef BUSY_TRAFFIC_SCAN_DENY_PERIOD
#ifdef CONFIG_RTW_ANDROID
#ifdef CONFIG_PLATFORM_ARM_SUN8I
#define BUSY_TRAFFIC_SCAN_DENY_PERIOD 8000
#else
#define BUSY_TRAFFIC_SCAN_DENY_PERIOD 12000
#endif
#else /* !CONFIG_ANDROID */
#define BUSY_TRAFFIC_SCAN_DENY_PERIOD 16000
#endif /* !CONFIG_ANDROID */
#endif /* !BUSY_TRAFFIC_SCAN_DENY_PERIOD */
#endif /* RTW_BUSY_DENY_SCAN */
void rtw_leave_opch(_adapter *adapter);
void rtw_back_opch(_adapter *adapter);
#ifdef CONFIG_STA_CMD_DISPR
void update_join_info(struct _ADAPTER *a, struct _WLAN_BSSID_EX *pbuf);
int rtw_chk_start_clnt_join(_adapter *adapter, u8 *ch, u8 *bw, u8 *offset);
#endif /* CONFIG_STA_CMD_DISPR */
u8 rtw_join_cmd_hdl(_adapter *padapter, u8 *pbuf);
u8 disconnect_hdl(_adapter *padapter, u8 *pbuf);
u8 createbss_hdl(_adapter *padapter, u8 *pbuf);
void rtw_disconnect_ch_switch(_adapter *adapter);
#ifdef CONFIG_AP_MODE
u8 stop_ap_hdl(_adapter *adapter);
#endif
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
u8 tx_control_hdl(_adapter *adapter);
#endif
u8 setopmode_hdl(_adapter *padapter, u8 *pbuf);
u8 setauth_hdl(_adapter *padapter, u8 *pbuf);
#ifdef CONFIG_CMD_DISP
u8 setkey_hdl(struct _ADAPTER *a, struct setkey_parm *key,
enum phl_cmd_type cmd_type, u32 cmd_timeout);
u8 set_stakey_hdl(_adapter *padapter, struct set_stakey_parm *key,
enum phl_cmd_type cmd_type, u32 cmd_timeout);
#else
/* CONFIG_FSM */
u8 setkey_hdl(_adapter *padapter, u8 *pbuf);
u8 set_stakey_hdl(_adapter *padapter, u8 *pbuf);
#endif
u8 set_assocsta_hdl(_adapter *padapter, u8 *pbuf);
u8 del_assocsta_hdl(_adapter *padapter, u8 *pbuf);
u8 add_ba_hdl(_adapter *padapter, unsigned char *pbuf);
u8 add_ba_rsp_hdl(_adapter *padapter, unsigned char *pbuf);
u8 delba_hdl(struct _ADAPTER *a, unsigned char *pbuf);
void rtw_ap_wep_pk_setting(_adapter *adapter, struct sta_info *psta);
u8 mlme_evt_hdl(_adapter *padapter, unsigned char *pbuf);
u8 chk_bmc_sleepq_hdl(_adapter *padapter, unsigned char *pbuf);
u8 tx_beacon_hdl(_adapter *padapter, unsigned char *pbuf);
u8 rtw_set_chbw_hdl(_adapter *padapter, u8 *pbuf);
u8 rtw_set_chplan_hdl(_adapter *padapter, unsigned char *pbuf);
u8 rtw_get_chplan_hdl(_adapter *padapter, unsigned char *pbuf);
u8 led_blink_hdl(_adapter *padapter, unsigned char *pbuf);
u8 set_csa_hdl(_adapter *padapter, unsigned char *pbuf); /* Kurt: Handling DFS channel switch announcement ie. */
u8 tdls_hdl(_adapter *padapter, unsigned char *pbuf);
u8 run_in_thread_hdl(_adapter *padapter, u8 *pbuf);
int rtw_sae_preprocess(_adapter *adapter, const u8 *buf, u32 len, u8 tx);
#ifdef CONFIG_RTW_MESH
extern u8 rtw_mesh_set_plink_state_cmd_hdl(_adapter *adapter, u8 *parmbuf);
#else
static inline u8 rtw_mesh_set_plink_state_cmd_hdl(_adapter *adapter, u8 *parmbuf) { return H2C_CMD_FAIL; };
#endif /*CONFIG_RTW_MESH*/
#if defined(CONFIG_RTW_ACS) && defined(WKARD_ACS)
#define IS_ACS_ENABLE(dvobj) (_FALSE)
enum rtw_nhm_pid {
NHM_PID_IEEE_11K_HIGH,
NHM_PID_ACS,
};
void rtw_acs_select_best_chan(_adapter *adapter);
void rtw_acs_trigger(_adapter *padapter, u32 scan_ms, u8 scan_ch, u8 pid);
void rtw_acs_get_rst(_adapter *adapter);
#endif /* defined(CONFIG_RTW_ACS) && defined(WKARD_ACS) */
#ifdef CONFIG_RTW_MULTI_AP
u8 rtw_get_ch_utilization(_adapter *adapter);
void rtw_ch_util_rpt(_adapter *adapter);
#endif
#define GEN_MLME_EXT_HANDLER(name, cmd, callback) {name, cmd, callback},
struct rtw_cmd {
char name[32];
u8(*cmd_hdl)(_adapter *padapter, u8 *pbuf);
void (*callback)(_adapter *padapter, struct cmd_obj *cmd);
};
#ifdef _RTW_CMD_C_
struct rtw_cmd wlancmds[] = {
GEN_MLME_EXT_HANDLER("CMD_JOINBSS", rtw_join_cmd_hdl, rtw_joinbss_cmd_callback) /*CMD_JOINBSS*/
GEN_MLME_EXT_HANDLER("CMD_DISCONNECT", disconnect_hdl, rtw_disassoc_cmd_callback) /*CMD_DISCONNECT*/
GEN_MLME_EXT_HANDLER("CMD_CREATE_BSS", createbss_hdl, NULL) /*CMD_CREATE_BSS*/
GEN_MLME_EXT_HANDLER("CMD_SET_OPMODE", setopmode_hdl, NULL) /*CMD_SET_OPMODE*/
#if 1 /*#ifndef CONFIG_PHL_ARCH*/
GEN_MLME_EXT_HANDLER("CMD_SITE_SURVEY", sitesurvey_cmd_hdl, rtw_survey_cmd_callback) /*CMD_SITE_SURVEY*/
#endif
GEN_MLME_EXT_HANDLER("CMD_SET_AUTH", setauth_hdl, NULL) /*CMD_SET_AUTH*/
#ifndef CONFIG_CMD_DISP
GEN_MLME_EXT_HANDLER("CMD_SET_KEY", setkey_hdl, NULL) /*CMD_SET_KEY*/
GEN_MLME_EXT_HANDLER("CMD_SET_STAKEY", set_stakey_hdl, rtw_setstaKey_cmdrsp_callback) /*CMD_SET_STAKEY*/
#endif
GEN_MLME_EXT_HANDLER("CMD_ADD_BAREQ", add_ba_hdl, NULL) /*CMD_ADD_BAREQ*/
GEN_MLME_EXT_HANDLER("CMD_SET_CHANNEL", rtw_set_chbw_hdl, NULL) /*CMD_SET_CHANNEL*/
GEN_MLME_EXT_HANDLER("CMD_TX_BEACON", tx_beacon_hdl, NULL) /*CMD_TX_BEACON*/
GEN_MLME_EXT_HANDLER("CMD_SET_MLME_EVT", mlme_evt_hdl, NULL) /*CMD_SET_MLME_EVT*/
GEN_MLME_EXT_HANDLER("CMD_SET_DRV_EXTRA", rtw_drvextra_cmd_hdl, NULL) /*CMD_SET_DRV_EXTRA*/
GEN_MLME_EXT_HANDLER("CMD_SET_CHANPLAN", rtw_set_chplan_hdl, NULL) /*CMD_SET_CHANPLAN*/
GEN_MLME_EXT_HANDLER("CMD_LEDBLINK", led_blink_hdl, NULL) /*CMD_LEDBLINK*/
GEN_MLME_EXT_HANDLER("CMD_SET_CHANSWITCH", set_csa_hdl, NULL) /*CMD_SET_CHANSWITCH*/
GEN_MLME_EXT_HANDLER("CMD_TDLS", tdls_hdl, NULL) /*CMD_TDLS*/
GEN_MLME_EXT_HANDLER("CMD_CHK_BMCSLEEPQ", chk_bmc_sleepq_hdl, NULL) /*CMD_CHK_BMCSLEEPQ*/
GEN_MLME_EXT_HANDLER("CMD_RUN_INTHREAD", run_in_thread_hdl, NULL) /*CMD_RUN_INTHREAD*/
GEN_MLME_EXT_HANDLER("CMD_ADD_BARSP", add_ba_rsp_hdl, NULL) /*CMD_ADD_BARSP*/
GEN_MLME_EXT_HANDLER("CMD_RM_POST_EVENT", rm_post_event_hdl, NULL) /*CMD_RM_POST_EVENT*/
GEN_MLME_EXT_HANDLER("CMD_SET_MESH_PLINK_STATE", rtw_mesh_set_plink_state_cmd_hdl, NULL) /*CMD_SET_MESH_PLINK_STATE*/
GEN_MLME_EXT_HANDLER("CMD_DELBA", delba_hdl, NULL) /*CMD_DELBA*/
GEN_MLME_EXT_HANDLER("CMD_GET_CHANPLAN", rtw_get_chplan_hdl, NULL) /* CMD_GET_CHANPLAN */
};
#endif /*_RTW_CMD_C_*/
char *rtw_cmd_name(struct cmd_obj *pcmd);
/*rtw_event*/
struct rtw_evt_header {
u8 id;
u8 seq;
u16 len;
};
enum rtw_event_id {
EVT_SURVEY, /*0*/
EVT_SURVEY_DONE, /*1*/
EVT_JOINBSS, /*2*/
EVT_ADD_STA, /*3*/
EVT_DEL_STA, /*4*/
EVT_WMM_UPDATE, /*5*/
#ifdef CONFIG_IEEE80211W
EVT_TIMEOUT_STA, /*6*/
#endif /* CONFIG_IEEE80211W */
#ifdef CONFIG_RTW_80211R
EVT_FT_REASSOC, /*7*/
#endif
EVT_ID_MAX
};
struct rtw_event {
char name[32];
u32 parmsize;
void (*event_callback)(_adapter *dev, u8 *pbuf);
};
#ifdef _RTW_MLME_EXT_C_
static struct rtw_event wlanevents[] = {
{"EVT_SURVEY", sizeof(struct survey_event), &rtw_survey_event_callback}, /*EVT_SURVEY*/
{"EVT_SURVEY_DONE", sizeof(struct surveydone_event), &rtw_surveydone_event_callback}, /*EVT_SURVEY_DONE*/
{"EVT_JOINBSS", sizeof(struct joinbss_event), &rtw_joinbss_event_callback}, /*EVT_JOINBSS*/
{"EVT_ADD_STA", sizeof(struct stassoc_event), &rtw_stassoc_event_callback}, /*EVT_ADD_STA*/
{"EVT_DEL_STA", sizeof(struct stadel_event), &rtw_stadel_event_callback}, /*EVT_DEL_STA*/
{"EVT_WMM_UPDATE", sizeof(struct wmm_event), &rtw_wmm_event_callback}, /*EVT_WMM_UPDATE*/
#ifdef CONFIG_IEEE80211W
{"EVT_TIMEOUT_STA", sizeof(struct stadel_event), &rtw_sta_timeout_event_callback}, /*EVT_TIMEOUT_STA*/
#endif /* CONFIG_IEEE80211W */
#ifdef CONFIG_RTW_80211R
{"EVT_FT_REASSOC", sizeof(struct stassoc_event), &rtw_ft_reassoc_event_callback}, /*EVT_FT_REASSOC*/
#endif
};
#endif/*_RTW_MLME_EXT_C_*/
char *rtw_evt_name(struct rtw_evt_header *pev);
#endif
|
2301_81045437/rtl8852be
|
include/rtw_mlme_ext.h
|
C
|
agpl-3.0
| 39,866
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_MP_H_
#define _RTW_MP_H_
#include <drv_types.h>
#define RTWPRIV_VER_INFO 1
#define MAX_MP_XMITBUF_SZ 2048
#define NR_MP_XMITFRAME 8
#define MP_READ_REG_MAX_OFFSET 0x4FFF
#define TX_POWER_BASE 4 /* dbm * 4 */
#define TX_POWER_CODE_WORD_BASE 8 /* dbm * 8 */
struct mp_xmit_frame {
_list list;
struct pkt_attrib attrib;
struct sk_buff *pkt;
int frame_tag;
_adapter *padapter;
#ifdef CONFIG_USB_HCI
/* insert urb, irp, and irpcnt info below... */
/* max frag_cnt = 8 */
u8 *mem_addr;
u32 sz[8];
u8 bpending[8];
sint ac_tag[8];
sint last[8];
uint irpcnt;
uint fragcnt;
#endif /* CONFIG_USB_HCI */
uint mem[(MAX_MP_XMITBUF_SZ >> 2)];
};
struct mp_wiparam {
u32 bcompleted;
u32 act_type;
u32 io_offset;
u32 io_value;
};
typedef void(*wi_act_func)(void *padapter);
struct mp_tx {
u8 stop;
u32 count, sended;
u8 payload;
struct pkt_attrib attrib;
/* struct tx_desc desc; */
/* u8 resvdtx[7]; */
u8 desc[TXDESC_SIZE];
u8 *pallocated_buf;
u8 *buf;
u32 buf_size, write_size;
_thread_hdl_ PktTxThread;
};
#define MP_MAX_LINES 1000
#define MP_MAX_LINES_BYTES 256
typedef struct _RT_PMAC_PKT_INFO {
u8 MCS;
u8 Nss;
u8 Nsts;
u32 N_sym;
u8 SIGA2B3;
} RT_PMAC_PKT_INFO, *PRT_PMAC_PKT_INFO;
typedef struct _RT_PMAC_TX_INFO {
u8 bEnPMacTx:1; /* 0: Disable PMac 1: Enable PMac */
u8 Mode:3; /* 0: Packet TX 3:Continuous TX */
u8 Ntx:4; /* 0-7 */
u8 TX_RATE; /* MPT_RATE_E */
u8 TX_RATE_HEX;
u8 TX_SC;
u8 bSGI:1;
u8 bSPreamble:1;
u8 bSTBC:1;
u8 bLDPC:1;
u8 NDP_sound:1;
u8 BandWidth:3; /* 0: 20 1:40 2:80Mhz */
u8 m_STBC; /* bSTBC + 1 */
u16 PacketPeriod;
u32 PacketCount;
u32 PacketLength;
u8 PacketPattern;
u16 SFD;
u8 SignalField;
u8 ServiceField;
u16 LENGTH;
u8 CRC16[2];
u8 LSIG[3];
u8 HT_SIG[6];
u8 VHT_SIG_A[6];
u8 VHT_SIG_B[4];
u8 VHT_SIG_B_CRC;
u8 VHT_Delimiter[4];
u8 MacAddress[6];
} RT_PMAC_TX_INFO, *PRT_PMAC_TX_INFO;
struct rtw_mp_giltf_data {
u8 gi;
u8 ltf;
char type_str[8];
};
typedef void (*MPT_WORK_ITEM_HANDLER)(void *adapter);
typedef struct _MPT_CONTEXT {
/* Indicate if we have started Mass Production Test. */
BOOLEAN bMassProdTest;
/* Indicate if the driver is unloading or unloaded. */
BOOLEAN bMptDrvUnload;
_sema MPh2c_Sema;
_timer MPh2c_timeout_timer;
/* Event used to sync H2c for BT control */
BOOLEAN MptH2cRspEvent;
BOOLEAN MptBtC2hEvent;
BOOLEAN bMPh2c_timeout;
/* 8190 PCI does not support NDIS_WORK_ITEM. */
/* Work Item for Mass Production Test. */
/* NDIS_WORK_ITEM MptWorkItem;
* RT_WORK_ITEM MptWorkItem; */
/* Event used to sync the case unloading driver and MptWorkItem is still in progress.
* NDIS_EVENT MptWorkItemEvent; */
/* To protect the following variables.
* NDIS_SPIN_LOCK MptWorkItemSpinLock; */
/* Indicate a MptWorkItem is scheduled and not yet finished. */
BOOLEAN bMptWorkItemInProgress;
/* An instance which implements function and context of MptWorkItem. */
MPT_WORK_ITEM_HANDLER CurrMptAct;
/* 1=Start, 0=Stop from UI. */
u32 MptTestStart;
/* _TEST_MODE, defined in MPT_Req2.h */
u32 MptTestItem;
/* Variable needed in each implementation of CurrMptAct. */
u32 MptActType; /* Type of action performed in CurrMptAct. */
/* The Offset of IO operation is depend of MptActType. */
u32 MptIoOffset;
/* The Value of IO operation is depend of MptActType. */
u32 MptIoValue;
/* The RfPath of IO operation is depend of MptActType. */
u32 mpt_rf_path;
u8 MptChannelToSw; /* Channel to switch. */
u8 MptInitGainToSet; /* Initial gain to set. */
/* u32 bMptAntennaA; */ /* TRUE if we want to use antenna A. */
u32 MptBandWidth; /* bandwidth to switch. */
u32 mpt_rate_index;/* rate index. */
/* Register value kept for Single Carrier Tx test. */
u8 btMpCckTxPower;
/* Register value kept for Single Carrier Tx test. */
u8 btMpOfdmTxPower;
/* For MP Tx Power index */
u8 TxPwrLevel[4]; /* rf-A, rf-B*/
u32 RegTxPwrLimit;
/* Content of RCR Regsiter for Mass Production Test. */
u32 MptRCR;
/* TRUE if we only receive packets with specific pattern. */
BOOLEAN bMptFilterPattern;
/* Rx OK count, statistics used in Mass Production Test. */
u32 MptRxOkCnt;
/* Rx CRC32 error count, statistics used in Mass Production Test. */
u32 MptRxCrcErrCnt;
BOOLEAN bCckContTx; /* TRUE if we are in CCK Continuous Tx test. */
BOOLEAN bOfdmContTx; /* TRUE if we are in OFDM Continuous Tx test. */
/* TRUE if we have start Continuous Tx test. */
BOOLEAN is_start_cont_tx;
/* TRUE if we are in Single Carrier Tx test. */
BOOLEAN bSingleCarrier;
/* TRUE if we are in Carrier Suppression Tx Test. */
BOOLEAN is_carrier_suppression;
/* TRUE if we are in Single Tone Tx test. */
BOOLEAN is_single_tone;
/* ACK counter asked by K.Y.. */
BOOLEAN bMptEnableAckCounter;
u32 MptAckCounter;
/* SD3 Willis For 8192S to save 1T/2T RF table for ACUT Only fro ACUT delete later ~~~! */
/* s8 BufOfLines[2][MAX_LINES_HWCONFIG_TXT][MAX_BYTES_LINE_HWCONFIG_TXT]; */
/* s8 BufOfLines[2][MP_MAX_LINES][MP_MAX_LINES_BYTES]; */
/* s32 RfReadLine[2]; */
u8 APK_bound[2]; /* for APK path A/path B */
BOOLEAN bMptIndexEven;
u8 backup0xc50;
u8 backup0xc58;
u8 backup0xc30;
u8 backup0x52_RF_A;
u8 backup0x52_RF_B;
u32 backup0x58_RF_A;
u32 backup0x58_RF_B;
u8 h2cReqNum;
u8 c2hBuf[32];
u8 btInBuf[100];
u32 mptOutLen;
u8 mptOutBuf[100];
RT_PMAC_TX_INFO PMacTxInfo;
RT_PMAC_PKT_INFO PMacPktInfo;
u8 HWTxmode;
BOOLEAN bldpc;
BOOLEAN bstbc;
} MPT_CONTEXT, *PMPT_CONTEXT;
/* #endif */
/* #define RTPRIV_IOCTL_MP ( SIOCIWFIRSTPRIV + 0x17) */
enum {
WRITE_REG = 1,
READ_REG,
WRITE_RF,
READ_RF,
MP_START,
MP_STOP,
MP_RATE,
MP_CHANNEL,
MP_TRXSC_OFFSET,
MP_BANDWIDTH,
MP_TXPOWER,
MP_ANT_TX,
MP_ANT_RX,
MP_CTX,
MP_QUERY,
MP_ARX,
MP_PSD,
MP_PWRTRK,
MP_THER,
MP_IOCTL,
EFUSE_GET,
EFUSE_SET,
MP_RESET_STATS,
MP_DUMP,
MP_PHYPARA,
MP_SetRFPathSwh,
MP_QueryDrvStats,
CTA_TEST,
MP_DISABLE_BT_COEXIST,
MP_PwrCtlDM,
MP_GETVER,
MP_MON,
EFUSE_BT_MASK,
EFUSE_MASK,
EFUSE_FILE,
EFUSE_FILE_STORE,
MP_TX,
MP_RX,
MP_IQK,
MP_LCK,
MP_HW_TX_MODE,
MP_GET_TXPOWER_INX,
MP_CUSTOMER_STR,
MP_PWRLMT,
MP_PWRBYRATE,
BT_EFUSE_FILE,
MP_SWRFPath,
MP_LINK,
MP_DPK_TRK,
MP_DPK,
MP_GET_TSSIDE,
MP_SET_TSSIDE,
MP_GET_PHL_TEST,
MP_SET_PHL_TEST,
MP_SET_PHL_TX_PATTERN,
MP_SET_PHL_PLCP_TX_DATA,
MP_SET_PHL_PLCP_TX_USER,
MP_SET_PHL_TX_METHOD,
MP_SET_PHL_CONIFG_PHY_NUM,
MP_PHL_RFK,
MP_PHL_BTC_PATH,
MP_GET_HE,
MP_NULL,
#ifdef CONFIG_APPEND_VENDOR_IE_ENABLE
VENDOR_IE_SET ,
VENDOR_IE_GET ,
#endif
#if defined(RTW_PHL_TX) || defined(RTW_PHL_RX) || defined(CONFIG_PHL_TEST_SUITE)
PHL_TEST_SET,
PHL_TEST_GET,
#endif
#ifdef CONFIG_WOWLAN
MP_WOW_ENABLE,
MP_WOW_SET_PATTERN,
#endif
#ifdef CONFIG_AP_WOWLAN
MP_AP_WOW_ENABLE,
#endif
MP_SD_IREAD,
MP_SD_IWRITE,
};
struct rtw_plcp_user {
u8 plcp_usr_idx;
u16 plcp_mcs;
u8 coding;
u8 dcm;
u8 aid;
u32 plcp_txlen; /*apep*/
u32 ru_alloc;
u8 plcp_nss;
u8 txbf;
u8 pwr_boost_db;
};
struct mp_priv {
_adapter *papdater;
/* Testing Flag */
u32 mode;/* 0 for normal type packet, 1 for loopback packet (16bytes TXCMD) */
u32 prev_fw_state;
/* OID cmd handler */
struct mp_wiparam workparam;
/* u8 act_in_progress; */
/* Tx Section */
u8 TID;
u32 tx_pktcount;
u32 pktInterval;
u32 pktLength;
struct mp_tx tx;
/* Rx Section */
u32 rx_bssidpktcount;
u32 rx_pktcount;
u32 rx_pktcount_filter_out;
u32 rx_crcerrpktcount;
u32 rx_pktloss;
BOOLEAN rx_bindicatePkt;
struct recv_stat rxstat;
BOOLEAN brx_filter_beacon;
/* RF/BB relative */
u8 channel;
u8 bandwidth;
u8 prime_channel_offset;
u8 txpoweridx;
s16 txpowerdbm;
u16 rateidx;
s16 pre_refcw_cck_pwridxa;
s16 pre_refcw_cck_pwridxb;
s16 pre_refcw_ofdm_pwridxa;
s16 pre_refcw_ofdm_pwridxb;
u32 preamble;
/* u8 modem; */
u32 CrystalCap;
/* u32 curr_crystalcap; */
u8 antenna_tx;
u8 antenna_rx;
u8 antenna_trx;
/* u8 curr_rfpath; */
u8 check_mp_pkt;
u8 bSetTxPower;
/* uint ForcedDataRate; */
u8 mp_dm;
u8 mac_filter[ETH_ALEN];
u8 bmac_filter;
/* RF PATH Setting for WLG WLA BTG BT */
u8 rf_path_cfg;
u8 btc_path; /* BTC_MODE_NORMAL, BTC_MODE_WL,BTC_MODE_BT */
struct wlan_network mp_network;
NDIS_802_11_MAC_ADDRESS network_macaddr;
u8 *pallocated_mp_xmitframe_buf;
u8 *pmp_xmtframe_buf;
_queue free_mp_xmitqueue;
u32 free_mp_xmitframe_cnt;
BOOLEAN bSetRxBssid;
BOOLEAN bTxBufCkFail;
BOOLEAN bRTWSmbCfg;
BOOLEAN bloopback;
BOOLEAN bloadefusemap;
BOOLEAN bloadBTefusemap;
BOOLEAN bprocess_mp_mode;
MPT_CONTEXT mpt_ctx;
u8 *TXradomBuffer;
u8 mp_keep_btc_mode;
u8 mplink_buf[2048];
u32 mplink_rx_len;
BOOLEAN mplink_brx;
BOOLEAN mplink_btx;
bool tssitrk_on;
u8 rtw_mp_cur_phy;
u8 rtw_mp_dbcc;
s16 path_pwr_offset[4]; /* rf-A, rf-B*/
u8 rtw_mp_tx_method;
u8 rtw_mp_pmact_patt_idx;
u8 rtw_mp_pmact_ppdu_type;
u8 rtw_mp_data_bandwidth;
u8 rtw_mp_stbc;
u8 rtw_mp_plcp_gi;
u8 rtw_mp_plcp_ltf;
u8 rtw_mp_he_sigb;
u8 rtw_mp_he_sigb_dcm;
u32 rtw_mp_plcp_tx_time;
u8 rtw_mp_plcp_tx_mode;
u8 rtw_mp_he_er_su_ru_106_en;
u8 rtw_mp_trxsc;
u16 rtw_mp_plcp_rualloc;
u8 rtw_mp_plcp_tx_user;
u32 rtw_mp_ru_tone;
u8 ru_tone_sel_list[6];
u8 ru_alloc_list[68];
struct rtw_mp_giltf_data st_giltf[5];
struct rtw_plcp_user mp_plcp_user[4];
u8 mp_plcp_useridx;
u8 keep_ips_status;
u8 keep_lps_status;
};
#define PPDU_TYPE_STR(idx)\
(idx == RTW_MP_TYPE_CCK) ? "CCK" :\
(idx == RTW_MP_TYPE_LEGACY) ? "LEGACY" :\
(idx == RTW_MP_TYPE_HT_MF) ? "HT_MF" :\
(idx == RTW_MP_TYPE_HT_GF) ? "HT_GF" :\
(idx == RTW_MP_TYPE_VHT) ? "VHT" :\
(idx == RTW_MP_TYPE_HE_SU) ? "HE_SU" :\
(idx == RTW_MP_TYPE_HE_ER_SU) ? "HE_ER_SU" :\
(idx == RTW_MP_TYPE_HE_MU_OFDMA) ? "HE_MU" :\
(idx == RTW_MP_TYPE_HE_TB) ? "HE_TB" :\
"UNknow"
typedef struct _IOCMD_STRUCT_ {
u8 cmdclass;
u16 value;
u8 index;
} IOCMD_STRUCT;
struct rf_reg_param {
u32 path;
u32 offset;
u32 value;
};
struct bb_reg_param {
u32 offset;
u32 value;
};
/* *********************************************************************** */
#define LOWER _TRUE
#define RAISE _FALSE
/* Hardware Registers */
#if 0
#if 0
#define IOCMD_CTRL_REG 0x102502C0
#define IOCMD_DATA_REG 0x102502C4
#else
#define IOCMD_CTRL_REG 0x10250370
#define IOCMD_DATA_REG 0x10250374
#endif
#define IOCMD_GET_THERMAL_METER 0xFD000028
#define IOCMD_CLASS_BB_RF 0xF0
#define IOCMD_BB_READ_IDX 0x00
#define IOCMD_BB_WRITE_IDX 0x01
#define IOCMD_RF_READ_IDX 0x02
#define IOCMD_RF_WRIT_IDX 0x03
#endif
#define BB_REG_BASE_ADDR 0x800
/* MP variables */
#if 0
#define _2MAC_MODE_ 0
#define _LOOPBOOK_MODE_ 1
#endif
typedef enum _MP_MODE_ {
MP_OFF,
MP_ON,
MP_ERR,
MP_CONTINUOUS_TX,
MP_SINGLE_CARRIER_TX,
MP_CARRIER_SUPPRISSION_TX,
MP_SINGLE_TONE_TX,
MP_PACKET_TX,
MP_PACKET_RX
} MP_MODE;
typedef enum _TEST_MODE {
TEST_NONE ,
PACKETS_TX ,
PACKETS_RX ,
CONTINUOUS_TX ,
OFDM_Single_Tone_TX ,
CCK_Carrier_Suppression_TX
} TEST_MODE;
typedef enum _MPT_BANDWIDTH {
MPT_BW_20MHZ = 0,
MPT_BW_40MHZ_DUPLICATE = 1,
MPT_BW_40MHZ_ABOVE = 2,
MPT_BW_40MHZ_BELOW = 3,
MPT_BW_40MHZ = 4,
MPT_BW_80MHZ = 5,
MPT_BW_80MHZ_20_ABOVE = 6,
MPT_BW_80MHZ_20_BELOW = 7,
MPT_BW_80MHZ_20_BOTTOM = 8,
MPT_BW_80MHZ_20_TOP = 9,
MPT_BW_80MHZ_40_ABOVE = 10,
MPT_BW_80MHZ_40_BELOW = 11,
} MPT_BANDWIDTHE, *PMPT_BANDWIDTH;
#define MAX_RF_PATH_NUMS RF_PATH_MAX
extern u8 mpdatarate[NumRates];
/* MP set force data rate base on the definition. */
typedef enum _MPT_RATE_INDEX {
/* CCK rate. */
MPT_RATE_1M = 1 , /* 0 */
MPT_RATE_2M,
MPT_RATE_55M,
MPT_RATE_11M, /* 3 */
/* OFDM rate. */
MPT_RATE_6M, /* 4 */
MPT_RATE_9M,
MPT_RATE_12M,
MPT_RATE_18M,
MPT_RATE_24M,
MPT_RATE_36M,
MPT_RATE_48M,
MPT_RATE_54M, /* 11 */
/* HT rate. */
MPT_RATE_MCS0, /* 12 */
MPT_RATE_MCS1,
MPT_RATE_MCS2,
MPT_RATE_MCS3,
MPT_RATE_MCS4,
MPT_RATE_MCS5,
MPT_RATE_MCS6,
MPT_RATE_MCS7, /* 19 */
MPT_RATE_MCS8,
MPT_RATE_MCS9,
MPT_RATE_MCS10,
MPT_RATE_MCS11,
MPT_RATE_MCS12,
MPT_RATE_MCS13,
MPT_RATE_MCS14,
MPT_RATE_MCS15, /* 27 */
MPT_RATE_MCS16,
MPT_RATE_MCS17, /* #29 */
MPT_RATE_MCS18,
MPT_RATE_MCS19,
MPT_RATE_MCS20,
MPT_RATE_MCS21,
MPT_RATE_MCS22, /* #34 */
MPT_RATE_MCS23,
MPT_RATE_MCS24,
MPT_RATE_MCS25,
MPT_RATE_MCS26,
MPT_RATE_MCS27, /* #39 */
MPT_RATE_MCS28, /* #40 */
MPT_RATE_MCS29, /* #41 */
MPT_RATE_MCS30, /* #42 */
MPT_RATE_MCS31, /* #43 */
/* VHT rate. Total: 20*/
MPT_RATE_VHT1SS_MCS0 = 100,/* #44*/
MPT_RATE_VHT1SS_MCS1, /* # */
MPT_RATE_VHT1SS_MCS2,
MPT_RATE_VHT1SS_MCS3,
MPT_RATE_VHT1SS_MCS4,
MPT_RATE_VHT1SS_MCS5,
MPT_RATE_VHT1SS_MCS6, /* # */
MPT_RATE_VHT1SS_MCS7,
MPT_RATE_VHT1SS_MCS8,
MPT_RATE_VHT1SS_MCS9, /* #53 */
MPT_RATE_VHT2SS_MCS0, /* #54 */
MPT_RATE_VHT2SS_MCS1,
MPT_RATE_VHT2SS_MCS2,
MPT_RATE_VHT2SS_MCS3,
MPT_RATE_VHT2SS_MCS4,
MPT_RATE_VHT2SS_MCS5,
MPT_RATE_VHT2SS_MCS6,
MPT_RATE_VHT2SS_MCS7,
MPT_RATE_VHT2SS_MCS8,
MPT_RATE_VHT2SS_MCS9, /* #63 */
MPT_RATE_VHT3SS_MCS0,
MPT_RATE_VHT3SS_MCS1,
MPT_RATE_VHT3SS_MCS2,
MPT_RATE_VHT3SS_MCS3,
MPT_RATE_VHT3SS_MCS4,
MPT_RATE_VHT3SS_MCS5,
MPT_RATE_VHT3SS_MCS6, /* #126 */
MPT_RATE_VHT3SS_MCS7,
MPT_RATE_VHT3SS_MCS8,
MPT_RATE_VHT3SS_MCS9,
MPT_RATE_VHT4SS_MCS0,
MPT_RATE_VHT4SS_MCS1, /* #131 */
MPT_RATE_VHT4SS_MCS2,
MPT_RATE_VHT4SS_MCS3,
MPT_RATE_VHT4SS_MCS4,
MPT_RATE_VHT4SS_MCS5,
MPT_RATE_VHT4SS_MCS6, /* #136 */
MPT_RATE_VHT4SS_MCS7,
MPT_RATE_VHT4SS_MCS8,
MPT_RATE_VHT4SS_MCS9,
MPT_RATE_LAST
} MPT_RATE_E, *PMPT_RATE_E;
#define MAX_TX_PWR_INDEX_N_MODE 64 /* 0x3F */
#define MPT_IS_CCK_RATE(_value) (MPT_RATE_1M <= _value && _value <= MPT_RATE_11M)
#define MPT_IS_OFDM_RATE(_value) (MPT_RATE_6M <= _value && _value <= MPT_RATE_54M)
#define MPT_IS_HT_RATE(_value) (MPT_RATE_MCS0 <= _value && _value <= MPT_RATE_MCS31)
#define MPT_IS_HT_1S_RATE(_value) (MPT_RATE_MCS0 <= _value && _value <= MPT_RATE_MCS7)
#define MPT_IS_HT_2S_RATE(_value) (MPT_RATE_MCS8 <= _value && _value <= MPT_RATE_MCS15)
#define MPT_IS_HT_3S_RATE(_value) (MPT_RATE_MCS16 <= _value && _value <= MPT_RATE_MCS23)
#define MPT_IS_HT_4S_RATE(_value) (MPT_RATE_MCS24 <= _value && _value <= MPT_RATE_MCS31)
#define MPT_IS_VHT_RATE(_value) (MPT_RATE_VHT1SS_MCS0 <= _value && _value <= MPT_RATE_VHT4SS_MCS9)
#define MPT_IS_VHT_1S_RATE(_value) (MPT_RATE_VHT1SS_MCS0 <= _value && _value <= MPT_RATE_VHT1SS_MCS9)
#define MPT_IS_VHT_2S_RATE(_value) (MPT_RATE_VHT2SS_MCS0 <= _value && _value <= MPT_RATE_VHT2SS_MCS9)
#define MPT_IS_VHT_3S_RATE(_value) (MPT_RATE_VHT3SS_MCS0 <= _value && _value <= MPT_RATE_VHT3SS_MCS9)
#define MPT_IS_VHT_4S_RATE(_value) (MPT_RATE_VHT4SS_MCS0 <= _value && _value <= MPT_RATE_VHT4SS_MCS9)
#define MPT_IS_2SS_RATE(_rate) ((MPT_RATE_MCS8 <= _rate && _rate <= MPT_RATE_MCS15) || \
(MPT_RATE_VHT2SS_MCS0 <= _rate && _rate <= MPT_RATE_VHT2SS_MCS9))
#define MPT_IS_3SS_RATE(_rate) ((MPT_RATE_MCS16 <= _rate && _rate <= MPT_RATE_MCS23) || \
(MPT_RATE_VHT3SS_MCS0 <= _rate && _rate <= MPT_RATE_VHT3SS_MCS9))
#define MPT_IS_4SS_RATE(_rate) ((MPT_RATE_MCS24 <= _rate && _rate <= MPT_RATE_MCS31) || \
(MPT_RATE_VHT4SS_MCS0 <= _rate && _rate <= MPT_RATE_VHT4SS_MCS9))
typedef enum _POWER_MODE_ {
POWER_LOW = 0,
POWER_NORMAL
} POWER_MODE;
/* The following enumeration is used to define the value of Reg0xD00[30:28] or JaguarReg0x914[18:16]. */
typedef enum _OFDM_TX_MODE {
OFDM_ALL_OFF = 0,
OFDM_ContinuousTx = 1,
OFDM_SingleCarrier = 2,
OFDM_SingleTone = 4,
} OFDM_TX_MODE;
#define RX_PKT_BROADCAST 1
#define RX_PKT_DEST_ADDR 2
#define RX_PKT_PHY_MATCH 3
typedef enum _ENCRY_CTRL_STATE_ {
HW_CONTROL, /* hw encryption& decryption */
SW_CONTROL, /* sw encryption& decryption */
HW_ENCRY_SW_DECRY, /* hw encryption & sw decryption */
SW_ENCRY_HW_DECRY /* sw encryption & hw decryption */
} ENCRY_CTRL_STATE;
typedef enum _MPT_TXPWR_DEF {
MPT_CCK,
MPT_OFDM, /* L and HT OFDM */
MPT_OFDM_AND_HT,
MPT_HT,
MPT_VHT
} MPT_TXPWR_DEF;
#define IS_MPT_HT_RATE(_rate) (_rate >= MPT_RATE_MCS0 && _rate <= MPT_RATE_MCS31)
#define IS_MPT_VHT_RATE(_rate) (_rate >= MPT_RATE_VHT1SS_MCS0 && _rate <= MPT_RATE_VHT4SS_MCS9)
#define IS_MPT_CCK_RATE(_rate) (_rate >= MPT_RATE_1M && _rate <= MPT_RATE_11M)
#define IS_MPT_OFDM_RATE(_rate) (_rate >= MPT_RATE_6M && _rate <= MPT_RATE_54M)
typedef enum _mp_tx_pkt_payload{
MP_TX_Payload_00 = 0,
MP_TX_Payload_a5,
MP_TX_Payload_5a,
MP_TX_Payload_ff,
MP_TX_Payload_prbs9,
MP_TX_Payload_default_random
} mp_tx_pkt_payload;
/*************************************************************************/
#if 0
extern struct mp_xmit_frame *alloc_mp_xmitframe(struct mp_priv *pmp_priv);
extern int free_mp_xmitframe(struct xmit_priv *pxmitpriv, struct mp_xmit_frame *pmp_xmitframe);
#endif
enum rtw_mp_tx_method {
RTW_MP_SW_TX = 0,
RTW_MP_PMACT_TX,
RTW_MP_TMACT_TX,
RTW_MP_FW_PMACT_TX,
};
enum rtw_mp_tx_cmd {
RTW_MP_TX_NONE = 0,
RTW_MP_TX_PACKETS,
RTW_MP_TX_CONTINUOUS,
RTW_MP_TX_SINGLE_TONE,
RTW_MP_TX_CCK_Carrier_Suppression,
RTW_MP_TX_CONFIG_PLCP_COMMON_INFO,
RTW_MP_TX_CMD_PHY_OK,
RTW_MP_TX_CONFIG_PLCP_PATTERN,
RTW_MP_TX_CONFIG_PLCP_USER_INFO,
RTW_MP_TX_MODE_SWITCH,
RTW_MP_TX_F2P,
RTW_MP_TX_TB_TEST,
RTW_MP_TX_DPD_BYPASS,
RTW_MP_TX_CHECK_TX_IDLE,
RTW_MP_TX_CMD_MAX,
};
enum rtw_mp_pmac_mode {
RTW_MP_PMAC_NONE_TEST,
RTW_MP_PMAC_PKTS_TX,
RTW_MP_PMAC_PKTS_RX,
RTW_MP_PMAC_CONT_TX,
RTW_MP_PMAC_FW_TRIG_TX,
RTW_MP_PMAC_OFDM_SINGLE_TONE_TX,
RTW_MP_PMAC_CCK_CARRIER_SIPPRESSION_TX
};
enum rtw_mp_ppdu_type {
RTW_MP_TYPE_CCK = 0,
RTW_MP_TYPE_LEGACY,
RTW_MP_TYPE_HT_MF,
RTW_MP_TYPE_HT_GF,
RTW_MP_TYPE_VHT,
RTW_MP_TYPE_HE_SU,
RTW_MP_TYPE_HE_ER_SU,
RTW_MP_TYPE_HE_MU_OFDMA,
RTW_MP_TYPE_HE_TB
};
/* mp command class */
enum rtw_mp_class {
RTW_MP_CLASS_CONFIG = 0,
RTW_MP_CLASS_TX = 1,
RTW_MP_CLASS_RX = 2,
RTW_MP_CLASS_EFUSE = 3,
RTW_MP_CLASS_REG = 4,
RTW_MP_CLASS_TXPWR = 5,
RTW_MP_CLASS_CAL = 6,
RTW_MP_CLASS_FLASH = 7,
RTW_MP_CLASS_MAX,
};
/* mp rx command */
enum rtw_mp_rx_cmd {
RTW_MP_RX_CMD_PHY_CRC_OK = 0,
RTW_MP_RX_CMD_PHY_CRC_ERR = 1,
RTW_MP_RX_CMD_MAC_CRC_OK = 2,
RTW_MP_RX_CMD_MAC_CRC_ERR = 3,
RTW_MP_RX_CMD_DRV_CRC_OK = 4,
RTW_MP_RX_CMD_DRV_CRC_ERR = 5,
RTW_MP_RX_CMD_GET_RSSI = 6,
RTW_MP_RX_CMD_GET_RXEVM = 7,
RTW_MP_RX_CMD_GET_PHYSTS = 8,
RTW_MP_RX_CMD_TRIGGER_RXEVM = 9,
RTW_MP_RX_CMD_SET_GAIN_OFFSET = 10,
RTW_MP_RX_CMD_MAX,
};
/* mp config command */
enum rtw_mp_config_cmdid {
RTW_MP_CONFIG_CMD_GET_BW,
RTW_MP_CONFIG_CMD_GET_RF_STATUS,
RTW_MP_CONFIG_CMD_SET_RATE_IDX,
RTW_MP_CONFIG_CMD_SET_RF_TXRX_PATH,
RTW_MP_CONFIG_CMD_SET_RESET_PHY_COUNT,
RTW_MP_CONFIG_CMD_SET_RESET_MAC_COUNT,
RTW_MP_CONFIG_CMD_SET_RESET_DRV_COUNT,
RTW_MP_CONFIG_CMD_PBC,
RTW_MP_CONFIG_CMD_START_DUT,
RTW_MP_CONFIG_CMD_STOP_DUT,
RTW_MP_CONFIG_CMD_GET_MIMPO_RSSI,
RTW_MP_CONFIG_CMD_GET_BOARD_TYPE,
RTW_MP_CONFIG_CMD_GET_MODULATION,
RTW_MP_CONFIG_CMD_GET_RF_MODE,
RTW_MP_CONFIG_CMD_GET_RF_PATH,
RTW_MP_CONFIG_CMD_SET_MODULATION,
RTW_MP_CONFIG_CMD_GET_DEVICE_INFO,
RTW_MP_CONFIG_CMD_SET_PHY_INDEX,
RTW_MP_CONFIG_CMD_GET_MAC_ADDR,
RTW_MP_CONFIG_CMD_SET_MAC_ADDR,
RTW_MP_CONFIG_CMD_SET_CH_BW,
RTW_MP_CONFIG_CMD_GET_TX_NSS,
RTW_MP_CONFIG_CMD_GET_RX_NSS,
RTW_MP_CONFIG_CMD_SWITCH_BT_PATH,
RTW_MP_CONFIG_CMD_GET_RFE_TYPE,
RTW_MP_CONFIG_CMD_GET_DEV_IDX,
RTW_MP_CONFIG_CMD_TRIGGER_FW_CONFLICT,
RTW_MP_CONFIG_CMD_MAX,
};
typedef enum _mp_ant_path {
MP_ANTENNA_NONE = 0,
MP_ANTENNA_D = 1,
MP_ANTENNA_C = 2,
MP_ANTENNA_CD = 3,
MP_ANTENNA_B = 4,
MP_ANTENNA_BD = 5,
MP_ANTENNA_BC = 6,
MP_ANTENNA_BCD = 7,
MP_ANTENNA_A = 8,
MP_ANTENNA_AD = 9,
MP_ANTENNA_AC = 10,
MP_ANTENNA_ACD = 11,
MP_ANTENNA_AB = 12,
MP_ANTENNA_ABD = 13,
MP_ANTENNA_ABC = 14,
MP_ANTENNA_ABCD = 15
} mp_ant_path;
#define RTW_MP_TEST_NAME_LEN 32
#define RTW_MP_TEST_RPT_RSN_LEN 32
struct rtw_mp_test_rpt {
char name[RTW_MP_TEST_NAME_LEN];
u8 status;
char rsn[RTW_MP_TEST_RPT_RSN_LEN];
u32 total_time; // in ms
};
struct rtw_mp_cmd_arg {
u8 mp_class;
u8 cmd;
u8 cmd_ok;
};
struct rtw_mp_config_arg {
u8 mp_class;
u8 cmd;
u8 cmd_ok;
u8 status;
u8 channel;
u8 bandwidth;
u8 rate_idx;
u8 ant_tx;
u8 ant_rx;
u8 rf_path;
u8 get_rfstats;
u8 modulation;
u8 bustype;
u32 chipid;
u8 cur_phy;
u8 mac_addr[6];
u8 sc_idx;
u8 dbcc_en;
u8 btc_mode;
u8 rfe_type;
u8 dev_id;
u32 offset;
u8 voltag;
};
struct rtw_mp_tx_arg {
u8 mp_class;
u8 cmd;
u8 cmd_ok;
u8 status;
u8 tx_method;
u8 plcp_ppdu_type; /*offline gen*/
u16 plcp_case_id; /*offline gen*/
u8 bCarrierSuppression;
u8 is_cck;
u8 start_tx;
u16 tx_cnt;
u16 period; /* us */
u16 tx_time; /* us */
u32 tx_ok;
u8 tx_path;
u8 tx_mode; /* mode: 0 = tmac, 1 = pmac */
u8 tx_concurrent_en; /* concurrent tx */
u8 dpd_bypass;
/* plcp info */
u32 dbw; /*0:BW20, 1:BW40, 2:BW80, 3:BW160/BW80+80*/
u32 source_gen_mode;
u32 locked_clk;
u32 dyn_bw;
u32 ndp_en;
u32 long_preamble_en; /*bmode*/
u32 stbc;
u32 gi; /*0:0.4,1:0.8,2:1.6,3:3.2*/
u32 tb_l_len;
u32 tb_ru_tot_sts_max;
u32 vht_txop_not_allowed;
u32 tb_disam;
u32 doppler;
u32 he_ltf_type; /*0:1x,1:2x,2:4x*/
u32 ht_l_len;
u32 preamble_puncture;
u32 he_mcs_sigb;/*0~5*/
u32 he_dcm_sigb;
u32 he_sigb_compress_en;
u32 max_tx_time_0p4us;
u32 ul_flag;
u32 tb_ldpc_extra;
u32 bss_color;
u32 sr;
u32 beamchange_en;
u32 he_er_u106ru_en;
u32 ul_srp1;
u32 ul_srp2;
u32 ul_srp3;
u32 ul_srp4;
u32 mode;
u32 group_id;
u32 ppdu_type;/*0: bmode,1:Legacy,2:HT_MF,3:HT_GF,4:VHT,5:HE_SU,6:HE_ER_SU,7:HE_MU,8:HE_TB*/
u32 txop;
u32 tb_strt_sts;
u32 tb_pre_fec_padding_factor;
u32 cbw;
u32 txsc;
u32 tb_mumimo_mode_en;
u32 nominal_t_pe; /* def = 2*/
u32 ness; /* def = 0*/
u32 n_user;
u32 tb_rsvd;/*def = 0*/
/* plcp user info */
u32 plcp_usr_idx;
u32 mcs;
u32 mpdu_len;
u32 n_mpdu;
u32 fec;
u32 dcm;
u32 aid;
u32 scrambler_seed; /* rand (1~255)*/
u32 random_init_seed; /* rand (1~255)*/
u32 apep;
u32 ru_alloc;
u32 nss;
u32 txbf;
u32 pwr_boost_db;
//struct mp_plcp_param_t plcp_param; /*online gen*/
u32 data_rate;
u8 plcp_sts;
/*HE-TB Test*/
u8 bSS_id_addr0;
u8 bSS_id_addr1;
u8 bSS_id_addr2;
u8 bSS_id_addr3;
u8 bSS_id_addr4;
u8 bSS_id_addr5;
u8 is_link_mode;
/* f2p cmd */
u32 pref_AC_0;
u32 aid12_0;
u32 ul_mcs_0;
u32 macid_0;
u32 ru_pos_0;
u32 ul_fec_code_0;
u32 ul_dcm_0;
u32 ss_alloc_0;
u32 ul_tgt_rssi_0;
u32 pref_AC_1;
u32 aid12_1;
u32 ul_mcs_1;
u32 macid_1;
u32 ru_pos_1;
u32 ul_fec_code_1;
u32 ul_dcm_1;
u32 ss_alloc_1;
u32 ul_tgt_rssi_1;
u32 pref_AC_2;
u32 aid12_2;
u32 ul_mcs_2;
u32 macid_2;
u32 ru_pos_2;
u32 ul_fec_code_2;
u32 ul_dcm_2;
u32 ss_alloc_2;
u32 ul_tgt_rssi_2;
u32 pref_AC_3;
u32 aid12_3;
u32 ul_mcs_3;
u32 macid_3;
u32 ru_pos_3;
u32 ul_fec_code_3;
u32 ul_dcm_3;
u32 ss_alloc_3;
u32 ul_tgt_rssi_3;
u32 ul_bw;
u32 gi_ltf;
u32 num_he_ltf;
u32 ul_stbc;
u32 pkt_doppler;
u32 ap_tx_power;
u32 user_num;
u32 pktnum;
u32 pri20_bitmap;
u32 datarate;
u32 mulport_id;
u32 pwr_ofset;
u32 f2p_mode;
u32 frexch_type;
u32 sigb_len;
/* dword 0 */
u32 cmd_qsel;
u32 ls;
u32 fs;
u32 total_number;
u32 seq;
u32 length;
/* dword 1 */
/* dword 0 */
u32 cmd_type;
u32 cmd_sub_type;
u32 dl_user_num;
u32 bw;
u32 tx_power;
/* dword 1 */
u32 fw_define;
u32 ss_sel_mode;
u32 next_qsel;
u32 twt_group;
u32 dis_chk_slp;
u32 ru_mu_2_su;
u32 dl_t_pe;
/* dword 2 */
u32 sigb_ch1_len;
u32 sigb_ch2_len;
u32 sigb_sym_num;
u32 sigb_ch2_ofs;
u32 dis_htp_ack;
u32 tx_time_ref;
u32 pri_user_idx;
/* dword 3 */
u32 ampdu_max_txtime;
u32 d3_group_id;
u32 twt_chk_en;
u32 twt_port_id;
/* dword 4 */
u32 twt_start_time;
/* dword 5 */
u32 twt_end_time;
/* dword 6 */
u32 apep_len;
u32 tri_pad;
u32 ul_t_pe;
u32 rf_gain_idx;
u32 fixed_gain_en;
u32 ul_gi_ltf;
u32 ul_doppler;
u32 d6_ul_stbc;
/* dword 7 */
u32 ul_mid_per;
u32 ul_cqi_rrp_tri;
u32 sigb_dcm;
u32 sigb_comp;
u32 d7_doppler;
u32 d7_stbc;
u32 mid_per;
u32 gi_ltf_size;
u32 sigb_mcs;
/* dword 8 */
u32 macid_u0;
u32 ac_type_u0;
u32 mu_sta_pos_u0;
u32 dl_rate_idx_u0;
u32 dl_dcm_en_u0;
u32 ru_alo_idx_u0;
/* dword 9 */
u32 pwr_boost_u0;
u32 agg_bmp_alo_u0;
u32 ampdu_max_txnum_u0;
u32 user_define_u0;
u32 user_define_ext_u0;
/* dword 10 */
u32 ul_addr_idx_u0;
u32 ul_dcm_u0;
u32 ul_fec_cod_u0;
u32 ul_ru_rate_u0;
u32 ul_ru_alo_idx_u0;
/* dword 11 */
/* dword 12 */
u32 macid_u1;
u32 ac_type_u1;
u32 mu_sta_pos_u1;
u32 dl_rate_idx_u1;
u32 dl_dcm_en_u1;
u32 ru_alo_idx_u1;
/* dword 13 */
u32 pwr_boost_u1;
u32 agg_bmp_alo_u1;
u32 ampdu_max_txnum_u1;
u32 user_define_u1;
u32 user_define_ext_u1;
/* dword 14 */
u32 ul_addr_idx_u1;
u32 ul_dcm_u1;
u32 ul_fec_cod_u1;
u32 ul_ru_rate_u1;
u32 ul_ru_alo_idx_u1;
/* dword 15 */
/* dword 16 */
u32 macid_u2;
u32 ac_type_u2;
u32 mu_sta_pos_u2;
u32 dl_rate_idx_u2;
u32 dl_dcm_en_u2;
u32 ru_alo_idx_u2;
/* dword 17 */
u32 pwr_boost_u2;
u32 agg_bmp_alo_u2;
u32 ampdu_max_txnum_u2;
u32 user_define_u2;
u32 user_define_ext_u2;
/* dword 18 */
u32 ul_addr_idx_u2;
u32 ul_dcm_u2;
u32 ul_fec_cod_u2;
u32 ul_ru_rate_u2;
u32 ul_ru_alo_idx_u2;
/* dword 19 */
/* dword 20 */
u32 macid_u3;
u32 ac_type_u3;
u32 mu_sta_pos_u3;
u32 dl_rate_idx_u3;
u32 dl_dcm_en_u3;
u32 ru_alo_idx_u3;
/* dword 21 */
u32 pwr_boost_u3;
u32 agg_bmp_alo_u3;
u32 ampdu_max_txnum_u3;
u32 user_define_u3;
u32 user_define_ext_u3;
/* dword 22 */
u32 ul_addr_idx_u3;
u32 ul_dcm_u3;
u32 ul_fec_cod_u3;
u32 ul_ru_rate_u3;
u32 ul_ru_alo_idx_u3;
/* dword 23 */
/* dword 24 */
u32 pkt_id_0;
u32 valid_0;
u32 ul_user_num_0;
/* dword 25 */
u32 pkt_id_1;
u32 valid_1;
u32 ul_user_num_1;
/* dword 26 */
u32 pkt_id_2;
u32 valid_2;
u32 ul_user_num_2;
/* dword 27 */
u32 pkt_id_3;
u32 valid_3;
u32 ul_user_num_3;
/* dword 28 */
u32 pkt_id_4;
u32 valid_4;
u32 ul_user_num_4;
/* dword 29 */
u32 pkt_id_5;
u32 valid_5;
u32 ul_user_num_5;
/* tx state*/
u8 tx_state;
};
struct rtw_mp_rx_arg {
u8 mp_class;
u8 cmd;
u8 cmd_ok;
u8 status;
u32 rx_ok;
u32 rx_err;
u8 rssi;
u8 rx_path;
u8 rx_evm;
u8 user;
u8 strm;
u8 rxevm_table;
u8 enable;
u32 phy0_user0_rxevm;
u32 phy0_user1_rxevm;
u32 phy0_user2_rxevm;
u32 phy0_user3_rxevm;
u32 phy1_user0_rxevm;
u32 phy1_user1_rxevm;
u32 phy1_user2_rxevm;
u32 phy1_user3_rxevm;
s8 offset;
u8 rf_path;
u8 iscck;
s16 rssi_ex;
};
/* mp tx power command */
enum rtw_mp_txpwr_cmd {
RTW_MP_TXPWR_CMD_READ_PWR_TABLE = 0,
RTW_MP_TXPWR_CMD_GET_PWR_TRACK_STATUS = 1,
RTW_MP_TXPWR_CMD_SET_PWR_TRACK_STATUS = 2,
RTW_MP_TXPWR_CMD_SET_TXPWR = 3,
RTW_MP_TXPWR_CMD_GET_TXPWR = 4,
RTW_MP_TXPWR_CMD_GET_TXPWR_INDEX = 5,
RTW_MP_TXPWR_CMD_GET_THERMAL = 6,
RTW_MP_TXPWR_CMD_GET_TSSI = 7,
RTW_MP_TXPWR_CMD_SET_TSSI = 8,
RTW_MP_TXPWR_CMD_GET_TXPWR_REF = 9,
RTW_MP_TXPWR_CMD_GET_TXPWR_REF_CW = 10,
RTW_MP_TXPWR_CMD_SET_TXPWR_INDEX = 11,
RTW_MP_TXPWR_CMD_GET_TXINFOPWR = 12,
RTW_MP_TXPWR_CMD_SET_RFMODE = 13,
RTW_MP_TXPWR_CMD_SET_TSSI_OFFSET = 14,
RTW_MP_TXPWR_CMD_GET_ONLINE_TSSI_DE = 15,
RTW_MP_TXPWR_CMD_SET_PWR_LMT_EN = 16,
RTW_MP_TXPWR_CMD_GET_PWR_LMT_EN = 17,
RTW_MP_TXPWR_CMD_MAX,
};
enum rtw_mp_tssi_pwrtrk_type{
RTW_MP_TSSI_OFF = 0,
RTW_MP_TSSI_ON,
RTW_MP_TSSI_CAL
};
struct rtw_mp_txpwr_arg {
u8 mp_class;
u8 cmd;
u8 cmd_ok;
u8 status;
s16 txpwr;
u16 txpwr_index;
u8 txpwr_track_status;
u8 txpwr_status;
u32 tssi;
u8 thermal;
u8 rfpath;
u8 ofdm;
u8 tx_path;
u16 rate;
u8 bandwidth;
u8 channel;
s16 table_item; /*get an element of power table*/
u8 dcm;
u8 beamforming;
u8 offset;
s16 txpwr_ref;
u8 is_cck;
u8 rf_mode;
u32 tssi_de_offset;
s32 dbm;
s32 pout;
s32 online_tssi_de;
bool pwr_lmt_en;
u8 sharp_id;
};
/* mp reg command */
enum rtw_mp_reg_cmd {
RTW_MP_REG_CMD_READ_MAC = 0,
RTW_MP_REG_CMD_WRITE_MAC = 1,
RTW_MP_REG_CMD_READ_RF = 2,
RTW_MP_REG_CMD_WRITE_RF = 3,
RTW_MP_REG_CMD_READ_SYN = 4,
RTW_MP_REG_CMD_WRITE_SYN = 5,
RTW_MP_REG_CMD_READ_BB = 6,
RTW_MP_REG_CMD_WRITE_BB = 7,
RTW_MP_REG_CMD_SET_XCAP = 8,
RTW_MP_REG_CMD_GET_XCAP = 9,
RTW_MP_REG_CMD_MAX,
};
struct rtw_mp_reg_arg {
u8 mp_class;
u8 cmd;
u8 cmd_ok;
u8 status;
u32 io_offset;
u32 io_value;
u8 io_type;
u8 ofdm;
u8 rfpath;
u8 sc_xo;
u8 xsi_offset;
u8 xsi_value;
};
struct rtw_mp_cal_arg {
u8 mp_class;
u8 cmd;
u8 cmd_ok;
u8 status;
u8 cal_type;
u8 enable;
u8 rfpath;
u16 io_value;
u8 channel;
u8 bandwidth;
s32 xdbm;
u8 path;
u8 iq_path;
u32 avg;
u32 fft;
s32 point;
u32 upoint;
u32 start_point;
u32 stop_point;
u32 buf;
u32 outbuf[450];
};
enum rtw_mp_cal_cmd {
RTW_MP_CAL_CMD_TRIGGER_CAL = 0,
RTW_MP_CAL_CMD_SET_CAPABILITY_CAL = 1,
RTW_MP_CAL_CMD_GET_CAPABILITY_CAL = 2,
RTW_MP_CAL_CMD_GET_TSSI_DE_VALUE = 3,
RTW_MP_CAL_CMD_SET_TSSI_DE_TX_VERIFY = 4,
RTW_MP_CAL_CMD_GET_TXPWR_FINAL_ABS = 5,
RTW_MP_CAL_CMD_TRIGGER_DPK_TRACKING = 6,
RTW_MP_CAL_CMD_SET_TSSI_AVG = 7,
RTW_MP_CAL_CMD_PSD_INIT = 8,
RTW_MP_CAL_CMD_PSD_RESTORE = 9,
RTW_MP_CAL_CMD_PSD_GET_POINT_DATA = 10,
RTW_MP_CAL_CMD_PSD_QUERY = 11,
RTW_MP_CAL_CMD_MAX,
};
enum rtw_mp_calibration_type {
RTW_MP_CAL_CHL_RFK = 0,
RTW_MP_CAL_DACK = 1,
RTW_MP_CAL_IQK = 2,
RTW_MP_CAL_LCK = 3,
RTW_MP_CAL_DPK = 4,
RTW_MP_CAL_DPK_TRACK = 5,
RTW_MP_CAL_TSSI = 6,
RTW_MP_CAL_GAPK = 7,
RTW_MP_CAL_MAX,
};
enum RTW_TEST_SUB_MODULE {
RTW_TEST_SUB_MODULE_MP = 0,
RTW_TEST_SUB_MODULE_FPGA = 1,
RTW_TEST_SUB_MODULE_VERIFY = 2,
RTW_TEST_SUB_MODULE_TOOL = 3,
RTW_TEST_SUB_MODULE_TRX = 4,
RTW_TEST_SUB_MODULE_UNKNOWN,
};
struct rtw_test_module_info {
u8 tm_type;
u8 tm_mode;
};
#define RTW_MAX_TEST_CMD_BUF 2000
struct rtw_mp_test_cmdbuf {
u8 type;
u8 buf[RTW_MAX_TEST_CMD_BUF];
u16 len;
};
enum rtw_mp_nss
{
MP_NSS1,
MP_NSS2,
MP_NSS3,
MP_NSS4
};
#define RU_TONE_STR(idx)\
(idx == MP_RU_TONE_26) ? "26-Tone" :\
(idx == MP_RU_TONE_52) ? "52-Tone" :\
(idx == MP_RU_TONE_106) ? "106-Tone" :\
(idx == MP_RU_TONE_242) ? "242-Tone" :\
(idx == MP_RU_TONE_484) ? "484-Tone" :\
(idx == MP_RU_TONE_966) ? "966-Tone" :\
"UNknow"
enum rtw_mp_resourceUnit
{
MP_RU_TONE_26 = 0,
MP_RU_TONE_52,
MP_RU_TONE_106,
MP_RU_TONE_242,
MP_RU_TONE_484,
MP_RU_TONE_966
};
#define MP_IS_HT_HRATE(_rate) ((_rate) >= HRATE_MCS0 && (_rate) <= HRATE_MCS31)
#define MP_IS_VHT_HRATE(_rate) ((_rate) >= HRATE_VHT_NSS1_MCS0 && (_rate) <= HRATE_VHT_NSS4_MCS9)
#define MP_IS_CCK_HRATE(_rate) ((_rate) == HRATE_CCK1 || (_rate) == HRATE_CCK2 || \
(_rate) == HRATE_CCK5_5 || (_rate) == HRATE_CCK11)
#define MP_IS_OFDM_HRATE(_rate) ((_rate) >= HRATE_OFDM6 && (_rate) <= HRATE_OFDM54)
#define MP_IS_HE_HRATE(_rate) ((_rate) >= HRATE_HE_NSS1_MCS0 && (_rate) <= HRATE_HE_NSS4_MCS11)
#define MP_IS_HT1SS_HRATE(_rate) ((_rate) >= HRATE_MCS0 && (_rate) <= HRATE_MCS7)
#define MP_IS_HT2SS_HRATE(_rate) ((_rate) >= HRATE_MCS8 && (_rate) <= HRATE_MCS15)
#define MP_IS_HT3SS_HRATE(_rate) ((_rate) >= HRATE_MCS16 && (_rate) <= HRATE_MCS23)
#define MP_IS_HT4SS_HRATE(_rate) ((_rate) >= HRATE_MCS24 && (_rate) <= HRATE_MCS31)
#define MP_IS_VHT1SS_HRATE(_rate) ((_rate) >= HRATE_VHT_NSS1_MCS0 && (_rate) <= HRATE_VHT_NSS1_MCS9)
#define MP_IS_VHT2SS_HRATE(_rate) ((_rate) >= HRATE_VHT_NSS2_MCS0 && (_rate) <= HRATE_VHT_NSS2_MCS9)
#define MP_IS_VHT3SS_HRATE(_rate) ((_rate) >= HRATE_VHT_NSS3_MCS0 && (_rate) <= HRATE_VHT_NSS3_MCS9)
#define MP_IS_VHT4SS_HRATE(_rate) ((_rate) >= HRATE_VHT_NSS4_MCS0 && (_rate) <= HRATE_VHT_NSS4_MCS9)
#define MP_IS_HE1SS_HRATE(_rate) ((_rate) >= HRATE_HE_NSS1_MCS0 && (_rate) <= HRATE_HE_NSS1_MCS11)
#define MP_IS_HE2SS_HRATE(_rate) ((_rate) >= HRATE_HE_NSS2_MCS0 && (_rate) <= HRATE_HE_NSS2_MCS11)
#define MP_IS_HE3SS_HRATE(_rate) ((_rate) >= HRATE_HE_NSS3_MCS0 && (_rate) <= HRATE_HE_NSS3_MCS11)
#define MP_IS_HE4SS_HRATE(_rate) ((_rate) >= HRATE_HE_NSS4_MCS0 && (_rate) <= HRATE_HE_NSS4_MCS11)
#define MP_IS_1T_HRATE(_rate) (MP_IS_CCK_HRATE((_rate)) || MP_IS_OFDM_HRATE((_rate)) \
|| MP_IS_HT1SS_HRATE((_rate)) || MP_IS_VHT1SS_HRATE((_rate)) \
|| MP_IS_HE1SS_HRATE((_rate)))
#define MP_IS_2T_HRATE(_rate) (MP_IS_HT2SS_HRATE((_rate)) || MP_IS_VHT2SS_HRATE((_rate)) \
|| MP_IS_HE2SS_HRATE((_rate)))
#define MP_IS_3T_HRATE(_rate) (MP_IS_HT3SS_HRATE((_rate)) || MP_IS_VHT3SS_HRATE((_rate)) \
|| MP_IS_HE3SS_HRATE((_rate)))
#define MP_IS_4T_HRATE(_rate) (MP_IS_HT4SS_HRATE((_rate)) || MP_IS_VHT4SS_HRATE((_rate)) \
|| MP_IS_HE4SS_HRATE((_rate)))
void rtw_mp_get_phl_cmd(_adapter *padapter, void* buf, u32 buflen);
void rtw_mp_set_phl_cmd(_adapter *padapter, void* buf, u32 buflen);
bool rtw_mp_phl_config_arg(_adapter *padapter, enum rtw_mp_config_cmdid cmdid);
void rtw_mp_phl_rx_physts(_adapter *padapter, struct rtw_mp_rx_arg *rx_arg, bool bstart);
void rtw_mp_phl_rx_rssi(_adapter *padapter, struct rtw_mp_rx_arg *rx_arg);
void rtw_mp_phl_rx_gain_offset(_adapter *padapter, struct rtw_mp_rx_arg *rx_arg, u8 path_num);
void rtw_mp_phl_query_rx(_adapter *padapter, struct rtw_mp_rx_arg *rx_arg ,u8 rx_qurey_type);
u8 rtw_mp_phl_txpower(_adapter *padapter, struct rtw_mp_txpwr_arg *ptxpwr_arg, u8 cmdid);
void rtw_mp_set_crystal_cap(_adapter *padapter, u32 xcapvalue);
u8 rtw_mp_phl_calibration(_adapter *padapter, struct rtw_mp_cal_arg *pcal_arg, u8 cmdid);
u8 rtw_update_giltf(_adapter *padapter);
void rtw_mp_update_coding(_adapter *padapter);
u8 rtw_mp_update_ru_tone(_adapter *padapter);
u8 rtw_mp_update_ru_alloc(_adapter *padapter);
bool rtw_mp_is_cck_rate(u16 rate);
extern s32 init_mp_priv(_adapter *padapter);
extern void free_mp_priv(struct mp_priv *pmp_priv);
extern s32 MPT_InitializeAdapter(_adapter *padapter, u8 Channel);
extern void MPT_DeInitAdapter(_adapter *padapter);
extern s32 mp_start_test(_adapter *padapter);
extern void mp_stop_test(_adapter *padapter);
extern void write_bbreg(_adapter *padapter, u32 addr, u32 bitmask, u32 val);
extern u32 read_rfreg(_adapter *padapter, u8 rfpath, u32 addr);
extern void write_rfreg(_adapter *padapter, u8 rfpath, u32 addr, u32 val);
#ifdef CONFIG_ANTENNA_DIVERSITY
u8 rtw_mp_set_antdiv(_adapter *padapter, BOOLEAN bMain);
#endif
void SetChannel(_adapter *adapter);
void SetBandwidth(_adapter *adapter);
int rtw_mp_txpoweridx(_adapter *adapter);
u16 rtw_mp_txpower_dbm(_adapter *adapter, u8 rf_path);
u16 rtw_mp_get_pwrtab_dbm(_adapter *adapter, u8 rfpath);
void SetAntenna(_adapter *adapter);
void SetDataRate(_adapter *adapter);
s32 SetThermalMeter(_adapter *adapter, u8 target_ther);
void GetThermalMeter(_adapter *adapter, u8 rfpath ,u8 *value);
void rtw_mp_continuous_tx(_adapter *adapter, u8 bstart);
void rtw_mp_singlecarrier_tx(_adapter *adapter, u8 bstart);
void rtw_mp_singletone_tx(_adapter *adapter, u8 bstart);
void rtw_mp_carriersuppr_tx(_adapter *adapter, u8 bstart);
void rtw_mp_txpwr_level(_adapter *adapter);
void fill_txdesc_for_mp(_adapter *padapter, u8 *ptxdesc);
void rtw_set_phl_packet_tx(_adapter *padapter, u8 bStart);
u8 rtw_phl_mp_tx_cmd(_adapter *padapter, enum rtw_mp_tx_cmd cmdid,
enum rtw_mp_tx_method tx_method, boolean bstart);
void rtw_mp_set_packet_tx(_adapter *padapter);
void rtw_mp_reset_phy_count(_adapter *adapter);
s32 SetPowerTracking(_adapter *padapter, u8 enable);
void GetPowerTracking(_adapter *padapter, u8 *enable);
u32 mp_query_psd(_adapter *adapter, u8 *data);
void rtw_mp_trigger_iqk(_adapter *padapter);
void rtw_mp_trigger_lck(_adapter *padapter);
void rtw_mp_trigger_dpk(_adapter *padapter);
u8 rtw_mp_mode_check(_adapter *padapter);
bool rtw_is_mp_tssitrk_on(_adapter *adapter);
void mpt_ProSetPMacTx(_adapter *adapter);
void MP_PHY_SetRFPathSwitch(_adapter *adapter , BOOLEAN bMain);
void mp_phy_switch_rf_path_set(_adapter *adapter , u8 *pstate);
u8 MP_PHY_QueryRFPathSwitch(_adapter *adapter);
u32 mpt_ProQueryCalTxPower(_adapter *adapter, u8 RfPath);
u8 mpt_to_mgnt_rate(u32 MptRateIdx);
u16 rtw_mp_rate_parse(_adapter *adapter, u8 *target_str);
u32 mp_join(_adapter *padapter, u8 mode);
u32 hal_mpt_query_phytxok(_adapter *adapter);
u32 mpt_get_tx_power_finalabs_val(_adapter *padapter, u8 rf_path);
void mpt_trigger_tssi_tracking(_adapter *adapter, u8 rf_path);
u8 rtw_mpt_set_power_limit_en(_adapter *padapter, bool en_val);
bool rtw_mpt_get_power_limit_en(_adapter *padapter);
u32 rtw_mp_get_tssi_de(_adapter *padapter, u8 rf_path);
s32 rtw_mp_get_online_tssi_de(_adapter *padapter, s32 out_pwr, s32 tgdbm, u8 rf_path);
u8 rtw_mp_set_tsside2verify(_adapter *padapter, u32 tssi_de, u8 rf_path);
u8 rtw_mp_set_tssi_offset(_adapter *padapter, u32 tssi_offset, u8 rf_path);
u8 rtw_mp_set_tssi_pwrtrk(_adapter *padapter, u8 tssi_state);
u8 rtw_mp_get_tssi_pwrtrk(_adapter *padapter);
void rtw_mp_cal_trigger(_adapter *padapter, u8 cal_tye);
void rtw_mp_cal_capab(_adapter *padapter, u8 cal_tye, u8 benable);
void
PMAC_Get_Pkt_Param(
PRT_PMAC_TX_INFO pPMacTxInfo,
PRT_PMAC_PKT_INFO pPMacPktInfo
);
void
CCK_generator(
PRT_PMAC_TX_INFO pPMacTxInfo,
PRT_PMAC_PKT_INFO pPMacPktInfo
);
void
PMAC_Nsym_generator(
PRT_PMAC_TX_INFO pPMacTxInfo,
PRT_PMAC_PKT_INFO pPMacPktInfo
);
void
L_SIG_generator(
u32 N_SYM, /* Max: 750*/
PRT_PMAC_TX_INFO pPMacTxInfo,
PRT_PMAC_PKT_INFO pPMacPktInfo
);
void HT_SIG_generator(
PRT_PMAC_TX_INFO pPMacTxInfo,
PRT_PMAC_PKT_INFO pPMacPktInfo);
void VHT_SIG_A_generator(
PRT_PMAC_TX_INFO pPMacTxInfo,
PRT_PMAC_PKT_INFO pPMacPktInfo);
void VHT_SIG_B_generator(
PRT_PMAC_TX_INFO pPMacTxInfo);
void VHT_Delimiter_generator(
PRT_PMAC_TX_INFO pPMacTxInfo);
int rtw_mp_write_reg(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_read_reg(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_write_rf(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_read_rf(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_start(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_stop(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_rate(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_channel(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_trxsc_offset(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_bandwidth(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_txpower_index(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_txpower(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_ant_tx(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_ant_rx(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_set_ctx_destAddr(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_ctx(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_disable_bt_coexist(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_disable_bt_coexist(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_arx(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_trx_query(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_pwrtrk(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_psd(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_thermal(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_reset_stats(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_dump(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_phypara(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_SetRFPath(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_switch_rf_path(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_link(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_QueryDrv(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_PwrCtlDM(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_getver(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_mon(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_pwrlmt(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_dpk_track(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_dpk(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
#if 0
int rtw_efuse_mask_file(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_bt_efuse_mask_file(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_efuse_file_map(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_efuse_file_map_store(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_bt_efuse_file_map(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
#endif
int rtw_mp_SetBT(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_pretx_proc(_adapter *padapter, u8 bStartTest, char *extra);
int rtw_mp_tx(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_rx(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_hwtx(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
u8 rtw_mp_hwrate2mptrate(u8 rate);
int rtw_mp_iqk(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_lck(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_get_tsside(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_set_tsside(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_priv_mp_set(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wdata, char *extra);
int rtw_priv_mp_get(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wdata, char *extra);
int rtw_mp_set_phl_io(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_get_phl_io(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra);
int rtw_mp_tx_pattern_idx(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_tx_plcp_tx_data(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_tx_plcp_tx_user(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_tx_method(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_config_phy(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_phl_rfk(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_phl_btc_path(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
int rtw_mp_get_he(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
#endif /* _RTW_MP_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_mp.h
|
C
|
agpl-3.0
| 45,395
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_P2P_H_
#define __RTW_P2P_H_
u32 build_prov_disc_request_p2p_ie(struct wifidirect_info *pwdinfo, u8 *pbuf, u8 *pssid, u8 ussidlen, u8 *pdev_raddr);
#ifdef CONFIG_WFD
int rtw_init_wifi_display_info(_adapter *padapter);
void rtw_wfd_enable(_adapter *adapter, bool on);
void rtw_wfd_set_ctrl_port(_adapter *adapter, u16 port);
void rtw_tdls_wfd_enable(_adapter *adapter, bool on);
u32 build_probe_req_wfd_ie(struct wifidirect_info *pwdinfo, u8 *pbuf);
u32 build_probe_resp_wfd_ie(struct wifidirect_info *pwdinfo, u8 *pbuf, u8 tunneled);
u32 build_beacon_wfd_ie(struct wifidirect_info *pwdinfo, u8 *pbuf);
u32 build_nego_req_wfd_ie(struct wifidirect_info *pwdinfo, u8 *pbuf);
u32 build_nego_resp_wfd_ie(struct wifidirect_info *pwdinfo, u8 *pbuf);
u32 build_nego_confirm_wfd_ie(struct wifidirect_info *pwdinfo, u8 *pbuf);
u32 build_invitation_req_wfd_ie(struct wifidirect_info *pwdinfo, u8 *pbuf);
u32 build_invitation_resp_wfd_ie(struct wifidirect_info *pwdinfo, u8 *pbuf);
u32 build_assoc_req_wfd_ie(struct wifidirect_info *pwdinfo, u8 *pbuf);
u32 build_assoc_resp_wfd_ie(struct wifidirect_info *pwdinfo, u8 *pbuf);
u32 build_provdisc_req_wfd_ie(struct wifidirect_info *pwdinfo, u8 *pbuf);
u32 build_provdisc_resp_wfd_ie(struct wifidirect_info *pwdinfo, u8 *pbuf);
u32 rtw_append_beacon_wfd_ie(_adapter *adapter, u8 *pbuf);
u32 rtw_append_probe_req_wfd_ie(_adapter *adapter, u8 *pbuf);
u32 rtw_append_probe_resp_wfd_ie(_adapter *adapter, u8 *pbuf);
u32 rtw_append_assoc_req_wfd_ie(_adapter *adapter, u8 *pbuf);
u32 rtw_append_assoc_resp_wfd_ie(_adapter *adapter, u8 *pbuf);
#endif /*CONFIG_WFD */
void rtw_xframe_chk_wfd_ie(struct xmit_frame *xframe);
u32 process_probe_req_p2p_ie(struct wifidirect_info *pwdinfo, u8 *pframe, uint len);
u32 process_assoc_req_p2p_ie(struct wifidirect_info *pwdinfo, u8 *pframe, uint len, struct sta_info *psta);
u8 process_p2p_presence_req(struct wifidirect_info *pwdinfo, u8 *pframe, uint len);
int process_p2p_cross_connect_ie(_adapter *padapter, u8 *IEs, u32 IELength);
#ifdef CONFIG_P2P_PS
void process_p2p_ps_ie(_adapter *padapter, u8 *IEs, u32 IELength);
void p2p_ps_wk_hdl(_adapter *padapter, u8 p2p_ps_state);
u8 p2p_ps_wk_cmd(_adapter *padapter, u8 p2p_ps_state, u8 enqueue);
#endif /* CONFIG_P2P_PS */
#ifdef CONFIG_IOCTL_CFG80211
int rtw_p2p_check_frames(_adapter *padapter, const u8 *buf, u32 len, u8 tx);
#endif /* CONFIG_IOCTL_CFG80211 */
void reset_global_wifidirect_info(_adapter *padapter);
void init_wifidirect_info(_adapter *padapter, enum P2P_ROLE role);
int rtw_p2p_enable(_adapter *padapter, enum P2P_ROLE role);
void _rtw_p2p_set_role(struct wifidirect_info *wdinfo, enum P2P_ROLE role);
static inline int _rtw_p2p_role(struct wifidirect_info *wdinfo)
{
return wdinfo->role;
}
static inline bool _rtw_p2p_chk_role(struct wifidirect_info *wdinfo, enum P2P_ROLE role)
{
return wdinfo->role == role;
}
#ifdef CONFIG_DBG_P2P
void dbg_rtw_p2p_set_role(struct wifidirect_info *wdinfo, enum P2P_ROLE role, const char *caller, int line);
#define rtw_p2p_set_role(wdinfo, role) dbg_rtw_p2p_set_role(wdinfo, role, __FUNCTION__, __LINE__)
#else /* CONFIG_DBG_P2P */
#define rtw_p2p_set_role(wdinfo, role) _rtw_p2p_set_role(wdinfo, role)
#endif /* CONFIG_DBG_P2P */
#define rtw_p2p_role(wdinfo) _rtw_p2p_role(wdinfo)
#define rtw_p2p_chk_role(wdinfo, role) _rtw_p2p_chk_role(wdinfo, role)
#endif
|
2301_81045437/rtl8852be
|
include/rtw_p2p.h
|
C
|
agpl-3.0
| 4,021
|
/******************************************************************************
*
* Copyright(c) 2019 - 2021 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_PHL_H_
#define _RTW_PHL_H_
typedef struct rtw_phl_com_t HAL_DATA_TYPE; /*, *PHAL_DATA_TYPE;*/
#define GET_PHL_INFO(_dvobj) (_dvobj->phl)
#define GET_PHL_COM(_dvobj) (_dvobj->phl_com)
#define GET_HAL_SPEC(_dvobj) (&(GET_PHL_COM(_dvobj)->hal_spec))
/* refer to (registrypriv-> tx_nss,rx_nss / hal_spec->tx_nss_num,rx_nss_num)*/
#define GET_HAL_TX_NSS(_dvobj) ((GET_PHL_COM(_dvobj))->tx_nss)
#define GET_HAL_RX_NSS(_dvobj) ((GET_PHL_COM(_dvobj))->rx_nss)
#define GET_HAL_RFPATH_NUM(_dvobj) ((GET_PHL_COM(_dvobj))->rf_path_num)
/* refer to (hal_data->version_id.RFType / registrypriv->rf_path / 8814a from efuse or registrypriv)*/
#define GET_HAL_RFPATH(_dvobj) ((GET_PHL_COM(_dvobj))->rf_type)
#define GET_WIFI_ROLE_CURRENT_CH(_adapter) (_adapter->phl_role->chandef.ch)
#define WIFI_ROLE_IS_ON_24G(_adapter) (_adapter->phl_role->chandef.band == BAND_ON_24G)
#define WIFI_ROLE_IS_ON_5G(_adapter) (_adapter->phl_role->chandef.band == BAND_ON_5G)
#define WIFI_ROLE_IS_ON_6G(_adapter) (_adapter->phl_role->chandef.band == BAND_ON_6G)
#define RTW_LITEXMITBUF_NR 256
#define RTW_XMITURB_NR 256
#define RTW_LITERECVBUF_NR 8
#define RTW_RECVURB_NR 8
#define RTW_INTINBUF_NR 1
#define RTW_INTINURB_NR 1
s8 rtw_phl_rssi_to_dbm(u8 rssi);
void rtw_hw_dump_hal_spec(void *sel, struct dvobj_priv *dvobj);
void rtw_dump_phl_sta_info(void *sel, struct sta_info *sta);
bool rtw_hw_chk_band_cap(struct dvobj_priv *dvobj, u8 cap);
bool rtw_hw_chk_bw_cap(struct dvobj_priv *dvobj, u8 cap);
bool rtw_hw_chk_proto_cap(struct dvobj_priv *dvobj, u8 cap);
bool rtw_hw_chk_wl_func(struct dvobj_priv *dvobj, u8 func);
bool rtw_hw_is_band_support(struct dvobj_priv *dvobj, u8 band);
bool rtw_hw_is_bw_support(struct dvobj_priv *dvobj, u8 bw);
bool rtw_hw_is_wireless_mode_support(struct dvobj_priv *dvobj, u8 mode);
u8 rtw_hw_get_wireless_mode(struct dvobj_priv *dvobj);
u8 rtw_hw_get_band_type(struct dvobj_priv *dvobj);
u8 rtw_hw_get_mac_addr(struct dvobj_priv *dvobj, u8 *hw_mac_addr);
bool rtw_hw_is_mimo_support(struct dvobj_priv *dvobj);
u8 rtw_hw_largest_bw(struct dvobj_priv *dvobj, u8 in_bw);
u8 rtw_hw_init(struct dvobj_priv *dvobj);
void rtw_hw_deinit(struct dvobj_priv *dvobj);
u8 rtw_hw_start(struct dvobj_priv *dvobj);
void rtw_hw_stop(struct dvobj_priv *dvobj);
bool rtw_hw_get_init_completed(struct dvobj_priv *dvobj);
bool rtw_hw_is_init_completed(struct dvobj_priv *dvobj);
void rtw_hw_cap_init(struct dvobj_priv *dvobj);
u8 rtw_hw_iface_init(_adapter *adapter);
u8 rtw_hw_iface_type_change(_adapter *adapter, u8 iface_type);
void rtw_hw_iface_deinit(_adapter *adapter);
/* security */
u8 rtw_sec_algo_drv2phl(enum security_type drv_algo);
u8 rtw_sec_algo_phl2drv(enum rtw_enc_algo phl_algo);
int rtw_hw_add_key(struct _ADAPTER *a, struct sta_info *sta,
u8 keyid, enum security_type keyalgo, u8 keytype, u8 *key,
u8 spp, enum phl_cmd_type cmd_type, u32 cmd_timeout);
int rtw_hw_del_key(struct _ADAPTER *a, struct sta_info *sta,
u8 keyid, u8 keytype, enum phl_cmd_type cmd_type, u32 cmd_timeout);
int rtw_hw_del_all_key(struct _ADAPTER *a, struct sta_info *sta,
enum phl_cmd_type cmd_type, u32 cmd_timeout);
/* settting */
int rtw_hw_set_ch_bw(struct _ADAPTER *a,
u8 ch, enum channel_width bw, u8 offset, u8 do_rfk);
int rtw_hw_set_edca(struct _ADAPTER *a, u8 ac, u32 param);
/* connect */
#ifdef RTW_WKARD_UPDATE_PHL_ROLE_CAP
void rtw_update_phl_cap_by_rgstry(struct _ADAPTER *a);
#endif
void rtw_update_phl_sta_cap(struct _ADAPTER *a, struct sta_info *sta,
struct protocol_cap_t *cap);
int rtw_hw_prepare_connect(struct _ADAPTER *a, struct sta_info *sta, u8 *target_addr);
int rtw_hw_start_bss_network(struct _ADAPTER *a);
int rtw_hw_connect_abort(struct _ADAPTER *a, struct sta_info *sta);
int rtw_hw_connected(struct _ADAPTER *a, struct sta_info *sta);
int rtw_hw_connected_apmode(struct _ADAPTER *a, struct sta_info *sta);
int rtw_hw_disconnect(struct _ADAPTER *a, struct sta_info *sta);
void rtw_hw_update_chan_def(_adapter *adapter);
#ifdef CONFIG_RTW_ACS
u16 rtw_acs_get_channel_by_idx(struct _ADAPTER *a, u8 idx);
u8 rtw_acs_get_clm_ratio_by_idx(struct _ADAPTER *a, u8 idx);
s8 rtw_noise_query_by_idx(struct _ADAPTER *a, u8 idx);
#endif /* CONFIG_RTW_ACS */
void rtw_dump_env_rpt(struct _ADAPTER *a, void *sel);
#ifdef CONFIG_WOWLAN
u8 rtw_hw_wow(struct _ADAPTER *a, u8 wow_en);
#endif
#ifdef CONFIG_MCC_MODE
u8 rtw_hw_mcc_chk_inprogress(struct _ADAPTER *a);
#endif
void rtw_update_phl_edcca_mode(struct _ADAPTER *a);
void rtw_dump_phl_tx_power_ext_info(void *sel, _adapter *adapter);
void rtw_update_phl_txpwr_level(_adapter *adapter);
#endif /* _RTW_HW_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_phl.h
|
C
|
agpl-3.0
| 5,268
|
/******************************************************************************
*
* Copyright(c) 2019 - 2020 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_PHL_CMD__
#define __RTW_PHL_CMD__
u32 rtw_enqueue_phl_cmd(struct cmd_obj *pcmd);
#ifdef CONFIG_CMD_TSF_SYNC
enum rtw_phl_status rtw_send_tsf_sync_done_msg(struct _ADAPTER *a);
#endif
#if defined (CONFIG_CMD_GENERAL) && defined (CONFIG_PCIE_TRX_MIT)
u8 rtw_pcie_trx_mit_cmd(_adapter *padapter, u32 tx_timer, u8 tx_counter,
u32 rx_timer, u8 rx_counter, u8 fixed_mit);
#endif
#endif /* __RTW_PHL_CMD__ */
|
2301_81045437/rtl8852be
|
include/rtw_phl_cmd.h
|
C
|
agpl-3.0
| 1,076
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_PWRCTRL_H_
#define __RTW_PWRCTRL_H_
#define PS_ACTIVE 0
#define PS_LPS 1
#define FW_PWR0 0
#define FW_PWR1 1
#define FW_PWR2 2
#define FW_PWR3 3
#define HW_PWR0 7
#define HW_PWR1 6
#define HW_PWR2 2
#define HW_PWR3 0
#define HW_PWR4 8
#define FW_PWRMSK 0x7
#define XMIT_ALIVE BIT(0)
#define RECV_ALIVE BIT(1)
#define CMD_ALIVE BIT(2)
#define EVT_ALIVE BIT(3)
enum power_mgnt {
PM_PS_MODE_ACTIVE = 0 ,
PM_PS_MODE_MIN ,
PM_PS_MODE_MAX ,
PM_PS_MODE_DTIM , /* PS_MODE_SELF_DEFINED */
PM_PS_MODE_VOIP ,
PM_PS_MODE_UAPSD_WMM ,
PM_PS_MODE_UAPSD ,
PM_PS_MODE_IBSS ,
PM_PS_MODE_WWLAN ,
PM_RADIO_OFF ,
PM_CARD_DISABLE ,
PM_PS_MODE_NUM,
};
enum lps_level {
LPS_NORMAL = 0,
LPS_LCLK,
LPS_PG,
LPS_LEVEL_MAX,
};
/*
BIT[2:0] = HW state
BIT[3] = Protocol PS state, 0: register active state , 1: register sleep state
BIT[4] = sub-state
*/
#define PS_DPS BIT(0)
#define PS_LCLK (PS_DPS)
#define PS_RF_OFF BIT(1)
#define PS_ALL_ON BIT(2)
#define PS_ST_ACTIVE BIT(3)
#define PS_ISR_ENABLE BIT(4)
#define PS_IMR_ENABLE BIT(5)
#define PS_ACK BIT(6)
#define PS_TOGGLE BIT(7)
#define PS_STATE_MASK (0x0F)
#define PS_STATE_HW_MASK (0x07)
#define PS_SEQ_MASK (0xc0)
#define PS_STATE(x) (PS_STATE_MASK & (x))
#define PS_STATE_HW(x) (PS_STATE_HW_MASK & (x))
#define PS_SEQ(x) (PS_SEQ_MASK & (x))
#define PS_STATE_S0 (PS_DPS)
#define PS_STATE_S1 (PS_LCLK)
#define PS_STATE_S2 (PS_RF_OFF)
#define PS_STATE_S3 (PS_ALL_ON)
#define PS_STATE_S4 ((PS_ST_ACTIVE) | (PS_ALL_ON))
#define PS_IS_RF_ON(x) ((x) & (PS_ALL_ON))
#define PS_IS_ACTIVE(x) ((x) & (PS_ST_ACTIVE))
#define CLR_PS_STATE(x) ((x) = ((x) & (0xF0)))
struct reportpwrstate_parm {
unsigned char mode;
unsigned char state; /* the CPWM value */
unsigned short rsvd;
};
typedef _sema _pwrlock;
__inline static void _init_pwrlock(_pwrlock *plock)
{
_rtw_init_sema(plock, 1);
}
__inline static void _free_pwrlock(_pwrlock *plock)
{
_rtw_free_sema(plock);
}
__inline static void _enter_pwrlock(_pwrlock *plock)
{
_rtw_down_sema(plock);
}
__inline static void _exit_pwrlock(_pwrlock *plock)
{
_rtw_up_sema(plock);
}
#define LPS_DELAY_MS 1000 /* 1 sec */
#define EXE_PWR_NONE 0x01
#define EXE_PWR_IPS 0x02
#define EXE_PWR_LPS 0x04
/* RF state. */
typedef enum _rt_rf_power_state {
rf_on, /* RF is on after RFSleep or RFOff */
rf_sleep, /* 802.11 Power Save mode */
rf_off, /* HW/SW Radio OFF or Inactive Power Save */
/* =====Add the new RF state above this line===== */
rf_max
} rt_rf_power_state;
/* ASPM OSC Control bit, added by Roger, 2013.03.29. */
#define RT_PCI_ASPM_OSC_IGNORE 0 /* PCI ASPM ignore OSC control in default */
#define RT_PCI_ASPM_OSC_ENABLE BIT0 /* PCI ASPM controlled by OS according to ACPI Spec 5.0 */
#define RT_PCI_ASPM_OSC_DISABLE BIT1 /* PCI ASPM controlled by driver or BIOS, i.e., force enable ASPM */
enum _PS_BBRegBackup_ {
PSBBREG_RF0 = 0,
PSBBREG_RF1,
PSBBREG_RF2,
PSBBREG_AFE0,
PSBBREG_TOTALCNT
};
enum { /* for ips_mode */
IPS_NONE = 0,
IPS_NORMAL,
IPS_LEVEL_2,
IPS_NUM
};
/* Design for pwrctrl_priv.ips_deny, 32 bits for 32 reasons at most */
typedef enum _PS_DENY_REASON {
PS_DENY_DRV_INITIAL = 0,
PS_DENY_SCAN,
PS_DENY_JOIN,
PS_DENY_DISCONNECT,
PS_DENY_SUSPEND,
PS_DENY_IOCTL,
PS_DENY_MGNT_TX,
PS_DENY_MONITOR_MODE,
PS_DENY_BEAMFORMING, /* Beamforming */
PS_DENY_DRV_REMOVE = 30,
PS_DENY_OTHERS = 31
} PS_DENY_REASON;
struct rsvd_page_cache_t;
struct pwrctrl_priv {
_pwrlock lock;
_pwrlock check_32k_lock;
volatile u8 rpwm; /* requested power state for fw */
volatile u8 cpwm; /* fw current power state. updated when 1. read from HCPWM 2. driver lowers power level */
volatile u8 tog; /* toggling */
volatile u8 cpwm_tog; /* toggling */
u8 rpwm_retry;
u8 pwr_mode;
u8 smart_ps;
u8 bcn_ant_mode;
u8 dtim;
#ifdef CONFIG_LPS_CHK_BY_TP
u8 lps_chk_by_tp;
u16 lps_tx_tp_th;/*Mbps*/
u16 lps_rx_tp_th;/*Mbps*/
u16 lps_bi_tp_th;/*Mbps*//*TRX TP*/
int lps_chk_cnt_th;
int lps_chk_cnt;
u32 lps_tx_pkts;
u32 lps_rx_pkts;
#endif
#ifdef CONFIG_WMMPS_STA
u8 wmm_smart_ps;
#endif /* CONFIG_WMMPS_STA */
u32 alives;
_workitem cpwm_event;
_workitem dma_event; /*for handle un-synchronized tx dma*/
#ifdef CONFIG_LPS_RPWM_TIMER
u8 brpwmtimeout;
_workitem rpwmtimeoutwi;
_timer pwr_rpwm_timer;
#endif /* CONFIG_LPS_RPWM_TIMER */
u8 bpower_saving; /* for LPS/IPS */
u8 b_hw_radio_off;
u8 reg_rfoff;
u8 reg_pdnmode; /* powerdown mode */
u32 rfoff_reason;
uint ips_enter_cnts;
uint ips_leave_cnts;
uint lps_enter_cnts;
uint lps_leave_cnts;
u8 ips_mode;
u8 ips_org_mode;
u8 ips_mode_req; /* used to accept the mode setting request, will update to ipsmode later */
uint bips_processing;
systime ips_deny_time; /* will deny IPS when system time is smaller than this */
u8 pre_ips_type;/* 0: default flow, 1: carddisbale flow */
/* ps_deny: if 0, power save is free to go; otherwise deny all kinds of power save. */
/* Use PS_DENY_REASON to decide reason. */
/* Don't access this variable directly without control function, */
/* and this variable should be protected by lock. */
u32 ps_deny;
u8 ps_processing; /* temporarily used to mark whether in rtw_ps_processor */
u8 fw_psmode_iface_id;
u8 bLeisurePs;
u8 LpsIdleCount;
u8 power_mgnt;
u8 org_power_mgnt;
u8 bFwCurrentInPSMode;
systime lps_deny_time; /* will deny LPS when system time is smaller than this */
s32 pnp_current_pwr_state;
u8 pnp_bstop_trx;
u8 bInSuspend;
#ifdef CONFIG_BTC
u8 bAutoResume;
u8 autopm_cnt;
#endif
u8 bSupportRemoteWakeup;
u8 wowlan_wake_reason;
u8 wowlan_last_wake_reason;
u8 wowlan_ap_mode;
u8 wowlan_mode;
u8 wowlan_p2p_mode;
u8 wowlan_pno_enable;
u8 wowlan_in_resume;
#ifdef CONFIG_GPIO_WAKEUP
#endif /* CONFIG_GPIO_WAKEUP */
u8 hst2dev_high_active;
#ifdef CONFIG_WOWLAN
#ifdef CONFIG_IPV6
u8 wowlan_ns_offload_en;
#endif /*CONFIG_IPV6*/
u8 wowlan_txpause_status;
u8 wowlan_pattern_idx;
u64 wowlan_fw_iv;
struct rtl_priv_pattern patterns[MAX_WKFM_CAM_NUM];
#ifdef CONFIG_PNO_SUPPORT
u8 pno_inited;
pno_nlo_info_t *pnlo_info;
pno_scan_info_t *pscan_info;
pno_ssid_list_t *pno_ssid_list;
#endif /* CONFIG_PNO_SUPPORT */
_mutex wowlan_pattern_cam_mutex;
u8 wowlan_aoac_rpt_loc;
struct aoac_report wowlan_aoac_rpt;
u8 wowlan_power_mgmt;
u8 wowlan_lps_level;
#ifdef CONFIG_LPS_1T1R
u8 wowlan_lps_1t1r;
#endif
#endif /* CONFIG_WOWLAN */
_timer pwr_state_check_timer;
int pwr_state_check_interval;
u8 pwr_state_check_cnts;
rt_rf_power_state rf_pwrstate;/* cur power state, only for IPS */
/* rt_rf_power_state current_rfpwrstate; */
rt_rf_power_state change_rfpwrstate;
u8 bkeepfwalive;
u8 brfoffbyhw;
unsigned long PS_BBRegBackup[PSBBREG_TOTALCNT];
#ifdef CONFIG_RESUME_IN_WORKQUEUE
struct workqueue_struct *rtw_workqueue;
_workitem resume_work;
#endif
#ifdef CONFIG_HAS_EARLYSUSPEND
struct early_suspend early_suspend;
u8 do_late_resume;
#endif /* CONFIG_HAS_EARLYSUSPEND */
#ifdef CONFIG_ANDROID_POWER
android_early_suspend_t early_suspend;
u8 do_late_resume;
#endif
u8 lps_level_bk;
u8 lps_level; /*LPS_NORMAL,LPA_CG,LPS_PG*/
#ifdef CONFIG_LPS_1T1R
u8 lps_1t1r_bk;
u8 lps_1t1r;
#endif
#ifdef CONFIG_LPS_PG
struct rsvd_page_cache_t lpspg_info;
#ifdef CONFIG_RTL8822C
struct rsvd_page_cache_t lpspg_dpk_info;
struct rsvd_page_cache_t lpspg_iqk_info;
#endif
#endif
u8 current_lps_hw_port_id;
#ifdef CONFIG_RTW_CFGVENDOR_LLSTATS
systime radio_on_start_time;
systime pwr_saving_start_time;
u32 pwr_saving_time;
u32 on_time;
u32 tx_time;
u32 rx_time;
#endif /* CONFIG_RTW_CFGVENDOR_LLSTATS */
#ifdef CONFIG_LPS_ACK
struct submit_ctx lps_ack_sctx;
s8 lps_ack_status;
_mutex lps_ack_mutex;
#endif /* CONFIG_LPS_ACK */
};
#define rtw_get_ips_mode_req(pwrctl) \
(pwrctl)->ips_mode_req
#define rtw_ips_mode_req(pwrctl, ips_mode) \
(pwrctl)->ips_mode_req = (ips_mode)
#define RTW_PWR_STATE_CHK_INTERVAL 2000
#ifdef CONFIG_RTW_IPS
bool rtw_core_set_ips_state(void *drv_priv, enum rtw_rf_state state);
#endif
#ifdef CONFIG_POWER_SAVING
#define _rtw_set_pwr_state_check_timer(pwrctl, ms) \
do { \
/*RTW_INFO("%s _rtw_set_pwr_state_check_timer(%p, %d)\n", __FUNCTION__, (pwrctl), (ms));*/ \
_set_timer(&(pwrctl)->pwr_state_check_timer, (ms)); \
} while (0)
#define rtw_set_pwr_state_check_timer(pwrctl) \
_rtw_set_pwr_state_check_timer((pwrctl), (pwrctl)->pwr_state_check_interval)
#endif
extern void rtw_init_pwrctrl_priv(_adapter *adapter);
extern void rtw_free_pwrctrl_priv(_adapter *adapter);
#ifdef CONFIG_LPS_LCLK
s32 rtw_register_task_alive(_adapter *, u32 task);
void rtw_unregister_task_alive(_adapter *, u32 task);
extern s32 rtw_register_tx_alive(_adapter *padapter);
extern void rtw_unregister_tx_alive(_adapter *padapter);
extern s32 rtw_register_rx_alive(_adapter *padapter);
extern void rtw_unregister_rx_alive(_adapter *padapter);
#if 0 /*#ifdef CONFIG_CORE_CMD_THREAD*/
extern s32 rtw_register_cmd_alive(_adapter *padapter);
extern void rtw_unregister_cmd_alive(_adapter *padapter);
#endif
extern void cpwm_int_hdl(_adapter *padapter, struct reportpwrstate_parm *preportpwrstate);
extern void LPS_Leave_check(_adapter *padapter);
#endif
extern void LeaveAllPowerSaveMode(_adapter *adapter);
extern void LeaveAllPowerSaveModeDirect(_adapter *adapter);
#ifdef CONFIG_IPS
void _ips_enter(_adapter *padapter);
void ips_enter(_adapter *padapter);
int _ips_leave(_adapter *padapter);
int ips_leave(_adapter *padapter);
#endif
#ifdef CONFIG_POWER_SAVING
void rtw_ps_processor(_adapter *padapter);
#endif
#ifdef DBG_CHECK_FW_PS_STATE
int rtw_fw_ps_state(_adapter *padapter);
#endif
#ifdef CONFIG_LPS
extern const char * const LPS_CTRL_PHYDM;
void LPS_Enter(_adapter *padapter, const char *msg);
void LPS_Leave(_adapter *padapter, const char *msg);
void rtw_leave_lps_and_chk(_adapter *padapter, u8 ps_mode);
#ifdef CONFIG_CHECK_LEAVE_LPS
#ifdef CONFIG_LPS_CHK_BY_TP
void traffic_check_for_leave_lps_by_tp(_adapter *padapter, u8 tx, struct sta_info *sta);
#endif
void traffic_check_for_leave_lps(_adapter *padapter, u8 tx, u32 tx_packets);
#endif /*CONFIG_CHECK_LEAVE_LPS*/
void rtw_set_ps_mode(_adapter *padapter, u8 ps_mode, u8 smart_ps, u8 bcn_ant_mode, const char *msg);
u8 rtw_set_rpwm(_adapter *padapter, u8 val8);
#endif /* CONFIG_LPS */
#ifdef CONFIG_RESUME_IN_WORKQUEUE
void rtw_resume_in_workqueue(struct pwrctrl_priv *pwrpriv);
#endif /* CONFIG_RESUME_IN_WORKQUEUE */
#if defined(CONFIG_HAS_EARLYSUSPEND) || defined(CONFIG_ANDROID_POWER)
bool rtw_is_earlysuspend_registered(struct pwrctrl_priv *pwrpriv);
bool rtw_is_do_late_resume(struct pwrctrl_priv *pwrpriv);
void rtw_set_do_late_resume(struct pwrctrl_priv *pwrpriv, bool enable);
void rtw_register_early_suspend(struct pwrctrl_priv *pwrpriv);
void rtw_unregister_early_suspend(struct pwrctrl_priv *pwrpriv);
#else
#define rtw_is_earlysuspend_registered(pwrpriv) _FALSE
#define rtw_is_do_late_resume(pwrpriv) _FALSE
#define rtw_set_do_late_resume(pwrpriv, enable) do {} while (0)
#define rtw_register_early_suspend(pwrpriv) do {} while (0)
#define rtw_unregister_early_suspend(pwrpriv) do {} while (0)
#endif /* CONFIG_HAS_EARLYSUSPEND || CONFIG_ANDROID_POWER */
void rtw_set_ips_deny(_adapter *padapter, u32 ms);
int _rtw_pwr_wakeup(_adapter *padapter, u32 ips_deffer_ms, const char *caller);
#define rtw_pwr_wakeup(adapter) _rtw_pwr_wakeup(adapter, RTW_PWR_STATE_CHK_INTERVAL, __FUNCTION__)
#define rtw_pwr_wakeup_ex(adapter, ips_deffer_ms) _rtw_pwr_wakeup(adapter, ips_deffer_ms, __FUNCTION__)
int rtw_pm_set_ips(_adapter *padapter, u8 mode);
int rtw_pm_set_lps(_adapter *padapter, u8 mode);
int rtw_pm_set_lps_level(_adapter *padapter, u8 level);
#ifdef CONFIG_LPS_1T1R
int rtw_pm_set_lps_1t1r(_adapter *padapter, u8 en);
#endif
void rtw_set_lps_deny(_adapter *adapter, u32 ms);
void rtw_ps_deny(_adapter *padapter, PS_DENY_REASON reason);
void rtw_ps_deny_cancel(_adapter *padapter, PS_DENY_REASON reason);
u32 rtw_ps_deny_get(_adapter *padapter);
void rtw_ssmps_enter(_adapter *adapter, struct sta_info *sta);
void rtw_ssmps_leave(_adapter *adapter, struct sta_info *sta);
#endif /* __RTL871X_PWRCTRL_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_pwrctrl.h
|
C
|
agpl-3.0
| 12,791
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_QOS_H_
#define _RTW_QOS_H_
#define DRV_CFG_UAPSD_VO BIT0
#define DRV_CFG_UAPSD_VI BIT1
#define DRV_CFG_UAPSD_BK BIT2
#define DRV_CFG_UAPSD_BE BIT3
#define WMM_IE_UAPSD_VO BIT0
#define WMM_IE_UAPSD_VI BIT1
#define WMM_IE_UAPSD_BK BIT2
#define WMM_IE_UAPSD_BE BIT3
#define WMM_TID0 BIT0
#define WMM_TID1 BIT1
#define WMM_TID2 BIT2
#define WMM_TID3 BIT3
#define WMM_TID4 BIT4
#define WMM_TID5 BIT5
#define WMM_TID6 BIT6
#define WMM_TID7 BIT7
#define AP_SUPPORTED_UAPSD BIT7
/* TC = Traffic Category, TID0~7 represents TC */
#define BIT_MASK_TID_TC 0xff
/* TS = Traffic Stream, TID8~15 represents TS */
#define BIT_MASK_TID_TS 0xff00
#define ALL_TID_TC_SUPPORTED_UAPSD 0xff
struct qos_priv {
unsigned int qos_option; /* bit mask option: u-apsd, s-apsd, ts, block ack... */
#ifdef CONFIG_WMMPS_STA
/* uapsd (unscheduled automatic power-save delivery) = a kind of wmmps */
u8 uapsd_max_sp_len;
/* declare uapsd_tid as a bitmap for the uapsd setting of TID 0~15 */
u16 uapsd_tid;
/* declare uapsd_tid_delivery_enabled as a bitmap for the delivery-enabled setting of TID 0~7 */
u8 uapsd_tid_delivery_enabled;
/* declare uapsd_tid_trigger_enabled as a bitmap for the trigger-enabled setting of TID 0~7 */
u8 uapsd_tid_trigger_enabled;
/* declare uapsd_ap_supported to record whether the connected ap supports uapsd or not */
u8 uapsd_ap_supported;
#endif /* CONFIG_WMMPS_STA */
};
#endif /* _RTL871X_QOS_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_qos.h
|
C
|
agpl-3.0
| 2,117
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_RECV_H_
#define _RTW_RECV_H_
#define RTW_RX_MSDU_ACT_NONE 0
#define RTW_RX_MSDU_ACT_INDICATE BIT0
#define RTW_RX_MSDU_ACT_FORWARD BIT1
#ifdef CONFIG_RTW_NAPI
#define RTL_NAPI_WEIGHT (32)
#endif
#define NR_RECVFRAME 256
#define RXFRAME_ALIGN 8
#define RXFRAME_ALIGN_SZ (1<<RXFRAME_ALIGN)
#define DRVINFO_SZ 4 /* unit is 8bytes */
#define MAX_RXFRAME_CNT 512
#define MAX_RX_NUMBLKS (32)
#define RECVFRAME_HDR_ALIGN 128
#define MAX_CONTINUAL_NORXPACKET_COUNT 4 /* In MAX_CONTINUAL_NORXPACKET_COUNT*2 sec , no rx traffict would issue DELBA*/
#define PHY_RSSI_SLID_WIN_MAX 100
#define PHY_LINKQUALITY_SLID_WIN_MAX 20
#define SNAP_SIZE sizeof(struct ieee80211_snap_hdr)
#define MAX_SUBFRAME_COUNT 64
/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
extern u8 rtw_bridge_tunnel_header[];
extern u8 rtw_rfc1042_header[];
enum addba_rsp_ack_state {
RTW_RECV_ACK_OR_TIMEOUT,
};
#ifdef RTW_PHL_RX
enum rtw_core_rx_state {
CORE_RX_CONTINUE = _SUCCESS,
CORE_RX_DONE,
CORE_RX_DROP,
CORE_RX_FAIL,
#ifdef CONFIG_RTW_CORE_RXSC
CORE_RX_GO_SHORTCUT,
#endif
CORE_RX_DEFRAG,
};
#endif
/* for Rx reordering buffer control */
struct recv_reorder_ctrl {
_adapter *padapter;
u8 tid;
u8 enable;
u16 indicate_seq;/* =wstart_b, init_value=0xffff */
u8 ampdu_size;
unsigned long rec_abba_rsp_ack;
#ifdef CONFIG_RECV_REORDERING_CTRL
_queue pending_recvframe_queue;
u8 wsize_b;
_timer reordering_ctrl_timer;
u8 bReorderWaiting;
#endif
};
struct stainfo_rxcache {
u16 tid_rxseq[16];
u8 iv[16][8];
u8 last_tid;
};
struct smooth_rssi_data {
u32 elements[100]; /* array to store values */
u32 index; /* index to current array to store */
u32 total_num; /* num of valid elements */
u32 total_val; /* sum of valid elements */
};
struct signal_stat {
u8 update_req; /* used to indicate */
u8 avg_val; /* avg of valid elements */
u32 total_num; /* num of valid elements */
u32 total_val; /* sum of valid elements */
};
/*TODO get phyinfo from PHL PPDU status - RTW_WKARD_CORE_RSSI_V1*/
struct phydm_phyinfo_struct {
bool is_valid;
u8 rx_pwdb_all;
u8 signal_quality; /* OFDM: signal_quality=rx_mimo_signal_quality[0], CCK: signal qualityin 0-100 index. */
s8 rx_power; /* in dBm Translate from PWdB */
s8 recv_signal_power; /* Real power in dBm for this packet, no beautification and aggregation. Keep this raw info to be used for the other procedures. */
u8 signal_strength; /* in 0-100 index. */
s8 rx_pwr[4]; /* per-path's pwdb */
s8 rx_snr[4]; /* per-path's SNR */
u8 rx_count:2; /* RX path counter---*/
};
struct rx_pkt_attrib {
u16 pkt_len;
u8 physt;
u8 drvinfo_sz;
u8 shift_sz;
u8 hdrlen; /* the WLAN Header Len */
u8 to_fr_ds;
u8 amsdu;
u8 qos;
u8 priority;
u8 pw_save;
u8 mdata;
u16 seq_num;
u8 frag_num;
u8 mfrag;
u8 order;
u8 privacy; /* in frame_ctrl field */
u8 bdecrypted;
u8 encrypt; /* when 0 indicate no encrypt. when non-zero, indicate the encrypt algorith */
u8 iv_len;
u8 icv_len;
u8 crc_err;
u8 icv_err;
#ifdef CONFIG_RTW_CORE_RXSC
u16 eth_type;
#endif
u8 dst[ETH_ALEN];
u8 src[ETH_ALEN];
u8 ta[ETH_ALEN];
u8 ra[ETH_ALEN];
u8 bssid[ETH_ALEN];
#ifdef CONFIG_RTW_MESH
u8 msa[ETH_ALEN]; /* mesh sa */
u8 mda[ETH_ALEN]; /* mesh da */
u8 mesh_ctrl_present;
u8 mesh_ctrl_len; /* length of mesh control field */
#endif
u8 ack_policy;
u8 key_index;
u8 data_rate;
u8 ch; /* RX channel */
u8 bw;
u8 stbc;
u8 ldpc;
u8 sgi;
u8 pkt_rpt_type;
u8 ampdu;
u8 ppdu_cnt;
u8 ampdu_eof;
u32 free_cnt; /* free run counter */
struct phydm_phyinfo_struct phy_info;
#ifdef CONFIG_WIFI_MONITOR
u8 moif[16];
#endif
#ifdef CONFIG_TCP_CSUM_OFFLOAD_RX
/* checksum offload realted varaiables */
u8 csum_valid; /* Checksum valid, 0: not check, 1: checked */
u8 csum_err; /* Checksum Error occurs */
#endif /* CONFIG_TCP_CSUM_OFFLOAD_RX */
#ifdef RTW_PHL_DBG_CMD
u8 wl_type;
u8 wl_subtype;
#endif
#ifdef CONFIG_RTW_CORE_RXSC
u8 bsnaphdr;
#endif
};
#ifdef CONFIG_RTW_MESH
#define RATTRIB_GET_MCTRL_LEN(rattrib) ((rattrib)->mesh_ctrl_len)
#else
#define RATTRIB_GET_MCTRL_LEN(rattrib) 0
#endif
/* These definition is used for Rx packet reordering. */
#define SN_LESS(a, b) (((a-b) & 0x800) != 0)
#define SN_EQUAL(a, b) (a == b)
/* #define REORDER_WIN_SIZE 128 */
/* #define REORDER_ENTRY_NUM 128 */
#define REORDER_WAIT_TIME (50) /* (ms) */
#if defined(CONFIG_PLATFORM_RTK390X) && defined(CONFIG_USB_HCI)
#define RECVBUFF_ALIGN_SZ 32
#else
#define RECVBUFF_ALIGN_SZ 8
#endif
/*GEORGIA_TODO_FIXIT_IC_DEPENDENCE*/
#define RXDESC_SIZE 24
#define RXDESC_OFFSET RXDESC_SIZE
#ifdef CONFIG_TRX_BD_ARCH
struct rx_buf_desc {
/* RX has exactly one segment */
#ifdef CONFIG_64BIT_DMA
unsigned int dword[4];
#else
unsigned int dword[2];
#endif
};
struct recv_stat {
unsigned int rxdw[8];
};
#else
struct recv_stat {
unsigned int rxdw0;
unsigned int rxdw1;
#if !(defined(CONFIG_RTL8822B) || defined(CONFIG_RTL8821C) || defined(CONFIG_RTL8822C)) && defined(CONFIG_PCI_HCI) /* exclude 8822be, 8821ce ,8822ce*/
unsigned int rxdw2;
unsigned int rxdw3;
#endif
#ifndef BUF_DESC_ARCH
unsigned int rxdw4;
unsigned int rxdw5;
#ifdef CONFIG_PCI_HCI
unsigned int rxdw6;
unsigned int rxdw7;
#endif
#endif /* if BUF_DESC_ARCH is defined, rx_buf_desc occupy 4 double words */
};
#endif
#define EOR BIT(30)
/*
accesser of recv_priv: rtw_recv_entry(dispatch / passive level); recv_thread(passive) ; returnpkt(dispatch)
; halt(passive) ;
using enter_critical section to protect
*/
struct recv_info {
u64 rx_bytes;
u64 rx_pkts;
u64 rx_drop;
u64 dbg_rx_drop_count;
u64 dbg_rx_ampdu_drop_count;
u64 dbg_rx_ampdu_forced_indicate_count;
u64 dbg_rx_ampdu_loss_count;
u64 dbg_rx_dup_mgt_frame_drop_count;
u64 dbg_rx_ampdu_window_shift_cnt;
u64 dbg_rx_conflic_mac_addr_cnt;
/* For display the phy informatiom */
u8 is_signal_dbg; /* for debug */
u8 signal_strength_dbg; /* for debug */
/*RTW_WKARD_CORE_RSSI_V1 - GEORGIA MUST REFINE*/
u8 signal_strength;
u8 signal_qual;
s8 rssi; /* rtw_phl_rssi_to_dbm(ptarget_wlan->network.PhyInfo.SignalStrength); */
#ifdef CONFIG_SIGNAL_STAT_PROCESS
_timer signal_stat_timer;
u32 signal_stat_sampling_interval;
#endif
/* u32 signal_stat_converging_constant; */
struct signal_stat signal_qual_data;
struct signal_stat signal_strength_data;
u16 sink_udpport, pre_rtp_rxseq, cur_rtp_rxseq;
};
#ifdef CONFIG_SIGNAL_STAT_PROCESS
#define rtw_set_signal_stat_timer(recvinfo) _set_timer(&(recvinfo)->signal_stat_timer, (recvinfo)->signal_stat_sampling_interval)
#endif
struct sta_recv_priv {
_lock lock;
sint option;
/* _queue blk_strms[MAX_RX_NUMBLKS]; */
_queue defrag_q; /* keeping the fragment frame until defrag */
struct stainfo_rxcache rxcache;
u16 bmc_tid_rxseq[16];
u16 nonqos_rxseq;
u16 nonqos_bmc_rxseq;
/* uint sta_rx_bytes; */
/* uint sta_rx_pkts; */
/* uint sta_rx_fail; */
};
#if 0
struct recv_buf {
_list list;
_lock recvbuf_lock;
u32 ref_cnt;
_adapter *adapter;
u8 *pbuf;
u8 *pallocated_buf;
u32 len;
u8 *phead;
u8 *pdata;
u8 *ptail;
u8 *pend;
#ifdef CONFIG_USB_HCI
PURB purb;
dma_addr_t dma_transfer_addr; /* (in) dma addr for transfer_buffer */
u32 alloc_sz;
u8 irp_pending;
int transfer_len;
#endif
struct sk_buff *pskb;
};
#endif
struct recv_frame_hdr {
_list list;
struct sk_buff *pkt;
_adapter *adapter;
struct dvobj_priv *dvobj;
u8 fragcnt;
int frame_tag;
int keytrack;
struct rx_pkt_attrib attrib;
uint len;
u8 *rx_head;
u8 *rx_data;
u8 *rx_tail;
u8 *rx_end;
void *precvbuf;
/* */
struct sta_info *psta;
#ifdef CONFIG_RECV_REORDERING_CTRL
/* for A-MPDU Rx reordering buffer control */
struct recv_reorder_ctrl *preorder_ctrl;
#endif
#ifdef RTW_PHL_RX
void *rx_req;
#endif
#ifdef CONFIG_RTW_CORE_RXSC
struct core_rxsc_entry *rxsc_entry;
#endif
#ifdef CONFIG_WAPI_SUPPORT
u8 UserPriority;
u8 WapiTempPN[16];
u8 WapiSrcAddr[6];
u8 bWapiCheckPNInDecrypt;
u8 bIsWaiPacket;
#endif
};
union recv_frame {
union {
_list list;
struct recv_frame_hdr hdr;
uint mem[RECVFRAME_HDR_ALIGN >> 2];
} u;
/* uint mem[MAX_RXSZ>>2]; */
};
enum rtw_rx_llc_hdl {
RTW_RX_LLC_KEEP = 0,
RTW_RX_LLC_REMOVE = 1,
RTW_RX_LLC_VLAN = 2,
};
struct recv_priv {
struct dvobj_priv *dvobj;
#ifdef CONFIG_RECV_THREAD_MODE
_sema recv_sema;
#endif
_queue free_recv_queue; /*recv_frame*/
#if 0
_queue uc_swdec_pending_queue;
#endif
u8 *pallocated_frame_buf;
u8 *precv_frame_buf;
uint free_recvframe_cnt;
#if defined(PLATFORM_LINUX) || defined(PLATFORM_FREEBSD)
#ifdef CONFIG_RTW_NAPI
struct sk_buff_head rx_napi_skb_queue;
#endif
#endif /* defined(PLATFORM_LINUX) || defined(PLATFORM_FREEBSD) */
};
bool rtw_rframe_del_wfd_ie(union recv_frame *rframe, u8 ies_offset);
#ifdef RTW_PHL_RX
extern void dump_recv_frame(_adapter *adapter, union recv_frame *prframe);
extern sint validate_recv_frame(_adapter *adapter, union recv_frame *precv_frame);
extern s32 rtw_core_rx_data_pre_process(_adapter *adapter, union recv_frame **prframe);
extern s32 rtw_core_rx_data_post_process(_adapter *adapter, union recv_frame *prframe);
enum rtw_phl_status rtw_core_rx_process(void *drv_priv);
void process_pwrbit_data(_adapter *padapter, union recv_frame *precv_frame, struct sta_info *psta);
void process_wmmps_data(_adapter *padapter, union recv_frame *precv_frame, struct sta_info *psta);
#ifdef CONFIG_RTW_CORE_RXSC
sint recv_ucast_pn_decache(union recv_frame *precv_frame);
sint recv_bcast_pn_decache(union recv_frame *precv_frame);
#endif /* CONFIG_RTW_CORE_RXSC */
#endif
extern void rtw_init_recvframe(union recv_frame *precvframe);
extern int rtw_free_recvframe(union recv_frame *precvframe);
union recv_frame *rtw_alloc_recvframe(_queue *pfree_recv_queue);
#if 0
u32 rtw_free_uc_swdec_pending_queue(struct dvobj_priv *dvobj);
#endif
#if defined(CONFIG_80211N_HT) && defined(CONFIG_RECV_REORDERING_CTRL)
void rtw_reordering_ctrl_timeout_handler(void *pcontext);
#endif
#if 0
void rx_query_phy_status(union recv_frame *rframe, u8 *phy_stat);
#endif
int rtw_inc_and_chk_continual_no_rx_packet(struct sta_info *sta, int tid_index);
void rtw_reset_continual_no_rx_packet(struct sta_info *sta, int tid_index);
#ifdef CONFIG_RECV_THREAD_MODE
thread_return rtw_recv_thread(thread_context context);
#endif
#ifdef RTW_WKARD_CORE_RSSI_V1
void rx_process_phy_info(union recv_frame *precvframe);
#endif
__inline static u8 *get_rxmem(union recv_frame *precvframe)
{
/* always return rx_head... */
if (precvframe == NULL)
return NULL;
return precvframe->u.hdr.rx_head;
}
__inline static u8 *get_rx_status(union recv_frame *precvframe)
{
return get_rxmem(precvframe);
}
__inline static u8 *get_recvframe_data(union recv_frame *precvframe)
{
/* alwasy return rx_data */
if (precvframe == NULL)
return NULL;
return precvframe->u.hdr.rx_data;
}
__inline static u8 *recvframe_push(union recv_frame *precvframe, sint sz)
{
/* append data before rx_data */
/* add data to the start of recv_frame
*
* This function extends the used data area of the recv_frame at the buffer
* start. rx_data must be still larger than rx_head, after pushing.
*/
if (precvframe == NULL)
return NULL;
precvframe->u.hdr.rx_data -= sz ;
if (precvframe->u.hdr.rx_data < precvframe->u.hdr.rx_head) {
precvframe->u.hdr.rx_data += sz ;
return NULL;
}
precvframe->u.hdr.len += sz;
return precvframe->u.hdr.rx_data;
}
__inline static u8 *recvframe_pull(union recv_frame *precvframe, sint sz)
{
/* rx_data += sz; move rx_data sz bytes hereafter */
/* used for extract sz bytes from rx_data, update rx_data and return the updated rx_data to the caller */
if (precvframe == NULL)
return NULL;
precvframe->u.hdr.rx_data += sz;
if (precvframe->u.hdr.rx_data > precvframe->u.hdr.rx_tail) {
precvframe->u.hdr.rx_data -= sz;
return NULL;
}
precvframe->u.hdr.len -= sz;
return precvframe->u.hdr.rx_data;
}
__inline static u8 *recvframe_put(union recv_frame *precvframe, sint sz)
{
/* rx_tai += sz; move rx_tail sz bytes hereafter */
/* used for append sz bytes from ptr to rx_tail, update rx_tail and return the updated rx_tail to the caller */
/* after putting, rx_tail must be still larger than rx_end. */
unsigned char *prev_rx_tail;
/* RTW_INFO("recvframe_put: len=%d\n", sz); */
if (precvframe == NULL)
return NULL;
prev_rx_tail = precvframe->u.hdr.rx_tail;
precvframe->u.hdr.rx_tail += sz;
if (precvframe->u.hdr.rx_tail > precvframe->u.hdr.rx_end) {
precvframe->u.hdr.rx_tail -= sz;
return NULL;
}
precvframe->u.hdr.len += sz;
return precvframe->u.hdr.rx_tail;
}
__inline static u8 *recvframe_pull_tail(union recv_frame *precvframe, sint sz)
{
/* rmv data from rx_tail (by yitsen) */
/* used for extract sz bytes from rx_end, update rx_end and return the updated rx_end to the caller */
/* after pulling, rx_end must be still larger than rx_data. */
if (precvframe == NULL)
return NULL;
precvframe->u.hdr.rx_tail -= sz;
if (precvframe->u.hdr.rx_tail < precvframe->u.hdr.rx_data) {
precvframe->u.hdr.rx_tail += sz;
return NULL;
}
precvframe->u.hdr.len -= sz;
return precvframe->u.hdr.rx_tail;
}
__inline static sint get_recvframe_len(union recv_frame *precvframe)
{
return precvframe->u.hdr.len;
}
struct sta_info;
extern void _rtw_init_sta_recv_priv(struct sta_recv_priv *psta_recvpriv);
extern void mgt_dispatcher(_adapter *padapter, union recv_frame *precv_frame);
u8 adapter_allow_bmc_data_rx(_adapter *adapter);
#if 0
s32 pre_recv_entry(union recv_frame *precvframe, u8 *pphy_status);
#endif
void count_rx_stats(_adapter *padapter, union recv_frame *prframe, struct sta_info *sta);
u8 rtw_init_lite_recv_resource(struct dvobj_priv *dvobj);
void rtw_free_lite_recv_resource(struct dvobj_priv *dvobj);
#endif
|
2301_81045437/rtl8852be
|
include/rtw_recv.h
|
C
|
agpl-3.0
| 14,447
|
/******************************************************************************
*
* Copyright(c) 2007 - 2020 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_RECV_SHORTCUT_H_
#define _RTW_RECV_SHORTCUT_H_
#ifdef CONFIG_RTW_CORE_RXSC
#define NUM_RXSC_ENTRY 4
enum rxsc_entry_status {
RXSC_ENTRY_INVALID = 0,
RXSC_ENTRY_VALID,
RXSC_ENTRY_APPLYING,
};
struct rxsc_wlan_hdr {
unsigned short fmctrl;
unsigned short duration;
unsigned char addr1[ETH_ALEN];
unsigned char addr2[ETH_ALEN];
unsigned char addr3[ETH_ALEN];
unsigned short sequence;
unsigned char addr4[ETH_ALEN];
unsigned short qosctrl;
unsigned char iv[8];
};
struct core_rxsc_entry {
u8 status;
u32 rxsc_payload_offset;
u32 rxsc_trim_pad;
struct rxsc_wlan_hdr rxsc_wlanhdr;
struct ethhdr rxsc_ethhdr;
struct rx_pkt_attrib rxsc_attrib;
u8 rxsc_wd[64];
};
struct core_rxsc_entry *core_rxsc_alloc_entry(_adapter *adapter, union recv_frame *prframe);
s32 core_rxsc_apply_check(_adapter *adapter, union recv_frame *prframe);
s32 core_rxsc_apply_shortcut(_adapter *adapter, union recv_frame *prframe);
void core_rxsc_clear_entry(_adapter *adapter, struct sta_info *psta);
#endif /* CONFIG_RTW_CORE_RXSC */
#endif /* _RTW_RECV_SHORTCUT_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_recv_shortcut.h
|
C
|
agpl-3.0
| 1,735
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_RF_H_
#define __RTW_RF_H_
#define NumRates (13)
#define B_MODE_RATE_NUM (4)
#define G_MODE_RATE_NUM (8)
#define G_MODE_BASIC_RATE_NUM (3)
/* slot time for 11g */
#define SHORT_SLOT_TIME 9
#define NON_SHORT_SLOT_TIME 20
#define CENTER_CH_2G_NUM 14
#define CENTER_CH_2G_40M_NUM 9
#define CENTER_CH_5G_20M_NUM 28 /* 20M center channels */
#define CENTER_CH_5G_40M_NUM 14 /* 40M center channels */
#define CENTER_CH_5G_80M_NUM 7 /* 80M center channels */
#define CENTER_CH_5G_160M_NUM 3 /* 160M center channels */
#define CENTER_CH_5G_ALL_NUM (CENTER_CH_5G_20M_NUM + CENTER_CH_5G_40M_NUM + CENTER_CH_5G_80M_NUM)
#define CENTER_CH_6G_20M_NUM 64 /* 20M center channels */
#define CENTER_CH_6G_40M_NUM 32 /* 40M center channels */
#define CENTER_CH_6G_80M_NUM 16 /* 80M center channels */
#define CENTER_CH_6G_160M_NUM 8 /* 160M center channels */
#define MAX_CHANNEL_NUM_2G CENTER_CH_2G_NUM
#define MAX_CHANNEL_NUM_5G CENTER_CH_5G_20M_NUM
#define MAX_CHANNEL_NUM_6G CENTER_CH_6G_20M_NUM
#define MAX_CHANNEL_NUM_2G_5G (MAX_CHANNEL_NUM_2G + MAX_CHANNEL_NUM_5G)
#define MAX_CHANNEL_NUM ( \
MAX_CHANNEL_NUM_2G \
+ (CONFIG_IEEE80211_BAND_5GHZ ? MAX_CHANNEL_NUM_5G : 0) \
+ (CONFIG_IEEE80211_BAND_6GHZ ? MAX_CHANNEL_NUM_6G : 0) \
)
/*
* MAX_CHANNEL_NUM_OF_BAND is used by op_class_pref_t only.
* TODO: consider 6G band or remove this after allocate op_class_pref_t dynamically
*/
#define MAX_CHANNEL_NUM_OF_BAND rtw_max(MAX_CHANNEL_NUM_2G, MAX_CHANNEL_NUM_5G)
extern u8 center_ch_2g[CENTER_CH_2G_NUM];
extern u8 center_ch_2g_40m[CENTER_CH_2G_40M_NUM];
u8 center_chs_2g_num(u8 bw);
u8 center_chs_2g(u8 bw, u8 id);
extern u8 center_ch_5g_20m[CENTER_CH_5G_20M_NUM];
extern u8 center_ch_5g_40m[CENTER_CH_5G_40M_NUM];
extern u8 center_ch_5g_20m_40m[CENTER_CH_5G_20M_NUM + CENTER_CH_5G_40M_NUM];
extern u8 center_ch_5g_80m[CENTER_CH_5G_80M_NUM];
extern u8 center_ch_5g_all[CENTER_CH_5G_ALL_NUM];
u8 center_chs_5g_num(u8 bw);
u8 center_chs_5g(u8 bw, u8 id);
u8 rtw_get_scch_by_cch_offset(u8 cch, u8 bw, u8 offset);
u8 rtw_get_op_chs_by_cch_bw(u8 cch, u8 bw, u8 **op_chs, u8 *op_ch_num);
u8 rtw_get_offset_by_chbw(u8 ch, u8 bw, u8 *r_offset);
u8 rtw_get_center_ch(u8 ch, u8 bw, u8 offset);
u8 rtw_get_ch_group(u8 ch, u8 *group, u8 *cck_group);
typedef enum _CAPABILITY {
cESS = 0x0001,
cIBSS = 0x0002,
cPollable = 0x0004,
cPollReq = 0x0008,
cPrivacy = 0x0010,
cShortPreamble = 0x0020,
cPBCC = 0x0040,
cChannelAgility = 0x0080,
cSpectrumMgnt = 0x0100,
cQos = 0x0200, /* For HCCA, use with CF-Pollable and CF-PollReq */
cShortSlotTime = 0x0400,
cAPSD = 0x0800,
cRM = 0x1000, /* RRM (Radio Request Measurement) */
cDSSS_OFDM = 0x2000,
cDelayedBA = 0x4000,
cImmediateBA = 0x8000,
} CAPABILITY, *PCAPABILITY;
enum _REG_PREAMBLE_MODE {
PREAMBLE_LONG = 1,
PREAMBLE_AUTO = 2,
PREAMBLE_SHORT = 3,
};
#define rf_path_char(path) (((path) >= RF_PATH_MAX) ? 'X' : 'A' + (path))
#ifdef CONFIG_NARROWBAND_SUPPORTING
enum nb_config {
RTW_NB_CONFIG_NONE = 0,
RTW_NB_CONFIG_WIDTH_5 = 5,
RTW_NB_CONFIG_WIDTH_10 = 6,
};
#endif
extern const char *const _rtw_band_str[];
#define band_str(band) (((band) >= BAND_MAX) ? _rtw_band_str[BAND_MAX] : _rtw_band_str[(band)])
extern const u8 _band_to_band_cap[];
#define band_to_band_cap(band) (((band) >= BAND_MAX) ? _band_to_band_cap[BAND_MAX] : _band_to_band_cap[(band)])
extern const char *const _ch_width_str[];
#define ch_width_str(bw) (((bw) < CHANNEL_WIDTH_MAX) ? _ch_width_str[(bw)] : "CHANNEL_WIDTH_MAX")
extern const u8 _ch_width_to_bw_cap[];
#define ch_width_to_bw_cap(bw) (((bw) < CHANNEL_WIDTH_MAX) ? _ch_width_to_bw_cap[(bw)] : 0)
enum opc_bw {
OPC_BW20 = 0,
OPC_BW40PLUS = 1,
OPC_BW40MINUS = 2,
OPC_BW80 = 3,
OPC_BW160 = 4,
OPC_BW80P80 = 5,
OPC_BW_NUM,
};
extern const char *const _opc_bw_str[OPC_BW_NUM];
#define opc_bw_str(bw) (((bw) < OPC_BW_NUM) ? _opc_bw_str[(bw)] : "N/A")
extern const u8 _opc_bw_to_ch_width[OPC_BW_NUM];
#define opc_bw_to_ch_width(bw) (((bw) < OPC_BW_NUM) ? _opc_bw_to_ch_width[(bw)] : CHANNEL_WIDTH_MAX)
/* global op class APIs */
bool is_valid_global_op_class_id(u8 gid);
s16 get_sub_op_class(u8 gid, u8 ch);
void dump_global_op_class(void *sel);
u8 rtw_get_op_class_by_chbw(u8 ch, u8 bw, u8 offset);
u8 rtw_get_bw_offset_by_op_class_ch(u8 gid, u8 ch, u8 *bw, u8 *offset);
struct op_ch_t {
u8 ch;
u8 static_non_op:1; /* not in channel list */
u8 no_ir:1;
s16 max_txpwr; /* mBm */
};
struct op_class_pref_t {
u8 class_id;
enum band_type band;
enum opc_bw bw;
u8 ch_num; /* number of chs */
u8 op_ch_num; /* channel number which is not static non operable */
u8 ir_ch_num; /* channel number which can init radiation */
struct op_ch_t chs[MAX_CHANNEL_NUM_OF_BAND]; /* zero(ch) terminated array */
};
int op_class_pref_init(_adapter *adapter);
void op_class_pref_deinit(_adapter *adapter);
#define REG_BEACON_HINT 0
#define REG_TXPWR_CHANGE 1
#define REG_CHANGE 2
void op_class_pref_apply_regulatory(_adapter *adapter, u8 reason);
struct rf_ctl_t;
void dump_cap_spt_op_class_ch(void *sel, struct rf_ctl_t *rfctl, bool detail);
void dump_reg_spt_op_class_ch(void *sel, struct rf_ctl_t *rfctl, bool detail);
void dump_cur_spt_op_class_ch(void *sel, struct rf_ctl_t *rfctl, bool detail);
typedef enum _VHT_DATA_SC {
VHT_DATA_SC_DONOT_CARE = 0,
VHT_DATA_SC_20_UPPER_OF_80MHZ = 1,
VHT_DATA_SC_20_LOWER_OF_80MHZ = 2,
VHT_DATA_SC_20_UPPERST_OF_80MHZ = 3,
VHT_DATA_SC_20_LOWEST_OF_80MHZ = 4,
VHT_DATA_SC_20_RECV1 = 5,
VHT_DATA_SC_20_RECV2 = 6,
VHT_DATA_SC_20_RECV3 = 7,
VHT_DATA_SC_20_RECV4 = 8,
VHT_DATA_SC_40_UPPER_OF_80MHZ = 9,
VHT_DATA_SC_40_LOWER_OF_80MHZ = 10,
} VHT_DATA_SC, *PVHT_DATA_SC_E;
typedef enum _PROTECTION_MODE {
PROTECTION_MODE_AUTO = 0,
PROTECTION_MODE_FORCE_ENABLE = 1,
PROTECTION_MODE_FORCE_DISABLE = 2,
} PROTECTION_MODE, *PPROTECTION_MODE;
typedef enum _RF_TX_NUM {
RF_1TX = 0,
RF_2TX,
RF_3TX,
RF_4TX,
RF_MAX_TX_NUM,
RF_TX_NUM_NONIMPLEMENT,
} RF_TX_NUM;
#define RF_TYPE_VALID(rf_type) (rf_type < RF_TYPE_MAX)
extern const u8 _rf_type_to_rf_tx_cnt[];
#define rf_type_to_rf_tx_cnt(rf_type) (RF_TYPE_VALID(rf_type) ? _rf_type_to_rf_tx_cnt[rf_type] : 0)
extern const u8 _rf_type_to_rf_rx_cnt[];
#define rf_type_to_rf_rx_cnt(rf_type) (RF_TYPE_VALID(rf_type) ? _rf_type_to_rf_rx_cnt[rf_type] : 0)
extern const char *const _rf_type_to_rfpath_str[];
#define rf_type_to_rfpath_str(rf_type) (RF_TYPE_VALID(rf_type) ? _rf_type_to_rfpath_str[rf_type] : "UNKNOWN")
enum rf_type trx_num_to_rf_type(u8 tx_num, u8 rx_num);
enum rf_type trx_bmp_to_rf_type(u8 tx_bmp, u8 rx_bmp);
bool rf_type_is_a_in_b(enum rf_type a, enum rf_type b);
u8 rtw_restrict_trx_path_bmp_by_rftype(u8 trx_path_bmp, enum rf_type type, u8 *tx_num, u8 *rx_num);
#if CONFIG_IEEE80211_BAND_6GHZ
int rtw_6gch2freq(int chan);
#endif
int rtw_ch2freq(int chan);
int rtw_ch2freq_by_band(enum band_type band, int ch);
int rtw_freq2ch(int freq);
enum band_type rtw_freq2band(int freq);
bool rtw_freq_consecutive(int a, int b);
bool rtw_chbw_to_freq_range(u8 ch, u8 bw, u8 offset, u32 *hi, u32 *lo);
struct rf_ctl_t;
void txpwr_idx_get_dbm_str(s8 idx, u8 txgi_max, u8 txgi_pdbm, SIZE_T cwidth, char dbm_str[], u8 dbm_str_len);
#define MBM_PDBM 100
#define UNSPECIFIED_MBM 32767 /* maximum of s16 */
void txpwr_mbm_get_dbm_str(s16 mbm, SIZE_T cwidth, char dbm_str[], u8 dbm_str_len);
s16 mb_of_ntx(u8 ntx);
#if CONFIG_TXPWR_LIMIT
void dump_regd_exc_list(void *sel, struct rf_ctl_t *rfctl);
void dump_txpwr_lmt(void *sel, _adapter *adapter);
#endif
/* only check channel ranges */
#define rtw_is_2g_ch(ch) (ch >= 1 && ch <= 14)
#define rtw_is_5g_ch(ch) ((ch) >= 36 && (ch) <= 177)
#define rtw_is_same_band(a, b) \
((rtw_is_2g_ch(a) && rtw_is_2g_ch(b)) \
|| (rtw_is_5g_ch(a) && rtw_is_5g_ch(b)))
#define rtw_is_5g_band1(ch) ((ch) >= 36 && (ch) <= 48)
#define rtw_is_5g_band2(ch) ((ch) >= 52 && (ch) <= 64)
#define rtw_is_5g_band3(ch) ((ch) >= 100 && (ch) <= 144)
#define rtw_is_5g_band4(ch) ((ch) >= 149 && (ch) <= 177)
#define rtw_is_same_5g_band(a, b) \
((rtw_is_5g_band1(a) && rtw_is_5g_band1(b)) \
|| (rtw_is_5g_band2(a) && rtw_is_5g_band2(b)) \
|| (rtw_is_5g_band3(a) && rtw_is_5g_band3(b)) \
|| (rtw_is_5g_band4(a) && rtw_is_5g_band4(b)))
#define rtw_is_6g_band1(ch) ((ch) >= 1 && (ch) <= 93)
#define rtw_is_6g_band2(ch) ((ch) >= 97 && (ch) <= 117)
#define rtw_is_6g_band3(ch) ((ch) >= 121 && (ch) <= 189)
#define rtw_is_6g_band4(ch) ((ch) >= 193 && (ch) <= 237)
bool rtw_is_long_cac_range(u32 hi, u32 lo, u8 dfs_region);
bool rtw_is_long_cac_ch(u8 ch, u8 bw, u8 offset, u8 dfs_region);
#endif /* _RTL8711_RF_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_rf.h
|
C
|
agpl-3.0
| 9,250
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_RM_H_
#define __RTW_RM_H_
u8 rm_post_event_hdl(_adapter *padapter, u8 *pbuf);
#define RM_TIMER_NUM 32
#define RM_ALL_MEAS BIT(1)
#define RM_ID_FOR_ALL(aid) ((aid<<16)|RM_ALL_MEAS)
#define RM_CAP_ARG(x) ((u8 *)(x))[4], ((u8 *)(x))[3], ((u8 *)(x))[2], ((u8 *)(x))[1], ((u8 *)(x))[0]
#define RM_CAP_FMT "%02x %02x%02x %02x%02x"
/* remember to modify rm_event_name() when adding new event */
enum RM_EV_ID {
RM_EV_state_in,
RM_EV_busy_timer_expire,
RM_EV_delay_timer_expire,
RM_EV_meas_timer_expire,
RM_EV_retry_timer_expire,
RM_EV_repeat_delay_expire,
RM_EV_request_timer_expire,
RM_EV_wait_report,
RM_EV_start_meas,
RM_EV_survey_done,
RM_EV_recv_rep,
RM_EV_cancel,
RM_EV_state_out,
RM_EV_max
};
struct rm_event {
u32 rmid;
enum RM_EV_ID evid;
_list list;
};
#ifdef CONFIG_RTW_80211K
struct rm_clock {
struct rm_obj *prm;
ATOMIC_T counter;
enum RM_EV_ID evid;
};
struct rm_priv {
u8 enable;
_queue ev_queue;
_queue rm_queue;
_timer rm_timer;
struct rm_clock clock[RM_TIMER_NUM];
u8 rm_en_cap_def[5];
u8 rm_en_cap_assoc[5];
u8 meas_token;
/* rm debug */
void *prm_sel;
};
#define MAX_CH_NUM_IN_OP_CLASS 11
typedef struct _RT_OPERATING_CLASS {
int global_op_class;
int Len;
u8 Channel[MAX_CH_NUM_IN_OP_CLASS];
} RT_OPERATING_CLASS, *PRT_OPERATING_CLASS;
int rtw_init_rm(_adapter *padapter);
int rtw_free_rm_priv(_adapter *padapter);
unsigned int rm_on_action(_adapter *padapter, union recv_frame *precv_frame);
void RM_IE_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE);
void update_rm_cap(u8 *frame_head, _adapter *pa, u32 pktlen, int offset);
void rtw_ap_parse_sta_rm_en_cap(_adapter *padapter,
struct sta_info *psta, struct rtw_ieee802_11_elems *elems);
int rm_post_event(_adapter *padapter, u32 rmid, enum RM_EV_ID evid);
void rm_handler(_adapter *padapter, struct rm_event *pev);
int rm_get_chset(struct rm_obj *prm);
u8 rm_add_nb_req(_adapter *padapter, struct sta_info *psta);
/* from ioctl */
int rm_send_bcn_reqs(_adapter *padapter, u8 *sta_addr, u8 op_class, u8 ch,
u16 measure_duration, u8 measure_mode, u8 *bssid, u8 *ssid,
u8 reporting_detail,
u8 n_ap_ch_rpt, struct _RT_OPERATING_CLASS *rpt,
u8 n_elem_id, u8 *elem_id_list);
void indicate_beacon_report(u8 *sta_addr,
u8 n_measure_rpt, u32 elem_len, u8 *elem);
#else
#define RM_IE_handler(a, b) do{} while (0)
#define update_rm_cap(a, b, c, d) do{} while(0)
#endif /*CONFIG_RTW_80211K */
#endif /* __RTW_RM_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_rm.h
|
C
|
agpl-3.0
| 3,111
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_RM_FSM_H_
#define __RTW_RM_FSM_H_
#ifdef CONFIG_RTW_80211K
#define RM_SUPPORT_IWPRIV_DBG 1
#define RM_MORE_DBG_MSG 0
#define DBG_BCN_REQ_DETAIL 0
#define DBG_BCN_REQ_WILDCARD 0
#define DBG_BCN_REQ_SSID 0
#define DBG_BCN_REQ_SSID_NAME "RealKungFu"
#define RM_REQ_TIMEOUT 10000 /* 10 seconds */
#define RM_MEAS_TIMEOUT 10000 /* 10 seconds */
#define RM_REPT_SCAN_INTVL 5000 /* 5 seconds */
#define RM_REPT_POLL_INTVL 2000 /* 2 seconds */
#define RM_COND_INTVL 2000 /* 2 seconds */
#define RM_SCAN_DENY_TIMES 10
#define RM_BUSY_TRAFFIC_TIMES 10
#define RM_WAIT_BUSY_TIMEOUT 1000 /* 1 seconds */
#define MEAS_REQ_MOD_PARALLEL BIT(0)
#define MEAS_REQ_MOD_ENABLE BIT(1)
#define MEAS_REQ_MOD_REQUEST BIT(2)
#define MEAS_REQ_MOD_REPORT BIT(3)
#define MEAS_REQ_MOD_DUR_MAND BIT(4)
#define MEAS_REP_MOD_LATE BIT(0)
#define MEAS_REP_MOD_INCAP BIT(1)
#define MEAS_REP_MOD_REFUSE BIT(2)
#define RM_MASTER BIT(0) /* STA who issue meas_req */
#define RM_SLAVE 0 /* STA who do measurement */
#define CLOCK_UNIT 10 /* ms */
#define RTW_MAX_NB_RPT_IE_NUM 16
#define RM_GET_AID(rmid) ((rmid&0xffff0000)>>16)
#define RM_IS_ID_FOR_ALL(rmid) (rmid&RM_ALL_MEAS)
/* IEEE 802.11-2012 Table 8-59 Measurement Type definitions
* for measurement request
* modify rm_meas_type_req_name() when adding new type
*/
enum meas_type_of_req {
basic_req, /* spectrum measurement */
cca_req,
rpi_histo_req,
ch_load_req,
noise_histo_req,
bcn_req,
frame_req,
sta_statis_req,
lci_req,
meas_type_req_max,
};
/* IEEE 802.11-2012 Table 8-81 Measurement Type definitions
* for measurement report
* modify rm_type_rep_name() when adding new type
*/
enum meas_type_of_rep {
basic_rep, /* spectrum measurement */
cca_rep,
rpi_histo_rep,
ch_load_rep, /* radio measurement */
noise_histo_rep,
bcn_rep,
frame_rep,
sta_statis_rep, /* Radio measurement and WNM */
lci_rep,
meas_type_rep_max
};
/*
* Beacon request
*/
/* IEEE 802.11-2012 Table 8-64 Measurement mode for Beacon Request element */
enum bcn_req_meas_mode {
bcn_req_passive,
bcn_req_active,
bcn_req_bcn_table
};
/* IEEE 802.11-2012 Table 8-65 optional subelement IDs for Beacon Request */
enum bcn_req_opt_sub_id{
bcn_req_ssid = 0, /* len 0-32 */
bcn_req_rep_info = 1, /* len 2 */
bcn_req_rep_detail = 2, /* len 1 */
bcn_req_req = 10, /* len 0-237 */
bcn_req_ap_ch_rep = 51 /* len 1-237 */
};
/* IEEE 802.11-2012 Table 8-66 Reporting condition of Beacon Report */
enum bcn_rep_cound_id{
bcn_rep_cond_immediately, /* default */
bcn_req_cond_rcpi_greater,
bcn_req_cond_rcpi_less,
bcn_req_cond_rsni_greater,
bcn_req_cond_rsni_less,
bcn_req_cond_max
};
struct opt_rep_info {
u8 cond;
u8 threshold;
};
#define BCN_REQ_OPT_MAX_NUM 16
#define BCN_REQ_REQ_OPT_MAX_NUM 16
#define BCN_REQ_OPT_AP_CH_RPT_MAX_NUM 12
struct bcn_req_opt {
/* all req cmd id */
u8 opt_id[BCN_REQ_OPT_MAX_NUM];
u8 opt_id_num;
u8 req_id_num;
u8 req_id[BCN_REQ_REQ_OPT_MAX_NUM];
u8 rep_detail;
NDIS_802_11_SSID ssid;
/* bcn report condition */
struct opt_rep_info rep_cond;
u8 ap_ch_rpt_num;
struct _RT_OPERATING_CLASS *ap_ch_rpt[BCN_REQ_OPT_AP_CH_RPT_MAX_NUM];
/* 0:default(Report to be issued after each measurement) */
u8 *req_start; /*id : 10 request;start */
u8 req_len; /*id : 10 request;length */
};
/*
* channel load
*/
/* IEEE 802.11-2012 Table 8-60 optional subelement IDs for channel load request */
enum ch_load_opt_sub_id{
ch_load_rsvd,
ch_load_rep_info
};
/* IEEE 802.11-2012 Table 8-61 Reporting condition for channel load Report */
enum ch_load_cound_id{
ch_load_cond_immediately, /* default */
ch_load_cond_anpi_equal_greater,
ch_load_cond_anpi_equal_less,
ch_load_cond_max
};
/*
* Noise histogram
*/
/* IEEE 802.11-2012 Table 8-62 optional subelement IDs for noise histogram */
enum noise_histo_opt_sub_id{
noise_histo_rsvd,
noise_histo_rep_info
};
/* IEEE 802.11-2012 Table 8-63 Reporting condition for noise historgarm Report */
enum noise_histo_cound_id{
noise_histo_cond_immediately, /* default */
noise_histo_cond_anpi_equal_greater,
noise_histo_cond_anpi_equal_less,
noise_histo_cond_max
};
struct meas_req_opt {
/* report condition */
struct opt_rep_info rep_cond;
};
/*
* State machine
*/
enum RM_STATE {
RM_ST_IDLE,
RM_ST_DO_MEAS,
RM_ST_WAIT_MEAS,
RM_ST_SEND_REPORT,
RM_ST_RECV_REPORT,
RM_ST_END,
RM_ST_MAX
};
struct rm_meas_req {
u8 category;
u8 action_code; /* T8-206 */
u8 diag_token;
u16 rpt;
u8 e_id;
u8 len;
u8 m_token;
u8 m_mode; /* req:F8-105, rep:F8-141 */
u8 m_type; /* T8-59 */
u8 op_class;
u8 ch_num;
u16 rand_intvl; /* units of TU */
u16 meas_dur; /* units of TU */
u8 bssid[6]; /* for bcn_req */
u8 *pssid;
u8 *opt_s_elem_start;
int opt_s_elem_len;
s8 tx_pwr_used; /* for link measurement */
s8 tx_pwr_max; /* for link measurement */
union {
struct bcn_req_opt bcn;
struct meas_req_opt clm;
struct meas_req_opt nhm;
}opt;
struct rtw_ieee80211_channel ch_set[RTW_CHANNEL_SCAN_AMOUNT];
u8 ch_set_ch_amount;
s8 rx_pwr; /* in dBm */
u8 rx_bw;
u8 rx_rate;
u8 rx_rsni;
};
struct rm_meas_rep {
u8 category;
u8 action_code; /* T8-206 */
u8 diag_token;
u8 e_id; /* T8-54, 38 request; 39 report */
u8 len;
u8 m_token;
u8 m_mode; /* req:F8-105, rep:F8-141 */
u8 m_type; /* T8-59 */
u8 op_class;
u8 ch_num;
u8 ch_load;
u8 anpi;
u8 ipi[11];
u16 rpt;
u8 bssid[6]; /* for bcn_req */
};
#define MAX_BUF_NUM 128
struct data_buf {
u8 *pbuf;
u16 len;
};
struct rm_obj {
/* aid << 16
|diag_token << 8
|B(1) 1/0:All_AID/UNIC
|B(0) 1/0:RM_MASTER/RM_SLAVE */
u32 rmid;
enum RM_STATE state;
struct rm_meas_req q;
struct rm_meas_rep p;
struct sta_info *psta;
struct rm_clock *pclock;
/* meas report */
u64 meas_start_time;
u64 meas_end_time;
int wait_busy;
u8 poll_mode;
struct data_buf buf[MAX_BUF_NUM];
bool from_ioctl;
_list list;
};
/*
* Measurement
*/
struct opt_subelement {
u8 id;
u8 length;
u8 *data;
};
/* 802.11-2012 Table 8-206 Radio Measurment Action field */
enum rm_action_code {
RM_ACT_RADIO_MEAS_REQ,
RM_ACT_RADIO_MEAS_REP,
RM_ACT_LINK_MEAS_REQ,
RM_ACT_LINK_MEAS_REP,
RM_ACT_NB_REP_REQ, /* 4 */
RM_ACT_NB_REP_RESP,
RM_ACT_RESV,
RM_ACT_MAX
};
/* 802.11-2012 Table 8-119 RM Enabled Capabilities definition */
enum rm_cap_en {
RM_LINK_MEAS_CAP_EN,
RM_NB_REP_CAP_EN, /* neighbor report */
RM_PARAL_MEAS_CAP_EN, /* parallel report */
RM_REPEAT_MEAS_CAP_EN,
RM_BCN_PASSIVE_MEAS_CAP_EN,
RM_BCN_ACTIVE_MEAS_CAP_EN,
RM_BCN_TABLE_MEAS_CAP_EN,
RM_BCN_MEAS_REP_COND_CAP_EN, /* conditions */
RM_FRAME_MEAS_CAP_EN,
RM_CH_LOAD_CAP_EN,
RM_NOISE_HISTO_CAP_EN, /* noise historgram */
RM_STATIS_MEAS_CAP_EN, /* statistics */
RM_LCI_MEAS_CAP_EN, /* 12 */
RM_LCI_AMIMUTH_CAP_EN,
RM_TRANS_STREAM_CAT_MEAS_CAP_EN,
RM_TRIG_TRANS_STREAM_CAT_MEAS_CAP_EN,
RM_AP_CH_REP_CAP_EN,
RM_RM_MIB_CAP_EN,
RM_OP_CH_MAX_MEAS_DUR0, /* 18-20 */
RM_OP_CH_MAX_MEAS_DUR1,
RM_OP_CH_MAX_MEAS_DUR2,
RM_NONOP_CH_MAX_MEAS_DUR0, /* 21-23 */
RM_NONOP_CH_MAX_MEAS_DUR1,
RM_NONOP_CH_MAX_MEAS_DUR2,
RM_MEAS_PILOT_CAP0, /* 24-26 */
RM_MEAS_PILOT_CAP1,
RM_MEAS_PILOT_CAP2,
RM_MEAS_PILOT_TRANS_INFO_CAP_EN,
RM_NB_REP_TSF_OFFSET_CAP_EN,
RM_RCPI_MEAS_CAP_EN, /* 29 */
RM_RSNI_MEAS_CAP_EN,
RM_BSS_AVG_ACCESS_DELAY_CAP_EN,
RM_AVALB_ADMIS_CAPACITY_CAP_EN,
RM_ANT_CAP_EN,
RM_RSVD, /* 34-39 */
RM_MAX
};
char *rm_state_name(enum RM_STATE state);
char *rm_event_name(enum RM_EV_ID evid);
char *rm_type_req_name(u8 meas_type);
int _rm_post_event(_adapter *padapter, u32 rmid, enum RM_EV_ID evid);
int rm_enqueue_rmobj(_adapter *padapter, struct rm_obj *obj, bool to_head);
void rm_free_rmobj(struct rm_obj *prm);
struct rm_obj *rm_alloc_rmobj(_adapter *padapter);
struct rm_obj *rm_get_rmobj(_adapter *padapter, u32 rmid);
struct sta_info *rm_get_psta(_adapter *padapter, u32 rmid);
int retrieve_radio_meas_result(struct rm_obj *prm);
int rm_radio_meas_report_cond(struct rm_obj *prm);
int rm_recv_radio_mens_req(_adapter *padapter,
union recv_frame *precv_frame,struct sta_info *psta);
int rm_recv_radio_mens_rep(_adapter *padapter,
union recv_frame *precv_frame, struct sta_info *psta);
int rm_recv_link_mens_req(_adapter *padapter,
union recv_frame *precv_frame,struct sta_info *psta);
int rm_recv_link_mens_rep(_adapter *padapter,
union recv_frame *precv_frame, struct sta_info *psta);
int rm_radio_mens_nb_rep(_adapter *padapter,
union recv_frame *precv_frame, struct sta_info *psta);
int issue_null_reply(struct rm_obj *prm);
int issue_beacon_rep(struct rm_obj *prm);
int issue_nb_req(struct rm_obj *prm);
int issue_radio_meas_req(struct rm_obj *prm);
int issue_radio_meas_rep(struct rm_obj *prm);
int issue_link_meas_req(struct rm_obj *prm);
int issue_link_meas_rep(struct rm_obj *prm);
void rm_set_rep_mode(struct rm_obj *prm, u8 mode);
int ready_for_scan(struct rm_obj *prm);
int rm_sitesurvey(struct rm_obj *prm);
#endif /*CONFIG_RTW_80211K*/
#endif /*__RTW_RM_FSM_H_*/
|
2301_81045437/rtl8852be
|
include/rtw_rm_fsm.h
|
C
|
agpl-3.0
| 9,592
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_RM_UTIL_H_
#define _RTW_RM_UTIL_H_
/*
* define the following channels as the max channels in each channel plan.
* 2G, total 14 chnls
* {1,2,3,4,5,6,7,8,9,10,11,12,13,14}
* 5G, total 25 chnls
* {36,40,44,48,52,56,60,64,100,104,108,112,116,120,124,128,132,136,140,144,149,153,157,161,165}
*/
#ifndef MAX
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#endif
u8 rm_get_oper_class_via_ch(u8 ch);
u8 rm_get_ch_set( struct rtw_ieee80211_channel *pch_set, u8 op_class, u8 ch_num);
u8 rm_get_ch_set_from_bcn_req_opt( struct rtw_ieee80211_channel *pch_set,
struct bcn_req_opt *opt);
u8 rm_get_bcn_rsni(struct rm_obj *prm, struct wlan_network *pnetwork);
u8 rm_get_bcn_rcpi(struct rm_obj *prm, struct wlan_network *pnetwork);
u8 rm_get_frame_rsni(struct rm_obj *prm, union recv_frame *pframe);
u8 translate_percentage_to_rcpi(u32 SignalStrengthIndex);
u8 translate_dbm_to_rcpi(s8 SignalPower);
u8 rm_gen_dialog_token(_adapter *padapter);
u8 rm_gen_meas_token(_adapter *padapter);
u32 rm_gen_rmid(_adapter *padapter, struct rm_obj *prm, u8 role);
int is_wildcard_bssid(u8 *bssid);
int rm_get_path_a_max_tx_power(_adapter *adapter, s8 *path_a);
int rm_get_tx_power(_adapter *adapter, enum rf_path path, enum MGN_RATE rate, s8 *pwr);
int rm_get_rx_sensitivity(_adapter *adapter, enum channel_width bw, enum MGN_RATE rate, s8 *pwr);
#endif /* _RTW_RM_UTIL_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_rm_util.h
|
C
|
agpl-3.0
| 2,025
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_SCAN_H_
#define __RTW_SCAN_H_
/*rtw_mlme.h*/
void rtw_drv_scan_by_self(_adapter *padapter, u8 reason);
void rtw_scan_abort_no_wait(_adapter *adapter);
u32 rtw_scan_abort(_adapter *adapter, u32 timeout_ms);
void rtw_scan_timeout_handler(void *ctx);
void rtw_survey_event_callback(_adapter *adapter, u8 *pbuf);
void rtw_surveydone_event_callback(_adapter *adapter, u8 *pbuf);
enum {
SS_DENY_MP_MODE,
SS_DENY_RSON_SCANING,
SS_DENY_BLOCK_SCAN,
SS_DENY_BY_DRV,
SS_DENY_SELF_AP_UNDER_WPS,
SS_DENY_SELF_AP_UNDER_LINKING,
SS_DENY_SELF_AP_UNDER_SURVEY,
/*SS_DENY_SELF_STA_UNDER_WPS,*/
SS_DENY_SELF_STA_UNDER_LINKING,
SS_DENY_SELF_STA_UNDER_SURVEY,
SS_DENY_BUDDY_UNDER_LINK_WPS,
SS_DENY_BUDDY_UNDER_SURVEY,
SS_DENY_BUSY_TRAFFIC,
SS_ALLOW,
#ifdef DBG_LA_MODE
SS_DENY_LA_MODE,
#endif
SS_DENY_ADAPTIVITY,
};
u8 _rtw_sitesurvey_condition_check(const char *caller, _adapter *adapter, bool check_sc_interval);
#define rtw_sitesurvey_condition_check(adapter, check_sc_interval) _rtw_sitesurvey_condition_check(__func__, adapter, check_sc_interval)
#ifdef CONFIG_SET_SCAN_DENY_TIMER
bool rtw_is_scan_deny(_adapter *adapter);
void rtw_clear_scan_deny(_adapter *adapter);
void rtw_set_scan_deny_timer_hdl(void *ctx);
void rtw_set_scan_deny(_adapter *adapter, u32 ms);
#else
#define rtw_is_scan_deny(adapter) _FALSE
#define rtw_clear_scan_deny(adapter) do {} while (0)
#define rtw_set_scan_deny(adapter, ms) do {} while (0)
#endif
#ifdef CONFIG_RTW_ACS
u8 rtw_set_acs_sitesurvey(_adapter *adapter);
#endif
/*rtw_mlme_ext.h*/
void sitesurvey_set_offch_state(_adapter *adapter, u8 scan_state);
/*const char *scan_state_str(u8 state);*/
#define mlmeext_scan_state(mlmeext) ((mlmeext)->sitesurvey_res.state)
/*#define mlmeext_scan_state_str(mlmeext) scan_state_str((mlmeext)->sitesurvey_res.state)*/
#define mlmeext_chk_scan_state(mlmeext, _state) ((mlmeext)->sitesurvey_res.state == (_state))
#define mlmeext_set_scan_state(mlmeext, _state) \
do { \
((mlmeext)->sitesurvey_res.state = (_state)); \
((mlmeext)->sitesurvey_res.next_state = (_state)); \
rtw_mi_update_iface_status(&((container_of(mlmeext, _adapter, mlmeextpriv)->mlmepriv)), 0); \
/* RTW_INFO("set_scan_state:%s\n", scan_state_str(_state)); */ \
sitesurvey_set_offch_state(container_of(mlmeext, _adapter, mlmeextpriv), _state); \
} while (0)
#if 0
#define mlmeext_scan_next_state(mlmeext) ((mlmeext)->sitesurvey_res.next_state)
#define mlmeext_set_scan_next_state(mlmeext, _state) \
do { \
((mlmeext)->sitesurvey_res.next_state = (_state)); \
/* RTW_INFO("set_scan_next_state:%s\n", scan_state_str(_state)); */ \
} while (0)
#endif
#ifdef CONFIG_SCAN_BACKOP
#define mlmeext_scan_backop_flags(mlmeext) ((mlmeext)->sitesurvey_res.backop_flags)
#define mlmeext_chk_scan_backop_flags(mlmeext, flags) ((mlmeext)->sitesurvey_res.backop_flags & (flags))
#define mlmeext_assign_scan_backop_flags(mlmeext, flags) \
do { \
((mlmeext)->sitesurvey_res.backop_flags = (flags)); \
RTW_INFO("assign_scan_backop_flags:0x%02x\n", (mlmeext)->sitesurvey_res.backop_flags); \
} while (0)
#define mlmeext_scan_backop_flags_sta(mlmeext) ((mlmeext)->sitesurvey_res.backop_flags_sta)
#define mlmeext_chk_scan_backop_flags_sta(mlmeext, flags) ((mlmeext)->sitesurvey_res.backop_flags_sta & (flags))
#define mlmeext_assign_scan_backop_flags_sta(mlmeext, flags) \
do { \
((mlmeext)->sitesurvey_res.backop_flags_sta = (flags)); \
} while (0)
#else
#define mlmeext_scan_backop_flags(mlmeext) (0)
#define mlmeext_chk_scan_backop_flags(mlmeext, flags) (0)
#define mlmeext_assign_scan_backop_flags(mlmeext, flags) do {} while (0)
#define mlmeext_scan_backop_flags_sta(mlmeext) (0)
#define mlmeext_chk_scan_backop_flags_sta(mlmeext, flags) (0)
#define mlmeext_assign_scan_backop_flags_sta(mlmeext, flags) do {} while (0)
#endif /* CONFIG_SCAN_BACKOP */
#if defined(CONFIG_SCAN_BACKOP) && defined(CONFIG_AP_MODE)
#define mlmeext_scan_backop_flags_ap(mlmeext) ((mlmeext)->sitesurvey_res.backop_flags_ap)
#define mlmeext_chk_scan_backop_flags_ap(mlmeext, flags) ((mlmeext)->sitesurvey_res.backop_flags_ap & (flags))
#define mlmeext_assign_scan_backop_flags_ap(mlmeext, flags) \
do { \
((mlmeext)->sitesurvey_res.backop_flags_ap = (flags)); \
} while (0)
#else
#define mlmeext_scan_backop_flags_ap(mlmeext) (0)
#define mlmeext_chk_scan_backop_flags_ap(mlmeext, flags) (0)
#define mlmeext_assign_scan_backop_flags_ap(mlmeext, flags) do {} while (0)
#endif /* defined(CONFIG_SCAN_BACKOP) && defined(CONFIG_AP_MODE) */
#if defined(CONFIG_SCAN_BACKOP) && defined(CONFIG_RTW_MESH)
#define mlmeext_scan_backop_flags_mesh(mlmeext) ((mlmeext)->sitesurvey_res.backop_flags_mesh)
#define mlmeext_chk_scan_backop_flags_mesh(mlmeext, flags) ((mlmeext)->sitesurvey_res.backop_flags_mesh & (flags))
#define mlmeext_assign_scan_backop_flags_mesh(mlmeext, flags) \
do { \
((mlmeext)->sitesurvey_res.backop_flags_mesh = (flags)); \
} while (0)
#else
#define mlmeext_scan_backop_flags_mesh(mlmeext) (0)
#define mlmeext_chk_scan_backop_flags_mesh(mlmeext, flags) (0)
#define mlmeext_assign_scan_backop_flags_mesh(mlmeext, flags) do {} while (0)
#endif /* defined(CONFIG_SCAN_BACKOP) && defined(CONFIG_RTW_MESH) */
#if 0
void survey_timer_hdl(void *ctx);
#define set_survey_timer(mlmeext, ms) \
do { \
/*RTW_INFO("%s set_survey_timer(%p, %d)\n", __FUNCTION__, (mlmeext), (ms));*/ \
_set_timer(&(mlmeext)->survey_timer, (ms)); \
} while (0)
#define cancel_survey_timer(mlmeext) \
do { \
/*RTW_INFO("%s cancel_survey_timer(%p)\n", __FUNCTION__, (mlmeext));*/ \
_cancel_timer_ex(&(mlmeext)->survey_timer); \
} while (0)
#endif
enum SCAN_STATE {
SCAN_DISABLE = 0,
SCAN_START = 1,
SCAN_PS_ANNC_WAIT = 2,
SCAN_ENTER = 3,
SCAN_PROCESS = 4,
/* backop */
SCAN_BACKING_OP = 5,
SCAN_BACK_OP = 6,
SCAN_LEAVING_OP = 7,
SCAN_LEAVE_OP = 8,
/* SW antenna diversity (before linked) */
SCAN_SW_ANTDIV_BL = 9,
/* legacy p2p */
SCAN_TO_P2P_LISTEN = 10,
SCAN_P2P_LISTEN = 11,
SCAN_COMPLETE = 12,
SCAN_STATE_MAX,
};
enum ss_backop_flag {
SS_BACKOP_EN = BIT0, /* backop when linked */
SS_BACKOP_EN_NL = BIT1, /* backop even when no linked */
SS_BACKOP_PS_ANNC = BIT4,
SS_BACKOP_TX_RESUME = BIT5,
};
#define RTW_SSID_SCAN_AMOUNT 9 /* for WEXT_CSCAN_AMOUNT 9 */
#define RTW_CHANNEL_SCAN_AMOUNT (14+37)
struct ss_res {
u8 state;
u8 next_state; /* will set to state on next cmd hdl */
int bss_cnt;
u8 activate_ch_cnt;
#ifdef CONFIG_CMD_SCAN
struct rtw_phl_scan_param *scan_param;
#endif
struct submit_ctx sctx;
u16 scan_ch_ms;
u32 scan_timeout_ms;
u8 rx_ampdu_accept;
u8 rx_ampdu_size;
#if 0
int channel_idx;
u8 force_ssid_scan;
int scan_mode;
u8 igi_scan;
u8 igi_before_scan; /* used for restoring IGI value without enable DIG & FA_CNT */
#endif
#ifdef CONFIG_SCAN_BACKOP
u8 backop_flags_sta; /* policy for station mode*/
#ifdef CONFIG_AP_MODE
u8 backop_flags_ap; /* policy for ap mode */
#endif
#ifdef CONFIG_RTW_MESH
u8 backop_flags_mesh; /* policy for mesh mode */
#endif
u8 backop_flags; /* per backop runtime decision */
#if 0
u8 scan_cnt;
#endif
u8 scan_cnt_max;
systime backop_time; /* the start time of backop */
u16 backop_ms;
#endif
#if defined(CONFIG_ANTENNA_DIVERSITY) || defined(DBG_SCAN_SW_ANTDIV_BL)
u8 is_sw_antdiv_bl_scan;
#endif
u8 ssid_num;
u8 ch_num;
NDIS_802_11_SSID ssid[RTW_SSID_SCAN_AMOUNT];
struct rtw_ieee80211_channel ch[RTW_CHANNEL_SCAN_AMOUNT];
u32 token; /* 0: use to identify caller */
u16 duration; /* 0: use default */
u8 igi; /* 0: use defalut */
u8 bw; /* 0: use default */
bool acs; /* aim to trigger channel selection when scan done */
};
enum rtw_scan_type {
RTW_SCAN_NORMAL,
RTW_SCAN_P2P,
RTW_SCAN_RRM
};
struct sitesurvey_parm {
enum rtw_phl_scan_type scan_mode; /* active: 1, passive: 0 */
/* sint bsslimit; // 1 ~ 48 */
u8 ssid_num;
u8 ch_num;
NDIS_802_11_SSID ssid[RTW_SSID_SCAN_AMOUNT];
struct rtw_ieee80211_channel ch[RTW_CHANNEL_SCAN_AMOUNT];
u32 rrm_token; /* 80211k use it to identify caller */
u16 duration; /* 0: use default, otherwise: channel scan time */
u8 igi; /* 0: use defalut */
u8 bw; /* 0: use default */
bool acs; /* aim to trigger channel selection when scan done */
enum rtw_scan_type scan_type;
};
void rtw_init_sitesurvey_parm(_adapter *padapter, struct sitesurvey_parm *pparm);
u8 rtw_sitesurvey_cmd(_adapter *padapter, struct sitesurvey_parm *pparm);
#ifndef CONFIG_CMD_SCAN
u32 rtw_site_survey_fsm(_adapter *padapter, struct cmd_obj *pcmd);
#endif
#if 1 /*#ifndef CONFIG_PHL_ARCH*/
u8 sitesurvey_cmd_hdl(_adapter *padapter, u8 *pbuf);
void rtw_survey_cmd_callback(_adapter *padapter, struct cmd_obj *pcmd);
#endif
#ifdef CONFIG_IOCTL_CFG80211
u8 rtw_phl_remain_on_ch_cmd(_adapter *padapter, u64 cookie, struct wireless_dev *wdev,
struct ieee80211_channel *ch, u8 ch_type, unsigned int duration,
struct back_op_param *bkop_parm, u8 is_p2p);
#endif
#ifdef CONFIG_STA_CMD_DISPR
u8 scan_issu_null_data_cb(void *priv, u8 ridx, bool ps);
#endif
#endif /* __RTW_SCAN_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_scan.h
|
C
|
agpl-3.0
| 9,645
|
/******************************************************************************
*
* Copyright(c) 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_SDIO_H_
#define _RTW_SDIO_H_
#include <drv_types.h> /* struct dvobj_priv and etc. */
u8 rtw_sdio_read_cmd52(struct dvobj_priv *, u32 addr, void *buf, size_t len);
u8 rtw_sdio_read_cmd53(struct dvobj_priv *, u32 addr, void *buf, size_t len);
u8 rtw_sdio_write_cmd52(struct dvobj_priv *, u32 addr, void *buf, size_t len);
u8 rtw_sdio_write_cmd53(struct dvobj_priv *, u32 addr, void *buf, size_t len);
u8 rtw_sdio_f0_read(struct dvobj_priv *, u32 addr, void *buf, size_t len);
size_t rtw_sdio_cmd53_align_size(struct dvobj_priv *d, size_t len);
#endif /* _RTW_SDIO_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_sdio.h
|
C
|
agpl-3.0
| 1,235
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_SEC_CAM_H__
#define __RTW_SEC_CAM_H__
#define SEC_STATUS_STA_PK_GK_CONFLICT_DIS_BMC_SEARCH BIT0
struct sec_cam_bmp {
u32 m0;
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 32)
u32 m1;
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 64)
u32 m2;
#endif
#if (SEC_CAM_ENT_NUM_SW_LIMIT > 96)
u32 m3;
#endif
};
struct cam_ctl_t {
_lock lock;
u8 sec_cap;
u32 flags;
u8 num;
struct sec_cam_bmp used;
_mutex sec_cam_access_mutex;
};
struct sec_cam_ent {
u16 ctrl;
u8 mac[ETH_ALEN];
u8 key[16];
};
bool _rtw_camctl_chk_cap(_adapter *adapter, u8 cap);
void _rtw_camctl_set_flags(_adapter *adapter, u32 flags);
void rtw_camctl_set_flags(_adapter *adapter, u32 flags);
void _rtw_camctl_clr_flags(_adapter *adapter, u32 flags);
void rtw_camctl_clr_flags(_adapter *adapter, u32 flags);
bool _rtw_camctl_chk_flags(_adapter *adapter, u32 flags);
void dump_sec_cam_map(void *sel, struct sec_cam_bmp *map, u8 max_num);
void rtw_sec_cam_map_set(struct sec_cam_bmp *map, u8 id);
void rtw_sec_cam_map_clr(struct sec_cam_bmp *map, u8 id);
void rtw_sec_cam_map_clr_all(struct sec_cam_bmp *map);
bool rtw_sec_camid_is_used(struct cam_ctl_t *cam_ctl, u8 id);
bool _rtw_camid_is_gk(_adapter *adapter, u8 cam_id);
bool rtw_camid_is_gk(_adapter *adapter, u8 cam_id);
s16 rtw_camid_search(_adapter *adapter, u8 *addr, s16 kid, s8 gk);
s16 rtw_camid_alloc(_adapter *adapter, struct sta_info *sta, u8 kid, u8 gk, bool ext_sec, bool *used);
void rtw_camid_free(_adapter *adapter, u8 cam_id);
u8 rtw_get_sec_camid(_adapter *adapter, u8 max_bk_key_num, u8 *sec_key_id);
void _clear_cam_entry(_adapter *padapter, u8 entry);
void write_cam_from_cache(_adapter *adapter, u8 id);
void rtw_sec_cam_swap(_adapter *adapter, u8 cam_id_a, u8 cam_id_b);
void rtw_clean_dk_section(_adapter *adapter);
void rtw_clean_hw_dk_cam(_adapter *adapter);
/* modify both HW and cache */
void write_cam(_adapter *padapter, u8 id, u16 ctrl, u8 *mac, u8 *key);
void clear_cam_entry(_adapter *padapter, u8 id);
/* modify cache only */
void write_cam_cache(_adapter *adapter, u8 id, u16 ctrl, u8 *mac, u8 *key);
void clear_cam_cache(_adapter *adapter, u8 id);
void invalidate_cam_all(_adapter *padapter);
void flush_all_cam_entry(_adapter *padapter, enum phl_cmd_type cmd_type, u32 cmd_timeout);
#if defined(DBG_CONFIG_ERROR_RESET) && defined(CONFIG_CONCURRENT_MODE)
void rtw_iface_bcmc_sec_cam_map_restore(_adapter *adapter);
#endif
#ifdef CONFIG_DBG_AX_CAM
#define INDIRECT_ACCESS_ADDR 0xC04
#define INDIRECT_ACCESS_VALUE 0x40000
#define SEC_CAM_BASE_ADDR 0x18814000
#define BSSID_CAM_BASE_ADDR 0x18853000
#define ADDR_CAM_BASE_ADDR 0x18850000
enum CAM_KEY_TYPE {
KEY_TYPE_UNI = 0,
KEY_TYPE_GROUP = 1,
KEY_TYPE_BIP = 2,
KEY_TYPE_NONE = 3
};
/*Address cam field info DW0 - DW9*/
/* DWORD 0 ; Offset 00h */
#define GET_AX_ADDR_CAM_VALID(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 0, 1)
#define GET_AX_ADDR_CAM_NET_TYPE(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 1, 2)
#define GET_AX_ADDR_CAM_BCN_HD_COND(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 3, 2)
#define GET_AX_ADDR_CAM_HIT_RULE(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 5, 2)
#define GET_AX_ADDR_CAM_BB_SEL(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 7, 1)
#define GET_AX_ADDR_CAM_ADDR_MASK(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 8, 6)
#define GET_AX_ADDR_CAM_MASK_SEL(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 14, 2)
#define GET_AX_ADDR_CAM_SMA_HASH(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 16, 8)
#define GET_AX_ADDR_CAM_TMA_HASH(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 24, 8)
/* DWORD 1 ; Offset 04h */
#define GET_AX_ADDR_CAM_BSSID_CAM_IDX(__pCAM) LE_BITS_TO_4BYTE(__pCAM+4, 0, 6)
/* DWORD 2 ; Offset 08h */
#define GET_AX_ADDR_CAM_SMA_0(__pCAM) LE_BITS_TO_4BYTE(__pCAM+8, 0, 8)
#define GET_AX_ADDR_CAM_SMA_1(__pCAM) LE_BITS_TO_4BYTE(__pCAM+8, 8, 8)
#define GET_AX_ADDR_CAM_SMA_2(__pCAM) LE_BITS_TO_4BYTE(__pCAM+8, 16, 8)
#define GET_AX_ADDR_CAM_SMA_3(__pCAM) LE_BITS_TO_4BYTE(__pCAM+8, 24, 8)
/* DWORD 3 ; Offset 0Ch */
#define GET_AX_ADDR_CAM_SMA_4(__pCAM) LE_BITS_TO_4BYTE(__pCAM+12, 8, 6)
#define GET_AX_ADDR_CAM_SMA_5(__pCAM) LE_BITS_TO_4BYTE(__pCAM+12, 14, 2)
#define GET_AX_ADDR_CAM_TMA_0(__pCAM) LE_BITS_TO_4BYTE(__pCAM+12, 16, 8)
#define GET_AX_ADDR_CAM_TMA_1(__pCAM) LE_BITS_TO_4BYTE(__pCAM+12, 24, 8)
/* DWORD 4 ; Offset 10h */
#define GET_AX_ADDR_CAM_TMA_2(__pCAM) LE_BITS_TO_4BYTE(__pCAM+16, 0, 8)
#define GET_AX_ADDR_CAM_TMA_3(__pCAM) LE_BITS_TO_4BYTE(__pCAM+16, 8, 8)
#define GET_AX_ADDR_CAM_TMA_4(__pCAM) LE_BITS_TO_4BYTE(__pCAM+16, 16, 8)
#define GET_AX_ADDR_CAM_TMA_5(__pCAM) LE_BITS_TO_4BYTE(__pCAM+16, 24, 8)
/* DWORD 5 ; Offset 14h : RSVD ALL*/
/* DWORD 6 ; Offset 18h */
#define GET_AX_ADDR_CAM_MACID(__pCAM) LE_BITS_TO_4BYTE(__pCAM+24, 0, 8)
#define GET_AX_ADDR_CAM_PORT_INT(__pCAM) LE_BITS_TO_4BYTE(__pCAM+24, 8, 3)
#define GET_AX_ADDR_CAM_TSF_SYNC(__pCAM) LE_BITS_TO_4BYTE(__pCAM+24, 11, 3)
#define GET_AX_ADDR_CAM_TF(__pCAM) LE_BITS_TO_4BYTE(__pCAM+24, 14, 2)
#define GET_AX_ADDR_CAM_LSIG_TXOP(__pCAM) LE_BITS_TO_4BYTE(__pCAM+24, 16, 2)
#define GET_AX_ADDR_CAM_CTRLCNT_IDX(__pCAM) LE_BITS_TO_4BYTE(__pCAM+24, 18, 4)
#define GET_AX_ADDR_CAM_CTRLCNT_VALID(__pCAM) LE_BITS_TO_4BYTE(__pCAM+24, 20, 1)
#define GET_AX_ADDR_CAM_TARGET_IND(__pCAM) LE_BITS_TO_4BYTE(__pCAM+24, 24, 3)
#define GET_AX_ADDR_CAM_FRM_TARGET_IND(__pCAM) LE_BITS_TO_4BYTE(__pCAM+24, 27, 3)
/* DWORD 7 ; Offset 1Ch */
#define GET_AX_ADDR_CAM_AID12_0(__pCAM) LE_BITS_TO_4BYTE(__pCAM+28, 0, 8)
#define GET_AX_ADDR_CAM_AID12_1(__pCAM) LE_BITS_TO_4BYTE(__pCAM+28, 8, 4)
#define GET_AX_ADDR_CAM_WOL_PATTERN(__pCAM) LE_BITS_TO_4BYTE(__pCAM+28, 12, 1)
#define GET_AX_ADDR_CAM_WOL_UC(__pCAM) LE_BITS_TO_4BYTE(__pCAM+28, 13, 1)
#define GET_AX_ADDR_CAM_WOL_MAGIC(__pCAM) LE_BITS_TO_4BYTE(__pCAM+28, 14, 1)
#define GET_AX_ADDR_CAM_WAPI(__pCAM) LE_BITS_TO_4BYTE(__pCAM+28, 15, 1)
#define GET_AX_ADDR_CAM_SEC_ENT_MODE(__pCAM) LE_BITS_TO_4BYTE(__pCAM+28, 16, 2)
#define GET_AX_ADDR_CAM_SEC_ENT0_KEYID(__pCAM) LE_BITS_TO_4BYTE(__pCAM+28, 18, 2)
#define GET_AX_ADDR_CAM_SEC_ENT1_KEYID(__pCAM) LE_BITS_TO_4BYTE(__pCAM+28, 20, 2)
#define GET_AX_ADDR_CAM_SEC_ENT2_KEYID(__pCAM) LE_BITS_TO_4BYTE(__pCAM+28, 22, 2)
#define GET_AX_ADDR_CAM_SEC_ENT3_KEYID(__pCAM) LE_BITS_TO_4BYTE(__pCAM+28, 24, 2)
#define GET_AX_ADDR_CAM_SEC_ENT4_KEYID(__pCAM) LE_BITS_TO_4BYTE(__pCAM+28, 26, 2)
#define GET_AX_ADDR_CAM_SEC_ENT5_KEYID(__pCAM) LE_BITS_TO_4BYTE(__pCAM+28, 28, 2)
#define GET_AX_ADDR_CAM_SEC_ENT6_KEYID(__pCAM) LE_BITS_TO_4BYTE(__pCAM+28, 30, 2)
/* DWORD 8 ; Offset 20h */
#define GET_AX_ADDR_CAM_SEC_ENT_VALID(__pCAM) LE_BITS_TO_4BYTE(__pCAM+32, 0, 8)
#define GET_AX_ADDR_CAM_SEC_ENT0(__pCAM) LE_BITS_TO_4BYTE(__pCAM+32, 8, 8)
#define GET_AX_ADDR_CAM_SEC_ENT1(__pCAM) LE_BITS_TO_4BYTE(__pCAM+32, 16, 8)
#define GET_AX_ADDR_CAM_SEC_ENT2(__pCAM) LE_BITS_TO_4BYTE(__pCAM+32, 24, 8)
/* DWORD 9 ; Offset 24h */
#define GET_AX_ADDR_CAM_SEC_ENT3(__pCAM) LE_BITS_TO_4BYTE(__pCAM+36, 0, 8)
#define GET_AX_ADDR_CAM_SEC_ENT4(__pCAM) LE_BITS_TO_4BYTE(__pCAM+36, 8, 8)
#define GET_AX_ADDR_CAM_SEC_ENT5(__pCAM) LE_BITS_TO_4BYTE(__pCAM+36, 16, 8)
#define GET_AX_ADDR_CAM_SEC_ENT6(__pCAM) LE_BITS_TO_4BYTE(__pCAM+36, 24, 8)
/* Security cam */
/*DWORD 0 ; offset 00h*/
#define GET_AX_SEC_CAM_TYPE(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 0, 4)
#define GET_AX_SEC_CAM_EXT_KEY(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 4, 1)
#define GET_AX_SEC_SPP_MODE_(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 5, 1)
/*BSSID cam*/
/*DWORD 0 ; offset 00h*/
#define GET_AX_BSSID_CAM_VALID(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 0, 1)
#define GET_AX_BSSID_CAM_BB_SEL(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 1, 1)
#define GET_AX_BSSID_CAM_COLOR_(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 8, 6)
#define GET_AX_BSSID_CAM_BSSID_0(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 16, 8)
#define GET_AX_BSSID_CAM_BSSID_1(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 24, 8)
/*DWORD 1 ; offset 04h*/
#define GET_AX_BSSID_CAM_BSSID_2(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 0, 8)
#define GET_AX_BSSID_CAM_BSSID_3(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 8, 8)
#define GET_AX_BSSID_CAM_BSSID_4(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 16, 8)
#define GET_AX_BSSID_CAM_BSSID_5(__pCAM) LE_BITS_TO_4BYTE(__pCAM, 24, 8)
int get_ax_sec_cam(void* sel, struct _ADAPTER *a);
int get_ax_address_cam(void* sel, struct _ADAPTER *a);
int get_ax_valid_key(void* sel, struct _ADAPTER *a);
#endif /* CONFIG_DBG_AX_CAM */
#endif /* __RTW_SEC_CAM_H__ */
|
2301_81045437/rtl8852be
|
include/rtw_sec_cam.h
|
C
|
agpl-3.0
| 8,936
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_SECURITY_H_
#define __RTW_SECURITY_H_
enum security_type {
/* TYPE */
_NO_PRIVACY_ = 0x00,
_WEP40_ = 0x01,
_TKIP_ = 0x02,
_TKIP_WTMIC_ = 0x03,
_AES_ = 0x04,
_WEP104_ = 0x05,
_SMS4_ = 0x06,
_GCMP_ = 0x07,
_SEC_TYPE_MAX_,
/* EXT_SECTYPE=1 */
_SEC_TYPE_256_ = 0x10,
_CCMP_256_ = (_AES_ | _SEC_TYPE_256_),
_GCMP_256_ = (_GCMP_ | _SEC_TYPE_256_),
#ifdef CONFIG_IEEE80211W
/* EXT_SECTYPE=0, MGNT=1, GK=0/1, KEYID=00/01 */
_SEC_TYPE_BIT_ = 0x20,
_BIP_CMAC_128_ = (_SEC_TYPE_BIT_),
_BIP_GMAC_128_ = (_SEC_TYPE_BIT_ + 1),
_BIP_GMAC_256_ = (_SEC_TYPE_BIT_ + 2),
/* EXT_SECTYPE=1, MGNT=1, GK=1, KEYID=00/01 */
_BIP_CMAC_256_ = (_SEC_TYPE_BIT_ + 3),
_BIP_MAX_,
#endif
};
/* 802.11W use wrong key */
#define IEEE80211W_RIGHT_KEY 0x0
#define IEEE80211W_WRONG_KEY 0x1
#define IEEE80211W_NO_KEY 0x2
#define CCMPH_2_PN(ch) ((ch) & 0x000000000000ffff) \
| (((ch) & 0xffffffff00000000) >> 16)
#define is_wep_enc(alg) (((alg) == _WEP40_) || ((alg) == _WEP104_))
const char *security_type_str(u8 value);
#ifdef CONFIG_IEEE80211W
u32 security_type_bip_to_gmcs(enum security_type type);
#endif
#define _WPA_IE_ID_ 0xdd
#define _WPA2_IE_ID_ 0x30
#define RTW_KEK_LEN 16
#define RTW_KCK_LEN 16
#define RTW_TKIP_MIC_LEN 8
#define RTW_REPLAY_CTR_LEN 8
/* For CCMP-128 only */
#define RTW_PTK_LEN 16
/* For BIP-CMAC-128 only */
#define RTW_IGTK_LEN 16
#define INVALID_SEC_MAC_CAM_ID 0xFF
typedef enum {
ENCRYP_PROTOCOL_OPENSYS, /* open system */
ENCRYP_PROTOCOL_WEP, /* WEP */
ENCRYP_PROTOCOL_WPA, /* WPA */
ENCRYP_PROTOCOL_RSN, /* RSN(WPA2/WPA3) */
ENCRYP_PROTOCOL_WAPI, /* WAPI: Not support in this version */
ENCRYP_PROTOCOL_MAX
} ENCRYP_PROTOCOL_E;
#ifndef Ndis802_11AuthModeWPA2
#define Ndis802_11AuthModeWPA2 (Ndis802_11AuthModeWPANone + 1)
#endif
#ifndef Ndis802_11AuthModeWPA2PSK
#define Ndis802_11AuthModeWPA2PSK (Ndis802_11AuthModeWPANone + 2)
#endif
union pn48 {
u64 val;
#ifdef CONFIG_LITTLE_ENDIAN
struct {
u8 TSC0;
u8 TSC1;
u8 TSC2;
u8 TSC3;
u8 TSC4;
u8 TSC5;
u8 TSC6;
u8 TSC7;
} _byte_;
#elif defined(CONFIG_BIG_ENDIAN)
struct {
u8 TSC7;
u8 TSC6;
u8 TSC5;
u8 TSC4;
u8 TSC3;
u8 TSC2;
u8 TSC1;
u8 TSC0;
} _byte_;
#endif
};
union Keytype {
u8 skey[32];
};
typedef struct _RT_PMKID_LIST {
u8 bUsed;
u8 Bssid[6];
u8 PMKID[16];
u8 SsidBuf[33];
u8 *ssid_octet;
u16 ssid_length;
} RT_PMKID_LIST, *PRT_PMKID_LIST;
struct security_priv {
u32 dot11AuthAlgrthm; /* 802.11 auth, could be open, shared, 8021x and authswitch */
u32 dot11PrivacyAlgrthm; /* This specify the privacy for shared auth. algorithm. */
/* WEP */
u32 dot11PrivacyKeyIndex; /* this is only valid for legendary wep, 0~3 for key id. (tx key index) */
union Keytype dot11DefKey[6]; /* this is only valid for def. key */
u32 dot11DefKeylen[6];
u8 dot11Def_camid[6];
u8 key_mask; /* use to restore wep key after hal_init */
u32 dot118021XGrpPrivacy; /* This specify the privacy algthm. used for Grp key */
u32 dot118021XGrpKeyid; /* key id used for Grp Key ( tx key index) */
union Keytype dot118021XGrpKey[6]; /* 802.1x Group Key, for inx0 and inx1 */
union Keytype dot118021XGrptxmickey[6];
union Keytype dot118021XGrprxmickey[6];
union pn48 dot11Grptxpn; /* PN48 used for Grp Key xmit. */
union pn48 dot11Grprxpn; /* PN48 used for Grp Key recv. */
u8 iv_seq[4][8];
#ifdef CONFIG_IEEE80211W
enum security_type dot11wCipher;
u32 dot11wBIPKeyid; /* key id used for BIP Key ( tx key index) */
union Keytype dot11wBIPKey[6]; /* BIP Key, for index4 and index5 */
union pn48 dot11wBIPtxpn; /* PN48 used for BIP xmit. */
union pn48 dot11wBIPrxpn; /* PN48 used for BIP recv. */
#endif /* CONFIG_IEEE80211W */
#ifdef CONFIG_AP_MODE
/* extend security capabilities for AP_MODE */
unsigned int dot8021xalg;/* 0:disable, 1:psk, 2:802.1x */
unsigned int wpa_psk;/* 0:disable, bit(0): WPA, bit(1):WPA2 */
unsigned int wpa_group_cipher;
unsigned int wpa2_group_cipher;
unsigned int wpa_pairwise_cipher;
unsigned int wpa2_pairwise_cipher;
unsigned int akmp; /* An authentication and key management protocol */
u8 mfp_opt;
#endif
#ifdef CONFIG_CONCURRENT_MODE
u8 dot118021x_bmc_cam_id;
#endif
/*IEEE802.11-2012 Std. Table 8-101 AKM Suite Selectors*/
u32 rsn_akm_suite_type;
u8 wps_ie[MAX_WPS_IE_LEN];/* added in assoc req */
int wps_ie_len;
u8 owe_ie[MAX_OWE_IE_LEN];/* added in assoc req */
int owe_ie_len;
u8 binstallGrpkey;
#ifdef CONFIG_GTK_OL
u8 binstallKCK_KEK;
#endif /* CONFIG_GTK_OL */
#ifdef CONFIG_IEEE80211W
u8 binstallBIPkey;
#endif /* CONFIG_IEEE80211W */
u8 busetkipkey;
u8 bcheck_grpkey;
u8 bgrpkey_handshake;
u8 auth_alg;
u8 auth_type;
u8 extauth_status;
/* u8 packet_cnt; */ /* unused, removed */
s32 sw_encrypt;/* from registry_priv */
s32 sw_decrypt;/* from registry_priv */
s32 hw_decrypted; /* Broadcast HW security is ready or not */
/* keeps the auth_type & enc_status from upper layer ioctl(wpa_supplicant or wzc) */
u32 ndisauthtype; /* NDIS_802_11_AUTHENTICATION_MODE */
u32 ndisencryptstatus; /* NDIS_802_11_ENCRYPTION_STATUS */
NDIS_802_11_WEP ndiswep;
u8 authenticator_ie[256]; /* store ap security information element */
u8 supplicant_ie[256]; /* store sta security information element */
/* for tkip countermeasure */
systime last_mic_err_time;
u8 btkip_countermeasure;
u8 btkip_wait_report;
systime btkip_countermeasure_time;
/* --------------------------------------------------------------------------- */
/* For WPA2 Pre-Authentication. */
/* --------------------------------------------------------------------------- */
/* u8 RegEnablePreAuth; */ /* Default value: Pre-Authentication enabled or not, from registry "EnablePreAuth". Added by Annie, 2005-11-01. */
/* u8 EnablePreAuthentication; */ /* Current Value: Pre-Authentication enabled or not. */
RT_PMKID_LIST PMKIDList[NUM_PMKID_CACHE]; /* Renamed from PreAuthKey[NUM_PRE_AUTH_KEY]. Annie, 2006-10-13. */
u8 PMKIDIndex;
/* u32 PMKIDCount; */ /* Added by Annie, 2006-10-13. */
/* u8 szCapability[256]; */ /* For WPA2-PSK using zero-config, by Annie, 2005-09-20. */
u8 bWepDefaultKeyIdxSet;
#define DBG_SW_SEC_CNT
#ifdef DBG_SW_SEC_CNT
u64 wep_sw_enc_cnt_bc;
u64 wep_sw_enc_cnt_mc;
u64 wep_sw_enc_cnt_uc;
u64 wep_sw_dec_cnt_bc;
u64 wep_sw_dec_cnt_mc;
u64 wep_sw_dec_cnt_uc;
u64 tkip_sw_enc_cnt_bc;
u64 tkip_sw_enc_cnt_mc;
u64 tkip_sw_enc_cnt_uc;
u64 tkip_sw_dec_cnt_bc;
u64 tkip_sw_dec_cnt_mc;
u64 tkip_sw_dec_cnt_uc;
u64 aes_sw_enc_cnt_bc;
u64 aes_sw_enc_cnt_mc;
u64 aes_sw_enc_cnt_uc;
u64 aes_sw_dec_cnt_bc;
u64 aes_sw_dec_cnt_mc;
u64 aes_sw_dec_cnt_uc;
u64 gcmp_sw_enc_cnt_bc;
u64 gcmp_sw_enc_cnt_mc;
u64 gcmp_sw_enc_cnt_uc;
u64 gcmp_sw_dec_cnt_bc;
u64 gcmp_sw_dec_cnt_mc;
u64 gcmp_sw_dec_cnt_uc;
#endif /* DBG_SW_SEC_CNT */
};
#ifdef CONFIG_IEEE80211W
#define SEC_IS_BIP_KEY_INSTALLED(sec) ((sec)->binstallBIPkey)
#else
#define SEC_IS_BIP_KEY_INSTALLED(sec) _FALSE
#endif
#define GET_ENCRY_ALGO(psecuritypriv, psta, encry_algo, bmcst)\
do {\
switch (psecuritypriv->dot11AuthAlgrthm) {\
case dot11AuthAlgrthm_Open:\
case dot11AuthAlgrthm_Shared:\
case dot11AuthAlgrthm_Auto:\
encry_algo = (u8)psecuritypriv->dot11PrivacyAlgrthm;\
break;\
case dot11AuthAlgrthm_8021X:\
if (bmcst)\
encry_algo = (u8)psecuritypriv->dot118021XGrpPrivacy;\
else\
encry_algo = (u8) psta->dot118021XPrivacy;\
break;\
case dot11AuthAlgrthm_WAPI:\
encry_algo = (u8)psecuritypriv->dot11PrivacyAlgrthm;\
break;\
} \
} while (0)
#define _AES_IV_LEN_ 8
#define SET_ICE_IV_LEN(iv_len, icv_len, encrypt)\
do {\
switch (encrypt) {\
case _WEP40_:\
case _WEP104_:\
iv_len = 4;\
icv_len = 4;\
break;\
case _TKIP_:\
iv_len = 8;\
icv_len = 4;\
break;\
case _AES_:\
iv_len = 8;\
icv_len = 8;\
break;\
case _GCMP_:\
case _GCMP_256_:\
iv_len = 8;\
icv_len = 16;\
break;\
case _CCMP_256_:\
iv_len = 8;\
icv_len = 16;\
break;\
case _SMS4_:\
iv_len = 18;\
icv_len = 16;\
break;\
default:\
iv_len = 0;\
icv_len = 0;\
break;\
} \
} while (0)
#define GET_TKIP_PN(iv, dot11txpn)\
do {\
dot11txpn._byte_.TSC0 = iv[2];\
dot11txpn._byte_.TSC1 = iv[0];\
dot11txpn._byte_.TSC2 = iv[4];\
dot11txpn._byte_.TSC3 = iv[5];\
dot11txpn._byte_.TSC4 = iv[6];\
dot11txpn._byte_.TSC5 = iv[7];\
} while (0)
#define ROL32(A, n) (((A) << (n)) | (((A)>>(32-(n))) & ((1UL << (n)) - 1)))
#define ROR32(A, n) ROL32((A), 32-(n))
struct mic_data {
u32 K0, K1; /* Key */
u32 L, R; /* Current state */
u32 M; /* Message accumulator (single word) */
u32 nBytesInM; /* # bytes in M */
};
void rtw_secmicsetkey(struct mic_data *pmicdata, u8 *key);
void rtw_secmicappendbyte(struct mic_data *pmicdata, u8 b);
void rtw_secmicappend(struct mic_data *pmicdata, u8 *src, u32 nBytes);
void rtw_secgetmic(struct mic_data *pmicdata, u8 *dst);
void rtw_seccalctkipmic(
u8 *key,
u8 *header,
u8 *data,
u32 data_len,
u8 *Miccode,
u8 priority);
u32 rtw_aes_encrypt(_adapter *padapter, u8 *pxmitframe);
u32 rtw_tkip_encrypt(_adapter *padapter, u8 *pxmitframe);
void rtw_wep_encrypt(_adapter *padapter, u8 *pxmitframe);
u32 rtw_aes_decrypt(_adapter *padapter, u8 *precvframe);
u32 rtw_tkip_decrypt(_adapter *padapter, u8 *precvframe);
void rtw_wep_decrypt(_adapter *padapter, u8 *precvframe);
u32 rtw_gcmp_encrypt(_adapter *padapter, u8 *pxmitframe);
u32 rtw_gcmp_decrypt(_adapter *padapter, u8 *precvframe);
#if 0 //RTW_PHL_TX: mark un-finished codes for reading
u32 rtw_core_aes_encrypt(_adapter *padapter, u8 *pxframe);
#endif
#ifdef CONFIG_RTW_MESH_AEK
int rtw_aes_siv_encrypt(const u8 *key, size_t key_len,
const u8 *pw, size_t pwlen, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *out);
int rtw_aes_siv_decrypt(const u8 *key, size_t key_len,
const u8 *iv_crypt, size_t iv_c_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *out);
#endif /* CONFIG_RTW_MESH_AEK */
#ifdef CONFIG_IEEE80211W
u8 rtw_calculate_bip_mic(enum security_type gmcs, u8 *whdr_pos, s32 len,
const u8 *key, const u8 *data, size_t data_len, u8 *mic);
u32 rtw_bip_verify(enum security_type gmcs, u16 pkt_len,
u8 *whdr_pos, sint flen, const u8 *key, u16 keyid, u64 *ipn,
u8 *precvframe);
#endif
#ifdef CONFIG_TDLS
void wpa_tdls_generate_tpk(_adapter *padapter, void *sta);
int wpa_tdls_ftie_mic(u8 *kck, u8 trans_seq,
u8 *lnkid, u8 *rsnie, u8 *timeoutie, u8 *ftie,
u8 *mic);
int wpa_tdls_teardown_ftie_mic(u8 *kck, u8 *lnkid, u16 reason,
u8 dialog_token, u8 trans_seq, u8 *ftie, u8 *mic);
int tdls_verify_mic(u8 *kck, u8 trans_seq,
u8 *lnkid, u8 *rsnie, u8 *timeoutie, u8 *ftie);
#endif /* CONFIG_TDLS */
void rtw_sec_restore_wep_key(_adapter *adapter);
u8 rtw_handle_tkip_countermeasure(_adapter *adapter, const char *caller);
#ifdef CONFIG_WOWLAN
u16 rtw_calc_crc(u8 *pdata, int length);
#endif /*CONFIG_WOWLAN*/
#define rtw_sec_chk_auth_alg(a, s) \
((a)->securitypriv.auth_alg == (s))
#define rtw_sec_chk_auth_type(a, s) \
((a)->securitypriv.auth_type == (s))
#define IV_FMT "0x%02x%02x%02x%02x%02x%02x%02x%02x"
#define IV_ARG(iv) iv[7], iv[6], iv[5], iv[4], iv[3], iv[2], iv[1], iv[0]
#define PN_FMT "0x%02x%02x%02x%02x%02x%02x"
#define PN_ARG(pn) pn[5], pn[4], pn[3], pn[2], pn[1], pn[0]
u8 rtw_iv_to_pn(u8 *iv, u8 *pn, u8 *key_id, u32 enc_algo);
u8 rtw_pn_to_iv(u8 *pn, u8 *iv, u8 key_id, u32 enc_algo);
#endif /* __RTL871X_SECURITY_H_ */
u32 rtw_calc_crc32(u8 *data, size_t len);
|
2301_81045437/rtl8852be
|
include/rtw_security.h
|
C
|
agpl-3.0
| 12,260
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_SRESET_H_
#define _RTW_SRESET_H_
/* #include <drv_types.h> */
enum {
SRESET_TGP_NULL = 0,
SRESET_TGP_XMIT_STATUS = 1,
SRESET_TGP_LINK_STATUS = 2,
SRESET_TGP_INFO = 99,
};
struct sreset_priv {
_mutex silentreset_mutex;
u8 silent_reset_inprogress;
u8 Wifi_Error_Status;
systime last_tx_time;
systime last_tx_complete_time;
s32 dbg_trigger_point;
u64 self_dect_tx_cnt;
u64 self_dect_rx_cnt;
u64 self_dect_fw_cnt;
u64 tx_dma_status_cnt;
u64 rx_dma_status_cnt;
u8 rx_cnt;
u8 self_dect_fw;
u8 self_dect_case;
u16 last_mac_rxff_ptr;
u8 dbg_sreset_ctrl;
};
#define WIFI_STATUS_SUCCESS 0
#define USB_VEN_REQ_CMD_FAIL BIT0
#define USB_READ_PORT_FAIL BIT1
#define USB_WRITE_PORT_FAIL BIT2
#define WIFI_MAC_TXDMA_ERROR BIT3
#define WIFI_TX_HANG BIT4
#define WIFI_RX_HANG BIT5
#define WIFI_IF_NOT_EXIST BIT6
void sreset_init_value(_adapter *padapter);
void sreset_reset_value(_adapter *padapter);
u8 sreset_get_wifi_status(_adapter *padapter);
void sreset_set_wifi_error_status(_adapter *padapter, u32 status);
void sreset_set_trigger_point(_adapter *padapter, s32 tgp);
bool sreset_inprogress(_adapter *padapter);
void sreset_reset(_adapter *padapter);
#endif
|
2301_81045437/rtl8852be
|
include/rtw_sreset.h
|
C
|
agpl-3.0
| 1,859
|
/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_SWCRYPTO_H_
#define __RTW_SWCRYPTO_H_
#define NEW_CRYPTO 1
#if 0 //RTW_PHL_TX: mark un-finished codes for reading
int _rtw_core_ccmp_encrypt(u8 *key, u32 key_len, uint hdrlen, u8 *phdr, uint datalen, u8 *pdata);
#endif
int _rtw_ccmp_encrypt(_adapter *padapter, u8 *key, u32 key_len, uint hdrlen, u8 *frame, uint plen);
int _rtw_ccmp_decrypt(_adapter *padapter, u8 *key, u32 key_len, uint hdrlen, u8 *frame, uint plen);
int _rtw_gcmp_encrypt(_adapter *padapter, u8 *key, u32 key_len, uint hdrlen, u8 *frame, uint plen);
int _rtw_gcmp_decrypt(_adapter *padapter, u8 *key, u32 key_len, uint hdrlen, u8 *frame, uint plen);
#ifdef CONFIG_RTW_MESH_AEK
int _aes_siv_encrypt(const u8 *key, size_t key_len,
const u8 *pw, size_t pwlen,
size_t num_elem, const u8 *addr[], const size_t *len, u8 *out);
int _aes_siv_decrypt(const u8 *key, size_t key_len,
const u8 *iv_crypt, size_t iv_c_len,
size_t num_elem, const u8 *addr[], const size_t *len, u8 *out);
#endif
#if defined(CONFIG_IEEE80211W) | defined(CONFIG_TDLS)
u8 _bip_ccmp_protect(const u8 *key, size_t key_len,
const u8 *data, size_t data_len, u8 *mic);
u8 _bip_gcmp_protect(u8 *whdr_pos, size_t len,
const u8 *key, size_t key_len,
const u8 *data, size_t data_len, u8 *mic);
#endif /* CONFIG_IEEE80211W */
#ifdef CONFIG_TDLS
void _tdls_generate_tpk(void *sta, const u8 *own_addr, const u8 *bssid);
#endif /* CONFIG_TDLS */
#endif /* __RTW_SWCRYPTO_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_swcrypto.h
|
C
|
agpl-3.0
| 2,087
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_TDLS_H_
#define __RTW_TDLS_H_
#ifdef CONFIG_TDLS
/* TDLS STA state */
/* TDLS Diect Link Establishment */
#define TDLS_STATE_NONE 0x00000000 /* Default state */
#define TDLS_INITIATOR_STATE BIT(28) /* 0x10000000 */
#define TDLS_RESPONDER_STATE BIT(29) /* 0x20000000 */
#define TDLS_LINKED_STATE BIT(30) /* 0x40000000 */
/* TDLS PU Buffer STA */
#define TDLS_WAIT_PTR_STATE BIT(24) /* 0x01000000 */ /* Waiting peer's TDLS_PEER_TRAFFIC_RESPONSE frame */
/* TDLS Check ALive */
#define TDLS_ALIVE_STATE BIT(20) /* 0x00100000 */ /* Check if peer sta is alived. */
/* TDLS Channel Switch */
#define TDLS_CH_SWITCH_PREPARE_STATE BIT(15) /* 0x00008000 */
#define TDLS_CH_SWITCH_ON_STATE BIT(16) /* 0x00010000 */
#define TDLS_PEER_AT_OFF_STATE BIT(17) /* 0x00020000 */ /* Could send pkt on target ch */
#define TDLS_CH_SW_INITIATOR_STATE BIT(18) /* 0x00040000 */ /* Avoid duplicated or unconditional ch. switch rsp. */
#define TDLS_WAIT_CH_RSP_STATE BIT(19) /* 0x00080000 */ /* Wait Ch. response as we are TDLS channel switch initiator */
#define TDLS_TPK_RESEND_COUNT 86400 /*Unit: seconds */
#define TDLS_CH_SWITCH_TIME 15
#define TDLS_CH_SWITCH_TIMEOUT 30
#define TDLS_CH_SWITCH_OPER_OFFLOAD_TIMEOUT 10
#define TDLS_SIGNAL_THRESH 0x20
#define TDLS_WATCHDOG_PERIOD 10 /* Periodically sending tdls discovery request in TDLS_WATCHDOG_PERIOD * 2 sec */
#define TDLS_HANDSHAKE_TIME 3000
#define TDLS_PTI_TIME 7000
#define TDLS_CH_SW_STAY_ON_BASE_CHNL_TIMEOUT 20 /* ms */
#define TDLS_CH_SW_MONITOR_TIMEOUT 2000 /*ms */
#define TDLS_MIC_LEN 16
#define WPA_NONCE_LEN 32
#define TDLS_TIMEOUT_LEN 4
enum TDLS_CH_SW_CHNL {
TDLS_CH_SW_BASE_CHNL = 0,
TDLS_CH_SW_OFF_CHNL
};
#define TDLS_MIC_CTRL_LEN 2
#define TDLS_FTIE_DATA_LEN (TDLS_MIC_CTRL_LEN + TDLS_MIC_LEN + \
WPA_NONCE_LEN + WPA_NONCE_LEN)
struct wpa_tdls_ftie {
u8 ie_type; /* FTIE */
u8 ie_len;
union {
struct {
u8 mic_ctrl[TDLS_MIC_CTRL_LEN];
u8 mic[TDLS_MIC_LEN];
u8 Anonce[WPA_NONCE_LEN]; /* Responder Nonce in TDLS */
u8 Snonce[WPA_NONCE_LEN]; /* Initiator Nonce in TDLS */
};
struct {
u8 data[TDLS_FTIE_DATA_LEN];
};
};
/* followed by optional elements */
} ;
struct wpa_tdls_lnkid {
u8 ie_type; /* Link Identifier IE */
u8 ie_len;
u8 bssid[ETH_ALEN];
u8 init_sta[ETH_ALEN];
u8 resp_sta[ETH_ALEN];
} ;
static u8 TDLS_RSNIE[20] = { 0x01, 0x00, /* Version shall be set to 1 */
0x00, 0x0f, 0xac, 0x07, /* Group sipher suite */
0x01, 0x00, /* Pairwise cipher suite count */
0x00, 0x0f, 0xac, 0x04, /* Pairwise cipher suite list; CCMP only */
0x01, 0x00, /* AKM suite count */
0x00, 0x0f, 0xac, 0x07, /* TPK Handshake */
0x0c, 0x02,
/* PMKID shall not be present */
};
static u8 TDLS_WMMIE[] = {0x00, 0x50, 0xf2, 0x02, 0x00, 0x01, 0x00}; /* Qos info all set zero */
static u8 TDLS_WMM_PARAM_IE[] = {0x00, 0x00, 0x03, 0xa4, 0x00, 0x00, 0x27, 0xa4, 0x00, 0x00, 0x42, 0x43, 0x5e, 0x00, 0x62, 0x32, 0x2f, 0x00};
static u8 TDLS_EXT_CAPIE[] = {0x00, 0x00, 0x00, 0x50, 0x20, 0x00, 0x00, 0x00}; /* bit(28), bit(30), bit(37) */
/* SRC: Supported Regulatory Classes */
static u8 TDLS_SRC[] = { 0x01, 0x01, 0x02, 0x03, 0x04, 0x0c, 0x16, 0x17, 0x18, 0x19, 0x1b, 0x1c, 0x1d, 0x1e, 0x20, 0x21 };
int check_ap_tdls_prohibited(u8 *pframe, u8 pkt_len);
int check_ap_tdls_ch_switching_prohibited(u8 *pframe, u8 pkt_len);
void rtw_set_tdls_enable(_adapter *padapter, u8 enable);
u8 rtw_is_tdls_enabled(_adapter *padapter);
u8 rtw_is_tdls_sta_existed(_adapter *padapter);
u8 rtw_tdls_is_setup_allowed(_adapter *padapter);
#ifdef CONFIG_TDLS_CH_SW
u8 rtw_tdls_is_chsw_allowed(_adapter *padapter);
#endif
void rtw_tdls_set_link_established(_adapter *adapter, bool en);
void rtw_reset_tdls_info(_adapter *padapter);
int rtw_init_tdls_info(_adapter *padapter);
void rtw_free_tdls_info(struct tdls_info *ptdlsinfo);
void rtw_free_all_tdls_sta(_adapter *padapter, u8 enqueue_cmd);
void rtw_enable_tdls_func(_adapter *padapter);
void rtw_disable_tdls_func(_adapter *padapter, u8 enqueue_cmd);
int issue_nulldata_to_TDLS_peer_STA(_adapter *padapter, unsigned char *da, unsigned int power_mode, int try_cnt, int wait_ms);
void rtw_init_tdls_timer(_adapter *padapter, struct sta_info *psta);
void rtw_cancel_tdls_timer(struct sta_info *psta);
void rtw_tdls_teardown_pre_hdl(_adapter *padapter, struct sta_info *psta);
void rtw_tdls_teardown_post_hdl(_adapter *padapter, struct sta_info *psta, u8 enqueue_cmd);
#ifdef CONFIG_TDLS_CH_SW
void rtw_tdls_set_ch_sw_oper_control(_adapter *padapter, u8 enable);
void rtw_tdls_ch_sw_back_to_base_chnl(_adapter *padapter);
s32 rtw_tdls_do_ch_sw(_adapter *padapter, struct sta_info *ptdls_sta, u8 chnl_type, u8 channel, u8 channel_offset, u16 bwmode, u16 ch_switch_time);
void rtw_tdls_chsw_oper_done(_adapter *padapter);
#endif
#ifdef CONFIG_WFD
int issue_tunneled_probe_req(_adapter *padapter);
int issue_tunneled_probe_rsp(_adapter *padapter, union recv_frame *precv_frame);
#endif /* CONFIG_WFD */
int issue_tdls_dis_req(_adapter *padapter, struct tdls_txmgmt *ptxmgmt);
int issue_tdls_setup_req(_adapter *padapter, struct tdls_txmgmt *ptxmgmt, int wait_ack);
int issue_tdls_setup_rsp(_adapter *padapter, struct tdls_txmgmt *ptxmgmt);
int issue_tdls_setup_cfm(_adapter *padapter, struct tdls_txmgmt *ptxmgmt);
int issue_tdls_dis_rsp(_adapter *padapter, struct tdls_txmgmt *ptxmgmt, u8 privacy);
int issue_tdls_teardown(_adapter *padapter, struct tdls_txmgmt *ptxmgmt, u8 wait_ack);
int issue_tdls_peer_traffic_rsp(_adapter *padapter, struct sta_info *psta, struct tdls_txmgmt *ptxmgmt);
int issue_tdls_peer_traffic_indication(_adapter *padapter, struct sta_info *psta);
#ifdef CONFIG_TDLS_CH_SW
int issue_tdls_ch_switch_req(_adapter *padapter, struct sta_info *ptdls_sta);
int issue_tdls_ch_switch_rsp(_adapter *padapter, struct tdls_txmgmt *ptxmgmt, int wait_ack);
#endif
sint On_TDLS_Dis_Rsp(_adapter *adapter, union recv_frame *precv_frame);
sint On_TDLS_Setup_Req(_adapter *adapter, union recv_frame *precv_frame, struct sta_info *ptdls_sta);
int On_TDLS_Setup_Rsp(_adapter *adapter, union recv_frame *precv_frame, struct sta_info *ptdls_sta);
int On_TDLS_Setup_Cfm(_adapter *adapter, union recv_frame *precv_frame, struct sta_info *ptdls_sta);
int On_TDLS_Dis_Req(_adapter *adapter, union recv_frame *precv_frame);
int On_TDLS_Teardown(_adapter *adapter, union recv_frame *precv_frame, struct sta_info *ptdls_sta);
int On_TDLS_Peer_Traffic_Indication(_adapter *adapter, union recv_frame *precv_frame, struct sta_info *ptdls_sta);
int On_TDLS_Peer_Traffic_Rsp(_adapter *adapter, union recv_frame *precv_frame, struct sta_info *ptdls_sta);
#ifdef CONFIG_TDLS_CH_SW
sint On_TDLS_Ch_Switch_Req(_adapter *adapter, union recv_frame *precv_frame, struct sta_info *ptdls_sta);
sint On_TDLS_Ch_Switch_Rsp(_adapter *adapter, union recv_frame *precv_frame, struct sta_info *ptdls_sta);
void rtw_build_tdls_ch_switch_req_ies(_adapter *padapter, struct xmit_frame *pxmitframe, u8 *pframe, struct tdls_txmgmt *ptxmgmt, struct sta_info *ptdls_sta);
void rtw_build_tdls_ch_switch_rsp_ies(_adapter *padapter, struct xmit_frame *pxmitframe, u8 *pframe, struct tdls_txmgmt *ptxmgmt, struct sta_info *ptdls_sta);
#endif
void rtw_build_tdls_setup_req_ies(_adapter *padapter, struct xmit_frame *pxmitframe, u8 *pframe, struct tdls_txmgmt *ptxmgmt, struct sta_info *ptdls_sta);
void rtw_build_tdls_setup_rsp_ies(_adapter *padapter, struct xmit_frame *pxmitframe, u8 *pframe, struct tdls_txmgmt *ptxmgmt, struct sta_info *ptdls_sta);
void rtw_build_tdls_setup_cfm_ies(_adapter *padapter, struct xmit_frame *pxmitframe, u8 *pframe, struct tdls_txmgmt *ptxmgmt, struct sta_info *ptdls_sta);
void rtw_build_tdls_teardown_ies(_adapter *padapter, struct xmit_frame *pxmitframe, u8 *pframe, struct tdls_txmgmt *ptxmgmt, struct sta_info *ptdls_sta);
void rtw_build_tdls_dis_req_ies(_adapter *padapter, struct xmit_frame *pxmitframe, u8 *pframe, struct tdls_txmgmt *ptxmgmt);
void rtw_build_tdls_dis_rsp_ies(_adapter *padapter, struct xmit_frame *pxmitframe, u8 *pframe, struct tdls_txmgmt *ptxmgmt, u8 privacy);
void rtw_build_tdls_peer_traffic_rsp_ies(_adapter *padapter, struct xmit_frame *pxmitframe, u8 *pframe, struct tdls_txmgmt *ptxmgmt, struct sta_info *ptdls_sta);
void rtw_build_tdls_peer_traffic_indication_ies(_adapter *padapter, struct xmit_frame *pxmitframe, u8 *pframe, struct tdls_txmgmt *ptxmgmt, struct sta_info *ptdls_sta);
void rtw_build_tunneled_probe_req_ies(_adapter *padapter, struct xmit_frame *pxmitframe, u8 *pframe);
void rtw_build_tunneled_probe_rsp_ies(_adapter *padapter, struct xmit_frame *pxmitframe, u8 *pframe);
int rtw_tdls_is_driver_setup(_adapter *padapter);
void rtw_tdls_set_key(_adapter *padapter, struct sta_info *ptdls_sta);
const char *rtw_tdls_action_txt(enum TDLS_ACTION_FIELD action);
#endif /* CONFIG_TDLS */
#endif
|
2301_81045437/rtl8852be
|
include/rtw_tdls.h
|
C
|
agpl-3.0
| 9,518
|
/******************************************************************************
*
* Copyright(c) 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_TRX_H_
#define _RTW_TRX_H_
struct dvobj_priv;
struct rtw_intf_ops {
#ifdef CONFIG_SDIO_HCI
int __must_check (*read)(struct dvobj_priv *d, unsigned int addr, void *buf,
size_t len, bool fixed);
int __must_check (*write)(struct dvobj_priv *d, unsigned int addr, void *buf,
size_t len, bool fixed);
#endif /*CONFIG_SDIO_HCI*/
/*** xmit section ***/
s32(*init_xmit_priv)(_adapter *adapter);
void(*free_xmit_priv)(_adapter *adapter);
s32(*data_xmit)(_adapter *adapter, struct xmit_frame *pxmitframe);
s32(*xmitframe_enqueue)(_adapter *adapter, struct xmit_frame *pxmitframe);
#if 0 /*def CONFIG_XMIT_THREAD_MODE*/
s32(*xmit_buf_handler)(_adapter *adapter);
#endif
#if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
#ifndef CONFIG_SDIO_TX_TASKLET
u8(*start_xmit_frame_thread)(_adapter *adapter);
void(*cancel_xmit_frame_thread)(_adapter *adapter);
#endif
#endif
/*** recv section ***/
s32(*init_recv_priv)(struct dvobj_priv *dvobj);
void(*free_recv_priv)(struct dvobj_priv *dvobj);
#ifdef CONFIG_RECV_THREAD_MODE
s32 (*recv_hdl)(_adapter *adapter);
#endif
#if defined(CONFIG_PCI_HCI)
u32(*trxbd_init)(_adapter *adapter);
u32(*trxbd_deinit)(_adapter *adapter);
void(*trxbd_reset)(_adapter *adapter);
s32(*interrupt_handler)(_adapter *adapter);
#endif
#if defined(CONFIG_USB_HCI)
#ifdef CONFIG_SUPPORT_USB_INT
void(*interrupt_handler)(_adapter *adapter, u16 pkt_len, u8 *pbuf);
#endif
#endif
#ifdef CONFIG_HOSTAPD_MLME
s32(*hostap_mgnt_xmit_entry)(_adapter *adapter, struct sk_buff *pkt);
#endif
};
s32 rtw_mgnt_xmit(_adapter *adapter, struct xmit_frame *pmgntframe);
#endif /* _RTW_TRX_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_trx.h
|
C
|
agpl-3.0
| 2,310
|
/******************************************************************************
*
* Copyright(c) 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_TRX_OPS_H_
#define _RTW_TRX_OPS_H_
#include <drv_types.h>
static inline s32 rtw_intf_init_xmit_priv(_adapter *adapter)
{
return adapter_to_dvobj(adapter)->intf_ops->init_xmit_priv(adapter);
}
static inline void rtw_intf_free_xmit_priv(_adapter *adapter)
{
adapter_to_dvobj(adapter)->intf_ops->free_xmit_priv(adapter);
}
static inline s32 rtw_intf_data_xmit(_adapter *adapter,
struct xmit_frame *pxmitframe)
{
return adapter_to_dvobj(adapter)->intf_ops->data_xmit(adapter, pxmitframe);
}
static inline s32 rtw_intf_xmitframe_enqueue(_adapter *adapter,
struct xmit_frame *pxmitframe)
{
u32 rtn;
/* enqueue is not necessary, casuse phl use sw queue to save xmitframe */
rtn = core_tx_call_phl(adapter, pxmitframe, NULL);
if (rtn == FAIL)
core_tx_free_xmitframe(adapter, pxmitframe);
return rtn;
}
static inline u8 rtw_intf_start_xmit_frame_thread(_adapter *adapter)
{
u8 rst = _SUCCESS;
#if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
#ifndef CONFIG_SDIO_TX_TASKLET
if (adapter_to_dvobj(adapter)->intf_ops->start_xmit_frame_thread)
rst = adapter_to_dvobj(adapter)->intf_ops->start_xmit_frame_thread(adapter);
#endif
#endif
return rst;
}
static inline void rtw_intf_cancel_xmit_frame_thread(_adapter *adapter)
{
#if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
#ifndef CONFIG_SDIO_TX_TASKLET
if (adapter_to_dvobj(adapter)->intf_ops->cancel_xmit_frame_thread)
adapter_to_dvobj(adapter)->intf_ops->cancel_xmit_frame_thread(adapter);
#endif
#endif
}
#if 0 /*def CONFIG_XMIT_THREAD_MODE*/
static inline s32 rtw_intf_xmit_buf_handler(_adapter *adapter)
{
return adapter_to_dvobj(adapter)->intf_ops->xmit_buf_handler(adapter);
}
#endif
/************************ recv *******************/
static inline s32 rtw_intf_init_recv_priv(struct dvobj_priv *dvobj)
{
return dvobj->intf_ops->init_recv_priv(dvobj);
}
static inline void rtw_intf_free_recv_priv(struct dvobj_priv *dvobj)
{
return dvobj->intf_ops->free_recv_priv(dvobj);
}
#ifdef CONFIG_RECV_THREAD_MODE
static inline s32 rtw_intf_recv_hdl(_adapter *adapter)
{
return adapter_to_dvobj(adapter)->intf_ops->recv_hdl(adapter);
}
#endif
struct lite_data_buf *rtw_alloc_litedatabuf(struct trx_data_buf_q *data_buf_q);
s32 rtw_free_litedatabuf(struct trx_data_buf_q *data_buf_q,
struct lite_data_buf *lite_data_buf);
#endif /* _RTW_TRX_OPS_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_trx_ops.h
|
C
|
agpl-3.0
| 3,012
|
/******************************************************************************
*
* Copyright(c) 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_TRX_PCI_H_
#define _RTW_TRX_PCI_H_
extern struct rtw_intf_ops pci_ops;
static inline u8 is_pci_support_dma64(struct dvobj_priv *dvobj)
{
PPCI_DATA pci_data = dvobj_to_pci(dvobj);
return (pci_data->bdma64 == _TRUE) ? _TRUE : _FALSE;
}
#endif /* _RTW_TRX_PCI_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_trx_pci.h
|
C
|
agpl-3.0
| 930
|
/******************************************************************************
*
* Copyright(c) 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_TRX_SDIO_H_
#define _RTW_TRX_SDIO_H_
#include <drv_types.h> /* struct dvobj_priv and etc. */
s32 sdio_dequeue_xmit(_adapter *adapter);
extern struct rtw_intf_ops sdio_ops;
#endif /* _RTW_SDIO_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_trx_sdio.h
|
C
|
agpl-3.0
| 865
|
/******************************************************************************
*
* Copyright(c) 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_TRX_USB_H_
#define _RTW_TRX_USB_H_
#include <drv_types.h> /* struct dvobj_priv and etc. */
extern struct rtw_intf_ops usb_ops;
#endif /* _RTW_TRX_USB_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_trx_usb.h
|
C
|
agpl-3.0
| 821
|
#define DRIVERVERSION "v1.15.6.0.2-0-gac110bf5.20211029"
|
2301_81045437/rtl8852be
|
include/rtw_version.h
|
C
|
agpl-3.0
| 57
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_VHT_H_
#define _RTW_VHT_H_
#define VHT_CAP_IE_LEN 12
#define VHT_OP_IE_LEN 5
#define LDPC_VHT_ENABLE_RX BIT0
#define LDPC_VHT_ENABLE_TX BIT1
#define LDPC_VHT_TEST_TX_ENABLE BIT2
#define LDPC_VHT_CAP_TX BIT3
#define STBC_VHT_ENABLE_RX BIT0
#define STBC_VHT_ENABLE_TX BIT1
#define STBC_VHT_TEST_TX_ENABLE BIT2
#define STBC_VHT_CAP_TX BIT3
/* VHT capability info */
#define SET_VHT_CAPABILITY_ELE_MAX_MPDU_LENGTH(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(_pEleStart, 0, 2, _val)
#define SET_VHT_CAPABILITY_ELE_CHL_WIDTH(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(_pEleStart, 2, 2, _val)
#define SET_VHT_CAPABILITY_ELE_RX_LDPC(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(_pEleStart, 4, 1, _val)
#define SET_VHT_CAPABILITY_ELE_SHORT_GI80M(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(_pEleStart, 5, 1, _val)
#define SET_VHT_CAPABILITY_ELE_SHORT_GI160M(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(_pEleStart, 6, 1, _val)
#define SET_VHT_CAPABILITY_ELE_TX_STBC(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(_pEleStart, 7, 1, _val)
#define SET_VHT_CAPABILITY_ELE_RX_STBC(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+1, 0, 3, _val)
#define SET_VHT_CAPABILITY_ELE_SU_BFER(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+1, 3, 1, _val)
#define SET_VHT_CAPABILITY_ELE_SU_BFEE(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+1, 4, 1, _val)
/* #define SET_VHT_CAPABILITY_ELE_BFER_ANT_SUPP(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+1, 5, 3, _val) */
#define SET_VHT_CAPABILITY_ELE_SU_BFEE_STS_CAP(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+1, 5, 3, _val)
#define SET_VHT_CAPABILITY_ELE_SOUNDING_DIMENSIONS(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+2, 0, 3, _val) /* B16~B18 */
#define SET_VHT_CAPABILITY_ELE_MU_BFER(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+2, 3, 1, _val)
#define SET_VHT_CAPABILITY_ELE_MU_BFEE(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+2, 4, 1, _val)
#define SET_VHT_CAPABILITY_ELE_TXOP_PS(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+2, 5, 1, _val)
#define SET_VHT_CAPABILITY_ELE_HTC_VHT(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+2, 6, 1, _val)
#define SET_VHT_CAPABILITY_ELE_MAX_RXAMPDU_FACTOR(_pEleStart, _val) SET_BITS_TO_LE_2BYTE((_pEleStart)+2, 7, 3, _val) /* B23~B25 */
#define SET_VHT_CAPABILITY_ELE_LINK_ADAPTION(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+2, 2, 2, _val)
#define SET_VHT_CAPABILITY_ELE_MCS_RX_MAP(_pEleStart, _val) SET_BITS_TO_LE_2BYTE((_pEleStart)+4, 0, 16, _val) /* B0~B15 indicate Rx MCS MAP, we write 0 to indicate MCS0~7. by page */
#define SET_VHT_CAPABILITY_ELE_MCS_RX_HIGHEST_RATE(_pEleStart, _val) SET_BITS_TO_LE_2BYTE((_pEleStart)+6, 0, 13, _val)
#define SET_VHT_CAPABILITY_ELE_MCS_TX_MAP(_pEleStart, _val) SET_BITS_TO_LE_2BYTE((_pEleStart)+8, 0, 16, _val) /* B0~B15 indicate Tx MCS MAP, we write 0 to indicate MCS0~7. by page */
#define SET_VHT_CAPABILITY_ELE_MCS_TX_HIGHEST_RATE(_pEleStart, _val) SET_BITS_TO_LE_2BYTE((_pEleStart)+10, 0, 13, _val)
#define SET_VHT_CAPABILITY_ELE_RX_ANT_PATTERN(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+3, 4, 1, _val)
#define SET_VHT_CAPABILITY_ELE_TX_ANT_PATTERN(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+3, 5, 1, _val)
#define SET_VHT_CAPABILITY_ELE_EXT_NSS_BW(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+3, 6, 2, _val)
#define GET_VHT_CAPABILITY_ELE_MAX_MPDU_LENGTH(_pEleStart) LE_BITS_TO_1BYTE(_pEleStart, 0, 2)
#define GET_VHT_CAPABILITY_ELE_CHL_WIDTH(_pEleStart) LE_BITS_TO_1BYTE(_pEleStart, 2, 2)
#define GET_VHT_CAPABILITY_ELE_RX_LDPC(_pEleStart) LE_BITS_TO_1BYTE(_pEleStart, 4, 1)
#define GET_VHT_CAPABILITY_ELE_SHORT_GI80M(_pEleStart) LE_BITS_TO_1BYTE(_pEleStart, 5, 1)
#define GET_VHT_CAPABILITY_ELE_SHORT_GI160M(_pEleStart) LE_BITS_TO_1BYTE(_pEleStart, 6, 1)
#define GET_VHT_CAPABILITY_ELE_TX_STBC(_pEleStart) LE_BITS_TO_1BYTE(_pEleStart, 7, 1)
#define GET_VHT_CAPABILITY_ELE_RX_STBC(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+1, 0, 3)
#define GET_VHT_CAPABILITY_ELE_SU_BFER(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+1, 3, 1)
#define GET_VHT_CAPABILITY_ELE_SU_BFEE(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+1, 4, 1)
/*phydm-beamforming*/
#define GET_VHT_CAPABILITY_ELE_SU_BFEE_STS_CAP(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+1, 5, 3)
#define GET_VHT_CAPABILITY_ELE_SU_BFER_SOUND_DIM_NUM(_pEleStart) LE_BITS_TO_2BYTE((_pEleStart)+2, 0, 3)
#define GET_VHT_CAPABILITY_ELE_MU_BFER(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+2, 3, 1)
#define GET_VHT_CAPABILITY_ELE_MU_BFEE(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+2, 4, 1)
#define GET_VHT_CAPABILITY_ELE_TXOP_PS(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+2, 5, 1)
#define GET_VHT_CAPABILITY_ELE_HTC_VHT(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+2, 6, 1)
#define GET_VHT_CAPABILITY_ELE_MAX_RXAMPDU_FACTOR(_pEleStart) LE_BITS_TO_2BYTE((_pEleStart)+2, 7, 3)
#define GET_VHT_CAPABILITY_ELE_LINK_ADAPTION(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+3, 2, 2)
#define GET_VHT_CAPABILITY_ELE_RX_ANT_PATTERN(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+3, 4, 1)
#define GET_VHT_CAPABILITY_ELE_TX_ANT_PATTERN(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+3, 5, 1)
#define GET_VHT_CAPABILITY_ELE_EXT_NSS_BW(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+3, 6, 2)
#define GET_VHT_CAPABILITY_ELE_RX_MCS(_pEleStart) ((_pEleStart)+4)
#define GET_VHT_CAPABILITY_ELE_MCS_RX_HIGHEST_RATE(_pEleStart) LE_BITS_TO_2BYTE((_pEleStart)+6, 0, 13)
#define GET_VHT_CAPABILITY_ELE_TX_MCS(_pEleStart) ((_pEleStart)+8)
#define GET_VHT_CAPABILITY_ELE_MCS_TX_HIGHEST_RATE(_pEleStart) LE_BITS_TO_2BYTE((_pEleStart)+10, 0, 13)
/* VHT Operation Information Element */
#define SET_VHT_OPERATION_ELE_CHL_WIDTH(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(_pEleStart, 0, 8, _val)
#define SET_VHT_OPERATION_ELE_CHL_CENTER_FREQ1(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(_pEleStart+1, 0, 8, _val)
#define SET_VHT_OPERATION_ELE_CHL_CENTER_FREQ2(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(_pEleStart+2, 0, 8, _val)
#define SET_VHT_OPERATION_ELE_BASIC_MCS_SET(_pEleStart, _val) SET_BITS_TO_LE_2BYTE((_pEleStart)+3, 0, 16, _val)
#define GET_VHT_OPERATION_ELE_CHL_WIDTH(_pEleStart) LE_BITS_TO_1BYTE(_pEleStart, 0, 8)
#define GET_VHT_OPERATION_ELE_CENTER_FREQ1(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+1, 0, 8)
#define GET_VHT_OPERATION_ELE_CENTER_FREQ2(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+2, 0, 8)
#define GET_VHT_OPERATION_ELE_BASIC_MCS_SET(_pEleStart) LE_BITS_TO_2BYTE((_pEleStart)+3, 0, 16)
/* VHT Operating Mode */
#define SET_VHT_OPERATING_MODE_FIELD_CHNL_WIDTH(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(_pEleStart, 0, 2, _val)
#define SET_VHT_OPERATING_MODE_FIELD_RX_NSS(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(_pEleStart, 4, 3, _val)
#define SET_VHT_OPERATING_MODE_FIELD_RX_NSS_TYPE(_pEleStart, _val) SET_BITS_TO_LE_1BYTE(_pEleStart, 7, 1, _val)
#define GET_VHT_OPERATING_MODE_FIELD_CHNL_WIDTH(_pEleStart) LE_BITS_TO_1BYTE(_pEleStart, 0, 2)
#define GET_VHT_OPERATING_MODE_FIELD_RX_NSS(_pEleStart) LE_BITS_TO_1BYTE(_pEleStart, 4, 3)
#define GET_VHT_OPERATING_MODE_FIELD_RX_NSS_TYPE(_pEleStart) LE_BITS_TO_1BYTE(_pEleStart, 7, 1)
#define SET_EXT_CAPABILITY_ELE_OP_MODE_NOTIF(_pEleStart, _val) SET_BITS_TO_LE_1BYTE((_pEleStart)+7, 6, 1, _val)
#define GET_EXT_CAPABILITY_ELE_OP_MODE_NOTIF(_pEleStart) LE_BITS_TO_1BYTE((_pEleStart)+7, 6, 1)
#define VHT_MAX_MPDU_LEN_MAX 3
extern const u16 _vht_max_mpdu_len[];
#define vht_max_mpdu_len(val) (((val) >= VHT_MAX_MPDU_LEN_MAX) ? _vht_max_mpdu_len[VHT_MAX_MPDU_LEN_MAX] : _vht_max_mpdu_len[(val)])
#define VHT_SUP_CH_WIDTH_SET_MAX 3
extern const u8 _vht_sup_ch_width_set_to_bw_cap[];
#define vht_sup_ch_width_set_to_bw_cap(set) (((set) >= VHT_SUP_CH_WIDTH_SET_MAX) ? _vht_sup_ch_width_set_to_bw_cap[VHT_SUP_CH_WIDTH_SET_MAX] : _vht_sup_ch_width_set_to_bw_cap[(set)])
extern const char *const _vht_sup_ch_width_set_str[];
#define vht_sup_ch_width_set_str(set) (((set) >= VHT_SUP_CH_WIDTH_SET_MAX) ? _vht_sup_ch_width_set_str[VHT_SUP_CH_WIDTH_SET_MAX] : _vht_sup_ch_width_set_str[(set)])
#define VHT_MAX_AMPDU_LEN(f) ((1 << (13 + f)) - 1)
void dump_vht_cap_ie(void *sel, const u8 *ie, u32 ie_len);
#define VHT_OP_CH_WIDTH_MAX 4
extern const char *const _vht_op_ch_width_str[];
#define vht_op_ch_width_str(ch_width) (((ch_width) >= VHT_OP_CH_WIDTH_MAX) ? _vht_op_ch_width_str[VHT_OP_CH_WIDTH_MAX] : _vht_op_ch_width_str[(ch_width)])
void dump_vht_op_ie(void *sel, const u8 *ie, u32 ie_len);
struct vht_bf_cap {
u8 is_mu_bfer;
u8 su_sound_dim;
};
struct vht_priv {
/* VHT IE is configured by upper layer or not (hostapd or wpa_supplicant) */
u8 upper_layer_setting;
u8 vht_option;
u8 ldpc_cap;
u8 stbc_cap;
u8 rx_stbc_nss; /* Support nss spatial stream */
u16 beamform_cap;
struct vht_bf_cap ap_bf_cap;
u8 num_snd_dim;
u8 bfme_sts;
u8 sgi_80m;
u8 sgi_160m;
u8 ampdu_len;/* A-MPDU length exponent : 0 to 7 */
/*
* max_amsdu_len
* 0: 3895 bytes
* 1: 7991 bytes
* 2: 11454 bytes
*/
u8 max_mpdu_len;
u8 vht_highest_rate;
u8 vht_mcs_map[2];
u8 txop_ps; /* TXOP power save mode*/
u8 htc_vht; /* VHT variant HT Control*/
u8 link_adap_cap; /* VHT Link Adaptation Capable */
u8 tx_ant_pattern; /* Tx Antenna Pattern Consistency */
u8 rx_ant_pattern; /* Rx Antenna Pattern Consistency */
u8 ext_nss_bw; /* Extended NSS BW Support */
u8 op_present:1; /* vht_op is present */
u8 notify_present:1; /* vht_op_mode_notify is present */
u8 vht_cap[32];
u8 vht_op[VHT_OP_IE_LEN];
u8 vht_op_mode_notify;
/* Backup these two VHT IEs from hostapd/wpa_supplicant for restore usage */
u8 vht_cap_ie_backup[VHT_CAP_IE_LEN];
u8 vht_op_ie_backup[VHT_OP_IE_LEN];
};
#ifdef ROKU_PRIVATE
struct vht_priv_infra_ap {
/* Infra mode, only store for AP's info, not intersection of STA and AP*/
u8 ldpc_cap_infra_ap;
u8 stbc_cap_infra_ap;
u16 beamform_cap_infra_ap;
u8 vht_mcs_map_infra_ap[2];
u8 vht_mcs_map_tx_infra_ap[2];
u8 channel_width_infra_ap;
u8 number_of_streams_infra_ap;
};
#endif /* ROKU_PRIVATE */
u8 rtw_get_vht_highest_rate(u8 *pvht_mcs_map);
u16 rtw_vht_mcs_to_data_rate(u8 bw, u8 short_GI, u8 vht_mcs_rate);
u64 rtw_vht_mcs_map_to_bitmap(u8 *mcs_map, u8 nss);
struct protocol_cap_t;
struct role_cap_t;
void rtw_vht_get_dft_setting(_adapter *padapter,
struct protocol_cap_t *dft_proto_cap, struct role_cap_t *dft_cap);
void rtw_vht_get_real_setting(_adapter *padapter);
u32 rtw_build_vht_operation_ie(_adapter *padapter, u8 *pbuf, u8 channel);
u32 rtw_build_vht_op_mode_notify_ie(_adapter *padapter, u8 *pbuf, u8 bw);
u32 rtw_build_vht_cap_ie(_adapter *padapter, u8 *pbuf);
void update_sta_vht_info_apmode(_adapter *padapter, void *psta);
void update_hw_vht_param(_adapter *padapter);
void VHT_caps_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE);
#ifdef ROKU_PRIVATE
void VHT_caps_handler_infra_ap(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE);
#endif /* ROKU_PRIVATE */
void VHT_operation_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE);
void rtw_process_vht_op_mode_notify(_adapter *padapter, u8 *pframe, void *sta);
u32 rtw_restructure_vht_ie(_adapter *padapter, u8 *in_ie, u8 *out_ie, uint in_len, uint *pout_len, struct country_chplan *req_chplan);
void VHTOnAssocRsp(_adapter *padapter);
u8 rtw_vht_mcsmap_to_nss(u8 *pvht_mcs_map);
void rtw_vht_nss_to_mcsmap(u8 nss, u8 *target_mcs_map, u8 *cur_mcs_map);
void rtw_vht_ies_attach(_adapter *padapter, WLAN_BSSID_EX *pcur_network);
void rtw_vht_ies_detach(_adapter *padapter, WLAN_BSSID_EX *pcur_network);
void rtw_check_for_vht20(_adapter *adapter, u8 *ies, int ies_len);
void rtw_update_drv_vht_cap(_adapter *padapter, u8 *vht_cap_ie);
void rtw_check_vht_ies(_adapter *padapter, WLAN_BSSID_EX *pnetwork);
void rtw_reattach_vht_ies(_adapter *padapter, WLAN_BSSID_EX *pnetwork);
#endif /* _RTW_VHT_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_vht.h
|
C
|
agpl-3.0
| 12,488
|
/******************************************************************************
*
* Copyright(c) 2016 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __INC_WAPI_H
#define __INC_WAPI_H
#define CONFIG_WAPI_SW_SMS4
#define WAPI_DEBUG
#define SMS4_MIC_LEN 16
#define WAPI_EXT_LEN 18
#define MAX_WAPI_IE_LEN 256
#define sMacHdrLng 24 /* octets in data header, no WEP */
#ifdef WAPI_DEBUG
/* WAPI trace debug */
extern u32 wapi_debug_component;
static inline void wapi_dump_buf(u8 *buf, u32 len)
{
u32 i;
printk("-----------------Len %d----------------\n", len);
for (i = 0; i < len; i++)
printk(KERN_CONT"%2.2x-", *(buf + i));
printk("\n");
}
#define WAPI_TRACE(component, x, args...) \
do { if (wapi_debug_component & (component)) \
printk(KERN_DEBUG "WAPI" ":" x "" , \
##args);\
} while (0);
#define WAPI_DATA(component, x, buf, len) \
do { if (wapi_debug_component & (component)) { \
printk("%s:\n", x);\
wapi_dump_buf((buf), (len)); } \
} while (0);
#define RT_ASSERT_RET(_Exp) \
if (!(_Exp)) { \
printk("RTWLAN: "); \
printk("Assertion failed! %s,%s, line=%d\n", \
#_Exp, __FUNCTION__, __LINE__); \
return; \
}
#define RT_ASSERT_RET_VALUE(_Exp, Ret) \
if (!(_Exp)) { \
printk("RTWLAN: "); \
printk("Assertion failed! %s,%s, line=%d\n", \
#_Exp, __FUNCTION__, __LINE__); \
return Ret; \
}
#else
#define RT_ASSERT_RET(_Exp) do {} while (0)
#define RT_ASSERT_RET_VALUE(_Exp, Ret) do {} while (0)
#define WAPI_TRACE(component, x, args...) do {} while (0)
#define WAPI_DATA(component, x, buf, len) do {} while (0)
#endif
enum WAPI_DEBUG {
WAPI_INIT = 1,
WAPI_API = 1 << 1,
WAPI_TX = 1 << 2,
WAPI_RX = 1 << 3,
WAPI_MLME = 1 << 4,
WAPI_IOCTL = 1 << 5,
WAPI_ERR = 1 << 31
};
#define WAPI_MAX_BKID_NUM 4
#define WAPI_MAX_STAINFO_NUM 4
#define WAPI_CAM_ENTRY_NUM 14 /* 28/2 = 14 */
typedef struct _RT_WAPI_BKID {
struct list_head list;
u8 bkid[16];
} RT_WAPI_BKID, *PRT_WAPI_BKID;
typedef struct _RT_WAPI_KEY {
u8 dataKey[16];
u8 micKey[16];
u8 keyId;
bool bSet;
bool bTxEnable;
} RT_WAPI_KEY, *PRT_WAPI_KEY;
typedef enum _RT_WAPI_PACKET_TYPE {
WAPI_NONE = 0,
WAPI_PREAUTHENTICATE = 1,
WAPI_STAKEY_REQUEST = 2,
WAPI_AUTHENTICATE_ACTIVE = 3,
WAPI_ACCESS_AUTHENTICATE_REQUEST = 4,
WAPI_ACCESS_AUTHENTICATE_RESPONSE = 5,
WAPI_CERTIFICATE_AUTHENTICATE_REQUEST = 6,
WAPI_CERTIFICATE_AUTHENTICATE_RESPONSE = 7,
WAPI_USK_REQUEST = 8,
WAPI_USK_RESPONSE = 9,
WAPI_USK_CONFIRM = 10,
WAPI_MSK_NOTIFICATION = 11,
WAPI_MSK_RESPONSE = 12
} RT_WAPI_PACKET_TYPE;
typedef struct _RT_WAPI_STA_INFO {
struct list_head list;
u8 PeerMacAddr[6];
RT_WAPI_KEY wapiUsk;
RT_WAPI_KEY wapiUskUpdate;
RT_WAPI_KEY wapiMsk;
RT_WAPI_KEY wapiMskUpdate;
u8 lastRxUnicastPN[16];
u8 lastTxUnicastPN[16];
u8 lastRxMulticastPN[16];
u8 lastRxUnicastPNBEQueue[16];
u8 lastRxUnicastPNBKQueue[16];
u8 lastRxUnicastPNVIQueue[16];
u8 lastRxUnicastPNVOQueue[16];
bool bSetkeyOk;
bool bAuthenticateInProgress;
bool bAuthenticatorInUpdata;
} RT_WAPI_STA_INFO, *PRT_WAPI_STA_INFO;
/* Added for HW wapi en/decryption */
typedef struct _RT_WAPI_CAM_ENTRY {
/* RT_LIST_ENTRY list; */
u8 IsUsed;
u8 entry_idx;/* for cam entry */
u8 keyidx; /* 0 or 1,new or old key */
u8 PeerMacAddr[6];
u8 type; /* should be 110,wapi */
} RT_WAPI_CAM_ENTRY, *PRT_WAPI_CAM_ENTRY;
typedef struct _RT_WAPI_T {
/* BKID */
RT_WAPI_BKID wapiBKID[WAPI_MAX_BKID_NUM];
struct list_head wapiBKIDIdleList;
struct list_head wapiBKIDStoreList;
/* Key for Tx Multicast/Broadcast */
RT_WAPI_KEY wapiTxMsk;
/* sec related */
u8 lastTxMulticastPN[16];
/* STA list */
RT_WAPI_STA_INFO wapiSta[WAPI_MAX_STAINFO_NUM];
struct list_head wapiSTAIdleList;
struct list_head wapiSTAUsedList;
/* */
bool bWapiEnable;
/* store WAPI IE */
u8 wapiIE[256];
u8 wapiIELength;
bool bWapiPSK;
/* last sequece number for wai packet */
u16 wapiSeqnumAndFragNum;
int extra_prefix_len;
int extra_postfix_len;
RT_WAPI_CAM_ENTRY wapiCamEntry[WAPI_CAM_ENTRY_NUM];
} RT_WAPI_T, *PRT_WAPI_T;
typedef struct _WLAN_HEADER_WAPI_EXTENSION {
u8 KeyIdx;
u8 Reserved;
u8 PN[16];
} WLAN_HEADER_WAPI_EXTENSION, *PWLAN_HEADER_WAPI_EXTENSION;
u32 WapiComparePN(u8 *PN1, u8 *PN2);
void rtw_wapi_init(_adapter *padapter);
void rtw_wapi_free(_adapter *padapter);
void rtw_wapi_disable_tx(_adapter *padapter);
u8 rtw_wapi_is_wai_packet(_adapter *padapter, u8 *pkt_data);
void rtw_wapi_update_info(_adapter *padapter, union recv_frame *precv_frame);
u8 rtw_wapi_check_for_drop(_adapter *padapter, union recv_frame *precv_frame, u8 *ehdr_ops);
void rtw_build_probe_resp_wapi_ie(_adapter *padapter, unsigned char *pframe, struct pkt_attrib *pattrib);
void rtw_build_beacon_wapi_ie(_adapter *padapter, unsigned char *pframe, struct pkt_attrib *pattrib);
void rtw_build_assoc_req_wapi_ie(_adapter *padapter, unsigned char *pframe, struct pkt_attrib *pattrib);
void rtw_wapi_on_assoc_ok(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE);
void rtw_wapi_return_one_sta_info(_adapter *padapter, u8 *MacAddr);
void rtw_wapi_return_all_sta_info(_adapter *padapter);
void rtw_wapi_clear_cam_entry(_adapter *padapter, u8 *pMacAddr);
void rtw_wapi_clear_all_cam_entry(_adapter *padapter);
void rtw_wapi_set_key(_adapter *padapter, RT_WAPI_KEY *pWapiKey, RT_WAPI_STA_INFO *pWapiSta, u8 bGroupKey);
int rtw_wapi_create_event_send(_adapter *padapter, u8 EventId, u8 *MacAddr, u8 *Buff, u16 BufLen);
u32 rtw_sms4_encrypt(_adapter *padapter, u8 *pxmitframe);
u32 rtw_sms4_decrypt(_adapter *padapter, u8 *precvframe);
void rtw_wapi_get_iv(_adapter *padapter, u8 *pRA, u8 *IV);
u8 WapiIncreasePN(u8 *PN, u8 AddCount);
bool rtw_wapi_drop_for_key_absent(_adapter *padapter, u8 *pRA);
void rtw_wapi_set_set_encryption(_adapter *padapter, struct ieee_param *param);
#endif
|
2301_81045437/rtl8852be
|
include/rtw_wapi.h
|
C
|
agpl-3.0
| 6,606
|
/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_WNM_H_
#define __RTW_WNM_H_
#define RTW_RRM_NB_RPT_EN BIT(1)
#define RTW_MAX_NB_RPT_NUM 8
#define RTW_WNM_FEATURE_BTM_REQ_EN BIT(0)
#define rtw_roam_busy_scan(a, nb) \
(((a)->mlmepriv.LinkDetectInfo.bBusyTraffic == _TRUE) && \
(((a)->mlmepriv.ch_cnt) < ((nb)->nb_rpt_ch_list_num)))
#define rtw_wnm_btm_preference_cap(a) \
((a)->mlmepriv.nb_info.preference_en == _TRUE)
#define rtw_wnm_btm_roam_triggered(a) \
(((a)->mlmepriv.nb_info.preference_en == _TRUE) \
&& (rtw_ft_chk_flags((a), RTW_FT_BTM_ROAM)) \
)
#define rtw_wnm_btm_diff_bss(a) \
((rtw_wnm_btm_preference_cap(a)) && \
(is_zero_mac_addr((a)->mlmepriv.nb_info.roam_target_addr) == _FALSE) && \
(_rtw_memcmp((a)->mlmepriv.nb_info.roam_target_addr,\
(a)->mlmepriv.cur_network.network.MacAddress, ETH_ALEN) == _FALSE))
#define rtw_wnm_btm_roam_candidate(a, c) \
((rtw_wnm_btm_preference_cap(a)) && \
(is_zero_mac_addr((a)->mlmepriv.nb_info.roam_target_addr) == _FALSE) && \
(_rtw_memcmp((a)->mlmepriv.nb_info.roam_target_addr,\
(c)->network.MacAddress, ETH_ALEN)))
#define rtw_wnm_add_btm_ext_cap(d, l) rtw_add_ext_cap_info(d, l, BSS_TRANSITION)
#define wnm_btm_bss_term_inc(p) (*((u8 *)((p)+3)) & BSS_TERMINATION_INCLUDED)
#define wnm_btm_ess_disassoc_im(p) (*((u8 *)((p)+3)) & ESS_DISASSOC_IMMINENT)
#define wnm_btm_dialog_token(p) (*((u8 *)((p)+2)))
#define wnm_btm_query_reason(p) (*((u8 *)((p)+3)))
#define wnm_btm_req_mode(p) (*((u8 *)((p)+3)))
#define wnm_btm_disassoc_timer(p) (*((u16 *)((p)+4)))
#define wnm_btm_valid_interval(p) (*((u8 *)((p)+6)))
#define wnm_btm_term_duration_offset(p) ((p)+7)
#define wnm_btm_rsp_status(p) (*((u8 *)((p)+3)))
#define wnm_btm_rsp_term_delay(p) (*((u8 *)((p)+4)))
#define RTW_WLAN_ACTION_WNM_NB_RPT_ELEM 0x34
enum rtw_ieee80211_wnm_actioncode {
RTW_WLAN_ACTION_WNM_BTM_QUERY = 6,
RTW_WLAN_ACTION_WNM_BTM_REQ = 7,
RTW_WLAN_ACTION_WNM_BTM_RSP = 8,
RTW_WLAN_ACTION_WNM_NOTIF_REQ = 26,
RTW_WLAN_ACTION_WNM_NOTIF_RSP = 27,
};
/*IEEE Std 80211k Figure 7-95b Neighbor Report element format*/
struct nb_rpt_hdr {
u8 id; /*0x34: Neighbor Report Element ID*/
u8 len;
u8 bssid[ETH_ALEN];
u32 bss_info;
u8 reg_class;
u8 ch_num;
u8 phy_type;
};
/*IEEE Std 80211v, Figure 7-9 BSS Termination Duration subelement field format */
struct btm_term_duration {
u8 id;
u8 len;
u64 tsf; /* value of the TSF counter when BSS termination will occur in the future */
u16 duration; /* number of minutes for which the BSS is not present*/
};
/*IEEE Std 80211v, Figure 7-10 BSS Transition Management Request frame body format */
struct btm_req_hdr {
u8 dialog_token;
u8 req_mode;
/* number of TBTTs until the AP sends a Disassociation frame to this STA */
u16 disassoc_timer;
/* number of TBTTs until the BSS transition candidate list is no longer valid */
u8 validity_interval;
struct btm_term_duration term_duration;
};
struct btm_rsp_hdr {
u8 dialog_token;
u8 status;
/* the number of minutes that
the responding STA requests the BSS to delay termination */
u8 termination_delay;
u8 bssid[ETH_ALEN];
u8 *pcandidates;
u32 candidates_num;
};
struct btm_rpt_cache {
u8 dialog_token;
u8 req_mode;
u16 disassoc_timer;
u8 validity_interval;
struct btm_term_duration term_duration;
/* from BTM req */
u32 validity_time;
u32 disassoc_time;
systime req_stime;
};
/*IEEE Std 80211v, Table 7-43b Optional Subelement IDs for Neighbor Report*/
/* BSS Transition Candidate Preference */
#define WNM_BTM_CAND_PREF_SUBEID 0x03
/* BSS Termination Duration */
#define WNM_BTM_TERM_DUR_SUBEID 0x04
struct wnm_btm_cant {
struct nb_rpt_hdr nb_rpt;
u8 preference; /* BSS Transition Candidate Preference */
};
enum rtw_btm_req_mod {
PREFERRED_CANDIDATE_LIST_INCLUDED = BIT0,
ABRIDGED = BIT1,
DISASSOC_IMMINENT = BIT2,
BSS_TERMINATION_INCLUDED = BIT3,
ESS_DISASSOC_IMMINENT = BIT4,
};
struct roam_nb_info {
struct nb_rpt_hdr nb_rpt[RTW_MAX_NB_RPT_NUM];
struct rtw_ieee80211_channel nb_rpt_ch_list[RTW_MAX_NB_RPT_NUM];
struct btm_rpt_cache btm_cache;
bool nb_rpt_valid;
u8 nb_rpt_ch_list_num;
u8 preference_en;
u8 roam_target_addr[ETH_ALEN];
u32 last_nb_rpt_entries;
u8 nb_rpt_is_same;
s8 disassoc_waiting;
_timer roam_scan_timer;
_timer disassoc_chk_timer;
u32 features;
};
u8 rtw_wnm_btm_reassoc_req(_adapter *padapter);
void rtw_wnm_roam_scan_hdl(void *ctx);
void rtw_wnm_disassoc_chk_hdl(void *ctx);
u8 rtw_wnm_try_btm_roam_imnt(_adapter *padapter);
void rtw_wnm_process_btm_query(_adapter *padapter,
u8* pframe, u32 frame_len);
void rtw_wnm_process_btm_req(_adapter *padapter,
u8* pframe, u32 frame_len);
void rtw_wnm_process_notification_req(
_adapter *padapter, u8* pframe, u32 frame_len);
void rtw_wnm_reset_btm_candidate(struct roam_nb_info *pnb);
void rtw_wnm_reset_btm_state(_adapter *padapter);
u32 rtw_wnm_btm_rsp_candidates_sz_get(
_adapter *padapter, u8* pframe, u32 frame_len);
void rtw_wnm_process_btm_rsp(_adapter *padapter,
u8* pframe, u32 frame_len, struct btm_rsp_hdr *prsp);
void rtw_wnm_issue_btm_req(_adapter *padapter,
u8 *pmac, struct btm_req_hdr *phdr, u8 *purl, u32 url_len,
u8 *pcandidates, u8 candidate_cnt);
void rtw_wnm_reset_btm_cache(_adapter *padapter);
void rtw_wnm_issue_action(_adapter *padapter, u8 action, u8 reason, u8 dialog);
void rtw_wnm_update_reassoc_req_ie(_adapter *padapter);
void rtw_roam_nb_info_init(_adapter *padapter);
u8 rtw_roam_nb_scan_list_set(_adapter *padapter,
struct sitesurvey_parm *pparm);
u32 rtw_wnm_btm_candidates_survey(_adapter *padapter,
u8* pframe, u32 elem_len, u8 is_preference);
#endif /* __RTW_WNM_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_wnm.h
|
C
|
agpl-3.0
| 6,244
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_WOW_H_
#define __RTW_WOW_H_
#ifdef CONFIG_WOWLAN
/* WoWLAN Info define */
/*=========================== Remote Control Info =========================== */
#define REMOTECTRL_INFO_VALID_CHECK 0xdd
#define REMOTECTRL_INFO_SYMBOL_CHK_PTK BIT0
#define REMOTECTRL_INFO_SYMBOL_CHK_GTK BIT1
/*============================================================================*/
#ifdef CONFIG_PLATFORM_ANDROID_INTEL_X86
/* TCP/ICMP/UDP multicast with specific IP addr */
#define DEFAULT_PATTERN_NUM 4
#else
/* TCP/ICMP */
#define DEFAULT_PATTERN_NUM 3
#endif
#define MAX_WKFM_CAM_NUM 18 /* same as MAX_WOW_CAM_NUM */
#define MAX_WKFM_SIZE 16 /* (16 bytes for WKFM bit mask, 16*8 = 128 bits) */
#define MAX_WKFM_PATTERN_SIZE 128
/*
* MAX_WKFM_PATTERN_STR_LEN : the max. length of wow pattern string
* e.g. echo 00:01:02:...:7f > /proc/net/rtl88x2bu/wlan0/wow_pattern_info
* - each byte of pattern is represented as 2-bytes ascii : MAX_WKFM_PATTERN_SIZE * 2
* - the number of common ':' in pattern string : MAX_WKFM_PATTERN_SIZE - 1
* - 1 byte '\n'(0x0a) is generated at the end when we use echo command
* so total max. length is (MAX_WKFM_PATTERN_SIZE * 3)
*/
#define MAX_WKFM_PATTERN_STR_LEN (MAX_WKFM_PATTERN_SIZE * 3)
#define WKFMCAM_ADDR_NUM 6
#define WKFMCAM_SIZE 24 /* each entry need 6*4 bytes */
struct aoac_report {
u8 iv[8];
u8 replay_counter_eapol_key[8];
u8 group_key[32];
u8 key_index;
u8 security_type;
u8 wow_pattern_idx;
u8 version_info;
u8 rekey_ok:1;
u8 dummy:7;
u8 reserved[3];
u8 rxptk_iv[8];
u8 rxgtk_iv[4][8];
};
enum pattern_type {
RTW_INVALID_PATTERN,
RTW_DEFAULT_PATTERN,
RTW_CUSTOMIZED_PATTERN,
};
enum rtw_wow_dev2hst_gpio {
DEV2HST_GPIO_OUTPUT = 0,
DEV2HST_GPIO_INPUT = 1
};
enum rtw_wow_dev2hst_active {
DEV2HST_LOW_ACTIVE = 0,
DEV2HST_HIGH_ACTIVE = 1
};
enum rtw_wow_dev2hst_toggle_pulse {
DEV2HST_TOGGLE = 0,
DEV2HST_PULSE = 1
};
enum rtw_wow_dev2hst_time_unit {
DEV2HST_32US = 0,
DEV2HST_4MS = 1
};
typedef struct rtl_priv_pattern {
int len;
char content[MAX_WKFM_PATTERN_SIZE];
char mask[MAX_WKFM_SIZE];
} rtl_priv_pattern_t;
struct wow_priv {
struct rtw_wow_wake_info wow_wake_event;
struct rtw_wow_gpio_info wow_gpio;
struct rtw_disc_det_info wow_disc;
enum pattern_type wow_ptrn_valid[MAX_WKFM_CAM_NUM];
};
void rtw_init_wow(_adapter *padapter);
void rtw_free_wow(_adapter *adapter);
void rtw_get_sec_iv(_adapter *padapter, u8 *pcur_dot11txpn, u8 *StaAddr);
bool rtw_wowlan_parser_pattern_cmd(u8 *input, char *pattern,
int *pattern_len, char *bit_mask);
u8 rtw_wow_pattern_set(_adapter *adapter,
struct rtw_wowcam_upd_info * wowcam_info,
enum pattern_type set_type);
void rtw_wow_pattern_clean(_adapter *adapter, enum pattern_type clean_type);
void rtw_set_default_pattern(_adapter *adapter);
void rtw_wow_pattern_sw_dump(_adapter *adapter);
void rtw_construct_remote_control_info(_adapter *adapter,
struct rtw_remote_wake_ctrl_info *ctrl_info);
void rtw_wow_lps_level_decide(_adapter *adapter, u8 wow_en);
int rtw_pm_set_wow_lps(_adapter *padapter, u8 mode);
int rtw_pm_set_wow_lps_level(_adapter *padapter, u8 level);
#ifdef CONFIG_LPS_1T1R
int rtw_pm_set_wow_lps_1t1r(_adapter *padapter, u8 en);
#endif
#ifdef CONFIG_GTK_OL
void rtw_update_gtk_ofld_info(void *drv_priv, struct rtw_aoac_report *aoac_info,
u8 aoac_report_get_ok, u8 phase);
#endif
bool _rtw_wow_chk_cap(_adapter *adapter, u8 cap);
void rtw_wowlan_set_pattern_cast_type(_adapter *adapter, struct rtw_wowcam_upd_info *wowcam_info);
#endif /* CONFIG_WOWLAN */
#ifdef CONFIG_PNO_SUPPORT
#define MAX_PNO_LIST_COUNT 16
#define MAX_SCAN_LIST_COUNT 14 /* 2.4G only */
#define MAX_HIDDEN_AP 8 /* 8 hidden AP */
typedef struct pno_nlo_info {
u32 fast_scan_period; /* Fast scan period */
u8 ssid_num; /* number of entry */
u8 hidden_ssid_num;
u32 slow_scan_period; /* slow scan period */
u32 fast_scan_iterations; /* Fast scan iterations */
u8 ssid_length[MAX_PNO_LIST_COUNT]; /* SSID Length Array */
u8 ssid_cipher_info[MAX_PNO_LIST_COUNT]; /* Cipher information for security */
u8 ssid_channel_info[MAX_PNO_LIST_COUNT]; /* channel information */
u8 loc_probe_req[MAX_HIDDEN_AP]; /* loc_probeReq */
} pno_nlo_info_t;
typedef struct pno_ssid {
u32 SSID_len;
u8 SSID[32];
} pno_ssid_t;
typedef struct pno_ssid_list {
pno_ssid_t node[MAX_PNO_LIST_COUNT];
} pno_ssid_list_t;
typedef struct pno_scan_channel_info {
u8 channel;
u8 tx_power;
u8 timeout;
u8 active; /* set 1 means active scan, or pasivite scan. */
} pno_scan_channel_info_t;
typedef struct pno_scan_info {
u8 enableRFE; /* Enable RFE */
u8 period_scan_time; /* exclusive with fast_scan_period and slow_scan_period */
u8 periodScan; /* exclusive with fast_scan_period and slow_scan_period */
u8 orig_80_offset; /* original channel 80 offset */
u8 orig_40_offset; /* original channel 40 offset */
u8 orig_bw; /* original bandwidth */
u8 orig_ch; /* original channel */
u8 channel_num; /* number of channel */
u64 rfe_type; /* rfe_type && 0x00000000000000ff */
pno_scan_channel_info_t ssid_channel_info[MAX_SCAN_LIST_COUNT];
} pno_scan_info_t;
int rtw_parse_ssid_list_tlv(char **list_str, pno_ssid_t *ssid, int max, int *bytes_left);
int rtw_dev_pno_set(struct net_device *net, pno_ssid_t *ssid, int num,
int pno_time, int pno_repeat, int pno_freq_expo_max);
#ifdef CONFIG_PNO_SET_DEBUG
void rtw_dev_pno_debug(struct net_device *net);
#endif /* CONFIG_PNO_SET_DEBUG */
#endif /* CONFIG_PNO_SUPPORT */
#endif /* __RTW_WOW_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_wow.h
|
C
|
agpl-3.0
| 6,214
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_XMIT_H_
#define _RTW_XMIT_H_
#if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
#ifdef CONFIG_TX_AGGREGATION
/* #define SDIO_TX_AGG_MAX 5 */
#else
#define SDIO_TX_AGG_MAX 1
#endif
#if defined CONFIG_SDIO_HCI
#define SDIO_TX_DIV_NUM (2)
#endif
#endif
#if 0 /*CONFIG_CORE_XMITBUF*/
#ifdef CONFIG_PCI_HCI
#define XMITBUF_ALIGN_SZ 4
#else
#ifdef USB_XMITBUF_ALIGN_SZ
#define XMITBUF_ALIGN_SZ (USB_XMITBUF_ALIGN_SZ)
#else
#define XMITBUF_ALIGN_SZ 512
#endif
#endif
#define MAX_CMDBUF_SZ (5120) /* (4096) */
#endif
#define MAX_BEACON_LEN 512
#define MAX_NUMBLKS (1)
#define XMIT_VO_QUEUE (0)
#define XMIT_VI_QUEUE (1)
#define XMIT_BE_QUEUE (2)
#define XMIT_BK_QUEUE (3)
#define VO_QUEUE_INX 0
#define VI_QUEUE_INX 1
#define BE_QUEUE_INX 2
#define BK_QUEUE_INX 3
#define BCN_QUEUE_INX 4
#define MGT_QUEUE_INX 5
#define HIGH_QUEUE_INX 6
#define TXCMD_QUEUE_INX 7
#define HW_QUEUE_ENTRY 8
#ifdef RTW_PHL_TX
#define RTW_MAX_FRAG_NUM 10 //max scatter number of a packet to xmit
#define RTW_MAX_WL_HEAD 100
#define RTW_MAX_WL_TAIL 100
#define RTW_SZ_LLC (SNAP_SIZE + sizeof(u16))
#define RTW_SZ_FCS 4
#endif
#define WEP_IV(pattrib_iv, dot11txpn, keyidx)\
do {\
dot11txpn.val = (dot11txpn.val == 0xffffff) ? 0 : (dot11txpn.val + 1);\
pattrib_iv[0] = dot11txpn._byte_.TSC0;\
pattrib_iv[1] = dot11txpn._byte_.TSC1;\
pattrib_iv[2] = dot11txpn._byte_.TSC2;\
pattrib_iv[3] = ((keyidx & 0x3)<<6);\
} while (0)
#define TKIP_IV(pattrib_iv, dot11txpn, keyidx)\
do {\
dot11txpn.val = dot11txpn.val == 0xffffffffffffULL ? 0 : (dot11txpn.val + 1);\
pattrib_iv[0] = dot11txpn._byte_.TSC1;\
pattrib_iv[1] = (dot11txpn._byte_.TSC1 | 0x20) & 0x7f;\
pattrib_iv[2] = dot11txpn._byte_.TSC0;\
pattrib_iv[3] = BIT(5) | ((keyidx & 0x3)<<6);\
pattrib_iv[4] = dot11txpn._byte_.TSC2;\
pattrib_iv[5] = dot11txpn._byte_.TSC3;\
pattrib_iv[6] = dot11txpn._byte_.TSC4;\
pattrib_iv[7] = dot11txpn._byte_.TSC5;\
} while (0)
#define AES_IV(pattrib_iv, dot11txpn, keyidx)\
do {\
dot11txpn.val = dot11txpn.val == 0xffffffffffffULL ? 0 : (dot11txpn.val + 1);\
pattrib_iv[0] = dot11txpn._byte_.TSC0;\
pattrib_iv[1] = dot11txpn._byte_.TSC1;\
pattrib_iv[2] = 0;\
pattrib_iv[3] = BIT(5) | ((keyidx & 0x3)<<6);\
pattrib_iv[4] = dot11txpn._byte_.TSC2;\
pattrib_iv[5] = dot11txpn._byte_.TSC3;\
pattrib_iv[6] = dot11txpn._byte_.TSC4;\
pattrib_iv[7] = dot11txpn._byte_.TSC5;\
} while (0)
#define GCMP_IV(a, b, c) AES_IV(a, b, c)
/* Check if AMPDU Tx is supported or not. If it is supported,
* it need to check "amsdu in ampdu" is supported or not.
