code
stringlengths
1
1.05M
repo_name
stringlengths
6
83
path
stringlengths
3
242
language
stringclasses
222 values
license
stringclasses
20 values
size
int64
1
1.05M
from openpilot.selfdrive.car.mazda.values import Buttons, MazdaFlags def create_steering_control(packer, CP, frame, apply_steer, lkas): tmp = apply_steer + 2048 lo = tmp & 0xFF hi = tmp >> 8 # copy values from camera b1 = int(lkas["BIT_1"]) er1 = int(lkas["ERR_BIT_1"]) lnv = 0 ldw = 0 er2 = int(lkas["ERR_BIT_2"]) # Some older models do have these, newer models don't. # Either way, they all work just fine if set to zero. steering_angle = 0 b2 = 0 tmp = steering_angle + 2048 ahi = tmp >> 10 amd = (tmp & 0x3FF) >> 2 amd = (amd >> 4) | (( amd & 0xF) << 4) alo = (tmp & 0x3) << 2 ctr = frame % 16 # bytes: [ 1 ] [ 2 ] [ 3 ] [ 4 ] csum = 249 - ctr - hi - lo - (lnv << 3) - er1 - (ldw << 7) - ( er2 << 4) - (b1 << 5) # bytes [ 5 ] [ 6 ] [ 7 ] csum = csum - ahi - amd - alo - b2 if ahi == 1: csum = csum + 15 if csum < 0: if csum < -256: csum = csum + 512 else: csum = csum + 256 csum = csum % 256 values = {} if CP.flags & MazdaFlags.GEN1: values = { "LKAS_REQUEST": apply_steer, "CTR": ctr, "ERR_BIT_1": er1, "LINE_NOT_VISIBLE" : lnv, "LDW": ldw, "BIT_1": b1, "ERR_BIT_2": er2, "STEERING_ANGLE": steering_angle, "ANGLE_ENABLED": b2, "CHKSUM": csum } return packer.make_can_msg("CAM_LKAS", 0, values) def create_alert_command(packer, cam_msg: dict, ldw: bool, steer_required: bool): values = {s: cam_msg[s] for s in [ "LINE_VISIBLE", "LINE_NOT_VISIBLE", "LANE_LINES", "BIT1", "BIT2", "BIT3", "NO_ERR_BIT", "S1", "S1_HBEAM", ]} values.update({ # TODO: what's the difference between all these? do we need to send all? "HANDS_WARN_3_BITS": 0b111 if steer_required else 0, "HANDS_ON_STEER_WARN": steer_required, "HANDS_ON_STEER_WARN_2": steer_required, # TODO: right lane works, left doesn't # TODO: need to do something about L/R "LDW_WARN_LL": 0, "LDW_WARN_RL": 0, }) return packer.make_can_msg("CAM_LANEINFO", 0, values) def create_button_cmd(packer, CP, counter, button): can = int(button == Buttons.CANCEL) res = int(button == Buttons.RESUME) if CP.flags & MazdaFlags.GEN1: values = { "CAN_OFF": can, "CAN_OFF_INV": (can + 1) % 2, "SET_P": 0, "SET_P_INV": 1, "RES": res, "RES_INV": (res + 1) % 2, "SET_M": 0, "SET_M_INV": 1, "DISTANCE_LESS": 0, "DISTANCE_LESS_INV": 1, "DISTANCE_MORE": 0, "DISTANCE_MORE_INV": 1, "MODE_X": 0, "MODE_X_INV": 1, "MODE_Y": 0, "MODE_Y_INV": 1, "BIT1": 1, "BIT2": 1, "BIT3": 1, "CTR": (counter + 1) % 16, } return packer.make_can_msg("CRZ_BTNS", 0, values)
2301_81045437/openpilot
selfdrive/car/mazda/mazdacan.py
Python
mit
2,844
#!/usr/bin/env python3 from openpilot.selfdrive.car.interfaces import RadarInterfaceBase class RadarInterface(RadarInterfaceBase): pass
2301_81045437/openpilot
selfdrive/car/mazda/radar_interface.py
Python
mit
139
from dataclasses import dataclass, field from enum import IntFlag from cereal import car from openpilot.common.conversions import Conversions as CV from openpilot.selfdrive.car import CarSpecs, DbcDict, PlatformConfig, Platforms, dbc_dict from openpilot.selfdrive.car.docs_definitions import CarHarness, CarDocs, CarParts from openpilot.selfdrive.car.fw_query_definitions import FwQueryConfig, Request, StdQueries Ecu = car.CarParams.Ecu # Steer torque limits class CarControllerParams: STEER_MAX = 800 # theoretical max_steer 2047 STEER_DELTA_UP = 10 # torque increase per refresh STEER_DELTA_DOWN = 25 # torque decrease per refresh STEER_DRIVER_ALLOWANCE = 15 # allowed driver torque before start limiting STEER_DRIVER_MULTIPLIER = 1 # weight driver torque STEER_DRIVER_FACTOR = 1 # from dbc STEER_ERROR_MAX = 350 # max delta between torque cmd and torque motor STEER_STEP = 1 # 100 Hz def __init__(self, CP): pass @dataclass class MazdaCarDocs(CarDocs): package: str = "All" car_parts: CarParts = field(default_factory=CarParts.common([CarHarness.mazda])) @dataclass(frozen=True, kw_only=True) class MazdaCarSpecs(CarSpecs): tireStiffnessFactor: float = 0.7 # not optimized yet class MazdaFlags(IntFlag): # Static flags # Gen 1 hardware: same CAN messages and same camera GEN1 = 1 @dataclass class MazdaPlatformConfig(PlatformConfig): dbc_dict: DbcDict = field(default_factory=lambda: dbc_dict('mazda_2017', None)) flags: int = MazdaFlags.GEN1 class CAR(Platforms): MAZDA_CX5 = MazdaPlatformConfig( [MazdaCarDocs("Mazda CX-5 2017-21")], MazdaCarSpecs(mass=3655 * CV.LB_TO_KG, wheelbase=2.7, steerRatio=15.5) ) MAZDA_CX9 = MazdaPlatformConfig( [MazdaCarDocs("Mazda CX-9 2016-20")], MazdaCarSpecs(mass=4217 * CV.LB_TO_KG, wheelbase=3.1, steerRatio=17.6) ) MAZDA_3 = MazdaPlatformConfig( [MazdaCarDocs("Mazda 3 2017-18")], MazdaCarSpecs(mass=2875 * CV.LB_TO_KG, wheelbase=2.7, steerRatio=14.0) ) MAZDA_6 = MazdaPlatformConfig( [MazdaCarDocs("Mazda 6 2017-20")], MazdaCarSpecs(mass=3443 * CV.LB_TO_KG, wheelbase=2.83, steerRatio=15.5) ) MAZDA_CX9_2021 = MazdaPlatformConfig( [MazdaCarDocs("Mazda CX-9 2021-23", video_link="https://youtu.be/dA3duO4a0O4")], MAZDA_CX9.specs ) MAZDA_CX5_2022 = MazdaPlatformConfig( [MazdaCarDocs("Mazda CX-5 2022-24")], MAZDA_CX5.specs, ) class LKAS_LIMITS: STEER_THRESHOLD = 15 DISABLE_SPEED = 45 # kph ENABLE_SPEED = 52 # kph class Buttons: NONE = 0 SET_PLUS = 1 SET_MINUS = 2 RESUME = 3 CANCEL = 4 FW_QUERY_CONFIG = FwQueryConfig( requests=[ # TODO: check data to ensure ABS does not skip ISO-TP frames on bus 0 Request( [StdQueries.MANUFACTURER_SOFTWARE_VERSION_REQUEST], [StdQueries.MANUFACTURER_SOFTWARE_VERSION_RESPONSE], bus=0, ), ], ) DBC = CAR.create_dbc_map()
2301_81045437/openpilot
selfdrive/car/mazda/values.py
Python
mit
2,955
from openpilot.selfdrive.car.interfaces import CarControllerBase class CarController(CarControllerBase): def update(self, CC, CS, now_nanos): return CC.actuators.as_builder(), []
2301_81045437/openpilot
selfdrive/car/mock/carcontroller.py
Python
mit
186
from openpilot.selfdrive.car.interfaces import CarStateBase class CarState(CarStateBase): pass
2301_81045437/openpilot
selfdrive/car/mock/carstate.py
Python
mit
98
#!/usr/bin/env python3 from cereal import car import cereal.messaging as messaging from openpilot.selfdrive.car.interfaces import CarInterfaceBase # mocked car interface for dashcam mode class CarInterface(CarInterfaceBase): def __init__(self, CP, CarController, CarState): super().__init__(CP, CarController, CarState) self.speed = 0. self.sm = messaging.SubMaster(['gpsLocation', 'gpsLocationExternal']) @staticmethod def _get_params(ret, candidate, fingerprint, car_fw, experimental_long, docs): ret.carName = "mock" ret.mass = 1700. ret.wheelbase = 2.70 ret.centerToFront = ret.wheelbase * 0.5 ret.steerRatio = 13. ret.dashcamOnly = True return ret def _update(self, c): self.sm.update(0) gps_sock = 'gpsLocationExternal' if self.sm.recv_frame['gpsLocationExternal'] > 1 else 'gpsLocation' ret = car.CarState.new_message() ret.vEgo = self.sm[gps_sock].speed ret.vEgoRaw = self.sm[gps_sock].speed return ret
2301_81045437/openpilot
selfdrive/car/mock/interface.py
Python
mit
989
from openpilot.selfdrive.car.interfaces import RadarInterfaceBase class RadarInterface(RadarInterfaceBase): pass
2301_81045437/openpilot
selfdrive/car/mock/radar_interface.py
Python
mit
116
from openpilot.selfdrive.car import CarSpecs, PlatformConfig, Platforms class CAR(Platforms): MOCK = PlatformConfig( [], CarSpecs(mass=1700, wheelbase=2.7, steerRatio=13), {} )
2301_81045437/openpilot
selfdrive/car/mock/values.py
Python
mit
195
from cereal import car from opendbc.can.packer import CANPacker from openpilot.selfdrive.car import apply_std_steer_angle_limits from openpilot.selfdrive.car.interfaces import CarControllerBase from openpilot.selfdrive.car.nissan import nissancan from openpilot.selfdrive.car.nissan.values import CAR, CarControllerParams VisualAlert = car.CarControl.HUDControl.VisualAlert class CarController(CarControllerBase): def __init__(self, dbc_name, CP, VM): self.CP = CP self.car_fingerprint = CP.carFingerprint self.frame = 0 self.lkas_max_torque = 0 self.apply_angle_last = 0 self.packer = CANPacker(dbc_name) def update(self, CC, CS, now_nanos): actuators = CC.actuators hud_control = CC.hudControl pcm_cancel_cmd = CC.cruiseControl.cancel can_sends = [] ### STEER ### steer_hud_alert = 1 if hud_control.visualAlert in (VisualAlert.steerRequired, VisualAlert.ldw) else 0 if CC.latActive: # windup slower apply_angle = apply_std_steer_angle_limits(actuators.steeringAngleDeg, self.apply_angle_last, CS.out.vEgoRaw, CarControllerParams) # Max torque from driver before EPS will give up and not apply torque if not bool(CS.out.steeringPressed): self.lkas_max_torque = CarControllerParams.LKAS_MAX_TORQUE else: # Scale max torque based on how much torque the driver is applying to the wheel self.lkas_max_torque = max( # Scale max torque down to half LKAX_MAX_TORQUE as a minimum CarControllerParams.LKAS_MAX_TORQUE * 0.5, # Start scaling torque at STEER_THRESHOLD CarControllerParams.LKAS_MAX_TORQUE - 0.6 * max(0, abs(CS.out.steeringTorque) - CarControllerParams.STEER_THRESHOLD) ) else: apply_angle = CS.out.steeringAngleDeg self.lkas_max_torque = 0 self.apply_angle_last = apply_angle if self.CP.carFingerprint in (CAR.NISSAN_ROGUE, CAR.NISSAN_XTRAIL, CAR.NISSAN_ALTIMA) and pcm_cancel_cmd: can_sends.append(nissancan.create_acc_cancel_cmd(self.packer, self.car_fingerprint, CS.cruise_throttle_msg)) # TODO: Find better way to cancel! # For some reason spamming the cancel button is unreliable on the Leaf # We now cancel by making propilot think the seatbelt is unlatched, # this generates a beep and a warning message every time you disengage if self.CP.carFingerprint in (CAR.NISSAN_LEAF, CAR.NISSAN_LEAF_IC) and self.frame % 2 == 0: can_sends.append(nissancan.create_cancel_msg(self.packer, CS.cancel_msg, pcm_cancel_cmd)) can_sends.append(nissancan.create_steering_control( self.packer, apply_angle, self.frame, CC.latActive, self.lkas_max_torque)) # Below are the HUD messages. We copy the stock message and modify if self.CP.carFingerprint != CAR.NISSAN_ALTIMA: if self.frame % 2 == 0: can_sends.append(nissancan.create_lkas_hud_msg(self.packer, CS.lkas_hud_msg, CC.enabled, hud_control.leftLaneVisible, hud_control.rightLaneVisible, hud_control.leftLaneDepart, hud_control.rightLaneDepart)) if self.frame % 50 == 0: can_sends.append(nissancan.create_lkas_hud_info_msg( self.packer, CS.lkas_hud_info_msg, steer_hud_alert )) new_actuators = actuators.as_builder() new_actuators.steeringAngleDeg = apply_angle self.frame += 1 return new_actuators, can_sends
2301_81045437/openpilot
selfdrive/car/nissan/carcontroller.py
Python
mit
3,428
import copy from collections import deque from cereal import car from opendbc.can.can_define import CANDefine from openpilot.selfdrive.car.interfaces import CarStateBase from openpilot.common.conversions import Conversions as CV from opendbc.can.parser import CANParser from openpilot.selfdrive.car.nissan.values import CAR, DBC, CarControllerParams TORQUE_SAMPLES = 12 class CarState(CarStateBase): def __init__(self, CP): super().__init__(CP) can_define = CANDefine(DBC[CP.carFingerprint]["pt"]) self.lkas_hud_msg = {} self.lkas_hud_info_msg = {} self.steeringTorqueSamples = deque(TORQUE_SAMPLES*[0], TORQUE_SAMPLES) self.shifter_values = can_define.dv["GEARBOX"]["GEAR_SHIFTER"] self.prev_distance_button = 0 self.distance_button = 0 def update(self, cp, cp_adas, cp_cam): ret = car.CarState.new_message() self.prev_distance_button = self.distance_button self.distance_button = cp.vl["CRUISE_THROTTLE"]["FOLLOW_DISTANCE_BUTTON"] if self.CP.carFingerprint in (CAR.NISSAN_ROGUE, CAR.NISSAN_XTRAIL, CAR.NISSAN_ALTIMA): ret.gas = cp.vl["GAS_PEDAL"]["GAS_PEDAL"] elif self.CP.carFingerprint in (CAR.NISSAN_LEAF, CAR.NISSAN_LEAF_IC): ret.gas = cp.vl["CRUISE_THROTTLE"]["GAS_PEDAL"] ret.gasPressed = bool(ret.gas > 3) if self.CP.carFingerprint in (CAR.NISSAN_ROGUE, CAR.NISSAN_XTRAIL, CAR.NISSAN_ALTIMA): ret.brakePressed = bool(cp.vl["DOORS_LIGHTS"]["USER_BRAKE_PRESSED"]) elif self.CP.carFingerprint in (CAR.NISSAN_LEAF, CAR.NISSAN_LEAF_IC): ret.brakePressed = bool(cp.vl["CRUISE_THROTTLE"]["USER_BRAKE_PRESSED"]) ret.wheelSpeeds = self.get_wheel_speeds( cp.vl["WHEEL_SPEEDS_FRONT"]["WHEEL_SPEED_FL"], cp.vl["WHEEL_SPEEDS_FRONT"]["WHEEL_SPEED_FR"], cp.vl["WHEEL_SPEEDS_REAR"]["WHEEL_SPEED_RL"], cp.vl["WHEEL_SPEEDS_REAR"]["WHEEL_SPEED_RR"], ) ret.vEgoRaw = (ret.wheelSpeeds.fl + ret.wheelSpeeds.fr + ret.wheelSpeeds.rl + ret.wheelSpeeds.rr) / 4. ret.vEgo, ret.aEgo = self.update_speed_kf(ret.vEgoRaw) ret.standstill = cp.vl["WHEEL_SPEEDS_REAR"]["WHEEL_SPEED_RL"] == 0.0 and cp.vl["WHEEL_SPEEDS_REAR"]["WHEEL_SPEED_RR"] == 0.0 if self.CP.carFingerprint == CAR.NISSAN_ALTIMA: ret.cruiseState.enabled = bool(cp.vl["CRUISE_STATE"]["CRUISE_ENABLED"]) else: ret.cruiseState.enabled = bool(cp_adas.vl["CRUISE_STATE"]["CRUISE_ENABLED"]) if self.CP.carFingerprint in (CAR.NISSAN_ROGUE, CAR.NISSAN_XTRAIL): ret.seatbeltUnlatched = cp.vl["HUD"]["SEATBELT_DRIVER_LATCHED"] == 0 ret.cruiseState.available = bool(cp_cam.vl["PRO_PILOT"]["CRUISE_ON"]) elif self.CP.carFingerprint in (CAR.NISSAN_LEAF, CAR.NISSAN_LEAF_IC): if self.CP.carFingerprint == CAR.NISSAN_LEAF: ret.seatbeltUnlatched = cp.vl["SEATBELT"]["SEATBELT_DRIVER_LATCHED"] == 0 elif self.CP.carFingerprint == CAR.NISSAN_LEAF_IC: ret.seatbeltUnlatched = cp.vl["CANCEL_MSG"]["CANCEL_SEATBELT"] == 1 ret.cruiseState.available = bool(cp.vl["CRUISE_THROTTLE"]["CRUISE_AVAILABLE"]) elif self.CP.carFingerprint == CAR.NISSAN_ALTIMA: ret.seatbeltUnlatched = cp.vl["HUD"]["SEATBELT_DRIVER_LATCHED"] == 0 ret.cruiseState.available = bool(cp_adas.vl["PRO_PILOT"]["CRUISE_ON"]) if self.CP.carFingerprint == CAR.NISSAN_ALTIMA: speed = cp.vl["PROPILOT_HUD"]["SET_SPEED"] else: speed = cp_adas.vl["PROPILOT_HUD"]["SET_SPEED"] if speed != 255: if self.CP.carFingerprint in (CAR.NISSAN_LEAF, CAR.NISSAN_LEAF_IC): conversion = CV.MPH_TO_MS if cp.vl["HUD_SETTINGS"]["SPEED_MPH"] else CV.KPH_TO_MS else: conversion = CV.MPH_TO_MS if cp.vl["HUD"]["SPEED_MPH"] else CV.KPH_TO_MS ret.cruiseState.speed = speed * conversion ret.cruiseState.speedCluster = (speed - 1) * conversion # Speed on HUD is always 1 lower than actually sent on can bus if self.CP.carFingerprint == CAR.NISSAN_ALTIMA: ret.steeringTorque = cp_cam.vl["STEER_TORQUE_SENSOR"]["STEER_TORQUE_DRIVER"] else: ret.steeringTorque = cp.vl["STEER_TORQUE_SENSOR"]["STEER_TORQUE_DRIVER"] self.steeringTorqueSamples.append(ret.steeringTorque) # Filtering driver torque to prevent steeringPressed false positives ret.steeringPressed = bool(abs(sum(self.steeringTorqueSamples) / TORQUE_SAMPLES) > CarControllerParams.STEER_THRESHOLD) ret.steeringAngleDeg = cp.vl["STEER_ANGLE_SENSOR"]["STEER_ANGLE"] ret.leftBlinker = bool(cp.vl["LIGHTS"]["LEFT_BLINKER"]) ret.rightBlinker = bool(cp.vl["LIGHTS"]["RIGHT_BLINKER"]) ret.doorOpen = any([cp.vl["DOORS_LIGHTS"]["DOOR_OPEN_RR"], cp.vl["DOORS_LIGHTS"]["DOOR_OPEN_RL"], cp.vl["DOORS_LIGHTS"]["DOOR_OPEN_FR"], cp.vl["DOORS_LIGHTS"]["DOOR_OPEN_FL"]]) ret.espDisabled = bool(cp.vl["ESP"]["ESP_DISABLED"]) can_gear = int(cp.vl["GEARBOX"]["GEAR_SHIFTER"]) ret.gearShifter = self.parse_gear_shifter(self.shifter_values.get(can_gear, None)) if self.CP.carFingerprint == CAR.NISSAN_ALTIMA: self.lkas_enabled = bool(cp.vl["LKAS_SETTINGS"]["LKAS_ENABLED"]) else: self.lkas_enabled = bool(cp_adas.vl["LKAS_SETTINGS"]["LKAS_ENABLED"]) self.cruise_throttle_msg = copy.copy(cp.vl["CRUISE_THROTTLE"]) if self.CP.carFingerprint in (CAR.NISSAN_LEAF, CAR.NISSAN_LEAF_IC): self.cancel_msg = copy.copy(cp.vl["CANCEL_MSG"]) if self.CP.carFingerprint != CAR.NISSAN_ALTIMA: self.lkas_hud_msg = copy.copy(cp_adas.vl["PROPILOT_HUD"]) self.lkas_hud_info_msg = copy.copy(cp_adas.vl["PROPILOT_HUD_INFO_MSG"]) return ret @staticmethod def get_can_parser(CP): messages = [ # sig_address, frequency ("STEER_ANGLE_SENSOR", 100), ("WHEEL_SPEEDS_REAR", 50), ("WHEEL_SPEEDS_FRONT", 50), ("ESP", 25), ("GEARBOX", 25), ("DOORS_LIGHTS", 10), ("LIGHTS", 10), ] if CP.carFingerprint in (CAR.NISSAN_ROGUE, CAR.NISSAN_XTRAIL, CAR.NISSAN_ALTIMA): messages += [ ("GAS_PEDAL", 100), ("CRUISE_THROTTLE", 50), ("HUD", 25), ] elif CP.carFingerprint in (CAR.NISSAN_LEAF, CAR.NISSAN_LEAF_IC): messages += [ ("BRAKE_PEDAL", 100), ("CRUISE_THROTTLE", 50), ("CANCEL_MSG", 50), ("HUD_SETTINGS", 25), ("SEATBELT", 10), ] if CP.carFingerprint == CAR.NISSAN_ALTIMA: messages += [ ("CRUISE_STATE", 10), ("LKAS_SETTINGS", 10), ("PROPILOT_HUD", 50), ] return CANParser(DBC[CP.carFingerprint]["pt"], messages, 1) messages.append(("STEER_TORQUE_SENSOR", 100)) return CANParser(DBC[CP.carFingerprint]["pt"], messages, 0) @staticmethod def get_adas_can_parser(CP): # this function generates lists for signal, messages and initial values if CP.carFingerprint == CAR.NISSAN_ALTIMA: messages = [ ("LKAS", 100), ("PRO_PILOT", 100), ] else: messages = [ ("PROPILOT_HUD_INFO_MSG", 2), ("LKAS_SETTINGS", 10), ("CRUISE_STATE", 50), ("PROPILOT_HUD", 50), ("LKAS", 100), ] return CANParser(DBC[CP.carFingerprint]["pt"], messages, 2) @staticmethod def get_cam_can_parser(CP): messages = [] if CP.carFingerprint in (CAR.NISSAN_ROGUE, CAR.NISSAN_XTRAIL): messages.append(("PRO_PILOT", 100)) elif CP.carFingerprint == CAR.NISSAN_ALTIMA: messages.append(("STEER_TORQUE_SENSOR", 100)) return CANParser(DBC[CP.carFingerprint]["pt"], messages, 0) return CANParser(DBC[CP.carFingerprint]["pt"], messages, 1)
2301_81045437/openpilot
selfdrive/car/nissan/carstate.py
Python
mit
7,611
# ruff: noqa: E501 from cereal import car from openpilot.selfdrive.car.nissan.values import CAR Ecu = car.CarParams.Ecu FINGERPRINTS = { CAR.NISSAN_XTRAIL: [{ 2: 5, 42: 6, 346: 6, 347: 5, 348: 8, 349: 7, 361: 8, 386: 8, 389: 8, 397: 8, 398: 8, 403: 8, 520: 2, 523: 6, 548: 8, 645: 8, 658: 8, 665: 8, 666: 8, 674: 2, 682: 8, 683: 8, 689: 8, 723: 8, 758: 3, 768: 2, 783: 3, 851: 8, 855: 8, 1041: 8, 1055: 2, 1104: 4, 1105: 6, 1107: 4, 1108: 8, 1111: 4, 1227: 8, 1228: 8, 1247: 4, 1266: 8, 1273: 7, 1342: 1, 1376: 6, 1401: 8, 1474: 2, 1497: 3, 1821: 8, 1823: 8, 1837: 8, 2015: 8, 2016: 8, 2024: 8 }, { 2: 5, 42: 6, 346: 6, 347: 5, 348: 8, 349: 7, 361: 8, 386: 8, 389: 8, 397: 8, 398: 8, 403: 8, 520: 2, 523: 6, 527: 1, 548: 8, 637: 4, 645: 8, 658: 8, 665: 8, 666: 8, 674: 2, 682: 8, 683: 8, 689: 8, 723: 8, 758: 3, 768: 6, 783: 3, 851: 8, 855: 8, 1041: 8, 1055: 2, 1104: 4, 1105: 6, 1107: 4, 1108: 8, 1111: 4, 1227: 8, 1228: 8, 1247: 4, 1266: 8, 1273: 7, 1342: 1, 1376: 6, 1401: 8, 1474: 8, 1497: 3, 1534: 6, 1792: 8, 1821: 8, 1823: 8, 1837: 8, 1872: 8, 1937: 8, 1953: 8, 1968: 8, 2015: 8, 2016: 8, 2024: 8 }], CAR.NISSAN_LEAF: [{ 2: 5, 42: 6, 264: 3, 361: 8, 372: 8, 384: 8, 389: 8, 403: 8, 459: 7, 460: 4, 470: 8, 520: 1, 569: 8, 581: 8, 634: 7, 640: 8, 644: 8, 645: 8, 646: 5, 658: 8, 682: 8, 683: 8, 689: 8, 724: 6, 758: 3, 761: 2, 783: 3, 852: 8, 853: 8, 856: 8, 861: 8, 944: 1, 976: 6, 1008: 7, 1011: 7, 1057: 3, 1227: 8, 1228: 8, 1261: 5, 1342: 1, 1354: 8, 1361: 8, 1459: 8, 1477: 8, 1497: 3, 1549: 8, 1573: 6, 1821: 8, 1837: 8, 1856: 8, 1859: 8, 1861: 8, 1864: 8, 1874: 8, 1888: 8, 1891: 8, 1893: 8, 1906: 8, 1947: 8, 1949: 8, 1979: 8, 1981: 8, 2016: 8, 2017: 8, 2021: 8, 643: 5, 1792: 8, 1872: 8, 1937: 8, 1953: 8, 1968: 8, 1988: 8, 2000: 8, 2001: 8, 2004: 8, 2005: 8, 2015: 8 }, { 2: 5, 42: 8, 264: 3, 361: 8, 372: 8, 384: 8, 389: 8, 403: 8, 459: 7, 460: 4, 470: 8, 520: 1, 569: 8, 581: 8, 634: 7, 640: 8, 643: 5, 644: 8, 645: 8, 646: 5, 658: 8, 682: 8, 683: 8, 689: 8, 724: 6, 758: 3, 761: 2, 772: 8, 773: 6, 774: 7, 775: 8, 776: 6, 777: 7, 778: 6, 783: 3, 852: 8, 853: 8, 856: 8, 861: 8, 943: 8, 944: 1, 976: 6, 1008: 7, 1009: 8, 1010: 8, 1011: 7, 1012: 8, 1013: 8, 1019: 8, 1020: 8, 1021: 8, 1022: 8, 1057: 3, 1227: 8, 1228: 8, 1261: 5, 1342: 1, 1354: 8, 1361: 8, 1402: 8, 1459: 8, 1477: 8, 1497: 3, 1549: 8, 1573: 6, 1821: 8, 1837: 8 }], CAR.NISSAN_LEAF_IC: [{ 2: 5, 42: 6, 264: 3, 282: 8, 361: 8, 372: 8, 384: 8, 389: 8, 403: 8, 459: 7, 460: 4, 470: 8, 520: 1, 569: 8, 581: 8, 634: 7, 640: 8, 643: 5, 644: 8, 645: 8, 646: 5, 658: 8, 682: 8, 683: 8, 689: 8, 756: 5, 758: 3, 761: 2, 783: 3, 830: 2, 852: 8, 853: 8, 856: 8, 861: 8, 943: 8, 944: 1, 1001: 6, 1057: 3, 1227: 8, 1228: 8, 1229: 8, 1342: 1, 1354: 8, 1361: 8, 1459: 8, 1477: 8, 1497: 3, 1514: 6, 1549: 8, 1573: 6, 1792: 8, 1821: 8, 1822: 8, 1837: 8, 1838: 8, 1872: 8, 1937: 8, 1953: 8, 1968: 8, 1988: 8, 2000: 8, 2001: 8, 2004: 8, 2005: 8, 2015: 8, 2016: 8, 2017: 8 }], CAR.NISSAN_ROGUE: [{ 2: 5, 42: 6, 346: 6, 347: 5, 348: 8, 349: 7, 361: 8, 386: 8, 389: 8, 397: 8, 398: 8, 403: 8, 520: 2, 523: 6, 548: 8, 634: 7, 643: 5, 645: 8, 658: 8, 665: 8, 666: 8, 674: 2, 682: 8, 683: 8, 689: 8, 723: 8, 758: 3, 772: 8, 773: 6, 774: 7, 775: 8, 776: 6, 777: 7, 778: 6, 783: 3, 851: 8, 855: 8, 1041: 8, 1042: 8, 1055: 2, 1104: 4, 1105: 6, 1107: 4, 1108: 8, 1110: 7, 1111: 7, 1227: 8, 1228: 8, 1247: 4, 1266: 8, 1273: 7, 1342: 1, 1376: 6, 1401: 8, 1474: 2, 1497: 3, 1534: 7, 1792: 8, 1821: 8, 1823: 8, 1837: 8, 1839: 8, 1872: 8, 1937: 8, 1953: 8, 1968: 8, 1988: 8, 2000: 8, 2001: 8, 2004: 8, 2005: 8, 2015: 8, 2016: 8, 2017: 8, 2024: 8, 2025: 8 }], CAR.NISSAN_ALTIMA: [{ 2: 5, 42: 6, 346: 6, 347: 5, 348: 8, 349: 7, 361: 8, 386: 8, 389: 8, 397: 8, 398: 8, 403: 8, 438: 8, 451: 8, 517: 8, 520: 2, 522: 8, 523: 6, 539: 8, 541: 7, 542: 8, 543: 8, 544: 8, 545: 8, 546: 8, 547: 8, 548: 8, 570: 8, 576: 8, 577: 8, 582: 8, 583: 8, 584: 8, 586: 8, 587: 8, 588: 8, 589: 8, 590: 8, 591: 8, 592: 8, 600: 8, 601: 8, 610: 8, 611: 8, 612: 8, 614: 8, 615: 8, 616: 8, 617: 8, 622: 8, 623: 8, 634: 7, 638: 8, 645: 8, 648: 5, 654: 6, 658: 8, 659: 8, 660: 8, 661: 8, 665: 8, 666: 8, 674: 2, 675: 8, 676: 8, 682: 8, 683: 8, 684: 8, 685: 8, 686: 8, 687: 8, 689: 8, 690: 8, 703: 8, 708: 7, 709: 7, 711: 7, 712: 7, 713: 7, 714: 8, 715: 8, 716: 8, 717: 7, 718: 7, 719: 7, 720: 7, 723: 8, 726: 7, 727: 7, 728: 7, 735: 8, 746: 8, 748: 6, 749: 6, 750: 8, 758: 3, 772: 8, 773: 6, 774: 7, 775: 8, 776: 6, 777: 7, 778: 6, 779: 7, 781: 7, 782: 7, 783: 3, 851: 8, 855: 5, 1001: 6, 1041: 8, 1042: 8, 1055: 3, 1100: 7, 1104: 4, 1105: 6, 1107: 4, 1108: 8, 1110: 7, 1111: 7, 1144: 7, 1145: 7, 1227: 8, 1228: 8, 1229: 8, 1232: 8, 1247: 4, 1258: 8, 1259: 8, 1266: 8, 1273: 7, 1306: 1, 1314: 8, 1323: 8, 1324: 8, 1342: 1, 1376: 8, 1401: 8, 1454: 8, 1497: 3, 1514: 6, 1526: 8, 1527: 5, 1792: 8, 1821: 8, 1823: 8, 1837: 8, 1872: 8, 1937: 8, 1953: 8, 1968: 8, 1988: 8, 2000: 8, 2001: 8, 2004: 8, 2005: 8, 2015: 8, 2016: 8, 2017: 8, 2024: 8, 2025: 8 }], } FW_VERSIONS = { CAR.NISSAN_ALTIMA: { (Ecu.fwdCamera, 0x707, None): [ b'284N86CA1D', ], (Ecu.eps, 0x742, None): [ b'6CA2B\xa9A\x02\x02G8A89P90D6A\x00\x00\x01\x80', ], (Ecu.engine, 0x7e0, None): [ b'237109HE2B', ], (Ecu.gateway, 0x18dad0f1, None): [ b'284U29HE0A', ], }, CAR.NISSAN_LEAF: { (Ecu.abs, 0x740, None): [ b'476605SA1C', b'476605SA7D', b'476605SC2D', b'476606WK7B', b'476606WK9B', ], (Ecu.eps, 0x742, None): [ b'5SA2A\x99A\x05\x02N123F\x15b\x00\x00\x00\x00\x00\x00\x00\x80', b'5SA2A\xb7A\x05\x02N123F\x15\xa2\x00\x00\x00\x00\x00\x00\x00\x80', b'5SN2A\xb7A\x05\x02N123F\x15\xa2\x00\x00\x00\x00\x00\x00\x00\x80', b'5SN2A\xb7A\x05\x02N126F\x15\xb2\x00\x00\x00\x00\x00\x00\x00\x80', ], (Ecu.fwdCamera, 0x707, None): [ b'5SA0ADB\x04\x18\x00\x00\x00\x00\x00_*6\x04\x94a\x00\x00\x00\x80', b'5SA2ADB\x04\x18\x00\x00\x00\x00\x00_*6\x04\x94a\x00\x00\x00\x80', b'6WK2ADB\x04\x18\x00\x00\x00\x00\x00R;1\x18\x99\x10\x00\x00\x00\x80', b'6WK2BDB\x04\x18\x00\x00\x00\x00\x00R;1\x18\x99\x10\x00\x00\x00\x80', b'6WK2CDB\x04\x18\x00\x00\x00\x00\x00R=1\x18\x99\x10\x00\x00\x00\x80', ], (Ecu.gateway, 0x18dad0f1, None): [ b'284U25SA3C', b'284U25SP0C', b'284U25SP1C', b'284U26WK0A', b'284U26WK0C', ], }, CAR.NISSAN_LEAF_IC: { (Ecu.fwdCamera, 0x707, None): [ b'5SH1BDB\x04\x18\x00\x00\x00\x00\x00_-?\x04\x91\xf2\x00\x00\x00\x80', b'5SH4BDB\x04\x18\x00\x00\x00\x00\x00_-?\x04\x91\xf2\x00\x00\x00\x80', b'5SK0ADB\x04\x18\x00\x00\x00\x00\x00_(5\x07\x9aQ\x00\x00\x00\x80', ], (Ecu.abs, 0x740, None): [ b'476605SD2E', b'476605SH1D', b'476605SK2A', ], (Ecu.eps, 0x742, None): [ b'5SH2A\x99A\x05\x02N123F\x15\x81\x00\x00\x00\x00\x00\x00\x00\x80', b'5SH2C\xb7A\x05\x02N123F\x15\xa3\x00\x00\x00\x00\x00\x00\x00\x80', b'5SK3A\x99A\x05\x02N123F\x15u\x00\x00\x00\x00\x00\x00\x00\x80', ], (Ecu.gateway, 0x18dad0f1, None): [ b'284U25SF0C', b'284U25SH3A', b'284U25SK2D', ], }, CAR.NISSAN_XTRAIL: { (Ecu.fwdCamera, 0x707, None): [ b'284N86FR2A', ], (Ecu.abs, 0x740, None): [ b'6FU0AD\x11\x02\x00\x02e\x95e\x80iQ#\x01\x00\x00\x00\x00\x00\x80', b'6FU1BD\x11\x02\x00\x02e\x95e\x80iX#\x01\x00\x00\x00\x00\x00\x80', ], (Ecu.eps, 0x742, None): [ b'6FP2A\x99A\x05\x02N123F\x18\x02\x00\x00\x00\x00\x00\x00\x00\x80', ], (Ecu.combinationMeter, 0x743, None): [ b'6FR2A\x18B\x05\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80', ], (Ecu.engine, 0x7e0, None): [ b'6FR9A\xa0A\x06\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80', b'6FU9B\xa0A\x06\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80', ], (Ecu.gateway, 0x18dad0f1, None): [ b'284U26FR0E', ], }, }
2301_81045437/openpilot
selfdrive/car/nissan/fingerprints.py
Python
mit
8,009
from cereal import car from panda import Panda from openpilot.selfdrive.car import create_button_events, get_safety_config from openpilot.selfdrive.car.interfaces import CarInterfaceBase from openpilot.selfdrive.car.nissan.values import CAR ButtonType = car.CarState.ButtonEvent.Type class CarInterface(CarInterfaceBase): @staticmethod def _get_params(ret, candidate, fingerprint, car_fw, experimental_long, docs): ret.carName = "nissan" ret.safetyConfigs = [get_safety_config(car.CarParams.SafetyModel.nissan)] ret.autoResumeSng = False ret.steerLimitTimer = 1.0 ret.steerActuatorDelay = 0.1 ret.steerControlType = car.CarParams.SteerControlType.angle ret.radarUnavailable = True if candidate == CAR.NISSAN_ALTIMA: # Altima has EPS on C-CAN unlike the others that have it on V-CAN ret.safetyConfigs[0].safetyParam |= Panda.FLAG_NISSAN_ALT_EPS_BUS return ret # returns a car.CarState def _update(self, c): ret = self.CS.update(self.cp, self.cp_adas, self.cp_cam) ret.buttonEvents = create_button_events(self.CS.distance_button, self.CS.prev_distance_button, {1: ButtonType.gapAdjustCruise}) events = self.create_common_events(ret, extra_gears=[car.CarState.GearShifter.brake]) if self.CS.lkas_enabled: events.add(car.CarEvent.EventName.invalidLkasSetting) ret.events = events.to_msg() return ret
2301_81045437/openpilot
selfdrive/car/nissan/interface.py
Python
mit
1,397
import crcmod from openpilot.selfdrive.car.nissan.values import CAR # TODO: add this checksum to the CANPacker nissan_checksum = crcmod.mkCrcFun(0x11d, initCrc=0x00, rev=False, xorOut=0xff) def create_steering_control(packer, apply_steer, frame, steer_on, lkas_max_torque): values = { "COUNTER": frame % 0x10, "DESIRED_ANGLE": apply_steer, "SET_0x80_2": 0x80, "SET_0x80": 0x80, "MAX_TORQUE": lkas_max_torque if steer_on else 0, "LKA_ACTIVE": steer_on, } dat = packer.make_can_msg("LKAS", 0, values)[2] values["CHECKSUM"] = nissan_checksum(dat[:7]) return packer.make_can_msg("LKAS", 0, values) def create_acc_cancel_cmd(packer, car_fingerprint, cruise_throttle_msg): values = {s: cruise_throttle_msg[s] for s in [ "COUNTER", "PROPILOT_BUTTON", "CANCEL_BUTTON", "GAS_PEDAL_INVERTED", "SET_BUTTON", "RES_BUTTON", "FOLLOW_DISTANCE_BUTTON", "NO_BUTTON_PRESSED", "GAS_PEDAL", "USER_BRAKE_PRESSED", "NEW_SIGNAL_2", "GAS_PRESSED_INVERTED", "unsure1", "unsure2", "unsure3", ]} can_bus = 1 if car_fingerprint == CAR.NISSAN_ALTIMA else 2 values["CANCEL_BUTTON"] = 1 values["NO_BUTTON_PRESSED"] = 0 values["PROPILOT_BUTTON"] = 0 values["SET_BUTTON"] = 0 values["RES_BUTTON"] = 0 values["FOLLOW_DISTANCE_BUTTON"] = 0 return packer.make_can_msg("CRUISE_THROTTLE", can_bus, values) def create_cancel_msg(packer, cancel_msg, cruise_cancel): values = {s: cancel_msg[s] for s in [ "CANCEL_SEATBELT", "NEW_SIGNAL_1", "NEW_SIGNAL_2", "NEW_SIGNAL_3", ]} if cruise_cancel: values["CANCEL_SEATBELT"] = 1 return packer.make_can_msg("CANCEL_MSG", 2, values) def create_lkas_hud_msg(packer, lkas_hud_msg, enabled, left_line, right_line, left_lane_depart, right_lane_depart): values = {s: lkas_hud_msg[s] for s in [ "LARGE_WARNING_FLASHING", "SIDE_RADAR_ERROR_FLASHING1", "SIDE_RADAR_ERROR_FLASHING2", "LEAD_CAR", "LEAD_CAR_ERROR", "FRONT_RADAR_ERROR", "FRONT_RADAR_ERROR_FLASHING", "SIDE_RADAR_ERROR_FLASHING3", "LKAS_ERROR_FLASHING", "SAFETY_SHIELD_ACTIVE", "RIGHT_LANE_GREEN_FLASH", "LEFT_LANE_GREEN_FLASH", "FOLLOW_DISTANCE", "AUDIBLE_TONE", "SPEED_SET_ICON", "SMALL_STEERING_WHEEL_ICON", "unknown59", "unknown55", "unknown26", "unknown28", "unknown31", "SET_SPEED", "unknown43", "unknown08", "unknown05", "unknown02", ]} values["RIGHT_LANE_YELLOW_FLASH"] = 1 if right_lane_depart else 0 values["LEFT_LANE_YELLOW_FLASH"] = 1 if left_lane_depart else 0 values["LARGE_STEERING_WHEEL_ICON"] = 2 if enabled else 0 values["RIGHT_LANE_GREEN"] = 1 if right_line and enabled else 0 values["LEFT_LANE_GREEN"] = 1 if left_line and enabled else 0 return packer.make_can_msg("PROPILOT_HUD", 0, values) def create_lkas_hud_info_msg(packer, lkas_hud_info_msg, steer_hud_alert): values = {s: lkas_hud_info_msg[s] for s in [ "NA_HIGH_ACCEL_TEMP", "SIDE_RADAR_NA_HIGH_CABIN_TEMP", "SIDE_RADAR_MALFUNCTION", "LKAS_MALFUNCTION", "FRONT_RADAR_MALFUNCTION", "SIDE_RADAR_NA_CLEAN_REAR_CAMERA", "NA_POOR_ROAD_CONDITIONS", "CURRENTLY_UNAVAILABLE", "SAFETY_SHIELD_OFF", "FRONT_COLLISION_NA_FRONT_RADAR_OBSTRUCTION", "PEDAL_MISSAPPLICATION_SYSTEM_ACTIVATED", "SIDE_IMPACT_NA_RADAR_OBSTRUCTION", "WARNING_DO_NOT_ENTER", "SIDE_IMPACT_SYSTEM_OFF", "SIDE_IMPACT_MALFUNCTION", "FRONT_COLLISION_MALFUNCTION", "SIDE_RADAR_MALFUNCTION2", "LKAS_MALFUNCTION2", "FRONT_RADAR_MALFUNCTION2", "PROPILOT_NA_MSGS", "BOTTOM_MSG", "HANDS_ON_WHEEL_WARNING", "WARNING_STEP_ON_BRAKE_NOW", "PROPILOT_NA_FRONT_CAMERA_OBSTRUCTED", "PROPILOT_NA_HIGH_CABIN_TEMP", "WARNING_PROPILOT_MALFUNCTION", "ACC_UNAVAILABLE_HIGH_CABIN_TEMP", "ACC_NA_FRONT_CAMERA_IMPARED", "unknown07", "unknown10", "unknown15", "unknown23", "unknown19", "unknown31", "unknown32", "unknown46", "unknown61", "unknown55", "unknown50", ]} if steer_hud_alert: values["HANDS_ON_WHEEL_WARNING"] = 1 return packer.make_can_msg("PROPILOT_HUD_INFO_MSG", 0, values)
2301_81045437/openpilot
selfdrive/car/nissan/nissancan.py
Python
mit
4,206
from openpilot.selfdrive.car.interfaces import RadarInterfaceBase class RadarInterface(RadarInterfaceBase): pass
2301_81045437/openpilot
selfdrive/car/nissan/radar_interface.py
Python
mit
116
from dataclasses import dataclass, field from cereal import car from panda.python import uds from openpilot.selfdrive.car import AngleRateLimit, CarSpecs, DbcDict, PlatformConfig, Platforms, dbc_dict from openpilot.selfdrive.car.docs_definitions import CarDocs, CarHarness, CarParts from openpilot.selfdrive.car.fw_query_definitions import FwQueryConfig, Request, StdQueries Ecu = car.CarParams.Ecu class CarControllerParams: ANGLE_RATE_LIMIT_UP = AngleRateLimit(speed_bp=[0., 5., 15.], angle_v=[5., .8, .15]) ANGLE_RATE_LIMIT_DOWN = AngleRateLimit(speed_bp=[0., 5., 15.], angle_v=[5., 3.5, 0.4]) LKAS_MAX_TORQUE = 1 # A value of 1 is easy to overpower STEER_THRESHOLD = 1.0 def __init__(self, CP): pass @dataclass class NissanCarDocs(CarDocs): package: str = "ProPILOT Assist" car_parts: CarParts = field(default_factory=CarParts.common([CarHarness.nissan_a])) @dataclass(frozen=True) class NissanCarSpecs(CarSpecs): centerToFrontRatio: float = 0.44 steerRatio: float = 17. @dataclass class NissanPlatformConfig(PlatformConfig): dbc_dict: DbcDict = field(default_factory=lambda: dbc_dict('nissan_x_trail_2017_generated', None)) class CAR(Platforms): NISSAN_XTRAIL = NissanPlatformConfig( [NissanCarDocs("Nissan X-Trail 2017")], NissanCarSpecs(mass=1610, wheelbase=2.705) ) NISSAN_LEAF = NissanPlatformConfig( [NissanCarDocs("Nissan Leaf 2018-23", video_link="https://youtu.be/vaMbtAh_0cY")], NissanCarSpecs(mass=1610, wheelbase=2.705), dbc_dict('nissan_leaf_2018_generated', None), ) # Leaf with ADAS ECU found behind instrument cluster instead of glovebox # Currently the only known difference between them is the inverted seatbelt signal. NISSAN_LEAF_IC = NISSAN_LEAF.override(car_docs=[]) NISSAN_ROGUE = NissanPlatformConfig( [NissanCarDocs("Nissan Rogue 2018-20")], NissanCarSpecs(mass=1610, wheelbase=2.705) ) NISSAN_ALTIMA = NissanPlatformConfig( [NissanCarDocs("Nissan Altima 2019-20", car_parts=CarParts.common([CarHarness.nissan_b]))], NissanCarSpecs(mass=1492, wheelbase=2.824) ) DBC = CAR.create_dbc_map() # Default diagnostic session NISSAN_DIAGNOSTIC_REQUEST_KWP = bytes([uds.SERVICE_TYPE.DIAGNOSTIC_SESSION_CONTROL, 0x81]) NISSAN_DIAGNOSTIC_RESPONSE_KWP = bytes([uds.SERVICE_TYPE.DIAGNOSTIC_SESSION_CONTROL + 0x40, 0x81]) # Manufacturer specific NISSAN_DIAGNOSTIC_REQUEST_KWP_2 = bytes([uds.SERVICE_TYPE.DIAGNOSTIC_SESSION_CONTROL, 0xda]) NISSAN_DIAGNOSTIC_RESPONSE_KWP_2 = bytes([uds.SERVICE_TYPE.DIAGNOSTIC_SESSION_CONTROL + 0x40, 0xda]) NISSAN_VERSION_REQUEST_KWP = b'\x21\x83' NISSAN_VERSION_RESPONSE_KWP = b'\x61\x83' NISSAN_RX_OFFSET = 0x20 FW_QUERY_CONFIG = FwQueryConfig( requests=[request for bus, logging in ((0, False), (1, True)) for request in [ Request( [NISSAN_DIAGNOSTIC_REQUEST_KWP, NISSAN_VERSION_REQUEST_KWP], [NISSAN_DIAGNOSTIC_RESPONSE_KWP, NISSAN_VERSION_RESPONSE_KWP], bus=bus, logging=logging, ), Request( [NISSAN_DIAGNOSTIC_REQUEST_KWP, NISSAN_VERSION_REQUEST_KWP], [NISSAN_DIAGNOSTIC_RESPONSE_KWP, NISSAN_VERSION_RESPONSE_KWP], rx_offset=NISSAN_RX_OFFSET, bus=bus, logging=logging, ), # Rogue's engine solely responds to this Request( [NISSAN_DIAGNOSTIC_REQUEST_KWP_2, NISSAN_VERSION_REQUEST_KWP], [NISSAN_DIAGNOSTIC_RESPONSE_KWP_2, NISSAN_VERSION_RESPONSE_KWP], bus=bus, logging=logging, ), Request( [StdQueries.MANUFACTURER_SOFTWARE_VERSION_REQUEST], [StdQueries.MANUFACTURER_SOFTWARE_VERSION_RESPONSE], rx_offset=NISSAN_RX_OFFSET, bus=bus, logging=logging, ), ]], )
2301_81045437/openpilot
selfdrive/car/nissan/values.py
Python
mit
3,674
from openpilot.common.numpy_fast import clip, interp from opendbc.can.packer import CANPacker from openpilot.selfdrive.car import apply_driver_steer_torque_limits, common_fault_avoidance from openpilot.selfdrive.car.interfaces import CarControllerBase from openpilot.selfdrive.car.subaru import subarucan from openpilot.selfdrive.car.subaru.values import DBC, GLOBAL_ES_ADDR, CanBus, CarControllerParams, SubaruFlags # FIXME: These limits aren't exact. The real limit is more than likely over a larger time period and # involves the total steering angle change rather than rate, but these limits work well for now MAX_STEER_RATE = 25 # deg/s MAX_STEER_RATE_FRAMES = 7 # tx control frames needed before torque can be cut class CarController(CarControllerBase): def __init__(self, dbc_name, CP, VM): self.CP = CP self.apply_steer_last = 0 self.frame = 0 self.cruise_button_prev = 0 self.steer_rate_counter = 0 self.p = CarControllerParams(CP) self.packer = CANPacker(DBC[CP.carFingerprint]['pt']) def update(self, CC, CS, now_nanos): actuators = CC.actuators hud_control = CC.hudControl pcm_cancel_cmd = CC.cruiseControl.cancel can_sends = [] # *** steering *** if (self.frame % self.p.STEER_STEP) == 0: apply_steer = int(round(actuators.steer * self.p.STEER_MAX)) # limits due to driver torque new_steer = int(round(apply_steer)) apply_steer = apply_driver_steer_torque_limits(new_steer, self.apply_steer_last, CS.out.steeringTorque, self.p) if not CC.latActive: apply_steer = 0 if self.CP.flags & SubaruFlags.PREGLOBAL: can_sends.append(subarucan.create_preglobal_steering_control(self.packer, self.frame // self.p.STEER_STEP, apply_steer, CC.latActive)) else: apply_steer_req = CC.latActive if self.CP.flags & SubaruFlags.STEER_RATE_LIMITED: # Steering rate fault prevention self.steer_rate_counter, apply_steer_req = \ common_fault_avoidance(abs(CS.out.steeringRateDeg) > MAX_STEER_RATE, apply_steer_req, self.steer_rate_counter, MAX_STEER_RATE_FRAMES) can_sends.append(subarucan.create_steering_control(self.packer, apply_steer, apply_steer_req)) self.apply_steer_last = apply_steer # *** longitudinal *** if CC.longActive: apply_throttle = int(round(interp(actuators.accel, CarControllerParams.THROTTLE_LOOKUP_BP, CarControllerParams.THROTTLE_LOOKUP_V))) apply_rpm = int(round(interp(actuators.accel, CarControllerParams.RPM_LOOKUP_BP, CarControllerParams.RPM_LOOKUP_V))) apply_brake = int(round(interp(actuators.accel, CarControllerParams.BRAKE_LOOKUP_BP, CarControllerParams.BRAKE_LOOKUP_V))) # limit min and max values cruise_throttle = clip(apply_throttle, CarControllerParams.THROTTLE_MIN, CarControllerParams.THROTTLE_MAX) cruise_rpm = clip(apply_rpm, CarControllerParams.RPM_MIN, CarControllerParams.RPM_MAX) cruise_brake = clip(apply_brake, CarControllerParams.BRAKE_MIN, CarControllerParams.BRAKE_MAX) else: cruise_throttle = CarControllerParams.THROTTLE_INACTIVE cruise_rpm = CarControllerParams.RPM_MIN cruise_brake = CarControllerParams.BRAKE_MIN # *** alerts and pcm cancel *** if self.CP.flags & SubaruFlags.PREGLOBAL: if self.frame % 5 == 0: # 1 = main, 2 = set shallow, 3 = set deep, 4 = resume shallow, 5 = resume deep # disengage ACC when OP is disengaged if pcm_cancel_cmd: cruise_button = 1 # turn main on if off and past start-up state elif not CS.out.cruiseState.available and CS.ready: cruise_button = 1 else: cruise_button = CS.cruise_button # unstick previous mocked button press if cruise_button == 1 and self.cruise_button_prev == 1: cruise_button = 0 self.cruise_button_prev = cruise_button can_sends.append(subarucan.create_preglobal_es_distance(self.packer, cruise_button, CS.es_distance_msg)) else: if self.frame % 10 == 0: can_sends.append(subarucan.create_es_dashstatus(self.packer, self.frame // 10, CS.es_dashstatus_msg, CC.enabled, self.CP.openpilotLongitudinalControl, CC.longActive, hud_control.leadVisible)) can_sends.append(subarucan.create_es_lkas_state(self.packer, self.frame // 10, CS.es_lkas_state_msg, CC.enabled, hud_control.visualAlert, hud_control.leftLaneVisible, hud_control.rightLaneVisible, hud_control.leftLaneDepart, hud_control.rightLaneDepart)) if self.CP.flags & SubaruFlags.SEND_INFOTAINMENT: can_sends.append(subarucan.create_es_infotainment(self.packer, self.frame // 10, CS.es_infotainment_msg, hud_control.visualAlert)) if self.CP.openpilotLongitudinalControl: if self.frame % 5 == 0: can_sends.append(subarucan.create_es_status(self.packer, self.frame // 5, CS.es_status_msg, self.CP.openpilotLongitudinalControl, CC.longActive, cruise_rpm)) can_sends.append(subarucan.create_es_brake(self.packer, self.frame // 5, CS.es_brake_msg, self.CP.openpilotLongitudinalControl, CC.longActive, cruise_brake)) can_sends.append(subarucan.create_es_distance(self.packer, self.frame // 5, CS.es_distance_msg, 0, pcm_cancel_cmd, self.CP.openpilotLongitudinalControl, cruise_brake > 0, cruise_throttle)) else: if pcm_cancel_cmd: if not (self.CP.flags & SubaruFlags.HYBRID): bus = CanBus.alt if self.CP.flags & SubaruFlags.GLOBAL_GEN2 else CanBus.main can_sends.append(subarucan.create_es_distance(self.packer, CS.es_distance_msg["COUNTER"] + 1, CS.es_distance_msg, bus, pcm_cancel_cmd)) if self.CP.flags & SubaruFlags.DISABLE_EYESIGHT: # Tester present (keeps eyesight disabled) if self.frame % 100 == 0: can_sends.append([GLOBAL_ES_ADDR, 0, b"\x02\x3E\x80\x00\x00\x00\x00\x00", CanBus.camera]) # Create all of the other eyesight messages to keep the rest of the car happy when eyesight is disabled if self.frame % 5 == 0: can_sends.append(subarucan.create_es_highbeamassist(self.packer)) if self.frame % 10 == 0: can_sends.append(subarucan.create_es_static_1(self.packer)) if self.frame % 2 == 0: can_sends.append(subarucan.create_es_static_2(self.packer)) new_actuators = actuators.as_builder() new_actuators.steer = self.apply_steer_last / self.p.STEER_MAX new_actuators.steerOutputCan = self.apply_steer_last self.frame += 1 return new_actuators, can_sends
2301_81045437/openpilot
selfdrive/car/subaru/carcontroller.py
Python
mit
6,946
import copy from cereal import car from opendbc.can.can_define import CANDefine from openpilot.common.conversions import Conversions as CV from openpilot.selfdrive.car.interfaces import CarStateBase from opendbc.can.parser import CANParser from openpilot.selfdrive.car.subaru.values import DBC, CanBus, SubaruFlags from openpilot.selfdrive.car import CanSignalRateCalculator class CarState(CarStateBase): def __init__(self, CP): super().__init__(CP) can_define = CANDefine(DBC[CP.carFingerprint]["pt"]) self.shifter_values = can_define.dv["Transmission"]["Gear"] self.angle_rate_calulator = CanSignalRateCalculator(50) def update(self, cp, cp_cam, cp_body): ret = car.CarState.new_message() throttle_msg = cp.vl["Throttle"] if not (self.CP.flags & SubaruFlags.HYBRID) else cp_body.vl["Throttle_Hybrid"] ret.gas = throttle_msg["Throttle_Pedal"] / 255. ret.gasPressed = ret.gas > 1e-5 if self.CP.flags & SubaruFlags.PREGLOBAL: ret.brakePressed = cp.vl["Brake_Pedal"]["Brake_Pedal"] > 0 else: cp_brakes = cp_body if self.CP.flags & SubaruFlags.GLOBAL_GEN2 else cp ret.brakePressed = cp_brakes.vl["Brake_Status"]["Brake"] == 1 cp_es_distance = cp_body if self.CP.flags & (SubaruFlags.GLOBAL_GEN2 | SubaruFlags.HYBRID) else cp_cam if not (self.CP.flags & SubaruFlags.HYBRID): eyesight_fault = bool(cp_es_distance.vl["ES_Distance"]["Cruise_Fault"]) # if openpilot is controlling long, an eyesight fault is a non-critical fault. otherwise it's an ACC fault if self.CP.openpilotLongitudinalControl: ret.carFaultedNonCritical = eyesight_fault else: ret.accFaulted = eyesight_fault cp_wheels = cp_body if self.CP.flags & SubaruFlags.GLOBAL_GEN2 else cp ret.wheelSpeeds = self.get_wheel_speeds( cp_wheels.vl["Wheel_Speeds"]["FL"], cp_wheels.vl["Wheel_Speeds"]["FR"], cp_wheels.vl["Wheel_Speeds"]["RL"], cp_wheels.vl["Wheel_Speeds"]["RR"], ) ret.vEgoRaw = (ret.wheelSpeeds.fl + ret.wheelSpeeds.fr + ret.wheelSpeeds.rl + ret.wheelSpeeds.rr) / 4. ret.vEgo, ret.aEgo = self.update_speed_kf(ret.vEgoRaw) ret.standstill = ret.vEgoRaw == 0 # continuous blinker signals for assisted lane change ret.leftBlinker, ret.rightBlinker = self.update_blinker_from_lamp(50, cp.vl["Dashlights"]["LEFT_BLINKER"], cp.vl["Dashlights"]["RIGHT_BLINKER"]) if self.CP.enableBsm: ret.leftBlindspot = (cp.vl["BSD_RCTA"]["L_ADJACENT"] == 1) or (cp.vl["BSD_RCTA"]["L_APPROACHING"] == 1) ret.rightBlindspot = (cp.vl["BSD_RCTA"]["R_ADJACENT"] == 1) or (cp.vl["BSD_RCTA"]["R_APPROACHING"] == 1) cp_transmission = cp_body if self.CP.flags & SubaruFlags.HYBRID else cp can_gear = int(cp_transmission.vl["Transmission"]["Gear"]) ret.gearShifter = self.parse_gear_shifter(self.shifter_values.get(can_gear, None)) ret.steeringAngleDeg = cp.vl["Steering_Torque"]["Steering_Angle"] if not (self.CP.flags & SubaruFlags.PREGLOBAL): # ideally we get this from the car, but unclear if it exists. diagnostic software doesn't even have it ret.steeringRateDeg = self.angle_rate_calulator.update(ret.steeringAngleDeg, cp.vl["Steering_Torque"]["COUNTER"]) ret.steeringTorque = cp.vl["Steering_Torque"]["Steer_Torque_Sensor"] ret.steeringTorqueEps = cp.vl["Steering_Torque"]["Steer_Torque_Output"] steer_threshold = 75 if self.CP.flags & SubaruFlags.PREGLOBAL else 80 ret.steeringPressed = abs(ret.steeringTorque) > steer_threshold cp_cruise = cp_body if self.CP.flags & SubaruFlags.GLOBAL_GEN2 else cp if self.CP.flags & SubaruFlags.HYBRID: ret.cruiseState.enabled = cp_cam.vl["ES_DashStatus"]['Cruise_Activated'] != 0 ret.cruiseState.available = cp_cam.vl["ES_DashStatus"]['Cruise_On'] != 0 else: ret.cruiseState.enabled = cp_cruise.vl["CruiseControl"]["Cruise_Activated"] != 0 ret.cruiseState.available = cp_cruise.vl["CruiseControl"]["Cruise_On"] != 0 ret.cruiseState.speed = cp_cam.vl["ES_DashStatus"]["Cruise_Set_Speed"] * CV.KPH_TO_MS if (self.CP.flags & SubaruFlags.PREGLOBAL and cp.vl["Dash_State2"]["UNITS"] == 1) or \ (not (self.CP.flags & SubaruFlags.PREGLOBAL) and cp.vl["Dashlights"]["UNITS"] == 1): ret.cruiseState.speed *= CV.MPH_TO_KPH ret.seatbeltUnlatched = cp.vl["Dashlights"]["SEATBELT_FL"] == 1 ret.doorOpen = any([cp.vl["BodyInfo"]["DOOR_OPEN_RR"], cp.vl["BodyInfo"]["DOOR_OPEN_RL"], cp.vl["BodyInfo"]["DOOR_OPEN_FR"], cp.vl["BodyInfo"]["DOOR_OPEN_FL"]]) ret.steerFaultPermanent = cp.vl["Steering_Torque"]["Steer_Error_1"] == 1 if self.CP.flags & SubaruFlags.PREGLOBAL: self.cruise_button = cp_cam.vl["ES_Distance"]["Cruise_Button"] self.ready = not cp_cam.vl["ES_DashStatus"]["Not_Ready_Startup"] else: ret.steerFaultTemporary = cp.vl["Steering_Torque"]["Steer_Warning"] == 1 ret.cruiseState.nonAdaptive = cp_cam.vl["ES_DashStatus"]["Conventional_Cruise"] == 1 ret.cruiseState.standstill = cp_cam.vl["ES_DashStatus"]["Cruise_State"] == 3 ret.stockFcw = (cp_cam.vl["ES_LKAS_State"]["LKAS_Alert"] == 1) or \ (cp_cam.vl["ES_LKAS_State"]["LKAS_Alert"] == 2) self.es_lkas_state_msg = copy.copy(cp_cam.vl["ES_LKAS_State"]) cp_es_brake = cp_body if self.CP.flags & SubaruFlags.GLOBAL_GEN2 else cp_cam self.es_brake_msg = copy.copy(cp_es_brake.vl["ES_Brake"]) cp_es_status = cp_body if self.CP.flags & SubaruFlags.GLOBAL_GEN2 else cp_cam # TODO: Hybrid cars don't have ES_Distance, need a replacement if not (self.CP.flags & SubaruFlags.HYBRID): # 8 is known AEB, there are a few other values related to AEB we ignore ret.stockAeb = (cp_es_distance.vl["ES_Brake"]["AEB_Status"] == 8) and \ (cp_es_distance.vl["ES_Brake"]["Brake_Pressure"] != 0) self.es_status_msg = copy.copy(cp_es_status.vl["ES_Status"]) self.cruise_control_msg = copy.copy(cp_cruise.vl["CruiseControl"]) if not (self.CP.flags & SubaruFlags.HYBRID): self.es_distance_msg = copy.copy(cp_es_distance.vl["ES_Distance"]) self.es_dashstatus_msg = copy.copy(cp_cam.vl["ES_DashStatus"]) if self.CP.flags & SubaruFlags.SEND_INFOTAINMENT: self.es_infotainment_msg = copy.copy(cp_cam.vl["ES_Infotainment"]) return ret @staticmethod def get_common_global_body_messages(CP): messages = [ ("Wheel_Speeds", 50), ("Brake_Status", 50), ] if not (CP.flags & SubaruFlags.HYBRID): messages.append(("CruiseControl", 20)) return messages @staticmethod def get_common_global_es_messages(CP): messages = [ ("ES_Brake", 20), ] if not (CP.flags & SubaruFlags.HYBRID): messages += [ ("ES_Distance", 20), ("ES_Status", 20) ] return messages @staticmethod def get_common_preglobal_body_messages(): messages = [ ("CruiseControl", 50), ("Wheel_Speeds", 50), ("Dash_State2", 1), ] return messages @staticmethod def get_can_parser(CP): messages = [ # sig_address, frequency ("Dashlights", 10), ("Steering_Torque", 50), ("BodyInfo", 1), ("Brake_Pedal", 50), ] if not (CP.flags & SubaruFlags.HYBRID): messages += [ ("Throttle", 100), ("Transmission", 100) ] if CP.enableBsm: messages.append(("BSD_RCTA", 17)) if not (CP.flags & SubaruFlags.PREGLOBAL): if not (CP.flags & SubaruFlags.GLOBAL_GEN2): messages += CarState.get_common_global_body_messages(CP) else: messages += CarState.get_common_preglobal_body_messages() return CANParser(DBC[CP.carFingerprint]["pt"], messages, CanBus.main) @staticmethod def get_cam_can_parser(CP): if CP.flags & SubaruFlags.PREGLOBAL: messages = [ ("ES_DashStatus", 20), ("ES_Distance", 20), ] else: messages = [ ("ES_DashStatus", 10), ("ES_LKAS_State", 10), ] if not (CP.flags & SubaruFlags.GLOBAL_GEN2): messages += CarState.get_common_global_es_messages(CP) if CP.flags & SubaruFlags.SEND_INFOTAINMENT: messages.append(("ES_Infotainment", 10)) return CANParser(DBC[CP.carFingerprint]["pt"], messages, CanBus.camera) @staticmethod def get_body_can_parser(CP): messages = [] if CP.flags & SubaruFlags.GLOBAL_GEN2: messages += CarState.get_common_global_body_messages(CP) messages += CarState.get_common_global_es_messages(CP) if CP.flags & SubaruFlags.HYBRID: messages += [ ("Throttle_Hybrid", 40), ("Transmission", 100) ] return CANParser(DBC[CP.carFingerprint]["pt"], messages, CanBus.alt)
2301_81045437/openpilot
selfdrive/car/subaru/carstate.py
Python
mit
8,894
from cereal import car from openpilot.selfdrive.car.subaru.values import CAR Ecu = car.CarParams.Ecu FW_VERSIONS = { CAR.SUBARU_ASCENT: { (Ecu.abs, 0x7b0, None): [ b'\xa5 \x19\x02\x00', b'\xa5 !\x02\x00', ], (Ecu.eps, 0x746, None): [ b'\x05\xc0\xd0\x00', b'\x85\xc0\xd0\x00', b'\x95\xc0\xd0\x00', ], (Ecu.fwdCamera, 0x787, None): [ b'\x00\x00d\xb9\x00\x00\x00\x00', b'\x00\x00d\xb9\x1f@ \x10', b'\x00\x00e@\x00\x00\x00\x00', b'\x00\x00e@\x1f@ $', b"\x00\x00e~\x1f@ '", ], (Ecu.engine, 0x7e0, None): [ b'\xbb,\xa0t\x07', b'\xd1,\xa0q\x07', ], (Ecu.transmission, 0x7e1, None): [ b'\x00>\xf0\x00\x00', b'\x00\xfe\xf7\x00\x00', b'\x01\xfe\xf7\x00\x00', b'\x01\xfe\xf9\x00\x00', b'\x01\xfe\xfa\x00\x00', ], }, CAR.SUBARU_ASCENT_2023: { (Ecu.abs, 0x7b0, None): [ b'\xa5 #\x03\x00', ], (Ecu.eps, 0x746, None): [ b'%\xc0\xd0\x11', ], (Ecu.fwdCamera, 0x787, None): [ b'\x05!\x08\x1dK\x05!\x08\x01/', ], (Ecu.engine, 0x7a2, None): [ b'\xe5,\xa0P\x07', ], (Ecu.transmission, 0x7a3, None): [ b'\x04\xfe\xf3\x00\x00', ], }, CAR.SUBARU_LEGACY: { (Ecu.abs, 0x7b0, None): [ b'\xa1 \x02\x01', b'\xa1 \x02\x02', b'\xa1 \x03\x03', b'\xa1 \x04\x01', ], (Ecu.eps, 0x746, None): [ b'\x9b\xc0\x11\x00', b'\x9b\xc0\x11\x02', ], (Ecu.fwdCamera, 0x787, None): [ b'\x00\x00e\x80\x00\x1f@ \x19\x00', b'\x00\x00e\x9a\x00\x00\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\xde"a0\x07', b'\xde,\xa0@\x07', b'\xe2"aq\x07', b'\xe2,\xa0@\x07', ], (Ecu.transmission, 0x7e1, None): [ b'\xa5\xf6\x05@\x00', b'\xa5\xfe\xc7@\x00', b'\xa7\xf6\x04@\x00', b'\xa7\xfe\xc4@\x00', ], }, CAR.SUBARU_IMPREZA: { (Ecu.abs, 0x7b0, None): [ b'z\x84\x19\x90\x00', b'z\x94\x08\x90\x00', b'z\x94\x08\x90\x01', b'z\x94\x0c\x90\x00', b'z\x94\x0c\x90\x01', b'z\x94.\x90\x00', b'z\x94?\x90\x00', b'z\x9c\x19\x80\x01', b'\xa2 \x185\x00', b'\xa2 \x193\x00', b'\xa2 \x194\x00', b'\xa2 \x19`\x00', ], (Ecu.eps, 0x746, None): [ b'z\xc0\x00\x00', b'z\xc0\x04\x00', b'z\xc0\x08\x00', b'z\xc0\n\x00', b'z\xc0\x0c\x00', b'\x8a\xc0\x00\x00', b'\x8a\xc0\x10\x00', ], (Ecu.fwdCamera, 0x787, None): [ b'\x00\x00c\xf4\x00\x00\x00\x00', b'\x00\x00c\xf4\x1f@ \x07', b'\x00\x00d)\x00\x00\x00\x00', b'\x00\x00d)\x1f@ \x07', b'\x00\x00dd\x00\x00\x00\x00', b'\x00\x00dd\x1f@ \x0e', b'\x00\x00d\xb5\x1f@ \x0e', b'\x00\x00d\xdc\x00\x00\x00\x00', b'\x00\x00d\xdc\x1f@ \x0e', b'\x00\x00e\x02\x1f@ \x14', b'\x00\x00e\x1c\x00\x00\x00\x00', b'\x00\x00e\x1c\x1f@ \x14', b'\x00\x00e+\x00\x00\x00\x00', b'\x00\x00e+\x1f@ \x14', ], (Ecu.engine, 0x7e0, None): [ b'\xaa\x00Bu\x07', b'\xaa\x01bt\x07', b'\xaa!`u\x07', b'\xaa!au\x07', b'\xaa!av\x07', b'\xaa!aw\x07', b'\xaa!dq\x07', b'\xaa!ds\x07', b'\xaa!dt\x07', b'\xaaafs\x07', b'\xbe!as\x07', b'\xbe!at\x07', b'\xbeacr\x07', b'\xc5!`r\x07', b'\xc5!`s\x07', b'\xc5!ap\x07', b'\xc5!ar\x07', b'\xc5!as\x07', b'\xc5!dr\x07', b'\xc5!ds\x07', ], (Ecu.transmission, 0x7e1, None): [ b'\xe3\xd0\x081\x00', b'\xe3\xd5\x161\x00', b'\xe3\xe5F1\x00', b'\xe3\xf5\x06\x00\x00', b'\xe3\xf5\x07\x00\x00', b'\xe3\xf5C\x00\x00', b'\xe3\xf5F\x00\x00', b'\xe3\xf5G\x00\x00', b'\xe4\xe5\x021\x00', b'\xe4\xe5\x061\x00', b'\xe4\xf5\x02\x00\x00', b'\xe4\xf5\x07\x00\x00', b'\xe5\xf5\x04\x00\x00', b'\xe5\xf5$\x00\x00', b'\xe5\xf5B\x00\x00', ], }, CAR.SUBARU_IMPREZA_2020: { (Ecu.abs, 0x7b0, None): [ b'\xa2 \x193\x00', b'\xa2 \x194\x00', b'\xa2 `\x00', b'\xa2 !3\x00', b'\xa2 !6\x00', b'\xa2 !`\x00', b'\xa2 !i\x00', ], (Ecu.eps, 0x746, None): [ b'\n\xc0\x04\x00', b'\n\xc0\x04\x01', b'\x9a\xc0\x00\x00', b'\x9a\xc0\x04\x00', b'\x9a\xc0\n\x01', ], (Ecu.fwdCamera, 0x787, None): [ b'\x00\x00eb\x1f@ "', b'\x00\x00eq\x00\x00\x00\x00', b'\x00\x00eq\x1f@ "', b'\x00\x00e\x8f\x00\x00\x00\x00', b'\x00\x00e\x8f\x1f@ )', b'\x00\x00e\x92\x00\x00\x00\x00', b'\x00\x00e\xa4\x00\x00\x00\x00', b'\x00\x00e\xa4\x1f@ (', ], (Ecu.engine, 0x7e0, None): [ b'\xca!`0\x07', b'\xca!`p\x07', b'\xca!ap\x07', b'\xca!f@\x07', b'\xca!fp\x07', b'\xcaacp\x07', b'\xcc!`p\x07', b'\xcc!fp\x07', b'\xcc"f0\x07', b'\xe6!`@\x07', b'\xe6!fp\x07', b'\xe6"f0\x07', b'\xe6"fp\x07', b'\xf3"f@\x07', b'\xf3"fp\x07', b'\xf3"fr\x07', ], (Ecu.transmission, 0x7e1, None): [ b'\xe6\x15\x042\x00', b'\xe6\xf5\x04\x00\x00', b'\xe6\xf5$\x00\x00', b'\xe6\xf5D0\x00', b'\xe7\xf5\x04\x00\x00', b'\xe7\xf5D0\x00', b'\xe7\xf6B0\x00', b'\xe9\xf5"\x00\x00', b'\xe9\xf5B0\x00', b'\xe9\xf6B0\x00', b'\xe9\xf6F0\x00', ], }, CAR.SUBARU_CROSSTREK_HYBRID: { (Ecu.abs, 0x7b0, None): [ b'\xa2 \x19e\x01', b'\xa2 !e\x01', ], (Ecu.eps, 0x746, None): [ b'\n\xc2\x01\x00', b'\x9a\xc2\x01\x00', ], (Ecu.fwdCamera, 0x787, None): [ b'\x00\x00el\x1f@ #', ], (Ecu.engine, 0x7e0, None): [ b'\xd7!`@\x07', b'\xd7!`p\x07', b'\xf4!`0\x07', ], }, CAR.SUBARU_FORESTER: { (Ecu.abs, 0x7b0, None): [ b'\xa3 \x18\x14\x00', b'\xa3 \x18&\x00', b'\xa3 \x19\x14\x00', b'\xa3 \x19&\x00', b'\xa3 \x19h\x00', b'\xa3 \x14\x00', b'\xa3 \x14\x01', ], (Ecu.eps, 0x746, None): [ b'\x8d\xc0\x00\x00', b'\x8d\xc0\x04\x00', ], (Ecu.fwdCamera, 0x787, None): [ b'\x00\x00e!\x00\x00\x00\x00', b'\x00\x00e!\x1f@ \x11', b'\x00\x00e^\x00\x00\x00\x00', b'\x00\x00e^\x1f@ !', b'\x00\x00e`\x00\x00\x00\x00', b'\x00\x00e`\x1f@ ', b'\x00\x00e\x97\x00\x00\x00\x00', b'\x00\x00e\x97\x1f@ 0', ], (Ecu.engine, 0x7e0, None): [ b'\xb6"`A\x07', b'\xb6\xa2`A\x07', b'\xcb"`@\x07', b'\xcb"`p\x07', b'\xcf"`0\x07', b'\xcf"`p\x07', ], (Ecu.transmission, 0x7e1, None): [ b'\x1a\xe6B1\x00', b'\x1a\xe6F1\x00', b'\x1a\xf6B0\x00', b'\x1a\xf6B`\x00', b'\x1a\xf6F`\x00', b'\x1a\xf6b0\x00', b'\x1a\xf6b`\x00', b'\x1a\xf6f`\x00', ], }, CAR.SUBARU_FORESTER_HYBRID: { (Ecu.abs, 0x7b0, None): [ b'\xa3 \x19T\x00', ], (Ecu.eps, 0x746, None): [ b'\x8d\xc2\x00\x00', ], (Ecu.fwdCamera, 0x787, None): [ b'\x00\x00eY\x1f@ !', ], (Ecu.engine, 0x7e0, None): [ b'\xd2\xa1`r\x07', ], (Ecu.transmission, 0x7e1, None): [ b'\x1b\xa7@a\x00', ], }, CAR.SUBARU_FORESTER_PREGLOBAL: { (Ecu.abs, 0x7b0, None): [ b'm\x97\x14@', b'}\x97\x14@', ], (Ecu.eps, 0x746, None): [ b'm\xc0\x10\x00', b'}\xc0\x10\x00', ], (Ecu.fwdCamera, 0x787, None): [ b'\x00\x00c\xe9\x00\x00\x00\x00', b'\x00\x00c\xe9\x1f@ \x03', b'\x00\x00d5\x1f@ \t', b'\x00\x00d\xd3\x1f@ \t', ], (Ecu.engine, 0x7e0, None): [ b'\xa7"@p\x07', b'\xa7)\xa0q\x07', b'\xba"@@\x07', b'\xba"@p\x07', ], (Ecu.transmission, 0x7e1, None): [ b'\x1a\xf6F`\x00', b'\xda\xf2`\x80\x00', b'\xda\xfd\xe0\x80\x00', b'\xdc\xf2@`\x00', b'\xdc\xf2``\x00', b'\xdc\xf2`\x80\x00', b'\xdc\xf2`\x81\x00', ], }, CAR.SUBARU_LEGACY_PREGLOBAL: { (Ecu.abs, 0x7b0, None): [ b'[\x97D\x00', b'[\xba\xc4\x03', b'k\x97D\x00', b'k\x9aD\x00', b'{\x97D\x00', ], (Ecu.eps, 0x746, None): [ b'K\xb0\x00\x01', b'[\xb0\x00\x01', b'k\xb0\x00\x00', ], (Ecu.fwdCamera, 0x787, None): [ b'\x00\x00c\x94\x1f@\x10\x08', b'\x00\x00c\xb7\x1f@\x10\x16', b'\x00\x00c\xec\x1f@ \x04', ], (Ecu.engine, 0x7e0, None): [ b'\xa0"@q\x07', b'\xa0+@p\x07', b'\xab*@r\x07', b'\xab+@p\x07', b'\xb4"@0\x07', ], (Ecu.transmission, 0x7e1, None): [ b'\xbd\xf2\x00`\x00', b'\xbe\xf2\x00p\x00', b'\xbe\xfb\xc0p\x00', b'\xbf\xf2\x00\x80\x00', b'\xbf\xfb\xc0\x80\x00', ], }, CAR.SUBARU_OUTBACK_PREGLOBAL: { (Ecu.abs, 0x7b0, None): [ b'[\xba\xac\x03', b'[\xf7\xac\x00', b'[\xf7\xac\x03', b'[\xf7\xbc\x03', b'k\x97\xac\x00', b'k\x9a\xac\x00', b'{\x97\xac\x00', b'{\x9a\xac\x00', ], (Ecu.eps, 0x746, None): [ b'K\xb0\x00\x00', b'K\xb0\x00\x02', b'[\xb0\x00\x00', b'k\xb0\x00\x00', b'{\xb0\x00\x01', ], (Ecu.fwdCamera, 0x787, None): [ b'\x00\x00c\x90\x1f@\x10\x0e', b'\x00\x00c\x94\x00\x00\x00\x00', b'\x00\x00c\x94\x1f@\x10\x08', b'\x00\x00c\xb7\x1f@\x10\x16', b'\x00\x00c\xd1\x1f@\x10\x17', b'\x00\x00c\xec\x1f@ \x04', ], (Ecu.engine, 0x7e0, None): [ b'\xa0"@\x80\x07', b'\xa0*@q\x07', b'\xa0*@u\x07', b'\xa0+@@\x07', b'\xa0bAq\x07', b'\xab"@@\x07', b'\xab"@s\x07', b'\xab*@@\x07', b'\xab+@@\x07', b'\xb4"@0\x07', b'\xb4"@p\x07', b'\xb4"@r\x07', b'\xb4+@p\x07', ], (Ecu.transmission, 0x7e1, None): [ b'\xbd\xf2@`\x00', b'\xbd\xf2@\x81\x00', b'\xbd\xfb\xe0\x80\x00', b'\xbe\xf2@p\x00', b'\xbe\xf2@\x80\x00', b'\xbe\xfb\xe0p\x00', b'\xbf\xe2@\x80\x00', b'\xbf\xf2@\x80\x00', b'\xbf\xfb\xe0b\x00', ], }, CAR.SUBARU_OUTBACK_PREGLOBAL_2018: { (Ecu.abs, 0x7b0, None): [ b'\x8b\x97\xac\x00', b'\x8b\x97\xbc\x00', b'\x8b\x99\xac\x00', b'\x8b\x9a\xac\x00', b'\x9b\x97\xac\x00', b'\x9b\x97\xbe\x10', b'\x9b\x9a\xac\x00', ], (Ecu.eps, 0x746, None): [ b'{\xb0\x00\x00', b'{\xb0\x00\x01', ], (Ecu.fwdCamera, 0x787, None): [ b'\x00\x00df\x1f@ \n', b'\x00\x00d\x95\x00\x00\x00\x00', b'\x00\x00d\x95\x1f@ \x0f', b'\x00\x00d\xfe\x00\x00\x00\x00', b'\x00\x00d\xfe\x1f@ \x15', b'\x00\x00e\x19\x1f@ \x15', ], (Ecu.engine, 0x7e0, None): [ b'\xb5"@P\x07', b'\xb5"@p\x07', b'\xb5+@@\x07', b'\xb5b@1\x07', b'\xb5q\xe0@\x07', b'\xc4"@0\x07', b'\xc4+@0\x07', b'\xc4b@p\x07', ], (Ecu.transmission, 0x7e1, None): [ b'\xbb\xf2@`\x00', b'\xbb\xfb\xe0`\x00', b'\xbc\xaf\xe0`\x00', b'\xbc\xe2@\x80\x00', b'\xbc\xf2@\x80\x00', b'\xbc\xf2@\x81\x00', b'\xbc\xfb\xe0`\x00', b'\xbc\xfb\xe0\x80\x00', ], }, CAR.SUBARU_OUTBACK: { (Ecu.abs, 0x7b0, None): [ b'\xa1 \x06\x00', b'\xa1 \x06\x01', b'\xa1 \x06\x02', b'\xa1 \x07\x00', b'\xa1 \x07\x02', b'\xa1 \x07\x03', b'\xa1 \x08\x00', b'\xa1 \x08\x01', b'\xa1 \x08\x02', b'\xa1 "\t\x00', b'\xa1 "\t\x01', ], (Ecu.eps, 0x746, None): [ b'\x1b\xc0\x10\x00', b'\x9b\xc0\x10\x00', b'\x9b\xc0\x10\x02', b'\x9b\xc0 \x00', ], (Ecu.fwdCamera, 0x787, None): [ b'\x00\x00eJ\x00\x00\x00\x00\x00\x00', b'\x00\x00eJ\x00\x1f@ \x19\x00', b'\x00\x00e\x80\x00\x1f@ \x19\x00', b'\x00\x00e\x9a\x00\x00\x00\x00\x00\x00', b'\x00\x00e\x9a\x00\x1f@ 1\x00', ], (Ecu.engine, 0x7e0, None): [ b'\xbc"`@\x07', b'\xbc"`q\x07', b'\xbc,\xa0q\x07', b'\xbc,\xa0u\x07', b'\xde"`0\x07', b'\xde,\xa0@\x07', b'\xe2"`0\x07', b'\xe2"`p\x07', b'\xe2"`q\x07', b'\xe3,\xa0@\x07', ], (Ecu.transmission, 0x7e1, None): [ b'\xa5\xf6D@\x00', b'\xa5\xfe\xf6@\x00', b'\xa5\xfe\xf7@\x00', b'\xa5\xfe\xf8@\x00', b'\xa7\x8e\xf40\x00', b'\xa7\xf6D@\x00', b'\xa7\xfe\xf4@\x00', ], }, CAR.SUBARU_FORESTER_2022: { (Ecu.abs, 0x7b0, None): [ b'\xa3 !v\x00', b'\xa3 !x\x00', b'\xa3 "v\x00', b'\xa3 "x\x00', ], (Ecu.eps, 0x746, None): [ b'-\xc0\x040', b'-\xc0%0', b'=\xc0%\x02', b'=\xc04\x02', ], (Ecu.fwdCamera, 0x787, None): [ b'\x04!\x01\x1eD\x07!\x00\x04,', b'\x04!\x08\x01.\x07!\x08\x022', b'\r!\x08\x017\n!\x08\x003', ], (Ecu.engine, 0x7e0, None): [ b'\xd5"`0\x07', b'\xd5"a0\x07', b'\xf1"`q\x07', b'\xf1"aq\x07', b'\xfa"ap\x07', ], (Ecu.transmission, 0x7e1, None): [ b'\x1d\x86B0\x00', b'\x1d\xf6B0\x00', b'\x1e\x86B0\x00', b'\x1e\x86F0\x00', b'\x1e\xf6D0\x00', ], }, CAR.SUBARU_OUTBACK_2023: { (Ecu.abs, 0x7b0, None): [ b'\xa1 #\x14\x00', b'\xa1 #\x17\x00', ], (Ecu.eps, 0x746, None): [ b'+\xc0\x10\x11\x00', b'+\xc0\x12\x11\x00', ], (Ecu.fwdCamera, 0x787, None): [ b'\t!\x08\x046\x05!\x08\x01/', ], (Ecu.engine, 0x7a2, None): [ b'\xed,\xa0q\x07', b'\xed,\xa2q\x07', ], (Ecu.transmission, 0x7a3, None): [ b'\xa8\x8e\xf41\x00', b'\xa8\xfe\xf41\x00', ], }, }
2301_81045437/openpilot
selfdrive/car/subaru/fingerprints.py
Python
mit
13,719
from cereal import car from panda import Panda from openpilot.selfdrive.car import get_safety_config from openpilot.selfdrive.car.disable_ecu import disable_ecu from openpilot.selfdrive.car.interfaces import CarInterfaceBase from openpilot.selfdrive.car.subaru.values import CAR, GLOBAL_ES_ADDR, SubaruFlags class CarInterface(CarInterfaceBase): @staticmethod def _get_params(ret, candidate: CAR, fingerprint, car_fw, experimental_long, docs): ret.carName = "subaru" ret.radarUnavailable = True # for HYBRID CARS to be upstreamed, we need: # - replacement for ES_Distance so we can cancel the cruise control # - to find the Cruise_Activated bit from the car # - proper panda safety setup (use the correct cruise_activated bit, throttle from Throttle_Hybrid, etc) ret.dashcamOnly = bool(ret.flags & (SubaruFlags.PREGLOBAL | SubaruFlags.LKAS_ANGLE | SubaruFlags.HYBRID)) ret.autoResumeSng = False # Detect infotainment message sent from the camera if not (ret.flags & SubaruFlags.PREGLOBAL) and 0x323 in fingerprint[2]: ret.flags |= SubaruFlags.SEND_INFOTAINMENT.value if ret.flags & SubaruFlags.PREGLOBAL: ret.enableBsm = 0x25c in fingerprint[0] ret.safetyConfigs = [get_safety_config(car.CarParams.SafetyModel.subaruPreglobal)] else: ret.enableBsm = 0x228 in fingerprint[0] ret.safetyConfigs = [get_safety_config(car.CarParams.SafetyModel.subaru)] if ret.flags & SubaruFlags.GLOBAL_GEN2: ret.safetyConfigs[0].safetyParam |= Panda.FLAG_SUBARU_GEN2 ret.steerLimitTimer = 0.4 ret.steerActuatorDelay = 0.1 if ret.flags & SubaruFlags.LKAS_ANGLE: ret.steerControlType = car.CarParams.SteerControlType.angle else: CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning) if candidate in (CAR.SUBARU_ASCENT, CAR.SUBARU_ASCENT_2023): ret.steerActuatorDelay = 0.3 # end-to-end angle controller ret.lateralTuning.init('pid') ret.lateralTuning.pid.kf = 0.00003 ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 20.], [0., 20.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.0025, 0.1], [0.00025, 0.01]] elif candidate == CAR.SUBARU_IMPREZA: ret.steerActuatorDelay = 0.4 # end-to-end angle controller ret.lateralTuning.init('pid') ret.lateralTuning.pid.kf = 0.00005 ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 20.], [0., 20.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2, 0.3], [0.02, 0.03]] elif candidate == CAR.SUBARU_IMPREZA_2020: ret.lateralTuning.init('pid') ret.lateralTuning.pid.kf = 0.00005 ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 14., 23.], [0., 14., 23.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.045, 0.042, 0.20], [0.04, 0.035, 0.045]] elif candidate == CAR.SUBARU_CROSSTREK_HYBRID: ret.steerActuatorDelay = 0.1 elif candidate in (CAR.SUBARU_FORESTER, CAR.SUBARU_FORESTER_2022, CAR.SUBARU_FORESTER_HYBRID): ret.lateralTuning.init('pid') ret.lateralTuning.pid.kf = 0.000038 ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 14., 23.], [0., 14., 23.]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.01, 0.065, 0.2], [0.001, 0.015, 0.025]] elif candidate in (CAR.SUBARU_OUTBACK, CAR.SUBARU_LEGACY, CAR.SUBARU_OUTBACK_2023): ret.steerActuatorDelay = 0.1 elif candidate in (CAR.SUBARU_FORESTER_PREGLOBAL, CAR.SUBARU_OUTBACK_PREGLOBAL_2018): ret.safetyConfigs[0].safetyParam = Panda.FLAG_SUBARU_PREGLOBAL_REVERSED_DRIVER_TORQUE # Outback 2018-2019 and Forester have reversed driver torque signal elif candidate == CAR.SUBARU_LEGACY_PREGLOBAL: ret.steerActuatorDelay = 0.15 elif candidate == CAR.SUBARU_OUTBACK_PREGLOBAL: pass else: raise ValueError(f"unknown car: {candidate}") ret.experimentalLongitudinalAvailable = not (ret.flags & (SubaruFlags.GLOBAL_GEN2 | SubaruFlags.PREGLOBAL | SubaruFlags.LKAS_ANGLE | SubaruFlags.HYBRID)) ret.openpilotLongitudinalControl = experimental_long and ret.experimentalLongitudinalAvailable if ret.flags & SubaruFlags.GLOBAL_GEN2 and ret.openpilotLongitudinalControl: ret.flags |= SubaruFlags.DISABLE_EYESIGHT.value if ret.openpilotLongitudinalControl: ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [0.8, 1.0, 1.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.54, 0.36] ret.stoppingControl = True ret.safetyConfigs[0].safetyParam |= Panda.FLAG_SUBARU_LONG return ret # returns a car.CarState def _update(self, c): ret = self.CS.update(self.cp, self.cp_cam, self.cp_body) ret.events = self.create_common_events(ret).to_msg() return ret @staticmethod def init(CP, logcan, sendcan): if CP.flags & SubaruFlags.DISABLE_EYESIGHT: disable_ecu(logcan, sendcan, bus=2, addr=GLOBAL_ES_ADDR, com_cont_req=b'\x28\x03\x01')
2301_81045437/openpilot
selfdrive/car/subaru/interface.py
Python
mit
5,126
from openpilot.selfdrive.car.interfaces import RadarInterfaceBase class RadarInterface(RadarInterfaceBase): pass
2301_81045437/openpilot
selfdrive/car/subaru/radar_interface.py
Python
mit
116
from cereal import car from openpilot.selfdrive.car.subaru.values import CanBus VisualAlert = car.CarControl.HUDControl.VisualAlert def create_steering_control(packer, apply_steer, steer_req): values = { "LKAS_Output": apply_steer, "LKAS_Request": steer_req, "SET_1": 1 } return packer.make_can_msg("ES_LKAS", 0, values) def create_steering_control_angle(packer, apply_steer, steer_req): values = { "LKAS_Output": apply_steer, "LKAS_Request": steer_req, "SET_3": 3 } return packer.make_can_msg("ES_LKAS_ANGLE", 0, values) def create_steering_status(packer): return packer.make_can_msg("ES_LKAS_State", 0, {}) def create_es_distance(packer, frame, es_distance_msg, bus, pcm_cancel_cmd, long_enabled = False, brake_cmd = False, cruise_throttle = 0): values = {s: es_distance_msg[s] for s in [ "CHECKSUM", "Signal1", "Cruise_Fault", "Cruise_Throttle", "Signal2", "Car_Follow", "Low_Speed_Follow", "Cruise_Soft_Disable", "Signal7", "Cruise_Brake_Active", "Distance_Swap", "Cruise_EPB", "Signal4", "Close_Distance", "Signal5", "Cruise_Cancel", "Cruise_Set", "Cruise_Resume", "Signal6", ]} values["COUNTER"] = frame % 0x10 if long_enabled: values["Cruise_Throttle"] = cruise_throttle # Do not disable openpilot on Eyesight Soft Disable, if openpilot is controlling long values["Cruise_Soft_Disable"] = 0 values["Cruise_Fault"] = 0 values["Cruise_Brake_Active"] = brake_cmd if pcm_cancel_cmd: values["Cruise_Cancel"] = 1 values["Cruise_Throttle"] = 1818 # inactive throttle return packer.make_can_msg("ES_Distance", bus, values) def create_es_lkas_state(packer, frame, es_lkas_state_msg, enabled, visual_alert, left_line, right_line, left_lane_depart, right_lane_depart): values = {s: es_lkas_state_msg[s] for s in [ "CHECKSUM", "LKAS_Alert_Msg", "Signal1", "LKAS_ACTIVE", "LKAS_Dash_State", "Signal2", "Backward_Speed_Limit_Menu", "LKAS_Left_Line_Enable", "LKAS_Left_Line_Light_Blink", "LKAS_Right_Line_Enable", "LKAS_Right_Line_Light_Blink", "LKAS_Left_Line_Visible", "LKAS_Right_Line_Visible", "LKAS_Alert", "Signal3", ]} values["COUNTER"] = frame % 0x10 # Filter the stock LKAS "Keep hands on wheel" alert if values["LKAS_Alert_Msg"] == 1: values["LKAS_Alert_Msg"] = 0 # Filter the stock LKAS sending an audible alert when it turns off LKAS if values["LKAS_Alert"] == 27: values["LKAS_Alert"] = 0 # Filter the stock LKAS sending an audible alert when "Keep hands on wheel" alert is active (2020+ models) if values["LKAS_Alert"] == 28 and values["LKAS_Alert_Msg"] == 7: values["LKAS_Alert"] = 0 # Filter the stock LKAS sending an audible alert when "Keep hands on wheel OFF" alert is active (2020+ models) if values["LKAS_Alert"] == 30: values["LKAS_Alert"] = 0 # Filter the stock LKAS sending "Keep hands on wheel OFF" alert (2020+ models) if values["LKAS_Alert_Msg"] == 7: values["LKAS_Alert_Msg"] = 0 # Show Keep hands on wheel alert for openpilot steerRequired alert if visual_alert == VisualAlert.steerRequired: values["LKAS_Alert_Msg"] = 1 # Ensure we don't overwrite potentially more important alerts from stock (e.g. FCW) if visual_alert == VisualAlert.ldw and values["LKAS_Alert"] == 0: if left_lane_depart: values["LKAS_Alert"] = 12 # Left lane departure dash alert elif right_lane_depart: values["LKAS_Alert"] = 11 # Right lane departure dash alert if enabled: values["LKAS_ACTIVE"] = 1 # Show LKAS lane lines values["LKAS_Dash_State"] = 2 # Green enabled indicator else: values["LKAS_Dash_State"] = 0 # LKAS Not enabled values["LKAS_Left_Line_Visible"] = int(left_line) values["LKAS_Right_Line_Visible"] = int(right_line) return packer.make_can_msg("ES_LKAS_State", CanBus.main, values) def create_es_dashstatus(packer, frame, dashstatus_msg, enabled, long_enabled, long_active, lead_visible): values = {s: dashstatus_msg[s] for s in [ "CHECKSUM", "PCB_Off", "LDW_Off", "Signal1", "Cruise_State_Msg", "LKAS_State_Msg", "Signal2", "Cruise_Soft_Disable", "Cruise_Status_Msg", "Signal3", "Cruise_Distance", "Signal4", "Conventional_Cruise", "Signal5", "Cruise_Disengaged", "Cruise_Activated", "Signal6", "Cruise_Set_Speed", "Cruise_Fault", "Cruise_On", "Display_Own_Car", "Brake_Lights", "Car_Follow", "Signal7", "Far_Distance", "Cruise_State", ]} values["COUNTER"] = frame % 0x10 if long_enabled: values["Cruise_State"] = 0 values["Cruise_Activated"] = enabled values["Cruise_Disengaged"] = 0 values["Car_Follow"] = int(lead_visible) values["PCB_Off"] = 1 # AEB is not presevered, so show the PCB_Off on dash values["LDW_Off"] = 0 values["Cruise_Fault"] = 0 # Filter stock LKAS disabled and Keep hands on steering wheel OFF alerts if values["LKAS_State_Msg"] in (2, 3): values["LKAS_State_Msg"] = 0 return packer.make_can_msg("ES_DashStatus", CanBus.main, values) def create_es_brake(packer, frame, es_brake_msg, long_enabled, long_active, brake_value): values = {s: es_brake_msg[s] for s in [ "CHECKSUM", "Signal1", "Brake_Pressure", "AEB_Status", "Cruise_Brake_Lights", "Cruise_Brake_Fault", "Cruise_Brake_Active", "Cruise_Activated", "Signal3", ]} values["COUNTER"] = frame % 0x10 if long_enabled: values["Cruise_Brake_Fault"] = 0 values["Cruise_Activated"] = long_active values["Brake_Pressure"] = brake_value values["Cruise_Brake_Active"] = brake_value > 0 values["Cruise_Brake_Lights"] = brake_value >= 70 return packer.make_can_msg("ES_Brake", CanBus.main, values) def create_es_status(packer, frame, es_status_msg, long_enabled, long_active, cruise_rpm): values = {s: es_status_msg[s] for s in [ "CHECKSUM", "Signal1", "Cruise_Fault", "Cruise_RPM", "Cruise_Activated", "Brake_Lights", "Cruise_Hold", "Signal3", ]} values["COUNTER"] = frame % 0x10 if long_enabled: values["Cruise_RPM"] = cruise_rpm values["Cruise_Fault"] = 0 values["Cruise_Activated"] = long_active return packer.make_can_msg("ES_Status", CanBus.main, values) def create_es_infotainment(packer, frame, es_infotainment_msg, visual_alert): # Filter stock LKAS disabled and Keep hands on steering wheel OFF alerts values = {s: es_infotainment_msg[s] for s in [ "CHECKSUM", "LKAS_State_Infotainment", "LKAS_Blue_Lines", "Signal1", "Signal2", ]} values["COUNTER"] = frame % 0x10 if values["LKAS_State_Infotainment"] in (3, 4): values["LKAS_State_Infotainment"] = 0 # Show Keep hands on wheel alert for openpilot steerRequired alert if visual_alert == VisualAlert.steerRequired: values["LKAS_State_Infotainment"] = 3 # Show Obstacle Detected for fcw if visual_alert == VisualAlert.fcw: values["LKAS_State_Infotainment"] = 2 return packer.make_can_msg("ES_Infotainment", CanBus.main, values) def create_es_highbeamassist(packer): values = { "HBA_Available": False, } return packer.make_can_msg("ES_HighBeamAssist", CanBus.main, values) def create_es_static_1(packer): values = { "SET_3": 3, } return packer.make_can_msg("ES_STATIC_1", CanBus.main, values) def create_es_static_2(packer): values = { "SET_3": 3, } return packer.make_can_msg("ES_STATIC_2", CanBus.main, values) # *** Subaru Pre-global *** def subaru_preglobal_checksum(packer, values, addr, checksum_byte=7): dat = packer.make_can_msg(addr, 0, values)[2] return (sum(dat[:checksum_byte]) + sum(dat[checksum_byte+1:])) % 256 def create_preglobal_steering_control(packer, frame, apply_steer, steer_req): values = { "COUNTER": frame % 0x08, "LKAS_Command": apply_steer, "LKAS_Active": steer_req, } values["Checksum"] = subaru_preglobal_checksum(packer, values, "ES_LKAS") return packer.make_can_msg("ES_LKAS", CanBus.main, values) def create_preglobal_es_distance(packer, cruise_button, es_distance_msg): values = {s: es_distance_msg[s] for s in [ "Cruise_Throttle", "Signal1", "Car_Follow", "Signal2", "Cruise_Brake_Active", "Distance_Swap", "Standstill", "Signal3", "Close_Distance", "Signal4", "Standstill_2", "Cruise_Fault", "Signal5", "COUNTER", "Signal6", "Cruise_Button", "Signal7", ]} values["Cruise_Button"] = cruise_button values["Checksum"] = subaru_preglobal_checksum(packer, values, "ES_Distance") return packer.make_can_msg("ES_Distance", CanBus.main, values)
2301_81045437/openpilot
selfdrive/car/subaru/subarucan.py
Python
mit
8,753
from dataclasses import dataclass, field from enum import Enum, IntFlag from cereal import car from panda.python import uds from openpilot.selfdrive.car import CarSpecs, DbcDict, PlatformConfig, Platforms, dbc_dict from openpilot.selfdrive.car.docs_definitions import CarFootnote, CarHarness, CarDocs, CarParts, Tool, Column from openpilot.selfdrive.car.fw_query_definitions import FwQueryConfig, Request, StdQueries, p16 Ecu = car.CarParams.Ecu class CarControllerParams: def __init__(self, CP): self.STEER_STEP = 2 # how often we update the steer cmd self.STEER_DELTA_UP = 50 # torque increase per refresh, 0.8s to max self.STEER_DELTA_DOWN = 70 # torque decrease per refresh self.STEER_DRIVER_ALLOWANCE = 60 # allowed driver torque before start limiting self.STEER_DRIVER_MULTIPLIER = 50 # weight driver torque heavily self.STEER_DRIVER_FACTOR = 1 # from dbc if CP.flags & SubaruFlags.GLOBAL_GEN2: self.STEER_MAX = 1000 self.STEER_DELTA_UP = 40 self.STEER_DELTA_DOWN = 40 elif CP.carFingerprint == CAR.SUBARU_IMPREZA_2020: self.STEER_MAX = 1439 else: self.STEER_MAX = 2047 THROTTLE_MIN = 808 THROTTLE_MAX = 3400 THROTTLE_INACTIVE = 1818 # corresponds to zero acceleration THROTTLE_ENGINE_BRAKE = 808 # while braking, eyesight sets throttle to this, probably for engine braking BRAKE_MIN = 0 BRAKE_MAX = 600 # about -3.5m/s2 from testing RPM_MIN = 0 RPM_MAX = 3600 RPM_INACTIVE = 600 # a good base rpm for zero acceleration THROTTLE_LOOKUP_BP = [0, 2] THROTTLE_LOOKUP_V = [THROTTLE_INACTIVE, THROTTLE_MAX] RPM_LOOKUP_BP = [0, 2] RPM_LOOKUP_V = [RPM_INACTIVE, RPM_MAX] BRAKE_LOOKUP_BP = [-3.5, 0] BRAKE_LOOKUP_V = [BRAKE_MAX, BRAKE_MIN] class SubaruFlags(IntFlag): # Detected flags SEND_INFOTAINMENT = 1 DISABLE_EYESIGHT = 2 # Static flags GLOBAL_GEN2 = 4 # Cars that temporarily fault when steering angle rate is greater than some threshold. # Appears to be all torque-based cars produced around 2019 - present STEER_RATE_LIMITED = 8 PREGLOBAL = 16 HYBRID = 32 LKAS_ANGLE = 64 GLOBAL_ES_ADDR = 0x787 GEN2_ES_BUTTONS_DID = b'\x11\x30' class CanBus: main = 0 alt = 1 camera = 2 class Footnote(Enum): GLOBAL = CarFootnote( "In the non-US market, openpilot requires the car to come equipped with EyeSight with Lane Keep Assistance.", Column.PACKAGE) EXP_LONG = CarFootnote( "Enabling longitudinal control (alpha) will disable all EyeSight functionality, including AEB, LDW, and RAB.", Column.LONGITUDINAL) @dataclass class SubaruCarDocs(CarDocs): package: str = "EyeSight Driver Assistance" car_parts: CarParts = field(default_factory=CarParts.common([CarHarness.subaru_a])) footnotes: list[Enum] = field(default_factory=lambda: [Footnote.GLOBAL]) def init_make(self, CP: car.CarParams): self.car_parts.parts.extend([Tool.socket_8mm_deep, Tool.pry_tool]) if CP.experimentalLongitudinalAvailable: self.footnotes.append(Footnote.EXP_LONG) @dataclass class SubaruPlatformConfig(PlatformConfig): dbc_dict: DbcDict = field(default_factory=lambda: dbc_dict('subaru_global_2017_generated', None)) def init(self): if self.flags & SubaruFlags.HYBRID: self.dbc_dict = dbc_dict('subaru_global_2020_hybrid_generated', None) @dataclass class SubaruGen2PlatformConfig(SubaruPlatformConfig): def init(self): super().init() self.flags |= SubaruFlags.GLOBAL_GEN2 if not (self.flags & SubaruFlags.LKAS_ANGLE): self.flags |= SubaruFlags.STEER_RATE_LIMITED class CAR(Platforms): # Global platform SUBARU_ASCENT = SubaruPlatformConfig( [SubaruCarDocs("Subaru Ascent 2019-21", "All")], CarSpecs(mass=2031, wheelbase=2.89, steerRatio=13.5), ) SUBARU_OUTBACK = SubaruGen2PlatformConfig( [SubaruCarDocs("Subaru Outback 2020-22", "All", car_parts=CarParts.common([CarHarness.subaru_b]))], CarSpecs(mass=1568, wheelbase=2.67, steerRatio=17), ) SUBARU_LEGACY = SubaruGen2PlatformConfig( [SubaruCarDocs("Subaru Legacy 2020-22", "All", car_parts=CarParts.common([CarHarness.subaru_b]))], SUBARU_OUTBACK.specs, ) SUBARU_IMPREZA = SubaruPlatformConfig( [ SubaruCarDocs("Subaru Impreza 2017-19"), SubaruCarDocs("Subaru Crosstrek 2018-19", video_link="https://youtu.be/Agww7oE1k-s?t=26"), SubaruCarDocs("Subaru XV 2018-19", video_link="https://youtu.be/Agww7oE1k-s?t=26"), ], CarSpecs(mass=1568, wheelbase=2.67, steerRatio=15), ) SUBARU_IMPREZA_2020 = SubaruPlatformConfig( [ SubaruCarDocs("Subaru Impreza 2020-22"), SubaruCarDocs("Subaru Crosstrek 2020-23"), SubaruCarDocs("Subaru XV 2020-21"), ], CarSpecs(mass=1480, wheelbase=2.67, steerRatio=17), flags=SubaruFlags.STEER_RATE_LIMITED, ) # TODO: is there an XV and Impreza too? SUBARU_CROSSTREK_HYBRID = SubaruPlatformConfig( [SubaruCarDocs("Subaru Crosstrek Hybrid 2020", car_parts=CarParts.common([CarHarness.subaru_b]))], CarSpecs(mass=1668, wheelbase=2.67, steerRatio=17), flags=SubaruFlags.HYBRID, ) SUBARU_FORESTER = SubaruPlatformConfig( [SubaruCarDocs("Subaru Forester 2019-21", "All")], CarSpecs(mass=1568, wheelbase=2.67, steerRatio=17), flags=SubaruFlags.STEER_RATE_LIMITED, ) SUBARU_FORESTER_HYBRID = SubaruPlatformConfig( [SubaruCarDocs("Subaru Forester Hybrid 2020")], SUBARU_FORESTER.specs, flags=SubaruFlags.HYBRID, ) # Pre-global SUBARU_FORESTER_PREGLOBAL = SubaruPlatformConfig( [SubaruCarDocs("Subaru Forester 2017-18")], CarSpecs(mass=1568, wheelbase=2.67, steerRatio=20), dbc_dict('subaru_forester_2017_generated', None), flags=SubaruFlags.PREGLOBAL, ) SUBARU_LEGACY_PREGLOBAL = SubaruPlatformConfig( [SubaruCarDocs("Subaru Legacy 2015-18")], CarSpecs(mass=1568, wheelbase=2.67, steerRatio=12.5), dbc_dict('subaru_outback_2015_generated', None), flags=SubaruFlags.PREGLOBAL, ) SUBARU_OUTBACK_PREGLOBAL = SubaruPlatformConfig( [SubaruCarDocs("Subaru Outback 2015-17")], SUBARU_FORESTER_PREGLOBAL.specs, dbc_dict('subaru_outback_2015_generated', None), flags=SubaruFlags.PREGLOBAL, ) SUBARU_OUTBACK_PREGLOBAL_2018 = SubaruPlatformConfig( [SubaruCarDocs("Subaru Outback 2018-19")], SUBARU_FORESTER_PREGLOBAL.specs, dbc_dict('subaru_outback_2019_generated', None), flags=SubaruFlags.PREGLOBAL, ) # Angle LKAS SUBARU_FORESTER_2022 = SubaruPlatformConfig( [SubaruCarDocs("Subaru Forester 2022-24", "All", car_parts=CarParts.common([CarHarness.subaru_c]))], SUBARU_FORESTER.specs, flags=SubaruFlags.LKAS_ANGLE, ) SUBARU_OUTBACK_2023 = SubaruGen2PlatformConfig( [SubaruCarDocs("Subaru Outback 2023", "All", car_parts=CarParts.common([CarHarness.subaru_d]))], SUBARU_OUTBACK.specs, flags=SubaruFlags.LKAS_ANGLE, ) SUBARU_ASCENT_2023 = SubaruGen2PlatformConfig( [SubaruCarDocs("Subaru Ascent 2023", "All", car_parts=CarParts.common([CarHarness.subaru_d]))], SUBARU_ASCENT.specs, flags=SubaruFlags.LKAS_ANGLE, ) SUBARU_VERSION_REQUEST = bytes([uds.SERVICE_TYPE.READ_DATA_BY_IDENTIFIER]) + \ p16(uds.DATA_IDENTIFIER_TYPE.APPLICATION_DATA_IDENTIFICATION) SUBARU_VERSION_RESPONSE = bytes([uds.SERVICE_TYPE.READ_DATA_BY_IDENTIFIER + 0x40]) + \ p16(uds.DATA_IDENTIFIER_TYPE.APPLICATION_DATA_IDENTIFICATION) # The EyeSight ECU takes 10s to respond to SUBARU_VERSION_REQUEST properly, # log this alternate manufacturer-specific query SUBARU_ALT_VERSION_REQUEST = bytes([uds.SERVICE_TYPE.READ_DATA_BY_IDENTIFIER]) + \ p16(0xf100) SUBARU_ALT_VERSION_RESPONSE = bytes([uds.SERVICE_TYPE.READ_DATA_BY_IDENTIFIER + 0x40]) + \ p16(0xf100) FW_QUERY_CONFIG = FwQueryConfig( requests=[ Request( [StdQueries.TESTER_PRESENT_REQUEST, SUBARU_VERSION_REQUEST], [StdQueries.TESTER_PRESENT_RESPONSE, SUBARU_VERSION_RESPONSE], whitelist_ecus=[Ecu.abs, Ecu.eps, Ecu.fwdCamera, Ecu.engine, Ecu.transmission], logging=True, ), # Non-OBD requests # Some Eyesight modules fail on TESTER_PRESENT_REQUEST # TODO: check if this resolves the fingerprinting issue for the 2023 Ascent and other new Subaru cars Request( [SUBARU_VERSION_REQUEST], [SUBARU_VERSION_RESPONSE], whitelist_ecus=[Ecu.fwdCamera], bus=0, ), Request( [SUBARU_ALT_VERSION_REQUEST], [SUBARU_ALT_VERSION_RESPONSE], whitelist_ecus=[Ecu.fwdCamera], bus=0, logging=True, ), Request( [StdQueries.DEFAULT_DIAGNOSTIC_REQUEST, StdQueries.TESTER_PRESENT_REQUEST, SUBARU_VERSION_REQUEST], [StdQueries.DEFAULT_DIAGNOSTIC_RESPONSE, StdQueries.TESTER_PRESENT_RESPONSE, SUBARU_VERSION_RESPONSE], whitelist_ecus=[Ecu.fwdCamera], bus=0, logging=True, ), Request( [StdQueries.TESTER_PRESENT_REQUEST, SUBARU_VERSION_REQUEST], [StdQueries.TESTER_PRESENT_RESPONSE, SUBARU_VERSION_RESPONSE], whitelist_ecus=[Ecu.abs, Ecu.eps, Ecu.fwdCamera, Ecu.engine, Ecu.transmission], bus=0, ), # GEN2 powertrain bus query Request( [StdQueries.TESTER_PRESENT_REQUEST, SUBARU_VERSION_REQUEST], [StdQueries.TESTER_PRESENT_RESPONSE, SUBARU_VERSION_RESPONSE], whitelist_ecus=[Ecu.abs, Ecu.eps, Ecu.fwdCamera, Ecu.engine, Ecu.transmission], bus=1, obd_multiplexing=False, ), ], # We don't get the EPS from non-OBD queries on GEN2 cars. Note that we still attempt to match when it exists non_essential_ecus={ Ecu.eps: list(CAR.with_flags(SubaruFlags.GLOBAL_GEN2)), } ) DBC = CAR.create_dbc_map()
