content
stringlengths
5
1.05M
import sys import cv2 import numpy as np import gpyocr plateCascade = cv2.CascadeClassifier("/home/pi/haarcascade_eu_plate_number.xml") color = (255,120,255) arg = float(sys.argv[1]) bbox_x = float(sys.argv[2]) bbox_y = float(sys.argv[3]) bbox_w = float(sys.argv[4]) bbox_h = float(sys.argv[5]) outText = "" def getText(filename): outText = gpyocr.tesseract_ocr(filename,psm=7)[0] return outText def resize(img): imgCopy = img.copy() resized_img = cv2.resize(imgCopy, (int(imgCopy.shape[1] * 220/100), int(imgCopy.shape[0] * 220/100)), interpolation = cv2.INTER_AREA) return resized_img def getMorph(img): kernel = np.ones((3, 3), np.uint8) _, morph = cv2.threshold(cv2.GaussianBlur(img,(5,5),0),0,255,cv2.THRESH_BINARY|cv2.THRESH_OTSU) morph = cv2.erode(morph,kernel) morph = cv2.dilate(morph,kernel) morph = cv2.bitwise_not(morph) pad = cv2.copyMakeBorder(morph, 1,1,1,1, cv2.BORDER_CONSTANT, value=255) h, w = pad.shape mask = np.zeros([h+2, w+2], np.uint8) img_flood = cv2.floodFill(pad, mask, (0,0), 0, (5), (0), flags=8)[1] img_flood = img_flood[1:h-1, 1:w-1] morph = cv2.bitwise_not(img_flood) morph = cv2.dilate(morph, kernel) morph = cv2.erode(morph, kernel, iterations=3) morph = cv2.dilate(morph, kernel) return morph def getBox(img): height, width, _ = img.shape return (bbox_x*width, bbox_y*height, bbox_w*width, bbox_h*height) def detect(img): errorFlag = 1 foundText = "" global bbox_x, bbox_y, bbox_w, bbox_h x = 0 y = 0 h = 0 w = 0 max_level = 0 bbox_x, bbox_y, bbox_w, bbox_h = getBox(img) temp = img imgGray = cv2.cvtColor(temp, cv2.COLOR_BGR2GRAY) plates = plateCascade.detectMultiScale3(imgGray, arg, outputRejectLevels=True) if len(plates[0]) > 0: totalPlates = zip(plates[0], plates[2]) totalPlates = list(totalPlates) totalPlates.sort(key = lambda x: x[1][0], reverse=True) for plate in totalPlates: if plate[0][0] >= bbox_x and plate[0][1] >= bbox_y and plate[0][0]+plate[0][2]<=bbox_x+bbox_w and plate[0][1]+plate[0][3] <= bbox_y+bbox_h: x = plate[0][0] y = plate[0][1] w = plate[0][2] h = plate[0][3] errorFlag = 0 break if errorFlag: raise Exception("No plates found!") else: roi_gray = imgGray[y:y+h, x:x+w] roi_color = img[y+2:y+h-2, x+2:x+w-2] cv2.rectangle(temp, (x, y), (x + w, y + h), color, 2) cv2.putText(temp, "Tablica", (x, y - 8), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, color, 2) cv2.imwrite("result.png", roi_color) resized = resize(roi_gray) morph = getMorph(resized) cv2.imwrite("morph.png", morph) foundText = getText("/home/pi/morph.png") cv2.imwrite("bbox.png",temp) return foundText img = cv2.imread("image.png") outText = detect(img) if len(outText)==0: raise Exception("Numbers not detected!") else: print(outText)
import flask from flask import request, Response app = flask.Flask(__name__) app.config["DEBUG"] = True @app.route('/service/sub') def sub(): qp = request.args va = qp.get('va') vb = qp.get('vb') result = float(va) - float(vb) print("VA: " + str(va) + " VB: " + str(vb) + " == " + str(result)) return Response(str(result)) app.run(host='0.0.0.0')
""" coding: utf-8 Created on 11/11/2020 @author: github.com/edrmonteiro From: Hackerrank challenges Language: Python Title: Minimum Swaps 2 You are given an unordered array consisting of consecutive integers [1, 2, 3, ..., n] without any duplicates. You are allowed to swap any two elements. You need to find the minimum number of swaps required to sort the array in ascending order. For example, given the array we perform the following steps: i arr swap (indices) 0 [7, 1, 3, 2, 4, 5, 6] swap (0,3) 1 [2, 1, 3, 7, 4, 5, 6] swap (0,1) 2 [1, 2, 3, 7, 4, 5, 6] swap (3,4) 3 [1, 2, 3, 4, 7, 5, 6] swap (4,5) 4 [1, 2, 3, 4, 5, 7, 6] swap (5,6) 5 [1, 2, 3, 4, 5, 6, 7] It took swaps to sort the array. Function Description Complete the function minimumSwaps in the editor below. It must return an integer representing the minimum number of swaps to sort the array. minimumSwaps has the following parameter(s): arr: an unordered array of integers Input Format The first line contains an integer, , the size of . The second line contains space-separated integers . Constraints Output Format Return the minimum number of swaps to sort the given array. Sample Input 0 4 4 3 1 2 Sample Output 0 3 Explanation 0 Given array After swapping we get After swapping we get After swapping we get So, we need a minimum of swaps to sort the array in ascending order. Sample Input 1 5 2 3 4 1 5 Sample Output 1 3 Explanation 1 Given array After swapping we get After swapping we get After swapping we get So, we need a minimum of swaps to sort the array in ascending order. Sample Input 2 7 1 3 5 2 4 6 7 Sample Output 2 3 Explanation 2 Given array After swapping we get After swapping we get After swapping we get So, we need a minimum of swaps to sort the array in ascending order. """ def minimumSwaps(arr): #newArr = countShift(arr) swaps = 0 i = 0 while True: if i != arr[i] - 1: item = arr[i] arr[i], arr[item - 1] = arr[item - 1], arr[i] swaps += 1 if i == arr[i] - 1: i += 1 if i == len(arr): break return swaps arr = [7, 1, 3, 2, 4, 5, 6] print(minimumSwaps(arr)) stop = True
# ############################################################################## # This file is part of df_websockets # # # # Copyright (C) 2020 Matthieu Gallet <github@19pouces.net> # # All Rights Reserved # # # # You may use, distribute and modify this code under the # # terms of the (BSD-like) CeCILL-B license. # # # # You should have received a copy of the CeCILL-B license with # # this file. If not, please visit: # # https://cecill.info/licences/Licence_CeCILL-B_V1-en.txt (English) # # or https://cecill.info/licences/Licence_CeCILL-B_V1-fr.txt (French) # # # # ############################################################################## import logging from typing import Any, Dict from django.conf import settings from django.contrib.auth import get_user_model from django.contrib.auth.context_processors import PermWrapper from django.contrib.auth.models import AnonymousUser from django.contrib.messages import DEFAULT_LEVELS from django.db.models import Q from django.http import HttpRequest from django.utils import translation from django.utils.translation import get_language_from_request logger = logging.getLogger("df_websockets.signals") class WindowInfoMiddleware: """Base class for the WindowInfo middlewares.""" def from_request(self, request: HttpRequest, window_info): """add attributes to a window_info instance created from a HttpRequest""" pass def new_window_info(self, window_info): """add attributes to a plain new window_info instance""" pass def to_dict(self, window_info) -> Dict[str, Any]: """serialize some window_info attributes as a dict""" return {} def from_dict(self, window_info, values: Dict[str, Any]): """ update a newly-created window_info instance with data stored in `values`. used for deserializing a previously serialized window_info object. :param window_info: WindowInfo instance to update :param values: a dict representing a serialized window_info :return: """ pass def get_context(self, window_info): """get context variables from the window_info instance. used in :meth:`df_websockets.window_info:render_to_string` """ return {} def install_methods(self, window_info_cls): """add new methods to the WindowInfo class. Used for adding methods related to the user management""" pass class WindowKeyMiddleware(WindowInfoMiddleware): """handle the unique ID generated for each :class:`django.http.request.HttpRequest` and copy it to the :class:`WindowInfo` object""" def from_request(self, request, window_info): # noinspection PyTypeChecker window_info.window_key = getattr(request, "window_key", None) def new_window_info(self, window_info): window_info.window_key = None def to_dict(self, window_info): return {"window_key": window_info.window_key} def from_dict(self, window_info, values): window_info.window_key = values.get("window_key") def get_context(self, window_info): # noinspection PyTypeChecker return {"df_window_key": getattr(window_info, "window_key")} class DjangoAuthMiddleware(WindowInfoMiddleware): """handle attributes related to the :mod:`django.contrib.auth` framework""" def from_request(self, request, window_info): self.new_window_info(window_info) assert isinstance(request, HttpRequest) # auth and perms part # noinspection PyTypeChecker user = getattr(request, "user", None) window_info._user = user window_info._perms = None window_info._template_perms = None window_info.user_agent = request.META.get("HTTP_USER_AGENT", "") window_info.csrf_cookie = request.COOKIES.get("csrftoken", "") if user and user.is_authenticated: window_info.user_pk = user.pk window_info.username = user.get_username() window_info.is_superuser = user.is_superuser window_info.is_staff = user.is_staff window_info.is_active = user.is_active window_info.user_set = True else: window_info.user_pk = None window_info.username = None window_info.is_superuser = False window_info.is_staff = False window_info.is_active = False window_info.user_set = False def new_window_info(self, window_info): window_info._user = None window_info._perms = None window_info._template_perms = None window_info.user_agent = "" window_info.user_pk = None window_info.username = None window_info.is_superuser = False window_info.is_staff = False window_info.user_set = False window_info.is_active = False window_info.csrf_cookie = "" def to_dict(self, window_info): # noinspection PyProtectedMember return { "user_pk": window_info.user_pk, "username": window_info.username, "is_superuser": window_info.is_superuser, "is_staff": window_info.is_staff, "is_active": window_info.is_active, "csrf_cookie": window_info.csrf_cookie, "perms": list(window_info._perms) if isinstance(window_info._perms, set) else None, "user_agent": window_info.user_agent, "user_set": window_info.user_set, } def from_dict(self, window_info, values): window_info._user = None window_info.csrf_cookie = values.get("csrf_cookie") window_info.user_pk = values.get("user_pk") window_info.user_set = values.get("user_set") if window_info.user_pk and not window_info.user_set: user = get_user_model().objects.filter(pk=window_info.user_pk).first() window_info.username = user.username window_info.is_superuser = user.is_superuser window_info.is_staff = user.is_staff window_info.is_active = user.is_active else: window_info.username = values.get("username") window_info.is_superuser = values.get("is_superuser") window_info.is_staff = values.get("is_staff") window_info.is_active = values.get("is_active") window_info.is_authenticated = bool(window_info.user_pk) window_info.is_anonymous = not bool(window_info.user_pk) window_info._perms = ( set(values["perms"]) if values.get("perms") is not None else None ) window_info._template_perms = None window_info.user_agent = values.get("user_agent") def get_context(self, window_info): """provide the same context data as the :mod:`django.contrib.auth.context_processors`: * `user`: a user or :class:`django.contrib.auth.models.AnonymousUser` * `perms`, with the same meaning """ user = window_info.user or AnonymousUser() return { "user": user, "perms": PermWrapper(user), "csrf_token": window_info.csrf_cookie, } def install_methods(self, window_info_cls): def get_user(req): """return the user object if authenticated, else return `None`""" # noinspection PyProtectedMember if req._user or req.user_pk is None: # noinspection PyProtectedMember return req._user user = get_user_model().objects.filter(pk=req.user_pk).first() if user: req._user = user return req._user return None def has_perm(req, perm): """return true is the user has the required perm. >>> from df_websockets.window_info import WindowInfo >>> r = WindowInfo.from_dict({'username': 'username', 'perms':['app_label.codename']}) >>> r.has_perm('app_label.codename') True :param req: WindowInfo :param perm: name of the permission ("app_label.codename") :return: True if the user has the required perm :rtype: :class:`bool` """ return perm in req.perms def get_perms(req): """:class:`set` of all perms of the user (set of "app_label.codename")""" if not req.user_pk: return set() elif req._perms is not None: return req._perms from django.contrib.auth.models import Permission if req.is_superuser: query = Permission.objects.all() else: query = Permission.objects.filter( Q(user__pk=req.user_pk) | Q(group__user__pk=req.user_pk) ) req._perms = set( "%s.%s" % p for p in query.select_related("content_type").values_list( "content_type__app_label", "codename" ) ) return req._perms window_info_cls.user = property(get_user) window_info_cls.has_perm = has_perm window_info_cls.perms = property(get_perms) class BrowserMiddleware(WindowInfoMiddleware): """add attributes related to the browser (currently only the HTTP_USER_AGENT header)""" def from_request(self, request, window_info): window_info.user_agent = request.META.get("HTTP_USER_AGENT", "") def new_window_info(self, window_info): window_info.user_agent = "" def to_dict(self, window_info): return {"user_agent": window_info.user_agent} def from_dict(self, window_info, values): window_info.user_agent = values.get("user_agent", "") def get_context(self, window_info): return { "df_user_agent": window_info.user_agent, "messages": [], "DEFAULT_MESSAGE_LEVELS": DEFAULT_LEVELS, } class Djangoi18nMiddleware(WindowInfoMiddleware): """Add attributes required for using i18n-related functions.""" def from_request(self, request, window_info): # noinspection PyTypeChecker if getattr(request, "session", None): window_info.language_code = get_language_from_request(request) else: window_info.language_code = settings.LANGUAGE_CODE def new_window_info(self, window_info): window_info.language_code = None def to_dict(self, window_info): return {"language_code": window_info.language_code} def from_dict(self, window_info, values): window_info.language_code = values.get("language_code") def get_context(self, window_info): return { "LANGUAGES": settings.LANGUAGES, "LANGUAGE_CODE": window_info.language_code, "LANGUAGE_BIDI": translation.get_language_bidi(), }
# 987. 二叉树的垂序遍历 # # 20200917 # huao from typing import List from functools import cmp_to_key def cmp(x, y): xx = x[1][0] xy = x[1][1] yx = y[1][0] yy = y[1][1] xnode = x[0].val ynode = y[0].val if xx < yx: return -1 elif xx > yx: return 1 else: if xy > yy: return -1 elif xy < yy: return 1 else: if xnode > ynode: return 1 elif xnode == ynode: return 0 else: return -1 class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def verticalTraversal(self, root: TreeNode) -> List[List[int]]: if root == None: return [] nodeList = [] stack = [[root, [0, 0]]] while stack != []: node = stack.pop() nodeList.append(node) if node[0].left != None: stack.append([node[0].left, [node[1][0]-1, node[1][1]-1]]) if node[0].right != None: stack.append([node[0].right, [node[1][0]+1, node[1][1]-1]]) nodeList.sort(key=cmp_to_key(cmp)) numList = {} for node, [x, y] in nodeList: if x in numList.keys(): numList[x].append(node.val) else: numList[x] = [node.val] return numList.values()
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn from torch.autograd import Variable import torch.optim as optim import numpy as np import time import os from six.moves import cPickle import torch.backends.cudnn as cudnn import yaml import opts import misc.eval_utils import misc.utils as utils import misc.AttModel as AttModel import yaml # from misc.rewards import get_self_critical_reward import torchvision.transforms as transforms import pdb import argparse import torch.nn.functional as F import matplotlib.pyplot as plt from PIL import Image plt.switch_backend('agg') import json def demo(opt): model.eval() ######################################################################################### # eval begins here ######################################################################################### data_iter_val = iter(dataloader_val) loss_temp = 0 start = time.time() num_show = 0 predictions = [] count = 0 for step in range(1000): data = data_iter_val.next() img, iseq, gts_seq, num, proposals, bboxs, box_mask, img_id = data # if img_id[0] != 134688: # continue # # for i in range(proposals.size(1)): print(opt.itoc[proposals[0][i][4]], i) # # list1 = [6, 10] # list1 = [0, 1, 10, 2, 3, 4, 5, 6, 7, 8, 9] # proposals = proposals[:,list1] # num[0,1] = len(list1) proposals = proposals[:,:max(int(max(num[:,1])),1),:] input_imgs.resize_(img.size()).copy_(img) input_seqs.resize_(iseq.size()).copy_(iseq) gt_seqs.resize_(gts_seq.size()).copy_(gts_seq) input_num.resize_(num.size()).copy_(num) input_ppls.resize_(proposals.size()).copy_(proposals) gt_bboxs.resize_(bboxs.size()).copy_(bboxs) mask_bboxs.resize_(box_mask.size()).copy_(box_mask) input_imgs.resize_(img.size()).copy_(img) eval_opt = {'sample_max':1, 'beam_size': opt.beam_size, 'inference_mode' : True, 'tag_size' : opt.cbs_tag_size} seq, bn_seq, fg_seq, _, _, _ = model._sample(input_imgs, input_ppls, input_num, eval_opt) sents, det_idx, det_word = utils.decode_sequence_det(dataset_val.itow, dataset_val.itod, dataset_val.ltow, dataset_val.itoc, dataset_val.wtod, \ seq, bn_seq, fg_seq, opt.vocab_size, opt) if opt.dataset == 'flickr30k': im2show = Image.open(os.path.join(opt.image_path, '%d.jpg' % img_id[0])).convert('RGB') else: if os.path.isfile(os.path.join(opt.image_path, 'val2014/COCO_val2014_%012d.jpg' % img_id[0])): im2show = Image.open(os.path.join(opt.image_path, 'val2014/COCO_val2014_%012d.jpg' % img_id[0])).convert('RGB') else: im2show = Image.open(os.path.join(opt.image_path, 'train2014/COCO_train2014_%012d.jpg' % img_id[0])).convert('RGB') w, h = im2show.size rest_idx = [] for i in range(proposals[0].shape[0]): if i not in det_idx: rest_idx.append(i) if len(det_idx) > 0: # for visulization proposals = proposals[0].numpy() proposals[:,0] = proposals[:,0] * w / float(opt.image_crop_size) proposals[:,2] = proposals[:,2] * w / float(opt.image_crop_size) proposals[:,1] = proposals[:,1] * h / float(opt.image_crop_size) proposals[:,3] = proposals[:,3] * h / float(opt.image_crop_size) cls_dets = proposals[det_idx] rest_dets = proposals[rest_idx] # fig = plt.figure() # fig = plt.figure(frameon=False) # ax = plt.Axes(fig, [0., 0., 1., 1.]) fig = plt.figure(frameon=False) # fig.set_size_inches(5,5*h/w) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) a=fig.gca() a.set_frame_on(False) a.set_xticks([]); a.set_yticks([]) plt.axis('off') plt.xlim(0,w); plt.ylim(h,0) # fig, ax = plt.subplots(1) # show other box in grey. plt.imshow(im2show) if len(rest_idx) > 0: for i in range(len(rest_dets)): ax = utils.vis_detections(ax, dataset_val.itoc[int(rest_dets[i,4])], rest_dets[i,:5], i, 1) if len(det_idx) > 0: for i in range(len(cls_dets)): ax = utils.vis_detections(ax, dataset_val.itoc[int(cls_dets[i,4])], cls_dets[i,:5], i, 0) # plt.axis('off') # plt.axis('tight') # plt.tight_layout() fig.savefig('visu/%d.jpg' %(img_id[0].item()), bbox_inches='tight', pad_inches=0, dpi=150) print(str(img_id[0].item()) + ': ' + sents[0]) entry = {'image_id': img_id[0].item(), 'caption': sents[0]} predictions.append(entry) return predictions #################################################################################### # Main #################################################################################### # initialize the data holder. if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--start_from', type=str, default='', help='') parser.add_argument('--load_best_score', type=int, default=1, help='Do we load previous best score when resuming training.') parser.add_argument('--id', type=str, default='', help='an id identifying this run/job. used in cross-val and appended when writing progress files') parser.add_argument('--image_path', type=str, default='/home/fanfu/newdisk/dataset/coco/2014', help='path to the h5file containing the image data') parser.add_argument('--cbs', type=bool, default=False, help='whether use constraint beam search.') parser.add_argument('--cbs_tag_size', type=int, default=3, help='whether use constraint beam search.') parser.add_argument('--cbs_mode', type=str, default='all', help='which cbs mode to use in the decoding stage. cbs_mode: all|unique|novel') parser.add_argument('--det_oracle', type=bool, default=False, help='whether use oracle bounding box.') parser.add_argument('--cnn_backend', type=str, default='res101', help='res101 or vgg16') parser.add_argument('--data_path', type=str, default='') parser.add_argument('--beam_size', type=int, default=1) args = parser.parse_args() infos = {} histories = {} if args.start_from is not None: if args.load_best_score == 1: model_path = os.path.join(args.start_from, 'model-best.pth') info_path = os.path.join(args.start_from, 'infos_'+args.id+'-best.pkl') else: model_path = os.path.join(args.start_from, 'model.pth') info_path = os.path.join(args.start_from, 'infos_'+args.id+'.pkl') # import pdb # pdb.set_trace() # open old infos and check if models are compatible with open(info_path, 'rb') as f: infos = cPickle.load(f) opt = infos['opt'] opt.image_path = args.image_path opt.cbs = args.cbs opt.cbs_tag_size = args.cbs_tag_size opt.cbs_mode = args.cbs_mode opt.det_oracle = args.det_oracle opt.cnn_backend = args.cnn_backend opt.data_path = args.data_path opt.beam_size = args.beam_size else: print("please specify the model path...") pdb.set_trace() cudnn.benchmark = True if opt.dataset == 'flickr30k': from misc.dataloader_flickr30k import DataLoader else: from misc.dataloader_coco import DataLoader #################################################################################### # Data Loader #################################################################################### opt.data_path = 'data' dataset_val = DataLoader(opt, split='test') dataloader_val = torch.utils.data.DataLoader(dataset_val, batch_size=1, shuffle=False, num_workers=0) input_imgs = torch.FloatTensor(1) input_seqs = torch.LongTensor(1) input_ppls = torch.FloatTensor(1) gt_bboxs = torch.FloatTensor(1) mask_bboxs = torch.ByteTensor(1) gt_seqs = torch.LongTensor(1) input_num = torch.LongTensor(1) if opt.cuda: input_imgs = input_imgs.cuda() input_seqs = input_seqs.cuda() gt_seqs = gt_seqs.cuda() input_num = input_num.cuda() input_ppls = input_ppls.cuda() gt_bboxs = gt_bboxs.cuda() mask_bboxs = mask_bboxs.cuda() input_imgs = Variable(input_imgs) input_seqs = Variable(input_seqs) gt_seqs = Variable(gt_seqs) input_num = Variable(input_num) input_ppls = Variable(input_ppls) gt_bboxs = Variable(gt_bboxs) mask_bboxs = Variable(mask_bboxs) #################################################################################### # Build the Model #################################################################################### opt.vocab_size = dataset_val.vocab_size opt.detect_size = dataset_val.detect_size opt.seq_length = opt.seq_length opt.fg_size = dataset_val.fg_size opt.fg_mask = torch.from_numpy(dataset_val.fg_mask).byte() opt.glove_fg = torch.from_numpy(dataset_val.glove_fg).float() opt.glove_clss = torch.from_numpy(dataset_val.glove_clss).float() opt.st2towidx = torch.from_numpy(dataset_val.st2towidx).long() opt.itow = dataset_val.itow opt.itod = dataset_val.itod opt.ltow = dataset_val.ltow opt.itoc = dataset_val.itoc if opt.att_model == 'topdown': model = AttModel.TopDownModel(opt) elif opt.att_model == 'att2in2': model = AttModel.Att2in2Model(opt) if opt.decode_noc: model._reinit_word_weight(opt, dataset_val.ctoi, dataset_val.wtoi) if args.start_from != None: # opt.learning_rate = saved_model_opt.learning_rate print('Loading the model %s...' %(model_path)) model.load_state_dict(torch.load(model_path)) if os.path.isfile(os.path.join(args.start_from, 'histories_'+opt.id+'.pkl')): with open(os.path.join(args.start_from, 'histories_'+opt.id+'.pkl'), 'rb') as f: histories = cPickle.load(f) if opt.cuda: model.cuda() predictions = demo(opt) # import pdb # pdb.set_trace() print('saving...') json.dump(predictions, open('visu/visu.json', 'w'))