* (ampdu_en, amsdu_ampdu_en) =
* (0, x) : AMPDU is not enable, but AMSDU is valid to send.
* (1, 0) : AMPDU is enable, AMSDU in AMPDU is not enable. So, AMSDU is not valid to send.
* (1, 1) : AMPDU and AMSDU in AMPDU are enable. So, AMSDU is valid to send.
*/
#define IS_AMSDU_AMPDU_NOT_VALID(pattrib)\
((pattrib->ampdu_en == _TRUE) && (pattrib->amsdu_ampdu_en == _FALSE))
#define IS_AMSDU_AMPDU_VALID(pattrib)\
!((pattrib->ampdu_en == _TRUE) && (pattrib->amsdu_ampdu_en == _FALSE))
#define HWXMIT_ENTRY 4
/* For Buffer Descriptor ring architecture */
#if defined(BUF_DESC_ARCH) || defined(CONFIG_TRX_BD_ARCH)
#define TX_BUFFER_SEG_NUM 1 /* 0:2 seg, 1: 4 seg, 2: 8 seg. */
#endif
/*GEORGIA_TODO_FIXIT_MOVE_TO_HAL*/
#if defined(CONFIG_RTL8822B) || defined(CONFIG_RTL8822C)
#define TXDESC_SIZE 48 /* HALMAC_TX_DESC_SIZE_8822B */
#elif defined(CONFIG_RTL8821C)
#define TXDESC_SIZE 48 /* HALMAC_TX_DESC_SIZE_8821C */
#elif defined(CONFIG_RTL8814B)
#define TXDESC_SIZE (16 + 32)
#else
#define TXDESC_SIZE 32 /* old IC (ex: 8188E) */
#endif
#ifdef CONFIG_TX_EARLY_MODE
#define EARLY_MODE_INFO_SIZE 8
#endif
#if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
#define TXDESC_OFFSET TXDESC_SIZE
#endif
#ifdef CONFIG_USB_HCI
#ifdef USB_PACKET_OFFSET_SZ
#define PACKET_OFFSET_SZ (USB_PACKET_OFFSET_SZ)
#else
#define PACKET_OFFSET_SZ (8)
#endif
#define TXDESC_OFFSET (TXDESC_SIZE + PACKET_OFFSET_SZ)
#endif
#ifdef CONFIG_PCI_HCI
#if defined(CONFIG_RTL8822B) || defined(CONFIG_RTL8821C) || defined(CONFIG_RTL8822C) || defined(CONFIG_TRX_BD_ARCH)
/* this section is defined for buffer descriptor ring architecture */
#define TX_WIFI_INFO_SIZE (TXDESC_SIZE) /* it may add 802.11 hdr or others... */
/* tx desc and payload are in the same buf */
#define TXDESC_OFFSET (TX_WIFI_INFO_SIZE)
#else
/* tx desc and payload are NOT in the same buf */
#define TXDESC_OFFSET (0)
/* 8188ee/8723be/8812ae/8821ae has extra PCI DMA info in tx desc */
#endif
#endif /* CONFIG_PCI_HCI */
#ifdef RTW_PHL_TX
#ifdef TXDESC_OFFSET
#undef TXDESC_OFFSET
#endif
#define TXDESC_OFFSET (0)
#endif
#ifdef RTW_PHL_TX
enum CORE_TX_TYPE {
RTW_TX_OS = 0,
RTW_TX_OS_MAC80211,
RTW_TX_DRV_MGMT,
};
#endif
enum TXDESC_SC {
SC_DONT_CARE = 0x00,
SC_UPPER = 0x01,
SC_LOWER = 0x02,
SC_DUPLICATE = 0x03
};
#ifdef CONFIG_PCI_HCI
#ifndef CONFIG_TRX_BD_ARCH /* CONFIG_TRX_BD_ARCH doesn't need this */
#define TXDESC_64_BYTES
#endif
#endif
/*GEORGIA_TODO_FIXIT_IC_DEPENDENCE*/
#ifdef CONFIG_TRX_BD_ARCH
struct tx_buf_desc {
#ifdef CONFIG_64BIT_DMA
#define TX_BUFFER_SEG_SIZE 4 /* in unit of DWORD */
#else
#define TX_BUFFER_SEG_SIZE 2 /* in unit of DWORD */
#endif
unsigned int dword[TX_BUFFER_SEG_SIZE * (2 << TX_BUFFER_SEG_NUM)];
} __packed;
#elif (defined(CONFIG_RTL8822B) || defined(CONFIG_RTL8822C)) && defined(CONFIG_PCI_HCI) /* 8192ee or 8814ae */
/* 8192EE_TODO */
struct tx_desc {
unsigned int txdw0;
unsigned int txdw1;
unsigned int txdw2;
unsigned int txdw3;
unsigned int txdw4;
unsigned int txdw5;
unsigned int txdw6;
unsigned int txdw7;
};
#else
struct tx_desc {
unsigned int txdw0;
unsigned int txdw1;
unsigned int txdw2;
unsigned int txdw3;
unsigned int txdw4;
unsigned int txdw5;
unsigned int txdw6;
unsigned int txdw7;
#if defined(TXDESC_40_BYTES) || defined(TXDESC_64_BYTES)
unsigned int txdw8;
unsigned int txdw9;
#endif /* TXDESC_40_BYTES */
#ifdef TXDESC_64_BYTES
unsigned int txdw10;
unsigned int txdw11;
/* 2008/05/15 MH Because PCIE HW memory R/W 4K limit. And now, our descriptor */
/* size is 40 bytes. If you use more than 102 descriptor( 103*40>4096), HW will execute */
/* memoryR/W CRC error. And then all DMA fetch will fail. We must decrease descriptor */
/* number or enlarge descriptor size as 64 bytes. */
unsigned int txdw12;
unsigned int txdw13;
unsigned int txdw14;
unsigned int txdw15;
#endif
};
#endif
#ifndef CONFIG_TRX_BD_ARCH
union txdesc {
struct tx_desc txdesc;
unsigned int value[TXDESC_SIZE >> 2];
};
#endif
#ifdef CONFIG_PCI_HCI
#define PCI_MAX_TX_QUEUE_COUNT 8 /* == HW_QUEUE_ENTRY */
struct rtw_tx_ring {
unsigned char qid;
#ifdef CONFIG_TRX_BD_ARCH
struct tx_buf_desc *buf_desc;
#else
struct tx_desc *desc;
#endif
dma_addr_t dma;
unsigned int idx;
unsigned int entries;
_queue queue;
u32 qlen;
#ifdef CONFIG_TRX_BD_ARCH
u16 hw_rp_cache;
#endif
};
#ifdef DBG_TXBD_DESC_DUMP
#define TX_BAK_FRMAE_CNT 10
#define TX_BAK_DESC_LEN 48 /* byte */
#define TX_BAK_DATA_LEN 30 /* byte */
struct rtw_tx_desc_backup {
int tx_bak_rp;
int tx_bak_wp;
u8 tx_bak_desc[TX_BAK_DESC_LEN];
u8 tx_bak_data_hdr[TX_BAK_DATA_LEN];
u8 tx_desc_size;
};
#endif
#endif
struct hw_xmit {
/* _lock xmit_lock; */
/* _list pending; */
_queue *sta_queue;
/* struct hw_txqueue *phwtxqueue; */
/* sint txcmdcnt; */
int accnt;
};
#if 1 //def RTW_PHL_TX
struct pkt_attrib {
//updated by rtw_core_update_xmitframe
u32 sz_payload_per_frag;
u32 sz_wlan_head;
u32 sz_wlan_tail;
u32 sz_phl_head;
u32 sz_phl_tail;
u8 nr_frags;
u32 frag_len;
u32 frag_datalen;
#ifdef CONFIG_CORE_TXSC
u32 frag_len_txsc;
#endif
//updated by
u16 ether_type;
u8 src[ETH_ALEN];
u8 dst[ETH_ALEN];
u8 ta[ETH_ALEN];
u8 ra[ETH_ALEN];
u16 pkt_hdrlen; /* the original 802.3 pkt header len */
u32 sz_payload;
u8 dhcp_pkt;
u8 icmp_pkt;
u8 hipriority_pkt; /* high priority packet */
//WLAN HDR
u16 hdrlen; /* the WLAN Header Len */
u8 type;
u8 subtype;
u8 qos_en;
u16 seqnum;
u8 ampdu_en;/* tx ampdu enable */
u8 ack_policy;
u8 amsdu;
u8 mdata;/* more data bit */
u8 eosp;
u8 priority;
//Security
u8 bswenc;
/*
* encrypt
* indicate the encrypt algorithm, ref: enum security_type.
* 0: indicate no encrypt.
*/
u8 encrypt;
u8 iv_len;
u8 icv_len;
u8 iv[18];
u8 icv[16];
u8 key_idx;
union Keytype dot11tkiptxmickey;
/* union Keytype dot11tkiprxmickey; */
union Keytype dot118021x_UncstKey;
//updated by rtw_core_update_xmitframe
u8 hw_ssn_sel; /* for HW_SEQ0,1,2,3 */
u32 pktlen; /* the original 802.3 pkt raw_data len (not include ether_hdr data) */
u32 last_txcmdsz;
#if defined(CONFIG_CONCURRENT_MODE)
u8 bmc_camid;
#endif
u8 mac_id;
u8 vcs_mode; /* virtual carrier sense method */
#ifdef CONFIG_RTW_WDS
u8 wds;
#endif
#ifdef CONFIG_RTW_MESH
u8 mda[ETH_ALEN]; /* mesh da */
u8 msa[ETH_ALEN]; /* mesh sa */
u8 meshctrl_len; /* Length of Mesh Control field */
u8 mesh_frame_mode;
#if CONFIG_RTW_MESH_DATA_BMC_TO_UC
u8 mb2u;
#endif
u8 mfwd_ttl;
u32 mseq;
#endif
#ifdef CONFIG_TCP_CSUM_OFFLOAD_TX
u8 hw_csum;
#endif
u8 ht_en;
u8 raid;/* rate adpative id */
u8 bwmode;
u8 ch_offset;/* PRIME_CHNL_OFFSET */
u8 sgi;/* short GI */
u8 ampdu_spacing; /* ampdu_min_spacing for peer sta's rx */
u8 amsdu_ampdu_en;/* tx amsdu in ampdu enable */
u8 pctrl;/* per packet txdesc control enable */
u8 triggered;/* for ap mode handling Power Saving sta */
u8 qsel;
u8 order;/* order bit */
u8 rate;
u8 intel_proxim;
u8 retry_ctrl;
u8 mbssid;
u8 ldpc;
u8 stbc;
#ifdef CONFIG_WMMPS_STA
u8 trigger_frame;
#endif /* CONFIG_WMMPS_STA */
struct sta_info *psta;
u8 rtsen;
u8 cts2self;
u8 hw_rts_en;
#ifdef CONFIG_TDLS
u8 direct_link;
struct sta_info *ptdls_sta;
#endif /* CONFIG_TDLS */
u8 key_type;
#ifdef CONFIG_BEAMFORMING
u16 txbf_p_aid;/*beamforming Partial_AID*/
u16 txbf_g_id;/*beamforming Group ID*/
/*
* 2'b00: Unicast NDPA
* 2'b01: Broadcast NDPA
* 2'b10: Beamforming Report Poll
* 2'b11: Final Beamforming Report Poll
*/
u8 bf_pkt_type;
#endif
u8 wdinfo_en;/*FPGA_test*/
u8 dma_ch;/*FPGA_test*/
};
#endif
#if 0 //ndef RTW_PHL_TX
/* reduce size */
struct pkt_attrib {
u8 type;
u8 subtype;
u8 bswenc;
u8 dhcp_pkt;
u16 ether_type;
u16 seqnum;
u8 hw_ssn_sel; /* for HW_SEQ0,1,2,3 */
u16 pkt_hdrlen; /* the original 802.3 pkt header len */
u16 hdrlen; /* the WLAN Header Len */
u32 pktlen; /* the original 802.3 pkt raw_data len (not include ether_hdr data) */
u32 last_txcmdsz;
u8 nr_frags;
u8 encrypt; /* when 0 indicate no encrypt. when non-zero, indicate the encrypt algorith */
#if defined(CONFIG_CONCURRENT_MODE)
u8 bmc_camid;
#endif
u8 iv_len;
u8 icv_len;
u8 iv[18];
u8 icv[16];
u8 priority;
u8 ack_policy;
u8 mac_id;
u8 vcs_mode; /* virtual carrier sense method */
u8 dst[ETH_ALEN];
u8 src[ETH_ALEN];
u8 ta[ETH_ALEN];
u8 ra[ETH_ALEN];
#ifdef CONFIG_RTW_MESH
u8 mda[ETH_ALEN]; /* mesh da */
u8 msa[ETH_ALEN]; /* mesh sa */
u8 meshctrl_len; /* Length of Mesh Control field */
u8 mesh_frame_mode;
#if CONFIG_RTW_MESH_DATA_BMC_TO_UC
u8 mb2u;
#endif
u8 mfwd_ttl;
u32 mseq;
#endif
#ifdef CONFIG_TCP_CSUM_OFFLOAD_TX
u8 hw_csum;
#endif
u8 key_idx;
u8 qos_en;
u8 ht_en;
u8 raid;/* rate adpative id */
u8 bwmode;
u8 ch_offset;/* PRIME_CHNL_OFFSET */
u8 sgi;/* short GI */
u8 ampdu_en;/* tx ampdu enable */
u8 ampdu_spacing; /* ampdu_min_spacing for peer sta's rx */
u8 amsdu;
u8 amsdu_ampdu_en;/* tx amsdu in ampdu enable */
u8 mdata;/* more data bit */
u8 pctrl;/* per packet txdesc control enable */
u8 triggered;/* for ap mode handling Power Saving sta */
u8 qsel;
u8 order;/* order bit */
u8 eosp;
u8 rate;
u8 intel_proxim;
u8 retry_ctrl;
u8 mbssid;
u8 ldpc;
u8 stbc;
#ifdef CONFIG_WMMPS_STA
u8 trigger_frame;
#endif /* CONFIG_WMMPS_STA */
struct sta_info *psta;
u8 rtsen;
u8 cts2self;
union Keytype dot11tkiptxmickey;
/* union Keytype dot11tkiprxmickey; */
union Keytype dot118021x_UncstKey;
#ifdef CONFIG_TDLS
u8 direct_link;
struct sta_info *ptdls_sta;
#endif /* CONFIG_TDLS */
u8 key_type;
u8 icmp_pkt;
u8 hipriority_pkt; /* high priority packet */
#ifdef CONFIG_BEAMFORMING
u16 txbf_p_aid;/*beamforming Partial_AID*/
u16 txbf_g_id;/*beamforming Group ID*/
/*
* 2'b00: Unicast NDPA
* 2'b01: Broadcast NDPA
* 2'b10: Beamforming Report Poll
* 2'b11: Final Beamforming Report Poll
*/
u8 bf_pkt_type;
#endif
u8 wdinfo_en;/*FPGA_test*/
u8 dma_ch;/*FPGA_test*/
};
#endif
#ifdef CONFIG_RTW_WDS
#define XATTRIB_GET_WDS(xattrib) ((xattrib)->wds)
#else
#define XATTRIB_GET_WDS(xattrib) 0
#endif
#ifdef CONFIG_RTW_MESH
#define XATTRIB_GET_MCTRL_LEN(xattrib) ((xattrib)->meshctrl_len)
#else
#define XATTRIB_GET_MCTRL_LEN(xattrib) 0
#endif
#ifdef CONFIG_TX_AMSDU
enum {
RTW_AMSDU_TIMER_UNSET = 0,
RTW_AMSDU_TIMER_SETTING,
RTW_AMSDU_TIMER_TIMEOUT,
};
#endif
#define WLANHDR_OFFSET 64
#define NULL_FRAMETAG (0x0)
#define DATA_FRAMETAG 0x01
#define L2_FRAMETAG 0x02
#define MGNT_FRAMETAG 0x03
#define AMSDU_FRAMETAG 0x04
#define EII_FRAMETAG 0x05
#define IEEE8023_FRAMETAG 0x06
#define MP_FRAMETAG 0x07
#define TXAGG_FRAMETAG 0x08
enum {
XMITBUF_DATA = 0,
XMITBUF_MGNT = 1,
XMITBUF_CMD = 2,
};
bool rtw_xmit_ac_blocked(_adapter *adapter);
struct submit_ctx {
systime submit_time; /* */
u32 timeout_ms; /* <0: not synchronous, 0: wait forever, >0: up to ms waiting */
int status; /* status for operation */
_completion done;
};
enum {
RTW_SCTX_SUBMITTED = -1,
RTW_SCTX_DONE_SUCCESS = 0,
RTW_SCTX_DONE_UNKNOWN,
RTW_SCTX_DONE_TIMEOUT,
RTW_SCTX_DONE_BUF_ALLOC,
RTW_SCTX_DONE_BUF_FREE,
RTW_SCTX_DONE_WRITE_PORT_ERR,
RTW_SCTX_DONE_TX_DESC_NA,
RTW_SCTX_DONE_TX_DENY,
RTW_SCTX_DONE_CCX_PKT_FAIL,
RTW_SCTX_DONE_DRV_STOP,
RTW_SCTX_DONE_DEV_REMOVE,
RTW_SCTX_DONE_CMD_ERROR,
RTW_SCTX_DONE_CMD_DROP,
RTX_SCTX_CSTR_WAIT_RPT2,
};
void rtw_sctx_init(struct submit_ctx *sctx, int timeout_ms);
int rtw_sctx_wait(struct submit_ctx *sctx, const char *msg);
void rtw_sctx_done_err(struct submit_ctx **sctx, int status);
void rtw_sctx_done(struct submit_ctx **sctx);
#if 0 /*CONFIG_CORE_XMITBUF*/
struct xmit_buf {
_list list;
_adapter *padapter;
u8 *pallocated_buf;
u8 *pbuf;
void *priv_data;
u16 buf_tag; /* 0: Normal xmitbuf, 1: extension xmitbuf, 2:cmd xmitbuf */
u16 flags;
u32 alloc_sz;
u32 len;
struct submit_ctx *sctx;
#ifdef CONFIG_USB_HCI
/* u32 sz[8]; */
u32 ff_hwaddr;
u8 bulkout_id; /* for halmac */
PURB pxmit_urb[8];
dma_addr_t dma_transfer_addr; /* (in) dma addr for transfer_buffer */
u8 bpending[8];
sint last[8];
#endif
#if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
u8 *phead;
u8 *pdata;
u8 *ptail;
u8 *pend;
u32 ff_hwaddr;
u8 pg_num;
u8 agg_num;
#endif
#ifdef CONFIG_PCI_HCI
#ifdef CONFIG_TRX_BD_ARCH
/*struct tx_buf_desc *buf_desc;*/
#else
struct tx_desc *desc;
#endif
#endif
#if defined(DBG_XMIT_BUF) || defined(DBG_XMIT_BUF_EXT)
u8 no;
#endif
};
#endif
#ifdef CONFIG_CORE_TXSC
#define MAX_TXSC_SKB_NUM 6
#endif
struct xmit_txreq_buf {
_list list;
u8 *txreq;
u8 *head;
u8 *tail;
u8 *pkt_list;
#ifdef CONFIG_CORE_TXSC
u8 *pkt[MAX_TXSC_SKB_NUM];
u8 pkt_cnt;
_adapter *adapter;
u8 macid;
u8 txsc_id;
#endif
};
struct xmit_frame {
_list list;
struct pkt_attrib attrib;
u16 os_qid;
struct sk_buff *pkt;
int frame_tag;
_adapter *padapter;
/*Only for MGNT Frame*/
u8 *prealloc_buf_addr;
#ifdef CONFIG_USB_HCI
dma_addr_t dma_transfer_addr;
#endif
u8 *buf_addr;
#if 0 /*CONFIG_CORE_XMITBUF*/
struct xmit_buf *pxmitbuf;
#endif
#if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
u8 pg_num;
u8 agg_num;
#endif
#ifdef CONFIG_USB_HCI
#ifdef CONFIG_USB_TX_AGGREGATION
u8 agg_num;
#endif
s8 pkt_offset;
#endif
#ifdef CONFIG_XMIT_ACK
u8 ack_report;
#endif
u8 *alloc_addr; /* the actual address this xmitframe allocated */
u8 ext_tag; /* 0:data, 1:mgmt */
#ifdef RTW_PHL_TX
u8 xftype;
//struct sk_buff *skb;
//struct sta_info *psta;
//struct pkt_attrib tx_attrib;
u8 alloc_hdr;
u8 alloc_tail;
u8 *wlhdr[RTW_MAX_FRAG_NUM];
u8 *wltail[RTW_MAX_FRAG_NUM];
u32 txring_idx;
u32 txreq_cnt;
struct rtw_xmit_req *phl_txreq;
u32 txfree_cnt;
struct xmit_txreq_buf *ptxreq_buf;/* TXREQ_QMGT for recycle*/
u16 buf_need_free; /* size is realted to RTW_MAX_FRAG_NUM */
#endif
};
struct tx_servq {
_list tx_pending;
_queue sta_pending;
int qcnt;
};
struct sta_xmit_priv {
_lock lock;
sint option;
sint apsd_setting; /* When bit mask is on, the associated edca queue supports APSD. */
/* struct tx_servq blk_q[MAX_NUMBLKS]; */
struct tx_servq be_q; /* priority == 0,3 */
struct tx_servq bk_q; /* priority == 1,2 */
struct tx_servq vi_q; /* priority == 4,5 */
struct tx_servq vo_q; /* priority == 6,7 */
_list legacy_dz;
_list apsd;
u16 txseq_tid[16];
/* uint sta_tx_bytes; */
/* u64 sta_tx_pkts; */
/* uint sta_tx_fail; */
};
struct hw_txqueue {
volatile sint head;
volatile sint tail;
volatile sint free_sz; /* in units of 64 bytes */
volatile sint free_cmdsz;
volatile sint txsz[8];
uint ff_hwaddr;
uint cmd_hwaddr;
sint ac_tag;
};
struct agg_pkt_info {
u16 offset;
u16 pkt_len;
};
#if 0 /*CONFIG_CORE_XMITBUF*/
enum cmdbuf_type {
CMDBUF_BEACON = 0x00,
CMDBUF_RSVD,
CMDBUF_MAX
};
#endif
struct xmit_priv {
_lock lock;
#if 0 /*def CONFIG_XMIT_THREAD_MODE*/
_sema xmit_sema;
#endif
/* _queue blk_strms[MAX_NUMBLKS]; */
_queue be_pending;
_queue bk_pending;
_queue vi_pending;
_queue vo_pending;
_queue bm_pending;
/* _queue legacy_dz_queue; */
/* _queue apsd_queue; */
u8 *pallocated_frame_buf;
u8 *pxmit_frame_buf;
uint free_xmitframe_cnt;
_queue free_xmit_queue;
/* uint mapping_addr; */
/* uint pkt_sz; */
u8 *xframe_ext_alloc_addr;
u8 *xframe_ext;
uint free_xframe_ext_cnt;
_queue free_xframe_ext_queue;
/* MGT_TXREQ_QMGT */
u8 *xframe_ext_txreq_alloc_addr;
u8 *xframe_ext_txreq;
/* struct hw_txqueue be_txqueue; */
/* struct hw_txqueue bk_txqueue; */
/* struct hw_txqueue vi_txqueue; */
/* struct hw_txqueue vo_txqueue; */
/* struct hw_txqueue bmc_txqueue; */
uint frag_len;
_adapter *adapter;
u8 vcs_setting;
u8 vcs;
u8 vcs_type;
/* u16 rts_thresh; */
u64 tx_bytes;
u64 tx_pkts;
u64 tx_drop;
u64 last_tx_pkts;
struct hw_xmit *hwxmits;
u8 hwxmit_entry;
u8 wmm_para_seq[4];/* sequence for wmm ac parameter strength from large to small. it's value is 0->vo, 1->vi, 2->be, 3->bk. */
#ifdef CONFIG_USB_HCI
_sema tx_retevt;/* all tx return event; */
u8 txirp_cnt;
_tasklet xmit_tasklet;
/* per AC pending irp */
int beq_cnt;
int bkq_cnt;
int viq_cnt;
int voq_cnt;
#endif
#ifdef CONFIG_PCI_HCI
/* Tx */
struct rtw_tx_ring tx_ring[PCI_MAX_TX_QUEUE_COUNT];
int txringcount[PCI_MAX_TX_QUEUE_COUNT];
u8 beaconDMAing; /* flag of indicating beacon is transmiting to HW by DMA */
_tasklet xmit_tasklet;
#endif
#if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
#ifdef CONFIG_TX_AMSDU_SW_MODE
_tasklet xmit_tasklet;
#endif
#ifndef CONFIG_SDIO_TX_TASKLET
_thread_hdl_ SdioXmitThread;
_sema SdioXmitSema;
#endif
#endif /* CONFIG_SDIO_HCI */
#if 0 /*CONFIG_CORE_XMITBUF*/
_queue free_xmitbuf_queue;
_queue pending_xmitbuf_queue;
u8 *pallocated_xmitbuf;
u8 *pxmitbuf;
uint free_xmitbuf_cnt;
_queue free_xmit_extbuf_queue;
u8 *pallocated_xmit_extbuf;
u8 *pxmit_extbuf;
uint free_xmit_extbuf_cnt;
struct xmit_buf pcmd_xmitbuf[CMDBUF_MAX];
#endif
u8 hw_ssn_seq_no;/* mapping to REG_HW_SEQ 0,1,2,3 */
u16 nqos_ssn;
#ifdef CONFIG_TX_EARLY_MODE
#ifdef CONFIG_SDIO_HCI
#define MAX_AGG_PKT_NUM 20
#else
#define MAX_AGG_PKT_NUM 256 /* Max tx ampdu coounts */
#endif
struct agg_pkt_info agg_pkt[MAX_AGG_PKT_NUM];
#endif
#ifdef CONFIG_XMIT_ACK
int ack_tx;
_mutex ack_tx_mutex;
struct submit_ctx ack_tx_ops;
u8 seq_no;
#endif
#ifdef CONFIG_TX_AMSDU
_timer amsdu_vo_timer;
u8 amsdu_vo_timeout;
_timer amsdu_vi_timer;
u8 amsdu_vi_timeout;
_timer amsdu_be_timer;
u8 amsdu_be_timeout;
_timer amsdu_bk_timer;
u8 amsdu_bk_timeout;
u32 amsdu_debug_set_timer;
u32 amsdu_debug_timeout;
#ifndef AMSDU_DEBUG_MAX_COUNT
#define AMSDU_DEBUG_MAX_COUNT 5
#endif
u32 amsdu_debug_coalesce[AMSDU_DEBUG_MAX_COUNT];
u32 amsdu_debug_tasklet;
u32 amsdu_debug_enqueue;
u32 amsdu_debug_dequeue;
#endif
#ifdef DBG_TXBD_DESC_DUMP
BOOLEAN dump_txbd_desc;
#endif
#ifdef CONFIG_PCI_TX_POLLING
_timer tx_poll_timer;
#endif
#ifdef CONFIG_LAYER2_ROAMING
_queue rpkt_queue;
#endif
_lock lock_sctx;
#ifdef CONFIG_CORE_TXSC
_lock txsc_lock;
u8 txsc_enable;
u8 txsc_debug_mode;
u8 txsc_debug_mask;/* BIT0:core txsc(no use), BIT1: phl txsc enable, BIT2: debug_print */
struct sta_info *ptxsc_sta_cached;
/* for debug */
u32 txsc_phl_err_cnt1;
u32 txsc_phl_err_cnt2;
#endif /* CONFIG_CORE_TXSC */
};
#if 0 /*CONFIG_CORE_XMITBUF*/
extern struct xmit_frame *__rtw_alloc_cmdxmitframe(struct xmit_priv *pxmitpriv,
enum cmdbuf_type buf_type);
#define rtw_alloc_cmdxmitframe(p) __rtw_alloc_cmdxmitframe(p, CMDBUF_RSVD)
#define rtw_alloc_bcnxmitframe(p) __rtw_alloc_cmdxmitframe(p, CMDBUF_BEACON)
extern struct xmit_buf *rtw_alloc_xmitbuf_ext(struct xmit_priv *pxmitpriv);
extern s32 rtw_free_xmitbuf_ext(struct xmit_priv *pxmitpriv, struct xmit_buf *pxmitbuf);
extern struct xmit_buf *rtw_alloc_xmitbuf(struct xmit_priv *pxmitpriv);
extern s32 rtw_free_xmitbuf(struct xmit_priv *pxmitpriv, struct xmit_buf *pxmitbuf);
#endif
void rtw_count_tx_stats(_adapter *padapter, struct xmit_frame *pxmitframe, int sz);
extern void rtw_update_protection(_adapter *padapter, u8 *ie, uint ie_len);
extern s32 rtw_make_wlanhdr(_adapter *padapter, u8 *hdr, struct pkt_attrib *pattrib);
extern s32 rtw_put_snap(u8 *data, u16 h_proto);
extern struct xmit_frame *rtw_alloc_xmitframe(struct xmit_priv *pxmitpriv, u16 os_qid);
struct xmit_frame *rtw_alloc_xmitframe_ext(struct xmit_priv *pxmitpriv);
struct xmit_frame *rtw_alloc_xmitframe_once(struct xmit_priv *pxmitpriv);
extern s32 rtw_free_xmitframe(struct xmit_priv *pxmitpriv, struct xmit_frame *pxmitframe);
extern void rtw_free_xmitframe_queue(struct xmit_priv *pxmitpriv, _queue *pframequeue);
s32 core_tx_free_xmitframe(_adapter *padapter, struct xmit_frame *pxframe);
struct tx_servq *rtw_get_sta_pending(_adapter *padapter, struct sta_info *psta, sint up, u8 *ac);
extern s32 rtw_xmitframe_enqueue(_adapter *padapter, struct xmit_frame *pxmitframe);
extern struct xmit_frame *rtw_dequeue_xframe(struct xmit_priv *pxmitpriv, struct hw_xmit *phwxmit_i, sint entry);
extern s32 rtw_xmit_classifier(_adapter *padapter, struct xmit_frame *pxmitframe);
extern u32 rtw_calculate_wlan_pkt_size_by_attribue(struct pkt_attrib *pattrib);
#define rtw_wlan_pkt_size(f) rtw_calculate_wlan_pkt_size_by_attribue(&f->attrib)
extern s32 rtw_xmitframe_coalesce(_adapter *padapter, struct sk_buff *pkt,
struct xmit_frame *pxmitframe);
#if defined(CONFIG_IEEE80211W) || defined(CONFIG_RTW_MESH)
extern s32 rtw_mgmt_xmitframe_coalesce(_adapter *padapter,
struct sk_buff *pkt, struct xmit_frame *pxmitframe);
#endif
#ifdef CONFIG_TDLS
extern struct tdls_txmgmt *ptxmgmt;
s32 rtw_xmit_tdls_coalesce(_adapter *padapter, struct xmit_frame *pxmitframe, struct tdls_txmgmt *ptxmgmt);
s32 update_tdls_attrib(_adapter *padapter, struct pkt_attrib *pattrib);
#endif
s32 _rtw_init_hw_txqueue(struct hw_txqueue *phw_txqueue, u8 ac_tag);
void _rtw_init_sta_xmit_priv(struct sta_xmit_priv *psta_xmitpriv);
s32 rtw_txframes_pending(_adapter *padapter);
s32 rtw_txframes_sta_ac_pending(_adapter *padapter, struct pkt_attrib *pattrib);
void rtw_init_hwxmits(struct hw_xmit *phwxmit, sint entry);
s32 _rtw_init_xmit_priv(struct xmit_priv *pxmitpriv, _adapter *padapter);
void _rtw_free_xmit_priv(struct xmit_priv *pxmitpriv);
u8 rtw_init_lite_xmit_resource(struct dvobj_priv *dvobj);
void rtw_free_lite_xmit_resource(struct dvobj_priv *dvobj);
void rtw_alloc_hwxmits(_adapter *padapter);
void rtw_free_hwxmits(_adapter *padapter);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24))
s32 rtw_monitor_xmit_entry(struct sk_buff *skb, struct net_device *ndev);
#endif
void rtw_xmit_dequeue_callback(_workitem *work);
void rtw_xmit_queue_set(struct sta_info *sta);
void rtw_xmit_queue_clear(struct sta_info *sta);
s32 rtw_xmit_posthandle(_adapter *padapter, struct xmit_frame *pxmitframe, struct sk_buff *pkt);
s32 rtw_xmit(_adapter *padapter, struct sk_buff **pkt, u16 os_qid);
bool xmitframe_hiq_filter(struct xmit_frame *xmitframe);
#if defined(CONFIG_AP_MODE) || defined(CONFIG_TDLS)
sint xmitframe_enqueue_for_sleeping_sta(_adapter *padapter, struct xmit_frame *pxmitframe);
void stop_sta_xmit(_adapter *padapter, struct sta_info *psta);
void wakeup_sta_to_xmit(_adapter *padapter, struct sta_info *psta);
void xmit_delivery_enabled_frames(_adapter *padapter, struct sta_info *psta);
#endif
#ifdef RTW_PHL_TX
s32 core_tx_prepare_phl(_adapter *padapter, struct xmit_frame *pxframe);
s32 core_tx_call_phl(_adapter *padapter, struct xmit_frame *pxframe, void *txsc_pkt);
s32 core_tx_per_packet(_adapter *padapter, struct xmit_frame *pxframe,
struct sk_buff **pskb, struct sta_info *psta);
s32 rtw_core_tx(_adapter *padapter, struct sk_buff **ppkt, struct sta_info *psta, u16 os_qid);
enum rtw_phl_status rtw_core_tx_recycle(void *drv_priv, struct rtw_xmit_req *txreq);
s32 core_tx_alloc_xmitframe(_adapter *padapter, struct xmit_frame **pxmitframe, u16 os_qid);
#ifdef CONFIG_CORE_TXSC
void core_recycle_txreq_phyaddr(_adapter *padapter, struct rtw_xmit_req *txreq);
s32 core_tx_free_xmitframe(_adapter *padapter, struct xmit_frame *pxframe);
u8 *get_txreq_buffer(_adapter *padapter, u8 **txreq, u8 **pkt_list, u8 **head, u8 **tail);
u8 tos_to_up(u8 tos);
#endif
#endif
void core_tx_amsdu_tasklet(_adapter *padapter);
u8 rtw_get_tx_bw_mode(_adapter *adapter, struct sta_info *sta);
void rtw_update_tx_rate_bmp(struct dvobj_priv *dvobj);
u8 rtw_get_tx_bw_bmp_of_ht_rate(struct dvobj_priv *dvobj, u8 rate, u8 max_bw);
u8 rtw_get_tx_bw_bmp_of_vht_rate(struct dvobj_priv *dvobj, u8 rate, u8 max_bw);
s16 rtw_rfctl_get_oper_txpwr_max_mbm(struct rf_ctl_t *rfctl, u8 ch, u8 bw, u8 offset, u8 ifbmp_mod, u8 if_op, bool eirp);
s16 rtw_rfctl_get_reg_max_txpwr_mbm(struct rf_ctl_t *rfctl, u8 ch, u8 bw, u8 offset, bool eirp);
u8 query_ra_short_GI(struct sta_info *psta, u8 bw);
u8 qos_acm(u8 acm_mask, u8 priority);
#if 0 /*def CONFIG_XMIT_THREAD_MODE*/
void enqueue_pending_xmitbuf(struct xmit_priv *pxmitpriv, struct xmit_buf *pxmitbuf);
void enqueue_pending_xmitbuf_to_head(struct xmit_priv *pxmitpriv, struct xmit_buf *pxmitbuf);
struct xmit_buf *dequeue_pending_xmitbuf(struct xmit_priv *pxmitpriv);
struct xmit_buf *select_and_dequeue_pending_xmitbuf(_adapter *padapter);
sint check_pending_xmitbuf(struct xmit_priv *pxmitpriv);
thread_return rtw_xmit_thread(thread_context context);
#endif
#ifdef CONFIG_TX_AMSDU
extern void rtw_amsdu_vo_timeout_handler(void *FunctionContext);
extern void rtw_amsdu_vi_timeout_handler(void *FunctionContext);
extern void rtw_amsdu_be_timeout_handler(void *FunctionContext);
extern void rtw_amsdu_bk_timeout_handler(void *FunctionContext);
extern u8 rtw_amsdu_get_timer_status(_adapter *padapter, u8 priority);
extern void rtw_amsdu_set_timer_status(_adapter *padapter, u8 priority, u8 status);
extern void rtw_amsdu_set_timer(_adapter *padapter, u8 priority);
extern void rtw_amsdu_cancel_timer(_adapter *padapter, u8 priority);
extern s32 rtw_xmitframe_coalesce_amsdu(_adapter *padapter, struct xmit_frame *pxmitframe, struct xmit_frame *pxmitframe_queue);
extern s32 check_amsdu(struct xmit_frame *pxmitframe);
extern s32 check_amsdu_tx_support(_adapter *padapter);
extern struct xmit_frame *rtw_get_xframe(struct xmit_priv *pxmitpriv, int *num_frame);
#endif
#ifdef DBG_TXBD_DESC_DUMP
void rtw_tx_desc_backup(_adapter *padapter, struct xmit_frame *pxmitframe, u8 desc_size, u8 hwq);
void rtw_tx_desc_backup_reset(void);
u8 rtw_get_tx_desc_backup(_adapter *padapter, u8 hwq, struct rtw_tx_desc_backup **pbak);
#endif
#ifdef CONFIG_PCI_TX_POLLING
void rtw_tx_poll_init(_adapter *padapter);
void rtw_tx_poll_timeout_handler(void *FunctionContext);
void rtw_tx_poll_timer_set(_adapter *padapter, u32 delay);
void rtw_tx_poll_timer_cancel(_adapter *padapter);
#endif
#ifdef CONFIG_XMIT_ACK
int rtw_ack_tx_wait(struct xmit_priv *pxmitpriv, u32 timeout_ms);
void rtw_ack_tx_done(struct xmit_priv *pxmitpriv, int status);
#endif /* CONFIG_XMIT_ACK */
enum XMIT_BLOCK_REASON {
XMIT_BLOCK_NONE = 0,
XMIT_BLOCK_REDLMEM = BIT0, /*LPS-PG*/
XMIT_BLOCK_SUSPEND = BIT1, /*WOW*/
XMIT_BLOCK_MAX = 0xFF,
};
void rtw_init_xmit_block(_adapter *padapter);
void rtw_deinit_xmit_block(_adapter *padapter);
#ifdef DBG_XMIT_BLOCK
void dump_xmit_block(void *sel, _adapter *padapter);
#endif
void rtw_set_xmit_block(_adapter *padapter, enum XMIT_BLOCK_REASON reason);
void rtw_clr_xmit_block(_adapter *padapter, enum XMIT_BLOCK_REASON reason);
bool rtw_is_xmit_blocked(_adapter *padapter);
#ifdef CONFIG_LAYER2_ROAMING
void dequeuq_roam_pkt(_adapter *padapter);
#endif
/* include after declaring struct xmit_buf, in order to avoid warning */
#include <xmit_osdep.h>
#endif /* _RTL871X_XMIT_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_xmit.h
|
C
|
agpl-3.0
| 29,856
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_XMIT_SHORTCUT_H_
#define _RTW_XMIT_SHORTCUT_H_
#ifdef CONFIG_CORE_TXSC
#ifndef USE_ONE_WLHDR
#define USE_PREV_WLHDR_BUF
#endif
#define CORE_TXSC_ENTRY_NUM 8
#define CORE_TXSC_WLHDR_SIZE (WLHDR_SIZE + SNAP_SIZE + 2 + _AES_IV_LEN_)
#define CORE_TXSC_DEBUG_BUF_SIZE (sizeof(struct rtw_xmit_req) + sizeof(struct rtw_pkt_buf_list)*2)
enum txsc_action_type {
TXSC_NONE,
TXSC_SKIP,
TXSC_ADD,
TXSC_APPLY,
TXSC_AMSDU_APPLY,
TXSC_DEBUG,
};
enum full_cnt_type {
PHL_WD_EMPTY,
PHL_BD_FULL,
PHL_WD_RECYCLE_NOTHING,
PHL_WD_RECYCLE_OK,
};
struct txsc_pkt_entry {
enum txsc_action_type step;
struct sta_info *psta;
struct rtw_xmit_req *ptxreq;
u8 txsc_id;
u8 priority;
struct sk_buff *xmit_skb[MAX_TXSC_SKB_NUM];
u8 skb_cnt;
};
struct txsc_entry {
u8 txsc_is_used;
u8 txsc_ethdr[ETH_HLEN];
/* wlhdr --- */
#ifdef USE_ONE_WLHDR
u8 *txsc_wlhdr;
#else
u8 txsc_wlhdr[CORE_TXSC_WLHDR_SIZE];
#endif
u8 txsc_wlhdr_len;
struct rtw_pkt_buf_list txsc_pkt_list0;
/* wlhdr --- */
struct rtw_t_meta_data txsc_mdata;
u32 txsc_frag_len;/* for pkt frag check */
u8 txsc_phl_id; /* CONFIG_PHL_TXSC */
u32 txsc_cache_hit;
};
void _print_txreq_mdata(struct rtw_t_meta_data *mdata, const char *func);
void _print_txreq_pklist(struct xmit_frame *pxframe, struct rtw_xmit_req *ptxsc_txreq, struct sk_buff *pskb, const char *func);
void txsc_init(_adapter *padapter);
void txsc_clear(_adapter *padapter);
void txsc_dump(_adapter *padapter);
void txsc_dump_data(u8 *buf, u16 buf_len, const char *prefix);
u8 txsc_get_sc_cached_entry(_adapter *padapter, struct sk_buff *pskb, struct txsc_pkt_entry *txsc_pkt);
void txsc_add_sc_cache_entry(_adapter *padapter, struct xmit_frame *pxframe, struct txsc_pkt_entry *txsc_pkt);
u8 txsc_apply_sc_cached_entry(_adapter *padapter, struct txsc_pkt_entry *txsc_pkt);
#ifdef CONFIG_PCI_HCI
void txsc_fill_txreq_phyaddr(_adapter *padapter, struct rtw_pkt_buf_list *pkt_list);
void txsc_recycle_txreq_phyaddr(_adapter *padapter, struct rtw_xmit_req *txreq);
#endif
void txsc_free_txreq(_adapter *padapter, struct rtw_xmit_req *txreq);
void txsc_debug_sc_entry(_adapter *padapter, struct xmit_frame *pxframe, struct txsc_pkt_entry *txsc_pkt);
void txsc_issue_addbareq_cmd(_adapter *padapter, u8 priority, struct sta_info *psta, u8 issue_when_busy);
#endif /* CONFIG_CORE_TXSC */
#endif /* _RTW_XMIT_SHORTCUT_H_ */
|
2301_81045437/rtl8852be
|
include/rtw_xmit_shortcut.h
|
C
|
agpl-3.0
| 3,022
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __SDIO_OPS_H__
#define __SDIO_OPS_H__
#ifdef PLATFORM_LINUX
#include <sdio_ops_linux.h>
#endif
void dump_sdio_card_info(void *sel, struct dvobj_priv *dvobj);
u32 rtw_sdio_init(struct dvobj_priv *dvobj);
void rtw_sdio_deinit(struct dvobj_priv *dvobj);
int rtw_sdio_alloc_irq(struct dvobj_priv *dvobj);
void rtw_sdio_free_irq(struct dvobj_priv *dvobj);
u8 rtw_sdio_get_num_of_func(struct dvobj_priv *dvobj);
/**
* rtw_sdio_get_block_size() - Get block size of SDIO transfer
* @d struct dvobj_priv*
*
* The unit of return value is byte.
*/
static inline u32 rtw_sdio_get_block_size(struct dvobj_priv *d)
{
return dvobj_to_sdio(d)->block_transfer_len;
}
#endif /* !__SDIO_OPS_H__ */
|
2301_81045437/rtl8852be
|
include/sdio_ops.h
|
C
|
agpl-3.0
| 1,356
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __SDIO_OPS_LINUX_H__
#define __SDIO_OPS_LINUX_H__
#define SDIO_ERR_VAL8 0xFF
#define SDIO_ERR_VAL16 0xFFFF
#define SDIO_ERR_VAL32 0xFFFFFFFF
bool rtw_is_sdio30(struct dvobj_priv *d);
u32 rtw_sdio_get_clock(struct dvobj_priv *d);
s32 _sd_read(struct dvobj_priv *d, u32 addr, u32 cnt, void *pdata);
s32 sd_read(struct dvobj_priv *d, u32 addr, u32 cnt, void *pdata);
s32 _sd_write(struct dvobj_priv *d, u32 addr, u32 cnt, void *pdata);
s32 sd_write(struct dvobj_priv *d, u32 addr, u32 cnt, void *pdata);
void rtw_sdio_set_irq_thd(struct dvobj_priv *d, _thread_hdl_ thd_hdl);
int __must_check rtw_sdio_raw_read(struct dvobj_priv *d, unsigned int addr,
void *buf, size_t len, bool fixed);
int __must_check rtw_sdio_raw_write(struct dvobj_priv *d, unsigned int addr,
void *buf, size_t len, bool fixed);
#endif /* __SDIO_OPS_LINUX_H__ */
|
2301_81045437/rtl8852be
|
include/sdio_ops_linux.h
|
C
|
agpl-3.0
| 1,511
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __STA_INFO_H_
#define __STA_INFO_H_
#ifdef CONFIG_CORE_TXSC
#include <rtw_xmit_shortcut.h>
#endif
#ifdef CONFIG_RTW_CORE_RXSC
#include <rtw_recv_shortcut.h>
#endif
#define IBSS_START_MAC_ID 2
#define NUM_STA MACID_NUM_SW_LIMIT
#ifndef CONFIG_RTW_MACADDR_ACL
#define CONFIG_RTW_MACADDR_ACL 1
#endif
#ifndef CONFIG_RTW_PRE_LINK_STA
#define CONFIG_RTW_PRE_LINK_STA 0
#endif
#define NUM_ACL 16
#define RTW_ACL_PERIOD_DEV 0
#define RTW_ACL_PERIOD_BSS 1
#define RTW_ACL_PERIOD_NUM 2
#define RTW_ACL_MODE_DISABLED 0
#define RTW_ACL_MODE_ACCEPT_UNLESS_LISTED 1
#define RTW_ACL_MODE_DENY_UNLESS_LISTED 2
#define RTW_ACL_MODE_MAX 3
#if CONFIG_RTW_MACADDR_ACL
extern const char *const _acl_period_str[RTW_ACL_PERIOD_NUM];
#define acl_period_str(mode) (((mode) >= RTW_ACL_PERIOD_NUM) ? "INVALID" : _acl_period_str[(mode)])
extern const char *const _acl_mode_str[RTW_ACL_MODE_MAX];
#define acl_mode_str(mode) (((mode) >= RTW_ACL_MODE_MAX) ? "INVALID" : _acl_mode_str[(mode)])
#endif
#ifndef RTW_PRE_LINK_STA_NUM
#define RTW_PRE_LINK_STA_NUM 8
#endif
struct pre_link_sta_node_t {
u8 valid;
u8 addr[ETH_ALEN];
};
struct pre_link_sta_ctl_t {
_lock lock;
u8 num;
struct pre_link_sta_node_t node[RTW_PRE_LINK_STA_NUM];
};
#ifdef CONFIG_TDLS
#define MAX_ALLOWED_TDLS_STA_NUM 4
#endif
enum sta_info_update_type {
STA_INFO_UPDATE_NONE = 0,
STA_INFO_UPDATE_BW = BIT(0),
STA_INFO_UPDATE_RATE = BIT(1),
STA_INFO_UPDATE_PROTECTION_MODE = BIT(2),
STA_INFO_UPDATE_CAP = BIT(3),
STA_INFO_UPDATE_HT_CAP = BIT(4),
STA_INFO_UPDATE_VHT_CAP = BIT(5),
STA_INFO_UPDATE_ALL = STA_INFO_UPDATE_BW
| STA_INFO_UPDATE_RATE
| STA_INFO_UPDATE_PROTECTION_MODE
| STA_INFO_UPDATE_CAP
| STA_INFO_UPDATE_HT_CAP
| STA_INFO_UPDATE_VHT_CAP,
STA_INFO_UPDATE_MAX
};
struct rtw_wlan_acl_node {
_list list;
u8 addr[ETH_ALEN];
u8 valid;
};
struct wlan_acl_pool {
int mode;
int num;
struct rtw_wlan_acl_node aclnode[NUM_ACL];
_queue acl_node_q;
};
struct stainfo_stats {
systime last_rx_time;
u64 rx_mgnt_pkts;
u64 rx_beacon_pkts;
u64 rx_probereq_pkts;
u64 rx_probersp_pkts; /* unicast to self */
u64 rx_probersp_bm_pkts;
u64 rx_probersp_uo_pkts; /* unicast to others */
u64 rx_ctrl_pkts;
u64 rx_data_pkts;
u64 rx_data_bc_pkts;
u64 rx_data_mc_pkts;
u64 rx_data_qos_pkts[TID_NUM]; /* unicast only */
u64 last_rx_mgnt_pkts;
u64 last_rx_beacon_pkts;
u64 last_rx_probereq_pkts;
u64 last_rx_probersp_pkts; /* unicast to self */
u64 last_rx_probersp_bm_pkts;
u64 last_rx_probersp_uo_pkts; /* unicast to others */
u64 last_rx_ctrl_pkts;
u64 last_rx_data_pkts;
u64 last_rx_data_bc_pkts;
u64 last_rx_data_mc_pkts;
u64 last_rx_data_qos_pkts[TID_NUM]; /* unicast only */
#ifdef CONFIG_TDLS
u64 rx_tdls_disc_rsp_pkts;
u64 last_rx_tdls_disc_rsp_pkts;
#endif
u64 rx_bytes;
u64 rx_bc_bytes;
u64 rx_mc_bytes;
u64 last_rx_bytes;
u64 last_rx_bc_bytes;
u64 last_rx_mc_bytes;
u64 rx_drops; /* TBD */
u32 rx_tp_kbits;
u32 smooth_rx_tp_kbits;
u64 tx_pkts;
u64 last_tx_pkts;
u64 tx_bytes;
u64 last_tx_bytes;
u64 tx_drops; /* TBD */
u32 tx_tp_kbits;
u32 smooth_tx_tp_kbits;
#ifdef CONFIG_LPS_CHK_BY_TP
u64 acc_tx_bytes;
u64 acc_rx_bytes;
#endif
/* unicast only */
u64 last_rx_data_uc_pkts; /* For Read & Clear requirement in proc_get_rx_stat() */
u32 duplicate_cnt; /* Read & Clear, in proc_get_rx_stat() */
u32 rxratecnt[128]; /* Read & Clear, in proc_get_rx_stat() */
u32 tx_ok_cnt; /* Read & Clear, in proc_get_tx_stat() */
u32 tx_fail_cnt; /* Read & Clear, in proc_get_tx_stat() */
u32 tx_retry_cnt; /* Read & Clear, in proc_get_tx_stat() */
#ifdef ROKU_PRIVATE
u64 total_tx_retry_cnt;
u32 rx_retry_cnt;
#endif /* ROKU_PRIVATE */
#ifdef CONFIG_RTW_MESH
u32 rx_hwmp_pkts;
u32 last_rx_hwmp_pkts;
#endif
};
#ifndef DBG_SESSION_TRACKER
#define DBG_SESSION_TRACKER 0
#endif
/* session tracker status */
#define ST_STATUS_NONE 0
#define ST_STATUS_CHECK BIT0
#define ST_STATUS_ESTABLISH BIT1
#define ST_STATUS_EXPIRE BIT2
#define ST_EXPIRE_MS (10 * 1000)
struct session_tracker {
_list list; /* session_tracker_queue */
u32 local_naddr;
u16 local_port;
u32 remote_naddr;
u16 remote_port;
systime set_time;
u8 status;
};
/* session tracker cmd */
#define ST_CMD_ADD 0
#define ST_CMD_DEL 1
#define ST_CMD_CHK 2
struct st_cmd_parm {
u8 cmd;
struct sta_info *sta;
u32 local_naddr; /* TODO: IPV6 */
u16 local_port;
u32 remote_naddr; /* TODO: IPV6 */
u16 remote_port;
};
typedef bool (*st_match_rule)(_adapter *adapter, u8 *local_naddr, u8 *local_port, u8 *remote_naddr, u8 *remote_port);
struct st_register {
u8 s_proto;
st_match_rule rule;
};
#define SESSION_TRACKER_REG_ID_WFD 0
#define SESSION_TRACKER_REG_ID_NUM 1
struct st_ctl_t {
struct st_register reg[SESSION_TRACKER_REG_ID_NUM];
_queue tracker_q;
};
void rtw_st_ctl_init(struct st_ctl_t *st_ctl);
void rtw_st_ctl_deinit(struct st_ctl_t *st_ctl);
void rtw_st_ctl_register(struct st_ctl_t *st_ctl, u8 st_reg_id, struct st_register *reg);
void rtw_st_ctl_unregister(struct st_ctl_t *st_ctl, u8 st_reg_id);
bool rtw_st_ctl_chk_reg_s_proto(struct st_ctl_t *st_ctl, u8 s_proto);
bool rtw_st_ctl_chk_reg_rule(struct st_ctl_t *st_ctl, _adapter *adapter, u8 *local_naddr, u8 *local_port, u8 *remote_naddr, u8 *remote_port);
void rtw_st_ctl_rx(struct sta_info *sta, u8 *ehdr_pos);
void dump_st_ctl(void *sel, struct st_ctl_t *st_ctl);
#ifdef CONFIG_TDLS
struct TDLS_PeerKey {
u8 kck[16]; /* TPK-KCK */
u8 tk[16]; /* TPK-TK; only CCMP will be used */
} ;
#endif /* CONFIG_TDLS */
#ifdef DBG_RX_DFRAME_RAW_DATA
struct sta_recv_dframe_info {
u8 sta_data_rate;
u8 sta_sgi;
u8 sta_bw_mode;
s8 sta_mimo_signal_strength[4];
s8 sta_RxPwr[4];
u8 sta_ofdm_snr[4];
};
#endif
#ifdef CONFIG_RTW_MESH
struct mesh_plink_ent;
struct rtw_ewma_err_rate {
unsigned long internal;
};
/* Mesh airtime link metrics parameters */
struct rtw_atlm_param {
struct rtw_ewma_err_rate err_rate; /* Now is PACKET error rate */
u16 data_rate; /* The unit is 100Kbps */
u16 total_pkt;
u16 overhead; /* Channel access overhead */
};
#endif
struct sta_info {
_lock lock;
_list list; /* free_sta_queue */
_list hash_list; /* sta_hash */
/* _list asoc_list; */ /* 20061114 */
/* _list sleep_list; */ /* sleep_q */
/* _list wakeup_list; */ /* wakeup_q */
_adapter *padapter;
struct rtw_phl_stainfo_t *phl_sta;
/* move to phl station info */
/* struct cmn_sta_info cmn; */
struct sta_xmit_priv sta_xmitpriv;
struct sta_recv_priv sta_recvpriv;
#ifdef DBG_RX_DFRAME_RAW_DATA
struct sta_recv_dframe_info sta_dframe_info;
struct sta_recv_dframe_info sta_dframe_info_bmc;
#endif
_queue sleep_q;
unsigned int sleepq_len;
uint state;
uint qos_option;
u16 hwseq;
#ifdef CONFIG_RTW_80211K
u8 rm_en_cap[5];
u8 rm_diag_token;
#endif /* CONFIG_RTW_80211K */
systime resp_nonenc_eapol_key_starttime;
uint ieee8021x_blocked; /* 0: allowed, 1:blocked */
uint dot118021XPrivacy; /* aes, tkip... */
union Keytype dot11tkiptxmickey;
union Keytype dot11tkiprxmickey;
union Keytype dot118021x_UncstKey;
union pn48 dot11txpn; /* PN48 used for Unicast xmit */
union pn48 dot11rxpn; /* PN48 used for Unicast recv. */
s8 hw_decrypted; /* STA HW security is ready or not */
#ifdef RTW_PHL_TX
u8 iv_len;
u8 icv_len;
u8 iv[18];
u8 icv[16];
#endif
#ifdef CONFIG_RTW_CORE_RXSC
u32 rxsc_idx_new;
u32 rxsc_idx_cached;
struct core_rxsc_entry rxsc_entry[NUM_RXSC_ENTRY];
#endif
ATOMIC_T keytrack;
#ifdef CONFIG_RTW_MESH
/* peer's GTK, RX only */
u8 group_privacy;
u8 gtk_bmp;
union Keytype gtk;
union pn48 gtk_pn;
#ifdef CONFIG_IEEE80211W
/* peer's IGTK, RX only */
enum security_type dot11wCipher;
u8 igtk_bmp;
u8 igtk_id;
union Keytype igtk;
union pn48 igtk_pn;
#endif /* CONFIG_IEEE80211W */
#endif /* CONFIG_RTW_MESH */
#ifdef CONFIG_GTK_OL
u8 kek[RTW_KEK_LEN];
u8 kck[RTW_KCK_LEN];
u8 replay_ctr[RTW_REPLAY_CTR_LEN];
#endif /* CONFIG_GTK_OL */
#ifdef CONFIG_IEEE80211W
_timer dot11w_expire_timer;
#endif /* CONFIG_IEEE80211W */
u8 bssrateset[16];
u32 bssratelen;
u8 cts2self;
u8 rtsen;
u8 hw_rts_en;
u8 init_rate;
struct stainfo_stats sta_stats;
#ifdef CONFIG_TDLS
u32 tdls_sta_state;
u8 SNonce[32];
u8 ANonce[32];
u32 TDLS_PeerKey_Lifetime;
u32 TPK_count;
_timer TPK_timer;
struct TDLS_PeerKey tpk;
#ifdef CONFIG_TDLS_CH_SW
u16 ch_switch_time;
u16 ch_switch_timeout;
/* u8 option; */
_timer ch_sw_timer;
_timer delay_timer;
_timer stay_on_base_chnl_timer;
_timer ch_sw_monitor_timer;
#endif
_timer handshake_timer;
u8 alive_count;
_timer pti_timer;
u8 TDLS_RSNIE[20]; /* Save peer's RSNIE, used for sending TDLS_SETUP_RSP */
#endif /* CONFIG_TDLS */
/* for A-MPDU TX, ADDBA timeout check */
_timer addba_retry_timer;
/* for A-MPDU Rx reordering buffer control */
struct recv_reorder_ctrl recvreorder_ctrl[TID_NUM];
ATOMIC_T continual_no_rx_packet[TID_NUM];
/* for A-MPDU Tx */
/* unsigned char ampdu_txen_bitmap; */
u16 BA_starting_seqctrl[16];
#ifdef CONFIG_80211N_HT
struct ht_priv htpriv;
#endif
#ifdef CONFIG_80211AC_VHT
struct vht_priv vhtpriv;
#endif
#ifdef CONFIG_80211AX_HE
struct he_priv hepriv;
#endif
#ifdef CONFIG_RTW_MBO
struct mbo_priv mbopriv;
#endif /* CONFIG_RTW_MBO */
/* Notes: */
/* STA_Mode: */
/* curr_network(mlme_priv/security_priv/qos/ht) + sta_info: (STA & AP) CAP/INFO */
/* scan_q: AP CAP/INFO */
/* AP_Mode: */
/* curr_network(mlme_priv/security_priv/qos/ht) : AP CAP/INFO */
/* sta_info: (AP & STA) CAP/INFO */
unsigned int expire_to;
#ifdef CONFIG_AP_MODE
_list asoc_list;
_list auth_list;
unsigned int auth_seq;
unsigned int authalg;
unsigned char chg_txt[128];
u16 capability;
int flags;
int dot8021xalg;/* 0:disable, 1:psk, 2:802.1x */
int wpa_psk;/* 0:disable, bit(0): WPA, bit(1):WPA2 */
int wpa_group_cipher;
int wpa2_group_cipher;
int wpa_pairwise_cipher;
int wpa2_pairwise_cipher;
u32 akm_suite_type;
u8 bpairwise_key_installed;
#ifdef CONFIG_RTW_80211R
struct rtw_sta_ft_info_t ft_peer;
u8 ft_pairwise_key_installed;
#endif
#ifdef CONFIG_NATIVEAP_MLME
u8 wpa_ie[32];
u8 nonerp_set;
u8 no_short_slot_time_set;
u8 no_short_preamble_set;
u8 no_ht_gf_set;
u8 no_ht_set;
u8 ht_20mhz_set;
u8 ht_40mhz_intolerant;
#endif /* CONFIG_NATIVEAP_MLME */
#ifdef CONFIG_ATMEL_RC_PATCH
u8 flag_atmel_rc;
#endif
u8 qos_info;
u8 max_sp_len;
u8 uapsd_bk;/* BIT(0): Delivery enabled, BIT(1): Trigger enabled */
u8 uapsd_be;
u8 uapsd_vi;
u8 uapsd_vo;
u8 has_legacy_ac;
unsigned int sleepq_ac_len;
#ifdef CONFIG_P2P
/* p2p priv data */
u8 is_p2p_device;
u8 p2p_status_code;
/* p2p client info */
u8 dev_addr[ETH_ALEN];
/* u8 iface_addr[ETH_ALEN]; */ /* = hwaddr[ETH_ALEN] */
u8 dev_cap;
u16 config_methods;
u8 primary_dev_type[8];
u8 num_of_secdev_type;
u8 secdev_types_list[32];/* 32/8 == 4; */
u16 dev_name_len;
u8 dev_name[32];
#endif /* CONFIG_P2P */
#ifdef CONFIG_WFD
u8 op_wfd_mode;
#endif
#if !defined(CONFIG_ACTIVE_KEEP_ALIVE_CHECK) && defined(CONFIG_80211N_HT)
u8 under_exist_checking;
#endif
u8 keep_alive_trycnt;
#ifdef CONFIG_AUTO_AP_MODE
u8 isrc; /* this device is rc */
u16 pid; /* pairing id */
#endif
#endif /* CONFIG_AP_MODE */
#ifdef CONFIG_RTW_MESH
struct mesh_plink_ent *plink;
u8 local_mps;
u8 peer_mps;
u8 nonpeer_mps;
struct rtw_atlm_param metrics;
/* The reference for nexthop_lookup */
BOOLEAN alive;
#endif
#ifdef CONFIG_IOCTL_CFG80211
u8 *pauth_frame;
u32 auth_len;
u8 *passoc_req;
u32 assoc_req_len;
#endif
u8 IOTPeer; /* Enum value. HT_IOT_PEER_E */
#ifdef CONFIG_LPS_PG
u8 lps_pg_rssi_lv;
#endif
/* To store the sequence number of received management frame */
u16 RxMgmtFrameSeqNum;
struct st_ctl_t st_ctl;
u8 max_agg_num_minimal_record; /*keep minimal tx desc max_agg_num setting*/
u8 curr_rx_rate;
u8 curr_rx_rate_bmc;
#ifdef CONFIG_RTS_FULL_BW
bool vendor_8812;
#endif
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
u8 tbtx_enable; /* Does this sta_info support & enable TBTX function? */
// u8 tbtx_timeslot; /* This sta_info belong to which time slot. */
#endif
/*
* Vaiables for queuing TX pkt a short period of time
* to wait something ready.
*/
u8 tx_q_enable;
struct __queue tx_queue;
_workitem tx_q_work;
#ifdef CONFIG_CORE_TXSC
u32 txsc_cache_hit;
u32 txsc_cache_miss;
u32 txsc_path_slow;
u32 txsc_path_ps;
u8 txsc_cur_idx; /* next entry to add */
u8 txsc_cache_idx; /* latest cache idx */
u8 txsc_cache_num; /* num of txsc entry */
struct txsc_entry txsc_entry_cache[CORE_TXSC_ENTRY_NUM];
u8 debug_buf[CORE_TXSC_DEBUG_BUF_SIZE];
#endif /* CONFIG_CORE_TXSC */
};
#ifdef CONFIG_RTW_MESH
#define STA_SET_MESH_PLINK(sta, link) (sta)->plink = link
#else
#define STA_SET_MESH_PLINK(sta, link) do {} while (0)
#endif
#define sta_tx_pkts(sta) \
(sta->sta_stats.tx_pkts)
#define sta_last_tx_pkts(sta) \
(sta->sta_stats.last_tx_pkts)
#define sta_rx_pkts(sta) \
(sta->sta_stats.rx_mgnt_pkts \
+ sta->sta_stats.rx_ctrl_pkts \
+ sta->sta_stats.rx_data_pkts)
#define sta_last_rx_pkts(sta) \
(sta->sta_stats.last_rx_mgnt_pkts \
+ sta->sta_stats.last_rx_ctrl_pkts \
+ sta->sta_stats.last_rx_data_pkts)
#define sta_rx_data_pkts(sta) (sta->sta_stats.rx_data_pkts)
#define sta_last_rx_data_pkts(sta) (sta->sta_stats.last_rx_data_pkts)
#define sta_rx_data_uc_pkts(sta) (sta->sta_stats.rx_data_pkts - sta->sta_stats.rx_data_bc_pkts - sta->sta_stats.rx_data_mc_pkts)
#define sta_last_rx_data_uc_pkts(sta) (sta->sta_stats.last_rx_data_pkts - sta->sta_stats.last_rx_data_bc_pkts - sta->sta_stats.last_rx_data_mc_pkts)
#define sta_rx_data_qos_pkts(sta, i) \
(sta->sta_stats.rx_data_qos_pkts[i])
#define sta_last_rx_data_qos_pkts(sta, i) \
(sta->sta_stats.last_rx_data_qos_pkts[i])
#define sta_rx_mgnt_pkts(sta) \
(sta->sta_stats.rx_mgnt_pkts)
#define sta_last_rx_mgnt_pkts(sta) \
(sta->sta_stats.last_rx_mgnt_pkts)
#define sta_rx_beacon_pkts(sta) \
(sta->sta_stats.rx_beacon_pkts)
#define sta_last_rx_beacon_pkts(sta) \
(sta->sta_stats.last_rx_beacon_pkts)
#define sta_rx_probereq_pkts(sta) \
(sta->sta_stats.rx_probereq_pkts)
#define sta_last_rx_probereq_pkts(sta) \
(sta->sta_stats.last_rx_probereq_pkts)
#define sta_rx_probersp_pkts(sta) \
(sta->sta_stats.rx_probersp_pkts)
#define sta_last_rx_probersp_pkts(sta) \
(sta->sta_stats.last_rx_probersp_pkts)
#define sta_rx_probersp_bm_pkts(sta) \
(sta->sta_stats.rx_probersp_bm_pkts)
#define sta_last_rx_probersp_bm_pkts(sta) \
(sta->sta_stats.last_rx_probersp_bm_pkts)
#define sta_rx_probersp_uo_pkts(sta) \
(sta->sta_stats.rx_probersp_uo_pkts)
#define sta_last_rx_probersp_uo_pkts(sta) \
(sta->sta_stats.last_rx_probersp_uo_pkts)
#ifdef CONFIG_RTW_MESH
#define update_last_rx_hwmp_pkts(sta) \
do { \
sta->sta_stats.last_rx_hwmp_pkts = sta->sta_stats.rx_hwmp_pkts; \
} while(0)
#else
#define update_last_rx_hwmp_pkts(sta) do {} while(0)
#endif
#define sta_update_last_rx_pkts(sta) \
do { \
int __i; \
\
sta->sta_stats.last_rx_mgnt_pkts = sta->sta_stats.rx_mgnt_pkts; \
sta->sta_stats.last_rx_beacon_pkts = sta->sta_stats.rx_beacon_pkts; \
sta->sta_stats.last_rx_probereq_pkts = sta->sta_stats.rx_probereq_pkts; \
sta->sta_stats.last_rx_probersp_pkts = sta->sta_stats.rx_probersp_pkts; \
sta->sta_stats.last_rx_probersp_bm_pkts = sta->sta_stats.rx_probersp_bm_pkts; \
sta->sta_stats.last_rx_probersp_uo_pkts = sta->sta_stats.rx_probersp_uo_pkts; \
sta->sta_stats.last_rx_ctrl_pkts = sta->sta_stats.rx_ctrl_pkts; \
update_last_rx_hwmp_pkts(sta); \
\
sta->sta_stats.last_rx_data_pkts = sta->sta_stats.rx_data_pkts; \
sta->sta_stats.last_rx_data_bc_pkts = sta->sta_stats.rx_data_bc_pkts; \
sta->sta_stats.last_rx_data_mc_pkts = sta->sta_stats.rx_data_mc_pkts; \
for (__i = 0; __i < TID_NUM; __i++) \
sta->sta_stats.last_rx_data_qos_pkts[__i] = sta->sta_stats.rx_data_qos_pkts[__i]; \
} while (0)
#define STA_RX_PKTS_ARG(sta) \
sta->sta_stats.rx_mgnt_pkts \
, sta->sta_stats.rx_ctrl_pkts \
, sta->sta_stats.rx_data_pkts
#define STA_LAST_RX_PKTS_ARG(sta) \
sta->sta_stats.last_rx_mgnt_pkts \
, sta->sta_stats.last_rx_ctrl_pkts \
, sta->sta_stats.last_rx_data_pkts
#define STA_RX_PKTS_DIFF_ARG(sta) \
sta->sta_stats.rx_mgnt_pkts - sta->sta_stats.last_rx_mgnt_pkts \
, sta->sta_stats.rx_ctrl_pkts - sta->sta_stats.last_rx_ctrl_pkts \
, sta->sta_stats.rx_data_pkts - sta->sta_stats.last_rx_data_pkts
#define STA_PKTS_FMT "(m:%llu, c:%llu, d:%llu)"
#define sta_rx_uc_bytes(sta) (sta->sta_stats.rx_bytes - sta->sta_stats.rx_bc_bytes - sta->sta_stats.rx_mc_bytes)
#define sta_last_rx_uc_bytes(sta) (sta->sta_stats.last_rx_bytes - sta->sta_stats.last_rx_bc_bytes - sta->sta_stats.last_rx_mc_bytes)
#ifdef CONFIG_WFD
#define STA_OP_WFD_MODE(sta) (sta)->op_wfd_mode
#define STA_SET_OP_WFD_MODE(sta, mode) (sta)->op_wfd_mode = (mode)
#else
#define STA_OP_WFD_MODE(sta) 0
#define STA_SET_OP_WFD_MODE(sta, mode) do {} while (0)
#endif
#define AID_BMP_LEN(max_aid) ((max_aid + 1) / 8 + (((max_aid + 1) % 8) ? 1 : 0))
struct sta_priv {
u8 *pallocated_stainfo_buf;
u8 *pstainfo_buf;
_queue free_sta_queue;
_lock sta_hash_lock;
_list sta_hash[NUM_STA];
int asoc_sta_count;
_queue sleep_q;
_queue wakeup_q;
_adapter *padapter;
u32 adhoc_expire_to;
int rx_chk_limit;
#ifdef CONFIG_AP_MODE
_list asoc_list;
_list auth_list;
_lock asoc_list_lock;
_lock auth_list_lock;
u8 asoc_list_cnt;
u8 auth_list_cnt;
unsigned int auth_to; /* sec, time to expire in authenticating. */
unsigned int assoc_to; /* sec, time to expire before associating. */
unsigned int expire_to; /* sec , time to expire after associated. */
/*
* pointers to STA info; based on allocated AID or NULL if AID free
* AID is in the range 1-2007, so sta_aid[0] corresponders to AID 1
*/
struct sta_info **sta_aid;
u16 max_aid;
u16 started_aid; /* started AID for allocation search */
bool rr_aid; /* round robin AID allocation, will modify started_aid */
u8 aid_bmp_len; /* in byte */
u8 *sta_dz_bitmap;
u8 *tim_bitmap;
u16 max_num_sta;
#if CONFIG_RTW_MACADDR_ACL
struct wlan_acl_pool acl_list[RTW_ACL_PERIOD_NUM];
#endif
#if CONFIG_RTW_PRE_LINK_STA
struct pre_link_sta_ctl_t pre_link_sta_ctl;
#endif
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
u8 tbtx_asoc_list_cnt;
struct sta_info *token_holder[NR_MAXSTA_INSLOT];
struct sta_info *last_token_holder;
ATOMIC_T nr_token_keeper;
#endif
#endif /* CONFIG_AP_MODE */
#ifdef CONFIG_ATMEL_RC_PATCH
u8 atmel_rc_pattern[6];
#endif
u8 c2h_sta_mac[ETH_ALEN];
u8 c2h_adapter_id;
struct submit_ctx *gotc2h;
};
__inline static u32 wifi_mac_hash(const u8 *mac)
{
u32 x;
x = mac[0];
x = (x << 2) ^ mac[1];
x = (x << 2) ^ mac[2];
x = (x << 2) ^ mac[3];
x = (x << 2) ^ mac[4];
x = (x << 2) ^ mac[5];
x ^= x >> 8;
x = x & (NUM_STA - 1);
return x;
}
extern u32 _rtw_init_sta_priv(struct sta_priv *pstapriv);
extern u32 _rtw_free_sta_priv(struct sta_priv *pstapriv);
#define stainfo_offset_valid(offset) (offset < NUM_STA && offset >= 0)
int rtw_stainfo_offset(struct sta_priv *stapriv, struct sta_info *sta);
struct sta_info *rtw_get_stainfo_by_offset(struct sta_priv *stapriv, int offset);
extern struct sta_info *rtw_alloc_stainfo(struct sta_priv *pstapriv, const u8 *hwaddr);
extern struct sta_info *rtw_alloc_stainfo_sw(struct sta_priv *stapriv, const u8 *hwaddr);
extern u32 rtw_alloc_stainfo_hw(struct sta_priv *stapriv, struct sta_info *psta);
extern u32 rtw_free_stainfo(_adapter *padapter , struct sta_info *psta);
u32 rtw_free_stainfo_sw(_adapter *padapter, struct sta_info *psta);
extern void rtw_free_all_stainfo(_adapter *padapter);
extern struct sta_info *rtw_get_stainfo(struct sta_priv *pstapriv, const u8 *hwaddr);
extern struct sta_info *rtw_get_bcmc_stainfo(_adapter *padapter);
u32 rtw_free_self_stainfo(_adapter *adapter);
u32 rtw_init_self_stainfo(_adapter *adapter);
#ifdef CONFIG_AP_MODE
u16 rtw_aid_alloc(_adapter *adapter, struct sta_info *sta);
void dump_aid_status(void *sel, _adapter *adapter);
#endif
#if CONFIG_RTW_MACADDR_ACL
extern u8 rtw_access_ctrl(_adapter *adapter, const u8 *mac_addr);
void dump_macaddr_acl(void *sel, _adapter *adapter);
#endif
#if CONFIG_RTW_PRE_LINK_STA
bool rtw_is_pre_link_sta(struct sta_priv *stapriv, u8 *addr);
struct sta_info *rtw_pre_link_sta_add(struct sta_priv *stapriv, u8 *hwaddr);
void rtw_pre_link_sta_del(struct sta_priv *stapriv, u8 *hwaddr);
void rtw_pre_link_sta_ctl_reset(struct sta_priv *stapriv);
void rtw_pre_link_sta_ctl_init(struct sta_priv *stapriv);
void rtw_pre_link_sta_ctl_deinit(struct sta_priv *stapriv);
void dump_pre_link_sta_ctl(void *sel, struct sta_priv *stapriv);
#endif /* CONFIG_RTW_PRE_LINK_STA */
#endif /* _STA_INFO_H_ */
|
2301_81045437/rtl8852be
|
include/sta_info.h
|
C
|
agpl-3.0
| 21,301
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __USB_OPS_H_
#define __USB_OPS_H_
#define REALTEK_USB_VENQT_READ 0xC0
#define REALTEK_USB_VENQT_WRITE 0x40
#define REALTEK_USB_VENQT_CMD_REQ 0x05
#define REALTEK_USB_VENQT_CMD_IDX 0x00
#define REALTEK_USB_BULK_IN_EP_IDX 0
#define REALTEK_USB_IN_INT_EP_IDX 1
enum {
VENDOR_WRITE = 0x00,
VENDOR_READ = 0x01,
};
#define ALIGNMENT_UNIT 16
#define MAX_VENDOR_REQ_CMD_SIZE 254 /* 8188cu SIE Support */
#define MAX_USB_IO_CTL_SIZE (MAX_VENDOR_REQ_CMD_SIZE + ALIGNMENT_UNIT)
#ifdef PLATFORM_LINUX
#include <usb_ops_linux.h>
#endif /* PLATFORM_LINUX */
#define IS_FULL_SPEED_USB(_dvobj) (dvobj_to_usb(_dvobj)->usb_speed == RTW_USB_SPEED_FULL)
#define IS_HIGH_SPEED_USB(_dvobj) (dvobj_to_usb(_dvobj)->usb_speed == RTW_USB_SPEED_HIGH)
#define IS_SUPER_SPEED_USB(_dvobj) (dvobj_to_usb(_dvobj)->usb_speed == RTW_USB_SPEED_SUPER)
#define IS_SUPER_PLUS_SPEED_USB(_dvobj) (dvobj_to_usb(_dvobj)->usb_speed == RTW_USB_SPEED_SUPER_10G)
static inline u16 rtw_usb_bulkout_size(struct dvobj_priv *dvobj)
{
if (IS_SUPER_SPEED_USB(dvobj))
return USB_SUPER_SPEED_BULK_SIZE;
else if (IS_HIGH_SPEED_USB(dvobj))
return USB_HIGH_SPEED_BULK_SIZE;
else
return USB_FULL_SPEED_BULK_SIZE;
}
static inline u8 rtw_usb_bulkout_size_boundary(struct dvobj_priv *dvobj, int buf_len)
{
u8 rst = _TRUE;
if (IS_SUPER_SPEED_USB(dvobj))
rst = (0 == (buf_len) % USB_SUPER_SPEED_BULK_SIZE) ? _TRUE : _FALSE;
else if (IS_HIGH_SPEED_USB(dvobj))
rst = (0 == (buf_len) % USB_HIGH_SPEED_BULK_SIZE) ? _TRUE : _FALSE;
else
rst = (0 == (buf_len) % USB_FULL_SPEED_BULK_SIZE) ? _TRUE : _FALSE;
return rst;
}
#endif /* __USB_OPS_H_ */
|
2301_81045437/rtl8852be
|
include/usb_ops.h
|
C
|
agpl-3.0
| 2,279
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __USB_OPS_LINUX_H__
#define __USB_OPS_LINUX_H__
#define RTW_USB_CONTROL_MSG_TIMEOUT_TEST 10/* ms */
#define RTW_USB_CONTROL_MSG_TIMEOUT 500/* ms */
#define RECV_BULK_IN_ADDR 0x80/* assign by drv, not real address */
#define RECV_INT_IN_ADDR 0x81/* assign by drv, not real address */
#define INTERRUPT_MSG_FORMAT_LEN 60
#if defined(CONFIG_VENDOR_REQ_RETRY) && defined(CONFIG_USB_VENDOR_REQ_MUTEX)
/* vendor req retry should be in the situation when each vendor req is atomically submitted from others */
#define MAX_USBCTRL_VENDORREQ_TIMES 10
#else
#define MAX_USBCTRL_VENDORREQ_TIMES 1
#endif
#define RTW_USB_BULKOUT_TIMEOUT 5000/* ms */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 12))
#define rtw_usb_control_msg(dev, pipe, request, requesttype, value, index, data, size, timeout_ms) \
usb_control_msg((dev), (pipe), (request), (requesttype), (value), (index), (data), (size), (timeout_ms))
#define rtw_usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout_ms) \
usb_bulk_msg((usb_dev), (pipe), (data), (len), (actual_length), (timeout_ms))
#else
#define rtw_usb_control_msg(dev, pipe, request, requesttype, value, index, data, size, timeout_ms) \
usb_control_msg((dev), (pipe), (request), (requesttype), (value), (index), (data), (size), \
((timeout_ms) == 0) || ((timeout_ms) * HZ / 1000 > 0) ? ((timeout_ms) * HZ / 1000) : 1)
#define rtw_usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout_ms) \
usb_bulk_msg((usb_dev), (pipe), (data), (len), (actual_length), \
((timeout_ms) == 0) || ((timeout_ms) * HZ / 1000 > 0) ? ((timeout_ms) * HZ / 1000) : 1)
#endif
int rtw_os_urb_resource_alloc(struct data_urb *dataurb);
void rtw_os_urb_resource_free(struct data_urb *dataurb);
int usbctrl_vendorreq(struct dvobj_priv *pdvobjpriv, u8 request, u16 value, u16 index,
void *pdata, u16 len, u8 requesttype);
u32 rtw_usb_write_port(void *d, u8 *phl_tx_buf_ptr,
u8 bulk_id, u32 len, u8 *pkt_data_buf);
void rtw_usb_write_port_cancel(void *d);
u32 rtw_usb_read_port(void *d, void *rxobj,
u8 *inbuf, u32 inbuf_len, u8 bulk_id, u8 minlen);
void rtw_usb_read_port_cancel(void *d);
#endif
|
2301_81045437/rtl8852be
|
include/usb_ops_linux.h
|
C
|
agpl-3.0
| 2,796
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _WIFI_H_
#define _WIFI_H_
#ifndef BIT
#define BIT(x) (1 << (x))
#endif
#ifndef BIT_ULL
#define BIT_ULL(x) (1ULL << (x))
#endif
#define WLAN_ETHHDR_LEN 14
#define WLAN_ETHADDR_LEN 6
#define WLAN_IEEE_OUI_LEN 3
#define WLAN_ADDR_LEN 6
#define WLAN_CRC_LEN 4
#define WLAN_BSSID_LEN 6
#define WLAN_BSS_TS_LEN 8
#define WLAN_HDR_A3_LEN 24
#define WLAN_HDR_A4_LEN 30
#define WLAN_HDR_A3_QOS_LEN 26
#define WLAN_HDR_A3_HTC_LEN 28
#define WLAN_HDR_A3_QOS_HTC_LEN 30
#define WLAN_HDR_A4_HTC_LEN 34
#define WLAN_HDR_A4_QOS_HTC_LEN 36
#define WLAN_HDR_A4_QOS_LEN 32
#define WLAN_SSID_MAXLEN 32
#define WLAN_DATA_MAXLEN 2312
#define WLAN_A3_PN_OFFSET 24
#define WLAN_A4_PN_OFFSET 30
#define WLAN_MIN_ETHFRM_LEN 60
#define WLAN_MAX_ETHFRM_LEN 1514
#define WLAN_ETHHDR_LEN 14
#define WLAN_WMM_LEN 24
#define VENDOR_NAME_LEN 20
#ifdef CONFIG_APPEND_VENDOR_IE_ENABLE
#define WLAN_MAX_VENDOR_IE_LEN 255
#define WLAN_MAX_VENDOR_IE_NUM 5
#define WIFI_BEACON_VENDOR_IE_BIT BIT(0)
#define WIFI_PROBEREQ_VENDOR_IE_BIT BIT(1)
#define WIFI_PROBERESP_VENDOR_IE_BIT BIT(2)
#define WIFI_ASSOCREQ_VENDOR_IE_BIT BIT(3)
#define WIFI_ASSOCRESP_VENDOR_IE_BIT BIT(4)
#ifdef CONFIG_P2P
#define WIFI_P2P_PROBEREQ_VENDOR_IE_BIT BIT(5)
#define WIFI_P2P_PROBERESP_VENDOR_IE_BIT BIT(6)
#define WLAN_MAX_VENDOR_IE_MASK_MAX 7
#else
#define WLAN_MAX_VENDOR_IE_MASK_MAX 5
#endif
#endif
#define P80211CAPTURE_VERSION 0x80211001
/* This value is tested by WiFi 11n Test Plan 5.2.3.
* This test verifies the WLAN NIC can update the NAV through sending the CTS with large duration. */
#define WiFiNavUpperUs 30000 /* 30 ms */
#ifdef GREEN_HILL
#pragma pack(1)
#endif
enum WIFI_FRAME_TYPE {
WIFI_MGT_TYPE = (0),
WIFI_CTRL_TYPE = (BIT(2)),
WIFI_DATA_TYPE = (BIT(3)),
WIFI_QOS_DATA_TYPE = (BIT(7) | BIT(3)), /* !< QoS Data */
};
enum WIFI_FRAME_SUBTYPE {
/* below is for mgt frame */
WIFI_ASSOCREQ = (0 | WIFI_MGT_TYPE),
WIFI_ASSOCRSP = (BIT(4) | WIFI_MGT_TYPE),
WIFI_REASSOCREQ = (BIT(5) | WIFI_MGT_TYPE),
WIFI_REASSOCRSP = (BIT(5) | BIT(4) | WIFI_MGT_TYPE),
WIFI_PROBEREQ = (BIT(6) | WIFI_MGT_TYPE),
WIFI_PROBERSP = (BIT(6) | BIT(4) | WIFI_MGT_TYPE),
WIFI_BEACON = (BIT(7) | WIFI_MGT_TYPE),
WIFI_ATIM = (BIT(7) | BIT(4) | WIFI_MGT_TYPE),
WIFI_DISASSOC = (BIT(7) | BIT(5) | WIFI_MGT_TYPE),
WIFI_AUTH = (BIT(7) | BIT(5) | BIT(4) | WIFI_MGT_TYPE),
WIFI_DEAUTH = (BIT(7) | BIT(6) | WIFI_MGT_TYPE),
WIFI_ACTION = (BIT(7) | BIT(6) | BIT(4) | WIFI_MGT_TYPE),
WIFI_ACTION_NOACK = (BIT(7) | BIT(6) | BIT(5) | WIFI_MGT_TYPE),
/* below is for control frame */
WIFI_BF_REPORT_POLL = (BIT(6) | WIFI_CTRL_TYPE),
WIFI_NDPA = (BIT(6) | BIT(4) | WIFI_CTRL_TYPE),
WIFI_BAR = (BIT(7) | WIFI_CTRL_TYPE),
WIFI_PSPOLL = (BIT(7) | BIT(5) | WIFI_CTRL_TYPE),
WIFI_RTS = (BIT(7) | BIT(5) | BIT(4) | WIFI_CTRL_TYPE),
WIFI_CTS = (BIT(7) | BIT(6) | WIFI_CTRL_TYPE),
WIFI_ACK = (BIT(7) | BIT(6) | BIT(4) | WIFI_CTRL_TYPE),
WIFI_CFEND = (BIT(7) | BIT(6) | BIT(5) | WIFI_CTRL_TYPE),
WIFI_CFEND_CFACK = (BIT(7) | BIT(6) | BIT(5) | BIT(4) | WIFI_CTRL_TYPE),
/* below is for data frame */
WIFI_DATA = (0 | WIFI_DATA_TYPE),
WIFI_DATA_CFACK = (BIT(4) | WIFI_DATA_TYPE),
WIFI_DATA_CFPOLL = (BIT(5) | WIFI_DATA_TYPE),
WIFI_DATA_CFACKPOLL = (BIT(5) | BIT(4) | WIFI_DATA_TYPE),
WIFI_DATA_NULL = (BIT(6) | WIFI_DATA_TYPE),
WIFI_CF_ACK = (BIT(6) | BIT(4) | WIFI_DATA_TYPE),
WIFI_CF_POLL = (BIT(6) | BIT(5) | WIFI_DATA_TYPE),
WIFI_CF_ACKPOLL = (BIT(6) | BIT(5) | BIT(4) | WIFI_DATA_TYPE),
WIFI_QOS_DATA_NULL = (BIT(6) | WIFI_QOS_DATA_TYPE),
};
enum WIFI_REASON_CODE {
_RSON_RESERVED_ = 0,
_RSON_UNSPECIFIED_ = 1,
_RSON_AUTH_NO_LONGER_VALID_ = 2,
_RSON_DEAUTH_STA_LEAVING_ = 3,
_RSON_INACTIVITY_ = 4,
_RSON_UNABLE_HANDLE_ = 5,
_RSON_CLS2_ = 6,
_RSON_CLS3_ = 7,
_RSON_DISAOC_STA_LEAVING_ = 8,
_RSON_ASOC_NOT_AUTH_ = 9,
/* WPA reason */
_RSON_INVALID_IE_ = 13,
_RSON_MIC_FAILURE_ = 14,
_RSON_4WAY_HNDSHK_TIMEOUT_ = 15,
_RSON_GROUP_KEY_UPDATE_TIMEOUT_ = 16,
_RSON_DIFF_IE_ = 17,
_RSON_MLTCST_CIPHER_NOT_VALID_ = 18,
_RSON_UNICST_CIPHER_NOT_VALID_ = 19,
_RSON_AKMP_NOT_VALID_ = 20,
_RSON_UNSUPPORT_RSNE_VER_ = 21,
_RSON_INVALID_RSNE_CAP_ = 22,
_RSON_IEEE_802DOT1X_AUTH_FAIL_ = 23,
/* belowing are Realtek definition */
_RSON_PMK_NOT_AVAILABLE_ = 24,
_RSON_TDLS_TEAR_TOOFAR_ = 25,
_RSON_TDLS_TEAR_UN_RSN_ = 26,
};
/* Reason codes (IEEE 802.11-2007, 7.3.1.7, Table 7-22) */
#if 0
#define WLAN_REASON_UNSPECIFIED 1
#define WLAN_REASON_PREV_AUTH_NOT_VALID 2
#define WLAN_REASON_DEAUTH_LEAVING 3
#define WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY 4
#define WLAN_REASON_DISASSOC_AP_BUSY 5
#define WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA 6
#define WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA 7
#define WLAN_REASON_DISASSOC_STA_HAS_LEFT 8
#define WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH 9
#endif
/* IEEE 802.11h */
#define WLAN_REASON_PWR_CAPABILITY_NOT_VALID 10
#define WLAN_REASON_SUPPORTED_CHANNEL_NOT_VALID 11
#if 0
/* IEEE 802.11i */
#define WLAN_REASON_INVALID_IE 13
#define WLAN_REASON_MICHAEL_MIC_FAILURE 14
#define WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT 15
#define WLAN_REASON_GROUP_KEY_UPDATE_TIMEOUT 16
#define WLAN_REASON_IE_IN_4WAY_DIFFERS 17
#define WLAN_REASON_GROUP_CIPHER_NOT_VALID 18
#define WLAN_REASON_PAIRWISE_CIPHER_NOT_VALID 19
#define WLAN_REASON_AKMP_NOT_VALID 20
#define WLAN_REASON_UNSUPPORTED_RSN_IE_VERSION 21
#define WLAN_REASON_INVALID_RSN_IE_CAPAB 22
#define WLAN_REASON_IEEE_802_1X_AUTH_FAILED 23
#define WLAN_REASON_CIPHER_SUITE_REJECTED 24
#endif
enum WIFI_STATUS_CODE {
_STATS_SUCCESSFUL_ = 0,
_STATS_FAILURE_ = 1,
_STATS_SEC_DISABLED_ = 5,
_STATS_NOT_IN_SAME_BSS_ = 7,
_STATS_CAP_FAIL_ = 10,
_STATS_NO_ASOC_ = 11,
_STATS_OTHER_ = 12,
_STATS_NO_SUPP_ALG_ = 13,
_STATS_OUT_OF_AUTH_SEQ_ = 14,
_STATS_CHALLENGE_FAIL_ = 15,
_STATS_AUTH_TIMEOUT_ = 16,
_STATS_UNABLE_HANDLE_STA_ = 17,
_STATS_RATE_FAIL_ = 18,
_STATS_REFUSED_TEMPORARILY_ = 30,
_STATS_DECLINE_REQ_ = 37,
_STATS_INVALID_PARAMETERS_ = 38,
_STATS_INVALID_RSNIE_ = 72,
};
/* Status codes (IEEE 802.11-2007, 7.3.1.9, Table 7-23) */
#if 0
#define WLAN_STATUS_SUCCESS 0
#define WLAN_STATUS_UNSPECIFIED_FAILURE 1
#define WLAN_STATUS_CAPS_UNSUPPORTED 10
#define WLAN_STATUS_REASSOC_NO_ASSOC 11
#define WLAN_STATUS_ASSOC_DENIED_UNSPEC 12
#define WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG 13
#define WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION 14
#define WLAN_STATUS_CHALLENGE_FAIL 15
#define WLAN_STATUS_AUTH_TIMEOUT 16
#define WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA 17
#define WLAN_STATUS_ASSOC_DENIED_RATES 18
#endif
/* entended */
/* IEEE 802.11b */
#define WLAN_STATUS_ASSOC_DENIED_NOSHORT 19
#define WLAN_STATUS_ASSOC_DENIED_NOPBCC 20
#define WLAN_STATUS_ASSOC_DENIED_NOAGILITY 21
/* IEEE 802.11h */
#define WLAN_STATUS_SPEC_MGMT_REQUIRED 22
#define WLAN_STATUS_PWR_CAPABILITY_NOT_VALID 23
#define WLAN_STATUS_SUPPORTED_CHANNEL_NOT_VALID 24
/* IEEE 802.11g */
#define WLAN_STATUS_ASSOC_DENIED_NO_SHORT_SLOT_TIME 25
#define WLAN_STATUS_ASSOC_DENIED_NO_ER_PBCC 26
#define WLAN_STATUS_ASSOC_DENIED_NO_DSSS_OFDM 27
/* IEEE 802.11w */
#define WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY 30
#define WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION 31
/* IEEE 802.11i */
#define WLAN_STATUS_INVALID_IE 40
#define WLAN_STATUS_GROUP_CIPHER_NOT_VALID 41
#define WLAN_STATUS_PAIRWISE_CIPHER_NOT_VALID 42
#define WLAN_STATUS_AKMP_NOT_VALID 43
#define WLAN_STATUS_UNSUPPORTED_RSN_IE_VERSION 44
#define WLAN_STATUS_INVALID_RSN_IE_CAPAB 45
#define WLAN_STATUS_CIPHER_REJECTED_PER_POLICY 46
#define WLAN_STATUS_TS_NOT_CREATED 47
#define WLAN_STATUS_DIRECT_LINK_NOT_ALLOWED 48
#define WLAN_STATUS_DEST_STA_NOT_PRESENT 49
#define WLAN_STATUS_DEST_STA_NOT_QOS_STA 50
#define WLAN_STATUS_ASSOC_DENIED_LISTEN_INT_TOO_LARGE 51
/* IEEE 802.11r */
#define WLAN_STATUS_INVALID_FT_ACTION_FRAME_COUNT 52
#define WLAN_STATUS_INVALID_PMKID 53
#define WLAN_STATUS_INVALID_MDIE 54
#define WLAN_STATUS_INVALID_FTIE 55
enum WIFI_REG_DOMAIN {
DOMAIN_FCC = 1,
DOMAIN_IC = 2,
DOMAIN_ETSI = 3,
DOMAIN_SPAIN = 4,
DOMAIN_FRANCE = 5,
DOMAIN_MKK = 6,
DOMAIN_ISRAEL = 7,
DOMAIN_MKK1 = 8,
DOMAIN_MKK2 = 9,
DOMAIN_MKK3 = 10,
DOMAIN_MAX
};
#define _TO_DS_ BIT(8)
#define _FROM_DS_ BIT(9)
#define _MORE_FRAG_ BIT(10)
#define _RETRY_ BIT(11)
#define _PWRMGT_ BIT(12)
#define _MORE_DATA_ BIT(13)
#define _PRIVACY_ BIT(14)
#define _ORDER_ BIT(15)
#define SetToDs(pbuf) \
do { \
*(unsigned short *)(pbuf) |= cpu_to_le16(_TO_DS_); \
} while (0)
#define GetToDs(pbuf) (((*(unsigned short *)(pbuf)) & le16_to_cpu(_TO_DS_)) != 0)
#define ClearToDs(pbuf) \
do { \
*(unsigned short *)(pbuf) &= (~cpu_to_le16(_TO_DS_)); \
} while (0)
#define SetFrDs(pbuf) \
do { \
*(unsigned short *)(pbuf) |= cpu_to_le16(_FROM_DS_); \
} while (0)
#define GetFrDs(pbuf) (((*(unsigned short *)(pbuf)) & le16_to_cpu(_FROM_DS_)) != 0)
#define ClearFrDs(pbuf) \
do { \
*(unsigned short *)(pbuf) &= (~cpu_to_le16(_FROM_DS_)); \
} while (0)
#define get_tofr_ds(pframe) ((GetToDs(pframe) << 1) | GetFrDs(pframe))
#define SetMFrag(pbuf) \
do { \
*(unsigned short *)(pbuf) |= cpu_to_le16(_MORE_FRAG_); \
} while (0)
#define GetMFrag(pbuf) (((*(unsigned short *)(pbuf)) & le16_to_cpu(_MORE_FRAG_)) != 0)
#define ClearMFrag(pbuf) \
do { \
*(unsigned short *)(pbuf) &= (~cpu_to_le16(_MORE_FRAG_)); \
} while (0)
#define SetRetry(pbuf) \
do { \
*(unsigned short *)(pbuf) |= cpu_to_le16(_RETRY_); \
} while (0)
#define GetRetry(pbuf) (((*(unsigned short *)(pbuf)) & le16_to_cpu(_RETRY_)) != 0)
#define ClearRetry(pbuf) \
do { \
*(unsigned short *)(pbuf) &= (~cpu_to_le16(_RETRY_)); \
} while (0)
#define SetPwrMgt(pbuf) \
do { \
*(unsigned short *)(pbuf) |= cpu_to_le16(_PWRMGT_); \
} while (0)
#define GetPwrMgt(pbuf) (((*(unsigned short *)(pbuf)) & le16_to_cpu(_PWRMGT_)) != 0)
#define ClearPwrMgt(pbuf) \
do { \
*(unsigned short *)(pbuf) &= (~cpu_to_le16(_PWRMGT_)); \
} while (0)
#define SetMData(pbuf) \
do { \
*(unsigned short *)(pbuf) |= cpu_to_le16(_MORE_DATA_); \
} while (0)
#define GetMData(pbuf) (((*(unsigned short *)(pbuf)) & le16_to_cpu(_MORE_DATA_)) != 0)
#define ClearMData(pbuf) \
do { \
*(unsigned short *)(pbuf) &= (~cpu_to_le16(_MORE_DATA_)); \
} while (0)
#define SetPrivacy(pbuf) \
do { \
*(unsigned short *)(pbuf) |= cpu_to_le16(_PRIVACY_); \
} while (0)
#define GetPrivacy(pbuf) (((*(unsigned short *)(pbuf)) & le16_to_cpu(_PRIVACY_)) != 0)
#define ClearPrivacy(pbuf) \
do { \
*(unsigned short *)(pbuf) &= (~cpu_to_le16(_PRIVACY_)); \
} while (0)
#define GetOrder(pbuf) (((*(unsigned short *)(pbuf)) & le16_to_cpu(_ORDER_)) != 0)
#define GetFrameType(pbuf) (le16_to_cpu(*(unsigned short *)(pbuf)) & (BIT(3) | BIT(2)))
#define SetFrameType(pbuf, type) \
do { \
*(unsigned short *)(pbuf) &= __constant_cpu_to_le16(~(BIT(3) | BIT(2))); \
*(unsigned short *)(pbuf) |= __constant_cpu_to_le16(type); \
} while (0)
#define get_frame_sub_type(pbuf) (cpu_to_le16(*(unsigned short *)(pbuf)) & (BIT(7) | BIT(6) | BIT(5) | BIT(4) | BIT(3) | BIT(2)))
#define set_frame_sub_type(pbuf, type) \
do { \
*(unsigned short *)(pbuf) &= cpu_to_le16(~(BIT(7) | BIT(6) | BIT(5) | BIT(4) | BIT(3) | BIT(2))); \
*(unsigned short *)(pbuf) |= cpu_to_le16(type); \
} while (0)
#define GetSequence(pbuf) (cpu_to_le16(*(unsigned short *)((SIZE_PTR)(pbuf) + 22)) >> 4)
#define GetFragNum(pbuf) (cpu_to_le16(*(unsigned short *)((SIZE_PTR)(pbuf) + 22)) & 0x0f)
#define GetTupleCache(pbuf) (cpu_to_le16(*(unsigned short *)((SIZE_PTR)(pbuf) + 22)))
#define SetFragNum(pbuf, num) \
do { \
*(unsigned short *)((SIZE_PTR)(pbuf) + 22) = \
((*(unsigned short *)((SIZE_PTR)(pbuf) + 22)) & le16_to_cpu(~(0x000f))) | \
cpu_to_le16(0x0f & (num)); \
} while (0)
#define SetSeqNum(pbuf, num) \
do { \
*(unsigned short *)((SIZE_PTR)(pbuf) + 22) = \
((*(unsigned short *)((SIZE_PTR)(pbuf) + 22)) & le16_to_cpu((unsigned short)~0xfff0)) | \
le16_to_cpu((unsigned short)(0xfff0 & (num << 4))); \
} while (0)
#define set_duration(pbuf, dur) \
do { \
*(unsigned short *)((SIZE_PTR)(pbuf) + 2) = cpu_to_le16(0xffff & (dur)); \
} while (0)
/* QoS control field */
#define SetPriority(qc, tid) SET_BITS_TO_LE_2BYTE(((u8 *)(qc)), 0, 4, tid)
#define SetEOSP(qc, eosp) SET_BITS_TO_LE_2BYTE(((u8 *)(qc)), 4, 1, eosp)
#define SetAckpolicy(qc, ack) SET_BITS_TO_LE_2BYTE(((u8 *)(qc)), 5, 2, ack)
#define SetAMsdu(qc, amsdu) SET_BITS_TO_LE_2BYTE(((u8 *)(qc)), 7, 1, amsdu)
#define GetPriority(qc) LE_BITS_TO_2BYTE(((u8 *)(qc)), 0, 4)
#define GetEOSP(qc) LE_BITS_TO_2BYTE(((u8 *)(qc)), 4, 1)
#define GetAckpolicy(qc) LE_BITS_TO_2BYTE(((u8 *)(qc)), 5, 2)
#define GetAMsdu(qc) LE_BITS_TO_2BYTE(((u8 *)(qc)), 7, 1)
/* QoS control field (MSTA only) */
#define set_mctrl_present(qc, p) SET_BITS_TO_LE_2BYTE(((u8 *)(qc)), 8, 1, p)
#define set_mps_lv(qc, lv) SET_BITS_TO_LE_2BYTE(((u8 *)(qc)), 9, 1, lv)
#define set_rspi(qc, rspi) SET_BITS_TO_LE_2BYTE(((u8 *)(qc)), 10, 1, rspi)
#define get_mctrl_present(qc) LE_BITS_TO_2BYTE(((u8 *)(qc)), 8, 1)
#define get_mps_lv(qc) LE_BITS_TO_2BYTE(((u8 *)(qc)), 9, 1)
#define get_rspi(qc) LE_BITS_TO_2BYTE(((u8 *)(qc)), 10, 1)
#define GetAid(pbuf) (cpu_to_le16(*(unsigned short *)((SIZE_PTR)(pbuf) + 2)) & 0x3fff)
#define GetTid(pbuf) (cpu_to_le16(*(unsigned short *)((SIZE_PTR)(pbuf) + (((GetToDs(pbuf)<<1) | GetFrDs(pbuf)) == 3 ? 30 : 24))) & 0x000f)
#define GetAddr1Ptr(pbuf) ((unsigned char *)((SIZE_PTR)(pbuf) + 4))
#define get_addr2_ptr(pbuf) ((unsigned char *)((SIZE_PTR)(pbuf) + 10))
#define GetAddr3Ptr(pbuf) ((unsigned char *)((SIZE_PTR)(pbuf) + 16))
#define GetAddr4Ptr(pbuf) ((unsigned char *)((SIZE_PTR)(pbuf) + 24))
#define MacAddr_isBcst(addr) \
(\
((addr[0] == 0xff) && (addr[1] == 0xff) && \
(addr[2] == 0xff) && (addr[3] == 0xff) && \
(addr[4] == 0xff) && (addr[5] == 0xff)) ? _TRUE : _FALSE \
)
__inline static int IS_MCAST(const u8 *da)
{
if ((*da) & 0x01)
return _TRUE;
else
return _FALSE;
}
__inline static unsigned char *get_ra(unsigned char *pframe)
{
unsigned char *ra;
ra = GetAddr1Ptr(pframe);
return ra;
}
__inline static unsigned char *get_ta(unsigned char *pframe)
{
unsigned char *ta;
ta = get_addr2_ptr(pframe);
return ta;
}
/* can't apply to mesh mode */
__inline static unsigned char *get_da(unsigned char *pframe)
{
unsigned char *da;
unsigned int to_fr_ds = (GetToDs(pframe) << 1) | GetFrDs(pframe);
switch (to_fr_ds) {
case 0x00: /* ToDs=0, FromDs=0 */
da = GetAddr1Ptr(pframe);
break;
case 0x01: /* ToDs=0, FromDs=1 */
da = GetAddr1Ptr(pframe);
break;
case 0x02: /* ToDs=1, FromDs=0 */
da = GetAddr3Ptr(pframe);
break;
default: /* ToDs=1, FromDs=1 */
da = GetAddr3Ptr(pframe);
break;
}
return da;
}
/* can't apply to mesh mode */
__inline static unsigned char *get_sa(unsigned char *pframe)
{
unsigned char *sa;
unsigned int to_fr_ds = (GetToDs(pframe) << 1) | GetFrDs(pframe);
switch (to_fr_ds) {
case 0x00: /* ToDs=0, FromDs=0 */
sa = get_addr2_ptr(pframe);
break;
case 0x01: /* ToDs=0, FromDs=1 */
sa = GetAddr3Ptr(pframe);
break;
case 0x02: /* ToDs=1, FromDs=0 */
sa = get_addr2_ptr(pframe);
break;
default: /* ToDs=1, FromDs=1 */
sa = GetAddr4Ptr(pframe);
break;
}
return sa;
}
/* can't apply to mesh mode */
__inline static unsigned char *get_hdr_bssid(unsigned char *pframe)
{
unsigned char *sa = NULL;
unsigned int to_fr_ds = (GetToDs(pframe) << 1) | GetFrDs(pframe);
switch (to_fr_ds) {
case 0x00: /* ToDs=0, FromDs=0 */
sa = GetAddr3Ptr(pframe);
break;
case 0x01: /* ToDs=0, FromDs=1 */
sa = get_addr2_ptr(pframe);
break;
case 0x02: /* ToDs=1, FromDs=0 */
sa = GetAddr1Ptr(pframe);
break;
case 0x03: /* ToDs=1, FromDs=1 */
sa = GetAddr1Ptr(pframe);
break;
}
return sa;
}
__inline static int IsFrameTypeCtrl(unsigned char *pframe)
{
if (WIFI_CTRL_TYPE == GetFrameType(pframe))
return _TRUE;
else
return _FALSE;
}
static inline int IsFrameTypeMgnt(unsigned char *pframe)
{
if (GetFrameType(pframe) == WIFI_MGT_TYPE)
return _TRUE;
else
return _FALSE;
}
static inline int IsFrameTypeData(unsigned char *pframe)
{
if (GetFrameType(pframe) == WIFI_DATA_TYPE)
return _TRUE;
else
return _FALSE;
}
/*-----------------------------------------------------------------------------
Below is for common definition
------------------------------------------------------------------------------*/
#define _ASOCREQ_IE_OFFSET_ 4 /* excluding wlan_hdr */
#define _ASOCRSP_IE_OFFSET_ 6
#define _REASOCREQ_IE_OFFSET_ 10
#define _REASOCRSP_IE_OFFSET_ 6
#define _PROBEREQ_IE_OFFSET_ 0
#define _PROBERSP_IE_OFFSET_ 12
#define _AUTH_IE_OFFSET_ 6
#define _DEAUTH_IE_OFFSET_ 0
#define _BEACON_IE_OFFSET_ 12
#define _PUBLIC_ACTION_IE_OFFSET_ 8
#define _FIXED_IE_LENGTH_ _BEACON_IE_OFFSET_
#define _SSID_IE_ 0
#define _SUPPORTEDRATES_IE_ 1
#define _DSSET_IE_ 3
#define _TIM_IE_ 5
#define _IBSS_PARA_IE_ 6
#define _CHLGETXT_IE_ 16
#define _SUPPORTED_CH_IE_ 36
#define _MEAS_REQ_IE_ 38
#define _MEAS_RSP_IE_ 39
#define _RSN_IE_2_ 48
#define _SSN_IE_1_ 221
#define _ERPINFO_IE_ 42
#define _EXT_SUPPORTEDRATES_IE_ 50
#define _HT_CAPABILITY_IE_ 45
#define _NEIGHBOR_REPORT_IE_ 52
#define _MDIE_ 54
#define _FTIE_ 55
#define _TIMEOUT_ITVL_IE_ 56
#define _SRC_IE_ 59
#define _HT_EXTRA_INFO_IE_ 61 /*HT Operation Information*/
#define _HT_ADD_INFO_IE_ 61 /* _HT_EXTRA_INFO_IE_ */
#define _WAPI_IE_ 68
#define _EID_RRM_EN_CAP_IE_ 70
/* #define EID_BSSCoexistence 72 */ /* 20/40 BSS Coexistence
* #define EID_BSSIntolerantChlReport 73 */
#define _RIC_Descriptor_IE_ 75
#ifdef CONFIG_IEEE80211W
#define _MME_IE_ 76 /* 802.11w Management MIC element */
#endif /* CONFIG_IEEE80211W */
#define _LINK_ID_IE_ 101
#define _CH_SWITCH_TIMING_ 104
#define _PTI_BUFFER_STATUS_ 106
#define _VENDOR_SPECIFIC_IE_ 221
#define _RESERVED47_ 47
typedef enum _ELEMENT_ID {
EID_SsId = 0, /* service set identifier (0:32) */
EID_SupRates = 1, /* supported rates (1:8) */
EID_FHParms = 2, /* FH parameter set (5) */
EID_DSParms = 3, /* DS parameter set (1) */
EID_CFParms = 4, /* CF parameter set (6) */
EID_Tim = 5, /* Traffic Information Map (4:254) */
EID_IbssParms = 6, /* IBSS parameter set (2) */
EID_Country = 7, /* */
/* Form 7.3.2: Information elements in 802.11E/D13.0, page 46. */
EID_QBSSLoad = 11,
EID_EDCAParms = 12,
EID_TSpec = 13,
EID_TClass = 14,
EID_Schedule = 15,
/* */
EID_Ctext = 16, /* challenge text*/
EID_POWER_CONSTRAINT = 32, /* Power Constraint*/
/* vivi for WIFITest, 802.11h AP, 20100427 */
/* 2010/12/26 MH The definition we can declare always!! */
EID_PowerCap = 33,
EID_TPC = 35,
EID_SupportedChannels = 36,
EID_ChlSwitchAnnounce = 37,
EID_MeasureRequest = 38, /* Measurement Request */
EID_MeasureReport = 39, /* Measurement Report */
EID_ERPInfo = 42,
/* Form 7.3.2: Information elements in 802.11E/D13.0, page 46. */
EID_TSDelay = 43,
EID_TCLASProc = 44,
EID_HTCapability = 45,
EID_QoSCap = 46,
/* */
EID_WPA2 = 48,
EID_ExtSupRates = 50,
EID_NEIGHBOR_REPORT = 52,
EID_FTIE = 55, /* Defined in 802.11r */
EID_Timeout = 56, /* Defined in 802.11r */
EID_SupRegulatory = 59, /* Supported Requlatory Classes 802.11y */
EID_HTInfo = 61,
EID_SecondaryChnlOffset = 62,
EID_RMEnabledCapability = 70, /* RM Enabled Capability */
EID_BSSCoexistence = 72, /* 20/40 BSS Coexistence */
EID_BSSIntolerantChlReport = 73,
EID_OBSS = 74, /* Overlapping BSS Scan Parameters */
EID_LinkIdentifier = 101, /* Defined in 802.11z */
EID_WakeupSchedule = 102, /* Defined in 802.11z */
EID_ChnlSwitchTimeing = 104, /* Defined in 802.11z */
EID_PTIControl = 105, /* Defined in 802.11z */
EID_PUBufferStatus = 106, /* Defined in 802.11z */
/* From S19:Aironet IE and S21:AP IP address IE in CCX v1.13, p16 and p18. */
EID_Aironet = 133, /* 0x85: Aironet Element for Cisco CCX */
EID_CiscoIP = 149, /* 0x95: IP Address IE for Cisco CCX */
EID_CellPwr = 150, /* 0x96: Cell Power Limit IE. Ref. 0x96. */
EID_CCKM = 156,
EID_Vendor = 221, /* 0xDD: Vendor Specific */
EID_WAPI = 68,
EID_VHTCapability = 191, /* Based on 802.11ac D2.0 */
EID_VHTOperation = 192, /* Based on 802.11ac D2.0 */
EID_VHTTransmitPower = 195,
EID_AID = 197, /* Based on 802.11ac D4.0 */
EID_OpModeNotification = 199, /* Based on 802.11ac D3.0 */
} ELEMENT_ID, *PELEMENT_ID;
/* ---------------------------------------------------------------------------
Below is the fixed elements...
-----------------------------------------------------------------------------*/
#define _AUTH_ALGM_NUM_ 2
#define _AUTH_SEQ_NUM_ 2
#define _BEACON_ITERVAL_ 2
#define _CAPABILITY_ 2
#define _CURRENT_APADDR_ 6
#define _LISTEN_INTERVAL_ 2
#define _RSON_CODE_ 2
#define _ASOC_ID_ 2
#define _STATUS_CODE_ 2
#define _TIMESTAMP_ 8
#define AUTH_ODD_TO 0
#define AUTH_EVEN_TO 1
#define WLAN_ETHCONV_ENCAP 1
#define WLAN_ETHCONV_RFC1042 2
#define WLAN_ETHCONV_8021h 3
#define cap_ESS BIT(0)
#define cap_IBSS BIT(1)
#define cap_CFPollable BIT(2)
#define cap_CFRequest BIT(3)
#define cap_Privacy BIT(4)
#define cap_ShortPremble BIT(5)
#define cap_PBCC BIT(6)
#define cap_ChAgility BIT(7)
#define cap_SpecMgmt BIT(8)
#define cap_QoS BIT(9)
#define cap_ShortSlot BIT(10)
/*-----------------------------------------------------------------------------
Below is the definition for 802.11i / 802.1x
------------------------------------------------------------------------------*/
#define _IEEE8021X_MGT_ 1 /* WPA */
#define _IEEE8021X_PSK_ 2 /* WPA with pre-shared key */
#if 0
#define _NO_PRIVACY_ 0
#define _WEP_40_PRIVACY_ 1
#define _TKIP_PRIVACY_ 2
#define _WRAP_PRIVACY_ 3
#define _CCMP_PRIVACY_ 4
#define _WEP_104_PRIVACY_ 5
#define _WEP_WPA_MIXED_PRIVACY_ 6 /* WEP + WPA */
#endif
#define _MME_IE_LENGTH_ 26
/*-----------------------------------------------------------------------------
Below is the definition for WMM
------------------------------------------------------------------------------*/
#define _WMM_IE_Length_ 7 /* for WMM STA */
/*-----------------------------------------------------------------------------
Below is the definition for 802.11n
------------------------------------------------------------------------------*/
/* #ifdef CONFIG_80211N_HT */
#define set_htc_order_bit(pbuf) \
do { \
*(unsigned short *)(pbuf) |= cpu_to_le16(_ORDER_); \
} while (0)
#define GetOrderBit(pbuf) (((*(unsigned short *)(pbuf)) & le16_to_cpu(_ORDER_)) != 0)
#define ACT_CAT_VENDOR 0x7F/* 127 */
/**
* struct rtw_ieee80211_bar - HT Block Ack Request
*
* This structure refers to "HT BlockAckReq" as
* described in 802.11n draft section 7.2.1.7.1
*/
#if defined(PLATFORM_LINUX)
struct rtw_ieee80211_bar {
unsigned short frame_control;
unsigned short duration;
unsigned char ra[6];
unsigned char ta[6];
unsigned short control;
unsigned short start_seq_num;
} __attribute__((packed));
#endif
/* 802.11 BAR control masks */
#define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000
#define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004
#if defined(PLATFORM_LINUX) || defined(PLATFORM_FREEBSD)
/**
* struct rtw_ieee80211_ht_cap - HT capabilities
*
* This structure refers to "HT capabilities element" as
* described in 802.11n draft section 7.3.2.52
*/
struct rtw_ieee80211_ht_cap {
unsigned short cap_info;
unsigned char ampdu_params_info;
unsigned char supp_mcs_set[16];
unsigned short extended_ht_cap_info;
unsigned int tx_BF_cap_info;
unsigned char antenna_selection_info;
} __attribute__((packed));
/**
* struct rtw_ieee80211_ht_cap - HT additional information
*
* This structure refers to "HT information element" as
* described in 802.11n draft section 7.3.2.53
*/
#ifndef CONFIG_IEEE80211_HT_ADDT_INFO
struct ieee80211_ht_addt_info {
unsigned char control_chan;
unsigned char ht_param;
unsigned short operation_mode;
unsigned short stbc_param;
unsigned char basic_set[16];
} __attribute__((packed));
#endif
struct HT_caps_element {
union {
struct {
unsigned short HT_caps_info;
unsigned char AMPDU_para;
unsigned char MCS_rate[16];
unsigned short HT_ext_caps;
unsigned int Beamforming_caps;
unsigned char ASEL_caps;
} HT_cap_element;
unsigned char HT_cap[26];
} u;
} __attribute__((packed));
struct HT_info_element {
unsigned char primary_channel;
unsigned char infos[5];
unsigned char MCS_rate[16];
} __attribute__((packed));
struct AC_param {
unsigned char ACI_AIFSN;
unsigned char CW;
unsigned short TXOP_limit;
} __attribute__((packed));
struct WMM_para_element {
unsigned char QoS_info;
unsigned char reserved;
struct AC_param ac_param[4];
} __attribute__((packed));
struct ADDBA_request {
unsigned char dialog_token;
unsigned short BA_para_set;
unsigned short BA_timeout_value;
unsigned short BA_starting_seqctrl;
} __attribute__((packed));
#endif
typedef enum _HT_CAP_AMPDU_FACTOR {
MAX_AMPDU_FACTOR_8K = 0,
MAX_AMPDU_FACTOR_16K = 1,
MAX_AMPDU_FACTOR_32K = 2,
MAX_AMPDU_FACTOR_64K = 3,
} HT_CAP_AMPDU_FACTOR;
typedef enum _VHT_CAP_AMPDU_FACTOR {
MAX_AMPDU_FACTOR_128K = 4,
MAX_AMPDU_FACTOR_256K = 5,
MAX_AMPDU_FACTOR_512K = 6,
MAX_AMPDU_FACTOR_1M = 7,
} VHT_CAP_AMPDU_FACTOR;
typedef enum _HT_CAP_AMPDU_DENSITY {
AMPDU_DENSITY_VALUE_0 = 0 , /* For no restriction */
AMPDU_DENSITY_VALUE_1 = 1 , /* For 1/4 us */
AMPDU_DENSITY_VALUE_2 = 2 , /* For 1/2 us */
AMPDU_DENSITY_VALUE_3 = 3 , /* For 1 us */
AMPDU_DENSITY_VALUE_4 = 4 , /* For 2 us */
AMPDU_DENSITY_VALUE_5 = 5 , /* For 4 us */
AMPDU_DENSITY_VALUE_6 = 6 , /* For 8 us */
AMPDU_DENSITY_VALUE_7 = 7 , /* For 16 us */
} HT_CAP_AMPDU_DENSITY;
/* 802.11n HT capabilities masks */
#define IEEE80211_HT_CAP_LDPC_CODING 0x0001
#define IEEE80211_HT_CAP_SUP_WIDTH 0x0002
#define IEEE80211_HT_CAP_SM_PS 0x000C
#define IEEE80211_HT_CAP_GRN_FLD 0x0010
#define IEEE80211_HT_CAP_SGI_20 0x0020
#define IEEE80211_HT_CAP_SGI_40 0x0040
#define IEEE80211_HT_CAP_TX_STBC 0x0080
#define IEEE80211_HT_CAP_RX_STBC_1R 0x0100
#define IEEE80211_HT_CAP_RX_STBC_2R 0x0200
#define IEEE80211_HT_CAP_RX_STBC_3R 0x0300
#define IEEE80211_HT_CAP_DELAY_BA 0x0400
#define IEEE80211_HT_CAP_MAX_AMSDU 0x0800
#define IEEE80211_HT_CAP_DSSSCCK40 0x1000
#define RTW_IEEE80211_HT_CAP_40MHZ_INTOLERANT ((u16) BIT(14))
/* 802.11n HT capability AMPDU settings */
#define IEEE80211_HT_CAP_AMPDU_FACTOR 0x03
#define IEEE80211_HT_CAP_AMPDU_DENSITY 0x1C
/* 802.11n HT capability MSC set */
#define IEEE80211_SUPP_MCS_SET_UEQM 4
#define IEEE80211_HT_CAP_MAX_STREAMS 4
#define IEEE80211_SUPP_MCS_SET_LEN 10
/* maximum streams the spec allows */
#define IEEE80211_HT_CAP_MCS_TX_DEFINED 0x01
#define IEEE80211_HT_CAP_MCS_TX_RX_DIFF 0x02
#define IEEE80211_HT_CAP_MCS_TX_STREAMS 0x0C
#define IEEE80211_HT_CAP_MCS_TX_UEQM 0x10
/* 802.11n HT capability TXBF capability */
#define IEEE80211_HT_CAP_TXBF_RX_NDP 0x00000008
#define IEEE80211_HT_CAP_TXBF_TX_NDP 0x00000010
#define IEEE80211_HT_CAP_TXBF_EXPLICIT_COMP_STEERING_CAP 0x00000400
/* 802.11n HT IE masks */
#define IEEE80211_HT_IE_CHA_SEC_OFFSET 0x03
#define IEEE80211_HT_IE_CHA_SEC_NONE 0x00
#define IEEE80211_HT_IE_CHA_SEC_ABOVE 0x01
#define IEEE80211_HT_IE_CHA_SEC_BELOW 0x03
#define IEEE80211_HT_IE_CHA_WIDTH 0x04
#define IEEE80211_HT_IE_HT_PROTECTION 0x0003
#define IEEE80211_HT_IE_NON_GF_STA_PRSNT 0x0004
#define IEEE80211_HT_IE_NON_HT_STA_PRSNT 0x0010
/* block-ack parameters */
#define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
#define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
#define RTW_IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0
#define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
#define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
/* Spatial Multiplexing Power Save Modes */
#define WLAN_HT_CAP_SM_PS_STATIC 0
#define WLAN_HT_CAP_SM_PS_DYNAMIC 1
#define WLAN_HT_CAP_SM_PS_INVALID 2
#define WLAN_HT_CAP_SM_PS_DISABLED 3
#define OP_MODE_PURE 0
#define OP_MODE_MAY_BE_LEGACY_STAS 1
#define OP_MODE_20MHZ_HT_STA_ASSOCED 2
#define OP_MODE_MIXED 3
#define HT_INFO_HT_PARAM_SECONDARY_CHNL_OFF_MASK ((u8) BIT(0) | BIT(1))
#define HT_INFO_HT_PARAM_SECONDARY_CHNL_ABOVE ((u8) BIT(0))
#define HT_INFO_HT_PARAM_SECONDARY_CHNL_BELOW ((u8) BIT(0) | BIT(1))
#define HT_INFO_HT_PARAM_REC_TRANS_CHNL_WIDTH ((u8) BIT(2))
#define HT_INFO_HT_PARAM_RIFS_MODE ((u8) BIT(3))
#define HT_INFO_HT_PARAM_CTRL_ACCESS_ONLY ((u8) BIT(4))
#define HT_INFO_HT_PARAM_SRV_INTERVAL_GRANULARITY ((u8) BIT(5))
#define HT_INFO_OPERATION_MODE_OP_MODE_MASK \
((u16) (0x0001 | 0x0002))
#define HT_INFO_OPERATION_MODE_OP_MODE_OFFSET 0
#define HT_INFO_OPERATION_MODE_NON_GF_DEVS_PRESENT ((u8) BIT(2))
#define HT_INFO_OPERATION_MODE_TRANSMIT_BURST_LIMIT ((u8) BIT(3))
#define HT_INFO_OPERATION_MODE_NON_HT_STA_PRESENT ((u8) BIT(4))
#define HT_INFO_STBC_PARAM_DUAL_BEACON ((u16) BIT(6))
#define HT_INFO_STBC_PARAM_DUAL_STBC_PROTECT ((u16) BIT(7))
#define HT_INFO_STBC_PARAM_SECONDARY_BCN ((u16) BIT(8))
#define HT_INFO_STBC_PARAM_LSIG_TXOP_PROTECT_ALLOWED ((u16) BIT(9))
#define HT_INFO_STBC_PARAM_PCO_ACTIVE ((u16) BIT(10))
#define HT_INFO_STBC_PARAM_PCO_PHASE ((u16) BIT(11))
/* #endif */
/* ===============WPS Section=============== */
/* For WPSv1.0 */
#define WPSOUI 0x0050f204
/* WPS attribute ID */
#define WPS_ATTR_VER1 0x104A
#define WPS_ATTR_SIMPLE_CONF_STATE 0x1044
#define WPS_ATTR_RESP_TYPE 0x103B
#define WPS_ATTR_UUID_E 0x1047
#define WPS_ATTR_MANUFACTURER 0x1021
#define WPS_ATTR_MODEL_NAME 0x1023
#define WPS_ATTR_MODEL_NUMBER 0x1024
#define WPS_ATTR_SERIAL_NUMBER 0x1042
#define WPS_ATTR_PRIMARY_DEV_TYPE 0x1054
#define WPS_ATTR_SEC_DEV_TYPE_LIST 0x1055
#define WPS_ATTR_DEVICE_NAME 0x1011
#define WPS_ATTR_CONF_METHOD 0x1008
#define WPS_ATTR_RF_BANDS 0x103C
#define WPS_ATTR_DEVICE_PWID 0x1012
#define WPS_ATTR_REQUEST_TYPE 0x103A
#define WPS_ATTR_ASSOCIATION_STATE 0x1002
#define WPS_ATTR_CONFIG_ERROR 0x1009
#define WPS_ATTR_VENDOR_EXT 0x1049
#define WPS_ATTR_SELECTED_REGISTRAR 0x1041
/* Value of WPS attribute "WPS_ATTR_DEVICE_NAME */
#define WPS_MAX_DEVICE_NAME_LEN 32
/* Value of WPS Request Type Attribute */
#define WPS_REQ_TYPE_ENROLLEE_INFO_ONLY 0x00
#define WPS_REQ_TYPE_ENROLLEE_OPEN_8021X 0x01
#define WPS_REQ_TYPE_REGISTRAR 0x02
#define WPS_REQ_TYPE_WLAN_MANAGER_REGISTRAR 0x03
/* Value of WPS Response Type Attribute */
#define WPS_RESPONSE_TYPE_INFO_ONLY 0x00
#define WPS_RESPONSE_TYPE_8021X 0x01
#define WPS_RESPONSE_TYPE_REGISTRAR 0x02
#define WPS_RESPONSE_TYPE_AP 0x03
/* Value of WPS WiFi Simple Configuration State Attribute */
#define WPS_WSC_STATE_NOT_CONFIG 0x01
#define WPS_WSC_STATE_CONFIG 0x02
/* Value of WPS Version Attribute */
#define WPS_VERSION_1 0x10
/* Value of WPS Configuration Method Attribute */
#define WPS_CONFIG_METHOD_FLASH 0x0001
#define WPS_CONFIG_METHOD_ETHERNET 0x0002
#define WPS_CONFIG_METHOD_LABEL 0x0004
#define WPS_CONFIG_METHOD_DISPLAY 0x0008
#define WPS_CONFIG_METHOD_E_NFC 0x0010
#define WPS_CONFIG_METHOD_I_NFC 0x0020
#define WPS_CONFIG_METHOD_NFC 0x0040
#define WPS_CONFIG_METHOD_PBC 0x0080
#define WPS_CONFIG_METHOD_KEYPAD 0x0100
#define WPS_CONFIG_METHOD_VPBC 0x0280
#define WPS_CONFIG_METHOD_PPBC 0x0480
#define WPS_CONFIG_METHOD_VDISPLAY 0x2008
#define WPS_CONFIG_METHOD_PDISPLAY 0x4008
/* Value of Category ID of WPS Primary Device Type Attribute */
#define WPS_PDT_CID_DISPLAYS 0x0007
#define WPS_PDT_CID_MULIT_MEDIA 0x0008
#define WPS_PDT_CID_RTK_WIDI WPS_PDT_CID_MULIT_MEDIA
/* Value of Sub Category ID of WPS Primary Device Type Attribute */
#define WPS_PDT_SCID_MEDIA_SERVER 0x0005
#define WPS_PDT_SCID_RTK_DMP WPS_PDT_SCID_MEDIA_SERVER
/* Value of Device Password ID */
#define WPS_DPID_PIN 0x0000
#define WPS_DPID_USER_SPEC 0x0001
#define WPS_DPID_MACHINE_SPEC 0x0002
#define WPS_DPID_REKEY 0x0003
#define WPS_DPID_PBC 0x0004
#define WPS_DPID_REGISTRAR_SPEC 0x0005
/* Value of WPS RF Bands Attribute */
#define WPS_RF_BANDS_2_4_GHZ 0x01
#define WPS_RF_BANDS_5_GHZ 0x02
/* Value of WPS Association State Attribute */
#define WPS_ASSOC_STATE_NOT_ASSOCIATED 0x00
#define WPS_ASSOC_STATE_CONNECTION_SUCCESS 0x01
#define WPS_ASSOC_STATE_CONFIGURATION_FAILURE 0x02
#define WPS_ASSOC_STATE_ASSOCIATION_FAILURE 0x03
#define WPS_ASSOC_STATE_IP_FAILURE 0x04
/* =====================P2P Section===================== */
/* For P2P */
#define P2POUI 0x506F9A09
/* P2P Attribute ID */
#define P2P_ATTR_STATUS 0x00
#define P2P_ATTR_MINOR_REASON_CODE 0x01
#define P2P_ATTR_CAPABILITY 0x02
#define P2P_ATTR_DEVICE_ID 0x03
#define P2P_ATTR_GO_INTENT 0x04
#define P2P_ATTR_CONF_TIMEOUT 0x05
#define P2P_ATTR_LISTEN_CH 0x06
#define P2P_ATTR_GROUP_BSSID 0x07
#define P2P_ATTR_EX_LISTEN_TIMING 0x08
#define P2P_ATTR_INTENDED_IF_ADDR 0x09
#define P2P_ATTR_MANAGEABILITY 0x0A
#define P2P_ATTR_CH_LIST 0x0B
#define P2P_ATTR_NOA 0x0C
#define P2P_ATTR_DEVICE_INFO 0x0D
#define P2P_ATTR_GROUP_INFO 0x0E
#define P2P_ATTR_GROUP_ID 0x0F
#define P2P_ATTR_INTERFACE 0x10
#define P2P_ATTR_OPERATING_CH 0x11
#define P2P_ATTR_INVITATION_FLAGS 0x12
/* Value of Status Attribute */
#define P2P_STATUS_SUCCESS 0x00
#define P2P_STATUS_FAIL_INFO_UNAVAILABLE 0x01
#define P2P_STATUS_FAIL_INCOMPATIBLE_PARAM 0x02
#define P2P_STATUS_FAIL_LIMIT_REACHED 0x03
#define P2P_STATUS_FAIL_INVALID_PARAM 0x04
#define P2P_STATUS_FAIL_REQUEST_UNABLE 0x05
#define P2P_STATUS_FAIL_PREVOUS_PROTO_ERR 0x06
#define P2P_STATUS_FAIL_NO_COMMON_CH 0x07
#define P2P_STATUS_FAIL_UNKNOWN_P2PGROUP 0x08
#define P2P_STATUS_FAIL_BOTH_GOINTENT_15 0x09
#define P2P_STATUS_FAIL_INCOMPATIBLE_PROVSION 0x0A
#define P2P_STATUS_FAIL_USER_REJECT 0x0B
/* Value of Inviation Flags Attribute */
#define P2P_INVITATION_FLAGS_PERSISTENT BIT(0)
#define DMP_P2P_DEVCAP_SUPPORT (P2P_DEVCAP_SERVICE_DISCOVERY | \
P2P_DEVCAP_CLIENT_DISCOVERABILITY | \
P2P_DEVCAP_CONCURRENT_OPERATION | \
P2P_DEVCAP_INVITATION_PROC)
#define DMP_P2P_GRPCAP_SUPPORT (P2P_GRPCAP_INTRABSS)
/* Value of Device Capability Bitmap */
#define P2P_DEVCAP_SERVICE_DISCOVERY BIT(0)
#define P2P_DEVCAP_CLIENT_DISCOVERABILITY BIT(1)
#define P2P_DEVCAP_CONCURRENT_OPERATION BIT(2)
#define P2P_DEVCAP_INFRA_MANAGED BIT(3)
#define P2P_DEVCAP_DEVICE_LIMIT BIT(4)
#define P2P_DEVCAP_INVITATION_PROC BIT(5)
/* Value of Group Capability Bitmap */
#define P2P_GRPCAP_GO BIT(0)
#define P2P_GRPCAP_PERSISTENT_GROUP BIT(1)
#define P2P_GRPCAP_GROUP_LIMIT BIT(2)
#define P2P_GRPCAP_INTRABSS BIT(3)
#define P2P_GRPCAP_CROSS_CONN BIT(4)
#define P2P_GRPCAP_PERSISTENT_RECONN BIT(5)
#define P2P_GRPCAP_GROUP_FORMATION BIT(6)
/* P2P Public Action Frame ( Management Frame ) */
#define P2P_PUB_ACTION_ACTION 0x09
/* P2P Public Action Frame Type */
#define P2P_GO_NEGO_REQ 0
#define P2P_GO_NEGO_RESP 1
#define P2P_GO_NEGO_CONF 2
#define P2P_INVIT_REQ 3
#define P2P_INVIT_RESP 4
#define P2P_DEVDISC_REQ 5
#define P2P_DEVDISC_RESP 6
#define P2P_PROVISION_DISC_REQ 7
#define P2P_PROVISION_DISC_RESP 8
/* P2P Action Frame Type */
#define P2P_NOTICE_OF_ABSENCE 0
#define P2P_PRESENCE_REQUEST 1
#define P2P_PRESENCE_RESPONSE 2
#define P2P_GO_DISC_REQUEST 3
#define P2P_MAX_PERSISTENT_GROUP_NUM 10
#define P2P_PROVISIONING_SCAN_CNT 3
#define P2P_WILDCARD_SSID_LEN 7
#define P2P_FINDPHASE_EX_NONE 0 /* default value, used when: (1)p2p disabed or (2)p2p enabled but only do 1 scan phase */
#define P2P_FINDPHASE_EX_FULL 1 /* used when p2p enabled and want to do 1 scan phase and P2P_FINDPHASE_EX_MAX-1 find phase */
#define P2P_FINDPHASE_EX_SOCIAL_FIRST (P2P_FINDPHASE_EX_FULL+1)
#define P2P_FINDPHASE_EX_MAX 4
#define P2P_FINDPHASE_EX_SOCIAL_LAST P2P_FINDPHASE_EX_MAX
#define P2P_PROVISION_TIMEOUT 5000 /* 5 seconds timeout for sending the provision discovery request */
#define P2P_CONCURRENT_PROVISION_TIMEOUT 3000 /* 3 seconds timeout for sending the provision discovery request under concurrent mode */
#define P2P_GO_NEGO_TIMEOUT 5000 /* 5 seconds timeout for receiving the group negotation response */
#define P2P_CONCURRENT_GO_NEGO_TIMEOUT 3000 /* 3 seconds timeout for sending the negotiation request under concurrent mode */
#define P2P_TX_PRESCAN_TIMEOUT 100 /* 100ms */
#define P2P_INVITE_TIMEOUT 5000 /* 5 seconds timeout for sending the invitation request */
#define P2P_CONCURRENT_INVITE_TIMEOUT 3000 /* 3 seconds timeout for sending the invitation request under concurrent mode */
#define P2P_RESET_SCAN_CH 25000 /* 25 seconds timeout to reset the scan channel (based on channel plan) */
#define P2P_MAX_INTENT 15
#define P2P_MAX_NOA_NUM 2
/* WPS Configuration Method */
#define WPS_CM_NONE 0x0000
#define WPS_CM_LABEL 0x0004
#define WPS_CM_DISPLYA 0x0008
#define WPS_CM_EXTERNAL_NFC_TOKEN 0x0010
#define WPS_CM_INTEGRATED_NFC_TOKEN 0x0020
#define WPS_CM_NFC_INTERFACE 0x0040
#define WPS_CM_PUSH_BUTTON 0x0080
#define WPS_CM_KEYPAD 0x0100
#define WPS_CM_SW_PUHS_BUTTON 0x0280
#define WPS_CM_HW_PUHS_BUTTON 0x0480
#define WPS_CM_SW_DISPLAY_PIN 0x2008
#define WPS_CM_LCD_DISPLAY_PIN 0x4008
enum P2P_ROLE {
P2P_ROLE_DISABLE = 0,
P2P_ROLE_DEVICE = 1,
P2P_ROLE_CLIENT = 2,
P2P_ROLE_GO = 3
};
enum P2P_WPSINFO {
P2P_NO_WPSINFO = 0,
P2P_GOT_WPSINFO_PEER_DISPLAY_PIN = 1,
P2P_GOT_WPSINFO_SELF_DISPLAY_PIN = 2,
P2P_GOT_WPSINFO_PBC = 3,
};
#define P2P_PRIVATE_IOCTL_SET_LEN 64
#ifdef CONFIG_P2P_PS
enum P2P_PS_STATE {
P2P_PS_DISABLE = 0,
P2P_PS_ENABLE = 1,
P2P_PS_SCAN = 2,
P2P_PS_SCAN_DONE = 3,
P2P_PS_ALLSTASLEEP = 4, /* for P2P GO */
};
enum P2P_PS_MODE {
P2P_PS_NONE = 0,
P2P_PS_CTWINDOW = 1,
P2P_PS_NOA = 2,
P2P_PS_MIX = 3, /* CTWindow and NoA */
};
#endif /* CONFIG_P2P_PS */
/* =====================WFD Section=====================
* For Wi-Fi Display */
#define WFD_ATTR_DEVICE_INFO 0x00
#define WFD_ATTR_ASSOC_BSSID 0x01
#define WFD_ATTR_COUPLED_SINK_INFO 0x06
#define WFD_ATTR_LOCAL_IP_ADDR 0x08
#define WFD_ATTR_SESSION_INFO 0x09
#define WFD_ATTR_ALTER_MAC 0x0a
/* For WFD Device Information Attribute */
#define WFD_DEVINFO_SOURCE 0x0000
#define WFD_DEVINFO_PSINK 0x0001
#define WFD_DEVINFO_SSINK 0x0002
#define WFD_DEVINFO_DUAL 0x0003
#define WFD_DEVINFO_SESSION_AVAIL 0x0010
#define WFD_DEVINFO_WSD 0x0040
#define WFD_DEVINFO_PC_TDLS 0x0080
#define WFD_DEVINFO_HDCP_SUPPORT 0x0100
#define IP_MCAST_MAC(mac) ((mac[0] == 0x01) && (mac[1] == 0x00) && (mac[2] == 0x5e))
#define ICMPV6_MCAST_MAC(mac) ((mac[0] == 0x33) && (mac[1] == 0x33) && (mac[2] != 0xff))
#ifdef CONFIG_IOCTL_CFG80211
/* Regulatroy Domain */
struct regd_pair_mapping {
u16 reg_dmnenum;
u16 reg_5ghz_ctl;
u16 reg_2ghz_ctl;
};
struct rtw_regulatory {
char alpha2[2];
u16 country_code;
u16 max_power_level;
u32 tp_scale;
u16 current_rd;
u16 current_rd_ext;
int16_t power_limit;
struct regd_pair_mapping *regpair;
};
#endif
#ifdef CONFIG_WAPI_SUPPORT
#ifndef IW_AUTH_WAPI_VERSION_1
#define IW_AUTH_WAPI_VERSION_1 0x00000008
#endif
#ifndef IW_AUTH_KEY_MGMT_WAPI_PSK
#define IW_AUTH_KEY_MGMT_WAPI_PSK 0x04
#endif
#ifndef IW_AUTH_WAPI_ENABLED
#define IW_AUTH_WAPI_ENABLED 0x20
#endif
#ifndef IW_ENCODE_ALG_SM4
#define IW_ENCODE_ALG_SM4 0x20
#endif
#endif
#endif /* _WIFI_H_ */
|
2301_81045437/rtl8852be
|
include/wifi.h
|
C
|
agpl-3.0
| 40,443
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __WLAN_BSSDEF_H__
#define __WLAN_BSSDEF_H__
#define MAX_IE_SZ 768
#ifdef PLATFORM_LINUX
#define NDIS_802_11_LENGTH_SSID 32
#define NDIS_802_11_LENGTH_RATES 8
#define NDIS_802_11_LENGTH_RATES_EX 16
typedef unsigned char NDIS_802_11_MAC_ADDRESS[ETH_ALEN];
typedef long NDIS_802_11_RSSI; /* in dBm */
typedef unsigned char NDIS_802_11_RATES[NDIS_802_11_LENGTH_RATES]; /* Set of 8 data rates */
typedef unsigned char NDIS_802_11_RATES_EX[NDIS_802_11_LENGTH_RATES_EX]; /* Set of 16 data rates */
typedef struct _NDIS_802_11_SSID {
u32 SsidLength;
u8 Ssid[32];
} NDIS_802_11_SSID, *PNDIS_802_11_SSID;
/*
FW will only save the channel number in DSConfig.
ODI Handler will convert the channel number to freq. number.
*/
typedef struct _NDIS_802_11_CONFIGURATION {
u32 Length; /* Length of structure */
u32 BeaconPeriod; /* units are Kusec */
u32 ATIMWindow; /* units are Kusec */
u32 DSConfig; /* channel number */
} NDIS_802_11_CONFIGURATION, *PNDIS_802_11_CONFIGURATION;
typedef enum _NDIS_802_11_NETWORK_INFRASTRUCTURE {
Ndis802_11IBSS,
Ndis802_11Infrastructure,
Ndis802_11AutoUnknown,
Ndis802_11InfrastructureMax, /* Not a real value, defined as upper bound */
Ndis802_11APMode,
Ndis802_11Monitor,
Ndis802_11_mesh,
} NDIS_802_11_NETWORK_INFRASTRUCTURE, *PNDIS_802_11_NETWORK_INFRASTRUCTURE;
typedef struct _NDIS_802_11_FIXED_IEs {
u8 Timestamp[8];
u16 BeaconInterval;
u16 Capabilities;
} NDIS_802_11_FIXED_IEs, *PNDIS_802_11_FIXED_IEs;
typedef struct _NDIS_802_11_VARIABLE_IEs {
u8 ElementID;
u8 Length;
u8 data[1];
} NDIS_802_11_VARIABLE_IEs, *PNDIS_802_11_VARIABLE_IEs;
typedef enum _NDIS_802_11_AUTHENTICATION_MODE {
Ndis802_11AuthModeOpen,
Ndis802_11AuthModeShared,
Ndis802_11AuthModeAutoSwitch,
Ndis802_11AuthModeWPA,
Ndis802_11AuthModeWPAPSK,
Ndis802_11AuthModeWPANone,
Ndis802_11AuthModeWAPI,
Ndis802_11AuthModeMax /* Not a real mode, defined as upper bound */
} NDIS_802_11_AUTHENTICATION_MODE, *PNDIS_802_11_AUTHENTICATION_MODE;
typedef enum _NDIS_802_11_WEP_STATUS {
Ndis802_11WEPEnabled,
Ndis802_11Encryption1Enabled = Ndis802_11WEPEnabled,
Ndis802_11WEPDisabled,
Ndis802_11EncryptionDisabled = Ndis802_11WEPDisabled,
Ndis802_11WEPKeyAbsent,
Ndis802_11Encryption1KeyAbsent = Ndis802_11WEPKeyAbsent,
Ndis802_11WEPNotSupported,
Ndis802_11EncryptionNotSupported = Ndis802_11WEPNotSupported,
Ndis802_11Encryption2Enabled,
Ndis802_11Encryption2KeyAbsent,
Ndis802_11Encryption3Enabled,
Ndis802_11Encryption3KeyAbsent,
Ndis802_11_EncrypteionWAPI
} NDIS_802_11_WEP_STATUS, *PNDIS_802_11_WEP_STATUS,
NDIS_802_11_ENCRYPTION_STATUS, *PNDIS_802_11_ENCRYPTION_STATUS;
typedef struct _NDIS_802_11_WEP {
u32 Length; /* Length of this structure */
u32 KeyIndex; /* 0 is the per-client key, 1-N are the global keys */
u32 KeyLength; /* length of key in bytes */
u8 KeyMaterial[16];/* variable length depending on above field */
} NDIS_802_11_WEP, *PNDIS_802_11_WEP;
#endif /* end of #ifdef PLATFORM_LINUX */
#ifdef PLATFORM_FREEBSD
#define NDIS_802_11_LENGTH_SSID 32
#define NDIS_802_11_LENGTH_RATES 8
#define NDIS_802_11_LENGTH_RATES_EX 16
typedef unsigned char NDIS_802_11_MAC_ADDRESS[ETH_ALEN];
typedef long NDIS_802_11_RSSI; /* in dBm */
typedef unsigned char NDIS_802_11_RATES[NDIS_802_11_LENGTH_RATES]; /* Set of 8 data rates */
typedef unsigned char NDIS_802_11_RATES_EX[NDIS_802_11_LENGTH_RATES_EX]; /* Set of 16 data rates */
typedef struct _NDIS_802_11_SSID {
u32 SsidLength;
u8 Ssid[32];
} NDIS_802_11_SSID, *PNDIS_802_11_SSID;
/*
FW will only save the channel number in DSConfig.
ODI Handler will convert the channel number to freq. number.
*/
typedef struct _NDIS_802_11_CONFIGURATION {
u32 Length; /* Length of structure */
u32 BeaconPeriod; /* units are Kusec */
u32 ATIMWindow; /* units are Kusec */
u32 DSConfig; /* channel number */
} NDIS_802_11_CONFIGURATION, *PNDIS_802_11_CONFIGURATION;
typedef enum _NDIS_802_11_NETWORK_INFRASTRUCTURE {
Ndis802_11IBSS,
Ndis802_11Infrastructure,
Ndis802_11AutoUnknown,
Ndis802_11InfrastructureMax, /* Not a real value, defined as upper bound */
Ndis802_11APMode
} NDIS_802_11_NETWORK_INFRASTRUCTURE, *PNDIS_802_11_NETWORK_INFRASTRUCTURE;
typedef struct _NDIS_802_11_FIXED_IEs {
u8 Timestamp[8];
u16 BeaconInterval;
u16 Capabilities;
} NDIS_802_11_FIXED_IEs, *PNDIS_802_11_FIXED_IEs;
typedef struct _NDIS_802_11_VARIABLE_IEs {
u8 ElementID;
u8 Length;
u8 data[1];
} NDIS_802_11_VARIABLE_IEs, *PNDIS_802_11_VARIABLE_IEs;
typedef enum _NDIS_802_11_AUTHENTICATION_MODE {
Ndis802_11AuthModeOpen,
Ndis802_11AuthModeShared,
Ndis802_11AuthModeAutoSwitch,
Ndis802_11AuthModeWPA,
Ndis802_11AuthModeWPAPSK,
Ndis802_11AuthModeWPANone,
Ndis802_11AuthModeMax /* Not a real mode, defined as upper bound */
} NDIS_802_11_AUTHENTICATION_MODE, *PNDIS_802_11_AUTHENTICATION_MODE;
typedef enum _NDIS_802_11_WEP_STATUS {
Ndis802_11WEPEnabled,
Ndis802_11Encryption1Enabled = Ndis802_11WEPEnabled,
Ndis802_11WEPDisabled,
Ndis802_11EncryptionDisabled = Ndis802_11WEPDisabled,
Ndis802_11WEPKeyAbsent,
Ndis802_11Encryption1KeyAbsent = Ndis802_11WEPKeyAbsent,
Ndis802_11WEPNotSupported,
Ndis802_11EncryptionNotSupported = Ndis802_11WEPNotSupported,
Ndis802_11Encryption2Enabled,
Ndis802_11Encryption2KeyAbsent,
Ndis802_11Encryption3Enabled,
Ndis802_11Encryption3KeyAbsent
} NDIS_802_11_WEP_STATUS, *PNDIS_802_11_WEP_STATUS,
NDIS_802_11_ENCRYPTION_STATUS, *PNDIS_802_11_ENCRYPTION_STATUS;
typedef struct _NDIS_802_11_WEP {
u32 Length; /* Length of this structure */
u32 KeyIndex; /* 0 is the per-client key, 1-N are the global keys */
u32 KeyLength; /* length of key in bytes */
u8 KeyMaterial[16];/* variable length depending on above field */
} NDIS_802_11_WEP, *PNDIS_802_11_WEP;
#endif /* PLATFORM_FREEBSD */
#ifndef Ndis802_11APMode
#define Ndis802_11APMode (Ndis802_11InfrastructureMax+1)
#endif
/*RTW_WKARD_CORE_RSSI_V1 - GEORGIA MUST REFINE*/
typedef struct _WLAN_PHY_INFO {
u8 SignalStrength;/* (in percentage) */
u8 SignalQuality;/* (in percentage) */
s8 rssi; /*dbm*/
u8 Optimum_antenna; /* for Antenna diversity */
u8 is_cck_rate; /* 1:cck_rate */
s8 rx_snr[4];
#ifdef CONFIG_RTW_80211K
u32 free_cnt; /* freerun counter */
u8 rm_en_cap[5];
#endif
} WLAN_PHY_INFO, *PWLAN_PHY_INFO;
typedef struct _WLAN_BCN_INFO {
/* these infor get from rtw_get_encrypt_info when
* * translate scan to UI */
u8 encryp_protocol;/* ENCRYP_PROTOCOL_E: OPEN/WEP/WPA/WPA2/WAPI */
int group_cipher; /* WPA/WPA2 group cipher */
int pairwise_cipher;/* //WPA/WPA2/WEP pairwise cipher */
int is_8021x;
/* bwmode 20/40 and ch_offset UP/LOW */
unsigned short ht_cap_info;
unsigned char ht_info_infos_0;
} WLAN_BCN_INFO, *PWLAN_BCN_INFO;
enum bss_type {
BSS_TYPE_UNDEF,
BSS_TYPE_BCN = 1,
BSS_TYPE_PROB_REQ = 2,
BSS_TYPE_PROB_RSP = 3,
};
/* temporally add #pragma pack for structure alignment issue of
* WLAN_BSSID_EX and get_WLAN_BSSID_EX_sz()
*/
typedef struct _WLAN_BSSID_EX {
u32 Length;
NDIS_802_11_MAC_ADDRESS MacAddress;
u8 Reserved[2];/* [0]: IS beacon frame , bss_type*/
NDIS_802_11_SSID Ssid;
NDIS_802_11_SSID mesh_id;
u32 Privacy;
NDIS_802_11_CONFIGURATION Configuration;
NDIS_802_11_NETWORK_INFRASTRUCTURE InfrastructureMode;
NDIS_802_11_RATES_EX SupportedRates;
WLAN_PHY_INFO PhyInfo;
u32 IELength;
u8 IEs[MAX_IE_SZ]; /* (timestamp, beacon interval, and capability information) */
}
__attribute__((packed)) WLAN_BSSID_EX, *PWLAN_BSSID_EX;
#define BSS_EX_IES(bss_ex) ((bss_ex)->IEs)
#define BSS_EX_IES_LEN(bss_ex) ((bss_ex)->IELength)
#define BSS_EX_FIXED_IE_OFFSET(bss_ex) ((bss_ex)->Reserved[0] == BSS_TYPE_PROB_REQ ? 0 : 12)
#define BSS_EX_TLV_IES(bss_ex) (BSS_EX_IES((bss_ex)) + BSS_EX_FIXED_IE_OFFSET((bss_ex)))
#define BSS_EX_TLV_IES_LEN(bss_ex) (BSS_EX_IES_LEN((bss_ex)) - BSS_EX_FIXED_IE_OFFSET((bss_ex)))
__inline static uint get_WLAN_BSSID_EX_sz(WLAN_BSSID_EX *bss)
{
return sizeof(WLAN_BSSID_EX) - MAX_IE_SZ + bss->IELength;
}
struct wlan_network {
_list list;
int network_type; /* refer to ieee80211.h for WIRELESS_11A/B/G */
int fixed; /* set to fixed when not to be removed as site-surveying */
systime last_scanned; /* timestamp for the network */
#ifdef CONFIG_RTW_MESH
#if CONFIG_RTW_MESH_ACNODE_PREVENT
systime acnode_stime;
systime acnode_notify_etime;
#endif
#endif
int aid; /* will only be valid when a BSS is joinned. */
int join_res;
WLAN_BSSID_EX network; /* must be the last item */
};
enum VRTL_CARRIER_SENSE {
DISABLE_VCS,
ENABLE_VCS,
AUTO_VCS
};
enum VCS_TYPE {
NONE_VCS,
RTS_CTS,
CTS_TO_SELF
};
#define PWR_CAM 0
#define PWR_MINPS 1
#define PWR_MAXPS 2
#define PWR_UAPSD 3
#define PWR_VOIP 4
enum UAPSD_MAX_SP {
NO_LIMIT,
TWO_MSDU,
FOUR_MSDU,
SIX_MSDU
};
/* john */
#define NUM_PRE_AUTH_KEY 16
#define NUM_PMKID_CACHE NUM_PRE_AUTH_KEY
#endif /* #ifndef WLAN_BSSDEF_H_ */
|
2301_81045437/rtl8852be
|
include/wlan_bssdef.h
|
C
|
agpl-3.0
| 9,852
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __XMIT_OSDEP_H_
#define __XMIT_OSDEP_H_
struct pkt_file {
struct sk_buff *pkt;
SIZE_T pkt_len; /* the remainder length of the open_file */
_buffer *cur_buffer;
u8 *buf_start;
u8 *cur_addr;
SIZE_T buf_len;
};
#define NR_XMITFRAME 1256
#define NR_XMITFRAME_EXT 32
#define SZ_XMITFRAME_EXT 1536 /*MGNT frame*/
#ifdef CONFIG_PCI_HCI
#define SZ_ALIGN_XMITFRAME_EXT 4
#else
#ifdef USB_XMITBUF_ALIGN_SZ
#define SZ_ALIGN_XMITFRAME_EXT (USB_XMITBUF_ALIGN_SZ)
#else
#define SZ_ALIGN_XMITFRAME_EXT 512
#endif
#endif
struct xmit_priv;
struct pkt_attrib;
struct sta_xmit_priv;
struct xmit_frame;
struct xmit_buf;
#ifdef PLATFORM_FREEBSD
extern int rtw_xmit_entry(struct sk_buff *pkt, _nic_hdl pnetdev);
extern void rtw_xmit_entry_wrap(_nic_hdl pifp);
#endif /* PLATFORM_FREEBSD */
#ifdef PLATFORM_LINUX
extern int _rtw_xmit_entry(struct sk_buff *pkt, _nic_hdl pnetdev);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 32))
extern netdev_tx_t rtw_xmit_entry(struct sk_buff *pkt, _nic_hdl pnetdev);
#else
extern int rtw_xmit_entry(struct sk_buff *pkt, _nic_hdl pnetdev);
#endif
#ifdef RTW_PHL_TX
extern int rtw_os_tx(struct sk_buff *pkt, _nic_hdl pnetdev);
#endif
#endif /* PLATFORM_LINUX */
void rtw_os_xmit_schedule(_adapter *padapter);
#if 0 /*CONFIG_CORE_XMITBUF*/
int rtw_os_xmit_resource_alloc(_adapter *padapter, struct xmit_buf *pxmitbuf, u32 alloc_sz, u8 flag);
void rtw_os_xmit_resource_free(_adapter *padapter, struct xmit_buf *pxmitbuf, u32 free_sz, u8 flag);
#else
u8 rtw_os_xmit_resource_alloc(_adapter *padapter, struct xmit_frame *pxframe);
void rtw_os_xmit_resource_free(_adapter *padapter, struct xmit_frame *pxframe);
#endif
extern void rtw_set_tx_chksum_offload(struct sk_buff *pkt, struct pkt_attrib *pattrib);
extern uint rtw_remainder_len(struct pkt_file *pfile);
extern void _rtw_open_pktfile(struct sk_buff *pkt, struct pkt_file *pfile);
extern uint _rtw_pktfile_read(struct pkt_file *pfile, u8 *rmem, uint rlen);
extern sint rtw_endofpktfile(struct pkt_file *pfile);
extern void rtw_os_pkt_complete(_adapter *padapter, struct sk_buff *pkt);
extern void rtw_os_xmit_complete(_adapter *padapter, struct xmit_frame *pxframe);
void rtw_os_check_wakup_queue(_adapter *padapter, u16 os_qid);
bool rtw_os_check_stop_queue(_adapter *padapter, u16 os_qid);
void rtw_os_wake_queue_at_free_stainfo(_adapter *padapter, int *qcnt_freed);
void dump_os_queue(void *sel, _adapter *padapter);
void rtw_coalesce_tx_amsdu(_adapter *padapter, struct xmit_frame *pxframes[],
int xf_nr, bool amsdu, u32 *pktlen);
#endif /* __XMIT_OSDEP_H_ */
|
2301_81045437/rtl8852be
|
include/xmit_osdep.h
|
C
|
agpl-3.0
| 3,236
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#include "drv_types.h"
#ifdef CONFIG_PLATFORM_SPRD
/* gspi func & GPIO define */
#include <mach/gpio.h>/* 0915 */
#include <mach/board.h>
#if !(defined ANDROID_2X)
#ifndef GPIO_WIFI_POWER
#define GPIO_WIFI_POWER -1
#endif /* !GPIO_WIFI_POWER */
#ifndef GPIO_WIFI_RESET
#define GPIO_WIFI_RESET -1
#endif /* !GPIO_WIFI_RESET */
#ifndef GPIO_WIFI_PWDN
#define GPIO_WIFI_PWDN -1
#endif /* !GPIO_WIFI_RESET */
#ifdef CONFIG_GSPI_HCI
extern unsigned int oob_irq;
#endif /* CONFIG_GSPI_HCI */
#ifdef CONFIG_SDIO_HCI
extern int rtw_mp_mode;
#else /* !CONFIG_SDIO_HCI */
#endif /* !CONFIG_SDIO_HCI */
int rtw_wifi_gpio_init(void)
{
#ifdef CONFIG_GSPI_HCI
if (GPIO_WIFI_IRQ > 0) {
gpio_request(GPIO_WIFI_IRQ, "oob_irq");
gpio_direction_input(GPIO_WIFI_IRQ);
oob_irq = gpio_to_irq(GPIO_WIFI_IRQ);
RTW_INFO("%s oob_irq:%d\n", __func__, oob_irq);
}
#endif
if (GPIO_WIFI_RESET > 0)
gpio_request(GPIO_WIFI_RESET , "wifi_rst");
if (GPIO_WIFI_POWER > 0)
gpio_request(GPIO_WIFI_POWER, "wifi_power");
return 0;
}
int rtw_wifi_gpio_deinit(void)
{
#ifdef CONFIG_GSPI_HCI
if (GPIO_WIFI_IRQ > 0)
gpio_free(GPIO_WIFI_IRQ);
#endif
if (GPIO_WIFI_RESET > 0)
gpio_free(GPIO_WIFI_RESET);
if (GPIO_WIFI_POWER > 0)
gpio_free(GPIO_WIFI_POWER);
return 0;
}
/* Customer function to control hw specific wlan gpios */
void rtw_wifi_gpio_wlan_ctrl(int onoff)
{
switch (onoff) {
case WLAN_PWDN_OFF:
RTW_INFO("%s: call customer specific GPIO(%d) to set wifi power down pin to 0\n",
__FUNCTION__, GPIO_WIFI_RESET);
#ifndef CONFIG_DONT_BUS_SCAN
if (GPIO_WIFI_RESET > 0)
gpio_direction_output(GPIO_WIFI_RESET , 0);
#endif
break;
case WLAN_PWDN_ON:
RTW_INFO("%s: callc customer specific GPIO(%d) to set wifi power down pin to 1\n",
__FUNCTION__, GPIO_WIFI_RESET);
if (GPIO_WIFI_RESET > 0)
gpio_direction_output(GPIO_WIFI_RESET , 1);
break;
case WLAN_POWER_OFF:
break;
case WLAN_POWER_ON:
break;
}
}
#else /* ANDROID_2X */
#include <mach/ldo.h>
extern int sprd_3rdparty_gpio_wifi_pwd;
int rtw_wifi_gpio_init(void)
{
return 0;
}
int rtw_wifi_gpio_deinit(void)
{
return 0;
}
/* Customer function to control hw specific wlan gpios */
void rtw_wifi_gpio_wlan_ctrl(int onoff)
{
switch (onoff) {
case WLAN_PWDN_OFF:
RTW_INFO("%s: call customer specific GPIO to set wifi power down pin to 0\n",
__FUNCTION__);
if (sprd_3rdparty_gpio_wifi_pwd > 0)
gpio_set_value(sprd_3rdparty_gpio_wifi_pwd, 0);
if (sprd_3rdparty_gpio_wifi_pwd == 60) {
RTW_INFO("%s: turn off VSIM2 2.8V\n", __func__);
LDO_TurnOffLDO(LDO_LDO_SIM2);
}
break;
case WLAN_PWDN_ON:
RTW_INFO("%s: callc customer specific GPIO to set wifi power down pin to 1\n",
__FUNCTION__);
if (sprd_3rdparty_gpio_wifi_pwd == 60) {
RTW_INFO("%s: turn on VSIM2 2.8V\n", __func__);
LDO_SetVoltLevel(LDO_LDO_SIM2, LDO_VOLT_LEVEL0);
LDO_TurnOnLDO(LDO_LDO_SIM2);
}
if (sprd_3rdparty_gpio_wifi_pwd > 0)
gpio_set_value(sprd_3rdparty_gpio_wifi_pwd, 1);
break;
case WLAN_POWER_OFF:
break;
case WLAN_POWER_ON:
break;
case WLAN_BT_PWDN_OFF:
RTW_INFO("%s: call customer specific GPIO to set bt power down pin to 0\n",
__FUNCTION__);
break;
case WLAN_BT_PWDN_ON:
RTW_INFO("%s: callc customer specific GPIO to set bt power down pin to 1\n",
__FUNCTION__);
break;
}
}
#endif /* ANDROID_2X */
#elif defined(CONFIG_PLATFORM_ARM_RK3066)
#include <mach/iomux.h>
#define GPIO_WIFI_IRQ RK30_PIN2_PC2
extern unsigned int oob_irq;
int rtw_wifi_gpio_init(void)
{
#ifdef CONFIG_GSPI_HCI
if (GPIO_WIFI_IRQ > 0) {
rk30_mux_api_set(GPIO2C2_LCDC1DATA18_SMCBLSN1_HSADCDATA5_NAME, GPIO2C_GPIO2C2);/* jacky_test */
gpio_request(GPIO_WIFI_IRQ, "oob_irq");
gpio_direction_input(GPIO_WIFI_IRQ);
oob_irq = gpio_to_irq(GPIO_WIFI_IRQ);
RTW_INFO("%s oob_irq:%d\n", __func__, oob_irq);
}
#endif
return 0;
}
int rtw_wifi_gpio_deinit(void)
{
#ifdef CONFIG_GSPI_HCI
if (GPIO_WIFI_IRQ > 0)
gpio_free(GPIO_WIFI_IRQ);
#endif
return 0;
}
void rtw_wifi_gpio_wlan_ctrl(int onoff)
{
}
#ifdef CONFIG_GPIO_API
/* this is a demo for extending GPIO pin[7] as interrupt mode */
struct net_device *rtl_net;
extern int rtw_register_gpio_interrupt(struct net_device *netdev, int gpio_num, void(*callback)(u8 level));
extern int rtw_disable_gpio_interrupt(struct net_device *netdev, int gpio_num);
void gpio_int(u8 is_high)
{
RTW_INFO("%s level=%d\n", __func__, is_high);
}
int register_net_gpio_init(void)
{
rtl_net = dev_get_by_name(&init_net, "wlan0");
if (!rtl_net) {
RTW_PRINT("rtl_net init fail!\n");
return -1;
}
return rtw_register_gpio_interrupt(rtl_net, 7, gpio_int);
}
int unregister_net_gpio_init(void)
{
rtl_net = dev_get_by_name(&init_net, "wlan0");
if (!rtl_net) {
RTW_PRINT("rtl_net init fail!\n");
return -1;
}
return rtw_disable_gpio_interrupt(rtl_net, 7);
}
#endif
#else
int rtw_wifi_gpio_init(void)
{
return 0;
}
void rtw_wifi_gpio_wlan_ctrl(int onoff)
{
}
#endif /* CONFIG_PLATFORM_SPRD */
|
2301_81045437/rtl8852be
|
os_dep/linux/custom_gpio_linux.c
|
C
|
agpl-3.0
| 5,622
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _IOCTL_CFG80211_C_
#include <drv_types.h>
#ifdef CONFIG_IOCTL_CFG80211
#ifndef DBG_RTW_CFG80211_STA_PARAM
#define DBG_RTW_CFG80211_STA_PARAM 0
#endif
#ifndef DBG_RTW_CFG80211_MESH_CONF
#define DBG_RTW_CFG80211_MESH_CONF 0
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 0, 0))
#define STATION_INFO_INACTIVE_TIME BIT(NL80211_STA_INFO_INACTIVE_TIME)
#define STATION_INFO_LLID BIT(NL80211_STA_INFO_LLID)
#define STATION_INFO_PLID BIT(NL80211_STA_INFO_PLID)
#define STATION_INFO_PLINK_STATE BIT(NL80211_STA_INFO_PLINK_STATE)
#define STATION_INFO_SIGNAL BIT(NL80211_STA_INFO_SIGNAL)
#define STATION_INFO_TX_BITRATE BIT(NL80211_STA_INFO_TX_BITRATE)
#define STATION_INFO_RX_PACKETS BIT(NL80211_STA_INFO_RX_PACKETS)
#define STATION_INFO_TX_PACKETS BIT(NL80211_STA_INFO_TX_PACKETS)
#define STATION_INFO_TX_FAILED BIT(NL80211_STA_INFO_TX_FAILED)
#define STATION_INFO_LOCAL_PM BIT(NL80211_STA_INFO_LOCAL_PM)
#define STATION_INFO_PEER_PM BIT(NL80211_STA_INFO_PEER_PM)
#define STATION_INFO_NONPEER_PM BIT(NL80211_STA_INFO_NONPEER_PM)
#define STATION_INFO_ASSOC_REQ_IES 0
#endif /* Linux kernel >= 4.0.0 */
#define RTW_MAX_MGMT_TX_CNT (8)
#define RTW_MAX_MGMT_TX_MS_GAS (500)
#define RTW_SCAN_IE_LEN_MAX 2304
#define RTW_MAX_REMAIN_ON_CHANNEL_DURATION 5000 /* ms */
#define RTW_MAX_NUM_PMKIDS 4
#define RTW_CH_MAX_2G_CHANNEL 14 /* Max channel in 2G band */
#ifdef CONFIG_WAPI_SUPPORT
#ifndef WLAN_CIPHER_SUITE_SMS4
#define WLAN_CIPHER_SUITE_SMS4 0x00147201
#endif
#ifndef WLAN_AKM_SUITE_WAPI_PSK
#define WLAN_AKM_SUITE_WAPI_PSK 0x000FAC04
#endif
#ifndef WLAN_AKM_SUITE_WAPI_CERT
#define WLAN_AKM_SUITE_WAPI_CERT 0x000FAC12
#endif
#ifndef NL80211_WAPI_VERSION_1
#define NL80211_WAPI_VERSION_1 (1 << 2)
#endif
#endif /* CONFIG_WAPI_SUPPORT */
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(4, 11, 12))
#ifdef CONFIG_RTW_80211R
#define WLAN_AKM_SUITE_FT_8021X 0x000FAC03
#define WLAN_AKM_SUITE_FT_PSK 0x000FAC04
#endif
#endif
#define WIFI_CIPHER_SUITE_GCMP 0x000FAC08
#define WIFI_CIPHER_SUITE_GCMP_256 0x000FAC09
#define WIFI_CIPHER_SUITE_CCMP_256 0x000FAC0A
#define WIFI_CIPHER_SUITE_BIP_GMAC_128 0x000FAC0B
#define WIFI_CIPHER_SUITE_BIP_GMAC_256 0x000FAC0C
#define WIFI_CIPHER_SUITE_BIP_CMAC_256 0x000FAC0D
/*
* If customer need, defining this flag will make driver
* always return -EBUSY at the condition of scan deny.
*/
/* #define CONFIG_NOTIFY_SCAN_ABORT_WITH_BUSY */
static const u32 rtw_cipher_suites[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
#ifdef CONFIG_WAPI_SUPPORT
WLAN_CIPHER_SUITE_SMS4,
#endif /* CONFIG_WAPI_SUPPORT */
#ifdef CONFIG_IEEE80211W
WLAN_CIPHER_SUITE_AES_CMAC,
WIFI_CIPHER_SUITE_GCMP,
WIFI_CIPHER_SUITE_GCMP_256,
WIFI_CIPHER_SUITE_CCMP_256,
WIFI_CIPHER_SUITE_BIP_GMAC_128,
WIFI_CIPHER_SUITE_BIP_GMAC_256,
WIFI_CIPHER_SUITE_BIP_CMAC_256,
#endif /* CONFIG_IEEE80211W */
};
#define RATETAB_ENT(_rate, _rateid, _flags) \
{ \
.bitrate = (_rate), \
.hw_value = (_rateid), \
.flags = (_flags), \
}
#define CHAN2G(_channel, _freq, _flags) { \
.band = NL80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN5G(_channel, _flags) { \
.band = NL80211_BAND_5GHZ, \
.center_freq = 5000 + (5 * (_channel)), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0))
/* if wowlan is not supported, kernel generate a disconnect at each suspend
* cf: /net/wireless/sysfs.c, so register a stub wowlan.
* Moreover wowlan has to be enabled via a the nl80211_set_wowlan callback.
* (from user space, e.g. iw phy0 wowlan enable)
*/
static const struct wiphy_wowlan_support wowlan_stub = {
.flags = WIPHY_WOWLAN_ANY,
.n_patterns = 0,
.pattern_max_len = 0,
.pattern_min_len = 0,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 0))
.max_pkt_offset = 0,
#endif
};
#endif
static const struct ieee80211_rate rtw_rates[] = {
RATETAB_ENT(10, 0x1, 0),
RATETAB_ENT(20, 0x2, 0),
RATETAB_ENT(55, 0x4, 0),
RATETAB_ENT(110, 0x8, 0),
RATETAB_ENT(60, 0x10, 0),
RATETAB_ENT(90, 0x20, 0),
RATETAB_ENT(120, 0x40, 0),
RATETAB_ENT(180, 0x80, 0),
RATETAB_ENT(240, 0x100, 0),
RATETAB_ENT(360, 0x200, 0),
RATETAB_ENT(480, 0x400, 0),
RATETAB_ENT(540, 0x800, 0),
};
#define rtw_a_rates (rtw_rates + 4)
#define RTW_A_RATES_NUM 8
#define rtw_g_rates (rtw_rates + 0)
#define RTW_G_RATES_NUM 12
/* from center_ch_2g */
static const struct ieee80211_channel rtw_2ghz_channels[MAX_CHANNEL_NUM_2G] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
/* from center_ch_5g_20m */
static const struct ieee80211_channel rtw_5ghz_a_channels[MAX_CHANNEL_NUM_5G] = {
CHAN5G(36, 0), CHAN5G(40, 0), CHAN5G(44, 0), CHAN5G(48, 0),
CHAN5G(52, 0), CHAN5G(56, 0), CHAN5G(60, 0), CHAN5G(64, 0),
CHAN5G(100, 0), CHAN5G(104, 0), CHAN5G(108, 0), CHAN5G(112, 0),
CHAN5G(116, 0), CHAN5G(120, 0), CHAN5G(124, 0), CHAN5G(128, 0),
CHAN5G(132, 0), CHAN5G(136, 0), CHAN5G(140, 0), CHAN5G(144, 0),
CHAN5G(149, 0), CHAN5G(153, 0), CHAN5G(157, 0), CHAN5G(161, 0),
CHAN5G(165, 0), CHAN5G(169, 0), CHAN5G(173, 0), CHAN5G(177, 0),
};
enum nl80211_band _rtw_band_to_nl80211_band[] = {
[BAND_ON_24G] = NL80211_BAND_2GHZ,
[BAND_ON_5G] = NL80211_BAND_5GHZ,
#if CONFIG_IEEE80211_BAND_6GHZ
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 4, 0))
[BAND_ON_6G] = NL80211_BAND_6GHZ,
#else
[BAND_ON_6G] = NUM_NL80211_BANDS,
#endif
#endif
};
enum band_type _nl80211_band_to_rtw_band[] = {
[NL80211_BAND_2GHZ] = BAND_ON_24G,
[NL80211_BAND_5GHZ] = BAND_ON_5G,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
[NL80211_BAND_60GHZ] = BAND_MAX,
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 4, 0))
#if CONFIG_IEEE80211_BAND_6GHZ
[NL80211_BAND_6GHZ] = BAND_ON_6G,
#else
[NL80211_BAND_6GHZ] = BAND_MAX,
#endif
#endif
};
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
static u8 rtw_chbw_to_cfg80211_chan_def(struct wiphy *wiphy, struct cfg80211_chan_def *chdef, u8 ch, u8 bw, u8 offset, u8 ht)
{
int freq, cfreq;
struct ieee80211_channel *chan;
u8 ret = _FAIL;
_rtw_memset(chdef, 0, sizeof(*chdef));
freq = rtw_ch2freq(ch);
if (!freq)
goto exit;
cfreq = rtw_phl_get_center_ch(ch, bw, offset);
if (!cfreq)
goto exit;
cfreq = rtw_ch2freq(cfreq);
if (!cfreq)
goto exit;
chan = ieee80211_get_channel(wiphy, freq);
if (!chan)
goto exit;
if (bw == CHANNEL_WIDTH_20)
chdef->width = ht ? NL80211_CHAN_WIDTH_20 : NL80211_CHAN_WIDTH_20_NOHT;
else if (bw == CHANNEL_WIDTH_40)
chdef->width = NL80211_CHAN_WIDTH_40;
else if (bw == CHANNEL_WIDTH_80)
chdef->width = NL80211_CHAN_WIDTH_80;
else if (bw == CHANNEL_WIDTH_160)
chdef->width = NL80211_CHAN_WIDTH_160;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
else if (bw == CHANNEL_WIDTH_5)
chdef->width = NL80211_CHAN_WIDTH_5;
else if (bw == CHANNEL_WIDTH_10)
chdef->width = NL80211_CHAN_WIDTH_10;
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0)) */
else {
rtw_warn_on(1);
goto exit;
}
chdef->chan = chan;
chdef->center_freq1 = cfreq;
ret = _SUCCESS;
exit:
return ret;
}
static const char *nl80211_chan_width_str(enum nl80211_chan_width cwidth)
{
switch (cwidth) {
case NL80211_CHAN_WIDTH_20_NOHT:
return "20_NOHT";
case NL80211_CHAN_WIDTH_20:
return "20";
case NL80211_CHAN_WIDTH_40:
return "40";
case NL80211_CHAN_WIDTH_80:
return "80";
case NL80211_CHAN_WIDTH_80P80:
return "80+80";
case NL80211_CHAN_WIDTH_160:
return "160";
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
case NL80211_CHAN_WIDTH_5:
return "5";
case NL80211_CHAN_WIDTH_10:
return "10";
#endif
default:
return "INVALID";
};
}
static void rtw_get_chbw_from_cfg80211_chan_def(struct cfg80211_chan_def *chdef, u8 *ht, u8 *ch, u8 *bw, u8 *offset)
{
int pri_freq;
struct ieee80211_channel *chan = chdef->chan;
pri_freq = rtw_ch2freq(chan->hw_value);
if (!pri_freq) {
RTW_INFO("invalid channel:%d\n", chan->hw_value);
rtw_warn_on(1);
*ch = 0;
return;
}
switch (chdef->width) {
case NL80211_CHAN_WIDTH_20_NOHT:
*ht = 0;
*bw = CHANNEL_WIDTH_20;
*offset = CHAN_OFFSET_NO_EXT;
*ch = chan->hw_value;
break;
case NL80211_CHAN_WIDTH_20:
*ht = 1;
*bw = CHANNEL_WIDTH_20;
*offset = CHAN_OFFSET_NO_EXT;
*ch = chan->hw_value;
break;
case NL80211_CHAN_WIDTH_40:
*ht = 1;
*bw = CHANNEL_WIDTH_40;
*offset = (pri_freq > chdef->center_freq1)
? CHAN_OFFSET_LOWER
: CHAN_OFFSET_UPPER;
if (rtw_get_offset_by_chbw(chan->hw_value, *bw, offset))
*ch = chan->hw_value;
break;
case NL80211_CHAN_WIDTH_80:
*ht = 1;
*bw = CHANNEL_WIDTH_80;
if (rtw_get_offset_by_chbw(chan->hw_value, *bw, offset))
*ch = chan->hw_value;
break;
case NL80211_CHAN_WIDTH_160:
*ht = 1;
*bw = CHANNEL_WIDTH_160;
if (rtw_get_offset_by_chbw(chan->hw_value, *bw, offset))
*ch = chan->hw_value;
break;
case NL80211_CHAN_WIDTH_80P80:
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
case NL80211_CHAN_WIDTH_5:
case NL80211_CHAN_WIDTH_10:
#endif
default:
*ht = 0;
*bw = CHANNEL_WIDTH_20;
*offset = CHAN_OFFSET_NO_EXT;
RTW_INFO("unsupported cwidth:%s\n", nl80211_chan_width_str(chdef->width));
rtw_warn_on(1);
};
}
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29))
static const char *nl80211_channel_type_str(enum nl80211_channel_type ctype)
{
switch (ctype) {
case NL80211_CHAN_NO_HT:
return "NO_HT";
case NL80211_CHAN_HT20:
return "HT20";
case NL80211_CHAN_HT40MINUS:
return "HT40-";
case NL80211_CHAN_HT40PLUS:
return "HT40+";
default:
return "INVALID";
};
}
static enum nl80211_channel_type rtw_chbw_to_nl80211_channel_type(u8 ch, u8 bw, u8 offset, u8 ht)
{
rtw_warn_on(!ht && (bw >= CHANNEL_WIDTH_40 || offset != CHAN_OFFSET_NO_EXT));
if (!ht)
return NL80211_CHAN_NO_HT;
if (bw >= CHANNEL_WIDTH_40) {
if (offset == CHAN_OFFSET_LOWER)
return NL80211_CHAN_HT40MINUS;
else if (offset == CHAN_OFFSET_UPPER)
return NL80211_CHAN_HT40PLUS;
else
rtw_warn_on(1);
}
return NL80211_CHAN_HT20;
}
static void rtw_get_chbw_from_nl80211_channel_type(struct ieee80211_channel *chan, enum nl80211_channel_type ctype, u8 *ht, u8 *ch, u8 *bw, u8 *offset)
{
int pri_freq;
pri_freq = rtw_ch2freq(chan->hw_value);
if (!pri_freq) {
RTW_INFO("invalid channel:%d\n", chan->hw_value);
rtw_warn_on(1);
*ch = 0;
return;
}
*ch = chan->hw_value;
switch (ctype) {
case NL80211_CHAN_NO_HT:
*ht = 0;
*bw = CHANNEL_WIDTH_20;
*offset = CHAN_OFFSET_NO_EXT;
break;
case NL80211_CHAN_HT20:
*ht = 1;
*bw = CHANNEL_WIDTH_20;
*offset = CHAN_OFFSET_NO_EXT;
break;
case NL80211_CHAN_HT40MINUS:
*ht = 1;
*bw = CHANNEL_WIDTH_40;
*offset = CHAN_OFFSET_LOWER;
break;
case NL80211_CHAN_HT40PLUS:
*ht = 1;
*bw = CHANNEL_WIDTH_40;
*offset = CHAN_OFFSET_UPPER;
break;
default:
*ht = 0;
*bw = CHANNEL_WIDTH_20;
*offset = CHAN_OFFSET_NO_EXT;
RTW_INFO("unsupported ctype:%s\n", nl80211_channel_type_str(ctype));
rtw_warn_on(1);
};
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29)) */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
bool rtw_cfg80211_allow_ch_switch_notify(_adapter *adapter)
{
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 19, 0))
if ((!MLME_IS_AP(adapter))
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 13, 0))
&& (!MLME_IS_ADHOC(adapter))
&& (!MLME_IS_ADHOC_MASTER(adapter))
&& (!MLME_IS_MESH(adapter))
#elif defined(CONFIG_RTW_MESH)
&& (!MLME_IS_MESH(adapter))
#endif
)
return 0;
#endif
return 1;
}
u8 rtw_cfg80211_ch_switch_notify(_adapter *adapter, u8 ch, u8 bw, u8 offset,
u8 ht, bool started)
{
struct wiphy *wiphy = adapter_to_wiphy(adapter);
u8 ret = _SUCCESS;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
struct cfg80211_chan_def chdef;
ret = rtw_chbw_to_cfg80211_chan_def(wiphy, &chdef, ch, bw, offset, ht);
if (ret != _SUCCESS)
goto exit;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0))
if (started) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 11, 0))
/* --- cfg80211_ch_switch_started_notfiy() ---
* A new parameter, bool quiet, is added from Linux kernel v5.11,
* to see if block-tx was requested by the AP. since currently,
* the API is used for station before connected in rtw_chk_start_clnt_join()
* the quiet is set to false here first. May need to refine it if
* called by others with block-tx.
*/
cfg80211_ch_switch_started_notify(adapter->pnetdev, &chdef, 0, false);
#else
cfg80211_ch_switch_started_notify(adapter->pnetdev, &chdef, 0);
#endif
goto exit;
}
#endif
if (!rtw_cfg80211_allow_ch_switch_notify(adapter))
goto exit;
cfg80211_ch_switch_notify(adapter->pnetdev, &chdef);
#else
int freq = rtw_ch2freq(ch);
enum nl80211_channel_type ctype;
if (!rtw_cfg80211_allow_ch_switch_notify(adapter))
goto exit;
if (!freq) {
ret = _FAIL;
goto exit;
}
ctype = rtw_chbw_to_nl80211_channel_type(ch, bw, offset, ht);
cfg80211_ch_switch_notify(adapter->pnetdev, freq, ctype);
#endif
exit:
return ret;
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)) */
void rtw_2g_channels_init(struct ieee80211_channel *channels)
{
_rtw_memcpy((void *)channels, (void *)rtw_2ghz_channels, sizeof(rtw_2ghz_channels));
}
void rtw_5g_channels_init(struct ieee80211_channel *channels)
{
_rtw_memcpy((void *)channels, (void *)rtw_5ghz_a_channels, sizeof(rtw_5ghz_a_channels));
}
void rtw_2g_rates_init(struct ieee80211_rate *rates)
{
_rtw_memcpy(rates, rtw_g_rates,
sizeof(struct ieee80211_rate) * RTW_G_RATES_NUM
);
}
void rtw_5g_rates_init(struct ieee80211_rate *rates)
{
_rtw_memcpy(rates, rtw_a_rates,
sizeof(struct ieee80211_rate) * RTW_A_RATES_NUM
);
}
struct ieee80211_supported_band *rtw_spt_band_alloc(enum band_type band)
{
struct ieee80211_supported_band *spt_band = NULL;
int n_channels, n_bitrates;
if (rtw_band_to_nl80211_band(band) == NUM_NL80211_BANDS)
goto exit;
if (band == BAND_ON_24G) {
n_channels = MAX_CHANNEL_NUM_2G;
n_bitrates = RTW_G_RATES_NUM;
} else if (band == BAND_ON_5G) {
n_channels = MAX_CHANNEL_NUM_5G;
n_bitrates = RTW_A_RATES_NUM;
} else
goto exit;
spt_band = (struct ieee80211_supported_band *)rtw_zmalloc(
sizeof(struct ieee80211_supported_band)
+ sizeof(struct ieee80211_channel) * n_channels
+ sizeof(struct ieee80211_rate) * n_bitrates
#if defined(CONFIG_80211AX_HE) && (defined(CPTCFG_VERSION) || (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)))
+ sizeof(struct ieee80211_sband_iftype_data) * 2
#endif /* defined(CONFIG_80211AX_HE) && LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) */
);
if (!spt_band)
goto exit;
spt_band->channels = (struct ieee80211_channel *)(((u8 *)spt_band) + sizeof(struct ieee80211_supported_band));
spt_band->bitrates = (struct ieee80211_rate *)(((u8 *)spt_band->channels) + sizeof(struct ieee80211_channel) * n_channels);
spt_band->band = rtw_band_to_nl80211_band(band);
spt_band->n_channels = n_channels;
spt_band->n_bitrates = n_bitrates;
#if defined(CONFIG_80211AX_HE) && (defined(CPTCFG_VERSION) || (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)))
spt_band->iftype_data = (struct ieee80211_sband_iftype_data *)(((u8 *)spt_band->bitrates)
+ sizeof(struct ieee80211_rate) * n_bitrates);
spt_band->n_iftype_data = 0;
#endif /* defined(CONFIG_80211AX_HE) && LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) */
if (band == BAND_ON_24G) {
rtw_2g_channels_init(spt_band->channels);
rtw_2g_rates_init(spt_band->bitrates);
} else if (band == BAND_ON_5G) {
rtw_5g_channels_init(spt_band->channels);
rtw_5g_rates_init(spt_band->bitrates);
}
/* spt_band.ht_cap */
exit:
return spt_band;
}
void rtw_spt_band_free(struct ieee80211_supported_band *spt_band)
{
u32 size = 0;
if (!spt_band)
return;
if (spt_band->band == NL80211_BAND_2GHZ) {
size = sizeof(struct ieee80211_supported_band)
+ sizeof(struct ieee80211_channel) * MAX_CHANNEL_NUM_2G
+ sizeof(struct ieee80211_rate) * RTW_G_RATES_NUM;
} else if (spt_band->band == NL80211_BAND_5GHZ) {
size = sizeof(struct ieee80211_supported_band)
+ sizeof(struct ieee80211_channel) * MAX_CHANNEL_NUM_5G
+ sizeof(struct ieee80211_rate) * RTW_A_RATES_NUM;
} else {
}
#if defined(CONFIG_80211AX_HE) && (defined(CPTCFG_VERSION) || (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)))
size += sizeof(struct ieee80211_sband_iftype_data) * 2;
#endif /* defined(CONFIG_80211AX_HE) && LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) */
rtw_mfree((u8 *)spt_band, size);
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
static const struct ieee80211_txrx_stypes
rtw_cfg80211_default_mgmt_stypes[NUM_NL80211_IFTYPES] = {
[NL80211_IFTYPE_ADHOC] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ACTION >> 4)
},
[NL80211_IFTYPE_STATION] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_AUTH >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
},
[NL80211_IFTYPE_AP] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4) |
BIT(IEEE80211_STYPE_DISASSOC >> 4) |
BIT(IEEE80211_STYPE_AUTH >> 4) |
BIT(IEEE80211_STYPE_DEAUTH >> 4) |
BIT(IEEE80211_STYPE_ACTION >> 4)
},
[NL80211_IFTYPE_AP_VLAN] = {
/* copy AP */
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4) |
BIT(IEEE80211_STYPE_DISASSOC >> 4) |
BIT(IEEE80211_STYPE_AUTH >> 4) |
BIT(IEEE80211_STYPE_DEAUTH >> 4) |
BIT(IEEE80211_STYPE_ACTION >> 4)
},
[NL80211_IFTYPE_P2P_CLIENT] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
},
[NL80211_IFTYPE_P2P_GO] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4) |
BIT(IEEE80211_STYPE_DISASSOC >> 4) |
BIT(IEEE80211_STYPE_AUTH >> 4) |
BIT(IEEE80211_STYPE_DEAUTH >> 4) |
BIT(IEEE80211_STYPE_ACTION >> 4)
},
#if defined(RTW_DEDICATED_P2P_DEVICE)
[NL80211_IFTYPE_P2P_DEVICE] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
},
#endif
#if defined(CONFIG_RTW_MESH)
[NL80211_IFTYPE_MESH_POINT] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ACTION >> 4)
| BIT(IEEE80211_STYPE_AUTH >> 4)
},
#endif
};
#endif
NDIS_802_11_NETWORK_INFRASTRUCTURE nl80211_iftype_to_rtw_network_type(enum nl80211_iftype type)
{
switch (type) {
case NL80211_IFTYPE_ADHOC:
return Ndis802_11IBSS;
#if defined(CONFIG_P2P) && ((LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE))
case NL80211_IFTYPE_P2P_CLIENT:
#endif
case NL80211_IFTYPE_STATION:
return Ndis802_11Infrastructure;
#ifdef CONFIG_AP_MODE
#if defined(CONFIG_P2P) && ((LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE))
case NL80211_IFTYPE_P2P_GO:
#endif
case NL80211_IFTYPE_AP:
return Ndis802_11APMode;
#endif
#ifdef CONFIG_RTW_MESH
case NL80211_IFTYPE_MESH_POINT:
return Ndis802_11_mesh;
#endif
#ifdef CONFIG_WIFI_MONITOR
case NL80211_IFTYPE_MONITOR:
return Ndis802_11Monitor;
#endif /* CONFIG_WIFI_MONITOR */
default:
return Ndis802_11InfrastructureMax;
}
}
u32 nl80211_iftype_to_rtw_mlme_state(enum nl80211_iftype type)
{
switch (type) {
case NL80211_IFTYPE_ADHOC:
return WIFI_ADHOC_STATE;
#if defined(CONFIG_P2P) && ((LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE))
case NL80211_IFTYPE_P2P_CLIENT:
#endif
case NL80211_IFTYPE_STATION:
return WIFI_STATION_STATE;
#ifdef CONFIG_AP_MODE
#if defined(CONFIG_P2P) && ((LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE))
case NL80211_IFTYPE_P2P_GO:
#endif
case NL80211_IFTYPE_AP:
return WIFI_AP_STATE;
#endif
#ifdef CONFIG_RTW_MESH
case NL80211_IFTYPE_MESH_POINT:
return WIFI_MESH_STATE;
#endif
case NL80211_IFTYPE_MONITOR:
return WIFI_MONITOR_STATE;
default:
return WIFI_NULL_STATE;
}
}
static int rtw_cfg80211_sync_iftype(_adapter *adapter)
{
struct wireless_dev *rtw_wdev = adapter->rtw_wdev;
if (!(nl80211_iftype_to_rtw_mlme_state(rtw_wdev->iftype) & MLME_STATE(adapter))) {
/* iftype and mlme state is not syc */
NDIS_802_11_NETWORK_INFRASTRUCTURE network_type;
network_type = nl80211_iftype_to_rtw_network_type(rtw_wdev->iftype);
if (network_type != Ndis802_11InfrastructureMax) {
if (rtw_pwr_wakeup(adapter) == _FAIL) {
RTW_WARN(FUNC_ADPT_FMT" call rtw_pwr_wakeup fail\n", FUNC_ADPT_ARG(adapter));
return _FAIL;
}
rtw_set_802_11_infrastructure_mode(adapter, network_type, 0);
rtw_setopmode_cmd(adapter, network_type, RTW_CMDF_WAIT_ACK);
} else {
rtw_warn_on(1);
RTW_WARN(FUNC_ADPT_FMT" iftype:%u is not support\n", FUNC_ADPT_ARG(adapter), rtw_wdev->iftype);
return _FAIL;
}
}
return _SUCCESS;
}
static u64 rtw_get_systime_us(void)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0))
return ktime_to_us(ktime_get_boottime());
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39))
struct timespec ts;
get_monotonic_boottime(&ts);
return ((u64)ts.tv_sec * 1000000) + ts.tv_nsec / 1000;
#else
struct timeval tv;
do_gettimeofday(&tv);
return ((u64)tv.tv_sec * 1000000) + tv.tv_usec;
#endif
}
/* Try to remove non target BSS's SR to reduce PBC overlap rate */
static int rtw_cfg80211_clear_wps_sr_of_non_target_bss(_adapter *padapter, struct wlan_network *pnetwork, struct cfg80211_ssid *req_ssid)
{
int ret = 0;
u8 *psr = NULL, sr = 0;
NDIS_802_11_SSID *pssid = &pnetwork->network.Ssid;
u32 wpsielen = 0;
u8 *wpsie = NULL;
if (pssid->SsidLength == req_ssid->ssid_len
&& _rtw_memcmp(pssid->Ssid, req_ssid->ssid, req_ssid->ssid_len) == _TRUE)
goto exit;
wpsie = rtw_get_wps_ie(pnetwork->network.IEs + _FIXED_IE_LENGTH_
, pnetwork->network.IELength - _FIXED_IE_LENGTH_, NULL, &wpsielen);
if (wpsie && wpsielen > 0)
psr = rtw_get_wps_attr_content(wpsie, wpsielen, WPS_ATTR_SELECTED_REGISTRAR, &sr, NULL);
if (psr && sr) {
if (0)
RTW_INFO("clear sr of non target bss:%s("MAC_FMT")\n"
, pssid->Ssid, MAC_ARG(pnetwork->network.MacAddress));
*psr = 0; /* clear sr */
ret = 1;
}
exit:
return ret;
}
#define MAX_BSSINFO_LEN 1000
struct cfg80211_bss *rtw_cfg80211_inform_bss(_adapter *padapter, struct wlan_network *pnetwork)
{
struct ieee80211_channel *notify_channel;
struct cfg80211_bss *bss = NULL;
/* struct ieee80211_supported_band *band; */
u16 channel;
u32 freq;
u64 notify_timestamp;
u16 notify_capability;
u16 notify_interval;
u8 *notify_ie;
size_t notify_ielen;
s32 notify_signal;
/* u8 buf[MAX_BSSINFO_LEN]; */
u8 *pbuf;
size_t buf_size = MAX_BSSINFO_LEN;
size_t len, bssinf_len = 0;
struct rtw_ieee80211_hdr *pwlanhdr;
unsigned short *fctrl;
u8 bc_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
struct wireless_dev *wdev = padapter->rtw_wdev;
struct wiphy *wiphy = wdev->wiphy;
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
pbuf = rtw_zmalloc(buf_size);
if (pbuf == NULL) {
RTW_INFO("%s pbuf allocate failed !!\n", __FUNCTION__);
return bss;
}
/* RTW_INFO("%s\n", __func__); */
bssinf_len = pnetwork->network.IELength + sizeof(struct rtw_ieee80211_hdr_3addr);
if (bssinf_len > buf_size) {
RTW_INFO("%s IE Length too long > %zu byte\n", __FUNCTION__, buf_size);
goto exit;
}
#ifndef CONFIG_WAPI_SUPPORT
{
u16 wapi_len = 0;
if (rtw_get_wapi_ie(pnetwork->network.IEs, pnetwork->network.IELength, NULL, &wapi_len) > 0) {
if (wapi_len > 0) {
RTW_INFO("%s, no support wapi!\n", __FUNCTION__);
goto exit;
}
}
}
#endif /* !CONFIG_WAPI_SUPPORT */
channel = pnetwork->network.Configuration.DSConfig;
freq = rtw_ch2freq(channel);
notify_channel = ieee80211_get_channel(wiphy, freq);
if (0)
notify_timestamp = le64_to_cpu(*(u64 *)rtw_get_timestampe_from_ie(pnetwork->network.IEs));
else
notify_timestamp = rtw_get_systime_us();
notify_interval = le16_to_cpu(*(u16 *)rtw_get_beacon_interval_from_ie(pnetwork->network.IEs));
notify_capability = le16_to_cpu(*(u16 *)rtw_get_capability_from_ie(pnetwork->network.IEs));
notify_ie = pnetwork->network.IEs + _FIXED_IE_LENGTH_;
notify_ielen = pnetwork->network.IELength - _FIXED_IE_LENGTH_;
/*RTW_WKARD_CORE_RSSI_V1*/
/* We've set wiphy's signal_type as CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm) */
if (check_fwstate(pmlmepriv, WIFI_ASOC_STATE) == _TRUE &&
is_same_network(&pmlmepriv->cur_network.network, &pnetwork->network)) {
notify_signal = 100 * rtw_phl_rssi_to_dbm(padapter->recvinfo.signal_strength); /* dbm */
} else {
notify_signal = 100 * rtw_phl_rssi_to_dbm(pnetwork->network.PhyInfo.SignalStrength); /* pnetwork->network.PhyInfo.rssi -dbm */
}
#if 0
RTW_INFO("bssid: "MAC_FMT", rssi:%d\t", MAC_ARG(pnetwork->network.MacAddress),notify_signal);
RTW_INFO("ss:%d, sq:%d, orssi:%d\n",
pnetwork->network.PhyInfo.SignalStrength,
pnetwork->network.PhyInfo.SignalQuality,
pnetwork->network.PhyInfo.rssi);
#endif
#if 0
RTW_INFO("bssid: "MAC_FMT"\n", MAC_ARG(pnetwork->network.MacAddress));
RTW_INFO("Channel: %d(%d)\n", channel, freq);
RTW_INFO("Capability: %X\n", notify_capability);
RTW_INFO("Beacon interval: %d\n", notify_interval);
RTW_INFO("Signal: %d\n", notify_signal);
RTW_INFO("notify_timestamp: %llu\n", notify_timestamp);
#endif
/* pbuf = buf; */
pwlanhdr = (struct rtw_ieee80211_hdr *)pbuf;
fctrl = &(pwlanhdr->frame_ctl);
*(fctrl) = 0;
SetSeqNum(pwlanhdr, 0/*pmlmeext->mgnt_seq*/);
/* pmlmeext->mgnt_seq++; */
if (pnetwork->network.Reserved[0] == BSS_TYPE_BCN) { /* WIFI_BEACON */
_rtw_memcpy(pwlanhdr->addr1, bc_addr, ETH_ALEN);
set_frame_sub_type(pbuf, WIFI_BEACON);
} else {
_rtw_memcpy(pwlanhdr->addr1, adapter_mac_addr(padapter), ETH_ALEN);
set_frame_sub_type(pbuf, WIFI_PROBERSP);
}
_rtw_memcpy(pwlanhdr->addr2, pnetwork->network.MacAddress, ETH_ALEN);
_rtw_memcpy(pwlanhdr->addr3, pnetwork->network.MacAddress, ETH_ALEN);
/* pbuf += sizeof(struct rtw_ieee80211_hdr_3addr); */
len = sizeof(struct rtw_ieee80211_hdr_3addr);
_rtw_memcpy((pbuf + len), pnetwork->network.IEs, pnetwork->network.IELength);
*((u64 *)(pbuf + len)) = cpu_to_le64(notify_timestamp);
len += pnetwork->network.IELength;
#if defined(CONFIG_P2P) && 0
if(rtw_get_p2p_ie(pnetwork->network.IEs+12, pnetwork->network.IELength-12, NULL, NULL))
RTW_INFO("%s, got p2p_ie\n", __func__);
#endif
#if 1
bss = cfg80211_inform_bss_frame(wiphy, notify_channel, (struct ieee80211_mgmt *)pbuf,
len, notify_signal, GFP_ATOMIC);
#else
bss = cfg80211_inform_bss(wiphy, notify_channel, (const u8 *)pnetwork->network.MacAddress,
notify_timestamp, notify_capability, notify_interval, notify_ie,
notify_ielen, notify_signal, GFP_ATOMIC/*GFP_KERNEL*/);
#endif
if (unlikely(!bss)) {
RTW_INFO(FUNC_ADPT_FMT" bss NULL\n", FUNC_ADPT_ARG(padapter));
goto exit;
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 38))
#ifndef COMPAT_KERNEL_RELEASE
/* patch for cfg80211, update beacon ies to information_elements */
if (pnetwork->network.Reserved[0] == BSS_TYPE_BCN) { /* WIFI_BEACON */
if (bss->len_information_elements != bss->len_beacon_ies) {
bss->information_elements = bss->beacon_ies;
bss->len_information_elements = bss->len_beacon_ies;
}
}
#endif /* COMPAT_KERNEL_RELEASE */
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 38) */
#if 0
{
if (bss->information_elements == bss->proberesp_ies) {
if (bss->len_information_elements != bss->len_proberesp_ies)
RTW_INFO("error!, len_information_elements != bss->len_proberesp_ies\n");
} else if (bss->len_information_elements < bss->len_beacon_ies) {
bss->information_elements = bss->beacon_ies;
bss->len_information_elements = bss->len_beacon_ies;
}
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0)
cfg80211_put_bss(wiphy, bss);
#else
cfg80211_put_bss(bss);
#endif
exit:
if (pbuf)
rtw_mfree(pbuf, buf_size);
return bss;
}
/*
Check the given bss is valid by kernel API cfg80211_get_bss()
@padapter : the given adapter
return _TRUE if bss is valid, _FALSE for not found.