2301_81045437/openpilot
selfdrive/car/subaru/values.py
Python
mit
9,677
from openpilot.common.numpy_fast import clip from opendbc.can.packer import CANPacker from openpilot.selfdrive.car import apply_std_steer_angle_limits from openpilot.selfdrive.car.interfaces import CarControllerBase from openpilot.selfdrive.car.tesla.teslacan import TeslaCAN from openpilot.selfdrive.car.tesla.values import DBC, CANBUS, CarControllerParams class CarController(CarControllerBase): def __init__(self, dbc_name, CP, VM): self.CP = CP self.frame = 0 self.apply_angle_last = 0 self.packer = CANPacker(dbc_name) self.pt_packer = CANPacker(DBC[CP.carFingerprint]['pt']) self.tesla_can = TeslaCAN(self.packer, self.pt_packer) def update(self, CC, CS, now_nanos): actuators = CC.actuators pcm_cancel_cmd = CC.cruiseControl.cancel can_sends = [] # Temp disable steering on a hands_on_fault, and allow for user override hands_on_fault = CS.steer_warning == "EAC_ERROR_HANDS_ON" and CS.hands_on_level >= 3 lkas_enabled = CC.latActive and not hands_on_fault if self.frame % 2 == 0: if lkas_enabled: # Angular rate limit based on speed apply_angle = apply_std_steer_angle_limits(actuators.steeringAngleDeg, self.apply_angle_last, CS.out.vEgo, CarControllerParams) # To not fault the EPS apply_angle = clip(apply_angle, CS.out.steeringAngleDeg - 20, CS.out.steeringAngleDeg + 20) else: apply_angle = CS.out.steeringAngleDeg self.apply_angle_last = apply_angle can_sends.append(self.tesla_can.create_steering_control(apply_angle, lkas_enabled, (self.frame // 2) % 16)) # Longitudinal control (in sync with stock message, about 40Hz) if self.CP.openpilotLongitudinalControl: target_accel = actuators.accel target_speed = max(CS.out.vEgo + (target_accel * CarControllerParams.ACCEL_TO_SPEED_MULTIPLIER), 0) max_accel = 0 if target_accel < 0 else target_accel min_accel = 0 if target_accel > 0 else target_accel while len(CS.das_control_counters) > 0: can_sends.extend(self.tesla_can.create_longitudinal_commands(CS.acc_state, target_speed, min_accel, max_accel, CS.das_control_counters.popleft())) # Cancel on user steering override, since there is no steering torque blending if hands_on_fault: pcm_cancel_cmd = True if self.frame % 10 == 0 and pcm_cancel_cmd: # Spam every possible counter value, otherwise it might not be accepted for counter in range(16): can_sends.append(self.tesla_can.create_action_request(CS.msg_stw_actn_req, pcm_cancel_cmd, CANBUS.chassis, counter)) can_sends.append(self.tesla_can.create_action_request(CS.msg_stw_actn_req, pcm_cancel_cmd, CANBUS.autopilot_chassis, counter)) # TODO: HUD control new_actuators = actuators.as_builder() new_actuators.steeringAngleDeg = self.apply_angle_last self.frame += 1 return new_actuators, can_sends
2301_81045437/openpilot
selfdrive/car/tesla/carcontroller.py
Python
mit
2,913
import copy from collections import deque from cereal import car from openpilot.common.conversions import Conversions as CV from openpilot.selfdrive.car.tesla.values import CAR, DBC, CANBUS, GEAR_MAP, DOORS, BUTTONS from openpilot.selfdrive.car.interfaces import CarStateBase from opendbc.can.parser import CANParser from opendbc.can.can_define import CANDefine class CarState(CarStateBase): def __init__(self, CP): super().__init__(CP) self.button_states = {button.event_type: False for button in BUTTONS} self.can_define = CANDefine(DBC[CP.carFingerprint]['chassis']) # Needed by carcontroller self.msg_stw_actn_req = None self.hands_on_level = 0 self.steer_warning = None self.acc_state = 0 self.das_control_counters = deque(maxlen=32) def update(self, cp, cp_cam): ret = car.CarState.new_message() # Vehicle speed ret.vEgoRaw = cp.vl["ESP_B"]["ESP_vehicleSpeed"] * CV.KPH_TO_MS ret.vEgo, ret.aEgo = self.update_speed_kf(ret.vEgoRaw) ret.standstill = (ret.vEgo < 0.1) # Gas pedal ret.gas = cp.vl["DI_torque1"]["DI_pedalPos"] / 100.0 ret.gasPressed = (ret.gas > 0) # Brake pedal ret.brake = 0 ret.brakePressed = bool(cp.vl["BrakeMessage"]["driverBrakeStatus"] != 1) # Steering wheel epas_status = cp_cam.vl["EPAS3P_sysStatus"] if self.CP.carFingerprint == CAR.TESLA_MODELS_RAVEN else cp.vl["EPAS_sysStatus"] self.hands_on_level = epas_status["EPAS_handsOnLevel"] self.steer_warning = self.can_define.dv["EPAS_sysStatus"]["EPAS_eacErrorCode"].get(int(epas_status["EPAS_eacErrorCode"]), None) steer_status = self.can_define.dv["EPAS_sysStatus"]["EPAS_eacStatus"].get(int(epas_status["EPAS_eacStatus"]), None) ret.steeringAngleDeg = -epas_status["EPAS_internalSAS"] ret.steeringRateDeg = -cp.vl["STW_ANGLHP_STAT"]["StW_AnglHP_Spd"] # This is from a different angle sensor, and at different rate ret.steeringTorque = -epas_status["EPAS_torsionBarTorque"] ret.steeringPressed = (self.hands_on_level > 0) ret.steerFaultPermanent = steer_status == "EAC_FAULT" ret.steerFaultTemporary = (self.steer_warning not in ("EAC_ERROR_IDLE", "EAC_ERROR_HANDS_ON")) # Cruise state cruise_state = self.can_define.dv["DI_state"]["DI_cruiseState"].get(int(cp.vl["DI_state"]["DI_cruiseState"]), None) speed_units = self.can_define.dv["DI_state"]["DI_speedUnits"].get(int(cp.vl["DI_state"]["DI_speedUnits"]), None) acc_enabled = (cruise_state in ("ENABLED", "STANDSTILL", "OVERRIDE", "PRE_FAULT", "PRE_CANCEL")) ret.cruiseState.enabled = acc_enabled if speed_units == "KPH": ret.cruiseState.speed = cp.vl["DI_state"]["DI_digitalSpeed"] * CV.KPH_TO_MS elif speed_units == "MPH": ret.cruiseState.speed = cp.vl["DI_state"]["DI_digitalSpeed"] * CV.MPH_TO_MS ret.cruiseState.available = ((cruise_state == "STANDBY") or ret.cruiseState.enabled) ret.cruiseState.standstill = False # This needs to be false, since we can resume from stop without sending anything special # Gear ret.gearShifter = GEAR_MAP[self.can_define.dv["DI_torque2"]["DI_gear"].get(int(cp.vl["DI_torque2"]["DI_gear"]), "DI_GEAR_INVALID")] # Buttons buttonEvents = [] for button in BUTTONS: state = (cp.vl[button.can_addr][button.can_msg] in button.values) if self.button_states[button.event_type] != state: event = car.CarState.ButtonEvent.new_message() event.type = button.event_type event.pressed = state buttonEvents.append(event) self.button_states[button.event_type] = state ret.buttonEvents = buttonEvents # Doors ret.doorOpen = any((self.can_define.dv["GTW_carState"][door].get(int(cp.vl["GTW_carState"][door]), "OPEN") == "OPEN") for door in DOORS) # Blinkers ret.leftBlinker = (cp.vl["GTW_carState"]["BC_indicatorLStatus"] == 1) ret.rightBlinker = (cp.vl["GTW_carState"]["BC_indicatorRStatus"] == 1) # Seatbelt if self.CP.carFingerprint == CAR.TESLA_MODELS_RAVEN: ret.seatbeltUnlatched = (cp.vl["DriverSeat"]["buckleStatus"] != 1) else: ret.seatbeltUnlatched = (cp.vl["SDM1"]["SDM_bcklDrivStatus"] != 1) # TODO: blindspot # AEB ret.stockAeb = (cp_cam.vl["DAS_control"]["DAS_aebEvent"] == 1) # Messages needed by carcontroller self.msg_stw_actn_req = copy.copy(cp.vl["STW_ACTN_RQ"]) self.acc_state = cp_cam.vl["DAS_control"]["DAS_accState"] self.das_control_counters.extend(cp_cam.vl_all["DAS_control"]["DAS_controlCounter"]) return ret @staticmethod def get_can_parser(CP): messages = [ # sig_address, frequency ("ESP_B", 50), ("DI_torque1", 100), ("DI_torque2", 100), ("STW_ANGLHP_STAT", 100), ("EPAS_sysStatus", 25), ("DI_state", 10), ("STW_ACTN_RQ", 10), ("GTW_carState", 10), ("BrakeMessage", 50), ] if CP.carFingerprint == CAR.TESLA_MODELS_RAVEN: messages.append(("DriverSeat", 20)) else: messages.append(("SDM1", 10)) return CANParser(DBC[CP.carFingerprint]['chassis'], messages, CANBUS.chassis) @staticmethod def get_cam_can_parser(CP): messages = [ # sig_address, frequency ("DAS_control", 40), ] if CP.carFingerprint == CAR.TESLA_MODELS_RAVEN: messages.append(("EPAS3P_sysStatus", 100)) return CANParser(DBC[CP.carFingerprint]['chassis'], messages, CANBUS.autopilot_chassis)
2301_81045437/openpilot
selfdrive/car/tesla/carstate.py
Python
mit
5,422
from cereal import car from openpilot.selfdrive.car.tesla.values import CAR Ecu = car.CarParams.Ecu FW_VERSIONS = { CAR.TESLA_AP2_MODELS: { (Ecu.adas, 0x649, None): [ b'\x01\x00\x8b\x07\x01\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11', ], (Ecu.electricBrakeBooster, 0x64d, None): [ b'1037123-00-A', ], (Ecu.fwdRadar, 0x671, None): [ b'\x01\x00W\x00\x00\x00\x07\x00\x00\x00\x00\x08\x01\x00\x00\x00\x07\xff\xfe', ], (Ecu.eps, 0x730, None): [ b'\x10#\x01', ], }, CAR.TESLA_MODELS_RAVEN: { (Ecu.electricBrakeBooster, 0x64d, None): [ b'1037123-00-A', ], (Ecu.fwdRadar, 0x671, None): [ b'\x01\x00\x99\x02\x01\x00\x10\x00\x00AP8.3.03\x00\x10', ], (Ecu.eps, 0x730, None): [ b'SX_0.0.0 (99),SR013.7', ], }, }
2301_81045437/openpilot
selfdrive/car/tesla/fingerprints.py
Python
mit
820
#!/usr/bin/env python3 from cereal import car from panda import Panda from openpilot.selfdrive.car.tesla.values import CANBUS, CAR from openpilot.selfdrive.car import get_safety_config from openpilot.selfdrive.car.interfaces import CarInterfaceBase class CarInterface(CarInterfaceBase): @staticmethod def _get_params(ret, candidate, fingerprint, car_fw, experimental_long, docs): ret.carName = "tesla" # There is no safe way to do steer blending with user torque, # so the steering behaves like autopilot. This is not # how openpilot should be, hence dashcamOnly ret.dashcamOnly = True ret.steerControlType = car.CarParams.SteerControlType.angle # Set kP and kI to 0 over the whole speed range to have the planner accel as actuator command ret.longitudinalTuning.kpBP = [0] ret.longitudinalTuning.kpV = [0] ret.longitudinalTuning.kiBP = [0] ret.longitudinalTuning.kiV = [0] ret.longitudinalActuatorDelayUpperBound = 0.5 # s ret.radarTimeStep = (1.0 / 8) # 8Hz # Check if we have messages on an auxiliary panda, and that 0x2bf (DAS_control) is present on the AP powertrain bus # If so, we assume that it is connected to the longitudinal harness. flags = (Panda.FLAG_TESLA_RAVEN if candidate == CAR.TESLA_MODELS_RAVEN else 0) if (CANBUS.autopilot_powertrain in fingerprint.keys()) and (0x2bf in fingerprint[CANBUS.autopilot_powertrain].keys()): ret.openpilotLongitudinalControl = True flags |= Panda.FLAG_TESLA_LONG_CONTROL ret.safetyConfigs = [ get_safety_config(car.CarParams.SafetyModel.tesla, flags), get_safety_config(car.CarParams.SafetyModel.tesla, flags | Panda.FLAG_TESLA_POWERTRAIN), ] else: ret.openpilotLongitudinalControl = False ret.safetyConfigs = [get_safety_config(car.CarParams.SafetyModel.tesla, flags)] ret.steerLimitTimer = 1.0 ret.steerActuatorDelay = 0.25 return ret def _update(self, c): ret = self.CS.update(self.cp, self.cp_cam) ret.events = self.create_common_events(ret).to_msg() return ret
2301_81045437/openpilot
selfdrive/car/tesla/interface.py
Python
mit
2,081
#!/usr/bin/env python3 from cereal import car from opendbc.can.parser import CANParser from openpilot.selfdrive.car.tesla.values import CAR, DBC, CANBUS from openpilot.selfdrive.car.interfaces import RadarInterfaceBase class RadarInterface(RadarInterfaceBase): def __init__(self, CP): super().__init__(CP) self.CP = CP if CP.carFingerprint == CAR.TESLA_MODELS_RAVEN: messages = [('RadarStatus', 16)] self.num_points = 40 self.trigger_msg = 1119 else: messages = [('TeslaRadarSguInfo', 10)] self.num_points = 32 self.trigger_msg = 878 for i in range(self.num_points): messages.extend([ (f'RadarPoint{i}_A', 16), (f'RadarPoint{i}_B', 16), ]) self.rcp = CANParser(DBC[CP.carFingerprint]['radar'], messages, CANBUS.radar) self.updated_messages = set() self.track_id = 0 def update(self, can_strings): if self.rcp is None: return super().update(None) values = self.rcp.update_strings(can_strings) self.updated_messages.update(values) if self.trigger_msg not in self.updated_messages: return None ret = car.RadarData.new_message() # Errors errors = [] if not self.rcp.can_valid: errors.append('canError') if self.CP.carFingerprint == CAR.TESLA_MODELS_RAVEN: radar_status = self.rcp.vl['RadarStatus'] if radar_status['sensorBlocked'] or radar_status['shortTermUnavailable'] or radar_status['vehDynamicsError']: errors.append('fault') else: radar_status = self.rcp.vl['TeslaRadarSguInfo'] if radar_status['RADC_HWFail'] or radar_status['RADC_SGUFail'] or radar_status['RADC_SensorDirty']: errors.append('fault') ret.errors = errors # Radar tracks for i in range(self.num_points): msg_a = self.rcp.vl[f'RadarPoint{i}_A'] msg_b = self.rcp.vl[f'RadarPoint{i}_B'] # Make sure msg A and B are together if msg_a['Index'] != msg_b['Index2']: continue # Check if it's a valid track if not msg_a['Tracked']: if i in self.pts: del self.pts[i] continue # New track! if i not in self.pts: self.pts[i] = car.RadarData.RadarPoint.new_message() self.pts[i].trackId = self.track_id self.track_id += 1 # Parse track data self.pts[i].dRel = msg_a['LongDist'] self.pts[i].yRel = msg_a['LatDist'] self.pts[i].vRel = msg_a['LongSpeed'] self.pts[i].aRel = msg_a['LongAccel'] self.pts[i].yvRel = msg_b['LatSpeed'] self.pts[i].measured = bool(msg_a['Meas']) ret.points = list(self.pts.values()) self.updated_messages.clear() return ret
2301_81045437/openpilot
selfdrive/car/tesla/radar_interface.py
Python
mit
2,692
import crcmod from openpilot.common.conversions import Conversions as CV from openpilot.selfdrive.car.tesla.values import CANBUS, CarControllerParams class TeslaCAN: def __init__(self, packer, pt_packer): self.packer = packer self.pt_packer = pt_packer self.crc = crcmod.mkCrcFun(0x11d, initCrc=0x00, rev=False, xorOut=0xff) @staticmethod def checksum(msg_id, dat): # TODO: get message ID from name instead ret = (msg_id & 0xFF) + ((msg_id >> 8) & 0xFF) ret += sum(dat) return ret & 0xFF def create_steering_control(self, angle, enabled, counter): values = { "DAS_steeringAngleRequest": -angle, "DAS_steeringHapticRequest": 0, "DAS_steeringControlType": 1 if enabled else 0, "DAS_steeringControlCounter": counter, } data = self.packer.make_can_msg("DAS_steeringControl", CANBUS.chassis, values)[2] values["DAS_steeringControlChecksum"] = self.checksum(0x488, data[:3]) return self.packer.make_can_msg("DAS_steeringControl", CANBUS.chassis, values) def create_action_request(self, msg_stw_actn_req, cancel, bus, counter): # We copy this whole message when spamming cancel values = {s: msg_stw_actn_req[s] for s in [ "SpdCtrlLvr_Stat", "VSL_Enbl_Rq", "SpdCtrlLvrStat_Inv", "DTR_Dist_Rq", "TurnIndLvr_Stat", "HiBmLvr_Stat", "WprWashSw_Psd", "WprWash_R_Sw_Posn_V2", "StW_Lvr_Stat", "StW_Cond_Flt", "StW_Cond_Psd", "HrnSw_Psd", "StW_Sw00_Psd", "StW_Sw01_Psd", "StW_Sw02_Psd", "StW_Sw03_Psd", "StW_Sw04_Psd", "StW_Sw05_Psd", "StW_Sw06_Psd", "StW_Sw07_Psd", "StW_Sw08_Psd", "StW_Sw09_Psd", "StW_Sw10_Psd", "StW_Sw11_Psd", "StW_Sw12_Psd", "StW_Sw13_Psd", "StW_Sw14_Psd", "StW_Sw15_Psd", "WprSw6Posn", "MC_STW_ACTN_RQ", "CRC_STW_ACTN_RQ", ]} if cancel: values["SpdCtrlLvr_Stat"] = 1 values["MC_STW_ACTN_RQ"] = counter data = self.packer.make_can_msg("STW_ACTN_RQ", bus, values)[2] values["CRC_STW_ACTN_RQ"] = self.crc(data[:7]) return self.packer.make_can_msg("STW_ACTN_RQ", bus, values) def create_longitudinal_commands(self, acc_state, speed, min_accel, max_accel, cnt): messages = [] values = { "DAS_setSpeed": speed * CV.MS_TO_KPH, "DAS_accState": acc_state, "DAS_aebEvent": 0, "DAS_jerkMin": CarControllerParams.JERK_LIMIT_MIN, "DAS_jerkMax": CarControllerParams.JERK_LIMIT_MAX, "DAS_accelMin": min_accel, "DAS_accelMax": max_accel, "DAS_controlCounter": cnt, "DAS_controlChecksum": 0, } for packer, bus in [(self.packer, CANBUS.chassis), (self.pt_packer, CANBUS.powertrain)]: data = packer.make_can_msg("DAS_control", bus, values)[2] values["DAS_controlChecksum"] = self.checksum(0x2b9, data[:7]) messages.append(packer.make_can_msg("DAS_control", bus, values)) return messages
2301_81045437/openpilot
selfdrive/car/tesla/teslacan.py
Python
mit
2,988
from collections import namedtuple from cereal import car from openpilot.selfdrive.car import AngleRateLimit, CarSpecs, PlatformConfig, Platforms, dbc_dict from openpilot.selfdrive.car.docs_definitions import CarDocs from openpilot.selfdrive.car.fw_query_definitions import FwQueryConfig, Request, StdQueries Ecu = car.CarParams.Ecu Button = namedtuple('Button', ['event_type', 'can_addr', 'can_msg', 'values']) class CAR(Platforms): TESLA_AP1_MODELS = PlatformConfig( [CarDocs("Tesla AP1 Model S", "All")], CarSpecs(mass=2100., wheelbase=2.959, steerRatio=15.0), dbc_dict('tesla_powertrain', 'tesla_radar_bosch_generated', chassis_dbc='tesla_can') ) TESLA_AP2_MODELS = PlatformConfig( [CarDocs("Tesla AP2 Model S", "All")], TESLA_AP1_MODELS.specs, TESLA_AP1_MODELS.dbc_dict ) TESLA_MODELS_RAVEN = PlatformConfig( [CarDocs("Tesla Model S Raven", "All")], TESLA_AP1_MODELS.specs, dbc_dict('tesla_powertrain', 'tesla_radar_continental_generated', chassis_dbc='tesla_can') ) FW_QUERY_CONFIG = FwQueryConfig( requests=[ Request( [StdQueries.TESTER_PRESENT_REQUEST, StdQueries.UDS_VERSION_REQUEST], [StdQueries.TESTER_PRESENT_RESPONSE, StdQueries.UDS_VERSION_RESPONSE], whitelist_ecus=[Ecu.eps], rx_offset=0x08, bus=0, ), Request( [StdQueries.TESTER_PRESENT_REQUEST, StdQueries.SUPPLIER_SOFTWARE_VERSION_REQUEST], [StdQueries.TESTER_PRESENT_RESPONSE, StdQueries.SUPPLIER_SOFTWARE_VERSION_RESPONSE], whitelist_ecus=[Ecu.eps], rx_offset=0x08, bus=0, ), Request( [StdQueries.TESTER_PRESENT_REQUEST, StdQueries.UDS_VERSION_REQUEST], [StdQueries.TESTER_PRESENT_RESPONSE, StdQueries.UDS_VERSION_RESPONSE], whitelist_ecus=[Ecu.adas, Ecu.electricBrakeBooster, Ecu.fwdRadar], rx_offset=0x10, bus=0, ), ] ) class CANBUS: # Lateral harness chassis = 0 radar = 1 autopilot_chassis = 2 # Longitudinal harness powertrain = 4 private = 5 autopilot_powertrain = 6 GEAR_MAP = { "DI_GEAR_INVALID": car.CarState.GearShifter.unknown, "DI_GEAR_P": car.CarState.GearShifter.park, "DI_GEAR_R": car.CarState.GearShifter.reverse, "DI_GEAR_N": car.CarState.GearShifter.neutral, "DI_GEAR_D": car.CarState.GearShifter.drive, "DI_GEAR_SNA": car.CarState.GearShifter.unknown, } DOORS = ["DOOR_STATE_FL", "DOOR_STATE_FR", "DOOR_STATE_RL", "DOOR_STATE_RR", "DOOR_STATE_FrontTrunk", "BOOT_STATE"] # Make sure the message and addr is also in the CAN parser! BUTTONS = [ Button(car.CarState.ButtonEvent.Type.leftBlinker, "STW_ACTN_RQ", "TurnIndLvr_Stat", [1]), Button(car.CarState.ButtonEvent.Type.rightBlinker, "STW_ACTN_RQ", "TurnIndLvr_Stat", [2]), Button(car.CarState.ButtonEvent.Type.accelCruise, "STW_ACTN_RQ", "SpdCtrlLvr_Stat", [4, 16]), Button(car.CarState.ButtonEvent.Type.decelCruise, "STW_ACTN_RQ", "SpdCtrlLvr_Stat", [8, 32]), Button(car.CarState.ButtonEvent.Type.cancel, "STW_ACTN_RQ", "SpdCtrlLvr_Stat", [1]), Button(car.CarState.ButtonEvent.Type.resumeCruise, "STW_ACTN_RQ", "SpdCtrlLvr_Stat", [2]), ] class CarControllerParams: ANGLE_RATE_LIMIT_UP = AngleRateLimit(speed_bp=[0., 5., 15.], angle_v=[10., 1.6, .3]) ANGLE_RATE_LIMIT_DOWN = AngleRateLimit(speed_bp=[0., 5., 15.], angle_v=[10., 7.0, 0.8]) JERK_LIMIT_MAX = 8 JERK_LIMIT_MIN = -8 ACCEL_TO_SPEED_MULTIPLIER = 3 def __init__(self, CP): pass DBC = CAR.create_dbc_map()
2301_81045437/openpilot
selfdrive/car/tesla/values.py
Python
mit
3,439
#!/bin/bash SCRIPT_DIR=$(dirname "$0") BASEDIR=$(realpath "$SCRIPT_DIR/../../../") cd $BASEDIR MAX_EXAMPLES=300 INTERNAL_SEG_CNT=300 FILEREADER_CACHE=1 INTERNAL_SEG_LIST=selfdrive/car/tests/test_models_segs.txt cd selfdrive/car/tests && pytest test_models.py test_car_interfaces.py
2301_81045437/openpilot
selfdrive/car/tests/big_cars_test.sh
Shell
mit
284
#!/usr/bin/env python3 from typing import NamedTuple from openpilot.selfdrive.car.chrysler.values import CAR as CHRYSLER from openpilot.selfdrive.car.gm.values import CAR as GM from openpilot.selfdrive.car.ford.values import CAR as FORD from openpilot.selfdrive.car.honda.values import CAR as HONDA from openpilot.selfdrive.car.hyundai.values import CAR as HYUNDAI from openpilot.selfdrive.car.nissan.values import CAR as NISSAN from openpilot.selfdrive.car.mazda.values import CAR as MAZDA from openpilot.selfdrive.car.subaru.values import CAR as SUBARU from openpilot.selfdrive.car.toyota.values import CAR as TOYOTA from openpilot.selfdrive.car.values import Platform from openpilot.selfdrive.car.volkswagen.values import CAR as VOLKSWAGEN from openpilot.selfdrive.car.tesla.values import CAR as TESLA from openpilot.selfdrive.car.body.values import CAR as COMMA # TODO: add routes for these cars non_tested_cars = [ FORD.FORD_F_150_MK14, GM.CADILLAC_ATS, GM.HOLDEN_ASTRA, GM.CHEVROLET_MALIBU, HYUNDAI.GENESIS_G90, HONDA.HONDA_ODYSSEY_CHN, VOLKSWAGEN.VOLKSWAGEN_CRAFTER_MK2, # need a route from an ACC-equipped Crafter SUBARU.SUBARU_FORESTER_HYBRID, ] class CarTestRoute(NamedTuple): route: str car_model: Platform | None segment: int | None = None routes = [ CarTestRoute("efdf9af95e71cd84|2022-05-13--19-03-31", COMMA.COMMA_BODY), CarTestRoute("0c94aa1e1296d7c6|2021-05-05--19-48-37", CHRYSLER.JEEP_GRAND_CHEROKEE), CarTestRoute("91dfedae61d7bd75|2021-05-22--20-07-52", CHRYSLER.JEEP_GRAND_CHEROKEE_2019), CarTestRoute("420a8e183f1aed48|2020-03-05--07-15-29", CHRYSLER.CHRYSLER_PACIFICA_2017_HYBRID), CarTestRoute("43a685a66291579b|2021-05-27--19-47-29", CHRYSLER.CHRYSLER_PACIFICA_2018), CarTestRoute("378472f830ee7395|2021-05-28--07-38-43", CHRYSLER.CHRYSLER_PACIFICA_2018_HYBRID), CarTestRoute("8190c7275a24557b|2020-01-29--08-33-58", CHRYSLER.CHRYSLER_PACIFICA_2019_HYBRID), CarTestRoute("3d84727705fecd04|2021-05-25--08-38-56", CHRYSLER.CHRYSLER_PACIFICA_2020), CarTestRoute("221c253375af4ee9|2022-06-15--18-38-24", CHRYSLER.RAM_1500_5TH_GEN), CarTestRoute("8fb5eabf914632ae|2022-08-04--17-28-53", CHRYSLER.RAM_HD_5TH_GEN, segment=6), CarTestRoute("3379c85aeedc8285|2023-12-07--17-49-39", CHRYSLER.DODGE_DURANGO), CarTestRoute("54827bf84c38b14f|2023-01-25--14-14-11", FORD.FORD_BRONCO_SPORT_MK1), CarTestRoute("f8eaaccd2a90aef8|2023-05-04--15-10-09", FORD.FORD_ESCAPE_MK4), CarTestRoute("62241b0c7fea4589|2022-09-01--15-32-49", FORD.FORD_EXPLORER_MK6), CarTestRoute("e886087f430e7fe7|2023-06-16--23-06-36", FORD.FORD_FOCUS_MK4), CarTestRoute("bd37e43731e5964b|2023-04-30--10-42-26", FORD.FORD_MAVERICK_MK1), CarTestRoute("112e4d6e0cad05e1|2023-11-14--08-21-43", FORD.FORD_F_150_LIGHTNING_MK1), CarTestRoute("83a4e056c7072678|2023-11-13--16-51-33", FORD.FORD_MUSTANG_MACH_E_MK1), CarTestRoute("37998aa0fade36ab/00000000--48f927c4f5", FORD.FORD_RANGER_MK2), #TestRoute("f1b4c567731f4a1b|2018-04-30--10-15-35", FORD.FUSION), CarTestRoute("7cc2a8365b4dd8a9|2018-12-02--12-10-44", GM.GMC_ACADIA), CarTestRoute("aa20e335f61ba898|2019-02-05--16-59-04", GM.BUICK_REGAL), CarTestRoute("75a6bcb9b8b40373|2023-03-11--22-47-33", GM.BUICK_LACROSSE), CarTestRoute("e746f59bc96fd789|2024-01-31--22-25-58", GM.CHEVROLET_EQUINOX), CarTestRoute("ef8f2185104d862e|2023-02-09--18-37-13", GM.CADILLAC_ESCALADE), CarTestRoute("46460f0da08e621e|2021-10-26--07-21-46", GM.CADILLAC_ESCALADE_ESV), CarTestRoute("168f8b3be57f66ae|2023-09-12--21-44-42", GM.CADILLAC_ESCALADE_ESV_2019), CarTestRoute("c950e28c26b5b168|2018-05-30--22-03-41", GM.CHEVROLET_VOLT), CarTestRoute("f08912a233c1584f|2022-08-11--18-02-41", GM.CHEVROLET_BOLT_EUV, segment=1), CarTestRoute("555d4087cf86aa91|2022-12-02--12-15-07", GM.CHEVROLET_BOLT_EUV, segment=14), # Bolt EV CarTestRoute("38aa7da107d5d252|2022-08-15--16-01-12", GM.CHEVROLET_SILVERADO), CarTestRoute("5085c761395d1fe6|2023-04-07--18-20-06", GM.CHEVROLET_TRAILBLAZER), CarTestRoute("0e7a2ba168465df5|2020-10-18--14-14-22", HONDA.ACURA_RDX_3G), CarTestRoute("a74b011b32b51b56|2020-07-26--17-09-36", HONDA.HONDA_CIVIC), CarTestRoute("a859a044a447c2b0|2020-03-03--18-42-45", HONDA.HONDA_CRV_EU), CarTestRoute("68aac44ad69f838e|2021-05-18--20-40-52", HONDA.HONDA_CRV), CarTestRoute("14fed2e5fa0aa1a5|2021-05-25--14-59-42", HONDA.HONDA_CRV_HYBRID), CarTestRoute("52f3e9ae60c0d886|2021-05-23--15-59-43", HONDA.HONDA_FIT), CarTestRoute("2c4292a5cd10536c|2021-08-19--21-32-15", HONDA.HONDA_FREED), CarTestRoute("03be5f2fd5c508d1|2020-04-19--18-44-15", HONDA.HONDA_HRV), CarTestRoute("320098ff6c5e4730|2023-04-13--17-47-46", HONDA.HONDA_HRV_3G), CarTestRoute("147613502316e718/00000001--dd141a3140", HONDA.HONDA_HRV_3G), # Brazilian model CarTestRoute("917b074700869333|2021-05-24--20-40-20", HONDA.ACURA_ILX), CarTestRoute("08a3deb07573f157|2020-03-06--16-11-19", HONDA.HONDA_ACCORD), # 1.5T CarTestRoute("1da5847ac2488106|2021-05-24--19-31-50", HONDA.HONDA_ACCORD), # 2.0T CarTestRoute("085ac1d942c35910|2021-03-25--20-11-15", HONDA.HONDA_ACCORD), # 2021 with new style HUD msgs CarTestRoute("07585b0da3c88459|2021-05-26--18-52-04", HONDA.HONDA_ACCORD), # hybrid CarTestRoute("f29e2b57a55e7ad5|2021-03-24--20-52-38", HONDA.HONDA_ACCORD), # hybrid, 2021 with new style HUD msgs CarTestRoute("1ad763dd22ef1a0e|2020-02-29--18-37-03", HONDA.HONDA_CRV_5G), CarTestRoute("0a96f86fcfe35964|2020-02-05--07-25-51", HONDA.HONDA_ODYSSEY), CarTestRoute("d83f36766f8012a5|2020-02-05--18-42-21", HONDA.HONDA_CIVIC_BOSCH_DIESEL), CarTestRoute("f0890d16a07a236b|2021-05-25--17-27-22", HONDA.HONDA_INSIGHT), CarTestRoute("07d37d27996096b6|2020-03-04--21-57-27", HONDA.HONDA_PILOT), CarTestRoute("684e8f96bd491a0e|2021-11-03--11-08-42", HONDA.HONDA_PILOT), # Passport CarTestRoute("0a78dfbacc8504ef|2020-03-04--13-29-55", HONDA.HONDA_CIVIC_BOSCH), CarTestRoute("f34a60d68d83b1e5|2020-10-06--14-35-55", HONDA.ACURA_RDX), CarTestRoute("54fd8451b3974762|2021-04-01--14-50-10", HONDA.HONDA_RIDGELINE), CarTestRoute("2d5808fae0b38ac6|2021-09-01--17-14-11", HONDA.HONDA_E), CarTestRoute("f44aa96ace22f34a|2021-12-22--06-22-31", HONDA.HONDA_CIVIC_2022), CarTestRoute("87d7f06ade479c2e|2023-09-11--23-30-11", HYUNDAI.HYUNDAI_AZERA_6TH_GEN), CarTestRoute("66189dd8ec7b50e6|2023-09-20--07-02-12", HYUNDAI.HYUNDAI_AZERA_HEV_6TH_GEN), CarTestRoute("6fe86b4e410e4c37|2020-07-22--16-27-13", HYUNDAI.HYUNDAI_GENESIS), CarTestRoute("b5d6dc830ad63071|2022-12-12--21-28-25", HYUNDAI.GENESIS_GV60_EV_1ST_GEN, segment=12), CarTestRoute("70c5bec28ec8e345|2020-08-08--12-22-23", HYUNDAI.GENESIS_G70), CarTestRoute("ca4de5b12321bd98|2022-10-18--21-15-59", HYUNDAI.GENESIS_GV70_1ST_GEN), CarTestRoute("6b301bf83f10aa90|2020-11-22--16-45-07", HYUNDAI.GENESIS_G80), CarTestRoute("0bbe367c98fa1538|2023-09-16--00-16-49", HYUNDAI.HYUNDAI_CUSTIN_1ST_GEN), CarTestRoute("f0709d2bc6ca451f|2022-10-15--08-13-54", HYUNDAI.HYUNDAI_SANTA_CRUZ_1ST_GEN), CarTestRoute("4dbd55df87507948|2022-03-01--09-45-38", HYUNDAI.HYUNDAI_SANTA_FE), CarTestRoute("bf43d9df2b660eb0|2021-09-23--14-16-37", HYUNDAI.HYUNDAI_SANTA_FE_2022), CarTestRoute("37398f32561a23ad|2021-11-18--00-11-35", HYUNDAI.HYUNDAI_SANTA_FE_HEV_2022), CarTestRoute("656ac0d830792fcc|2021-12-28--14-45-56", HYUNDAI.HYUNDAI_SANTA_FE_PHEV_2022, segment=1), CarTestRoute("de59124955b921d8|2023-06-24--00-12-50", HYUNDAI.KIA_CARNIVAL_4TH_GEN), CarTestRoute("409c9409979a8abc|2023-07-11--09-06-44", HYUNDAI.KIA_CARNIVAL_4TH_GEN), # Chinese model CarTestRoute("e0e98335f3ebc58f|2021-03-07--16-38-29", HYUNDAI.KIA_CEED), CarTestRoute("7653b2bce7bcfdaa|2020-03-04--15-34-32", HYUNDAI.KIA_OPTIMA_G4), CarTestRoute("018654717bc93d7d|2022-09-19--23-11-10", HYUNDAI.KIA_OPTIMA_G4_FL, segment=0), CarTestRoute("f9716670b2481438|2023-08-23--14-49-50", HYUNDAI.KIA_OPTIMA_H), CarTestRoute("6a42c1197b2a8179|2023-09-21--10-23-44", HYUNDAI.KIA_OPTIMA_H_G4_FL), CarTestRoute("c75a59efa0ecd502|2021-03-11--20-52-55", HYUNDAI.KIA_SELTOS), CarTestRoute("5b7c365c50084530|2020-04-15--16-13-24", HYUNDAI.HYUNDAI_SONATA), CarTestRoute("b2a38c712dcf90bd|2020-05-18--18-12-48", HYUNDAI.HYUNDAI_SONATA_LF), CarTestRoute("c344fd2492c7a9d2|2023-12-11--09-03-23", HYUNDAI.HYUNDAI_STARIA_4TH_GEN), CarTestRoute("fb3fd42f0baaa2f8|2022-03-30--15-25-05", HYUNDAI.HYUNDAI_TUCSON), CarTestRoute("db68bbe12250812c|2022-12-05--00-54-12", HYUNDAI.HYUNDAI_TUCSON_4TH_GEN), # 2023 CarTestRoute("36e10531feea61a4|2022-07-25--13-37-42", HYUNDAI.HYUNDAI_TUCSON_4TH_GEN), # hybrid CarTestRoute("5875672fc1d4bf57|2020-07-23--21-33-28", HYUNDAI.KIA_SORENTO), CarTestRoute("1d0d000db3370fd0|2023-01-04--22-28-42", HYUNDAI.KIA_SORENTO_4TH_GEN, segment=5), CarTestRoute("fc19648042eb6896|2023-08-16--11-43-27", HYUNDAI.KIA_SORENTO_HEV_4TH_GEN, segment=14), CarTestRoute("628935d7d3e5f4f7|2022-11-30--01-12-46", HYUNDAI.KIA_SORENTO_HEV_4TH_GEN), # plug-in hybrid CarTestRoute("9c917ba0d42ffe78|2020-04-17--12-43-19", HYUNDAI.HYUNDAI_PALISADE), CarTestRoute("05a8f0197fdac372|2022-10-19--14-14-09", HYUNDAI.HYUNDAI_IONIQ_5), # HDA2 CarTestRoute("eb4eae1476647463|2023-08-26--18-07-04", HYUNDAI.HYUNDAI_IONIQ_6, segment=6), # HDA2 CarTestRoute("3f29334d6134fcd4|2022-03-30--22-00-50", HYUNDAI.HYUNDAI_IONIQ_PHEV_2019), CarTestRoute("fa8db5869167f821|2021-06-10--22-50-10", HYUNDAI.HYUNDAI_IONIQ_PHEV), CarTestRoute("e1107f9d04dfb1e2|2023-09-05--22-32-12", HYUNDAI.HYUNDAI_IONIQ_PHEV), # openpilot longitudinal enabled CarTestRoute("2c5cf2dd6102e5da|2020-12-17--16-06-44", HYUNDAI.HYUNDAI_IONIQ_EV_2020), CarTestRoute("610ebb9faaad6b43|2020-06-13--15-28-36", HYUNDAI.HYUNDAI_IONIQ_EV_LTD), CarTestRoute("2c5cf2dd6102e5da|2020-06-26--16-00-08", HYUNDAI.HYUNDAI_IONIQ), CarTestRoute("012c95f06918eca4|2023-01-15--11-19-36", HYUNDAI.HYUNDAI_IONIQ), # openpilot longitudinal enabled CarTestRoute("ab59fe909f626921|2021-10-18--18-34-28", HYUNDAI.HYUNDAI_IONIQ_HEV_2022), CarTestRoute("22d955b2cd499c22|2020-08-10--19-58-21", HYUNDAI.HYUNDAI_KONA), CarTestRoute("efc48acf44b1e64d|2021-05-28--21-05-04", HYUNDAI.HYUNDAI_KONA_EV), CarTestRoute("f90d3cd06caeb6fa|2023-09-06--17-15-47", HYUNDAI.HYUNDAI_KONA_EV), # openpilot longitudinal enabled CarTestRoute("ff973b941a69366f|2022-07-28--22-01-19", HYUNDAI.HYUNDAI_KONA_EV_2022, segment=11), CarTestRoute("1618132d68afc876|2023-08-27--09-32-14", HYUNDAI.HYUNDAI_KONA_EV_2ND_GEN, segment=13), CarTestRoute("49f3c13141b6bc87|2021-07-28--08-05-13", HYUNDAI.HYUNDAI_KONA_HEV), CarTestRoute("5dddcbca6eb66c62|2020-07-26--13-24-19", HYUNDAI.KIA_STINGER), CarTestRoute("5b50b883a4259afb|2022-11-09--15-00-42", HYUNDAI.KIA_STINGER_2022), CarTestRoute("d624b3d19adce635|2020-08-01--14-59-12", HYUNDAI.HYUNDAI_VELOSTER), CarTestRoute("d545129f3ca90f28|2022-10-19--09-22-54", HYUNDAI.KIA_EV6), # HDA2 CarTestRoute("68d6a96e703c00c9|2022-09-10--16-09-39", HYUNDAI.KIA_EV6), # HDA1 CarTestRoute("9b25e8c1484a1b67|2023-04-13--10-41-45", HYUNDAI.KIA_EV6), CarTestRoute("007d5e4ad9f86d13|2021-09-30--15-09-23", HYUNDAI.KIA_K5_2021), CarTestRoute("c58dfc9fc16590e0|2023-01-14--13-51-48", HYUNDAI.KIA_K5_HEV_2020), CarTestRoute("78ad5150de133637|2023-09-13--16-15-57", HYUNDAI.KIA_K8_HEV_1ST_GEN), CarTestRoute("50c6c9b85fd1ff03|2020-10-26--17-56-06", HYUNDAI.KIA_NIRO_EV), CarTestRoute("b153671049a867b3|2023-04-05--10-00-30", HYUNDAI.KIA_NIRO_EV_2ND_GEN), CarTestRoute("173219cf50acdd7b|2021-07-05--10-27-41", HYUNDAI.KIA_NIRO_PHEV), CarTestRoute("23349923ba5c4e3b|2023-12-02--08-51-54", HYUNDAI.KIA_NIRO_PHEV_2022), CarTestRoute("34a875f29f69841a|2021-07-29--13-02-09", HYUNDAI.KIA_NIRO_HEV_2021), CarTestRoute("db04d2c63990e3ba|2023-02-08--16-52-39", HYUNDAI.KIA_NIRO_HEV_2ND_GEN), CarTestRoute("50a2212c41f65c7b|2021-05-24--16-22-06", HYUNDAI.KIA_FORTE), CarTestRoute("192283cdbb7a58c2|2022-10-15--01-43-18", HYUNDAI.KIA_SPORTAGE_5TH_GEN), CarTestRoute("09559f1fcaed4704|2023-11-16--02-24-57", HYUNDAI.KIA_SPORTAGE_5TH_GEN), # openpilot longitudinal CarTestRoute("b3537035ffe6a7d6|2022-10-17--15-23-49", HYUNDAI.KIA_SPORTAGE_5TH_GEN), # hybrid CarTestRoute("c5ac319aa9583f83|2021-06-01--18-18-31", HYUNDAI.HYUNDAI_ELANTRA), CarTestRoute("734ef96182ddf940|2022-10-02--16-41-44", HYUNDAI.HYUNDAI_ELANTRA_GT_I30), CarTestRoute("82e9cdd3f43bf83e|2021-05-15--02-42-51", HYUNDAI.HYUNDAI_ELANTRA_2021), CarTestRoute("715ac05b594e9c59|2021-06-20--16-21-07", HYUNDAI.HYUNDAI_ELANTRA_HEV_2021), CarTestRoute("7120aa90bbc3add7|2021-08-02--07-12-31", HYUNDAI.HYUNDAI_SONATA_HYBRID), CarTestRoute("715ac05b594e9c59|2021-10-27--23-24-56", HYUNDAI.GENESIS_G70_2020), CarTestRoute("6b0d44d22df18134|2023-05-06--10-36-55", HYUNDAI.GENESIS_GV80), CarTestRoute("00c829b1b7613dea|2021-06-24--09-10-10", TOYOTA.TOYOTA_ALPHARD_TSS2), CarTestRoute("912119ebd02c7a42|2022-03-19--07-24-50", TOYOTA.TOYOTA_ALPHARD_TSS2), # hybrid CarTestRoute("000cf3730200c71c|2021-05-24--10-42-05", TOYOTA.TOYOTA_AVALON), CarTestRoute("0bb588106852abb7|2021-05-26--12-22-01", TOYOTA.TOYOTA_AVALON_2019), CarTestRoute("87bef2930af86592|2021-05-30--09-40-54", TOYOTA.TOYOTA_AVALON_2019), # hybrid CarTestRoute("e9966711cfb04ce3|2022-01-11--07-59-43", TOYOTA.TOYOTA_AVALON_TSS2), CarTestRoute("eca1080a91720a54|2022-03-17--13-32-29", TOYOTA.TOYOTA_AVALON_TSS2), # hybrid CarTestRoute("6cdecc4728d4af37|2020-02-23--15-44-18", TOYOTA.TOYOTA_CAMRY), CarTestRoute("2f37c007683e85ba|2023-09-02--14-39-44", TOYOTA.TOYOTA_CAMRY), # openpilot longitudinal, with radar CAN filter CarTestRoute("54034823d30962f5|2021-05-24--06-37-34", TOYOTA.TOYOTA_CAMRY), # hybrid CarTestRoute("3456ad0cd7281b24|2020-12-13--17-45-56", TOYOTA.TOYOTA_CAMRY_TSS2), CarTestRoute("ffccc77938ddbc44|2021-01-04--16-55-41", TOYOTA.TOYOTA_CAMRY_TSS2), # hybrid CarTestRoute("4e45c89c38e8ec4d|2021-05-02--02-49-28", TOYOTA.TOYOTA_COROLLA), CarTestRoute("5f5afb36036506e4|2019-05-14--02-09-54", TOYOTA.TOYOTA_COROLLA_TSS2), CarTestRoute("5ceff72287a5c86c|2019-10-19--10-59-02", TOYOTA.TOYOTA_COROLLA_TSS2), # hybrid CarTestRoute("d2525c22173da58b|2021-04-25--16-47-04", TOYOTA.TOYOTA_PRIUS), CarTestRoute("b14c5b4742e6fc85|2020-07-28--19-50-11", TOYOTA.TOYOTA_RAV4), CarTestRoute("32a7df20486b0f70|2020-02-06--16-06-50", TOYOTA.TOYOTA_RAV4H), CarTestRoute("cdf2f7de565d40ae|2019-04-25--03-53-41", TOYOTA.TOYOTA_RAV4_TSS2), CarTestRoute("a5c341bb250ca2f0|2022-05-18--16-05-17", TOYOTA.TOYOTA_RAV4_TSS2_2022), CarTestRoute("ad5a3fa719bc2f83|2023-10-17--19-48-42", TOYOTA.TOYOTA_RAV4_TSS2_2023), CarTestRoute("7e34a988419b5307|2019-12-18--19-13-30", TOYOTA.TOYOTA_RAV4_TSS2), # hybrid CarTestRoute("2475fb3eb2ffcc2e|2022-04-29--12-46-23", TOYOTA.TOYOTA_RAV4_TSS2_2022), # hybrid CarTestRoute("7a31f030957b9c85|2023-04-01--14-12-51", TOYOTA.LEXUS_ES), CarTestRoute("37041c500fd30100|2020-12-30--12-17-24", TOYOTA.LEXUS_ES), # hybrid CarTestRoute("e6a24be49a6cd46e|2019-10-29--10-52-42", TOYOTA.LEXUS_ES_TSS2), CarTestRoute("f49e8041283f2939|2019-05-30--11-51-51", TOYOTA.LEXUS_ES_TSS2), # hybrid CarTestRoute("da23c367491f53e2|2021-05-21--09-09-11", TOYOTA.LEXUS_CTH, segment=3), CarTestRoute("32696cea52831b02|2021-11-19--18-13-30", TOYOTA.LEXUS_RC), CarTestRoute("ab9b64a5e5960cba|2023-10-24--17-32-08", TOYOTA.LEXUS_GS_F), CarTestRoute("886fcd8408d570e9|2020-01-29--02-18-55", TOYOTA.LEXUS_RX), CarTestRoute("d27ad752e9b08d4f|2021-05-26--19-39-51", TOYOTA.LEXUS_RX), # hybrid CarTestRoute("01b22eb2ed121565|2020-02-02--11-25-51", TOYOTA.LEXUS_RX_TSS2), CarTestRoute("b74758c690a49668|2020-05-20--15-58-57", TOYOTA.LEXUS_RX_TSS2), # hybrid CarTestRoute("964c09eb11ca8089|2020-11-03--22-04-00", TOYOTA.LEXUS_NX), CarTestRoute("ec429c0f37564e3c|2020-02-01--17-28-12", TOYOTA.LEXUS_NX), # hybrid CarTestRoute("3fd5305f8b6ca765|2021-04-28--19-26-49", TOYOTA.LEXUS_NX_TSS2), CarTestRoute("09ae96064ed85a14|2022-06-09--12-22-31", TOYOTA.LEXUS_NX_TSS2), # hybrid CarTestRoute("4765fbbf59e3cd88|2024-02-06--17-45-32", TOYOTA.LEXUS_LC_TSS2), CarTestRoute("0a302ffddbb3e3d3|2020-02-08--16-19-08", TOYOTA.TOYOTA_HIGHLANDER_TSS2), CarTestRoute("437e4d2402abf524|2021-05-25--07-58-50", TOYOTA.TOYOTA_HIGHLANDER_TSS2), # hybrid CarTestRoute("3183cd9b021e89ce|2021-05-25--10-34-44", TOYOTA.TOYOTA_HIGHLANDER), CarTestRoute("80d16a262e33d57f|2021-05-23--20-01-43", TOYOTA.TOYOTA_HIGHLANDER), # hybrid CarTestRoute("eb6acd681135480d|2019-06-20--20-00-00", TOYOTA.TOYOTA_SIENNA), CarTestRoute("2e07163a1ba9a780|2019-08-25--13-15-13", TOYOTA.LEXUS_IS), CarTestRoute("649bf2997ada6e3a|2023-08-08--18-04-22", TOYOTA.LEXUS_IS_TSS2), CarTestRoute("0a0de17a1e6a2d15|2020-09-21--21-24-41", TOYOTA.TOYOTA_PRIUS_TSS2), CarTestRoute("9b36accae406390e|2021-03-30--10-41-38", TOYOTA.TOYOTA_MIRAI), CarTestRoute("cd9cff4b0b26c435|2021-05-13--15-12-39", TOYOTA.TOYOTA_CHR), CarTestRoute("57858ede0369a261|2021-05-18--20-34-20", TOYOTA.TOYOTA_CHR), # hybrid CarTestRoute("ea8fbe72b96a185c|2023-02-08--15-11-46", TOYOTA.TOYOTA_CHR_TSS2), CarTestRoute("ea8fbe72b96a185c|2023-02-22--09-20-34", TOYOTA.TOYOTA_CHR_TSS2), # openpilot longitudinal, with smartDSU CarTestRoute("6719965b0e1d1737|2023-02-09--22-44-05", TOYOTA.TOYOTA_CHR_TSS2), # hybrid CarTestRoute("6719965b0e1d1737|2023-08-29--06-40-05", TOYOTA.TOYOTA_CHR_TSS2), # hybrid, openpilot longitudinal, radar disabled CarTestRoute("14623aae37e549f3|2021-10-24--01-20-49", TOYOTA.TOYOTA_PRIUS_V), CarTestRoute("202c40641158a6e5|2021-09-21--09-43-24", VOLKSWAGEN.VOLKSWAGEN_ARTEON_MK1), CarTestRoute("2c68dda277d887ac|2021-05-11--15-22-20", VOLKSWAGEN.VOLKSWAGEN_ATLAS_MK1), CarTestRoute("ffcd23abbbd02219|2024-02-28--14-59-38", VOLKSWAGEN.VOLKSWAGEN_CADDY_MK3), CarTestRoute("cae14e88932eb364|2021-03-26--14-43-28", VOLKSWAGEN.VOLKSWAGEN_GOLF_MK7), # Stock ACC CarTestRoute("3cfdec54aa035f3f|2022-10-13--14-58-58", VOLKSWAGEN.VOLKSWAGEN_GOLF_MK7), # openpilot longitudinal CarTestRoute("58a7d3b707987d65|2021-03-25--17-26-37", VOLKSWAGEN.VOLKSWAGEN_JETTA_MK7), CarTestRoute("4d134e099430fba2|2021-03-26--00-26-06", VOLKSWAGEN.VOLKSWAGEN_PASSAT_MK8), CarTestRoute("3cfdec54aa035f3f|2022-07-19--23-45-10", VOLKSWAGEN.VOLKSWAGEN_PASSAT_NMS), CarTestRoute("0cd0b7f7e31a3853|2021-11-03--19-30-22", VOLKSWAGEN.VOLKSWAGEN_POLO_MK6), CarTestRoute("064d1816e448f8eb|2022-09-29--15-32-34", VOLKSWAGEN.VOLKSWAGEN_SHARAN_MK2), CarTestRoute("7d82b2f3a9115f1f|2021-10-21--15-39-42", VOLKSWAGEN.VOLKSWAGEN_TAOS_MK1), CarTestRoute("2744c89a8dda9a51|2021-07-24--21-28-06", VOLKSWAGEN.VOLKSWAGEN_TCROSS_MK1), CarTestRoute("2cef8a0b898f331a|2021-03-25--20-13-57", VOLKSWAGEN.VOLKSWAGEN_TIGUAN_MK2), CarTestRoute("a589dcc642fdb10a|2021-06-14--20-54-26", VOLKSWAGEN.VOLKSWAGEN_TOURAN_MK2), CarTestRoute("a459f4556782eba1|2021-09-19--09-48-00", VOLKSWAGEN.VOLKSWAGEN_TRANSPORTER_T61), CarTestRoute("0cd0b7f7e31a3853|2021-11-18--00-38-32", VOLKSWAGEN.VOLKSWAGEN_TROC_MK1), CarTestRoute("07667b885add75fd|2021-01-23--19-48-42", VOLKSWAGEN.AUDI_A3_MK3), CarTestRoute("6c6b466346192818|2021-06-06--14-17-47", VOLKSWAGEN.AUDI_Q2_MK1), CarTestRoute("0cd0b7f7e31a3853|2021-12-03--03-12-05", VOLKSWAGEN.AUDI_Q3_MK2), CarTestRoute("8f205bdd11bcbb65|2021-03-26--01-00-17", VOLKSWAGEN.SEAT_ATECA_MK1), CarTestRoute("fc6b6c9a3471c846|2021-05-27--13-39-56", VOLKSWAGEN.SEAT_ATECA_MK1), # Leon CarTestRoute("0bbe367c98fa1538|2023-03-04--17-46-11", VOLKSWAGEN.SKODA_FABIA_MK4), CarTestRoute("12d6ae3057c04b0d|2021-09-15--00-04-07", VOLKSWAGEN.SKODA_KAMIQ_MK1), CarTestRoute("12d6ae3057c04b0d|2021-09-04--21-21-21", VOLKSWAGEN.SKODA_KAROQ_MK1), CarTestRoute("90434ff5d7c8d603|2021-03-15--12-07-31", VOLKSWAGEN.SKODA_KODIAQ_MK1), CarTestRoute("66e5edc3a16459c5|2021-05-25--19-00-29", VOLKSWAGEN.SKODA_OCTAVIA_MK3), CarTestRoute("026b6d18fba6417f|2021-03-26--09-17-04", VOLKSWAGEN.SKODA_KAMIQ_MK1), # Scala CarTestRoute("b2e9858e29db492b|2021-03-26--16-58-42", VOLKSWAGEN.SKODA_SUPERB_MK3), CarTestRoute("3c8f0c502e119c1c|2020-06-30--12-58-02", SUBARU.SUBARU_ASCENT), CarTestRoute("c321c6b697c5a5ff|2020-06-23--11-04-33", SUBARU.SUBARU_FORESTER), CarTestRoute("791340bc01ed993d|2019-03-10--16-28-08", SUBARU.SUBARU_IMPREZA), CarTestRoute("8bf7e79a3ce64055|2021-05-24--09-36-27", SUBARU.SUBARU_IMPREZA_2020), CarTestRoute("8de015561e1ea4a0|2023-08-29--17-08-31", SUBARU.SUBARU_IMPREZA), # openpilot longitudinal # CarTestRoute("c3d1ccb52f5f9d65|2023-07-22--01-23-20", SUBARU.OUTBACK, segment=9), # gen2 longitudinal, eyesight disabled CarTestRoute("1bbe6bf2d62f58a8|2022-07-14--17-11-43", SUBARU.SUBARU_OUTBACK, segment=10), CarTestRoute("c56e69bbc74b8fad|2022-08-18--09-43-51", SUBARU.SUBARU_LEGACY, segment=3), CarTestRoute("f4e3a0c511a076f4|2022-08-04--16-16-48", SUBARU.SUBARU_CROSSTREK_HYBRID, segment=2), CarTestRoute("7fd1e4f3a33c1673|2022-12-04--15-09-53", SUBARU.SUBARU_FORESTER_2022, segment=4), CarTestRoute("f3b34c0d2632aa83|2023-07-23--20-43-25", SUBARU.SUBARU_OUTBACK_2023, segment=7), CarTestRoute("99437cef6d5ff2ee|2023-03-13--21-21-38", SUBARU.SUBARU_ASCENT_2023, segment=7), # Pre-global, dashcam CarTestRoute("95441c38ae8c130e|2020-06-08--12-10-17", SUBARU.SUBARU_FORESTER_PREGLOBAL), CarTestRoute("df5ca7660000fba8|2020-06-16--17-37-19", SUBARU.SUBARU_LEGACY_PREGLOBAL), CarTestRoute("5ab784f361e19b78|2020-06-08--16-30-41", SUBARU.SUBARU_OUTBACK_PREGLOBAL), CarTestRoute("e19eb5d5353b1ac1|2020-08-09--14-37-56", SUBARU.SUBARU_OUTBACK_PREGLOBAL_2018), CarTestRoute("fbbfa6af821552b9|2020-03-03--08-09-43", NISSAN.NISSAN_XTRAIL), CarTestRoute("5b7c365c50084530|2020-03-25--22-10-13", NISSAN.NISSAN_LEAF), CarTestRoute("22c3dcce2dd627eb|2020-12-30--16-38-48", NISSAN.NISSAN_LEAF_IC), CarTestRoute("059ab9162e23198e|2020-05-30--09-41-01", NISSAN.NISSAN_ROGUE), CarTestRoute("b72d3ec617c0a90f|2020-12-11--15-38-17", NISSAN.NISSAN_ALTIMA), CarTestRoute("32a319f057902bb3|2020-04-27--15-18-58", MAZDA.MAZDA_CX5), CarTestRoute("10b5a4b380434151|2020-08-26--17-11-45", MAZDA.MAZDA_CX9), CarTestRoute("74f1038827005090|2020-08-26--20-05-50", MAZDA.MAZDA_3), CarTestRoute("fb53c640f499b73d|2021-06-01--04-17-56", MAZDA.MAZDA_6), CarTestRoute("f6d5b1a9d7a1c92e|2021-07-08--06-56-59", MAZDA.MAZDA_CX9_2021), CarTestRoute("a4af1602d8e668ac|2022-02-03--12-17-07", MAZDA.MAZDA_CX5_2022), CarTestRoute("6c14ee12b74823ce|2021-06-30--11-49-02", TESLA.TESLA_AP1_MODELS), CarTestRoute("bb50caf5f0945ab1|2021-06-19--17-20-18", TESLA.TESLA_AP2_MODELS), CarTestRoute("66c1699b7697267d/2024-03-03--13-09-53", TESLA.TESLA_MODELS_RAVEN), # Segments that test specific issues # Controls mismatch due to standstill threshold CarTestRoute("bec2dcfde6a64235|2022-04-08--14-21-32", HONDA.HONDA_CRV_HYBRID, segment=22), ]
2301_81045437/openpilot
selfdrive/car/tests/routes.py
Python
mit
22,788
from cereal import car from openpilot.common.numpy_fast import clip from openpilot.selfdrive.car import apply_meas_steer_torque_limits, apply_std_steer_angle_limits, common_fault_avoidance, make_can_msg from openpilot.selfdrive.car.interfaces import CarControllerBase from openpilot.selfdrive.car.toyota import toyotacan from openpilot.selfdrive.car.toyota.values import CAR, STATIC_DSU_MSGS, NO_STOP_TIMER_CAR, TSS2_CAR, \ CarControllerParams, ToyotaFlags, \ UNSUPPORTED_DSU_CAR from opendbc.can.packer import CANPacker SteerControlType = car.CarParams.SteerControlType VisualAlert = car.CarControl.HUDControl.VisualAlert # LKA limits # EPS faults if you apply torque while the steering rate is above 100 deg/s for too long MAX_STEER_RATE = 100 # deg/s MAX_STEER_RATE_FRAMES = 18 # tx control frames needed before torque can be cut # EPS allows user torque above threshold for 50 frames before permanently faulting MAX_USER_TORQUE = 500 # LTA limits # EPS ignores commands above this angle and causes PCS to fault MAX_LTA_ANGLE = 94.9461 # deg MAX_LTA_DRIVER_TORQUE_ALLOWANCE = 150 # slightly above steering pressed allows some resistance when changing lanes class CarController(CarControllerBase): def __init__(self, dbc_name, CP, VM): self.CP = CP self.params = CarControllerParams(self.CP) self.frame = 0 self.last_steer = 0 self.last_angle = 0 self.alert_active = False self.last_standstill = False self.standstill_req = False self.steer_rate_counter = 0 self.distance_button = 0 self.packer = CANPacker(dbc_name) self.gas = 0 self.accel = 0 def update(self, CC, CS, now_nanos): actuators = CC.actuators hud_control = CC.hudControl pcm_cancel_cmd = CC.cruiseControl.cancel lat_active = CC.latActive and abs(CS.out.steeringTorque) < MAX_USER_TORQUE # *** control msgs *** can_sends = [] # *** steer torque *** new_steer = int(round(actuators.steer * self.params.STEER_MAX)) apply_steer = apply_meas_steer_torque_limits(new_steer, self.last_steer, CS.out.steeringTorqueEps, self.params) # >100 degree/sec steering fault prevention self.steer_rate_counter, apply_steer_req = common_fault_avoidance(abs(CS.out.steeringRateDeg) >= MAX_STEER_RATE, lat_active, self.steer_rate_counter, MAX_STEER_RATE_FRAMES) if not lat_active: apply_steer = 0 # *** steer angle *** if self.CP.steerControlType == SteerControlType.angle: # If using LTA control, disable LKA and set steering angle command apply_steer = 0 apply_steer_req = False if self.frame % 2 == 0: # EPS uses the torque sensor angle to control with, offset to compensate apply_angle = actuators.steeringAngleDeg + CS.out.steeringAngleOffsetDeg # Angular rate limit based on speed apply_angle = apply_std_steer_angle_limits(apply_angle, self.last_angle, CS.out.vEgoRaw, self.params) if not lat_active: apply_angle = CS.out.steeringAngleDeg + CS.out.steeringAngleOffsetDeg self.last_angle = clip(apply_angle, -MAX_LTA_ANGLE, MAX_LTA_ANGLE) self.last_steer = apply_steer # toyota can trace shows STEERING_LKA at 42Hz, with counter adding alternatively 1 and 2; # sending it at 100Hz seem to allow a higher rate limit, as the rate limit seems imposed # on consecutive messages can_sends.append(toyotacan.create_steer_command(self.packer, apply_steer, apply_steer_req)) # STEERING_LTA does not seem to allow more rate by sending faster, and may wind up easier if self.frame % 2 == 0 and self.CP.carFingerprint in TSS2_CAR: lta_active = lat_active and self.CP.steerControlType == SteerControlType.angle # cut steering torque with TORQUE_WIND_DOWN when either EPS torque or driver torque is above # the threshold, to limit max lateral acceleration and for driver torque blending respectively. full_torque_condition = (abs(CS.out.steeringTorqueEps) < self.params.STEER_MAX and abs(CS.out.steeringTorque) < MAX_LTA_DRIVER_TORQUE_ALLOWANCE) # TORQUE_WIND_DOWN at 0 ramps down torque at roughly the max down rate of 1500 units/sec torque_wind_down = 100 if lta_active and full_torque_condition else 0 can_sends.append(toyotacan.create_lta_steer_command(self.packer, self.CP.steerControlType, self.last_angle, lta_active, self.frame // 2, torque_wind_down)) # *** gas and brake *** pcm_accel_cmd = clip(actuators.accel, self.params.ACCEL_MIN, self.params.ACCEL_MAX) # on entering standstill, send standstill request if CS.out.standstill and not self.last_standstill and (self.CP.carFingerprint not in NO_STOP_TIMER_CAR): self.standstill_req = True if CS.pcm_acc_status != 8: # pcm entered standstill or it's disabled self.standstill_req = False self.last_standstill = CS.out.standstill # handle UI messages fcw_alert = hud_control.visualAlert == VisualAlert.fcw steer_alert = hud_control.visualAlert in (VisualAlert.steerRequired, VisualAlert.ldw) # we can spam can to cancel the system even if we are using lat only control if (self.frame % 3 == 0 and self.CP.openpilotLongitudinalControl) or pcm_cancel_cmd: lead = hud_control.leadVisible or CS.out.vEgo < 12. # at low speed we always assume the lead is present so ACC can be engaged # Press distance button until we are at the correct bar length. Only change while enabled to avoid skipping startup popup if self.frame % 6 == 0 and self.CP.openpilotLongitudinalControl: desired_distance = 4 - hud_control.leadDistanceBars if CS.out.cruiseState.enabled and CS.pcm_follow_distance != desired_distance: self.distance_button = not self.distance_button else: self.distance_button = 0 # Lexus IS uses a different cancellation message if pcm_cancel_cmd and self.CP.carFingerprint in UNSUPPORTED_DSU_CAR: can_sends.append(toyotacan.create_acc_cancel_command(self.packer)) elif self.CP.openpilotLongitudinalControl: can_sends.append(toyotacan.create_accel_command(self.packer, pcm_accel_cmd, pcm_cancel_cmd, self.standstill_req, lead, CS.acc_type, fcw_alert, self.distance_button)) self.accel = pcm_accel_cmd else: can_sends.append(toyotacan.create_accel_command(self.packer, 0, pcm_cancel_cmd, False, lead, CS.acc_type, False, self.distance_button)) # *** hud ui *** if self.CP.carFingerprint != CAR.TOYOTA_PRIUS_V: # ui mesg is at 1Hz but we send asap if: # - there is something to display # - there is something to stop displaying send_ui = False if ((fcw_alert or steer_alert) and not self.alert_active) or \ (not (fcw_alert or steer_alert) and self.alert_active): send_ui = True self.alert_active = not self.alert_active elif pcm_cancel_cmd: # forcing the pcm to disengage causes a bad fault sound so play a good sound instead send_ui = True if self.frame % 20 == 0 or send_ui: can_sends.append(toyotacan.create_ui_command(self.packer, steer_alert, pcm_cancel_cmd, hud_control.leftLaneVisible, hud_control.rightLaneVisible, hud_control.leftLaneDepart, hud_control.rightLaneDepart, CC.enabled, CS.lkas_hud)) if (self.frame % 100 == 0 or send_ui) and (self.CP.enableDsu or self.CP.flags & ToyotaFlags.DISABLE_RADAR.value): can_sends.append(toyotacan.create_fcw_command(self.packer, fcw_alert)) # *** static msgs *** for addr, cars, bus, fr_step, vl in STATIC_DSU_MSGS: if self.frame % fr_step == 0 and self.CP.enableDsu and self.CP.carFingerprint in cars: can_sends.append(make_can_msg(addr, vl, bus)) # keep radar disabled if self.frame % 20 == 0 and self.CP.flags & ToyotaFlags.DISABLE_RADAR.value: can_sends.append([0x750, 0, b"\x0F\x02\x3E\x00\x00\x00\x00\x00", 0]) new_actuators = actuators.as_builder() new_actuators.steer = apply_steer / self.params.STEER_MAX new_actuators.steerOutputCan = apply_steer new_actuators.steeringAngleDeg = self.last_angle new_actuators.accel = self.accel new_actuators.gas = self.gas self.frame += 1 return new_actuators, can_sends
2301_81045437/openpilot
selfdrive/car/toyota/carcontroller.py
Python
mit
8,627
import copy from cereal import car from openpilot.common.conversions import Conversions as CV from openpilot.common.numpy_fast import mean from openpilot.common.filter_simple import FirstOrderFilter from openpilot.common.realtime import DT_CTRL from opendbc.can.can_define import CANDefine from opendbc.can.parser import CANParser from openpilot.selfdrive.car.interfaces import CarStateBase from openpilot.selfdrive.car.toyota.values import ToyotaFlags, CAR, DBC, STEER_THRESHOLD, NO_STOP_TIMER_CAR, \ TSS2_CAR, RADAR_ACC_CAR, EPS_SCALE, UNSUPPORTED_DSU_CAR SteerControlType = car.CarParams.SteerControlType # These steering fault definitions seem to be common across LKA (torque) and LTA (angle): # - high steer rate fault: goes to 21 or 25 for 1 frame, then 9 for 2 seconds # - lka/lta msg drop out: goes to 9 then 11 for a combined total of 2 seconds, then 3. # if using the other control command, goes directly to 3 after 1.5 seconds # - initializing: LTA can report 0 as long as STEER_TORQUE_SENSOR->STEER_ANGLE_INITIALIZING is 1, # and is a catch-all for LKA TEMP_STEER_FAULTS = (0, 9, 11, 21, 25) # - lka/lta msg drop out: 3 (recoverable) # - prolonged high driver torque: 17 (permanent) PERM_STEER_FAULTS = (3, 17) class CarState(CarStateBase): def __init__(self, CP): super().__init__(CP) can_define = CANDefine(DBC[CP.carFingerprint]["pt"]) self.shifter_values = can_define.dv["GEAR_PACKET"]["GEAR"] self.eps_torque_scale = EPS_SCALE[CP.carFingerprint] / 100. self.cluster_speed_hyst_gap = CV.KPH_TO_MS / 2. self.cluster_min_speed = CV.KPH_TO_MS / 2. # On cars with cp.vl["STEER_TORQUE_SENSOR"]["STEER_ANGLE"] # the signal is zeroed to where the steering angle is at start. # Need to apply an offset as soon as the steering angle measurements are both received self.accurate_steer_angle_seen = False self.angle_offset = FirstOrderFilter(None, 60.0, DT_CTRL, initialized=False) self.prev_distance_button = 0 self.distance_button = 0 self.pcm_follow_distance = 0 self.low_speed_lockout = False self.acc_type = 1 self.lkas_hud = {} def update(self, cp, cp_cam): ret = car.CarState.new_message() ret.doorOpen = any([cp.vl["BODY_CONTROL_STATE"]["DOOR_OPEN_FL"], cp.vl["BODY_CONTROL_STATE"]["DOOR_OPEN_FR"], cp.vl["BODY_CONTROL_STATE"]["DOOR_OPEN_RL"], cp.vl["BODY_CONTROL_STATE"]["DOOR_OPEN_RR"]]) ret.seatbeltUnlatched = cp.vl["BODY_CONTROL_STATE"]["SEATBELT_DRIVER_UNLATCHED"] != 0 ret.parkingBrake = cp.vl["BODY_CONTROL_STATE"]["PARKING_BRAKE"] == 1 ret.brakePressed = cp.vl["BRAKE_MODULE"]["BRAKE_PRESSED"] != 0 ret.brakeHoldActive = cp.vl["ESP_CONTROL"]["BRAKE_HOLD_ACTIVE"] == 1 ret.gasPressed = cp.vl["PCM_CRUISE"]["GAS_RELEASED"] == 0 ret.wheelSpeeds = self.get_wheel_speeds( cp.vl["WHEEL_SPEEDS"]["WHEEL_SPEED_FL"], cp.vl["WHEEL_SPEEDS"]["WHEEL_SPEED_FR"], cp.vl["WHEEL_SPEEDS"]["WHEEL_SPEED_RL"], cp.vl["WHEEL_SPEEDS"]["WHEEL_SPEED_RR"], ) ret.vEgoRaw = mean([ret.wheelSpeeds.fl, ret.wheelSpeeds.fr, ret.wheelSpeeds.rl, ret.wheelSpeeds.rr]) ret.vEgo, ret.aEgo = self.update_speed_kf(ret.vEgoRaw) ret.vEgoCluster = ret.vEgo * 1.015 # minimum of all the cars ret.standstill = abs(ret.vEgoRaw) < 1e-3 ret.steeringAngleDeg = cp.vl["STEER_ANGLE_SENSOR"]["STEER_ANGLE"] + cp.vl["STEER_ANGLE_SENSOR"]["STEER_FRACTION"] ret.steeringRateDeg = cp.vl["STEER_ANGLE_SENSOR"]["STEER_RATE"] torque_sensor_angle_deg = cp.vl["STEER_TORQUE_SENSOR"]["STEER_ANGLE"] # On some cars, the angle measurement is non-zero while initializing if abs(torque_sensor_angle_deg) > 1e-3 and not bool(cp.vl["STEER_TORQUE_SENSOR"]["STEER_ANGLE_INITIALIZING"]): self.accurate_steer_angle_seen = True if self.accurate_steer_angle_seen: # Offset seems to be invalid for large steering angles and high angle rates if abs(ret.steeringAngleDeg) < 90 and abs(ret.steeringRateDeg) < 100 and cp.can_valid: self.angle_offset.update(torque_sensor_angle_deg - ret.steeringAngleDeg) if self.angle_offset.initialized: ret.steeringAngleOffsetDeg = self.angle_offset.x ret.steeringAngleDeg = torque_sensor_angle_deg - self.angle_offset.x can_gear = int(cp.vl["GEAR_PACKET"]["GEAR"]) ret.gearShifter = self.parse_gear_shifter(self.shifter_values.get(can_gear, None)) ret.leftBlinker = cp.vl["BLINKERS_STATE"]["TURN_SIGNALS"] == 1 ret.rightBlinker = cp.vl["BLINKERS_STATE"]["TURN_SIGNALS"] == 2 if self.CP.carFingerprint != CAR.TOYOTA_MIRAI: ret.engineRpm = cp.vl["ENGINE_RPM"]["RPM"] ret.steeringTorque = cp.vl["STEER_TORQUE_SENSOR"]["STEER_TORQUE_DRIVER"] ret.steeringTorqueEps = cp.vl["STEER_TORQUE_SENSOR"]["STEER_TORQUE_EPS"] * self.eps_torque_scale # we could use the override bit from dbc, but it's triggered at too high torque values ret.steeringPressed = abs(ret.steeringTorque) > STEER_THRESHOLD # Check EPS LKA/LTA fault status ret.steerFaultTemporary = cp.vl["EPS_STATUS"]["LKA_STATE"] in TEMP_STEER_FAULTS ret.steerFaultPermanent = cp.vl["EPS_STATUS"]["LKA_STATE"] in PERM_STEER_FAULTS if self.CP.steerControlType == SteerControlType.angle: ret.steerFaultTemporary = ret.steerFaultTemporary or cp.vl["EPS_STATUS"]["LTA_STATE"] in TEMP_STEER_FAULTS ret.steerFaultPermanent = ret.steerFaultPermanent or cp.vl["EPS_STATUS"]["LTA_STATE"] in PERM_STEER_FAULTS if self.CP.carFingerprint in UNSUPPORTED_DSU_CAR: # TODO: find the bit likely in DSU_CRUISE that describes an ACC fault. one may also exist in CLUTCH ret.cruiseState.available = cp.vl["DSU_CRUISE"]["MAIN_ON"] != 0 ret.cruiseState.speed = cp.vl["DSU_CRUISE"]["SET_SPEED"] * CV.KPH_TO_MS cluster_set_speed = cp.vl["PCM_CRUISE_ALT"]["UI_SET_SPEED"] else: ret.accFaulted = cp.vl["PCM_CRUISE_2"]["ACC_FAULTED"] != 0 ret.cruiseState.available = cp.vl["PCM_CRUISE_2"]["MAIN_ON"] != 0 ret.cruiseState.speed = cp.vl["PCM_CRUISE_2"]["SET_SPEED"] * CV.KPH_TO_MS cluster_set_speed = cp.vl["PCM_CRUISE_SM"]["UI_SET_SPEED"] # UI_SET_SPEED is always non-zero when main is on, hide until first enable if ret.cruiseState.speed != 0: is_metric = cp.vl["BODY_CONTROL_STATE_2"]["UNITS"] in (1, 2) conversion_factor = CV.KPH_TO_MS if is_metric else CV.MPH_TO_MS ret.cruiseState.speedCluster = cluster_set_speed * conversion_factor cp_acc = cp_cam if self.CP.carFingerprint in (TSS2_CAR - RADAR_ACC_CAR) else cp if self.CP.carFingerprint in TSS2_CAR and not self.CP.flags & ToyotaFlags.DISABLE_RADAR.value: if not (self.CP.flags & ToyotaFlags.SMART_DSU.value): self.acc_type = cp_acc.vl["ACC_CONTROL"]["ACC_TYPE"] ret.stockFcw = bool(cp_acc.vl["PCS_HUD"]["FCW"]) # some TSS2 cars have low speed lockout permanently set, so ignore on those cars # these cars are identified by an ACC_TYPE value of 2. # TODO: it is possible to avoid the lockout and gain stop and go if you # send your own ACC_CONTROL msg on startup with ACC_TYPE set to 1 if (self.CP.carFingerprint not in TSS2_CAR and self.CP.carFingerprint not in UNSUPPORTED_DSU_CAR) or \ (self.CP.carFingerprint in TSS2_CAR and self.acc_type == 1): self.low_speed_lockout = cp.vl["PCM_CRUISE_2"]["LOW_SPEED_LOCKOUT"] == 2 self.pcm_acc_status = cp.vl["PCM_CRUISE"]["CRUISE_STATE"] if self.CP.carFingerprint not in (NO_STOP_TIMER_CAR - TSS2_CAR): # ignore standstill state in certain vehicles, since pcm allows to restart with just an acceleration request ret.cruiseState.standstill = self.pcm_acc_status == 7 ret.cruiseState.enabled = bool(cp.vl["PCM_CRUISE"]["CRUISE_ACTIVE"]) ret.cruiseState.nonAdaptive = self.pcm_acc_status in (1, 2, 3, 4, 5, 6) ret.genericToggle = bool(cp.vl["LIGHT_STALK"]["AUTO_HIGH_BEAM"]) ret.espDisabled = cp.vl["ESP_CONTROL"]["TC_DISABLED"] != 0 if not self.CP.enableDsu and not self.CP.flags & ToyotaFlags.DISABLE_RADAR.value: ret.stockAeb = bool(cp_acc.vl["PRE_COLLISION"]["PRECOLLISION_ACTIVE"] and cp_acc.vl["PRE_COLLISION"]["FORCE"] < -1e-5) if self.CP.enableBsm: ret.leftBlindspot = (cp.vl["BSM"]["L_ADJACENT"] == 1) or (cp.vl["BSM"]["L_APPROACHING"] == 1) ret.rightBlindspot = (cp.vl["BSM"]["R_ADJACENT"] == 1) or (cp.vl["BSM"]["R_APPROACHING"] == 1) if self.CP.carFingerprint != CAR.TOYOTA_PRIUS_V: self.lkas_hud = copy.copy(cp_cam.vl["LKAS_HUD"]) if self.CP.carFingerprint not in UNSUPPORTED_DSU_CAR: self.pcm_follow_distance = cp.vl["PCM_CRUISE_2"]["PCM_FOLLOW_DISTANCE"] if self.CP.carFingerprint in (TSS2_CAR - RADAR_ACC_CAR) or (self.CP.flags & ToyotaFlags.SMART_DSU and not self.CP.flags & ToyotaFlags.RADAR_CAN_FILTER): # distance button is wired to the ACC module (camera or radar) self.prev_distance_button = self.distance_button if self.CP.carFingerprint in (TSS2_CAR - RADAR_ACC_CAR): self.distance_button = cp_acc.vl["ACC_CONTROL"]["DISTANCE"] else: self.distance_button = cp.vl["SDSU"]["FD_BUTTON"] return ret @staticmethod def get_can_parser(CP): messages = [ ("GEAR_PACKET", 1), ("LIGHT_STALK", 1), ("BLINKERS_STATE", 0.15), ("BODY_CONTROL_STATE", 3), ("BODY_CONTROL_STATE_2", 2), ("ESP_CONTROL", 3), ("EPS_STATUS", 25), ("BRAKE_MODULE", 40), ("WHEEL_SPEEDS", 80), ("STEER_ANGLE_SENSOR", 80), ("PCM_CRUISE", 33), ("PCM_CRUISE_SM", 1), ("STEER_TORQUE_SENSOR", 50), ] if CP.carFingerprint != CAR.TOYOTA_MIRAI: messages.append(("ENGINE_RPM", 42)) if CP.carFingerprint in UNSUPPORTED_DSU_CAR: messages.append(("DSU_CRUISE", 5)) messages.append(("PCM_CRUISE_ALT", 1)) else: messages.append(("PCM_CRUISE_2", 33)) if CP.enableBsm: messages.append(("BSM", 1)) if CP.carFingerprint in RADAR_ACC_CAR and not CP.flags & ToyotaFlags.DISABLE_RADAR.value: if not CP.flags & ToyotaFlags.SMART_DSU.value: messages += [ ("ACC_CONTROL", 33), ] messages += [ ("PCS_HUD", 1), ] if CP.carFingerprint not in (TSS2_CAR - RADAR_ACC_CAR) and not CP.enableDsu and not CP.flags & ToyotaFlags.DISABLE_RADAR.value: messages += [ ("PRE_COLLISION", 33), ] if CP.flags & ToyotaFlags.SMART_DSU and not CP.flags & ToyotaFlags.RADAR_CAN_FILTER: messages += [ ("SDSU", 100), ] return CANParser(DBC[CP.carFingerprint]["pt"], messages, 0) @staticmethod def get_cam_can_parser(CP): messages = [] if CP.carFingerprint != CAR.TOYOTA_PRIUS_V: messages += [ ("LKAS_HUD", 1), ] if CP.carFingerprint in (TSS2_CAR - RADAR_ACC_CAR): messages += [ ("PRE_COLLISION", 33), ("ACC_CONTROL", 33), ("PCS_HUD", 1), ] return CANParser(DBC[CP.carFingerprint]["pt"], messages, 2)
2301_81045437/openpilot
selfdrive/car/toyota/carstate.py
Python
mit
11,047
from cereal import car from openpilot.selfdrive.car.toyota.values import CAR Ecu = car.CarParams.Ecu FW_VERSIONS = { CAR.TOYOTA_AVALON: { (Ecu.abs, 0x7b0, None): [ b'F152607060\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881510701300\x00\x00\x00\x00', b'881510705100\x00\x00\x00\x00', b'881510705200\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B41051\x00\x00\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x0230721100\x00\x00\x00\x00\x00\x00\x00\x00A0C01000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230721200\x00\x00\x00\x00\x00\x00\x00\x00A0C01000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4702000\x00\x00\x00\x00', b'8821F4702100\x00\x00\x00\x00', b'8821F4702300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F0701100\x00\x00\x00\x00', b'8646F0703000\x00\x00\x00\x00', ], }, CAR.TOYOTA_AVALON_2019: { (Ecu.abs, 0x7b0, None): [ b'F152607110\x00\x00\x00\x00\x00\x00', b'F152607140\x00\x00\x00\x00\x00\x00', b'F152607171\x00\x00\x00\x00\x00\x00', b'F152607180\x00\x00\x00\x00\x00\x00', b'F152641040\x00\x00\x00\x00\x00\x00', b'F152641050\x00\x00\x00\x00\x00\x00', b'F152641060\x00\x00\x00\x00\x00\x00', b'F152641061\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881510703200\x00\x00\x00\x00', b'881510704200\x00\x00\x00\x00', b'881514107100\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B07010\x00\x00\x00\x00\x00\x00', b'8965B41070\x00\x00\x00\x00\x00\x00', b'8965B41080\x00\x00\x00\x00\x00\x00', b'8965B41090\x00\x00\x00\x00\x00\x00', ], (Ecu.engine, 0x700, None): [ b'\x01896630725100\x00\x00\x00\x00', b'\x01896630725200\x00\x00\x00\x00', b'\x01896630725300\x00\x00\x00\x00', b'\x01896630725400\x00\x00\x00\x00', b'\x01896630735100\x00\x00\x00\x00', b'\x01896630738000\x00\x00\x00\x00', b'\x02896630724000\x00\x00\x00\x00897CF3302002\x00\x00\x00\x00', b'\x02896630728000\x00\x00\x00\x00897CF3302002\x00\x00\x00\x00', b'\x02896630734000\x00\x00\x00\x00897CF3305001\x00\x00\x00\x00', b'\x02896630737000\x00\x00\x00\x00897CF3305001\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4702300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F0702100\x00\x00\x00\x00', ], }, CAR.TOYOTA_AVALON_TSS2: { (Ecu.abs, 0x7b0, None): [ b'\x01F152607240\x00\x00\x00\x00\x00\x00', b'\x01F152607250\x00\x00\x00\x00\x00\x00', b'\x01F152607280\x00\x00\x00\x00\x00\x00', b'F152641080\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B41110\x00\x00\x00\x00\x00\x00', ], (Ecu.engine, 0x700, None): [ b'\x018966306Q6000\x00\x00\x00\x00', b'\x01896630742000\x00\x00\x00\x00', b'\x01896630743000\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F6201200\x00\x00\x00\x00', b'\x018821F6201300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F4104100\x00\x00\x00\x008646G3304000\x00\x00\x00\x00', b'\x028646F4104100\x00\x00\x00\x008646G5301200\x00\x00\x00\x00', ], }, CAR.TOYOTA_CAMRY: { (Ecu.engine, 0x700, None): [ b'\x018966306L3100\x00\x00\x00\x00', b'\x018966306L4200\x00\x00\x00\x00', b'\x018966306L5200\x00\x00\x00\x00', b'\x018966306L9000\x00\x00\x00\x00', b'\x018966306P8000\x00\x00\x00\x00', b'\x018966306Q3100\x00\x00\x00\x00', b'\x018966306Q4000\x00\x00\x00\x00', b'\x018966306Q4100\x00\x00\x00\x00', b'\x018966306Q4200\x00\x00\x00\x00', b'\x018966306Q6000\x00\x00\x00\x00', b'\x018966333N1100\x00\x00\x00\x00', b'\x018966333N4300\x00\x00\x00\x00', b'\x018966333P3100\x00\x00\x00\x00', b'\x018966333P3200\x00\x00\x00\x00', b'\x018966333P4200\x00\x00\x00\x00', b'\x018966333P4300\x00\x00\x00\x00', b'\x018966333P4400\x00\x00\x00\x00', b'\x018966333P4500\x00\x00\x00\x00', b'\x018966333P4700\x00\x00\x00\x00', b'\x018966333P4900\x00\x00\x00\x00', b'\x018966333Q6000\x00\x00\x00\x00', b'\x018966333Q6200\x00\x00\x00\x00', b'\x018966333Q6300\x00\x00\x00\x00', b'\x018966333Q6500\x00\x00\x00\x00', b'\x018966333Q9200\x00\x00\x00\x00', b'\x018966333W6000\x00\x00\x00\x00', b'\x018966333X0000\x00\x00\x00\x00', b'\x018966333X4000\x00\x00\x00\x00', b'\x01896633T16000\x00\x00\x00\x00', b'\x028966306B2100\x00\x00\x00\x00897CF3302002\x00\x00\x00\x00', b'\x028966306B2300\x00\x00\x00\x00897CF3302002\x00\x00\x00\x00', b'\x028966306B2500\x00\x00\x00\x00897CF3302002\x00\x00\x00\x00', b'\x028966306N8100\x00\x00\x00\x00897CF3302002\x00\x00\x00\x00', b'\x028966306N8200\x00\x00\x00\x00897CF3302002\x00\x00\x00\x00', b'\x028966306N8300\x00\x00\x00\x00897CF3302002\x00\x00\x00\x00', b'\x028966306N8400\x00\x00\x00\x00897CF3302002\x00\x00\x00\x00', b'\x028966306R5000\x00\x00\x00\x00897CF3302002\x00\x00\x00\x00', b'\x028966306R5000\x00\x00\x00\x00897CF3305001\x00\x00\x00\x00', b'\x028966306R6000\x00\x00\x00\x00897CF3302002\x00\x00\x00\x00', b'\x028966306R6000\x00\x00\x00\x00897CF3305001\x00\x00\x00\x00', b'\x028966306S0000\x00\x00\x00\x00897CF3305001\x00\x00\x00\x00', b'\x028966306S0100\x00\x00\x00\x00897CF3305001\x00\x00\x00\x00', b'\x028966306S1100\x00\x00\x00\x00897CF3305001\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x02333P1100\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'8821F0601200 ', b'8821F0601300 ', b'8821F0601400 ', b'8821F0601500 ', b'8821F0602000 ', b'8821F0603300 ', b'8821F0603400 ', b'8821F0604000 ', b'8821F0604100 ', b'8821F0604200 ', b'8821F0605200 ', b'8821F0606200 ', b'8821F0607200 ', b'8821F0608000 ', b'8821F0608200 ', b'8821F0609000 ', b'8821F0609100 ', ], (Ecu.abs, 0x7b0, None): [ b'F152606210\x00\x00\x00\x00\x00\x00', b'F152606230\x00\x00\x00\x00\x00\x00', b'F152606270\x00\x00\x00\x00\x00\x00', b'F152606290\x00\x00\x00\x00\x00\x00', b'F152606410\x00\x00\x00\x00\x00\x00', b'F152633214\x00\x00\x00\x00\x00\x00', b'F152633540\x00\x00\x00\x00\x00\x00', b'F152633660\x00\x00\x00\x00\x00\x00', b'F152633712\x00\x00\x00\x00\x00\x00', b'F152633713\x00\x00\x00\x00\x00\x00', b'F152633A10\x00\x00\x00\x00\x00\x00', b'F152633A20\x00\x00\x00\x00\x00\x00', b'F152633B51\x00\x00\x00\x00\x00\x00', b'F152633B60\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B33540\x00\x00\x00\x00\x00\x00', b'8965B33542\x00\x00\x00\x00\x00\x00', b'8965B33550\x00\x00\x00\x00\x00\x00', b'8965B33551\x00\x00\x00\x00\x00\x00', b'8965B33580\x00\x00\x00\x00\x00\x00', b'8965B33581\x00\x00\x00\x00\x00\x00', b'8965B33611\x00\x00\x00\x00\x00\x00', b'8965B33621\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F0601200 ', b'8821F0601300 ', b'8821F0601400 ', b'8821F0601500 ', b'8821F0602000 ', b'8821F0603300 ', b'8821F0603400 ', b'8821F0604000 ', b'8821F0604100 ', b'8821F0604200 ', b'8821F0605200 ', b'8821F0606200 ', b'8821F0607200 ', b'8821F0608000 ', b'8821F0608200 ', b'8821F0609000 ', b'8821F0609100 ', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F0601200 ', b'8646F0601300 ', b'8646F0601400 ', b'8646F0603400 ', b'8646F0603500 ', b'8646F0604100 ', b'8646F0605000 ', b'8646F0606000 ', b'8646F0606100 ', b'8646F0607000 ', b'8646F0607100 ', ], }, CAR.TOYOTA_CAMRY_TSS2: { (Ecu.eps, 0x7a1, None): [ b'8965B33630\x00\x00\x00\x00\x00\x00', b'8965B33640\x00\x00\x00\x00\x00\x00', b'8965B33650\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'\x01F152606370\x00\x00\x00\x00\x00\x00', b'\x01F152606390\x00\x00\x00\x00\x00\x00', b'\x01F152606400\x00\x00\x00\x00\x00\x00', b'\x01F152606431\x00\x00\x00\x00\x00\x00', b'F152633310\x00\x00\x00\x00\x00\x00', b'F152633D00\x00\x00\x00\x00\x00\x00', b'F152633D60\x00\x00\x00\x00\x00\x00', ], (Ecu.engine, 0x700, None): [ b'\x018966306Q5000\x00\x00\x00\x00', b'\x018966306Q6000\x00\x00\x00\x00', b'\x018966306Q7000\x00\x00\x00\x00', b'\x018966306Q9000\x00\x00\x00\x00', b'\x018966306R3000\x00\x00\x00\x00', b'\x018966306R8000\x00\x00\x00\x00', b'\x018966306T0000\x00\x00\x00\x00', b'\x018966306T3100\x00\x00\x00\x00', b'\x018966306T3200\x00\x00\x00\x00', b'\x018966306T4000\x00\x00\x00\x00', b'\x018966306T4100\x00\x00\x00\x00', b'\x018966306V1000\x00\x00\x00\x00', b'\x01896633T20000\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F6201200\x00\x00\x00\x00', b'\x018821F6201300\x00\x00\x00\x00', b'\x018821F6201400\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F0602100\x00\x00\x00\x008646G5301200\x00\x00\x00\x00', b'\x028646F0602200\x00\x00\x00\x008646G5301200\x00\x00\x00\x00', b'\x028646F0602300\x00\x00\x00\x008646G3304000\x00\x00\x00\x00', b'\x028646F3305200\x00\x00\x00\x008646G3304000\x00\x00\x00\x00', b'\x028646F3305200\x00\x00\x00\x008646G5301200\x00\x00\x00\x00', b'\x028646F3305300\x00\x00\x00\x008646G3304000\x00\x00\x00\x00', b'\x028646F3305300\x00\x00\x00\x008646G5301200\x00\x00\x00\x00', b'\x028646F3305500\x00\x00\x00\x008646G3304000\x00\x00\x00\x00', ], }, CAR.TOYOTA_CHR: { (Ecu.engine, 0x700, None): [ b'\x01896631017100\x00\x00\x00\x00', b'\x01896631017200\x00\x00\x00\x00', b'\x01896631021100\x00\x00\x00\x00', b'\x0189663F413100\x00\x00\x00\x00', b'\x0189663F414100\x00\x00\x00\x00', b'\x0189663F438000\x00\x00\x00\x00', b'\x02896631013200\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x0289663F405000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x0289663F405100\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x0289663F418000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x0289663F423000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x0289663F431000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'8821F0W01000 ', b'8821F0W01100 ', b'8821FF401600 ', b'8821FF402300 ', b'8821FF402400 ', b'8821FF404000 ', b'8821FF404100 ', b'8821FF405000 ', b'8821FF405100 ', b'8821FF406000 ', b'8821FF407100 ', ], (Ecu.abs, 0x7b0, None): [ b'F152610012\x00\x00\x00\x00\x00\x00', b'F152610013\x00\x00\x00\x00\x00\x00', b'F152610014\x00\x00\x00\x00\x00\x00', b'F152610020\x00\x00\x00\x00\x00\x00', b'F152610040\x00\x00\x00\x00\x00\x00', b'F152610153\x00\x00\x00\x00\x00\x00', b'F152610190\x00\x00\x00\x00\x00\x00', b'F152610200\x00\x00\x00\x00\x00\x00', b'F152610210\x00\x00\x00\x00\x00\x00', b'F152610220\x00\x00\x00\x00\x00\x00', b'F152610230\x00\x00\x00\x00\x00\x00', b'F1526F4034\x00\x00\x00\x00\x00\x00', b'F1526F4044\x00\x00\x00\x00\x00\x00', b'F1526F4073\x00\x00\x00\x00\x00\x00', b'F1526F4121\x00\x00\x00\x00\x00\x00', b'F1526F4122\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B10011\x00\x00\x00\x00\x00\x00', b'8965B10020\x00\x00\x00\x00\x00\x00', b'8965B10040\x00\x00\x00\x00\x00\x00', b'8965B10050\x00\x00\x00\x00\x00\x00', b'8965B10070\x00\x00\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x0331024000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203202\x00\x00\x00\x00', b'\x0331024000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203302\x00\x00\x00\x00', b'\x0331036000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203302\x00\x00\x00\x00', b'\x033F401100\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203102\x00\x00\x00\x00', b'\x033F401200\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203202\x00\x00\x00\x00', b'\x033F424000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203202\x00\x00\x00\x00', b'\x033F424000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203302\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F0W01000 ', b'8821F0W01100 ', b'8821FF401600 ', b'8821FF402300 ', b'8821FF402400 ', b'8821FF404000 ', b'8821FF404100 ', b'8821FF405000 ', b'8821FF405100 ', b'8821FF406000 ', b'8821FF407100 ', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646FF401700 ', b'8646FF401800 ', b'8646FF402100 ', b'8646FF404000 ', b'8646FF406000 ', b'8646FF407000 ', b'8646FF407100 ', ], }, CAR.TOYOTA_CHR_TSS2: { (Ecu.abs, 0x7b0, None): [ b'F152610041\x00\x00\x00\x00\x00\x00', b'F152610260\x00\x00\x00\x00\x00\x00', b'F1526F4270\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B10091\x00\x00\x00\x00\x00\x00', b'8965B10092\x00\x00\x00\x00\x00\x00', b'8965B10110\x00\x00\x00\x00\x00\x00', b'8965B10111\x00\x00\x00\x00\x00\x00', ], (Ecu.engine, 0x700, None): [ b'\x0189663F438000\x00\x00\x00\x00', b'\x0189663F459000\x00\x00\x00\x00', b'\x02896631025000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x0289663F453000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x0331014000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203402\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821FF410200\x00\x00\x00\x00', b'\x018821FF410300\x00\x00\x00\x00', b'\x018821FF410400\x00\x00\x00\x00', b'\x018821FF410500\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646FF410200\x00\x00\x00\x008646GF408200\x00\x00\x00\x00', b'\x028646FF411100\x00\x00\x00\x008646GF409000\x00\x00\x00\x00', b'\x028646FF413100\x00\x00\x00\x008646GF411100\x00\x00\x00\x00', ], }, CAR.TOYOTA_COROLLA: { (Ecu.engine, 0x7e0, None): [ b'\x0230ZC2000\x00\x00\x00\x00\x00\x00\x00\x0050212000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230ZC2100\x00\x00\x00\x00\x00\x00\x00\x0050212000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230ZC2200\x00\x00\x00\x00\x00\x00\x00\x0050212000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230ZC2300\x00\x00\x00\x00\x00\x00\x00\x0050212000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230ZC3000\x00\x00\x00\x00\x00\x00\x00\x0050212000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230ZC3100\x00\x00\x00\x00\x00\x00\x00\x0050212000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230ZC3200\x00\x00\x00\x00\x00\x00\x00\x0050212000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230ZC3300\x00\x00\x00\x00\x00\x00\x00\x0050212000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0330ZC1200\x00\x00\x00\x00\x00\x00\x00\x0050212000\x00\x00\x00\x00\x00\x00\x00\x00895231203202\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881510201100\x00\x00\x00\x00', b'881510201200\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F152602190\x00\x00\x00\x00\x00\x00', b'F152602191\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B02181\x00\x00\x00\x00\x00\x00', b'8965B02191\x00\x00\x00\x00\x00\x00', b'8965B48150\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4702100\x00\x00\x00\x00', b'8821F4702300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F0201101\x00\x00\x00\x00', b'8646F0201200\x00\x00\x00\x00', ], }, CAR.TOYOTA_COROLLA_TSS2: { (Ecu.engine, 0x700, None): [ b'\x01896630A22000\x00\x00\x00\x00', b'\x01896630ZG2000\x00\x00\x00\x00', b'\x01896630ZG5000\x00\x00\x00\x00', b'\x01896630ZG5100\x00\x00\x00\x00', b'\x01896630ZG5200\x00\x00\x00\x00', b'\x01896630ZG5300\x00\x00\x00\x00', b'\x01896630ZJ1000\x00\x00\x00\x00', b'\x01896630ZP1000\x00\x00\x00\x00', b'\x01896630ZP2000\x00\x00\x00\x00', b'\x01896630ZQ5000\x00\x00\x00\x00', b'\x01896630ZU8000\x00\x00\x00\x00', b'\x01896630ZU9000\x00\x00\x00\x00', b'\x01896630ZX4000\x00\x00\x00\x00', b'\x018966312L8000\x00\x00\x00\x00', b'\x018966312M0000\x00\x00\x00\x00', b'\x018966312M9000\x00\x00\x00\x00', b'\x018966312P9000\x00\x00\x00\x00', b'\x018966312P9100\x00\x00\x00\x00', b'\x018966312P9200\x00\x00\x00\x00', b'\x018966312P9300\x00\x00\x00\x00', b'\x018966312Q2300\x00\x00\x00\x00', b'\x018966312Q8000\x00\x00\x00\x00', b'\x018966312R0000\x00\x00\x00\x00', b'\x018966312R0100\x00\x00\x00\x00', b'\x018966312R0200\x00\x00\x00\x00', b'\x018966312R1000\x00\x00\x00\x00', b'\x018966312R1100\x00\x00\x00\x00', b'\x018966312R3100\x00\x00\x00\x00', b'\x018966312S5000\x00\x00\x00\x00', b'\x018966312S7000\x00\x00\x00\x00', b'\x018966312W3000\x00\x00\x00\x00', b'\x018966312W9000\x00\x00\x00\x00', b'\x01896637621000\x00\x00\x00\x00', b'\x01896637623000\x00\x00\x00\x00', b'\x01896637624000\x00\x00\x00\x00', b'\x01896637626000\x00\x00\x00\x00', b'\x01896637639000\x00\x00\x00\x00', b'\x01896637643000\x00\x00\x00\x00', b'\x01896637644000\x00\x00\x00\x00', b'\x01896637648000\x00\x00\x00\x00', b'\x02896630A07000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896630A21000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896630ZJ5000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896630ZK8000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896630ZN8000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896630ZQ3000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896630ZR2000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896630ZT8000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896630ZT9000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896630ZZ0000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x028966312K6000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x028966312L0000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x028966312Q3000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x028966312Q3100\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x028966312Q4000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x038966312L7000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF1205001\x00\x00\x00\x00', b'\x038966312N1000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF1203001\x00\x00\x00\x00', b'\x038966312T3000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF1205001\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x0230A10000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230A11000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230ZN4000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230ZN5000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02312K4000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02312U5000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x03312K7000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203402\x00\x00\x00\x00', b'\x03312M3000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203402\x00\x00\x00\x00', b'\x03312N6000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203202\x00\x00\x00\x00', b'\x03312N6000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203302\x00\x00\x00\x00', b'\x03312N6000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203402\x00\x00\x00\x00', b'\x03312N6100\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203302\x00\x00\x00\x00', b'\x03312N6100\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203402\x00\x00\x00\x00', b'\x03312N6200\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203202\x00\x00\x00\x00', b'\x03312N6200\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203302\x00\x00\x00\x00', b'\x03312N6200\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203402\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'\x018965B12350\x00\x00\x00\x00\x00\x00', b'\x018965B12470\x00\x00\x00\x00\x00\x00', b'\x018965B12490\x00\x00\x00\x00\x00\x00', b'\x018965B12500\x00\x00\x00\x00\x00\x00', b'\x018965B12510\x00\x00\x00\x00\x00\x00', b'\x018965B12520\x00\x00\x00\x00\x00\x00', b'\x018965B12530\x00\x00\x00\x00\x00\x00', b'\x018965B1254000\x00\x00\x00\x00', b'\x018965B1255000\x00\x00\x00\x00', b'\x018965B1256000\x00\x00\x00\x00', b'8965B12361\x00\x00\x00\x00\x00\x00', b'8965B12451\x00\x00\x00\x00\x00\x00', b'8965B16011\x00\x00\x00\x00\x00\x00', b'8965B16101\x00\x00\x00\x00\x00\x00', b'8965B16170\x00\x00\x00\x00\x00\x00', b'8965B76012\x00\x00\x00\x00\x00\x00', b'8965B76050\x00\x00\x00\x00\x00\x00', b'8965B76091\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'\x01F152602280\x00\x00\x00\x00\x00\x00', b'\x01F152602281\x00\x00\x00\x00\x00\x00', b'\x01F152602470\x00\x00\x00\x00\x00\x00', b'\x01F152602560\x00\x00\x00\x00\x00\x00', b'\x01F152602590\x00\x00\x00\x00\x00\x00', b'\x01F152602650\x00\x00\x00\x00\x00\x00', b'\x01F15260A010\x00\x00\x00\x00\x00\x00', b'\x01F15260A050\x00\x00\x00\x00\x00\x00', b'\x01F15260A070\x00\x00\x00\x00\x00\x00', b'\x01F152612641\x00\x00\x00\x00\x00\x00', b'\x01F152612651\x00\x00\x00\x00\x00\x00', b'\x01F152612862\x00\x00\x00\x00\x00\x00', b'\x01F152612B10\x00\x00\x00\x00\x00\x00', b'\x01F152612B51\x00\x00\x00\x00\x00\x00', b'\x01F152612B60\x00\x00\x00\x00\x00\x00', b'\x01F152612B61\x00\x00\x00\x00\x00\x00', b'\x01F152612B62\x00\x00\x00\x00\x00\x00', b'\x01F152612B70\x00\x00\x00\x00\x00\x00', b'\x01F152612B71\x00\x00\x00\x00\x00\x00', b'\x01F152612B81\x00\x00\x00\x00\x00\x00', b'\x01F152612B90\x00\x00\x00\x00\x00\x00', b'\x01F152612B91\x00\x00\x00\x00\x00\x00', b'\x01F152612C00\x00\x00\x00\x00\x00\x00', b'\x01F152676250\x00\x00\x00\x00\x00\x00', b'F152612590\x00\x00\x00\x00\x00\x00', b'F152612691\x00\x00\x00\x00\x00\x00', b'F152612692\x00\x00\x00\x00\x00\x00', b'F152612700\x00\x00\x00\x00\x00\x00', b'F152612710\x00\x00\x00\x00\x00\x00', b'F152612790\x00\x00\x00\x00\x00\x00', b'F152612800\x00\x00\x00\x00\x00\x00', b'F152612820\x00\x00\x00\x00\x00\x00', b'F152612840\x00\x00\x00\x00\x00\x00', b'F152612842\x00\x00\x00\x00\x00\x00', b'F152612890\x00\x00\x00\x00\x00\x00', b'F152612A00\x00\x00\x00\x00\x00\x00', b'F152612A10\x00\x00\x00\x00\x00\x00', b'F152612D00\x00\x00\x00\x00\x00\x00', b'F152616011\x00\x00\x00\x00\x00\x00', b'F152616030\x00\x00\x00\x00\x00\x00', b'F152616060\x00\x00\x00\x00\x00\x00', b'F152642540\x00\x00\x00\x00\x00\x00', b'F152676293\x00\x00\x00\x00\x00\x00', b'F152676303\x00\x00\x00\x00\x00\x00', b'F152676304\x00\x00\x00\x00\x00\x00', b'F152676371\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F3301100\x00\x00\x00\x00', b'\x018821F3301200\x00\x00\x00\x00', b'\x018821F3301300\x00\x00\x00\x00', b'\x018821F3301400\x00\x00\x00\x00', b'\x018821F6201400\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F12010C0\x00\x00\x00\x008646G26011A0\x00\x00\x00\x00', b'\x028646F12010D0\x00\x00\x00\x008646G26011A0\x00\x00\x00\x00', b'\x028646F1201100\x00\x00\x00\x008646G26011A0\x00\x00\x00\x00', b'\x028646F1201200\x00\x00\x00\x008646G26011A0\x00\x00\x00\x00', b'\x028646F1201300\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', b'\x028646F1201400\x00\x00\x00\x008646G2601500\x00\x00\x00\x00', b'\x028646F1202000\x00\x00\x00\x008646G2601200\x00\x00\x00\x00', b'\x028646F1202100\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', b'\x028646F1202200\x00\x00\x00\x008646G2601500\x00\x00\x00\x00', b'\x028646F1206000\x00\x00\x00\x008646G2601500\x00\x00\x00\x00', b'\x028646F1601100\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', b'\x028646F1601200\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', b'\x028646F1601300\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', b'\x028646F4203400\x00\x00\x00\x008646G2601200\x00\x00\x00\x00', b'\x028646F76020C0\x00\x00\x00\x008646G26011A0\x00\x00\x00\x00', b'\x028646F7603100\x00\x00\x00\x008646G2601200\x00\x00\x00\x00', b'\x028646F7603200\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', b'\x028646F7603300\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', b'\x028646F7605100\x00\x00\x00\x008646G3304000\x00\x00\x00\x00', ], }, CAR.TOYOTA_HIGHLANDER: { (Ecu.engine, 0x700, None): [ b'\x01896630E09000\x00\x00\x00\x00', b'\x01896630E43000\x00\x00\x00\x00', b'\x01896630E43100\x00\x00\x00\x00', b'\x01896630E43200\x00\x00\x00\x00', b'\x01896630E44200\x00\x00\x00\x00', b'\x01896630E44400\x00\x00\x00\x00', b'\x01896630E45000\x00\x00\x00\x00', b'\x01896630E45100\x00\x00\x00\x00', b'\x01896630E45200\x00\x00\x00\x00', b'\x01896630E46000\x00\x00\x00\x00', b'\x01896630E46200\x00\x00\x00\x00', b'\x01896630E74000\x00\x00\x00\x00', b'\x01896630E75000\x00\x00\x00\x00', b'\x01896630E76000\x00\x00\x00\x00', b'\x01896630E77000\x00\x00\x00\x00', b'\x01896630E83000\x00\x00\x00\x00', b'\x01896630E84000\x00\x00\x00\x00', b'\x01896630E85000\x00\x00\x00\x00', b'\x01896630E86000\x00\x00\x00\x00', b'\x01896630E88000\x00\x00\x00\x00', b'\x01896630EA0000\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x0230E40000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230E40100\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230E51000\x00\x00\x00\x00\x00\x00\x00\x0050E17000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230EA2000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0230EA2100\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B48140\x00\x00\x00\x00\x00\x00', b'8965B48150\x00\x00\x00\x00\x00\x00', b'8965B48160\x00\x00\x00\x00\x00\x00', b'8965B48210\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F15260E011\x00\x00\x00\x00\x00\x00', b'F152648541\x00\x00\x00\x00\x00\x00', b'F152648542\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881510E01100\x00\x00\x00\x00', b'881510E01200\x00\x00\x00\x00', b'881510E02200\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4702100\x00\x00\x00\x00', b'8821F4702300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F0E01200\x00\x00\x00\x00', b'8646F0E01300\x00\x00\x00\x00', ], }, CAR.TOYOTA_HIGHLANDER_TSS2: { (Ecu.eps, 0x7a1, None): [ b'8965B48241\x00\x00\x00\x00\x00\x00', b'8965B48310\x00\x00\x00\x00\x00\x00', b'8965B48320\x00\x00\x00\x00\x00\x00', b'8965B48400\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'\x01F15260E051\x00\x00\x00\x00\x00\x00', b'\x01F15260E05300\x00\x00\x00\x00', b'\x01F15260E061\x00\x00\x00\x00\x00\x00', b'\x01F15260E110\x00\x00\x00\x00\x00\x00', b'\x01F15260E170\x00\x00\x00\x00\x00\x00', b'\x01F15264872300\x00\x00\x00\x00', b'\x01F15264872400\x00\x00\x00\x00', b'\x01F15264872500\x00\x00\x00\x00', b'\x01F15264872600\x00\x00\x00\x00', b'\x01F15264872700\x00\x00\x00\x00', b'\x01F15264873500\x00\x00\x00\x00', b'\x01F152648C6300\x00\x00\x00\x00', b'\x01F152648J4000\x00\x00\x00\x00', b'\x01F152648J5000\x00\x00\x00\x00', b'\x01F152648J6000\x00\x00\x00\x00', b'\x01F152648J7000\x00\x00\x00\x00', b'\x01F152648L5000\x00\x00\x00\x00', ], (Ecu.engine, 0x700, None): [ b'\x01896630E62100\x00\x00\x00\x00', b'\x01896630E62200\x00\x00\x00\x00', b'\x01896630E64100\x00\x00\x00\x00', b'\x01896630E64200\x00\x00\x00\x00', b'\x01896630E64400\x00\x00\x00\x00', b'\x01896630E67000\x00\x00\x00\x00', b'\x01896630EA1000\x00\x00\x00\x00', b'\x01896630EB1000\x00\x00\x00\x00', b'\x01896630EB1100\x00\x00\x00\x00', b'\x01896630EB1200\x00\x00\x00\x00', b'\x01896630EB1300\x00\x00\x00\x00', b'\x01896630EB2000\x00\x00\x00\x00', b'\x01896630EB2100\x00\x00\x00\x00', b'\x01896630EB2200\x00\x00\x00\x00', b'\x01896630EC4000\x00\x00\x00\x00', b'\x01896630ED9000\x00\x00\x00\x00', b'\x01896630ED9100\x00\x00\x00\x00', b'\x01896630EE1000\x00\x00\x00\x00', b'\x01896630EE1100\x00\x00\x00\x00', b'\x01896630EE4000\x00\x00\x00\x00', b'\x01896630EE4100\x00\x00\x00\x00', b'\x01896630EE5000\x00\x00\x00\x00', b'\x01896630EE6000\x00\x00\x00\x00', b'\x01896630EE7000\x00\x00\x00\x00', b'\x01896630EF8000\x00\x00\x00\x00', b'\x01896630EG3000\x00\x00\x00\x00', b'\x01896630EG5000\x00\x00\x00\x00', b'\x02896630E66000\x00\x00\x00\x00897CF4801001\x00\x00\x00\x00', b'\x02896630E66100\x00\x00\x00\x00897CF4801001\x00\x00\x00\x00', b'\x02896630EB3000\x00\x00\x00\x00897CF4801001\x00\x00\x00\x00', b'\x02896630EB3100\x00\x00\x00\x00897CF4801001\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F3301400\x00\x00\x00\x00', b'\x018821F6201200\x00\x00\x00\x00', b'\x018821F6201300\x00\x00\x00\x00', b'\x018821F6201400\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F0E02100\x00\x00\x00\x008646G2601200\x00\x00\x00\x00', b'\x028646F4803000\x00\x00\x00\x008646G3304000\x00\x00\x00\x00', b'\x028646F4803000\x00\x00\x00\x008646G5301200\x00\x00\x00\x00', b'\x028646F4803200\x00\x00\x00\x008646G3304000\x00\x00\x00\x00', ], }, CAR.LEXUS_IS: { (Ecu.engine, 0x700, None): [ b'\x018966353M7000\x00\x00\x00\x00', b'\x018966353M7100\x00\x00\x00\x00', b'\x018966353Q2000\x00\x00\x00\x00', b'\x018966353Q2100\x00\x00\x00\x00', b'\x018966353Q2300\x00\x00\x00\x00', b'\x018966353Q4000\x00\x00\x00\x00', b'\x018966353R1100\x00\x00\x00\x00', b'\x018966353R7100\x00\x00\x00\x00', b'\x018966353R8000\x00\x00\x00\x00', b'\x018966353R8100\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x0232480000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02353P7000\x00\x00\x00\x00\x00\x00\x00\x00530J5000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02353P9000\x00\x00\x00\x00\x00\x00\x00\x00553C1000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F152653300\x00\x00\x00\x00\x00\x00', b'F152653301\x00\x00\x00\x00\x00\x00', b'F152653310\x00\x00\x00\x00\x00\x00', b'F152653330\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881515306200\x00\x00\x00\x00', b'881515306400\x00\x00\x00\x00', b'881515306500\x00\x00\x00\x00', b'881515307400\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B53270\x00\x00\x00\x00\x00\x00', b'8965B53271\x00\x00\x00\x00\x00\x00', b'8965B53280\x00\x00\x00\x00\x00\x00', b'8965B53281\x00\x00\x00\x00\x00\x00', b'8965B53311\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4702100\x00\x00\x00\x00', b'8821F4702300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F5301101\x00\x00\x00\x00', b'8646F5301200\x00\x00\x00\x00', b'8646F5301300\x00\x00\x00\x00', b'8646F5301400\x00\x00\x00\x00', ], }, CAR.LEXUS_IS_TSS2: { (Ecu.engine, 0x700, None): [ b'\x018966353S1000\x00\x00\x00\x00', b'\x018966353S2000\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x02353U0000\x00\x00\x00\x00\x00\x00\x00\x0052422000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'\x01F15265337200\x00\x00\x00\x00', b'\x01F15265342000\x00\x00\x00\x00', b'\x01F15265343000\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B53450\x00\x00\x00\x00\x00\x00', b'8965B53800\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F6201200\x00\x00\x00\x00', b'\x018821F6201300\x00\x00\x00\x00', b'\x018821F6201400\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F5303300\x00\x00\x00\x008646G5301200\x00\x00\x00\x00', b'\x028646F5303400\x00\x00\x00\x008646G3304000\x00\x00\x00\x00', ], }, CAR.TOYOTA_PRIUS: { (Ecu.engine, 0x700, None): [ b'\x02896634761000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634761100\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634761200\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634762000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634762100\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634763000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634763100\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634765000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634765100\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634769000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634769100\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634769200\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634770000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634770100\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634774000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634774100\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634774200\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634782000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x02896634784000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x028966347A0000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x028966347A5000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x028966347A8000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x028966347B0000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x03896634759100\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4701003\x00\x00\x00\x00', b'\x03896634759200\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4701003\x00\x00\x00\x00', b'\x03896634759200\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4701004\x00\x00\x00\x00', b'\x03896634759300\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4701003\x00\x00\x00\x00', b'\x03896634759300\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4701004\x00\x00\x00\x00', b'\x03896634760000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4701002\x00\x00\x00\x00', b'\x03896634760000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4701003\x00\x00\x00\x00', b'\x03896634760000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4701004\x00\x00\x00\x00', b'\x03896634760100\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4701003\x00\x00\x00\x00', b'\x03896634760200\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4701003\x00\x00\x00\x00', b'\x03896634760200\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4701004\x00\x00\x00\x00', b'\x03896634760300\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4701004\x00\x00\x00\x00', b'\x03896634768000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4703001\x00\x00\x00\x00', b'\x03896634768000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4703002\x00\x00\x00\x00', b'\x03896634768100\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4703002\x00\x00\x00\x00', b'\x03896634785000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4705001\x00\x00\x00\x00', b'\x03896634785000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4710001\x00\x00\x00\x00', b'\x03896634786000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4705001\x00\x00\x00\x00', b'\x03896634786000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4710001\x00\x00\x00\x00', b'\x03896634789000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4703002\x00\x00\x00\x00', b'\x038966347A3000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4701003\x00\x00\x00\x00', b'\x038966347A3000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4707001\x00\x00\x00\x00', b'\x038966347B6000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4710001\x00\x00\x00\x00', b'\x038966347B7000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4710001\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B47021\x00\x00\x00\x00\x00\x00', b'8965B47022\x00\x00\x00\x00\x00\x00', b'8965B47023\x00\x00\x00\x00\x00\x00', b'8965B47050\x00\x00\x00\x00\x00\x00', b'8965B47060\x00\x00\x00\x00\x00\x00', b'8965B47070\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F152647290\x00\x00\x00\x00\x00\x00', b'F152647300\x00\x00\x00\x00\x00\x00', b'F152647310\x00\x00\x00\x00\x00\x00', b'F152647414\x00\x00\x00\x00\x00\x00', b'F152647415\x00\x00\x00\x00\x00\x00', b'F152647416\x00\x00\x00\x00\x00\x00', b'F152647417\x00\x00\x00\x00\x00\x00', b'F152647470\x00\x00\x00\x00\x00\x00', b'F152647490\x00\x00\x00\x00\x00\x00', b'F152647682\x00\x00\x00\x00\x00\x00', b'F152647683\x00\x00\x00\x00\x00\x00', b'F152647684\x00\x00\x00\x00\x00\x00', b'F152647862\x00\x00\x00\x00\x00\x00', b'F152647863\x00\x00\x00\x00\x00\x00', b'F152647864\x00\x00\x00\x00\x00\x00', b'F152647865\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881514702300\x00\x00\x00\x00', b'881514702400\x00\x00\x00\x00', b'881514703100\x00\x00\x00\x00', b'881514704100\x00\x00\x00\x00', b'881514706000\x00\x00\x00\x00', b'881514706100\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4702000\x00\x00\x00\x00', b'8821F4702100\x00\x00\x00\x00', b'8821F4702300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F4701300\x00\x00\x00\x00', b'8646F4702001\x00\x00\x00\x00', b'8646F4702100\x00\x00\x00\x00', b'8646F4702200\x00\x00\x00\x00', b'8646F4705000\x00\x00\x00\x00', b'8646F4705200\x00\x00\x00\x00', ], }, CAR.TOYOTA_PRIUS_V: { (Ecu.abs, 0x7b0, None): [ b'F152647280\x00\x00\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x0234781000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881514705100\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4702300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F4703300\x00\x00\x00\x00', ], }, CAR.TOYOTA_RAV4: { (Ecu.engine, 0x7e0, None): [ b'\x02342Q1000\x00\x00\x00\x00\x00\x00\x00\x0054212000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02342Q1100\x00\x00\x00\x00\x00\x00\x00\x0054212000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02342Q1200\x00\x00\x00\x00\x00\x00\x00\x0054212000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02342Q1300\x00\x00\x00\x00\x00\x00\x00\x0054212000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02342Q2000\x00\x00\x00\x00\x00\x00\x00\x0054213000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02342Q2100\x00\x00\x00\x00\x00\x00\x00\x0054213000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02342Q2200\x00\x00\x00\x00\x00\x00\x00\x0054213000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02342Q4000\x00\x00\x00\x00\x00\x00\x00\x0054215000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B42063\x00\x00\x00\x00\x00\x00', b'8965B42073\x00\x00\x00\x00\x00\x00', b'8965B42082\x00\x00\x00\x00\x00\x00', b'8965B42083\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F15260R102\x00\x00\x00\x00\x00\x00', b'F15260R103\x00\x00\x00\x00\x00\x00', b'F152642492\x00\x00\x00\x00\x00\x00', b'F152642493\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881514201200\x00\x00\x00\x00', b'881514201300\x00\x00\x00\x00', b'881514201400\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4702000\x00\x00\x00\x00', b'8821F4702100\x00\x00\x00\x00', b'8821F4702300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F4201100\x00\x00\x00\x00', b'8646F4201200\x00\x00\x00\x00', b'8646F4202001\x00\x00\x00\x00', b'8646F4202100\x00\x00\x00\x00', b'8646F4204000\x00\x00\x00\x00', ], }, CAR.TOYOTA_RAV4H: { (Ecu.engine, 0x7e0, None): [ b'\x02342N9000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02342N9100\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02342P0000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B42102\x00\x00\x00\x00\x00\x00', b'8965B42103\x00\x00\x00\x00\x00\x00', b'8965B42112\x00\x00\x00\x00\x00\x00', b'8965B42162\x00\x00\x00\x00\x00\x00', b'8965B42163\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F152642090\x00\x00\x00\x00\x00\x00', b'F152642110\x00\x00\x00\x00\x00\x00', b'F152642120\x00\x00\x00\x00\x00\x00', b'F152642400\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881514202200\x00\x00\x00\x00', b'881514202300\x00\x00\x00\x00', b'881514202400\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4702000\x00\x00\x00\x00', b'8821F4702100\x00\x00\x00\x00', b'8821F4702300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F4201100\x00\x00\x00\x00', b'8646F4201200\x00\x00\x00\x00', b'8646F4202001\x00\x00\x00\x00', b'8646F4202100\x00\x00\x00\x00', b'8646F4204000\x00\x00\x00\x00', ], }, CAR.TOYOTA_RAV4_TSS2: { (Ecu.engine, 0x700, None): [ b'\x01896630R58000\x00\x00\x00\x00', b'\x01896630R58100\x00\x00\x00\x00', b'\x018966342E2000\x00\x00\x00\x00', b'\x018966342M5000\x00\x00\x00\x00', b'\x018966342M8000\x00\x00\x00\x00', b'\x018966342S9000\x00\x00\x00\x00', b'\x018966342T1000\x00\x00\x00\x00', b'\x018966342T6000\x00\x00\x00\x00', b'\x018966342T9000\x00\x00\x00\x00', b'\x018966342U4000\x00\x00\x00\x00', b'\x018966342U4100\x00\x00\x00\x00', b'\x018966342U5100\x00\x00\x00\x00', b'\x018966342V0000\x00\x00\x00\x00', b'\x018966342V3000\x00\x00\x00\x00', b'\x018966342V3100\x00\x00\x00\x00', b'\x018966342V3200\x00\x00\x00\x00', b'\x018966342W5000\x00\x00\x00\x00', b'\x018966342W7000\x00\x00\x00\x00', b'\x018966342W8000\x00\x00\x00\x00', b'\x018966342X5000\x00\x00\x00\x00', b'\x018966342X6000\x00\x00\x00\x00', b'\x01896634A05000\x00\x00\x00\x00', b'\x01896634A15000\x00\x00\x00\x00', b'\x01896634A19000\x00\x00\x00\x00', b'\x01896634A19100\x00\x00\x00\x00', b'\x01896634A20000\x00\x00\x00\x00', b'\x01896634A20100\x00\x00\x00\x00', b'\x01896634A22000\x00\x00\x00\x00', b'\x01896634A22100\x00\x00\x00\x00', b'\x01896634A25000\x00\x00\x00\x00', b'\x01896634A30000\x00\x00\x00\x00', b'\x01896634A44000\x00\x00\x00\x00', b'\x01896634A45000\x00\x00\x00\x00', b'\x01896634A46000\x00\x00\x00\x00', b'\x028966342M7000\x00\x00\x00\x00897CF1201001\x00\x00\x00\x00', b'\x028966342T0000\x00\x00\x00\x00897CF1201001\x00\x00\x00\x00', b'\x028966342V1000\x00\x00\x00\x00897CF1202001\x00\x00\x00\x00', b'\x028966342W4001\x00\x00\x00\x00897CF1203001\x00\x00\x00\x00', b'\x028966342Y8000\x00\x00\x00\x00897CF1201001\x00\x00\x00\x00', b'\x028966342Z8000\x00\x00\x00\x00897CF1201001\x00\x00\x00\x00', b'\x02896634A13000\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02896634A13001\x00\x00\x00\x00897CF4801001\x00\x00\x00\x00', b'\x02896634A13101\x00\x00\x00\x00897CF4801001\x00\x00\x00\x00', b'\x02896634A13201\x00\x00\x00\x00897CF4801001\x00\x00\x00\x00', b'\x02896634A14001\x00\x00\x00\x00897CF0R01000\x00\x00\x00\x00', b'\x02896634A14001\x00\x00\x00\x00897CF1203001\x00\x00\x00\x00', b'\x02896634A14001\x00\x00\x00\x00897CF4801001\x00\x00\x00\x00', b'\x02896634A14101\x00\x00\x00\x00897CF4801001\x00\x00\x00\x00', b'\x02896634A18000\x00\x00\x00\x00897CF1201001\x00\x00\x00\x00', b'\x02896634A18100\x00\x00\x00\x00897CF1201001\x00\x00\x00\x00', b'\x02896634A23000\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02896634A23001\x00\x00\x00\x00897CF1203001\x00\x00\x00\x00', b'\x02896634A23101\x00\x00\x00\x00897CF1203001\x00\x00\x00\x00', b'\x02896634A43000\x00\x00\x00\x00897CF4201001\x00\x00\x00\x00', b'\x02896634A47000\x00\x00\x00\x00897CF4201001\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'\x01F15260R210\x00\x00\x00\x00\x00\x00', b'\x01F15260R220\x00\x00\x00\x00\x00\x00', b'\x01F15260R290\x00\x00\x00\x00\x00\x00', b'\x01F15260R292\x00\x00\x00\x00\x00\x00', b'\x01F15260R300\x00\x00\x00\x00\x00\x00', b'\x01F15260R302\x00\x00\x00\x00\x00\x00', b'\x01F152642551\x00\x00\x00\x00\x00\x00', b'\x01F152642561\x00\x00\x00\x00\x00\x00', b'\x01F152642601\x00\x00\x00\x00\x00\x00', b'\x01F152642700\x00\x00\x00\x00\x00\x00', b'\x01F152642701\x00\x00\x00\x00\x00\x00', b'\x01F152642710\x00\x00\x00\x00\x00\x00', b'\x01F152642711\x00\x00\x00\x00\x00\x00', b'\x01F152642750\x00\x00\x00\x00\x00\x00', b'\x01F152642751\x00\x00\x00\x00\x00\x00', b'F152642290\x00\x00\x00\x00\x00\x00', b'F152642291\x00\x00\x00\x00\x00\x00', b'F152642322\x00\x00\x00\x00\x00\x00', b'F152642330\x00\x00\x00\x00\x00\x00', b'F152642331\x00\x00\x00\x00\x00\x00', b'F152642520\x00\x00\x00\x00\x00\x00', b'F152642521\x00\x00\x00\x00\x00\x00', b'F152642531\x00\x00\x00\x00\x00\x00', b'F152642532\x00\x00\x00\x00\x00\x00', b'F152642540\x00\x00\x00\x00\x00\x00', b'F152642541\x00\x00\x00\x00\x00\x00', b'F152642542\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'\x028965B0R01200\x00\x00\x00\x008965B0R02200\x00\x00\x00\x00', b'\x028965B0R01300\x00\x00\x00\x008965B0R02300\x00\x00\x00\x00', b'\x028965B0R01400\x00\x00\x00\x008965B0R02400\x00\x00\x00\x00', b'8965B42170\x00\x00\x00\x00\x00\x00', b'8965B42171\x00\x00\x00\x00\x00\x00', b'8965B42180\x00\x00\x00\x00\x00\x00', b'8965B42181\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F3301100\x00\x00\x00\x00', b'\x018821F3301200\x00\x00\x00\x00', b'\x018821F3301300\x00\x00\x00\x00', b'\x018821F3301400\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F4203200\x00\x00\x00\x008646G26011A0\x00\x00\x00\x00', b'\x028646F4203300\x00\x00\x00\x008646G26011A0\x00\x00\x00\x00', b'\x028646F4203400\x00\x00\x00\x008646G2601200\x00\x00\x00\x00', b'\x028646F4203500\x00\x00\x00\x008646G2601200\x00\x00\x00\x00', b'\x028646F4203700\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', b'\x028646F4203800\x00\x00\x00\x008646G2601500\x00\x00\x00\x00', ], }, CAR.TOYOTA_RAV4_TSS2_2022: { (Ecu.abs, 0x7b0, None): [ b'\x01F15260R350\x00\x00\x00\x00\x00\x00', b'\x01F15260R361\x00\x00\x00\x00\x00\x00', b'\x01F15264283100\x00\x00\x00\x00', b'\x01F15264283200\x00\x00\x00\x00', b'\x01F15264286100\x00\x00\x00\x00', b'\x01F15264286200\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'\x028965B0R01500\x00\x00\x00\x008965B0R02500\x00\x00\x00\x00', b'8965B42172\x00\x00\x00\x00\x00\x00', b'8965B42182\x00\x00\x00\x00\x00\x00', ], (Ecu.engine, 0x700, None): [ b'\x01896634A02001\x00\x00\x00\x00', b'\x01896634A03000\x00\x00\x00\x00', b'\x01896634A08000\x00\x00\x00\x00', b'\x01896634A61000\x00\x00\x00\x00', b'\x01896634A62000\x00\x00\x00\x00', b'\x01896634A62100\x00\x00\x00\x00', b'\x01896634A63000\x00\x00\x00\x00', b'\x01896634A88000\x00\x00\x00\x00', b'\x01896634A89000\x00\x00\x00\x00', b'\x01896634A89100\x00\x00\x00\x00', b'\x01896634AA0000\x00\x00\x00\x00', b'\x01896634AA0100\x00\x00\x00\x00', b'\x01896634AA1000\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F0R01100\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F0R02100\x00\x00\x00\x008646G0R01100\x00\x00\x00\x00', ], }, CAR.TOYOTA_RAV4_TSS2_2023: { (Ecu.abs, 0x7b0, None): [ b'\x01F15260R450\x00\x00\x00\x00\x00\x00', b'\x01F15260R50000\x00\x00\x00\x00', b'\x01F15260R51000\x00\x00\x00\x00', b'\x01F15264283200\x00\x00\x00\x00', b'\x01F15264283300\x00\x00\x00\x00', b'\x01F152642F1000\x00\x00\x00\x00', b'\x01F152642F8000\x00\x00\x00\x00', b'\x01F152642F8100\x00\x00\x00\x00', b'\x01F152642F9000\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'\x028965B0R11000\x00\x00\x00\x008965B0R12000\x00\x00\x00\x00', b'8965B42371\x00\x00\x00\x00\x00\x00', ], (Ecu.engine, 0x700, None): [ b'\x01896634A61000\x00\x00\x00\x00', b'\x01896634A88100\x00\x00\x00\x00', b'\x01896634A89100\x00\x00\x00\x00', b'\x01896634AE1001\x00\x00\x00\x00', b'\x01896634AF0000\x00\x00\x00\x00', b'\x01896634AJ2000\x00\x00\x00\x00', b'\x01896634AL5000\x00\x00\x00\x00', b'\x01896634AL6000\x00\x00\x00\x00', b'\x01896634AL8000\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F0R03100\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F0R05100\x00\x00\x00\x008646G0R02100\x00\x00\x00\x00', b'\x028646F0R05200\x00\x00\x00\x008646G0R02200\x00\x00\x00\x00', b'\x028646F0R11000\x00\x00\x00\x008646G0R04000\x00\x00\x00\x00', ], }, CAR.TOYOTA_SIENNA: { (Ecu.engine, 0x700, None): [ b'\x01896630832100\x00\x00\x00\x00', b'\x01896630832200\x00\x00\x00\x00', b'\x01896630838000\x00\x00\x00\x00', b'\x01896630838100\x00\x00\x00\x00', b'\x01896630842000\x00\x00\x00\x00', b'\x01896630843000\x00\x00\x00\x00', b'\x01896630851000\x00\x00\x00\x00', b'\x01896630851100\x00\x00\x00\x00', b'\x01896630851200\x00\x00\x00\x00', b'\x01896630852000\x00\x00\x00\x00', b'\x01896630852100\x00\x00\x00\x00', b'\x01896630859000\x00\x00\x00\x00', b'\x01896630860000\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B45070\x00\x00\x00\x00\x00\x00', b'8965B45080\x00\x00\x00\x00\x00\x00', b'8965B45082\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F152608130\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881510801100\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4702100\x00\x00\x00\x00', b'8821F4702200\x00\x00\x00\x00', b'8821F4702300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F0801100\x00\x00\x00\x00', ], }, CAR.LEXUS_CTH: { (Ecu.dsu, 0x791, None): [ b'881517601100\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F152676144\x00\x00\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x0237635000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4702300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F7601100\x00\x00\x00\x00', ], }, CAR.LEXUS_ES_TSS2: { (Ecu.engine, 0x700, None): [ b'\x018966306U6000\x00\x00\x00\x00', b'\x018966333T5000\x00\x00\x00\x00', b'\x018966333T5100\x00\x00\x00\x00', b'\x018966333X6000\x00\x00\x00\x00', b'\x01896633T07000\x00\x00\x00\x00', b'\x01896633T38000\x00\x00\x00\x00', b'\x01896633T58000\x00\x00\x00\x00', b'\x028966333S8000\x00\x00\x00\x00897CF3302002\x00\x00\x00\x00', b'\x028966333S8000\x00\x00\x00\x00897CF3305001\x00\x00\x00\x00', b'\x028966333T0100\x00\x00\x00\x00897CF3305001\x00\x00\x00\x00', b'\x028966333V4000\x00\x00\x00\x00897CF3305001\x00\x00\x00\x00', b'\x028966333W1000\x00\x00\x00\x00897CF3305001\x00\x00\x00\x00', b'\x02896633T09000\x00\x00\x00\x00897CF3307001\x00\x00\x00\x00', b'\x02896633T10000\x00\x00\x00\x00897CF3307001\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'\x01F152606281\x00\x00\x00\x00\x00\x00', b'\x01F152606340\x00\x00\x00\x00\x00\x00', b'\x01F152606461\x00\x00\x00\x00\x00\x00', b'\x01F15260646200\x00\x00\x00\x00', b'F152633423\x00\x00\x00\x00\x00\x00', b'F152633680\x00\x00\x00\x00\x00\x00', b'F152633681\x00\x00\x00\x00\x00\x00', b'F152633F50\x00\x00\x00\x00\x00\x00', b'F152633F51\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B33252\x00\x00\x00\x00\x00\x00', b'8965B33590\x00\x00\x00\x00\x00\x00', b'8965B33690\x00\x00\x00\x00\x00\x00', b'8965B33721\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F3301100\x00\x00\x00\x00', b'\x018821F3301200\x00\x00\x00\x00', b'\x018821F3301300\x00\x00\x00\x00', b'\x018821F3301400\x00\x00\x00\x00', b'\x018821F6201200\x00\x00\x00\x00', b'\x018821F6201300\x00\x00\x00\x00', b'\x018821F6201400\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F0610000\x00\x00\x00\x008646G3304000\x00\x00\x00\x00', b'\x028646F33030D0\x00\x00\x00\x008646G26011A0\x00\x00\x00\x00', b'\x028646F3303100\x00\x00\x00\x008646G26011A0\x00\x00\x00\x00', b'\x028646F3303200\x00\x00\x00\x008646G26011A0\x00\x00\x00\x00', b'\x028646F3304100\x00\x00\x00\x008646G2601200\x00\x00\x00\x00', b'\x028646F3304200\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', b'\x028646F3304300\x00\x00\x00\x008646G2601500\x00\x00\x00\x00', b'\x028646F3309100\x00\x00\x00\x008646G3304000\x00\x00\x00\x00', b'\x028646F3309100\x00\x00\x00\x008646G5301200\x00\x00\x00\x00', ], }, CAR.LEXUS_ES: { (Ecu.engine, 0x7e0, None): [ b'\x02333M4100\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02333M4200\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02333R0000\x00\x00\x00\x00\x00\x00\x00\x00A0C01000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F152606202\x00\x00\x00\x00\x00\x00', b'F152633171\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881513309400\x00\x00\x00\x00', b'881513309500\x00\x00\x00\x00', b'881513310400\x00\x00\x00\x00', b'881513310500\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B33502\x00\x00\x00\x00\x00\x00', b'8965B33512\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4701100\x00\x00\x00\x00', b'8821F4701200\x00\x00\x00\x00', b'8821F4701300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F3302001\x00\x00\x00\x00', b'8646F3302100\x00\x00\x00\x00', b'8646F3302200\x00\x00\x00\x00', ], }, CAR.LEXUS_GS_F: { (Ecu.engine, 0x7e0, None): [ b'\x0233075200\x00\x00\x00\x00\x00\x00\x00\x00530B9000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F152630700\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881513016200\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B30551\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4702000\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F3002100\x00\x00\x00\x00', ], }, CAR.LEXUS_NX: { (Ecu.engine, 0x700, None): [ b'\x01896637850000\x00\x00\x00\x00', b'\x01896637851000\x00\x00\x00\x00', b'\x01896637852000\x00\x00\x00\x00', b'\x01896637854000\x00\x00\x00\x00', b'\x01896637873000\x00\x00\x00\x00', b'\x01896637878000\x00\x00\x00\x00', b'\x01896637878100\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x0237841000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0237842000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0237880000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0237882000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0237886000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F152678130\x00\x00\x00\x00\x00\x00', b'F152678140\x00\x00\x00\x00\x00\x00', b'F152678160\x00\x00\x00\x00\x00\x00', b'F152678170\x00\x00\x00\x00\x00\x00', b'F152678171\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881517803100\x00\x00\x00\x00', b'881517803300\x00\x00\x00\x00', b'881517804100\x00\x00\x00\x00', b'881517804300\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B78060\x00\x00\x00\x00\x00\x00', b'8965B78080\x00\x00\x00\x00\x00\x00', b'8965B78100\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4702100\x00\x00\x00\x00', b'8821F4702300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F7801100\x00\x00\x00\x00', b'8646F7801300\x00\x00\x00\x00', ], }, CAR.LEXUS_NX_TSS2: { (Ecu.engine, 0x700, None): [ b'\x018966378B2000\x00\x00\x00\x00', b'\x018966378B2100\x00\x00\x00\x00', b'\x018966378B3000\x00\x00\x00\x00', b'\x018966378B3100\x00\x00\x00\x00', b'\x018966378B4100\x00\x00\x00\x00', b'\x018966378G2000\x00\x00\x00\x00', b'\x018966378G3000\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x0237881000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0237887000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02378A0000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02378F4000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'\x01F152678221\x00\x00\x00\x00\x00\x00', b'F152678200\x00\x00\x00\x00\x00\x00', b'F152678210\x00\x00\x00\x00\x00\x00', b'F152678211\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B78110\x00\x00\x00\x00\x00\x00', b'8965B78120\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F3301200\x00\x00\x00\x00', b'\x018821F3301300\x00\x00\x00\x00', b'\x018821F3301400\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F78030A0\x00\x00\x00\x008646G2601200\x00\x00\x00\x00', b'\x028646F7803100\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', ], }, CAR.LEXUS_LC_TSS2: { (Ecu.engine, 0x7e0, None): [ b'\x0131130000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F152611390\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B11091\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F6201400\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F1104200\x00\x00\x00\x008646G3304000\x00\x00\x00\x00', b'\x028646F1105200\x00\x00\x00\x008646G3304000\x00\x00\x00\x00', ], }, CAR.LEXUS_RC: { (Ecu.engine, 0x700, None): [ b'\x01896632461100\x00\x00\x00\x00', b'\x01896632478100\x00\x00\x00\x00', b'\x01896632478200\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x0232484000\x00\x00\x00\x00\x00\x00\x00\x0052422000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F152624150\x00\x00\x00\x00\x00\x00', b'F152624221\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881512404100\x00\x00\x00\x00', b'881512407000\x00\x00\x00\x00', b'881512409100\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B24081\x00\x00\x00\x00\x00\x00', b'8965B24240\x00\x00\x00\x00\x00\x00', b'8965B24320\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4702300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F2401100\x00\x00\x00\x00', b'8646F2401200\x00\x00\x00\x00', b'8646F2402200\x00\x00\x00\x00', ], }, CAR.LEXUS_RX: { (Ecu.engine, 0x700, None): [ b'\x01896630E36100\x00\x00\x00\x00', b'\x01896630E36200\x00\x00\x00\x00', b'\x01896630E36300\x00\x00\x00\x00', b'\x01896630E37100\x00\x00\x00\x00', b'\x01896630E37200\x00\x00\x00\x00', b'\x01896630E37300\x00\x00\x00\x00', b'\x01896630E41000\x00\x00\x00\x00', b'\x01896630E41100\x00\x00\x00\x00', b'\x01896630E41200\x00\x00\x00\x00', b'\x01896630E41500\x00\x00\x00\x00', b'\x01896630EA3100\x00\x00\x00\x00', b'\x01896630EA3300\x00\x00\x00\x00', b'\x01896630EA3400\x00\x00\x00\x00', b'\x01896630EA4100\x00\x00\x00\x00', b'\x01896630EA4300\x00\x00\x00\x00', b'\x01896630EA4400\x00\x00\x00\x00', b'\x01896630EA6300\x00\x00\x00\x00', b'\x018966348R1300\x00\x00\x00\x00', b'\x018966348R8500\x00\x00\x00\x00', b'\x018966348W1300\x00\x00\x00\x00', b'\x018966348W2300\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x02348J7000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02348N0000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02348Q4000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02348Q4100\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02348T1000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02348T1100\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02348T1200\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02348T3000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02348V6000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02348Z3000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F152648361\x00\x00\x00\x00\x00\x00', b'F152648472\x00\x00\x00\x00\x00\x00', b'F152648473\x00\x00\x00\x00\x00\x00', b'F152648474\x00\x00\x00\x00\x00\x00', b'F152648492\x00\x00\x00\x00\x00\x00', b'F152648493\x00\x00\x00\x00\x00\x00', b'F152648494\x00\x00\x00\x00\x00\x00', b'F152648501\x00\x00\x00\x00\x00\x00', b'F152648502\x00\x00\x00\x00\x00\x00', b'F152648504\x00\x00\x00\x00\x00\x00', b'F152648630\x00\x00\x00\x00\x00\x00', b'F152648740\x00\x00\x00\x00\x00\x00', b'F152648A30\x00\x00\x00\x00\x00\x00', ], (Ecu.dsu, 0x791, None): [ b'881514810300\x00\x00\x00\x00', b'881514810500\x00\x00\x00\x00', b'881514810700\x00\x00\x00\x00', b'881514811300\x00\x00\x00\x00', b'881514811500\x00\x00\x00\x00', b'881514811700\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B0E011\x00\x00\x00\x00\x00\x00', b'8965B0E012\x00\x00\x00\x00\x00\x00', b'8965B48102\x00\x00\x00\x00\x00\x00', b'8965B48111\x00\x00\x00\x00\x00\x00', b'8965B48112\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'8821F4701000\x00\x00\x00\x00', b'8821F4701100\x00\x00\x00\x00', b'8821F4701200\x00\x00\x00\x00', b'8821F4701300\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'8646F4801100\x00\x00\x00\x00', b'8646F4801200\x00\x00\x00\x00', b'8646F4802001\x00\x00\x00\x00', b'8646F4802100\x00\x00\x00\x00', b'8646F4802200\x00\x00\x00\x00', b'8646F4809000\x00\x00\x00\x00', ], }, CAR.LEXUS_RX_TSS2: { (Ecu.engine, 0x700, None): [ b'\x01896630EA9000\x00\x00\x00\x00', b'\x01896630EB0000\x00\x00\x00\x00', b'\x01896630EC9000\x00\x00\x00\x00', b'\x01896630EC9100\x00\x00\x00\x00', b'\x01896630ED0000\x00\x00\x00\x00', b'\x01896630ED0100\x00\x00\x00\x00', b'\x01896630ED5000\x00\x00\x00\x00', b'\x01896630ED6000\x00\x00\x00\x00', b'\x018966348R9200\x00\x00\x00\x00', b'\x018966348T8000\x00\x00\x00\x00', b'\x018966348W5100\x00\x00\x00\x00', b'\x018966348W9000\x00\x00\x00\x00', b'\x018966348X0000\x00\x00\x00\x00', b'\x01896634D11000\x00\x00\x00\x00', b'\x01896634D12000\x00\x00\x00\x00', b'\x01896634D12100\x00\x00\x00\x00', b'\x01896634D43000\x00\x00\x00\x00', b'\x01896634D44000\x00\x00\x00\x00', ], (Ecu.engine, 0x7e0, None): [ b'\x02348U2000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02348X4000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02348X5000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02348X8000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x02348Y3000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0234D14000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0234D16000\x00\x00\x00\x00\x00\x00\x00\x00A4802000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'\x01F15260E031\x00\x00\x00\x00\x00\x00', b'\x01F15260E041\x00\x00\x00\x00\x00\x00', b'\x01F152648781\x00\x00\x00\x00\x00\x00', b'\x01F152648801\x00\x00\x00\x00\x00\x00', b'F152648493\x00\x00\x00\x00\x00\x00', b'F152648811\x00\x00\x00\x00\x00\x00', b'F152648831\x00\x00\x00\x00\x00\x00', b'F152648891\x00\x00\x00\x00\x00\x00', b'F152648C80\x00\x00\x00\x00\x00\x00', b'F152648D00\x00\x00\x00\x00\x00\x00', b'F152648D60\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B48261\x00\x00\x00\x00\x00\x00', b'8965B48271\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F3301100\x00\x00\x00\x00', b'\x018821F3301300\x00\x00\x00\x00', b'\x018821F3301400\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F4810100\x00\x00\x00\x008646G2601200\x00\x00\x00\x00', b'\x028646F4810200\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', b'\x028646F4810300\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', b'\x028646F4810400\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', ], }, CAR.TOYOTA_PRIUS_TSS2: { (Ecu.engine, 0x700, None): [ b'\x028966347B1000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x028966347C4000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x028966347C6000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x028966347C7000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x028966347C8000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00', b'\x038966347C0000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4710101\x00\x00\x00\x00', b'\x038966347C1000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4710101\x00\x00\x00\x00', b'\x038966347C5000\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4707101\x00\x00\x00\x00', b'\x038966347C5100\x00\x00\x00\x008966A4703000\x00\x00\x00\x00897CF4707101\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F152647500\x00\x00\x00\x00\x00\x00', b'F152647510\x00\x00\x00\x00\x00\x00', b'F152647520\x00\x00\x00\x00\x00\x00', b'F152647521\x00\x00\x00\x00\x00\x00', b'F152647531\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B47070\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F3301400\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F4707000\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', b'\x028646F4710000\x00\x00\x00\x008646G2601500\x00\x00\x00\x00', b'\x028646F4712000\x00\x00\x00\x008646G2601500\x00\x00\x00\x00', ], }, CAR.TOYOTA_MIRAI: { (Ecu.abs, 0x7d1, None): [ b'\x01898A36203000\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'\x01F15266203200\x00\x00\x00\x00', b'\x01F15266203500\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'\x028965B6204100\x00\x00\x00\x008965B6203100\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F6201200\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F6201400\x00\x00\x00\x008646G5301200\x00\x00\x00\x00', ], }, CAR.TOYOTA_ALPHARD_TSS2: { (Ecu.engine, 0x7e0, None): [ b'\x0235870000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0235879000\x00\x00\x00\x00\x00\x00\x00\x00A4701000\x00\x00\x00\x00\x00\x00\x00\x00', b'\x0235883000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00', ], (Ecu.eps, 0x7a1, None): [ b'8965B58040\x00\x00\x00\x00\x00\x00', b'8965B58052\x00\x00\x00\x00\x00\x00', ], (Ecu.abs, 0x7b0, None): [ b'F152658320\x00\x00\x00\x00\x00\x00', b'F152658341\x00\x00\x00\x00\x00\x00', ], (Ecu.fwdRadar, 0x750, 0xf): [ b'\x018821F3301200\x00\x00\x00\x00', b'\x018821F3301400\x00\x00\x00\x00', ], (Ecu.fwdCamera, 0x750, 0x6d): [ b'\x028646F58010C0\x00\x00\x00\x008646G26011A0\x00\x00\x00\x00', b'\x028646F5803200\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', b'\x028646FV201000\x00\x00\x00\x008646G2601400\x00\x00\x00\x00', ], }, }
2301_81045437/openpilot
selfdrive/car/toyota/fingerprints.py
Python
mit
72,276
from cereal import car from panda import Panda from panda.python import uds from openpilot.selfdrive.car.toyota.values import Ecu, CAR, DBC, ToyotaFlags, CarControllerParams, TSS2_CAR, RADAR_ACC_CAR, NO_DSU_CAR, \ MIN_ACC_SPEED, EPS_SCALE, UNSUPPORTED_DSU_CAR, NO_STOP_TIMER_CAR, ANGLE_CONTROL_CAR from openpilot.selfdrive.car import create_button_events, get_safety_config from openpilot.selfdrive.car.disable_ecu import disable_ecu from openpilot.selfdrive.car.interfaces import CarInterfaceBase ButtonType = car.CarState.ButtonEvent.Type EventName = car.CarEvent.EventName SteerControlType = car.CarParams.SteerControlType class CarInterface(CarInterfaceBase): @staticmethod def get_pid_accel_limits(CP, current_speed, cruise_speed): return CarControllerParams.ACCEL_MIN, CarControllerParams.ACCEL_MAX @staticmethod def _get_params(ret, candidate, fingerprint, car_fw, experimental_long, docs): ret.carName = "toyota" ret.safetyConfigs = [get_safety_config(car.CarParams.SafetyModel.toyota)] ret.safetyConfigs[0].safetyParam = EPS_SCALE[candidate] # BRAKE_MODULE is on a different address for these cars if DBC[candidate]["pt"] == "toyota_new_mc_pt_generated": ret.safetyConfigs[0].safetyParam |= Panda.FLAG_TOYOTA_ALT_BRAKE if candidate in ANGLE_CONTROL_CAR: ret.steerControlType = SteerControlType.angle ret.safetyConfigs[0].safetyParam |= Panda.FLAG_TOYOTA_LTA # LTA control can be more delayed and winds up more often ret.steerActuatorDelay = 0.18 ret.steerLimitTimer = 0.8 else: CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning) ret.steerActuatorDelay = 0.12 # Default delay, Prius has larger delay ret.steerLimitTimer = 0.4 ret.stoppingControl = False # Toyota starts braking more when it thinks you want to stop stop_and_go = candidate in TSS2_CAR # Detect smartDSU, which intercepts ACC_CMD from the DSU (or radar) allowing openpilot to send it # 0x2AA is sent by a similar device which intercepts the radar instead of DSU on NO_DSU_CARs if 0x2FF in fingerprint[0] or (0x2AA in fingerprint[0] and candidate in NO_DSU_CAR): ret.flags |= ToyotaFlags.SMART_DSU.value if 0x2AA in fingerprint[0] and candidate in NO_DSU_CAR: ret.flags |= ToyotaFlags.RADAR_CAN_FILTER.value # In TSS2 cars, the camera does long control found_ecus = [fw.ecu for fw in car_fw] ret.enableDsu = len(found_ecus) > 0 and Ecu.dsu not in found_ecus and candidate not in (NO_DSU_CAR | UNSUPPORTED_DSU_CAR) \ and not (ret.flags & ToyotaFlags.SMART_DSU) if candidate == CAR.TOYOTA_PRIUS: stop_and_go = True # Only give steer angle deadzone to for bad angle sensor prius for fw in car_fw: if fw.ecu == "eps" and not fw.fwVersion == b'8965B47060\x00\x00\x00\x00\x00\x00': ret.steerActuatorDelay = 0.25 CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning, steering_angle_deadzone_deg=0.2) elif candidate in (CAR.LEXUS_RX, CAR.LEXUS_RX_TSS2): stop_and_go = True ret.wheelSpeedFactor = 1.035 elif candidate in (CAR.TOYOTA_AVALON, CAR.TOYOTA_AVALON_2019, CAR.TOYOTA_AVALON_TSS2): # starting from 2019, all Avalon variants have stop and go # https://engage.toyota.com/static/images/toyota_safety_sense/TSS_Applicability_Chart.pdf stop_and_go = candidate != CAR.TOYOTA_AVALON elif candidate in (CAR.TOYOTA_RAV4_TSS2, CAR.TOYOTA_RAV4_TSS2_2022, CAR.TOYOTA_RAV4_TSS2_2023): ret.lateralTuning.init('pid') ret.lateralTuning.pid.kiBP = [0.0] ret.lateralTuning.pid.kpBP = [0.0] ret.lateralTuning.pid.kpV = [0.6] ret.lateralTuning.pid.kiV = [0.1] ret.lateralTuning.pid.kf = 0.00007818594 # 2019+ RAV4 TSS2 uses two different steering racks and specific tuning seems to be necessary. # See https://github.com/commaai/openpilot/pull/21429#issuecomment-873652891 for fw in car_fw: if fw.ecu == "eps" and (fw.fwVersion.startswith(b'\x02') or fw.fwVersion in [b'8965B42181\x00\x00\x00\x00\x00\x00']): ret.lateralTuning.pid.kpV = [0.15] ret.lateralTuning.pid.kiV = [0.05] ret.lateralTuning.pid.kf = 0.00004 break elif candidate in (CAR.TOYOTA_CHR, CAR.TOYOTA_CAMRY, CAR.TOYOTA_SIENNA, CAR.LEXUS_CTH, CAR.LEXUS_NX): # TODO: Some of these platforms are not advertised to have full range ACC, are they similar to SNG_WITHOUT_DSU cars? stop_and_go = True # TODO: these models can do stop and go, but unclear if it requires sDSU or unplugging DSU. # For now, don't list stop and go functionality in the docs if ret.flags & ToyotaFlags.SNG_WITHOUT_DSU: stop_and_go = stop_and_go or bool(ret.flags & ToyotaFlags.SMART_DSU.value) or (ret.enableDsu and not docs) ret.centerToFront = ret.wheelbase * 0.44 # TODO: Some TSS-P platforms have BSM, but are flipped based on region or driving direction. # Detect flipped signals and enable for C-HR and others ret.enableBsm = 0x3F6 in fingerprint[0] and candidate in TSS2_CAR # No radar dbc for cars without DSU which are not TSS 2.0 # TODO: make an adas dbc file for dsu-less models ret.radarUnavailable = DBC[candidate]['radar'] is None or candidate in (NO_DSU_CAR - TSS2_CAR) # if the smartDSU is detected, openpilot can send ACC_CONTROL and the smartDSU will block it from the DSU or radar. # since we don't yet parse radar on TSS2/TSS-P radar-based ACC cars, gate longitudinal behind experimental toggle use_sdsu = bool(ret.flags & ToyotaFlags.SMART_DSU) if candidate in (RADAR_ACC_CAR | NO_DSU_CAR): ret.experimentalLongitudinalAvailable = use_sdsu or candidate in RADAR_ACC_CAR if not use_sdsu: # Disabling radar is only supported on TSS2 radar-ACC cars if experimental_long and candidate in RADAR_ACC_CAR: ret.flags |= ToyotaFlags.DISABLE_RADAR.value else: use_sdsu = use_sdsu and experimental_long # openpilot longitudinal enabled by default: # - non-(TSS2 radar ACC cars) w/ smartDSU installed # - cars w/ DSU disconnected # - TSS2 cars with camera sending ACC_CONTROL where we can block it # openpilot longitudinal behind experimental long toggle: # - TSS2 radar ACC cars w/ smartDSU installed # - TSS2 radar ACC cars w/o smartDSU installed (disables radar) # - TSS-P DSU-less cars w/ CAN filter installed (no radar parser yet) ret.openpilotLongitudinalControl = use_sdsu or ret.enableDsu or candidate in (TSS2_CAR - RADAR_ACC_CAR) or bool(ret.flags & ToyotaFlags.DISABLE_RADAR.value) ret.autoResumeSng = ret.openpilotLongitudinalControl and candidate in NO_STOP_TIMER_CAR if not ret.openpilotLongitudinalControl: ret.safetyConfigs[0].safetyParam |= Panda.FLAG_TOYOTA_STOCK_LONGITUDINAL # min speed to enable ACC. if car can do stop and go, then set enabling speed # to a negative value, so it won't matter. ret.minEnableSpeed = -1. if stop_and_go else MIN_ACC_SPEED tune = ret.longitudinalTuning tune.deadzoneBP = [0., 9.] tune.deadzoneV = [.0, .15] if candidate in TSS2_CAR: tune.kpBP = [0., 5., 20.] tune.kpV = [1.3, 1.0, 0.7] tune.kiBP = [0., 5., 12., 20., 27.] tune.kiV = [.35, .23, .20, .17, .1] if candidate in TSS2_CAR: ret.vEgoStopping = 0.25 ret.vEgoStarting = 0.25 ret.stoppingDecelRate = 0.3 # reach stopping target smoothly else: tune.kpBP = [0., 5., 35.] tune.kiBP = [0., 35.] tune.kpV = [3.6, 2.4, 1.5] tune.kiV = [0.54, 0.36] return ret @staticmethod def init(CP, logcan, sendcan): # disable radar if alpha longitudinal toggled on radar-ACC car without CAN filter/smartDSU if CP.flags & ToyotaFlags.DISABLE_RADAR.value: communication_control = bytes([uds.SERVICE_TYPE.COMMUNICATION_CONTROL, uds.CONTROL_TYPE.ENABLE_RX_DISABLE_TX, uds.MESSAGE_TYPE.NORMAL]) disable_ecu(logcan, sendcan, bus=0, addr=0x750, sub_addr=0xf, com_cont_req=communication_control) # returns a car.CarState def _update(self, c): ret = self.CS.update(self.cp, self.cp_cam) if self.CP.carFingerprint in (TSS2_CAR - RADAR_ACC_CAR) or (self.CP.flags & ToyotaFlags.SMART_DSU and not self.CP.flags & ToyotaFlags.RADAR_CAN_FILTER): ret.buttonEvents = create_button_events(self.CS.distance_button, self.CS.prev_distance_button, {1: ButtonType.gapAdjustCruise}) # events events = self.create_common_events(ret) # Lane Tracing Assist control is unavailable (EPS_STATUS->LTA_STATE=0) until # the more accurate angle sensor signal is initialized if self.CP.steerControlType == SteerControlType.angle and not self.CS.accurate_steer_angle_seen: events.add(EventName.vehicleSensorsInvalid) if self.CP.openpilotLongitudinalControl: if ret.cruiseState.standstill and not ret.brakePressed: events.add(EventName.resumeRequired) if self.CS.low_speed_lockout: events.add(EventName.lowSpeedLockout) if ret.vEgo < self.CP.minEnableSpeed: events.add(EventName.belowEngageSpeed) if c.actuators.accel > 0.3: # some margin on the actuator to not false trigger cancellation while stopping events.add(EventName.speedTooLow) if ret.vEgo < 0.001: # while in standstill, send a user alert events.add(EventName.manualRestart) ret.events = events.to_msg() return ret
2301_81045437/openpilot
selfdrive/car/toyota/interface.py
Python
mit
9,593
#!/usr/bin/env python3 from opendbc.can.parser import CANParser from cereal import car from openpilot.selfdrive.car.toyota.values import DBC, TSS2_CAR from openpilot.selfdrive.car.interfaces import RadarInterfaceBase def _create_radar_can_parser(car_fingerprint): if car_fingerprint in TSS2_CAR: RADAR_A_MSGS = list(range(0x180, 0x190)) RADAR_B_MSGS = list(range(0x190, 0x1a0)) else: RADAR_A_MSGS = list(range(0x210, 0x220)) RADAR_B_MSGS = list(range(0x220, 0x230)) msg_a_n = len(RADAR_A_MSGS) msg_b_n = len(RADAR_B_MSGS) messages = list(zip(RADAR_A_MSGS + RADAR_B_MSGS, [20] * (msg_a_n + msg_b_n), strict=True)) return CANParser(DBC[car_fingerprint]['radar'], messages, 1) class RadarInterface(RadarInterfaceBase): def __init__(self, CP): super().__init__(CP) self.track_id = 0 self.radar_ts = CP.radarTimeStep if CP.carFingerprint in TSS2_CAR: self.RADAR_A_MSGS = list(range(0x180, 0x190)) self.RADAR_B_MSGS = list(range(0x190, 0x1a0)) else: self.RADAR_A_MSGS = list(range(0x210, 0x220)) self.RADAR_B_MSGS = list(range(0x220, 0x230)) self.valid_cnt = {key: 0 for key in self.RADAR_A_MSGS} self.rcp = None if CP.radarUnavailable else _create_radar_can_parser(CP.carFingerprint) self.trigger_msg = self.RADAR_B_MSGS[-1] self.updated_messages = set() def update(self, can_strings): if self.rcp is None: return super().update(None) vls = self.rcp.update_strings(can_strings) self.updated_messages.update(vls) if self.trigger_msg not in self.updated_messages: return None rr = self._update(self.updated_messages) self.updated_messages.clear() return rr def _update(self, updated_messages): ret = car.RadarData.new_message() errors = [] if not self.rcp.can_valid: errors.append("canError") ret.errors = errors for ii in sorted(updated_messages): if ii in self.RADAR_A_MSGS: cpt = self.rcp.vl[ii] if cpt['LONG_DIST'] >= 255 or cpt['NEW_TRACK']: self.valid_cnt[ii] = 0 # reset counter if cpt['VALID'] and cpt['LONG_DIST'] < 255: self.valid_cnt[ii] += 1 else: self.valid_cnt[ii] = max(self.valid_cnt[ii] - 1, 0) score = self.rcp.vl[ii+16]['SCORE'] # print ii, self.valid_cnt[ii], score, cpt['VALID'], cpt['LONG_DIST'], cpt['LAT_DIST'] # radar point only valid if it's a valid measurement and score is above 50 if cpt['VALID'] or (score > 50 and cpt['LONG_DIST'] < 255 and self.valid_cnt[ii] > 0): if ii not in self.pts or cpt['NEW_TRACK']: self.pts[ii] = car.RadarData.RadarPoint.new_message() self.pts[ii].trackId = self.track_id self.track_id += 1 self.pts[ii].dRel = cpt['LONG_DIST'] # from front of car self.pts[ii].yRel = -cpt['LAT_DIST'] # in car frame's y axis, left is positive self.pts[ii].vRel = cpt['REL_SPEED'] self.pts[ii].aRel = float('nan') self.pts[ii].yvRel = float('nan') self.pts[ii].measured = bool(cpt['VALID']) else: if ii in self.pts: del self.pts[ii] ret.points = list(self.pts.values()) return ret
2301_81045437/openpilot
selfdrive/car/toyota/radar_interface.py
Python
mit
3,244
#!/usr/bin/env python3 from collections import defaultdict from cereal import car from openpilot.selfdrive.car.toyota.values import PLATFORM_CODE_ECUS, get_platform_codes from openpilot.selfdrive.car.toyota.fingerprints import FW_VERSIONS Ecu = car.CarParams.Ecu ECU_NAME = {v: k for k, v in Ecu.schema.enumerants.items()} if __name__ == "__main__": parts_for_ecu: dict = defaultdict(set) cars_for_code: dict = defaultdict(lambda: defaultdict(set)) for car_model, ecus in FW_VERSIONS.items(): print() print(car_model) for ecu in sorted(ecus, key=lambda x: int(x[0])): if ecu[0] not in PLATFORM_CODE_ECUS: continue platform_codes = get_platform_codes(ecus[ecu]) parts_for_ecu[ecu] |= {code.split(b'-')[0] for code in platform_codes if code.count(b'-') > 1} for code in platform_codes: cars_for_code[ecu][b'-'.join(code.split(b'-')[:2])] |= {car_model} print(f' (Ecu.{ECU_NAME[ecu[0]]}, {hex(ecu[1])}, {ecu[2]}):') print(f' Codes: {platform_codes}') print('\nECU parts:') for ecu, parts in parts_for_ecu.items(): print(f' (Ecu.{ECU_NAME[ecu[0]]}, {hex(ecu[1])}, {ecu[2]}): {parts}') print('\nCar models vs. platform codes (no major versions):') for ecu, codes in cars_for_code.items(): print(f' (Ecu.{ECU_NAME[ecu[0]]}, {hex(ecu[1])}, {ecu[2]}):') for code, cars in codes.items(): print(f' {code!r}: {sorted(cars)}')
2301_81045437/openpilot
selfdrive/car/toyota/tests/print_platform_codes.py
Python
mit
1,424
from cereal import car SteerControlType = car.CarParams.SteerControlType def create_steer_command(packer, steer, steer_req): """Creates a CAN message for the Toyota Steer Command.""" values = { "STEER_REQUEST": steer_req, "STEER_TORQUE_CMD": steer, "SET_ME_1": 1, } return packer.make_can_msg("STEERING_LKA", 0, values) def create_lta_steer_command(packer, steer_control_type, steer_angle, steer_req, frame, torque_wind_down): """Creates a CAN message for the Toyota LTA Steer Command.""" values = { "COUNTER": frame + 128, "SETME_X1": 1, # suspected LTA feature availability # 1 for TSS 2.5 cars, 3 for TSS 2.0. Send based on whether we're using LTA for lateral control "SETME_X3": 1 if steer_control_type == SteerControlType.angle else 3, "PERCENTAGE": 100, "TORQUE_WIND_DOWN": torque_wind_down, "ANGLE": 0, "STEER_ANGLE_CMD": steer_angle, "STEER_REQUEST": steer_req, "STEER_REQUEST_2": steer_req, "CLEAR_HOLD_STEERING_ALERT": 0, } return packer.make_can_msg("STEERING_LTA", 0, values) def create_accel_command(packer, accel, pcm_cancel, standstill_req, lead, acc_type, fcw_alert, distance): # TODO: find the exact canceling bit that does not create a chime values = { "ACCEL_CMD": accel, "ACC_TYPE": acc_type, "DISTANCE": distance, "MINI_CAR": lead, "PERMIT_BRAKING": 1, "RELEASE_STANDSTILL": not standstill_req, "CANCEL_REQ": pcm_cancel, "ALLOW_LONG_PRESS": 1, "ACC_CUT_IN": fcw_alert, # only shown when ACC enabled } return packer.make_can_msg("ACC_CONTROL", 0, values) def create_acc_cancel_command(packer): values = { "GAS_RELEASED": 0, "CRUISE_ACTIVE": 0, "ACC_BRAKING": 0, "ACCEL_NET": 0, "CRUISE_STATE": 0, "CANCEL_REQ": 1, } return packer.make_can_msg("PCM_CRUISE", 0, values) def create_fcw_command(packer, fcw): values = { "PCS_INDICATOR": 1, # PCS turned off "FCW": fcw, "SET_ME_X20": 0x20, "SET_ME_X10": 0x10, "PCS_OFF": 1, "PCS_SENSITIVITY": 0, } return packer.make_can_msg("PCS_HUD", 0, values) def create_ui_command(packer, steer, chime, left_line, right_line, left_lane_depart, right_lane_depart, enabled, stock_lkas_hud): values = { "TWO_BEEPS": chime, "LDA_ALERT": steer, "RIGHT_LINE": 3 if right_lane_depart else 1 if right_line else 2, "LEFT_LINE": 3 if left_lane_depart else 1 if left_line else 2, "BARRIERS": 1 if enabled else 0, # static signals "SET_ME_X02": 2, "SET_ME_X01": 1, "LKAS_STATUS": 1, "REPEATED_BEEPS": 0, "LANE_SWAY_FLD": 7, "LANE_SWAY_BUZZER": 0, "LANE_SWAY_WARNING": 0, "LDA_FRONT_CAMERA_BLOCKED": 0, "TAKE_CONTROL": 0, "LANE_SWAY_SENSITIVITY": 2, "LANE_SWAY_TOGGLE": 1, "LDA_ON_MESSAGE": 0, "LDA_MESSAGES": 0, "LDA_SA_TOGGLE": 1, "LDA_SENSITIVITY": 2, "LDA_UNAVAILABLE": 0, "LDA_MALFUNCTION": 0, "LDA_UNAVAILABLE_QUIET": 0, "ADJUSTING_CAMERA": 0, "LDW_EXIST": 1, } # lane sway functionality # not all cars have LKAS_HUD — update with camera values if available if len(stock_lkas_hud): values.update({s: stock_lkas_hud[s] for s in [ "LANE_SWAY_FLD", "LANE_SWAY_BUZZER", "LANE_SWAY_WARNING", "LANE_SWAY_SENSITIVITY", "LANE_SWAY_TOGGLE", ]}) return packer.make_can_msg("LKAS_HUD", 0, values)
2301_81045437/openpilot
selfdrive/car/toyota/toyotacan.py
Python
mit
3,385
import re from collections import defaultdict from dataclasses import dataclass, field from enum import Enum, IntFlag from cereal import car from openpilot.common.conversions import Conversions as CV from openpilot.selfdrive.car import CarSpecs, PlatformConfig, Platforms from openpilot.selfdrive.car import AngleRateLimit, dbc_dict from openpilot.selfdrive.car.docs_definitions import CarFootnote, CarDocs, Column, CarParts, CarHarness from openpilot.selfdrive.car.fw_query_definitions import FwQueryConfig, Request, StdQueries Ecu = car.CarParams.Ecu MIN_ACC_SPEED = 19. * CV.MPH_TO_MS PEDAL_TRANSITION = 10. * CV.MPH_TO_MS class CarControllerParams: ACCEL_MAX = 1.5 # m/s2, lower than allowed 2.0 m/s2 for tuning reasons ACCEL_MIN = -3.5 # m/s2 STEER_STEP = 1 STEER_MAX = 1500 STEER_ERROR_MAX = 350 # max delta between torque cmd and torque motor # Lane Tracing Assist (LTA) control limits # Assuming a steering ratio of 13.7: # Limit to ~2.0 m/s^3 up (7.5 deg/s), ~3.5 m/s^3 down (13 deg/s) at 75 mph # Worst case, the low speed limits will allow ~4.0 m/s^3 up (15 deg/s) and ~4.9 m/s^3 down (18 deg/s) at 75 mph, # however the EPS has its own internal limits at all speeds which are less than that: # Observed internal torque rate limit on TSS 2.5 Camry and RAV4 is ~1500 units/sec up and down when using LTA ANGLE_RATE_LIMIT_UP = AngleRateLimit(speed_bp=[5, 25], angle_v=[0.3, 0.15]) ANGLE_RATE_LIMIT_DOWN = AngleRateLimit(speed_bp=[5, 25], angle_v=[0.36, 0.26]) def __init__(self, CP): if CP.lateralTuning.which == 'torque': self.STEER_DELTA_UP = 15 # 1.0s time to peak torque self.STEER_DELTA_DOWN = 25 # always lower than 45 otherwise the Rav4 faults (Prius seems ok with 50) else: self.STEER_DELTA_UP = 10 # 1.5s time to peak torque self.STEER_DELTA_DOWN = 25 # always lower than 45 otherwise the Rav4 faults (Prius seems ok with 50) class ToyotaFlags(IntFlag): # Detected flags HYBRID = 1 SMART_DSU = 2 DISABLE_RADAR = 4 RADAR_CAN_FILTER = 1024 # Static flags TSS2 = 8 NO_DSU = 16 UNSUPPORTED_DSU = 32 RADAR_ACC = 64 # these cars use the Lane Tracing Assist (LTA) message for lateral control ANGLE_CONTROL = 128 NO_STOP_TIMER = 256 # these cars are speculated to allow stop and go when the DSU is unplugged or disabled with sDSU SNG_WITHOUT_DSU = 512 class Footnote(Enum): CAMRY = CarFootnote( "openpilot operates above 28mph for Camry 4CYL L, 4CYL LE and 4CYL SE which don't have Full-Speed Range Dynamic Radar Cruise Control.", Column.FSR_LONGITUDINAL) @dataclass class ToyotaCarDocs(CarDocs): package: str = "All" car_parts: CarParts = field(default_factory=CarParts.common([CarHarness.toyota_a])) @dataclass class ToyotaTSS2PlatformConfig(PlatformConfig): dbc_dict: dict = field(default_factory=lambda: dbc_dict('toyota_nodsu_pt_generated', 'toyota_tss2_adas')) def init(self): self.flags |= ToyotaFlags.TSS2 | ToyotaFlags.NO_STOP_TIMER | ToyotaFlags.NO_DSU if self.flags & ToyotaFlags.RADAR_ACC: self.dbc_dict = dbc_dict('toyota_nodsu_pt_generated', None) class CAR(Platforms): # Toyota TOYOTA_ALPHARD_TSS2 = ToyotaTSS2PlatformConfig( [ ToyotaCarDocs("Toyota Alphard 2019-20"), ToyotaCarDocs("Toyota Alphard Hybrid 2021"), ], CarSpecs(mass=4305. * CV.LB_TO_KG, wheelbase=3.0, steerRatio=14.2, tireStiffnessFactor=0.444), ) TOYOTA_AVALON = PlatformConfig( [ ToyotaCarDocs("Toyota Avalon 2016", "Toyota Safety Sense P"), ToyotaCarDocs("Toyota Avalon 2017-18"), ], CarSpecs(mass=3505. * CV.LB_TO_KG, wheelbase=2.82, steerRatio=14.8, tireStiffnessFactor=0.7983), dbc_dict('toyota_tnga_k_pt_generated', 'toyota_adas'), ) TOYOTA_AVALON_2019 = PlatformConfig( [ ToyotaCarDocs("Toyota Avalon 2019-21"), ToyotaCarDocs("Toyota Avalon Hybrid 2019-21"), ], TOYOTA_AVALON.specs, dbc_dict('toyota_nodsu_pt_generated', 'toyota_adas'), ) TOYOTA_AVALON_TSS2 = ToyotaTSS2PlatformConfig( # TSS 2.5 [ ToyotaCarDocs("Toyota Avalon 2022"), ToyotaCarDocs("Toyota Avalon Hybrid 2022"), ], TOYOTA_AVALON.specs, ) TOYOTA_CAMRY = PlatformConfig( [ ToyotaCarDocs("Toyota Camry 2018-20", video_link="https://www.youtube.com/watch?v=fkcjviZY9CM", footnotes=[Footnote.CAMRY]), ToyotaCarDocs("Toyota Camry Hybrid 2018-20", video_link="https://www.youtube.com/watch?v=Q2DYY0AWKgk"), ], CarSpecs(mass=3400. * CV.LB_TO_KG, wheelbase=2.82448, steerRatio=13.7, tireStiffnessFactor=0.7933), dbc_dict('toyota_nodsu_pt_generated', 'toyota_adas'), flags=ToyotaFlags.NO_DSU, ) TOYOTA_CAMRY_TSS2 = ToyotaTSS2PlatformConfig( # TSS 2.5 [ ToyotaCarDocs("Toyota Camry 2021-24", footnotes=[Footnote.CAMRY]), ToyotaCarDocs("Toyota Camry Hybrid 2021-24"), ], TOYOTA_CAMRY.specs, ) TOYOTA_CHR = PlatformConfig( [ ToyotaCarDocs("Toyota C-HR 2017-20"), ToyotaCarDocs("Toyota C-HR Hybrid 2017-20"), ], CarSpecs(mass=3300. * CV.LB_TO_KG, wheelbase=2.63906, steerRatio=13.6, tireStiffnessFactor=0.7933), dbc_dict('toyota_nodsu_pt_generated', 'toyota_adas'), flags=ToyotaFlags.NO_DSU, ) TOYOTA_CHR_TSS2 = ToyotaTSS2PlatformConfig( [ ToyotaCarDocs("Toyota C-HR 2021"), ToyotaCarDocs("Toyota C-HR Hybrid 2021-22"), ], TOYOTA_CHR.specs, flags=ToyotaFlags.RADAR_ACC, ) TOYOTA_COROLLA = PlatformConfig( [ToyotaCarDocs("Toyota Corolla 2017-19")], CarSpecs(mass=2860. * CV.LB_TO_KG, wheelbase=2.7, steerRatio=18.27, tireStiffnessFactor=0.444), dbc_dict('toyota_new_mc_pt_generated', 'toyota_adas'), ) # LSS2 Lexus UX Hybrid is same as a TSS2 Corolla Hybrid TOYOTA_COROLLA_TSS2 = ToyotaTSS2PlatformConfig( [ ToyotaCarDocs("Toyota Corolla 2020-22", video_link="https://www.youtube.com/watch?v=_66pXk0CBYA"), ToyotaCarDocs("Toyota Corolla Cross (Non-US only) 2020-23", min_enable_speed=7.5), ToyotaCarDocs("Toyota Corolla Hatchback 2019-22", video_link="https://www.youtube.com/watch?v=_66pXk0CBYA"), # Hybrid platforms ToyotaCarDocs("Toyota Corolla Hybrid 2020-22"), ToyotaCarDocs("Toyota Corolla Hybrid (Non-US only) 2020-23", min_enable_speed=7.5), ToyotaCarDocs("Toyota Corolla Cross Hybrid (Non-US only) 2020-22", min_enable_speed=7.5), ToyotaCarDocs("Lexus UX Hybrid 2019-23"), ], CarSpecs(mass=3060. * CV.LB_TO_KG, wheelbase=2.67, steerRatio=13.9, tireStiffnessFactor=0.444), ) TOYOTA_HIGHLANDER = PlatformConfig( [ ToyotaCarDocs("Toyota Highlander 2017-19", video_link="https://www.youtube.com/watch?v=0wS0wXSLzoo"), ToyotaCarDocs("Toyota Highlander Hybrid 2017-19"), ], CarSpecs(mass=4516. * CV.LB_TO_KG, wheelbase=2.8194, steerRatio=16.0, tireStiffnessFactor=0.8), dbc_dict('toyota_tnga_k_pt_generated', 'toyota_adas'), flags=ToyotaFlags.NO_STOP_TIMER | ToyotaFlags.SNG_WITHOUT_DSU, ) TOYOTA_HIGHLANDER_TSS2 = ToyotaTSS2PlatformConfig( [ ToyotaCarDocs("Toyota Highlander 2020-23"), ToyotaCarDocs("Toyota Highlander Hybrid 2020-23"), ], TOYOTA_HIGHLANDER.specs, ) TOYOTA_PRIUS = PlatformConfig( [ ToyotaCarDocs("Toyota Prius 2016", "Toyota Safety Sense P", video_link="https://www.youtube.com/watch?v=8zopPJI8XQ0"), ToyotaCarDocs("Toyota Prius 2017-20", video_link="https://www.youtube.com/watch?v=8zopPJI8XQ0"), ToyotaCarDocs("Toyota Prius Prime 2017-20", video_link="https://www.youtube.com/watch?v=8zopPJI8XQ0"), ], CarSpecs(mass=3045. * CV.LB_TO_KG, wheelbase=2.7, steerRatio=15.74, tireStiffnessFactor=0.6371), dbc_dict('toyota_nodsu_pt_generated', 'toyota_adas'), ) TOYOTA_PRIUS_V = PlatformConfig( [ToyotaCarDocs("Toyota Prius v 2017", "Toyota Safety Sense P", min_enable_speed=MIN_ACC_SPEED)], CarSpecs(mass=3340. * CV.LB_TO_KG, wheelbase=2.78, steerRatio=17.4, tireStiffnessFactor=0.5533), dbc_dict('toyota_new_mc_pt_generated', 'toyota_adas'), flags=ToyotaFlags.NO_STOP_TIMER | ToyotaFlags.SNG_WITHOUT_DSU, ) TOYOTA_PRIUS_TSS2 = ToyotaTSS2PlatformConfig( [ ToyotaCarDocs("Toyota Prius 2021-22", video_link="https://www.youtube.com/watch?v=J58TvCpUd4U"), ToyotaCarDocs("Toyota Prius Prime 2021-22", video_link="https://www.youtube.com/watch?v=J58TvCpUd4U"), ], CarSpecs(mass=3115. * CV.LB_TO_KG, wheelbase=2.70002, steerRatio=13.4, tireStiffnessFactor=0.6371), ) TOYOTA_RAV4 = PlatformConfig( [ ToyotaCarDocs("Toyota RAV4 2016", "Toyota Safety Sense P"), ToyotaCarDocs("Toyota RAV4 2017-18") ], CarSpecs(mass=3650. * CV.LB_TO_KG, wheelbase=2.65, steerRatio=16.88, tireStiffnessFactor=0.5533), dbc_dict('toyota_new_mc_pt_generated', 'toyota_adas'), ) TOYOTA_RAV4H = PlatformConfig( [ ToyotaCarDocs("Toyota RAV4 Hybrid 2016", "Toyota Safety Sense P", video_link="https://youtu.be/LhT5VzJVfNI?t=26"), ToyotaCarDocs("Toyota RAV4 Hybrid 2017-18", video_link="https://youtu.be/LhT5VzJVfNI?t=26") ], TOYOTA_RAV4.specs, dbc_dict('toyota_tnga_k_pt_generated', 'toyota_adas'), # Note that the ICE RAV4 does not respect positive acceleration commands under 19 mph flags=ToyotaFlags.NO_STOP_TIMER | ToyotaFlags.SNG_WITHOUT_DSU, ) TOYOTA_RAV4_TSS2 = ToyotaTSS2PlatformConfig( [ ToyotaCarDocs("Toyota RAV4 2019-21", video_link="https://www.youtube.com/watch?v=wJxjDd42gGA"), ToyotaCarDocs("Toyota RAV4 Hybrid 2019-21"), ], CarSpecs(mass=3585. * CV.LB_TO_KG, wheelbase=2.68986, steerRatio=14.3, tireStiffnessFactor=0.7933), ) TOYOTA_RAV4_TSS2_2022 = ToyotaTSS2PlatformConfig( [ ToyotaCarDocs("Toyota RAV4 2022"), ToyotaCarDocs("Toyota RAV4 Hybrid 2022", video_link="https://youtu.be/U0nH9cnrFB0"), ], TOYOTA_RAV4_TSS2.specs, flags=ToyotaFlags.RADAR_ACC, ) TOYOTA_RAV4_TSS2_2023 = ToyotaTSS2PlatformConfig( [ ToyotaCarDocs("Toyota RAV4 2023-24"), ToyotaCarDocs("Toyota RAV4 Hybrid 2023-24"), ], TOYOTA_RAV4_TSS2.specs, flags=ToyotaFlags.RADAR_ACC | ToyotaFlags.ANGLE_CONTROL, ) TOYOTA_MIRAI = ToyotaTSS2PlatformConfig( # TSS 2.5 [ToyotaCarDocs("Toyota Mirai 2021")], CarSpecs(mass=4300. * CV.LB_TO_KG, wheelbase=2.91, steerRatio=14.8, tireStiffnessFactor=0.8), ) TOYOTA_SIENNA = PlatformConfig( [ToyotaCarDocs("Toyota Sienna 2018-20", video_link="https://www.youtube.com/watch?v=q1UPOo4Sh68", min_enable_speed=MIN_ACC_SPEED)], CarSpecs(mass=4590. * CV.LB_TO_KG, wheelbase=3.03, steerRatio=15.5, tireStiffnessFactor=0.444), dbc_dict('toyota_tnga_k_pt_generated', 'toyota_adas'), flags=ToyotaFlags.NO_STOP_TIMER, ) # Lexus LEXUS_CTH = PlatformConfig( [ToyotaCarDocs("Lexus CT Hybrid 2017-18", "Lexus Safety System+")], CarSpecs(mass=3108. * CV.LB_TO_KG, wheelbase=2.6, steerRatio=18.6, tireStiffnessFactor=0.517), dbc_dict('toyota_new_mc_pt_generated', 'toyota_adas'), ) LEXUS_ES = PlatformConfig( [ ToyotaCarDocs("Lexus ES 2017-18"), ToyotaCarDocs("Lexus ES Hybrid 2017-18"), ], CarSpecs(mass=3677. * CV.LB_TO_KG, wheelbase=2.8702, steerRatio=16.0, tireStiffnessFactor=0.444), dbc_dict('toyota_new_mc_pt_generated', 'toyota_adas'), ) LEXUS_ES_TSS2 = ToyotaTSS2PlatformConfig( [ ToyotaCarDocs("Lexus ES 2019-24"), ToyotaCarDocs("Lexus ES Hybrid 2019-24", video_link="https://youtu.be/BZ29osRVJeg?t=12"), ], LEXUS_ES.specs, ) LEXUS_IS = PlatformConfig( [ToyotaCarDocs("Lexus IS 2017-19")], CarSpecs(mass=3736.8 * CV.LB_TO_KG, wheelbase=2.79908, steerRatio=13.3, tireStiffnessFactor=0.444), dbc_dict('toyota_tnga_k_pt_generated', 'toyota_adas'), flags=ToyotaFlags.UNSUPPORTED_DSU, ) LEXUS_IS_TSS2 = ToyotaTSS2PlatformConfig( [ToyotaCarDocs("Lexus IS 2022-23")], LEXUS_IS.specs, ) LEXUS_NX = PlatformConfig( [ ToyotaCarDocs("Lexus NX 2018-19"), ToyotaCarDocs("Lexus NX Hybrid 2018-19"), ], CarSpecs(mass=4070. * CV.LB_TO_KG, wheelbase=2.66, steerRatio=14.7, tireStiffnessFactor=0.444), dbc_dict('toyota_tnga_k_pt_generated', 'toyota_adas'), ) LEXUS_NX_TSS2 = ToyotaTSS2PlatformConfig( [ ToyotaCarDocs("Lexus NX 2020-21"), ToyotaCarDocs("Lexus NX Hybrid 2020-21"), ], LEXUS_NX.specs, ) LEXUS_LC_TSS2 = ToyotaTSS2PlatformConfig( [ToyotaCarDocs("Lexus LC 2024")], CarSpecs(mass=4500. * CV.LB_TO_KG, wheelbase=2.87, steerRatio=13.0, tireStiffnessFactor=0.444), ) LEXUS_RC = PlatformConfig( [ToyotaCarDocs("Lexus RC 2018-20")], LEXUS_IS.specs, dbc_dict('toyota_tnga_k_pt_generated', 'toyota_adas'), flags=ToyotaFlags.UNSUPPORTED_DSU, ) LEXUS_RX = PlatformConfig( [ ToyotaCarDocs("Lexus RX 2016", "Lexus Safety System+"), ToyotaCarDocs("Lexus RX 2017-19"), # Hybrid platforms ToyotaCarDocs("Lexus RX Hybrid 2016", "Lexus Safety System+"), ToyotaCarDocs("Lexus RX Hybrid 2017-19"), ], CarSpecs(mass=4481. * CV.LB_TO_KG, wheelbase=2.79, steerRatio=16., tireStiffnessFactor=0.5533), dbc_dict('toyota_tnga_k_pt_generated', 'toyota_adas'), ) LEXUS_RX_TSS2 = ToyotaTSS2PlatformConfig( [ ToyotaCarDocs("Lexus RX 2020-22"), ToyotaCarDocs("Lexus RX Hybrid 2020-22"), ], LEXUS_RX.specs, ) LEXUS_GS_F = PlatformConfig( [ToyotaCarDocs("Lexus GS F 2016")], CarSpecs(mass=4034. * CV.LB_TO_KG, wheelbase=2.84988, steerRatio=13.3, tireStiffnessFactor=0.444), dbc_dict('toyota_new_mc_pt_generated', 'toyota_adas'), flags=ToyotaFlags.UNSUPPORTED_DSU, ) # (addr, cars, bus, 1/freq*100, vl) STATIC_DSU_MSGS = [ (0x128, (CAR.TOYOTA_PRIUS, CAR.TOYOTA_RAV4H, CAR.LEXUS_RX, CAR.LEXUS_NX, CAR.TOYOTA_RAV4, CAR.TOYOTA_COROLLA, CAR.TOYOTA_AVALON), \ 1, 3, b'\xf4\x01\x90\x83\x00\x37'), (0x128, (CAR.TOYOTA_HIGHLANDER, CAR.TOYOTA_SIENNA, CAR.LEXUS_CTH, CAR.LEXUS_ES), 1, 3, b'\x03\x00\x20\x00\x00\x52'), (0x141, (CAR.TOYOTA_PRIUS, CAR.TOYOTA_RAV4H, CAR.LEXUS_RX, CAR.LEXUS_NX, CAR.TOYOTA_RAV4, CAR.TOYOTA_COROLLA, CAR.TOYOTA_HIGHLANDER, CAR.TOYOTA_AVALON, CAR.TOYOTA_SIENNA, CAR.LEXUS_CTH, CAR.LEXUS_ES, CAR.TOYOTA_PRIUS_V), 1, 2, b'\x00\x00\x00\x46'), (0x160, (CAR.TOYOTA_PRIUS, CAR.TOYOTA_RAV4H, CAR.LEXUS_RX, CAR.LEXUS_NX, CAR.TOYOTA_RAV4, CAR.TOYOTA_COROLLA, CAR.TOYOTA_HIGHLANDER, CAR.TOYOTA_AVALON, CAR.TOYOTA_SIENNA, CAR.LEXUS_CTH, CAR.LEXUS_ES, CAR.TOYOTA_PRIUS_V), 1, 7, b'\x00\x00\x08\x12\x01\x31\x9c\x51'), (0x161, (CAR.TOYOTA_PRIUS, CAR.TOYOTA_RAV4H, CAR.LEXUS_RX, CAR.LEXUS_NX, CAR.TOYOTA_RAV4, CAR.TOYOTA_COROLLA, CAR.TOYOTA_AVALON, CAR.TOYOTA_PRIUS_V), 1, 7, b'\x00\x1e\x00\x00\x00\x80\x07'), (0X161, (CAR.TOYOTA_HIGHLANDER, CAR.TOYOTA_SIENNA, CAR.LEXUS_CTH, CAR.LEXUS_ES), 1, 7, b'\x00\x1e\x00\xd4\x00\x00\x5b'), (0x283, (CAR.TOYOTA_PRIUS, CAR.TOYOTA_RAV4H, CAR.LEXUS_RX, CAR.LEXUS_NX, CAR.TOYOTA_RAV4, CAR.TOYOTA_COROLLA, CAR.TOYOTA_HIGHLANDER, CAR.TOYOTA_AVALON, CAR.TOYOTA_SIENNA, CAR.LEXUS_CTH, CAR.LEXUS_ES, CAR.TOYOTA_PRIUS_V), 0, 3, b'\x00\x00\x00\x00\x00\x00\x8c'), (0x2E6, (CAR.TOYOTA_PRIUS, CAR.TOYOTA_RAV4H, CAR.LEXUS_RX), 0, 3, b'\xff\xf8\x00\x08\x7f\xe0\x00\x4e'), (0x2E7, (CAR.TOYOTA_PRIUS, CAR.TOYOTA_RAV4H, CAR.LEXUS_RX), 0, 3, b'\xa8\x9c\x31\x9c\x00\x00\x00\x02'), (0x33E, (CAR.TOYOTA_PRIUS, CAR.TOYOTA_RAV4H, CAR.LEXUS_RX), 0, 20, b'\x0f\xff\x26\x40\x00\x1f\x00'), (0x344, (CAR.TOYOTA_PRIUS, CAR.TOYOTA_RAV4H, CAR.LEXUS_RX, CAR.LEXUS_NX, CAR.TOYOTA_RAV4, CAR.TOYOTA_COROLLA, CAR.TOYOTA_HIGHLANDER, CAR.TOYOTA_AVALON, CAR.TOYOTA_SIENNA, CAR.LEXUS_CTH, CAR.LEXUS_ES, CAR.TOYOTA_PRIUS_V), 0, 5, b'\x00\x00\x01\x00\x00\x00\x00\x50'), (0x365, (CAR.TOYOTA_PRIUS, CAR.LEXUS_NX, CAR.TOYOTA_HIGHLANDER), 0, 20, b'\x00\x00\x00\x80\x03\x00\x08'), (0x365, (CAR.TOYOTA_RAV4, CAR.TOYOTA_RAV4H, CAR.TOYOTA_COROLLA, CAR.TOYOTA_AVALON, CAR.TOYOTA_SIENNA, CAR.LEXUS_CTH, CAR.LEXUS_ES, CAR.LEXUS_RX, CAR.TOYOTA_PRIUS_V), 0, 20, b'\x00\x00\x00\x80\xfc\x00\x08'), (0x366, (CAR.TOYOTA_PRIUS, CAR.TOYOTA_RAV4H, CAR.LEXUS_RX, CAR.LEXUS_NX, CAR.TOYOTA_HIGHLANDER), 0, 20, b'\x00\x00\x4d\x82\x40\x02\x00'), (0x366, (CAR.TOYOTA_RAV4, CAR.TOYOTA_COROLLA, CAR.TOYOTA_AVALON, CAR.TOYOTA_SIENNA, CAR.LEXUS_CTH, CAR.LEXUS_ES, CAR.TOYOTA_PRIUS_V), 0, 20, b'\x00\x72\x07\xff\x09\xfe\x00'), (0x470, (CAR.TOYOTA_PRIUS, CAR.LEXUS_RX), 1, 100, b'\x00\x00\x02\x7a'), (0x470, (CAR.TOYOTA_HIGHLANDER, CAR.TOYOTA_RAV4H, CAR.TOYOTA_SIENNA, CAR.LEXUS_CTH, CAR.LEXUS_ES, CAR.TOYOTA_PRIUS_V), 1, 100, b'\x00\x00\x01\x79'), (0x4CB, (CAR.TOYOTA_PRIUS, CAR.TOYOTA_RAV4H, CAR.LEXUS_RX, CAR.LEXUS_NX, CAR.TOYOTA_RAV4, CAR.TOYOTA_COROLLA, CAR.TOYOTA_HIGHLANDER, CAR.TOYOTA_AVALON, CAR.TOYOTA_SIENNA, CAR.LEXUS_CTH, CAR.LEXUS_ES, CAR.TOYOTA_PRIUS_V), 0, 100, b'\x0c\x00\x00\x00\x00\x00\x00\x00'), ] def get_platform_codes(fw_versions: list[bytes]) -> dict[bytes, set[bytes]]: # Returns sub versions in a dict so comparisons can be made within part-platform-major_version combos codes = defaultdict(set) # Optional[part]-platform-major_version: set of sub_version for fw in fw_versions: # FW versions returned from UDS queries can return multiple fields/chunks of data (different ECU calibrations, different data?) # and are prefixed with a byte that describes how many chunks of data there are. # But FW returned from KWP requires querying of each sub-data id and does not have a length prefix. length_code = 1 length_code_match = FW_LEN_CODE.search(fw) if length_code_match is not None: length_code = length_code_match.group()[0] fw = fw[1:] # fw length should be multiple of 16 bytes (per chunk, even if no length code), skip parsing if unexpected length if length_code * FW_CHUNK_LEN != len(fw): continue chunks = [fw[FW_CHUNK_LEN * i:FW_CHUNK_LEN * i + FW_CHUNK_LEN].strip(b'\x00 ') for i in range(length_code)] # only first is considered for now since second is commonly shared (TODO: understand that) first_chunk = chunks[0] if len(first_chunk) == 8: # TODO: no part number, but some short chunks have it in subsequent chunks fw_match = SHORT_FW_PATTERN.search(first_chunk) if fw_match is not None: platform, major_version, sub_version = fw_match.groups() codes[b'-'.join((platform, major_version))].add(sub_version) elif len(first_chunk) == 10: fw_match = MEDIUM_FW_PATTERN.search(first_chunk) if fw_match is not None: part, platform, major_version, sub_version = fw_match.groups() codes[b'-'.join((part, platform, major_version))].add(sub_version) elif len(first_chunk) == 12: fw_match = LONG_FW_PATTERN.search(first_chunk) if fw_match is not None: part, platform, major_version, sub_version = fw_match.groups() codes[b'-'.join((part, platform, major_version))].add(sub_version) return dict(codes) def match_fw_to_car_fuzzy(live_fw_versions, vin, offline_fw_versions) -> set[str]: candidates = set() for candidate, fws in offline_fw_versions.items(): # Keep track of ECUs which pass all checks (platform codes, within sub-version range) valid_found_ecus = set() valid_expected_ecus = {ecu[1:] for ecu in fws if ecu[0] in PLATFORM_CODE_ECUS} for ecu, expected_versions in fws.items(): addr = ecu[1:] # Only check ECUs expected to have platform codes if ecu[0] not in PLATFORM_CODE_ECUS: continue # Expected platform codes & versions expected_platform_codes = get_platform_codes(expected_versions) # Found platform codes & versions found_platform_codes = get_platform_codes(live_fw_versions.get(addr, set())) # Check part number + platform code + major version matches for any found versions # Platform codes and major versions change for different physical parts, generation, API, etc. # Sub-versions are incremented for minor recalls, do not need to be checked. if not any(found_platform_code in expected_platform_codes for found_platform_code in found_platform_codes): break valid_found_ecus.add(addr) # If all live ECUs pass all checks for candidate, add it as a match if valid_expected_ecus.issubset(valid_found_ecus): candidates.add(candidate) return {str(c) for c in (candidates - FUZZY_EXCLUDED_PLATFORMS)} # Regex patterns for parsing more general platform-specific identifiers from FW versions. # - Part number: Toyota part number (usually last character needs to be ignored to find a match). # Each ECU address has just one part number. # - Platform: usually multiple codes per an openpilot platform, however this is the least variable and # is usually shared across ECUs and model years signifying this describes something about the specific platform. # This describes more generational changes (TSS-P vs TSS2), or manufacture region. # - Major version: second least variable part of the FW version. Seen splitting cars by model year/API such as # RAV4 2022/2023 and Avalon. Used to differentiate cars where API has changed slightly, but is not a generational change. # It is important to note that these aren't always consecutive, for example: # Avalon 2016-18's fwdCamera has these major versions: 01, 03 while 2019 has: 02 # - Sub version: exclusive to major version, but shared with other cars. Should only be used for further filtering. # Seen bumped in TSB FW updates, and describes other minor differences. SHORT_FW_PATTERN = re.compile(b'[A-Z0-9](?P<platform>[A-Z0-9]{2})(?P<major_version>[A-Z0-9]{2})(?P<sub_version>[A-Z0-9]{3})') MEDIUM_FW_PATTERN = re.compile(b'(?P<part>[A-Z0-9]{5})(?P<platform>[A-Z0-9]{2})(?P<major_version>[A-Z0-9]{1})(?P<sub_version>[A-Z0-9]{2})') LONG_FW_PATTERN = re.compile(b'(?P<part>[A-Z0-9]{5})(?P<platform>[A-Z0-9]{2})(?P<major_version>[A-Z0-9]{2})(?P<sub_version>[A-Z0-9]{3})') FW_LEN_CODE = re.compile(b'^[\x01-\x03]') # highest seen is 3 chunks, 16 bytes each FW_CHUNK_LEN = 16 # List of ECUs that are most unique across openpilot platforms # - fwdCamera: describes actual features related to ADAS. For example, on the Avalon it describes # when TSS-P became standard, whether the car supports stop and go, and whether it's TSS2. # On the RAV4, it describes the move to the radar doing ACC, and the use of LTA for lane keeping. # Note that the platform codes & major versions do not describe features in plain text, only with # matching against other seen FW versions in the database they can describe features. # - fwdRadar: sanity check against fwdCamera, commonly shares a platform code. # For example the RAV4 2022's new radar architecture is shown for both with platform code. # - abs: differentiates hybrid/ICE on most cars (Corolla TSS2 is an exception, not used due to hybrid platform combination) # - eps: describes lateral API changes for the EPS, such as using LTA for lane keeping and rejecting LKA messages PLATFORM_CODE_ECUS = (Ecu.fwdCamera, Ecu.fwdRadar, Ecu.eps) # These platforms have at least one platform code for all ECUs shared with another platform. FUZZY_EXCLUDED_PLATFORMS: set[CAR] = set() # Some ECUs that use KWP2000 have their FW versions on non-standard data identifiers. # Toyota diagnostic software first gets the supported data ids, then queries them one by one. # For example, sends: 0x1a8800, receives: 0x1a8800010203, queries: 0x1a8801, 0x1a8802, 0x1a8803 TOYOTA_VERSION_REQUEST_KWP = b'\x1a\x88\x01' TOYOTA_VERSION_RESPONSE_KWP = b'\x5a\x88\x01' FW_QUERY_CONFIG = FwQueryConfig( # TODO: look at data to whitelist new ECUs effectively requests=[ Request( [StdQueries.SHORT_TESTER_PRESENT_REQUEST, TOYOTA_VERSION_REQUEST_KWP], [StdQueries.SHORT_TESTER_PRESENT_RESPONSE, TOYOTA_VERSION_RESPONSE_KWP], whitelist_ecus=[Ecu.fwdCamera, Ecu.fwdRadar, Ecu.dsu, Ecu.abs, Ecu.eps, Ecu.srs, Ecu.transmission, Ecu.hvac], bus=0, ), Request( [StdQueries.SHORT_TESTER_PRESENT_REQUEST, StdQueries.OBD_VERSION_REQUEST], [StdQueries.SHORT_TESTER_PRESENT_RESPONSE, StdQueries.OBD_VERSION_RESPONSE], whitelist_ecus=[Ecu.engine, Ecu.hybrid, Ecu.srs, Ecu.transmission, Ecu.hvac], bus=0, ), Request( [StdQueries.TESTER_PRESENT_REQUEST, StdQueries.DEFAULT_DIAGNOSTIC_REQUEST, StdQueries.EXTENDED_DIAGNOSTIC_REQUEST, StdQueries.UDS_VERSION_REQUEST], [StdQueries.TESTER_PRESENT_RESPONSE, StdQueries.DEFAULT_DIAGNOSTIC_RESPONSE, StdQueries.EXTENDED_DIAGNOSTIC_RESPONSE, StdQueries.UDS_VERSION_RESPONSE], whitelist_ecus=[Ecu.engine, Ecu.fwdRadar, Ecu.fwdCamera, Ecu.abs, Ecu.eps, Ecu.hybrid, Ecu.srs, Ecu.transmission, Ecu.hvac], bus=0, ), ], non_essential_ecus={ # FIXME: On some models, abs can sometimes be missing Ecu.abs: [CAR.TOYOTA_RAV4, CAR.TOYOTA_COROLLA, CAR.TOYOTA_HIGHLANDER, CAR.TOYOTA_SIENNA, CAR.LEXUS_IS, CAR.TOYOTA_ALPHARD_TSS2], # On some models, the engine can show on two different addresses Ecu.engine: [CAR.TOYOTA_HIGHLANDER, CAR.TOYOTA_CAMRY, CAR.TOYOTA_COROLLA_TSS2, CAR.TOYOTA_CHR, CAR.TOYOTA_CHR_TSS2, CAR.LEXUS_IS, CAR.LEXUS_IS_TSS2, CAR.LEXUS_RC, CAR.LEXUS_NX, CAR.LEXUS_NX_TSS2, CAR.LEXUS_RX, CAR.LEXUS_RX_TSS2], }, extra_ecus=[ # All known ECUs on a late-model Toyota vehicle not queried here: # Responds to UDS: # - Combination Meter (0x7c0) # - HV Battery (0x713, 0x747) # - Motor Generator (0x716, 0x724) # - 2nd ABS "Brake/EPB" (0x730) # - Electronic Parking Brake ((0x750, 0x2c)) # - Telematics ((0x750, 0xc7)) # Responds to KWP (0x1a8801): # - Steering Angle Sensor (0x7b3) # - EPS/EMPS (0x7a0, 0x7a1) # - 2nd SRS Airbag (0x784) # - Central Gateway ((0x750, 0x5f)) # - Telematics ((0x750, 0xc7)) # Responds to KWP (0x1a8881): # - Body Control Module ((0x750, 0x40)) # - Telematics ((0x750, 0xc7)) # Hybrid control computer can be on 0x7e2 (KWP) or 0x7d2 (UDS) depending on platform (Ecu.hybrid, 0x7e2, None), # Hybrid Control Assembly & Computer (Ecu.srs, 0x780, None), # SRS Airbag # Transmission is combined with engine on some platforms, such as TSS-P RAV4 (Ecu.transmission, 0x701, None), # A few platforms have a tester present response on this address, add to log (Ecu.transmission, 0x7e1, None), (Ecu.hvac, 0x7c4, None), ], match_fw_to_car_fuzzy=match_fw_to_car_fuzzy, ) STEER_THRESHOLD = 100 # These cars have non-standard EPS torque scale factors. All others are 73 EPS_SCALE = defaultdict(lambda: 73, {CAR.TOYOTA_PRIUS: 66, CAR.TOYOTA_COROLLA: 88, CAR.LEXUS_IS: 77, CAR.LEXUS_RC: 77, CAR.LEXUS_CTH: 100, CAR.TOYOTA_PRIUS_V: 100}) # Toyota/Lexus Safety Sense 2.0 and 2.5 TSS2_CAR = CAR.with_flags(ToyotaFlags.TSS2) NO_DSU_CAR = CAR.with_flags(ToyotaFlags.NO_DSU) # the DSU uses the AEB message for longitudinal on these cars UNSUPPORTED_DSU_CAR = CAR.with_flags(ToyotaFlags.UNSUPPORTED_DSU) # these cars have a radar which sends ACC messages instead of the camera RADAR_ACC_CAR = CAR.with_flags(ToyotaFlags.RADAR_ACC) ANGLE_CONTROL_CAR = CAR.with_flags(ToyotaFlags.ANGLE_CONTROL) # no resume button press required NO_STOP_TIMER_CAR = CAR.with_flags(ToyotaFlags.NO_STOP_TIMER) DBC = CAR.create_dbc_map()