"""Main module.""" from enum import Enum, auto from .parser import parse # def parse(filepath: str): # with open('tests/erds/one.er') as f: # lxer.input(f.read()) # for tok in parser: # print(tok) class Option(Enum): LABEL = 'label' BG_COLOR = 'bgcolor' COLOR = 'color' FONT_FACE = 'font' FONT_SIZE = 'size' BORDER = 'border' BORDER_COLOR = 'border-color' CELL_SPACING = 'cellspacing' CELL_BORDER = 'cellborder' CELL_PADDING = 'cellpadding' TEXT_ALIGNMENT = 'text-alignment' DEFAULT_TITLE_OPTIONS = [(Option.FONT_SIZE, 30)] DEFAULT_HEADER_OPTIONS = [(Option.FONT_SIZE, 16)] DEFAULT_ENTITY_OPTIONS = [ (Option.BORDER, 0), (Option.CELL_BORDER, 1), (Option.CELL_SPACING, 0), (Option.CELL_PADDING, 4), (Option.FONT_FACE, 'Helvetica') ]
#lucas numbers def lucas(): first= 0 second = 1 terms = int(input("Number of terms?")) n1, n2 = 2, 1 counter = 0 if terms <= 0: print("Please enter a positive integer") elif terms == 1: print(n1) elif terms == 2: print(n1) print(n2) else: while counter < terms: print(n1) nth = n1 + n2 n1 = n2 n2 = nth counter += 1 lucas()
# # Copyright (c) 2021 Incisive Technology Ltd # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ This program generates all the 'model' package & api version modules This program works off a specified Kubernetes swagger file and from there builds out the model sub-package of hikaru. It first removes all existing content of this package and then re-creates it from scratch. If the swagger file hasn't changed, then these generated modules will be identical, otherwise they will contain the new contents from the swagger file. Usage is: python build.py <path to swagger file> The assumption is to create the 'build' package in the cwd. Just some notes to remember how this all works: For the collection types, you must parameterize the types from typing (List, Dict, etc). If you want an optional type, you can use typing.Optional, which turns into Union[T, NoneType]. You can use dataclasses.field(default_factory=list) to indicate where optional args should be defaulted to new empty lists. You can acquire the fields of class X with dataclasses.fields(X). The type annotation for the field is stored in the 'type' attribute. You now want to understand Union and List types. There are two different ways to do this; the change comes at Py3.8. This are both performed on the type object found in the above mentioned attribute: Operation Pre-3.8 3.8 and later ======================================================== get origin __origin__ typing.get_origin() get args __args__ typing.get_args() inspect.signature() can give the argument signature for a method; can find how many required positional args there are. """ from pathlib import Path import sys from typing import Union, List, Optional import json import networkx from hikaru.naming import process_swagger_name, full_swagger_name from hikaru.meta import HikaruBase, HikaruDocumentBase python_reserved = {"except", "continue", "from"} types_map = {"boolean": "bool", "integer": "int", "string": "str", "float": "float", "number": "float"} NoneType = type(None) unversioned_module_name = "unversioned" def _clean_directory(dirpath: str, including_dirpath=False): path = Path(dirpath) for p in path.iterdir(): if p.is_file(): p.unlink() elif p.is_dir(): _clean_directory(str(p), including_dirpath=True) if including_dirpath: p.rmdir() _package_init_code = \ """ try: from .v1 import * except ImportError: pass""" def prep_package(directory: str): """ This function empties the directory named 'directory', creating it if needed :param directory: string; name of an empty directory to create. Creates it if needed, and removes any existing content if it's already there. """ path = Path(directory) if not path.exists(): path.mkdir(parents=True) else: if not path.is_dir(): path.unlink() path.mkdir(parents=True) # once here, the directory exists and is a directory; clean it out _clean_directory(str(path)) init = path / "__init__.py" init.touch() f = init.open('w') print(_module_docstring, file=f) print(_package_init_code, file=f) print(file=f) output_footer(stream=f) _copyright_string = \ """# # Copyright (c) 2021 Incisive Technology Ltd # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE.""" _module_docstring = f'''{_copyright_string} """ DO NOT EDIT THIS FILE! This module is automatically generated using the hikaru.build program that turns a Kubernetes swagger spec into the code for the hikaru.model module. """ ''' def output_boilerplate(stream=sys.stdout, other_imports=None): """ Write out the standard module header imports :param stream: where to write; sys.stdout default :param other_imports: None, or a list of strings to generate import statements for """ print(_module_docstring, file=stream) print(file=stream) print(f"from hikaru.meta import {HikaruBase.__name__}, {HikaruDocumentBase.__name__}", file=stream) print("from typing import Optional, List, Dict", file=stream) print("from dataclasses import dataclass, field", file=stream) if other_imports is not None: for line in other_imports: print(line, file=stream) print(file=stream) print(file=stream) _module_footer = '''globs = dict(globals()) __all__ = [c.__name__ for c in globs.values() if type(c) == type] del globs''' def output_footer(stream=sys.stdout): """ Write out the footer that defines '__all__' :param stream: file to write the footer to """ print(_module_footer, file=stream) def build_digraph(all_classes: dict) -> networkx.DiGraph: dg = networkx.DiGraph() for cd in all_classes.values(): assert isinstance(cd, ClassDescriptor) deps = cd.depends_on(include_external=True) dg.add_node(cd) for c in deps: dg.add_edge(cd, c) return dg def write_classes(class_list, stream=sys.stdout): for dc in class_list: print(dc.as_python_class(), file=stream) def load_stable(swagger_file_path: str) -> NoneType: f = open(swagger_file_path, 'r') d = json.load(f) for k, v in d["definitions"].items(): if 'apiextensions' not in k: group, version, name = process_swagger_name(k) mod_def = get_module_def(version) cd = mod_def.get_class_desc(name) if cd is None: cd = ClassDescriptor(k, v) mod_def.save_class_desc(cd) else: cd.update(v) cd.process_properties() def write_modules(pkgpath: str): pkg = Path(pkgpath) d = module_defs() mod_names = [] base = d.get(None) # first, create the module with un-versioned object defs if base: unversioned = pkg / f'{unversioned_module_name}.py' assert isinstance(base, ModuleDef) f = unversioned.open('w') base.as_python_module(stream=f) f.close() # next, write out all the version-specific object defs for k, md in d.items(): if k is not None: assert isinstance(md, ModuleDef) mod_names.append(md.version) mod = pkg / f'{md.version}.py' f = mod.open('w') md.as_python_module(stream=f) f.close() # finally, capture the names of all the version modules in version module versions = pkg / 'versions.py' f = versions.open('w') print(f"versions = {str(mod_names)}", file=f) f.close() class ClassDescriptor(object): def __init__(self, key, d): self.full_name = full_swagger_name(key) group, version, name = process_swagger_name(self.full_name) self.short_name = name self.group = group self.version = version self.description = None self.all_properties = None self.required = None self.type = None self.is_subclass_of = None self.is_document = False self.required_props = [] self.optional_props = [] self.update(d) def update(self, d: dict): self.description = d.get("description") self.all_properties = d.get("properties", {}) self.required = d.get("required", []) self.type = d.get('type', None) if self.type in types_map: self.is_subclass_of = types_map[self.type] _doc_markers = ("apiVersion", "kind", "metadata") def process_properties(self): self.required_props = [] self.optional_props = [] seen_markers = set(self._doc_markers) if self.is_subclass_of is None: # then there are properties for k, v in self.all_properties.items(): if k in seen_markers: seen_markers.remove(k) if not seen_markers: self.is_document = True fd = PropertyDescriptor(self, k, v) if k in self.required: self.required_props.append(fd) else: self.optional_props.append(fd) self.required_props.sort(key=lambda x: x.name) self.optional_props.sort(key=lambda x: x.name) @staticmethod def split_line(line, prefix: str = " ", hanging_indent: str = "") -> List[str]: parts = [] if line is not None: words = line.split() current_line = [prefix] for w in words: if sum(len(s) for s in current_line) + len(current_line) + len(w) > 90: parts.append(" ".join(current_line)) current_line = [prefix] if hanging_indent: current_line.append(hanging_indent) current_line.append(w) else: if current_line: parts.append(" ".join(current_line)) return parts def as_python_class(self) -> str: lines = list() # start of class statement if self.is_subclass_of is not None: base = self.is_subclass_of else: # then it is to be a dataclass base = (HikaruDocumentBase.__name__ if self.is_document else HikaruBase.__name__) lines.append("@dataclass") lines.append(f"class {self.short_name}({base}):") # now the docstring ds_parts = [' """'] ds_parts.extend(self.split_line(self.description)) ds_parts.append("") ds_parts.append(f' Full name: {self.full_name.split("/")[-1]}') if self.is_subclass_of is None: ds_parts.append("") ds_parts.append(" Attributes:") for p in self.required_props: ds_parts.extend(self.split_line(f'{p.name}: {p.description}', hanging_indent=" ")) for p in (x for x in self.optional_props if x.container_type is None): ds_parts.extend(self.split_line(f'{p.name}: {p.description}', hanging_indent=" ")) for p in (x for x in self.optional_props if x.container_type is not None): ds_parts.extend(self.split_line(f'{p.name}: {p.description}', hanging_indent=" ")) ds_parts.append(' """') lines.extend(ds_parts) if self.is_subclass_of is None: if self.required_props or self.optional_props: lines.append("") if self.is_document: lines.append(f" _version = '{self.version}'") for p in self.required_props: lines.append(p.as_python_typeanno(True)) for p in (x for x in self.optional_props if x.container_type is None): lines.append(p.as_python_typeanno(False)) for p in (x for x in self.optional_props if x.container_type is not None): lines.append(p.as_python_typeanno(False)) lines.append("") lines.append("") return "\n".join(lines) def depends_on(self, include_external=False) -> list: r = [p.depends_on() for p in self.required_props] deps = [p for p in r if p is not None] o = [p.depends_on() for p in self.optional_props] deps.extend(p for p in o if p is not None and (True if include_external else self.version == p.version)) return deps class ModuleDef(object): def __init__(self, version): self.version = version self.all_classes = {} def get_class_desc(self, sname: str) -> Optional[ClassDescriptor]: return self.all_classes.get(sname) def save_class_desc(self, class_def: ClassDescriptor): assert isinstance(class_def, ClassDescriptor) self.all_classes[class_def.short_name] = class_def def external_versions_used(self) -> List[str]: ext_ver = set() for cd in self.all_classes.values(): for dep in cd.depends_on(include_external=True): assert isinstance(dep, ClassDescriptor) if dep.version != self.version: ext_ver.add(dep.version) return list(ext_ver) def as_python_module(self, stream=sys.stdout): externals = self.external_versions_used() other_imports = [] if None in externals: other_imports.append(f'from .{unversioned_module_name} import *') externals.remove(None) externals.sort() all_classes = {} for ext in externals: emod = _all_module_defs[ext] assert isinstance(emod, ModuleDef) all_classes.update(emod.all_classes) all_classes.update(self.all_classes) g = build_digraph(all_classes) output_boilerplate(stream=stream, other_imports=other_imports) traversal = list(reversed(list(networkx.topological_sort(g)))) if not traversal: traversal = list(self.all_classes.values()) write_classes(traversal, stream=stream) output_footer(stream=stream) _all_module_defs = {} def get_module_def(version) -> ModuleDef: md = _all_module_defs.get(version) if md is None: md = _all_module_defs[version] = ModuleDef(version) return md def module_defs() -> dict: return dict(_all_module_defs) class PropertyDescriptor(object): def __init__(self, containing_class, name, d): """ capture the information :param containing_class: :param d: """ self.name = f'{name}_' if name in python_reserved else name self.containing_class = containing_class self.description = d.get('description', "") # all possible attributes that could be populated self.container_type = self.item_type = self.prop_type = None ctype = d.get("type") if ctype == "array": self.container_type = list items = d["items"] self.item_type = items.get('type') if self.item_type is None: # then it is a list of objects; possibly of one of the defs ref = items["$ref"] # should become get when we know this is true group, version, short_name = process_swagger_name(ref) fullname = full_swagger_name(ref) mod_def = get_module_def(version) item_ref = mod_def.get_class_desc(short_name) if item_ref is None: item_ref = ClassDescriptor(fullname, {}) # make a placeholder mod_def.save_class_desc(item_ref) self.item_type = item_ref elif self.item_type in types_map: self.item_type = types_map[self.item_type] else: raise TypeError(f"Unknown type of {self.item_type} in {self.name}") elif ctype == "object": self.container_type = dict else: self.container_type = None if self.container_type is None: if ctype in types_map: self.prop_type = types_map[ctype] else: group, version, short_name = process_swagger_name(d["$ref"]) fullname = full_swagger_name(d["$ref"]) mod_def = get_module_def(version) ref_class = mod_def.get_class_desc(short_name) if ref_class is None: ref_class = ClassDescriptor(fullname, {}) mod_def.save_class_desc(ref_class) self.prop_type = ref_class @staticmethod def as_required(anno: str, as_required: bool) -> str: return anno if as_required else f"Optional[{anno}]" def depends_on(self) -> Union[ClassDescriptor, NoneType]: result = None if isinstance(self.item_type, ClassDescriptor): result = self.item_type elif isinstance(self.prop_type, ClassDescriptor): result = self.prop_type return result def as_python_typeanno(self, as_required: bool) -> str: parts = [" ", self.name, ": "] if self.container_type is None: # then a straight-up type, either scalar or another object if isinstance(self.prop_type, str): parts.append(self.as_required(self.prop_type, as_required)) elif isinstance(self.prop_type, ClassDescriptor): parts.append(self.as_required(self.prop_type.short_name, as_required)) elif self.container_type is list: if isinstance(self.item_type, ClassDescriptor): parts.append(self.as_required(f"List[{self.item_type.short_name}]", as_required)) else: parts.append(self.as_required(f"List[{self.item_type}]", as_required)) elif self.container_type is dict: parts.append(self.as_required("Dict[str, str]", as_required)) else: raise TypeError(f"Unknown attribute {self.name} in " f"{self.containing_class.short_name}") # now check if we should add a field default if not as_required: # then we need to add a default value so we don't have to # supply this argument when creating it programmatically if self.container_type is not None: # then we need a field factory = "list" if self.container_type is list else "dict" parts.append(f" = field(default_factory={factory})") else: # just default it to None parts.append(" = None") return "".join(parts) model_package = "hikaru/model" def build_it(swagger_file: str): """ Initiate the swagger-file-driven model package build :param swagger_file: string; path to the swagger file to process """ load_stable(swagger_file) prep_package(model_package) write_modules(model_package) if __name__ == "__main__": if len(sys.argv) < 2: print(f"usage: {sys.argv[0]} <path-to-swagger-json-file>") sys.exit(1) build_it(sys.argv[1]) sys.exit(0)
# coding: utf8 from .base_view import BaseView class DummyView(BaseView): def __init__(self, config, **kwargs): super(DummyView).__init__(config, **kwargs)
#! /usr/bin/env python # # ReplayGain Album Analysis using gstreamer rganalysis element # Copyright (C) 2005,2007,2009 Michael Urman # 2012 Nick Boultbee # 2013 Christoph Reiter # # This program is free software; you can redistribute it and/or modify # it under the terms of version 2 of the GNU General Public License as # published by the Free Software Foundation. # from gi.repository import Gtk from gi.repository import GObject from gi.repository import Pango from gi.repository import Gst from gi.repository import GLib from quodlibet.qltk.views import HintedTreeView from quodlibet.plugins.songsmenu import SongsMenuPlugin __all__ = ['ReplayGain'] def get_num_threads(): # multiprocessing is >= 2.6. # Default to 2 threads if cpu_count isn't implemented for the current arch # or multiprocessing isn't available try: import multiprocessing threads = multiprocessing.cpu_count() except (ImportError, NotImplementedError): threads = 2 return threads class RGAlbum(object): def __init__(self, rg_songs): self.songs = rg_songs self.gain = None self.peak = None @property def progress(self): all_ = 0.0 done = 0.0 for song in self.songs: all_ += song.length done += song.length * song.progress try: return max(min(done / all_, 1.0), 0.0) except ZeroDivisionError: return 0.0 @property def done(self): for song in self.songs: if not song.done: return False return True @property def title(self): if not self.songs: return "" return self.songs[0].song.comma('~artist~album') @property def error(self): for song in self.songs: if song.error: return True return False def write(self): # Don't write incomplete data if not self.done: return for song in self.songs: song._write(self.gain, self.peak) @classmethod def from_songs(self, songs): return RGAlbum([RGSong(s) for s in songs]) class RGSong(object): def __init__(self, song): self.song = song self.error = False self.gain = None self.peak = None self.progress = 0.0 self.done = False def _write(self, album_gain, album_peak): if self.error or not self.done: return song = self.song if self.gain is not None: song['replaygain_track_gain'] = '%.2f dB' % self.gain if self.peak is not None: song['replaygain_track_peak'] = '%.4f' % self.peak if album_gain is not None: song['replaygain_album_gain'] = '%.2f dB' % album_gain if album_peak is not None: song['replaygain_album_peak'] = '%.4f' % album_peak @property def title(self): return self.song('~tracknumber~title~version') @property def filename(self): return self.song("~filename") @property def length(self): return self.song("~#length") class ReplayGainPipeline(GObject.Object): __gsignals__ = { # done(self, album) 'done': (GObject.SignalFlags.RUN_LAST, None, (object,)), # update(self, album, song) 'update': (GObject.SignalFlags.RUN_LAST, None, (object, object,)), } def __init__(self): super(ReplayGainPipeline, self).