*/
int rtw_cfg80211_check_bss(_adapter *padapter)
{
WLAN_BSSID_EX *pnetwork = &(padapter->mlmeextpriv.mlmext_info.network);
struct cfg80211_bss *bss = NULL;
struct ieee80211_channel *notify_channel = NULL;
u32 freq;
if (!(pnetwork) || !(padapter->rtw_wdev))
return _FALSE;
freq = rtw_ch2freq(pnetwork->Configuration.DSConfig);
notify_channel = ieee80211_get_channel(padapter->rtw_wdev->wiphy, freq);
bss = cfg80211_get_bss(padapter->rtw_wdev->wiphy, notify_channel,
pnetwork->MacAddress, pnetwork->Ssid.Ssid,
pnetwork->Ssid.SsidLength,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
pnetwork->InfrastructureMode == Ndis802_11Infrastructure?IEEE80211_BSS_TYPE_ESS:IEEE80211_BSS_TYPE_IBSS,
IEEE80211_PRIVACY(pnetwork->Privacy));
#else
pnetwork->InfrastructureMode == Ndis802_11Infrastructure?WLAN_CAPABILITY_ESS:WLAN_CAPABILITY_IBSS, pnetwork->InfrastructureMode == Ndis802_11Infrastructure?WLAN_CAPABILITY_ESS:WLAN_CAPABILITY_IBSS);
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0)
cfg80211_put_bss(padapter->rtw_wdev->wiphy, bss);
#else
cfg80211_put_bss(bss);
#endif
return bss != NULL;
}
void rtw_cfg80211_ibss_indicate_connect(_adapter *padapter)
{
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct wlan_network *cur_network = &(pmlmepriv->cur_network);
struct wireless_dev *pwdev = padapter->rtw_wdev;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 15, 0))
struct wiphy *wiphy = pwdev->wiphy;
int freq = 2412;
struct ieee80211_channel *notify_channel;
#endif
RTW_INFO(FUNC_ADPT_FMT"\n", FUNC_ADPT_ARG(padapter));
if (pwdev->iftype != NL80211_IFTYPE_ADHOC)
return;
if (!rtw_cfg80211_check_bss(padapter)) {
WLAN_BSSID_EX *pnetwork = &(padapter->mlmeextpriv.mlmext_info.network);
struct wlan_network *scanned = pmlmepriv->cur_network_scanned;
if (check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE) == _TRUE) {
_rtw_memcpy(&cur_network->network, pnetwork, sizeof(WLAN_BSSID_EX));
if (cur_network) {
if (!rtw_cfg80211_inform_bss(padapter, cur_network))
RTW_INFO(FUNC_ADPT_FMT" inform fail !!\n", FUNC_ADPT_ARG(padapter));
else
RTW_INFO(FUNC_ADPT_FMT" inform success !!\n", FUNC_ADPT_ARG(padapter));
} else {
RTW_INFO("cur_network is not exist!!!\n");
return ;
}
} else {
if (scanned == NULL)
rtw_warn_on(1);
if (_rtw_memcmp(&(scanned->network.Ssid), &(pnetwork->Ssid), sizeof(NDIS_802_11_SSID)) == _TRUE
&& _rtw_memcmp(scanned->network.MacAddress, pnetwork->MacAddress, sizeof(NDIS_802_11_MAC_ADDRESS)) == _TRUE
) {
if (!rtw_cfg80211_inform_bss(padapter, scanned)){
RTW_INFO(FUNC_ADPT_FMT" inform fail !!\n", FUNC_ADPT_ARG(padapter));
} else {
/* RTW_INFO(FUNC_ADPT_FMT" inform success !!\n", FUNC_ADPT_ARG(padapter)); */
}
} else {
RTW_INFO("scanned & pnetwork compare fail\n");
rtw_warn_on(1);
}
}
if (!rtw_cfg80211_check_bss(padapter))
RTW_PRINT(FUNC_ADPT_FMT" BSS not found !!\n", FUNC_ADPT_ARG(padapter));
}
/* notify cfg80211 that device joined an IBSS */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 15, 0))
freq = rtw_ch2freq(cur_network->network.Configuration.DSConfig);
if (1)
RTW_INFO("chan: %d, freq: %d\n", cur_network->network.Configuration.DSConfig, freq);
notify_channel = ieee80211_get_channel(wiphy, freq);
cfg80211_ibss_joined(padapter->pnetdev, cur_network->network.MacAddress, notify_channel, GFP_ATOMIC);
#else
cfg80211_ibss_joined(padapter->pnetdev, cur_network->network.MacAddress, GFP_ATOMIC);
#endif
}
void rtw_cfg80211_indicate_connect(_adapter *padapter)
{
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct wlan_network *cur_network = &(pmlmepriv->cur_network);
struct wireless_dev *pwdev = padapter->rtw_wdev;
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(padapter);
#ifdef CONFIG_P2P
struct wifidirect_info *pwdinfo = &(padapter->wdinfo);
#endif
#if defined(CPTCFG_VERSION) || LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
struct cfg80211_roam_info roam_info ={};
#endif
RTW_INFO(FUNC_ADPT_FMT"\n", FUNC_ADPT_ARG(padapter));
if (pwdev->iftype != NL80211_IFTYPE_STATION
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
&& pwdev->iftype != NL80211_IFTYPE_P2P_CLIENT
#endif
)
return;
if (!MLME_IS_STA(padapter))
return;
if (check_fwstate(pmlmepriv, WIFI_MONITOR_STATE) != _TRUE) {
WLAN_BSSID_EX *pnetwork = &(padapter->mlmeextpriv.mlmext_info.network);
struct wlan_network *scanned = pmlmepriv->cur_network_scanned;
/* RTW_INFO(FUNC_ADPT_FMT" BSS not found\n", FUNC_ADPT_ARG(padapter)); */
if (scanned == NULL) {
rtw_warn_on(1);
goto check_bss;
}
if (_rtw_memcmp(scanned->network.MacAddress, pnetwork->MacAddress, sizeof(NDIS_802_11_MAC_ADDRESS)) == _TRUE
&& _rtw_memcmp(&(scanned->network.Ssid), &(pnetwork->Ssid), sizeof(NDIS_802_11_SSID)) == _TRUE
) {
if (!rtw_cfg80211_inform_bss(padapter, scanned))
RTW_INFO(FUNC_ADPT_FMT" inform fail !!\n", FUNC_ADPT_ARG(padapter));
else {
/* RTW_INFO(FUNC_ADPT_FMT" inform success !!\n", FUNC_ADPT_ARG(padapter)); */
}
} else {
RTW_INFO("scanned: %s("MAC_FMT"), cur: %s("MAC_FMT")\n",
scanned->network.Ssid.Ssid, MAC_ARG(scanned->network.MacAddress),
pnetwork->Ssid.Ssid, MAC_ARG(pnetwork->MacAddress)
);
rtw_warn_on(1);
}
}
check_bss:
if (!rtw_cfg80211_check_bss(padapter))
RTW_PRINT(FUNC_ADPT_FMT" BSS not found !!\n", FUNC_ADPT_ARG(padapter));
_rtw_spinlock_bh(&pwdev_priv->connect_req_lock);
if (rtw_to_roam(padapter) > 0) {
#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 39) || defined(COMPAT_KERNEL_RELEASE)
struct wiphy *wiphy = pwdev->wiphy;
struct ieee80211_channel *notify_channel;
u32 freq;
u16 channel = cur_network->network.Configuration.DSConfig;
freq = rtw_ch2freq(channel);
notify_channel = ieee80211_get_channel(wiphy, freq);
#endif
#if defined(CPTCFG_VERSION) || LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
roam_info.bssid = cur_network->network.MacAddress;
roam_info.req_ie = pmlmepriv->assoc_req + sizeof(struct rtw_ieee80211_hdr_3addr) + 2;
roam_info.req_ie_len = pmlmepriv->assoc_req_len - sizeof(struct rtw_ieee80211_hdr_3addr) - 2;
roam_info.resp_ie = pmlmepriv->assoc_rsp + sizeof(struct rtw_ieee80211_hdr_3addr) + 6;
roam_info.resp_ie_len = pmlmepriv->assoc_rsp_len - sizeof(struct rtw_ieee80211_hdr_3addr) - 6;
cfg80211_roamed(padapter->pnetdev, &roam_info, GFP_ATOMIC);
#else
cfg80211_roamed(padapter->pnetdev
#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 39) || defined(COMPAT_KERNEL_RELEASE)
, notify_channel
#endif
, cur_network->network.MacAddress
, pmlmepriv->assoc_req + sizeof(struct rtw_ieee80211_hdr_3addr) + 2
, pmlmepriv->assoc_req_len - sizeof(struct rtw_ieee80211_hdr_3addr) - 2
, pmlmepriv->assoc_rsp + sizeof(struct rtw_ieee80211_hdr_3addr) + 6
, pmlmepriv->assoc_rsp_len - sizeof(struct rtw_ieee80211_hdr_3addr) - 6
, GFP_ATOMIC);
#endif /*LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)*/
RTW_INFO(FUNC_ADPT_FMT" call cfg80211_roamed\n", FUNC_ADPT_ARG(padapter));
#ifdef CONFIG_RTW_80211R
if (rtw_ft_roam(padapter))
rtw_ft_set_status(padapter, RTW_FT_ASSOCIATED_STA);
#endif
} else {
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 11, 0) || defined(COMPAT_KERNEL_RELEASE)
RTW_INFO("pwdev->sme_state(b)=%d\n", pwdev->sme_state);
#endif
if (check_fwstate(pmlmepriv, WIFI_MONITOR_STATE) != _TRUE)
rtw_cfg80211_connect_result(pwdev, cur_network->network.MacAddress
, pmlmepriv->assoc_req + sizeof(struct rtw_ieee80211_hdr_3addr) + 2
, pmlmepriv->assoc_req_len - sizeof(struct rtw_ieee80211_hdr_3addr) - 2
, pmlmepriv->assoc_rsp + sizeof(struct rtw_ieee80211_hdr_3addr) + 6
, pmlmepriv->assoc_rsp_len - sizeof(struct rtw_ieee80211_hdr_3addr) - 6
, WLAN_STATUS_SUCCESS, GFP_ATOMIC);
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 11, 0) || defined(COMPAT_KERNEL_RELEASE)
RTW_INFO("pwdev->sme_state(a)=%d\n", pwdev->sme_state);
#endif
}
rtw_wdev_free_connect_req(pwdev_priv);
_rtw_spinunlock_bh(&pwdev_priv->connect_req_lock);
}
void rtw_cfg80211_indicate_disconnect(_adapter *padapter, u16 reason, u8 locally_generated)
{
struct wireless_dev *pwdev = padapter->rtw_wdev;
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(padapter);
#ifdef CONFIG_P2P
struct wifidirect_info *pwdinfo = &(padapter->wdinfo);
#endif
RTW_INFO(FUNC_ADPT_FMT" ,reason = %d\n", FUNC_ADPT_ARG(padapter), reason);
/*always replace privated definitions with wifi reserved value 0*/
if (WLAN_REASON_IS_PRIVATE(reason))
reason = 0;
if (pwdev->iftype != NL80211_IFTYPE_STATION
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
&& pwdev->iftype != NL80211_IFTYPE_P2P_CLIENT
#endif
)
return;
if (!MLME_IS_STA(padapter))
return;
_rtw_spinlock_bh(&pwdev_priv->connect_req_lock);
if (padapter->ndev_unregistering || !rtw_wdev_not_indic_disco(pwdev_priv)) {
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 11, 0) || defined(COMPAT_KERNEL_RELEASE)
RTW_INFO("pwdev->sme_state(b)=%d\n", pwdev->sme_state);
if (pwdev->sme_state == CFG80211_SME_CONNECTING) {
RTW_INFO(FUNC_ADPT_FMT" call cfg80211_connect_result, reason:%d\n", FUNC_ADPT_ARG(padapter), reason);
rtw_cfg80211_connect_result(pwdev, NULL, NULL, 0, NULL, 0,
reason?reason:WLAN_STATUS_UNSPECIFIED_FAILURE,
GFP_ATOMIC);
} else if (pwdev->sme_state == CFG80211_SME_CONNECTED) {
RTW_INFO(FUNC_ADPT_FMT" call cfg80211_disconnected, reason:%d\n", FUNC_ADPT_ARG(padapter), reason);
rtw_cfg80211_disconnected(pwdev, reason, NULL, 0, locally_generated, GFP_ATOMIC);
}
RTW_INFO("pwdev->sme_state(a)=%d\n", pwdev->sme_state);
#else
if (pwdev_priv->connect_req) {
RTW_INFO(FUNC_ADPT_FMT" call cfg80211_connect_result, reason:%d\n", FUNC_ADPT_ARG(padapter), reason);
rtw_cfg80211_connect_result(pwdev, NULL, NULL, 0, NULL, 0,
reason?reason:WLAN_STATUS_UNSPECIFIED_FAILURE,
GFP_ATOMIC);
} else {
RTW_INFO(FUNC_ADPT_FMT" call cfg80211_disconnected, reason:%d\n", FUNC_ADPT_ARG(padapter), reason);
rtw_cfg80211_disconnected(pwdev, reason, NULL, 0, locally_generated, GFP_ATOMIC);
}
#endif
}
rtw_wdev_free_connect_req(pwdev_priv);
_rtw_spinunlock_bh(&pwdev_priv->connect_req_lock);
}
#ifdef CONFIG_AP_MODE
static int rtw_cfg80211_ap_set_encryption(struct net_device *dev, struct ieee_param *param)
{
int ret = 0;
u32 wep_key_idx, wep_key_len;
struct sta_info *psta = NULL, *pbcmc_sta = NULL;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct security_priv *psecuritypriv = &(padapter->securitypriv);
struct sta_priv *pstapriv = &padapter->stapriv;
RTW_INFO("%s\n", __FUNCTION__);
param->u.crypt.err = 0;
param->u.crypt.alg[IEEE_CRYPT_ALG_NAME_LEN - 1] = '\0';
if (is_broadcast_mac_addr(param->sta_addr)) {
if (param->u.crypt.idx >= WEP_KEYS
#ifdef CONFIG_IEEE80211W
&& param->u.crypt.idx > BIP_MAX_KEYID
#endif
) {
ret = -EINVAL;
goto exit;
}
} else {
psta = rtw_get_stainfo(pstapriv, param->sta_addr);
if (!psta) {
ret = -EINVAL;
RTW_INFO(FUNC_ADPT_FMT", sta "MAC_FMT" not found\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(param->sta_addr));
goto exit;
}
#ifdef CONFIG_RTW_80211R_AP
if ((psta->authalg == WLAN_AUTH_FT) &&
!(psta->state & WIFI_FW_ASSOC_SUCCESS)) {
ret = -EINVAL;
RTW_INFO(FUNC_ADPT_FMT", sta "MAC_FMT
" not ready to setkey before assoc success!\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(param->sta_addr));
goto exit;
}
#endif
}
if (strcmp(param->u.crypt.alg, "none") == 0 && (psta == NULL)) {
/* todo:clear default encryption keys */
RTW_INFO("clear default encryption keys, keyid=%d\n", param->u.crypt.idx);
goto exit;
}
if (strcmp(param->u.crypt.alg, "WEP") == 0 && (psta == NULL)) {
RTW_INFO("r871x_set_encryption, crypt.alg = WEP\n");
wep_key_idx = param->u.crypt.idx;
wep_key_len = param->u.crypt.key_len;
RTW_INFO("r871x_set_encryption, wep_key_idx=%d, len=%d\n", wep_key_idx, wep_key_len);
if ((wep_key_idx >= WEP_KEYS) || (wep_key_len <= 0)) {
ret = -EINVAL;
goto exit;
}
if (wep_key_len > 0)
wep_key_len = wep_key_len <= WLAN_KEY_LEN_WEP40 ? WLAN_KEY_LEN_WEP40 : WLAN_KEY_LEN_WEP104;
if (psecuritypriv->bWepDefaultKeyIdxSet == 0) {
/* wep default key has not been set, so use this key index as default key. */
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_Auto;
psecuritypriv->ndisencryptstatus = Ndis802_11Encryption1Enabled;
psecuritypriv->dot11PrivacyAlgrthm = _WEP40_;
psecuritypriv->dot118021XGrpPrivacy = _WEP40_;
if (wep_key_len == WLAN_KEY_LEN_WEP104) {
psecuritypriv->dot11PrivacyAlgrthm = _WEP104_;
psecuritypriv->dot118021XGrpPrivacy = _WEP104_;
}
psecuritypriv->dot11PrivacyKeyIndex = wep_key_idx;
}
_rtw_memcpy(&(psecuritypriv->dot11DefKey[wep_key_idx].skey[0]), param->u.crypt.key, wep_key_len);
psecuritypriv->dot11DefKeylen[wep_key_idx] = wep_key_len;
rtw_ap_set_wep_key(padapter, param->u.crypt.key, wep_key_len, wep_key_idx, 1);
goto exit;
}
if (!psta) { /* group key */
if (param->u.crypt.set_tx == 0) { /* group key, TX only */
if (strcmp(param->u.crypt.alg, "WEP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set WEP TX GTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
_rtw_memcpy(psecuritypriv->dot118021XGrpKey[param->u.crypt.idx].skey, param->u.crypt.key, (param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
psecuritypriv->dot118021XGrpPrivacy = _WEP40_;
if (param->u.crypt.key_len == 13)
psecuritypriv->dot118021XGrpPrivacy = _WEP104_;
} else if (strcmp(param->u.crypt.alg, "TKIP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set TKIP TX GTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
psecuritypriv->dot118021XGrpPrivacy = _TKIP_;
_rtw_memcpy(psecuritypriv->dot118021XGrpKey[param->u.crypt.idx].skey, param->u.crypt.key, (param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
/* set mic key */
_rtw_memcpy(psecuritypriv->dot118021XGrptxmickey[param->u.crypt.idx].skey, &(param->u.crypt.key[16]), 8);
_rtw_memcpy(psecuritypriv->dot118021XGrprxmickey[param->u.crypt.idx].skey, &(param->u.crypt.key[24]), 8);
psecuritypriv->busetkipkey = _TRUE;
} else if (strcmp(param->u.crypt.alg, "CCMP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set CCMP TX GTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
psecuritypriv->dot118021XGrpPrivacy = _AES_;
_rtw_memcpy(psecuritypriv->dot118021XGrpKey[param->u.crypt.idx].skey, param->u.crypt.key, (param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
} else if (strcmp(param->u.crypt.alg, "GCMP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set GCMP TX GTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
psecuritypriv->dot118021XGrpPrivacy = _GCMP_;
_rtw_memcpy(psecuritypriv->dot118021XGrpKey[param->u.crypt.idx].skey,
param->u.crypt.key,
(param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
} else if (strcmp(param->u.crypt.alg, "GCMP_256") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set GCMP_256 TX GTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
psecuritypriv->dot118021XGrpPrivacy = _GCMP_256_;
_rtw_memcpy(psecuritypriv->dot118021XGrpKey[param->u.crypt.idx].skey,
param->u.crypt.key,
(param->u.crypt.key_len > 32 ? 32 : param->u.crypt.key_len));
} else if (strcmp(param->u.crypt.alg, "CCMP_256") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set CCMP_256 TX GTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
psecuritypriv->dot118021XGrpPrivacy = _CCMP_256_;
_rtw_memcpy(psecuritypriv->dot118021XGrpKey[param->u.crypt.idx].skey,
param->u.crypt.key,
(param->u.crypt.key_len > 32 ? 32: param->u.crypt.key_len));
#ifdef CONFIG_IEEE80211W
} else if (strcmp(param->u.crypt.alg, "BIP") == 0) {
psecuritypriv->dot11wCipher = _BIP_CMAC_128_;
RTW_INFO(FUNC_ADPT_FMT" set TX CMAC-128 IGTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
_rtw_memcpy(padapter->securitypriv.dot11wBIPKey[param->u.crypt.idx].skey, param->u.crypt.key, (param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
padapter->securitypriv.dot11wBIPKeyid = param->u.crypt.idx;
psecuritypriv->dot11wBIPtxpn.val = RTW_GET_LE64(param->u.crypt.seq);
padapter->securitypriv.binstallBIPkey = _TRUE;
rtw_ap_set_group_key(padapter, param->u.crypt.key, psecuritypriv->dot11wCipher, param->u.crypt.idx);
goto exit;
} else if (strcmp(param->u.crypt.alg, "BIP_GMAC_128") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set TX GMAC-128 IGTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
psecuritypriv->dot11wCipher = _BIP_GMAC_128_;
_rtw_memcpy(psecuritypriv->dot11wBIPKey[param->u.crypt.idx].skey,
param->u.crypt.key, param->u.crypt.key_len);
psecuritypriv->dot11wBIPKeyid = param->u.crypt.idx;
psecuritypriv->dot11wBIPtxpn.val = RTW_GET_LE64(param->u.crypt.seq);
psecuritypriv->binstallBIPkey = _TRUE;
goto exit;
} else if (strcmp(param->u.crypt.alg, "BIP_GMAC_256") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set TX GMAC-256 IGTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
psecuritypriv->dot11wCipher = _BIP_GMAC_256_;
_rtw_memcpy(psecuritypriv->dot11wBIPKey[param->u.crypt.idx].skey,
param->u.crypt.key, param->u.crypt.key_len);
padapter->securitypriv.dot11wBIPKeyid = param->u.crypt.idx;
psecuritypriv->dot11wBIPtxpn.val = RTW_GET_LE64(param->u.crypt.seq);
padapter->securitypriv.binstallBIPkey = _TRUE;
goto exit;
} else if (strcmp(param->u.crypt.alg, "BIP_CMAC_256") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set TX CMAC-256 IGTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
psecuritypriv->dot11wCipher = _BIP_CMAC_256_;
_rtw_memcpy(psecuritypriv->dot11wBIPKey[param->u.crypt.idx].skey,
param->u.crypt.key, param->u.crypt.key_len);
psecuritypriv->dot11wBIPKeyid = param->u.crypt.idx;
psecuritypriv->dot11wBIPtxpn.val = RTW_GET_LE64(param->u.crypt.seq);
psecuritypriv->binstallBIPkey = _TRUE;
goto exit;
#endif /* CONFIG_IEEE80211W */
} else if (strcmp(param->u.crypt.alg, "none") == 0) {
RTW_INFO(FUNC_ADPT_FMT" clear group key, idx:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx);
psecuritypriv->dot118021XGrpPrivacy = _NO_PRIVACY_;
} else {
RTW_WARN(FUNC_ADPT_FMT" set group key, not support\n"
, FUNC_ADPT_ARG(padapter));
goto exit;
}
psecuritypriv->dot118021XGrpKeyid = param->u.crypt.idx;
pbcmc_sta = rtw_get_bcmc_stainfo(padapter);
if (pbcmc_sta) {
pbcmc_sta->dot11txpn.val = RTW_GET_LE64(param->u.crypt.seq);
pbcmc_sta->ieee8021x_blocked = _FALSE;
pbcmc_sta->dot118021XPrivacy = psecuritypriv->dot118021XGrpPrivacy; /* rx will use bmc_sta's dot118021XPrivacy */
}
psecuritypriv->binstallGrpkey = _TRUE;
psecuritypriv->dot11PrivacyAlgrthm = psecuritypriv->dot118021XGrpPrivacy;/* !!! */
rtw_ap_set_group_key(padapter, param->u.crypt.key, psecuritypriv->dot118021XGrpPrivacy, param->u.crypt.idx);
}
goto exit;
}
if (psecuritypriv->dot11AuthAlgrthm == dot11AuthAlgrthm_8021X && psta) { /* psk/802_1x */
if (param->u.crypt.set_tx == 1) {
/* pairwise key */
if (param->u.crypt.key_len == 32)
_rtw_memcpy(psta->dot118021x_UncstKey.skey,
param->u.crypt.key,
(param->u.crypt.key_len > 32 ? 32 : param->u.crypt.key_len));
else
_rtw_memcpy(psta->dot118021x_UncstKey.skey,
param->u.crypt.key,
(param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
if (strcmp(param->u.crypt.alg, "WEP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set WEP PTK of "MAC_FMT" idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->dot118021XPrivacy = _WEP40_;
if (param->u.crypt.key_len == 13)
psta->dot118021XPrivacy = _WEP104_;
} else if (strcmp(param->u.crypt.alg, "TKIP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set TKIP PTK of "MAC_FMT" idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->dot118021XPrivacy = _TKIP_;
/* set mic key */
_rtw_memcpy(psta->dot11tkiptxmickey.skey, &(param->u.crypt.key[16]), 8);
_rtw_memcpy(psta->dot11tkiprxmickey.skey, &(param->u.crypt.key[24]), 8);
psecuritypriv->busetkipkey = _TRUE;
} else if (strcmp(param->u.crypt.alg, "CCMP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set CCMP PTK of "MAC_FMT" idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->dot118021XPrivacy = _AES_;
} else if (strcmp(param->u.crypt.alg, "GCMP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set GCMP PTK of "MAC_FMT" idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->dot118021XPrivacy = _GCMP_;
} else if (strcmp(param->u.crypt.alg, "GCMP_256") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set GCMP_256 PTK of "MAC_FMT" idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->dot118021XPrivacy = _GCMP_256_;
} else if (strcmp(param->u.crypt.alg, "CCMP_256") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set CCMP_256 PTK of "MAC_FMT" idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->dot118021XPrivacy = _CCMP_256_;
} else if (strcmp(param->u.crypt.alg, "none") == 0) {
RTW_INFO(FUNC_ADPT_FMT" clear pairwise key of "MAC_FMT" idx:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx);
psta->dot118021XPrivacy = _NO_PRIVACY_;
} else {
RTW_WARN(FUNC_ADPT_FMT" set pairwise key of "MAC_FMT", not support\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr));
goto exit;
}
psta->dot11txpn.val = RTW_GET_LE64(param->u.crypt.seq);
psta->dot11rxpn.val = RTW_GET_LE64(param->u.crypt.seq);
psta->ieee8021x_blocked = _FALSE;
if (psta->dot118021XPrivacy != _NO_PRIVACY_) {
psta->bpairwise_key_installed = _TRUE;
/* WPA2 key-handshake has completed */
if (psecuritypriv->ndisauthtype == Ndis802_11AuthModeWPA2PSK)
psta->state &= (~WIFI_UNDER_KEY_HANDSHAKE);
}
rtw_ap_set_pairwise_key(padapter, psta);
} else {
/* peer's group key, RX only */
#ifdef CONFIG_RTW_MESH
if (strcmp(param->u.crypt.alg, "CCMP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set CCMP GTK of "MAC_FMT", idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->group_privacy = _AES_;
_rtw_memcpy(psta->gtk.skey, param->u.crypt.key, (param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
psta->gtk_bmp |= BIT(param->u.crypt.idx);
psta->gtk_pn.val = RTW_GET_LE64(param->u.crypt.seq);
} else if (strcmp(param->u.crypt.alg, "GCMP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set GCMP GTK of "MAC_FMT", idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->group_privacy = _GCMP_;
_rtw_memcpy(psta->gtk.skey, param->u.crypt.key, (param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
psta->gtk_bmp |= BIT(param->u.crypt.idx);
psta->gtk_pn.val = RTW_GET_LE64(param->u.crypt.seq);
} else if (strcmp(param->u.crypt.alg, "CCMP_256") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set CCMP_256 GTK of "MAC_FMT", idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->group_privacy = _CCMP_256_;
_rtw_memcpy(psta->gtk.skey, param->u.crypt.key, (param->u.crypt.key_len > 32 ? 32 : param->u.crypt.key_len));
psta->gtk_bmp |= BIT(param->u.crypt.idx);
psta->gtk_pn.val = RTW_GET_LE64(param->u.crypt.seq);
} else if (strcmp(param->u.crypt.alg, "GCMP_256") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set GCMP_256 GTK of "MAC_FMT", idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->group_privacy = _GCMP_256_;
_rtw_memcpy(psta->gtk.skey, param->u.crypt.key, (param->u.crypt.key_len > 32 ? 32 : param->u.crypt.key_len));
psta->gtk_bmp |= BIT(param->u.crypt.idx);
psta->gtk_pn.val = RTW_GET_LE64(param->u.crypt.seq);
#ifdef CONFIG_IEEE80211W
} else if (strcmp(param->u.crypt.alg, "BIP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set CMAC-128 IGTK of "MAC_FMT", idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->dot11wCipher = _BIP_CMAC_128_;
_rtw_memcpy(psta->igtk.skey, param->u.crypt.key, (param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
psta->igtk_bmp |= BIT(param->u.crypt.idx);
psta->igtk_id = param->u.crypt.idx;
psta->igtk_pn.val = RTW_GET_LE64(param->u.crypt.seq);
goto exit;
} else if (strcmp(param->u.crypt.alg, "BIP_GMAC_128") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set GMAC-128 IGTK of "MAC_FMT", idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->dot11wCipher = _BIP_GMAC_128_;
_rtw_memcpy(psta->igtk.skey, param->u.crypt.key, (param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
psta->igtk_bmp |= BIT(param->u.crypt.idx);
psta->igtk_id = param->u.crypt.idx;
psta->igtk_pn.val = RTW_GET_LE64(param->u.crypt.seq);
goto exit;
} else if (strcmp(param->u.crypt.alg, "BIP_CMAC_256") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set CMAC-256 IGTK of "MAC_FMT", idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->dot11wCipher = _BIP_CMAC_256_;
_rtw_memcpy(psta->igtk.skey, param->u.crypt.key, (param->u.crypt.key_len > 32 ? 32 : param->u.crypt.key_len));
psta->igtk_bmp |= BIT(param->u.crypt.idx);
psta->igtk_id = param->u.crypt.idx;
psta->igtk_pn.val = RTW_GET_LE64(param->u.crypt.seq);
goto exit;
} else if (strcmp(param->u.crypt.alg, "BIP_GMAC_256") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set GMAC-256 IGTK of "MAC_FMT", idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->dot11wCipher = _BIP_GMAC_256_;
_rtw_memcpy(psta->igtk.skey, param->u.crypt.key, (param->u.crypt.key_len > 32 ? 32 : param->u.crypt.key_len));
psta->igtk_bmp |= BIT(param->u.crypt.idx);
psta->igtk_id = param->u.crypt.idx;
psta->igtk_pn.val = RTW_GET_LE64(param->u.crypt.seq);
goto exit;
#endif /* CONFIG_IEEE80211W */
} else if (strcmp(param->u.crypt.alg, "none") == 0) {
RTW_INFO(FUNC_ADPT_FMT" clear group key of "MAC_FMT", idx:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx);
psta->group_privacy = _NO_PRIVACY_;
psta->gtk_bmp &= ~BIT(param->u.crypt.idx);
} else
#endif /* CONFIG_RTW_MESH */
{
RTW_WARN(FUNC_ADPT_FMT" set group key of "MAC_FMT", not support\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr));
goto exit;
}
#ifdef CONFIG_RTW_MESH
rtw_ap_set_sta_key(padapter, psta->phl_sta->mac_addr, psta->group_privacy
, param->u.crypt.key, param->u.crypt.idx, 1);
#endif
}
}
exit:
return ret;
}
#endif /* CONFIG_AP_MODE */
static int rtw_cfg80211_set_encryption(struct net_device *dev, struct ieee_param *param)
{
int ret = 0;
u32 wep_key_idx, wep_key_len;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct security_priv *psecuritypriv = &padapter->securitypriv;
#ifdef CONFIG_P2P
struct wifidirect_info *pwdinfo = &padapter->wdinfo;
#endif /* CONFIG_P2P */
RTW_INFO("%s\n", __func__);
param->u.crypt.err = 0;
param->u.crypt.alg[IEEE_CRYPT_ALG_NAME_LEN - 1] = '\0';
if (is_broadcast_mac_addr(param->sta_addr)) {
if (param->u.crypt.idx >= WEP_KEYS
#ifdef CONFIG_IEEE80211W
&& param->u.crypt.idx > BIP_MAX_KEYID
#endif
) {
ret = -EINVAL;
goto exit;
}
} else {
#ifdef CONFIG_WAPI_SUPPORT
if (strcmp(param->u.crypt.alg, "SMS4"))
#endif
{
ret = -EINVAL;
goto exit;
}
}
if (strcmp(param->u.crypt.alg, "WEP") == 0) {
RTW_INFO("wpa_set_encryption, crypt.alg = WEP\n");
wep_key_idx = param->u.crypt.idx;
wep_key_len = param->u.crypt.key_len;
if ((wep_key_idx >= WEP_KEYS) || (wep_key_len <= 0)) {
ret = -EINVAL;
goto exit;
}
if (psecuritypriv->bWepDefaultKeyIdxSet == 0) {
/* wep default key has not been set, so use this key index as default key. */
wep_key_len = wep_key_len <= 5 ? 5 : 13;
psecuritypriv->ndisencryptstatus = Ndis802_11Encryption1Enabled;
psecuritypriv->dot11PrivacyAlgrthm = _WEP40_;
psecuritypriv->dot118021XGrpPrivacy = _WEP40_;
if (wep_key_len == 13) {
psecuritypriv->dot11PrivacyAlgrthm = _WEP104_;
psecuritypriv->dot118021XGrpPrivacy = _WEP104_;
}
psecuritypriv->dot11PrivacyKeyIndex = wep_key_idx;
}
_rtw_memcpy(&(psecuritypriv->dot11DefKey[wep_key_idx].skey[0]), param->u.crypt.key, wep_key_len);
psecuritypriv->dot11DefKeylen[wep_key_idx] = wep_key_len;
rtw_set_key(padapter, psecuritypriv, wep_key_idx, 0, _TRUE);
goto exit;
}
if (padapter->securitypriv.dot11AuthAlgrthm == dot11AuthAlgrthm_8021X) { /* 802_1x */
struct sta_info *psta, *pbcmc_sta;
struct sta_priv *pstapriv = &padapter->stapriv;
/* RTW_INFO("%s, : dot11AuthAlgrthm == dot11AuthAlgrthm_8021X\n", __func__); */
if (MLME_IS_STA(padapter) || MLME_IS_MP(padapter)) {/* sta mode */
#ifdef CONFIG_RTW_80211R
if (rtw_ft_roam(padapter))
psta = rtw_get_stainfo(pstapriv, pmlmepriv->assoc_bssid);
else
#endif
psta = rtw_get_stainfo(pstapriv, get_bssid(pmlmepriv));
if (psta == NULL) {
/* DEBUG_ERR( ("Set wpa_set_encryption: Obtain Sta_info fail\n")); */
RTW_INFO("%s, : Obtain Sta_info fail\n", __func__);
} else {
/* Jeff: don't disable ieee8021x_blocked while clearing key */
if (strcmp(param->u.crypt.alg, "none") != 0)
psta->ieee8021x_blocked = _FALSE;
if ((padapter->securitypriv.ndisencryptstatus == Ndis802_11Encryption2Enabled) ||
(padapter->securitypriv.ndisencryptstatus == Ndis802_11Encryption3Enabled))
psta->dot118021XPrivacy = padapter->securitypriv.dot11PrivacyAlgrthm;
if (param->u.crypt.set_tx == 1) { /* pairwise key */
RTW_INFO(FUNC_ADPT_FMT" set %s PTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.alg, param->u.crypt.idx, param->u.crypt.key_len);
if (strcmp(param->u.crypt.alg, "GCMP_256") == 0
|| strcmp(param->u.crypt.alg, "CCMP_256") == 0) {
_rtw_memcpy(psta->dot118021x_UncstKey.skey,
param->u.crypt.key,
((param->u.crypt.key_len > 32) ?
32 : param->u.crypt.key_len));
} else
_rtw_memcpy(psta->dot118021x_UncstKey.skey,
param->u.crypt.key,
(param->u.crypt.key_len > 16 ?
16 : param->u.crypt.key_len));
if (strcmp(param->u.crypt.alg, "TKIP") == 0) { /* set mic key */
_rtw_memcpy(psta->dot11tkiptxmickey.skey, &(param->u.crypt.key[16]), 8);
_rtw_memcpy(psta->dot11tkiprxmickey.skey, &(param->u.crypt.key[24]), 8);
padapter->securitypriv.busetkipkey = _FALSE;
}
psta->dot11txpn.val = RTW_GET_LE64(param->u.crypt.seq);
psta->dot11rxpn.val = RTW_GET_LE64(param->u.crypt.seq);
psta->bpairwise_key_installed = _TRUE;
#ifdef CONFIG_RTW_80211R
psta->ft_pairwise_key_installed = _TRUE;
#endif
rtw_setstakey_cmd(padapter, psta, UNICAST_KEY, _TRUE);
} else { /* group key */
if (strcmp(param->u.crypt.alg, "TKIP") == 0
|| strcmp(param->u.crypt.alg, "CCMP") == 0
|| strcmp(param->u.crypt.alg, "GCMP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set %s GTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.alg, param->u.crypt.idx, param->u.crypt.key_len);
_rtw_memcpy(padapter->securitypriv.dot118021XGrpKey[param->u.crypt.idx].skey,
param->u.crypt.key,
(param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
_rtw_memcpy(padapter->securitypriv.dot118021XGrptxmickey[param->u.crypt.idx].skey, &(param->u.crypt.key[16]), 8);
_rtw_memcpy(padapter->securitypriv.dot118021XGrprxmickey[param->u.crypt.idx].skey, &(param->u.crypt.key[24]), 8);
padapter->securitypriv.binstallGrpkey = _TRUE;
if (param->u.crypt.idx < 4)
_rtw_memcpy(padapter->securitypriv.iv_seq[param->u.crypt.idx], param->u.crypt.seq, 8);
padapter->securitypriv.dot118021XGrpKeyid = param->u.crypt.idx;
rtw_set_key(padapter, &padapter->securitypriv, param->u.crypt.idx, 1, _TRUE);
} else if (strcmp(param->u.crypt.alg, "GCMP_256") == 0
|| strcmp(param->u.crypt.alg, "CCMP_256") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set %s GTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.alg, param->u.crypt.idx, param->u.crypt.key_len);
_rtw_memcpy(
padapter->securitypriv.dot118021XGrpKey[param->u.crypt.idx].skey,
param->u.crypt.key,
(param->u.crypt.key_len > 32 ? 32 : param->u.crypt.key_len));
padapter->securitypriv.binstallGrpkey = _TRUE;
padapter->securitypriv.dot118021XGrpKeyid = param->u.crypt.idx;
rtw_set_key(padapter, &padapter->securitypriv, param->u.crypt.idx, 1, _TRUE);
#ifdef CONFIG_IEEE80211W
} else if (strcmp(param->u.crypt.alg, "BIP") == 0) {
psecuritypriv->dot11wCipher = _BIP_CMAC_128_;
RTW_INFO(FUNC_ADPT_FMT" set CMAC-128 IGTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
_rtw_memcpy(padapter->securitypriv.dot11wBIPKey[param->u.crypt.idx].skey,
param->u.crypt.key,
(param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
psecuritypriv->dot11wBIPKeyid = param->u.crypt.idx;
psecuritypriv->dot11wBIPrxpn.val = RTW_GET_LE64(param->u.crypt.seq);
psecuritypriv->binstallBIPkey = _TRUE;
rtw_set_key(padapter, &padapter->securitypriv, param->u.crypt.idx, 1, _TRUE);
} else if (strcmp(param->u.crypt.alg, "BIP_GMAC_128") == 0) {
psecuritypriv->dot11wCipher = _BIP_GMAC_128_;
RTW_INFO(FUNC_ADPT_FMT" set GMAC-128 IGTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
_rtw_memcpy(padapter->securitypriv.dot11wBIPKey[param->u.crypt.idx].skey,
param->u.crypt.key,
(param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
psecuritypriv->dot11wBIPKeyid = param->u.crypt.idx;
psecuritypriv->dot11wBIPrxpn.val = RTW_GET_LE64(param->u.crypt.seq);
psecuritypriv->binstallBIPkey = _TRUE;
} else if (strcmp(param->u.crypt.alg, "BIP_GMAC_256") == 0) {
psecuritypriv->dot11wCipher = _BIP_GMAC_256_;
RTW_INFO(FUNC_ADPT_FMT" set GMAC-256 IGTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
_rtw_memcpy(padapter->securitypriv.dot11wBIPKey[param->u.crypt.idx].skey,
param->u.crypt.key,
(param->u.crypt.key_len > 32 ? 32 : param->u.crypt.key_len));
psecuritypriv->dot11wBIPKeyid = param->u.crypt.idx;
psecuritypriv->dot11wBIPrxpn.val = RTW_GET_LE64(param->u.crypt.seq);
psecuritypriv->binstallBIPkey = _TRUE;
} else if (strcmp(param->u.crypt.alg, "BIP_CMAC_256") == 0) {
psecuritypriv->dot11wCipher = _BIP_CMAC_256_;
RTW_INFO(FUNC_ADPT_FMT" set CMAC-256 IGTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
_rtw_memcpy(psecuritypriv->dot11wBIPKey[param->u.crypt.idx].skey,
param->u.crypt.key, param->u.crypt.key_len);
psecuritypriv->dot11wBIPKeyid = param->u.crypt.idx;
psecuritypriv->dot11wBIPrxpn.val = RTW_GET_LE64(param->u.crypt.seq);
psecuritypriv->binstallBIPkey = _TRUE;
#endif /* CONFIG_IEEE80211W */
}
/* WPA/WPA2 key-handshake has completed */
clr_fwstate(pmlmepriv, WIFI_UNDER_KEY_HANDSHAKE);
}
}
pbcmc_sta = rtw_get_bcmc_stainfo(padapter);
if (pbcmc_sta == NULL) {
/* DEBUG_ERR( ("Set OID_802_11_ADD_KEY: bcmc stainfo is null\n")); */
} else {
/* Jeff: don't disable ieee8021x_blocked while clearing key */
if (strcmp(param->u.crypt.alg, "none") != 0)
pbcmc_sta->ieee8021x_blocked = _FALSE;
if ((padapter->securitypriv.ndisencryptstatus == Ndis802_11Encryption2Enabled) ||
(padapter->securitypriv.ndisencryptstatus == Ndis802_11Encryption3Enabled))
pbcmc_sta->dot118021XPrivacy = padapter->securitypriv.dot11PrivacyAlgrthm;
}
} else if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE)) { /* adhoc mode */
}
}
#ifdef CONFIG_WAPI_SUPPORT
if (strcmp(param->u.crypt.alg, "SMS4") == 0)
rtw_wapi_set_set_encryption(padapter, param);
#endif
exit:
RTW_INFO("%s, ret=%d\n", __func__, ret);
return ret;
}
static int cfg80211_rtw_add_key(struct wiphy *wiphy, struct net_device *ndev
, u8 key_index
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
, bool pairwise
#endif
, const u8 *mac_addr, struct key_params *params)
{
char *alg_name;
u32 param_len;
struct ieee_param *param = NULL;
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct wireless_dev *rtw_wdev = padapter->rtw_wdev;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
#ifdef CONFIG_TDLS
struct sta_info *ptdls_sta;
#endif /* CONFIG_TDLS */
if (mac_addr)
RTW_INFO(FUNC_NDEV_FMT" adding key for %pM\n", FUNC_NDEV_ARG(ndev), mac_addr);
RTW_INFO(FUNC_NDEV_FMT" cipher=0x%x\n", FUNC_NDEV_ARG(ndev), params->cipher);
RTW_INFO(FUNC_NDEV_FMT" key_len=%d, key_index=%d\n", FUNC_NDEV_ARG(ndev), params->key_len, key_index);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
RTW_INFO(FUNC_NDEV_FMT" pairwise=%d\n", FUNC_NDEV_ARG(ndev), pairwise);
#endif
if (rtw_cfg80211_sync_iftype(padapter) != _SUCCESS) {
ret = -ENOTSUPP;
goto addkey_end;
}
param_len = sizeof(struct ieee_param) + params->key_len;
param = rtw_malloc(param_len);
if (param == NULL)
return -1;
_rtw_memset(param, 0, param_len);
param->cmd = IEEE_CMD_SET_ENCRYPTION;
_rtw_memset(param->sta_addr, 0xff, ETH_ALEN);
switch (params->cipher) {
case IW_AUTH_CIPHER_NONE:
/* todo: remove key */
/* remove = 1; */
alg_name = "none";
break;
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
alg_name = "WEP";
break;
case WLAN_CIPHER_SUITE_TKIP:
alg_name = "TKIP";
break;
case WLAN_CIPHER_SUITE_CCMP:
alg_name = "CCMP";
break;
case WIFI_CIPHER_SUITE_GCMP:
alg_name = "GCMP";
break;
case WIFI_CIPHER_SUITE_GCMP_256:
alg_name = "GCMP_256";
break;
case WIFI_CIPHER_SUITE_CCMP_256:
alg_name = "CCMP_256";
break;
#ifdef CONFIG_IEEE80211W
case WLAN_CIPHER_SUITE_AES_CMAC:
alg_name = "BIP";
break;
case WIFI_CIPHER_SUITE_BIP_GMAC_128:
alg_name = "BIP_GMAC_128";
break;
case WIFI_CIPHER_SUITE_BIP_GMAC_256:
alg_name = "BIP_GMAC_256";
break;
case WIFI_CIPHER_SUITE_BIP_CMAC_256:
alg_name = "BIP_CMAC_256";
break;
#endif /* CONFIG_IEEE80211W */
#ifdef CONFIG_WAPI_SUPPORT
case WLAN_CIPHER_SUITE_SMS4:
alg_name = "SMS4";
if (pairwise == NL80211_KEYTYPE_PAIRWISE) {
if (key_index != 0 && key_index != 1) {
ret = -ENOTSUPP;
goto addkey_end;
}
_rtw_memcpy((void *)param->sta_addr, (void *)mac_addr, ETH_ALEN);
} else
RTW_INFO("mac_addr is null\n");
RTW_INFO("rtw_wx_set_enc_ext: SMS4 case\n");
break;
#endif
default:
ret = -ENOTSUPP;
goto addkey_end;
}
strncpy((char *)param->u.crypt.alg, alg_name, IEEE_CRYPT_ALG_NAME_LEN);
if (!mac_addr || is_broadcast_ether_addr(mac_addr)
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
|| !pairwise
#endif
) {
param->u.crypt.set_tx = 0; /* for wpa/wpa2 group key */
} else {
param->u.crypt.set_tx = 1; /* for wpa/wpa2 pairwise key */
}
param->u.crypt.idx = key_index;
if (params->seq_len && params->seq) {
_rtw_memcpy(param->u.crypt.seq, (u8 *)params->seq, params->seq_len);
RTW_INFO(FUNC_NDEV_FMT" seq_len:%u, seq:0x%llx\n", FUNC_NDEV_ARG(ndev)
, params->seq_len, RTW_GET_LE64(param->u.crypt.seq));
}
if (params->key_len && params->key) {
param->u.crypt.key_len = params->key_len;
_rtw_memcpy(param->u.crypt.key, (u8 *)params->key, params->key_len);
}
if (MLME_IS_STA(padapter)) {
#ifdef CONFIG_TDLS
if (rtw_tdls_is_driver_setup(padapter) == _FALSE && mac_addr) {
ptdls_sta = rtw_get_stainfo(&padapter->stapriv, (void *)mac_addr);
if (ptdls_sta != NULL && ptdls_sta->tdls_sta_state) {
_rtw_memcpy(ptdls_sta->tpk.tk, params->key, params->key_len);
rtw_tdls_set_key(padapter, ptdls_sta);
goto addkey_end;
}
}
#endif /* CONFIG_TDLS */
ret = rtw_cfg80211_set_encryption(ndev, param);
} else if (MLME_IS_AP(padapter) || MLME_IS_MESH(padapter)) {
#ifdef CONFIG_AP_MODE
if (mac_addr)
_rtw_memcpy(param->sta_addr, (void *)mac_addr, ETH_ALEN);
ret = rtw_cfg80211_ap_set_encryption(ndev, param);
#endif
} else if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE) == _TRUE
|| check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE) == _TRUE
) {
/* RTW_INFO("@@@@@@@@@@ fw_state=0x%x, iftype=%d\n", pmlmepriv->fw_state, rtw_wdev->iftype); */
ret = rtw_cfg80211_set_encryption(ndev, param);
} else
RTW_INFO("error! fw_state=0x%x, iftype=%d\n", pmlmepriv->fw_state, rtw_wdev->iftype);
addkey_end:
if (param)
rtw_mfree(param, param_len);
return ret;
}
static int cfg80211_rtw_get_key(struct wiphy *wiphy, struct net_device *ndev
, u8 keyid
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
, bool pairwise
#endif
, const u8 *mac_addr, void *cookie
, void (*callback)(void *cookie, struct key_params *))
{
#define GET_KEY_PARAM_FMT_S " keyid=%d"
#define GET_KEY_PARAM_ARG_S , keyid
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
#define GET_KEY_PARAM_FMT_2_6_37 ", pairwise=%d"
#define GET_KEY_PARAM_ARG_2_6_37 , pairwise
#else
#define GET_KEY_PARAM_FMT_2_6_37 ""
#define GET_KEY_PARAM_ARG_2_6_37
#endif
#define GET_KEY_PARAM_FMT_E ", addr=%pM"
#define GET_KEY_PARAM_ARG_E , mac_addr
_adapter *adapter = (_adapter *)rtw_netdev_priv(ndev);
struct security_priv *sec = &adapter->securitypriv;
struct sta_priv *stapriv = &adapter->stapriv;
struct sta_info *sta = NULL;
u32 cipher = _NO_PRIVACY_;
union Keytype *key = NULL;
u8 key_len = 0;
u64 *pn = NULL;
u8 pn_len = 0;
u8 pn_val[8] = {0};
struct key_params params;
int ret = -ENOENT;
if (keyid >= WEP_KEYS
#ifdef CONFIG_IEEE80211W
&& keyid > BIP_MAX_KEYID
#endif
)
goto exit;
if (!mac_addr || is_broadcast_ether_addr(mac_addr)
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
|| (MLME_IS_STA(adapter) && !pairwise)
#endif
) {
/* WEP key, TX GTK/IGTK, RX GTK/IGTK(for STA mode) */
if (is_wep_enc(sec->dot118021XGrpPrivacy)) {
if (keyid >= WEP_KEYS)
goto exit;
if (!(sec->key_mask & BIT(keyid)))
goto exit;
cipher = sec->dot118021XGrpPrivacy;
key = &sec->dot11DefKey[keyid];
} else {
if (keyid < WEP_KEYS) {
if (sec->binstallGrpkey != _TRUE)
goto exit;
cipher = sec->dot118021XGrpPrivacy;
key = &sec->dot118021XGrpKey[keyid];
sta = rtw_get_bcmc_stainfo(adapter);
if (sta)
pn = &sta->dot11txpn.val;
#ifdef CONFIG_IEEE80211W
} else if (keyid <= BIP_MAX_KEYID) {
if (SEC_IS_BIP_KEY_INSTALLED(sec) != _TRUE)
goto exit;
cipher = sec->dot11wCipher;
key = &sec->dot11wBIPKey[keyid];
pn = &sec->dot11wBIPtxpn.val;
#endif
}
}
} else {
/* Pairwise key, RX GTK/IGTK for specific peer */
sta = rtw_get_stainfo(stapriv, mac_addr);
if (!sta)
goto exit;
if (keyid < WEP_KEYS && pairwise) {
if (sta->bpairwise_key_installed != _TRUE)
goto exit;
cipher = sta->dot118021XPrivacy;
key = &sta->dot118021x_UncstKey;
#ifdef CONFIG_RTW_MESH
} else if (keyid < WEP_KEYS && !pairwise) {
if (!(sta->gtk_bmp & BIT(keyid)))
goto exit;
cipher = sta->group_privacy;
key = &sta->gtk;
#ifdef CONFIG_IEEE80211W
} else if (keyid <= BIP_MAX_KEYID && !pairwise) {
if (!(sta->igtk_bmp & BIT(keyid)))
goto exit;
cipher = sta->dot11wCipher;
key = &sta->igtk;
pn = &sta->igtk_pn.val;
#endif
#endif /* CONFIG_RTW_MESH */
}
}
if (!key)
goto exit;
if (cipher == _WEP40_) {
cipher = WLAN_CIPHER_SUITE_WEP40;
key_len = sec->dot11DefKeylen[keyid];
} else if (cipher == _WEP104_) {
cipher = WLAN_CIPHER_SUITE_WEP104;
key_len = sec->dot11DefKeylen[keyid];
} else if (cipher == _TKIP_ || cipher == _TKIP_WTMIC_) {
cipher = WLAN_CIPHER_SUITE_TKIP;
key_len = 16;
} else if (cipher == _AES_) {
cipher = WLAN_CIPHER_SUITE_CCMP;
key_len = 16;
#ifdef CONFIG_WAPI_SUPPORT
} else if (cipher == _SMS4_) {
cipher = WLAN_CIPHER_SUITE_SMS4;
key_len = 16;
#endif
} else if (cipher == _GCMP_) {
cipher = WIFI_CIPHER_SUITE_GCMP;
key_len = 16;
} else if (cipher == _CCMP_256_) {
cipher = WIFI_CIPHER_SUITE_CCMP_256;
key_len = 32;
} else if (cipher == _GCMP_256_) {
cipher = WIFI_CIPHER_SUITE_GCMP_256;
key_len = 32;
#ifdef CONFIG_IEEE80211W
} else if (cipher == _BIP_CMAC_128_) {
cipher = WLAN_CIPHER_SUITE_AES_CMAC;
key_len = 16;
} else if (cipher == _BIP_GMAC_128_) {
cipher = WIFI_CIPHER_SUITE_BIP_GMAC_128;
key_len = 16;
} else if (cipher == _BIP_GMAC_256_) {
cipher = WIFI_CIPHER_SUITE_BIP_GMAC_256;
key_len = 32;
} else if (cipher == _BIP_CMAC_256_) {
cipher = WIFI_CIPHER_SUITE_BIP_CMAC_256;
key_len = 32;
#endif
} else {
RTW_WARN(FUNC_NDEV_FMT" unknown cipher:%u\n", FUNC_NDEV_ARG(ndev), cipher);
rtw_warn_on(1);
goto exit;
}
if (pn) {
*((u64 *)pn_val) = cpu_to_le64(*pn);
pn_len = 6;
}
ret = 0;
exit:
RTW_INFO(FUNC_NDEV_FMT
GET_KEY_PARAM_FMT_S
GET_KEY_PARAM_FMT_2_6_37
GET_KEY_PARAM_FMT_E
" ret %d\n", FUNC_NDEV_ARG(ndev)
GET_KEY_PARAM_ARG_S
GET_KEY_PARAM_ARG_2_6_37
GET_KEY_PARAM_ARG_E
, ret);
if (pn)
RTW_INFO(FUNC_NDEV_FMT " seq:0x%llx\n", FUNC_NDEV_ARG(ndev), *pn);
if (ret == 0) {
_rtw_memset(¶ms, 0, sizeof(params));
params.cipher = cipher;
params.key = key->skey;
params.key_len = key_len;
if (pn) {
params.seq = pn_val;
params.seq_len = pn_len;
}
callback(cookie, ¶ms);
}
return ret;
}
static int cfg80211_rtw_del_key(struct wiphy *wiphy, struct net_device *ndev,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
u8 key_index, bool pairwise, const u8 *mac_addr)
#else /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) */
u8 key_index, const u8 *mac_addr)
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) */
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct security_priv *psecuritypriv = &padapter->securitypriv;
RTW_INFO(FUNC_NDEV_FMT" key_index=%d, addr=%pM\n", FUNC_NDEV_ARG(ndev), key_index, mac_addr);
if (key_index == psecuritypriv->dot11PrivacyKeyIndex) {
/* clear the flag of wep default key set. */
psecuritypriv->bWepDefaultKeyIdxSet = 0;
}
return 0;
}
static int cfg80211_rtw_set_default_key(struct wiphy *wiphy,
struct net_device *ndev, u8 key_index
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 38)) || defined(COMPAT_KERNEL_RELEASE)
, bool unicast, bool multicast
#endif
)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct security_priv *psecuritypriv = &padapter->securitypriv;
#define SET_DEF_KEY_PARAM_FMT " key_index=%d"
#define SET_DEF_KEY_PARAM_ARG , key_index
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 38)) || defined(COMPAT_KERNEL_RELEASE)
#define SET_DEF_KEY_PARAM_FMT_2_6_38 ", unicast=%d, multicast=%d"
#define SET_DEF_KEY_PARAM_ARG_2_6_38 , unicast, multicast
#else
#define SET_DEF_KEY_PARAM_FMT_2_6_38 ""
#define SET_DEF_KEY_PARAM_ARG_2_6_38
#endif
RTW_INFO(FUNC_NDEV_FMT
SET_DEF_KEY_PARAM_FMT
SET_DEF_KEY_PARAM_FMT_2_6_38
"\n", FUNC_NDEV_ARG(ndev)
SET_DEF_KEY_PARAM_ARG
SET_DEF_KEY_PARAM_ARG_2_6_38
);
if ((key_index < WEP_KEYS) && ((psecuritypriv->dot11PrivacyAlgrthm == _WEP40_) || (psecuritypriv->dot11PrivacyAlgrthm == _WEP104_))) { /* set wep default key */
psecuritypriv->ndisencryptstatus = Ndis802_11Encryption1Enabled;
psecuritypriv->dot11PrivacyKeyIndex = key_index;
psecuritypriv->dot11PrivacyAlgrthm = _WEP40_;
psecuritypriv->dot118021XGrpPrivacy = _WEP40_;
if (psecuritypriv->dot11DefKeylen[key_index] == WLAN_KEY_LEN_WEP104) {
psecuritypriv->dot11PrivacyAlgrthm = _WEP104_;
psecuritypriv->dot118021XGrpPrivacy = _WEP104_;
}
psecuritypriv->bWepDefaultKeyIdxSet = 1; /* set the flag to represent that wep default key has been set */
}
return 0;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 30))
int cfg80211_rtw_set_default_mgmt_key(struct wiphy *wiphy,
struct net_device *ndev, u8 key_index)
{
#define SET_DEF_KEY_PARAM_FMT " key_index=%d"
#define SET_DEF_KEY_PARAM_ARG , key_index
RTW_INFO(FUNC_NDEV_FMT
SET_DEF_KEY_PARAM_FMT
"\n", FUNC_NDEV_ARG(ndev)
SET_DEF_KEY_PARAM_ARG
);
return 0;
}
#endif
#if defined(CONFIG_GTK_OL) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 1, 0))
static int cfg80211_rtw_set_rekey_data(struct wiphy *wiphy,
struct net_device *ndev,
struct cfg80211_gtk_rekey_data *data)
{
/*int i;*/
struct sta_info *psta;
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct sta_priv *pstapriv = &padapter->stapriv;
struct security_priv *psecuritypriv = &(padapter->securitypriv);
psta = rtw_get_stainfo(pstapriv, get_bssid(pmlmepriv));
if (psta == NULL) {
RTW_INFO("%s, : Obtain Sta_info fail\n", __func__);
return -1;
}
_rtw_memcpy(psta->kek, data->kek, NL80211_KEK_LEN);
/*printk("\ncfg80211_rtw_set_rekey_data KEK:");
for(i=0;i<NL80211_KEK_LEN; i++)
printk(" %02x ", psta->kek[i]);*/
_rtw_memcpy(psta->kck, data->kck, NL80211_KCK_LEN);
/*printk("\ncfg80211_rtw_set_rekey_data KCK:");
for(i=0;i<NL80211_KCK_LEN; i++)
printk(" %02x ", psta->kck[i]);*/
_rtw_memcpy(psta->replay_ctr, data->replay_ctr, NL80211_REPLAY_CTR_LEN);
psecuritypriv->binstallKCK_KEK = _TRUE;
/*printk("\nREPLAY_CTR: ");
for(i=0;i<RTW_REPLAY_CTR_LEN; i++)
printk(" %02x ", psta->replay_ctr[i]);*/
return 0;
}
#endif /*CONFIG_GTK_OL*/
#ifdef CONFIG_RTW_MESH
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
static enum nl80211_mesh_power_mode rtw_mesh_ps_to_nl80211_mesh_power_mode(u8 ps)
{
if (ps == RTW_MESH_PS_UNKNOWN)
return NL80211_MESH_POWER_UNKNOWN;
if (ps == RTW_MESH_PS_ACTIVE)
return NL80211_MESH_POWER_ACTIVE;
if (ps == RTW_MESH_PS_LSLEEP)
return NL80211_MESH_POWER_LIGHT_SLEEP;
if (ps == RTW_MESH_PS_DSLEEP)
return NL80211_MESH_POWER_DEEP_SLEEP;
rtw_warn_on(1);
return NL80211_MESH_POWER_UNKNOWN;
}
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0))
enum nl80211_plink_state rtw_plink_state_to_nl80211_plink_state(u8 plink_state)
{
if (plink_state == RTW_MESH_PLINK_UNKNOWN)
return NUM_NL80211_PLINK_STATES;
if (plink_state == RTW_MESH_PLINK_LISTEN)
return NL80211_PLINK_LISTEN;
if (plink_state == RTW_MESH_PLINK_OPN_SNT)
return NL80211_PLINK_OPN_SNT;
if (plink_state == RTW_MESH_PLINK_OPN_RCVD)
return NL80211_PLINK_OPN_RCVD;
if (plink_state == RTW_MESH_PLINK_CNF_RCVD)
return NL80211_PLINK_CNF_RCVD;
if (plink_state == RTW_MESH_PLINK_ESTAB)
return NL80211_PLINK_ESTAB;
if (plink_state == RTW_MESH_PLINK_HOLDING)
return NL80211_PLINK_HOLDING;
if (plink_state == RTW_MESH_PLINK_BLOCKED)
return NL80211_PLINK_BLOCKED;
rtw_warn_on(1);
return NUM_NL80211_PLINK_STATES;
}
u8 nl80211_plink_state_to_rtw_plink_state(enum nl80211_plink_state plink_state)
{
if (plink_state == NL80211_PLINK_LISTEN)
return RTW_MESH_PLINK_LISTEN;
if (plink_state == NL80211_PLINK_OPN_SNT)
return RTW_MESH_PLINK_OPN_SNT;
if (plink_state == NL80211_PLINK_OPN_RCVD)
return RTW_MESH_PLINK_OPN_RCVD;
if (plink_state == NL80211_PLINK_CNF_RCVD)
return RTW_MESH_PLINK_CNF_RCVD;
if (plink_state == NL80211_PLINK_ESTAB)
return RTW_MESH_PLINK_ESTAB;
if (plink_state == NL80211_PLINK_HOLDING)
return RTW_MESH_PLINK_HOLDING;
if (plink_state == NL80211_PLINK_BLOCKED)
return RTW_MESH_PLINK_BLOCKED;
rtw_warn_on(1);
return RTW_MESH_PLINK_UNKNOWN;
}
#endif
static void rtw_cfg80211_fill_mesh_only_sta_info(struct mesh_plink_ent *plink, struct sta_info *sta, struct station_info *sinfo)
{
sinfo->filled |= STATION_INFO_LLID;
sinfo->llid = plink->llid;
sinfo->filled |= STATION_INFO_PLID;
sinfo->plid = plink->plid;
sinfo->filled |= STATION_INFO_PLINK_STATE;
sinfo->plink_state = rtw_plink_state_to_nl80211_plink_state(plink->plink_state);
if (!sta && plink->scanned) {
sinfo->filled |= STATION_INFO_SIGNAL;
sinfo->signal = rtw_phl_rssi_to_dbm(plink->scanned->network.PhyInfo.SignalStrength);
sinfo->filled |= STATION_INFO_INACTIVE_TIME;
if (plink->plink_state == RTW_MESH_PLINK_UNKNOWN)
sinfo->inactive_time = 0 - 1;
else
sinfo->inactive_time = rtw_get_passing_time_ms(plink->scanned->last_scanned);
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
if (sta) {
sinfo->filled |= STATION_INFO_LOCAL_PM;
sinfo->local_pm = rtw_mesh_ps_to_nl80211_mesh_power_mode(sta->local_mps);
sinfo->filled |= STATION_INFO_PEER_PM;
sinfo->peer_pm = rtw_mesh_ps_to_nl80211_mesh_power_mode(sta->peer_mps);
sinfo->filled |= STATION_INFO_NONPEER_PM;
sinfo->nonpeer_pm = rtw_mesh_ps_to_nl80211_mesh_power_mode(sta->nonpeer_mps);
}
#endif
}
#endif /* CONFIG_RTW_MESH */
static int cfg80211_rtw_get_station(struct wiphy *wiphy,
struct net_device *ndev,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 16, 0))
u8 *mac,
#else
const u8 *mac,
#endif
struct station_info *sinfo)
{
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct sta_info *psta = NULL;
struct sta_priv *pstapriv = &padapter->stapriv;
#ifdef CONFIG_RTW_MESH
struct mesh_plink_ent *plink = NULL;
#endif
sinfo->filled = 0;
if (!mac) {
RTW_INFO(FUNC_NDEV_FMT" mac==%p\n", FUNC_NDEV_ARG(ndev), mac);
ret = -ENOENT;
goto exit;
}
psta = rtw_get_stainfo(pstapriv, mac);
#ifdef CONFIG_RTW_MESH
if (MLME_IS_MESH(padapter)) {
if (psta)
plink = psta->plink;
if (!plink)
plink = rtw_mesh_plink_get(padapter, mac);
}
#endif /* CONFIG_RTW_MESH */
if ((!MLME_IS_MESH(padapter) && !psta)
#ifdef CONFIG_RTW_MESH
|| (MLME_IS_MESH(padapter) && !plink)
#endif
) {
RTW_INFO(FUNC_NDEV_FMT" no sta info for mac="MAC_FMT"\n"
, FUNC_NDEV_ARG(ndev), MAC_ARG(mac));
ret = -ENOENT;
goto exit;
}
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO(FUNC_NDEV_FMT" mac="MAC_FMT"\n", FUNC_NDEV_ARG(ndev), MAC_ARG(mac));
#endif
/* for infra./P2PClient mode */
if (MLME_IS_STA(padapter)
&& check_fwstate(pmlmepriv, WIFI_ASOC_STATE)) {
struct wlan_network *cur_network = &(pmlmepriv->cur_network);
if (_rtw_memcmp((u8 *)mac, cur_network->network.MacAddress, ETH_ALEN) == _FALSE) {
RTW_INFO("%s, mismatch bssid="MAC_FMT"\n", __func__, MAC_ARG(cur_network->network.MacAddress));
ret = -ENOENT;
goto exit;
}
sinfo->filled |= STATION_INFO_SIGNAL;
sinfo->signal = rtw_phl_rssi_to_dbm(padapter->recvinfo.signal_strength);
sinfo->filled |= STATION_INFO_TX_BITRATE;
sinfo->txrate.legacy = rtw_get_cur_max_rate(padapter);
}
if (psta) {
if (!MLME_IS_STA(padapter)
|| check_fwstate(pmlmepriv, WIFI_ASOC_STATE) == _FALSE
) {
sinfo->filled |= STATION_INFO_SIGNAL;
/* ToDo: need API to query hal_sta->rssi_stat.rssi */
/* sinfo->signal = rtw_phl_rssi_to_dbm(psta->phl_sta->rssi_stat.rssi); */
}
sinfo->filled |= STATION_INFO_INACTIVE_TIME;
sinfo->inactive_time = rtw_get_passing_time_ms(psta->sta_stats.last_rx_time);
sinfo->filled |= STATION_INFO_RX_PACKETS;
sinfo->rx_packets = sta_rx_data_pkts(psta);
sinfo->filled |= STATION_INFO_TX_PACKETS;
sinfo->tx_packets = psta->sta_stats.tx_pkts;
sinfo->filled |= STATION_INFO_TX_FAILED;
sinfo->tx_failed = psta->sta_stats.tx_fail_cnt;
}
#ifdef CONFIG_RTW_MESH
if (MLME_IS_MESH(padapter))
rtw_cfg80211_fill_mesh_only_sta_info(plink, psta, sinfo);
#endif
exit:
return ret;
}
extern int netdev_open(struct net_device *pnetdev);
#if 0
enum nl80211_iftype {
NL80211_IFTYPE_UNSPECIFIED,
NL80211_IFTYPE_ADHOC, /* 1 */
NL80211_IFTYPE_STATION, /* 2 */
NL80211_IFTYPE_AP, /* 3 */
NL80211_IFTYPE_AP_VLAN,
NL80211_IFTYPE_WDS,
NL80211_IFTYPE_MONITOR, /* 6 */
NL80211_IFTYPE_MESH_POINT,
NL80211_IFTYPE_P2P_CLIENT, /* 8 */
NL80211_IFTYPE_P2P_GO, /* 9 */
/* keep last */
NUM_NL80211_IFTYPES,
NL80211_IFTYPE_MAX = NUM_NL80211_IFTYPES - 1
};
#endif
static int cfg80211_rtw_change_iface(struct wiphy *wiphy,
struct net_device *ndev,
enum nl80211_iftype type,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 12, 0)) && !defined(CPTCFG_VERSION)
u32 *flags,
#endif
struct vif_params *params)
{
enum nl80211_iftype old_type;
NDIS_802_11_NETWORK_INFRASTRUCTURE networkType;
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct wireless_dev *rtw_wdev = padapter->rtw_wdev;
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
#ifdef CONFIG_P2P
struct wifidirect_info *pwdinfo = &(padapter->wdinfo);
#endif
#ifdef CONFIG_MONITOR_MODE_XMIT
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
#endif
int ret = 0;
u8 change = _FALSE;
RTW_INFO(FUNC_NDEV_FMT" type=%d, hw_port:%d\n", FUNC_NDEV_ARG(ndev), type, padapter->hw_port);
if (adapter_to_dvobj(padapter)->processing_dev_remove == _TRUE) {
ret = -EPERM;
goto exit;
}
RTW_INFO(FUNC_NDEV_FMT" call netdev_open\n", FUNC_NDEV_ARG(ndev));
if (netdev_open(ndev) != 0) {
RTW_INFO(FUNC_NDEV_FMT" call netdev_open fail\n", FUNC_NDEV_ARG(ndev));
ret = -EPERM;
goto exit;
}
if (_FAIL == rtw_pwr_wakeup(padapter)) {
RTW_INFO(FUNC_NDEV_FMT" call rtw_pwr_wakeup fail\n", FUNC_NDEV_ARG(ndev));
ret = -EPERM;
goto exit;
}
old_type = rtw_wdev->iftype;
RTW_INFO(FUNC_NDEV_FMT" old_iftype=%d, new_iftype=%d\n",
FUNC_NDEV_ARG(ndev), old_type, type);
if (old_type != type) {
change = _TRUE;
pmlmeext->action_public_rxseq = 0xffff;
pmlmeext->action_public_dialog_token = 0xff;
}
#if defined(CONFIG_P2P) && ((LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE))
if (type != NL80211_IFTYPE_P2P_CLIENT && type != NL80211_IFTYPE_P2P_GO) {
if (!rtw_p2p_chk_role(pwdinfo, P2P_ROLE_DISABLE)) {
if (!rtw_p2p_enable(padapter, P2P_ROLE_DISABLE)) {
ret = -EOPNOTSUPP;
goto exit;
}
}
}
#endif
/* initial default type */
ndev->type = ARPHRD_ETHER;
/*
* Disable Power Save in moniter mode,
* and enable it after leaving moniter mode.
*/
if (type == NL80211_IFTYPE_MONITOR) {
rtw_ps_deny(padapter, PS_DENY_MONITOR_MODE);
LeaveAllPowerSaveMode(padapter);
} else if (old_type == NL80211_IFTYPE_MONITOR) {
/* driver in moniter mode in last time */
rtw_ps_deny_cancel(padapter, PS_DENY_MONITOR_MODE);
}
switch (type) {
case NL80211_IFTYPE_ADHOC:
networkType = Ndis802_11IBSS;
break;
case NL80211_IFTYPE_STATION:
networkType = Ndis802_11Infrastructure;
break;
case NL80211_IFTYPE_AP:
networkType = Ndis802_11APMode;
break;
#if defined(CONFIG_P2P) && ((LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE))
case NL80211_IFTYPE_P2P_CLIENT:
networkType = Ndis802_11Infrastructure;
if (change) {
if (!rtw_p2p_enable(padapter, P2P_ROLE_CLIENT)) {
ret = -EOPNOTSUPP;
goto exit;
}
}
break;
case NL80211_IFTYPE_P2P_GO:
networkType = Ndis802_11APMode;
if (change) {
if (!rtw_p2p_enable(padapter, P2P_ROLE_GO)) {
ret = -EOPNOTSUPP;
goto exit;
}
}
break;
#endif /* defined(CONFIG_P2P) && ((LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)) */
#ifdef CONFIG_RTW_MESH
case NL80211_IFTYPE_MESH_POINT:
networkType = Ndis802_11_mesh;
break;
#endif
#ifdef CONFIG_WIFI_MONITOR
case NL80211_IFTYPE_MONITOR:
networkType = Ndis802_11Monitor;
#ifdef CONFIG_CUSTOMER_ALIBABA_GENERAL
ndev->type = ARPHRD_IEEE80211; /* IEEE 802.11 : 801 */
#else
ndev->type = ARPHRD_IEEE80211_RADIOTAP; /* IEEE 802.11 + radiotap header : 803 */
#endif
break;
#endif /* CONFIG_WIFI_MONITOR */
default:
ret = -EOPNOTSUPP;
goto exit;
}
rtw_wdev->iftype = type;
if (rtw_set_802_11_infrastructure_mode(padapter, networkType, 0) == _FALSE) {
rtw_wdev->iftype = old_type;
ret = -EPERM;
goto exit;
}
#ifdef CONFIG_HWSIM
rtw_setopmode_cmd(padapter, networkType, RTW_CMDF_DIRECTLY);
#else
rtw_setopmode_cmd(padapter, networkType, RTW_CMDF_WAIT_ACK);
#endif
#ifdef CONFIG_MONITOR_MODE_XMIT
if (check_fwstate(pmlmepriv, WIFI_MONITOR_STATE) == _TRUE)
rtw_indicate_connect(padapter);
#endif
#if defined(CONFIG_RTW_WDS) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 33))
if (params->use_4addr != -1) {
RTW_INFO(FUNC_NDEV_FMT" use_4addr=%d\n",
FUNC_NDEV_ARG(ndev), params->use_4addr);
adapter_set_use_wds(padapter, params->use_4addr);
}
#endif
exit:
RTW_INFO(FUNC_NDEV_FMT" ret:%d\n", FUNC_NDEV_ARG(ndev), ret);
return ret;
}
void rtw_cfg80211_indicate_scan_done(_adapter *adapter, bool aborted)
{
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(adapter);
#if defined(CPTCFG_VERSION) || (KERNEL_VERSION(4, 8, 0) <= LINUX_VERSION_CODE)
struct cfg80211_scan_info info;
memset(&info, 0, sizeof(info));
info.aborted = aborted;
#endif
_rtw_spinlock_bh(&pwdev_priv->scan_req_lock);
if (pwdev_priv->scan_request != NULL) {
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("%s with scan req\n", __FUNCTION__);
#endif
/* avoid WARN_ON(request != wiphy_to_dev(request->wiphy)->scan_req); */
if (pwdev_priv->scan_request->wiphy != pwdev_priv->rtw_wdev->wiphy)
RTW_INFO("error wiphy compare\n");
else
#if defined(CPTCFG_VERSION) || (KERNEL_VERSION(4, 8, 0) <= LINUX_VERSION_CODE)
cfg80211_scan_done(pwdev_priv->scan_request, &info);
#else
cfg80211_scan_done(pwdev_priv->scan_request, aborted);
#endif
pwdev_priv->scan_request = NULL;
} else {
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("%s without scan req\n", __FUNCTION__);
#endif
}
_rtw_spinunlock_bh(&pwdev_priv->scan_req_lock);
}
u32 rtw_cfg80211_wait_scan_req_empty(_adapter *adapter, u32 timeout_ms)
{
struct rtw_wdev_priv *wdev_priv = adapter_wdev_data(adapter);
u8 empty = _FALSE;
systime start;
u32 pass_ms;
start = rtw_get_current_time();
while (rtw_get_passing_time_ms(start) <= timeout_ms) {
if (RTW_CANNOT_RUN(adapter_to_dvobj(adapter)))
break;
if (!wdev_priv->scan_request) {
empty = _TRUE;
break;
}
rtw_msleep_os(10);
}
pass_ms = rtw_get_passing_time_ms(start);
if (empty == _FALSE && pass_ms > timeout_ms)
RTW_PRINT(FUNC_ADPT_FMT" pass_ms:%u, timeout\n"
, FUNC_ADPT_ARG(adapter), pass_ms);
return pass_ms;
}
void rtw_cfg80211_unlink_bss(_adapter *padapter, struct wlan_network *pnetwork)
{
struct wireless_dev *pwdev = padapter->rtw_wdev;
struct wiphy *wiphy = pwdev->wiphy;
struct cfg80211_bss *bss = NULL;
WLAN_BSSID_EX select_network = pnetwork->network;
bss = cfg80211_get_bss(wiphy, NULL/*notify_channel*/,
select_network.MacAddress, select_network.Ssid.Ssid,
select_network.Ssid.SsidLength,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
select_network.InfrastructureMode == Ndis802_11Infrastructure?IEEE80211_BSS_TYPE_ESS:IEEE80211_BSS_TYPE_IBSS,
IEEE80211_PRIVACY(select_network.Privacy));
#else
select_network.InfrastructureMode == Ndis802_11Infrastructure?WLAN_CAPABILITY_ESS:WLAN_CAPABILITY_IBSS,
select_network.InfrastructureMode == Ndis802_11Infrastructure?WLAN_CAPABILITY_ESS:WLAN_CAPABILITY_IBSS);
#endif
if (bss) {
cfg80211_unlink_bss(wiphy, bss);
RTW_INFO("%s(): cfg80211_unlink %s!!\n", __func__, select_network.Ssid.Ssid);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0)
cfg80211_put_bss(padapter->rtw_wdev->wiphy, bss);
#else
cfg80211_put_bss(bss);
#endif
}
return;
}
/* if target wps scan ongoing, target_ssid is filled */
int rtw_cfg80211_is_target_wps_scan(struct cfg80211_scan_request *scan_req, struct cfg80211_ssid *target_ssid)
{
int ret = 0;
if (scan_req->n_ssids != 1
|| scan_req->ssids[0].ssid_len == 0
|| scan_req->n_channels != 1
)
goto exit;
/* under target WPS scan */
_rtw_memcpy(target_ssid, scan_req->ssids, sizeof(struct cfg80211_ssid));
ret = 1;
exit:
return ret;
}
static void _rtw_cfg80211_surveydone_event_callback(_adapter *padapter, struct cfg80211_scan_request *scan_req)
{
struct rf_ctl_t *rfctl = adapter_to_rfctl(padapter);
RT_CHANNEL_INFO *chset = rfctl->channel_set;
_list *plist, *phead;
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
_queue *queue = &(pmlmepriv->scanned_queue);
struct wlan_network *pnetwork = NULL;
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(padapter);
struct cfg80211_ssid target_ssid;
u8 target_wps_scan = 0;
u8 ch;
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("%s\n", __func__);
#endif
if (scan_req)
target_wps_scan = rtw_cfg80211_is_target_wps_scan(scan_req, &target_ssid);
else {
_rtw_spinlock_bh(&pwdev_priv->scan_req_lock);
if (pwdev_priv->scan_request != NULL)
target_wps_scan = rtw_cfg80211_is_target_wps_scan(pwdev_priv->scan_request, &target_ssid);
_rtw_spinunlock_bh(&pwdev_priv->scan_req_lock);
}
_rtw_spinlock_bh(&(pmlmepriv->scanned_queue.lock));
phead = get_list_head(queue);
plist = get_next(phead);
while (1) {
if (rtw_end_of_queue_search(phead, plist) == _TRUE)
break;
pnetwork = LIST_CONTAINOR(plist, struct wlan_network, list);
ch = pnetwork->network.Configuration.DSConfig;
/* report network only if the current channel set contains the channel to which this network belongs */
if (rtw_chset_search_ch(chset, ch) >= 0
&& rtw_mlme_band_check(padapter, ch) == _TRUE
&& _TRUE == rtw_validate_ssid(&(pnetwork->network.Ssid))
&& (!IS_DFS_SLAVE_WITH_RD(rfctl)
|| rtw_rfctl_dfs_domain_unknown(rfctl)
|| !rtw_chset_is_ch_non_ocp(chset, ch))
) {
if (target_wps_scan)
rtw_cfg80211_clear_wps_sr_of_non_target_bss(padapter, pnetwork, &target_ssid);
rtw_cfg80211_inform_bss(padapter, pnetwork);
}
#if 0
/* check ralink testbed RSN IE length */
{
if (_rtw_memcmp(pnetwork->network.Ssid.Ssid, "Ralink_11n_AP", 13)) {
uint ie_len = 0;
u8 *p = NULL;
p = rtw_get_ie(pnetwork->network.IEs + _BEACON_IE_OFFSET_, _RSN_IE_2_, &ie_len, (pnetwork->network.IELength - _BEACON_IE_OFFSET_));
RTW_INFO("ie_len=%d\n", ie_len);
}
}
#endif
plist = get_next(plist);
}
_rtw_spinunlock_bh(&(pmlmepriv->scanned_queue.lock));
}
inline void rtw_cfg80211_surveydone_event_callback(_adapter *padapter)
{
_rtw_cfg80211_surveydone_event_callback(padapter, NULL);
}
static int rtw_cfg80211_set_probe_req_wpsp2pie(_adapter *padapter, char *buf, int len)
{
int ret = 0;
uint wps_ielen = 0;
u8 *wps_ie;
u32 p2p_ielen = 0;
u8 *p2p_ie;
u32 wfd_ielen = 0;
u8 *wfd_ie;
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("%s, ielen=%d\n", __func__, len);
#endif
if (len > 0) {
wps_ie = rtw_get_wps_ie(buf, len, NULL, &wps_ielen);
if (wps_ie) {
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("probe_req_wps_ielen=%d\n", wps_ielen);
#endif
if (pmlmepriv->wps_probe_req_ie) {
u32 free_len = pmlmepriv->wps_probe_req_ie_len;
pmlmepriv->wps_probe_req_ie_len = 0;
rtw_mfree(pmlmepriv->wps_probe_req_ie, free_len);
pmlmepriv->wps_probe_req_ie = NULL;
}
pmlmepriv->wps_probe_req_ie = rtw_malloc(wps_ielen);
if (pmlmepriv->wps_probe_req_ie == NULL) {
RTW_INFO("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
return -EINVAL;
}
_rtw_memcpy(pmlmepriv->wps_probe_req_ie, wps_ie, wps_ielen);
pmlmepriv->wps_probe_req_ie_len = wps_ielen;
}
/* buf += wps_ielen; */
/* len -= wps_ielen; */
#ifdef CONFIG_P2P
p2p_ie = rtw_get_p2p_ie(buf, len, NULL, &p2p_ielen);
if (p2p_ie) {
struct wifidirect_info *wdinfo = &padapter->wdinfo;
u32 attr_contentlen = 0;
u8 listen_ch_attr[5];
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("probe_req_p2p_ielen=%d\n", p2p_ielen);
#endif
if (pmlmepriv->p2p_probe_req_ie) {
u32 free_len = pmlmepriv->p2p_probe_req_ie_len;
pmlmepriv->p2p_probe_req_ie_len = 0;
rtw_mfree(pmlmepriv->p2p_probe_req_ie, free_len);
pmlmepriv->p2p_probe_req_ie = NULL;
}
pmlmepriv->p2p_probe_req_ie = rtw_malloc(p2p_ielen);
if (pmlmepriv->p2p_probe_req_ie == NULL) {
RTW_INFO("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
return -EINVAL;
}
_rtw_memcpy(pmlmepriv->p2p_probe_req_ie, p2p_ie, p2p_ielen);
pmlmepriv->p2p_probe_req_ie_len = p2p_ielen;
if (rtw_get_p2p_attr_content(p2p_ie, p2p_ielen, P2P_ATTR_LISTEN_CH, (u8 *)listen_ch_attr, (uint *) &attr_contentlen)
&& attr_contentlen == 5) {
if (wdinfo->listen_channel != listen_ch_attr[4]) {
RTW_INFO(FUNC_ADPT_FMT" listen channel - country:%c%c%c, class:%u, ch:%u\n",
FUNC_ADPT_ARG(padapter), listen_ch_attr[0], listen_ch_attr[1], listen_ch_attr[2],
listen_ch_attr[3], listen_ch_attr[4]);
wdinfo->listen_channel = listen_ch_attr[4];
}
}
}
#endif /* CONFIG_P2P */
#ifdef CONFIG_WFD
wfd_ie = rtw_get_wfd_ie(buf, len, NULL, &wfd_ielen);
if (wfd_ie) {
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("probe_req_wfd_ielen=%d\n", wfd_ielen);
#endif
if (rtw_mlme_update_wfd_ie_data(pmlmepriv, MLME_PROBE_REQ_IE, wfd_ie, wfd_ielen) != _SUCCESS)
return -EINVAL;
}
#endif /* CONFIG_WFD */
#ifdef CONFIG_RTW_MBO
rtw_mbo_update_ie_data(padapter, buf, len);
#endif
}
return ret;
}
#ifdef CONFIG_CONCURRENT_MODE
u8 rtw_cfg80211_scan_via_buddy(_adapter *padapter, struct cfg80211_scan_request *request)
{
int i;
u8 ret = _FALSE;
_adapter *iface = NULL;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(padapter);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
for (i = 0; i < dvobj->iface_nums; i++) {
struct mlme_priv *buddy_mlmepriv;
struct rtw_wdev_priv *buddy_wdev_priv;
iface = dvobj->padapters[i];
if (iface == NULL)
continue;
if (iface == padapter)
continue;
if (rtw_is_adapter_up(iface) == _FALSE)
continue;
buddy_mlmepriv = &iface->mlmepriv;
if (!check_fwstate(buddy_mlmepriv, WIFI_UNDER_SURVEY))
continue;
buddy_wdev_priv = adapter_wdev_data(iface);
_rtw_spinlock_bh(&pwdev_priv->scan_req_lock);
_rtw_spinlock_bh(&buddy_wdev_priv->scan_req_lock);
if (buddy_wdev_priv->scan_request) {
pmlmepriv->scanning_via_buddy_intf = _TRUE;
_rtw_spinlock_bh(&pmlmepriv->lock);
set_fwstate(pmlmepriv, WIFI_UNDER_SURVEY);
_rtw_spinunlock_bh(&pmlmepriv->lock);
pwdev_priv->scan_request = request;
ret = _TRUE;
}
_rtw_spinunlock_bh(&buddy_wdev_priv->scan_req_lock);
_rtw_spinunlock_bh(&pwdev_priv->scan_req_lock);
if (ret == _TRUE)
goto exit;
}
exit:
return ret;
}
void rtw_cfg80211_indicate_scan_done_for_buddy(_adapter *padapter, bool bscan_aborted)
{
int i;
_adapter *iface = NULL;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct mlme_priv *mlmepriv;
struct rtw_wdev_priv *wdev_priv;
bool indicate_buddy_scan;
for (i = 0; i < dvobj->iface_nums; i++) {
iface = dvobj->padapters[i];
if ((iface) && rtw_is_adapter_up(iface)) {
if (iface == padapter)
continue;
mlmepriv = &(iface->mlmepriv);
wdev_priv = adapter_wdev_data(iface);
indicate_buddy_scan = _FALSE;
_rtw_spinlock_bh(&wdev_priv->scan_req_lock);
if (mlmepriv->scanning_via_buddy_intf == _TRUE) {
mlmepriv->scanning_via_buddy_intf = _FALSE;
clr_fwstate(mlmepriv, WIFI_UNDER_SURVEY);
if (wdev_priv->scan_request)
indicate_buddy_scan = _TRUE;
}
_rtw_spinunlock_bh(&wdev_priv->scan_req_lock);
if (indicate_buddy_scan == _TRUE) {
rtw_cfg80211_surveydone_event_callback(iface);
rtw_indicate_scan_done(iface, bscan_aborted);
}
}
}
}
#endif /* CONFIG_CONCURRENT_MODE */
static int cfg80211_rtw_scan(struct wiphy *wiphy
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 6, 0))
, struct net_device *ndev
#endif
, struct cfg80211_scan_request *request)
{
int i;
u8 _status = _FALSE;
int ret = 0;
struct sitesurvey_parm parm;
u8 survey_times = 3;
u8 survey_times_for_one_ch = 6;
struct cfg80211_ssid *ssids = request->ssids;
int social_channel = 0, j = 0;
bool need_indicate_scan_done = _FALSE;
bool ps_denied = _FALSE;
u8 ssc_chk;
_adapter *padapter;
struct wireless_dev *wdev;
struct rtw_wdev_priv *pwdev_priv;
struct mlme_priv *pmlmepriv = NULL;
#ifdef CONFIG_P2P
struct wifidirect_info *pwdinfo;
#endif /* CONFIG_P2P */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
wdev = request->wdev;
#if defined(RTW_DEDICATED_P2P_DEVICE)
if (wdev == wiphy_to_pd_wdev(wiphy))
padapter = wiphy_to_adapter(wiphy);
else
#endif
if (wdev_to_ndev(wdev))
padapter = (_adapter *)rtw_netdev_priv(wdev_to_ndev(wdev));
else {
ret = -EINVAL;
goto exit;
}
#else
if (ndev == NULL) {
ret = -EINVAL;
goto exit;
}
padapter = (_adapter *)rtw_netdev_priv(ndev);
wdev = ndev_to_wdev(ndev);
#endif
pwdev_priv = adapter_wdev_data(padapter);
pmlmepriv = &padapter->mlmepriv;
#ifdef CONFIG_P2P
pwdinfo = &(padapter->wdinfo);
#endif /* CONFIG_P2P */
RTW_INFO(FUNC_ADPT_FMT"%s\n", FUNC_ADPT_ARG(padapter)
, wdev == wiphy_to_pd_wdev(wiphy) ? " PD" : "");
rtw_init_sitesurvey_parm(padapter, &parm);
ssc_chk = rtw_sitesurvey_condition_check(padapter, _TRUE);
if (ssc_chk == SS_DENY_MP_MODE)
goto bypass_p2p_chk;
#ifdef DBG_LA_MODE
if (ssc_chk == SS_DENY_LA_MODE)
goto bypass_p2p_chk;
#endif
#ifdef CONFIG_P2P
if (request->n_ssids && ssids
&& _rtw_memcmp(ssids[0].ssid, "DIRECT-", 7)
&& rtw_get_p2p_ie((u8 *)request->ie, request->ie_len, NULL, NULL)
) {
if (rtw_p2p_chk_role(pwdinfo, P2P_ROLE_DISABLE)) {
if (!rtw_p2p_enable(padapter, P2P_ROLE_DEVICE)) {
ret = -EOPNOTSUPP;
goto exit;
}
} else {
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("%s, role=%d\n", __func__, rtw_p2p_role(pwdinfo));
#endif
}
if (request->n_channels == 3 &&
request->channels[0]->hw_value == 1 &&
request->channels[1]->hw_value == 6 &&
request->channels[2]->hw_value == 11
)
social_channel = 1;
parm.scan_type = RTW_SCAN_P2P;
}
#endif /*CONFIG_P2P*/
if (request->ie && request->ie_len > 0)
rtw_cfg80211_set_probe_req_wpsp2pie(padapter, (u8 *)request->ie, request->ie_len);
bypass_p2p_chk:
switch (ssc_chk) {
case SS_ALLOW :
break;
case SS_DENY_MP_MODE:
ret = -EPERM;
goto exit;
#ifdef DBG_LA_MODE
case SS_DENY_LA_MODE:
ret = -EPERM;
goto exit;
#endif
case SS_DENY_BLOCK_SCAN :
case SS_DENY_SELF_AP_UNDER_WPS :
case SS_DENY_SELF_AP_UNDER_LINKING :
case SS_DENY_SELF_AP_UNDER_SURVEY :
case SS_DENY_SELF_STA_UNDER_SURVEY :
#ifdef CONFIG_CONCURRENT_MODE
case SS_DENY_BUDDY_UNDER_LINK_WPS :
#endif
case SS_DENY_BUSY_TRAFFIC :
case SS_DENY_ADAPTIVITY:
need_indicate_scan_done = _TRUE;
goto check_need_indicate_scan_done;
case SS_DENY_BY_DRV :
#ifdef CONFIG_NOTIFY_SCAN_ABORT_WITH_BUSY
ret = -EBUSY;
goto exit;
#else
need_indicate_scan_done = _TRUE;
goto check_need_indicate_scan_done;
#endif
break;
case SS_DENY_SELF_STA_UNDER_LINKING :
ret = -EBUSY;
goto check_need_indicate_scan_done;
#ifdef CONFIG_CONCURRENT_MODE
case SS_DENY_BUDDY_UNDER_SURVEY :
{
bool scan_via_buddy = rtw_cfg80211_scan_via_buddy(padapter, request);
if (scan_via_buddy == _FALSE)
need_indicate_scan_done = _TRUE;
goto check_need_indicate_scan_done;
}
#endif
default :
RTW_ERR("site survey check code (%d) unknown\n", ssc_chk);
need_indicate_scan_done = _TRUE;
goto check_need_indicate_scan_done;
}
rtw_ps_deny(padapter, PS_DENY_SCAN);
ps_denied = _TRUE;
if (_FAIL == rtw_pwr_wakeup(padapter)) {
need_indicate_scan_done = _TRUE;
goto check_need_indicate_scan_done;
}
/* parsing request ssids, n_ssids */
for (i = 0; i < request->n_ssids && ssids && i < RTW_SSID_SCAN_AMOUNT; i++) {
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("ssid=%s, len=%d\n", ssids[i].ssid, ssids[i].ssid_len);
#endif
_rtw_memcpy(&parm.ssid[i].Ssid, ssids[i].ssid, ssids[i].ssid_len);
parm.ssid[i].SsidLength = ssids[i].ssid_len;
}
parm.ssid_num = i;
/* no ssid entry, set the scan type as passvie */
if (request->n_ssids == 0)
parm.scan_mode = RTW_PHL_SCAN_PASSIVE;
/* parsing channels, n_channels */
for (i = 0; i < request->n_channels && i < RTW_CHANNEL_SCAN_AMOUNT; i++) {
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO(FUNC_ADPT_FMT CHAN_FMT"\n", FUNC_ADPT_ARG(padapter), CHAN_ARG(request->channels[i]));
#endif
parm.ch[i].hw_value = request->channels[i]->hw_value;
parm.ch[i].flags = request->channels[i]->flags;
}
parm.ch_num = i;
#if 0
if (request->n_channels == 1) {
for (i = 1; i < survey_times_for_one_ch; i++)
_rtw_memcpy(&parm.ch[i], &parm.ch[0], sizeof(struct rtw_ieee80211_channel));
parm.ch_num = survey_times_for_one_ch;
} else if (request->n_channels <= 4) {
for (j = request->n_channels - 1; j >= 0; j--)
for (i = 0; i < survey_times; i++)
_rtw_memcpy(&parm.ch[j * survey_times + i], &parm.ch[j], sizeof(struct rtw_ieee80211_channel));
parm.ch_num = survey_times * request->n_channels;
}
#endif
_rtw_spinlock_bh(&pwdev_priv->scan_req_lock);
_rtw_spinlock_bh(&pmlmepriv->lock);
_status = rtw_sitesurvey_cmd(padapter, &parm);
if (_status == _SUCCESS)
pwdev_priv->scan_request = request;
else
ret = -1;
_rtw_spinunlock_bh(&pmlmepriv->lock);
_rtw_spinunlock_bh(&pwdev_priv->scan_req_lock);
check_need_indicate_scan_done:
if (_TRUE == need_indicate_scan_done) {
#if (KERNEL_VERSION(4, 8, 0) <= LINUX_VERSION_CODE)
struct cfg80211_scan_info info;
memset(&info, 0, sizeof(info));
info.aborted = 0;
#endif
/* the process time of scan results must be over at least 1ms in the newly Android */
rtw_msleep_os(1);
_rtw_cfg80211_surveydone_event_callback(padapter, request);
#if (KERNEL_VERSION(4, 8, 0) <= LINUX_VERSION_CODE)
cfg80211_scan_done(request, &info);
#else
cfg80211_scan_done(request, 0);
#endif
}
if (ps_denied == _TRUE)
rtw_ps_deny_cancel(padapter, PS_DENY_SCAN);
exit:
#ifdef RTW_BUSY_DENY_SCAN
if (pmlmepriv)
pmlmepriv->lastscantime = rtw_get_current_time();
#endif
return ret;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 5, 0))
static void cfg80211_rtw_abort_scan(struct wiphy *wiphy,
struct wireless_dev *wdev)
{
_adapter *padapter = wiphy_to_adapter(wiphy);
RTW_INFO("=>"FUNC_NDEV_FMT" - Abort Scan\n", FUNC_ADPT_ARG(padapter));
if (wdev->iftype != NL80211_IFTYPE_STATION) {
RTW_ERR("abort scan ignored, iftype(%d)\n", wdev->iftype);
return;
}
rtw_scan_abort(padapter, 0);
}
#endif /* LINUX_VERSION_CODE >= 4.5.0 */
static int cfg80211_rtw_set_wiphy_params(struct wiphy *wiphy, u32 changed)
{
#if 0
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
if (changed & WIPHY_PARAM_RTS_THRESHOLD &&
(iwm->conf.rts_threshold != wiphy->rts_threshold)) {
int ret;
iwm->conf.rts_threshold = wiphy->rts_threshold;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_RTS_THRESHOLD,
iwm->conf.rts_threshold);
if (ret < 0)
return ret;
}
if (changed & WIPHY_PARAM_FRAG_THRESHOLD &&
(iwm->conf.frag_threshold != wiphy->frag_threshold)) {
int ret;
iwm->conf.frag_threshold = wiphy->frag_threshold;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_FA_CFG_FIX,
CFG_FRAG_THRESHOLD,
iwm->conf.frag_threshold);
if (ret < 0)
return ret;
}
#endif
RTW_INFO("%s\n", __func__);
return 0;
}
static int rtw_cfg80211_set_wpa_version(struct security_priv *psecuritypriv, u32 wpa_version)
{
RTW_INFO("%s, wpa_version=%d\n", __func__, wpa_version);
if (!wpa_version) {
psecuritypriv->ndisauthtype = Ndis802_11AuthModeOpen;
return 0;
}
if (wpa_version & (NL80211_WPA_VERSION_1 | NL80211_WPA_VERSION_2))
psecuritypriv->ndisauthtype = Ndis802_11AuthModeWPAPSK;
#if 0
if (wpa_version & NL80211_WPA_VERSION_2)
psecuritypriv->ndisauthtype = Ndis802_11AuthModeWPA2PSK;
#endif
#ifdef CONFIG_WAPI_SUPPORT
if (wpa_version & NL80211_WAPI_VERSION_1)
psecuritypriv->ndisauthtype = Ndis802_11AuthModeWAPI;
#endif
return 0;
}
static int rtw_cfg80211_set_auth_type(struct security_priv *psecuritypriv,
enum nl80211_auth_type sme_auth_type)
{
RTW_INFO("%s, nl80211_auth_type=%d\n", __func__, sme_auth_type);
if (NL80211_AUTHTYPE_MAX <= (int)MLME_AUTHTYPE_SAE) {
if (MLME_AUTHTYPE_SAE == psecuritypriv->auth_type) {
/* This case pre handle in
* rtw_check_connect_sae_compat()
*/
psecuritypriv->auth_alg = WLAN_AUTH_SAE;
return 0;
}
} else if (sme_auth_type == (int)MLME_AUTHTYPE_SAE) {
psecuritypriv->auth_type = MLME_AUTHTYPE_SAE;
psecuritypriv->auth_alg = WLAN_AUTH_SAE;
return 0;
}
psecuritypriv->auth_type = sme_auth_type;
switch (sme_auth_type) {
case NL80211_AUTHTYPE_AUTOMATIC:
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_Auto;
break;
case NL80211_AUTHTYPE_OPEN_SYSTEM:
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_Open;
if (psecuritypriv->ndisauthtype > Ndis802_11AuthModeWPA)
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_8021X;
#ifdef CONFIG_WAPI_SUPPORT
if (psecuritypriv->ndisauthtype == Ndis802_11AuthModeWAPI)
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_WAPI;
#endif
break;
case NL80211_AUTHTYPE_SHARED_KEY:
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_Shared;
psecuritypriv->ndisencryptstatus = Ndis802_11Encryption1Enabled;
break;
default:
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_Open;
/* return -ENOTSUPP; */
}
return 0;
}
static int rtw_cfg80211_set_cipher(struct security_priv *psecuritypriv, u32 cipher, bool ucast)
{
u32 ndisencryptstatus = Ndis802_11EncryptionDisabled;
u32 *profile_cipher = ucast ? &psecuritypriv->dot11PrivacyAlgrthm :
&psecuritypriv->dot118021XGrpPrivacy;
RTW_INFO("%s, ucast=%d, cipher=0x%x\n", __func__, ucast, cipher);
if (!cipher) {
*profile_cipher = _NO_PRIVACY_;
psecuritypriv->ndisencryptstatus = ndisencryptstatus;
return 0;
}
switch (cipher) {
case IW_AUTH_CIPHER_NONE:
*profile_cipher = _NO_PRIVACY_;
ndisencryptstatus = Ndis802_11EncryptionDisabled;
#ifdef CONFIG_WAPI_SUPPORT
if (psecuritypriv->dot11PrivacyAlgrthm == _SMS4_)
*profile_cipher = _SMS4_;
#endif
break;
case WLAN_CIPHER_SUITE_WEP40:
*profile_cipher = _WEP40_;
ndisencryptstatus = Ndis802_11Encryption1Enabled;
break;
case WLAN_CIPHER_SUITE_WEP104:
*profile_cipher = _WEP104_;
ndisencryptstatus = Ndis802_11Encryption1Enabled;
break;
case WLAN_CIPHER_SUITE_TKIP:
*profile_cipher = _TKIP_;
ndisencryptstatus = Ndis802_11Encryption2Enabled;
break;
case WLAN_CIPHER_SUITE_CCMP:
*profile_cipher = _AES_;
ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
case WIFI_CIPHER_SUITE_GCMP:
*profile_cipher = _GCMP_;
ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
case WIFI_CIPHER_SUITE_GCMP_256:
*profile_cipher = _GCMP_256_;
ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
case WIFI_CIPHER_SUITE_CCMP_256:
*profile_cipher = _CCMP_256_;
ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
#ifdef CONFIG_WAPI_SUPPORT
case WLAN_CIPHER_SUITE_SMS4:
*profile_cipher = _SMS4_;
ndisencryptstatus = Ndis802_11_EncrypteionWAPI;
break;
#endif
default:
RTW_INFO("Unsupported cipher: 0x%x\n", cipher);
return -ENOTSUPP;
}
if (ucast) {
psecuritypriv->ndisencryptstatus = ndisencryptstatus;
/* if(psecuritypriv->dot11PrivacyAlgrthm >= _AES_) */
/* psecuritypriv->ndisauthtype = Ndis802_11AuthModeWPA2PSK; */
}
return 0;
}
static int rtw_cfg80211_set_key_mgt(struct security_priv *psecuritypriv, u32 key_mgt)
{
RTW_INFO("%s, key_mgt=0x%x\n", __func__, key_mgt);
if (key_mgt == WLAN_AKM_SUITE_8021X) {
/* *auth_type = UMAC_AUTH_TYPE_8021X; */
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_8021X;
psecuritypriv->rsn_akm_suite_type = 1;
} else if (key_mgt == WLAN_AKM_SUITE_PSK) {
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_8021X;
psecuritypriv->rsn_akm_suite_type = 2;
} else if (key_mgt == WLAN_AKM_SUITE_SAE) {
psecuritypriv->rsn_akm_suite_type = 8;
}
#ifdef CONFIG_WAPI_SUPPORT
else if (key_mgt == WLAN_AKM_SUITE_WAPI_PSK)
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_WAPI;
else if (key_mgt == WLAN_AKM_SUITE_WAPI_CERT)
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_WAPI;
#endif
#ifdef CONFIG_RTW_80211R
else if (key_mgt == WLAN_AKM_SUITE_FT_8021X) {
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_8021X;
psecuritypriv->rsn_akm_suite_type = 3;
} else if (key_mgt == WLAN_AKM_SUITE_FT_PSK) {
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_8021X;
psecuritypriv->rsn_akm_suite_type = 4;
}
#endif
else {
RTW_INFO("Invalid key mgt: 0x%x\n", key_mgt);
/* return -EINVAL; */
}
return 0;
}
static int rtw_cfg80211_set_wpa_ie(_adapter *padapter, u8 *pie, size_t ielen)
{
u8 *buf = NULL, *pos = NULL;
int group_cipher = 0, pairwise_cipher = 0;
u8 mfp_opt = MFP_NO;
int ret = 0;
int wpa_ielen = 0;
int wpa2_ielen = 0;
u8 *pwpa, *pwpa2;
u8 null_addr[] = {0, 0, 0, 0, 0, 0};
if (pie == NULL || !ielen) {
/* Treat this as normal case, but need to clear WIFI_UNDER_WPS */
_clr_fwstate_(&padapter->mlmepriv, WIFI_UNDER_WPS);
goto exit;
}
if (ielen > MAX_WPA_IE_LEN + MAX_WPS_IE_LEN + MAX_P2P_IE_LEN) {
ret = -EINVAL;
goto exit;
}
buf = rtw_zmalloc(ielen);
if (buf == NULL) {
ret = -ENOMEM;
goto exit;
}
_rtw_memcpy(buf, pie , ielen);
RTW_INFO("set wpa_ie(length:%zu):\n", ielen);
RTW_INFO_DUMP(NULL, buf, ielen);
pos = buf;
if (ielen < RSN_HEADER_LEN) {
ret = -1;
goto exit;
}
pwpa = rtw_get_wpa_ie(buf, &wpa_ielen, ielen);
if (pwpa && wpa_ielen > 0) {
if (rtw_parse_wpa_ie(pwpa, wpa_ielen + 2, &group_cipher, &pairwise_cipher, NULL) == _SUCCESS) {
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_8021X;
padapter->securitypriv.ndisauthtype = Ndis802_11AuthModeWPAPSK;
_rtw_memcpy(padapter->securitypriv.supplicant_ie, &pwpa[0], wpa_ielen + 2);
RTW_INFO("got wpa_ie, wpa_ielen:%u\n", wpa_ielen);
}
}
pwpa2 = rtw_get_wpa2_ie(buf, &wpa2_ielen, ielen);
if (pwpa2 && wpa2_ielen > 0) {
if (rtw_parse_wpa2_ie(pwpa2, wpa2_ielen + 2, &group_cipher, &pairwise_cipher, NULL, NULL, &mfp_opt, NULL) == _SUCCESS) {
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_8021X;
padapter->securitypriv.ndisauthtype = Ndis802_11AuthModeWPA2PSK;
_rtw_memcpy(padapter->securitypriv.supplicant_ie, &pwpa2[0], wpa2_ielen + 2);
RTW_INFO("got wpa2_ie, wpa2_ielen:%u\n", wpa2_ielen);
}
}
if (group_cipher == 0)
group_cipher = WPA_CIPHER_NONE;
if (pairwise_cipher == 0)
pairwise_cipher = WPA_CIPHER_NONE;
switch (group_cipher) {
case WPA_CIPHER_NONE:
padapter->securitypriv.dot118021XGrpPrivacy = _NO_PRIVACY_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11EncryptionDisabled;
break;
case WPA_CIPHER_WEP40:
padapter->securitypriv.dot118021XGrpPrivacy = _WEP40_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption1Enabled;
break;
case WPA_CIPHER_TKIP:
padapter->securitypriv.dot118021XGrpPrivacy = _TKIP_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption2Enabled;
break;
case WPA_CIPHER_CCMP:
padapter->securitypriv.dot118021XGrpPrivacy = _AES_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
case WPA_CIPHER_GCMP:
padapter->securitypriv.dot118021XGrpPrivacy = _GCMP_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
case WPA_CIPHER_GCMP_256:
padapter->securitypriv.dot118021XGrpPrivacy = _GCMP_256_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
case WPA_CIPHER_CCMP_256:
padapter->securitypriv.dot118021XGrpPrivacy = _CCMP_256_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
case WPA_CIPHER_WEP104:
padapter->securitypriv.dot118021XGrpPrivacy = _WEP104_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption1Enabled;
break;
}
switch (pairwise_cipher) {
case WPA_CIPHER_NONE:
padapter->securitypriv.dot11PrivacyAlgrthm = _NO_PRIVACY_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11EncryptionDisabled;
break;
case WPA_CIPHER_WEP40:
padapter->securitypriv.dot11PrivacyAlgrthm = _WEP40_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption1Enabled;
break;
case WPA_CIPHER_TKIP:
padapter->securitypriv.dot11PrivacyAlgrthm = _TKIP_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption2Enabled;
break;
case WPA_CIPHER_CCMP:
padapter->securitypriv.dot11PrivacyAlgrthm = _AES_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
case WPA_CIPHER_GCMP:
padapter->securitypriv.dot11PrivacyAlgrthm = _GCMP_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
case WPA_CIPHER_GCMP_256:
padapter->securitypriv.dot11PrivacyAlgrthm = _GCMP_256_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
case WPA_CIPHER_CCMP_256:
padapter->securitypriv.dot11PrivacyAlgrthm = _CCMP_256_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
case WPA_CIPHER_WEP104:
padapter->securitypriv.dot11PrivacyAlgrthm = _WEP104_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption1Enabled;
break;
}
if (mfp_opt == MFP_INVALID) {
RTW_INFO(FUNC_ADPT_FMT" invalid MFP setting\n", FUNC_ADPT_ARG(padapter));
ret = -EINVAL;
goto exit;
}
padapter->securitypriv.mfp_opt = mfp_opt;
{/* handle wps_ie */
uint wps_ielen;
u8 *wps_ie;
wps_ie = rtw_get_wps_ie(buf, ielen, NULL, &wps_ielen);
if (wps_ie && wps_ielen > 0) {
RTW_INFO("got wps_ie, wps_ielen:%u\n", wps_ielen);
padapter->securitypriv.wps_ie_len = wps_ielen < MAX_WPS_IE_LEN ? wps_ielen : MAX_WPS_IE_LEN;
_rtw_memcpy(padapter->securitypriv.wps_ie, wps_ie, padapter->securitypriv.wps_ie_len);
set_fwstate(&padapter->mlmepriv, WIFI_UNDER_WPS);
} else
_clr_fwstate_(&padapter->mlmepriv, WIFI_UNDER_WPS);
}
{/* handle owe_ie */
uint owe_ielen;
u8 *owe_ie;
owe_ie = rtw_get_owe_ie(buf, ielen, NULL, &owe_ielen);
if (owe_ie && owe_ielen > 0) {
RTW_INFO("got owe_ie, owe_ielen:%u\n", owe_ielen);
padapter->securitypriv.owe_ie_len = owe_ielen < MAX_OWE_IE_LEN ? owe_ielen : MAX_OWE_IE_LEN;
_rtw_memcpy(padapter->securitypriv.owe_ie, owe_ie, padapter->securitypriv.owe_ie_len);
}
}
#ifdef CONFIG_P2P
{/* check p2p_ie for assoc req; */
uint p2p_ielen = 0;
u8 *p2p_ie;
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
p2p_ie = rtw_get_p2p_ie(buf, ielen, NULL, &p2p_ielen);
if (p2p_ie) {
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("%s p2p_assoc_req_ielen=%d\n", __FUNCTION__, p2p_ielen);
#endif
if (pmlmepriv->p2p_assoc_req_ie) {
u32 free_len = pmlmepriv->p2p_assoc_req_ie_len;
pmlmepriv->p2p_assoc_req_ie_len = 0;
rtw_mfree(pmlmepriv->p2p_assoc_req_ie, free_len);
pmlmepriv->p2p_assoc_req_ie = NULL;
}
pmlmepriv->p2p_assoc_req_ie = rtw_malloc(p2p_ielen);
if (pmlmepriv->p2p_assoc_req_ie == NULL) {
RTW_INFO("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
goto exit;
}
_rtw_memcpy(pmlmepriv->p2p_assoc_req_ie, p2p_ie, p2p_ielen);
pmlmepriv->p2p_assoc_req_ie_len = p2p_ielen;
}
}
#endif /* CONFIG_P2P */
#ifdef CONFIG_WFD
{
uint wfd_ielen = 0;
u8 *wfd_ie;
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
wfd_ie = rtw_get_wfd_ie(buf, ielen, NULL, &wfd_ielen);
if (wfd_ie) {
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("%s wfd_assoc_req_ielen=%d\n", __FUNCTION__, wfd_ielen);
#endif
if (rtw_mlme_update_wfd_ie_data(pmlmepriv, MLME_ASSOC_REQ_IE, wfd_ie, wfd_ielen) != _SUCCESS)
goto exit;
}
}
#endif /* CONFIG_WFD */
#ifdef CONFIG_RTW_MULTI_AP
padapter->multi_ap = rtw_get_multi_ap_ie_ext(buf, ielen) & MULTI_AP_BACKHAUL_STA;
if (padapter->multi_ap)
adapter_set_use_wds(padapter, 1);
#endif
exit:
if (buf)
rtw_mfree(buf, ielen);
if (ret)
_clr_fwstate_(&padapter->mlmepriv, WIFI_UNDER_WPS);
return ret;
}
static int cfg80211_rtw_join_ibss(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_ibss_params *params)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
NDIS_802_11_SSID ndis_ssid;
struct security_priv *psecuritypriv = &padapter->securitypriv;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
struct cfg80211_chan_def *pch_def;
#endif
struct ieee80211_channel *pch;
int ret = 0;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
pch_def = (struct cfg80211_chan_def *)(¶ms->chandef);
pch = (struct ieee80211_channel *) pch_def->chan;
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31))
pch = (struct ieee80211_channel *)(params->channel);
#endif
if (!params->ssid || !params->ssid_len) {
ret = -EINVAL;
goto exit;
}
if (params->ssid_len > IW_ESSID_MAX_SIZE) {
ret = -E2BIG;
goto exit;
}
rtw_ps_deny(padapter, PS_DENY_JOIN);
if (_FAIL == rtw_pwr_wakeup(padapter)) {
ret = -EPERM;
goto cancel_ps_deny;
}
#ifdef CONFIG_CONCURRENT_MODE
if (rtw_mi_buddy_check_fwstate(padapter, WIFI_UNDER_LINKING)) {
RTW_INFO("%s, but buddy_intf is under linking\n", __FUNCTION__);
ret = -EINVAL;
goto cancel_ps_deny;
}
rtw_mi_buddy_scan_abort(padapter, _TRUE); /* OR rtw_mi_scan_abort(padapter, _TRUE);*/
#endif /*CONFIG_CONCURRENT_MODE*/
_rtw_memset(&ndis_ssid, 0, sizeof(NDIS_802_11_SSID));
ndis_ssid.SsidLength = params->ssid_len;
_rtw_memcpy(ndis_ssid.Ssid, (u8 *)params->ssid, params->ssid_len);
/* RTW_INFO("ssid=%s, len=%zu\n", ndis_ssid.Ssid, params->ssid_len); */
psecuritypriv->ndisencryptstatus = Ndis802_11EncryptionDisabled;
psecuritypriv->dot11PrivacyAlgrthm = _NO_PRIVACY_;
psecuritypriv->dot118021XGrpPrivacy = _NO_PRIVACY_;
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_Open; /* open system */
psecuritypriv->ndisauthtype = Ndis802_11AuthModeOpen;
ret = rtw_cfg80211_set_auth_type(psecuritypriv, NL80211_AUTHTYPE_OPEN_SYSTEM);
rtw_set_802_11_authentication_mode(padapter, psecuritypriv->ndisauthtype);
RTW_INFO("%s: center_freq = %d\n", __func__, pch->center_freq);
pmlmeext->chandef.chan = rtw_freq2ch(pch->center_freq);
if (rtw_set_802_11_ssid(padapter, &ndis_ssid) == _FALSE) {
ret = -1;
goto cancel_ps_deny;
}
cancel_ps_deny:
rtw_ps_deny_cancel(padapter, PS_DENY_JOIN);
exit:
return ret;
}
static int cfg80211_rtw_leave_ibss(struct wiphy *wiphy, struct net_device *ndev)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct wireless_dev *rtw_wdev = padapter->rtw_wdev;
enum nl80211_iftype old_type;
int ret = 0;
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
#if (RTW_CFG80211_BLOCK_STA_DISCON_EVENT & RTW_CFG80211_BLOCK_DISCON_WHEN_DISCONNECT)
rtw_wdev_set_not_indic_disco(adapter_wdev_data(padapter), 1);
#endif
old_type = rtw_wdev->iftype;
rtw_set_to_roam(padapter, 0);
if (check_fwstate(&padapter->mlmepriv, WIFI_ASOC_STATE)) {
rtw_scan_abort(padapter, 0);
LeaveAllPowerSaveMode(padapter);
rtw_wdev->iftype = NL80211_IFTYPE_STATION;
if (rtw_set_802_11_infrastructure_mode(padapter, Ndis802_11Infrastructure, 0) == _FALSE) {
rtw_wdev->iftype = old_type;
ret = -EPERM;
goto leave_ibss;
}
rtw_setopmode_cmd(padapter, Ndis802_11Infrastructure, RTW_CMDF_WAIT_ACK);
}
leave_ibss:
#if (RTW_CFG80211_BLOCK_STA_DISCON_EVENT & RTW_CFG80211_BLOCK_DISCON_WHEN_DISCONNECT)
rtw_wdev_set_not_indic_disco(adapter_wdev_data(padapter), 0);
#endif
return 0;
}
bool rtw_cfg80211_is_connect_requested(_adapter *adapter)
{
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(adapter);
bool requested;
_rtw_spinlock_bh(&pwdev_priv->connect_req_lock);
requested = pwdev_priv->connect_req ? 1 : 0;
_rtw_spinunlock_bh(&pwdev_priv->connect_req_lock);
return requested;
}
static int _rtw_disconnect(struct wiphy *wiphy, struct net_device *ndev)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
/* if(check_fwstate(&padapter->mlmepriv, WIFI_ASOC_STATE)) */
{
rtw_scan_abort(padapter, 0);
rtw_join_abort_timeout(padapter, 300);
LeaveAllPowerSaveMode(padapter);
rtw_disassoc_cmd(padapter, 500, RTW_CMDF_WAIT_ACK);
if ((MLME_IS_ASOC(padapter) == _TRUE)
#ifdef CONFIG_STA_CMD_DISPR
&& (MLME_IS_STA(padapter) == _FALSE)
#endif /* CONFIG_STA_CMD_DISPR */
)
rtw_free_assoc_resources_cmd(padapter, _TRUE, RTW_CMDF_WAIT_ACK);
RTW_INFO("%s...call rtw_indicate_disconnect\n", __func__);
/* indicate locally_generated = 0 when suspend */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0))
rtw_indicate_disconnect(padapter, 0, wiphy->dev.power.is_prepared ? _FALSE : _TRUE);
#else
/*
* for kernel < 4.2, DISCONNECT event is hardcoded with
* NL80211_ATTR_DISCONNECTED_BY_AP=1 in NL80211 layer
* no need to judge if under suspend
*/
rtw_indicate_disconnect(padapter, 0, _TRUE);
#endif
rtw_pwr_wakeup(padapter);
}
return 0;
}
#if (KERNEL_VERSION(4, 17, 0) > LINUX_VERSION_CODE) \
&& !defined(CONFIG_KERNEL_PATCH_EXTERNAL_AUTH)
static bool rtw_check_connect_sae_compat(struct cfg80211_connect_params *sme)
{
struct rtw_ieee802_11_elems elems;
struct rsne_info info;
u8 AKM_SUITE_SAE[] = {0x00, 0x0f, 0xac, 8};
int i;
if (sme->auth_type != (int)MLME_AUTHTYPE_SHARED_KEY)
return false;
if (rtw_ieee802_11_parse_elems((u8 *)sme->ie, sme->ie_len, &elems, 0)
== ParseFailed)
return false;
if (!elems.rsn_ie)
return false;
if (rtw_rsne_info_parse(elems.rsn_ie - 2, elems.rsn_ie_len + 2, &info) == _FAIL)
return false;
for (i = 0; i < info.akm_cnt; i++)
if (_rtw_memcmp(info.akm_list + i * RSN_SELECTOR_LEN,
AKM_SUITE_SAE, RSN_SELECTOR_LEN) == _TRUE)
return true;
return false;
}
#else
#define rtw_check_connect_sae_compat(sme) false
#endif
/* todo: move to rtw_security.c ? */
static int rtw_set_security(struct _ADAPTER *a,
struct cfg80211_connect_params *sme)
{
struct security_priv *sec = &a->securitypriv;
int ret = 0;
sec->ndisencryptstatus = Ndis802_11EncryptionDisabled;
sec->dot11PrivacyAlgrthm = _NO_PRIVACY_;
sec->dot118021XGrpPrivacy = _NO_PRIVACY_;
sec->dot11AuthAlgrthm = dot11AuthAlgrthm_Open; /* open system */
sec->ndisauthtype = Ndis802_11AuthModeOpen;
sec->auth_alg = WLAN_AUTH_OPEN;
sec->extauth_status = WLAN_STATUS_UNSPECIFIED_FAILURE;
ret = rtw_cfg80211_set_wpa_version(sec, sme->crypto.wpa_versions);
if (ret < 0)
return -1;
#ifdef CONFIG_WAPI_SUPPORT
if (sme->crypto.wpa_versions & NL80211_WAPI_VERSION_1) {
a->wapiInfo.bWapiEnable = true;
a->wapiInfo.extra_prefix_len = WAPI_EXT_LEN;
a->wapiInfo.extra_postfix_len = SMS4_MIC_LEN;
} else {
a->wapiInfo.bWapiEnable = false;
}
#endif
ret = rtw_cfg80211_set_auth_type(sec, sme->auth_type);
#ifdef CONFIG_WAPI_SUPPORT
if (sec->dot11AuthAlgrthm == dot11AuthAlgrthm_WAPI)
a->mlmeextpriv.mlmext_info.auth_algo = sec->dot11AuthAlgrthm;
#endif
if (ret < 0)
return -1;
if (sme->crypto.n_ciphers_pairwise) {
ret = rtw_cfg80211_set_cipher(sec, sme->crypto.ciphers_pairwise[0], _TRUE);
if (ret < 0)
return -1;
}
/* For WEP Shared auth */
if (sme->key_len > 0 && sme->key) {
u32 wep_key_idx, wep_key_len, wep_total_len;
NDIS_802_11_WEP *pwep = NULL;
RTW_INFO("%s(): Shared/Auto WEP\n", __FUNCTION__);
wep_key_idx = sme->key_idx;
wep_key_len = sme->key_len;
if (sme->key_idx > WEP_KEYS)
return -EINVAL;
if (!wep_key_len)
return -EINVAL;
wep_key_len = wep_key_len <= 5 ? 5 : 13;
wep_total_len = wep_key_len + FIELD_OFFSET(NDIS_802_11_WEP, KeyMaterial);
pwep = (NDIS_802_11_WEP *) rtw_malloc(wep_total_len);
if (pwep == NULL) {
RTW_INFO(" wpa_set_encryption: pwep allocate fail !!!\n");
return -ENOMEM;
}
_rtw_memset(pwep, 0, wep_total_len);
pwep->KeyLength = wep_key_len;
pwep->Length = wep_total_len;
if (wep_key_len == 13) {
a->securitypriv.dot11PrivacyAlgrthm = _WEP104_;
a->securitypriv.dot118021XGrpPrivacy = _WEP104_;
}
pwep->KeyIndex = wep_key_idx;
pwep->KeyIndex |= 0x80000000;
_rtw_memcpy(pwep->KeyMaterial, (void *)sme->key, pwep->KeyLength);
if (rtw_set_802_11_add_wep(a, pwep) == (u8)_FAIL)
ret = -EOPNOTSUPP ;
if (pwep)
rtw_mfree((u8 *)pwep, wep_total_len);
if (ret < 0)
return ret;
}
ret = rtw_cfg80211_set_cipher(sec, sme->crypto.cipher_group, _FALSE);
if (ret < 0)
return ret;
if (sme->crypto.n_akm_suites) {
ret = rtw_cfg80211_set_key_mgt(sec, sme->crypto.akm_suites[0]);
if (ret < 0)
return ret;
}
#ifdef CONFIG_8011R
else {
/*It could be a connection without RSN IEs*/
sec->rsn_akm_suite_type = 0;
}
#endif
#ifdef CONFIG_WAPI_SUPPORT
if (sme->crypto.akm_suites[0] == WLAN_AKM_SUITE_WAPI_PSK)
a->wapiInfo.bWapiPSK = true;
else if (sme->crypto.akm_suites[0] == WLAN_AKM_SUITE_WAPI_CERT)
a->wapiInfo.bWapiPSK = false;
#endif
rtw_set_802_11_authentication_mode(a, sec->ndisauthtype);
/* rtw_set_802_11_encryption_mode(a, a->securitypriv.ndisencryptstatus); */
return 0;
}
static int rtw_set_wpa_ie(struct _ADAPTER *a,
struct cfg80211_connect_params *sme)
{
return rtw_cfg80211_set_wpa_ie(a, (u8 *)sme->ie, sme->ie_len);
}
static int cfg80211_rtw_connect(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_connect_params *sme)
{
int ret = 0;
NDIS_802_11_SSID ndis_ssid;
/* u8 matched_by_bssid=_FALSE; */
/* u8 matched_by_ssid=_FALSE; */
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct security_priv *psecuritypriv = &padapter->securitypriv;
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(padapter);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
#if (RTW_CFG80211_BLOCK_STA_DISCON_EVENT & RTW_CFG80211_BLOCK_DISCON_WHEN_CONNECT)
rtw_wdev_set_not_indic_disco(pwdev_priv, 1);
#endif
RTW_INFO("=>"FUNC_NDEV_FMT" - Start to Connection\n", FUNC_NDEV_ARG(ndev));
RTW_INFO("privacy=%d, key=%p, key_len=%d, key_idx=%d, auth_type=%d\n",
sme->privacy, sme->key, sme->key_len, sme->key_idx, sme->auth_type);
if (rtw_check_connect_sae_compat(sme)) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
sme->auth_type = NL80211_AUTHTYPE_SAE;
#else /* LINUX_VERSION_CODE < 3.8 */
/*
* When the linux kernel version is less than v3.8, there is no
* NL80211_AUTHTYPE_SAE, also the driver checks psecuritypriv->auth_type
* in rtw_cfg80211_set_auth_type() instead of sme's auth_type in this
* case already. So NL80211_AUTHTYPE_AUTOMATIC is set here when there
* is no NL80211_AUTHTYPE_SAE in this case.
*
* PS: NL80211_AUTHTYPE_AUTOMATIC is NL80211_AUTHTYPE_MAX + 1
* So it won't conflicts with other defined type in this case.
*
* PS: The driver supports from Linux Kernel 2.6.35. and there is
* NL80211_AUTHTYPE_MAX / NL80211_AUTHTYPE_AUTOMATIC defined
* in linux kernel 2.6.35 already.
*/
sme->auth_type = NL80211_AUTHTYPE_AUTOMATIC;
#endif /* LINUX_VERSION_CODE */
psecuritypriv->auth_type = MLME_AUTHTYPE_SAE;
psecuritypriv->auth_alg = WLAN_AUTH_SAE;
RTW_INFO("%s set sme->auth_type for SAE compat\n", __FUNCTION__);
}
if (pwdev_priv->block == _TRUE) {
ret = -EBUSY;
RTW_INFO("%s wdev_priv.block is set\n", __FUNCTION__);
goto exit;
}
if (check_fwstate(pmlmepriv, WIFI_ASOC_STATE | WIFI_UNDER_LINKING) == _TRUE) {
_rtw_disconnect(wiphy, ndev);
RTW_INFO("%s disconnect before connecting! fw_state=0x%x\n",
__FUNCTION__, pmlmepriv->fw_state);
}
if (!sme->ssid || !sme->ssid_len) {
ret = -EINVAL;
goto exit;
}
if (sme->ssid_len > IW_ESSID_MAX_SIZE) {
ret = -E2BIG;
goto exit;
}
rtw_ps_deny(padapter, PS_DENY_JOIN);
if (_FAIL == rtw_pwr_wakeup(padapter)) {
ret = -EPERM;
goto cancel_ps_deny;
}
rtw_mi_scan_abort(padapter, _TRUE);
rtw_join_abort_timeout(padapter, 300);
#ifdef CONFIG_CONCURRENT_MODE
if (rtw_mi_buddy_check_fwstate(padapter, WIFI_UNDER_LINKING)) {
ret = -EINVAL;
goto cancel_ps_deny;
}
#endif
_rtw_memset(&ndis_ssid, 0, sizeof(NDIS_802_11_SSID));
ndis_ssid.SsidLength = sme->ssid_len;
_rtw_memcpy(ndis_ssid.Ssid, (u8 *)sme->ssid, sme->ssid_len);
RTW_INFO("ssid=%s, len=%zu\n", ndis_ssid.Ssid, sme->ssid_len);
if (sme->bssid)
RTW_INFO("bssid="MAC_FMT"\n", MAC_ARG(sme->bssid));
ret = rtw_set_security(padapter, sme);
if (ret < 0)
goto cancel_ps_deny;
if (!is_wep_enc(psecuritypriv->dot11PrivacyAlgrthm) && (psecuritypriv->dot11PrivacyAlgrthm != _SMS4_)) {
ret = rtw_set_wpa_ie(padapter, sme);
if (ret < 0)
goto cancel_ps_deny;
}
#ifdef CONFIG_RTW_MBO
rtw_mbo_update_ie_data(padapter, (u8 *)sme->ie, sme->ie_len);
#endif
if (rtw_set_802_11_connect(padapter, (u8 *)sme->bssid, &ndis_ssid, \
sme->channel ? sme->channel->hw_value : 0) == _FALSE) {
ret = -1;
goto cancel_ps_deny;
}
_rtw_spinlock_bh(&pwdev_priv->connect_req_lock);
if (pwdev_priv->connect_req) {
rtw_wdev_free_connect_req(pwdev_priv);
RTW_INFO(FUNC_NDEV_FMT" free existing connect_req\n", FUNC_NDEV_ARG(ndev));
}
pwdev_priv->connect_req = (struct cfg80211_connect_params *)rtw_malloc(sizeof(*pwdev_priv->connect_req));
if (pwdev_priv->connect_req)
_rtw_memcpy(pwdev_priv->connect_req, sme, sizeof(*pwdev_priv->connect_req));
else
RTW_WARN(FUNC_NDEV_FMT" alloc connect_req fail\n", FUNC_NDEV_ARG(ndev));
_rtw_spinunlock_bh(&pwdev_priv->connect_req_lock);
RTW_INFO("set ssid:dot11AuthAlgrthm=%d, dot11PrivacyAlgrthm=%d, dot118021XGrpPrivacy=%d\n", psecuritypriv->dot11AuthAlgrthm, psecuritypriv->dot11PrivacyAlgrthm,
psecuritypriv->dot118021XGrpPrivacy);
cancel_ps_deny:
rtw_ps_deny_cancel(padapter, PS_DENY_JOIN);
exit:
RTW_INFO("<=%s, ret %d\n", __FUNCTION__, ret);
#if (RTW_CFG80211_BLOCK_STA_DISCON_EVENT & RTW_CFG80211_BLOCK_DISCON_WHEN_CONNECT)
rtw_wdev_set_not_indic_disco(pwdev_priv, 0);
#endif
return ret;
}
static int cfg80211_rtw_disconnect(struct wiphy *wiphy, struct net_device *ndev,
u16 reason_code)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
RTW_INFO(FUNC_NDEV_FMT" - Start to Disconnect\n", FUNC_NDEV_ARG(ndev));
#if (RTW_CFG80211_BLOCK_STA_DISCON_EVENT & RTW_CFG80211_BLOCK_DISCON_WHEN_DISCONNECT)
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
if (!wiphy->dev.power.is_prepared)
#endif
rtw_wdev_set_not_indic_disco(adapter_wdev_data(padapter), 1);
#endif
rtw_set_to_roam(padapter, 0);
/* if(check_fwstate(&padapter->mlmepriv, WIFI_ASOC_STATE)) */
{
_rtw_disconnect(wiphy, ndev);
}
#if (RTW_CFG80211_BLOCK_STA_DISCON_EVENT & RTW_CFG80211_BLOCK_DISCON_WHEN_DISCONNECT)
rtw_wdev_set_not_indic_disco(adapter_wdev_data(padapter), 0);
#endif
RTW_INFO(FUNC_NDEV_FMT" return 0\n", FUNC_NDEV_ARG(ndev));
return 0;
}
static int cfg80211_rtw_set_txpower(struct wiphy *wiphy,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
struct wireless_dev *wdev,
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)) || defined(COMPAT_KERNEL_RELEASE)
enum nl80211_tx_power_setting type, int mbm)
#else
enum tx_power_setting type, int dbm)
#endif
{
#if 0
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
int ret;
switch (type) {
case NL80211_TX_POWER_AUTOMATIC:
return 0;
case NL80211_TX_POWER_FIXED:
if (mbm < 0 || (mbm % 100))
return -EOPNOTSUPP;
if (!test_bit(IWM_STATUS_READY, &iwm->status))
return 0;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_TX_PWR_LIMIT_USR,
MBM_TO_DBM(mbm) * 2);
if (ret < 0)
return ret;
return iwm_tx_power_trigger(iwm);
default:
IWM_ERR(iwm, "Unsupported power type: %d\n", type);
return -EOPNOTSUPP;
}
#endif
RTW_INFO("%s\n", __func__);
return 0;
}
static int cfg80211_rtw_get_txpower(struct wiphy *wiphy,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
struct wireless_dev *wdev,
#endif
int *dbm)
{
RTW_INFO("%s\n", __func__);
*dbm = (12);
return 0;
}
inline bool rtw_cfg80211_pwr_mgmt(_adapter *adapter)
{
struct rtw_wdev_priv *rtw_wdev_priv = adapter_wdev_data(adapter);
return rtw_wdev_priv->power_mgmt;
}
static int cfg80211_rtw_set_power_mgmt(struct wiphy *wiphy,
struct net_device *ndev,
bool enabled, int timeout)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct rtw_wdev_priv *rtw_wdev_priv = adapter_wdev_data(padapter);
RTW_INFO(FUNC_NDEV_FMT" enabled:%u, timeout:%d\n", FUNC_NDEV_ARG(ndev),
enabled, timeout);
rtw_wdev_priv->power_mgmt = enabled;
#ifdef CONFIG_LPS
if (!enabled)
rtw_lps_ctrl_wk_cmd(padapter, LPS_CTRL_LEAVE_CFG80211_PWRMGMT, 0);
#endif
return 0;
}
static void _rtw_set_pmksa(struct net_device *ndev,
u8 *bssid, u8 *pmkid)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct security_priv *psecuritypriv = &padapter->securitypriv;
u8 index, blInserted = _FALSE;
/* overwrite PMKID */
for (index = 0 ; index < NUM_PMKID_CACHE; index++) {
if (_rtw_memcmp(psecuritypriv->PMKIDList[index].Bssid, bssid, ETH_ALEN) == _TRUE) {
/* BSSID is matched, the same AP => rewrite with new PMKID. */
RTW_INFO("BSSID("MAC_FMT") exists in the PMKList.\n", MAC_ARG(bssid));
_rtw_memcpy(psecuritypriv->PMKIDList[index].PMKID, pmkid, WLAN_PMKID_LEN);
psecuritypriv->PMKIDList[index].bUsed = _TRUE;
blInserted = _TRUE;
break;
}
}
if (!blInserted) {
/* Find a new entry */
RTW_INFO("Use the new entry index = %d for this PMKID.\n",
psecuritypriv->PMKIDIndex);
_rtw_memcpy(psecuritypriv->PMKIDList[psecuritypriv->PMKIDIndex].Bssid, bssid, ETH_ALEN);
_rtw_memcpy(psecuritypriv->PMKIDList[psecuritypriv->PMKIDIndex].PMKID, pmkid, WLAN_PMKID_LEN);
psecuritypriv->PMKIDList[psecuritypriv->PMKIDIndex].bUsed = _TRUE;
psecuritypriv->PMKIDIndex++ ;
if (psecuritypriv->PMKIDIndex == 16)
psecuritypriv->PMKIDIndex = 0;
}
}
static int cfg80211_rtw_set_pmksa(struct wiphy *wiphy,
struct net_device *ndev,
struct cfg80211_pmksa *pmksa)
{
u8 index, blInserted = _FALSE;
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct mlme_priv *mlme = &padapter->mlmepriv;
struct security_priv *psecuritypriv = &padapter->securitypriv;
u8 strZeroMacAddress[ETH_ALEN] = { 0x00 };
bool sae_auth = rtw_sec_chk_auth_type(padapter, MLME_AUTHTYPE_SAE);
RTW_INFO(FUNC_NDEV_FMT" "MAC_FMT" "KEY_FMT"\n", FUNC_NDEV_ARG(ndev)
, MAC_ARG(pmksa->bssid), KEY_ARG(pmksa->pmkid));
if (_rtw_memcmp((u8 *)pmksa->bssid, strZeroMacAddress, ETH_ALEN) == _TRUE)
return -EINVAL;
_rtw_set_pmksa(ndev, (u8 *)pmksa->bssid, (u8 *)pmksa->pmkid);
if (sae_auth &&
(psecuritypriv->extauth_status == WLAN_STATUS_SUCCESS)) {
RTW_PRINT("SAE: auth success, start assoc\n");
start_clnt_assoc(padapter);
}
return 0;
}
static int cfg80211_rtw_del_pmksa(struct wiphy *wiphy,
struct net_device *ndev,
struct cfg80211_pmksa *pmksa)
{
u8 index, bMatched = _FALSE;
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct security_priv *psecuritypriv = &padapter->securitypriv;
RTW_INFO(FUNC_NDEV_FMT" "MAC_FMT" "KEY_FMT"\n", FUNC_NDEV_ARG(ndev)
, MAC_ARG(pmksa->bssid), KEY_ARG(pmksa->pmkid));
for (index = 0 ; index < NUM_PMKID_CACHE; index++) {
if (_rtw_memcmp(psecuritypriv->PMKIDList[index].Bssid, (u8 *)pmksa->bssid, ETH_ALEN) == _TRUE) {
/* BSSID is matched, the same AP => Remove this PMKID information and reset it. */
_rtw_memset(psecuritypriv->PMKIDList[index].Bssid, 0x00, ETH_ALEN);
_rtw_memset(psecuritypriv->PMKIDList[index].PMKID, 0x00, WLAN_PMKID_LEN);
psecuritypriv->PMKIDList[index].bUsed = _FALSE;
bMatched = _TRUE;
RTW_INFO(FUNC_NDEV_FMT" clear id:%hhu\n", FUNC_NDEV_ARG(ndev), index);
break;
}
}
if (_FALSE == bMatched) {
RTW_INFO(FUNC_NDEV_FMT" do not have matched BSSID\n"
, FUNC_NDEV_ARG(ndev));
return -EINVAL;
}
return 0;
}
static int cfg80211_rtw_flush_pmksa(struct wiphy *wiphy,
struct net_device *ndev)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct security_priv *psecuritypriv = &padapter->securitypriv;
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
_rtw_memset(&psecuritypriv->PMKIDList[0], 0x00, sizeof(RT_PMKID_LIST) * NUM_PMKID_CACHE);
psecuritypriv->PMKIDIndex = 0;
return 0;
}
#ifdef CONFIG_AP_MODE
void rtw_cfg80211_indicate_sta_assoc(_adapter *padapter, u8 *pmgmt_frame, uint frame_len)
{
#if !defined(RTW_USE_CFG80211_STA_EVENT) && !defined(COMPAT_KERNEL_RELEASE)
s32 freq;
int channel;
struct wireless_dev *pwdev = padapter->rtw_wdev;
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
#endif
struct net_device *ndev = padapter->pnetdev;
RTW_INFO(FUNC_ADPT_FMT"\n", FUNC_ADPT_ARG(padapter));
#if defined(RTW_USE_CFG80211_STA_EVENT) || defined(COMPAT_KERNEL_RELEASE)
{
struct station_info sinfo;
u8 ie_offset;
if (get_frame_sub_type(pmgmt_frame) == WIFI_ASSOCREQ)
ie_offset = _ASOCREQ_IE_OFFSET_;
else /* WIFI_REASSOCREQ */
ie_offset = _REASOCREQ_IE_OFFSET_;
memset(&sinfo, 0, sizeof(sinfo));
sinfo.filled = STATION_INFO_ASSOC_REQ_IES;
sinfo.assoc_req_ies = pmgmt_frame + WLAN_HDR_A3_LEN + ie_offset;
sinfo.assoc_req_ies_len = frame_len - WLAN_HDR_A3_LEN - ie_offset;
cfg80211_new_sta(ndev, get_addr2_ptr(pmgmt_frame), &sinfo, GFP_ATOMIC);
}
#else /* defined(RTW_USE_CFG80211_STA_EVENT) */
channel = pmlmeext->chandef.chan;
freq = rtw_ch2freq(channel);
#ifdef COMPAT_KERNEL_RELEASE
rtw_cfg80211_rx_mgmt(pwdev, freq, 0, pmgmt_frame, frame_len, GFP_ATOMIC);
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) && !defined(CONFIG_CFG80211_FORCE_COMPATIBLE_2_6_37_UNDER)
rtw_cfg80211_rx_mgmt(pwdev, freq, 0, pmgmt_frame, frame_len, GFP_ATOMIC);
#else /* COMPAT_KERNEL_RELEASE */
{
/* to avoid WARN_ON(wdev->iftype != NL80211_IFTYPE_STATION) when calling cfg80211_send_rx_assoc() */
#ifndef CONFIG_PLATFORM_MSTAR
pwdev->iftype = NL80211_IFTYPE_STATION;
#endif /* CONFIG_PLATFORM_MSTAR */
RTW_INFO("iftype=%d before call cfg80211_send_rx_assoc()\n", pwdev->iftype);
rtw_cfg80211_send_rx_assoc(padapter, NULL, pmgmt_frame, frame_len);
RTW_INFO("iftype=%d after call cfg80211_send_rx_assoc()\n", pwdev->iftype);
pwdev->iftype = NL80211_IFTYPE_AP;
/* cfg80211_rx_action(padapter->pnetdev, freq, pmgmt_frame, frame_len, GFP_ATOMIC); */
}
#endif /* COMPAT_KERNEL_RELEASE */
#endif /* defined(RTW_USE_CFG80211_STA_EVENT) */
}
void rtw_cfg80211_indicate_sta_disassoc(_adapter *padapter, const u8 *da, unsigned short reason)
{
#if !defined(RTW_USE_CFG80211_STA_EVENT) && !defined(COMPAT_KERNEL_RELEASE)
s32 freq;
int channel;
u8 *pmgmt_frame;
uint frame_len;
struct rtw_ieee80211_hdr *pwlanhdr;
unsigned short *fctrl;
u8 mgmt_buf[128] = {0};
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct wireless_dev *wdev = padapter->rtw_wdev;
#endif
struct net_device *ndev = padapter->pnetdev;
RTW_INFO(FUNC_ADPT_FMT"\n", FUNC_ADPT_ARG(padapter));
#if defined(RTW_USE_CFG80211_STA_EVENT) || defined(COMPAT_KERNEL_RELEASE)
cfg80211_del_sta(ndev, da, GFP_ATOMIC);
#else /* defined(RTW_USE_CFG80211_STA_EVENT) */
channel = pmlmeext->chandef.chan;
freq = rtw_ch2freq(channel);
pmgmt_frame = mgmt_buf;
pwlanhdr = (struct rtw_ieee80211_hdr *)pmgmt_frame;
fctrl = &(pwlanhdr->frame_ctl);
*(fctrl) = 0;
_rtw_memcpy(pwlanhdr->addr1, adapter_mac_addr(padapter), ETH_ALEN);
_rtw_memcpy(pwlanhdr->addr2, da, ETH_ALEN);
_rtw_memcpy(pwlanhdr->addr3, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN);
SetSeqNum(pwlanhdr, pmlmeext->mgnt_seq);
pmlmeext->mgnt_seq++;
set_frame_sub_type(pmgmt_frame, WIFI_DEAUTH);
pmgmt_frame += sizeof(struct rtw_ieee80211_hdr_3addr);
frame_len = sizeof(struct rtw_ieee80211_hdr_3addr);
reason = cpu_to_le16(reason);
pmgmt_frame = rtw_set_fixed_ie(pmgmt_frame, _RSON_CODE_ , (unsigned char *)&reason, &frame_len);
#ifdef COMPAT_KERNEL_RELEASE
rtw_cfg80211_rx_mgmt(wdev, freq, 0, mgmt_buf, frame_len, GFP_ATOMIC);
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) && !defined(CONFIG_CFG80211_FORCE_COMPATIBLE_2_6_37_UNDER)
rtw_cfg80211_rx_mgmt(wdev, freq, 0, mgmt_buf, frame_len, GFP_ATOMIC);
#else /* COMPAT_KERNEL_RELEASE */
cfg80211_send_disassoc(padapter->pnetdev, mgmt_buf, frame_len);
/* cfg80211_rx_action(padapter->pnetdev, freq, mgmt_buf, frame_len, GFP_ATOMIC); */
#endif /* COMPAT_KERNEL_RELEASE */
#endif /* defined(RTW_USE_CFG80211_STA_EVENT) */
}
static int rtw_cfg80211_monitor_if_open(struct net_device *ndev)
{
int ret = 0;
RTW_INFO("%s\n", __func__);
return ret;
}
static int rtw_cfg80211_monitor_if_close(struct net_device *ndev)
{
int ret = 0;
RTW_INFO("%s\n", __func__);
return ret;
}
static int rtw_cfg80211_monitor_if_xmit_entry(struct sk_buff *skb, struct net_device *ndev)
{
int ret = 0;
int rtap_len;
int qos_len = 0;
int dot11_hdr_len = 24;
int snap_len = 6;
unsigned char *pdata;
u16 frame_ctl;
unsigned char src_mac_addr[ETH_ALEN];
unsigned char dst_mac_addr[ETH_ALEN];
struct rtw_ieee80211_hdr *dot11_hdr;
struct ieee80211_radiotap_header *rtap_hdr;
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
#ifdef CONFIG_DFS_MASTER
struct rf_ctl_t *rfctl = adapter_to_rfctl(padapter);
#endif
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
rtw_mstat_update(MSTAT_TYPE_SKB, MSTAT_ALLOC_SUCCESS, skb->truesize);
if (IS_CH_WAITING(rfctl)) {
#ifdef CONFIG_DFS_MASTER
if (rtw_rfctl_overlap_radar_detect_ch(rfctl))
goto fail;
#endif
}
if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
goto fail;
rtap_hdr = (struct ieee80211_radiotap_header *)skb->data;
if (unlikely(rtap_hdr->it_version))
goto fail;
rtap_len = ieee80211_get_radiotap_len(skb->data);
if (unlikely(skb->len < rtap_len))
goto fail;
if (rtap_len != 14) {
RTW_INFO("radiotap len (should be 14): %d\n", rtap_len);
goto fail;
}
/* Skip the ratio tap header */
skb_pull(skb, rtap_len);
dot11_hdr = (struct rtw_ieee80211_hdr *)skb->data;
frame_ctl = le16_to_cpu(dot11_hdr->frame_ctl);
/* Check if the QoS bit is set */
if ((frame_ctl & RTW_IEEE80211_FCTL_FTYPE) == RTW_IEEE80211_FTYPE_DATA) {
/* Check if this ia a Wireless Distribution System (WDS) frame
* which has 4 MAC addresses
*/
if (dot11_hdr->frame_ctl & 0x0080)
qos_len = 2;
if ((dot11_hdr->frame_ctl & 0x0300) == 0x0300)
dot11_hdr_len += 6;
_rtw_memcpy(dst_mac_addr, dot11_hdr->addr1, sizeof(dst_mac_addr));
_rtw_memcpy(src_mac_addr, dot11_hdr->addr2, sizeof(src_mac_addr));
/* Skip the 802.11 header, QoS (if any) and SNAP, but leave spaces for
* for two MAC addresses
*/
skb_pull(skb, dot11_hdr_len + qos_len + snap_len - sizeof(src_mac_addr) * 2);
pdata = (unsigned char *)skb->data;
_rtw_memcpy(pdata, dst_mac_addr, sizeof(dst_mac_addr));
_rtw_memcpy(pdata + sizeof(dst_mac_addr), src_mac_addr, sizeof(src_mac_addr));
RTW_INFO("should be eapol packet\n");
/* Use the real net device to transmit the packet */
ret = _rtw_xmit_entry(skb, padapter->pnetdev);
return ret;
} else if ((frame_ctl & (RTW_IEEE80211_FCTL_FTYPE | RTW_IEEE80211_FCTL_STYPE))
== (RTW_IEEE80211_FTYPE_MGMT | RTW_IEEE80211_STYPE_ACTION)
) {
/* only for action frames */
struct xmit_frame *pmgntframe;
struct pkt_attrib *pattrib;
unsigned char *pframe;
/* u8 category, action, OUI_Subtype, dialogToken=0; */
/* unsigned char *frame_body; */
struct rtw_ieee80211_hdr *pwlanhdr;
struct xmit_priv *pxmitpriv = &(padapter->xmitpriv);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
u8 *buf = skb->data;
u32 len = skb->len;
u8 category, action;
int type = -1;
if (rtw_action_frame_parse(buf, len, &category, &action) == _FALSE) {
RTW_INFO(FUNC_NDEV_FMT" frame_control:0x%x\n", FUNC_NDEV_ARG(ndev),
le16_to_cpu(((struct rtw_ieee80211_hdr_3addr *)buf)->frame_ctl));
goto fail;
}
RTW_INFO("RTW_Tx:da="MAC_FMT" via "FUNC_NDEV_FMT"\n",
MAC_ARG(GetAddr1Ptr(buf)), FUNC_NDEV_ARG(ndev));
#ifdef CONFIG_P2P
type = rtw_p2p_check_frames(padapter, buf, len, _TRUE);
if (type >= 0)
goto dump;
#endif
if (category == RTW_WLAN_CATEGORY_PUBLIC)
RTW_INFO("RTW_Tx:%s\n", action_public_str(action));
else
RTW_INFO("RTW_Tx:category(%u), action(%u)\n", category, action);
#ifdef CONFIG_P2P
dump:
#endif
/* starting alloc mgmt frame to dump it */
pmgntframe = alloc_mgtxmitframe(pxmitpriv);
if (pmgntframe == NULL)
goto fail;
/* update attribute */
pattrib = &pmgntframe->attrib;
update_mgntframe_attrib(padapter, pattrib);
pattrib->retry_ctrl = _FALSE;
_rtw_memset(pmgntframe->buf_addr, 0, WLANHDR_OFFSET + TXDESC_OFFSET);
pframe = (u8 *)(pmgntframe->buf_addr) + TXDESC_OFFSET;
_rtw_memcpy(pframe, (void *)buf, len);
pattrib->pktlen = len;
#ifdef CONFIG_P2P
if (type >= 0)
rtw_xframe_chk_wfd_ie(pmgntframe);
#endif /* CONFIG_P2P */
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
/* update seq number */
pmlmeext->mgnt_seq = GetSequence(pwlanhdr);
pattrib->seqnum = pmlmeext->mgnt_seq;
pmlmeext->mgnt_seq++;
pattrib->last_txcmdsz = pattrib->pktlen;
dump_mgntframe(padapter, pmgntframe);
} else
RTW_INFO("frame_ctl=0x%x\n", frame_ctl & (RTW_IEEE80211_FCTL_FTYPE | RTW_IEEE80211_FCTL_STYPE));
fail:
rtw_skb_free(skb);
return 0;
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 2, 0))
static void rtw_cfg80211_monitor_if_set_multicast_list(struct net_device *ndev)
{
RTW_INFO("%s\n", __func__);
}
#endif
static int rtw_cfg80211_monitor_if_set_mac_address(struct net_device *ndev, void *addr)
{
int ret = 0;
RTW_INFO("%s\n", __func__);
return ret;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29))
static const struct net_device_ops rtw_cfg80211_monitor_if_ops = {
.ndo_open = rtw_cfg80211_monitor_if_open,
.ndo_stop = rtw_cfg80211_monitor_if_close,
.ndo_start_xmit = rtw_cfg80211_monitor_if_xmit_entry,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 2, 0))
.ndo_set_multicast_list = rtw_cfg80211_monitor_if_set_multicast_list,
#endif
.ndo_set_mac_address = rtw_cfg80211_monitor_if_set_mac_address,
};
#endif
static int rtw_cfg80211_add_monitor_if(_adapter *padapter, char *name, struct net_device **ndev)
{
int ret = 0;
struct net_device *mon_ndev = NULL;
struct wireless_dev *mon_wdev = NULL;
struct rtw_netdev_priv_indicator *pnpi;
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(padapter);
if (!name) {
RTW_INFO(FUNC_ADPT_FMT" without specific name\n", FUNC_ADPT_ARG(padapter));
ret = -EINVAL;
goto out;
}
if (pwdev_priv->pmon_ndev) {
RTW_INFO(FUNC_ADPT_FMT" monitor interface exist: "NDEV_FMT"\n",
FUNC_ADPT_ARG(padapter), NDEV_ARG(pwdev_priv->pmon_ndev));
ret = -EBUSY;
goto out;
}
mon_ndev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator));
if (!mon_ndev) {
RTW_INFO(FUNC_ADPT_FMT" allocate ndev fail\n", FUNC_ADPT_ARG(padapter));
ret = -ENOMEM;
goto out;
}
mon_ndev->type = ARPHRD_IEEE80211_RADIOTAP;
strncpy(mon_ndev->name, name, IFNAMSIZ);
mon_ndev->name[IFNAMSIZ - 1] = 0;
#if (LINUX_VERSION_CODE > KERNEL_VERSION(4, 11, 8))
mon_ndev->priv_destructor = rtw_ndev_destructor;
#else
mon_ndev->destructor = rtw_ndev_destructor;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29))
mon_ndev->netdev_ops = &rtw_cfg80211_monitor_if_ops;
#else
mon_ndev->open = rtw_cfg80211_monitor_if_open;
mon_ndev->stop = rtw_cfg80211_monitor_if_close;
mon_ndev->hard_start_xmit = rtw_cfg80211_monitor_if_xmit_entry;
mon_ndev->set_mac_address = rtw_cfg80211_monitor_if_set_mac_address;
#endif
pnpi = netdev_priv(mon_ndev);
pnpi->priv = padapter;
pnpi->sizeof_priv = sizeof(_adapter);
/* wdev */
mon_wdev = (struct wireless_dev *)rtw_zmalloc(sizeof(struct wireless_dev));
if (!mon_wdev) {
RTW_INFO(FUNC_ADPT_FMT" allocate mon_wdev fail\n", FUNC_ADPT_ARG(padapter));
ret = -ENOMEM;
goto out;
}
mon_wdev->wiphy = padapter->rtw_wdev->wiphy;
mon_wdev->netdev = mon_ndev;
mon_wdev->iftype = NL80211_IFTYPE_MONITOR;
mon_ndev->ieee80211_ptr = mon_wdev;
ret = register_netdevice(mon_ndev);
if (ret)
goto out;
*ndev = pwdev_priv->pmon_ndev = mon_ndev;
_rtw_memcpy(pwdev_priv->ifname_mon, name, IFNAMSIZ + 1);
out:
if (ret && mon_wdev) {
rtw_mfree((u8 *)mon_wdev, sizeof(struct wireless_dev));
mon_wdev = NULL;
}
if (ret && mon_ndev) {
free_netdev(mon_ndev);
*ndev = mon_ndev = NULL;
}
return ret;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
static struct wireless_dev *
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 38)) || defined(COMPAT_KERNEL_RELEASE)
static struct net_device *
#else
static int
#endif
cfg80211_rtw_add_virtual_intf(
struct wiphy *wiphy,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0))
const char *name,
#else
char *name,
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0))
unsigned char name_assign_type,
#endif
enum nl80211_iftype type,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 12, 0)) && !defined(CPTCFG_VERSION)
u32 *flags,
#endif
struct vif_params *params)
{
int ret = 0;
struct wireless_dev *wdev = NULL;
struct net_device *ndev = NULL;
_adapter *padapter;
struct dvobj_priv *dvobj = wiphy_to_dvobj(wiphy);
rtw_set_rtnl_lock_holder(dvobj, current);
RTW_INFO(FUNC_WIPHY_FMT" name:%s, type:%d\n", FUNC_WIPHY_ARG(wiphy), name, type);
switch (type) {
case NL80211_IFTYPE_MONITOR:
padapter = wiphy_to_adapter(wiphy); /* TODO: get ap iface ? */
ret = rtw_cfg80211_add_monitor_if(padapter, (char *)name, &ndev);
if (ret == 0)
wdev = ndev->ieee80211_ptr;
break;
#if defined(CONFIG_P2P) && ((LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE))
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_P2P_GO:
#if !RTW_P2P_GROUP_INTERFACE
RTW_ERR("%s, can't add GO/GC interface when RTW_P2P_GROUP_INTERFACE is not defined\n", __func__);
ret = -EOPNOTSUPP;
break;
#endif
#endif
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_AP:
#ifdef CONFIG_RTW_MESH
case NL80211_IFTYPE_MESH_POINT:
#endif
padapter = dvobj_get_unregisterd_adapter(dvobj);
if (!padapter) {
RTW_WARN("adapter pool empty!\n");
ret = -ENODEV;
break;
}
if (rtw_os_ndev_init(padapter, name) != _SUCCESS) {
RTW_WARN("ndev init fail!\n");
ret = -ENODEV;
break;
}
#if defined(CONFIG_P2P) && ((LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE))
if (type == NL80211_IFTYPE_P2P_CLIENT)
rtw_p2p_enable(padapter, P2P_ROLE_CLIENT);
else if (type == NL80211_IFTYPE_P2P_GO)
rtw_p2p_enable(padapter, P2P_ROLE_GO);
#endif
ndev = padapter->pnetdev;
wdev = ndev->ieee80211_ptr;
break;
#if defined(CONFIG_P2P) && defined(RTW_DEDICATED_P2P_DEVICE)
case NL80211_IFTYPE_P2P_DEVICE:
ret = rtw_pd_iface_alloc(wiphy, name, &wdev);
break;
#endif
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_WDS:
default:
ret = -ENODEV;
RTW_INFO("Unsupported interface type\n");
break;
}
if (ndev)
RTW_INFO(FUNC_WIPHY_FMT" ndev:%p, ret:%d\n", FUNC_WIPHY_ARG(wiphy), ndev, ret);
else
RTW_INFO(FUNC_WIPHY_FMT" wdev:%p, ret:%d\n", FUNC_WIPHY_ARG(wiphy), wdev, ret);
rtw_set_rtnl_lock_holder(dvobj, NULL);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
return wdev ? wdev : ERR_PTR(ret);
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 38)) || defined(COMPAT_KERNEL_RELEASE)
return ndev ? ndev : ERR_PTR(ret);
#else
return ret;
#endif
}
static int cfg80211_rtw_del_virtual_intf(struct wiphy *wiphy,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
struct wireless_dev *wdev
#else
struct net_device *ndev
#endif
)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
struct net_device *ndev = wdev_to_ndev(wdev);
#endif
int ret = 0;
struct dvobj_priv *dvobj = wiphy_to_dvobj(wiphy);
_adapter *adapter;
struct rtw_wdev_priv *pwdev_priv;
rtw_set_rtnl_lock_holder(dvobj, current);
if (ndev) {
adapter = (_adapter *)rtw_netdev_priv(ndev);
pwdev_priv = adapter_wdev_data(adapter);
if (ndev == pwdev_priv->pmon_ndev) {
unregister_netdevice(ndev);
pwdev_priv->pmon_ndev = NULL;
pwdev_priv->ifname_mon[0] = '\0';
RTW_INFO(FUNC_NDEV_FMT" remove monitor ndev\n", FUNC_NDEV_ARG(ndev));
} else {
RTW_INFO(FUNC_NDEV_FMT" unregister ndev\n", FUNC_NDEV_ARG(ndev));
rtw_os_ndev_unregister(adapter);
}
#ifdef CONFIG_P2P
if (!rtw_p2p_chk_role(&adapter->wdinfo, P2P_ROLE_DISABLE))
rtw_p2p_enable(adapter, P2P_ROLE_DISABLE);
#endif
} else
#if defined(CONFIG_P2P) && defined(RTW_DEDICATED_P2P_DEVICE)
if (wdev->iftype == NL80211_IFTYPE_P2P_DEVICE) {
if (wdev == wiphy_to_pd_wdev(wiphy))
rtw_pd_iface_free(wiphy);
else {
RTW_ERR(FUNC_WIPHY_FMT" unknown P2P Device wdev:%p\n", FUNC_WIPHY_ARG(wiphy), wdev);
rtw_warn_on(1);
}
} else
#endif
{
ret = -EINVAL;
goto exit;
}
exit:
rtw_set_rtnl_lock_holder(dvobj, NULL);
return ret;
}
static int rtw_add_beacon(_adapter *adapter, const u8 *head, size_t head_len, const u8 *tail, size_t tail_len)
{
int ret = 0;
u8 *pbuf = NULL;
uint len, wps_ielen = 0;
uint p2p_ielen = 0;
struct mlme_priv *pmlmepriv = &(adapter->mlmepriv);
/* struct sta_priv *pstapriv = &padapter->stapriv; */
RTW_INFO("%s beacon_head_len=%zu, beacon_tail_len=%zu\n", __FUNCTION__, head_len, tail_len);
if (check_fwstate(pmlmepriv, WIFI_AP_STATE) != _TRUE)
return -EINVAL;
if (head_len < 24)
return -EINVAL;
pbuf = rtw_zmalloc(head_len + tail_len);
if (!pbuf) {
ret = -ENOMEM;
goto exit;
}
/* _rtw_memcpy(&pstapriv->max_num_sta, param->u.bcn_ie.reserved, 2); */
/* if((pstapriv->max_num_sta>NUM_STA) || (pstapriv->max_num_sta<=0)) */
/* pstapriv->max_num_sta = NUM_STA; */
_rtw_memcpy(pbuf, (void *)head + 24, head_len - 24); /* 24=beacon header len. */
_rtw_memcpy(pbuf + head_len - 24, (void *)tail, tail_len);
len = head_len + tail_len - 24;
/* check wps ie if inclued */
if (rtw_get_wps_ie(pbuf + _FIXED_IE_LENGTH_, len - _FIXED_IE_LENGTH_, NULL, &wps_ielen))
RTW_INFO("add bcn, wps_ielen=%d\n", wps_ielen);
#ifdef CONFIG_P2P
/* check p2p if enable */
if (rtw_get_p2p_ie(pbuf + _FIXED_IE_LENGTH_, len - _FIXED_IE_LENGTH_, NULL, &p2p_ielen)) {
struct wifidirect_info *pwdinfo = &(adapter->wdinfo);
RTW_INFO("got p2p_ie, len=%d\n", p2p_ielen);
if (!rtw_p2p_chk_role(pwdinfo, P2P_ROLE_GO)) {
RTW_INFO("add p2p beacon whitout GO mode, p2p_role=%d\n",
rtw_p2p_role(pwdinfo));
ret = -EOPNOTSUPP;
goto exit;
}
}
#endif /* CONFIG_P2P */
if (adapter_to_dvobj(adapter)->wpas_type == RTW_WPAS_ANDROID) {
/* pbss_network->IEs will not include p2p_ie, wfd ie */
rtw_ies_remove_ie(pbuf, &len, _BEACON_IE_OFFSET_, _VENDOR_SPECIFIC_IE_, P2P_OUI, 4);
rtw_ies_remove_ie(pbuf, &len, _BEACON_IE_OFFSET_, _VENDOR_SPECIFIC_IE_, WFD_OUI, 4);
}
if (rtw_check_beacon_data(adapter, pbuf, len) == _SUCCESS) {
ret = 0;
} else
ret = -EINVAL;
exit:
if (pbuf)
rtw_mfree(pbuf, head_len + tail_len);
return ret;
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 4, 0)) && !defined(COMPAT_KERNEL_RELEASE)
static int cfg80211_rtw_add_beacon(struct wiphy *wiphy, struct net_device *ndev,
struct beacon_parameters *info)
{
int ret = 0;
_adapter *adapter = (_adapter *)rtw_netdev_priv(ndev);
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
if (rtw_cfg80211_sync_iftype(adapter) != _SUCCESS) {
ret = -ENOTSUPP;
goto exit;
}
rtw_mi_scan_abort(adapter, _TRUE);
rtw_mi_buddy_set_scan_deny(adapter, 300);
ret = rtw_add_beacon(adapter, info->head, info->head_len, info->tail, info->tail_len);
exit:
return ret;
}
static int cfg80211_rtw_set_beacon(struct wiphy *wiphy, struct net_device *ndev,
struct beacon_parameters *info)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(ndev);
struct mlme_ext_priv *pmlmeext = &(adapter->mlmeextpriv);
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
pmlmeext->bstart_bss = _TRUE;
cfg80211_rtw_add_beacon(wiphy, ndev, info);
return 0;
}
static int cfg80211_rtw_del_beacon(struct wiphy *wiphy, struct net_device *ndev)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(ndev);
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
rtw_mi_buddy_set_scan_deny(adapter, 300);
rtw_mi_scan_abort(adapter, _TRUE);
rtw_stop_ap_cmd(adapter, RTW_CMDF_WAIT_ACK);
return 0;
}
#else
static int cfg80211_rtw_start_ap(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_ap_settings *settings)
{
int ret = 0;
_adapter *adapter = (_adapter *)rtw_netdev_priv(ndev);
if (adapter_to_dvobj(adapter)->wpas_type == RTW_WPAS_W1FI) {
struct mlme_ext_priv *pmlmeext = &(adapter->mlmeextpriv);
/* turn on the beacon send */
pmlmeext->bstart_bss = _TRUE;
}
RTW_INFO(FUNC_NDEV_FMT" hidden_ssid:%d, auth_type:%d\n", FUNC_NDEV_ARG(ndev),
settings->hidden_ssid, settings->auth_type);
if (rtw_cfg80211_sync_iftype(adapter) != _SUCCESS) {
ret = -ENOTSUPP;
goto exit;
}
#ifdef RTW_PHL_BCN
{
struct rtw_wifi_role_t *wrole = adapter->phl_role;
if(wrole)
wrole->bcn_cmn.bcn_added = 0;
}
#endif
/* Kernel < v5.x, the auth_type set as NL80211_AUTHTYPE_AUTOMATIC. if
* the AKM SAE in the RSN IE, we have to update the auth_type for SAE in
* rtw_check_beacon_data().
*
* we only update auth_type when rtw_check_beacon_data()
*/
/* rtw_cfg80211_set_auth_type(&adapter->securitypriv, settings->auth_type); */
rtw_mi_scan_abort(adapter, _TRUE);
rtw_mi_buddy_set_scan_deny(adapter, 300);
ret = rtw_add_beacon(adapter, settings->beacon.head, settings->beacon.head_len,
settings->beacon.tail, settings->beacon.tail_len);
adapter->mlmeextpriv.mlmext_info.hidden_ssid_mode = settings->hidden_ssid;
#ifdef CONFIG_RTW_80211R_AP
rtw_ft_update_assocresp_ies(ndev, settings);
#endif
if (settings->ssid && settings->ssid_len) {
WLAN_BSSID_EX *pbss_network = &adapter->mlmepriv.cur_network.network;
WLAN_BSSID_EX *pbss_network_ext = &adapter->mlmeextpriv.mlmext_info.network;
if (0)
RTW_INFO(FUNC_ADPT_FMT" ssid:(%s,%zu), from ie:(%s,%d)\n", FUNC_ADPT_ARG(adapter),
settings->ssid, settings->ssid_len,
pbss_network->Ssid.Ssid, pbss_network->Ssid.SsidLength);
_rtw_memcpy(pbss_network->Ssid.Ssid, (void *)settings->ssid, settings->ssid_len);
pbss_network->Ssid.SsidLength = settings->ssid_len;
_rtw_memcpy(pbss_network_ext->Ssid.Ssid, (void *)settings->ssid, settings->ssid_len);
pbss_network_ext->Ssid.SsidLength = settings->ssid_len;
if (0)
RTW_INFO(FUNC_ADPT_FMT" after ssid:(%s,%d), (%s,%d)\n", FUNC_ADPT_ARG(adapter),
pbss_network->Ssid.Ssid, pbss_network->Ssid.SsidLength,
pbss_network_ext->Ssid.Ssid, pbss_network_ext->Ssid.SsidLength);
}
exit:
return ret;
}
static int rtw_cfg80211_set_assocresp_ies(struct net_device *net, const u8 *buf, int len)
{
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(net);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
RTW_INFO("%s, ielen=%d\n", __func__, len);
if (len <= 0)
goto exit;
if (pmlmepriv->assoc_rsp) {
u32 free_len = pmlmepriv->assoc_rsp_len;
pmlmepriv->assoc_rsp_len = 0;
rtw_mfree(pmlmepriv->assoc_rsp, free_len);
pmlmepriv->assoc_rsp = NULL;
}
pmlmepriv->assoc_rsp = rtw_malloc(len);
if (pmlmepriv->assoc_rsp == NULL) {
RTW_INFO("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
return -EINVAL;
}
_rtw_memcpy(pmlmepriv->assoc_rsp, buf, len);
pmlmepriv->assoc_rsp_len = len;
exit:
return ret;
}
static int cfg80211_rtw_change_beacon(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_beacon_data *info)
{
int ret = 0;
_adapter *adapter = (_adapter *)rtw_netdev_priv(ndev);
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
#ifdef not_yet
/*
* @proberesp_ies: extra information element(s) to add into Probe Response
* frames or %NULL
* @proberesp_ies_len: length of proberesp_ies in octets
*/
if (info->proberesp_ies_len > 0)
rtw_cfg80211_set_proberesp_ies(ndev, info->proberesp_ies, info->proberesp_ies_len);
#endif /* not_yet */
if (info->assocresp_ies_len > 0)
rtw_cfg80211_set_assocresp_ies(ndev, info->assocresp_ies, info->assocresp_ies_len);
ret = rtw_add_beacon(adapter, info->head, info->head_len, info->tail, info->tail_len);
return ret;
}
static int cfg80211_rtw_stop_ap(struct wiphy *wiphy, struct net_device *ndev)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(ndev);
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
rtw_mi_buddy_set_scan_deny(adapter, 300);
rtw_mi_scan_abort(adapter, _TRUE);
rtw_stop_ap_cmd(adapter, RTW_CMDF_WAIT_ACK);
return 0;
}
#endif /* (LINUX_VERSION_CODE < KERNEL_VERSION(3, 4, 0)) */
#if CONFIG_RTW_MACADDR_ACL && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
static int cfg80211_rtw_set_mac_acl(struct wiphy *wiphy, struct net_device *ndev,
const struct cfg80211_acl_data *params)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(ndev);
u8 acl_mode = RTW_ACL_MODE_DISABLED;
int ret = -1;
int i;
if (!params) {
RTW_WARN(FUNC_ADPT_FMT" params NULL\n", FUNC_ADPT_ARG(adapter));
rtw_macaddr_acl_clear(adapter, RTW_ACL_PERIOD_BSS);
goto exit;
}
RTW_INFO(FUNC_ADPT_FMT" acl_policy:%d, entry_num:%d\n"
, FUNC_ADPT_ARG(adapter), params->acl_policy, params->n_acl_entries);
if (params->acl_policy == NL80211_ACL_POLICY_ACCEPT_UNLESS_LISTED)
acl_mode = RTW_ACL_MODE_ACCEPT_UNLESS_LISTED;
else if (params->acl_policy == NL80211_ACL_POLICY_DENY_UNLESS_LISTED)
acl_mode = RTW_ACL_MODE_DENY_UNLESS_LISTED;
rtw_macaddr_acl_clear(adapter, RTW_ACL_PERIOD_BSS);
rtw_set_macaddr_acl(adapter, RTW_ACL_PERIOD_BSS, acl_mode);
for (i = 0; i < params->n_acl_entries; i++)
rtw_acl_add_sta(adapter, RTW_ACL_PERIOD_BSS, params->mac_addrs[i].addr);
ret = 0;
exit:
return ret;
}
#endif /* CONFIG_RTW_MACADDR_ACL && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0)) */
const char *_nl80211_sta_flags_str[] = {
"INVALID",
"AUTHORIZED",
"SHORT_PREAMBLE",
"WME",
"MFP",
"AUTHENTICATED",
"TDLS_PEER",
"ASSOCIATED",
};
#define nl80211_sta_flags_str(_f) ((_f <= NL80211_STA_FLAG_MAX) ? _nl80211_sta_flags_str[_f] : _nl80211_sta_flags_str[0])
const char *_nl80211_plink_state_str[] = {
"LISTEN",
"OPN_SNT",
"OPN_RCVD",
"CNF_RCVD",
"ESTAB",
"HOLDING",
"BLOCKED",
"UNKNOWN",
};
#define nl80211_plink_state_str(_s) ((_s < NUM_NL80211_PLINK_STATES) ? _nl80211_plink_state_str[_s] : _nl80211_plink_state_str[NUM_NL80211_PLINK_STATES])
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 10, 0))
#define NL80211_PLINK_ACTION_NO_ACTION PLINK_ACTION_INVALID
#define NL80211_PLINK_ACTION_OPEN PLINK_ACTION_OPEN
#define NL80211_PLINK_ACTION_BLOCK PLINK_ACTION_BLOCK
#define NUM_NL80211_PLINK_ACTIONS 3
#endif
const char *_nl80211_plink_actions_str[] = {
"NO_ACTION",
"OPEN",
"BLOCK",
"UNKNOWN",
};
#define nl80211_plink_actions_str(_a) ((_a < NUM_NL80211_PLINK_ACTIONS) ? _nl80211_plink_actions_str[_a] : _nl80211_plink_actions_str[NUM_NL80211_PLINK_ACTIONS])
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
const char *_nl80211_mesh_power_mode_str[] = {
"UNKNOWN",
"ACTIVE",
"LIGHT_SLEEP",
"DEEP_SLEEP",
};
#define nl80211_mesh_power_mode_str(_p) ((_p <= NL80211_MESH_POWER_MAX) ? _nl80211_mesh_power_mode_str[_p] : _nl80211_mesh_power_mode_str[0])
#endif
void dump_station_parameters(void *sel, struct wiphy *wiphy, const struct station_parameters *params)
{
#if DBG_RTW_CFG80211_STA_PARAM
if (params->supported_rates_len) {
#define SUPP_RATES_BUF_LEN (3 * RTW_G_RATES_NUM + 1)
int i;
char supp_rates_buf[SUPP_RATES_BUF_LEN] = {0};
u8 cnt = 0;
rtw_warn_on(params->supported_rates_len > RTW_G_RATES_NUM);
for (i = 0; i < params->supported_rates_len; i++) {
if (i >= RTW_G_RATES_NUM)
break;
cnt += snprintf(supp_rates_buf + cnt, SUPP_RATES_BUF_LEN - cnt -1
, "%02X ", params->supported_rates[i]);
if (cnt >= SUPP_RATES_BUF_LEN - 1)
break;
}
RTW_PRINT_SEL(sel, "supported_rates:%s\n", supp_rates_buf);
}
if (params->vlan)
RTW_PRINT_SEL(sel, "vlan:"NDEV_FMT"\n", NDEV_ARG(params->vlan));
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31))
if (params->sta_flags_mask) {
#define STA_FLAGS_BUF_LEN 128
int i = 0;
char sta_flags_buf[STA_FLAGS_BUF_LEN] = {0};
u8 cnt = 0;
for (i = 1; i <= NL80211_STA_FLAG_MAX; i++) {
if (params->sta_flags_mask & BIT(i)) {
cnt += snprintf(sta_flags_buf + cnt, STA_FLAGS_BUF_LEN - cnt -1, "%s=%u "
, nl80211_sta_flags_str(i), (params->sta_flags_set & BIT(i)) ? 1 : 0);
if (cnt >= STA_FLAGS_BUF_LEN - 1)
break;
}
}
RTW_PRINT_SEL(sel, "sta_flags:%s\n", sta_flags_buf);
}
#else
u32 station_flags;
#error "TBD\n"
#endif
if (params->listen_interval != -1)
RTW_PRINT_SEL(sel, "listen_interval:%d\n", params->listen_interval);
if (params->aid)
RTW_PRINT_SEL(sel, "aid:%u\n", params->aid);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 8, 0))
if (params->peer_aid)
RTW_PRINT_SEL(sel, "peer_aid:%u\n", params->peer_aid);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 26))
if (params->plink_action != NL80211_PLINK_ACTION_NO_ACTION)
RTW_PRINT_SEL(sel, "plink_action:%s\n", nl80211_plink_actions_str(params->plink_action));
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0))
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 0))
if (params->sta_modify_mask & STATION_PARAM_APPLY_PLINK_STATE)
#endif
RTW_PRINT_SEL(sel, "plink_state:%s\n"
, nl80211_plink_state_str(params->plink_state));
#endif
#if 0 /* TODO */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 28))
const struct ieee80211_ht_cap *ht_capa;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
const struct ieee80211_vht_cap *vht_capa;
#endif
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0))
if (params->sta_modify_mask & STATION_PARAM_APPLY_UAPSD)
RTW_PRINT_SEL(sel, "uapsd_queues:0x%02x\n", params->uapsd_queues);
if (params->max_sp)
RTW_PRINT_SEL(sel, "max_sp:%u\n", params->max_sp);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
if (params->local_pm != NL80211_MESH_POWER_UNKNOWN) {
RTW_PRINT_SEL(sel, "local_pm:%s\n"
, nl80211_mesh_power_mode_str(params->local_pm));
}
if (params->sta_modify_mask & STATION_PARAM_APPLY_CAPABILITY)
RTW_PRINT_SEL(sel, "capability:0x%04x\n", params->capability);
#if 0 /* TODO */
const u8 *ext_capab;
u8 ext_capab_len;
#endif
#endif
#if 0 /* TODO */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 13, 0))
const u8 *supported_channels;
u8 supported_channels_len;
const u8 *supported_oper_classes;
u8 supported_oper_classes_len;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0))
u8 opmode_notif;
bool opmode_notif_used;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0))
int support_p2p_ps;
#endif
#endif
#endif /* DBG_RTW_CFG80211_STA_PARAM */
}
static int cfg80211_rtw_add_station(struct wiphy *wiphy, struct net_device *ndev,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 16, 0))
u8 *mac,
#else
const u8 *mac,
#endif
struct station_parameters *params)
{
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
#if defined(CONFIG_TDLS) || defined(CONFIG_RTW_MESH)
struct sta_priv *pstapriv = &padapter->stapriv;
#endif
#ifdef CONFIG_TDLS
struct sta_info *psta;
#endif /* CONFIG_TDLS */
RTW_INFO(FUNC_NDEV_FMT" mac:"MAC_FMT"\n", FUNC_NDEV_ARG(ndev), MAC_ARG(mac));
#if CONFIG_RTW_MACADDR_ACL
if (rtw_access_ctrl(padapter, mac) == _FALSE) {
RTW_INFO(FUNC_NDEV_FMT" deny by macaddr ACL\n", FUNC_NDEV_ARG(ndev));
ret = -EINVAL;
goto exit;
}
#endif
dump_station_parameters(RTW_DBGDUMP, wiphy, params);
#ifdef CONFIG_RTW_MESH
if (MLME_IS_MESH(padapter)) {
struct rtw_mesh_cfg *mcfg = &padapter->mesh_cfg;
struct rtw_mesh_info *minfo = &padapter->mesh_info;
struct mesh_plink_pool *plink_ctl = &minfo->plink_ctl;
struct mesh_plink_ent *plink = NULL;
struct wlan_network *scanned = NULL;
bool acnode = 0;
u8 add_new_sta = 0, probe_req = 0;
if (params->plink_state != NL80211_PLINK_LISTEN) {
RTW_WARN(FUNC_NDEV_FMT" %s\n", FUNC_NDEV_ARG(ndev), nl80211_plink_state_str(params->plink_state));
rtw_warn_on(1);
}
if (!params->aid || params->aid > pstapriv->max_aid) {
RTW_WARN(FUNC_NDEV_FMT" invalid aid:%u\n", FUNC_NDEV_ARG(ndev), params->aid);
rtw_warn_on(1);
ret = -EINVAL;
goto exit;
}
_rtw_spinlock_bh(&(plink_ctl->lock));
plink = _rtw_mesh_plink_get(padapter, mac);
if (plink)
goto release_plink_ctl;
#if CONFIG_RTW_MESH_PEER_BLACKLIST
if (rtw_mesh_peer_blacklist_search(padapter, mac)) {
RTW_INFO(FUNC_NDEV_FMT" deny by peer blacklist\n"
, FUNC_NDEV_ARG(ndev));
ret = -EINVAL;
goto release_plink_ctl;
}
#endif
scanned = rtw_find_network(&padapter->mlmepriv.scanned_queue, mac);
if (!scanned
|| rtw_get_passing_time_ms(scanned->last_scanned) >= mcfg->peer_sel_policy.scanr_exp_ms
) {
if (!scanned)
RTW_INFO(FUNC_NDEV_FMT" corresponding network not found\n", FUNC_NDEV_ARG(ndev));
else
RTW_INFO(FUNC_NDEV_FMT" corresponding network too old\n", FUNC_NDEV_ARG(ndev));
if (adapter_to_rfctl(padapter)->offch_state == OFFCHS_NONE)
probe_req = 1;
ret = -EINVAL;
goto release_plink_ctl;
}
#if CONFIG_RTW_MESH_ACNODE_PREVENT
if (plink_ctl->acnode_rsvd)
acnode = rtw_mesh_scanned_is_acnode_confirmed(padapter, scanned);
#endif
/* wpa_supplicant's auto peer will initiate peering when candidate peer is reported without max_peer_links consideration */
if (plink_ctl->num >= mcfg->max_peer_links + acnode ? 1 : 0) {
RTW_INFO(FUNC_NDEV_FMT" exceed max_peer_links:%u%s\n"
, FUNC_NDEV_ARG(ndev), mcfg->max_peer_links, acnode ? " acn" : "");
ret = -EINVAL;
goto release_plink_ctl;
}
if (!rtw_bss_is_candidate_mesh_peer(padapter, &scanned->network, 1, 1)) {
RTW_WARN(FUNC_NDEV_FMT" corresponding network is not candidate with same ch\n"
, FUNC_NDEV_ARG(ndev));
ret = -EINVAL;
goto release_plink_ctl;
}
#if CONFIG_RTW_MESH_CTO_MGATE_BLACKLIST
if (!rtw_mesh_cto_mgate_network_filter(padapter, scanned)) {
RTW_INFO(FUNC_NDEV_FMT" peer filtered out by cto_mgate check\n"
, FUNC_NDEV_ARG(ndev));
ret = -EINVAL;
goto release_plink_ctl;
}
#endif
if (_rtw_mesh_plink_add(padapter, mac) == _SUCCESS) {
/* hook corresponding network in scan queue */
plink = _rtw_mesh_plink_get(padapter, mac);
plink->aid = params->aid;
plink->scanned = scanned;
#if CONFIG_RTW_MESH_ACNODE_PREVENT
if (acnode) {
RTW_INFO(FUNC_ADPT_FMT" acnode "MAC_FMT"\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(scanned->network.MacAddress));
}
#endif
add_new_sta = 1;
} else {
RTW_WARN(FUNC_NDEV_FMT" rtw_mesh_plink_add not success\n"
, FUNC_NDEV_ARG(ndev));
ret = -EINVAL;
}
release_plink_ctl:
_rtw_spinunlock_bh(&(plink_ctl->lock));
if (probe_req)
issue_probereq(padapter, &padapter->mlmepriv.cur_network.network.mesh_id, mac);
if (add_new_sta) {
struct station_info sinfo;
#ifdef CONFIG_DFS_MASTER
if (IS_UNDER_CAC(adapter_to_rfctl(padapter)))
rtw_force_stop_cac(adapter_to_rfctl(padapter), 300);
#endif
/* indicate new sta */
_rtw_memset(&sinfo, 0, sizeof(sinfo));
cfg80211_new_sta(ndev, mac, &sinfo, GFP_ATOMIC);
}
goto exit;
}
#endif /* CONFIG_RTW_MESH */
#ifdef CONFIG_TDLS
psta = rtw_get_stainfo(pstapriv, (u8 *)mac);
if (psta == NULL) {
psta = rtw_alloc_stainfo(pstapriv, (u8 *)mac);
if (psta == NULL) {
RTW_INFO("[%s] Alloc station for "MAC_FMT" fail\n", __FUNCTION__, MAC_ARG(mac));
ret = -EOPNOTSUPP;
goto exit;
}
}
#endif /* CONFIG_TDLS */
exit:
return ret;
}
static int cfg80211_rtw_del_station(struct wiphy *wiphy, struct net_device *ndev,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 16, 0))
u8 *mac
#elif (LINUX_VERSION_CODE < KERNEL_VERSION(3, 19, 0))
const u8 *mac
#else
struct station_del_parameters *params
#endif
)
{
int ret = 0;
_list *phead, *plist;
u8 updated = _FALSE;
const u8 *target_mac;
struct sta_info *psta = NULL;
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct sta_priv *pstapriv = &padapter->stapriv;
bool is_ucast = 1;
u8 use_disassoc = _FALSE;
u16 reason_code = WLAN_REASON_DEAUTH_LEAVING;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 19, 0))
target_mac = mac;
#else
target_mac = params->mac;
reason_code = params->reason_code;
if (params->subtype == (WIFI_DISASSOC >> 4))
use_disassoc = _TRUE;
#endif
RTW_INFO("+"FUNC_NDEV_FMT" mac=%pM\n", FUNC_NDEV_ARG(ndev), target_mac);
if (check_fwstate(pmlmepriv, (WIFI_ASOC_STATE | WIFI_AP_STATE | WIFI_MESH_STATE)) != _TRUE) {
RTW_INFO("%s, fw_state != FW_LINKED|WIFI_AP_STATE|WIFI_MESH_STATE\n", __func__);
return -EINVAL;
}
if (!target_mac) {
RTW_INFO("flush all sta, and cam_entry\n");
flush_all_cam_entry(padapter, PHL_CMD_WAIT, 50); /* clear CAM */
#ifdef CONFIG_AP_MODE
ret = rtw_sta_flush(padapter, _TRUE);
#endif
return ret;
}
RTW_INFO("free sta macaddr =" MAC_FMT "\n", MAC_ARG(target_mac));
/* broadcast deauth */
if (is_broadcast_mac_addr(target_mac)) {
if (MLME_IS_AP(padapter)) {
is_ucast = 0;
issue_deauth(padapter, (u8 *)target_mac, WLAN_REASON_PREV_AUTH_NOT_VALID);
}
else {
return -EINVAL;
}
}
_rtw_spinlock_bh(&pstapriv->asoc_list_lock);
phead = &pstapriv->asoc_list;
plist = get_next(phead);
/* check asoc_queue */
while ((rtw_end_of_queue_search(phead, plist)) == _FALSE) {
psta = LIST_CONTAINOR(plist, struct sta_info, asoc_list);
plist = get_next(plist);
if ((_rtw_memcmp((u8 *)target_mac, psta->phl_sta->mac_addr, ETH_ALEN) || is_ucast == 0)
&& !_rtw_memcmp((u8 *)target_mac, padapter->mac_addr, ETH_ALEN)
&& !is_broadcast_mac_addr(psta->phl_sta->mac_addr)) {
if (psta->dot8021xalg == 1 && psta->bpairwise_key_installed == _FALSE) {
RTW_INFO("%s, sta's dot8021xalg = 1 and key_installed = _FALSE\n", __func__);
if (MLME_IS_AP(padapter)) {
rtw_list_delete(&psta->asoc_list);
pstapriv->asoc_list_cnt--;
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
if (psta->tbtx_enable)
pstapriv->tbtx_asoc_list_cnt--;
#endif
STA_SET_MESH_PLINK(psta, NULL);
ap_free_sta(padapter, psta, is_ucast, WLAN_REASON_IEEE_802_1X_AUTH_FAILED, _TRUE, _FALSE);
psta = NULL;
if (is_ucast)
break;
}
} else {
RTW_INFO("free psta=%p, aid=%d\n", psta, psta->phl_sta->aid);
rtw_list_delete(&psta->asoc_list);
pstapriv->asoc_list_cnt--;
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
if (psta->tbtx_enable)
pstapriv->tbtx_asoc_list_cnt--;
#endif
STA_SET_MESH_PLINK(psta, NULL);
/* _rtw_spinunlock_bh(&pstapriv->asoc_list_lock); */
if (MLME_IS_AP(padapter))
updated |= ap_free_sta(padapter, psta, is_ucast, reason_code, _TRUE, use_disassoc);
else
updated |= ap_free_sta(padapter, psta, is_ucast, WLAN_REASON_DEAUTH_LEAVING, _TRUE, _FALSE);
/* _rtw_spinlock_bh(&pstapriv->asoc_list_lock); */
psta = NULL;
if (is_ucast)
break;
}
}
}
_rtw_spinunlock_bh(&pstapriv->asoc_list_lock);
associated_clients_update(padapter, updated, STA_INFO_UPDATE_ALL);
#ifdef CONFIG_RTW_MESH
if (MLME_IS_MESH(padapter))
rtw_mesh_plink_del(padapter, target_mac);
#endif
RTW_INFO("-"FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
return ret;
}
static int cfg80211_rtw_change_station(struct wiphy *wiphy,
struct net_device *ndev,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 16, 0))
u8 *mac,
#else
const u8 *mac,
#endif
struct station_parameters *params)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(ndev);
int ret = 0;
RTW_INFO(FUNC_ADPT_FMT" mac:"MAC_FMT"\n", FUNC_ADPT_ARG(adapter), MAC_ARG(mac));
dump_station_parameters(RTW_DBGDUMP, wiphy, params);
#ifdef CONFIG_RTW_MESH
if (MLME_IS_MESH(adapter)) {
enum cfg80211_station_type sta_type = CFG80211_STA_MESH_PEER_USER;
u8 plink_state = nl80211_plink_state_to_rtw_plink_state(params->plink_state);
ret = cfg80211_check_station_change(wiphy, params, sta_type);
if (ret) {
RTW_INFO("cfg80211_check_station_change return %d\n", ret);
goto exit;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 0))
if (!(params->sta_modify_mask & STATION_PARAM_APPLY_PLINK_STATE))
goto exit;
#endif
if (rtw_mesh_set_plink_state_cmd(adapter, mac, plink_state) != _SUCCESS)
ret = -ENOENT;
}
exit:
#endif /* CONFIG_RTW_MESH */
if (ret)
RTW_INFO(FUNC_ADPT_FMT" mac:"MAC_FMT" ret:%d\n",
FUNC_ADPT_ARG(adapter), MAC_ARG(mac), ret);
return ret;
}
struct sta_info *rtw_sta_info_get_by_idx(struct sta_priv *pstapriv, const int idx, u8 *asoc_list_num)
{
_list *phead, *plist;
struct sta_info *psta = NULL;
int i = 0;
phead = &pstapriv->asoc_list;
plist = get_next(phead);
/* check asoc_queue */
while ((rtw_end_of_queue_search(phead, plist)) == _FALSE) {
if (idx == i)
psta = LIST_CONTAINOR(plist, struct sta_info, asoc_list);
plist = get_next(plist);
i++;
}
if (asoc_list_num)
*asoc_list_num = i;
return psta;
}
static int cfg80211_rtw_dump_station(struct wiphy *wiphy, struct net_device *ndev,
int idx, u8 *mac, struct station_info *sinfo)
{
#define DBG_DUMP_STATION 0
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct sta_priv *pstapriv = &padapter->stapriv;
struct sta_info *psta = NULL;
#ifdef CONFIG_RTW_MESH
struct mesh_plink_ent *plink = NULL;
#endif
u8 asoc_list_num;
if (DBG_DUMP_STATION)
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
_rtw_spinlock_bh(&pstapriv->asoc_list_lock);
psta = rtw_sta_info_get_by_idx(pstapriv, idx, &asoc_list_num);
_rtw_spinunlock_bh(&pstapriv->asoc_list_lock);
#ifdef CONFIG_RTW_MESH
if (MLME_IS_MESH(padapter)) {
if (psta)
plink = psta->plink;
if (!plink)
plink = rtw_mesh_plink_get_no_estab_by_idx(padapter, idx - asoc_list_num);
}
#endif /* CONFIG_RTW_MESH */
if ((!MLME_IS_MESH(padapter) && !psta)
#ifdef CONFIG_RTW_MESH
|| (MLME_IS_MESH(padapter) && !plink)
#endif
) {
if (DBG_DUMP_STATION)
RTW_INFO(FUNC_NDEV_FMT" end with idx:%d\n", FUNC_NDEV_ARG(ndev), idx);
ret = -ENOENT;
goto exit;
}
if (psta)
_rtw_memcpy(mac, psta->phl_sta->mac_addr, ETH_ALEN);
#ifdef CONFIG_RTW_MESH
else
_rtw_memcpy(mac, plink->addr, ETH_ALEN);
#endif
sinfo->filled = 0;
if (psta) {
sinfo->filled |= STATION_INFO_SIGNAL;
/* ToDo: need API to query hal_sta->rssi_stat.rssi */
/* sinfo->signal = rtw_phl_rssi_to_dbm(psta->phl_sta->rssi_stat.rssi); */
sinfo->filled |= STATION_INFO_INACTIVE_TIME;
sinfo->inactive_time = rtw_get_passing_time_ms(psta->sta_stats.last_rx_time);
}
#ifdef CONFIG_RTW_MESH
if (MLME_IS_MESH(padapter))
rtw_cfg80211_fill_mesh_only_sta_info(plink, psta, sinfo);
#endif
exit:
return ret;
}
static int cfg80211_rtw_change_bss(struct wiphy *wiphy, struct net_device *ndev,
struct bss_parameters *params)
{
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
/*
RTW_INFO("use_cts_prot=%d\n", params->use_cts_prot);
RTW_INFO("use_short_preamble=%d\n", params->use_short_preamble);
RTW_INFO("use_short_slot_time=%d\n", params->use_short_slot_time);
RTW_INFO("ap_isolate=%d\n", params->ap_isolate);
RTW_INFO("basic_rates_len=%d\n", params->basic_rates_len);
for(i = 0; i < params->basic_rates_len; i++)
RTW_INFO("basic_rates=%d\n", params->basic_rates[i]);
*/
return 0;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29))
static int cfg80211_rtw_set_txq_params(struct wiphy *wiphy
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0))
, struct net_device *ndev
#endif
, struct ieee80211_txq_params *params)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0))
_adapter *padapter = rtw_netdev_priv(ndev);
#else
_adapter *padapter = wiphy_to_adapter(wiphy);
#endif
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
u8 ac, AIFS, ECWMin, ECWMax, aSifsTime, vo_cw;
u16 TXOP;
u8 shift_count = 0;
u32 acParm;
struct registry_priv *pregpriv = &padapter->registrypriv;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
ac = params->ac;
#else
ac = params->queue;
#endif
switch (ac) {
case NL80211_TXQ_Q_VO:
ac = XMIT_VO_QUEUE;
vo_cw = (pregpriv->vo_edca >> 8) & 0xff;
if(vo_cw) {
/* change vo contention window */
params->cwmin = vo_cw & 0xf;
params->cwmax = vo_cw >> 4;
}
break;
case NL80211_TXQ_Q_VI:
ac = XMIT_VI_QUEUE;
break;
case NL80211_TXQ_Q_BE:
ac = XMIT_BE_QUEUE;
break;
case NL80211_TXQ_Q_BK:
ac = XMIT_BK_QUEUE;
break;
default:
break;
}
#if 0
RTW_INFO("ac=%d\n", ac);
RTW_INFO("txop=%u\n", params->txop);
RTW_INFO("cwmin=%u\n", params->cwmin);
RTW_INFO("cwmax=%u\n", params->cwmax);
RTW_INFO("aifs=%u\n", params->aifs);
#endif
if (WIFI_ROLE_IS_ON_5G(padapter) ||
(pmlmeext->cur_wireless_mode & WLAN_MD_11N))
aSifsTime = 16;
else
aSifsTime = 10;
AIFS = params->aifs * pmlmeinfo->slotTime + aSifsTime;
while ((params->cwmin + 1) >> shift_count != 1) {
shift_count++;
if (shift_count == 15)
break;
}
ECWMin = shift_count;
shift_count = 0;
while ((params->cwmax + 1) >> shift_count != 1) {
shift_count++;
if (shift_count == 15)
break;
}
ECWMax = shift_count;
TXOP = params->txop;
acParm = AIFS | (ECWMin << 8) | (ECWMax << 12) | (TXOP << 16);
if (ac == XMIT_BE_QUEUE) {
padapter->last_edca = acParm;
acParm = rtw_get_turbo_edca(padapter, AIFS, ECWMin, ECWMax, TXOP);
if (acParm)
padapter->last_edca = acParm;
else
acParm = padapter->last_edca;
}
set_txq_params_cmd(padapter, acParm, ac);
return 0;
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29)) */
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 6, 0))
static int cfg80211_rtw_set_channel(struct wiphy *wiphy
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
, struct net_device *ndev
#endif
, struct ieee80211_channel *chan, enum nl80211_channel_type channel_type)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
#else
_adapter *padapter = wiphy_to_adapter(wiphy);
#endif
int chan_target = (u8) ieee80211_frequency_to_channel(chan->center_freq);
int chan_offset = CHAN_OFFSET_NO_EXT;
int chan_width = CHANNEL_WIDTH_20;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
#endif
switch (channel_type) {
case NL80211_CHAN_NO_HT:
case NL80211_CHAN_HT20:
chan_width = CHANNEL_WIDTH_20;
chan_offset = CHAN_OFFSET_NO_EXT;
break;
case NL80211_CHAN_HT40MINUS:
chan_width = CHANNEL_WIDTH_40;
chan_offset = CHAN_OFFSET_LOWER;
break;
case NL80211_CHAN_HT40PLUS:
chan_width = CHANNEL_WIDTH_40;
chan_offset = CHAN_OFFSET_UPPER;
break;
default:
chan_width = CHANNEL_WIDTH_20;
chan_offset = CHAN_OFFSET_NO_EXT;
break;
}
RTW_INFO(FUNC_ADPT_FMT" ch:%d bw:%d, offset:%d\n"
, FUNC_ADPT_ARG(padapter), chan_target, chan_width, chan_offset);
rtw_set_chbw_cmd(padapter, chan_target, chan_width, chan_offset, RTW_CMDF_WAIT_ACK);
return 0;
}
#endif /*#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 6, 0))*/
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
static void rtw_get_chbwoff_from_cfg80211_chan_def(
struct cfg80211_chan_def *chandef,
u8 *ht, u8 *ch, u8 *bw, u8 *offset)
{
struct ieee80211_channel *chan = chandef->chan;
*ch = chan->hw_value;
*ht = 1;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_20_NOHT:
*ht = 0;
/* fall through */
case NL80211_CHAN_WIDTH_20:
*bw = CHANNEL_WIDTH_20;
*offset = CHAN_OFFSET_NO_EXT;
break;
case NL80211_CHAN_WIDTH_40:
*bw = CHANNEL_WIDTH_40;
*offset = (chandef->center_freq1 > chan->center_freq)
? CHAN_OFFSET_UPPER
: CHAN_OFFSET_LOWER;
break;
case NL80211_CHAN_WIDTH_80:
*bw = CHANNEL_WIDTH_80;
*offset = (chandef->center_freq1 > chan->center_freq)
? CHAN_OFFSET_UPPER
: CHAN_OFFSET_LOWER;
break;
case NL80211_CHAN_WIDTH_160:
*bw = CHANNEL_WIDTH_160;
*offset = (chandef->center_freq1 > chan->center_freq)
? CHAN_OFFSET_UPPER
: CHAN_OFFSET_LOWER;
break;
case NL80211_CHAN_WIDTH_80P80:
*bw = CHANNEL_WIDTH_80_80;
*offset = (chandef->center_freq1 > chan->center_freq)
? CHAN_OFFSET_UPPER
: CHAN_OFFSET_LOWER;
break;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
case NL80211_CHAN_WIDTH_5:
*bw = CHANNEL_WIDTH_5;
*offset = CHAN_OFFSET_NO_EXT;
break;
case NL80211_CHAN_WIDTH_10:
*bw = CHANNEL_WIDTH_10;
*offset = CHAN_OFFSET_NO_EXT;
break;
#endif
default:
*ht = 0;
*bw = CHANNEL_WIDTH_20;
*offset = CHAN_OFFSET_NO_EXT;
RTW_INFO("unsupported cwidth:%u\n", chandef->width);
rtw_warn_on(1);
};
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0)) */
static int cfg80211_rtw_set_monitor_channel(struct wiphy *wiphy
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
, struct cfg80211_chan_def *chandef
#else
, struct ieee80211_channel *chan
, enum nl80211_channel_type channel_type
#endif
)
{
_adapter *padapter = wiphy_to_adapter(wiphy);
u8 target_channal, target_offset, target_width, ht_option;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("center_freq %u Mhz ch %u width %u freq1 %u freq2 %u\n"
, chandef->chan->center_freq
, chandef->chan->hw_value
, chandef->width
, chandef->center_freq1
, chandef->center_freq2);
#endif /* CONFIG_DEBUG_CFG80211 */
rtw_get_chbwoff_from_cfg80211_chan_def(chandef,
&ht_option, &target_channal, &target_width, &target_offset);
#else
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("center_freq %u Mhz ch %u channel_type %u\n"
, chan->center_freq
, chan->hw_value
, channel_type);
#endif /* CONFIG_DEBUG_CFG80211 */
rtw_get_chbw_from_nl80211_channel_type(chan, channel_type,
&ht_option, &target_channal, &target_width, &target_offset);
#endif
RTW_INFO(FUNC_ADPT_FMT" ch:%d bw:%d, offset:%d\n",
FUNC_ADPT_ARG(padapter), target_channal,
target_width, target_offset);
rtw_set_chbw_cmd(padapter, target_channal, target_width,
target_offset, RTW_CMDF_WAIT_ACK);
return 0;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
static int cfg80211_rtw_get_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
struct cfg80211_chan_def *chandef)
{
_adapter *padapter = wiphy_to_adapter(wiphy);
struct mlme_ext_priv *mlmeext = &(padapter->mlmeextpriv);
u8 ht_option = 0;
u8 report = 0;
int retval = 1;
if (MLME_IS_ASOC(padapter)) {
#ifdef CONFIG_80211N_HT
ht_option = padapter->mlmepriv.htpriv.ht_option;
#endif /* CONFIG_80211N_HT */
report = 1;
} else if (MLME_IS_MONITOR(padapter)) {
/* monitor mode always set to HT
we don't support sniffer No HT */
ht_option = 1;
report = 1;
}
if (report) {
rtw_chbw_to_cfg80211_chan_def(wiphy, chandef,
mlmeext->chandef.chan, mlmeext->chandef.bw,
mlmeext->chandef.offset, ht_option);
retval = 0;
}
return retval;
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0)) */
/*
static int cfg80211_rtw_auth(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_auth_request *req)
{
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
return 0;
}
static int cfg80211_rtw_assoc(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_assoc_request *req)
{
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
return 0;
}
*/
#endif /* CONFIG_AP_MODE */
void rtw_cfg80211_external_auth_request(_adapter *padapter, union recv_frame *rframe)
{
struct rtw_external_auth_params params;
struct wireless_dev *wdev = padapter->rtw_wdev;
struct net_device *netdev = wdev_to_ndev(wdev);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
u8 frame[256] = { 0 };
uint frame_len = 24;
s32 freq = 0;
/* rframe, in this case is null point */
freq = rtw_ch2freq(pmlmeext->chandef.chan);
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO(FUNC_ADPT_FMT": freq(%d, %d)\n", FUNC_ADPT_ARG(padapter), freq);
#endif
#if (KERNEL_VERSION(4, 17, 0) <= LINUX_VERSION_CODE) \
|| defined(CONFIG_KERNEL_PATCH_EXTERNAL_AUTH)
params.action = EXTERNAL_AUTH_START;
_rtw_memcpy(params.bssid, get_my_bssid(&pmlmeinfo->network), ETH_ALEN);
params.ssid.ssid_len = pmlmeinfo->network.Ssid.SsidLength;
_rtw_memcpy(params.ssid.ssid, pmlmeinfo->network.Ssid.Ssid,
pmlmeinfo->network.Ssid.SsidLength);
params.key_mgmt_suite = 0x8ac0f00;
RTW_INFO("external auth: use kernel API: cfg80211_external_auth_request()\n");
cfg80211_external_auth_request(netdev,
(struct cfg80211_external_auth_params *)¶ms, GFP_ATOMIC);
#elif (KERNEL_VERSION(2, 6, 37) <= LINUX_VERSION_CODE)
set_frame_sub_type(frame, WIFI_AUTH);
_rtw_memcpy(frame + 4, get_my_bssid(&pmlmeinfo->network), ETH_ALEN);
_rtw_memcpy(frame + 10, adapter_mac_addr(padapter), ETH_ALEN);
_rtw_memcpy(frame + 16, get_my_bssid(&pmlmeinfo->network), ETH_ALEN);
RTW_PUT_LE32((frame + 18), 0x8ac0f00);
RTW_PUT_LE32((frame + 24), 0x0003);
if (pmlmeinfo->network.Ssid.SsidLength) {
*(frame + 26) = pmlmeinfo->network.Ssid.SsidLength;
_rtw_memcpy(frame + 27, pmlmeinfo->network.Ssid.Ssid,
pmlmeinfo->network.Ssid.SsidLength);
frame_len = 27 + pmlmeinfo->network.Ssid.SsidLength;
}
RTW_INFO("external auth: with wpa_supplicant patch\n");
rtw_cfg80211_rx_mgmt(wdev, freq, 0, frame, frame_len, GFP_ATOMIC);
#endif
}
void rtw_cfg80211_rx_probe_request(_adapter *adapter, union recv_frame *rframe)
{
struct wireless_dev *wdev = NULL;
struct wiphy *wiphy = NULL;
u8 *frame = get_recvframe_data(rframe);
uint frame_len = rframe->u.hdr.len;
s32 freq;
u8 ch, sch = rtw_get_oper_ch(adapter);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
wiphy = adapter->rtw_wdev->wiphy;
#if defined(RTW_DEDICATED_P2P_DEVICE)
wdev = wiphy_to_pd_wdev(wiphy);
#endif
#endif
if (wdev == NULL)
wdev = adapter->rtw_wdev;
ch = rframe->u.hdr.attrib.ch ? rframe->u.hdr.attrib.ch : sch;
freq = rtw_ch2freq(ch);
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("RTW_Rx: probe request, ch=%d(%d), ta="MAC_FMT"\n"
, ch, sch, MAC_ARG(get_addr2_ptr(frame)));
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37)) || defined(COMPAT_KERNEL_RELEASE)
rtw_cfg80211_rx_mgmt(wdev, freq, 0, frame, frame_len, GFP_ATOMIC);
#else
cfg80211_rx_action(adapter->pnetdev, freq, frame, frame_len, GFP_ATOMIC);
#endif
}
void rtw_cfg80211_rx_action_p2p(_adapter *adapter, union recv_frame *rframe)
{
struct wireless_dev *wdev = adapter->rtw_wdev;
u8 *frame = get_recvframe_data(rframe);
uint frame_len = rframe->u.hdr.len;
s32 freq;
u8 ch, sch = rtw_get_oper_ch(adapter);
u8 category, action;
int type;
ch = rframe->u.hdr.attrib.ch ? rframe->u.hdr.attrib.ch : sch;
freq = rtw_ch2freq(ch);
RTW_INFO("RTW_Rx:ch=%d(%d), ta="MAC_FMT"\n"
, ch, sch, MAC_ARG(get_addr2_ptr(frame)));
#ifdef CONFIG_P2P
type = rtw_p2p_check_frames(adapter, frame, frame_len, _FALSE);
if (type >= 0)
goto indicate;
#endif
rtw_action_frame_parse(frame, frame_len, &category, &action);
RTW_INFO("RTW_Rx:category(%u), action(%u)\n", category, action);
#ifdef CONFIG_P2P
indicate:
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
rtw_cfg80211_rx_mgmt(wdev, freq, 0, frame, frame_len, GFP_ATOMIC);
#else
cfg80211_rx_action(adapter->pnetdev, freq, frame, frame_len, GFP_ATOMIC);
#endif
}
void rtw_cfg80211_rx_p2p_action_public(_adapter *adapter, union recv_frame *rframe)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct wireless_dev *wdev = adapter->rtw_wdev;
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(adapter);
u8 *frame = get_recvframe_data(rframe);
uint frame_len = rframe->u.hdr.len;
s32 freq;
u8 ch, sch = rtw_get_oper_ch(adapter);
u8 category, action;
int type;
ch = rframe->u.hdr.attrib.ch ? rframe->u.hdr.attrib.ch : sch;
freq = rtw_ch2freq(ch);
RTW_INFO("RTW_Rx:ch=%d(%d), ta="MAC_FMT"\n"
, ch, sch, MAC_ARG(get_addr2_ptr(frame)));
#ifdef CONFIG_P2P
type = rtw_p2p_check_frames(adapter, frame, frame_len, _FALSE);
if (type >= 0) {
switch (type) {
case P2P_GO_NEGO_CONF:
if (0) {
RTW_INFO(FUNC_ADPT_FMT" Nego confirm. state=%u, status=%u, iaddr="MAC_FMT"\n"
, FUNC_ADPT_ARG(adapter), pwdev_priv->nego_info.state, pwdev_priv->nego_info.status
, MAC_ARG(pwdev_priv->nego_info.iface_addr));
}
if (pwdev_priv->nego_info.state == 2
&& pwdev_priv->nego_info.status == 0
&& rtw_check_invalid_mac_address(pwdev_priv->nego_info.iface_addr, _FALSE) == _FALSE
) {
_adapter *intended_iface = dvobj_get_adapter_by_addr(dvobj, pwdev_priv->nego_info.iface_addr);
if (intended_iface) {
RTW_INFO(FUNC_ADPT_FMT" Nego confirm. Allow only "ADPT_FMT" to scan for 2000 ms\n"
, FUNC_ADPT_ARG(adapter), ADPT_ARG(intended_iface));
/* allow only intended_iface to do scan for 2000 ms */
rtw_mi_set_scan_deny(adapter, 2000);
rtw_clear_scan_deny(intended_iface);
}
}
break;
case P2P_PROVISION_DISC_RESP:
case P2P_INVIT_RESP:
rtw_clear_scan_deny(adapter);
#if !RTW_P2P_GROUP_INTERFACE
rtw_mi_buddy_set_scan_deny(adapter, 2000);
#endif
break;
}
goto indicate;
}
#endif
rtw_action_frame_parse(frame, frame_len, &category, &action);
RTW_INFO("RTW_Rx:category(%u), action(%u)\n", category, action);
#ifdef CONFIG_P2P
indicate:
#endif
#if defined(RTW_DEDICATED_P2P_DEVICE)
if (rtw_cfg80211_redirect_pd_wdev(dvobj_to_wiphy(dvobj), get_ra(frame), &wdev))
if (0)
RTW_INFO("redirect to pd_wdev:%p\n", wdev);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
rtw_cfg80211_rx_mgmt(wdev, freq, 0, frame, frame_len, GFP_ATOMIC);
#else
cfg80211_rx_action(adapter->pnetdev, freq, frame, frame_len, GFP_ATOMIC);
#endif
}
void rtw_cfg80211_rx_action(_adapter *adapter, union recv_frame *rframe, const char *msg)
{
struct wireless_dev *wdev = adapter->rtw_wdev;
u8 *frame = get_recvframe_data(rframe);
uint frame_len = rframe->u.hdr.len;
s32 freq;
u8 ch, sch = rtw_get_oper_ch(adapter);
u8 category, action;
int type = -1;
ch = rframe->u.hdr.attrib.ch ? rframe->u.hdr.attrib.ch : sch;
freq = rtw_ch2freq(ch);
RTW_INFO("RTW_Rx:ch=%d(%d), ta="MAC_FMT"\n"
, ch, sch, MAC_ARG(get_addr2_ptr(frame)));
#ifdef CONFIG_RTW_MESH
if (MLME_IS_MESH(adapter)) {
type = rtw_mesh_check_frames_rx(adapter, frame, frame_len);
if (type >= 0)
goto indicate;
}
#endif
rtw_action_frame_parse(frame, frame_len, &category, &action);
if (category == RTW_WLAN_CATEGORY_PUBLIC) {
if (action == ACT_PUBLIC_GAS_INITIAL_REQ) {
rtw_mi_set_scan_deny(adapter, 200);
rtw_mi_scan_abort(adapter, _FALSE); /*rtw_scan_abort_no_wait*/
}
}
#ifdef CONFIG_RTW_MESH
indicate:
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
rtw_cfg80211_rx_mgmt(wdev, freq, 0, frame, frame_len, GFP_ATOMIC);
#else
cfg80211_rx_action(adapter->pnetdev, freq, frame, frame_len, GFP_ATOMIC);
#endif
if (type == -1) {
if (msg)
RTW_INFO("RTW_Rx:%s\n", msg);
else
RTW_INFO("RTW_Rx:category(%u), action(%u)\n", category, action);
}
}
#ifdef CONFIG_RTW_80211K
void rtw_cfg80211_rx_rrm_action(_adapter *adapter, union recv_frame *rframe)
{
struct wireless_dev *wdev = adapter->rtw_wdev;
u8 *frame = get_recvframe_data(rframe);
uint frame_len = rframe->u.hdr.len;
s32 freq;
u8 ch, sch = rtw_get_oper_ch(adapter);
ch = rframe->u.hdr.attrib.ch ? rframe->u.hdr.attrib.ch : sch;
freq = rtw_ch2freq(ch);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
rtw_cfg80211_rx_mgmt(wdev, freq, 0, frame, frame_len, GFP_ATOMIC);
#else
cfg80211_rx_action(adapter->pnetdev, freq, frame, frame_len, GFP_ATOMIC);
#endif
RTW_INFO("RTW_Rx:ch=%d(%d), ta="MAC_FMT"\n"
, ch, sch, MAC_ARG(get_addr2_ptr(frame)));
}
#endif /* CONFIG_RTW_80211K */
void rtw_cfg80211_rx_mframe(_adapter *adapter, union recv_frame *rframe, const char *msg)
{
struct wireless_dev *wdev = adapter->rtw_wdev;
u8 *frame = get_recvframe_data(rframe);
uint frame_len = rframe->u.hdr.len;
s32 freq;
u8 ch, sch = rtw_get_oper_ch(adapter);
ch = rframe->u.hdr.attrib.ch ? rframe->u.hdr.attrib.ch : sch;
freq = rtw_ch2freq(ch);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
rtw_cfg80211_rx_mgmt(wdev, freq, 0, frame, frame_len, GFP_ATOMIC);
#else
cfg80211_rx_action(adapter->pnetdev, freq, frame, frame_len, GFP_ATOMIC);
#endif
RTW_INFO("RTW_Rx:ch=%d(%d), ta="MAC_FMT"\n", ch, sch, MAC_ARG(get_addr2_ptr(frame)));
if (!rtw_sae_preprocess(adapter, frame, frame_len, _FALSE)) {
if (msg)
RTW_INFO("RTW_Rx:%s\n", msg);
else
RTW_INFO("RTW_Rx:frame_control:0x%02x\n", le16_to_cpu(((struct rtw_ieee80211_hdr_3addr *)rframe)->frame_ctl));
}
}
#ifdef CONFIG_P2P
#ifdef CONFIG_RTW_80211R
static s32 cfg80211_rtw_update_ft_ies(struct wiphy *wiphy,
struct net_device *ndev,
struct cfg80211_update_ft_ies_params *ftie)
{
_adapter *padapter = NULL;
struct mlme_priv *pmlmepriv = NULL;
struct ft_roam_info *pft_roam = NULL;
if (ndev == NULL)
return -EINVAL;
padapter = (_adapter *)rtw_netdev_priv(ndev);
pmlmepriv = &(padapter->mlmepriv);
pft_roam = &(pmlmepriv->ft_roam);
#ifdef CONFIG_RTW_80211R_AP
if (check_fwstate(pmlmepriv, WIFI_AP_STATE) == _TRUE)
return rtw_ft_update_sta_ies(padapter, ftie);
#endif
if (ftie->ie_len <= sizeof(pft_roam->updated_ft_ies)) {
_rtw_spinlock_bh(&pmlmepriv->lock);
_rtw_memcpy(pft_roam->updated_ft_ies, ftie->ie, ftie->ie_len);
pft_roam->updated_ft_ies_len = ftie->ie_len;
_rtw_spinunlock_bh(&pmlmepriv->lock);
} else {
RTW_ERR("FTIEs parsing fail!\n");
return -EINVAL;
}
if (rtw_ft_roam_status(padapter, RTW_FT_AUTHENTICATED_STA)) {
RTW_PRINT("auth success, start reassoc\n");
rtw_ft_lock_set_status(padapter, RTW_FT_ASSOCIATING_STA);
start_clnt_assoc(padapter);
}
return 0;
}
#endif
inline int rtw_cfg80211_iface_has_p2p_group_cap(_adapter *adapter)
{
#if RTW_P2P_GROUP_INTERFACE
if (is_primary_adapter(adapter))
return 0;
#endif
return 1;
}
inline int rtw_cfg80211_is_p2p_scan(_adapter *adapter)
{
#if defined(RTW_DEDICATED_P2P_DEVICE)
if (wiphy_to_pd_wdev(adapter_to_wiphy(adapter))) /* pd_wdev exist */
return rtw_cfg80211_is_scan_by_pd_wdev(adapter);
#endif
{
/* Here are 2 cases:
* 1. RTW_DEDICATED_P2P_DEVICE defined but upper layer don't use pd_wdev or
* 2. RTW_DEDICATED_P2P_DEVICE not defined
* Both cases check whether the contents of scan_request is p2p scan.