2301_81045437/openpilot
selfdrive/car/toyota/values.py
Python
mit
27,576
from typing import get_args from openpilot.selfdrive.car.body.values import CAR as BODY from openpilot.selfdrive.car.chrysler.values import CAR as CHRYSLER from openpilot.selfdrive.car.ford.values import CAR as FORD from openpilot.selfdrive.car.gm.values import CAR as GM from openpilot.selfdrive.car.honda.values import CAR as HONDA from openpilot.selfdrive.car.hyundai.values import CAR as HYUNDAI from openpilot.selfdrive.car.mazda.values import CAR as MAZDA from openpilot.selfdrive.car.mock.values import CAR as MOCK from openpilot.selfdrive.car.nissan.values import CAR as NISSAN from openpilot.selfdrive.car.subaru.values import CAR as SUBARU from openpilot.selfdrive.car.tesla.values import CAR as TESLA from openpilot.selfdrive.car.toyota.values import CAR as TOYOTA from openpilot.selfdrive.car.volkswagen.values import CAR as VOLKSWAGEN Platform = BODY | CHRYSLER | FORD | GM | HONDA | HYUNDAI | MAZDA | MOCK | NISSAN | SUBARU | TESLA | TOYOTA | VOLKSWAGEN BRANDS = get_args(Platform) PLATFORMS: dict[str, Platform] = {str(platform): platform for brand in BRANDS for platform in brand}
2301_81045437/openpilot
selfdrive/car/values.py
Python
mit
1,099
#!/usr/bin/env python3 import re import cereal.messaging as messaging from panda.python.uds import get_rx_addr_for_tx_addr, FUNCTIONAL_ADDRS from openpilot.selfdrive.car.isotp_parallel_query import IsoTpParallelQuery from openpilot.selfdrive.car.fw_query_definitions import STANDARD_VIN_ADDRS, StdQueries from openpilot.common.swaglog import cloudlog VIN_UNKNOWN = "0" * 17 VIN_RE = "[A-HJ-NPR-Z0-9]{17}" def is_valid_vin(vin: str): return re.fullmatch(VIN_RE, vin) is not None def get_vin(logcan, sendcan, buses, timeout=0.1, retry=2, debug=False): for i in range(retry): for bus in buses: for request, response, valid_buses, vin_addrs, functional_addrs, rx_offset in ( (StdQueries.UDS_VIN_REQUEST, StdQueries.UDS_VIN_RESPONSE, (0, 1), STANDARD_VIN_ADDRS, FUNCTIONAL_ADDRS, 0x8), (StdQueries.OBD_VIN_REQUEST, StdQueries.OBD_VIN_RESPONSE, (0, 1), STANDARD_VIN_ADDRS, FUNCTIONAL_ADDRS, 0x8), (StdQueries.GM_VIN_REQUEST, StdQueries.GM_VIN_RESPONSE, (0,), [0x24b], None, 0x400), # Bolt fwdCamera (StdQueries.KWP_VIN_REQUEST, StdQueries.KWP_VIN_RESPONSE, (0,), [0x797], None, 0x3), # Nissan Leaf VCM (StdQueries.UDS_VIN_REQUEST, StdQueries.UDS_VIN_RESPONSE, (0,), [0x74f], None, 0x6a), # Volkswagen fwdCamera ): if bus not in valid_buses: continue # When querying functional addresses, ideally we respond to everything that sends a first frame to avoid leaving the # ECU in a temporary bad state. Note that we may not cover all ECUs and response offsets. TODO: query physical addrs tx_addrs = vin_addrs if functional_addrs is not None: tx_addrs = [a for a in range(0x700, 0x800) if a != 0x7DF] + list(range(0x18DA00F1, 0x18DB00F1, 0x100)) try: query = IsoTpParallelQuery(sendcan, logcan, bus, tx_addrs, [request, ], [response, ], response_offset=rx_offset, functional_addrs=functional_addrs, debug=debug) results = query.get_data(timeout) for addr in vin_addrs: vin = results.get((addr, None)) if vin is not None: # Ford and Nissan pads with null bytes if len(vin) in (19, 24): vin = re.sub(b'\x00*$', b'', vin) # Honda Bosch response starts with a length, trim to correct length if vin.startswith(b'\x11'): vin = vin[1:18] cloudlog.error(f"got vin with {request=}") return get_rx_addr_for_tx_addr(addr, rx_offset=rx_offset), bus, vin.decode() except Exception: cloudlog.exception("VIN query exception") cloudlog.error(f"vin query retry ({i+1}) ...") return -1, -1, VIN_UNKNOWN if __name__ == "__main__": import argparse import time parser = argparse.ArgumentParser(description='Get VIN of the car') parser.add_argument('--debug', action='store_true') parser.add_argument('--bus', type=int, default=1) parser.add_argument('--timeout', type=float, default=0.1) parser.add_argument('--retry', type=int, default=5) args = parser.parse_args() sendcan = messaging.pub_sock('sendcan') logcan = messaging.sub_sock('can') time.sleep(1) vin_rx_addr, vin_rx_bus, vin = get_vin(logcan, sendcan, (args.bus,), args.timeout, args.retry, debug=args.debug) print(f'RX: {hex(vin_rx_addr)}, BUS: {vin_rx_bus}, VIN: {vin}')
2301_81045437/openpilot
selfdrive/car/vin.py
Python
mit
3,407
from cereal import car from opendbc.can.packer import CANPacker from openpilot.common.numpy_fast import clip from openpilot.common.conversions import Conversions as CV from openpilot.common.realtime import DT_CTRL from openpilot.selfdrive.car import apply_driver_steer_torque_limits from openpilot.selfdrive.car.interfaces import CarControllerBase from openpilot.selfdrive.car.volkswagen import mqbcan, pqcan from openpilot.selfdrive.car.volkswagen.values import CANBUS, CarControllerParams, VolkswagenFlags VisualAlert = car.CarControl.HUDControl.VisualAlert LongCtrlState = car.CarControl.Actuators.LongControlState class CarController(CarControllerBase): def __init__(self, dbc_name, CP, VM): self.CP = CP self.CCP = CarControllerParams(CP) self.CCS = pqcan if CP.flags & VolkswagenFlags.PQ else mqbcan self.packer_pt = CANPacker(dbc_name) self.ext_bus = CANBUS.pt if CP.networkLocation == car.CarParams.NetworkLocation.fwdCamera else CANBUS.cam self.apply_steer_last = 0 self.gra_acc_counter_last = None self.frame = 0 self.eps_timer_soft_disable_alert = False self.hca_frame_timer_running = 0 self.hca_frame_same_torque = 0 def update(self, CC, CS, now_nanos): actuators = CC.actuators hud_control = CC.hudControl can_sends = [] # **** Steering Controls ************************************************ # if self.frame % self.CCP.STEER_STEP == 0: # Logic to avoid HCA state 4 "refused": # * Don't steer unless HCA is in state 3 "ready" or 5 "active" # * Don't steer at standstill # * Don't send > 3.00 Newton-meters torque # * Don't send the same torque for > 6 seconds # * Don't send uninterrupted steering for > 360 seconds # MQB racks reset the uninterrupted steering timer after a single frame # of HCA disabled; this is done whenever output happens to be zero. if CC.latActive: new_steer = int(round(actuators.steer * self.CCP.STEER_MAX)) apply_steer = apply_driver_steer_torque_limits(new_steer, self.apply_steer_last, CS.out.steeringTorque, self.CCP) self.hca_frame_timer_running += self.CCP.STEER_STEP if self.apply_steer_last == apply_steer: self.hca_frame_same_torque += self.CCP.STEER_STEP if self.hca_frame_same_torque > self.CCP.STEER_TIME_STUCK_TORQUE / DT_CTRL: apply_steer -= (1, -1)[apply_steer < 0] self.hca_frame_same_torque = 0 else: self.hca_frame_same_torque = 0 hca_enabled = abs(apply_steer) > 0 else: hca_enabled = False apply_steer = 0 if not hca_enabled: self.hca_frame_timer_running = 0 self.eps_timer_soft_disable_alert = self.hca_frame_timer_running > self.CCP.STEER_TIME_ALERT / DT_CTRL self.apply_steer_last = apply_steer can_sends.append(self.CCS.create_steering_control(self.packer_pt, CANBUS.pt, apply_steer, hca_enabled)) if self.CP.flags & VolkswagenFlags.STOCK_HCA_PRESENT: # Pacify VW Emergency Assist driver inactivity detection by changing its view of driver steering input torque # to the greatest of actual driver input or 2x openpilot's output (1x openpilot output is not enough to # consistently reset inactivity detection on straight level roads). See commaai/openpilot#23274 for background. ea_simulated_torque = clip(apply_steer * 2, -self.CCP.STEER_MAX, self.CCP.STEER_MAX) if abs(CS.out.steeringTorque) > abs(ea_simulated_torque): ea_simulated_torque = CS.out.steeringTorque can_sends.append(self.CCS.create_eps_update(self.packer_pt, CANBUS.cam, CS.eps_stock_values, ea_simulated_torque)) # **** Acceleration Controls ******************************************** # if self.frame % self.CCP.ACC_CONTROL_STEP == 0 and self.CP.openpilotLongitudinalControl: acc_control = self.CCS.acc_control_value(CS.out.cruiseState.available, CS.out.accFaulted, CC.longActive) accel = clip(actuators.accel, self.CCP.ACCEL_MIN, self.CCP.ACCEL_MAX) if CC.longActive else 0 stopping = actuators.longControlState == LongCtrlState.stopping starting = actuators.longControlState == LongCtrlState.pid and (CS.esp_hold_confirmation or CS.out.vEgo < self.CP.vEgoStopping) can_sends.extend(self.CCS.create_acc_accel_control(self.packer_pt, CANBUS.pt, CS.acc_type, CC.longActive, accel, acc_control, stopping, starting, CS.esp_hold_confirmation)) # **** HUD Controls ***************************************************** # if self.frame % self.CCP.LDW_STEP == 0: hud_alert = 0 if hud_control.visualAlert in (VisualAlert.steerRequired, VisualAlert.ldw): hud_alert = self.CCP.LDW_MESSAGES["laneAssistTakeOver"] can_sends.append(self.CCS.create_lka_hud_control(self.packer_pt, CANBUS.pt, CS.ldw_stock_values, CC.latActive, CS.out.steeringPressed, hud_alert, hud_control)) if self.frame % self.CCP.ACC_HUD_STEP == 0 and self.CP.openpilotLongitudinalControl: lead_distance = 0 if hud_control.leadVisible and self.frame * DT_CTRL > 1.0: # Don't display lead until we know the scaling factor lead_distance = 512 if CS.upscale_lead_car_signal else 8 acc_hud_status = self.CCS.acc_hud_status_value(CS.out.cruiseState.available, CS.out.accFaulted, CC.longActive) # FIXME: follow the recent displayed-speed updates, also use mph_kmh toggle to fix display rounding problem? set_speed = hud_control.setSpeed * CV.MS_TO_KPH can_sends.append(self.CCS.create_acc_hud_control(self.packer_pt, CANBUS.pt, acc_hud_status, set_speed, lead_distance, hud_control.leadDistanceBars)) # **** Stock ACC Button Controls **************************************** # gra_send_ready = self.CP.pcmCruise and CS.gra_stock_values["COUNTER"] != self.gra_acc_counter_last if gra_send_ready and (CC.cruiseControl.cancel or CC.cruiseControl.resume): can_sends.append(self.CCS.create_acc_buttons_control(self.packer_pt, self.ext_bus, CS.gra_stock_values, cancel=CC.cruiseControl.cancel, resume=CC.cruiseControl.resume)) new_actuators = actuators.as_builder() new_actuators.steer = self.apply_steer_last / self.CCP.STEER_MAX new_actuators.steerOutputCan = self.apply_steer_last self.gra_acc_counter_last = CS.gra_stock_values["COUNTER"] self.frame += 1 return new_actuators, can_sends
2301_81045437/openpilot
selfdrive/car/volkswagen/carcontroller.py
Python
mit
6,631
import numpy as np from cereal import car from openpilot.common.conversions import Conversions as CV from openpilot.selfdrive.car.interfaces import CarStateBase from opendbc.can.parser import CANParser from openpilot.selfdrive.car.volkswagen.values import DBC, CANBUS, NetworkLocation, TransmissionType, GearShifter, \ CarControllerParams, VolkswagenFlags class CarState(CarStateBase): def __init__(self, CP): super().__init__(CP) self.frame = 0 self.eps_init_complete = False self.CCP = CarControllerParams(CP) self.button_states = {button.event_type: False for button in self.CCP.BUTTONS} self.esp_hold_confirmation = False self.upscale_lead_car_signal = False self.eps_stock_values = False def create_button_events(self, pt_cp, buttons): button_events = [] for button in buttons: state = pt_cp.vl[button.can_addr][button.can_msg] in button.values if self.button_states[button.event_type] != state: event = car.CarState.ButtonEvent.new_message() event.type = button.event_type event.pressed = state button_events.append(event) self.button_states[button.event_type] = state return button_events def update(self, pt_cp, cam_cp, ext_cp, trans_type): if self.CP.flags & VolkswagenFlags.PQ: return self.update_pq(pt_cp, cam_cp, ext_cp, trans_type) ret = car.CarState.new_message() # Update vehicle speed and acceleration from ABS wheel speeds. ret.wheelSpeeds = self.get_wheel_speeds( pt_cp.vl["ESP_19"]["ESP_VL_Radgeschw_02"], pt_cp.vl["ESP_19"]["ESP_VR_Radgeschw_02"], pt_cp.vl["ESP_19"]["ESP_HL_Radgeschw_02"], pt_cp.vl["ESP_19"]["ESP_HR_Radgeschw_02"], ) ret.vEgoRaw = float(np.mean([ret.wheelSpeeds.fl, ret.wheelSpeeds.fr, ret.wheelSpeeds.rl, ret.wheelSpeeds.rr])) ret.vEgo, ret.aEgo = self.update_speed_kf(ret.vEgoRaw) ret.standstill = ret.vEgoRaw == 0 # Update EPS position and state info. For signed values, VW sends the sign in a separate signal. ret.steeringAngleDeg = pt_cp.vl["LWI_01"]["LWI_Lenkradwinkel"] * (1, -1)[int(pt_cp.vl["LWI_01"]["LWI_VZ_Lenkradwinkel"])] ret.steeringRateDeg = pt_cp.vl["LWI_01"]["LWI_Lenkradw_Geschw"] * (1, -1)[int(pt_cp.vl["LWI_01"]["LWI_VZ_Lenkradw_Geschw"])] ret.steeringTorque = pt_cp.vl["LH_EPS_03"]["EPS_Lenkmoment"] * (1, -1)[int(pt_cp.vl["LH_EPS_03"]["EPS_VZ_Lenkmoment"])] ret.steeringPressed = abs(ret.steeringTorque) > self.CCP.STEER_DRIVER_ALLOWANCE ret.yawRate = pt_cp.vl["ESP_02"]["ESP_Gierrate"] * (1, -1)[int(pt_cp.vl["ESP_02"]["ESP_VZ_Gierrate"])] * CV.DEG_TO_RAD hca_status = self.CCP.hca_status_values.get(pt_cp.vl["LH_EPS_03"]["EPS_HCA_Status"]) ret.steerFaultTemporary, ret.steerFaultPermanent = self.update_hca_state(hca_status) # VW Emergency Assist status tracking and mitigation self.eps_stock_values = pt_cp.vl["LH_EPS_03"] if self.CP.flags & VolkswagenFlags.STOCK_HCA_PRESENT: ret.carFaultedNonCritical = bool(cam_cp.vl["HCA_01"]["EA_Ruckfreigabe"]) or cam_cp.vl["HCA_01"]["EA_ACC_Sollstatus"] > 0 # Update gas, brakes, and gearshift. ret.gas = pt_cp.vl["Motor_20"]["MO_Fahrpedalrohwert_01"] / 100.0 ret.gasPressed = ret.gas > 0 ret.brake = pt_cp.vl["ESP_05"]["ESP_Bremsdruck"] / 250.0 # FIXME: this is pressure in Bar, not sure what OP expects brake_pedal_pressed = bool(pt_cp.vl["Motor_14"]["MO_Fahrer_bremst"]) brake_pressure_detected = bool(pt_cp.vl["ESP_05"]["ESP_Fahrer_bremst"]) ret.brakePressed = brake_pedal_pressed or brake_pressure_detected ret.parkingBrake = bool(pt_cp.vl["Kombi_01"]["KBI_Handbremse"]) # FIXME: need to include an EPB check as well # Update gear and/or clutch position data. if trans_type == TransmissionType.automatic: ret.gearShifter = self.parse_gear_shifter(self.CCP.shifter_values.get(pt_cp.vl["Getriebe_11"]["GE_Fahrstufe"], None)) elif trans_type == TransmissionType.direct: ret.gearShifter = self.parse_gear_shifter(self.CCP.shifter_values.get(pt_cp.vl["EV_Gearshift"]["GearPosition"], None)) elif trans_type == TransmissionType.manual: ret.clutchPressed = not pt_cp.vl["Motor_14"]["MO_Kuppl_schalter"] if bool(pt_cp.vl["Gateway_72"]["BCM1_Rueckfahrlicht_Schalter"]): ret.gearShifter = GearShifter.reverse else: ret.gearShifter = GearShifter.drive # Update door and trunk/hatch lid open status. ret.doorOpen = any([pt_cp.vl["Gateway_72"]["ZV_FT_offen"], pt_cp.vl["Gateway_72"]["ZV_BT_offen"], pt_cp.vl["Gateway_72"]["ZV_HFS_offen"], pt_cp.vl["Gateway_72"]["ZV_HBFS_offen"], pt_cp.vl["Gateway_72"]["ZV_HD_offen"]]) # Update seatbelt fastened status. ret.seatbeltUnlatched = pt_cp.vl["Airbag_02"]["AB_Gurtschloss_FA"] != 3 # Consume blind-spot monitoring info/warning LED states, if available. # Infostufe: BSM LED on, Warnung: BSM LED flashing if self.CP.enableBsm: ret.leftBlindspot = bool(ext_cp.vl["SWA_01"]["SWA_Infostufe_SWA_li"]) or bool(ext_cp.vl["SWA_01"]["SWA_Warnung_SWA_li"]) ret.rightBlindspot = bool(ext_cp.vl["SWA_01"]["SWA_Infostufe_SWA_re"]) or bool(ext_cp.vl["SWA_01"]["SWA_Warnung_SWA_re"]) # Consume factory LDW data relevant for factory SWA (Lane Change Assist) # and capture it for forwarding to the blind spot radar controller self.ldw_stock_values = cam_cp.vl["LDW_02"] if self.CP.networkLocation == NetworkLocation.fwdCamera else {} # Stock FCW is considered active if the release bit for brake-jerk warning # is set. Stock AEB considered active if the partial braking or target # braking release bits are set. # Refer to VW Self Study Program 890253: Volkswagen Driver Assistance # Systems, chapter on Front Assist with Braking: Golf Family for all MQB ret.stockFcw = bool(ext_cp.vl["ACC_10"]["AWV2_Freigabe"]) ret.stockAeb = bool(ext_cp.vl["ACC_10"]["ANB_Teilbremsung_Freigabe"]) or bool(ext_cp.vl["ACC_10"]["ANB_Zielbremsung_Freigabe"]) # Update ACC radar status. self.acc_type = ext_cp.vl["ACC_06"]["ACC_Typ"] # ACC okay but disabled (1), ACC ready (2), a radar visibility or other fault/disruption (6 or 7) # currently regulating speed (3), driver accel override (4), brake only (5) ret.cruiseState.available = pt_cp.vl["TSK_06"]["TSK_Status"] in (2, 3, 4, 5) ret.cruiseState.enabled = pt_cp.vl["TSK_06"]["TSK_Status"] in (3, 4, 5) if self.CP.pcmCruise: # Cruise Control mode; check for distance UI setting from the radar. # ECM does not manage this, so do not need to check for openpilot longitudinal ret.cruiseState.nonAdaptive = ext_cp.vl["ACC_02"]["ACC_Gesetzte_Zeitluecke"] == 0 else: # Speed limiter mode; ECM faults if we command ACC while not pcmCruise ret.cruiseState.nonAdaptive = bool(pt_cp.vl["TSK_06"]["TSK_Limiter_ausgewaehlt"]) ret.accFaulted = pt_cp.vl["TSK_06"]["TSK_Status"] in (6, 7) self.esp_hold_confirmation = bool(pt_cp.vl["ESP_21"]["ESP_Haltebestaetigung"]) ret.cruiseState.standstill = self.CP.pcmCruise and self.esp_hold_confirmation # Update ACC setpoint. When the setpoint is zero or there's an error, the # radar sends a set-speed of ~90.69 m/s / 203mph. if self.CP.pcmCruise: ret.cruiseState.speed = ext_cp.vl["ACC_02"]["ACC_Wunschgeschw_02"] * CV.KPH_TO_MS if ret.cruiseState.speed > 90: ret.cruiseState.speed = 0 # Update button states for turn signals and ACC controls, capture all ACC button state/config for passthrough ret.leftBlinker = bool(pt_cp.vl["Blinkmodi_02"]["Comfort_Signal_Left"]) ret.rightBlinker = bool(pt_cp.vl["Blinkmodi_02"]["Comfort_Signal_Right"]) ret.buttonEvents = self.create_button_events(pt_cp, self.CCP.BUTTONS) self.gra_stock_values = pt_cp.vl["GRA_ACC_01"] # Additional safety checks performed in CarInterface. ret.espDisabled = pt_cp.vl["ESP_21"]["ESP_Tastung_passiv"] != 0 # Digital instrument clusters expect the ACC HUD lead car distance to be scaled differently self.upscale_lead_car_signal = bool(pt_cp.vl["Kombi_03"]["KBI_Variante"]) self.frame += 1 return ret def update_pq(self, pt_cp, cam_cp, ext_cp, trans_type): ret = car.CarState.new_message() # Update vehicle speed and acceleration from ABS wheel speeds. ret.wheelSpeeds = self.get_wheel_speeds( pt_cp.vl["Bremse_3"]["Radgeschw__VL_4_1"], pt_cp.vl["Bremse_3"]["Radgeschw__VR_4_1"], pt_cp.vl["Bremse_3"]["Radgeschw__HL_4_1"], pt_cp.vl["Bremse_3"]["Radgeschw__HR_4_1"], ) # vEgo obtained from Bremse_1 vehicle speed rather than Bremse_3 wheel speeds because Bremse_3 isn't present on NSF ret.vEgoRaw = pt_cp.vl["Bremse_1"]["Geschwindigkeit_neu__Bremse_1_"] * CV.KPH_TO_MS ret.vEgo, ret.aEgo = self.update_speed_kf(ret.vEgoRaw) ret.standstill = ret.vEgoRaw == 0 # Update EPS position and state info. For signed values, VW sends the sign in a separate signal. ret.steeringAngleDeg = pt_cp.vl["Lenkhilfe_3"]["LH3_BLW"] * (1, -1)[int(pt_cp.vl["Lenkhilfe_3"]["LH3_BLWSign"])] ret.steeringRateDeg = pt_cp.vl["Lenkwinkel_1"]["Lenkradwinkel_Geschwindigkeit"] * (1, -1)[int(pt_cp.vl["Lenkwinkel_1"]["Lenkradwinkel_Geschwindigkeit_S"])] ret.steeringTorque = pt_cp.vl["Lenkhilfe_3"]["LH3_LM"] * (1, -1)[int(pt_cp.vl["Lenkhilfe_3"]["LH3_LMSign"])] ret.steeringPressed = abs(ret.steeringTorque) > self.CCP.STEER_DRIVER_ALLOWANCE ret.yawRate = pt_cp.vl["Bremse_5"]["Giergeschwindigkeit"] * (1, -1)[int(pt_cp.vl["Bremse_5"]["Vorzeichen_der_Giergeschwindigk"])] * CV.DEG_TO_RAD hca_status = self.CCP.hca_status_values.get(pt_cp.vl["Lenkhilfe_2"]["LH2_Sta_HCA"]) ret.steerFaultTemporary, ret.steerFaultPermanent = self.update_hca_state(hca_status) # Update gas, brakes, and gearshift. ret.gas = pt_cp.vl["Motor_3"]["Fahrpedal_Rohsignal"] / 100.0 ret.gasPressed = ret.gas > 0 ret.brake = pt_cp.vl["Bremse_5"]["Bremsdruck"] / 250.0 # FIXME: this is pressure in Bar, not sure what OP expects ret.brakePressed = bool(pt_cp.vl["Motor_2"]["Bremslichtschalter"]) ret.parkingBrake = bool(pt_cp.vl["Kombi_1"]["Bremsinfo"]) # Update gear and/or clutch position data. if trans_type == TransmissionType.automatic: ret.gearShifter = self.parse_gear_shifter(self.CCP.shifter_values.get(pt_cp.vl["Getriebe_1"]["Waehlhebelposition__Getriebe_1_"], None)) elif trans_type == TransmissionType.manual: ret.clutchPressed = not pt_cp.vl["Motor_1"]["Kupplungsschalter"] reverse_light = bool(pt_cp.vl["Gate_Komf_1"]["GK1_Rueckfahr"]) if reverse_light: ret.gearShifter = GearShifter.reverse else: ret.gearShifter = GearShifter.drive # Update door and trunk/hatch lid open status. ret.doorOpen = any([pt_cp.vl["Gate_Komf_1"]["GK1_Fa_Tuerkont"], pt_cp.vl["Gate_Komf_1"]["BSK_BT_geoeffnet"], pt_cp.vl["Gate_Komf_1"]["BSK_HL_geoeffnet"], pt_cp.vl["Gate_Komf_1"]["BSK_HR_geoeffnet"], pt_cp.vl["Gate_Komf_1"]["BSK_HD_Hauptraste"]]) # Update seatbelt fastened status. ret.seatbeltUnlatched = not bool(pt_cp.vl["Airbag_1"]["Gurtschalter_Fahrer"]) # Consume blind-spot monitoring info/warning LED states, if available. # Infostufe: BSM LED on, Warnung: BSM LED flashing if self.CP.enableBsm: ret.leftBlindspot = bool(ext_cp.vl["SWA_1"]["SWA_Infostufe_SWA_li"]) or bool(ext_cp.vl["SWA_1"]["SWA_Warnung_SWA_li"]) ret.rightBlindspot = bool(ext_cp.vl["SWA_1"]["SWA_Infostufe_SWA_re"]) or bool(ext_cp.vl["SWA_1"]["SWA_Warnung_SWA_re"]) # Consume factory LDW data relevant for factory SWA (Lane Change Assist) # and capture it for forwarding to the blind spot radar controller self.ldw_stock_values = cam_cp.vl["LDW_Status"] if self.CP.networkLocation == NetworkLocation.fwdCamera else {} # Stock FCW is considered active if the release bit for brake-jerk warning # is set. Stock AEB considered active if the partial braking or target # braking release bits are set. # Refer to VW Self Study Program 890253: Volkswagen Driver Assistance # Systems, chapters on Front Assist with Braking and City Emergency # Braking for the 2016 Passat NMS # TODO: deferred until we can collect data on pre-MY2016 behavior, AWV message may be shorter with fewer signals ret.stockFcw = False ret.stockAeb = False # Update ACC radar status. self.acc_type = ext_cp.vl["ACC_System"]["ACS_Typ_ACC"] ret.cruiseState.available = bool(pt_cp.vl["Motor_5"]["GRA_Hauptschalter"]) ret.cruiseState.enabled = pt_cp.vl["Motor_2"]["GRA_Status"] in (1, 2) if self.CP.pcmCruise: ret.accFaulted = ext_cp.vl["ACC_GRA_Anzeige"]["ACA_StaACC"] in (6, 7) else: ret.accFaulted = pt_cp.vl["Motor_2"]["GRA_Status"] == 3 # Update ACC setpoint. When the setpoint reads as 255, the driver has not # yet established an ACC setpoint, so treat it as zero. ret.cruiseState.speed = ext_cp.vl["ACC_GRA_Anzeige"]["ACA_V_Wunsch"] * CV.KPH_TO_MS if ret.cruiseState.speed > 70: # 255 kph in m/s == no current setpoint ret.cruiseState.speed = 0 # Update button states for turn signals and ACC controls, capture all ACC button state/config for passthrough ret.leftBlinker, ret.rightBlinker = self.update_blinker_from_stalk(300, pt_cp.vl["Gate_Komf_1"]["GK1_Blinker_li"], pt_cp.vl["Gate_Komf_1"]["GK1_Blinker_re"]) ret.buttonEvents = self.create_button_events(pt_cp, self.CCP.BUTTONS) self.gra_stock_values = pt_cp.vl["GRA_Neu"] # Additional safety checks performed in CarInterface. ret.espDisabled = bool(pt_cp.vl["Bremse_1"]["ESP_Passiv_getastet"]) self.frame += 1 return ret def update_hca_state(self, hca_status): # Treat INITIALIZING and FAULT as temporary for worst likely EPS recovery time, for cars without factory Lane Assist # DISABLED means the EPS hasn't been configured to support Lane Assist self.eps_init_complete = self.eps_init_complete or (hca_status in ("DISABLED", "READY", "ACTIVE") or self.frame > 600) perm_fault = hca_status == "DISABLED" or (self.eps_init_complete and hca_status in ("INITIALIZING", "FAULT")) temp_fault = hca_status in ("REJECTED", "PREEMPTED") or not self.eps_init_complete return temp_fault, perm_fault @staticmethod def get_can_parser(CP): if CP.flags & VolkswagenFlags.PQ: return CarState.get_can_parser_pq(CP) messages = [ # sig_address, frequency ("LWI_01", 100), # From J500 Steering Assist with integrated sensors ("LH_EPS_03", 100), # From J500 Steering Assist with integrated sensors ("ESP_19", 100), # From J104 ABS/ESP controller ("ESP_05", 50), # From J104 ABS/ESP controller ("ESP_21", 50), # From J104 ABS/ESP controller ("Motor_20", 50), # From J623 Engine control module ("TSK_06", 50), # From J623 Engine control module ("ESP_02", 50), # From J104 ABS/ESP controller ("GRA_ACC_01", 33), # From J533 CAN gateway (via LIN from steering wheel controls) ("Gateway_72", 10), # From J533 CAN gateway (aggregated data) ("Motor_14", 10), # From J623 Engine control module ("Airbag_02", 5), # From J234 Airbag control module ("Kombi_01", 2), # From J285 Instrument cluster ("Blinkmodi_02", 1), # From J519 BCM (sent at 1Hz when no lights active, 50Hz when active) ("Kombi_03", 0), # From J285 instrument cluster (not present on older cars, 1Hz when present) ] if CP.transmissionType == TransmissionType.automatic: messages.append(("Getriebe_11", 20)) # From J743 Auto transmission control module elif CP.transmissionType == TransmissionType.direct: messages.append(("EV_Gearshift", 10)) # From J??? unknown EV control module if CP.networkLocation == NetworkLocation.fwdCamera: # Radars are here on CANBUS.pt messages += MqbExtraSignals.fwd_radar_messages if CP.enableBsm: messages += MqbExtraSignals.bsm_radar_messages return CANParser(DBC[CP.carFingerprint]["pt"], messages, CANBUS.pt) @staticmethod def get_cam_can_parser(CP): if CP.flags & VolkswagenFlags.PQ: return CarState.get_cam_can_parser_pq(CP) messages = [] if CP.flags & VolkswagenFlags.STOCK_HCA_PRESENT: messages += [ ("HCA_01", 1), # From R242 Driver assistance camera, 50Hz if steering/1Hz if not ] if CP.networkLocation == NetworkLocation.fwdCamera: messages += [ # sig_address, frequency ("LDW_02", 10) # From R242 Driver assistance camera ] else: # Radars are here on CANBUS.cam messages += MqbExtraSignals.fwd_radar_messages if CP.enableBsm: messages += MqbExtraSignals.bsm_radar_messages return CANParser(DBC[CP.carFingerprint]["pt"], messages, CANBUS.cam) @staticmethod def get_can_parser_pq(CP): messages = [ # sig_address, frequency ("Bremse_1", 100), # From J104 ABS/ESP controller ("Bremse_3", 100), # From J104 ABS/ESP controller ("Lenkhilfe_3", 100), # From J500 Steering Assist with integrated sensors ("Lenkwinkel_1", 100), # From J500 Steering Assist with integrated sensors ("Motor_3", 100), # From J623 Engine control module ("Airbag_1", 50), # From J234 Airbag control module ("Bremse_5", 50), # From J104 ABS/ESP controller ("GRA_Neu", 50), # From J??? steering wheel control buttons ("Kombi_1", 50), # From J285 Instrument cluster ("Motor_2", 50), # From J623 Engine control module ("Motor_5", 50), # From J623 Engine control module ("Lenkhilfe_2", 20), # From J500 Steering Assist with integrated sensors ("Gate_Komf_1", 10), # From J533 CAN gateway ] if CP.transmissionType == TransmissionType.automatic: messages += [("Getriebe_1", 100)] # From J743 Auto transmission control module elif CP.transmissionType == TransmissionType.manual: messages += [("Motor_1", 100)] # From J623 Engine control module if CP.networkLocation == NetworkLocation.fwdCamera: # Extended CAN devices other than the camera are here on CANBUS.pt messages += PqExtraSignals.fwd_radar_messages if CP.enableBsm: messages += PqExtraSignals.bsm_radar_messages return CANParser(DBC[CP.carFingerprint]["pt"], messages, CANBUS.pt) @staticmethod def get_cam_can_parser_pq(CP): messages = [] if CP.networkLocation == NetworkLocation.fwdCamera: messages += [ # sig_address, frequency ("LDW_Status", 10) # From R242 Driver assistance camera ] if CP.networkLocation == NetworkLocation.gateway: # Radars are here on CANBUS.cam messages += PqExtraSignals.fwd_radar_messages if CP.enableBsm: messages += PqExtraSignals.bsm_radar_messages return CANParser(DBC[CP.carFingerprint]["pt"], messages, CANBUS.cam) class MqbExtraSignals: # Additional signal and message lists for optional or bus-portable controllers fwd_radar_messages = [ ("ACC_06", 50), # From J428 ACC radar control module ("ACC_10", 50), # From J428 ACC radar control module ("ACC_02", 17), # From J428 ACC radar control module ] bsm_radar_messages = [ ("SWA_01", 20), # From J1086 Lane Change Assist ] class PqExtraSignals: # Additional signal and message lists for optional or bus-portable controllers fwd_radar_messages = [ ("ACC_System", 50), # From J428 ACC radar control module ("ACC_GRA_Anzeige", 25), # From J428 ACC radar control module ] bsm_radar_messages = [ ("SWA_1", 20), # From J1086 Lane Change Assist ]
2301_81045437/openpilot
selfdrive/car/volkswagen/carstate.py
Python
mit
20,175
from cereal import car from openpilot.selfdrive.car.volkswagen.values import CAR Ecu = car.CarParams.Ecu # TODO: Sharan Mk2 EPS and DQ250 auto trans both require KWP2000 support for fingerprinting FW_VERSIONS = { CAR.VOLKSWAGEN_ARTEON_MK1: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x873G0906259AH\xf1\x890001', b'\xf1\x873G0906259F \xf1\x890004', b'\xf1\x873G0906259G \xf1\x890004', b'\xf1\x873G0906259G \xf1\x890005', b'\xf1\x873G0906259M \xf1\x890003', b'\xf1\x873G0906259N \xf1\x890004', b'\xf1\x873G0906259P \xf1\x890001', b'\xf1\x875NA907115H \xf1\x890002', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x8709G927158L \xf1\x893611', b'\xf1\x870DL300014C \xf1\x893704', b'\xf1\x870GC300011L \xf1\x891401', b'\xf1\x870GC300014M \xf1\x892802', b'\xf1\x870GC300019G \xf1\x892804', b'\xf1\x870GC300040P \xf1\x891401', ], (Ecu.srs, 0x715, None): [ b'\xf1\x873Q0959655BK\xf1\x890703\xf1\x82\x0e1616001613121157161111572900', b'\xf1\x873Q0959655BK\xf1\x890703\xf1\x82\x0e1616001613121177161113772900', b'\xf1\x873Q0959655CK\xf1\x890711\xf1\x82\x0e1712141712141105121122052900', b'\xf1\x873Q0959655DA\xf1\x890720\xf1\x82\x0e1712141712141105121122052900', b'\xf1\x873Q0959655DL\xf1\x890732\xf1\x82\x0e1812141812171105141123052J00', b'\xf1\x875QF959655AP\xf1\x890755\xf1\x82\x1311110011111311111100110200--1611125F49', ], (Ecu.eps, 0x712, None): [ b'\xf1\x873Q0909144K \xf1\x895072\xf1\x82\x0571B41815A1', b'\xf1\x873Q0909144L \xf1\x895081\xf1\x82\x0571B00817A1', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567B0020800', b'\xf1\x875WA907145M \xf1\x891051\xf1\x82\x002MB4092M7N', b'\xf1\x875WA907145M \xf1\x891051\xf1\x82\x002NB4202N7N', b'\xf1\x875WA907145Q \xf1\x891063\xf1\x82\x002KB4092KOM', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x872Q0907572T \xf1\x890383', b'\xf1\x875Q0907572J \xf1\x890654', b'\xf1\x875Q0907572R \xf1\x890771', ], }, CAR.VOLKSWAGEN_ATLAS_MK1: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8703H906026AA\xf1\x899970', b'\xf1\x8703H906026AG\xf1\x899973', b'\xf1\x8703H906026AJ\xf1\x890638', b'\xf1\x8703H906026AJ\xf1\x891017', b'\xf1\x8703H906026AT\xf1\x891922', b'\xf1\x8703H906026BC\xf1\x892664', b'\xf1\x8703H906026F \xf1\x896696', b'\xf1\x8703H906026F \xf1\x899970', b'\xf1\x8703H906026J \xf1\x896026', b'\xf1\x8703H906026J \xf1\x899970', b'\xf1\x8703H906026J \xf1\x899971', b'\xf1\x8703H906026S \xf1\x896693', b'\xf1\x8703H906026S \xf1\x899970', b'\xf1\x873CN906259 \xf1\x890005', b'\xf1\x873CN906259F \xf1\x890002', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x8709G927158A \xf1\x893387', b'\xf1\x8709G927158DR\xf1\x893536', b'\xf1\x8709G927158DR\xf1\x893742', b'\xf1\x8709G927158EN\xf1\x893691', b'\xf1\x8709G927158F \xf1\x893489', b'\xf1\x8709G927158FT\xf1\x893835', b'\xf1\x8709G927158GL\xf1\x893939', ], (Ecu.srs, 0x715, None): [ b'\xf1\x873Q0959655BC\xf1\x890503\xf1\x82\x0e1914151912001103111122031200', b'\xf1\x873Q0959655BN\xf1\x890713\xf1\x82\x0e2214152212001105141122052900', b'\xf1\x873Q0959655DB\xf1\x890720\xf1\x82\x0e1114151112001105111122052900', b'\xf1\x873Q0959655DB\xf1\x890720\xf1\x82\x0e2214152212001105141122052900', b'\xf1\x873Q0959655DM\xf1\x890732\xf1\x82\x0e1114151112001105111122052J00', b'\xf1\x873Q0959655DM\xf1\x890732\xf1\x82\x0e1114151112001105161122052J00', b'\xf1\x873Q0959655DM\xf1\x890732\xf1\x82\x0e1115151112001105171122052J00', ], (Ecu.eps, 0x712, None): [ b'\xf1\x873QF909144B \xf1\x891582\xf1\x82\x0571B60924A1', b'\xf1\x873QF909144B \xf1\x891582\xf1\x82\x0571B6G920A1', b'\xf1\x873QF909144B \xf1\x891582\xf1\x82\x0571B6M921A1', b'\xf1\x873QF909144B \xf1\x891582\xf1\x82\x0571B6N920A1', b'\xf1\x875Q0909143P \xf1\x892051\xf1\x820528B6080105', b'\xf1\x875Q0909143P \xf1\x892051\xf1\x820528B6090105', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x872Q0907572R \xf1\x890372', b'\xf1\x872Q0907572T \xf1\x890383', b'\xf1\x875Q0907572H \xf1\x890620', b'\xf1\x875Q0907572J \xf1\x890654', b'\xf1\x875Q0907572P \xf1\x890682', b'\xf1\x875Q0907572S \xf1\x890780', ], }, CAR.VOLKSWAGEN_CADDY_MK3: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704E906027T \xf1\x892363', ], (Ecu.srs, 0x715, None): [ b'\xf1\x872K5959655E \xf1\x890018\xf1\x82\x05000P037605', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x877N0907572C \xf1\x890211\xf1\x82\x0155', ], }, CAR.VOLKSWAGEN_CRAFTER_MK2: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704L906056BP\xf1\x894729', b'\xf1\x8704L906056EK\xf1\x896391', b'\xf1\x8705L906023BC\xf1\x892688', ], (Ecu.srs, 0x715, None): [ b'\xf1\x873Q0959655AL\xf1\x890505\xf1\x82\x0e1411001413001203151311031100', b'\xf1\x873Q0959655BG\xf1\x890703\xf1\x82\x0e16120016130012051G1313052900', b'\xf1\x875QF959655AS\xf1\x890755\xf1\x82\x1315140015150011111100050200--1311120749', ], (Ecu.eps, 0x712, None): [ b'\xf1\x872N0909143D\x00\xf1\x897010\xf1\x82\x05183AZ306A2', b'\xf1\x872N0909143E \xf1\x897021\xf1\x82\x05163AZ306A2', b'\xf1\x872N0909144K \xf1\x897045\xf1\x82\x05233AZ810A2', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x872Q0907572J \xf1\x890156', b'\xf1\x872Q0907572M \xf1\x890233', ], }, CAR.VOLKSWAGEN_GOLF_MK7: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704E906016A \xf1\x897697', b'\xf1\x8704E906016AD\xf1\x895758', b'\xf1\x8704E906016CE\xf1\x899096', b'\xf1\x8704E906016CH\xf1\x899226', b'\xf1\x8704E906016N \xf1\x899105', b'\xf1\x8704E906023AG\xf1\x891726', b'\xf1\x8704E906023BN\xf1\x894518', b'\xf1\x8704E906024K \xf1\x896811', b'\xf1\x8704E906024K \xf1\x899970', b'\xf1\x8704E906027GR\xf1\x892394', b'\xf1\x8704E906027HD\xf1\x892603', b'\xf1\x8704E906027HD\xf1\x893742', b'\xf1\x8704E906027MA\xf1\x894958', b'\xf1\x8704L906021DT\xf1\x895520', b'\xf1\x8704L906021DT\xf1\x898127', b'\xf1\x8704L906021N \xf1\x895518', b'\xf1\x8704L906021N \xf1\x898138', b'\xf1\x8704L906026BN\xf1\x891197', b'\xf1\x8704L906026BP\xf1\x897608', b'\xf1\x8704L906026NF\xf1\x899528', b'\xf1\x8704L906056CL\xf1\x893823', b'\xf1\x8704L906056CR\xf1\x895813', b'\xf1\x8704L906056HE\xf1\x893758', b'\xf1\x8704L906056HN\xf1\x896590', b'\xf1\x8704L906056HT\xf1\x896591', b'\xf1\x8704L997022N \xf1\x899459', b'\xf1\x870EA906016A \xf1\x898343', b'\xf1\x870EA906016E \xf1\x894219', b'\xf1\x870EA906016F \xf1\x894238', b'\xf1\x870EA906016F \xf1\x895002', b'\xf1\x870EA906016Q \xf1\x895993', b'\xf1\x870EA906016S \xf1\x897207', b'\xf1\x875G0906259 \xf1\x890007', b'\xf1\x875G0906259D \xf1\x890002', b'\xf1\x875G0906259J \xf1\x890002', b'\xf1\x875G0906259L \xf1\x890002', b'\xf1\x875G0906259N \xf1\x890003', b'\xf1\x875G0906259Q \xf1\x890002', b'\xf1\x875G0906259Q \xf1\x892313', b'\xf1\x875G0906259T \xf1\x890003', b'\xf1\x878V0906259H \xf1\x890002', b'\xf1\x878V0906259J \xf1\x890003', b'\xf1\x878V0906259J \xf1\x890103', b'\xf1\x878V0906259K \xf1\x890001', b'\xf1\x878V0906259K \xf1\x890003', b'\xf1\x878V0906259P \xf1\x890001', b'\xf1\x878V0906259Q \xf1\x890002', b'\xf1\x878V0906259R \xf1\x890002', b'\xf1\x878V0906264F \xf1\x890003', b'\xf1\x878V0906264L \xf1\x890002', b'\xf1\x878V0906264M \xf1\x890001', b'\xf1\x878V09C0BB01 \xf1\x890001', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x8709G927749AP\xf1\x892943', b'\xf1\x8709S927158A \xf1\x893585', b'\xf1\x870CW300040H \xf1\x890606', b'\xf1\x870CW300041D \xf1\x891004', b'\xf1\x870CW300041H \xf1\x891010', b'\xf1\x870CW300042F \xf1\x891604', b'\xf1\x870CW300043B \xf1\x891601', b'\xf1\x870CW300043E \xf1\x891603', b'\xf1\x870CW300044S \xf1\x894530', b'\xf1\x870CW300044T \xf1\x895245', b'\xf1\x870CW300045 \xf1\x894531', b'\xf1\x870CW300047D \xf1\x895261', b'\xf1\x870CW300047E \xf1\x895261', b'\xf1\x870CW300048J \xf1\x890611', b'\xf1\x870CW300049H \xf1\x890905', b'\xf1\x870CW300050G \xf1\x891905', b'\xf1\x870D9300012 \xf1\x894904', b'\xf1\x870D9300012 \xf1\x894913', b'\xf1\x870D9300012 \xf1\x894937', b'\xf1\x870D9300012 \xf1\x895045', b'\xf1\x870D9300012 \xf1\x895046', b'\xf1\x870D9300014M \xf1\x895004', b'\xf1\x870D9300014Q \xf1\x895006', b'\xf1\x870D9300018 \xf1\x895201', b'\xf1\x870D9300020J \xf1\x894902', b'\xf1\x870D9300020Q \xf1\x895201', b'\xf1\x870D9300020S \xf1\x895201', b'\xf1\x870D9300040A \xf1\x893613', b'\xf1\x870D9300040S \xf1\x894311', b'\xf1\x870D9300041H \xf1\x895220', b'\xf1\x870D9300041N \xf1\x894512', b'\xf1\x870D9300041P \xf1\x894507', b'\xf1\x870DD300045K \xf1\x891120', b'\xf1\x870DD300046F \xf1\x891601', b'\xf1\x870GC300012A \xf1\x891401', b'\xf1\x870GC300012A \xf1\x891403', b'\xf1\x870GC300012A \xf1\x891422', b'\xf1\x870GC300012M \xf1\x892301', b'\xf1\x870GC300014B \xf1\x892401', b'\xf1\x870GC300014B \xf1\x892403', b'\xf1\x870GC300014B \xf1\x892405', b'\xf1\x870GC300020G \xf1\x892401', b'\xf1\x870GC300020G \xf1\x892403', b'\xf1\x870GC300020G \xf1\x892404', b'\xf1\x870GC300020N \xf1\x892804', b'\xf1\x870GC300043T \xf1\x899999', ], (Ecu.srs, 0x715, None): [ b'\xf1\x875Q0959655AA\xf1\x890386\xf1\x82\x111413001113120043114317121C111C9113', b'\xf1\x875Q0959655AA\xf1\x890386\xf1\x82\x111413001113120053114317121C111C9113', b'\xf1\x875Q0959655AA\xf1\x890388\xf1\x82\x111413001113120043114317121C111C9113', b'\xf1\x875Q0959655AA\xf1\x890388\xf1\x82\x111413001113120043114417121411149113', b'\xf1\x875Q0959655AA\xf1\x890388\xf1\x82\x111413001113120053114317121C111C9113', b'\xf1\x875Q0959655AR\xf1\x890317\xf1\x82\x13141500111233003142114A2131219333313100', b'\xf1\x875Q0959655BH\xf1\x890336\xf1\x82\x1314160011123300314211012230229333423100', b'\xf1\x875Q0959655BH\xf1\x890336\xf1\x82\x1314160011123300314211012230229333463100', b'\xf1\x875Q0959655BJ\xf1\x890339\xf1\x82\x13141600111233003142115A2232229333463100', b'\xf1\x875Q0959655BS\xf1\x890403\xf1\x82\x1314160011123300314240012250229333463100', b'\xf1\x875Q0959655BT\xf1\x890403\xf1\x82\x13141600111233003142404A2251229333463100', b'\xf1\x875Q0959655BT\xf1\x890403\xf1\x82\x13141600111233003142404A2252229333463100', b'\xf1\x875Q0959655BT\xf1\x890403\xf1\x82\x13141600111233003142405A2251229333463100', b'\xf1\x875Q0959655BT\xf1\x890403\xf1\x82\x13141600111233003142405A2252229333463100', b'\xf1\x875Q0959655C \xf1\x890361\xf1\x82\x111413001112120004110415121610169112', b'\xf1\x875Q0959655CA\xf1\x890403\xf1\x82\x1314160011123300314240012250229333463100', b'\xf1\x875Q0959655D \xf1\x890388\xf1\x82\x111413001113120006110417121A101A9113', b'\xf1\x875Q0959655J \xf1\x890825\xf1\x82\x13271112111312--071104171825102591131211', b'\xf1\x875Q0959655J \xf1\x890830\xf1\x82\x13271112111312--071104171825102591131211', b'\xf1\x875Q0959655J \xf1\x890830\xf1\x82\x13271212111312--071104171838103891131211', b'\xf1\x875Q0959655J \xf1\x890830\xf1\x82\x13272512111312--07110417182C102C91131211', b'\xf1\x875Q0959655J \xf1\x890830\xf1\x82\x13341512112212--071104172328102891131211', b'\xf1\x875Q0959655M \xf1\x890361\xf1\x82\x111413001112120041114115121611169112', b'\xf1\x875Q0959655S \xf1\x890870\xf1\x82\x1315120011211200061104171717101791132111', b'\xf1\x875Q0959655S \xf1\x890870\xf1\x82\x1315120011211200621143171717111791132111', b'\xf1\x875Q0959655S \xf1\x890870\xf1\x82\x1324230011211200061104171724102491132111', b'\xf1\x875Q0959655S \xf1\x890870\xf1\x82\x1324230011211200621143171724112491132111', b'\xf1\x875Q0959655S \xf1\x890870\xf1\x82\x1324230011211200631143171724122491132111', b'\xf1\x875Q0959655T \xf1\x890825\xf1\x82\x13271200111312--071104171837103791132111', b'\xf1\x875Q0959655T \xf1\x890830\xf1\x82\x13271100111312--071104171826102691131211', b'\xf1\x875QD959655 \xf1\x890388\xf1\x82\x111413001113120006110417121D101D9112', ], (Ecu.eps, 0x712, None): [ b'\xf1\x873Q0909144F \xf1\x895043\xf1\x82\x0561A01612A0', b'\xf1\x873Q0909144H \xf1\x895061\xf1\x82\x0566A0J612A1', b'\xf1\x873Q0909144J \xf1\x895063\xf1\x82\x0566A00514A1', b'\xf1\x873Q0909144J \xf1\x895063\xf1\x82\x0566A01613A1', b'\xf1\x873Q0909144J \xf1\x895063\xf1\x82\x0566A0J712A1', b'\xf1\x873Q0909144K \xf1\x895072\xf1\x82\x0571A0J714A1', b'\xf1\x873Q0909144L \xf1\x895081\xf1\x82\x0571A0JA15A1', b'\xf1\x873Q0909144M \xf1\x895082\xf1\x82\x0571A01A18A1', b'\xf1\x873Q0909144M \xf1\x895082\xf1\x82\x0571A02A16A1', b'\xf1\x873Q0909144M \xf1\x895082\xf1\x82\x0571A0JA16A1', b'\xf1\x873QM909144 \xf1\x895072\xf1\x82\x0571A01714A1', b'\xf1\x875Q0909143K \xf1\x892033\xf1\x820519A9040203', b'\xf1\x875Q0909144AA\xf1\x891081\xf1\x82\x0521A00441A1', b'\xf1\x875Q0909144AA\xf1\x891081\xf1\x82\x0521A00608A1', b'\xf1\x875Q0909144AA\xf1\x891081\xf1\x82\x0521A00641A1', b'\xf1\x875Q0909144AB\xf1\x891082\xf1\x82\x0521A00442A1', b'\xf1\x875Q0909144AB\xf1\x891082\xf1\x82\x0521A00642A1', b'\xf1\x875Q0909144AB\xf1\x891082\xf1\x82\x0521A07B05A1', b'\xf1\x875Q0909144L \xf1\x891021\xf1\x82\x0521A00502A0', b'\xf1\x875Q0909144L \xf1\x891021\xf1\x82\x0521A00602A0', b'\xf1\x875Q0909144L \xf1\x891021\xf1\x82\x0522A00402A0', b'\xf1\x875Q0909144P \xf1\x891043\xf1\x82\x0511A00403A0', b'\xf1\x875Q0909144R \xf1\x891061\xf1\x82\x0516A00604A1', b'\xf1\x875Q0909144S \xf1\x891063\xf1\x82\x0516A00404A1', b'\xf1\x875Q0909144S \xf1\x891063\xf1\x82\x0516A00504A1', b'\xf1\x875Q0909144S \xf1\x891063\xf1\x82\x0516A00604A1', b'\xf1\x875Q0909144S \xf1\x891063\xf1\x82\x0516A07A02A1', b'\xf1\x875Q0909144T \xf1\x891072\xf1\x82\x0521A00407A1', b'\xf1\x875Q0909144T \xf1\x891072\xf1\x82\x0521A00507A1', b'\xf1\x875Q0909144T \xf1\x891072\xf1\x82\x0521A07B04A1', b'\xf1\x875Q0909144T \xf1\x891072\xf1\x82\x0521A20B03A1', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567A2000400', b'\xf1\x875QD909144B \xf1\x891072\xf1\x82\x0521A00507A1', b'\xf1\x875QM909144A \xf1\x891072\xf1\x82\x0521A20B03A1', b'\xf1\x875QM909144B \xf1\x891081\xf1\x82\x0521A00442A1', b'\xf1\x875QM909144B \xf1\x891081\xf1\x82\x0521A00642A1', b'\xf1\x875QN909144A \xf1\x895081\xf1\x82\x0571A01A16A1', b'\xf1\x875QN909144A \xf1\x895081\xf1\x82\x0571A01A17A1', b'\xf1\x875QN909144A \xf1\x895081\xf1\x82\x0571A01A18A1', b'\xf1\x875QN909144B \xf1\x895082\xf1\x82\x0571A01A18A1', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x875Q0907567G \xf1\x890390\xf1\x82\x0101', b'\xf1\x875Q0907567J \xf1\x890396\xf1\x82\x0101', b'\xf1\x875Q0907567L \xf1\x890098\xf1\x82\x0101', b'\xf1\x875Q0907572A \xf1\x890141\xf1\x82\x0101', b'\xf1\x875Q0907572B \xf1\x890200\xf1\x82\x0101', b'\xf1\x875Q0907572C \xf1\x890210\xf1\x82\x0101', b'\xf1\x875Q0907572D \xf1\x890304\xf1\x82\x0101', b'\xf1\x875Q0907572E \xf1\x89X310\xf1\x82\x0101', b'\xf1\x875Q0907572F \xf1\x890400\xf1\x82\x0101', b'\xf1\x875Q0907572G \xf1\x890571', b'\xf1\x875Q0907572H \xf1\x890620', b'\xf1\x875Q0907572J \xf1\x890653', b'\xf1\x875Q0907572J \xf1\x890654', b'\xf1\x875Q0907572P \xf1\x890682', b'\xf1\x875Q0907572R \xf1\x890771', b'\xf1\x875Q0907572S \xf1\x890780', ], }, CAR.VOLKSWAGEN_JETTA_MK7: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704E906024AK\xf1\x899937', b'\xf1\x8704E906024AS\xf1\x899912', b'\xf1\x8704E906024B \xf1\x895594', b'\xf1\x8704E906024BC\xf1\x899971', b'\xf1\x8704E906024BG\xf1\x891057', b'\xf1\x8704E906024C \xf1\x899970', b'\xf1\x8704E906024C \xf1\x899971', b'\xf1\x8704E906024L \xf1\x895595', b'\xf1\x8704E906024L \xf1\x899970', b'\xf1\x8704E906027MS\xf1\x896223', b'\xf1\x8705E906013DB\xf1\x893361', b'\xf1\x875G0906259T \xf1\x890003', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x8709G927158BQ\xf1\x893545', b'\xf1\x8709S927158BS\xf1\x893642', b'\xf1\x8709S927158BS\xf1\x893694', b'\xf1\x8709S927158CK\xf1\x893770', b'\xf1\x8709S927158JC\xf1\x894113', b'\xf1\x8709S927158R \xf1\x893552', b'\xf1\x8709S927158R \xf1\x893587', b'\xf1\x870GC300020N \xf1\x892803', ], (Ecu.srs, 0x715, None): [ b'\xf1\x875Q0959655AG\xf1\x890336\xf1\x82\x1314171231313500314611011630169333463100', b'\xf1\x875Q0959655AG\xf1\x890338\xf1\x82\x1314171231313500314611011630169333463100', b'\xf1\x875Q0959655BM\xf1\x890403\xf1\x82\x1314171231313500314642011650169333463100', b'\xf1\x875Q0959655BM\xf1\x890403\xf1\x82\x1314171231313500314643011650169333463100', b'\xf1\x875Q0959655BR\xf1\x890403\xf1\x82\x1311170031313300314240011150119333433100', b'\xf1\x875Q0959655BR\xf1\x890403\xf1\x82\x1319170031313300314240011550159333463100', b'\xf1\x875Q0959655CB\xf1\x890421\xf1\x82\x1314171231313500314642021650169333613100', b'\xf1\x875Q0959655CB\xf1\x890421\xf1\x82\x1314171231313500314643021650169333613100', b'\xf1\x875Q0959655CB\xf1\x890421\xf1\x82\x1317171231313500314642023050309333613100', ], (Ecu.eps, 0x712, None): [ b'\xf1\x873Q0909144M \xf1\x895082\xf1\x82\x0571A10A11A1', b'\xf1\x875QM907144D \xf1\x891063\xf1\x82\x000_A1080_OM', b'\xf1\x875QM909144B \xf1\x891081\xf1\x82\x0521A10A01A1', b'\xf1\x875QM909144B \xf1\x891081\xf1\x82\x0521B00404A1', b'\xf1\x875QM909144C \xf1\x891082\xf1\x82\x0521A00642A1', b'\xf1\x875QM909144C \xf1\x891082\xf1\x82\x0521A10A01A1', b'\xf1\x875QN909144B \xf1\x895082\xf1\x82\x0571A10A11A1', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x875Q0907572N \xf1\x890681', b'\xf1\x875Q0907572P \xf1\x890682', b'\xf1\x875Q0907572R \xf1\x890771', ], }, CAR.VOLKSWAGEN_PASSAT_MK8: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8703N906026E \xf1\x892114', b'\xf1\x8704E906023AH\xf1\x893379', b'\xf1\x8704E906023BM\xf1\x894522', b'\xf1\x8704L906026DP\xf1\x891538', b'\xf1\x8704L906026ET\xf1\x891990', b'\xf1\x8704L906026FP\xf1\x892012', b'\xf1\x8704L906026GA\xf1\x892013', b'\xf1\x8704L906026GK\xf1\x899971', b'\xf1\x8704L906026KD\xf1\x894798', b'\xf1\x8705L906022A \xf1\x890827', b'\xf1\x873G0906259 \xf1\x890004', b'\xf1\x873G0906259B \xf1\x890002', b'\xf1\x873G0906264 \xf1\x890004', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870CW300041E \xf1\x891006', b'\xf1\x870CW300042H \xf1\x891601', b'\xf1\x870CW300042H \xf1\x891607', b'\xf1\x870CW300043H \xf1\x891601', b'\xf1\x870CW300048R \xf1\x890610', b'\xf1\x870D9300013A \xf1\x894905', b'\xf1\x870D9300014L \xf1\x895002', b'\xf1\x870D9300018C \xf1\x895297', b'\xf1\x870D9300041A \xf1\x894801', b'\xf1\x870D9300042H \xf1\x894901', b'\xf1\x870DD300045T \xf1\x891601', b'\xf1\x870DD300046H \xf1\x891601', b'\xf1\x870DL300011H \xf1\x895201', b'\xf1\x870GC300042H \xf1\x891404', b'\xf1\x870GC300043 \xf1\x892301', b'\xf1\x870GC300046P \xf1\x892805', ], (Ecu.srs, 0x715, None): [ b'\xf1\x873Q0959655AE\xf1\x890195\xf1\x82\r56140056130012416612124111', b'\xf1\x873Q0959655AF\xf1\x890195\xf1\x82\r56140056130012026612120211', b'\xf1\x873Q0959655AN\xf1\x890305\xf1\x82\r58160058140013036914110311', b'\xf1\x873Q0959655AN\xf1\x890306\xf1\x82\r58160058140013036914110311', b'\xf1\x873Q0959655BA\xf1\x890195\xf1\x82\r56140056130012416612124111', b'\xf1\x873Q0959655BA\xf1\x890195\xf1\x82\r56140056130012516612125111', b'\xf1\x873Q0959655BB\xf1\x890195\xf1\x82\r56140056130012026612120211', b'\xf1\x873Q0959655BG\xf1\x890712\xf1\x82\x0e5915005914001305701311052900', b'\xf1\x873Q0959655BJ\xf1\x890703\xf1\x82\x0e5915005914001305701311052900', b'\xf1\x873Q0959655BK\xf1\x890703\xf1\x82\x0e5915005914001344701311442900', b'\xf1\x873Q0959655BK\xf1\x890703\xf1\x82\x0e5915005914001354701311542900', b'\xf1\x873Q0959655CN\xf1\x890720\xf1\x82\x0e5915005914001305701311052900', b'\xf1\x875Q0959655S \xf1\x890870\xf1\x82\x1315120011111200631145171716121691132111', b'\xf1\x875QF959655S \xf1\x890639\xf1\x82\x13131100131300111111000120----2211114A48', ], (Ecu.eps, 0x712, None): [ b'\xf1\x873Q0909144J \xf1\x895063\xf1\x82\x0566B00611A1', b'\xf1\x873Q0909144J \xf1\x895063\xf1\x82\x0566B00711A1', b'\xf1\x875Q0909143K \xf1\x892033\xf1\x820514B0060703', b'\xf1\x875Q0909143M \xf1\x892041\xf1\x820522B0060803', b'\xf1\x875Q0909143M \xf1\x892041\xf1\x820522B0080803', b'\xf1\x875Q0909143P \xf1\x892051\xf1\x820526B0060905', b'\xf1\x875Q0909143P \xf1\x892051\xf1\x820531B0062105', b'\xf1\x875Q0909144AB\xf1\x891082\xf1\x82\x0521B00606A1', b'\xf1\x875Q0909144S \xf1\x891063\xf1\x82\x0516B00501A1', b'\xf1\x875Q0909144T \xf1\x891072\xf1\x82\x0521B00603A1', b'\xf1\x875Q0909144T \xf1\x891072\xf1\x82\x0521B00703A1', b'\xf1\x875Q0910143B \xf1\x892201\xf1\x82\x0563B0000600', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567B0020600', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x873Q0907572A \xf1\x890126', b'\xf1\x873Q0907572A \xf1\x890130', b'\xf1\x873Q0907572B \xf1\x890192', b'\xf1\x873Q0907572B \xf1\x890194', b'\xf1\x873Q0907572C \xf1\x890195', b'\xf1\x873Q0907572C \xf1\x890196', b'\xf1\x875Q0907572P \xf1\x890682', b'\xf1\x875Q0907572R \xf1\x890771', b'\xf1\x875Q0907572S \xf1\x890780', ], }, CAR.VOLKSWAGEN_PASSAT_NMS: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8706K906016C \xf1\x899609', b'\xf1\x8706K906016E \xf1\x899830', b'\xf1\x8706K906016G \xf1\x891124', b'\xf1\x8706K906071BJ\xf1\x894891', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x8709G927158AB\xf1\x893318', b'\xf1\x8709G927158BD\xf1\x893121', b'\xf1\x8709G927158DK\xf1\x893594', b'\xf1\x8709G927158FQ\xf1\x893745', ], (Ecu.srs, 0x715, None): [ b'\xf1\x87561959655 \xf1\x890210\xf1\x82\x1212121111113000102011--121012--101312', b'\xf1\x87561959655C \xf1\x890508\xf1\x82\x1215141111121100314919--153015--304831', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x87561907567A \xf1\x890132', b'\xf1\x877N0907572C \xf1\x890211\xf1\x82\x0152', ], }, CAR.VOLKSWAGEN_POLO_MK6: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704C906025H \xf1\x895177', b'\xf1\x8705C906032J \xf1\x891702', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870CW300042D \xf1\x891612', b'\xf1\x870CW300050D \xf1\x891908', b'\xf1\x870CW300051G \xf1\x891909', ], (Ecu.srs, 0x715, None): [ b'\xf1\x872Q0959655AG\xf1\x890248\xf1\x82\x1218130411110411--04040404231811152H14', b'\xf1\x872Q0959655AJ\xf1\x890250\xf1\x82\x1248130411110416--04040404784811152H14', b'\xf1\x872Q0959655AS\xf1\x890411\xf1\x82\x1384830511110516041405820599841215391471', ], (Ecu.eps, 0x712, None): [ b'\xf1\x872Q1909144M \xf1\x896041', b'\xf1\x872Q2909144AB\xf1\x896050', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x872Q0907572R \xf1\x890372', ], }, CAR.VOLKSWAGEN_SHARAN_MK2: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704L906016HE\xf1\x894635', ], (Ecu.srs, 0x715, None): [ b'\xf1\x877N0959655D \xf1\x890016\xf1\x82\x0801100705----10--', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x877N0907572C \xf1\x890211\xf1\x82\x0153', ], }, CAR.VOLKSWAGEN_TAOS_MK1: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704E906025CK\xf1\x892228', b'\xf1\x8704E906027NJ\xf1\x891445', b'\xf1\x8704E906027NP\xf1\x891286', b'\xf1\x8705E906013BD\xf1\x892496', b'\xf1\x8705E906013E \xf1\x891624', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x8709G927158EM\xf1\x893812', b'\xf1\x8709S927158BL\xf1\x893791', b'\xf1\x8709S927158CR\xf1\x893924', b'\xf1\x8709S927158DN\xf1\x893946', b'\xf1\x8709S927158FF\xf1\x893876', ], (Ecu.srs, 0x715, None): [ b'\xf1\x875Q0959655CB\xf1\x890421\xf1\x82\x1311111111333500314646021450149333613100', b'\xf1\x875Q0959655CB\xf1\x890421\xf1\x82\x1312111111333500314646021550159333613100', b'\xf1\x875Q0959655CE\xf1\x890421\xf1\x82\x1311110011333300314240021350139333613100', ], (Ecu.eps, 0x712, None): [ b'\xf1\x875QM907144D \xf1\x891063\xf1\x82\x001O06081OOM', b'\xf1\x875QM909144C \xf1\x891082\xf1\x82\x0521060405A1', b'\xf1\x875QM909144C \xf1\x891082\xf1\x82\x0521060605A1', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x872Q0907572T \xf1\x890383', ], }, CAR.VOLKSWAGEN_TCROSS_MK1: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704C906025AK\xf1\x897053', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870CW300050E \xf1\x891903', ], (Ecu.srs, 0x715, None): [ b'\xf1\x872Q0959655AJ\xf1\x890250\xf1\x82\x1212130411110411--04041104141311152H14', ], (Ecu.eps, 0x712, None): [ b'\xf1\x872Q1909144M \xf1\x896041', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572T \xf1\x890383', ], }, CAR.VOLKSWAGEN_TIGUAN_MK2: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8703N906026D \xf1\x893680', b'\xf1\x8704E906024AP\xf1\x891461', b'\xf1\x8704E906027NB\xf1\x899504', b'\xf1\x8704L906026EJ\xf1\x893661', b'\xf1\x8704L906027G \xf1\x899893', b'\xf1\x8705E906018BS\xf1\x890914', b'\xf1\x875N0906259 \xf1\x890002', b'\xf1\x875NA906259H \xf1\x890002', b'\xf1\x875NA907115E \xf1\x890003', b'\xf1\x875NA907115E \xf1\x890005', b'\xf1\x875NA907115J \xf1\x890002', b'\xf1\x875NA907115K \xf1\x890004', b'\xf1\x8783A907115 \xf1\x890007', b'\xf1\x8783A907115B \xf1\x890005', b'\xf1\x8783A907115F \xf1\x890002', b'\xf1\x8783A907115G \xf1\x890001', b'\xf1\x8783A907115K \xf1\x890001', b'\xf1\x8783A907115K \xf1\x890002', b'\xf1\x8783A907115Q \xf1\x890001', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x8709G927158DT\xf1\x893698', b'\xf1\x8709G927158FM\xf1\x893757', b'\xf1\x8709G927158GC\xf1\x893821', b'\xf1\x8709G927158GD\xf1\x893820', b'\xf1\x8709G927158GM\xf1\x893936', b'\xf1\x8709G927158GN\xf1\x893938', b'\xf1\x8709G927158HB\xf1\x894069', b'\xf1\x8709G927158HC\xf1\x894070', b'\xf1\x870D9300043 \xf1\x895202', b'\xf1\x870DD300046K \xf1\x892302', b'\xf1\x870DL300011N \xf1\x892001', b'\xf1\x870DL300011N \xf1\x892012', b'\xf1\x870DL300012M \xf1\x892107', b'\xf1\x870DL300012P \xf1\x892103', b'\xf1\x870DL300013A \xf1\x893005', b'\xf1\x870DL300013G \xf1\x892119', b'\xf1\x870DL300013G \xf1\x892120', b'\xf1\x870DL300014C \xf1\x893703', b'\xf1\x870GC300013P \xf1\x892401', b'\xf1\x870GC300046Q \xf1\x892802', ], (Ecu.srs, 0x715, None): [ b'\xf1\x875Q0959655AG\xf1\x890336\xf1\x82\x1316143231313500314617011730179333423100', b'\xf1\x875Q0959655AG\xf1\x890338\xf1\x82\x1316143231313500314617011730179333423100', b'\xf1\x875Q0959655AR\xf1\x890317\xf1\x82\x1331310031333334313132573732379333313100', b'\xf1\x875Q0959655BJ\xf1\x890336\xf1\x82\x1312110031333300314232583732379333423100', b'\xf1\x875Q0959655BJ\xf1\x890339\xf1\x82\x1331310031333334313132013730379333423100', b'\xf1\x875Q0959655BM\xf1\x890403\xf1\x82\x1316143231313500314641011750179333423100', b'\xf1\x875Q0959655BS\xf1\x890403\xf1\x82\x1312110031333300314240013750379333423100', b'\xf1\x875Q0959655BT\xf1\x890403\xf1\x82\x1312110031333300314240583752379333423100', b'\xf1\x875Q0959655BT\xf1\x890403\xf1\x82\x1331310031333334313140013750379333423100', b'\xf1\x875Q0959655BT\xf1\x890403\xf1\x82\x1331310031333334313140573752379333423100', b'\xf1\x875Q0959655BT\xf1\x890403\xf1\x82\x1331310031333336313140013950399333423100', b'\xf1\x875Q0959655CB\xf1\x890421\xf1\x82\x1316143231313500314647021750179333613100', b'\xf1\x875Q0959655CD\xf1\x890421\xf1\x82\x13123112313333003145406F6154619333613100', b'\xf1\x875Q0959655CG\xf1\x890421\xf1\x82\x1331310031333300314240024050409333613100', ], (Ecu.eps, 0x712, None): [ b'\xf1\x875Q0909143M \xf1\x892041\xf1\x820529A6060603', b'\xf1\x875Q0909143P \xf1\x892051\xf1\x820527A6050705', b'\xf1\x875Q0909143P \xf1\x892051\xf1\x820527A6070705', b'\xf1\x875Q0909144AB\xf1\x891082\xf1\x82\x0521A60604A1', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567A6000600', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567A6017A00', b'\xf1\x875QF909144A \xf1\x895581\xf1\x82\x0571A60834A1', b'\xf1\x875QF909144B \xf1\x895582\xf1\x82\x0571A60634A1', b'\xf1\x875QF909144B \xf1\x895582\xf1\x82\x0571A62A32A1', b'\xf1\x875QM907144D \xf1\x891063\xf1\x82\x002RA60A2ROM', b'\xf1\x875QM907144D \xf1\x891063\xf1\x82\x002SA6092SOM', b'\xf1\x875QM909144B \xf1\x891081\xf1\x82\x0521A60604A1', b'\xf1\x875QM909144B \xf1\x891081\xf1\x82\x0521A60804A1', b'\xf1\x875QM909144C \xf1\x891082\xf1\x82\x0521A60604A1', b'\xf1\x875QM909144C \xf1\x891082\xf1\x82\x0521A60804A1', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x872Q0907572AB\xf1\x890397', b'\xf1\x872Q0907572J \xf1\x890156', b'\xf1\x872Q0907572M \xf1\x890233', b'\xf1\x872Q0907572Q \xf1\x890342', b'\xf1\x872Q0907572R \xf1\x890372', b'\xf1\x872Q0907572T \xf1\x890383', ], }, CAR.VOLKSWAGEN_TOURAN_MK2: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704E906025BE\xf1\x890720', b'\xf1\x8704E906027HQ\xf1\x893746', b'\xf1\x8704L906026HM\xf1\x893017', b'\xf1\x8705E906018CQ\xf1\x890808', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870CW300020A \xf1\x891936', b'\xf1\x870CW300041E \xf1\x891005', b'\xf1\x870CW300041Q \xf1\x891606', b'\xf1\x870CW300051M \xf1\x891926', ], (Ecu.srs, 0x715, None): [ b'\xf1\x875Q0959655AS\xf1\x890318\xf1\x82\x1336350021353335314132014730479333313100', b'\xf1\x875Q0959655AS\xf1\x890318\xf1\x82\x13363500213533353141324C4732479333313100', b'\xf1\x875Q0959655CH\xf1\x890421\xf1\x82\x1336350021353336314740025250529333613100', b'\xf1\x875QD959655AJ\xf1\x890421\xf1\x82\x1336350021313300314240023330339333663100', ], (Ecu.eps, 0x712, None): [ b'\xf1\x875Q0909143P \xf1\x892051\xf1\x820531B0062105', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567A8090400', b'\xf1\x875QD909144F \xf1\x891082\xf1\x82\x0521A00642A1', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x873Q0907572C \xf1\x890195', b'\xf1\x875Q0907572R \xf1\x890771', ], }, CAR.VOLKSWAGEN_TRANSPORTER_T61: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704L906056AG\xf1\x899970', b'\xf1\x8704L906056AL\xf1\x899970', b'\xf1\x8704L906057AP\xf1\x891186', b'\xf1\x8704L906057N \xf1\x890413', b'\xf1\x8705L906023E \xf1\x891352', b'\xf1\x8705L906023MR\xf1\x892582', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870BT300012E \xf1\x893105', b'\xf1\x870BT300012G \xf1\x893102', b'\xf1\x870BT300046R \xf1\x893102', b'\xf1\x870DV300012B \xf1\x893701', b'\xf1\x870DV300012B \xf1\x893702', ], (Ecu.srs, 0x715, None): [ b'\xf1\x872Q0959655AE\xf1\x890506\xf1\x82\x1316170411110411--04041704161611152S1411', b'\xf1\x872Q0959655AE\xf1\x890506\xf1\x82\x1316170411110411--04041704171711152S1411', b'\xf1\x872Q0959655AF\xf1\x890506\xf1\x82\x1316171111110411--04041711121211152S1413', b'\xf1\x872Q0959655AQ\xf1\x890511\xf1\x82\x1316170411110411--0404170426261215391421', ], (Ecu.eps, 0x712, None): [ b'\xf1\x877LA909144F \xf1\x897150\xf1\x82\x0532380518A2', b'\xf1\x877LA909144F \xf1\x897150\xf1\x82\x05323A5519A2', b'\xf1\x877LA909144G \xf1\x897160\xf1\x82\x05333A5519A2', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x872Q0907572R \xf1\x890372', ], }, CAR.VOLKSWAGEN_TROC_MK1: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8705E906018AT\xf1\x899640', b'\xf1\x8705E906018CK\xf1\x890863', b'\xf1\x8705E906018P \xf1\x896020', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870CW300041S \xf1\x891615', b'\xf1\x870CW300050J \xf1\x891911', b'\xf1\x870CW300051M \xf1\x891925', b'\xf1\x870CW300051M \xf1\x891928', ], (Ecu.srs, 0x715, None): [ b'\xf1\x873Q0959655BH\xf1\x890712\xf1\x82\x0e1111001111001105111111052900', b'\xf1\x875Q0959655BT\xf1\x890403\xf1\x82\x1311110012333300314240681152119333463100', b'\xf1\x875Q0959655CF\xf1\x890421\xf1\x82\x1311110012333300314240021150119333613100', b'\xf1\x875Q0959655CG\xf1\x890421\xf1\x82\x13111100123333003142404M1152119333613100', b'\xf1\x875Q0959655CG\xf1\x890421\xf1\x82\x13111100123333003142404M1154119333613100', ], (Ecu.eps, 0x712, None): [ b'\xf1\x875Q0909144AA\xf1\x891081\xf1\x82\x0521060403A1', b'\xf1\x875Q0909144AB\xf1\x891082\xf1\x82\x0521060405A1', b'\xf1\x875WA907144M \xf1\x891051\xf1\x82\x001T06081T7N', b'\xf1\x875WA907144Q \xf1\x891063\xf1\x82\x001O06081OOM', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x872Q0907572M \xf1\x890233', b'\xf1\x872Q0907572T \xf1\x890383', ], }, CAR.AUDI_A3_MK3: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704E906023AN\xf1\x893695', b'\xf1\x8704E906023AR\xf1\x893440', b'\xf1\x8704E906023BL\xf1\x895190', b'\xf1\x8704E906027CJ\xf1\x897798', b'\xf1\x8704L997022N \xf1\x899459', b'\xf1\x875G0906259A \xf1\x890004', b'\xf1\x875G0906259D \xf1\x890002', b'\xf1\x875G0906259L \xf1\x890002', b'\xf1\x875G0906259Q \xf1\x890002', b'\xf1\x878V0906259E \xf1\x890001', b'\xf1\x878V0906259F \xf1\x890002', b'\xf1\x878V0906259H \xf1\x890002', b'\xf1\x878V0906259J \xf1\x890002', b'\xf1\x878V0906259K \xf1\x890001', b'\xf1\x878V0906264B \xf1\x890003', b'\xf1\x878V0907115B \xf1\x890007', b'\xf1\x878V0907404A \xf1\x890005', b'\xf1\x878V0907404G \xf1\x890005', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870CW300044T \xf1\x895245', b'\xf1\x870CW300048 \xf1\x895201', b'\xf1\x870D9300012 \xf1\x894912', b'\xf1\x870D9300012 \xf1\x894931', b'\xf1\x870D9300012K \xf1\x894513', b'\xf1\x870D9300012L \xf1\x894521', b'\xf1\x870D9300013B \xf1\x894902', b'\xf1\x870D9300013B \xf1\x894931', b'\xf1\x870D9300041N \xf1\x894512', b'\xf1\x870D9300043T \xf1\x899699', b'\xf1\x870DD300046 \xf1\x891604', b'\xf1\x870DD300046A \xf1\x891602', b'\xf1\x870DD300046F \xf1\x891602', b'\xf1\x870DD300046G \xf1\x891601', b'\xf1\x870DL300012E \xf1\x892012', b'\xf1\x870DL300012H \xf1\x892112', b'\xf1\x870GC300011 \xf1\x890403', b'\xf1\x870GC300013M \xf1\x892402', b'\xf1\x870GC300042J \xf1\x891402', ], (Ecu.srs, 0x715, None): [ b'\xf1\x875Q0959655AB\xf1\x890388\xf1\x82\x111111001111111206110412111321139114', b'\xf1\x875Q0959655AM\xf1\x890315\xf1\x82\x1311111111111111311411011231129321212100', b'\xf1\x875Q0959655AM\xf1\x890318\xf1\x82\x1311111111111112311411011531159321212100', b'\xf1\x875Q0959655AR\xf1\x890315\xf1\x82\x1311110011131115311211012331239321212100', b'\xf1\x875Q0959655BJ\xf1\x890339\xf1\x82\x1311110011131100311111011731179321342100', b'\xf1\x875Q0959655J \xf1\x890825\xf1\x82\x13111112111111--171115141112221291163221', b'\xf1\x875Q0959655J \xf1\x890825\xf1\x82\x13111112111111--241115141112221291163221', b'\xf1\x875Q0959655J \xf1\x890830\xf1\x82\x13111112111111--241115141112221291163221', b'\xf1\x875Q0959655J \xf1\x890830\xf1\x82\x13121111111111--341117141212231291163221', b'\xf1\x875Q0959655J \xf1\x890830\xf1\x82\x13121111111211--261117141112231291163221', b'\xf1\x875Q0959655N \xf1\x890361\xf1\x82\x111212001112110004110411111421149114', b'\xf1\x875Q0959655N \xf1\x890361\xf1\x82\x111212001112111104110411111521159114', ], (Ecu.eps, 0x712, None): [ b'\xf1\x873Q0909144F \xf1\x895043\xf1\x82\x0561G01A13A0', b'\xf1\x873Q0909144H \xf1\x895061\xf1\x82\x0566G0HA14A1', b'\xf1\x873Q0909144J \xf1\x895063\xf1\x82\x0566G0HA14A1', b'\xf1\x873Q0909144K \xf1\x895072\xf1\x82\x0571G01A16A1', b'\xf1\x873Q0909144K \xf1\x895072\xf1\x82\x0571G0HA16A1', b'\xf1\x873Q0909144K \xf1\x895072\xf1\x82\x0571G0JA13A1', b'\xf1\x873Q0909144L \xf1\x895081\xf1\x82\x0571G0JA14A1', b'\xf1\x875Q0909144AB\xf1\x891082\xf1\x82\x0521G0G809A1', b'\xf1\x875Q0909144P \xf1\x891043\xf1\x82\x0503G00303A0', b'\xf1\x875Q0909144P \xf1\x891043\xf1\x82\x0503G00803A0', b'\xf1\x875Q0909144P \xf1\x891043\xf1\x82\x0503G0G803A0', b'\xf1\x875Q0909144R \xf1\x891061\xf1\x82\x0516G00804A1', b'\xf1\x875Q0909144S \xf1\x891063\xf1\x82\x0516G00804A1', b'\xf1\x875Q0909144T \xf1\x891072\xf1\x82\x0521G00807A1', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x875Q0907567M \xf1\x890398\xf1\x82\x0101', b'\xf1\x875Q0907567N \xf1\x890400\xf1\x82\x0101', b'\xf1\x875Q0907572D \xf1\x890304\xf1\x82\x0101', b'\xf1\x875Q0907572F \xf1\x890400\xf1\x82\x0101', b'\xf1\x875Q0907572G \xf1\x890571', b'\xf1\x875Q0907572H \xf1\x890620', b'\xf1\x875Q0907572P \xf1\x890682', ], }, CAR.AUDI_Q2_MK1: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704E906027JT\xf1\x894145', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870CW300041F \xf1\x891006', ], (Ecu.srs, 0x715, None): [ b'\xf1\x875Q0959655BD\xf1\x890336\xf1\x82\x1311111111111100311211011231129321312111', ], (Ecu.eps, 0x712, None): [ b'\xf1\x873Q0909144K \xf1\x895072\xf1\x82\x0571F60511A1', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572M \xf1\x890233', ], }, CAR.AUDI_Q3_MK2: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8705E906018N \xf1\x899970', b'\xf1\x8705L906022M \xf1\x890901', b'\xf1\x8783A906259 \xf1\x890001', b'\xf1\x8783A906259 \xf1\x890005', b'\xf1\x8783A906259C \xf1\x890002', b'\xf1\x8783A906259D \xf1\x890001', b'\xf1\x8783A906259F \xf1\x890001', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x8709G927158CN\xf1\x893608', b'\xf1\x8709G927158FL\xf1\x893758', b'\xf1\x8709G927158GG\xf1\x893825', b'\xf1\x8709G927158GP\xf1\x893937', b'\xf1\x870GC300045D \xf1\x892802', b'\xf1\x870GC300046F \xf1\x892701', ], (Ecu.srs, 0x715, None): [ b'\xf1\x875Q0959655BF\xf1\x890403\xf1\x82\x1321211111211200311121232152219321422111', b'\xf1\x875Q0959655BQ\xf1\x890421\xf1\x82\x132121111121120031112124218A219321532111', b'\xf1\x875Q0959655BQ\xf1\x890421\xf1\x82\x132121111121120031112124218C219321532111', b'\xf1\x875Q0959655CC\xf1\x890421\xf1\x82\x131111111111120031111224118A119321532111', b'\xf1\x875Q0959655CC\xf1\x890421\xf1\x82\x131111111111120031111237116A119321532111', ], (Ecu.eps, 0x712, None): [ b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567G6000300', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567G6000800', b'\xf1\x875QF909144B \xf1\x895582\xf1\x82\x0571G60533A1', b'\xf1\x875QF909144B \xf1\x895582\xf1\x82\x0571G60733A1', b'\xf1\x875TA907145D \xf1\x891051\xf1\x82\x001PG60A1P7N', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x872Q0907572R \xf1\x890372', b'\xf1\x872Q0907572T \xf1\x890383', ], }, CAR.SEAT_ATECA_MK1: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704E906027KA\xf1\x893749', b'\xf1\x8704L906021EL\xf1\x897542', b'\xf1\x8704L906026BP\xf1\x891198', b'\xf1\x8704L906026BP\xf1\x897608', b'\xf1\x8704L906056CR\xf1\x892181', b'\xf1\x8704L906056CR\xf1\x892797', b'\xf1\x8705E906018AS\xf1\x899596', b'\xf1\x8781A906259B \xf1\x890003', b'\xf1\x878V0906264H \xf1\x890005', b'\xf1\x878V0907115E \xf1\x890002', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870CW300041D \xf1\x891004', b'\xf1\x870CW300041G \xf1\x891003', b'\xf1\x870CW300050J \xf1\x891908', b'\xf1\x870D9300014S \xf1\x895202', b'\xf1\x870D9300042M \xf1\x895016', b'\xf1\x870GC300014P \xf1\x892801', b'\xf1\x870GC300043A \xf1\x892304', ], (Ecu.srs, 0x715, None): [ b'\xf1\x873Q0959655AC\xf1\x890189\xf1\x82\r11110011110011021511110200', b'\xf1\x873Q0959655AS\xf1\x890200\xf1\x82\r11110011110011021511110200', b'\xf1\x873Q0959655AS\xf1\x890200\xf1\x82\r12110012120012021612110200', b'\xf1\x873Q0959655BH\xf1\x890703\xf1\x82\x0e1212001211001305121211052900', b'\xf1\x873Q0959655BH\xf1\x890703\xf1\x82\x0e1312001313001305171311052900', b'\xf1\x873Q0959655BH\xf1\x890712\xf1\x82\x0e1312001313001305171311052900', b'\xf1\x873Q0959655CM\xf1\x890720\xf1\x82\x0e1312001313001305171311052900', b'\xf1\x875QF959655AT\xf1\x890755\xf1\x82\x1311110011110011111100110200--1113121149', ], (Ecu.eps, 0x712, None): [ b'\xf1\x873Q0909144L \xf1\x895081\xf1\x82\x0571N60511A1', b'\xf1\x875Q0909144AA\xf1\x891081\xf1\x82\x0521N01842A1', b'\xf1\x875Q0909144AB\xf1\x891082\xf1\x82\x0521N01342A1', b'\xf1\x875Q0909144P \xf1\x891043\xf1\x82\x0511N01805A0', b'\xf1\x875Q0909144T \xf1\x891072\xf1\x82\x0521N01309A1', b'\xf1\x875Q0909144T \xf1\x891072\xf1\x82\x0521N05808A1', b'\xf1\x875WA907145M \xf1\x891051\xf1\x82\x0013N619137N', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x872Q0907572M \xf1\x890233', b'\xf1\x875Q0907572B \xf1\x890200\xf1\x82\x0101', b'\xf1\x875Q0907572H \xf1\x890620', b'\xf1\x875Q0907572K \xf1\x890402\xf1\x82\x0101', b'\xf1\x875Q0907572P \xf1\x890682', b'\xf1\x875Q0907572R \xf1\x890771', ], }, CAR.SKODA_FABIA_MK4: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8705E906018CF\xf1\x891905', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870CW300051M \xf1\x891936', ], (Ecu.srs, 0x715, None): [ b'\xf1\x875QF959655AT\xf1\x890755\xf1\x82\x1311110011110011111100110200--1111120749', ], (Ecu.eps, 0x712, None): [ b'\xf1\x872Q1909144S \xf1\x896042', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', ], }, CAR.SKODA_KAMIQ_MK1: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704C906025AK\xf1\x897053', b'\xf1\x8705C906032M \xf1\x891333', b'\xf1\x8705C906032M \xf1\x892365', b'\xf1\x8705E906013CK\xf1\x892540', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870CW300020 \xf1\x891906', b'\xf1\x870CW300020 \xf1\x891907', b'\xf1\x870CW300020T \xf1\x892204', b'\xf1\x870CW300050 \xf1\x891709', ], (Ecu.srs, 0x715, None): [ b'\xf1\x872Q0959655AJ\xf1\x890250\xf1\x82\x1211110411110411--04040404131111112H14', b'\xf1\x872Q0959655AM\xf1\x890351\xf1\x82\x12111104111104112104040404111111112H14', b'\xf1\x872Q0959655AM\xf1\x890351\xf1\x82\x122221042111042121040404042E2711152H14', b'\xf1\x872Q0959655AS\xf1\x890411\xf1\x82\x1311150411110411210404040417151215391413', b'\xf1\x872Q0959655BJ\xf1\x890412\xf1\x82\x132223042111042121040404042B251215391423', ], (Ecu.eps, 0x712, None): [ b'\xf1\x872Q1909144AB\xf1\x896050', b'\xf1\x872Q1909144M \xf1\x896041', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x872Q0907572R \xf1\x890372', b'\xf1\x872Q0907572T \xf1\x890383', ], }, CAR.SKODA_KAROQ_MK1: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8705E906013CL\xf1\x892541', b'\xf1\x8705E906013H \xf1\x892407', b'\xf1\x8705E906018P \xf1\x895472', b'\xf1\x8705E906018P \xf1\x896020', b'\xf1\x8705L906022BS\xf1\x890913', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870CW300020T \xf1\x892202', b'\xf1\x870CW300041S \xf1\x891615', b'\xf1\x870GC300014L \xf1\x892802', ], (Ecu.srs, 0x715, None): [ b'\xf1\x873Q0959655BH\xf1\x890703\xf1\x82\x0e1213001211001101131112012100', b'\xf1\x873Q0959655BH\xf1\x890712\xf1\x82\x0e1213001211001101131122012100', b'\xf1\x873Q0959655DE\xf1\x890731\xf1\x82\x0e1213001211001101131121012J00', b'\xf1\x875QF959655AT\xf1\x890755\xf1\x82\x1312110012120011111100010200--2521210749', ], (Ecu.eps, 0x712, None): [ b'\xf1\x875Q0910143B \xf1\x892201\xf1\x82\x0563T6090500', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567T6100500', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567T6100600', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567T6100700', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x872Q0907572AB\xf1\x890397', b'\xf1\x872Q0907572M \xf1\x890233', b'\xf1\x872Q0907572T \xf1\x890383', ], }, CAR.SKODA_KODIAQ_MK1: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704E906027DD\xf1\x893123', b'\xf1\x8704E906027LD\xf1\x893433', b'\xf1\x8704E906027NB\xf1\x896517', b'\xf1\x8704E906027NB\xf1\x899504', b'\xf1\x8704L906026DE\xf1\x895418', b'\xf1\x8704L906026EJ\xf1\x893661', b'\xf1\x8704L906026HT\xf1\x893617', b'\xf1\x8705E906018DJ\xf1\x890915', b'\xf1\x8705E906018DJ\xf1\x891903', b'\xf1\x8705L906022GM\xf1\x893411', b'\xf1\x875NA906259E \xf1\x890003', b'\xf1\x875NA907115D \xf1\x890003', b'\xf1\x875NA907115E \xf1\x890003', b'\xf1\x875NA907115E \xf1\x890005', b'\xf1\x8783A907115E \xf1\x890001', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870D9300014S \xf1\x895201', b'\xf1\x870D9300043 \xf1\x895202', b'\xf1\x870DL300011N \xf1\x892014', b'\xf1\x870DL300012G \xf1\x892006', b'\xf1\x870DL300012M \xf1\x892107', b'\xf1\x870DL300012N \xf1\x892110', b'\xf1\x870DL300013G \xf1\x892119', b'\xf1\x870GC300014N \xf1\x892801', b'\xf1\x870GC300018S \xf1\x892803', b'\xf1\x870GC300019H \xf1\x892806', b'\xf1\x870GC300046Q \xf1\x892802', ], (Ecu.srs, 0x715, None): [ b'\xf1\x873Q0959655AN\xf1\x890306\xf1\x82\r11110011110011031111310311', b'\xf1\x873Q0959655AP\xf1\x890306\xf1\x82\r11110011110011421111314211', b'\xf1\x873Q0959655BH\xf1\x890703\xf1\x82\x0e1213001211001205212111052100', b'\xf1\x873Q0959655BJ\xf1\x890703\xf1\x82\x0e1213001211001205212111052100', b'\xf1\x873Q0959655BK\xf1\x890703\xf1\x82\x0e1213001211001244212111442100', b'\xf1\x873Q0959655CN\xf1\x890720\xf1\x82\x0e1213001211001205212112052100', b'\xf1\x873Q0959655CQ\xf1\x890720\xf1\x82\x0e1213111211001205212112052111', b'\xf1\x873Q0959655DJ\xf1\x890731\xf1\x82\x0e1513001511001205232113052J00', b'\xf1\x875QF959655AT\xf1\x890755\xf1\x82\x1311110011110011111100010200--1121240749', b'\xf1\x875QF959655AT\xf1\x890755\xf1\x82\x1311110011110011111100010200--1121246149', ], (Ecu.eps, 0x712, None): [ b'\xf1\x875Q0909143P \xf1\x892051\xf1\x820527T6050405', b'\xf1\x875Q0909143P \xf1\x892051\xf1\x820527T6060405', b'\xf1\x875Q0909143P \xf1\x892051\xf1\x820527T6070405', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567T600G500', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567T600G600', b'\xf1\x875TA907145F \xf1\x891063\xf1\x82\x0025T6BA25OM', b'\xf1\x875TA907145F \xf1\x891063\xf1\x82\x002LT61A2LOM', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x872Q0907572AA\xf1\x890396', b'\xf1\x872Q0907572AB\xf1\x890397', b'\xf1\x872Q0907572M \xf1\x890233', b'\xf1\x872Q0907572Q \xf1\x890342', b'\xf1\x872Q0907572R \xf1\x890372', b'\xf1\x872Q0907572T \xf1\x890383', ], }, CAR.SKODA_OCTAVIA_MK3: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704C906025L \xf1\x896198', b'\xf1\x8704E906016ER\xf1\x895823', b'\xf1\x8704E906027HD\xf1\x893742', b'\xf1\x8704E906027MH\xf1\x894786', b'\xf1\x8704L906021DT\xf1\x898127', b'\xf1\x8704L906021ER\xf1\x898361', b'\xf1\x8704L906026BP\xf1\x897608', b'\xf1\x8704L906026BS\xf1\x891541', b'\xf1\x8704L906026BT\xf1\x897612', b'\xf1\x875G0906259C \xf1\x890002', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870CW300041L \xf1\x891601', b'\xf1\x870CW300041N \xf1\x891605', b'\xf1\x870CW300043B \xf1\x891601', b'\xf1\x870CW300043P \xf1\x891605', b'\xf1\x870D9300012H \xf1\x894518', b'\xf1\x870D9300014T \xf1\x895221', b'\xf1\x870D9300041C \xf1\x894936', b'\xf1\x870D9300041H \xf1\x895220', b'\xf1\x870D9300041J \xf1\x894902', b'\xf1\x870D9300041P \xf1\x894507', ], (Ecu.srs, 0x715, None): [ b'\xf1\x873Q0959655AC\xf1\x890200\xf1\x82\r11120011100010022212110200', b'\xf1\x873Q0959655AK\xf1\x890306\xf1\x82\r31210031210021033733310331', b'\xf1\x873Q0959655AP\xf1\x890305\xf1\x82\r11110011110011213331312131', b'\xf1\x873Q0959655AQ\xf1\x890200\xf1\x82\r11120011100010312212113100', b'\xf1\x873Q0959655AS\xf1\x890200\xf1\x82\r11120011100010022212110200', b'\xf1\x873Q0959655BH\xf1\x890703\xf1\x82\x0e3221003221002105755331052100', b'\xf1\x873Q0959655CM\xf1\x890720\xf1\x82\x0e3221003221002105755331052100', b'\xf1\x873Q0959655CN\xf1\x890720\xf1\x82\x0e3221003221002105755331052100', b'\xf1\x875QD959655 \xf1\x890388\xf1\x82\x111101000011110006110411111111119111', ], (Ecu.eps, 0x712, None): [ b'\xf1\x873Q0909144J \xf1\x895063\xf1\x82\x0566A01513A1', b'\xf1\x875Q0909144AA\xf1\x891081\xf1\x82\x0521T00403A1', b'\xf1\x875Q0909144AB\xf1\x891082\xf1\x82\x0521T00403A1', b'\xf1\x875Q0909144AB\xf1\x891082\xf1\x82\x0521T00603A1', b'\xf1\x875Q0909144R \xf1\x891061\xf1\x82\x0516A00604A1', b'\xf1\x875Q0909144T \xf1\x891072\xf1\x82\x0521T00601A1', b'\xf1\x875QD909144E \xf1\x891081\xf1\x82\x0521T00503A1', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x875Q0907567P \xf1\x890100\xf1\x82\x0101', b'\xf1\x875Q0907572D \xf1\x890304\xf1\x82\x0101', b'\xf1\x875Q0907572F \xf1\x890400\xf1\x82\x0101', b'\xf1\x875Q0907572H \xf1\x890620', b'\xf1\x875Q0907572J \xf1\x890654', b'\xf1\x875Q0907572K \xf1\x890402\xf1\x82\x0101', b'\xf1\x875Q0907572P \xf1\x890682', b'\xf1\x875Q0907572R \xf1\x890771', ], }, CAR.SKODA_SUPERB_MK3: { (Ecu.engine, 0x7e0, None): [ b'\xf1\x8704E906027BS\xf1\x892887', b'\xf1\x8704E906027BT\xf1\x899042', b'\xf1\x8704L906026ET\xf1\x891343', b'\xf1\x8704L906026ET\xf1\x891990', b'\xf1\x8704L906026FP\xf1\x891196', b'\xf1\x8704L906026KA\xf1\x896014', b'\xf1\x8704L906026KB\xf1\x894071', b'\xf1\x8704L906026KD\xf1\x894798', b'\xf1\x8704L906026MT\xf1\x893076', b'\xf1\x8705L906022BK\xf1\x899971', b'\xf1\x873G0906259 \xf1\x890004', b'\xf1\x873G0906259B \xf1\x890002', b'\xf1\x873G0906259L \xf1\x890003', b'\xf1\x873G0906264A \xf1\x890002', ], (Ecu.transmission, 0x7e1, None): [ b'\xf1\x870CW300042H \xf1\x891601', b'\xf1\x870CW300043B \xf1\x891603', b'\xf1\x870CW300049Q \xf1\x890906', b'\xf1\x870D9300011T \xf1\x894801', b'\xf1\x870D9300012 \xf1\x894940', b'\xf1\x870D9300013A \xf1\x894905', b'\xf1\x870D9300014K \xf1\x895006', b'\xf1\x870D9300041H \xf1\x894905', b'\xf1\x870D9300042M \xf1\x895013', b'\xf1\x870D9300043F \xf1\x895202', b'\xf1\x870GC300013K \xf1\x892403', b'\xf1\x870GC300014M \xf1\x892801', b'\xf1\x870GC300019G \xf1\x892803', b'\xf1\x870GC300043 \xf1\x892301', b'\xf1\x870GC300046D \xf1\x892402', ], (Ecu.srs, 0x715, None): [ b'\xf1\x875Q0959655AE\xf1\x890130\xf1\x82\x12111200111121001121110012211292221111', b'\xf1\x875Q0959655AE\xf1\x890130\xf1\x82\x12111200111121001121118112231292221111', b'\xf1\x875Q0959655AK\xf1\x890130\xf1\x82\x12111200111121001121110012211292221111', b'\xf1\x875Q0959655AS\xf1\x890317\xf1\x82\x1331310031313100313131823133319331313100', b'\xf1\x875Q0959655AT\xf1\x890317\xf1\x82\x1331310031313100313131013131319331313100', b'\xf1\x875Q0959655BH\xf1\x890336\xf1\x82\x1331310031313100313131013141319331413100', b'\xf1\x875Q0959655BK\xf1\x890336\xf1\x82\x1331310031313100313131013141319331413100', b'\xf1\x875Q0959655BS\xf1\x890403\xf1\x82\x1333310031313100313152015351539331423100', b'\xf1\x875Q0959655CA\xf1\x890403\xf1\x82\x1331310031313100313151013141319331423100', b'\xf1\x875Q0959655CA\xf1\x890403\xf1\x82\x1331310031313100313151823143319331423100', b'\xf1\x875Q0959655CH\xf1\x890421\xf1\x82\x1333310031313100313152025350539331463100', b'\xf1\x875Q0959655CH\xf1\x890421\xf1\x82\x1333310031313100313152855372539331463100', ], (Ecu.eps, 0x712, None): [ b'\xf1\x875Q0909143K \xf1\x892033\xf1\x820514UZ070203', b'\xf1\x875Q0909143M \xf1\x892041\xf1\x820522UZ050303', b'\xf1\x875Q0909143M \xf1\x892041\xf1\x820522UZ070303', b'\xf1\x875Q0909143P \xf1\x892051\xf1\x820526UZ060505', b'\xf1\x875Q0909143P \xf1\x892051\xf1\x820526UZ070505', b'\xf1\x875Q0910143B \xf1\x892201\xf1\x82\x0563UZ060600', b'\xf1\x875Q0910143B \xf1\x892201\xf1\x82\x0563UZ060700', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567UZ070500', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567UZ070600', b'\xf1\x875Q0910143C \xf1\x892211\xf1\x82\x0567UZ070700', ], (Ecu.fwdRadar, 0x757, None): [ b'\xf1\x873Q0907572B \xf1\x890192', b'\xf1\x873Q0907572B \xf1\x890194', b'\xf1\x873Q0907572C \xf1\x890195', b'\xf1\x875Q0907572R \xf1\x890771', b'\xf1\x875Q0907572S \xf1\x890780', ], }, }
2301_81045437/openpilot
selfdrive/car/volkswagen/fingerprints.py
Python
mit
55,281