__init__() self._current = None self._setup_pipe() def _setup_pipe(self): # gst pipeline for replay gain analysis: # filesrc!decodebin!audioconvert!audioresample!rganalysis!fakesink self.pipe = Gst.Pipeline() self.filesrc = Gst.ElementFactory.make("filesrc", "source") self.pipe.add(self.filesrc) self.decode = Gst.ElementFactory.make("decodebin", "decode") def new_decoded_pad(dbin, pad): pad.link(self.convert.get_static_pad("sink")) def sort_decoders(decode, pad, caps, factories): def set_prio(x): i, f = x i = {"mad": -1, "mpg123audiodec": -2}.get(f.get_name(), i) return (i, f) return zip(*sorted(map(set_prio, enumerate(factories))))[1] self.decode.connect("autoplug-sort", sort_decoders) self.decode.connect("pad-added", new_decoded_pad) self.pipe.add(self.decode) self.filesrc.link(self.decode) self.convert = Gst.ElementFactory.make("audioconvert", "convert") self.pipe.add(self.convert) self.resample = Gst.ElementFactory.make("audioresample", "resample") self.pipe.add(self.resample) self.convert.link(self.resample) self.analysis = Gst.ElementFactory.make("rganalysis", "analysis") self.pipe.add(self.analysis) self.resample.link(self.analysis) self.sink = Gst.ElementFactory.make("fakesink", "sink") self.pipe.add(self.sink) self.analysis.link(self.sink) self.bus = bus = self.pipe.get_bus() bus.add_signal_watch() bus.connect("message", self._bus_message) def request_update(self): if not self._current: return ok, p = self.pipe.query_position(Gst.Format.TIME) if ok: length = self._current.length try: progress = float(p / Gst.SECOND) / length except ZeroDivisionError: progress = 0.0 progress = max(min(progress, 1.0), 0.0) self._current.progress = progress self._emit_update() def _emit_update(self): self.emit("update", self._album, self._current) def start(self, album): self._album = album self._songs = list(album.songs) self._done = [] self._next_song(first=True) def quit(self): self.bus.remove_signal_watch() self.pipe.set_state(Gst.State.NULL) def _next_song(self, first=False): if self._current: self._current.progress = 1.0 self._current.done = True self._emit_update() self._done.append(self._current) self._current = None if not self._songs: self.pipe.set_state(Gst.State.NULL) self.emit("done", self._album) return if first: self.analysis.set_property("num-tracks", len(self._songs)) else: self.analysis.set_locked_state(True) self.pipe.set_state(Gst.State.NULL) self._current = self._songs.pop(0) self.filesrc.set_property("location", self._current.filename) if not first: # flush, so the element takes new data after EOS pad = self.analysis.get_static_pad("src") pad.send_event(Gst.Event.new_flush_start()) pad.send_event(Gst.Event.new_flush_stop(True)) self.analysis.set_locked_state(False) self.pipe.set_state(Gst.State.PLAYING) def _bus_message(self, bus, message): if message.type == Gst.MessageType.TAG: tags = message.parse_tag() ok, value = tags.get_double(Gst.TAG_TRACK_GAIN) if ok: self._current.gain = value ok, value = tags.get_double(Gst.TAG_TRACK_PEAK) if ok: self._current.peak = value ok, value = tags.get_double(Gst.TAG_ALBUM_GAIN) if ok: self._album.gain = value ok, value = tags.get_double(Gst.TAG_ALBUM_PEAK) if ok: self._album.peak = value self._emit_update() elif message.type == Gst.MessageType.EOS: self._next_song() elif message.type == Gst.MessageType.ERROR: gerror, debug = message.parse_error() if gerror: print_e(gerror.message) print_e(debug) self._current.error = True self._next_song() class RGDialog(Gtk.Dialog): def __init__(self, albums, parent): super(RGDialog, self).__init__( title=_('ReplayGain Analyzer'), parent=parent, buttons=(Gtk.STOCK_CANCEL, Gtk.ResponseType.CANCEL, Gtk.STOCK_SAVE, Gtk.ResponseType.OK) ) self.set_default_size(500, 350) self.set_border_width(6) swin = Gtk.ScrolledWindow() swin.set_policy(Gtk.PolicyType.AUTOMATIC, Gtk.PolicyType.AUTOMATIC) swin.set_shadow_type(Gtk.ShadowType.IN) self.vbox.pack_start(swin, True, True, 0) view = HintedTreeView() swin.add(view) def icon_cdf(column, cell, model, iter_, *args): item = model[iter_][0] if item.error: cell.set_property('stock-id', Gtk.STOCK_DIALOG_ERROR) else: cell.set_property('stock-id', None) column = Gtk.TreeViewColumn() column.set_sizing(Gtk.TreeViewColumnSizing.AUTOSIZE) icon_render = Gtk.CellRendererPixbuf() column.pack_start(icon_render, True) column.set_cell_data_func(icon_render, icon_cdf) view.append_column(column) def track_cdf(column, cell, model, iter_, *args): item = model[iter_][0] cell.set_property('text', item.title) column = Gtk.TreeViewColumn(_("Track")) column.set_expand(True) column.set_sizing(Gtk.TreeViewColumnSizing.AUTOSIZE) track_render = Gtk.CellRendererText() track_render.set_property('ellipsize', Pango.EllipsizeMode.END) column.pack_start(track_render, True) column.set_cell_data_func(track_render, track_cdf) view.append_column(column) def progress_cdf(column, cell, model, iter_, *args): item = model[iter_][0] cell.set_property('value', int(item.progress * 100)) column = Gtk.TreeViewColumn(_("Progress")) column.set_sizing(Gtk.TreeViewColumnSizing.AUTOSIZE) progress_render = Gtk.CellRendererProgress() column.pack_start(progress_render, True) column.set_cell_data_func(progress_render, progress_cdf) view.append_column(column) def gain_cdf(column, cell, model, iter_, *args): item = model[iter_][0] if item.gain is None or not item.done: cell.set_property('text', "-") else: cell.set_property('text', "%.2f db" % item.gain) column = Gtk.TreeViewColumn(_("Gain")) column.set_sizing(Gtk.TreeViewColumnSizing.AUTOSIZE) gain_renderer = Gtk.CellRendererText() column.pack_start(gain_renderer, True) column.set_cell_data_func(gain_renderer, gain_cdf) view.append_column(column) def peak_cdf(column, cell, model, iter_, *args): item = model[iter_][0] if item.gain is None or not item.done: cell.set_property('text', "-") else: cell.set_property('text', "%.2f" % item.peak) column = Gtk.TreeViewColumn(_("Peak")) column.set_sizing(Gtk.TreeViewColumnSizing.AUTOSIZE) peak_renderer = Gtk.CellRendererText() column.pack_start(peak_renderer, True) column.set_cell_data_func(peak_renderer, peak_cdf) view.append_column(column) # create as many pipelines as threads self.pipes = [] for i in xrange(get_num_threads()): self.pipes.append(ReplayGainPipeline()) self._timeout = None self._sigs = {} self._done = [] self._todo = list([RGAlbum.from_songs(a) for a in albums]) self._count = len(self._todo) # fill the view self.model = model = Gtk.TreeStore(object) insert = model.insert for album in reversed(self._todo): base = insert(None, 0, row=[album]) for song in reversed(album.songs): insert(base, 0, row=[song]) view.set_model(model) if len(self._todo) == 1: view.expand_all() self.connect("destroy", self.__destroy) self.connect('response', self.__response) def start_analysis(self): self._timeout = GLib.idle_add(self.__request_update) # fill the pipelines for p in self.pipes: if not self._todo: break self._sigs[p] = [ p.connect("done", self.__done), p.connect("update", self.__update), ] p.start(self._todo.pop(0)) def __response(self, win, response): if response == Gtk.ResponseType.CANCEL: self.destroy() elif response == Gtk.ResponseType.OK: for album in self._done: album.write() self.destroy() def __destroy(self, *args): # shut down any active processing and clean up resources, timeouts if self._timeout: GLib.source_remove(self._timeout) for p in self.pipes: if p in self._sigs: for s in self._sigs.get(p, []): p.disconnect(s) p.quit() def __update(self, pipeline, album, song): for row in self.model: row_album = row[0] if row_album is album: self.model.row_changed(row.path, row.iter) for child in row.iterchildren(): row_song = child[0] if row_song is song: self.model.row_changed(child.path, child.iter) break break def __done(self, pipeline, album): self._done.append(album) if self._todo: pipeline.start(self._todo.pop(0)) for row in self.model: row_album = row[0] if row_album is album: self.model.row_changed(row.path, row.iter) break def __request_update(self): GLib.source_remove(self._timeout) self._timeout = None # all done, stop if len(self._done) < self._count: for p in self.pipes: p.request_update() self._timeout = GLib.timeout_add(400, self.__request_update) return False class ReplayGain(SongsMenuPlugin): PLUGIN_ID = 'ReplayGain' PLUGIN_NAME = 'Replay Gain' PLUGIN_DESC = _('Analyzes ReplayGain with gstreamer, grouped by album') PLUGIN_ICON = Gtk.STOCK_MEDIA_PLAY def plugin_albums(self, albums): win = RGDialog(albums, parent=self.plugin_window) win.show_all() win.start_analysis() # plugin_done checks for metadata changes and opens the write dialog win.connect("destroy", self.__plugin_done) def __plugin_done(self, win): self.plugin_finish() if not Gst.Registry.get().find_plugin("replaygain"): __all__ = [] del ReplayGain raise ImportError("GStreamer replaygain plugin not found")
# Copyright 2018 Hewlett Packard Enterprise Development LP # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import mock import sushy import testtools from proliantutils import exception from proliantutils.redfish.resources.system import bios from proliantutils.redfish.resources.system import constants as sys_cons from proliantutils.redfish.resources.system import ethernet_interface from proliantutils.redfish.resources.system import memory from proliantutils.redfish.resources.system import secure_boot from proliantutils.redfish.resources.system import smart_storage_config from proliantutils.redfish.resources.system.storage import array_controller from proliantutils.redfish.resources.system.storage import simple_storage from proliantutils.redfish.resources.system.storage import smart_storage from proliantutils.redfish.resources.system.storage import storage from proliantutils.redfish.resources.system import system from proliantutils.redfish import utils from sushy.resources.system import system as sushy_system class HPESystemTestCase(testtools.TestCase): def setUp(self): super(HPESystemTestCase, self).setUp() self.conn = mock.MagicMock() with open('proliantutils/tests/redfish/' 'json_samples/system.json', 'r') as f: system_json = json.loads(f.read()) self.conn.get.return_value.json.return_value = system_json['default'] self.sys_inst = system.HPESystem( self.conn, '/redfish/v1/Systems/1', redfish_version='1.0.2') def test_attributes(self): self.assertEqual(sys_cons.SUPPORTED_LEGACY_BIOS_AND_UEFI, self.sys_inst.supported_boot_mode) def test__get_hpe_push_power_button_action_element(self): value = self.sys_inst._get_hpe_push_power_button_action_element() self.assertEqual("/redfish/v1/Systems/1/Actions/Oem/Hpe/" "HpeComputerSystemExt.PowerButton/", value.target_uri) self.assertEqual(["Press", "PressAndHold"], value.allowed_values) def test__get_hpe_push_power_button_action_element_missing_action(self): self.sys_inst._hpe_actions.computer_system_ext_powerbutton = None self.assertRaisesRegex( exception.MissingAttributeError, 'Oem/Hpe/Actions/#HpeComputerSystemExt.PowerButton is missing', self.sys_inst._get_hpe_push_power_button_action_element) def test_push_power_button(self): self.sys_inst.push_power_button( sys_cons.PUSH_POWER_BUTTON_PRESS) self.sys_inst._conn.post.assert_called_once_with( '/redfish/v1/Systems/1/Actions/Oem/Hpe/' 'HpeComputerSystemExt.PowerButton/', data={'PushType': 'Press'}) def test_push_power_button_invalid_value(self): self.assertRaises(exception.InvalidInputError, self.sys_inst.push_power_button, 'invalid-value') def test_bios_settings(self): self.assertIsNone(self.sys_inst._bios_settings) self.conn.get.return_value.json.reset_mock() with open('proliantutils/tests/redfish/' 'json_samples/bios.json', 'r') as f: self.conn.get.return_value.json.return_value = json.loads(f.read()) actual_bios = self.sys_inst.bios_settings self.assertIsInstance(actual_bios, bios.BIOSSettings) self.conn.get.return_value.json.assert_called_once_with() # reset mock self.conn.get.return_value.json.reset_mock() self.assertIs(actual_bios, self.sys_inst.bios_settings) self.conn.get.return_value.json.assert_not_called() @mock.patch.object(sushy_system.System, 'set_system_boot_source') def test_update_persistent_boot_persistent(self, set_system_boot_source_mock): self.sys_inst.update_persistent_boot(['CDROM'], persistent=True) set_system_boot_source_mock.assert_called_once_with( sushy.BOOT_SOURCE_TARGET_CD, enabled=sushy.BOOT_SOURCE_ENABLED_CONTINUOUS) @mock.patch.object(sushy_system.System, 'set_system_boot_source') def test_update_persistent_boot_device_unknown_persistent( self, set_system_boot_source_mock): self.sys_inst.update_persistent_boot(['unknown'], persistent=True) set_system_boot_source_mock.assert_called_once_with( sushy.BOOT_SOURCE_TARGET_NONE, enabled=sushy.BOOT_SOURCE_ENABLED_CONTINUOUS) @mock.patch.object(sushy_system.System, 'set_system_boot_source') def test_update_persistent_boot_not_persistent( self, set_system_boot_source_mock): self.sys_inst.update_persistent_boot(['CDROM'], persistent=False) set_system_boot_source_mock.assert_called_once_with( sushy.BOOT_SOURCE_TARGET_CD, enabled=sushy.BOOT_SOURCE_ENABLED_ONCE) def test_bios_settings_on_refresh(self): # | GIVEN | with open('proliantutils/tests/redfish/json_samples/bios.json', 'r') as f: self.conn.get.return_value.json.return_value = json.loads(f.read()) # | WHEN & THEN | self.assertIsInstance(self.sys_inst.bios_settings, bios.BIOSSettings) # On refreshing the system instance... with open('proliantutils/tests/redfish/' 'json_samples/system.json', 'r') as f: self.conn.get.return_value.json.return_value = ( json.loads(f.read())['default']) self.sys_inst.invalidate() self.sys_inst.refresh(force=False) # | WHEN & THEN | self.assertIsNotNone(self.sys_inst._bios_settings) self.assertTrue(self.sys_inst._bios_settings._is_stale) # | GIVEN | with open('proliantutils/tests/redfish/json_samples/bios.json', 'r') as f: self.conn.get.return_value.json.return_value = json.loads(f.read()) # | WHEN & THEN | self.assertIsInstance(self.sys_inst.bios_settings, bios.BIOSSettings) self.assertFalse(self.sys_inst._bios_settings._is_stale) def test_update_persistent_boot_uefi_target(self): with open('proliantutils/tests/redfish/' 'json_samples/system.json', 'r') as f: system_json = (json.loads(f.read())[ 'System_op_for_update_persistent_boot_uefi_target']) self.sys_inst.uefi_target_override_devices = (system_json[ 'Boot']['UefiTargetBootSourceOverride@Redfish.AllowableValues']) self.sys_inst.update_persistent_boot(['ISCSI'], persistent=True) uefi_boot_settings = { 'Boot': {'UefiTargetBootSourceOverride': 'PciRoot(0x0)/Pci(0x1C,0x0)/Pci(0x0,0x0)/MAC(98F2B3EEF886,0x0)/IPv4(172.17.1.32)/iSCSI(iqn.2001-04.com.paresh.boot:volume.bin,0x1,0x0,None,None,None,TCP)'} # noqa } calls = [mock.call('/redfish/v1/Systems/1', data=uefi_boot_settings), mock.call('/redfish/v1/Systems/1', data={'Boot': {'BootSourceOverrideTarget': 'UefiTarget', 'BootSourceOverrideEnabled': 'Continuous'}})] self.sys_inst._conn.patch.assert_has_calls(calls) def test_update_persistent_boot_uefi_no_iscsi_device(self): self.assertRaisesRegex( exception.IloError, 'No UEFI iSCSI bootable device found on system.', self.sys_inst.update_persistent_boot, ['ISCSI'], True) def test_update_persistent_boot_uefi_target_fail(self): update_mock = mock.PropertyMock( side_effect=sushy.exceptions.SushyError) type(self.sys_inst).uefi_target_override_devices = update_mock self.assertRaisesRegex( exception.IloError, 'Unable to get uefi target override devices.', self.sys_inst.update_persistent_boot, ['ISCSI'], True) del type(self.sys_inst).uefi_target_override_devices def test_pci_devices(self): pci_dev_return_value = None pci_dev1_return_value = None pci_coll_return_value = None self.assertIsNone(self.sys_inst._pci_devices) self.conn.get.return_value.json.reset_mock() with open('proliantutils/tests/redfish/' 'json_samples/pci_device_collection.json') as f: pci_coll_return_value = json.loads(f.read()) with open('proliantutils/tests/redfish/' 'json_samples/pci_device.json') as f: pci_dev_return_value = json.loads(f.read()) with open('proliantutils/tests/redfish/' 'json_samples/pci_device1.json') as f: pci_dev1_return_value = json.loads(f.read()) self.conn.get.return_value.json.side_effect = ( [pci_coll_return_value, pci_dev_return_value, pci_dev1_return_value]) actual_pci = self.sys_inst.pci_devices self.conn.get.return_value.json.reset_mock() self.assertIs(actual_pci, self.sys_inst.pci_devices) self.conn.get.return_value.json.assert_not_called() def test_secure_boot_with_missing_path_attr(self): def _get_secure_boot(): return self.sys_inst.secure_boot self.sys_inst._json.pop('SecureBoot') self.assertRaisesRegex( exception.MissingAttributeError, 'attribute SecureBoot is missing', _get_secure_boot) def test_secure_boot(self): # check for the underneath variable value self.assertIsNone(self.sys_inst._secure_boot) # | GIVEN | self.conn.get.return_value.json.reset_mock() with open('proliantutils/tests/redfish/json_samples/secure_boot.json', 'r') as f: self.conn.get.return_value.json.return_value = ( json.loads(f.read())['default']) # | WHEN | actual_secure_boot = self.sys_inst.secure_boot # | THEN | self.assertIsInstance(actual_secure_boot, secure_boot.SecureBoot) self.conn.get.return_value.json.assert_called_once_with() # reset mock self.conn.get.return_value.json.reset_mock() # | WHEN & THEN | # tests for same object on invoking subsequently self.assertIs(actual_secure_boot, self.sys_inst.secure_boot) self.conn.get.return_value.json.assert_not_called() def test_secure_boot_on_refresh(self): # | GIVEN | with open('proliantutils/tests/redfish/json_samples/secure_boot.json', 'r') as f: self.conn.get.return_value.json.return_value = ( json.loads(f.read())['default']) # | WHEN & THEN | self.assertIsInstance(self.sys_inst.secure_boot, secure_boot.SecureBoot) # On refreshing the system instance... with open('proliantutils/tests/redfish/' 'json_samples/system.json', 'r') as f: self.conn.get.return_value.json.return_value = ( json.loads(f.read())['default']) self.sys_inst.invalidate() self.sys_inst.refresh(force=False) # | WHEN & THEN | self.assertIsNotNone(self.sys_inst._secure_boot) self.assertTrue(self.sys_inst._secure_boot._is_stale) # | GIVEN | with open('proliantutils/tests/redfish/json_samples/secure_boot.json', 'r') as f: self.conn.get.return_value.json.return_value = ( json.loads(f.read())['default']) # | WHEN & THEN | self.assertIsInstance(self.sys_inst.secure_boot, secure_boot.SecureBoot) self.assertFalse(self.sys_inst._secure_boot._is_stale) @mock.patch.object(utils, 'get_subresource_path_by') def test_get_hpe_sub_resource_collection_path(self, res_mock): res = 'EthernetInterfaces' res_mock.return_value = '/redfish/v1/Systems/1/EthernetInterfaces' path = self.sys_inst._get_hpe_sub_resource_collection_path(res) self.assertTrue(res_mock.called) self.assertEqual(path, res_mock.return_value) @mock.patch.object(utils, 'get_subresource_path_by') def test_get_hpe_sub_resource_collection_path_oem_path(self, res_mock): res = 'EthernetInterfaces' error_val = exception.MissingAttributeError oem_path = '/redfish/v1/Systems/1/EthernetInterfaces' res_mock.side_effect = [error_val, oem_path] path = self.sys_inst._get_hpe_sub_resource_collection_path(res) self.assertTrue(res_mock.called) self.assertEqual(path, oem_path) @mock.patch.object(utils, 'get_subresource_path_by') def test_get_hpe_sub_resource_collection_path_fail(self, res_mock): error_val = exception.MissingAttributeError res_mock.side_effect = [error_val, error_val] self.assertRaises( exception.MissingAttributeError, self.sys_inst._get_hpe_sub_resource_collection_path, 'EthernetInterfaces') self.assertTrue(res_mock.called) def test_ethernet_interfaces(self): self.conn.get.return_value.json.reset_mock() eth_coll = None eth_value = None path = ('proliantutils/tests/redfish/json_samples/' 'ethernet_interface_collection.json') with open(path, 'r') as f: eth_coll = json.loads(f.read()) with open('proliantutils/tests/redfish/json_samples/' 'ethernet_interface.json', 'r') as f: eth_value = (json.loads(f.read())) self.conn.get.return_value.json.side_effect = [eth_coll, eth_value] self.assertIsNone(self.sys_inst._ethernet_interfaces) actual_macs = self.sys_inst.ethernet_interfaces.summary self.assertEqual({'Port 1': '12:44:6A:3B:04:11'}, actual_macs) self.assertIsInstance(self.sys_inst._ethernet_interfaces, ethernet_interface.EthernetInterfaceCollection) def test_ethernet_interfaces_oem(self): self.conn = mock.MagicMock() with open('proliantutils/tests/redfish/' 'json_samples/system.json', 'r') as f: system_json = json.loads(f.read()) self.conn.get.return_value.json.return_value = ( system_json['System_for_oem_ethernet_interfaces']) self.sys_inst = system.HPESystem( self.conn, '/redfish/v1/Systems/1', redfish_version='1.0.2') self.conn.get.return_value.json.reset_mock() eth_coll = None eth_value = None path = ('proliantutils/tests/redfish/json_samples/' 'ethernet_interface_collection.json') with open(path, 'r') as f: eth_coll = json.loads(f.read()) with open('proliantutils/tests/redfish/json_samples/' 'ethernet_interface.json', 'r') as f: eth_value = (json.loads(f.read())) self.conn.get.return_value.json.side_effect = [eth_coll, eth_value] self.assertIsNone(self.sys_inst._ethernet_interfaces) actual_macs = self.sys_inst.ethernet_interfaces.summary self.assertEqual({'Port 1': '12:44:6A:3B:04:11'}, actual_macs) self.assertIsInstance(self.sys_inst._ethernet_interfaces, ethernet_interface.EthernetInterfaceCollection) def test_smart_storage(self): self.conn.get.return_value.json.reset_mock() value = None with open('proliantutils/tests/redfish/json_samples/' 'smart_storage.json', 'r') as f: value = (json.loads(f.read())) self.conn.get.return_value.json.return_value = value self.assertIsNone(self.sys_inst._smart_storage) value = self.sys_inst.smart_storage self.assertIsInstance(value, smart_storage.HPESmartStorage) def test_storages(self): self.conn.get.return_value.json.reset_mock() coll = None value = None path = ('proliantutils/tests/redfish/json_samples/' 'storage_collection.json') with open(path, 'r') as f: coll = json.loads(f.read()) with open('proliantutils/tests/redfish/json_samples/' 'storage.json', 'r') as f: value = (json.loads(f.read())) self.conn.get.return_value.json.side_effect = [coll, value] self.assertIsNone(self.sys_inst._storages) value = self.sys_inst.storages self.assertIsInstance(value, storage.StorageCollection) def test_simple_storages(self): self.conn.get.return_value.json.reset_mock() coll = None value = None path = ('proliantutils/tests/redfish/json_samples/' 'simple_storage_collection.json') with open(path, 'r') as f: coll = json.loads(f.read()) with open('proliantutils/tests/redfish/json_samples/' 'simple_storage.json', 'r') as f: value = (json.loads(f.read())) self.conn.get.return_value.json.side_effect = [coll, value] self.assertIsNone(self.sys_inst._simple_storages) value = self.sys_inst.simple_storages