*/
struct rtw_wdev_priv *wdev_data = adapter_wdev_data(adapter);
int is_p2p_scan = 0;
_rtw_spinlock_bh(&wdev_data->scan_req_lock);
if (wdev_data->scan_request
&& wdev_data->scan_request->n_ssids
&& wdev_data->scan_request->ssids
&& wdev_data->scan_request->ie
) {
if (_rtw_memcmp(wdev_data->scan_request->ssids[0].ssid, "DIRECT-", 7)
&& rtw_get_p2p_ie((u8 *)wdev_data->scan_request->ie, wdev_data->scan_request->ie_len, NULL, NULL))
is_p2p_scan = 1;
}
_rtw_spinunlock_bh(&wdev_data->scan_req_lock);
return is_p2p_scan;
}
}
#if defined(RTW_DEDICATED_P2P_DEVICE)
int rtw_pd_iface_alloc(struct wiphy *wiphy, const char *name, struct wireless_dev **pd_wdev)
{
struct rtw_wiphy_data *wiphy_data = rtw_wiphy_priv(wiphy);
struct wireless_dev *wdev = NULL;
struct rtw_netdev_priv_indicator *npi;
_adapter *primary_adpt = wiphy_to_adapter(wiphy);
int ret = 0;
if (wiphy_data->pd_wdev) {
RTW_WARN(FUNC_WIPHY_FMT" pd_wdev already exists\n", FUNC_WIPHY_ARG(wiphy));
ret = -EBUSY;
goto exit;
}
wdev = (struct wireless_dev *)rtw_zmalloc(sizeof(struct wireless_dev));
if (!wdev) {
RTW_WARN(FUNC_WIPHY_FMT" allocate wdev fail\n", FUNC_WIPHY_ARG(wiphy));
ret = -ENOMEM;
goto exit;
}
wdev->wiphy = wiphy;
wdev->iftype = NL80211_IFTYPE_P2P_DEVICE;
_rtw_memcpy(wdev->address, adapter_mac_addr(primary_adpt), ETH_ALEN);
wiphy_data->pd_wdev = wdev;
*pd_wdev = wdev;
RTW_INFO(FUNC_WIPHY_FMT" pd_wdev:%p, addr="MAC_FMT" added\n"
, FUNC_WIPHY_ARG(wiphy), wdev, MAC_ARG(wdev_address(wdev)));
exit:
if (ret && wdev) {
rtw_mfree((u8 *)wdev, sizeof(struct wireless_dev));
wdev = NULL;
}
return ret;
}
void rtw_pd_iface_free(struct wiphy *wiphy)
{
struct dvobj_priv *dvobj = wiphy_to_dvobj(wiphy);
struct rtw_wiphy_data *wiphy_data = rtw_wiphy_priv(wiphy);
u8 rtnl_lock_needed;
if (!wiphy_data->pd_wdev)
goto exit;
RTW_INFO(FUNC_WIPHY_FMT" pd_wdev:%p, addr="MAC_FMT"\n"
, FUNC_WIPHY_ARG(wiphy), wiphy_data->pd_wdev
, MAC_ARG(wdev_address(wiphy_data->pd_wdev)));
rtnl_lock_needed = rtw_rtnl_lock_needed(dvobj);
if (rtnl_lock_needed)
rtnl_lock();
cfg80211_unregister_wdev(wiphy_data->pd_wdev);
if (rtnl_lock_needed)
rtnl_unlock();
rtw_mfree((u8 *)wiphy_data->pd_wdev, sizeof(struct wireless_dev));
wiphy_data->pd_wdev = NULL;
exit:
return;
}
static int cfg80211_rtw_start_p2p_device(struct wiphy *wiphy, struct wireless_dev *wdev)
{
_adapter *adapter = wiphy_to_adapter(wiphy);
RTW_INFO(FUNC_WIPHY_FMT" wdev=%p\n", FUNC_WIPHY_ARG(wiphy), wdev);
rtw_p2p_enable(adapter, P2P_ROLE_DEVICE);
return 0;
}
static void cfg80211_rtw_stop_p2p_device(struct wiphy *wiphy, struct wireless_dev *wdev)
{
_adapter *adapter = wiphy_to_adapter(wiphy);
RTW_INFO(FUNC_WIPHY_FMT" wdev=%p\n", FUNC_WIPHY_ARG(wiphy), wdev);
if (rtw_cfg80211_is_p2p_scan(adapter))
rtw_scan_abort(adapter, 0);
rtw_p2p_enable(adapter, P2P_ROLE_DISABLE);
}
inline int rtw_cfg80211_redirect_pd_wdev(struct wiphy *wiphy, u8 *ra, struct wireless_dev **wdev)
{
struct wireless_dev *pd_wdev = wiphy_to_pd_wdev(wiphy);
if (pd_wdev && pd_wdev != *wdev
&& _rtw_memcmp(wdev_address(pd_wdev), ra, ETH_ALEN) == _TRUE
) {
*wdev = pd_wdev;
return 1;
}
return 0;
}
inline int rtw_cfg80211_is_scan_by_pd_wdev(_adapter *adapter)
{
struct wiphy *wiphy = adapter_to_wiphy(adapter);
struct rtw_wdev_priv *wdev_data = adapter_wdev_data(adapter);
struct wireless_dev *wdev = NULL;
_rtw_spinlock_bh(&wdev_data->scan_req_lock);
if (wdev_data->scan_request)
wdev = wdev_data->scan_request->wdev;
_rtw_spinunlock_bh(&wdev_data->scan_req_lock);
if (wdev && wdev == wiphy_to_pd_wdev(wiphy))
return 1;
return 0;
}
#endif /* RTW_DEDICATED_P2P_DEVICE */
#endif /* CONFIG_P2P */
inline void rtw_cfg80211_set_is_roch(_adapter *adapter, bool val)
{
adapter->cfg80211_rochinfo.is_ro_ch = val;
rtw_mi_update_iface_status(&(adapter->mlmepriv), 0);
}
inline bool rtw_cfg80211_get_is_roch(_adapter *adapter)
{
return adapter->cfg80211_rochinfo.is_ro_ch;
}
inline bool rtw_cfg80211_is_ro_ch_once(_adapter *adapter)
{
return adapter->cfg80211_rochinfo.last_ro_ch_time ? 1 : 0;
}
inline void rtw_cfg80211_set_last_ro_ch_time(_adapter *adapter)
{
adapter->cfg80211_rochinfo.last_ro_ch_time = rtw_get_current_time();
if (!adapter->cfg80211_rochinfo.last_ro_ch_time)
adapter->cfg80211_rochinfo.last_ro_ch_time++;
}
inline s32 rtw_cfg80211_get_last_ro_ch_passing_ms(_adapter *adapter)
{
return rtw_get_passing_time_ms(adapter->cfg80211_rochinfo.last_ro_ch_time);
}
#ifndef RTW_USE_CFG80211_REPORT_PROBE_REQ
static inline bool chk_is_p2p_device(_adapter *adapter, struct wireless_dev *wdev)
{
struct wiphy *wiphy = adapter_to_wiphy(adapter);
#if defined(RTW_DEDICATED_P2P_DEVICE)
if (wdev == wiphy_to_pd_wdev(wiphy))
return _TRUE;
#else
#if defined(CONFIG_CONCURRENT_MODE) && !RTW_P2P_GROUP_INTERFACE
if (adapter->iface_id == adapter->registrypriv.sel_p2p_iface)
#endif
return _TRUE;
#endif
return _FALSE;
}
#endif
#if 1 /*CONFIG_PHL_ARCH*/
static s32 cfg80211_rtw_remain_on_channel(struct wiphy *wiphy,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
struct wireless_dev *wdev,
#else
struct net_device *ndev,
#endif
struct ieee80211_channel *channel,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 8, 0))
enum nl80211_channel_type channel_type,
#endif
unsigned int duration, u64 *cookie)
{
s32 err = 0;
u8 remain_ch = (u8) ieee80211_frequency_to_channel(channel->center_freq);
_adapter *padapter = NULL;
struct registry_priv *pregistrypriv = NULL;
//struct rtw_wdev_priv *pwdev_priv;
struct cfg80211_roch_info *pcfg80211_rochinfo;
struct back_op_param bkop_parm;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
u8 channel_type = 0;
#endif
u8 is_p2p = _FALSE;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
#if defined(RTW_DEDICATED_P2P_DEVICE)
if (wdev == wiphy_to_pd_wdev(wiphy))
padapter = wiphy_to_adapter(wiphy);
else
#endif
if (wdev_to_ndev(wdev))
padapter = (_adapter *)rtw_netdev_priv(wdev_to_ndev(wdev));
else
return -EINVAL;
#else
struct wireless_dev *wdev;
if (ndev == NULL)
return -EINVAL;
padapter = (_adapter *)rtw_netdev_priv(ndev);
wdev = ndev_to_wdev(ndev);
#endif
pregistrypriv = &padapter->registrypriv;
pcfg80211_rochinfo = &padapter->cfg80211_rochinfo;
#ifndef RTW_USE_CFG80211_REPORT_PROBE_REQ
#ifdef CONFIG_P2P
is_p2p = chk_is_p2p_device(padapter, wdev);
if (is_p2p) {
struct wifidirect_info *pwdinfo = &padapter->wdinfo;
if (rtw_p2p_chk_role(pwdinfo, P2P_ROLE_DISABLE))
rtw_p2p_enable(padapter, P2P_ROLE_DEVICE);
pwdinfo->listen_channel = remain_ch;
RTW_INFO(FUNC_ADPT_FMT" init listen_channel %u\n",
FUNC_ADPT_ARG(padapter),
padapter->wdinfo.listen_channel);
}
#endif
#endif
*cookie = ATOMIC_INC_RETURN(&pcfg80211_rochinfo->ro_ch_cookie_gen);
RTW_INFO(FUNC_ADPT_FMT"%s ch:%u duration:%d, cookie:0x%llx\n"
, FUNC_ADPT_ARG(padapter), wdev == wiphy_to_pd_wdev(wiphy) ? " PD" : ""
, remain_ch, duration, *cookie);
if (rtw_chset_search_ch(adapter_to_chset(padapter), remain_ch) < 0) {
RTW_WARN(FUNC_ADPT_FMT" invalid ch:%u\n", FUNC_ADPT_ARG(padapter), remain_ch);
return -EFAULT;
}
#ifdef CONFIG_MP_INCLUDED
if (rtw_mp_mode_check(padapter)) {
RTW_INFO("MP mode block remain_on_channel request\n");
return -EFAULT;
}
#endif
if (_FAIL == rtw_pwr_wakeup(padapter))
return -EFAULT;
rtw_scan_abort(padapter, 0);
bkop_parm.off_ch_dur = pregistrypriv->roch_max_away_dur;
bkop_parm.on_ch_dur = pregistrypriv->roch_min_home_dur;
if (check_fwstate(&padapter->mlmepriv, WIFI_ASOC_STATE))
bkop_parm.off_ch_ext_dur = pregistrypriv->roch_extend_dur;
else
bkop_parm.off_ch_ext_dur = pregistrypriv->roch_extend_dur * 6;
rtw_phl_remain_on_ch_cmd(padapter, *cookie, wdev,
channel, channel_type, duration, &bkop_parm, is_p2p);
return 0;
}
#else /* !CONFIG_PHL_ARCH */
static s32 cfg80211_rtw_remain_on_channel(struct wiphy *wiphy,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
struct wireless_dev *wdev,
#else
struct net_device *ndev,
#endif
struct ieee80211_channel *channel,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 8, 0))
enum nl80211_channel_type channel_type,
#endif
unsigned int duration, u64 *cookie)
{
s32 err = 0;
u8 remain_ch = (u8) ieee80211_frequency_to_channel(channel->center_freq);
_adapter *padapter = NULL;
struct rtw_wdev_priv *pwdev_priv;
struct wifidirect_info *pwdinfo;
struct cfg80211_wifidirect_info *pcfg80211_wdinfo;
#ifdef CONFIG_CONCURRENT_MODE
u8 is_p2p_find = _FALSE;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
#if defined(RTW_DEDICATED_P2P_DEVICE)
if (wdev == wiphy_to_pd_wdev(wiphy))
padapter = wiphy_to_adapter(wiphy);
else
#endif
if (wdev_to_ndev(wdev))
padapter = (_adapter *)rtw_netdev_priv(wdev_to_ndev(wdev));
else {
err = -EINVAL;
goto exit;
}
#else
struct wireless_dev *wdev;
if (ndev == NULL) {
err = -EINVAL;
goto exit;
}
padapter = (_adapter *)rtw_netdev_priv(ndev);
wdev = ndev_to_wdev(ndev);
#endif
pwdev_priv = adapter_wdev_data(padapter);
pwdinfo = &padapter->wdinfo;
pcfg80211_wdinfo = &padapter->cfg80211_wdinfo;
#ifdef CONFIG_CONCURRENT_MODE
is_p2p_find = (duration < (pwdinfo->ext_listen_interval)) ? _TRUE : _FALSE;
#endif
*cookie = ATOMIC_INC_RETURN(&pcfg80211_wdinfo->ro_ch_cookie_gen);
RTW_INFO(FUNC_ADPT_FMT"%s ch:%u duration:%d, cookie:0x%llx\n"
, FUNC_ADPT_ARG(padapter), wdev == wiphy_to_pd_wdev(wiphy) ? " PD" : ""
, remain_ch, duration, *cookie);
if (rtw_chset_search_ch(adapter_to_chset(padapter), remain_ch) < 0) {
RTW_WARN(FUNC_ADPT_FMT" invalid ch:%u\n", FUNC_ADPT_ARG(padapter), remain_ch);
err = -EFAULT;
goto exit;
}
#ifdef CONFIG_MP_INCLUDED
if (rtw_mp_mode_check(padapter)) {
RTW_INFO("MP mode block remain_on_channel request\n");
err = -EFAULT;
goto exit;
}
#endif
if (_FAIL == rtw_pwr_wakeup(padapter)) {
err = -EFAULT;
goto exit;
}
rtw_scan_abort(padapter);
#ifdef CONFIG_CONCURRENT_MODE
/*don't scan_abort during p2p_listen.*/
if (is_p2p_find)
rtw_mi_buddy_scan_abort(padapter, _TRUE);
#endif /*CONFIG_CONCURRENT_MODE*/
if (rtw_cfg80211_get_is_roch(padapter) == _TRUE) {
_cancel_timer_ex(&padapter->cfg80211_wdinfo.remain_on_ch_timer);
p2p_cancel_roch_cmd(padapter, 0, NULL, RTW_CMDF_WAIT_ACK);
}
/* if(!rtw_p2p_chk_role(pwdinfo, P2P_ROLE_CLIENT) && !rtw_p2p_chk_role(pwdinfo, P2P_ROLE_GO)) */
if (rtw_p2p_chk_state(pwdinfo, P2P_STATE_NONE)
#if defined(CONFIG_CONCURRENT_MODE) && defined(CONFIG_P2P)
&& ((padapter->iface_id == padapter->registrypriv.sel_p2p_iface))
#endif
) {
rtw_p2p_enable(padapter, P2P_ROLE_DEVICE);
padapter->wdinfo.listen_channel = remain_ch;
RTW_INFO(FUNC_ADPT_FMT" init listen_channel %u\n"
, FUNC_ADPT_ARG(padapter), padapter->wdinfo.listen_channel);
} else if (rtw_p2p_chk_state(pwdinfo , P2P_STATE_LISTEN)
&& (time_after_eq(rtw_get_current_time(), pwdev_priv->probe_resp_ie_update_time)
&& rtw_get_passing_time_ms(pwdev_priv->probe_resp_ie_update_time) < 50)
) {
if (padapter->wdinfo.listen_channel != remain_ch) {
padapter->wdinfo.listen_channel = remain_ch;
RTW_INFO(FUNC_ADPT_FMT" update listen_channel %u\n"
, FUNC_ADPT_ARG(padapter), padapter->wdinfo.listen_channel);
}
} else {
rtw_p2p_set_pre_state(pwdinfo, rtw_p2p_state(pwdinfo));
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("%s, role=%d, p2p_state=%d\n", __func__, rtw_p2p_role(pwdinfo), rtw_p2p_state(pwdinfo));
#endif
}
rtw_p2p_set_state(pwdinfo, P2P_STATE_LISTEN);
#ifdef RTW_ROCH_DURATION_ENLARGE
if (duration < 400)
duration = duration * 3; /* extend from exper */
#endif
#if defined(RTW_ROCH_BACK_OP) && defined(CONFIG_CONCURRENT_MODE)
if (rtw_mi_check_status(padapter, MI_LINKED)) {
if (is_p2p_find) /* p2p_find , duration<1000 */
duration = duration + pwdinfo->ext_listen_interval;
else /* p2p_listen, duration=5000 */
duration = pwdinfo->ext_listen_interval + (pwdinfo->ext_listen_interval / 4);
}
#endif /*defined (RTW_ROCH_BACK_OP) && defined(CONFIG_CONCURRENT_MODE) */
rtw_cfg80211_set_is_roch(padapter, _TRUE);
pcfg80211_wdinfo->ro_ch_wdev = wdev;
pcfg80211_wdinfo->remain_on_ch_cookie = *cookie;
pcfg80211_wdinfo->duration = duration;
rtw_cfg80211_set_last_ro_ch_time(padapter);
_rtw_memcpy(&pcfg80211_wdinfo->remain_on_ch_channel, channel, sizeof(struct ieee80211_channel));
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 8, 0))
pcfg80211_wdinfo->remain_on_ch_type = channel_type;
#endif
pcfg80211_wdinfo->restore_channel = rtw_get_oper_ch(padapter);
p2p_roch_cmd(padapter, *cookie, wdev, channel, pcfg80211_wdinfo->remain_on_ch_type,
duration, RTW_CMDF_WAIT_ACK);
rtw_cfg80211_ready_on_channel(wdev, *cookie, channel, channel_type, duration, GFP_KERNEL);
exit:
return err;
}
#endif /* CONFIG_PHL_ARCH */
static s32 cfg80211_rtw_cancel_remain_on_channel(struct wiphy *wiphy,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
struct wireless_dev *wdev,
#else
struct net_device *ndev,
#endif
u64 cookie)
{
s32 err = 0;
_adapter *padapter;
struct rtw_wdev_priv *pwdev_priv;
struct cfg80211_roch_info *pcfg80211_rochinfo;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
#if defined(RTW_DEDICATED_P2P_DEVICE)
if (wdev == wiphy_to_pd_wdev(wiphy))
padapter = wiphy_to_adapter(wiphy);
else
#endif
if (wdev_to_ndev(wdev))
padapter = (_adapter *)rtw_netdev_priv(wdev_to_ndev(wdev));
else {
err = -EINVAL;
goto exit;
}
#else
struct wireless_dev *wdev;
if (ndev == NULL) {
err = -EINVAL;
goto exit;
}
padapter = (_adapter *)rtw_netdev_priv(ndev);
wdev = ndev_to_wdev(ndev);
#endif
pwdev_priv = adapter_wdev_data(padapter);
pcfg80211_rochinfo = &padapter->cfg80211_rochinfo;
RTW_INFO(FUNC_ADPT_FMT"%s cookie:0x%llx\n"
, FUNC_ADPT_ARG(padapter), wdev == wiphy_to_pd_wdev(wiphy) ? " PD" : ""
, cookie);
if (rtw_cfg80211_get_is_roch(padapter) == _TRUE) {
rtw_scan_abort(padapter, 0);
}
exit:
return err;
}
inline void rtw_cfg80211_set_is_mgmt_tx(_adapter *adapter, u8 val)
{
struct rtw_wdev_priv *wdev_priv = adapter_wdev_data(adapter);
wdev_priv->is_mgmt_tx = val;
rtw_mi_update_iface_status(&(adapter->mlmepriv), 0);
}
inline u8 rtw_cfg80211_get_is_mgmt_tx(_adapter *adapter)
{
struct rtw_wdev_priv *wdev_priv = adapter_wdev_data(adapter);
return wdev_priv->is_mgmt_tx;
}
static int _cfg80211_rtw_mgmt_tx(_adapter *padapter, u8 tx_ch, u8 no_cck, const u8 *buf, size_t len, int wait_ack)
{
struct xmit_frame *pmgntframe;
struct pkt_attrib *pattrib;
unsigned char *pframe;
int ret = _FAIL;
bool ack = _TRUE;
struct rtw_ieee80211_hdr *pwlanhdr;
#if defined(RTW_ROCH_BACK_OP) && defined(CONFIG_P2P) && defined(CONFIG_CONCURRENT_MODE)
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(padapter);
#endif
struct xmit_priv *pxmitpriv = &(padapter->xmitpriv);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
u8 u_ch = rtw_mi_get_union_chan(padapter);
u8 leave_op = 0;
#ifdef CONFIG_P2P
struct cfg80211_roch_info *pcfg80211_rochinfo = &padapter->cfg80211_rochinfo;
#ifdef CONFIG_CONCURRENT_MODE
struct wifidirect_info *pwdinfo = &padapter->wdinfo;
#endif
#endif
u8 frame_styp;
rtw_cfg80211_set_is_mgmt_tx(padapter, 1);
#if 0
/* phl_scan
* Enable ext period when WIFI_ASOC_STATE
* cancel roch when ext_listen_period is up
* remove it, because phl_sacn will do extend
*/
#ifdef CONFIG_P2P
if (rtw_cfg80211_get_is_roch(padapter) == _TRUE) {
#ifdef CONFIG_CONCURRENT_MODE
if (!check_fwstate(&padapter->mlmepriv, WIFI_ASOC_STATE)) {
RTW_INFO("%s, extend ro ch time\n", __func__);
_set_timer(&padapter->cfg80211_wdinfo.remain_on_ch_timer, pwdinfo->ext_listen_period);
}
#endif /* CONFIG_CONCURRENT_MODE */
}
#endif /* CONFIG_P2P */
#endif
if (rtw_mi_check_status(padapter, MI_LINKED)
&& tx_ch != u_ch
) {
/* phl_scan will self leave opch */
if (!rtw_cfg80211_get_is_roch(padapter)) {
rtw_leave_opch(padapter);
leave_op = 1;
}
}
/* phl_scan will self remain on ch */
if (!rtw_cfg80211_get_is_roch(padapter)) {
if (tx_ch != rtw_get_oper_ch(padapter))
set_channel_bwmode(padapter,
tx_ch, CHAN_OFFSET_NO_EXT, CHANNEL_WIDTH_20, _FALSE);
}
/* starting alloc mgmt frame to dump it */
pmgntframe = alloc_mgtxmitframe(pxmitpriv);
if (pmgntframe == NULL) {
/* ret = -ENOMEM; */
ret = _FAIL;
goto exit;
}
/* update attribute */
pattrib = &pmgntframe->attrib;
update_mgntframe_attrib(padapter, pattrib);
if (no_cck && IS_CCK_RATE(pattrib->rate)) {
/* force OFDM 6M rate*/
pattrib->rate = MGN_6M;
}
pattrib->retry_ctrl = _FALSE;
_rtw_memset(pmgntframe->buf_addr, 0, WLANHDR_OFFSET + TXDESC_OFFSET);
pframe = (u8 *)(pmgntframe->buf_addr) + TXDESC_OFFSET;
_rtw_memcpy(pframe, (void *)buf, len);
pattrib->pktlen = len;
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
/* update seq number */
SetSeqNum(pwlanhdr, pmlmeext->mgnt_seq);
pattrib->seqnum = pmlmeext->mgnt_seq;
pmlmeext->mgnt_seq++;
#ifdef CONFIG_P2P
rtw_xframe_chk_wfd_ie(pmgntframe);
#endif /* CONFIG_P2P */
#ifdef CONFIG_ECSA_PHL
/* Update channel switch count of CSA/ECSA IE in probe response */
frame_styp = (le16_to_cpu(pwlanhdr->frame_ctl)) & IEEE80211_FCTL_STYPE;
if (frame_styp == IEEE80211_STYPE_PROBE_RESP)
rtw_ecsa_update_probe_resp(pmgntframe);
#endif
pattrib->last_txcmdsz = pattrib->pktlen;
if (wait_ack) {
if (dump_mgntframe_and_wait_ack(padapter, pmgntframe) != _SUCCESS) {
ack = _FALSE;
ret = _FAIL;
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("%s, ack == _FAIL\n", __func__);
#endif
} else {
#ifdef CONFIG_XMIT_ACK
if (!MLME_IS_MESH(padapter)) /* TODO: remove this sleep for all mode */
rtw_msleep_os(50);
#endif
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("%s, ack=%d, ok!\n", __func__, ack);
#endif
ret = _SUCCESS;
}
} else {
dump_mgntframe(padapter, pmgntframe);
ret = _SUCCESS;
}
exit:
/* phl_scan will self return opch */
#if 0
#ifdef CONFIG_P2P
if (rtw_cfg80211_get_is_roch(padapter)
&& !roch_stay_in_cur_chan(padapter)
&& pcfg80211_wdinfo->remain_on_ch_channel.hw_value != u_ch
) {
/* roch is ongoing, switch back to rch */
if (pcfg80211_wdinfo->remain_on_ch_channel.hw_value != tx_ch)
set_channel_bwmode(padapter,
pcfg80211_wdinfo->remain_on_ch_channel.hw_value,
CHAN_OFFSET_NO_EXT,
CHANNEL_WIDTH_20,
_FALSE);
} else
#endif
#endif
if (leave_op) {
if (rtw_mi_check_status(padapter, MI_LINKED)) {
u8 u_bw = rtw_mi_get_union_bw(padapter);
u8 u_offset = rtw_mi_get_union_offset(padapter);
set_channel_bwmode(padapter, u_ch, u_offset, u_bw, _FALSE);
}
rtw_back_opch(padapter);
}
rtw_cfg80211_set_is_mgmt_tx(padapter, 0);
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("%s, ret=%d\n", __func__, ret);
#endif
return ret;
}
u8 rtw_mgnt_tx_handler(_adapter *adapter, u8 *buf)
{
u8 rst = H2C_CMD_FAIL;
struct mgnt_tx_parm *mgnt_parm = (struct mgnt_tx_parm *)buf;
if (_cfg80211_rtw_mgmt_tx(adapter, mgnt_parm->tx_ch, mgnt_parm->no_cck,
mgnt_parm->buf, mgnt_parm->len, mgnt_parm->wait_ack) == _SUCCESS)
rst = H2C_SUCCESS;
return rst;
}
static int cfg80211_rtw_mgmt_tx(struct wiphy *wiphy,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
struct wireless_dev *wdev,
#else
struct net_device *ndev,
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 14, 0)) || defined(COMPAT_KERNEL_RELEASE)
struct ieee80211_channel *chan,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 38)) || defined(COMPAT_KERNEL_RELEASE)
bool offchan,
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)) && (LINUX_VERSION_CODE < KERNEL_VERSION(3, 8, 0))
enum nl80211_channel_type channel_type,
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)) && (LINUX_VERSION_CODE < KERNEL_VERSION(3, 8, 0))
bool channel_type_valid,
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 38)) || defined(COMPAT_KERNEL_RELEASE)
unsigned int wait,
#endif
const u8 *buf, size_t len,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0))
bool no_cck,
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 3, 0))
bool dont_wait_for_ack,
#endif
#else
struct cfg80211_mgmt_tx_params *params,
#endif
u64 *cookie)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)) || defined(COMPAT_KERNEL_RELEASE)
struct ieee80211_channel *chan = params->chan;
const u8 *buf = params->buf;
size_t len = params->len;
bool no_cck = params->no_cck;
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 2, 0))
bool no_cck = 0;
#endif
int ret = 0;
u8 tx_ret;
int wait_ack = 1;
const u8 *dump_buf = buf;
size_t dump_len = len;
u32 dump_limit = RTW_MAX_MGMT_TX_CNT;
u32 dump_cnt = 0;
u32 sleep_ms = 0;
u32 retry_guarantee_ms = 0;
bool ack = _TRUE;
u8 tx_ch;
u8 category, action;
u8 frame_styp;
#ifdef CONFIG_P2P
u8 is_p2p = 0;
#endif
int type = (-1);
systime start = rtw_get_current_time();
_adapter *padapter;
struct dvobj_priv *dvobj;
struct rtw_wdev_priv *pwdev_priv;
struct rf_ctl_t *rfctl;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
#if defined(RTW_DEDICATED_P2P_DEVICE)
if (wdev == wiphy_to_pd_wdev(wiphy))
padapter = wiphy_to_adapter(wiphy);
else
#endif
if (wdev_to_ndev(wdev))
padapter = (_adapter *)rtw_netdev_priv(wdev_to_ndev(wdev));
else {
ret = -EINVAL;
goto exit;
}
#else
struct wireless_dev *wdev;
if (ndev == NULL) {
ret = -EINVAL;
goto exit;
}
padapter = (_adapter *)rtw_netdev_priv(ndev);
wdev = ndev_to_wdev(ndev);
#endif
if (chan == NULL) {
ret = -EINVAL;
goto exit;
}
rfctl = adapter_to_rfctl(padapter);
tx_ch = (u8)ieee80211_frequency_to_channel(chan->center_freq);
if (IS_CH_WAITING(rfctl)) {
#ifdef CONFIG_DFS_MASTER
if (_rtw_rfctl_overlap_radar_detect_ch(rfctl, tx_ch, CHANNEL_WIDTH_20, CHAN_OFFSET_NO_EXT)) {
ret = -EINVAL;
goto exit;
}
#endif
}
dvobj = adapter_to_dvobj(padapter);
pwdev_priv = adapter_wdev_data(padapter);
/* cookie generation */
*cookie = pwdev_priv->mgmt_tx_cookie++;
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO(FUNC_ADPT_FMT"%s len=%zu, ch=%d"
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)) && (LINUX_VERSION_CODE < KERNEL_VERSION(3, 8, 0))
", ch_type=%d"
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)) && (LINUX_VERSION_CODE < KERNEL_VERSION(3, 8, 0))
", channel_type_valid=%d"
#endif
"\n", FUNC_ADPT_ARG(padapter), wdev == wiphy_to_pd_wdev(wiphy) ? " PD" : ""
, len, tx_ch
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)) && (LINUX_VERSION_CODE < KERNEL_VERSION(3, 8, 0))
, channel_type
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34)) && (LINUX_VERSION_CODE < KERNEL_VERSION(3, 8, 0))
, channel_type_valid
#endif
);
#endif /* CONFIG_DEBUG_CFG80211 */
/* indicate ack before issue frame to avoid racing with rsp frame */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
rtw_cfg80211_mgmt_tx_status(wdev, *cookie, buf, len, ack, GFP_KERNEL);
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34) && LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 36))
cfg80211_action_tx_status(ndev, *cookie, buf, len, ack, GFP_KERNEL);
#endif
frame_styp = le16_to_cpu(((struct rtw_ieee80211_hdr_3addr *)buf)->frame_ctl) & IEEE80211_FCTL_STYPE;
if (IEEE80211_STYPE_PROBE_RESP == frame_styp) {
#ifdef CONFIG_P2P
/* 36 = IEEE80211_3ADDR_LEN + _TIMESTAMP_ + _BEACON_ITERVAL_ + _CAPABILITY_ */
if(rtw_get_p2p_ie(dump_buf + 36, dump_len - 36, NULL, NULL)) {
struct wifidirect_info *pwdinfo = &padapter->wdinfo;
if (rtw_p2p_chk_role(pwdinfo, P2P_ROLE_DISABLE)) {
if (!rtw_p2p_enable(padapter, P2P_ROLE_DEVICE)) {
ret = -EOPNOTSUPP;
goto exit;
}
}
no_cck = 1;
}
#endif
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("RTW_Tx: probe_resp tx_ch=%d, no_cck=%u, da="MAC_FMT"\n", tx_ch, no_cck, MAC_ARG(GetAddr1Ptr(buf)));
#endif /* CONFIG_DEBUG_CFG80211 */
wait_ack = 0;
goto dump;
}
else if (frame_styp == RTW_IEEE80211_STYPE_AUTH) {
int retval = 0;
RTW_INFO("RTW_Tx:tx_ch=%d, no_cck=%u, da="MAC_FMT"\n", tx_ch, no_cck, MAC_ARG(GetAddr1Ptr(buf)));
#ifdef CONFIG_RTW_80211R_AP
rtw_ft_process_ft_auth_rsp(padapter, (u8 *)buf, len);
#endif
retval = rtw_sae_preprocess(padapter, buf, len, _TRUE);
if (retval == 2)
goto exit;
if (retval == 0)
RTW_INFO("RTW_Tx:AUTH\n");
dump_limit = 1;
goto dump;
}
if (rtw_action_frame_parse(buf, len, &category, &action) == _FALSE) {
RTW_INFO(FUNC_ADPT_FMT" frame_control:0x%02x\n", FUNC_ADPT_ARG(padapter),
le16_to_cpu(((struct rtw_ieee80211_hdr_3addr *)buf)->frame_ctl));
goto exit;
}
RTW_INFO("RTW_Tx:tx_ch=%d, no_cck=%u, da="MAC_FMT"\n", tx_ch, no_cck, MAC_ARG(GetAddr1Ptr(buf)));
#ifdef CONFIG_P2P
type = rtw_p2p_check_frames(padapter, buf, len, _TRUE);
if (type >= 0) {
is_p2p = 1;
no_cck = 1; /* force no CCK for P2P frames */
goto dump;
}
#endif
#ifdef CONFIG_RTW_MESH
if (MLME_IS_MESH(padapter)) {
type = rtw_mesh_check_frames_tx(padapter, &dump_buf, &dump_len);
if (type >= 0) {
dump_limit = 1;
goto dump;
}
}
#endif
if (category == RTW_WLAN_CATEGORY_PUBLIC) {
RTW_INFO("RTW_Tx:%s\n", action_public_str(action));
switch (action) {
case ACT_PUBLIC_GAS_INITIAL_REQ:
case ACT_PUBLIC_GAS_INITIAL_RSP:
sleep_ms = 50;
retry_guarantee_ms = RTW_MAX_MGMT_TX_MS_GAS;
break;
}
}
#ifdef CONFIG_RTW_80211K
else if (category == RTW_WLAN_CATEGORY_RADIO_MEAS)
RTW_INFO("RTW_Tx: RRM Action\n");
#endif
else
RTW_INFO("RTW_Tx:category(%u), action(%u)\n", category, action);
dump:
rtw_ps_deny(padapter, PS_DENY_MGNT_TX);
if (_FAIL == rtw_pwr_wakeup(padapter)) {
ret = -EFAULT;
goto cancel_ps_deny;
}
while (1) {
dump_cnt++;
/* ROCH uses phl scan to handle, cancel scan is not necessary */
if (!rtw_cfg80211_get_is_roch(padapter)) {
rtw_mi_set_scan_deny(padapter, 1000);
rtw_mi_scan_abort(padapter, _TRUE);
}
tx_ret = rtw_mgnt_tx_cmd(padapter, tx_ch, no_cck, dump_buf, dump_len, wait_ack, RTW_CMDF_WAIT_ACK);
if (tx_ret == _SUCCESS
|| (dump_cnt >= dump_limit && rtw_get_passing_time_ms(start) >= retry_guarantee_ms))
break;
if (sleep_ms > 0)
rtw_msleep_os(sleep_ms);
}
if (tx_ret != _SUCCESS || dump_cnt > 1) {
RTW_INFO(FUNC_ADPT_FMT" %s (%d/%d) in %d ms\n", FUNC_ADPT_ARG(padapter),
tx_ret == _SUCCESS ? "OK" : "FAIL", dump_cnt, dump_limit, rtw_get_passing_time_ms(start));
}
#ifdef CONFIG_P2P
if (is_p2p) {
switch (type) {
case P2P_GO_NEGO_CONF:
if (0) {
RTW_INFO(FUNC_ADPT_FMT" Nego confirm. state=%u, status=%u, iaddr="MAC_FMT"\n"
, FUNC_ADPT_ARG(padapter), pwdev_priv->nego_info.state, pwdev_priv->nego_info.status
, MAC_ARG(pwdev_priv->nego_info.iface_addr));
}
if (pwdev_priv->nego_info.state == 2
&& pwdev_priv->nego_info.status == 0
&& rtw_check_invalid_mac_address(pwdev_priv->nego_info.iface_addr, _FALSE) == _FALSE
) {
_adapter *intended_iface = dvobj_get_adapter_by_addr(dvobj, pwdev_priv->nego_info.iface_addr);
if (intended_iface) {
RTW_INFO(FUNC_ADPT_FMT" Nego confirm. Allow only "ADPT_FMT" to scan for 2000 ms\n"
, FUNC_ADPT_ARG(padapter), ADPT_ARG(intended_iface));
/* allow only intended_iface to do scan for 2000 ms */
rtw_mi_set_scan_deny(padapter, 2000);
rtw_clear_scan_deny(intended_iface);
}
}
break;
case P2P_INVIT_RESP:
if (pwdev_priv->invit_info.flags & BIT(0)
&& pwdev_priv->invit_info.status == 0
) {
rtw_clear_scan_deny(padapter);
RTW_INFO(FUNC_ADPT_FMT" agree with invitation of persistent group\n",
FUNC_ADPT_ARG(padapter));
#if !RTW_P2P_GROUP_INTERFACE
rtw_mi_buddy_set_scan_deny(padapter, 5000);
#endif
rtw_pwr_wakeup_ex(padapter, 5000);
}
break;
}
}
#endif /* CONFIG_P2P */
cancel_ps_deny:
rtw_ps_deny_cancel(padapter, PS_DENY_MGNT_TX);
if (dump_buf != buf)
rtw_mfree((u8 *)dump_buf, dump_len);
exit:
return ret;
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 8, 0))
static void cfg80211_rtw_mgmt_frame_register(struct wiphy *wiphy,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
struct wireless_dev *wdev,
#else
struct net_device *ndev,
#endif
u16 frame_type, bool reg)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
struct net_device *ndev = wdev_to_ndev(wdev);
#endif
_adapter *adapter;
struct rtw_wdev_priv *pwdev_priv;
#if defined(RTW_DEDICATED_P2P_DEVICE)
if (wdev == wiphy_to_pd_wdev(wiphy)) {
adapter = wiphy_to_adapter(wiphy);
} else
#endif
{
if (ndev == NULL)
goto exit;
adapter = (_adapter *)rtw_netdev_priv(ndev);
}
pwdev_priv = adapter_wdev_data(adapter);
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO(FUNC_ADPT_FMT" frame_type:%x, reg:%d\n", FUNC_ADPT_ARG(adapter),
frame_type, reg);
#endif
switch (frame_type) {
case IEEE80211_STYPE_AUTH: /* 0x00B0 */
if (reg > 0)
SET_CFG80211_REPORT_MGMT(pwdev_priv, IEEE80211_STYPE_AUTH);
else
CLR_CFG80211_REPORT_MGMT(pwdev_priv, IEEE80211_STYPE_AUTH);
break;
case IEEE80211_STYPE_PROBE_REQ: /* 0x0040 */
if (reg > 0)
SET_CFG80211_REPORT_MGMT(pwdev_priv, IEEE80211_STYPE_PROBE_REQ);
else
CLR_CFG80211_REPORT_MGMT(pwdev_priv, IEEE80211_STYPE_PROBE_REQ);
break;
#ifdef not_yet
case IEEE80211_STYPE_ACTION: /* 0x00D0 */
if (reg > 0)
SET_CFG80211_REPORT_MGMT(pwdev_priv, IEEE80211_STYPE_ACTION);
else
CLR_CFG80211_REPORT_MGMT(pwdev_priv, IEEE80211_STYPE_ACTION);
break;
#endif
default:
break;
}
exit:
return;
}
#else
static void cfg80211_rtw_update_mgmt_frame_register(
struct wiphy *wiphy,
struct wireless_dev *wdev,
struct mgmt_frame_regs *upd)
{
struct net_device *ndev;
_adapter *padapter;
struct rtw_wdev_priv *pwdev_priv;
u32 rtw_stypes_mask = 0;
u32 rtw_mstypes_mask = 0;
ndev = wdev_to_ndev(wdev);
if (ndev == NULL)
goto exit;
padapter = (_adapter *)rtw_netdev_priv(ndev);
pwdev_priv = adapter_wdev_data(padapter);
/* Driver only supports Auth and Probe request */
rtw_stypes_mask = BIT(IEEE80211_STYPE_AUTH >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4);
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO(FUNC_ADPT_FMT " global_stypes:0x%08x interface_stypes:0x%08x\n",
FUNC_ADPT_ARG(padapter), upd->global_stypes, upd->interface_stypes);
RTW_INFO(FUNC_ADPT_FMT " global_mcast_stypes:0x%08x interface_mcast_stypes:0x%08x\n",
FUNC_ADPT_ARG(padapter), upd->global_mcast_stypes, upd->interface_mcast_stypes);
RTW_INFO(FUNC_ADPT_FMT " old_regs:0x%08x new_regs:0x%08x\n",
FUNC_ADPT_ARG(padapter), pwdev_priv->mgmt_regs,
(upd->interface_stypes & rtw_stypes_mask));
#endif
if (pwdev_priv->mgmt_regs !=
(upd->interface_stypes & rtw_stypes_mask)) {
pwdev_priv->mgmt_regs = (upd->interface_stypes & rtw_stypes_mask);
}
exit:
return;
}
#endif
#if defined(CONFIG_TDLS) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0))
static int cfg80211_rtw_tdls_mgmt(struct wiphy *wiphy,
struct net_device *ndev,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 16, 0))
const u8 *peer,
#else
u8 *peer,
#endif
u8 action_code,
u8 dialog_token,
u16 status_code,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 15, 0))
u32 peer_capability,
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 17, 0))
bool initiator,
#endif
const u8 *buf,
size_t len)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
int ret = 0;
struct tdls_txmgmt txmgmt;
if (rtw_hw_chk_wl_func(dvobj, WL_FUNC_TDLS) == _FALSE) {
RTW_INFO("Discard tdls action:%d, since hal doesn't support tdls\n", action_code);
goto discard;
}
if (rtw_is_tdls_enabled(padapter) == _FALSE) {
RTW_INFO("TDLS is not enabled\n");
goto discard;
}
if (rtw_tdls_is_driver_setup(padapter)) {
RTW_INFO("Discard tdls action:%d, let driver to set up direct link\n", action_code);
goto discard;
}
_rtw_memset(&txmgmt, 0x00, sizeof(struct tdls_txmgmt));
_rtw_memcpy(txmgmt.peer, peer, ETH_ALEN);
txmgmt.action_code = action_code;
txmgmt.dialog_token = dialog_token;
txmgmt.status_code = status_code;
txmgmt.len = len;
txmgmt.buf = (u8 *)rtw_malloc(txmgmt.len);
if (txmgmt.buf == NULL) {
ret = -ENOMEM;
goto bad;
}
_rtw_memcpy(txmgmt.buf, (void *)buf, txmgmt.len);
/* Debug purpose */
#if 1
RTW_INFO("%s %d\n", __FUNCTION__, __LINE__);
RTW_INFO("peer:"MAC_FMT", action code:%d, dialog:%d, status code:%d\n",
MAC_ARG(txmgmt.peer), txmgmt.action_code,
txmgmt.dialog_token, txmgmt.status_code);
if (txmgmt.len > 0) {
int i = 0;
for (; i < len; i++)
printk("%02x ", *(txmgmt.buf + i));
RTW_INFO("len:%d\n", (u32)txmgmt.len);
}
#endif
switch (txmgmt.action_code) {
case TDLS_SETUP_REQUEST:
issue_tdls_setup_req(padapter, &txmgmt, _TRUE);
break;
case TDLS_SETUP_RESPONSE:
issue_tdls_setup_rsp(padapter, &txmgmt);
break;
case TDLS_SETUP_CONFIRM:
issue_tdls_setup_cfm(padapter, &txmgmt);
break;
case TDLS_TEARDOWN:
issue_tdls_teardown(padapter, &txmgmt, _TRUE);
break;
case TDLS_DISCOVERY_REQUEST:
issue_tdls_dis_req(padapter, &txmgmt);
break;
case TDLS_DISCOVERY_RESPONSE:
issue_tdls_dis_rsp(padapter, &txmgmt, pmlmeinfo->enc_algo ? _TRUE : _FALSE);
break;
}
bad:
if (txmgmt.buf)
rtw_mfree(txmgmt.buf, txmgmt.len);
discard:
return ret;
}
static int cfg80211_rtw_tdls_oper(struct wiphy *wiphy,
struct net_device *ndev,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 16, 0))
const u8 *peer,
#else
u8 *peer,
#endif
enum nl80211_tdls_operation oper)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct tdls_info *ptdlsinfo = &padapter->tdlsinfo;
struct tdls_txmgmt txmgmt;
struct sta_info *ptdls_sta = NULL;
RTW_INFO(FUNC_NDEV_FMT", nl80211_tdls_operation:%d\n", FUNC_NDEV_ARG(ndev), oper);
if (rtw_hw_chk_wl_func(dvobj, WL_FUNC_TDLS) == _FALSE) {
RTW_INFO("Discard tdls oper:%d, since hal doesn't support tdls\n", oper);
return 0;
}
if (rtw_is_tdls_enabled(padapter) == _FALSE) {
RTW_INFO("TDLS is not enabled\n");
return 0;
}
#ifdef CONFIG_LPS
rtw_lps_ctrl_wk_cmd(padapter, LPS_CTRL_LEAVE, 0);
#endif /* CONFIG_LPS */
_rtw_memset(&txmgmt, 0x00, sizeof(struct tdls_txmgmt));
if (peer)
_rtw_memcpy(txmgmt.peer, peer, ETH_ALEN);
if (rtw_tdls_is_driver_setup(padapter)) {
/* these two cases are done by driver itself */
if (oper == NL80211_TDLS_ENABLE_LINK || oper == NL80211_TDLS_DISABLE_LINK)
return 0;
}
switch (oper) {
case NL80211_TDLS_DISCOVERY_REQ:
issue_tdls_dis_req(padapter, &txmgmt);
break;
case NL80211_TDLS_SETUP:
#ifdef CONFIG_WFD
if (_AES_ != padapter->securitypriv.dot11PrivacyAlgrthm) {
if (padapter->wdinfo.wfd_tdls_weaksec == _TRUE)
issue_tdls_setup_req(padapter, &txmgmt, _TRUE);
else
RTW_INFO("[%s] Current link is not AES, SKIP sending the tdls setup request!!\n", __FUNCTION__);
} else
#endif /* CONFIG_WFD */
{
issue_tdls_setup_req(padapter, &txmgmt, _TRUE);
}
break;
case NL80211_TDLS_TEARDOWN:
ptdls_sta = rtw_get_stainfo(&(padapter->stapriv), txmgmt.peer);
if (ptdls_sta != NULL) {
txmgmt.status_code = _RSON_TDLS_TEAR_UN_RSN_;
issue_tdls_teardown(padapter, &txmgmt, _TRUE);
} else
RTW_INFO("TDLS peer not found\n");
break;
case NL80211_TDLS_ENABLE_LINK:
RTW_INFO(FUNC_NDEV_FMT", NL80211_TDLS_ENABLE_LINK;mac:"MAC_FMT"\n", FUNC_NDEV_ARG(ndev), MAC_ARG(peer));
ptdls_sta = rtw_get_stainfo(&(padapter->stapriv), (u8 *)peer);
if (ptdls_sta != NULL) {
rtw_tdls_set_link_established(padapter, _TRUE);
ptdls_sta->tdls_sta_state |= TDLS_LINKED_STATE;
ptdls_sta->state |= WIFI_ASOC_STATE;
rtw_tdls_cmd(padapter, txmgmt.peer, TDLS_ESTABLISHED);
}
break;
case NL80211_TDLS_DISABLE_LINK:
RTW_INFO(FUNC_NDEV_FMT", NL80211_TDLS_DISABLE_LINK;mac:"MAC_FMT"\n", FUNC_NDEV_ARG(ndev), MAC_ARG(peer));
ptdls_sta = rtw_get_stainfo(&(padapter->stapriv), (u8 *)peer);
if (ptdls_sta != NULL) {
rtw_tdls_teardown_pre_hdl(padapter, ptdls_sta);
rtw_tdls_cmd(padapter, (u8 *)peer, TDLS_TEARDOWN_STA_LOCALLY_POST);
}
break;
}
return 0;
}
#endif /* CONFIG_TDLS */
#if defined(CONFIG_RTW_MESH) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 38))
#if DBG_RTW_CFG80211_MESH_CONF
#define LEGACY_RATES_STR_LEN (RTW_G_RATES_NUM * 5 + 1)
int get_legacy_rates_str(struct wiphy *wiphy, enum nl80211_band band, u32 mask, char *buf)
{
int i;
int cnt = 0;
for (i = 0; i < wiphy->bands[band]->n_bitrates; i++) {
if (mask & BIT(i)) {
cnt += snprintf(buf + cnt, LEGACY_RATES_STR_LEN - cnt -1, "%d.%d "
, wiphy->bands[band]->bitrates[i].bitrate / 10
, wiphy->bands[band]->bitrates[i].bitrate % 10);
if (cnt >= LEGACY_RATES_STR_LEN - 1)
break;
}
}
return cnt;
}
void dump_mesh_setup(void *sel, struct wiphy *wiphy, const struct mesh_setup *setup)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
struct cfg80211_chan_def *chdef = (struct cfg80211_chan_def *)(&setup->chandef);
#endif
struct ieee80211_channel *chan;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
chan = (struct ieee80211_channel *)chdef->chan;
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
chan = (struct ieee80211_channel *)setup->channel;
#endif
RTW_PRINT_SEL(sel, "mesh_id:\"%s\", len:%u\n", setup->mesh_id, setup->mesh_id_len);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
RTW_PRINT_SEL(sel, "sync_method:%u\n", setup->sync_method);
#endif
RTW_PRINT_SEL(sel, "path_sel_proto:%u, path_metric:%u\n", setup->path_sel_proto, setup->path_metric);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
RTW_PRINT_SEL(sel, "auth_id:%u\n", setup->auth_id);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0))
if (setup->ie && setup->ie_len) {
RTW_PRINT_SEL(sel, "ie:%p, len:%u\n", setup->ie, setup->ie_len);
dump_ies(RTW_DBGDUMP, setup->ie, setup->ie_len);
}
#else
if (setup->vendor_ie && setup->vendor_ie_len) {
RTW_PRINT_SEL(sel, "ie:%p, len:%u\n", setup->vendor_ie, setup->vendor_ie_len);
dump_ies(RTW_DBGDUMP, setup->vendor_ie, setup->vendor_ie_len);
}
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0))
RTW_PRINT_SEL(sel, "is_authenticated:%d, is_secure:%d\n", setup->is_authenticated, setup->is_secure);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 0))
RTW_PRINT_SEL(sel, "user_mpm:%d\n", setup->user_mpm);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
RTW_PRINT_SEL(sel, "dtim_period:%u, beacon_interval:%u\n", setup->dtim_period, setup->beacon_interval);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
RTW_PRINT_SEL(sel, "center_freq:%u, ch:%u, width:%s, cfreq1:%u, cfreq2:%u\n"
, chan->center_freq, chan->hw_value, nl80211_chan_width_str(chdef->width), chdef->center_freq1, chdef->center_freq2);
#else
RTW_PRINT_SEL(sel, "center_freq:%u, ch:%u, channel_type:%s\n"
, chan->center_freq, chan->hw_value, nl80211_channel_type_str(setup->channel_type));
#endif
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 3, 0))
if (setup->mcast_rate[chan->band]) {
RTW_PRINT_SEL(sel, "mcast_rate:%d.%d\n"
, wiphy->bands[chan->band]->bitrates[setup->mcast_rate[chan->band] - 1].bitrate / 10
, wiphy->bands[chan->band]->bitrates[setup->mcast_rate[chan->band] - 1].bitrate % 10
);
}
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
if (setup->basic_rates) {
char buf[LEGACY_RATES_STR_LEN] = {0};
get_legacy_rates_str(wiphy, chan->band, setup->basic_rates, buf);
RTW_PRINT_SEL(sel, "basic_rates:%s\n", buf);
}
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0))
if (setup->beacon_rate.control[chan->band].legacy) {
char buf[LEGACY_RATES_STR_LEN] = {0};
get_legacy_rates_str(wiphy, chan->band, setup->beacon_rate.control[chan->band].legacy, buf);
RTW_PRINT_SEL(sel, "beacon_rate.legacy:%s\n", buf);
}
if (*((u32 *)&(setup->beacon_rate.control[chan->band].ht_mcs[0]))
|| *((u32 *)&(setup->beacon_rate.control[chan->band].ht_mcs[4]))
|| *((u16 *)&(setup->beacon_rate.control[chan->band].ht_mcs[8]))
) {
RTW_PRINT_SEL(sel, "beacon_rate.ht_mcs:"HT_RX_MCS_BMP_FMT"\n"
, HT_RX_MCS_BMP_ARG(setup->beacon_rate.control[chan->band].ht_mcs));
}
if (setup->beacon_rate.control[chan->band].vht_mcs[0]
|| setup->beacon_rate.control[chan->band].vht_mcs[1]
|| setup->beacon_rate.control[chan->band].vht_mcs[2]
|| setup->beacon_rate.control[chan->band].vht_mcs[3]
) {
int i;
for (i = 0; i < 4; i++) {/* parsing up to 4SS */
u16 mcs_mask = setup->beacon_rate.control[chan->band].vht_mcs[i];
RTW_PRINT_SEL(sel, "beacon_rate.vht_mcs[%d]:%s\n", i
, mcs_mask == 0x00FF ? "0~7" : mcs_mask == 0x01FF ? "0~8" : mcs_mask == 0x03FF ? "0~9" : "invalid");
}
}
if (setup->beacon_rate.control[chan->band].gi) {
RTW_PRINT_SEL(sel, "beacon_rate.gi:%s\n"
, setup->beacon_rate.control[chan->band].gi == NL80211_TXRATE_FORCE_SGI ? "SGI" :
setup->beacon_rate.control[chan->band].gi == NL80211_TXRATE_FORCE_LGI ? "LGI" : "invalid"
);
}
#endif
}
void dump_mesh_config(void *sel, const struct mesh_config *conf)
{
RTW_PRINT_SEL(sel, "dot11MeshRetryTimeout:%u\n", conf->dot11MeshRetryTimeout);
RTW_PRINT_SEL(sel, "dot11MeshConfirmTimeout:%u\n", conf->dot11MeshConfirmTimeout);
RTW_PRINT_SEL(sel, "dot11MeshHoldingTimeout:%u\n", conf->dot11MeshHoldingTimeout);
RTW_PRINT_SEL(sel, "dot11MeshMaxPeerLinks:%u\n", conf->dot11MeshMaxPeerLinks);
RTW_PRINT_SEL(sel, "dot11MeshMaxRetries:%u\n", conf->dot11MeshMaxRetries);
RTW_PRINT_SEL(sel, "dot11MeshTTL:%u\n", conf->dot11MeshTTL);
RTW_PRINT_SEL(sel, "element_ttl:%u\n", conf->element_ttl);
RTW_PRINT_SEL(sel, "auto_open_plinks:%d\n", conf->auto_open_plinks);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
RTW_PRINT_SEL(sel, "dot11MeshNbrOffsetMaxNeighbor:%u\n", conf->dot11MeshNbrOffsetMaxNeighbor);
#endif
RTW_PRINT_SEL(sel, "dot11MeshHWMPmaxPREQretries:%u\n", conf->dot11MeshHWMPmaxPREQretries);
RTW_PRINT_SEL(sel, "path_refresh_time:%u\n", conf->path_refresh_time);
RTW_PRINT_SEL(sel, "min_discovery_timeout:%u\n", conf->min_discovery_timeout);
RTW_PRINT_SEL(sel, "dot11MeshHWMPactivePathTimeout:%u\n", conf->dot11MeshHWMPactivePathTimeout);
RTW_PRINT_SEL(sel, "dot11MeshHWMPpreqMinInterval:%u\n", conf->dot11MeshHWMPpreqMinInterval);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 3, 0))
RTW_PRINT_SEL(sel, "dot11MeshHWMPperrMinInterval:%u\n", conf->dot11MeshHWMPperrMinInterval);
#endif
RTW_PRINT_SEL(sel, "dot11MeshHWMPnetDiameterTraversalTime:%u\n", conf->dot11MeshHWMPnetDiameterTraversalTime);
RTW_PRINT_SEL(sel, "dot11MeshHWMPRootMode:%u\n", conf->dot11MeshHWMPRootMode);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0))
RTW_PRINT_SEL(sel, "dot11MeshHWMPRannInterval:%u\n", conf->dot11MeshHWMPRannInterval);
RTW_PRINT_SEL(sel, "dot11MeshGateAnnouncementProtocol:%d\n", conf->dot11MeshGateAnnouncementProtocol);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 4, 0))
RTW_PRINT_SEL(sel, "dot11MeshForwarding:%d\n", conf->dot11MeshForwarding);
RTW_PRINT_SEL(sel, "rssi_threshold:%d\n", conf->rssi_threshold);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
RTW_PRINT_SEL(sel, "ht_opmode:0x%04x\n", conf->ht_opmode);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
RTW_PRINT_SEL(sel, "dot11MeshHWMPactivePathToRootTimeout:%u\n", conf->dot11MeshHWMPactivePathToRootTimeout);
RTW_PRINT_SEL(sel, "dot11MeshHWMProotInterval:%u\n", conf->dot11MeshHWMProotInterval);
RTW_PRINT_SEL(sel, "dot11MeshHWMPconfirmationInterval:%u\n", conf->dot11MeshHWMPconfirmationInterval);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
RTW_PRINT_SEL(sel, "power_mode:%s\n", nl80211_mesh_power_mode_str(conf->power_mode));
RTW_PRINT_SEL(sel, "dot11MeshAwakeWindowDuration:%u\n", conf->dot11MeshAwakeWindowDuration);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
RTW_PRINT_SEL(sel, "plink_timeout:%u\n", conf->plink_timeout);
#endif
}
#endif /* DBG_RTW_CFG80211_MESH_CONF */
static void rtw_cfg80211_mesh_info_set_profile(struct rtw_mesh_info *minfo, const struct mesh_setup *setup)
{
_rtw_memcpy(minfo->mesh_id, setup->mesh_id, setup->mesh_id_len);
minfo->mesh_id_len = setup->mesh_id_len;
minfo->mesh_pp_id = setup->path_sel_proto;
minfo->mesh_pm_id = setup->path_metric;
minfo->mesh_cc_id = 0;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
minfo->mesh_sp_id = setup->sync_method;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
minfo->mesh_auth_id = setup->auth_id;
#else
if (setup->is_authenticated) {
u8 *rsn_ie;
sint rsn_ie_len;
struct rsne_info info;
u8 *akm;
u8 AKM_SUITE_SAE[4] = {0x00, 0x0F, 0xAC, 0x08};
rsn_ie = rtw_get_ie(setup->ie, WLAN_EID_RSN, &rsn_ie_len, setup->ie_len);
if (!rsn_ie || !rsn_ie_len) {
rtw_warn_on(1);
return;
}
if (rtw_rsne_info_parse(rsn_ie, rsn_ie_len + 2, &info) != _SUCCESS) {
rtw_warn_on(1);
return;
}
if (!info.akm_list || !info.akm_cnt) {
rtw_warn_on(1);
return;
}
akm = info.akm_list;
while (akm < info.akm_list + info.akm_cnt * 4) {
if (_rtw_memcmp(akm, AKM_SUITE_SAE, 4) == _TRUE) {
minfo->mesh_auth_id = 0x01;
break;
}
}
if (!minfo->mesh_auth_id) {
rtw_warn_on(1);
return;
}
}
#endif
}
static inline bool chk_mesh_attr(enum nl80211_meshconf_params parm, u32 mask)
{
return (mask >> (parm - 1)) & 0x1;
}
static void rtw_cfg80211_mesh_cfg_set(_adapter *adapter, const struct mesh_config *conf, u32 mask)
{
struct rtw_mesh_cfg *mcfg = &adapter->mesh_cfg;
#if 0 /* driver MPM */
if (chk_mesh_attr(NL80211_MESHCONF_RETRY_TIMEOUT, mask));
if (chk_mesh_attr(NL80211_MESHCONF_CONFIRM_TIMEOUT, mask));
if (chk_mesh_attr(NL80211_MESHCONF_HOLDING_TIMEOUT, mask));
if (chk_mesh_attr(NL80211_MESHCONF_MAX_PEER_LINKS, mask));
if (chk_mesh_attr(NL80211_MESHCONF_MAX_RETRIES, mask));
#endif
if (chk_mesh_attr(NL80211_MESHCONF_TTL, mask))
mcfg->dot11MeshTTL = conf->dot11MeshTTL;
if (chk_mesh_attr(NL80211_MESHCONF_ELEMENT_TTL, mask))
mcfg->element_ttl = conf->element_ttl;
#if 0 /* driver MPM */
if (chk_mesh_attr(NL80211_MESHCONF_AUTO_OPEN_PLINKS, mask));
#endif
#if 0 /* TBD: synchronization */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
if (chk_mesh_attr(NL80211_MESHCONF_SYNC_OFFSET_MAX_NEIGHBOR, mask));
#endif
#endif
if (chk_mesh_attr(NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES, mask))
mcfg->dot11MeshHWMPmaxPREQretries = conf->dot11MeshHWMPmaxPREQretries;
if (chk_mesh_attr(NL80211_MESHCONF_PATH_REFRESH_TIME, mask))
mcfg->path_refresh_time = conf->path_refresh_time;
if (chk_mesh_attr(NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT, mask))
mcfg->min_discovery_timeout = conf->min_discovery_timeout;
if (chk_mesh_attr(NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT, mask))
mcfg->dot11MeshHWMPactivePathTimeout = conf->dot11MeshHWMPactivePathTimeout;
if (chk_mesh_attr(NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL, mask))
mcfg->dot11MeshHWMPpreqMinInterval = conf->dot11MeshHWMPpreqMinInterval;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 3, 0))
if (chk_mesh_attr(NL80211_MESHCONF_HWMP_PERR_MIN_INTERVAL, mask))
mcfg->dot11MeshHWMPperrMinInterval = conf->dot11MeshHWMPperrMinInterval;
#endif
if (chk_mesh_attr(NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME, mask))
mcfg->dot11MeshHWMPnetDiameterTraversalTime = conf->dot11MeshHWMPnetDiameterTraversalTime;
if (chk_mesh_attr(NL80211_MESHCONF_HWMP_ROOTMODE, mask))
mcfg->dot11MeshHWMPRootMode = conf->dot11MeshHWMPRootMode;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0))
if (chk_mesh_attr(NL80211_MESHCONF_GATE_ANNOUNCEMENTS, mask))
mcfg->dot11MeshGateAnnouncementProtocol = conf->dot11MeshGateAnnouncementProtocol;
/* our current gate annc implementation rides on root annc with gate annc bit in PREQ flags */
if (mcfg->dot11MeshGateAnnouncementProtocol
&& mcfg->dot11MeshHWMPRootMode <= RTW_IEEE80211_ROOTMODE_ROOT
) {
mcfg->dot11MeshHWMPRootMode = RTW_IEEE80211_PROACTIVE_RANN;
RTW_INFO(ADPT_FMT" enable PROACTIVE_RANN becaue gate annc is needed\n", ADPT_ARG(adapter));
}
if (chk_mesh_attr(NL80211_MESHCONF_HWMP_RANN_INTERVAL, mask))
mcfg->dot11MeshHWMPRannInterval = conf->dot11MeshHWMPRannInterval;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 4, 0))
if (chk_mesh_attr(NL80211_MESHCONF_FORWARDING, mask))
mcfg->dot11MeshForwarding = conf->dot11MeshForwarding;
if (chk_mesh_attr(NL80211_MESHCONF_RSSI_THRESHOLD, mask))
mcfg->rssi_threshold = conf->rssi_threshold;
#endif
#if 0 /* controlled by driver */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
if (chk_mesh_attr(NL80211_MESHCONF_HT_OPMODE, mask));
#endif
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
if (chk_mesh_attr(NL80211_MESHCONF_HWMP_PATH_TO_ROOT_TIMEOUT, mask))
mcfg->dot11MeshHWMPactivePathToRootTimeout = conf->dot11MeshHWMPactivePathToRootTimeout;
if (chk_mesh_attr(NL80211_MESHCONF_HWMP_ROOT_INTERVAL, mask))
mcfg->dot11MeshHWMProotInterval = conf->dot11MeshHWMProotInterval;
if (chk_mesh_attr(NL80211_MESHCONF_HWMP_CONFIRMATION_INTERVAL, mask))
mcfg->dot11MeshHWMPconfirmationInterval = conf->dot11MeshHWMPconfirmationInterval;
#endif
#if 0 /* TBD */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
if (chk_mesh_attr(NL80211_MESHCONF_POWER_MODE, mask));
if (chk_mesh_attr(NL80211_MESHCONF_AWAKE_WINDOW, mask));
#endif
#endif
#if 0 /* driver MPM */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
if (chk_mesh_attr(NL80211_MESHCONF_PLINK_TIMEOUT, mask));
#endif
#endif
}
u8 *rtw_cfg80211_construct_mesh_beacon_ies(struct wiphy *wiphy, _adapter *adapter
, const struct mesh_config *conf, const struct mesh_setup *setup
, uint *ies_len)
{
struct rtw_mesh_info *minfo = &adapter->mesh_info;
struct rtw_mesh_cfg *mcfg = &adapter->mesh_cfg;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
struct cfg80211_chan_def *chdef = (struct cfg80211_chan_def *)(&setup->chandef);
#endif
struct ieee80211_channel *chan;
u8 ch, bw, offset;
#endif
uint len;
u8 n_bitrates;
u8 ht = 0;
u8 vht = 0;
u8 *rsn_ie = NULL;
sint rsn_ie_len = 0;
u8 *ies = NULL, *c;
u8 supported_rates[RTW_G_RATES_NUM] = {0};
int i;
*ies_len = 0;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
chan = (struct ieee80211_channel *)chdef->chan;
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
chan = (struct ieee80211_channel *)setup->channel;
#endif
n_bitrates = wiphy->bands[chan->band]->n_bitrates;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
rtw_get_chbw_from_cfg80211_chan_def(chdef, &ht, &ch, &bw, &offset);
#else
rtw_get_chbw_from_nl80211_channel_type(chan, setup->channel_type, &ht, &ch, &bw, &offset);
#endif
if (!ch)
goto exit;
#if defined(CONFIG_80211AC_VHT) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
vht = ht && ch > 14 && bw >= CHANNEL_WIDTH_80; /* VHT40/VHT20? */
#endif
RTW_INFO(FUNC_ADPT_FMT" => ch:%u,%u,%u, ht:%u, vht:%u\n"
, FUNC_ADPT_ARG(adapter), ch, bw, offset, ht, vht);
#endif
rsn_ie = rtw_get_ie(setup->ie, WLAN_EID_RSN, &rsn_ie_len, setup->ie_len);
if (rsn_ie && !rsn_ie_len) {
rtw_warn_on(1);
rsn_ie = NULL;
}
len = _BEACON_IE_OFFSET_
+ 2 /* 0-length SSID */
+ (n_bitrates >= 8 ? 8 : n_bitrates) + 2 /* Supported Rates */
+ 3 /* DS parameter set */
+ 6 /* TIM */
+ (n_bitrates > 8 ? n_bitrates - 8 + 2 : 0) /* Extended Supported Rates */
+ (rsn_ie ? rsn_ie_len + 2 : 0) /* RSN */
#if defined(CONFIG_80211N_HT)
+ (ht ? HT_CAP_IE_LEN + 2 + HT_OP_IE_LEN + 2 : 0) /* HT */
#endif
#if defined(CONFIG_80211AC_VHT) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
+ (vht ? VHT_CAP_IE_LEN + 2 + VHT_OP_IE_LEN + 2 : 0) /* VHT */
#endif
+ minfo->mesh_id_len + 2 /* Mesh ID */
+ 9 /* Mesh configuration */
;
ies = rtw_zmalloc(len);
if (!ies)
goto exit;
/* timestamp */
c = ies + 8;
/* beacon interval */
RTW_PUT_LE16(c , setup->beacon_interval);
c += 2;
/* capability */
if (rsn_ie)
*((u16 *)c) |= cpu_to_le16(cap_Privacy);
c += 2;
/* SSID */
c = rtw_set_ie(c, WLAN_EID_SSID, 0, NULL, NULL);
/* Supported Rates */
for (i = 0; i < n_bitrates; i++) {
supported_rates[i] = wiphy->bands[chan->band]->bitrates[i].bitrate / 5;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
if (setup->basic_rates & BIT(i))
#else
if (rtw_is_basic_rate_mix(supported_rates[i]))
#endif
supported_rates[i] |= IEEE80211_BASIC_RATE_MASK;
}
c = rtw_set_ie(c, WLAN_EID_SUPP_RATES, (n_bitrates >= 8 ? 8 : n_bitrates), supported_rates, NULL);
/* DS parameter set */
c = rtw_set_ie(c, WLAN_EID_DS_PARAMS, 1, &ch, NULL);
/* TIM */
*c = WLAN_EID_TIM;
*(c + 1) = 4;
c += 6;
//c = rtw_set_ie(c, _TIM_IE_, 4, NULL, NULL);
/* Extended Supported Rates */
if (n_bitrates > 8)
c = rtw_set_ie(c, WLAN_EID_EXT_SUPP_RATES, n_bitrates - 8, supported_rates + 8, NULL);
/* RSN */
if (rsn_ie)
c = rtw_set_ie(c, WLAN_EID_RSN, rsn_ie_len, rsn_ie + 2, NULL);
#if defined(CONFIG_80211N_HT)
if (ht) {
struct ieee80211_sta_ht_cap *sta_ht_cap = &wiphy->bands[chan->band]->ht_cap;
u8 ht_cap[HT_CAP_IE_LEN];
u8 ht_op[HT_OP_IE_LEN];
_rtw_memset(ht_cap, 0, HT_CAP_IE_LEN);
_rtw_memset(ht_op, 0, HT_OP_IE_LEN);
/* WLAN_EID_HT_CAP */
RTW_PUT_LE16(HT_CAP_ELE_CAP_INFO(ht_cap), sta_ht_cap->cap);
SET_HT_CAP_ELE_MAX_AMPDU_LEN_EXP(ht_cap, sta_ht_cap->ampdu_factor);
SET_HT_CAP_ELE_MIN_MPDU_S_SPACE(ht_cap, sta_ht_cap->ampdu_density);
_rtw_memcpy(HT_CAP_ELE_SUP_MCS_SET(ht_cap), &sta_ht_cap->mcs, 16);
c = rtw_set_ie(c, WLAN_EID_HT_CAP, HT_CAP_IE_LEN, ht_cap, NULL);
/* WLAN_EID_HT_OPERATION */
SET_HT_OP_ELE_PRI_CHL(ht_op, ch);
switch (offset) {
case CHAN_OFFSET_UPPER:
SET_HT_OP_ELE_2ND_CHL_OFFSET(ht_op, IEEE80211_SCA);
break;
case CHAN_OFFSET_LOWER:
SET_HT_OP_ELE_2ND_CHL_OFFSET(ht_op, IEEE80211_SCB);
break;
case CHAN_OFFSET_NO_EXT:
default:
SET_HT_OP_ELE_2ND_CHL_OFFSET(ht_op, IEEE80211_SCN);
break;
}
if (bw >= CHANNEL_WIDTH_40)
SET_HT_OP_ELE_STA_CHL_WIDTH(ht_op, 1);
else
SET_HT_OP_ELE_STA_CHL_WIDTH(ht_op, 0);
c = rtw_set_ie(c, WLAN_EID_HT_OPERATION, HT_OP_IE_LEN, ht_op, NULL);
}
#endif /* defined(CONFIG_80211N_HT) */
#if defined(CONFIG_80211AC_VHT) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
if (vht) {
struct ieee80211_sta_vht_cap *sta_vht_cap = &wiphy->bands[chan->band]->vht_cap;
u8 vht_cap[VHT_CAP_IE_LEN];
u8 vht_op[VHT_OP_IE_LEN];
u8 cch = rtw_phl_get_center_ch(ch, bw, offset);
_rtw_memset(vht_op, 0, VHT_OP_IE_LEN);
/* WLAN_EID_VHT_CAPABILITY */
_rtw_memcpy(vht_cap, &sta_vht_cap->cap, 4);
_rtw_memcpy(vht_cap + 4, &sta_vht_cap->vht_mcs, 8);
c = rtw_set_ie(c, WLAN_EID_VHT_CAPABILITY, VHT_CAP_IE_LEN, vht_cap, NULL);
/* WLAN_EID_VHT_OPERATION */
if (bw < CHANNEL_WIDTH_80) {
SET_VHT_OPERATION_ELE_CHL_WIDTH(vht_op, 0);
SET_VHT_OPERATION_ELE_CHL_CENTER_FREQ1(vht_op, 0);
SET_VHT_OPERATION_ELE_CHL_CENTER_FREQ2(vht_op, 0);
} else if (bw == CHANNEL_WIDTH_80) {
SET_VHT_OPERATION_ELE_CHL_WIDTH(vht_op, 1);
SET_VHT_OPERATION_ELE_CHL_CENTER_FREQ1(vht_op, cch);
SET_VHT_OPERATION_ELE_CHL_CENTER_FREQ2(vht_op, 0);
} else {
RTW_ERR(FUNC_ADPT_FMT" unsupported BW:%u\n", FUNC_ADPT_ARG(adapter), bw);
rtw_warn_on(1);
rtw_mfree(ies, len);
goto exit;
}
/* Hard code 1 stream, MCS0-7 is a min Basic VHT MCS rates */
vht_op[3] = 0xfc;
vht_op[4] = 0xff;
c = rtw_set_ie(c, WLAN_EID_VHT_OPERATION, VHT_OP_IE_LEN, vht_op, NULL);
}
#endif /* defined(CONFIG_80211AC_VHT) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0)) */
/* Mesh ID */
c = rtw_set_ie_mesh_id(c, NULL, minfo->mesh_id, minfo->mesh_id_len);
/* Mesh configuration */
c = rtw_set_ie_mesh_config(c, NULL
, minfo->mesh_pp_id
, minfo->mesh_pm_id
, minfo->mesh_cc_id
, minfo->mesh_sp_id
, minfo->mesh_auth_id
, 0, 0, 0
, 1
, 0, 0
, mcfg->dot11MeshForwarding
, 0, 0, 0
);
#if DBG_RTW_CFG80211_MESH_CONF
RTW_INFO(FUNC_ADPT_FMT" ies_len:%u\n", FUNC_ADPT_ARG(adapter), len);
dump_ies(RTW_DBGDUMP, ies + _BEACON_IE_OFFSET_, len - _BEACON_IE_OFFSET_);
#endif
exit:
if (ies)
*ies_len = len;
return ies;
}
static int cfg80211_rtw_get_mesh_config(struct wiphy *wiphy, struct net_device *dev
, struct mesh_config *conf)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(dev);
struct rtw_mesh_cfg *mesh_cfg = &adapter->mesh_cfg;
int ret = 0;
RTW_INFO(FUNC_ADPT_FMT"\n", FUNC_ADPT_ARG(adapter));
/* driver MPM */
conf->dot11MeshRetryTimeout = 0;
conf->dot11MeshConfirmTimeout = 0;
conf->dot11MeshHoldingTimeout = 0;
conf->dot11MeshMaxPeerLinks = mesh_cfg->max_peer_links;
conf->dot11MeshMaxRetries = 0;
conf->dot11MeshTTL = mesh_cfg->dot11MeshTTL;
conf->element_ttl = mesh_cfg->element_ttl;
/* driver MPM */
conf->auto_open_plinks = 0;
/* TBD: synchronization */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
conf->dot11MeshNbrOffsetMaxNeighbor = 0;
#endif
conf->dot11MeshHWMPmaxPREQretries = mesh_cfg->dot11MeshHWMPmaxPREQretries;
conf->path_refresh_time = mesh_cfg->path_refresh_time;
conf->min_discovery_timeout = mesh_cfg->min_discovery_timeout;
conf->dot11MeshHWMPactivePathTimeout = mesh_cfg->dot11MeshHWMPactivePathTimeout;
conf->dot11MeshHWMPpreqMinInterval = mesh_cfg->dot11MeshHWMPpreqMinInterval;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 3, 0))
conf->dot11MeshHWMPperrMinInterval = mesh_cfg->dot11MeshHWMPperrMinInterval;
#endif
conf->dot11MeshHWMPnetDiameterTraversalTime = mesh_cfg->dot11MeshHWMPnetDiameterTraversalTime;
conf->dot11MeshHWMPRootMode = mesh_cfg->dot11MeshHWMPRootMode;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0))
conf->dot11MeshHWMPRannInterval = mesh_cfg->dot11MeshHWMPRannInterval;
#endif
conf->dot11MeshGateAnnouncementProtocol = mesh_cfg->dot11MeshGateAnnouncementProtocol;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 4, 0))
conf->dot11MeshForwarding = mesh_cfg->dot11MeshForwarding;
conf->rssi_threshold = mesh_cfg->rssi_threshold;
#endif
/* TBD */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
conf->ht_opmode = 0xffff;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
conf->dot11MeshHWMPactivePathToRootTimeout = mesh_cfg->dot11MeshHWMPactivePathToRootTimeout;
conf->dot11MeshHWMProotInterval = mesh_cfg->dot11MeshHWMProotInterval;
conf->dot11MeshHWMPconfirmationInterval = mesh_cfg->dot11MeshHWMPconfirmationInterval;
#endif
/* TBD: power save */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
conf->power_mode = NL80211_MESH_POWER_ACTIVE;
conf->dot11MeshAwakeWindowDuration = 0;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
conf->plink_timeout = mesh_cfg->plink_timeout;
#endif
return ret;
}
static void rtw_mbss_info_change_notify(_adapter *adapter, bool minfo_changed, bool need_work)
{
if (need_work)
rtw_mesh_work(&adapter->mesh_work);
}
static int cfg80211_rtw_update_mesh_config(struct wiphy *wiphy, struct net_device *dev
, u32 mask, const struct mesh_config *nconf)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(dev);
int ret = 0;
bool minfo_changed = _FALSE, need_work = _FALSE;
RTW_INFO(FUNC_ADPT_FMT" mask:0x%08x\n", FUNC_ADPT_ARG(adapter), mask);
rtw_cfg80211_mesh_cfg_set(adapter, nconf, mask);
rtw_update_beacon(adapter, WLAN_EID_MESH_CONFIG, NULL, _TRUE, 0);
#if CONFIG_RTW_MESH_CTO_MGATE_CARRIER
if (rtw_mesh_cto_mgate_required(adapter))
rtw_netif_carrier_off(adapter->pnetdev);
else
rtw_netif_carrier_on(adapter->pnetdev);
#endif
need_work = rtw_ieee80211_mesh_root_setup(adapter);
rtw_mbss_info_change_notify(adapter, minfo_changed, need_work);
return ret;
}
static int cfg80211_rtw_join_mesh(struct wiphy *wiphy, struct net_device *dev,
const struct mesh_config *conf, const struct mesh_setup *setup)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(dev);
u8 *ies = NULL;
uint ies_len;
int ret = 0;
RTW_INFO(FUNC_ADPT_FMT"\n", FUNC_ADPT_ARG(adapter));
#if DBG_RTW_CFG80211_MESH_CONF
RTW_INFO(FUNC_ADPT_FMT" mesh_setup:\n", FUNC_ADPT_ARG(adapter));
dump_mesh_setup(RTW_DBGDUMP, wiphy, setup);
RTW_INFO(FUNC_ADPT_FMT" mesh_config:\n", FUNC_ADPT_ARG(adapter));
dump_mesh_config(RTW_DBGDUMP, conf);
#endif
if (rtw_cfg80211_sync_iftype(adapter) != _SUCCESS) {
ret = -ENOTSUPP;
goto exit;
}
/* initialization */
rtw_mesh_init_mesh_info(adapter);
/* apply cfg80211 settings*/
rtw_cfg80211_mesh_info_set_profile(&adapter->mesh_info, setup);
rtw_cfg80211_mesh_cfg_set(adapter, conf, 0xFFFFFFFF);
/* apply cfg80211 settings (join only) */
rtw_mesh_cfg_init_max_peer_links(adapter, conf->dot11MeshMaxPeerLinks);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
rtw_mesh_cfg_init_plink_timeout(adapter, conf->plink_timeout);
#endif
rtw_ieee80211_mesh_root_setup(adapter);
ies = rtw_cfg80211_construct_mesh_beacon_ies(wiphy, adapter, conf, setup, &ies_len);
if (!ies) {
ret = -EINVAL;
goto exit;
}
/* start mbss */
if (rtw_check_beacon_data(adapter, ies, ies_len) != _SUCCESS) {
ret = -EINVAL;
goto exit;
}
rtw_mesh_work(&adapter->mesh_work);
exit:
if (ies)
rtw_mfree(ies, ies_len);
if (ret)
rtw_mesh_deinit_mesh_info(adapter);
return ret;
}
static int cfg80211_rtw_leave_mesh(struct wiphy *wiphy, struct net_device *dev)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(dev);
int ret = 0;
RTW_INFO(FUNC_ADPT_FMT"\n", FUNC_ADPT_ARG(adapter));
rtw_mesh_deinit_mesh_info(adapter);
rtw_stop_ap_cmd(adapter, RTW_CMDF_WAIT_ACK);
return ret;
}
static int cfg80211_rtw_add_mpath(struct wiphy *wiphy, struct net_device *dev
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 16, 0))
, const u8 *dst, const u8 *next_hop
#else
, u8 *dst, u8 *next_hop
#endif
)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(dev);
struct sta_priv *stapriv = &adapter->stapriv;
struct sta_info *sta;
struct rtw_mesh_path *mpath;
int ret = 0;
rtw_rcu_read_lock();
sta = rtw_get_stainfo(stapriv, next_hop);
if (!sta) {
ret = -ENOENT;
goto exit;
}
mpath = rtw_mesh_path_add(adapter, dst);
if (!mpath) {
ret = -ENOENT;
goto exit;
}
rtw_mesh_path_fix_nexthop(mpath, sta);
exit:
rtw_rcu_read_unlock();
return ret;
}
static int cfg80211_rtw_del_mpath(struct wiphy *wiphy, struct net_device *dev
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 16, 0))
, const u8 *dst
#else
, u8 *dst
#endif
)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(dev);
int ret = 0;
if (dst) {
if (rtw_mesh_path_del(adapter, dst)) {
ret = -ENOENT;
goto exit;
}
} else {
rtw_mesh_path_flush_by_iface(adapter);
}
exit:
return ret;
}
static int cfg80211_rtw_change_mpath(struct wiphy *wiphy, struct net_device *dev
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 16, 0))
, const u8 *dst, const u8 *next_hop
#else
, u8 *dst, u8 *next_hop
#endif
)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(dev);
struct sta_priv *stapriv = &adapter->stapriv;
struct sta_info *sta;
struct rtw_mesh_path *mpath;
int ret = 0;
rtw_rcu_read_lock();
sta = rtw_get_stainfo(stapriv, next_hop);
if (!sta) {
ret = -ENOENT;
goto exit;
}
mpath = rtw_mesh_path_lookup(adapter, dst);
if (!mpath) {
ret = -ENOENT;
goto exit;
}
rtw_mesh_path_fix_nexthop(mpath, sta);
exit:
rtw_rcu_read_unlock();
return ret;
}
static void rtw_cfg80211_mpath_set_pinfo(struct rtw_mesh_path *mpath, u8 *next_hop, struct mpath_info *pinfo)
{
struct sta_info *next_hop_sta = rtw_rcu_dereference(mpath->next_hop);
if (next_hop_sta)
_rtw_memcpy(next_hop, next_hop_sta->phl_sta->mac_addr, ETH_ALEN);
else
_rtw_memset(next_hop, 0, ETH_ALEN);
_rtw_memset(pinfo, 0, sizeof(*pinfo));
pinfo->generation = mpath->adapter->mesh_info.mesh_paths_generation;
pinfo->filled = 0
| MPATH_INFO_FRAME_QLEN
| MPATH_INFO_SN
| MPATH_INFO_METRIC
| MPATH_INFO_EXPTIME
| MPATH_INFO_DISCOVERY_TIMEOUT
| MPATH_INFO_DISCOVERY_RETRIES
| MPATH_INFO_FLAGS
;
pinfo->frame_qlen = mpath->frame_queue_len;
pinfo->sn = mpath->sn;
pinfo->metric = mpath->metric;
if (rtw_time_after(mpath->exp_time, rtw_get_current_time()))
pinfo->exptime = rtw_get_remaining_time_ms(mpath->exp_time);
pinfo->discovery_timeout = rtw_systime_to_ms(mpath->discovery_timeout);
pinfo->discovery_retries = mpath->discovery_retries;
if (mpath->flags & RTW_MESH_PATH_ACTIVE)
pinfo->flags |= NL80211_MPATH_FLAG_ACTIVE;
if (mpath->flags & RTW_MESH_PATH_RESOLVING)
pinfo->flags |= NL80211_MPATH_FLAG_RESOLVING;
if (mpath->flags & RTW_MESH_PATH_SN_VALID)
pinfo->flags |= NL80211_MPATH_FLAG_SN_VALID;
if (mpath->flags & RTW_MESH_PATH_FIXED)
pinfo->flags |= NL80211_MPATH_FLAG_FIXED;
if (mpath->flags & RTW_MESH_PATH_RESOLVED)
pinfo->flags |= NL80211_MPATH_FLAG_RESOLVED;
}
static int cfg80211_rtw_get_mpath(struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *next_hop, struct mpath_info *pinfo)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(dev);
struct rtw_mesh_path *mpath;
int ret = 0;
rtw_rcu_read_lock();
mpath = rtw_mesh_path_lookup(adapter, dst);
if (!mpath) {
ret = -ENOENT;
goto exit;
}
rtw_cfg80211_mpath_set_pinfo(mpath, next_hop, pinfo);
exit:
rtw_rcu_read_unlock();
return ret;
}
static int cfg80211_rtw_dump_mpath(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *dst, u8 *next_hop, struct mpath_info *pinfo)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(dev);
struct rtw_mesh_path *mpath;
int ret = 0;
rtw_rcu_read_lock();
mpath = rtw_mesh_path_lookup_by_idx(adapter, idx);
if (!mpath) {
ret = -ENOENT;
goto exit;
}
_rtw_memcpy(dst, mpath->dst, ETH_ALEN);
rtw_cfg80211_mpath_set_pinfo(mpath, next_hop, pinfo);
exit:
rtw_rcu_read_unlock();
return ret;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0))
static void rtw_cfg80211_mpp_set_pinfo(struct rtw_mesh_path *mpath, u8 *mpp, struct mpath_info *pinfo)
{
_rtw_memcpy(mpp, mpath->mpp, ETH_ALEN);
_rtw_memset(pinfo, 0, sizeof(*pinfo));
pinfo->generation = mpath->adapter->mesh_info.mpp_paths_generation;
}
static int cfg80211_rtw_get_mpp(struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *mpp, struct mpath_info *pinfo)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(dev);
struct rtw_mesh_path *mpath;
int ret = 0;
rtw_rcu_read_lock();
mpath = rtw_mpp_path_lookup(adapter, dst);
if (!mpath) {
ret = -ENOENT;
goto exit;
}
rtw_cfg80211_mpp_set_pinfo(mpath, mpp, pinfo);
exit:
rtw_rcu_read_unlock();
return ret;
}
static int cfg80211_rtw_dump_mpp(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *dst, u8 *mpp, struct mpath_info *pinfo)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(dev);
struct rtw_mesh_path *mpath;
int ret = 0;
rtw_rcu_read_lock();
mpath = rtw_mpp_path_lookup_by_idx(adapter, idx);
if (!mpath) {
ret = -ENOENT;
goto exit;
}
_rtw_memcpy(dst, mpath->dst, ETH_ALEN);
rtw_cfg80211_mpp_set_pinfo(mpath, mpp, pinfo);
exit:
rtw_rcu_read_unlock();
return ret;
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0)) */
#endif /* defined(CONFIG_RTW_MESH) */
#if defined(CONFIG_PNO_SUPPORT) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0))
static int cfg80211_rtw_sched_scan_start(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_sched_scan_request *request)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct cfg80211_ssid *ssids;
int n_ssids = 0;
int interval = 0;
int i = 0;
u8 ret;
if (padapter->netif_up == _FALSE) {
RTW_INFO("%s: net device is down.\n", __func__);
return -EIO;
}
if (check_fwstate(pmlmepriv, WIFI_UNDER_SURVEY) == _TRUE ||
check_fwstate(pmlmepriv, WIFI_ASOC_STATE) == _TRUE ||
check_fwstate(pmlmepriv, WIFI_UNDER_LINKING) == _TRUE) {
RTW_INFO("%s: device is busy.\n", __func__);
rtw_scan_abort(padapter, 0);
}
if (request == NULL) {
RTW_INFO("%s: invalid cfg80211_requests parameters.\n", __func__);
return -EINVAL;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0)
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)
interval = request->scan_plans->interval;
#else
interval = request->interval;
#endif
n_ssids = request->n_match_sets;
ssids = (struct cfg80211_ssid *)rtw_zmalloc(n_ssids * sizeof(struct cfg80211_ssid));
if(ssids == NULL) {
RTW_ERR("Fail to allocate ssids for PNO\n");
return -ENOMEM;
}
for (i=0;i<request->n_match_sets;i++) {
ssids[i].ssid_len = request->match_sets[i].ssid.ssid_len;
_rtw_memcpy(ssids[i].ssid, request->match_sets[i].ssid.ssid,
request->match_sets[i].ssid.ssid_len);
}
#else
interval = request->interval;
n_ssids = request->n_ssids;
ssids = request->ssids;
#endif
ret = rtw_android_cfg80211_pno_setup(dev, ssids,
n_ssids, interval);
if (ret < 0) {
RTW_INFO("%s ret: %d\n", __func__, ret);
goto exit;
}
ret = rtw_android_pno_enable(dev, _TRUE);
if (ret < 0) {
RTW_INFO("%s ret: %d\n", __func__, ret);
goto exit;
}
exit:
return ret;
}
static int cfg80211_rtw_sched_scan_stop(struct wiphy *wiphy,
struct net_device *dev)
{
return rtw_android_pno_enable(dev, _FALSE);
}
int cfg80211_rtw_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wow) {
RTW_DBG("==> %s\n",__func__);
RTW_DBG("<== %s\n",__func__);
return 0;
}
int cfg80211_rtw_resume(struct wiphy *wiphy) {
_adapter *padapter = wiphy_to_adapter(wiphy);
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct sitesurvey_parm parm;
int i, len;
RTW_DBG("==> %s\n",__func__);
if (pwrpriv->wowlan_last_wake_reason == RX_PNO) {
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(padapter);
int PNOWakeupScanWaitCnt = 0;
rtw_cfg80211_disconnected(padapter->rtw_wdev, 0, NULL, 0, 1, GFP_ATOMIC);
rtw_init_sitesurvey_parm(padapter, &parm);
for (i=0;i<pwrpriv->pnlo_info->ssid_num && i < RTW_SSID_SCAN_AMOUNT; i++) {
len = pwrpriv->pno_ssid_list->node[i].SSID_len;
_rtw_memcpy(&parm.ssid[i].Ssid, pwrpriv->pno_ssid_list->node[i].SSID, len);
parm.ssid[i].SsidLength = len;
}
parm.ssid_num = pwrpriv->pnlo_info->ssid_num;
_rtw_spinlock_bh(&pmlmepriv->lock);
//This modification fix PNO wakeup reconnect issue with hidden SSID AP.
//rtw_sitesurvey_cmd(padapter, NULL);
rtw_sitesurvey_cmd(padapter, &parm);
_rtw_spinunlock_bh(&pmlmepriv->lock);
for (PNOWakeupScanWaitCnt = 0; PNOWakeupScanWaitCnt < 10; PNOWakeupScanWaitCnt++) {
if(check_fwstate(pmlmepriv, WIFI_UNDER_SURVEY) == _FALSE)
break;
rtw_msleep_os(1000);
}
_rtw_spinlock_bh(&pmlmepriv->lock);
cfg80211_sched_scan_results(padapter->rtw_wdev->wiphy);
_rtw_spinunlock_bh(&pmlmepriv->lock);
}
RTW_DBG("<== %s\n",__func__);
return 0;
}
#endif /* CONFIG_PNO_SUPPORT */
static int rtw_cfg80211_set_beacon_wpsp2pie(struct net_device *ndev, char *buf, int len)
{
int ret = 0;
uint wps_ielen = 0;
u8 *wps_ie;
u32 p2p_ielen = 0;
u8 wps_oui[8] = {0x0, 0x50, 0xf2, 0x04};
u8 *p2p_ie;
u32 wfd_ielen = 0;
u8 *wfd_ie;
_adapter *padapter = (_adapter *)rtw_netdev_priv(ndev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
RTW_INFO(FUNC_NDEV_FMT" ielen=%d\n", FUNC_NDEV_ARG(ndev), len);
if (len > 0) {
wps_ie = rtw_get_wps_ie(buf, len, NULL, &wps_ielen);
if (wps_ie) {
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("bcn_wps_ielen=%d\n", wps_ielen);
#endif
if (pmlmepriv->wps_beacon_ie) {
u32 free_len = pmlmepriv->wps_beacon_ie_len;
pmlmepriv->wps_beacon_ie_len = 0;
rtw_mfree(pmlmepriv->wps_beacon_ie, free_len);
pmlmepriv->wps_beacon_ie = NULL;
}
pmlmepriv->wps_beacon_ie = rtw_malloc(wps_ielen);
if (pmlmepriv->wps_beacon_ie == NULL) {
RTW_INFO("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
return -EINVAL;
}
_rtw_memcpy(pmlmepriv->wps_beacon_ie, wps_ie, wps_ielen);
pmlmepriv->wps_beacon_ie_len = wps_ielen;
rtw_update_beacon(padapter, _VENDOR_SPECIFIC_IE_, wps_oui, _TRUE, RTW_CMDF_WAIT_ACK);
}
/* buf += wps_ielen; */
/* len -= wps_ielen; */
#ifdef CONFIG_P2P
p2p_ie = rtw_get_p2p_ie(buf, len, NULL, &p2p_ielen);
if (p2p_ie) {
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("bcn_p2p_ielen=%d\n", p2p_ielen);
#endif
if (pmlmepriv->p2p_beacon_ie) {
u32 free_len = pmlmepriv->p2p_beacon_ie_len;
pmlmepriv->p2p_beacon_ie_len = 0;
rtw_mfree(pmlmepriv->p2p_beacon_ie, free_len);
pmlmepriv->p2p_beacon_ie = NULL;
}
pmlmepriv->p2p_beacon_ie = rtw_malloc(p2p_ielen);
if (pmlmepriv->p2p_beacon_ie == NULL) {
RTW_INFO("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
return -EINVAL;
}
_rtw_memcpy(pmlmepriv->p2p_beacon_ie, p2p_ie, p2p_ielen);
pmlmepriv->p2p_beacon_ie_len = p2p_ielen;
}
#endif /* CONFIG_P2P */
#ifdef CONFIG_WFD
wfd_ie = rtw_get_wfd_ie(buf, len, NULL, &wfd_ielen);
if (wfd_ie) {
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("bcn_wfd_ielen=%d\n", wfd_ielen);
#endif
if (rtw_mlme_update_wfd_ie_data(pmlmepriv, MLME_BEACON_IE, wfd_ie, wfd_ielen) != _SUCCESS)
return -EINVAL;
}
#endif /* CONFIG_WFD */
pmlmeext->bstart_bss = _TRUE;
}
return ret;
}
static int rtw_cfg80211_set_probe_resp_wpsp2pie(struct net_device *net, char *buf, int len)
{
int ret = 0;
uint wps_ielen = 0;
u8 *wps_ie;
u32 p2p_ielen = 0;
u8 *p2p_ie;
u32 wfd_ielen = 0;
u8 *wfd_ie;
_adapter *padapter = (_adapter *)rtw_netdev_priv(net);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("%s, ielen=%d\n", __func__, len);
#endif
if (len > 0) {
wps_ie = rtw_get_wps_ie(buf, len, NULL, &wps_ielen);
if (wps_ie) {
uint attr_contentlen = 0;
u16 uconfig_method, *puconfig_method = NULL;
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("probe_resp_wps_ielen=%d\n", wps_ielen);
#endif
if (check_fwstate(pmlmepriv, WIFI_UNDER_WPS)) {
u8 sr = 0;
rtw_get_wps_attr_content(wps_ie, wps_ielen, WPS_ATTR_SELECTED_REGISTRAR, (u8 *)(&sr), NULL);
if (sr != 0)
RTW_INFO("%s, got sr\n", __func__);
else {
RTW_INFO("GO mode process WPS under site-survey, sr no set\n");
return ret;
}
}
if (pmlmepriv->wps_probe_resp_ie) {
u32 free_len = pmlmepriv->wps_probe_resp_ie_len;
pmlmepriv->wps_probe_resp_ie_len = 0;
rtw_mfree(pmlmepriv->wps_probe_resp_ie, free_len);
pmlmepriv->wps_probe_resp_ie = NULL;
}
pmlmepriv->wps_probe_resp_ie = rtw_malloc(wps_ielen);
if (pmlmepriv->wps_probe_resp_ie == NULL) {
RTW_INFO("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
return -EINVAL;
}
/* add PUSH_BUTTON config_method by driver self in wpsie of probe_resp at GO Mode */
puconfig_method = (u16 *)rtw_get_wps_attr_content(wps_ie, wps_ielen, WPS_ATTR_CONF_METHOD , NULL, &attr_contentlen);
if (puconfig_method != NULL) {
/* struct registry_priv *pregistrypriv = &padapter->registrypriv; */
struct wireless_dev *wdev = padapter->rtw_wdev;
#ifdef CONFIG_DEBUG_CFG80211
/* printk("config_method in wpsie of probe_resp = 0x%x\n", be16_to_cpu(*puconfig_method)); */
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
/* for WIFI-DIRECT LOGO 4.2.2, AUTO GO can't set PUSH_BUTTON flags */
if (wdev->iftype == NL80211_IFTYPE_P2P_GO) {
uconfig_method = WPS_CM_PUSH_BUTTON;
uconfig_method = cpu_to_be16(uconfig_method);
*puconfig_method &= ~uconfig_method;
}
#endif
}
_rtw_memcpy(pmlmepriv->wps_probe_resp_ie, wps_ie, wps_ielen);
pmlmepriv->wps_probe_resp_ie_len = wps_ielen;
}
/* buf += wps_ielen; */
/* len -= wps_ielen; */
#ifdef CONFIG_P2P
p2p_ie = rtw_get_p2p_ie(buf, len, NULL, &p2p_ielen);
if (p2p_ie) {
u8 is_GO = _FALSE;
u32 attr_contentlen = 0;
u16 cap_attr = 0;
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("probe_resp_p2p_ielen=%d\n", p2p_ielen);
#endif
/* Check P2P Capability ATTR */
if (rtw_get_p2p_attr_content(p2p_ie, p2p_ielen, P2P_ATTR_CAPABILITY, (u8 *)&cap_attr, (uint *) &attr_contentlen)) {
u8 grp_cap = 0;
/* RTW_INFO( "[%s] Got P2P Capability Attr!!\n", __FUNCTION__ ); */
cap_attr = le16_to_cpu(cap_attr);
grp_cap = (u8)((cap_attr >> 8) & 0xff);
is_GO = (grp_cap & BIT(0)) ? _TRUE : _FALSE;
if (is_GO)
RTW_INFO("Got P2P Capability Attr, grp_cap=0x%x, is_GO\n", grp_cap);
}
if (is_GO == _FALSE) {
if (pmlmepriv->p2p_probe_resp_ie) {
u32 free_len = pmlmepriv->p2p_probe_resp_ie_len;
pmlmepriv->p2p_probe_resp_ie_len = 0;
rtw_mfree(pmlmepriv->p2p_probe_resp_ie, free_len);
pmlmepriv->p2p_probe_resp_ie = NULL;
}
pmlmepriv->p2p_probe_resp_ie = rtw_malloc(p2p_ielen);
if (pmlmepriv->p2p_probe_resp_ie == NULL) {
RTW_INFO("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
return -EINVAL;
}
_rtw_memcpy(pmlmepriv->p2p_probe_resp_ie, p2p_ie, p2p_ielen);
pmlmepriv->p2p_probe_resp_ie_len = p2p_ielen;
} else {
if (pmlmepriv->p2p_go_probe_resp_ie) {
u32 free_len = pmlmepriv->p2p_go_probe_resp_ie_len;
pmlmepriv->p2p_go_probe_resp_ie_len = 0;
rtw_mfree(pmlmepriv->p2p_go_probe_resp_ie, free_len);
pmlmepriv->p2p_go_probe_resp_ie = NULL;
}
pmlmepriv->p2p_go_probe_resp_ie = rtw_malloc(p2p_ielen);
if (pmlmepriv->p2p_go_probe_resp_ie == NULL) {
RTW_INFO("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
return -EINVAL;
}
_rtw_memcpy(pmlmepriv->p2p_go_probe_resp_ie, p2p_ie, p2p_ielen);
pmlmepriv->p2p_go_probe_resp_ie_len = p2p_ielen;
}
}
#endif /* CONFIG_P2P */
#ifdef CONFIG_WFD
wfd_ie = rtw_get_wfd_ie(buf, len, NULL, &wfd_ielen);
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("probe_resp_wfd_ielen=%d\n", wfd_ielen);
#endif
if (rtw_mlme_update_wfd_ie_data(pmlmepriv, MLME_PROBE_RESP_IE, wfd_ie, wfd_ielen) != _SUCCESS)
return -EINVAL;
#endif /* CONFIG_WFD */
}
return ret;
}
static int rtw_cfg80211_set_assoc_resp_wpsp2pie(struct net_device *net, char *buf, int len)
{
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(net);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
u8 *ie;
u32 ie_len;
RTW_INFO("%s, ielen=%d\n", __func__, len);
if (len <= 0)
goto exit;
ie = rtw_get_wps_ie(buf, len, NULL, &ie_len);
if (ie && ie_len) {
if (pmlmepriv->wps_assoc_resp_ie) {
u32 free_len = pmlmepriv->wps_assoc_resp_ie_len;
pmlmepriv->wps_assoc_resp_ie_len = 0;
rtw_mfree(pmlmepriv->wps_assoc_resp_ie, free_len);
pmlmepriv->wps_assoc_resp_ie = NULL;
}
pmlmepriv->wps_assoc_resp_ie = rtw_malloc(ie_len);
if (pmlmepriv->wps_assoc_resp_ie == NULL) {
RTW_INFO("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
return -EINVAL;
}
_rtw_memcpy(pmlmepriv->wps_assoc_resp_ie, ie, ie_len);
pmlmepriv->wps_assoc_resp_ie_len = ie_len;
}
ie = rtw_get_p2p_ie(buf, len, NULL, &ie_len);
if (ie && ie_len) {
if (pmlmepriv->p2p_assoc_resp_ie) {
u32 free_len = pmlmepriv->p2p_assoc_resp_ie_len;
pmlmepriv->p2p_assoc_resp_ie_len = 0;
rtw_mfree(pmlmepriv->p2p_assoc_resp_ie, free_len);
pmlmepriv->p2p_assoc_resp_ie = NULL;
}
pmlmepriv->p2p_assoc_resp_ie = rtw_malloc(ie_len);
if (pmlmepriv->p2p_assoc_resp_ie == NULL) {
RTW_INFO("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
return -EINVAL;
}
_rtw_memcpy(pmlmepriv->p2p_assoc_resp_ie, ie, ie_len);
pmlmepriv->p2p_assoc_resp_ie_len = ie_len;
}
#ifdef CONFIG_WFD
ie = rtw_get_wfd_ie(buf, len, NULL, &ie_len);
if (rtw_mlme_update_wfd_ie_data(pmlmepriv, MLME_ASSOC_RESP_IE, ie, ie_len) != _SUCCESS)
return -EINVAL;
#endif
exit:
return ret;
}
int rtw_cfg80211_set_mgnt_wpsp2pie(struct net_device *net, char *buf, int len,
int type)
{
int ret = 0;
uint wps_ielen = 0;
u32 p2p_ielen = 0;
#ifdef CONFIG_DEBUG_CFG80211
RTW_INFO("%s, ielen=%d\n", __func__, len);
#endif
if ((rtw_get_wps_ie(buf, len, NULL, &wps_ielen) && (wps_ielen > 0))
#ifdef CONFIG_P2P
|| (rtw_get_p2p_ie(buf, len, NULL, &p2p_ielen) && (p2p_ielen > 0))
#endif
) {
if (net != NULL) {
switch (type) {
case 0x1: /* BEACON */
ret = rtw_cfg80211_set_beacon_wpsp2pie(net, buf, len);
break;
case 0x2: /* PROBE_RESP */
ret = rtw_cfg80211_set_probe_resp_wpsp2pie(net, buf, len);
#ifdef CONFIG_P2P
if (ret == 0)
adapter_wdev_data((_adapter *)rtw_netdev_priv(net))->probe_resp_ie_update_time = rtw_get_current_time();
#endif
break;
case 0x4: /* ASSOC_RESP */
ret = rtw_cfg80211_set_assoc_resp_wpsp2pie(net, buf, len);
break;
}
}
}
return ret;
}
#ifdef CONFIG_80211N_HT
static void rtw_cfg80211_init_ht_capab_ex(_adapter *padapter,
struct ieee80211_sta_ht_cap *ht_cap, enum band_type band, u8 rf_type,
struct protocol_cap_t *dft_proto_cap, struct role_cap_t *dft_cap)
{
struct registry_priv *pregistrypriv = &padapter->registrypriv;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct ht_priv *phtpriv = &pmlmepriv->htpriv;
u8 stbc_rx_enable = _FALSE;
rtw_ht_get_dft_setting(padapter, dft_proto_cap, dft_cap);
/* RX LDPC */
if (TEST_FLAG(phtpriv->ldpc_cap, LDPC_HT_ENABLE_RX))
ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
/* TX STBC */
if (TEST_FLAG(phtpriv->stbc_cap, STBC_HT_ENABLE_TX))
ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
/* RX STBC */
if (TEST_FLAG(phtpriv->stbc_cap, STBC_HT_ENABLE_RX)) {
switch (rf_type) {
case RF_1T1R:
ht_cap->cap |= IEEE80211_HT_CAP_RX_STBC_1R;/*RX STBC One spatial stream*/
break;
case RF_2T2R:
case RF_1T2R:
ht_cap->cap |= IEEE80211_HT_CAP_RX_STBC_1R;/* Only one spatial-stream STBC RX is supported */
break;
case RF_3T3R:
case RF_3T4R:
case RF_4T4R:
ht_cap->cap |= IEEE80211_HT_CAP_RX_STBC_1R;/* Only one spatial-stream STBC RX is supported */
break;
default:
RTW_INFO("[warning] rf_type %d is not expected\n", rf_type);
break;
}
}
}
static void rtw_cfg80211_init_ht_capab(_adapter *padapter,
struct ieee80211_sta_ht_cap *ht_cap, enum band_type band, u8 rf_type,
struct protocol_cap_t *dft_proto_cap, struct role_cap_t *dft_cap)
{
struct registry_priv *regsty = &padapter->registrypriv;
u8 rx_nss = 0;
if (!regsty->ht_enable || !is_supported_ht(regsty->wireless_mode))
return;
ht_cap->ht_supported = 1;
ht_cap->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_DSSSCCK40 | IEEE80211_HT_CAP_MAX_AMSDU;
rtw_cfg80211_init_ht_capab_ex(padapter, ht_cap, band, rf_type,
dft_proto_cap, dft_cap);
/*
*Maximum length of AMPDU that the STA can receive.
*Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
*/
ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
/*Minimum MPDU start spacing , */
ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
rx_nss = GET_HAL_RX_NSS(adapter_to_dvobj(padapter));
switch (rx_nss) {
case 1:
ht_cap->mcs.rx_mask[0] = 0xFF;
break;
case 2:
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0xFF;
break;
case 3:
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0xFF;
ht_cap->mcs.rx_mask[2] = 0xFF;
break;
case 4:
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0xFF;
ht_cap->mcs.rx_mask[2] = 0xFF;
ht_cap->mcs.rx_mask[3] = 0xFF;
break;
default:
RTW_ERR("%s, error rf_type=%d, rx_nss=%d\n", __func__, rf_type, rx_nss);
rtw_warn_on(1);
};
ht_cap->mcs.rx_highest = cpu_to_le16(
rtw_ht_mcs_rate(rtw_hw_is_bw_support(adapter_to_dvobj(padapter), CHANNEL_WIDTH_40)
, rtw_hw_is_bw_support(adapter_to_dvobj(padapter), CHANNEL_WIDTH_40) ? ht_cap->cap & IEEE80211_HT_CAP_SGI_40 : ht_cap->cap & IEEE80211_HT_CAP_SGI_20
, ht_cap->mcs.rx_mask) / 10);
}
#endif /* CONFIG_80211N_HT */
#if defined(CONFIG_80211AC_VHT) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
static void rtw_cfg80211_init_vht_capab(_adapter *padapter,
struct ieee80211_sta_vht_cap *sta_vht_cap,
enum band_type band, u8 rf_type, struct protocol_cap_t *dft_proto_cap,
struct role_cap_t *dft_cap)
{
struct registry_priv *regsty = &padapter->registrypriv;
u8 vht_cap_ie[2 + 12] = {0};
if (!REGSTY_IS_11AC_ENABLE(regsty) || !is_supported_vht(regsty->wireless_mode))
return;
rtw_vht_get_dft_setting(padapter, dft_proto_cap, dft_cap);
rtw_build_vht_cap_ie(padapter, vht_cap_ie);
sta_vht_cap->vht_supported = 1;
_rtw_memcpy(&sta_vht_cap->cap, vht_cap_ie + 2, 4);
_rtw_memcpy(&sta_vht_cap->vht_mcs, vht_cap_ie + 2 + 4, 8);
}
#endif /* defined(CONFIG_80211AC_VHT) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0)) */
#if defined(CONFIG_80211AX_HE) && (defined(CPTCFG_VERSION) || (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)))
static int rtw_cfg80211_init_he_capab(_adapter *padapter,
struct ieee80211_sband_iftype_data *sta_iface_data,
enum nl80211_iftype iftype, struct phy_cap_t *phy_cap,
struct protocol_cap_t *dft_proto_cap)
{
struct ieee80211_sta_he_cap *sta_he_cap = &(sta_iface_data->he_cap);
void *phl = GET_PHL_INFO(adapter_to_dvobj(padapter));
struct registry_priv *regsty = &padapter->registrypriv;
u8 cap_len = 0;
u8 he_mcs_set_ext_len = 0;
u8 he_cap_ie[HE_CAP_ELE_MAX_LEN] = {0};
u8 ofst_80m = 3 + HE_CAP_ELE_MAC_CAP_LEN + HE_CAP_ELE_PHY_CAP_LEN;
u8 ofst_160m = ofst_80m + 4;
u8 ofst_80p80m = ofst_80m + 4;
if (!REGSTY_IS_11AX_ENABLE(regsty) || !is_supported_he(regsty->wireless_mode))
return _FAIL;
sta_iface_data->types_mask = BIT(iftype);
cap_len = rtw_get_dft_he_cap_ie(padapter, phy_cap, dft_proto_cap, he_cap_ie);
sta_he_cap->has_he = 1;
/* mac & phy capability info */
_rtw_memcpy(&sta_he_cap->he_cap_elem.mac_cap_info, he_cap_ie + 3, HE_CAP_ELE_MAC_CAP_LEN);
_rtw_memcpy(&sta_he_cap->he_cap_elem.phy_cap_info,
he_cap_ie + 3 + HE_CAP_ELE_MAC_CAP_LEN,
HE_CAP_ELE_PHY_CAP_LEN);
/* Supported HE-MCS And NSS Set */
/* HE supports 80M BW */
_rtw_memcpy(&sta_he_cap->he_mcs_nss_supp.rx_mcs_80, he_cap_ie + ofst_80m, 2);
_rtw_memcpy(&sta_he_cap->he_mcs_nss_supp.tx_mcs_80, he_cap_ie + ofst_80m + 2, 2);
/* HE supports 160M BW */
if(GET_HE_PHY_CAP_SUPPORT_CHAN_WIDTH_SET(he_cap_ie + 3 + HE_CAP_ELE_MAC_CAP_LEN) & BIT2) {
_rtw_memcpy(&sta_he_cap->he_mcs_nss_supp.rx_mcs_160, he_cap_ie + ofst_160m, 2);
_rtw_memcpy(&sta_he_cap->he_mcs_nss_supp.tx_mcs_160, he_cap_ie + ofst_160m + 2, 2);
ofst_80p80m += 4;
} else {
_rtw_memset(&sta_he_cap->he_mcs_nss_supp.rx_mcs_160, HE_MSC_NOT_SUPP_BYTE, 2);
_rtw_memset(&sta_he_cap->he_mcs_nss_supp.tx_mcs_160, HE_MSC_NOT_SUPP_BYTE, 2);
}
/* HE supports 80M+80M BW */
if(GET_HE_PHY_CAP_SUPPORT_CHAN_WIDTH_SET(he_cap_ie + 3 + HE_CAP_ELE_MAC_CAP_LEN) & BIT3) {
_rtw_memcpy(&sta_he_cap->he_mcs_nss_supp.rx_mcs_80p80, he_cap_ie + ofst_80p80m, 2);
_rtw_memcpy(&sta_he_cap->he_mcs_nss_supp.tx_mcs_80p80, he_cap_ie + ofst_80p80m + 2, 2);
} else {
_rtw_memset(&sta_he_cap->he_mcs_nss_supp.rx_mcs_80p80, HE_MSC_NOT_SUPP_BYTE, 2);
_rtw_memset(&sta_he_cap->he_mcs_nss_supp.tx_mcs_80p80, HE_MSC_NOT_SUPP_BYTE, 2);
}
return _SUCCESS;
}
static void rtw_cfg80211_init_sband_iftype_data(_adapter *padapter,
struct ieee80211_supported_band *band, struct phy_cap_t *phy_cap,
struct role_cap_t *dft_cap,
struct protocol_cap_t *dft_sta_proto_cap,
struct protocol_cap_t *dft_ap_proto_cap)
{
struct ieee80211_sband_iftype_data *he_iftype = NULL;
void *phl = GET_PHL_INFO(adapter_to_dvobj(padapter));
int ret = _FAIL;
he_iftype = (struct ieee80211_sband_iftype_data *)(((u8 *)band->bitrates)
+ sizeof(struct ieee80211_rate) * band->n_bitrates);
ret = rtw_cfg80211_init_he_capab(padapter, he_iftype,
NL80211_IFTYPE_AP, phy_cap, dft_ap_proto_cap);
if (ret == _SUCCESS)
band->n_iftype_data += 1;
he_iftype += 1;
ret = rtw_cfg80211_init_he_capab(padapter, he_iftype,
NL80211_IFTYPE_STATION, phy_cap, dft_sta_proto_cap);
if (ret == _SUCCESS)
band->n_iftype_data += 1;
}
#endif /* defined(CONFIG_80211AX_HE) && (defined(CPTCFG_VERSION) || LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)) */
static int rtw_cfg80211_init_wiphy_band(_adapter *padapter, struct wiphy *wiphy)
{
u8 rf_type;
struct ieee80211_supported_band *band;
int ret = _FAIL;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct protocol_cap_t dft_sta_proto_cap = {0};
struct protocol_cap_t dft_ap_proto_cap = {0};
struct role_cap_t dft_cap = {0};
struct phy_cap_t *phy_cap;
u8 hw_band = HW_BAND_0;
/*init wiphy0 for band0*/
rtw_phl_get_dft_cap(dvobj->phl, hw_band, &dft_cap);
rtw_phl_get_dft_proto_cap(dvobj->phl, hw_band,
PHL_RTYPE_STATION, &dft_sta_proto_cap);
rtw_phl_get_dft_proto_cap(dvobj->phl, hw_band,
PHL_RTYPE_AP, &dft_ap_proto_cap);
phy_cap = &(dvobj->phl_com->phy_cap[hw_band]);
/*TODO init wiphy1 for band1*/
#if 0 /*#ifdef CONFIG_DBCC_SUPPORT*/
/*if (dvobj->phl_com->dev_cap.hw_sup_flags & HW_SUP_DBCC)*/
if (dvobj->phl_com->dev_cap.dbcc_sup) {
hw_band = HW_BAND_1;
rtw_phl_get_dft_cap(dvobj->phl, hw_band, &dft_cap);
rtw_phl_get_dft_proto_cap(dvobj->phl, hw_band,
PHL_RTYPE_STATION, &dft_sta_proto_cap);
rtw_phl_get_dft_proto_cap(dvobj->phl, hw_band,
PHL_RTYPE_AP, &dft_ap_proto_cap);
phy_cap = &(dvobj->phl_com->phy_cap[hw_band]);
}
#endif
rf_type = GET_HAL_RFPATH(dvobj);
RTW_INFO("%s:rf_type=%d\n", __func__, rf_type);
if (is_supported_24g(padapter->registrypriv.band_type)) {
band = wiphy->bands[NL80211_BAND_2GHZ] = rtw_spt_band_alloc(BAND_ON_24G);
if (!band)
goto exit;
rtw_2g_channels_init(band->channels);
rtw_2g_rates_init(band->bitrates);
#if defined(CONFIG_80211N_HT)
rtw_cfg80211_init_ht_capab(padapter, &band->ht_cap,
BAND_ON_24G, rf_type, &dft_sta_proto_cap, &dft_cap);
#endif
#if defined(CONFIG_80211AX_HE) && (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0))
rtw_cfg80211_init_sband_iftype_data(padapter, band, phy_cap,
&dft_cap, &dft_sta_proto_cap, &dft_ap_proto_cap);
#endif /* defined(CONFIG_80211AX_HE) && LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) */
}
#if CONFIG_IEEE80211_BAND_5GHZ
if (is_supported_5g(padapter->registrypriv.band_type)) {
band = wiphy->bands[NL80211_BAND_5GHZ] = rtw_spt_band_alloc(BAND_ON_5G);
if (!band) {
if (wiphy->bands[NL80211_BAND_2GHZ]) {
rtw_spt_band_free(wiphy->bands[NL80211_BAND_2GHZ]);
wiphy->bands[NL80211_BAND_2GHZ] = NULL;
}
goto exit;
}
rtw_5g_channels_init(band->channels);
rtw_5g_rates_init(band->bitrates);
#if defined(CONFIG_80211N_HT)
rtw_cfg80211_init_ht_capab(padapter, &band->ht_cap,
BAND_ON_5G, rf_type, &dft_sta_proto_cap, &dft_cap);
#endif
#if defined(CONFIG_80211AC_VHT) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
rtw_cfg80211_init_vht_capab(padapter, &band->vht_cap,
BAND_ON_5G, rf_type, &dft_sta_proto_cap, &dft_cap);
#endif
#if defined(CONFIG_80211AX_HE) && (defined(CPTCFG_VERSION) || (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)))
rtw_cfg80211_init_sband_iftype_data(padapter, band, phy_cap,
&dft_cap, &dft_sta_proto_cap, &dft_ap_proto_cap);
#endif /* defined(CONFIG_80211AX_HE) && (defined(CPTCFG_VERSION) || LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)) */
}
#endif
ret = _SUCCESS;
exit:
return ret;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0)) && (CONFIG_IFACE_NUMBER >= 2)
struct ieee80211_iface_limit rtw_limits[] = {
{
.max = CONFIG_IFACE_NUMBER,
.types = BIT(NL80211_IFTYPE_STATION)
#if defined(CONFIG_P2P) && ((LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE))
| BIT(NL80211_IFTYPE_P2P_CLIENT)
#endif
},
#ifdef CONFIG_AP_MODE
{
.max = rtw_min(CONFIG_IFACE_NUMBER, CONFIG_LIMITED_AP_NUM),
.types = BIT(NL80211_IFTYPE_AP)
#if defined(CONFIG_P2P) && ((LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE))
| BIT(NL80211_IFTYPE_P2P_GO)
#endif
},
#endif
#if defined(RTW_DEDICATED_P2P_DEVICE)
{
.max = 1,
.types = BIT(NL80211_IFTYPE_P2P_DEVICE)
},
#endif
#if defined(CONFIG_RTW_MESH)
{
.max = 1,
.types = BIT(NL80211_IFTYPE_MESH_POINT)
},
#endif
};
struct ieee80211_iface_combination rtw_combinations[] = {
{
.limits = rtw_limits,
.n_limits = ARRAY_SIZE(rtw_limits),
#if defined(RTW_DEDICATED_P2P_DEVICE)
.max_interfaces = CONFIG_IFACE_NUMBER + 1,
#else
.max_interfaces = CONFIG_IFACE_NUMBER,
#endif
.num_different_channels = 1,
},
};
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0)) */
static int rtw_cfg80211_init_wiphy(_adapter *adapter, struct wiphy *wiphy)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct registry_priv *regsty = dvobj_to_regsty(dvobj);
int ret = _FAIL;
/* copy mac_addr to wiphy */
_rtw_memcpy(wiphy->perm_addr, adapter_mac_addr(adapter), ETH_ALEN);
wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
wiphy->max_scan_ssids = RTW_SSID_SCAN_AMOUNT;
wiphy->max_scan_ie_len = RTW_SCAN_IE_LEN_MAX;
wiphy->max_num_pmkids = RTW_MAX_NUM_PMKIDS;
#if CONFIG_RTW_MACADDR_ACL && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
wiphy->max_acl_mac_addrs = NUM_ACL;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 38)) || defined(COMPAT_KERNEL_RELEASE)
wiphy->max_remain_on_channel_duration = RTW_MAX_REMAIN_ON_CHANNEL_DURATION;
#endif
wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION)
| BIT(NL80211_IFTYPE_ADHOC)
#ifdef CONFIG_AP_MODE
| BIT(NL80211_IFTYPE_AP)
#ifdef CONFIG_WIFI_MONITOR
| BIT(NL80211_IFTYPE_MONITOR)
#endif
#endif
#if defined(CONFIG_P2P) && ((LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE))
| BIT(NL80211_IFTYPE_P2P_CLIENT)
| BIT(NL80211_IFTYPE_P2P_GO)
#if defined(RTW_DEDICATED_P2P_DEVICE)
| BIT(NL80211_IFTYPE_P2P_DEVICE)
#endif
#endif
#ifdef CONFIG_RTW_MESH
| BIT(NL80211_IFTYPE_MESH_POINT) /* 2.6.26 */
#endif
;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
#ifdef CONFIG_AP_MODE
wiphy->mgmt_stypes = rtw_cfg80211_default_mgmt_stypes;
#endif /* CONFIG_AP_MODE */
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0))
#ifdef CONFIG_WIFI_MONITOR
wiphy->software_iftypes |= BIT(NL80211_IFTYPE_MONITOR);
#endif
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0)) && (CONFIG_IFACE_NUMBER >= 2)
wiphy->iface_combinations = rtw_combinations;
wiphy->n_iface_combinations = ARRAY_SIZE(rtw_combinations);
#endif
wiphy->cipher_suites = rtw_cipher_suites;
wiphy->n_cipher_suites = ARRAY_SIZE(rtw_cipher_suites);
if (rtw_cfg80211_init_wiphy_band(adapter, wiphy) != _SUCCESS) {
RTW_ERR("rtw_cfg80211_init_wiphy_band fail\n");
goto exit;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 38) && LINUX_VERSION_CODE < KERNEL_VERSION(3, 0, 0))
wiphy->flags |= WIPHY_FLAG_SUPPORTS_SEPARATE_DEFAULT_KEYS;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 3, 0))
wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
wiphy->flags |= WIPHY_FLAG_HAVE_AP_SME;
/* OFFCHAN_TX not ready, Mgmt tx depend on REMAIN_ON_CHANNEL */
/* wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX; */
#endif
#if (KERNEL_VERSION(3, 2, 0) <= LINUX_VERSION_CODE)
wiphy->flags |= WIPHY_FLAG_AP_UAPSD;
#endif
#if !defined(CPTCFG_VERSION) && defined(CONFIG_PM) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0) && \
LINUX_VERSION_CODE < KERNEL_VERSION(4, 12, 0))
wiphy->flags |= WIPHY_FLAG_SUPPORTS_SCHED_SCAN;
#ifdef CONFIG_PNO_SUPPORT
wiphy->max_sched_scan_ssids = MAX_PNO_LIST_COUNT;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0)
wiphy->max_match_sets = MAX_PNO_LIST_COUNT;
#endif
#endif
#endif
#if defined(CONFIG_PM) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0))
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 11, 0))
wiphy->wowlan = wowlan_stub;
#else
wiphy->wowlan = &wowlan_stub;
#endif
#endif
#if defined(CONFIG_TDLS) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0))
wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS;
#ifndef CONFIG_TDLS_DRIVER_SETUP
wiphy->flags |= WIPHY_FLAG_TDLS_EXTERNAL_SETUP; /* Driver handles key exchange */
wiphy->flags |= NL80211_ATTR_HT_CAPABILITY;
#endif /* CONFIG_TDLS_DRIVER_SETUP */
#endif /* CONFIG_TDLS */
if (regsty->power_mgnt != PM_PS_MODE_ACTIVE)
wiphy->flags |= WIPHY_FLAG_PS_ON_BY_DEFAULT;
else
wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0))
/* wiphy->flags |= WIPHY_FLAG_SUPPORTS_FW_ROAM; */
#endif
#ifdef CONFIG_RTW_WDS
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 33))
wiphy->flags |= WIPHY_FLAG_4ADDR_AP;
wiphy->flags |= WIPHY_FLAG_4ADDR_STATION;
#endif
#endif
#ifdef CONFIG_RTW_MESH
wiphy->flags |= 0
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
| WIPHY_FLAG_IBSS_RSN
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0))
| WIPHY_FLAG_MESH_AUTH
#endif
;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 3, 0))
wiphy->features |= 0
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 0))
| NL80211_FEATURE_USERSPACE_MPM
#endif
;
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 3, 0)) */
#endif /* CONFIG_RTW_MESH */
#if defined(CONFIG_RTW_80211K) && (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0))
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_RRM);
#endif
#if (KERNEL_VERSION(3, 8, 0) <= LINUX_VERSION_CODE)
wiphy->features |= NL80211_FEATURE_SAE;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
#ifdef CONFIG_WIFI_MONITOR
/* Currently only for Monitor debugging */
wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
#endif
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0)) */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 12, 0))
wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 16, 0))
wiphy->max_num_csa_counters = MAX_CSA_CNT;
#endif
ret = _SUCCESS;
exit:
return ret;
}
#ifdef CONFIG_RFKILL_POLL
void rtw_cfg80211_init_rfkill(struct wiphy *wiphy)
{
wiphy_rfkill_set_hw_state(wiphy, 0);
wiphy_rfkill_start_polling(wiphy);
}
void rtw_cfg80211_deinit_rfkill(struct wiphy *wiphy)
{
wiphy_rfkill_stop_polling(wiphy);
}
static void cfg80211_rtw_rfkill_poll(struct wiphy *wiphy)
{
_adapter *padapter = NULL;
bool blocked = _FALSE;
u8 valid = 0;
padapter = wiphy_to_adapter(wiphy);
if (adapter_to_dvobj(padapter)->processing_dev_remove == _TRUE) {
/*RTW_INFO("cfg80211_rtw_rfkill_poll: device is removed!\n");*/
return;
}
blocked = rtw_hal_rfkill_poll(padapter, &valid);
/*RTW_INFO("cfg80211_rtw_rfkill_poll: valid=%d, blocked=%d\n",
valid, blocked);*/
if (valid)
wiphy_rfkill_set_hw_state(wiphy, blocked);
}
#endif
#if defined(CONFIG_RTW_HOSTAPD_ACS) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 33))
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) && (LINUX_VERSION_CODE < KERNEL_VERSION(4, 0, 0))
#define SURVEY_INFO_TIME SURVEY_INFO_CHANNEL_TIME
#define SURVEY_INFO_TIME_BUSY SURVEY_INFO_CHANNEL_TIME_BUSY
#define SURVEY_INFO_TIME_EXT_BUSY SURVEY_INFO_CHANNEL_TIME_EXT_BUSY
#define SURVEY_INFO_TIME_RX SURVEY_INFO_CHANNEL_TIME_RX
#define SURVEY_INFO_TIME_TX SURVEY_INFO_CHANNEL_TIME_TX
#endif
#ifdef CONFIG_FIND_BEST_CHANNEL
static void rtw_cfg80211_set_survey_info_with_find_best_channel(struct wiphy *wiphy
, struct net_device *netdev, int idx, struct survey_info *info)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(netdev);
struct rf_ctl_t *rfctl = adapter_to_rfctl(adapter);
RT_CHANNEL_INFO *ch_set = rfctl->channel_set;
u8 ch_num = rfctl->max_chan_nums;
u32 total_rx_cnt = 0;
int i;
s8 noise = -50; /*channel noise in dBm. This and all following fields are optional */
u64 time = 100; /*amount of time in ms the radio was turn on (on the channel)*/
u64 time_busy = 0; /*amount of time the primary channel was sensed busy*/
info->filled = SURVEY_INFO_NOISE_DBM
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
| SURVEY_INFO_TIME | SURVEY_INFO_TIME_BUSY
#endif
;
for (i = 0; i < ch_num; i++)
total_rx_cnt += ch_set[i].rx_count;
time_busy = ch_set[idx].rx_count * time / total_rx_cnt;
noise += ch_set[idx].rx_count * 50 / total_rx_cnt;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 0, 0))
info->channel_time = time;
info->channel_time_busy = time_busy;
#else
info->time = time;
info->time_busy = time_busy;
#endif
#endif
info->noise = noise;
/* reset if final channel is got */
if (idx == ch_num - 1) {
for (i = 0; i < ch_num; i++)
ch_set[i].rx_count = 0;
}
}
#endif /* CONFIG_FIND_BEST_CHANNEL */
#if defined(CONFIG_RTW_ACS) /*&& defined(CONFIG_BACKGROUND_NOISE_MONITOR)*/
static void rtw_cfg80211_set_survey_info_with_clm(_adapter *padapter, int idx, struct survey_info *pinfo)
{
s8 noise = -50; /*channel noise in dBm. This and all following fields are optional */
u8 time = SURVEY_TO; /*amount of time in ms the radio was turn on (on the channel)*/
u8 time_busy = 0; /*amount of time the primary channel was sensed busy*/
if ((idx < 0) || (pinfo == NULL))
return;
pinfo->filled = SURVEY_INFO_NOISE_DBM
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
| SURVEY_INFO_TIME | SURVEY_INFO_TIME_BUSY
#endif
;
time_busy = rtw_acs_get_clm_ratio_by_idx(padapter, idx);
noise = rtw_noise_query_by_idx(padapter, idx);
RTW_INFO("[%d] ch=%d, time=%d(ms), time_busy=%d(ms), noise=%d(dbm)\n",
idx, pinfo->channel->hw_value, time, time_busy, noise);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 0, 0))
pinfo->channel_time = time;
pinfo->channel_time_busy = time_busy;
#else
pinfo->time = time;
pinfo->time_busy = time_busy;
#endif
#endif
pinfo->noise = noise;
}
#endif
int rtw_hostapd_acs_dump_survey(struct wiphy *wiphy, struct net_device *netdev, int idx, struct survey_info *info)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(netdev);
u32 freq = 0;
u8 ret = 0;
u16 channel = 0;
if (!netdev || !info) {
RTW_INFO("%s: invial parameters.\n", __func__);
return -EINVAL;
}
_rtw_memset(info, 0, sizeof(struct survey_info));
if (padapter->netif_up == _FALSE) {
RTW_INFO("%s: net device is down.\n", __func__);
return -EIO;
}
if (idx >= MAX_CHANNEL_NUM)
return -ENOENT;
channel = rtw_acs_get_channel_by_idx(padapter, idx);
freq = rtw_ch2freq(channel);
info->channel = ieee80211_get_channel(wiphy, freq);
/* RTW_INFO("%s: channel %d, freq %d\n", __func__, channel, freq); */
if (!info->channel)
return -EINVAL;
if (info->channel->flags == IEEE80211_CHAN_DISABLED)
return ret;
rtw_cfg80211_set_survey_info_with_clm(padapter, idx, info);
return ret;
}
#endif /* defined(CONFIG_RTW_HOSTAPD_ACS) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 33)) */
#if defined(CPTCFG_VERSION) || (KERNEL_VERSION(4, 17, 0) <= LINUX_VERSION_CODE) \
|| defined(CONFIG_KERNEL_PATCH_EXTERNAL_AUTH)
int cfg80211_rtw_external_auth(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_external_auth_params *params)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(dev));
rtw_cfg80211_external_auth_status(wiphy, dev,
(struct rtw_external_auth_params *)params);
return 0;
}
#endif
void rtw_cfg80211_external_auth_status(struct wiphy *wiphy, struct net_device *dev,
struct rtw_external_auth_params *params)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct security_priv *psecuritypriv = &padapter->securitypriv;
struct sta_priv *pstapriv = &padapter->stapriv;
struct sta_info *psta = NULL;
u8 *buf = NULL;
u32 len = 0;
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(dev));
RTW_INFO("SAE: action: %u, status: %u\n", params->action, params->status);
if (params->status == WLAN_STATUS_SUCCESS) {
RTW_INFO("bssid: "MAC_FMT"\n", MAC_ARG(params->bssid));
RTW_INFO("SSID: [%s]\n",
((params->ssid.ssid_len == 0) ? "" : (char *)params->ssid.ssid));
RTW_INFO("suite: 0x%08x\n", params->key_mgmt_suite);
}
psta = rtw_get_stainfo(pstapriv, params->bssid);
if (psta && (params->status == WLAN_STATUS_SUCCESS)\
&& MLME_IS_AP(padapter)) {
/* AP mode */
RTW_INFO("station match\n");
psta->state &= ~WIFI_FW_AUTH_NULL;
psta->state |= WIFI_FW_AUTH_SUCCESS;
psta->expire_to = padapter->stapriv.assoc_to;
/* ToDo: Kernel v5.1 pmkid is pointer */
/* RTW_INFO_DUMP("PMKID:", params->pmkid, PMKID_LEN); */
_rtw_set_pmksa(dev, params->bssid, params->pmkid);
_rtw_spinlock_bh(&psta->lock);
if ((psta->auth_len != 0) && (psta->pauth_frame != NULL)) {
buf = rtw_zmalloc(psta->auth_len);
if (buf) {
_rtw_memcpy(buf, psta->pauth_frame, psta->auth_len);
len = psta->auth_len;
}
rtw_mfree(psta->pauth_frame, psta->auth_len);
psta->pauth_frame = NULL;
psta->auth_len = 0;
}
_rtw_spinunlock_bh(&psta->lock);
if (buf) {
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
/* send the SAE auth Confirm */
rtw_ps_deny(padapter, PS_DENY_MGNT_TX);
if (_SUCCESS == rtw_pwr_wakeup(padapter)) {
rtw_mi_set_scan_deny(padapter, 1000);
rtw_mi_scan_abort(padapter, _TRUE);
RTW_INFO("SAE: Tx auth Confirm\n");
rtw_mgnt_tx_cmd(padapter, pmlmeext->chandef.chan, 1, buf, len, 0, RTW_CMDF_DIRECTLY);
}
rtw_ps_deny_cancel(padapter, PS_DENY_MGNT_TX);
rtw_mfree(buf, len);
buf = NULL;
len = 0;
}
} else {
/* STA mode */
psecuritypriv->extauth_status = params->status;
}
}
#ifdef CONFIG_AP_MODE
static bool rtw_ap_check_csa_setting(_adapter* a, u8 new_ch, u8 new_bw, u8 new_offset)
{
struct dvobj_priv *d = adapter_to_dvobj(a);
struct rf_ctl_t *rfctl = adapter_to_rfctl(a);
struct mlme_ext_priv *pmlmeext = &(a->mlmeextpriv);
struct rtw_chan_def u_chdef = {0};
u8 c_ch, c_bw, c_offset, u_ch, u_bw, u_offset;
#ifdef CONFIG_MCC_MODE
struct rtw_phl_com_t *phl_com = GET_PHL_COM(d);
u8 mcc_sup = phl_com->dev_cap.mcc_sup;
#else
u8 mcc_sup = _FALSE;
#endif
if (rtw_phl_mr_get_chandef(d->phl, a->phl_role, &u_chdef)
!= RTW_PHL_STATUS_SUCCESS) {
RTW_ERR("CSA : "FUNC_ADPT_FMT" get union chandef failed\n", FUNC_ADPT_ARG(a));
rtw_warn_on(1);
return _FALSE;
}
u_ch = u_chdef.chan;
u_bw = u_chdef.bw;
u_offset = u_chdef.offset;
c_ch = pmlmeext->chandef.chan;
c_bw = pmlmeext->chandef.bw;
c_offset = pmlmeext->chandef.offset;
if (rtw_chset_search_ch(rfctl->channel_set, new_ch) < 0
|| rtw_chset_is_ch_non_ocp(rfctl->channel_set, new_ch)) {
RTW_INFO("CSA : reject, channel not legal csa_setting:%u,%u,%u\n", new_ch, new_bw, new_offset);
return _FALSE;
}
/* Need to group with chanctx if not support MCC */
if (mcc_sup == _FALSE &&
rtw_mi_get_ld_sta_ifbmp(a) &&
rtw_is_chbw_grouped(new_ch, new_bw, new_offset, u_ch, u_bw, u_offset) == _FALSE) {
RTW_INFO("CSA : reject, can't group with STA mode, csa_setting:%u,%u,%u, union:%u,%u,%u\n",
new_ch, new_bw, new_offset, u_ch, u_bw, u_offset);
return _FALSE;
}
RTW_INFO("CSA : channel switch. %u,%u,%u ==> %u,%u,%u (union:%u,%u,%u)\n",
c_ch, c_bw, c_offset, new_ch, new_bw, new_offset, u_ch, u_bw, u_offset);
return _TRUE;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 12, 0))
static int cfg80211_rtw_channel_switch(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_csa_settings *params)
{
#ifdef CONFIG_ECSA_PHL
_adapter *a = (_adapter *)rtw_netdev_priv(dev);
struct core_ecsa_info *ecsa_info = &(a->ecsa_info);
struct rtw_phl_ecsa_param *ecsa_param = &(ecsa_info->phl_ecsa_param);
struct rf_ctl_t *rfctl = adapter_to_rfctl(a);
u8 csa_ch = 0, csa_bw = CHANNEL_WIDTH_20, csa_offset = CHAN_OFFSET_NO_EXT;
u8 mode = 0, count = 0, ht = 0;
if (!(CHK_MLME_STATE(a, WIFI_AP_STATE | WIFI_MESH_STATE)
&& MLME_IS_ASOC(a))) {
RTW_ERR("CSA : "FUNC_ADPT_FMT" not AP/Mesh, so return -ENOTCONN\n", FUNC_ADPT_ARG(a));
return -ENOTCONN;
}
if (IS_UNDER_CAC(rfctl)) {
RTW_INFO("CSA : "FUNC_ADPT_FMT" is under CAC, so return -EBUSY\n", FUNC_ADPT_ARG(a));
return -EBUSY;
}
if (rtw_mr_is_ecsa_running(a)) {
RTW_INFO("CSA : "FUNC_ADPT_FMT" someone is switching channel, so return -EBUSY\n", FUNC_ADPT_ARG(a));
return -EBUSY;
}
rtw_get_chbw_from_cfg80211_chan_def(¶ms->chandef, &ht, &csa_ch, &csa_bw, &csa_offset);
if (rtw_ap_check_csa_setting(a, csa_ch, csa_bw, csa_offset) == _FALSE)
return -EINVAL;
mode = params->block_tx;
count = params->count;
RTW_INFO("CSA : Get from cfg80211_csa_settings, block_tx = %s, switch count = %u\n",
mode ? "True" : "Flase", count);
SET_ECSA_STATE(a, ECSA_ST_SW_START);
ecsa_param->ecsa_type = ECSA_TYPE_AP;
ecsa_param->mode = mode;
ecsa_param->count = count;
/* ecsa_param.op_class = rfctl->op_class; */ /* TODO : ECSA */
ecsa_param->new_chan_def.band = rtw_phl_get_band_type(csa_ch);
ecsa_param->new_chan_def.chan = csa_ch;
ecsa_param->new_chan_def.bw = csa_bw;
ecsa_param->new_chan_def.offset = csa_offset;
ecsa_param->flag = 0;
ecsa_param->delay_start_ms = 0;
rtw_trigger_phl_ecsa_start(a);
#endif /* CONFIG_ECSA_PHL */
return 0;
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 12, 0)) */
#endif /* CONFIG_AP_MODE */
struct cfg80211_ops rtw_cfg80211_ops = {
.change_virtual_intf = cfg80211_rtw_change_iface,
.add_key = cfg80211_rtw_add_key,
.get_key = cfg80211_rtw_get_key,
.del_key = cfg80211_rtw_del_key,
.set_default_key = cfg80211_rtw_set_default_key,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 30))
.set_default_mgmt_key = cfg80211_rtw_set_default_mgmt_key,
#endif
#if defined(CONFIG_GTK_OL) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 1, 0))
.set_rekey_data = cfg80211_rtw_set_rekey_data,
#endif /*CONFIG_GTK_OL*/
.get_station = cfg80211_rtw_get_station,
.scan = cfg80211_rtw_scan,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 5, 0))
.abort_scan = cfg80211_rtw_abort_scan,
#endif /* LINUX_VERSION_CODE 4.5.0 */
.set_wiphy_params = cfg80211_rtw_set_wiphy_params,
.connect = cfg80211_rtw_connect,
.disconnect = cfg80211_rtw_disconnect,
.join_ibss = cfg80211_rtw_join_ibss,
.leave_ibss = cfg80211_rtw_leave_ibss,
.set_tx_power = cfg80211_rtw_set_txpower,
.get_tx_power = cfg80211_rtw_get_txpower,
.set_power_mgmt = cfg80211_rtw_set_power_mgmt,
.set_pmksa = cfg80211_rtw_set_pmksa,
.del_pmksa = cfg80211_rtw_del_pmksa,
.flush_pmksa = cfg80211_rtw_flush_pmksa,
#ifdef CONFIG_AP_MODE
.add_virtual_intf = cfg80211_rtw_add_virtual_intf,
.del_virtual_intf = cfg80211_rtw_del_virtual_intf,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 4, 0)) && !defined(COMPAT_KERNEL_RELEASE)
.add_beacon = cfg80211_rtw_add_beacon,
.set_beacon = cfg80211_rtw_set_beacon,
.del_beacon = cfg80211_rtw_del_beacon,
#else
.start_ap = cfg80211_rtw_start_ap,
.change_beacon = cfg80211_rtw_change_beacon,
.stop_ap = cfg80211_rtw_stop_ap,
#endif
#if CONFIG_RTW_MACADDR_ACL && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0))
.set_mac_acl = cfg80211_rtw_set_mac_acl,
#endif
.add_station = cfg80211_rtw_add_station,
.del_station = cfg80211_rtw_del_station,
.change_station = cfg80211_rtw_change_station,
.dump_station = cfg80211_rtw_dump_station,
.change_bss = cfg80211_rtw_change_bss,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29))
.set_txq_params = cfg80211_rtw_set_txq_params,
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 6, 0))
.set_channel = cfg80211_rtw_set_channel,
#endif
/* .auth = cfg80211_rtw_auth, */
/* .assoc = cfg80211_rtw_assoc, */
#endif /* CONFIG_AP_MODE */
#if defined(CONFIG_RTW_MESH) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 38))
.get_mesh_config = cfg80211_rtw_get_mesh_config,
.update_mesh_config = cfg80211_rtw_update_mesh_config,
.join_mesh = cfg80211_rtw_join_mesh,
.leave_mesh = cfg80211_rtw_leave_mesh,
.add_mpath = cfg80211_rtw_add_mpath,
.del_mpath = cfg80211_rtw_del_mpath,
.change_mpath = cfg80211_rtw_change_mpath,
.get_mpath = cfg80211_rtw_get_mpath,
.dump_mpath = cfg80211_rtw_dump_mpath,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0))
.get_mpp = cfg80211_rtw_get_mpp,
.dump_mpp = cfg80211_rtw_dump_mpp,
#endif
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
.set_monitor_channel = cfg80211_rtw_set_monitor_channel,
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
.get_channel = cfg80211_rtw_get_channel,
#endif
.remain_on_channel = cfg80211_rtw_remain_on_channel,
.cancel_remain_on_channel = cfg80211_rtw_cancel_remain_on_channel,
#ifdef CONFIG_P2P
#if defined(RTW_DEDICATED_P2P_DEVICE)
.start_p2p_device = cfg80211_rtw_start_p2p_device,
.stop_p2p_device = cfg80211_rtw_stop_p2p_device,
#endif
#endif /* CONFIG_P2P */
#ifdef CONFIG_RTW_80211R
.update_ft_ies = cfg80211_rtw_update_ft_ies,
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) || defined(COMPAT_KERNEL_RELEASE)
.mgmt_tx = cfg80211_rtw_mgmt_tx,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 8, 0))
.mgmt_frame_register = cfg80211_rtw_mgmt_frame_register,
#else
.update_mgmt_frame_registrations = cfg80211_rtw_update_mgmt_frame_register,
#endif
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 34) && LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 35))
.action = cfg80211_rtw_mgmt_tx,
#endif
#if defined(CONFIG_TDLS) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0))
.tdls_mgmt = cfg80211_rtw_tdls_mgmt,
.tdls_oper = cfg80211_rtw_tdls_oper,
#endif /* CONFIG_TDLS */
#if defined(CONFIG_PNO_SUPPORT) && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0))
.sched_scan_start = cfg80211_rtw_sched_scan_start,
.sched_scan_stop = cfg80211_rtw_sched_scan_stop,
.suspend = cfg80211_rtw_suspend,
.resume = cfg80211_rtw_resume,
#endif /* CONFIG_PNO_SUPPORT */
#ifdef CONFIG_RFKILL_POLL
.rfkill_poll = cfg80211_rtw_rfkill_poll,
#endif
#if defined(CONFIG_RTW_HOSTAPD_ACS) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 33))
.dump_survey = rtw_hostapd_acs_dump_survey,
#endif
#if defined(CPTCFG_VERSION) || (KERNEL_VERSION(4, 17, 0) <= LINUX_VERSION_CODE) \
|| defined(CONFIG_KERNEL_PATCH_EXTERNAL_AUTH)
.external_auth = cfg80211_rtw_external_auth,
#endif
#ifdef CONFIG_AP_MODE
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 12, 0))
.channel_switch = cfg80211_rtw_channel_switch,
#endif
#endif /* #ifdef CONFIG_AP_MODE */
};
struct wiphy *rtw_wiphy_alloc(_adapter *padapter, struct device *dev)
{
struct wiphy *wiphy;
struct rtw_wiphy_data *wiphy_data;
/* wiphy */
wiphy = wiphy_new(&rtw_cfg80211_ops, sizeof(struct rtw_wiphy_data));
if (!wiphy) {
RTW_ERR("Couldn't allocate wiphy device\n");
goto exit;
}
set_wiphy_dev(wiphy, dev);
/* wiphy_data */
wiphy_data = rtw_wiphy_priv(wiphy);
wiphy_data->dvobj = adapter_to_dvobj(padapter);
/*wiphy_data->txpwr_total_lmt_mbm = UNSPECIFIED_MBM;*/
/*wiphy_data->txpwr_total_target_mbm = UNSPECIFIED_MBM;*/
rtw_regd_init(wiphy);
if (rtw_cfg80211_init_wiphy(padapter, wiphy) != _SUCCESS) {
rtw_wiphy_free(wiphy);
wiphy = NULL;
goto exit;
}
RTW_INFO(FUNC_WIPHY_FMT"\n", FUNC_WIPHY_ARG(wiphy));
exit:
return wiphy;
}
void rtw_wiphy_free(struct wiphy *wiphy)
{
if (!wiphy)
return;
RTW_INFO(FUNC_WIPHY_FMT"\n", FUNC_WIPHY_ARG(wiphy));
rtw_regd_deinit(wiphy);
if (wiphy->bands[NL80211_BAND_2GHZ]) {
rtw_spt_band_free(wiphy->bands[NL80211_BAND_2GHZ]);
wiphy->bands[NL80211_BAND_2GHZ] = NULL;
}
if (wiphy->bands[NL80211_BAND_5GHZ]) {
rtw_spt_band_free(wiphy->bands[NL80211_BAND_5GHZ]);
wiphy->bands[NL80211_BAND_5GHZ] = NULL;
}
wiphy_free(wiphy);
}
int rtw_wiphy_register(struct wiphy *wiphy)
{
struct get_chplan_resp *chplan;
int ret;
RTW_INFO(FUNC_WIPHY_FMT"\n", FUNC_WIPHY_ARG(wiphy));
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)) || defined(RTW_VENDOR_EXT_SUPPORT)
rtw_cfgvendor_attach(wiphy);
#endif
ret = wiphy_register(wiphy);
if (ret != 0) {
RTW_INFO(FUNC_WIPHY_FMT" wiphy_register() return %d\n", FUNC_WIPHY_ARG(wiphy), ret);
goto exit;
}
rtw_chset_hook_os_channels(dvobj_to_rfctl(wiphy_to_dvobj(wiphy)));
if (rtw_get_chplan_cmd(wiphy_to_adapter(wiphy), RTW_CMDF_DIRECTLY, &chplan) == _SUCCESS)
rtw_regd_change_complete_sync(wiphy, chplan, 1);
else
rtw_warn_on(1);
exit:
return ret;
}
void rtw_wiphy_unregister(struct wiphy *wiphy)
{
RTW_INFO(FUNC_WIPHY_FMT"\n", FUNC_WIPHY_ARG(wiphy));
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)) || defined(RTW_VENDOR_EXT_SUPPORT)
rtw_cfgvendor_detach(wiphy);
#endif
#if defined(RTW_DEDICATED_P2P_DEVICE)
rtw_pd_iface_free(wiphy);
#endif
return wiphy_unregister(wiphy);
}
int rtw_wdev_alloc(_adapter *padapter, struct wiphy *wiphy)
{
int ret = 0;
struct net_device *pnetdev = padapter->pnetdev;
struct wireless_dev *wdev;
struct rtw_wdev_priv *pwdev_priv;
RTW_INFO("%s(padapter=%p)\n", __func__, padapter);
/* wdev */
wdev = (struct wireless_dev *)rtw_zmalloc(sizeof(struct wireless_dev));
if (!wdev) {
RTW_INFO("Couldn't allocate wireless device\n");
ret = -ENOMEM;
goto exit;
}
wdev->wiphy = wiphy;
wdev->netdev = pnetdev;
wdev->iftype = NL80211_IFTYPE_STATION;
padapter->rtw_wdev = wdev;
pnetdev->ieee80211_ptr = wdev;
/* init pwdev_priv */
pwdev_priv = adapter_wdev_data(padapter);
pwdev_priv->rtw_wdev = wdev;
pwdev_priv->pmon_ndev = NULL;
pwdev_priv->ifname_mon[0] = '\0';
pwdev_priv->padapter = padapter;
pwdev_priv->scan_request = NULL;
_rtw_spinlock_init(&pwdev_priv->scan_req_lock);
pwdev_priv->connect_req = NULL;
_rtw_spinlock_init(&pwdev_priv->connect_req_lock);
pwdev_priv->p2p_enabled = _FALSE;
pwdev_priv->probe_resp_ie_update_time = rtw_get_current_time();
rtw_wdev_invit_info_init(&pwdev_priv->invit_info);
rtw_wdev_nego_info_init(&pwdev_priv->nego_info);
if (padapter->registrypriv.power_mgnt != PM_PS_MODE_ACTIVE)
pwdev_priv->power_mgmt = _TRUE;
else
pwdev_priv->power_mgmt = _FALSE;
_rtw_mutex_init(&pwdev_priv->roch_mutex);
#ifdef CONFIG_RTW_CFGVENDOR_RSSIMONITOR
pwdev_priv->rssi_monitor_enable = 0;
pwdev_priv->rssi_monitor_max = 0;
pwdev_priv->rssi_monitor_min = 0;
#endif
exit:
return ret;
}
void rtw_wdev_free(struct wireless_dev *wdev)
{
if (!wdev)
return;
RTW_INFO("%s(wdev=%p)\n", __func__, wdev);
if (wdev_to_ndev(wdev)) {
_adapter *adapter = (_adapter *)rtw_netdev_priv(wdev_to_ndev(wdev));
struct rtw_wdev_priv *wdev_priv = adapter_wdev_data(adapter);
_rtw_spinlock_free(&wdev_priv->scan_req_lock);
_rtw_spinlock_bh(&wdev_priv->connect_req_lock);
rtw_wdev_free_connect_req(wdev_priv);
_rtw_spinunlock_bh(&wdev_priv->connect_req_lock);
_rtw_spinlock_free(&wdev_priv->connect_req_lock);
_rtw_mutex_free(&wdev_priv->roch_mutex);
}
rtw_mfree((u8 *)wdev, sizeof(struct wireless_dev));
}
void rtw_wdev_unregister(struct wireless_dev *wdev)
{
struct net_device *ndev;
_adapter *adapter;
struct rtw_wdev_priv *pwdev_priv;
if (!wdev)
return;
RTW_INFO("%s(wdev=%p)\n", __func__, wdev);
ndev = wdev_to_ndev(wdev);
if (!ndev)
return;
adapter = (_adapter *)rtw_netdev_priv(ndev);
pwdev_priv = adapter_wdev_data(adapter);
rtw_cfg80211_indicate_scan_done(adapter, _TRUE);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0)) || defined(COMPAT_KERNEL_RELEASE)
if (wdev->current_bss) {
RTW_INFO(FUNC_ADPT_FMT" clear current_bss by cfg80211_disconnected\n", FUNC_ADPT_ARG(adapter));
rtw_cfg80211_indicate_disconnect(adapter, 0, 1);
}
#endif
if (pwdev_priv->pmon_ndev) {
RTW_INFO("%s, unregister monitor interface\n", __func__);
unregister_netdev(pwdev_priv->pmon_ndev);
}
}
int rtw_cfg80211_ndev_res_alloc(_adapter *adapter)
{
int ret = _FAIL;
if (rtw_wdev_alloc(adapter, adapter_to_wiphy(adapter)) == 0)
ret = _SUCCESS;
return ret;
}
void rtw_cfg80211_ndev_res_free(_adapter *adapter)
{
rtw_wdev_free(adapter->rtw_wdev);
adapter->rtw_wdev = NULL;
}
int rtw_cfg80211_ndev_res_register(_adapter *adapter)
{
return _SUCCESS;
}
void rtw_cfg80211_ndev_res_unregister(_adapter *adapter)
{
rtw_wdev_unregister(adapter->rtw_wdev);
}
int rtw_cfg80211_dev_res_alloc(struct dvobj_priv *dvobj)
{
int ret = _FAIL;
struct wiphy *wiphy;
struct device *dev = dvobj_to_dev(dvobj);
wiphy = rtw_wiphy_alloc(dvobj_get_primary_adapter(dvobj), dev);
if (wiphy == NULL)
return ret;
dvobj->wiphy = wiphy;
ret = _SUCCESS;
return ret;
}
void rtw_cfg80211_dev_res_free(struct dvobj_priv *dvobj)
{
rtw_wiphy_free(dvobj_to_wiphy(dvobj));
dvobj->wiphy = NULL;
}
int rtw_cfg80211_dev_res_register(struct dvobj_priv *dvobj)
{
int ret = _FAIL;
if (rtw_wiphy_register(dvobj_to_wiphy(dvobj)) != 0)
return ret;
#ifdef CONFIG_RFKILL_POLL
rtw_cfg80211_init_rfkill(dvobj_to_wiphy(dvobj));
#endif
ret = _SUCCESS;
return ret;
}
void rtw_cfg80211_dev_res_unregister(struct dvobj_priv *dvobj)
{
#ifdef CONFIG_RFKILL_POLL
rtw_cfg80211_deinit_rfkill(dvobj_to_wiphy(dvobj));
#endif
rtw_wiphy_unregister(dvobj_to_wiphy(dvobj));
}
#endif /* CONFIG_IOCTL_CFG80211 */
|
2301_81045437/rtl8852be
|
os_dep/linux/ioctl_cfg80211.c
|
C
|
agpl-3.0
| 324,383
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __IOCTL_CFG80211_H__
#define __IOCTL_CFG80211_H__
#define RTW_CFG80211_BLOCK_DISCON_WHEN_CONNECT BIT0
#define RTW_CFG80211_BLOCK_DISCON_WHEN_DISCONNECT BIT1
#ifndef RTW_CFG80211_BLOCK_STA_DISCON_EVENT
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0))
#define RTW_CFG80211_BLOCK_STA_DISCON_EVENT (RTW_CFG80211_BLOCK_DISCON_WHEN_CONNECT)
#else
#define RTW_CFG80211_BLOCK_STA_DISCON_EVENT (RTW_CFG80211_BLOCK_DISCON_WHEN_CONNECT | RTW_CFG80211_BLOCK_DISCON_WHEN_DISCONNECT)
#endif
#endif
#if defined(RTW_USE_CFG80211_STA_EVENT)
#undef CONFIG_CFG80211_FORCE_COMPATIBLE_2_6_37_UNDER
#endif
#ifndef RTW_P2P_GROUP_INTERFACE
#define RTW_P2P_GROUP_INTERFACE 0
#endif
/*
* (RTW_P2P_GROUP_INTERFACE, RTW_DEDICATED_P2P_DEVICE)
* (0, 0): wlan0 + p2p0(PD+PG)
* (1, 0): wlan0(with PD) + dynamic PGs
* (1, 1): wlan0 (with dynamic PD wdev) + dynamic PGs
*/
#if RTW_P2P_GROUP_INTERFACE
#ifndef CONFIG_RTW_DYNAMIC_NDEV
#define CONFIG_RTW_DYNAMIC_NDEV
#endif
#ifndef CONFIG_RADIO_WORK
#define CONFIG_RADIO_WORK
#endif
#endif
#ifdef CONFIG_RTW_DYNAMIC_NDEV
#ifdef RTW_DEDICATED_P2P_DEVICE
#ifdef CONFIG_RTW_STATIC_NDEV_NUM
#undef CONFIG_RTW_STATIC_NDEV_NUM
#endif
#endif
#ifndef CONFIG_RTW_STATIC_NDEV_NUM
#define CONFIG_RTW_STATIC_NDEV_NUM 1
#endif
#else
#ifdef CONFIG_RTW_STATIC_NDEV_NUM
#undef CONFIG_RTW_STATIC_NDEV_NUM
#endif
#endif
#ifndef CONFIG_RTW_STATIC_NDEV_NUM
#define CONFIG_RTW_STATIC_NDEV_NUM CONFIG_IFACE_NUMBER
#endif
#if !((CONFIG_RTW_STATIC_NDEV_NUM > 0) && \
(CONFIG_RTW_STATIC_NDEV_NUM <= CONFIG_IFACE_NUMBER))
#error "CONFIG_RTW_STATIC_NDEV_NUM our of range"
#endif
#if defined(CONFIG_P2P) && defined(CONFIG_SEL_P2P_IFACE) && \
!((CONFIG_SEL_P2P_IFACE >= 0) && (CONFIG_SEL_P2P_IFACE < CONFIG_RTW_STATIC_NDEV_NUM))
#error "CONFIG_SEL_P2P_IFACE our of range"
#endif
#ifndef CONFIG_RADIO_WORK
#define RTW_ROCH_DURATION_ENLARGE
#define RTW_ROCH_BACK_OP
#endif
#if !defined(CONFIG_P2P) && RTW_P2P_GROUP_INTERFACE
#error "RTW_P2P_GROUP_INTERFACE can't be enabled when CONFIG_P2P is disabled\n"
#endif
#ifdef CONFIG_SEL_P2P_IFACE
#if RTW_P2P_GROUP_INTERFACE
#error "CONFIG_SEL_P2P_IFACE has no effect when RTW_P2P_GROUP_INTERFACE is enabled"
#endif
#ifdef RTW_USE_CFG80211_REPORT_PROBE_REQ
#error "CONFIG_SEL_P2P_IFACE has no effect when RTW_USE_CFG80211_REPORT_PROBE_REQ is enabled"
#endif
#endif
#if !RTW_P2P_GROUP_INTERFACE && defined(RTW_DEDICATED_P2P_DEVICE)
#error "RTW_DEDICATED_P2P_DEVICE can't be enabled when RTW_P2P_GROUP_INTERFACE is disabled\n"
#endif
#if defined(RTW_DEDICATED_P2P_DEVICE) && (LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 0))
#error "RTW_DEDICATED_P2P_DEVICE can't be enabled when kernel < 3.7.0\n"
#endif
#ifdef CONFIG_RTW_MESH
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 10, 0))
#error "CONFIG_RTW_MESH can't be enabled when kernel < 3.10.0\n"
#endif
#endif
struct rtw_wdev_invit_info {
u8 state; /* 0: req, 1:rep */
u8 peer_mac[ETH_ALEN];
u8 group_bssid[ETH_ALEN];
u8 active;
u8 token;
u8 flags;
u8 status;
u8 req_op_ch;
u8 rsp_op_ch;
};
#define rtw_wdev_invit_info_init(invit_info) \
do { \
(invit_info)->state = 0xff; \
_rtw_memset((invit_info)->peer_mac, 0, ETH_ALEN); \
_rtw_memset((invit_info)->group_bssid, 0, ETH_ALEN); \
(invit_info)->active = 0xff; \
(invit_info)->token = 0; \
(invit_info)->flags = 0x00; \
(invit_info)->status = 0xff; \
(invit_info)->req_op_ch = 0; \
(invit_info)->rsp_op_ch = 0; \
} while (0)
struct rtw_wdev_nego_info {
u8 state; /* 0: req, 1:rep, 2:conf */
u8 iface_addr[ETH_ALEN];
u8 peer_mac[ETH_ALEN];
u8 peer_iface_addr[ETH_ALEN];
u8 active;
u8 token;
u8 status;
u8 req_intent;
u8 req_op_ch;
u8 req_listen_ch;
u8 rsp_intent;
u8 rsp_op_ch;
u8 conf_op_ch;
};
#define rtw_wdev_nego_info_init(nego_info) \
do { \
(nego_info)->state = 0xff; \
_rtw_memset((nego_info)->iface_addr, 0, ETH_ALEN); \
_rtw_memset((nego_info)->peer_mac, 0, ETH_ALEN); \
_rtw_memset((nego_info)->peer_iface_addr, 0, ETH_ALEN); \
(nego_info)->active = 0xff; \
(nego_info)->token = 0; \
(nego_info)->status = 0xff; \
(nego_info)->req_intent = 0xff; \
(nego_info)->req_op_ch = 0; \
(nego_info)->req_listen_ch = 0; \
(nego_info)->rsp_intent = 0xff; \
(nego_info)->rsp_op_ch = 0; \
(nego_info)->conf_op_ch = 0; \
} while (0)
struct rtw_wdev_priv {
struct wireless_dev *rtw_wdev;
_adapter *padapter;
#if RTW_CFG80211_BLOCK_STA_DISCON_EVENT
u8 not_indic_disco;
#endif
struct cfg80211_scan_request *scan_request;
_lock scan_req_lock;
struct cfg80211_connect_params *connect_req;
_lock connect_req_lock;
struct net_device *pmon_ndev;/* for monitor interface */
char ifname_mon[IFNAMSIZ + 1]; /* interface name for monitor interface */
u8 p2p_enabled;
systime probe_resp_ie_update_time;
struct rtw_wdev_invit_info invit_info;
struct rtw_wdev_nego_info nego_info;
bool block;
bool block_scan;
bool power_mgmt;
/**
* mgmt_regs: bitmap of management frame subtypes registered for the
* given interface
* mcast_mgmt_regs: mcast RX is needed on this interface for these
* subtypes
*/
u32 mgmt_regs;
/* u32 mcast_mgmt_regs; */
u8 is_mgmt_tx;
u16 mgmt_tx_cookie;
_mutex roch_mutex;
#ifdef CONFIG_RTW_CFGVENDOR_RANDOM_MAC_OUI
u8 pno_mac_addr[ETH_ALEN];
u16 pno_scan_seq_num;
#endif
#ifdef CONFIG_RTW_CFGVENDOR_RSSIMONITOR
s8 rssi_monitor_max;
s8 rssi_monitor_min;
u8 rssi_monitor_enable;
#endif
};
enum external_auth_action {
EXTERNAL_AUTH_START,
EXTERNAL_AUTH_ABORT,
};
struct rtw_external_auth_params {
enum external_auth_action action;
u8 bssid[ETH_ALEN]__aligned(2);
struct cfg80211_ssid ssid;
unsigned int key_mgmt_suite;
u16 status;
u8 pmkid[PMKID_LEN];
};
bool rtw_cfg80211_is_connect_requested(_adapter *adapter);
#if RTW_CFG80211_BLOCK_STA_DISCON_EVENT
#define rtw_wdev_not_indic_disco(rtw_wdev_data) ((rtw_wdev_data)->not_indic_disco)
#define rtw_wdev_set_not_indic_disco(rtw_wdev_data, val) do { (rtw_wdev_data)->not_indic_disco = (val); } while (0)
#else
#define rtw_wdev_not_indic_disco(rtw_wdev_data) 0
#define rtw_wdev_set_not_indic_disco(rtw_wdev_data, val) do {} while (0)
#endif
#define rtw_wdev_free_connect_req(rtw_wdev_data) \
do { \
if ((rtw_wdev_data)->connect_req) { \
rtw_mfree((u8 *)(rtw_wdev_data)->connect_req, sizeof(*(rtw_wdev_data)->connect_req)); \
(rtw_wdev_data)->connect_req = NULL; \
} \
} while (0)
#define wdev_to_ndev(w) ((w)->netdev)
#define wdev_to_wiphy(w) ((w)->wiphy)
#define ndev_to_wdev(n) ((n)->ieee80211_ptr)
struct rtw_wiphy_data {
struct dvobj_priv *dvobj;
#if defined(RTW_DEDICATED_P2P_DEVICE)
struct wireless_dev *pd_wdev; /* P2P device wdev */
#endif
_list async_regd_change_list;
_mutex async_regd_change_mutex;
_workitem async_regd_change_work;
};
#define rtw_wiphy_priv(wiphy) ((struct rtw_wiphy_data *)wiphy_priv(wiphy))
#define wiphy_to_dvobj(wiphy) (((struct rtw_wiphy_data *)wiphy_priv(wiphy))->dvobj)
#define wiphy_to_adapter(wiphy) (dvobj_get_primary_adapter(wiphy_to_dvobj(wiphy)))
#if defined(RTW_DEDICATED_P2P_DEVICE)
#define wiphy_to_pd_wdev(wiphy) (rtw_wiphy_priv(wiphy)->pd_wdev)
#else
#define wiphy_to_pd_wdev(wiphy) NULL
#endif
#define WIPHY_FMT "%s"
#define WIPHY_ARG(wiphy) wiphy_name(wiphy)
#define FUNC_WIPHY_FMT "%s("WIPHY_FMT")"
#define FUNC_WIPHY_ARG(wiphy) __func__, WIPHY_ARG(wiphy)
#define SET_CFG80211_MGMT_REGS(w, t) (w |= BIT(t >> 4))
#define CLR_CFG80211_MGMT_REGS(w, t) (w &= (~BIT(t >> 4)))
#define GET_CFG80211_MGMT_REGS(w, t) ((w & BIT(t >> 4)) > 0)
#define SET_CFG80211_REPORT_MGMT(w, t) (SET_CFG80211_MGMT_REGS(w->mgmt_regs, t))
#define CLR_CFG80211_REPORT_MGMT(w, t) (CLR_CFG80211_MGMT_REGS(w->mgmt_regs, t))
#define GET_CFG80211_REPORT_MGMT(w, t) (GET_CFG80211_MGMT_REGS(w->mgmt_regs, t))
struct wiphy *rtw_wiphy_alloc(_adapter *padapter, struct device *dev);
void rtw_wiphy_free(struct wiphy *wiphy);
int rtw_wiphy_register(struct wiphy *wiphy);
void rtw_wiphy_unregister(struct wiphy *wiphy);
int rtw_wdev_alloc(_adapter *padapter, struct wiphy *wiphy);
void rtw_wdev_free(struct wireless_dev *wdev);
void rtw_wdev_unregister(struct wireless_dev *wdev);
int rtw_cfg80211_ndev_res_alloc(_adapter *adapter);
void rtw_cfg80211_ndev_res_free(_adapter *adapter);
int rtw_cfg80211_ndev_res_register(_adapter *adapter);
void rtw_cfg80211_ndev_res_unregister(_adapter *adapter);
int rtw_cfg80211_dev_res_alloc(struct dvobj_priv *dvobj);
void rtw_cfg80211_dev_res_free(struct dvobj_priv *dvobj);
int rtw_cfg80211_dev_res_register(struct dvobj_priv *dvobj);
void rtw_cfg80211_dev_res_unregister(struct dvobj_priv *dvobj);
void rtw_cfg80211_unlink_bss(_adapter *padapter, struct wlan_network *pnetwork);
void rtw_cfg80211_surveydone_event_callback(_adapter *padapter);
struct cfg80211_bss *rtw_cfg80211_inform_bss(_adapter *padapter, struct wlan_network *pnetwork);
int rtw_cfg80211_check_bss(_adapter *padapter);
void rtw_cfg80211_ibss_indicate_connect(_adapter *padapter);
void rtw_cfg80211_indicate_connect(_adapter *padapter);
void rtw_cfg80211_indicate_disconnect(_adapter *padapter, u16 reason, u8 locally_generated);
void rtw_cfg80211_indicate_scan_done(_adapter *adapter, bool aborted);
u32 rtw_cfg80211_wait_scan_req_empty(_adapter *adapter, u32 timeout_ms);
#ifdef CONFIG_CONCURRENT_MODE
u8 rtw_cfg80211_scan_via_buddy(_adapter *padapter, struct cfg80211_scan_request *request);
void rtw_cfg80211_indicate_scan_done_for_buddy(_adapter *padapter, bool bscan_aborted);
#endif
#ifdef CONFIG_AP_MODE
void rtw_cfg80211_indicate_sta_assoc(_adapter *padapter, u8 *pmgmt_frame, uint frame_len);
void rtw_cfg80211_indicate_sta_disassoc(_adapter *padapter, const u8 *da, unsigned short reason);
#endif /* CONFIG_AP_MODE */
void rtw_cfg80211_set_is_roch(_adapter *adapter, bool val);
bool rtw_cfg80211_get_is_roch(_adapter *adapter);
bool rtw_cfg80211_is_ro_ch_once(_adapter *adapter);
void rtw_cfg80211_set_last_ro_ch_time(_adapter *adapter);
s32 rtw_cfg80211_get_last_ro_ch_passing_ms(_adapter *adapter);
#ifdef CONFIG_P2P
int rtw_cfg80211_iface_has_p2p_group_cap(_adapter *adapter);
int rtw_cfg80211_is_p2p_scan(_adapter *adapter);
#if defined(RTW_DEDICATED_P2P_DEVICE)
int rtw_cfg80211_redirect_pd_wdev(struct wiphy *wiphy, u8 *ra, struct wireless_dev **wdev);
int rtw_cfg80211_is_scan_by_pd_wdev(_adapter *adapter);
int rtw_pd_iface_alloc(struct wiphy *wiphy, const char *name, struct wireless_dev **pd_wdev);
void rtw_pd_iface_free(struct wiphy *wiphy);
#endif
#endif /* CONFIG_P2P */
void rtw_cfg80211_set_is_mgmt_tx(_adapter *adapter, u8 val);
u8 rtw_cfg80211_get_is_mgmt_tx(_adapter *adapter);
u8 rtw_mgnt_tx_handler(_adapter *adapter, u8 *buf);
void rtw_cfg80211_rx_p2p_action_public(_adapter *padapter, union recv_frame *rframe);
void rtw_cfg80211_rx_action_p2p(_adapter *padapter, union recv_frame *rframe);
void rtw_cfg80211_rx_action(_adapter *adapter, union recv_frame *rframe, const char *msg);
void rtw_cfg80211_rx_mframe(_adapter *adapter, union recv_frame *rframe, const char *msg);
void rtw_cfg80211_rx_probe_request(_adapter *padapter, union recv_frame *rframe);
void rtw_cfg80211_external_auth_request(_adapter *padapter, union recv_frame *rframe);
void rtw_cfg80211_external_auth_status(struct wiphy *wiphy, struct net_device *dev,
struct rtw_external_auth_params *params);
int rtw_cfg80211_set_mgnt_wpsp2pie(struct net_device *net, char *buf, int len, int type);
bool rtw_cfg80211_pwr_mgmt(_adapter *adapter);
#ifdef CONFIG_RTW_80211K
void rtw_cfg80211_rx_rrm_action(_adapter *adapter, union recv_frame *rframe);
#endif
#ifdef CONFIG_RFKILL_POLL
void rtw_cfg80211_init_rfkill(struct wiphy *wiphy);
void rtw_cfg80211_deinit_rfkill(struct wiphy *wiphy);
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 4, 0)) && !defined(COMPAT_KERNEL_RELEASE)
#define rtw_cfg80211_rx_mgmt(wdev, freq, sig_dbm, buf, len, gfp) cfg80211_rx_mgmt(wdev_to_ndev(wdev), freq, buf, len, gfp)
#elif (LINUX_VERSION_CODE < KERNEL_VERSION(3, 6, 0))
#define rtw_cfg80211_rx_mgmt(wdev, freq, sig_dbm, buf, len, gfp) cfg80211_rx_mgmt(wdev_to_ndev(wdev), freq, sig_dbm, buf, len, gfp)
#elif (LINUX_VERSION_CODE < KERNEL_VERSION(3, 12, 0))
#define rtw_cfg80211_rx_mgmt(wdev, freq, sig_dbm, buf, len, gfp) cfg80211_rx_mgmt(wdev, freq, sig_dbm, buf, len, gfp)
#elif (LINUX_VERSION_CODE < KERNEL_VERSION(3 , 18 , 0))
#define rtw_cfg80211_rx_mgmt(wdev , freq , sig_dbm , buf , len , gfp) cfg80211_rx_mgmt(wdev , freq , sig_dbm , buf , len , 0 , gfp)
#else
#define rtw_cfg80211_rx_mgmt(wdev , freq , sig_dbm , buf , len , gfp) cfg80211_rx_mgmt(wdev , freq , sig_dbm , buf , len , 0)
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 4, 0)) && !defined(COMPAT_KERNEL_RELEASE)
#define rtw_cfg80211_send_rx_assoc(adapter, bss, buf, len) cfg80211_send_rx_assoc((adapter)->pnetdev, buf, len)
#else
#define rtw_cfg80211_send_rx_assoc(adapter, bss, buf, len) cfg80211_send_rx_assoc((adapter)->pnetdev, bss, buf, len)
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 6, 0))
#define rtw_cfg80211_mgmt_tx_status(wdev, cookie, buf, len, ack, gfp) cfg80211_mgmt_tx_status(wdev_to_ndev(wdev), cookie, buf, len, ack, gfp)
#else
#define rtw_cfg80211_mgmt_tx_status(wdev, cookie, buf, len, ack, gfp) cfg80211_mgmt_tx_status(wdev, cookie, buf, len, ack, gfp)
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 6, 0))
#define rtw_cfg80211_ready_on_channel(wdev, cookie, chan, channel_type, duration, gfp) cfg80211_ready_on_channel(wdev_to_ndev(wdev), cookie, chan, channel_type, duration, gfp)
#define rtw_cfg80211_remain_on_channel_expired(wdev, cookie, chan, chan_type, gfp) cfg80211_remain_on_channel_expired(wdev_to_ndev(wdev), cookie, chan, chan_type, gfp)
#elif (LINUX_VERSION_CODE < KERNEL_VERSION(3, 8, 0))
#define rtw_cfg80211_ready_on_channel(wdev, cookie, chan, channel_type, duration, gfp) cfg80211_ready_on_channel(wdev, cookie, chan, channel_type, duration, gfp)
#define rtw_cfg80211_remain_on_channel_expired(wdev, cookie, chan, chan_type, gfp) cfg80211_remain_on_channel_expired(wdev, cookie, chan, chan_type, gfp)
#else
#define rtw_cfg80211_ready_on_channel(wdev, cookie, chan, channel_type, duration, gfp) cfg80211_ready_on_channel(wdev, cookie, chan, duration, gfp)
#define rtw_cfg80211_remain_on_channel_expired(wdev, cookie, chan, chan_type, gfp) cfg80211_remain_on_channel_expired(wdev, cookie, chan, gfp)
#endif
#define rtw_cfg80211_connect_result(wdev, bssid, req_ie, req_ie_len, resp_ie, resp_ie_len, status, gfp) cfg80211_connect_result(wdev_to_ndev(wdev), bssid, req_ie, req_ie_len, resp_ie, resp_ie_len, status, gfp)
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 2, 0))
#define rtw_cfg80211_disconnected(wdev, reason, ie, ie_len, locally_generated, gfp) cfg80211_disconnected(wdev_to_ndev(wdev), reason, ie, ie_len, gfp)
#else
#define rtw_cfg80211_disconnected(wdev, reason, ie, ie_len, locally_generated, gfp) cfg80211_disconnected(wdev_to_ndev(wdev), reason, ie, ie_len, locally_generated, gfp)
#endif
#ifdef CONFIG_RTW_80211R
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 0))
#define rtw_cfg80211_ft_event(adapter, parm) cfg80211_ft_event((adapter)->pnetdev, parm)
#else
#error "Cannot support FT for KERNEL_VERSION < 3.10\n"
#endif
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 0, 0))
#define rtw_cfg80211_notify_new_peer_candidate(wdev, addr, ie, ie_len, sig_dbm, gfp) cfg80211_notify_new_peer_candidate(wdev_to_ndev(wdev), addr, ie, ie_len, sig_dbm, gfp)
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0))
#define rtw_cfg80211_notify_new_peer_candidate(wdev, addr, ie, ie_len, sig_dbm, gfp) cfg80211_notify_new_peer_candidate(wdev_to_ndev(wdev), addr, ie, ie_len, gfp)
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0))
u8 rtw_cfg80211_ch_switch_notify(_adapter *adapter, u8 ch, u8 bw, u8 offset, u8 ht, bool started);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) && (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31))
#define IEEE80211_CHAN_NO_HT40PLUS IEEE80211_CHAN_NO_FAT_ABOVE
#define IEEE80211_CHAN_NO_HT40MINUS IEEE80211_CHAN_NO_FAT_BELOW
#endif
#if !defined(CPTCFG_VERSION) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 26)) && (LINUX_VERSION_CODE < KERNEL_VERSION(4, 7, 0))
#define NL80211_BAND_2GHZ IEEE80211_BAND_2GHZ
#define NL80211_BAND_5GHZ IEEE80211_BAND_5GHZ
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0))
#define NL80211_BAND_60GHZ IEEE80211_BAND_60GHZ
#endif
#define NUM_NL80211_BANDS IEEE80211_NUM_BANDS
#endif
extern enum nl80211_band _rtw_band_to_nl80211_band[];
#define rtw_band_to_nl80211_band(band) (((band) < BAND_MAX) ? _rtw_band_to_nl80211_band[(band)] : NUM_NL80211_BANDS)
extern enum band_type _nl80211_band_to_rtw_band[];
#define nl80211_band_to_rtw_band(band) (((band) < NUM_NL80211_BANDS) ? _nl80211_band_to_rtw_band[(band)] : BAND_MAX)
#include "wifi_regd.h"
#include "rtw_cfgvendor.h"
#endif /* __IOCTL_CFG80211_H__ */
|
2301_81045437/rtl8852be
|
os_dep/linux/ioctl_cfg80211.h
|
C
|
agpl-3.0
| 17,447
|
/******************************************************************************
*
* Copyright(c) 2007 - 2020 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#if defined(CONFIG_MP_INCLUDED)
#include <rtw_efuse.h>
void rtw_efuse_cmd(_adapter *padapter,
struct rtw_efuse_phl_arg *pefuse_arg ,
enum rtw_efuse_phl_cmdid cmdid)
{
u32 i = 0;
pefuse_arg->mp_class = RTW_MP_CLASS_EFUSE;
pefuse_arg->cmd = cmdid;
pefuse_arg->cmd_ok = 0;
rtw_mp_set_phl_cmd(padapter, (void*)pefuse_arg, sizeof(struct rtw_efuse_phl_arg));
while (i <= 10) {
rtw_msleep_os(50);
rtw_mp_get_phl_cmd(padapter, (void*)pefuse_arg, sizeof(struct rtw_efuse_phl_arg));
if (pefuse_arg->cmd_ok && pefuse_arg->status == RTW_PHL_STATUS_SUCCESS) {
RTW_INFO("%s,eFuse GET CMD OK !!!\n", __func__);
break;
} else {
rtw_msleep_os(10);
if (i > 10) {
RTW_INFO("%s, eFuse GET CMD FAIL !!!\n", __func__);
break;
}
i++;
}
}
}
u32 rtw_efuse_get_map_size(_adapter *padapter , u16 *size , enum rtw_efuse_phl_cmdid cmdid)
{
struct rtw_efuse_phl_arg *efuse_arg = NULL;
u8 res = _FAIL;
efuse_arg = _rtw_malloc(sizeof(struct rtw_efuse_phl_arg));
if (efuse_arg) {
_rtw_memset((void *)efuse_arg, 0, sizeof(struct rtw_efuse_phl_arg));
rtw_efuse_cmd(padapter, efuse_arg, cmdid);
if (efuse_arg->cmd_ok && efuse_arg->status == RTW_PHL_STATUS_SUCCESS) {
*size = efuse_arg->io_value;
res = _SUCCESS;
} else {
*size = 0;
res = _FAIL;
}
}
if (efuse_arg)
_rtw_mfree(efuse_arg, sizeof(struct rtw_efuse_phl_arg));
return res;
}
u32 rtw_efuse_get_available_size(_adapter *padapter , u16 *size, u8 efuse_type)
{
struct rtw_efuse_phl_arg *efuse_arg = NULL;
u8 res = _FAIL;
efuse_arg = _rtw_malloc(sizeof(struct rtw_efuse_phl_arg));
if (efuse_arg) {
_rtw_memset((void *)efuse_arg, 0, sizeof(struct rtw_efuse_phl_arg));
if (efuse_type == RTW_EFUSE_WIFI)
rtw_efuse_cmd(padapter, efuse_arg, RTW_EFUSE_CMD_WIFI_GET_AVL_SIZE);
else
rtw_efuse_cmd(padapter, efuse_arg, RTW_EFUSE_CMD_BT_GET_AVL_SIZE);
if (efuse_arg->cmd_ok && efuse_arg->status == RTW_PHL_STATUS_SUCCESS) {
*size = efuse_arg->io_value;
res = _SUCCESS;
} else {
*size = 0;
res = _FAIL;
}
}
if (efuse_arg)
_rtw_mfree(efuse_arg, sizeof(struct rtw_efuse_phl_arg));
return res;
}
static u8 rtw_efuse_fake2map(_adapter *padapter, u8 efuse_type)
{
struct rtw_efuse_phl_arg *efuse_arg = NULL;
u8 res = _SUCCESS;
efuse_arg = _rtw_malloc(sizeof(struct rtw_efuse_phl_arg));
if (efuse_arg) {
_rtw_memset((void *)efuse_arg, 0, sizeof(struct rtw_efuse_phl_arg));
if (efuse_type == RTW_EFUSE_WIFI)
rtw_efuse_cmd(padapter, efuse_arg, RTW_EFUSE_CMD_WIFI_UPDATE);
else if (efuse_type == RTW_EFUSE_BT)
rtw_efuse_cmd(padapter, efuse_arg, RTW_EFUSE_CMD_BT_UPDATE);
if (efuse_arg->cmd_ok && efuse_arg->status == RTW_PHL_STATUS_SUCCESS)
res = _SUCCESS;
else
res = _FAIL;
}
if (efuse_arg)
_rtw_mfree(efuse_arg, sizeof(struct rtw_efuse_phl_arg));
return res;
}
static u8 rtw_efuse_read_map2shadow(_adapter *padapter, u8 efuse_type)
{
struct rtw_efuse_phl_arg *efuse_arg = NULL;
u8 res = _SUCCESS;
efuse_arg = _rtw_malloc(sizeof(struct rtw_efuse_phl_arg));
if (efuse_arg) {
_rtw_memset((void *)efuse_arg, 0, sizeof(struct rtw_efuse_phl_arg));
if (efuse_type == RTW_EFUSE_WIFI)
rtw_efuse_cmd(padapter, efuse_arg, RTW_EFUSE_CMD_WIFI_UPDATE_MAP);
else if (efuse_type == RTW_EFUSE_BT)
rtw_efuse_cmd(padapter, efuse_arg, RTW_EFUSE_CMD_BT_UPDATE_MAP);
if (efuse_arg->cmd_ok && efuse_arg->status == RTW_PHL_STATUS_SUCCESS)
res = _SUCCESS;
else
res = _FAIL;
}
if (efuse_arg)
_rtw_mfree(efuse_arg, sizeof(struct rtw_efuse_phl_arg));
return res;
}
static u8 rtw_efuse_get_shadow_map(_adapter *padapter, u8 *map, u16 size, u8 efuse_type)
{
struct rtw_efuse_phl_arg *efuse_arg = NULL;
u8 res = _FAIL;
efuse_arg = _rtw_malloc(sizeof(struct rtw_efuse_phl_arg));
if (efuse_arg) {
efuse_arg->buf_len = size;
if (efuse_type == RTW_EFUSE_WIFI)
rtw_efuse_cmd(padapter, efuse_arg, RTW_EFUSE_CMD_SHADOW_MAP2BUF);
else if (efuse_type == RTW_EFUSE_BT)
rtw_efuse_cmd(padapter, efuse_arg, RTW_EFUSE_CMD_BT_SHADOW_MAP2BUF);
if (efuse_arg->cmd_ok && efuse_arg->status == RTW_PHL_STATUS_SUCCESS) {
_rtw_memcpy((void *)map, efuse_arg->poutbuf, size);
res = _SUCCESS;
} else
res = _FAIL;
}
if (efuse_arg)
_rtw_mfree(efuse_arg, sizeof(struct rtw_efuse_phl_arg));
return res;
}
static u8 rtw_efuse_renew_update(_adapter *padapter, u8 efuse_type)
{
struct rtw_efuse_phl_arg *efuse_arg = NULL;
u8 res = _SUCCESS;
efuse_arg = _rtw_malloc(sizeof(struct rtw_efuse_phl_arg));
if (efuse_arg) {
_rtw_memset((void *)efuse_arg, 0, sizeof(struct rtw_efuse_phl_arg));
if (efuse_type == RTW_EFUSE_WIFI)
rtw_efuse_cmd(padapter, efuse_arg, RTW_MP_EFUSE_CMD_WIFI_SET_RENEW);
else if (efuse_type == RTW_EFUSE_BT)
RTW_INFO("halmac_get_logical_efuse_size fail\n");
if (efuse_arg->cmd_ok && efuse_arg->status == RTW_PHL_STATUS_SUCCESS)
res = _SUCCESS;
else
res = _FAIL;
}
if (efuse_arg)
_rtw_mfree(efuse_arg, sizeof(struct rtw_efuse_phl_arg));
return res;
}
u8 rtw_efuse_map_read(_adapter * adapter, u16 addr, u16 cnts, u8 *data, u8 efuse_type)
{
struct dvobj_priv *d;
u8 *efuse = NULL;
u16 size, i;
int err = _FAIL;
u8 status = _SUCCESS;
if (efuse_type == RTW_EFUSE_WIFI)
err = rtw_efuse_get_map_size(adapter, &size, RTW_EFUSE_CMD_WIFI_GET_LOG_SIZE);
else if (efuse_type == RTW_EFUSE_BT)
err = rtw_efuse_get_map_size(adapter, &size, RTW_EFUSE_CMD_BT_GET_LOG_SIZE);
if (err == _FAIL) {
status = _FAIL;
RTW_INFO("halmac_get_logical_efuse_size fail\n");
goto exit;
}
/* size error handle */
if ((addr + cnts) > size) {
if (addr < size)
cnts = size - addr;
else {
status = _FAIL;
RTW_INFO(" %s() ,addr + cnts) > size fail\n", __func__);
goto exit;
}
}
efuse = rtw_zmalloc(size);
if (efuse) {
if (rtw_efuse_read_map2shadow(adapter, efuse_type) == _SUCCESS) {
err = rtw_efuse_get_shadow_map(adapter, efuse, size, efuse_type);
if (err == _FAIL) {
rtw_mfree(efuse, size);
status = _FAIL;
RTW_INFO(" %s() ,halmac_read_logical_efus map fail\n", __func__);
goto exit;
}
} else {
RTW_INFO(" %s() ,rtw_efuse_read_map2shadow FAIL !!!\n", __func__);
rtw_mfree(efuse, size);
status = _FAIL;
goto exit;
}
if (efuse) {
RTW_INFO(" %s() ,cp efuse to data\n", __func__);
_rtw_memcpy(data, efuse + addr, cnts);
rtw_mfree(efuse, size);
}
} else {
RTW_INFO(" %s() ,alloc efuse fail\n", __func__);
goto exit;
}
status = _SUCCESS;
exit:
return status;
}
u8 rtw_efuse_map_write(_adapter * adapter, u16 addr, u16 cnts, u8 *data, u8 efuse_type, u8 bpg)
{
struct dvobj_priv *d;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
u16 size;
int err = _FAIL;
u8 mask_buf[64] = "";
u32 backupRegs[4] = {0};
u8 status = _SUCCESS;
struct rtw_efuse_phl_arg *efuse_arg = NULL;
u16 i = 0;
efuse_arg = rtw_zmalloc(sizeof(struct rtw_efuse_phl_arg));
if (efuse_type == RTW_EFUSE_WIFI)
err = rtw_efuse_get_map_size(adapter, &size, RTW_EFUSE_CMD_WIFI_GET_LOG_SIZE);
else if (efuse_type == RTW_EFUSE_BT)
err = rtw_efuse_get_map_size(adapter, &size, RTW_EFUSE_CMD_BT_GET_LOG_SIZE);
if (err == _FAIL) {
status = _FAIL;
goto exit;
}
if ((addr + cnts) > size) {
status = _FAIL;
goto exit;
}
if (efuse_type == RTW_EFUSE_WIFI) {
while (i != cnts) {
efuse_arg->io_type = 1;
efuse_arg->io_offset = addr + i;
efuse_arg->io_value = data[i];
rtw_efuse_cmd(adapter, efuse_arg, RTW_EFUSE_CMD_WIFI_WRITE);
if (i > cnts)
break;
i++;
}
} else if (efuse_type == RTW_EFUSE_BT) {
while (i != cnts) {
efuse_arg->io_type = 1;
efuse_arg->io_offset = addr + i;
efuse_arg->io_value = data[i];
rtw_efuse_cmd(adapter, efuse_arg, RTW_EFUSE_CMD_BT_WRITE);
if (i > cnts)
break;
i++;
}
}
if (bpg) {
RTW_INFO(" in PG state !!!\n");
if (efuse_type == RTW_EFUSE_WIFI)
err = rtw_efuse_fake2map(adapter, efuse_type);
else if (efuse_type == RTW_EFUSE_BT) {
u8 reg2chkbt = 0;
rtw_phl_write8(dvobj->phl, 0xa3, 0x05);
rtw_msleep_os(10);
reg2chkbt = rtw_phl_read8(dvobj->phl, 0xa0);
if (reg2chkbt != 0x04) {
RTW_ERR("BT State not Active:0x%x ,can't Write \n", reg2chkbt);
goto exit;
}
err = rtw_efuse_fake2map(adapter, efuse_type);
}
if (err == _FAIL) {
status = _FAIL;
goto exit;
}
}
status = _SUCCESS;
exit :
if (efuse_arg)
_rtw_mfree(efuse_arg, sizeof(struct rtw_efuse_phl_arg));
return status;
}
static u8 rtw_efuse_map_file_load(_adapter *padapter, u8 *filepath, u8 efuse_type)
{
struct rtw_efuse_phl_arg *efuse_arg = NULL;
u8 res = _FAIL;
if (filepath) {
RTW_INFO("efuse file path %s len %zu", filepath, strlen(filepath));
efuse_arg = _rtw_malloc(sizeof(struct rtw_efuse_phl_arg));
if (efuse_arg) {
_rtw_memset((void *)efuse_arg, 0, sizeof(struct rtw_efuse_phl_arg));
_rtw_memcpy(efuse_arg->pfile_path, filepath, strlen(filepath));
if (efuse_type == RTW_EFUSE_WIFI)
rtw_efuse_cmd(padapter, efuse_arg, RTW_EFUSE_CMD_FILE_MAP_LOAD);
else
rtw_efuse_cmd(padapter, efuse_arg, RTW_EFUSE_CMD_BT_FILE_MAP_LOAD);
}
}
if (efuse_arg->cmd_ok && efuse_arg->status == RTW_PHL_STATUS_SUCCESS)
res = _SUCCESS;
else
res = _FAIL;
if (efuse_arg)
_rtw_mfree(efuse_arg, sizeof(struct rtw_efuse_phl_arg));
return res;
}
static u8 rtw_efuse_mask_file_load(_adapter *padapter, u8 *filepath, u8 efuse_type)
{
struct rtw_efuse_phl_arg *efuse_arg = NULL;
u8 res = _FAIL;
if (filepath) {
RTW_INFO("efuse file path %s len %zu", filepath, strlen(filepath));
efuse_arg = _rtw_malloc(sizeof(struct rtw_efuse_phl_arg));
if (efuse_arg) {
_rtw_memset((void *)efuse_arg, 0, sizeof(struct rtw_efuse_phl_arg));
_rtw_memcpy(efuse_arg->pfile_path, filepath, strlen(filepath));
if (efuse_type == RTW_EFUSE_WIFI)
rtw_efuse_cmd(padapter, efuse_arg, RTW_EFUSE_CMD_FILE_MASK_LOAD);
else
rtw_efuse_cmd(padapter, efuse_arg, RTW_EFUSE_CMD_BT_FILE_MASK_LOAD);
}
}
if (efuse_arg->cmd_ok && efuse_arg->status == RTW_PHL_STATUS_SUCCESS)
res = _SUCCESS;
else
res = _FAIL;
if (efuse_arg)
_rtw_mfree(efuse_arg, sizeof(struct rtw_efuse_phl_arg));
return res;
}
int rtw_ioctl_efuse_get(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
char *pch, *ptmp, *token, *tmp[3] = {0x00, 0x00, 0x00};
u16 i = 0, j = 0, mapLen = 0, addr = 0, cnts = 0;
int err = 0;
char *pextra = NULL;
u8 *pre_efuse_map = NULL;
u16 max_available_len = 0;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length)) {
err = -EFAULT;
goto exit;
}
*(extra + wrqu->data.length) = '\0';
pch = extra;
RTW_INFO("%s: in=%s\n", __FUNCTION__, extra);
i = 0;
/* mac 16 "00e04c871200" rmap,00,2 */
while ((token = strsep(&pch, ",")) != NULL) {
if (i > 2)
break;
tmp[i] = token;
i++;
}
pre_efuse_map = rtw_zmalloc(RTW_MAX_EFUSE_MAP_LEN);
if (pre_efuse_map == NULL)
goto exit;
if (strcmp(tmp[0], "status") == 0) {
//sprintf(extra, "Load File efuse=%s,Load File MAC=%s"
// , efuse->file_status == EFUSE_FILE_FAILED ? "FAIL" : "OK"
// , pHalData->macaddr_file_status == MACADDR_FILE_FAILED ? "FAIL" : "OK"
// );
goto exit;
} else if (strcmp(tmp[0], "drvmap") == 0) {
static u8 drvmaporder = 0;
u8 *efuse_data = NULL;
u32 shift, cnt;
u32 blksz = 0x200; /* The size of one time show, default 512 */
//EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE);
//efuse_data = efuse->data;
shift = blksz * drvmaporder;
efuse_data += shift;
cnt = mapLen - shift;
if (cnt > blksz) {
cnt = blksz;
drvmaporder++;
} else
drvmaporder = 0;
sprintf(extra, "\n");
for (i = 0; i < cnt; i += 16) {
pextra = extra + strlen(extra);
pextra += sprintf(pextra, "0x%02x\t", shift + i);
for (j = 0; j < 8; j++)
pextra += sprintf(pextra, "%02X ", efuse_data[i + j]);
pextra += sprintf(pextra, "\t");
for (; j < 16; j++)
pextra += sprintf(pextra, "%02X ", efuse_data[i + j]);
pextra += sprintf(pextra, "\n");
}
if ((shift + cnt) < mapLen)
pextra += sprintf(pextra, "\t...more (left:%d/%d)\n", mapLen-(shift + cnt), mapLen);
} else if (strcmp(tmp[0], "realmap") == 0) {
static u8 order = 0;
u32 shift, cnt;
u32 blksz = 0x200; /* The size of one time show, default 512 */
u8 *efuse_data = NULL;
rtw_efuse_get_map_size(padapter, &mapLen, RTW_EFUSE_CMD_WIFI_GET_LOG_SIZE);
if (pre_efuse_map) {
if (rtw_efuse_map_read(padapter, 0, mapLen, pre_efuse_map, RTW_EFUSE_WIFI) == _FAIL) {
RTW_INFO("%s: read realmap Fail!!\n", __FUNCTION__);
err = -EFAULT;
} else {
efuse_data = pre_efuse_map;
_rtw_memset(extra, '\0', strlen(extra));
shift = blksz * order;
efuse_data += shift;
cnt = mapLen - shift;
if (cnt > blksz) {
cnt = blksz;
order++;
} else
order = 0;
sprintf(extra, "\n");
for (i = 0; i < cnt; i += 16) {
pextra = extra + strlen(extra);
pextra += sprintf(pextra, "0x%02x\t", shift + i);
for (j = 0; j < 8; j++)
pextra += sprintf(pextra, "%02X ", efuse_data[i + j]);
pextra += sprintf(pextra, "\t");
for (; j < 16; j++)
pextra += sprintf(pextra, "%02X ", efuse_data[i + j]);
pextra += sprintf(pextra, "\n");
if (strlen(extra) > 0x7FF)
break;
}
if ((shift + cnt) < mapLen)
pextra += sprintf(pextra, "\t...more (left:%d/%d)\n", mapLen - (shift + cnt), mapLen);
}
}
} else if (strcmp(tmp[0], "rmap") == 0) {
u8 *data = NULL;
if ((tmp[1] == NULL) || (tmp[2] == NULL)) {
RTW_INFO("%s: rmap Fail!! Parameters error!\n", __FUNCTION__);
err = -EINVAL;
goto exit;
}
/* rmap addr cnts */
addr = simple_strtoul(tmp[1], &ptmp, 16);
RTW_INFO("%s: addr=%x\n", __FUNCTION__, addr);
cnts = simple_strtoul(tmp[2], &ptmp, 10);
if (cnts == 0) {
RTW_INFO("%s: rmap Fail!! cnts error!\n", __FUNCTION__);
err = -EINVAL;
goto exit;
}
RTW_INFO("%s: cnts=%d\n", __FUNCTION__, cnts);
rtw_efuse_get_map_size(padapter, &mapLen, RTW_EFUSE_CMD_WIFI_GET_LOG_SIZE);
if ((addr + cnts) > mapLen) {
RTW_INFO("%s: addr(0x%X)+cnts(%d) over mapLen %d parameter error!\n", __FUNCTION__, addr, cnts, mapLen);
err = -EINVAL;
goto exit;
}
if (pre_efuse_map) {
if (rtw_efuse_map_read(padapter, addr, cnts, pre_efuse_map, RTW_EFUSE_WIFI) == _FAIL) {
RTW_INFO("%s: rtw_efuse_map_read Fail!!\n", __FUNCTION__);
err = -EFAULT;
} else {
data = pre_efuse_map;
*extra = 0;
pextra = extra;
for (i = 0; i < cnts; i++) {
pextra += sprintf(pextra, "0x%02X ", data[i]);
}
}
}
} else if (strcmp(tmp[0], "wlrfkmap") == 0) {
static u8 order = 0;
u32 shift, cnt;
u32 blksz = 0x200; /* The size of one time show, default 512 */
u8 *efuse_data = NULL;
rtw_efuse_get_map_size(padapter, &mapLen, RTW_EFUSE_CMD_WIFI_GET_LOG_SIZE);
if (pre_efuse_map) {
if (rtw_efuse_get_shadow_map(padapter, pre_efuse_map, mapLen, RTW_EFUSE_WIFI) == _FAIL) {
RTW_INFO("%s: read wifi fake map Fail!!\n", __FUNCTION__);
err = -EFAULT;
} else {
efuse_data = pre_efuse_map;
_rtw_memset(extra, '\0', strlen(extra));
shift = blksz * order;
efuse_data += shift;
cnt = mapLen - shift;
if (cnt > blksz) {
cnt = blksz;
order++;
} else
order = 0;
sprintf(extra, "\n");
for (i = 0; i < cnt; i += 16) {
pextra = extra + strlen(extra);
pextra += sprintf(pextra, "0x%02x\t", shift + i);
for (j = 0; j < 8; j++)
pextra += sprintf(pextra, "%02X ", efuse_data[i + j]);
pextra += sprintf(pextra, "\t");
for (; j < 16; j++)
pextra += sprintf(pextra, "%02X ", efuse_data[i + j]);
pextra += sprintf(pextra, "\n");
if (strlen(extra) > 0x7FF)
break;
}
if ((shift + cnt) < mapLen)
pextra += sprintf(pextra, "\t...more (left:%d/%d)\n", mapLen - (shift + cnt), mapLen);
}
}
} else if (strcmp(tmp[0], "wlrfkrmap") == 0) {
u8 *data = NULL;
if ((tmp[1] == NULL) || (tmp[2] == NULL)) {
RTW_INFO("%s: rmap Fail!! Parameters error!\n", __FUNCTION__);
err = -EINVAL;
goto exit;
}
/* rmap addr cnts */
addr = simple_strtoul(tmp[1], &ptmp, 16);
RTW_INFO("%s: addr=%x\n", __FUNCTION__, addr);
cnts = simple_strtoul(tmp[2], &ptmp, 10);
if (cnts == 0) {
RTW_INFO("%s: rmap Fail!! cnts error!\n", __FUNCTION__);
err = -EINVAL;
goto exit;
}
RTW_INFO("%s: cnts=%d\n", __FUNCTION__, cnts);
rtw_efuse_get_map_size(padapter, &mapLen, RTW_EFUSE_CMD_WIFI_GET_LOG_SIZE);
if ((addr + cnts) > mapLen) {
RTW_INFO("%s: addr(0x%X)+cnts(%d) over mapLen %d parameter error!\n", __FUNCTION__, addr, cnts, mapLen);
err = -EINVAL;
goto exit;
}
if (pre_efuse_map) {
if (rtw_efuse_get_shadow_map(padapter, pre_efuse_map, mapLen, RTW_EFUSE_WIFI) == _FAIL) {
RTW_INFO("%s: read wifi fake map Fail!!\n", __FUNCTION__);
err = -EFAULT;
} else {
data = pre_efuse_map;
*extra = 0;
pextra = extra;
for (i = addr; i < addr + cnts; i++)
pextra += sprintf(pextra, "0x%02X ", data[i]);
}
}
} else if (strcmp(tmp[0], "btrealmap") == 0) {
static u8 order = 0;
u32 shift, cnt;
u32 blksz = 0x200; /* The size of one time show, default 512 */
u8 *efuse_data = NULL;
rtw_efuse_get_map_size(padapter, &mapLen, RTW_EFUSE_CMD_BT_GET_LOG_SIZE);
if (pre_efuse_map) {
if (rtw_efuse_map_read(padapter, 0, mapLen, pre_efuse_map, RTW_EFUSE_BT) == _FAIL) {
RTW_INFO("%s: read BT realmap Fail!!\n", __FUNCTION__);
err = -EFAULT;
} else {
efuse_data = pre_efuse_map;
_rtw_memset(extra, '\0', strlen(extra));
shift = blksz * order;
efuse_data += shift;
cnt = mapLen - shift;
if (cnt > blksz) {
cnt = blksz;
order++;
} else
order = 0;
sprintf(extra, "\n");
for (i = 0; i < cnt; i += 16) {
pextra = extra + strlen(extra);
pextra += sprintf(pextra, "0x%02x\t", shift + i);
for (j = 0; j < 8; j++)
pextra += sprintf(pextra, "%02X ", efuse_data[i + j]);
pextra += sprintf(pextra, "\t");
for (; j < 16; j++)
pextra += sprintf(pextra, "%02X ", efuse_data[i + j]);
pextra += sprintf(pextra, "\n");
if (strlen(extra) > 0x7FF)
break;
}
if ((shift + cnt) < mapLen)
pextra += sprintf(pextra, "\t...more (left:%d/%d)\n", mapLen - (shift + cnt), mapLen);
}
}
} else if (strcmp(tmp[0], "btrmap") == 0) {
u8 *data = NULL;
if ((tmp[1] == NULL) || (tmp[2] == NULL)) {
RTW_INFO("%s: btrmap Fail!! Parameters error!\n", __FUNCTION__);
err = -EINVAL;
goto exit;
}
/* rmap addr cnts */
addr = simple_strtoul(tmp[1], &ptmp, 16);
RTW_INFO("%s: addr=%x\n", __FUNCTION__, addr);
cnts = simple_strtoul(tmp[2], &ptmp, 10);
if (cnts == 0) {
RTW_INFO("%s: btrmap Fail!! cnts error!\n", __FUNCTION__);
err = -EINVAL;
goto exit;
}
RTW_INFO("%s: cnts=%d\n", __FUNCTION__, cnts);
rtw_efuse_get_map_size(padapter, &mapLen, RTW_EFUSE_CMD_BT_GET_LOG_SIZE);
if ((addr + cnts) > mapLen) {
RTW_INFO("%s: addr(0x%X)+cnts(%d) over mapLen %d parameter error!\n", __FUNCTION__, addr, cnts, mapLen);
err = -EINVAL;
goto exit;
}
if (pre_efuse_map) {
if (rtw_efuse_map_read(padapter, addr, cnts, pre_efuse_map, RTW_EFUSE_BT) == _FAIL) {
RTW_INFO("%s: rtw_efuse_map_read Fail!!\n", __FUNCTION__);
err = -EFAULT;
} else {
data = pre_efuse_map;
*extra = 0;
pextra = extra;
for (i = 0; i < cnts; i++)
pextra += sprintf(pextra, "0x%02X ", data[i]);
}
}
} else if (strcmp(tmp[0], "btrfkmap") == 0) {
static u8 order = 0;
u32 shift, cnt;
u32 blksz = 0x200; /* The size of one time show, default 512 */
u8 *efuse_data = NULL;
rtw_efuse_get_map_size(padapter, &mapLen, RTW_EFUSE_CMD_BT_GET_LOG_SIZE);
if (pre_efuse_map) {
if (rtw_efuse_get_shadow_map(padapter, pre_efuse_map, mapLen, RTW_EFUSE_BT) == _FAIL) {
RTW_INFO("%s: read BT fake map Fail!!\n", __FUNCTION__);
err = -EFAULT;
} else {
efuse_data = pre_efuse_map;
_rtw_memset(extra, '\0', strlen(extra));
shift = blksz * order;
efuse_data += shift;
cnt = mapLen - shift;
if (cnt > blksz) {
cnt = blksz;
order++;
} else
order = 0;
sprintf(extra, "\n");
for (i = 0; i < cnt; i += 16) {
pextra = extra + strlen(extra);
pextra += sprintf(pextra, "0x%02x\t", shift + i);
for (j = 0; j < 8; j++)
pextra += sprintf(pextra, "%02X ", efuse_data[i + j]);
pextra += sprintf(pextra, "\t");
for (; j < 16; j++)
pextra += sprintf(pextra, "%02X ", efuse_data[i + j]);
pextra += sprintf(pextra, "\n");
if (strlen(extra) > 0x7FF)
break;
}
if ((shift + cnt) < mapLen)
pextra += sprintf(pextra, "\t...more (left:%d/%d)\n", mapLen - (shift + cnt), mapLen);
}
}
} else if (strcmp(tmp[0], "ableraw") == 0) {
rtw_efuse_get_available_size(padapter, &max_available_len, RTW_EFUSE_WIFI);
sprintf(extra, "[WIFI available raw size]= %d bytes\n", max_available_len);
} else if (strcmp(tmp[0], "btableraw") == 0) {
rtw_efuse_get_available_size(padapter, &max_available_len, RTW_EFUSE_BT);
sprintf(extra, "[BT available raw size]= %d bytes\n", max_available_len);
} else if (strcmp(tmp[0], "realraw") == 0) {
static u8 raw_order = 0;
u32 shift, cnt;
u32 blksz = 0x200; /* The size of one time show, default 512 */
u8 *realraw_map_data = NULL;
rtw_efuse_get_map_size(padapter, &mapLen, RTW_EFUSE_CMD_WIFI_GET_SIZE);
if (pre_efuse_map) {
if (rtw_efuse_raw_map_read (padapter, 0, mapLen, pre_efuse_map, RTW_EFUSE_WIFI) == _FAIL) {
RTW_INFO("%s: read wifi raw map Fail!!\n", __FUNCTION__);
err = -EFAULT;
} else {
realraw_map_data = pre_efuse_map;
_rtw_memset(extra, '\0', strlen(extra));
shift = blksz * raw_order;
realraw_map_data += shift;
cnt = mapLen - shift;
if (cnt > blksz) {
cnt = blksz;
raw_order++;
} else
raw_order = 0;
sprintf(extra, "\n");
for (i = 0; i < cnt; i += 16) {
pextra = extra + strlen(extra);
pextra += sprintf(pextra, "0x%02x\t", shift + i);
for (j = 0; j < 8; j++)
pextra += sprintf(pextra, "%02X ", realraw_map_data[i + j]);
pextra += sprintf(pextra, "\t");
for (; j < 16; j++)
pextra += sprintf(pextra, "%02X ", realraw_map_data[i + j]);
pextra += sprintf(pextra, "\n");
if (strlen(extra) > 0x7FF)
break;
}
if ((shift + cnt) < mapLen)
pextra += sprintf(pextra, "\t...more (left:%d/%d)\n", mapLen - (shift + cnt), mapLen);
}
}
} else if (strcmp(tmp[0], "btrealraw")== 0) {
static u8 raw_order = 0;
u32 shift, cnt;
u32 blksz = 0x200; /* The size of one time show, default 512 */
u8 *realraw_map_data = NULL;
rtw_efuse_get_map_size(padapter, &mapLen, RTW_EFUSE_CMD_BT_GET_SIZE);
if (pre_efuse_map) {
if (rtw_efuse_raw_map_read (padapter, 0, mapLen, pre_efuse_map, RTW_EFUSE_BT) == _FAIL) {
RTW_INFO("%s: read bt raw map Fail!!\n", __FUNCTION__);
err = -EFAULT;
} else {
realraw_map_data = pre_efuse_map;
_rtw_memset(extra, '\0', strlen(extra));
shift = blksz * raw_order;
realraw_map_data += shift;
cnt = mapLen - shift;
if (cnt > blksz) {
cnt = blksz;
raw_order++;
} else
raw_order = 0;
sprintf(extra, "\n");
for (i = 0; i < cnt; i += 16) {
pextra = extra + strlen(extra);
pextra += sprintf(pextra, "0x%02x\t", shift + i);
for (j = 0; j < 8; j++)
pextra += sprintf(pextra, "%02X ", realraw_map_data[i + j]);
pextra += sprintf(pextra, "\t");
for (; j < 16; j++)
pextra += sprintf(pextra, "%02X ", realraw_map_data[i + j]);
pextra += sprintf(pextra, "\n");
if (strlen(extra) > 0x7FF)
break;
}
if ((shift + cnt) < mapLen)
pextra += sprintf(pextra, "\t...more (left:%d/%d)\n", mapLen - (shift + cnt), mapLen);
}
}
} else
sprintf(extra, "Command not found!");
exit:
if (pre_efuse_map)
rtw_mfree(pre_efuse_map, RTW_MAX_EFUSE_MAP_LEN);
if (!err)
wrqu->data.length = strlen(extra);
RTW_INFO("%s: strlen(extra) =%zu\n", __FUNCTION__, strlen(extra));
if (copy_to_user(wrqu->data.pointer, extra, wrqu->data.length))
err = -EFAULT;
return err;
}
int rtw_ioctl_efuse_set(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wdata, char *extra)
{
struct iw_point *wrqu;
struct pwrctrl_priv *pwrctrlpriv ;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
u8 ips_mode = IPS_NUM; /* init invalid value */
u8 lps_mode = PM_PS_MODE_NUM; /* init invalid value */
u32 i = 0, j = 0, jj = 0, kk = 0;
u8 *setdata = NULL;
u8 *shadowmap = NULL;
u8 *setrawdata = NULL;
char *pch, *ptmp, *token, *tmp[3] = {0x00, 0x00, 0x00};
u16 addr = 0xFF, cnts = 0, max_available_len = 0;
u16 wifimaplen;
int err = 0;
boolean bcmpchk = _TRUE;
u8 status = _SUCCESS;
u16 size;
u8 bpg = true;
wrqu = (struct iw_point *)wdata;
pwrctrlpriv = adapter_to_pwrctl(padapter);
if (copy_from_user(extra, wrqu->pointer, wrqu->length))
return -EFAULT;
*(extra + wrqu->length) = '\0';
setdata = rtw_zmalloc(RTW_MAX_EFUSE_MAP_LEN);
if (setdata == NULL) {
err = -ENOMEM;
goto exit;
}
#ifdef CONFIG_LPS
lps_mode = pwrctrlpriv->power_mgnt;/* keep org value */
rtw_pm_set_lps(padapter, PM_PS_MODE_ACTIVE);
#endif
#ifdef CONFIG_IPS
ips_mode = pwrctrlpriv->ips_mode;/* keep org value */
rtw_pm_set_ips(padapter, IPS_NONE);
#endif
pch = extra;
RTW_INFO("%s: in=%s\n", __FUNCTION__, extra);
i = 0;
while ((token = strsep(&pch, ",")) != NULL) {
if (i > 2)
break;
tmp[i] = token;
i++;
}
/* tmp[0],[1],[2] */
/* wmap,addr,00e04c871200 */
if ((strcmp(tmp[0], "wmap") == 0) || (strcmp(tmp[0], "wlwfake") == 0)) {
if ((tmp[1] == NULL) || (tmp[2] == NULL)) {
err = -EINVAL;
goto exit;
}
addr = simple_strtoul(tmp[1], &ptmp, 16);
addr &= 0xFFF;
cnts = strlen(tmp[2]);
if (cnts % 2) {
err = -EINVAL;
goto exit;
}
cnts /= 2;
if (cnts == 0) {
err = -EINVAL;
goto exit;
}
RTW_INFO("%s: addr=0x%X\n", __FUNCTION__, addr);
RTW_INFO("%s: cnts=%d\n", __FUNCTION__, cnts);
RTW_INFO("%s: map data=%s\n", __FUNCTION__, tmp[2]);
for (jj = 0, kk = 0; jj < cnts; jj++, kk += 2)
setdata[jj] = key_2char2num(tmp[2][kk], tmp[2][kk + 1]);
err = rtw_efuse_get_map_size(padapter, &size, RTW_EFUSE_CMD_WIFI_GET_LOG_SIZE);
max_available_len = size;
if (err == _FAIL) {
status = _FAIL;
goto exit;
}
if ((addr + cnts) > max_available_len) {
RTW_INFO("%s: addr(0x%X)+cnts(%d) parameter error!\n", __FUNCTION__, addr, cnts);
err = -EFAULT;
goto exit;
}
if (strcmp(tmp[0], "wlwfake") == 0)
bpg = false;
if (rtw_efuse_map_write(padapter, addr, cnts, setdata, RTW_EFUSE_WIFI, bpg) == _FAIL) {
RTW_INFO("%s: rtw_efuse_map_write error!!\n", __FUNCTION__);
err = -EFAULT;
goto exit;
}
*extra = 0;
if (bpg) {
RTW_INFO("%s: after rtw_efuse_map_write to _rtw_memcmp\n", __func__);
shadowmap = rtw_zmalloc(size);
if (shadowmap == NULL) {
RTW_INFO("%s: ShadowMapWiFi rtw_zmalloc Fail\n", __func__);
err = 0;
goto exit;
}
if (rtw_efuse_get_shadow_map(padapter, shadowmap, size,RTW_EFUSE_WIFI) == _SUCCESS) {
if (_rtw_memcmp((void *)shadowmap + addr , (void *)setdata, cnts)) {
RTW_INFO("%s: WiFi write map afterf compare success\n", __FUNCTION__);
sprintf(extra, "WiFi write map compare OK\n");
err = 0;
goto exit;
} else {
RTW_MAP_DUMP_SEL(RTW_DBGDUMP, "shadowmap :", shadowmap + addr, cnts);
RTW_MAP_DUMP_SEL(RTW_DBGDUMP, "map_pged :", setdata, cnts);
sprintf(extra, "WiFi write map compare FAIL\n");
RTW_INFO("%s: WiFi write map compare Fail\n", __FUNCTION__);
err = 0;
goto exit;
}
}
} else {
sprintf(extra, "WiFi write fake map OK\n");
RTW_INFO("%s: WiFi write fake map OK\n", __FUNCTION__);
err = 0;
goto exit;
}
} else if ((strcmp(tmp[0], "btwmap") == 0) || (strcmp(tmp[0], "btwfake") == 0)) {
if ((tmp[1] == NULL) || (tmp[2] == NULL)) {
err = -EINVAL;
goto exit;
}
addr = simple_strtoul(tmp[1], &ptmp, 16);
addr &= 0xFFF;
cnts = strlen(tmp[2]);
if (cnts % 2) {
err = -EINVAL;
goto exit;
}
cnts /= 2;
if (cnts == 0) {
err = -EINVAL;
goto exit;
}
RTW_INFO("%s: addr=0x%X\n", __FUNCTION__, addr);
RTW_INFO("%s: cnts=%d\n", __FUNCTION__, cnts);
RTW_INFO("%s: map data=%s\n", __FUNCTION__, tmp[2]);
for (jj = 0, kk = 0; jj < cnts; jj++, kk += 2)
setdata[jj] = key_2char2num(tmp[2][kk], tmp[2][kk + 1]);
err = rtw_efuse_get_map_size(padapter, &size, RTW_EFUSE_CMD_BT_GET_LOG_SIZE);
max_available_len = size;
if (err == _FAIL) {
status = _FAIL;
goto exit;
}
if ((addr + cnts) > max_available_len) {
RTW_INFO("%s: addr(0x%X)+cnts(%d) parameter error!\n", __FUNCTION__, addr, cnts);
err = -EFAULT;
goto exit;
}
if (strcmp(tmp[0], "btwfake") == 0)
bpg = false;
if (rtw_efuse_map_write(padapter, addr, cnts, setdata, RTW_EFUSE_BT, bpg) == _FAIL) {
RTW_INFO("%s: rtw_efuse_map_write error!!\n", __FUNCTION__);
err = -EFAULT;
goto exit;
}
*extra = 0;
RTW_INFO("%s: after rtw_efuse_map_write to _rtw_memcmp\n", __func__);
if (bpg) {
shadowmap = rtw_zmalloc(size);
if (shadowmap == NULL) {
RTW_INFO("%s: shadowmap rtw_zmalloc Fail\n", __func__);
err = 0;
goto exit;
}
if (rtw_efuse_get_shadow_map(padapter, shadowmap, size,RTW_EFUSE_BT) == _SUCCESS) {
if (_rtw_memcmp((void *)shadowmap + addr , (void *)setdata, cnts)) {
RTW_INFO("%s: BT write map afterf compare success\n", __func__);
sprintf(extra, "BT write map compare OK\n");
err = 0;
goto exit;
} else {
RTW_MAP_DUMP_SEL(RTW_DBGDUMP, "shadowmap :", shadowmap, cnts);
RTW_MAP_DUMP_SEL(RTW_DBGDUMP, "map_pged :", setdata, cnts);
sprintf(extra, "BT write map compare FAIL\n");
RTW_INFO("%s: BT write map compare Fail\n", __func__);
err = 0;
goto exit;
}
}
} else {
sprintf(extra, "BT write fake map OK\n");
RTW_INFO("%s: BT write fake map OK\n", __FUNCTION__);
err = 0;
goto exit;
}
} else if (strcmp(tmp[0], "btwraw") == 0) {
u8 reg2chkbt = 0;
if ((tmp[1] == NULL) || (tmp[2] == NULL)) {
err = -EINVAL;
goto exit;
}
addr = simple_strtoul(tmp[1], &ptmp, 16);
addr &= 0xFFF;
cnts = strlen(tmp[2]);
if (cnts % 2) {
err = -EINVAL;
goto exit;
}
cnts /= 2;
if (cnts == 0) {
err = -EINVAL;
goto exit;
}
RTW_INFO("%s: addr=0x%X\n", __FUNCTION__, addr);
RTW_INFO("%s: cnts=%d\n", __FUNCTION__, cnts);
RTW_INFO("%s: raw data=%s\n", __FUNCTION__, tmp[2]);
rtw_phl_write8(dvobj->phl, 0xa3, 0x05);
rtw_msleep_os(10);
reg2chkbt = rtw_phl_read8(dvobj->phl, 0xa0);
RTW_INFO("%s: btfk2map before read 0xa0 BT Status =0x%x\n", __func__,
rtw_phl_read32(dvobj->phl, 0xa0));
if (reg2chkbt != 0x04) {
sprintf(extra, "Error ! BT State not Active:0x%x ,can't Write \n" , reg2chkbt);
goto exit;
}
for (jj = 0, kk = 0; jj < cnts; jj++, kk += 2)
setdata[jj] = key_2char2num(tmp[2][kk], tmp[2][kk + 1]);
if (rtw_efuse_bt_write_raw_hidden(padapter, addr, cnts, setdata) == _FAIL) {
RTW_INFO("%s: rtw_efuse_bt_write_hidden error!!\n", __FUNCTION__);
err = -EFAULT;
goto exit;
}
} else if (strcmp(tmp[0], "wlfk2map") == 0) {
u16 mapsize = 0;
u8 *map_pged = NULL;
RTW_INFO("%s:do rtw_efuse_fake2map\n", __func__);
rtw_efuse_get_map_size(padapter, &mapsize, RTW_EFUSE_CMD_WIFI_GET_LOG_SIZE);
shadowmap = rtw_zmalloc(mapsize);
if (shadowmap == NULL) {
RTW_INFO("%s: shadowmap rtw_zmalloc Fail\n", __func__);
err = 0;
goto exit;
}
if (rtw_efuse_get_shadow_map(padapter, shadowmap, mapsize, RTW_EFUSE_WIFI) == _FAIL) {
RTW_INFO("%s:rtw_efuse_get_shadow_map Fail\n", __func__);
err = 0;
goto exit;
}
status = rtw_efuse_fake2map(padapter, RTW_EFUSE_WIFI);
if (status == _SUCCESS)
RTW_INFO("WIFI write map OK\n");
else
RTW_INFO("WIFI write map FAIL\n");
map_pged = rtw_zmalloc(mapsize);
if (map_pged == NULL) {
RTW_INFO("%s: map_pged rtw_zmalloc Fail\n", __func__);
err = 0;
goto exit;
}
if (rtw_efuse_map_read(padapter, 0x00, mapsize, map_pged, RTW_EFUSE_WIFI) == _SUCCESS) {
if (_rtw_memcmp((void *)map_pged , (void *)shadowmap, mapsize)) {
RTW_INFO("%s: WiFi write map afterf compare success\n", __func__);
sprintf(extra, "WiFi write map compare OK\n");
} else {
RTW_MAP_DUMP_SEL(RTW_DBGDUMP, "shadowmap :", shadowmap, mapsize);
RTW_MAP_DUMP_SEL(RTW_DBGDUMP, "map_pged :", map_pged, mapsize);
sprintf(extra, "WiFi write map compare FAIL\n");
RTW_INFO("%s: WiFi write map compare Fail\n", __func__);
}
}
if (map_pged)
rtw_mfree(map_pged, mapsize);
err = 0;
goto exit;
} else if (strcmp(tmp[0], "btfk2map") == 0) {
u8 reg2chkbt = 0;
u16 mapsize = 0;
u8 *map_pged = NULL;
RTW_INFO("%s:do rtw_efuse_fake2map\n", __func__);
rtw_efuse_get_map_size(padapter, &mapsize, RTW_EFUSE_CMD_BT_GET_LOG_SIZE);
shadowmap = rtw_zmalloc(mapsize);
if (shadowmap == NULL) {
RTW_INFO("%s: shadowmap rtw_zmalloc Fail\n", __func__);
err = 0;
goto exit;
}
if (rtw_efuse_get_shadow_map(padapter, shadowmap, mapsize, RTW_EFUSE_BT) == _FAIL) {
RTW_INFO("%s:rtw_efuse_get_shadow_map Fail\n", __func__);
err = 0;
goto exit;
}
rtw_phl_write8(dvobj->phl, 0xa3, 0x05);
rtw_msleep_os(10);
reg2chkbt = rtw_phl_read8(dvobj->phl, 0xa0);
RTW_INFO("%s: btfk2map before read 0xa0 BT Status =0x%x\n", __func__,
rtw_phl_read32(dvobj->phl, 0xa0));
if (reg2chkbt != 0x04) {
sprintf(extra, "Error ! BT State not Active:0x%x ,can't Write \n" , reg2chkbt);
goto exit;
}
status = rtw_efuse_fake2map(padapter, RTW_EFUSE_BT);
if (status == _SUCCESS)
RTW_INFO("BT write map OK\n");
else
RTW_INFO("BT write map FAIL\n");
map_pged = rtw_zmalloc(mapsize);
if (map_pged == NULL) {
RTW_INFO("%s: map_pged rtw_zmalloc Fail\n", __func__);
err = 0;
goto exit;
}
if (rtw_efuse_map_read(padapter, 0x00, mapsize, map_pged, RTW_EFUSE_BT) == _SUCCESS) {
if (_rtw_memcmp((void *)map_pged , (void *)shadowmap, mapsize)) {
RTW_INFO("%s: BT write map afterf compare success\n", __func__);
sprintf(extra, "BT write map compare OK\n");
} else {
RTW_MAP_DUMP_SEL(RTW_DBGDUMP, "shadowmap :", shadowmap, mapsize);
RTW_MAP_DUMP_SEL(RTW_DBGDUMP, "map_pged :", map_pged, mapsize);
sprintf(extra, "BT write map compare FAIL\n");
RTW_INFO("%s: BT write map compare Fail\n", __func__);
}
}
if (map_pged)
rtw_mfree(map_pged, mapsize);
err = 0;
goto exit;
} else if (strcmp(tmp[0], "update") == 0) {
if (rtw_efuse_renew_update(padapter, RTW_EFUSE_WIFI) == _FAIL) {
RTW_INFO("%s: rtw_efuse_renew_update error!!\n", __FUNCTION__);
sprintf(extra, "WIFI update FAIL\n");
err = -EFAULT;
goto exit;
} else
sprintf(extra, "WIFI update OK\n");
}
exit:
if (setdata)
rtw_mfree(setdata, RTW_MAX_EFUSE_MAP_LEN);
if (shadowmap)
rtw_mfree(shadowmap, size);
wrqu->length = strlen(extra);
if (padapter->registrypriv.mp_mode == 0) {
#ifdef CONFIG_IPS
rtw_pm_set_ips(padapter, ips_mode);
#endif /* CONFIG_IPS */
#ifdef CONFIG_LPS
rtw_pm_set_lps(padapter, lps_mode);
#endif /* CONFIG_LPS */
}
return err;
}
int rtw_ioctl_efuse_file_map_load(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
char *rtw_efuse_file_map_path;
u8 Status = 0;
_adapter *padapter= rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = &padapter->mppriv;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
rtw_efuse_file_map_path = extra;
if (rtw_is_file_readable(rtw_efuse_file_map_path) == _TRUE) {
RTW_INFO("%s do rtw_efuse_mask_file_read = %s!\n", __func__, rtw_efuse_file_map_path);
Status = rtw_efuse_map_file_load(padapter, rtw_efuse_file_map_path, RTW_EFUSE_WIFI);
if (Status == _TRUE) {
pmp_priv->bloadefusemap = _TRUE;
sprintf(extra, "efuse Map file file_read OK\n");
} else {
pmp_priv->bloadefusemap = _FALSE;
sprintf(extra, "efuse Map file file_read FAIL\n");
}
} else {
sprintf(extra, "efuse file readable FAIL\n");
RTW_INFO("%s rtw_is_file_readable fail!\n", __func__);
}
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_ioctl_efuse_file_mask_load(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
char *rtw_efuse_file_map_path;
u8 Status = 0;
_adapter *padapter= rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = &padapter->mppriv;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
rtw_efuse_file_map_path = extra;
if (rtw_is_file_readable(rtw_efuse_file_map_path) == _TRUE) {
RTW_INFO("%s do rtw_efuse_mask_file_read = %s!\n", __func__, rtw_efuse_file_map_path);
Status = rtw_efuse_mask_file_load(padapter, rtw_efuse_file_map_path, RTW_EFUSE_WIFI);
if (Status == _TRUE) {
pmp_priv->bloadefusemap = _TRUE;
sprintf(extra, "efuse Mask file file_read OK\n");
} else {
pmp_priv->bloadefusemap = _FALSE;
sprintf(extra, "efuse Mask file file_read FAIL\n");
}
} else {
sprintf(extra, "efuse file readable FAIL\n");
RTW_INFO("%s rtw_is_file_readable fail!\n", __func__);
}
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_ioctl_efuse_bt_file_map_load(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
char *rtw_efuse_file_map_path;
u8 Status = 0;
_adapter *padapter= rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = &padapter->mppriv;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
rtw_efuse_file_map_path = extra;
if (rtw_is_file_readable(rtw_efuse_file_map_path) == _TRUE) {
RTW_INFO("%s BT do rtw_efuse_mask_file_read = %s!\n", __func__, rtw_efuse_file_map_path);
Status = rtw_efuse_map_file_load(padapter, rtw_efuse_file_map_path, RTW_EFUSE_BT);
if (Status == _TRUE) {
pmp_priv->bloadefusemap = _TRUE;
sprintf(extra, "BT efuse Map file file_read OK\n");
} else {
pmp_priv->bloadefusemap = _FALSE;
sprintf(extra, "BT efuse Map file file_read FAIL\n");
}
} else {
sprintf(extra, "BT efuse file readable FAIL\n");
RTW_INFO("%s BT rtw_is_file_readable fail!\n", __func__);
}
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_ioctl_efuse_bt_file_mask_load(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
char *rtw_efuse_file_map_path;
u8 Status = 0;
_adapter *padapter= rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = &padapter->mppriv;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
rtw_efuse_file_map_path = extra;
if (rtw_is_file_readable(rtw_efuse_file_map_path) == _TRUE) {
RTW_INFO("%s BT mask do rtw_efuse_mask_file_read = %s!\n", __func__, rtw_efuse_file_map_path);
Status = rtw_efuse_mask_file_load(padapter, rtw_efuse_file_map_path, RTW_EFUSE_BT);
if (Status == _TRUE) {
pmp_priv->bloadefusemap = _TRUE;
sprintf(extra, "BT efuse Mask file file_read OK\n");
} else {
pmp_priv->bloadefusemap = _FALSE;
sprintf(extra, "BT efuse Mask file file_read FAIL\n");
}
} else {
sprintf(extra, "BT efuse file readable FAIL\n");
RTW_INFO("%s BT rtw_is_file_readable fail!\n", __func__);
}
wrqu->data.length = strlen(extra);
return 0;
}
s8 rtw_efuse_get_map_from(_adapter *padapter)
{
struct rtw_efuse_phl_arg *efuse_arg = NULL;
u8 map_status = -1;
efuse_arg = _rtw_malloc(sizeof(struct rtw_efuse_phl_arg));
if (efuse_arg) {
_rtw_memset((void *)efuse_arg,
0,
sizeof(struct rtw_efuse_phl_arg));
rtw_efuse_cmd(padapter,
efuse_arg,
RTW_MP_EFUSE_CMD_WIFI_GET_MAP_FROM);
if (efuse_arg->cmd_ok &&
efuse_arg->status == RTW_PHL_STATUS_SUCCESS) {
map_status = efuse_arg->io_value;
RTW_INFO("%s: OK value:%d\n",
__func__, map_status);
} else {
map_status = -1;
RTW_INFO("%s: fail !\n", __func__);
}
}
if (efuse_arg)
_rtw_mfree(efuse_arg, sizeof(struct rtw_efuse_phl_arg));
return map_status;
}
static u8 rtw_efuse_get_realraw(_adapter *padapter, u8 *map, u16 addr, u16 size, u8 efuse_type)
{
struct rtw_efuse_phl_arg *efuse_arg = NULL;
u8 res = _FAIL;
efuse_arg = _rtw_malloc(sizeof(struct rtw_efuse_phl_arg));
if (efuse_arg) {
efuse_arg->io_offset = addr;
efuse_arg->buf_len = size;
if (efuse_type == RTW_EFUSE_WIFI)
rtw_efuse_cmd(padapter, efuse_arg, RTW_EFUSE_CMD_WIFI_GET_PHY_MAP);
else if (efuse_type == RTW_EFUSE_BT)
rtw_efuse_cmd(padapter, efuse_arg, RTW_EFUSE_CMD_BT_GET_PHY_MAP);
if (efuse_arg->cmd_ok && efuse_arg->status == RTW_PHL_STATUS_SUCCESS) {
_rtw_memcpy((void *)map, efuse_arg->poutbuf, size);
res = _SUCCESS;
} else
res = _FAIL;
}
if (efuse_arg)
_rtw_mfree(efuse_arg, sizeof(struct rtw_efuse_phl_arg));
return res;
}
u8 rtw_efuse_raw_map_read(_adapter * adapter, u16 addr, u16 cnts, u8 *data, u8 efuse_type)
{
struct dvobj_priv *d;
u8 *efuse = NULL;
u16 size, i;
int err = _FAIL;
u8 status = _SUCCESS;
if (efuse_type == RTW_EFUSE_WIFI)
err = rtw_efuse_get_map_size(adapter, &size, RTW_EFUSE_CMD_WIFI_GET_SIZE);
else if (efuse_type == RTW_EFUSE_BT)
err = rtw_efuse_get_map_size(adapter, &size, RTW_EFUSE_CMD_BT_GET_SIZE);
if (err == _FAIL) {
status = _FAIL;
RTW_INFO("get_efuse_size fail\n");
goto exit;
}
/* size error handle */
if ((addr + cnts) > size) {
if (addr < size)
cnts = size - addr;
else {
status = _FAIL;
RTW_INFO(" %s() ,addr + cnts) > size fail\n", __func__);
goto exit;
}
}
efuse = rtw_zmalloc(size);
if (efuse) {
err = rtw_efuse_get_realraw (adapter, efuse, addr, size, efuse_type);
if (err == _FAIL) {
rtw_mfree(efuse, size);
status = _FAIL;
RTW_INFO(" %s() , phl get realraw fail\n", __func__);
goto exit;
}
if (efuse) {
RTW_INFO(" %s() ,cp efuse to data\n", __func__);
_rtw_memcpy(data, efuse + addr, cnts);
rtw_mfree(efuse, size);
}
} else {
RTW_INFO(" %s() ,alloc efuse fail\n", __func__);
goto exit;
}
status = _SUCCESS;
exit:
return status;
}
u8 rtw_efuse_bt_write_raw_hidden(_adapter * adapter, u16 addr, u16 cnts, u8 *data)
{
u8 status = _SUCCESS;
struct rtw_efuse_phl_arg *efuse_arg = NULL;
u16 i = 0;
efuse_arg = _rtw_zmalloc(sizeof(struct rtw_efuse_phl_arg));
while (i < cnts) {
efuse_arg->io_type = 1;
efuse_arg->io_offset = addr + i;
efuse_arg->io_value = data[i];
rtw_efuse_cmd(adapter, efuse_arg, RTW_EFUSE_CMD_BT_WRITE_HIDDEN);
if (efuse_arg->cmd_ok && efuse_arg->status == RTW_PHL_STATUS_SUCCESS)
status = _SUCCESS;
else{
status = _FAIL;
break;
}
i++;
}
exit :
if (efuse_arg)
_rtw_mfree(efuse_arg, sizeof(struct rtw_efuse_phl_arg));
return status;
}
#endif /*#if defined(CONFIG_MP_INCLUDED)*/
|
2301_81045437/rtl8852be
|
os_dep/linux/ioctl_efuse.c
|
C
|
agpl-3.0
| 43,720
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _IOCTL_LINUX_C_
#include <drv_types.h>
#include <rtw_mp.h>
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 27))
#define iwe_stream_add_event(a, b, c, d, e) iwe_stream_add_event(b, c, d, e)
#define iwe_stream_add_point(a, b, c, d, e) iwe_stream_add_point(b, c, d, e)
#endif
#ifdef CONFIG_80211N_HT
extern int rtw_ht_enable;
#endif
#define RTL_IOCTL_WPA_SUPPLICANT (SIOCIWFIRSTPRIV+30)
#define SCAN_ITEM_SIZE 768
#define MAX_CUSTOM_LEN 64
#define RATE_COUNT 4
#define MAX_SCAN_BUFFER_LEN 65535
#ifdef CONFIG_GLOBAL_UI_PID
extern int ui_pid[3];
#endif
/* combo scan */
#define WEXT_CSCAN_AMOUNT 9
#define WEXT_CSCAN_BUF_LEN 360
#define WEXT_CSCAN_HEADER "CSCAN S\x01\x00\x00S\x00"
#define WEXT_CSCAN_HEADER_SIZE 12
#define WEXT_CSCAN_SSID_SECTION 'S'
#define WEXT_CSCAN_CHANNEL_SECTION 'C'
#define WEXT_CSCAN_NPROBE_SECTION 'N'
#define WEXT_CSCAN_ACTV_DWELL_SECTION 'A'
#define WEXT_CSCAN_PASV_DWELL_SECTION 'P'
#define WEXT_CSCAN_HOME_DWELL_SECTION 'H'
#define WEXT_CSCAN_TYPE_SECTION 'T'
extern u8 key_2char2num(u8 hch, u8 lch);
extern u8 str_2char2num(u8 hch, u8 lch);
extern void macstr2num(u8 *dst, u8 *src);
extern u8 convert_ip_addr(u8 hch, u8 mch, u8 lch);
u32 rtw_rates[] = {1000000, 2000000, 5500000, 11000000,
6000000, 9000000, 12000000, 18000000, 24000000, 36000000, 48000000, 54000000};
/**
* hwaddr_aton - Convert ASCII string to MAC address
* @txt: MAC address as a string (e.g., "00:11:22:33:44:55")
* @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
* Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
*/
static int hwaddr_aton_i(const char *txt, u8 *addr)
{
int i;
for (i = 0; i < 6; i++) {
int a, b;
a = hex2num_i(*txt++);
if (a < 0)
return -1;
b = hex2num_i(*txt++);
if (b < 0)
return -1;
*addr++ = (a << 4) | b;
if (i < 5 && *txt++ != ':')
return -1;
}
return 0;
}
#ifdef CONFIG_RTW_ANDROID
static void indicate_wx_custom_event(_adapter *padapter, char *msg)
{
u8 *buff;
union iwreq_data wrqu;
if (strlen(msg) > IW_CUSTOM_MAX) {
RTW_INFO("%s strlen(msg):%zu > IW_CUSTOM_MAX:%u\n", __FUNCTION__ , strlen(msg), IW_CUSTOM_MAX);
return;
}
buff = rtw_zmalloc(IW_CUSTOM_MAX + 1);
if (!buff)
return;
_rtw_memcpy(buff, msg, strlen(msg));
_rtw_memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = strlen(msg);
RTW_INFO("%s %s\n", __FUNCTION__, buff);
#ifndef CONFIG_IOCTL_CFG80211
wireless_send_event(padapter->pnetdev, IWEVCUSTOM, &wrqu, buff);
#endif
rtw_mfree(buff, IW_CUSTOM_MAX + 1);
}
#endif
#if 0
static void request_wps_pbc_event(_adapter *padapter)
{
u8 *buff, *p;
union iwreq_data wrqu;
buff = rtw_malloc(IW_CUSTOM_MAX);
if (!buff)
return;
_rtw_memset(buff, 0, IW_CUSTOM_MAX);
p = buff;
p += sprintf(p, "WPS_PBC_START.request=TRUE");
_rtw_memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = p - buff;
wrqu.data.length = (wrqu.data.length < IW_CUSTOM_MAX) ? wrqu.data.length : IW_CUSTOM_MAX;
RTW_INFO("%s\n", __FUNCTION__);
#ifndef CONFIG_IOCTL_CFG80211
wireless_send_event(padapter->pnetdev, IWEVCUSTOM, &wrqu, buff);
#endif
if (buff)
rtw_mfree(buff, IW_CUSTOM_MAX);
}
#endif
#ifdef CONFIG_SUPPORT_HW_WPS_PBC
void rtw_request_wps_pbc_event(_adapter *padapter)
{
#ifdef RTK_DMP_PLATFORM
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 12))
kobject_uevent(&padapter->pnetdev->dev.kobj, KOBJ_NET_PBC);
#else
kobject_hotplug(&padapter->pnetdev->class_dev.kobj, KOBJ_NET_PBC);
#endif
#else
if (padapter->pid[0] == 0) {
/* 0 is the default value and it means the application monitors the HW PBC doesn't privde its pid to driver. */
return;
}
rtw_signal_process(padapter->pid[0], SIGUSR1);
#endif
rtw_led_control(padapter, LED_CTL_START_WPS_BOTTON);
}
#endif/* #ifdef CONFIG_SUPPORT_HW_WPS_PBC */
void indicate_wx_scan_complete_event(_adapter *padapter)
{
union iwreq_data wrqu;
_rtw_memset(&wrqu, 0, sizeof(union iwreq_data));
/* RTW_INFO("+rtw_indicate_wx_scan_complete_event\n"); */
#ifndef CONFIG_IOCTL_CFG80211
wireless_send_event(padapter->pnetdev, SIOCGIWSCAN, &wrqu, NULL);
#endif
}
void rtw_indicate_wx_assoc_event(_adapter *padapter)
{
union iwreq_data wrqu;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
WLAN_BSSID_EX *pnetwork = (WLAN_BSSID_EX *)(&(pmlmeinfo->network));
_rtw_memset(&wrqu, 0, sizeof(union iwreq_data));
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
if (check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE) == _TRUE)
_rtw_memcpy(wrqu.ap_addr.sa_data, pnetwork->MacAddress, ETH_ALEN);
else
_rtw_memcpy(wrqu.ap_addr.sa_data, pmlmepriv->cur_network.network.MacAddress, ETH_ALEN);
RTW_PRINT("assoc success\n");
#ifndef CONFIG_IOCTL_CFG80211
wireless_send_event(padapter->pnetdev, SIOCGIWAP, &wrqu, NULL);
#endif
}
void rtw_indicate_wx_disassoc_event(_adapter *padapter)
{
union iwreq_data wrqu;
_rtw_memset(&wrqu, 0, sizeof(union iwreq_data));
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
_rtw_memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
#ifndef CONFIG_IOCTL_CFG80211
RTW_PRINT("indicate disassoc\n");
wireless_send_event(padapter->pnetdev, SIOCGIWAP, &wrqu, NULL);
#endif
}
/*
uint rtw_is_cckrates_included(u8 *rate)
{
u32 i = 0;
while(rate[i]!=0)
{
if ( (((rate[i]) & 0x7f) == 2) || (((rate[i]) & 0x7f) == 4) ||
(((rate[i]) & 0x7f) == 11) || (((rate[i]) & 0x7f) == 22) )
return _TRUE;
i++;
}
return _FALSE;
}
uint rtw_is_cckratesonly_included(u8 *rate)
{
u32 i = 0;
while(rate[i]!=0)
{
if ( (((rate[i]) & 0x7f) != 2) && (((rate[i]) & 0x7f) != 4) &&
(((rate[i]) & 0x7f) != 11) && (((rate[i]) & 0x7f) != 22) )
return _FALSE;
i++;
}
return _TRUE;
}
*/
static inline char *iwe_stream_mac_addr_proess(_adapter *padapter,
struct iw_request_info *info, struct wlan_network *pnetwork,
char *start, char *stop, struct iw_event *iwe)
{
/* AP MAC address */
iwe->cmd = SIOCGIWAP;
iwe->u.ap_addr.sa_family = ARPHRD_ETHER;
_rtw_memcpy(iwe->u.ap_addr.sa_data, pnetwork->network.MacAddress, ETH_ALEN);
start = iwe_stream_add_event(info, start, stop, iwe, IW_EV_ADDR_LEN);
return start;
}
static inline char *iwe_stream_essid_proess(_adapter *padapter,
struct iw_request_info *info, struct wlan_network *pnetwork,
char *start, char *stop, struct iw_event *iwe)
{
/* Add the ESSID */
iwe->cmd = SIOCGIWESSID;
iwe->u.data.flags = 1;
iwe->u.data.length = min((u16)pnetwork->network.Ssid.SsidLength, (u16)32);
start = iwe_stream_add_point(info, start, stop, iwe, pnetwork->network.Ssid.Ssid);
return start;
}
static inline char *iwe_stream_chan_process(_adapter *padapter,
struct iw_request_info *info, struct wlan_network *pnetwork,
char *start, char *stop, struct iw_event *iwe)
{
if (pnetwork->network.Configuration.DSConfig < 1 /*|| pnetwork->network.Configuration.DSConfig>14*/)
pnetwork->network.Configuration.DSConfig = 1;
/* Add frequency/channel */
iwe->cmd = SIOCGIWFREQ;
iwe->u.freq.m = rtw_ch2freq(pnetwork->network.Configuration.DSConfig) * 100000;
iwe->u.freq.e = 1;
iwe->u.freq.i = pnetwork->network.Configuration.DSConfig;
start = iwe_stream_add_event(info, start, stop, iwe, IW_EV_FREQ_LEN);
return start;
}
static inline char *iwe_stream_mode_process(_adapter *padapter,
struct iw_request_info *info, struct wlan_network *pnetwork,
char *start, char *stop, struct iw_event *iwe, u16 cap)
{
/* Add mode */
if (cap & (WLAN_CAPABILITY_IBSS | WLAN_CAPABILITY_BSS)) {
iwe->cmd = SIOCGIWMODE;
if (cap & WLAN_CAPABILITY_BSS)
iwe->u.mode = IW_MODE_MASTER;
else
iwe->u.mode = IW_MODE_ADHOC;
start = iwe_stream_add_event(info, start, stop, iwe, IW_EV_UINT_LEN);
}
return start;
}
static inline char *iwe_stream_encryption_process(_adapter *padapter,
struct iw_request_info *info, struct wlan_network *pnetwork,
char *start, char *stop, struct iw_event *iwe, u16 cap)
{
/* Add encryption capability */
iwe->cmd = SIOCGIWENCODE;
if (cap & WLAN_CAPABILITY_PRIVACY)
iwe->u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
else
iwe->u.data.flags = IW_ENCODE_DISABLED;
iwe->u.data.length = 0;
start = iwe_stream_add_point(info, start, stop, iwe, pnetwork->network.Ssid.Ssid);
return start;
}
static inline char *iwe_stream_protocol_process(_adapter *padapter,
struct iw_request_info *info, struct wlan_network *pnetwork,
char *start, char *stop, struct iw_event *iwe)
{
u16 ht_cap = _FALSE, vht_cap = _FALSE;
u32 ht_ielen = 0, vht_ielen = 0;
char *p;
u8 ie_offset = (pnetwork->network.Reserved[0] == BSS_TYPE_PROB_REQ ? 0 : 12); /* Probe Request */
#ifdef CONFIG_80211N_HT
/* parsing HT_CAP_IE */
if(padapter->registrypriv.ht_enable && is_supported_ht(padapter->registrypriv.wireless_mode)) {
p = rtw_get_ie(&pnetwork->network.IEs[ie_offset], _HT_CAPABILITY_IE_, &ht_ielen, pnetwork->network.IELength - ie_offset);
if (p && ht_ielen > 0)
ht_cap = _TRUE;
}
#endif
#ifdef CONFIG_80211AC_VHT
/* parsing VHT_CAP_IE */
if(is_supported_vht(padapter->registrypriv.wireless_mode)) {
p = rtw_get_ie(&pnetwork->network.IEs[ie_offset], EID_VHTCapability, &vht_ielen, pnetwork->network.IELength - ie_offset);
if (p && vht_ielen > 0)
vht_cap = _TRUE;
}
#endif
/* Add the protocol name */
iwe->cmd = SIOCGIWNAME;
if ((rtw_is_cckratesonly_included((u8 *)&pnetwork->network.SupportedRates)) == _TRUE) {
if (ht_cap == _TRUE)
snprintf(iwe->u.name, IFNAMSIZ, "IEEE 802.11bn");
else
snprintf(iwe->u.name, IFNAMSIZ, "IEEE 802.11b");
} else if ((rtw_is_cckrates_included((u8 *)&pnetwork->network.SupportedRates)) == _TRUE) {
if (ht_cap == _TRUE)
snprintf(iwe->u.name, IFNAMSIZ, "IEEE 802.11bgn");
else
snprintf(iwe->u.name, IFNAMSIZ, "IEEE 802.11bg");
} else {
if (pnetwork->network.Configuration.DSConfig > 14) {
#ifdef CONFIG_80211AC_VHT
if (vht_cap == _TRUE)
snprintf(iwe->u.name, IFNAMSIZ, "IEEE 802.11AC");
else
#endif
{
if (ht_cap == _TRUE)
snprintf(iwe->u.name, IFNAMSIZ, "IEEE 802.11an");
else
snprintf(iwe->u.name, IFNAMSIZ, "IEEE 802.11a");
}
} else {
if (ht_cap == _TRUE)
snprintf(iwe->u.name, IFNAMSIZ, "IEEE 802.11gn");
else
snprintf(iwe->u.name, IFNAMSIZ, "IEEE 802.11g");
}
}
start = iwe_stream_add_event(info, start, stop, iwe, IW_EV_CHAR_LEN);
return start;
}
static inline char *iwe_stream_rate_process(_adapter *padapter,
struct iw_request_info *info, struct wlan_network *pnetwork,
char *start, char *stop, struct iw_event *iwe)
{
u32 ht_ielen = 0, vht_ielen = 0;
char *p;
u16 max_rate = 0, rate, ht_cap = _FALSE, vht_cap = _FALSE;
u32 i = 0;
u8 bw_40MHz = 0, short_GI = 0, bw_160MHz = 0, vht_highest_rate = 0;
u16 mcs_rate = 0, vht_data_rate = 0;
char custom[MAX_CUSTOM_LEN] = {0};
u8 ie_offset = (pnetwork->network.Reserved[0] == BSS_TYPE_PROB_REQ ? 0 : 12); /* Probe Request */
/* parsing HT_CAP_IE */
if(is_supported_ht(padapter->registrypriv.wireless_mode)) {
p = rtw_get_ie(&pnetwork->network.IEs[ie_offset], _HT_CAPABILITY_IE_, &ht_ielen, pnetwork->network.IELength - ie_offset);
if (p && ht_ielen > 0) {
struct rtw_ieee80211_ht_cap *pht_capie;
ht_cap = _TRUE;
pht_capie = (struct rtw_ieee80211_ht_cap *)(p + 2);
_rtw_memcpy(&mcs_rate , pht_capie->supp_mcs_set, 2);
bw_40MHz = (pht_capie->cap_info & IEEE80211_HT_CAP_SUP_WIDTH) ? 1 : 0;
short_GI = (pht_capie->cap_info & (IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40)) ? 1 : 0;
}
}
#ifdef CONFIG_80211AC_VHT
/* parsing VHT_CAP_IE */
if(is_supported_vht(padapter->registrypriv.wireless_mode)){
p = rtw_get_ie(&pnetwork->network.IEs[ie_offset], EID_VHTCapability, &vht_ielen, pnetwork->network.IELength - ie_offset);
if (p && vht_ielen > 0) {
u8 mcs_map[2];
vht_cap = _TRUE;
bw_160MHz = GET_VHT_CAPABILITY_ELE_CHL_WIDTH(p + 2);
if (bw_160MHz)
short_GI = GET_VHT_CAPABILITY_ELE_SHORT_GI160M(p + 2);
else
short_GI = GET_VHT_CAPABILITY_ELE_SHORT_GI80M(p + 2);
_rtw_memcpy(mcs_map, GET_VHT_CAPABILITY_ELE_TX_MCS(p + 2), 2);
vht_highest_rate = rtw_get_vht_highest_rate(mcs_map);
vht_data_rate = rtw_vht_mcs_to_data_rate(CHANNEL_WIDTH_80, short_GI, vht_highest_rate);
}
}
#endif
/*Add basic and extended rates */
p = custom;
p += snprintf(p, MAX_CUSTOM_LEN - (p - custom), " Rates (Mb/s): ");
while (pnetwork->network.SupportedRates[i] != 0) {
rate = pnetwork->network.SupportedRates[i] & 0x7F;
if (rate > max_rate)
max_rate = rate;
p += snprintf(p, MAX_CUSTOM_LEN - (p - custom),
"%d%s ", rate >> 1, (rate & 1) ? ".5" : "");
i++;
}
#ifdef CONFIG_80211AC_VHT
if (vht_cap == _TRUE)
max_rate = vht_data_rate;
else
#endif
if (ht_cap == _TRUE) {
if (mcs_rate & 0x8000) /* MCS15 */
max_rate = (bw_40MHz) ? ((short_GI) ? 300 : 270) : ((short_GI) ? 144 : 130);
else if (mcs_rate & 0x0080) /* MCS7 */
max_rate = (bw_40MHz) ? ((short_GI) ? 150 : 135) : ((short_GI) ? 72 : 65);
else { /* default MCS7 */
/* RTW_INFO("wx_get_scan, mcs_rate_bitmap=0x%x\n", mcs_rate); */
max_rate = (bw_40MHz) ? ((short_GI) ? 150 : 135) : ((short_GI) ? 72 : 65);
}
max_rate = max_rate * 2; /* Mbps/2; */
}
iwe->cmd = SIOCGIWRATE;
iwe->u.bitrate.fixed = iwe->u.bitrate.disabled = 0;
iwe->u.bitrate.value = max_rate * 500000;
start = iwe_stream_add_event(info, start, stop, iwe, IW_EV_PARAM_LEN);
return start ;
}
static inline char *iwe_stream_wpa_wpa2_process(_adapter *padapter,
struct iw_request_info *info, struct wlan_network *pnetwork,
char *start, char *stop, struct iw_event *iwe)
{
int buf_size = MAX_WPA_IE_LEN * 2;
/* u8 pbuf[buf_size]={0}; */
u8 *pbuf = rtw_zmalloc(buf_size);
u8 wpa_ie[255] = {0}, rsn_ie[255] = {0};
u16 i, wpa_len = 0, rsn_len = 0;
u8 *p;
sint out_len = 0;
if (pbuf) {
p = pbuf;
/* parsing WPA/WPA2 IE */
if (pnetwork->network.Reserved[0] != BSS_TYPE_PROB_REQ) { /* Probe Request */
out_len = rtw_get_sec_ie(pnetwork->network.IEs , pnetwork->network.IELength, rsn_ie, &rsn_len, wpa_ie, &wpa_len);
if (wpa_len > 0) {
_rtw_memset(pbuf, 0, buf_size);
p += sprintf(p, "wpa_ie=");
for (i = 0; i < wpa_len; i++)
p += sprintf(p, "%02x", wpa_ie[i]);
if (wpa_len > 100) {
printk("-----------------Len %d----------------\n", wpa_len);
for (i = 0; i < wpa_len; i++)
printk("%02x ", wpa_ie[i]);
printk("\n");
printk("-----------------Len %d----------------\n", wpa_len);
}
_rtw_memset(iwe, 0, sizeof(*iwe));
iwe->cmd = IWEVCUSTOM;
iwe->u.data.length = strlen(pbuf);
start = iwe_stream_add_point(info, start, stop, iwe, pbuf);
_rtw_memset(iwe, 0, sizeof(*iwe));
iwe->cmd = IWEVGENIE;
iwe->u.data.length = wpa_len;
start = iwe_stream_add_point(info, start, stop, iwe, wpa_ie);
}
if (rsn_len > 0) {
_rtw_memset(pbuf, 0, buf_size);
p += sprintf(p, "rsn_ie=");
for (i = 0; i < rsn_len; i++)
p += sprintf(p, "%02x", rsn_ie[i]);
_rtw_memset(iwe, 0, sizeof(*iwe));
iwe->cmd = IWEVCUSTOM;
iwe->u.data.length = strlen(pbuf);
start = iwe_stream_add_point(info, start, stop, iwe, pbuf);
_rtw_memset(iwe, 0, sizeof(*iwe));
iwe->cmd = IWEVGENIE;
iwe->u.data.length = rsn_len;
start = iwe_stream_add_point(info, start, stop, iwe, rsn_ie);
}
}
rtw_mfree(pbuf, buf_size);
}
return start;
}
static inline char *iwe_stream_wps_process(_adapter *padapter,
struct iw_request_info *info, struct wlan_network *pnetwork,
char *start, char *stop, struct iw_event *iwe)
{
/* parsing WPS IE */
uint cnt = 0, total_ielen;
u8 *wpsie_ptr = NULL;
uint wps_ielen = 0;
u8 ie_offset = (pnetwork->network.Reserved[0] == BSS_TYPE_PROB_REQ ? 0 : 12);
u8 *ie_ptr = pnetwork->network.IEs + ie_offset;
total_ielen = pnetwork->network.IELength - ie_offset;
if (pnetwork->network.Reserved[0] == BSS_TYPE_PROB_REQ) { /* Probe Request */
ie_ptr = pnetwork->network.IEs;
total_ielen = pnetwork->network.IELength;
} else { /* Beacon or Probe Respones */
ie_ptr = pnetwork->network.IEs + _FIXED_IE_LENGTH_;
total_ielen = pnetwork->network.IELength - _FIXED_IE_LENGTH_;
}
while (cnt < total_ielen) {
if (rtw_is_wps_ie(&ie_ptr[cnt], &wps_ielen) && (wps_ielen > 2)) {
wpsie_ptr = &ie_ptr[cnt];
iwe->cmd = IWEVGENIE;
iwe->u.data.length = (u16)wps_ielen;
start = iwe_stream_add_point(info, start, stop, iwe, wpsie_ptr);
}
cnt += ie_ptr[cnt + 1] + 2; /* goto next */
}
return start;
}
static inline char *iwe_stream_wapi_process(_adapter *padapter,
struct iw_request_info *info, struct wlan_network *pnetwork,
char *start, char *stop, struct iw_event *iwe)
{
#ifdef CONFIG_WAPI_SUPPORT
char *p;
if (pnetwork->network.Reserved[0] != BSS_TYPE_PROB_REQ) { /* Probe Request */
sint out_len_wapi = 0;
/* here use static for stack size */
static u8 buf_wapi[MAX_WAPI_IE_LEN * 2] = {0};
static u8 wapi_ie[MAX_WAPI_IE_LEN] = {0};
u16 wapi_len = 0;
u16 i;
out_len_wapi = rtw_get_wapi_ie(pnetwork->network.IEs , pnetwork->network.IELength, wapi_ie, &wapi_len);
RTW_INFO("rtw_wx_get_scan: %s ", pnetwork->network.Ssid.Ssid);
RTW_INFO("rtw_wx_get_scan: ssid = %d ", wapi_len);
if (wapi_len > 0) {
p = buf_wapi;
/* _rtw_memset(buf_wapi, 0, MAX_WAPI_IE_LEN*2); */
p += sprintf(p, "wapi_ie=");
for (i = 0; i < wapi_len; i++)
p += sprintf(p, "%02x", wapi_ie[i]);
_rtw_memset(iwe, 0, sizeof(*iwe));
iwe->cmd = IWEVCUSTOM;
iwe->u.data.length = strlen(buf_wapi);
start = iwe_stream_add_point(info, start, stop, iwe, buf_wapi);
_rtw_memset(iwe, 0, sizeof(*iwe));
iwe->cmd = IWEVGENIE;
iwe->u.data.length = wapi_len;
start = iwe_stream_add_point(info, start, stop, iwe, wapi_ie);
}
}
#endif/* #ifdef CONFIG_WAPI_SUPPORT */
return start;
}
static inline char *iwe_stream_rssi_process(_adapter *padapter,
struct iw_request_info *info, struct wlan_network *pnetwork,
char *start, char *stop, struct iw_event *iwe)
{
u8 ss, sq;
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
/* Add quality statistics */
iwe->cmd = IWEVQUAL;
iwe->u.qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED
#if 0 /*def CONFIG_BACKGROUND_NOISE_MONITOR*/
| IW_QUAL_NOISE_UPDATED
#else
| IW_QUAL_NOISE_INVALID
#endif
#ifdef CONFIG_SIGNAL_DISPLAY_DBM
| IW_QUAL_DBM
#endif
;
if (check_fwstate(pmlmepriv, WIFI_ASOC_STATE) == _TRUE &&
is_same_network(&pmlmepriv->cur_network.network, &pnetwork->network)) {
ss = padapter->recvinfo.signal_strength;
sq = padapter->recvinfo.signal_qual;
} else {
ss = pnetwork->network.PhyInfo.SignalStrength;
sq = pnetwork->network.PhyInfo.SignalQuality;
}
#ifdef CONFIG_SIGNAL_DISPLAY_DBM
iwe->u.qual.level = (u8) rtw_phl_rssi_to_dbm(ss); /* dbm */
#else
iwe->u.qual.level = (u8)ss; /* % */
#endif
iwe->u.qual.qual = (u8)sq; /* signal quality */
#ifdef CONFIG_PLATFORM_ROCKCHIPS
iwe->u.qual.noise = -100; /* noise level suggest by zhf@rockchips */
#else
iwe->u.qual.noise = 0; /* noise level */
#endif /* CONFIG_PLATFORM_ROCKCHIPS */
/* RTW_INFO("iqual=%d, ilevel=%d, inoise=%d, iupdated=%d\n", iwe.u.qual.qual, iwe.u.qual.level , iwe.u.qual.noise, iwe.u.qual.updated); */
start = iwe_stream_add_event(info, start, stop, iwe, IW_EV_QUAL_LEN);
return start;
}
static inline char *iwe_stream_net_rsv_process(_adapter *padapter,
struct iw_request_info *info, struct wlan_network *pnetwork,
char *start, char *stop, struct iw_event *iwe)
{
u8 buf[32] = {0};
u8 *p, *pos;
p = buf;
pos = pnetwork->network.Reserved;
p += sprintf(p, "fm=%02X%02X", pos[1], pos[0]);
_rtw_memset(iwe, 0, sizeof(*iwe));
iwe->cmd = IWEVCUSTOM;
iwe->u.data.length = strlen(buf);
start = iwe_stream_add_point(info, start, stop, iwe, buf);
return start;
}
static char *translate_scan(_adapter *padapter,
struct iw_request_info *info, struct wlan_network *pnetwork,
char *start, char *stop)
{
struct iw_event iwe;
u16 cap = 0;
_rtw_memset(&iwe, 0, sizeof(iwe));
start = iwe_stream_mac_addr_proess(padapter, info, pnetwork, start, stop, &iwe);
start = iwe_stream_essid_proess(padapter, info, pnetwork, start, stop, &iwe);
start = iwe_stream_protocol_process(padapter, info, pnetwork, start, stop, &iwe);
if (pnetwork->network.Reserved[0] == BSS_TYPE_PROB_REQ) /* Probe Request */
cap = 0;
else {
_rtw_memcpy((u8 *)&cap, rtw_get_capability_from_ie(pnetwork->network.IEs), 2);
cap = le16_to_cpu(cap);
}
start = iwe_stream_mode_process(padapter, info, pnetwork, start, stop, &iwe, cap);
start = iwe_stream_chan_process(padapter, info, pnetwork, start, stop, &iwe);
start = iwe_stream_encryption_process(padapter, info, pnetwork, start, stop, &iwe, cap);
start = iwe_stream_rate_process(padapter, info, pnetwork, start, stop, &iwe);
start = iwe_stream_wpa_wpa2_process(padapter, info, pnetwork, start, stop, &iwe);
start = iwe_stream_wps_process(padapter, info, pnetwork, start, stop, &iwe);
start = iwe_stream_wapi_process(padapter, info, pnetwork, start, stop, &iwe);
start = iwe_stream_rssi_process(padapter, info, pnetwork, start, stop, &iwe);
start = iwe_stream_net_rsv_process(padapter, info, pnetwork, start, stop, &iwe);
return start;
}
static int wpa_set_auth_algs(struct net_device *dev, u32 value)
{
_adapter *padapter = (_adapter *) rtw_netdev_priv(dev);
int ret = 0;
if ((value & AUTH_ALG_SHARED_KEY) && (value & AUTH_ALG_OPEN_SYSTEM)) {
RTW_INFO("wpa_set_auth_algs, AUTH_ALG_SHARED_KEY and AUTH_ALG_OPEN_SYSTEM [value:0x%x]\n", value);
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption1Enabled;
padapter->securitypriv.ndisauthtype = Ndis802_11AuthModeAutoSwitch;
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_Auto;
} else if (value & AUTH_ALG_SHARED_KEY) {
RTW_INFO("wpa_set_auth_algs, AUTH_ALG_SHARED_KEY [value:0x%x]\n", value);
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption1Enabled;
#ifdef CONFIG_PLATFORM_MT53XX
padapter->securitypriv.ndisauthtype = Ndis802_11AuthModeAutoSwitch;
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_Auto;
#else
padapter->securitypriv.ndisauthtype = Ndis802_11AuthModeShared;
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_Shared;
#endif
} else if (value & AUTH_ALG_OPEN_SYSTEM) {
RTW_INFO("wpa_set_auth_algs, AUTH_ALG_OPEN_SYSTEM\n");
/* padapter->securitypriv.ndisencryptstatus = Ndis802_11EncryptionDisabled; */
if (padapter->securitypriv.ndisauthtype < Ndis802_11AuthModeWPAPSK) {
#ifdef CONFIG_PLATFORM_MT53XX
padapter->securitypriv.ndisauthtype = Ndis802_11AuthModeAutoSwitch;
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_Auto;
#else
padapter->securitypriv.ndisauthtype = Ndis802_11AuthModeOpen;
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_Open;
#endif
}
} else if (value & AUTH_ALG_LEAP)
RTW_INFO("wpa_set_auth_algs, AUTH_ALG_LEAP\n");
else {
RTW_INFO("wpa_set_auth_algs, error!\n");
ret = -EINVAL;
}
return ret;
}
static int wpa_set_encryption(struct net_device *dev, struct ieee_param *param, u32 param_len)
{
int ret = 0;
u32 wep_key_idx, wep_key_len;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct security_priv *psecuritypriv = &padapter->securitypriv;
#ifdef CONFIG_P2P
struct wifidirect_info *pwdinfo = &padapter->wdinfo;
#endif /* CONFIG_P2P */
param->u.crypt.err = 0;
param->u.crypt.alg[IEEE_CRYPT_ALG_NAME_LEN - 1] = '\0';
if (param_len < (u32)((u8 *) param->u.crypt.key - (u8 *) param) + param->u.crypt.key_len) {
ret = -EINVAL;
goto exit;
}
if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff &&
param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff &&
param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff) {
if (param->u.crypt.idx >= WEP_KEYS
#ifdef CONFIG_IEEE80211W
&& param->u.crypt.idx > BIP_MAX_KEYID
#endif /* CONFIG_IEEE80211W */
) {
ret = -EINVAL;
goto exit;
}
} else {
#ifdef CONFIG_WAPI_SUPPORT
if (strcmp(param->u.crypt.alg, "SMS4"))
#endif
{
ret = -EINVAL;
goto exit;
}
}
if (strcmp(param->u.crypt.alg, "WEP") == 0) {
RTW_INFO("wpa_set_encryption, crypt.alg = WEP\n");
wep_key_idx = param->u.crypt.idx;
wep_key_len = param->u.crypt.key_len;
if ((wep_key_idx >= WEP_KEYS) || (wep_key_len <= 0)) {
ret = -EINVAL;
goto exit;
}
if (psecuritypriv->bWepDefaultKeyIdxSet == 0) {
/* wep default key has not been set, so use this key index as default key.*/
wep_key_len = wep_key_len <= 5 ? 5 : 13;
psecuritypriv->ndisencryptstatus = Ndis802_11Encryption1Enabled;
psecuritypriv->dot11PrivacyAlgrthm = _WEP40_;
psecuritypriv->dot118021XGrpPrivacy = _WEP40_;
if (wep_key_len == 13) {
psecuritypriv->dot11PrivacyAlgrthm = _WEP104_;
psecuritypriv->dot118021XGrpPrivacy = _WEP104_;
}
psecuritypriv->dot11PrivacyKeyIndex = wep_key_idx;
}
_rtw_memcpy(&(psecuritypriv->dot11DefKey[wep_key_idx].skey[0]), param->u.crypt.key, wep_key_len);
psecuritypriv->dot11DefKeylen[wep_key_idx] = wep_key_len;
psecuritypriv->key_mask |= BIT(wep_key_idx);
padapter->mlmeextpriv.mlmext_info.key_index = wep_key_idx;
goto exit;
}
if (padapter->securitypriv.dot11AuthAlgrthm == dot11AuthAlgrthm_8021X) { /* 802_1x */
struct sta_info *psta, *pbcmc_sta;
struct sta_priv *pstapriv = &padapter->stapriv;
if (MLME_IS_STA(padapter) || MLME_IS_MP(padapter)) { /* sta mode */
psta = rtw_get_stainfo(pstapriv, get_bssid(pmlmepriv));
if (psta == NULL) {
/* DEBUG_ERR( ("Set wpa_set_encryption: Obtain Sta_info fail\n")); */
} else {
/* Jeff: don't disable ieee8021x_blocked while clearing key */
if (strcmp(param->u.crypt.alg, "none") != 0)
psta->ieee8021x_blocked = _FALSE;
if ((padapter->securitypriv.ndisencryptstatus == Ndis802_11Encryption2Enabled) ||
(padapter->securitypriv.ndisencryptstatus == Ndis802_11Encryption3Enabled))
psta->dot118021XPrivacy = padapter->securitypriv.dot11PrivacyAlgrthm;
if (param->u.crypt.set_tx == 1) { /* pairwise key */
RTW_INFO(FUNC_ADPT_FMT" set %s PTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.alg, param->u.crypt.idx, param->u.crypt.key_len);
_rtw_memcpy(psta->dot118021x_UncstKey.skey, param->u.crypt.key, (param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
if (strcmp(param->u.crypt.alg, "TKIP") == 0) { /* set mic key */
_rtw_memcpy(psta->dot11tkiptxmickey.skey, &(param->u.crypt.key[16]), 8);
_rtw_memcpy(psta->dot11tkiprxmickey.skey, &(param->u.crypt.key[24]), 8);
padapter->securitypriv.busetkipkey = _FALSE;
}
psta->dot11txpn.val = RTW_GET_LE64(param->u.crypt.seq);
psta->dot11rxpn.val = RTW_GET_LE64(param->u.crypt.seq);
psta->bpairwise_key_installed = _TRUE;
rtw_setstakey_cmd(padapter, psta, UNICAST_KEY, _TRUE);
} else { /* group key */
if (strcmp(param->u.crypt.alg, "TKIP") == 0 || strcmp(param->u.crypt.alg, "CCMP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set %s GTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.alg, param->u.crypt.idx, param->u.crypt.key_len);
_rtw_memcpy(padapter->securitypriv.dot118021XGrpKey[param->u.crypt.idx].skey, param->u.crypt.key,
(param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
/* only TKIP group key need to install this */
if (param->u.crypt.key_len > 16) {
_rtw_memcpy(padapter->securitypriv.dot118021XGrptxmickey[param->u.crypt.idx].skey, &(param->u.crypt.key[16]), 8);
_rtw_memcpy(padapter->securitypriv.dot118021XGrprxmickey[param->u.crypt.idx].skey, &(param->u.crypt.key[24]), 8);
}
padapter->securitypriv.binstallGrpkey = _TRUE;
if (param->u.crypt.idx < 4)
_rtw_memcpy(padapter->securitypriv.iv_seq[param->u.crypt.idx], param->u.crypt.seq, 8);
padapter->securitypriv.dot118021XGrpKeyid = param->u.crypt.idx;
rtw_set_key(padapter, &padapter->securitypriv, param->u.crypt.idx, 1, _TRUE);
#ifdef CONFIG_IEEE80211W
} else if (strcmp(param->u.crypt.alg, "BIP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set IGTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
_rtw_memcpy(padapter->securitypriv.dot11wBIPKey[param->u.crypt.idx].skey, param->u.crypt.key,
(param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
psecuritypriv->dot11wBIPKeyid = param->u.crypt.idx;
psecuritypriv->dot11wBIPrxpn.val = RTW_GET_LE64(param->u.crypt.seq);
psecuritypriv->binstallBIPkey = _TRUE;
rtw_set_key(padapter, &padapter->securitypriv, param->u.crypt.idx, 1, _TRUE);
#endif /* CONFIG_IEEE80211W */
}
/* WPA/WPA2 key-handshake has completed */
clr_fwstate(pmlmepriv, WIFI_UNDER_KEY_HANDSHAKE);
}
}
pbcmc_sta = rtw_get_bcmc_stainfo(padapter);
if (pbcmc_sta == NULL) {
/* DEBUG_ERR( ("Set OID_802_11_ADD_KEY: bcmc stainfo is null\n")); */
} else {
/* Jeff: don't disable ieee8021x_blocked while clearing key */
if (strcmp(param->u.crypt.alg, "none") != 0)
pbcmc_sta->ieee8021x_blocked = _FALSE;
if ((padapter->securitypriv.ndisencryptstatus == Ndis802_11Encryption2Enabled) ||
(padapter->securitypriv.ndisencryptstatus == Ndis802_11Encryption3Enabled))
pbcmc_sta->dot118021XPrivacy = padapter->securitypriv.dot11PrivacyAlgrthm;
}
} else if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE)) { /* adhoc mode */
}
}
#ifdef CONFIG_WAPI_SUPPORT
if (strcmp(param->u.crypt.alg, "SMS4") == 0)
rtw_wapi_set_set_encryption(padapter, param);
#endif
exit:
return ret;
}
static int rtw_set_wpa_ie(_adapter *padapter, char *pie, unsigned short ielen)
{
u8 *buf = NULL, *pos = NULL;
int group_cipher = 0, pairwise_cipher = 0;
u8 mfp_opt = MFP_NO;
int ret = 0;
u8 null_addr[] = {0, 0, 0, 0, 0, 0};
#ifdef CONFIG_P2P
struct wifidirect_info *pwdinfo = &padapter->wdinfo;
#endif /* CONFIG_P2P */
if ((ielen > MAX_WPA_IE_LEN) || (pie == NULL)) {
_clr_fwstate_(&padapter->mlmepriv, WIFI_UNDER_WPS);
if (pie == NULL)
return ret;
else
return -EINVAL;
}
if (ielen) {
buf = rtw_zmalloc(ielen);
if (buf == NULL) {
ret = -ENOMEM;
goto exit;
}
_rtw_memcpy(buf, pie , ielen);
/* dump */
{
int i;
RTW_INFO("\n wpa_ie(length:%d):\n", ielen);
for (i = 0; i < ielen; i = i + 8)
RTW_INFO("0x%.2x 0x%.2x 0x%.2x 0x%.2x 0x%.2x 0x%.2x 0x%.2x 0x%.2x\n", buf[i], buf[i + 1], buf[i + 2], buf[i + 3], buf[i + 4], buf[i + 5], buf[i + 6], buf[i + 7]);
}
pos = buf;
if (ielen < RSN_HEADER_LEN) {
ret = -1;
goto exit;
}
if (rtw_parse_wpa_ie(buf, ielen, &group_cipher, &pairwise_cipher, NULL) == _SUCCESS) {
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_8021X;
padapter->securitypriv.ndisauthtype = Ndis802_11AuthModeWPAPSK;
_rtw_memcpy(padapter->securitypriv.supplicant_ie, &buf[0], ielen);
}
if (rtw_parse_wpa2_ie(buf, ielen, &group_cipher, &pairwise_cipher, NULL, NULL, &mfp_opt, NULL) == _SUCCESS) {
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_8021X;
padapter->securitypriv.ndisauthtype = Ndis802_11AuthModeWPA2PSK;
_rtw_memcpy(padapter->securitypriv.supplicant_ie, &buf[0], ielen);
}
if (group_cipher == 0)
group_cipher = WPA_CIPHER_NONE;
if (pairwise_cipher == 0)
pairwise_cipher = WPA_CIPHER_NONE;
switch (group_cipher) {
case WPA_CIPHER_NONE:
padapter->securitypriv.dot118021XGrpPrivacy = _NO_PRIVACY_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11EncryptionDisabled;
break;
case WPA_CIPHER_WEP40:
padapter->securitypriv.dot118021XGrpPrivacy = _WEP40_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption1Enabled;
break;
case WPA_CIPHER_TKIP:
padapter->securitypriv.dot118021XGrpPrivacy = _TKIP_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption2Enabled;
break;
case WPA_CIPHER_CCMP:
padapter->securitypriv.dot118021XGrpPrivacy = _AES_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
case WPA_CIPHER_WEP104:
padapter->securitypriv.dot118021XGrpPrivacy = _WEP104_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption1Enabled;
break;
}
switch (pairwise_cipher) {
case WPA_CIPHER_NONE:
padapter->securitypriv.dot11PrivacyAlgrthm = _NO_PRIVACY_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11EncryptionDisabled;
break;
case WPA_CIPHER_WEP40:
padapter->securitypriv.dot11PrivacyAlgrthm = _WEP40_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption1Enabled;
break;
case WPA_CIPHER_TKIP:
padapter->securitypriv.dot11PrivacyAlgrthm = _TKIP_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption2Enabled;
break;
case WPA_CIPHER_CCMP:
padapter->securitypriv.dot11PrivacyAlgrthm = _AES_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
case WPA_CIPHER_WEP104:
padapter->securitypriv.dot11PrivacyAlgrthm = _WEP104_;
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption1Enabled;
break;
}
if (mfp_opt == MFP_INVALID) {
RTW_INFO(FUNC_ADPT_FMT" invalid MFP setting\n", FUNC_ADPT_ARG(padapter));
ret = -EINVAL;
goto exit;
}
padapter->securitypriv.mfp_opt = mfp_opt;
_clr_fwstate_(&padapter->mlmepriv, WIFI_UNDER_WPS);
{/* set wps_ie */
u16 cnt = 0;
u8 eid, wps_oui[4] = {0x0, 0x50, 0xf2, 0x04};
while (cnt < ielen) {
eid = buf[cnt];
if ((eid == _VENDOR_SPECIFIC_IE_) && (_rtw_memcmp(&buf[cnt + 2], wps_oui, 4) == _TRUE)) {
RTW_INFO("SET WPS_IE\n");
padapter->securitypriv.wps_ie_len = ((buf[cnt + 1] + 2) < MAX_WPS_IE_LEN) ? (buf[cnt + 1] + 2) : MAX_WPS_IE_LEN;
_rtw_memcpy(padapter->securitypriv.wps_ie, &buf[cnt], padapter->securitypriv.wps_ie_len);
set_fwstate(&padapter->mlmepriv, WIFI_UNDER_WPS);
cnt += buf[cnt + 1] + 2;
break;
} else {
cnt += buf[cnt + 1] + 2; /* goto next */
}
}
}
#ifdef CONFIG_RTW_MULTI_AP
padapter->multi_ap = rtw_get_multi_ap_ie_ext(buf, ielen) & MULTI_AP_BACKHAUL_STA;
if (padapter->multi_ap)
adapter_set_use_wds(padapter, 1);
#endif
}
/* TKIP and AES disallow multicast packets until installing group key */
if (padapter->securitypriv.dot11PrivacyAlgrthm == _TKIP_
|| padapter->securitypriv.dot11PrivacyAlgrthm == _TKIP_WTMIC_
|| padapter->securitypriv.dot11PrivacyAlgrthm == _AES_)
/* WPS open need to enable multicast
* || check_fwstate(&padapter->mlmepriv, WIFI_UNDER_WPS) == _TRUE) */
rtw_hal_set_hwreg(padapter, HW_VAR_OFF_RCR_AM, null_addr);
exit:
if (buf)
rtw_mfree(buf, ielen);
return ret;
}
static int rtw_wx_get_name(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
u32 ht_ielen = 0;
char *p;
u8 ht_cap = _FALSE, vht_cap = _FALSE, he_cap = _FALSE;
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
WLAN_BSSID_EX *pcur_bss = &pmlmepriv->cur_network.network;
NDIS_802_11_RATES_EX *prates = NULL;
if (check_fwstate(pmlmepriv, WIFI_ASOC_STATE | WIFI_ADHOC_MASTER_STATE) == _TRUE) {
/* parsing HT_CAP_IE */
if( is_supported_ht(padapter->registrypriv.wireless_mode)&&(padapter->registrypriv.ht_enable)) {
p = rtw_get_ie(&pcur_bss->IEs[12], _HT_CAPABILITY_IE_, &ht_ielen, pcur_bss->IELength - 12);
if (p && ht_ielen > 0 )
ht_cap = _TRUE;
}
#ifdef CONFIG_80211AC_VHT
if (is_supported_vht(padapter->registrypriv.wireless_mode) &&
(pmlmepriv->vhtpriv.vht_option == _TRUE))
vht_cap = _TRUE;
#endif
#ifdef CONFIG_80211AX_HE
if (is_supported_he(padapter->registrypriv.wireless_mode) &&
(pmlmepriv->hepriv.he_option == _TRUE))
he_cap = _TRUE;
#endif
prates = &pcur_bss->SupportedRates;
#ifdef CONFIG_80211AX_HE
if (he_cap == _TRUE)
snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11AX");
else
#endif
if (rtw_is_cckratesonly_included((u8 *)prates) == _TRUE) {
if (ht_cap == _TRUE)
snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11bn");
else
snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
} else if ((rtw_is_cckrates_included((u8 *)prates)) == _TRUE) {
if (ht_cap == _TRUE)
snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11bgn");
else {
if(padapter->registrypriv.wireless_mode & WLAN_MD_11G)
snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11bg");
else
snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
}
} else {
if (pcur_bss->Configuration.DSConfig > 14) {
#ifdef CONFIG_80211AC_VHT
if (vht_cap == _TRUE)
snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11AC");
else
#endif
{
if (ht_cap == _TRUE)
snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11an");
else
snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11a");
}
} else {
if (ht_cap == _TRUE)
snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11gn");
else
snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11g");
}
}
} else {
/* prates = &padapter->registrypriv.dev_network.SupportedRates; */
/* snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11g"); */
snprintf(wrqu->name, IFNAMSIZ, "unassociated");
}
return 0;
}
static int rtw_wx_set_freq(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
int exp = 1, freq = 0, div = 0;
rtw_ps_deny(padapter, PS_DENY_IOCTL);
if (rtw_pwr_wakeup(padapter) == _FALSE)
goto exit;
if (wrqu->freq.m <= 1000) {
if (wrqu->freq.flags == IW_FREQ_AUTO) {
if (rtw_chset_search_ch(adapter_to_chset(padapter), wrqu->freq.m) > 0) {
padapter->mlmeextpriv.chandef.chan = wrqu->freq.m;
RTW_INFO("%s: channel is auto, set to channel %d\n", __func__, wrqu->freq.m);
} else {
padapter->mlmeextpriv.chandef.chan = 1;
RTW_INFO("%s: channel is auto, Channel Plan don't match just set to channel 1\n", __func__);
}
} else {
padapter->mlmeextpriv.chandef.chan = wrqu->freq.m;
RTW_INFO("%s: set to channel %d\n", __func__, padapter->mlmeextpriv.chandef.chan);
}
} else {
while (wrqu->freq.e) {
exp *= 10;
wrqu->freq.e--;
}
freq = wrqu->freq.m;
while (!(freq % 10)) {
freq /= 10;
exp *= 10;
}
/* freq unit is MHz here */
div = 1000000 / exp;
if (div)
freq /= div;
else {
div = exp / 1000000;
freq *= div;
}
/* If freq is invalid, rtw_freq2ch() will return channel 1 */
padapter->mlmeextpriv.chandef.chan = rtw_freq2ch(freq);
RTW_INFO("%s: set to channel %d\n", __func__, padapter->mlmeextpriv.chandef.chan);
}
set_channel_bwmode(padapter,
padapter->mlmeextpriv.chandef.chan,
CHAN_OFFSET_NO_EXT,
CHANNEL_WIDTH_20,
_FALSE);
exit:
rtw_ps_deny_cancel(padapter, PS_DENY_IOCTL);
return 0;
}
static int rtw_wx_get_freq(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
WLAN_BSSID_EX *pcur_bss = &pmlmepriv->cur_network.network;
if (check_fwstate(pmlmepriv, WIFI_ASOC_STATE) == _TRUE && check_fwstate(pmlmepriv, WIFI_MONITOR_STATE) != _TRUE) {
wrqu->freq.m = rtw_ch2freq(pcur_bss->Configuration.DSConfig) * 100000;
wrqu->freq.e = 1;
wrqu->freq.i = pcur_bss->Configuration.DSConfig;
} else {
wrqu->freq.m = rtw_ch2freq(padapter->mlmeextpriv.chandef.chan) * 100000;
wrqu->freq.e = 1;
wrqu->freq.i = padapter->mlmeextpriv.chandef.chan;
}
return 0;
}
u32 wext_mode_to_rtw_mlme_state(union iwreq_data *wrqu)
{
switch (wrqu->mode) {
#ifdef CONFIG_WIFI_MONITOR
case IW_MODE_MONITOR:
return WIFI_MONITOR_STATE;
#endif
case IW_MODE_ADHOC:
return WIFI_ADHOC_STATE;
#ifdef CONFIG_AP_MODE
case IW_MODE_MASTER:
return WIFI_AP_STATE;
#endif
case IW_MODE_INFRA:
return WIFI_STATION_STATE;
#ifdef CONFIG_RTW_MESH
case IW_MODE_MESH:
return WIFI_MESH_STATE;
#endif
case IW_MODE_AUTO:
default:
return WIFI_STATION_STATE;
}
}
static int rtw_wx_set_mode(struct net_device *dev, struct iw_request_info *a,
union iwreq_data *wrqu, char *b)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
NDIS_802_11_NETWORK_INFRASTRUCTURE networkType ;
int ret = 0;
if (_FAIL == rtw_pwr_wakeup(padapter)) {
ret = -EPERM;
goto exit;
}
if (!rtw_hw_is_init_completed(adapter_to_dvobj(padapter))) {
ret = -EPERM;
goto exit;
}
/* initial default type */
dev->type = ARPHRD_ETHER;
if (wrqu->mode != IW_MODE_MONITOR) {
rtw_ps_deny_cancel(padapter, PS_DENY_MONITOR_MODE);
}
switch (wrqu->mode) {
#ifdef CONFIG_WIFI_MONITOR
case IW_MODE_MONITOR:
networkType = Ndis802_11Monitor;
rtw_ps_deny(padapter, PS_DENY_MONITOR_MODE);
LeaveAllPowerSaveMode(padapter);
#if 0
dev->type = ARPHRD_IEEE80211; /* IEEE 802.11 : 801 */
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24))
dev->type = ARPHRD_IEEE80211_RADIOTAP; /* IEEE 802.11 + radiotap header : 803 */
RTW_INFO("set_mode = IW_MODE_MONITOR\n");
#else
RTW_INFO("kernel version < 2.6.24 not support IW_MODE_MONITOR\n");
#endif
break;
#endif /* CONFIG_WIFI_MONITOR */
case IW_MODE_AUTO:
networkType = Ndis802_11AutoUnknown;
RTW_INFO("set_mode = IW_MODE_AUTO\n");
break;
case IW_MODE_ADHOC:
networkType = Ndis802_11IBSS;
RTW_INFO("set_mode = IW_MODE_ADHOC\n");
break;
case IW_MODE_MASTER:
networkType = Ndis802_11APMode;
RTW_INFO("set_mode = IW_MODE_MASTER\n");
break;
case IW_MODE_INFRA:
networkType = Ndis802_11Infrastructure;
RTW_INFO("set_mode = IW_MODE_INFRA\n");
break;
default:
ret = -EINVAL;;
goto exit;
}
if (rtw_set_802_11_infrastructure_mode(padapter, networkType, 0) == _FALSE) {
ret = -EPERM;
goto exit;
}
rtw_setopmode_cmd(padapter, networkType, RTW_CMDF_WAIT_ACK);
if (check_fwstate(pmlmepriv, WIFI_MONITOR_STATE) == _TRUE)
rtw_indicate_connect(padapter);
exit:
return ret;
}
static int rtw_wx_get_mode(struct net_device *dev, struct iw_request_info *a,
union iwreq_data *wrqu, char *b)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
if (MLME_IS_STA(padapter))
wrqu->mode = IW_MODE_INFRA;
else if (MLME_IS_ADHOC(padapter) || MLME_IS_ADHOC_MASTER(padapter))
wrqu->mode = IW_MODE_ADHOC;
else if (MLME_IS_AP(padapter))
wrqu->mode = IW_MODE_MASTER;
else if (MLME_IS_MONITOR(padapter))
wrqu->mode = IW_MODE_MONITOR;
else
wrqu->mode = IW_MODE_AUTO;
return 0;
}
static int rtw_wx_set_pmkid(struct net_device *dev,
struct iw_request_info *a,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
u8 j, blInserted = _FALSE;
int intReturn = _FALSE;
struct security_priv *psecuritypriv = &padapter->securitypriv;
struct iw_pmksa *pPMK = (struct iw_pmksa *) extra;
u8 strZeroMacAddress[ETH_ALEN] = { 0x00 };
u8 strIssueBssid[ETH_ALEN] = { 0x00 };
#if 0
struct iw_pmksa {
__u32 cmd;
struct sockaddr bssid;
__u8 pmkid[IW_PMKID_LEN]; /* IW_PMKID_LEN=16 */
}
There are the BSSID information in the bssid.sa_data array.