from cereal import car from panda import Panda from openpilot.selfdrive.car import get_safety_config from openpilot.selfdrive.car.interfaces import CarInterfaceBase from openpilot.selfdrive.car.volkswagen.values import CAR, CANBUS, CarControllerParams, NetworkLocation, TransmissionType, GearShifter, VolkswagenFlags ButtonType = car.CarState.ButtonEvent.Type EventName = car.CarEvent.EventName class CarInterface(CarInterfaceBase): def __init__(self, CP, CarController, CarState): super().__init__(CP, CarController, CarState) if CP.networkLocation == NetworkLocation.fwdCamera: self.ext_bus = CANBUS.pt self.cp_ext = self.cp else: self.ext_bus = CANBUS.cam self.cp_ext = self.cp_cam @staticmethod def _get_params(ret, candidate: CAR, fingerprint, car_fw, experimental_long, docs): ret.carName = "volkswagen" ret.radarUnavailable = True if ret.flags & VolkswagenFlags.PQ: # Set global PQ35/PQ46/NMS parameters ret.safetyConfigs = [get_safety_config(car.CarParams.SafetyModel.volkswagenPq)] ret.enableBsm = 0x3BA in fingerprint[0] # SWA_1 if 0x440 in fingerprint[0] or docs: # Getriebe_1 ret.transmissionType = TransmissionType.automatic else: ret.transmissionType = TransmissionType.manual if any(msg in fingerprint[1] for msg in (0x1A0, 0xC2)): # Bremse_1, Lenkwinkel_1 ret.networkLocation = NetworkLocation.gateway else: ret.networkLocation = NetworkLocation.fwdCamera # The PQ port is in dashcam-only mode due to a fixed six-minute maximum timer on HCA steering. An unsupported # EPS flash update to work around this timer, and enable steering down to zero, is available from: # https://github.com/pd0wm/pq-flasher # It is documented in a four-part blog series: # https://blog.willemmelching.nl/carhacking/2022/01/02/vw-part1/ # Panda ALLOW_DEBUG firmware required. ret.dashcamOnly = True else: # Set global MQB parameters ret.safetyConfigs = [get_safety_config(car.CarParams.SafetyModel.volkswagen)] ret.enableBsm = 0x30F in fingerprint[0] # SWA_01 if 0xAD in fingerprint[0] or docs: # Getriebe_11 ret.transmissionType = TransmissionType.automatic elif 0x187 in fingerprint[0]: # EV_Gearshift ret.transmissionType = TransmissionType.direct else: ret.transmissionType = TransmissionType.manual if any(msg in fingerprint[1] for msg in (0x40, 0x86, 0xB2, 0xFD)): # Airbag_01, LWI_01, ESP_19, ESP_21 ret.networkLocation = NetworkLocation.gateway else: ret.networkLocation = NetworkLocation.fwdCamera if 0x126 in fingerprint[2]: # HCA_01 ret.flags |= VolkswagenFlags.STOCK_HCA_PRESENT.value # Global lateral tuning defaults, can be overridden per-vehicle ret.steerLimitTimer = 0.4 if ret.flags & VolkswagenFlags.PQ: ret.steerActuatorDelay = 0.2 CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning) else: ret.steerActuatorDelay = 0.1 ret.lateralTuning.pid.kpBP = [0.] ret.lateralTuning.pid.kiBP = [0.] ret.lateralTuning.pid.kf = 0.00006 ret.lateralTuning.pid.kpV = [0.6] ret.lateralTuning.pid.kiV = [0.2] # Global longitudinal tuning defaults, can be overridden per-vehicle ret.experimentalLongitudinalAvailable = ret.networkLocation == NetworkLocation.gateway or docs if experimental_long: # Proof-of-concept, prep for E2E only. No radar points available. Panda ALLOW_DEBUG firmware required. ret.openpilotLongitudinalControl = True ret.safetyConfigs[0].safetyParam |= Panda.FLAG_VOLKSWAGEN_LONG_CONTROL if ret.transmissionType == TransmissionType.manual: ret.minEnableSpeed = 4.5 ret.pcmCruise = not ret.openpilotLongitudinalControl ret.stoppingControl = True ret.stopAccel = -0.55 ret.vEgoStarting = 0.1 ret.vEgoStopping = 0.5 ret.longitudinalTuning.kpV = [0.1] ret.longitudinalTuning.kiV = [0.0] ret.autoResumeSng = ret.minEnableSpeed == -1 return ret # returns a car.CarState def _update(self, c): ret = self.CS.update(self.cp, self.cp_cam, self.cp_ext, self.CP.transmissionType) events = self.create_common_events(ret, extra_gears=[GearShifter.eco, GearShifter.sport, GearShifter.manumatic], pcm_enable=not self.CS.CP.openpilotLongitudinalControl, enable_buttons=(ButtonType.setCruise, ButtonType.resumeCruise)) # Low speed steer alert hysteresis logic if (self.CP.minSteerSpeed - 1e-3) > CarControllerParams.DEFAULT_MIN_STEER_SPEED and ret.vEgo < (self.CP.minSteerSpeed + 1.): self.low_speed_alert = True elif ret.vEgo > (self.CP.minSteerSpeed + 2.): self.low_speed_alert = False if self.low_speed_alert: events.add(EventName.belowSteerSpeed) if self.CS.CP.openpilotLongitudinalControl: if ret.vEgo < self.CP.minEnableSpeed + 0.5: events.add(EventName.belowEngageSpeed) if c.enabled and ret.vEgo < self.CP.minEnableSpeed: events.add(EventName.speedTooLow) if self.CC.eps_timer_soft_disable_alert: events.add(EventName.steerTimeLimit) ret.events = events.to_msg() return ret
2301_81045437/openpilot
selfdrive/car/volkswagen/interface.py
Python
mit
5,329
def create_steering_control(packer, bus, apply_steer, lkas_enabled): values = { "HCA_01_Status_HCA": 5 if lkas_enabled else 3, "HCA_01_LM_Offset": abs(apply_steer), "HCA_01_LM_OffSign": 1 if apply_steer < 0 else 0, "HCA_01_Vib_Freq": 18, "HCA_01_Sendestatus": 1 if lkas_enabled else 0, "EA_ACC_Wunschgeschwindigkeit": 327.36, } return packer.make_can_msg("HCA_01", bus, values) def create_eps_update(packer, bus, eps_stock_values, ea_simulated_torque): values = {s: eps_stock_values[s] for s in [ "COUNTER", # Sync counter value to EPS output "EPS_Lenkungstyp", # EPS rack type "EPS_Berechneter_LW", # Absolute raw steering angle "EPS_VZ_BLW", # Raw steering angle sign "EPS_HCA_Status", # EPS HCA control status ]} values.update({ # Absolute driver torque input and sign, with EA inactivity mitigation "EPS_Lenkmoment": abs(ea_simulated_torque), "EPS_VZ_Lenkmoment": 1 if ea_simulated_torque < 0 else 0, }) return packer.make_can_msg("LH_EPS_03", bus, values) def create_lka_hud_control(packer, bus, ldw_stock_values, lat_active, steering_pressed, hud_alert, hud_control): values = {} if len(ldw_stock_values): values = {s: ldw_stock_values[s] for s in [ "LDW_SW_Warnung_links", # Blind spot in warning mode on left side due to lane departure "LDW_SW_Warnung_rechts", # Blind spot in warning mode on right side due to lane departure "LDW_Seite_DLCTLC", # Direction of most likely lane departure (left or right) "LDW_DLC", # Lane departure, distance to line crossing "LDW_TLC", # Lane departure, time to line crossing ]} values.update({ "LDW_Status_LED_gelb": 1 if lat_active and steering_pressed else 0, "LDW_Status_LED_gruen": 1 if lat_active and not steering_pressed else 0, "LDW_Lernmodus_links": 3 if hud_control.leftLaneDepart else 1 + hud_control.leftLaneVisible, "LDW_Lernmodus_rechts": 3 if hud_control.rightLaneDepart else 1 + hud_control.rightLaneVisible, "LDW_Texte": hud_alert, }) return packer.make_can_msg("LDW_02", bus, values) def create_acc_buttons_control(packer, bus, gra_stock_values, cancel=False, resume=False): values = {s: gra_stock_values[s] for s in [ "GRA_Hauptschalter", # ACC button, on/off "GRA_Typ_Hauptschalter", # ACC main button type "GRA_Codierung", # ACC button configuration/coding "GRA_Tip_Stufe_2", # unknown related to stalk type "GRA_ButtonTypeInfo", # unknown related to stalk type ]} values.update({ "COUNTER": (gra_stock_values["COUNTER"] + 1) % 16, "GRA_Abbrechen": cancel, "GRA_Tip_Wiederaufnahme": resume, }) return packer.make_can_msg("GRA_ACC_01", bus, values) def acc_control_value(main_switch_on, acc_faulted, long_active): if acc_faulted: acc_control = 6 elif long_active: acc_control = 3 elif main_switch_on: acc_control = 2 else: acc_control = 0 return acc_control def acc_hud_status_value(main_switch_on, acc_faulted, long_active): # TODO: happens to resemble the ACC control value for now, but extend this for init/gas override later return acc_control_value(main_switch_on, acc_faulted, long_active) def create_acc_accel_control(packer, bus, acc_type, acc_enabled, accel, acc_control, stopping, starting, esp_hold): commands = [] acc_06_values = { "ACC_Typ": acc_type, "ACC_Status_ACC": acc_control, "ACC_StartStopp_Info": acc_enabled, "ACC_Sollbeschleunigung_02": accel if acc_enabled else 3.01, "ACC_zul_Regelabw_unten": 0.2, # TODO: dynamic adjustment of comfort-band "ACC_zul_Regelabw_oben": 0.2, # TODO: dynamic adjustment of comfort-band "ACC_neg_Sollbeschl_Grad_02": 4.0 if acc_enabled else 0, # TODO: dynamic adjustment of jerk limits "ACC_pos_Sollbeschl_Grad_02": 4.0 if acc_enabled else 0, # TODO: dynamic adjustment of jerk limits "ACC_Anfahren": starting, "ACC_Anhalten": stopping, } commands.append(packer.make_can_msg("ACC_06", bus, acc_06_values)) if starting: acc_hold_type = 4 # hold release / startup elif esp_hold: acc_hold_type = 3 # hold standby elif stopping: acc_hold_type = 1 # hold request else: acc_hold_type = 0 acc_07_values = { "ACC_Anhalteweg": 0.3 if stopping else 20.46, # Distance to stop (stopping coordinator handles terminal roll-out) "ACC_Freilauf_Info": 2 if acc_enabled else 0, "ACC_Folgebeschl": 3.02, # Not using secondary controller accel unless and until we understand its impact "ACC_Sollbeschleunigung_02": accel if acc_enabled else 3.01, "ACC_Anforderung_HMS": acc_hold_type, "ACC_Anfahren": starting, "ACC_Anhalten": stopping, } commands.append(packer.make_can_msg("ACC_07", bus, acc_07_values)) return commands def create_acc_hud_control(packer, bus, acc_hud_status, set_speed, lead_distance, distance): values = { "ACC_Status_Anzeige": acc_hud_status, "ACC_Wunschgeschw_02": set_speed if set_speed < 250 else 327.36, "ACC_Gesetzte_Zeitluecke": distance + 2, "ACC_Display_Prio": 3, "ACC_Abstandsindex": lead_distance, } return packer.make_can_msg("ACC_02", bus, values)
2301_81045437/openpilot
selfdrive/car/volkswagen/mqbcan.py
Python
mit
5,317
def create_steering_control(packer, bus, apply_steer, lkas_enabled): values = { "LM_Offset": abs(apply_steer), "LM_OffSign": 1 if apply_steer < 0 else 0, "HCA_Status": 5 if (lkas_enabled and apply_steer != 0) else 3, "Vib_Freq": 16, } return packer.make_can_msg("HCA_1", bus, values) def create_lka_hud_control(packer, bus, ldw_stock_values, lat_active, steering_pressed, hud_alert, hud_control): values = {} if len(ldw_stock_values): values = {s: ldw_stock_values[s] for s in [ "LDW_SW_Warnung_links", # Blind spot in warning mode on left side due to lane departure "LDW_SW_Warnung_rechts", # Blind spot in warning mode on right side due to lane departure "LDW_Seite_DLCTLC", # Direction of most likely lane departure (left or right) "LDW_DLC", # Lane departure, distance to line crossing "LDW_TLC", # Lane departure, time to line crossing ]} values.update({ "LDW_Lampe_gelb": 1 if lat_active and steering_pressed else 0, "LDW_Lampe_gruen": 1 if lat_active and not steering_pressed else 0, "LDW_Lernmodus_links": 3 if hud_control.leftLaneDepart else 1 + hud_control.leftLaneVisible, "LDW_Lernmodus_rechts": 3 if hud_control.rightLaneDepart else 1 + hud_control.rightLaneVisible, "LDW_Textbits": hud_alert, }) return packer.make_can_msg("LDW_Status", bus, values) def create_acc_buttons_control(packer, bus, gra_stock_values, cancel=False, resume=False): values = {s: gra_stock_values[s] for s in [ "GRA_Hauptschalt", # ACC button, on/off "GRA_Typ_Hauptschalt", # ACC button, momentary vs latching "GRA_Kodierinfo", # ACC button, configuration "GRA_Sender", # ACC button, CAN message originator ]} values.update({ "COUNTER": (gra_stock_values["COUNTER"] + 1) % 16, "GRA_Abbrechen": cancel, "GRA_Recall": resume, }) return packer.make_can_msg("GRA_Neu", bus, values) def acc_control_value(main_switch_on, acc_faulted, long_active): if long_active: acc_control = 1 elif main_switch_on: acc_control = 2 else: acc_control = 0 return acc_control def acc_hud_status_value(main_switch_on, acc_faulted, long_active): if acc_faulted: hud_status = 6 elif long_active: hud_status = 3 elif main_switch_on: hud_status = 2 else: hud_status = 0 return hud_status def create_acc_accel_control(packer, bus, acc_type, acc_enabled, accel, acc_control, stopping, starting, esp_hold): commands = [] values = { "ACS_Sta_ADR": acc_control, "ACS_StSt_Info": acc_enabled, "ACS_Typ_ACC": acc_type, "ACS_Anhaltewunsch": acc_type == 1 and stopping, "ACS_FreigSollB": acc_enabled, "ACS_Sollbeschl": accel if acc_enabled else 3.01, "ACS_zul_Regelabw": 0.2 if acc_enabled else 1.27, "ACS_max_AendGrad": 3.0 if acc_enabled else 5.08, } commands.append(packer.make_can_msg("ACC_System", bus, values)) return commands def create_acc_hud_control(packer, bus, acc_hud_status, set_speed, lead_distance, distance): values = { "ACA_StaACC": acc_hud_status, "ACA_Zeitluecke": distance + 2, "ACA_V_Wunsch": set_speed, "ACA_gemZeitl": lead_distance, "ACA_PrioDisp": 3, # TODO: restore dynamic pop-to-foreground/highlight behavior with ACA_PrioDisp and ACA_AnzDisplay # TODO: ACA_kmh_mph handling probably needed to resolve rounding errors in displayed setpoint } return packer.make_can_msg("ACC_GRA_Anzeige", bus, values)
2301_81045437/openpilot
selfdrive/car/volkswagen/pqcan.py
Python
mit
3,514
from openpilot.selfdrive.car.interfaces import RadarInterfaceBase class RadarInterface(RadarInterfaceBase): pass
2301_81045437/openpilot
selfdrive/car/volkswagen/radar_interface.py
Python
mit
116
from collections import defaultdict, namedtuple from dataclasses import dataclass, field from enum import Enum, IntFlag, StrEnum from cereal import car from panda.python import uds from opendbc.can.can_define import CANDefine from openpilot.common.conversions import Conversions as CV from openpilot.selfdrive.car import dbc_dict, CarSpecs, DbcDict, PlatformConfig, Platforms from openpilot.selfdrive.car.docs_definitions import CarFootnote, CarHarness, CarDocs, CarParts, Column, \ Device from openpilot.selfdrive.car.fw_query_definitions import EcuAddrSubAddr, FwQueryConfig, Request, p16 Ecu = car.CarParams.Ecu NetworkLocation = car.CarParams.NetworkLocation TransmissionType = car.CarParams.TransmissionType GearShifter = car.CarState.GearShifter Button = namedtuple('Button', ['event_type', 'can_addr', 'can_msg', 'values']) class CarControllerParams: STEER_STEP = 2 # HCA_01/HCA_1 message frequency 50Hz ACC_CONTROL_STEP = 2 # ACC_06/ACC_07/ACC_System frequency 50Hz # Documented lateral limits: 3.00 Nm max, rate of change 5.00 Nm/sec. # MQB vs PQ maximums are shared, but rate-of-change limited differently # based on safety requirements driven by lateral accel testing. STEER_MAX = 300 # Max heading control assist torque 3.00 Nm STEER_DRIVER_MULTIPLIER = 3 # weight driver torque heavily STEER_DRIVER_FACTOR = 1 # from dbc STEER_TIME_MAX = 360 # Max time that EPS allows uninterrupted HCA steering control STEER_TIME_ALERT = STEER_TIME_MAX - 10 # If mitigation fails, time to soft disengage before EPS timer expires STEER_TIME_STUCK_TORQUE = 1.9 # EPS limits same torque to 6 seconds, reset timer 3x within that period DEFAULT_MIN_STEER_SPEED = 0.4 # m/s, newer EPS racks fault below this speed, don't show a low speed alert ACCEL_MAX = 2.0 # 2.0 m/s max acceleration ACCEL_MIN = -3.5 # 3.5 m/s max deceleration def __init__(self, CP): can_define = CANDefine(DBC[CP.carFingerprint]["pt"]) if CP.flags & VolkswagenFlags.PQ: self.LDW_STEP = 5 # LDW_1 message frequency 20Hz self.ACC_HUD_STEP = 4 # ACC_GRA_Anzeige frequency 25Hz self.STEER_DRIVER_ALLOWANCE = 80 # Driver intervention threshold 0.8 Nm self.STEER_DELTA_UP = 6 # Max HCA reached in 1.00s (STEER_MAX / (50Hz * 1.00)) self.STEER_DELTA_DOWN = 10 # Min HCA reached in 0.60s (STEER_MAX / (50Hz * 0.60)) if CP.transmissionType == TransmissionType.automatic: self.shifter_values = can_define.dv["Getriebe_1"]["Waehlhebelposition__Getriebe_1_"] self.hca_status_values = can_define.dv["Lenkhilfe_2"]["LH2_Sta_HCA"] self.BUTTONS = [ Button(car.CarState.ButtonEvent.Type.setCruise, "GRA_Neu", "GRA_Neu_Setzen", [1]), Button(car.CarState.ButtonEvent.Type.resumeCruise, "GRA_Neu", "GRA_Recall", [1]), Button(car.CarState.ButtonEvent.Type.accelCruise, "GRA_Neu", "GRA_Up_kurz", [1]), Button(car.CarState.ButtonEvent.Type.decelCruise, "GRA_Neu", "GRA_Down_kurz", [1]), Button(car.CarState.ButtonEvent.Type.cancel, "GRA_Neu", "GRA_Abbrechen", [1]), Button(car.CarState.ButtonEvent.Type.gapAdjustCruise, "GRA_Neu", "GRA_Zeitluecke", [1]), ] self.LDW_MESSAGES = { "none": 0, # Nothing to display "laneAssistUnavail": 1, # "Lane Assist currently not available." "laneAssistUnavailSysError": 2, # "Lane Assist system error" "laneAssistUnavailNoSensorView": 3, # "Lane Assist not available. No sensor view." "laneAssistTakeOver": 4, # "Lane Assist: Please Take Over Steering" "laneAssistDeactivTrailer": 5, # "Lane Assist: no function with trailer" } else: self.LDW_STEP = 10 # LDW_02 message frequency 10Hz self.ACC_HUD_STEP = 6 # ACC_02 message frequency 16Hz self.STEER_DRIVER_ALLOWANCE = 80 # Driver intervention threshold 0.8 Nm self.STEER_DELTA_UP = 4 # Max HCA reached in 1.50s (STEER_MAX / (50Hz * 1.50)) self.STEER_DELTA_DOWN = 10 # Min HCA reached in 0.60s (STEER_MAX / (50Hz * 0.60)) if CP.transmissionType == TransmissionType.automatic: self.shifter_values = can_define.dv["Getriebe_11"]["GE_Fahrstufe"] elif CP.transmissionType == TransmissionType.direct: self.shifter_values = can_define.dv["EV_Gearshift"]["GearPosition"] self.hca_status_values = can_define.dv["LH_EPS_03"]["EPS_HCA_Status"] self.BUTTONS = [ Button(car.CarState.ButtonEvent.Type.setCruise, "GRA_ACC_01", "GRA_Tip_Setzen", [1]), Button(car.CarState.ButtonEvent.Type.resumeCruise, "GRA_ACC_01", "GRA_Tip_Wiederaufnahme", [1]), Button(car.CarState.ButtonEvent.Type.accelCruise, "GRA_ACC_01", "GRA_Tip_Hoch", [1]), Button(car.CarState.ButtonEvent.Type.decelCruise, "GRA_ACC_01", "GRA_Tip_Runter", [1]), Button(car.CarState.ButtonEvent.Type.cancel, "GRA_ACC_01", "GRA_Abbrechen", [1]), Button(car.CarState.ButtonEvent.Type.gapAdjustCruise, "GRA_ACC_01", "GRA_Verstellung_Zeitluecke", [1]), ] self.LDW_MESSAGES = { "none": 0, # Nothing to display "laneAssistUnavailChime": 1, # "Lane Assist currently not available." with chime "laneAssistUnavailNoSensorChime": 3, # "Lane Assist not available. No sensor view." with chime "laneAssistTakeOverUrgent": 4, # "Lane Assist: Please Take Over Steering" with urgent beep "emergencyAssistUrgent": 6, # "Emergency Assist: Please Take Over Steering" with urgent beep "laneAssistTakeOverChime": 7, # "Lane Assist: Please Take Over Steering" with chime "laneAssistTakeOver": 8, # "Lane Assist: Please Take Over Steering" silent "emergencyAssistChangingLanes": 9, # "Emergency Assist: Changing lanes..." with urgent beep "laneAssistDeactivated": 10, # "Lane Assist deactivated." silent with persistent icon afterward } class CANBUS: pt = 0 cam = 2 class WMI(StrEnum): VOLKSWAGEN_USA_SUV = "1V2" VOLKSWAGEN_USA_CAR = "1VW" VOLKSWAGEN_MEXICO_SUV = "3VV" VOLKSWAGEN_MEXICO_CAR = "3VW" VOLKSWAGEN_ARGENTINA = "8AW" VOLKSWAGEN_BRASIL = "9BW" SAIC_VOLKSWAGEN = "LSV" SKODA = "TMB" SEAT = "VSS" AUDI_EUROPE_MPV = "WA1" AUDI_GERMANY_CAR = "WAU" MAN = "WMA" AUDI_SPORT = "WUA" VOLKSWAGEN_COMMERCIAL = "WV1" VOLKSWAGEN_COMMERCIAL_BUS_VAN = "WV2" VOLKSWAGEN_EUROPE_SUV = "WVG" VOLKSWAGEN_EUROPE_CAR = "WVW" VOLKSWAGEN_GROUP_RUS = "XW8" class VolkswagenFlags(IntFlag): # Detected flags STOCK_HCA_PRESENT = 1 # Static flags PQ = 2 @dataclass class VolkswagenMQBPlatformConfig(PlatformConfig): dbc_dict: DbcDict = field(default_factory=lambda: dbc_dict('vw_mqb_2010', None)) # Volkswagen uses the VIN WMI and chassis code to match in the absence of the comma power # on camera-integrated cars, as we lose too many ECUs to reliably identify the vehicle chassis_codes: set[str] = field(default_factory=set) wmis: set[WMI] = field(default_factory=set) @dataclass class VolkswagenPQPlatformConfig(VolkswagenMQBPlatformConfig): dbc_dict: DbcDict = field(default_factory=lambda: dbc_dict('vw_golf_mk4', None)) def init(self): self.flags |= VolkswagenFlags.PQ @dataclass(frozen=True, kw_only=True) class VolkswagenCarSpecs(CarSpecs): centerToFrontRatio: float = 0.45 steerRatio: float = 15.6 minSteerSpeed: float = CarControllerParams.DEFAULT_MIN_STEER_SPEED class Footnote(Enum): KAMIQ = CarFootnote( "Not including the China market Kamiq, which is based on the (currently) unsupported PQ34 platform.", Column.MODEL) PASSAT = CarFootnote( "Refers only to the MQB-based European B8 Passat, not the NMS Passat in the USA/China/Mideast markets.", Column.MODEL) SKODA_HEATED_WINDSHIELD = CarFootnote( "Some Škoda vehicles are equipped with heated windshields, which are known " + "to block GPS signal needed for some comma 3X functionality.", Column.MODEL) VW_EXP_LONG = CarFootnote( "Only available for vehicles using a gateway (J533) harness. At this time, vehicles using a camera harness " + "are limited to using stock ACC.", Column.LONGITUDINAL) VW_MQB_A0 = CarFootnote( "Model-years 2022 and beyond may have a combined CAN gateway and BCM, which is supported by openpilot " + "in software, but doesn't yet have a harness available from the comma store.", Column.HARDWARE) @dataclass class VWCarDocs(CarDocs): package: str = "Adaptive Cruise Control (ACC) & Lane Assist" car_parts: CarParts = field(default_factory=CarParts.common([CarHarness.j533])) def init_make(self, CP: car.CarParams): self.footnotes.append(Footnote.VW_EXP_LONG) if "SKODA" in CP.carFingerprint: self.footnotes.append(Footnote.SKODA_HEATED_WINDSHIELD) if CP.carFingerprint in (CAR.VOLKSWAGEN_CRAFTER_MK2, CAR.VOLKSWAGEN_TRANSPORTER_T61): self.car_parts = CarParts([Device.threex_angled_mount, CarHarness.j533]) if abs(CP.minSteerSpeed - CarControllerParams.DEFAULT_MIN_STEER_SPEED) < 1e-3: self.min_steer_speed = 0 # Check the 7th and 8th characters of the VIN before adding a new CAR. If the # chassis code is already listed below, don't add a new CAR, just add to the # FW_VERSIONS for that existing CAR. class CAR(Platforms): config: VolkswagenMQBPlatformConfig | VolkswagenPQPlatformConfig VOLKSWAGEN_ARTEON_MK1 = VolkswagenMQBPlatformConfig( [ VWCarDocs("Volkswagen Arteon 2018-23", video_link="https://youtu.be/FAomFKPFlDA"), VWCarDocs("Volkswagen Arteon R 2020-23", video_link="https://youtu.be/FAomFKPFlDA"), VWCarDocs("Volkswagen Arteon eHybrid 2020-23", video_link="https://youtu.be/FAomFKPFlDA"), VWCarDocs("Volkswagen Arteon Shooting Brake 2020-23", video_link="https://youtu.be/FAomFKPFlDA"), VWCarDocs("Volkswagen CC 2018-22", video_link="https://youtu.be/FAomFKPFlDA"), ], VolkswagenCarSpecs(mass=1733, wheelbase=2.84), chassis_codes={"AN", "3H"}, wmis={WMI.VOLKSWAGEN_EUROPE_CAR}, ) VOLKSWAGEN_ATLAS_MK1 = VolkswagenMQBPlatformConfig( [ VWCarDocs("Volkswagen Atlas 2018-23"), VWCarDocs("Volkswagen Atlas Cross Sport 2020-22"), VWCarDocs("Volkswagen Teramont 2018-22"), VWCarDocs("Volkswagen Teramont Cross Sport 2021-22"), VWCarDocs("Volkswagen Teramont X 2021-22"), ], VolkswagenCarSpecs(mass=2011, wheelbase=2.98), chassis_codes={"CA"}, wmis={WMI.VOLKSWAGEN_USA_SUV, WMI.VOLKSWAGEN_EUROPE_SUV}, ) VOLKSWAGEN_CADDY_MK3 = VolkswagenPQPlatformConfig( [ VWCarDocs("Volkswagen Caddy 2019"), VWCarDocs("Volkswagen Caddy Maxi 2019"), ], VolkswagenCarSpecs(mass=1613, wheelbase=2.6, minSteerSpeed=21 * CV.KPH_TO_MS), chassis_codes={"2K"}, wmis={WMI.VOLKSWAGEN_COMMERCIAL_BUS_VAN}, ) VOLKSWAGEN_CRAFTER_MK2 = VolkswagenMQBPlatformConfig( [ VWCarDocs("Volkswagen Crafter 2017-23", video_link="https://youtu.be/4100gLeabmo"), VWCarDocs("Volkswagen e-Crafter 2018-23", video_link="https://youtu.be/4100gLeabmo"), VWCarDocs("Volkswagen Grand California 2019-23", video_link="https://youtu.be/4100gLeabmo"), VWCarDocs("MAN TGE 2017-23", video_link="https://youtu.be/4100gLeabmo"), VWCarDocs("MAN eTGE 2020-23", video_link="https://youtu.be/4100gLeabmo"), ], VolkswagenCarSpecs(mass=2100, wheelbase=3.64, minSteerSpeed=50 * CV.KPH_TO_MS), chassis_codes={"SY", "SZ"}, wmis={WMI.VOLKSWAGEN_COMMERCIAL, WMI.MAN}, ) VOLKSWAGEN_GOLF_MK7 = VolkswagenMQBPlatformConfig( [ VWCarDocs("Volkswagen e-Golf 2014-20"), VWCarDocs("Volkswagen Golf 2015-20", auto_resume=False), VWCarDocs("Volkswagen Golf Alltrack 2015-19", auto_resume=False), VWCarDocs("Volkswagen Golf GTD 2015-20"), VWCarDocs("Volkswagen Golf GTE 2015-20"), VWCarDocs("Volkswagen Golf GTI 2015-21", auto_resume=False), VWCarDocs("Volkswagen Golf R 2015-19"), VWCarDocs("Volkswagen Golf SportsVan 2015-20"), ], VolkswagenCarSpecs(mass=1397, wheelbase=2.62), chassis_codes={"5G", "AU", "BA", "BE"}, wmis={WMI.VOLKSWAGEN_MEXICO_CAR, WMI.VOLKSWAGEN_EUROPE_CAR}, ) VOLKSWAGEN_JETTA_MK7 = VolkswagenMQBPlatformConfig( [ VWCarDocs("Volkswagen Jetta 2018-24"), VWCarDocs("Volkswagen Jetta GLI 2021-24"), ], VolkswagenCarSpecs(mass=1328, wheelbase=2.71), chassis_codes={"BU"}, wmis={WMI.VOLKSWAGEN_MEXICO_CAR, WMI.VOLKSWAGEN_EUROPE_CAR}, ) VOLKSWAGEN_PASSAT_MK8 = VolkswagenMQBPlatformConfig( [ VWCarDocs("Volkswagen Passat 2015-22", footnotes=[Footnote.PASSAT]), VWCarDocs("Volkswagen Passat Alltrack 2015-22"), VWCarDocs("Volkswagen Passat GTE 2015-22"), ], VolkswagenCarSpecs(mass=1551, wheelbase=2.79), chassis_codes={"3C", "3G"}, wmis={WMI.VOLKSWAGEN_EUROPE_CAR}, ) VOLKSWAGEN_PASSAT_NMS = VolkswagenPQPlatformConfig( [VWCarDocs("Volkswagen Passat NMS 2017-22")], VolkswagenCarSpecs(mass=1503, wheelbase=2.80, minSteerSpeed=50 * CV.KPH_TO_MS, minEnableSpeed=20 * CV.KPH_TO_MS), chassis_codes={"A3"}, wmis={WMI.VOLKSWAGEN_USA_CAR}, ) VOLKSWAGEN_POLO_MK6 = VolkswagenMQBPlatformConfig( [ VWCarDocs("Volkswagen Polo 2018-23", footnotes=[Footnote.VW_MQB_A0]), VWCarDocs("Volkswagen Polo GTI 2018-23", footnotes=[Footnote.VW_MQB_A0]), ], VolkswagenCarSpecs(mass=1230, wheelbase=2.55), chassis_codes={"AW"}, wmis={WMI.VOLKSWAGEN_EUROPE_CAR}, ) VOLKSWAGEN_SHARAN_MK2 = VolkswagenPQPlatformConfig( [ VWCarDocs("Volkswagen Sharan 2018-22"), VWCarDocs("SEAT Alhambra 2018-20"), ], VolkswagenCarSpecs(mass=1639, wheelbase=2.92, minSteerSpeed=50 * CV.KPH_TO_MS), chassis_codes={"7N"}, wmis={WMI.VOLKSWAGEN_EUROPE_CAR}, ) VOLKSWAGEN_TAOS_MK1 = VolkswagenMQBPlatformConfig( [VWCarDocs("Volkswagen Taos 2022-23")], VolkswagenCarSpecs(mass=1498, wheelbase=2.69), chassis_codes={"B2"}, wmis={WMI.VOLKSWAGEN_MEXICO_SUV, WMI.VOLKSWAGEN_ARGENTINA}, ) VOLKSWAGEN_TCROSS_MK1 = VolkswagenMQBPlatformConfig( [VWCarDocs("Volkswagen T-Cross 2021", footnotes=[Footnote.VW_MQB_A0])], VolkswagenCarSpecs(mass=1150, wheelbase=2.60), chassis_codes={"C1"}, wmis={WMI.VOLKSWAGEN_EUROPE_SUV}, ) VOLKSWAGEN_TIGUAN_MK2 = VolkswagenMQBPlatformConfig( [ VWCarDocs("Volkswagen Tiguan 2018-24"), VWCarDocs("Volkswagen Tiguan eHybrid 2021-23"), ], VolkswagenCarSpecs(mass=1715, wheelbase=2.74), chassis_codes={"5N", "AD", "AX", "BW"}, wmis={WMI.VOLKSWAGEN_EUROPE_SUV, WMI.VOLKSWAGEN_MEXICO_SUV}, ) VOLKSWAGEN_TOURAN_MK2 = VolkswagenMQBPlatformConfig( [VWCarDocs("Volkswagen Touran 2016-23")], VolkswagenCarSpecs(mass=1516, wheelbase=2.79), chassis_codes={"1T"}, wmis={WMI.VOLKSWAGEN_EUROPE_SUV}, ) VOLKSWAGEN_TRANSPORTER_T61 = VolkswagenMQBPlatformConfig( [ VWCarDocs("Volkswagen Caravelle 2020"), VWCarDocs("Volkswagen California 2021-23"), ], VolkswagenCarSpecs(mass=1926, wheelbase=3.00, minSteerSpeed=14.0), chassis_codes={"7H", "7L"}, wmis={WMI.VOLKSWAGEN_COMMERCIAL_BUS_VAN}, ) VOLKSWAGEN_TROC_MK1 = VolkswagenMQBPlatformConfig( [VWCarDocs("Volkswagen T-Roc 2018-23")], VolkswagenCarSpecs(mass=1413, wheelbase=2.63), chassis_codes={"A1"}, wmis={WMI.VOLKSWAGEN_EUROPE_SUV}, ) AUDI_A3_MK3 = VolkswagenMQBPlatformConfig( [ VWCarDocs("Audi A3 2014-19"), VWCarDocs("Audi A3 Sportback e-tron 2017-18"), VWCarDocs("Audi RS3 2018"), VWCarDocs("Audi S3 2015-17"), ], VolkswagenCarSpecs(mass=1335, wheelbase=2.61), chassis_codes={"8V", "FF"}, wmis={WMI.AUDI_GERMANY_CAR, WMI.AUDI_SPORT}, ) AUDI_Q2_MK1 = VolkswagenMQBPlatformConfig( [VWCarDocs("Audi Q2 2018")], VolkswagenCarSpecs(mass=1205, wheelbase=2.61), chassis_codes={"GA"}, wmis={WMI.AUDI_GERMANY_CAR}, ) AUDI_Q3_MK2 = VolkswagenMQBPlatformConfig( [VWCarDocs("Audi Q3 2019-23")], VolkswagenCarSpecs(mass=1623, wheelbase=2.68), chassis_codes={"8U", "F3", "FS"}, wmis={WMI.AUDI_EUROPE_MPV, WMI.AUDI_GERMANY_CAR}, ) SEAT_ATECA_MK1 = VolkswagenMQBPlatformConfig( [ VWCarDocs("CUPRA Ateca 2018-23"), VWCarDocs("SEAT Ateca 2016-23"), VWCarDocs("SEAT Leon 2014-20"), ], VolkswagenCarSpecs(mass=1300, wheelbase=2.64), chassis_codes={"5F"}, wmis={WMI.SEAT}, ) SKODA_FABIA_MK4 = VolkswagenMQBPlatformConfig( [VWCarDocs("Škoda Fabia 2022-23", footnotes=[Footnote.VW_MQB_A0])], VolkswagenCarSpecs(mass=1266, wheelbase=2.56), chassis_codes={"PJ"}, wmis={WMI.SKODA}, ) SKODA_KAMIQ_MK1 = VolkswagenMQBPlatformConfig( [ VWCarDocs("Škoda Kamiq 2021-23", footnotes=[Footnote.VW_MQB_A0, Footnote.KAMIQ]), VWCarDocs("Škoda Scala 2020-23", footnotes=[Footnote.VW_MQB_A0]), ], VolkswagenCarSpecs(mass=1230, wheelbase=2.66), chassis_codes={"NW"}, wmis={WMI.SKODA}, ) SKODA_KAROQ_MK1 = VolkswagenMQBPlatformConfig( [VWCarDocs("Škoda Karoq 2019-23")], VolkswagenCarSpecs(mass=1278, wheelbase=2.66), chassis_codes={"NU"}, wmis={WMI.SKODA}, ) SKODA_KODIAQ_MK1 = VolkswagenMQBPlatformConfig( [VWCarDocs("Škoda Kodiaq 2017-23")], VolkswagenCarSpecs(mass=1569, wheelbase=2.79), chassis_codes={"NS"}, wmis={WMI.SKODA, WMI.VOLKSWAGEN_GROUP_RUS}, ) SKODA_OCTAVIA_MK3 = VolkswagenMQBPlatformConfig( [ VWCarDocs("Škoda Octavia 2015-19"), VWCarDocs("Škoda Octavia RS 2016"), VWCarDocs("Škoda Octavia Scout 2017-19"), ], VolkswagenCarSpecs(mass=1388, wheelbase=2.68), chassis_codes={"NE"}, wmis={WMI.SKODA}, ) SKODA_SUPERB_MK3 = VolkswagenMQBPlatformConfig( [VWCarDocs("Škoda Superb 2015-22")], VolkswagenCarSpecs(mass=1505, wheelbase=2.84), chassis_codes={"3V", "NP"}, wmis={WMI.SKODA}, ) def match_fw_to_car_fuzzy(live_fw_versions, vin, offline_fw_versions) -> set[str]: candidates = set() # Compile all FW versions for each ECU all_ecu_versions: dict[EcuAddrSubAddr, set[str]] = defaultdict(set) for ecus in offline_fw_versions.values(): for ecu, versions in ecus.items(): all_ecu_versions[ecu] |= set(versions) # Check the WMI and chassis code to determine the platform wmi = vin[:3] chassis_code = vin[6:8] for platform in CAR: valid_ecus = set() for ecu in offline_fw_versions[platform]: addr = ecu[1:] if ecu[0] not in CHECK_FUZZY_ECUS: continue # Sanity check that live FW is in the superset of all FW, Volkswagen ECU part numbers are commonly shared found_versions = live_fw_versions.get(addr, []) expected_versions = all_ecu_versions[ecu] if not any(found_version in expected_versions for found_version in found_versions): break valid_ecus.add(ecu[0]) if valid_ecus != CHECK_FUZZY_ECUS: continue if wmi in platform.config.wmis and chassis_code in platform.config.chassis_codes: candidates.add(platform) return {str(c) for c in candidates} # These ECUs are required to match to gain a VIN match # TODO: do we want to check camera when we add its FW? CHECK_FUZZY_ECUS = {Ecu.fwdRadar} # All supported cars should return FW from the engine, srs, eps, and fwdRadar. Cars # with a manual trans won't return transmission firmware, but all other cars will. # # The 0xF187 SW part number query should return in the form of N[NX][NX] NNN NNN [X[X]], # where N=number, X=letter, and the trailing two letters are optional. Performance # tuners sometimes tamper with that field (e.g. 8V0 9C0 BB0 1 from COBB/EQT). Tampered # ECU SW part numbers are invalid for vehicle ID and compatibility checks. Try to have # them repaired by the tuner before including them in openpilot. VOLKSWAGEN_VERSION_REQUEST_MULTI = bytes([uds.SERVICE_TYPE.READ_DATA_BY_IDENTIFIER]) + \ p16(uds.DATA_IDENTIFIER_TYPE.VEHICLE_MANUFACTURER_SPARE_PART_NUMBER) + \ p16(uds.DATA_IDENTIFIER_TYPE.VEHICLE_MANUFACTURER_ECU_SOFTWARE_VERSION_NUMBER) + \ p16(uds.DATA_IDENTIFIER_TYPE.APPLICATION_DATA_IDENTIFICATION) VOLKSWAGEN_VERSION_RESPONSE = bytes([uds.SERVICE_TYPE.READ_DATA_BY_IDENTIFIER + 0x40]) VOLKSWAGEN_RX_OFFSET = 0x6a FW_QUERY_CONFIG = FwQueryConfig( requests=[request for bus, obd_multiplexing in [(1, True), (1, False), (0, False)] for request in [ Request( [VOLKSWAGEN_VERSION_REQUEST_MULTI], [VOLKSWAGEN_VERSION_RESPONSE], whitelist_ecus=[Ecu.srs, Ecu.eps, Ecu.fwdRadar, Ecu.fwdCamera], rx_offset=VOLKSWAGEN_RX_OFFSET, bus=bus, obd_multiplexing=obd_multiplexing, ), Request( [VOLKSWAGEN_VERSION_REQUEST_MULTI], [VOLKSWAGEN_VERSION_RESPONSE], whitelist_ecus=[Ecu.engine, Ecu.transmission], bus=bus, obd_multiplexing=obd_multiplexing, ), ]], non_essential_ecus={Ecu.eps: list(CAR)}, extra_ecus=[(Ecu.fwdCamera, 0x74f, None)], match_fw_to_car_fuzzy=match_fw_to_car_fuzzy, ) DBC = CAR.create_dbc_map()
2301_81045437/openpilot
selfdrive/car/volkswagen/values.py
Python
mit
21,334
#!/usr/bin/env python3 import os import math import time import threading from typing import SupportsFloat import cereal.messaging as messaging from cereal import car, log from cereal.visionipc import VisionIpcClient, VisionStreamType from openpilot.common.conversions import Conversions as CV from openpilot.common.git import get_short_branch from openpilot.common.numpy_fast import clip from openpilot.common.params import Params from openpilot.common.realtime import config_realtime_process, Priority, Ratekeeper, DT_CTRL from openpilot.common.swaglog import cloudlog from openpilot.selfdrive.car.car_helpers import get_car_interface, get_startup_event from openpilot.selfdrive.controls.lib.alertmanager import AlertManager, set_offroad_alert from openpilot.selfdrive.controls.lib.drive_helpers import VCruiseHelper, clip_curvature from openpilot.selfdrive.controls.lib.events import Events, ET from openpilot.selfdrive.controls.lib.latcontrol import LatControl, MIN_LATERAL_CONTROL_SPEED from openpilot.selfdrive.controls.lib.latcontrol_pid import LatControlPID from openpilot.selfdrive.controls.lib.latcontrol_angle import LatControlAngle, STEER_ANGLE_SATURATION_THRESHOLD from openpilot.selfdrive.controls.lib.latcontrol_torque import LatControlTorque from openpilot.selfdrive.controls.lib.longcontrol import LongControl from openpilot.selfdrive.controls.lib.vehicle_model import VehicleModel from openpilot.system.hardware import HARDWARE SOFT_DISABLE_TIME = 3 # seconds LDW_MIN_SPEED = 31 * CV.MPH_TO_MS LANE_DEPARTURE_THRESHOLD = 0.1 CAMERA_OFFSET = 0.04 REPLAY = "REPLAY" in os.environ SIMULATION = "SIMULATION" in os.environ TESTING_CLOSET = "TESTING_CLOSET" in os.environ IGNORE_PROCESSES = {"loggerd", "encoderd", "statsd"} ThermalStatus = log.DeviceState.ThermalStatus State = log.ControlsState.OpenpilotState PandaType = log.PandaState.PandaType Desire = log.Desire LaneChangeState = log.LaneChangeState LaneChangeDirection = log.LaneChangeDirection EventName = car.CarEvent.EventName ButtonType = car.CarState.ButtonEvent.Type SafetyModel = car.CarParams.SafetyModel IGNORED_SAFETY_MODES = (SafetyModel.silent, SafetyModel.noOutput) CSID_MAP = {"1": EventName.roadCameraError, "2": EventName.wideRoadCameraError, "0": EventName.driverCameraError} ACTUATOR_FIELDS = tuple(car.CarControl.Actuators.schema.fields.keys()) ACTIVE_STATES = (State.enabled, State.softDisabling, State.overriding) ENABLED_STATES = (State.preEnabled, *ACTIVE_STATES) class Controls: def __init__(self, CI=None): self.params = Params() if CI is None: cloudlog.info("controlsd is waiting for CarParams") with car.CarParams.from_bytes(self.params.get("CarParams", block=True)) as msg: # TODO: this shouldn't need to be a builder self.CP = msg.as_builder() cloudlog.info("controlsd got CarParams") # Uses car interface helper functions, altering state won't be considered by card for actuation self.CI = get_car_interface(self.CP) else: self.CI, self.CP = CI, CI.CP # Ensure the current branch is cached, otherwise the first iteration of controlsd lags self.branch = get_short_branch() # Setup sockets self.pm = messaging.PubMaster(['controlsState', 'carControl', 'onroadEvents']) self.sensor_packets = ["accelerometer", "gyroscope"] self.camera_packets = ["roadCameraState", "driverCameraState", "wideRoadCameraState"] self.log_sock = messaging.sub_sock('androidLog') # TODO: de-couple controlsd with card/conflate on carState without introducing controls mismatches self.car_state_sock = messaging.sub_sock('carState', timeout=20) ignore = self.sensor_packets + ['testJoystick'] if SIMULATION: ignore += ['driverCameraState', 'managerState'] if REPLAY: # no vipc in replay will make them ignored anyways ignore += ['roadCameraState', 'wideRoadCameraState'] self.sm = messaging.SubMaster(['deviceState', 'pandaStates', 'peripheralState', 'modelV2', 'liveCalibration', 'carOutput', 'driverMonitoringState', 'longitudinalPlan', 'liveLocationKalman', 'managerState', 'liveParameters', 'radarState', 'liveTorqueParameters', 'testJoystick'] + self.camera_packets + self.sensor_packets, ignore_alive=ignore, ignore_avg_freq=ignore+['radarState', 'testJoystick'], ignore_valid=['testJoystick', ], frequency=int(1/DT_CTRL)) self.joystick_mode = self.params.get_bool("JoystickDebugMode") # read params self.is_metric = self.params.get_bool("IsMetric") self.is_ldw_enabled = self.params.get_bool("IsLdwEnabled") # detect sound card presence and ensure successful init sounds_available = HARDWARE.get_sound_card_online() car_recognized = self.CP.carName != 'mock' # cleanup old params if not self.CP.experimentalLongitudinalAvailable: self.params.remove("ExperimentalLongitudinalEnabled") if not self.CP.openpilotLongitudinalControl: self.params.remove("ExperimentalMode") self.CS_prev = car.CarState.new_message() self.AM = AlertManager() self.events = Events() self.LoC = LongControl(self.CP) self.VM = VehicleModel(self.CP) self.LaC: LatControl if self.CP.steerControlType == car.CarParams.SteerControlType.angle: self.LaC = LatControlAngle(self.CP, self.CI) elif self.CP.lateralTuning.which() == 'pid': self.LaC = LatControlPID(self.CP, self.CI) elif self.CP.lateralTuning.which() == 'torque': self.LaC = LatControlTorque(self.CP, self.CI) self.initialized = False self.state = State.disabled self.enabled = False self.active = False self.soft_disable_timer = 0 self.mismatch_counter = 0 self.cruise_mismatch_counter = 0 self.last_blinker_frame = 0 self.last_steering_pressed_frame = 0 self.distance_traveled = 0 self.last_functional_fan_frame = 0 self.events_prev = [] self.current_alert_types = [ET.PERMANENT] self.logged_comm_issue = None self.not_running_prev = None self.steer_limited = False self.desired_curvature = 0.0 self.experimental_mode = False self.personality = self.read_personality_param() self.v_cruise_helper = VCruiseHelper(self.CP) self.recalibrating_seen = False self.can_log_mono_time = 0 self.startup_event = get_startup_event(car_recognized, not self.CP.passive, len(self.CP.carFw) > 0) if not sounds_available: self.events.add(EventName.soundsUnavailable, static=True) if not car_recognized: self.events.add(EventName.carUnrecognized, static=True) if len(self.CP.carFw) > 0: set_offroad_alert("Offroad_CarUnrecognized", True) else: set_offroad_alert("Offroad_NoFirmware", True) elif self.CP.passive: self.events.add(EventName.dashcamMode, static=True) # controlsd is driven by carState, expected at 100Hz self.rk = Ratekeeper(100, print_delay_threshold=None) def set_initial_state(self): if REPLAY: controls_state = self.params.get("ReplayControlsState") if controls_state is not None: with log.ControlsState.from_bytes(controls_state) as controls_state: self.v_cruise_helper.v_cruise_kph = controls_state.vCruise if any(ps.controlsAllowed for ps in self.sm['pandaStates']): self.state = State.enabled def update_events(self, CS): """Compute onroadEvents from carState""" self.events.clear() # Add joystick event, static on cars, dynamic on nonCars if self.joystick_mode: self.events.add(EventName.joystickDebug) self.startup_event = None # Add startup event if self.startup_event is not None: self.events.add(self.startup_event) self.startup_event = None # Don't add any more events if not initialized if not self.initialized: self.events.add(EventName.controlsInitializing) return # no more events while in dashcam mode if self.CP.passive: return # Block resume if cruise never previously enabled resume_pressed = any(be.type in (ButtonType.accelCruise, ButtonType.resumeCruise) for be in CS.buttonEvents) if not self.CP.pcmCruise and not self.v_cruise_helper.v_cruise_initialized and resume_pressed: self.events.add(EventName.resumeBlocked) if not self.CP.notCar: self.events.add_from_msg(self.sm['driverMonitoringState'].events) # Add car events, ignore if CAN isn't valid if CS.canValid: self.events.add_from_msg(CS.events) # Create events for temperature, disk space, and memory if self.sm['deviceState'].thermalStatus >= ThermalStatus.red: self.events.add(EventName.overheat) if self.sm['deviceState'].freeSpacePercent < 7 and not SIMULATION: # under 7% of space free no enable allowed self.events.add(EventName.outOfSpace) if self.sm['deviceState'].memoryUsagePercent > 90 and not SIMULATION: self.events.add(EventName.lowMemory) # TODO: enable this once loggerd CPU usage is more reasonable #cpus = list(self.sm['deviceState'].cpuUsagePercent) #if max(cpus, default=0) > 95 and not SIMULATION: # self.events.add(EventName.highCpuUsage) # Alert if fan isn't spinning for 5 seconds if self.sm['peripheralState'].pandaType != log.PandaState.PandaType.unknown: if self.sm['peripheralState'].fanSpeedRpm < 500 and self.sm['deviceState'].fanSpeedPercentDesired > 50: # allow enough time for the fan controller in the panda to recover from stalls if (self.sm.frame - self.last_functional_fan_frame) * DT_CTRL > 15.0: self.events.add(EventName.fanMalfunction) else: self.last_functional_fan_frame = self.sm.frame # Handle calibration status cal_status = self.sm['liveCalibration'].calStatus if cal_status != log.LiveCalibrationData.Status.calibrated: if cal_status == log.LiveCalibrationData.Status.uncalibrated: self.events.add(EventName.calibrationIncomplete) elif cal_status == log.LiveCalibrationData.Status.recalibrating: if not self.recalibrating_seen: set_offroad_alert("Offroad_Recalibration", True) self.recalibrating_seen = True self.events.add(EventName.calibrationRecalibrating) else: self.events.add(EventName.calibrationInvalid) # Handle lane change if self.sm['modelV2'].meta.laneChangeState == LaneChangeState.preLaneChange: direction = self.sm['modelV2'].meta.laneChangeDirection if (CS.leftBlindspot and direction == LaneChangeDirection.left) or \ (CS.rightBlindspot and direction == LaneChangeDirection.right): self.events.add(EventName.laneChangeBlocked) else: if direction == LaneChangeDirection.left: self.events.add(EventName.preLaneChangeLeft) else: self.events.add(EventName.preLaneChangeRight) elif self.sm['modelV2'].meta.laneChangeState in (LaneChangeState.laneChangeStarting, LaneChangeState.laneChangeFinishing): self.events.add(EventName.laneChange) for i, pandaState in enumerate(self.sm['pandaStates']): # All pandas must match the list of safetyConfigs, and if outside this list, must be silent or noOutput if i < len(self.CP.safetyConfigs): safety_mismatch = pandaState.safetyModel != self.CP.safetyConfigs[i].safetyModel or \ pandaState.safetyParam != self.CP.safetyConfigs[i].safetyParam or \ pandaState.alternativeExperience != self.CP.alternativeExperience else: safety_mismatch = pandaState.safetyModel not in IGNORED_SAFETY_MODES # safety mismatch allows some time for boardd to set the safety mode and publish it back from panda if (safety_mismatch and self.sm.frame*DT_CTRL > 10.) or pandaState.safetyRxChecksInvalid or self.mismatch_counter >= 200: self.events.add(EventName.controlsMismatch) if log.PandaState.FaultType.relayMalfunction in pandaState.faults: self.events.add(EventName.relayMalfunction) # Handle HW and system malfunctions # Order is very intentional here. Be careful when modifying this. # All events here should at least have NO_ENTRY and SOFT_DISABLE. num_events = len(self.events) not_running = {p.name for p in self.sm['managerState'].processes if not p.running and p.shouldBeRunning} if self.sm.recv_frame['managerState'] and (not_running - IGNORE_PROCESSES): self.events.add(EventName.processNotRunning) if not_running != self.not_running_prev: cloudlog.event("process_not_running", not_running=not_running, error=True) self.not_running_prev = not_running else: if not SIMULATION and not self.rk.lagging: if not self.sm.all_alive(self.camera_packets): self.events.add(EventName.cameraMalfunction) elif not self.sm.all_freq_ok(self.camera_packets): self.events.add(EventName.cameraFrameRate) if not REPLAY and self.rk.lagging: self.events.add(EventName.controlsdLagging) if len(self.sm['radarState'].radarErrors) or ((not self.rk.lagging or REPLAY) and not self.sm.all_checks(['radarState'])): self.events.add(EventName.radarFault) if not self.sm.valid['pandaStates']: self.events.add(EventName.usbError) if CS.canTimeout: self.events.add(EventName.canBusMissing) elif not CS.canValid: self.events.add(EventName.canError) # generic catch-all. ideally, a more specific event should be added above instead has_disable_events = self.events.contains(ET.NO_ENTRY) and (self.events.contains(ET.SOFT_DISABLE) or self.events.contains(ET.IMMEDIATE_DISABLE)) no_system_errors = (not has_disable_events) or (len(self.events) == num_events) if (not self.sm.all_checks() or CS.canRcvTimeout) and no_system_errors: if not self.sm.all_alive(): self.events.add(EventName.commIssue) elif not self.sm.all_freq_ok(): self.events.add(EventName.commIssueAvgFreq) else: # invalid or can_rcv_timeout. self.events.add(EventName.commIssue) logs = { 'invalid': [s for s, valid in self.sm.valid.items() if not valid], 'not_alive': [s for s, alive in self.sm.alive.items() if not alive], 'not_freq_ok': [s for s, freq_ok in self.sm.freq_ok.items() if not freq_ok], 'can_rcv_timeout': CS.canRcvTimeout, } if logs != self.logged_comm_issue: cloudlog.event("commIssue", error=True, **logs) self.logged_comm_issue = logs else: self.logged_comm_issue = None if not (self.CP.notCar and self.joystick_mode): if not self.sm['liveLocationKalman'].posenetOK: self.events.add(EventName.posenetInvalid) if not self.sm['liveLocationKalman'].deviceStable: self.events.add(EventName.deviceFalling) if not self.sm['liveLocationKalman'].inputsOK: self.events.add(EventName.locationdTemporaryError) if not self.sm['liveParameters'].valid and not TESTING_CLOSET and (not SIMULATION or REPLAY): self.events.add(EventName.paramsdTemporaryError) # conservative HW alert. if the data or frequency are off, locationd will throw an error if any((self.sm.frame - self.sm.recv_frame[s])*DT_CTRL > 10. for s in self.sensor_packets): self.events.add(EventName.sensorDataInvalid) if not REPLAY: # Check for mismatch between openpilot and car's PCM cruise_mismatch = CS.cruiseState.enabled and (not self.enabled or not self.CP.pcmCruise) self.cruise_mismatch_counter = self.cruise_mismatch_counter + 1 if cruise_mismatch else 0 if self.cruise_mismatch_counter > int(6. / DT_CTRL): self.events.add(EventName.cruiseMismatch) # Check for FCW stock_long_is_braking = self.enabled and not self.CP.openpilotLongitudinalControl and CS.aEgo < -1.25 model_fcw = self.sm['modelV2'].meta.hardBrakePredicted and not CS.brakePressed and not stock_long_is_braking planner_fcw = self.sm['longitudinalPlan'].fcw and self.enabled if (planner_fcw or model_fcw) and not (self.CP.notCar and self.joystick_mode): self.events.add(EventName.fcw) for m in messaging.drain_sock(self.log_sock, wait_for_one=False): try: msg = m.androidLog.message if any(err in msg for err in ("ERROR_CRC", "ERROR_ECC", "ERROR_STREAM_UNDERFLOW", "APPLY FAILED")): csid = msg.split("CSID:")[-1].split(" ")[0] evt = CSID_MAP.get(csid, None) if evt is not None: self.events.add(evt) except UnicodeDecodeError: pass # TODO: fix simulator if not SIMULATION or REPLAY: # Not show in first 1 km to allow for driving out of garage. This event shows after 5 minutes if not self.sm['liveLocationKalman'].gpsOK and self.sm['liveLocationKalman'].inputsOK and (self.distance_traveled > 1500): self.events.add(EventName.noGps) if self.sm['liveLocationKalman'].gpsOK: self.distance_traveled = 0 self.distance_traveled += CS.vEgo * DT_CTRL if self.sm['modelV2'].frameDropPerc > 20: self.events.add(EventName.modeldLagging) def data_sample(self): """Receive data from sockets""" car_state = messaging.recv_one(self.car_state_sock) CS = car_state.carState if car_state else self.CS_prev self.sm.update(0) if not self.initialized: all_valid = CS.canValid and self.sm.all_checks() timed_out = self.sm.frame * DT_CTRL > 6. if all_valid or timed_out or (SIMULATION and not REPLAY): available_streams = VisionIpcClient.available_streams("camerad", block=False) if VisionStreamType.VISION_STREAM_ROAD not in available_streams: self.sm.ignore_alive.append('roadCameraState') if VisionStreamType.VISION_STREAM_WIDE_ROAD not in available_streams: self.sm.ignore_alive.append('wideRoadCameraState') self.initialized = True self.set_initial_state() cloudlog.event( "controlsd.initialized", dt=self.sm.frame*DT_CTRL, timeout=timed_out, canValid=CS.canValid, invalid=[s for s, valid in self.sm.valid.items() if not valid], not_alive=[s for s, alive in self.sm.alive.items() if not alive], not_freq_ok=[s for s, freq_ok in self.sm.freq_ok.items() if not freq_ok], error=True, ) # When the panda and controlsd do not agree on controls_allowed # we want to disengage openpilot. However the status from the panda goes through # another socket other than the CAN messages and one can arrive earlier than the other. # Therefore we allow a mismatch for two samples, then we trigger the disengagement. if not self.enabled: self.mismatch_counter = 0 # All pandas not in silent mode must have controlsAllowed when openpilot is enabled if self.enabled and any(not ps.controlsAllowed for ps in self.sm['pandaStates'] if ps.safetyModel not in IGNORED_SAFETY_MODES): self.mismatch_counter += 1 return CS def state_transition(self, CS): """Compute conditional state transitions and execute actions on state transitions""" self.v_cruise_helper.update_v_cruise(CS, self.enabled, self.is_metric) # decrement the soft disable timer at every step, as it's reset on # entrance in SOFT_DISABLING state self.soft_disable_timer = max(0, self.soft_disable_timer - 1) self.current_alert_types = [ET.PERMANENT] # ENABLED, SOFT DISABLING, PRE ENABLING, OVERRIDING if self.state != State.disabled: # user and immediate disable always have priority in a non-disabled state if self.events.contains(ET.USER_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.USER_DISABLE) elif self.events.contains(ET.IMMEDIATE_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.IMMEDIATE_DISABLE) else: # ENABLED if self.state == State.enabled: if self.events.contains(ET.SOFT_DISABLE): self.state = State.softDisabling self.soft_disable_timer = int(SOFT_DISABLE_TIME / DT_CTRL) self.current_alert_types.append(ET.SOFT_DISABLE) elif self.events.contains(ET.OVERRIDE_LATERAL) or self.events.contains(ET.OVERRIDE_LONGITUDINAL): self.state = State.overriding self.current_alert_types += [ET.OVERRIDE_LATERAL, ET.OVERRIDE_LONGITUDINAL] # SOFT DISABLING elif self.state == State.softDisabling: if not self.events.contains(ET.SOFT_DISABLE): # no more soft disabling condition, so go back to ENABLED self.state = State.enabled elif self.soft_disable_timer > 0: self.current_alert_types.append(ET.SOFT_DISABLE) elif self.soft_disable_timer <= 0: self.state = State.disabled # PRE ENABLING elif self.state == State.preEnabled: if not self.events.contains(ET.PRE_ENABLE): self.state = State.enabled else: self.current_alert_types.append(ET.PRE_ENABLE) # OVERRIDING elif self.state == State.overriding: if self.events.contains(ET.SOFT_DISABLE): self.state = State.softDisabling self.soft_disable_timer = int(SOFT_DISABLE_TIME / DT_CTRL) self.current_alert_types.append(ET.SOFT_DISABLE) elif not (self.events.contains(ET.OVERRIDE_LATERAL) or self.events.contains(ET.OVERRIDE_LONGITUDINAL)): self.state = State.enabled else: self.current_alert_types += [ET.OVERRIDE_LATERAL, ET.OVERRIDE_LONGITUDINAL] # DISABLED elif self.state == State.disabled: if self.events.contains(ET.ENABLE): if self.events.contains(ET.NO_ENTRY): self.current_alert_types.append(ET.NO_ENTRY) else: if self.events.contains(ET.PRE_ENABLE): self.state = State.preEnabled elif self.events.contains(ET.OVERRIDE_LATERAL) or self.events.contains(ET.OVERRIDE_LONGITUDINAL): self.state = State.overriding else: self.state = State.enabled self.current_alert_types.append(ET.ENABLE) self.v_cruise_helper.initialize_v_cruise(CS, self.experimental_mode) # Check if openpilot is engaged and actuators are enabled self.enabled = self.state in ENABLED_STATES self.active = self.state in ACTIVE_STATES if self.active: self.current_alert_types.append(ET.WARNING) def state_control(self, CS): """Given the state, this function returns a CarControl packet""" # Update VehicleModel lp = self.sm['liveParameters'] x = max(lp.stiffnessFactor, 0.1) sr = max(lp.steerRatio, 0.1) self.VM.update_params(x, sr) # Update Torque Params if self.CP.lateralTuning.which() == 'torque': torque_params = self.sm['liveTorqueParameters'] if self.sm.all_checks(['liveTorqueParameters']) and torque_params.useParams: self.LaC.update_live_torque_params(torque_params.latAccelFactorFiltered, torque_params.latAccelOffsetFiltered, torque_params.frictionCoefficientFiltered) long_plan = self.sm['longitudinalPlan'] model_v2 = self.sm['modelV2'] CC = car.CarControl.new_message() CC.enabled = self.enabled # Check which actuators can be enabled standstill = CS.vEgo <= max(self.CP.minSteerSpeed, MIN_LATERAL_CONTROL_SPEED) or CS.standstill CC.latActive = self.active and not CS.steerFaultTemporary and not CS.steerFaultPermanent and \ (not standstill or self.joystick_mode) CC.longActive = self.enabled and not self.events.contains(ET.OVERRIDE_LONGITUDINAL) and self.CP.openpilotLongitudinalControl actuators = CC.actuators actuators.longControlState = self.LoC.long_control_state # Enable blinkers while lane changing if model_v2.meta.laneChangeState != LaneChangeState.off: CC.leftBlinker = model_v2.meta.laneChangeDirection == LaneChangeDirection.left CC.rightBlinker = model_v2.meta.laneChangeDirection == LaneChangeDirection.right if CS.leftBlinker or CS.rightBlinker: self.last_blinker_frame = self.sm.frame # State specific actions if not CC.latActive: self.LaC.reset() if not CC.longActive: self.LoC.reset(v_pid=CS.vEgo) if not self.joystick_mode: # accel PID loop pid_accel_limits = self.CI.get_pid_accel_limits(self.CP, CS.vEgo, self.v_cruise_helper.v_cruise_kph * CV.KPH_TO_MS) t_since_plan = (self.sm.frame - self.sm.recv_frame['longitudinalPlan']) * DT_CTRL actuators.accel = self.LoC.update(CC.longActive, CS, long_plan, pid_accel_limits, t_since_plan) # Steering PID loop and lateral MPC self.desired_curvature = clip_curvature(CS.vEgo, self.desired_curvature, model_v2.action.desiredCurvature) actuators.curvature = self.desired_curvature actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(CC.latActive, CS, self.VM, lp, self.steer_limited, self.desired_curvature, self.sm['liveLocationKalman']) else: lac_log = log.ControlsState.LateralDebugState.new_message() if self.sm.recv_frame['testJoystick'] > 0: # reset joystick if it hasn't been received in a while should_reset_joystick = (self.sm.frame - self.sm.recv_frame['testJoystick'])*DT_CTRL > 0.2 if not should_reset_joystick: joystick_axes = self.sm['testJoystick'].axes else: joystick_axes = [0.0, 0.0] if CC.longActive: actuators.accel = 4.0*clip(joystick_axes[0], -1, 1) if CC.latActive: steer = clip(joystick_axes[1], -1, 1) # max angle is 45 for angle-based cars, max curvature is 0.02 actuators.steer, actuators.steeringAngleDeg, actuators.curvature = steer, steer * 90., steer * -0.02 lac_log.active = self.active lac_log.steeringAngleDeg = CS.steeringAngleDeg lac_log.output = actuators.steer lac_log.saturated = abs(actuators.steer) >= 0.9 if CS.steeringPressed: self.last_steering_pressed_frame = self.sm.frame recent_steer_pressed = (self.sm.frame - self.last_steering_pressed_frame)*DT_CTRL < 2.0 # Send a "steering required alert" if saturation count has reached the limit if lac_log.active and not recent_steer_pressed and not self.CP.notCar: if self.CP.lateralTuning.which() == 'torque' and not self.joystick_mode: undershooting = abs(lac_log.desiredLateralAccel) / abs(1e-3 + lac_log.actualLateralAccel) > 1.2 turning = abs(lac_log.desiredLateralAccel) > 1.0 good_speed = CS.vEgo > 5 max_torque = abs(self.sm['carOutput'].actuatorsOutput.steer) > 0.99 if undershooting and turning and good_speed and max_torque: lac_log.active and self.events.add(EventName.steerSaturated) elif lac_log.saturated: # TODO probably should not use dpath_points but curvature dpath_points = model_v2.position.y if len(dpath_points): # Check if we deviated from the path # TODO use desired vs actual curvature if self.CP.steerControlType == car.CarParams.SteerControlType.angle: steering_value = actuators.steeringAngleDeg else: steering_value = actuators.steer left_deviation = steering_value > 0 and dpath_points[0] < -0.20 right_deviation = steering_value < 0 and dpath_points[0] > 0.20 if left_deviation or right_deviation: self.events.add(EventName.steerSaturated) # Ensure no NaNs/Infs for p in ACTUATOR_FIELDS: attr = getattr(actuators, p) if not isinstance(attr, SupportsFloat): continue if not math.isfinite(attr): cloudlog.error(f"actuators.{p} not finite {actuators.to_dict()}") setattr(actuators, p, 0.0) # decrement personality on distance button press if self.CP.openpilotLongitudinalControl: if any(not be.pressed and be.type == ButtonType.gapAdjustCruise for be in CS.buttonEvents): self.personality = (self.personality - 1) % 3 self.params.put_nonblocking('LongitudinalPersonality', str(self.personality)) return CC, lac_log def publish_logs(self, CS, start_time, CC, lac_log): """Send actuators and hud commands to the car, send controlsstate and MPC logging""" # Orientation and angle rates can be useful for carcontroller # Only calibrated (car) frame is relevant for the carcontroller orientation_value = list(self.sm['liveLocationKalman'].calibratedOrientationNED.value) if len(orientation_value) > 2: CC.orientationNED = orientation_value angular_rate_value = list(self.sm['liveLocationKalman'].angularVelocityCalibrated.value) if len(angular_rate_value) > 2: CC.angularVelocity = angular_rate_value CC.cruiseControl.override = self.enabled and not CC.longActive and self.CP.openpilotLongitudinalControl CC.cruiseControl.cancel = CS.cruiseState.enabled and (not self.enabled or not self.CP.pcmCruise) if self.joystick_mode and self.sm.recv_frame['testJoystick'] > 0 and self.sm['testJoystick'].buttons[0]: CC.cruiseControl.cancel = True speeds = self.sm['longitudinalPlan'].speeds if len(speeds): CC.cruiseControl.resume = self.enabled and CS.cruiseState.standstill and speeds[-1] > 0.1 hudControl = CC.hudControl hudControl.setSpeed = float(self.v_cruise_helper.v_cruise_cluster_kph * CV.KPH_TO_MS) hudControl.speedVisible = self.enabled hudControl.lanesVisible = self.enabled hudControl.leadVisible = self.sm['longitudinalPlan'].hasLead hudControl.leadDistanceBars = self.personality + 1 hudControl.rightLaneVisible = True hudControl.leftLaneVisible = True recent_blinker = (self.sm.frame - self.last_blinker_frame) * DT_CTRL < 5.0 # 5s blinker cooldown ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \ and not CC.latActive and self.sm['liveCalibration'].calStatus == log.LiveCalibrationData.Status.calibrated model_v2 = self.sm['modelV2'] desire_prediction = model_v2.meta.desirePrediction if len(desire_prediction) and ldw_allowed: right_lane_visible = model_v2.laneLineProbs[2] > 0.5 left_lane_visible = model_v2.laneLineProbs[1] > 0.5 l_lane_change_prob = desire_prediction[Desire.laneChangeLeft] r_lane_change_prob = desire_prediction[Desire.laneChangeRight] lane_lines = model_v2.laneLines l_lane_close = left_lane_visible and (lane_lines[1].y[0] > -(1.08 + CAMERA_OFFSET)) r_lane_close = right_lane_visible and (lane_lines[2].y[0] < (1.08 - CAMERA_OFFSET)) hudControl.leftLaneDepart = bool(l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close) hudControl.rightLaneDepart = bool(r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close) if hudControl.rightLaneDepart or hudControl.leftLaneDepart: self.events.add(EventName.ldw) clear_event_types = set() if ET.WARNING not in self.current_alert_types: clear_event_types.add(ET.WARNING) if self.enabled: clear_event_types.add(ET.NO_ENTRY) alerts = self.events.create_alerts(self.current_alert_types, [self.CP, CS, self.sm, self.is_metric, self.soft_disable_timer]) self.AM.add_many(self.sm.frame, alerts) current_alert = self.AM.process_alerts(self.sm.frame, clear_event_types) if current_alert: hudControl.visualAlert = current_alert.visual_alert if not self.CP.passive and self.initialized: CO = self.sm['carOutput'] if self.CP.steerControlType == car.CarParams.SteerControlType.angle: self.steer_limited = abs(CC.actuators.steeringAngleDeg - CO.actuatorsOutput.steeringAngleDeg) > \ STEER_ANGLE_SATURATION_THRESHOLD else: self.steer_limited = abs(CC.actuators.steer - CO.actuatorsOutput.steer) > 1e-2 force_decel = (self.sm['driverMonitoringState'].awarenessStatus < 0.) or \ (self.state == State.softDisabling) # Curvature & Steering angle lp = self.sm['liveParameters'] steer_angle_without_offset = math.radians(CS.steeringAngleDeg - lp.angleOffsetDeg) curvature = -self.VM.calc_curvature(steer_angle_without_offset, CS.vEgo, lp.roll) # controlsState dat = messaging.new_message('controlsState') dat.valid = CS.canValid controlsState = dat.controlsState if current_alert: controlsState.alertText1 = current_alert.alert_text_1 controlsState.alertText2 = current_alert.alert_text_2 controlsState.alertSize = current_alert.alert_size controlsState.alertStatus = current_alert.alert_status controlsState.alertBlinkingRate = current_alert.alert_rate controlsState.alertType = current_alert.alert_type controlsState.alertSound = current_alert.audible_alert controlsState.longitudinalPlanMonoTime = self.sm.logMonoTime['longitudinalPlan'] controlsState.lateralPlanMonoTime = self.sm.logMonoTime['modelV2'] controlsState.enabled = self.enabled controlsState.active = self.active controlsState.curvature = curvature controlsState.desiredCurvature = self.desired_curvature controlsState.state = self.state controlsState.engageable = not self.events.contains(ET.NO_ENTRY) controlsState.longControlState = self.LoC.long_control_state controlsState.vPid = float(self.LoC.v_pid) controlsState.vCruise = float(self.v_cruise_helper.v_cruise_kph) controlsState.vCruiseCluster = float(self.v_cruise_helper.v_cruise_cluster_kph) controlsState.upAccelCmd = float(self.LoC.pid.p) controlsState.uiAccelCmd = float(self.LoC.pid.i) controlsState.ufAccelCmd = float(self.LoC.pid.f) controlsState.cumLagMs = -self.rk.remaining * 1000. controlsState.startMonoTime = int(start_time * 1e9) controlsState.forceDecel = bool(force_decel) controlsState.experimentalMode = self.experimental_mode controlsState.personality = self.personality lat_tuning = self.CP.lateralTuning.which() if self.joystick_mode: controlsState.lateralControlState.debugState = lac_log elif self.CP.steerControlType == car.CarParams.SteerControlType.angle: controlsState.lateralControlState.angleState = lac_log elif lat_tuning == 'pid': controlsState.lateralControlState.pidState = lac_log elif lat_tuning == 'torque': controlsState.lateralControlState.torqueState = lac_log self.pm.send('controlsState', dat) # onroadEvents - logged every second or on change if (self.sm.frame % int(1. / DT_CTRL) == 0) or (self.events.names != self.events_prev): ce_send = messaging.new_message('onroadEvents', len(self.events)) ce_send.valid = True ce_send.onroadEvents = self.events.to_msg() self.pm.send('onroadEvents', ce_send) self.events_prev = self.events.names.copy() # carControl cc_send = messaging.new_message('carControl') cc_send.valid = CS.canValid cc_send.carControl = CC self.pm.send('carControl', cc_send) def step(self): start_time = time.monotonic() # Sample data from sockets and get a carState CS = self.data_sample() cloudlog.timestamp("Data sampled") self.update_events(CS) cloudlog.timestamp("Events updated") if not self.CP.passive and self.initialized: # Update control state self.state_transition(CS) # Compute actuators (runs PID loops and lateral MPC) CC, lac_log = self.state_control(CS) # Publish data self.publish_logs(CS, start_time, CC, lac_log) self.CS_prev = CS def read_personality_param(self): try: return int(self.params.get('LongitudinalPersonality')) except (ValueError, TypeError): return log.LongitudinalPersonality.standard def params_thread(self, evt): while not evt.is_set(): self.is_metric = self.params.get_bool("IsMetric") self.experimental_mode = self.params.get_bool("ExperimentalMode") and self.CP.openpilotLongitudinalControl self.personality = self.read_personality_param() if self.CP.notCar: self.joystick_mode = self.params.get_bool("JoystickDebugMode") time.sleep(0.1) def controlsd_thread(self): e = threading.Event() t = threading.Thread(target=self.params_thread, args=(e, )) try: t.start() while True: self.step() self.rk.monitor_time() except SystemExit: e.set() t.join() def main(): config_realtime_process(4, Priority.CTRL_HIGH) controls = Controls() controls.controlsd_thread() if __name__ == "__main__": main()
2301_81045437/openpilot
selfdrive/controls/controlsd.py
Python
mit
37,112
import copy import os import json from collections import defaultdict from dataclasses import dataclass from openpilot.common.basedir import BASEDIR from openpilot.common.params import Params from openpilot.selfdrive.controls.lib.events import Alert with open(os.path.join(BASEDIR, "selfdrive/controls/lib/alerts_offroad.json")) as f: OFFROAD_ALERTS = json.load(f) def set_offroad_alert(alert: str, show_alert: bool, extra_text: str = None) -> None: if show_alert: a = copy.copy(OFFROAD_ALERTS[alert]) a['extra'] = extra_text or '' Params().put(alert, json.dumps(a)) else: Params().remove(alert) @dataclass class AlertEntry: alert: Alert | None = None start_frame: int = -1 end_frame: int = -1 def active(self, frame: int) -> bool: return frame <= self.end_frame class AlertManager: def __init__(self): self.alerts: dict[str, AlertEntry] = defaultdict(AlertEntry) def add_many(self, frame: int, alerts: list[Alert]) -> None: for alert in alerts: entry = self.alerts[alert.alert_type] entry.alert = alert if not entry.active(frame): entry.start_frame = frame min_end_frame = entry.start_frame + alert.duration entry.end_frame = max(frame + 1, min_end_frame) def process_alerts(self, frame: int, clear_event_types: set) -> Alert | None: current_alert = AlertEntry() for v in self.alerts.values(): if not v.alert: continue if v.alert.event_type in clear_event_types: v.end_frame = -1 # sort by priority first and then by start_frame greater = current_alert.alert is None or (v.alert.priority, v.start_frame) > (current_alert.alert.priority, current_alert.start_frame) if v.active(frame) and greater: current_alert = v return current_alert.alert
2301_81045437/openpilot
selfdrive/controls/lib/alertmanager.py
Python
mit
1,808
from cereal import log from openpilot.common.conversions import Conversions as CV from openpilot.common.realtime import DT_MDL LaneChangeState = log.LaneChangeState LaneChangeDirection = log.LaneChangeDirection LANE_CHANGE_SPEED_MIN = 20 * CV.MPH_TO_MS LANE_CHANGE_TIME_MAX = 10. DESIRES = { LaneChangeDirection.none: { LaneChangeState.off: log.Desire.none, LaneChangeState.preLaneChange: log.Desire.none, LaneChangeState.laneChangeStarting: log.Desire.none, LaneChangeState.laneChangeFinishing: log.Desire.none, }, LaneChangeDirection.left: { LaneChangeState.off: log.Desire.none, LaneChangeState.preLaneChange: log.Desire.none, LaneChangeState.laneChangeStarting: log.Desire.laneChangeLeft, LaneChangeState.laneChangeFinishing: log.Desire.laneChangeLeft, }, LaneChangeDirection.right: { LaneChangeState.off: log.Desire.none, LaneChangeState.preLaneChange: log.Desire.none, LaneChangeState.laneChangeStarting: log.Desire.laneChangeRight, LaneChangeState.laneChangeFinishing: log.Desire.laneChangeRight, }, } class DesireHelper: def __init__(self): self.lane_change_state = LaneChangeState.off self.lane_change_direction = LaneChangeDirection.none self.lane_change_timer = 0.0 self.lane_change_ll_prob = 1.0 self.keep_pulse_timer = 0.0 self.prev_one_blinker = False self.desire = log.Desire.none def update(self, carstate, lateral_active, lane_change_prob): v_ego = carstate.vEgo one_blinker = carstate.leftBlinker != carstate.rightBlinker below_lane_change_speed = v_ego < LANE_CHANGE_SPEED_MIN if not lateral_active or self.lane_change_timer > LANE_CHANGE_TIME_MAX: self.lane_change_state = LaneChangeState.off self.lane_change_direction = LaneChangeDirection.none else: # LaneChangeState.off if self.lane_change_state == LaneChangeState.off and one_blinker and not self.prev_one_blinker and not below_lane_change_speed: self.lane_change_state = LaneChangeState.preLaneChange self.lane_change_ll_prob = 1.0 # LaneChangeState.preLaneChange elif self.lane_change_state == LaneChangeState.preLaneChange: # Set lane change direction self.lane_change_direction = LaneChangeDirection.left if \ carstate.leftBlinker else LaneChangeDirection.right torque_applied = carstate.steeringPressed and \ ((carstate.steeringTorque > 0 and self.lane_change_direction == LaneChangeDirection.left) or (carstate.steeringTorque < 0 and self.lane_change_direction == LaneChangeDirection.right)) blindspot_detected = ((carstate.leftBlindspot and self.lane_change_direction == LaneChangeDirection.left) or (carstate.rightBlindspot and self.lane_change_direction == LaneChangeDirection.right)) if not one_blinker or below_lane_change_speed: self.lane_change_state = LaneChangeState.off self.lane_change_direction = LaneChangeDirection.none elif torque_applied and not blindspot_detected: self.lane_change_state = LaneChangeState.laneChangeStarting # LaneChangeState.laneChangeStarting elif self.lane_change_state == LaneChangeState.laneChangeStarting: # fade out over .5s self.lane_change_ll_prob = max(self.lane_change_ll_prob - 2 * DT_MDL, 0.0) # 98% certainty if lane_change_prob < 0.02 and self.lane_change_ll_prob < 0.01: self.lane_change_state = LaneChangeState.laneChangeFinishing # LaneChangeState.laneChangeFinishing elif self.lane_change_state == LaneChangeState.laneChangeFinishing: # fade in laneline over 1s self.lane_change_ll_prob = min(self.lane_change_ll_prob + DT_MDL, 1.0) if self.lane_change_ll_prob > 0.99: self.lane_change_direction = LaneChangeDirection.none if one_blinker: self.lane_change_state = LaneChangeState.preLaneChange else: self.lane_change_state = LaneChangeState.off if self.lane_change_state in (LaneChangeState.off, LaneChangeState.preLaneChange): self.lane_change_timer = 0.0 else: self.lane_change_timer += DT_MDL self.prev_one_blinker = one_blinker self.desire = DESIRES[self.lane_change_direction][self.lane_change_state] # Send keep pulse once per second during LaneChangeStart.preLaneChange if self.lane_change_state in (LaneChangeState.off, LaneChangeState.laneChangeStarting): self.keep_pulse_timer = 0.0 elif self.lane_change_state == LaneChangeState.preLaneChange: self.keep_pulse_timer += DT_MDL if self.keep_pulse_timer > 1.0: self.keep_pulse_timer = 0.0 elif self.desire in (log.Desire.keepLeft, log.Desire.keepRight): self.desire = log.Desire.none
2301_81045437/openpilot
selfdrive/controls/lib/desire_helper.py
Python
mit
4,853
import math from cereal import car, log from openpilot.common.conversions import Conversions as CV from openpilot.common.numpy_fast import clip, interp from openpilot.common.realtime import DT_CTRL # WARNING: this value was determined based on the model's training distribution, # model predictions above this speed can be unpredictable # V_CRUISE's are in kph V_CRUISE_MIN = 8 V_CRUISE_MAX = 145 V_CRUISE_UNSET = 255 V_CRUISE_INITIAL = 40 V_CRUISE_INITIAL_EXPERIMENTAL_MODE = 105 IMPERIAL_INCREMENT = 1.6 # should be CV.MPH_TO_KPH, but this causes rounding errors MIN_SPEED = 1.0 CONTROL_N = 17 CAR_ROTATION_RADIUS = 0.0 # EU guidelines MAX_LATERAL_JERK = 5.0 MAX_VEL_ERR = 5.0 ButtonEvent = car.CarState.ButtonEvent ButtonType = car.CarState.ButtonEvent.Type CRUISE_LONG_PRESS = 50 CRUISE_NEAREST_FUNC = { ButtonType.accelCruise: math.ceil, ButtonType.decelCruise: math.floor, } CRUISE_INTERVAL_SIGN = { ButtonType.accelCruise: +1, ButtonType.decelCruise: -1, } class VCruiseHelper: def __init__(self, CP): self.CP = CP self.v_cruise_kph = V_CRUISE_UNSET self.v_cruise_cluster_kph = V_CRUISE_UNSET self.v_cruise_kph_last = 0 self.button_timers = {ButtonType.decelCruise: 0, ButtonType.accelCruise: 0} self.button_change_states = {btn: {"standstill": False, "enabled": False} for btn in self.button_timers} @property def v_cruise_initialized(self): return self.v_cruise_kph != V_CRUISE_UNSET def update_v_cruise(self, CS, enabled, is_metric): self.v_cruise_kph_last = self.v_cruise_kph if CS.cruiseState.available: if not self.CP.pcmCruise: # if stock cruise is completely disabled, then we can use our own set speed logic self._update_v_cruise_non_pcm(CS, enabled, is_metric) self.v_cruise_cluster_kph = self.v_cruise_kph self.update_button_timers(CS, enabled) else: self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH self.v_cruise_cluster_kph = CS.cruiseState.speedCluster * CV.MS_TO_KPH else: self.v_cruise_kph = V_CRUISE_UNSET self.v_cruise_cluster_kph = V_CRUISE_UNSET def _update_v_cruise_non_pcm(self, CS, enabled, is_metric): # handle button presses. TODO: this should be in state_control, but a decelCruise press # would have the effect of both enabling and changing speed is checked after the state transition if not enabled: return long_press = False button_type = None v_cruise_delta = 1. if is_metric else IMPERIAL_INCREMENT for b in CS.buttonEvents: if b.type.raw in self.button_timers and not b.pressed: if self.button_timers[b.type.raw] > CRUISE_LONG_PRESS: return # end long press button_type = b.type.raw break else: for k in self.button_timers.keys(): if self.button_timers[k] and self.button_timers[k] % CRUISE_LONG_PRESS == 0: button_type = k long_press = True break if button_type is None: return # Don't adjust speed when pressing resume to exit standstill cruise_standstill = self.button_change_states[button_type]["standstill"] or CS.cruiseState.standstill if button_type == ButtonType.accelCruise and cruise_standstill: return # Don't adjust speed if we've enabled since the button was depressed (some ports enable on rising edge) if not self.button_change_states[button_type]["enabled"]: return v_cruise_delta = v_cruise_delta * (5 if long_press else 1) if long_press and self.v_cruise_kph % v_cruise_delta != 0: # partial interval self.v_cruise_kph = CRUISE_NEAREST_FUNC[button_type](self.v_cruise_kph / v_cruise_delta) * v_cruise_delta else: self.v_cruise_kph += v_cruise_delta * CRUISE_INTERVAL_SIGN[button_type] # If set is pressed while overriding, clip cruise speed to minimum of vEgo if CS.gasPressed and button_type in (ButtonType.decelCruise, ButtonType.setCruise): self.v_cruise_kph = max(self.v_cruise_kph, CS.vEgo * CV.MS_TO_KPH) self.v_cruise_kph = clip(round(self.v_cruise_kph, 1), V_CRUISE_MIN, V_CRUISE_MAX) def update_button_timers(self, CS, enabled): # increment timer for buttons still pressed for k in self.button_timers: if self.button_timers[k] > 0: self.button_timers[k] += 1 for b in CS.buttonEvents: if b.type.raw in self.button_timers: # Start/end timer and store current state on change of button pressed self.button_timers[b.type.raw] = 1 if b.pressed else 0 self.button_change_states[b.type.raw] = {"standstill": CS.cruiseState.standstill, "enabled": enabled} def initialize_v_cruise(self, CS, experimental_mode: bool) -> None: # initializing is handled by the PCM if self.CP.pcmCruise: return initial = V_CRUISE_INITIAL_EXPERIMENTAL_MODE if experimental_mode else V_CRUISE_INITIAL # 250kph or above probably means we never had a set speed if any(b.type in (ButtonType.accelCruise, ButtonType.resumeCruise) for b in CS.buttonEvents) and self.v_cruise_kph_last < 250: self.v_cruise_kph = self.v_cruise_kph_last else: self.v_cruise_kph = int(round(clip(CS.vEgo * CV.MS_TO_KPH, initial, V_CRUISE_MAX))) self.v_cruise_cluster_kph = self.v_cruise_kph def apply_deadzone(error, deadzone): if error > deadzone: error -= deadzone elif error < - deadzone: error += deadzone else: error = 0. return error def apply_center_deadzone(error, deadzone): if (error > - deadzone) and (error < deadzone): error = 0. return error def rate_limit(new_value, last_value, dw_step, up_step): return clip(new_value, last_value + dw_step, last_value + up_step) def clip_curvature(v_ego, prev_curvature, new_curvature): v_ego = max(MIN_SPEED, v_ego) max_curvature_rate = MAX_LATERAL_JERK / (v_ego**2) # inexact calculation, check https://github.com/commaai/openpilot/pull/24755 safe_desired_curvature = clip(new_curvature, prev_curvature - max_curvature_rate * DT_CTRL, prev_curvature + max_curvature_rate * DT_CTRL) return safe_desired_curvature def get_friction(lateral_accel_error: float, lateral_accel_deadzone: float, friction_threshold: float, torque_params: car.CarParams.LateralTorqueTuning, friction_compensation: bool) -> float: friction_interp = interp( apply_center_deadzone(lateral_accel_error, lateral_accel_deadzone), [-friction_threshold, friction_threshold], [-torque_params.friction, torque_params.friction] ) friction = float(friction_interp) if friction_compensation else 0.0 return friction def get_speed_error(modelV2: log.ModelDataV2, v_ego: float) -> float: # ToDo: Try relative error, and absolute speed if len(modelV2.temporalPose.trans): vel_err = clip(modelV2.temporalPose.trans[0] - v_ego, -MAX_VEL_ERR, MAX_VEL_ERR) return float(vel_err) return 0.0
2301_81045437/openpilot
selfdrive/controls/lib/drive_helpers.py
Python
mit
6,960