self.assertIsInstance(value, simple_storage.SimpleStorageCollection) def test_simple_storage_on_refresh(self): with open('proliantutils/tests/redfish/json_samples/' 'simple_storage_collection.json', 'r') as f: self.conn.get.return_value.json.return_value = json.loads(f.read()) self.assertIsInstance(self.sys_inst.simple_storages, simple_storage.SimpleStorageCollection) with open('proliantutils/tests/redfish/' 'json_samples/system.json', 'r') as f: self.conn.get.return_value.json.return_value = ( json.loads(f.read())['default']) self.sys_inst.invalidate() self.sys_inst.refresh(force=False) self.assertIsNotNone(self.sys_inst._simple_storages) self.assertTrue(self.sys_inst._simple_storages._is_stale) with open('proliantutils/tests/redfish/json_samples/' 'simple_storage_collection.json', 'r') as f: self.conn.get.return_value.json.return_value = json.loads(f.read()) self.assertIsInstance(self.sys_inst.simple_storages, simple_storage.SimpleStorageCollection) self.assertFalse(self.sys_inst._simple_storages._is_stale) def test_memory(self): self.assertIsNone(self.sys_inst._memory) self.conn.get.return_value.json.reset_mock() with open('proliantutils/tests/redfish/' 'json_samples/memory_collection.json', 'r') as f: self.conn.get.return_value.json.return_value = json.loads(f.read()) actual_memory = self.sys_inst.memory self.assertIsInstance(actual_memory, memory.MemoryCollection) self.conn.get.return_value.json.assert_called_once_with() # reset mock self.conn.get.return_value.json.reset_mock() self.assertIs(actual_memory, self.sys_inst.memory) self.conn.get.return_value.json.assert_not_called() def test_memory_collection_on_refresh(self): # | GIVEN | with open('proliantutils/tests/redfish/json_samples/' 'memory_collection.json', 'r') as f: self.conn.get.return_value.json.return_value = json.loads(f.read()) # | WHEN & THEN | self.assertIsInstance(self.sys_inst.memory, memory.MemoryCollection) # On refreshing the system instance... with open('proliantutils/tests/redfish/' 'json_samples/system.json', 'r') as f: self.conn.get.return_value.json.return_value = ( json.loads(f.read())['default']) self.sys_inst.invalidate() self.sys_inst.refresh(force=False) # | WHEN & THEN | self.assertIsNotNone(self.sys_inst._memory) self.assertTrue(self.sys_inst._memory._is_stale) # | GIVEN | with open('proliantutils/tests/redfish/json_samples/' 'memory_collection.json', 'r') as f: self.conn.get.return_value.json.return_value = json.loads(f.read()) # | WHEN & THEN | self.assertIsInstance(self.sys_inst.memory, memory.MemoryCollection) self.assertFalse(self.sys_inst._memory._is_stale) def test_storage_on_refresh(self): with open('proliantutils/tests/redfish/json_samples/' 'storage_collection.json', 'r') as f: self.conn.get.return_value.json.return_value = json.loads(f.read()) self.assertIsInstance(self.sys_inst.storages, storage.StorageCollection) # On refreshing the system instance... with open('proliantutils/tests/redfish/' 'json_samples/system.json', 'r') as f: self.conn.get.return_value.json.return_value = ( json.loads(f.read())['default']) self.sys_inst.invalidate() self.sys_inst.refresh(force=False) self.assertIsNotNone(self.sys_inst._storages) self.assertTrue(self.sys_inst._storages._is_stale) with open('proliantutils/tests/redfish/json_samples/' 'simple_storage_collection.json', 'r') as f: self.conn.get.return_value.json.return_value = json.loads(f.read()) self.assertIsInstance(self.sys_inst.storages, storage.StorageCollection) self.assertFalse(self.sys_inst._storages._is_stale) def test_get_host_post_state(self): expected = sys_cons.POST_STATE_FINISHEDPOST self.assertEqual(expected, self.sys_inst.post_state) @mock.patch.object(smart_storage_config, 'HPESmartStorageConfig', autospec=True) def test_get_smart_storage_config(self, mock_ssc): ssc_element = '/redfish/v1/systems/1/smartstorageconfig/' ssc_inst = self.sys_inst.get_smart_storage_config(ssc_element) self.assertIsInstance(ssc_inst, smart_storage_config.HPESmartStorageConfig. __class__) mock_ssc.assert_called_once_with( self.conn, "/redfish/v1/systems/1/smartstorageconfig/", redfish_version='1.0.2') @mock.patch.object(system.HPESystem, 'get_smart_storage_config') def test_delete_raid(self, get_smart_storage_config_mock): config_id = ['/redfish/v1/systems/1/smartstorageconfig/'] type(self.sys_inst).smart_storage_config_identities = ( mock.PropertyMock(return_value=config_id)) self.sys_inst.delete_raid() get_smart_storage_config_mock.assert_called_once_with(config_id[0]) (get_smart_storage_config_mock.return_value. delete_raid.assert_called_once_with()) @mock.patch.object(system.HPESystem, 'get_smart_storage_config') def test_delete_raid_controller_failed(self, get_smart_storage_config_mock): config_id = ['/redfish/v1/systems/1/smartstorageconfig/', '/redfish/v1/systems/1/smartstorageconfig1/', '/redfish/v1/systems/1/smartstorageconfig2/'] type(self.sys_inst).smart_storage_config_identities = ( mock.PropertyMock(return_value=config_id)) get_smart_storage_config_mock.return_value.delete_raid.side_effect = ( [None, sushy.exceptions.SushyError, None]) self.assertRaisesRegex( exception.IloError, "The Redfish controller failed to delete the " "raid configuration in one or more controllers with", self.sys_inst.delete_raid) @mock.patch.object(system.HPESystem, 'get_smart_storage_config') def test_delete_raid_logical_drive_not_found( self, get_smart_storage_config_mock): config_id = ['/redfish/v1/systems/1/smartstorageconfig/', '/redfish/v1/systems/1/smartstorageconfig1/'] type(self.sys_inst).smart_storage_config_identities = ( mock.PropertyMock(return_value=config_id)) get_smart_storage_config_mock.return_value.delete_raid.side_effect = ( exception.IloLogicalDriveNotFoundError('No logical drive found')) self.assertRaisesRegex( exception.IloError, "No logical drives are found in any controllers. " "Nothing to delete.", self.sys_inst.delete_raid) def test_check_smart_storage_config_ids(self): type(self.sys_inst).smart_storage_config_identities = ( mock.PropertyMock(return_value=None)) self.assertRaisesRegex( exception.IloError, "The Redfish controller failed to get the SmartStorageConfig " "controller configurations", self.sys_inst.check_smart_storage_config_ids) @mock.patch.object(system.HPESystem, 'check_smart_storage_config_ids') @mock.patch.object(system.HPESystem, '_parse_raid_config_data') @mock.patch.object(system.HPESystem, '_get_smart_storage_config_by_controller_model') def test_create_raid(self, get_smart_storage_config_model_mock, parse_raid_config_mock, check_smart_storage_config_ids_mock): ld1 = {'raid_level': '0', 'is_root_volume': True, 'size_gb': 150, 'controller': 'HPE Smart Array P408i-p SR Gen10'} ld2 = {'raid_level': '1', 'size_gb': 200, 'controller': 'HPE Smart Array P408i-p SR Gen10'} raid_config = {'logical_disks': [ld1, ld2]} parse_data = {'HPE Smart Array P408i-p SR Gen10': [ld1, ld2]} parse_raid_config_mock.return_value = parse_data check_smart_storage_config_ids_mock.return_value = None self.sys_inst.create_raid(raid_config) get_smart_storage_config_model_mock.assert_called_once_with( 'HPE Smart Array P408i-p SR Gen10') (get_smart_storage_config_model_mock.return_value. create_raid.assert_called_once_with(raid_config)) @mock.patch.object(system.HPESystem, 'check_smart_storage_config_ids') @mock.patch.object(system.HPESystem, '_parse_raid_config_data') @mock.patch.object(system.HPESystem, '_get_smart_storage_config_by_controller_model') def test_create_raid_controller_not_found( self, get_smart_storage_config_model_mock, parse_raid_config_mock, check_smart_storage_config_ids_mock): with open('proliantutils/tests/redfish/' 'json_samples/smart_storage.json', 'r') as f: ss_json = json.loads(f.read()) with open('proliantutils/tests/redfish/' 'json_samples/array_controller_collection.json', 'r') as f: acc_json = json.loads(f.read()) with open('proliantutils/tests/redfish/' 'json_samples/array_controller.json', 'r') as f: ac_json = json.loads(f.read()) self.conn.get.return_value.json.reset_mock() self.conn.get.return_value.json.side_effect = [ ss_json, acc_json, ac_json] ld1 = {'raid_level': '1', 'size_gb': 200, 'controller': 'HPE Gen10 Controller'} raid_config = {'logical_disks': [ld1]} parse_data = {'HPE Gen10 Controller': [ld1]} parse_raid_config_mock.return_value = parse_data check_smart_storage_config_ids_mock.return_value = None get_smart_storage_config_model_mock.return_value = None self.assertRaisesRegexp( exception.IloError, "The Redfish controller failed to create the raid " "configuration for one or more controllers with", self.sys_inst.create_raid, raid_config) @mock.patch.object(system.HPESystem, 'check_smart_storage_config_ids') @mock.patch.object(system.HPESystem, '_parse_raid_config_data') @mock.patch.object(system.HPESystem, '_get_smart_storage_config_by_controller_model') def test_create_raid_failed(self, get_smart_storage_config_model_mock, parse_raid_config_mock, check_smart_storage_config_ids_mock): ld1 = {'raid_level': '0', 'is_root_volume': True, 'size_gb': 150, 'controller': 'HPE Smart Array P408i-p SR Gen10'} ld2 = {'raid_level': '1', 'size_gb': 200, 'controller': 'HPE Smart Array P408i-p SR Gen10'} raid_config = {'logical_disks': [ld1, ld2]} parse_data = {'HPE Smart Array P408i-p SR Gen10': [ld1, ld2]} check_smart_storage_config_ids_mock.return_value = None parse_raid_config_mock.return_value = parse_data (get_smart_storage_config_model_mock. return_value.create_raid.side_effect) = sushy.exceptions.SushyError self.assertRaisesRegexp( exception.IloError, "The Redfish controller failed to create the " "raid configuration for one or more controllers with Error:", self.sys_inst.create_raid, raid_config) def test__parse_raid_config_data(self): ld1 = {'raid_level': '0', 'is_root_volume': True, 'size_gb': 150, 'controller': 'HPE Smart Array P408i-a SR Gen10'} ld2 = {'raid_level': '1', 'size_gb': 200, 'controller': 'HPE Smart Array P408i-a SR Gen10'} raid_config = {'logical_disks': [ld1, ld2]} with open('proliantutils/tests/redfish/' 'json_samples/smart_storage.json', 'r') as f: ss_json = json.loads(f.read()) with open('proliantutils/tests/redfish/' 'json_samples/array_controller_collection.json', 'r') as f: acc_json = json.loads(f.read()) with open('proliantutils/tests/redfish/' 'json_samples/array_controller.json', 'r') as f: ac_json = json.loads(f.read()) self.conn.get.return_value.json.reset_mock() self.conn.get.return_value.json.side_effect = [ ss_json, acc_json, ac_json] expected = {'HPE Smart Array P408i-a SR Gen10': [ld1, ld2]} self.assertEqual(expected, self.sys_inst._parse_raid_config_data(raid_config)) @mock.patch.object(array_controller.HPEArrayControllerCollection, 'array_controller_by_model') @mock.patch.object(system.HPESystem, 'get_smart_storage_config') def test__get_smart_storage_config_by_controller_model( self, get_smart_storage_config_mock, array_controller_by_model_mock): with open('proliantutils/tests/redfish/' 'json_samples/smart_storage.json', 'r') as f: ss_json = json.loads(f.read()) with open('proliantutils/tests/redfish/' 'json_samples/array_controller_collection.json', 'r') as f: acc_json = json.loads(f.read()) self.conn.get.return_value.json.reset_mock() self.conn.get.return_value.json.side_effect = [ss_json, acc_json] type(array_controller_by_model_mock.return_value).location = 'Slot 0' ssc_obj_mock = mock.Mock(location='Slot 0') get_smart_storage_config_mock.return_value = ssc_obj_mock self.assertEqual( ssc_obj_mock.location, self.sys_inst._get_smart_storage_config_by_controller_model( 'HPE Smart Array P408i-a SR Gen10').location)
values = { "I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000, } class RightToLeftSolution: def romanToInt(self, str): total = values.get(str[-1]) for i in (range(len(str) - 1)): if values[str[i]] < values[str[i + 1]]: total -= values[str[i]] else: total += values[str[i]] return total
#part1 # Change to use relplot() instead of scatterplot() sns.relplot(x="absences", y="G3", data=student_data,kind="scatter") # Show plot plt.show() #part2 # Change to make subplots based on study time sns.relplot(x="absences", y="G3", data=student_data, kind="scatter",col="study_time") # Show plot plt.show() #part3 # Change this scatter plot to arrange the plots in rows instead of columns sns.relplot(x="absences", y="G3", data=student_data, kind="scatter", col="study_time",row='study_time') # Show plot plt.show()
import torch from torch import nn import torch.nn.functional as F from torch.nn.modules.loss import _Loss from data.batcher import decode_tensor from utils import remove_sep, mean from metric.metric import Metric class Loss(nn.CrossEntropyLoss): def __init__(self, padding_idx=0): super(Loss, self).__init__(ignore_index=padding_idx, reduction='mean') def forward(self, hypo, tgt, Model=None): hypo = hypo.contiguous() tgt = tgt.contiguous() if hypo.nelement() == 0 or tgt.nelement() == 0: # failsafe for empty tensor loss = None else: loss = super().forward(hypo.view(-1, hypo.shape[-1]), tgt.view(-1)) return loss, {} class RLLoss(_Loss): def __init__(self, tokenizer, metrics=['meteor'], use_vist=False, reinforce_group=False): super(RLLoss, self).__init__(reduction='mean') self.group = reinforce_group self.use_vist = use_vist self.tokenizer = tokenizer self.tokenizer.whitespace = getattr(self.tokenizer, 'whitespace', b'\xc4\xa0'.decode()) self.metric = Metric(metrics, use_vist=self.use_vist) def decode(self, tensor): tensor = decode_tensor(self.tokenizer, tensor, use_vist=self.use_vist, remove_past_sep=True) tensor = remove_sep(tensor, self.tokenizer.sep_token) return tensor def calc_score(self, hypo, tgt): hypo = self.decode(hypo) tgt = self.decode(tgt) score_texts = {'temp': (hypo, tgt)} score_stats = self.metric.calculate(score_texts) return mean(list(score_stats.values())) # TODO: account for bleu def calc_score_group(self, hypos, tgts): hypos = [self.decode(hypo) for hypo in hypos] tgts = [self.decode(tgt) for tgt in tgts] hypo = ' '.join(hypos) tgt = ' '.join(tgts) score_texts = {'temp': (hypo, tgt)} score_stats = self.metric.calculate(score_texts) return mean(list(score_stats.values())) # TODO: account for bleu def v_loss(self, reward, baseline, mask): o = (reward - baseline) ** 2 * mask o = o.sum() / mask.sum() return o def a_loss(self, log_prob, reward, baseline, mask): advantage = reward - baseline.detach() o = - log_prob * advantage * mask o = o.sum() / mask.sum() return o def forward(self, hypos, tgts, logits, baseline): # BGL G = hypos.shape[1] mask = hypos != self.tokenizer.pad_id mask = mask.float() log_prob = F.log_softmax(logits, dim=-1) log_prob = log_prob.gather(dim=-1, index=hypos.unsqueeze(-1)).squeeze(-1) if self.group: reward = torch.Tensor( [self.calc_score_group(group_hypo, group_tgt) for group_hypo, group_tgt in zip(hypos, tgts)] ).float().to(log_prob.device).unsqueeze(1).repeat(1, G) else: reward = torch.Tensor( [[self.calc_score(hypo, tgt) for hypo, tgt in zip(group_hypo, group_tgt)] for group_hypo, group_tgt in zip(hypos, tgts)] ).float().to(log_prob.device) reward = reward.float().to(log_prob.device).unsqueeze(-1) v_loss = self.v_loss(reward, baseline, mask) a_loss = self.a_loss(log_prob, reward, baseline, mask) loss = v_loss + a_loss stats = { 'reward': reward.mean().item(), 'a_loss': a_loss.item(), 'v_loss': v_loss.item(), 'rl_loss': loss.item() } return loss, stats # from fairseq (github.com/facebook/fairseq) # with all rights reserved # label smoothed cross entropy class SmoothLoss(_Loss): def __init__(self, size_average=None, reduce=None, reduction='mean', eps=0, padding_idx=0): super(SmoothLoss, self).__init__(size_average, reduce, reduction) self.eps = eps self.padding_idx = padding_idx def get_log_probs(self, hypo): if getattr(hypo, 'if_log_softmax', False): lprobs = hypo else: lprobs = F.log_softmax(hypo, dim=-1) return lprobs def forward(self, hypo, tgt, model=None): hypo = hypo.contiguous() tgt = tgt.contiguous() lprobs = self.get_log_probs(hypo) lprobs = lprobs.view(-1, lprobs.size(-1)) target = tgt.view(-1, 1) non_pad_mask = target.ne(self.padding_idx) nll_loss = -lprobs.gather(dim=-1, index=target)[non_pad_mask] smooth_loss = -lprobs.sum(dim=-1, keepdim=True)[non_pad_mask] ppl = 2 ** nll_loss.mean().item() nll_loss_report = nll_loss.mean().item() nll_loss = self._reduce(nll_loss) smooth_loss = self._reduce(smooth_loss) eps_i = self.eps / lprobs.size(-1) loss = (1. - self.eps) * nll_loss + eps_i * smooth_loss return loss, {'nll_loss': nll_loss_report, 'ppl': ppl} def _reduce(self, t): func = { 'none': lambda x: x, 'mean': lambda x: x.mean(), 'sum': lambda x: x.sum() }[self.reduction] return func(t) class FocalLoss(_Loss): def __init__(self, size_average=None, reduce=None, reduction='mean', gamma=2): super(FocalLoss, self).__init__(size_average, reduce, reduction) self.gamma = gamma def forward(self, hypo_logit, tgt): hypo = F.sigmoid(hypo_logit) hypo = hypo.contiguous() tgt = tgt.contiguous().bool().float() # hypo = (tgt=1: hypo, tgt=0: (1-hypo)) p_t = hypo * (2 * tgt - 1) + (1 - tgt) loss = -((1 - p_t) ** self.gamma) * p_t.log() loss = loss.mean(dim=-1) loss = self._reduce(loss) return loss, {} def _reduce(self, t): func = { 'none': lambda x: x, 'mean': lambda x: x.mean(), 'sum': lambda x: x.sum() }[self.reduction] return func(t) class BinaryCELoss(nn.BCEWithLogitsLoss): def __init__(self, reduction='mean'): super(BinaryCELoss, self).__init__(reduction=reduction) def forward(self, hypo, tgt): hypo = hypo.contiguous() tgt = tgt.contiguous().bool().float() loss = super().forward(hypo, tgt) return loss, {} class BinaryCERecallLoss(_Loss): def __init__(self, recall_weight=1, reduction='mean'): super(BinaryCERecallLoss, self).__init__(reduction=reduction) self.reduction = reduction self.weight = recall_weight def forward(self, hypo, tgt): # BK hypo = hypo.contiguous() tgt = tgt.contiguous().bool().float() recall_weight = torch.FloatTensor([self.weight]).to(hypo.device).expand(hypo.shape[-1]) loss = F.binary_cross_entropy_with_logits(hypo, tgt, pos_weight=recall_weight, reduction=self.reduction) return loss, {} class SortedLoss(_Loss): def __init__(self, top_k=20, reduction='mean', normalized=True): super(SortedLoss, self).__init__(reduction=reduction) self.reduction = reduction self.top_k = top_k self.normalized = normalized def get_loss(self, hs, ts, max_val=None): losses = [] for i, (h, t) in enumerate(zip(hs, ts)): h = h.masked_select(t.bool()) # get keywords outside topk if h.nelement() > 0: if self.normalized: loss = (1 - torch.sigmoid(h)).mean() else: loss = (max_val[i].item() - h).mean() losses.append(loss) return sum(losses) / len(losses) def forward(self, hypo, tgt, Model=None): # BK hypo = hypo.contiguous().view(-1, hypo.shape[-1]).contiguous() tgt = tgt.contiguous().view(-1, tgt.shape[-1]).contiguous().bool().float() h_sorted, h_ids = hypo.sort(dim=-1, descending=True) t_sorted = tgt.gather(dim=-1, index=h_ids) reg_loss = (h_sorted.sum(dim=-1) - self.top_k).abs().mean() max_val = h_sorted[:, 0] h_sorted = h_sorted[:, self.top_k:] t_sorted = t_sorted[:, self.top_k:] sort_loss = self.get_loss(h_sorted, t_sorted, max_val=max_val) loss = reg_loss + sort_loss return loss, {'sort_loss': sort_loss.item(), 'reg_loss': reg_loss.item()}
from unittest import TestCase from models.user import UserModel class UserTest(TestCase): def test_create_user(self): # Setup # Exercise user = UserModel('test', 'abcd') # Verify self.assertEqual('test', user.username) self.assertEqual('abcd', user.password) def test_user_json(self): # Setup # Exercise item = UserModel('test', 'abcd') # Verify expected = {'id': None, 'username': 'test'} self.assertEqual(expected, item.json())
from SpatialCluster.methods.DMoN_core import convert_scipy_sparse_to_sparse_tensor, build_dmon, normalize_graph from SpatialCluster.utils.get_areas import get_areas from SpatialCluster.preprocess import adjacencyMatrix from SpatialCluster.utils.data_format import data_format, position_data_format # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # import numpy as np import tensorflow.compat.v2 as tf # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # """ ---------------- Parameters: features_X: (DataFrame) Table with the features of each point features_position: (DataFrame) Table with the position of each point (lon, lat) r_max: (float) Max ratio to search for neighbours n_clusters: (int) Number of clusters reg: (int) Collapse regularization dropout: (float) Dropout rate for the model num_epochs: (int) Number of epochs to train the model ---------------- Return: areas_to_points: (dict) Dictionary with the cluster id as keys and a list of points in as values """ def DMoN_Clustering(features_X, features_position, r_max = 0.00034, n_clusters = 4, reg = 1, dropout = 0.0, num_epochs = 500): features_X = data_format(features_X) features_position = position_data_format(features_position) X = features_X.to_numpy(dtype=float) x_min, x_max = np.min(X, axis=0), np.max(X, axis=0) try: X = (X - x_min)/(x_max - x_min) except RuntimeWarning: X = (X - x_min)/(x_max - x_min) print("--------------------Debug------------------------") print(f"X:{X}\nx_min:{x_min}\nx_max:{x_max}") X = np.asmatrix(X) # feature matrix # -------------------------------------------------------------------------- points = list(zip(features_position.lon, features_position.lat)) A = adjacencyMatrix(features_position) n_nodes = A.shape[0] feature_size = X.shape[1] # -------------------------------------------------------------------------- graph = convert_scipy_sparse_to_sparse_tensor(A) graph_normalized = convert_scipy_sparse_to_sparse_tensor(normalize_graph(A.copy())) input_features = tf.keras.layers.Input(shape=(feature_size,)) input_graph = tf.keras.layers.Input((n_nodes,), sparse=True) input_adjacency = tf.keras.layers.Input((n_nodes,), sparse=True) model = build_dmon(input_features, input_graph, input_adjacency, n_clusters, reg, dropout) # Computes the gradients wrt. the sum of losses, returns a list of them. def grad(model, inputs): with tf.GradientTape() as tape: _ = model(inputs, training=True) loss_value = sum(model.losses) return model.losses, tape.gradient(loss_value, model.trainable_variables) optimizer = tf.keras.optimizers.Adam(0.001) model.compile(optimizer, None) # -------------------------------------------------------------------------- for epoch in range(num_epochs): loss_values, grads = grad(model, [X, graph_normalized, graph]) optimizer.apply_gradients(zip(grads, model.trainable_variables)) # -------------------------------------------------------------------------- _, assignments = model([X, graph_normalized, graph], training=False) assignments = assignments.numpy() clusters = assignments.argmax(axis=1) areas_to_points = get_areas(clusters, points) return areas_to_points, clusters """ Dejar matriz implicita no más Bag of parameters """