If cmd is IW_PMKSA_FLUSH, it means the wpa_suppplicant wants to clear all the PMKID information.
If cmd is IW_PMKSA_ADD, it means the wpa_supplicant wants to add a PMKID / BSSID to driver.
If cmd is IW_PMKSA_REMOVE, it means the wpa_supplicant wants to remove a PMKID / BSSID from driver.
#endif
_rtw_memcpy(strIssueBssid, pPMK->bssid.sa_data, ETH_ALEN);
if (pPMK->cmd == IW_PMKSA_ADD) {
RTW_INFO("[rtw_wx_set_pmkid] IW_PMKSA_ADD!\n");
if (_rtw_memcmp(strIssueBssid, strZeroMacAddress, ETH_ALEN) == _TRUE)
return intReturn ;
else
intReturn = _TRUE;
blInserted = _FALSE;
/* overwrite PMKID */
for (j = 0 ; j < NUM_PMKID_CACHE; j++) {
if (_rtw_memcmp(psecuritypriv->PMKIDList[j].Bssid, strIssueBssid, ETH_ALEN) == _TRUE) {
/* BSSID is matched, the same AP => rewrite with new PMKID. */
RTW_INFO("[rtw_wx_set_pmkid] BSSID exists in the PMKList.\n");
_rtw_memcpy(psecuritypriv->PMKIDList[j].PMKID, pPMK->pmkid, IW_PMKID_LEN);
psecuritypriv->PMKIDList[j].bUsed = _TRUE;
blInserted = _TRUE;
break;
}
}
if (!blInserted) {
/* Find a new entry */
RTW_INFO("[rtw_wx_set_pmkid] Use the new entry index = %d for this PMKID.\n",
psecuritypriv->PMKIDIndex);
_rtw_memcpy(psecuritypriv->PMKIDList[psecuritypriv->PMKIDIndex].Bssid, strIssueBssid, ETH_ALEN);
_rtw_memcpy(psecuritypriv->PMKIDList[psecuritypriv->PMKIDIndex].PMKID, pPMK->pmkid, IW_PMKID_LEN);
psecuritypriv->PMKIDList[psecuritypriv->PMKIDIndex].bUsed = _TRUE;
psecuritypriv->PMKIDIndex++ ;
if (psecuritypriv->PMKIDIndex == 16)
psecuritypriv->PMKIDIndex = 0;
}
} else if (pPMK->cmd == IW_PMKSA_REMOVE) {
RTW_INFO("[rtw_wx_set_pmkid] IW_PMKSA_REMOVE!\n");
intReturn = _TRUE;
for (j = 0 ; j < NUM_PMKID_CACHE; j++) {
if (_rtw_memcmp(psecuritypriv->PMKIDList[j].Bssid, strIssueBssid, ETH_ALEN) == _TRUE) {
/* BSSID is matched, the same AP => Remove this PMKID information and reset it. */
_rtw_memset(psecuritypriv->PMKIDList[j].Bssid, 0x00, ETH_ALEN);
psecuritypriv->PMKIDList[j].bUsed = _FALSE;
break;
}
}
} else if (pPMK->cmd == IW_PMKSA_FLUSH) {
RTW_INFO("[rtw_wx_set_pmkid] IW_PMKSA_FLUSH!\n");
_rtw_memset(&psecuritypriv->PMKIDList[0], 0x00, sizeof(RT_PMKID_LIST) * NUM_PMKID_CACHE);
psecuritypriv->PMKIDIndex = 0;
intReturn = _TRUE;
}
return intReturn ;
}
static int rtw_wx_get_sens(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
#ifdef CONFIG_PLATFORM_ROCKCHIPS
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
/*
* 20110311 Commented by Jeff
* For rockchip platform's wpa_driver_wext_get_rssi
*/
if (check_fwstate(pmlmepriv, WIFI_ASOC_STATE) == _TRUE) {
/* wrqu->sens.value=-padapter->recvinfo.signal_strength; */
wrqu->sens.value = -padapter->recvinfo.rssi;
/* RTW_INFO("%s: %d\n", __FUNCTION__, wrqu->sens.value); */
wrqu->sens.fixed = 0; /* no auto select */
} else
#endif
{
wrqu->sens.value = 0;
wrqu->sens.fixed = 0; /* no auto select */
wrqu->sens.disabled = 1;
}
return 0;
}
static int rtw_wx_get_range(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct iw_range *range = (struct iw_range *)extra;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct rf_ctl_t *rfctl = adapter_to_rfctl(padapter);
u16 val;
int i;
wrqu->data.length = sizeof(*range);
_rtw_memset(range, 0, sizeof(*range));
/* Let's try to keep this struct in the same order as in
* linux/include/wireless.h
*/
/* TODO: See what values we can set, and remove the ones we can't
* set, or fill them with some default data.
*/
/* ~5 Mb/s real (802.11b) */
range->throughput = 5 * 1000 * 1000;
/* TODO: Not used in 802.11b?
* range->min_nwid; Minimal NWID we are able to set */
/* TODO: Not used in 802.11b?
* range->max_nwid; Maximal NWID we are able to set */
/* Old Frequency (backward compat - moved lower ) */
/* range->old_num_channels;
* range->old_num_frequency;
* range->old_freq[6]; Filler to keep "version" at the same offset */
/* signal level threshold range */
/* Quality of link & SNR stuff */
/* Quality range (link, level, noise)
* If the quality is absolute, it will be in the range [0 ; max_qual],
* if the quality is dBm, it will be in the range [max_qual ; 0].
* Don't forget that we use 8 bit arithmetics...
*
* If percentage range is 0~100
* Signal strength dbm range logical is -100 ~ 0
* but usually value is -90 ~ -20
*/
range->max_qual.qual = 100;
#ifdef CONFIG_SIGNAL_DISPLAY_DBM
range->max_qual.level = (u8)-100;
range->max_qual.noise = (u8)-100;
range->max_qual.updated = IW_QUAL_ALL_UPDATED; /* Updated all three */
range->max_qual.updated |= IW_QUAL_DBM;
#else /* !CONFIG_SIGNAL_DISPLAY_DBM */
/* percent values between 0 and 100. */
range->max_qual.level = 100;
range->max_qual.noise = 100;
range->max_qual.updated = IW_QUAL_ALL_UPDATED; /* Updated all three */
#endif /* !CONFIG_SIGNAL_DISPLAY_DBM */
/* This should contain the average/typical values of the quality
* indicator. This should be the threshold between a "good" and
* a "bad" link (example : monitor going from green to orange).
* Currently, user space apps like quality monitors don't have any
* way to calibrate the measurement. With this, they can split
* the range between 0 and max_qual in different quality level
* (using a geometric subdivision centered on the average).
* I expect that people doing the user space apps will feedback
* us on which value we need to put in each driver... */
range->avg_qual.qual = 92; /* > 8% missed beacons is 'bad' */
#ifdef CONFIG_SIGNAL_DISPLAY_DBM
/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
range->avg_qual.level = (u8)-70;
range->avg_qual.noise = 0;
range->avg_qual.updated = IW_QUAL_ALL_UPDATED; /* Updated all three */
range->avg_qual.updated |= IW_QUAL_DBM;
#else /* !CONFIG_SIGNAL_DISPLAY_DBM */
/* TODO: Find real 'good' to 'bad' threshol value for RSSI */
range->avg_qual.level = 30;
range->avg_qual.noise = 100;
range->avg_qual.updated = IW_QUAL_ALL_UPDATED; /* Updated all three */
#endif /* !CONFIG_SIGNAL_DISPLAY_DBM */
range->num_bitrates = RATE_COUNT;
for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++)
range->bitrate[i] = rtw_rates[i];
range->min_frag = MIN_FRAG_THRESHOLD;
range->max_frag = MAX_FRAG_THRESHOLD;
range->pm_capa = 0;
range->we_version_compiled = WIRELESS_EXT;
range->we_version_source = 16;
/* range->retry_capa; What retry options are supported
* range->retry_flags; How to decode max/min retry limit
* range->r_time_flags; How to decode max/min retry life
* range->min_retry; Minimal number of retries
* range->max_retry; Maximal number of retries
* range->min_r_time; Minimal retry lifetime
* range->max_r_time; Maximal retry lifetime */
for (i = 0, val = 0; i < rfctl->max_chan_nums; i++) {
/* Include only legal frequencies for some countries */
if (rfctl->channel_set[i].ChannelNum != 0) {
range->freq[val].i = rfctl->channel_set[i].ChannelNum;
range->freq[val].m = rtw_ch2freq(rfctl->channel_set[i].ChannelNum) * 100000;
range->freq[val].e = 1;
val++;
}
if (val == IW_MAX_FREQUENCIES)
break;
}
range->num_channels = val;
range->num_frequency = val;
/* Commented by Albert 2009/10/13
* The following code will proivde the security capability to network manager.
* If the driver doesn't provide this capability to network manager,
* the WPA/WPA2 routers can't be choosen in the network manager. */
/*
#define IW_SCAN_CAPA_NONE 0x00
#define IW_SCAN_CAPA_ESSID 0x01
#define IW_SCAN_CAPA_BSSID 0x02
#define IW_SCAN_CAPA_CHANNEL 0x04
#define IW_SCAN_CAPA_MODE 0x08
#define IW_SCAN_CAPA_RATE 0x10
#define IW_SCAN_CAPA_TYPE 0x20
#define IW_SCAN_CAPA_TIME 0x40
*/
#if WIRELESS_EXT > 17
range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
#endif
#ifdef IW_SCAN_CAPA_ESSID /* WIRELESS_EXT > 21 */
range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE | IW_SCAN_CAPA_BSSID |
IW_SCAN_CAPA_CHANNEL | IW_SCAN_CAPA_MODE | IW_SCAN_CAPA_RATE;
#endif
return 0;
}
/* set bssid flow
* s1. rtw_set_802_11_infrastructure_mode()
* s2. rtw_set_802_11_authentication_mode()
* s3. set_802_11_encryption_mode()
* s4. rtw_set_802_11_bssid() */
static int rtw_wx_set_wap(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *awrq,
char *extra)
{
uint ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct sockaddr *temp = (struct sockaddr *)awrq;
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
_list *phead;
u8 *dst_bssid, *src_bssid;
_queue *queue = &(pmlmepriv->scanned_queue);
struct wlan_network *pnetwork = NULL;
NDIS_802_11_AUTHENTICATION_MODE authmode;
/*
#ifdef CONFIG_CONCURRENT_MODE
if(padapter->adapter_type > PRIMARY_IFACE)
{
ret = -EINVAL;
goto exit;
}
#endif
*/
#ifdef CONFIG_CONCURRENT_MODE
if (rtw_mi_buddy_check_fwstate(padapter, WIFI_UNDER_SURVEY | WIFI_UNDER_LINKING) == _TRUE) {
RTW_INFO("set bssid, but buddy_intf is under scanning or linking\n");
ret = -EINVAL;
goto exit;
}
#endif
rtw_ps_deny(padapter, PS_DENY_JOIN);
if (_FAIL == rtw_pwr_wakeup(padapter)) {
ret = -1;
goto cancel_ps_deny;
}
if (!padapter->netif_up) {
ret = -1;
goto cancel_ps_deny;
}
if (temp->sa_family != ARPHRD_ETHER) {
ret = -EINVAL;
goto cancel_ps_deny;
}
authmode = padapter->securitypriv.ndisauthtype;
_rtw_spinlock_bh(&queue->lock);
phead = get_list_head(queue);
pmlmepriv->pscanned = get_next(phead);
while (1) {
if ((rtw_end_of_queue_search(phead, pmlmepriv->pscanned)) == _TRUE) {
#if 0
ret = -EINVAL;
goto cancel_ps_deny;
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE) == _TRUE) {
rtw_set_802_11_bssid(padapter, temp->sa_data);
goto cancel_ps_deny;
} else {
ret = -EINVAL;
goto cancel_ps_deny;
}
#endif
break;
}
pnetwork = LIST_CONTAINOR(pmlmepriv->pscanned, struct wlan_network, list);
pmlmepriv->pscanned = get_next(pmlmepriv->pscanned);
dst_bssid = pnetwork->network.MacAddress;
src_bssid = temp->sa_data;
if ((_rtw_memcmp(dst_bssid, src_bssid, ETH_ALEN)) == _TRUE) {
if (!rtw_set_802_11_infrastructure_mode(padapter, pnetwork->network.InfrastructureMode, 0)) {
ret = -1;
_rtw_spinunlock_bh(&queue->lock);
goto cancel_ps_deny;
}
break;
}
}
_rtw_spinunlock_bh(&queue->lock);
rtw_set_802_11_authentication_mode(padapter, authmode);
/* set_802_11_encryption_mode(padapter, padapter->securitypriv.ndisencryptstatus); */
if (rtw_set_802_11_bssid(padapter, temp->sa_data) == _FALSE) {
ret = -1;
goto cancel_ps_deny;
}
cancel_ps_deny:
rtw_ps_deny_cancel(padapter, PS_DENY_JOIN);
#ifdef CONFIG_CONCURRENT_MODE
exit:
#endif
return ret;
}
static int rtw_wx_get_wap(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
WLAN_BSSID_EX *pcur_bss = &pmlmepriv->cur_network.network;
wrqu->ap_addr.sa_family = ARPHRD_ETHER;
_rtw_memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
if (((check_fwstate(pmlmepriv, WIFI_ASOC_STATE)) == _TRUE) ||
((check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE)) == _TRUE) ||
((check_fwstate(pmlmepriv, WIFI_AP_STATE)) == _TRUE))
_rtw_memcpy(wrqu->ap_addr.sa_data, pcur_bss->MacAddress, ETH_ALEN);
else
_rtw_memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
return 0;
}
static int rtw_wx_set_mlme(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
#if 0
/* SIOCSIWMLME data */
struct iw_mlme {
__u16 cmd; /* IW_MLME_* */
__u16 reason_code;
struct sockaddr addr;
};
#endif
int ret = 0;
u16 reason;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct iw_mlme *mlme = (struct iw_mlme *) extra;
if (mlme == NULL)
return -1;
RTW_INFO("%s\n", __FUNCTION__);
reason = cpu_to_le16(mlme->reason_code);
RTW_INFO("%s, cmd=%d, reason=%d\n", __FUNCTION__, mlme->cmd, reason);
switch (mlme->cmd) {
case IW_MLME_DEAUTH:
if (!rtw_set_802_11_disassociate(padapter))
ret = -1;
break;
case IW_MLME_DISASSOC:
if (!rtw_set_802_11_disassociate(padapter))
ret = -1;
break;
default:
return -EOPNOTSUPP;
}
return ret;
}
static int rtw_wx_set_scan(struct net_device *dev, struct iw_request_info *a,
union iwreq_data *wrqu, char *extra)
{
u8 _status = _FALSE;
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
/*struct mlme_priv *pmlmepriv = &padapter->mlmepriv;*/
struct sitesurvey_parm parm;
u8 ssc_chk;
#ifdef CONFIG_P2P
struct wifidirect_info *pwdinfo = &(padapter->wdinfo);
#endif /* CONFIG_P2P */
#ifdef DBG_IOCTL
RTW_INFO("DBG_IOCTL %s:%d\n", __FUNCTION__, __LINE__);
#endif
#if 1
ssc_chk = rtw_sitesurvey_condition_check(padapter, _FALSE);
#ifdef CONFIG_DOSCAN_IN_BUSYTRAFFIC
if ((ssc_chk != SS_ALLOW) && (ssc_chk != SS_DENY_BUSY_TRAFFIC))
#else
/* When Busy Traffic, driver do not site survey. So driver return success. */
/* wpa_supplicant will not issue SIOCSIWSCAN cmd again after scan timeout. */
/* modify by thomas 2011-02-22. */
if (ssc_chk != SS_ALLOW)
#endif
{
if (ssc_chk == SS_DENY_MP_MODE)
ret = -EPERM;
#ifdef DBG_LA_MODE
else if (ssc_chk == SS_DENY_LA_MODE)
ret = -EPERM;
#endif
else
indicate_wx_scan_complete_event(padapter);
goto exit;
} else
RTW_INFO(FUNC_ADPT_FMT"\n", FUNC_ADPT_ARG(padapter));
rtw_ps_deny(padapter, PS_DENY_SCAN);
if (_FAIL == rtw_pwr_wakeup(padapter)) {
ret = -1;
goto cancel_ps_deny;
}
if (!rtw_is_adapter_up(padapter)) {
ret = -1;
goto cancel_ps_deny;
}
#else
#ifdef CONFIG_MP_INCLUDED
if (rtw_mp_mode_check(padapter)) {
RTW_INFO("MP mode block Scan request\n");
ret = -EPERM;
goto exit;
}
#endif
if (rtw_is_scan_deny(padapter)) {
indicate_wx_scan_complete_event(padapter);
goto exit;
}
rtw_ps_deny(padapter, PS_DENY_SCAN);
if (_FAIL == rtw_pwr_wakeup(padapter)) {
ret = -1;
goto cancel_ps_deny;
}
if (!rtw_is_adapter_up(padapter)) {
ret = -1;
goto cancel_ps_deny;
}
#ifndef CONFIG_DOSCAN_IN_BUSYTRAFFIC
/* When Busy Traffic, driver do not site survey. So driver return success. */
/* wpa_supplicant will not issue SIOCSIWSCAN cmd again after scan timeout. */
/* modify by thomas 2011-02-22. */
if (rtw_mi_busy_traffic_check(padapter)) {
indicate_wx_scan_complete_event(padapter);
goto cancel_ps_deny;
}
#endif
if (check_fwstate(pmlmepriv, WIFI_AP_STATE) && check_fwstate(pmlmepriv, WIFI_UNDER_WPS)) {
RTW_INFO("AP mode process WPS\n");
indicate_wx_scan_complete_event(padapter);
goto cancel_ps_deny;
}
if (check_fwstate(pmlmepriv, WIFI_UNDER_SURVEY | WIFI_UNDER_LINKING) == _TRUE) {
indicate_wx_scan_complete_event(padapter);
goto cancel_ps_deny;
}
#ifdef CONFIG_CONCURRENT_MODE
if (rtw_mi_buddy_check_fwstate(padapter,
WIFI_UNDER_SURVEY | WIFI_UNDER_LINKING | WIFI_UNDER_WPS)) {
indicate_wx_scan_complete_event(padapter);
goto cancel_ps_deny;
}
#endif
#endif
#if WIRELESS_EXT >= 17
if (wrqu->data.length == sizeof(struct iw_scan_req)) {
struct iw_scan_req *req = (struct iw_scan_req *)extra;
if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
int len = min((int)req->essid_len, IW_ESSID_MAX_SIZE);
rtw_init_sitesurvey_parm(padapter, &parm);
_rtw_memcpy(&parm.ssid[0].Ssid, &req->essid, len);
parm.ssid[0].SsidLength = len;
parm.ssid_num = 1;
RTW_INFO("IW_SCAN_THIS_ESSID, ssid=%s, len=%d\n", req->essid, req->essid_len);
_status = rtw_sitesurvey_cmd(padapter, &parm);
} else if (req->scan_type == IW_SCAN_TYPE_PASSIVE)
RTW_INFO("rtw_wx_set_scan, req->scan_type == IW_SCAN_TYPE_PASSIVE\n");
} else
#endif
if (wrqu->data.length >= WEXT_CSCAN_HEADER_SIZE
&& _rtw_memcmp(extra, WEXT_CSCAN_HEADER, WEXT_CSCAN_HEADER_SIZE) == _TRUE
) {
int len = wrqu->data.length - WEXT_CSCAN_HEADER_SIZE;
char *pos = extra + WEXT_CSCAN_HEADER_SIZE;
char section;
char sec_len;
int ssid_index = 0;
/* RTW_INFO("%s COMBO_SCAN header is recognized\n", __FUNCTION__); */
rtw_init_sitesurvey_parm(padapter, &parm);
while (len >= 1) {
section = *(pos++);
len -= 1;
switch (section) {
case WEXT_CSCAN_SSID_SECTION:
/* RTW_INFO("WEXT_CSCAN_SSID_SECTION\n"); */
if (len < 1) {
len = 0;
break;
}
sec_len = *(pos++);
len -= 1;
if (sec_len > 0 && sec_len <= len) {
parm.ssid[ssid_index].SsidLength = sec_len;
_rtw_memcpy(&parm.ssid[ssid_index].Ssid, pos, sec_len);
/* RTW_INFO("%s COMBO_SCAN with specific parm.ssid:%s, %d\n", __FUNCTION__ */
/* , parm.ssid[ssid_index].Ssid, parm.ssid[ssid_index].SsidLength); */
ssid_index++;
}
pos += sec_len;
len -= sec_len;
break;
case WEXT_CSCAN_CHANNEL_SECTION:
/* RTW_INFO("WEXT_CSCAN_CHANNEL_SECTION\n"); */
pos += 1;
len -= 1;
break;
case WEXT_CSCAN_ACTV_DWELL_SECTION:
/* RTW_INFO("WEXT_CSCAN_ACTV_DWELL_SECTION\n"); */
pos += 2;
len -= 2;
break;
case WEXT_CSCAN_PASV_DWELL_SECTION:
/* RTW_INFO("WEXT_CSCAN_PASV_DWELL_SECTION\n"); */
pos += 2;
len -= 2;
break;
case WEXT_CSCAN_HOME_DWELL_SECTION:
/* RTW_INFO("WEXT_CSCAN_HOME_DWELL_SECTION\n"); */
pos += 2;
len -= 2;
break;
case WEXT_CSCAN_TYPE_SECTION:
/* RTW_INFO("WEXT_CSCAN_TYPE_SECTION\n"); */
pos += 1;
len -= 1;
break;
#if 0
case WEXT_CSCAN_NPROBE_SECTION:
RTW_INFO("WEXT_CSCAN_NPROBE_SECTION\n");
break;
#endif
default:
/* RTW_INFO("Unknown CSCAN section %c\n", section); */
len = 0; /* stop parsing */
}
/* RTW_INFO("len:%d\n", len); */
}
parm.ssid_num = ssid_index;
/* jeff: it has still some scan paramater to parse, we only do this now... */
_status = rtw_sitesurvey_cmd(padapter, &parm);
} else
_status = rtw_sitesurvey_cmd(padapter, NULL);
if (_status == _FALSE)
ret = -1;
cancel_ps_deny:
rtw_ps_deny_cancel(padapter, PS_DENY_SCAN);
exit:
#ifdef DBG_IOCTL
RTW_INFO("DBG_IOCTL %s:%d return %d\n", __FUNCTION__, __LINE__, ret);
#endif
return ret;
}
static int rtw_wx_get_scan(struct net_device *dev, struct iw_request_info *a,
union iwreq_data *wrqu, char *extra)
{
_list *plist, *phead;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct rf_ctl_t *rfctl = adapter_to_rfctl(padapter);
RT_CHANNEL_INFO *chset = rfctl->channel_set;
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
_queue *queue = &(pmlmepriv->scanned_queue);
struct wlan_network *pnetwork = NULL;
char *ev = extra;
char *stop = ev + wrqu->data.length;
u32 ret = 0;
u32 wait_for_surveydone;
sint wait_status;
u8 ch;
#ifdef CONFIG_P2P
struct wifidirect_info *pwdinfo = &padapter->wdinfo;
#endif /* CONFIG_P2P */
#ifdef DBG_IOCTL
RTW_INFO("DBG_IOCTL %s:%d\n", __FUNCTION__, __LINE__);
#endif
if (adapter_to_pwrctl(padapter)->brfoffbyhw && dev_is_drv_stopped(adapter_to_dvobj(padapter))) {
ret = -EINVAL;
goto exit;
}
wait_for_surveydone = 100;
#if 1 /* Wireless Extension use EAGAIN to try */
wait_status = WIFI_UNDER_SURVEY
#ifndef CONFIG_RTW_ANDROID
| WIFI_UNDER_LINKING
#endif
;
while (check_fwstate(pmlmepriv, wait_status) == _TRUE)
return -EAGAIN;
#else
wait_status = WIFI_UNDER_SURVEY
#ifndef CONFIG_RTW_ANDROID
| WIFI_UNDER_LINKING
#endif
;
while (check_fwstate(pmlmepriv, wait_status) == _TRUE) {
rtw_msleep_os(30);
cnt++;
if (cnt > wait_for_surveydone)
break;
}
#endif
_rtw_spinlock_bh(&(pmlmepriv->scanned_queue.lock));
phead = get_list_head(queue);
plist = get_next(phead);
while (1) {
if (rtw_end_of_queue_search(phead, plist) == _TRUE)
break;
if ((stop - ev) < SCAN_ITEM_SIZE) {
if(wrqu->data.length == MAX_SCAN_BUFFER_LEN){ /*max buffer len defined by iwlist*/
ret = 0;
RTW_INFO("%s: Scan results incomplete\n", __FUNCTION__);
break;
}
ret = -E2BIG;
break;
}
pnetwork = LIST_CONTAINOR(plist, struct wlan_network, list);
ch = pnetwork->network.Configuration.DSConfig;
/* report network only if the current channel set contains the channel to which this network belongs */
if (rtw_chset_search_ch(chset, ch) >= 0
&& rtw_mlme_band_check(padapter, ch) == _TRUE
&& _TRUE == rtw_validate_ssid(&(pnetwork->network.Ssid))
&& (!IS_DFS_SLAVE_WITH_RD(rfctl)
|| rtw_rfctl_dfs_domain_unknown(rfctl)
|| !rtw_chset_is_ch_non_ocp(chset, ch))
)
ev = translate_scan(padapter, a, pnetwork, ev, stop);
plist = get_next(plist);
}
_rtw_spinunlock_bh(&(pmlmepriv->scanned_queue.lock));
wrqu->data.length = ev - extra;
wrqu->data.flags = 0;
exit:
#ifdef DBG_IOCTL
RTW_INFO("DBG_IOCTL %s:%d return %d\n", __FUNCTION__, __LINE__, ret);
#endif
return ret ;
}
/* set ssid flow
* s1. rtw_set_802_11_infrastructure_mode()
* s2. set_802_11_authenticaion_mode()
* s3. set_802_11_encryption_mode()
* s4. rtw_set_802_11_ssid() */
static int rtw_wx_set_essid(struct net_device *dev,
struct iw_request_info *a,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
_queue *queue = &pmlmepriv->scanned_queue;
_list *phead;
struct wlan_network *pnetwork = NULL;
NDIS_802_11_AUTHENTICATION_MODE authmode;
NDIS_802_11_SSID ndis_ssid;
u8 *dst_ssid, *src_ssid;
uint ret = 0, len;
#ifdef DBG_IOCTL
RTW_INFO("DBG_IOCTL %s:%d\n", __FUNCTION__, __LINE__);
#endif
#ifdef CONFIG_WEXT_DONT_JOIN_BYSSID
RTW_INFO("%s: CONFIG_WEXT_DONT_JOIN_BYSSID be defined!! only allow bssid joining\n", __func__);
return -EPERM;
#endif
#if WIRELESS_EXT <= 20
if ((wrqu->essid.length - 1) > IW_ESSID_MAX_SIZE) {
#else
if (wrqu->essid.length > IW_ESSID_MAX_SIZE) {
#endif
ret = -E2BIG;
goto exit;
}
rtw_ps_deny(padapter, PS_DENY_JOIN);
if (_FAIL == rtw_pwr_wakeup(padapter)) {
ret = -1;
goto cancel_ps_deny;
}
if (!padapter->netif_up) {
ret = -1;
goto cancel_ps_deny;
}
if (check_fwstate(pmlmepriv, WIFI_AP_STATE)) {
ret = -1;
goto cancel_ps_deny;
}
#ifdef CONFIG_CONCURRENT_MODE
if (rtw_mi_buddy_check_fwstate(padapter, WIFI_UNDER_SURVEY | WIFI_UNDER_LINKING)) {
RTW_INFO("set ssid, but buddy_intf is under scanning or linking\n");
ret = -EINVAL;
goto cancel_ps_deny;
}
#endif
authmode = padapter->securitypriv.ndisauthtype;
RTW_INFO("=>%s\n", __FUNCTION__);
if (wrqu->essid.flags && wrqu->essid.length) {
/* Commented by Albert 20100519 */
/* We got the codes in "set_info" function of iwconfig source code. */
/* ========================================= */
/* wrq.u.essid.length = strlen(essid) + 1; */
/* if(we_kernel_version > 20) */
/* wrq.u.essid.length--; */
/* ========================================= */
/* That means, if the WIRELESS_EXT less than or equal to 20, the correct ssid len should subtract 1. */
#if WIRELESS_EXT <= 20
len = ((wrqu->essid.length - 1) < IW_ESSID_MAX_SIZE) ? (wrqu->essid.length - 1) : IW_ESSID_MAX_SIZE;
#else
len = (wrqu->essid.length < IW_ESSID_MAX_SIZE) ? wrqu->essid.length : IW_ESSID_MAX_SIZE;
#endif
if (wrqu->essid.length != 33)
RTW_INFO("ssid=%s, len=%d\n", extra, wrqu->essid.length);
_rtw_memset(&ndis_ssid, 0, sizeof(NDIS_802_11_SSID));
ndis_ssid.SsidLength = len;
_rtw_memcpy(ndis_ssid.Ssid, extra, len);
src_ssid = ndis_ssid.Ssid;
_rtw_spinlock_bh(&queue->lock);
phead = get_list_head(queue);
pmlmepriv->pscanned = get_next(phead);
while (1) {
if (rtw_end_of_queue_search(phead, pmlmepriv->pscanned) == _TRUE) {
#if 0
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE) == _TRUE) {
rtw_set_802_11_ssid(padapter, &ndis_ssid);
goto cancel_ps_deny;
} else {
ret = -EINVAL;
goto cancel_ps_deny;
}
#endif
break;
}
pnetwork = LIST_CONTAINOR(pmlmepriv->pscanned, struct wlan_network, list);
pmlmepriv->pscanned = get_next(pmlmepriv->pscanned);
dst_ssid = pnetwork->network.Ssid.Ssid;
if ((_rtw_memcmp(dst_ssid, src_ssid, ndis_ssid.SsidLength) == _TRUE) &&
(pnetwork->network.Ssid.SsidLength == ndis_ssid.SsidLength)) {
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE) == _TRUE) {
if (pnetwork->network.InfrastructureMode != pmlmepriv->cur_network.network.InfrastructureMode)
continue;
}
if (rtw_set_802_11_infrastructure_mode(padapter, pnetwork->network.InfrastructureMode, 0) == _FALSE) {
ret = -1;
_rtw_spinunlock_bh(&queue->lock);
goto cancel_ps_deny;
}
break;
}
}
_rtw_spinunlock_bh(&queue->lock);
rtw_set_802_11_authentication_mode(padapter, authmode);
/* set_802_11_encryption_mode(padapter, padapter->securitypriv.ndisencryptstatus); */
if (rtw_set_802_11_ssid(padapter, &ndis_ssid) == _FALSE) {
ret = -1;
goto cancel_ps_deny;
}
}
cancel_ps_deny:
rtw_ps_deny_cancel(padapter, PS_DENY_JOIN);
exit:
RTW_INFO("<=%s, ret %d\n", __FUNCTION__, ret);
#ifdef DBG_IOCTL
RTW_INFO("DBG_IOCTL %s:%d return %d\n", __FUNCTION__, __LINE__, ret);
#endif
return ret;
}
static int rtw_wx_get_essid(struct net_device *dev,
struct iw_request_info *a,
union iwreq_data *wrqu, char *extra)
{
u32 len, ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
WLAN_BSSID_EX *pcur_bss = &pmlmepriv->cur_network.network;
if ((check_fwstate(pmlmepriv, WIFI_ASOC_STATE) == _TRUE) ||
(check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE) == _TRUE)) {
len = pcur_bss->Ssid.SsidLength;
wrqu->essid.length = len;
_rtw_memcpy(extra, pcur_bss->Ssid.Ssid, len);
wrqu->essid.flags = 1;
} else {
ret = -1;
goto exit;
}
exit:
return ret;
}
static int rtw_wx_set_rate(struct net_device *dev,
struct iw_request_info *a,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#if 0
int i;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
u8 datarates[NumRates];
u32 target_rate = wrqu->bitrate.value;
u32 fixed = wrqu->bitrate.fixed;
u32 ratevalue = 0;
u8 mpdatarate[NumRates] = {11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0xff};
if (target_rate == -1) {
ratevalue = 11;
goto set_rate;
}
target_rate = target_rate / 100000;
switch (target_rate) {
case 10:
ratevalue = 0;
break;
case 20:
ratevalue = 1;
break;
case 55:
ratevalue = 2;
break;
case 60:
ratevalue = 3;
break;
case 90:
ratevalue = 4;
break;
case 110:
ratevalue = 5;
break;
case 120:
ratevalue = 6;
break;
case 180:
ratevalue = 7;
break;
case 240:
ratevalue = 8;
break;
case 360:
ratevalue = 9;
break;
case 480:
ratevalue = 10;
break;
case 540:
ratevalue = 11;
break;
default:
ratevalue = 11;
break;
}
set_rate:
for (i = 0; i < NumRates; i++) {
if (ratevalue == mpdatarate[i]) {
datarates[i] = mpdatarate[i];
if (fixed == 0)
break;
} else
datarates[i] = 0xff;
}
if (rtw_setdatarate_cmd(padapter, datarates) != _SUCCESS) {
ret = -1;
}
#endif
return ret;
}
static int rtw_wx_get_rate(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
u16 max_rate = 0;
max_rate = rtw_get_cur_max_rate((_adapter *)rtw_netdev_priv(dev));
if (max_rate == 0)
return -EPERM;
wrqu->bitrate.fixed = 0; /* no auto select */
wrqu->bitrate.value = max_rate * 100000;
return 0;
}
static int rtw_wx_set_rts(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
if (wrqu->rts.disabled)
padapter->registrypriv.rts_thresh = 2347;
else {
if (wrqu->rts.value < 0 ||
wrqu->rts.value > 2347)
return -EINVAL;
padapter->registrypriv.rts_thresh = wrqu->rts.value;
}
RTW_INFO("%s, rts_thresh=%d\n", __func__, padapter->registrypriv.rts_thresh);
return 0;
}
static int rtw_wx_get_rts(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
RTW_INFO("%s, rts_thresh=%d\n", __func__, padapter->registrypriv.rts_thresh);
wrqu->rts.value = padapter->registrypriv.rts_thresh;
wrqu->rts.fixed = 0; /* no auto select */
/* wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD); */
return 0;
}
static int rtw_wx_set_frag(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
if (wrqu->frag.disabled)
padapter->xmitpriv.frag_len = MAX_FRAG_THRESHOLD;
else {
if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
wrqu->frag.value > MAX_FRAG_THRESHOLD)
return -EINVAL;
padapter->xmitpriv.frag_len = wrqu->frag.value & ~0x1;
}
RTW_INFO("%s, frag_len=%d\n", __func__, padapter->xmitpriv.frag_len);
return 0;
}
static int rtw_wx_get_frag(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
RTW_INFO("%s, frag_len=%d\n", __func__, padapter->xmitpriv.frag_len);
wrqu->frag.value = padapter->xmitpriv.frag_len;
wrqu->frag.fixed = 0; /* no auto select */
/* wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FRAG_THRESHOLD); */
return 0;
}
static int rtw_wx_get_retry(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
/* _adapter *padapter = (_adapter *)rtw_netdev_priv(dev); */
wrqu->retry.value = 7;
wrqu->retry.fixed = 0; /* no auto select */
wrqu->retry.disabled = 1;
return 0;
}
#if 0
#define IW_ENCODE_INDEX 0x00FF /* Token index (if needed) */
#define IW_ENCODE_FLAGS 0xFF00 /* Flags defined below */
#define IW_ENCODE_MODE 0xF000 /* Modes defined below */
#define IW_ENCODE_DISABLED 0x8000 /* Encoding disabled */
#define IW_ENCODE_ENABLED 0x0000 /* Encoding enabled */
#define IW_ENCODE_RESTRICTED 0x4000 /* Refuse non-encoded packets */
#define IW_ENCODE_OPEN 0x2000 /* Accept non-encoded packets */
#define IW_ENCODE_NOKEY 0x0800 /* Key is write only, so not present */
#define IW_ENCODE_TEMP 0x0400 /* Temporary key */
/*
iwconfig wlan0 key on->flags = 0x6001->maybe it means auto
iwconfig wlan0 key off->flags = 0x8800
iwconfig wlan0 key open->flags = 0x2800
iwconfig wlan0 key open 1234567890->flags = 0x2000
iwconfig wlan0 key restricted->flags = 0x4800
iwconfig wlan0 key open [3] 1234567890->flags = 0x2003
iwconfig wlan0 key restricted [2] 1234567890->flags = 0x4002
iwconfig wlan0 key open [3] -> flags = 0x2803
iwconfig wlan0 key restricted [2] -> flags = 0x4802
*/
#endif
static int rtw_wx_set_enc(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *keybuf)
{
u32 key, ret = 0;
u32 keyindex_provided;
NDIS_802_11_WEP wep;
NDIS_802_11_AUTHENTICATION_MODE authmode;
struct iw_point *erq = &(wrqu->encoding);
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
RTW_INFO("+rtw_wx_set_enc, flags=0x%x\n", erq->flags);
_rtw_memset(&wep, 0, sizeof(NDIS_802_11_WEP));
key = erq->flags & IW_ENCODE_INDEX;
if (erq->flags & IW_ENCODE_DISABLED) {
RTW_INFO("EncryptionDisabled\n");
padapter->securitypriv.ndisencryptstatus = Ndis802_11EncryptionDisabled;
padapter->securitypriv.dot11PrivacyAlgrthm = _NO_PRIVACY_;
padapter->securitypriv.dot118021XGrpPrivacy = _NO_PRIVACY_;
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_Open; /* open system */
authmode = Ndis802_11AuthModeOpen;
padapter->securitypriv.ndisauthtype = authmode;
goto exit;
}
if (key) {
if (key > WEP_KEYS)
return -EINVAL;
key--;
keyindex_provided = 1;
} else {
keyindex_provided = 0;
key = padapter->securitypriv.dot11PrivacyKeyIndex;
RTW_INFO("rtw_wx_set_enc, key=%d\n", key);
}
/* set authentication mode */
if (erq->flags & IW_ENCODE_OPEN) {
RTW_INFO("rtw_wx_set_enc():IW_ENCODE_OPEN\n");
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption1Enabled;/* Ndis802_11EncryptionDisabled; */
#ifdef CONFIG_PLATFORM_MT53XX
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_Auto;
#else
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_Open;
#endif
padapter->securitypriv.dot11PrivacyAlgrthm = _NO_PRIVACY_;
padapter->securitypriv.dot118021XGrpPrivacy = _NO_PRIVACY_;
authmode = Ndis802_11AuthModeOpen;
padapter->securitypriv.ndisauthtype = authmode;
} else if (erq->flags & IW_ENCODE_RESTRICTED) {
RTW_INFO("rtw_wx_set_enc():IW_ENCODE_RESTRICTED\n");
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption1Enabled;
#ifdef CONFIG_PLATFORM_MT53XX
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_Auto;
#else
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_Shared;
#endif
padapter->securitypriv.dot11PrivacyAlgrthm = _WEP40_;
padapter->securitypriv.dot118021XGrpPrivacy = _WEP40_;
authmode = Ndis802_11AuthModeShared;
padapter->securitypriv.ndisauthtype = authmode;
} else {
RTW_INFO("rtw_wx_set_enc():erq->flags=0x%x\n", erq->flags);
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption1Enabled;/* Ndis802_11EncryptionDisabled; */
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_Open; /* open system */
padapter->securitypriv.dot11PrivacyAlgrthm = _NO_PRIVACY_;
padapter->securitypriv.dot118021XGrpPrivacy = _NO_PRIVACY_;
authmode = Ndis802_11AuthModeOpen;
padapter->securitypriv.ndisauthtype = authmode;
}
wep.KeyIndex = key;
if (erq->length > 0) {
wep.KeyLength = erq->length <= 5 ? 5 : 13;
wep.Length = wep.KeyLength + FIELD_OFFSET(NDIS_802_11_WEP, KeyMaterial);
} else {
wep.KeyLength = 0 ;
if (keyindex_provided == 1) { /* set key_id only, no given KeyMaterial(erq->length==0). */
padapter->securitypriv.dot11PrivacyKeyIndex = key;
RTW_INFO("(keyindex_provided == 1), keyid=%d, key_len=%d\n", key, padapter->securitypriv.dot11DefKeylen[key]);
switch (padapter->securitypriv.dot11DefKeylen[key]) {
case 5:
padapter->securitypriv.dot11PrivacyAlgrthm = _WEP40_;
break;
case 13:
padapter->securitypriv.dot11PrivacyAlgrthm = _WEP104_;
break;
default:
padapter->securitypriv.dot11PrivacyAlgrthm = _NO_PRIVACY_;
break;
}
goto exit;
}
}
wep.KeyIndex |= 0x80000000;
_rtw_memcpy(wep.KeyMaterial, keybuf, wep.KeyLength);
if (rtw_set_802_11_add_wep(padapter, &wep) == _FALSE) {
if (rf_on == pwrpriv->rf_pwrstate)
ret = -EOPNOTSUPP;
goto exit;
}
exit:
return ret;
}
static int rtw_wx_get_enc(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *keybuf)
{
uint key, ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct iw_point *erq = &(wrqu->encoding);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
if (check_fwstate(pmlmepriv, WIFI_ASOC_STATE) != _TRUE) {
if (check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE) != _TRUE) {
erq->length = 0;
erq->flags |= IW_ENCODE_DISABLED;
return 0;
}
}
key = erq->flags & IW_ENCODE_INDEX;
if (key) {
if (key > WEP_KEYS)
return -EINVAL;
key--;
} else
key = padapter->securitypriv.dot11PrivacyKeyIndex;
erq->flags = key + 1;
/* if(padapter->securitypriv.ndisauthtype == Ndis802_11AuthModeOpen) */
/* { */
/* erq->flags |= IW_ENCODE_OPEN; */
/* } */
switch (padapter->securitypriv.ndisencryptstatus) {
case Ndis802_11EncryptionNotSupported:
case Ndis802_11EncryptionDisabled:
erq->length = 0;
erq->flags |= IW_ENCODE_DISABLED;
break;
case Ndis802_11Encryption1Enabled:
erq->length = padapter->securitypriv.dot11DefKeylen[key];
if (erq->length) {
_rtw_memcpy(keybuf, padapter->securitypriv.dot11DefKey[key].skey, padapter->securitypriv.dot11DefKeylen[key]);
erq->flags |= IW_ENCODE_ENABLED;
if (padapter->securitypriv.ndisauthtype == Ndis802_11AuthModeOpen)
erq->flags |= IW_ENCODE_OPEN;
else if (padapter->securitypriv.ndisauthtype == Ndis802_11AuthModeShared)
erq->flags |= IW_ENCODE_RESTRICTED;
} else {
erq->length = 0;
erq->flags |= IW_ENCODE_DISABLED;
}
break;
case Ndis802_11Encryption2Enabled:
case Ndis802_11Encryption3Enabled:
erq->length = 16;
erq->flags |= (IW_ENCODE_ENABLED | IW_ENCODE_OPEN | IW_ENCODE_NOKEY);
break;
default:
erq->length = 0;
erq->flags |= IW_ENCODE_DISABLED;
break;
}
return ret;
}
static int rtw_wx_get_power(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
/* _adapter *padapter = (_adapter *)rtw_netdev_priv(dev); */
wrqu->power.value = 0;
wrqu->power.fixed = 0; /* no auto select */
wrqu->power.disabled = 1;
return 0;
}
static int rtw_wx_set_gen_ie(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
ret = rtw_set_wpa_ie(padapter, extra, wrqu->data.length);
return ret;
}
static int rtw_wx_set_auth(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct iw_param *param = (struct iw_param *)&(wrqu->param);
#ifdef CONFIG_WAPI_SUPPORT
#ifndef CONFIG_IOCTL_CFG80211
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct security_priv *psecuritypriv = &padapter->securitypriv;
u32 value = param->value;
#endif
#endif
int ret = 0;
switch (param->flags & IW_AUTH_INDEX) {
case IW_AUTH_WPA_VERSION:
#ifdef CONFIG_WAPI_SUPPORT
#ifndef CONFIG_IOCTL_CFG80211
padapter->wapiInfo.bWapiEnable = false;
if (value == IW_AUTH_WAPI_VERSION_1) {
padapter->wapiInfo.bWapiEnable = true;
psecuritypriv->dot11PrivacyAlgrthm = _SMS4_;
psecuritypriv->dot118021XGrpPrivacy = _SMS4_;
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_WAPI;
pmlmeinfo->auth_algo = psecuritypriv->dot11AuthAlgrthm;
padapter->wapiInfo.extra_prefix_len = WAPI_EXT_LEN;
padapter->wapiInfo.extra_postfix_len = SMS4_MIC_LEN;
}
#endif
#endif
break;
case IW_AUTH_CIPHER_PAIRWISE:
break;
case IW_AUTH_CIPHER_GROUP:
break;
case IW_AUTH_KEY_MGMT:
#ifdef CONFIG_WAPI_SUPPORT
#ifndef CONFIG_IOCTL_CFG80211
RTW_INFO("rtw_wx_set_auth: IW_AUTH_KEY_MGMT case\n");
if (value == IW_AUTH_KEY_MGMT_WAPI_PSK)
padapter->wapiInfo.bWapiPSK = true;
else
padapter->wapiInfo.bWapiPSK = false;
RTW_INFO("rtw_wx_set_auth: IW_AUTH_KEY_MGMT bwapipsk %d\n", padapter->wapiInfo.bWapiPSK);
#endif
#endif
/*
* ??? does not use these parameters
*/
break;
case IW_AUTH_TKIP_COUNTERMEASURES: {
if (param->value) {
/* wpa_supplicant is enabling the tkip countermeasure. */
padapter->securitypriv.btkip_countermeasure = _TRUE;
} else {
/* wpa_supplicant is disabling the tkip countermeasure. */
padapter->securitypriv.btkip_countermeasure = _FALSE;
}
break;
}
case IW_AUTH_DROP_UNENCRYPTED: {
/* HACK:
*
* wpa_supplicant calls set_wpa_enabled when the driver
* is loaded and unloaded, regardless of if WPA is being
* used. No other calls are made which can be used to
* determine if encryption will be used or not prior to
* association being expected. If encryption is not being
* used, drop_unencrypted is set to false, else true -- we
* can use this to determine if the CAP_PRIVACY_ON bit should
* be set.
*/
if (padapter->securitypriv.ndisencryptstatus == Ndis802_11Encryption1Enabled) {
break;/* it means init value, or using wep, ndisencryptstatus = Ndis802_11Encryption1Enabled, */
/* then it needn't reset it; */
}
if (param->value) {
padapter->securitypriv.ndisencryptstatus = Ndis802_11EncryptionDisabled;
padapter->securitypriv.dot11PrivacyAlgrthm = _NO_PRIVACY_;
padapter->securitypriv.dot118021XGrpPrivacy = _NO_PRIVACY_;
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_Open; /* open system */
padapter->securitypriv.ndisauthtype = Ndis802_11AuthModeOpen;
}
break;
}
case IW_AUTH_80211_AUTH_ALG:
#if defined(CONFIG_RTW_ANDROID) || 1
/*
* It's the starting point of a link layer connection using wpa_supplicant
*/
if (check_fwstate(&padapter->mlmepriv, WIFI_ASOC_STATE)) {
LeaveAllPowerSaveMode(padapter);
rtw_disassoc_cmd(padapter, 500, RTW_CMDF_WAIT_ACK);
if (1
#ifdef CONFIG_STA_CMD_DISPR
&& (MLME_IS_STA(padapter) == _FALSE)
#endif /* CONFIG_STA_CMD_DISPR */
)
rtw_free_assoc_resources_cmd(padapter, _TRUE, RTW_CMDF_WAIT_ACK);
RTW_INFO("%s...call rtw_indicate_disconnect\n ", __FUNCTION__);
rtw_indicate_disconnect(padapter, 0, _FALSE);
}
#endif
ret = wpa_set_auth_algs(dev, (u32)param->value);
break;
case IW_AUTH_WPA_ENABLED:
/* if(param->value) */
/* padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_8021X; */ /* 802.1x */
/* else */
/* padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_Open; */ /* open system */
/* _disassociate(priv); */
break;
case IW_AUTH_RX_UNENCRYPTED_EAPOL:
/* ieee->ieee802_1x = param->value; */
break;
case IW_AUTH_PRIVACY_INVOKED:
/* ieee->privacy_invoked = param->value; */
break;
#ifdef CONFIG_WAPI_SUPPORT
#ifndef CONFIG_IOCTL_CFG80211
case IW_AUTH_WAPI_ENABLED:
break;
#endif
#endif
default:
return -EOPNOTSUPP;
}
return ret;
}
static int rtw_wx_set_enc_ext(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
char *alg_name;
u32 param_len;
struct ieee_param *param = NULL;
struct iw_point *pencoding = &wrqu->encoding;
struct iw_encode_ext *pext = (struct iw_encode_ext *)extra;
int ret = 0;
param_len = sizeof(struct ieee_param) + pext->key_len;
param = (struct ieee_param *)rtw_malloc(param_len);
if (param == NULL)
return -1;
_rtw_memset(param, 0, param_len);
param->cmd = IEEE_CMD_SET_ENCRYPTION;
_rtw_memset(param->sta_addr, 0xff, ETH_ALEN);
switch (pext->alg) {
case IW_ENCODE_ALG_NONE:
/* todo: remove key */
/* remove = 1; */
alg_name = "none";
break;
case IW_ENCODE_ALG_WEP:
alg_name = "WEP";
break;
case IW_ENCODE_ALG_TKIP:
alg_name = "TKIP";
break;
case IW_ENCODE_ALG_CCMP:
alg_name = "CCMP";
break;
#ifdef CONFIG_IEEE80211W
case IW_ENCODE_ALG_AES_CMAC:
alg_name = "BIP";
break;
#endif /* CONFIG_IEEE80211W */
#ifdef CONFIG_WAPI_SUPPORT
#ifndef CONFIG_IOCTL_CFG80211
case IW_ENCODE_ALG_SM4:
alg_name = "SMS4";
_rtw_memcpy(param->sta_addr, pext->addr.sa_data, ETH_ALEN);
RTW_INFO("rtw_wx_set_enc_ext: SMS4 case\n");
break;
#endif
#endif
default:
ret = -1;
goto exit;
}
strncpy((char *)param->u.crypt.alg, alg_name, IEEE_CRYPT_ALG_NAME_LEN);
if (pext->ext_flags & IW_ENCODE_EXT_SET_TX_KEY)
param->u.crypt.set_tx = 1;
/* cliW: WEP does not have group key
* just not checking GROUP key setting
*/
if ((pext->alg != IW_ENCODE_ALG_WEP) &&
((pext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
#ifdef CONFIG_IEEE80211W
|| (pext->ext_flags & IW_ENCODE_ALG_AES_CMAC)
#endif /* CONFIG_IEEE80211W */
))
param->u.crypt.set_tx = 0;
param->u.crypt.idx = (pencoding->flags & 0x00FF) - 1 ;
if (pext->ext_flags & IW_ENCODE_EXT_RX_SEQ_VALID) {
#ifdef CONFIG_WAPI_SUPPORT
#ifndef CONFIG_IOCTL_CFG80211
if (pext->alg == IW_ENCODE_ALG_SM4)
_rtw_memcpy(param->u.crypt.seq, pext->rx_seq, 16);
else
#endif /* CONFIG_IOCTL_CFG80211 */
#endif /* CONFIG_WAPI_SUPPORT */
_rtw_memcpy(param->u.crypt.seq, pext->rx_seq, 8);
}
if (pext->key_len) {
param->u.crypt.key_len = pext->key_len;
/* _rtw_memcpy(param + 1, pext + 1, pext->key_len); */
_rtw_memcpy(param->u.crypt.key, pext + 1, pext->key_len);
}
if (pencoding->flags & IW_ENCODE_DISABLED) {
/* todo: remove key */
/* remove = 1; */
}
ret = wpa_set_encryption(dev, param, param_len);
exit:
if (param)
rtw_mfree((u8 *)param, param_len);
return ret;
}
static int rtw_wx_get_nick(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
/* _adapter *padapter = (_adapter *)rtw_netdev_priv(dev); */
/* struct mlme_priv *pmlmepriv = &(padapter->mlmepriv); */
/* struct security_priv *psecuritypriv = &padapter->securitypriv; */
if (extra) {
wrqu->data.length = 14;
wrqu->data.flags = 1;
_rtw_memcpy(extra, "<WIFI@REALTEK>", 14);
}
/* rtw_signal_process(pid, SIGUSR1); */ /* for test */
/* dump debug info here */
#if 0
u32 dot11AuthAlgrthm; /* 802.11 auth, could be open, shared, and 8021x */
u32 dot11PrivacyAlgrthm; /* This specify the privacy for shared auth. algorithm. */
u32 dot118021XGrpPrivacy; /* This specify the privacy algthm. used for Grp key */
u32 ndisauthtype;
u32 ndisencryptstatus;
#endif
/* RTW_INFO("auth_alg=0x%x, enc_alg=0x%x, auth_type=0x%x, enc_type=0x%x\n", */
/* psecuritypriv->dot11AuthAlgrthm, psecuritypriv->dot11PrivacyAlgrthm, */
/* psecuritypriv->ndisauthtype, psecuritypriv->ndisencryptstatus); */
/* RTW_INFO("enc_alg=0x%x\n", psecuritypriv->dot11PrivacyAlgrthm); */
/* RTW_INFO("auth_type=0x%x\n", psecuritypriv->ndisauthtype); */
/* RTW_INFO("enc_type=0x%x\n", psecuritypriv->ndisencryptstatus); */
return 0;
}
static int rtw_wx_read32(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter;
struct dvobj_priv *dvobj;
struct iw_point *p;
u16 len;
u32 addr;
u32 data32;
u32 bytes;
u8 *ptmp;
int ret;
ret = 0;
padapter = (_adapter *)rtw_netdev_priv(dev);
dvobj = adapter_to_dvobj(padapter);
p = &wrqu->data;
len = p->length;
if (0 == len)
return -EINVAL;
ptmp = (u8 *)rtw_malloc(len);
if (NULL == ptmp)
return -ENOMEM;
if (copy_from_user(ptmp, p->pointer, len)) {
ret = -EFAULT;
goto exit;
}
bytes = 0;
addr = 0;
sscanf(ptmp, "%d,%x", &bytes, &addr);
switch (bytes) {
case 1:
data32 = rtw_phl_read8(dvobj->phl, addr);
sprintf(extra, "0x%02X", data32);
break;
case 2:
data32 = rtw_phl_read16(dvobj->phl, addr);
sprintf(extra, "0x%04X", data32);
break;
case 4:
data32 = rtw_phl_read32(dvobj->phl, addr);
sprintf(extra, "0x%08X", data32);
break;
#if 0
#if defined(CONFIG_SDIO_HCI) && defined(CONFIG_SDIO_INDIRECT_ACCESS) && defined(DBG_SDIO_INDIRECT_ACCESS)
case 11:
data32 = rtw_sd_iread8(padapter, addr);
sprintf(extra, "0x%02X", data32);
break;
case 12:
data32 = rtw_sd_iread16(padapter, addr);
sprintf(extra, "0x%04X", data32);
break;
case 14:
data32 = rtw_sd_iread32(padapter, addr);
sprintf(extra, "0x%08X", data32);
break;
#endif
#endif
default:
RTW_INFO("%s: usage> read [bytes],[address(hex)]\n", __func__);
ret = -EINVAL;
goto exit;
}
RTW_INFO("%s: addr=0x%08X data=%s\n", __func__, addr, extra);
exit:
rtw_mfree(ptmp, len);
return 0;
}
static int rtw_wx_write32(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
u32 addr;
u32 data32;
u32 bytes;
bytes = 0;
addr = 0;
data32 = 0;
sscanf(extra, "%d,%x,%x", &bytes, &addr, &data32);
switch (bytes) {
case 1:
rtw_phl_write8(dvobj->phl, addr, (u8)data32);
RTW_INFO("%s: addr=0x%08X data=0x%02X\n", __func__, addr, (u8)data32);
break;
case 2:
rtw_phl_write16(dvobj->phl, addr, (u16)data32);
RTW_INFO("%s: addr=0x%08X data=0x%04X\n", __func__, addr, (u16)data32);
break;
case 4:
rtw_phl_write32(dvobj->phl, addr, data32);
RTW_INFO("%s: addr=0x%08X data=0x%08X\n", __func__, addr, data32);
break;
default:
RTW_INFO("%s: usage> write [bytes],[address(hex)],[data(hex)]\n", __func__);
return -EINVAL;
}
return 0;
}
static int rtw_wx_read_rf(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
u32 path, addr, data32;
path = *(u32 *)extra;
addr = *((u32 *)extra + 1);
data32 = rtw_phl_read_rfreg(GET_PHL_INFO(dvobj), path, addr, 0xFFFFF);
/* RTW_INFO("%s: path=%d addr=0x%02x data=0x%05x\n", __func__, path, addr, data32); */
/*
* IMPORTANT!!
* Only when wireless private ioctl is at odd order,
* "extra" would be copied to user space.
*/
sprintf(extra, "0x%05x", data32);
return 0;
}
static int rtw_wx_write_rf(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
u32 path, addr, data32;
path = *(u32 *)extra;
addr = *((u32 *)extra + 1);
data32 = *((u32 *)extra + 2);
/* RTW_INFO("%s: path=%d addr=0x%02x data=0x%05x\n", __func__, path, addr, data32); */
rtw_phl_write_rfreg(GET_PHL_INFO(dvobj), path, addr, 0xFFFFF, data32);
return 0;
}
static int rtw_wx_priv_null(struct net_device *dev, struct iw_request_info *a,
union iwreq_data *wrqu, char *b)
{
return -1;
}
#ifdef CONFIG_RTW_80211K
extern void rm_dbg_cmd(_adapter *padapter, char *s);
static int rtw_wx_priv_rrm(struct net_device *dev, struct iw_request_info *a,
union iwreq_data *wrqu, char *b)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
u32 path, addr, data32;
rm_dbg_cmd(padapter, b);
wrqu->data.length = strlen(b);
return 0;
}
#endif
static int dummy(struct net_device *dev, struct iw_request_info *a,
union iwreq_data *wrqu, char *b)
{
/* _adapter *padapter = (_adapter *)rtw_netdev_priv(dev); */
/* struct mlme_priv *pmlmepriv = &(padapter->mlmepriv); */
/* RTW_INFO("cmd_code=%x, fwstate=0x%x\n", a->cmd, get_fwstate(pmlmepriv)); */
return -1;
}
static int rtw_wx_set_channel_plan(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
u16 channel_plan_req = (u16)(*((int *)wrqu));
rtw_chplan_ioctl_input_mapping(&channel_plan_req, NULL);
if (_SUCCESS != rtw_set_channel_plan(padapter, channel_plan_req, RTW_CHPLAN_6G_UNSPECIFIED, RTW_REGD_SET_BY_USER))
return -EPERM;
return 0;
}
static int rtw_wx_set_mtk_wps_probe_ie(struct net_device *dev,
struct iw_request_info *a,
union iwreq_data *wrqu, char *b)
{
#ifdef CONFIG_PLATFORM_MT53XX
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
#endif
return 0;
}
static int rtw_wx_get_sensitivity(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *buf)
{
#ifdef CONFIG_PLATFORM_MT53XX
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
/* Modified by Albert 20110914 */
/* This is in dbm format for MTK platform. */
wrqu->qual.level = padapter->recvinfo.rssi;
RTW_INFO(" level = %u\n", wrqu->qual.level);
#endif
return 0;
}
static int rtw_wx_set_mtk_wps_ie(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
#ifdef CONFIG_PLATFORM_MT53XX
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
return rtw_set_wpa_ie(padapter, wrqu->data.pointer, wrqu->data.length);
#else
return 0;
#endif
}
#ifdef MP_IOCTL_HDL
static void rtw_dbg_mode_hdl(_adapter *padapter, u32 id, u8 *pdata, u32 len)
{
pRW_Reg RegRWStruct;
struct rf_reg_param *prfreg;
struct dvobj_priv dvobj = adapter_to_dvobj(padapter);
u8 path;
u8 offset;
u32 value;
RTW_INFO("%s\n", __FUNCTION__);
switch (id) {
case GEN_MP_IOCTL_SUBCODE(MP_START):
RTW_INFO("871x_driver is only for normal mode, can't enter mp mode\n");
break;
case GEN_MP_IOCTL_SUBCODE(READ_REG):
RegRWStruct = (pRW_Reg)pdata;
switch (RegRWStruct->width) {
case 1:
RegRWStruct->value = rtw_read8(padapter, RegRWStruct->offset);
break;
case 2:
RegRWStruct->value = rtw_read16(padapter, RegRWStruct->offset);
break;
case 4:
RegRWStruct->value = rtw_read32(padapter, RegRWStruct->offset);
break;
default:
break;
}
break;
case GEN_MP_IOCTL_SUBCODE(WRITE_REG):
RegRWStruct = (pRW_Reg)pdata;
switch (RegRWStruct->width) {
case 1:
rtw_write8(padapter, RegRWStruct->offset, (u8)RegRWStruct->value);
break;
case 2:
rtw_write16(padapter, RegRWStruct->offset, (u16)RegRWStruct->value);
break;
case 4:
rtw_write32(padapter, RegRWStruct->offset, (u32)RegRWStruct->value);
break;
default:
break;
}
break;
case GEN_MP_IOCTL_SUBCODE(READ_RF_REG):
prfreg = (struct rf_reg_param *)pdata;
path = (u8)prfreg->path;
offset = (u8)prfreg->offset;
value = rtw_phl_read_rfreg(GET_PHL_INFO(dvobj), path, offset, 0xffffffff);
prfreg->value = value;
break;
case GEN_MP_IOCTL_SUBCODE(WRITE_RF_REG):
prfreg = (struct rf_reg_param *)pdata;
path = (u8)prfreg->path;
offset = (u8)prfreg->offset;
value = prfreg->value;
rtw_phl_write_rfreg(GET_PHL_INFO(dvobj), path, offset, 0xffffffff, value);
break;
case GEN_MP_IOCTL_SUBCODE(TRIGGER_GPIO):
RTW_INFO("==> trigger gpio 0\n");
rtw_hal_set_hwreg(padapter, HW_VAR_TRIGGER_GPIO_0, 0);
break;
#ifdef CONFIG_BTC
case GEN_MP_IOCTL_SUBCODE(SET_DM_BT):
RTW_INFO("==> set dm_bt_coexist:%x\n", *(u8 *)pdata);
rtw_hal_set_hwreg(padapter, HW_VAR_BT_SET_COEXIST, pdata);
break;
case GEN_MP_IOCTL_SUBCODE(DEL_BA):
RTW_INFO("==> delete ba:%x\n", *(u8 *)pdata);
rtw_hal_set_hwreg(padapter, HW_VAR_BT_ISSUE_DELBA, pdata);
break;
#endif
#ifdef DBG_CONFIG_ERROR_DETECT
case GEN_MP_IOCTL_SUBCODE(GET_WIFI_STATUS):
*pdata = rtw_hal_sreset_get_wifi_status(padapter);
break;
#endif
default:
break;
}
}
static int rtw_mp_ioctl_hdl(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
u32 BytesRead, BytesWritten, BytesNeeded;
struct oid_par_priv oid_par;
struct mp_ioctl_handler *phandler;
struct mp_ioctl_param *poidparam;
uint status = 0;
u16 len;
u8 *pparmbuf = NULL, bset;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct iw_point *p = &wrqu->data;
/* RTW_INFO("+rtw_mp_ioctl_hdl\n"); */
/* mutex_lock(&ioctl_mutex); */
if ((!p->length) || (!p->pointer)) {
ret = -EINVAL;
goto _rtw_mp_ioctl_hdl_exit;
}
pparmbuf = NULL;
bset = (u8)(p->flags & 0xFFFF);
len = p->length;
pparmbuf = (u8 *)rtw_malloc(len);
if (pparmbuf == NULL) {
ret = -ENOMEM;
goto _rtw_mp_ioctl_hdl_exit;
}
if (copy_from_user(pparmbuf, p->pointer, len)) {
ret = -EFAULT;
goto _rtw_mp_ioctl_hdl_exit;
}
poidparam = (struct mp_ioctl_param *)pparmbuf;
if (poidparam->subcode >= MAX_MP_IOCTL_SUBCODE) {
ret = -EINVAL;
goto _rtw_mp_ioctl_hdl_exit;
}
/* RTW_INFO("%s: %d\n", __func__, poidparam->subcode); */
#ifdef CONFIG_MP_INCLUDED
if (padapter->registrypriv.mp_mode == 1) {
phandler = mp_ioctl_hdl + poidparam->subcode;
if ((phandler->paramsize != 0) && (poidparam->len < phandler->paramsize)) {
ret = -EINVAL;
goto _rtw_mp_ioctl_hdl_exit;
}
if (phandler->handler) {
oid_par.adapter_context = padapter;
oid_par.oid = phandler->oid;
oid_par.information_buf = poidparam->data;
oid_par.information_buf_len = poidparam->len;
oid_par.dbg = 0;
BytesWritten = 0;
BytesNeeded = 0;
if (bset) {
oid_par.bytes_rw = &BytesRead;
oid_par.bytes_needed = &BytesNeeded;
oid_par.type_of_oid = SET_OID;
} else {
oid_par.bytes_rw = &BytesWritten;
oid_par.bytes_needed = &BytesNeeded;
oid_par.type_of_oid = QUERY_OID;
}
status = phandler->handler(&oid_par);
/* todo:check status, BytesNeeded, etc. */
} else {
RTW_INFO("rtw_mp_ioctl_hdl(): err!, subcode=%d, oid=%d, handler=%p\n",
poidparam->subcode, phandler->oid, phandler->handler);
ret = -EFAULT;
goto _rtw_mp_ioctl_hdl_exit;
}
} else
#endif
{
rtw_dbg_mode_hdl(padapter, poidparam->subcode, poidparam->data, poidparam->len);
}
if (bset == 0x00) {/* query info */
if (copy_to_user(p->pointer, pparmbuf, len))
ret = -EFAULT;
}
if (status) {
ret = -EFAULT;
goto _rtw_mp_ioctl_hdl_exit;
}
_rtw_mp_ioctl_hdl_exit:
if (pparmbuf)
rtw_mfree(pparmbuf, len);
/* mutex_unlock(&ioctl_mutex); */
return ret;
}
#endif /*MP_IOCTL_HDL*/
static int rtw_get_ap_info(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
u32 cnt = 0, wpa_ielen;
_list *plist, *phead;
unsigned char *pbuf;
u8 bssid[ETH_ALEN];
char data[32];
struct wlan_network *pnetwork = NULL;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
_queue *queue = &(pmlmepriv->scanned_queue);
struct iw_point *pdata = &wrqu->data;
RTW_INFO("+rtw_get_aplist_info\n");
if (dev_is_drv_stopped(adapter_to_dvobj(padapter)) || (pdata == NULL)) {
ret = -EINVAL;
goto exit;
}
while ((check_fwstate(pmlmepriv, (WIFI_UNDER_SURVEY | WIFI_UNDER_LINKING))) == _TRUE) {
rtw_msleep_os(30);
cnt++;
if (cnt > 100)
break;
}
/* pdata->length = 0; */ /* ? */
pdata->flags = 0;
if (pdata->length >= 32) {
if (copy_from_user(data, pdata->pointer, 32)) {
ret = -EINVAL;
goto exit;
}
} else {
ret = -EINVAL;
goto exit;
}
_rtw_spinlock_bh(&(pmlmepriv->scanned_queue.lock));
phead = get_list_head(queue);
plist = get_next(phead);
while (1) {
if (rtw_end_of_queue_search(phead, plist) == _TRUE)
break;
pnetwork = LIST_CONTAINOR(plist, struct wlan_network, list);
/* if(hwaddr_aton_i(pdata->pointer, bssid)) */
if (hwaddr_aton_i(data, bssid)) {
RTW_INFO("Invalid BSSID '%s'.\n", (u8 *)data);
_rtw_spinunlock_bh(&(pmlmepriv->scanned_queue.lock));
return -EINVAL;
}
if (_rtw_memcmp(bssid, pnetwork->network.MacAddress, ETH_ALEN) == _TRUE) { /* BSSID match, then check if supporting wpa/wpa2 */
RTW_INFO("BSSID:" MAC_FMT "\n", MAC_ARG(bssid));
pbuf = rtw_get_wpa_ie(&pnetwork->network.IEs[12], &wpa_ielen, pnetwork->network.IELength - 12);
if (pbuf && (wpa_ielen > 0)) {
pdata->flags = 1;
break;
}
pbuf = rtw_get_wpa2_ie(&pnetwork->network.IEs[12], &wpa_ielen, pnetwork->network.IELength - 12);
if (pbuf && (wpa_ielen > 0)) {
pdata->flags = 2;
break;
}
}
plist = get_next(plist);
}
_rtw_spinunlock_bh(&(pmlmepriv->scanned_queue.lock));
if (pdata->length >= 34) {
if (copy_to_user((u8 *)pdata->pointer + 32, (u8 *)&pdata->flags, 1)) {
ret = -EINVAL;
goto exit;
}
}
exit:
return ret;
}
static int rtw_set_pid(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
_adapter *padapter = rtw_netdev_priv(dev);
int *pdata = (int *)wrqu;
int selector;
if (dev_is_drv_stopped(adapter_to_dvobj(padapter)) || (pdata == NULL)) {
ret = -EINVAL;
goto exit;
}
selector = *pdata;
if (selector < 3 && selector >= 0) {
padapter->pid[selector] = *(pdata + 1);
#ifdef CONFIG_GLOBAL_UI_PID
ui_pid[selector] = *(pdata + 1);
#endif
RTW_INFO("%s set pid[%d]=%d\n", __FUNCTION__, selector , padapter->pid[selector]);
} else
RTW_INFO("%s selector %d error\n", __FUNCTION__, selector);
exit:
return ret;
}
static int rtw_wps_start(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct iw_point *pdata = &wrqu->data;
u32 u32wps_start = 0;
unsigned int uintRet = 0;
if (RTW_CANNOT_RUN(adapter_to_dvobj(padapter)) || (NULL == pdata)) {
ret = -EINVAL;
goto exit;
}
uintRet = copy_from_user((void *) &u32wps_start, pdata->pointer, 4);
if (u32wps_start == 0)
u32wps_start = *extra;
RTW_INFO("[%s] wps_start = %d\n", __FUNCTION__, u32wps_start);
if (u32wps_start == 1) /* WPS Start */
rtw_led_control(padapter, LED_CTL_START_WPS);
else if (u32wps_start == 2) /* WPS Stop because of wps success */
rtw_led_control(padapter, LED_CTL_STOP_WPS);
else if (u32wps_start == 3) /* WPS Stop because of wps fail */
rtw_led_control(padapter, LED_CTL_STOP_WPS_FAIL);
exit:
return ret;
}
extern int rtw_change_ifname(_adapter *padapter, const char *ifname);
static int rtw_rereg_nd_name(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
_adapter *padapter = rtw_netdev_priv(dev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct rereg_nd_name_data *rereg_priv = &padapter->rereg_nd_name_priv;
char new_ifname[IFNAMSIZ];
if (rereg_priv->old_ifname[0] == 0) {
char *reg_ifname;
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->isprimary)
reg_ifname = padapter->registrypriv.ifname;
else
#endif
reg_ifname = padapter->registrypriv.if2name;
strncpy(rereg_priv->old_ifname, reg_ifname, IFNAMSIZ);
rereg_priv->old_ifname[IFNAMSIZ - 1] = 0;
}
/* RTW_INFO("%s wrqu->data.length:%d\n", __FUNCTION__, wrqu->data.length); */
if (wrqu->data.length > IFNAMSIZ)
return -EFAULT;
if (copy_from_user(new_ifname, wrqu->data.pointer, IFNAMSIZ))
return -EFAULT;
if (0 == strcmp(rereg_priv->old_ifname, new_ifname))
return ret;
RTW_INFO("%s new_ifname:%s\n", __FUNCTION__, new_ifname);
rtw_set_rtnl_lock_holder(dvobj, current);
ret = rtw_change_ifname(padapter, new_ifname);
rtw_set_rtnl_lock_holder(dvobj, NULL);
if (0 != ret)
goto exit;
if (_rtw_memcmp(rereg_priv->old_ifname, "disable%d", 9) == _TRUE) {
/* rtw_ips_mode_req(&padapter->pwrctrlpriv, rereg_priv->old_ips_mode); */
}
strncpy(rereg_priv->old_ifname, new_ifname, IFNAMSIZ);
rereg_priv->old_ifname[IFNAMSIZ - 1] = 0;
if (_rtw_memcmp(new_ifname, "disable%d", 9) == _TRUE) {
RTW_INFO("%s disable\n", __FUNCTION__);
/* free network queue for Android's timming issue */
rtw_free_network_queue(padapter, _TRUE);
/* the interface is being "disabled", we can do deeper IPS */
/* rereg_priv->old_ips_mode = rtw_get_ips_mode_req(&padapter->pwrctrlpriv); */
/* rtw_ips_mode_req(&padapter->pwrctrlpriv, IPS_NORMAL); */
}
exit:
return ret;
}
#ifdef DBG_CMD_QUEUE
u8 dump_cmd_id = 0;
#endif
#if 1
static int rtw_dbg_port(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
return ret;
}
#else
static int rtw_dbg_port(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
u8 major_cmd, minor_cmd;
u16 arg;
u32 extra_arg, *pdata, val32;
struct sta_info *psta;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct security_priv *psecuritypriv = &padapter->securitypriv;
struct wlan_network *cur_network = &(pmlmepriv->cur_network);
struct sta_priv *pstapriv = &padapter->stapriv;
pdata = (u32 *)&wrqu->data;
val32 = *pdata;
arg = (u16)(val32 & 0x0000ffff);
major_cmd = (u8)(val32 >> 24);
minor_cmd = (u8)((val32 >> 16) & 0x00ff);
extra_arg = *(pdata + 1);
switch (major_cmd) {
case 0x70: /* read_reg */
switch (minor_cmd) {
case 1:
RTW_INFO("rtw_read8(0x%x)=0x%02x\n", arg, rtw_read8(padapter, arg));
break;
case 2:
RTW_INFO("rtw_read16(0x%x)=0x%04x\n", arg, rtw_read16(padapter, arg));
break;
case 4:
RTW_INFO("rtw_read32(0x%x)=0x%08x\n", arg, rtw_read32(padapter, arg));
break;
}
break;
case 0x71: /* write_reg */
switch (minor_cmd) {
case 1:
rtw_write8(padapter, arg, extra_arg);
RTW_INFO("rtw_write8(0x%x)=0x%02x\n", arg, rtw_read8(padapter, arg));
break;
case 2:
rtw_write16(padapter, arg, extra_arg);
RTW_INFO("rtw_write16(0x%x)=0x%04x\n", arg, rtw_read16(padapter, arg));
break;
case 4:
rtw_write32(padapter, arg, extra_arg);
RTW_INFO("rtw_write32(0x%x)=0x%08x\n", arg, rtw_read32(padapter, arg));
break;
}
break;
case 0x72: /* read_bb */
RTW_INFO("read_bbreg(0x%x)=0x%x\n", arg, rtw_phl_read_bbreg(padapter, arg, 0xffffffff));
break;
case 0x73: /* write_bb */
rtw_phl_write_bbreg(padapter, arg, 0xffffffff, extra_arg);
RTW_INFO("write_bbreg(0x%x)=0x%x\n", arg, rtw_phl_read_bbreg(padapter, arg, 0xffffffff));
break;
case 0x74: /* read_rf */
RTW_INFO("read RF_reg path(0x%02x),offset(0x%x),value(0x%08x)\n", minor_cmd, arg, rtw_hal_read_rfreg(padapter, minor_cmd, arg, 0xffffffff));
break;
case 0x75: /* write_rf */
rtw_phl_write_rfreg(GET_PHL_INFO(dvobj), minor_cmd, arg, 0xffffffff, extra_arg);
RTW_INFO("write RF_reg path(0x%02x),offset(0x%x),value(0x%08x)\n", minor_cmd, arg, rtw_hal_read_rfreg(padapter, minor_cmd, arg, 0xffffffff));
break;
case 0x76:
switch (minor_cmd) {
case 0x00: /* normal mode, */
padapter->recvinfo.is_signal_dbg = 0;
break;
case 0x01: /* dbg mode */
padapter->recvinfo.is_signal_dbg = 1;
extra_arg = extra_arg > 100 ? 100 : extra_arg;
padapter->recvinfo.signal_strength_dbg = extra_arg;
break;
}
break;
case 0x78:
break;
case 0x79: {
/*
* dbg 0x79000000 [value], set RESP_TXAGC to + value, value:0~15
* dbg 0x79010000 [value], set RESP_TXAGC to - value, value:0~15
*/
u8 value = extra_arg & 0x0f;
u8 sign = minor_cmd;
u16 write_value = 0;
RTW_INFO("%s set RESP_TXAGC to %s %u\n", __func__, sign ? "minus" : "plus", value);
if (sign)
value = value | 0x10;
write_value = value | (value << 5);
rtw_write16(padapter, 0x6d9, write_value);
}
break;
case 0x7a:
receive_disconnect(padapter, pmlmeinfo->network.MacAddress
, WLAN_REASON_EXPIRATION_CHK, _FALSE);
break;
case 0x7F:
switch (minor_cmd) {
case 0x0:
RTW_INFO("fwstate=0x%x\n", get_fwstate(pmlmepriv));
break;
case 0x01:
RTW_INFO("auth_alg=0x%x, enc_alg=0x%x, auth_type=0x%x, enc_type=0x%x\n",
psecuritypriv->dot11AuthAlgrthm, psecuritypriv->dot11PrivacyAlgrthm,
psecuritypriv->ndisauthtype, psecuritypriv->ndisencryptstatus);
break;
case 0x03:
RTW_INFO("qos_option=%d\n", pmlmepriv->qospriv.qos_option);
#ifdef CONFIG_80211N_HT
RTW_INFO("ht_option=%d\n", pmlmepriv->htpriv.ht_option);
#endif /* CONFIG_80211N_HT */
break;
case 0x04:
RTW_INFO("cur_ch=%d\n", pmlmeext->chandef.chan);
RTW_INFO("cur_bw=%d\n", pmlmeext->chandef.bw);
RTW_INFO("cur_ch_off=%d\n", pmlmeext->chandef.offset);
RTW_INFO("oper_ch=%d\n", rtw_get_oper_ch(padapter));
RTW_INFO("oper_bw=%d\n", rtw_get_oper_bw(padapter));
RTW_INFO("oper_ch_offet=%d\n", rtw_get_oper_choffset(padapter));
break;
case 0x05:
psta = rtw_get_stainfo(pstapriv, cur_network->network.MacAddress);
if (psta) {
RTW_INFO("SSID=%s\n", cur_network->network.Ssid.Ssid);
RTW_INFO("sta's macaddr:" MAC_FMT "\n", MAC_ARG(psta->phl_sta->mac_addr));
RTW_INFO("cur_channel=%d, cur_bwmode=%d, cur_ch_offset=%d\n",
pmlmeext->chandef.chan, pmlmeext->chandef.bw, pmlmeext->chandef.offset);
RTW_INFO("rtsen=%d, cts2slef=%d\n", psta->rtsen, psta->cts2self);
RTW_INFO("state=0x%x, aid=%d, macid=%d, raid=%d\n",
psta->state, psta->phl_sta->aid, psta->phl_sta->macid, psta->phl_sta->ra_info.rate_id);
#ifdef CONFIG_80211N_HT
RTW_INFO("qos_en=%d, ht_en=%d, init_rate=%d\n", psta->qos_option, psta->htpriv.ht_option, psta->init_rate);
RTW_INFO("bwmode=%d, ch_offset=%d, sgi_20m=%d,sgi_40m=%d\n"
, psta->phl_sta->chandef.bw, psta->htpriv.ch_offset, psta->htpriv.sgi_20m, psta->htpriv.sgi_40m);
RTW_INFO("ampdu_enable = %d\n", psta->htpriv.ampdu_enable);
RTW_INFO("agg_enable_bitmap=%x, candidate_tid_bitmap=%x\n", psta->htpriv.agg_enable_bitmap, psta->htpriv.candidate_tid_bitmap);
#endif /* CONFIG_80211N_HT */
sta_rx_reorder_ctl_dump(RTW_DBGDUMP, psta);
} else
RTW_INFO("can't get sta's macaddr, cur_network's macaddr:" MAC_FMT "\n", MAC_ARG(cur_network->network.MacAddress));
break;
case 0x06: {
u64 tsf = 0;
tsf = rtw_hal_get_tsftr_by_port(padapter, extra_arg);
RTW_INFO(" PORT-%d TSF :%21lld\n", extra_arg, tsf);
}
break;
case 0x07:
RTW_INFO("bSurpriseRemoved=%s, bDriverStopped=%s\n"
, dev_is_surprise_removed(adapter_to_dvobj(padapter)) ? "True" : "False"
, dev_is_drv_stopped(adapter_to_dvobj(padapter)) ? "True" : "False");
break;
case 0x08: {
struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
struct recv_priv *precvpriv = &adapter_to_dvobj(padapter)->recvpriv;
RTW_INFO("free_xmitbuf_cnt=%d, free_xmitframe_cnt=%d"
", free_xmit_extbuf_cnt=%d, free_xframe_ext_cnt=%d"
", free_recvframe_cnt=%d\n",
pxmitpriv->free_xmitbuf_cnt, pxmitpriv->free_xmitframe_cnt,
pxmitpriv->free_xmit_extbuf_cnt, pxmitpriv->free_xframe_ext_cnt,
precvpriv->free_recvframe_cnt);
}
break;
case 0x09: {
int i;
_list *plist, *phead;
#ifdef CONFIG_AP_MODE
RTW_INFO_DUMP("sta_dz_bitmap:", pstapriv->sta_dz_bitmap, pstapriv->aid_bmp_len);
RTW_INFO_DUMP("tim_bitmap:", pstapriv->tim_bitmap, pstapriv->aid_bmp_len);
#endif
_rtw_spinlock_bh(&pstapriv->sta_hash_lock);
for (i = 0; i < NUM_STA; i++) {
phead = &(pstapriv->sta_hash[i]);
plist = get_next(phead);
while ((rtw_end_of_queue_search(phead, plist)) == _FALSE) {
psta = LIST_CONTAINOR(plist, struct sta_info, hash_list);
plist = get_next(plist);
if (extra_arg == psta->phl_sta->aid) {
RTW_INFO("sta's macaddr:" MAC_FMT "\n", MAC_ARG(psta->phl_sta->mac_addr));
RTW_INFO("rtsen=%d, cts2slef=%d\n", psta->rtsen, psta->cts2self);
RTW_INFO("state=0x%x, aid=%d, macid=%d, raid=%d\n",
psta->state, psta->phl_sta->aid, psta->phl_sta->macid, psta->phl_sta->ra_info.rate_id);
#ifdef CONFIG_80211N_HT
RTW_INFO("qos_en=%d, ht_en=%d, init_rate=%d\n", psta->qos_option, psta->htpriv.ht_option, psta->init_rate);
RTW_INFO("bwmode=%d, ch_offset=%d, sgi_20m=%d,sgi_40m=%d\n",
psta->phl_sta->chandef.bw, psta->htpriv.ch_offset, psta->htpriv.sgi_20m,
psta->htpriv.sgi_40m);
RTW_INFO("ampdu_enable = %d\n", psta->htpriv.ampdu_enable);
RTW_INFO("agg_enable_bitmap=%x, candidate_tid_bitmap=%x\n", psta->htpriv.agg_enable_bitmap, psta->htpriv.candidate_tid_bitmap);
#endif /* CONFIG_80211N_HT */
#ifdef CONFIG_AP_MODE
RTW_INFO("capability=0x%x\n", psta->capability);
RTW_INFO("flags=0x%x\n", psta->flags);
RTW_INFO("wpa_psk=0x%x\n", psta->wpa_psk);
RTW_INFO("wpa2_group_cipher=0x%x\n", psta->wpa2_group_cipher);
RTW_INFO("wpa2_pairwise_cipher=0x%x\n", psta->wpa2_pairwise_cipher);
RTW_INFO("qos_info=0x%x\n", psta->qos_info);
#endif
RTW_INFO("dot118021XPrivacy=0x%x\n", psta->dot118021XPrivacy);
sta_rx_reorder_ctl_dump(RTW_DBGDUMP, psta);
}
}
}
_rtw_spinunlock_bh(&pstapriv->sta_hash_lock);
}
break;
case 0x0b: { /* Enable=1, Disable=0 driver control vrtl_carrier_sense. */
/* u8 driver_vcs_en; */ /* Enable=1, Disable=0 driver control vrtl_carrier_sense. */
/* u8 driver_vcs_type; */ /* force 0:disable VCS, 1:RTS-CTS, 2:CTS-to-self when vcs_en=1. */
if (arg == 0) {
RTW_INFO("disable driver ctrl vcs\n");
padapter->driver_vcs_en = 0;
} else if (arg == 1) {
RTW_INFO("enable driver ctrl vcs = %d\n", extra_arg);
padapter->driver_vcs_en = 1;
if (extra_arg > 2)
padapter->driver_vcs_type = 1;
else
padapter->driver_vcs_type = extra_arg;
}
}
break;
case 0x0c: { /* dump rx/tx packet */
if (arg == 0) {
RTW_INFO("dump rx packet (%d)\n", extra_arg);
/* pHalData->bDumpRxPkt =extra_arg; */
rtw_hal_set_def_var(padapter, HAL_DEF_DBG_DUMP_RXPKT, &(extra_arg));
} else if (arg == 1) {
RTW_INFO("dump tx packet (%d)\n", extra_arg);
rtw_hal_set_def_var(padapter, HAL_DEF_DBG_DUMP_TXPKT, &(extra_arg));
}
}
break;
case 0x0e: {
if (arg == 0) {
RTW_INFO("disable driver ctrl rx_ampdu_factor\n");
padapter->driver_rx_ampdu_factor = 0xFF;
} else if (arg == 1) {
RTW_INFO("enable driver ctrl rx_ampdu_factor = %d\n", extra_arg);
if (extra_arg > 0x03)
padapter->driver_rx_ampdu_factor = 0xFF;
else
padapter->driver_rx_ampdu_factor = extra_arg;
}
}
break;
#ifdef DBG_CONFIG_ERROR_DETECT
case 0x0f: {
if (extra_arg == 0) {
RTW_INFO("###### silent reset test.......#####\n");
rtw_hal_sreset_reset(padapter);
} else {
struct rtw_phl_com_t *phl_com = GET_PHL_COM(padapter);
struct sreset_priv *psrtpriv = &pHalData->srestpriv;
psrtpriv->dbg_trigger_point = extra_arg;
}
}
break;
case 0x15: {
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
RTW_INFO("==>silent resete cnts:%d\n", pwrpriv->ips_enter_cnts);
}
break;
#endif
case 0x10: /* driver version display */
dump_drv_version(RTW_DBGDUMP);
break;
case 0x11: { /* dump linked status */
int pre_mode;
pre_mode = padapter->bLinkInfoDump;
/* rtw_hal_linked_info_dump(padapter,extra_arg); */
if (extra_arg == 1 || (extra_arg == 0 && pre_mode == 1)) /* not consider pwr_saving 0: */
padapter->bLinkInfoDump = extra_arg;
else if ((extra_arg == 2) || (extra_arg == 0 && pre_mode == 2)) { /* consider power_saving */
/* RTW_INFO("rtw_hal_linked_info_dump =%s\n", (padapter->bLinkInfoDump)?"enable":"disable") */
rtw_hal_linked_info_dump(padapter, extra_arg);
}
}
break;
#ifdef CONFIG_80211N_HT
case 0x12: { /* set rx_stbc */
struct registry_priv *pregpriv = &padapter->registrypriv;
/* 0: disable, bit(0):enable 2.4g, bit(1):enable 5g, 0x3: enable both 2.4g and 5g */
/* default is set to enable 2.4GHZ for IOT issue with bufflao's AP at 5GHZ */
if (extra_arg == 0 || extra_arg == 1 || extra_arg == 2 || extra_arg == 3) {
pregpriv->rx_stbc = extra_arg;
RTW_INFO("set rx_stbc=%d\n", pregpriv->rx_stbc);
} else {
RTW_INFO("get rx_stbc=%d\n", pregpriv->rx_stbc);
}
}
break;
case 0x13: { /* set ampdu_enable */
struct registry_priv *pregpriv = &padapter->registrypriv;
/* 0: disable, 0x1:enable */
if (extra_arg < 2) {
pregpriv->ampdu_enable = extra_arg;
RTW_INFO("set ampdu_enable=%d\n", pregpriv->ampdu_enable);
} else {
RTW_INFO("get ampdu_enable=%d\n", pregpriv->ampdu_enable);
}
}
break;
#endif
case 0x14: { /* get wifi_spec */
struct registry_priv *pregpriv = &padapter->registrypriv;
RTW_INFO("get wifi_spec=%d\n", pregpriv->wifi_spec);
}
break;
#ifdef DBG_FIXED_CHAN
case 0x17: {
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
printk("===> Fixed channel to %d\n", extra_arg);
pmlmeext->fixed_chan = extra_arg;
}
break;
#endif
#ifdef CONFIG_80211N_HT
case 0x19: {
struct registry_priv *pregistrypriv = &padapter->registrypriv;
/* extra_arg : */
/* BIT0: Enable VHT LDPC Rx, BIT1: Enable VHT LDPC Tx, */
/* BIT4: Enable HT LDPC Rx, BIT5: Enable HT LDPC Tx */
if (arg == 0) {
RTW_INFO("driver disable LDPC\n");
pregistrypriv->ldpc_cap = 0x00;
} else if (arg == 1) {
RTW_INFO("driver set LDPC cap = 0x%x\n", extra_arg);
pregistrypriv->ldpc_cap = (u8)(extra_arg & 0x33);
}
}
break;
case 0x1a: {
struct registry_priv *pregistrypriv = &padapter->registrypriv;
/* extra_arg : */
/* BIT0: Enable VHT STBC Rx, BIT1: Enable VHT STBC Tx, */
/* BIT4: Enable HT STBC Rx, BIT5: Enable HT STBC Tx */
if (arg == 0) {
RTW_INFO("driver disable STBC\n");
pregistrypriv->stbc_cap = 0x00;
} else if (arg == 1) {
RTW_INFO("driver set STBC cap = 0x%x\n", extra_arg);
pregistrypriv->stbc_cap = (u8)(extra_arg & 0x33);
}
}
break;
#endif /* CONFIG_80211N_HT */
case 0x1b: {
struct registry_priv *pregistrypriv = &padapter->registrypriv;
if (arg == 0) {
RTW_INFO("disable driver ctrl max_rx_rate, reset to default_rate_set\n");
init_mlme_default_rate_set(padapter);
#ifdef CONFIG_80211N_HT
pregistrypriv->ht_enable = (u8)rtw_ht_enable;
#endif /* CONFIG_80211N_HT */
} else if (arg == 1) {
int i;
u8 max_rx_rate;
RTW_INFO("enable driver ctrl max_rx_rate = 0x%x\n", extra_arg);
max_rx_rate = (u8)extra_arg;
if (max_rx_rate < 0xc) { /* max_rx_rate < MSC0->B or G -> disable HT */
#ifdef CONFIG_80211N_HT
pregistrypriv->ht_enable = 0;
#endif /* CONFIG_80211N_HT */
for (i = 0; i < NumRates; i++) {
if (pmlmeext->datarate[i] > max_rx_rate)
pmlmeext->datarate[i] = 0xff;
}
}
#ifdef CONFIG_80211N_HT
else if (max_rx_rate < 0x1c) { /* mcs0~mcs15 */
u32 mcs_bitmap = 0x0;
for (i = 0; i < ((max_rx_rate + 1) - 0xc); i++)
mcs_bitmap |= BIT(i);
set_mcs_rate_by_mask(pmlmeext->default_supported_mcs_set, mcs_bitmap);
}
#endif /* CONFIG_80211N_HT */
}
}
break;
case 0x1c: { /* enable/disable driver control AMPDU Density for peer sta's rx */
if (arg == 0) {
RTW_INFO("disable driver ctrl ampdu density\n");
padapter->driver_ampdu_spacing = 0xFF;
} else if (arg == 1) {
RTW_INFO("enable driver ctrl ampdu density = %d\n", extra_arg);
if (extra_arg > 0x07)
padapter->driver_ampdu_spacing = 0xFF;
else
padapter->driver_ampdu_spacing = extra_arg;
}
}
break;
#if defined(CONFIG_SDIO_HCI) && defined(CONFIG_SDIO_INDIRECT_ACCESS) && defined(DBG_SDIO_INDIRECT_ACCESS)
case 0x1f:
{
int i, j = 0, test_cnts = 0;
static u8 test_code = 0x5A;
static u32 data_misatch_cnt = 0, d_acc_err_cnt = 0;
u32 d_data, i_data;
u32 imr;
test_cnts = extra_arg;
for (i = 0; i < test_cnts; i++) {
if (RTW_CANNOT_IO(adapter_to_dvobj(padapter)))
break;
rtw_write8(padapter, 0x07, test_code);
d_data = rtw_read32(padapter, 0x04);
imr = rtw_read32(padapter, 0x10250014);
rtw_write32(padapter, 0x10250014, 0);
rtw_msleep_os(50);
i_data = rtw_sd_iread32(padapter, 0x04);
rtw_write32(padapter, 0x10250014, imr);
if (d_data != i_data) {
data_misatch_cnt++;
RTW_ERR("d_data :0x%08x, i_data : 0x%08x\n", d_data, i_data);
}
if (test_code != (i_data >> 24)) {
d_acc_err_cnt++;
rtw_write8(padapter, 0x07, 0xAA);
RTW_ERR("test_code :0x%02x, i_data : 0x%08x\n", test_code, i_data);
}
if ((j++) == 100) {
rtw_msleep_os(2000);
RTW_INFO(" Indirect access testing..........%d/%d\n", i, test_cnts);
j = 0;
}
test_code = ~test_code;
rtw_msleep_os(50);
}
RTW_INFO("========Indirect access test=========\n");
RTW_INFO(" test_cnts = %d\n", test_cnts);
RTW_INFO(" direct & indirect read32 data missatch cnts = %d\n", data_misatch_cnt);
RTW_INFO(" indirect rdata is not equal to wdata cnts = %d\n", d_acc_err_cnt);
RTW_INFO("========Indirect access test=========\n\n");
data_misatch_cnt = d_acc_err_cnt = 0;
}
break;
#endif
case 0x20:
{
if (arg == 0xAA) {
u8 page_offset, page_num;
page_offset = (u8)(extra_arg >> 16);
page_num = (u8)(extra_arg & 0xFF);
rtw_hal_dump_rsvd_page(RTW_DBGDUMP, padapter, page_offset, page_num);
}
#ifdef CONFIG_SUPPORT_FIFO_DUMP
else {
u8 fifo_sel;
u32 addr, size;
fifo_sel = (u8)(arg & 0x0F);
addr = (extra_arg >> 16) & 0xFFFF;
size = extra_arg & 0xFFFF;
rtw_dump_fifo(RTW_DBGDUMP, padapter, fifo_sel, addr, size);
}
#endif
}
break;
case 0x23: {
RTW_INFO("turn %s the bNotifyChannelChange Variable\n", (extra_arg == 1) ? "on" : "off");
padapter->bNotifyChannelChange = extra_arg;
break;
}
case 0x24: {
#ifdef CONFIG_P2P
RTW_INFO("turn %s the bShowGetP2PState Variable\n", (extra_arg == 1) ? "on" : "off");
padapter->bShowGetP2PState = extra_arg;
#endif /* CONFIG_P2P */
break;
}
#ifdef CONFIG_GPIO_API
case 0x25: { /* Get GPIO register */
/*
* dbg 0x7f250000 [gpio_num], Get gpio value, gpio_num:0~7
*/
u8 value;
RTW_INFO("Read GPIO Value extra_arg = %d\n", extra_arg);
value = rtw_hal_get_gpio(padapter, extra_arg);
RTW_INFO("Read GPIO Value = %d\n", value);
break;
}
case 0x26: { /* Set GPIO direction */
/* dbg 0x7f26000x [y], Set gpio direction,
* x: gpio_num,4~7 y: indicate direction, 0~1
*/
int value;
RTW_INFO("Set GPIO Direction! arg = %d ,extra_arg=%d\n", arg , extra_arg);
value = rtw_hal_config_gpio(padapter, arg, extra_arg);
RTW_INFO("Set GPIO Direction %s\n", (value == -1) ? "Fail!!!" : "Success");
break;
}
case 0x27: { /* Set GPIO output direction value */
/*
* dbg 0x7f27000x [y], Set gpio output direction value,
* x: gpio_num,4~7 y: indicate direction, 0~1
*/
int value;
RTW_INFO("Set GPIO Value! arg = %d ,extra_arg=%d\n", arg , extra_arg);
value = rtw_hal_set_gpio_output_value(padapter, arg, extra_arg);
RTW_INFO("Set GPIO Value %s\n", (value == -1) ? "Fail!!!" : "Success");
break;
}
#endif
#ifdef DBG_CMD_QUEUE
case 0x28: {
dump_cmd_id = extra_arg;
RTW_INFO("dump_cmd_id:%d\n", dump_cmd_id);
}
break;
#endif /* DBG_CMD_QUEUE */
case 0xaa: {
if ((extra_arg & 0x7F) > 0x3F)
extra_arg = 0xFF;
RTW_INFO("chang data rate to :0x%02x\n", extra_arg);
padapter->fix_rate = extra_arg;
}
break;
case 0xdd: { /* registers dump , 0 for mac reg,1 for bb reg, 2 for rf reg */
if (extra_arg == 0)
mac_reg_dump(RTW_DBGDUMP, padapter);
else if (extra_arg == 1)
bb_reg_dump(RTW_DBGDUMP, padapter);
else if (extra_arg == 2)
rf_reg_dump(RTW_DBGDUMP, padapter);
else if (extra_arg == 11)
bb_reg_dump_ex(RTW_DBGDUMP, padapter);
}
break;
case 0xee: {
RTW_INFO(" === please control /proc to trun on/off PHYDM func ===\n");
}
break;
case 0xfd:
rtw_write8(padapter, 0xc50, arg);
RTW_INFO("wr(0xc50)=0x%x\n", rtw_read8(padapter, 0xc50));
rtw_write8(padapter, 0xc58, arg);
RTW_INFO("wr(0xc58)=0x%x\n", rtw_read8(padapter, 0xc58));
break;
case 0xfe:
RTW_INFO("rd(0xc50)=0x%x\n", rtw_read8(padapter, 0xc50));
RTW_INFO("rd(0xc58)=0x%x\n", rtw_read8(padapter, 0xc58));
break;
case 0xff: {
RTW_INFO("dbg(0x210)=0x%x\n", rtw_read32(padapter, 0x210));
RTW_INFO("dbg(0x608)=0x%x\n", rtw_read32(padapter, 0x608));
RTW_INFO("dbg(0x280)=0x%x\n", rtw_read32(padapter, 0x280));
RTW_INFO("dbg(0x284)=0x%x\n", rtw_read32(padapter, 0x284));
RTW_INFO("dbg(0x288)=0x%x\n", rtw_read32(padapter, 0x288));
RTW_INFO("dbg(0x664)=0x%x\n", rtw_read32(padapter, 0x664));
RTW_INFO("\n");
RTW_INFO("dbg(0x430)=0x%x\n", rtw_read32(padapter, 0x430));
RTW_INFO("dbg(0x438)=0x%x\n", rtw_read32(padapter, 0x438));
RTW_INFO("dbg(0x440)=0x%x\n", rtw_read32(padapter, 0x440));
RTW_INFO("dbg(0x458)=0x%x\n", rtw_read32(padapter, 0x458));
RTW_INFO("dbg(0x484)=0x%x\n", rtw_read32(padapter, 0x484));
RTW_INFO("dbg(0x488)=0x%x\n", rtw_read32(padapter, 0x488));
RTW_INFO("dbg(0x444)=0x%x\n", rtw_read32(padapter, 0x444));
RTW_INFO("dbg(0x448)=0x%x\n", rtw_read32(padapter, 0x448));
RTW_INFO("dbg(0x44c)=0x%x\n", rtw_read32(padapter, 0x44c));
RTW_INFO("dbg(0x450)=0x%x\n", rtw_read32(padapter, 0x450));
}
break;
}
break;
default:
RTW_INFO("error dbg cmd!\n");
break;
}
return ret;
}
#endif
static int wpa_set_param(struct net_device *dev, u8 name, u32 value)
{
uint ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
switch (name) {
case IEEE_PARAM_WPA_ENABLED:
padapter->securitypriv.dot11AuthAlgrthm = dot11AuthAlgrthm_8021X; /* 802.1x */
/* ret = ieee80211_wpa_enable(ieee, value); */
switch ((value) & 0xff) {
case 1: /* WPA */
padapter->securitypriv.ndisauthtype = Ndis802_11AuthModeWPAPSK; /* WPA_PSK */
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption2Enabled;
break;
case 2: /* WPA2 */
padapter->securitypriv.ndisauthtype = Ndis802_11AuthModeWPA2PSK; /* WPA2_PSK */
padapter->securitypriv.ndisencryptstatus = Ndis802_11Encryption3Enabled;
break;
}
break;
case IEEE_PARAM_TKIP_COUNTERMEASURES:
/* ieee->tkip_countermeasures=value; */
break;
case IEEE_PARAM_DROP_UNENCRYPTED: {
/* HACK:
*
* wpa_supplicant calls set_wpa_enabled when the driver
* is loaded and unloaded, regardless of if WPA is being
* used. No other calls are made which can be used to
* determine if encryption will be used or not prior to
* association being expected. If encryption is not being
* used, drop_unencrypted is set to false, else true -- we
* can use this to determine if the CAP_PRIVACY_ON bit should
* be set.
*/
#if 0
struct ieee80211_security sec = {
.flags = SEC_ENABLED,
.enabled = value,
};
ieee->drop_unencrypted = value;
/* We only change SEC_LEVEL for open mode. Others
* are set by ipw_wpa_set_encryption.
*/
if (!value) {
sec.flags |= SEC_LEVEL;
sec.level = SEC_LEVEL_0;
} else {
sec.flags |= SEC_LEVEL;
sec.level = SEC_LEVEL_1;
}
if (ieee->set_security)
ieee->set_security(ieee->dev, &sec);
#endif
break;
}
case IEEE_PARAM_PRIVACY_INVOKED:
/* ieee->privacy_invoked=value; */
break;
case IEEE_PARAM_AUTH_ALGS:
ret = wpa_set_auth_algs(dev, value);
break;
case IEEE_PARAM_IEEE_802_1X:
/* ieee->ieee802_1x=value; */
break;
case IEEE_PARAM_WPAX_SELECT:
/* added for WPA2 mixed mode */
/*RTW_WARN("------------------------>wpax value = %x\n", value);*/
/*
spin_lock_irqsave(&ieee->wpax_suitlist_lock,flags);
ieee->wpax_type_set = 1;
ieee->wpax_type_notify = value;
spin_unlock_irqrestore(&ieee->wpax_suitlist_lock,flags);
*/
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static int wpa_mlme(struct net_device *dev, u32 command, u32 reason)
{
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
switch (command) {
case IEEE_MLME_STA_DEAUTH:
if (!rtw_set_802_11_disassociate(padapter))
ret = -1;
break;
case IEEE_MLME_STA_DISASSOC:
if (!rtw_set_802_11_disassociate(padapter))
ret = -1;
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static int wpa_supplicant_ioctl(struct net_device *dev, struct iw_point *p)
{
struct ieee_param *param;
uint ret = 0;
/* down(&ieee->wx_sem); */
if (p->length < sizeof(struct ieee_param) || !p->pointer) {
ret = -EINVAL;
goto out;
}
param = (struct ieee_param *)rtw_malloc(p->length);
if (param == NULL) {
ret = -ENOMEM;
goto out;
}
if (copy_from_user(param, p->pointer, p->length)) {
rtw_mfree((u8 *)param, p->length);
ret = -EFAULT;
goto out;
}
switch (param->cmd) {
case IEEE_CMD_SET_WPA_PARAM:
ret = wpa_set_param(dev, param->u.wpa_param.name, param->u.wpa_param.value);
break;
case IEEE_CMD_SET_WPA_IE:
/* ret = wpa_set_wpa_ie(dev, param, p->length); */
ret = rtw_set_wpa_ie((_adapter *)rtw_netdev_priv(dev), (char *)param->u.wpa_ie.data, (u16)param->u.wpa_ie.len);
break;
case IEEE_CMD_SET_ENCRYPTION:
ret = wpa_set_encryption(dev, param, p->length);
break;
case IEEE_CMD_MLME:
ret = wpa_mlme(dev, param->u.mlme.command, param->u.mlme.reason_code);
break;
default:
RTW_INFO("Unknown WPA supplicant request: %d\n", param->cmd);
ret = -EOPNOTSUPP;
break;
}
if (ret == 0 && copy_to_user(p->pointer, param, p->length))
ret = -EFAULT;
rtw_mfree((u8 *)param, p->length);
out:
/* up(&ieee->wx_sem); */
return ret;
}
#ifdef CONFIG_AP_MODE
static int rtw_set_encryption(struct net_device *dev, struct ieee_param *param, u32 param_len)
{
int ret = 0;
u32 wep_key_idx, wep_key_len, wep_total_len = 0;
NDIS_802_11_WEP *pwep = NULL;
struct sta_info *psta = NULL, *pbcmc_sta = NULL;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct security_priv *psecuritypriv = &(padapter->securitypriv);
struct sta_priv *pstapriv = &padapter->stapriv;
RTW_INFO("%s\n", __FUNCTION__);
param->u.crypt.err = 0;
param->u.crypt.alg[IEEE_CRYPT_ALG_NAME_LEN - 1] = '\0';
/* sizeof(struct ieee_param) = 64 bytes; */
/* if (param_len != (u32) ((u8 *) param->u.crypt.key - (u8 *) param) + param->u.crypt.key_len) */
if (param_len != sizeof(struct ieee_param) + param->u.crypt.key_len) {
ret = -EINVAL;
goto exit;
}
if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff &&
param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff &&
param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff) {
if (param->u.crypt.idx >= WEP_KEYS
#ifdef CONFIG_IEEE80211W
&& param->u.crypt.idx > BIP_MAX_KEYID
#endif /* CONFIG_IEEE80211W */
) {
ret = -EINVAL;
goto exit;
}
} else {
psta = rtw_get_stainfo(pstapriv, param->sta_addr);
if (!psta) {
/* ret = -EINVAL; */
RTW_INFO("rtw_set_encryption(), sta has already been removed or never been added\n");
goto exit;
}
}
if (strcmp(param->u.crypt.alg, "none") == 0 && (psta == NULL)) {
/* todo:clear default encryption keys */
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_Open;
psecuritypriv->ndisencryptstatus = Ndis802_11EncryptionDisabled;
psecuritypriv->dot11PrivacyAlgrthm = _NO_PRIVACY_;
psecuritypriv->dot118021XGrpPrivacy = _NO_PRIVACY_;
RTW_INFO("clear default encryption keys, keyid=%d\n", param->u.crypt.idx);
goto exit;
}
if (strcmp(param->u.crypt.alg, "WEP") == 0 && (psta == NULL)) {
RTW_INFO("r871x_set_encryption, crypt.alg = WEP\n");
wep_key_idx = param->u.crypt.idx;
wep_key_len = param->u.crypt.key_len;
RTW_INFO("r871x_set_encryption, wep_key_idx=%d, len=%d\n", wep_key_idx, wep_key_len);
if ((wep_key_idx >= WEP_KEYS) || (wep_key_len <= 0)) {
ret = -EINVAL;
goto exit;
}
if (wep_key_len > 0) {
wep_key_len = wep_key_len <= 5 ? 5 : 13;
wep_total_len = wep_key_len + FIELD_OFFSET(NDIS_802_11_WEP, KeyMaterial);
pwep = (NDIS_802_11_WEP *)rtw_malloc(wep_total_len);
if (pwep == NULL) {
RTW_INFO(" r871x_set_encryption: pwep allocate fail !!!\n");
goto exit;
}
_rtw_memset(pwep, 0, wep_total_len);
pwep->KeyLength = wep_key_len;
pwep->Length = wep_total_len;
}
pwep->KeyIndex = wep_key_idx;
_rtw_memcpy(pwep->KeyMaterial, param->u.crypt.key, pwep->KeyLength);
if (param->u.crypt.set_tx) {
RTW_INFO("wep, set_tx=1\n");
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_Auto;
psecuritypriv->ndisencryptstatus = Ndis802_11Encryption1Enabled;
psecuritypriv->dot11PrivacyAlgrthm = _WEP40_;
psecuritypriv->dot118021XGrpPrivacy = _WEP40_;
if (pwep->KeyLength == 13) {
psecuritypriv->dot11PrivacyAlgrthm = _WEP104_;
psecuritypriv->dot118021XGrpPrivacy = _WEP104_;
}
psecuritypriv->dot11PrivacyKeyIndex = wep_key_idx;
_rtw_memcpy(&(psecuritypriv->dot11DefKey[wep_key_idx].skey[0]), pwep->KeyMaterial, pwep->KeyLength);
psecuritypriv->dot11DefKeylen[wep_key_idx] = pwep->KeyLength;
rtw_ap_set_wep_key(padapter, pwep->KeyMaterial, pwep->KeyLength, wep_key_idx, 1);
} else {
RTW_INFO("wep, set_tx=0\n");
/* don't update "psecuritypriv->dot11PrivacyAlgrthm" and */
/* "psecuritypriv->dot11PrivacyKeyIndex=keyid", but can rtw_set_key to cam */
_rtw_memcpy(&(psecuritypriv->dot11DefKey[wep_key_idx].skey[0]), pwep->KeyMaterial, pwep->KeyLength);
psecuritypriv->dot11DefKeylen[wep_key_idx] = pwep->KeyLength;
rtw_ap_set_wep_key(padapter, pwep->KeyMaterial, pwep->KeyLength, wep_key_idx, 0);
}
goto exit;
}
if (!psta && check_fwstate(pmlmepriv, WIFI_AP_STATE)) /* */ { /* group key */
if (param->u.crypt.set_tx == 1) {
if (strcmp(param->u.crypt.alg, "WEP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set WEP TX GTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
_rtw_memcpy(psecuritypriv->dot118021XGrpKey[param->u.crypt.idx].skey, param->u.crypt.key, (param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
psecuritypriv->dot118021XGrpPrivacy = _WEP40_;
if (param->u.crypt.key_len == 13)
psecuritypriv->dot118021XGrpPrivacy = _WEP104_;
} else if (strcmp(param->u.crypt.alg, "TKIP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set TKIP TX GTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
psecuritypriv->dot118021XGrpPrivacy = _TKIP_;
_rtw_memcpy(psecuritypriv->dot118021XGrpKey[param->u.crypt.idx].skey, param->u.crypt.key, (param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
/* set mic key */
_rtw_memcpy(psecuritypriv->dot118021XGrptxmickey[param->u.crypt.idx].skey, &(param->u.crypt.key[16]), 8);
_rtw_memcpy(psecuritypriv->dot118021XGrprxmickey[param->u.crypt.idx].skey, &(param->u.crypt.key[24]), 8);
psecuritypriv->busetkipkey = _TRUE;
} else if (strcmp(param->u.crypt.alg, "CCMP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set CCMP TX GTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
psecuritypriv->dot118021XGrpPrivacy = _AES_;
_rtw_memcpy(psecuritypriv->dot118021XGrpKey[param->u.crypt.idx].skey, param->u.crypt.key, (param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
#ifdef CONFIG_IEEE80211W
} else if (strcmp(param->u.crypt.alg, "BIP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set TX IGTK idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx, param->u.crypt.key_len);
_rtw_memcpy(padapter->securitypriv.dot11wBIPKey[param->u.crypt.idx].skey, param->u.crypt.key, (param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
psecuritypriv->dot11wBIPKeyid = param->u.crypt.idx;
psecuritypriv->dot11wBIPtxpn.val = RTW_GET_LE64(param->u.crypt.seq);
psecuritypriv->binstallBIPkey = _TRUE;
goto exit;
#endif /* CONFIG_IEEE80211W */
} else if (strcmp(param->u.crypt.alg, "none") == 0) {
RTW_INFO(FUNC_ADPT_FMT" clear group key, idx:%u\n"
, FUNC_ADPT_ARG(padapter), param->u.crypt.idx);
psecuritypriv->dot118021XGrpPrivacy = _NO_PRIVACY_;
} else {
RTW_WARN(FUNC_ADPT_FMT" set group key, not support\n"
, FUNC_ADPT_ARG(padapter));
goto exit;
}
psecuritypriv->dot118021XGrpKeyid = param->u.crypt.idx;
pbcmc_sta = rtw_get_bcmc_stainfo(padapter);
if (pbcmc_sta) {
pbcmc_sta->dot11txpn.val = RTW_GET_LE64(param->u.crypt.seq);
pbcmc_sta->ieee8021x_blocked = _FALSE;
pbcmc_sta->dot118021XPrivacy = psecuritypriv->dot118021XGrpPrivacy; /* rx will use bmc_sta's dot118021XPrivacy */
}
psecuritypriv->binstallGrpkey = _TRUE;
psecuritypriv->dot11PrivacyAlgrthm = psecuritypriv->dot118021XGrpPrivacy;/* !!! */
rtw_ap_set_group_key(padapter, param->u.crypt.key, psecuritypriv->dot118021XGrpPrivacy, param->u.crypt.idx);
}
goto exit;
}
if (psecuritypriv->dot11AuthAlgrthm == dot11AuthAlgrthm_8021X && psta) { /* psk/802_1x */
if (check_fwstate(pmlmepriv, WIFI_AP_STATE)) {
if (param->u.crypt.set_tx == 1) {
_rtw_memcpy(psta->dot118021x_UncstKey.skey, param->u.crypt.key, (param->u.crypt.key_len > 16 ? 16 : param->u.crypt.key_len));
if (strcmp(param->u.crypt.alg, "WEP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set WEP PTK of "MAC_FMT" idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->dot118021XPrivacy = _WEP40_;
if (param->u.crypt.key_len == 13)
psta->dot118021XPrivacy = _WEP104_;
} else if (strcmp(param->u.crypt.alg, "TKIP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set TKIP PTK of "MAC_FMT" idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->dot118021XPrivacy = _TKIP_;
/* set mic key */
_rtw_memcpy(psta->dot11tkiptxmickey.skey, &(param->u.crypt.key[16]), 8);
_rtw_memcpy(psta->dot11tkiprxmickey.skey, &(param->u.crypt.key[24]), 8);
psecuritypriv->busetkipkey = _TRUE;
} else if (strcmp(param->u.crypt.alg, "CCMP") == 0) {
RTW_INFO(FUNC_ADPT_FMT" set CCMP PTK of "MAC_FMT" idx:%u, len:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx, param->u.crypt.key_len);
psta->dot118021XPrivacy = _AES_;
} else if (strcmp(param->u.crypt.alg, "none") == 0) {
RTW_INFO(FUNC_ADPT_FMT" clear pairwise key of "MAC_FMT" idx:%u\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr)
, param->u.crypt.idx);
psta->dot118021XPrivacy = _NO_PRIVACY_;
} else {
RTW_WARN(FUNC_ADPT_FMT" set pairwise key of "MAC_FMT", not support\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr));
goto exit;
}
psta->dot11txpn.val = RTW_GET_LE64(param->u.crypt.seq);
psta->dot11rxpn.val = RTW_GET_LE64(param->u.crypt.seq);
psta->ieee8021x_blocked = _FALSE;
if (psta->dot118021XPrivacy != _NO_PRIVACY_) {
psta->bpairwise_key_installed = _TRUE;
/* WPA2 key-handshake has completed */
if (psecuritypriv->ndisauthtype == Ndis802_11AuthModeWPA2PSK)
psta->state &= (~WIFI_UNDER_KEY_HANDSHAKE);
}
rtw_ap_set_pairwise_key(padapter, psta);
} else {
RTW_WARN(FUNC_ADPT_FMT" set group key of "MAC_FMT", not support\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(psta->phl_sta->mac_addr));
goto exit;
}
}
}
exit:
if (pwep)
rtw_mfree((u8 *)pwep, wep_total_len);
return ret;
}
static int rtw_set_beacon(struct net_device *dev, struct ieee_param *param, int len)
{
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct sta_priv *pstapriv = &padapter->stapriv;
unsigned char *pbuf = param->u.bcn_ie.buf;
RTW_INFO("%s, len=%d\n", __FUNCTION__, len);
if (check_fwstate(pmlmepriv, WIFI_AP_STATE) != _TRUE)
return -EINVAL;
_rtw_memcpy(&pstapriv->max_num_sta, param->u.bcn_ie.reserved, 2);
if ((pstapriv->max_num_sta > NUM_STA) || (pstapriv->max_num_sta <= 0))
pstapriv->max_num_sta = NUM_STA;
if (rtw_check_beacon_data(padapter, pbuf, (len - 12 - 2)) == _SUCCESS) /* 12 = param header, 2:no packed */
ret = 0;
else
ret = -EINVAL;
return ret;
}
static int rtw_hostapd_sta_flush(struct net_device *dev)
{
/* _list *phead, *plist; */
int ret = 0;
/* struct sta_info *psta = NULL; */
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
/* struct sta_priv *pstapriv = &padapter->stapriv; */
RTW_INFO("%s\n", __FUNCTION__);
flush_all_cam_entry(padapter, PHL_CMD_WAIT, 50); /* clear CAM */
#ifdef CONFIG_AP_MODE
ret = rtw_sta_flush(padapter, _TRUE);
#endif
return ret;
}
static int rtw_add_sta(struct net_device *dev, struct ieee_param *param)
{
int ret = 0;
struct sta_info *psta = NULL;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct sta_priv *pstapriv = &padapter->stapriv;
RTW_INFO("rtw_add_sta(aid=%d)=" MAC_FMT "\n", param->u.add_sta.aid, MAC_ARG(param->sta_addr));
if (check_fwstate(pmlmepriv, (WIFI_ASOC_STATE | WIFI_AP_STATE)) != _TRUE)
return -EINVAL;
if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff &&
param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff &&
param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff)
return -EINVAL;
#if 0
psta = rtw_get_stainfo(pstapriv, param->sta_addr);
if (psta) {
RTW_INFO("rtw_add_sta(), free has been added psta=%p\n", psta);
/* _rtw_spinlock_bh(&(pstapriv->sta_hash_lock)); */
rtw_free_stainfo(padapter, psta);
/* _rtw_spinunlock_bh(&(pstapriv->sta_hash_lock)); */
psta = NULL;
}
#endif
/* psta = rtw_alloc_stainfo(pstapriv, param->sta_addr); */
psta = rtw_get_stainfo(pstapriv, param->sta_addr);
if (psta) {
int flags = param->u.add_sta.flags;
/* RTW_INFO("rtw_add_sta(), init sta's variables, psta=%p\n", psta); */
psta->phl_sta->aid = param->u.add_sta.aid;/* aid=1~2007 */
_rtw_memcpy(psta->bssrateset, param->u.add_sta.tx_supp_rates, 16);
/* check wmm cap. */
if (WLAN_STA_WME & flags)
psta->qos_option = 1;
else
psta->qos_option = 0;
if (pmlmepriv->qospriv.qos_option == 0)
psta->qos_option = 0;
#ifdef CONFIG_80211N_HT
/* chec 802.11n ht cap. */
if (padapter->registrypriv.ht_enable &&
is_supported_ht(padapter->registrypriv.wireless_mode) &&
(WLAN_STA_HT & flags)) {
psta->htpriv.ht_option = _TRUE;
psta->qos_option = 1;
_rtw_memcpy((void *)&psta->htpriv.ht_cap, (void *)¶m->u.add_sta.ht_cap, sizeof(struct rtw_ieee80211_ht_cap));
} else
psta->htpriv.ht_option = _FALSE;
if (pmlmepriv->htpriv.ht_option == _FALSE)
psta->htpriv.ht_option = _FALSE;
#endif
update_sta_info_apmode(padapter, psta);
} else
ret = -ENOMEM;
return ret;
}
static int rtw_del_sta(struct net_device *dev, struct ieee_param *param)
{
int ret = 0;
struct sta_info *psta = NULL;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct sta_priv *pstapriv = &padapter->stapriv;
RTW_INFO("rtw_del_sta=" MAC_FMT "\n", MAC_ARG(param->sta_addr));
if (check_fwstate(pmlmepriv, (WIFI_ASOC_STATE | WIFI_AP_STATE)) != _TRUE)
return -EINVAL;
if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff &&
param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff &&
param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff)
return -EINVAL;
psta = rtw_get_stainfo(pstapriv, param->sta_addr);
if (psta) {
u8 updated = _FALSE;
/* RTW_INFO("free psta=%p, aid=%d\n", psta, psta->phl_sta->aid); */
_rtw_spinlock_bh(&pstapriv->asoc_list_lock);
if (rtw_is_list_empty(&psta->asoc_list) == _FALSE) {
rtw_list_delete(&psta->asoc_list);
pstapriv->asoc_list_cnt--;
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
if (psta->tbtx_enable)
pstapriv->tbtx_asoc_list_cnt--;
#endif
updated = ap_free_sta(padapter, psta, _TRUE, WLAN_REASON_DEAUTH_LEAVING, _TRUE, _FALSE);
}
_rtw_spinunlock_bh(&pstapriv->asoc_list_lock);
associated_clients_update(padapter, updated, STA_INFO_UPDATE_ALL);
psta = NULL;
} else {
RTW_INFO("rtw_del_sta(), sta has already been removed or never been added\n");
/* ret = -1; */
}
return ret;
}
static int rtw_ioctl_get_sta_data(struct net_device *dev, struct ieee_param *param, int len)
{
int ret = 0;
struct sta_info *psta = NULL;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct sta_priv *pstapriv = &padapter->stapriv;
struct ieee_param_ex *param_ex = (struct ieee_param_ex *)param;
struct sta_data *psta_data = (struct sta_data *)param_ex->data;
RTW_INFO("rtw_ioctl_get_sta_info, sta_addr: " MAC_FMT "\n", MAC_ARG(param_ex->sta_addr));
if (check_fwstate(pmlmepriv, (WIFI_ASOC_STATE | WIFI_AP_STATE)) != _TRUE)
return -EINVAL;
if (param_ex->sta_addr[0] == 0xff && param_ex->sta_addr[1] == 0xff &&
param_ex->sta_addr[2] == 0xff && param_ex->sta_addr[3] == 0xff &&
param_ex->sta_addr[4] == 0xff && param_ex->sta_addr[5] == 0xff)
return -EINVAL;
psta = rtw_get_stainfo(pstapriv, param_ex->sta_addr);
if (psta) {
#if 0
struct {
u16 aid;
u16 capability;
int flags;
u32 sta_set;
u8 tx_supp_rates[16];
u32 tx_supp_rates_len;
struct rtw_ieee80211_ht_cap ht_cap;
u64 rx_pkts;
u64 rx_bytes;
u64 rx_drops;
u64 tx_pkts;
u64 tx_bytes;
u64 tx_drops;
} get_sta;
#endif
psta_data->aid = (u16)psta->phl_sta->aid;
psta_data->capability = psta->capability;
psta_data->flags = psta->flags;
/*
nonerp_set : BIT(0)
no_short_slot_time_set : BIT(1)
no_short_preamble_set : BIT(2)
no_ht_gf_set : BIT(3)
no_ht_set : BIT(4)
ht_20mhz_set : BIT(5)
*/
psta_data->sta_set = ((psta->nonerp_set) |
(psta->no_short_slot_time_set << 1) |
(psta->no_short_preamble_set << 2) |
(psta->no_ht_gf_set << 3) |
(psta->no_ht_set << 4) |
(psta->ht_20mhz_set << 5));
psta_data->tx_supp_rates_len = psta->bssratelen;
_rtw_memcpy(psta_data->tx_supp_rates, psta->bssrateset, psta->bssratelen);
#ifdef CONFIG_80211N_HT
if(padapter->registrypriv.ht_enable && is_supported_ht(padapter->registrypriv.wireless_mode))
_rtw_memcpy(&psta_data->ht_cap, &psta->htpriv.ht_cap, sizeof(struct rtw_ieee80211_ht_cap));
#endif /* CONFIG_80211N_HT */
psta_data->rx_pkts = psta->sta_stats.rx_data_pkts;
psta_data->rx_bytes = psta->sta_stats.rx_bytes;
psta_data->rx_drops = psta->sta_stats.rx_drops;
psta_data->tx_pkts = psta->sta_stats.tx_pkts;
psta_data->tx_bytes = psta->sta_stats.tx_bytes;
psta_data->tx_drops = psta->sta_stats.tx_drops;
} else
ret = -1;
return ret;
}
static int rtw_get_sta_wpaie(struct net_device *dev, struct ieee_param *param)
{
int ret = 0;
struct sta_info *psta = NULL;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct sta_priv *pstapriv = &padapter->stapriv;
RTW_INFO("rtw_get_sta_wpaie, sta_addr: " MAC_FMT "\n", MAC_ARG(param->sta_addr));
if (check_fwstate(pmlmepriv, (WIFI_ASOC_STATE | WIFI_AP_STATE)) != _TRUE)
return -EINVAL;
if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff &&
param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff &&
param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff)
return -EINVAL;
psta = rtw_get_stainfo(pstapriv, param->sta_addr);
if (psta) {
if ((psta->wpa_ie[0] == WLAN_EID_RSN) || (psta->wpa_ie[0] == WLAN_EID_GENERIC)) {
int wpa_ie_len;
int copy_len;
wpa_ie_len = psta->wpa_ie[1];
copy_len = ((wpa_ie_len + 2) > sizeof(psta->wpa_ie)) ? (sizeof(psta->wpa_ie)) : (wpa_ie_len + 2);
param->u.wpa_ie.len = copy_len;
_rtw_memcpy(param->u.wpa_ie.reserved, psta->wpa_ie, copy_len);
} else {
/* ret = -1; */
RTW_INFO("sta's wpa_ie is NONE\n");
}
} else
ret = -1;
return ret;
}
static int rtw_set_wps_beacon(struct net_device *dev, struct ieee_param *param, int len)
{
int ret = 0;
unsigned char wps_oui[4] = {0x0, 0x50, 0xf2, 0x04};
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
int ie_len;
RTW_INFO("%s, len=%d\n", __FUNCTION__, len);
if (check_fwstate(pmlmepriv, WIFI_AP_STATE) != _TRUE)
return -EINVAL;
ie_len = len - 12 - 2; /* 12 = param header, 2:no packed */
if (pmlmepriv->wps_beacon_ie) {
rtw_mfree(pmlmepriv->wps_beacon_ie, pmlmepriv->wps_beacon_ie_len);
pmlmepriv->wps_beacon_ie = NULL;
}
if (ie_len > 0) {
pmlmepriv->wps_beacon_ie = rtw_malloc(ie_len);
pmlmepriv->wps_beacon_ie_len = ie_len;
if (pmlmepriv->wps_beacon_ie == NULL) {
RTW_INFO("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
return -EINVAL;
}
_rtw_memcpy(pmlmepriv->wps_beacon_ie, param->u.bcn_ie.buf, ie_len);
rtw_update_beacon(padapter, _VENDOR_SPECIFIC_IE_, wps_oui, _TRUE, 0);
pmlmeext->bstart_bss = _TRUE;
}
return ret;
}
static int rtw_set_wps_probe_resp(struct net_device *dev, struct ieee_param *param, int len)
{
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
int ie_len;
RTW_INFO("%s, len=%d\n", __FUNCTION__, len);
if (check_fwstate(pmlmepriv, WIFI_AP_STATE) != _TRUE)
return -EINVAL;
ie_len = len - 12 - 2; /* 12 = param header, 2:no packed */
if (pmlmepriv->wps_probe_resp_ie) {
rtw_mfree(pmlmepriv->wps_probe_resp_ie, pmlmepriv->wps_probe_resp_ie_len);
pmlmepriv->wps_probe_resp_ie = NULL;
}
if (ie_len > 0) {
pmlmepriv->wps_probe_resp_ie = rtw_malloc(ie_len);
pmlmepriv->wps_probe_resp_ie_len = ie_len;
if (pmlmepriv->wps_probe_resp_ie == NULL) {
RTW_INFO("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
return -EINVAL;
}
_rtw_memcpy(pmlmepriv->wps_probe_resp_ie, param->u.bcn_ie.buf, ie_len);
}
return ret;
}
static int rtw_set_wps_assoc_resp(struct net_device *dev, struct ieee_param *param, int len)
{
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
int ie_len;
RTW_INFO("%s, len=%d\n", __FUNCTION__, len);
if (check_fwstate(pmlmepriv, WIFI_AP_STATE) != _TRUE)
return -EINVAL;
ie_len = len - 12 - 2; /* 12 = param header, 2:no packed */
if (pmlmepriv->wps_assoc_resp_ie) {
rtw_mfree(pmlmepriv->wps_assoc_resp_ie, pmlmepriv->wps_assoc_resp_ie_len);
pmlmepriv->wps_assoc_resp_ie = NULL;
}
if (ie_len > 0) {
pmlmepriv->wps_assoc_resp_ie = rtw_malloc(ie_len);
pmlmepriv->wps_assoc_resp_ie_len = ie_len;
if (pmlmepriv->wps_assoc_resp_ie == NULL) {
RTW_INFO("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
return -EINVAL;
}
_rtw_memcpy(pmlmepriv->wps_assoc_resp_ie, param->u.bcn_ie.buf, ie_len);
}
return ret;
}
static int rtw_set_hidden_ssid(struct net_device *dev, struct ieee_param *param, int len)
{
int ret = 0;
_adapter *adapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *mlmepriv = &(adapter->mlmepriv);
struct mlme_ext_priv *mlmeext = &(adapter->mlmeextpriv);
struct mlme_ext_info *mlmeinfo = &(mlmeext->mlmext_info);
int ie_len;
u8 *ssid_ie;
char ssid[NDIS_802_11_LENGTH_SSID + 1];
sint ssid_len = 0;
u8 ignore_broadcast_ssid;
if (check_fwstate(mlmepriv, WIFI_AP_STATE) != _TRUE)
return -EPERM;
if (param->u.bcn_ie.reserved[0] != 0xea)
return -EINVAL;
mlmeinfo->hidden_ssid_mode = ignore_broadcast_ssid = param->u.bcn_ie.reserved[1];
ie_len = len - 12 - 2; /* 12 = param header, 2:no packed */
ssid_ie = rtw_get_ie(param->u.bcn_ie.buf, WLAN_EID_SSID, &ssid_len, ie_len);
if (ssid_ie && ssid_len > 0 && ssid_len <= NDIS_802_11_LENGTH_SSID) {
WLAN_BSSID_EX *pbss_network = &mlmepriv->cur_network.network;
WLAN_BSSID_EX *pbss_network_ext = &mlmeinfo->network;
_rtw_memcpy(ssid, ssid_ie + 2, ssid_len);
ssid[ssid_len] = 0x0;
if (0)
RTW_INFO(FUNC_ADPT_FMT" ssid:(%s,%d), from ie:(%s,%d), (%s,%d)\n", FUNC_ADPT_ARG(adapter),
ssid, ssid_len,
pbss_network->Ssid.Ssid, pbss_network->Ssid.SsidLength,
pbss_network_ext->Ssid.Ssid, pbss_network_ext->Ssid.SsidLength);
_rtw_memcpy(pbss_network->Ssid.Ssid, (void *)ssid, ssid_len);
pbss_network->Ssid.SsidLength = ssid_len;
_rtw_memcpy(pbss_network_ext->Ssid.Ssid, (void *)ssid, ssid_len);
pbss_network_ext->Ssid.SsidLength = ssid_len;
if (0)
RTW_INFO(FUNC_ADPT_FMT" after ssid:(%s,%d), (%s,%d)\n", FUNC_ADPT_ARG(adapter),
pbss_network->Ssid.Ssid, pbss_network->Ssid.SsidLength,
pbss_network_ext->Ssid.Ssid, pbss_network_ext->Ssid.SsidLength);
}
RTW_INFO(FUNC_ADPT_FMT" ignore_broadcast_ssid:%d, %s,%d\n", FUNC_ADPT_ARG(adapter),
ignore_broadcast_ssid, ssid, ssid_len);
return ret;
}
#if CONFIG_RTW_MACADDR_ACL
static int rtw_ioctl_acl_remove_sta(struct net_device *dev, struct ieee_param *param, int len)
{
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
if (check_fwstate(pmlmepriv, WIFI_AP_STATE) != _TRUE)
return -EINVAL;
if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff &&
param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff &&
param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff)
return -EINVAL;
ret = rtw_acl_remove_sta(padapter, RTW_ACL_PERIOD_BSS, param->sta_addr);
return ret;
}
static int rtw_ioctl_acl_add_sta(struct net_device *dev, struct ieee_param *param, int len)
{
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
if (check_fwstate(pmlmepriv, WIFI_AP_STATE) != _TRUE)
return -EINVAL;
if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff &&
param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff &&
param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff)
return -EINVAL;
ret = rtw_acl_add_sta(padapter, RTW_ACL_PERIOD_BSS, param->sta_addr);
return ret;
}
static int rtw_ioctl_set_macaddr_acl(struct net_device *dev, struct ieee_param *param, int len)
{
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
if (check_fwstate(pmlmepriv, WIFI_AP_STATE) != _TRUE)
return -EINVAL;
rtw_set_macaddr_acl(padapter, RTW_ACL_PERIOD_BSS, param->u.mlme.command);
return ret;
}
#endif /* CONFIG_RTW_MACADDR_ACL */
static int rtw_hostapd_ioctl(struct net_device *dev, struct iw_point *p)
{
struct ieee_param *param;
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
/* RTW_INFO("%s\n", __FUNCTION__); */
/*
* this function is expect to call in master mode, which allows no power saving
* so, we just check hw_init_completed
*/
if (!rtw_hw_is_init_completed(dvobj)) {
ret = -EPERM;
goto out;
}
/* if (p->length < sizeof(struct ieee_param) || !p->pointer){ */
if (!p->pointer) {
ret = -EINVAL;
goto out;
}
param = (struct ieee_param *)rtw_malloc(p->length);
if (param == NULL) {
ret = -ENOMEM;
goto out;
}
if (copy_from_user(param, p->pointer, p->length)) {
rtw_mfree((u8 *)param, p->length);
ret = -EFAULT;
goto out;
}
/* RTW_INFO("%s, cmd=%d\n", __FUNCTION__, param->cmd); */
switch (param->cmd) {
case RTL871X_HOSTAPD_FLUSH:
ret = rtw_hostapd_sta_flush(dev);
break;
case RTL871X_HOSTAPD_ADD_STA:
ret = rtw_add_sta(dev, param);
break;
case RTL871X_HOSTAPD_REMOVE_STA:
ret = rtw_del_sta(dev, param);
break;
case RTL871X_HOSTAPD_SET_BEACON:
ret = rtw_set_beacon(dev, param, p->length);
break;
case RTL871X_SET_ENCRYPTION:
ret = rtw_set_encryption(dev, param, p->length);
break;
case RTL871X_HOSTAPD_GET_WPAIE_STA:
ret = rtw_get_sta_wpaie(dev, param);
break;
case RTL871X_HOSTAPD_SET_WPS_BEACON:
ret = rtw_set_wps_beacon(dev, param, p->length);
break;
case RTL871X_HOSTAPD_SET_WPS_PROBE_RESP:
ret = rtw_set_wps_probe_resp(dev, param, p->length);
break;
case RTL871X_HOSTAPD_SET_WPS_ASSOC_RESP:
ret = rtw_set_wps_assoc_resp(dev, param, p->length);
break;
case RTL871X_HOSTAPD_SET_HIDDEN_SSID:
ret = rtw_set_hidden_ssid(dev, param, p->length);
break;
case RTL871X_HOSTAPD_GET_INFO_STA:
ret = rtw_ioctl_get_sta_data(dev, param, p->length);
break;
#if CONFIG_RTW_MACADDR_ACL
case RTL871X_HOSTAPD_SET_MACADDR_ACL:
ret = rtw_ioctl_set_macaddr_acl(dev, param, p->length);
break;
case RTL871X_HOSTAPD_ACL_ADD_STA:
ret = rtw_ioctl_acl_add_sta(dev, param, p->length);
break;
case RTL871X_HOSTAPD_ACL_REMOVE_STA:
ret = rtw_ioctl_acl_remove_sta(dev, param, p->length);
break;
#endif /* CONFIG_RTW_MACADDR_ACL */
default:
RTW_INFO("Unknown hostapd request: %d\n", param->cmd);
ret = -EOPNOTSUPP;
break;
}
if (ret == 0 && copy_to_user(p->pointer, param, p->length))
ret = -EFAULT;
rtw_mfree((u8 *)param, p->length);
out:
return ret;
}
#endif
static int rtw_wx_set_priv(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *awrq,
char *extra)
{
#ifdef CONFIG_DEBUG_RTW_WX_SET_PRIV
char *ext_dbg;
#endif
int ret = 0;
int len = 0;
char *ext;
#ifdef CONFIG_RTW_ANDROID
int i;
#endif
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct iw_point *dwrq = (struct iw_point *)awrq;
if (dwrq->length == 0)
return -EFAULT;
len = dwrq->length;
ext = rtw_vmalloc(len);
if (!ext)
return -ENOMEM;
if (copy_from_user(ext, dwrq->pointer, len)) {
rtw_vmfree(ext, len);
return -EFAULT;
}
#ifdef CONFIG_DEBUG_RTW_WX_SET_PRIV
ext_dbg = rtw_vmalloc(len);
if (!ext_dbg) {
rtw_vmfree(ext, len);
return -ENOMEM;
}
_rtw_memcpy(ext_dbg, ext, len);
#endif
/* added for wps2.0 @20110524 */
if (dwrq->flags == 0x8766 && len > 8) {
u32 cp_sz;
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
u8 *probereq_wpsie = ext;
int probereq_wpsie_len = len;
u8 wps_oui[4] = {0x0, 0x50, 0xf2, 0x04};
if ((_VENDOR_SPECIFIC_IE_ == probereq_wpsie[0]) &&
(_rtw_memcmp(&probereq_wpsie[2], wps_oui, 4) == _TRUE)) {
cp_sz = probereq_wpsie_len > MAX_WPS_IE_LEN ? MAX_WPS_IE_LEN : probereq_wpsie_len;
if (pmlmepriv->wps_probe_req_ie) {
u32 free_len = pmlmepriv->wps_probe_req_ie_len;
pmlmepriv->wps_probe_req_ie_len = 0;
rtw_mfree(pmlmepriv->wps_probe_req_ie, free_len);
pmlmepriv->wps_probe_req_ie = NULL;
}
pmlmepriv->wps_probe_req_ie = rtw_malloc(cp_sz);
if (pmlmepriv->wps_probe_req_ie == NULL) {
printk("%s()-%d: rtw_malloc() ERROR!\n", __FUNCTION__, __LINE__);
ret = -EINVAL;
goto FREE_EXT;
}
_rtw_memcpy(pmlmepriv->wps_probe_req_ie, probereq_wpsie, cp_sz);
pmlmepriv->wps_probe_req_ie_len = cp_sz;
}
goto FREE_EXT;
}
if (len >= WEXT_CSCAN_HEADER_SIZE
&& _rtw_memcmp(ext, WEXT_CSCAN_HEADER, WEXT_CSCAN_HEADER_SIZE) == _TRUE
) {
ret = rtw_wx_set_scan(dev, info, awrq, ext);
goto FREE_EXT;
}
#ifdef CONFIG_RTW_ANDROID
/* RTW_INFO("rtw_wx_set_priv: %s req=%s\n", dev->name, ext); */
i = rtw_android_cmdstr_to_num(ext);
switch (i) {
case ANDROID_WIFI_CMD_START:
indicate_wx_custom_event(padapter, "START");
break;
case ANDROID_WIFI_CMD_STOP:
indicate_wx_custom_event(padapter, "STOP");
break;
case ANDROID_WIFI_CMD_RSSI: {
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct wlan_network *pcur_network = &pmlmepriv->cur_network;
if (check_fwstate(pmlmepriv, WIFI_ASOC_STATE) == _TRUE)
sprintf(ext, "%s rssi %d", pcur_network->network.Ssid.Ssid, padapter->recvinfo.rssi);
else
sprintf(ext, "OK");
}
break;
case ANDROID_WIFI_CMD_LINKSPEED: {
u16 mbps = rtw_get_cur_max_rate(padapter) / 10;
sprintf(ext, "LINKSPEED %d", mbps);
}
break;
case ANDROID_WIFI_CMD_MACADDR:
sprintf(ext, "MACADDR = " MAC_FMT, MAC_ARG(dev->dev_addr));
break;
case ANDROID_WIFI_CMD_SCAN_ACTIVE: {
/* rtw_set_scan_mode(padapter, SCAN_ACTIVE); */
sprintf(ext, "OK");
}
break;
case ANDROID_WIFI_CMD_SCAN_PASSIVE: {
/* rtw_set_scan_mode(padapter, SCAN_PASSIVE); */
sprintf(ext, "OK");
}
break;
case ANDROID_WIFI_CMD_COUNTRY: {
char country_code[10];
sscanf(ext, "%*s %s", country_code);
rtw_set_country(padapter, country_code, RTW_REGD_SET_BY_USER);
sprintf(ext, "OK");
}
break;
default:
#ifdef CONFIG_DEBUG_RTW_WX_SET_PRIV
RTW_INFO("%s: %s unknowned req=%s\n", __FUNCTION__,
dev->name, ext_dbg);
#endif
sprintf(ext, "OK");
}
if (copy_to_user(dwrq->pointer, ext, min(dwrq->length, (u16)(strlen(ext) + 1))))
ret = -EFAULT;
#ifdef CONFIG_DEBUG_RTW_WX_SET_PRIV
RTW_INFO("%s: %s req=%s rep=%s dwrq->length=%d, strlen(ext)+1=%d\n", __FUNCTION__,
dev->name, ext_dbg , ext, dwrq->length, (u16)(strlen(ext) + 1));
#endif
#endif /* end of CONFIG_ANDROID */
FREE_EXT:
rtw_vmfree(ext, len);
#ifdef CONFIG_DEBUG_RTW_WX_SET_PRIV
rtw_vmfree(ext_dbg, len);
#endif
/* RTW_INFO("rtw_wx_set_priv: (SIOCSIWPRIV) %s ret=%d\n", */
/* dev->name, ret); */
return ret;
}
#ifdef CONFIG_WOWLAN
static int rtw_wowlan_ctrl(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(padapter);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
int ret = 0;
systime start_time = rtw_get_current_time();
RTW_INFO("+rtw_wowlan_ctrl: %s\n", extra);
if (!check_fwstate(pmlmepriv, WIFI_ASOC_STATE) &&
MLME_IS_STA(padapter) &&
!WOWLAN_IS_STA_MIX_MODE(padapter)) {
#ifdef CONFIG_PNO_SUPPORT
pwrctrlpriv->wowlan_pno_enable = _TRUE;
#else
RTW_INFO("[%s] WARNING: Please Connect With AP First!!\n", __func__);
goto _rtw_wowlan_ctrl_exit_free;
#endif /* CONFIG_PNO_SUPPORT */
}
if (check_fwstate(pmlmepriv, WIFI_UNDER_SURVEY))
rtw_scan_abort(padapter, 0);
if (_rtw_memcmp(extra, "enable", 6))
rtw_suspend_common(padapter);
else if (_rtw_memcmp(extra, "disable", 7)) {
#ifdef CONFIG_USB_HCI
RTW_ENABLE_FUNC(adapter_to_dvobj(padapter), DF_RX_BIT);
RTW_ENABLE_FUNC(adapter_to_dvobj(padapter), DF_TX_BIT);
#endif
rtw_resume_common(padapter);
#ifdef CONFIG_PNO_SUPPORT
pwrctrlpriv->wowlan_pno_enable = _FALSE;
#endif /* CONFIG_PNO_SUPPORT */
} else {
RTW_INFO("[%s] Invalid Parameter.\n", __func__);
goto _rtw_wowlan_ctrl_exit_free;
}
/* mutex_lock(&ioctl_mutex); */
_rtw_wowlan_ctrl_exit_free:
RTW_PRINT("%s in %d ms\n", __func__,
rtw_get_passing_time_ms(start_time));
return ret;
}
/*
* IP filter This pattern if for a frame containing a ip packet:
* AA:AA:AA:AA:AA:AA:BB:BB:BB:BB:BB:BB:CC:CC:DD:-:-:-:-:-:-:-:-:EE:-:-:FF:FF:FF:FF:GG:GG:GG:GG:HH:HH:II:II
*
* A: Ethernet destination address
* B: Ethernet source address
* C: Ethernet protocol type
* D: IP header VER+Hlen, use: 0x45 (4 is for ver 4, 5 is for len 20)
* E: IP protocol
* F: IP source address ( 192.168.0.4: C0:A8:00:2C )
* G: IP destination address ( 192.168.0.4: C0:A8:00:2C )
* H: Source port (1024: 04:00)
* I: Destination port (1024: 04:00)
*/
static int rtw_wowlan_set_pattern(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct registry_priv *registry_par = &padapter->registrypriv;
struct wow_priv *wowpriv = adapter_to_wowlan(padapter);
struct rtw_wowcam_upd_info wowcam_info = {0};
u8 input[wrqu->data.length];
int ret = 0;
if (!(registry_par->wakeup_event & BIT(3))) {
ret = -EOPNOTSUPP;
RTW_INFO("%s: customized pattern disabled, wakeup_event: %#2x\n",
__func__, registry_par->wakeup_event);
goto _rtw_wowlan_set_pattern_exit;
}
if (!check_fwstate(pmlmepriv, WIFI_ASOC_STATE) &&
MLME_IS_STA(padapter)) {
ret = -EOPNOTSUPP;
RTW_INFO("Please Connect With AP First!!\n");
goto _rtw_wowlan_set_pattern_exit;
}
if (wrqu->data.length <= 0) {
ret = -EINVAL;
RTW_INFO("ERROR: parameter length <= 0\n");
goto _rtw_wowlan_set_pattern_exit;
} else {
/* set pattern */
if (copy_from_user(input, wrqu->data.pointer, wrqu->data.length)) {
ret -EFAULT;
goto _rtw_wowlan_set_pattern_exit;
}
if (strncmp(input, "pattern=", 8) == 0) {
if (rtw_wowlan_parser_pattern_cmd(input,
wowcam_info.ptrn,
&wowcam_info.ptrn_len,
wowcam_info.mask)) {
if (_FAIL == rtw_wow_pattern_set(padapter,
&wowcam_info,
RTW_CUSTOMIZED_PATTERN))
ret = -EFAULT;
} else {
ret = -EINVAL;
}
} else if (strncmp(input, "clean", 5) == 0) {
rtw_wow_pattern_clean(padapter, RTW_CUSTOMIZED_PATTERN);
} else if (strncmp(input, "show", 4) == 0) {
/* leave PS first */
rtw_ps_deny(padapter, PS_DENY_IOCTL);
LeaveAllPowerSaveModeDirect(padapter);
#if 0 /* WOW_ToDo */
rtw_wow_pattern_cam_dump(padapter);
rtw_wow_pattern_sw_dump(padapter);
#endif
rtw_ps_deny_cancel(padapter, PS_DENY_IOCTL);
} else {
RTW_INFO("ERROR: incorrect parameter!\n");
ret = -EINVAL;
}
}
_rtw_wowlan_set_pattern_exit:
return ret;
}
#endif /* CONFIG_WOWLAN */
#ifdef CONFIG_AP_WOWLAN
static int rtw_ap_wowlan_ctrl(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct wowlan_ioctl_param poidparam;
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(padapter);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct sta_info *psta = NULL;
int ret = 0;
systime start_time = rtw_get_current_time();
poidparam.subcode = 0;
RTW_INFO("+rtw_ap_wowlan_ctrl: %s\n", extra);
if (!check_fwstate(pmlmepriv, WIFI_AP_STATE)) {
RTW_INFO("[%s] It is not AP mode!!\n", __func__);
goto _rtw_ap_wowlan_ctrl_exit_free;
}
if (_rtw_memcmp(extra, "enable", 6)) {
pwrctrlpriv->wowlan_ap_mode = _TRUE;
rtw_suspend_common(padapter);
} else if (_rtw_memcmp(extra, "disable", 7)) {
#ifdef CONFIG_USB_HCI
RTW_ENABLE_FUNC(adapter_to_dvobj(padapter), DF_RX_BIT);
RTW_ENABLE_FUNC(adapter_to_dvobj(padapter), DF_TX_BIT);
#endif
rtw_resume_common(padapter);
} else {
RTW_INFO("[%s] Invalid Parameter.\n", __func__);
goto _rtw_ap_wowlan_ctrl_exit_free;
}
/* mutex_lock(&ioctl_mutex); */
_rtw_ap_wowlan_ctrl_exit_free:
RTW_INFO("-rtw_ap_wowlan_ctrl( subcode = %d)\n", poidparam.subcode);
RTW_PRINT("%s in %d ms\n", __func__,
rtw_get_passing_time_ms(start_time));
return ret;
}
#endif /* CONFIG_AP_WOWLAN */
static int rtw_pm_set(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
unsigned mode = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
RTW_INFO("[%s] extra = %s\n", __FUNCTION__, extra);
if (_rtw_memcmp(extra, "lps=", 4)) {
sscanf(extra + 4, "%u", &mode);
ret = rtw_pm_set_lps(padapter, mode);
} else if (_rtw_memcmp(extra, "ips=", 4)) {
sscanf(extra + 4, "%u", &mode);
ret = rtw_pm_set_ips(padapter, mode);
} else if (_rtw_memcmp(extra, "lps_level=", 10)) {
if (sscanf(extra + 10, "%u", &mode) > 0)
ret = rtw_pm_set_lps_level(padapter, mode);
#ifdef CONFIG_LPS_1T1R
} else if (_rtw_memcmp(extra, "lps_1t1r=", 9)) {
if (sscanf(extra + 9, "%u", &mode) > 0)
ret = rtw_pm_set_lps_1t1r(padapter, mode);
#endif
}
#ifdef CONFIG_WOWLAN
else if (_rtw_memcmp(extra, "wow_lps=", 8)) {
sscanf(extra + 8, "%u", &mode);
ret = rtw_pm_set_wow_lps(padapter, mode);
} else if (_rtw_memcmp(extra, "wow_lps_level=", 14)) {
if (sscanf(extra + 14, "%u", &mode) > 0)
ret = rtw_pm_set_wow_lps_level(padapter, mode);
#ifdef CONFIG_LPS_1T1R
} else if (_rtw_memcmp(extra, "wow_lps_1t1r=", 13)) {
if (sscanf(extra + 13, "%u", &mode) > 0)
ret = rtw_pm_set_wow_lps_1t1r(padapter, mode);
#endif
}
#endif /* CONFIG_WOWLAN */
else
ret = -EINVAL;
return ret;
}
#ifdef CONFIG_APPEND_VENDOR_IE_ENABLE
int rtw_vendor_ie_get_raw_data(struct net_device *dev, u32 vendor_ie_num,
char *extra, u32 length)
{
int j;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
u32 vendor_ie_mask = 0;
char *pstring;
if (vendor_ie_num >= WLAN_MAX_VENDOR_IE_NUM) {
RTW_INFO("[%s] only support %d vendor ie\n", __func__ ,
WLAN_MAX_VENDOR_IE_NUM);
return -EFAULT;
}
if (pmlmepriv->vendor_ielen[vendor_ie_num] == 0) {
RTW_INFO("[%s] Fail, vendor_ie_num: %d is not set\n", __func__,
vendor_ie_num);
return -EFAULT;
}
if (length < 2 * pmlmepriv->vendor_ielen[vendor_ie_num] + 5) {
RTW_INFO("[%s] Fail, buffer size is too small\n", __func__);
return -EFAULT;
}
vendor_ie_mask = pmlmepriv->vendor_ie_mask[vendor_ie_num];
_rtw_memset(extra, 0, length);
pstring = extra;
pstring += sprintf(pstring, "%d,%x,", vendor_ie_num, vendor_ie_mask);
for (j = 0; j < pmlmepriv->vendor_ielen[vendor_ie_num]; j++)
pstring += sprintf(pstring, "%02x", pmlmepriv->vendor_ie[vendor_ie_num][j]);
length = pstring - extra;
return length;
}
int rtw_vendor_ie_get_data(struct net_device *dev, int vendor_ie_num, char *extra)
{
int j;
char *pstring;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
u32 vendor_ie_mask = 0;
__u16 length = 0;
vendor_ie_mask = pmlmepriv->vendor_ie_mask[vendor_ie_num];
pstring = extra;
pstring += sprintf(pstring , "\nVendor IE num %d , Mask:%x " , vendor_ie_num , vendor_ie_mask);
if (vendor_ie_mask & WIFI_BEACON_VENDOR_IE_BIT)
pstring += sprintf(pstring , "[Beacon]");
if (vendor_ie_mask & WIFI_PROBEREQ_VENDOR_IE_BIT)
pstring += sprintf(pstring , "[Probe Req]");
if (vendor_ie_mask & WIFI_PROBERESP_VENDOR_IE_BIT)
pstring += sprintf(pstring , "[Probe Resp]");
if (vendor_ie_mask & WIFI_ASSOCREQ_VENDOR_IE_BIT)
pstring += sprintf(pstring , "[Assoc Req]");
if (vendor_ie_mask & WIFI_ASSOCRESP_VENDOR_IE_BIT)
pstring += sprintf(pstring , "[Assoc Resp]");
#ifdef CONFIG_P2P
if (vendor_ie_mask & WIFI_P2P_PROBEREQ_VENDOR_IE_BIT)
pstring += sprintf(pstring , "[P2P_Probe Req]");
if (vendor_ie_mask & WIFI_P2P_PROBERESP_VENDOR_IE_BIT)
pstring += sprintf(pstring , "[P2P_Probe Resp]");
#endif
pstring += sprintf(pstring , "\nVendor IE:\n");
for (j = 0 ; j < pmlmepriv->vendor_ielen[vendor_ie_num] ; j++)
pstring += sprintf(pstring , "%02x" , pmlmepriv->vendor_ie[vendor_ie_num][j]);
length = pstring - extra;
return length;
}
int rtw_vendor_ie_get(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra)
{
int ret = 0, vendor_ie_num = 0, cmdlen;
struct iw_point *p;
u8 *ptmp;
p = &wrqu->data;
cmdlen = p->length;
if (0 == cmdlen)
return -EINVAL;
ptmp = (u8 *)rtw_malloc(cmdlen);
if (NULL == ptmp)
return -ENOMEM;
if (copy_from_user(ptmp, p->pointer, cmdlen)) {
ret = -EFAULT;
goto exit;
}
ret = sscanf(ptmp , "%d", &vendor_ie_num);
if (vendor_ie_num > WLAN_MAX_VENDOR_IE_NUM - 1) {
ret = -EFAULT;
goto exit;
}
wrqu->data.length = rtw_vendor_ie_get_data(dev, vendor_ie_num, extra);
exit:
rtw_mfree(ptmp, cmdlen);
return 0;
}
int rtw_vendor_ie_set(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra)
{
int ret = 0, i , len = 0 , totoal_ie_len = 0 , total_ie_len_byte = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
u32 vendor_ie_mask = 0;
u32 vendor_ie_num = 0;
u32 vendor_ie_mask_max = BIT(WLAN_MAX_VENDOR_IE_MASK_MAX) - 1;
u32 id, elen;
ret = sscanf(extra, "%d,%x,%*s", &vendor_ie_num , &vendor_ie_mask);
if (strrchr(extra , ','))
extra = strrchr(extra , ',') + 1;
else
return -EINVAL;
totoal_ie_len = strlen(extra);
RTW_INFO("[%s] vendor_ie_num = %d , vendor_ie_mask = 0x%x , vendor_ie = %s , len = %d\n", __func__ , vendor_ie_num , vendor_ie_mask , extra , totoal_ie_len);
if (vendor_ie_num > WLAN_MAX_VENDOR_IE_NUM - 1) {
RTW_INFO("[%s] Fail, only support %d vendor ie\n", __func__ , WLAN_MAX_VENDOR_IE_NUM);
return -EFAULT;
}
if (totoal_ie_len > WLAN_MAX_VENDOR_IE_LEN) {
RTW_INFO("[%s] Fail , not support ie length extend %d\n", __func__ , WLAN_MAX_VENDOR_IE_LEN);
return -EFAULT;
}
if (vendor_ie_mask > vendor_ie_mask_max) {
RTW_INFO("[%s] Fail, not support vendor_ie_mask more than 0x%x\n", __func__ , vendor_ie_mask_max);
return -EFAULT;
}
if (vendor_ie_mask == 0) {
RTW_INFO("[%s] Clear vendor_ie_num %d group\n", __func__ , vendor_ie_num);
goto _clear_path;
}
if (totoal_ie_len % 2 != 0) {
RTW_INFO("[%s] Fail , IE length = %zu is odd\n" , __func__ , strlen(extra));
return -EFAULT;
}
if (totoal_ie_len > 0) {
for (i = 0 ; i < strlen(extra) ; i += 2) {
pmlmepriv->vendor_ie[vendor_ie_num][len] = key_2char2num(extra[i] , extra[i + 1]);
if (len == 0) {
id = pmlmepriv->vendor_ie[vendor_ie_num][len];
if (id != WLAN_EID_VENDOR_SPECIFIC) {
RTW_INFO("[%s] Fail , VENDOR SPECIFIC IE ID \"%x\" was not correct\n", __func__ , id);
goto _clear_path;
}
} else if (len == 1) {
total_ie_len_byte = (totoal_ie_len / 2) - 2;
elen = pmlmepriv->vendor_ie[vendor_ie_num][len];
if (elen != total_ie_len_byte) {
RTW_INFO("[%s] Fail , Input IE length = \"%d\"(hex:%x) bytes , not match input total IE context length \"%d\" bytes\n", __func__ , elen , elen ,
total_ie_len_byte);
goto _clear_path;
}
}
len++;
}
pmlmepriv->vendor_ielen[vendor_ie_num] = len;
} else
pmlmepriv->vendor_ielen[vendor_ie_num] = 0;
if (vendor_ie_mask & WIFI_BEACON_VENDOR_IE_BIT)
RTW_INFO("[%s] Beacon append vendor ie\n", __func__);
if (vendor_ie_mask & WIFI_PROBEREQ_VENDOR_IE_BIT)
RTW_INFO("[%s] Probe Req append vendor ie\n", __func__);
if (vendor_ie_mask & WIFI_PROBERESP_VENDOR_IE_BIT)
RTW_INFO("[%s] Probe Resp append vendor ie\n", __func__);
if (vendor_ie_mask & WIFI_ASSOCREQ_VENDOR_IE_BIT)
RTW_INFO("[%s] Assoc Req append vendor ie\n", __func__);
if (vendor_ie_mask & WIFI_ASSOCRESP_VENDOR_IE_BIT)
RTW_INFO("[%s] Assoc Resp append vendor ie\n", __func__);
#ifdef CONFIG_P2P
if (vendor_ie_mask & WIFI_P2P_PROBEREQ_VENDOR_IE_BIT)
RTW_INFO("[%s] P2P Probe Req append vendor ie\n", __func__);
if (vendor_ie_mask & WIFI_P2P_PROBERESP_VENDOR_IE_BIT)
RTW_INFO("[%s] P2P Probe Resp append vendor ie\n", __func__);
#endif
pmlmepriv->vendor_ie_mask[vendor_ie_num] = vendor_ie_mask;
return ret;
_clear_path:
_rtw_memset(pmlmepriv->vendor_ie[vendor_ie_num] , 0 , sizeof(u32) * WLAN_MAX_VENDOR_IE_LEN);
pmlmepriv->vendor_ielen[vendor_ie_num] = 0;
pmlmepriv->vendor_ie_mask[vendor_ie_num] = 0;
return -EFAULT;
}
#endif
#if defined(RTW_PHL_TX) || defined(RTW_PHL_RX) || defined(CONFIG_PHL_TEST_SUITE)
int rtw_phl_test_set(struct net_device *dev,
struct iw_request_info *info, union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
u32 mode = 0;
u32 bytes = 0;
int ret = 0;
#if defined(RTW_PHL_DBG_CMD)
core_cmd_phl_handler(padapter, extra);
#endif
exit:
return 0;
}
#endif
#ifdef CONFIG_RTW_CUSTOMER_STR
static int rtw_mp_customer_str(
struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *adapter = rtw_netdev_priv(dev);
u32 len;
u8 *pbuf = NULL, *pch;
char *ptmp;
u8 param[RTW_CUSTOMER_STR_LEN];
u8 count = 0;
u8 tmp;
u8 i;
u32 pos;
u8 ret;
u8 read = 0;
if (adapter->registrypriv.mp_mode != 1
|| !adapter->registrypriv.mp_customer_str)
return -EFAULT;
len = wrqu->data.length + 1;
pbuf = (u8 *)rtw_zmalloc(len);
if (pbuf == NULL) {
RTW_WARN("%s: no memory!\n", __func__);
return -ENOMEM;
}
if (copy_from_user(pbuf, wrqu->data.pointer, wrqu->data.length)) {
rtw_mfree(pbuf, len);
RTW_WARN("%s: copy from user fail!\n", __func__);
return -EFAULT;
}
RTW_INFO("%s: string=\"%s\"\n", __func__, pbuf);
ptmp = (char *)pbuf;
pch = strsep(&ptmp, ",");
if ((pch == NULL) || (strlen(pch) == 0)) {
rtw_mfree(pbuf, len);
RTW_INFO("%s: parameter error(no cmd)!\n", __func__);
return -EFAULT;
}
_rtw_memset(param, 0xFF, RTW_CUSTOMER_STR_LEN);
if (strcmp(pch, "read") == 0) {
read = 1;
ret = rtw_hal_customer_str_read(adapter, param);
} else if (strcmp(pch, "write") == 0) {
do {
pch = strsep(&ptmp, ":");
if ((pch == NULL) || (strlen(pch) == 0))
break;
if (strlen(pch) != 2
|| IsHexDigit(*pch) == _FALSE
|| IsHexDigit(*(pch + 1)) == _FALSE
|| sscanf(pch, "%hhx", &tmp) != 1
) {
RTW_WARN("%s: invalid 8-bit hex!\n", __func__);
rtw_mfree(pbuf, len);
return -EFAULT;
}
param[count++] = tmp;
} while (count < RTW_CUSTOMER_STR_LEN);
if (count == 0) {
rtw_mfree(pbuf, len);
RTW_WARN("%s: no input!\n", __func__);
return -EFAULT;
}
ret = rtw_hal_customer_str_write(adapter, param);
} else {
rtw_mfree(pbuf, len);
RTW_INFO("%s: parameter error(unknown cmd)!\n", __func__);
return -EFAULT;
}
pos = sprintf(extra, "%s: ", read ? "read" : "write");
if (read == 0 || ret == _SUCCESS) {
for (i = 0; i < RTW_CUSTOMER_STR_LEN; i++)
pos += sprintf(extra + pos, "%02x:", param[i]);
extra[pos] = 0;
pos--;
}
pos += sprintf(extra + pos, " %s", ret == _SUCCESS ? "OK" : "FAIL");
wrqu->data.length = strlen(extra) + 1;
rtw_mfree(pbuf, len);
return 0;
}
#endif /* CONFIG_RTW_CUSTOMER_STR */
#if 0 /*defined(CONFIG_MP_INCLUDED)*/
static int rtw_cta_test_start(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct rtw_phl_com_t *phl_com = GET_PHL_COM(adapter_to_dvobj(padapter));
RTW_INFO("%s %s\n", __func__, extra);
#if 0
if (!strcmp(extra, "1"))
hal_data->in_cta_test = 1;
else
hal_data->in_cta_test = 0;
#endif
rtw_hal_rcr_set_chk_bssid(padapter, MLME_ACTION_NONE);
return ret;
}
#endif /*#if defined(CONFIG_MP_INCLUDED)*/
#ifdef CONFIG_SDIO_INDIRECT_ACCESS
#define DBG_MP_SDIO_INDIRECT_ACCESS 1
static int rtw_mp_sd_iread(struct net_device *dev
, struct iw_request_info *info
, struct iw_point *wrqu
, char *extra)
{
char input[16];
u8 width;
unsigned long addr;
u32 ret = 0;
_adapter *padapter = rtw_netdev_priv(dev);
if (wrqu->length > 16) {
RTW_INFO(FUNC_ADPT_FMT" wrqu->length:%d\n", FUNC_ADPT_ARG(padapter), wrqu->length);
ret = -EINVAL;
goto exit;
}
if (copy_from_user(input, wrqu->pointer, wrqu->length)) {
RTW_INFO(FUNC_ADPT_FMT" copy_from_user fail\n", FUNC_ADPT_ARG(padapter));
ret = -EFAULT;
goto exit;
}
_rtw_memset(extra, 0, wrqu->length);
if (sscanf(input, "%hhu,%lx", &width, &addr) != 2) {
RTW_INFO(FUNC_ADPT_FMT" sscanf fail\n", FUNC_ADPT_ARG(padapter));
ret = -EINVAL;
goto exit;
}
if (addr > 0x3FFF) {
RTW_INFO(FUNC_ADPT_FMT" addr:0x%lx\n", FUNC_ADPT_ARG(padapter), addr);
ret = -EINVAL;
goto exit;
}
if (DBG_MP_SDIO_INDIRECT_ACCESS)
RTW_INFO(FUNC_ADPT_FMT" width:%u, addr:0x%lx\n", FUNC_ADPT_ARG(padapter), width, addr);
switch (width) {
case 1:
sprintf(extra, "0x%02x", rtw_sd_iread8(padapter, addr));
wrqu->length = strlen(extra);
break;
case 2:
sprintf(extra, "0x%04x", rtw_sd_iread16(padapter, addr));
wrqu->length = strlen(extra);
break;
case 4:
sprintf(extra, "0x%08x", rtw_sd_iread32(padapter, addr));
wrqu->length = strlen(extra);
break;
default:
wrqu->length = 0;
ret = -EINVAL;
break;
}
exit:
return ret;
}
static int rtw_mp_sd_iwrite(struct net_device *dev
, struct iw_request_info *info
, struct iw_point *wrqu
, char *extra)
{
char width;
unsigned long addr, data;
int ret = 0;
_adapter *padapter = rtw_netdev_priv(dev);
char input[32];
if (wrqu->length > 32) {
RTW_INFO(FUNC_ADPT_FMT" wrqu->length:%d\n", FUNC_ADPT_ARG(padapter), wrqu->length);
ret = -EINVAL;
goto exit;
}
if (copy_from_user(input, wrqu->pointer, wrqu->length)) {
RTW_INFO(FUNC_ADPT_FMT" copy_from_user fail\n", FUNC_ADPT_ARG(padapter));
ret = -EFAULT;
goto exit;
}
_rtw_memset(extra, 0, wrqu->length);
if (sscanf(input, "%hhu,%lx,%lx", &width, &addr, &data) != 3) {
RTW_INFO(FUNC_ADPT_FMT" sscanf fail\n", FUNC_ADPT_ARG(padapter));
ret = -EINVAL;
goto exit;
}
if (addr > 0x3FFF) {
RTW_INFO(FUNC_ADPT_FMT" addr:0x%lx\n", FUNC_ADPT_ARG(padapter), addr);
ret = -EINVAL;
goto exit;
}
if (DBG_MP_SDIO_INDIRECT_ACCESS)
RTW_INFO(FUNC_ADPT_FMT" width:%u, addr:0x%lx, data:0x%lx\n", FUNC_ADPT_ARG(padapter), width, addr, data);
switch (width) {
case 1:
if (data > 0xFF) {
ret = -EINVAL;
break;
}
rtw_sd_iwrite8(padapter, addr, data);
break;
case 2:
if (data > 0xFFFF) {
ret = -EINVAL;
break;
}
rtw_sd_iwrite16(padapter, addr, data);
break;
case 4:
rtw_sd_iwrite32(padapter, addr, data);
break;
default:
wrqu->length = 0;
ret = -EINVAL;
break;
}
exit:
return ret;
}
#endif /* CONFIG_SDIO_INDIRECT_ACCESS */
static int rtw_priv_set(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wdata, char *extra)
{
struct iw_point *wrqu = (struct iw_point *)wdata;
u32 subcmd = wrqu->flags;
_adapter *padapter = rtw_netdev_priv(dev);
if (padapter == NULL)
return -ENETDOWN;
if (padapter->netif_up == _FALSE) {
RTW_INFO(" %s fail =>(padapter->netif_up == _FALSE )\n", __FUNCTION__);
return -ENETDOWN;
}
if (RTW_CANNOT_RUN(adapter_to_dvobj(padapter))) {
RTW_INFO("%s fail =>(bSurpriseRemoved == _TRUE) || ( bDriverStopped == _TRUE)\n", __func__);
return -ENETDOWN;
}
if (extra == NULL) {
wrqu->length = 0;
return -EIO;
}
if (subcmd < MP_NULL) {
#ifdef CONFIG_MP_INCLUDED
rtw_priv_mp_set(dev, info, wdata, extra);
#endif
return 0;
}
switch (subcmd) {
#ifdef CONFIG_WOWLAN
case MP_WOW_ENABLE:
RTW_INFO("set case MP_WOW_ENABLE: %s\n", extra);
rtw_wowlan_ctrl(dev, info, wdata, extra);
break;
case MP_WOW_SET_PATTERN:
RTW_INFO("set case MP_WOW_SET_PATTERN: %s\n", extra);
rtw_wowlan_set_pattern(dev, info, wdata, extra);
break;
#endif
#ifdef CONFIG_AP_WOWLAN
case MP_AP_WOW_ENABLE:
RTW_INFO("set case MP_AP_WOW_ENABLE: %s\n", extra);
rtw_ap_wowlan_ctrl(dev, info, wdata, extra);
break;
#endif
#ifdef CONFIG_APPEND_VENDOR_IE_ENABLE
case VENDOR_IE_SET:
RTW_INFO("set case VENDOR_IE_SET\n");
rtw_vendor_ie_set(dev , info , wdata , extra);
break;
#endif
#if defined(RTW_PHL_TX) || defined(RTW_PHL_RX) || defined(CONFIG_PHL_TEST_SUITE)
case PHL_TEST_SET:
RTW_INFO("set case PHL_TEST_SET\n");
rtw_phl_test_set(dev , info , wdata , extra);
break;
#endif
default:
return -EIO;
}
return 0;
}
static int rtw_priv_get(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wdata, char *extra)
{
struct iw_point *wrqu = (struct iw_point *)wdata;
u32 subcmd = wrqu->flags;
_adapter *padapter = rtw_netdev_priv(dev);
int status = 0 ;
#ifndef CONFIG_MP_INCLUDED
if (padapter == NULL)
return -ENETDOWN;
if (padapter->netif_up == _FALSE) {
RTW_INFO(" %s fail =>(padapter->netif_up == _FALSE )\n", __FUNCTION__);
return -ENETDOWN;
}
if (RTW_CANNOT_RUN(adapter_to_dvobj(padapter))) {
RTW_INFO("%s fail =>(padapter->bSurpriseRemoved == _TRUE) || ( padapter->bDriverStopped == _TRUE)\n", __func__);
return -ENETDOWN;
}
if (extra == NULL) {
wrqu->length = 0;
return -EIO;
}
#endif
if (subcmd < MP_NULL) {
#ifdef CONFIG_MP_INCLUDED
status = rtw_priv_mp_get(dev, info, wdata, extra);
rtw_msleep_os(10); /* delay 5ms for sending pkt before exit adb shell operation */
#endif
} else {
switch (subcmd) {
#ifdef CONFIG_SDIO_INDIRECT_ACCESS
case MP_SD_IREAD:
status = rtw_mp_sd_iread(dev, info, wrqu, extra);
break;
case MP_SD_IWRITE:
status = rtw_mp_sd_iwrite(dev, info, wrqu, extra);
break;
#endif
#ifdef CONFIG_APPEND_VENDOR_IE_ENABLE
case VENDOR_IE_GET:
RTW_INFO("get case VENDOR_IE_GET\n");
status = rtw_vendor_ie_get(dev , info , wdata , extra);
break;
#endif
default:
return -EIO;
}
}
return status;
}
#ifdef CONFIG_TDLS
static int rtw_wx_tdls_wfd_enable(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_WFD
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
RTW_INFO("[%s] %s %d\n", __FUNCTION__, extra, wrqu->data.length - 1);
if (extra[0] == '0')
rtw_tdls_wfd_enable(padapter, 0);
else
rtw_tdls_wfd_enable(padapter, 1);
#endif /* CONFIG_WFD */
return ret;
}
static int rtw_tdls_weaksec(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
u8 i, j;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
RTW_INFO("[%s] %s %d\n", __FUNCTION__, extra, wrqu->data.length - 1);
if (extra[0] == '0')
padapter->wdinfo.wfd_tdls_weaksec = 0;
else
padapter->wdinfo.wfd_tdls_weaksec = 1;
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_enable(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
RTW_INFO("[%s] %s %d\n", __FUNCTION__, extra, wrqu->data.length - 1);
if (extra[0] == '0')
rtw_disable_tdls_func(padapter, _TRUE);
else if (extra[0] == '1')
rtw_enable_tdls_func(padapter);
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_setup(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
u8 i, j;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct tdls_txmgmt txmgmt;
#ifdef CONFIG_WFD
struct wifidirect_info *pwdinfo = &(padapter->wdinfo);
#endif /* CONFIG_WFD */
RTW_INFO("[%s] %s %d\n", __FUNCTION__, extra, wrqu->data.length - 1);
if (wrqu->data.length - 1 != 17) {
RTW_INFO("[%s] length:%d != 17\n", __FUNCTION__, (wrqu->data.length - 1));
return ret;
}
_rtw_memset(&txmgmt, 0x00, sizeof(struct tdls_txmgmt));
for (i = 0, j = 0 ; i < ETH_ALEN; i++, j += 3)
txmgmt.peer[i] = key_2char2num(*(extra + j), *(extra + j + 1));
#ifdef CONFIG_WFD
if (_AES_ != padapter->securitypriv.dot11PrivacyAlgrthm) {
/* Weak Security situation with AP. */
if (0 == pwdinfo->wfd_tdls_weaksec) {
/* Can't send the tdls setup request out!! */
RTW_INFO("[%s] Current link is not AES, "
"SKIP sending the tdls setup request!!\n", __FUNCTION__);
} else
issue_tdls_setup_req(padapter, &txmgmt, _TRUE);
} else
#endif /* CONFIG_WFD */
{
issue_tdls_setup_req(padapter, &txmgmt, _TRUE);
}
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_teardown(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
u8 i, j;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct sta_info *ptdls_sta = NULL;
struct tdls_txmgmt txmgmt;
RTW_INFO("[%s] %s %d\n", __FUNCTION__, extra, wrqu->data.length - 1);
if (wrqu->data.length - 1 != 17 && wrqu->data.length - 1 != 19) {
RTW_INFO("[%s] length:%d != 17 or 19\n",
__FUNCTION__, (wrqu->data.length - 1));
return ret;
}
_rtw_memset(&txmgmt, 0x00, sizeof(struct tdls_txmgmt));
for (i = 0, j = 0; i < ETH_ALEN; i++, j += 3)
txmgmt.peer[i] = key_2char2num(*(extra + j), *(extra + j + 1));
ptdls_sta = rtw_get_stainfo(&(padapter->stapriv), txmgmt.peer);
if (ptdls_sta != NULL) {
txmgmt.status_code = _RSON_TDLS_TEAR_UN_RSN_;
if (wrqu->data.length - 1 == 19)
issue_tdls_teardown(padapter, &txmgmt, _FALSE);
else
issue_tdls_teardown(padapter, &txmgmt, _TRUE);
} else
RTW_INFO("TDLS peer not found\n");
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_discovery(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct tdls_txmgmt txmgmt;
int i = 0, j = 0;
RTW_INFO("[%s] %s %d\n", __FUNCTION__, extra, wrqu->data.length - 1);
_rtw_memset(&txmgmt, 0x00, sizeof(struct tdls_txmgmt));
for (i = 0, j = 0 ; i < ETH_ALEN; i++, j += 3)
txmgmt.peer[i] = key_2char2num(*(extra + j), *(extra + j + 1));
issue_tdls_dis_req(padapter, &txmgmt);
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_ch_switch(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
#ifdef CONFIG_TDLS_CH_SW
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct tdls_ch_switch *pchsw_info = &padapter->tdlsinfo.chsw_info;
u8 i, j;
struct sta_info *ptdls_sta = NULL;
u8 take_care_iqk;
RTW_INFO("[%s] %s %d\n", __FUNCTION__, extra, wrqu->data.length - 1);
if (rtw_tdls_is_chsw_allowed(padapter) == _FALSE) {
RTW_INFO("TDLS channel switch is not allowed\n");
return ret;
}
for (i = 0, j = 0 ; i < ETH_ALEN; i++, j += 3)
pchsw_info->addr[i] = key_2char2num(*(extra + j), *(extra + j + 1));
ptdls_sta = rtw_get_stainfo(&padapter->stapriv, pchsw_info->addr);
if (ptdls_sta == NULL)
return ret;
pchsw_info->ch_sw_state |= TDLS_CH_SW_INITIATOR_STATE;
if (ptdls_sta != NULL) {
if (pchsw_info->off_ch_num == 0)
pchsw_info->off_ch_num = 11;
} else
RTW_INFO("TDLS peer not found\n");
rtw_pm_set_lps(padapter, PM_PS_MODE_ACTIVE);
rtw_hal_get_hwreg(padapter, HW_VAR_CH_SW_NEED_TO_TAKE_CARE_IQK_INFO, &take_care_iqk);
if (take_care_iqk == _TRUE) {
u8 central_chnl;
u8 bw_mode;
bw_mode = (pchsw_info->ch_offset) ? CHANNEL_WIDTH_40 : CHANNEL_WIDTH_20;
central_chnl = rtw_phl_get_center_ch(pchsw_info->off_ch_num, bw_mode, pchsw_info->ch_offset);
if (rtw_hal_ch_sw_iqk_info_search(padapter, central_chnl, bw_mode) >= 0)
rtw_tdls_cmd(padapter, ptdls_sta->phl_sta->mac_addr, TDLS_CH_SW_START);
else
rtw_tdls_cmd(padapter, ptdls_sta->phl_sta->mac_addr, TDLS_CH_SW_PREPARE);
} else
rtw_tdls_cmd(padapter, ptdls_sta->phl_sta->mac_addr, TDLS_CH_SW_START);
/* issue_tdls_ch_switch_req(padapter, ptdls_sta); */
/* RTW_INFO("issue tdls ch switch req\n"); */
#endif /* CONFIG_TDLS_CH_SW */
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_ch_switch_off(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
#ifdef CONFIG_TDLS_CH_SW
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct tdls_ch_switch *pchsw_info = &padapter->tdlsinfo.chsw_info;
u8 i, j, mac_addr[ETH_ALEN];
struct sta_info *ptdls_sta = NULL;
struct tdls_txmgmt txmgmt;
_rtw_memset(&txmgmt, 0x00, sizeof(struct tdls_txmgmt));
RTW_INFO("[%s] %s %d\n", __FUNCTION__, extra, wrqu->data.length - 1);
if (rtw_tdls_is_chsw_allowed(padapter) == _FALSE) {
RTW_INFO("TDLS channel switch is not allowed\n");
return ret;
}
if (wrqu->data.length >= 17) {
for (i = 0, j = 0 ; i < ETH_ALEN; i++, j += 3)
mac_addr[i] = key_2char2num(*(extra + j), *(extra + j + 1));
ptdls_sta = rtw_get_stainfo(&padapter->stapriv, mac_addr);
}
if (ptdls_sta == NULL)
return ret;
rtw_tdls_cmd(padapter, ptdls_sta->phl_sta->mac_addr, TDLS_CH_SW_END_TO_BASE_CHNL);
pchsw_info->ch_sw_state &= ~(TDLS_CH_SW_INITIATOR_STATE |
TDLS_CH_SWITCH_ON_STATE |
TDLS_PEER_AT_OFF_STATE);
_rtw_memset(pchsw_info->addr, 0x00, ETH_ALEN);
ptdls_sta->ch_switch_time = 0;
ptdls_sta->ch_switch_timeout = 0;
_cancel_timer_ex(&ptdls_sta->ch_sw_timer);
_cancel_timer_ex(&ptdls_sta->delay_timer);
_cancel_timer_ex(&ptdls_sta->stay_on_base_chnl_timer);
_cancel_timer_ex(&ptdls_sta->ch_sw_monitor_timer);
rtw_pm_set_lps(padapter, PM_PS_MODE_MAX);
#endif /* CONFIG_TDLS_CH_SW */
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_dump_ch(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
#ifdef CONFIG_TDLS_CH_SW
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct tdls_info *ptdlsinfo = &padapter->tdlsinfo;
RTW_INFO("[%s] dump_stack:%s\n", __FUNCTION__, extra);
extra[wrqu->data.length] = 0x00;
ptdlsinfo->chsw_info.dump_stack = rtw_atoi(extra);
return ret;
#endif
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_off_ch_num(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
#ifdef CONFIG_TDLS_CH_SW
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct tdls_info *ptdlsinfo = &padapter->tdlsinfo;
RTW_INFO("[%s] off_ch_num:%s\n", __FUNCTION__, extra);
extra[wrqu->data.length] = 0x00;
ptdlsinfo->chsw_info.off_ch_num = rtw_atoi(extra);
return ret;
#endif
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_ch_offset(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
#ifdef CONFIG_TDLS_CH_SW
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct tdls_info *ptdlsinfo = &padapter->tdlsinfo;
RTW_INFO("[%s] ch_offset:%s\n", __FUNCTION__, extra);
extra[wrqu->data.length] = 0x00;
switch (rtw_atoi(extra)) {
case IEEE80211_SCA:
ptdlsinfo->chsw_info.ch_offset = CHAN_OFFSET_UPPER;
break;
case IEEE80211_SCB:
ptdlsinfo->chsw_info.ch_offset = CHAN_OFFSET_LOWER;
break;
default:
ptdlsinfo->chsw_info.ch_offset = CHAN_OFFSET_NO_EXT;
break;
}
return ret;
#endif
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_pson(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
u8 i, j, mac_addr[ETH_ALEN];
struct sta_info *ptdls_sta = NULL;
RTW_INFO("[%s] %s %d\n", __FUNCTION__, extra, wrqu->data.length - 1);
for (i = 0, j = 0; i < ETH_ALEN; i++, j += 3)
mac_addr[i] = key_2char2num(*(extra + j), *(extra + j + 1));
ptdls_sta = rtw_get_stainfo(&padapter->stapriv, mac_addr);
issue_nulldata_to_TDLS_peer_STA(padapter, ptdls_sta->phl_sta->mac_addr, 1, 3, 500);
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_psoff(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
u8 i, j, mac_addr[ETH_ALEN];
struct sta_info *ptdls_sta = NULL;
RTW_INFO("[%s] %s %d\n", __FUNCTION__, extra, wrqu->data.length - 1);
for (i = 0, j = 0; i < ETH_ALEN; i++, j += 3)
mac_addr[i] = key_2char2num(*(extra + j), *(extra + j + 1));
ptdls_sta = rtw_get_stainfo(&padapter->stapriv, mac_addr);
if (ptdls_sta)
issue_nulldata_to_TDLS_peer_STA(padapter, ptdls_sta->phl_sta->mac_addr, 0, 3, 500);
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_setip(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
#ifdef CONFIG_WFD
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct tdls_info *ptdlsinfo = &padapter->tdlsinfo;
struct wifi_display_info *pwfd_info = ptdlsinfo->wfd_info;
u8 i = 0, j = 0, k = 0, tag = 0;
RTW_INFO("[%s] %s %d\n", __FUNCTION__, extra, wrqu->data.length - 1);
while (i < 4) {
for (j = 0; j < 4; j++) {
if (*(extra + j + tag) == '.' || *(extra + j + tag) == '\0') {
if (j == 1)
pwfd_info->ip_address[i] = convert_ip_addr('0', '0', *(extra + (j - 1) + tag));
if (j == 2)
pwfd_info->ip_address[i] = convert_ip_addr('0', *(extra + (j - 2) + tag), *(extra + (j - 1) + tag));
if (j == 3)
pwfd_info->ip_address[i] = convert_ip_addr(*(extra + (j - 3) + tag), *(extra + (j - 2) + tag), *(extra + (j - 1) + tag));
tag += j + 1;
break;
}
}
i++;
}
RTW_INFO("[%s] Set IP = %u.%u.%u.%u\n", __FUNCTION__,
ptdlsinfo->wfd_info->ip_address[0],
ptdlsinfo->wfd_info->ip_address[1],
ptdlsinfo->wfd_info->ip_address[2],
ptdlsinfo->wfd_info->ip_address[3]);
#endif /* CONFIG_WFD */
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_getip(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
#ifdef CONFIG_WFD
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct tdls_info *ptdlsinfo = &padapter->tdlsinfo;
struct wifi_display_info *pwfd_info = ptdlsinfo->wfd_info;
RTW_INFO("[%s]\n", __FUNCTION__);
sprintf(extra, "\n\n%u.%u.%u.%u\n",
pwfd_info->peer_ip_address[0], pwfd_info->peer_ip_address[1],
pwfd_info->peer_ip_address[2], pwfd_info->peer_ip_address[3]);
RTW_INFO("[%s] IP=%u.%u.%u.%u\n", __FUNCTION__,
pwfd_info->peer_ip_address[0], pwfd_info->peer_ip_address[1],
pwfd_info->peer_ip_address[2], pwfd_info->peer_ip_address[3]);
wrqu->data.length = strlen(extra);
#endif /* CONFIG_WFD */
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_getport(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
#ifdef CONFIG_WFD
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct tdls_info *ptdlsinfo = &padapter->tdlsinfo;
struct wifi_display_info *pwfd_info = ptdlsinfo->wfd_info;
RTW_INFO("[%s]\n", __FUNCTION__);
sprintf(extra, "\n\n%d\n", pwfd_info->peer_rtsp_ctrlport);
RTW_INFO("[%s] remote port = %d\n",
__FUNCTION__, pwfd_info->peer_rtsp_ctrlport);
wrqu->data.length = strlen(extra);
#endif /* CONFIG_WFD */
#endif /* CONFIG_TDLS */
return ret;
}
/* WFDTDLS, for sigma test */
static int rtw_tdls_dis_result(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
#ifdef CONFIG_WFD
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct tdls_info *ptdlsinfo = &padapter->tdlsinfo;
RTW_INFO("[%s]\n", __FUNCTION__);
if (ptdlsinfo->dev_discovered == _TRUE) {
sprintf(extra, "\n\nDis=1\n");
ptdlsinfo->dev_discovered = _FALSE;
}
wrqu->data.length = strlen(extra);
#endif /* CONFIG_WFD */
#endif /* CONFIG_TDLS */
return ret;
}
/* WFDTDLS, for sigma test */
static int rtw_wfd_tdls_status(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct tdls_info *ptdlsinfo = &padapter->tdlsinfo;
RTW_INFO("[%s]\n", __FUNCTION__);
sprintf(extra, "\nlink_established:%d\n"
"sta_cnt:%d\n"
"sta_maximum:%d\n"
"cur_channel:%d\n"
"tdls_enable:%d"
#ifdef CONFIG_TDLS_CH_SW
"ch_sw_state:%08x\n"
"chsw_on:%d\n"
"off_ch_num:%d\n"
"cur_time:%d\n"
"ch_offset:%d\n"
"delay_swtich_back:%d"
#endif
,
ptdlsinfo->link_established, ptdlsinfo->sta_cnt,
ptdlsinfo->sta_maximum, ptdlsinfo->cur_channel,
rtw_is_tdls_enabled(padapter)
#ifdef CONFIG_TDLS_CH_SW
,
ptdlsinfo->chsw_info.ch_sw_state,
ATOMIC_READ(&padapter->tdlsinfo.chsw_info.chsw_on),
ptdlsinfo->chsw_info.off_ch_num,
ptdlsinfo->chsw_info.cur_time,
ptdlsinfo->chsw_info.ch_offset,
ptdlsinfo->chsw_info.delay_switch_back
#endif
);
wrqu->data.length = strlen(extra);
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_getsta(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
u8 i, j;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
u8 addr[ETH_ALEN] = {0};
char charmac[17];
struct sta_info *ptdls_sta = NULL;
RTW_INFO("[%s] %s %d\n", __FUNCTION__,
(char *)wrqu->data.pointer, wrqu->data.length - 1);
if (copy_from_user(charmac, wrqu->data.pointer + 9, 17)) {
ret = -EFAULT;
goto exit;
}
RTW_INFO("[%s] %d, charmac:%s\n", __FUNCTION__, __LINE__, charmac);
for (i = 0, j = 0 ; i < ETH_ALEN; i++, j += 3)
addr[i] = key_2char2num(*(charmac + j), *(charmac + j + 1));
RTW_INFO("[%s] %d, charmac:%s, addr:"MAC_FMT"\n",
__FUNCTION__, __LINE__, charmac, MAC_ARG(addr));
ptdls_sta = rtw_get_stainfo(&padapter->stapriv, addr);
if (ptdls_sta) {
sprintf(extra, "\n\ntdls_sta_state=0x%08x\n", ptdls_sta->tdls_sta_state);
RTW_INFO("\n\ntdls_sta_state=%d\n", ptdls_sta->tdls_sta_state);
} else {
sprintf(extra, "\n\nNot found this sta\n");
RTW_INFO("\n\nNot found this sta\n");
}
wrqu->data.length = strlen(extra);
exit:
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_get_best_ch(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
#ifdef CONFIG_FIND_BEST_CHANNEL
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct rf_ctl_t *rfctl = adapter_to_rfctl(padapter);
u32 i, best_channel_24G = 1, best_channel_5G = 36, index_24G = 0, index_5G = 0;
for (i = 0; i < rfctl->max_chan_nums && rfctl->channel_set[i].ChannelNum != 0; i++) {
if (rfctl->channel_set[i].ChannelNum == 1)
index_24G = i;
if (rfctl->channel_set[i].ChannelNum == 36)
index_5G = i;
}
for (i = 0; i < rfctl->max_chan_nums && rfctl->channel_set[i].ChannelNum != 0; i++) {
/* 2.4G */
if (rfctl->channel_set[i].ChannelNum == 6 || rfctl->channel_set[i].ChannelNum == 11) {
if (rfctl->channel_set[i].rx_count < rfctl->channel_set[index_24G].rx_count) {
index_24G = i;
best_channel_24G = rfctl->channel_set[i].ChannelNum;
}
}
/* 5G */
if (rfctl->channel_set[i].ChannelNum >= 36
&& rfctl->channel_set[i].ChannelNum < 140) {
/* Find primary channel */
if (((rfctl->channel_set[i].ChannelNum - 36) % 8 == 0)
&& (rfctl->channel_set[i].rx_count < rfctl->channel_set[index_5G].rx_count)) {
index_5G = i;
best_channel_5G = rfctl->channel_set[i].ChannelNum;
}
}
if (rfctl->channel_set[i].ChannelNum >= 149
&& rfctl->channel_set[i].ChannelNum < 165) {
/* Find primary channel */
if (((rfctl->channel_set[i].ChannelNum - 149) % 8 == 0)
&& (rfctl->channel_set[i].rx_count < rfctl->channel_set[index_5G].rx_count)) {
index_5G = i;
best_channel_5G = rfctl->channel_set[i].ChannelNum;
}
}
#if 1 /* debug */
RTW_INFO("The rx cnt of channel %3d = %d\n",
rfctl->channel_set[i].ChannelNum,
rfctl->channel_set[i].rx_count);
#endif
}
sprintf(extra, "\nbest_channel_24G = %d\n", best_channel_24G);
RTW_INFO("best_channel_24G = %d\n", best_channel_24G);
if (index_5G != 0) {
sprintf(extra, "best_channel_5G = %d\n", best_channel_5G);
RTW_INFO("best_channel_5G = %d\n", best_channel_5G);
}
wrqu->data.length = strlen(extra);
#endif
return 0;
}
#endif /*#ifdef CONFIG_TDLS*/
static int rtw_tdls(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
RTW_INFO("[%s] extra = %s\n", __FUNCTION__, extra);
if (rtw_hw_chk_wl_func(adapter_to_dvobj(padapter), WL_FUNC_TDLS) == _FALSE) {
RTW_INFO("Discard tdls oper since hal doesn't support tdls\n");
return 0;
}
if (rtw_is_tdls_enabled(padapter) == _FALSE) {
RTW_INFO("TDLS is not enabled\n");
return 0;
}
/* WFD Sigma will use the tdls enable command to let the driver know we want to test the tdls now! */
if (rtw_hw_chk_wl_func(adapter_to_dvobj(padapter), WL_FUNC_MIRACAST)) {
if (_rtw_memcmp(extra, "wfdenable=", 10)) {
wrqu->data.length -= 10;
rtw_wx_tdls_wfd_enable(dev, info, wrqu, &extra[10]);
return ret;
}
}
if (_rtw_memcmp(extra, "weaksec=", 8)) {
wrqu->data.length -= 8;
rtw_tdls_weaksec(dev, info, wrqu, &extra[8]);
return ret;
} else if (_rtw_memcmp(extra, "tdlsenable=", 11)) {
wrqu->data.length -= 11;
rtw_tdls_enable(dev, info, wrqu, &extra[11]);
return ret;
}
if (_rtw_memcmp(extra, "setup=", 6)) {
wrqu->data.length -= 6;
rtw_tdls_setup(dev, info, wrqu, &extra[6]);
} else if (_rtw_memcmp(extra, "tear=", 5)) {
wrqu->data.length -= 5;
rtw_tdls_teardown(dev, info, wrqu, &extra[5]);
} else if (_rtw_memcmp(extra, "dis=", 4)) {
wrqu->data.length -= 4;
rtw_tdls_discovery(dev, info, wrqu, &extra[4]);
} else if (_rtw_memcmp(extra, "swoff=", 6)) {
wrqu->data.length -= 6;
rtw_tdls_ch_switch_off(dev, info, wrqu, &extra[6]);
} else if (_rtw_memcmp(extra, "sw=", 3)) {
wrqu->data.length -= 3;
rtw_tdls_ch_switch(dev, info, wrqu, &extra[3]);
} else if (_rtw_memcmp(extra, "dumpstack=", 10)) {
wrqu->data.length -= 10;
rtw_tdls_dump_ch(dev, info, wrqu, &extra[10]);
} else if (_rtw_memcmp(extra, "offchnum=", 9)) {
wrqu->data.length -= 9;
rtw_tdls_off_ch_num(dev, info, wrqu, &extra[9]);
} else if (_rtw_memcmp(extra, "choffset=", 9)) {
wrqu->data.length -= 9;
rtw_tdls_ch_offset(dev, info, wrqu, &extra[9]);
} else if (_rtw_memcmp(extra, "pson=", 5)) {
wrqu->data.length -= 5;
rtw_tdls_pson(dev, info, wrqu, &extra[5]);
} else if (_rtw_memcmp(extra, "psoff=", 6)) {
wrqu->data.length -= 6;
rtw_tdls_psoff(dev, info, wrqu, &extra[6]);
}
#ifdef CONFIG_WFD
if (rtw_hw_chk_wl_func(adapter_to_dvobj(padapter), WL_FUNC_MIRACAST)) {
if (_rtw_memcmp(extra, "setip=", 6)) {
wrqu->data.length -= 6;
rtw_tdls_setip(dev, info, wrqu, &extra[6]);
} else if (_rtw_memcmp(extra, "tprobe=", 6))
issue_tunneled_probe_req((_adapter *)rtw_netdev_priv(dev));
}
#endif /* CONFIG_WFD */
#endif /* CONFIG_TDLS */
return ret;
}
static int rtw_tdls_get(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
int ret = 0;
#ifdef CONFIG_TDLS
RTW_INFO("[%s] extra = %s\n", __FUNCTION__, (char *) wrqu->data.pointer);
if (_rtw_memcmp(wrqu->data.pointer, "ip", 2))
rtw_tdls_getip(dev, info, wrqu, extra);
else if (_rtw_memcmp(wrqu->data.pointer, "port", 4))
rtw_tdls_getport(dev, info, wrqu, extra);
/* WFDTDLS, for sigma test */
else if (_rtw_memcmp(wrqu->data.pointer, "dis", 3))
rtw_tdls_dis_result(dev, info, wrqu, extra);
else if (_rtw_memcmp(wrqu->data.pointer, "status", 6))
rtw_wfd_tdls_status(dev, info, wrqu, extra);
else if (_rtw_memcmp(wrqu->data.pointer, "tdls_sta=", 9))
rtw_tdls_getsta(dev, info, wrqu, extra);
else if (_rtw_memcmp(wrqu->data.pointer, "best_ch", 7))
rtw_tdls_get_best_ch(dev, info, wrqu, extra);
#endif /* CONFIG_TDLS */
return ret;
}
#if 0 /*#ifdef CONFIG_MAC_LOOPBACK_DRIVER*/
static s32 initLoopback(_adapter *padapter)
{
PLOOPBACKDATA ploopback;
if (padapter->ploopback == NULL) {
ploopback = (PLOOPBACKDATA)rtw_zmalloc(sizeof(LOOPBACKDATA));
if (ploopback == NULL)
return -ENOMEM;
_rtw_init_sema(&ploopback->sema, 0);
ploopback->bstop = _TRUE;
ploopback->cnt = 0;
ploopback->size = 300;
_rtw_memset(ploopback->msg, 0, sizeof(ploopback->msg));
padapter->ploopback = ploopback;
}
return 0;
}
static void freeLoopback(_adapter *padapter)
{
PLOOPBACKDATA ploopback;
ploopback = padapter->ploopback;
if (ploopback) {
rtw_mfree((u8 *)ploopback, sizeof(LOOPBACKDATA));
padapter->ploopback = NULL;
}
}
static s32 initpseudoadhoc(_adapter *padapter)
{
NDIS_802_11_NETWORK_INFRASTRUCTURE networkType;
s32 err;
networkType = Ndis802_11IBSS;
err = rtw_set_802_11_infrastructure_mode(padapter, networkType, 0);
if (err == _FALSE)
return _FAIL;
err = rtw_setopmode_cmd(padapter, networkType, RTW_CMDF_WAIT_ACK);
if (err == _FAIL)
return _FAIL;
return _SUCCESS;
}
static s32 createpseudoadhoc(_adapter *padapter)
{
NDIS_802_11_AUTHENTICATION_MODE authmode;
struct mlme_priv *pmlmepriv;
NDIS_802_11_SSID *passoc_ssid;
WLAN_BSSID_EX *pdev_network;
u8 *pibss;
u8 ssid[] = "pseduo_ad-hoc";
s32 err;
pmlmepriv = &padapter->mlmepriv;
authmode = Ndis802_11AuthModeOpen;
err = rtw_set_802_11_authentication_mode(padapter, authmode);
if (err == _FALSE)
return _FAIL;
passoc_ssid = &pmlmepriv->assoc_ssid;
_rtw_memset(passoc_ssid, 0, sizeof(NDIS_802_11_SSID));
passoc_ssid->SsidLength = sizeof(ssid) - 1;
_rtw_memcpy(passoc_ssid->Ssid, ssid, passoc_ssid->SsidLength);
pdev_network = &padapter->registrypriv.dev_network;
pibss = padapter->registrypriv.dev_network.MacAddress;
_rtw_memcpy(&pdev_network->Ssid, passoc_ssid, sizeof(NDIS_802_11_SSID));
rtw_update_registrypriv_dev_network(padapter);
rtw_generate_random_ibss(pibss);
_rtw_spinlock_bh(&pmlmepriv->lock);
/*pmlmepriv->fw_state = WIFI_ADHOC_MASTER_STATE;*/
init_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE);
_rtw_spinunlock_bh(&pmlmepriv->lock);
#if 0
err = rtw_create_ibss_cmd(padapter, 0);
if (err == _FAIL)
return _FAIL;
#else
{
struct wlan_network *pcur_network;
struct sta_info *psta;
/* 3 create a new psta */
pcur_network = &pmlmepriv->cur_network;
/* clear psta in the cur_network, if any */
psta = rtw_get_stainfo(&padapter->stapriv, pcur_network->network.MacAddress);
if (psta)
rtw_free_stainfo(padapter, psta);
psta = rtw_alloc_stainfo(&padapter->stapriv, pibss);
if (psta == NULL)
return _FAIL;
/* 3 join psudo AdHoc */
pcur_network->join_res = 1;
pcur_network->aid = psta->phl_sta->aid = 1;
_rtw_memcpy(&pcur_network->network, pdev_network, get_WLAN_BSSID_EX_sz(pdev_network));
}
#endif
return _SUCCESS;
}
/*GEORGIA_TODO_FIXIT_MOVE_TO_HAL*/
static struct xmit_frame *createloopbackpkt(_adapter *padapter, u32 size)
{
struct xmit_priv *pxmitpriv;
struct xmit_frame *pframe;
struct xmit_buf *pxmitbuf;
struct pkt_attrib *pattrib;
struct tx_desc *desc;
u8 *pkt_start, *pkt_end, *ptr;
struct rtw_ieee80211_hdr *hdr;
s32 bmcast;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
u16 xmitbuf_sz = GET_HAL_XMITBUF_SZ(dvobj);
if ((TXDESC_SIZE + WLANHDR_OFFSET + size) > xmitbuf_sz)
return NULL;
pxmitpriv = &padapter->xmitpriv;
pframe = NULL;
/* 2 1. allocate xmit frame */
pframe = rtw_alloc_xmitframe(pxmitpriv);
if (pframe == NULL)
return NULL;
pframe->padapter = padapter;
/* 2 2. allocate xmit buffer */
_rtw_spinlock_bh(&pxmitpriv->lock);
pxmitbuf = rtw_alloc_xmitbuf(pxmitpriv);
_rtw_spinunlock_bh(&pxmitpriv->lock);
if (pxmitbuf == NULL) {
rtw_free_xmitframe(pxmitpriv, pframe);
return NULL;
}
pframe->pxmitbuf = pxmitbuf;
pframe->buf_addr = pxmitbuf->pbuf;
pxmitbuf->priv_data = pframe;
/* 2 3. update_attrib() */
pattrib = &pframe->attrib;
/* init xmitframe attribute */
_rtw_memset(pattrib, 0, sizeof(struct pkt_attrib));
pattrib->ether_type = 0x8723;
_rtw_memcpy(pattrib->src, adapter_mac_addr(padapter), ETH_ALEN);
_rtw_memcpy(pattrib->ta, pattrib->src, ETH_ALEN);
_rtw_memset(pattrib->dst, 0xFF, ETH_ALEN);
_rtw_memcpy(pattrib->ra, pattrib->dst, ETH_ALEN);
/* pattrib->dhcp_pkt = 0;
* pattrib->pktlen = 0; */
pattrib->ack_policy = 0;
/* pattrib->pkt_hdrlen = ETH_HLEN; */
pattrib->hdrlen = WLAN_HDR_A3_LEN;
pattrib->subtype = WIFI_DATA;
pattrib->priority = 0;
pattrib->qsel = pattrib->priority;
/* do_queue_select(padapter, pattrib); */
pattrib->nr_frags = 1;
pattrib->encrypt = 0;
pattrib->bswenc = _FALSE;
pattrib->qos_en = _FALSE;
bmcast = IS_MCAST(pattrib->ra);
if (bmcast)
pattrib->psta = rtw_get_bcmc_stainfo(padapter);
else
pattrib->psta = rtw_get_stainfo(&padapter->stapriv, get_bssid(&padapter->mlmepriv));
pattrib->mac_id = pattrib->psta->phl_sta->macid;
pattrib->pktlen = size;
pattrib->last_txcmdsz = pattrib->hdrlen + pattrib->pktlen;
/* 2 4. fill TX descriptor */
desc = (struct tx_desc *)pframe->buf_addr;
_rtw_memset(desc, 0, TXDESC_SIZE);
fill_default_txdesc(pframe, (u8 *)desc);
/* Hw set sequence number */
((PTXDESC)desc)->hwseq_en = 0; /* HWSEQ_EN, 0:disable, 1:enable
* ((PTXDESC)desc)->hwseq_sel = 0; */ /* HWSEQ_SEL */
((PTXDESC)desc)->disdatafb = 1;
/* convert to little endian */
desc->txdw0 = cpu_to_le32(desc->txdw0);
desc->txdw1 = cpu_to_le32(desc->txdw1);
desc->txdw2 = cpu_to_le32(desc->txdw2);
desc->txdw3 = cpu_to_le32(desc->txdw3);
desc->txdw4 = cpu_to_le32(desc->txdw4);
desc->txdw5 = cpu_to_le32(desc->txdw5);
desc->txdw6 = cpu_to_le32(desc->txdw6);
desc->txdw7 = cpu_to_le32(desc->txdw7);
#ifdef CONFIG_PCI_HCI
desc->txdw8 = cpu_to_le32(desc->txdw8);
desc->txdw9 = cpu_to_le32(desc->txdw9);
desc->txdw10 = cpu_to_le32(desc->txdw10);
desc->txdw11 = cpu_to_le32(desc->txdw11);
desc->txdw12 = cpu_to_le32(desc->txdw12);
desc->txdw13 = cpu_to_le32(desc->txdw13);
desc->txdw14 = cpu_to_le32(desc->txdw14);
desc->txdw15 = cpu_to_le32(desc->txdw15);
#endif
cal_txdesc_chksum(desc);
/* 2 5. coalesce */
pkt_start = pframe->buf_addr + TXDESC_SIZE;
pkt_end = pkt_start + pattrib->last_txcmdsz;
/* 3 5.1. make wlan header, make_wlanhdr() */
hdr = (struct rtw_ieee80211_hdr *)pkt_start;
set_frame_sub_type(&hdr->frame_ctl, pattrib->subtype);
_rtw_memcpy(hdr->addr1, pattrib->dst, ETH_ALEN); /* DA */
_rtw_memcpy(hdr->addr2, pattrib->src, ETH_ALEN); /* SA */
_rtw_memcpy(hdr->addr3, get_bssid(&padapter->mlmepriv), ETH_ALEN); /* RA, BSSID */
/* 3 5.2. make payload */
ptr = pkt_start + pattrib->hdrlen;
get_random_bytes(ptr, pkt_end - ptr);
pxmitbuf->len = TXDESC_SIZE + pattrib->last_txcmdsz;
pxmitbuf->ptail += pxmitbuf->len;
return pframe;
}
static void freeloopbackpkt(_adapter *padapter, struct xmit_frame *pframe)
{
struct xmit_priv *pxmitpriv;
struct xmit_buf *pxmitbuf;
pxmitpriv = &padapter->xmitpriv;
pxmitbuf = pframe->pxmitbuf;
rtw_free_xmitframe(pxmitpriv, pframe);
rtw_free_xmitbuf(pxmitpriv, pxmitbuf);
}
static void printdata(u8 *pbuf, u32 len)
{
u32 i, val;
for (i = 0; (i + 4) <= len; i += 4) {
printk("%08X", *(u32 *)(pbuf + i));
if ((i + 4) & 0x1F)
printk(" ");
else
printk("\n");
}
if (i < len) {
#ifdef CONFIG_BIG_ENDIAN
for (; i < len, i++)
printk("%02X", pbuf + i);
#else /* CONFIG_LITTLE_ENDIAN */
#if 0
val = 0;
_rtw_memcpy(&val, pbuf + i, len - i);
printk("%8X", val);
#else
u8 str[9];
u8 n;
val = 0;
n = len - i;
_rtw_memcpy(&val, pbuf + i, n);
sprintf(str, "%08X", val);
n = (4 - n) * 2;
printk("%8s", str + n);
#endif
#endif /* CONFIG_LITTLE_ENDIAN */
}
printk("\n");
}
static u8 pktcmp(_adapter *padapter, u8 *txbuf, u32 txsz, u8 *rxbuf, u32 rxsz)
{
struct recv_stat *prxstat;
struct recv_stat report;
PRXREPORT prxreport;
u32 drvinfosize;
u32 rxpktsize;
u8 fcssize;
u8 ret = _FALSE;
prxstat = (struct recv_stat *)rxbuf;
report.rxdw0 = le32_to_cpu(prxstat->rxdw0);
report.rxdw1 = le32_to_cpu(prxstat->rxdw1);
report.rxdw2 = le32_to_cpu(prxstat->rxdw2);
report.rxdw3 = le32_to_cpu(prxstat->rxdw3);
report.rxdw4 = le32_to_cpu(prxstat->rxdw4);
report.rxdw5 = le32_to_cpu(prxstat->rxdw5);
prxreport = (PRXREPORT)&report;
drvinfosize = prxreport->drvinfosize << 3;
rxpktsize = prxreport->pktlen;
if (rtw_hal_rcr_check(padapter, RCR_APPFCS))
fcssize = IEEE80211_FCS_LEN;
else
fcssize = 0;
if ((txsz - TXDESC_SIZE) != (rxpktsize - fcssize)) {
RTW_INFO("%s: ERROR! size not match tx/rx=%d/%d !\n",
__func__, txsz - TXDESC_SIZE, rxpktsize - fcssize);
ret = _FALSE;
} else {
ret = _rtw_memcmp(txbuf + TXDESC_SIZE, \
rxbuf + RXDESC_SIZE + drvinfosize, \
txsz - TXDESC_SIZE);
if (ret == _FALSE)
RTW_INFO("%s: ERROR! pkt content mismatch!\n", __func__);
}
if (ret == _FALSE) {
RTW_INFO("\n%s: TX PKT total=%d, desc=%d, content=%d\n",
__func__, txsz, TXDESC_SIZE, txsz - TXDESC_SIZE);
RTW_INFO("%s: TX DESC size=%d\n", __func__, TXDESC_SIZE);
printdata(txbuf, TXDESC_SIZE);
RTW_INFO("%s: TX content size=%d\n", __func__, txsz - TXDESC_SIZE);
printdata(txbuf + TXDESC_SIZE, txsz - TXDESC_SIZE);
RTW_INFO("\n%s: RX PKT read=%d offset=%d(%d,%d) content=%d\n",
__func__, rxsz, RXDESC_SIZE + drvinfosize, RXDESC_SIZE, drvinfosize, rxpktsize);
if (rxpktsize != 0) {
RTW_INFO("%s: RX DESC size=%d\n", __func__, RXDESC_SIZE);
printdata(rxbuf, RXDESC_SIZE);
RTW_INFO("%s: RX drvinfo size=%d\n", __func__, drvinfosize);
printdata(rxbuf + RXDESC_SIZE, drvinfosize);
RTW_INFO("%s: RX content size=%d\n", __func__, rxpktsize);
printdata(rxbuf + RXDESC_SIZE + drvinfosize, rxpktsize);
} else {
RTW_INFO("%s: RX data size=%d\n", __func__, rxsz);
printdata(rxbuf, rxsz);
}
}
return ret;
}
thread_return lbk_thread(thread_context context)
{
#if 0
s32 err;
_adapter *padapter;
PLOOPBACKDATA ploopback;
struct xmit_frame *pxmitframe;
u32 cnt, ok, fail, headerlen;
u32 pktsize;
u32 ff_hwaddr;
padapter = (_adapter *)context;
ploopback = padapter->ploopback;
if (ploopback == NULL)