#!/usr/bin/env python3 import bisect import math import os from enum import IntEnum from collections.abc import Callable from cereal import log, car import cereal.messaging as messaging from openpilot.common.conversions import Conversions as CV from openpilot.common.git import get_short_branch from openpilot.common.realtime import DT_CTRL from openpilot.selfdrive.locationd.calibrationd import MIN_SPEED_FILTER AlertSize = log.ControlsState.AlertSize AlertStatus = log.ControlsState.AlertStatus VisualAlert = car.CarControl.HUDControl.VisualAlert AudibleAlert = car.CarControl.HUDControl.AudibleAlert EventName = car.CarEvent.EventName # Alert priorities class Priority(IntEnum): LOWEST = 0 LOWER = 1 LOW = 2 MID = 3 HIGH = 4 HIGHEST = 5 # Event types class ET: ENABLE = 'enable' PRE_ENABLE = 'preEnable' OVERRIDE_LATERAL = 'overrideLateral' OVERRIDE_LONGITUDINAL = 'overrideLongitudinal' NO_ENTRY = 'noEntry' WARNING = 'warning' USER_DISABLE = 'userDisable' SOFT_DISABLE = 'softDisable' IMMEDIATE_DISABLE = 'immediateDisable' PERMANENT = 'permanent' # get event name from enum EVENT_NAME = {v: k for k, v in EventName.schema.enumerants.items()} class Events: def __init__(self): self.events: list[int] = [] self.static_events: list[int] = [] self.events_prev = dict.fromkeys(EVENTS.keys(), 0) @property def names(self) -> list[int]: return self.events def __len__(self) -> int: return len(self.events) def add(self, event_name: int, static: bool=False) -> None: if static: bisect.insort(self.static_events, event_name) bisect.insort(self.events, event_name) def clear(self) -> None: self.events_prev = {k: (v + 1 if k in self.events else 0) for k, v in self.events_prev.items()} self.events = self.static_events.copy() def contains(self, event_type: str) -> bool: return any(event_type in EVENTS.get(e, {}) for e in self.events) def create_alerts(self, event_types: list[str], callback_args=None): if callback_args is None: callback_args = [] ret = [] for e in self.events: types = EVENTS[e].keys() for et in event_types: if et in types: alert = EVENTS[e][et] if not isinstance(alert, Alert): alert = alert(*callback_args) if DT_CTRL * (self.events_prev[e] + 1) >= alert.creation_delay: alert.alert_type = f"{EVENT_NAME[e]}/{et}" alert.event_type = et ret.append(alert) return ret def add_from_msg(self, events): for e in events: bisect.insort(self.events, e.name.raw) def to_msg(self): ret = [] for event_name in self.events: event = car.CarEvent.new_message() event.name = event_name for event_type in EVENTS.get(event_name, {}): setattr(event, event_type, True) ret.append(event) return ret class Alert: def __init__(self, alert_text_1: str, alert_text_2: str, alert_status: log.ControlsState.AlertStatus, alert_size: log.ControlsState.AlertSize, priority: Priority, visual_alert: car.CarControl.HUDControl.VisualAlert, audible_alert: car.CarControl.HUDControl.AudibleAlert, duration: float, alert_rate: float = 0., creation_delay: float = 0.): self.alert_text_1 = alert_text_1 self.alert_text_2 = alert_text_2 self.alert_status = alert_status self.alert_size = alert_size self.priority = priority self.visual_alert = visual_alert self.audible_alert = audible_alert self.duration = int(duration / DT_CTRL) self.alert_rate = alert_rate self.creation_delay = creation_delay self.alert_type = "" self.event_type: str | None = None def __str__(self) -> str: return f"{self.alert_text_1}/{self.alert_text_2} {self.priority} {self.visual_alert} {self.audible_alert}" def __gt__(self, alert2) -> bool: if not isinstance(alert2, Alert): return False return self.priority > alert2.priority class NoEntryAlert(Alert): def __init__(self, alert_text_2: str, alert_text_1: str = "openpilot Unavailable", visual_alert: car.CarControl.HUDControl.VisualAlert=VisualAlert.none): super().__init__(alert_text_1, alert_text_2, AlertStatus.normal, AlertSize.mid, Priority.LOW, visual_alert, AudibleAlert.refuse, 3.) class SoftDisableAlert(Alert): def __init__(self, alert_text_2: str): super().__init__("TAKE CONTROL IMMEDIATELY", alert_text_2, AlertStatus.userPrompt, AlertSize.full, Priority.MID, VisualAlert.steerRequired, AudibleAlert.warningSoft, 2.), # less harsh version of SoftDisable, where the condition is user-triggered class UserSoftDisableAlert(SoftDisableAlert): def __init__(self, alert_text_2: str): super().__init__(alert_text_2), self.alert_text_1 = "openpilot will disengage" class ImmediateDisableAlert(Alert): def __init__(self, alert_text_2: str): super().__init__("TAKE CONTROL IMMEDIATELY", alert_text_2, AlertStatus.critical, AlertSize.full, Priority.HIGHEST, VisualAlert.steerRequired, AudibleAlert.warningImmediate, 4.), class EngagementAlert(Alert): def __init__(self, audible_alert: car.CarControl.HUDControl.AudibleAlert): super().__init__("", "", AlertStatus.normal, AlertSize.none, Priority.MID, VisualAlert.none, audible_alert, .2), class NormalPermanentAlert(Alert): def __init__(self, alert_text_1: str, alert_text_2: str = "", duration: float = 0.2, priority: Priority = Priority.LOWER, creation_delay: float = 0.): super().__init__(alert_text_1, alert_text_2, AlertStatus.normal, AlertSize.mid if len(alert_text_2) else AlertSize.small, priority, VisualAlert.none, AudibleAlert.none, duration, creation_delay=creation_delay), class StartupAlert(Alert): def __init__(self, alert_text_1: str, alert_text_2: str = "Always keep hands on wheel and eyes on road", alert_status=AlertStatus.normal): super().__init__(alert_text_1, alert_text_2, alert_status, AlertSize.mid, Priority.LOWER, VisualAlert.none, AudibleAlert.none, 5.), # ********** helper functions ********** def get_display_speed(speed_ms: float, metric: bool) -> str: speed = int(round(speed_ms * (CV.MS_TO_KPH if metric else CV.MS_TO_MPH))) unit = 'km/h' if metric else 'mph' return f"{speed} {unit}" # ********** alert callback functions ********** AlertCallbackType = Callable[[car.CarParams, car.CarState, messaging.SubMaster, bool, int], Alert] def soft_disable_alert(alert_text_2: str) -> AlertCallbackType: def func(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: if soft_disable_time < int(0.5 / DT_CTRL): return ImmediateDisableAlert(alert_text_2) return SoftDisableAlert(alert_text_2) return func def user_soft_disable_alert(alert_text_2: str) -> AlertCallbackType: def func(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: if soft_disable_time < int(0.5 / DT_CTRL): return ImmediateDisableAlert(alert_text_2) return UserSoftDisableAlert(alert_text_2) return func def startup_master_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: branch = get_short_branch() # Ensure get_short_branch is cached to avoid lags on startup if "REPLAY" in os.environ: branch = "replay" return StartupAlert("WARNING: This branch is not tested", branch, alert_status=AlertStatus.userPrompt) def below_engage_speed_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: return NoEntryAlert(f"Drive above {get_display_speed(CP.minEnableSpeed, metric)} to engage") def below_steer_speed_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: return Alert( f"Steer Unavailable Below {get_display_speed(CP.minSteerSpeed, metric)}", "", AlertStatus.userPrompt, AlertSize.small, Priority.LOW, VisualAlert.steerRequired, AudibleAlert.prompt, 0.4) def calibration_incomplete_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: first_word = 'Recalibration' if sm['liveCalibration'].calStatus == log.LiveCalibrationData.Status.recalibrating else 'Calibration' return Alert( f"{first_word} in Progress: {sm['liveCalibration'].calPerc:.0f}%", f"Drive Above {get_display_speed(MIN_SPEED_FILTER, metric)}", AlertStatus.normal, AlertSize.mid, Priority.LOWEST, VisualAlert.none, AudibleAlert.none, .2) # *** debug alerts *** def out_of_space_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: full_perc = round(100. - sm['deviceState'].freeSpacePercent) return NormalPermanentAlert("Out of Storage", f"{full_perc}% full") def posenet_invalid_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: mdl = sm['modelV2'].velocity.x[0] if len(sm['modelV2'].velocity.x) else math.nan err = CS.vEgo - mdl msg = f"Speed Error: {err:.1f} m/s" return NoEntryAlert(msg, alert_text_1="Posenet Speed Invalid") def process_not_running_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: not_running = [p.name for p in sm['managerState'].processes if not p.running and p.shouldBeRunning] msg = ', '.join(not_running) return NoEntryAlert(msg, alert_text_1="Process Not Running") def comm_issue_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: bs = [s for s in sm.data.keys() if not sm.all_checks([s, ])] msg = ', '.join(bs[:4]) # can't fit too many on one line return NoEntryAlert(msg, alert_text_1="Communication Issue Between Processes") def camera_malfunction_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: all_cams = ('roadCameraState', 'driverCameraState', 'wideRoadCameraState') bad_cams = [s.replace('State', '') for s in all_cams if s in sm.data.keys() and not sm.all_checks([s, ])] return NormalPermanentAlert("Camera Malfunction", ', '.join(bad_cams)) def calibration_invalid_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: rpy = sm['liveCalibration'].rpyCalib yaw = math.degrees(rpy[2] if len(rpy) == 3 else math.nan) pitch = math.degrees(rpy[1] if len(rpy) == 3 else math.nan) angles = f"Remount Device (Pitch: {pitch:.1f}°, Yaw: {yaw:.1f}°)" return NormalPermanentAlert("Calibration Invalid", angles) def overheat_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: cpu = max(sm['deviceState'].cpuTempC, default=0.) gpu = max(sm['deviceState'].gpuTempC, default=0.) temp = max((cpu, gpu, sm['deviceState'].memoryTempC)) return NormalPermanentAlert("System Overheated", f"{temp:.0f} °C") def low_memory_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: return NormalPermanentAlert("Low Memory", f"{sm['deviceState'].memoryUsagePercent}% used") def high_cpu_usage_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: x = max(sm['deviceState'].cpuUsagePercent, default=0.) return NormalPermanentAlert("High CPU Usage", f"{x}% used") def modeld_lagging_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: return NormalPermanentAlert("Driving Model Lagging", f"{sm['modelV2'].frameDropPerc:.1f}% frames dropped") def wrong_car_mode_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: text = "Enable Adaptive Cruise to Engage" if CP.carName == "honda": text = "Enable Main Switch to Engage" return NoEntryAlert(text) def joystick_alert(CP: car.CarParams, CS: car.CarState, sm: messaging.SubMaster, metric: bool, soft_disable_time: int) -> Alert: axes = sm['testJoystick'].axes gb, steer = list(axes)[:2] if len(axes) else (0., 0.) vals = f"Gas: {round(gb * 100.)}%, Steer: {round(steer * 100.)}%" return NormalPermanentAlert("Joystick Mode", vals) EVENTS: dict[int, dict[str, Alert | AlertCallbackType]] = { # ********** events with no alerts ********** EventName.stockFcw: {}, EventName.actuatorsApiUnavailable: {}, # ********** events only containing alerts displayed in all states ********** EventName.joystickDebug: { ET.WARNING: joystick_alert, ET.PERMANENT: NormalPermanentAlert("Joystick Mode"), }, EventName.controlsInitializing: { ET.NO_ENTRY: NoEntryAlert("System Initializing"), }, EventName.startup: { ET.PERMANENT: StartupAlert("Be ready to take over at any time") }, EventName.startupMaster: { ET.PERMANENT: startup_master_alert, }, # Car is recognized, but marked as dashcam only EventName.startupNoControl: { ET.PERMANENT: StartupAlert("Dashcam mode"), ET.NO_ENTRY: NoEntryAlert("Dashcam mode"), }, # Car is not recognized EventName.startupNoCar: { ET.PERMANENT: StartupAlert("Dashcam mode for unsupported car"), }, EventName.startupNoFw: { ET.PERMANENT: StartupAlert("Car Unrecognized", "Check comma power connections", alert_status=AlertStatus.userPrompt), }, EventName.dashcamMode: { ET.PERMANENT: NormalPermanentAlert("Dashcam Mode", priority=Priority.LOWEST), }, EventName.invalidLkasSetting: { ET.PERMANENT: NormalPermanentAlert("Stock LKAS is on", "Turn off stock LKAS to engage"), }, EventName.cruiseMismatch: { #ET.PERMANENT: ImmediateDisableAlert("openpilot failed to cancel cruise"), }, # openpilot doesn't recognize the car. This switches openpilot into a # read-only mode. This can be solved by adding your fingerprint. # See https://github.com/commaai/openpilot/wiki/Fingerprinting for more information EventName.carUnrecognized: { ET.PERMANENT: NormalPermanentAlert("Dashcam Mode", "Car Unrecognized", priority=Priority.LOWEST), }, EventName.stockAeb: { ET.PERMANENT: Alert( "BRAKE!", "Stock AEB: Risk of Collision", AlertStatus.critical, AlertSize.full, Priority.HIGHEST, VisualAlert.fcw, AudibleAlert.none, 2.), ET.NO_ENTRY: NoEntryAlert("Stock AEB: Risk of Collision"), }, EventName.fcw: { ET.PERMANENT: Alert( "BRAKE!", "Risk of Collision", AlertStatus.critical, AlertSize.full, Priority.HIGHEST, VisualAlert.fcw, AudibleAlert.warningSoft, 2.), }, EventName.ldw: { ET.PERMANENT: Alert( "Lane Departure Detected", "", AlertStatus.userPrompt, AlertSize.small, Priority.LOW, VisualAlert.ldw, AudibleAlert.prompt, 3.), }, # ********** events only containing alerts that display while engaged ********** EventName.steerTempUnavailableSilent: { ET.WARNING: Alert( "Steering Temporarily Unavailable", "", AlertStatus.userPrompt, AlertSize.small, Priority.LOW, VisualAlert.steerRequired, AudibleAlert.prompt, 1.8), }, EventName.preDriverDistracted: { ET.PERMANENT: Alert( "Pay Attention", "", AlertStatus.normal, AlertSize.small, Priority.LOW, VisualAlert.none, AudibleAlert.none, .1), }, EventName.promptDriverDistracted: { ET.PERMANENT: Alert( "Pay Attention", "Driver Distracted", AlertStatus.userPrompt, AlertSize.mid, Priority.MID, VisualAlert.steerRequired, AudibleAlert.promptDistracted, .1), }, EventName.driverDistracted: { ET.PERMANENT: Alert( "DISENGAGE IMMEDIATELY", "Driver Distracted", AlertStatus.critical, AlertSize.full, Priority.HIGH, VisualAlert.steerRequired, AudibleAlert.warningImmediate, .1), }, EventName.preDriverUnresponsive: { ET.PERMANENT: Alert( "Touch Steering Wheel: No Face Detected", "", AlertStatus.normal, AlertSize.small, Priority.LOW, VisualAlert.steerRequired, AudibleAlert.none, .1, alert_rate=0.75), }, EventName.promptDriverUnresponsive: { ET.PERMANENT: Alert( "Touch Steering Wheel", "Driver Unresponsive", AlertStatus.userPrompt, AlertSize.mid, Priority.MID, VisualAlert.steerRequired, AudibleAlert.promptDistracted, .1), }, EventName.driverUnresponsive: { ET.PERMANENT: Alert( "DISENGAGE IMMEDIATELY", "Driver Unresponsive", AlertStatus.critical, AlertSize.full, Priority.HIGH, VisualAlert.steerRequired, AudibleAlert.warningImmediate, .1), }, EventName.manualRestart: { ET.WARNING: Alert( "TAKE CONTROL", "Resume Driving Manually", AlertStatus.userPrompt, AlertSize.mid, Priority.LOW, VisualAlert.none, AudibleAlert.none, .2), }, EventName.resumeRequired: { ET.WARNING: Alert( "Press Resume to Exit Standstill", "", AlertStatus.userPrompt, AlertSize.small, Priority.LOW, VisualAlert.none, AudibleAlert.none, .2), }, EventName.belowSteerSpeed: { ET.WARNING: below_steer_speed_alert, }, EventName.preLaneChangeLeft: { ET.WARNING: Alert( "Steer Left to Start Lane Change Once Safe", "", AlertStatus.normal, AlertSize.small, Priority.LOW, VisualAlert.none, AudibleAlert.none, .1, alert_rate=0.75), }, EventName.preLaneChangeRight: { ET.WARNING: Alert( "Steer Right to Start Lane Change Once Safe", "", AlertStatus.normal, AlertSize.small, Priority.LOW, VisualAlert.none, AudibleAlert.none, .1, alert_rate=0.75), }, EventName.laneChangeBlocked: { ET.WARNING: Alert( "Car Detected in Blindspot", "", AlertStatus.userPrompt, AlertSize.small, Priority.LOW, VisualAlert.none, AudibleAlert.prompt, .1), }, EventName.laneChange: { ET.WARNING: Alert( "Changing Lanes", "", AlertStatus.normal, AlertSize.small, Priority.LOW, VisualAlert.none, AudibleAlert.none, .1), }, EventName.steerSaturated: { ET.WARNING: Alert( "Take Control", "Turn Exceeds Steering Limit", AlertStatus.userPrompt, AlertSize.mid, Priority.LOW, VisualAlert.steerRequired, AudibleAlert.promptRepeat, 2.), }, # Thrown when the fan is driven at >50% but is not rotating EventName.fanMalfunction: { ET.PERMANENT: NormalPermanentAlert("Fan Malfunction", "Likely Hardware Issue"), }, # Camera is not outputting frames EventName.cameraMalfunction: { ET.PERMANENT: camera_malfunction_alert, ET.SOFT_DISABLE: soft_disable_alert("Camera Malfunction"), ET.NO_ENTRY: NoEntryAlert("Camera Malfunction: Reboot Your Device"), }, # Camera framerate too low EventName.cameraFrameRate: { ET.PERMANENT: NormalPermanentAlert("Camera Frame Rate Low", "Reboot your Device"), ET.SOFT_DISABLE: soft_disable_alert("Camera Frame Rate Low"), ET.NO_ENTRY: NoEntryAlert("Camera Frame Rate Low: Reboot Your Device"), }, # Unused EventName.locationdTemporaryError: { ET.NO_ENTRY: NoEntryAlert("locationd Temporary Error"), ET.SOFT_DISABLE: soft_disable_alert("locationd Temporary Error"), }, EventName.locationdPermanentError: { ET.NO_ENTRY: NoEntryAlert("locationd Permanent Error"), ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("locationd Permanent Error"), ET.PERMANENT: NormalPermanentAlert("locationd Permanent Error"), }, # openpilot tries to learn certain parameters about your car by observing # how the car behaves to steering inputs from both human and openpilot driving. # This includes: # - steer ratio: gear ratio of the steering rack. Steering angle divided by tire angle # - tire stiffness: how much grip your tires have # - angle offset: most steering angle sensors are offset and measure a non zero angle when driving straight # This alert is thrown when any of these values exceed a sanity check. This can be caused by # bad alignment or bad sensor data. If this happens consistently consider creating an issue on GitHub EventName.paramsdTemporaryError: { ET.NO_ENTRY: NoEntryAlert("paramsd Temporary Error"), ET.SOFT_DISABLE: soft_disable_alert("paramsd Temporary Error"), }, EventName.paramsdPermanentError: { ET.NO_ENTRY: NoEntryAlert("paramsd Permanent Error"), ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("paramsd Permanent Error"), ET.PERMANENT: NormalPermanentAlert("paramsd Permanent Error"), }, # ********** events that affect controls state transitions ********** EventName.pcmEnable: { ET.ENABLE: EngagementAlert(AudibleAlert.engage), }, EventName.buttonEnable: { ET.ENABLE: EngagementAlert(AudibleAlert.engage), }, EventName.pcmDisable: { ET.USER_DISABLE: EngagementAlert(AudibleAlert.disengage), }, EventName.buttonCancel: { ET.USER_DISABLE: EngagementAlert(AudibleAlert.disengage), ET.NO_ENTRY: NoEntryAlert("Cancel Pressed"), }, EventName.brakeHold: { ET.USER_DISABLE: EngagementAlert(AudibleAlert.disengage), ET.NO_ENTRY: NoEntryAlert("Brake Hold Active"), }, EventName.parkBrake: { ET.USER_DISABLE: EngagementAlert(AudibleAlert.disengage), ET.NO_ENTRY: NoEntryAlert("Parking Brake Engaged"), }, EventName.pedalPressed: { ET.USER_DISABLE: EngagementAlert(AudibleAlert.disengage), ET.NO_ENTRY: NoEntryAlert("Pedal Pressed", visual_alert=VisualAlert.brakePressed), }, EventName.preEnableStandstill: { ET.PRE_ENABLE: Alert( "Release Brake to Engage", "", AlertStatus.normal, AlertSize.small, Priority.LOWEST, VisualAlert.none, AudibleAlert.none, .1, creation_delay=1.), }, EventName.gasPressedOverride: { ET.OVERRIDE_LONGITUDINAL: Alert( "", "", AlertStatus.normal, AlertSize.none, Priority.LOWEST, VisualAlert.none, AudibleAlert.none, .1), }, EventName.steerOverride: { ET.OVERRIDE_LATERAL: Alert( "", "", AlertStatus.normal, AlertSize.none, Priority.LOWEST, VisualAlert.none, AudibleAlert.none, .1), }, EventName.wrongCarMode: { ET.USER_DISABLE: EngagementAlert(AudibleAlert.disengage), ET.NO_ENTRY: wrong_car_mode_alert, }, EventName.resumeBlocked: { ET.NO_ENTRY: NoEntryAlert("Press Set to Engage"), }, EventName.wrongCruiseMode: { ET.USER_DISABLE: EngagementAlert(AudibleAlert.disengage), ET.NO_ENTRY: NoEntryAlert("Adaptive Cruise Disabled"), }, EventName.steerTempUnavailable: { ET.SOFT_DISABLE: soft_disable_alert("Steering Temporarily Unavailable"), ET.NO_ENTRY: NoEntryAlert("Steering Temporarily Unavailable"), }, EventName.steerTimeLimit: { ET.SOFT_DISABLE: soft_disable_alert("Vehicle Steering Time Limit"), ET.NO_ENTRY: NoEntryAlert("Vehicle Steering Time Limit"), }, EventName.outOfSpace: { ET.PERMANENT: out_of_space_alert, ET.NO_ENTRY: NoEntryAlert("Out of Storage"), }, EventName.belowEngageSpeed: { ET.NO_ENTRY: below_engage_speed_alert, }, EventName.sensorDataInvalid: { ET.PERMANENT: Alert( "Sensor Data Invalid", "Possible Hardware Issue", AlertStatus.normal, AlertSize.mid, Priority.LOWER, VisualAlert.none, AudibleAlert.none, .2, creation_delay=1.), ET.NO_ENTRY: NoEntryAlert("Sensor Data Invalid"), ET.SOFT_DISABLE: soft_disable_alert("Sensor Data Invalid"), }, EventName.noGps: { ET.PERMANENT: Alert( "Poor GPS reception", "Ensure device has a clear view of the sky", AlertStatus.normal, AlertSize.mid, Priority.LOWER, VisualAlert.none, AudibleAlert.none, .2, creation_delay=600.) }, EventName.soundsUnavailable: { ET.PERMANENT: NormalPermanentAlert("Speaker not found", "Reboot your Device"), ET.NO_ENTRY: NoEntryAlert("Speaker not found"), }, EventName.tooDistracted: { ET.NO_ENTRY: NoEntryAlert("Distraction Level Too High"), }, EventName.overheat: { ET.PERMANENT: overheat_alert, ET.SOFT_DISABLE: soft_disable_alert("System Overheated"), ET.NO_ENTRY: NoEntryAlert("System Overheated"), }, EventName.wrongGear: { ET.SOFT_DISABLE: user_soft_disable_alert("Gear not D"), ET.NO_ENTRY: NoEntryAlert("Gear not D"), }, # This alert is thrown when the calibration angles are outside of the acceptable range. # For example if the device is pointed too much to the left or the right. # Usually this can only be solved by removing the mount from the windshield completely, # and attaching while making sure the device is pointed straight forward and is level. # See https://comma.ai/setup for more information EventName.calibrationInvalid: { ET.PERMANENT: calibration_invalid_alert, ET.SOFT_DISABLE: soft_disable_alert("Calibration Invalid: Remount Device & Recalibrate"), ET.NO_ENTRY: NoEntryAlert("Calibration Invalid: Remount Device & Recalibrate"), }, EventName.calibrationIncomplete: { ET.PERMANENT: calibration_incomplete_alert, ET.SOFT_DISABLE: soft_disable_alert("Calibration Incomplete"), ET.NO_ENTRY: NoEntryAlert("Calibration in Progress"), }, EventName.calibrationRecalibrating: { ET.PERMANENT: calibration_incomplete_alert, ET.SOFT_DISABLE: soft_disable_alert("Device Remount Detected: Recalibrating"), ET.NO_ENTRY: NoEntryAlert("Remount Detected: Recalibrating"), }, EventName.doorOpen: { ET.SOFT_DISABLE: user_soft_disable_alert("Door Open"), ET.NO_ENTRY: NoEntryAlert("Door Open"), }, EventName.seatbeltNotLatched: { ET.SOFT_DISABLE: user_soft_disable_alert("Seatbelt Unlatched"), ET.NO_ENTRY: NoEntryAlert("Seatbelt Unlatched"), }, EventName.espDisabled: { ET.SOFT_DISABLE: soft_disable_alert("Electronic Stability Control Disabled"), ET.NO_ENTRY: NoEntryAlert("Electronic Stability Control Disabled"), }, EventName.lowBattery: { ET.SOFT_DISABLE: soft_disable_alert("Low Battery"), ET.NO_ENTRY: NoEntryAlert("Low Battery"), }, # Different openpilot services communicate between each other at a certain # interval. If communication does not follow the regular schedule this alert # is thrown. This can mean a service crashed, did not broadcast a message for # ten times the regular interval, or the average interval is more than 10% too high. EventName.commIssue: { ET.SOFT_DISABLE: soft_disable_alert("Communication Issue Between Processes"), ET.NO_ENTRY: comm_issue_alert, }, EventName.commIssueAvgFreq: { ET.SOFT_DISABLE: soft_disable_alert("Low Communication Rate Between Processes"), ET.NO_ENTRY: NoEntryAlert("Low Communication Rate Between Processes"), }, EventName.controlsdLagging: { ET.SOFT_DISABLE: soft_disable_alert("Controls Lagging"), ET.NO_ENTRY: NoEntryAlert("Controls Process Lagging: Reboot Your Device"), }, # Thrown when manager detects a service exited unexpectedly while driving EventName.processNotRunning: { ET.NO_ENTRY: process_not_running_alert, ET.SOFT_DISABLE: soft_disable_alert("Process Not Running"), }, EventName.radarFault: { ET.SOFT_DISABLE: soft_disable_alert("Radar Error: Restart the Car"), ET.NO_ENTRY: NoEntryAlert("Radar Error: Restart the Car"), }, # Every frame from the camera should be processed by the model. If modeld # is not processing frames fast enough they have to be dropped. This alert is # thrown when over 20% of frames are dropped. EventName.modeldLagging: { ET.SOFT_DISABLE: soft_disable_alert("Driving Model Lagging"), ET.NO_ENTRY: NoEntryAlert("Driving Model Lagging"), ET.PERMANENT: modeld_lagging_alert, }, # Besides predicting the path, lane lines and lead car data the model also # predicts the current velocity and rotation speed of the car. If the model is # very uncertain about the current velocity while the car is moving, this # usually means the model has trouble understanding the scene. This is used # as a heuristic to warn the driver. EventName.posenetInvalid: { ET.SOFT_DISABLE: soft_disable_alert("Posenet Speed Invalid"), ET.NO_ENTRY: posenet_invalid_alert, }, # When the localizer detects an acceleration of more than 40 m/s^2 (~4G) we # alert the driver the device might have fallen from the windshield. EventName.deviceFalling: { ET.SOFT_DISABLE: soft_disable_alert("Device Fell Off Mount"), ET.NO_ENTRY: NoEntryAlert("Device Fell Off Mount"), }, EventName.lowMemory: { ET.SOFT_DISABLE: soft_disable_alert("Low Memory: Reboot Your Device"), ET.PERMANENT: low_memory_alert, ET.NO_ENTRY: NoEntryAlert("Low Memory: Reboot Your Device"), }, EventName.highCpuUsage: { #ET.SOFT_DISABLE: soft_disable_alert("System Malfunction: Reboot Your Device"), #ET.PERMANENT: NormalPermanentAlert("System Malfunction", "Reboot your Device"), ET.NO_ENTRY: high_cpu_usage_alert, }, EventName.accFaulted: { ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("Cruise Fault: Restart the Car"), ET.PERMANENT: NormalPermanentAlert("Cruise Fault: Restart the car to engage"), ET.NO_ENTRY: NoEntryAlert("Cruise Fault: Restart the Car"), }, EventName.controlsMismatch: { ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("Controls Mismatch"), ET.NO_ENTRY: NoEntryAlert("Controls Mismatch"), }, EventName.roadCameraError: { ET.PERMANENT: NormalPermanentAlert("Camera CRC Error - Road", duration=1., creation_delay=30.), }, EventName.wideRoadCameraError: { ET.PERMANENT: NormalPermanentAlert("Camera CRC Error - Road Fisheye", duration=1., creation_delay=30.), }, EventName.driverCameraError: { ET.PERMANENT: NormalPermanentAlert("Camera CRC Error - Driver", duration=1., creation_delay=30.), }, # Sometimes the USB stack on the device can get into a bad state # causing the connection to the panda to be lost EventName.usbError: { ET.SOFT_DISABLE: soft_disable_alert("USB Error: Reboot Your Device"), ET.PERMANENT: NormalPermanentAlert("USB Error: Reboot Your Device", ""), ET.NO_ENTRY: NoEntryAlert("USB Error: Reboot Your Device"), }, # This alert can be thrown for the following reasons: # - No CAN data received at all # - CAN data is received, but some message are not received at the right frequency # If you're not writing a new car port, this is usually cause by faulty wiring EventName.canError: { ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("CAN Error"), ET.PERMANENT: Alert( "CAN Error: Check Connections", "", AlertStatus.normal, AlertSize.small, Priority.LOW, VisualAlert.none, AudibleAlert.none, 1., creation_delay=1.), ET.NO_ENTRY: NoEntryAlert("CAN Error: Check Connections"), }, EventName.canBusMissing: { ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("CAN Bus Disconnected"), ET.PERMANENT: Alert( "CAN Bus Disconnected: Likely Faulty Cable", "", AlertStatus.normal, AlertSize.small, Priority.LOW, VisualAlert.none, AudibleAlert.none, 1., creation_delay=1.), ET.NO_ENTRY: NoEntryAlert("CAN Bus Disconnected: Check Connections"), }, EventName.steerUnavailable: { ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("LKAS Fault: Restart the Car"), ET.PERMANENT: NormalPermanentAlert("LKAS Fault: Restart the car to engage"), ET.NO_ENTRY: NoEntryAlert("LKAS Fault: Restart the Car"), }, EventName.reverseGear: { ET.PERMANENT: Alert( "Reverse\nGear", "", AlertStatus.normal, AlertSize.full, Priority.LOWEST, VisualAlert.none, AudibleAlert.none, .2, creation_delay=0.5), ET.USER_DISABLE: ImmediateDisableAlert("Reverse Gear"), ET.NO_ENTRY: NoEntryAlert("Reverse Gear"), }, # On cars that use stock ACC the car can decide to cancel ACC for various reasons. # When this happens we can no long control the car so the user needs to be warned immediately. EventName.cruiseDisabled: { ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("Cruise Is Off"), }, # When the relay in the harness box opens the CAN bus between the LKAS camera # and the rest of the car is separated. When messages from the LKAS camera # are received on the car side this usually means the relay hasn't opened correctly # and this alert is thrown. EventName.relayMalfunction: { ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("Harness Relay Malfunction"), ET.PERMANENT: NormalPermanentAlert("Harness Relay Malfunction", "Check Hardware"), ET.NO_ENTRY: NoEntryAlert("Harness Relay Malfunction"), }, EventName.speedTooLow: { ET.IMMEDIATE_DISABLE: Alert( "openpilot Canceled", "Speed too low", AlertStatus.normal, AlertSize.mid, Priority.HIGH, VisualAlert.none, AudibleAlert.disengage, 3.), }, # When the car is driving faster than most cars in the training data, the model outputs can be unpredictable. EventName.speedTooHigh: { ET.WARNING: Alert( "Speed Too High", "Model uncertain at this speed", AlertStatus.userPrompt, AlertSize.mid, Priority.HIGH, VisualAlert.steerRequired, AudibleAlert.promptRepeat, 4.), ET.NO_ENTRY: NoEntryAlert("Slow down to engage"), }, EventName.lowSpeedLockout: { ET.PERMANENT: NormalPermanentAlert("Cruise Fault: Restart the car to engage"), ET.NO_ENTRY: NoEntryAlert("Cruise Fault: Restart the Car"), }, EventName.lkasDisabled: { ET.PERMANENT: NormalPermanentAlert("LKAS Disabled: Enable LKAS to engage"), ET.NO_ENTRY: NoEntryAlert("LKAS Disabled"), }, EventName.vehicleSensorsInvalid: { ET.IMMEDIATE_DISABLE: ImmediateDisableAlert("Vehicle Sensors Invalid"), ET.PERMANENT: NormalPermanentAlert("Vehicle Sensors Calibrating", "Drive to Calibrate"), ET.NO_ENTRY: NoEntryAlert("Vehicle Sensors Calibrating"), }, } if __name__ == '__main__': # print all alerts by type and priority from cereal.services import SERVICE_LIST from collections import defaultdict event_names = {v: k for k, v in EventName.schema.enumerants.items()} alerts_by_type: dict[str, dict[Priority, list[str]]] = defaultdict(lambda: defaultdict(list)) CP = car.CarParams.new_message() CS = car.CarState.new_message() sm = messaging.SubMaster(list(SERVICE_LIST.keys())) for i, alerts in EVENTS.items(): for et, alert in alerts.items(): if callable(alert): alert = alert(CP, CS, sm, False, 1) alerts_by_type[et][alert.priority].append(event_names[i]) all_alerts: dict[str, list[tuple[Priority, list[str]]]] = {} for et, priority_alerts in alerts_by_type.items(): all_alerts[et] = sorted(priority_alerts.items(), key=lambda x: x[0], reverse=True) for status, evs in sorted(all_alerts.items(), key=lambda x: x[0]): print(f"**** {status} ****") for p, alert_list in evs: print(f" {repr(p)}:") print(" ", ', '.join(alert_list), "\n")
2301_81045437/openpilot
selfdrive/controls/lib/events.py
Python
mit
35,912
from abc import abstractmethod, ABC from openpilot.common.numpy_fast import clip from openpilot.common.realtime import DT_CTRL MIN_LATERAL_CONTROL_SPEED = 0.3 # m/s class LatControl(ABC): def __init__(self, CP, CI): self.sat_count_rate = 1.0 * DT_CTRL self.sat_limit = CP.steerLimitTimer self.sat_count = 0. self.sat_check_min_speed = 10. # we define the steer torque scale as [-1.0...1.0] self.steer_max = 1.0 @abstractmethod def update(self, active, CS, VM, params, steer_limited, desired_curvature, llk): pass def reset(self): self.sat_count = 0. def _check_saturation(self, saturated, CS, steer_limited): if saturated and CS.vEgo > self.sat_check_min_speed and not steer_limited and not CS.steeringPressed: self.sat_count += self.sat_count_rate else: self.sat_count -= self.sat_count_rate self.sat_count = clip(self.sat_count, 0.0, self.sat_limit) return self.sat_count > (self.sat_limit - 1e-3)
2301_81045437/openpilot
selfdrive/controls/lib/latcontrol.py
Python
mit
979
import math from cereal import log from openpilot.selfdrive.controls.lib.latcontrol import LatControl STEER_ANGLE_SATURATION_THRESHOLD = 2.5 # Degrees class LatControlAngle(LatControl): def __init__(self, CP, CI): super().__init__(CP, CI) self.sat_check_min_speed = 5. def update(self, active, CS, VM, params, steer_limited, desired_curvature, llk): angle_log = log.ControlsState.LateralAngleState.new_message() if not active: angle_log.active = False angle_steers_des = float(CS.steeringAngleDeg) else: angle_log.active = True angle_steers_des = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll)) angle_steers_des += params.angleOffsetDeg angle_control_saturated = abs(angle_steers_des - CS.steeringAngleDeg) > STEER_ANGLE_SATURATION_THRESHOLD angle_log.saturated = self._check_saturation(angle_control_saturated, CS, False) angle_log.steeringAngleDeg = float(CS.steeringAngleDeg) angle_log.steeringAngleDesiredDeg = angle_steers_des return 0, float(angle_steers_des), angle_log
2301_81045437/openpilot
selfdrive/controls/lib/latcontrol_angle.py
Python
mit
1,095
import math from cereal import log from openpilot.selfdrive.controls.lib.latcontrol import LatControl from openpilot.selfdrive.controls.lib.pid import PIDController class LatControlPID(LatControl): def __init__(self, CP, CI): super().__init__(CP, CI) self.pid = PIDController((CP.lateralTuning.pid.kpBP, CP.lateralTuning.pid.kpV), (CP.lateralTuning.pid.kiBP, CP.lateralTuning.pid.kiV), k_f=CP.lateralTuning.pid.kf, pos_limit=self.steer_max, neg_limit=-self.steer_max) self.get_steer_feedforward = CI.get_steer_feedforward_function() def reset(self): super().reset() self.pid.reset() def update(self, active, CS, VM, params, steer_limited, desired_curvature, llk): pid_log = log.ControlsState.LateralPIDState.new_message() pid_log.steeringAngleDeg = float(CS.steeringAngleDeg) pid_log.steeringRateDeg = float(CS.steeringRateDeg) angle_steers_des_no_offset = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll)) angle_steers_des = angle_steers_des_no_offset + params.angleOffsetDeg error = angle_steers_des - CS.steeringAngleDeg pid_log.steeringAngleDesiredDeg = angle_steers_des pid_log.angleError = error if not active: output_steer = 0.0 pid_log.active = False self.pid.reset() else: # offset does not contribute to resistive torque steer_feedforward = self.get_steer_feedforward(angle_steers_des_no_offset, CS.vEgo) output_steer = self.pid.update(error, override=CS.steeringPressed, feedforward=steer_feedforward, speed=CS.vEgo) pid_log.active = True pid_log.p = self.pid.p pid_log.i = self.pid.i pid_log.f = self.pid.f pid_log.output = output_steer pid_log.saturated = self._check_saturation(self.steer_max - abs(output_steer) < 1e-3, CS, steer_limited) return output_steer, angle_steers_des, pid_log
2301_81045437/openpilot
selfdrive/controls/lib/latcontrol_pid.py
Python
mit
1,981
import math from cereal import log from openpilot.common.numpy_fast import interp from openpilot.selfdrive.car.interfaces import LatControlInputs from openpilot.selfdrive.controls.lib.latcontrol import LatControl from openpilot.selfdrive.controls.lib.pid import PIDController from openpilot.selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY # At higher speeds (25+mph) we can assume: # Lateral acceleration achieved by a specific car correlates to # torque applied to the steering rack. It does not correlate to # wheel slip, or to speed. # This controller applies torque to achieve desired lateral # accelerations. To compensate for the low speed effects we # use a LOW_SPEED_FACTOR in the error. Additionally, there is # friction in the steering wheel that needs to be overcome to # move it at all, this is compensated for too. LOW_SPEED_X = [0, 10, 20, 30] LOW_SPEED_Y = [15, 13, 10, 5] class LatControlTorque(LatControl): def __init__(self, CP, CI): super().__init__(CP, CI) self.torque_params = CP.lateralTuning.torque self.pid = PIDController(self.torque_params.kp, self.torque_params.ki, k_f=self.torque_params.kf, pos_limit=self.steer_max, neg_limit=-self.steer_max) self.torque_from_lateral_accel = CI.torque_from_lateral_accel() self.use_steering_angle = self.torque_params.useSteeringAngle self.steering_angle_deadzone_deg = self.torque_params.steeringAngleDeadzoneDeg def update_live_torque_params(self, latAccelFactor, latAccelOffset, friction): self.torque_params.latAccelFactor = latAccelFactor self.torque_params.latAccelOffset = latAccelOffset self.torque_params.friction = friction def update(self, active, CS, VM, params, steer_limited, desired_curvature, llk): pid_log = log.ControlsState.LateralTorqueState.new_message() if not active: output_torque = 0.0 pid_log.active = False else: actual_curvature_vm = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll) roll_compensation = params.roll * ACCELERATION_DUE_TO_GRAVITY if self.use_steering_angle: actual_curvature = actual_curvature_vm curvature_deadzone = abs(VM.calc_curvature(math.radians(self.steering_angle_deadzone_deg), CS.vEgo, 0.0)) else: actual_curvature_llk = llk.angularVelocityCalibrated.value[2] / CS.vEgo actual_curvature = interp(CS.vEgo, [2.0, 5.0], [actual_curvature_vm, actual_curvature_llk]) curvature_deadzone = 0.0 desired_lateral_accel = desired_curvature * CS.vEgo ** 2 # desired rate is the desired rate of change in the setpoint, not the absolute desired curvature # desired_lateral_jerk = desired_curvature_rate * CS.vEgo ** 2 actual_lateral_accel = actual_curvature * CS.vEgo ** 2 lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2 low_speed_factor = interp(CS.vEgo, LOW_SPEED_X, LOW_SPEED_Y)**2 setpoint = desired_lateral_accel + low_speed_factor * desired_curvature measurement = actual_lateral_accel + low_speed_factor * actual_curvature gravity_adjusted_lateral_accel = desired_lateral_accel - roll_compensation torque_from_setpoint = self.torque_from_lateral_accel(LatControlInputs(setpoint, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params, setpoint, lateral_accel_deadzone, friction_compensation=False, gravity_adjusted=False) torque_from_measurement = self.torque_from_lateral_accel(LatControlInputs(measurement, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params, measurement, lateral_accel_deadzone, friction_compensation=False, gravity_adjusted=False) pid_log.error = torque_from_setpoint - torque_from_measurement ff = self.torque_from_lateral_accel(LatControlInputs(gravity_adjusted_lateral_accel, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params, desired_lateral_accel - actual_lateral_accel, lateral_accel_deadzone, friction_compensation=True, gravity_adjusted=True) freeze_integrator = steer_limited or CS.steeringPressed or CS.vEgo < 5 output_torque = self.pid.update(pid_log.error, feedforward=ff, speed=CS.vEgo, freeze_integrator=freeze_integrator) pid_log.active = True pid_log.p = self.pid.p pid_log.i = self.pid.i pid_log.d = self.pid.d pid_log.f = self.pid.f pid_log.output = -output_torque pid_log.actualLateralAccel = actual_lateral_accel pid_log.desiredLateralAccel = desired_lateral_accel pid_log.saturated = self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited) # TODO left is positive in this convention return -output_torque, 0.0, pid_log
2301_81045437/openpilot
selfdrive/controls/lib/latcontrol_torque.py
Python
mit
5,047
Import('env', 'envCython', 'arch', 'messaging_python', 'common_python', 'opendbc_python') gen = "c_generated_code" casadi_model = [ f'{gen}/lat_model/lat_expl_ode_fun.c', f'{gen}/lat_model/lat_expl_vde_forw.c', ] casadi_cost_y = [ f'{gen}/lat_cost/lat_cost_y_fun.c', f'{gen}/lat_cost/lat_cost_y_fun_jac_ut_xt.c', f'{gen}/lat_cost/lat_cost_y_hess.c', ] casadi_cost_e = [ f'{gen}/lat_cost/lat_cost_y_e_fun.c', f'{gen}/lat_cost/lat_cost_y_e_fun_jac_ut_xt.c', f'{gen}/lat_cost/lat_cost_y_e_hess.c', ] casadi_cost_0 = [ f'{gen}/lat_cost/lat_cost_y_0_fun.c', f'{gen}/lat_cost/lat_cost_y_0_fun_jac_ut_xt.c', f'{gen}/lat_cost/lat_cost_y_0_hess.c', ] build_files = [f'{gen}/acados_solver_lat.c'] + casadi_model + casadi_cost_y + casadi_cost_e + casadi_cost_0 # extra generated files used to trigger a rebuild generated_files = [ f'{gen}/Makefile', f'{gen}/main_lat.c', f'{gen}/main_sim_lat.c', f'{gen}/acados_solver_lat.h', f'{gen}/acados_sim_solver_lat.h', f'{gen}/acados_sim_solver_lat.c', f'{gen}/acados_solver.pxd', f'{gen}/lat_model/lat_expl_vde_adj.c', f'{gen}/lat_model/lat_model.h', f'{gen}/lat_constraints/lat_constraints.h', f'{gen}/lat_cost/lat_cost.h', ] + build_files acados_dir = '#third_party/acados' acados_templates_dir = '#third_party/acados/acados_template/c_templates_tera' source_list = ['lat_mpc.py', '#selfdrive/modeld/constants.py', f'{acados_dir}/include/acados_c/ocp_nlp_interface.h', f'{acados_templates_dir}/acados_solver.in.c', ] lenv = env.Clone() lenv.Clean(generated_files, Dir(gen)) generated_lat = lenv.Command(generated_files, source_list, f"cd {Dir('.').abspath} && python3 lat_mpc.py") lenv.Depends(generated_lat, [messaging_python, common_python, opendbc_python]) lenv["CFLAGS"].append("-DACADOS_WITH_QPOASES") lenv["CXXFLAGS"].append("-DACADOS_WITH_QPOASES") lenv["CCFLAGS"].append("-Wno-unused") if arch != "Darwin": lenv["LINKFLAGS"].append("-Wl,--disable-new-dtags") lib_solver = lenv.SharedLibrary(f"{gen}/acados_ocp_solver_lat", build_files, LIBS=['m', 'acados', 'hpipm', 'blasfeo', 'qpOASES_e']) # generate cython stuff acados_ocp_solver_pyx = File("#third_party/acados/acados_template/acados_ocp_solver_pyx.pyx") acados_ocp_solver_common = File("#third_party/acados/acados_template/acados_solver_common.pxd") libacados_ocp_solver_pxd = File(f'{gen}/acados_solver.pxd') libacados_ocp_solver_c = File(f'{gen}/acados_ocp_solver_pyx.c') lenv2 = envCython.Clone() lenv2["LINKFLAGS"] += [lib_solver[0].get_labspath()] lenv2.Command(libacados_ocp_solver_c, [acados_ocp_solver_pyx, acados_ocp_solver_common, libacados_ocp_solver_pxd], f'cython' + \ f' -o {libacados_ocp_solver_c.get_labspath()}' + \ f' -I {libacados_ocp_solver_pxd.get_dir().get_labspath()}' + \ f' -I {acados_ocp_solver_common.get_dir().get_labspath()}' + \ f' {acados_ocp_solver_pyx.get_labspath()}') lib_cython = lenv2.Program(f'{gen}/acados_ocp_solver_pyx.so', [libacados_ocp_solver_c]) lenv2.Depends(lib_cython, lib_solver)
2301_81045437/openpilot
selfdrive/controls/lib/lateral_mpc_lib/SConscript
Python
mit
3,128
#!/usr/bin/env python3 import os import time import numpy as np from casadi import SX, vertcat, sin, cos # WARNING: imports outside of constants will not trigger a rebuild from openpilot.selfdrive.modeld.constants import ModelConstants if __name__ == '__main__': # generating code from openpilot.third_party.acados.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver else: from openpilot.selfdrive.controls.lib.lateral_mpc_lib.c_generated_code.acados_ocp_solver_pyx import AcadosOcpSolverCython LAT_MPC_DIR = os.path.dirname(os.path.abspath(__file__)) EXPORT_DIR = os.path.join(LAT_MPC_DIR, "c_generated_code") JSON_FILE = os.path.join(LAT_MPC_DIR, "acados_ocp_lat.json") X_DIM = 4 P_DIM = 2 COST_E_DIM = 3 COST_DIM = COST_E_DIM + 2 SPEED_OFFSET = 10.0 MODEL_NAME = 'lat' ACADOS_SOLVER_TYPE = 'SQP_RTI' N = 32 def gen_lat_model(): model = AcadosModel() model.name = MODEL_NAME # set up states & controls x_ego = SX.sym('x_ego') y_ego = SX.sym('y_ego') psi_ego = SX.sym('psi_ego') psi_rate_ego = SX.sym('psi_rate_ego') model.x = vertcat(x_ego, y_ego, psi_ego, psi_rate_ego) # parameters v_ego = SX.sym('v_ego') rotation_radius = SX.sym('rotation_radius') model.p = vertcat(v_ego, rotation_radius) # controls psi_accel_ego = SX.sym('psi_accel_ego') model.u = vertcat(psi_accel_ego) # xdot x_ego_dot = SX.sym('x_ego_dot') y_ego_dot = SX.sym('y_ego_dot') psi_ego_dot = SX.sym('psi_ego_dot') psi_rate_ego_dot = SX.sym('psi_rate_ego_dot') model.xdot = vertcat(x_ego_dot, y_ego_dot, psi_ego_dot, psi_rate_ego_dot) # dynamics model f_expl = vertcat(v_ego * cos(psi_ego) - rotation_radius * sin(psi_ego) * psi_rate_ego, v_ego * sin(psi_ego) + rotation_radius * cos(psi_ego) * psi_rate_ego, psi_rate_ego, psi_accel_ego) model.f_impl_expr = model.xdot - f_expl model.f_expl_expr = f_expl return model def gen_lat_ocp(): ocp = AcadosOcp() ocp.model = gen_lat_model() Tf = np.array(ModelConstants.T_IDXS)[N] # set dimensions ocp.dims.N = N # set cost module ocp.cost.cost_type = 'NONLINEAR_LS' ocp.cost.cost_type_e = 'NONLINEAR_LS' Q = np.diag(np.zeros(COST_E_DIM)) QR = np.diag(np.zeros(COST_DIM)) ocp.cost.W = QR ocp.cost.W_e = Q y_ego, psi_ego, psi_rate_ego = ocp.model.x[1], ocp.model.x[2], ocp.model.x[3] psi_rate_ego_dot = ocp.model.u[0] v_ego = ocp.model.p[0] ocp.parameter_values = np.zeros((P_DIM, )) ocp.cost.yref = np.zeros((COST_DIM, )) ocp.cost.yref_e = np.zeros((COST_E_DIM, )) # Add offset to smooth out low speed control # TODO unclear if this right solution long term v_ego_offset = v_ego + SPEED_OFFSET # TODO there are two costs on psi_rate_ego_dot, one # is correlated to jerk the other to steering wheel movement # the steering wheel movement cost is added to prevent excessive # wheel movements ocp.model.cost_y_expr = vertcat(y_ego, v_ego_offset * psi_ego, v_ego_offset * psi_rate_ego, v_ego_offset * psi_rate_ego_dot, psi_rate_ego_dot / (v_ego + 0.1)) ocp.model.cost_y_expr_e = vertcat(y_ego, v_ego_offset * psi_ego, v_ego_offset * psi_rate_ego) # set constraints ocp.constraints.constr_type = 'BGH' ocp.constraints.idxbx = np.array([2,3]) ocp.constraints.ubx = np.array([np.radians(90), np.radians(50)]) ocp.constraints.lbx = np.array([-np.radians(90), -np.radians(50)]) x0 = np.zeros((X_DIM,)) ocp.constraints.x0 = x0 ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' ocp.solver_options.hessian_approx = 'GAUSS_NEWTON' ocp.solver_options.integrator_type = 'ERK' ocp.solver_options.nlp_solver_type = ACADOS_SOLVER_TYPE ocp.solver_options.qp_solver_iter_max = 1 ocp.solver_options.qp_solver_cond_N = 1 # set prediction horizon ocp.solver_options.tf = Tf ocp.solver_options.shooting_nodes = np.array(ModelConstants.T_IDXS)[:N+1] ocp.code_export_directory = EXPORT_DIR return ocp class LateralMpc: def __init__(self, x0=None): if x0 is None: x0 = np.zeros(X_DIM) self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N) self.reset(x0) def reset(self, x0=None): if x0 is None: x0 = np.zeros(X_DIM) self.x_sol = np.zeros((N+1, X_DIM)) self.u_sol = np.zeros((N, 1)) self.yref = np.zeros((N+1, COST_DIM)) for i in range(N): self.solver.cost_set(i, "yref", self.yref[i]) self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM]) # Somehow needed for stable init for i in range(N+1): self.solver.set(i, 'x', np.zeros(X_DIM)) self.solver.set(i, 'p', np.zeros(P_DIM)) self.solver.constraints_set(0, "lbx", x0) self.solver.constraints_set(0, "ubx", x0) self.solver.solve() self.solution_status = 0 self.solve_time = 0.0 self.cost = 0 def set_weights(self, path_weight, heading_weight, lat_accel_weight, lat_jerk_weight, steering_rate_weight): W = np.asfortranarray(np.diag([path_weight, heading_weight, lat_accel_weight, lat_jerk_weight, steering_rate_weight])) for i in range(N): self.solver.cost_set(i, 'W', W) self.solver.cost_set(N, 'W', W[:COST_E_DIM,:COST_E_DIM]) def run(self, x0, p, y_pts, heading_pts, yaw_rate_pts): x0_cp = np.copy(x0) p_cp = np.copy(p) self.solver.constraints_set(0, "lbx", x0_cp) self.solver.constraints_set(0, "ubx", x0_cp) self.yref[:,0] = y_pts v_ego = p_cp[0, 0] # rotation_radius = p_cp[1] self.yref[:,1] = heading_pts * (v_ego + SPEED_OFFSET) self.yref[:,2] = yaw_rate_pts * (v_ego + SPEED_OFFSET) for i in range(N): self.solver.cost_set(i, "yref", self.yref[i]) self.solver.set(i, "p", p_cp[i]) self.solver.set(N, "p", p_cp[N]) self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM]) t = time.monotonic() self.solution_status = self.solver.solve() self.solve_time = time.monotonic() - t for i in range(N+1): self.x_sol[i] = self.solver.get(i, 'x') for i in range(N): self.u_sol[i] = self.solver.get(i, 'u') self.cost = self.solver.get_cost() if __name__ == "__main__": ocp = gen_lat_ocp() AcadosOcpSolver.generate(ocp, json_file=JSON_FILE) # AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True)
2301_81045437/openpilot
selfdrive/controls/lib/lateral_mpc_lib/lat_mpc.py
Python
mit
6,558
from cereal import car from openpilot.common.numpy_fast import clip, interp from openpilot.common.realtime import DT_CTRL from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, apply_deadzone from openpilot.selfdrive.controls.lib.pid import PIDController from openpilot.selfdrive.modeld.constants import ModelConstants LongCtrlState = car.CarControl.Actuators.LongControlState def long_control_state_trans(CP, active, long_control_state, v_ego, v_target, v_target_1sec, brake_pressed, cruise_standstill): accelerating = v_target_1sec > v_target planned_stop = (v_target < CP.vEgoStopping and v_target_1sec < CP.vEgoStopping and not accelerating) stay_stopped = (v_ego < CP.vEgoStopping and (brake_pressed or cruise_standstill)) stopping_condition = planned_stop or stay_stopped starting_condition = (v_target_1sec > CP.vEgoStarting and accelerating and not cruise_standstill and not brake_pressed) started_condition = v_ego > CP.vEgoStarting if not active: long_control_state = LongCtrlState.off else: if long_control_state in (LongCtrlState.off, LongCtrlState.pid): long_control_state = LongCtrlState.pid if stopping_condition: long_control_state = LongCtrlState.stopping elif long_control_state == LongCtrlState.stopping: if starting_condition and CP.startingState: long_control_state = LongCtrlState.starting elif starting_condition: long_control_state = LongCtrlState.pid elif long_control_state == LongCtrlState.starting: if stopping_condition: long_control_state = LongCtrlState.stopping elif started_condition: long_control_state = LongCtrlState.pid return long_control_state class LongControl: def __init__(self, CP): self.CP = CP self.long_control_state = LongCtrlState.off # initialized to off self.pid = PIDController((CP.longitudinalTuning.kpBP, CP.longitudinalTuning.kpV), (CP.longitudinalTuning.kiBP, CP.longitudinalTuning.kiV), k_f=CP.longitudinalTuning.kf, rate=1 / DT_CTRL) self.v_pid = 0.0 self.last_output_accel = 0.0 def reset(self, v_pid): """Reset PID controller and change setpoint""" self.pid.reset() self.v_pid = v_pid def update(self, active, CS, long_plan, accel_limits, t_since_plan): """Update longitudinal control. This updates the state machine and runs a PID loop""" # Interp control trajectory speeds = long_plan.speeds if len(speeds) == CONTROL_N: v_target_now = interp(t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], speeds) a_target_now = interp(t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], long_plan.accels) v_target_lower = interp(self.CP.longitudinalActuatorDelayLowerBound + t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], speeds) a_target_lower = 2 * (v_target_lower - v_target_now) / self.CP.longitudinalActuatorDelayLowerBound - a_target_now v_target_upper = interp(self.CP.longitudinalActuatorDelayUpperBound + t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], speeds) a_target_upper = 2 * (v_target_upper - v_target_now) / self.CP.longitudinalActuatorDelayUpperBound - a_target_now v_target = min(v_target_lower, v_target_upper) a_target = min(a_target_lower, a_target_upper) v_target_1sec = interp(self.CP.longitudinalActuatorDelayUpperBound + t_since_plan + 1.0, ModelConstants.T_IDXS[:CONTROL_N], speeds) else: v_target = 0.0 v_target_now = 0.0 v_target_1sec = 0.0 a_target = 0.0 self.pid.neg_limit = accel_limits[0] self.pid.pos_limit = accel_limits[1] output_accel = self.last_output_accel self.long_control_state = long_control_state_trans(self.CP, active, self.long_control_state, CS.vEgo, v_target, v_target_1sec, CS.brakePressed, CS.cruiseState.standstill) if self.long_control_state == LongCtrlState.off: self.reset(CS.vEgo) output_accel = 0. elif self.long_control_state == LongCtrlState.stopping: if output_accel > self.CP.stopAccel: output_accel = min(output_accel, 0.0) output_accel -= self.CP.stoppingDecelRate * DT_CTRL self.reset(CS.vEgo) elif self.long_control_state == LongCtrlState.starting: output_accel = self.CP.startAccel self.reset(CS.vEgo) elif self.long_control_state == LongCtrlState.pid: self.v_pid = v_target_now # Toyota starts braking more when it thinks you want to stop # Freeze the integrator so we don't accelerate to compensate, and don't allow positive acceleration # TODO too complex, needs to be simplified and tested on toyotas prevent_overshoot = not self.CP.stoppingControl and CS.vEgo < 1.5 and v_target_1sec < 0.7 and v_target_1sec < self.v_pid deadzone = interp(CS.vEgo, self.CP.longitudinalTuning.deadzoneBP, self.CP.longitudinalTuning.deadzoneV) freeze_integrator = prevent_overshoot error = self.v_pid - CS.vEgo error_deadzone = apply_deadzone(error, deadzone) output_accel = self.pid.update(error_deadzone, speed=CS.vEgo, feedforward=a_target, freeze_integrator=freeze_integrator) self.last_output_accel = clip(output_accel, accel_limits[0], accel_limits[1]) return self.last_output_accel
2301_81045437/openpilot
selfdrive/controls/lib/longcontrol.py
Python
mit
5,627
Import('env', 'envCython', 'arch', 'messaging_python', 'common_python', 'opendbc_python') gen = "c_generated_code" casadi_model = [ f'{gen}/long_model/long_expl_ode_fun.c', f'{gen}/long_model/long_expl_vde_forw.c', ] casadi_cost_y = [ f'{gen}/long_cost/long_cost_y_fun.c', f'{gen}/long_cost/long_cost_y_fun_jac_ut_xt.c', f'{gen}/long_cost/long_cost_y_hess.c', ] casadi_cost_e = [ f'{gen}/long_cost/long_cost_y_e_fun.c', f'{gen}/long_cost/long_cost_y_e_fun_jac_ut_xt.c', f'{gen}/long_cost/long_cost_y_e_hess.c', ] casadi_cost_0 = [ f'{gen}/long_cost/long_cost_y_0_fun.c', f'{gen}/long_cost/long_cost_y_0_fun_jac_ut_xt.c', f'{gen}/long_cost/long_cost_y_0_hess.c', ] casadi_constraints = [ f'{gen}/long_constraints/long_constr_h_fun.c', f'{gen}/long_constraints/long_constr_h_fun_jac_uxt_zt.c', ] build_files = [f'{gen}/acados_solver_long.c'] + casadi_model + casadi_cost_y + casadi_cost_e + \ casadi_cost_0 + casadi_constraints # extra generated files used to trigger a rebuild generated_files = [ f'{gen}/Makefile', f'{gen}/main_long.c', f'{gen}/main_sim_long.c', f'{gen}/acados_solver_long.h', f'{gen}/acados_sim_solver_long.h', f'{gen}/acados_sim_solver_long.c', f'{gen}/acados_solver.pxd', f'{gen}/long_model/long_expl_vde_adj.c', f'{gen}/long_model/long_model.h', f'{gen}/long_constraints/long_constraints.h', f'{gen}/long_cost/long_cost.h', ] + build_files acados_dir = '#third_party/acados' acados_templates_dir = '#third_party/acados/acados_template/c_templates_tera' source_list = ['long_mpc.py', '#selfdrive/modeld/constants.py', f'{acados_dir}/include/acados_c/ocp_nlp_interface.h', f'{acados_templates_dir}/acados_solver.in.c', ] lenv = env.Clone() lenv.Clean(generated_files, Dir(gen)) generated_long = lenv.Command(generated_files, source_list, f"cd {Dir('.').abspath} && python3 long_mpc.py") lenv.Depends(generated_long, [messaging_python, common_python, opendbc_python]) lenv["CFLAGS"].append("-DACADOS_WITH_QPOASES") lenv["CXXFLAGS"].append("-DACADOS_WITH_QPOASES") lenv["CCFLAGS"].append("-Wno-unused") if arch != "Darwin": lenv["LINKFLAGS"].append("-Wl,--disable-new-dtags") lib_solver = lenv.SharedLibrary(f"{gen}/acados_ocp_solver_long", build_files, LIBS=['m', 'acados', 'hpipm', 'blasfeo', 'qpOASES_e']) # generate cython stuff acados_ocp_solver_pyx = File("#third_party/acados/acados_template/acados_ocp_solver_pyx.pyx") acados_ocp_solver_common = File("#third_party/acados/acados_template/acados_solver_common.pxd") libacados_ocp_solver_pxd = File(f'{gen}/acados_solver.pxd') libacados_ocp_solver_c = File(f'{gen}/acados_ocp_solver_pyx.c') lenv2 = envCython.Clone() lenv2["LINKFLAGS"] += [lib_solver[0].get_labspath()] lenv2.Command(libacados_ocp_solver_c, [acados_ocp_solver_pyx, acados_ocp_solver_common, libacados_ocp_solver_pxd], f'cython' + \ f' -o {libacados_ocp_solver_c.get_labspath()}' + \ f' -I {libacados_ocp_solver_pxd.get_dir().get_labspath()}' + \ f' -I {acados_ocp_solver_common.get_dir().get_labspath()}' + \ f' {acados_ocp_solver_pyx.get_labspath()}') lib_cython = lenv2.Program(f'{gen}/acados_ocp_solver_pyx.so', [libacados_ocp_solver_c]) lenv2.Depends(lib_cython, lib_solver)
2301_81045437/openpilot
selfdrive/controls/lib/longitudinal_mpc_lib/SConscript
Python
mit
3,344
#!/usr/bin/env python3 import os import time import numpy as np from cereal import log from openpilot.common.numpy_fast import clip from openpilot.common.realtime import DT_MDL from openpilot.common.swaglog import cloudlog # WARNING: imports outside of constants will not trigger a rebuild from openpilot.selfdrive.modeld.constants import index_function from openpilot.selfdrive.car.interfaces import ACCEL_MIN from openpilot.selfdrive.controls.radard import _LEAD_ACCEL_TAU if __name__ == '__main__': # generating code from openpilot.third_party.acados.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver else: from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.c_generated_code.acados_ocp_solver_pyx import AcadosOcpSolverCython from casadi import SX, vertcat MODEL_NAME = 'long' LONG_MPC_DIR = os.path.dirname(os.path.abspath(__file__)) EXPORT_DIR = os.path.join(LONG_MPC_DIR, "c_generated_code") JSON_FILE = os.path.join(LONG_MPC_DIR, "acados_ocp_long.json") SOURCES = ['lead0', 'lead1', 'cruise', 'e2e'] X_DIM = 3 U_DIM = 1 PARAM_DIM = 6 COST_E_DIM = 5 COST_DIM = COST_E_DIM + 1 CONSTR_DIM = 4 X_EGO_OBSTACLE_COST = 3. X_EGO_COST = 0. V_EGO_COST = 0. A_EGO_COST = 0. J_EGO_COST = 5.0 A_CHANGE_COST = 200. DANGER_ZONE_COST = 100. CRASH_DISTANCE = .25 LEAD_DANGER_FACTOR = 0.75 LIMIT_COST = 1e6 ACADOS_SOLVER_TYPE = 'SQP_RTI' # Fewer timestamps don't hurt performance and lead to # much better convergence of the MPC with low iterations N = 12 MAX_T = 10.0 T_IDXS_LST = [index_function(idx, max_val=MAX_T, max_idx=N) for idx in range(N+1)] T_IDXS = np.array(T_IDXS_LST) FCW_IDXS = T_IDXS < 5.0 T_DIFFS = np.diff(T_IDXS, prepend=[0.]) COMFORT_BRAKE = 2.5 STOP_DISTANCE = 6.0 def get_jerk_factor(personality=log.LongitudinalPersonality.standard): if personality==log.LongitudinalPersonality.relaxed: return 1.0 elif personality==log.LongitudinalPersonality.standard: return 1.0 elif personality==log.LongitudinalPersonality.aggressive: return 0.5 else: raise NotImplementedError("Longitudinal personality not supported") def get_T_FOLLOW(personality=log.LongitudinalPersonality.standard): if personality==log.LongitudinalPersonality.relaxed: return 1.75 elif personality==log.LongitudinalPersonality.standard: return 1.45 elif personality==log.LongitudinalPersonality.aggressive: return 1.25 else: raise NotImplementedError("Longitudinal personality not supported") def get_stopped_equivalence_factor(v_lead): return (v_lead**2) / (2 * COMFORT_BRAKE) def get_safe_obstacle_distance(v_ego, t_follow): return (v_ego**2) / (2 * COMFORT_BRAKE) + t_follow * v_ego + STOP_DISTANCE def desired_follow_distance(v_ego, v_lead, t_follow=None): if t_follow is None: t_follow = get_T_FOLLOW() return get_safe_obstacle_distance(v_ego, t_follow) - get_stopped_equivalence_factor(v_lead) def gen_long_model(): model = AcadosModel() model.name = MODEL_NAME # set up states & controls x_ego = SX.sym('x_ego') v_ego = SX.sym('v_ego') a_ego = SX.sym('a_ego') model.x = vertcat(x_ego, v_ego, a_ego) # controls j_ego = SX.sym('j_ego') model.u = vertcat(j_ego) # xdot x_ego_dot = SX.sym('x_ego_dot') v_ego_dot = SX.sym('v_ego_dot') a_ego_dot = SX.sym('a_ego_dot') model.xdot = vertcat(x_ego_dot, v_ego_dot, a_ego_dot) # live parameters a_min = SX.sym('a_min') a_max = SX.sym('a_max') x_obstacle = SX.sym('x_obstacle') prev_a = SX.sym('prev_a') lead_t_follow = SX.sym('lead_t_follow') lead_danger_factor = SX.sym('lead_danger_factor') model.p = vertcat(a_min, a_max, x_obstacle, prev_a, lead_t_follow, lead_danger_factor) # dynamics model f_expl = vertcat(v_ego, a_ego, j_ego) model.f_impl_expr = model.xdot - f_expl model.f_expl_expr = f_expl return model def gen_long_ocp(): ocp = AcadosOcp() ocp.model = gen_long_model() Tf = T_IDXS[-1] # set dimensions ocp.dims.N = N # set cost module ocp.cost.cost_type = 'NONLINEAR_LS' ocp.cost.cost_type_e = 'NONLINEAR_LS' QR = np.zeros((COST_DIM, COST_DIM)) Q = np.zeros((COST_E_DIM, COST_E_DIM)) ocp.cost.W = QR ocp.cost.W_e = Q x_ego, v_ego, a_ego = ocp.model.x[0], ocp.model.x[1], ocp.model.x[2] j_ego = ocp.model.u[0] a_min, a_max = ocp.model.p[0], ocp.model.p[1] x_obstacle = ocp.model.p[2] prev_a = ocp.model.p[3] lead_t_follow = ocp.model.p[4] lead_danger_factor = ocp.model.p[5] ocp.cost.yref = np.zeros((COST_DIM, )) ocp.cost.yref_e = np.zeros((COST_E_DIM, )) desired_dist_comfort = get_safe_obstacle_distance(v_ego, lead_t_follow) # The main cost in normal operation is how close you are to the "desired" distance # from an obstacle at every timestep. This obstacle can be a lead car # or other object. In e2e mode we can use x_position targets as a cost # instead. costs = [((x_obstacle - x_ego) - (desired_dist_comfort)) / (v_ego + 10.), x_ego, v_ego, a_ego, a_ego - prev_a, j_ego] ocp.model.cost_y_expr = vertcat(*costs) ocp.model.cost_y_expr_e = vertcat(*costs[:-1]) # Constraints on speed, acceleration and desired distance to # the obstacle, which is treated as a slack constraint so it # behaves like an asymmetrical cost. constraints = vertcat(v_ego, (a_ego - a_min), (a_max - a_ego), ((x_obstacle - x_ego) - lead_danger_factor * (desired_dist_comfort)) / (v_ego + 10.)) ocp.model.con_h_expr = constraints x0 = np.zeros(X_DIM) ocp.constraints.x0 = x0 ocp.parameter_values = np.array([-1.2, 1.2, 0.0, 0.0, get_T_FOLLOW(), LEAD_DANGER_FACTOR]) # We put all constraint cost weights to 0 and only set them at runtime cost_weights = np.zeros(CONSTR_DIM) ocp.cost.zl = cost_weights ocp.cost.Zl = cost_weights ocp.cost.Zu = cost_weights ocp.cost.zu = cost_weights ocp.constraints.lh = np.zeros(CONSTR_DIM) ocp.constraints.uh = 1e4*np.ones(CONSTR_DIM) ocp.constraints.idxsh = np.arange(CONSTR_DIM) # The HPIPM solver can give decent solutions even when it is stopped early # Which is critical for our purpose where compute time is strictly bounded # We use HPIPM in the SPEED_ABS mode, which ensures fastest runtime. This # does not cause issues since the problem is well bounded. ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' ocp.solver_options.hessian_approx = 'GAUSS_NEWTON' ocp.solver_options.integrator_type = 'ERK' ocp.solver_options.nlp_solver_type = ACADOS_SOLVER_TYPE ocp.solver_options.qp_solver_cond_N = 1 # More iterations take too much time and less lead to inaccurate convergence in # some situations. Ideally we would run just 1 iteration to ensure fixed runtime. ocp.solver_options.qp_solver_iter_max = 10 ocp.solver_options.qp_tol = 1e-3 # set prediction horizon ocp.solver_options.tf = Tf ocp.solver_options.shooting_nodes = T_IDXS ocp.code_export_directory = EXPORT_DIR return ocp class LongitudinalMpc: def __init__(self, mode='acc', dt=DT_MDL): self.mode = mode self.dt = dt self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N) self.reset() self.source = SOURCES[2] def reset(self): # self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N) self.solver.reset() # self.solver.options_set('print_level', 2) self.v_solution = np.zeros(N+1) self.a_solution = np.zeros(N+1) self.prev_a = np.array(self.a_solution) self.j_solution = np.zeros(N) self.yref = np.zeros((N+1, COST_DIM)) for i in range(N): self.solver.cost_set(i, "yref", self.yref[i]) self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM]) self.x_sol = np.zeros((N+1, X_DIM)) self.u_sol = np.zeros((N,1)) self.params = np.zeros((N+1, PARAM_DIM)) for i in range(N+1): self.solver.set(i, 'x', np.zeros(X_DIM)) self.last_cloudlog_t = 0 self.status = False self.crash_cnt = 0.0 self.solution_status = 0 # timers self.solve_time = 0.0 self.time_qp_solution = 0.0 self.time_linearization = 0.0 self.time_integrator = 0.0 self.x0 = np.zeros(X_DIM) self.set_weights() def set_cost_weights(self, cost_weights, constraint_cost_weights): W = np.asfortranarray(np.diag(cost_weights)) for i in range(N): # TODO don't hardcode A_CHANGE_COST idx # reduce the cost on (a-a_prev) later in the horizon. W[4,4] = cost_weights[4] * np.interp(T_IDXS[i], [0.0, 1.0, 2.0], [1.0, 1.0, 0.0]) self.solver.cost_set(i, 'W', W) # Setting the slice without the copy make the array not contiguous, # causing issues with the C interface. self.solver.cost_set(N, 'W', np.copy(W[:COST_E_DIM, :COST_E_DIM])) # Set L2 slack cost on lower bound constraints Zl = np.array(constraint_cost_weights) for i in range(N): self.solver.cost_set(i, 'Zl', Zl) def set_weights(self, prev_accel_constraint=True, personality=log.LongitudinalPersonality.standard): jerk_factor = get_jerk_factor(personality) if self.mode == 'acc': a_change_cost = A_CHANGE_COST if prev_accel_constraint else 0 cost_weights = [X_EGO_OBSTACLE_COST, X_EGO_COST, V_EGO_COST, A_EGO_COST, jerk_factor * a_change_cost, jerk_factor * J_EGO_COST] constraint_cost_weights = [LIMIT_COST, LIMIT_COST, LIMIT_COST, DANGER_ZONE_COST] elif self.mode == 'blended': a_change_cost = 40.0 if prev_accel_constraint else 0 cost_weights = [0., 0.1, 0.2, 5.0, a_change_cost, 1.0] constraint_cost_weights = [LIMIT_COST, LIMIT_COST, LIMIT_COST, 50.0] else: raise NotImplementedError(f'Planner mode {self.mode} not recognized in planner cost set') self.set_cost_weights(cost_weights, constraint_cost_weights) def set_cur_state(self, v, a): v_prev = self.x0[1] self.x0[1] = v self.x0[2] = a if abs(v_prev - v) > 2.: # probably only helps if v < v_prev for i in range(N+1): self.solver.set(i, 'x', self.x0) @staticmethod def extrapolate_lead(x_lead, v_lead, a_lead, a_lead_tau): a_lead_traj = a_lead * np.exp(-a_lead_tau * (T_IDXS**2)/2.) v_lead_traj = np.clip(v_lead + np.cumsum(T_DIFFS * a_lead_traj), 0.0, 1e8) x_lead_traj = x_lead + np.cumsum(T_DIFFS * v_lead_traj) lead_xv = np.column_stack((x_lead_traj, v_lead_traj)) return lead_xv def process_lead(self, lead): v_ego = self.x0[1] if lead is not None and lead.status: x_lead = lead.dRel v_lead = lead.vLead a_lead = lead.aLeadK a_lead_tau = lead.aLeadTau else: # Fake a fast lead car, so mpc can keep running in the same mode x_lead = 50.0 v_lead = v_ego + 10.0 a_lead = 0.0 a_lead_tau = _LEAD_ACCEL_TAU # MPC will not converge if immediate crash is expected # Clip lead distance to what is still possible to brake for min_x_lead = ((v_ego + v_lead)/2) * (v_ego - v_lead) / (-ACCEL_MIN * 2) x_lead = clip(x_lead, min_x_lead, 1e8) v_lead = clip(v_lead, 0.0, 1e8) a_lead = clip(a_lead, -10., 5.) lead_xv = self.extrapolate_lead(x_lead, v_lead, a_lead, a_lead_tau) return lead_xv def set_accel_limits(self, min_a, max_a): # TODO this sets a max accel limit, but the minimum limit is only for cruise decel # needs refactor self.cruise_min_a = min_a self.max_a = max_a def update(self, radarstate, v_cruise, x, v, a, j, personality=log.LongitudinalPersonality.standard): t_follow = get_T_FOLLOW(personality) v_ego = self.x0[1] self.status = radarstate.leadOne.status or radarstate.leadTwo.status lead_xv_0 = self.process_lead(radarstate.leadOne) lead_xv_1 = self.process_lead(radarstate.leadTwo) # To estimate a safe distance from a moving lead, we calculate how much stopping # distance that lead needs as a minimum. We can add that to the current distance # and then treat that as a stopped car/obstacle at this new distance. lead_0_obstacle = lead_xv_0[:,0] + get_stopped_equivalence_factor(lead_xv_0[:,1]) lead_1_obstacle = lead_xv_1[:,0] + get_stopped_equivalence_factor(lead_xv_1[:,1]) self.params[:,0] = ACCEL_MIN self.params[:,1] = self.max_a # Update in ACC mode or ACC/e2e blend if self.mode == 'acc': self.params[:,5] = LEAD_DANGER_FACTOR # Fake an obstacle for cruise, this ensures smooth acceleration to set speed # when the leads are no factor. v_lower = v_ego + (T_IDXS * self.cruise_min_a * 1.05) v_upper = v_ego + (T_IDXS * self.max_a * 1.05) v_cruise_clipped = np.clip(v_cruise * np.ones(N+1), v_lower, v_upper) cruise_obstacle = np.cumsum(T_DIFFS * v_cruise_clipped) + get_safe_obstacle_distance(v_cruise_clipped, t_follow) x_obstacles = np.column_stack([lead_0_obstacle, lead_1_obstacle, cruise_obstacle]) self.source = SOURCES[np.argmin(x_obstacles[0])] # These are not used in ACC mode x[:], v[:], a[:], j[:] = 0.0, 0.0, 0.0, 0.0 elif self.mode == 'blended': self.params[:,5] = 1.0 x_obstacles = np.column_stack([lead_0_obstacle, lead_1_obstacle]) cruise_target = T_IDXS * np.clip(v_cruise, v_ego - 2.0, 1e3) + x[0] xforward = ((v[1:] + v[:-1]) / 2) * (T_IDXS[1:] - T_IDXS[:-1]) x = np.cumsum(np.insert(xforward, 0, x[0])) x_and_cruise = np.column_stack([x, cruise_target]) x = np.min(x_and_cruise, axis=1) self.source = 'e2e' if x_and_cruise[1,0] < x_and_cruise[1,1] else 'cruise' else: raise NotImplementedError(f'Planner mode {self.mode} not recognized in planner update') self.yref[:,1] = x self.yref[:,2] = v self.yref[:,3] = a self.yref[:,5] = j for i in range(N): self.solver.set(i, "yref", self.yref[i]) self.solver.set(N, "yref", self.yref[N][:COST_E_DIM]) self.params[:,2] = np.min(x_obstacles, axis=1) self.params[:,3] = np.copy(self.prev_a) self.params[:,4] = t_follow self.run() if (np.any(lead_xv_0[FCW_IDXS,0] - self.x_sol[FCW_IDXS,0] < CRASH_DISTANCE) and radarstate.leadOne.modelProb > 0.9): self.crash_cnt += 1 else: self.crash_cnt = 0 # Check if it got within lead comfort range # TODO This should be done cleaner if self.mode == 'blended': if any((lead_0_obstacle - get_safe_obstacle_distance(self.x_sol[:,1], t_follow))- self.x_sol[:,0] < 0.0): self.source = 'lead0' if any((lead_1_obstacle - get_safe_obstacle_distance(self.x_sol[:,1], t_follow))- self.x_sol[:,0] < 0.0) and \ (lead_1_obstacle[0] - lead_0_obstacle[0]): self.source = 'lead1' def run(self): # t0 = time.monotonic() # reset = 0 for i in range(N+1): self.solver.set(i, 'p', self.params[i]) self.solver.constraints_set(0, "lbx", self.x0) self.solver.constraints_set(0, "ubx", self.x0) self.solution_status = self.solver.solve() self.solve_time = float(self.solver.get_stats('time_tot')[0]) self.time_qp_solution = float(self.solver.get_stats('time_qp')[0]) self.time_linearization = float(self.solver.get_stats('time_lin')[0]) self.time_integrator = float(self.solver.get_stats('time_sim')[0]) # qp_iter = self.solver.get_stats('statistics')[-1][-1] # SQP_RTI specific # print(f"long_mpc timings: tot {self.solve_time:.2e}, qp {self.time_qp_solution:.2e}, lin {self.time_linearization:.2e}, \ # integrator {self.time_integrator:.2e}, qp_iter {qp_iter}") # res = self.solver.get_residuals() # print(f"long_mpc residuals: {res[0]:.2e}, {res[1]:.2e}, {res[2]:.2e}, {res[3]:.2e}") # self.solver.print_statistics() for i in range(N+1): self.x_sol[i] = self.solver.get(i, 'x') for i in range(N): self.u_sol[i] = self.solver.get(i, 'u') self.v_solution = self.x_sol[:,1] self.a_solution = self.x_sol[:,2] self.j_solution = self.u_sol[:,0] self.prev_a = np.interp(T_IDXS + self.dt, T_IDXS, self.a_solution) t = time.monotonic() if self.solution_status != 0: if t > self.last_cloudlog_t + 5.0: self.last_cloudlog_t = t cloudlog.warning(f"Long mpc reset, solution_status: {self.solution_status}") self.reset() # reset = 1 # print(f"long_mpc timings: total internal {self.solve_time:.2e}, external: {(time.monotonic() - t0):.2e} qp {self.time_qp_solution:.2e}, \ # lin {self.time_linearization:.2e} qp_iter {qp_iter}, reset {reset}") if __name__ == "__main__": ocp = gen_long_ocp() AcadosOcpSolver.generate(ocp, json_file=JSON_FILE) # AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True)
2301_81045437/openpilot
selfdrive/controls/lib/longitudinal_mpc_lib/long_mpc.py
Python
mit
16,702
#!/usr/bin/env python3 import math import numpy as np from openpilot.common.numpy_fast import clip, interp import cereal.messaging as messaging from openpilot.common.conversions import Conversions as CV from openpilot.common.filter_simple import FirstOrderFilter from openpilot.common.realtime import DT_MDL from openpilot.selfdrive.modeld.constants import ModelConstants from openpilot.selfdrive.car.interfaces import ACCEL_MIN, ACCEL_MAX from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC from openpilot.selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX, CONTROL_N, get_speed_error from openpilot.common.swaglog import cloudlog LON_MPC_STEP = 0.2 # first step is 0.2s A_CRUISE_MIN = -1.2 A_CRUISE_MAX_VALS = [1.6, 1.2, 0.8, 0.6] A_CRUISE_MAX_BP = [0., 10.0, 25., 40.] # Lookup table for turns _A_TOTAL_MAX_V = [1.7, 3.2] _A_TOTAL_MAX_BP = [20., 40.] def get_max_accel(v_ego): return interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS) def limit_accel_in_turns(v_ego, angle_steers, a_target, CP): """ This function returns a limited long acceleration allowed, depending on the existing lateral acceleration this should avoid accelerating when losing the target in turns """ # FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel # The lookup table for turns should also be updated if we do this a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V) a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase) a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.)) return [a_target[0], min(a_target[1], a_x_allowed)] class LongitudinalPlanner: def __init__(self, CP, init_v=0.0, init_a=0.0, dt=DT_MDL): self.CP = CP self.mpc = LongitudinalMpc(dt=dt) self.fcw = False self.dt = dt self.a_desired = init_a self.v_desired_filter = FirstOrderFilter(init_v, 2.0, self.dt) self.v_model_error = 0.0 self.v_desired_trajectory = np.zeros(CONTROL_N) self.a_desired_trajectory = np.zeros(CONTROL_N) self.j_desired_trajectory = np.zeros(CONTROL_N) self.solverExecutionTime = 0.0 @staticmethod def parse_model(model_msg, model_error): if (len(model_msg.position.x) == ModelConstants.IDX_N and len(model_msg.velocity.x) == ModelConstants.IDX_N and len(model_msg.acceleration.x) == ModelConstants.IDX_N): x = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.position.x) - model_error * T_IDXS_MPC v = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.velocity.x) - model_error a = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.acceleration.x) j = np.zeros(len(T_IDXS_MPC)) else: x = np.zeros(len(T_IDXS_MPC)) v = np.zeros(len(T_IDXS_MPC)) a = np.zeros(len(T_IDXS_MPC)) j = np.zeros(len(T_IDXS_MPC)) return x, v, a, j def update(self, sm): self.mpc.mode = 'blended' if sm['controlsState'].experimentalMode else 'acc' v_ego = sm['carState'].vEgo v_cruise_kph = min(sm['controlsState'].vCruise, V_CRUISE_MAX) v_cruise = v_cruise_kph * CV.KPH_TO_MS long_control_off = sm['controlsState'].longControlState == LongCtrlState.off force_slow_decel = sm['controlsState'].forceDecel # Reset current state when not engaged, or user is controlling the speed reset_state = long_control_off if self.CP.openpilotLongitudinalControl else not sm['controlsState'].enabled # No change cost when user is controlling the speed, or when standstill prev_accel_constraint = not (reset_state or sm['carState'].standstill) if self.mpc.mode == 'acc': accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)] accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngleDeg, accel_limits, self.CP) else: accel_limits = [ACCEL_MIN, ACCEL_MAX] accel_limits_turns = [ACCEL_MIN, ACCEL_MAX] if reset_state: self.v_desired_filter.x = v_ego # Clip aEgo to cruise limits to prevent large accelerations when becoming active self.a_desired = clip(sm['carState'].aEgo, accel_limits[0], accel_limits[1]) # Prevent divergence, smooth in current v_ego self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego)) # Compute model v_ego error self.v_model_error = get_speed_error(sm['modelV2'], v_ego) if force_slow_decel: v_cruise = 0.0 # clip limits, cannot init MPC outside of bounds accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05) accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05) self.mpc.set_weights(prev_accel_constraint, personality=sm['controlsState'].personality) self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1]) self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired) x, v, a, j = self.parse_model(sm['modelV2'], self.v_model_error) self.mpc.update(sm['radarState'], v_cruise, x, v, a, j, personality=sm['controlsState'].personality) self.v_desired_trajectory_full = np.interp(ModelConstants.T_IDXS, T_IDXS_MPC, self.mpc.v_solution) self.a_desired_trajectory_full = np.interp(ModelConstants.T_IDXS, T_IDXS_MPC, self.mpc.a_solution) self.v_desired_trajectory = self.v_desired_trajectory_full[:CONTROL_N] self.a_desired_trajectory = self.a_desired_trajectory_full[:CONTROL_N] self.j_desired_trajectory = np.interp(ModelConstants.T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution) # TODO counter is only needed because radar is glitchy, remove once radar is gone self.fcw = self.mpc.crash_cnt > 2 and not sm['carState'].standstill if self.fcw: cloudlog.info("FCW triggered") # Interpolate 0.05 seconds and save as starting point for next iteration a_prev = self.a_desired self.a_desired = float(interp(self.dt, ModelConstants.T_IDXS[:CONTROL_N], self.a_desired_trajectory)) self.v_desired_filter.x = self.v_desired_filter.x + self.dt * (self.a_desired + a_prev) / 2.0 def publish(self, sm, pm): plan_send = messaging.new_message('longitudinalPlan') plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState']) longitudinalPlan = plan_send.longitudinalPlan longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2'] longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2'] longitudinalPlan.speeds = self.v_desired_trajectory.tolist() longitudinalPlan.accels = self.a_desired_trajectory.tolist() longitudinalPlan.jerks = self.j_desired_trajectory.tolist() longitudinalPlan.hasLead = sm['radarState'].leadOne.status longitudinalPlan.longitudinalPlanSource = self.mpc.source longitudinalPlan.fcw = self.fcw longitudinalPlan.solverExecutionTime = self.mpc.solve_time pm.send('longitudinalPlan', plan_send)
2301_81045437/openpilot
selfdrive/controls/lib/longitudinal_planner.py
Python
mit
7,060
import numpy as np from numbers import Number from openpilot.common.numpy_fast import clip, interp class PIDController: def __init__(self, k_p, k_i, k_f=0., k_d=0., pos_limit=1e308, neg_limit=-1e308, rate=100): self._k_p = k_p self._k_i = k_i self._k_d = k_d self.k_f = k_f # feedforward gain if isinstance(self._k_p, Number): self._k_p = [[0], [self._k_p]] if isinstance(self._k_i, Number): self._k_i = [[0], [self._k_i]] if isinstance(self._k_d, Number): self._k_d = [[0], [self._k_d]] self.pos_limit = pos_limit self.neg_limit = neg_limit self.i_unwind_rate = 0.3 / rate self.i_rate = 1.0 / rate self.speed = 0.0 self.reset() @property def k_p(self): return interp(self.speed, self._k_p[0], self._k_p[1]) @property def k_i(self): return interp(self.speed, self._k_i[0], self._k_i[1]) @property def k_d(self): return interp(self.speed, self._k_d[0], self._k_d[1]) @property def error_integral(self): return self.i/self.k_i def reset(self): self.p = 0.0 self.i = 0.0 self.d = 0.0 self.f = 0.0 self.control = 0 def update(self, error, error_rate=0.0, speed=0.0, override=False, feedforward=0., freeze_integrator=False): self.speed = speed self.p = float(error) * self.k_p self.f = feedforward * self.k_f self.d = error_rate * self.k_d if override: self.i -= self.i_unwind_rate * float(np.sign(self.i)) else: i = self.i + error * self.k_i * self.i_rate control = self.p + i + self.d + self.f # Update when changing i will move the control away from the limits # or when i will move towards the sign of the error if ((error >= 0 and (control <= self.pos_limit or i < 0.0)) or (error <= 0 and (control >= self.neg_limit or i > 0.0))) and \ not freeze_integrator: self.i = i control = self.p + self.i + self.d + self.f self.control = clip(control, self.neg_limit, self.pos_limit) return self.control
2301_81045437/openpilot
selfdrive/controls/lib/pid.py
Python
mit
2,042