#!/usr/bin/python # # ================================================================= # README # ================================================================= # # # Author: # Suraj singh bisht # surajsinghbisht054@gmail.com # www.bitforestinfo.com # # ------------------------------------------------------------- # Please Don't Remove Author Initials # ------------------------------------------------------------ # # # Description: # Simple Tic Tac Toe Game Implementation in Python # # # =================================================================== # This is Configuration File # =================================================================== # # neural network configurations INPUTNN = 10 # Number of Input Layer Neural Inputs OUTPUTNN = 9 # Number of Output layer Neural Output TANHLYNN = 18 # Tanh Hidden Layer SIGMODNN = 15 # Sigmod hidden Layer
import urllib.parse import requests def shorten_url(url): r = requests.get( "http://is.gd/create.php?format=simple&url={}".format(urllib.parse.quote(url)) ) r.raise_for_status() return r.text
from django.db import models from django.contrib.auth.models import User from papel.models import Papel from compra.models import Compra # Create your models here. class Negociacoes(models.Model): usuario = models.ForeignKey(User, on_delete=models.CASCADE) papel = models.ForeignKey(Papel, on_delete=models.CASCADE) quantidade = models.IntegerField() preco_medio_unitario = models.FloatField() preco_medio_total = models.FloatField() ultima_data_compra = models.DateField() resultado_porcentagem = models.FloatField() resultado = models.FloatField() def __str__(self): return f'{self.usuario}, {self.compra}, {self.quantidade}, {self.preco_medio}, {self.ultima_data_compra}'
#!/usr/bin/env python # -*- coding: utf-8 -*- # # src/routes.py # Developed in 2019 by Travis Kessler <Travis_Kessler@student.uml.edu> # # Contains website routing information # # 3rd party imports from flask_wtf import FlaskForm from wtforms import StringField, SubmitField, SelectField, BooleanField # CombustDB web app imports from src.properties import PROPERTIES class MoleculeSearch(FlaskForm): ''' MoleculeSearch: flask_wtf.FlaskForm child object, handles user input, field selection, property filtering ''' search_string = StringField('Search String') search_field = SelectField('Search String Type', choices=[ ('iupac_name', 'IUPAC Name'), ('cas', 'CAS Number'), ('molecular_formula', 'Molecular Formula'), ('isomeric_smiles', 'SMILES') ]) show_predictions = BooleanField('Show Property Predictions') properties = list(PROPERTIES.keys()) for prop in properties: locals()[prop] = BooleanField(prop.upper()) submit_search = SubmitField('Search Database') submit_csv = SubmitField('Export to CSV')
"""Various helper scripts for serialization.""" import re def serialize_enum(enum_object): serialized_enum = {} for element in enum_object: serialized_enum[element.name] = element.value return serialized_enum def clean_input_string(line: str) -> str: return re.sub('[!@#$&?%*+:;,/]', '', line)
from threepy.core import * from threepy.geometry import * from threepy.material import * class AxesHelper(Mesh): def __init__(self, axisLength=1, lineWidth=4): vertexPositionData = [[0, 0, 0], [axisLength, 0, 0], [0, 0, 0], [0, axisLength, 0], [0, 0, 0], [0, 0, axisLength]] vertexColorData = [[0.5, 0, 0], [1, 0.2, 0.2], [0, 0.5, 0], [0.2, 1, 0.2], [0, 0, 0.5], [0.2, 0.2, 1]] geo = LineGeometry(vertexPositionData) geo.setAttribute("vec3", "vertexColor", vertexColorData) mat = LineSegmentMaterial(lineWidth=lineWidth, useVertexColors=True) # initialize the mesh super().__init__(geo, mat)
#!/usr/bin/env python3 """RNA-Seq SE(dUTP)/PE(dUTP), ChIP-Seq SE/PE script produces jobs for four workflows""" import os import datetime import sys from json import dumps, loads from collections import OrderedDict import logging import decimal from .utils import biowardrobe_settings, remove_not_set_inputs from .constants import (STAR_INDICES, BOWTIE_INDICES, CHR_LENGTH_GENERIC_TSV, ANNOTATIONS, ANNOTATION_GENERIC_TSV) _logger = logging.getLogger(__name__) def get_biowardrobe_data(cursor, biowardrobe_uid): """Generate and export job file to a specific folder""" _settings = biowardrobe_settings(cursor) _sql = f"""select e.etype, e.workflow, e.template, e.upload_rules, g.db, g.findex, g.annotation, g.annottable, g.genome, g.gsize as genome_size, l.uid, l.forcerun, l.url, l.params, l.deleted, COALESCE(l.trim5,0) as clip_5p_end, COALESCE(l.trim3,0) as clip_3p_end, COALESCE(fragmentsizeexp,0) as exp_fragment_size, COALESCE(fragmentsizeforceuse,0) as force_fragment_size, COALESCE(l.rmdup,0) as remove_duplicates, COALESCE(control,0) as control, COALESCE(control_id,'') as control_id, COALESCE(a.properties,0) as broad_peak, COALESCE(w.email,'') as email from labdata l inner join (experimenttype e,genome g ) ON (e.id=experimenttype_id and g.id=genome_id) LEFT JOIN (antibody a) ON (l.antibody_id=a.id) LEFT JOIN (worker w) ON (l.worker_id=w.id) where l.uid='{biowardrobe_uid}' """ # COALESCE(egroup_id, '') <> '' and COALESCE(name4browser, '') <> '' _logger.debug(f"SQL: {_sql}") cursor.execute(_sql) row = cursor.fetchone() if not row: return None def norm_path(path): return os.path.abspath(os.path.normpath(os.path.normcase(path))) kwargs = row kwargs.update({ "pair": ('pair' in row['etype']), "dUTP": ('dUTP' in row['etype']), "forcerun": (int(row['forcerun']) == 1), "spike": ('spike' in row['genome']), "force_fragment_size": (int(row['force_fragment_size']) == 1), "broad_peak": (int(row['broad_peak']) == 2), "remove_duplicates": (int(row['remove_duplicates']) == 1), "params": row['params'] if row['params'] else '{}', "raw_data": norm_path("/".join((_settings['wardrobe'], _settings['preliminary']))), "upload": norm_path("/".join((_settings['wardrobe'], _settings['upload']))), "indices": norm_path("/".join((_settings['wardrobe'], _settings['indices']))), "threads": _settings['maxthreads'], "experimentsdb": _settings['experimentsdb'] }) kwargs.update({ # TODO: move extension into database "fastq_file_upstream": norm_path("/".join((kwargs["raw_data"], kwargs["uid"], kwargs["uid"] + '.fastq.bz2'))), "fastq_file_downstream": norm_path("/".join((kwargs["raw_data"], kwargs["uid"], kwargs["uid"] + '_2.fastq.bz2'))), "star_indices_folder": norm_path("/".join((kwargs["indices"], STAR_INDICES, kwargs["findex"]))), "bowtie_indices_folder": norm_path("/".join((kwargs["indices"], BOWTIE_INDICES, kwargs["findex"]))), "bowtie_indices_folder_ribo": norm_path("/".join((kwargs["indices"], BOWTIE_INDICES, kwargs["findex"] + "_ribo"))), "chrom_length": norm_path("/".join((kwargs["indices"], BOWTIE_INDICES, kwargs["findex"], CHR_LENGTH_GENERIC_TSV))), "annotation_input_file": norm_path("/".join((kwargs["indices"], ANNOTATIONS, kwargs["findex"], ANNOTATION_GENERIC_TSV))), "exclude_chr": "control" if kwargs["spike"] else "", "output_folder": norm_path("/".join((kwargs["raw_data"], kwargs["uid"]))), "control_file": norm_path("/".join((kwargs["raw_data"], kwargs["control_id"], kwargs["control_id"] + '.bam'))) if kwargs['control_id'] else None }) #### Uncomment # if not os.path.isfile(kwargs["fastq_file_upstream"]) or ( # kwargs['pair'] and not os.path.isfile(kwargs["fastq_file_downstream"])): # raise BiowFileNotFoundException(kwargs["uid"]) kwargs = {key: (value if not isinstance(value, decimal.Decimal) else int(value)) for key, value in kwargs.items()} filled_job_object = remove_not_set_inputs(loads(kwargs['template']. replace('\n', ' ').format(**kwargs). replace("'True'", 'true').replace("'False'", 'false'). replace('"True"', 'true').replace('"False"', 'false'))) filled_job = OrderedDict(sorted(filled_job_object.items())) kwargs['job'] = filled_job _logger.info("Result: \n{}".format(dumps(kwargs, indent=4))) return kwargs
import sys sys.path.append('../../') from cortstim.edp.loaders.dataset.clinical.excel_meta import ExcelReader def load_clinical_df(excelfilepath): excelreader = ExcelReader(filepath=excelfilepath) excelreader.read_formatted_df(excelfilepath) clindf = excelreader.ieegdf.clindf return clindf
#!python3 """ Main Meshtastic """ import argparse import platform import logging import os import sys import time import yaml from pubsub import pub import pyqrcode import pkg_resources import meshtastic.util import meshtastic.test from meshtastic import remote_hardware from meshtastic.ble_interface import BLEInterface from meshtastic import portnums_pb2, channel_pb2, radioconfig_pb2 from meshtastic.globals import Globals from meshtastic.__init__ import BROADCAST_ADDR def onReceive(packet, interface): """Callback invoked when a packet arrives""" our_globals = Globals.getInstance() args = our_globals.get_args() try: d = packet.get('decoded') logging.debug(f'in onReceive() d:{d}') # Exit once we receive a reply if args and args.sendtext and packet["to"] == interface.myInfo.my_node_num and d["portnum"] == portnums_pb2.PortNum.TEXT_MESSAGE_APP: interface.close() # after running command then exit # Reply to every received message with some stats if args and args.reply: msg = d.get('text') if msg: rxSnr = packet['rxSnr'] hopLimit = packet['hopLimit'] print(f"message: {msg}") reply = f"got msg \'{msg}\' with rxSnr: {rxSnr} and hopLimit: {hopLimit}" print("Sending reply: ", reply) interface.sendText(reply) except Exception as ex: print(f'Warning: There is no field {ex} in the packet.') def onConnection(interface, topic=pub.AUTO_TOPIC): # pylint: disable=W0613 """Callback invoked when we connect/disconnect from a radio""" print(f"Connection changed: {topic.getName()}") def getPref(attributes, name): """Get a channel or preferences value""" camel_name = meshtastic.util.snake_to_camel(name) # Note: protobufs has the keys in snake_case, so snake internally snake_name = meshtastic.util.camel_to_snake(name) logging.debug(f'snake_name:{snake_name} camel_name:{camel_name}') logging.debug(f'use camel:{Globals.getInstance().get_camel_case()}') objDesc = attributes.DESCRIPTOR field = objDesc.fields_by_name.get(snake_name) if not field: if Globals.getInstance().get_camel_case(): print(f"{attributes.__class__.__name__} does not have an attribute called {camel_name}, so you can not get it.") else: print(f"{attributes.__class__.__name__} does not have an attribute called {snake_name}, so you can not get it.") print(f"Choices in sorted order are:") names = [] for f in objDesc.fields: tmp_name = f'{f.name}' if Globals.getInstance().get_camel_case(): tmp_name = meshtastic.util.snake_to_camel(tmp_name) names.append(tmp_name) for temp_name in sorted(names): print(f" {temp_name}") return # read the value val = getattr(attributes, snake_name) if Globals.getInstance().get_camel_case(): print(f"{camel_name}: {str(val)}") logging.debug(f"{camel_name}: {str(val)}") else: print(f"{snake_name}: {str(val)}") logging.debug(f"{snake_name}: {str(val)}") def setPref(attributes, name, valStr): """Set a channel or preferences value""" snake_name = meshtastic.util.camel_to_snake(name) camel_name = meshtastic.util.snake_to_camel(name) logging.debug(f'snake_name:{snake_name}') logging.debug(f'camel_name:{camel_name}') objDesc = attributes.DESCRIPTOR field = objDesc.fields_by_name.get(snake_name) if not field: if Globals.getInstance().get_camel_case(): print(f"{attributes.__class__.__name__} does not have an attribute called {camel_name}, so you can not set it.") else: print(f"{attributes.__class__.__name__} does not have an attribute called {snake_name}, so you can not set it.") print(f"Choices in sorted order are:") names = [] for f in objDesc.fields: tmp_name = f'{f.name}' if Globals.getInstance().get_camel_case(): tmp_name = meshtastic.util.snake_to_camel(tmp_name) names.append(tmp_name) for temp_name in sorted(names): print(f" {temp_name}") return val = meshtastic.util.fromStr(valStr) logging.debug(f'valStr:{valStr} val:{val}') enumType = field.enum_type # pylint: disable=C0123 if enumType and type(val) == str: # We've failed so far to convert this string into an enum, try to find it by reflection e = enumType.values_by_name.get(val) if e: val = e.number else: if Globals.getInstance().get_camel_case(): print(f"{camel_name} does not have an enum called {val}, so you can not set it.") else: print(f"{snake_name} does not have an enum called {val}, so you can not set it.") print(f"Choices in sorted order are:") names = [] for f in enumType.values: # Note: We must use the value of the enum (regardless if camel or snake case) names.append(f'{f.name}') for temp_name in sorted(names): print(f" {temp_name}") return # note: 'ignore_incoming' is a repeating field if snake_name != 'ignore_incoming': try: setattr(attributes, snake_name, val) except TypeError: # The setter didn't like our arg type guess try again as a string setattr(attributes, snake_name, valStr) else: if val == 0: # clear values print("Clearing ignore_incoming list") del attributes.ignore_incoming[:] else: print(f"Adding '{val}' to the ignore_incoming list") attributes.ignore_incoming.extend([val]) if Globals.getInstance().get_camel_case(): print(f"Set {camel_name} to {valStr}") else: print(f"Set {snake_name} to {valStr}") def onConnected(interface): """Callback invoked when we connect to a radio""" closeNow = False # Should we drop the connection after we finish? try: our_globals = Globals.getInstance() args = our_globals.get_args() # do not print this line if we are exporting the config if not args.export_config: print("Connected to radio") if args.setlat or args.setlon or args.setalt: closeNow = True alt = 0 lat = 0.0 lon = 0.0 prefs = interface.localNode.radioConfig.preferences if args.setalt: alt = int(args.setalt) prefs.fixed_position = True print(f"Fixing altitude at {alt} meters") if args.setlat: lat = float(args.setlat) prefs.fixed_position = True print(f"Fixing latitude at {lat} degrees") if args.setlon: lon = float(args.setlon) prefs.fixed_position = True print(f"Fixing longitude at {lon} degrees") print("Setting device position") # can include lat/long/alt etc: latitude = 37.5, longitude = -122.1 interface.sendPosition(lat, lon, alt) interface.localNode.writeConfig() elif not args.no_time: # We normally provide a current time to the mesh when we connect interface.sendPosition() if args.set_owner: closeNow = True print(f"Setting device owner to {args.set_owner}") interface.getNode(args.dest).setOwner(args.set_owner) if args.set_owner_short: closeNow = True print(f"Setting device owner short to {args.set_owner_short}") interface.getNode(args.dest).setOwner(long_name=None, short_name=args.set_owner_short) # TODO: add to export-config and configure if args.set_canned_message: closeNow = True print(f"Setting canned plugin message to {args.set_canned_message}") interface.getNode(args.dest).set_canned_message(args.set_canned_message) if args.pos_fields: # If --pos-fields invoked with args, set position fields closeNow = True prefs = interface.getNode(args.dest).radioConfig.preferences allFields = 0 try: for field in args.pos_fields: v_field = radioconfig_pb2.PositionFlags.Value(field) allFields |= v_field except ValueError: print("ERROR: supported position fields are:") print(radioconfig_pb2.PositionFlags.keys()) print("If no fields are specified, will read and display current value.") else: print(f"Setting position fields to {allFields}") setPref(prefs, 'position_flags', f'{allFields:d}') print("Writing modified preferences to device") interface.getNode(args.dest).writeConfig() elif args.pos_fields is not None: # If --pos-fields invoked without args, read and display current value closeNow = True prefs = interface.getNode(args.dest).radioConfig.preferences fieldNames = [] for bit in radioconfig_pb2.PositionFlags.values(): if prefs.position_flags & bit: fieldNames.append(radioconfig_pb2.PositionFlags.Name(bit)) print(' '.join(fieldNames)) if args.set_team: closeNow = True try: v_team = meshtastic.mesh_pb2.Team.Value(args.set_team.upper()) except ValueError: v_team = 0 print(f"ERROR: Team \'{args.set_team}\' not found.") print("Try a team name from the sorted list below, or use 'CLEAR' for unaffiliated:") print(sorted(meshtastic.mesh_pb2.Team.keys())) else: print(f"Setting team to {meshtastic.mesh_pb2.Team.Name(v_team)}") interface.getNode(args.dest).setOwner(team=v_team) if args.set_ham: closeNow = True print(f"Setting Ham ID to {args.set_ham} and turning off encryption") interface.getNode(args.dest).setOwner(args.set_ham, is_licensed=True) # Must turn off encryption on primary channel interface.getNode(args.dest).turnOffEncryptionOnPrimaryChannel() if args.reboot: closeNow = True interface.getNode(args.dest).reboot() if args.shutdown: closeNow = True interface.getNode(args.dest).shutdown() if args.sendtext: closeNow = True channelIndex = 0 if args.ch_index is not None: channelIndex = int(args.ch_index) ch = interface.localNode.getChannelByChannelIndex(channelIndex) logging.debug(f'ch:{ch}') if ch and ch.role != channel_pb2.Channel.Role.DISABLED: print(f"Sending text message {args.sendtext} to {args.dest} on channelIndex:{channelIndex}") interface.sendText(args.sendtext, args.dest, wantAck=True, channelIndex=channelIndex) else: meshtastic.util.our_exit(f"Warning: {channelIndex} is not a valid channel. Channel must not be DISABLED.") if args.sendping: payload = str.encode("test string") print(f"Sending ping message to {args.dest}") interface.sendData(payload, args.dest, portNum=portnums_pb2.PortNum.REPLY_APP, wantAck=True, wantResponse=True) if args.gpio_wrb or args.gpio_rd or args.gpio_watch: if args.dest == BROADCAST_ADDR: meshtastic.util.our_exit("Warning: Must use a destination node ID.") else: rhc = remote_hardware.RemoteHardwareClient(interface) if args.gpio_wrb: bitmask = 0 bitval = 0 for wrpair in (args.gpio_wrb or []): bitmask |= 1 << int(wrpair[0]) bitval |= int(wrpair[1]) << int(wrpair[0]) print(f"Writing GPIO mask 0x{bitmask:x} with value 0x{bitval:x} to {args.dest}") rhc.writeGPIOs(args.dest, bitmask, bitval) closeNow = True if args.gpio_rd: bitmask = int(args.gpio_rd, 16) print(f"Reading GPIO mask 0x{bitmask:x} from {args.dest}") interface.mask = bitmask rhc.readGPIOs(args.dest, bitmask, None) # wait up to X seconds for a response for _ in range(10): time.sleep(1) if interface.gotResponse: break logging.debug(f'end of gpio_rd') if args.gpio_watch: bitmask = int(args.gpio_watch, 16) print(f"Watching GPIO mask 0x{bitmask:x} from {args.dest}. Press ctrl-c to exit") while True: rhc.watchGPIOs(args.dest, bitmask) time.sleep(1) # handle settings if args.set: closeNow = True prefs = interface.getNode(args.dest).radioConfig.preferences # Handle the int/float/bool arguments for pref in args.set: setPref(prefs, pref[0], pref[1]) print("Writing modified preferences to device") interface.getNode(args.dest).writeConfig() if args.configure: with open(args.configure[0], encoding='utf8') as file: configuration = yaml.safe_load(file) closeNow = True if 'owner' in configuration: print(f"Setting device owner to {configuration['owner']}") interface.getNode(args.dest).setOwner(configuration['owner']) if 'owner_short' in configuration: print(f"Setting device owner short to {configuration['owner_short']}") interface.getNode(args.dest).setOwner(long_name=None, short_name=configuration['owner_short']) if 'ownerShort' in configuration: print(f"Setting device owner short to {configuration['ownerShort']}") interface.getNode(args.dest).setOwner(long_name=None, short_name=configuration['ownerShort']) if 'channel_url' in configuration: print("Setting channel url to", configuration['channel_url']) interface.getNode(args.dest).setURL(configuration['channel_url']) if 'channelUrl' in configuration: print("Setting channel url to", configuration['channelUrl']) interface.getNode(args.dest).setURL(configuration['channelUrl']) if 'location' in configuration: alt = 0 lat = 0.0 lon = 0.0 prefs = interface.localNode.radioConfig.preferences if 'alt' in configuration['location']: alt = int(configuration['location']['alt']) prefs.fixed_position = True print(f"Fixing altitude at {alt} meters") if 'lat' in configuration['location']: lat = float(configuration['location']['lat']) prefs.fixed_position = True print(f"Fixing latitude at {lat} degrees") if 'lon' in configuration['location']: lon = float(configuration['location']['lon']) prefs.fixed_position = True print(f"Fixing longitude at {lon} degrees") print("Setting device position") interface.sendPosition(lat, lon, alt) interface.localNode.writeConfig() if 'user_prefs' in configuration: prefs = interface.getNode(args.dest).radioConfig.preferences for pref in configuration['user_prefs']: setPref(prefs, pref, str(configuration['user_prefs'][pref])) print("Writing modified preferences to device") interface.getNode(args.dest).writeConfig() if 'userPrefs' in configuration: prefs = interface.getNode(args.dest).radioConfig.preferences for pref in configuration['userPrefs']: setPref(prefs, pref, str(configuration['userPrefs'][pref])) print("Writing modified preferences