return -1;
cnt = 0;
ok = 0;
fail = 0;
daemonize("%s", "RTW_LBK_THREAD");
allow_signal(SIGTERM);
do {
if (ploopback->size == 0) {
get_random_bytes(&pktsize, 4);
pktsize = (pktsize % 1535) + 1; /* 1~1535 */
} else
pktsize = ploopback->size;
pxmitframe = createloopbackpkt(padapter, pktsize);
if (pxmitframe == NULL) {
sprintf(ploopback->msg, "loopback FAIL! 3. create Packet FAIL!");
break;
}
ploopback->txsize = TXDESC_SIZE + pxmitframe->attrib.last_txcmdsz;
_rtw_memcpy(ploopback->txbuf, pxmitframe->buf_addr, ploopback->txsize);
ff_hwaddr = rtw_get_ff_hwaddr(pxmitframe);
cnt++;
RTW_INFO("%s: wirte port cnt=%d size=%d\n", __func__, cnt, ploopback->txsize);
pxmitframe->pxmitbuf->pdata = ploopback->txbuf;
rtw_write_port(padapter, ff_hwaddr, ploopback->txsize, (u8 *)pxmitframe->pxmitbuf);
/* wait for rx pkt */
_rtw_down_sema(&ploopback->sema);
err = pktcmp(padapter, ploopback->txbuf, ploopback->txsize, ploopback->rxbuf, ploopback->rxsize);
if (err == _TRUE)
ok++;
else
fail++;
ploopback->txsize = 0;
_rtw_memset(ploopback->txbuf, 0, 0x8000);
ploopback->rxsize = 0;
_rtw_memset(ploopback->rxbuf, 0, 0x8000);
freeloopbackpkt(padapter, pxmitframe);
pxmitframe = NULL;
flush_signals_thread();
if ((ploopback->bstop == _TRUE) ||
((ploopback->cnt != 0) && (ploopback->cnt == cnt))) {
u32 ok_rate, fail_rate, all;
all = cnt;
ok_rate = (ok * 100) / all;
fail_rate = (fail * 100) / all;
sprintf(ploopback->msg, \
"loopback result: ok=%d%%(%d/%d),error=%d%%(%d/%d)", \
ok_rate, ok, all, fail_rate, fail, all);
break;
}
} while (1);
ploopback->bstop = _TRUE;
thread_exit(NULL);
#endif
return 0;
}
static void loopbackTest(_adapter *padapter, u32 cnt, u32 size, u8 *pmsg)
{
PLOOPBACKDATA ploopback;
u32 len;
s32 err;
ploopback = padapter->ploopback;
if (ploopback) {
if (ploopback->bstop == _FALSE) {
ploopback->bstop = _TRUE;
_rtw_up_sema(&ploopback->sema);
}
len = 0;
do {
len = strlen(ploopback->msg);
if (len)
break;
rtw_msleep_os(1);
} while (1);
_rtw_memcpy(pmsg, ploopback->msg, len + 1);
freeLoopback(padapter);
return;
}
/* disable dynamic algorithm */
rtw_phydm_ability_backup(padapter);
rtw_phydm_func_disable_all(padapter);
/* create pseudo ad-hoc connection */
err = initpseudoadhoc(padapter);
if (err == _FAIL) {
sprintf(pmsg, "loopback FAIL! 1.1 init ad-hoc FAIL!");
return;
}
err = createpseudoadhoc(padapter);
if (err == _FAIL) {
sprintf(pmsg, "loopback FAIL! 1.2 create ad-hoc master FAIL!");
return;
}
err = initLoopback(padapter);
if (err) {
sprintf(pmsg, "loopback FAIL! 2. init FAIL! error code=%d", err);
return;
}
ploopback = padapter->ploopback;
ploopback->bstop = _FALSE;
ploopback->cnt = cnt;
ploopback->size = size;
ploopback->lbkthread = rtw_thread_start(lbk_thread, padapter, "RTW_LBK_THREAD");
if (ploopback->lbkthread == NULL)) {
freeLoopback(padapter);
sprintf(pmsg, "loopback start FAIL! cnt=%d", cnt);
return;
}
sprintf(pmsg, "loopback start! cnt=%d", cnt);
}
#endif /* CONFIG_MAC_LOOPBACK_DRIVER */
static int rtw_test(
struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
u32 len;
u8 *pbuf, *pch;
char *ptmp;
u8 *delim = ",";
_adapter *padapter = rtw_netdev_priv(dev);
RTW_INFO("+%s\n", __func__);
len = wrqu->data.length;
pbuf = (u8 *)rtw_zmalloc(len + 1);
if (pbuf == NULL) {
RTW_INFO("%s: no memory!\n", __func__);
return -ENOMEM;
}
if (copy_from_user(pbuf, wrqu->data.pointer, len)) {
rtw_mfree(pbuf, len + 1);
RTW_INFO("%s: copy from user fail!\n", __func__);
return -EFAULT;
}
pbuf[len] = '\0';
RTW_INFO("%s: string=\"%s\"\n", __func__, pbuf);
ptmp = (char *)pbuf;
pch = strsep(&ptmp, delim);
if ((pch == NULL) || (strlen(pch) == 0)) {
rtw_mfree(pbuf, len);
RTW_INFO("%s: parameter error(level 1)!\n", __func__);
return -EFAULT;
}
#if 0 /*#ifdef CONFIG_MAC_LOOPBACK_DRIVER*/
if (strcmp(pch, "loopback") == 0) {
s32 cnt = 0;
u32 size = 64;
pch = strsep(&ptmp, delim);
if ((pch == NULL) || (strlen(pch) == 0)) {
rtw_mfree(pbuf, len);
RTW_INFO("%s: parameter error(level 2)!\n", __func__);
return -EFAULT;
}
sscanf(pch, "%d", &cnt);
RTW_INFO("%s: loopback cnt=%d\n", __func__, cnt);
pch = strsep(&ptmp, delim);
if ((pch == NULL) || (strlen(pch) == 0)) {
rtw_mfree(pbuf, len);
RTW_INFO("%s: parameter error(level 2)!\n", __func__);
return -EFAULT;
}
sscanf(pch, "%d", &size);
RTW_INFO("%s: loopback size=%d\n", __func__, size);
loopbackTest(padapter, cnt, size, extra);
wrqu->data.length = strlen(extra) + 1;
goto free_buf;
}
#endif
if (strcmp(pch, "h2c") == 0) {
u8 param[8];
u8 count = 0;
u32 tmp;
u8 i;
u32 pos;
u8 ret;
do {
pch = strsep(&ptmp, delim);
if ((pch == NULL) || (strlen(pch) == 0))
break;
sscanf(pch, "%x", &tmp);
param[count++] = (u8)tmp;
} while (count < 8);
if (count == 0) {
rtw_mfree(pbuf, len);
RTW_INFO("%s: parameter error(level 2)!\n", __func__);
return -EFAULT;
}
ret = rtw_test_h2c_cmd(padapter, param, count);
pos = sprintf(extra, "H2C ID=0x%02x content=", param[0]);
for (i = 1; i < count; i++)
pos += sprintf(extra + pos, "%02x,", param[i]);
extra[pos] = 0;
pos--;
pos += sprintf(extra + pos, " %s", ret == _FAIL ? "FAIL" : "OK");
wrqu->data.length = strlen(extra) + 1;
goto free_buf;
}
free_buf:
rtw_mfree(pbuf, len);
return 0;
}
static iw_handler rtw_handlers[] = {
NULL, /* SIOCSIWCOMMIT */
rtw_wx_get_name, /* SIOCGIWNAME */
dummy, /* SIOCSIWNWID */
dummy, /* SIOCGIWNWID */
rtw_wx_set_freq, /* SIOCSIWFREQ */
rtw_wx_get_freq, /* SIOCGIWFREQ */
rtw_wx_set_mode, /* SIOCSIWMODE */
rtw_wx_get_mode, /* SIOCGIWMODE */
dummy, /* SIOCSIWSENS */
rtw_wx_get_sens, /* SIOCGIWSENS */
NULL, /* SIOCSIWRANGE */
rtw_wx_get_range, /* SIOCGIWRANGE */
rtw_wx_set_priv, /* SIOCSIWPRIV */
NULL, /* SIOCGIWPRIV */
NULL, /* SIOCSIWSTATS */
NULL, /* SIOCGIWSTATS */
dummy, /* SIOCSIWSPY */
dummy, /* SIOCGIWSPY */
NULL, /* SIOCGIWTHRSPY */
NULL, /* SIOCWIWTHRSPY */
rtw_wx_set_wap, /* SIOCSIWAP */
rtw_wx_get_wap, /* SIOCGIWAP */
rtw_wx_set_mlme, /* request MLME operation; uses struct iw_mlme */
dummy, /* SIOCGIWAPLIST -- depricated */
rtw_wx_set_scan, /* SIOCSIWSCAN */
rtw_wx_get_scan, /* SIOCGIWSCAN */
rtw_wx_set_essid, /* SIOCSIWESSID */
rtw_wx_get_essid, /* SIOCGIWESSID */
dummy, /* SIOCSIWNICKN */
rtw_wx_get_nick, /* SIOCGIWNICKN */
NULL, /* -- hole -- */
NULL, /* -- hole -- */
rtw_wx_set_rate, /* SIOCSIWRATE */
rtw_wx_get_rate, /* SIOCGIWRATE */
rtw_wx_set_rts, /* SIOCSIWRTS */
rtw_wx_get_rts, /* SIOCGIWRTS */
rtw_wx_set_frag, /* SIOCSIWFRAG */
rtw_wx_get_frag, /* SIOCGIWFRAG */
dummy, /* SIOCSIWTXPOW */
dummy, /* SIOCGIWTXPOW */
dummy, /* SIOCSIWRETRY */
rtw_wx_get_retry, /* SIOCGIWRETRY */
rtw_wx_set_enc, /* SIOCSIWENCODE */
rtw_wx_get_enc, /* SIOCGIWENCODE */
dummy, /* SIOCSIWPOWER */
rtw_wx_get_power, /* SIOCGIWPOWER */
NULL, /*---hole---*/
NULL, /*---hole---*/
rtw_wx_set_gen_ie, /* SIOCSIWGENIE */
NULL, /* SIOCGWGENIE */
rtw_wx_set_auth, /* SIOCSIWAUTH */
NULL, /* SIOCGIWAUTH */
rtw_wx_set_enc_ext, /* SIOCSIWENCODEEXT */
NULL, /* SIOCGIWENCODEEXT */
rtw_wx_set_pmkid, /* SIOCSIWPMKSA */
NULL, /*---hole---*/
};
static const struct iw_priv_args rtw_private_args[] = {
{
SIOCIWFIRSTPRIV + 0x0,
IW_PRIV_TYPE_CHAR | 0x7FF, 0, "write"
},
{
SIOCIWFIRSTPRIV + 0x1,
IW_PRIV_TYPE_CHAR | 0x7FF,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "read"
},
{
SIOCIWFIRSTPRIV + 0x2, 0, 0, "driver_ext"
},
{
SIOCIWFIRSTPRIV + 0x3, 0, 0, "mp_ioctl"
},
{
SIOCIWFIRSTPRIV + 0x4,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "apinfo"
},
{
SIOCIWFIRSTPRIV + 0x5,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "setpid"
},
{
SIOCIWFIRSTPRIV + 0x6,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "wps_start"
},
/* for PLATFORM_MT53XX */
{
SIOCIWFIRSTPRIV + 0x7,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "get_sensitivity"
},
{
SIOCIWFIRSTPRIV + 0x8,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "wps_prob_req_ie"
},
{
SIOCIWFIRSTPRIV + 0x9,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "wps_assoc_req_ie"
},
/* for RTK_DMP_PLATFORM */
{
SIOCIWFIRSTPRIV + 0xA,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "channel_plan"
},
{
SIOCIWFIRSTPRIV + 0xB,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "dbg"
},
{
SIOCIWFIRSTPRIV + 0xC,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 3, 0, "rfw"
},
{
SIOCIWFIRSTPRIV + 0xD,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "rfr"
},
#if 0
{
SIOCIWFIRSTPRIV + 0xE, 0, 0, "wowlan_ctrl"
},
#endif
{
SIOCIWFIRSTPRIV + 0x10,
IW_PRIV_TYPE_CHAR | 1024, 0, "p2p_set"
},
{
SIOCIWFIRSTPRIV + 0x11,
IW_PRIV_TYPE_CHAR | 1024, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK , "p2p_get"
},
{
SIOCIWFIRSTPRIV + 0x12, 0, 0, "NULL"
},
{
SIOCIWFIRSTPRIV + 0x13,
IW_PRIV_TYPE_CHAR | 64, IW_PRIV_TYPE_CHAR | 64 , "p2p_get2"
},
{
SIOCIWFIRSTPRIV + 0x14,
IW_PRIV_TYPE_CHAR | 64, 0, "tdls"
},
{
SIOCIWFIRSTPRIV + 0x15,
IW_PRIV_TYPE_CHAR | 1024, IW_PRIV_TYPE_CHAR | 1024 , "tdls_get"
},
{
SIOCIWFIRSTPRIV + 0x16,
IW_PRIV_TYPE_CHAR | 64, 0, "pm_set"
},
#ifdef CONFIG_RTW_80211K
{
SIOCIWFIRSTPRIV + 0x17,
IW_PRIV_TYPE_CHAR | 1024, IW_PRIV_TYPE_CHAR | 1024 , "rrm"
},
#else
{SIOCIWFIRSTPRIV + 0x17, IW_PRIV_TYPE_CHAR | 1024 , 0 , "NULL"},
#endif
{SIOCIWFIRSTPRIV + 0x18, IW_PRIV_TYPE_CHAR | IFNAMSIZ , 0 , "rereg_nd_name"},
#ifdef CONFIG_MP_INCLUDED
{SIOCIWFIRSTPRIV + 0x1A, IW_PRIV_TYPE_CHAR | 1024, 0, "NULL"},
{SIOCIWFIRSTPRIV + 0x1B, IW_PRIV_TYPE_CHAR | 128, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "NULL"},
#else
{SIOCIWFIRSTPRIV + 0x1A, IW_PRIV_TYPE_CHAR | 1024, 0, "NULL"},
{SIOCIWFIRSTPRIV + 0x1B, IW_PRIV_TYPE_CHAR | 128, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "efuse_get"},
#endif
{
SIOCIWFIRSTPRIV + 0x1D,
IW_PRIV_TYPE_CHAR | 40, IW_PRIV_TYPE_CHAR | 0x7FF, "test"
},
{ SIOCIWFIRSTPRIV + 0x0E, IW_PRIV_TYPE_CHAR | 1024, 0 , ""}, /* set */
{ SIOCIWFIRSTPRIV + 0x0F, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK , ""},/* get
* --- sub-ioctls definitions --- */
#ifdef CONFIG_APPEND_VENDOR_IE_ENABLE
{ VENDOR_IE_SET, IW_PRIV_TYPE_CHAR | 1024 , 0 , "vendor_ie_set" },
{ VENDOR_IE_GET, IW_PRIV_TYPE_CHAR | 1024, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "vendor_ie_get" },
#endif
#if defined(RTW_PHL_TX) || defined(RTW_PHL_RX) || defined(CONFIG_PHL_TEST_SUITE)
{ PHL_TEST_SET, IW_PRIV_TYPE_CHAR | 1024 , 0 , "phl_test" },
{ PHL_TEST_GET, IW_PRIV_TYPE_CHAR | 1024, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "" },
#endif
#ifdef CONFIG_WOWLAN
{ MP_WOW_ENABLE , IW_PRIV_TYPE_CHAR | 1024, 0, "wow_mode" },
{ MP_WOW_SET_PATTERN , IW_PRIV_TYPE_CHAR | 1024, 0, "wow_set_pattern" },
#endif
#ifdef CONFIG_AP_WOWLAN
{ MP_AP_WOW_ENABLE , IW_PRIV_TYPE_CHAR | 1024, 0, "ap_wow_mode" }, /* set */
#endif
#ifdef CONFIG_SDIO_INDIRECT_ACCESS
{ MP_SD_IREAD, IW_PRIV_TYPE_CHAR | 1024, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "sd_iread" },
{ MP_SD_IWRITE, IW_PRIV_TYPE_CHAR | 1024, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "sd_iwrite" },
#endif
#ifdef CONFIG_MP_INCLUDED
{ MP_GET_PHL_TEST, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "phl_get_io" },
{ MP_SET_PHL_TEST, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "phl_set_io" },
#endif
};
/* --- sub-ioctls definitions --- */
static const struct iw_priv_args rtw_mp_private_args[] = {
#ifdef CONFIG_MP_INCLUDED
{ MP_START , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_start" },
{ MP_PHYPARA, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_phypara" },
{ MP_STOP , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_stop" },
{ MP_CHANNEL , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK ,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_channel" },
{ MP_TRXSC_OFFSET , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK ,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_trxsc" },
{ MP_BANDWIDTH , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_bandwidth"},
{ MP_RATE , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_rate" },
{ MP_RESET_STATS , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_reset_stats"},
{ MP_QUERY , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK , "mp_query"},
{ READ_REG , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "read_reg" },
{ MP_RATE , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_rate" },
{ READ_RF , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "read_rf" },
{ MP_PSD , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_psd"},
{ MP_DUMP, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_dump" },
{ MP_TXPOWER , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_txpower"},
{ MP_ANT_TX , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_ant_tx"},
{ MP_ANT_RX , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_ant_rx"},
{ WRITE_REG , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "write_reg" },
{ WRITE_RF , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "write_rf" },
{ MP_CTX , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_ctx"},
{ MP_ARX , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_arx"},
{ MP_THER , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_ther"},
{ EFUSE_SET, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "efuse_set" },
{ EFUSE_GET, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "efuse_get" },
{ MP_PWRTRK , IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_pwrtrk"},
{ MP_QueryDrvStats, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_drvquery" },
{ MP_SetRFPathSwh, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_setrfpath" },
{ MP_PwrCtlDM, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_pwrctldm" },
{ MP_GET_TXPOWER_INX, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_get_txpower" },
{ MP_GETVER, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_priv_ver" },
{ MP_MON, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_mon" },
{ EFUSE_BT_MASK, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "efuse_bt_mask" },
{ EFUSE_MASK, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "efuse_mask" },
{ EFUSE_FILE, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "efuse_file" },
{ EFUSE_FILE_STORE, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "efuse_store" },
{ MP_TX, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_tx" },
{ MP_RX, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_rx" },
{ MP_HW_TX_MODE, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_hxtx" },
{ MP_PWRLMT, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_pwrlmt" },
{ MP_PWRBYRATE, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_pwrbyrate" },
{ CTA_TEST, IW_PRIV_TYPE_CHAR | 1024, 0, "cta_test"},
{ MP_IQK, IW_PRIV_TYPE_CHAR | 1024, 0, "mp_iqk"},
{ MP_LCK, IW_PRIV_TYPE_CHAR | 1024, 0, "mp_lck"},
{ BT_EFUSE_FILE, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "bt_efuse_file" },
{ MP_SWRFPath, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_swrfpath" },
{ MP_LINK, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_link" },
{ MP_DPK, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_dpk"},
{ MP_DPK_TRK, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_dpk_trk" },
{ MP_GET_TSSIDE, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_get_tsside" },
{ MP_SET_TSSIDE, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_set_tsside" },
{ MP_GET_PHL_TEST, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "phl_get_io" },
{ MP_SET_PHL_TEST, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "phl_set_io" },
{ MP_SET_PHL_TX_PATTERN, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_tx_patt" },
{ MP_SET_PHL_TX_METHOD, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "tx_method" },
{ MP_SET_PHL_CONIFG_PHY_NUM, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_phy" },
{ MP_SET_PHL_PLCP_TX_DATA, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_plcp_data" },
{ MP_SET_PHL_PLCP_TX_USER, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_plcp_user" },
{ MP_PHL_RFK, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_rfk" },
{ MP_PHL_BTC_PATH, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_btc_path" },
{ MP_GET_HE, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "mp_get_he" },
#ifdef CONFIG_RTW_CUSTOMER_STR
{ MP_CUSTOMER_STR, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK,
IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_MASK, "customer_str" },
#endif
#endif /* CONFIG_MP_INCLUDED */
};
static iw_handler rtw_private_handler[] = {
rtw_wx_write32, /* 0x00 */
rtw_wx_read32, /* 0x01 */
NULL, /* 0x02 */
#ifdef MP_IOCTL_HDL
rtw_mp_ioctl_hdl, /* 0x03 */
#else
rtw_wx_priv_null,
#endif
/* for MM DTV platform */
rtw_get_ap_info, /* 0x04 */
rtw_set_pid, /* 0x05 */
rtw_wps_start, /* 0x06 */
/* for PLATFORM_MT53XX */
rtw_wx_get_sensitivity, /* 0x07 */
rtw_wx_set_mtk_wps_probe_ie, /* 0x08 */
rtw_wx_set_mtk_wps_ie, /* 0x09 */
/* for RTK_DMP_PLATFORM
* Set Channel depend on the country code */
rtw_wx_set_channel_plan, /* 0x0A */
rtw_dbg_port, /* 0x0B */
rtw_wx_write_rf, /* 0x0C */
rtw_wx_read_rf, /* 0x0D */
rtw_priv_set, /*0x0E*/
rtw_priv_get, /*0x0F*/
NULL, /* 0x10 */
NULL, /* 0x11 */
NULL, /* 0x12 */
NULL, /* 0x13 */
rtw_tdls, /* 0x14 */
rtw_tdls_get, /* 0x15 */
rtw_pm_set, /* 0x16 */
#ifdef CONFIG_RTW_80211K
rtw_wx_priv_rrm, /* 0x17 */
#else
rtw_wx_priv_null, /* 0x17 */
#endif
rtw_rereg_nd_name, /* 0x18 */
rtw_wx_priv_null, /* 0x19 */
#ifdef CONFIG_MP_INCLUDED
rtw_wx_priv_null, /* 0x1A */
rtw_wx_priv_null, /* 0x1B */
#else
rtw_wx_priv_null, /* 0x1A */
/*rtw_mp_efuse_get,*/ /* 0x1B */
#endif
NULL, /* 0x1C is reserved for hostapd */
rtw_test, /* 0x1D */
};
#if WIRELESS_EXT >= 17
static struct iw_statistics *rtw_get_wireless_stats(struct net_device *dev)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct iw_statistics *piwstats = &padapter->iwstats;
int tmp_level = 0;
int tmp_qual = 0;
int tmp_noise = 0;
if (check_fwstate(&padapter->mlmepriv, WIFI_ASOC_STATE) != _TRUE) {
piwstats->qual.qual = 0;
piwstats->qual.level = 0;
piwstats->qual.noise = 0;
/* RTW_INFO("No link level:%d, qual:%d, noise:%d\n", tmp_level, tmp_qual, tmp_noise); */
} else {
#ifdef CONFIG_SIGNAL_DISPLAY_DBM
tmp_level = rtw_phl_rssi_to_dbm(padapter->recvinfo.signal_strength);
#else
tmp_level = padapter->recvinfo.signal_strength;
#endif
tmp_qual = padapter->recvinfo.signal_qual;
/* RTW_INFO("level:%d, qual:%d, noise:%d, rssi (%d)\n", tmp_level, tmp_qual, tmp_noise,padapter->recvinfo.rssi); */
piwstats->qual.level = tmp_level;
piwstats->qual.qual = tmp_qual;
piwstats->qual.noise = tmp_noise;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 14))
piwstats->qual.updated = IW_QUAL_ALL_UPDATED ;/* |IW_QUAL_DBM; */
#else
#ifdef RTK_DMP_PLATFORM
/* IW_QUAL_DBM= 0x8, if driver use this flag, wireless extension will show value of dbm. */
/* remove this flag for show percentage 0~100 */
piwstats->qual.updated = 0x07;
#else
piwstats->qual.updated = 0x0f;
#endif
#endif
#ifdef CONFIG_SIGNAL_DISPLAY_DBM
piwstats->qual.updated = piwstats->qual.updated | IW_QUAL_DBM;
#endif
return &padapter->iwstats;
}
#endif
#ifdef CONFIG_WIRELESS_EXT
struct iw_handler_def rtw_handlers_def = {
.standard = rtw_handlers,
.num_standard = sizeof(rtw_handlers) / sizeof(iw_handler),
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 33)) || defined(CONFIG_WEXT_PRIV)
.private = rtw_private_handler,
.private_args = (struct iw_priv_args *)rtw_private_args,
.num_private = sizeof(rtw_private_handler) / sizeof(iw_handler),
.num_private_args = sizeof(rtw_private_args) / sizeof(struct iw_priv_args),
#endif
#if WIRELESS_EXT >= 17
.get_wireless_stats = rtw_get_wireless_stats,
#endif
};
#endif
/* copy from net/wireless/wext.c start
* ----------------------------------------------------------------
*
* Calculate size of private arguments
*/
static const char iw_priv_type_size[] = {
0, /* IW_PRIV_TYPE_NONE */
1, /* IW_PRIV_TYPE_BYTE */
1, /* IW_PRIV_TYPE_CHAR */
0, /* Not defined */
sizeof(__u32), /* IW_PRIV_TYPE_INT */
sizeof(struct iw_freq), /* IW_PRIV_TYPE_FLOAT */
sizeof(struct sockaddr), /* IW_PRIV_TYPE_ADDR */
0, /* Not defined */
};
static int get_priv_size(__u16 args)
{
int num = args & IW_PRIV_SIZE_MASK;
int type = (args & IW_PRIV_TYPE_MASK) >> 12;
return num * iw_priv_type_size[type];
}
/* copy from net/wireless/wext.c end */
static int _rtw_ioctl_wext_private(struct net_device *dev, union iwreq_data *wrq_data)
{
int err = 0;
u8 *input = NULL;
u32 input_len = 0;
const char delim[] = " ";
u8 *output = NULL;
u32 output_len = 0;
u32 count = 0;
u8 *buffer = NULL;
u32 buffer_len = 0;
char *ptr = NULL;
u8 cmdname[17] = {0}; /* IFNAMSIZ+1 */
u32 cmdlen;
s32 len;
u8 *extra = NULL;
u32 extra_size = 0;
s32 k;
const iw_handler *priv; /* Private ioctl */
const struct iw_priv_args *priv_args; /* Private ioctl description */
const struct iw_priv_args *mp_priv_args; /*MP Private ioctl description */
const struct iw_priv_args *sel_priv_args; /*Selected Private ioctl description */
u32 num_priv; /* Number of ioctl */
u32 num_priv_args; /* Number of descriptions */
u32 num_mp_priv_args; /*Number of MP descriptions */
u32 num_sel_priv_args; /*Number of Selected descriptions */
iw_handler handler;
int temp;
int subcmd = 0; /* sub-ioctl index */
int offset = 0; /* Space for sub-ioctl index */
union iwreq_data wdata;
_rtw_memcpy(&wdata, wrq_data, sizeof(wdata));
input_len = wdata.data.length;
if (!input_len)
return -EINVAL;
input = rtw_zmalloc(input_len);
if (input == NULL) {
err = -EOPNOTSUPP;
goto exit;
}
if (copy_from_user(input, wdata.data.pointer, input_len)) {
err = -EFAULT;
goto exit;
}
input[input_len - 1] = '\0';
ptr = input;
len = input_len;
sscanf(ptr, "%16s", cmdname);
cmdlen = strlen(cmdname);
RTW_DBG("%s: cmd=%s\n", __func__, cmdname);
/* skip command string */
if (cmdlen > 0)
cmdlen += 1; /* skip one space */
ptr += cmdlen;
len -= cmdlen;
RTW_DBG("%s: parameters=%s\n", __func__, ptr);
priv = rtw_private_handler;
priv_args = rtw_private_args;
mp_priv_args = rtw_mp_private_args;
num_priv = sizeof(rtw_private_handler) / sizeof(iw_handler);
num_priv_args = sizeof(rtw_private_args) / sizeof(struct iw_priv_args);
num_mp_priv_args = sizeof(rtw_mp_private_args) / sizeof(struct iw_priv_args);
if (num_priv_args == 0) {
err = -EOPNOTSUPP;
goto exit;
}
/* Search the correct ioctl */
k = -1;
sel_priv_args = priv_args;
num_sel_priv_args = num_priv_args;
while
((++k < num_sel_priv_args) && strcmp(sel_priv_args[k].name, cmdname))
;
/* If not found... */
if (k == num_sel_priv_args) {
k = -1;
sel_priv_args = mp_priv_args;
num_sel_priv_args = num_mp_priv_args;
while
((++k < num_sel_priv_args) && strcmp(sel_priv_args[k].name, cmdname))
;
if (k == num_sel_priv_args) {
err = -EOPNOTSUPP;
goto exit;
}
}
/* Watch out for sub-ioctls ! */
if (sel_priv_args[k].cmd < SIOCDEVPRIVATE) {
int j = -1;
/* Find the matching *real* ioctl */
while ((++j < num_priv_args) && ((priv_args[j].name[0] != '\0') ||
(priv_args[j].set_args != sel_priv_args[k].set_args) ||
(priv_args[j].get_args != sel_priv_args[k].get_args)))
;
/* If not found... */
if (j == num_priv_args) {
err = -EINVAL;
goto exit;
}
/* Save sub-ioctl number */
subcmd = sel_priv_args[k].cmd;
/* Reserve one int (simplify alignment issues) */
offset = sizeof(__u32);
/* Use real ioctl definition from now on */
k = j;
}
buffer = rtw_zmalloc(4096);
if (NULL == buffer) {
err = -ENOMEM;
goto exit;
}
if (k >= num_priv_args) {
err = -EINVAL;
goto exit;
}
/* If we have to set some data */
if ((priv_args[k].set_args & IW_PRIV_TYPE_MASK) &&
(priv_args[k].set_args & IW_PRIV_SIZE_MASK)) {
u8 *str;
switch (priv_args[k].set_args & IW_PRIV_TYPE_MASK) {
case IW_PRIV_TYPE_BYTE:
/* Fetch args */
count = 0;
do {
str = strsep(&ptr, delim);
if (NULL == str)
break;
sscanf(str, "%i", &temp);
buffer[count++] = (u8)temp;
} while (1);
buffer_len = count;
/* Number of args to fetch */
wdata.data.length = count;
if (wdata.data.length > (priv_args[k].set_args & IW_PRIV_SIZE_MASK))
wdata.data.length = priv_args[k].set_args & IW_PRIV_SIZE_MASK;
break;
case IW_PRIV_TYPE_INT:
/* Fetch args */
count = 0;
do {
str = strsep(&ptr, delim);
if (NULL == str)
break;
sscanf(str, "%i", &temp);
((s32 *)buffer)[count++] = (s32)temp;
} while (1);
buffer_len = count * sizeof(s32);
/* Number of args to fetch */
wdata.data.length = count;
if (wdata.data.length > (priv_args[k].set_args & IW_PRIV_SIZE_MASK))
wdata.data.length = priv_args[k].set_args & IW_PRIV_SIZE_MASK;
break;
case IW_PRIV_TYPE_CHAR:
if (len > 0) {
/* Size of the string to fetch */
wdata.data.length = len;
if (wdata.data.length > (priv_args[k].set_args & IW_PRIV_SIZE_MASK))
wdata.data.length = priv_args[k].set_args & IW_PRIV_SIZE_MASK;
/* Fetch string */
_rtw_memcpy(buffer, ptr, wdata.data.length);
} else {
wdata.data.length = 1;
buffer[0] = '\0';
}
buffer_len = wdata.data.length;
break;
default:
RTW_INFO("%s: Not yet implemented...\n", __func__);
err = -1;
goto exit;
}
if ((priv_args[k].set_args & IW_PRIV_SIZE_FIXED) &&
(wdata.data.length != (priv_args[k].set_args & IW_PRIV_SIZE_MASK))) {
RTW_INFO("%s: The command %s needs exactly %d argument(s)...\n",
__func__, cmdname, priv_args[k].set_args & IW_PRIV_SIZE_MASK);
err = -EINVAL;
goto exit;
}
} /* if args to set */
else
wdata.data.length = 0L;
/* Those two tests are important. They define how the driver
* will have to handle the data */
if ((priv_args[k].set_args & IW_PRIV_SIZE_FIXED) &&
((get_priv_size(priv_args[k].set_args) + offset) <= IFNAMSIZ)) {
/* First case : all SET args fit within wrq */
if (offset)
wdata.mode = subcmd;
_rtw_memcpy(wdata.name + offset, buffer, IFNAMSIZ - offset);
} else {
if ((priv_args[k].set_args == 0) &&
(priv_args[k].get_args & IW_PRIV_SIZE_FIXED) &&
(get_priv_size(priv_args[k].get_args) <= IFNAMSIZ)) {
/* Second case : no SET args, GET args fit within wrq */
if (offset)
wdata.mode = subcmd;
} else {
/* Third case : args won't fit in wrq, or variable number of args */
if (copy_to_user(wdata.data.pointer, buffer, buffer_len)) {
err = -EFAULT;
goto exit;
}
wdata.data.flags = subcmd;
}
}
rtw_mfree(input, input_len);
input = NULL;
extra_size = 0;
if (IW_IS_SET(priv_args[k].cmd)) {
/* Size of set arguments */
extra_size = get_priv_size(priv_args[k].set_args);
/* Does it fits in iwr ? */
if ((priv_args[k].set_args & IW_PRIV_SIZE_FIXED) &&
((extra_size + offset) <= IFNAMSIZ))
extra_size = 0;
} else {
/* Size of get arguments */
extra_size = get_priv_size(priv_args[k].get_args);
/* Does it fits in iwr ? */
if ((priv_args[k].get_args & IW_PRIV_SIZE_FIXED) &&
(extra_size <= IFNAMSIZ))
extra_size = 0;
}
if (extra_size == 0) {
extra = (u8 *)&wdata;
rtw_mfree(buffer, 4096);
buffer = NULL;
} else
extra = buffer;
handler = priv[priv_args[k].cmd - SIOCIWFIRSTPRIV];
err = handler(dev, NULL, &wdata, extra);
/* If we have to get some data */
if ((priv_args[k].get_args & IW_PRIV_TYPE_MASK) &&
(priv_args[k].get_args & IW_PRIV_SIZE_MASK)) {
int j;
int n = 0; /* number of args */
u8 str[20] = {0};
/* Check where is the returned data */
if ((priv_args[k].get_args & IW_PRIV_SIZE_FIXED) &&
(get_priv_size(priv_args[k].get_args) <= IFNAMSIZ))
n = priv_args[k].get_args & IW_PRIV_SIZE_MASK;
else
n = wdata.data.length;
output = rtw_zmalloc(4096);
if (NULL == output) {
err = -ENOMEM;
goto exit;
}
switch (priv_args[k].get_args & IW_PRIV_TYPE_MASK) {
case IW_PRIV_TYPE_BYTE:
/* Display args */
for (j = 0; j < n; j++) {
sprintf(str, "%d ", extra[j]);
len = strlen(str);
output_len = strlen(output);
if ((output_len + len + 1) > 4096) {
err = -E2BIG;
goto exit;
}
_rtw_memcpy(output + output_len, str, len);
}
break;
case IW_PRIV_TYPE_INT:
/* Display args */
for (j = 0; j < n; j++) {
sprintf(str, "%d ", ((__s32 *)extra)[j]);
len = strlen(str);
output_len = strlen(output);
if ((output_len + len + 1) > 4096) {
err = -E2BIG;
goto exit;
}
_rtw_memcpy(output + output_len, str, len);
}
break;
case IW_PRIV_TYPE_CHAR:
/* Display args */
_rtw_memcpy(output, extra, n);
output_len = n;
break;
default:
RTW_INFO("%s: Not yet implemented...\n", __func__);
err = -1;
goto exit;
}
output_len ++;
wrq_data->data.length = output_len;
if (copy_to_user(wrq_data->data.pointer, output, output_len)) {
err = -EFAULT;
goto exit;
}
} /* if args to set */
else
wrq_data->data.length = 0;
exit:
if (input)
rtw_mfree(input, input_len);
if (buffer)
rtw_mfree(buffer, 4096);
if (output)
rtw_mfree(output, 4096);
return err;
}
#ifdef CONFIG_COMPAT
static int rtw_ioctl_compat_wext_private(struct net_device *dev, struct ifreq *rq)
{
struct compat_iw_point iwp_compat;
union iwreq_data wrq_data;
int err = 0;
RTW_DBG("%s:...\n", __func__);
if (copy_from_user(&iwp_compat, rq->ifr_ifru.ifru_data, sizeof(struct compat_iw_point)))
return -EFAULT;
wrq_data.data.pointer = compat_ptr(iwp_compat.pointer);
wrq_data.data.length = iwp_compat.length;
wrq_data.data.flags = iwp_compat.flags;
err = _rtw_ioctl_wext_private(dev, &wrq_data);
iwp_compat.pointer = ptr_to_compat(wrq_data.data.pointer);
iwp_compat.length = wrq_data.data.length;
iwp_compat.flags = wrq_data.data.flags;
if (copy_to_user(rq->ifr_ifru.ifru_data, &iwp_compat, sizeof(struct compat_iw_point)))
return -EFAULT;
return err;
}
#endif /* CONFIG_COMPAT */
static int rtw_ioctl_standard_wext_private(struct net_device *dev, struct ifreq *rq)
{
struct iw_point *iwp;
union iwreq_data wrq_data;
int err = 0;
iwp = &wrq_data.data;
RTW_DBG("%s:...\n", __func__);
if (copy_from_user(iwp, rq->ifr_ifru.ifru_data, sizeof(struct iw_point)))
return -EFAULT;
err = _rtw_ioctl_wext_private(dev, &wrq_data);
if (copy_to_user(rq->ifr_ifru.ifru_data, iwp, sizeof(struct iw_point)))
return -EFAULT;
return err;
}
static int rtw_ioctl_wext_private(struct net_device *dev, struct ifreq *rq)
{
#ifdef CONFIG_COMPAT
#if (KERNEL_VERSION(4, 6, 0) > LINUX_VERSION_CODE)
if (is_compat_task())
#else
if (in_compat_syscall())
#endif
return rtw_ioctl_compat_wext_private(dev, rq);
else
#endif /* CONFIG_COMPAT */
return rtw_ioctl_standard_wext_private(dev, rq);
}
int rtw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct iwreq *wrq = (struct iwreq *)rq;
int ret = 0;
switch (cmd) {
case RTL_IOCTL_WPA_SUPPLICANT:
ret = wpa_supplicant_ioctl(dev, &wrq->u.data);
break;
#ifdef CONFIG_AP_MODE
case RTL_IOCTL_HOSTAPD:
ret = rtw_hostapd_ioctl(dev, &wrq->u.data);
break;
#ifdef CONFIG_WIRELESS_EXT
case SIOCSIWMODE:
ret = rtw_wx_set_mode(dev, NULL, &wrq->u, NULL);
break;
#endif
#endif /* CONFIG_AP_MODE */
case SIOCDEVPRIVATE:
ret = rtw_ioctl_wext_private(dev, rq);
break;
case (SIOCDEVPRIVATE+1):
ret = rtw_android_priv_cmd(dev, rq, cmd);
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
|
2301_81045437/rtl8852be
|
os_dep/linux/ioctl_linux.c
|
C
|
agpl-3.0
| 252,262
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#if defined(CONFIG_MP_INCLUDED)
#include <drv_types.h>
#include <rtw_mp.h>
#define RTW_IWD_MAX_LEN 128
/*
* Input Format: %s,%d,%d
* %s is width, could be
* "b" for 1 byte
* "w" for WORD (2 bytes)
* "dw" for DWORD (4 bytes)
* 1st %d is address(offset)
* 2st %d is data to write
*/
int rtw_mp_write_reg(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
char *pch, *pnext;
char *width_str;
char width;
u32 addr, data;
int ret;
_adapter *padapter = rtw_netdev_priv(dev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
char input[RTW_IWD_MAX_LEN];
_rtw_memset(input, 0, sizeof(input));
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
input[wrqu->length] = '\0';
_rtw_memset(extra, 0, wrqu->length);
pch = input;
pnext = strpbrk(pch, " ,.-");
if (pnext == NULL)
return -EINVAL;
*pnext = 0;
width_str = pch;
pch = pnext + 1;
pnext = strpbrk(pch, " ,.-");
if (pnext == NULL)
return -EINVAL;
*pnext = 0;
ret = sscanf(pch, "%x", &addr);
pch = pnext + 1;
pnext = strpbrk(pch, " ,.-");
if ((pch - input) >= wrqu->length)
return -EINVAL;
ret = sscanf(pch, "%x", &data);
RTW_INFO("data=%x,addr=%x\n", (u32)data, (u32)addr);
ret = 0;
width = width_str[0];
switch (width) {
case 'b':
/* 1 byte*/
if (data > 0xFF) {
ret = -EINVAL;
break;
}
rtw_phl_write8(dvobj->phl, addr, (u8)data);
break;
case 'w':
/* 2 bytes*/
if (data > 0xFFFF) {
ret = -EINVAL;
break;
}
rtw_phl_write16(dvobj->phl, addr, (u16)data);
break;
case 'd':
/* 4 bytes*/
rtw_phl_write32(dvobj->phl, addr, (u32)data);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/*
* Input Format: %s,%d
* %s is width, could be
* "b" for 1 byte
* "w" for WORD (2 bytes)
* "dw" for DWORD (4 bytes)
* %d is address(offset)
*
* Return:
* %d for data readed
*/
int rtw_mp_read_reg(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
char input[RTW_IWD_MAX_LEN];
char *pch, *pnext;
char *width_str;
char width;
char data[20], tmp[20];
u32 addr = 0, strtout = 0;
u32 i = 0, j = 0, ret = 0, data32 = 0;
_adapter *padapter = rtw_netdev_priv(dev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
char *pextra = extra;
if (wrqu->length > 128)
return -EFAULT;
_rtw_memset(input, 0, sizeof(input));
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
input[wrqu->length] = '\0';
_rtw_memset(extra, 0, wrqu->length);
_rtw_memset(data, '\0', sizeof(data));
_rtw_memset(tmp, '\0', sizeof(tmp));
pch = input;
pnext = strpbrk(pch, " ,.-");
if (pnext == NULL)
return -EINVAL;
*pnext = 0;
width_str = pch;
pch = pnext + 1;
ret = sscanf(pch, "%x", &addr);
ret = 0;
width = width_str[0];
switch (width) {
case 'b':
data32 = rtw_phl_read8(dvobj->phl, addr);
RTW_INFO("%x\n", data32);
sprintf(extra, "%d", data32);
wrqu->length = strlen(extra);
break;
case 'w':
/* 2 bytes*/
sprintf(data, "%04x\n", rtw_phl_read16(dvobj->phl, addr));
for (i = 0 ; i <= strlen(data) ; i++) {
if (i % 2 == 0) {
tmp[j] = ' ';
j++;
}
if (data[i] != '\0')
tmp[j] = data[i];
j++;
}
pch = tmp;
RTW_INFO("pch=%s", pch);
while (*pch != '\0') {
pnext = strpbrk(pch, " ");
if (!pnext || ((pnext - tmp) > 4))
break;
pnext++;
if (*pnext != '\0') {
/*strtout = simple_strtoul(pnext , &ptmp, 16);*/
ret = sscanf(pnext, "%x", &strtout);
pextra += sprintf(pextra, " %d", strtout);
} else
break;
pch = pnext;
}
wrqu->length = strlen(extra);
break;
case 'd':
/* 4 bytes */
sprintf(data, "%08x", rtw_phl_read32(dvobj->phl, addr));
/*add read data format blank*/
for (i = 0 ; i <= strlen(data) ; i++) {
if (i % 2 == 0) {
tmp[j] = ' ';
j++;
}
if (data[i] != '\0')
tmp[j] = data[i];
j++;
}
pch = tmp;
RTW_INFO("pch=%s", pch);
while (*pch != '\0') {
pnext = strpbrk(pch, " ");
if (!pnext)
break;
pnext++;
if (*pnext != '\0') {
ret = sscanf(pnext, "%x", &strtout);
pextra += sprintf(pextra, " %d", strtout);
} else
break;
pch = pnext;
}
wrqu->length = strlen(extra);
break;
default:
wrqu->length = 0;
ret = -EINVAL;
break;
}
return ret;
}
/*
* Input Format: %d,%x,%x
* %d is RF path, should be smaller than MAX_RF_PATH_NUMS
* 1st %x is address(offset)
* 2st %x is data to write
*/
int rtw_mp_write_rf(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
u32 path, addr, data;
int ret;
_adapter *padapter = rtw_netdev_priv(dev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
char input[RTW_IWD_MAX_LEN];
_rtw_memset(input, 0, wrqu->length);
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
ret = sscanf(input, "%d,%x,%x", &path, &addr, &data);
if (ret < 3)
return -EINVAL;
if (path >= GET_HAL_RFPATH_NUM(adapter_to_dvobj(padapter)))
return -EINVAL;
if (addr > 0xFF)
return -EINVAL;
if (data > 0xFFFFF)
return -EINVAL;
_rtw_memset(extra, 0, wrqu->length);
rtw_phl_write_rfreg(GET_PHL_INFO(dvobj), path, addr, 0xFFFFF, data);
sprintf(extra, "write_rf completed\n");
wrqu->length = strlen(extra);
return 0;
}
/*
* Input Format: %d,%x
* %d is RF path, should be smaller than MAX_RF_PATH_NUMS
* %x is address(offset)
*
* Return:
* %d for data readed
*/
int rtw_mp_read_rf(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
char input[RTW_IWD_MAX_LEN];
char *pch, *pnext;
char data[20], tmp[20];
u32 path, addr, strtou;
u32 ret, i = 0 , j = 0;
_adapter *padapter = rtw_netdev_priv(dev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
char *pextra = extra;
if (wrqu->length > 128)
return -EFAULT;
_rtw_memset(input, 0, wrqu->length);
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
ret = sscanf(input, "%d,%x", &path, &addr);
if (ret < 2)
return -EINVAL;
if (path >= GET_HAL_RFPATH_NUM(adapter_to_dvobj(padapter)))
return -EINVAL;
_rtw_memset(extra, 0, wrqu->length);
sprintf(data, "%08x", rtw_phl_read_rfreg(GET_PHL_INFO(dvobj), path, addr , 0xFFFFF));
/*add read data format blank*/
for (i = 0 ; i <= strlen(data) ; i++) {
if (i % 2 == 0) {
tmp[j] = ' ';
j++;
}
tmp[j] = data[i];
j++;
}
pch = tmp;
RTW_INFO("pch=%s", pch);
while (*pch != '\0') {
pnext = strpbrk(pch, " ");
if (!pnext)
break;
pnext++;
if (*pnext != '\0') {
/*strtou =simple_strtoul(pnext , &ptmp, 16);*/
ret = sscanf(pnext, "%x", &strtou);
pextra += sprintf(pextra, " %d", strtou);
} else
break;
pch = pnext;
}
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_start(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
int ret = 0;
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmppriv = &padapter->mppriv;
char *pextra = NULL;
pmppriv->bprocess_mp_mode = _TRUE;
if (pmppriv->mode == MP_ON) {
sprintf(extra, "Already mp_start\n");
wrqu->length = strlen(extra);
return ret;
}
rtw_set_scan_deny(padapter, 5000);
rtw_mi_scan_abort(padapter, _TRUE);
if (rtw_mp_cmd(padapter, MP_START, RTW_CMDF_WAIT_ACK) != _SUCCESS)
ret = -EPERM;
_rtw_memset(extra, 0, wrqu->length);
pextra = extra;
pextra += sprintf(extra, "mp_start %s\n", ret == 0 ? "ok" : "fail");
pextra += sprintf(pextra, "EFUSE:%s\n",
RTW_EFUSE_FROM2STR(rtw_efuse_get_map_from(padapter)));
wrqu->length = strlen(extra);
return ret;
}
int rtw_mp_stop(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
int ret = 0;
u8 status = 0;
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmppriv = &padapter->mppriv;
if (rtw_mp_cmd(padapter, MP_STOP, RTW_CMDF_WAIT_ACK) != _SUCCESS)
ret = -EPERM;
if (pmppriv->mode != MP_OFF)
return -EPERM;
_rtw_memset(extra, 0, wrqu->length);
sprintf(extra, "mp_stop ok\n");
wrqu->length = strlen(extra);
pmppriv->bprocess_mp_mode = _FALSE;
return ret;
}
int rtw_mp_rate(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
u16 rate = MPT_RATE_1M;
u8 input[RTW_IWD_MAX_LEN];
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = (struct mp_priv *)&padapter->mppriv;
PMPT_CONTEXT pMptCtx = &(padapter->mppriv.mpt_ctx);
u8 tx_nss = GET_HAL_TX_NSS(adapter_to_dvobj(padapter));
char *pextra = extra;
u8 path_i = 0, i = 0;
u16 pwr_dbm = 0;
_rtw_memset(input, 0, sizeof(input));
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
input[wrqu->length] = '\0';
rate = rtw_mp_rate_parse(padapter, input);
padapter->mppriv.rateidx = rate;
if (rate == 0 && strcmp(input, "1M") != 0) {
rate = rtw_atoi(input);
#ifndef CONFIG_80211AX_HE
padapter->mppriv.rateidx = mrate_to_hwrate(rate);
#endif
/*if (rate <= 0x7f)
rate = wifirate2_ratetbl_inx((u8)rate);
else if (rate < 0xC8)
rate = (rate - 0x79 + MPT_RATE_MCS0);
HT rate 0x80(MCS0) ~ 0x8F(MCS15) ~ 0x9F(MCS31) 128~159
VHT1SS~2SS rate 0xA0 (VHT1SS_MCS0 44) ~ 0xB3 (VHT2SS_MCS9 #63) 160~179
VHT rate 0xB4 (VHT3SS_MCS0 64) ~ 0xC7 (VHT2SS_MCS9 #83) 180~199
else
VHT rate 0x90(VHT1SS_MCS0) ~ 0x99(VHT1SS_MCS9) 144~153
rate =(rate - MPT_RATE_VHT1SS_MCS0);
*/
}
_rtw_memset(extra, 0, wrqu->length);
pextra += sprintf(pextra, "Set data rate to %s index %d\n" , input, padapter->mppriv.rateidx);
RTW_INFO("%s: %s rate index=%d\n", __func__, input, padapter->mppriv.rateidx);
pextra += sprintf(pextra, "PPDU Type %s\n",
PPDU_TYPE_STR(pmp_priv->rtw_mp_pmact_ppdu_type));
pextra += sprintf(pextra, "CMD: [mp_plcp_datappdu=%%d]\nPLCP (PPDU Type):\n");
for (i = pmp_priv->rtw_mp_pmact_ppdu_type; i <= RTW_MP_TYPE_HE_TB; i++)
pextra += sprintf(pextra, "%d:%s\n", i,PPDU_TYPE_STR(i));
SetDataRate(padapter);
#if 0
for (path_i = 0 ; path_i < tx_nss; path_i++) {
pwr_dbm = rtw_mp_get_pwrtab_dbm(padapter, path_i);
pextra += sprintf(pextra, "Path%d Pwrdbm:%d" , path_i, pwr_dbm);
}
#endif
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_channel(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = (struct mp_priv *)&padapter->mppriv;
u8 input[RTW_IWD_MAX_LEN];
u32 channel = 1;
_rtw_memset(input, 0, sizeof(input));
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
input[wrqu->length] = '\0';
channel = rtw_atoi(input);
_rtw_memset(extra, 0, wrqu->length);
sprintf(extra, "Change channel %d to channel %d", pmp_priv->channel, channel);
pmp_priv->channel = channel;
//pHalData->current_channel = channel; //aka struct rtw_phl_com_t
SetChannel(padapter);
wrqu->length = strlen(extra);
return 0;
}
static void rtw_mp_update_trxsc(_adapter *padapter) {
struct mp_priv *pmp_priv = (struct mp_priv *)&padapter->mppriv;
u8 trxsc_offset = pmp_priv->rtw_mp_trxsc;
switch (trxsc_offset) {
case 0:
pmp_priv->rtw_mp_data_bandwidth = pmp_priv->bandwidth;
RTW_INFO("%s:TRXSC %d, MP bandwidth = %d\n", __func__, trxsc_offset, pmp_priv->bandwidth);
break;
case 1:
case 2:
case 3:
case 4:
pmp_priv->rtw_mp_data_bandwidth = CHANNEL_WIDTH_20;
RTW_INFO("%s:TRXSC %d, MP bandwidth = %d\n", __func__, trxsc_offset, pmp_priv->bandwidth);
break;
case 9:
case 10:
case 11:
case 12:
pmp_priv->rtw_mp_data_bandwidth = CHANNEL_WIDTH_40;
RTW_INFO("%s:TRXSC %d, MP bandwidth = %d\n", __func__, trxsc_offset, pmp_priv->bandwidth);
break;
case 13:
case 14:
pmp_priv->rtw_mp_data_bandwidth = CHANNEL_WIDTH_40;
RTW_INFO("%s:TRXSC %d, MP bandwidth = %d\n", __func__, trxsc_offset, pmp_priv->bandwidth);
break;
}
}
int rtw_mp_trxsc_offset(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = (struct mp_priv *)&padapter->mppriv;
u8 input[RTW_IWD_MAX_LEN];
u32 trxsc_offset = 0;
_rtw_memset(input, 0, sizeof(input));
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
input[wrqu->length] = '\0';
trxsc_offset = rtw_atoi(input);
RTW_INFO("%s: ch offset = %d\n", __func__, trxsc_offset);
pmp_priv->rtw_mp_trxsc = trxsc_offset;
rtw_mp_update_trxsc(padapter);
_rtw_memset(extra, 0, wrqu->length);
sprintf(extra, "change TRXSC to %d, current Bandwidth=%d\n",
pmp_priv->rtw_mp_trxsc, pmp_priv->bandwidth);
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_bandwidth(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
u8 bandwidth = 0, sg = 0;
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = (struct mp_priv *)&padapter->mppriv;
u8 input[RTW_IWD_MAX_LEN];
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
if (sscanf(input, "40M=%hhd,shortGI=%hhd", &bandwidth, &sg) > 0)
RTW_INFO("%s: bw=%d sg=%d\n", __func__, bandwidth , sg);
#if 0
if (bandwidth == 1 && rtw_hw_chk_bw_cap(adapter_to_dvobj(padapter), BW_CAP_40M))
bandwidth = CHANNEL_WIDTH_40;
else if (bandwidth == 2 && rtw_hw_chk_bw_cap(adapter_to_dvobj(padapter), BW_CAP_80M))
bandwidth = CHANNEL_WIDTH_80;
else
bandwidth = CHANNEL_WIDTH_20;
#else
rtw_adjust_chbw(padapter, pmp_priv->channel, &bandwidth, &pmp_priv->prime_channel_offset);
pmp_priv->bandwidth = (u8)bandwidth;
pmp_priv->preamble = sg;
_rtw_memset(extra, 0, wrqu->length);
sprintf(extra, "Change BW %d to BW %d\n", pmp_priv->bandwidth , bandwidth);
SetBandwidth(padapter);
rtw_mp_update_trxsc(padapter);
#endif
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_txpower_index(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
char input[RTW_IWD_MAX_LEN];
u32 rfpath = 0 ;
u32 txpower_inx = 0, tarpowerdbm = 0;
char *pextra = extra;
u8 rf_type = GET_HAL_RFPATH(adapter_to_dvobj(padapter));
if (wrqu->length > 128)
return -EFAULT;
_rtw_memset(input, 0, sizeof(input));
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
input[wrqu->length] = '\0';
_rtw_memset(extra, 0, strlen(extra));
if (wrqu->length == 2) {
#ifndef CONFIG_80211AX_HE
if (input[0] != '\0' ) {
rfpath = rtw_atoi(input);
txpower_inx = mpt_ProQueryCalTxPower(padapter, rfpath);
}
#endif
pextra += sprintf(pextra, " %d\n", txpower_inx);
tarpowerdbm = mpt_get_tx_power_finalabs_val(padapter, rfpath);
if (tarpowerdbm > 0)
pextra += sprintf(pextra, "\t\t dBm:%d", tarpowerdbm);
} else {
#ifndef CONFIG_80211AX_HE
txpower_inx = mpt_ProQueryCalTxPower(padapter, 0);
pextra += sprintf(pextra, "patha=%d", txpower_inx);
if (rf_type > RF_1T2R) {
txpower_inx = mpt_ProQueryCalTxPower(padapter, 1);
pextra += sprintf(pextra, ",pathb=%d", txpower_inx);
}
if (rf_type > RF_2T4R) {
txpower_inx = mpt_ProQueryCalTxPower(padapter, 2);
pextra += sprintf(pextra, ",pathc=%d", txpower_inx);
}
if (rf_type > RF_3T4R) {
txpower_inx = mpt_ProQueryCalTxPower(padapter, 3);
pextra += sprintf(pextra, ",pathd=%d", txpower_inx);
}
#endif
tarpowerdbm = mpt_get_tx_power_finalabs_val(padapter, 0);
pextra += sprintf(pextra, "\n\t\t\tpatha dBm=%d", tarpowerdbm);
if (rf_type > RF_1T2R) {
tarpowerdbm = mpt_get_tx_power_finalabs_val(padapter, 1);
pextra += sprintf(pextra, ",pathb dBm=%d", tarpowerdbm);
}
if (rf_type > RF_2T4R) {
tarpowerdbm = mpt_get_tx_power_finalabs_val(padapter, 2);
pextra += sprintf(pextra, ",pathc dBm=%d", tarpowerdbm);
}
if (rf_type > RF_3T4R) {
tarpowerdbm = mpt_get_tx_power_finalabs_val(padapter, 3);
pextra += sprintf(pextra, ",pathd dBm=%d", tarpowerdbm);
}
}
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_txpower(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
u32 idx_a = 0, idx_b = 0, idx_c = 0, idx_d = 0;
int MsetPower = 1;
char pout_str_buf[7];
u8 input[RTW_IWD_MAX_LEN];
u8 rfpath_i = 0;
u16 agc_cw_val = 0;
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmppriv = &padapter ->mppriv;
u8 tx_nss = GET_HAL_TX_NSS(adapter_to_dvobj(padapter));
char *pextra = extra;
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
MsetPower = strncmp(input, "off", 3);
if (MsetPower == 0) {
pmppriv->bSetTxPower = 0;
sprintf(pextra, "MP Set power off");
} else {
if (sscanf(input, "patha=%d,pathb=%d,pathc=%d,pathd=%d", &idx_a, &idx_b, &idx_c, &idx_d) >= 1) {
pextra += sprintf(pextra, "Set power offset path_A:%d path_B:%d path_C:%d path_D:%d\n", idx_a , idx_b , idx_c , idx_d);
pmppriv->path_pwr_offset[RF_PATH_A] = (u8)idx_a;
pmppriv->path_pwr_offset[RF_PATH_B] = (u8)idx_b;
pmppriv->path_pwr_offset[RF_PATH_C] = (u8)idx_c;
pmppriv->path_pwr_offset[RF_PATH_D] = (u8)idx_d;
pmppriv->bSetTxPower = 1;
} else if (strncmp(input, "dbm", 3) == 0) {
u8 signed_flag = 0;
u8 ret = 0xff;
int int_num = 0;
u32 dec_num = 0;
s16 pout = 0;
int i;
u32 poutdbm = 0;
s32 db_temp = 0;
s16 pset = 0;
u8 rfpath;
if (sscanf(input, "dbm=%7s", pout_str_buf) == 1) {
ret = 0;
} else {
sprintf(extra, "[dbm = -30 ~ 30.00]");
goto invalid_param_format;
}
if(pout_str_buf[0] == '-')
signed_flag = 1;
i = sscanf(pout_str_buf, "%d.%3u", &int_num, &dec_num);
RTW_INFO("%s: pars input =%d.%d\n", __func__, int_num, dec_num);
if(i == 2)
dec_num = (dec_num < 10) ? dec_num * 10 : dec_num;
if (int_num >= 30 || ret == 0xff || dec_num > 99 || (dec_num % 25 != 0)) {
sprintf(extra, "CMD Format:[dbm= -30.00 ~ 30.00]\n"
" each scale step value must 0.25 or -0.25\n");
goto invalid_param_format;
}
pset = int_num * TX_POWER_BASE + ((dec_num * TX_POWER_BASE) / 100);
RTW_INFO("%s: pset=%d\n", __func__, pset);
pset = ((pset < 0 || signed_flag == 1) ? -pset : pset);
pextra += sprintf(pextra, "Set power dbm :%d.%d\n", int_num, dec_num);
pmppriv->txpowerdbm = pset;
pmppriv->bSetTxPower = 1;
} else {
pextra += sprintf(pextra, "Invalid format on line %s\n", input);
RTW_INFO("Invalid format on line %s\n", input );
wrqu->length = strlen(extra);
return 0;
}
for (rfpath_i = 0 ; rfpath_i < tx_nss; rfpath_i ++) {
agc_cw_val = rtw_mp_txpower_dbm(padapter, rfpath_i);
pextra += sprintf(pextra, "Path:%d PwrAGC:%d\n", rfpath_i,agc_cw_val);
}
}
invalid_param_format:
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_ant_tx(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
u8 i;
u8 input[RTW_IWD_MAX_LEN];
u8 antenna = 0;
u16 pwr_dbm = 0;
_adapter *padapter = rtw_netdev_priv(dev);
char *pextra = extra;
_rtw_memset(input, 0, sizeof(input));
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
input[wrqu->length] = '\0';
pextra += sprintf(pextra, "switch Tx antenna to %s\n", input);
for (i = 0; i < strlen(input); i++) {
switch (input[i]) {
case 'a':
antenna |= MP_ANTENNA_A;
break;
case 'b':
antenna |= MP_ANTENNA_B;
break;
case 'c':
antenna |= MP_ANTENNA_C;
break;
case 'd':
antenna |= MP_ANTENNA_D;
break;
}
}
/*antenna |= BIT(extra[i]-'a');*/
RTW_INFO("%s: antenna=0x%x\n", __func__, antenna);
padapter->mppriv.antenna_trx = antenna;
SetAntenna(padapter);
pwr_dbm = rtw_mp_get_pwrtab_dbm(padapter, antenna);
pextra += sprintf(pextra, "read pwr dbm:%d", pwr_dbm);
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_ant_rx(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
u8 i;
u16 antenna = 0;
u8 input[RTW_IWD_MAX_LEN];
_adapter *padapter = rtw_netdev_priv(dev);
_rtw_memset(input, 0, sizeof(input));
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
input[wrqu->length] = '\0';
/*RTW_INFO("%s: input=%s\n", __func__, input);*/
_rtw_memset(extra, 0, wrqu->length);
sprintf(extra, "switch Rx antenna to %s", input);
for (i = 0; i < strlen(input); i++) {
switch (input[i]) {
case 'a':
antenna |= MP_ANTENNA_A;
break;
case 'b':
antenna |= MP_ANTENNA_B;
break;
case 'c':
antenna |= MP_ANTENNA_C;
break;
case 'd':
antenna |= MP_ANTENNA_D;
break;
}
}
RTW_INFO("%s: antenna=0x%x\n", __func__, antenna);
padapter->mppriv.antenna_trx = antenna;
SetAntenna(padapter);
wrqu->length = strlen(extra);
return 0;
}
int rtw_set_ctx_destAddr(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
int jj, kk = 0;
struct pkt_attrib *pattrib;
struct mp_priv *pmp_priv;
_adapter *padapter = rtw_netdev_priv(dev);
pmp_priv = &padapter->mppriv;
pattrib = &pmp_priv->tx.attrib;
if (strlen(extra) < 5)
return _FAIL;
RTW_INFO("%s: in=%s\n", __func__, extra);
for (jj = 0, kk = 0; jj < ETH_ALEN; jj++, kk += 3)
pattrib->dst[jj] = key_2char2num(extra[kk], extra[kk + 1]);
RTW_INFO("pattrib->dst:%x %x %x %x %x %x\n", pattrib->dst[0], pattrib->dst[1], pattrib->dst[2], pattrib->dst[3], pattrib->dst[4], pattrib->dst[5]);
return 0;
}
int rtw_mp_ctx(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
u32 pkTx = 1;
int countPkTx = 1, cotuTx = 1, CarrSprTx = 1, scTx = 1, sgleTx = 1, stop = 1, payload = 1;
u32 bStartTest = 1;
u32 count = 0, pktinterval = 0, pktlen = 0;
u8 status;
struct mp_priv *pmp_priv;
struct pkt_attrib *pattrib;
_adapter *padapter = rtw_netdev_priv(dev);
pmp_priv = &padapter->mppriv;
pattrib = &pmp_priv->tx.attrib;
if (padapter->registrypriv.mp_mode != 1 ) {
sprintf(extra, "Error: can't tx ,not in MP mode. \n");
wrqu->length = strlen(extra);
return 0;
}
if (copy_from_user(extra, wrqu->pointer, wrqu->length))
return -EFAULT;
*(extra + wrqu->length) = '\0';
RTW_INFO("%s: in=%s\n", __func__, extra);
#ifdef CONFIG_CONCURRENT_MODE
if (!is_primary_adapter(padapter)) {
sprintf(extra, "Error: MP mode can't support Virtual adapter, Please to use main adapter.\n");
wrqu->length = strlen(extra);
return 0;
}
#endif
countPkTx = strncmp(extra, "count=", 5); /* strncmp TRUE is 0*/
cotuTx = strncmp(extra, "background", 20);
CarrSprTx = strncmp(extra, "background,cs", 20);
scTx = strncmp(extra, "background,sc", 20);
sgleTx = strncmp(extra, "background,stone", 20);
pkTx = strncmp(extra, "background,pkt", 20);
stop = strncmp(extra, "stop", 4);
payload = strncmp(extra, "payload=", 8);
if (sscanf(extra, "count=%d,pkt", &count) > 0)
RTW_INFO("count= %d\n", count);
if (sscanf(extra, "pktinterval=%d", &pktinterval) > 0)
RTW_INFO("pktinterval= %d\n", pktinterval);
if (sscanf(extra, "pktlen=%d", &pktlen) > 0)
RTW_INFO("pktlen= %d\n", pktlen);
if (payload == 0) {
payload = MP_TX_Payload_default_random;
if (strncmp(extra, "payload=prbs9", 14) == 0) {
payload = MP_TX_Payload_prbs9;
sprintf(extra, "config payload PRBS9\n");
} else {
if (sscanf(extra, "payload=%x", &payload) > 0){
RTW_INFO("payload= %x\n", payload);
sprintf(extra, "config payload setting = %x\n"
"1. input payload=[]:\n "
"[0]: 00, [1]: A5, [2]: 5A, [3]: FF, [4]: PRBS-9, [5]: Random\n"
"2. specified a hex payload: payload=0xee\n", payload);
}
}
pmp_priv->tx.payload = payload;
wrqu->length = strlen(extra);
return 0;
}
if (_rtw_memcmp(extra, "destmac=", 8)) {
wrqu->length -= 8;
rtw_set_ctx_destAddr(dev, info, wrqu, &extra[8]);
sprintf(extra, "Set dest mac OK !\n");
return 0;
}
/*RTW_INFO("%s: count=%d countPkTx=%d cotuTx=%d CarrSprTx=%d scTx=%d sgleTx=%d pkTx=%d stop=%d\n", __func__, count, countPkTx, cotuTx, CarrSprTx, pkTx, sgleTx, scTx, stop);*/
_rtw_memset(extra, '\0', strlen(extra));
if (pktinterval != 0) {
sprintf(extra, "Pkt Interval = %d", pktinterval);
padapter->mppriv.pktInterval = pktinterval;
wrqu->length = strlen(extra);
return 0;
} else if (pktlen != 0) {
sprintf(extra, "Pkt len = %d", pktlen);
pattrib->pktlen = pktlen;
wrqu->length = strlen(extra);
return 0;
} else if (stop == 0) {
bStartTest = 0; /* To set Stop*/
pmp_priv->tx.stop = 1;
sprintf(extra, "Stop continuous Tx");
} else {
bStartTest = 1;
if (pmp_priv->mode != MP_ON) {
if (pmp_priv->tx.stop != 1) {
RTW_INFO("%s:Error MP_MODE %d != ON\n", __func__, pmp_priv->mode);
return -EFAULT;
}
}
}
pmp_priv->tx.count = count;
if (pkTx == 0 || countPkTx == 0)
pmp_priv->mode = MP_PACKET_TX;
if (sgleTx == 0)
pmp_priv->mode = MP_SINGLE_TONE_TX;
if (cotuTx == 0)
pmp_priv->mode = MP_CONTINUOUS_TX;
if (CarrSprTx == 0)
pmp_priv->mode = MP_CARRIER_SUPPRISSION_TX;
if (scTx == 0)
pmp_priv->mode = MP_SINGLE_CARRIER_TX;
status = rtw_mp_pretx_proc(padapter, bStartTest, extra);
if (stop == 0)
pmp_priv->mode = MP_ON;
wrqu->length = strlen(extra);
return status;
}
int rtw_mp_disable_bt_coexist(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
#ifdef CONFIG_BTC
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
#endif
u8 input[RTW_IWD_MAX_LEN];
u32 bt_coexist;
_rtw_memset(input, 0, sizeof(input));
if (copy_from_user(input, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
input[wrqu->data.length] = '\0';
bt_coexist = rtw_atoi(input);
#if 0
if (bt_coexist == 0) {
RTW_INFO("Set OID_RT_SET_DISABLE_BT_COEXIST: disable BT_COEXIST\n");
#ifdef CONFIG_BTC
rtw_btcoex_HaltNotify(padapter);
rtw_btcoex_SetManualControl(padapter, _TRUE);
/* Force to switch Antenna to WiFi*/
rtw_write16(padapter, 0x870, 0x300);
rtw_write16(padapter, 0x860, 0x110);
#endif
/* CONFIG_BTC */
} else {
#ifdef CONFIG_BTC
rtw_btcoex_SetManualControl(padapter, _FALSE);
#endif
}
#endif
return 0;
}
int rtw_mp_arx(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmppriv = &padapter->mppriv;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
u8 input[RTW_IWD_MAX_LEN];
u32 ret;
char *pch, *token, *tmp[2] = {0x00, 0x00};
u32 i = 0, jj = 0, kk = 0, cnts = 0;
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
RTW_INFO("%s: %s\n", __func__, input);
if (strncmp(input, "setbssid=", 8) == 0) {
pch = input;
while ((token = strsep(&pch, "=")) != NULL) {
if (i > 1)
break;
tmp[i] = token;
i++;
}
if ((tmp[0] != NULL) && (tmp[1] != NULL)) {
cnts = strlen(tmp[1]) / 2;
if (cnts < 1)
return -EFAULT;
RTW_INFO("%s: cnts=%d\n", __func__, cnts);
RTW_INFO("%s: data=%s\n", __func__, tmp[1]);
for (jj = 0, kk = 0; jj < cnts ; jj++, kk += 2) {
pmppriv->network_macaddr[jj] =
key_2char2num(tmp[1][kk], tmp[1][kk + 1]);
RTW_INFO("network_macaddr[%d]=%x\n",
jj, pmppriv->network_macaddr[jj]);
}
} else
return -EFAULT;
pmppriv->bSetRxBssid = _TRUE;
} else if (strncmp(input, "frametype", 9) == 0) {
if (strncmp(input, "frametype beacon", 16) == 0)
pmppriv->brx_filter_beacon = _TRUE;
else
pmppriv->brx_filter_beacon = _FALSE;
} else if (strncmp(input, "accept_mac", 10) == 0) {
pmppriv->bmac_filter = _TRUE;
pch = input;
while ((token = strsep(&pch, "=")) != NULL) {
if (i > 1)
break;
tmp[i] = token;
i++;
}
if ((tmp[0] != NULL) && (tmp[1] != NULL)) {
cnts = strlen(tmp[1]) / 2;
if (cnts < 1)
return -EFAULT;
RTW_INFO("%s: cnts=%d\n", __func__, cnts);
RTW_INFO("%s: data=%s\n", __func__, tmp[1]);
for (jj = 0, kk = 0; jj < cnts ; jj++, kk += 2) {
pmppriv->mac_filter[jj] = key_2char2num(tmp[1][kk], tmp[1][kk + 1]);
RTW_INFO("%s mac_filter[%d]=%x\n", __func__, jj, pmppriv->mac_filter[jj]);
}
} else
return -EFAULT;
} else if (strncmp(input, "start", 5) == 0) {
sprintf(extra, "start");
} else if (strncmp(input, "stop", 5) == 0) {
struct rtw_mp_rx_arg rx_arg;
_rtw_memset((void *)&rx_arg, 0, sizeof(struct rtw_mp_rx_arg));
rtw_mp_phl_query_rx(padapter, &rx_arg, 2);
if (rx_arg.cmd_ok) {
pmppriv->rx_pktcount = rx_arg.rx_ok;
pmppriv->rx_crcerrpktcount = rx_arg.rx_err;
RTW_INFO("phl_query_rx rx_ok=%d rx_err=%d\n",
pmppriv->rx_pktcount, pmppriv->rx_crcerrpktcount);
} else
RTW_WARN("phl_query_rx Fail !!!");
pmppriv->bmac_filter = _FALSE;
pmppriv->bSetRxBssid = _FALSE;
sprintf(extra, "Received packet OK:%d CRC error:%d ,Filter out:%d",
pmppriv->rx_pktcount, pmppriv->rx_crcerrpktcount,
pmppriv->rx_pktcount_filter_out);
} else if (strncmp(input, "phy", 3) == 0) {
struct rtw_mp_rx_arg rx_arg;
_rtw_memset((void *)&rx_arg, 0, sizeof(struct rtw_mp_rx_arg));
rtw_mp_phl_query_rx(padapter, &rx_arg, 0);
if (rx_arg.cmd_ok)
sprintf(extra, "Phy Received packet OK:%d CRC error:%d",
rx_arg.rx_ok, rx_arg.rx_err);
else
sprintf(extra, "PHL Phy Query Fail !!!");
} else if (strncmp(input, "mac", 3) == 0) {
struct rtw_mp_rx_arg rx_arg;
_rtw_memset((void *)&rx_arg, 0, sizeof(struct rtw_mp_rx_arg));
rtw_mp_phl_query_rx(padapter, &rx_arg, 1);
if (rx_arg.cmd_ok)
sprintf(extra, "Mac Received packet OK:%d CRC error:%d",
rx_arg.rx_ok, rx_arg.rx_err);
else
sprintf(extra, "Mac Phy Query Fail !!!");
} else if (strncmp(input, "mon=", 4) == 0) {
int bmon = 0;
ret = sscanf(input, "mon=%d", &bmon);
if (bmon == 1) {
pmppriv->rx_bindicatePkt = _TRUE;
sprintf(extra, "Indicating Receive Packet to network start\n");
} else {
pmppriv->rx_bindicatePkt = _FALSE;
sprintf(extra, "Indicating Receive Packet to network Stop\n");
}
} else if (strncmp(input, "loopbk", 6) == 0) {
u32 val32 = rtw_phl_read32(dvobj->phl, 0xCC20);
val32 |= BIT0;
rtw_phl_write32(dvobj->phl, 0xCC20 , val32);
pmppriv->bloopback = _TRUE;
sprintf(extra , "Enter MAC LoopBack mode\n");
} else if (strncmp(input, "gain", 4) == 0) {
struct rtw_mp_rx_arg rx_arg;
u32 gain_val = 0xff;
u8 path_num = 0;
u8 rf_path = 0xff;
u8 iscck = 0xff;
u8 *pch = extra;
switch (input[4]) {
case 'a':
rf_path = RF_PATH_A;
break;
case 'b':
rf_path = RF_PATH_B;
break;
case 'c':
rf_path = RF_PATH_C;
break;
case 'd':
rf_path = RF_PATH_D;
break;
}
if ((sscanf(input + 5, "=0x%x,iscck=%hhd", &gain_val, &iscck) == 2) ||
(sscanf(input + 5, "=%d,iscck=%hhd", &gain_val, &iscck) == 2))
RTW_INFO("%s: read gain = %d , is cck =%d\n", __func__, gain_val, iscck);
else if ((sscanf(input + 4, "=0x%x", &gain_val) == 1) ||
(sscanf(input + 4, "=%d", &gain_val) == 1))
iscck = (u8)rtw_mp_is_cck_rate(pmppriv->rateidx);
else {
sprintf(pch, "error format: gain=[Dec/Hex]\n"
"\t\tgaina or gainb=[Dec/Hex],iscck=0/1\n");
wrqu->length = strlen(pch) + 1;
return 0;
}
if (rf_path == 0xff) {
rf_path = RF_PATH_A;
path_num = GET_HAL_RFPATH_NUM(adapter_to_dvobj(padapter)) - 1;
} else
path_num = rf_path;
if (gain_val == 0xff || iscck == 0xff) {
sprintf(extra, "error format: gaina or gainb=%d,iscck=%d\n", gain_val, iscck);
wrqu->length = strlen(extra) + 1;
return 0;
}
for (; rf_path <= path_num ; rf_path++) {
RTW_INFO("%s:set Path:%d gain_offset=%d iscck=%d\n",
__func__, rf_path, gain_val, iscck);
_rtw_memset((void *)&rx_arg, 0, sizeof(struct rtw_mp_rx_arg));
rx_arg.offset = (s8)gain_val;
rx_arg.iscck = iscck;
rtw_mp_phl_rx_gain_offset(padapter, &rx_arg, rf_path);
if (rx_arg.cmd_ok)
pch += sprintf(pch, "Path %s: 0x%hhx Rx Gain offset OK\n\t\t",
(rf_path == RF_PATH_A) ? "A":(rf_path == RF_PATH_B) ? "B":
(rf_path == RF_PATH_C) ? "C":"D", gain_val);
}
} else if (strncmp(input, "rssi", 4) == 0) {
struct rtw_mp_rx_arg rx_arg;
u8 rssi_path = 0, all_path_num = 0;
char *pcar = extra;
u8 i = 0;
if (strncmp(input, "rssi a", 6) == 0)
rssi_path = 0;
else if (strncmp(input, "rssi b", 6) == 0)
rssi_path = 1;
else
all_path_num = GET_HAL_RFPATH_NUM(adapter_to_dvobj(padapter));
if (all_path_num > 1) {
rssi_path = 0;
all_path_num = all_path_num - 1;
} else
all_path_num = rssi_path;
RTW_INFO("%s:Query RSSI Path:%d to %d\n", __func__, rssi_path, all_path_num);
_rtw_memset((void *)&rx_arg, 0, sizeof(struct rtw_mp_rx_arg));
for (i = rssi_path ; i <= all_path_num; i++) {
rx_arg.rf_path = i;
rtw_mp_phl_rx_rssi(padapter, &rx_arg);
if (rx_arg.cmd_ok) {
int result_int = 0;
int result_dec = 0;
result_int = (rx_arg.rssi / 2) -110;
result_dec = (rx_arg.rssi % 2);
if (result_dec == 1) {
result_dec = (result_dec * 10) / 2;
result_int += 1;
}
pcar += sprintf(pcar, "Path%d RSSI=%d.%d ", i, result_int, result_dec);
} else
pcar += sprintf(pcar, "Path%d RSSI Fail\n", i);
}
} else if (strncmp(input, "physts", 6) == 0) {
struct rtw_mp_rx_arg rx_arg;
bool bon;
if (strncmp(input, "physts on", 9) == 0)
bon = true;
else
bon = false;
_rtw_memset((void *)&rx_arg, 0, sizeof(struct rtw_mp_rx_arg));
rtw_mp_phl_rx_physts(padapter, &rx_arg, bon);
if (rx_arg.cmd_ok)
sprintf(extra, "start OK" );
else
sprintf(extra, "start Fail");
}
wrqu->length = strlen(extra) + 1;
return 0;
}
int rtw_mp_trx_query(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
u32 txok, txfail, rxok, rxfail, rxfilterout;
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = (struct mp_priv *)&padapter->mppriv;
if (pmp_priv->rtw_mp_tx_method == RTW_MP_PMACT_TX)
rtw_phl_mp_tx_cmd(padapter, RTW_MP_TX_CMD_PHY_OK, pmp_priv->rtw_mp_tx_method, _FALSE);
txok = padapter->mppriv.tx.sended;
txfail = 0;
rxok = padapter->mppriv.rx_pktcount;
rxfail = padapter->mppriv.rx_crcerrpktcount;
rxfilterout = padapter->mppriv.rx_pktcount_filter_out;
_rtw_memset(extra, '\0', 128);
sprintf(extra, "Tx OK:%d, Tx Fail:%d, Rx OK:%d, CRC error:%d ,Rx Filter out:%d\n", txok, txfail, rxok, rxfail, rxfilterout);
wrqu->length = strlen(extra) + 1;
return 0;
}
int rtw_mp_pwrtrk(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
u8 enable;
u32 thermal;
s32 ret = 0;
_adapter *padapter = rtw_netdev_priv(dev);
u8 input[RTW_IWD_MAX_LEN];
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
_rtw_memset(extra, 0, wrqu->length);
enable = RTW_MP_TSSI_OFF;
if (wrqu->length > 1) {
/* not empty string*/
if (strncmp(input, "off", 3) == 0) {
enable = RTW_MP_TSSI_OFF;
sprintf(extra, "TSSI power tracking off");
} else if (strncmp(input, "on", 2) == 0) {
enable = RTW_MP_TSSI_ON;
sprintf(extra, "TSSI power tracking on");
} else if (strncmp(input, "cal", 3) == 0) {
enable = RTW_MP_TSSI_CAL;
sprintf(extra, "TSSI cal");
} else {
input[wrqu->length] = '\0';
enable = rtw_atoi(input);
sprintf(extra, "TSSI power tracking %d", enable);
}
if (enable <= RTW_MP_TSSI_CAL)
ret = rtw_mp_set_tssi_pwrtrk(padapter, enable);
if (ret == false)
sprintf(extra, "set TSSI power tracking fail");
} else {
enable = rtw_mp_get_tssi_pwrtrk(padapter);
sprintf(extra, "Get TSSI state: %d\n\
incput (int/str): [0]:off / [1]:on / [2]:cal for TSSI Tracking", enable);
}
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_psd(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
u8 input[RTW_IWD_MAX_LEN];
_rtw_memset(input, 0, sizeof(input));
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
input[wrqu->length] = '\0';
strcpy(extra, input);
wrqu->length = mp_query_psd(padapter, extra);
return 0;
}
int rtw_mp_thermal(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
u8 val[4] = {0};
u8 ret = 0;
u16 ther_path_addr[4] = {0};
u16 cnt = 1;
_adapter *padapter = rtw_netdev_priv(dev);
int rfpath = RF_PATH_A;
if (copy_from_user(extra, wrqu->pointer, wrqu->length))
return -EFAULT;
if ((strncmp(extra, "write", 6) == 0)) {
#if 0
int i;
u16 raw_cursize = 0, raw_maxsize = 0;
raw_maxsize = efuse_GetavailableSize(padapter);
RTW_INFO("[eFuse available raw size]= %d bytes\n", raw_maxsize - raw_cursize);
if (2 > raw_maxsize - raw_cursize) {
RTW_INFO("no available efuse!\n");
return -EFAULT;
}
for (i = 0; i < GET_HAL_RFPATH_NUM(adapter_to_dvobj(padapter)); i++) {
GetThermalMeter(padapter, i , &val[i]);
if (ther_path_addr[i] != 0 && val[i] != 0) {
if (rtw_efuse_map_write(padapter, ther_path_addr[i], cnt, &val[i]) == _FAIL) {
RTW_INFO("Error efuse write thermal addr 0x%x ,val = 0x%x\n", ther_path_addr[i], val[i]);
return -EFAULT;
}
} else {
RTW_INFO("Error efuse write thermal Null addr,val \n");
return -EFAULT;
}
}
#endif
_rtw_memset(extra, 0, wrqu->length);
sprintf(extra, " efuse write ok :%d", val[0]);
} else {
ret = sscanf(extra, "%d", &rfpath);
if (ret < 1) {
rfpath = RF_PATH_A;
RTW_INFO("default thermal of path(%d)\n", rfpath);
}
if (rfpath >= GET_HAL_RFPATH_NUM(adapter_to_dvobj(padapter)))
return -EINVAL;
RTW_INFO("read thermal of path(%d)\n", rfpath);
GetThermalMeter(padapter, rfpath, &val[0]);
_rtw_memset(extra, 0, wrqu->length);
sprintf(extra, "%d [0x%hhx]", val[0], val[0]);
}
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_reset_stats(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
struct mp_priv *pmp_priv;
_adapter *padapter = rtw_netdev_priv(dev);
pmp_priv = &padapter->mppriv;
pmp_priv->tx.sended = 0;
pmp_priv->tx_pktcount = 0;
pmp_priv->rx_pktcount = 0;
pmp_priv->rx_pktcount_filter_out = 0;
pmp_priv->rx_crcerrpktcount = 0;
rtw_mp_reset_phy_count(padapter);
_rtw_memset(extra, 0, wrqu->length);
sprintf(extra, "mp_reset_stats ok\n");
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_dump(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
struct mp_priv *pmp_priv;
u8 input[RTW_IWD_MAX_LEN];
_adapter *padapter = rtw_netdev_priv(dev);
pmp_priv = &padapter->mppriv;
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
if (strncmp(input, "all", 4) == 0) {
//mac_reg_dump(RTW_DBGDUMP, padapter);
//bb_reg_dump(RTW_DBGDUMP, padapter);
//rf_reg_dump(RTW_DBGDUMP, padapter);
}
return 0;
}
int rtw_mp_phypara(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
char input[RTW_IWD_MAX_LEN];
u32 invalxcap = 0, ret = 0;
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
RTW_INFO("%s:priv in=%s\n", __func__, input);
if (strncmp(input, "xcap=", 5) == 0) {
if ((sscanf(input+4, "=0x%x", &invalxcap) == 1) ||
(sscanf(input+4, "=%d", &invalxcap) == 1)) {
if (invalxcap < 255) {
rtw_mp_set_crystal_cap(padapter, invalxcap);
sprintf(extra, "Set xcap = %d [0x%hhx]", invalxcap, invalxcap);
} else
sprintf(extra, "Error formats , inpunt value over 255 !\n");
wrqu->length = strlen(extra);
return ret;
}
}
sprintf(extra, "Error formats , inpunt [xcap=%%d/0x%%x]\n");
wrqu->length = strlen(extra);
return ret;
}
int rtw_mp_SetRFPath(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
char input[RTW_IWD_MAX_LEN];
int bMain = 1, bTurnoff = 1;
#ifdef CONFIG_ANTENNA_DIVERSITY
u8 ret = _TRUE;
#endif
RTW_INFO("%s:iwpriv in=%s\n", __func__, input);
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
#if 0
bMain = strncmp(input, "1", 2); /* strncmp TRUE is 0*/
bTurnoff = strncmp(input, "0", 3); /* strncmp TRUE is 0*/
_rtw_memset(extra, 0, wrqu->length);
#ifdef CONFIG_ANTENNA_DIVERSITY
if (bMain == 0)
ret = rtw_mp_set_antdiv(padapter, _TRUE);
else
ret = rtw_mp_set_antdiv(padapter, _FALSE);
if (ret == _FALSE)
RTW_INFO("%s:ANTENNA_DIVERSITY FAIL\n", __func__);
#endif
if (bMain == 0) {
MP_PHY_SetRFPathSwitch(padapter, _TRUE);
RTW_INFO("%s:PHY_SetRFPathSwitch=TRUE\n", __func__);
sprintf(extra, "mp_setrfpath Main\n");
} else if (bTurnoff == 0) {
MP_PHY_SetRFPathSwitch(padapter, _FALSE);
RTW_INFO("%s:PHY_SetRFPathSwitch=FALSE\n", __func__);
sprintf(extra, "mp_setrfpath Aux\n");
} else {
bMain = MP_PHY_QueryRFPathSwitch(padapter);
RTW_INFO("%s:Query RF Path = %s\n", __func__, (bMain ? "Main":"Aux"));
sprintf(extra, "RF Path %s\n" , (bMain ? "1":"0"));
}
#endif
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_switch_rf_path(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv;
char input[RTW_IWD_MAX_LEN];
int bwlg = 1, bwla = 1, btg = 1, bbt=1;
u8 ret = 0;
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
pmp_priv = &padapter->mppriv;
RTW_INFO("%s: in=%s\n", __func__, input);
#ifdef CONFIG_RTL8821C /* only support for 8821c wlg/wla/btg/bt RF switch path */
if ((strncmp(input, "WLG", 3) == 0) || (strncmp(input, "1", 1) == 0)) {
pmp_priv->rf_path_cfg = SWITCH_TO_WLG;
sprintf(extra, "switch rf path WLG\n");
} else if ((strncmp(input, "WLA", 3) == 0) || (strncmp(input, "2", 1) == 0)) {
pmp_priv->rf_path_cfg = SWITCH_TO_WLA;
sprintf(extra, "switch rf path WLA\n");
} else if ((strncmp(input, "BTG", 3) == 0) || (strncmp(input, "0", 1) == 0)) {
pmp_priv->rf_path_cfg = SWITCH_TO_BTG;
sprintf(extra, "switch rf path BTG\n");
} else if ((strncmp(input, "BT", 3) == 0) || (strncmp(input, "3", 1) == 0)) {
pmp_priv->rf_path_cfg = SWITCH_TO_BT;
sprintf(extra, "switch rf path BT\n");
} else {
pmp_priv->rf_path_cfg = SWITCH_TO_WLG;
sprintf(extra, "Error input, default set WLG\n");
return -EFAULT;
}
mp_phy_switch_rf_path_set(padapter, &pmp_priv->rf_path_cfg);
#endif
wrqu->length = strlen(extra);
return ret;
}
int rtw_mp_QueryDrv(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
char input[RTW_IWD_MAX_LEN];
int qAutoLoad = 1;
//struct efuse_info *efuse = adapter_to_efuse(padapter);
if (copy_from_user(input, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
RTW_INFO("%s:iwpriv in=%s\n", __func__, input);
qAutoLoad = strncmp(input, "autoload", 8); /* strncmp TRUE is 0*/
if (qAutoLoad == 0) {
RTW_INFO("%s:qAutoLoad\n", __func__);
//if (efuse->is_autoload_fail)
// sprintf(extra, "fail");
//else
// sprintf(extra, "ok");
}
wrqu->data.length = strlen(extra) + 1;
return 0;
}
int rtw_mp_PwrCtlDM(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
u8 input[RTW_IWD_MAX_LEN];
u8 pwrtrk_state = 0;
u8 pwtk_type[5][25] = {"Thermal tracking off","Thermal tracking on",
"TSSI tracking off","TSSI tracking on","TSSI calibration"};
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
input[wrqu->length] = '\0';
RTW_INFO("%s: in=%s\n", __func__, input);
if (wrqu->length == 2) {
if(input[0] >= '0' && input[0] <= '4') {
pwrtrk_state = rtw_atoi(input);
/*MPT_PwrCtlDM(padapter, pwrtrk_state);*/
sprintf(extra, "PwrCtlDM start %s\n" , pwtk_type[pwrtrk_state]);
} else {
sprintf(extra, "Error unknown number ! Please check your input number\n"
" 0 : Thermal tracking off\n 1 : Thermal tracking on\n 2 : TSSI tracking off\n"
" 3 : TSSI tracking on\n 4 : TSSI calibration\n");
}
wrqu->length = strlen(extra);
return 0;
}
if (strncmp(input, "start", 5) == 0 || strncmp(input, "thertrk on", 10) == 0) {/* strncmp TRUE is 0*/
pwrtrk_state = 1;
sprintf(extra, "PwrCtlDM start %s\n" , pwtk_type[pwrtrk_state]);
} else if (strncmp(input, "thertrk off", 11) == 0 || strncmp(input, "stop", 5) == 0) {
pwrtrk_state = 0;
sprintf(extra, "PwrCtlDM stop %s\n" , pwtk_type[pwrtrk_state]);
} else if (strncmp(input, "tssitrk off", 11) == 0){
pwrtrk_state = 2;
sprintf(extra, "PwrCtlDM stop %s\n" , pwtk_type[pwrtrk_state]);
} else if (strncmp(input, "tssitrk on", 10) == 0){
pwrtrk_state = 3;
sprintf(extra, "PwrCtlDM start %s\n" , pwtk_type[pwrtrk_state]);
} else if (strncmp(input, "tssik", 5) == 0){
pwrtrk_state = 4;
sprintf(extra, "PwrCtlDM start %s\n" , pwtk_type[pwrtrk_state]);
} else {
pwrtrk_state = 0;
sprintf(extra, "Error input, default PwrCtlDM stop\n"
" thertrk off : Thermal tracking off\n thertrk on : Thermal tracking on\n"
" tssitrk off : TSSI tracking off\n tssitrk on : TSSI tracking on\n tssik : TSSI calibration\n\n"
" 0 : Thermal tracking off\n 1 : Thermal tracking on\n 2 : TSSI tracking off\n"
" 3 : TSSI tracking on\n 4 : TSSI calibration\n");
}
/*MPT_PwrCtlDM(padapter, pwrtrk_state);*/
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_iqk(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
rtw_mp_trigger_iqk(padapter);
return 0;
}
int rtw_mp_lck(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
rtw_mp_trigger_lck(padapter);
return 0;
}
int rtw_mp_dpk(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
//struct dm_struct *phydm = adapter_to_phydm(padapter);
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(padapter);
u8 ips_mode = IPS_NUM; /* init invalid value */
u8 lps_mode = PM_PS_MODE_NUM; /* init invalid value */
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
*(extra + wrqu->data.length) = '\0';
if (strncmp(extra, "off", 3) == 0 && strlen(extra) < 4) {
//phydm->dpk_info.is_dpk_enable = 0;
//halrf_dpk_enable_disable(phydm);
sprintf(extra, "set dpk off\n");
} else if (strncmp(extra, "on", 2) == 0 && strlen(extra) < 3) {
//phydm->dpk_info.is_dpk_enable = 1;
//halrf_dpk_enable_disable(phydm);
sprintf(extra, "set dpk on\n");
} else {
#ifdef CONFIG_LPS
lps_mode = pwrctrlpriv->power_mgnt;/* keep org value */
rtw_pm_set_lps(padapter, PM_PS_MODE_ACTIVE);
#endif
#ifdef CONFIG_IPS
ips_mode = pwrctrlpriv->ips_mode;/* keep org value */
rtw_pm_set_ips(padapter, IPS_NONE);
#endif
rtw_mp_trigger_dpk(padapter);
if (padapter->registrypriv.mp_mode == 0) {
#ifdef CONFIG_IPS
rtw_pm_set_ips(padapter, ips_mode);
#endif /* CONFIG_IPS */
#ifdef CONFIG_LPS
rtw_pm_set_lps(padapter, lps_mode);
#endif /* CONFIG_LPS */
}
sprintf(extra, "set dpk trigger\n");
}
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_mp_get_tsside(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
char input[RTW_IWD_MAX_LEN];
u8 rfpath = 0xff;
s8 tssi_de = 0;
char pout_str_buf[7];
char tgr_str_buf[7];
u8 pout_signed_flag = 0 , tgrpwr_signed_flag = 0;
int int_num = 0;
u32 dec_num = 0;
s32 pout = 0;
s32 tgrpwr = 0;
int i;
if (wrqu->length > 128)
return -EFAULT;
_rtw_memset(input, 0, sizeof(input));
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
input[wrqu->length] = '\0';
if (wrqu->length == 2) {
rfpath = rtw_atoi(input);
if (rfpath >= 0 && rfpath <= 3) {
tssi_de = rtw_mp_get_tssi_de(padapter, rfpath);
} else
sprintf(extra, "Invalid command format, please indicate RF path 0/1/2/3");
} else if (sscanf(input + 1, "dbm=%7s pwr=%7s", tgr_str_buf , pout_str_buf) == 2) {
/*
* rtwpriv wlan0 mp_get_tsside adbm=12 pwr=12
* [adbm] target power [pwr] output power
* rf_path : 0 = adbm , 1 = bdbm
* dbm : -15.00 ~ 25.00
* pwr : -15.00 ~ 25.00
* ex : rtwpriv wlan0 mp_get_tsside adbm=16 pwr=14.25
*/
RTW_INFO("%s: in=tgr_str %s pout_str %s\n", __func__, tgr_str_buf , pout_str_buf);
switch (input[0]) {
case 'a':
rfpath = RF_PATH_A;
break;
case 'b':
rfpath = RF_PATH_B;
break;
case 'c':
rfpath = RF_PATH_C;
break;
case 'd':
rfpath = RF_PATH_D;
break;
default:
goto error;
break;
}
if(pout_str_buf[0] == '-')
pout_signed_flag = 1;
i = sscanf(pout_str_buf, "%d.%2u", &int_num, &dec_num);
pout = int_num * 100;
RTW_DBG("%s:pout %d int %d dec %d\n", __func__, pout, int_num , dec_num);
if (i == 2) {
/* Convert decimal number
* ex : 0.1 => 100, -0.1 => 100*/
dec_num = (dec_num < 1) ? dec_num * 10 : dec_num;
dec_num = (dec_num < 10) ? dec_num * 1 : dec_num;
pout += ((pout < 0 || pout_signed_flag == 1) ? -dec_num : dec_num);
}
if (pout < -1500 || 2500 < pout)
goto error;
RTW_INFO("%s:pout %d\n", __func__, pout);
if (tgr_str_buf[0] == '-')
tgrpwr_signed_flag = 1;
int_num = 0;
dec_num = 0;
i = sscanf(tgr_str_buf, "%d.%2u", &int_num, &dec_num);
tgrpwr = int_num * 100;
RTW_DBG("%s:tgrpwr %d int %d dec %d\n", __func__, tgrpwr, int_num , dec_num);
if (i == 2) {
/* Convert decimal number
* ex : 0.1 => 100, -0.1 => 100*/
dec_num = (dec_num < 1) ? dec_num * 10 : dec_num;
dec_num = (dec_num < 10) ? dec_num * 1 : dec_num;
tgrpwr += ((tgrpwr < 0 || tgrpwr_signed_flag == 1) ? -dec_num : dec_num);
}
if (tgrpwr < -1500 || 2500 < tgrpwr)
goto error;
RTW_INFO("%s:tgrpwr %d\n", __func__, tgrpwr);
tssi_de = (s8)rtw_mp_get_online_tssi_de(padapter, pout, tgrpwr, rfpath);
}
if (rfpath == 0)
sprintf(extra, "patha=%d hex:%x", tssi_de, (u8)tssi_de);
else if (rfpath == 1)
sprintf(extra, "pathb=%d hex:%x", tssi_de, (u8)tssi_de);
else if (rfpath == 2)
sprintf(extra, "pathc=%d hex:%x", tssi_de, (u8)tssi_de);
else if (rfpath == 3)
sprintf(extra, "pathd=%d hex:%x", tssi_de, (u8)tssi_de);
else
goto error;
wrqu->length = strlen(extra);
return 0;
error:
sprintf(extra, "Invalid command format, please indicate RF path mp_get_tsside [0/1/2/3]\n\
GET ONLINE TSSI DE:\n\
mp_get_tsside adbm=-15.00 ~ 25.00 pwr=-15.00 ~ 25.00\n\
mp_get_tsside bdbm=-15.00 ~ 25.00 pwr=-15.00 ~ 25.00\n");
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_set_tsside(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
u32 tsside_val = 0;
u8 rf_path = RF_PATH_A;
char input[RTW_IWD_MAX_LEN];
_adapter *padapter = rtw_netdev_priv(dev);
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
RTW_INFO("%s:input =[%s]\n", __func__, input);
switch (input[4]) {
case 'a':
rf_path = RF_PATH_A;
break;
case 'b':
rf_path = RF_PATH_B;
break;
case 'c':
rf_path = RF_PATH_C;
break;
case 'd':
rf_path = RF_PATH_D;
break;
default:
goto exit_err;
}
if ((sscanf(input+5, "=0x%x", &tsside_val) == 1) ||
(sscanf(input+5, "=%d", &tsside_val) == 1)) {
if (tsside_val > 255)
sprintf(extra, "Error TSSI DE value: %d over 255" , tsside_val);
else {
sprintf(extra, "Set TSSI DE path_%s: %d",
rf_path == RF_PATH_A ? "A" : rf_path == RF_PATH_B ? "B" :
rf_path == RF_PATH_C ? "C":"D", tsside_val);
rtw_mp_set_tsside2verify(padapter, tsside_val, rf_path);
}
} else
goto exit_err;
wrqu->length = strlen(extra);
return 0;
exit_err:
sprintf(extra, "Invalid command format,\n\t\t"
"please input TSSI DE value within patha/b/c/d=[decimal] or [hex:0xXX]");
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_getver(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv;
pmp_priv = &padapter->mppriv;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
sprintf(extra, "rtwpriv=%d\n", RTWPRIV_VER_INFO);
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_mp_mon(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = &padapter->mppriv;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
//struct hal_ops *pHalFunc = &hal->hal_func;
NDIS_802_11_NETWORK_INFRASTRUCTURE networkType;
int bstart = 1, bstop = 1;
networkType = Ndis802_11Infrastructure;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
*(extra + wrqu->data.length) = '\0';
rtw_pm_set_ips(padapter, IPS_NONE);
LeaveAllPowerSaveMode(padapter);
#if 0 //def CONFIG_MP_INCLUDED
if (init_mp_priv(padapter) == _FAIL)
RTW_INFO("%s: initialize MP private data Fail!\n", __func__);
padapter->mppriv.channel = 6;
bstart = strncmp(extra, "start", 5); /* strncmp TRUE is 0*/
bstop = strncmp(extra, "stop", 4); /* strncmp TRUE is 0*/
if (bstart == 0) {
mp_join(padapter, WIFI_FW_ADHOC_STATE);
SetPacketRx(padapter, _TRUE, _FALSE);
SetChannel(padapter);
pmp_priv->rx_bindicatePkt = _TRUE;
pmp_priv->bRTWSmbCfg = _TRUE;
sprintf(extra, "monitor mode start\n");
} else if (bstop == 0) {
SetPacketRx(padapter, _FALSE, _FALSE);
pmp_priv->rx_bindicatePkt = _FALSE;
pmp_priv->bRTWSmbCfg = _FALSE;
padapter->registrypriv.mp_mode = 1;
pHalFunc->hal_deinit(padapter);
padapter->registrypriv.mp_mode = 0;
pHalFunc->hal_init(padapter);
/*rtw_disassoc_cmd(padapter, 0, 0);*/
if (check_fwstate(pmlmepriv, WIFI_ASOC_STATE) == _TRUE) {
rtw_disassoc_cmd(padapter, 500, 0);
rtw_indicate_disconnect(padapter, 0, _FALSE);
/*rtw_free_assoc_resources_cmd(padapter, _TRUE, 0);*/
}
rtw_pm_set_ips(padapter, IPS_NORMAL);
sprintf(extra, "monitor mode Stop\n");
}
#endif
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_mp_pretx_proc(_adapter *padapter, u8 bstart, char *extra)
{
struct mp_priv *pmp_priv = &padapter->mppriv;
char *pextra = extra;
switch (pmp_priv->mode) {
case MP_PACKET_TX:
if (bstart == 0) {
pmp_priv->tx.stop = 1;
pmp_priv->mode = MP_ON;
sprintf(extra, "Stop continuous Tx");
} else if (pmp_priv->tx.stop == 1) {
pextra = extra + strlen(extra);
pextra += sprintf(pextra, "\nStart continuous DA=ffffffffffff len=1500 count=%u\n", pmp_priv->tx.count);
pmp_priv->tx.stop = 0;
/*SetPacketTx(padapter);*/
} else
return -EFAULT;
rtw_set_phl_packet_tx(padapter, bstart);
return 0;
case MP_SINGLE_TONE_TX:
if (bstart != 0)
strcat(extra, "\nStart continuous DA=ffffffffffff len=1500\n infinite=yes.");
rtw_mp_singletone_tx(padapter, (u8)bstart);
break;
case MP_CONTINUOUS_TX:
if (bstart != 0)
strcat(extra, "\nStart continuous DA=ffffffffffff len=1500\n infinite=yes.");
rtw_mp_continuous_tx(padapter, (u8)bstart);
break;
case MP_CARRIER_SUPPRISSION_TX:
if (bstart != 0) {
if (rtw_mp_hwrate2mptrate(pmp_priv->rateidx) <= MPT_RATE_11M)
strcat(extra, "\nStart continuous DA=ffffffffffff len=1500\n infinite=yes.");
else
strcat(extra, "\nSpecify carrier suppression but not CCK rate");
}
rtw_mp_carriersuppr_tx(padapter, (u8)bstart);
break;
case MP_SINGLE_CARRIER_TX:
if (bstart != 0)
strcat(extra, "\nStart continuous DA=ffffffffffff len=1500\n infinite=yes.");
rtw_mp_singlecarrier_tx(padapter, (u8)bstart);
break;
default:
sprintf(extra, "Error! Continuous-Tx is not on-going.");
return -EFAULT;
}
if (bstart == 1 && pmp_priv->mode != MP_ON) {
struct mp_priv *pmp_priv = &padapter->mppriv;
if (pmp_priv->tx.stop == 0) {
pmp_priv->tx.stop = 1;
rtw_msleep_os(5);
}
#ifdef CONFIG_80211N_HT
if(padapter->registrypriv.ht_enable &&
is_supported_ht(padapter->registrypriv.wireless_mode))
pmp_priv->tx.attrib.ht_en = 1;
#endif
pmp_priv->tx.stop = 0;
pmp_priv->tx.count = 1;
if (pmp_priv->rtw_mp_tx_method == RTW_MP_PMACT_TX) {
pmp_priv->rtw_mp_tx_method = RTW_MP_TMACT_TX;
rtw_set_phl_packet_tx(padapter, bstart); /* send 1 pkt for trigger HW non-pkt Tx*/
pmp_priv->rtw_mp_tx_method = RTW_MP_PMACT_TX;
}
/*SetPacketTx(padapter);*/
} else
pmp_priv->mode = MP_ON;
return 0;
}
int rtw_mp_tx(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = &padapter->mppriv;
PMPT_CONTEXT pMptCtx = &(padapter->mppriv.mpt_ctx);
char *pextra = extra;
u32 bandwidth = 0, sg = 0, channel = 6, txpower = 40, rate = 108, ant = 0, txmode = 1, count = 0;
u8 bStartTest = 1, status = 0;
#ifdef CONFIG_MP_VHT_HW_TX_MODE
u8 Idx = 0, tmpU1B;
#endif
u16 antenna = 0;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
RTW_INFO("extra = %s\n", extra);
#if 0
#ifdef CONFIG_CONCURRENT_MODE
if (!is_primary_adapter(padapter)) {
sprintf(extra, "Error: MP mode can't support Virtual adapter, Please to use main adapter.\n");
wrqu->data.length = strlen(extra);
return 0;
}
#endif
if (strncmp(extra, "stop", 3) == 0) {
bStartTest = 0; /* To set Stop*/
pmp_priv->tx.stop = 1;
sprintf(extra, "Stop continuous Tx");
status = rtw_mp_pretx_proc(padapter, bStartTest, extra);
wrqu->data.length = strlen(extra);
return status;
} else if (strncmp(extra, "count", 5) == 0) {
if (sscanf(extra, "count=%d", &count) < 1)
RTW_INFO("Got Count=%d]\n", count);
pmp_priv->tx.count = count;
return 0;
} else if (strncmp(extra, "setting", 7) == 0) {
_rtw_memset(extra, 0, wrqu->data.length);
pextra += sprintf(pextra, "Current Setting :\n Channel:%d", pmp_priv->channel);
pextra += sprintf(pextra, "\n Bandwidth:%d", pmp_priv->bandwidth);
pextra += sprintf(pextra, "\n Rate index:%d", pmp_priv->rateidx);
pextra += sprintf(pextra, "\n TxPower index:%d", pmp_priv->txpoweridx);
pextra += sprintf(pextra, "\n Antenna TxPath:%d", pmp_priv->antenna_tx);
pextra += sprintf(pextra, "\n Antenna RxPath:%d", pmp_priv->antenna_rx);
pextra += sprintf(pextra, "\n MP Mode:%d", pmp_priv->mode);
wrqu->data.length = strlen(extra);
return 0;
#ifdef CONFIG_MP_VHT_HW_TX_MODE
} else if (strncmp(extra, "pmact", 5) == 0) {
if (strncmp(extra, "pmact=", 6) == 0) {
_rtw_memset(&pMptCtx->PMacTxInfo, 0, sizeof(pMptCtx->PMacTxInfo));
if (strncmp(extra, "pmact=start", 11) == 0) {
pMptCtx->PMacTxInfo.bEnPMacTx = _TRUE;
sprintf(extra, "Set PMac Tx Mode start\n");
} else {
pMptCtx->PMacTxInfo.bEnPMacTx = _FALSE;
sprintf(extra, "Set PMac Tx Mode Stop\n");
}
if (pMptCtx->bldpc == TRUE)
pMptCtx->PMacTxInfo.bLDPC = _TRUE;
if (pMptCtx->bstbc == TRUE)
pMptCtx->PMacTxInfo.bSTBC = _TRUE;
pMptCtx->PMacTxInfo.bSPreamble = pmp_priv->preamble;
pMptCtx->PMacTxInfo.bSGI = pmp_priv->preamble;
pMptCtx->PMacTxInfo.BandWidth = pmp_priv->bandwidth;
pMptCtx->PMacTxInfo.TX_RATE = HwRateToMPTRate(pmp_priv->rateidx);
pMptCtx->PMacTxInfo.Mode = pMptCtx->HWTxmode;
pMptCtx->PMacTxInfo.NDP_sound = FALSE;/*(adapter.PacketType == NDP_PKT)?TRUE:FALSE;*/
if (padapter->mppriv.pktInterval == 0)
pMptCtx->PMacTxInfo.PacketPeriod = 100;
else
pMptCtx->PMacTxInfo.PacketPeriod = padapter->mppriv.pktInterval;
if (padapter->mppriv.pktLength < 1000)
pMptCtx->PMacTxInfo.PacketLength = 1000;
else
pMptCtx->PMacTxInfo.PacketLength = padapter->mppriv.pktLength;
pMptCtx->PMacTxInfo.PacketPattern = rtw_random32() % 0xFF;
if (padapter->mppriv.tx_pktcount != 0)
pMptCtx->PMacTxInfo.PacketCount = padapter->mppriv.tx_pktcount;
pMptCtx->PMacTxInfo.Ntx = 0;
for (Idx = 16; Idx < 20; Idx++) {
tmpU1B = (padapter->mppriv.antenna_tx >> Idx) & 1;
if (tmpU1B)
pMptCtx->PMacTxInfo.Ntx++;
}
_rtw_memset(pMptCtx->PMacTxInfo.MacAddress, 0xFF, ETH_ALEN);
PMAC_Get_Pkt_Param(&pMptCtx->PMacTxInfo, &pMptCtx->PMacPktInfo);
if (MPT_IS_CCK_RATE(pMptCtx->PMacTxInfo.TX_RATE))
CCK_generator(&pMptCtx->PMacTxInfo, &pMptCtx->PMacPktInfo);
else {
PMAC_Nsym_generator(&pMptCtx->PMacTxInfo, &pMptCtx->PMacPktInfo);
/* 24 BIT*/
L_SIG_generator(pMptCtx->PMacPktInfo.N_sym, &pMptCtx->PMacTxInfo, &pMptCtx->PMacPktInfo);
}
/* 48BIT*/
if (MPT_IS_HT_RATE(pMptCtx->PMacTxInfo.TX_RATE))
HT_SIG_generator(&pMptCtx->PMacTxInfo, &pMptCtx->PMacPktInfo);
else if (MPT_IS_VHT_RATE(pMptCtx->PMacTxInfo.TX_RATE)) {
/* 48BIT*/
VHT_SIG_A_generator(&pMptCtx->PMacTxInfo, &pMptCtx->PMacPktInfo);
/* 26/27/29 BIT & CRC 8 BIT*/
VHT_SIG_B_generator(&pMptCtx->PMacTxInfo);
/* 32 BIT*/
VHT_Delimiter_generator(&pMptCtx->PMacTxInfo);
}
mpt_ProSetPMacTx(padapter);
} else if (strncmp(extra, "pmact,mode=", 11) == 0) {
int txmode = 0;
if (sscanf(extra, "pmact,mode=%d", &txmode) > 0) {
if (txmode == 1) {
pMptCtx->HWTxmode = CONTINUOUS_TX;
sprintf(extra, "\t Config HW Tx mode = CONTINUOUS_TX\n");
} else if (txmode == 2) {
pMptCtx->HWTxmode = OFDM_Single_Tone_TX;
sprintf(extra, "\t Config HW Tx mode = OFDM_Single_Tone_TX\n");
} else {
pMptCtx->HWTxmode = PACKETS_TX;
sprintf(extra, "\t Config HW Tx mode = PACKETS_TX\n");
}
} else {
pMptCtx->HWTxmode = PACKETS_TX;
sprintf(extra, "\t Config HW Tx mode=\n 0 = PACKETS_TX\n 1 = CONTINUOUS_TX\n 2 = OFDM_Single_Tone_TX");
}
} else if (strncmp(extra, "pmact,", 6) == 0) {
int PacketPeriod = 0, PacketLength = 0, PacketCout = 0;
int bldpc = 0, bstbc = 0;
if (sscanf(extra, "pmact,period=%d", &PacketPeriod) > 0) {
padapter->mppriv.pktInterval = PacketPeriod;
RTW_INFO("PacketPeriod=%d\n", padapter->mppriv.pktInterval);
sprintf(extra, "PacketPeriod [1~255]= %d\n", padapter->mppriv.pktInterval);
} else if (sscanf(extra, "pmact,length=%d", &PacketLength) > 0) {
padapter->mppriv.pktLength = PacketLength;
RTW_INFO("PacketPeriod=%d\n", padapter->mppriv.pktLength);
sprintf(extra, "PacketLength[~65535]=%d\n", padapter->mppriv.pktLength);
} else if (sscanf(extra, "pmact,count=%d", &PacketCout) > 0) {
padapter->mppriv.tx_pktcount = PacketCout;
RTW_INFO("Packet Cout =%d\n", padapter->mppriv.tx_pktcount);
sprintf(extra, "Packet Cout =%d\n", padapter->mppriv.tx_pktcount);
} else if (sscanf(extra, "pmact,ldpc=%d", &bldpc) > 0) {
pMptCtx->bldpc = bldpc;
RTW_INFO("Set LDPC =%d\n", pMptCtx->bldpc);
sprintf(extra, "Set LDPC =%d\n", pMptCtx->bldpc);
} else if (sscanf(extra, "pmact,stbc=%d", &bstbc) > 0) {
pMptCtx->bstbc = bstbc;
RTW_INFO("Set STBC =%d\n", pMptCtx->bstbc);
sprintf(extra, "Set STBC =%d\n", pMptCtx->bstbc);
} else
sprintf(extra, "\n period={1~255}\n length={1000~65535}\n count={0~}\n ldpc={0/1}\n stbc={0/1}");
}
wrqu->data.length = strlen(extra);
return 0;
#endif
} else {
if (sscanf(extra, "ch=%d,bw=%d,rate=%d,pwr=%d,ant=%d,tx=%d", &channel, &bandwidth, &rate, &txpower, &ant, &txmode) < 6) {
RTW_INFO("Invalid format [ch=%d,bw=%d,rate=%d,pwr=%d,ant=%d,tx=%d]\n", channel, bandwidth, rate, txpower, ant, txmode);
_rtw_memset(extra, 0, wrqu->data.length);
pextra += sprintf(pextra, "\n Please input correct format as bleow:\n");
pextra += sprintf(pextra, "\t ch=%d,bw=%d,rate=%d,pwr=%d,ant=%d,tx=%d\n", channel, bandwidth, rate, txpower, ant, txmode);
pextra += sprintf(pextra, "\n [ ch : BGN = <1~14> , A or AC = <36~165> ]");
pextra += sprintf(pextra, "\n [ bw : Bandwidth: 0 = 20M, 1 = 40M, 2 = 80M ]");
pextra += sprintf(pextra, "\n [ rate : CCK: 1 2 5.5 11M X 2 = < 2 4 11 22 >]");
pextra += sprintf(pextra, "\n [ OFDM: 6 9 12 18 24 36 48 54M X 2 = < 12 18 24 36 48 72 96 108>");
pextra += sprintf(pextra, "\n [ HT 1S2SS MCS0 ~ MCS15 : < [MCS0]=128 ~ [MCS7]=135 ~ [MCS15]=143 >");
pextra += sprintf(pextra, "\n [ HT 3SS MCS16 ~ MCS32 : < [MCS16]=144 ~ [MCS23]=151 ~ [MCS32]=159 >");
pextra += sprintf(pextra, "\n [ VHT 1SS MCS0 ~ MCS9 : < [MCS0]=160 ~ [MCS9]=169 >");
pextra += sprintf(pextra, "\n [ txpower : 1~63 power index");
pextra += sprintf(pextra, "\n [ ant : <A = 1, B = 2, C = 4, D = 8> ,2T ex: AB=3 BC=6 CD=12");
pextra += sprintf(pextra, "\n [ txmode : < 0 = CONTINUOUS_TX, 1 = PACKET_TX, 2 = SINGLE_TONE_TX, 3 = CARRIER_SUPPRISSION_TX, 4 = SINGLE_CARRIER_TX>\n");
wrqu->data.length = strlen(extra);
return status;
} else {
char *pextra = extra;
RTW_INFO("Got format [ch=%d,bw=%d,rate=%d,pwr=%d,ant=%d,tx=%d]\n", channel, bandwidth, rate, txpower, ant, txmode);
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Change Current channel %d to channel %d", padapter->mppriv.channel , channel);
padapter->mppriv.channel = channel;
SetChannel(padapter);
pHalData->current_channel = channel;
if (bandwidth == 1)
bandwidth = CHANNEL_WIDTH_40;
else if (bandwidth == 2)
bandwidth = CHANNEL_WIDTH_80;
pextra = extra + strlen(pextra);
pextra += sprintf(pextra, "\nChange Current Bandwidth %d to Bandwidth %d", padapter->mppriv.bandwidth, bandwidth);
padapter->mppriv.bandwidth = (u8)bandwidth;
padapter->mppriv.preamble = sg;
SetBandwidth(padapter);
pHalData->current_channel_bw = bandwidth;
pextra += sprintf(pextra, "\nSet power level :%d", txpower);
padapter->mppriv.txpoweridx = (u8)txpower;
pMptCtx->TxPwrLevel[RF_PATH_A] = (u8)txpower;
pMptCtx->TxPwrLevel[RF_PATH_B] = (u8)txpower;
pMptCtx->TxPwrLevel[RF_PATH_C] = (u8)txpower;
pMptCtx->TxPwrLevel[RF_PATH_D] = (u8)txpower;
SetTxPower(padapter);
RTW_INFO("%s: bw=%d sg=%d\n", __func__, bandwidth, sg);
if (rate <= 0x7f)
rate = wifirate2_ratetbl_inx((u8)rate);
else if (rate < 0xC8)
rate = (rate - 0x80 + MPT_RATE_MCS0);
/*HT rate 0x80(MCS0) ~ 0x8F(MCS15) ~ 0x9F(MCS31) 128~159
VHT1SS~2SS rate 0xA0 (VHT1SS_MCS0 44) ~ 0xB3 (VHT2SS_MCS9 #63) 160~179
VHT rate 0xB4 (VHT3SS_MCS0 64) ~ 0xC7 (VHT2SS_MCS9 #83) 180~199
else
VHT rate 0x90(VHT1SS_MCS0) ~ 0x99(VHT1SS_MCS9) 144~153
rate =(rate - MPT_RATE_VHT1SS_MCS0);
*/
RTW_INFO("%s: rate index=%d\n", __func__, rate);
if (rate >= MPT_RATE_LAST)
return -EINVAL;
pextra += sprintf(pextra, "\nSet data rate to %d index %d", padapter->mppriv.rateidx, rate);
padapter->mppriv.rateidx = rate;
pMptCtx->mpt_rate_index = rate;
SetDataRate(padapter);
pextra += sprintf(pextra, "\nSet Antenna Path :%d", ant);
switch (ant) {
case 1:
antenna = ANTENNA_A;
break;
case 2:
antenna = ANTENNA_B;
break;
case 4:
antenna = ANTENNA_C;
break;
case 8:
antenna = ANTENNA_D;
break;
case 3:
antenna = ANTENNA_AB;
break;
case 5:
antenna = ANTENNA_AC;
break;
case 9:
antenna = ANTENNA_AD;
break;
case 6:
antenna = ANTENNA_BC;
break;
case 10:
antenna = ANTENNA_BD;
break;
case 12:
antenna = ANTENNA_CD;
break;
case 7:
antenna = ANTENNA_ABC;
break;
case 14:
antenna = ANTENNA_BCD;
break;
case 11:
antenna = ANTENNA_ABD;
break;
case 15:
antenna = ANTENNA_ABCD;
break;
}
RTW_INFO("%s: antenna=0x%x\n", __func__, antenna);
padapter->mppriv.antenna_tx = antenna;
padapter->mppriv.antenna_rx = antenna;
pHalData->antenna_tx_path = antenna;
SetAntenna(padapter);
if (txmode == 0)
pmp_priv->mode = MP_CONTINUOUS_TX;
else if (txmode == 1) {
pmp_priv->mode = MP_PACKET_TX;
pmp_priv->tx.count = count;
} else if (txmode == 2)
pmp_priv->mode = MP_SINGLE_TONE_TX;
else if (txmode == 3)
pmp_priv->mode = MP_CARRIER_SUPPRISSION_TX;
else if (txmode == 4)
pmp_priv->mode = MP_SINGLE_CARRIER_TX;
status = rtw_mp_pretx_proc(padapter, bStartTest, extra);
}
}
#endif
wrqu->data.length = strlen(extra);
return status;
}
int rtw_mp_rx(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = &padapter->mppriv;
char *pextra = extra;
u32 bandwidth = 0, sg = 0, channel = 6, ant = 0;
u16 antenna = 0;
u8 bStartRx = 0;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
#if 0
#ifdef CONFIG_CONCURRENT_MODE
if (!is_primary_adapter(padapter)) {
sprintf(extra, "Error: MP mode can't support Virtual adapter, Please to use main adapter.\n");
wrqu->data.length = strlen(extra);
return 0;
}
#endif
if (strncmp(extra, "stop", 4) == 0) {
_rtw_memset(extra, 0, wrqu->data.length);
SetPacketRx(padapter, bStartRx, _FALSE);
pmp_priv->bmac_filter = _FALSE;
sprintf(extra, "Received packet OK:%d CRC error:%d ,Filter out:%d", padapter->mppriv.rx_pktcount, padapter->mppriv.rx_crcerrpktcount, padapter->mppriv.rx_pktcount_filter_out);
wrqu->data.length = strlen(extra);
return 0;
} else if (sscanf(extra, "ch=%d,bw=%d,ant=%d", &channel, &bandwidth, &ant) < 3) {
RTW_INFO("Invalid format [ch=%d,bw=%d,ant=%d]\n", channel, bandwidth, ant);
_rtw_memset(extra, 0, wrqu->data.length);
pextra += sprintf(pextra, "\n Please input correct format as bleow:\n");
pextra += sprintf(pextra, "\t ch=%d,bw=%d,ant=%d\n", channel, bandwidth, ant);
pextra += sprintf(pextra, "\n [ ch : BGN = <1~14> , A or AC = <36~165> ]");
pextra += sprintf(pextra, "\n [ bw : Bandwidth: 0 = 20M, 1 = 40M, 2 = 80M ]");
pextra += sprintf(pextra, "\n [ ant : <A = 1, B = 2, C = 4, D = 8> ,2T ex: AB=3 BC=6 CD=12");
wrqu->data.length = strlen(extra);
return 0;
} else {
char *pextra = extra;
bStartRx = 1;
RTW_INFO("Got format [ch=%d,bw=%d,ant=%d]\n", channel, bandwidth, ant);
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Change Current channel %d to channel %d", padapter->mppriv.channel , channel);
padapter->mppriv.channel = channel;
SetChannel(padapter);
pHalData->current_channel = channel;
if (bandwidth == 1)
bandwidth = CHANNEL_WIDTH_40;
else if (bandwidth == 2)
bandwidth = CHANNEL_WIDTH_80;
pextra = extra + strlen(extra);
pextra += sprintf(pextra, "\nChange Current Bandwidth %d to Bandwidth %d", padapter->mppriv.bandwidth, bandwidth);
padapter->mppriv.bandwidth = (u8)bandwidth;
padapter->mppriv.preamble = sg;
SetBandwidth(padapter);
pHalData->current_channel_bw = bandwidth;
pextra += sprintf(pextra, "\nSet Antenna Path :%d", ant);
switch (ant) {
case 1:
antenna = ANTENNA_A;
break;
case 2:
antenna = ANTENNA_B;
break;
case 4:
antenna = ANTENNA_C;
break;
case 8:
antenna = ANTENNA_D;
break;
case 3:
antenna = ANTENNA_AB;
break;
case 5:
antenna = ANTENNA_AC;
break;
case 9:
antenna = ANTENNA_AD;
break;
case 6:
antenna = ANTENNA_BC;
break;
case 10:
antenna = ANTENNA_BD;
break;
case 12:
antenna = ANTENNA_CD;
break;
case 7:
antenna = ANTENNA_ABC;
break;
case 14:
antenna = ANTENNA_BCD;
break;
case 11:
antenna = ANTENNA_ABD;
break;
case 15:
antenna = ANTENNA_ABCD;
break;
}
RTW_INFO("%s: antenna=0x%x\n", __func__, antenna);
padapter->mppriv.antenna_tx = antenna;
padapter->mppriv.antenna_rx = antenna;
pHalData->antenna_tx_path = antenna;
SetAntenna(padapter);
strcat(extra, "\nstart Rx");
SetPacketRx(padapter, bStartRx, _FALSE);
}
#endif
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_mp_hwtx(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = &padapter->mppriv;
PMPT_CONTEXT mpt_ctx = &(padapter->mppriv.mpt_ctx);
#if defined(CONFIG_RTL8821B) || defined(CONFIG_RTL8822B) || defined(CONFIG_RTL8821C) || defined(CONFIG_RTL8822C)
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
*(extra + wrqu->data.length) = '\0';
_rtw_memset(&mpt_ctx->PMacTxInfo, 0, sizeof(RT_PMAC_TX_INFO));
_rtw_memcpy((void *)&mpt_ctx->PMacTxInfo, (void *)extra, sizeof(RT_PMAC_TX_INFO));
_rtw_memset(extra, 0, wrqu->data.length);
if (mpt_ctx->PMacTxInfo.bEnPMacTx == 1 && pmp_priv->mode != MP_ON) {
sprintf(extra, "MP Tx Running, Please Set PMac Tx Mode Stop\n");
RTW_INFO("Error !!! MP Tx Running, Please Set PMac Tx Mode Stop\n");
} else {
RTW_INFO("To set MAC Tx mode\n");
mpt_ProSetPMacTx(padapter);
sprintf(extra, "Set PMac Tx Mode OK\n");
}
wrqu->data.length = strlen(extra);
#endif
return 0;
}
int rtw_mp_pwrlmt(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct registry_priv *registry_par = &padapter->registrypriv;
u8 pwrlimtstat = 0;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
*(extra + wrqu->data.length) = '\0';
#if CONFIG_TXPWR_LIMIT
if (strncmp(extra, "off", 3) == 0 && strlen(extra) < 4) {
if (rtw_mpt_set_power_limit_en(padapter, _FALSE))
sprintf(extra, "Turn off Power Limit\n");
else
sprintf(extra, "Turn off Power Limit Fail\n");
} else if (strncmp(extra, "on", 2) == 0 && strlen(extra) < 3) {
if (rtw_mpt_set_power_limit_en(padapter, _TRUE))
sprintf(extra, "Turn on Power Limit\n");
else
sprintf(extra, "Turn on Power Limit Fail\n");
} else
#endif
{
sprintf(extra, "PHL PWRLMT:%s\n",
(rtw_mpt_get_power_limit_en(padapter) == _TRUE) ?"ON" :"OFF");
}
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_mp_dpk_track(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
//struct dm_struct *phydm = adapter_to_phydm(padapter);
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
*(extra + wrqu->data.length) = '\0';
if (strncmp(extra, "off", 3) == 0 && strlen(extra) < 4) {
//halrf_set_dpk_track(phydm, FALSE);
sprintf(extra, "set dpk track off\n");
} else if (strncmp(extra, "on", 2) == 0 && strlen(extra) < 3) {
//halrf_set_dpk_track(phydm, TRUE);
sprintf(extra, "set dpk track on\n");
}
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_mp_set_phl_io(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct phl_info_t *phl_info = (struct phl_info_t *)(dvobj->phl);
struct rtw_mp_cmd_arg *cmd_arg = NULL;
struct rtw_mp_test_cmdbuf *pcmdbuf = NULL;
u16 i = 0;
if (copy_from_user(extra, wrqu->pointer, wrqu->length))
return -EFAULT;
RTW_INFO("%s, wrqu->length %d !!!\n", __func__, wrqu->length);
rtw_phl_test_submodule_cmd_process(rtw_phl_get_com(phl_info), (void*)extra, wrqu->length);
pcmdbuf = (struct rtw_mp_test_cmdbuf *)extra;
while (1) {
if (pcmdbuf) {
cmd_arg = (struct rtw_mp_cmd_arg *)pcmdbuf->buf;
rtw_phl_test_submodule_get_rpt(rtw_phl_get_com(phl_info), (void *)extra, wrqu->length);
}
if (cmd_arg != NULL && cmd_arg->cmd_ok) {
RTW_INFO("%s,GET CMD OK !!!\n", __func__);
break;
} else {
i++;
rtw_msleep_os(100);
if (i == 3) {
RTW_INFO("%s,GET CMD FAIL !!!\n", __func__);
break;
}
}
}
if (copy_to_user(wrqu->pointer, extra, wrqu->length))
return -EFAULT;
return 0;
}
int rtw_mp_get_phl_io(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct phl_info_t *phl_info = (struct phl_info_t *)(padapter->dvobj->phl);
if (copy_from_user(extra, wrqu->pointer, wrqu->length))
return -EFAULT;
*(extra + wrqu->length) = '\0';
rtw_phl_test_submodule_get_rpt(rtw_phl_get_com(phl_info), (void *)&extra, wrqu->length);
wrqu->length = strlen(extra);
return 0;
}
int rtw_mp_tx_pattern_idx(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = (struct mp_priv *)&padapter->mppriv;
u32 tx_patt_idx = 0;
u32 ppdu_type = 0;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
if (sscanf(extra, "index=%d,type=%d", &tx_patt_idx, &ppdu_type) > 0) {
RTW_INFO("%s: tx_patt_idx=%d ,ppdu_type=%d\n", __func__, tx_patt_idx , ppdu_type);
pmp_priv->rtw_mp_pmact_patt_idx = tx_patt_idx;
pmp_priv->rtw_mp_pmact_ppdu_type = ppdu_type;
rtw_phl_mp_tx_cmd(padapter, RTW_MP_TX_CONFIG_PLCP_PATTERN, pmp_priv->rtw_mp_tx_method, _TRUE);
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Config Tx Pattern idx %d to %d", pmp_priv->rtw_mp_pmact_patt_idx, tx_patt_idx);
} else if ((strncmp(extra, "stop", 4) == 0)) {
rtw_phl_mp_tx_cmd(padapter, RTW_MP_TX_CONFIG_PLCP_PATTERN, pmp_priv->rtw_mp_tx_method, _FALSE);
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Config Tx Pattern Stop");
} else {
u8 *pstr = extra;
_rtw_memset(pstr, 0, wrqu->data.length);
}
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_mp_tx_plcp_tx_data(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = (struct mp_priv *)&padapter->mppriv;
u8 user_idx = pmp_priv->mp_plcp_useridx;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
if ((strncmp(extra, "ppdu", 4) == 0)) {
u32 ppdu_type = 0;
if (sscanf(extra, "ppdu=%d", &ppdu_type) > 0) {
u8 *pextra = extra;
RTW_INFO("%s: ppdu_type=%d\n", __func__, ppdu_type);
_rtw_memset(extra, 0, wrqu->data.length);
pextra += sprintf(pextra, "Config PPDU Type %s to %s\n",
PPDU_TYPE_STR(pmp_priv->rtw_mp_pmact_ppdu_type), PPDU_TYPE_STR(ppdu_type));
pmp_priv->rtw_mp_pmact_ppdu_type = ppdu_type;
rtw_update_giltf(padapter);
rtw_mp_update_coding(padapter);
if (ppdu_type >= RTW_MP_TYPE_HE_MU_OFDMA) {
u8 ru_num = 0 , rualloc_num = 0 ,i = 0;
ru_num = rtw_mp_update_ru_tone(padapter);
rualloc_num = rtw_mp_update_ru_alloc(padapter);
pextra += sprintf(pextra, "\nCurrent [%s] RU Alloc index:%d\n",
RU_TONE_STR(pmp_priv->rtw_mp_ru_tone),
pmp_priv->mp_plcp_user[user_idx].ru_alloc);
pextra += sprintf(pextra, "RU Alloc list:[");
for (i = 0;i <= rualloc_num - 1; i++)
pextra += sprintf(pextra, "%d ", pmp_priv->ru_alloc_list[i]);
pextra += sprintf(pextra, "]\n");
pextra += sprintf(pextra, "\nRU Tone support list(Refer Coding:%s):\n",
(pmp_priv->mp_plcp_user[user_idx].coding ? "LDPC":"BCC"));
for (i = 0;i <= ru_num; i++)
pextra += sprintf(pextra, "%d : [%s]\n",
pmp_priv->ru_tone_sel_list[i],
RU_TONE_STR(pmp_priv->ru_tone_sel_list[i]));
pextra += sprintf(pextra, "\n\nCodingCMD:[mp_plcp_user coding=%%d] (0:BCC 1:LDPC )");
pextra += sprintf(pextra, "\nRU Tone CMD:[ mp_plcp_user ru_tone=%%d ]");
pextra += sprintf(pextra, "\nRU Alloc CMD:[ mp_plcp_user ru_alloc=%%d ]");
}
} else {
u8 *pstr = extra;
_rtw_memset(pstr, 0, wrqu->data.length);
pstr += sprintf(pstr, "CMD: [mp_plcp_datappdu=%%d]\nPLCP (PPDU Type):\n\
0:CCK\n1:LEGACY\n2:HT_MF\n3:HT_GF\n4:VHT\n5:HE_SU\n6:HE_ER_SU\n7:HE_MU_OFDMA\n8:HE_TB\n");
}
}else if ((strncmp(extra, "preamble", 8) == 0)) {
u8 preamble = 0;
if (sscanf(extra, "preamble=%hhd", &preamble) > 0) {
RTW_INFO("%s: preamble=%d\n", __func__, preamble);
_rtw_memset(extra, 0, wrqu->data.length);
if (rtw_mp_is_cck_rate(pmp_priv->rateidx)) {
pmp_priv->preamble = preamble;
sprintf(extra, "Config Preamble %d to %d", pmp_priv->preamble, preamble);
} else
sprintf(extra, "Error !!! only B mode Rate for Preamble!\n");
} else
sprintf(extra, "Error format ! input 'preamble=[num]'\n");
} else if ((strncmp(extra, "stbc", 4) == 0)) {
u8 stbc = 0;
if (sscanf(extra, "stbc=%hhd", &stbc) > 0) {
RTW_INFO("%s: stbc=%d\n", __func__, stbc);
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Config STBC enable: %d to %d", pmp_priv->rtw_mp_stbc, stbc);
pmp_priv->rtw_mp_stbc = stbc;
if (pmp_priv->rtw_mp_stbc)
pmp_priv->mp_plcp_user[user_idx].dcm = 0;
} else {
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "input [stbc=0/1]");
}
} else if ((strncmp(extra, "giltf", 5) == 0)) {
u8 idx = 0;
u8 giltf_num = rtw_update_giltf(padapter);
if (sscanf(extra, "giltf=%hhd", &idx) > 0) {
u8 gi = 0, ltf = 0;
RTW_INFO("%s: gi+ltf=%d\n", __func__, idx);
_rtw_memset(extra, 0, wrqu->data.length);
if (giltf_num != 0 && idx <= giltf_num) {
gi = pmp_priv->st_giltf[idx].gi;
ltf = pmp_priv->st_giltf[idx].ltf;
sprintf(extra, "Config GI+LTF to %s ", pmp_priv->st_giltf[idx].type_str);
pmp_priv->rtw_mp_plcp_gi = gi;
pmp_priv->rtw_mp_plcp_ltf = ltf;
RTW_INFO("%s: gi=%d ltf=%d\n", __func__, gi, ltf);
} else
sprintf(extra, "Not support GI+LTF index\n");
} else {
u8 *pextra = extra;
u8 i = 0;
if (giltf_num > 0) {
pextra += sprintf(pextra, "GI + LTF list:\n");
for (i = 0;i <= giltf_num; i++)
pextra += sprintf(pextra, "%d:[%s]\n", i, pmp_priv->st_giltf[i].type_str);
}
sprintf(pextra, "PPDU Type Not support GI+LTF.");
}
} else if ((strncmp(extra, "tx_time", 7) == 0)) {
u32 tx_time = 0;
if (sscanf(extra, "tx_time=%d", &tx_time) > 0) {
u32 tmp_tx_time = (tx_time * 10) / 4;
pmp_priv->rtw_mp_plcp_tx_time = tmp_tx_time;
pmp_priv->rtw_mp_plcp_tx_mode = 1;
sprintf(extra, "Config Tx Time:%d us", pmp_priv->rtw_mp_plcp_tx_time);
}
} else if ((strncmp(extra, "tx_len", 6) == 0)) {
u32 tx_len = 0;
if (sscanf(extra, "tx_len=%d", &tx_len) > 0) {
pmp_priv->mp_plcp_user[user_idx].plcp_txlen = tx_len;
pmp_priv->rtw_mp_plcp_tx_mode = 0;
sprintf(extra, "Config Tx Len:%d", pmp_priv->mp_plcp_user[user_idx].plcp_txlen);
}
} else if ((strncmp(extra, "he_sigb", 7) == 0)) {
u32 he_sigb = 0;
if (sscanf(extra, "he_sigb=%d", &he_sigb) > 0) {
if (he_sigb <= 5) {
pmp_priv->rtw_mp_he_sigb = he_sigb;
sprintf(extra, "Config HE SIGB:%d", he_sigb);
} else
sprintf(extra, "Error Config HE SIGB:[%d] (0~5)", he_sigb);
} else {
u8 *pstr = extra;
_rtw_memset(pstr, 0, wrqu->data.length);
pstr += sprintf(pstr, "invalid CMD Format! input: he_sigb=[Num]\n\
PLCP (HE SIGB):\n0\n\1\n2\n\3\n\4\n\5\n");
}
} else if ((strncmp(extra, "he_sigb_dcm", 7) == 0)) {
u32 he_sigb_dcm = 0;
if (sscanf(extra, "he_sigb_dcm=%d", &he_sigb_dcm) > 0) {
if (he_sigb_dcm <= 1) {
pmp_priv->rtw_mp_he_sigb_dcm = he_sigb_dcm;
sprintf(extra, "Config HE SIGB DCM:%d", he_sigb_dcm);
} else
sprintf(extra, "Error Config HE SIGB:[%d] (0:Disable 1:Enable)", he_sigb_dcm);
} else {
u8 *pstr = extra;
_rtw_memset(pstr, 0, wrqu->data.length);
pstr += sprintf(pstr, "invalid CMD Format! input: he_sigb_dcm=[Num]\n\
PLCP (HE SIGB DCM):\n0:Disable\n1:Enable");
}
} else if ((strncmp(extra, "er_su_ru106en", 7) == 0)) {
u32 ru106en = 0;
if (sscanf(extra, "er_su_ru106en=%d", &ru106en) > 0) {
if (ru106en <= 1) {
pmp_priv->rtw_mp_he_er_su_ru_106_en = ru106en;
sprintf(extra, "Config he_er_su_ru106:%d", ru106en);
} else
sprintf(extra, "Error!!! Config HE ER SU RU106 Enable:[%d] (0:Disable 1:Enable)",
ru106en);
} else {
u8 *pstr = extra;
_rtw_memset(pstr, 0, wrqu->data.length);
pstr += sprintf(pstr, "Error!!! Config HE ER SU RU106 Enable: Input number[ 0:Disable 1:Enable ]");
}
} else if ((strncmp(extra, "ru_tone", 7) == 0)) {
u32 ru_tone = 0;
if (sscanf(extra, "ru_tone=%d", &ru_tone) > 0) {
RTW_INFO("%s: RU Tone=%d\n", __func__, ru_tone);
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Config RU tone %d to %d", pmp_priv->rtw_mp_ru_tone, ru_tone);
pmp_priv->rtw_mp_ru_tone = ru_tone;
} else {
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Error!!!\tinput , [ru_tone= number]");
}
} else {
char *pstr = extra;
u8 ppdu_idx = pmp_priv->rtw_mp_pmact_ppdu_type;
if (ppdu_idx < RTW_MP_TYPE_HT_MF) {
pstr += sprintf(pstr, "invalid PPDU Type ! input :ppdu=[Num] over the HT\n");
} else {
u8 i = 0;
u8 num = rtw_update_giltf(padapter);
_rtw_memset(extra, 0, wrqu->data.length);
pstr += sprintf(pstr, "invalid CMD Format !! please input: giltf=[Num]\n");
pstr += sprintf(pstr, "PPDU %s GI+LTF:\n", PPDU_TYPE_STR(ppdu_idx));
for (i = 0; i <= num; i++)
pstr += sprintf(pstr, "[%d]: %s\n" ,i , pmp_priv->st_giltf[i].type_str);
}
}
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_mp_tx_plcp_tx_user(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *mpprv = (struct mp_priv *)&padapter->mppriv;
u32 tx_mcs = 0;
u8 user_idx = mpprv->mp_plcp_useridx;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
if (sscanf(extra, "mcs=%d", &tx_mcs) > 0) {
RTW_INFO("%s: mcs=%d\n", __func__, tx_mcs);
mpprv->mp_plcp_user[user_idx].plcp_mcs = tx_mcs;
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Config PLCP MCS idx %d to %d",
mpprv->mp_plcp_user[user_idx].plcp_mcs, tx_mcs);
} else if ((strncmp(extra, "dcm", 3) == 0)) {
u8 dcm = 0;
if (sscanf(extra, "dcm=%hhd", &dcm) > 0) {
RTW_INFO("%s: dcm=%d\n", __func__, dcm);
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Config DCM enable: %d to %d", mpprv->mp_plcp_user[user_idx].dcm, dcm);
mpprv->mp_plcp_user[user_idx].dcm = dcm;
if (mpprv->mp_plcp_user[user_idx].dcm)
mpprv->rtw_mp_stbc = 0;
} else {
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Error !!! input [dcm=0/1]");
}
} else if ((strncmp(extra, "coding", 6) == 0)) {
u8 coding = 0;
if (sscanf(extra, "coding=%hhd", &coding) > 0) {
RTW_INFO("%s: coding=%d\n", __func__, coding);
_rtw_memset(extra, 0, wrqu->data.length);
mpprv->mp_plcp_user[user_idx].coding = coding;
rtw_mp_update_coding(padapter);
sprintf(extra, "Config coding to %s",
(mpprv->mp_plcp_user[user_idx].coding?"LDPC":"BCC"));
} else {
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Error !!!\n0:BCC 1:LDPC \t input Number [coding=0/1]");
}
} else if ((strncmp(extra, "ru_alloc", 8) == 0)) {
u32 ru_alloc = 0;
if (sscanf(extra, "ru_alloc=%d", &ru_alloc) > 0) {
RTW_INFO("%s: RU alloc=%d\n", __func__, ru_alloc);
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Config RU alloc %d to %d",
mpprv->mp_plcp_user[user_idx].ru_alloc, ru_alloc);
mpprv->mp_plcp_user[user_idx].ru_alloc = ru_alloc;
} else {
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Error!!!\tinput , [ru_alloc= number]");
}
} else if ((strncmp(extra, "txuser", 6) == 0)) {
u32 txuser = 0;
if (sscanf(extra, "txuser=%d", &txuser) > 0) {
RTW_INFO("%s: Sel User idx=%d\n", __func__, txuser);
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "config Tx User %d to %d", mpprv->rtw_mp_plcp_tx_user, txuser);
mpprv->rtw_mp_plcp_tx_user = txuser;
} else {
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Error!!!\tinput , [txuser= number]");
}
} else if ((strncmp(extra, "user", 4) == 0)) {
u32 user_idx = 0;
if (sscanf(extra, "user=%d", &user_idx) > 0) {
RTW_INFO("%s: Sel User idx=%d\n", __func__, user_idx);
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "select User idx %d to %d", mpprv->mp_plcp_useridx, user_idx);
mpprv->mp_plcp_useridx = user_idx;
} else {
_rtw_memset(extra, 0, wrqu->data.length);
sprintf(extra, "Error!!!\tinput , [user= number]");
}
} else if ((strncmp(extra, "tx_len", 6) == 0)) {
u32 tx_len = 0;
if (sscanf(extra, "tx_len=%d", &tx_len) > 0) {
mpprv->mp_plcp_user[user_idx].plcp_txlen = tx_len;
mpprv->rtw_mp_plcp_tx_mode = 0;
sprintf(extra, "Config Tx Len:%d", mpprv->mp_plcp_user[user_idx].plcp_txlen);
}
} else {
u8 *pstr = extra;
_rtw_memset(pstr, 0, wrqu->data.length);
pstr += sprintf(pstr, "invalid CMD Format!\n \
\t input :\n\
\t user=%%d\n\
\t mcs=%%d\n\
\t dcm=%%d,\n\
\t coding=%%d\n\
\t ru_alloc=%%d\n");
}
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_mp_tx_method(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = (struct mp_priv *)&padapter->mppriv;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
if ((strncmp(extra, "PMACT", 5) == 0)) {
pmp_priv->rtw_mp_tx_method = RTW_MP_PMACT_TX;
sprintf(extra, "set PMACT OK");
} else if ((strncmp(extra, "TMACT", 5) == 0)) {
pmp_priv->rtw_mp_tx_method = RTW_MP_TMACT_TX;
rtw_phl_mp_tx_cmd(padapter, RTW_MP_TX_MODE_SWITCH, pmp_priv->rtw_mp_tx_method, _FALSE);
sprintf(extra, "set TMACT OK");
} else if ((strncmp(extra, "FWPMACT", 7) == 0)) {
pmp_priv->rtw_mp_tx_method = RTW_MP_FW_PMACT_TX;
rtw_phl_mp_tx_cmd(padapter, RTW_MP_TX_MODE_SWITCH, pmp_priv->rtw_mp_tx_method, _FALSE);
sprintf(extra, "set FWPMACT OK");
}
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_mp_config_phy(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = (struct mp_priv *)&padapter->mppriv;
u8 set_phy = 0;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
extra[wrqu->data.length] = '\0';
set_phy = rtw_atoi(extra);
if (set_phy < 2) {
sprintf(extra, "set current phy %d to %d", pmp_priv->rtw_mp_cur_phy, set_phy);
pmp_priv->rtw_mp_cur_phy = set_phy;
rtw_mp_phl_config_arg(padapter, RTW_MP_CONFIG_CMD_SET_PHY_INDEX);
} else
sprintf(extra, "Not suuport phy %d", set_phy);
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_mp_phl_rfk(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = (struct mp_priv *)&padapter->mppriv;
u8 k_type = RTW_MP_CAL_MAX;
u8 k_cap_ctrl = false;
u8 k_cap_on = false;
if (copy_from_user(extra, wrqu->data.pointer, wrqu->data.length))
return -EFAULT;
if (strncmp(extra, "iqk", 3) == 0) {
k_type = RTW_MP_CAL_IQK;
if (strncmp(extra, "iqk on", 6) == 0) {
k_cap_ctrl = true;
k_cap_on = true;
sprintf(extra, "set iqk on");
} else if ((strncmp(extra, "iqk off", 7) == 0)) {
k_cap_ctrl = true;
k_cap_on = false;
sprintf(extra, "set iqk off");
} else
sprintf(extra, "set iqk trigger");
} else if (strncmp(extra, "dpk", 3) == 0) {
k_type = RTW_MP_CAL_DPK;
if (strncmp(extra, "dpk on", 6) == 0) {
k_cap_ctrl = true;
k_cap_on = true;
sprintf(extra, "set dpk on");
} else if ((strncmp(extra, "dpk off", 7) == 0)) {
k_cap_ctrl = true;
k_cap_on = false;
sprintf(extra, "set dpk off");
} else
sprintf(extra, "set dpk trigger");
} else if (strncmp(extra, "chk", 3) == 0) {
k_type = RTW_MP_CAL_CHL_RFK;
if (strncmp(extra, "chk on", 6) == 0) {
k_cap_ctrl = true;
k_cap_on = true;
sprintf(extra, "set chk on");
} else if ((strncmp(extra, "chk off", 7) == 0)) {
k_cap_ctrl = true;
k_cap_on = false;
sprintf(extra, "set chk off");
} else
sprintf(extra, "set chk trigger");
} else if (strncmp(extra, "dack", 3) == 0) {
k_type = RTW_MP_CAL_DACK;
if (strncmp(extra, "dack on", 6) == 0) {
k_cap_ctrl = true;
k_cap_on = true;
sprintf(extra, "set dack on");
} else if ((strncmp(extra, "dack off", 7) == 0)) {
k_cap_ctrl = true;
k_cap_on = false;
sprintf(extra, "set dack off");
} else
sprintf(extra, "set dack trigger");
} else if (strncmp(extra, "lck", 3) == 0) {
k_type = RTW_MP_CAL_LCK;
if (strncmp(extra, "lck on", 6) == 0) {
k_cap_ctrl = true;
k_cap_on = true;
sprintf(extra, "set lck on");
} else if ((strncmp(extra, "lck off", 7) == 0)) {
k_cap_ctrl = true;
k_cap_on = false;
sprintf(extra, "set lck off");
} else
sprintf(extra, "set lck trigger");
} else if (strncmp(extra, "dpk_trk", 7) == 0) {
k_type = RTW_MP_CAL_DPK_TRACK;
if (strncmp(extra, "dpk_trk on", 10) == 0) {
k_cap_ctrl = true;
k_cap_on = true;
sprintf(extra, "set dpk_trk on");
} else if ((strncmp(extra, "dpk_trk off", 11) == 0)) {
k_cap_ctrl = true;
k_cap_on = false;
sprintf(extra, "set dpk_trk off");
}
} else if (strncmp(extra, "tssi", 4) == 0) {
k_type = RTW_MP_CAL_TSSI;
if (strncmp(extra, "tssi on", 7) == 0) {
k_cap_ctrl = true;
k_cap_on = true;
sprintf(extra, "set tssi on");
} else if ((strncmp(extra, "tssi off", 8) == 0)) {
k_cap_ctrl = true;
k_cap_on = false;
sprintf(extra, "set tssi off");
} else
sprintf(extra, "set tssi trigger");
} else if (strncmp(extra, "gapk", 4) == 0) {
k_type = RTW_MP_CAL_GAPK;
if (strncmp(extra, "gapk on", 7) == 0) {
k_cap_ctrl = true;
k_cap_on = true;
sprintf(extra, "set gapk on");
} else if ((strncmp(extra, "gapk off", 8) == 0)) {
k_cap_ctrl = true;
k_cap_on = false;
sprintf(extra, "set gapk off");
} else
sprintf(extra, "set gapk trigger");
} else
sprintf(extra, "Error! CMD Format:\n\
[trigger K] or Set K on/off\n\
chk\\chk on/off\n\
dack\\dack on/off\n\
iqk\\iqk on/off\n\
lck\\lck on/off\n\
dpk\\dpk on/off\n\
dpk_trk on/off\n\
tssi\\tssi on/off\n\
gapk\\gapk on/off\n");
if (k_cap_ctrl) {
rtw_mp_cal_capab(padapter, k_type, k_cap_on);
} else if (k_type < RTW_MP_CAL_MAX)
rtw_mp_cal_trigger(padapter, k_type);
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_mp_phl_btc_path(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv = (struct mp_priv *)&padapter->mppriv;
u8 btc_mode = 0;
if (strncmp(extra, "normal", 6) == 0) {
btc_mode = BTC_MODE_NORMAL;
RTW_INFO("set BTC Path Normal");
} else if (strncmp(extra, "wl", 2) == 0 || strncmp(extra, "WL", 2) == 0) {
btc_mode = BTC_MODE_WL;
RTW_INFO("set BTC Path WL");
} else if (strncmp(extra, "bt", 2) == 0 || strncmp(extra, "BT", 2) == 0) {
btc_mode = BTC_MODE_BT;
RTW_INFO("set BTC Path BT");
} else {
btc_mode = BTC_MODE_WL;
RTW_INFO("Default set BTC Path WL");
}
pmp_priv->btc_path = btc_mode;
if (rtw_mp_phl_config_arg(padapter, RTW_MP_CONFIG_CMD_SWITCH_BT_PATH)) {
sprintf(extra, "set BTC Path %s",
(btc_mode == 0)? "Normal":((btc_mode == 1)? "WL":
((btc_mode == 2)? "BT":"DEFAULT WL")));
} else
sprintf(extra, "set BTC Path Fail");
wrqu->data.length = strlen(extra);
return 0;
}
int rtw_mp_get_he(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct registry_priv *regsty = &padapter->registrypriv;
#ifdef CONFIG_80211AX_HE
if (!REGSTY_IS_11AX_ENABLE(regsty) ||
!is_supported_he(regsty->wireless_mode))
sprintf(extra, "false");
else
sprintf(extra, "true");
#endif
wrqu->data.length = strlen(extra);
return 0;
}
static inline void dump_buf(u8 *buf, u32 len)
{
u32 i;
RTW_INFO("-----------------Len %d----------------\n", len);
for (i = 0; i < len; i++)
RTW_INFO("%2.2x-", *(buf + i));
RTW_INFO("\n");
}
int rtw_mp_link(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *wrqu, char *extra)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mp_priv *pmp_priv;
char input[RTW_IWD_MAX_LEN];
int bgetrxdata = 0, btxdata = 0, bsetbt = 0;
int err = 0;
u32 i = 0, datalen = 0,jj, kk, waittime = 0;
u16 val = 0x00, ret = 0;
char *pextra = NULL;
u8 *setdata = NULL;
char *pch, *ptmp, *token, *tmp[4] = {0x00, 0x00, 0x00};
pmp_priv = &padapter->mppriv;
if (copy_from_user(input, wrqu->pointer, wrqu->length))
return -EFAULT;
_rtw_memset(extra, 0, wrqu->length);
RTW_INFO("%s: in=%s\n", __func__, input);
bgetrxdata = (strncmp(input, "rxdata", 6) == 0) ? 1 : 0; /* strncmp TRUE is 0*/
btxdata = (strncmp(input, "txdata", 6) == 0) ? 1 : 0; /* strncmp TRUE is 0*/
bsetbt = (strncmp(input, "setbt", 5) == 0) ? 1 : 0; /* strncmp TRUE is 0*/
if (bgetrxdata) {
RTW_INFO("%s: in= 1 \n", __func__);
if (pmp_priv->mplink_brx == _TRUE) {
while (waittime < 100 && pmp_priv->mplink_brx == _FALSE) {
if (pmp_priv->mplink_brx == _FALSE)
rtw_msleep_os(10);
else
break;
waittime++;
}
if (pmp_priv->mplink_brx == _TRUE) {
sprintf(extra, "\n");
pextra = extra + strlen(extra);
for (i = 0; i < pmp_priv->mplink_rx_len; i ++) {
pextra += sprintf(pextra, "%02x:", pmp_priv->mplink_buf[i]);
}
_rtw_memset(pmp_priv->mplink_buf, '\0' , sizeof(pmp_priv->mplink_buf));
pmp_priv->mplink_brx = _FALSE;
}
}
} else if (btxdata) {
struct pkt_attrib *pattrib;
pch = input;
setdata = rtw_zmalloc(1024);
if (setdata == NULL) {
err = -ENOMEM;
goto exit;
}
i = 0;
while ((token = strsep(&pch, ",")) != NULL) {
if (i > 2)
break;
tmp[i] = token;
i++;
}
/* tmp[0],[1],[2] */
/* txdata,00e04c871200........... */
if (strcmp(tmp[0], "txdata") == 0) {
if (tmp[1] == NULL) {
err = -EINVAL;
goto exit;
}
}
datalen = strlen(tmp[1]);
if (datalen % 2) {
err = -EINVAL;
goto exit;
}
datalen /= 2;
if (datalen == 0) {
err = -EINVAL;
goto exit;
}
RTW_INFO("%s: data len=%d\n", __FUNCTION__, datalen);
RTW_INFO("%s: tx data=%s\n", __FUNCTION__, tmp[1]);
for (jj = 0, kk = 0; jj < datalen; jj++, kk += 2)
setdata[jj] = key_2char2num(tmp[1][kk], tmp[1][kk + 1]);
dump_buf(setdata, datalen);
_rtw_memset(pmp_priv->mplink_buf, '\0' , sizeof(pmp_priv->mplink_buf));
_rtw_memcpy(pmp_priv->mplink_buf, setdata, datalen);
pattrib = &pmp_priv->tx.attrib;
pattrib->pktlen = datalen;
pmp_priv->tx.count = 1;
pmp_priv->tx.stop = 0;
pmp_priv->mplink_btx = _TRUE;
rtw_mp_set_packet_tx(padapter);
pmp_priv->mode = MP_PACKET_TX;
} else if (bsetbt) {
#if 0
#ifdef CONFIG_BTC
pch = input;
i = 0;
while ((token = strsep(&pch, ",")) != NULL) {
if (i > 3)
break;
tmp[i] = token;
i++;
}
if (tmp[1] == NULL) {
err = -EINVAL;
goto exit;
}
if (strcmp(tmp[1], "scbd") == 0) {
u16 org_val = 0x8002, pre_val, read_score_board_val;
u8 state;
pre_val = (rtw_read16(padapter,(0xaa))) & 0x7fff;
if (tmp[2] != NULL) {
state = simple_strtoul(tmp[2], &ptmp, 10);
if (state)
org_val = org_val | BIT6;
else
org_val = org_val & (~BIT6);
if (org_val != pre_val) {
pre_val = org_val;
rtw_write16(padapter, 0xaa, org_val);
RTW_INFO("%s,setbt scbd write org_val = 0x%x , pre_val = 0x%x\n", __func__, org_val, pre_val);
} else {
RTW_INFO("%s,setbt scbd org_val = 0x%x ,pre_val = 0x%x\n", __func__, org_val, pre_val);
}
} else {
read_score_board_val = (rtw_read16(padapter,(0xaa))) & 0x7fff;
RTW_INFO("%s,read_score_board_val = 0x%x\n", __func__, read_score_board_val);
}
goto exit;
} else if (strcmp(tmp[1], "testmode") == 0) {
if (tmp[2] == NULL) {
err = -EINVAL;
goto exit;
}
val = simple_strtoul(tmp[2], &ptmp, 16);
RTW_INFO("get tmp, type %s, val =0x%x!\n", tmp[1], val);
if (tmp[2] != NULL) {
_rtw_memset(extra, 0, wrqu->length);
ret = rtw_btcoex_btset_testmode(padapter, val);
if (!CHECK_STATUS_CODE_FROM_BT_MP_OPER_RET(ret, BT_STATUS_BT_OP_SUCCESS)) {
RTW_INFO("%s: BT_OP fail = 0x%x!\n", __FUNCTION__, val);
sprintf(extra, "BT_OP fail 0x%x!\n", val);
} else
sprintf(extra, "Set BT_OP 0x%x done!\n", val);
}
}
#endif /* CONFIG_BTC */
#endif
}
exit:
if (setdata)
rtw_mfree(setdata, 1024);
wrqu->length = strlen(extra);
return err;
}
int rtw_priv_mp_get(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wdata, char *extra)
{
struct iw_point *wrqu = (struct iw_point *)wdata;
u32 subcmd = wrqu->flags;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
int status = 0;
u8 i = 0;
char *pch = extra;
if (!is_primary_adapter(padapter)) {
RTW_INFO("MP mode only primary Adapter support, iface id = %d,\n", padapter->iface_id);
RTW_INFO("***Please use Primary Adapter:["ADPT_FMT"]***\n", ADPT_ARG(GET_PRIMARY_ADAPTER(padapter)));
pch +=sprintf(pch, "Only primary Adapter support MP CMD\n");
pch +=sprintf(pch, "Please use Primary Adapter:"ADPT_FMT"", ADPT_ARG(GET_PRIMARY_ADAPTER(padapter)));
wrqu->length = strlen(extra);
return status;
}
for (i = 0; i < dvobj->iface_nums; i++) {
_adapter *iface = dvobj->padapters[i];
if (iface == NULL)
continue;
if (rtw_is_adapter_up(iface) == _FALSE)
continue;
if (MLME_IS_AP(iface)) {
RTW_INFO("Adapter:["ADPT_FMT"], Please Leave AP mode or Down Interface\n", ADPT_ARG(iface));
pch += sprintf(pch, "Check Adapter:"ADPT_FMT",\n\
Please Leave AP mode or Down Interface\n", ADPT_ARG(iface));
wrqu->length = strlen(extra);
return status;
}
}
RTW_INFO("%s mutx in %d\n", __func__, subcmd);
switch (subcmd) {
case MP_START:
RTW_INFO("set case mp_start\n");
status = rtw_mp_start(dev, info, wrqu, extra);
break;
case MP_STOP:
RTW_INFO("set case mp_stop\n");
status = rtw_mp_stop(dev, info, wrqu, extra);
break;
case MP_BANDWIDTH:
RTW_INFO("set case mp_bandwidth\n");
status = rtw_mp_bandwidth(dev, info, wrqu, extra);
break;
case MP_RESET_STATS:
RTW_INFO("set case MP_RESET_STATS\n");
status = rtw_mp_reset_stats(dev, info, wrqu, extra);
break;
case MP_SetRFPathSwh:
RTW_INFO("set MP_SetRFPathSwitch\n");
status = rtw_mp_SetRFPath(dev, info, wrqu, extra);
break;
case WRITE_REG:
status = rtw_mp_write_reg(dev, info, wrqu, extra);
break;
case WRITE_RF:
status = rtw_mp_write_rf(dev, info, wrqu, extra);
break;
case MP_PHYPARA:
RTW_INFO("mp_get MP_PHYPARA\n");
status = rtw_mp_phypara(dev, info, wrqu, extra);
break;
case MP_CHANNEL:
RTW_INFO("set case mp_channel\n");
status = rtw_mp_channel(dev , info, wrqu, extra);
break;
case MP_TRXSC_OFFSET:
RTW_INFO("set case rtw_mp_trxsc_offset\n");
status = rtw_mp_trxsc_offset(dev , info, wrqu, extra);
break;
case READ_REG:
RTW_INFO("mp_get READ_REG\n");
status = rtw_mp_read_reg(dev, info, wrqu, extra);
break;
case READ_RF:
RTW_INFO("mp_get READ_RF\n");
status = rtw_mp_read_rf(dev, info, wrqu, extra);
break;
case MP_RATE:
RTW_INFO("set case mp_rate\n");
status = rtw_mp_rate(dev, info, wrqu, extra);
break;
case MP_TXPOWER:
RTW_INFO("set case MP_TXPOWER\n");
status = rtw_mp_txpower(dev, info, wrqu, extra);
break;
case MP_ANT_TX:
RTW_INFO("set case MP_ANT_TX\n");
status = rtw_mp_ant_tx(dev, info, wrqu, extra);
break;
case MP_ANT_RX:
RTW_INFO("set case MP_ANT_RX\n");
status = rtw_mp_ant_rx(dev, info, wrqu, extra);
break;
case MP_QUERY:
status = rtw_mp_trx_query(dev, info, wrqu, extra);
break;
case MP_CTX:
RTW_INFO("set case MP_CTX\n");
status = rtw_mp_ctx(dev, info, wrqu, extra);
break;
case MP_ARX:
RTW_INFO("set case MP_ARX\n");
status = rtw_mp_arx(dev, info, wrqu, extra);
break;
case MP_DUMP:
RTW_INFO("set case MP_DUMP\n");
status = rtw_mp_dump(dev, info, wrqu, extra);
break;
case MP_PSD:
RTW_INFO("set case MP_PSD\n");
status = rtw_mp_psd(dev, info, wrqu, extra);
break;
case MP_THER:
RTW_INFO("set case MP_THER\n");
status = rtw_mp_thermal(dev, info, wrqu, extra);
break;
case MP_PwrCtlDM:
RTW_INFO("set MP_PwrCtlDM\n");
status = rtw_mp_PwrCtlDM(dev, info, wrqu, extra);
break;
case MP_QueryDrvStats:
RTW_INFO("mp_get MP_QueryDrvStats\n");
status = rtw_mp_QueryDrv(dev, info, wdata, extra);
break;
case MP_PWRTRK:
RTW_INFO("set case MP_PWRTRK\n");
status = rtw_mp_pwrtrk(dev, info, wrqu, extra);
break;
case MP_SET_TSSIDE:
RTW_INFO("set case MP_TSSI_DE\n");
status = rtw_mp_set_tsside(dev, info, wrqu, extra);
break;
case EFUSE_SET:
RTW_INFO("set case efuse set\n");
status = rtw_ioctl_efuse_set(dev, info, wdata, extra);
break;
case EFUSE_GET:
RTW_INFO("efuse get EFUSE_GET\n");
status = rtw_ioctl_efuse_get(dev, info, wdata, extra);
break;
case MP_GET_TXPOWER_INX:
RTW_INFO("mp_get MP_GET_TXPOWER_INX\n");
status = rtw_mp_txpower_index(dev, info, wrqu, extra);
break;
case MP_GETVER:
RTW_INFO("mp_get MP_GETVER\n");
status = rtw_mp_getver(dev, info, wdata, extra);
break;
case MP_MON:
RTW_INFO("mp_get MP_MON\n");
status = rtw_mp_mon(dev, info, wdata, extra);
break;
case EFUSE_BT_MASK:
RTW_INFO("mp_get EFUSE_BT_MASK\n");
status = rtw_ioctl_efuse_bt_file_mask_load(dev, info, wdata, extra);
break;
case EFUSE_MASK:
RTW_INFO("mp_get EFUSE_MASK\n");
status = rtw_ioctl_efuse_file_mask_load(dev, info, wdata, extra);
break;
case EFUSE_FILE:
RTW_INFO("mp_get EFUSE_FILE\n");
status = rtw_ioctl_efuse_file_map_load(dev, info, wdata, extra);
break;
case EFUSE_FILE_STORE:
RTW_INFO("mp_get EFUSE_FILE_STORE\n");
/*status = rtw_efuse_file_map_store(dev, info, wdata, extra);*/
break;
case MP_TX:
RTW_INFO("mp_get MP_TX\n");
status = rtw_mp_tx(dev, info, wdata, extra);
break;
case MP_RX:
RTW_INFO("mp_get MP_RX\n");
status = rtw_mp_rx(dev, info, wdata, extra);
break;
case MP_HW_TX_MODE:
RTW_INFO("mp_get MP_HW_TX_MODE\n");
status = rtw_mp_hwtx(dev, info, wdata, extra);
break;
case MP_GET_TSSIDE:
RTW_INFO("mp_get TSSI_DE\n");
status = rtw_mp_get_tsside(dev, info, wrqu, extra);
break;
#ifdef CONFIG_RTW_CUSTOMER_STR
case MP_CUSTOMER_STR:
RTW_INFO("customer str\n");
status = rtw_mp_customer_str(dev, info, wdata, extra);
break;
#endif
case MP_PWRLMT:
RTW_INFO("mp_get MP_SETPWRLMT\n");
status = rtw_mp_pwrlmt(dev, info, wdata, extra);
break;
case BT_EFUSE_FILE:
RTW_INFO("mp_get BT EFUSE_FILE\n");
status = rtw_ioctl_efuse_bt_file_map_load(dev, info, wdata, extra);
break;
case MP_SWRFPath:
RTW_INFO("mp_get MP_SWRFPath\n");
status = rtw_mp_switch_rf_path(dev, info, wrqu, extra);
break;
case MP_LINK:
RTW_INFO("mp_get MP_LINK\n");
status = rtw_mp_link(dev, info, wrqu, extra);
break;
case MP_DPK_TRK:
RTW_INFO("mp_get MP_DPK_TRK\n");
status = rtw_mp_dpk_track(dev, info, wdata, extra);
break;
case MP_DPK:
RTW_INFO("set MP_DPK\n");
status = rtw_mp_dpk(dev, info, wdata, extra);
break;
case MP_GET_PHL_TEST:
RTW_INFO("mp_get MP_GET_PHL_TEST\n");
status = rtw_mp_get_phl_io(dev, info, wrqu, extra);
break;
case MP_SET_PHL_TEST:
RTW_INFO("mp_get MP_SET_PHL_TEST\n");
status = rtw_mp_set_phl_io(dev, info, wrqu, extra);
break;
case MP_SET_PHL_TX_PATTERN:
RTW_INFO("mp_get MP_SET_PHL_TEST\n");
status = rtw_mp_tx_pattern_idx(dev, info, wdata, extra);
break;
case MP_SET_PHL_PLCP_TX_DATA:
RTW_INFO("mp_get MP_SET_PHL_PLCP_TX_DATA\n");
status = rtw_mp_tx_plcp_tx_data(dev, info, wdata, extra);
break;
case MP_SET_PHL_PLCP_TX_USER:
RTW_INFO("mp_get MP_SET_PHL_PLCP_TX_USER\n");
status = rtw_mp_tx_plcp_tx_user(dev, info, wdata, extra);
break;
case MP_SET_PHL_TX_METHOD:
RTW_INFO("mp_get MP_SET_PHL_TX_METHOD\n");
status = rtw_mp_tx_method(dev, info, wdata, extra);
break;
case MP_SET_PHL_CONIFG_PHY_NUM:
RTW_INFO("mp_get MP_SET_PHL_CONIFG_PHY_NUM\n");
status = rtw_mp_config_phy(dev, info, wdata, extra);
break;
case MP_PHL_RFK:
RTW_INFO("mp_get MP_PHL_RFK\n");
status = rtw_mp_phl_rfk(dev, info, wdata, extra);
break;
case MP_PHL_BTC_PATH:
RTW_INFO("mp_get MP_PHL_BTC_PATH\n");
status = rtw_mp_phl_btc_path(dev, info, wdata, extra);
break;
case MP_GET_HE:
RTW_INFO("mp_get MP_GET_HE\n");
status = rtw_mp_get_he(dev, info, wdata, extra);
break;
default:
status = -EIO;
}
return status;
}
int rtw_priv_mp_set(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wdata, char *extra)
{
struct iw_point *wrqu = (struct iw_point *)wdata;
u32 subcmd = wrqu->flags;
_adapter *padapter = (_adapter *)rtw_netdev_priv(dev);
int status = 0;
#ifdef CONFIG_CONCURRENT_MODE
if (!is_primary_adapter(padapter)) {
RTW_INFO("MP mode only primary Adapter support\n");
return -EIO;
}
#endif
RTW_INFO("%s mutx in %d\n", __func__, subcmd);
//_enter_critical_mutex(&(adapter_to_dvobj(padapter)->ioctrl_mutex), NULL);
switch (subcmd) {
case MP_DISABLE_BT_COEXIST:
RTW_INFO("set case MP_DISABLE_BT_COEXIST\n");
status = rtw_mp_disable_bt_coexist(dev, info, wdata, extra);
break;
case MP_IQK:
RTW_INFO("set MP_IQK\n");
status = rtw_mp_iqk(dev, info, wrqu, extra);
break;
case MP_LCK:
RTW_INFO("set MP_LCK\n");
status = rtw_mp_lck(dev, info, wrqu, extra);
break;
default:
status = -EIO;
}
//_exit_critical_mutex(&(adapter_to_dvobj(padapter)->ioctrl_mutex), NULL);
RTW_INFO("%s mutx done %d\n", __func__, subcmd);
return status;
}
#endif
|
2301_81045437/rtl8852be
|
os_dep/linux/ioctl_mp.c
|
C
|
agpl-3.0
| 110,118
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _MLME_OSDEP_C_
#include <drv_types.h>
#ifdef RTK_DMP_PLATFORM
void Linkup_workitem_callback(struct work_struct *work)
{
struct mlme_priv *pmlmepriv = container_of(work, struct mlme_priv, Linkup_workitem);
_adapter *padapter = container_of(pmlmepriv, _adapter, mlmepriv);
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 12))
kobject_uevent(&padapter->pnetdev->dev.kobj, KOBJ_LINKUP);
#else
kobject_hotplug(&padapter->pnetdev->class_dev.kobj, KOBJ_LINKUP);
#endif
}
void Linkdown_workitem_callback(struct work_struct *work)
{
struct mlme_priv *pmlmepriv = container_of(work, struct mlme_priv, Linkdown_workitem);
_adapter *padapter = container_of(pmlmepriv, _adapter, mlmepriv);
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 12))
kobject_uevent(&padapter->pnetdev->dev.kobj, KOBJ_LINKDOWN);
#else
kobject_hotplug(&padapter->pnetdev->class_dev.kobj, KOBJ_LINKDOWN);
#endif
}
#endif
extern void rtw_indicate_wx_assoc_event(_adapter *padapter);
extern void rtw_indicate_wx_disassoc_event(_adapter *padapter);
void rtw_os_indicate_connect(_adapter *adapter)
{
struct mlme_priv *pmlmepriv = &(adapter->mlmepriv);
#ifdef CONFIG_IOCTL_CFG80211
if ((check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE) == _TRUE) ||
(check_fwstate(pmlmepriv, WIFI_ADHOC_STATE) == _TRUE))
rtw_cfg80211_ibss_indicate_connect(adapter);
else
rtw_cfg80211_indicate_connect(adapter);
#endif /* CONFIG_IOCTL_CFG80211 */
rtw_indicate_wx_assoc_event(adapter);
#ifdef CONFIG_RTW_MESH
#if CONFIG_RTW_MESH_CTO_MGATE_CARRIER
if (!rtw_mesh_cto_mgate_required(adapter))
#endif
#endif
rtw_netif_carrier_on(adapter->pnetdev);
if (adapter->pid[2] != 0)
rtw_signal_process(adapter->pid[2], SIGALRM);
#ifdef RTK_DMP_PLATFORM
_set_workitem(&adapter->mlmepriv.Linkup_workitem);
#endif
}
extern void indicate_wx_scan_complete_event(_adapter *padapter);
void rtw_os_indicate_scan_done(_adapter *padapter, bool aborted)
{
#ifdef CONFIG_IOCTL_CFG80211
rtw_cfg80211_indicate_scan_done(padapter, aborted);
#endif
indicate_wx_scan_complete_event(padapter);
}
static RT_PMKID_LIST backupPMKIDList[NUM_PMKID_CACHE];
void rtw_reset_securitypriv(_adapter *adapter)
{
u8 backupPMKIDIndex = 0;
u8 backupTKIPCountermeasure = 0x00;
u32 backupTKIPcountermeasure_time = 0;
/* add for CONFIG_IEEE80211W, none 11w also can use */
_rtw_spinlock_bh(&adapter->security_key_mutex);
if (adapter->securitypriv.dot11AuthAlgrthm == dot11AuthAlgrthm_8021X) { /* 802.1x */
u8 backup_sw_encrypt, backup_sw_decrypt;
backup_sw_encrypt = adapter->securitypriv.sw_encrypt;
backup_sw_decrypt = adapter->securitypriv.sw_decrypt;
/* Added by Albert 2009/02/18 */
/* We have to backup the PMK information for WiFi PMK Caching test item. */
/* */
/* Backup the btkip_countermeasure information. */
/* When the countermeasure is trigger, the driver have to disconnect with AP for 60 seconds. */
_rtw_memset(&backupPMKIDList[0], 0x00, sizeof(RT_PMKID_LIST) * NUM_PMKID_CACHE);
_rtw_memcpy(&backupPMKIDList[0], &adapter->securitypriv.PMKIDList[0], sizeof(RT_PMKID_LIST) * NUM_PMKID_CACHE);
backupPMKIDIndex = adapter->securitypriv.PMKIDIndex;
backupTKIPCountermeasure = adapter->securitypriv.btkip_countermeasure;
backupTKIPcountermeasure_time = adapter->securitypriv.btkip_countermeasure_time;
_rtw_memset((unsigned char *)&adapter->securitypriv, 0, sizeof(struct security_priv));
/* Added by Albert 2009/02/18 */
/* Restore the PMK information to securitypriv structure for the following connection. */
_rtw_memcpy(&adapter->securitypriv.PMKIDList[0], &backupPMKIDList[0], sizeof(RT_PMKID_LIST) * NUM_PMKID_CACHE);
adapter->securitypriv.PMKIDIndex = backupPMKIDIndex;
adapter->securitypriv.btkip_countermeasure = backupTKIPCountermeasure;
adapter->securitypriv.btkip_countermeasure_time = backupTKIPcountermeasure_time;
adapter->securitypriv.ndisauthtype = Ndis802_11AuthModeOpen;
adapter->securitypriv.ndisencryptstatus = Ndis802_11WEPDisabled;
adapter->securitypriv.extauth_status = WLAN_STATUS_UNSPECIFIED_FAILURE;
adapter->securitypriv.sw_encrypt = backup_sw_encrypt;
adapter->securitypriv.sw_decrypt = backup_sw_decrypt;
} else { /* reset values in securitypriv */
/* if(adapter->mlmepriv.fw_state & WIFI_STATION_STATE) */
/* { */
struct security_priv *psec_priv = &adapter->securitypriv;
psec_priv->dot11AuthAlgrthm = dot11AuthAlgrthm_Open; /* open system */
psec_priv->dot11PrivacyAlgrthm = _NO_PRIVACY_;
psec_priv->dot11PrivacyKeyIndex = 0;
psec_priv->dot118021XGrpPrivacy = _NO_PRIVACY_;
psec_priv->dot118021XGrpKeyid = 1;
psec_priv->ndisauthtype = Ndis802_11AuthModeOpen;
psec_priv->ndisencryptstatus = Ndis802_11WEPDisabled;
/* } */
psec_priv->extauth_status = WLAN_STATUS_UNSPECIFIED_FAILURE;
}
/* add for CONFIG_IEEE80211W, none 11w also can use */
_rtw_spinunlock_bh(&adapter->security_key_mutex);
RTW_INFO(FUNC_ADPT_FMT" - End to Disconnect\n", FUNC_ADPT_ARG(adapter));
}
void rtw_os_indicate_disconnect(_adapter *adapter, u16 reason, u8 locally_generated)
{
/* RT_PMKID_LIST backupPMKIDList[NUM_PMKID_CACHE]; */
rtw_netif_carrier_off(adapter->pnetdev); /* Do it first for tx broadcast pkt after disconnection issue! */
#ifdef CONFIG_IOCTL_CFG80211
rtw_cfg80211_indicate_disconnect(adapter, reason, locally_generated);
#endif /* CONFIG_IOCTL_CFG80211 */
rtw_indicate_wx_disassoc_event(adapter);
#ifdef RTK_DMP_PLATFORM
_set_workitem(&adapter->mlmepriv.Linkdown_workitem);
#endif
/* modify for CONFIG_IEEE80211W, none 11w also can use the same command */
rtw_reset_securitypriv_cmd(adapter);
}
void rtw_report_sec_ie(_adapter *adapter, u8 authmode, u8 *sec_ie)
{
uint len;
u8 *buff, *p, i;
union iwreq_data wrqu;
buff = NULL;
if (authmode == _WPA_IE_ID_) {
buff = rtw_zmalloc(IW_CUSTOM_MAX);
if (NULL == buff) {
RTW_INFO(FUNC_ADPT_FMT ": alloc memory FAIL!!\n",
FUNC_ADPT_ARG(adapter));
return;
}
p = buff;
p += sprintf(p, "ASSOCINFO(ReqIEs=");
len = sec_ie[1] + 2;
len = (len < IW_CUSTOM_MAX) ? len : IW_CUSTOM_MAX;
for (i = 0; i < len; i++)
p += sprintf(p, "%02x", sec_ie[i]);
p += sprintf(p, ")");
_rtw_memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = p - buff;
wrqu.data.length = (wrqu.data.length < IW_CUSTOM_MAX) ? wrqu.data.length : IW_CUSTOM_MAX;
#ifndef CONFIG_IOCTL_CFG80211
wireless_send_event(adapter->pnetdev, IWEVCUSTOM, &wrqu, buff);
#endif
rtw_mfree(buff, IW_CUSTOM_MAX);
}
}
#ifdef CONFIG_AP_MODE
void rtw_indicate_sta_assoc_event(_adapter *padapter, struct sta_info *psta)
{
union iwreq_data wrqu;
struct sta_priv *pstapriv = &padapter->stapriv;
if (psta == NULL)
return;
if (psta->phl_sta->aid > pstapriv->max_aid)
return;
if (pstapriv->sta_aid[psta->phl_sta->aid - 1] != psta)
return;
wrqu.addr.sa_family = ARPHRD_ETHER;
_rtw_memcpy(wrqu.addr.sa_data, psta->phl_sta->mac_addr, ETH_ALEN);
RTW_INFO("+rtw_indicate_sta_assoc_event\n");
#ifndef CONFIG_IOCTL_CFG80211
wireless_send_event(padapter->pnetdev, IWEVREGISTERED, &wrqu, NULL);
#endif
}
void rtw_indicate_sta_disassoc_event(_adapter *padapter, struct sta_info *psta)
{
union iwreq_data wrqu;
struct sta_priv *pstapriv = &padapter->stapriv;
if (psta == NULL)
return;
if (psta->phl_sta->aid > pstapriv->max_aid)
return;
if (pstapriv->sta_aid[psta->phl_sta->aid - 1] != psta)
return;
wrqu.addr.sa_family = ARPHRD_ETHER;
_rtw_memcpy(wrqu.addr.sa_data, psta->phl_sta->mac_addr, ETH_ALEN);
RTW_INFO("+rtw_indicate_sta_disassoc_event\n");
#ifndef CONFIG_IOCTL_CFG80211
wireless_send_event(padapter->pnetdev, IWEVEXPIRED, &wrqu, NULL);
#endif
}
#ifdef CONFIG_HOSTAPD_MLME
static int mgnt_xmit_entry(struct sk_buff *skb, struct net_device *pnetdev)
{
struct hostapd_priv *phostapdpriv = rtw_netdev_priv(pnetdev);
_adapter *padapter = (_adapter *)phostapdpriv->padapter;
/* RTW_INFO("%s\n", __FUNCTION__); */
return rtw_hal_hostap_mgnt_xmit_entry(padapter, skb);
}
static int mgnt_netdev_open(struct net_device *pnetdev)
{
struct hostapd_priv *phostapdpriv = rtw_netdev_priv(pnetdev);
RTW_INFO("mgnt_netdev_open: MAC Address:" MAC_FMT "\n", MAC_ARG(pnetdev->dev_addr));
init_usb_anchor(&phostapdpriv->anchored);
rtw_netif_wake_queue(pnetdev);
rtw_netif_carrier_on(pnetdev);
return 0;
}
static int mgnt_netdev_close(struct net_device *pnetdev)
{
struct hostapd_priv *phostapdpriv = rtw_netdev_priv(pnetdev);
RTW_INFO("%s\n", __FUNCTION__);
usb_kill_anchored_urbs(&phostapdpriv->anchored);
rtw_netif_carrier_off(pnetdev);
rtw_netif_stop_queue(pnetdev);
return 0;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29))
static const struct net_device_ops rtl871x_mgnt_netdev_ops = {
.ndo_open = mgnt_netdev_open,
.ndo_stop = mgnt_netdev_close,
.ndo_start_xmit = mgnt_xmit_entry,
#if 0
.ndo_set_mac_address = r871x_net_set_mac_address,
.ndo_get_stats = r871x_net_get_stats,
.ndo_do_ioctl = r871x_mp_ioctl,
#endif
};
#endif
int hostapd_mode_init(_adapter *padapter)
{
unsigned char mac[ETH_ALEN];
struct hostapd_priv *phostapdpriv;
struct net_device *pnetdev;
pnetdev = rtw_alloc_etherdev(sizeof(struct hostapd_priv));
if (!pnetdev)
return -ENOMEM;
/* SET_MODULE_OWNER(pnetdev); */
ether_setup(pnetdev);
/* pnetdev->type = ARPHRD_IEEE80211; */
phostapdpriv = rtw_netdev_priv(pnetdev);
phostapdpriv->pmgnt_netdev = pnetdev;
phostapdpriv->padapter = padapter;
padapter->phostapdpriv = phostapdpriv;
/* pnetdev->init = NULL; */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29))
RTW_INFO("register rtl871x_mgnt_netdev_ops to netdev_ops\n");
pnetdev->netdev_ops = &rtl871x_mgnt_netdev_ops;
#else
pnetdev->open = mgnt_netdev_open;
pnetdev->stop = mgnt_netdev_close;
pnetdev->hard_start_xmit = mgnt_xmit_entry;
/* pnetdev->set_mac_address = r871x_net_set_mac_address; */
/* pnetdev->get_stats = r871x_net_get_stats; */
/* pnetdev->do_ioctl = r871x_mp_ioctl; */
#endif
pnetdev->watchdog_timeo = HZ; /* 1 second timeout */
/* pnetdev->wireless_handlers = NULL; */
if (dev_alloc_name(pnetdev, "mgnt.wlan%d") < 0)
RTW_INFO("hostapd_mode_init(): dev_alloc_name, fail!\n");
/* SET_NETDEV_DEV(pnetdev, pintfpriv->udev); */
mac[0] = 0x00;
mac[1] = 0xe0;
mac[2] = 0x4c;
mac[3] = 0x87;
mac[4] = 0x11;
mac[5] = 0x12;
_rtw_memcpy(pnetdev->dev_addr, mac, ETH_ALEN);
rtw_netif_carrier_off(pnetdev);
/* Tell the network stack we exist */
if (register_netdev(pnetdev) != 0) {
RTW_INFO("hostapd_mode_init(): register_netdev fail!\n");
if (pnetdev)
rtw_free_netdev(pnetdev);
}
return 0;
}
void hostapd_mode_unload(_adapter *padapter)
{
struct hostapd_priv *phostapdpriv = padapter->phostapdpriv;
struct net_device *pnetdev = phostapdpriv->pmgnt_netdev;
unregister_netdev(pnetdev);
rtw_free_netdev(pnetdev);
}
#endif
#endif
|
2301_81045437/rtl8852be
|
os_dep/linux/mlme_linux.c
|
C
|
agpl-3.0
| 11,473
|
/******************************************************************************
*
* Copyright(c) 2007 - 2020 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _RTW_NLRTW_C_
#include <drv_types.h>
#include "nlrtw.h"
#ifdef CONFIG_RTW_NLRTW
#include <net/netlink.h>
#include <net/genetlink.h>
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0))
#include <uapi/linux/netlink.h>
#endif
enum nlrtw_cmds {
NLRTW_CMD_UNSPEC,
NLRTW_CMD_CHANNEL_UTILIZATION,
NLRTW_CMD_REG_CHANGE,
NLRTW_CMD_REG_BEACON_HINT,
NLRTW_CMD_RADAR_EVENT,
NLRTW_CMD_RADIO_OPMODE,
__NLRTW_CMD_AFTER_LAST,
NLRTW_CMD_MAX = __NLRTW_CMD_AFTER_LAST - 1
};
enum nlrtw_attrs {
NLRTW_ATTR_UNSPEC,
NLRTW_ATTR_WIPHY_NAME,
NLRTW_ATTR_CHANNEL_UTILIZATIONS,
NLRTW_ATTR_CHANNEL_UTILIZATION_THRESHOLD,
NLRTW_ATTR_CHANNEL_CENTER,
NLRTW_ATTR_CHANNEL_WIDTH,
NLRTW_ATTR_RADAR_EVENT,
NLRTW_ATTR_OP_CLASS,
NLRTW_ATTR_OP_CHANNEL,
NLRTW_ATTR_OP_TXPWR_MAX,
NLRTW_ATTR_IF_OPMODES,
__NLRTW_ATTR_AFTER_LAST,
NUM_NLRTW_ATTR = __NLRTW_ATTR_AFTER_LAST,
NLRTW_ATTR_MAX = __NLRTW_ATTR_AFTER_LAST - 1
};
enum nlrtw_ch_util_attrs {
__NLRTW_ATTR_CHANNEL_UTILIZATION_INVALID,
NLRTW_ATTR_CHANNEL_UTILIZATION_VALUE,
NLRTW_ATTR_CHANNEL_UTILIZATION_BSSID,
__NLRTW_ATTR_CHANNEL_UTILIZATION_AFTER_LAST,
NUM_NLRTW_ATTR_CHANNEL_UTILIZATION = __NLRTW_ATTR_CHANNEL_UTILIZATION_AFTER_LAST,
NLRTW_ATTR_CHANNEL_UTILIZATION_MAX = __NLRTW_ATTR_CHANNEL_UTILIZATION_AFTER_LAST - 1
};
enum nlrtw_radar_event {
NLRTW_RADAR_DETECTED,
NLRTW_RADAR_CAC_FINISHED,
NLRTW_RADAR_CAC_ABORTED,
NLRTW_RADAR_NOP_FINISHED,
NLRTW_RADAR_NOP_STARTED, /* NON_OCP started not by local radar detection */
};
enum nlrtw_if_opmode_attrs {
NLRTW_IF_OPMODE_UNSPEC,
NLRTW_IF_OPMODE_MACADDR,
NLRTW_IF_OPMODE_OP_CLASS,
NLRTW_IF_OPMODE_OP_CHANNEL,
__NLRTW_IF_OPMODE_ATTR_AFTER_LAST,
NUM_NLRTW_IF_OPMODE_ATTR = __NLRTW_IF_OPMODE_ATTR_AFTER_LAST,
NLRTW_IF_OPMODE_ATTR_MAX = __NLRTW_IF_OPMODE_ATTR_AFTER_LAST - 1
};
static int nlrtw_ch_util_set(struct sk_buff *skb, struct genl_info *info)
{
unsigned int msg;
if (!info->attrs[NLRTW_ATTR_CHANNEL_UTILIZATION_THRESHOLD])
return -EINVAL;
msg = nla_get_u8(info->attrs[NLRTW_ATTR_CHANNEL_UTILIZATION_THRESHOLD]);
return 0;
}
static struct nla_policy nlrtw_genl_policy[NUM_NLRTW_ATTR] = {
[NLRTW_ATTR_CHANNEL_UTILIZATION_THRESHOLD] = { .type = NLA_U8 },
};
static struct genl_ops nlrtw_genl_ops[] = {
{
.cmd = NLRTW_CMD_CHANNEL_UTILIZATION,
.flags = 0,
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 2, 0)
.policy = nlrtw_genl_policy,
#endif
.doit = nlrtw_ch_util_set,
.dumpit = NULL,
},
};
enum nlrtw_multicast_groups {
NLRTW_MCGRP_DEFAULT,
};
static struct genl_multicast_group nlrtw_genl_mcgrp[] = {
[NLRTW_MCGRP_DEFAULT] = { .name = "nlrtw_default" },
};
/* family definition */
static struct genl_family nlrtw_genl_family = {
.hdrsize = 0,
.name = "nlrtw_"DRV_NAME,
.version = 1,
.maxattr = NLRTW_ATTR_MAX,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 2, 0)
.policy = nlrtw_genl_policy,
#endif
.netnsok = true,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 12)
.module = THIS_MODULE,
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 13, 0)
.ops = nlrtw_genl_ops,
.n_ops = ARRAY_SIZE(nlrtw_genl_ops),
.mcgrps = nlrtw_genl_mcgrp,
.n_mcgrps = ARRAY_SIZE(nlrtw_genl_mcgrp),
#endif
};
static inline int nlrtw_multicast(const struct genl_family *family,
struct sk_buff *skb, u32 portid,
unsigned int group, gfp_t flags)
{
int ret;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 13, 0)
ret = genlmsg_multicast(&nlrtw_genl_family, skb, portid, group, flags);
#else
ret = genlmsg_multicast(skb, portid, nlrtw_genl_mcgrp[group].id, flags);
#endif
return ret;
}
int rtw_nlrtw_ch_util_rpt(_adapter *adapter, u8 n_rpts, u8 *val, u8 **mac_addr)
{
struct sk_buff *skb = NULL;
void *msg_header = NULL;
struct nlattr *nl_ch_util, *nl_ch_utils;
struct wiphy *wiphy;
u8 i;
int ret;
wiphy = adapter_to_wiphy(adapter);
if (!wiphy)
return -EINVAL;
/* allocate memory */
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb) {
nlmsg_free(skb);
return -ENOMEM;
}
/* create the message headers */
msg_header = genlmsg_put(skb, 0, 0, &nlrtw_genl_family, 0,
NLRTW_CMD_CHANNEL_UTILIZATION);
if (!msg_header) {
ret = -ENOMEM;
goto err_out;
}
/* add attributes */
ret = nla_put_string(skb, NLRTW_ATTR_WIPHY_NAME, wiphy_name(wiphy));
nl_ch_utils = nla_nest_start(skb, NLRTW_ATTR_CHANNEL_UTILIZATIONS);
if (!nl_ch_utils) {
ret = -EMSGSIZE;
goto err_out;
}
for (i = 0; i < n_rpts; i++) {
nl_ch_util = nla_nest_start(skb, i);
if (!nl_ch_util) {
ret = -EMSGSIZE;
goto err_out;
}
ret = nla_put(skb, NLRTW_ATTR_CHANNEL_UTILIZATION_BSSID, ETH_ALEN, *(mac_addr + i));
if (ret != 0)
goto err_out;
ret = nla_put_u8(skb, NLRTW_ATTR_CHANNEL_UTILIZATION_VALUE, *(val + i));
if (ret != 0)
goto err_out;
nla_nest_end(skb, nl_ch_util);
}
nla_nest_end(skb, nl_ch_utils);
/* finalize the message */
genlmsg_end(skb, msg_header);
ret = nlrtw_multicast(&nlrtw_genl_family, skb, 0, NLRTW_MCGRP_DEFAULT, GFP_KERNEL);
if (ret == -ESRCH) {
RTW_INFO("[%s] return ESRCH(No such process)."
" Maybe no process waits for this msg\n", __func__);
return ret;
} else if (ret != 0) {
RTW_INFO("[%s] ret = %d\n", __func__, ret);
return ret;
}
return 0;
err_out:
nlmsg_free(skb);
return ret;
}
int rtw_nlrtw_reg_change_event(_adapter *adapter)
{
struct sk_buff *skb = NULL;
void *msg_header = NULL;
struct wiphy *wiphy;
u8 i;
int ret;
wiphy = adapter_to_wiphy(adapter);
if (!wiphy) {
ret = -EINVAL;
goto err_out;
}
/* allocate memory */
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb) {
ret = -ENOMEM;
goto err_out;
}
/* create the message headers */
msg_header = genlmsg_put(skb, 0, 0, &nlrtw_genl_family, 0, NLRTW_CMD_REG_CHANGE);
if (!msg_header) {
ret = -ENOMEM;
goto err_out;
}
/* add attributes */
ret = nla_put_string(skb, NLRTW_ATTR_WIPHY_NAME, wiphy_name(wiphy));
if (ret)
goto err_out;
/* finalize the message */
genlmsg_end(skb, msg_header);
ret = nlrtw_multicast(&nlrtw_genl_family, skb, 0, NLRTW_MCGRP_DEFAULT, GFP_KERNEL);
if (ret == -ESRCH) {
RTW_DBG(FUNC_WIPHY_FMT" return -ESRCH(No such process)."
" Maybe no process waits for this msg\n", FUNC_WIPHY_ARG(wiphy));
return ret;
} else if (ret != 0) {
RTW_WARN(FUNC_WIPHY_FMT" return %d\n", FUNC_WIPHY_ARG(wiphy), ret);
return ret;
}
return 0;
err_out:
if (skb)
nlmsg_free(skb);
return ret;
}
int rtw_nlrtw_reg_beacon_hint_event(_adapter *adapter)
{
struct sk_buff *skb = NULL;
void *msg_header = NULL;
struct wiphy *wiphy;
u8 i;
int ret;
wiphy = adapter_to_wiphy(adapter);
if (!wiphy) {
ret = -EINVAL;
goto err_out;
}
/* allocate memory */
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb) {
ret = -ENOMEM;
goto err_out;
}
/* create the message headers */
msg_header = genlmsg_put(skb, 0, 0, &nlrtw_genl_family, 0, NLRTW_CMD_REG_BEACON_HINT);
if (!msg_header) {
ret = -ENOMEM;
goto err_out;
}
/* add attributes */
ret = nla_put_string(skb, NLRTW_ATTR_WIPHY_NAME, wiphy_name(wiphy));
if (ret)
goto err_out;
/* finalize the message */
genlmsg_end(skb, msg_header);
ret = nlrtw_multicast(&nlrtw_genl_family, skb, 0, NLRTW_MCGRP_DEFAULT, GFP_KERNEL);
if (ret == -ESRCH) {
RTW_DBG(FUNC_WIPHY_FMT" return -ESRCH(No such process)."
" Maybe no process waits for this msg\n", FUNC_WIPHY_ARG(wiphy));
return ret;
} else if (ret != 0) {
RTW_WARN(FUNC_WIPHY_FMT" return %d\n", FUNC_WIPHY_ARG(wiphy), ret);
return ret;
}
return 0;
err_out:
if (skb)
nlmsg_free(skb);
return ret;
}
#ifdef CONFIG_DFS_MASTER
static int _rtw_nlrtw_radar_event(_adapter *adapter, enum nlrtw_radar_event evt_type, u8 cch, u8 bw)
{
struct sk_buff *skb = NULL;
void *msg_header = NULL;
struct wiphy *wiphy;
u8 i;
int ret;
wiphy = adapter_to_wiphy(adapter);
if (!wiphy) {
ret = -EINVAL;
goto err_out;
}
/* allocate memory */
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb) {
ret = -ENOMEM;
goto err_out;
}
/* create the message headers */
msg_header = genlmsg_put(skb, 0, 0, &nlrtw_genl_family, 0, NLRTW_CMD_RADAR_EVENT);
if (!msg_header) {
ret = -ENOMEM;
goto err_out;
}
/* add attributes */
ret = nla_put_string(skb, NLRTW_ATTR_WIPHY_NAME, wiphy_name(wiphy));
if (ret)
goto err_out;
ret = nla_put_u8(skb, NLRTW_ATTR_RADAR_EVENT, (uint8_t)evt_type);
if (ret != 0)
goto err_out;
ret = nla_put_u8(skb, NLRTW_ATTR_CHANNEL_CENTER, cch);
if (ret != 0)
goto err_out;
ret = nla_put_u8(skb, NLRTW_ATTR_CHANNEL_WIDTH, bw);
if (ret != 0)
goto err_out;
/* finalize the message */
genlmsg_end(skb, msg_header);
ret = nlrtw_multicast(&nlrtw_genl_family, skb, 0, NLRTW_MCGRP_DEFAULT, GFP_KERNEL);
if (ret == -ESRCH) {
RTW_DBG(FUNC_WIPHY_FMT" return -ESRCH(No such process)."
" Maybe no process waits for this msg\n", FUNC_WIPHY_ARG(wiphy));
return ret;
} else if (ret != 0) {
RTW_WARN(FUNC_WIPHY_FMT" return %d\n", FUNC_WIPHY_ARG(wiphy), ret);
return ret;
}
return 0;
err_out:
if (skb)
nlmsg_free(skb);
return ret;
}
int rtw_nlrtw_radar_detect_event(_adapter *adapter, u8 cch, u8 bw)
{
return _rtw_nlrtw_radar_event(adapter, NLRTW_RADAR_DETECTED, cch, bw);
}
int rtw_nlrtw_cac_finish_event(_adapter *adapter, u8 cch, u8 bw)
{
return _rtw_nlrtw_radar_event(adapter, NLRTW_RADAR_CAC_FINISHED, cch, bw);
}
int rtw_nlrtw_cac_abort_event(_adapter *adapter, u8 cch, u8 bw)
{
return _rtw_nlrtw_radar_event(adapter, NLRTW_RADAR_CAC_ABORTED, cch, bw);
}
int rtw_nlrtw_nop_finish_event(_adapter *adapter, u8 cch, u8 bw)
{
return _rtw_nlrtw_radar_event(adapter, NLRTW_RADAR_NOP_FINISHED, cch, bw);
}
int rtw_nlrtw_nop_start_event(_adapter *adapter, u8 cch, u8 bw)
{
return _rtw_nlrtw_radar_event(adapter, NLRTW_RADAR_NOP_STARTED, cch, bw);
}
#endif /* CONFIG_DFS_MASTER */
int rtw_nlrtw_radio_opmode_notify(struct rf_ctl_t *rfctl)
{
struct dvobj_priv *dvobj = rfctl_to_dvobj(rfctl);
_adapter *iface;
struct sk_buff *skb = NULL;
void *msg_header = NULL;
struct nlattr *nl_if_opmodes, *nl_if_opmode;
struct wiphy *wiphy;
u16 op_txpwr_max_u16;
u8 i;
int ret;
wiphy = dvobj_to_wiphy(dvobj);
if (!wiphy) {
ret = -EINVAL;
goto err_out;
}
/* allocate memory */
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb) {
ret = -ENOMEM;
goto err_out;
}
/* create the message headers */
msg_header = genlmsg_put(skb, 0, 0, &nlrtw_genl_family, 0, NLRTW_CMD_RADIO_OPMODE);
if (!msg_header) {
ret = -ENOBUFS;
goto err_out;
}
/* add attributes */
ret = nla_put_string(skb, NLRTW_ATTR_WIPHY_NAME, wiphy_name(wiphy));
if (ret)
goto err_out;
ret = nla_put_u8(skb, NLRTW_ATTR_OP_CLASS, rfctl->op_class);
if (ret != 0)
goto err_out;
ret = nla_put_u8(skb, NLRTW_ATTR_OP_CHANNEL, rfctl->op_ch);
if (ret != 0)
goto err_out;
*((s16 *)&op_txpwr_max_u16) = rfctl->op_txpwr_max;
ret = nla_put_u16(skb, NLRTW_ATTR_OP_TXPWR_MAX, op_txpwr_max_u16);
if (ret != 0)
goto err_out;
if (0)
RTW_INFO("radio: %u,%u %d\n", rfctl->op_class, rfctl->op_ch, rfctl->op_txpwr_max);
nl_if_opmodes = nla_nest_start(skb, NLRTW_ATTR_IF_OPMODES);
if (!nl_if_opmodes) {
ret = -ENOBUFS;
goto err_out;
}
for (i = 0; i < dvobj->iface_nums; i++) {
if (!dvobj->padapters[i])
continue;
iface = dvobj->padapters[i];
if (!rfctl->if_op_class[i] || !rfctl->if_op_ch[i])
continue;
if (0)
RTW_INFO(ADPT_FMT": %u,%u\n", ADPT_ARG(iface), rfctl->if_op_class[i], rfctl->if_op_ch[i]);
nl_if_opmode = nla_nest_start(skb, i + 1);
if (!nl_if_opmode) {
ret = -ENOBUFS;
goto err_out;
}
ret = nla_put(skb, NLRTW_IF_OPMODE_MACADDR, ETH_ALEN, adapter_mac_addr(iface));
if (ret != 0)
goto err_out;
ret = nla_put_u8(skb, NLRTW_IF_OPMODE_OP_CLASS, rfctl->if_op_class[i]);
if (ret != 0)
goto err_out;
ret = nla_put_u8(skb, NLRTW_IF_OPMODE_OP_CHANNEL, rfctl->if_op_ch[i]);
if (ret != 0)
goto err_out;
nla_nest_end(skb, nl_if_opmode);
}
nla_nest_end(skb, nl_if_opmodes);
/* finalize the message */
genlmsg_end(skb, msg_header);
ret = nlrtw_multicast(&nlrtw_genl_family, skb, 0, NLRTW_MCGRP_DEFAULT, GFP_KERNEL);
if (ret == -ESRCH) {
RTW_DBG(FUNC_WIPHY_FMT" return -ESRCH(No such process)."
" Maybe no process waits for this msg\n", FUNC_WIPHY_ARG(wiphy));
return ret;
} else if (ret != 0) {
RTW_WARN(FUNC_WIPHY_FMT" return %d\n", FUNC_WIPHY_ARG(wiphy), ret);
return ret;
}
return 0;
err_out:
if (skb)
nlmsg_free(skb);
return ret;
}
int rtw_nlrtw_init(void)
{
int err;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 13, 0)
err = genl_register_family(&nlrtw_genl_family);
if (err)
return err;
#else
err = genl_register_family_with_ops(&nlrtw_genl_family, nlrtw_genl_ops, ARRAY_SIZE(nlrtw_genl_ops));
if (err)
return err;
err = genl_register_mc_group(&nlrtw_genl_family, &nlrtw_genl_mcgrp[0]);
if (err) {
genl_unregister_family(&nlrtw_genl_family);
return err;
}
#endif
RTW_INFO("[%s] %s\n", __func__, nlrtw_genl_family.name);
return 0;
}
int rtw_nlrtw_deinit(void)
{
int err;
err = genl_unregister_family(&nlrtw_genl_family);
RTW_INFO("[%s] err = %d\n", __func__, err);
return err;
}
#endif /* CONFIG_RTW_NLRTW */
|
2301_81045437/rtl8852be
|
os_dep/linux/nlrtw.c
|
C
|
agpl-3.0
| 13,760
|
/******************************************************************************
*
* Copyright(c) 2007 - 2020 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef __RTW_NLRTW_H_
#define __RTW_NLRTW_H_
#ifdef CONFIG_RTW_NLRTW
int rtw_nlrtw_init(void);
int rtw_nlrtw_deinit(void);
int rtw_nlrtw_ch_util_rpt(_adapter *adapter, u8 n_rpts, u8 *val, u8 **mac_addr);
int rtw_nlrtw_reg_change_event(_adapter *adapter);
int rtw_nlrtw_reg_beacon_hint_event(_adapter *adapter);
int rtw_nlrtw_radio_opmode_notify(struct rf_ctl_t *rfctl);
#else
static inline int rtw_nlrtw_init(void) {return _FAIL;}
static inline int rtw_nlrtw_deinit(void) {return _FAIL;}
static inline int rtw_nlrtw_ch_util_rpt(_adapter *adapter, u8 n_rpts, u8 *val, u8 **mac_addr) {return _FAIL;}
static inline int rtw_nlrtw_reg_change_event(_adapter *adapter) {return _FAIL;}
static inline int rtw_nlrtw_reg_beacon_hint_event(_adapter *adapter) {return _FAIL;}
static inline int rtw_nlrtw_radio_opmode_notify(struct rf_ctl_t *rfctl) {return _FAIL;}
#endif /* CONFIG_RTW_NLRTW */
#if defined(CONFIG_RTW_NLRTW) && defined(CONFIG_DFS_MASTER)
int rtw_nlrtw_radar_detect_event(_adapter *adapter, u8 cch, u8 bw);
int rtw_nlrtw_cac_finish_event(_adapter *adapter, u8 cch, u8 bw);
int rtw_nlrtw_cac_abort_event(_adapter *adapter, u8 cch, u8 bw);
int rtw_nlrtw_nop_finish_event(_adapter *adapter, u8 cch, u8 bw);
int rtw_nlrtw_nop_start_event(_adapter *adapter, u8 cch, u8 bw);
#else
static inline int rtw_nlrtw_radar_detect_event(_adapter *adapter, u8 cch, u8 bw) {return _FAIL;}
static inline int rtw_nlrtw_cac_finish_event(_adapter *adapter, u8 cch, u8 bw) {return _FAIL;}
static inline int rtw_nlrtw_cac_abort_event(_adapter *adapter, u8 cch, u8 bw) {return _FAIL;}
static inline int rtw_nlrtw_nop_finish_event(_adapter *adapter, u8 cch, u8 bw) {return _FAIL;}
static inline int rtw_nlrtw_nop_start_event(_adapter *adapter, u8 cch, u8 bw) {return _FAIL;}
#endif /* defined(CONFIG_RTW_NLRTW) && defined(CONFIG_DFS_MASTER) */
#endif /* __RTW_NLRTW_H_ */
|
2301_81045437/rtl8852be
|
os_dep/linux/nlrtw.h
|
C
|
agpl-3.0
| 2,509
|
/******************************************************************************
*
* Copyright(c) 2007 - 2021 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _OS_INTFS_C_
#include <drv_types.h>
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Realtek Wireless Lan Driver");
MODULE_AUTHOR("Realtek Semiconductor Corp.");
MODULE_VERSION(DRIVERVERSION);
int netdev_open(struct net_device *pnetdev);
static int netdev_close(struct net_device *pnetdev);
/**
* rtw_net_set_mac_address
* This callback function is used for the Media Access Control address
* of each net_device needs to be changed.
*
* Arguments:
* @pnetdev: net_device pointer.
* @addr: new MAC address.
*
* Return:
* ret = 0: Permit to change net_device's MAC address.
* ret = -1 (Default): Operation not permitted.
*
* Auther: Arvin Liu
* Date: 2015/05/29
*/
static int rtw_net_set_mac_address(struct net_device *pnetdev, void *addr)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(pnetdev);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct sockaddr *sa = (struct sockaddr *)addr;
int ret = -1;
/* only the net_device is in down state to permit modifying mac addr */
if ((pnetdev->flags & IFF_UP) == _TRUE) {
RTW_INFO(FUNC_ADPT_FMT": The net_device's is not in down state\n"
, FUNC_ADPT_ARG(padapter));
return ret;
}
/* if the net_device is linked, it's not permit to modify mac addr */
if (check_fwstate(pmlmepriv, WIFI_UNDER_LINKING) ||
check_fwstate(pmlmepriv, WIFI_ASOC_STATE) ||
check_fwstate(pmlmepriv, WIFI_UNDER_SURVEY)) {
RTW_INFO(FUNC_ADPT_FMT": The net_device's is not idle currently\n"
, FUNC_ADPT_ARG(padapter));
return ret;
}
/* check whether the input mac address is valid to permit modifying mac addr */
if (rtw_check_invalid_mac_address(sa->sa_data, _FALSE) == _TRUE) {
RTW_INFO(FUNC_ADPT_FMT": Invalid Mac Addr for "MAC_FMT"\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(sa->sa_data));
return ret;
}
_rtw_memcpy(adapter_mac_addr(padapter), sa->sa_data, ETH_ALEN); /* set mac addr to adapter */
_rtw_memcpy(pnetdev->dev_addr, sa->sa_data, ETH_ALEN); /* set mac addr to net_device */
/* Since the net_device is in down state, there is no wrole at this moment.
* The new mac address will be set to hw when changing the net_device to up state.
*/
RTW_INFO(FUNC_ADPT_FMT": Set Mac Addr to "MAC_FMT" Successfully\n"
, FUNC_ADPT_ARG(padapter), MAC_ARG(sa->sa_data));
ret = 0;
return ret;
}
static struct net_device_stats *rtw_net_get_stats(struct net_device *pnetdev)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(pnetdev);
struct xmit_priv *pxmitpriv = &(padapter->xmitpriv);
struct recv_info *precvinfo = &(padapter->recvinfo);
padapter->stats.tx_packets = pxmitpriv->tx_pkts;/* pxmitpriv->tx_pkts++; */
padapter->stats.rx_packets = precvinfo->rx_pkts;/* precvinfo->rx_pkts++; */
padapter->stats.tx_dropped = pxmitpriv->tx_drop;
padapter->stats.rx_dropped = precvinfo->rx_drop;
padapter->stats.tx_bytes = pxmitpriv->tx_bytes;
padapter->stats.rx_bytes = precvinfo->rx_bytes;
return &padapter->stats;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
/*
* AC to queue mapping
*
* AC_VO -> queue 0
* AC_VI -> queue 1
* AC_BE -> queue 2
* AC_BK -> queue 3
*/
static const u16 rtw_1d_to_queue[8] = { 2, 3, 3, 2, 1, 1, 0, 0 };
/* Given a data frame determine the 802.1p/1d tag to use. */
unsigned int rtw_classify8021d(struct sk_buff *skb)
{
unsigned int dscp;
/* skb->priority values from 256->263 are magic values to
* directly indicate a specific 802.1d priority. This is used
* to allow 802.1d priority to be passed directly in from VLAN
* tags, etc.