#!/usr/bin/env python3 """ Dynamic bicycle model from "The Science of Vehicle Dynamics (2014), M. Guiggiani" The state is x = [v, r]^T with v lateral speed [m/s], and r rotational speed [rad/s] The input u is the steering angle [rad], and roll [rad] The system is defined by x_dot = A*x + B*u A depends on longitudinal speed, u [m/s], and vehicle parameters CP """ import numpy as np from numpy.linalg import solve from cereal import car ACCELERATION_DUE_TO_GRAVITY = 9.8 class VehicleModel: def __init__(self, CP: car.CarParams): """ Args: CP: Car Parameters """ # for math readability, convert long names car params into short names self.m: float = CP.mass self.j: float = CP.rotationalInertia self.l: float = CP.wheelbase self.aF: float = CP.centerToFront self.aR: float = CP.wheelbase - CP.centerToFront self.chi: float = CP.steerRatioRear self.cF_orig: float = CP.tireStiffnessFront self.cR_orig: float = CP.tireStiffnessRear self.update_params(1.0, CP.steerRatio) def update_params(self, stiffness_factor: float, steer_ratio: float) -> None: """Update the vehicle model with a new stiffness factor and steer ratio""" self.cF: float = stiffness_factor * self.cF_orig self.cR: float = stiffness_factor * self.cR_orig self.sR: float = steer_ratio def steady_state_sol(self, sa: float, u: float, roll: float) -> np.ndarray: """Returns the steady state solution. If the speed is too low we can't use the dynamic model (tire slip is undefined), we then have to use the kinematic model Args: sa: Steering wheel angle [rad] u: Speed [m/s] roll: Road Roll [rad] Returns: 2x1 matrix with steady state solution (lateral speed, rotational speed) """ if u > 0.1: return dyn_ss_sol(sa, u, roll, self) else: return kin_ss_sol(sa, u, self) def calc_curvature(self, sa: float, u: float, roll: float) -> float: """Returns the curvature. Multiplied by the speed this will give the yaw rate. Args: sa: Steering wheel angle [rad] u: Speed [m/s] roll: Road Roll [rad] Returns: Curvature factor [1/m] """ return (self.curvature_factor(u) * sa / self.sR) + self.roll_compensation(roll, u) def curvature_factor(self, u: float) -> float: """Returns the curvature factor. Multiplied by wheel angle (not steering wheel angle) this will give the curvature. Args: u: Speed [m/s] Returns: Curvature factor [1/m] """ sf = calc_slip_factor(self) return (1. - self.chi) / (1. - sf * u**2) / self.l def get_steer_from_curvature(self, curv: float, u: float, roll: float) -> float: """Calculates the required steering wheel angle for a given curvature Args: curv: Desired curvature [1/m] u: Speed [m/s] roll: Road Roll [rad] Returns: Steering wheel angle [rad] """ return (curv - self.roll_compensation(roll, u)) * self.sR * 1.0 / self.curvature_factor(u) def roll_compensation(self, roll: float, u: float) -> float: """Calculates the roll-compensation to curvature Args: roll: Road Roll [rad] u: Speed [m/s] Returns: Roll compensation curvature [rad] """ sf = calc_slip_factor(self) if abs(sf) < 1e-6: return 0 else: return (ACCELERATION_DUE_TO_GRAVITY * roll) / ((1 / sf) - u**2) def get_steer_from_yaw_rate(self, yaw_rate: float, u: float, roll: float) -> float: """Calculates the required steering wheel angle for a given yaw_rate Args: yaw_rate: Desired yaw rate [rad/s] u: Speed [m/s] roll: Road Roll [rad] Returns: Steering wheel angle [rad] """ curv = yaw_rate / u return self.get_steer_from_curvature(curv, u, roll) def yaw_rate(self, sa: float, u: float, roll: float) -> float: """Calculate yaw rate Args: sa: Steering wheel angle [rad] u: Speed [m/s] roll: Road Roll [rad] Returns: Yaw rate [rad/s] """ return self.calc_curvature(sa, u, roll) * u def kin_ss_sol(sa: float, u: float, VM: VehicleModel) -> np.ndarray: """Calculate the steady state solution at low speeds At low speeds the tire slip is undefined, so a kinematic model is used. Args: sa: Steering angle [rad] u: Speed [m/s] VM: Vehicle model Returns: 2x1 matrix with steady state solution """ K = np.zeros((2, 1)) K[0, 0] = VM.aR / VM.sR / VM.l * u K[1, 0] = 1. / VM.sR / VM.l * u return K * sa def create_dyn_state_matrices(u: float, VM: VehicleModel) -> tuple[np.ndarray, np.ndarray]: """Returns the A and B matrix for the dynamics system Args: u: Vehicle speed [m/s] VM: Vehicle model Returns: A tuple with the 2x2 A matrix, and 2x2 B matrix Parameters in the vehicle model: cF: Tire stiffness Front [N/rad] cR: Tire stiffness Front [N/rad] aF: Distance from CG to front wheels [m] aR: Distance from CG to rear wheels [m] m: Mass [kg] j: Rotational inertia [kg m^2] sR: Steering ratio [-] chi: Steer ratio rear [-] """ A = np.zeros((2, 2)) B = np.zeros((2, 2)) A[0, 0] = - (VM.cF + VM.cR) / (VM.m * u) A[0, 1] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.m * u) - u A[1, 0] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.j * u) A[1, 1] = - (VM.cF * VM.aF**2 + VM.cR * VM.aR**2) / (VM.j * u) # Steering input B[0, 0] = (VM.cF + VM.chi * VM.cR) / VM.m / VM.sR B[1, 0] = (VM.cF * VM.aF - VM.chi * VM.cR * VM.aR) / VM.j / VM.sR # Roll input B[0, 1] = -ACCELERATION_DUE_TO_GRAVITY return A, B def dyn_ss_sol(sa: float, u: float, roll: float, VM: VehicleModel) -> np.ndarray: """Calculate the steady state solution when x_dot = 0, Ax + Bu = 0 => x = -A^{-1} B u Args: sa: Steering angle [rad] u: Speed [m/s] roll: Road Roll [rad] VM: Vehicle model Returns: 2x1 matrix with steady state solution """ A, B = create_dyn_state_matrices(u, VM) inp = np.array([[sa], [roll]]) return -solve(A, B) @ inp # type: ignore def calc_slip_factor(VM: VehicleModel) -> float: """The slip factor is a measure of how the curvature changes with speed it's positive for Oversteering vehicle, negative (usual case) otherwise. """ return VM.m * (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.l**2 * VM.cF * VM.cR)
2301_81045437/openpilot
selfdrive/controls/lib/vehicle_model.py
Python
mit
6,365
#!/usr/bin/env python3 from cereal import car from openpilot.common.params import Params from openpilot.common.realtime import Priority, config_realtime_process from openpilot.common.swaglog import cloudlog from openpilot.selfdrive.controls.lib.longitudinal_planner import LongitudinalPlanner import cereal.messaging as messaging def publish_ui_plan(sm, pm, longitudinal_planner): ui_send = messaging.new_message('uiPlan') ui_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2']) uiPlan = ui_send.uiPlan uiPlan.frameId = sm['modelV2'].frameId uiPlan.position.x = list(sm['modelV2'].position.x) uiPlan.position.y = list(sm['modelV2'].position.y) uiPlan.position.z = list(sm['modelV2'].position.z) uiPlan.accel = longitudinal_planner.a_desired_trajectory_full.tolist() pm.send('uiPlan', ui_send) def plannerd_thread(): config_realtime_process(5, Priority.CTRL_LOW) cloudlog.info("plannerd is waiting for CarParams") params = Params() with car.CarParams.from_bytes(params.get("CarParams", block=True)) as msg: CP = msg cloudlog.info("plannerd got CarParams: %s", CP.carName) longitudinal_planner = LongitudinalPlanner(CP) pm = messaging.PubMaster(['longitudinalPlan', 'uiPlan']) sm = messaging.SubMaster(['carControl', 'carState', 'controlsState', 'radarState', 'modelV2'], poll='modelV2', ignore_avg_freq=['radarState']) while True: sm.update() if sm.updated['modelV2']: longitudinal_planner.update(sm) longitudinal_planner.publish(sm, pm) publish_ui_plan(sm, pm, longitudinal_planner) def main(): plannerd_thread() if __name__ == "__main__": main()
2301_81045437/openpilot
selfdrive/controls/plannerd.py
Python
mit
1,681
#!/usr/bin/env python3 import importlib import math from collections import deque from typing import Any import capnp from cereal import messaging, log, car from openpilot.common.numpy_fast import interp from openpilot.common.params import Params from openpilot.common.realtime import DT_CTRL, Ratekeeper, Priority, config_realtime_process from openpilot.common.swaglog import cloudlog from openpilot.common.simple_kalman import KF1D # Default lead acceleration decay set to 50% at 1s _LEAD_ACCEL_TAU = 1.5 # radar tracks SPEED, ACCEL = 0, 1 # Kalman filter states enum # stationary qualification parameters V_EGO_STATIONARY = 4. # no stationary object flag below this speed RADAR_TO_CENTER = 2.7 # (deprecated) RADAR is ~ 2.7m ahead from center of car RADAR_TO_CAMERA = 1.52 # RADAR is ~ 1.5m ahead from center of mesh frame class KalmanParams: def __init__(self, dt: float): # Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library. # hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s assert dt > .01 and dt < .2, "Radar time step must be between .01s and 0.2s" self.A = [[1.0, dt], [0.0, 1.0]] self.C = [1.0, 0.0] #Q = np.matrix([[10., 0.0], [0.0, 100.]]) #R = 1e3 #K = np.matrix([[ 0.05705578], [ 0.03073241]]) dts = [dt * 0.01 for dt in range(1, 21)] K0 = [0.12287673, 0.14556536, 0.16522756, 0.18281627, 0.1988689, 0.21372394, 0.22761098, 0.24069424, 0.253096, 0.26491023, 0.27621103, 0.28705801, 0.29750003, 0.30757767, 0.31732515, 0.32677158, 0.33594201, 0.34485814, 0.35353899, 0.36200124] K1 = [0.29666309, 0.29330885, 0.29042818, 0.28787125, 0.28555364, 0.28342219, 0.28144091, 0.27958406, 0.27783249, 0.27617149, 0.27458948, 0.27307714, 0.27162685, 0.27023228, 0.26888809, 0.26758976, 0.26633338, 0.26511557, 0.26393339, 0.26278425] self.K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]] class Track: def __init__(self, identifier: int, v_lead: float, kalman_params: KalmanParams): self.identifier = identifier self.cnt = 0 self.aLeadTau = _LEAD_ACCEL_TAU self.K_A = kalman_params.A self.K_C = kalman_params.C self.K_K = kalman_params.K self.kf = KF1D([[v_lead], [0.0]], self.K_A, self.K_C, self.K_K) def update(self, d_rel: float, y_rel: float, v_rel: float, v_lead: float, measured: float): # relative values, copy self.dRel = d_rel # LONG_DIST self.yRel = y_rel # -LAT_DIST self.vRel = v_rel # REL_SPEED self.vLead = v_lead self.measured = measured # measured or estimate # computed velocity and accelerations if self.cnt > 0: self.kf.update(self.vLead) self.vLeadK = float(self.kf.x[SPEED][0]) self.aLeadK = float(self.kf.x[ACCEL][0]) # Learn if constant acceleration if abs(self.aLeadK) < 0.5: self.aLeadTau = _LEAD_ACCEL_TAU else: self.aLeadTau *= 0.9 self.cnt += 1 def get_key_for_cluster(self): # Weigh y higher since radar is inaccurate in this dimension return [self.dRel, self.yRel*2, self.vRel] def reset_a_lead(self, aLeadK: float, aLeadTau: float): self.kf = KF1D([[self.vLead], [aLeadK]], self.K_A, self.K_C, self.K_K) self.aLeadK = aLeadK self.aLeadTau = aLeadTau def get_RadarState(self, model_prob: float = 0.0): return { "dRel": float(self.dRel), "yRel": float(self.yRel), "vRel": float(self.vRel), "vLead": float(self.vLead), "vLeadK": float(self.vLeadK), "aLeadK": float(self.aLeadK), "aLeadTau": float(self.aLeadTau), "status": True, "fcw": self.is_potential_fcw(model_prob), "modelProb": model_prob, "radar": True, "radarTrackId": self.identifier, } def potential_low_speed_lead(self, v_ego: float): # stop for stuff in front of you and low speed, even without model confirmation # Radar points closer than 0.75, are almost always glitches on toyota radars return abs(self.yRel) < 1.0 and (v_ego < V_EGO_STATIONARY) and (0.75 < self.dRel < 25) def is_potential_fcw(self, model_prob: float): return model_prob > .9 def __str__(self): ret = f"x: {self.dRel:4.1f} y: {self.yRel:4.1f} v: {self.vRel:4.1f} a: {self.aLeadK:4.1f}" return ret def laplacian_pdf(x: float, mu: float, b: float): b = max(b, 1e-4) return math.exp(-abs(x-mu)/b) def match_vision_to_track(v_ego: float, lead: capnp._DynamicStructReader, tracks: dict[int, Track]): offset_vision_dist = lead.x[0] - RADAR_TO_CAMERA def prob(c): prob_d = laplacian_pdf(c.dRel, offset_vision_dist, lead.xStd[0]) prob_y = laplacian_pdf(c.yRel, -lead.y[0], lead.yStd[0]) prob_v = laplacian_pdf(c.vRel + v_ego, lead.v[0], lead.vStd[0]) # This isn't exactly right, but it's a good heuristic return prob_d * prob_y * prob_v track = max(tracks.values(), key=prob) # if no 'sane' match is found return -1 # stationary radar points can be false positives dist_sane = abs(track.dRel - offset_vision_dist) < max([(offset_vision_dist)*.25, 5.0]) vel_sane = (abs(track.vRel + v_ego - lead.v[0]) < 10) or (v_ego + track.vRel > 3) if dist_sane and vel_sane: return track else: return None def get_RadarState_from_vision(lead_msg: capnp._DynamicStructReader, v_ego: float, model_v_ego: float): lead_v_rel_pred = lead_msg.v[0] - model_v_ego return { "dRel": float(lead_msg.x[0] - RADAR_TO_CAMERA), "yRel": float(-lead_msg.y[0]), "vRel": float(lead_v_rel_pred), "vLead": float(v_ego + lead_v_rel_pred), "vLeadK": float(v_ego + lead_v_rel_pred), "aLeadK": 0.0, "aLeadTau": 0.3, "fcw": False, "modelProb": float(lead_msg.prob), "status": True, "radar": False, "radarTrackId": -1, } def get_lead(v_ego: float, ready: bool, tracks: dict[int, Track], lead_msg: capnp._DynamicStructReader, model_v_ego: float, low_speed_override: bool = True) -> dict[str, Any]: # Determine leads, this is where the essential logic happens if len(tracks) > 0 and ready and lead_msg.prob > .5: track = match_vision_to_track(v_ego, lead_msg, tracks) else: track = None lead_dict = {'status': False} if track is not None: lead_dict = track.get_RadarState(lead_msg.prob) elif (track is None) and ready and (lead_msg.prob > .5): lead_dict = get_RadarState_from_vision(lead_msg, v_ego, model_v_ego) if low_speed_override: low_speed_tracks = [c for c in tracks.values() if c.potential_low_speed_lead(v_ego)] if len(low_speed_tracks) > 0: closest_track = min(low_speed_tracks, key=lambda c: c.dRel) # Only choose new track if it is actually closer than the previous one if (not lead_dict['status']) or (closest_track.dRel < lead_dict['dRel']): lead_dict = closest_track.get_RadarState() return lead_dict class RadarD: def __init__(self, radar_ts: float, delay: int = 0): self.current_time = 0.0 self.tracks: dict[int, Track] = {} self.kalman_params = KalmanParams(radar_ts) self.v_ego = 0.0 self.v_ego_hist = deque([0.0], maxlen=delay+1) self.last_v_ego_frame = -1 self.radar_state: capnp._DynamicStructBuilder | None = None self.radar_state_valid = False self.ready = False def update(self, sm: messaging.SubMaster, rr): self.ready = sm.seen['modelV2'] self.current_time = 1e-9*max(sm.logMonoTime.values()) radar_points = [] radar_errors = [] if rr is not None: radar_points = rr.points radar_errors = rr.errors if sm.recv_frame['carState'] != self.last_v_ego_frame: self.v_ego = sm['carState'].vEgo self.v_ego_hist.append(self.v_ego) self.last_v_ego_frame = sm.recv_frame['carState'] ar_pts = {} for pt in radar_points: ar_pts[pt.trackId] = [pt.dRel, pt.yRel, pt.vRel, pt.measured] # *** remove missing points from meta data *** for ids in list(self.tracks.keys()): if ids not in ar_pts: self.tracks.pop(ids, None) # *** compute the tracks *** for ids in ar_pts: rpt = ar_pts[ids] # align v_ego by a fixed time to align it with the radar measurement v_lead = rpt[2] + self.v_ego_hist[0] # create the track if it doesn't exist or it's a new track if ids not in self.tracks: self.tracks[ids] = Track(ids, v_lead, self.kalman_params) self.tracks[ids].update(rpt[0], rpt[1], rpt[2], v_lead, rpt[3]) # *** publish radarState *** self.radar_state_valid = sm.all_checks() and len(radar_errors) == 0 self.radar_state = log.RadarState.new_message() self.radar_state.mdMonoTime = sm.logMonoTime['modelV2'] self.radar_state.radarErrors = list(radar_errors) self.radar_state.carStateMonoTime = sm.logMonoTime['carState'] if len(sm['modelV2'].temporalPose.trans): model_v_ego = sm['modelV2'].temporalPose.trans[0] else: model_v_ego = self.v_ego leads_v3 = sm['modelV2'].leadsV3 if len(leads_v3) > 1: self.radar_state.leadOne = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[0], model_v_ego, low_speed_override=True) self.radar_state.leadTwo = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[1], model_v_ego, low_speed_override=False) def publish(self, pm: messaging.PubMaster, lag_ms: float): assert self.radar_state is not None radar_msg = messaging.new_message("radarState") radar_msg.valid = self.radar_state_valid radar_msg.radarState = self.radar_state radar_msg.radarState.cumLagMs = lag_ms pm.send("radarState", radar_msg) # publish tracks for UI debugging (keep last) tracks_msg = messaging.new_message('liveTracks', len(self.tracks)) tracks_msg.valid = self.radar_state_valid for index, tid in enumerate(sorted(self.tracks.keys())): tracks_msg.liveTracks[index] = { "trackId": tid, "dRel": float(self.tracks[tid].dRel), "yRel": float(self.tracks[tid].yRel), "vRel": float(self.tracks[tid].vRel), } pm.send('liveTracks', tracks_msg) # fuses camera and radar data for best lead detection def main(): config_realtime_process(5, Priority.CTRL_LOW) # wait for stats about the car to come in from controls cloudlog.info("radard is waiting for CarParams") with car.CarParams.from_bytes(Params().get("CarParams", block=True)) as msg: CP = msg cloudlog.info("radard got CarParams") # import the radar from the fingerprint cloudlog.info("radard is importing %s", CP.carName) RadarInterface = importlib.import_module(f'selfdrive.car.{CP.carName}.radar_interface').RadarInterface # *** setup messaging can_sock = messaging.sub_sock('can') sm = messaging.SubMaster(['modelV2', 'carState'], frequency=int(1./DT_CTRL)) pm = messaging.PubMaster(['radarState', 'liveTracks']) RI = RadarInterface(CP) rk = Ratekeeper(1.0 / CP.radarTimeStep, print_delay_threshold=None) RD = RadarD(CP.radarTimeStep, RI.delay) while 1: can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True) rr = RI.update(can_strings) sm.update(0) if rr is None: continue RD.update(sm, rr) RD.publish(pm, -rk.remaining*1000.0) rk.monitor_time() if __name__ == "__main__": main()
2301_81045437/openpilot
selfdrive/controls/radard.py
Python
mit
11,290
Import('env', 'arch', 'common', 'cereal', 'messaging', 'rednose', 'transformations') loc_libs = [cereal, messaging, 'zmq', common, 'capnp', 'kj', 'pthread', 'dl'] # build ekf models rednose_gen_dir = 'models/generated' rednose_gen_deps = [ "models/constants.py", ] live_ekf = env.RednoseCompileFilter( target='live', filter_gen_script='models/live_kf.py', output_dir=rednose_gen_dir, extra_gen_artifacts=['live_kf_constants.h'], gen_script_deps=rednose_gen_deps, ) car_ekf = env.RednoseCompileFilter( target='car', filter_gen_script='models/car_kf.py', output_dir=rednose_gen_dir, extra_gen_artifacts=[], gen_script_deps=rednose_gen_deps, ) # locationd build locationd_sources = ["locationd.cc", "models/live_kf.cc"] lenv = env.Clone() # ekf filter libraries need to be linked, even if no symbols are used if arch != "Darwin": lenv["LINKFLAGS"] += ["-Wl,--no-as-needed"] lenv["LIBPATH"].append(Dir(rednose_gen_dir).abspath) lenv["RPATH"].append(Dir(rednose_gen_dir).abspath) locationd = lenv.Program("locationd", locationd_sources, LIBS=["live", "ekf_sym"] + loc_libs + transformations) lenv.Depends(locationd, rednose) lenv.Depends(locationd, live_ekf)
2301_81045437/openpilot
selfdrive/locationd/SConscript
Python
mit
1,183
#!/usr/bin/env python3 ''' This process finds calibration values. More info on what these calibration values are can be found here https://github.com/commaai/openpilot/tree/master/common/transformations While the roll calibration is a real value that can be estimated, here we assume it's zero, and the image input into the neural network is not corrected for roll. ''' import gc import os import capnp import numpy as np from typing import NoReturn from cereal import log import cereal.messaging as messaging from openpilot.common.conversions import Conversions as CV from openpilot.common.params import Params from openpilot.common.realtime import set_realtime_priority from openpilot.common.transformations.orientation import rot_from_euler, euler_from_rot from openpilot.common.swaglog import cloudlog MIN_SPEED_FILTER = 15 * CV.MPH_TO_MS MAX_VEL_ANGLE_STD = np.radians(0.25) MAX_YAW_RATE_FILTER = np.radians(2) # per second MAX_HEIGHT_STD = np.exp(-3.5) # This is at model frequency, blocks needed for efficiency SMOOTH_CYCLES = 10 BLOCK_SIZE = 100 INPUTS_NEEDED = 5 # Minimum blocks needed for valid calibration INPUTS_WANTED = 50 # We want a little bit more than we need for stability MAX_ALLOWED_YAW_SPREAD = np.radians(2) MAX_ALLOWED_PITCH_SPREAD = np.radians(4) RPY_INIT = np.array([0.0,0.0,0.0]) WIDE_FROM_DEVICE_EULER_INIT = np.array([0.0, 0.0, 0.0]) HEIGHT_INIT = np.array([1.22]) # These values are needed to accommodate the model frame in the narrow cam of the C3 PITCH_LIMITS = np.array([-0.09074112085129739, 0.17]) YAW_LIMITS = np.array([-0.06912048084718224, 0.06912048084718235]) DEBUG = os.getenv("DEBUG") is not None def is_calibration_valid(rpy: np.ndarray) -> bool: return (PITCH_LIMITS[0] < rpy[1] < PITCH_LIMITS[1]) and (YAW_LIMITS[0] < rpy[2] < YAW_LIMITS[1]) # type: ignore def sanity_clip(rpy: np.ndarray) -> np.ndarray: if np.isnan(rpy).any(): rpy = RPY_INIT return np.array([rpy[0], np.clip(rpy[1], PITCH_LIMITS[0] - .005, PITCH_LIMITS[1] + .005), np.clip(rpy[2], YAW_LIMITS[0] - .005, YAW_LIMITS[1] + .005)]) def moving_avg_with_linear_decay(prev_mean: np.ndarray, new_val: np.ndarray, idx: int, block_size: float) -> np.ndarray: return (idx*prev_mean + (block_size - idx) * new_val) / block_size class Calibrator: def __init__(self, param_put: bool = False): self.param_put = param_put self.not_car = False # Read saved calibration self.params = Params() calibration_params = self.params.get("CalibrationParams") rpy_init = RPY_INIT wide_from_device_euler = WIDE_FROM_DEVICE_EULER_INIT height = HEIGHT_INIT valid_blocks = 0 self.cal_status = log.LiveCalibrationData.Status.uncalibrated if param_put and calibration_params: try: with log.Event.from_bytes(calibration_params) as msg: rpy_init = np.array(msg.liveCalibration.rpyCalib) valid_blocks = msg.liveCalibration.validBlocks wide_from_device_euler = np.array(msg.liveCalibration.wideFromDeviceEuler) height = np.array(msg.liveCalibration.height) except Exception: cloudlog.exception("Error reading cached CalibrationParams") self.reset(rpy_init, valid_blocks, wide_from_device_euler, height) self.update_status() def reset(self, rpy_init: np.ndarray = RPY_INIT, valid_blocks: int = 0, wide_from_device_euler_init: np.ndarray = WIDE_FROM_DEVICE_EULER_INIT, height_init: np.ndarray = HEIGHT_INIT, smooth_from: np.ndarray = None) -> None: if not np.isfinite(rpy_init).all(): self.rpy = RPY_INIT.copy() else: self.rpy = rpy_init.copy() if not np.isfinite(height_init).all() or len(height_init) != 1: self.height = HEIGHT_INIT.copy() else: self.height = height_init.copy() if not np.isfinite(wide_from_device_euler_init).all() or len(wide_from_device_euler_init) != 3: self.wide_from_device_euler = WIDE_FROM_DEVICE_EULER_INIT.copy() else: self.wide_from_device_euler = wide_from_device_euler_init.copy() if not np.isfinite(valid_blocks) or valid_blocks < 0: self.valid_blocks = 0 else: self.valid_blocks = valid_blocks self.rpys = np.tile(self.rpy, (INPUTS_WANTED, 1)) self.wide_from_device_eulers = np.tile(self.wide_from_device_euler, (INPUTS_WANTED, 1)) self.heights = np.tile(self.height, (INPUTS_WANTED, 1)) self.idx = 0 self.block_idx = 0 self.v_ego = 0.0 if smooth_from is None: self.old_rpy = RPY_INIT self.old_rpy_weight = 0.0 else: self.old_rpy = smooth_from self.old_rpy_weight = 1.0 def get_valid_idxs(self) -> list[int]: # exclude current block_idx from validity window before_current = list(range(self.block_idx)) after_current = list(range(min(self.valid_blocks, self.block_idx + 1), self.valid_blocks)) return before_current + after_current def update_status(self) -> None: valid_idxs = self.get_valid_idxs() if valid_idxs: self.wide_from_device_euler = np.mean(self.wide_from_device_eulers[valid_idxs], axis=0) self.height = np.mean(self.heights[valid_idxs], axis=0) rpys = self.rpys[valid_idxs] self.rpy = np.mean(rpys, axis=0) max_rpy_calib = np.array(np.max(rpys, axis=0)) min_rpy_calib = np.array(np.min(rpys, axis=0)) self.calib_spread = np.abs(max_rpy_calib - min_rpy_calib) else: self.calib_spread = np.zeros(3) if self.valid_blocks < INPUTS_NEEDED: if self.cal_status == log.LiveCalibrationData.Status.recalibrating: self.cal_status = log.LiveCalibrationData.Status.recalibrating else: self.cal_status = log.LiveCalibrationData.Status.uncalibrated elif is_calibration_valid(self.rpy): self.cal_status = log.LiveCalibrationData.Status.calibrated else: self.cal_status = log.LiveCalibrationData.Status.invalid # If spread is too high, assume mounting was changed and reset to last block. # Make the transition smooth. Abrupt transitions are not good for feedback loop through supercombo model. # TODO: add height spread check with smooth transition too spread_too_high = self.calib_spread[1] > MAX_ALLOWED_PITCH_SPREAD or self.calib_spread[2] > MAX_ALLOWED_YAW_SPREAD if spread_too_high and self.cal_status == log.LiveCalibrationData.Status.calibrated: self.reset(self.rpys[self.block_idx - 1], valid_blocks=1, smooth_from=self.rpy) self.cal_status = log.LiveCalibrationData.Status.recalibrating write_this_cycle = (self.idx == 0) and (self.block_idx % (INPUTS_WANTED//5) == 5) if self.param_put and write_this_cycle: self.params.put_nonblocking("CalibrationParams", self.get_msg(True).to_bytes()) def handle_v_ego(self, v_ego: float) -> None: self.v_ego = v_ego def get_smooth_rpy(self) -> np.ndarray: if self.old_rpy_weight > 0: return self.old_rpy_weight * self.old_rpy + (1.0 - self.old_rpy_weight) * self.rpy else: return self.rpy def handle_cam_odom(self, trans: list[float], rot: list[float], wide_from_device_euler: list[float], trans_std: list[float], road_transform_trans: list[float], road_transform_trans_std: list[float]) -> np.ndarray | None: self.old_rpy_weight = max(0.0, self.old_rpy_weight - 1/SMOOTH_CYCLES) straight_and_fast = ((self.v_ego > MIN_SPEED_FILTER) and (trans[0] > MIN_SPEED_FILTER) and (abs(rot[2]) < MAX_YAW_RATE_FILTER)) angle_std_threshold = MAX_VEL_ANGLE_STD height_std_threshold = MAX_HEIGHT_STD rpy_certain = np.arctan2(trans_std[1], trans[0]) < angle_std_threshold if len(road_transform_trans_std) == 3: height_certain = road_transform_trans_std[2] < height_std_threshold else: height_certain = True certain_if_calib = (rpy_certain and height_certain) or (self.valid_blocks < INPUTS_NEEDED) if not (straight_and_fast and certain_if_calib): return None observed_rpy = np.array([0, -np.arctan2(trans[2], trans[0]), np.arctan2(trans[1], trans[0])]) new_rpy = euler_from_rot(rot_from_euler(self.get_smooth_rpy()).dot(rot_from_euler(observed_rpy))) new_rpy = sanity_clip(new_rpy) if len(wide_from_device_euler) == 3: new_wide_from_device_euler = np.array(wide_from_device_euler) else: new_wide_from_device_euler = WIDE_FROM_DEVICE_EULER_INIT if (len(road_transform_trans) == 3): new_height = np.array([road_transform_trans[2]]) else: new_height = HEIGHT_INIT self.rpys[self.block_idx] = moving_avg_with_linear_decay(self.rpys[self.block_idx], new_rpy, self.idx, float(BLOCK_SIZE)) self.wide_from_device_eulers[self.block_idx] = moving_avg_with_linear_decay(self.wide_from_device_eulers[self.block_idx], new_wide_from_device_euler, self.idx, float(BLOCK_SIZE)) self.heights[self.block_idx] = moving_avg_with_linear_decay(self.heights[self.block_idx], new_height, self.idx, float(BLOCK_SIZE)) self.idx = (self.idx + 1) % BLOCK_SIZE if self.idx == 0: self.block_idx += 1 self.valid_blocks = max(self.block_idx, self.valid_blocks) self.block_idx = self.block_idx % INPUTS_WANTED self.update_status() return new_rpy def get_msg(self, valid: bool) -> capnp.lib.capnp._DynamicStructBuilder: smooth_rpy = self.get_smooth_rpy() msg = messaging.new_message('liveCalibration') msg.valid = valid liveCalibration = msg.liveCalibration liveCalibration.validBlocks = self.valid_blocks liveCalibration.calStatus = self.cal_status liveCalibration.calPerc = min(100 * (self.valid_blocks * BLOCK_SIZE + self.idx) // (INPUTS_NEEDED * BLOCK_SIZE), 100) liveCalibration.rpyCalib = smooth_rpy.tolist() liveCalibration.rpyCalibSpread = self.calib_spread.tolist() liveCalibration.wideFromDeviceEuler = self.wide_from_device_euler.tolist() liveCalibration.height = self.height.tolist() if self.not_car: liveCalibration.validBlocks = INPUTS_NEEDED liveCalibration.calStatus = log.LiveCalibrationData.Status.calibrated liveCalibration.calPerc = 100. liveCalibration.rpyCalib = [0, 0, 0] liveCalibration.rpyCalibSpread = self.calib_spread.tolist() return msg def send_data(self, pm: messaging.PubMaster, valid: bool) -> None: pm.send('liveCalibration', self.get_msg(valid)) def main() -> NoReturn: gc.disable() set_realtime_priority(1) pm = messaging.PubMaster(['liveCalibration']) sm = messaging.SubMaster(['cameraOdometry', 'carState', 'carParams'], poll='cameraOdometry') calibrator = Calibrator(param_put=True) while 1: timeout = 0 if sm.frame == -1 else 100 sm.update(timeout) calibrator.not_car = sm['carParams'].notCar if sm.updated['cameraOdometry']: calibrator.handle_v_ego(sm['carState'].vEgo) new_rpy = calibrator.handle_cam_odom(sm['cameraOdometry'].trans, sm['cameraOdometry'].rot, sm['cameraOdometry'].wideFromDeviceEuler, sm['cameraOdometry'].transStd, sm['cameraOdometry'].roadTransformTrans, sm['cameraOdometry'].roadTransformTransStd) if DEBUG and new_rpy is not None: print('got new rpy', new_rpy) # 4Hz driven by cameraOdometry if sm.frame % 5 == 0: calibrator.send_data(pm, sm.all_checks()) if __name__ == "__main__": main()
2301_81045437/openpilot
selfdrive/locationd/calibrationd.py
Python
mit
11,815
import numpy as np from typing import Any from cereal import log class NPQueue: def __init__(self, maxlen: int, rowsize: int) -> None: self.maxlen = maxlen self.arr = np.empty((0, rowsize)) def __len__(self) -> int: return len(self.arr) def append(self, pt: list[float]) -> None: if len(self.arr) < self.maxlen: self.arr = np.append(self.arr, [pt], axis=0) else: self.arr[:-1] = self.arr[1:] self.arr[-1] = pt class PointBuckets: def __init__(self, x_bounds: list[tuple[float, float]], min_points: list[float], min_points_total: int, points_per_bucket: int, rowsize: int) -> None: self.x_bounds = x_bounds self.buckets = {bounds: NPQueue(maxlen=points_per_bucket, rowsize=rowsize) for bounds in x_bounds} self.buckets_min_points = dict(zip(x_bounds, min_points, strict=True)) self.min_points_total = min_points_total def __len__(self) -> int: return sum([len(v) for v in self.buckets.values()]) def is_valid(self) -> bool: individual_buckets_valid = all(len(v) >= min_pts for v, min_pts in zip(self.buckets.values(), self.buckets_min_points.values(), strict=True)) total_points_valid = self.__len__() >= self.min_points_total return individual_buckets_valid and total_points_valid def is_calculable(self) -> bool: return all(len(v) > 0 for v in self.buckets.values()) def add_point(self, x: float, y: float, bucket_val: float) -> None: raise NotImplementedError def get_points(self, num_points: int = None) -> Any: points = np.vstack([x.arr for x in self.buckets.values()]) if num_points is None: return points return points[np.random.choice(np.arange(len(points)), min(len(points), num_points), replace=False)] def load_points(self, points: list[list[float]]) -> None: for point in points: self.add_point(*point) class ParameterEstimator: """ Base class for parameter estimators """ def reset(self) -> None: raise NotImplementedError def handle_log(self, t: int, which: str, msg: log.Event) -> None: raise NotImplementedError def get_msg(self, valid: bool, with_points: bool) -> log.Event: raise NotImplementedError
2301_81045437/openpilot
selfdrive/locationd/helpers.py
Python
mit
2,180
#include "selfdrive/locationd/locationd.h" #include <sys/time.h> #include <sys/resource.h> #include <algorithm> #include <cmath> #include <vector> using namespace EKFS; using namespace Eigen; ExitHandler do_exit; const double ACCEL_SANITY_CHECK = 100.0; // m/s^2 const double ROTATION_SANITY_CHECK = 10.0; // rad/s const double TRANS_SANITY_CHECK = 200.0; // m/s const double CALIB_RPY_SANITY_CHECK = 0.5; // rad (+- 30 deg) const double ALTITUDE_SANITY_CHECK = 10000; // m const double MIN_STD_SANITY_CHECK = 1e-5; // m or rad const double VALID_TIME_SINCE_RESET = 1.0; // s const double VALID_POS_STD = 50.0; // m const double MAX_RESET_TRACKER = 5.0; const double SANE_GPS_UNCERTAINTY = 1500.0; // m const double INPUT_INVALID_THRESHOLD = 0.5; // same as reset tracker const double RESET_TRACKER_DECAY = 0.99995; const double DECAY = 0.9993; // ~10 secs to resume after a bad input const double MAX_FILTER_REWIND_TIME = 0.8; // s const double YAWRATE_CROSS_ERR_CHECK_FACTOR = 30; // TODO: GPS sensor time offsets are empirically calculated // They should be replaced with synced time from a real clock const double GPS_QUECTEL_SENSOR_TIME_OFFSET = 0.630; // s const double GPS_UBLOX_SENSOR_TIME_OFFSET = 0.095; // s const float GPS_POS_STD_THRESHOLD = 50.0; const float GPS_VEL_STD_THRESHOLD = 5.0; const float GPS_POS_ERROR_RESET_THRESHOLD = 300.0; const float GPS_POS_STD_RESET_THRESHOLD = 2.0; const float GPS_VEL_STD_RESET_THRESHOLD = 0.5; const float GPS_ORIENTATION_ERROR_RESET_THRESHOLD = 1.0; const int GPS_ORIENTATION_ERROR_RESET_CNT = 3; const bool DEBUG = getenv("DEBUG") != nullptr && std::string(getenv("DEBUG")) != "0"; static VectorXd floatlist2vector(const capnp::List<float, capnp::Kind::PRIMITIVE>::Reader& floatlist) { VectorXd res(floatlist.size()); for (int i = 0; i < floatlist.size(); i++) { res[i] = floatlist[i]; } return res; } static Vector4d quat2vector(const Quaterniond& quat) { return Vector4d(quat.w(), quat.x(), quat.y(), quat.z()); } static Quaterniond vector2quat(const VectorXd& vec) { return Quaterniond(vec(0), vec(1), vec(2), vec(3)); } static void init_measurement(cereal::LiveLocationKalman::Measurement::Builder meas, const VectorXd& val, const VectorXd& std, bool valid) { meas.setValue(kj::arrayPtr(val.data(), val.size())); meas.setStd(kj::arrayPtr(std.data(), std.size())); meas.setValid(valid); } static MatrixXdr rotate_cov(const MatrixXdr& rot_matrix, const MatrixXdr& cov_in) { // To rotate a covariance matrix, the cov matrix needs to multiplied left and right by the transform matrix return ((rot_matrix * cov_in) * rot_matrix.transpose()); } static VectorXd rotate_std(const MatrixXdr& rot_matrix, const VectorXd& std_in) { // Stds cannot be rotated like values, only covariances can be rotated return rotate_cov(rot_matrix, std_in.array().square().matrix().asDiagonal()).diagonal().array().sqrt(); } Localizer::Localizer(LocalizerGnssSource gnss_source) { this->kf = std::make_unique<LiveKalman>(); this->reset_kalman(); this->calib = Vector3d(0.0, 0.0, 0.0); this->device_from_calib = MatrixXdr::Identity(3, 3); this->calib_from_device = MatrixXdr::Identity(3, 3); for (int i = 0; i < POSENET_STD_HIST_HALF * 2; i++) { this->posenet_stds.push_back(10.0); } VectorXd ecef_pos = this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START); this->converter = std::make_unique<LocalCoord>((ECEF) { .x = ecef_pos[0], .y = ecef_pos[1], .z = ecef_pos[2] }); this->configure_gnss_source(gnss_source); } void Localizer::build_live_location(cereal::LiveLocationKalman::Builder& fix) { VectorXd predicted_state = this->kf->get_x(); MatrixXdr predicted_cov = this->kf->get_P(); VectorXd predicted_std = predicted_cov.diagonal().array().sqrt(); VectorXd fix_ecef = predicted_state.segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START); ECEF fix_ecef_ecef = { .x = fix_ecef(0), .y = fix_ecef(1), .z = fix_ecef(2) }; VectorXd fix_ecef_std = predicted_std.segment<STATE_ECEF_POS_ERR_LEN>(STATE_ECEF_POS_ERR_START); VectorXd vel_ecef = predicted_state.segment<STATE_ECEF_VELOCITY_LEN>(STATE_ECEF_VELOCITY_START); VectorXd vel_ecef_std = predicted_std.segment<STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START); VectorXd fix_pos_geo_vec = this->get_position_geodetic(); VectorXd orientation_ecef = quat2euler(vector2quat(predicted_state.segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START))); VectorXd orientation_ecef_std = predicted_std.segment<STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START); MatrixXdr orientation_ecef_cov = predicted_cov.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_ORIENTATION_ERR_START); MatrixXdr device_from_ecef = euler2rot(orientation_ecef).transpose(); VectorXd calibrated_orientation_ecef = rot2euler((this->calib_from_device * device_from_ecef).transpose()); VectorXd acc_calib = this->calib_from_device * predicted_state.segment<STATE_ACCELERATION_LEN>(STATE_ACCELERATION_START); MatrixXdr acc_calib_cov = predicted_cov.block<STATE_ACCELERATION_ERR_LEN, STATE_ACCELERATION_ERR_LEN>(STATE_ACCELERATION_ERR_START, STATE_ACCELERATION_ERR_START); VectorXd acc_calib_std = rotate_cov(this->calib_from_device, acc_calib_cov).diagonal().array().sqrt(); VectorXd ang_vel_calib = this->calib_from_device * predicted_state.segment<STATE_ANGULAR_VELOCITY_LEN>(STATE_ANGULAR_VELOCITY_START); MatrixXdr vel_angular_cov = predicted_cov.block<STATE_ANGULAR_VELOCITY_ERR_LEN, STATE_ANGULAR_VELOCITY_ERR_LEN>(STATE_ANGULAR_VELOCITY_ERR_START, STATE_ANGULAR_VELOCITY_ERR_START); VectorXd ang_vel_calib_std = rotate_cov(this->calib_from_device, vel_angular_cov).diagonal().array().sqrt(); VectorXd vel_device = device_from_ecef * vel_ecef; VectorXd device_from_ecef_eul = quat2euler(vector2quat(predicted_state.segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START))).transpose(); MatrixXdr condensed_cov(STATE_ECEF_ORIENTATION_ERR_LEN + STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN + STATE_ECEF_VELOCITY_ERR_LEN); condensed_cov.topLeftCorner<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>() = predicted_cov.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_ORIENTATION_ERR_START); condensed_cov.topRightCorner<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>() = predicted_cov.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_VELOCITY_ERR_START); condensed_cov.bottomRightCorner<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>() = predicted_cov.block<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START, STATE_ECEF_VELOCITY_ERR_START); condensed_cov.bottomLeftCorner<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>() = predicted_cov.block<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START, STATE_ECEF_ORIENTATION_ERR_START); VectorXd H_input(device_from_ecef_eul.size() + vel_ecef.size()); H_input << device_from_ecef_eul, vel_ecef; MatrixXdr HH = this->kf->H(H_input); MatrixXdr vel_device_cov = (HH * condensed_cov) * HH.transpose(); VectorXd vel_device_std = vel_device_cov.diagonal().array().sqrt(); VectorXd vel_calib = this->calib_from_device * vel_device; VectorXd vel_calib_std = rotate_cov(this->calib_from_device, vel_device_cov).diagonal().array().sqrt(); VectorXd orientation_ned = ned_euler_from_ecef(fix_ecef_ecef, orientation_ecef); VectorXd orientation_ned_std = rotate_cov(this->converter->ecef2ned_matrix, orientation_ecef_cov).diagonal().array().sqrt(); VectorXd calibrated_orientation_ned = ned_euler_from_ecef(fix_ecef_ecef, calibrated_orientation_ecef); VectorXd nextfix_ecef = fix_ecef + vel_ecef; VectorXd ned_vel = this->converter->ecef2ned((ECEF) { .x = nextfix_ecef(0), .y = nextfix_ecef(1), .z = nextfix_ecef(2) }).to_vector() - converter->ecef2ned(fix_ecef_ecef).to_vector(); VectorXd accDevice = predicted_state.segment<STATE_ACCELERATION_LEN>(STATE_ACCELERATION_START); VectorXd accDeviceErr = predicted_std.segment<STATE_ACCELERATION_ERR_LEN>(STATE_ACCELERATION_ERR_START); VectorXd angVelocityDevice = predicted_state.segment<STATE_ANGULAR_VELOCITY_LEN>(STATE_ANGULAR_VELOCITY_START); VectorXd angVelocityDeviceErr = predicted_std.segment<STATE_ANGULAR_VELOCITY_ERR_LEN>(STATE_ANGULAR_VELOCITY_ERR_START); Vector3d nans = Vector3d(NAN, NAN, NAN); // TODO fill in NED and Calibrated stds // write measurements to msg init_measurement(fix.initPositionGeodetic(), fix_pos_geo_vec, nans, this->gps_mode); init_measurement(fix.initPositionECEF(), fix_ecef, fix_ecef_std, this->gps_mode); init_measurement(fix.initVelocityECEF(), vel_ecef, vel_ecef_std, this->gps_mode); init_measurement(fix.initVelocityNED(), ned_vel, nans, this->gps_mode); init_measurement(fix.initVelocityDevice(), vel_device, vel_device_std, true); init_measurement(fix.initAccelerationDevice(), accDevice, accDeviceErr, true); init_measurement(fix.initOrientationECEF(), orientation_ecef, orientation_ecef_std, this->gps_mode); init_measurement(fix.initCalibratedOrientationECEF(), calibrated_orientation_ecef, nans, this->calibrated && this->gps_mode); init_measurement(fix.initOrientationNED(), orientation_ned, orientation_ned_std, this->gps_mode); init_measurement(fix.initCalibratedOrientationNED(), calibrated_orientation_ned, nans, this->calibrated && this->gps_mode); init_measurement(fix.initAngularVelocityDevice(), angVelocityDevice, angVelocityDeviceErr, true); init_measurement(fix.initVelocityCalibrated(), vel_calib, vel_calib_std, this->calibrated); init_measurement(fix.initAngularVelocityCalibrated(), ang_vel_calib, ang_vel_calib_std, this->calibrated); init_measurement(fix.initAccelerationCalibrated(), acc_calib, acc_calib_std, this->calibrated); if (DEBUG) { init_measurement(fix.initFilterState(), predicted_state, predicted_std, true); } double old_mean = 0.0, new_mean = 0.0; int i = 0; for (double x : this->posenet_stds) { if (i < POSENET_STD_HIST_HALF) { old_mean += x; } else { new_mean += x; } i++; } old_mean /= POSENET_STD_HIST_HALF; new_mean /= POSENET_STD_HIST_HALF; // experimentally found these values, no false positives in 20k minutes of driving bool std_spike = (new_mean / old_mean > 4.0 && new_mean > 7.0); fix.setPosenetOK(!(std_spike && this->car_speed > 5.0)); fix.setDeviceStable(!this->device_fell); fix.setExcessiveResets(this->reset_tracker > MAX_RESET_TRACKER); fix.setTimeToFirstFix(std::isnan(this->ttff) ? -1. : this->ttff); this->device_fell = false; //fix.setGpsWeek(this->time.week); //fix.setGpsTimeOfWeek(this->time.tow); fix.setUnixTimestampMillis(this->unix_timestamp_millis); double time_since_reset = this->kf->get_filter_time() - this->last_reset_time; fix.setTimeSinceReset(time_since_reset); if (fix_ecef_std.norm() < VALID_POS_STD && this->calibrated && time_since_reset > VALID_TIME_SINCE_RESET) { fix.setStatus(cereal::LiveLocationKalman::Status::VALID); } else if (fix_ecef_std.norm() < VALID_POS_STD && time_since_reset > VALID_TIME_SINCE_RESET) { fix.setStatus(cereal::LiveLocationKalman::Status::UNCALIBRATED); } else { fix.setStatus(cereal::LiveLocationKalman::Status::UNINITIALIZED); } } VectorXd Localizer::get_position_geodetic() { VectorXd fix_ecef = this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START); ECEF fix_ecef_ecef = { .x = fix_ecef(0), .y = fix_ecef(1), .z = fix_ecef(2) }; Geodetic fix_pos_geo = ecef2geodetic(fix_ecef_ecef); return Vector3d(fix_pos_geo.lat, fix_pos_geo.lon, fix_pos_geo.alt); } VectorXd Localizer::get_state() { return this->kf->get_x(); } VectorXd Localizer::get_stdev() { return this->kf->get_P().diagonal().array().sqrt(); } bool Localizer::are_inputs_ok() { return this->critical_services_valid(this->observation_values_invalid) && !this->observation_timings_invalid; } void Localizer::observation_timings_invalid_reset(){ this->observation_timings_invalid = false; } void Localizer::handle_sensor(double current_time, const cereal::SensorEventData::Reader& log) { // TODO does not yet account for double sensor readings in the log // Ignore empty readings (e.g. in case the magnetometer had no data ready) if (log.getTimestamp() == 0) { return; } double sensor_time = 1e-9 * log.getTimestamp(); // sensor time and log time should be close if (std::abs(current_time - sensor_time) > 0.1) { LOGE("Sensor reading ignored, sensor timestamp more than 100ms off from log time"); this->observation_timings_invalid = true; return; } else if (!this->is_timestamp_valid(sensor_time)) { this->observation_timings_invalid = true; return; } // TODO: handle messages from two IMUs at the same time if (log.getSource() == cereal::SensorEventData::SensorSource::BMX055) { return; } // Gyro Uncalibrated if (log.getSensor() == SENSOR_GYRO_UNCALIBRATED && log.getType() == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) { auto v = log.getGyroUncalibrated().getV(); auto meas = Vector3d(-v[2], -v[1], -v[0]); VectorXd gyro_bias = this->kf->get_x().segment<STATE_GYRO_BIAS_LEN>(STATE_GYRO_BIAS_START); float gyro_camodo_yawrate_err = std::abs((meas[2] - gyro_bias[2]) - this->camodo_yawrate_distribution[0]); float gyro_camodo_yawrate_err_threshold = YAWRATE_CROSS_ERR_CHECK_FACTOR * this->camodo_yawrate_distribution[1]; bool gyro_valid = gyro_camodo_yawrate_err < gyro_camodo_yawrate_err_threshold; if ((meas.norm() < ROTATION_SANITY_CHECK) && gyro_valid) { this->kf->predict_and_observe(sensor_time, OBSERVATION_PHONE_GYRO, { meas }); this->observation_values_invalid["gyroscope"] *= DECAY; } else { this->observation_values_invalid["gyroscope"] += 1.0; } } // Accelerometer if (log.getSensor() == SENSOR_ACCELEROMETER && log.getType() == SENSOR_TYPE_ACCELEROMETER) { auto v = log.getAcceleration().getV(); // TODO: reduce false positives and re-enable this check // check if device fell, estimate 10 for g // 40m/s**2 is a good filter for falling detection, no false positives in 20k minutes of driving // this->device_fell |= (floatlist2vector(v) - Vector3d(10.0, 0.0, 0.0)).norm() > 40.0; auto meas = Vector3d(-v[2], -v[1], -v[0]); if (meas.norm() < ACCEL_SANITY_CHECK) { this->kf->predict_and_observe(sensor_time, OBSERVATION_PHONE_ACCEL, { meas }); this->observation_values_invalid["accelerometer"] *= DECAY; } else { this->observation_values_invalid["accelerometer"] += 1.0; } } } void Localizer::input_fake_gps_observations(double current_time) { // This is done to make sure that the error estimate of the position does not blow up // when the filter is in no-gps mode // Steps : first predict -> observe current obs with reasonable STD this->kf->predict(current_time); VectorXd current_x = this->kf->get_x(); VectorXd ecef_pos = current_x.segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START); VectorXd ecef_vel = current_x.segment<STATE_ECEF_VELOCITY_LEN>(STATE_ECEF_VELOCITY_START); const MatrixXdr &ecef_pos_R = this->kf->get_fake_gps_pos_cov(); const MatrixXdr &ecef_vel_R = this->kf->get_fake_gps_vel_cov(); this->kf->predict_and_observe(current_time, OBSERVATION_ECEF_POS, { ecef_pos }, { ecef_pos_R }); this->kf->predict_and_observe(current_time, OBSERVATION_ECEF_VEL, { ecef_vel }, { ecef_vel_R }); } void Localizer::handle_gps(double current_time, const cereal::GpsLocationData::Reader& log, const double sensor_time_offset) { bool gps_unreasonable = (Vector2d(log.getHorizontalAccuracy(), log.getVerticalAccuracy()).norm() >= SANE_GPS_UNCERTAINTY); bool gps_accuracy_insane = ((log.getVerticalAccuracy() <= 0) || (log.getSpeedAccuracy() <= 0) || (log.getBearingAccuracyDeg() <= 0)); bool gps_lat_lng_alt_insane = ((std::abs(log.getLatitude()) > 90) || (std::abs(log.getLongitude()) > 180) || (std::abs(log.getAltitude()) > ALTITUDE_SANITY_CHECK)); bool gps_vel_insane = (floatlist2vector(log.getVNED()).norm() > TRANS_SANITY_CHECK); if (!log.getHasFix() || gps_unreasonable || gps_accuracy_insane || gps_lat_lng_alt_insane || gps_vel_insane) { //this->gps_valid = false; this->determine_gps_mode(current_time); return; } double sensor_time = current_time - sensor_time_offset; // Process message //this->gps_valid = true; this->gps_mode = true; Geodetic geodetic = { log.getLatitude(), log.getLongitude(), log.getAltitude() }; this->converter = std::make_unique<LocalCoord>(geodetic); VectorXd ecef_pos = this->converter->ned2ecef({ 0.0, 0.0, 0.0 }).to_vector(); VectorXd ecef_vel = this->converter->ned2ecef({ log.getVNED()[0], log.getVNED()[1], log.getVNED()[2] }).to_vector() - ecef_pos; float ecef_pos_std = std::sqrt(this->gps_variance_factor * std::pow(log.getHorizontalAccuracy(), 2) + this->gps_vertical_variance_factor * std::pow(log.getVerticalAccuracy(), 2)); MatrixXdr ecef_pos_R = Vector3d::Constant(std::pow(this->gps_std_factor * ecef_pos_std, 2)).asDiagonal(); MatrixXdr ecef_vel_R = Vector3d::Constant(std::pow(this->gps_std_factor * log.getSpeedAccuracy(), 2)).asDiagonal(); this->unix_timestamp_millis = log.getUnixTimestampMillis(); double gps_est_error = (this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START) - ecef_pos).norm(); VectorXd orientation_ecef = quat2euler(vector2quat(this->kf->get_x().segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START))); VectorXd orientation_ned = ned_euler_from_ecef({ ecef_pos(0), ecef_pos(1), ecef_pos(2) }, orientation_ecef); VectorXd orientation_ned_gps = Vector3d(0.0, 0.0, DEG2RAD(log.getBearingDeg())); VectorXd orientation_error = (orientation_ned - orientation_ned_gps).array() - M_PI; for (int i = 0; i < orientation_error.size(); i++) { orientation_error(i) = std::fmod(orientation_error(i), 2.0 * M_PI); if (orientation_error(i) < 0.0) { orientation_error(i) += 2.0 * M_PI; } orientation_error(i) -= M_PI; } VectorXd initial_pose_ecef_quat = quat2vector(euler2quat(ecef_euler_from_ned({ ecef_pos(0), ecef_pos(1), ecef_pos(2) }, orientation_ned_gps))); if (ecef_vel.norm() > 5.0 && orientation_error.norm() > 1.0) { LOGE("Locationd vs ubloxLocation orientation difference too large, kalman reset"); this->reset_kalman(NAN, initial_pose_ecef_quat, ecef_pos, ecef_vel, ecef_pos_R, ecef_vel_R); this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_ORIENTATION_FROM_GPS, { initial_pose_ecef_quat }); } else if (gps_est_error > 100.0) { LOGE("Locationd vs ubloxLocation position difference too large, kalman reset"); this->reset_kalman(NAN, initial_pose_ecef_quat, ecef_pos, ecef_vel, ecef_pos_R, ecef_vel_R); } this->last_gps_msg = sensor_time; this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_POS, { ecef_pos }, { ecef_pos_R }); this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_VEL, { ecef_vel }, { ecef_vel_R }); } void Localizer::handle_gnss(double current_time, const cereal::GnssMeasurements::Reader& log) { if (!log.getPositionECEF().getValid() || !log.getVelocityECEF().getValid()) { this->determine_gps_mode(current_time); return; } double sensor_time = log.getMeasTime() * 1e-9; sensor_time -= this->gps_time_offset; auto ecef_pos_v = log.getPositionECEF().getValue(); VectorXd ecef_pos = Vector3d(ecef_pos_v[0], ecef_pos_v[1], ecef_pos_v[2]); // indexed at 0 cause all std values are the same MAE auto ecef_pos_std = log.getPositionECEF().getStd()[0]; MatrixXdr ecef_pos_R = Vector3d::Constant(pow(this->gps_std_factor*ecef_pos_std, 2)).asDiagonal(); auto ecef_vel_v = log.getVelocityECEF().getValue(); VectorXd ecef_vel = Vector3d(ecef_vel_v[0], ecef_vel_v[1], ecef_vel_v[2]); // indexed at 0 cause all std values are the same MAE auto ecef_vel_std = log.getVelocityECEF().getStd()[0]; MatrixXdr ecef_vel_R = Vector3d::Constant(pow(this->gps_std_factor*ecef_vel_std, 2)).asDiagonal(); double gps_est_error = (this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START) - ecef_pos).norm(); VectorXd orientation_ecef = quat2euler(vector2quat(this->kf->get_x().segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START))); VectorXd orientation_ned = ned_euler_from_ecef({ ecef_pos[0], ecef_pos[1], ecef_pos[2] }, orientation_ecef); LocalCoord convs((ECEF){ .x = ecef_pos[0], .y = ecef_pos[1], .z = ecef_pos[2] }); ECEF next_ecef = {.x = ecef_pos[0] + ecef_vel[0], .y = ecef_pos[1] + ecef_vel[1], .z = ecef_pos[2] + ecef_vel[2]}; VectorXd ned_vel = convs.ecef2ned(next_ecef).to_vector(); double bearing_rad = atan2(ned_vel[1], ned_vel[0]); VectorXd orientation_ned_gps = Vector3d(0.0, 0.0, bearing_rad); VectorXd orientation_error = (orientation_ned - orientation_ned_gps).array() - M_PI; for (int i = 0; i < orientation_error.size(); i++) { orientation_error(i) = std::fmod(orientation_error(i), 2.0 * M_PI); if (orientation_error(i) < 0.0) { orientation_error(i) += 2.0 * M_PI; } orientation_error(i) -= M_PI; } VectorXd initial_pose_ecef_quat = quat2vector(euler2quat(ecef_euler_from_ned({ ecef_pos(0), ecef_pos(1), ecef_pos(2) }, orientation_ned_gps))); if (ecef_pos_std > GPS_POS_STD_THRESHOLD || ecef_vel_std > GPS_VEL_STD_THRESHOLD) { this->determine_gps_mode(current_time); return; } // prevent jumping gnss measurements (covered lots, standstill...) bool orientation_reset = ecef_vel_std < GPS_VEL_STD_RESET_THRESHOLD; orientation_reset &= orientation_error.norm() > GPS_ORIENTATION_ERROR_RESET_THRESHOLD; orientation_reset &= !this->standstill; if (orientation_reset) { this->orientation_reset_count++; } else { this->orientation_reset_count = 0; } if ((gps_est_error > GPS_POS_ERROR_RESET_THRESHOLD && ecef_pos_std < GPS_POS_STD_RESET_THRESHOLD) || this->last_gps_msg == 0) { // always reset on first gps message and if the location is off but the accuracy is high LOGE("Locationd vs gnssMeasurement position difference too large, kalman reset"); this->reset_kalman(NAN, initial_pose_ecef_quat, ecef_pos, ecef_vel, ecef_pos_R, ecef_vel_R); } else if (orientation_reset_count > GPS_ORIENTATION_ERROR_RESET_CNT) { LOGE("Locationd vs gnssMeasurement orientation difference too large, kalman reset"); this->reset_kalman(NAN, initial_pose_ecef_quat, ecef_pos, ecef_vel, ecef_pos_R, ecef_vel_R); this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_ORIENTATION_FROM_GPS, { initial_pose_ecef_quat }); this->orientation_reset_count = 0; } this->gps_mode = true; this->last_gps_msg = sensor_time; this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_POS, { ecef_pos }, { ecef_pos_R }); this->kf->predict_and_observe(sensor_time, OBSERVATION_ECEF_VEL, { ecef_vel }, { ecef_vel_R }); } void Localizer::handle_car_state(double current_time, const cereal::CarState::Reader& log) { this->car_speed = std::abs(log.getVEgo()); this->standstill = log.getStandstill(); if (this->standstill) { this->kf->predict_and_observe(current_time, OBSERVATION_NO_ROT, { Vector3d(0.0, 0.0, 0.0) }); this->kf->predict_and_observe(current_time, OBSERVATION_NO_ACCEL, { Vector3d(0.0, 0.0, 0.0) }); } } void Localizer::handle_cam_odo(double current_time, const cereal::CameraOdometry::Reader& log) { VectorXd rot_device = this->device_from_calib * floatlist2vector(log.getRot()); VectorXd trans_device = this->device_from_calib * floatlist2vector(log.getTrans()); if (!this->is_timestamp_valid(current_time)) { this->observation_timings_invalid = true; return; } if ((rot_device.norm() > ROTATION_SANITY_CHECK) || (trans_device.norm() > TRANS_SANITY_CHECK)) { this->observation_values_invalid["cameraOdometry"] += 1.0; return; } VectorXd rot_calib_std = floatlist2vector(log.getRotStd()); VectorXd trans_calib_std = floatlist2vector(log.getTransStd()); if ((rot_calib_std.minCoeff() <= MIN_STD_SANITY_CHECK) || (trans_calib_std.minCoeff() <= MIN_STD_SANITY_CHECK)) { this->observation_values_invalid["cameraOdometry"] += 1.0; return; } if ((rot_calib_std.norm() > 10 * ROTATION_SANITY_CHECK) || (trans_calib_std.norm() > 10 * TRANS_SANITY_CHECK)) { this->observation_values_invalid["cameraOdometry"] += 1.0; return; } this->posenet_stds.pop_front(); this->posenet_stds.push_back(trans_calib_std[0]); // Multiply by 10 to avoid to high certainty in kalman filter because of temporally correlated noise trans_calib_std *= 10.0; rot_calib_std *= 10.0; MatrixXdr rot_device_cov = rotate_std(this->device_from_calib, rot_calib_std).array().square().matrix().asDiagonal(); MatrixXdr trans_device_cov = rotate_std(this->device_from_calib, trans_calib_std).array().square().matrix().asDiagonal(); this->kf->predict_and_observe(current_time, OBSERVATION_CAMERA_ODO_ROTATION, { rot_device }, { rot_device_cov }); this->kf->predict_and_observe(current_time, OBSERVATION_CAMERA_ODO_TRANSLATION, { trans_device }, { trans_device_cov }); this->observation_values_invalid["cameraOdometry"] *= DECAY; this->camodo_yawrate_distribution = Vector2d(rot_device[2], rotate_std(this->device_from_calib, rot_calib_std)[2]); } void Localizer::handle_live_calib(double current_time, const cereal::LiveCalibrationData::Reader& log) { if (!this->is_timestamp_valid(current_time)) { this->observation_timings_invalid = true; return; } if (log.getRpyCalib().size() > 0) { auto live_calib = floatlist2vector(log.getRpyCalib()); if ((live_calib.minCoeff() < -CALIB_RPY_SANITY_CHECK) || (live_calib.maxCoeff() > CALIB_RPY_SANITY_CHECK)) { this->observation_values_invalid["liveCalibration"] += 1.0; return; } this->calib = live_calib; this->device_from_calib = euler2rot(this->calib); this->calib_from_device = this->device_from_calib.transpose(); this->calibrated = log.getCalStatus() == cereal::LiveCalibrationData::Status::CALIBRATED; this->observation_values_invalid["liveCalibration"] *= DECAY; } } void Localizer::reset_kalman(double current_time) { const VectorXd &init_x = this->kf->get_initial_x(); const MatrixXdr &init_P = this->kf->get_initial_P(); this->reset_kalman(current_time, init_x, init_P); } void Localizer::finite_check(double current_time) { bool all_finite = this->kf->get_x().array().isFinite().all() or this->kf->get_P().array().isFinite().all(); if (!all_finite) { LOGE("Non-finite values detected, kalman reset"); this->reset_kalman(current_time); } } void Localizer::time_check(double current_time) { if (std::isnan(this->last_reset_time)) { this->last_reset_time = current_time; } if (std::isnan(this->first_valid_log_time)) { this->first_valid_log_time = current_time; } double filter_time = this->kf->get_filter_time(); bool big_time_gap = !std::isnan(filter_time) && (current_time - filter_time > 10); if (big_time_gap) { LOGE("Time gap of over 10s detected, kalman reset"); this->reset_kalman(current_time); } } void Localizer::update_reset_tracker() { // reset tracker is tuned to trigger when over 1reset/10s over 2min period if (this->is_gps_ok()) { this->reset_tracker *= RESET_TRACKER_DECAY; } else { this->reset_tracker = 0.0; } } void Localizer::reset_kalman(double current_time, const VectorXd &init_orient, const VectorXd &init_pos, const VectorXd &init_vel, const MatrixXdr &init_pos_R, const MatrixXdr &init_vel_R) { // too nonlinear to init on completely wrong VectorXd current_x = this->kf->get_x(); MatrixXdr current_P = this->kf->get_P(); MatrixXdr init_P = this->kf->get_initial_P(); const MatrixXdr &reset_orientation_P = this->kf->get_reset_orientation_P(); int non_ecef_state_err_len = init_P.rows() - (STATE_ECEF_POS_ERR_LEN + STATE_ECEF_ORIENTATION_ERR_LEN + STATE_ECEF_VELOCITY_ERR_LEN); current_x.segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START) = init_orient; current_x.segment<STATE_ECEF_VELOCITY_LEN>(STATE_ECEF_VELOCITY_START) = init_vel; current_x.segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START) = init_pos; init_P.block<STATE_ECEF_POS_ERR_LEN, STATE_ECEF_POS_ERR_LEN>(STATE_ECEF_POS_ERR_START, STATE_ECEF_POS_ERR_START).diagonal() = init_pos_R.diagonal(); init_P.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_ORIENTATION_ERR_START).diagonal() = reset_orientation_P.diagonal(); init_P.block<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START, STATE_ECEF_VELOCITY_ERR_START).diagonal() = init_vel_R.diagonal(); init_P.block(STATE_ANGULAR_VELOCITY_ERR_START, STATE_ANGULAR_VELOCITY_ERR_START, non_ecef_state_err_len, non_ecef_state_err_len).diagonal() = current_P.block(STATE_ANGULAR_VELOCITY_ERR_START, STATE_ANGULAR_VELOCITY_ERR_START, non_ecef_state_err_len, non_ecef_state_err_len).diagonal(); this->reset_kalman(current_time, current_x, init_P); } void Localizer::reset_kalman(double current_time, const VectorXd &init_x, const MatrixXdr &init_P) { this->kf->init_state(init_x, init_P, current_time); this->last_reset_time = current_time; this->reset_tracker += 1.0; } void Localizer::handle_msg_bytes(const char *data, const size_t size) { AlignedBuffer aligned_buf; capnp::FlatArrayMessageReader cmsg(aligned_buf.align(data, size)); cereal::Event::Reader event = cmsg.getRoot<cereal::Event>(); this->handle_msg(event); } void Localizer::handle_msg(const cereal::Event::Reader& log) { double t = log.getLogMonoTime() * 1e-9; this->time_check(t); if (log.isAccelerometer()) { this->handle_sensor(t, log.getAccelerometer()); } else if (log.isGyroscope()) { this->handle_sensor(t, log.getGyroscope()); } else if (log.isGpsLocation()) { this->handle_gps(t, log.getGpsLocation(), GPS_QUECTEL_SENSOR_TIME_OFFSET); } else if (log.isGpsLocationExternal()) { this->handle_gps(t, log.getGpsLocationExternal(), GPS_UBLOX_SENSOR_TIME_OFFSET); //} else if (log.isGnssMeasurements()) { // this->handle_gnss(t, log.getGnssMeasurements()); } else if (log.isCarState()) { this->handle_car_state(t, log.getCarState()); } else if (log.isCameraOdometry()) { this->handle_cam_odo(t, log.getCameraOdometry()); } else if (log.isLiveCalibration()) { this->handle_live_calib(t, log.getLiveCalibration()); } this->finite_check(); this->update_reset_tracker(); } kj::ArrayPtr<capnp::byte> Localizer::get_message_bytes(MessageBuilder& msg_builder, bool inputsOK, bool sensorsOK, bool gpsOK, bool msgValid) { cereal::Event::Builder evt = msg_builder.initEvent(); evt.setValid(msgValid); cereal::LiveLocationKalman::Builder liveLoc = evt.initLiveLocationKalman(); this->build_live_location(liveLoc); liveLoc.setSensorsOK(sensorsOK); liveLoc.setGpsOK(gpsOK); liveLoc.setInputsOK(inputsOK); return msg_builder.toBytes(); } bool Localizer::is_gps_ok() { return (this->kf->get_filter_time() - this->last_gps_msg) < 2.0; } bool Localizer::critical_services_valid(const std::map<std::string, double> &critical_services) { for (auto &kv : critical_services){ if (kv.second >= INPUT_INVALID_THRESHOLD){ return false; } } return true; } bool Localizer::is_timestamp_valid(double current_time) { double filter_time = this->kf->get_filter_time(); if (!std::isnan(filter_time) && ((filter_time - current_time) > MAX_FILTER_REWIND_TIME)) { LOGE("Observation timestamp is older than the max rewind threshold of the filter"); return false; } return true; } void Localizer::determine_gps_mode(double current_time) { // 1. If the pos_std is greater than what's not acceptable and localizer is in gps-mode, reset to no-gps-mode // 2. If the pos_std is greater than what's not acceptable and localizer is in no-gps-mode, fake obs // 3. If the pos_std is smaller than what's not acceptable, let gps-mode be whatever it is VectorXd current_pos_std = this->kf->get_P().block<STATE_ECEF_POS_ERR_LEN, STATE_ECEF_POS_ERR_LEN>(STATE_ECEF_POS_ERR_START, STATE_ECEF_POS_ERR_START).diagonal().array().sqrt(); if (current_pos_std.norm() > SANE_GPS_UNCERTAINTY){ if (this->gps_mode){ this->gps_mode = false; this->reset_kalman(current_time); } else { this->input_fake_gps_observations(current_time); } } } void Localizer::configure_gnss_source(const LocalizerGnssSource &source) { this->gnss_source = source; if (source == LocalizerGnssSource::UBLOX) { this->gps_std_factor = 10.0; this->gps_variance_factor = 1.0; this->gps_vertical_variance_factor = 1.0; this->gps_time_offset = GPS_UBLOX_SENSOR_TIME_OFFSET; } else { this->gps_std_factor = 2.0; this->gps_variance_factor = 0.0; this->gps_vertical_variance_factor = 3.0; this->gps_time_offset = GPS_QUECTEL_SENSOR_TIME_OFFSET; } } int Localizer::locationd_thread() { Params params; LocalizerGnssSource source; const char* gps_location_socket; if (params.getBool("UbloxAvailable")) { source = LocalizerGnssSource::UBLOX; gps_location_socket = "gpsLocationExternal"; } else { source = LocalizerGnssSource::QCOM; gps_location_socket = "gpsLocation"; } this->configure_gnss_source(source); const std::initializer_list<const char *> service_list = {gps_location_socket, "cameraOdometry", "liveCalibration", "carState", "accelerometer", "gyroscope"}; SubMaster sm(service_list, {}, nullptr, {gps_location_socket}); PubMaster pm({"liveLocationKalman"}); uint64_t cnt = 0; bool filterInitialized = false; const std::vector<std::string> critical_input_services = {"cameraOdometry", "liveCalibration", "accelerometer", "gyroscope"}; for (std::string service : critical_input_services) { this->observation_values_invalid.insert({service, 0.0}); } while (!do_exit) { sm.update(); if (filterInitialized){ this->observation_timings_invalid_reset(); for (const char* service : service_list) { if (sm.updated(service) && sm.valid(service)){ const cereal::Event::Reader log = sm[service]; this->handle_msg(log); } } } else { filterInitialized = sm.allAliveAndValid(); } const char* trigger_msg = "cameraOdometry"; if (sm.updated(trigger_msg)) { bool inputsOK = sm.allValid() && this->are_inputs_ok(); bool gpsOK = this->is_gps_ok(); bool sensorsOK = sm.allAliveAndValid({"accelerometer", "gyroscope"}); // Log time to first fix if (gpsOK && std::isnan(this->ttff) && !std::isnan(this->first_valid_log_time)) { this->ttff = std::max(1e-3, (sm[trigger_msg].getLogMonoTime() * 1e-9) - this->first_valid_log_time); } MessageBuilder msg_builder; kj::ArrayPtr<capnp::byte> bytes = this->get_message_bytes(msg_builder, inputsOK, sensorsOK, gpsOK, filterInitialized); pm.send("liveLocationKalman", bytes.begin(), bytes.size()); if (cnt % 1200 == 0 && gpsOK) { // once a minute VectorXd posGeo = this->get_position_geodetic(); std::string lastGPSPosJSON = util::string_format( "{\"latitude\": %.15f, \"longitude\": %.15f, \"altitude\": %.15f}", posGeo(0), posGeo(1), posGeo(2)); params.putNonBlocking("LastGPSPosition", lastGPSPosJSON); } cnt++; } } return 0; } int main() { util::set_realtime_priority(5); Localizer localizer; return localizer.locationd_thread(); }
2301_81045437/openpilot
selfdrive/locationd/locationd.cc
C++
mit
35,934
#pragma once #include <eigen3/Eigen/Dense> #include <deque> #include <fstream> #include <memory> #include <map> #include <string> #include "cereal/messaging/messaging.h" #include "common/transformations/coordinates.hpp" #include "common/transformations/orientation.hpp" #include "common/params.h" #include "common/swaglog.h" #include "common/timing.h" #include "common/util.h" #include "system/sensord/sensors/constants.h" #define VISION_DECIMATION 2 #define SENSOR_DECIMATION 10 #include "selfdrive/locationd/models/live_kf.h" #define POSENET_STD_HIST_HALF 20 enum LocalizerGnssSource { UBLOX, QCOM }; class Localizer { public: Localizer(LocalizerGnssSource gnss_source = LocalizerGnssSource::UBLOX); int locationd_thread(); void reset_kalman(double current_time = NAN); void reset_kalman(double current_time, const Eigen::VectorXd &init_orient, const Eigen::VectorXd &init_pos, const Eigen::VectorXd &init_vel, const MatrixXdr &init_pos_R, const MatrixXdr &init_vel_R); void reset_kalman(double current_time, const Eigen::VectorXd &init_x, const MatrixXdr &init_P); void finite_check(double current_time = NAN); void time_check(double current_time = NAN); void update_reset_tracker(); bool is_gps_ok(); bool critical_services_valid(const std::map<std::string, double> &critical_services); bool is_timestamp_valid(double current_time); void determine_gps_mode(double current_time); bool are_inputs_ok(); void observation_timings_invalid_reset(); kj::ArrayPtr<capnp::byte> get_message_bytes(MessageBuilder& msg_builder, bool inputsOK, bool sensorsOK, bool gpsOK, bool msgValid); void build_live_location(cereal::LiveLocationKalman::Builder& fix); Eigen::VectorXd get_position_geodetic(); Eigen::VectorXd get_state(); Eigen::VectorXd get_stdev(); void handle_msg_bytes(const char *data, const size_t size); void handle_msg(const cereal::Event::Reader& log); void handle_sensor(double current_time, const cereal::SensorEventData::Reader& log); void handle_gps(double current_time, const cereal::GpsLocationData::Reader& log, const double sensor_time_offset); void handle_gnss(double current_time, const cereal::GnssMeasurements::Reader& log); void handle_car_state(double current_time, const cereal::CarState::Reader& log); void handle_cam_odo(double current_time, const cereal::CameraOdometry::Reader& log); void handle_live_calib(double current_time, const cereal::LiveCalibrationData::Reader& log); void input_fake_gps_observations(double current_time); private: std::unique_ptr<LiveKalman> kf; Eigen::VectorXd calib; MatrixXdr device_from_calib; MatrixXdr calib_from_device; bool calibrated = false; double car_speed = 0.0; double last_reset_time = NAN; std::deque<double> posenet_stds; std::unique_ptr<LocalCoord> converter; int64_t unix_timestamp_millis = 0; double reset_tracker = 0.0; bool device_fell = false; bool gps_mode = false; double first_valid_log_time = NAN; double ttff = NAN; double last_gps_msg = 0; LocalizerGnssSource gnss_source; bool observation_timings_invalid = false; std::map<std::string, double> observation_values_invalid; bool standstill = true; int32_t orientation_reset_count = 0; float gps_std_factor; float gps_variance_factor; float gps_vertical_variance_factor; double gps_time_offset; Eigen::VectorXd camodo_yawrate_distribution = Eigen::Vector2d(0.0, 10.0); // mean, std void configure_gnss_source(const LocalizerGnssSource &source); };
2301_81045437/openpilot
selfdrive/locationd/locationd.h
C++
mit
3,509
#!/usr/bin/env python3 import math import sys from typing import Any import numpy as np from openpilot.selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY from openpilot.selfdrive.locationd.models.constants import ObservationKind from openpilot.common.swaglog import cloudlog from rednose.helpers.kalmanfilter import KalmanFilter if __name__ == '__main__': # Generating sympy import sympy as sp from rednose.helpers.ekf_sym import gen_code else: from rednose.helpers.ekf_sym_pyx import EKF_sym_pyx i = 0 def _slice(n): global i s = slice(i, i + n) i += n return s class States: # Vehicle model params STIFFNESS = _slice(1) # [-] STEER_RATIO = _slice(1) # [-] ANGLE_OFFSET = _slice(1) # [rad] ANGLE_OFFSET_FAST = _slice(1) # [rad] VELOCITY = _slice(2) # (x, y) [m/s] YAW_RATE = _slice(1) # [rad/s] STEER_ANGLE = _slice(1) # [rad] ROAD_ROLL = _slice(1) # [rad] class CarKalman(KalmanFilter): name = 'car' initial_x = np.array([ 1.0, 15.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0 ]) # process noise Q = np.diag([ (.05 / 100)**2, .01**2, math.radians(0.02)**2, math.radians(0.25)**2, .1**2, .01**2, math.radians(0.1)**2, math.radians(0.1)**2, math.radians(1)**2, ]) P_initial = Q.copy() obs_noise: dict[int, Any] = { ObservationKind.STEER_ANGLE: np.atleast_2d(math.radians(0.05)**2), ObservationKind.ANGLE_OFFSET_FAST: np.atleast_2d(math.radians(10.0)**2), ObservationKind.ROAD_ROLL: np.atleast_2d(math.radians(1.0)**2), ObservationKind.STEER_RATIO: np.atleast_2d(5.0**2), ObservationKind.STIFFNESS: np.atleast_2d(0.5**2), ObservationKind.ROAD_FRAME_X_SPEED: np.atleast_2d(0.1**2), } global_vars = [ 'mass', 'rotational_inertia', 'center_to_front', 'center_to_rear', 'stiffness_front', 'stiffness_rear', ] @staticmethod def generate_code(generated_dir): dim_state = CarKalman.initial_x.shape[0] name = CarKalman.name # vehicle models comes from The Science of Vehicle Dynamics: Handling, Braking, and Ride of Road and Race Cars # Model used is in 6.15 with formula from 6.198 # globals global_vars = [sp.Symbol(name) for name in CarKalman.global_vars] m, j, aF, aR, cF_orig, cR_orig = global_vars # make functions and jacobians with sympy # state variables state_sym = sp.MatrixSymbol('state', dim_state, 1) state = sp.Matrix(state_sym) # Vehicle model constants sf = state[States.STIFFNESS, :][0, 0] cF, cR = sf * cF_orig, sf * cR_orig angle_offset = state[States.ANGLE_OFFSET, :][0, 0] angle_offset_fast = state[States.ANGLE_OFFSET_FAST, :][0, 0] theta = state[States.ROAD_ROLL, :][0, 0] sa = state[States.STEER_ANGLE, :][0, 0] sR = state[States.STEER_RATIO, :][0, 0] u, v = state[States.VELOCITY, :] r = state[States.YAW_RATE, :][0, 0] A = sp.Matrix(np.zeros((2, 2))) A[0, 0] = -(cF + cR) / (m * u) A[0, 1] = -(cF * aF - cR * aR) / (m * u) - u A[1, 0] = -(cF * aF - cR * aR) / (j * u) A[1, 1] = -(cF * aF**2 + cR * aR**2) / (j * u) B = sp.Matrix(np.zeros((2, 1))) B[0, 0] = cF / m / sR B[1, 0] = (cF * aF) / j / sR C = sp.Matrix(np.zeros((2, 1))) C[0, 0] = ACCELERATION_DUE_TO_GRAVITY C[1, 0] = 0 x = sp.Matrix([v, r]) # lateral velocity, yaw rate x_dot = A * x + B * (sa - angle_offset - angle_offset_fast) - C * theta dt = sp.Symbol('dt') state_dot = sp.Matrix(np.zeros((dim_state, 1))) state_dot[States.VELOCITY.start + 1, 0] = x_dot[0] state_dot[States.YAW_RATE.start, 0] = x_dot[1] # Basic descretization, 1st order integrator # Can be pretty bad if dt is big f_sym = state + dt * state_dot # # Observation functions # obs_eqs = [ [sp.Matrix([r]), ObservationKind.ROAD_FRAME_YAW_RATE, None], [sp.Matrix([u, v]), ObservationKind.ROAD_FRAME_XY_SPEED, None], [sp.Matrix([u]), ObservationKind.ROAD_FRAME_X_SPEED, None], [sp.Matrix([sa]), ObservationKind.STEER_ANGLE, None], [sp.Matrix([angle_offset_fast]), ObservationKind.ANGLE_OFFSET_FAST, None], [sp.Matrix([sR]), ObservationKind.STEER_RATIO, None], [sp.Matrix([sf]), ObservationKind.STIFFNESS, None], [sp.Matrix([theta]), ObservationKind.ROAD_ROLL, None], ] gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state, global_vars=global_vars) def __init__(self, generated_dir, steer_ratio=15, stiffness_factor=1, angle_offset=0, P_initial=None): dim_state = self.initial_x.shape[0] dim_state_err = self.P_initial.shape[0] x_init = self.initial_x x_init[States.STEER_RATIO] = steer_ratio x_init[States.STIFFNESS] = stiffness_factor x_init[States.ANGLE_OFFSET] = angle_offset if P_initial is not None: self.P_initial = P_initial # init filter self.filter = EKF_sym_pyx(generated_dir, self.name, self.Q, self.initial_x, self.P_initial, dim_state, dim_state_err, global_vars=self.global_vars, logger=cloudlog) if __name__ == "__main__": generated_dir = sys.argv[2] CarKalman.generate_code(generated_dir)
2301_81045437/openpilot
selfdrive/locationd/models/car_kf.py
Python
mit
5,224
import os GENERATED_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), 'generated')) class ObservationKind: UNKNOWN = 0 NO_OBSERVATION = 1 GPS_NED = 2 ODOMETRIC_SPEED = 3 PHONE_GYRO = 4 GPS_VEL = 5 PSEUDORANGE_GPS = 6 PSEUDORANGE_RATE_GPS = 7 SPEED = 8 NO_ROT = 9 PHONE_ACCEL = 10 ORB_POINT = 11 ECEF_POS = 12 CAMERA_ODO_TRANSLATION = 13 CAMERA_ODO_ROTATION = 14 ORB_FEATURES = 15 MSCKF_TEST = 16 FEATURE_TRACK_TEST = 17 LANE_PT = 18 IMU_FRAME = 19 PSEUDORANGE_GLONASS = 20 PSEUDORANGE_RATE_GLONASS = 21 PSEUDORANGE = 22 PSEUDORANGE_RATE = 23 ECEF_VEL = 35 ECEF_ORIENTATION_FROM_GPS = 32 NO_ACCEL = 33 ORB_FEATURES_WIDE = 34 ROAD_FRAME_XY_SPEED = 24 # (x, y) [m/s] ROAD_FRAME_YAW_RATE = 25 # [rad/s] STEER_ANGLE = 26 # [rad] ANGLE_OFFSET_FAST = 27 # [rad] STIFFNESS = 28 # [-] STEER_RATIO = 29 # [-] ROAD_FRAME_X_SPEED = 30 # (x) [m/s] ROAD_ROLL = 31 # [rad] names = [ 'Unknown', 'No observation', 'GPS NED', 'Odometric speed', 'Phone gyro', 'GPS velocity', 'GPS pseudorange', 'GPS pseudorange rate', 'Speed', 'No rotation', 'Phone acceleration', 'ORB point', 'ECEF pos', 'camera odometric translation', 'camera odometric rotation', 'ORB features', 'MSCKF test', 'Feature track test', 'Lane ecef point', 'imu frame eulers', 'GLONASS pseudorange', 'GLONASS pseudorange rate', 'pseudorange', 'pseudorange rate', 'Road Frame x,y speed', 'Road Frame yaw rate', 'Steer Angle', 'Fast Angle Offset', 'Stiffness', 'Steer Ratio', 'Road Frame x speed', 'Road Roll', 'ECEF orientation from GPS', 'NO accel', 'ORB features wide camera', 'ECEF_VEL', ] @classmethod def to_string(cls, kind): return cls.names[kind] SAT_OBS = [ObservationKind.PSEUDORANGE_GPS, ObservationKind.PSEUDORANGE_RATE_GPS, ObservationKind.PSEUDORANGE_GLONASS, ObservationKind.PSEUDORANGE_RATE_GLONASS]
2301_81045437/openpilot
selfdrive/locationd/models/constants.py
Python
mit
2,050
#include "selfdrive/locationd/models/live_kf.h" using namespace EKFS; using namespace Eigen; Eigen::Map<Eigen::VectorXd> get_mapvec(const Eigen::VectorXd &vec) { return Eigen::Map<Eigen::VectorXd>((double*)vec.data(), vec.rows(), vec.cols()); } Eigen::Map<MatrixXdr> get_mapmat(const MatrixXdr &mat) { return Eigen::Map<MatrixXdr>((double*)mat.data(), mat.rows(), mat.cols()); } std::vector<Eigen::Map<Eigen::VectorXd>> get_vec_mapvec(const std::vector<Eigen::VectorXd> &vec_vec) { std::vector<Eigen::Map<Eigen::VectorXd>> res; for (const Eigen::VectorXd &vec : vec_vec) { res.push_back(get_mapvec(vec)); } return res; } std::vector<Eigen::Map<MatrixXdr>> get_vec_mapmat(const std::vector<MatrixXdr> &mat_vec) { std::vector<Eigen::Map<MatrixXdr>> res; for (const MatrixXdr &mat : mat_vec) { res.push_back(get_mapmat(mat)); } return res; } LiveKalman::LiveKalman() { this->dim_state = live_initial_x.rows(); this->dim_state_err = live_initial_P_diag.rows(); this->initial_x = live_initial_x; this->initial_P = live_initial_P_diag.asDiagonal(); this->fake_gps_pos_cov = live_fake_gps_pos_cov_diag.asDiagonal(); this->fake_gps_vel_cov = live_fake_gps_vel_cov_diag.asDiagonal(); this->reset_orientation_P = live_reset_orientation_diag.asDiagonal(); this->Q = live_Q_diag.asDiagonal(); for (auto& pair : live_obs_noise_diag) { this->obs_noise[pair.first] = pair.second.asDiagonal(); } // init filter this->filter = std::make_shared<EKFSym>(this->name, get_mapmat(this->Q), get_mapvec(this->initial_x), get_mapmat(initial_P), this->dim_state, this->dim_state_err, 0, 0, 0, std::vector<int>(), std::vector<int>{3}, std::vector<std::string>(), 0.8); } void LiveKalman::init_state(const VectorXd &state, const VectorXd &covs_diag, double filter_time) { MatrixXdr covs = covs_diag.asDiagonal(); this->filter->init_state(get_mapvec(state), get_mapmat(covs), filter_time); } void LiveKalman::init_state(const VectorXd &state, const MatrixXdr &covs, double filter_time) { this->filter->init_state(get_mapvec(state), get_mapmat(covs), filter_time); } void LiveKalman::init_state(const VectorXd &state, double filter_time) { MatrixXdr covs = this->filter->covs(); this->filter->init_state(get_mapvec(state), get_mapmat(covs), filter_time); } VectorXd LiveKalman::get_x() { return this->filter->state(); } MatrixXdr LiveKalman::get_P() { return this->filter->covs(); } double LiveKalman::get_filter_time() { return this->filter->get_filter_time(); } std::vector<MatrixXdr> LiveKalman::get_R(int kind, int n) { std::vector<MatrixXdr> R; for (int i = 0; i < n; i++) { R.push_back(this->obs_noise[kind]); } return R; } std::optional<Estimate> LiveKalman::predict_and_observe(double t, int kind, const std::vector<VectorXd> &meas, std::vector<MatrixXdr> R) { std::optional<Estimate> r; if (R.size() == 0) { R = this->get_R(kind, meas.size()); } r = this->filter->predict_and_update_batch(t, kind, get_vec_mapvec(meas), get_vec_mapmat(R)); return r; } void LiveKalman::predict(double t) { this->filter->predict(t); } const Eigen::VectorXd &LiveKalman::get_initial_x() { return this->initial_x; } const MatrixXdr &LiveKalman::get_initial_P() { return this->initial_P; } const MatrixXdr &LiveKalman::get_fake_gps_pos_cov() { return this->fake_gps_pos_cov; } const MatrixXdr &LiveKalman::get_fake_gps_vel_cov() { return this->fake_gps_vel_cov; } const MatrixXdr &LiveKalman::get_reset_orientation_P() { return this->reset_orientation_P; } MatrixXdr LiveKalman::H(const VectorXd &in) { assert(in.size() == 6); Matrix<double, 3, 6, Eigen::RowMajor> res; this->filter->get_extra_routine("H")((double*)in.data(), res.data()); return res; }
2301_81045437/openpilot
selfdrive/locationd/models/live_kf.cc
C++
mit
3,761
#pragma once #include <string> #include <cmath> #include <memory> #include <unordered_map> #include <vector> #include <eigen3/Eigen/Core> #include <eigen3/Eigen/Dense> #include "generated/live_kf_constants.h" #include "rednose/helpers/ekf_sym.h" #define EARTH_GM 3.986005e14 // m^3/s^2 (gravitational constant * mass of earth) using namespace EKFS; Eigen::Map<Eigen::VectorXd> get_mapvec(const Eigen::VectorXd &vec); Eigen::Map<MatrixXdr> get_mapmat(const MatrixXdr &mat); std::vector<Eigen::Map<Eigen::VectorXd>> get_vec_mapvec(const std::vector<Eigen::VectorXd> &vec_vec); std::vector<Eigen::Map<MatrixXdr>> get_vec_mapmat(const std::vector<MatrixXdr> &mat_vec); class LiveKalman { public: LiveKalman(); void init_state(const Eigen::VectorXd &state, const Eigen::VectorXd &covs_diag, double filter_time); void init_state(const Eigen::VectorXd &state, const MatrixXdr &covs, double filter_time); void init_state(const Eigen::VectorXd &state, double filter_time); Eigen::VectorXd get_x(); MatrixXdr get_P(); double get_filter_time(); std::vector<MatrixXdr> get_R(int kind, int n); std::optional<Estimate> predict_and_observe(double t, int kind, const std::vector<Eigen::VectorXd> &meas, std::vector<MatrixXdr> R = {}); std::optional<Estimate> predict_and_update_odo_speed(std::vector<Eigen::VectorXd> speed, double t, int kind); std::optional<Estimate> predict_and_update_odo_trans(std::vector<Eigen::VectorXd> trans, double t, int kind); std::optional<Estimate> predict_and_update_odo_rot(std::vector<Eigen::VectorXd> rot, double t, int kind); void predict(double t); const Eigen::VectorXd &get_initial_x(); const MatrixXdr &get_initial_P(); const MatrixXdr &get_fake_gps_pos_cov(); const MatrixXdr &get_fake_gps_vel_cov(); const MatrixXdr &get_reset_orientation_P(); MatrixXdr H(const Eigen::VectorXd &in); private: std::string name = "live"; std::shared_ptr<EKFSym> filter; int dim_state; int dim_state_err; Eigen::VectorXd initial_x; MatrixXdr initial_P; MatrixXdr fake_gps_pos_cov; MatrixXdr fake_gps_vel_cov; MatrixXdr reset_orientation_P; MatrixXdr Q; // process noise std::unordered_map<int, MatrixXdr> obs_noise; };
2301_81045437/openpilot
selfdrive/locationd/models/live_kf.h
C++
mit
2,203