to device") interface.getNode(args.dest).writeConfig() if args.export_config: # export the configuration (the opposite of '--configure') closeNow = True export_config(interface) if args.seturl: closeNow = True interface.getNode(args.dest).setURL(args.seturl) # handle changing channels if args.ch_add: closeNow = True if len(args.ch_add) > 10: meshtastic.util.our_exit("Warning: Channel name must be shorter. Channel not added.") n = interface.getNode(args.dest) ch = n.getChannelByName(args.ch_add) if ch: meshtastic.util.our_exit(f"Warning: This node already has a '{args.ch_add}' channel. No changes were made.") else: # get the first channel that is disabled (i.e., available) ch = n.getDisabledChannel() if not ch: meshtastic.util.our_exit("Warning: No free channels were found") chs = channel_pb2.ChannelSettings() chs.psk = meshtastic.util.genPSK256() chs.name = args.ch_add ch.settings.CopyFrom(chs) ch.role = channel_pb2.Channel.Role.SECONDARY print(f"Writing modified channels to device") n.writeChannel(ch.index) if args.ch_del: closeNow = True channelIndex = our_globals.get_channel_index() if channelIndex is None: meshtastic.util.our_exit("Warning: Need to specify '--ch-index' for '--ch-del'.", 1) else: if channelIndex == 0: meshtastic.util.our_exit("Warning: Cannot delete primary channel.", 1) else: print(f"Deleting channel {channelIndex}") ch = interface.getNode(args.dest).deleteChannel(channelIndex) ch_changes = [args.ch_vlongslow, args.ch_longslow, args.ch_longfast, args.ch_midslow, args.ch_midfast, args.ch_shortslow, args.ch_shortfast] any_primary_channel_changes = any(x for x in ch_changes) if args.ch_set or any_primary_channel_changes or args.ch_enable or args.ch_disable: closeNow = True channelIndex = our_globals.get_channel_index() if channelIndex is None: if any_primary_channel_changes: # we assume that they want the primary channel if they're setting range values channelIndex = 0 else: meshtastic.util.our_exit("Warning: Need to specify '--ch-index'.", 1) ch = interface.getNode(args.dest).channels[channelIndex] if any_primary_channel_changes or args.ch_enable or args.ch_disable: if channelIndex == 0 and not any_primary_channel_changes: meshtastic.util.our_exit("Warning: Cannot enable/disable PRIMARY channel.") if channelIndex != 0: if any_primary_channel_changes: meshtastic.util.our_exit("Warning: Standard channel settings can only be applied to the PRIMARY channel") enable = True # default to enable if args.ch_enable: enable = True if args.ch_disable: enable = False def setSimpleChannel(modem_config): """Set one of the simple modem_config only based channels""" # Completely new channel settings chs = channel_pb2.ChannelSettings() chs.modem_config = modem_config chs.psk = bytes([1]) # Use default channel psk 1 ch.settings.CopyFrom(chs) # handle the simple channel set commands if args.ch_vlongslow: setSimpleChannel(channel_pb2.ChannelSettings.ModemConfig.VLongSlow) if args.ch_longslow: setSimpleChannel(channel_pb2.ChannelSettings.ModemConfig.LongSlow) if args.ch_longfast: setSimpleChannel(channel_pb2.ChannelSettings.ModemConfig.LongFast) if args.ch_midslow: setSimpleChannel(channel_pb2.ChannelSettings.ModemConfig.MidSlow) if args.ch_midfast: setSimpleChannel(channel_pb2.ChannelSettings.ModemConfig.MidFast) if args.ch_shortslow: setSimpleChannel(channel_pb2.ChannelSettings.ModemConfig.ShortSlow) if args.ch_shortfast: setSimpleChannel(channel_pb2.ChannelSettings.ModemConfig.ShortFast) # Handle the channel settings for pref in (args.ch_set or []): if pref[0] == "psk": ch.settings.psk = meshtastic.util.fromPSK(pref[1]) else: setPref(ch.settings, pref[0], pref[1]) enable = True # If we set any pref, assume the user wants to enable the channel if enable: ch.role = channel_pb2.Channel.Role.PRIMARY if ( channelIndex == 0) else channel_pb2.Channel.Role.SECONDARY else: ch.role = channel_pb2.Channel.Role.DISABLED print(f"Writing modified channels to device") interface.getNode(args.dest).writeChannel(channelIndex) if args.get_canned_message: closeNow = True print("") interface.getNode(args.dest).get_canned_message() if args.info: print("") # If we aren't trying to talk to our local node, don't show it if args.dest == BROADCAST_ADDR: interface.showInfo() print("") interface.getNode(args.dest).showInfo() closeNow = True # FIXME, for now we leave the link up while talking to remote nodes print("") if args.get: closeNow = True prefs = interface.getNode(args.dest).radioConfig.preferences # Handle the int/float/bool arguments for pref in args.get: getPref(prefs, pref[0]) print("Completed getting preferences") if args.nodes: closeNow = True interface.showNodes() if args.qr: closeNow = True url = interface.localNode.getURL(includeAll=False) print(f"Primary channel URL {url}") qr = pyqrcode.create(url) print(qr.terminal()) have_tunnel = platform.system() == 'Linux' if have_tunnel and args.tunnel: # pylint: disable=C0415 from . import tunnel # Even if others said we could close, stay open if the user asked for a tunnel closeNow = False if interface.noProto: logging.warning(f"Not starting Tunnel - disabled by noProto") else: tunnel.Tunnel(interface, subnet=args.tunnel_net) # if the user didn't ask for serial debugging output, we might want to exit after we've done our operation if (not args.seriallog) and closeNow: interface.close() # after running command then exit except Exception as ex: print(f"Aborting due to: {ex}") interface.close() # close the connection now, so that our app exits def onNode(node): """Callback invoked when the node DB changes""" print(f"Node changed: {node}") def subscribe(): """Subscribe to the topics the user probably wants to see, prints output to stdout""" pub.subscribe(onReceive, "meshtastic.receive") # pub.subscribe(onConnection, "meshtastic.connection") # We now call onConnected from main # pub.subscribe(onConnected, "meshtastic.connection.established") # pub.subscribe(onNode, "meshtastic.node") def export_config(interface): """used in--export-config""" owner = interface.getLongName() owner_short = interface.getShortName() channel_url = interface.localNode.getURL() myinfo = interface.getMyNodeInfo() pos = myinfo.get('position') lat = None lon = None alt = None if pos: lat = pos.get('latitude') lon = pos.get('longitude') alt = pos.get('altitude') config = "# start of Meshtastic configure yaml\n" if owner: config += f"owner: {owner}\n\n" if owner_short: config += f"owner_short: {owner_short}\n\n" if channel_url: if Globals.getInstance().get_camel_case(): config += f"channelUrl: {channel_url}\n\n" else: config += f"channel_url: {channel_url}\n\n" if lat or lon or alt: config += "location:\n" if lat: config += f" lat: {lat}\n" if lon: config += f" lon: {lon}\n" if alt: config += f" alt: {alt}\n" config += "\n" preferences = f'{interface.localNode.radioConfig.preferences}' prefs = preferences.splitlines() if prefs: if Globals.getInstance().get_camel_case(): config += "userPrefs:\n" else: config += "user_prefs:\n" for pref in prefs: if Globals.getInstance().get_camel_case(): # Note: This may not work if the value has '_' config += f" {meshtastic.util.snake_to_camel(meshtastic.util.quoteBooleans(pref))}\n" else: config += f" {meshtastic.util.quoteBooleans(pref)}\n" print(config) return config def common(): """Shared code for all of our command line wrappers""" logfile = None our_globals = Globals.getInstance() args = our_globals.get_args() parser = our_globals.get_parser() logging.basicConfig(level=logging.DEBUG if args.debug else logging.INFO, format='%(levelname)s file:%(filename)s %(funcName)s line:%(lineno)s %(message)s') if len(sys.argv) == 1: parser.print_help(sys.stderr) meshtastic.util.our_exit("", 1) else: if args.support: meshtastic.util.support_info() meshtastic.util.our_exit("", 0) if args.ch_index is not None: channelIndex = int(args.ch_index) our_globals.set_channel_index(channelIndex) if not args.dest: args.dest = BROADCAST_ADDR if not args.seriallog: if args.noproto: args.seriallog = "stdout" else: args.seriallog = "none" # assume no debug output in this case if args.deprecated is not None: logging.error( 'This option has been deprecated, see help below for the correct replacement...') parser.print_help(sys.stderr) meshtastic.util.our_exit('', 1) elif args.test: result = meshtastic.test.testAll() if not result: meshtastic.util.our_exit("Warning: Test was not successful.") else: meshtastic.util.our_exit("Test was a success.", 0) else: if args.seriallog == "stdout": logfile = sys.stdout elif args.seriallog == "none": args.seriallog = None logging.debug("Not logging serial output") logfile = None else: logging.info(f"Logging serial output to {args.seriallog}") # Note: using "line buffering" # pylint: disable=R1732 logfile = open(args.seriallog, 'w+', buffering=1, encoding='utf8') our_globals.set_logfile(logfile) subscribe() if args.ble: client = BLEInterface(args.ble, debugOut=logfile, noProto=args.noproto) elif args.host: client = meshtastic.tcp_interface.TCPInterface(args.host, debugOut=logfile, noProto=args.noproto) else: try: client = meshtastic.serial_interface.SerialInterface(args.port, debugOut=logfile, noProto=args.noproto) except PermissionError as ex: username = os.getlogin() message = "Permission Error:\n" message += " Need to add yourself to the 'dialout' group by running:\n" message += f" sudo usermod -a -G dialout {username}\n" message += " After running that command, log out and re-login for it to take effect.\n" message += f"Error was:{ex}" meshtastic.util.our_exit(message) # We assume client is fully connected now onConnected(client) have_tunnel = platform.system() == 'Linux' if args.noproto or args.reply or (have_tunnel and args.tunnel): # loop until someone presses ctrlc while True: time.sleep(1000) # don't call exit, background threads might be running still # sys.exit(0) def initParser(): """Initialize the command line argument parsing.""" our_globals = Globals.getInstance() parser = our_globals.get_parser() args = our_globals.get_args() parser.add_argument( "--configure", help="Specify a path to a yaml(.yml) file containing the desired settings for the connected device.", action='append') parser.add_argument( "--export-config", help="Export the configuration in yaml(.yml) format.", action='store_true') parser.add_argument( "--port", help="The port the Meshtastic device is connected to, i.e. /dev/ttyUSB0. If unspecified, we'll try to find it.", default=None) parser.add_argument( "--host", help="The hostname/ipaddr of the device to connect to (over TCP)", default=None) parser.add_argument( "--seriallog", help="Log device serial output to either 'stdout', 'none' or a filename to append to.") parser.add_argument("--info", help="Read and display the radio config information", action="store_true") parser.add_argument("--get-canned-message", help="Show the canned message plugin message", action="store_true") parser.add_argument("--nodes", help="Print Node List in a pretty formatted table", action="store_true") parser.add_argument("--qr", help="Display the QR code that corresponds to the current channel", action="store_true") parser.add_argument( "--get", help=("Get a preferences field. Use an invalid field such as '0' to get a list of all fields." " Can use either snake_case or camelCase format. (ex: 'ls_secs' or 'lsSecs')"), nargs=1, action='append') parser.add_argument( "--set", help="Set a preferences field. Can use either snake_case or camelCase format. (ex: 'ls_secs' or 'lsSecs')", nargs=2, action='append') parser.add_argument( "--seturl", help="Set a channel URL", action="store") parser.add_argument( "--ch-index", help="Set the specified channel index. Channels start at 0 (0 is the PRIMARY channel).", action="store") parser.add_argument( "--ch-add", help="Add a secondary channel, you must specify a channel name", default=None) parser.add_argument( "--ch-del", help="Delete the ch-index channel", action='store_true') parser.add_argument( "--ch-enable", help="Enable the specified channel", action="store_true", dest="ch_enable", default=False) # Note: We are doing a double negative here (Do we want to disable? If ch_disable==True, then disable.) parser.add_argument( "--ch-disable", help="Disable the specified channel", action="store_true", dest="ch_disable", default=False) parser.add_argument( "--ch-set", help=("Set a channel parameter. To see channel settings available:'--ch-set all all --ch-index 0'. " "Can set the 'psk' using this command. To disable encryption on primary channel:'--ch-set psk none --ch-index 0'. " "To set encryption with a new random key on second channel:'--ch-set psk random --ch-index 1'. " "To set encryption back to the default:'--ch-set default --ch-index 0'. To set encryption with your " "own key: '--ch-set psk 0x1a1a1a1a2b2b2b2b1a1a1a1a2b2b2b2b1a1a1a1a2b2b2b2b1a1a1a1a2b2b2b2b --ch-index 0'."), nargs=2, action='append') parser.add_argument( "--ch-vlongslow", help="Change to the very long-range and slow channel", action='store_true') parser.add_argument( "--ch-longslow", help="Change to the long-range and slow channel", action='store_true') parser.add_argument( "--ch-longfast", help="Change to the long-range and fast channel", action='store_true') parser.add_argument( "--ch-midslow", help="Change to the mid-range and slow channel", action='store_true') parser.add_argument( "--ch-midfast", help="Change to the mid-range and fast channel", action='store_true') parser.add_argument( "--ch-shortslow", help="Change to the short-range and slow channel", action='store_true') parser.add_argument( "--ch-shortfast", help="Change to the short-range and fast channel", action='store_true') parser.add_argument( "--set-owner", help="Set device owner name", action="store") parser.add_argument( "--set-canned-message", help="Set the canned messages plugin message (up to 1000 characters).", action="store") parser.add_argument( "--set-owner-short", help="Set device owner short name", action="store") parser.add_argument( "--set-team", help="Set team affiliation (an invalid team will list valid values)", action="store") parser.add_argument( "--set-ham", help="Set licensed Ham ID and turn off encryption", action="store") parser.add_argument( "--dest", help="The destination node id for any sent commands, if not set '^all' or '^local' is assumed as appropriate", default=None) parser.add_argument( "--sendtext", help="Send a text message. Can specify a destination '--dest' and/or channel index '--ch-index'.") parser.add_argument( "--sendping", help="Send a ping message (which requests a reply)", action="store_true") parser.add_argument( "--reboot", help="Tell the destination node to reboot", action="store_true") parser.add_argument( "--shutdown", help="Tell the destination node to shutdown", action="store_true") parser.add_argument( "--reply", help="Reply to received messages", action="store_true") parser.add_argument( "--gpio-wrb", nargs=2, help="Set a particular GPIO # to 1 or 0", action='append') parser.add_argument( "--gpio-rd", help="Read from a GPIO mask (ex: '0x10')") parser.add_argument( "--gpio-watch", help="Start watching a GPIO mask for changes (ex: '0x10')") parser.add_argument( "--no-time", help="Suppress sending the current time to the mesh", action="store_true") parser.add_argument( "--setalt", help="Set device altitude (allows use without GPS)") parser.add_argument( "--setlat", help="Set device latitude (allows use without GPS)") parser.add_argument( "--setlon", help="Set device longitude (allows use without GPS)") parser.add_argument( "--pos-fields", help="Specify fields to send when sending a position. Use no argument for a list of valid values. "\ "Can pass multiple values as a space separated list like "\ "this: '--pos-fields POS_ALTITUDE POS_ALT_MSL'", nargs="*", action="store") parser.add_argument("--debug", help="Show API library debug log messages", action="store_true") parser.add_argument("--test", help="Run stress test against all connected Meshtastic devices", action="store_true") parser.add_argument("--ble", help="BLE mac address to connect to (BLE is not yet supported for this tool)", default=None) parser.add_argument("--noproto", help="Don't start the API, just function as a dumb serial terminal.", action="store_true") parser.add_argument('--setchan', dest='deprecated', nargs=2, action='append', help='Deprecated, use "--ch-set param value" instead') parser.add_argument('--set-router', dest='deprecated', action='store_true', help='Deprecated, use "--set is_router true" instead') parser.add_argument('--unset-router', dest='deprecated', action='store_false', help='Deprecated, use "--set is_router false" instead') have_tunnel = platform.system() == 'Linux' if have_tunnel: parser.add_argument('--tunnel', action='store_true', help="Create a TUN tunnel device for forwarding IP packets over the mesh") parser.add_argument("--subnet", dest='tunnel_net', help="Sets the local-end subnet address for the TUN IP bridge. (ex: 10.115' which is the default)", default=None) parser.set_defaults(deprecated=None) the_version = pkg_resources.get_distribution("meshtastic").version parser.add_argument('--version', action='version', version=f"{the_version}") parser.add_argument( "--support", action='store_true', help="Show support info (useful when troubleshooting an issue)") args = parser.parse_args() our_globals.set_args(args) our_globals.set_parser(parser) def main(): """Perform command line meshtastic operations""" our_globals = Globals.getInstance() parser = argparse.ArgumentParser() our_globals.set_parser(parser) initParser() common() logfile = our_globals.get_logfile() if logfile: logfile.close() def tunnelMain(): """Run a meshtastic IP tunnel""" our_globals = Globals.getInstance() parser = argparse.ArgumentParser() our_globals.set_parser(parser) initParser() args = our_globals.get_args() args.tunnel = True our_globals.set_args(args) common() if __name__ == "__main__": main()
from __future__ import annotations from typing import List, Dict, Union, Generator, ItemsView, Optional, \ Tuple, Any, no_type_check from base64 import b64encode, b64decode from datetime import date, datetime from . import APTypes from .namespace import * def dateobj(source: str) -> Union[date, datetime]: '''Parse `date` or `datetime` string to it's corresponding class''' try: return date.fromisoformat(source) except ValueError: return datetime.fromisoformat(source) def isbool(element: PlistElement) -> bool: '''Returns `True` if the `element.tag` is defined inside 'NSBool' tag definitions''' return element.tag in (DEFAULT_KEY_IDS['true'] + DEFAULT_KEY_IDS['false']) def isdirectory(element: PlistElement) -> bool: '''Returns `True` if the `element.tag` is defined inside 'NSArray' and 'NSDictionary' tag definitions''' return element.tag in (DEFAULT_KEY_IDS['array'] + DEFAULT_KEY_IDS['dict']) class PlistElement(object): ''' `PlistElement` is a node class that supports all default 'plist' types, such as 'NSDictionary' and 'NSKey'. `PlistElement` is a duck typed extension of `xml.etree.ElementTree.Element`. Parameters ---------- PLIST_TAG : str PLIST_TAG is used to initialize a `PlistElement` with the passed tag. PLIST_TAG is being checked if it is defined in the current key namespace (`DEFAULT_KEYS` global). text : Union[int, float, str, bytes, bytearray, date, datetime] = "" `text` holds the text of an 'xml/plist' element. `PlistElement` prohibits the use of the parameter in directory nodes, such as 'NSDictionary' and 'NSArray'. `text` is being converted to an 'base64' string if the type is `bytes` or `bytearray`. If `text` is `date` or `datetime`, the `isoformat` method is being used to convert it to string attribs: Dict[str, str] = {} `attribs` are the parameters defined inside an 'xml/plist' tag and where the keys and values are being separated by a '='. parsedobj : bool = False `parsedobj` is an boolean identifier that is used to indicate that the `text` attribute is going to be set later by hand. It is intended to be used only while parsing strings or files, where the inner tag text is not known yet. Attributes ---------- _dictitems : Dict[str, int] `_dictitems` is used only when a `PlistElement` is a type of 'NSDictionary'. It points a string key to the index of the corresponding `PlistElement` in the `_children` list attribute. _children : List[PlistElement] `_children` is a list that holds all subnodes of a directory node. `_children` attribute is allowed only to be used if the `PlistElement` is a type of 'NSDictionary' or 'NSArray'. attrib : Dict[str, str] `attrib` holds the parameters that are being defined inside an 'xml/plist' tag and where the keys and values are being separated by a '='. tag : str `tag` is the tag that the current `PlistElement` holds. text : str `text` is the text that is being placed between the opening and ending tag. It cannot be used if the `PlistElement` is not a directory node, such as 'NSDictionary' or 'NSArray'. tail : str Not used in this package, but reserved for a valid duck typed extension of `xml.etree.ElementTree.Element` ''' _dictitems: Dict[str, int] = {} _children: List[PlistElement] = [] attrib : Dict[str, str] = {} tag: str = '' tail: str = '' # `text` is only `str`. `date` and `datetime` are being wrapped inside to # prevent `mypy` warnings when trying to set `.text` attribute with a # `date` or `datetime` inside a 'NSDate' object. `__setattr__` is being # overloaded and `date` and `datetime` objects are being converted to string # with `isoformat` method text: Union[str, date, datetime] = '' def __init__(self, PLIST_TAG: str, text: APTypes = "", attribs : Dict[str, str] = {}, parsedobj: bool = False) -> None: if not PLIST_TAG in DEFAULT_KEYS: raise ValueError("`%s` not in current 'namespace'" % PLIST_TAG) if not isinstance(attribs, dict): raise ValueError("`attribs` parameter must be `dict`, not `%s`" % attribs.__class__.