*/
if (skb->priority >= 256 && skb->priority <= 263)
return skb->priority - 256;
switch (skb->protocol) {
case htons(ETH_P_IP):
dscp = ip_hdr(skb)->tos & 0xfc;
break;
default:
return 0;
}
return dscp >> 5;
}
static u16 rtw_select_queue(struct net_device *dev, struct sk_buff *skb
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 13, 0)
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 19, 0)
, struct net_device *sb_dev
#else
, void *accel_priv
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)) && (LINUX_VERSION_CODE < KERNEL_VERSION(5, 2, 0))
, select_queue_fallback_t fallback
#endif
#endif
)
{
_adapter *padapter = rtw_netdev_priv(dev);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
skb->priority = rtw_classify8021d(skb);
if (pmlmepriv->acm_mask != 0)
skb->priority = qos_acm(pmlmepriv->acm_mask, skb->priority);
return rtw_1d_to_queue[skb->priority];
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)) */
u16 rtw_os_recv_select_queue(u8 *msdu, enum rtw_rx_llc_hdl llc_hdl)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
u32 priority = 0;
if (llc_hdl == RTW_RX_LLC_REMOVE) {
u16 eth_type = RTW_GET_BE16(msdu + SNAP_SIZE);
if (eth_type == ETH_P_IP) {
struct iphdr *iphdr = (struct iphdr *)(msdu + SNAP_SIZE + 2);
unsigned int dscp = iphdr->tos & 0xfc;
priority = dscp >> 5;
}
}
return rtw_1d_to_queue[priority];
#else
return 0;
#endif
}
static u8 is_rtw_ndev(struct net_device *ndev)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29))
return ndev->netdev_ops
&& ndev->netdev_ops->ndo_do_ioctl
&& ndev->netdev_ops->ndo_do_ioctl == rtw_ioctl;
#else
return ndev->do_ioctl
&& ndev->do_ioctl == rtw_ioctl;
#endif
}
#define _netdev_status_msg(_ndev, state, sts_str) \
RTW_INFO(FUNC_NDEV_FMT" state:%lu - %s\n", FUNC_NDEV_ARG(_ndev), state, sts_str);
static int rtw_ndev_notifier_call(struct notifier_block *nb, unsigned long state, void *ptr)
{
struct net_device *ndev;
if (ptr == NULL)
return NOTIFY_DONE;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
ndev = netdev_notifier_info_to_dev(ptr);
#else
ndev = ptr;
#endif
if (ndev == NULL)
return NOTIFY_DONE;
if (!is_rtw_ndev(ndev))
return NOTIFY_DONE;
switch (state) {
case NETDEV_CHANGE:
_netdev_status_msg(ndev, state, "netdev change");
break;
case NETDEV_GOING_DOWN:
_netdev_status_msg(ndev, state, "netdev going down");
break;
case NETDEV_DOWN:
_netdev_status_msg(ndev, state, "netdev down");
break;
case NETDEV_UP:
_netdev_status_msg(ndev, state, "netdev up");
break;
case NETDEV_REBOOT:
_netdev_status_msg(ndev, state, "netdev reboot");
break;
case NETDEV_CHANGENAME:
rtw_adapter_proc_replace(ndev);
_netdev_status_msg(ndev, state, "netdev chang ename");
break;
case NETDEV_PRE_UP :
{
_adapter *adapter = rtw_netdev_priv(ndev);
rtw_pwr_wakeup(adapter);
}
_netdev_status_msg(ndev, state, "netdev pre up");
break;
case NETDEV_JOIN:
_netdev_status_msg(ndev, state, "netdev join");
break;
default:
_netdev_status_msg(ndev, state, " ");
break;
}
return NOTIFY_DONE;
}
static struct notifier_block rtw_ndev_notifier = {
.notifier_call = rtw_ndev_notifier_call,
};
int rtw_ndev_notifier_register(void)
{
return register_netdevice_notifier(&rtw_ndev_notifier);
}
void rtw_ndev_notifier_unregister(void)
{
unregister_netdevice_notifier(&rtw_ndev_notifier);
}
int rtw_ndev_init(struct net_device *dev)
{
_adapter *adapter = rtw_netdev_priv(dev);
RTW_PRINT(FUNC_ADPT_FMT" if%d mac_addr="MAC_FMT"\n"
, FUNC_ADPT_ARG(adapter), (adapter->iface_id + 1), MAC_ARG(dev->dev_addr));
strncpy(adapter->old_ifname, dev->name, IFNAMSIZ);
adapter->old_ifname[IFNAMSIZ - 1] = '\0';
#ifdef CONFIG_ARCH_CORTINA
dev->priv_flags = IFF_DOMAIN_WLAN;
#endif
rtw_adapter_proc_init(dev);
#ifdef CONFIG_RTW_NAPI
netif_napi_add(dev, &adapter->napi, rtw_recv_napi_poll, RTL_NAPI_WEIGHT);
#endif /* CONFIG_RTW_NAPI */
return 0;
}
void rtw_ndev_uninit(struct net_device *dev)
{
_adapter *adapter = rtw_netdev_priv(dev);
RTW_PRINT(FUNC_ADPT_FMT" if%d\n"
, FUNC_ADPT_ARG(adapter), (adapter->iface_id + 1));
rtw_adapter_proc_deinit(dev);
#ifdef CONFIG_RTW_NAPI
if(adapter->napi_state == NAPI_ENABLE) {
napi_disable(&adapter->napi);
adapter->napi_state = NAPI_DISABLE;
}
netif_napi_del(&adapter->napi);
#endif /* CONFIG_RTW_NAPI */
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29))
static const struct net_device_ops rtw_netdev_ops = {
.ndo_init = rtw_ndev_init,
.ndo_uninit = rtw_ndev_uninit,
.ndo_open = netdev_open,
.ndo_stop = netdev_close,
.ndo_start_xmit = rtw_xmit_entry,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
.ndo_select_queue = rtw_select_queue,
#endif
.ndo_set_mac_address = rtw_net_set_mac_address,
.ndo_get_stats = rtw_net_get_stats,
.ndo_do_ioctl = rtw_ioctl,
};
#endif
int rtw_init_netdev_name(struct net_device *pnetdev, const char *ifname)
{
if (dev_alloc_name(pnetdev, ifname) < 0)
RTW_ERR("dev_alloc_name, fail!\n");
rtw_netif_carrier_off(pnetdev);
/* rtw_netif_stop_queue(pnetdev); */
return 0;
}
void rtw_hook_if_ops(struct net_device *ndev)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29))
ndev->netdev_ops = &rtw_netdev_ops;
#else
ndev->init = rtw_ndev_init;
ndev->uninit = rtw_ndev_uninit;
ndev->open = netdev_open;
ndev->stop = netdev_close;
ndev->hard_start_xmit = rtw_xmit_entry;
ndev->set_mac_address = rtw_net_set_mac_address;
ndev->get_stats = rtw_net_get_stats;
ndev->do_ioctl = rtw_ioctl;
#endif
}
#ifdef CONFIG_CONCURRENT_MODE
static void rtw_hook_vir_if_ops(struct net_device *ndev);
#endif
struct net_device *rtw_init_netdev(_adapter *old_padapter)
{
_adapter *padapter;
struct net_device *pnetdev;
if (old_padapter != NULL) {
rtw_os_ndev_free(old_padapter);
pnetdev = rtw_alloc_etherdev_with_old_priv(sizeof(_adapter), (void *)old_padapter);
} else
pnetdev = rtw_alloc_etherdev(sizeof(_adapter));
if (!pnetdev)
return NULL;
padapter = rtw_netdev_priv(pnetdev);
padapter->pnetdev = pnetdev;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)
SET_MODULE_OWNER(pnetdev);
#endif
rtw_hook_if_ops(pnetdev);
#ifdef CONFIG_CONCURRENT_MODE
if (!is_primary_adapter(padapter))
rtw_hook_vir_if_ops(pnetdev);
#endif /* CONFIG_CONCURRENT_MODE */
#ifdef CONFIG_TCP_CSUM_OFFLOAD_TX
pnetdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39)
pnetdev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
#endif
#endif
#ifdef CONFIG_RTW_NETIF_SG
pnetdev->features |= NETIF_F_SG;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39)
pnetdev->hw_features |= NETIF_F_SG;
#endif
#endif
if ((pnetdev->features & NETIF_F_SG) && (pnetdev->features & NETIF_F_IP_CSUM)) {
pnetdev->features |= (NETIF_F_TSO | NETIF_F_GSO);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39)
pnetdev->hw_features |= (NETIF_F_TSO | NETIF_F_GSO);
#endif
}
/* pnetdev->tx_timeout = NULL; */
pnetdev->watchdog_timeo = HZ * 3; /* 3 second timeout */
#ifdef CONFIG_WIRELESS_EXT
pnetdev->wireless_handlers = (struct iw_handler_def *)&rtw_handlers_def;
#endif
#ifdef WIRELESS_SPY
/* priv->wireless_data.spy_data = &priv->spy_data; */
/* pnetdev->wireless_data = &priv->wireless_data; */
#endif
#ifdef CONFIG_TX_AMSDU_SW_MODE
pnetdev->needed_headroom += 8; /* +8 for rfc1042 header */
pnetdev->needed_headroom += 4; /* +4 for padding */
#endif
return pnetdev;
}
#ifdef CONFIG_PCI_HCI
#include <rtw_trx_pci.h>
#endif
int rtw_os_ndev_alloc(_adapter *adapter)
{
int ret = _FAIL;
struct net_device *ndev = NULL;
ndev = rtw_init_netdev(adapter);
if (ndev == NULL) {
rtw_warn_on(1);
goto exit;
}
#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 5, 0)
SET_NETDEV_DEV(ndev, dvobj_to_dev(adapter_to_dvobj(adapter)));
#endif
#ifdef CONFIG_PCI_HCI
if (is_pci_support_dma64(adapter_to_dvobj(adapter)))
ndev->features |= NETIF_F_HIGHDMA;
ndev->irq = dvobj_to_pci(adapter_to_dvobj(adapter))->irq;
#endif
#if defined(CONFIG_IOCTL_CFG80211)
if (rtw_cfg80211_ndev_res_alloc(adapter) != _SUCCESS) {
rtw_warn_on(1);
} else
#endif
ret = _SUCCESS;
if (ret != _SUCCESS && ndev)
rtw_free_netdev(ndev);
exit:
return ret;
}
void rtw_os_ndev_free(_adapter *adapter)
{
#if defined(CONFIG_IOCTL_CFG80211)
rtw_cfg80211_ndev_res_free(adapter);
#endif
/* free the old_pnetdev */
if (adapter->rereg_nd_name_priv.old_pnetdev) {
rtw_free_netdev(adapter->rereg_nd_name_priv.old_pnetdev);
adapter->rereg_nd_name_priv.old_pnetdev = NULL;
}
if (adapter->pnetdev) {
rtw_free_netdev(adapter->pnetdev);
adapter->pnetdev = NULL;
}
}
/* For ethtool +++ */
#ifdef CONFIG_IOCTL_CFG80211
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 8))
static void rtw_ethtool_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct wireless_dev *wdev = NULL;
_adapter *padapter = NULL;
wdev = dev->ieee80211_ptr;
if (wdev) {
strlcpy(info->driver, wiphy_dev(wdev->wiphy)->driver->name,
sizeof(info->driver));
} else {
strlcpy(info->driver, "N/A", sizeof(info->driver));
}
strlcpy(info->version, DRIVERVERSION, sizeof(info->version));
padapter = (_adapter *)rtw_netdev_priv(dev);
/*GEORGIA_TODO_FIXIT*/
#if 0
HAL_DATA_TYPE *hal_data = NULL;
if (padapter) {
hal_data = GET_PHL_COM(padapter);
}
if (hal_data) {
scnprintf(info->fw_version, sizeof(info->fw_version), "%d.%d",
hal_data->firmware_version, hal_data->firmware_sub_version);
} else
#endif
{
strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
}
strlcpy(info->bus_info, dev_name(wiphy_dev(wdev->wiphy)),
sizeof(info->bus_info));
}
static const char rtw_ethtool_gstrings_sta_stats[][ETH_GSTRING_LEN] = {
"rx_packets", "rx_bytes", "rx_dropped",
"tx_packets", "tx_bytes", "tx_dropped",
};
#define RTW_ETHTOOL_STATS_LEN ARRAY_SIZE(rtw_ethtool_gstrings_sta_stats)
static int rtw_ethtool_get_sset_count(struct net_device *dev, int sset)
{
int rv = 0;
if (sset == ETH_SS_STATS)
rv += RTW_ETHTOOL_STATS_LEN;
if (rv == 0)
return -EOPNOTSUPP;
return rv;
}
static void rtw_ethtool_get_strings(struct net_device *dev, u32 sset, u8 *data)
{
int sz_sta_stats = 0;
if (sset == ETH_SS_STATS) {
sz_sta_stats = sizeof(rtw_ethtool_gstrings_sta_stats);
_rtw_memcpy(data, rtw_ethtool_gstrings_sta_stats, sz_sta_stats);
}
}
static void rtw_ethtool_get_stats(struct net_device *dev,
struct ethtool_stats *stats,
u64 *data)
{
int i = 0;
_adapter *padapter = NULL;
struct xmit_priv *pxmitpriv = NULL;
struct recv_info *precvinfo = NULL;
memset(data, 0, sizeof(u64) * RTW_ETHTOOL_STATS_LEN);
padapter = (_adapter *)rtw_netdev_priv(dev);
if (padapter) {
pxmitpriv = &(padapter->xmitpriv);
precvinfo = &(padapter->recvinfo);
data[i++] = precvinfo->rx_pkts;
data[i++] = precvinfo->rx_bytes;
data[i++] = precvinfo->rx_drop;
data[i++] = pxmitpriv->tx_pkts;
data[i++] = pxmitpriv->tx_bytes;
data[i++] = pxmitpriv->tx_drop;
} else {
data[i++] = 0;
data[i++] = 0;
data[i++] = 0;
data[i++] = 0;
data[i++] = 0;
data[i++] = 0;
}
}
static const struct ethtool_ops rtw_ethtool_ops = {
.get_drvinfo = rtw_ethtool_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_strings = rtw_ethtool_get_strings,
.get_ethtool_stats = rtw_ethtool_get_stats,
.get_sset_count = rtw_ethtool_get_sset_count,
};
#endif // LINUX_VERSION_CODE >= 3.7.8
#endif /* CONFIG_IOCTL_CFG80211 */
/* For ethtool --- */
int rtw_os_ndev_register(_adapter *adapter, const char *name)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
int ret = _SUCCESS;
struct net_device *ndev = adapter->pnetdev;
u8 rtnl_lock_needed = rtw_rtnl_lock_needed(dvobj);
#if defined(CONFIG_IOCTL_CFG80211)
if (rtw_cfg80211_ndev_res_register(adapter) != _SUCCESS) {
rtw_warn_on(1);
ret = _FAIL;
goto exit;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 8))
netdev_set_default_ethtool_ops(ndev, &rtw_ethtool_ops);
#endif /* LINUX_VERSION_CODE >= 3.7.8 */
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0)) && defined(CONFIG_PCI_HCI)
ndev->gro_flush_timeout = 100000;
#endif
/* alloc netdev name */
rtw_init_netdev_name(ndev, name);
_rtw_memcpy(ndev->dev_addr, adapter_mac_addr(adapter), ETH_ALEN);
/* Tell the network stack we exist */
if (rtnl_lock_needed)
ret = (register_netdev(ndev) == 0) ? _SUCCESS : _FAIL;
else
ret = (register_netdevice(ndev) == 0) ? _SUCCESS : _FAIL;
if (ret == _SUCCESS)
adapter->registered = 1;
else
RTW_INFO(FUNC_NDEV_FMT" if%d Failed!\n", FUNC_NDEV_ARG(ndev), (adapter->iface_id + 1));
#if defined(CONFIG_IOCTL_CFG80211)
if (ret != _SUCCESS) {
rtw_cfg80211_ndev_res_unregister(adapter);
}
#endif
#if defined(CONFIG_IOCTL_CFG80211)
exit:
#endif
return ret;
}
void rtw_os_ndev_unregister(_adapter *adapter)
{
struct net_device *netdev = NULL;
if (adapter == NULL || adapter->registered == 0)
return;
adapter->ndev_unregistering = 1;
netdev = adapter->pnetdev;
#if defined(CONFIG_IOCTL_CFG80211)
rtw_cfg80211_ndev_res_unregister(adapter);
#endif
if (netdev) {
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
u8 rtnl_lock_needed = rtw_rtnl_lock_needed(dvobj);
if (rtnl_lock_needed)
unregister_netdev(netdev);
else
unregister_netdevice(netdev);
}
adapter->registered = 0;
adapter->ndev_unregistering = 0;
}
/**
* rtw_os_ndev_init - Allocate and register OS layer net device and relating structures for @adapter
* @adapter: the adapter on which this function applies
* @name: the requesting net device name
*
* Returns:
* _SUCCESS or _FAIL
*/
int rtw_os_ndev_init(_adapter *adapter, const char *name)
{
int ret = _FAIL;
if (rtw_os_ndev_alloc(adapter) != _SUCCESS)
goto exit;
if (rtw_os_ndev_register(adapter, name) != _SUCCESS)
goto os_ndev_free;
ret = _SUCCESS;
os_ndev_free:
if (ret != _SUCCESS)
rtw_os_ndev_free(adapter);
exit:
return ret;
}
/**
* rtw_os_ndev_deinit - Unregister and free OS layer net device and relating structures for @adapter
* @adapter: the adapter on which this function applies
*/
void rtw_os_ndev_deinit(_adapter *adapter)
{
rtw_os_ndev_unregister(adapter);
rtw_os_ndev_free(adapter);
}
int rtw_os_ndevs_alloc(struct dvobj_priv *dvobj)
{
int i, status = _SUCCESS;
_adapter *adapter;
#if defined(CONFIG_IOCTL_CFG80211)
if (rtw_cfg80211_dev_res_alloc(dvobj) != _SUCCESS) {
rtw_warn_on(1);
return _FAIL;
}
#endif
for (i = 0; i < dvobj->iface_nums; i++) {
if (i >= CONFIG_IFACE_NUMBER) {
RTW_ERR("%s %d >= CONFIG_IFACE_NUMBER(%d)\n", __func__, i, CONFIG_IFACE_NUMBER);
rtw_warn_on(1);
continue;
}
adapter = dvobj->padapters[i];
if (adapter && !adapter->pnetdev) {
#ifdef CONFIG_RTW_DYNAMIC_NDEV
if (!is_primary_adapter(adapter) &&
(i >= CONFIG_RTW_STATIC_NDEV_NUM))
break;
#endif
status = rtw_os_ndev_alloc(adapter);
if (status != _SUCCESS) {
rtw_warn_on(1);
break;
}
}
}
if (status != _SUCCESS) {
for (; i >= 0; i--) {
adapter = dvobj->padapters[i];
if (adapter && adapter->pnetdev)
rtw_os_ndev_free(adapter);
}
}
#if defined(CONFIG_IOCTL_CFG80211)
if (status != _SUCCESS)
rtw_cfg80211_dev_res_free(dvobj);
#endif
return status;
}
void rtw_os_ndevs_free(struct dvobj_priv *dvobj)
{
int i;
_adapter *adapter = NULL;
for (i = 0; i < dvobj->iface_nums; i++) {
if (i >= CONFIG_IFACE_NUMBER) {
RTW_ERR("%s %d >= CONFIG_IFACE_NUMBER(%d)\n", __func__, i, CONFIG_IFACE_NUMBER);
rtw_warn_on(1);
continue;
}
adapter = dvobj->padapters[i];
if (adapter == NULL)
continue;
rtw_os_ndev_free(adapter);
}
#if defined(CONFIG_IOCTL_CFG80211)
rtw_cfg80211_dev_res_free(dvobj);
#endif
}
#if 0 /*#ifdef CONFIG_CORE_CMD_THREAD*/
u32 rtw_start_drv_threads(_adapter *padapter)
{
u32 _status = _SUCCESS;
RTW_INFO(FUNC_ADPT_FMT" enter\n", FUNC_ADPT_ARG(padapter));
#ifdef CONFIG_XMIT_THREAD_MODE
#if defined(CONFIG_SDIO_HCI)
if (is_primary_adapter(padapter))
#endif
{
if (padapter->xmitThread == NULL) {
RTW_INFO(FUNC_ADPT_FMT " start RTW_XMIT_THREAD\n", FUNC_ADPT_ARG(padapter));
padapter->xmitThread = rtw_thread_start(rtw_xmit_thread, padapter, "RTW_XMIT_THREAD");
if (padapter->xmitThread == NULL)
_status = _FAIL;
}
}
#endif /* #ifdef CONFIG_XMIT_THREAD_MODE */
#ifdef CONFIG_RECV_THREAD_MODE
if (is_primary_adapter(padapter)) {
if (padapter->recvThread == NULL) {
RTW_INFO(FUNC_ADPT_FMT " start RTW_RECV_THREAD\n", FUNC_ADPT_ARG(padapter));
padapter->recvThread = rtw_thread_start(rtw_recv_thread, padapter, "RTW_RECV_THREAD");
if (padapter->recvThread == NULL)
_status = _FAIL;
}
}
#endif
if (is_primary_adapter(padapter)) {
if (padapter->cmdThread == NULL) {
RTW_INFO(FUNC_ADPT_FMT " start RTW_CMD_THREAD\n", FUNC_ADPT_ARG(padapter));
padapter->cmdThread = rtw_thread_start(rtw_cmd_thread, padapter, "RTW_CMD_THREAD");
if (padapter->cmdThread == NULL)
_status = _FAIL;
else
_rtw_down_sema(&padapter->cmdpriv.start_cmdthread_sema); /* wait for cmd_thread to run */
}
}
_status = rtw_intf_start_xmit_frame_thread(padapter);
return _status;
}
void rtw_stop_drv_threads(_adapter *padapter)
{
RTW_INFO(FUNC_ADPT_FMT" enter\n", FUNC_ADPT_ARG(padapter));
if (is_primary_adapter(padapter))
rtw_stop_cmd_thread(padapter);
#ifdef CONFIG_XMIT_THREAD_MODE
/* Below is to termindate tx_thread... */
#if defined(CONFIG_SDIO_HCI)
/* Only wake-up primary adapter */
if (is_primary_adapter(padapter))
#endif /*SDIO_HCI */
{
if (padapter->xmitThread) {
_rtw_up_sema(&padapter->xmitpriv.xmit_sema);
rtw_thread_stop(padapter->xmitThread);
padapter->xmitThread = NULL;
}
}
#endif
#ifdef CONFIG_RECV_THREAD_MODE
if (is_primary_adapter(padapter) && padapter->recvThread) {
/* Below is to termindate rx_thread... */
_rtw_up_sema(&padapter->recvpriv.recv_sema);
rtw_thread_stop(padapter->recvThread);
padapter->recvThread = NULL;
}
#endif
/*rtw_hal_stop_thread(padapter);*/
rtw_intf_cancel_xmit_frame_thread(padapter);
}
#endif
u8 rtw_init_default_value(_adapter *padapter)
{
u8 ret = _SUCCESS;
struct registry_priv *pregistrypriv = &padapter->registrypriv;
struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
struct security_priv *psecuritypriv = &padapter->securitypriv;
/* xmit_priv */
pxmitpriv->vcs_setting = pregistrypriv->vrtl_carrier_sense;
pxmitpriv->vcs = pregistrypriv->vcs_type;
pxmitpriv->vcs_type = pregistrypriv->vcs_type;
/* pxmitpriv->rts_thresh = pregistrypriv->rts_thresh; */
pxmitpriv->frag_len = pregistrypriv->frag_thresh;
/* security_priv */
/* rtw_get_encrypt_decrypt_from_registrypriv(padapter); */
psecuritypriv->binstallGrpkey = _FAIL;
#ifdef CONFIG_GTK_OL
psecuritypriv->binstallKCK_KEK = _FAIL;
#endif /* CONFIG_GTK_OL */
psecuritypriv->sw_encrypt = pregistrypriv->software_encrypt;
psecuritypriv->sw_decrypt = pregistrypriv->software_decrypt;
psecuritypriv->dot11AuthAlgrthm = dot11AuthAlgrthm_Open; /* open system */
psecuritypriv->dot11PrivacyAlgrthm = _NO_PRIVACY_;
psecuritypriv->dot11PrivacyKeyIndex = 0;
psecuritypriv->dot118021XGrpPrivacy = _NO_PRIVACY_;
psecuritypriv->dot118021XGrpKeyid = 1;
psecuritypriv->ndisauthtype = Ndis802_11AuthModeOpen;
psecuritypriv->ndisencryptstatus = Ndis802_11WEPDisabled;
#ifdef CONFIG_CONCURRENT_MODE
psecuritypriv->dot118021x_bmc_cam_id = INVALID_SEC_MAC_CAM_ID;
#endif
/* pwrctrl_priv */
/* registry_priv */
rtw_init_registrypriv_dev_network(padapter);
rtw_update_registrypriv_dev_network(padapter);
pregistrypriv->wireless_mode &= rtw_hw_get_wireless_mode(adapter_to_dvobj(padapter));
pregistrypriv->band_type &= rtw_hw_get_band_type(adapter_to_dvobj(padapter));
/*init fw_psmode_iface_id*/
adapter_to_pwrctl(padapter)->fw_psmode_iface_id = 0xff;
/* misc. */
padapter->bLinkInfoDump = 0;
padapter->bNotifyChannelChange = _FALSE;
#ifdef CONFIG_P2P
padapter->bShowGetP2PState = 1;
#endif
/* for debug purpose */
padapter->fix_rate = NO_FIX_RATE;
padapter->data_fb = 0;
padapter->fix_bw = NO_FIX_BW;
padapter->power_offset = 0;
padapter->rsvd_page_offset = 0;
padapter->rsvd_page_num = 0;
#ifdef CONFIG_AP_MODE
padapter->bmc_tx_rate = pregistrypriv->bmc_tx_rate;
#if CONFIG_RTW_AP_DATA_BMC_TO_UC
padapter->b2u_flags_ap_src = pregistrypriv->ap_src_b2u_flags;
padapter->b2u_flags_ap_fwd = pregistrypriv->ap_fwd_b2u_flags;
#endif
#endif
padapter->driver_tx_bw_mode = pregistrypriv->tx_bw_mode;
padapter->driver_ampdu_spacing = 0xFF;
padapter->driver_rx_ampdu_factor = 0xFF;
padapter->driver_rx_ampdu_spacing = 0xFF;
padapter->fix_rx_ampdu_accept = RX_AMPDU_ACCEPT_INVALID;
padapter->fix_rx_ampdu_size = RX_AMPDU_SIZE_INVALID;
#ifdef CONFIG_TX_AMSDU
padapter->tx_amsdu = 2;
padapter->tx_amsdu_rate = 10;
#endif
padapter->driver_tx_max_agg_num = 0xFF;
#ifdef DBG_RX_COUNTER_DUMP
padapter->dump_rx_cnt_mode = 0;
padapter->drv_rx_cnt_ok = 0;
padapter->drv_rx_cnt_crcerror = 0;
padapter->drv_rx_cnt_drop = 0;
#endif
#ifdef CONFIG_RTW_NAPI
padapter->napi_state = NAPI_DISABLE;
#endif
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
ATOMIC_SET(&padapter->tbtx_tx_pause, _FALSE);
ATOMIC_SET(&padapter->tbtx_remove_tx_pause, _FALSE);
padapter->tbtx_capability = _TRUE;
#endif
#ifdef CONFIG_CORE_TXSC
txsc_init(padapter);
#endif
return ret;
}
#ifdef CONFIG_DRV_FAKE_AP
extern void rtw_fakeap_work(struct work_struct *work);
extern void rtw_fakeap_bcn_timer_hdl(void*);
#endif /* CONFIG_DRV_FAKE_AP */
struct dvobj_priv *devobj_init(void)
{
struct dvobj_priv *pdvobj = NULL;
struct rf_ctl_t *rfctl;
pdvobj = (struct dvobj_priv *)rtw_zmalloc(sizeof(*pdvobj));
if (pdvobj == NULL)
return NULL;
rfctl = dvobj_to_rfctl(pdvobj);
_rtw_mutex_init(&pdvobj->hw_init_mutex);
_rtw_mutex_init(&pdvobj->setch_mutex);
_rtw_mutex_init(&pdvobj->setbw_mutex);
_rtw_mutex_init(&pdvobj->rf_read_reg_mutex);
_rtw_mutex_init(&pdvobj->ioctrl_mutex);
#ifdef CONFIG_RTW_CUSTOMER_STR
_rtw_mutex_init(&pdvobj->customer_str_mutex);
_rtw_memset(pdvobj->customer_str, 0xFF, RTW_CUSTOMER_STR_LEN);
#endif
pdvobj->processing_dev_remove = _FALSE;
ATOMIC_SET(&pdvobj->disable_func, 0);
/* move to phl */
/* rtw_macid_ctl_init(&pdvobj->macid_ctl); */
_rtw_spinlock_init(&pdvobj->cam_ctl.lock);
_rtw_mutex_init(&pdvobj->cam_ctl.sec_cam_access_mutex);
#if defined(RTK_129X_PLATFORM) && defined(CONFIG_PCI_HCI)
_rtw_spinlock_init(&pdvobj->io_reg_lock);
#endif
#if 0 /*#ifdef CONFIG_CORE_DM_CHK_TIMER*/
rtw_init_timer(&(pdvobj->dynamic_chk_timer), rtw_dynamic_check_timer_handlder, pdvobj);
#endif
#ifdef CONFIG_RTW_NAPI_DYNAMIC
pdvobj->en_napi_dynamic = 0;
#endif /* CONFIG_RTW_NAPI_DYNAMIC */
_rtw_mutex_init(&rfctl->offch_mutex);
pdvobj->scan_deny = _FALSE;
rtw_load_dvobj_registry(pdvobj);
#ifdef CONFIG_DRV_FAKE_AP
skb_queue_head_init(&pdvobj->fakeap.rxq);
_init_workitem(&pdvobj->fakeap.work, rtw_fakeap_work, pdvobj);
_init_timer(&pdvobj->fakeap.bcn_timer, rtw_fakeap_bcn_timer_hdl, pdvobj);
#endif /* CONFIG_DRV_FAKE_AP */
/* wpas type default from w1.fi */
pdvobj->wpas_type = RTW_WPAS_W1FI;
return pdvobj;
}
void devobj_deinit(struct dvobj_priv *pdvobj)
{
if (!pdvobj)
return;
/* TODO: use rtw_os_ndevs_deinit instead at the first stage of driver's dev deinit function */
#if defined(CONFIG_IOCTL_CFG80211)
rtw_cfg80211_dev_res_free(pdvobj);
#endif
_rtw_mutex_free(&pdvobj->hw_init_mutex);
#ifdef CONFIG_RTW_CUSTOMER_STR
_rtw_mutex_free(&pdvobj->customer_str_mutex);
#endif
_rtw_mutex_free(&pdvobj->setch_mutex);
_rtw_mutex_free(&pdvobj->setbw_mutex);
_rtw_mutex_free(&pdvobj->rf_read_reg_mutex);
_rtw_mutex_free(&pdvobj->ioctrl_mutex);
/* move to phl */
/* rtw_macid_ctl_deinit(&pdvobj->macid_ctl); */
_rtw_spinlock_free(&pdvobj->cam_ctl.lock);
_rtw_mutex_free(&pdvobj->cam_ctl.sec_cam_access_mutex);
#if defined(RTK_129X_PLATFORM) && defined(CONFIG_PCI_HCI)
_rtw_spinlock_free(&pdvobj->io_reg_lock);
#endif
rtw_mfree((u8 *)pdvobj, sizeof(*pdvobj));
}
inline u8 rtw_rtnl_lock_needed(struct dvobj_priv *dvobj)
{
if (dvobj->rtnl_lock_holder && dvobj->rtnl_lock_holder == current)
return 0;
return 1;
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 26))
static inline int rtnl_is_locked(void)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 17))
if (unlikely(rtnl_trylock())) {
rtnl_unlock();
#else
if (unlikely(down_trylock(&rtnl_sem) == 0)) {
up(&rtnl_sem);
#endif
return 0;
}
return 1;
}
#endif
inline void rtw_set_rtnl_lock_holder(struct dvobj_priv *dvobj, _thread_hdl_ thd_hdl)
{
rtw_warn_on(!rtnl_is_locked());
if (!thd_hdl || rtnl_is_locked())
dvobj->rtnl_lock_holder = thd_hdl;
if (dvobj->rtnl_lock_holder && 0)
RTW_INFO("rtnl_lock_holder: %s:%d\n", current->comm, current->pid);
}
u8 rtw_reset_drv_sw(_adapter *padapter)
{
u8 ret8 = _SUCCESS;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(padapter);
/* hal_priv */
rtw_hw_cap_init(adapter_to_dvobj(padapter));
RTW_ENABLE_FUNC(adapter_to_dvobj(padapter), DF_RX_BIT);
RTW_ENABLE_FUNC(adapter_to_dvobj(padapter), DF_TX_BIT);
padapter->bLinkInfoDump = 0;
padapter->xmitpriv.tx_pkts = 0;
padapter->recvinfo.rx_pkts = 0;
pmlmepriv->LinkDetectInfo.bBusyTraffic = _FALSE;
/* pmlmepriv->LinkDetectInfo.TrafficBusyState = _FALSE; */
pmlmepriv->LinkDetectInfo.TrafficTransitionCount = 0;
pmlmepriv->LinkDetectInfo.LowPowerTransitionCount = 0;
_clr_fwstate_(pmlmepriv, WIFI_UNDER_SURVEY | WIFI_UNDER_LINKING);
#ifdef DBG_CONFIG_ERROR_DETECT
if (is_primary_adapter(padapter))
rtw_hal_sreset_reset_value(padapter);
#endif
pwrctrlpriv->pwr_state_check_cnts = 0;
/* mlmeextpriv */
mlmeext_set_scan_state(&padapter->mlmeextpriv, SCAN_DISABLE);
#ifdef CONFIG_SIGNAL_STAT_PROCESS
rtw_set_signal_stat_timer(&padapter->recvinfo);
#endif
return ret8;
}
static int devobj_set_phl_regulation_capability(struct dvobj_priv *dvobj)
{
struct registry_priv *regsty = dvobj_to_regsty(dvobj);
bool band_2g = _FALSE;
#if CONFIG_IEEE80211_BAND_5GHZ
bool band_5g = _FALSE;
#endif
#if CONFIG_IEEE80211_BAND_6GHZ
bool band_6g = _FALSE;
#endif
enum rtw_regulation_capability phl_regd_cap = 0;
int ret = _FAIL;
if (is_supported_24g(regsty->band_type) && rtw_hw_chk_band_cap(dvobj, BAND_CAP_2G))
band_2g = _TRUE;
#if CONFIG_IEEE80211_BAND_5GHZ
if (is_supported_5g(regsty->band_type) && rtw_hw_chk_band_cap(dvobj, BAND_CAP_5G))
band_5g = _TRUE;
#endif
#if CONFIG_IEEE80211_BAND_6GHZ
if (is_supported_6g(regsty->band_type) && rtw_hw_chk_band_cap(dvobj, BAND_CAP_6G))
band_6g = _TRUE;
#endif
if (band_2g == _FALSE
#if CONFIG_IEEE80211_BAND_5GHZ
&& band_5g == _FALSE
#endif
#if CONFIG_IEEE80211_BAND_6GHZ
&& band_6g == _FALSE
#endif
) {
RTW_WARN("HW band_cap has no intersection with SW wireless_mode setting\n");
goto exit;
}
if (band_2g)
phl_regd_cap |= CAPABILITY_2GHZ;
#if CONFIG_IEEE80211_BAND_5GHZ
if (band_5g)
phl_regd_cap |= CAPABILITY_5GHZ;
#endif
#if CONFIG_IEEE80211_BAND_6GHZ
if (band_6g)
phl_regd_cap |= CAPABILITY_6GHZ;
#endif
#if CONFIG_DFS
phl_regd_cap |= CAPABILITY_DFS;
#endif
if (rtw_phl_regulation_set_capability(GET_PHL_INFO(dvobj), phl_regd_cap) != true) {
RTW_WARN("rtw_phl_regulation_set_capability() != true\n");
goto exit;
}
ret = _SUCCESS;
exit:
return ret;
}
static void devobj_decide_init_chplan(struct dvobj_priv *dvobj)
{
struct rf_ctl_t *rfctl = dvobj_to_rfctl(dvobj);
struct dev_cap_t *dev_cap = &GET_PHL_COM(dvobj)->dev_cap;
const char *alpha2 = NULL; /* TODO */
u8 chplan = dev_cap->domain;
u8 chplan_6g = RTW_CHPLAN_6G_NULL; /* TODO */
bool disable_sw_chplan = _FALSE; /* TODO */
if (alpha2)
RTW_INFO("%s alpha2:{%d,%d}\n", __func__, alpha2[0], alpha2[1]);
RTW_INFO("%s chplan:0x%02x\n", __func__, chplan);
RTW_INFO("%s chplan_6g:0x%02x\n", __func__, chplan_6g);
RTW_INFO("%s disable_sw_chplan:%d\n", __func__, disable_sw_chplan);
/*
* treat {0xFF, 0xFF} as unspecified
*/
if (alpha2 && strncmp(alpha2, "\xFF\xFF", 2) == 0)
alpha2 = NULL;
#ifdef CONFIG_FORCE_SW_CHANNEL_PLAN
disable_sw_chplan = _FALSE;
#endif
rtw_rfctl_decide_init_chplan(rfctl, alpha2, chplan, chplan_6g, disable_sw_chplan);
}
u8 devobj_data_init(struct dvobj_priv *dvobj)
{
u8 ret = _FAIL;
dev_set_drv_stopped(dvobj);/*init*/
dev_clr_hw_start(dvobj); /* init */
/*init data of dvobj*/
if (devobj_set_phl_regulation_capability(dvobj) != _SUCCESS)
goto exit;
devobj_decide_init_chplan(dvobj);
if (rtw_rfctl_init(dvobj) == _FAIL)
goto exit;
rtw_edcca_mode_update(dvobj);
rtw_update_phl_edcca_mode(dvobj_get_primary_adapter(dvobj));
rtw_rfctl_chplan_init(dvobj);
rtw_hw_cap_init(dvobj);
RTW_ENABLE_FUNC(dvobj, DF_RX_BIT);
RTW_ENABLE_FUNC(dvobj, DF_TX_BIT);
ret = _SUCCESS;
exit:
return ret;
}
void devobj_data_deinit(struct dvobj_priv *dvobj)
{
}
u8 devobj_trx_resource_init(struct dvobj_priv *dvobj)
{
u8 ret = _SUCCESS;
#ifdef CONFIG_USB_HCI
ret = rtw_init_lite_xmit_resource(dvobj);
if (ret == _FAIL)
goto exit;
ret = rtw_init_lite_recv_resource(dvobj);
if (ret == _FAIL)
goto exit;
#endif
ret = rtw_init_recv_priv(dvobj);
if (ret == _FAIL) {
RTW_ERR("%s rtw_init_recv_priv failed\n", __func__);
goto exit;
}
ret = rtw_init_cmd_priv(dvobj);
if (ret == _FAIL) {
RTW_ERR("%s rtw_init_cmd_priv failed\n", __func__);
goto exit;
}
exit:
return ret;
}
void devobj_trx_resource_deinit(struct dvobj_priv *dvobj)
{
#ifdef CONFIG_USB_HCI
rtw_free_lite_xmit_resource(dvobj);
rtw_free_lite_recv_resource(dvobj);
#endif
rtw_free_recv_priv(dvobj);
rtw_free_cmd_priv(dvobj);
}
u8 rtw_init_drv_sw(_adapter *padapter)
{
u8 ret8 = _SUCCESS;
#ifdef CONFIG_RTW_CFGVENDOR_RANDOM_MAC_OUI
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(padapter);
#endif
ret8 = rtw_init_default_value(padapter);/*load registrypriv value*/
if (rtw_init_mlme_priv(padapter) == _FAIL) {
ret8 = _FAIL;
goto exit;
}
#ifdef CONFIG_P2P
init_wifidirect_info(padapter, P2P_ROLE_DISABLE);
reset_global_wifidirect_info(padapter);
#ifdef CONFIG_WFD
if (rtw_init_wifi_display_info(padapter) == _FAIL)
RTW_ERR("Can't init init_wifi_display_info\n");
#endif
#endif /* CONFIG_P2P */
if (init_mlme_ext_priv(padapter) == _FAIL) {
ret8 = _FAIL;
goto exit;
}
#ifdef CONFIG_TDLS
if (rtw_init_tdls_info(padapter) == _FAIL) {
RTW_INFO("Can't rtw_init_tdls_info\n");
ret8 = _FAIL;
goto exit;
}
#endif /* CONFIG_TDLS */
#ifdef CONFIG_RTW_MESH
rtw_mesh_cfg_init(padapter);
#endif
if (_rtw_init_xmit_priv(&padapter->xmitpriv, padapter) == _FAIL) {
RTW_INFO("Can't _rtw_init_xmit_priv\n");
ret8 = _FAIL;
goto exit;
}
if (rtw_init_recv_info(padapter) == _FAIL) {
RTW_INFO("Can't rtw_init_recv_info\n");
ret8 = _FAIL;
goto exit;
}
/* add for CONFIG_IEEE80211W, none 11w also can use */
_rtw_spinlock_init(&padapter->security_key_mutex);
/* We don't need to memset padapter->XXX to zero, because adapter is allocated by rtw_zvmalloc(). */
/* _rtw_memset((unsigned char *)&padapter->securitypriv, 0, sizeof (struct security_priv)); */
if (_rtw_init_sta_priv(&padapter->stapriv) == _FAIL) {
RTW_INFO("Can't _rtw_init_sta_priv\n");
ret8 = _FAIL;
goto exit;
}
padapter->setband = WIFI_FREQUENCY_BAND_AUTO;
padapter->fix_rate = NO_FIX_RATE;
padapter->power_offset = 0;
padapter->rsvd_page_offset = 0;
padapter->rsvd_page_num = 0;
padapter->data_fb = 0;
padapter->fix_rx_ampdu_accept = RX_AMPDU_ACCEPT_INVALID;
padapter->fix_rx_ampdu_size = RX_AMPDU_SIZE_INVALID;
#ifdef DBG_RX_COUNTER_DUMP
padapter->dump_rx_cnt_mode = 0;
padapter->drv_rx_cnt_ok = 0;
padapter->drv_rx_cnt_crcerror = 0;
padapter->drv_rx_cnt_drop = 0;
#endif
rtw_init_pwrctrl_priv(padapter);
#ifdef CONFIG_WOWLAN
rtw_init_wow(padapter);
#endif /* CONFIG_WOWLAN */
/* _rtw_memset((u8 *)&padapter->qospriv, 0, sizeof (struct qos_priv)); */ /* move to mlme_priv */
#ifdef CONFIG_WAPI_SUPPORT
padapter->WapiSupport = true; /* set true temp, will revise according to Efuse or Registry value later. */
rtw_wapi_init(padapter);
#endif
#ifdef CONFIG_BR_EXT
_rtw_spinlock_init(&padapter->br_ext_lock);
#endif /* CONFIG_BR_EXT */
#ifdef CONFIG_RTW_80211K
rtw_init_rm(padapter);
#endif
#ifdef CONFIG_RTW_CFGVENDOR_RANDOM_MAC_OUI
_rtw_memset(pwdev_priv->pno_mac_addr, 0xFF, ETH_ALEN);
#endif
#ifdef CONFIG_STA_CMD_DISPR
rtw_connect_req_init(padapter);
rtw_disconnect_req_init(padapter);
#endif /* CONFIG_STA_CMD_DISPR */
exit:
return ret8;
}
#ifdef CONFIG_WOWLAN
void rtw_cancel_dynamic_chk_timer(_adapter *padapter)
{
#if 0 /*#ifdef CONFIG_CORE_DM_CHK_TIMER*/
_cancel_timer_ex(&adapter_to_dvobj(padapter)->dynamic_chk_timer);
#endif
}
#endif
void rtw_cancel_all_timer(_adapter *padapter)
{
/*_cancel_timer_ex(&padapter->mlmepriv.assoc_timer);*/
cancel_assoc_timer(&padapter->mlmepriv);
_cancel_timer_ex(&padapter->mlmepriv.scan_to_timer);
#ifdef CONFIG_DFS_MASTER
_cancel_timer_ex(&adapter_to_rfctl(padapter)->radar_detect_timer);
#endif
#if 0 /*#ifdef CONFIG_CORE_DM_CHK_TIMER*/
_cancel_timer_ex(&adapter_to_dvobj(padapter)->dynamic_chk_timer);
#endif
#ifdef CONFIG_RTW_SW_LED
/* cancel sw led timer */
rtw_hal_sw_led_deinit(padapter);
#endif
#ifdef CONFIG_POWER_SAVING
_cancel_timer_ex(&(adapter_to_pwrctl(padapter)->pwr_state_check_timer));
#endif
#ifdef CONFIG_TX_AMSDU
_cancel_timer_ex(&padapter->xmitpriv.amsdu_bk_timer);
_cancel_timer_ex(&padapter->xmitpriv.amsdu_be_timer);
_cancel_timer_ex(&padapter->xmitpriv.amsdu_vo_timer);
_cancel_timer_ex(&padapter->xmitpriv.amsdu_vi_timer);
#endif
#ifdef CONFIG_SET_SCAN_DENY_TIMER
_cancel_timer_ex(&padapter->mlmepriv.set_scan_deny_timer);
rtw_clear_scan_deny(padapter);
#endif
#ifdef CONFIG_SIGNAL_STAT_PROCESS
_cancel_timer_ex(&padapter->recvinfo.signal_stat_timer);
#endif
#ifdef CONFIG_LPS_RPWM_TIMER
_cancel_timer_ex(&(adapter_to_pwrctl(padapter)->pwr_rpwm_timer));
#endif /* CONFIG_LPS_RPWM_TIMER */
#ifdef CONFIG_RTW_TOKEN_BASED_XMIT
_cancel_timer_ex(&padapter->mlmeextpriv.tbtx_xmit_timer);
_cancel_timer_ex(&padapter->mlmeextpriv.tbtx_token_dispatch_timer);
#endif
#ifdef CONFIG_PLATFORM_FS_MX61
msleep(50);
#endif
}
u8 rtw_free_drv_sw(_adapter *padapter)
{
#ifdef CONFIG_WAPI_SUPPORT
rtw_wapi_free(padapter);
#endif
/* we can call rtw_p2p_enable here, but: */
/* 1. rtw_p2p_enable may have IO operation */
/* 2. rtw_p2p_enable is bundled with wext interface */
#ifdef CONFIG_P2P
{
struct wifidirect_info *pwdinfo = &padapter->wdinfo;
if (!rtw_p2p_chk_role(pwdinfo, P2P_ROLE_DISABLE)) {
rtw_p2p_set_role(pwdinfo, P2P_ROLE_DISABLE);
}
}
#endif
/* add for CONFIG_IEEE80211W, none 11w also can use */
_rtw_spinlock_free(&padapter->security_key_mutex);
#ifdef CONFIG_BR_EXT
_rtw_spinlock_free(&padapter->br_ext_lock);
#endif /* CONFIG_BR_EXT */
free_mlme_ext_priv(&padapter->mlmeextpriv);
#ifdef CONFIG_TDLS
/* rtw_free_tdls_info(&padapter->tdlsinfo); */
#endif /* CONFIG_TDLS */
#ifdef CONFIG_RTW_80211K
rtw_free_rm_priv(padapter);
#endif
rtw_free_mlme_priv(&padapter->mlmepriv);
#ifdef CONFIG_STA_CMD_DISPR
rtw_connect_req_free(padapter);
rtw_disconnect_req_free(padapter);
#endif /* CONFIG_STA_CMD_DISPR */
if (is_primary_adapter(padapter))
rtw_rfctl_deinit(adapter_to_dvobj(padapter));
/* free_io_queue(padapter); */
_rtw_free_xmit_priv(&padapter->xmitpriv);
_rtw_free_sta_priv(&padapter->stapriv); /* will free bcmc_stainfo here */
rtw_free_pwrctrl_priv(padapter);
#ifdef CONFIG_WOWLAN
rtw_free_wow(padapter);
#endif /* CONFIG_WOWLAN */
/* rtw_mfree((void *)padapter, sizeof (padapter)); */
return _SUCCESS;
}
void rtw_drv_stop_prim_iface(_adapter *adapter)
{
struct mlme_priv *pmlmepriv = &adapter->mlmepriv;
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter);
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct debug_priv *pdbgpriv = &dvobj->drv_dbg;
if (check_fwstate(pmlmepriv, WIFI_ASOC_STATE) == _TRUE)
rtw_disassoc_cmd(adapter, 0, RTW_CMDF_DIRECTLY|RTW_CMDF_WAIT_ACK);
#ifdef CONFIG_AP_MODE
if (MLME_IS_AP(adapter) || MLME_IS_MESH(adapter)) {
free_mlme_ap_info(adapter);
#ifdef CONFIG_HOSTAPD_MLME
hostapd_mode_unload(adapter);
#endif
}
#endif
RTW_INFO("==> "FUNC_ADPT_FMT"\n", FUNC_ADPT_ARG(adapter));
if (adapter->netif_up == _TRUE) {
#ifdef CONFIG_XMIT_ACK
if (adapter->xmitpriv.ack_tx)
rtw_ack_tx_done(&adapter->xmitpriv, RTW_SCTX_DONE_DRV_STOP);
#endif
rtw_hw_iface_deinit(adapter);
if (!pwrctl->bInSuspend)
adapter->netif_up = _FALSE;
}
#if 0 /*#ifdef CONFIG_CORE_CMD_THREAD*/
rtw_stop_drv_threads(adapter);
if (ATOMIC_READ(&(pcmdpriv->cmdthd_running)) == _TRUE) {
RTW_ERR("cmd_thread not stop !!\n");
rtw_warn_on(1);
}
#endif
/* check the status of IPS */
if (rtw_hal_check_ips_status(adapter) == _TRUE || pwrctl->rf_pwrstate == rf_off) { /* check HW status and SW state */
RTW_PRINT("%s: driver in IPS-FWLPS\n", __func__);
pdbgpriv->dbg_dev_unload_inIPS_cnt++;
} else
RTW_PRINT("%s: driver not in IPS\n", __func__);
rtw_cancel_all_timer(adapter);
RTW_INFO("<== "FUNC_ADPT_FMT"\n", FUNC_ADPT_ARG(adapter));
}
#ifdef CONFIG_CONCURRENT_MODE
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29))
static const struct net_device_ops rtw_netdev_vir_if_ops = {
.ndo_init = rtw_ndev_init,
.ndo_uninit = rtw_ndev_uninit,
.ndo_open = netdev_open,
.ndo_stop = netdev_close,
.ndo_start_xmit = rtw_xmit_entry,
.ndo_set_mac_address = rtw_net_set_mac_address,
.ndo_get_stats = rtw_net_get_stats,
.ndo_do_ioctl = rtw_ioctl,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
.ndo_select_queue = rtw_select_queue,
#endif
};
#endif
static void rtw_hook_vir_if_ops(struct net_device *ndev)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29))
ndev->netdev_ops = &rtw_netdev_vir_if_ops;
#else
ndev->init = rtw_ndev_init;
ndev->uninit = rtw_ndev_uninit;
ndev->open = netdev_open;
ndev->stop = netdev_close;
ndev->set_mac_address = rtw_net_set_mac_address;
#endif
}
static _adapter *rtw_drv_add_vir_if(struct dvobj_priv *dvobj)
{
int res = _FAIL;
_adapter *padapter = NULL;
_adapter *primary_padapter = dvobj_get_primary_adapter(dvobj);
u8 mac[ETH_ALEN];
#ifdef CONFIG_MI_UNIQUE_MACADDR_BIT
u32 mi_unique_macaddr_bit = 0;
bool is_uniq_macaddr = _FALSE;
u8 i;
#endif
/****** init adapter ******/
padapter = (_adapter *)rtw_zvmalloc(sizeof(*padapter));
if (padapter == NULL)
goto exit;
_rtw_memcpy(padapter, primary_padapter, sizeof(_adapter));
#ifdef CONFIG_STA_CMD_DISPR
/* Reset not proper variables value which copied from primary adapter */
/* Check rtw_connect_req_init() & rtw_disconnect_req_init() */
padapter->connect_state = CONNECT_ST_NOT_READY;
#endif
if (rtw_load_registry(padapter) != _SUCCESS)
goto free_adapter;
padapter->netif_up = _FALSE;
padapter->dir_dev = NULL;
padapter->dir_odm = NULL;
/*set adapter_type/iface type*/
padapter->isprimary = _FALSE;
padapter->adapter_type = VIRTUAL_ADAPTER;
padapter->hw_port = HW_PORT1;
/****** hook vir if into dvobj ******/
padapter->iface_id = dvobj->iface_nums;
dvobj->padapters[dvobj->iface_nums++] = padapter;
/*init drv data*/
if (rtw_init_drv_sw(padapter) != _SUCCESS)
goto free_drv_sw;
/*get mac address from primary_padapter*/
_rtw_memcpy(mac, adapter_mac_addr(primary_padapter), ETH_ALEN);
#ifdef CONFIG_MI_UNIQUE_MACADDR_BIT
mi_unique_macaddr_bit = BIT(CONFIG_MI_UNIQUE_MACADDR_BIT) >> 24;
/* Find out CONFIG_MI_UNIQUE_MACADDR_BIT in which nic specific byte */
for(i = 3; i < 6; i++) {
if(((mi_unique_macaddr_bit >> 8) == 0) &&
((mac[i] & (u8)mi_unique_macaddr_bit) == 0)) {
is_uniq_macaddr = _TRUE;
RTW_INFO("%s() "MAC_FMT" : BIT%u is zero\n",
__func__, MAC_ARG(mac), CONFIG_MI_UNIQUE_MACADDR_BIT);
break;
}
mi_unique_macaddr_bit >>= 8;
}
if(is_uniq_macaddr) {
/* IFACE_ID1/IFACE_ID3 : set locally administered bit */
if(padapter->iface_id & BIT(0))
mac[0] |= BIT(1);
/* IFACE_ID2/IFACE_ID3 : set bit(CONFIG_MI_UNIQUE_MACADDR_BIT) */
if(padapter->iface_id >> 1)
mac[i] |= (u8)mi_unique_macaddr_bit;
} else
#endif
{
/*
* If the BIT1 is 0, the address is universally administered.
* If it is 1, the address is locally administered
*/
mac[0] |= BIT(1);
if (padapter->iface_id > IFACE_ID1)
mac[0] ^= ((padapter->iface_id) << 2);
}
_rtw_memcpy(adapter_mac_addr(padapter), mac, ETH_ALEN);
RTW_INFO("%s if%d mac_addr : "MAC_FMT"\n", __func__, padapter->iface_id + 1, MAC_ARG(adapter_mac_addr(padapter)));
rtw_led_set_ctl_en_mask_virtual(padapter);
rtw_led_set_iface_en(padapter, 1);
res = _SUCCESS;
free_drv_sw:
if (res != _SUCCESS && padapter)
rtw_free_drv_sw(padapter);
free_adapter:
if (res != _SUCCESS && padapter) {
rtw_vmfree((u8 *)padapter, sizeof(*padapter));
padapter = NULL;
}
exit:
return padapter;
}
u8 rtw_drv_add_vir_ifaces(struct dvobj_priv *dvobj)
{
u8 i;
u8 rst = _FAIL;
if (dvobj->virtual_iface_num > (CONFIG_IFACE_NUMBER - 1))
dvobj->virtual_iface_num = (CONFIG_IFACE_NUMBER - 1);
for (i = 0; i < dvobj->virtual_iface_num; i++) {
if (rtw_drv_add_vir_if(dvobj) == NULL) {
RTW_ERR("rtw_drv_add_vir_if failed! (%d)\n", i);
goto _exit;
}
}
rst = _SUCCESS;
_exit:
return rst;
}
static void rtw_drv_stop_vir_if(_adapter *padapter)
{
struct net_device *pnetdev = NULL;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
if (padapter == NULL)
return;
RTW_INFO(FUNC_ADPT_FMT" enter\n", FUNC_ADPT_ARG(padapter));
pnetdev = padapter->pnetdev;
if (check_fwstate(pmlmepriv, WIFI_ASOC_STATE) == _TRUE)
rtw_disassoc_cmd(padapter, 0, RTW_CMDF_DIRECTLY|RTW_CMDF_WAIT_ACK);
#ifdef CONFIG_AP_MODE
if (MLME_IS_AP(padapter) || MLME_IS_MESH(padapter)) {
free_mlme_ap_info(padapter);
#ifdef CONFIG_HOSTAPD_MLME
hostapd_mode_unload(padapter);
#endif
}
#endif
if (padapter->netif_up == _TRUE) {
#ifdef CONFIG_XMIT_ACK
if (padapter->xmitpriv.ack_tx)
rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_DRV_STOP);
#endif
rtw_hw_iface_deinit(padapter);
if (!pwrctl->bInSuspend)
padapter->netif_up = _FALSE;
}
#if 0 /*#ifdef CONFIG_CORE_CMD_THREAD*/
rtw_stop_drv_threads(padapter);
#endif
/* cancel timer after thread stop */
rtw_cancel_all_timer(padapter);
}
void rtw_drv_stop_vir_ifaces(struct dvobj_priv *dvobj)
{
int i;
for (i = VIF_START_ID; i < dvobj->iface_nums; i++)
rtw_drv_stop_vir_if(dvobj->padapters[i]);
}
static void rtw_drv_free_vir_if(_adapter *padapter)
{
if (padapter == NULL)
return;
RTW_INFO(FUNC_ADPT_FMT"\n", FUNC_ADPT_ARG(padapter));
rtw_free_drv_sw(padapter);
/* TODO: use rtw_os_ndevs_deinit instead at the first stage of driver's dev deinit function */
rtw_os_ndev_free(padapter);
rtw_vmfree((u8 *)padapter, sizeof(_adapter));
}
void rtw_drv_free_vir_ifaces(struct dvobj_priv *dvobj)
{
int i;
for (i = VIF_START_ID; i < dvobj->iface_nums; i++)
rtw_drv_free_vir_if(dvobj->padapters[i]);
}
#endif /*end of CONFIG_CONCURRENT_MODE*/
/* IPv4, IPv6 IP addr notifier */
static int rtw_inetaddr_notifier_call(struct notifier_block *nb,
unsigned long action, void *data)
{
struct in_ifaddr *ifa = (struct in_ifaddr *)data;
struct net_device *ndev;
struct mlme_ext_priv *pmlmeext = NULL;
struct mlme_ext_info *pmlmeinfo = NULL;
_adapter *adapter = NULL;
if (!ifa || !ifa->ifa_dev || !ifa->ifa_dev->dev)
return NOTIFY_DONE;
ndev = ifa->ifa_dev->dev;
if (!is_rtw_ndev(ndev))
return NOTIFY_DONE;
adapter = (_adapter *)rtw_netdev_priv(ifa->ifa_dev->dev);
if (adapter == NULL)
return NOTIFY_DONE;
pmlmeext = &adapter->mlmeextpriv;
pmlmeinfo = &pmlmeext->mlmext_info;
switch (action) {
case NETDEV_UP:
_rtw_memcpy(pmlmeinfo->ip_addr, &ifa->ifa_address,
RTW_IP_ADDR_LEN);
RTW_DBG("%s[%s]: up IP: %pI4\n", __func__,
ifa->ifa_label, pmlmeinfo->ip_addr);
break;
case NETDEV_DOWN:
_rtw_memset(pmlmeinfo->ip_addr, 0, RTW_IP_ADDR_LEN);
RTW_DBG("%s[%s]: down IP: %pI4\n", __func__,
ifa->ifa_label, pmlmeinfo->ip_addr);
break;
default:
RTW_DBG("%s: default action\n", __func__);
break;
}
return NOTIFY_DONE;
}
#ifdef CONFIG_IPV6
static int rtw_inet6addr_notifier_call(struct notifier_block *nb,
unsigned long action, void *data)
{
struct inet6_ifaddr *inet6_ifa = data;
struct net_device *ndev;
struct pwrctrl_priv *pwrctl = NULL;
struct mlme_ext_priv *pmlmeext = NULL;
struct mlme_ext_info *pmlmeinfo = NULL;
_adapter *adapter = NULL;
if (!inet6_ifa || !inet6_ifa->idev || !inet6_ifa->idev->dev)
return NOTIFY_DONE;
ndev = inet6_ifa->idev->dev;
if (!is_rtw_ndev(ndev))
return NOTIFY_DONE;
adapter = (_adapter *)rtw_netdev_priv(inet6_ifa->idev->dev);
if (adapter == NULL)
return NOTIFY_DONE;
pmlmeext = &adapter->mlmeextpriv;
pmlmeinfo = &pmlmeext->mlmext_info;
pwrctl = adapter_to_pwrctl(adapter);
pmlmeext = &adapter->mlmeextpriv;
pmlmeinfo = &pmlmeext->mlmext_info;
switch (action) {
case NETDEV_UP:
#ifdef CONFIG_WOWLAN
pwrctl->wowlan_ns_offload_en = _TRUE;
#endif
_rtw_memcpy(pmlmeinfo->ip6_addr, &inet6_ifa->addr,
RTW_IPv6_ADDR_LEN);
RTW_DBG("%s: up IPv6 addrs: %pI6\n", __func__,
pmlmeinfo->ip6_addr);
break;
case NETDEV_DOWN:
#ifdef CONFIG_WOWLAN
pwrctl->wowlan_ns_offload_en = _FALSE;
#endif
_rtw_memset(pmlmeinfo->ip6_addr, 0, RTW_IPv6_ADDR_LEN);
RTW_DBG("%s: down IPv6 addrs: %pI6\n", __func__,
pmlmeinfo->ip6_addr);
break;
default:
RTW_DBG("%s: default action\n", __func__);
break;
}
return NOTIFY_DONE;
}
#endif
static struct notifier_block rtw_inetaddr_notifier = {
.notifier_call = rtw_inetaddr_notifier_call
};
#ifdef CONFIG_IPV6
static struct notifier_block rtw_inet6addr_notifier = {
.notifier_call = rtw_inet6addr_notifier_call
};
#endif
void rtw_inetaddr_notifier_register(void)
{
RTW_INFO("%s\n", __func__);
register_inetaddr_notifier(&rtw_inetaddr_notifier);
#ifdef CONFIG_IPV6
register_inet6addr_notifier(&rtw_inet6addr_notifier);
#endif
}
void rtw_inetaddr_notifier_unregister(void)
{
RTW_INFO("%s\n", __func__);
unregister_inetaddr_notifier(&rtw_inetaddr_notifier);
#ifdef CONFIG_IPV6
unregister_inet6addr_notifier(&rtw_inet6addr_notifier);
#endif
}
int rtw_os_ndevs_register(struct dvobj_priv *dvobj)
{
int i, status = _SUCCESS;
struct registry_priv *regsty = dvobj_to_regsty(dvobj);
_adapter *adapter;
#if defined(CONFIG_IOCTL_CFG80211)
if (rtw_cfg80211_dev_res_register(dvobj) != _SUCCESS) {
rtw_warn_on(1);
return _FAIL;
}
#endif
for (i = 0; i < dvobj->iface_nums; i++) {
if (i >= CONFIG_IFACE_NUMBER) {
RTW_ERR("%s %d >= CONFIG_IFACE_NUMBER(%d)\n", __func__, i, CONFIG_IFACE_NUMBER);
rtw_warn_on(1);
continue;
}
adapter = dvobj->padapters[i];
if (adapter) {
char *name;
#ifdef CONFIG_RTW_DYNAMIC_NDEV
if (!is_primary_adapter(adapter) &&
(i >= CONFIG_RTW_STATIC_NDEV_NUM))
break;
#endif
if (adapter->iface_id == IFACE_ID0)
name = regsty->ifname;
else if (adapter->iface_id == IFACE_ID1)
name = regsty->if2name;
else
name = "wlan%d";
status = rtw_os_ndev_register(adapter, name);
if (status != _SUCCESS) {
rtw_warn_on(1);
break;
}
}
}
if (status != _SUCCESS) {
for (; i >= 0; i--) {
adapter = dvobj->padapters[i];
if (adapter)
rtw_os_ndev_unregister(adapter);
}
}
#if defined(CONFIG_IOCTL_CFG80211)
if (status != _SUCCESS)
rtw_cfg80211_dev_res_unregister(dvobj);
#endif
return status;
}
void rtw_os_ndevs_unregister(struct dvobj_priv *dvobj)
{
int i;
_adapter *adapter = NULL;
for (i = 0; i < dvobj->iface_nums; i++) {
adapter = dvobj->padapters[i];
if (adapter == NULL)
continue;
rtw_os_ndev_unregister(adapter);
}
#if defined(CONFIG_IOCTL_CFG80211)
rtw_cfg80211_dev_res_unregister(dvobj);
#endif
}
/**
* rtw_os_ndevs_init - Allocate and register OS layer net devices and relating structures for @dvobj
* @dvobj: the dvobj on which this function applies
*
* Returns:
* _SUCCESS or _FAIL
*/
int rtw_os_ndevs_init(struct dvobj_priv *dvobj)
{
int ret = _FAIL;
if (rtw_os_ndevs_alloc(dvobj) != _SUCCESS)
goto exit;
if (rtw_os_ndevs_register(dvobj) != _SUCCESS)
goto os_ndevs_free;
ret = _SUCCESS;
os_ndevs_free:
if (ret != _SUCCESS)
rtw_os_ndevs_free(dvobj);
exit:
return ret;
}
/**
* rtw_os_ndevs_deinit - Unregister and free OS layer net devices and relating structures for @dvobj
* @dvobj: the dvobj on which this function applies
*/
void rtw_os_ndevs_deinit(struct dvobj_priv *dvobj)
{
rtw_os_ndevs_unregister(dvobj);
rtw_os_ndevs_free(dvobj);
}
#ifdef CONFIG_BR_EXT
void netdev_br_init(struct net_device *netdev)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(netdev);
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 35))
rcu_read_lock();
#endif
/* if(check_fwstate(pmlmepriv, WIFI_STATION_STATE|WIFI_ADHOC_STATE) == _TRUE) */
{
/* struct net_bridge *br = netdev->br_port->br; */ /* ->dev->dev_addr; */
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 35))
if (netdev->br_port)
#else
if (rcu_dereference(adapter->pnetdev->rx_handler_data))
#endif
{
struct net_device *br_netdev;
br_netdev = rtw_get_bridge_ndev_by_name(CONFIG_BR_EXT_BRNAME);
if (br_netdev) {
_rtw_memcpy(adapter->br_mac, br_netdev->dev_addr, ETH_ALEN);
dev_put(br_netdev);
RTW_INFO(FUNC_NDEV_FMT" bind bridge dev "NDEV_FMT"("MAC_FMT")\n"
, FUNC_NDEV_ARG(netdev), NDEV_ARG(br_netdev), MAC_ARG(br_netdev->dev_addr));
} else {
RTW_INFO(FUNC_NDEV_FMT" can't get bridge dev by name \"%s\"\n"
, FUNC_NDEV_ARG(netdev), CONFIG_BR_EXT_BRNAME);
}
}
adapter->ethBrExtInfo.addPPPoETag = 1;
}
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 35))
rcu_read_unlock();
#endif
}
#endif /* CONFIG_BR_EXT */
#if 0
/*FPGA_test*/
static int _drv_enable_trx(struct dvobj_priv *d)
{
struct _ADAPTER *adapter;
u32 status;
adapter = dvobj_get_primary_adapter(d);
if (adapter->netif_up == _FALSE) {
status = rtw_mi_start_drv_threads(adapter);
if (status == _FAIL) {
RTW_ERR("%s: Start threads Failed!\n", __FUNCTION__);
return -1;
}
}
return 0;
}
#endif
static int _netdev_open(struct net_device *pnetdev)
{
uint status;
_adapter *padapter = (_adapter *)rtw_netdev_priv(pnetdev);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
RTW_INFO(FUNC_NDEV_FMT" start\n", FUNC_NDEV_ARG(pnetdev));
#ifdef DIRTY_FOR_WORK
if(pnetdev->priv_flags & IFF_DONT_BRIDGE)
{
RTW_INFO("Unable to be bridged !! Unlock for this iface !!\n");
pnetdev->priv_flags &= ~(IFF_DONT_BRIDGE);
}
#endif
if (!dev_is_hw_start(dvobj)) {
dev_clr_surprise_removed(dvobj);
dev_clr_drv_stopped(dvobj);
RTW_ENABLE_FUNC(dvobj, DF_RX_BIT);
RTW_ENABLE_FUNC(dvobj, DF_TX_BIT);
status = rtw_hw_start(dvobj);
if (status == _FAIL)
goto netdev_open_error;
rtw_led_control(padapter, LED_CTL_NO_LINK);
#if 0 /*#ifdef CONFIG_CORE_DM_CHK_TIMER*/
if (0){
_set_timer(&dvobj->dynamic_chk_timer, 2000);
}
#endif
#if 0 /*CONFIG_CORE_THREAD*/
_drv_enable_trx(dvobj);/*FPGA_test*/
#endif
}
#ifdef CONFIG_RTW_NAPI
if(padapter->napi_state == NAPI_DISABLE) {
napi_enable(&padapter->napi);
padapter->napi_state = NAPI_ENABLE;
}
#endif
if (padapter->netif_up == _FALSE) {
if (rtw_hw_iface_init(padapter) == _FAIL) {
rtw_warn_on(1);
goto netdev_open_error;
}
/* rtw_netif_carrier_on(pnetdev); */ /* call this func when rtw_joinbss_event_callback return success */
rtw_netif_wake_queue(pnetdev);
#ifdef CONFIG_BR_EXT
if (is_primary_adapter(padapter))
netdev_br_init(pnetdev);
#endif /* CONFIG_BR_EXT */
padapter->netif_up = _TRUE;
}
RTW_INFO(FUNC_NDEV_FMT" Success (netif_up=%d)\n", FUNC_NDEV_ARG(pnetdev), padapter->netif_up);
return 0;
netdev_open_error:
padapter->netif_up = _FALSE;
#ifdef CONFIG_RTW_NAPI
if(padapter->napi_state == NAPI_ENABLE) {
napi_disable(&padapter->napi);
padapter->napi_state = NAPI_DISABLE;
}
#endif
rtw_netif_carrier_off(pnetdev);
rtw_netif_stop_queue(pnetdev);
RTW_ERR(FUNC_NDEV_FMT" Failed!! (netif_up=%d)\n", FUNC_NDEV_ARG(pnetdev), padapter->netif_up);
return -1;
}
int netdev_open(struct net_device *pnetdev)
{
int ret = _FALSE;
_adapter *padapter = (_adapter *)rtw_netdev_priv(pnetdev);
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(padapter);
if (pwrctrlpriv->bInSuspend == _TRUE) {
RTW_INFO(" [WARN] "ADPT_FMT" %s failed, bInSuspend=%d\n", ADPT_ARG(padapter), __func__, pwrctrlpriv->bInSuspend);
return 0;
}
RTW_INFO(FUNC_NDEV_FMT" , netif_up=%d\n", FUNC_NDEV_ARG(pnetdev), padapter->netif_up);
/*rtw_dump_stack();*/
_rtw_mutex_lock_interruptible(&(adapter_to_dvobj(padapter)->hw_init_mutex));
ret = _netdev_open(pnetdev);
_rtw_mutex_unlock(&(adapter_to_dvobj(padapter)->hw_init_mutex));
#ifdef CONFIG_AUTO_AP_MODE
if (padapter->iface_id == IFACE_ID2)
rtw_start_auto_ap(padapter);
#endif
return ret;
}
#ifdef CONFIG_IPS
int ips_netdrv_open(_adapter *padapter)
{
int status = _SUCCESS;
/* struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter); */
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
RTW_INFO("===> %s.........\n", __FUNCTION__);
dev_clr_drv_stopped(dvobj);
/* padapter->netif_up = _TRUE; */
if (!rtw_hw_is_init_completed(dvobj)) {
status = rtw_hw_start(dvobj);
if (status == _FAIL) {
goto netdev_open_error;
}
rtw_mi_hal_iface_init(padapter);
}
#if 0
rtw_mi_set_mac_addr(padapter);
#endif
#if 0 /*ndef CONFIG_IPS_CHECK_IN_WD*/
rtw_set_pwr_state_check_timer(adapter_to_pwrctl(padapter));
#endif
#if 0 /*#ifdef CONFIG_CORE_DM_CHK_TIMER*/
_set_timer(&dvobj->dynamic_chk_timer, 2000);
#endif
return _SUCCESS;
netdev_open_error:
/* padapter->bup = _FALSE; */
RTW_INFO("-ips_netdrv_open - drv_open failure, netif_up=%d\n", padapter->netif_up);
return _FAIL;
}
int rtw_ips_pwr_up(_adapter *padapter)
{
int result;
#if defined(CONFIG_SWLPS_IN_IPS) || defined(CONFIG_FWLPS_IN_IPS)
#ifdef DBG_CONFIG_ERROR_DETECT
HAL_DATA_TYPE *pHalData = GET_PHL_COM(adapter_to_dvobj(padapter));
struct sreset_priv *psrtpriv = &pHalData->srestpriv;
#endif/* #ifdef DBG_CONFIG_ERROR_DETECT */
#endif /* defined(CONFIG_SWLPS_IN_IPS) || defined(CONFIG_FWLPS_IN_IPS) */
systime start_time = rtw_get_current_time();
RTW_INFO("===> rtw_ips_pwr_up..............\n");
#if defined(CONFIG_SWLPS_IN_IPS) || defined(CONFIG_FWLPS_IN_IPS)
#ifdef DBG_CONFIG_ERROR_DETECT
if (psrtpriv->silent_reset_inprogress == _TRUE)
#endif/* #ifdef DBG_CONFIG_ERROR_DETECT */
#endif /* defined(CONFIG_SWLPS_IN_IPS) || defined(CONFIG_FWLPS_IN_IPS) */
rtw_reset_drv_sw(padapter);
result = ips_netdrv_open(padapter);
rtw_led_control(padapter, LED_CTL_NO_LINK);
RTW_INFO("<=== rtw_ips_pwr_up.............. in %dms\n", rtw_get_passing_time_ms(start_time));
return result;
}
void rtw_ips_pwr_down(_adapter *padapter)
{
systime start_time = rtw_get_current_time();
RTW_INFO("===> rtw_ips_pwr_down...................\n");
rtw_ips_dev_unload(padapter);
RTW_INFO("<=== rtw_ips_pwr_down..................... in %dms\n", rtw_get_passing_time_ms(start_time));
}
#endif
void rtw_ips_dev_unload(_adapter *padapter)
{
#if defined(CONFIG_SWLPS_IN_IPS) || defined(CONFIG_FWLPS_IN_IPS)
#ifdef DBG_CONFIG_ERROR_DETECT
HAL_DATA_TYPE *pHalData = GET_PHL_COM(adapter_to_dvobj(padapter));
struct sreset_priv *psrtpriv = &pHalData->srestpriv;
#endif/* #ifdef DBG_CONFIG_ERROR_DETECT */
#endif /* defined(CONFIG_SWLPS_IN_IPS) || defined(CONFIG_FWLPS_IN_IPS) */
RTW_INFO("====> %s...\n", __FUNCTION__);
#if defined(CONFIG_SWLPS_IN_IPS) || defined(CONFIG_FWLPS_IN_IPS)
#ifdef DBG_CONFIG_ERROR_DETECT
if (psrtpriv->silent_reset_inprogress == _TRUE)
#endif /* #ifdef DBG_CONFIG_ERROR_DETECT */
#endif /* defined(CONFIG_SWLPS_IN_IPS) || defined(CONFIG_FWLPS_IN_IPS) */
{
rtw_hal_set_hwreg(padapter, HW_VAR_FIFO_CLEARN_UP, 0);
}
if (!dev_is_surprise_removed(adapter_to_dvobj(padapter)) &&
rtw_hw_is_init_completed(adapter_to_dvobj(padapter)))
rtw_hw_stop(adapter_to_dvobj(padapter));
}
int _pm_netdev_open(_adapter *padapter)
{
uint status;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(padapter);
struct net_device *pnetdev = padapter->pnetdev;
RTW_INFO(FUNC_NDEV_FMT" start\n", FUNC_NDEV_ARG(pnetdev));
if (!rtw_hw_is_init_completed(dvobj)) { // ips
dev_clr_surprise_removed(dvobj);
dev_clr_drv_stopped(dvobj);
status = rtw_hw_start(dvobj);
if (status == _FAIL)
goto netdev_open_error;
rtw_led_control(padapter, LED_CTL_NO_LINK);
#if 0 /*#ifdef CONFIG_CORE_DM_CHK_TIMER*/
_set_timer(&dvobj->dynamic_chk_timer, 2000);
#endif
#if 0 /*ndef CONFIG_IPS_CHECK_IN_WD*/
rtw_set_pwr_state_check_timer(pwrctrlpriv);
#endif /*CONFIG_IPS_CHECK_IN_WD*/
}
/*if (padapter->netif_up == _FALSE) */
{
rtw_hw_iface_init(padapter);
padapter->netif_up = _TRUE;
}
RTW_INFO(FUNC_NDEV_FMT" Success (netif_up=%d)\n", FUNC_NDEV_ARG(pnetdev), padapter->netif_up);
return 0;
netdev_open_error:
padapter->netif_up = _FALSE;
rtw_netif_carrier_off(pnetdev);
rtw_netif_stop_queue(pnetdev);
RTW_ERR(FUNC_NDEV_FMT" Failed!! (netif_up=%d)\n", FUNC_NDEV_ARG(pnetdev), padapter->netif_up);
return -1;
}
int _mi_pm_netdev_open(struct net_device *pnetdev)
{
int i;
int status = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(pnetdev);
_adapter *iface;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
for (i = 0; i < dvobj->iface_nums; i++) {
iface = dvobj->padapters[i];
if (iface->netif_up) {
status = _pm_netdev_open(iface);
if (status == -1) {
RTW_ERR("%s failled\n", __func__);
break;
}
}
}
return status;
}
int pm_netdev_open(struct net_device *pnetdev, u8 bnormal)
{
int status = 0;
_adapter *padapter = (_adapter *)rtw_netdev_priv(pnetdev);
if (_TRUE == bnormal) {
_rtw_mutex_lock_interruptible(&(adapter_to_dvobj(padapter)->hw_init_mutex));
status = _mi_pm_netdev_open(pnetdev);
_rtw_mutex_unlock(&(adapter_to_dvobj(padapter)->hw_init_mutex));
}
#ifdef CONFIG_IPS
else
status = (_SUCCESS == ips_netdrv_open(padapter)) ? (0) : (-1);
#endif
return status;
}
static int netdev_close(struct net_device *pnetdev)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(pnetdev);
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
RTW_INFO(FUNC_NDEV_FMT" , netif_up=%d\n", FUNC_NDEV_ARG(pnetdev), padapter->netif_up);
pmlmepriv->LinkDetectInfo.bBusyTraffic = _FALSE;
if (pwrctl->rf_pwrstate == rf_on) {
RTW_INFO("netif_up=%d, hw_init_completed=%s\n",
padapter->netif_up,
rtw_hw_is_init_completed(dvobj) ? "_TRUE" : "_FALSE");
/* s1. */
if (pnetdev)
rtw_netif_stop_queue(pnetdev);
#ifndef CONFIG_RTW_ANDROID
/* s2. */
LeaveAllPowerSaveMode(padapter);
if (check_fwstate(pmlmepriv, WIFI_ASOC_STATE)) {
rtw_disassoc_cmd(padapter, 500, RTW_CMDF_WAIT_ACK);
/* s2-2*/
if (1
#ifdef CONFIG_STA_CMD_DISPR
&& (MLME_IS_STA(padapter) == _FALSE)
#endif /* CONFIG_STA_CMD_DISPR */
)
rtw_free_assoc_resources_cmd(padapter, _TRUE, RTW_CMDF_WAIT_ACK);
/* s2-3. indicate disconnect to os */
rtw_indicate_disconnect(padapter, 0, _FALSE);
/* s2-4. */
rtw_free_network_queue(padapter, _TRUE);
}
#endif
#ifdef CONFIG_STA_CMD_DISPR
rtw_connect_abort_wait(padapter);
rtw_disconnect_abort_wait(padapter);
#endif /* CONFIG_STA_CMD_DISPR */
}
#ifdef CONFIG_BR_EXT
/* if (OPMODE & (WIFI_STATION_STATE | WIFI_ADHOC_STATE)) */
{
/* void nat25_db_cleanup(_adapter *priv); */
nat25_db_cleanup(padapter);
}
#endif /* CONFIG_BR_EXT */
#ifdef CONFIG_P2P
if (!rtw_p2p_chk_role(&padapter->wdinfo, P2P_ROLE_DISABLE))
rtw_p2p_enable(padapter, P2P_ROLE_DISABLE);
#endif /* CONFIG_P2P */
rtw_scan_abort(padapter, 0); /* stop scanning process before wifi is going to down */
#ifdef CONFIG_IOCTL_CFG80211
rtw_cfg80211_wait_scan_req_empty(padapter, 200);
/* padapter->rtw_wdev->iftype = NL80211_IFTYPE_MONITOR; */ /* set this at the end */
#endif /* CONFIG_IOCTL_CFG80211 */
#ifdef CONFIG_WAPI_SUPPORT
rtw_wapi_disable_tx(padapter);
#endif
#ifdef CONFIG_RTW_NAPI
if (padapter->napi_state == NAPI_ENABLE) {
napi_disable(&padapter->napi);
padapter->napi_state = NAPI_DISABLE;
}
#endif /* CONFIG_RTW_NAPI */
rtw_hw_iface_deinit(padapter);
padapter->netif_up = _FALSE;
RTW_INFO("-871x_drv - drv_close, netif_up=%d\n", padapter->netif_up);
return 0;
}
int pm_netdev_close(struct net_device *pnetdev, u8 bnormal)
{
int status = 0;
status = netdev_close(pnetdev);
return status;
}
void rtw_ndev_destructor(struct net_device *ndev)
{
RTW_INFO(FUNC_NDEV_FMT"\n", FUNC_NDEV_ARG(ndev));
#ifdef CONFIG_IOCTL_CFG80211
if (ndev->ieee80211_ptr)
rtw_mfree((u8 *)ndev->ieee80211_ptr, sizeof(struct wireless_dev));
#endif
free_netdev(ndev);
}
#ifdef CONFIG_ARP_KEEP_ALIVE
struct route_info {
struct in_addr dst_addr;
struct in_addr src_addr;
struct in_addr gateway;
unsigned int dev_index;
};
static void parse_routes(struct nlmsghdr *nl_hdr, struct route_info *rt_info)
{
struct rtmsg *rt_msg;
struct rtattr *rt_attr;
int rt_len;
rt_msg = (struct rtmsg *) NLMSG_DATA(nl_hdr);
if ((rt_msg->rtm_family != AF_INET) || (rt_msg->rtm_table != RT_TABLE_MAIN))
return;
rt_attr = (struct rtattr *) RTM_RTA(rt_msg);
rt_len = RTM_PAYLOAD(nl_hdr);
for (; RTA_OK(rt_attr, rt_len); rt_attr = RTA_NEXT(rt_attr, rt_len)) {
switch (rt_attr->rta_type) {
case RTA_OIF:
rt_info->dev_index = *(int *) RTA_DATA(rt_attr);
break;
case RTA_GATEWAY:
rt_info->gateway.s_addr = *(u_int *) RTA_DATA(rt_attr);
break;
case RTA_PREFSRC:
rt_info->src_addr.s_addr = *(u_int *) RTA_DATA(rt_attr);
break;
case RTA_DST:
rt_info->dst_addr.s_addr = *(u_int *) RTA_DATA(rt_attr);
break;
}
}
}
static int route_dump(u32 *gw_addr , int *gw_index)
{
int err = 0;
struct socket *sock;
struct {
struct nlmsghdr nlh;
struct rtgenmsg g;
} req;
struct msghdr msg;
struct iovec iov;
struct sockaddr_nl nladdr;
mm_segment_t oldfs;
char *pg;
int size = 0;
err = sock_create(AF_NETLINK, SOCK_DGRAM, NETLINK_ROUTE, &sock);
if (err) {
printk(": Could not create a datagram socket, error = %d\n", -ENXIO);
return err;
}
memset(&nladdr, 0, sizeof(nladdr));
nladdr.nl_family = AF_NETLINK;
req.nlh.nlmsg_len = sizeof(req);
req.nlh.nlmsg_type = RTM_GETROUTE;
req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
req.nlh.nlmsg_pid = 0;
req.g.rtgen_family = AF_INET;
iov.iov_base = &req;
iov.iov_len = sizeof(req);
msg.msg_name = &nladdr;
msg.msg_namelen = sizeof(nladdr);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0))
/* referece:sock_xmit in kernel code
* WRITE for sock_sendmsg, READ for sock_recvmsg
* third parameter for msg_iovlen
* last parameter for iov_len
*/
iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, sizeof(req));
#else
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
#endif
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = MSG_DONTWAIT;
oldfs = get_fs();
set_fs(KERNEL_DS);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0))
err = sock_sendmsg(sock, &msg);
#else
err = sock_sendmsg(sock, &msg, sizeof(req));
#endif
set_fs(oldfs);
if (err < 0)
goto out_sock;
pg = (char *) __get_free_page(GFP_KERNEL);
if (pg == NULL) {
err = -ENOMEM;
goto out_sock;
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
restart:
#endif
for (;;) {
struct nlmsghdr *h;
iov.iov_base = pg;
iov.iov_len = PAGE_SIZE;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0))
iov_iter_init(&msg.msg_iter, READ, &iov, 1, PAGE_SIZE);
#endif
oldfs = get_fs();
set_fs(KERNEL_DS);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0))
err = sock_recvmsg(sock, &msg, MSG_DONTWAIT);
#else
err = sock_recvmsg(sock, &msg, PAGE_SIZE, MSG_DONTWAIT);
#endif
set_fs(oldfs);
if (err < 0)
goto out_sock_pg;
if (msg.msg_flags & MSG_TRUNC) {
err = -ENOBUFS;
goto out_sock_pg;
}
h = (struct nlmsghdr *) pg;
while (NLMSG_OK(h, err)) {
struct route_info rt_info;
if (h->nlmsg_type == NLMSG_DONE) {
err = 0;
goto done;
}
if (h->nlmsg_type == NLMSG_ERROR) {
struct nlmsgerr *errm = (struct nlmsgerr *) NLMSG_DATA(h);
err = errm->error;
printk("NLMSG error: %d\n", errm->error);
goto done;
}
if (h->nlmsg_type == RTM_GETROUTE)
printk("RTM_GETROUTE: NLMSG: %d\n", h->nlmsg_type);
if (h->nlmsg_type != RTM_NEWROUTE) {
printk("NLMSG: %d\n", h->nlmsg_type);
err = -EINVAL;
goto done;
}
memset(&rt_info, 0, sizeof(struct route_info));
parse_routes(h, &rt_info);
if (!rt_info.dst_addr.s_addr && rt_info.gateway.s_addr && rt_info.dev_index) {
*gw_addr = rt_info.gateway.s_addr;
*gw_index = rt_info.dev_index;
}
h = NLMSG_NEXT(h, err);
}
if (err) {
printk("!!!Remnant of size %d %d %d\n", err, h->nlmsg_len, h->nlmsg_type);
err = -EINVAL;
break;
}
}
done:
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
if (!err && req.g.rtgen_family == AF_INET) {
req.g.rtgen_family = AF_INET6;
iov.iov_base = &req;
iov.iov_len = sizeof(req);
msg.msg_name = &nladdr;
msg.msg_namelen = sizeof(nladdr);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0))
iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, sizeof(req));
#else
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
#endif
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = MSG_DONTWAIT;
oldfs = get_fs();
set_fs(KERNEL_DS);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0))
err = sock_sendmsg(sock, &msg);
#else
err = sock_sendmsg(sock, &msg, sizeof(req));
#endif
set_fs(oldfs);
if (err > 0)
goto restart;
}
#endif
out_sock_pg:
free_page((unsigned long) pg);
out_sock:
sock_release(sock);
return err;
}
static int arp_query(unsigned char *haddr, u32 paddr,
struct net_device *dev)
{
struct neighbour *neighbor_entry;
int ret = 0;
neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev);
if (neighbor_entry != NULL) {
neighbor_entry->used = jiffies;
if (neighbor_entry->nud_state & NUD_VALID) {
_rtw_memcpy(haddr, neighbor_entry->ha, dev->addr_len);
ret = 1;
}
neigh_release(neighbor_entry);
}
return ret;
}
static int get_defaultgw(u32 *ip_addr , char mac[])
{
int gw_index = 0; /* oif device index */
struct net_device *gw_dev = NULL; /* oif device */
route_dump(ip_addr, &gw_index);
if (!(*ip_addr) || !gw_index) {
/* RTW_INFO("No default GW\n"); */
return -1;
}
gw_dev = dev_get_by_index(&init_net, gw_index);
if (gw_dev == NULL) {
/* RTW_INFO("get Oif Device Fail\n"); */
return -1;
}
if (!arp_query(mac, *ip_addr, gw_dev)) {
/* RTW_INFO( "arp query failed\n"); */
dev_put(gw_dev);
return -1;
}
dev_put(gw_dev);
return 0;
}
int rtw_gw_addr_query(_adapter *padapter)
{
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
u32 gw_addr = 0; /* default gw address */
unsigned char gw_mac[32] = {0}; /* default gw mac */
int i;
int res;
res = get_defaultgw(&gw_addr, gw_mac);
if (!res) {
pmlmepriv->gw_ip[0] = gw_addr & 0xff;
pmlmepriv->gw_ip[1] = (gw_addr & 0xff00) >> 8;
pmlmepriv->gw_ip[2] = (gw_addr & 0xff0000) >> 16;
pmlmepriv->gw_ip[3] = (gw_addr & 0xff000000) >> 24;
_rtw_memcpy(pmlmepriv->gw_mac_addr, gw_mac, ETH_ALEN);
RTW_INFO("%s Gateway Mac:\t" MAC_FMT "\n", __FUNCTION__, MAC_ARG(pmlmepriv->gw_mac_addr));
RTW_INFO("%s Gateway IP:\t" IP_FMT "\n", __FUNCTION__, IP_ARG(pmlmepriv->gw_ip));
} else
RTW_INFO("Get Gateway IP/MAC fail!\n");
return res;
}
#endif
int rtw_suspend_free_assoc_resource(_adapter *padapter)
{
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
#ifdef CONFIG_P2P
struct wifidirect_info *pwdinfo = &padapter->wdinfo;
#endif /* CONFIG_P2P */
RTW_INFO("==> "FUNC_ADPT_FMT" entry....\n", FUNC_ADPT_ARG(padapter));
if (rtw_chk_roam_flags(padapter, RTW_ROAM_ON_RESUME)) {
if (MLME_IS_STA(padapter) &&
#ifdef CONFIG_P2P
!rtw_p2p_chk_role(pwdinfo, P2P_ROLE_CLIENT) &&
!rtw_p2p_chk_role(pwdinfo, P2P_ROLE_GO) &&
#endif /* CONFIG_P2P */
check_fwstate(pmlmepriv, WIFI_ASOC_STATE)) {
RTW_INFO("%s %s(" MAC_FMT "), length:%d assoc_ssid.length:%d\n", __FUNCTION__,
pmlmepriv->cur_network.network.Ssid.Ssid,
MAC_ARG(pmlmepriv->cur_network.network.MacAddress),
pmlmepriv->cur_network.network.Ssid.SsidLength,
pmlmepriv->assoc_ssid.SsidLength);
rtw_set_to_roam(padapter, 1);
}
}
if (MLME_IS_STA(padapter) && check_fwstate(pmlmepriv, WIFI_ASOC_STATE))
rtw_disassoc_cmd(padapter, 0, RTW_CMDF_DIRECTLY|RTW_CMDF_WAIT_ACK);
#ifdef CONFIG_AP_MODE
else if (MLME_IS_AP(padapter) || MLME_IS_MESH(padapter))
rtw_sta_flush(padapter, _TRUE);
#endif
if (check_fwstate(pmlmepriv, WIFI_ASOC_STATE) == _TRUE) {
/* s2-2. */
if (1
#ifdef CONFIG_STA_CMD_DISPR
&& (MLME_IS_STA(padapter) == _FALSE)
#endif /* CONFIG_STA_CMD_DISPR */
)
rtw_free_assoc_resources(padapter, _TRUE);
/* s2-3. indicate disconnect to os */
if (MLME_IS_STA(padapter))
rtw_indicate_disconnect(padapter, 0, _FALSE);
}
/* s2-4. */
rtw_free_network_queue(padapter, _TRUE);
if (check_fwstate(pmlmepriv, WIFI_UNDER_SURVEY)) {
RTW_PRINT("%s: fw_under_survey\n", __func__);
rtw_indicate_scan_done(padapter, 1);
clr_fwstate(pmlmepriv, WIFI_UNDER_SURVEY);
}
if (check_fwstate(pmlmepriv, WIFI_UNDER_LINKING) == _TRUE) {
RTW_PRINT("%s: fw_under_linking\n", __FUNCTION__);
rtw_indicate_disconnect(padapter, 0, _FALSE);
}
RTW_INFO("<== "FUNC_ADPT_FMT" exit....\n", FUNC_ADPT_ARG(padapter));
return _SUCCESS;
}
#ifdef CONFIG_WOWLAN
int rtw_suspend_wow(_adapter *padapter)
{
u8 ch, bw, offset;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
int ret = _SUCCESS;
RTW_INFO("==> "FUNC_ADPT_FMT" entry....\n", FUNC_ADPT_ARG(padapter));
RTW_INFO("wowlan_mode: %d\n", pwrpriv->wowlan_mode);
RTW_INFO("wowlan_pno_enable: %d\n", pwrpriv->wowlan_pno_enable);
#ifdef CONFIG_P2P_WOWLAN
RTW_INFO("wowlan_p2p_enable: %d\n", pwrpriv->wowlan_p2p_enable);
#endif
if (pwrpriv->wowlan_mode == _TRUE) {
rtw_mi_netif_stop_queue(padapter);
#ifdef CONFIG_CONCURRENT_MODE
rtw_mi_buddy_netif_carrier_off(padapter);
#endif
rtw_hw_wow(padapter, _TRUE);
if (rtw_chk_roam_flags(padapter, RTW_ROAM_ON_RESUME)) {
if (MLME_IS_STA(padapter)
&& check_fwstate(pmlmepriv, WIFI_ASOC_STATE)) {
RTW_INFO("%s %s(" MAC_FMT "), length:%d assoc_ssid.length:%d\n", __FUNCTION__,
pmlmepriv->cur_network.network.Ssid.Ssid,
MAC_ARG(pmlmepriv->cur_network.network.MacAddress),
pmlmepriv->cur_network.network.Ssid.SsidLength,
pmlmepriv->assoc_ssid.SsidLength);
rtw_set_to_roam(padapter, 0);
}
}
RTW_PRINT("%s: wowmode suspending\n", __func__);
if (check_fwstate(pmlmepriv, WIFI_UNDER_SURVEY) == _TRUE) {
RTW_PRINT("%s: fw_under_survey\n", __func__);
rtw_indicate_scan_done(padapter, 1);
clr_fwstate(pmlmepriv, WIFI_UNDER_SURVEY);
}
#ifdef CONFIG_SDIO_HCI
#if !(CONFIG_RTW_SDIO_KEEP_IRQ)
rtw_sdio_free_irq(dvobj);
#endif
#endif/*CONFIG_SDIO_HCI*/
#if 1
if (rtw_mi_check_status(padapter, MI_LINKED)) {
ch = rtw_mi_get_union_chan(padapter);
bw = rtw_mi_get_union_bw(padapter);
offset = rtw_mi_get_union_offset(padapter);
RTW_INFO(FUNC_ADPT_FMT" back to linked/linking union - ch:%u, bw:%u, offset:%u\n",
FUNC_ADPT_ARG(padapter), ch, bw, offset);
set_channel_bwmode(padapter, ch, offset, bw, _FALSE);
}
#else
if (rtw_mi_get_ch_setting_union(padapter, &ch, &bw, &offset) != 0) {
RTW_INFO(FUNC_ADPT_FMT" back to linked/linking union - ch:%u, bw:%u, offset:%u\n",
FUNC_ADPT_ARG(padapter), ch, bw, offset);
set_channel_bwmode(padapter, ch, offset, bw, _FALSE);
rtw_mi_update_union_chan_inf(padapter, ch, offset, bw);
}
#endif
#ifdef CONFIG_CONCURRENT_MODE
rtw_mi_buddy_suspend_free_assoc_resource(padapter);
#endif
} else
RTW_PRINT("%s: ### ERROR ### wowlan_mode=%d\n", __FUNCTION__, pwrpriv->wowlan_mode);
RTW_INFO("<== "FUNC_ADPT_FMT" exit....\n", FUNC_ADPT_ARG(padapter));
return ret;
}
#endif /* #ifdef CONFIG_WOWLAN */
#ifdef CONFIG_AP_WOWLAN
int rtw_suspend_ap_wow(_adapter *padapter)
{
u8 ch, bw, offset;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
int ret = _SUCCESS;
RTW_INFO("==> "FUNC_ADPT_FMT" entry....\n", FUNC_ADPT_ARG(padapter));
pwrpriv->wowlan_ap_mode = _TRUE;
RTW_INFO("wowlan_ap_mode: %d\n", pwrpriv->wowlan_ap_mode);
rtw_mi_netif_stop_queue(padapter);
/* 0. Power off LED */
rtw_led_control(padapter, LED_CTL_POWER_OFF);
/* 1. stop thread */
dev_set_drv_stopped(dvobj); /*for stop thread*/
#if 0
rtw_mi_stop_drv_threads(padapter);
#endif
dev_clr_drv_stopped(dvobj); /*for 32k command*/
#ifdef CONFIG_SDIO_HCI
/* 2.2 free irq */
#if !(CONFIG_RTW_SDIO_KEEP_IRQ)
rtw_sdio_free_irq(dvobj);
#endif
#endif/*CONFIG_SDIO_HCI*/
rtw_wow_lps_level_decide(padapter, _TRUE);
RTW_PRINT("%s: wowmode suspending\n", __func__);
#if 1
if (rtw_mi_check_status(padapter, MI_LINKED)) {
ch = rtw_mi_get_union_chan(padapter);
bw = rtw_mi_get_union_bw(padapter);
offset = rtw_mi_get_union_offset(padapter);
RTW_INFO("back to linked/linking union - ch:%u, bw:%u, offset:%u\n", ch, bw, offset);
set_channel_bwmode(padapter, ch, offset, bw, _FALSE);
}
#else
if (rtw_mi_get_ch_setting_union(padapter, &ch, &bw, &offset) != 0) {
RTW_INFO("back to linked/linking union - ch:%u, bw:%u, offset:%u\n", ch, bw, offset);
set_channel_bwmode(padapter, ch, offset, bw, _FALSE);
rtw_mi_update_union_chan_inf(padapter, ch, offset, bw);
}
#endif
/*FOR ONE AP - TODO :Multi-AP*/
{
int i;
_adapter *iface;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
for (i = 0; i < dvobj->iface_nums; i++) {
iface = dvobj->padapters[i];
if ((iface) && rtw_is_adapter_up(iface)) {
if (check_fwstate(&iface->mlmepriv, WIFI_AP_STATE | WIFI_MESH_STATE) == _FALSE)
rtw_suspend_free_assoc_resource(iface);
}
}
}
#ifdef CONFIG_LPS
if(pwrpriv->wowlan_power_mgmt != PM_PS_MODE_ACTIVE) {
rtw_set_ps_mode(padapter, pwrpriv->wowlan_power_mgmt, 0, 0, "AP-WOWLAN");
}
#endif
RTW_INFO("<== "FUNC_ADPT_FMT" exit....\n", FUNC_ADPT_ARG(padapter));
return ret;
}
#endif /* #ifdef CONFIG_AP_WOWLAN */
int rtw_suspend_normal(_adapter *padapter)
{
int ret = _SUCCESS;
RTW_INFO("==> "FUNC_ADPT_FMT" entry....\n", FUNC_ADPT_ARG(padapter));
rtw_mi_netif_caroff_qstop(padapter);
rtw_mi_suspend_free_assoc_resource(padapter);
rtw_led_control(padapter, LED_CTL_POWER_OFF);
if ((rtw_hal_check_ips_status(padapter) == _TRUE)
|| (adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off))
RTW_PRINT("%s: ### ERROR #### driver in IPS ####ERROR###!!!\n", __FUNCTION__);
dev_set_drv_stopped(adapter_to_dvobj(padapter)); /*for stop thread*/
#if 0 /*#ifdef CONFIG_CORE_CMD_THREAD*/
rtw_stop_cmd_thread(padapter);
#endif
#ifdef CONFIG_CONCURRENT_MODE
rtw_drv_stop_vir_ifaces(adapter_to_dvobj(padapter));
#endif
rtw_drv_stop_prim_iface(padapter);
if (rtw_hw_is_init_completed(adapter_to_dvobj(padapter)))
rtw_hw_stop(adapter_to_dvobj(padapter));
dev_set_surprise_removed(adapter_to_dvobj(padapter));
#ifdef CONFIG_SDIO_HCI
rtw_sdio_deinit(adapter_to_dvobj(padapter));
#if !(CONFIG_RTW_SDIO_KEEP_IRQ)
rtw_sdio_free_irq(adapter_to_dvobj(padapter));
#endif
#endif /*CONFIG_SDIO_HCI*/
RTW_INFO("<== "FUNC_ADPT_FMT" exit....\n", FUNC_ADPT_ARG(padapter));
return ret;
}
int rtw_suspend_common(_adapter *padapter)
{
struct dvobj_priv *dvobj = padapter->dvobj;
struct debug_priv *pdbgpriv = &dvobj->drv_dbg;
struct pwrctrl_priv *pwrpriv = dvobj_to_pwrctl(dvobj);
#ifdef CONFIG_WOWLAN
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct registry_priv *registry_par = &padapter->registrypriv;
#endif
int ret = 0;
systime start_time = rtw_get_current_time();
RTW_PRINT(" suspend start\n");
RTW_INFO("==> %s (%s:%d)\n", __FUNCTION__, current->comm, current->pid);
pdbgpriv->dbg_suspend_cnt++;
pwrpriv->bInSuspend = _TRUE;
if ( RTW_CANNOT_RUN(dvobj)) {
RTW_INFO("%s bDriverStopped=%s bSurpriseRemoved = %s\n", __func__
, dev_is_drv_stopped(adapter_to_dvobj(padapter)) ? "True" : "False"
, dev_is_surprise_removed(adapter_to_dvobj(padapter)) ? "True" : "False");
pdbgpriv->dbg_suspend_error_cnt++;
goto exit;
}
rtw_mi_scan_abort(padapter, _TRUE);
rtw_ps_deny(padapter, PS_DENY_SUSPEND);
rtw_mi_cancel_all_timer(padapter);
LeaveAllPowerSaveModeDirect(padapter);
rtw_ps_deny_cancel(padapter, PS_DENY_SUSPEND);
if (rtw_mi_check_status(padapter, MI_AP_MODE) == _FALSE) {
#ifdef CONFIG_WOWLAN
if (WOWLAN_IS_STA_MIX_MODE(padapter))
pwrpriv->wowlan_mode = _TRUE;
else if ( registry_par->wowlan_enable && check_fwstate(pmlmepriv, WIFI_ASOC_STATE))
pwrpriv->wowlan_mode = _TRUE;
else if (pwrpriv->wowlan_pno_enable == _TRUE)
pwrpriv->wowlan_mode |= pwrpriv->wowlan_pno_enable;
#ifdef CONFIG_P2P_WOWLAN
if (rtw_p2p_chk_role(&padapter->wdinfo, P2P_ROLE_CLIENT) ||
rtw_p2p_chk_role(&padapter->wdinfo, P2P_ROLE_GO))
pwrpriv->wowlan_p2p_mode = _TRUE;
if (_TRUE == pwrpriv->wowlan_p2p_mode)
pwrpriv->wowlan_mode |= pwrpriv->wowlan_p2p_mode;
#endif /* CONFIG_P2P_WOWLAN */
if (pwrpriv->wowlan_mode == _TRUE)
rtw_suspend_wow(padapter);
else
#endif /* CONFIG_WOWLAN */
rtw_suspend_normal(padapter);
} else if (rtw_mi_check_status(padapter, MI_AP_MODE)) {
#ifdef CONFIG_AP_WOWLAN
rtw_suspend_ap_wow(padapter);
#else
rtw_suspend_normal(padapter);
#endif /*CONFIG_AP_WOWLAN*/
}
RTW_PRINT("rtw suspend success in %d ms\n",
rtw_get_passing_time_ms(start_time));
exit:
RTW_INFO("<=== %s return %d.............. in %dms\n", __FUNCTION__
, ret, rtw_get_passing_time_ms(start_time));
return ret;
}
#ifdef CONFIG_WOWLAN
int rtw_resume_process_wow(_adapter *padapter)
{
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
struct dvobj_priv *dvobj = padapter->dvobj;
struct debug_priv *pdbgpriv = &dvobj->drv_dbg;
struct registry_priv *registry_par = &padapter->registrypriv;
int ret = _SUCCESS;
RTW_INFO("==> "FUNC_ADPT_FMT" entry....\n", FUNC_ADPT_ARG(padapter));
if (padapter) {
pwrpriv = adapter_to_pwrctl(padapter);
} else {
pdbgpriv->dbg_resume_error_cnt++;
ret = -1;
goto exit;
}
if (RTW_CANNOT_RUN(dvobj)) {
RTW_INFO("%s pdapter %p bDriverStopped %s bSurpriseRemoved %s\n"
, __func__, padapter
, dev_is_drv_stopped(dvobj) ? "True" : "False"
, dev_is_surprise_removed(dvobj) ? "True" : "False");
goto exit;
}
pwrpriv->wowlan_in_resume = _TRUE;
if (pwrpriv->wowlan_mode == _TRUE) {
pwrpriv->bFwCurrentInPSMode = _FALSE;
#ifdef CONFIG_SDIO_HCI
#if !(CONFIG_RTW_SDIO_KEEP_IRQ)
if (rtw_sdio_alloc_irq(dvobj) != _SUCCESS) {
ret = -1;
goto exit;
}
#endif
#endif/*CONFIG_SDIO_HCI*/
#ifdef CONFIG_CONCURRENT_MODE
rtw_mi_buddy_reset_drv_sw(padapter);
#endif
rtw_hw_wow(padapter, _FALSE);
dev_clr_drv_stopped(dvobj);
RTW_INFO("%s: wowmode resuming, DriverStopped:%s\n", __func__, dev_is_drv_stopped(dvobj) ? "True" : "False");
#if 0
rtw_mi_start_drv_threads(padapter);
#endif
#ifdef CONFIG_CONCURRENT_MODE
rtw_mi_buddy_netif_carrier_on(padapter);
#endif
/* start netif queue */
rtw_mi_netif_wake_queue(padapter);
} else
RTW_PRINT("%s: ### ERROR ### wowlan_mode=%d\n", __FUNCTION__, pwrpriv->wowlan_mode);
if (padapter->pid[1] != 0) {
RTW_INFO("pid[1]:%d\n", padapter->pid[1]);
rtw_signal_process(padapter->pid[1], SIGUSR2);
}
#if 0 /* WOW_ToDo */
if (rtw_chk_roam_flags(padapter, RTW_ROAM_ON_RESUME)) {
if (pwrpriv->wowlan_wake_reason == FW_DECISION_DISCONNECT ||
pwrpriv->wowlan_wake_reason == RX_DISASSOC||
pwrpriv->wowlan_wake_reason == RX_DEAUTH) {
RTW_INFO("%s: disconnect reason: %02x\n", __func__,
pwrpriv->wowlan_wake_reason);
rtw_sta_media_status_rpt(padapter,
rtw_get_stainfo(&padapter->stapriv,
get_bssid(&padapter->mlmepriv)), 0);
if (MLME_IS_ASOC(padapter) == _TRUE)
rtw_free_assoc_resources(padapter, _TRUE);
rtw_indicate_disconnect(padapter, 0, _FALSE);
pmlmeinfo->state = WIFI_FW_NULL_STATE;
} else {
RTW_INFO("%s: do roaming\n", __func__);
rtw_roaming(padapter, NULL);
}
}
#endif
if (pwrpriv->wowlan_mode == _TRUE) {
#if 0 /*#ifdef CONFIG_CORE_DM_CHK_TIMER*/
_set_timer(&dvobj->dynamic_chk_timer, 2000);
#endif
#if 0 /*ndef CONFIG_IPS_CHECK_IN_WD*/
rtw_set_pwr_state_check_timer(pwrpriv);
#endif
} else
RTW_PRINT("do not reset timer\n");
pwrpriv->wowlan_mode = _FALSE;
/* Power On LED */
#ifdef CONFIG_RTW_SW_LED
if (pwrpriv->wowlan_wake_reason == RX_DISASSOC||
pwrpriv->wowlan_wake_reason == RX_DEAUTH||
pwrpriv->wowlan_wake_reason == FW_DECISION_DISCONNECT)
rtw_led_control(padapter, LED_CTL_NO_LINK);
else
rtw_led_control(padapter, LED_CTL_LINK);
#endif
/* clean driver side wake up reason. */
pwrpriv->wowlan_last_wake_reason = pwrpriv->wowlan_wake_reason;
pwrpriv->wowlan_wake_reason = 0;
exit:
RTW_INFO("<== "FUNC_ADPT_FMT" exit....\n", FUNC_ADPT_ARG(padapter));
return ret;
}
#endif /* #ifdef CONFIG_WOWLAN */
#ifdef CONFIG_AP_WOWLAN
int rtw_resume_process_ap_wow(_adapter *padapter)
{
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct debug_priv *pdbgpriv = &dvobj->drv_dbg;
struct sta_info *psta = NULL;
int ret = _SUCCESS;
u8 ch, bw, offset;
RTW_INFO("==> "FUNC_ADPT_FMT" entry....\n", FUNC_ADPT_ARG(padapter));
if (padapter) {
pwrpriv = adapter_to_pwrctl(padapter);
} else {
pdbgpriv->dbg_resume_error_cnt++;
ret = -1;
goto exit;
}
#ifdef CONFIG_LPS
if(pwrpriv->wowlan_power_mgmt != PM_PS_MODE_ACTIVE) {
rtw_set_ps_mode(padapter, PM_PS_MODE_ACTIVE, 0, 0, "AP-WOWLAN");
rtw_wow_lps_level_decide(padapter, _FALSE);
}
#endif /* CONFIG_LPS */
pwrpriv->bFwCurrentInPSMode = _FALSE;
#if 0 /*GEORGIA_TODO_REMOVE_IT_FOR_PHL_ARCH*/
rtw_hal_disable_interrupt(GET_PHL_COM(dvobj));
rtw_hal_clear_interrupt(padapter);
#endif
#ifdef CONFIG_SDIO_HCI
#if !(CONFIG_RTW_SDIO_KEEP_IRQ)
if (rtw_sdio_alloc_irq(dvobj) != _SUCCESS) {
ret = -1;
goto exit;
}
#endif
#endif/*CONFIG_SDIO_HCI*/
pwrpriv->wowlan_ap_mode = _FALSE;
dev_clr_drv_stopped(dvobj);
RTW_INFO("%s: wowmode resuming, DriverStopped:%s\n", __func__, dev_is_drv_stopped(dvobj) ? "True" : "False");
#if 0
rtw_mi_start_drv_threads(padapter);
#endif
#if 1
if (rtw_mi_check_status(padapter, MI_LINKED)) {
ch = rtw_mi_get_union_chan(padapter);
bw = rtw_mi_get_union_bw(padapter);
offset = rtw_mi_get_union_offset(padapter);
RTW_INFO(FUNC_ADPT_FMT" back to linked/linking union - ch:%u, bw:%u, offset:%u\n", FUNC_ADPT_ARG(padapter), ch, bw, offset);
set_channel_bwmode(padapter, ch, offset, bw, _FALSE);
}
#else
if (rtw_mi_get_ch_setting_union(padapter, &ch, &bw, &offset) != 0) {
RTW_INFO(FUNC_ADPT_FMT" back to linked/linking union - ch:%u, bw:%u, offset:%u\n", FUNC_ADPT_ARG(padapter), ch, bw, offset);
set_channel_bwmode(padapter, ch, offset, bw, _FALSE);
rtw_mi_update_union_chan_inf(padapter, ch, offset, bw);
}
#endif
/*FOR ONE AP - TODO :Multi-AP*/
{
int i;
_adapter *iface;
for (i = 0; i < dvobj->iface_nums; i++) {
iface = dvobj->padapters[i];
if ((iface) && rtw_is_adapter_up(iface)) {
if (check_fwstate(&iface->mlmepriv, WIFI_AP_STATE | WIFI_MESH_STATE | WIFI_ASOC_STATE))
rtw_reset_drv_sw(iface);
}
}
}
/* start netif queue */
rtw_mi_netif_wake_queue(padapter);
if (padapter->pid[1] != 0) {
RTW_INFO("pid[1]:%d\n", padapter->pid[1]);
rtw_signal_process(padapter->pid[1], SIGUSR2);
}
#ifdef CONFIG_RESUME_IN_WORKQUEUE
/* rtw_unlock_suspend(); */
#endif /* CONFIG_RESUME_IN_WORKQUEUE */
#if 0 /*#ifdef CONFIG_CORE_DM_CHK_TIMER*/
_set_timer(&dvobj->dynamic_chk_timer, 2000);
#endif
#if 0 /*ndef CONFIG_IPS_CHECK_IN_WD*/
rtw_set_pwr_state_check_timer(pwrpriv);
#endif
/* clean driver side wake up reason. */
pwrpriv->wowlan_wake_reason = 0;
/* Power On LED */
#ifdef CONFIG_RTW_SW_LED
rtw_led_control(padapter, LED_CTL_LINK);
#endif
exit:
RTW_INFO("<== "FUNC_ADPT_FMT" exit....\n", FUNC_ADPT_ARG(padapter));
return ret;
}
#endif /* #ifdef CONFIG_APWOWLAN */
void rtw_mi_resume_process_normal(_adapter *padapter)
{
int i;
_adapter *iface;
struct mlme_priv *pmlmepriv;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
for (i = 0; i < dvobj->iface_nums; i++) {
iface = dvobj->padapters[i];
if ((iface) && rtw_is_adapter_up(iface)) {
pmlmepriv = &iface->mlmepriv;
if (MLME_IS_STA(padapter)) {
RTW_INFO(FUNC_ADPT_FMT" fwstate:0x%08x - WIFI_STATION_STATE\n", FUNC_ADPT_ARG(iface), get_fwstate(pmlmepriv));
if (rtw_chk_roam_flags(iface, RTW_ROAM_ON_RESUME))
rtw_roaming(iface, NULL);
} else if (MLME_IS_AP(iface) || MLME_IS_MESH(iface)) {
RTW_INFO(FUNC_ADPT_FMT" %s\n", FUNC_ADPT_ARG(iface), MLME_IS_AP(iface) ? "AP" : "MESH");
rtw_ap_restore_network(iface);
} else if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE))
RTW_INFO(FUNC_ADPT_FMT" fwstate:0x%08x - WIFI_ADHOC_STATE\n", FUNC_ADPT_ARG(iface), get_fwstate(pmlmepriv));
else
RTW_INFO(FUNC_ADPT_FMT" fwstate:0x%08x - ???\n", FUNC_ADPT_ARG(iface), get_fwstate(pmlmepriv));
}
}
}
int rtw_resume_process_normal(_adapter *padapter)
{
struct net_device *pnetdev;
struct pwrctrl_priv *pwrpriv;
struct dvobj_priv *dvobj;
struct debug_priv *pdbgpriv;
int ret = _SUCCESS;
if (!padapter) {
ret = -1;
goto exit;
}
pnetdev = padapter->pnetdev;
pwrpriv = adapter_to_pwrctl(padapter);
dvobj = padapter->dvobj;
pdbgpriv = &dvobj->drv_dbg;
RTW_INFO("==> "FUNC_ADPT_FMT" entry....\n", FUNC_ADPT_ARG(padapter));
#ifdef CONFIG_SDIO_HCI
/* interface init */
if (rtw_sdio_init(dvobj) != _SUCCESS) {
ret = -1;
goto exit;
}
#endif/*CONFIG_SDIO_HCI*/
dev_clr_surprise_removed(dvobj);
#if 0 /*GEORGIA_TODO_REMOVE_IT_FOR_PHL_ARCH*/
rtw_hal_disable_interrupt(GET_PHL_COM(dvobj));
#endif
#ifdef CONFIG_SDIO_HCI
#if !(CONFIG_RTW_SDIO_KEEP_IRQ)
if (rtw_sdio_alloc_irq(dvobj) != _SUCCESS) {
ret = -1;
goto exit;
}
#endif
#endif/*CONFIG_SDIO_HCI*/
rtw_mi_reset_drv_sw(padapter);
pwrpriv->bkeepfwalive = _FALSE;
RTW_INFO("bkeepfwalive(%x)\n", pwrpriv->bkeepfwalive);
if (pm_netdev_open(pnetdev, _TRUE) != 0) {
ret = -1;
pdbgpriv->dbg_resume_error_cnt++;
goto exit;
}
rtw_mi_netif_caron_qstart(padapter);
if (padapter->pid[1] != 0) {
RTW_INFO("pid[1]:%d\n", padapter->pid[1]);
rtw_signal_process(padapter->pid[1], SIGUSR2);
}
rtw_mi_resume_process_normal(padapter);
#ifdef CONFIG_RESUME_IN_WORKQUEUE
/* rtw_unlock_suspend(); */
#endif /* CONFIG_RESUME_IN_WORKQUEUE */
RTW_INFO("<== "FUNC_ADPT_FMT" exit....\n", FUNC_ADPT_ARG(padapter));
exit:
return ret;
}
int rtw_resume_common(_adapter *padapter)
{
int ret = 0;
systime start_time = rtw_get_current_time();
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
if (pwrpriv == NULL)
return 0;
if (pwrpriv->bInSuspend == _FALSE)
return 0;
RTW_PRINT("resume start\n");
RTW_INFO("==> %s (%s:%d)\n", __FUNCTION__, current->comm, current->pid);
if (rtw_mi_check_status(padapter, MI_AP_MODE) == _FALSE) {
#ifdef CONFIG_WOWLAN
if (pwrpriv->wowlan_mode == _TRUE)
rtw_resume_process_wow(padapter);
else
#endif
rtw_resume_process_normal(padapter);
} else if (rtw_mi_check_status(padapter, MI_AP_MODE)) {
#ifdef CONFIG_AP_WOWLAN
rtw_resume_process_ap_wow(padapter);
#else
rtw_resume_process_normal(padapter);
#endif /* CONFIG_AP_WOWLAN */
}
pwrpriv->bInSuspend = _FALSE;
pwrpriv->wowlan_in_resume = _FALSE;
RTW_PRINT("%s:%d in %d ms\n", __FUNCTION__ , ret,
rtw_get_passing_time_ms(start_time));
return ret;
}
#ifdef CONFIG_GPIO_API
u8 rtw_get_gpio(struct net_device *netdev, u8 gpio_num)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(netdev);
return rtw_hal_get_gpio(adapter, gpio_num);
}
EXPORT_SYMBOL(rtw_get_gpio);
int rtw_set_gpio_output_value(struct net_device *netdev, u8 gpio_num, bool isHigh)
{
u8 direction = 0;
u8 res = -1;
_adapter *adapter = (_adapter *)rtw_netdev_priv(netdev);
return rtw_hal_set_gpio_output_value(adapter, gpio_num, isHigh);
}
EXPORT_SYMBOL(rtw_set_gpio_output_value);
int rtw_config_gpio(struct net_device *netdev, u8 gpio_num, bool isOutput)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(netdev);
return rtw_hal_config_gpio(adapter, gpio_num, isOutput);
}
EXPORT_SYMBOL(rtw_config_gpio);
int rtw_register_gpio_interrupt(struct net_device *netdev, int gpio_num, void(*callback)(u8 level))
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(netdev);
return rtw_hal_register_gpio_interrupt(adapter, gpio_num, callback);
}
EXPORT_SYMBOL(rtw_register_gpio_interrupt);
int rtw_disable_gpio_interrupt(struct net_device *netdev, int gpio_num)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(netdev);
return rtw_hal_disable_gpio_interrupt(adapter, gpio_num);
}
EXPORT_SYMBOL(rtw_disable_gpio_interrupt);
#endif /* #ifdef CONFIG_GPIO_API */
#ifdef CONFIG_APPEND_VENDOR_IE_ENABLE
int rtw_vendor_ie_get_api(struct net_device *dev, int ie_num, char *extra,
u16 extra_len)
{
int ret = 0;
ret = rtw_vendor_ie_get_raw_data(dev, ie_num, extra, extra_len);
return ret;
}
EXPORT_SYMBOL(rtw_vendor_ie_get_api);
int rtw_vendor_ie_set_api(struct net_device *dev, char *extra)
{
return rtw_vendor_ie_set(dev, NULL, NULL, extra);
}
EXPORT_SYMBOL(rtw_vendor_ie_set_api);
#endif
|
2301_81045437/rtl8852be
|
os_dep/linux/os_intfs.c
|
C
|
agpl-3.0
| 93,865
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _HCI_INTF_C_
#include <drv_types.h>
#include <linux/pci_regs.h>
#include <rtw_trx_pci.h>
#ifndef CONFIG_PCI_HCI
#error "CONFIG_PCI_HCI shall be on!\n"
#endif
#ifdef CONFIG_80211N_HT
extern int rtw_ht_enable;
extern int rtw_bw_mode;
extern int rtw_ampdu_enable;/* for enable tx_ampdu */
#endif
#ifdef CONFIG_GLOBAL_UI_PID
int ui_pid[3] = {0, 0, 0};
#endif
#ifdef CONFIG_PM
static int rtw_pci_suspend(struct pci_dev *pdev, pm_message_t state);
static int rtw_pci_resume(struct pci_dev *pdev);
#endif
static int rtw_dev_probe(struct pci_dev *pdev, const struct pci_device_id *pdid);
static void rtw_dev_remove(struct pci_dev *pdev);
static void rtw_dev_shutdown(struct pci_dev *pdev);
static struct specific_device_id specific_device_id_tbl[] = {
{.idVendor = 0x0b05, .idProduct = 0x1791, .flags = SPEC_DEV_ID_DISABLE_HT},
{.idVendor = 0x13D3, .idProduct = 0x3311, .flags = SPEC_DEV_ID_DISABLE_HT},
{}
};
struct pci_device_id rtw_pci_id_tbl[] = {
#ifdef CONFIG_RTL8852A
{PCI_DEVICE(PCI_VENDER_ID_REALTEK, 0xA852), .driver_data = RTL8852A},/*FPGA*/
{PCI_DEVICE(PCI_VENDER_ID_REALTEK, 0x8852), .driver_data = RTL8852A},
{PCI_DEVICE(PCI_VENDER_ID_REALTEK, 0x885B), .driver_data = RTL8852A},
{PCI_DEVICE(PCI_VENDER_ID_REALTEK, 0x885C), .driver_data = RTL8852A},
#endif
#ifdef CONFIG_RTL8852B
{PCI_DEVICE(PCI_VENDER_ID_REALTEK, 0xB852), .driver_data = RTL8852B},/*FPGA*/
#endif
{},
};
struct pci_drv_priv {
struct pci_driver rtw_pci_drv;
int drv_registered;
};
static struct pci_drv_priv pci_drvpriv = {
.rtw_pci_drv.name = (char *)DRV_NAME,
.rtw_pci_drv.probe = rtw_dev_probe,
.rtw_pci_drv.remove = rtw_dev_remove,
.rtw_pci_drv.shutdown = rtw_dev_shutdown,
.rtw_pci_drv.id_table = rtw_pci_id_tbl,
#ifdef CONFIG_PM
.rtw_pci_drv.suspend = rtw_pci_suspend,
.rtw_pci_drv.resume = rtw_pci_resume,
#endif
};
MODULE_DEVICE_TABLE(pci, rtw_pci_id_tbl);
void PlatformClearPciPMEStatus(_adapter *adapter)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(adapter);
PPCI_DATA pci_data = dvobj_to_pci(pdvobjpriv);
struct pci_dev *pdev = pci_data->ppcidev;
BOOLEAN PCIClkReq = _FALSE;
u8 PMCSReg;
if (pdev->pm_cap) {
/* Get the PM CSR (Control/Status Register), */
/* The PME_Status is located at PM Capatibility offset 5, bit 7 */
pci_read_config_byte(pdev, pdev->pm_cap + 5, &PMCSReg);
if (PMCSReg & BIT7) {
/* PME event occurred, clear the PM_Status by write 1 */
PMCSReg = PMCSReg | BIT7;
pci_write_config_byte(pdev, pdev->pm_cap + 5, PMCSReg);
PCIClkReq = _TRUE;
/* Read it back to check */
pci_read_config_byte(pdev, pdev->pm_cap + 5, &PMCSReg);
RTW_INFO("%s(): Clear PME status 0x%2x to 0x%2x\n", __func__, pdev->pm_cap + 5, PMCSReg);
} else {
RTW_INFO("%s(): PME status(0x%2x) = 0x%2x\n", __func__, pdev->pm_cap + 5, PMCSReg);
}
} else {
RTW_INFO("%s(): Cannot find PME Capability\n", __func__);
}
RTW_INFO("PME, value_offset = %x, PME EN = %x\n", pdev->pm_cap + 5, PCIClkReq);
}
#ifdef CONFIG_PCI_DYNAMIC_ASPM_LINK_CTRL
static bool _rtw_pci_set_aspm_lnkctl_reg(struct pci_dev *pdev, u8 mask, u8 val)
{
u8 linkctrl, new_val;
if (!pdev || !pdev->pcie_cap || !mask)
return false;
pci_read_config_byte(pdev, pdev->pcie_cap + PCI_EXP_LNKCTL, &linkctrl);
new_val = (linkctrl & ~mask) | val;
if (new_val == linkctrl)
return false;
pci_write_config_byte(pdev, pdev->pcie_cap + PCI_EXP_LNKCTL, new_val);
return true;
}
void rtw_pci_set_aspm_lnkctl(_adapter *padapter, u8 mode)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
PPCI_DATA pci_data = dvobj_to_pci(pdvobjpriv);
struct pci_priv *pcipriv = &(pci_data->pcipriv);
struct pci_dev *pdev = pci_data->ppcidev;
struct pci_dev *br_pdev = pdev->bus->self;
struct registry_priv *registry_par = &padapter->registrypriv;
u32 pci_dynamic_aspm_linkctrl = registry_par->pci_dynamic_aspm_linkctrl;
u8 lnkctl_val, lnkctl_mask;
u8 dev_lnkctl_val, br_lnkctl_val;
if (!pci_dynamic_aspm_linkctrl)
return;
switch (mode) {
case ASPM_MODE_PERF:
lnkctl_val = pci_dynamic_aspm_linkctrl & GENMASK(1, 0);
lnkctl_mask = (pci_dynamic_aspm_linkctrl & GENMASK(5, 4)) >> 4;
break;
case ASPM_MODE_PS:
lnkctl_val = (pci_dynamic_aspm_linkctrl & GENMASK(9, 8)) >> 8;
lnkctl_mask = (pci_dynamic_aspm_linkctrl & GENMASK(13, 12)) >> 12;
break;
case ASPM_MODE_DEF:
lnkctl_val = 0x0; /* fill val to make checker happy */
lnkctl_mask = 0x0;
break;
default:
return;
}
/* if certain mask==0x0, we restore the default value with mask 0x03 */
if (lnkctl_mask == 0x0) {
lnkctl_mask = PCI_EXP_LNKCTL_ASPMC;
dev_lnkctl_val = pcipriv->linkctrl_reg;
br_lnkctl_val = pcipriv->pcibridge_linkctrlreg;
} else {
dev_lnkctl_val = lnkctl_val;
br_lnkctl_val = lnkctl_val;
}
if (_rtw_pci_set_aspm_lnkctl_reg(pdev, lnkctl_mask, dev_lnkctl_val))
rtw_udelay_os(50);
_rtw_pci_set_aspm_lnkctl_reg(br_pdev, lnkctl_mask, br_lnkctl_val);
}
#endif
static u8 rtw_pci_get_amd_l1_patch(struct dvobj_priv *pdvobjpriv, struct pci_dev *pdev)
{
u8 status = _FALSE;
u8 offset_e0;
u32 offset_e4;
pci_write_config_byte(pdev, 0xE0, 0xA0);
pci_read_config_byte(pdev, 0xE0, &offset_e0);
if (offset_e0 == 0xA0) {
pci_read_config_dword(pdev, 0xE4, &offset_e4);
if (offset_e4 & BIT(23))
status = _TRUE;
}
return status;
}
static s32 rtw_set_pci_cache_line_size(struct pci_dev *pdev, u8 CacheLineSizeToSet)
{
u8 ucPciCacheLineSize;
s32 Result;
/* ucPciCacheLineSize = pPciConfig->CacheLineSize; */
pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &ucPciCacheLineSize);
if (ucPciCacheLineSize < 8 || ucPciCacheLineSize > 16) {
RTW_INFO("Driver Sets default Cache Line Size...\n");
ucPciCacheLineSize = CacheLineSizeToSet;
Result = pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, ucPciCacheLineSize);
if (Result != 0) {
RTW_INFO("pci_write_config_byte (CacheLineSize) Result=%d\n", Result);
goto _SET_CACHELINE_SIZE_FAIL;
}
Result = pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &ucPciCacheLineSize);
if (Result != 0) {
RTW_INFO("pci_read_config_byte (PciCacheLineSize) Result=%d\n", Result);
goto _SET_CACHELINE_SIZE_FAIL;
}
if (ucPciCacheLineSize != CacheLineSizeToSet) {
RTW_INFO("Failed to set Cache Line Size to 0x%x! ucPciCacheLineSize=%x\n", CacheLineSizeToSet, ucPciCacheLineSize);
goto _SET_CACHELINE_SIZE_FAIL;
}
}
return _SUCCESS;
_SET_CACHELINE_SIZE_FAIL:
return _FAIL;
}
#define PCI_CMD_ENABLE_BUS_MASTER BIT(2)
#define PCI_CMD_DISABLE_INTERRUPT BIT(10)
#define CMD_BUS_MASTER BIT(2)
static s32 rtw_pci_parse_configuration(struct pci_dev *pdev, struct dvobj_priv *dvobj)
{
PPCI_DATA pci_data = dvobj_to_pci(dvobj);
struct pci_priv *pcipriv = &(pci_data->pcipriv);
/* PPCI_COMMON_CONFIG pPciConfig = (PPCI_COMMON_CONFIG) pucBuffer; */
/* u16 usPciCommand = pPciConfig->Command; */
u16 usPciCommand = 0;
int Result, ret = _FAIL;
u8 LinkCtrlReg;
u8 ClkReqReg;
/* RTW_INFO("%s==>\n", __func__); */
pci_read_config_word(pdev, PCI_COMMAND, &usPciCommand);
do {
/* 3 Enable bus matering if it isn't enabled by the BIOS */
if (!(usPciCommand & PCI_CMD_ENABLE_BUS_MASTER)) {
RTW_INFO("Bus master is not enabled by BIOS! usPciCommand=%x\n", usPciCommand);
usPciCommand |= CMD_BUS_MASTER;
Result = pci_write_config_word(pdev, PCI_COMMAND, usPciCommand);
if (Result != 0) {
RTW_INFO("pci_write_config_word (Command) Result=%d\n", Result);
ret = _FAIL;
break;
}
Result = pci_read_config_word(pdev, PCI_COMMAND, &usPciCommand);
if (Result != 0) {
RTW_INFO("pci_read_config_word (Command) Result=%d\n", Result);
ret = _FAIL;
break;
}
if (!(usPciCommand & PCI_CMD_ENABLE_BUS_MASTER)) {
RTW_INFO("Failed to enable bus master! usPciCommand=%x\n", usPciCommand);
ret = _FAIL;
break;
}
}
RTW_INFO("Bus master is enabled. usPciCommand=%x\n", usPciCommand);
/* 3 Enable interrupt */
if ((usPciCommand & PCI_CMD_DISABLE_INTERRUPT)) {
RTW_INFO("INTDIS==1 usPciCommand=%x\n", usPciCommand);
usPciCommand &= (~PCI_CMD_DISABLE_INTERRUPT);
Result = pci_write_config_word(pdev, PCI_COMMAND, usPciCommand);
if (Result != 0) {
RTW_INFO("pci_write_config_word (Command) Result=%d\n", Result);
ret = _FAIL;
break;
}
Result = pci_read_config_word(pdev, PCI_COMMAND, &usPciCommand);
if (Result != 0) {
RTW_INFO("pci_read_config_word (Command) Result=%d\n", Result);
ret = _FAIL;
break;
}
if ((usPciCommand & PCI_CMD_DISABLE_INTERRUPT)) {
RTW_INFO("Failed to set INTDIS to 0! usPciCommand=%x\n", usPciCommand);
ret = _FAIL;
break;
}
}
/* */
/* Description: Find PCI express capability offset. Porting from 818xB by tynli 2008.12.19 */
/* */
/* ------------------------------------------------------------- */
/* 3 PCIeCap */
if (pdev->pcie_cap) {
pcipriv->pciehdr_offset = pdev->pcie_cap;
RTW_INFO("PCIe Header Offset =%x\n", pdev->pcie_cap);
/* 3 Link Control Register */
/* Read "Link Control Register" Field (80h ~81h) */
Result = pci_read_config_byte(pdev, pdev->pcie_cap + 0x10, &LinkCtrlReg);
if (Result != 0) {
RTW_INFO("pci_read_config_byte (Link Control Register) Result=%d\n", Result);
break;
}
pcipriv->linkctrl_reg = LinkCtrlReg;
RTW_INFO("Link Control Register =%x\n", LinkCtrlReg);
/* 3 Get Capability of PCI Clock Request */
/* The clock request setting is located at 0x81[0] */
Result = pci_read_config_byte(pdev, pdev->pcie_cap + 0x11, &ClkReqReg);
if (Result != 0) {
pcipriv->pci_clk_req = _FALSE;
RTW_INFO("pci_read_config_byte (Clock Request Register) Result=%d\n", Result);
break;
}
if (ClkReqReg & BIT(0))
pcipriv->pci_clk_req = _TRUE;
else
pcipriv->pci_clk_req = _FALSE;
RTW_INFO("Clock Request =%x\n", pcipriv->pci_clk_req);
} else {
/* We didn't find a PCIe capability. */
RTW_INFO("Didn't Find PCIe Capability\n");
break;
}
/* 3 Fill Cacheline */
ret = rtw_set_pci_cache_line_size(pdev, 8);
if (ret != _SUCCESS) {
RTW_INFO("rtw_set_pci_cache_line_size fail\n");
break;
}
/* Include 92C suggested by SD1. Added by tynli. 2009.11.25.
* Enable the Backdoor
*/
{
u8 tmp;
Result = pci_read_config_byte(pdev, 0x98, &tmp);
tmp |= BIT4;
Result = pci_write_config_byte(pdev, 0x98, tmp);
}
ret = _SUCCESS;
} while (_FALSE);
return ret;
}
/*
* 2009/10/28 MH Enable rtl8192ce DMA64 function. We need to enable 0x719 BIT5
* */
#ifdef CONFIG_64BIT_DMA
u8 PlatformEnableDMA64(_adapter *adapter)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(adapter);
PPCI_DATA pci_data = dvobj_to_pci(pdvobjpriv);
struct pci_dev *pdev = pci_data->ppcidev;
u8 bResult = _TRUE;
u8 value;
pci_read_config_byte(pdev, 0x719, &value);
/* 0x719 Bit5 is DMA64 bit fetch. */
value |= (BIT5);
pci_write_config_byte(pdev, 0x719, value);
return bResult;
}
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 5, 0)) || (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 18))
#define rtw_pci_interrupt(x, y, z) rtw_pci_interrupt(x, y)
#endif
static irqreturn_t rtw_pci_interrupt(int irq, void *priv, struct pt_regs *regs)
{
struct dvobj_priv *dvobj = (struct dvobj_priv *)priv;
PPCI_DATA pci_data = dvobj_to_pci(dvobj);
enum rtw_phl_status pstatus = RTW_PHL_STATUS_SUCCESS;
unsigned long sp_flags;
if (pci_data->irq_enabled == 0)
return IRQ_HANDLED;
_rtw_spinlock_irq(&pci_data->irq_th_lock, &sp_flags);
if (rtw_phl_recognize_interrupt(dvobj->phl)) {
pstatus = rtw_phl_interrupt_handler(dvobj->phl);
}
_rtw_spinunlock_irq(&pci_data->irq_th_lock, &sp_flags);
if (pstatus == RTW_PHL_STATUS_FAILURE)
return IRQ_HANDLED;
/* return IRQ_NONE; */
return IRQ_HANDLED;
}
#if defined(RTK_DMP_PLATFORM) || defined(CONFIG_PLATFORM_RTL8197D)
#define pci_iounmap(x, y) iounmap(y)
#endif
int pci_alloc_irq(struct dvobj_priv *dvobj)
{
int err;
PPCI_DATA pci_data = dvobj_to_pci(dvobj);
struct pci_dev *pdev = pci_data->ppcidev;
int ret;
#ifndef CONFIG_RTW_PCI_MSI_DISABLE
ret = pci_enable_msi(pdev);
RTW_INFO("pci_enable_msi ret=%d\n", ret);
#endif
#if defined(IRQF_SHARED)
err = request_irq(pdev->irq, &rtw_pci_interrupt, IRQF_SHARED, DRV_NAME, dvobj);
#else
err = request_irq(pdev->irq, &rtw_pci_interrupt, SA_SHIRQ, DRV_NAME, dvobj);
#endif
if (err)
RTW_INFO("Error allocating IRQ %d", pdev->irq);
else {
pci_data->irq_alloc = 1;
pci_data->irq = pdev->irq;
RTW_INFO("Request_irq OK, IRQ %d\n", pdev->irq);
}
return err ? _FAIL : _SUCCESS;
}
static struct dvobj_priv *pci_dvobj_init(struct pci_dev *pdev,
const struct pci_device_id *pdid)
{
int err;
u32 status = _FAIL;
struct dvobj_priv *dvobj = NULL;
struct pci_priv *pcipriv = NULL;
struct pci_dev *bridge_pdev = pdev->bus->self;
/* u32 pci_cfg_space[16]; */
unsigned long pmem_start, pmem_len, pmem_flags;
int i;
PPCI_DATA pci_data;
dvobj = devobj_init();
if (dvobj == NULL)
goto exit;
pci_data = dvobj_to_pci(dvobj);
pci_data->ppcidev = pdev;
pcipriv = &(pci_data->pcipriv);
pci_set_drvdata(pdev, dvobj);
err = pci_enable_device(pdev);
if (err != 0) {
RTW_ERR("%s : Cannot enable new PCI device\n", pci_name(pdev));
goto free_dvobj;
}
#ifdef CONFIG_64BIT_DMA
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
RTW_INFO("RTL819xCE: Using 64bit DMA\n");
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
if (err != 0) {
RTW_ERR("Unable to obtain 64bit DMA for consistent allocations\n");
goto disable_picdev;
}
pci_data->bdma64 = _TRUE;
} else
#endif
{
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (err != 0) {
RTW_ERR("Unable to obtain 32bit DMA for consistent allocations\n");
goto disable_picdev;
}
}
}
pci_set_master(pdev);
err = pci_request_regions(pdev, DRV_NAME);
if (err != 0) {
RTW_ERR("Can't obtain PCI resources\n");
goto disable_picdev;
}
#ifdef RTK_129X_PLATFORM
if (pdev->bus->number == 0x00) {
pmem_start = PCIE_SLOT1_MEM_START;
pmem_len = PCIE_SLOT1_MEM_LEN;
pmem_flags = 0;
RTW_PRINT("RTD129X: PCIE SLOT1\n");
} else if (pdev->bus->number == 0x01) {
pmem_start = PCIE_SLOT2_MEM_START;
pmem_len = PCIE_SLOT2_MEM_LEN;
pmem_flags = 0;
RTW_PRINT("RTD129X: PCIE SLOT2\n");
} else {
RTW_ERR(KERN_ERR "RTD129X: Wrong Slot Num\n");
goto release_regions;
}
#else
/* Search for memory map resource (index 0~5) */
for (i = 0 ; i < 6 ; i++) {
pmem_start = pci_resource_start(pdev, i);
pmem_len = pci_resource_len(pdev, i);
pmem_flags = pci_resource_flags(pdev, i);
if (pmem_flags & IORESOURCE_MEM)
break;
}
if (i == 6) {
RTW_ERR("%s: No MMIO resource found, abort!\n", __func__);
goto release_regions;
}
#endif /* RTK_DMP_PLATFORM */
#ifdef RTK_DMP_PLATFORM
pci_data->pci_mem_start = (unsigned long)ioremap_nocache(pmem_start, pmem_len);
#elif defined(RTK_129X_PLATFORM)
if (pdev->bus->number == 0x00)
pci_data->ctrl_start =
(unsigned long)ioremap(PCIE_SLOT1_CTRL_START, 0x200);
else if (pdev->bus->number == 0x01)
pci_data->ctrl_start =
(unsigned long)ioremap(PCIE_SLOT2_CTRL_START, 0x200);
if (pci_data->ctrl_start == 0) {
RTW_ERR("RTD129X: Can't map CTRL mem\n");
goto release_regions;
}
pci_data->mask_addr = pci_data->ctrl_start + PCIE_MASK_OFFSET;
pci_data->tran_addr = pci_data->ctrl_start + PCIE_TRANSLATE_OFFSET;
pci_data->pci_mem_start =
(unsigned long)ioremap_nocache(pmem_start, pmem_len);
#else
/* shared mem start */
pci_data->pci_mem_start = (unsigned long)pci_iomap(pdev, i, pmem_len);
#endif
if (pci_data->pci_mem_start == 0) {
RTW_ERR("Can't map PCI mem\n");
goto release_regions;
}
RTW_INFO("Memory mapped space start: 0x%08lx len:%08lx flags:%08lx, after map:0x%08lx\n",
pmem_start, pmem_len, pmem_flags, pci_data->pci_mem_start);
#if 0
/* Read PCI configuration Space Header */
for (i = 0; i < 16; i++)
pci_read_config_dword(pdev, (i << 2), &pci_cfg_space[i]);
#endif
/*step 1-1., decide the chip_type via device info*/
dvobj->interface_type = RTW_HCI_PCIE;
dvobj->ic_id = pdid->driver_data;
dvobj->intf_ops = &pci_ops;
/* rtw_pci_parse_configuration(pdev, dvobj, (u8 *)&pci_cfg_space); */
if (rtw_pci_parse_configuration(pdev, dvobj) == _FAIL) {
RTW_ERR("PCI parse configuration error\n");
goto iounmap;
}
if (bridge_pdev) {
pci_read_config_byte(bridge_pdev,
bridge_pdev->pcie_cap + PCI_EXP_LNKCTL,
&pcipriv->pcibridge_linkctrlreg);
if (bridge_pdev->vendor == AMD_VENDOR_ID)
pcipriv->amd_l1_patch = rtw_pci_get_amd_l1_patch(dvobj, bridge_pdev);
}
status = _SUCCESS;
iounmap:
if (status != _SUCCESS && pci_data->pci_mem_start != 0) {
#if 1/* def RTK_DMP_PLATFORM */
pci_iounmap(pdev, (void *)pci_data->pci_mem_start);
#endif
pci_data->pci_mem_start = 0;
}
#ifdef RTK_129X_PLATFORM
if (status != _SUCCESS && pci_data->ctrl_start != 0) {
pci_iounmap(pdev, (void *)pci_data->ctrl_start);
pci_data->ctrl_start = 0;
}
#endif
release_regions:
if (status != _SUCCESS)
pci_release_regions(pdev);
disable_picdev:
if (status != _SUCCESS)
pci_disable_device(pdev);
free_dvobj:
if (status != _SUCCESS && dvobj) {
pci_set_drvdata(pdev, NULL);
devobj_deinit(dvobj);
dvobj = NULL;
}
exit:
return dvobj;
}
static void pci_dvobj_deinit(struct pci_dev *pdev)
{
struct dvobj_priv *dvobj = pci_get_drvdata(pdev);
PPCI_DATA pci_data = dvobj_to_pci(dvobj);
pci_set_drvdata(pdev, NULL);
if (dvobj) {
if (pci_data->irq_alloc) {
free_irq(pdev->irq, dvobj);
#ifndef CONFIG_RTW_PCI_MSI_DISABLE
pci_disable_msi(pdev);
#endif
pci_data->irq_alloc = 0;
}
if (pci_data->pci_mem_start != 0) {
#if 1/* def RTK_DMP_PLATFORM */
pci_iounmap(pdev, (void *)pci_data->pci_mem_start);
#endif
pci_data->pci_mem_start = 0;
}
#ifdef RTK_129X_PLATFORM
if (pci_data->ctrl_start != 0) {
pci_iounmap(pdev, (void *)pci_data->ctrl_start);
pci_data->ctrl_start = 0;
}
#endif
devobj_deinit(dvobj);
}
pci_release_regions(pdev);
pci_disable_device(pdev);
}
/*GEORGIA_TODO_FIXIT-FOR Multi-ICs*/
static void disable_ht_for_spec_devid(const struct pci_device_id *pdid)
{
#ifdef CONFIG_80211N_HT
u16 vid, pid;
u32 flags;
int i;
int num = sizeof(specific_device_id_tbl) / sizeof(struct specific_device_id);
for (i = 0; i < num; i++) {
vid = specific_device_id_tbl[i].idVendor;
pid = specific_device_id_tbl[i].idProduct;
flags = specific_device_id_tbl[i].flags;
if ((pdid->vendor == vid) && (pdid->device == pid) && (flags & SPEC_DEV_ID_DISABLE_HT)) {
rtw_ht_enable = 0;
rtw_bw_mode = 0;
rtw_ampdu_enable = 0;
}
}
#endif
}
#ifdef CONFIG_PM
static int rtw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
int ret = 0;
struct dvobj_priv *dvobj = pci_get_drvdata(pdev);
_adapter *padapter = dvobj_get_primary_adapter(dvobj);
ret = rtw_suspend_common(padapter);
ret = pci_save_state(pdev);
if (ret != 0) {
RTW_INFO("%s Failed on pci_save_state (%d)\n", __func__, ret);
goto exit;
}
#ifdef CONFIG_WOWLAN
device_set_wakeup_enable(&pdev->dev, true);
#endif
pci_disable_device(pdev);
#ifdef CONFIG_WOWLAN
ret = pci_enable_wake(pdev, pci_choose_state(pdev, state), true);
if (ret != 0)
RTW_INFO("%s Failed on pci_enable_wake (%d)\n", __func__, ret);
#endif
ret = pci_set_power_state(pdev, pci_choose_state(pdev, state));
if (ret != 0)
RTW_INFO("%s Failed on pci_set_power_state (%d)\n", __func__, ret);
exit:
return ret;
}
static int rtw_resume_process(_adapter *padapter)
{
return rtw_resume_common(padapter);
}
static int rtw_pci_resume(struct pci_dev *pdev)
{
struct dvobj_priv *dvobj = pci_get_drvdata(pdev);
_adapter *padapter = dvobj_get_primary_adapter(dvobj);
struct net_device *pnetdev = padapter->pnetdev;
struct pwrctrl_priv *pwrpriv = dvobj_to_pwrctl(dvobj);
int err = 0;
err = pci_set_power_state(pdev, PCI_D0);
if (err != 0) {
RTW_INFO("%s Failed on pci_set_power_state (%d)\n", __func__, err);
goto exit;
}
err = pci_enable_device(pdev);
if (err != 0) {
RTW_INFO("%s Failed on pci_enable_device (%d)\n", __func__, err);
goto exit;
}
#ifdef CONFIG_WOWLAN
err = pci_enable_wake(pdev, PCI_D0, 0);
if (err != 0) {
RTW_INFO("%s Failed on pci_enable_wake (%d)\n", __func__, err);
goto exit;
}
#endif
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 37))
pci_restore_state(pdev);
#else
err = pci_restore_state(pdev);
if (err != 0) {
RTW_INFO("%s Failed on pci_restore_state (%d)\n", __func__, err);
goto exit;
}
#endif
#ifdef CONFIG_WOWLAN
device_set_wakeup_enable(&pdev->dev, false);
#endif
if (pwrpriv->wowlan_mode || pwrpriv->wowlan_ap_mode) {
rtw_resume_lock_suspend();
err = rtw_resume_process(padapter);
rtw_resume_unlock_suspend();
} else {
#ifdef CONFIG_RESUME_IN_WORKQUEUE
rtw_resume_in_workqueue(pwrpriv);
#else
if (rtw_is_earlysuspend_registered(pwrpriv)) {
/* jeff: bypass resume here, do in late_resume */
rtw_set_do_late_resume(pwrpriv, _TRUE);
} else {
rtw_resume_lock_suspend();
err = rtw_resume_process(padapter);
rtw_resume_unlock_suspend();
}
#endif
}
exit:
return err;
}
#endif/* CONFIG_PM */
_adapter *rtw_pci_primary_adapter_init(struct dvobj_priv *dvobj, struct pci_dev *pdev)
{
_adapter *padapter = NULL;
int status = _FAIL;
u8 hw_mac_addr[ETH_ALEN] = {0};
padapter = (_adapter *)rtw_zvmalloc(sizeof(*padapter));
if (padapter == NULL)
goto exit;
/*registry_priv*/
if (rtw_load_registry(padapter) != _SUCCESS)
goto free_adapter;
padapter->dvobj = dvobj;
dvobj->padapters[dvobj->iface_nums++] = padapter;
padapter->iface_id = IFACE_ID0;
/* set adapter_type/iface type for primary padapter */
padapter->isprimary = _TRUE;
padapter->adapter_type = PRIMARY_ADAPTER;
if (rtw_init_drv_sw(padapter) == _FAIL)
goto free_adapter;
/* get mac addr */
rtw_hw_get_mac_addr(dvobj, hw_mac_addr);
rtw_macaddr_cfg(adapter_mac_addr(padapter), hw_mac_addr);
status = _SUCCESS;
free_adapter:
if (status != _SUCCESS && padapter) {
rtw_vmfree((u8 *)padapter, sizeof(*padapter));
padapter = NULL;
}
exit:
return padapter;
}
static void rtw_pci_primary_adapter_deinit(_adapter *padapter)
{
rtw_free_drv_sw(padapter);
/* TODO: use rtw_os_ndevs_deinit instead at the first stage of driver's dev deinit function */
rtw_os_ndev_free(padapter);
rtw_vmfree((u8 *)padapter, sizeof(_adapter));
}
/*
* drv_init() - a device potentially for us
*
* notes: drv_init() is called when the bus driver has located a card for us to support.
* We accept the new device by returning 0.
*/
static int rtw_dev_probe(struct pci_dev *pdev, const struct pci_device_id *pdid)
{
_adapter *padapter = NULL;
struct dvobj_priv *dvobj;
RTW_INFO("+%s\n", __func__);
/* step 0. */
disable_ht_for_spec_devid(pdid);
/* Initialize dvobj_priv */
dvobj = pci_dvobj_init(pdev, pdid);
if (dvobj == NULL) {
RTW_ERR("pci_dvobj_init Failed!\n");
goto exit;
}
if (devobj_trx_resource_init(dvobj) == _FAIL)
goto free_dvobj;
/*init hw - register and get chip-info */
if (rtw_hw_init(dvobj) == _FAIL) {
RTW_ERR("rtw_hw_init Failed!\n");
goto free_trx_reso;
}
/* Initialize primary adapter */
padapter = rtw_pci_primary_adapter_init(dvobj, pdev);
if (padapter == NULL) {
RTW_ERR("rtw_pci_primary_adapter_init Failed!\n");
goto free_hw;
}
/* Initialize virtual interface */
#ifdef CONFIG_CONCURRENT_MODE
if (rtw_drv_add_vir_ifaces(dvobj) == _FAIL)
goto free_if_vir;
#endif
/*init data of dvobj from registary and ic spec*/
if (devobj_data_init(dvobj) == _FAIL) {
RTW_ERR("devobj_data_init Failed!\n");
goto free_devobj_data;
}
#ifdef CONFIG_GLOBAL_UI_PID
if (ui_pid[1] != 0) {
RTW_INFO("ui_pid[1]:%d\n", ui_pid[1]);
rtw_signal_process(ui_pid[1], SIGUSR2);
}
#endif
/* dev_alloc_name && register_netdev */
if (rtw_os_ndevs_init(dvobj) != _SUCCESS) {
RTW_ERR("rtw_os_ndevs_init Failed!\n");
goto free_devobj_data;
}
#ifdef CONFIG_HOSTAPD_MLME
hostapd_mode_init(padapter);
#endif
/* alloc irq */
if (pci_alloc_irq(dvobj) != _SUCCESS) {
RTW_ERR("pci_alloc_irq Failed!\n");
goto os_ndevs_deinit;
}
RTW_INFO("-%s success\n", __func__);
return 0; /* _SUCCESS;*/
os_ndevs_deinit:
rtw_os_ndevs_deinit(dvobj);
free_devobj_data:
devobj_data_deinit(dvobj);
free_if_vir:
#ifdef CONFIG_CONCURRENT_MODE
rtw_drv_stop_vir_ifaces(dvobj);
rtw_drv_free_vir_ifaces(dvobj);
#endif
rtw_pci_primary_adapter_deinit(padapter);
free_hw:
rtw_hw_deinit(dvobj);
free_trx_reso:
devobj_trx_resource_deinit(dvobj);
free_dvobj:
pci_dvobj_deinit(pdev);
exit:
return -ENODEV;
}
/*
* dev_remove() - our device is being removed
*/
/* rmmod module & unplug(SurpriseRemoved) will call r871xu_dev_remove() => how to recognize both */
static void rtw_dev_remove(struct pci_dev *pdev)
{
struct dvobj_priv *dvobj = pci_get_drvdata(pdev);
_adapter *padapter = dvobj_get_primary_adapter(dvobj);
struct net_device *pnetdev = padapter->pnetdev;
if (dvobj->processing_dev_remove == _TRUE) {
RTW_WARN("%s-line%d: Warning! device has been removed!\n", __func__, __LINE__);
return;
}
RTW_INFO("+%s\n", __func__);
dvobj->processing_dev_remove = _TRUE;
if (unlikely(!padapter))
return;
/* TODO: use rtw_os_ndevs_deinit instead at the first stage of driver's dev deinit function */
rtw_os_ndevs_unregister(dvobj);
#if defined(CONFIG_HAS_EARLYSUSPEND) || defined(CONFIG_ANDROID_POWER)
rtw_unregister_early_suspend(dvobj_to_pwrctl(dvobj));
#endif
#if 0 /*GEORGIA_TODO_FIXIT*/
if (GET_PHL_COM(pdvobjpriv)->fw_ready == _TRUE) {
rtw_pm_set_ips(padapter, IPS_NONE);
rtw_pm_set_lps(padapter, PM_PS_MODE_ACTIVE);
LeaveAllPowerSaveMode(padapter);
}
#endif
dev_set_drv_stopped(adapter_to_dvobj(padapter)); /*for stop thread*/
#if 0 /*#ifdef CONFIG_CORE_CMD_THREAD*/
rtw_stop_cmd_thread(padapter);
#endif
#ifdef CONFIG_CONCURRENT_MODE
rtw_drv_stop_vir_ifaces(dvobj);
#endif
rtw_pci_dynamic_aspm_set_mode(padapter, ASPM_MODE_DEF);
rtw_drv_stop_prim_iface(padapter);
rtw_hw_stop(dvobj);
dev_set_surprise_removed(dvobj);
rtw_pci_primary_adapter_deinit(padapter);
#ifdef CONFIG_CONCURRENT_MODE
rtw_drv_free_vir_ifaces(dvobj);
#endif
rtw_hw_deinit(dvobj);
devobj_data_deinit(dvobj);
devobj_trx_resource_deinit(dvobj);
pci_dvobj_deinit(pdev);
RTW_INFO("-%s done\n", __func__);
return;
}
static void rtw_dev_shutdown(struct pci_dev *pdev)
{
rtw_dev_remove(pdev);
}
static int __init rtw_drv_entry(void)
{
int ret = 0;
RTW_PRINT("module init start\n");
dump_drv_version(RTW_DBGDUMP);
#ifdef BTCOEXVERSION
RTW_PRINT(DRV_NAME" BT-Coex version = %s\n", BTCOEXVERSION);
#endif /* BTCOEXVERSION */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24))
/* console_suspend_enabled=0; */
#endif
pci_drvpriv.drv_registered = _TRUE;
rtw_suspend_lock_init();
rtw_drv_proc_init();
rtw_nlrtw_init();
rtw_ndev_notifier_register();
rtw_inetaddr_notifier_register();
ret = pci_register_driver(&pci_drvpriv.rtw_pci_drv);
if (ret != 0) {
pci_drvpriv.drv_registered = _FALSE;
rtw_suspend_lock_uninit();
rtw_drv_proc_deinit();
rtw_nlrtw_deinit();
rtw_ndev_notifier_unregister();
rtw_inetaddr_notifier_unregister();
goto exit;
}
exit:
RTW_PRINT("module init ret=%d\n", ret);
return ret;
}
static void __exit rtw_drv_halt(void)
{
RTW_PRINT("module exit start\n");
pci_drvpriv.drv_registered = _FALSE;
pci_unregister_driver(&pci_drvpriv.rtw_pci_drv);
rtw_suspend_lock_uninit();
rtw_drv_proc_deinit();
rtw_nlrtw_deinit();
rtw_ndev_notifier_unregister();
rtw_inetaddr_notifier_unregister();
RTW_PRINT("module exit success\n");
rtw_mstat_dump(RTW_DBGDUMP);
}
module_init(rtw_drv_entry);
module_exit(rtw_drv_halt);
|
2301_81045437/rtl8852be
|
os_dep/linux/pci_intf.c
|
C
|
agpl-3.0
| 28,304
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _PCI_OPS_LINUX_C_
#include <drv_types.h>
#ifdef RTK_129X_PLATFORM
#include <soc/realtek/rtd129x_lockapi.h>
#define IO_2K_MASK 0xFFFFF800
#define IO_4K_MASK 0xFFFFF000
#define MAX_RETRY 5
u32 pci_io_read_129x(struct dvobj_priv *pdvobjpriv, u32 addr, u8 size)
{
unsigned long mask_addr = pdvobjpriv->mask_addr;
unsigned long tran_addr = pdvobjpriv->tran_addr;
PPCI_DATA pci_data = dvobj_to_pci(pdvobjpriv);
u8 busnumber = pdvobjpriv->pcipriv.busnumber;
u32 rval = 0;
u32 mask;
u32 translate_val = 0;
u32 tmp_addr = addr & 0xFFF;
u32 pci_error_status = 0;
int retry_cnt = 0;
unsigned long flags, sp_flags;
_rtw_spinlock_irq(&pdvobjpriv->io_reg_lock, &sp_flags);
/* PCIE1.1 0x9804FCEC, PCIE2.0 0x9803CCEC & 0x9803CC68
* can't be used because of 1295 hardware issue.
*/
if ((tmp_addr == 0xCEC) || ((busnumber == 0x01) &&
(tmp_addr == 0xC68))) {
mask = IO_2K_MASK;
writel(0xFFFFF800, (u8 *)mask_addr);
translate_val = readl((u8 *)tran_addr);
writel(translate_val|(addr&mask), (u8 *)tran_addr);
} else if (addr >= 0x1000) {
mask = IO_4K_MASK;
translate_val = readl((u8 *)tran_addr);
writel(translate_val|(addr&mask), (u8 *)tran_addr);
} else
mask = 0x0;
pci_read_129x_retry:
/* All RBUS1 driver need to have a workaround for emmc hardware error */
/* Need to protect 0xXXXX_X8XX~ 0xXXXX_X9XX */
if ((tmp_addr > 0x7FF) && (tmp_addr < 0xA00))
rtk_lockapi_lock(flags, __func__);
switch (size) {
case 1:
rval = readb((u8 *)pci_data->pci_mem_start + (addr&~mask));
break;
case 2:
rval = readw((u8 *)pci_data->pci_mem_start + (addr&~mask));
break;
case 4:
rval = readl((u8 *)pci_data->pci_mem_start + (addr&~mask));
break;
default:
RTW_WARN("RTD129X: %s: wrong size %d\n", __func__, size);
break;
}
if ((tmp_addr > 0x7FF) && (tmp_addr < 0xA00))
rtk_lockapi_unlock(flags, __func__);
//DLLP error patch
pci_error_status = readl( (u8 *)(pdvobjpriv->ctrl_start + 0x7C));
if(pci_error_status & 0x1F) {
writel(pci_error_status, (u8 *)(pdvobjpriv->ctrl_start + 0x7C));
RTW_WARN("RTD129X: %s: DLLP(#%d) 0x%x reg=0x%x val=0x%x\n",
__func__, retry_cnt, pci_error_status, addr, rval);
if(retry_cnt < MAX_RETRY) {
retry_cnt++;
goto pci_read_129x_retry;
}
}
/* PCIE1.1 0x9804FCEC, PCIE2.0 0x9803CCEC & 0x9803CC68
* can't be used because of 1295 hardware issue.
*/
if ((tmp_addr == 0xCEC) || ((busnumber == 0x01) &&
(tmp_addr == 0xC68))) {
writel(translate_val, (u8 *)tran_addr);
writel(0xFFFFF000, (u8 *)mask_addr);
} else if (addr >= 0x1000) {
writel(translate_val, (u8 *)tran_addr);
}
_rtw_spinunlock_irq(&pdvobjpriv->io_reg_lock, &sp_flags);
return rval;
}
void pci_io_write_129x(struct dvobj_priv *pdvobjpriv,
u32 addr, u8 size, u32 wval)
{
unsigned long mask_addr = pdvobjpriv->mask_addr;
unsigned long tran_addr = pdvobjpriv->tran_addr;
PPCI_DATA pci_data = dvobj_to_pci(pdvobjpriv);
u8 busnumber = pdvobjpriv->pcipriv.busnumber;
u32 mask;
u32 translate_val = 0;
u32 tmp_addr = addr & 0xFFF;
unsigned long sp_flags;
_rtw_spinlock_irq(&pdvobjpriv->io_reg_lock, &sp_flags);
/* PCIE1.1 0x9804FCEC, PCIE2.0 0x9803CCEC & 0x9803CC68
* can't be used because of 1295 hardware issue.
*/
if ((tmp_addr == 0xCEC) || ((busnumber == 0x01) &&
(tmp_addr == 0xC68))) {
mask = IO_2K_MASK;
writel(0xFFFFF800, (u8 *)mask_addr);
translate_val = readl((u8 *)tran_addr);
writel(translate_val|(addr&mask), (u8 *)tran_addr);
} else if (addr >= 0x1000) {
mask = IO_4K_MASK;
translate_val = readl((u8 *)tran_addr);
writel(translate_val|(addr&mask), (u8 *)tran_addr);
} else
mask = 0x0;
/* All RBUS1 driver need to have a workaround for emmc hardware error */
/* Need to protect 0xXXXX_X8XX~ 0xXXXX_X9XX */
if ((tmp_addr > 0x7FF) && (tmp_addr < 0xA00))
rtk_lockapi_lock(flags, __func__);
switch (size) {
case 1:
writeb((u8)wval,
(u8 *)pci_data->pci_mem_start + (addr&~mask));
break;
case 2:
writew((u16)wval,
(u8 *)pci_data->pci_mem_start + (addr&~mask));
break;
case 4:
writel((u32)wval,
(u8 *)pci_data->pci_mem_start + (addr&~mask));
break;
default:
RTW_WARN("RTD129X: %s: wrong size %d\n", __func__, size);
break;
}
if ((tmp_addr > 0x7FF) && (tmp_addr < 0xA00))
rtk_lockapi_unlock(flags, __func__);
/* PCIE1.1 0x9804FCEC, PCIE2.0 0x9803CCEC & 0x9803CC68
* can't be used because of 1295 hardware issue.
*/
if ((tmp_addr == 0xCEC) || ((busnumber == 0x01) &&
(tmp_addr == 0xC68))) {
writel(translate_val, (u8 *)tran_addr);
writel(0xFFFFF000, (u8 *)mask_addr);
} else if (addr >= 0x1000) {
writel(translate_val, (u8 *)tran_addr);
}
_rtw_spinunlock_irq(&pdvobjpriv->io_reg_lock, &sp_flags);
}
u8 os_pci_read8(struct dvobj_priv *dvobj, u32 addr)
{
return (u8)pci_io_read_129x(dvobj, addr, 1);
}
u16 os_pci_read16(struct dvobj_priv *dvobj, u32 addr)
{
return (u16)pci_io_read_129x(dvobj, addr, 2);
}
u32 os_pci_read32(struct dvobj_priv *dvobj, u32 addr)
{
return (u32)pci_io_read_129x(dvobj, addr, 4);
}
/*
* 2009.12.23. by tynli. Suggested by SD1 victorh.
* For ASPM hang on AMD and Nvidia.
* 20100212 Tynli: Do read IO operation after write for
* all PCI bridge suggested by SD1. Origianally this is only for INTEL.
*/
static int os_pci_write8(struct dvobj_priv *dvobj, u32 addr, u8 val)
{
pci_io_write_129x(dvobj, addr, 1, val);
return 1;
}
static int os_pci_write16(struct dvobj_priv *dvobj, u32 addr, u16 val)
{
pci_io_write_129x(dvobj, addr, 2, val);
return 2;
}
int os_pci_write32(struct dvobj_priv *dvobj, u32 addr, u32 val)
{
pci_io_write_129x(dvobj, addr, 4, val);
return 4;
}
#elif defined (RTK_1319_PLATFORM)
#include <soc/realtek/rtk_pcie.h>
/* #define RTK_1319_PCIE_PORT1 */
#define RTK_1319_PCIE_PORT2
u8 os_pci_read8(struct dvobj_priv *dvobj, u32 addr)
{
#ifdef RTK_1319_PCIE_PORT1
return (u8)rtk_pcie2_13xx_read(addr, 1);
#elif defined (RTK_1319_PCIE_PORT2)
return (u8)rtk_pcie3_13xx_read(addr, 1);
#endif
}
u16 os_pci_read16(struct dvobj_priv *dvobj, u32 addr)
{
#ifdef RTK_1319_PCIE_PORT1
return (u16)rtk_pcie2_13xx_read(addr, 2);
#elif defined (RTK_1319_PCIE_PORT2)
return (u16)rtk_pcie3_13xx_read(addr, 2);
#endif
}
u32 os_pci_read32(struct dvobj_priv *dvobj, u32 addr)
{
#ifdef RTK_1319_PCIE_PORT1
return (u32)rtk_pcie2_13xx_read(addr, 4);
#elif defined (RTK_1319_PCIE_PORT2)
return (u32)rtk_pcie3_13xx_read(addr, 4);
#endif
}
int os_pci_write8(struct dvobj_priv *dvobj, u32 addr, u8 val)
{
#ifdef RTK_1319_PCIE_PORT1
rtk_pcie2_13xx_write(addr, 1, val);
#elif defined (RTK_1319_PCIE_PORT2)
rtk_pcie3_13xx_write(addr, 1, val);
#endif
return 1;
}
int os_pci_write16(struct dvobj_priv *dvobj, u32 addr, u16 val)
{
#ifdef RTK_1319_PCIE_PORT1
rtk_pcie2_13xx_write(addr, 2, val);
#elif defined (RTK_1319_PCIE_PORT2)
rtk_pcie3_13xx_write(addr, 2, val);
#endif
return 2;
}
int os_pci_write32(struct dvobj_priv *dvobj, u32 addr, u32 val)
{
#ifdef RTK_1319_PCIE_PORT1
rtk_pcie2_13xx_write(addr, 4, val);
#elif defined (RTK_1319_PCIE_PORT2)
rtk_pcie3_13xx_write(addr, 4, val);
#endif
return 4;
}
#else /* original*/
u8 os_pci_read8(struct dvobj_priv *dvobj, u32 addr)
{
return 0xff & readb((u8 *)dvobj_to_pci(dvobj)->pci_mem_start + addr);
}
u16 os_pci_read16(struct dvobj_priv *dvobj, u32 addr)
{
return readw((u8 *)dvobj_to_pci(dvobj)->pci_mem_start + addr);
}
u32 os_pci_read32(struct dvobj_priv *dvobj, u32 addr)
{
return readl((u8 *)dvobj_to_pci(dvobj)->pci_mem_start + addr);
}
/*
* 2009.12.23. by tynli. Suggested by SD1 victorh.
* For ASPM hang on AMD and Nvidia.
* 20100212 Tynli: Do read IO operation after write for
* all PCI bridge suggested by SD1. Origianally this is only for INTEL.
*/
int os_pci_write8(struct dvobj_priv *dvobj, u32 addr, u8 val)
{
writeb(val, (u8 *)dvobj_to_pci(dvobj)->pci_mem_start + addr);
return 1;
}
int os_pci_write16(struct dvobj_priv *dvobj, u32 addr, u16 val)
{
writew(val, (u8 *)dvobj_to_pci(dvobj)->pci_mem_start + addr);
return 2;
}
int os_pci_write32(struct dvobj_priv *dvobj, u32 addr, u32 val)
{
writel(val, (u8 *)dvobj_to_pci(dvobj)->pci_mem_start + addr);
return 4;
}
#endif
|
2301_81045437/rtl8852be
|
os_dep/linux/pci_ops_linux.c
|
C
|
agpl-3.0
| 8,777
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _RECV_OSDEP_C_
#include <drv_types.h>
int rtw_os_recvframe_duplicate_skb(_adapter *padapter,
union recv_frame *pcloneframe, struct sk_buff *pskb)
{
int res = _SUCCESS;
struct sk_buff *pkt_copy = NULL;
if (pskb == NULL) {
RTW_INFO("%s [WARN] skb == NULL, drop frag frame\n", __func__);
return _FAIL;
}
#if 1
pkt_copy = rtw_skb_copy(pskb);
if (pkt_copy == NULL) {
RTW_INFO("%s [WARN] rtw_skb_copy fail , drop frag frame\n", __func__);
return _FAIL;
}
#else
pkt_copy = rtw_skb_clone(pskb);
if (pkt_copy == NULL) {
RTW_INFO("%s [WARN] rtw_skb_clone fail , drop frag frame\n", __func__);
return _FAIL;
}
#endif
pkt_copy->dev = padapter->pnetdev;
pcloneframe->u.hdr.pkt = pkt_copy;
pcloneframe->u.hdr.rx_head = pkt_copy->head;
pcloneframe->u.hdr.rx_data = pkt_copy->data;
pcloneframe->u.hdr.rx_end = skb_end_pointer(pkt_copy);
pcloneframe->u.hdr.rx_tail = skb_tail_pointer(pkt_copy);
pcloneframe->u.hdr.len = pkt_copy->len;
return res;
}
int rtw_os_alloc_recvframe(_adapter *padapter,
union recv_frame *precvframe, u8 *pdata, struct sk_buff *pskb)
{
int res = _SUCCESS;
u8 shift_sz = 0;
u32 skb_len, alloc_sz;
struct sk_buff *pkt_copy = NULL;
struct rx_pkt_attrib *pattrib = &precvframe->u.hdr.attrib;
if (pdata == NULL) {
precvframe->u.hdr.pkt = NULL;
res = _FAIL;
return res;
}
/* Modified by Albert 20101213 */
/* For 8 bytes IP header alignment. */
shift_sz = pattrib->qos ? 6 : 0; /* Qos data, wireless lan header length is 26 */
skb_len = pattrib->pkt_len;
/* for first fragment packet, driver need allocate 1536+drvinfo_sz+RXDESC_SIZE to defrag packet. */
/* modify alloc_sz for recvive crc error packet by thomas 2011-06-02 */
if ((pattrib->mfrag == 1) && (pattrib->frag_num == 0)) {
/* alloc_sz = 1664; */ /* 1664 is 128 alignment. */
alloc_sz = (skb_len <= 1650) ? 1664 : (skb_len + 14);
} else {
alloc_sz = skb_len;
/* 6 is for IP header 8 bytes alignment in QoS packet case. */
/* 8 is for skb->data 4 bytes alignment. */
alloc_sz += 14;
}
pkt_copy = rtw_skb_alloc(alloc_sz);
if (pkt_copy) {
pkt_copy->dev = padapter->pnetdev;
pkt_copy->len = skb_len;
precvframe->u.hdr.pkt = pkt_copy;
precvframe->u.hdr.rx_head = pkt_copy->head;
precvframe->u.hdr.rx_end = pkt_copy->data + alloc_sz;
skb_reserve(pkt_copy, 8 - ((SIZE_PTR)(pkt_copy->data) & 7)); /* force pkt_copy->data at 8-byte alignment address */
skb_reserve(pkt_copy, shift_sz);/* force ip_hdr at 8-byte alignment address according to shift_sz. */
_rtw_memcpy(pkt_copy->data, pdata, skb_len);
precvframe->u.hdr.rx_data = precvframe->u.hdr.rx_tail = pkt_copy->data;
} else {
#ifdef CONFIG_USE_USB_BUFFER_ALLOC_RX
RTW_INFO("%s:can not allocate memory for skb copy\n", __func__);
precvframe->u.hdr.pkt = NULL;
/* rtw_free_recvframe(precvframe); */
/*exit_rtw_os_recv_resource_alloc;*/
res = _FAIL;
#else
if ((pattrib->mfrag == 1) && (pattrib->frag_num == 0)) {
RTW_INFO("%s: alloc_skb fail , drop frag frame\n", __FUNCTION__);
/* rtw_free_recvframe(precvframe); */
res = _FAIL;
goto exit_rtw_os_recv_resource_alloc;
}
if (pskb == NULL) {
res = _FAIL;
goto exit_rtw_os_recv_resource_alloc;
}
precvframe->u.hdr.pkt = rtw_skb_clone(pskb);
if (precvframe->u.hdr.pkt) {
precvframe->u.hdr.pkt->dev = padapter->pnetdev;
precvframe->u.hdr.rx_head = precvframe->u.hdr.rx_data = precvframe->u.hdr.rx_tail = pdata;
precvframe->u.hdr.rx_end = pdata + alloc_sz;
} else {
RTW_INFO("%s: rtw_skb_clone fail\n", __FUNCTION__);
/* rtw_free_recvframe(precvframe); */
/*exit_rtw_os_recv_resource_alloc;*/
res = _FAIL;
}
#endif
}
exit_rtw_os_recv_resource_alloc:
return res;
}
void rtw_os_free_recvframe(union recv_frame *precvframe)
{
if (precvframe->u.hdr.pkt) {
rtw_skb_free(precvframe->u.hdr.pkt);
precvframe->u.hdr.pkt = NULL;
}
}
/* init os related resource in struct recv_priv */
int rtw_os_recv_resource_init(struct recv_priv *precvpriv)
{
int res = _SUCCESS;
#ifdef CONFIG_RTW_NAPI
skb_queue_head_init(&precvpriv->rx_napi_skb_queue);
#endif /* CONFIG_RTW_NAPI */
return res;
}
/* alloc os related resource in union recv_frame */
int rtw_os_recv_resource_alloc(union recv_frame *precvframe)
{
int res = _SUCCESS;
precvframe->u.hdr.pkt = NULL;
return res;
}
/* free os related resource in union recv_frame */
void rtw_os_recv_resource_free(struct recv_priv *precvpriv)
{
sint i;
union recv_frame *precvframe;
precvframe = (union recv_frame *) precvpriv->precv_frame_buf;
#ifdef CONFIG_RTW_NAPI
if (skb_queue_len(&precvpriv->rx_napi_skb_queue))
RTW_WARN("rx_napi_skb_queue not empty\n");
rtw_skb_queue_purge(&precvpriv->rx_napi_skb_queue);
#endif /* CONFIG_RTW_NAPI */
for (i = 0; i < NR_RECVFRAME; i++) {
rtw_os_free_recvframe(precvframe);
precvframe++;
}
}
#if 0
/* alloc os related resource in struct recv_buf */
int rtw_os_recvbuf_resource_alloc(_adapter *padapter, struct recv_buf *precvbuf)
{
int res = _SUCCESS;
#ifdef CONFIG_USB_HCI
#ifdef CONFIG_USE_USB_BUFFER_ALLOC_RX
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
struct usb_device *pusbd = dvobj_to_usb(pdvobjpriv)->pusbdev;
#endif
precvbuf->irp_pending = _FALSE;
precvbuf->purb = usb_alloc_urb(0, GFP_KERNEL);
if (precvbuf->purb == NULL)
res = _FAIL;
precvbuf->pskb = NULL;
precvbuf->pallocated_buf = precvbuf->pbuf = NULL;
precvbuf->pdata = precvbuf->phead = precvbuf->ptail = precvbuf->pend = NULL;
precvbuf->transfer_len = 0;
precvbuf->len = 0;
#ifdef CONFIG_USE_USB_BUFFER_ALLOC_RX
precvbuf->pallocated_buf = rtw_usb_buffer_alloc(pusbd, (size_t)precvbuf->alloc_sz, &precvbuf->dma_transfer_addr);
precvbuf->pbuf = precvbuf->pallocated_buf;
if (precvbuf->pallocated_buf == NULL)
return _FAIL;
#endif /* CONFIG_USE_USB_BUFFER_ALLOC_RX */
#endif /* CONFIG_USB_HCI */
return res;
}
/* free os related resource in struct recv_buf */
int rtw_os_recvbuf_resource_free(_adapter *adapter, struct recv_buf *precvbuf)
{
int ret = _SUCCESS;
#ifdef CONFIG_USB_HCI
#ifdef CONFIG_USE_USB_BUFFER_ALLOC_RX
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct usb_device *pusbd = dvobj_to_usb(dvobj)->pusbdev;
rtw_usb_buffer_free(pusbd, (size_t)precvbuf->alloc_sz, precvbuf->pallocated_buf, precvbuf->dma_transfer_addr);
precvbuf->pallocated_buf = NULL;
precvbuf->dma_transfer_addr = 0;
#endif /* CONFIG_USE_USB_BUFFER_ALLOC_RX */
if (precvbuf->purb) {
/* usb_kill_urb(precvbuf->purb); */
usb_free_urb(precvbuf->purb);
}
#endif /* CONFIG_USB_HCI */
if (precvbuf->pskb) {
#ifdef CONFIG_PREALLOC_RX_SKB_BUFFER
if (rtw_free_skb_premem(precvbuf->pskb) != 0)
#endif
rtw_skb_free(precvbuf->pskb);
}
return ret;
}
#endif
struct sk_buff *rtw_os_alloc_msdu_pkt(union recv_frame *prframe,
const u8 *da, const u8 *sa, u8 *msdu ,u16 msdu_len,
enum rtw_rx_llc_hdl llc_hdl)
{
u8 *data_ptr;
struct sk_buff *sub_skb;
struct rx_pkt_attrib *pattrib;
pattrib = &prframe->u.hdr.attrib;
#ifdef CONFIG_SKB_COPY
sub_skb = rtw_skb_alloc(msdu_len + 14);
if (sub_skb) {
skb_reserve(sub_skb, 14);
data_ptr = (u8 *)skb_put(sub_skb, msdu_len);
_rtw_memcpy(data_ptr, msdu, msdu_len);
} else
#endif /* CONFIG_SKB_COPY */
{
sub_skb = rtw_skb_clone(prframe->u.hdr.pkt);
if (sub_skb) {
sub_skb->data = msdu;
sub_skb->len = msdu_len;
skb_set_tail_pointer(sub_skb, msdu_len);
} else {
RTW_INFO("%s(): rtw_skb_clone() Fail!!!\n", __FUNCTION__);
return NULL;
}
}
if (llc_hdl) {
/* remove RFC1042 or Bridge-Tunnel encapsulation and replace EtherType */
skb_pull(sub_skb, SNAP_SIZE);
_rtw_memcpy(skb_push(sub_skb, ETH_ALEN), sa, ETH_ALEN);
_rtw_memcpy(skb_push(sub_skb, ETH_ALEN), da, ETH_ALEN);
} else {
/* Leave Ethernet header part of hdr and full payload */
u16 len;
len = htons(sub_skb->len);
_rtw_memcpy(skb_push(sub_skb, 2), &len, 2);
_rtw_memcpy(skb_push(sub_skb, ETH_ALEN), sa, ETH_ALEN);
_rtw_memcpy(skb_push(sub_skb, ETH_ALEN), da, ETH_ALEN);
}
return sub_skb;
}
#ifdef CONFIG_RTW_NAPI
static int napi_recv(_adapter *padapter, int budget)
{
struct sk_buff *pskb;
struct recv_priv *precvpriv = &adapter_to_dvobj(padapter)->recvpriv;
int work_done = 0;
struct registry_priv *pregistrypriv = &padapter->registrypriv;
u8 rx_ok;
while ((work_done < budget) &&
(!skb_queue_empty(&precvpriv->rx_napi_skb_queue))) {
pskb = skb_dequeue(&precvpriv->rx_napi_skb_queue);
if (!pskb)
break;
rx_ok = _FALSE;
#ifdef CONFIG_RTW_GRO
if (pregistrypriv->en_gro) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 12, 0))
rtw_napi_gro_receive(&padapter->napi, pskb);
rx_ok = _TRUE;
#else
if (rtw_napi_gro_receive(&padapter->napi, pskb) != GRO_DROP)
rx_ok = _TRUE;
#endif
goto next;
}
#endif /* CONFIG_RTW_GRO */
if (rtw_netif_receive_skb(padapter->pnetdev, pskb) == NET_RX_SUCCESS)
rx_ok = _TRUE;
next:
if (rx_ok == _TRUE) {
work_done++;
DBG_COUNTER(padapter->rx_logs.os_netif_ok);
} else {
DBG_COUNTER(padapter->rx_logs.os_netif_err);
}
}
return work_done;
}
int rtw_recv_napi_poll(struct napi_struct *napi, int budget)
{
_adapter *padapter = container_of(napi, _adapter, napi);
int work_done = 0;
struct recv_priv *precvpriv = &adapter_to_dvobj(padapter)->recvpriv;
work_done = napi_recv(padapter, budget);
if (work_done < budget) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0)) && defined(CONFIG_PCI_HCI)
napi_complete_done(napi, work_done);
#else
napi_complete(napi);
#endif
if (!skb_queue_empty(&precvpriv->rx_napi_skb_queue))
napi_schedule(napi);
}
return work_done;
}
#ifdef CONFIG_RTW_NAPI_DYNAMIC
void dynamic_napi_th_chk (_adapter *adapter)
{
if (adapter->registrypriv.en_napi) {
struct dvobj_priv *dvobj;
struct registry_priv *registry;
dvobj = adapter_to_dvobj(adapter);
registry = &adapter->registrypriv;
if (dvobj->traffic_stat.cur_rx_tp > registry->napi_threshold)
dvobj->en_napi_dynamic = 1;
else
dvobj->en_napi_dynamic = 0;
}
}
#endif /* CONFIG_RTW_NAPI_DYNAMIC */
#endif /* CONFIG_RTW_NAPI */
void rtw_os_recv_indicate_pkt(_adapter *padapter, struct sk_buff *pkt,
union recv_frame *rframe)
{
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct recv_priv *precvpriv = &adapter_to_dvobj(padapter)->recvpriv;
struct registry_priv *pregistrypriv = &padapter->registrypriv;
#ifdef CONFIG_BR_EXT
void *br_port = NULL;
#endif
int ret;
/* Indicat the packets to upper layer */
if (pkt) {
struct ethhdr *ehdr = (struct ethhdr *)pkt->data;
DBG_COUNTER(padapter->rx_logs.os_indicate);
#ifdef CONFIG_BR_EXT
if (!adapter_use_wds(padapter) &&
(MLME_IS_STA(padapter) || MLME_IS_ADHOC(padapter))) {
/* Insert NAT2.5 RX here! */
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 35))
br_port = padapter->pnetdev->br_port;
#else
rcu_read_lock();
br_port = rcu_dereference(padapter->pnetdev->rx_handler_data);
rcu_read_unlock();
#endif
if (br_port) {
int nat25_handle_frame(_adapter *priv, struct sk_buff *skb);
if (nat25_handle_frame(padapter, pkt) == -1) {
/* priv->ext_stats.rx_data_drops++; */
/* DEBUG_ERR("RX DROP: nat25_handle_frame fail!\n"); */
/* return FAIL; */
#if 1
/* bypass this frame to upper layer!! */
#else
rtw_skb_free(sub_skb);
continue;
#endif
}
}
}
#endif /* CONFIG_BR_EXT */
/* After eth_type_trans process , pkt->data pointer will move from ethrnet header to ip header */
pkt->protocol = eth_type_trans(pkt, padapter->pnetdev);
pkt->dev = padapter->pnetdev;
pkt->ip_summed = CHECKSUM_NONE; /* CONFIG_TCP_CSUM_OFFLOAD_RX */
#ifdef CONFIG_TCP_CSUM_OFFLOAD_RX
if ((rframe->u.hdr.attrib.csum_valid == 1)
&& (rframe->u.hdr.attrib.csum_err == 0))
pkt->ip_summed = CHECKSUM_UNNECESSARY;
#endif /* CONFIG_TCP_CSUM_OFFLOAD_RX */
#ifdef CONFIG_RTW_NAPI
#ifdef CONFIG_RTW_NAPI_DYNAMIC
if (!skb_queue_empty(&precvpriv->rx_napi_skb_queue)
&& !adapter_to_dvobj(padapter)->en_napi_dynamic
)
napi_recv(padapter, RTL_NAPI_WEIGHT);
#endif
if (pregistrypriv->en_napi
#ifdef CONFIG_RTW_NAPI_DYNAMIC
&& adapter_to_dvobj(padapter)->en_napi_dynamic
#endif
) {
skb_queue_tail(&precvpriv->rx_napi_skb_queue, pkt);
#ifndef CONFIG_RTW_NAPI_V2
napi_schedule(&padapter->napi);
#endif
return;
}
#endif /* CONFIG_RTW_NAPI */
ret = rtw_netif_rx(padapter->pnetdev, pkt);
if (ret == NET_RX_SUCCESS)
DBG_COUNTER(padapter->rx_logs.os_netif_ok);
else
DBG_COUNTER(padapter->rx_logs.os_netif_err);
}
}
void rtw_handle_tkip_mic_err(_adapter *padapter, struct sta_info *sta, u8 bgroup)
{
#ifdef CONFIG_IOCTL_CFG80211
enum nl80211_key_type key_type = 0;
#endif
union iwreq_data wrqu;
struct iw_michaelmicfailure ev;
struct security_priv *psecuritypriv = &padapter->securitypriv;
systime cur_time = 0;
if (psecuritypriv->last_mic_err_time == 0)
psecuritypriv->last_mic_err_time = rtw_get_current_time();
else {
cur_time = rtw_get_current_time();
if (cur_time - psecuritypriv->last_mic_err_time < 60 * HZ) {
psecuritypriv->btkip_countermeasure = _TRUE;
psecuritypriv->last_mic_err_time = 0;
psecuritypriv->btkip_countermeasure_time = cur_time;
} else
psecuritypriv->last_mic_err_time = rtw_get_current_time();
}
#ifdef CONFIG_IOCTL_CFG80211
if (bgroup)
key_type |= NL80211_KEYTYPE_GROUP;
else
key_type |= NL80211_KEYTYPE_PAIRWISE;
cfg80211_michael_mic_failure(padapter->pnetdev, sta->phl_sta->mac_addr, key_type, -1, NULL, GFP_ATOMIC);
#endif
_rtw_memset(&ev, 0x00, sizeof(ev));
if (bgroup)
ev.flags |= IW_MICFAILURE_GROUP;
else
ev.flags |= IW_MICFAILURE_PAIRWISE;
ev.src_addr.sa_family = ARPHRD_ETHER;
_rtw_memcpy(ev.src_addr.sa_data, sta->phl_sta->mac_addr, ETH_ALEN);
_rtw_memset(&wrqu, 0x00, sizeof(wrqu));
wrqu.data.length = sizeof(ev);
#ifndef CONFIG_IOCTL_CFG80211
wireless_send_event(padapter->pnetdev, IWEVMICHAELMICFAILURE, &wrqu, (char *) &ev);
#endif
}
#ifdef CONFIG_HOSTAPD_MLME
void rtw_hostapd_mlme_rx(_adapter *padapter, union recv_frame *precv_frame)
{
struct sk_buff *skb;
struct hostapd_priv *phostapdpriv = padapter->phostapdpriv;
struct net_device *pmgnt_netdev = phostapdpriv->pmgnt_netdev;
skb = precv_frame->u.hdr.pkt;
if (skb == NULL)
return;
skb->data = precv_frame->u.hdr.rx_data;
skb->tail = precv_frame->u.hdr.rx_tail;
skb->len = precv_frame->u.hdr.len;
/* pskb_copy = rtw_skb_copy(skb);
* if(skb == NULL) goto _exit; */
skb->dev = pmgnt_netdev;
skb->ip_summed = CHECKSUM_NONE;
skb->pkt_type = PACKET_OTHERHOST;
/* skb->protocol = __constant_htons(0x0019); ETH_P_80211_RAW */
skb->protocol = __constant_htons(0x0003); /*ETH_P_80211_RAW*/
/* RTW_INFO("(1)data=0x%x, head=0x%x, tail=0x%x, mac_header=0x%x, len=%d\n", skb->data, skb->head, skb->tail, skb->mac_header, skb->len); */
/* skb->mac.raw = skb->data; */
skb_reset_mac_header(skb);
/* skb_pull(skb, 24); */
_rtw_memset(skb->cb, 0, sizeof(skb->cb));
rtw_netif_rx(pmgnt_netdev, skb);
precv_frame->u.hdr.pkt = NULL; /* set pointer to NULL before rtw_free_recvframe() if call rtw_netif_rx() */
}
#endif /* CONFIG_HOSTAPD_MLME */
#ifdef CONFIG_WIFI_MONITOR
/*
precv_frame: impossible to be NULL
precv_frame: free by caller
*/
int rtw_recv_monitor(_adapter *padapter, union recv_frame *precv_frame)
{
int ret = _FAIL;
struct sk_buff *skb;
skb = precv_frame->u.hdr.pkt;
if (skb == NULL) {
RTW_INFO("%s :skb==NULL something wrong!!!!\n", __func__);
goto _recv_drop;
}
skb->data = precv_frame->u.hdr.rx_data;
skb_set_tail_pointer(skb, precv_frame->u.hdr.len);
skb->len = precv_frame->u.hdr.len;
skb->ip_summed = CHECKSUM_NONE;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(0x0019); /* ETH_P_80211_RAW */
/* send to kernel */
rtw_netif_rx(padapter->pnetdev, skb);
/* pointers to NULL before rtw_free_recvframe() */
precv_frame->u.hdr.pkt = NULL;
ret = _SUCCESS;
_recv_drop:
return ret;
}
#endif /* CONFIG_WIFI_MONITOR */
inline void rtw_rframe_set_os_pkt(union recv_frame *rframe)
{
struct sk_buff *skb = rframe->u.hdr.pkt;
skb->data = rframe->u.hdr.rx_data;
skb_set_tail_pointer(skb, rframe->u.hdr.len);
skb->len = rframe->u.hdr.len;
}
int rtw_recv_indicatepkt(_adapter *padapter, union recv_frame *precv_frame)
{
if (precv_frame->u.hdr.pkt == NULL)
goto _recv_indicatepkt_drop;
rtw_os_recv_indicate_pkt(padapter, precv_frame->u.hdr.pkt, precv_frame);
precv_frame->u.hdr.pkt = NULL;
rtw_free_recvframe(precv_frame);
return _SUCCESS;
_recv_indicatepkt_drop:
rtw_free_recvframe(precv_frame);
DBG_COUNTER(padapter->rx_logs.os_indicate_err);
return _FAIL;
}
|
2301_81045437/rtl8852be
|
os_dep/linux/recv_linux.c
|
C
|
agpl-3.0
| 17,289
|
/*
* Resizable, Scalable, Concurrent Hash Table
*
* Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
* Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
* Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
*
* Code partially derived from nft_hash
* Rewritten with rehash code from br_multicast plus single list
* pointer as suggested by Josh Triplett
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/atomic.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <linux/err.h>
#include <linux/export.h>
#define HASH_DEFAULT_SIZE 64UL
#define HASH_MIN_SIZE 4U
#define BUCKET_LOCKS_PER_CPU 128UL
static u32 head_hashfn(struct rhashtable *ht,
const struct bucket_table *tbl,
const struct rhash_head *he)
{
return rht_head_hashfn(ht, tbl, he, ht->p);
}
#ifdef CONFIG_PROVE_LOCKING
#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
int lockdep_rht_mutex_is_held(struct rhashtable *ht)
{
return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
}
int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
{
spinlock_t *lock = rht_bucket_lock(tbl, hash);
return (debug_locks) ? lockdep_is_held(lock) : 1;
}
#else
#define ASSERT_RHT_MUTEX(HT)
#endif
static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
gfp_t gfp)
{
unsigned int i, size;
#if defined(CONFIG_PROVE_LOCKING)
unsigned int nr_pcpus = 2;
#else
unsigned int nr_pcpus = num_possible_cpus();
#endif
nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
/* Never allocate more than 0.5 locks per bucket */
size = min_t(unsigned int, size, tbl->size >> 1);
if (sizeof(spinlock_t) != 0) {
#ifdef CONFIG_NUMA
if (size * sizeof(spinlock_t) > PAGE_SIZE &&
gfp == GFP_KERNEL)
tbl->locks = vmalloc(size * sizeof(spinlock_t));
else
#endif
tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
gfp);
if (!tbl->locks)
return -ENOMEM;
for (i = 0; i < size; i++)
spin_lock_init(&tbl->locks[i]);
}
tbl->locks_mask = size - 1;
return 0;
}
static void bucket_table_free(const struct bucket_table *tbl)
{
if (tbl)
kvfree(tbl->locks);
kvfree(tbl);
}
static void bucket_table_free_rcu(struct rcu_head *head)
{
bucket_table_free(container_of(head, struct bucket_table, rcu));
}
static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
size_t nbuckets,
gfp_t gfp)
{
struct bucket_table *tbl = NULL;
size_t size;
int i;
size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
gfp != GFP_KERNEL)
tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
if (tbl == NULL && gfp == GFP_KERNEL)
tbl = vzalloc(size);
if (tbl == NULL)
return NULL;
tbl->size = nbuckets;
if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
bucket_table_free(tbl);
return NULL;
}
INIT_LIST_HEAD(&tbl->walkers);
get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
for (i = 0; i < nbuckets; i++)
INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
return tbl;
}
static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
struct bucket_table *tbl)
{
struct bucket_table *new_tbl;
do {
new_tbl = tbl;
tbl = rht_dereference_rcu(tbl->future_tbl, ht);
} while (tbl);
return new_tbl;
}
static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
{
struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
struct bucket_table *new_tbl = rhashtable_last_table(ht,
rht_dereference_rcu(old_tbl->future_tbl, ht));
struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
int err = -ENOENT;
struct rhash_head *head, *next, *entry;
spinlock_t *new_bucket_lock;
unsigned int new_hash;
rht_for_each(entry, old_tbl, old_hash) {
err = 0;
next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
if (rht_is_a_nulls(next))
break;
pprev = &entry->next;
}
if (err)
goto out;
new_hash = head_hashfn(ht, new_tbl, entry);
new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
head = rht_dereference_bucket(new_tbl->buckets[new_hash],
new_tbl, new_hash);
RCU_INIT_POINTER(entry->next, head);
rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
spin_unlock(new_bucket_lock);
rcu_assign_pointer(*pprev, next);
out:
return err;
}
static void rhashtable_rehash_chain(struct rhashtable *ht,
unsigned int old_hash)
{
struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
spinlock_t *old_bucket_lock;
old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
spin_lock_bh(old_bucket_lock);
while (!rhashtable_rehash_one(ht, old_hash))
;
old_tbl->rehash++;
spin_unlock_bh(old_bucket_lock);
}
static int rhashtable_rehash_attach(struct rhashtable *ht,
struct bucket_table *old_tbl,
struct bucket_table *new_tbl)
{
/* Protect future_tbl using the first bucket lock. */
spin_lock_bh(old_tbl->locks);
/* Did somebody beat us to it? */
if (rcu_access_pointer(old_tbl->future_tbl)) {
spin_unlock_bh(old_tbl->locks);
return -EEXIST;
}
/* Make insertions go into the new, empty table right away. Deletions
* and lookups will be attempted in both tables until we synchronize.
*/
rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
/* Ensure the new table is visible to readers. */
smp_wmb();
spin_unlock_bh(old_tbl->locks);
return 0;
}
static int rhashtable_rehash_table(struct rhashtable *ht)
{
struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
struct bucket_table *new_tbl;
struct rhashtable_walker *walker;
unsigned int old_hash;
new_tbl = rht_dereference(old_tbl->future_tbl, ht);
if (!new_tbl)
return 0;
for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
rhashtable_rehash_chain(ht, old_hash);
/* Publish the new table pointer. */
rcu_assign_pointer(ht->tbl, new_tbl);
spin_lock(&ht->lock);
list_for_each_entry(walker, &old_tbl->walkers, list)
walker->tbl = NULL;
spin_unlock(&ht->lock);
/* Wait for readers. All new readers will see the new
* table, and thus no references to the old table will
* remain.
*/
call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
}
/**
* rhashtable_expand - Expand hash table while allowing concurrent lookups
* @ht: the hash table to expand
*
* A secondary bucket array is allocated and the hash entries are migrated.
*
* This function may only be called in a context where it is safe to call
* synchronize_rcu(), e.g. not within a rcu_read_lock() section.
*
* The caller must ensure that no concurrent resizing occurs by holding
* ht->mutex.
*
* It is valid to have concurrent insertions and deletions protected by per
* bucket locks or concurrent RCU protected lookups and traversals.
*/
static int rhashtable_expand(struct rhashtable *ht)
{
struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
int err;
ASSERT_RHT_MUTEX(ht);
old_tbl = rhashtable_last_table(ht, old_tbl);
new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
if (new_tbl == NULL)
return -ENOMEM;
err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
if (err)
bucket_table_free(new_tbl);
return err;
}
/**
* rhashtable_shrink - Shrink hash table while allowing concurrent lookups
* @ht: the hash table to shrink
*
* This function shrinks the hash table to fit, i.e., the smallest
* size would not cause it to expand right away automatically.
*
* The caller must ensure that no concurrent resizing occurs by holding
* ht->mutex.
*
* The caller must ensure that no concurrent table mutations take place.
* It is however valid to have concurrent lookups if they are RCU protected.
*
* It is valid to have concurrent insertions and deletions protected by per
* bucket locks or concurrent RCU protected lookups and traversals.
*/
static int rhashtable_shrink(struct rhashtable *ht)
{
struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
unsigned int size;
int err;
ASSERT_RHT_MUTEX(ht);
size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
if (size < ht->p.min_size)
size = ht->p.min_size;
if (old_tbl->size <= size)
return 0;
if (rht_dereference(old_tbl->future_tbl, ht))
return -EEXIST;
new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
if (new_tbl == NULL)
return -ENOMEM;
err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
if (err)
bucket_table_free(new_tbl);
return err;
}
static void rht_deferred_worker(struct work_struct *work)
{
struct rhashtable *ht;
struct bucket_table *tbl;
int err = 0;
ht = container_of(work, struct rhashtable, run_work);
mutex_lock(&ht->mutex);
tbl = rht_dereference(ht->tbl, ht);
tbl = rhashtable_last_table(ht, tbl);
if (rht_grow_above_75(ht, tbl))
rhashtable_expand(ht);
else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
rhashtable_shrink(ht);
err = rhashtable_rehash_table(ht);
mutex_unlock(&ht->mutex);
if (err)
schedule_work(&ht->run_work);
}
static bool rhashtable_check_elasticity(struct rhashtable *ht,
struct bucket_table *tbl,
unsigned int hash)
{
unsigned int elasticity = ht->elasticity;
struct rhash_head *head;
rht_for_each(head, tbl, hash)
if (!--elasticity)
return true;
return false;
}
int rhashtable_insert_rehash(struct rhashtable *ht,
struct bucket_table *tbl)
{
struct bucket_table *old_tbl;
struct bucket_table *new_tbl;
unsigned int size;
int err;
old_tbl = rht_dereference_rcu(ht->tbl, ht);
size = tbl->size;
err = -EBUSY;
if (rht_grow_above_75(ht, tbl))
size *= 2;
/* Do not schedule more than one rehash */
else if (old_tbl != tbl)
goto fail;
err = -ENOMEM;
new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
if (new_tbl == NULL)
goto fail;
err = rhashtable_rehash_attach(ht, tbl, new_tbl);
if (err) {
bucket_table_free(new_tbl);
if (err == -EEXIST)
err = 0;
} else
schedule_work(&ht->run_work);
return err;
fail:
/* Do not fail the insert if someone else did a rehash. */
if (likely(rcu_dereference_raw(tbl->future_tbl)))
return 0;
/* Schedule async rehash to retry allocation in process context. */
if (err == -ENOMEM)
schedule_work(&ht->run_work);
return err;
}
struct bucket_table *rhashtable_insert_slow(struct rhashtable *ht,
const void *key,
struct rhash_head *obj,
struct bucket_table *tbl)
{
struct rhash_head *head;
unsigned int hash;
int err;
tbl = rhashtable_last_table(ht, tbl);
hash = head_hashfn(ht, tbl, obj);
spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
err = -EEXIST;
if (key && rhashtable_lookup_fast(ht, key, ht->p))
goto exit;
err = -E2BIG;
if (unlikely(rht_grow_above_max(ht, tbl)))
goto exit;
err = -EAGAIN;
if (rhashtable_check_elasticity(ht, tbl, hash) ||
rht_grow_above_100(ht, tbl))
goto exit;
err = 0;
head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
RCU_INIT_POINTER(obj->next, head);
rcu_assign_pointer(tbl->buckets[hash], obj);
atomic_inc(&ht->nelems);
exit:
spin_unlock(rht_bucket_lock(tbl, hash));
if (err == 0)
return NULL;
else if (err == -EAGAIN)
return tbl;
else
return ERR_PTR(err);
}
/**
* rhashtable_walk_init - Initialise an iterator
* @ht: Table to walk over
* @iter: Hash table Iterator
*
* This function prepares a hash table walk.
*
* Note that if you restart a walk after rhashtable_walk_stop you
* may see the same object twice. Also, you may miss objects if
* there are removals in between rhashtable_walk_stop and the next
* call to rhashtable_walk_start.
*
* For a completely stable walk you should construct your own data
* structure outside the hash table.
*
* This function may sleep so you must not call it from interrupt
* context or with spin locks held.
*
* You must call rhashtable_walk_exit if this function returns
* successfully.
*/
int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
{
iter->ht = ht;
iter->p = NULL;
iter->slot = 0;
iter->skip = 0;
iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
if (!iter->walker)
return -ENOMEM;
spin_lock(&ht->lock);
iter->walker->tbl =
rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
list_add(&iter->walker->list, &iter->walker->tbl->walkers);
spin_unlock(&ht->lock);
return 0;
}
/**
* rhashtable_walk_exit - Free an iterator
* @iter: Hash table Iterator
*
* This function frees resources allocated by rhashtable_walk_init.
*/
void rhashtable_walk_exit(struct rhashtable_iter *iter)
{
spin_lock(&iter->ht->lock);
if (iter->walker->tbl)
list_del(&iter->walker->list);
spin_unlock(&iter->ht->lock);
kfree(iter->walker);
}
/**
* rhashtable_walk_start - Start a hash table walk
* @iter: Hash table iterator
*
* Start a hash table walk. Note that we take the RCU lock in all
* cases including when we return an error. So you must always call
* rhashtable_walk_stop to clean up.
*
* Returns zero if successful.
*
* Returns -EAGAIN if resize event occured. Note that the iterator
* will rewind back to the beginning and you may use it immediately
* by calling rhashtable_walk_next.
*/
int rhashtable_walk_start(struct rhashtable_iter *iter)
__acquires(RCU)
{
struct rhashtable *ht = iter->ht;
rcu_read_lock();
spin_lock(&ht->lock);
if (iter->walker->tbl)
list_del(&iter->walker->list);
spin_unlock(&ht->lock);
if (!iter->walker->tbl) {
iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
return -EAGAIN;
}
return 0;
}
/**
* rhashtable_walk_next - Return the next object and advance the iterator
* @iter: Hash table iterator
*
* Note that you must call rhashtable_walk_stop when you are finished
* with the walk.
*
* Returns the next object or NULL when the end of the table is reached.
*
* Returns -EAGAIN if resize event occured. Note that the iterator
* will rewind back to the beginning and you may continue to use it.
*/
void *rhashtable_walk_next(struct rhashtable_iter *iter)
{
struct bucket_table *tbl = iter->walker->tbl;
struct rhashtable *ht = iter->ht;
struct rhash_head *p = iter->p;
if (p) {
p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
goto next;
}
for (; iter->slot < tbl->size; iter->slot++) {
int skip = iter->skip;
rht_for_each_rcu(p, tbl, iter->slot) {
if (!skip)
break;
skip--;
}
next:
if (!rht_is_a_nulls(p)) {
iter->skip++;
iter->p = p;
return rht_obj(ht, p);
}
iter->skip = 0;
}
iter->p = NULL;
/* Ensure we see any new tables. */
smp_rmb();
iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
if (iter->walker->tbl) {
iter->slot = 0;
iter->skip = 0;
return ERR_PTR(-EAGAIN);
}
return NULL;
}
/**
* rhashtable_walk_stop - Finish a hash table walk
* @iter: Hash table iterator
*
* Finish a hash table walk.
*/
void rhashtable_walk_stop(struct rhashtable_iter *iter)
__releases(RCU)
{
struct rhashtable *ht;
struct bucket_table *tbl = iter->walker->tbl;
if (!tbl)
goto out;
ht = iter->ht;
spin_lock(&ht->lock);
if (tbl->rehash < tbl->size)
list_add(&iter->walker->list, &tbl->walkers);
else
iter->walker->tbl = NULL;
spin_unlock(&ht->lock);
iter->p = NULL;
out:
rcu_read_unlock();
}
static size_t rounded_hashtable_size(const struct rhashtable_params *params)
{
return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
(unsigned long)params->min_size);
}
static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
{
return jhash2(key, length, seed);
}
/**
* rhashtable_init - initialize a new hash table
* @ht: hash table to be initialized
* @params: configuration parameters
*
* Initializes a new hash table based on the provided configuration
* parameters. A table can be configured either with a variable or
* fixed length key:
*
* Configuration Example 1: Fixed length keys
* struct test_obj {
* int key;
* void * my_member;
* struct rhash_head node;
* };
*
* struct rhashtable_params params = {
* .head_offset = offsetof(struct test_obj, node),
* .key_offset = offsetof(struct test_obj, key),
* .key_len = sizeof(int),
* .hashfn = jhash,
* .nulls_base = (1U << RHT_BASE_SHIFT),
* };
*
* Configuration Example 2: Variable length keys
* struct test_obj {
* [...]
* struct rhash_head node;
* };
*
* u32 my_hash_fn(const void *data, u32 len, u32 seed)
* {
* struct test_obj *obj = data;
*
* return [... hash ...];
* }
*
* struct rhashtable_params params = {
* .head_offset = offsetof(struct test_obj, node),
* .hashfn = jhash,
* .obj_hashfn = my_hash_fn,
* };
*/
int rhashtable_init(struct rhashtable *ht,
const struct rhashtable_params *params)
{
struct bucket_table *tbl;
size_t size;
size = HASH_DEFAULT_SIZE;
if ((!params->key_len && !params->obj_hashfn) ||
(params->obj_hashfn && !params->obj_cmpfn))
return -EINVAL;
if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
return -EINVAL;
_rtw_memset(ht, 0, sizeof(*ht));
mutex_init(&ht->mutex);
spin_lock_init(&ht->lock);
_rtw_memcpy(&ht->p, params, sizeof(*params));
if (params->min_size)
ht->p.min_size = roundup_pow_of_two(params->min_size);
if (params->max_size)
ht->p.max_size = rounddown_pow_of_two(params->max_size);
if (params->insecure_max_entries)
ht->p.insecure_max_entries =
rounddown_pow_of_two(params->insecure_max_entries);
else
ht->p.insecure_max_entries = ht->p.max_size * 2;
ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
if (params->nelem_hint)
size = rounded_hashtable_size(&ht->p);
/* The maximum (not average) chain length grows with the
* size of the hash table, at a rate of (log N)/(log log N).
* The value of 16 is selected so that even if the hash
* table grew to 2^32 you would not expect the maximum
* chain length to exceed it unless we are under attack
* (or extremely unlucky).
*
* As this limit is only to detect attacks, we don't need
* to set it to a lower value as you'd need the chain
* length to vastly exceed 16 to have any real effect
* on the system.
*/
if (!params->insecure_elasticity)
ht->elasticity = 16;
if (params->locks_mul)
ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
else
ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
ht->key_len = ht->p.key_len;
if (!params->hashfn) {
ht->p.hashfn = jhash;
if (!(ht->key_len & (sizeof(u32) - 1))) {
ht->key_len /= sizeof(u32);
ht->p.hashfn = rhashtable_jhash2;
}
}
tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
if (tbl == NULL)
return -ENOMEM;
atomic_set(&ht->nelems, 0);
RCU_INIT_POINTER(ht->tbl, tbl);
INIT_WORK(&ht->run_work, rht_deferred_worker);
return 0;
}
/**
* rhashtable_free_and_destroy - free elements and destroy hash table
* @ht: the hash table to destroy
* @free_fn: callback to release resources of element
* @arg: pointer passed to free_fn
*
* Stops an eventual async resize. If defined, invokes free_fn for each
* element to releasal resources. Please note that RCU protected
* readers may still be accessing the elements. Releasing of resources
* must occur in a compatible manner. Then frees the bucket array.
*
* This function will eventually sleep to wait for an async resize
* to complete. The caller is responsible that no further write operations
* occurs in parallel.
*/
void rhashtable_free_and_destroy(struct rhashtable *ht,
void (*free_fn)(void *ptr, void *arg),
void *arg)
{
const struct bucket_table *tbl;
unsigned int i;
cancel_work_sync(&ht->run_work);
mutex_lock(&ht->mutex);
tbl = rht_dereference(ht->tbl, ht);
if (free_fn) {
for (i = 0; i < tbl->size; i++) {
struct rhash_head *pos, *next;
for (pos = rht_dereference(tbl->buckets[i], ht),
next = !rht_is_a_nulls(pos) ?
rht_dereference(pos->next, ht) : NULL;
!rht_is_a_nulls(pos);
pos = next,
next = !rht_is_a_nulls(pos) ?
rht_dereference(pos->next, ht) : NULL)
free_fn(rht_obj(ht, pos), arg);
}
}
bucket_table_free(tbl);
mutex_unlock(&ht->mutex);
}
void rhashtable_destroy(struct rhashtable *ht)
{
return rhashtable_free_and_destroy(ht, NULL, NULL);
}
|
2301_81045437/rtl8852be
|
os_dep/linux/rhashtable.c
|
C
|
agpl-3.0
| 20,628
|
/*
* Resizable, Scalable, Concurrent Hash Table
*
* Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
* Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
* Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
*
* Code partially derived from nft_hash
* Rewritten with rehash code from br_multicast plus single list
* pointer as suggested by Josh Triplett
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _LINUX_RHASHTABLE_H
#define _LINUX_RHASHTABLE_H
#include <linux/atomic.h>
#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/jhash.h>
#include <linux/list_nulls.h>
#include <linux/workqueue.h>
#include <linux/mutex.h>
#include <linux/rcupdate.h>
/*
* The end of the chain is marked with a special nulls marks which has
* the following format:
*
* +-------+-----------------------------------------------------+-+
* | Base | Hash |1|
* +-------+-----------------------------------------------------+-+
*
* Base (4 bits) : Reserved to distinguish between multiple tables.
* Specified via &struct rhashtable_params.nulls_base.
* Hash (27 bits): Full hash (unmasked) of first element added to bucket
* 1 (1 bit) : Nulls marker (always set)
*
* The remaining bits of the next pointer remain unused for now.
*/
#define RHT_BASE_BITS 4
#define RHT_HASH_BITS 27
#define RHT_BASE_SHIFT RHT_HASH_BITS
/* Base bits plus 1 bit for nulls marker */
#define RHT_HASH_RESERVED_SPACE (RHT_BASE_BITS + 1)
struct rhash_head {
struct rhash_head __rcu *next;
};
/**
* struct bucket_table - Table of hash buckets
* @size: Number of hash buckets
* @rehash: Current bucket being rehashed
* @hash_rnd: Random seed to fold into hash
* @locks_mask: Mask to apply before accessing locks[]
* @locks: Array of spinlocks protecting individual buckets
* @walkers: List of active walkers
* @rcu: RCU structure for freeing the table
* @future_tbl: Table under construction during rehashing
* @buckets: size * hash buckets
*/
struct bucket_table {
unsigned int size;
unsigned int rehash;
u32 hash_rnd;
unsigned int locks_mask;
spinlock_t *locks;
struct list_head walkers;
struct rcu_head rcu;
struct bucket_table __rcu *future_tbl;
struct rhash_head __rcu *buckets[] ____cacheline_aligned_in_smp;
};
/**
* struct rhashtable_compare_arg - Key for the function rhashtable_compare
* @ht: Hash table
* @key: Key to compare against
*/
struct rhashtable_compare_arg {
struct rhashtable *ht;
const void *key;
};
typedef u32 (*rht_hashfn_t)(const void *data, u32 len, u32 seed);
typedef u32 (*rht_obj_hashfn_t)(const void *data, u32 len, u32 seed);
typedef int (*rht_obj_cmpfn_t)(struct rhashtable_compare_arg *arg,
const void *obj);
struct rhashtable;
/**
* struct rhashtable_params - Hash table construction parameters
* @nelem_hint: Hint on number of elements, should be 75% of desired size
* @key_len: Length of key
* @key_offset: Offset of key in struct to be hashed
* @head_offset: Offset of rhash_head in struct to be hashed
* @insecure_max_entries: Maximum number of entries (may be exceeded)
* @max_size: Maximum size while expanding
* @min_size: Minimum size while shrinking
* @nulls_base: Base value to generate nulls marker
* @insecure_elasticity: Set to true to disable chain length checks
* @automatic_shrinking: Enable automatic shrinking of tables
* @locks_mul: Number of bucket locks to allocate per cpu (default: 128)
* @hashfn: Hash function (default: jhash2 if !(key_len % 4), or jhash)
* @obj_hashfn: Function to hash object
* @obj_cmpfn: Function to compare key with object
*/
struct rhashtable_params {
size_t nelem_hint;
size_t key_len;
size_t key_offset;
size_t head_offset;
unsigned int insecure_max_entries;
unsigned int max_size;
unsigned int min_size;
u32 nulls_base;
bool insecure_elasticity;
bool automatic_shrinking;
size_t locks_mul;
rht_hashfn_t hashfn;
rht_obj_hashfn_t obj_hashfn;
rht_obj_cmpfn_t obj_cmpfn;
};
/**
* struct rhashtable - Hash table handle
* @tbl: Bucket table
* @nelems: Number of elements in table
* @key_len: Key length for hashfn
* @elasticity: Maximum chain length before rehash
* @p: Configuration parameters
* @run_work: Deferred worker to expand/shrink asynchronously
* @mutex: Mutex to protect current/future table swapping
* @lock: Spin lock to protect walker list
*/
struct rhashtable {
struct bucket_table __rcu *tbl;
atomic_t nelems;
unsigned int key_len;
unsigned int elasticity;
struct rhashtable_params p;
struct work_struct run_work;
struct mutex mutex;
spinlock_t lock;
};
/**
* struct rhashtable_walker - Hash table walker
* @list: List entry on list of walkers
* @tbl: The table that we were walking over
*/
struct rhashtable_walker {
struct list_head list;
struct bucket_table *tbl;
};
/**
* struct rhashtable_iter - Hash table iterator, fits into netlink cb
* @ht: Table to iterate through
* @p: Current pointer
* @walker: Associated rhashtable walker
* @slot: Current slot
* @skip: Number of entries to skip in slot
*/
struct rhashtable_iter {
struct rhashtable *ht;
struct rhash_head *p;
struct rhashtable_walker *walker;
unsigned int slot;
unsigned int skip;
};
static inline unsigned long rht_marker(const struct rhashtable *ht, u32 hash)
{
return NULLS_MARKER(ht->p.nulls_base + hash);
}
#define INIT_RHT_NULLS_HEAD(ptr, ht, hash) \
((ptr) = (typeof(ptr)) rht_marker(ht, hash))
static inline bool rht_is_a_nulls(const struct rhash_head *ptr)
{
return ((unsigned long) ptr & 1);
}
static inline unsigned long rht_get_nulls_value(const struct rhash_head *ptr)
{
return ((unsigned long) ptr) >> 1;
}
static inline void *rht_obj(const struct rhashtable *ht,
const struct rhash_head *he)
{
return (char *)he - ht->p.head_offset;
}
static inline unsigned int rht_bucket_index(const struct bucket_table *tbl,
unsigned int hash)
{
return (hash >> RHT_HASH_RESERVED_SPACE) & (tbl->size - 1);
}
static inline unsigned int rht_key_hashfn(
struct rhashtable *ht, const struct bucket_table *tbl,
const void *key, const struct rhashtable_params params)
{
unsigned int hash;
/* params must be equal to ht->p if it isn't constant. */
if (!__builtin_constant_p(params.key_len))
hash = ht->p.hashfn(key, ht->key_len, tbl->hash_rnd);
else if (params.key_len) {
unsigned int key_len = params.key_len;
if (params.hashfn)
hash = params.hashfn(key, key_len, tbl->hash_rnd);
else if (key_len & (sizeof(u32) - 1))
hash = jhash(key, key_len, tbl->hash_rnd);
else
hash = jhash2(key, key_len / sizeof(u32),
tbl->hash_rnd);
} else {
unsigned int key_len = ht->p.key_len;
if (params.hashfn)
hash = params.hashfn(key, key_len, tbl->hash_rnd);
else
hash = jhash(key, key_len, tbl->hash_rnd);
}
return rht_bucket_index(tbl, hash);
}
static inline unsigned int rht_head_hashfn(
struct rhashtable *ht, const struct bucket_table *tbl,
const struct rhash_head *he, const struct rhashtable_params params)
{
const char *ptr = rht_obj(ht, he);
return likely(params.obj_hashfn) ?
rht_bucket_index(tbl, params.obj_hashfn(ptr, params.key_len ?:
ht->p.key_len,
tbl->hash_rnd)) :
rht_key_hashfn(ht, tbl, ptr + params.key_offset, params);
}
/**
* rht_grow_above_75 - returns true if nelems > 0.75 * table-size
* @ht: hash table
* @tbl: current table
*/
static inline bool rht_grow_above_75(const struct rhashtable *ht,
const struct bucket_table *tbl)
{
/* Expand table when exceeding 75% load */
return atomic_read(&ht->nelems) > (tbl->size / 4 * 3) &&
(!ht->p.max_size || tbl->size < ht->p.max_size);
}
/**
* rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
* @ht: hash table
* @tbl: current table
*/
static inline bool rht_shrink_below_30(const struct rhashtable *ht,
const struct bucket_table *tbl)
{
/* Shrink table beneath 30% load */
return atomic_read(&ht->nelems) < (tbl->size * 3 / 10) &&
tbl->size > ht->p.min_size;
}
/**
* rht_grow_above_100 - returns true if nelems > table-size
* @ht: hash table
* @tbl: current table
*/
static inline bool rht_grow_above_100(const struct rhashtable *ht,
const struct bucket_table *tbl)
{
return atomic_read(&ht->nelems) > tbl->size &&
(!ht->p.max_size || tbl->size < ht->p.max_size);
}
/**
* rht_grow_above_max - returns true if table is above maximum
* @ht: hash table
* @tbl: current table
*/
static inline bool rht_grow_above_max(const struct rhashtable *ht,
const struct bucket_table *tbl)
{
return ht->p.insecure_max_entries &&
atomic_read(&ht->nelems) >= ht->p.insecure_max_entries;
}
/* The bucket lock is selected based on the hash and protects mutations
* on a group of hash buckets.
*
* A maximum of tbl->size/2 bucket locks is allocated. This ensures that
* a single lock always covers both buckets which may both contains
* entries which link to the same bucket of the old table during resizing.
* This allows to simplify the locking as locking the bucket in both
* tables during resize always guarantee protection.
*
* IMPORTANT: When holding the bucket lock of both the old and new table
* during expansions and shrinking, the old bucket lock must always be
* acquired first.
*/
static inline spinlock_t *rht_bucket_lock(const struct bucket_table *tbl,
unsigned int hash)
{
return &tbl->locks[hash & tbl->locks_mask];
}
#ifdef CONFIG_PROVE_LOCKING
int lockdep_rht_mutex_is_held(struct rhashtable *ht);
int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash);
#else
static inline int lockdep_rht_mutex_is_held(struct rhashtable *ht)
{
return 1;
}
static inline int lockdep_rht_bucket_is_held(const struct bucket_table *tbl,
u32 hash)
{
return 1;
}
#endif /* CONFIG_PROVE_LOCKING */
int rhashtable_init(struct rhashtable *ht,
const struct rhashtable_params *params);
struct bucket_table *rhashtable_insert_slow(struct rhashtable *ht,
const void *key,
struct rhash_head *obj,
struct bucket_table *old_tbl);
int rhashtable_insert_rehash(struct rhashtable *ht, struct bucket_table *tbl);
int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter);
void rhashtable_walk_exit(struct rhashtable_iter *iter);
int rhashtable_walk_start(struct rhashtable_iter *iter) __acquires(RCU);
void *rhashtable_walk_next(struct rhashtable_iter *iter);
void rhashtable_walk_stop(struct rhashtable_iter *iter) __releases(RCU);
void rhashtable_free_and_destroy(struct rhashtable *ht,
void (*free_fn)(void *ptr, void *arg),
void *arg);
void rhashtable_destroy(struct rhashtable *ht);
#define rht_dereference(p, ht) \
rcu_dereference_protected(p, lockdep_rht_mutex_is_held(ht))
#define rht_dereference_rcu(p, ht) \
rcu_dereference_check(p, lockdep_rht_mutex_is_held(ht))
#define rht_dereference_bucket(p, tbl, hash) \
rcu_dereference_protected(p, lockdep_rht_bucket_is_held(tbl, hash))
#define rht_dereference_bucket_rcu(p, tbl, hash) \
rcu_dereference_check(p, lockdep_rht_bucket_is_held(tbl, hash))
#define rht_entry(tpos, pos, member) \
({ tpos = container_of(pos, typeof(*tpos), member); 1; })
/**
* rht_for_each_continue - continue iterating over hash chain
* @pos: the &struct rhash_head to use as a loop cursor.
* @head: the previous &struct rhash_head to continue from
* @tbl: the &struct bucket_table
* @hash: the hash value / bucket index
*/
#define rht_for_each_continue(pos, head, tbl, hash) \
for (pos = rht_dereference_bucket(head, tbl, hash); \
!rht_is_a_nulls(pos); \
pos = rht_dereference_bucket((pos)->next, tbl, hash))
/**
* rht_for_each - iterate over hash chain
* @pos: the &struct rhash_head to use as a loop cursor.
* @tbl: the &struct bucket_table
* @hash: the hash value / bucket index
*/
#define rht_for_each(pos, tbl, hash) \
rht_for_each_continue(pos, (tbl)->buckets[hash], tbl, hash)
/**
* rht_for_each_entry_continue - continue iterating over hash chain
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct rhash_head to use as a loop cursor.
* @head: the previous &struct rhash_head to continue from
* @tbl: the &struct bucket_table
* @hash: the hash value / bucket index
* @member: name of the &struct rhash_head within the hashable struct.
*/
#define rht_for_each_entry_continue(tpos, pos, head, tbl, hash, member) \
for (pos = rht_dereference_bucket(head, tbl, hash); \
(!rht_is_a_nulls(pos)) && rht_entry(tpos, pos, member); \
pos = rht_dereference_bucket((pos)->next, tbl, hash))
/**
* rht_for_each_entry - iterate over hash chain of given type
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct rhash_head to use as a loop cursor.
* @tbl: the &struct bucket_table
* @hash: the hash value / bucket index
* @member: name of the &struct rhash_head within the hashable struct.
*/
#define rht_for_each_entry(tpos, pos, tbl, hash, member) \
rht_for_each_entry_continue(tpos, pos, (tbl)->buckets[hash], \
tbl, hash, member)
/**
* rht_for_each_entry_safe - safely iterate over hash chain of given type
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct rhash_head to use as a loop cursor.
* @next: the &struct rhash_head to use as next in loop cursor.
* @tbl: the &struct bucket_table
* @hash: the hash value / bucket index
* @member: name of the &struct rhash_head within the hashable struct.
*
* This hash chain list-traversal primitive allows for the looped code to
* remove the loop cursor from the list.
*/
#define rht_for_each_entry_safe(tpos, pos, next, tbl, hash, member) \
for (pos = rht_dereference_bucket((tbl)->buckets[hash], tbl, hash), \
next = !rht_is_a_nulls(pos) ? \
rht_dereference_bucket(pos->next, tbl, hash) : NULL; \
(!rht_is_a_nulls(pos)) && rht_entry(tpos, pos, member); \
pos = next, \
next = !rht_is_a_nulls(pos) ? \
rht_dereference_bucket(pos->next, tbl, hash) : NULL)
/**
* rht_for_each_rcu_continue - continue iterating over rcu hash chain
* @pos: the &struct rhash_head to use as a loop cursor.
* @head: the previous &struct rhash_head to continue from
* @tbl: the &struct bucket_table
* @hash: the hash value / bucket index
*
* This hash chain list-traversal primitive may safely run concurrently with
* the _rcu mutation primitives such as rhashtable_insert() as long as the
* traversal is guarded by rcu_read_lock().
*/
#define rht_for_each_rcu_continue(pos, head, tbl, hash) \
for (({barrier(); }), \
pos = rht_dereference_bucket_rcu(head, tbl, hash); \
!rht_is_a_nulls(pos); \
pos = rcu_dereference_raw(pos->next))
/**
* rht_for_each_rcu - iterate over rcu hash chain
* @pos: the &struct rhash_head to use as a loop cursor.
* @tbl: the &struct bucket_table
* @hash: the hash value / bucket index
*
* This hash chain list-traversal primitive may safely run concurrently with
* the _rcu mutation primitives such as rhashtable_insert() as long as the
* traversal is guarded by rcu_read_lock().
*/
#define rht_for_each_rcu(pos, tbl, hash) \
rht_for_each_rcu_continue(pos, (tbl)->buckets[hash], tbl, hash)
/**
* rht_for_each_entry_rcu_continue - continue iterating over rcu hash chain
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct rhash_head to use as a loop cursor.
* @head: the previous &struct rhash_head to continue from
* @tbl: the &struct bucket_table
* @hash: the hash value / bucket index
* @member: name of the &struct rhash_head within the hashable struct.
*
* This hash chain list-traversal primitive may safely run concurrently with
* the _rcu mutation primitives such as rhashtable_insert() as long as the
* traversal is guarded by rcu_read_lock().
*/
#define rht_for_each_entry_rcu_continue(tpos, pos, head, tbl, hash, member) \
for (({barrier(); }), \
pos = rht_dereference_bucket_rcu(head, tbl, hash); \
(!rht_is_a_nulls(pos)) && rht_entry(tpos, pos, member); \
pos = rht_dereference_bucket_rcu(pos->next, tbl, hash))
/**
* rht_for_each_entry_rcu - iterate over rcu hash chain of given type
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct rhash_head to use as a loop cursor.
* @tbl: the &struct bucket_table
* @hash: the hash value / bucket index
* @member: name of the &struct rhash_head within the hashable struct.
*
* This hash chain list-traversal primitive may safely run concurrently with
* the _rcu mutation primitives such as rhashtable_insert() as long as the
* traversal is guarded by rcu_read_lock().
*/
#define rht_for_each_entry_rcu(tpos, pos, tbl, hash, member) \
rht_for_each_entry_rcu_continue(tpos, pos, (tbl)->buckets[hash],\
tbl, hash, member)
static inline int rhashtable_compare(struct rhashtable_compare_arg *arg,
const void *obj)
{
struct rhashtable *ht = arg->ht;
const char *ptr = obj;
return (_rtw_memcmp(ptr + ht->p.key_offset, arg->key, ht->p.key_len) == _TRUE)? 0: 1;
}
/**
* rhashtable_lookup_fast - search hash table, inlined version
* @ht: hash table
* @key: the pointer to the key
* @params: hash table parameters
*
* Computes the hash value for the key and traverses the bucket chain looking
* for a entry with an identical key. The first matching entry is returned.
*
* Returns the first entry on which the compare function returned true.
*/
static inline void *rhashtable_lookup_fast(
struct rhashtable *ht, const void *key,
const struct rhashtable_params params)
{
struct rhashtable_compare_arg arg = {
.ht = ht,
.key = key,
};
const struct bucket_table *tbl;
struct rhash_head *he;
unsigned int hash;
rcu_read_lock();
tbl = rht_dereference_rcu(ht->tbl, ht);
restart:
hash = rht_key_hashfn(ht, tbl, key, params);
rht_for_each_rcu(he, tbl, hash) {
if (params.obj_cmpfn ?
params.obj_cmpfn(&arg, rht_obj(ht, he)) :
rhashtable_compare(&arg, rht_obj(ht, he)))
continue;
rcu_read_unlock();
return rht_obj(ht, he);
}
/* Ensure we see any new tables. */
smp_rmb();
tbl = rht_dereference_rcu(tbl->future_tbl, ht);
if (unlikely(tbl))
goto restart;
rcu_read_unlock();
return NULL;
}
/* Internal function, please use rhashtable_insert_fast() instead */
static inline int __rhashtable_insert_fast(
struct rhashtable *ht, const void *key, struct rhash_head *obj,
const struct rhashtable_params params)
{
struct rhashtable_compare_arg arg = {
.ht = ht,
.key = key,
};
struct bucket_table *tbl, *new_tbl;
struct rhash_head *head;
spinlock_t *lock;
unsigned int elasticity;
unsigned int hash;
int err;
restart:
rcu_read_lock();
tbl = rht_dereference_rcu(ht->tbl, ht);
/* All insertions must grab the oldest table containing
* the hashed bucket that is yet to be rehashed.
*/
for (;;) {
hash = rht_head_hashfn(ht, tbl, obj, params);
lock = rht_bucket_lock(tbl, hash);
spin_lock_bh(lock);
if (tbl->rehash <= hash)
break;
spin_unlock_bh(lock);
tbl = rht_dereference_rcu(tbl->future_tbl, ht);
}
new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
if (unlikely(new_tbl)) {
tbl = rhashtable_insert_slow(ht, key, obj, new_tbl);
if (!IS_ERR_OR_NULL(tbl))
goto slow_path;
err = PTR_ERR(tbl);
goto out;
}
err = -E2BIG;
if (unlikely(rht_grow_above_max(ht, tbl)))
goto out;
if (unlikely(rht_grow_above_100(ht, tbl))) {
slow_path:
spin_unlock_bh(lock);
err = rhashtable_insert_rehash(ht, tbl);
rcu_read_unlock();
if (err)
return err;
goto restart;
}
err = -EEXIST;
elasticity = ht->elasticity;
rht_for_each(head, tbl, hash) {
if (key &&
unlikely(!(params.obj_cmpfn ?
params.obj_cmpfn(&arg, rht_obj(ht, head)) :
rhashtable_compare(&arg, rht_obj(ht, head)))))
goto out;
if (!--elasticity)
goto slow_path;
}
err = 0;
head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
RCU_INIT_POINTER(obj->next, head);
rcu_assign_pointer(tbl->buckets[hash], obj);
atomic_inc(&ht->nelems);
if (rht_grow_above_75(ht, tbl))
schedule_work(&ht->run_work);
out:
spin_unlock_bh(lock);
rcu_read_unlock();
return err;
}
/**
* rhashtable_insert_fast - insert object into hash table
* @ht: hash table
* @obj: pointer to hash head inside object
* @params: hash table parameters
*
* Will take a per bucket spinlock to protect against mutual mutations
* on the same bucket. Multiple insertions may occur in parallel unless
* they map to the same bucket lock.
*
* It is safe to call this function from atomic context.
*
* Will trigger an automatic deferred table resizing if the size grows
* beyond the watermark indicated by grow_decision() which can be passed
* to rhashtable_init().
*/
static inline int rhashtable_insert_fast(
struct rhashtable *ht, struct rhash_head *obj,
const struct rhashtable_params params)
{
return __rhashtable_insert_fast(ht, NULL, obj, params);
}
/**
* rhashtable_lookup_insert_fast - lookup and insert object into hash table
* @ht: hash table
* @obj: pointer to hash head inside object
* @params: hash table parameters
*
* Locks down the bucket chain in both the old and new table if a resize
* is in progress to ensure that writers can't remove from the old table
* and can't insert to the new table during the atomic operation of search
* and insertion. Searches for duplicates in both the old and new table if
* a resize is in progress.
*
* This lookup function may only be used for fixed key hash table (key_len
* parameter set). It will BUG() if used inappropriately.
*
* It is safe to call this function from atomic context.
*
* Will trigger an automatic deferred table resizing if the size grows
* beyond the watermark indicated by grow_decision() which can be passed
* to rhashtable_init().
*/
static inline int rhashtable_lookup_insert_fast(
struct rhashtable *ht, struct rhash_head *obj,
const struct rhashtable_params params)
{
const char *key = rht_obj(ht, obj);
BUG_ON(ht->p.obj_hashfn);
return __rhashtable_insert_fast(ht, key + ht->p.key_offset, obj,
params);
}
/**
* rhashtable_lookup_insert_key - search and insert object to hash table
* with explicit key
* @ht: hash table
* @key: key
* @obj: pointer to hash head inside object
* @params: hash table parameters
*
* Locks down the bucket chain in both the old and new table if a resize
* is in progress to ensure that writers can't remove from the old table
* and can't insert to the new table during the atomic operation of search
* and insertion. Searches for duplicates in both the old and new table if
* a resize is in progress.
*
* Lookups may occur in parallel with hashtable mutations and resizing.
*
* Will trigger an automatic deferred table resizing if the size grows
* beyond the watermark indicated by grow_decision() which can be passed
* to rhashtable_init().
*
* Returns zero on success.
*/
static inline int rhashtable_lookup_insert_key(
struct rhashtable *ht, const void *key, struct rhash_head *obj,
const struct rhashtable_params params)
{
BUG_ON(!ht->p.obj_hashfn || !key);
return __rhashtable_insert_fast(ht, key, obj, params);
}
/* Internal function, please use rhashtable_remove_fast() instead */
static inline int __rhashtable_remove_fast(
struct rhashtable *ht, struct bucket_table *tbl,
struct rhash_head *obj, const struct rhashtable_params params)
{
struct rhash_head __rcu **pprev;
struct rhash_head *he;
spinlock_t * lock;
unsigned int hash;
int err = -ENOENT;
hash = rht_head_hashfn(ht, tbl, obj, params);
lock = rht_bucket_lock(tbl, hash);
spin_lock_bh(lock);
pprev = &tbl->buckets[hash];
rht_for_each(he, tbl, hash) {
if (he != obj) {
pprev = &he->next;
continue;
}
rcu_assign_pointer(*pprev, obj->next);
err = 0;
break;
}
spin_unlock_bh(lock);
return err;
}
/**
* rhashtable_remove_fast - remove object from hash table
* @ht: hash table
* @obj: pointer to hash head inside object
* @params: hash table parameters
*
* Since the hash chain is single linked, the removal operation needs to
* walk the bucket chain upon removal. The removal operation is thus
* considerable slow if the hash table is not correctly sized.
*
* Will automatically shrink the table via rhashtable_expand() if the
* shrink_decision function specified at rhashtable_init() returns true.
*
* Returns zero on success, -ENOENT if the entry could not be found.
*/
static inline int rhashtable_remove_fast(
struct rhashtable *ht, struct rhash_head *obj,
const struct rhashtable_params params)
{
struct bucket_table *tbl;
int err;
rcu_read_lock();
tbl = rht_dereference_rcu(ht->tbl, ht);
/* Because we have already taken (and released) the bucket
* lock in old_tbl, if we find that future_tbl is not yet
* visible then that guarantees the entry to still be in
* the old tbl if it exists.