#!/usr/bin/env python3 import sys import os import numpy as np from openpilot.selfdrive.locationd.models.constants import ObservationKind import sympy as sp import inspect from rednose.helpers.sympy_helpers import euler_rotate, quat_matrix_r, quat_rotate from rednose.helpers.ekf_sym import gen_code EARTH_GM = 3.986005e14 # m^3/s^2 (gravitational constant * mass of earth) def numpy2eigenstring(arr): assert(len(arr.shape) == 1) arr_str = np.array2string(arr, precision=20, separator=',')[1:-1].replace(' ', '').replace('\n', '') return f"(Eigen::VectorXd({len(arr)}) << {arr_str}).finished()" class States: ECEF_POS = slice(0, 3) # x, y and z in ECEF in meters ECEF_ORIENTATION = slice(3, 7) # quat for pose of phone in ecef ECEF_VELOCITY = slice(7, 10) # ecef velocity in m/s ANGULAR_VELOCITY = slice(10, 13) # roll, pitch and yaw rates in device frame in radians/s GYRO_BIAS = slice(13, 16) # roll, pitch and yaw biases ACCELERATION = slice(16, 19) # Acceleration in device frame in m/s**2 ACC_BIAS = slice(19, 22) # Acceletometer bias in m/s**2 # Error-state has different slices because it is an ESKF ECEF_POS_ERR = slice(0, 3) ECEF_ORIENTATION_ERR = slice(3, 6) # euler angles for orientation error ECEF_VELOCITY_ERR = slice(6, 9) ANGULAR_VELOCITY_ERR = slice(9, 12) GYRO_BIAS_ERR = slice(12, 15) ACCELERATION_ERR = slice(15, 18) ACC_BIAS_ERR = slice(18, 21) class LiveKalman: name = 'live' initial_x = np.array([3.88e6, -3.37e6, 3.76e6, 0.42254641, -0.31238054, -0.83602975, -0.15788347, # NED [0,0,0] -> ECEF Quat 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) # state covariance initial_P_diag = np.array([10**2, 10**2, 10**2, 0.01**2, 0.01**2, 0.01**2, 10**2, 10**2, 10**2, 1**2, 1**2, 1**2, 1**2, 1**2, 1**2, 100**2, 100**2, 100**2, 0.01**2, 0.01**2, 0.01**2]) # state covariance when resetting midway in a segment reset_orientation_diag = np.array([1**2, 1**2, 1**2]) # fake observation covariance, to ensure the uncertainty estimate of the filter is under control fake_gps_pos_cov_diag = np.array([1000**2, 1000**2, 1000**2]) fake_gps_vel_cov_diag = np.array([10**2, 10**2, 10**2]) # process noise Q_diag = np.array([0.03**2, 0.03**2, 0.03**2, 0.001**2, 0.001**2, 0.001**2, 0.01**2, 0.01**2, 0.01**2, 0.1**2, 0.1**2, 0.1**2, (0.005 / 100)**2, (0.005 / 100)**2, (0.005 / 100)**2, 3**2, 3**2, 3**2, 0.005**2, 0.005**2, 0.005**2]) obs_noise_diag = {ObservationKind.PHONE_GYRO: np.array([0.025**2, 0.025**2, 0.025**2]), ObservationKind.PHONE_ACCEL: np.array([.5**2, .5**2, .5**2]), ObservationKind.CAMERA_ODO_ROTATION: np.array([0.05**2, 0.05**2, 0.05**2]), ObservationKind.NO_ROT: np.array([0.005**2, 0.005**2, 0.005**2]), ObservationKind.NO_ACCEL: np.array([0.05**2, 0.05**2, 0.05**2]), ObservationKind.ECEF_POS: np.array([5**2, 5**2, 5**2]), ObservationKind.ECEF_VEL: np.array([.5**2, .5**2, .5**2]), ObservationKind.ECEF_ORIENTATION_FROM_GPS: np.array([.2**2, .2**2, .2**2, .2**2])} @staticmethod def generate_code(generated_dir): name = LiveKalman.name dim_state = LiveKalman.initial_x.shape[0] dim_state_err = LiveKalman.initial_P_diag.shape[0] state_sym = sp.MatrixSymbol('state', dim_state, 1) state = sp.Matrix(state_sym) x, y, z = state[States.ECEF_POS, :] q = state[States.ECEF_ORIENTATION, :] v = state[States.ECEF_VELOCITY, :] vx, vy, vz = v omega = state[States.ANGULAR_VELOCITY, :] vroll, vpitch, vyaw = omega roll_bias, pitch_bias, yaw_bias = state[States.GYRO_BIAS, :] acceleration = state[States.ACCELERATION, :] acc_bias = state[States.ACC_BIAS, :] dt = sp.Symbol('dt') # calibration and attitude rotation matrices quat_rot = quat_rotate(*q) # Got the quat predict equations from here # A New Quaternion-Based Kalman Filter for # Real-Time Attitude Estimation Using the Two-Step # Geometrically-Intuitive Correction Algorithm A = 0.5 * sp.Matrix([[0, -vroll, -vpitch, -vyaw], [vroll, 0, vyaw, -vpitch], [vpitch, -vyaw, 0, vroll], [vyaw, vpitch, -vroll, 0]]) q_dot = A * q # Time derivative of the state as a function of state state_dot = sp.Matrix(np.zeros((dim_state, 1))) state_dot[States.ECEF_POS, :] = v state_dot[States.ECEF_ORIENTATION, :] = q_dot state_dot[States.ECEF_VELOCITY, 0] = quat_rot * acceleration # Basic descretization, 1st order intergrator # Can be pretty bad if dt is big f_sym = state + dt * state_dot state_err_sym = sp.MatrixSymbol('state_err', dim_state_err, 1) state_err = sp.Matrix(state_err_sym) quat_err = state_err[States.ECEF_ORIENTATION_ERR, :] v_err = state_err[States.ECEF_VELOCITY_ERR, :] omega_err = state_err[States.ANGULAR_VELOCITY_ERR, :] acceleration_err = state_err[States.ACCELERATION_ERR, :] # Time derivative of the state error as a function of state error and state quat_err_matrix = euler_rotate(quat_err[0], quat_err[1], quat_err[2]) q_err_dot = quat_err_matrix * quat_rot * (omega + omega_err) state_err_dot = sp.Matrix(np.zeros((dim_state_err, 1))) state_err_dot[States.ECEF_POS_ERR, :] = v_err state_err_dot[States.ECEF_ORIENTATION_ERR, :] = q_err_dot state_err_dot[States.ECEF_VELOCITY_ERR, :] = quat_err_matrix * quat_rot * (acceleration + acceleration_err) f_err_sym = state_err + dt * state_err_dot # Observation matrix modifier H_mod_sym = sp.Matrix(np.zeros((dim_state, dim_state_err))) H_mod_sym[States.ECEF_POS, States.ECEF_POS_ERR] = np.eye(States.ECEF_POS.stop - States.ECEF_POS.start) H_mod_sym[States.ECEF_ORIENTATION, States.ECEF_ORIENTATION_ERR] = 0.5 * quat_matrix_r(state[3:7])[:, 1:] H_mod_sym[States.ECEF_ORIENTATION.stop:, States.ECEF_ORIENTATION_ERR.stop:] = np.eye(dim_state - States.ECEF_ORIENTATION.stop) # these error functions are defined so that say there # is a nominal x and true x: # true x = err_function(nominal x, delta x) # delta x = inv_err_function(nominal x, true x) nom_x = sp.MatrixSymbol('nom_x', dim_state, 1) true_x = sp.MatrixSymbol('true_x', dim_state, 1) delta_x = sp.MatrixSymbol('delta_x', dim_state_err, 1) err_function_sym = sp.Matrix(np.zeros((dim_state, 1))) delta_quat = sp.Matrix(np.ones(4)) delta_quat[1:, :] = sp.Matrix(0.5 * delta_x[States.ECEF_ORIENTATION_ERR, :]) err_function_sym[States.ECEF_POS, :] = sp.Matrix(nom_x[States.ECEF_POS, :] + delta_x[States.ECEF_POS_ERR, :]) err_function_sym[States.ECEF_ORIENTATION, 0] = quat_matrix_r(nom_x[States.ECEF_ORIENTATION, 0]) * delta_quat err_function_sym[States.ECEF_ORIENTATION.stop:, :] = sp.Matrix(nom_x[States.ECEF_ORIENTATION.stop:, :] + delta_x[States.ECEF_ORIENTATION_ERR.stop:, :]) inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err, 1))) inv_err_function_sym[States.ECEF_POS_ERR, 0] = sp.Matrix(-nom_x[States.ECEF_POS, 0] + true_x[States.ECEF_POS, 0]) delta_quat = quat_matrix_r(nom_x[States.ECEF_ORIENTATION, 0]).T * true_x[States.ECEF_ORIENTATION, 0] inv_err_function_sym[States.ECEF_ORIENTATION_ERR, 0] = sp.Matrix(2 * delta_quat[1:]) inv_err_function_sym[States.ECEF_ORIENTATION_ERR.stop:, 0] = sp.Matrix(-nom_x[States.ECEF_ORIENTATION.stop:, 0] + true_x[States.ECEF_ORIENTATION.stop:, 0]) eskf_params = [[err_function_sym, nom_x, delta_x], [inv_err_function_sym, nom_x, true_x], H_mod_sym, f_err_sym, state_err_sym] # # Observation functions # h_gyro_sym = sp.Matrix([ vroll + roll_bias, vpitch + pitch_bias, vyaw + yaw_bias]) pos = sp.Matrix([x, y, z]) gravity = quat_rot.T * ((EARTH_GM / ((x**2 + y**2 + z**2)**(3.0 / 2.0))) * pos) h_acc_sym = (gravity + acceleration + acc_bias) h_acc_stationary_sym = acceleration h_phone_rot_sym = sp.Matrix([vroll, vpitch, vyaw]) h_pos_sym = sp.Matrix([x, y, z]) h_vel_sym = sp.Matrix([vx, vy, vz]) h_orientation_sym = q h_relative_motion = sp.Matrix(quat_rot.T * v) obs_eqs = [[h_gyro_sym, ObservationKind.PHONE_GYRO, None], [h_phone_rot_sym, ObservationKind.NO_ROT, None], [h_acc_sym, ObservationKind.PHONE_ACCEL, None], [h_pos_sym, ObservationKind.ECEF_POS, None], [h_vel_sym, ObservationKind.ECEF_VEL, None], [h_orientation_sym, ObservationKind.ECEF_ORIENTATION_FROM_GPS, None], [h_relative_motion, ObservationKind.CAMERA_ODO_TRANSLATION, None], [h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None], [h_acc_stationary_sym, ObservationKind.NO_ACCEL, None]] # this returns a sympy routine for the jacobian of the observation function of the local vel in_vec = sp.MatrixSymbol('in_vec', 6, 1) # roll, pitch, yaw, vx, vy, vz h = euler_rotate(in_vec[0], in_vec[1], in_vec[2]).T * (sp.Matrix([in_vec[3], in_vec[4], in_vec[5]])) extra_routines = [('H', h.jacobian(in_vec), [in_vec])] gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err, eskf_params, extra_routines=extra_routines) # write constants to extra header file for use in cpp live_kf_header = "#pragma once\n\n" live_kf_header += "#include <unordered_map>\n" live_kf_header += "#include <eigen3/Eigen/Dense>\n\n" for state, slc in inspect.getmembers(States, lambda x: isinstance(x, slice)): assert(slc.step is None) # unsupported live_kf_header += f'#define STATE_{state}_START {slc.start}\n' live_kf_header += f'#define STATE_{state}_END {slc.stop}\n' live_kf_header += f'#define STATE_{state}_LEN {slc.stop - slc.start}\n' live_kf_header += "\n" for kind, val in inspect.getmembers(ObservationKind, lambda x: isinstance(x, int)): live_kf_header += f'#define OBSERVATION_{kind} {val}\n' live_kf_header += "\n" live_kf_header += f"static const Eigen::VectorXd live_initial_x = {numpy2eigenstring(LiveKalman.initial_x)};\n" live_kf_header += f"static const Eigen::VectorXd live_initial_P_diag = {numpy2eigenstring(LiveKalman.initial_P_diag)};\n" live_kf_header += f"static const Eigen::VectorXd live_fake_gps_pos_cov_diag = {numpy2eigenstring(LiveKalman.fake_gps_pos_cov_diag)};\n" live_kf_header += f"static const Eigen::VectorXd live_fake_gps_vel_cov_diag = {numpy2eigenstring(LiveKalman.fake_gps_vel_cov_diag)};\n" live_kf_header += f"static const Eigen::VectorXd live_reset_orientation_diag = {numpy2eigenstring(LiveKalman.reset_orientation_diag)};\n" live_kf_header += f"static const Eigen::VectorXd live_Q_diag = {numpy2eigenstring(LiveKalman.Q_diag)};\n" live_kf_header += "static const std::unordered_map<int, Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> live_obs_noise_diag = {\n" for kind, noise in LiveKalman.obs_noise_diag.items(): live_kf_header += f" {{ {kind}, {numpy2eigenstring(noise)} }},\n" live_kf_header += "};\n\n" open(os.path.join(generated_dir, "live_kf_constants.h"), 'w').write(live_kf_header) if __name__ == "__main__": generated_dir = sys.argv[2] LiveKalman.generate_code(generated_dir)
2301_81045437/openpilot
selfdrive/locationd/models/live_kf.py
Python
mit
11,797
#!/usr/bin/env python3 import os import math import json import numpy as np import cereal.messaging as messaging from cereal import car from cereal import log from openpilot.common.params import Params from openpilot.common.realtime import config_realtime_process, DT_MDL from openpilot.common.numpy_fast import clip from openpilot.selfdrive.locationd.models.car_kf import CarKalman, ObservationKind, States from openpilot.selfdrive.locationd.models.constants import GENERATED_DIR from openpilot.common.swaglog import cloudlog MAX_ANGLE_OFFSET_DELTA = 20 * DT_MDL # Max 20 deg/s ROLL_MAX_DELTA = math.radians(20.0) * DT_MDL # 20deg in 1 second is well within curvature limits ROLL_MIN, ROLL_MAX = math.radians(-10), math.radians(10) ROLL_LOWERED_MAX = math.radians(8) ROLL_STD_MAX = math.radians(1.5) LATERAL_ACC_SENSOR_THRESHOLD = 4.0 OFFSET_MAX = 10.0 OFFSET_LOWERED_MAX = 8.0 MIN_ACTIVE_SPEED = 1.0 LOW_ACTIVE_SPEED = 10.0 class ParamsLearner: def __init__(self, CP, steer_ratio, stiffness_factor, angle_offset, P_initial=None): self.kf = CarKalman(GENERATED_DIR, steer_ratio, stiffness_factor, angle_offset, P_initial) self.kf.filter.set_global("mass", CP.mass) self.kf.filter.set_global("rotational_inertia", CP.rotationalInertia) self.kf.filter.set_global("center_to_front", CP.centerToFront) self.kf.filter.set_global("center_to_rear", CP.wheelbase - CP.centerToFront) self.kf.filter.set_global("stiffness_front", CP.tireStiffnessFront) self.kf.filter.set_global("stiffness_rear", CP.tireStiffnessRear) self.active = False self.speed = 0.0 self.yaw_rate = 0.0 self.yaw_rate_std = 0.0 self.roll = 0.0 self.steering_angle = 0.0 self.roll_valid = False def handle_log(self, t, which, msg): if which == 'liveLocationKalman': self.yaw_rate = msg.angularVelocityCalibrated.value[2] self.yaw_rate_std = msg.angularVelocityCalibrated.std[2] localizer_roll = msg.orientationNED.value[0] localizer_roll_std = np.radians(1) if np.isnan(msg.orientationNED.std[0]) else msg.orientationNED.std[0] self.roll_valid = (localizer_roll_std < ROLL_STD_MAX) and (ROLL_MIN < localizer_roll < ROLL_MAX) and msg.sensorsOK if self.roll_valid: roll = localizer_roll # Experimentally found multiplier of 2 to be best trade-off between stability and accuracy or similar? roll_std = 2 * localizer_roll_std else: # This is done to bound the road roll estimate when localizer values are invalid roll = 0.0 roll_std = np.radians(10.0) self.roll = clip(roll, self.roll - ROLL_MAX_DELTA, self.roll + ROLL_MAX_DELTA) yaw_rate_valid = msg.angularVelocityCalibrated.valid yaw_rate_valid = yaw_rate_valid and 0 < self.yaw_rate_std < 10 # rad/s yaw_rate_valid = yaw_rate_valid and abs(self.yaw_rate) < 1 # rad/s if self.active: if msg.posenetOK: if yaw_rate_valid: self.kf.predict_and_observe(t, ObservationKind.ROAD_FRAME_YAW_RATE, np.array([[-self.yaw_rate]]), np.array([np.atleast_2d(self.yaw_rate_std**2)])) self.kf.predict_and_observe(t, ObservationKind.ROAD_ROLL, np.array([[self.roll]]), np.array([np.atleast_2d(roll_std**2)])) self.kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, np.array([[0]])) # We observe the current stiffness and steer ratio (with a high observation noise) to bound # the respective estimate STD. Otherwise the STDs keep increasing, causing rapid changes in the # states in longer routes (especially straight stretches). stiffness = float(self.kf.x[States.STIFFNESS].item()) steer_ratio = float(self.kf.x[States.STEER_RATIO].item()) self.kf.predict_and_observe(t, ObservationKind.STIFFNESS, np.array([[stiffness]])) self.kf.predict_and_observe(t, ObservationKind.STEER_RATIO, np.array([[steer_ratio]])) elif which == 'carState': self.steering_angle = msg.steeringAngleDeg self.speed = msg.vEgo in_linear_region = abs(self.steering_angle) < 45 self.active = self.speed > MIN_ACTIVE_SPEED and in_linear_region if self.active: self.kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, np.array([[math.radians(msg.steeringAngleDeg)]])) self.kf.predict_and_observe(t, ObservationKind.ROAD_FRAME_X_SPEED, np.array([[self.speed]])) if not self.active: # Reset time when stopped so uncertainty doesn't grow self.kf.filter.set_filter_time(t) self.kf.filter.reset_rewind() def check_valid_with_hysteresis(current_valid: bool, val: float, threshold: float, lowered_threshold: float): if current_valid: current_valid = abs(val) < threshold else: current_valid = abs(val) < lowered_threshold return current_valid def main(): config_realtime_process([0, 1, 2, 3], 5) DEBUG = bool(int(os.getenv("DEBUG", "0"))) REPLAY = bool(int(os.getenv("REPLAY", "0"))) pm = messaging.PubMaster(['liveParameters']) sm = messaging.SubMaster(['liveLocationKalman', 'carState'], poll='liveLocationKalman') params_reader = Params() # wait for stats about the car to come in from controls cloudlog.info("paramsd is waiting for CarParams") with car.CarParams.from_bytes(params_reader.get("CarParams", block=True)) as msg: CP = msg cloudlog.info("paramsd got CarParams") min_sr, max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio params = params_reader.get("LiveParameters") # Check if car model matches if params is not None: params = json.loads(params) if params.get('carFingerprint', None) != CP.carFingerprint: cloudlog.info("Parameter learner found parameters for wrong car.") params = None # Check if starting values are sane if params is not None: try: steer_ratio_sane = min_sr <= params['steerRatio'] <= max_sr if not steer_ratio_sane: cloudlog.info(f"Invalid starting values found {params}") params = None except Exception as e: cloudlog.info(f"Error reading params {params}: {str(e)}") params = None # TODO: cache the params with the capnp struct if params is None: params = { 'carFingerprint': CP.carFingerprint, 'steerRatio': CP.steerRatio, 'stiffnessFactor': 1.0, 'angleOffsetAverageDeg': 0.0, } cloudlog.info("Parameter learner resetting to default values") if not REPLAY: # When driving in wet conditions the stiffness can go down, and then be too low on the next drive # Without a way to detect this we have to reset the stiffness every drive params['stiffnessFactor'] = 1.0 pInitial = None if DEBUG: pInitial = np.array(params['filterState']['std']) if 'filterState' in params else None learner = ParamsLearner(CP, params['steerRatio'], params['stiffnessFactor'], math.radians(params['angleOffsetAverageDeg']), pInitial) angle_offset_average = params['angleOffsetAverageDeg'] angle_offset = angle_offset_average roll = 0.0 avg_offset_valid = True total_offset_valid = True roll_valid = True while True: sm.update() if sm.all_checks(): for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]): if sm.updated[which]: t = sm.logMonoTime[which] * 1e-9 learner.handle_log(t, which, sm[which]) if sm.updated['liveLocationKalman']: x = learner.kf.x P = np.sqrt(learner.kf.P.diagonal()) if not all(map(math.isfinite, x)): cloudlog.error("NaN in liveParameters estimate. Resetting to default values") learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0) x = learner.kf.x angle_offset_average = clip(math.degrees(x[States.ANGLE_OFFSET].item()), angle_offset_average - MAX_ANGLE_OFFSET_DELTA, angle_offset_average + MAX_ANGLE_OFFSET_DELTA) angle_offset = clip(math.degrees(x[States.ANGLE_OFFSET].item() + x[States.ANGLE_OFFSET_FAST].item()), angle_offset - MAX_ANGLE_OFFSET_DELTA, angle_offset + MAX_ANGLE_OFFSET_DELTA) roll = clip(float(x[States.ROAD_ROLL].item()), roll - ROLL_MAX_DELTA, roll + ROLL_MAX_DELTA) roll_std = float(P[States.ROAD_ROLL].item()) if learner.active and learner.speed > LOW_ACTIVE_SPEED: # Account for the opposite signs of the yaw rates # At low speeds, bumping into a curb can cause the yaw rate to be very high sensors_valid = bool(abs(learner.speed * (x[States.YAW_RATE].item() + learner.yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD) else: sensors_valid = True avg_offset_valid = check_valid_with_hysteresis(avg_offset_valid, angle_offset_average, OFFSET_MAX, OFFSET_LOWERED_MAX) total_offset_valid = check_valid_with_hysteresis(total_offset_valid, angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX) roll_valid = check_valid_with_hysteresis(roll_valid, roll, ROLL_MAX, ROLL_LOWERED_MAX) msg = messaging.new_message('liveParameters') liveParameters = msg.liveParameters liveParameters.posenetValid = True liveParameters.sensorValid = sensors_valid liveParameters.steerRatio = float(x[States.STEER_RATIO].item()) liveParameters.stiffnessFactor = float(x[States.STIFFNESS].item()) liveParameters.roll = roll liveParameters.angleOffsetAverageDeg = angle_offset_average liveParameters.angleOffsetDeg = angle_offset liveParameters.valid = all(( avg_offset_valid, total_offset_valid, roll_valid, roll_std < ROLL_STD_MAX, 0.2 <= liveParameters.stiffnessFactor <= 5.0, min_sr <= liveParameters.steerRatio <= max_sr, )) liveParameters.steerRatioStd = float(P[States.STEER_RATIO].item()) liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS].item()) liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET].item()) liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST].item()) if DEBUG: liveParameters.filterState = log.LiveLocationKalman.Measurement.new_message() liveParameters.filterState.value = x.tolist() liveParameters.filterState.std = P.tolist() liveParameters.filterState.valid = True msg.valid = sm.all_checks() if sm.frame % 1200 == 0: # once a minute params = { 'carFingerprint': CP.carFingerprint, 'steerRatio': liveParameters.steerRatio, 'stiffnessFactor': liveParameters.stiffnessFactor, 'angleOffsetAverageDeg': liveParameters.angleOffsetAverageDeg, } params_reader.put_nonblocking("LiveParameters", json.dumps(params)) pm.send('liveParameters', msg) if __name__ == "__main__": main()
2301_81045437/openpilot
selfdrive/locationd/paramsd.py
Python
mit
10,980
#!/usr/bin/env python3 import numpy as np from collections import deque, defaultdict import cereal.messaging as messaging from cereal import car, log from openpilot.common.params import Params from openpilot.common.realtime import config_realtime_process, DT_MDL from openpilot.common.filter_simple import FirstOrderFilter from openpilot.common.swaglog import cloudlog from openpilot.selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY from openpilot.selfdrive.locationd.helpers import PointBuckets, ParameterEstimator HISTORY = 5 # secs POINTS_PER_BUCKET = 1500 MIN_POINTS_TOTAL = 4000 MIN_POINTS_TOTAL_QLOG = 600 FIT_POINTS_TOTAL = 2000 FIT_POINTS_TOTAL_QLOG = 600 MIN_VEL = 15 # m/s FRICTION_FACTOR = 1.5 # ~85% of data coverage FACTOR_SANITY = 0.3 FACTOR_SANITY_QLOG = 0.5 FRICTION_SANITY = 0.5 FRICTION_SANITY_QLOG = 0.8 STEER_MIN_THRESHOLD = 0.02 MIN_FILTER_DECAY = 50 MAX_FILTER_DECAY = 250 LAT_ACC_THRESHOLD = 1 STEER_BUCKET_BOUNDS = [(-0.5, -0.3), (-0.3, -0.2), (-0.2, -0.1), (-0.1, 0), (0, 0.1), (0.1, 0.2), (0.2, 0.3), (0.3, 0.5)] MIN_BUCKET_POINTS = np.array([100, 300, 500, 500, 500, 500, 300, 100]) MIN_ENGAGE_BUFFER = 2 # secs VERSION = 1 # bump this to invalidate old parameter caches ALLOWED_CARS = ['toyota', 'hyundai'] def slope2rot(slope): sin = np.sqrt(slope**2 / (slope**2 + 1)) cos = np.sqrt(1 / (slope**2 + 1)) return np.array([[cos, -sin], [sin, cos]]) class TorqueBuckets(PointBuckets): def add_point(self, x, y): for bound_min, bound_max in self.x_bounds: if (x >= bound_min) and (x < bound_max): self.buckets[(bound_min, bound_max)].append([x, 1.0, y]) break class TorqueEstimator(ParameterEstimator): def __init__(self, CP, decimated=False): self.hist_len = int(HISTORY / DT_MDL) self.lag = CP.steerActuatorDelay + .2 # from controlsd if decimated: self.min_bucket_points = MIN_BUCKET_POINTS / 10 self.min_points_total = MIN_POINTS_TOTAL_QLOG self.fit_points = FIT_POINTS_TOTAL_QLOG self.factor_sanity = FACTOR_SANITY_QLOG self.friction_sanity = FRICTION_SANITY_QLOG else: self.min_bucket_points = MIN_BUCKET_POINTS self.min_points_total = MIN_POINTS_TOTAL self.fit_points = FIT_POINTS_TOTAL self.factor_sanity = FACTOR_SANITY self.friction_sanity = FRICTION_SANITY self.offline_friction = 0.0 self.offline_latAccelFactor = 0.0 self.resets = 0.0 self.use_params = CP.carName in ALLOWED_CARS and CP.lateralTuning.which() == 'torque' if CP.lateralTuning.which() == 'torque': self.offline_friction = CP.lateralTuning.torque.friction self.offline_latAccelFactor = CP.lateralTuning.torque.latAccelFactor self.reset() initial_params = { 'latAccelFactor': self.offline_latAccelFactor, 'latAccelOffset': 0.0, 'frictionCoefficient': self.offline_friction, 'points': [] } self.decay = MIN_FILTER_DECAY self.min_lataccel_factor = (1.0 - self.factor_sanity) * self.offline_latAccelFactor self.max_lataccel_factor = (1.0 + self.factor_sanity) * self.offline_latAccelFactor self.min_friction = (1.0 - self.friction_sanity) * self.offline_friction self.max_friction = (1.0 + self.friction_sanity) * self.offline_friction # try to restore cached params params = Params() params_cache = params.get("CarParamsPrevRoute") torque_cache = params.get("LiveTorqueParameters") if params_cache is not None and torque_cache is not None: try: with log.Event.from_bytes(torque_cache) as log_evt: cache_ltp = log_evt.liveTorqueParameters with car.CarParams.from_bytes(params_cache) as msg: cache_CP = msg if self.get_restore_key(cache_CP, cache_ltp.version) == self.get_restore_key(CP, VERSION): if cache_ltp.liveValid: initial_params = { 'latAccelFactor': cache_ltp.latAccelFactorFiltered, 'latAccelOffset': cache_ltp.latAccelOffsetFiltered, 'frictionCoefficient': cache_ltp.frictionCoefficientFiltered } initial_params['points'] = cache_ltp.points self.decay = cache_ltp.decay self.filtered_points.load_points(initial_params['points']) cloudlog.info("restored torque params from cache") except Exception: cloudlog.exception("failed to restore cached torque params") params.remove("LiveTorqueParameters") self.filtered_params = {} for param in initial_params: self.filtered_params[param] = FirstOrderFilter(initial_params[param], self.decay, DT_MDL) def get_restore_key(self, CP, version): a, b = None, None if CP.lateralTuning.which() == 'torque': a = CP.lateralTuning.torque.friction b = CP.lateralTuning.torque.latAccelFactor return (CP.carFingerprint, CP.lateralTuning.which(), a, b, version) def reset(self): self.resets += 1.0 self.decay = MIN_FILTER_DECAY self.raw_points = defaultdict(lambda: deque(maxlen=self.hist_len)) self.filtered_points = TorqueBuckets(x_bounds=STEER_BUCKET_BOUNDS, min_points=self.min_bucket_points, min_points_total=self.min_points_total, points_per_bucket=POINTS_PER_BUCKET, rowsize=3) def estimate_params(self): points = self.filtered_points.get_points(self.fit_points) # total least square solution as both x and y are noisy observations # this is empirically the slope of the hysteresis parallelogram as opposed to the line through the diagonals try: _, _, v = np.linalg.svd(points, full_matrices=False) slope, offset = -v.T[0:2, 2] / v.T[2, 2] _, spread = np.matmul(points[:, [0, 2]], slope2rot(slope)).T friction_coeff = np.std(spread) * FRICTION_FACTOR except np.linalg.LinAlgError as e: cloudlog.exception(f"Error computing live torque params: {e}") slope = offset = friction_coeff = np.nan return slope, offset, friction_coeff def update_params(self, params): self.decay = min(self.decay + DT_MDL, MAX_FILTER_DECAY) for param, value in params.items(): self.filtered_params[param].update(value) self.filtered_params[param].update_alpha(self.decay) def handle_log(self, t, which, msg): if which == "carControl": self.raw_points["carControl_t"].append(t + self.lag) self.raw_points["active"].append(msg.latActive) elif which == "carOutput": self.raw_points["carOutput_t"].append(t + self.lag) self.raw_points["steer_torque"].append(-msg.actuatorsOutput.steer) elif which == "carState": self.raw_points["carState_t"].append(t + self.lag) self.raw_points["vego"].append(msg.vEgo) self.raw_points["steer_override"].append(msg.steeringPressed) elif which == "liveLocationKalman": if len(self.raw_points['steer_torque']) == self.hist_len: yaw_rate = msg.angularVelocityCalibrated.value[2] roll = msg.orientationNED.value[0] active = np.interp(np.arange(t - MIN_ENGAGE_BUFFER, t, DT_MDL), self.raw_points['carControl_t'], self.raw_points['active']).astype(bool) steer_override = np.interp(np.arange(t - MIN_ENGAGE_BUFFER, t, DT_MDL), self.raw_points['carState_t'], self.raw_points['steer_override']).astype(bool) vego = np.interp(t, self.raw_points['carState_t'], self.raw_points['vego']) steer = np.interp(t, self.raw_points['carOutput_t'], self.raw_points['steer_torque']) lateral_acc = (vego * yaw_rate) - (np.sin(roll) * ACCELERATION_DUE_TO_GRAVITY) if all(active) and (not any(steer_override)) and (vego > MIN_VEL) and (abs(steer) > STEER_MIN_THRESHOLD) and (abs(lateral_acc) <= LAT_ACC_THRESHOLD): self.filtered_points.add_point(float(steer), float(lateral_acc)) def get_msg(self, valid=True, with_points=False): msg = messaging.new_message('liveTorqueParameters') msg.valid = valid liveTorqueParameters = msg.liveTorqueParameters liveTorqueParameters.version = VERSION liveTorqueParameters.useParams = self.use_params # Calculate raw estimates when possible, only update filters when enough points are gathered if self.filtered_points.is_calculable(): latAccelFactor, latAccelOffset, frictionCoeff = self.estimate_params() liveTorqueParameters.latAccelFactorRaw = float(latAccelFactor) liveTorqueParameters.latAccelOffsetRaw = float(latAccelOffset) liveTorqueParameters.frictionCoefficientRaw = float(frictionCoeff) if self.filtered_points.is_valid(): if any(val is None or np.isnan(val) for val in [latAccelFactor, latAccelOffset, frictionCoeff]): cloudlog.exception("Live torque parameters are invalid.") liveTorqueParameters.liveValid = False self.reset() else: liveTorqueParameters.liveValid = True latAccelFactor = np.clip(latAccelFactor, self.min_lataccel_factor, self.max_lataccel_factor) frictionCoeff = np.clip(frictionCoeff, self.min_friction, self.max_friction) self.update_params({'latAccelFactor': latAccelFactor, 'latAccelOffset': latAccelOffset, 'frictionCoefficient': frictionCoeff}) if with_points: liveTorqueParameters.points = self.filtered_points.get_points()[:, [0, 2]].tolist() liveTorqueParameters.latAccelFactorFiltered = float(self.filtered_params['latAccelFactor'].x) liveTorqueParameters.latAccelOffsetFiltered = float(self.filtered_params['latAccelOffset'].x) liveTorqueParameters.frictionCoefficientFiltered = float(self.filtered_params['frictionCoefficient'].x) liveTorqueParameters.totalBucketPoints = len(self.filtered_points) liveTorqueParameters.decay = self.decay liveTorqueParameters.maxResets = self.resets return msg def main(demo=False): config_realtime_process([0, 1, 2, 3], 5) pm = messaging.PubMaster(['liveTorqueParameters']) sm = messaging.SubMaster(['carControl', 'carOutput', 'carState', 'liveLocationKalman'], poll='liveLocationKalman') params = Params() with car.CarParams.from_bytes(params.get("CarParams", block=True)) as CP: estimator = TorqueEstimator(CP) while True: sm.update() if sm.all_checks(): for which in sm.updated.keys(): if sm.updated[which]: t = sm.logMonoTime[which] * 1e-9 estimator.handle_log(t, which, sm[which]) # 4Hz driven by liveLocationKalman if sm.frame % 5 == 0: pm.send('liveTorqueParameters', estimator.get_msg(valid=sm.all_checks())) # Cache points every 60 seconds while onroad if sm.frame % 240 == 0: msg = estimator.get_msg(valid=sm.all_checks(), with_points=True) params.put_nonblocking("LiveTorqueParameters", msg.to_bytes()) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='Process the --demo argument.') parser.add_argument('--demo', action='store_true', help='A boolean for demo mode.') args = parser.parse_args() main(demo=args.demo)
2301_81045437/openpilot
selfdrive/locationd/torqued.py
Python
mit
11,103
import glob Import('env', 'envCython', 'arch', 'cereal', 'messaging', 'common', 'gpucommon', 'visionipc', 'transformations') lenv = env.Clone() lenvCython = envCython.Clone() libs = [cereal, messaging, visionipc, gpucommon, common, 'capnp', 'zmq', 'kj', 'pthread'] frameworks = [] common_src = [ "models/commonmodel.cc", "transforms/loadyuv.cc", "transforms/transform.cc", ] thneed_src_common = [ "thneed/thneed_common.cc", "thneed/serialize.cc", ] thneed_src_qcom = thneed_src_common + ["thneed/thneed_qcom2.cc"] thneed_src_pc = thneed_src_common + ["thneed/thneed_pc.cc"] thneed_src = thneed_src_qcom if arch == "larch64" else thneed_src_pc # SNPE except on Mac and ARM Linux snpe_lib = [] if arch != "Darwin" and arch != "aarch64": common_src += ['runners/snpemodel.cc'] snpe_lib += ['SNPE'] # OpenCL is a framework on Mac if arch == "Darwin": frameworks += ['OpenCL'] else: libs += ['OpenCL'] # Set path definitions for pathdef, fn in {'TRANSFORM': 'transforms/transform.cl', 'LOADYUV': 'transforms/loadyuv.cl'}.items(): for xenv in (lenv, lenvCython): xenv['CXXFLAGS'].append(f'-D{pathdef}_PATH=\\"{File(fn).abspath}\\"') # Compile cython snpe_rpath_qcom = "/data/pythonpath/third_party/snpe/larch64" snpe_rpath_pc = f"{Dir('#').abspath}/third_party/snpe/x86_64-linux-clang" snpe_rpath = lenvCython['RPATH'] + [snpe_rpath_qcom if arch == "larch64" else snpe_rpath_pc] cython_libs = envCython["LIBS"] + libs snpemodel_lib = lenv.Library('snpemodel', ['runners/snpemodel.cc']) commonmodel_lib = lenv.Library('commonmodel', common_src) lenvCython.Program('runners/runmodel_pyx.so', 'runners/runmodel_pyx.pyx', LIBS=cython_libs, FRAMEWORKS=frameworks) lenvCython.Program('runners/snpemodel_pyx.so', 'runners/snpemodel_pyx.pyx', LIBS=[snpemodel_lib, snpe_lib, *cython_libs], FRAMEWORKS=frameworks, RPATH=snpe_rpath) lenvCython.Program('models/commonmodel_pyx.so', 'models/commonmodel_pyx.pyx', LIBS=[commonmodel_lib, *cython_libs], FRAMEWORKS=frameworks) tinygrad_files = ["#"+x for x in glob.glob(env.Dir("#tinygrad_repo").relpath + "/**", recursive=True, root_dir=env.Dir("#").abspath)] # Get model metadata fn = File("models/supercombo").abspath cmd = f'python3 {Dir("#selfdrive/modeld").abspath}/get_model_metadata.py {fn}.onnx' lenv.Command(fn + "_metadata.pkl", [fn + ".onnx"] + tinygrad_files, cmd) # Build thneed model if arch == "larch64" or GetOption('pc_thneed'): tinygrad_opts = [] if not GetOption('pc_thneed'): # use FLOAT16 on device for speed + don't cache the CL kernels for space tinygrad_opts += ["FLOAT16=1", "PYOPENCL_NO_CACHE=1"] cmd = f"cd {Dir('#').abspath}/tinygrad_repo && " + ' '.join(tinygrad_opts) + f" python3 openpilot/compile2.py {fn}.onnx {fn}.thneed" lenv.Command(fn + ".thneed", [fn + ".onnx"] + tinygrad_files, cmd) thneed_lib = env.SharedLibrary('thneed', thneed_src, LIBS=[gpucommon, common, 'zmq', 'OpenCL', 'dl']) thneedmodel_lib = env.Library('thneedmodel', ['runners/thneedmodel.cc']) lenvCython.Program('runners/thneedmodel_pyx.so', 'runners/thneedmodel_pyx.pyx', LIBS=envCython["LIBS"]+[thneedmodel_lib, thneed_lib, gpucommon, common, 'dl', 'zmq', 'OpenCL'])
2301_81045437/openpilot
selfdrive/modeld/SConscript
Python
mit
3,165
import numpy as np def index_function(idx, max_val=192, max_idx=32): return (max_val) * ((idx/max_idx)**2) class ModelConstants: # time and distance indices IDX_N = 33 T_IDXS = [index_function(idx, max_val=10.0) for idx in range(IDX_N)] X_IDXS = [index_function(idx, max_val=192.0) for idx in range(IDX_N)] LEAD_T_IDXS = [0., 2., 4., 6., 8., 10.] LEAD_T_OFFSETS = [0., 2., 4.] META_T_IDXS = [2., 4., 6., 8., 10.] # model inputs constants MODEL_FREQ = 20 FEATURE_LEN = 512 HISTORY_BUFFER_LEN = 99 DESIRE_LEN = 8 TRAFFIC_CONVENTION_LEN = 2 LAT_PLANNER_STATE_LEN = 4 LATERAL_CONTROL_PARAMS_LEN = 2 PREV_DESIRED_CURV_LEN = 1 # model outputs constants FCW_THRESHOLDS_5MS2 = np.array([.05, .05, .15, .15, .15], dtype=np.float32) FCW_THRESHOLDS_3MS2 = np.array([.7, .7], dtype=np.float32) FCW_5MS2_PROBS_WIDTH = 5 FCW_3MS2_PROBS_WIDTH = 2 DISENGAGE_WIDTH = 5 POSE_WIDTH = 6 WIDE_FROM_DEVICE_WIDTH = 3 SIM_POSE_WIDTH = 6 LEAD_WIDTH = 4 LANE_LINES_WIDTH = 2 ROAD_EDGES_WIDTH = 2 PLAN_WIDTH = 15 DESIRE_PRED_WIDTH = 8 LAT_PLANNER_SOLUTION_WIDTH = 4 DESIRED_CURV_WIDTH = 1 NUM_LANE_LINES = 4 NUM_ROAD_EDGES = 2 LEAD_TRAJ_LEN = 6 DESIRE_PRED_LEN = 4 PLAN_MHP_N = 5 LEAD_MHP_N = 2 PLAN_MHP_SELECTION = 1 LEAD_MHP_SELECTION = 3 FCW_THRESHOLD_5MS2_HIGH = 0.15 FCW_THRESHOLD_5MS2_LOW = 0.05 FCW_THRESHOLD_3MS2 = 0.7 CONFIDENCE_BUFFER_LEN = 5 RYG_GREEN = 0.01165 RYG_YELLOW = 0.06157 # model outputs slices class Plan: POSITION = slice(0, 3) VELOCITY = slice(3, 6) ACCELERATION = slice(6, 9) T_FROM_CURRENT_EULER = slice(9, 12) ORIENTATION_RATE = slice(12, 15) class Meta: ENGAGED = slice(0, 1) # next 2, 4, 6, 8, 10 seconds GAS_DISENGAGE = slice(1, 36, 7) BRAKE_DISENGAGE = slice(2, 36, 7) STEER_OVERRIDE = slice(3, 36, 7) HARD_BRAKE_3 = slice(4, 36, 7) HARD_BRAKE_4 = slice(5, 36, 7) HARD_BRAKE_5 = slice(6, 36, 7) GAS_PRESS = slice(7, 36, 7) # next 0, 2, 4, 6, 8, 10 seconds LEFT_BLINKER = slice(36, 48, 2) RIGHT_BLINKER = slice(37, 48, 2)
2301_81045437/openpilot
selfdrive/modeld/constants.py
Python
mit
2,066
#!/usr/bin/env python3 import os import gc import math import time import ctypes import numpy as np from pathlib import Path from cereal import messaging from cereal.messaging import PubMaster, SubMaster from cereal.visionipc import VisionIpcClient, VisionStreamType, VisionBuf from openpilot.common.swaglog import cloudlog from openpilot.common.params import Params from openpilot.common.realtime import set_realtime_priority from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime from openpilot.selfdrive.modeld.models.commonmodel_pyx import sigmoid CALIB_LEN = 3 REG_SCALE = 0.25 MODEL_WIDTH = 1440 MODEL_HEIGHT = 960 OUTPUT_SIZE = 84 SEND_RAW_PRED = os.getenv('SEND_RAW_PRED') MODEL_PATHS = { ModelRunner.SNPE: Path(__file__).parent / 'models/dmonitoring_model_q.dlc', ModelRunner.ONNX: Path(__file__).parent / 'models/dmonitoring_model.onnx'} class DriverStateResult(ctypes.Structure): _fields_ = [ ("face_orientation", ctypes.c_float*3), ("face_position", ctypes.c_float*3), ("face_orientation_std", ctypes.c_float*3), ("face_position_std", ctypes.c_float*3), ("face_prob", ctypes.c_float), ("_unused_a", ctypes.c_float*8), ("left_eye_prob", ctypes.c_float), ("_unused_b", ctypes.c_float*8), ("right_eye_prob", ctypes.c_float), ("left_blink_prob", ctypes.c_float), ("right_blink_prob", ctypes.c_float), ("sunglasses_prob", ctypes.c_float), ("occluded_prob", ctypes.c_float), ("ready_prob", ctypes.c_float*4), ("not_ready_prob", ctypes.c_float*2)] class DMonitoringModelResult(ctypes.Structure): _fields_ = [ ("driver_state_lhd", DriverStateResult), ("driver_state_rhd", DriverStateResult), ("poor_vision_prob", ctypes.c_float), ("wheel_on_right_prob", ctypes.c_float)] class ModelState: inputs: dict[str, np.ndarray] output: np.ndarray model: ModelRunner def __init__(self): assert ctypes.sizeof(DMonitoringModelResult) == OUTPUT_SIZE * ctypes.sizeof(ctypes.c_float) self.output = np.zeros(OUTPUT_SIZE, dtype=np.float32) self.inputs = { 'input_img': np.zeros(MODEL_HEIGHT * MODEL_WIDTH, dtype=np.uint8), 'calib': np.zeros(CALIB_LEN, dtype=np.float32)} self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.DSP, True, None) self.model.addInput("input_img", None) self.model.addInput("calib", self.inputs['calib']) def run(self, buf:VisionBuf, calib:np.ndarray) -> tuple[np.ndarray, float]: self.inputs['calib'][:] = calib v_offset = buf.height - MODEL_HEIGHT h_offset = (buf.width - MODEL_WIDTH) // 2 buf_data = buf.data.reshape(-1, buf.stride) input_data = self.inputs['input_img'].reshape(MODEL_HEIGHT, MODEL_WIDTH) input_data[:] = buf_data[v_offset:v_offset+MODEL_HEIGHT, h_offset:h_offset+MODEL_WIDTH] t1 = time.perf_counter() self.model.setInputBuffer("input_img", self.inputs['input_img'].view(np.float32)) self.model.execute() t2 = time.perf_counter() return self.output, t2 - t1 def fill_driver_state(msg, ds_result: DriverStateResult): msg.faceOrientation = [x * REG_SCALE for x in ds_result.face_orientation] msg.faceOrientationStd = [math.exp(x) for x in ds_result.face_orientation_std] msg.facePosition = [x * REG_SCALE for x in ds_result.face_position[:2]] msg.facePositionStd = [math.exp(x) for x in ds_result.face_position_std[:2]] msg.faceProb = sigmoid(ds_result.face_prob) msg.leftEyeProb = sigmoid(ds_result.left_eye_prob) msg.rightEyeProb = sigmoid(ds_result.right_eye_prob) msg.leftBlinkProb = sigmoid(ds_result.left_blink_prob) msg.rightBlinkProb = sigmoid(ds_result.right_blink_prob) msg.sunglassesProb = sigmoid(ds_result.sunglasses_prob) msg.occludedProb = sigmoid(ds_result.occluded_prob) msg.readyProb = [sigmoid(x) for x in ds_result.ready_prob] msg.notReadyProb = [sigmoid(x) for x in ds_result.not_ready_prob] def get_driverstate_packet(model_output: np.ndarray, frame_id: int, location_ts: int, execution_time: float, dsp_execution_time: float): model_result = ctypes.cast(model_output.ctypes.data, ctypes.POINTER(DMonitoringModelResult)).contents msg = messaging.new_message('driverStateV2', valid=True) ds = msg.driverStateV2 ds.frameId = frame_id ds.modelExecutionTime = execution_time ds.dspExecutionTime = dsp_execution_time ds.poorVisionProb = sigmoid(model_result.poor_vision_prob) ds.wheelOnRightProb = sigmoid(model_result.wheel_on_right_prob) ds.rawPredictions = model_output.tobytes() if SEND_RAW_PRED else b'' fill_driver_state(ds.leftDriverData, model_result.driver_state_lhd) fill_driver_state(ds.rightDriverData, model_result.driver_state_rhd) return msg def main(): gc.disable() set_realtime_priority(1) model = ModelState() cloudlog.warning("models loaded, dmonitoringmodeld starting") Params().put_bool("DmModelInitialized", True) cloudlog.warning("connecting to driver stream") vipc_client = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_DRIVER, True) while not vipc_client.connect(False): time.sleep(0.1) assert vipc_client.is_connected() cloudlog.warning(f"connected with buffer size: {vipc_client.buffer_len}") sm = SubMaster(["liveCalibration"]) pm = PubMaster(["driverStateV2"]) calib = np.zeros(CALIB_LEN, dtype=np.float32) # last = 0 while True: buf = vipc_client.recv() if buf is None: continue sm.update(0) if sm.updated["liveCalibration"]: calib[:] = np.array(sm["liveCalibration"].rpyCalib) t1 = time.perf_counter() model_output, dsp_execution_time = model.run(buf, calib) t2 = time.perf_counter() pm.send("driverStateV2", get_driverstate_packet(model_output, vipc_client.frame_id, vipc_client.timestamp_sof, t2 - t1, dsp_execution_time)) # print("dmonitoring process: %.2fms, from last %.2fms\n" % (t2 - t1, t1 - last)) # last = t1 if __name__ == "__main__": main()
2301_81045437/openpilot
selfdrive/modeld/dmonitoringmodeld.py
Python
mit
5,900
import os import capnp import numpy as np from cereal import log from openpilot.selfdrive.modeld.constants import ModelConstants, Plan, Meta SEND_RAW_PRED = os.getenv('SEND_RAW_PRED') ConfidenceClass = log.ModelDataV2.ConfidenceClass class PublishState: def __init__(self): self.disengage_buffer = np.zeros(ModelConstants.CONFIDENCE_BUFFER_LEN*ModelConstants.DISENGAGE_WIDTH, dtype=np.float32) self.prev_brake_5ms2_probs = np.zeros(ModelConstants.FCW_5MS2_PROBS_WIDTH, dtype=np.float32) self.prev_brake_3ms2_probs = np.zeros(ModelConstants.FCW_3MS2_PROBS_WIDTH, dtype=np.float32) def fill_xyzt(builder, t, x, y, z, x_std=None, y_std=None, z_std=None): builder.t = t builder.x = x.tolist() builder.y = y.tolist() builder.z = z.tolist() if x_std is not None: builder.xStd = x_std.tolist() if y_std is not None: builder.yStd = y_std.tolist() if z_std is not None: builder.zStd = z_std.tolist() def fill_xyvat(builder, t, x, y, v, a, x_std=None, y_std=None, v_std=None, a_std=None): builder.t = t builder.x = x.tolist() builder.y = y.tolist() builder.v = v.tolist() builder.a = a.tolist() if x_std is not None: builder.xStd = x_std.tolist() if y_std is not None: builder.yStd = y_std.tolist() if v_std is not None: builder.vStd = v_std.tolist() if a_std is not None: builder.aStd = a_std.tolist() def fill_model_msg(msg: capnp._DynamicStructBuilder, net_output_data: dict[str, np.ndarray], publish_state: PublishState, vipc_frame_id: int, vipc_frame_id_extra: int, frame_id: int, frame_drop: float, timestamp_eof: int, model_execution_time: float, valid: bool) -> None: frame_age = frame_id - vipc_frame_id if frame_id > vipc_frame_id else 0 msg.valid = valid modelV2 = msg.modelV2 modelV2.frameId = vipc_frame_id modelV2.frameIdExtra = vipc_frame_id_extra modelV2.frameAge = frame_age modelV2.frameDropPerc = frame_drop * 100 modelV2.timestampEof = timestamp_eof modelV2.modelExecutionTime = model_execution_time # plan position = modelV2.position fill_xyzt(position, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.POSITION].T, *net_output_data['plan_stds'][0,:,Plan.POSITION].T) velocity = modelV2.velocity fill_xyzt(velocity, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.VELOCITY].T) acceleration = modelV2.acceleration fill_xyzt(acceleration, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.ACCELERATION].T) orientation = modelV2.orientation fill_xyzt(orientation, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.T_FROM_CURRENT_EULER].T) orientation_rate = modelV2.orientationRate fill_xyzt(orientation_rate, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.ORIENTATION_RATE].T) # lateral planning action = modelV2.action action.desiredCurvature = float(net_output_data['desired_curvature'][0,0]) # times at X_IDXS according to model plan PLAN_T_IDXS = [np.nan] * ModelConstants.IDX_N PLAN_T_IDXS[0] = 0.0 plan_x = net_output_data['plan'][0,:,Plan.POSITION][:,0].tolist() for xidx in range(1, ModelConstants.IDX_N): tidx = 0 # increment tidx until we find an element that's further away than the current xidx while tidx < ModelConstants.IDX_N - 1 and plan_x[tidx+1] < ModelConstants.X_IDXS[xidx]: tidx += 1 if tidx == ModelConstants.IDX_N - 1: # if the Plan doesn't extend far enough, set plan_t to the max value (10s), then break PLAN_T_IDXS[xidx] = ModelConstants.T_IDXS[ModelConstants.IDX_N - 1] break # interpolate to find `t` for the current xidx current_x_val = plan_x[tidx] next_x_val = plan_x[tidx+1] p = (ModelConstants.X_IDXS[xidx] - current_x_val) / (next_x_val - current_x_val) if abs(next_x_val - current_x_val) > 1e-9 else float('nan') PLAN_T_IDXS[xidx] = p * ModelConstants.T_IDXS[tidx+1] + (1 - p) * ModelConstants.T_IDXS[tidx] # lane lines modelV2.init('laneLines', 4) for i in range(4): lane_line = modelV2.laneLines[i] fill_xyzt(lane_line, PLAN_T_IDXS, np.array(ModelConstants.X_IDXS), net_output_data['lane_lines'][0,i,:,0], net_output_data['lane_lines'][0,i,:,1]) modelV2.laneLineStds = net_output_data['lane_lines_stds'][0,:,0,0].tolist() modelV2.laneLineProbs = net_output_data['lane_lines_prob'][0,1::2].tolist() # road edges modelV2.init('roadEdges', 2) for i in range(2): road_edge = modelV2.roadEdges[i] fill_xyzt(road_edge, PLAN_T_IDXS, np.array(ModelConstants.X_IDXS), net_output_data['road_edges'][0,i,:,0], net_output_data['road_edges'][0,i,:,1]) modelV2.roadEdgeStds = net_output_data['road_edges_stds'][0,:,0,0].tolist() # leads modelV2.init('leadsV3', 3) for i in range(3): lead = modelV2.leadsV3[i] fill_xyvat(lead, ModelConstants.LEAD_T_IDXS, *net_output_data['lead'][0,i].T, *net_output_data['lead_stds'][0,i].T) lead.prob = net_output_data['lead_prob'][0,i].tolist() lead.probTime = ModelConstants.LEAD_T_OFFSETS[i] # meta meta = modelV2.meta meta.desireState = net_output_data['desire_state'][0].reshape(-1).tolist() meta.desirePrediction = net_output_data['desire_pred'][0].reshape(-1).tolist() meta.engagedProb = net_output_data['meta'][0,Meta.ENGAGED].item() meta.init('disengagePredictions') disengage_predictions = meta.disengagePredictions disengage_predictions.t = ModelConstants.META_T_IDXS disengage_predictions.brakeDisengageProbs = net_output_data['meta'][0,Meta.BRAKE_DISENGAGE].tolist() disengage_predictions.gasDisengageProbs = net_output_data['meta'][0,Meta.GAS_DISENGAGE].tolist() disengage_predictions.steerOverrideProbs = net_output_data['meta'][0,Meta.STEER_OVERRIDE].tolist() disengage_predictions.brake3MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_3].tolist() disengage_predictions.brake4MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_4].tolist() disengage_predictions.brake5MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_5].tolist() publish_state.prev_brake_5ms2_probs[:-1] = publish_state.prev_brake_5ms2_probs[1:] publish_state.prev_brake_5ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_5][0] publish_state.prev_brake_3ms2_probs[:-1] = publish_state.prev_brake_3ms2_probs[1:] publish_state.prev_brake_3ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_3][0] hard_brake_predicted = (publish_state.prev_brake_5ms2_probs > ModelConstants.FCW_THRESHOLDS_5MS2).all() and \ (publish_state.prev_brake_3ms2_probs > ModelConstants.FCW_THRESHOLDS_3MS2).all() meta.hardBrakePredicted = hard_brake_predicted.item() # temporal pose temporal_pose = modelV2.temporalPose temporal_pose.trans = net_output_data['sim_pose'][0,:3].tolist() temporal_pose.transStd = net_output_data['sim_pose_stds'][0,:3].tolist() temporal_pose.rot = net_output_data['sim_pose'][0,3:].tolist() temporal_pose.rotStd = net_output_data['sim_pose_stds'][0,3:].tolist() # confidence if vipc_frame_id % (2*ModelConstants.MODEL_FREQ) == 0: # any disengage prob brake_disengage_probs = net_output_data['meta'][0,Meta.BRAKE_DISENGAGE] gas_disengage_probs = net_output_data['meta'][0,Meta.GAS_DISENGAGE] steer_override_probs = net_output_data['meta'][0,Meta.STEER_OVERRIDE] any_disengage_probs = 1-((1-brake_disengage_probs)*(1-gas_disengage_probs)*(1-steer_override_probs)) # independent disengage prob for each 2s slice ind_disengage_probs = np.r_[any_disengage_probs[0], np.diff(any_disengage_probs) / (1 - any_disengage_probs[:-1])] # rolling buf for 2, 4, 6, 8, 10s publish_state.disengage_buffer[:-ModelConstants.DISENGAGE_WIDTH] = publish_state.disengage_buffer[ModelConstants.DISENGAGE_WIDTH:] publish_state.disengage_buffer[-ModelConstants.DISENGAGE_WIDTH:] = ind_disengage_probs score = 0. for i in range(ModelConstants.DISENGAGE_WIDTH): score += publish_state.disengage_buffer[i*ModelConstants.DISENGAGE_WIDTH+ModelConstants.DISENGAGE_WIDTH-1-i].item() / ModelConstants.DISENGAGE_WIDTH if score < ModelConstants.RYG_GREEN: modelV2.confidence = ConfidenceClass.green elif score < ModelConstants.RYG_YELLOW: modelV2.confidence = ConfidenceClass.yellow else: modelV2.confidence = ConfidenceClass.red # raw prediction if enabled if SEND_RAW_PRED: modelV2.rawPredictions = net_output_data['raw_pred'].tobytes() def fill_pose_msg(msg: capnp._DynamicStructBuilder, net_output_data: dict[str, np.ndarray], vipc_frame_id: int, vipc_dropped_frames: int, timestamp_eof: int, live_calib_seen: bool) -> None: msg.valid = live_calib_seen & (vipc_dropped_frames < 1) cameraOdometry = msg.cameraOdometry cameraOdometry.frameId = vipc_frame_id cameraOdometry.timestampEof = timestamp_eof cameraOdometry.trans = net_output_data['pose'][0,:3].tolist() cameraOdometry.rot = net_output_data['pose'][0,3:].tolist() cameraOdometry.wideFromDeviceEuler = net_output_data['wide_from_device_euler'][0,:].tolist() cameraOdometry.roadTransformTrans = net_output_data['road_transform'][0,:3].tolist() cameraOdometry.transStd = net_output_data['pose_stds'][0,:3].tolist() cameraOdometry.rotStd = net_output_data['pose_stds'][0,3:].tolist() cameraOdometry.wideFromDeviceEulerStd = net_output_data['wide_from_device_euler_stds'][0,:].tolist() cameraOdometry.roadTransformTransStd = net_output_data['road_transform_stds'][0,:3].tolist()
2301_81045437/openpilot
selfdrive/modeld/fill_model_msg.py
Python
mit
9,456
#!/usr/bin/env python3 import sys import pathlib import onnx import codecs import pickle def get_name_and_shape(value_info:onnx.ValueInfoProto) -> tuple[str, tuple[int,...]]: shape = tuple([int(dim.dim_value) for dim in value_info.type.tensor_type.shape.dim]) name = value_info.name return name, shape if __name__ == "__main__": model_path = pathlib.Path(sys.argv[1]) model = onnx.load(str(model_path)) i = [x.key for x in model.metadata_props].index('output_slices') output_slices = model.metadata_props[i].value metadata = {} metadata['output_slices'] = pickle.loads(codecs.decode(output_slices.encode(), "base64")) metadata['input_shapes'] = dict([get_name_and_shape(x) for x in model.graph.input]) metadata['output_shapes'] = dict([get_name_and_shape(x) for x in model.graph.output]) metadata_path = model_path.parent / (model_path.stem + '_metadata.pkl') with open(metadata_path, 'wb') as f: pickle.dump(metadata, f) print(f'saved metadata to {metadata_path}')
2301_81045437/openpilot
selfdrive/modeld/get_model_metadata.py
Python
mit
1,003
#!/usr/bin/env bash DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" >/dev/null && pwd)" cd "$DIR/../../" if [ -f "$DIR/libthneed.so" ]; then export LD_PRELOAD="$DIR/libthneed.so" fi exec "$DIR/modeld.py" "$@"
2301_81045437/openpilot
selfdrive/modeld/modeld
Shell
mit
209
#!/usr/bin/env python3 import os import time import pickle import numpy as np import cereal.messaging as messaging from cereal import car, log from pathlib import Path from setproctitle import setproctitle from cereal.messaging import PubMaster, SubMaster from cereal.visionipc import VisionIpcClient, VisionStreamType, VisionBuf from openpilot.common.swaglog import cloudlog from openpilot.common.params import Params from openpilot.common.filter_simple import FirstOrderFilter from openpilot.common.realtime import config_realtime_process from openpilot.common.transformations.camera import DEVICE_CAMERAS from openpilot.common.transformations.model import get_warp_matrix from openpilot.system import sentry from openpilot.selfdrive.car.car_helpers import get_demo_car_params from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime from openpilot.selfdrive.modeld.parse_model_outputs import Parser from openpilot.selfdrive.modeld.fill_model_msg import fill_model_msg, fill_pose_msg, PublishState from openpilot.selfdrive.modeld.constants import ModelConstants from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext PROCESS_NAME = "selfdrive.modeld.modeld" SEND_RAW_PRED = os.getenv('SEND_RAW_PRED') MODEL_PATHS = { ModelRunner.THNEED: Path(__file__).parent / 'models/supercombo.thneed', ModelRunner.ONNX: Path(__file__).parent / 'models/supercombo.onnx'} METADATA_PATH = Path(__file__).parent / 'models/supercombo_metadata.pkl' class FrameMeta: frame_id: int = 0 timestamp_sof: int = 0 timestamp_eof: int = 0 def __init__(self, vipc=None): if vipc is not None: self.frame_id, self.timestamp_sof, self.timestamp_eof = vipc.frame_id, vipc.timestamp_sof, vipc.timestamp_eof class ModelState: frame: ModelFrame wide_frame: ModelFrame inputs: dict[str, np.ndarray] output: np.ndarray prev_desire: np.ndarray # for tracking the rising edge of the pulse model: ModelRunner def __init__(self, context: CLContext): self.frame = ModelFrame(context) self.wide_frame = ModelFrame(context) self.prev_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32) self.inputs = { 'desire': np.zeros(ModelConstants.DESIRE_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32), 'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32), 'lateral_control_params': np.zeros(ModelConstants.LATERAL_CONTROL_PARAMS_LEN, dtype=np.float32), 'prev_desired_curv': np.zeros(ModelConstants.PREV_DESIRED_CURV_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32), 'features_buffer': np.zeros(ModelConstants.HISTORY_BUFFER_LEN * ModelConstants.FEATURE_LEN, dtype=np.float32), } with open(METADATA_PATH, 'rb') as f: model_metadata = pickle.load(f) self.output_slices = model_metadata['output_slices'] net_output_size = model_metadata['output_shapes']['outputs'][1] self.output = np.zeros(net_output_size, dtype=np.float32) self.parser = Parser() self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.GPU, False, context) self.model.addInput("input_imgs", None) self.model.addInput("big_input_imgs", None) for k,v in self.inputs.items(): self.model.addInput(k, v) def slice_outputs(self, model_outputs: np.ndarray) -> dict[str, np.ndarray]: parsed_model_outputs = {k: model_outputs[np.newaxis, v] for k,v in self.output_slices.items()} if SEND_RAW_PRED: parsed_model_outputs['raw_pred'] = model_outputs.copy() return parsed_model_outputs def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_wide: np.ndarray, inputs: dict[str, np.ndarray], prepare_only: bool) -> dict[str, np.ndarray] | None: # Model decides when action is completed, so desire input is just a pulse triggered on rising edge inputs['desire'][0] = 0 self.inputs['desire'][:-ModelConstants.DESIRE_LEN] = self.inputs['desire'][ModelConstants.DESIRE_LEN:] self.inputs['desire'][-ModelConstants.DESIRE_LEN:] = np.where(inputs['desire'] - self.prev_desire > .99, inputs['desire'], 0) self.prev_desire[:] = inputs['desire'] self.inputs['traffic_convention'][:] = inputs['traffic_convention'] self.inputs['lateral_control_params'][:] = inputs['lateral_control_params'] # if getCLBuffer is not None, frame will be None self.model.setInputBuffer("input_imgs", self.frame.prepare(buf, transform.flatten(), self.model.getCLBuffer("input_imgs"))) if wbuf is not None: self.model.setInputBuffer("big_input_imgs", self.wide_frame.prepare(wbuf, transform_wide.flatten(), self.model.getCLBuffer("big_input_imgs"))) if prepare_only: return None self.model.execute() outputs = self.parser.parse_outputs(self.slice_outputs(self.output)) self.inputs['features_buffer'][:-ModelConstants.FEATURE_LEN] = self.inputs['features_buffer'][ModelConstants.FEATURE_LEN:] self.inputs['features_buffer'][-ModelConstants.FEATURE_LEN:] = outputs['hidden_state'][0, :] self.inputs['prev_desired_curv'][:-ModelConstants.PREV_DESIRED_CURV_LEN] = self.inputs['prev_desired_curv'][ModelConstants.PREV_DESIRED_CURV_LEN:] self.inputs['prev_desired_curv'][-ModelConstants.PREV_DESIRED_CURV_LEN:] = outputs['desired_curvature'][0, :] return outputs def main(demo=False): cloudlog.warning("modeld init") sentry.set_tag("daemon", PROCESS_NAME) cloudlog.bind(daemon=PROCESS_NAME) setproctitle(PROCESS_NAME) config_realtime_process(7, 54) cloudlog.warning("setting up CL context") cl_context = CLContext() cloudlog.warning("CL context ready; loading model") model = ModelState(cl_context) cloudlog.warning("models loaded, modeld starting") # visionipc clients while True: available_streams = VisionIpcClient.available_streams("camerad", block=False) if available_streams: use_extra_client = VisionStreamType.VISION_STREAM_WIDE_ROAD in available_streams and VisionStreamType.VISION_STREAM_ROAD in available_streams main_wide_camera = VisionStreamType.VISION_STREAM_ROAD not in available_streams break time.sleep(.1) vipc_client_main_stream = VisionStreamType.VISION_STREAM_WIDE_ROAD if main_wide_camera else VisionStreamType.VISION_STREAM_ROAD vipc_client_main = VisionIpcClient("camerad", vipc_client_main_stream, True, cl_context) vipc_client_extra = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_WIDE_ROAD, False, cl_context) cloudlog.warning(f"vision stream set up, main_wide_camera: {main_wide_camera}, use_extra_client: {use_extra_client}") while not vipc_client_main.connect(False): time.sleep(0.1) while use_extra_client and not vipc_client_extra.connect(False): time.sleep(0.1) cloudlog.warning(f"connected main cam with buffer size: {vipc_client_main.buffer_len} ({vipc_client_main.width} x {vipc_client_main.height})") if use_extra_client: cloudlog.warning(f"connected extra cam with buffer size: {vipc_client_extra.buffer_len} ({vipc_client_extra.width} x {vipc_client_extra.height})") # messaging pm = PubMaster(["modelV2", "cameraOdometry"]) sm = SubMaster(["deviceState", "carState", "roadCameraState", "liveCalibration", "driverMonitoringState", "carControl"]) publish_state = PublishState() params = Params() # setup filter to track dropped frames frame_dropped_filter = FirstOrderFilter(0., 10., 1. / ModelConstants.MODEL_FREQ) frame_id = 0 last_vipc_frame_id = 0 run_count = 0 model_transform_main = np.zeros((3, 3), dtype=np.float32) model_transform_extra = np.zeros((3, 3), dtype=np.float32) live_calib_seen = False buf_main, buf_extra = None, None meta_main = FrameMeta() meta_extra = FrameMeta() if demo: CP = get_demo_car_params() else: with car.CarParams.from_bytes(params.get("CarParams", block=True)) as msg: CP = msg cloudlog.info("modeld got CarParams: %s", CP.carName) # TODO this needs more thought, use .2s extra for now to estimate other delays steer_delay = CP.steerActuatorDelay + .2 DH = DesireHelper() while True: # Keep receiving frames until we are at least 1 frame ahead of previous extra frame while meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000: buf_main = vipc_client_main.recv() meta_main = FrameMeta(vipc_client_main) if buf_main is None: break if buf_main is None: cloudlog.debug("vipc_client_main no frame") continue if use_extra_client: # Keep receiving extra frames until frame id matches main camera while True: buf_extra = vipc_client_extra.recv() meta_extra = FrameMeta(vipc_client_extra) if buf_extra is None or meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000: break if buf_extra is None: cloudlog.debug("vipc_client_extra no frame") continue if abs(meta_main.timestamp_sof - meta_extra.timestamp_sof) > 10000000: cloudlog.error(f"frames out of sync! main: {meta_main.frame_id} ({meta_main.timestamp_sof / 1e9:.5f}),\ extra: {meta_extra.frame_id} ({meta_extra.timestamp_sof / 1e9:.5f})") else: # Use single camera buf_extra = buf_main meta_extra = meta_main sm.update(0) desire = DH.desire is_rhd = sm["driverMonitoringState"].isRHD frame_id = sm["roadCameraState"].frameId lateral_control_params = np.array([sm["carState"].vEgo, steer_delay], dtype=np.float32) if sm.updated["liveCalibration"] and sm.seen['roadCameraState'] and sm.seen['deviceState']: device_from_calib_euler = np.array(sm["liveCalibration"].rpyCalib, dtype=np.float32) dc = DEVICE_CAMERAS[(str(sm['deviceState'].deviceType), str(sm['roadCameraState'].sensor))] model_transform_main = get_warp_matrix(device_from_calib_euler, dc.ecam.intrinsics if main_wide_camera else dc.fcam.intrinsics, False).astype(np.float32) model_transform_extra = get_warp_matrix(device_from_calib_euler, dc.ecam.intrinsics, True).astype(np.float32) live_calib_seen = True traffic_convention = np.zeros(2) traffic_convention[int(is_rhd)] = 1 vec_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32) if desire >= 0 and desire < ModelConstants.DESIRE_LEN: vec_desire[desire] = 1 # tracked dropped frames vipc_dropped_frames = max(0, meta_main.frame_id - last_vipc_frame_id - 1) frames_dropped = frame_dropped_filter.update(min(vipc_dropped_frames, 10)) if run_count < 10: # let frame drops warm up frame_dropped_filter.x = 0. frames_dropped = 0. run_count = run_count + 1 frame_drop_ratio = frames_dropped / (1 + frames_dropped) prepare_only = vipc_dropped_frames > 0 if prepare_only: cloudlog.error(f"skipping model eval. Dropped {vipc_dropped_frames} frames") inputs:dict[str, np.ndarray] = { 'desire': vec_desire, 'traffic_convention': traffic_convention, 'lateral_control_params': lateral_control_params, } mt1 = time.perf_counter() model_output = model.run(buf_main, buf_extra, model_transform_main, model_transform_extra, inputs, prepare_only) mt2 = time.perf_counter() model_execution_time = mt2 - mt1 if model_output is not None: modelv2_send = messaging.new_message('modelV2') posenet_send = messaging.new_message('cameraOdometry') fill_model_msg(modelv2_send, model_output, publish_state, meta_main.frame_id, meta_extra.frame_id, frame_id, frame_drop_ratio, meta_main.timestamp_eof, model_execution_time, live_calib_seen) desire_state = modelv2_send.modelV2.meta.desireState l_lane_change_prob = desire_state[log.Desire.laneChangeLeft] r_lane_change_prob = desire_state[log.Desire.laneChangeRight] lane_change_prob = l_lane_change_prob + r_lane_change_prob DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob) modelv2_send.modelV2.meta.laneChangeState = DH.lane_change_state modelv2_send.modelV2.meta.laneChangeDirection = DH.lane_change_direction fill_pose_msg(posenet_send, model_output, meta_main.frame_id, vipc_dropped_frames, meta_main.timestamp_eof, live_calib_seen) pm.send('modelV2', modelv2_send) pm.send('cameraOdometry', posenet_send) last_vipc_frame_id = meta_main.frame_id if __name__ == "__main__": try: import argparse parser = argparse.ArgumentParser() parser.add_argument('--demo', action='store_true', help='A boolean for demo mode.') args = parser.parse_args() main(demo=args.demo) except KeyboardInterrupt: cloudlog.warning(f"child {PROCESS_NAME} got SIGINT") except Exception: sentry.capture_exception() raise
2301_81045437/openpilot
selfdrive/modeld/modeld.py
Python
mit
12,841
#include "selfdrive/modeld/models/commonmodel.h" #include <algorithm> #include <cassert> #include <cmath> #include <cstring> #include "common/clutil.h" #include "common/mat.h" #include "common/timing.h" ModelFrame::ModelFrame(cl_device_id device_id, cl_context context) { input_frames = std::make_unique<float[]>(buf_size); q = CL_CHECK_ERR(clCreateCommandQueue(context, device_id, 0, &err)); y_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, MODEL_WIDTH * MODEL_HEIGHT, NULL, &err)); u_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, (MODEL_WIDTH / 2) * (MODEL_HEIGHT / 2), NULL, &err)); v_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, (MODEL_WIDTH / 2) * (MODEL_HEIGHT / 2), NULL, &err)); net_input_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, MODEL_FRAME_SIZE * sizeof(float), NULL, &err)); transform_init(&transform, context, device_id); loadyuv_init(&loadyuv, context, device_id, MODEL_WIDTH, MODEL_HEIGHT); } float* ModelFrame::prepare(cl_mem yuv_cl, int frame_width, int frame_height, int frame_stride, int frame_uv_offset, const mat3 &projection, cl_mem *output) { transform_queue(&this->transform, q, yuv_cl, frame_width, frame_height, frame_stride, frame_uv_offset, y_cl, u_cl, v_cl, MODEL_WIDTH, MODEL_HEIGHT, projection); if (output == NULL) { loadyuv_queue(&loadyuv, q, y_cl, u_cl, v_cl, net_input_cl); std::memmove(&input_frames[0], &input_frames[MODEL_FRAME_SIZE], sizeof(float) * MODEL_FRAME_SIZE); CL_CHECK(clEnqueueReadBuffer(q, net_input_cl, CL_TRUE, 0, MODEL_FRAME_SIZE * sizeof(float), &input_frames[MODEL_FRAME_SIZE], 0, nullptr, nullptr)); clFinish(q); return &input_frames[0]; } else { loadyuv_queue(&loadyuv, q, y_cl, u_cl, v_cl, *output, true); // NOTE: Since thneed is using a different command queue, this clFinish is needed to ensure the image is ready. clFinish(q); return NULL; } } ModelFrame::~ModelFrame() { transform_destroy(&transform); loadyuv_destroy(&loadyuv); CL_CHECK(clReleaseMemObject(net_input_cl)); CL_CHECK(clReleaseMemObject(v_cl)); CL_CHECK(clReleaseMemObject(u_cl)); CL_CHECK(clReleaseMemObject(y_cl)); CL_CHECK(clReleaseCommandQueue(q)); } void softmax(const float* input, float* output, size_t len) { const float max_val = *std::max_element(input, input + len); float denominator = 0; for (int i = 0; i < len; i++) { float const v_exp = expf(input[i] - max_val); denominator += v_exp; output[i] = v_exp; } const float inv_denominator = 1. / denominator; for (int i = 0; i < len; i++) { output[i] *= inv_denominator; } } float sigmoid(float input) { return 1 / (1 + expf(-input)); }
2301_81045437/openpilot
selfdrive/modeld/models/commonmodel.cc
C++
mit
2,743
#pragma once #include <cfloat> #include <cstdlib> #include <memory> #define CL_USE_DEPRECATED_OPENCL_1_2_APIS #ifdef __APPLE__ #include <OpenCL/cl.h> #else #include <CL/cl.h> #endif #include "common/mat.h" #include "cereal/messaging/messaging.h" #include "selfdrive/modeld/transforms/loadyuv.h" #include "selfdrive/modeld/transforms/transform.h" const bool send_raw_pred = getenv("SEND_RAW_PRED") != NULL; void softmax(const float* input, float* output, size_t len); float sigmoid(float input); template<class T, size_t size> constexpr const kj::ArrayPtr<const T> to_kj_array_ptr(const std::array<T, size> &arr) { return kj::ArrayPtr(arr.data(), arr.size()); } class ModelFrame { public: ModelFrame(cl_device_id device_id, cl_context context); ~ModelFrame(); float* prepare(cl_mem yuv_cl, int width, int height, int frame_stride, int frame_uv_offset, const mat3& transform, cl_mem *output); const int MODEL_WIDTH = 512; const int MODEL_HEIGHT = 256; const int MODEL_FRAME_SIZE = MODEL_WIDTH * MODEL_HEIGHT * 3 / 2; const int buf_size = MODEL_FRAME_SIZE * 2; private: Transform transform; LoadYUVState loadyuv; cl_command_queue q; cl_mem y_cl, u_cl, v_cl, net_input_cl; std::unique_ptr<float[]> input_frames; };
2301_81045437/openpilot
selfdrive/modeld/models/commonmodel.h
C++
mit
1,247
# distutils: language = c++ from cereal.visionipc.visionipc cimport cl_device_id, cl_context, cl_mem cdef extern from "common/mat.h": cdef struct mat3: float v[9] cdef extern from "common/clutil.h": cdef unsigned long CL_DEVICE_TYPE_DEFAULT cl_device_id cl_get_device_id(unsigned long) cl_context cl_create_context(cl_device_id) cdef extern from "selfdrive/modeld/models/commonmodel.h": float sigmoid(float) cppclass ModelFrame: int buf_size ModelFrame(cl_device_id, cl_context) float * prepare(cl_mem, int, int, int, int, mat3, cl_mem*)
2301_81045437/openpilot
selfdrive/modeld/models/commonmodel.pxd
Cython
mit
571
# distutils: language = c++ from cereal.visionipc.visionipc cimport cl_mem from cereal.visionipc.visionipc_pyx cimport CLContext as BaseCLContext cdef class CLContext(BaseCLContext): pass cdef class CLMem: cdef cl_mem * mem @staticmethod cdef create(void*)
2301_81045437/openpilot
selfdrive/modeld/models/commonmodel_pyx.pxd
Cython
mit
269
# distutils: language = c++ # cython: c_string_encoding=ascii import numpy as np cimport numpy as cnp from libc.string cimport memcpy from cereal.visionipc.visionipc cimport cl_mem from cereal.visionipc.visionipc_pyx cimport VisionBuf, CLContext as BaseCLContext from .commonmodel cimport CL_DEVICE_TYPE_DEFAULT, cl_get_device_id, cl_create_context from .commonmodel cimport mat3, sigmoid as cppSigmoid, ModelFrame as cppModelFrame def sigmoid(x): return cppSigmoid(x) cdef class CLContext(BaseCLContext): def __cinit__(self): self.device_id = cl_get_device_id(CL_DEVICE_TYPE_DEFAULT) self.context = cl_create_context(self.device_id) cdef class CLMem: @staticmethod cdef create(void * cmem): mem = CLMem() mem.mem = <cl_mem*> cmem return mem cdef class ModelFrame: cdef cppModelFrame * frame def __cinit__(self, CLContext context): self.frame = new cppModelFrame(context.device_id, context.context) def __dealloc__(self): del self.frame def prepare(self, VisionBuf buf, float[:] projection, CLMem output): cdef mat3 cprojection memcpy(cprojection.v, &projection[0], 9*sizeof(float)) cdef float * data if output is None: data = self.frame.prepare(buf.buf.buf_cl, buf.width, buf.height, buf.stride, buf.uv_offset, cprojection, NULL) else: data = self.frame.prepare(buf.buf.buf_cl, buf.width, buf.height, buf.stride, buf.uv_offset, cprojection, output.mem) if not data: return None return np.asarray(<cnp.float32_t[:self.frame.buf_size]> data)
2301_81045437/openpilot
selfdrive/modeld/models/commonmodel_pyx.pyx
Cython
mit
1,540
import numpy as np from openpilot.selfdrive.modeld.constants import ModelConstants def sigmoid(x): return 1. / (1. + np.exp(-x)) def softmax(x, axis=-1): x -= np.max(x, axis=axis, keepdims=True) if x.dtype == np.float32 or x.dtype == np.float64: np.exp(x, out=x) else: x = np.exp(x) x /= np.sum(x, axis=axis, keepdims=True) return x class Parser: def __init__(self, ignore_missing=False): self.ignore_missing = ignore_missing def check_missing(self, outs, name): if name not in outs and not self.ignore_missing: raise ValueError(f"Missing output {name}") return name not in outs def parse_categorical_crossentropy(self, name, outs, out_shape=None): if self.check_missing(outs, name): return raw = outs[name] if out_shape is not None: raw = raw.reshape((raw.shape[0],) + out_shape) outs[name] = softmax(raw, axis=-1) def parse_binary_crossentropy(self, name, outs): if self.check_missing(outs, name): return raw = outs[name] outs[name] = sigmoid(raw) def parse_mdn(self, name, outs, in_N=0, out_N=1, out_shape=None): if self.check_missing(outs, name): return raw = outs[name] raw = raw.reshape((raw.shape[0], max(in_N, 1), -1)) pred_mu = raw[:,:,:(raw.shape[2] - out_N)//2] n_values = (raw.shape[2] - out_N)//2 pred_mu = raw[:,:,:n_values] pred_std = np.exp(raw[:,:,n_values: 2*n_values]) if in_N > 1: weights = np.zeros((raw.shape[0], in_N, out_N), dtype=raw.dtype) for i in range(out_N): weights[:,:,i - out_N] = softmax(raw[:,:,i - out_N], axis=-1) if out_N == 1: for fidx in range(weights.shape[0]): idxs = np.argsort(weights[fidx][:,0])[::-1] weights[fidx] = weights[fidx][idxs] pred_mu[fidx] = pred_mu[fidx][idxs] pred_std[fidx] = pred_std[fidx][idxs] full_shape = tuple([raw.shape[0], in_N] + list(out_shape)) outs[name + '_weights'] = weights outs[name + '_hypotheses'] = pred_mu.reshape(full_shape) outs[name + '_stds_hypotheses'] = pred_std.reshape(full_shape) pred_mu_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype) pred_std_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype) for fidx in range(weights.shape[0]): for hidx in range(out_N): idxs = np.argsort(weights[fidx,:,hidx])[::-1] pred_mu_final[fidx, hidx] = pred_mu[fidx, idxs[0]] pred_std_final[fidx, hidx] = pred_std[fidx, idxs[0]] else: pred_mu_final = pred_mu pred_std_final = pred_std if out_N > 1: final_shape = tuple([raw.shape[0], out_N] + list(out_shape)) else: final_shape = tuple([raw.shape[0],] + list(out_shape)) outs[name] = pred_mu_final.reshape(final_shape) outs[name + '_stds'] = pred_std_final.reshape(final_shape) def parse_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]: self.parse_mdn('plan', outs, in_N=ModelConstants.PLAN_MHP_N, out_N=ModelConstants.PLAN_MHP_SELECTION, out_shape=(ModelConstants.IDX_N,ModelConstants.PLAN_WIDTH)) self.parse_mdn('lane_lines', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_LANE_LINES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH)) self.parse_mdn('road_edges', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_ROAD_EDGES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH)) self.parse_mdn('pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,)) self.parse_mdn('road_transform', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,)) self.parse_mdn('sim_pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,)) self.parse_mdn('wide_from_device_euler', outs, in_N=0, out_N=0, out_shape=(ModelConstants.WIDE_FROM_DEVICE_WIDTH,)) self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION, out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH)) if 'lat_planner_solution' in outs: self.parse_mdn('lat_planner_solution', outs, in_N=0, out_N=0, out_shape=(ModelConstants.IDX_N,ModelConstants.LAT_PLANNER_SOLUTION_WIDTH)) if 'desired_curvature' in outs: self.parse_mdn('desired_curvature', outs, in_N=0, out_N=0, out_shape=(ModelConstants.DESIRED_CURV_WIDTH,)) for k in ['lead_prob', 'lane_lines_prob', 'meta']: self.parse_binary_crossentropy(k, outs) self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,)) self.parse_categorical_crossentropy('desire_pred', outs, out_shape=(ModelConstants.DESIRE_PRED_LEN,ModelConstants.DESIRE_PRED_WIDTH)) return outs
2301_81045437/openpilot
selfdrive/modeld/parse_model_outputs.py
Python
mit
4,739
import os from openpilot.system.hardware import TICI from openpilot.selfdrive.modeld.runners.runmodel_pyx import RunModel, Runtime assert Runtime USE_THNEED = int(os.getenv('USE_THNEED', str(int(TICI)))) USE_SNPE = int(os.getenv('USE_SNPE', str(int(TICI)))) class ModelRunner(RunModel): THNEED = 'THNEED' SNPE = 'SNPE' ONNX = 'ONNX' def __new__(cls, paths, *args, **kwargs): if ModelRunner.THNEED in paths and USE_THNEED: from openpilot.selfdrive.modeld.runners.thneedmodel_pyx import ThneedModel as Runner runner_type = ModelRunner.THNEED elif ModelRunner.SNPE in paths and USE_SNPE: from openpilot.selfdrive.modeld.runners.snpemodel_pyx import SNPEModel as Runner runner_type = ModelRunner.SNPE elif ModelRunner.ONNX in paths: from openpilot.selfdrive.modeld.runners.onnxmodel import ONNXModel as Runner runner_type = ModelRunner.ONNX else: raise Exception("Couldn't select a model runner, make sure to pass at least one valid model path") return Runner(str(paths[runner_type]), *args, **kwargs)
2301_81045437/openpilot
selfdrive/modeld/runners/__init__.py
Python
mit
1,072
import onnx import itertools import os import sys import numpy as np from typing import Any from openpilot.selfdrive.modeld.runners.runmodel_pyx import RunModel ORT_TYPES_TO_NP_TYPES = {'tensor(float16)': np.float16, 'tensor(float)': np.float32, 'tensor(uint8)': np.uint8} def attributeproto_fp16_to_fp32(attr): float32_list = np.frombuffer(attr.raw_data, dtype=np.float16) attr.data_type = 1 attr.raw_data = float32_list.astype(np.float32).tobytes() def convert_fp16_to_fp32(path): model = onnx.load(path) for i in model.graph.initializer: if i.data_type == 10: attributeproto_fp16_to_fp32(i) for i in itertools.chain(model.graph.input, model.graph.output): if i.type.tensor_type.elem_type == 10: i.type.tensor_type.elem_type = 1 for i in model.graph.node: for a in i.attribute: if hasattr(a, 't'): if a.t.data_type == 10: attributeproto_fp16_to_fp32(a.t) return model.SerializeToString() def create_ort_session(path, fp16_to_fp32): os.environ["OMP_NUM_THREADS"] = "4" os.environ["OMP_WAIT_POLICY"] = "PASSIVE" import onnxruntime as ort print("Onnx available providers: ", ort.get_available_providers(), file=sys.stderr) options = ort.SessionOptions() options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL provider: str | tuple[str, dict[Any, Any]] if 'OpenVINOExecutionProvider' in ort.get_available_providers() and 'ONNXCPU' not in os.environ: provider = 'OpenVINOExecutionProvider' elif 'CUDAExecutionProvider' in ort.get_available_providers() and 'ONNXCPU' not in os.environ: options.intra_op_num_threads = 2 provider = ('CUDAExecutionProvider', {'cudnn_conv_algo_search': 'DEFAULT'}) else: options.intra_op_num_threads = 2 options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL provider = 'CPUExecutionProvider' model_data = convert_fp16_to_fp32(path) if fp16_to_fp32 else path print("Onnx selected provider: ", [provider], file=sys.stderr) ort_session = ort.InferenceSession(model_data, options, providers=[provider]) print("Onnx using ", ort_session.get_providers(), file=sys.stderr) return ort_session class ONNXModel(RunModel): def __init__(self, path, output, runtime, use_tf8, cl_context): self.inputs = {} self.output = output self.use_tf8 = use_tf8 self.session = create_ort_session(path, fp16_to_fp32=True) self.input_names = [x.name for x in self.session.get_inputs()] self.input_shapes = {x.name: [1, *x.shape[1:]] for x in self.session.get_inputs()} self.input_dtypes = {x.name: ORT_TYPES_TO_NP_TYPES[x.type] for x in self.session.get_inputs()} # run once to initialize CUDA provider if "CUDAExecutionProvider" in self.session.get_providers(): self.session.run(None, {k: np.zeros(self.input_shapes[k], dtype=self.input_dtypes[k]) for k in self.input_names}) print("ready to run onnx model", self.input_shapes, file=sys.stderr) def addInput(self, name, buffer): assert name in self.input_names self.inputs[name] = buffer def setInputBuffer(self, name, buffer): assert name in self.inputs self.inputs[name] = buffer def getCLBuffer(self, name): return None def execute(self): inputs = {k: (v.view(np.uint8) / 255. if self.use_tf8 and k == 'input_img' else v) for k,v in self.inputs.items()} inputs = {k: v.reshape(self.input_shapes[k]).astype(self.input_dtypes[k]) for k,v in inputs.items()} outputs = self.session.run(None, inputs) assert len(outputs) == 1, "Only single model outputs are supported" self.output[:] = outputs[0] return self.output
2301_81045437/openpilot
selfdrive/modeld/runners/onnxmodel.py
Python
mit
3,706
#pragma once #include "selfdrive/modeld/runners/runmodel.h" #include "selfdrive/modeld/runners/snpemodel.h"
2301_81045437/openpilot
selfdrive/modeld/runners/run.h
C
mit
109
#pragma once #include <string> #include <vector> #include <memory> #include <cassert> #include "common/clutil.h" #include "common/swaglog.h" #define USE_CPU_RUNTIME 0 #define USE_GPU_RUNTIME 1 #define USE_DSP_RUNTIME 2 struct ModelInput { const std::string name; float *buffer; int size; ModelInput(const std::string _name, float *_buffer, int _size) : name(_name), buffer(_buffer), size(_size) {} virtual void setBuffer(float *_buffer, int _size) { assert(size == _size || size == 0); buffer = _buffer; size = _size; } }; class RunModel { public: std::vector<std::unique_ptr<ModelInput>> inputs; virtual ~RunModel() {} virtual void execute() {} virtual void* getCLBuffer(const std::string name) { return nullptr; } virtual void addInput(const std::string name, float *buffer, int size) { inputs.push_back(std::unique_ptr<ModelInput>(new ModelInput(name, buffer, size))); } virtual void setInputBuffer(const std::string name, float *buffer, int size) { for (auto &input : inputs) { if (name == input->name) { input->setBuffer(buffer, size); return; } } LOGE("Tried to update input `%s` but no input with this name exists", name.c_str()); assert(false); } };
2301_81045437/openpilot
selfdrive/modeld/runners/runmodel.h
C++
mit
1,254
# distutils: language = c++ from libcpp.string cimport string cdef extern from "selfdrive/modeld/runners/runmodel.h": cdef int USE_CPU_RUNTIME cdef int USE_GPU_RUNTIME cdef int USE_DSP_RUNTIME cdef cppclass RunModel: void addInput(string, float*, int) void setInputBuffer(string, float*, int) void * getCLBuffer(string) void execute()
2301_81045437/openpilot
selfdrive/modeld/runners/runmodel.pxd
Cython
mit
362
# distutils: language = c++ from .runmodel cimport RunModel as cppRunModel cdef class RunModel: cdef cppRunModel * model
2301_81045437/openpilot
selfdrive/modeld/runners/runmodel_pyx.pxd
Cython
mit
125
# distutils: language = c++ # cython: c_string_encoding=ascii from libcpp.string cimport string from .runmodel cimport USE_CPU_RUNTIME, USE_GPU_RUNTIME, USE_DSP_RUNTIME from selfdrive.modeld.models.commonmodel_pyx cimport CLMem class Runtime: CPU = USE_CPU_RUNTIME GPU = USE_GPU_RUNTIME DSP = USE_DSP_RUNTIME cdef class RunModel: def __dealloc__(self): del self.model def addInput(self, string name, float[:] buffer): if buffer is not None: self.model.addInput(name, &buffer[0], len(buffer)) else: self.model.addInput(name, NULL, 0) def setInputBuffer(self, string name, float[:] buffer): if buffer is not None: self.model.setInputBuffer(name, &buffer[0], len(buffer)) else: self.model.setInputBuffer(name, NULL, 0) def getCLBuffer(self, string name): cdef void * cl_buf = self.model.getCLBuffer(name) if not cl_buf: return None return CLMem.create(cl_buf) def execute(self): self.model.execute()
2301_81045437/openpilot
selfdrive/modeld/runners/runmodel_pyx.pyx
Cython
mit
987