__name__) self._dictitems = {} self._children = [] self.attrib = attribs super().__setattr__('tag', PLIST_TAG) # Ignore text errors if the object is created from parsing a string/file if parsedobj: return self.text = text # type: ignore def __setattr__(self, attr: str, value: APTypes) -> None: '''Forbids the change of the `tag` attribute and the set of `text` attribute in 'NSDictionary' and 'NSArray'. Value is being converted to a 'base64' string if the value is type of `bytes` or `bytearray`. Parameters ---------- attr : str Attribute's name that is going to be set or changed in this class value : Union[int, float, str, bytes, bytearray, date, datetime] Value to be setted to the attribute Raises ------ AttributeError Raised when trying to change the `tag` attribute SyntaxError Raised when trying to set the `text` attribute in 'NSDictionary' and 'NSArray' ValueError Raised when trying to set the `text` attribute with a invalid type value that is not acceptable for the current 'PlistElement' object ''' if attr == 'text' and not value in (None, ''): if isdirectory(self) or isbool(self): raise SyntaxError("`%s` cannot have a `text` attribute" % self.tag) elif self.tag in DEFAULT_KEY_IDS['date']: if not isinstance(value, (date, datetime)): raise ValueError("`value` parameter must be `date` or\ `datetime`, not `%s` when changing `text` attribute in a 'NSDate' object" % type(value)) value = value.isoformat() elif self.tag in DEFAULT_KEY_IDS['int'] + DEFAULT_KEY_IDS['float']: if not isinstance(value, (int, float, str)): raise ValueError("`value` parameter must be `int`, `float`\ or `str` number, not `%s` when changing `text` attribute on 'NSNumber' object" % type(value)) try: float(value) except ValueError: raise ValueError('`%s` is not a valid `int` or `float`' % value) value = str(value) elif self.tag in DEFAULT_KEY_IDS['data']: if not isinstance(value, (bytearray, bytes)): raise ValueError("`value` parameter must be `bytes` or\ `bytearray`, not `%s` when changing `text` attribute on 'NSData' object" % type(value)) value = b64encode(value).decode("ASCII") elif attr == 'tag': raise AttributeError('Cannot change the `tag` attribute. Replace\ this element instead') super().__setattr__(attr, value) def __repr__(self) -> str: '''This method is called when trying to print a `PlistElement`. Returns a string that includes class name, tag and class id.''' return "<%s %r at %#x>" % (self.__class__.__name__, self.tag, id(self)) def __len__(self) -> int: '''This instance is called on `len(PlistElement)`. It returns the number of sub-nodes in the `PlistElement`.''' return len(self._children) def __iter__(self) -> Generator[PlistElement, None, None]: '''This instance is being called when trying to iterate through a `PlistElement` in 'foreach' loops. It returns its sub-nodes if they exist.''' return (x for x in list.__iter__(self._children)) def items(self) -> ItemsView[str, str]: '''Method copied from `xml.etree.ElementTree.Element` that is needed in a class for the `ElementTree.tostring` to work properly. It returns a 'zip' that is being created from `self.attrib` keys and values.''' return self.attrib.items() def iter(self, tag: Optional[str] = None) -> Generator[PlistElement, None, None]: '''Method copied from `xml.etree.ElementTree.Element` that is needed in a class for the `ElementTree.tostring` to work properly. It iterates recursively on `PlistElement` sub-nodes if they exist.''' if tag == "*": tag = None if tag is None or self.tag == tag: yield self for e in self._children: yield from e.iter(tag) def __getitem__(self, index : Union[int, str]) -> Union[PlistElement]: '''`__getitem__` is called on `PlistElement[key]`. It returns a sub-node if it does exist. Parameters ---------- index : Union[int, str] Key or index that is used to access a sub-node. If a `PlistElement` is a type of 'NSDictionary', `index` needs to be a string key. If a `PlistElement` is a type of 'NSArray', `index` needs to be a integer. Returns ------- PlistElement Returns the target sub-node, if it was found in the sub-node list. Raises ------ SyntaxError Raised when trying to access sub-nodes of a non directory `PlistElement`. ValueError Raised when trying to access to dict nodes by a integer, or when accessing array nodes by a string key. ValueError is also being raised when `index` parameter is not a type of `int` or `str`. IndexError Raised automatically when trying to access to sub-nodes in a 'NSArray' by a integer index that is larger than the number of sub-nodes - 1. KeyError Raised automatically when trying to access to sub-nodes in a 'NSDictionary' by a string key that does not exist in the dict. ''' if not isdirectory(self): raise SyntaxError("PlistElement with tag `%s` can't have any nodes" % \ self.tag) if isinstance(index, int): if self.tag in DEFAULT_KEY_IDS['dict']: raise ValueError("Can't access to dict nodes by a integer index") return self._children[index] elif isinstance(index, str): if self.tag in DEFAULT_KEY_IDS['array']: raise ValueError("Can't access to array nodes by a string key") # Get the index of `PlistElement` value that is linked by the string key # and return the target `PlistElement` from the subnode list by the index return self._children[self._dictitems[index]] else: raise ValueError("`index` is type of `%s`, not `str` or `int`" % type(index)) def __setitem__(self, index : Union[int, str], value: PlistElement) -> None: '''`__setitem__` is called on `PlistElement[key] = PlistElement` It replaces an already setted `PlistElement` in a 'NSDictionary' and 'NSArray'. If a key is not setted in a 'NSDictionary', it creates a new key and links the value to it. If you are trying to append new elements to a 'NSArray', use the `PlistElement.append` method instead. Parameters ---------- index : Union[int, str] Key or index that is used to access the target sub-node which is going to be replaced later. value : PlistElement The element that is going to be assigned to the the target key/index. Raises ------ SyntaxError Raised when trying to set a subnode in a non directory `PlistElement` ValueError Raised when trying to access to a sub-node in a 'NSDictionary' by a integer index, or when accessing a sub-node in 'NSArray' by a string key. ValueError is also being raised when `index` parameter is not a type of `int` or `str`. IndexError Raised automatically when trying to set a sub-node by a integer index in a 'NSArray', which is larger than the number of sub-nodes - 1. ''' if not isdirectory(self): raise SyntaxError("PlistElement with tag `%s` cannot have any nodes") if isinstance(index, int): if self.tag in DEFAULT_KEY_IDS['dict']: raise ValueError("Cannot access to 'NSDictionary' nodes by int index") self._children[index] = value elif isinstance(index, str): if self.tag in DEFAULT_KEY_IDS['array']: raise ValueError("Cannot access to 'NSArray' nodes by a string key") try: self._children[self._dictitems[index]] = value except KeyError: # Create a 'NSKey' and append the value to it self._children.append(PlistElement(DEFAULT_KEY_IDS['key'][0], index)) self._children.append(value) # Link the index of the value to the string key self._dictitems[index] = len(self._children) - 1 else: raise ValueError("`index` input is a `%s`, not `int` or `str`" % type(index)) def append(self, value: Union[PlistElement, List[PlistElement], Tuple[PlistElement]]) \ -> None: '''Appends new `PlistElement` elements into a 'NSArray'. It cannot be used in a 'NSDictionary'. Parameters ---------- value : Union[PlistElement, List[PlistElement], Tuple[PlistElement]] The value/values that are going to be appended to the current sub-node list. If trying to append multiple `PlistElement` elements, wrap them inside a tuple or a list. Raises ------ SyntaxError Raised when trying to append elements to a non 'NSArray' `PlistElement`. ValueError Raised when `value` is not a type of `PlistElement`, `List[PlistElement]` or `Tuple[PlistElement]` ''' if not self.tag in DEFAULT_KEY_IDS['array']: raise SyntaxError("Cannot append elements to a `%s` `PlistElement`" % self.tag) if not isinstance(value, (PlistElement, list, tuple)): # Simple type checking. I know that you can pass non PlistElement # in lists and tuples raise ValueError("`value` parameter is a type of `%s`, not `PlistElement`, \ `List[PlistElement]` or `Tuple[PlistElement]`" % type(value)) if isinstance(value, PlistElement): # list.extend() can't add a single custom class (bug), so I wrap the # single element inside a list value = [value] self._children.extend(value) def pop(self, index: Union[int, str]) -> None: '''Deletes a sub-node in a 'NSArray'. In a 'NSDictionary' both the key and value is being deleted from the sub-node list. Parameters ---------- index : Union[int, str] String key or integer index of the target sub-node that is going to be removed from the sub-node list. Raises ------ ValueError Raised when trying to remove the target `PlistElement` by a string key in a 'NSArray' or when trying to remove the target element by a integer index in a 'NSDictionary'. ValueError is also raised when `index` parameter is not a type of `int` or `str`. IndexError Raised automatically when trying to delete a sub-node with an index that is larger than the number of sub-nodes - 1. ''' if isinstance(index, int): if not self.tag in DEFAULT_KEY_IDS['array']: raise ValueError("Cannot delete a child by a integer index in a\ `%s` `PlistElement`" % self.tag) del self._children[index] elif isinstance(index, str): if not self.tag in DEFAULT_KEY_IDS['dict']: raise ValueError("Cannot delete a dict value in a `%s`\ PlistElement" % self.tag) # Delete the refered value del self._children[self._dictitems[index]] # Delete the key itself del self._children[self._dictitems[index] - 1] # Delete the infomation about the value index self._dictitems.pop(index) else: raise ValueError('`index` input is not a `int` or `str`')
"""Testing data splitter.""" import os import tempfile import unittest from typing import Tuple import pandas as pd from pytoda.data_splitter import csv_data_splitter from pytoda.tests.utils import TestFileContent from pytoda.types import Files class TestDataSplitter(unittest.TestCase): """Testing csv data splitting.""" def _read_dfs(self, filepaths: Files) -> Tuple[pd.DataFrame, pd.DataFrame]: """ Read data frames from a list of files. Args: filepaths (Files): a list of files. Returns: Tuple[pd.DataFrame, ...]: a tuple of data frames. """ return tuple(pd.read_csv(filepath, index_col=0) for filepath in filepaths) def test_data_splitter(self) -> None: """Test csv_data_splitter.""" a_content = os.linesep.join( [ 'genes,A,B,C,D', 'sample_3,9.45,4.984,7.016,8.336', 'sample_2,7.188,0.695,10.34,6.047', 'sample_1,9.25,6.133,5.047,5.6', ] ) another_content = os.linesep.join( [ 'genes,B,C,D,E,F', 'sample_10,4.918,0.0794,1.605,3.463,10.18', 'sample_11,3.043,8.56,1.961,0.6226,5.027', 'sample_12,4.76,1.124,6.06,0.3743,11.05', 'sample_13,0.626,5.164,4.277,4.414,2.7', ] ) # first row for random splits, second for file split ground_truth = [ [(6, 6), (1, 6)], [(5, 6), (2, 6)], [(3, 6), (4, 6)], [(3, 4), (4, 5)], [(3, 4), (4, 5)], [(3, 4), (4, 5)], ] index = 0 with tempfile.TemporaryDirectory() as directory: for mode in ['random', 'file']: for test_fraction in [0.1, 0.2, 0.5]: with TestFileContent(a_content) as a_test_file: with TestFileContent(another_content) as another_test_file: train_filepath, test_filepath = csv_data_splitter( [a_test_file.filename, another_test_file.filename], directory, 'general', mode=mode, test_fraction=test_fraction, ) train_df, test_df = self._read_dfs( [train_filepath, test_filepath] ) self.assertEqual( ground_truth[index], [train_df.shape, test_df.shape] ) index += 1 if __name__ == '__main__': unittest.main()
# see http://influxdb.com/docs/v0.8/api/reading_and_writing_data.html import tornado.ioloop import tornado.web import logging import json logger = logging.getLogger('docker') class BaseHandler(tornado.web.RequestHandler): def _handle_request_exception(self, e): logger.error(e) self.write_error(status=500, message=str(e)) def set_default_headers(self): self.set_header('Content-Type', 'application/json') def write_error(self, status=400, **kw): self.set_status(status) if 'message' not in kw: if status == 405: kw['message'] = 'Invalid HTTP method.' else: kw['message'] = 'Unknown error.' self.response = kw self.write_json() def prepare(self): print(self.request.method + ' ' + self.request.uri) if self.request.body: body = self.request.body.decode('utf8') try: json_data = json.loads(body) self.request.arguments.update(json_data) except ValueError as e: self.send_error(400, message=str(e)) self.response = {} def write_json(self): output = json.dumps(self.response) self.write(output) self.finish() class DatabasesHandler(BaseHandler): def post(self): """Database creation """ self.set_status(201) self.write('') self.finish() class DatabaseHandler(BaseHandler): def delete(self): """Database deletion """ self.set_status(204) self.write('') self.finish() class CatchAll(BaseHandler): def get(self): self.write_json() application = tornado.web.Application([ (r"/db", DatabasesHandler), (r"/db/.*", DatabaseHandler), (".*", CatchAll) ]) def main(): application.listen(8086) try: tornado.ioloop.IOLoop.instance().start() except KeyboardInterrupt: pass if __name__ == "__main__": main()
import contextlib import copy import csv import json import logging import os import re from pathlib import Path import click from fuzzywuzzy import process from utils import make_mongodb log_format = logging.Formatter( "[%(asctime)s][%(filename)s:%(lineno)4s - %(funcName)10s()] %(message)s" ) handler = logging.StreamHandler() handler.setFormatter(log_format) logging.getLogger().addHandler(handler) handler = logging.FileHandler("conflict.log") handler.setFormatter(log_format) logging.getLogger().addHandler(handler) logging.getLogger().setLevel(logging.INFO) @click.group() def conflict(): pass @conflict.command() @click.option("-i", "--submission_id", type=int) @click.option( "-s", "--submission_dbcol_name", required=True, default="hotcrp:submission" ) @click.option("-m", "--mag_dbcol_name", required=True, default="mag:paper") @click.option("-p", "--pcmember_dbcol_name", required=True, default="hotcrp:pc") @click.option("-f", "--force", is_flag=True) def check_author_in_conflict( submission_id, submission_dbcol_name, mag_dbcol_name, pcmember_dbcol_name, force ): """Check if a submission's author is specified as a conflict""" sdb = make_mongodb(submission_dbcol_name) mdb = make_mongodb(mag_dbcol_name) pdb = make_mongodb(pcmember_dbcol_name) all_pc = pdb.client.find() if submission_id: check_author_in_conflict_single(submission_id, sdb, mdb, pdb, all_pc, force) else: ids = sdb.client.find().distinct("_id") for sid in ids: check_author_in_conflict_single( sid, sdb, mdb, pdb, copy.deepcopy(all_pc), force ) @conflict.command() @click.option( "-s", "--submission_dbcol_name", required=True, default="hotcrp:submission" ) @click.option("-p", "--pcmember_dbcol_name", required=True, default="hotcrp:pc") def find_chair_conflict_papers(submission_dbcol_name, pcmember_dbcol_name): """Find papers that specify all chairs as conflicts""" sdb = make_mongodb(submission_dbcol_name) pdb = make_mongodb(pcmember_dbcol_name) logger = logging.getLogger() all_chairs = list( pdb.client.find({"roles": {"$regex": r".*chair.*"}}, {"name": 1, "email": 1}) ) all_papers = list(sdb.client.find()) for p in all_papers: all_conflict = True for c in all_chairs: if c["email"] not in p["pc_conflicts"]: all_conflict = False break if all_conflict: logger.info(f"Paper [{p['_id']:>4}] is conflict with all chairs") def check_author_in_conflict_single(sid, sdb, mdb, pdb, all_pc, force=False): logger = logging.getLogger() logger.info(f"Checking paper [{sid:>4}]") sub = sdb.client.find_one({"_id": sid}) assert sub is not None # 1. Check by email all_pc_email = set([p["email"] for p in copy.deepcopy(all_pc)]) for author in sub["authors"]: if "email" not in author: logger.error(f" Author does not have email field: {author}") continue email = author["email"] if email in all_pc_email: if email not in sub["pc_conflicts"]: logger.error( f" [ERROR][Detected by email] Author is PC but not declared as conflict: {author}" ) # 2. Check by name all_pc_name = [p["name"] for p in copy.deepcopy(all_pc)] for author in sub["authors"]: if "first" not in author or "last" not in author: logger.error(f" Author does not have first/last name field: {author}") continue name = f"{author['first']} {author['last']}" name_best_match = process.extractOne(name, all_pc_name, score_cutoff=90) logger.debug(f" Best name match: {name} == {name_best_match}") if name_best_match: for p in copy.deepcopy(all_pc): if p["name"] == name_best_match[0]: pc_email = p["email"] if pc_email not in sub["pc_conflicts"]: logger.error( f" [ERROR][Detected by name ] Author is PC but not declared as conflict: \n\tPC Member: {name_best_match}\n\tAuthor: {author}" ) if "email" in author: if author["email"] not in sub["pc_conflicts"]: logger.info( f" [INFO ][Detected by name ] Author is PC but using different email from PC profile: {author}" ) if __name__ == "__main__": conflict()
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Apr 1 18:02:06 2019 @author: jiahuei Adapted from `https://github.com/ruotianluo/self-critical.pytorch/blob/master/scripts/prepro_ngrams.py` """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os, json, argparse, time from six.moves import cPickle as pickle from collections import defaultdict from tqdm import tqdm CURR_DIR = os.path.dirname(os.path.realpath(__file__)) pjoin = os.path.join def precook(s, n=4, out=False): """ Takes a string as input and returns an object that can be given to either cook_refs or cook_test. This is optional: cook_refs and cook_test can take string arguments as well. :param s: string : sentence to be converted into ngrams :param n: int : number of ngrams for which representation is calculated :return: term frequency vector for occuring ngrams """ words = s.split() counts = defaultdict(int) for k in xrange(1,n+1): for i in xrange(len(words)-k+1): ngram = tuple(words[i:i+k]) counts[ngram] += 1 return counts def cook_refs(refs, n=4): ## lhuang: oracle will call with "average" '''Takes a list of reference sentences for a single segment and returns an object that encapsulates everything that BLEU needs to know about them. :param refs: list of string : reference sentences for some image :param n: int : number of ngrams for which (ngram) representation is calculated :return: result (list of dict) ''' return [precook(ref, n) for ref in refs] def create_crefs(refs): crefs = [] for ref in tqdm(refs, ncols=100, desc='create_crefs'): # ref is a list of 5 captions crefs.append(cook_refs(ref)) return crefs def compute_doc_freq(crefs): ''' Compute term frequency for reference data. This will be used to compute idf (inverse document frequency later) From `cider_scorer.py` in `coco_caption`. ''' document_frequency = defaultdict(float) for refs in tqdm(crefs, ncols=100, desc='compute_doc_freq'): # refs, k ref captions of one image for ngram in set([ngram for ref in refs for (ngram,count) in ref.iteritems()]): document_frequency[ngram] += 1 # maxcounts[ngram] = max(maxcounts.get(ngram,0), count) return document_frequency def get_ngrams(refs_words, wtoi, params): """ Calculates the n-grams and lengths """ #refs_idxs = [] #for ref_words in tqdm(refs_words, ncols=100, desc='Token-to-idx'): # # `ref_words` is a list of captions for an image # ref_idxs = [] # for caption in ref_words: # tokens = caption.split(' ') # idx = [wtoi.get(t, wtoi['<UNK>']) for t in tokens] # idx = ' '.join([str(i) for i in idx]) # ref_idxs.append(idx) # refs_idxs.append(ref_idxs) print('\nINFO: Computing term frequency: word.') time.sleep(0.1) ngram_words = compute_doc_freq(create_crefs(refs_words)) print('\nINFO: Computing term frequency: indices. (SKIPPED)') #time.sleep(0.1) #ngram_idxs = compute_doc_freq(create_crefs(refs_idxs)) ngram_idxs = None return ngram_words, ngram_idxs, len(refs_words) if __name__ == '__main__': parser = argparse.ArgumentParser() base_dir = os.path.dirname((os.path.dirname(CURR_DIR))) parser.add_argument( '--dataset_dir', type=str, default='', help='The dataset directory.') parser.add_argument( '--dataset_file_pattern', type=str, default='mscoco_{}_w5_s20_include_restval', help='The dataset file pattern, example: `mscoco_{}_w5_s20`.') parser.add_argument( '--split', type=str, default='train', help='The split for generating n-grams.') args = parser.parse_args() dataset = args.dataset_file_pattern.split('_')[0] if args.dataset_dir == '': args.dataset_dir = pjoin(base_dir, 'datasets', dataset) # Data format: filepath,w0 w1 w2 w3 w4 ... wN fp = pjoin(args.dataset_dir, 'captions', args.dataset_file_pattern.format(args.split)) with open(fp + '.txt', 'r') as f: data = [l.strip().split(',') for l in f.readlines()] data_dict = {} for d in data: if d[0] not in data_dict: data_dict[d[0]] = [] data_dict[d[0]].append(d[1].replace('<GO> ', '')) captions_group = [v for v in data_dict.values()] assert len(data_dict.keys()) == len(captions_group) fp = pjoin(args.dataset_dir, 'captions', args.dataset_file_pattern.format('wtoi')) with open(fp + '.json', 'r') as f: wtoi = json.load(f) print('\nINFO: Data reading complete.') #time.sleep(0.2) ngram_words, ngram_idxs, ref_len = get_ngrams(captions_group, wtoi, args) time.sleep(0.2) print('\nINFO: Saving output files.') fp = pjoin(args.dataset_dir, 'captions', args.dataset_file_pattern) with open(fp.format('scst-words') + '.p', 'w') as f: pickle.dump({'document_frequency': ngram_words, 'ref_len': ref_len}, f, pickle.HIGHEST_PROTOCOL) #with open(fp.format('scst-idxs') + '.p', 'w') as f: # pickle.dump({'document_frequency': ngram_idxs, 'ref_len': ref_len}, # f, pickle.HIGHEST_PROTOCOL) print('\nINFO: Completed.')