*/
while ((err = __rhashtable_remove_fast(ht, tbl, obj, params)) &&
(tbl = rht_dereference_rcu(tbl->future_tbl, ht)))
;
if (err)
goto out;
atomic_dec(&ht->nelems);
if (unlikely(ht->p.automatic_shrinking &&
rht_shrink_below_30(ht, tbl)))
schedule_work(&ht->run_work);
out:
rcu_read_unlock();
return err;
}
#endif /* _LINUX_RHASHTABLE_H */
|
2301_81045437/rtl8852be
|
os_dep/linux/rhashtable.h
|
C
|
agpl-3.0
| 25,523
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifdef CONFIG_GPIO_WAKEUP
#include <linux/gpio.h>
#endif
#include <drv_types.h>
#if defined(RTW_ENABLE_WIFI_CONTROL_FUNC)
#include <linux/platform_device.h>
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
#include <linux/wlan_plat.h>
#else
#include <linux/wifi_tiwlan.h>
#endif
#endif /* defined(RTW_ENABLE_WIFI_CONTROL_FUNC) */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 0, 0))
#define strnicmp strncasecmp
#endif /* Linux kernel >= 4.0.0 */
#ifdef CONFIG_GPIO_WAKEUP
#include <linux/interrupt.h>
#include <linux/irq.h>
#endif
#include "rtw_version.h"
extern void macstr2num(u8 *dst, u8 *src);
const char *android_wifi_cmd_str[ANDROID_WIFI_CMD_MAX] = {
"START",
"STOP",
"SCAN-ACTIVE",
"SCAN-PASSIVE",
"RSSI",
"LINKSPEED",
"RXFILTER-START",
"RXFILTER-STOP",
"RXFILTER-ADD",
"RXFILTER-REMOVE",
"BTCOEXSCAN-START",
"BTCOEXSCAN-STOP",
"BTCOEXMODE",
"SETSUSPENDMODE",
"SETSUSPENDOPT",
"P2P_DEV_ADDR",
"SETFWPATH",
"SETBAND",
"GETBAND",
"COUNTRY",
"P2P_SET_NOA",
"P2P_GET_NOA",
"P2P_SET_PS",
"SET_AP_WPS_P2P_IE",
"MIRACAST",
#ifdef CONFIG_PNO_SUPPORT
"PNOSSIDCLR",
"PNOSETUP",
"PNOFORCE",
"PNODEBUG",
#endif
"MACADDR",
"BLOCK_SCAN",
"BLOCK",
"WFD-ENABLE",
"WFD-DISABLE",
"WFD-SET-TCPPORT",
"WFD-SET-MAXTPUT",
"WFD-SET-DEVTYPE",
"SET_DTIM",
"HOSTAPD_SET_MACADDR_ACL",
"HOSTAPD_ACL_ADD_STA",
"HOSTAPD_ACL_REMOVE_STA",
#if defined(CONFIG_GTK_OL) && (LINUX_VERSION_CODE < KERNEL_VERSION(3, 1, 0))
"GTK_REKEY_OFFLOAD",
#endif /* CONFIG_GTK_OL */
/* Private command for P2P disable*/
"P2P_DISABLE",
"SET_AEK",
"EXT_AUTH_STATUS",
"DRIVER_VERSION"
#ifdef ROKU_PRIVATE
,"ROKU_FIND_REMOTE"
#endif
};
#ifdef CONFIG_PNO_SUPPORT
#define PNO_TLV_PREFIX 'S'
#define PNO_TLV_VERSION '1'
#define PNO_TLV_SUBVERSION '2'
#define PNO_TLV_RESERVED '0'
#define PNO_TLV_TYPE_SSID_IE 'S'
#define PNO_TLV_TYPE_TIME 'T'
#define PNO_TLV_FREQ_REPEAT 'R'
#define PNO_TLV_FREQ_EXPO_MAX 'M'
typedef struct cmd_tlv {
char prefix;
char version;
char subver;
char reserved;
} cmd_tlv_t;
#ifdef CONFIG_PNO_SET_DEBUG
char pno_in_example[] = {
'P', 'N', 'O', 'S', 'E', 'T', 'U', 'P', ' ',
'S', '1', '2', '0',
'S', /* 1 */
0x05,
'd', 'l', 'i', 'n', 'k',
'S', /* 2 */
0x06,
'B', 'U', 'F', 'B', 'U', 'F',
'S', /* 3 */
0x20,
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '!', '@', '#', '$', '%', '^',
'S', /* 4 */
0x0a,
'!', '@', '#', '$', '%', '^', '&', '*', '(', ')',
'T',
'0', '5',
'R',
'2',
'M',
'2',
0x00
};
#endif /* CONFIG_PNO_SET_DEBUG */
#endif /* PNO_SUPPORT */
typedef struct android_wifi_priv_cmd {
char *buf;
int used_len;
int total_len;
} android_wifi_priv_cmd;
#ifdef CONFIG_COMPAT
typedef struct compat_android_wifi_priv_cmd {
compat_uptr_t buf;
int used_len;
int total_len;
} compat_android_wifi_priv_cmd;
#endif /* CONFIG_COMPAT */
/**
* Local (static) functions and variables
*/
/* Initialize g_wifi_on to 1 so dhd_bus_start will be called for the first
* time (only) in dhd_open, subsequential wifi on will be handled by
* wl_android_wifi_on
*/
static int g_wifi_on = _TRUE;
unsigned int oob_irq = 0;
unsigned int oob_gpio = 0;
#ifdef CONFIG_PNO_SUPPORT
/*
* rtw_android_pno_setup
* Description:
* This is used for private command.
*
* Parameter:
* net: net_device
* command: parameters from private command
* total_len: the length of the command.
*
* */
static int rtw_android_pno_setup(struct net_device *net, char *command, int total_len)
{
pno_ssid_t pno_ssids_local[MAX_PNO_LIST_COUNT];
int res = -1;
int nssid = 0;
cmd_tlv_t *cmd_tlv_temp;
char *str_ptr;
int tlv_size_left;
int pno_time = 0;
int pno_repeat = 0;
int pno_freq_expo_max = 0;
int cmdlen = strlen(android_wifi_cmd_str[ANDROID_WIFI_CMD_PNOSETUP_SET]) + 1;
#ifdef CONFIG_PNO_SET_DEBUG
int i;
char *p;
p = pno_in_example;
total_len = sizeof(pno_in_example);
str_ptr = p + cmdlen;
#else
str_ptr = command + cmdlen;
#endif
if (total_len < (cmdlen + sizeof(cmd_tlv_t))) {
RTW_INFO("%s argument=%d less min size\n", __func__, total_len);
goto exit_proc;
}
tlv_size_left = total_len - cmdlen;
cmd_tlv_temp = (cmd_tlv_t *)str_ptr;
memset(pno_ssids_local, 0, sizeof(pno_ssids_local));
if ((cmd_tlv_temp->prefix == PNO_TLV_PREFIX) &&
(cmd_tlv_temp->version == PNO_TLV_VERSION) &&
(cmd_tlv_temp->subver == PNO_TLV_SUBVERSION)) {
str_ptr += sizeof(cmd_tlv_t);
tlv_size_left -= sizeof(cmd_tlv_t);
nssid = rtw_parse_ssid_list_tlv(&str_ptr, pno_ssids_local,
MAX_PNO_LIST_COUNT, &tlv_size_left);
if (nssid <= 0) {
RTW_INFO("SSID is not presented or corrupted ret=%d\n", nssid);
goto exit_proc;
} else {
if ((str_ptr[0] != PNO_TLV_TYPE_TIME) || (tlv_size_left <= 1)) {
RTW_INFO("%s scan duration corrupted field size %d\n",
__func__, tlv_size_left);
goto exit_proc;
}
str_ptr++;
pno_time = simple_strtoul(str_ptr, &str_ptr, 16);
RTW_INFO("%s: pno_time=%d\n", __func__, pno_time);
if (str_ptr[0] != 0) {
if ((str_ptr[0] != PNO_TLV_FREQ_REPEAT)) {
RTW_INFO("%s pno repeat : corrupted field\n",
__func__);
goto exit_proc;
}
str_ptr++;
pno_repeat = simple_strtoul(str_ptr, &str_ptr, 16);
RTW_INFO("%s :got pno_repeat=%d\n", __FUNCTION__, pno_repeat);
if (str_ptr[0] != PNO_TLV_FREQ_EXPO_MAX) {
RTW_INFO("%s FREQ_EXPO_MAX corrupted field size\n",
__func__);
goto exit_proc;
}
str_ptr++;
pno_freq_expo_max = simple_strtoul(str_ptr, &str_ptr, 16);
RTW_INFO("%s: pno_freq_expo_max=%d\n",
__func__, pno_freq_expo_max);
}
}
} else {
RTW_INFO("%s get wrong TLV command\n", __FUNCTION__);
goto exit_proc;
}
res = rtw_dev_pno_set(net, pno_ssids_local, nssid, pno_time, pno_repeat, pno_freq_expo_max);
#ifdef CONFIG_PNO_SET_DEBUG
rtw_dev_pno_debug(net);
#endif
exit_proc:
return res;
}
/*
* rtw_android_cfg80211_pno_setup
* Description:
* This is used for cfg80211 sched_scan.
*
* Parameter:
* net: net_device
* request: cfg80211_request
* */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0)
int rtw_android_cfg80211_pno_setup(struct net_device *net,
struct cfg80211_ssid *ssids, int n_ssids, int interval)
{
int res = -1;
int nssid = 0;
int pno_time = 0;
int pno_repeat = 0;
int pno_freq_expo_max = 0;
int index = 0;
pno_ssid_t pno_ssids_local[MAX_PNO_LIST_COUNT];
if (n_ssids > MAX_PNO_LIST_COUNT || n_ssids < 0) {
RTW_INFO("%s: nssids(%d) is invalid.\n", __func__, n_ssids);
return -EINVAL;
}
memset(pno_ssids_local, 0, sizeof(pno_ssids_local));
nssid = n_ssids;
for (index = 0 ; index < nssid ; index++) {
pno_ssids_local[index].SSID_len = ssids[index].ssid_len;
_rtw_memcpy(pno_ssids_local[index].SSID, ssids[index].ssid,
ssids[index].ssid_len);
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0)
if(ssids)
rtw_mfree((u8 *)ssids, (n_ssids * sizeof(struct cfg80211_ssid)));
#endif
pno_time = (interval / 1000);
RTW_INFO("%s: nssids: %d, pno_time=%d\n", __func__, nssid, pno_time);
res = rtw_dev_pno_set(net, pno_ssids_local, nssid, pno_time,
pno_repeat, pno_freq_expo_max);
#ifdef CONFIG_PNO_SET_DEBUG
rtw_dev_pno_debug(net);
#endif
return res;
}
#endif
int rtw_android_pno_enable(struct net_device *net, int pno_enable)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(net);
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
if (pwrctl) {
pwrctl->wowlan_pno_enable = pno_enable;
RTW_INFO("%s: wowlan_pno_enable: %d\n", __func__, pwrctl->wowlan_pno_enable);
if (pwrctl->wowlan_pno_enable == 0) {
if (pwrctl->pnlo_info != NULL) {
rtw_mfree((u8 *)pwrctl->pnlo_info, sizeof(pno_nlo_info_t));
pwrctl->pnlo_info = NULL;
}
if (pwrctl->pno_ssid_list != NULL) {
rtw_mfree((u8 *)pwrctl->pno_ssid_list, sizeof(pno_ssid_list_t));
pwrctl->pno_ssid_list = NULL;
}
if (pwrctl->pscan_info != NULL) {
rtw_mfree((u8 *)pwrctl->pscan_info, sizeof(pno_scan_info_t));
pwrctl->pscan_info = NULL;
}
}
return 0;
} else
return -1;
}
#endif /* CONFIG_PNO_SUPPORT */
int rtw_android_cmdstr_to_num(char *cmdstr)
{
int cmd_num;
for (cmd_num = 0 ; cmd_num < ANDROID_WIFI_CMD_MAX; cmd_num++)
if (0 == strnicmp(cmdstr , android_wifi_cmd_str[cmd_num], strlen(android_wifi_cmd_str[cmd_num])))
break;
return cmd_num;
}
int rtw_android_get_rssi(struct net_device *net, char *command, int total_len)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(net);
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct wlan_network *pcur_network = &pmlmepriv->cur_network;
int bytes_written = 0;
if (check_fwstate(pmlmepriv, WIFI_ASOC_STATE) == _TRUE) {
bytes_written += snprintf(&command[bytes_written], total_len, "%s rssi %d",
pcur_network->network.Ssid.Ssid, padapter->recvinfo.rssi);
}
return bytes_written;
}
int rtw_android_get_link_speed(struct net_device *net, char *command, int total_len)
{
_adapter *padapter = (_adapter *)rtw_netdev_priv(net);
int bytes_written = 0;
u16 link_speed = 0;
link_speed = rtw_get_cur_max_rate(padapter) / 10;
bytes_written = snprintf(command, total_len, "LinkSpeed %d", link_speed);
return bytes_written;
}
int rtw_android_get_macaddr(struct net_device *net, char *command, int total_len)
{
int bytes_written = 0;
bytes_written = snprintf(command, total_len, "Macaddr = "MAC_FMT, MAC_ARG(net->dev_addr));
return bytes_written;
}
int rtw_android_set_country(struct net_device *net, char *command, int total_len)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(net);
char *country_code = command + strlen(android_wifi_cmd_str[ANDROID_WIFI_CMD_COUNTRY]) + 1;
int ret = _FAIL;
ret = rtw_set_country(adapter, country_code, RTW_REGD_SET_BY_USER);
return (ret == _SUCCESS) ? 0 : -1;
}
int rtw_android_get_p2p_dev_addr(struct net_device *net, char *command, int total_len)
{
int bytes_written = 0;
/* We use the same address as our HW MAC address */
_rtw_memcpy(command, net->dev_addr, ETH_ALEN);
bytes_written = ETH_ALEN;
return bytes_written;
}
int rtw_android_set_block_scan(struct net_device *net, char *command, int total_len)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(net);
char *block_value = command + strlen(android_wifi_cmd_str[ANDROID_WIFI_CMD_BLOCK_SCAN]) + 1;
#ifdef CONFIG_IOCTL_CFG80211
adapter_wdev_data(adapter)->block_scan = (*block_value == '0') ? _FALSE : _TRUE;
#endif
return 0;
}
int rtw_android_set_block(struct net_device *net, char *command, int total_len)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(net);
char *block_value = command + strlen(android_wifi_cmd_str[ANDROID_WIFI_CMD_BLOCK]) + 1;
#ifdef CONFIG_IOCTL_CFG80211
adapter_wdev_data(adapter)->block = (*block_value == '0') ? _FALSE : _TRUE;
#endif
return 0;
}
int rtw_android_setband(struct net_device *net, char *command, int total_len)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(net);
char *arg = command + strlen(android_wifi_cmd_str[ANDROID_WIFI_CMD_SETBAND]) + 1;
u32 band = WIFI_FREQUENCY_BAND_AUTO;
int ret = _FAIL;
if (sscanf(arg, "%u", &band) >= 1)
ret = rtw_set_band(adapter, band);
return (ret == _SUCCESS) ? 0 : -1;
}
int rtw_android_getband(struct net_device *net, char *command, int total_len)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(net);
int bytes_written = 0;
bytes_written = snprintf(command, total_len, "%u", adapter->setband);
return bytes_written;
}
#ifdef CONFIG_WFD
int rtw_android_set_miracast_mode(struct net_device *net, char *command, int total_len)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(net);
struct wifi_display_info *wfd_info = &adapter->wfd_info;
char *arg = command + strlen(android_wifi_cmd_str[ANDROID_WIFI_CMD_MIRACAST]) + 1;
u8 mode;
int num;
int ret = _FAIL;
num = sscanf(arg, "%hhu", &mode);
if (num < 1)
goto exit;
switch (mode) {
case 1: /* soruce */
mode = MIRACAST_SOURCE;
break;
case 2: /* sink */
mode = MIRACAST_SINK;
break;
case 0: /* disabled */
default:
mode = MIRACAST_DISABLED;
break;
}
wfd_info->stack_wfd_mode = mode;
RTW_INFO("stack miracast mode: %s\n", get_miracast_mode_str(wfd_info->stack_wfd_mode));
ret = _SUCCESS;
exit:
return (ret == _SUCCESS) ? 0 : -1;
}
#endif /* CONFIG_WFD */
int get_int_from_command(char *pcmd)
{
int i = 0;
for (i = 0; i < strlen(pcmd); i++) {
if (pcmd[i] == '=') {
/* Skip the '=' and space characters. */
i += 2;
break;
}
}
return rtw_atoi(pcmd + i) ;
}
#if defined(CONFIG_GTK_OL) && (LINUX_VERSION_CODE < KERNEL_VERSION(3, 1, 0))
int rtw_gtk_offload(struct net_device *net, u8 *cmd_ptr)
{
int i;
/* u8 *cmd_ptr = priv_cmd.buf; */
struct sta_info *psta;
_adapter *padapter = (_adapter *)rtw_netdev_priv(net);
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct sta_priv *pstapriv = &padapter->stapriv;
struct security_priv *psecuritypriv = &(padapter->securitypriv);
psta = rtw_get_stainfo(pstapriv, get_bssid(pmlmepriv));
if (psta == NULL)
RTW_INFO("%s, : Obtain Sta_info fail\n", __func__);
else {
/* string command length of "GTK_REKEY_OFFLOAD" */
cmd_ptr += 18;
_rtw_memcpy(psta->kek, cmd_ptr, RTW_KEK_LEN);
cmd_ptr += RTW_KEK_LEN;
/*
printk("supplicant KEK: ");
for(i=0;i<RTW_KEK_LEN; i++)
printk(" %02x ", psta->kek[i]);
printk("\n supplicant KCK: ");
*/
_rtw_memcpy(psta->kck, cmd_ptr, RTW_KCK_LEN);
cmd_ptr += RTW_KCK_LEN;
/*
for(i=0;i<RTW_KEK_LEN; i++)
printk(" %02x ", psta->kck[i]);
*/
_rtw_memcpy(psta->replay_ctr, cmd_ptr, RTW_REPLAY_CTR_LEN);
psecuritypriv->binstallKCK_KEK = _TRUE;
/* printk("\nREPLAY_CTR: "); */
/* for(i=0;i<RTW_REPLAY_CTR_LEN; i++) */
/* printk(" %02x ", psta->replay_ctr[i]); */
}
return _SUCCESS;
}
#endif /* CONFIG_GTK_OL */
#ifdef CONFIG_RTW_MESH_AEK
static int rtw_android_set_aek(struct net_device *ndev, char *command, int total_len)
{
#define SET_AEK_DATA_LEN (ETH_ALEN + 32)
_adapter *adapter = (_adapter *)rtw_netdev_priv(ndev);
u8 *addr;
u8 *aek;
int err = 0;
if (total_len - strlen(android_wifi_cmd_str[ANDROID_WIFI_CMD_SET_AEK]) - 1 != SET_AEK_DATA_LEN) {
err = -EINVAL;
goto exit;
}
addr = command + strlen(android_wifi_cmd_str[ANDROID_WIFI_CMD_SET_AEK]) + 1;
aek = addr + ETH_ALEN;
RTW_PRINT(FUNC_NDEV_FMT" addr="MAC_FMT"\n"
, FUNC_NDEV_ARG(ndev), MAC_ARG(addr));
if (0)
RTW_PRINT(FUNC_NDEV_FMT" aek="KEY_FMT KEY_FMT"\n"
, FUNC_NDEV_ARG(ndev), KEY_ARG(aek), KEY_ARG(aek + 16));
if (rtw_mesh_plink_set_aek(adapter, addr, aek) != _SUCCESS)
err = -ENOENT;
exit:
return err;
}
#endif /* CONFIG_RTW_MESH_AEK */
int rtw_android_priv_cmd(struct net_device *net, struct ifreq *ifr, int cmd)
{
#define PRIVATE_COMMAND_MAX_LEN 65536
int ret = 0;
char *command = NULL;
int cmd_num;
int bytes_written = 0;
#ifdef CONFIG_PNO_SUPPORT
uint cmdlen = 0;
uint pno_enable = 0;
#endif
android_wifi_priv_cmd priv_cmd;
_adapter *padapter = (_adapter *) rtw_netdev_priv(net);
#ifdef CONFIG_WFD
struct wifi_display_info *pwfd_info;
#endif
rtw_lock_suspend();
if (!ifr->ifr_data) {
ret = -EINVAL;
goto exit;
}
if (padapter->registrypriv.mp_mode == 1) {
ret = -EINVAL;
goto exit;
}
#ifdef CONFIG_COMPAT
#if (KERNEL_VERSION(4, 6, 0) > LINUX_VERSION_CODE)
if (is_compat_task()) {
#else
if (in_compat_syscall()) {
#endif
/* User space is 32-bit, use compat ioctl */
compat_android_wifi_priv_cmd compat_priv_cmd;
if (copy_from_user(&compat_priv_cmd, ifr->ifr_data, sizeof(compat_android_wifi_priv_cmd))) {
ret = -EFAULT;
goto exit;
}
priv_cmd.buf = compat_ptr(compat_priv_cmd.buf);
priv_cmd.used_len = compat_priv_cmd.used_len;
priv_cmd.total_len = compat_priv_cmd.total_len;
} else
#endif /* CONFIG_COMPAT */
if (copy_from_user(&priv_cmd, ifr->ifr_data, sizeof(android_wifi_priv_cmd))) {
ret = -EFAULT;
goto exit;
}
if (padapter->registrypriv.mp_mode == 1) {
ret = -EFAULT;
goto exit;
}
/*RTW_INFO("%s priv_cmd.buf=%p priv_cmd.total_len=%d priv_cmd.used_len=%d\n",__func__,priv_cmd.buf,priv_cmd.total_len,priv_cmd.used_len);*/
if (priv_cmd.total_len > PRIVATE_COMMAND_MAX_LEN || priv_cmd.total_len < 0) {
RTW_WARN("%s: invalid private command (%d)\n", __FUNCTION__,
priv_cmd.total_len);
ret = -EFAULT;
goto exit;
}
command = rtw_zmalloc(priv_cmd.total_len+1);
if (!command) {
RTW_INFO("%s: failed to allocate memory\n", __FUNCTION__);
ret = -ENOMEM;
goto exit;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 0, 0))
if (!access_ok(priv_cmd.buf, priv_cmd.total_len)) {
#else
if (!access_ok(VERIFY_READ, priv_cmd.buf, priv_cmd.total_len)) {
#endif
RTW_INFO("%s: failed to access memory\n", __FUNCTION__);
ret = -EFAULT;
goto exit;
}
if (copy_from_user(command, (void *)priv_cmd.buf, priv_cmd.total_len)) {
ret = -EFAULT;
goto exit;
}
command[priv_cmd.total_len] = '\0';
RTW_INFO("%s: Android private cmd \"%s\" on %s\n"
, __FUNCTION__, command, ifr->ifr_name);
cmd_num = rtw_android_cmdstr_to_num(command);
switch (cmd_num) {
case ANDROID_WIFI_CMD_START:
/* bytes_written = wl_android_wifi_on(net); */
goto response;
case ANDROID_WIFI_CMD_SETFWPATH:
goto response;
}
if (!g_wifi_on) {
RTW_INFO("%s: Ignore private cmd \"%s\" - iface %s is down\n"
, __FUNCTION__, command, ifr->ifr_name);
ret = 0;
goto exit;
}
if (!rtw_hw_chk_wl_func(adapter_to_dvobj(padapter), WL_FUNC_MIRACAST)) {
switch (cmd_num) {
case ANDROID_WIFI_CMD_WFD_ENABLE:
case ANDROID_WIFI_CMD_WFD_DISABLE:
case ANDROID_WIFI_CMD_WFD_SET_TCPPORT:
case ANDROID_WIFI_CMD_WFD_SET_MAX_TPUT:
case ANDROID_WIFI_CMD_WFD_SET_DEVTYPE:
goto response;
}
}
switch (cmd_num) {
case ANDROID_WIFI_CMD_STOP:
/* bytes_written = wl_android_wifi_off(net); */
break;
case ANDROID_WIFI_CMD_SCAN_ACTIVE:
/* rtw_set_scan_mode((_adapter *)rtw_netdev_priv(net), SCAN_ACTIVE); */
break;
case ANDROID_WIFI_CMD_SCAN_PASSIVE:
/* rtw_set_scan_mode((_adapter *)rtw_netdev_priv(net), SCAN_PASSIVE); */
break;
case ANDROID_WIFI_CMD_RSSI:
bytes_written = rtw_android_get_rssi(net, command, priv_cmd.total_len);
break;
case ANDROID_WIFI_CMD_LINKSPEED:
bytes_written = rtw_android_get_link_speed(net, command, priv_cmd.total_len);
break;
case ANDROID_WIFI_CMD_MACADDR:
bytes_written = rtw_android_get_macaddr(net, command, priv_cmd.total_len);
break;
case ANDROID_WIFI_CMD_BLOCK_SCAN:
bytes_written = rtw_android_set_block_scan(net, command, priv_cmd.total_len);
break;
case ANDROID_WIFI_CMD_BLOCK:
bytes_written = rtw_android_set_block(net, command, priv_cmd.total_len);
break;
case ANDROID_WIFI_CMD_RXFILTER_START:
/* bytes_written = net_os_set_packet_filter(net, 1); */
break;
case ANDROID_WIFI_CMD_RXFILTER_STOP:
/* bytes_written = net_os_set_packet_filter(net, 0); */
break;
case ANDROID_WIFI_CMD_RXFILTER_ADD:
/* int filter_num = *(command + strlen(CMD_RXFILTER_ADD) + 1) - '0'; */
/* bytes_written = net_os_rxfilter_add_remove(net, TRUE, filter_num); */
break;
case ANDROID_WIFI_CMD_RXFILTER_REMOVE:
/* int filter_num = *(command + strlen(CMD_RXFILTER_REMOVE) + 1) - '0'; */
/* bytes_written = net_os_rxfilter_add_remove(net, FALSE, filter_num); */
break;
case ANDROID_WIFI_CMD_BTCOEXSCAN_START:
/* TBD: BTCOEXSCAN-START */
break;
case ANDROID_WIFI_CMD_BTCOEXSCAN_STOP:
/* TBD: BTCOEXSCAN-STOP */
break;
case ANDROID_WIFI_CMD_BTCOEXMODE:
#if 0
uint mode = *(command + strlen(CMD_BTCOEXMODE) + 1) - '0';
if (mode == 1)
net_os_set_packet_filter(net, 0); /* DHCP starts */
else
net_os_set_packet_filter(net, 1); /* DHCP ends */
#ifdef WL_CFG80211
bytes_written = wl_cfg80211_set_btcoex_dhcp(net, command);
#endif
#endif
break;
case ANDROID_WIFI_CMD_SETSUSPENDMODE:
break;
case ANDROID_WIFI_CMD_SETSUSPENDOPT:
/* bytes_written = wl_android_set_suspendopt(net, command, priv_cmd.total_len); */
break;
case ANDROID_WIFI_CMD_SETBAND:
bytes_written = rtw_android_setband(net, command, priv_cmd.total_len);
break;
case ANDROID_WIFI_CMD_GETBAND:
bytes_written = rtw_android_getband(net, command, priv_cmd.total_len);
break;
case ANDROID_WIFI_CMD_COUNTRY:
bytes_written = rtw_android_set_country(net, command, priv_cmd.total_len);
break;
#ifdef CONFIG_PNO_SUPPORT
case ANDROID_WIFI_CMD_PNOSSIDCLR_SET:
/* bytes_written = dhd_dev_pno_reset(net); */
break;
case ANDROID_WIFI_CMD_PNOSETUP_SET:
bytes_written = rtw_android_pno_setup(net, command, priv_cmd.total_len);
break;
case ANDROID_WIFI_CMD_PNOENABLE_SET:
cmdlen = strlen(android_wifi_cmd_str[ANDROID_WIFI_CMD_PNOENABLE_SET]);
pno_enable = *(command + cmdlen + 1) - '0';
bytes_written = rtw_android_pno_enable(net, pno_enable);
break;
#endif
case ANDROID_WIFI_CMD_P2P_DEV_ADDR:
bytes_written = rtw_android_get_p2p_dev_addr(net, command, priv_cmd.total_len);
break;
case ANDROID_WIFI_CMD_P2P_SET_NOA:
/* int skip = strlen(CMD_P2P_SET_NOA) + 1; */
/* bytes_written = wl_cfg80211_set_p2p_noa(net, command + skip, priv_cmd.total_len - skip); */
break;
case ANDROID_WIFI_CMD_P2P_GET_NOA:
/* bytes_written = wl_cfg80211_get_p2p_noa(net, command, priv_cmd.total_len); */
break;
case ANDROID_WIFI_CMD_P2P_SET_PS:
/* int skip = strlen(CMD_P2P_SET_PS) + 1; */
/* bytes_written = wl_cfg80211_set_p2p_ps(net, command + skip, priv_cmd.total_len - skip); */
break;
#ifdef CONFIG_IOCTL_CFG80211
case ANDROID_WIFI_CMD_SET_AP_WPS_P2P_IE: {
int skip = strlen(android_wifi_cmd_str[ANDROID_WIFI_CMD_SET_AP_WPS_P2P_IE]) + 3;
bytes_written = rtw_cfg80211_set_mgnt_wpsp2pie(net, command + skip, priv_cmd.total_len - skip, *(command + skip - 2) - '0');
adapter_to_dvobj(padapter)->wpas_type = RTW_WPAS_ANDROID;
break;
}
#endif /* CONFIG_IOCTL_CFG80211 */
#ifdef CONFIG_WFD
case ANDROID_WIFI_CMD_MIRACAST:
bytes_written = rtw_android_set_miracast_mode(net, command, priv_cmd.total_len);
break;
case ANDROID_WIFI_CMD_WFD_ENABLE: {
/* Commented by Albert 2012/07/24 */
/* We can enable the WFD function by using the following command: */
/* wpa_cli driver wfd-enable */
rtw_wfd_enable(padapter, 1);
break;
}
case ANDROID_WIFI_CMD_WFD_DISABLE: {
/* Commented by Albert 2012/07/24 */
/* We can disable the WFD function by using the following command: */
/* wpa_cli driver wfd-disable */
rtw_wfd_enable(padapter, 0);
break;
}
case ANDROID_WIFI_CMD_WFD_SET_TCPPORT: {
/* Commented by Albert 2012/07/24 */
/* We can set the tcp port number by using the following command: */
/* wpa_cli driver wfd-set-tcpport = 554 */
rtw_wfd_set_ctrl_port(padapter, (u16)get_int_from_command(command));
break;
}
case ANDROID_WIFI_CMD_WFD_SET_MAX_TPUT: {
break;
}
case ANDROID_WIFI_CMD_WFD_SET_DEVTYPE: {
/* Commented by Albert 2012/08/28 */
/* Specify the WFD device type ( WFD source/primary sink ) */
pwfd_info = &padapter->wfd_info;
pwfd_info->wfd_device_type = (u8) get_int_from_command(command);
pwfd_info->wfd_device_type &= WFD_DEVINFO_DUAL;
break;
}
#endif
case ANDROID_WIFI_CMD_CHANGE_DTIM: {
#ifdef CONFIG_LPS
u8 dtim;
u8 *ptr = (u8 *) command;
ptr += 9;/* string command length of "SET_DTIM"; */
dtim = rtw_atoi(ptr);
RTW_INFO("DTIM=%d\n", dtim);
rtw_lps_change_dtim_cmd(padapter, dtim);
#endif
}
break;
#if CONFIG_RTW_MACADDR_ACL
case ANDROID_WIFI_CMD_HOSTAPD_SET_MACADDR_ACL: {
rtw_set_macaddr_acl(padapter, RTW_ACL_PERIOD_BSS, get_int_from_command(command));
break;
}
case ANDROID_WIFI_CMD_HOSTAPD_ACL_ADD_STA: {
u8 addr[ETH_ALEN] = {0x00};
macstr2num(addr, command + strlen("HOSTAPD_ACL_ADD_STA") + 3); /* 3 is space bar + "=" + space bar these 3 chars */
rtw_acl_add_sta(padapter, RTW_ACL_PERIOD_BSS, addr);
break;
}
case ANDROID_WIFI_CMD_HOSTAPD_ACL_REMOVE_STA: {
u8 addr[ETH_ALEN] = {0x00};
macstr2num(addr, command + strlen("HOSTAPD_ACL_REMOVE_STA") + 3); /* 3 is space bar + "=" + space bar these 3 chars */
rtw_acl_remove_sta(padapter, RTW_ACL_PERIOD_BSS, addr);
break;
}
#endif /* CONFIG_RTW_MACADDR_ACL */
#if defined(CONFIG_GTK_OL) && (LINUX_VERSION_CODE < KERNEL_VERSION(3, 1, 0))
case ANDROID_WIFI_CMD_GTK_REKEY_OFFLOAD:
rtw_gtk_offload(net, (u8 *)command);
break;
#endif /* CONFIG_GTK_OL */
case ANDROID_WIFI_CMD_P2P_DISABLE: {
#ifdef CONFIG_P2P
/* This Android private command is no longer in use */
/* rtw_p2p_enable(padapter, P2P_ROLE_DISABLE); */
#endif /* CONFIG_P2P */
break;
}
#ifdef CONFIG_RTW_MESH_AEK
case ANDROID_WIFI_CMD_SET_AEK:
bytes_written = rtw_android_set_aek(net, command, priv_cmd.total_len);
break;
#endif
case ANDROID_WIFI_CMD_EXT_AUTH_STATUS: {
rtw_set_external_auth_status(padapter,
command + strlen("EXT_AUTH_STATUS "),
priv_cmd.total_len - strlen("EXT_AUTH_STATUS "));
break;
}
case ANDROID_WIFI_CMD_DRIVERVERSION: {
bytes_written = strlen(DRIVERVERSION);
snprintf(command, bytes_written + 1, DRIVERVERSION);
break;
}
#ifdef ROKU_PRIVATE
case ANDROID_WIFI_CMD_ROKU_FIND_REMOTE: {
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct wifidirect_info *pwdinfo = &(padapter->wdinfo);
u8 num, cmdlen;
u8 *ptr,*remote_mac_addr;
int i;
cmdlen = strlen(android_wifi_cmd_str[ANDROID_WIFI_CMD_ROKU_FIND_REMOTE]);
num = *(command + cmdlen + 1) - '0';
if (num != 0) {
pwdinfo->num_of_remote = num;
remote_mac_addr = pwdinfo->remote_mac_address;
ptr = command + cmdlen + 3;
for (i = 0; i < num; i++) {
macstr2num(remote_mac_addr, ptr);
ptr += 18; /* skip space and go to next mac addr */
remote_mac_addr += 6;
}
set_find_remote_timer(pmlmeext, 1);
}
else
_cancel_timer_ex(&pmlmeext->find_remote_timer);
break;
}
#endif
default:
RTW_INFO("Unknown PRIVATE command %s - ignored\n", command);
snprintf(command, 3, "OK");
bytes_written = strlen("OK");
}
response:
if (bytes_written >= 0) {
if ((bytes_written == 0) && (priv_cmd.total_len > 0))
command[0] = '\0';
if (bytes_written >= priv_cmd.total_len) {
RTW_INFO("%s: bytes_written = %d\n", __FUNCTION__, bytes_written);
bytes_written = priv_cmd.total_len;
} else
bytes_written++;
priv_cmd.used_len = bytes_written;
if (copy_to_user((void *)priv_cmd.buf, command, bytes_written)) {
RTW_INFO("%s: failed to copy data to user buffer\n", __FUNCTION__);
ret = -EFAULT;
}
} else
ret = bytes_written;
exit:
rtw_unlock_suspend();
if (command)
rtw_mfree(command, priv_cmd.total_len + 1);
return ret;
}
/**
* Functions for Android WiFi card detection
*/
#if defined(RTW_ENABLE_WIFI_CONTROL_FUNC)
static int g_wifidev_registered = 0;
static struct semaphore wifi_control_sem;
static struct wifi_platform_data *wifi_control_data = NULL;
static struct resource *wifi_irqres = NULL;
static int wifi_add_dev(void);
static void wifi_del_dev(void);
int rtw_android_wifictrl_func_add(void)
{
int ret = 0;
sema_init(&wifi_control_sem, 0);
ret = wifi_add_dev();
if (ret) {
RTW_INFO("%s: platform_driver_register failed\n", __FUNCTION__);
return ret;
}
g_wifidev_registered = 1;
/* Waiting callback after platform_driver_register is done or exit with error */
if (down_timeout(&wifi_control_sem, msecs_to_jiffies(1000)) != 0) {
ret = -EINVAL;
RTW_INFO("%s: platform_driver_register timeout\n", __FUNCTION__);
}
return ret;
}
void rtw_android_wifictrl_func_del(void)
{
if (g_wifidev_registered) {
wifi_del_dev();
g_wifidev_registered = 0;
}
}
void *wl_android_prealloc(int section, unsigned long size)
{
void *alloc_ptr = NULL;
if (wifi_control_data && wifi_control_data->mem_prealloc) {
alloc_ptr = wifi_control_data->mem_prealloc(section, size);
if (alloc_ptr) {
RTW_INFO("success alloc section %d\n", section);
if (size != 0L)
memset(alloc_ptr, 0, size);
return alloc_ptr;
}
}
RTW_INFO("can't alloc section %d\n", section);
return NULL;
}
int wifi_get_irq_number(unsigned long *irq_flags_ptr)
{
if (wifi_irqres) {
*irq_flags_ptr = wifi_irqres->flags & IRQF_TRIGGER_MASK;
return (int)wifi_irqres->start;
}
#ifdef CUSTOM_OOB_GPIO_NUM
return CUSTOM_OOB_GPIO_NUM;
#else
return -1;
#endif
}
int wifi_set_power(int on, unsigned long msec)
{
RTW_INFO("%s = %d\n", __FUNCTION__, on);
if (wifi_control_data && wifi_control_data->set_power)
wifi_control_data->set_power(on);
if (msec)
msleep(msec);
return 0;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
int wifi_get_mac_addr(unsigned char *buf)
{
RTW_INFO("%s\n", __FUNCTION__);
if (!buf)
return -EINVAL;
if (wifi_control_data && wifi_control_data->get_mac_addr)
return wifi_control_data->get_mac_addr(buf);
return -EOPNOTSUPP;
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)) */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39)) || defined(COMPAT_KERNEL_RELEASE)
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 18, 0))
void *wifi_get_country_code(char *ccode, u32 flags)
#else /* Linux kernel < 3.18 */
void *wifi_get_country_code(char *ccode)
#endif /* Linux kernel < 3.18 */
{
RTW_INFO("%s\n", __FUNCTION__);
if (!ccode)
return NULL;
if (wifi_control_data && wifi_control_data->get_country_code)
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 18, 0))
return wifi_control_data->get_country_code(ccode, flags);
#else /* Linux kernel < 3.18 */
return wifi_control_data->get_country_code(ccode);
#endif /* Linux kernel < 3.18 */
return NULL;
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39)) */
static int wifi_set_carddetect(int on)
{
RTW_INFO("%s = %d\n", __FUNCTION__, on);
if (wifi_control_data && wifi_control_data->set_carddetect)
wifi_control_data->set_carddetect(on);
return 0;
}
static int wifi_probe(struct platform_device *pdev)
{
struct wifi_platform_data *wifi_ctrl =
(struct wifi_platform_data *)(pdev->dev.platform_data);
int wifi_wake_gpio = 0;
RTW_INFO("## %s\n", __FUNCTION__);
wifi_irqres = platform_get_resource_byname(pdev, IORESOURCE_IRQ, "bcmdhd_wlan_irq");
if (wifi_irqres == NULL)
wifi_irqres = platform_get_resource_byname(pdev,
IORESOURCE_IRQ, "bcm4329_wlan_irq");
else
wifi_wake_gpio = wifi_irqres->start;
#ifdef CONFIG_GPIO_WAKEUP
RTW_INFO("%s: gpio:%d wifi_wake_gpio:%d\n", __func__,
(int)wifi_irqres->start, wifi_wake_gpio);
if (wifi_wake_gpio > 0) {
gpio_request(wifi_wake_gpio, "oob_irq");
gpio_direction_input(wifi_wake_gpio);
oob_irq = gpio_to_irq(wifi_wake_gpio);
RTW_INFO("%s oob_irq:%d\n", __func__, oob_irq);
} else if (wifi_irqres) {
oob_irq = wifi_irqres->start;
RTW_INFO("%s oob_irq:%d\n", __func__, oob_irq);
}
#endif
wifi_control_data = wifi_ctrl;
wifi_set_power(1, 0); /* Power On */
wifi_set_carddetect(1); /* CardDetect (0->1) */
up(&wifi_control_sem);
return 0;
}
#ifdef RTW_SUPPORT_PLATFORM_SHUTDOWN
extern _adapter * g_test_adapter;
static void shutdown_card(void)
{
u32 addr;
u8 tmp8, cnt = 0;
if (NULL == g_test_adapter) {
RTW_INFO("%s: padapter==NULL\n", __FUNCTION__);
return;
}
#ifdef CONFIG_FWLPS_IN_IPS
LeaveAllPowerSaveMode(g_test_adapter);
#endif /* CONFIG_FWLPS_IN_IPS */
#ifdef CONFIG_WOWLAN
#ifdef CONFIG_GPIO_WAKEUP
/*default wake up pin change to BT*/
RTW_INFO("%s:default wake up pin change to BT\n", __FUNCTION__);
/* ToDo: clear pin mux code is not ready
rtw_hal_switch_gpio_wl_ctrl(g_test_adapter, WAKEUP_GPIO_IDX, _FALSE); */
#endif /* CONFIG_GPIO_WAKEUP */
#endif /* CONFIG_WOWLAN */
/* Leave SDIO HCI Suspend */
#if 0 /*GEORGIA_TODO_REDEFINE_IO*/
addr = 0x10250086;
rtw_write8(g_test_adapter, addr, 0);
do {
tmp8 = rtw_read8(g_test_adapter, addr);
cnt++;
RTW_INFO(FUNC_ADPT_FMT ": polling SDIO_HSUS_CTRL(0x%x)=0x%x, cnt=%d\n",
FUNC_ADPT_ARG(g_test_adapter), addr, tmp8, cnt);
if (tmp8 & BIT(1))
break;
if (cnt >= 100) {
RTW_INFO(FUNC_ADPT_FMT ": polling 0x%x[1]==1 FAIL!!\n",
FUNC_ADPT_ARG(g_test_adapter), addr);
break;
}
rtw_mdelay_os(10);
} while (1);
/* unlock register I/O */
rtw_write8(g_test_adapter, 0x1C, 0);
/* enable power down function */
/* 0x04[4] = 1 */
/* 0x05[7] = 1 */
addr = 0x04;
tmp8 = rtw_read8(g_test_adapter, addr);
tmp8 |= BIT(4);
rtw_write8(g_test_adapter, addr, tmp8);
RTW_INFO(FUNC_ADPT_FMT ": read after write 0x%x=0x%x\n",
FUNC_ADPT_ARG(g_test_adapter), addr, rtw_read8(g_test_adapter, addr));
addr = 0x05;
tmp8 = rtw_read8(g_test_adapter, addr);
tmp8 |= BIT(7);
rtw_write8(g_test_adapter, addr, tmp8);
RTW_INFO(FUNC_ADPT_FMT ": read after write 0x%x=0x%x\n",
FUNC_ADPT_ARG(g_test_adapter), addr, rtw_read8(g_test_adapter, addr));
/* lock register page0 0x0~0xB read/write */
rtw_write8(g_test_adapter, 0x1C, 0x0E);
#else
rtw_hal_sdio_leave_suspend(g_test_adapter);
#endif
dev_set_surprise_removed(adapter_to_dvobj(g_test_adapter));
RTW_INFO(FUNC_ADPT_FMT ": bSurpriseRemoved=%s\n",
FUNC_ADPT_ARG(g_test_adapter),
dev_is_surprise_removed(adapter_to_dvobj(g_test_adapter)) ? "True" : "False");
}
#endif /* RTW_SUPPORT_PLATFORM_SHUTDOWN */
static int wifi_remove(struct platform_device *pdev)
{
struct wifi_platform_data *wifi_ctrl =
(struct wifi_platform_data *)(pdev->dev.platform_data);
RTW_INFO("## %s\n", __FUNCTION__);
wifi_control_data = wifi_ctrl;
wifi_set_power(0, 0); /* Power Off */
wifi_set_carddetect(0); /* CardDetect (1->0) */
up(&wifi_control_sem);
return 0;
}
#ifdef RTW_SUPPORT_PLATFORM_SHUTDOWN
static void wifi_shutdown(struct platform_device *pdev)
{
struct wifi_platform_data *wifi_ctrl =
(struct wifi_platform_data *)(pdev->dev.platform_data);
RTW_INFO("## %s\n", __FUNCTION__);
wifi_control_data = wifi_ctrl;
shutdown_card();
wifi_set_power(0, 0); /* Power Off */
wifi_set_carddetect(0); /* CardDetect (1->0) */
}
#endif /* RTW_SUPPORT_PLATFORM_SHUTDOWN */
static int wifi_suspend(struct platform_device *pdev, pm_message_t state)
{
RTW_INFO("##> %s\n", __FUNCTION__);
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 39)) && defined(OOB_INTR_ONLY)
bcmsdh_oob_intr_set(0);
#endif
return 0;
}
static int wifi_resume(struct platform_device *pdev)
{
RTW_INFO("##> %s\n", __FUNCTION__);
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 39)) && defined(OOB_INTR_ONLY)
if (dhd_os_check_if_up(bcmsdh_get_drvdata()))
bcmsdh_oob_intr_set(1);
#endif
return 0;
}
/* temporarily use these two */
static struct platform_driver wifi_device = {
.probe = wifi_probe,
.remove = wifi_remove,
.suspend = wifi_suspend,
.resume = wifi_resume,
#ifdef RTW_SUPPORT_PLATFORM_SHUTDOWN
.shutdown = wifi_shutdown,
#endif /* RTW_SUPPORT_PLATFORM_SHUTDOWN */
.driver = {
.name = "bcmdhd_wlan",
}
};
static struct platform_driver wifi_device_legacy = {
.probe = wifi_probe,
.remove = wifi_remove,
.suspend = wifi_suspend,
.resume = wifi_resume,
.driver = {
.name = "bcm4329_wlan",
}
};
static int wifi_add_dev(void)
{
RTW_INFO("## Calling platform_driver_register\n");
platform_driver_register(&wifi_device);
platform_driver_register(&wifi_device_legacy);
return 0;
}
static void wifi_del_dev(void)
{
RTW_INFO("## Unregister platform_driver_register\n");
platform_driver_unregister(&wifi_device);
platform_driver_unregister(&wifi_device_legacy);
}
#endif /* defined(RTW_ENABLE_WIFI_CONTROL_FUNC) */
|
2301_81045437/rtl8852be
|
os_dep/linux/rtw_android.c
|
C
|
agpl-3.0
| 35,792
|
/******************************************************************************
*
* Copyright(c) 2007 - 2020 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _OS_INTFS_C_
#include <drv_types.h>
/* module param defaults */
int rtw_chip_version = 0x00;
int rtw_rfintfs = HWPI;
int rtw_lbkmode = 0;/* RTL8712_AIR_TRX; */
#ifdef DBG_LA_MODE
int rtw_la_mode_en=0;
module_param(rtw_la_mode_en, int, 0644);
#endif
int rtw_network_mode = Ndis802_11IBSS;/* Ndis802_11Infrastructure; */ /* infra, ad-hoc, auto */
/* NDIS_802_11_SSID ssid; */
int rtw_channel = 36;/* ad-hoc support requirement */
int rtw_wireless_mode = WLAN_MD_MAX;
int rtw_band_type = BAND_CAP_2G | BAND_CAP_5G | BAND_CAP_6G;
module_param(rtw_wireless_mode, int, 0644);
module_param(rtw_band_type, int, 0644);
#ifdef CONFIG_HW_RTS
int rtw_vrtl_carrier_sense = ENABLE_VCS;
int rtw_vcs_type = RTS_CTS;
int rtw_hw_rts_en = 1;
#else
int rtw_vrtl_carrier_sense = AUTO_VCS;
int rtw_vcs_type = RTS_CTS;
int rtw_hw_rts_en = 0;
#endif
int rtw_rts_thresh = 2347;
int rtw_frag_thresh = 2346;
int rtw_preamble = PREAMBLE_LONG;/* long, short, auto */
int rtw_scan_mode = 1;/* active, passive */
/* int smart_ps = 1; */
#ifdef CONFIG_POWER_SAVING
/* LPS configuration */
/* RTW_LPS_MODE=0:disable, 1:LPS , 2:LPS with clock gating, 3: power gating */
#if (RTW_LPS_MODE > 0)
int rtw_power_mgnt = PM_PS_MODE_MAX;
#ifdef CONFIG_USB_HCI
int rtw_lps_level = LPS_NORMAL; /*USB default LPS level*/
#else /*SDIO,PCIE*/
int rtw_lps_level = (RTW_LPS_MODE - 1);
#endif/*CONFIG_USB_HCI*/
#else
int rtw_power_mgnt = PM_PS_MODE_ACTIVE;
int rtw_lps_level = LPS_NORMAL;
#endif
int rtw_lps_chk_by_tp = 1;
/* WOW LPS configuration */
#ifdef CONFIG_WOWLAN
/* RTW_WOW_LPS_MODE=0:disable, 1:LPS , 2:LPS with clock gating, 3: power gating */
#if (RTW_WOW_LPS_MODE > 0)
int rtw_wow_power_mgnt = PM_PS_MODE_MAX;
int rtw_wow_lps_level = (RTW_WOW_LPS_MODE - 1);
#else
int rtw_wow_power_mgnt = PM_PS_MODE_ACTIVE;
int rtw_wow_lps_level = LPS_NORMAL;
#endif
#endif /* CONFIG_WOWLAN */
#else /* !CONFIG_POWER_SAVING */
int rtw_power_mgnt = PM_PS_MODE_ACTIVE;
int rtw_lps_level = LPS_NORMAL;
int rtw_lps_chk_by_tp = 0;
#ifdef CONFIG_WOWLAN
int rtw_wow_power_mgnt = PM_PS_MODE_ACTIVE;
int rtw_wow_lps_level = LPS_NORMAL;
#endif /* CONFIG_WOWLAN */
#endif /* CONFIG_POWER_SAVING */
#ifdef CONFIG_RTW_IPS
int rtw_ips_mode = PS_OP_MODE_AUTO;
#else
int rtw_ips_mode = PS_OP_MODE_DISABLED;
#endif
#ifdef CONFIG_RTW_LPS
int rtw_lps_mode = PS_OP_MODE_AUTO;
int rtw_lps_cap = PS_CAP_PWRON |
PS_CAP_RF_OFF |
PS_CAP_CLK_GATED |
PS_CAP_PWR_GATED;
#else
int rtw_lps_mode = PS_OP_MODE_DISABLED;
int rtw_lps_cap = PS_CAP_PWRON;
#endif
#ifdef CONFIG_NARROWBAND_SUPPORTING
int rtw_nb_config = CONFIG_NB_VALUE;
module_param(rtw_nb_config, int, 0644);
MODULE_PARM_DESC(rtw_nb_config, "5M/10M/Normal bandwidth configuration");
#endif
module_param(rtw_ips_mode, int, 0644);
MODULE_PARM_DESC(rtw_ips_mode, "The default IPS mode");
module_param(rtw_lps_mode, int, 0644);
MODULE_PARM_DESC(rtw_lps_mode, "The default LPS mode");
module_param(rtw_lps_cap, int, 0644);
MODULE_PARM_DESC(rtw_lps_cap, "The default LPS cap");
#ifdef CONFIG_LPS_1T1R
int rtw_lps_1t1r = RTW_LPS_1T1R;
module_param(rtw_lps_1t1r, int, 0644);
MODULE_PARM_DESC(rtw_lps_1t1r, "The default LPS 1T1R setting");
#endif
module_param(rtw_lps_chk_by_tp, int, 0644);
#ifdef CONFIG_WOWLAN
module_param(rtw_wow_power_mgnt, int, 0644);
MODULE_PARM_DESC(rtw_wow_power_mgnt, "The default WOW LPS mode");
module_param(rtw_wow_lps_level, int, 0644);
MODULE_PARM_DESC(rtw_wow_lps_level, "The default WOW LPS level");
#ifdef CONFIG_LPS_1T1R
int rtw_wow_lps_1t1r = RTW_WOW_LPS_1T1R;
module_param(rtw_wow_lps_1t1r, int, 0644);
MODULE_PARM_DESC(rtw_wow_lps_1t1r, "The default WOW LPS 1T1R setting");
#endif
#endif /* CONFIG_WOWLAN */
/* LPS:
* rtw_smart_ps = 0 => TX: pwr bit = 1, RX: PS_Poll
* rtw_smart_ps = 1 => TX: pwr bit = 0, RX: PS_Poll
* rtw_smart_ps = 2 => TX: pwr bit = 0, RX: NullData with pwr bit = 0
*/
int rtw_smart_ps = 2;
int rtw_max_bss_cnt = 0;
module_param(rtw_max_bss_cnt, int, 0644);
#ifdef CONFIG_WMMPS_STA
/* WMMPS:
* rtw_smart_ps = 0 => Only for fw test
* rtw_smart_ps = 1 => Refer to Beacon's TIM Bitmap
* rtw_smart_ps = 2 => Don't refer to Beacon's TIM Bitmap
*/
int rtw_wmm_smart_ps = 2;
#endif /* CONFIG_WMMPS_STA */
int rtw_check_fw_ps = 1;
#ifdef CONFIG_TX_EARLY_MODE
int rtw_early_mode = 1;
#endif
int rtw_usb_rxagg_mode = 2;/* RX_AGG_DMA=1, RX_AGG_USB=2 */
module_param(rtw_usb_rxagg_mode, int, 0644);
int rtw_dynamic_agg_enable = 1;
module_param(rtw_dynamic_agg_enable, int, 0644);
/* set log level when inserting driver module, default log level is _DRV_INFO_ = 4,
* please refer to "How_to_set_driver_debug_log_level.doc" to set the available level.
*/
#ifdef CONFIG_RTW_DEBUG
#ifdef RTW_LOG_LEVEL
uint rtw_drv_log_level = (uint)RTW_LOG_LEVEL; /* from Makefile */
#else
uint rtw_drv_log_level = _DRV_INFO_;
#endif
module_param(rtw_drv_log_level, uint, 0644);
MODULE_PARM_DESC(rtw_drv_log_level, "set log level when insert driver module, default log level is _DRV_INFO_ = 4");
#endif
int rtw_radio_enable = 1;
int rtw_long_retry_lmt = 7;
int rtw_short_retry_lmt = 7;
int rtw_busy_thresh = 40;
/* int qos_enable = 0; */ /* * */
int rtw_ack_policy = NORMAL_ACK;
int rtw_mp_mode = 0;
#if defined(CONFIG_MP_INCLUDED) && defined(CONFIG_RTW_CUSTOMER_STR)
uint rtw_mp_customer_str = 0;
module_param(rtw_mp_customer_str, uint, 0644);
MODULE_PARM_DESC(rtw_mp_customer_str, "Whether or not to enable customer str support on MP mode");
#endif
int rtw_software_encrypt = 0;
int rtw_software_decrypt = 0;
int rtw_acm_method = 0;/* 0:By SW 1:By HW. */
int rtw_wmm_enable = 1;/* default is set to enable the wmm. */
#ifdef CONFIG_WMMPS_STA
/* uapsd (unscheduled automatic power-save delivery) = a kind of wmmps */
/* 0: NO_LIMIT, 1: TWO_MSDU, 2: FOUR_MSDU, 3: SIX_MSDU */
int rtw_uapsd_max_sp = NO_LIMIT;
/* BIT0: AC_VO UAPSD, BIT1: AC_VI UAPSD, BIT2: AC_BK UAPSD, BIT3: AC_BE UAPSD */
int rtw_uapsd_ac_enable = 0x0;
#endif /* CONFIG_WMMPS_STA */
#if defined(CONFIG_RTL8821C) || defined(CONFIG_RTL8822B) || defined(CONFIG_RTL8822C)
/*PHYDM API, must enable by default*/
int rtw_pwrtrim_enable = 1;
#else
int rtw_pwrtrim_enable = 0; /* Default Enalbe power trim by efuse config */
#endif
uint rtw_tx_bw_mode = 0x21;
module_param(rtw_tx_bw_mode, uint, 0644);
MODULE_PARM_DESC(rtw_tx_bw_mode, "The max tx bw for 2.4G and 5G. format is the same as rtw_bw_mode");
#ifdef CONFIG_80211N_HT
int rtw_ht_enable = 1;
/* 0: 20 MHz, 1: 40 MHz, 2: 80 MHz, 3: 160MHz, 4: 80+80MHz
* 2.4G use bit 0 ~ 3, 5G use bit 4 ~ 7
* 0x21 means enable 2.4G 40MHz & 5G 80MHz */
#ifdef CONFIG_RTW_CUSTOMIZE_BWMODE
int rtw_bw_mode = CONFIG_RTW_CUSTOMIZE_BWMODE;
#else
int rtw_bw_mode = ((BW_CAP_80M | BW_CAP_40M | BW_CAP_20M) << 4 ) | (BW_CAP_40M | BW_CAP_20M);
#endif
int rtw_ampdu_enable = 1;/* for enable tx_ampdu , */ /* 0: disable, 0x1:enable */
int rtw_rx_ampdu_amsdu = 2;/* 0: disabled, 1:enabled, 2:auto . There is an IOT issu with DLINK DIR-629 when the flag turn on */
/* 10.12 A-MSDU operation
* HT - 0: 3839, 1: 7935 octets - Maximum A-MSDU Length
* VHT - 0: 3895, 1: 7991, 2:11454 octets - Maximum MPDU Length
*/
int rtw_max_amsdu_len = 1;
module_param(rtw_max_amsdu_len, uint, 0644);
/*
* 2: Follow the AMSDU filed in ADDBA Resp. (Deault)
* 0: Force the AMSDU filed in ADDBA Resp. to be disabled.
* 1: Force the AMSDU filed in ADDBA Resp. to be enabled.
*/
int rtw_tx_ampdu_amsdu = 2;
int rtw_quick_addba_req = 0;
static uint rtw_rx_ampdu_sz_limit_1ss[4] = CONFIG_RTW_RX_AMPDU_SZ_LIMIT_1SS;
static uint rtw_rx_ampdu_sz_limit_1ss_num = 0;
module_param_array(rtw_rx_ampdu_sz_limit_1ss, uint, &rtw_rx_ampdu_sz_limit_1ss_num, 0644);
MODULE_PARM_DESC(rtw_rx_ampdu_sz_limit_1ss, "RX AMPDU size limit for 1SS link of each BW, 0xFF: no limitation");
static uint rtw_rx_ampdu_sz_limit_2ss[4] = CONFIG_RTW_RX_AMPDU_SZ_LIMIT_2SS;
static uint rtw_rx_ampdu_sz_limit_2ss_num = 0;
module_param_array(rtw_rx_ampdu_sz_limit_2ss, uint, &rtw_rx_ampdu_sz_limit_2ss_num, 0644);
MODULE_PARM_DESC(rtw_rx_ampdu_sz_limit_2ss, "RX AMPDU size limit for 2SS link of each BW, 0xFF: no limitation");
static uint rtw_rx_ampdu_sz_limit_3ss[4] = CONFIG_RTW_RX_AMPDU_SZ_LIMIT_3SS;
static uint rtw_rx_ampdu_sz_limit_3ss_num = 0;
module_param_array(rtw_rx_ampdu_sz_limit_3ss, uint, &rtw_rx_ampdu_sz_limit_3ss_num, 0644);
MODULE_PARM_DESC(rtw_rx_ampdu_sz_limit_3ss, "RX AMPDU size limit for 3SS link of each BW, 0xFF: no limitation");
static uint rtw_rx_ampdu_sz_limit_4ss[4] = CONFIG_RTW_RX_AMPDU_SZ_LIMIT_4SS;
static uint rtw_rx_ampdu_sz_limit_4ss_num = 0;
module_param_array(rtw_rx_ampdu_sz_limit_4ss, uint, &rtw_rx_ampdu_sz_limit_4ss_num, 0644);
MODULE_PARM_DESC(rtw_rx_ampdu_sz_limit_4ss, "RX AMPDU size limit for 4SS link of each BW, 0xFF: no limitation");
/* Short GI support Bit Map
* BIT0 - 20MHz, 0: non-support, 1: support
* BIT1 - 40MHz, 0: non-support, 1: support
* BIT2 - 80MHz, 0: non-support, 1: support
* BIT3 - 160MHz, 0: non-support, 1: support */
int rtw_short_gi = 0xf;
/* BIT0: Enable VHT LDPC Rx, BIT1: Enable VHT LDPC Tx, BIT4: Enable HT LDPC Rx, BIT5: Enable HT LDPC Tx */
int rtw_ldpc_cap = 0x33;
/* BIT0: Enable VHT STBC Rx, BIT1: Enable VHT STBC Tx
* BIT4: Enable HT STBC Rx, BIT5: Enable HT STBC Tx
* BIT8: Enable HE STBC Rx, BIT9: Enable HE STBC Rx(greater than 80M)
* BIT10: Enable HE STBC Tx, BIT11: Enable HE STBC Tx(greater than 80M)
*/
int rtw_stbc_cap = 0x133;
#endif /* CONFIG_80211N_HT */
#ifdef CONFIG_BEAMFORMING
/*
* BIT0: Enable VHT SU Beamformer
* BIT1: Enable VHT SU Beamformee
* BIT2: Enable VHT MU Beamformer, depend on VHT SU Beamformer
* BIT3: Enable VHT MU Beamformee, depend on VHT SU Beamformee
* BIT4: Enable HT Beamformer
* BIT5: Enable HT Beamformee
* BIT6: Enable HE SU Beamformer
* BIT7: Enable HE SU Beamformee
* BIT8: Enable HE MU Beamformer
* BIT9: Enable HE MU Beamformee
*/
int rtw_beamform_cap = BIT(1) | BIT(7); /* For sw role BF cap. */
int rtw_sw_proto_bf_cap_phy0 = BIT(1) | BIT(7);
int rtw_sw_proto_bf_cap_phy1 = BIT(1) | BIT(7);
int rtw_dyn_txbf = 1;
int rtw_bfer_rf_number = 0; /*BeamformerCapRfNum Rf path number, 0 for auto, others for manual*/
int rtw_bfee_rf_number = 0; /*BeamformeeCapRfNum Rf path number, 0 for auto, others for manual*/
#endif
#ifdef CONFIG_80211AC_VHT
int rtw_vht_enable = 1; /* 0:disable, 1:enable, 2:force auto enable */
module_param(rtw_vht_enable, int, 0644);
int rtw_vht_24g_enable = 0; /* 0:disable, 1:enable */
module_param(rtw_vht_24g_enable, int, 0644);
int rtw_ampdu_factor = 7;
uint rtw_vht_rx_mcs_map = 0xaaaa;
module_param(rtw_vht_rx_mcs_map, uint, 0644);
MODULE_PARM_DESC(rtw_vht_rx_mcs_map, "VHT RX MCS map");
#endif /* CONFIG_80211AC_VHT */
#ifdef CONFIG_80211AX_HE
int rtw_he_enable = 1; /* 0:disable, 1:enable, 2:force auto enable */
module_param(rtw_he_enable, int, 0644);
#endif
int rtw_lowrate_two_xmit = 1;/* Use 2 path Tx to transmit MCS0~7 and legacy mode */
/* 0: not check in watch dog, 1: check in watch dog */
int rtw_check_hw_status = 0;
int rtw_low_power = 0;
int rtw_wifi_spec = 0;
#ifdef CONFIG_SPECIAL_RF_PATH /* configure Nss/xTxR IC to 1ss/1T1R */
int rtw_rf_path = RF_1T1R;
int rtw_tx_nss = 1;
int rtw_rx_nss = 1;
#else
int rtw_rf_path = RF_TYPE_MAX;
int rtw_tx_nss = 0;
int rtw_rx_nss = 0;
#endif
module_param(rtw_rf_path, int, 0644);
module_param(rtw_tx_nss, int, 0644);
module_param(rtw_rx_nss, int, 0644);
#ifdef CONFIG_REGD_SRC_FROM_OS
static uint rtw_regd_src = CONFIG_RTW_REGD_SRC;
module_param(rtw_regd_src, uint, 0644);
MODULE_PARM_DESC(rtw_regd_src, "The default regd source selection, 0:Realtek defined, 1: OS");
#endif
char rtw_country_unspecified[] = {0xFF, 0xFF, 0x00};
char *rtw_country_code = rtw_country_unspecified;
module_param(rtw_country_code, charp, 0644);
MODULE_PARM_DESC(rtw_country_code, "The default country code (in alpha2)");
uint rtw_channel_plan = CONFIG_RTW_CHPLAN;
module_param(rtw_channel_plan, uint, 0644);
MODULE_PARM_DESC(rtw_channel_plan, "The default chplan ID when rtw_alpha2 is not specified or valid");
static uint rtw_excl_chs[MAX_CHANNEL_NUM_2G_5G] = CONFIG_RTW_EXCL_CHS;
static int rtw_excl_chs_num = 0;
module_param_array(rtw_excl_chs, uint, &rtw_excl_chs_num, 0644);
MODULE_PARM_DESC(rtw_excl_chs, "exclusive channel array");
#if CONFIG_IEEE80211_BAND_6GHZ
uint rtw_channel_plan_6g = CONFIG_RTW_CHPLAN_6G;
module_param(rtw_channel_plan_6g, uint, 0644);
MODULE_PARM_DESC(rtw_channel_plan_6g, "The default chplan_6g ID when rtw_alpha2 is not specified or valid");
static uint rtw_excl_chs_6g[MAX_CHANNEL_NUM_6G] = CONFIG_RTW_EXCL_CHS_6G;
static int rtw_excl_chs_6g_num = 0;
module_param_array(rtw_excl_chs_6g, uint, &rtw_excl_chs_6g_num, 0644);
MODULE_PARM_DESC(rtw_excl_chs_6g, "exclusive channel array");
#endif /* CONFIG_IEEE80211_BAND_6GHZ */
#ifdef CONFIG_80211D
static uint rtw_country_ie_slave_en_role = CONFIG_RTW_COUNTRY_IE_SLAVE_EN_ROLE;
module_param(rtw_country_ie_slave_en_role, uint, 0644);
MODULE_PARM_DESC(rtw_country_ie_slave_en_role, "802.11d country IE slave enable role: BIT0:pure STA mode, BIT1:P2P group client");
static uint rtw_country_ie_slave_en_ifbmp = CONFIG_RTW_COUNTRY_IE_SLAVE_EN_IFBMP;
module_param(rtw_country_ie_slave_en_ifbmp, uint, 0644);
MODULE_PARM_DESC(rtw_country_ie_slave_en_ifbmp, "802.11d country IE slave enable iface bitmap");
#endif
/*if concurrent softap + p2p(GO) is needed, this param lets p2p response full channel list.
But Softap must be SHUT DOWN once P2P decide to set up connection and become a GO.*/
#ifdef CONFIG_FULL_CH_IN_P2P_HANDSHAKE
int rtw_full_ch_in_p2p_handshake = 1; /* reply full channel list*/
#else
int rtw_full_ch_in_p2p_handshake = 0; /* reply only softap channel*/
#endif
#ifdef CONFIG_BTC
int rtw_btcoex_enable = 2;
module_param(rtw_btcoex_enable, int, 0644);
MODULE_PARM_DESC(rtw_btcoex_enable, "BT co-existence on/off, 0:off, 1:on, 2:by efuse");
int rtw_ant_num = 0;
module_param(rtw_ant_num, int, 0644);
MODULE_PARM_DESC(rtw_ant_num, "Antenna number setting, 0:by efuse");
int rtw_bt_iso = 2;/* 0:Low, 1:High, 2:From Efuse */
int rtw_bt_sco = 3;/* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter, 4.Busy, 5.OtherBusy */
int rtw_bt_ampdu = 1 ; /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
#endif /* CONFIG_BTC */
int rtw_AcceptAddbaReq = _TRUE;/* 0:Reject AP's Add BA req, 1:Accept AP's Add BA req. */
int rtw_antdiv_cfg = 2; /* 0:OFF , 1:ON, 2:decide by Efuse config */
int rtw_antdiv_type = 0; /* 0:decide by efuse 1: for 88EE, 1Tx and 1RxCG are diversity.(2 Ant with SPDT), 2: for 88EE, 1Tx and 2Rx are diversity.( 2 Ant, Tx and RxCG are both on aux port, RxCS is on main port ), 3: for 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port) */
int rtw_drv_ant_band_switch = 1; /* 0:OFF , 1:ON, Driver control antenna band switch*/
int rtw_single_ant_path; /*0:main ant , 1:aux ant , Fixed single antenna path, default main ant*/
/* 0: doesn't switch, 1: switch to usb 3.0 , 2: switch to usb 2.0 */
int rtw_switch_usb_mode = 0;
#ifdef CONFIG_HW_PWRP_DETECTION
int rtw_hwpwrp_detect = 1;
#else
int rtw_hwpwrp_detect = 0; /* HW power ping detect 0:disable , 1:enable */
#endif
#ifdef CONFIG_USB_HCI
int rtw_hw_wps_pbc = 1;
#else
int rtw_hw_wps_pbc = 0;
#endif
#ifdef CONFIG_PCI_ASPM
/* CLK_REQ:BIT0 L0s:BIT1 ASPM_L1:BIT2 L1Off:BIT3*/
int rtw_pci_aspm_enable = 0x5;
#else
int rtw_pci_aspm_enable;
#endif
/*
* BIT [15:12] mask of ps mode
* BIT [11:8] val of ps mode
* BIT [7:4] mask of perf mode
* BIT [3:0] val of perf mode
*
* L0s:BIT[+0] L1:BIT[+1]
*
* 0x0030: change value only if perf mode
* 0x3300: change value only if ps mode
* 0x3330: change value in both perf and ps mode
*/
#ifdef CONFIG_PCI_DYNAMIC_ASPM
#ifdef CONFIG_PCI_ASPM
int rtw_pci_dynamic_aspm_linkctrl = 0x3330;
#else
int rtw_pci_dynamic_aspm_linkctrl = 0x0030;
#endif
#else
int rtw_pci_dynamic_aspm_linkctrl = 0x0000;
#endif
module_param(rtw_pci_dynamic_aspm_linkctrl, int, 0644);
#ifdef CONFIG_QOS_OPTIMIZATION
int rtw_qos_opt_enable = 1; /* 0: disable,1:enable */
#else
int rtw_qos_opt_enable = 0; /* 0: disable,1:enable */
#endif
module_param(rtw_qos_opt_enable, int, 0644);
#ifdef CONFIG_RTW_ACS
int rtw_acs_auto_scan = 0; /*0:disable, 1:enable*/
module_param(rtw_acs_auto_scan, int, 0644);
int rtw_acs = 1;
module_param(rtw_acs, int, 0644);
#endif
char *ifname = "wlan%d";
module_param(ifname, charp, 0644);
MODULE_PARM_DESC(ifname, "The default name to allocate for first interface");
#ifdef CONFIG_PLATFORM_ANDROID
char *if2name = "p2p%d";
#else /* CONFIG_PLATFORM_ANDROID */
char *if2name = "wlan%d";
#endif /* CONFIG_PLATFORM_ANDROID */
module_param(if2name, charp, 0644);
MODULE_PARM_DESC(if2name, "The default name to allocate for second interface");
char *rtw_initmac = 0; /* temp mac address if users want to use instead of the mac address in Efuse */
#ifdef CONFIG_CONCURRENT_MODE
#if (CONFIG_IFACE_NUMBER > 2)
int rtw_virtual_iface_num = CONFIG_IFACE_NUMBER - 1;
module_param(rtw_virtual_iface_num, int, 0644);
#else
int rtw_virtual_iface_num = 1;
#endif
#if defined(CONFIG_CONCURRENT_MODE) && !RTW_P2P_GROUP_INTERFACE
#ifdef CONFIG_P2P
#ifdef CONFIG_SEL_P2P_IFACE
int rtw_sel_p2p_iface = CONFIG_SEL_P2P_IFACE;
#else
int rtw_sel_p2p_iface = (CONFIG_RTW_STATIC_NDEV_NUM - 1);
#endif
module_param(rtw_sel_p2p_iface, int, 0644);
#endif
#endif
#ifdef CONFIG_IGNORE_GO_AND_LOW_RSSI_IN_SCAN_LIST
int rtw_ignore_go_in_scan = 1;
uint rtw_ignore_low_rssi_in_scan = 30;
module_param(rtw_ignore_go_in_scan, int, 0644);
module_param(rtw_ignore_low_rssi_in_scan, uint, 0644);
#endif /*CONFIG_IGNORE_GO_AND_LOW_RSSI_IN_SCAN_LIST*/
#endif
/* affect ap/go cw only so far , 0 is no change*/
uint rtw_vo_edca = 0;
module_param(rtw_vo_edca, uint, 0644);
#ifdef CONFIG_AP_MODE
u8 rtw_bmc_tx_rate = MGN_UNKNOWN;
#if CONFIG_RTW_AP_DATA_BMC_TO_UC
int rtw_ap_src_b2u_flags = CONFIG_RTW_AP_SRC_B2U_FLAGS;
module_param(rtw_ap_src_b2u_flags, int, 0644);
int rtw_ap_fwd_b2u_flags = CONFIG_RTW_AP_FWD_B2U_FLAGS;
module_param(rtw_ap_fwd_b2u_flags, int, 0644);
#endif /* CONFIG_RTW_AP_DATA_BMC_TO_UC */
#endif /* CONFIG_AP_MODE */
#ifdef CONFIG_RTW_MESH
#if CONFIG_RTW_MESH_DATA_BMC_TO_UC
int rtw_msrc_b2u_flags = CONFIG_RTW_MSRC_B2U_FLAGS;
module_param(rtw_msrc_b2u_flags, int, 0644);
int rtw_mfwd_b2u_flags = CONFIG_RTW_MFWD_B2U_FLAGS;
module_param(rtw_mfwd_b2u_flags, int, 0644);
#endif /* CONFIG_RTW_MESH_DATA_BMC_TO_UC */
#endif /* CONFIG_RTW_MESH */
#ifdef RTW_WOW_STA_MIX
int rtw_wowlan_sta_mix_mode = 1;
#else
int rtw_wowlan_sta_mix_mode = 0;
#endif
module_param(rtw_wowlan_sta_mix_mode, int, 0644);
module_param(rtw_pwrtrim_enable, int, 0644);
module_param(rtw_initmac, charp, 0644);
module_param(rtw_chip_version, int, 0644);
module_param(rtw_rfintfs, int, 0644);
module_param(rtw_lbkmode, int, 0644);
module_param(rtw_network_mode, int, 0644);
module_param(rtw_channel, int, 0644);
module_param(rtw_mp_mode, int, 0644);
module_param(rtw_wmm_enable, int, 0644);
#ifdef CONFIG_WMMPS_STA
module_param(rtw_uapsd_max_sp, int, 0644);
module_param(rtw_uapsd_ac_enable, int, 0644);
module_param(rtw_wmm_smart_ps, int, 0644);
#endif /* CONFIG_WMMPS_STA */
module_param(rtw_vrtl_carrier_sense, int, 0644);
module_param(rtw_vcs_type, int, 0644);
module_param(rtw_hw_rts_en, int, 0644);
module_param(rtw_busy_thresh, int, 0644);
#ifdef CONFIG_80211N_HT
module_param(rtw_ht_enable, int, 0644);
module_param(rtw_bw_mode, int, 0644);
module_param(rtw_ampdu_enable, int, 0644);
module_param(rtw_stbc_cap, int, 0644);
module_param(rtw_rx_ampdu_amsdu, int, 0644);
module_param(rtw_tx_ampdu_amsdu, int, 0644);
module_param(rtw_quick_addba_req, int, 0644);
#endif /* CONFIG_80211N_HT */
#ifdef CONFIG_BEAMFORMING
module_param(rtw_beamform_cap, int, 0644);
module_param(rtw_sw_proto_bf_cap_phy0, int, 0644);
module_param(rtw_sw_proto_bf_cap_phy1, int, 0644);
module_param(rtw_dyn_txbf, int, 0644);
#endif
module_param(rtw_lowrate_two_xmit, int, 0644);
module_param(rtw_power_mgnt, int, 0644);
module_param(rtw_smart_ps, int, 0644);
module_param(rtw_low_power, int, 0644);
module_param(rtw_wifi_spec, int, 0644);
module_param(rtw_full_ch_in_p2p_handshake, int, 0644);
module_param(rtw_antdiv_cfg, int, 0644);
module_param(rtw_antdiv_type, int, 0644);
module_param(rtw_drv_ant_band_switch, int, 0644);
module_param(rtw_single_ant_path, int, 0644);
module_param(rtw_switch_usb_mode, int, 0644);
module_param(rtw_hwpwrp_detect, int, 0644);
module_param(rtw_hw_wps_pbc, int, 0644);
module_param(rtw_check_hw_status, int, 0644);
#ifdef CONFIG_PCI_HCI
module_param(rtw_pci_aspm_enable, int, 0644);
#endif
#ifdef CONFIG_TX_EARLY_MODE
module_param(rtw_early_mode, int, 0644);
#endif
#ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
char *rtw_adaptor_info_caching_file_path = "/data/misc/wifi/rtw_cache";
module_param(rtw_adaptor_info_caching_file_path, charp, 0644);
MODULE_PARM_DESC(rtw_adaptor_info_caching_file_path, "The path of adapter info cache file");
#endif /* CONFIG_ADAPTOR_INFO_CACHING_FILE */
#ifdef CONFIG_LAYER2_ROAMING
uint rtw_max_roaming_times = 2;
module_param(rtw_max_roaming_times, uint, 0644);
MODULE_PARM_DESC(rtw_max_roaming_times, "The max roaming times to try");
#endif /* CONFIG_LAYER2_ROAMING */
#ifdef CONFIG_FILE_FWIMG
char *rtw_fw_file_path = CONFIG_FIRMWARE_PATH; /* "/system/etc/firmware/rtlwifi/FW_NIC.BIN"; */
module_param(rtw_fw_file_path, charp, 0644);
MODULE_PARM_DESC(rtw_fw_file_path, "The path of fw image");
char *rtw_fw_wow_file_path = "/system/etc/firmware/rtlwifi/FW_WoWLAN.BIN";
module_param(rtw_fw_wow_file_path, charp, 0644);
MODULE_PARM_DESC(rtw_fw_wow_file_path, "The path of fw for Wake on Wireless image");
#ifdef CONFIG_MP_INCLUDED
char *rtw_fw_mp_bt_file_path = "";
module_param(rtw_fw_mp_bt_file_path, charp, 0644);
MODULE_PARM_DESC(rtw_fw_mp_bt_file_path, "The path of fw for MP-BT image");
#endif /* CONFIG_MP_INCLUDED */
#endif /* CONFIG_FILE_FWIMG */
uint rtw_hiq_filter = CONFIG_RTW_HIQ_FILTER;
module_param(rtw_hiq_filter, uint, 0644);
MODULE_PARM_DESC(rtw_hiq_filter, "0:allow all, 1:allow special, 2:deny all");
uint rtw_adaptivity_en = CONFIG_RTW_ADAPTIVITY_EN;
module_param(rtw_adaptivity_en, uint, 0644);
MODULE_PARM_DESC(rtw_adaptivity_en, "0:disable, 1:enable, 2:auto");
uint rtw_adaptivity_mode = CONFIG_RTW_ADAPTIVITY_MODE;
module_param(rtw_adaptivity_mode, uint, 0644);
MODULE_PARM_DESC(rtw_adaptivity_mode, "0:normal, 1:carrier sense");
int rtw_adaptivity_th_l2h_ini = CONFIG_RTW_ADAPTIVITY_TH_L2H_INI;
module_param(rtw_adaptivity_th_l2h_ini, int, 0644);
MODULE_PARM_DESC(rtw_adaptivity_th_l2h_ini, "th_l2h_ini for Adaptivity");
int rtw_adaptivity_th_edcca_hl_diff = CONFIG_RTW_ADAPTIVITY_TH_EDCCA_HL_DIFF;
module_param(rtw_adaptivity_th_edcca_hl_diff, int, 0644);
MODULE_PARM_DESC(rtw_adaptivity_th_edcca_hl_diff, "th_edcca_hl_diff for Adaptivity");
#ifdef CONFIG_DFS_MASTER
uint rtw_dfs_region_domain = CONFIG_RTW_DFS_REGION_DOMAIN;
module_param(rtw_dfs_region_domain, uint, 0644);
MODULE_PARM_DESC(rtw_dfs_region_domain, "0:NONE, 1:FCC, 2:MKK, 3:ETSI");
#endif
uint rtw_amsdu_mode = RTW_AMSDU_MODE_NON_SPP;
module_param(rtw_amsdu_mode, uint, 0644);
MODULE_PARM_DESC(rtw_amsdu_mode, "0:non-spp, 1:spp, 2:all drop");
uint rtw_amplifier_type_2g = CONFIG_RTW_AMPLIFIER_TYPE_2G;
module_param(rtw_amplifier_type_2g, uint, 0644);
MODULE_PARM_DESC(rtw_amplifier_type_2g, "BIT3:2G ext-PA, BIT4:2G ext-LNA");
uint rtw_amplifier_type_5g = CONFIG_RTW_AMPLIFIER_TYPE_5G;
module_param(rtw_amplifier_type_5g, uint, 0644);
MODULE_PARM_DESC(rtw_amplifier_type_5g, "BIT6:5G ext-PA, BIT7:5G ext-LNA");
uint rtw_rfe_type = CONFIG_RTW_RFE_TYPE;
module_param(rtw_rfe_type, uint, 0644);
MODULE_PARM_DESC(rtw_rfe_type, "default init value:64");
#ifdef CONFIG_DBCC_SUPPORT
/*0:disable ,1: enable*/
int rtw_dbcc_en = 0;
module_param(rtw_dbcc_en, int, 0644);
MODULE_PARM_DESC(rtw_dbcc_en, "0:Disable, 1:Enable DBCC");
#endif
uint rtw_powertracking_type = 64;
module_param(rtw_powertracking_type, uint, 0644);
MODULE_PARM_DESC(rtw_powertracking_type, "default init value:64");
uint rtw_GLNA_type = CONFIG_RTW_GLNA_TYPE;
module_param(rtw_GLNA_type, uint, 0644);
MODULE_PARM_DESC(rtw_GLNA_type, "default init value:0");
uint rtw_TxBBSwing_2G = 0xFF;
module_param(rtw_TxBBSwing_2G, uint, 0644);
MODULE_PARM_DESC(rtw_TxBBSwing_2G, "default init value:0xFF");
uint rtw_TxBBSwing_5G = 0xFF;
module_param(rtw_TxBBSwing_5G, uint, 0644);
MODULE_PARM_DESC(rtw_TxBBSwing_5G, "default init value:0xFF");
uint rtw_OffEfuseMask = 0;
module_param(rtw_OffEfuseMask, uint, 0644);
MODULE_PARM_DESC(rtw_OffEfuseMask, "default open Efuse Mask value:0");
uint rtw_FileMaskEfuse = 0;
module_param(rtw_FileMaskEfuse, uint, 0644);
MODULE_PARM_DESC(rtw_FileMaskEfuse, "default drv Mask Efuse value:0");
uint rtw_rxgain_offset_2g = 0;
module_param(rtw_rxgain_offset_2g, uint, 0644);
MODULE_PARM_DESC(rtw_rxgain_offset_2g, "default RF Gain 2G Offset value:0");
uint rtw_rxgain_offset_5gl = 0;
module_param(rtw_rxgain_offset_5gl, uint, 0644);
MODULE_PARM_DESC(rtw_rxgain_offset_5gl, "default RF Gain 5GL Offset value:0");
uint rtw_rxgain_offset_5gm = 0;
module_param(rtw_rxgain_offset_5gm, uint, 0644);
MODULE_PARM_DESC(rtw_rxgain_offset_5gm, "default RF Gain 5GM Offset value:0");
uint rtw_rxgain_offset_5gh = 0;
module_param(rtw_rxgain_offset_5gh, uint, 0644);
MODULE_PARM_DESC(rtw_rxgain_offset_5gm, "default RF Gain 5GL Offset value:0");
uint rtw_pll_ref_clk_sel = CONFIG_RTW_PLL_REF_CLK_SEL;
module_param(rtw_pll_ref_clk_sel, uint, 0644);
MODULE_PARM_DESC(rtw_pll_ref_clk_sel, "force pll_ref_clk_sel, 0xF:use autoload value");
int rtw_tx_pwr_by_rate = CONFIG_TXPWR_BY_RATE_EN;
module_param(rtw_tx_pwr_by_rate, int, 0644);
MODULE_PARM_DESC(rtw_tx_pwr_by_rate, "0:Disable, 1:Enable, 2: Depend on efuse");
#if CONFIG_TXPWR_LIMIT
int rtw_tx_pwr_lmt_enable = CONFIG_TXPWR_LIMIT_EN;
module_param(rtw_tx_pwr_lmt_enable, int, 0644);
MODULE_PARM_DESC(rtw_tx_pwr_lmt_enable, "0:Disable, 1:Enable, 2: Depend on efuse");
#endif
static int rtw_target_tx_pwr_2g_a[RATE_SECTION_NUM] = CONFIG_RTW_TARGET_TX_PWR_2G_A;
static int rtw_target_tx_pwr_2g_a_num = 0;
module_param_array(rtw_target_tx_pwr_2g_a, int, &rtw_target_tx_pwr_2g_a_num, 0644);
MODULE_PARM_DESC(rtw_target_tx_pwr_2g_a, "2.4G target tx power (unit:dBm) of RF path A for each rate section, should match the real calibrate power, -1: undefined");
static int rtw_target_tx_pwr_2g_b[RATE_SECTION_NUM] = CONFIG_RTW_TARGET_TX_PWR_2G_B;
static int rtw_target_tx_pwr_2g_b_num = 0;
module_param_array(rtw_target_tx_pwr_2g_b, int, &rtw_target_tx_pwr_2g_b_num, 0644);
MODULE_PARM_DESC(rtw_target_tx_pwr_2g_b, "2.4G target tx power (unit:dBm) of RF path B for each rate section, should match the real calibrate power, -1: undefined");
static int rtw_target_tx_pwr_2g_c[RATE_SECTION_NUM] = CONFIG_RTW_TARGET_TX_PWR_2G_C;
static int rtw_target_tx_pwr_2g_c_num = 0;
module_param_array(rtw_target_tx_pwr_2g_c, int, &rtw_target_tx_pwr_2g_c_num, 0644);
MODULE_PARM_DESC(rtw_target_tx_pwr_2g_c, "2.4G target tx power (unit:dBm) of RF path C for each rate section, should match the real calibrate power, -1: undefined");
static int rtw_target_tx_pwr_2g_d[RATE_SECTION_NUM] = CONFIG_RTW_TARGET_TX_PWR_2G_D;
static int rtw_target_tx_pwr_2g_d_num = 0;
module_param_array(rtw_target_tx_pwr_2g_d, int, &rtw_target_tx_pwr_2g_d_num, 0644);
MODULE_PARM_DESC(rtw_target_tx_pwr_2g_d, "2.4G target tx power (unit:dBm) of RF path D for each rate section, should match the real calibrate power, -1: undefined");
#if CONFIG_IEEE80211_BAND_5GHZ
static int rtw_target_tx_pwr_5g_a[RATE_SECTION_NUM - 1] = CONFIG_RTW_TARGET_TX_PWR_5G_A;
static int rtw_target_tx_pwr_5g_a_num = 0;
module_param_array(rtw_target_tx_pwr_5g_a, int, &rtw_target_tx_pwr_5g_a_num, 0644);
MODULE_PARM_DESC(rtw_target_tx_pwr_5g_a, "5G target tx power (unit:dBm) of RF path A for each rate section, should match the real calibrate power, -1: undefined");
static int rtw_target_tx_pwr_5g_b[RATE_SECTION_NUM - 1] = CONFIG_RTW_TARGET_TX_PWR_5G_B;
static int rtw_target_tx_pwr_5g_b_num = 0;
module_param_array(rtw_target_tx_pwr_5g_b, int, &rtw_target_tx_pwr_5g_b_num, 0644);
MODULE_PARM_DESC(rtw_target_tx_pwr_5g_b, "5G target tx power (unit:dBm) of RF path B for each rate section, should match the real calibrate power, -1: undefined");
static int rtw_target_tx_pwr_5g_c[RATE_SECTION_NUM - 1] = CONFIG_RTW_TARGET_TX_PWR_5G_C;
static int rtw_target_tx_pwr_5g_c_num = 0;
module_param_array(rtw_target_tx_pwr_5g_c, int, &rtw_target_tx_pwr_5g_c_num, 0644);
MODULE_PARM_DESC(rtw_target_tx_pwr_5g_c, "5G target tx power (unit:dBm) of RF path C for each rate section, should match the real calibrate power, -1: undefined");
static int rtw_target_tx_pwr_5g_d[RATE_SECTION_NUM - 1] = CONFIG_RTW_TARGET_TX_PWR_5G_D;
static int rtw_target_tx_pwr_5g_d_num = 0;
module_param_array(rtw_target_tx_pwr_5g_d, int, &rtw_target_tx_pwr_5g_d_num, 0644);
MODULE_PARM_DESC(rtw_target_tx_pwr_5g_d, "5G target tx power (unit:dBm) of RF path D for each rate section, should match the real calibrate power, -1: undefined");
#endif /* CONFIG_IEEE80211_BAND_5GHZ */
#ifdef CONFIG_RTW_TX_NPATH_EN
/*0:disable ,1: 2path*/
int rtw_tx_npath_enable = 1;
module_param(rtw_tx_npath_enable, int, 0644);
MODULE_PARM_DESC(rtw_tx_npath_enable, "0:Disable, 1:TX-2PATH");
#endif
#ifdef CONFIG_RTW_PATH_DIV
/*0:disable ,1: path diversity*/
int rtw_path_div_enable = 1;
module_param(rtw_path_div_enable, int, 0644);
MODULE_PARM_DESC(rtw_path_div_enable, "0:Disable, 1:Enable path diversity");
#endif
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
char *rtw_phy_file_path = REALTEK_CONFIG_PATH;
module_param(rtw_phy_file_path, charp, 0644);
MODULE_PARM_DESC(rtw_phy_file_path, "The path of phy parameter");
/* PHY FILE Bit Map
* BIT0 - MAC_REG, 0: non-support, 1: support
* BIT1 - BB_PHY_REG, 0: non-support, 1: support
* BIT2 - BB_PHY_REG_MP, 0: non-support, 1: support
* BIT3 - RF_RADIO, 0: non-support, 1: support
* BIT4 - RF_TXPWR_BY_RATE, 0: non-support, 1: support
* BIT5 - RF_TXPWR_TRACK, 0: non-support, 1: support
* BIT6 - RF_TXPWR_LMT, 0: non-support, 1: support
* BIT7 - RF_TXPWR_LMT_RU, 0: non-support, 1: support*/
int rtw_load_phy_file = (BIT1 | BIT3);
module_param(rtw_load_phy_file, int, 0644);
MODULE_PARM_DESC(rtw_load_phy_file, "PHY File Bit Map");
int rtw_decrypt_phy_file = 0;
module_param(rtw_decrypt_phy_file, int, 0644);
MODULE_PARM_DESC(rtw_decrypt_phy_file, "Enable Decrypt PHY File");
#endif
uint rtw_phydm_ability = 0xffffffff;
module_param(rtw_phydm_ability, uint, 0644);
uint rtw_halrf_ability = 0xffffffff;
module_param(rtw_halrf_ability, uint, 0644);
#ifdef CONFIG_RTW_MESH
uint rtw_peer_alive_based_preq = 1;
module_param(rtw_peer_alive_based_preq, uint, 0644);
MODULE_PARM_DESC(rtw_peer_alive_based_preq,
"On demand PREQ will reference peer alive status. 0: Off, 1: On");
#endif
#ifdef CONFIG_RTW_NAPI
/*following setting should define NAPI in Makefile
enable napi only = 1, disable napi = 0*/
int rtw_en_napi = 1;
module_param(rtw_en_napi, int, 0644);
#ifdef CONFIG_RTW_NAPI_DYNAMIC
int rtw_napi_threshold = 100; /* unit: Mbps */
module_param(rtw_napi_threshold, int, 0644);
#endif /* CONFIG_RTW_NAPI_DYNAMIC */
#ifdef CONFIG_RTW_GRO
/*following setting should define GRO in Makefile
enable gro = 1, disable gro = 0*/
int rtw_en_gro = 1;
module_param(rtw_en_gro, int, 0644);
#endif /* CONFIG_RTW_GRO */
#endif /* CONFIG_RTW_NAPI */
#ifdef RTW_IQK_FW_OFFLOAD
int rtw_iqk_fw_offload = 1;
#else
int rtw_iqk_fw_offload;
#endif /* RTW_IQK_FW_OFFLOAD */
module_param(rtw_iqk_fw_offload, int, 0644);
#ifdef RTW_CHANNEL_SWITCH_OFFLOAD
int rtw_ch_switch_offload = 0;
#else
int rtw_ch_switch_offload;
#endif /* RTW_CHANNEL_SWITCH_OFFLOAD */
module_param(rtw_ch_switch_offload, int, 0644);
#ifdef CONFIG_TDLS
int rtw_en_tdls = 1;
module_param(rtw_en_tdls, int, 0644);
#endif
#ifdef CONFIG_FW_OFFLOAD_PARAM_INIT
int rtw_fw_param_init = 1;
module_param(rtw_fw_param_init, int, 0644);
#endif
#ifdef CONFIG_TDMADIG
int rtw_tdmadig_en = 1;
/*
1:MODE_PERFORMANCE
2:MODE_COVERAGE
*/
int rtw_tdmadig_mode = 1;
int rtw_dynamic_tdmadig = 0;
module_param(rtw_tdmadig_en, int, 0644);
module_param(rtw_tdmadig_mode, int, 0644);
module_param(rtw_dynamic_tdmadig, int, 0644);
#endif/*CONFIG_TDMADIG*/
/*dynamic RRSR default enable*/
int rtw_en_dyn_rrsr = 1;
int rtw_rrsr_value = 0xFFFFFFFF;
module_param(rtw_en_dyn_rrsr, int, 0644);
module_param(rtw_rrsr_value, int, 0644);
#ifdef CONFIG_WOWLAN
/*
* 0: disable, 1: enable
*/
uint rtw_wow_enable = 1;
module_param(rtw_wow_enable, uint, 0644);
/*
* bit[0]: magic packet wake up
* bit[1]: unucast packet(HW/FW unuicast)
* bit[2]: deauth wake up
*/
uint rtw_wakeup_event = RTW_WAKEUP_EVENT;
module_param(rtw_wakeup_event, uint, 0644);
/*
* 0: common WOWLAN
* bit[0]: disable BB RF
* bit[1]: For wireless remote controller with or without connection
*/
uint rtw_suspend_type = RTW_SUSPEND_TYPE;
module_param(rtw_suspend_type, uint, 0644);
#endif
#if defined(ROKU_PRIVATE) && defined(CONFIG_P2P)
int rtw_go_hidden_ssid_mode = ALL_HIDE_SSID;
module_param(rtw_go_hidden_ssid_mode, int, 0644);
#endif
#ifdef RTW_BUSY_DENY_SCAN
uint rtw_scan_interval_thr = BUSY_TRAFFIC_SCAN_DENY_PERIOD;
module_param(rtw_scan_interval_thr, uint, 0644);
MODULE_PARM_DESC(rtw_scan_interval_thr, "Threshold used to judge if scan " \
"request comes from scan UI, unit is ms.");
#endif /* RTW_BUSY_DENY_SCAN */
#ifdef CONFIG_HW_HDR_CONVERSION
int rtw_hw_hdr_conv = true;
#else
int rtw_hw_hdr_conv = false;
#endif
#ifdef CONFIG_MCC_MODE
int rtw_mcc_en = _TRUE;
module_param(rtw_mcc_en, int, 0644);
#endif
#ifdef CONFIG_RTW_MULTI_AP
static int rtw_unassoc_sta_mode_of_stype[UNASOC_STA_SRC_NUM] = CONFIG_RTW_UNASOC_STA_MODE_OF_STYPE;
static int rtw_unassoc_sta_mode_of_stype_num = 0;
module_param_array(rtw_unassoc_sta_mode_of_stype, int, &rtw_unassoc_sta_mode_of_stype_num, 0644);
uint rtw_max_unassoc_sta_cnt = 0;
module_param(rtw_max_unassoc_sta_cnt, uint, 0644);
#endif
#ifdef CONFIG_IOCTL_CFG80211
uint rtw_roch_min_home_dur = 1500;
uint rtw_roch_max_away_dur = 500;
uint rtw_roch_extend_dur = 500;
module_param(rtw_roch_min_home_dur, uint, 0644);
module_param(rtw_roch_max_away_dur, uint, 0644);
module_param(rtw_roch_extend_dur, uint, 0644);
#endif
static void rtw_regsty_load_target_tx_power(struct registry_priv *regsty)
{
int path, rs;
int *target_tx_pwr;
for (path = RF_PATH_A; path < RF_PATH_MAX; path++) {
if (path == RF_PATH_A)
target_tx_pwr = rtw_target_tx_pwr_2g_a;
else if (path == RF_PATH_B)
target_tx_pwr = rtw_target_tx_pwr_2g_b;
else if (path == RF_PATH_C)
target_tx_pwr = rtw_target_tx_pwr_2g_c;
else if (path == RF_PATH_D)
target_tx_pwr = rtw_target_tx_pwr_2g_d;
for (rs = CCK; rs < RATE_SECTION_NUM; rs++)
regsty->target_tx_pwr_2g[path][rs] = target_tx_pwr[rs];
}
#if CONFIG_IEEE80211_BAND_5GHZ
for (path = RF_PATH_A; path < RF_PATH_MAX; path++) {
if (path == RF_PATH_A)
target_tx_pwr = rtw_target_tx_pwr_5g_a;
else if (path == RF_PATH_B)
target_tx_pwr = rtw_target_tx_pwr_5g_b;
else if (path == RF_PATH_C)
target_tx_pwr = rtw_target_tx_pwr_5g_c;
else if (path == RF_PATH_D)
target_tx_pwr = rtw_target_tx_pwr_5g_d;
for (rs = OFDM; rs < RATE_SECTION_NUM; rs++)
regsty->target_tx_pwr_5g[path][rs - 1] = target_tx_pwr[rs - 1];
}
#endif /* CONFIG_IEEE80211_BAND_5GHZ */
}
static inline void rtw_regsty_load_chplan(struct registry_priv *regsty)
{
u16 chplan = RTW_CHPLAN_UNSPECIFIED;
u16 chplan_6g = RTW_CHPLAN_6G_UNSPECIFIED;
chplan = rtw_channel_plan;
#if CONFIG_IEEE80211_BAND_6GHZ
chplan_6g = rtw_channel_plan_6g;
#endif
rtw_chplan_ioctl_input_mapping(&chplan, &chplan_6g);
regsty->channel_plan = chplan;
#if CONFIG_IEEE80211_BAND_6GHZ
regsty->channel_plan_6g = chplan_6g;
#endif
}
static inline void rtw_regsty_load_alpha2(struct registry_priv *regsty)
{
if (strlen(rtw_country_code) != 2
|| (!IS_ALPHA2_WORLDWIDE(rtw_country_code)
&& (is_alpha(rtw_country_code[0]) == _FALSE
|| is_alpha(rtw_country_code[1]) == _FALSE)
)
) {
if (rtw_country_code != rtw_country_unspecified)
RTW_ERR("%s discard rtw_country_code not in alpha2 or \"%s\"\n", __func__, WORLDWIDE_ALPHA2);
SET_UNSPEC_ALPHA2(regsty->alpha2);
} else
_rtw_memcpy(regsty->alpha2, rtw_country_code, 2);
}
static inline void rtw_regsty_load_excl_chs(struct registry_priv *regsty)
{
int i;
int ch_num = 0;
for (i = 0; i < MAX_CHANNEL_NUM_2G_5G; i++)
if (((u8)rtw_excl_chs[i]) != 0)
regsty->excl_chs[ch_num++] = (u8)rtw_excl_chs[i];
if (ch_num < MAX_CHANNEL_NUM_2G_5G)
regsty->excl_chs[ch_num] = 0;
#if CONFIG_IEEE80211_BAND_6GHZ
ch_num = 0;
for (i = 0; i < MAX_CHANNEL_NUM_6G; i++)
if (((u8)rtw_excl_chs_6g[i]) != 0)
regsty->excl_chs_6g[ch_num++] = (u8)rtw_excl_chs_6g[i];
if (ch_num < MAX_CHANNEL_NUM_6G)
regsty->excl_chs_6g[ch_num] = 0;
#endif
}
#ifdef CONFIG_80211D
inline void rtw_regsty_load_country_ie_slave_settings(struct registry_priv *regsty)
{
regsty->country_ie_slave_en_role = rtw_country_ie_slave_en_role;
regsty->country_ie_slave_en_ifbmp = rtw_country_ie_slave_en_ifbmp;
}
#endif
#ifdef CONFIG_80211N_HT
static inline void rtw_regsty_init_rx_ampdu_sz_limit(struct registry_priv *regsty)
{
int i, j;
uint *sz_limit;
for (i = 0; i < 4; i++) {
if (i == 0)
sz_limit = rtw_rx_ampdu_sz_limit_1ss;
else if (i == 1)
sz_limit = rtw_rx_ampdu_sz_limit_2ss;
else if (i == 2)
sz_limit = rtw_rx_ampdu_sz_limit_3ss;
else if (i == 3)
sz_limit = rtw_rx_ampdu_sz_limit_4ss;
for (j = 0; j < 4; j++)
regsty->rx_ampdu_sz_limit_by_nss_bw[i][j] = sz_limit[j];
}
}
#endif /* CONFIG_80211N_HT */
#ifdef CONFIG_RTW_MULTI_AP
inline void rtw_regsty_init_unassoc_sta_param(struct registry_priv *regsty)
{
int i;
for (i = 0; i < UNASOC_STA_SRC_NUM; i++)
regsty->unassoc_sta_mode_of_stype[i] = rtw_unassoc_sta_mode_of_stype[i];
regsty->max_unassoc_sta_cnt = (u16)rtw_max_unassoc_sta_cnt;
}
#endif
static void rtw_load_phy_file_path (struct dvobj_priv *dvobj)
{
struct rtw_phl_com_t *phl_com = GET_PHL_COM(dvobj);
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (rtw_load_phy_file & LOAD_BB_PHY_REG_FILE) {
phl_com->phy_sw_cap[0].bb_phy_reg_info.para_src = RTW_PARA_SRC_EXTNAL;
phl_com->phy_sw_cap[1].bb_phy_reg_info.para_src = RTW_PARA_SRC_EXTNAL;
}
if (rtw_load_phy_file & LOAD_RF_RADIO_FILE) {
phl_com->phy_sw_cap[0].rf_radio_a_info.para_src = RTW_PARA_SRC_EXTNAL;
phl_com->phy_sw_cap[1].rf_radio_a_info.para_src = RTW_PARA_SRC_EXTNAL;
phl_com->phy_sw_cap[0].rf_radio_b_info.para_src = RTW_PARA_SRC_EXTNAL;
phl_com->phy_sw_cap[1].rf_radio_b_info.para_src = RTW_PARA_SRC_EXTNAL;
}
if (rtw_load_phy_file & LOAD_RF_TXPWR_BY_RATE) {
phl_com->phy_sw_cap[0].rf_txpwr_byrate_info.para_src = RTW_PARA_SRC_EXTNAL;
phl_com->phy_sw_cap[1].rf_txpwr_byrate_info.para_src = RTW_PARA_SRC_EXTNAL;
}
if (rtw_load_phy_file & LOAD_RF_TXPWR_TRACK_FILE) {
phl_com->phy_sw_cap[0].rf_txpwrtrack_info.para_src = RTW_PARA_SRC_EXTNAL;
phl_com->phy_sw_cap[1].rf_txpwrtrack_info.para_src = RTW_PARA_SRC_EXTNAL;
}
if (rtw_load_phy_file & LOAD_RF_TXPWR_LMT_FILE) {
phl_com->phy_sw_cap[0].rf_txpwrlmt_info.para_src = RTW_PARA_SRC_EXTNAL;
phl_com->phy_sw_cap[1].rf_txpwrlmt_info.para_src = RTW_PARA_SRC_EXTNAL;
}
if (rtw_load_phy_file & LOAD_RF_TXPWR_LMT_RU_FILE) {
phl_com->phy_sw_cap[0].rf_txpwrlmt_ru_info.para_src = RTW_PARA_SRC_EXTNAL;
phl_com->phy_sw_cap[1].rf_txpwrlmt_ru_info.para_src = RTW_PARA_SRC_EXTNAL;
}
#endif/* CONFIG_LOAD_PHY_PARA_FROM_FILE */
}
void rtw_core_update_default_setting (struct dvobj_priv *dvobj)
{
struct rtw_phl_com_t *phl_com = GET_PHL_COM(dvobj);
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
rtw_load_phy_file_path(dvobj);
#endif /* CONFIG_LOAD_PHY_PARA_FROM_FILE */
phl_com->dev_sw_cap.fw_cap.dlram_en = true;
phl_com->dev_sw_cap.fw_cap.dlrom_en = false;
#ifdef CONFIG_FILE_FWIMG
phl_com->dev_sw_cap.fw_cap.fw_src = RTW_FW_SRC_EXTNAL;
#else /* !CONFIG_FILE_FWIMG */
phl_com->dev_sw_cap.fw_cap.fw_src = RTW_FW_SRC_INTNAL;
#endif /* !CONFIG_FILE_FWIMG */
phl_com->phy_sw_cap[0].proto_sup = rtw_wireless_mode;
phl_com->phy_sw_cap[0].band_sup = rtw_band_type;
phl_com->phy_sw_cap[0].bw_sup = BW_CAP_80M | BW_CAP_40M | BW_CAP_20M; //rtw_bw_mode;
phl_com->phy_sw_cap[0].txss = rtw_tx_nss;
phl_com->phy_sw_cap[0].rxss = rtw_rx_nss;
phl_com->phy_sw_cap[1].proto_sup = rtw_wireless_mode;
phl_com->phy_sw_cap[1].band_sup = rtw_band_type;
phl_com->phy_sw_cap[1].bw_sup = rtw_bw_mode;
phl_com->phy_sw_cap[1].txss = rtw_tx_nss;
phl_com->phy_sw_cap[1].rxss = rtw_rx_nss;
phl_com->phy_sw_cap[0].hw_rts_time_th = 88;
phl_com->phy_sw_cap[0].hw_rts_len_th = 4080;
phl_com->phy_sw_cap[1].hw_rts_time_th = 88;
phl_com->phy_sw_cap[1].hw_rts_len_th = 4080;
/*phl_com->dev_sw_cap.pkg_type = rtw_pkg_type;*/
phl_com->dev_sw_cap.rfe_type = rtw_rfe_type;
#ifdef DBG_LA_MODE
phl_com->dev_sw_cap.la_mode = rtw_la_mode_en;
#endif
#ifdef CONFIG_DBCC_SUPPORT
phl_com->dev_sw_cap.dbcc_sup = rtw_dbcc_en;
#endif
phl_com->dev_sw_cap.hw_hdr_conv = rtw_hw_hdr_conv;
phl_com->proto_sw_cap[0].max_amsdu_len = rtw_max_amsdu_len;
phl_com->proto_sw_cap[1].max_amsdu_len = rtw_max_amsdu_len;
#if defined(CONFIG_PCI_HCI)
#if !defined(CONFIG_PCI_ASPM)
/* Disable all PCIE Backdoor to avoid PCIE IOT */
phl_com->bus_sw_cap.l0s_ctrl = RTW_PCIE_BUS_FUNC_DISABLE;
phl_com->bus_sw_cap.l1_ctrl = RTW_PCIE_BUS_FUNC_DISABLE;
phl_com->bus_sw_cap.l1ss_ctrl = RTW_PCIE_BUS_FUNC_DISABLE;
phl_com->bus_sw_cap.wake_ctrl = RTW_PCIE_BUS_FUNC_DEFAULT;
phl_com->bus_sw_cap.crq_ctrl = RTW_PCIE_BUS_FUNC_DISABLE;
#endif
phl_com->bus_sw_cap.txbd_num = 256;
phl_com->bus_sw_cap.rxbd_num = 256;
phl_com->bus_sw_cap.rpbd_num = 0; /* by default */
#ifdef CONFIG_RXBUF_NUM_1024
phl_com->bus_sw_cap.rxbuf_num = 1024;
#else
phl_com->bus_sw_cap.rxbuf_num = 512;
#endif
phl_com->bus_sw_cap.rpbuf_num = 0; /* by default */
#ifdef CONFIG_SWCAP_SYNC_WIN
/* overwrite previous setting */
phl_com->bus_sw_cap.txbd_num = 256;
phl_com->bus_sw_cap.rxbd_num = 512;
phl_com->bus_sw_cap.rpbd_num = 256;
phl_com->bus_sw_cap.rxbuf_num = 2048;
phl_com->bus_sw_cap.rpbuf_num = 512;
#endif
#endif /*CONFIG_PCI_HCI*/
#ifdef CONFIG_BTC
phl_com->dev_sw_cap.btc_mode = BTC_MODE_NORMAL;
#else
phl_com->dev_sw_cap.btc_mode = BTC_MODE_WL;
#endif
#ifdef CONFIG_MCC_MODE
phl_com->dev_sw_cap.mcc_sup = rtw_mcc_en;
#endif
#ifdef CONFIG_USB_HCI
phl_com->bus_sw_cap.tx_buf_size = MAX_XMITBUF_SZ;
phl_com->bus_sw_cap.tx_buf_num = NR_XMITBUFF;
phl_com->bus_sw_cap.tx_mgnt_buf_size = MAX_MGNT_XMITBUF_SZ;
phl_com->bus_sw_cap.tx_mgnt_buf_num = NR_MGNT_XMITBUFF;
phl_com->bus_sw_cap.rx_buf_size = MAX_RECVBUF_SZ;
phl_com->bus_sw_cap.rx_buf_num = NR_RECVBUFF;
phl_com->bus_sw_cap.in_token_num = NR_RECV_URB;
#endif
#ifdef CONFIG_SDIO_HCI
#ifdef MAX_XMITBUF_SZ
phl_com->bus_sw_cap.tx_buf_size = MAX_XMITBUF_SZ;
#endif
#ifdef NR_XMITBUFF
phl_com->bus_sw_cap.tx_buf_num = NR_XMITBUFF;
#endif
#ifdef MAX_MGNT_XMITBUF_SZ
phl_com->bus_sw_cap.tx_mgnt_buf_size = MAX_MGNT_XMITBUF_SZ;
#endif
#ifdef NR_MGNT_XMITBUFF
phl_com->bus_sw_cap.tx_mgnt_buf_num = NR_MGNT_XMITBUFF;
#endif
#ifdef MAX_RECVBUF_SZ
phl_com->bus_sw_cap.rx_buf_size = MAX_RECVBUF_SZ;
#endif
#ifdef NR_RECVBUFF
phl_com->bus_sw_cap.rx_buf_num = NR_RECVBUFF;
#endif
#endif /* CONFIG_SDIO_HCI */
/* Set STBC Tx/Rx sw role cap */
phl_com->role_sw_cap.stbc_cap = 0;
phl_com->role_sw_cap.stbc_cap |=
(rtw_stbc_cap & BIT5) ? HW_CAP_STBC_HT_TX : 0;
phl_com->role_sw_cap.stbc_cap |=
(rtw_stbc_cap & BIT1) ? HW_CAP_STBC_VHT_TX : 0;
phl_com->role_sw_cap.stbc_cap |=
(rtw_stbc_cap & BIT10) ? HW_CAP_STBC_HE_TX : 0;
phl_com->role_sw_cap.stbc_cap |=
(rtw_stbc_cap & BIT11) ? HW_CAP_STBC_HE_TX_GT_80M : 0;
phl_com->role_sw_cap.stbc_cap |=
(rtw_stbc_cap & BIT4) ? HW_CAP_STBC_HT_RX : 0;
phl_com->role_sw_cap.stbc_cap |=
(rtw_stbc_cap & BIT0) ? HW_CAP_STBC_VHT_RX : 0;
phl_com->role_sw_cap.stbc_cap |=
(rtw_stbc_cap & BIT8) ? HW_CAP_STBC_HE_RX : 0;
phl_com->role_sw_cap.stbc_cap |=
(rtw_stbc_cap & BIT9) ? HW_CAP_STBC_HE_RX_GT_80M : 0;
/*Band0*/
phl_com->proto_sw_cap[0].stbc_ht_tx = (rtw_stbc_cap & BIT5) ? 1 : 0;
phl_com->proto_sw_cap[0].stbc_vht_tx = (rtw_stbc_cap & BIT1) ? 1 : 0;
phl_com->proto_sw_cap[0].stbc_he_tx = (rtw_stbc_cap & BIT10) ? 1 : 0;
phl_com->proto_sw_cap[0].stbc_tx_greater_80mhz = (rtw_stbc_cap & BIT11) ? 1 : 0;
phl_com->proto_sw_cap[0].stbc_ht_rx = (rtw_stbc_cap & BIT4) ? 1 : 0;
phl_com->proto_sw_cap[0].stbc_vht_rx = (rtw_stbc_cap & BIT0) ? 1 : 0;
phl_com->proto_sw_cap[0].stbc_he_rx = (rtw_stbc_cap & BIT8) ? 1 : 0;
phl_com->proto_sw_cap[0].stbc_rx_greater_80mhz = (rtw_stbc_cap & BIT9) ? 1 : 0;
/*Band1*/
phl_com->proto_sw_cap[1].stbc_ht_tx = (rtw_stbc_cap & BIT5) ? 1 : 0;
phl_com->proto_sw_cap[1].stbc_vht_tx = (rtw_stbc_cap & BIT1) ? 1 : 0;
phl_com->proto_sw_cap[1].stbc_he_tx = (rtw_stbc_cap & BIT10) ? 1 : 0;
phl_com->proto_sw_cap[1].stbc_tx_greater_80mhz = (rtw_stbc_cap & BIT11) ? 1 : 0;
phl_com->proto_sw_cap[1].stbc_ht_rx = (rtw_stbc_cap & BIT4) ? 1 : 0;
phl_com->proto_sw_cap[1].stbc_vht_rx = (rtw_stbc_cap & BIT0) ? 1 : 0;
phl_com->proto_sw_cap[1].stbc_he_rx = (rtw_stbc_cap & BIT8) ? 1 : 0;
phl_com->proto_sw_cap[1].stbc_rx_greater_80mhz = (rtw_stbc_cap & BIT9) ? 1 : 0;
#ifdef CONFIG_BEAMFORMING
phl_com->role_sw_cap.bf_cap = 0;
phl_com->role_sw_cap.bf_cap |= (rtw_beamform_cap & BIT0) ? HW_CAP_BFER_VHT_SU : 0;
phl_com->role_sw_cap.bf_cap |= (rtw_beamform_cap & BIT1) ? HW_CAP_BFEE_VHT_SU: 0;
phl_com->role_sw_cap.bf_cap |= (rtw_beamform_cap & BIT2) ? HW_CAP_BFER_VHT_MU: 0;
phl_com->role_sw_cap.bf_cap |= (rtw_beamform_cap & BIT3) ? HW_CAP_BFEE_VHT_MU: 0;
phl_com->role_sw_cap.bf_cap |= (rtw_beamform_cap & BIT4) ? HW_CAP_BFER_HT_SU: 0;
phl_com->role_sw_cap.bf_cap |= (rtw_beamform_cap & BIT5) ? HW_CAP_BFEE_HT_SU: 0;
phl_com->role_sw_cap.bf_cap |= (rtw_beamform_cap & BIT6) ? HW_CAP_BFER_HE_SU: 0;
phl_com->role_sw_cap.bf_cap |= (rtw_beamform_cap & BIT7) ? HW_CAP_BFEE_HE_SU: 0;
phl_com->role_sw_cap.bf_cap |= (rtw_beamform_cap & BIT8) ? HW_CAP_BFER_HE_MU: 0;
phl_com->role_sw_cap.bf_cap |= (rtw_beamform_cap & BIT9) ? HW_CAP_BFEE_HE_MU: 0;
/*Band0*/
phl_com->proto_sw_cap[0].vht_su_bfmr = (rtw_sw_proto_bf_cap_phy0 & BIT0) ? 1 : 0;
phl_com->proto_sw_cap[0].vht_su_bfme = (rtw_sw_proto_bf_cap_phy0 & BIT1) ? 1 : 0;
phl_com->proto_sw_cap[0].vht_mu_bfmr = (rtw_sw_proto_bf_cap_phy0 & BIT2) ? 1 : 0;
phl_com->proto_sw_cap[0].vht_mu_bfme = (rtw_sw_proto_bf_cap_phy0 & BIT3) ? 1 : 0;
phl_com->proto_sw_cap[0].ht_su_bfmr = (rtw_sw_proto_bf_cap_phy0 & BIT4) ? 1 : 0;
phl_com->proto_sw_cap[0].ht_su_bfme = (rtw_sw_proto_bf_cap_phy0 & BIT5) ? 1 : 0;
phl_com->proto_sw_cap[0].he_su_bfmr = (rtw_sw_proto_bf_cap_phy0 & BIT6) ? 1 : 0;
phl_com->proto_sw_cap[0].he_su_bfme = (rtw_sw_proto_bf_cap_phy0 & BIT7) ? 1 : 0;
phl_com->proto_sw_cap[0].he_mu_bfmr = (rtw_sw_proto_bf_cap_phy0 & BIT8) ? 1 : 0;
phl_com->proto_sw_cap[0].he_mu_bfme = (rtw_sw_proto_bf_cap_phy0 & BIT9) ? 1 : 0;
/*Band1*/
phl_com->proto_sw_cap[1].vht_su_bfmr = (rtw_sw_proto_bf_cap_phy1 & BIT0) ? 1 : 0;
phl_com->proto_sw_cap[1].vht_su_bfme = (rtw_sw_proto_bf_cap_phy1 & BIT1) ? 1 : 0;
phl_com->proto_sw_cap[1].vht_mu_bfmr = (rtw_sw_proto_bf_cap_phy1 & BIT2) ? 1 : 0;
phl_com->proto_sw_cap[1].vht_mu_bfme = (rtw_sw_proto_bf_cap_phy1 & BIT3) ? 1 : 0;
phl_com->proto_sw_cap[1].ht_su_bfmr = (rtw_sw_proto_bf_cap_phy1 & BIT4) ? 1 : 0;
phl_com->proto_sw_cap[1].ht_su_bfme = (rtw_sw_proto_bf_cap_phy1 & BIT5) ? 1 : 0;
phl_com->proto_sw_cap[1].he_su_bfmr = (rtw_sw_proto_bf_cap_phy1 & BIT6) ? 1 : 0;
phl_com->proto_sw_cap[1].he_su_bfme = (rtw_sw_proto_bf_cap_phy1 & BIT7) ? 1 : 0;
phl_com->proto_sw_cap[1].he_mu_bfmr = (rtw_sw_proto_bf_cap_phy1 & BIT8) ? 1 : 0;
phl_com->proto_sw_cap[1].he_mu_bfme = (rtw_sw_proto_bf_cap_phy1 & BIT9) ? 1 : 0;
#endif
#if CONFIG_TXPWR_LIMIT
if (rtw_tx_pwr_lmt_enable == 2)
phl_com->dev_sw_cap.pwrlmt_type = RTW_PWLMT_BY_EFUSE;
else if (rtw_tx_pwr_lmt_enable == 1)
phl_com->dev_sw_cap.pwrlmt_type = RTW_PWBYRATE_AND_PWLMT;
else if (rtw_tx_pwr_lmt_enable == 0)
phl_com->dev_sw_cap.pwrlmt_type = RTW_PWLMT_DISABLE;
#else
phl_com->dev_sw_cap.pwrlmt_type = RTW_PWLMT_DISABLE;
#endif
if (rtw_tx_pwr_by_rate == 1)
phl_com->dev_sw_cap.pwrbyrate_off = RTW_PW_BY_RATE_ON;
else if (rtw_tx_pwr_by_rate == 0)
phl_com->dev_sw_cap.pwrbyrate_off = RTW_PW_BY_RATE_ALL_SAME;
else
phl_com->dev_sw_cap.pwrbyrate_off = RTW_PW_BY_RATE_ON;
/* If rf_board_opt is not assigned to specific value, it must be set to 0xFF as default. */
phl_com->dev_sw_cap.rf_board_opt = 0xFF;
#ifdef CONFIG_RTW_IPS
phl_com->dev_sw_cap.ps_cap.ips_en = rtw_ips_mode;
#endif
#ifdef CONFIG_RTW_LPS
phl_com->dev_sw_cap.ps_cap.lps_en = rtw_lps_mode;
phl_com->dev_sw_cap.ps_cap.lps_cap = rtw_lps_cap;
#endif
#ifdef CONFIG_RTW_LED
rtw_phl_led_set_ctrl_mode(GET_PHL_INFO(dvobj), 0, RTW_LED_CTRL_HW_TX_MODE);
#endif
#if defined (CONFIG_RPQ_AGG_NUM) && (CONFIG_RPQ_AGG_NUM > 0)
phl_com->dev_sw_cap.rpq_agg_num = CONFIG_RPQ_AGG_NUM;
#else
phl_com->dev_sw_cap.rpq_agg_num = 0; /* MAC default num: 121 for all IC */
#endif
}
u8 rtw_load_dvobj_registry(struct dvobj_priv *dvobj)
{
/*struct rtw_phl_com_t *phl_com = GET_PHL_COM(dvobj);*/
#ifdef CONFIG_CONCURRENT_MODE
dvobj->virtual_iface_num = (u8)rtw_virtual_iface_num;
#endif
return _SUCCESS;
}
uint rtw_load_registry(_adapter *padapter)
{
uint status = _SUCCESS;
struct registry_priv *registry_par = &padapter->registrypriv;
#ifdef CONFIG_RTW_DEBUG
if (rtw_drv_log_level >= _DRV_MAX_)
rtw_drv_log_level = _DRV_DEBUG_;
#endif
registry_par->chip_version = (u8)rtw_chip_version;
registry_par->rfintfs = (u8)rtw_rfintfs;
registry_par->lbkmode = (u8)rtw_lbkmode;
/* registry_par->hci = (u8)hci; */
registry_par->network_mode = (u8)rtw_network_mode;
_rtw_memcpy(registry_par->ssid.Ssid, "ANY", 3);
registry_par->ssid.SsidLength = 3;
registry_par->channel = (u8)rtw_channel;
#ifdef CONFIG_NARROWBAND_SUPPORTING
if (rtw_nb_config != RTW_NB_CONFIG_NONE)
rtw_wireless_mode &= ~WIRELESS_11B;
#endif
registry_par->wireless_mode = (u8)rtw_wireless_mode;
registry_par->band_type = (u8)rtw_band_type;
if (is_supported_24g(registry_par->band_type) && (!is_supported_5g(registry_par->band_type))
&& (registry_par->channel > 14))
registry_par->channel = 1;
else if (is_supported_5g(registry_par->band_type) && (!is_supported_24g(registry_par->band_type))
&& (registry_par->channel <= 14))
registry_par->channel = 36;
registry_par->vrtl_carrier_sense = (u8)rtw_vrtl_carrier_sense ;
registry_par->vcs_type = (u8)rtw_vcs_type;
registry_par->rts_thresh = (u16)rtw_rts_thresh;
registry_par->hw_rts_en = (u8)rtw_hw_rts_en;
registry_par->frag_thresh = (u16)rtw_frag_thresh;
registry_par->preamble = (u8)rtw_preamble;
registry_par->scan_mode = (u8)rtw_scan_mode;
registry_par->smart_ps = (u8)rtw_smart_ps;
registry_par->check_fw_ps = (u8)rtw_check_fw_ps;
#ifdef CONFIG_TDMADIG
registry_par->tdmadig_en = (u8)rtw_tdmadig_en;
registry_par->tdmadig_mode = (u8)rtw_tdmadig_mode;
registry_par->tdmadig_dynamic = (u8) rtw_dynamic_tdmadig;
registry_par->power_mgnt = PM_PS_MODE_ACTIVE;
registry_par->ips_mode = IPS_NONE;
#else
registry_par->power_mgnt = (u8)rtw_power_mgnt;
registry_par->ips_mode = (u8)rtw_ips_mode;
#endif/*CONFIG_TDMADIG*/
registry_par->lps_level = (u8)rtw_lps_level;
registry_par->en_dyn_rrsr = (u8)rtw_en_dyn_rrsr;
registry_par->set_rrsr_value = (u32)rtw_rrsr_value;
#ifdef CONFIG_LPS_1T1R
registry_par->lps_1t1r = (u8)(rtw_lps_1t1r ? 1 : 0);
#endif
registry_par->lps_chk_by_tp = (u8)rtw_lps_chk_by_tp;
#ifdef CONFIG_WOWLAN
registry_par->wow_power_mgnt = (u8)rtw_wow_power_mgnt;
registry_par->wow_lps_level = (u8)rtw_wow_lps_level;
#ifdef CONFIG_LPS_1T1R
registry_par->wow_lps_1t1r = (u8)(rtw_wow_lps_1t1r ? 1 : 0);
#endif
#endif /* CONFIG_WOWLAN */
registry_par->radio_enable = (u8)rtw_radio_enable;
registry_par->long_retry_lmt = (u8)rtw_long_retry_lmt;
registry_par->short_retry_lmt = (u8)rtw_short_retry_lmt;
registry_par->busy_thresh = (u16)rtw_busy_thresh;
registry_par->max_bss_cnt = (u16)rtw_max_bss_cnt;
/* registry_par->qos_enable = (u8)rtw_qos_enable; */
registry_par->ack_policy = (u8)rtw_ack_policy;
registry_par->mp_mode = (u8)rtw_mp_mode;
#if defined(CONFIG_MP_INCLUDED) && defined(CONFIG_RTW_CUSTOMER_STR)
registry_par->mp_customer_str = (u8)rtw_mp_customer_str;
#endif
registry_par->software_encrypt = (u8)rtw_software_encrypt;
registry_par->software_decrypt = (u8)rtw_software_decrypt;
registry_par->acm_method = (u8)rtw_acm_method;
registry_par->usb_rxagg_mode = (u8)rtw_usb_rxagg_mode;
registry_par->dynamic_agg_enable = (u8)rtw_dynamic_agg_enable;
/* WMM */
registry_par->wmm_enable = (u8)rtw_wmm_enable;
#ifdef CONFIG_WMMPS_STA
/* UAPSD */
registry_par->uapsd_max_sp_len= (u8)rtw_uapsd_max_sp;
registry_par->uapsd_ac_enable = (u8)rtw_uapsd_ac_enable;
registry_par->wmm_smart_ps = (u8)rtw_wmm_smart_ps;
#endif /* CONFIG_WMMPS_STA */
registry_par->RegPwrTrimEnable = (u8)rtw_pwrtrim_enable;
registry_par->tx_bw_mode = (u8)rtw_tx_bw_mode;
#ifdef CONFIG_80211N_HT
registry_par->ht_enable = (u8)rtw_ht_enable;
if (registry_par->ht_enable && is_supported_ht(registry_par->wireless_mode)) {
#ifdef CONFIG_NARROWBAND_SUPPORTING
if (rtw_nb_config != RTW_NB_CONFIG_NONE)
rtw_bw_mode = 0;
#endif
registry_par->bw_mode = (u8)rtw_bw_mode;
registry_par->ampdu_enable = (u8)rtw_ampdu_enable;
registry_par->rx_ampdu_amsdu = (u8)rtw_rx_ampdu_amsdu;
#ifdef CONFIG_DISBALE_RX_AMSDU_FOR_BUS_LOW_SPEED
#ifdef CONFIG_USB_HCI
if (dvobj_to_usb(adapter_to_dvobj(padapter))->usb_speed < RTW_USB_SPEED_SUPER)
registry_par->rx_ampdu_amsdu = 0;
#endif
#endif
registry_par->tx_ampdu_amsdu = (u8)rtw_tx_ampdu_amsdu;
registry_par->tx_quick_addba_req = (u8)rtw_quick_addba_req;
registry_par->short_gi = (u8)rtw_short_gi;
registry_par->ldpc_cap = (u8)rtw_ldpc_cap;
#ifdef CONFIG_RTW_TX_NPATH_EN
registry_par->tx_npath = (u8)rtw_tx_npath_enable;
#endif
#ifdef CONFIG_RTW_PATH_DIV
registry_par->path_div = (u8)rtw_path_div_enable;
#endif
registry_par->stbc_cap = (u16)rtw_stbc_cap;
#ifdef CONFIG_BEAMFORMING
registry_par->beamform_cap = (u8)rtw_beamform_cap;
registry_par->dyn_txbf = (u8)rtw_dyn_txbf;
registry_par->beamformer_rf_num = (u8)rtw_bfer_rf_number;
registry_par->beamformee_rf_num = (u8)rtw_bfee_rf_number;
#endif
rtw_regsty_init_rx_ampdu_sz_limit(registry_par);
}
#endif
#if 0
int rtw_short_gi = 0xf;
/* BIT0: Enable VHT LDPC Rx, BIT1: Enable VHT LDPC Tx, BIT4: Enable HT LDPC Rx, BIT5: Enable HT LDPC Tx */
int rtw_ldpc_cap = 0x33;
/* BIT0: Enable VHT STBC Rx, BIT1: Enable VHT STBC Tx, BIT4: Enable HT STBC Rx, BIT5: Enable HT STBC Tx */
int rtw_stbc_cap = 0x13;
#endif
#ifdef DBG_LA_MODE
registry_par->la_mode_en = (u8)rtw_la_mode_en;
#endif
#ifdef CONFIG_NARROWBAND_SUPPORTING
registry_par->rtw_nb_config = (u8)rtw_nb_config;
#endif
#ifdef CONFIG_80211AC_VHT
registry_par->vht_enable = (u8)rtw_vht_enable;
registry_par->vht_24g_enable = (u8)rtw_vht_24g_enable;
registry_par->ampdu_factor = (u8)rtw_ampdu_factor;
registry_par->vht_rx_mcs_map[0] = (u8)(rtw_vht_rx_mcs_map & 0xFF);
registry_par->vht_rx_mcs_map[1] = (u8)((rtw_vht_rx_mcs_map & 0xFF00) >> 8);
#endif
#ifdef CONFIG_80211AX_HE
registry_par->he_enable = (u8)rtw_he_enable;
#endif
#ifdef CONFIG_TX_EARLY_MODE
registry_par->early_mode = (u8)rtw_early_mode;
#endif
registry_par->lowrate_two_xmit = (u8)rtw_lowrate_two_xmit;
registry_par->rf_path = (u8)rtw_rf_path; /*rf_config/rtw_rf_config*/
registry_par->tx_nss = (u8)rtw_tx_nss;
registry_par->rx_nss = (u8)rtw_rx_nss;
registry_par->low_power = (u8)rtw_low_power;
registry_par->check_hw_status = (u8)rtw_check_hw_status;
registry_par->wifi_spec = (u8)rtw_wifi_spec;
#ifdef CONFIG_REGD_SRC_FROM_OS
if (regd_src_is_valid(rtw_regd_src))
registry_par->regd_src = (u8)rtw_regd_src;
else {
RTW_WARN("%s invalid rtw_regd_src(%u), use REGD_SRC_RTK_PRIV instead\n", __func__, rtw_regd_src);
registry_par->regd_src = REGD_SRC_RTK_PRIV;
}
#endif
rtw_regsty_load_alpha2(registry_par);
rtw_regsty_load_chplan(registry_par);
rtw_regsty_load_excl_chs(registry_par);
#ifdef CONFIG_80211D
rtw_regsty_load_country_ie_slave_settings(registry_par);
#endif
registry_par->full_ch_in_p2p_handshake = (u8)rtw_full_ch_in_p2p_handshake;
#ifdef CONFIG_BTC
registry_par->btcoex = (u8)rtw_btcoex_enable;
registry_par->bt_iso = (u8)rtw_bt_iso;
registry_par->bt_sco = (u8)rtw_bt_sco;
registry_par->bt_ampdu = (u8)rtw_bt_ampdu;
registry_par->ant_num = (u8)rtw_ant_num;
registry_par->single_ant_path = (u8) rtw_single_ant_path;
#endif
registry_par->bAcceptAddbaReq = (u8)rtw_AcceptAddbaReq;
registry_par->antdiv_cfg = (u8)rtw_antdiv_cfg;
registry_par->antdiv_type = (u8)rtw_antdiv_type;
registry_par->drv_ant_band_switch = (u8) rtw_drv_ant_band_switch;
registry_par->switch_usb_mode = (u8)rtw_switch_usb_mode;
registry_par->hw_wps_pbc = (u8)rtw_hw_wps_pbc;
#ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
snprintf(registry_par->adaptor_info_caching_file_path, PATH_LENGTH_MAX, "%s", rtw_adaptor_info_caching_file_path);
registry_par->adaptor_info_caching_file_path[PATH_LENGTH_MAX - 1] = 0;
#endif
#ifdef CONFIG_LAYER2_ROAMING
registry_par->max_roaming_times = (u8)rtw_max_roaming_times;
#endif
snprintf(registry_par->ifname, 16, "%s", ifname);
snprintf(registry_par->if2name, 16, "%s", if2name);
#if defined(CONFIG_CONCURRENT_MODE) && !RTW_P2P_GROUP_INTERFACE
#ifdef CONFIG_P2P
if (CONFIG_RTW_STATIC_NDEV_NUM <= rtw_sel_p2p_iface) {
RTW_ERR("rtw_sel_p2p_iface out of range\n");
rtw_sel_p2p_iface = CONFIG_RTW_STATIC_NDEV_NUM - 1;
}
registry_par->sel_p2p_iface = (u8)rtw_sel_p2p_iface;
RTW_INFO("%s, Select P2P interface: iface_id:%d\n", __func__, registry_par->sel_p2p_iface);
#endif
#endif
#ifdef CONFIG_IGNORE_GO_AND_LOW_RSSI_IN_SCAN_LIST
registry_par->ignore_go_in_scan = (u8)rtw_ignore_go_in_scan;
registry_par->ignore_low_rssi_in_scan = rtw_ignore_low_rssi_in_scan;
#endif /*CONFIG_IGNORE_GO_AND_LOW_RSSI_IN_SCAN_LIST*/
registry_par->vo_edca = rtw_vo_edca;
registry_par->pll_ref_clk_sel = (u8)rtw_pll_ref_clk_sel;
rtw_regsty_load_target_tx_power(registry_par);
registry_par->TxBBSwing_2G = (s8)rtw_TxBBSwing_2G;
registry_par->TxBBSwing_5G = (s8)rtw_TxBBSwing_5G;
registry_par->bEn_RFE = 1;
registry_par->RFE_Type = (u8)rtw_rfe_type;
registry_par->PowerTracking_Type = (u8)rtw_powertracking_type;
registry_par->AmplifierType_2G = (u8)rtw_amplifier_type_2g;
registry_par->AmplifierType_5G = (u8)rtw_amplifier_type_5g;
registry_par->GLNA_Type = (u8)rtw_GLNA_type;
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
registry_par->load_phy_file = (u8)rtw_load_phy_file;
registry_par->RegDecryptCustomFile = (u8)rtw_decrypt_phy_file;
#endif
registry_par->qos_opt_enable = (u8)rtw_qos_opt_enable;
registry_par->hiq_filter = (u8)rtw_hiq_filter;
registry_par->adaptivity_en = (u8)rtw_adaptivity_en;
registry_par->adaptivity_mode = (u8)rtw_adaptivity_mode;
registry_par->adaptivity_th_l2h_ini = (s8)rtw_adaptivity_th_l2h_ini;
registry_par->adaptivity_th_edcca_hl_diff = (s8)rtw_adaptivity_th_edcca_hl_diff;
registry_par->boffefusemask = (u8)rtw_OffEfuseMask;
registry_par->bFileMaskEfuse = (u8)rtw_FileMaskEfuse;
registry_par->bBTFileMaskEfuse = (u8)rtw_FileMaskEfuse;
#ifdef CONFIG_RTW_ACS
registry_par->acs_mode = (u8)rtw_acs;
registry_par->acs_auto_scan = (u8)rtw_acs_auto_scan;
#endif
registry_par->reg_rxgain_offset_2g = (u32) rtw_rxgain_offset_2g;
registry_par->reg_rxgain_offset_5gl = (u32) rtw_rxgain_offset_5gl;
registry_par->reg_rxgain_offset_5gm = (u32) rtw_rxgain_offset_5gm;
registry_par->reg_rxgain_offset_5gh = (u32) rtw_rxgain_offset_5gh;
#ifdef CONFIG_DFS_MASTER
registry_par->dfs_region_domain = (u8)rtw_dfs_region_domain;
if (registry_par->dfs_region_domain != RTW_DFS_REGD_NONE) {
RTW_WARN("%s force disable radar detection capability for now\n", __func__);
registry_par->dfs_region_domain = RTW_DFS_REGD_NONE;
}
#ifdef CONFIG_REGD_SRC_FROM_OS
if (rtw_regd_src == REGD_SRC_OS && registry_par->dfs_region_domain != RTW_DFS_REGD_NONE) {
RTW_WARN("%s force disable radar detection capability when regd_src is OS\n", __func__);
registry_par->dfs_region_domain = RTW_DFS_REGD_NONE;
}
#endif
#endif
#ifdef CONFIG_WOWLAN
registry_par->wowlan_enable = rtw_wow_enable;
registry_par->wakeup_event = rtw_wakeup_event;
registry_par->suspend_type = rtw_suspend_type;
#endif
registry_par->wowlan_sta_mix_mode = rtw_wowlan_sta_mix_mode;
#ifdef CONFIG_PCI_HCI
registry_par->pci_aspm_config = rtw_pci_aspm_enable;
registry_par->pci_dynamic_aspm_linkctrl = rtw_pci_dynamic_aspm_linkctrl;
#endif
#ifdef CONFIG_RTW_NAPI
registry_par->en_napi = (u8)rtw_en_napi;
#ifdef CONFIG_RTW_NAPI_DYNAMIC
registry_par->napi_threshold = (u32)rtw_napi_threshold;
#endif /* CONFIG_RTW_NAPI_DYNAMIC */
#ifdef CONFIG_RTW_GRO
registry_par->en_gro = (u8)rtw_en_gro;
if (!registry_par->en_napi && registry_par->en_gro) {
registry_par->en_gro = 0;
RTW_WARN("Disable GRO because NAPI is not enabled\n");
}
#endif /* CONFIG_RTW_GRO */
#endif /* CONFIG_RTW_NAPI */
registry_par->iqk_fw_offload = (u8)rtw_iqk_fw_offload;
registry_par->ch_switch_offload = (u8)rtw_ch_switch_offload;
#ifdef CONFIG_TDLS
registry_par->en_tdls = rtw_en_tdls;
#endif
#ifdef CONFIG_FW_OFFLOAD_PARAM_INIT
registry_par->fw_param_init = rtw_fw_param_init;
#endif
#ifdef CONFIG_AP_MODE
registry_par->bmc_tx_rate = rtw_bmc_tx_rate;
#if CONFIG_RTW_AP_DATA_BMC_TO_UC
registry_par->ap_src_b2u_flags = rtw_ap_src_b2u_flags;
registry_par->ap_fwd_b2u_flags = rtw_ap_fwd_b2u_flags;
#endif
#endif /* CONFIG_AP_MODE */
#ifdef CONFIG_RTW_MESH
#if CONFIG_RTW_MESH_DATA_BMC_TO_UC
registry_par->msrc_b2u_flags = rtw_msrc_b2u_flags;
registry_par->mfwd_b2u_flags = rtw_mfwd_b2u_flags;
#endif
#endif /* CONFIG_RTW_MESH */
registry_par->phydm_ability = rtw_phydm_ability;
registry_par->halrf_ability = rtw_halrf_ability;
#ifdef CONFIG_RTW_MESH
registry_par->peer_alive_based_preq = rtw_peer_alive_based_preq;
#endif
#ifdef RTW_BUSY_DENY_SCAN
registry_par->scan_interval_thr = rtw_scan_interval_thr;
#endif
#ifdef CONFIG_RTW_MULTI_AP
rtw_regsty_init_unassoc_sta_param(registry_par);
#endif
#ifdef CONFIG_IOCTL_CFG80211
registry_par->roch_min_home_dur = (u16)rtw_roch_min_home_dur;
registry_par->roch_max_away_dur = (u16)rtw_roch_max_away_dur;
registry_par->roch_extend_dur = (u16)rtw_roch_extend_dur;
#endif
#if defined(ROKU_PRIVATE) && defined(CONFIG_P2P)
registry_par->go_hidden_ssid_mode = rtw_go_hidden_ssid_mode;
ATOMIC_SET(®istry_par->set_hide_ssid_timer, 0);
#endif
registry_par->amsdu_mode = (u8)rtw_amsdu_mode;
return status;
}
static void rtw_cfg_adaptivity_en_msg(void *sel, _adapter *adapter)
{
struct registry_priv *regsty = &adapter->registrypriv;
RTW_PRINT_SEL(sel, "RTW_ADAPTIVITY_EN_");
if (regsty->adaptivity_en == RTW_ADAPTIVITY_EN_DISABLE)
_RTW_PRINT_SEL(sel, "DISABLE\n");
else if (regsty->adaptivity_en == RTW_ADAPTIVITY_EN_ENABLE)
_RTW_PRINT_SEL(sel, "ENABLE\n");
else if (regsty->adaptivity_en == RTW_ADAPTIVITY_EN_AUTO)
_RTW_PRINT_SEL(sel, "AUTO\n");
else
_RTW_PRINT_SEL(sel, "INVALID\n");
}
static void rtw_cfg_adaptivity_mode_msg(void *sel, _adapter *adapter)
{
struct registry_priv *regsty = &adapter->registrypriv;
if (regsty->adaptivity_en != RTW_ADAPTIVITY_EN_ENABLE)
return;
RTW_PRINT_SEL(sel, "RTW_ADAPTIVITY_MODE_");
if (regsty->adaptivity_mode == RTW_ADAPTIVITY_MODE_NORMAL)
_RTW_PRINT_SEL(sel, "NORMAL\n");
else if (regsty->adaptivity_mode == RTW_ADAPTIVITY_MODE_CARRIER_SENSE)
_RTW_PRINT_SEL(sel, "CARRIER_SENSE\n");
else
_RTW_PRINT_SEL(sel, "INVALID\n");
}
void rtw_cfg_adaptivity_config_msg(void *sel, _adapter *adapter)
{
rtw_cfg_adaptivity_en_msg(sel, adapter);
rtw_cfg_adaptivity_mode_msg(sel, adapter);
}
bool rtw_cfg_adaptivity_needed(_adapter *adapter)
{
struct registry_priv *regsty = &adapter->registrypriv;
bool ret = _FALSE;
if (regsty->adaptivity_en)
ret = _TRUE;
return ret;
}
|
2301_81045437/rtl8852be
|
os_dep/linux/rtw_cfg.c
|
C
|
agpl-3.0
| 64,484
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#include <drv_types.h>
#ifdef CONFIG_IOCTL_CFG80211
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)) || defined(RTW_VENDOR_EXT_SUPPORT)
/*
#include <linux/kernel.h>
#include <linux/if_arp.h>
#include <asm/uaccess.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/netdevice.h>
#include <linux/sched.h>
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <linux/ieee80211.h>
#include <linux/wait.h>
#include <net/cfg80211.h>
*/
#include <net/rtnetlink.h>
#ifndef MIN
#define MIN(x,y) (((x) < (y)) ? (x) : (y))
#endif
#ifdef DBG_MEM_ALLOC
extern bool match_mstat_sniff_rules(const enum mstat_f flags, const size_t size);
struct sk_buff *dbg_rtw_cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev, int len, int event_id, gfp_t gfp
, const enum mstat_f flags, const char *func, const int line)
{
struct sk_buff *skb;
unsigned int truesize = 0;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 1, 0))
skb = cfg80211_vendor_event_alloc(wiphy, len, event_id, gfp);
#else
skb = cfg80211_vendor_event_alloc(wiphy, wdev, len, event_id, gfp);
#endif
if (skb)
truesize = skb->truesize;
if (!skb || truesize < len || match_mstat_sniff_rules(flags, truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d), skb:%p, truesize=%u\n", func, line, __FUNCTION__, len, skb, truesize);
rtw_mstat_update(
flags
, skb ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, truesize
);
return skb;
}
void dbg_rtw_cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp
, const enum mstat_f flags, const char *func, const int line)
{
unsigned int truesize = skb->truesize;
if (match_mstat_sniff_rules(flags, truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize);
cfg80211_vendor_event(skb, gfp);
rtw_mstat_update(
flags
, MSTAT_FREE
, truesize
);
}
struct sk_buff *dbg_rtw_cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int len
, const enum mstat_f flags, const char *func, const int line)
{
struct sk_buff *skb;
unsigned int truesize = 0;
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len);
if (skb)
truesize = skb->truesize;
if (!skb || truesize < len || match_mstat_sniff_rules(flags, truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d), skb:%p, truesize=%u\n", func, line, __FUNCTION__, len, skb, truesize);
rtw_mstat_update(
flags
, skb ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, truesize
);
return skb;
}
int dbg_rtw_cfg80211_vendor_cmd_reply(struct sk_buff *skb
, const enum mstat_f flags, const char *func, const int line)
{
unsigned int truesize = skb->truesize;
int ret;
if (match_mstat_sniff_rules(flags, truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize);
ret = cfg80211_vendor_cmd_reply(skb);
rtw_mstat_update(
flags
, MSTAT_FREE
, truesize
);
return ret;
}
#define rtw_cfg80211_vendor_event_alloc(wiphy, wdev, len, event_id, gfp) \
dbg_rtw_cfg80211_vendor_event_alloc(wiphy, wdev, len, event_id, gfp, MSTAT_FUNC_CFG_VENDOR | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#define rtw_cfg80211_vendor_event(skb, gfp) \
dbg_rtw_cfg80211_vendor_event(skb, gfp, MSTAT_FUNC_CFG_VENDOR | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#define rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len) \
dbg_rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len, MSTAT_FUNC_CFG_VENDOR | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#define rtw_cfg80211_vendor_cmd_reply(skb) \
dbg_rtw_cfg80211_vendor_cmd_reply(skb, MSTAT_FUNC_CFG_VENDOR | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#else
struct sk_buff *rtw_cfg80211_vendor_event_alloc(
struct wiphy *wiphy, struct wireless_dev *wdev, int len, int event_id, gfp_t gfp)
{
struct sk_buff *skb;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 1, 0))
skb = cfg80211_vendor_event_alloc(wiphy, len, event_id, gfp);
#else
skb = cfg80211_vendor_event_alloc(wiphy, wdev, len, event_id, gfp);
#endif
return skb;
}
#define rtw_cfg80211_vendor_event(skb, gfp) \
cfg80211_vendor_event(skb, gfp)
#define rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len) \
cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len)
#define rtw_cfg80211_vendor_cmd_reply(skb) \
cfg80211_vendor_cmd_reply(skb)
#endif /* DBG_MEM_ALLOC */
/*
* This API is to be used for asynchronous vendor events. This
* shouldn't be used in response to a vendor command from its
* do_it handler context (instead rtw_cfgvendor_send_cmd_reply should
* be used).
*/
int rtw_cfgvendor_send_async_event(struct wiphy *wiphy,
struct net_device *dev, int event_id, const void *data, int len)
{
int kflags;
struct sk_buff *skb;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_event_alloc(wiphy, ndev_to_wdev(dev), len, event_id, kflags);
if (!skb) {
RTW_ERR(FUNC_NDEV_FMT" skb alloc failed", FUNC_NDEV_ARG(dev));
return -ENOMEM;
}
/* Push the data to the skb */
nla_put_nohdr(skb, len, data);
rtw_cfg80211_vendor_event(skb, kflags);
return 0;
}
static int rtw_cfgvendor_send_cmd_reply(struct wiphy *wiphy,
struct net_device *dev, const void *data, int len)
{
struct sk_buff *skb;
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len);
if (unlikely(!skb)) {
RTW_ERR(FUNC_NDEV_FMT" skb alloc failed", FUNC_NDEV_ARG(dev));
return -ENOMEM;
}
/* Push the data to the skb */
nla_put_nohdr(skb, len, data);
return rtw_cfg80211_vendor_cmd_reply(skb);
}
/* Feature enums */
#define WIFI_FEATURE_INFRA 0x0001 // Basic infrastructure mode
#define WIFI_FEATURE_INFRA_5G 0x0002 // Support for 5 GHz Band
#define WIFI_FEATURE_HOTSPOT 0x0004 // Support for GAS/ANQP
#define WIFI_FEATURE_P2P 0x0008 // Wifi-Direct
#define WIFI_FEATURE_SOFT_AP 0x0010 // Soft AP
#define WIFI_FEATURE_GSCAN 0x0020 // Google-Scan APIs
#define WIFI_FEATURE_NAN 0x0040 // Neighbor Awareness Networking
#define WIFI_FEATURE_D2D_RTT 0x0080 // Device-to-device RTT
#define WIFI_FEATURE_D2AP_RTT 0x0100 // Device-to-AP RTT
#define WIFI_FEATURE_BATCH_SCAN 0x0200 // Batched Scan (legacy)
#define WIFI_FEATURE_PNO 0x0400 // Preferred network offload
#define WIFI_FEATURE_ADDITIONAL_STA 0x0800 // Support for two STAs
#define WIFI_FEATURE_TDLS 0x1000 // Tunnel directed link setup
#define WIFI_FEATURE_TDLS_OFFCHANNEL 0x2000 // Support for TDLS off channel
#define WIFI_FEATURE_EPR 0x4000 // Enhanced power reporting
#define WIFI_FEATURE_AP_STA 0x8000 // Support for AP STA Concurrency
#define WIFI_FEATURE_LINK_LAYER_STATS 0x10000 // Link layer stats collection
#define WIFI_FEATURE_LOGGER 0x20000 // WiFi Logger
#define WIFI_FEATURE_HAL_EPNO 0x40000 // WiFi PNO enhanced
#define WIFI_FEATURE_RSSI_MONITOR 0x80000 // RSSI Monitor
#define WIFI_FEATURE_MKEEP_ALIVE 0x100000 // WiFi mkeep_alive
#define WIFI_FEATURE_CONFIG_NDO 0x200000 // ND offload configure
#define WIFI_FEATURE_TX_TRANSMIT_POWER 0x400000 // Capture Tx transmit power levels
#define WIFI_FEATURE_CONTROL_ROAMING 0x800000 // Enable/Disable firmware roaming
#define WIFI_FEATURE_IE_WHITELIST 0x1000000 // Support Probe IE white listing
#define WIFI_FEATURE_SCAN_RAND 0x2000000 // Support MAC & Probe Sequence Number randomization
// Add more features here
#define MAX_FEATURE_SET_CONCURRRENT_GROUPS 3
int rtw_dev_get_feature_set(struct net_device *dev)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(dev);
int feature_set = 0;
feature_set |= WIFI_FEATURE_INFRA;
#if CONFIG_IEEE80211_BAND_5GHZ
if (is_supported_5g(adapter_to_regsty(adapter)->band_type))
feature_set |= WIFI_FEATURE_INFRA_5G;
#endif
feature_set |= WIFI_FEATURE_P2P;
feature_set |= WIFI_FEATURE_SOFT_AP;
feature_set |= WIFI_FEATURE_ADDITIONAL_STA;
#ifdef CONFIG_RTW_CFGVENDOR_LLSTATS
feature_set |= WIFI_FEATURE_LINK_LAYER_STATS;
#endif /* CONFIG_RTW_CFGVENDOR_LLSTATS */
#ifdef CONFIG_RTW_CFGVENDOR_RSSIMONITOR
feature_set |= WIFI_FEATURE_RSSI_MONITOR;
#endif
#ifdef CONFIG_RTW_CFGVENDOR_WIFI_LOGGER
feature_set |= WIFI_FEATURE_LOGGER;
#endif
#ifdef CONFIG_RTW_WIFI_HAL
feature_set |= WIFI_FEATURE_CONFIG_NDO;
feature_set |= WIFI_FEATURE_SCAN_RAND;
#endif
return feature_set;
}
int *rtw_dev_get_feature_set_matrix(struct net_device *dev, int *num)
{
int feature_set_full, mem_needed;
int *ret;
*num = 0;
mem_needed = sizeof(int) * MAX_FEATURE_SET_CONCURRRENT_GROUPS;
ret = (int *)rtw_malloc(mem_needed);
if (!ret) {
RTW_ERR(FUNC_NDEV_FMT" failed to allocate %d bytes\n"
, FUNC_NDEV_ARG(dev), mem_needed);
return ret;
}
feature_set_full = rtw_dev_get_feature_set(dev);
ret[0] = (feature_set_full & WIFI_FEATURE_INFRA) |
(feature_set_full & WIFI_FEATURE_INFRA_5G) |
(feature_set_full & WIFI_FEATURE_NAN) |
(feature_set_full & WIFI_FEATURE_D2D_RTT) |
(feature_set_full & WIFI_FEATURE_D2AP_RTT) |
(feature_set_full & WIFI_FEATURE_PNO) |
(feature_set_full & WIFI_FEATURE_BATCH_SCAN) |
(feature_set_full & WIFI_FEATURE_GSCAN) |
(feature_set_full & WIFI_FEATURE_HOTSPOT) |
(feature_set_full & WIFI_FEATURE_ADDITIONAL_STA) |
(feature_set_full & WIFI_FEATURE_EPR);
ret[1] = (feature_set_full & WIFI_FEATURE_INFRA) |
(feature_set_full & WIFI_FEATURE_INFRA_5G) |
/* Not yet verified NAN with P2P */
/* (feature_set_full & WIFI_FEATURE_NAN) | */
(feature_set_full & WIFI_FEATURE_P2P) |
(feature_set_full & WIFI_FEATURE_D2AP_RTT) |
(feature_set_full & WIFI_FEATURE_D2D_RTT) |
(feature_set_full & WIFI_FEATURE_EPR);
ret[2] = (feature_set_full & WIFI_FEATURE_INFRA) |
(feature_set_full & WIFI_FEATURE_INFRA_5G) |
(feature_set_full & WIFI_FEATURE_NAN) |
(feature_set_full & WIFI_FEATURE_D2D_RTT) |
(feature_set_full & WIFI_FEATURE_D2AP_RTT) |
(feature_set_full & WIFI_FEATURE_TDLS) |
(feature_set_full & WIFI_FEATURE_TDLS_OFFCHANNEL) |
(feature_set_full & WIFI_FEATURE_EPR);
*num = MAX_FEATURE_SET_CONCURRRENT_GROUPS;
return ret;
}
static int rtw_cfgvendor_get_feature_set(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
int reply;
reply = rtw_dev_get_feature_set(wdev_to_ndev(wdev));
err = rtw_cfgvendor_send_cmd_reply(wiphy, wdev_to_ndev(wdev), &reply, sizeof(int));
if (unlikely(err))
RTW_ERR(FUNC_NDEV_FMT" Vendor Command reply failed ret:%d\n"
, FUNC_NDEV_ARG(wdev_to_ndev(wdev)), err);
return err;
}
static int rtw_cfgvendor_get_feature_set_matrix(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct sk_buff *skb;
int *reply;
int num, mem_needed, i;
reply = rtw_dev_get_feature_set_matrix(wdev_to_ndev(wdev), &num);
if (!reply) {
RTW_ERR(FUNC_NDEV_FMT" Could not get feature list matrix\n"
, FUNC_NDEV_ARG(wdev_to_ndev(wdev)));
err = -EINVAL;
return err;
}
mem_needed = VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * num) +
ATTRIBUTE_U32_LEN;
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
RTW_ERR(FUNC_NDEV_FMT" skb alloc failed", FUNC_NDEV_ARG(wdev_to_ndev(wdev)));
err = -ENOMEM;
goto exit;
}
nla_put_u32(skb, ANDR_WIFI_ATTRIBUTE_NUM_FEATURE_SET, num);
for (i = 0; i < num; i++)
nla_put_u32(skb, ANDR_WIFI_ATTRIBUTE_FEATURE_SET, reply[i]);
err = rtw_cfg80211_vendor_cmd_reply(skb);
if (unlikely(err))
RTW_ERR(FUNC_NDEV_FMT" Vendor Command reply failed ret:%d\n"
, FUNC_NDEV_ARG(wdev_to_ndev(wdev)), err);
exit:
rtw_mfree((u8 *)reply, sizeof(int) * num);
return err;
}
#if defined(GSCAN_SUPPORT) && 0
int rtw_cfgvendor_send_hotlist_event(struct wiphy *wiphy,
struct net_device *dev, void *data, int len, rtw_vendor_event_t event)
{
u16 kflags;
const void *ptr;
struct sk_buff *skb;
int malloc_len, total, iter_cnt_to_send, cnt;
gscan_results_cache_t *cache = (gscan_results_cache_t *)data;
total = len / sizeof(wifi_gscan_result_t);
while (total > 0) {
malloc_len = (total * sizeof(wifi_gscan_result_t)) + VENDOR_DATA_OVERHEAD;
if (malloc_len > NLMSG_DEFAULT_SIZE)
malloc_len = NLMSG_DEFAULT_SIZE;
iter_cnt_to_send =
(malloc_len - VENDOR_DATA_OVERHEAD) / sizeof(wifi_gscan_result_t);
total = total - iter_cnt_to_send;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_event_alloc(wiphy, ndev_to_wdev(dev), malloc_len, event, kflags);
if (!skb) {
WL_ERR(("skb alloc failed"));
return -ENOMEM;
}
while (cache && iter_cnt_to_send) {
ptr = (const void *) &cache->results[cache->tot_consumed];
if (iter_cnt_to_send < (cache->tot_count - cache->tot_consumed))
cnt = iter_cnt_to_send;
else
cnt = (cache->tot_count - cache->tot_consumed);
iter_cnt_to_send -= cnt;
cache->tot_consumed += cnt;
/* Push the data to the skb */
nla_append(skb, cnt * sizeof(wifi_gscan_result_t), ptr);
if (cache->tot_consumed == cache->tot_count)
cache = cache->next;
}
rtw_cfg80211_vendor_event(skb, kflags);
}
return 0;
}
static int rtw_cfgvendor_gscan_get_capabilities(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pno_gscan_capabilities_t *reply = NULL;
uint32 reply_len = 0;
reply = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_CAPABILITIES, NULL, &reply_len);
if (!reply) {
WL_ERR(("Could not get capabilities\n"));
err = -EINVAL;
return err;
}
err = rtw_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
reply, reply_len);
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d\n", err));
kfree(reply);
return err;
}
static int rtw_cfgvendor_gscan_get_channel_list(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, type, band;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
uint16 *reply = NULL;
uint32 reply_len = 0, num_channels, mem_needed;
struct sk_buff *skb;
type = nla_type(data);
if (type == GSCAN_ATTRIBUTE_BAND)
band = nla_get_u32(data);
else
return -1;
reply = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_CHANNEL_LIST, &band, &reply_len);
if (!reply) {
WL_ERR(("Could not get channel list\n"));
err = -EINVAL;
return err;
}
num_channels = reply_len / sizeof(uint32);
mem_needed = reply_len + VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * 2);
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
err = -ENOMEM;
goto exit;
}
nla_put_u32(skb, GSCAN_ATTRIBUTE_NUM_CHANNELS, num_channels);
nla_put(skb, GSCAN_ATTRIBUTE_CHANNEL_LIST, reply_len, reply);
err = rtw_cfg80211_vendor_cmd_reply(skb);
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d\n", err));
exit:
kfree(reply);
return err;
}
static int rtw_cfgvendor_gscan_get_batch_results(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_results_cache_t *results, *iter;
uint32 reply_len, complete = 0, num_results_iter;
int32 mem_needed;
wifi_gscan_result_t *ptr;
uint16 num_scan_ids, num_results;
struct sk_buff *skb;
struct nlattr *scan_hdr;
dhd_dev_wait_batch_results_complete(bcmcfg_to_prmry_ndev(cfg));
dhd_dev_pno_lock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
results = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_BATCH_RESULTS, NULL, &reply_len);
if (!results) {
WL_ERR(("No results to send %d\n", err));
err = rtw_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
results, 0);
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d\n", err));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return err;
}
num_scan_ids = reply_len & 0xFFFF;
num_results = (reply_len & 0xFFFF0000) >> 16;
mem_needed = (num_results * sizeof(wifi_gscan_result_t)) +
(num_scan_ids * GSCAN_BATCH_RESULT_HDR_LEN) +
VENDOR_REPLY_OVERHEAD + SCAN_RESULTS_COMPLETE_FLAG_LEN;
if (mem_needed > (int32)NLMSG_DEFAULT_SIZE) {
mem_needed = (int32)NLMSG_DEFAULT_SIZE;
complete = 0;
} else
complete = 1;
WL_TRACE(("complete %d mem_needed %d max_mem %d\n", complete, mem_needed,
(int)NLMSG_DEFAULT_SIZE));
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return -ENOMEM;
}
iter = results;
nla_put_u32(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS_COMPLETE, complete);
mem_needed = mem_needed - (SCAN_RESULTS_COMPLETE_FLAG_LEN + VENDOR_REPLY_OVERHEAD);
while (iter && ((mem_needed - GSCAN_BATCH_RESULT_HDR_LEN) > 0)) {
scan_hdr = nla_nest_start(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS);
nla_put_u32(skb, GSCAN_ATTRIBUTE_SCAN_ID, iter->scan_id);
nla_put_u8(skb, GSCAN_ATTRIBUTE_SCAN_FLAGS, iter->flag);
num_results_iter =
(mem_needed - GSCAN_BATCH_RESULT_HDR_LEN) / sizeof(wifi_gscan_result_t);
if ((iter->tot_count - iter->tot_consumed) < num_results_iter)
num_results_iter = iter->tot_count - iter->tot_consumed;
nla_put_u32(skb, GSCAN_ATTRIBUTE_NUM_OF_RESULTS, num_results_iter);
if (num_results_iter) {
ptr = &iter->results[iter->tot_consumed];
iter->tot_consumed += num_results_iter;
nla_put(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS,
num_results_iter * sizeof(wifi_gscan_result_t), ptr);
}
nla_nest_end(skb, scan_hdr);
mem_needed -= GSCAN_BATCH_RESULT_HDR_LEN +
(num_results_iter * sizeof(wifi_gscan_result_t));
iter = iter->next;
}
dhd_dev_gscan_batch_cache_cleanup(bcmcfg_to_prmry_ndev(cfg));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return rtw_cfg80211_vendor_cmd_reply(skb);
}
static int rtw_cfgvendor_initiate_gscan(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type, tmp = len;
int run = 0xFF;
int flush = 0;
const struct nlattr *iter;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
if (type == GSCAN_ATTRIBUTE_ENABLE_FEATURE)
run = nla_get_u32(iter);
else if (type == GSCAN_ATTRIBUTE_FLUSH_FEATURE)
flush = nla_get_u32(iter);
}
if (run != 0xFF) {
err = dhd_dev_pno_run_gscan(bcmcfg_to_prmry_ndev(cfg), run, flush);
if (unlikely(err))
WL_ERR(("Could not run gscan:%d\n", err));
return err;
} else
return -1;
}
static int rtw_cfgvendor_enable_full_scan_result(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
bool real_time = FALSE;
type = nla_type(data);
if (type == GSCAN_ATTRIBUTE_ENABLE_FULL_SCAN_RESULTS) {
real_time = nla_get_u32(data);
err = dhd_dev_pno_enable_full_scan_result(bcmcfg_to_prmry_ndev(cfg), real_time);
if (unlikely(err))
WL_ERR(("Could not run gscan:%d\n", err));
} else
err = -1;
return err;
}
static int rtw_cfgvendor_set_scan_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_scan_params_t *scan_param;
int j = 0;
int type, tmp, tmp1, tmp2, k = 0;
const struct nlattr *iter, *iter1, *iter2;
struct dhd_pno_gscan_channel_bucket *ch_bucket;
scan_param = kzalloc(sizeof(gscan_scan_params_t), GFP_KERNEL);
if (!scan_param) {
WL_ERR(("Could not set GSCAN scan cfg, mem alloc failure\n"));
err = -EINVAL;
return err;
}
scan_param->scan_fr = PNO_SCAN_MIN_FW_SEC;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
if (j >= GSCAN_MAX_CH_BUCKETS)
break;
switch (type) {
case GSCAN_ATTRIBUTE_BASE_PERIOD:
scan_param->scan_fr = nla_get_u32(iter) / 1000;
break;
case GSCAN_ATTRIBUTE_NUM_BUCKETS:
scan_param->nchannel_buckets = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_CH_BUCKET_1:
case GSCAN_ATTRIBUTE_CH_BUCKET_2:
case GSCAN_ATTRIBUTE_CH_BUCKET_3:
case GSCAN_ATTRIBUTE_CH_BUCKET_4:
case GSCAN_ATTRIBUTE_CH_BUCKET_5:
case GSCAN_ATTRIBUTE_CH_BUCKET_6:
case GSCAN_ATTRIBUTE_CH_BUCKET_7:
nla_for_each_nested(iter1, iter, tmp1) {
type = nla_type(iter1);
ch_bucket =
scan_param->channel_bucket;
switch (type) {
case GSCAN_ATTRIBUTE_BUCKET_ID:
break;
case GSCAN_ATTRIBUTE_BUCKET_PERIOD:
ch_bucket[j].bucket_freq_multiple =
nla_get_u32(iter1) / 1000;
break;
case GSCAN_ATTRIBUTE_BUCKET_NUM_CHANNELS:
ch_bucket[j].num_channels =
nla_get_u32(iter1);
break;
case GSCAN_ATTRIBUTE_BUCKET_CHANNELS:
nla_for_each_nested(iter2, iter1, tmp2) {
if (k >= PFN_SWC_RSSI_WINDOW_MAX)
break;
ch_bucket[j].chan_list[k] =
nla_get_u32(iter2);
k++;
}
k = 0;
break;
case GSCAN_ATTRIBUTE_BUCKETS_BAND:
ch_bucket[j].band = (uint16)
nla_get_u32(iter1);
break;
case GSCAN_ATTRIBUTE_REPORT_EVENTS:
ch_bucket[j].report_flag = (uint8)
nla_get_u32(iter1);
break;
}
}
j++;
break;
}
}
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_SCAN_CFG_ID, scan_param, 0) < 0) {
WL_ERR(("Could not set GSCAN scan cfg\n"));
err = -EINVAL;
}
kfree(scan_param);
return err;
}
static int rtw_cfgvendor_hotlist_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_hotlist_scan_params_t *hotlist_params;
int tmp, tmp1, tmp2, type, j = 0, dummy;
const struct nlattr *outer, *inner, *iter;
uint8 flush = 0;
struct bssid_t *pbssid;
hotlist_params = (gscan_hotlist_scan_params_t *)kzalloc(len, GFP_KERNEL);
if (!hotlist_params) {
WL_ERR(("Cannot Malloc mem to parse config commands size - %d bytes\n", len));
return -1;
}
hotlist_params->lost_ap_window = GSCAN_LOST_AP_WINDOW_DEFAULT;
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_HOTLIST_BSSIDS:
pbssid = hotlist_params->bssid;
nla_for_each_nested(outer, iter, tmp) {
nla_for_each_nested(inner, outer, tmp1) {
type = nla_type(inner);
switch (type) {
case GSCAN_ATTRIBUTE_BSSID:
_rtw_memcpy(&(pbssid[j].macaddr),
nla_data(inner), ETHER_ADDR_LEN);
break;
case GSCAN_ATTRIBUTE_RSSI_LOW:
pbssid[j].rssi_reporting_threshold =
(int8) nla_get_u8(inner);
break;
case GSCAN_ATTRIBUTE_RSSI_HIGH:
dummy = (int8) nla_get_u8(inner);
break;
}
}
j++;
}
hotlist_params->nbssid = j;
break;
case GSCAN_ATTRIBUTE_HOTLIST_FLUSH:
flush = nla_get_u8(iter);
break;
case GSCAN_ATTRIBUTE_LOST_AP_SAMPLE_SIZE:
hotlist_params->lost_ap_window = nla_get_u32(iter);
break;
}
}
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GEOFENCE_SCAN_CFG_ID, hotlist_params, flush) < 0) {
WL_ERR(("Could not set GSCAN HOTLIST cfg\n"));
err = -EINVAL;
goto exit;
}
exit:
kfree(hotlist_params);
return err;
}
static int rtw_cfgvendor_set_batch_scan_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, tmp, type;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_batch_params_t batch_param;
const struct nlattr *iter;
batch_param.mscan = batch_param.bestn = 0;
batch_param.buffer_threshold = GSCAN_BATCH_NO_THR_SET;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_NUM_AP_PER_SCAN:
batch_param.bestn = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_NUM_SCANS_TO_CACHE:
batch_param.mscan = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_REPORT_THRESHOLD:
batch_param.buffer_threshold = nla_get_u32(iter);
break;
}
}
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_BATCH_SCAN_CFG_ID, &batch_param, 0) < 0) {
WL_ERR(("Could not set batch cfg\n"));
err = -EINVAL;
return err;
}
return err;
}
static int rtw_cfgvendor_significant_change_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_swc_params_t *significant_params;
int tmp, tmp1, tmp2, type, j = 0;
const struct nlattr *outer, *inner, *iter;
uint8 flush = 0;
wl_pfn_significant_bssid_t *pbssid;
significant_params = (gscan_swc_params_t *) kzalloc(len, GFP_KERNEL);
if (!significant_params) {
WL_ERR(("Cannot Malloc mem to parse config commands size - %d bytes\n", len));
return -1;
}
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_SIGNIFICANT_CHANGE_FLUSH:
flush = nla_get_u8(iter);
break;
case GSCAN_ATTRIBUTE_RSSI_SAMPLE_SIZE:
significant_params->rssi_window = nla_get_u16(iter);
break;
case GSCAN_ATTRIBUTE_LOST_AP_SAMPLE_SIZE:
significant_params->lost_ap_window = nla_get_u16(iter);
break;
case GSCAN_ATTRIBUTE_MIN_BREACHING:
significant_params->swc_threshold = nla_get_u16(iter);
break;
case GSCAN_ATTRIBUTE_SIGNIFICANT_CHANGE_BSSIDS:
pbssid = significant_params->bssid_elem_list;
nla_for_each_nested(outer, iter, tmp) {
nla_for_each_nested(inner, outer, tmp1) {
switch (nla_type(inner)) {
case GSCAN_ATTRIBUTE_BSSID:
_rtw_memcpy(&(pbssid[j].macaddr),
nla_data(inner),
ETHER_ADDR_LEN);
break;
case GSCAN_ATTRIBUTE_RSSI_HIGH:
pbssid[j].rssi_high_threshold =
(int8) nla_get_u8(inner);
break;
case GSCAN_ATTRIBUTE_RSSI_LOW:
pbssid[j].rssi_low_threshold =
(int8) nla_get_u8(inner);
break;
}
}
j++;
}
break;
}
}
significant_params->nbssid = j;
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_SIGNIFICANT_SCAN_CFG_ID, significant_params, flush) < 0) {
WL_ERR(("Could not set GSCAN significant cfg\n"));
err = -EINVAL;
goto exit;
}
exit:
kfree(significant_params);
return err;
}
#endif /* GSCAN_SUPPORT */
#if defined(RTT_SUPPORT) && 0
void rtw_cfgvendor_rtt_evt(void *ctx, void *rtt_data)
{
struct wireless_dev *wdev = (struct wireless_dev *)ctx;
struct wiphy *wiphy;
struct sk_buff *skb;
uint32 tot_len = NLMSG_DEFAULT_SIZE, entry_len = 0;
gfp_t kflags;
rtt_report_t *rtt_report = NULL;
rtt_result_t *rtt_result = NULL;
struct list_head *rtt_list;
wiphy = wdev->wiphy;
WL_DBG(("In\n"));
/* Push the data to the skb */
if (!rtt_data) {
WL_ERR(("rtt_data is NULL\n"));
goto exit;
}
rtt_list = (struct list_head *)rtt_data;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_event_alloc(wiphy, wdev, tot_len, GOOGLE_RTT_COMPLETE_EVENT, kflags);
if (!skb) {
WL_ERR(("skb alloc failed"));
goto exit;
}
/* fill in the rtt results on each entry */
list_for_each_entry(rtt_result, rtt_list, list) {
entry_len = 0;
if (rtt_result->TOF_type == TOF_TYPE_ONE_WAY) {
entry_len = sizeof(rtt_report_t);
rtt_report = kzalloc(entry_len, kflags);
if (!rtt_report) {
WL_ERR(("rtt_report alloc failed"));
goto exit;
}
rtt_report->addr = rtt_result->peer_mac;
rtt_report->num_measurement = 1; /* ONE SHOT */
rtt_report->status = rtt_result->err_code;
rtt_report->type = (rtt_result->TOF_type == TOF_TYPE_ONE_WAY) ? RTT_ONE_WAY : RTT_TWO_WAY;
rtt_report->peer = rtt_result->target_info->peer;
rtt_report->channel = rtt_result->target_info->channel;
rtt_report->rssi = rtt_result->avg_rssi;
/* tx_rate */
rtt_report->tx_rate = rtt_result->tx_rate;
/* RTT */
rtt_report->rtt = rtt_result->meanrtt;
rtt_report->rtt_sd = rtt_result->sdrtt;
/* convert to centi meter */
if (rtt_result->distance != 0xffffffff)
rtt_report->distance = (rtt_result->distance >> 2) * 25;
else /* invalid distance */
rtt_report->distance = -1;
rtt_report->ts = rtt_result->ts;
nla_append(skb, entry_len, rtt_report);
kfree(rtt_report);
}
}
rtw_cfg80211_vendor_event(skb, kflags);
exit:
return;
}
static int rtw_cfgvendor_rtt_set_config(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0, rem, rem1, rem2, type;
rtt_config_params_t rtt_param;
rtt_target_info_t *rtt_target = NULL;
const struct nlattr *iter, *iter1, *iter2;
int8 eabuf[ETHER_ADDR_STR_LEN];
int8 chanbuf[CHANSPEC_STR_LEN];
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
WL_DBG(("In\n"));
err = dhd_dev_rtt_register_noti_callback(wdev->netdev, wdev, wl_cfgvendor_rtt_evt);
if (err < 0) {
WL_ERR(("failed to register rtt_noti_callback\n"));
goto exit;
}
memset(&rtt_param, 0, sizeof(rtt_param));
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case RTT_ATTRIBUTE_TARGET_CNT:
rtt_param.rtt_target_cnt = nla_get_u8(iter);
if (rtt_param.rtt_target_cnt > RTT_MAX_TARGET_CNT) {
WL_ERR(("exceed max target count : %d\n",
rtt_param.rtt_target_cnt));
err = BCME_RANGE;
}
break;
case RTT_ATTRIBUTE_TARGET_INFO:
rtt_target = rtt_param.target_info;
nla_for_each_nested(iter1, iter, rem1) {
nla_for_each_nested(iter2, iter1, rem2) {
type = nla_type(iter2);
switch (type) {
case RTT_ATTRIBUTE_TARGET_MAC:
_rtw_memcpy(&rtt_target->addr, nla_data(iter2), ETHER_ADDR_LEN);
break;
case RTT_ATTRIBUTE_TARGET_TYPE:
rtt_target->type = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_PEER:
rtt_target->peer = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_CHAN:
_rtw_memcpy(&rtt_target->channel, nla_data(iter2),
sizeof(rtt_target->channel));
break;
case RTT_ATTRIBUTE_TARGET_MODE:
rtt_target->continuous = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_INTERVAL:
rtt_target->interval = nla_get_u32(iter2);
break;
case RTT_ATTRIBUTE_TARGET_NUM_MEASUREMENT:
rtt_target->measure_cnt = nla_get_u32(iter2);
break;
case RTT_ATTRIBUTE_TARGET_NUM_PKT:
rtt_target->ftm_cnt = nla_get_u32(iter2);
break;
case RTT_ATTRIBUTE_TARGET_NUM_RETRY:
rtt_target->retry_cnt = nla_get_u32(iter2);
}
}
/* convert to chanspec value */
rtt_target->chanspec = dhd_rtt_convert_to_chspec(rtt_target->channel);
if (rtt_target->chanspec == 0) {
WL_ERR(("Channel is not valid\n"));
goto exit;
}
WL_INFORM(("Target addr %s, Channel : %s for RTT\n",
bcm_ether_ntoa((const struct ether_addr *)&rtt_target->addr, eabuf),
wf_chspec_ntoa(rtt_target->chanspec, chanbuf)));
rtt_target++;
}
break;
}
}
WL_DBG(("leave :target_cnt : %d\n", rtt_param.rtt_target_cnt));
if (dhd_dev_rtt_set_cfg(bcmcfg_to_prmry_ndev(cfg), &rtt_param) < 0) {
WL_ERR(("Could not set RTT configuration\n"));
err = -EINVAL;
}
exit:
return err;
}
static int rtw_cfgvendor_rtt_cancel_config(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0, rem, type, target_cnt = 0;
const struct nlattr *iter;
struct ether_addr *mac_list = NULL, *mac_addr = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case RTT_ATTRIBUTE_TARGET_CNT:
target_cnt = nla_get_u8(iter);
mac_list = (struct ether_addr *)kzalloc(target_cnt * ETHER_ADDR_LEN , GFP_KERNEL);
if (mac_list == NULL) {
WL_ERR(("failed to allocate mem for mac list\n"));
goto exit;
}
mac_addr = &mac_list[0];
break;
case RTT_ATTRIBUTE_TARGET_MAC:
if (mac_addr)
_rtw_memcpy(mac_addr++, nla_data(iter), ETHER_ADDR_LEN);
else {
WL_ERR(("mac_list is NULL\n"));
goto exit;
}
break;
}
if (dhd_dev_rtt_cancel_cfg(bcmcfg_to_prmry_ndev(cfg), mac_list, target_cnt) < 0) {
WL_ERR(("Could not cancel RTT configuration\n"));
err = -EINVAL;
goto exit;
}
}
exit:
if (mac_list)
kfree(mac_list);
return err;
}
static int rtw_cfgvendor_rtt_get_capability(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
rtt_capabilities_t capability;
err = dhd_dev_rtt_capability(bcmcfg_to_prmry_ndev(cfg), &capability);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d\n", err));
goto exit;
}
err = rtw_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
&capability, sizeof(capability));
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d\n", err));
exit:
return err;
}
#endif /* RTT_SUPPORT */
#ifdef CONFIG_RTW_CFGVENDOR_LLSTATS
enum {
LSTATS_SUBCMD_GET_INFO = ANDROID_NL80211_SUBCMD_LSTATS_RANGE_START,
LSTATS_SUBCMD_SET_INFO,
LSTATS_SUBCMD_CLEAR_INFO,
};
static void LinkLayerStats(_adapter *padapter)
{
struct xmit_priv *pxmitpriv = &(padapter->xmitpriv);
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
u32 ps_time, trx_total_time;
u64 tx_bytes, rx_bytes, trx_total_bytes = 0;
u64 tmp = 0;
RTW_DBG("%s adapter type : %u\n", __func__, padapter->adapter_type);
tx_bytes = 0;
rx_bytes = 0;
ps_time = 0;
trx_total_time = 0;
if ( padapter->netif_up == _TRUE ) {
pwrpriv->on_time = rtw_get_passing_time_ms(pwrpriv->radio_on_start_time);
if (rtw_mi_check_fwstate(padapter, WIFI_ASOC_STATE)) {
if ( pwrpriv->bpower_saving == _TRUE ) {
pwrpriv->pwr_saving_time += rtw_get_passing_time_ms(pwrpriv->pwr_saving_start_time);
pwrpriv->pwr_saving_start_time = rtw_get_current_time();
}
} else {
#ifdef CONFIG_IPS
if ( pwrpriv->bpower_saving == _TRUE ) {
pwrpriv->pwr_saving_time += rtw_get_passing_time_ms(pwrpriv->pwr_saving_start_time);
pwrpriv->pwr_saving_start_time = rtw_get_current_time();
}
#else
pwrpriv->pwr_saving_time = pwrpriv->on_time;
#endif
}
ps_time = pwrpriv->pwr_saving_time;
/* Deviation caused by caculation start time */
if ( ps_time > pwrpriv->on_time )
ps_time = pwrpriv->on_time;
tx_bytes = pdvobjpriv->traffic_stat.last_tx_bytes;
rx_bytes = pdvobjpriv->traffic_stat.last_rx_bytes;
trx_total_bytes = tx_bytes + rx_bytes;
trx_total_time = pwrpriv->on_time - ps_time;
if ( trx_total_bytes == 0) {
pwrpriv->tx_time = 0;
pwrpriv->rx_time = 0;
} else {
/* tx_time = (trx_total_time * tx_total_bytes) / trx_total_bytes; */
/* rx_time = (trx_total_time * rx_total_bytes) / trx_total_bytes; */
tmp = (tx_bytes * trx_total_time);
tmp = rtw_division64(tmp, trx_total_bytes);
pwrpriv->tx_time = tmp;
tmp = (rx_bytes * trx_total_time);
tmp = rtw_division64(tmp, trx_total_bytes);
pwrpriv->rx_time = tmp;
}
}
else {
pwrpriv->on_time = 0;
pwrpriv->tx_time = 0;
pwrpriv->rx_time = 0;
}
#ifdef CONFIG_RTW_WIFI_HAL_DEBUG
RTW_INFO("- tx_bytes : %llu rx_bytes : %llu total bytes : %llu\n", tx_bytes, rx_bytes, trx_total_bytes);
RTW_INFO("- netif_up = %s, on_time : %u ms\n", padapter->netif_up ? "1":"0", pwrpriv->on_time);
RTW_INFO("- pwr_saving_time : %u (%u) ms\n", pwrpriv->pwr_saving_time, ps_time);
RTW_INFO("- trx_total_time : %u ms\n", trx_total_time);
RTW_INFO("- tx_time : %u ms\n", pwrpriv->tx_time);
RTW_INFO("- rx_time : %u ms\n", pwrpriv->rx_time);
#endif /* CONFIG_RTW_WIFI_HAL_DEBUG */
}
#define DUMMY_TIME_STATICS 99
static int rtw_cfgvendor_lstats_get_info(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
_adapter *padapter = GET_PRIMARY_ADAPTER(wiphy_to_adapter(wiphy));
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
wifi_radio_stat_internal *radio;
wifi_iface_stat *iface;
char *output;
output = rtw_malloc(sizeof(wifi_radio_stat_internal) + sizeof(wifi_iface_stat));
if (output == NULL) {
RTW_DBG("Allocate lstats info buffer fail!\n");
}
radio = (wifi_radio_stat_internal *)output;
radio->num_channels = 0;
radio->radio = 1;
/* to get on_time, tx_time, rx_time */
LinkLayerStats(padapter);
radio->on_time = pwrpriv->on_time;
radio->tx_time = pwrpriv->tx_time;
radio->rx_time = pwrpriv->rx_time;
radio->on_time_scan = 0;
radio->on_time_nbd = 0;
radio->on_time_gscan = 0;
radio->on_time_pno_scan = 0;
radio->on_time_hs20 = 0;
#ifdef CONFIG_RTW_WIFI_HAL_DEBUG
RTW_INFO("==== %s ====\n", __func__);
RTW_INFO("radio->radio : %d\n", (radio->radio));
RTW_INFO("pwrpriv->on_time : %u ms\n", (pwrpriv->on_time));
RTW_INFO("pwrpriv->tx_time : %u ms\n", (pwrpriv->tx_time));
RTW_INFO("pwrpriv->rx_time : %u ms\n", (pwrpriv->rx_time));
RTW_INFO("radio->on_time : %u ms\n", (radio->on_time));
RTW_INFO("radio->tx_time : %u ms\n", (radio->tx_time));
RTW_INFO("radio->rx_time : %u ms\n", (radio->rx_time));
#endif /* CONFIG_RTW_WIFI_HAL_DEBUG */
RTW_DBG(FUNC_NDEV_FMT" %s\n", FUNC_NDEV_ARG(wdev_to_ndev(wdev)), (char*)data);
err = rtw_cfgvendor_send_cmd_reply(wiphy, wdev_to_ndev(wdev),
output, sizeof(wifi_iface_stat) + sizeof(wifi_radio_stat_internal));
if (unlikely(err))
RTW_ERR(FUNC_NDEV_FMT"Vendor Command reply failed ret:%d \n"
, FUNC_NDEV_ARG(wdev_to_ndev(wdev)), err);
rtw_mfree(output, sizeof(wifi_iface_stat) + sizeof(wifi_radio_stat_internal));
return err;
}
static int rtw_cfgvendor_lstats_set_info(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
RTW_INFO("%s\n", __func__);
return err;
}
static int rtw_cfgvendor_lstats_clear_info(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
RTW_INFO("%s\n", __func__);
return err;
}
#endif /* CONFIG_RTW_CFGVENDOR_LLSTATS */
#ifdef CONFIG_RTW_CFGVENDOR_RSSIMONITOR
static int rtw_cfgvendor_set_rssi_monitor(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
_adapter *padapter = GET_PRIMARY_ADAPTER(wiphy_to_adapter(wiphy));
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(padapter);
int err = 0, rem, type;
const struct nlattr *iter;
RTW_DBG(FUNC_NDEV_FMT" %s\n", FUNC_NDEV_ARG(wdev_to_ndev(wdev)), (char*)data);
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case RSSI_MONITOR_ATTRIBUTE_MAX_RSSI:
pwdev_priv->rssi_monitor_max = (s8)nla_get_u32(iter);;
break;
case RSSI_MONITOR_ATTRIBUTE_MIN_RSSI:
pwdev_priv->rssi_monitor_min = (s8)nla_get_u32(iter);
break;
case RSSI_MONITOR_ATTRIBUTE_START:
pwdev_priv->rssi_monitor_enable = (u8)nla_get_u32(iter);
break;
}
}
return err;
}
void rtw_cfgvendor_rssi_monitor_evt(_adapter *padapter) {
struct wireless_dev *wdev = padapter->rtw_wdev;
struct wiphy *wiphy= wdev->wiphy;
struct recv_info *precvinfo = &padapter->recvinfo;
struct mlme_priv *pmlmepriv = &(padapter->mlmepriv);
struct wlan_network *pcur_network = &pmlmepriv->cur_network;
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(padapter);
struct sk_buff *skb;
u32 tot_len = NLMSG_DEFAULT_SIZE;
gfp_t kflags;
rssi_monitor_evt data ;
s8 rssi = precvinfo->rssi;
if (pwdev_priv->rssi_monitor_enable == 0 || check_fwstate(pmlmepriv, WIFI_ASOC_STATE) != _TRUE)
return;
if (rssi < pwdev_priv->rssi_monitor_max || rssi > pwdev_priv->rssi_monitor_min)
return;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_event_alloc(wiphy, wdev, tot_len, GOOGLE_RSSI_MONITOR_EVENT, kflags);
if (!skb) {
goto exit;
}
_rtw_memset(&data, 0, sizeof(data));
data.version = RSSI_MONITOR_EVT_VERSION;
data.cur_rssi = rssi;
_rtw_memcpy(data.BSSID, pcur_network->network.MacAddress, sizeof(mac_addr));
nla_append(skb, sizeof(data), &data);
rtw_cfg80211_vendor_event(skb, kflags);
exit:
return;
}
#endif /* CONFIG_RTW_CFGVENDOR_RSSIMONITR */
#ifdef CONFIG_RTW_CFGVENDOR_WIFI_LOGGER
static int rtw_cfgvendor_logger_start_logging(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = 0, rem, type;
char ring_name[32] = {0};
int log_level = 0, flags = 0, time_intval = 0, threshold = 0;
const struct nlattr *iter;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case LOGGER_ATTRIBUTE_RING_NAME:
strncpy(ring_name, nla_data(iter),
MIN(sizeof(ring_name) -1, nla_len(iter)));
break;
case LOGGER_ATTRIBUTE_LOG_LEVEL:
log_level = nla_get_u32(iter);
break;
case LOGGER_ATTRIBUTE_RING_FLAGS:
flags = nla_get_u32(iter);
break;
case LOGGER_ATTRIBUTE_LOG_TIME_INTVAL:
time_intval = nla_get_u32(iter);
break;
case LOGGER_ATTRIBUTE_LOG_MIN_DATA_SIZE:
threshold = nla_get_u32(iter);
break;
default:
RTW_ERR("Unknown type: %d\n", type);
ret = WIFI_ERROR_INVALID_ARGS;
goto exit;
}
}
exit:
return ret;
}
static int rtw_cfgvendor_logger_get_feature(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
u32 supported_features = 0;
err = rtw_cfgvendor_send_cmd_reply(wiphy, wdev_to_ndev(wdev), &supported_features, sizeof(supported_features));
if (unlikely(err))
RTW_ERR(FUNC_NDEV_FMT" Vendor Command reply failed ret:%d\n"
, FUNC_NDEV_ARG(wdev_to_ndev(wdev)), err);
return err;
}
static int rtw_cfgvendor_logger_get_version(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
_adapter *padapter = GET_PRIMARY_ADAPTER(wiphy_to_adapter(wiphy));
int ret = 0, rem, type;
int buf_len = 1024;
char *buf_ptr;
const struct nlattr *iter;
gfp_t kflags;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
buf_ptr = kzalloc(buf_len, kflags);
if (!buf_ptr) {
RTW_ERR("failed to allocate the buffer for version n");
ret = -ENOMEM;
goto exit;
}
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case LOGGER_ATTRIBUTE_GET_DRIVER:
_rtw_memcpy(buf_ptr, DRIVERVERSION, strlen(DRIVERVERSION)+1);
break;
case LOGGER_ATTRIBUTE_GET_FW:
rtw_phl_get_fw_ver(GET_PHL_INFO(adapter_to_dvobj(padapter)), buf_ptr, buf_len);
break;
default:
RTW_ERR("Unknown type: %d\n", type);
ret = -EINVAL;
goto exit;
}
}
if (ret < 0) {
RTW_ERR("failed to get the version %d\n", ret);
goto exit;
}
ret = rtw_cfgvendor_send_cmd_reply(wiphy, wdev_to_ndev(wdev), buf_ptr, strlen(buf_ptr));
exit:
kfree(buf_ptr);
return ret;
}
static int rtw_cfgvendor_logger_get_ring_status(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = 0;
int ring_id;
char ring_buf_name[] = "RTW_RING_BUFFER";
struct sk_buff *skb;
wifi_ring_buffer_status ring_status;
_rtw_memcpy(ring_status.name, ring_buf_name, strlen(ring_buf_name)+1);
ring_status.ring_id = 1;
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy,
sizeof(wifi_ring_buffer_status));
if (!skb) {
RTW_ERR("skb allocation is failed\n");
ret = FAIL;
goto exit;
}
nla_put_u32(skb, LOGGER_ATTRIBUTE_RING_NUM, 1);
nla_put(skb, LOGGER_ATTRIBUTE_RING_STATUS, sizeof(wifi_ring_buffer_status),
&ring_status);
ret = cfg80211_vendor_cmd_reply(skb);
if (ret) {
RTW_ERR("Vendor Command reply failed ret:%d \n", ret);
}
exit:
return ret;
}
static int rtw_cfgvendor_logger_get_ring_data(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = 0, rem, type;
char ring_name[32] = {0};
const struct nlattr *iter;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case LOGGER_ATTRIBUTE_RING_NAME:
strncpy(ring_name, nla_data(iter),
MIN(sizeof(ring_name) -1, nla_len(iter)));
RTW_INFO(" %s LOGGER_ATTRIBUTE_RING_NAME : %s\n", __func__, ring_name);
break;
default:
RTW_ERR("Unknown type: %d\n", type);
return ret;
}
}
return ret;
}
static int rtw_cfgvendor_logger_get_firmware_memory_dump(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = WIFI_ERROR_NOT_SUPPORTED;
return ret;
}
static int rtw_cfgvendor_logger_start_pkt_fate_monitoring(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = WIFI_SUCCESS;
return ret;
}
static int rtw_cfgvendor_logger_get_tx_pkt_fates(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = WIFI_SUCCESS;
return ret;
}
static int rtw_cfgvendor_logger_get_rx_pkt_fates(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = WIFI_SUCCESS;
return ret;
}
#endif /* CONFIG_RTW_CFGVENDOR_WIFI_LOGGER */
#ifdef CONFIG_RTW_WIFI_HAL
#ifdef CONFIG_RTW_CFGVENDOR_RANDOM_MAC_OUI
#ifndef ETHER_ISMULTI
#define ETHER_ISMULTI(ea) (((const u8 *)(ea))[0] & 1)
#endif
static u8 null_addr[ETH_ALEN] = {0};
static void rtw_hal_random_gen_mac_addr(u8 *mac_addr)
{
do {
get_random_bytes(&mac_addr[3], ETH_ALEN-3);
if (_rtw_memcmp(mac_addr, null_addr, ETH_ALEN) != _TRUE)
break;
} while(1);
}
void rtw_hal_pno_random_gen_mac_addr(_adapter *adapter)
{
u8 mac_addr[ETH_ALEN];
struct rtw_wdev_priv *pwdev_priv = adapter_wdev_data(adapter);
_rtw_memcpy(mac_addr, pwdev_priv->pno_mac_addr, ETH_ALEN);
if (mac_addr[0] == 0xFF) return;
rtw_hal_random_gen_mac_addr(mac_addr);
_rtw_memcpy(pwdev_priv->pno_mac_addr, mac_addr, ETH_ALEN);
#ifdef CONFIG_RTW_DEBUG
print_hex_dump(KERN_DEBUG, "pno_mac_addr: ",
DUMP_PREFIX_OFFSET, 16, 1, pwdev_priv->pno_mac_addr,
ETH_ALEN, 1);
#endif
}
void rtw_hal_set_hw_mac_addr(_adapter *adapter, u8 *mac_addr)
{
rtw_ps_deny(adapter, PS_DENY_IOCTL);
LeaveAllPowerSaveModeDirect(adapter);
rtw_hal_set_hwreg(adapter, HW_VAR_MAC_ADDR, mac_addr);
#ifdef CONFIG_RTW_DEBUG
rtw_hal_dump_macaddr(RTW_DBGDUMP, adapter);
#endif
rtw_ps_deny_cancel(adapter, PS_DENY_IOCTL);
}
static int rtw_cfgvendor_set_rand_mac_oui(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
_adapter *adapter;
void *devaddr;
struct net_device *netdev;
int type, mac_len;
u8 pno_random_mac_oui[3];
u8 mac_addr[ETH_ALEN] = {0};
struct pwrctrl_priv *pwrctl;
struct rtw_wdev_priv *pwdev_priv;
type = nla_type(data);
mac_len = nla_len(data);
if (mac_len != 3) {
RTW_ERR("%s oui len error %d != 3\n", __func__, mac_len);
return -1;
}
if (type == ANDR_WIFI_ATTRIBUTE_RANDOM_MAC_OUI) {
_rtw_memcpy(pno_random_mac_oui, nla_data(data), 3);
print_hex_dump(KERN_DEBUG, "pno_random_mac_oui: ",
DUMP_PREFIX_OFFSET, 16, 1, pno_random_mac_oui,
3, 1);
if (ETHER_ISMULTI(pno_random_mac_oui)) {
pr_err("%s: oui is multicast address\n", __func__);
return -1;
}
adapter = wiphy_to_adapter(wiphy);
if (adapter == NULL) {
pr_err("%s: wiphy_to_adapter == NULL\n", __func__);
return -1;
}
pwdev_priv = adapter_wdev_data(adapter);
_rtw_memcpy(mac_addr, pno_random_mac_oui, 3);
rtw_hal_random_gen_mac_addr(mac_addr);
_rtw_memcpy(pwdev_priv->pno_mac_addr, mac_addr, ETH_ALEN);
#ifdef CONFIG_RTW_DEBUG
print_hex_dump(KERN_DEBUG, "pno_mac_addr: ",
DUMP_PREFIX_OFFSET, 16, 1, pwdev_priv->pno_mac_addr,
ETH_ALEN, 1);
#endif
} else {
RTW_ERR("%s oui type error %x != 0x2\n", __func__, type);
err = -1;
}
return err;
}
#endif
#ifdef CONFIG_RTW_CFGVENDOR_WIFI_OFFLOAD
static int rtw_cfgvendor_start_mkeep_alive(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int ret = WIFI_SUCCESS;
RTW_INFO("%s : TODO\n", __func__);
return ret;
}
static int rtw_cfgvendor_stop_mkeep_alive(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int ret = WIFI_SUCCESS;
RTW_INFO("%s : TODO\n", __func__);
return ret;
}
#endif
static int rtw_cfgvendor_set_nodfs_flag(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
int type;
u32 nodfs = 0;
_adapter *padapter = GET_PRIMARY_ADAPTER(wiphy_to_adapter(wiphy));
RTW_DBG(FUNC_NDEV_FMT" %s\n", FUNC_NDEV_ARG(wdev_to_ndev(wdev)), (char*)data);
type = nla_type(data);
if (type == ANDR_WIFI_ATTRIBUTE_NODFS_SET) {
nodfs = nla_get_u32(data);
adapter_to_dvobj(padapter)->nodfs = nodfs;
} else {
err = -EINVAL;
}
RTW_INFO("%s nodfs=%d, err=%d\n", __func__, nodfs, err);
return err;
}
static int rtw_cfgvendor_set_country(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
#define CNTRY_BUF_SZ 4 /* Country string is 3 bytes + NUL */
int err = 0, rem, type;
char country_code[CNTRY_BUF_SZ] = {0};
const struct nlattr *iter;
_adapter *padapter = GET_PRIMARY_ADAPTER(wiphy_to_adapter(wiphy));
RTW_DBG(FUNC_NDEV_FMT" %s\n", FUNC_NDEV_ARG(wdev_to_ndev(wdev)), (char*)data);
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case ANDR_WIFI_ATTRIBUTE_COUNTRY:
_rtw_memcpy(country_code, nla_data(iter),
MIN(nla_len(iter), CNTRY_BUF_SZ));
break;
default:
RTW_ERR("Unknown type: %d\n", type);
return -EINVAL;
}
}
RTW_INFO("%s country_code:\"%c%c\" \n", __func__, country_code[0], country_code[1]);
rtw_set_country(padapter, country_code, RTW_REGD_SET_BY_USER);
return err;
}
static int rtw_cfgvendor_set_nd_offload(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
int type;
u8 nd_en = 0;
_adapter *padapter = GET_PRIMARY_ADAPTER(wiphy_to_adapter(wiphy));
RTW_DBG(FUNC_NDEV_FMT" %s\n", FUNC_NDEV_ARG(wdev_to_ndev(wdev)), (char*)data);
type = nla_type(data);
if (type == ANDR_WIFI_ATTRIBUTE_ND_OFFLOAD_VALUE) {
nd_en = nla_get_u8(data);
/* ND has been enabled when wow is enabled */
} else {
err = -EINVAL;
}
RTW_INFO("%s nd_en=%d, err=%d\n", __func__, nd_en, err);
return err;
}
#endif /* CONFIG_RTW_WIFI_HAL */
static const struct wiphy_vendor_command rtw_vendor_cmds[] = {
#if defined(GSCAN_SUPPORT) && 0
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_CAPABILITIES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_gscan_get_capabilities,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_set_scan_cfg,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_SCAN_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_set_batch_scan_cfg,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_ENABLE_GSCAN
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_initiate_gscan,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_ENABLE_FULL_SCAN_RESULTS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_enable_full_scan_result,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_HOTLIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_hotlist_cfg,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_SIGNIFICANT_CHANGE_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_significant_change_cfg,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_SCAN_RESULTS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_gscan_get_batch_results,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_CHANNEL_LIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_gscan_get_channel_list,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
#endif /* GSCAN_SUPPORT */
#if defined(RTT_SUPPORT) && 0
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_SET_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_rtt_set_config,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_CANCEL_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_rtt_cancel_config,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_GETCAPABILITY
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_rtt_get_capability,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
#endif /* RTT_SUPPORT */
#ifdef CONFIG_RTW_CFGVENDOR_LLSTATS
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LSTATS_SUBCMD_GET_INFO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_lstats_get_info,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LSTATS_SUBCMD_SET_INFO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_lstats_set_info,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LSTATS_SUBCMD_CLEAR_INFO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_lstats_clear_info,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
#endif /* CONFIG_RTW_CFGVENDOR_LLSTATS */
#ifdef CONFIG_RTW_CFGVENDOR_RSSIMONITOR
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_RSSI_MONITOR
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_set_rssi_monitor,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
#endif /* CONFIG_RTW_CFGVENDOR_RSSIMONITOR */
#ifdef CONFIG_RTW_CFGVENDOR_WIFI_LOGGER
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LOGGER_START_LOGGING
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_logger_start_logging,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LOGGER_GET_FEATURE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_logger_get_feature,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LOGGER_GET_VER
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_logger_get_version,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LOGGER_GET_RING_STATUS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_logger_get_ring_status,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LOGGER_GET_RING_DATA
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_logger_get_ring_data,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy= VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LOGGER_TRIGGER_MEM_DUMP
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_logger_get_firmware_memory_dump,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LOGGER_START_PKT_FATE_MONITORING
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_logger_start_pkt_fate_monitoring,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LOGGER_GET_TX_PKT_FATES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_logger_get_tx_pkt_fates,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LOGGER_GET_RX_PKT_FATES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_logger_get_rx_pkt_fates,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
},
#endif /* CONFIG_RTW_CFGVENDOR_WIFI_LOGGER */
#ifdef CONFIG_RTW_WIFI_HAL
#ifdef CONFIG_RTW_CFGVENDOR_RANDOM_MAC_OUI
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_PNO_RANDOM_MAC_OUI
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_set_rand_mac_oui,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
},
#endif
#ifdef CONFIG_RTW_CFGVENDOR_WIFI_OFFLOAD
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_OFFLOAD_SUBCMD_START_MKEEP_ALIVE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_start_mkeep_alive,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_OFFLOAD_SUBCMD_STOP_MKEEP_ALIVE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_stop_mkeep_alive,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
},
#endif
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_NODFS_SET
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_set_nodfs_flag,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_COUNTRY_CODE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_set_country,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_CONFIG_ND_OFFLOAD
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_set_nd_offload,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
},
#endif /* CONFIG_RTW_WIFI_HAL */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_GET_FEATURE_SET
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_get_feature_set,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_GET_FEATURE_SET_MATRIX
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_get_feature_set_matrix,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
}
};
static const struct nl80211_vendor_cmd_info rtw_vendor_events[] = {
#if defined(GSCAN_SUPPORT) && 0
{ OUI_GOOGLE, GSCAN_EVENT_SIGNIFICANT_CHANGE_RESULTS },
{ OUI_GOOGLE, GSCAN_EVENT_HOTLIST_RESULTS_FOUND },
{ OUI_GOOGLE, GSCAN_EVENT_SCAN_RESULTS_AVAILABLE },
{ OUI_GOOGLE, GSCAN_EVENT_FULL_SCAN_RESULTS },
#endif /* GSCAN_SUPPORT */
#if defined(RTT_SUPPORT) && 0
{ OUI_GOOGLE, RTT_EVENT_COMPLETE },
#endif /* RTT_SUPPORT */
#ifdef CONFIG_RTW_CFGVENDOR_RSSIMONITOR
{ OUI_GOOGLE, GOOGLE_RSSI_MONITOR_EVENT },
#endif /* RTW_CFGVENDOR_RSSIMONITR */
#if defined(GSCAN_SUPPORT) && 0
{ OUI_GOOGLE, GSCAN_EVENT_COMPLETE_SCAN },
{ OUI_GOOGLE, GSCAN_EVENT_HOTLIST_RESULTS_LOST }
#endif /* GSCAN_SUPPORT */
};
int rtw_cfgvendor_attach(struct wiphy *wiphy)
{
RTW_INFO("Register RTW cfg80211 vendor cmd(0x%x) interface\n", NL80211_CMD_VENDOR);
wiphy->vendor_commands = rtw_vendor_cmds;
wiphy->n_vendor_commands = ARRAY_SIZE(rtw_vendor_cmds);
wiphy->vendor_events = rtw_vendor_events;
wiphy->n_vendor_events = ARRAY_SIZE(rtw_vendor_events);
return 0;
}
int rtw_cfgvendor_detach(struct wiphy *wiphy)
{
RTW_INFO("Vendor: Unregister RTW cfg80211 vendor interface\n");
wiphy->vendor_commands = NULL;
wiphy->vendor_events = NULL;
wiphy->n_vendor_commands = 0;
wiphy->n_vendor_events = 0;
return 0;
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)) || defined(RTW_VENDOR_EXT_SUPPORT) */
#endif /* CONFIG_IOCTL_CFG80211 */
|
2301_81045437/rtl8852be
|
os_dep/linux/rtw_cfgvendor.c
|
C
|
agpl-3.0
| 62,940
|
/******************************************************************************
*
* Copyright(c) 2007 - 2019 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#ifndef _RTW_CFGVENDOR_H_
#define _RTW_CFGVENDOR_H_
#define OUI_GOOGLE 0x001A11
#define ATTRIBUTE_U32_LEN (NLA_HDRLEN + 4)
#define VENDOR_ID_OVERHEAD ATTRIBUTE_U32_LEN
#define VENDOR_SUBCMD_OVERHEAD ATTRIBUTE_U32_LEN
#define VENDOR_DATA_OVERHEAD (NLA_HDRLEN)
#define SCAN_RESULTS_COMPLETE_FLAG_LEN ATTRIBUTE_U32_LEN
#define SCAN_INDEX_HDR_LEN (NLA_HDRLEN)
#define SCAN_ID_HDR_LEN ATTRIBUTE_U32_LEN
#define SCAN_FLAGS_HDR_LEN ATTRIBUTE_U32_LEN
#define GSCAN_NUM_RESULTS_HDR_LEN ATTRIBUTE_U32_LEN
#define GSCAN_RESULTS_HDR_LEN (NLA_HDRLEN)
#define GSCAN_BATCH_RESULT_HDR_LEN (SCAN_INDEX_HDR_LEN + SCAN_ID_HDR_LEN + \
SCAN_FLAGS_HDR_LEN + \
GSCAN_NUM_RESULTS_HDR_LEN + \
GSCAN_RESULTS_HDR_LEN)
#define VENDOR_REPLY_OVERHEAD (VENDOR_ID_OVERHEAD + \
VENDOR_SUBCMD_OVERHEAD + \
VENDOR_DATA_OVERHEAD)
typedef enum {
/* don't use 0 as a valid subcommand */
VENDOR_NL80211_SUBCMD_UNSPECIFIED,
/* define all vendor startup commands between 0x0 and 0x0FFF */
VENDOR_NL80211_SUBCMD_RANGE_START = 0x0001,
VENDOR_NL80211_SUBCMD_RANGE_END = 0x0FFF,
/* define all GScan related commands between 0x1000 and 0x10FF */
ANDROID_NL80211_SUBCMD_GSCAN_RANGE_START = 0x1000,
ANDROID_NL80211_SUBCMD_GSCAN_RANGE_END = 0x10FF,
/* define all NearbyDiscovery related commands between 0x1100 and 0x11FF */
ANDROID_NL80211_SUBCMD_NBD_RANGE_START = 0x1100,
ANDROID_NL80211_SUBCMD_NBD_RANGE_END = 0x11FF,
/* define all RTT related commands between 0x1100 and 0x11FF */
ANDROID_NL80211_SUBCMD_RTT_RANGE_START = 0x1100,
ANDROID_NL80211_SUBCMD_RTT_RANGE_END = 0x11FF,
ANDROID_NL80211_SUBCMD_LSTATS_RANGE_START = 0x1200,
ANDROID_NL80211_SUBCMD_LSTATS_RANGE_END = 0x12FF,
/* define all Logger related commands between 0x1400 and 0x14FF */
ANDROID_NL80211_SUBCMD_DEBUG_RANGE_START = 0x1400,
ANDROID_NL80211_SUBCMD_DEBUG_RANGE_END = 0x14FF,
/* define all wifi offload related commands between 0x1600 and 0x16FF */
ANDROID_NL80211_SUBCMD_WIFI_OFFLOAD_RANGE_START = 0x1600,
ANDROID_NL80211_SUBCMD_WIFI_OFFLOAD_RANGE_END = 0x16FF,
/* define all NAN related commands between 0x1700 and 0x17FF */
ANDROID_NL80211_SUBCMD_NAN_RANGE_START = 0x1700,
ANDROID_NL80211_SUBCMD_NAN_RANGE_END = 0x17FF,
/* define all Android Packet Filter related commands between 0x1800 and 0x18FF */
ANDROID_NL80211_SUBCMD_PKT_FILTER_RANGE_START = 0x1800,
ANDROID_NL80211_SUBCMD_PKT_FILTER_RANGE_END = 0x18FF,
/* This is reserved for future usage */
} ANDROID_VENDOR_SUB_COMMAND;
enum rtw_vendor_subcmd {
GSCAN_SUBCMD_GET_CAPABILITIES = ANDROID_NL80211_SUBCMD_GSCAN_RANGE_START,
GSCAN_SUBCMD_SET_CONFIG, /* 0x1001 */
GSCAN_SUBCMD_SET_SCAN_CONFIG, /* 0x1002 */
GSCAN_SUBCMD_ENABLE_GSCAN, /* 0x1003 */
GSCAN_SUBCMD_GET_SCAN_RESULTS, /* 0x1004 */
GSCAN_SUBCMD_SCAN_RESULTS, /* 0x1005 */
GSCAN_SUBCMD_SET_HOTLIST, /* 0x1006 */
GSCAN_SUBCMD_SET_SIGNIFICANT_CHANGE_CONFIG, /* 0x1007 */
GSCAN_SUBCMD_ENABLE_FULL_SCAN_RESULTS, /* 0x1008 */
GSCAN_SUBCMD_GET_CHANNEL_LIST, /* 0x1009 */
WIFI_SUBCMD_GET_FEATURE_SET, /* 0x100A */
WIFI_SUBCMD_GET_FEATURE_SET_MATRIX, /* 0x100B */
WIFI_SUBCMD_SET_PNO_RANDOM_MAC_OUI, /* 0x100C */
WIFI_SUBCMD_NODFS_SET, /* 0x100D */
WIFI_SUBCMD_SET_COUNTRY_CODE, /* 0x100E */
/* Add more sub commands here */
GSCAN_SUBCMD_SET_EPNO_SSID, /* 0x100F */
WIFI_SUBCMD_SET_SSID_WHITE_LIST, /* 0x1010 */
WIFI_SUBCMD_SET_ROAM_PARAMS, /* 0x1011 */
WIFI_SUBCMD_ENABLE_LAZY_ROAM, /* 0x1012 */
WIFI_SUBCMD_SET_BSSID_PREF, /* 0x1013 */
WIFI_SUBCMD_SET_BSSID_BLACKLIST, /* 0x1014 */
GSCAN_SUBCMD_ANQPO_CONFIG, /* 0x1015 */
WIFI_SUBCMD_SET_RSSI_MONITOR, /* 0x1016 */
WIFI_SUBCMD_CONFIG_ND_OFFLOAD, /* 0x1017 */
/* Add more sub commands here */
GSCAN_SUBCMD_MAX,
RTT_SUBCMD_SET_CONFIG = ANDROID_NL80211_SUBCMD_RTT_RANGE_START,
RTT_SUBCMD_CANCEL_CONFIG,
RTT_SUBCMD_GETCAPABILITY,
APF_SUBCMD_GET_CAPABILITIES = ANDROID_NL80211_SUBCMD_PKT_FILTER_RANGE_START,
APF_SUBCMD_SET_FILTER,
LOGGER_START_LOGGING = ANDROID_NL80211_SUBCMD_DEBUG_RANGE_START,
LOGGER_TRIGGER_MEM_DUMP,
LOGGER_GET_MEM_DUMP,
LOGGER_GET_VER,
LOGGER_GET_RING_STATUS,
LOGGER_GET_RING_DATA,
LOGGER_GET_FEATURE,
LOGGER_RESET_LOGGING,
LOGGER_TRIGGER_DRIVER_MEM_DUMP,
LOGGER_GET_DRIVER_MEM_DUMP,
LOGGER_START_PKT_FATE_MONITORING,
LOGGER_GET_TX_PKT_FATES,
LOGGER_GET_RX_PKT_FATES,
WIFI_OFFLOAD_SUBCMD_START_MKEEP_ALIVE = ANDROID_NL80211_SUBCMD_WIFI_OFFLOAD_RANGE_START,
WIFI_OFFLOAD_SUBCMD_STOP_MKEEP_ALIVE,
VENDOR_SUBCMD_MAX
};
enum gscan_attributes {
GSCAN_ATTRIBUTE_NUM_BUCKETS = 10,
GSCAN_ATTRIBUTE_BASE_PERIOD,
GSCAN_ATTRIBUTE_BUCKETS_BAND,
GSCAN_ATTRIBUTE_BUCKET_ID,
GSCAN_ATTRIBUTE_BUCKET_PERIOD,
GSCAN_ATTRIBUTE_BUCKET_NUM_CHANNELS,
GSCAN_ATTRIBUTE_BUCKET_CHANNELS,
GSCAN_ATTRIBUTE_NUM_AP_PER_SCAN,
GSCAN_ATTRIBUTE_REPORT_THRESHOLD,
GSCAN_ATTRIBUTE_NUM_SCANS_TO_CACHE,
GSCAN_ATTRIBUTE_BAND = GSCAN_ATTRIBUTE_BUCKETS_BAND,
GSCAN_ATTRIBUTE_ENABLE_FEATURE = 20,
GSCAN_ATTRIBUTE_SCAN_RESULTS_COMPLETE,
GSCAN_ATTRIBUTE_FLUSH_FEATURE,
GSCAN_ATTRIBUTE_ENABLE_FULL_SCAN_RESULTS,
GSCAN_ATTRIBUTE_REPORT_EVENTS,
/* remaining reserved for additional attributes */
GSCAN_ATTRIBUTE_NUM_OF_RESULTS = 30,
GSCAN_ATTRIBUTE_FLUSH_RESULTS,
GSCAN_ATTRIBUTE_SCAN_RESULTS, /* flat array of wifi_scan_result */
GSCAN_ATTRIBUTE_SCAN_ID, /* indicates scan number */
GSCAN_ATTRIBUTE_SCAN_FLAGS, /* indicates if scan was aborted */
GSCAN_ATTRIBUTE_AP_FLAGS, /* flags on significant change event */
GSCAN_ATTRIBUTE_NUM_CHANNELS,
GSCAN_ATTRIBUTE_CHANNEL_LIST,
/* remaining reserved for additional attributes */
GSCAN_ATTRIBUTE_SSID = 40,
GSCAN_ATTRIBUTE_BSSID,
GSCAN_ATTRIBUTE_CHANNEL,
GSCAN_ATTRIBUTE_RSSI,
GSCAN_ATTRIBUTE_TIMESTAMP,
GSCAN_ATTRIBUTE_RTT,
GSCAN_ATTRIBUTE_RTTSD,
/* remaining reserved for additional attributes */
GSCAN_ATTRIBUTE_HOTLIST_BSSIDS = 50,
GSCAN_ATTRIBUTE_RSSI_LOW,
GSCAN_ATTRIBUTE_RSSI_HIGH,
GSCAN_ATTRIBUTE_HOSTLIST_BSSID_ELEM,
GSCAN_ATTRIBUTE_HOTLIST_FLUSH,
/* remaining reserved for additional attributes */
GSCAN_ATTRIBUTE_RSSI_SAMPLE_SIZE = 60,
GSCAN_ATTRIBUTE_LOST_AP_SAMPLE_SIZE,
GSCAN_ATTRIBUTE_MIN_BREACHING,
GSCAN_ATTRIBUTE_SIGNIFICANT_CHANGE_BSSIDS,
GSCAN_ATTRIBUTE_SIGNIFICANT_CHANGE_FLUSH,
GSCAN_ATTRIBUTE_MAX
};
enum gscan_bucket_attributes {
GSCAN_ATTRIBUTE_CH_BUCKET_1,
GSCAN_ATTRIBUTE_CH_BUCKET_2,
GSCAN_ATTRIBUTE_CH_BUCKET_3,
GSCAN_ATTRIBUTE_CH_BUCKET_4,
GSCAN_ATTRIBUTE_CH_BUCKET_5,
GSCAN_ATTRIBUTE_CH_BUCKET_6,
GSCAN_ATTRIBUTE_CH_BUCKET_7
};
enum gscan_ch_attributes {
GSCAN_ATTRIBUTE_CH_ID_1,
GSCAN_ATTRIBUTE_CH_ID_2,
GSCAN_ATTRIBUTE_CH_ID_3,
GSCAN_ATTRIBUTE_CH_ID_4,
GSCAN_ATTRIBUTE_CH_ID_5,
GSCAN_ATTRIBUTE_CH_ID_6,
GSCAN_ATTRIBUTE_CH_ID_7
};
enum wifi_rssi_monitor_attr {
RSSI_MONITOR_ATTRIBUTE_MAX_RSSI,
RSSI_MONITOR_ATTRIBUTE_MIN_RSSI,
RSSI_MONITOR_ATTRIBUTE_START,
};
enum rtt_attributes {
RTT_ATTRIBUTE_TARGET_CNT,
RTT_ATTRIBUTE_TARGET_INFO,
RTT_ATTRIBUTE_TARGET_MAC,
RTT_ATTRIBUTE_TARGET_TYPE,
RTT_ATTRIBUTE_TARGET_PEER,
RTT_ATTRIBUTE_TARGET_CHAN,
RTT_ATTRIBUTE_TARGET_MODE,
RTT_ATTRIBUTE_TARGET_INTERVAL,
RTT_ATTRIBUTE_TARGET_NUM_MEASUREMENT,
RTT_ATTRIBUTE_TARGET_NUM_PKT,
RTT_ATTRIBUTE_TARGET_NUM_RETRY
};
enum logger_attributes {
LOGGER_ATTRIBUTE_GET_DRIVER,
LOGGER_ATTRIBUTE_GET_FW,
LOGGER_ATTRIBUTE_RING_ID,
LOGGER_ATTRIBUTE_RING_NAME,
LOGGER_ATTRIBUTE_RING_FLAGS,
LOGGER_ATTRIBUTE_LOG_LEVEL,
LOGGER_ATTRIBUTE_LOG_TIME_INTVAL,
LOGGER_ATTRIBUTE_LOG_MIN_DATA_SIZE,
LOGGER_ATTRIBUTE_FW_DUMP_LEN,
LOGGER_ATTRIBUTE_FW_DUMP_DATA,
LOGGERG_ATTRIBUTE_RING_DATA,
LOGGER_ATTRIBUTE_RING_STATUS,
LOGGER_ATTRIBUTE_RING_NUM
};
typedef enum rtw_vendor_event {
RTK_RESERVED1,
RTK_RESERVED2,
GSCAN_EVENT_SIGNIFICANT_CHANGE_RESULTS ,
GSCAN_EVENT_HOTLIST_RESULTS_FOUND,
GSCAN_EVENT_SCAN_RESULTS_AVAILABLE,
GSCAN_EVENT_FULL_SCAN_RESULTS,
RTT_EVENT_COMPLETE,
GSCAN_EVENT_COMPLETE_SCAN,
GSCAN_EVENT_HOTLIST_RESULTS_LOST,
GSCAN_EVENT_EPNO_EVENT,
GOOGLE_DEBUG_RING_EVENT,
GOOGLE_DEBUG_MEM_DUMP_EVENT,
GSCAN_EVENT_ANQPO_HOTSPOT_MATCH,
GOOGLE_RSSI_MONITOR_EVENT
} rtw_vendor_event_t;
enum andr_wifi_feature_set_attr {
ANDR_WIFI_ATTRIBUTE_NUM_FEATURE_SET,
ANDR_WIFI_ATTRIBUTE_FEATURE_SET,
ANDR_WIFI_ATTRIBUTE_RANDOM_MAC_OUI,
ANDR_WIFI_ATTRIBUTE_NODFS_SET,
ANDR_WIFI_ATTRIBUTE_COUNTRY,
ANDR_WIFI_ATTRIBUTE_ND_OFFLOAD_VALUE
// Add more attribute here
};
typedef enum rtw_vendor_gscan_attribute {
ATTR_START_GSCAN,
ATTR_STOP_GSCAN,
ATTR_SET_SCAN_BATCH_CFG_ID, /* set batch scan params */
ATTR_SET_SCAN_GEOFENCE_CFG_ID, /* set list of bssids to track */
ATTR_SET_SCAN_SIGNIFICANT_CFG_ID, /* set list of bssids, rssi threshold etc.. */
ATTR_SET_SCAN_CFG_ID, /* set common scan config params here */
ATTR_GET_GSCAN_CAPABILITIES_ID,
/* Add more sub commands here */
ATTR_GSCAN_MAX
} rtw_vendor_gscan_attribute_t;
typedef enum gscan_batch_attribute {
ATTR_GSCAN_BATCH_BESTN,
ATTR_GSCAN_BATCH_MSCAN,
ATTR_GSCAN_BATCH_BUFFER_THRESHOLD
} gscan_batch_attribute_t;
typedef enum gscan_geofence_attribute {
ATTR_GSCAN_NUM_HOTLIST_BSSID,
ATTR_GSCAN_HOTLIST_BSSID
} gscan_geofence_attribute_t;
typedef enum gscan_complete_event {
WIFI_SCAN_BUFFER_FULL,
WIFI_SCAN_COMPLETE
} gscan_complete_event_t;
/* wifi_hal.h */
/* WiFi Common definitions */
typedef unsigned char byte;
typedef int wifi_request_id;
typedef int wifi_channel; // indicates channel frequency in MHz
typedef int wifi_rssi;
typedef byte mac_addr[6];
typedef byte oui[3];
typedef int64_t wifi_timestamp; // In microseconds (us)
typedef int64_t wifi_timespan; // In picoseconds (ps)
struct wifi_info;
struct wifi_interface_info;
typedef struct wifi_info *wifi_handle;
typedef struct wifi_interface_info *wifi_interface_handle;
/* channel operating width */
typedef enum {
WIFI_CHAN_WIDTH_20 = 0,
WIFI_CHAN_WIDTH_40 = 1,
WIFI_CHAN_WIDTH_80 = 2,
WIFI_CHAN_WIDTH_160 = 3,
WIFI_CHAN_WIDTH_80P80 = 4,
WIFI_CHAN_WIDTH_5 = 5,
WIFI_CHAN_WIDTH_10 = 6,
WIFI_CHAN_WIDTH_INVALID = -1
} wifi_channel_width;
typedef int wifi_radio;
typedef struct {
wifi_channel_width width;
int center_frequency0;
int center_frequency1;
int primary_frequency;
} wifi_channel_spec;
typedef enum {
WIFI_SUCCESS = 0,
WIFI_ERROR_NONE = 0,
WIFI_ERROR_UNKNOWN = -1,
WIFI_ERROR_UNINITIALIZED = -2,
WIFI_ERROR_NOT_SUPPORTED = -3,
WIFI_ERROR_NOT_AVAILABLE = -4, // Not available right now, but try later
WIFI_ERROR_INVALID_ARGS = -5,
WIFI_ERROR_INVALID_REQUEST_ID = -6,
WIFI_ERROR_TIMED_OUT = -7,
WIFI_ERROR_TOO_MANY_REQUESTS = -8, // Too many instances of this request
WIFI_ERROR_OUT_OF_MEMORY = -9,
WIFI_ERROR_BUSY = -10,
} wifi_error;
typedef int wifi_ring_buffer_id;
/* ring buffer params */
/**
* written_bytes and read_bytes implement a producer consumer API
* hence written_bytes >= read_bytes
* a modulo arithmetic of the buffer size has to be applied to those counters:
* actual offset into ring buffer = written_bytes % ring_buffer_byte_size
*
*/
typedef struct {
u8 name[32];
u32 flags;
wifi_ring_buffer_id ring_id; // unique integer representing the ring
u32 ring_buffer_byte_size; // total memory size allocated for the buffer
u32 verbose_level; // verbose level for ring buffer
u32 written_bytes; // number of bytes that was written to the buffer by driver,
// monotonously increasing integer
u32 read_bytes; // number of bytes that was read from the buffer by user land,
// monotonously increasing integer
u32 written_records; // number of records that was written to the buffer by driver,
// monotonously increasing integer
} wifi_ring_buffer_status;
#ifdef CONFIG_RTW_CFGVENDOR_LLSTATS
#define STATS_MAJOR_VERSION 1
#define STATS_MINOR_VERSION 0
#define STATS_MICRO_VERSION 0
typedef enum {
WIFI_DISCONNECTED = 0,
WIFI_AUTHENTICATING = 1,
WIFI_ASSOCIATING = 2,
WIFI_ASSOCIATED = 3,
WIFI_EAPOL_STARTED = 4, // if done by firmware/driver
WIFI_EAPOL_COMPLETED = 5, // if done by firmware/driver
} wifi_connection_state;
typedef enum {
WIFI_ROAMING_IDLE = 0,
WIFI_ROAMING_ACTIVE = 1,
} wifi_roam_state;
typedef enum {
WIFI_INTERFACE_STA = 0,
WIFI_INTERFACE_SOFTAP = 1,
WIFI_INTERFACE_IBSS = 2,
WIFI_INTERFACE_P2P_CLIENT = 3,
WIFI_INTERFACE_P2P_GO = 4,
WIFI_INTERFACE_NAN = 5,
WIFI_INTERFACE_MESH = 6,
WIFI_INTERFACE_UNKNOWN = -1
} wifi_interface_mode;
#define WIFI_CAPABILITY_QOS 0x00000001 // set for QOS association
#define WIFI_CAPABILITY_PROTECTED 0x00000002 // set for protected association (802.11 beacon frame control protected bit set)
#define WIFI_CAPABILITY_INTERWORKING 0x00000004 // set if 802.11 Extended Capabilities element interworking bit is set
#define WIFI_CAPABILITY_HS20 0x00000008 // set for HS20 association
#define WIFI_CAPABILITY_SSID_UTF8 0x00000010 // set is 802.11 Extended Capabilities element UTF-8 SSID bit is set
#define WIFI_CAPABILITY_COUNTRY 0x00000020 // set is 802.11 Country Element is present
typedef struct {
wifi_interface_mode mode; // interface mode
u8 mac_addr[6]; // interface mac address (self)
wifi_connection_state state; // connection state (valid for STA, CLI only)
wifi_roam_state roaming; // roaming state
u32 capabilities; // WIFI_CAPABILITY_XXX (self)
u8 ssid[33]; // null terminated SSID
u8 bssid[6]; // bssid
u8 ap_country_str[3]; // country string advertised by AP
u8 country_str[3]; // country string for this association
} wifi_interface_link_layer_info;
/* channel information */
typedef struct {
wifi_channel_width width; // channel width (20, 40, 80, 80+80, 160)
wifi_channel center_freq; // primary 20 MHz channel
wifi_channel center_freq0; // center frequency (MHz) first segment
wifi_channel center_freq1; // center frequency (MHz) second segment
} wifi_channel_info;
/* wifi rate */
typedef struct {
u32 preamble :3; // 0: OFDM, 1:CCK, 2:HT 3:VHT 4..7 reserved
u32 nss :2; // 0:1x1, 1:2x2, 3:3x3, 4:4x4
u32 bw :3; // 0:20MHz, 1:40Mhz, 2:80Mhz, 3:160Mhz
u32 rateMcsIdx :8; // OFDM/CCK rate code would be as per ieee std in the units of 0.5mbps
// HT/VHT it would be mcs index
u32 reserved :16; // reserved
u32 bitrate; // units of 100 Kbps
} wifi_rate;
/* channel statistics */
typedef struct {
wifi_channel_info channel; // channel
u32 on_time; // msecs the radio is awake (32 bits number accruing over time)
u32 cca_busy_time; // msecs the CCA register is busy (32 bits number accruing over time)
} wifi_channel_stat;
// Max number of tx power levels. The actual number vary per device and is specified by |num_tx_levels|
#define RADIO_STAT_MAX_TX_LEVELS 256
/* Internal radio statistics structure in the driver */
typedef struct {
wifi_radio radio; // wifi radio (if multiple radio supported)
u32 on_time; // msecs the radio is awake (32 bits number accruing over time)
u32 tx_time; // msecs the radio is transmitting (32 bits number accruing over time)
u32 rx_time; // msecs the radio is in active receive (32 bits number accruing over time)
u32 on_time_scan; // msecs the radio is awake due to all scan (32 bits number accruing over time)
u32 on_time_nbd; // msecs the radio is awake due to NAN (32 bits number accruing over time)
u32 on_time_gscan; // msecs the radio is awake due to G?scan (32 bits number accruing over time)
u32 on_time_roam_scan; // msecs the radio is awake due to roam?scan (32 bits number accruing over time)
u32 on_time_pno_scan; // msecs the radio is awake due to PNO scan (32 bits number accruing over time)
u32 on_time_hs20; // msecs the radio is awake due to HS2.0 scans and GAS exchange (32 bits number accruing over time)
u32 num_channels; // number of channels
wifi_channel_stat channels[]; // channel statistics
} wifi_radio_stat_internal;
/**
* Packet statistics reporting by firmware is performed on MPDU basi (i.e. counters increase by 1 for each MPDU)
* As well, "data packet" in associated comments, shall be interpreted as 802.11 data packet,
* that is, 802.11 frame control subtype == 2 and excluding management and control frames.
*
* As an example, in the case of transmission of an MSDU fragmented in 16 MPDUs which are transmitted
* OTA in a 16 units long a-mpdu, for which a block ack is received with 5 bits set:
* tx_mpdu : shall increase by 5
* retries : shall increase by 16
* tx_ampdu : shall increase by 1
* data packet counters shall not increase regardless of the number of BAR potentially sent by device for this a-mpdu
* data packet counters shall not increase regardless of the number of BA received by device for this a-mpdu
*
* For each subsequent retransmission of the 11 remaining non ACK'ed mpdus
* (regardless of the fact that they are transmitted in a-mpdu or not)
* retries : shall increase by 1
*
* If no subsequent BA or ACK are received from AP, until packet lifetime expires for those 11 packet that were not ACK'ed
* mpdu_lost : shall increase by 11
*/
/* per rate statistics */
typedef struct {
wifi_rate rate; // rate information
u32 tx_mpdu; // number of successfully transmitted data pkts (ACK rcvd)
u32 rx_mpdu; // number of received data pkts
u32 mpdu_lost; // number of data packet losses (no ACK)
u32 retries; // total number of data pkt retries
u32 retries_short; // number of short data pkt retries
u32 retries_long; // number of long data pkt retries
} wifi_rate_stat;
/* access categories */
typedef enum {
WIFI_AC_VO = 0,
WIFI_AC_VI = 1,
WIFI_AC_BE = 2,
WIFI_AC_BK = 3,
WIFI_AC_MAX = 4,
} wifi_traffic_ac;
/* wifi peer type */
typedef enum
{
WIFI_PEER_STA,
WIFI_PEER_AP,
WIFI_PEER_P2P_GO,
WIFI_PEER_P2P_CLIENT,
WIFI_PEER_NAN,
WIFI_PEER_TDLS,
WIFI_PEER_INVALID,
} wifi_peer_type;
/* per peer statistics */
typedef struct {
wifi_peer_type type; // peer type (AP, TDLS, GO etc.)
u8 peer_mac_address[6]; // mac address
u32 capabilities; // peer WIFI_CAPABILITY_XXX
u32 num_rate; // number of rates
wifi_rate_stat rate_stats[]; // per rate statistics, number of entries = num_rate
} wifi_peer_info;
/* Per access category statistics */
typedef struct {
wifi_traffic_ac ac; // access category (VI, VO, BE, BK)
u32 tx_mpdu; // number of successfully transmitted unicast data pkts (ACK rcvd)
u32 rx_mpdu; // number of received unicast data packets
u32 tx_mcast; // number of succesfully transmitted multicast data packets
// STA case: implies ACK received from AP for the unicast packet in which mcast pkt was sent
u32 rx_mcast; // number of received multicast data packets
u32 rx_ampdu; // number of received unicast a-mpdus; support of this counter is optional
u32 tx_ampdu; // number of transmitted unicast a-mpdus; support of this counter is optional
u32 mpdu_lost; // number of data pkt losses (no ACK)
u32 retries; // total number of data pkt retries
u32 retries_short; // number of short data pkt retries
u32 retries_long; // number of long data pkt retries
u32 contention_time_min; // data pkt min contention time (usecs)
u32 contention_time_max; // data pkt max contention time (usecs)
u32 contention_time_avg; // data pkt avg contention time (usecs)
u32 contention_num_samples; // num of data pkts used for contention statistics
} wifi_wmm_ac_stat;
/* interface statistics */
typedef struct {
wifi_interface_handle iface; // wifi interface
wifi_interface_link_layer_info info; // current state of the interface
u32 beacon_rx; // access point beacon received count from connected AP
u64 average_tsf_offset; // average beacon offset encountered (beacon_TSF - TBTT)
// The average_tsf_offset field is used so as to calculate the
// typical beacon contention time on the channel as well may be
// used to debug beacon synchronization and related power consumption issue
u32 leaky_ap_detected; // indicate that this AP typically leaks packets beyond the driver guard time.
u32 leaky_ap_avg_num_frames_leaked; // average number of frame leaked by AP after frame with PM bit set was ACK'ed by AP
u32 leaky_ap_guard_time; // guard time currently in force (when implementing IEEE power management based on
// frame control PM bit), How long driver waits before shutting down the radio and
// after receiving an ACK for a data frame with PM bit set)
u32 mgmt_rx; // access point mgmt frames received count from connected AP (including Beacon)
u32 mgmt_action_rx; // action frames received count
u32 mgmt_action_tx; // action frames transmit count
wifi_rssi rssi_mgmt; // access Point Beacon and Management frames RSSI (averaged)
wifi_rssi rssi_data; // access Point Data Frames RSSI (averaged) from connected AP
wifi_rssi rssi_ack; // access Point ACK RSSI (averaged) from connected AP
wifi_wmm_ac_stat ac[WIFI_AC_MAX]; // per ac data packet statistics
u32 num_peers; // number of peers
wifi_peer_info peer_info[]; // per peer statistics
} wifi_iface_stat;
/* configuration params */
typedef struct {
u32 mpdu_size_threshold; // threshold to classify the pkts as short or long
// packet size < mpdu_size_threshold => short
u32 aggressive_statistics_gathering; // set for field debug mode. Driver should collect all statistics regardless of performance impact.
} wifi_link_layer_params;
/* wifi statistics bitmap */
#define WIFI_STATS_RADIO 0x00000001 // all radio statistics
#define WIFI_STATS_RADIO_CCA 0x00000002 // cca_busy_time (within radio statistics)
#define WIFI_STATS_RADIO_CHANNELS 0x00000004 // all channel statistics (within radio statistics)
#define WIFI_STATS_RADIO_SCAN 0x00000008 // all scan statistics (within radio statistics)
#define WIFI_STATS_IFACE 0x00000010 // all interface statistics
#define WIFI_STATS_IFACE_TXRATE 0x00000020 // all tx rate statistics (within interface statistics)
#define WIFI_STATS_IFACE_AC 0x00000040 // all ac statistics (within interface statistics)
#define WIFI_STATS_IFACE_CONTENTION 0x00000080 // all contention (min, max, avg) statistics (within ac statisctics)
#endif /* CONFIG_RTW_CFGVENDOR_LLSTATS */
#define RSSI_MONITOR_EVT_VERSION 1
typedef struct {
u8 version;
s8 cur_rssi;
mac_addr BSSID;
} rssi_monitor_evt;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)) || defined(RTW_VENDOR_EXT_SUPPORT)
extern int rtw_cfgvendor_attach(struct wiphy *wiphy);
extern int rtw_cfgvendor_detach(struct wiphy *wiphy);
extern int rtw_cfgvendor_send_async_event(struct wiphy *wiphy,
struct net_device *dev, int event_id, const void *data, int len);
#if defined(GSCAN_SUPPORT) && 0
extern int rtw_cfgvendor_send_hotlist_event(struct wiphy *wiphy,
struct net_device *dev, void *data, int len, rtw_vendor_event_t event);
#endif
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)) || defined(RTW_VENDOR_EXT_SUPPORT) */
#ifdef CONFIG_RTW_CFGVENDOR_RSSIMONITOR
void rtw_cfgvendor_rssi_monitor_evt(_adapter *padapter);
#endif
#ifdef CONFIG_RTW_CFGVENDOR_RANDOM_MAC_OUI
void rtw_hal_pno_random_gen_mac_addr(_adapter *adapter);
void rtw_hal_set_hw_mac_addr(_adapter *adapter, u8 *mac_addr);
#endif
#endif /* _RTW_CFGVENDOR_H_ */
|
2301_81045437/rtl8852be
|
os_dep/linux/rtw_cfgvendor.h
|
C
|
agpl-3.0
| 26,491
|