#!/usr/bin/env python # python parser module for pre-mir and mature miRNAs, guided by mirbase.org GFF3 # version 0.0.9 (1-6-2014) # Usage MirParser.py <1:index source> <2:extraction directive> <3:output pre-mir> <4: output mature miRs> <5:mirbase GFF3> # <6:pathToLatticeDataframe or "dummy_dataframe_path"> <7:Rcode or "dummy_plotCode"> <8:latticePDF or "dummy_latticePDF"> # <9:10:11 filePath:FileExt:FileLabel> <.. ad lib> import sys import subprocess from smRtools import HandleSmRNAwindows IndexSource = sys.argv[1] ExtractionDirective = sys.argv[2] if ExtractionDirective == "--do_not_extract_index": genomeRefFormat = "fastaSource" elif ExtractionDirective == "--extract_index": genomeRefFormat = "bowtieIndex" OutputPre_mirs = sys.argv[3] OutputMature_Mirs = sys.argv[4] GFF3_file = sys.argv[5] lattice = sys.argv[6] Rcode = sys.argv[7] latticePDF = sys.argv[8] Triplets = [sys.argv[9:][i:i + 3] for i in xrange(0, len(sys.argv[9:]), 3)] MasterListOfGenomes = {} for [filePath, FileExt, FileLabel] in Triplets: print FileLabel MasterListOfGenomes[FileLabel] = HandleSmRNAwindows(alignmentFile=filePath, alignmentFileFormat=FileExt, genomeRefFile=IndexSource, genomeRefFormat=genomeRefFormat, biosample=FileLabel) header = ["gene"] for [filePath, FileExt, FileLabel] in Triplets: header.append(FileLabel) hit_table = ["\t".join(header)] # table header: gene, sample1, sample2, sample3, etc. separated by tabulation # read GFF3 to subinstantiate gff3 = open(GFF3_file, "r") lattice_dataframe = [] for line in gff3: if line[0] == "#": continue gff_fields = line[:-1].split("\t") chrom = gff_fields[0] gff_name = gff_fields[-1].split("Name=")[-1].split(";")[0] # to isolate the GFF Name item_upstream_coordinate = int(gff_fields[3]) item_downstream_coordinate = int(gff_fields[4]) if gff_fields[6] == "+": item_polarity = "forward" else: item_polarity = "reverse" item_line = [gff_name] for sample in header[1:]: count = MasterListOfGenomes[sample].instanceDict[chrom].readcount(upstream_coord=item_upstream_coordinate, downstream_coord=item_downstream_coordinate, polarity=item_polarity) item_line.append(str(count)) # subtreatement for lattice if lattice != "dummy_dataframe_path": if ("5p" not in gff_name) and ("3p" not in gff_name): lattice_dataframe.append(MasterListOfGenomes[sample].instanceDict[chrom].readcoverage( upstream_coord=item_upstream_coordinate, downstream_coord=item_downstream_coordinate, windowName=gff_name + "_" + sample)) # end of subtreatement for lattice hit_table.append("\t".join(item_line)) gff3.close() Fpremirs = open(OutputPre_mirs, "w") print >> Fpremirs, hit_table[0] finalPreList = [i for i in sorted(hit_table[1:]) if ("5p" not in i) and ("3p" not in i)] print >> Fpremirs, "\n".join(finalPreList) Fpremirs.close() Fmaturemires = open(OutputMature_Mirs, "w") print >> Fmaturemires, hit_table[0] finalMatureList = [i for i in sorted(hit_table[1:]) if ("5p" in i) or ("3p" in i)] print >> Fmaturemires, "\n".join(finalMatureList) Fmaturemires.close() if lattice != "dummy_dataframe_path": Flattice = open(lattice, "w") print >> Flattice, "%s\t%s\t%s\t%s\t%s\t%s\t%s" % ("sample", "mir", "offset", "offsetNorm", "counts", "countsNorm", "polarity") print >> Flattice, "\n".join(lattice_dataframe) Flattice.close() R_command = "Rscript " + Rcode process = subprocess.Popen(R_command.split()) process.wait()
import numpy as np from gym.envs.robotics.rotations import * import cv2 # -------------------- Generic ---------------------------- def get_intrinsics(fovy, img_width, img_height): # fovy = self.sim.model.cam_fovy[cam_no] aspect = float(img_width) / img_height fovx = 2 * np.arctan(np.tan(np.deg2rad(fovy) * 0.5) * aspect) fovx = np.rad2deg(fovx) cx = img_width / 2. cy = img_height / 2. fx = cx / np.tan(np.deg2rad(fovx / 2.)) fy = cy / np.tan(np.deg2rad(fovy / 2.)) K = np.zeros((3,3), dtype=np.float) K[2][2] = 1 K[0][0] = fx K[1][1] = fy K[0][2] = cx K[1][2] = cy return K def depth2xyz(depth, cam_K): h, w = depth.shape ymap, xmap = np.meshgrid(np.arange(w), np.arange(h)) x = ymap y = xmap z = depth x = (x - cam_K[0,2]) * z / cam_K[0,0] y = (y - cam_K[1,2]) * z / cam_K[1,1] xyz = np.stack([x, y, z], axis=2) return xyz def visualize_point_cloud_from_nparray(d, c=None): if c is not None: if len(c.shape) == 3: c = c.reshape(-1, 3) if c.max() > 1: c = c.astype(np.float64)/256 import open3d point_cloud = open3d.PointCloud() point_cloud.points = open3d.Vector3dVector(d) if c is not None: point_cloud.colors = open3d.Vector3dVector(c) open3d.draw_geometries([point_cloud]) # -------------------- MuJoCo Specific ---------------------------- def get_transformation_matrix(pos, quat): arr = np.identity(4) arr[:3, :3] = quat2mat(quat) arr[3:, :3] = pos return arr def convert_depth(env, depth): # Convert depth into meter extent = env.sim.model.stat.extent near = env.sim.model.vis.map.znear * extent far = env.sim.model.vis.map.zfar * extent depth_m = depth * 2 - 1 depth_m = (2 * near * far) / (far + near - depth_m * (far - near)) # Check this as well: https://github.com/deepmind/dm_control/blob/master/dm_control/mujoco/engine.py#L734 return depth_m def get_object_point_cloud(env, depth, img): depth = convert_depth(env, depth) full_pc = get_point_cloud(env, depth) obj_mask = get_obj_mask(img) pc = full_pc[obj_mask.reshape(-1),:] return pc def get_point_cloud(env, depth): # make sure to convert the raw depth image from MuJoCo using convert_depth # output is flattened fovy = env.sim.model.cam_fovy[env.sim.model.camera_name2id(env.camera_names[0])] K = get_intrinsics(fovy, depth.shape[0], depth.shape[1]) pc = depth2xyz(depth, K) return pc.reshape(-1, 3) def get_obj_mask(img): # Given an [n,n,3] image, output a [n,n] mask of the red object in the scene # Assume the object is red img = img[:, :, -1::-1] # RGB to BGR img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # lower mask (0-10) lower_red = np.array([0, 50, 50]) upper_red = np.array([10, 255, 255]) mask0 = cv2.inRange(img_hsv, lower_red, upper_red) # upper mask (170-180) lower_red = np.array([170, 50, 50]) upper_red = np.array([180, 255, 255]) mask1 = cv2.inRange(img_hsv, lower_red, upper_red) # join my masks mask = mask0 + mask1 # # set my output img to zero everywhere except my mask # output_img = img.copy() # output_img[np.where(mask == 0)] = 0 # cv2.imwrite('color_img.jpg', output_img) return mask != 0 def convert_grasp_to_graspnet_input(env, grasp, origin=None): # From grasp pose in object frame to the grasp pose in camera frame that lies with the point cloud cube_quat = env.sim.data.body_xquat[env.cube_body_id] cube_pos = env.sim.data.body_xpos[env.cube_body_id] pos, quat = env.get_global_grasp_pose(cube_pos, cube_quat, grasp[:3], grasp[3:]) cam_id = env.sim.model.camera_name2id(env.camera_names[0]) cam_pos = env.sim.model.cam_pos[cam_id] cam_quat = env.sim.model.cam_quat[cam_id] cam_quat = quat_mul(cam_quat, euler2quat([np.pi, 0, 0])) pos, quat = env.get_local_grasp_pose(cam_pos, cam_quat, pos, quat) grasp_mat = np.identity(4) grasp_mat[:3, :3] = quat2mat(quat).transpose() grasp_mat[3:, :3] = pos if origin is not None: grasp_mat[3:, :3] -= origin return grasp_mat.transpose() def prepare_to_visualize_in_graspnet(env, obs): data = dict() color = obs['agentview_image'][-1::-1] data['image'] = color depth = obs['agentview_depth'][-1::-1] depth = convert_depth(env, depth) data['depth'] = depth obj_mask = get_obj_mask(color) obj_mask = obj_mask.reshape(-1) pc = get_point_cloud(env, depth) data['smoothed_object_pc'] = pc[obj_mask, :] fovy = env.sim.model.cam_fovy[env.sim.model.camera_name2id(env.camera_names[0])] K = get_intrinsics(fovy, depth.shape[0], depth.shape[1]) data['intrinsics_matrix'] = K data['grasps'] = [] for i in range(12): env.goal_range = 'fixed_' + str(i) grasp = env.sample_goal() data['grasps'].append(convert_grasp_to_graspnet_input(env, grasp)) import pickle pickle.dump(data, open('../mujoco_scene.pkl', 'wb')) if __name__ == "__main__": print("hello")
#!/usr/bin/python3 # Python script to convert RGB code in format NN,NN,NN to Hex from math import floor rgbSource = input("What is the RGB code to convert (format as nn,nn,nn)") rgb = rgbSource.split(",") red = int(rgb[0]) green = int(rgb[1]) blue = int(rgb[2]) charOne = floor(red / 16) charTwo = red % 16 charThree = floor(green / 16) charFour = green % 16 charFive = floor(blue / 16) charSix = blue % 16 def numberToLetter(i): if i == 10: i = "A" elif i == 11: i = "B" elif i == 12: i = "C" elif i == 13: i = "D" elif i == 14: i = "E" elif i == 15: i = "F" else: i = i return i charOne = str(numberToLetter(charOne)) charTwo = str(numberToLetter(charTwo)) charThree = str(numberToLetter(charThree)) charFour = str(numberToLetter(charFour)) charFive = str(numberToLetter(charFive)) charSix = str(numberToLetter(charSix)) print("#" + charOne + charTwo + charThree + charFour + charFive + charSix)
import concurrent from threading import Lock from typing import List from base_automation import BaseAutomation from lib.annoucer.announcement import Announcement from lib.annoucer.announcer_config import AnnouncerConfig from lib.annoucer.media_manager import MediaManager from lib.annoucer.player import Player from lib.annoucer.player import create_player from lib.core.monitored_callback import monitored_callback class Announcer(BaseAutomation): _dnd_player_entity_ids: List _announcer_config: AnnouncerConfig _players: List[Player] _media_manager: MediaManager _dnd_entity_id: str _queue: List _announcer_lock: Lock def initialize(self): self._announcer_config = AnnouncerConfig({ 'tts_platform': self.cfg.value('tts_platform'), 'api_base_url': self.cfg.value('api_base_url'), 'api_token': self.cfg.value('api_token'), 'default_volume': self.cfg.value('default_volume'), 'enabler_entity_id': self.cfg.value('enabler_entity_id'), 'sleeping_time_entity_id': self.cfg.value('sleeping_time_entity_id'), 'library_base_filepath': self.cfg.value('library_base_filepath'), 'library_base_url_path': self.cfg.value('library_base_url_path'), 'tts_base_filepath': self.cfg.value('tts_base_filepath'), 'sound_path': self.cfg.value('sound_path'), }) self._announcer_lock = Lock() self._queue = [] self._dnd_player_entity_ids = [] self._media_manager = MediaManager(self, self._announcer_config) self._players = [self._create_player(p) for p in self.cfg.value('players')] self.listen_state(self._sleeping_time_state_change_handler, self._announcer_config.sleeping_time_entity_id) self.disable_do_not_disturb('media_player.office') def _create_player(self, raw_player_config): player_volume = raw_player_config.get('volume', {}) raw_player_config['volume'] = {**self._announcer_config.default_volume, **player_volume} return create_player(self, raw_player_config, self._media_manager) @monitored_callback def _sleeping_time_state_change_handler(self, entity, attribute, old, new, kwargs): self._update_player_volumes() def _update_player_volumes(self): for player in self._players: for player_entity_id in player.player_entity_ids: volume_mode = self._figure_volume_mode(player_entity_id) player.update_player_volume(player_entity_id, volume_mode) def _figure_volume_mode(self, player_entity_id): if player_entity_id in self._dnd_player_entity_ids: return 'dnd' if self.get_state(self._announcer_config.sleeping_time_entity_id) == 'on': return 'sleeping' return 'regular' def enable_do_not_disturb(self, player_entity_id): if player_entity_id not in self._dnd_player_entity_ids: self._dnd_player_entity_ids.append(player_entity_id) self._update_player_volumes() def disable_do_not_disturb(self, player_entity_id): if player_entity_id in self._dnd_player_entity_ids: self._dnd_player_entity_ids.remove(player_entity_id) self._update_player_volumes() def announce(self, message, use_cache=True, player_entity_ids=[], motion_entity_id=None, prelude_name=None): if self.get_state(self._announcer_config.enabler_entity_id) != 'on': self.log('Skipping ... announcer disable') return players = self._figure_players(player_entity_ids, motion_entity_id) if not players: self.warn('Unble to find matching player with player_entity_ids={}, motion_entity_id={}'.format( player_entity_ids, motion_entity_id)) return self.debug('Using {} players'.format(len(players))) self._queue.append(Announcement(message, use_cache, prelude_name, False)) self._lock_and_announce(players) def _figure_players(self, player_entity_ids, motion_entity_id): self.debug('About to figure players player={}, motion={}'.format(player_entity_ids, motion_entity_id)) if player_entity_ids: players = [] for player in self._players: if all(id in player_entity_ids for id in player.player_entity_ids): self.debug('Using {}'.format(player.player_entity_ids)) players.append(player) return players if motion_entity_id: for player in self._players: if motion_entity_id in player.motion_entity_ids: self.debug('Using {}'.format(player)) return [player] return None return [p for p in self._players if not p.targeted_only] def _lock_and_announce(self, players): if not self._queue: self.debug('Nothing in the queue, skipping ...') return if not players: self.error('No player specified') return self._announcer_lock.acquire() try: self._do_announce(players) finally: self._announcer_lock.release() def _do_announce(self, players): queue = self._dequeue_all() if not queue: self.debug('Nothing in the queue, skipping ....') return with_chime = True medias = [] previous_announcement = None while queue: announcement = queue.pop(0) if announcement == previous_announcement: self.debug('Skipping duplicate announcement: {}'.format(announcement)) continue if announcement.prelude_name: with_chime = False media_data = self._media_manager.get_media(announcement, with_chime) medias.append(media_data) previous_announcement = announcement with_chime = False with concurrent.futures.ThreadPoolExecutor() as executor: futures = { executor.submit(p.play_media, medias) for p in players } for future in concurrent.futures.as_completed(futures): future.result() def _dequeue_all(self): dequeued, self._queue[:] = self._queue[:], [] return dequeued
#convert string to hex def toHex(s): lst = [] for ch in s: hv = hex(ord(ch)).replace('0x', '') if len(hv) == 1: hv = '0'+hv lst.append(hv) return reduce(lambda x,y:x+y, lst) #convert hex repr to string def toStr(s): return s and chr(atoi(s[:2], base=16)) + toStr(s[2:]) or ''
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from recipe_engine.recipe_api import Property from recipe_engine.types import freeze DEPS = [ 'build/gitiles', 'build/url', 'depot_tools/bot_update', 'depot_tools/gclient', 'depot_tools/gsutil', 'recipe_engine/path', 'recipe_engine/properties', 'recipe_engine/python', 'recipe_engine/raw_io', 'recipe_engine/step', ] PROPERTIES = { 'buildername': Property(kind=str), } BUILDERS = freeze({ 'V8 lkgr finder': { 'project': 'v8', 'allowed_lag': 4, 'lkgr_status_gs_path': 'chromium-v8/lkgr-status', 'repo': 'https://chromium.googlesource.com/v8/v8', 'ref': 'refs/heads/lkgr', }, }) def RunSteps(api, buildername): botconfig = BUILDERS[buildername] api.gclient.set_config('infra') api.gclient.c.revisions['infra'] = 'HEAD' api.bot_update.ensure_checkout() api.gclient.runhooks() args = [ 'infra.services.lkgr_finder', '--project=%s' % botconfig['project'], # TODO(machenbach,friedman): Add shared creds for status apps. '--password-file=/creds/gatekeeper/%s_status_password' % botconfig['project'], '--verbose', '--email-errors', '--post', ] # Check if somebody manually pushed a newer lkgr to the lkgr ref. # In this case manually override the lkgr in the app. This can be used # to manually advance the lkgr when backing services are down. if botconfig.get('ref'): lkgr_from_ref = api.gitiles.commit_log( botconfig['repo'], botconfig['ref'], step_name='lkgr from ref')['commit'] lkgr_from_app = api.url.fetch( 'https://%s-status.appspot.com/lkgr' % botconfig['project'], step_name='lkgr from app' ) commits, _ = api.gitiles.log( botconfig['repo'], '%s..%s' % (lkgr_from_app, lkgr_from_ref), step_name='check lkgr override') if commits: args.append('--manual=%s' % lkgr_from_ref) if botconfig.get('allowed_lag') is not None: args.append('--allowed-lag=%d' % botconfig['allowed_lag']) kwargs = {} if botconfig.get('lkgr_status_gs_path'): args += ['--html', api.raw_io.output_text()] kwargs['step_test_data'] = lambda: api.raw_io.test_api.output_text( '<html>lkgr-status</html>') step_result = api.python( 'calculate %s lkgr' % botconfig['project'], api.path['checkout'].join('run.py'), args, **kwargs ) if botconfig.get('lkgr_status_gs_path'): api.gsutil.upload( api.raw_io.input_text(step_result.raw_io.output_text), botconfig['lkgr_status_gs_path'], '%s-lkgr-status.html' % botconfig['project'], args=['-a', 'public-read'], metadata={'Content-Type': 'text/html'}, ) def GenTests(api): def lkgr_test_data(): return ( api.step_data( 'lkgr from ref', api.gitiles.make_commit_test_data('deadbeef1', 'Commit1'), ) + api.step_data( 'lkgr from app', api.raw_io.stream_output('deadbeef2'), ) ) for buildername, botconfig in BUILDERS.iteritems(): yield ( api.test(botconfig['project']) + api.properties.generic( buildername=buildername, ) + lkgr_test_data() + api.step_data( 'check lkgr override', api.gitiles.make_log_test_data('A', n=0), ) ) yield ( api.test(botconfig['project'] + '_manual') + api.properties.generic( buildername=buildername, revision='deadbeef', ) + lkgr_test_data() + api.step_data( 'check lkgr override', api.gitiles.make_log_test_data('A'), ) )
from netapp.netapp_object import NetAppObject class CoreSegmentInfo(NetAppObject): """ Core Segment Info When returned as part of the output, all elements of this typedef are reported, unless limited by a set of desired attributes specified by the caller. <p> When used as input to specify desired attributes to return, omitting a given element indicates that it shall not be returned in the output. In contrast, by providing an element (even with no value) the caller ensures that a value for that element will be returned, given that the value can be retrieved. <p> When used as input to specify queries, any element can be omitted in which case the resulting set of objects is not constrained by any specific value of that attribute. """ _node = None @property def node(self): """ Node Attributes: key, required-for-create, non-modifiable """ return self._node @node.setter def node(self, val): if val != None: self.validate('node', val) self._node = val _segment_name = None @property def segment_name(self): """ Name of the Core Segment. Attributes: non-creatable, non-modifiable """ return self._segment_name @segment_name.setter def segment_name(self, val): if val != None: self.validate('segment_name', val) self._segment_name = val _panic_system_id = None @property def panic_system_id(self): """ System ID of Node That Generated Core. Attributes: non-creatable, non-modifiable """ return self._panic_system_id @panic_system_id.setter def panic_system_id(self, val): if val != None: self.validate('panic_system_id', val) self._panic_system_id = val _total_segment_count = None @property def total_segment_count(self): """ Number of Segments Generated Attributes: non-creatable, non-modifiable """ return self._total_segment_count @total_segment_count.setter def total_segment_count(self, val): if val != None: self.validate('total_segment_count', val) self._total_segment_count = val _md5_data_chksum = None @property def md5_data_chksum(self): """ MD5 checksum of the compressed data of the core segment. Attributes: non-creatable, non-modifiable """ return self._md5_data_chksum @md5_data_chksum.setter def md5_data_chksum(self, val): if val != None: self.validate('md5_data_chksum', val) self._md5_data_chksum = val _owner_node = None @property def owner_node(self): """ Node that owns the Core Segment. Attributes: key, optional-for-create, non-modifiable """ return self._owner_node @owner_node.setter def owner_node(self, val): if val != None: self.validate('owner_node', val) self._owner_node = val _panic_time = None @property def panic_time(self): """ Time when the panic occurred. Attributes: non-creatable, non-modifiable """ return self._panic_time @panic_time.setter def panic_time(self, val): if val != None: self.validate('panic_time', val) self._panic_time = val _segment = None @property def segment(self): """ Name of the Core Segment File Attributes: key, required-for-create, non-modifiable """ return self._segment @segment.setter def segment(self, val): if val != None: self.validate('segment', val) self._segment = val @staticmethod def get_api_name(): return "core-segment-info" @staticmethod def get_desired_attrs(): return [ 'node', 'segment-name', 'panic-system-id', 'total-segment-count', 'md5-data-chksum', 'owner-node', 'panic-time', 'segment', ] def describe_properties(self): return { 'node': { 'class': basestring, 'is_list': False, 'required': 'optional' }, 'segment_name': { 'class': basestring, 'is_list': False, 'required': 'optional' }, 'panic_system_id': { 'class': int, 'is_list': False, 'required': 'optional' }, 'total_segment_count': { 'class': int, 'is_list': False, 'required': 'optional' }, 'md5_data_chksum': { 'class': basestring, 'is_list': False, 'required': 'optional' }, 'owner_node': { 'class': basestring, 'is_list': False, 'required': 'optional' }, 'panic_time': { 'class': int, 'is_list': False, 'required': 'optional' }, 'segment': { 'class': basestring, 'is_list': False, 'required': 'optional' }, }
""" __M4IfClauseComplete_MDL.py_____________________________________________________ Automatically generated AToM3 Model File (Do not modify directly) Author: gehan Modified: Wed Oct 23 17:09:15 2013 ________________________________________________________________________________ """ from stickylink import * from widthXfillXdecoration import * from LHS import * from MT_pre__SwcToEcuMapping import * from graph_MT_pre__SwcToEcuMapping import * from graph_LHS import * from ATOM3Enum import * from ATOM3String import * from ATOM3BottomType import * from ATOM3Constraint import * from ATOM3Attribute import * from ATOM3Float import * from ATOM3List import * from ATOM3Link import * from ATOM3Connection import * from ATOM3Boolean import * from ATOM3Appearance import * from ATOM3Text import * from ATOM3Action import * from ATOM3Integer import * from ATOM3Port import * from ATOM3MSEnum import * def M4IfClauseComplete_MDL(self, rootNode, MT_pre__GM2AUTOSAR_MMRootNode=None, MoTifRuleRootNode=None): # --- Generating attributes code for ASG MT_pre__GM2AUTOSAR_MM --- if( MT_pre__GM2AUTOSAR_MMRootNode ): # author MT_pre__GM2AUTOSAR_MMRootNode.author.setValue('Annonymous') # description MT_pre__GM2AUTOSAR_MMRootNode.description.setValue('\n') MT_pre__GM2AUTOSAR_MMRootNode.description.setHeight(15) # name MT_pre__GM2AUTOSAR_MMRootNode.name.setValue('') MT_pre__GM2AUTOSAR_MMRootNode.name.setNone() # --- ASG attributes over --- # --- Generating attributes code for ASG MoTifRule --- if( MoTifRuleRootNode ): # author MoTifRuleRootNode.author.setValue('Annonymous') # description MoTifRuleRootNode.description.setValue('\n') MoTifRuleRootNode.description.setHeight(15) # name MoTifRuleRootNode.name.setValue('M4IfClauseComplete') # --- ASG attributes over --- self.obj21120=LHS(self) self.obj21120.isGraphObjectVisual = True if(hasattr(self.obj21120, '_setHierarchicalLink')): self.obj21120._setHierarchicalLink(False) # constraint self.obj21120.constraint.setValue('#===============================================================================\n# This code is executed after the nodes in the LHS have been matched.\n# You can access a matched node labelled n by: PreNode(\'n\').\n# To access attribute x of node n, use: PreNode(\'n\')[\'x\'].\n# The given constraint must evaluate to a boolean expression:\n# returning True enables the rule to be applied,\n# returning False forbids the rule from being applied.\n#===============================================================================\n\nreturn True\n') self.obj21120.constraint.setHeight(15) self.obj21120.graphClass_= graph_LHS if self.genGraphics: new_obj = graph_LHS(120.0,100.0,self.obj21120) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("LHS", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj21120.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj21120) self.globalAndLocalPostcondition(self.obj21120, rootNode) self.obj21120.postAction( rootNode.CREATE ) self.obj21121=MT_pre__SwcToEcuMapping(self) self.obj21121.isGraphObjectVisual = True if(hasattr(self.obj21121, '_setHierarchicalLink')): self.obj21121._setHierarchicalLink(False) # MT_pivotOut__ self.obj21121.MT_pivotOut__.setValue('element1') # MT_subtypeMatching__ self.obj21121.MT_subtypeMatching__.setValue(('True', 0)) self.obj21121.MT_subtypeMatching__.config = 0 # MT_pre__classtype self.obj21121.MT_pre__classtype.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj21121.MT_pre__classtype.setHeight(15) # MT_pivotIn__ self.obj21121.MT_pivotIn__.setValue('') self.obj21121.MT_pivotIn__.setNone() # MT_label__ self.obj21121.MT_label__.setValue('1') # MT_pre__cardinality self.obj21121.MT_pre__cardinality.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj21121.MT_pre__cardinality.setHeight(15) # MT_pre__name self.obj21121.MT_pre__name.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj21121.MT_pre__name.setHeight(15) self.obj21121.graphClass_= graph_MT_pre__SwcToEcuMapping if self.genGraphics: new_obj = graph_MT_pre__SwcToEcuMapping(260.0,180.0,self.obj21121) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("MT_pre__SwcToEcuMapping", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj21121.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj21121) self.globalAndLocalPostcondition(self.obj21121, rootNode) self.obj21121.postAction( rootNode.CREATE ) # Connections for obj21120 (graphObject_: Obj92) of type LHS self.drawConnections( ) # Connections for obj21121 (graphObject_: Obj93) of type MT_pre__SwcToEcuMapping self.drawConnections( ) newfunction = M4IfClauseComplete_MDL loadedMMName = ['MT_pre__GM2AUTOSAR_MM_META', 'MoTifRule_META'] atom3version = '0.3'
import os import sys import argparse import datetime import time import json from common import ColonyClient, LoggerService def parse_user_input(): parser = argparse.ArgumentParser(prog='Colony Sandbox Start') parser.add_argument("sandbox_id", type=str, help="The name of sandbox") parser.add_argument("timeout", type=int, help="Set the timeout in minutes to wait for the sandbox to become active") return parser.parse_args() def build_shortcuts_json(sandbox_spec): res = {} applications = sandbox_spec.get('applications', []) for app in applications: res[app["name"]] = list(app['shortcuts']).copy() return res def _simplify_state(sandbox_progress): return {step: description["status"] for step, description in sandbox_progress.items()} if __name__ == "__main__": args = parse_user_input() space = os.environ.get("COLONY_SPACE", "") token = os.environ.get("COLONY_TOKEN", "") client = ColonyClient(space, token) sandbox_id = args.sandbox_id timeout = args.timeout if not sandbox_id: LoggerService.error("Sandbox Id cannot be empty") if timeout < 0: LoggerService.error("Timeout must be positive") start_time = datetime.datetime.now() LoggerService.message(f"Waiting for the Sandbox {sandbox_id} to start...") sandbox_state = {} while (datetime.datetime.now() - start_time).seconds < timeout * 60: try: sandbox = client.get_sandbox(sandbox_id) except Exception as e: LoggerService.error(f"Unable to get sandbox with ID {sandbox_id}; reason: {e}") status = sandbox["sandbox_status"] progress = sandbox["launching_progress"] simple_state = _simplify_state(progress) if simple_state != sandbox_state: sandbox_state.update(simple_state) LoggerService.message(f"Current state: {str(sandbox_state)}") if status == "Active": LoggerService.set_output("sandbox_details", json.dumps(sandbox)) LoggerService.set_output("sandbox_shortcuts", json.dumps(build_shortcuts_json(sandbox))) LoggerService.success(f"Sandbox {sandbox_id} is active!") elif status == "Launching": time.sleep(10) else: LoggerService.error(f"Launching failed. The state of Sandbox {sandbox_id} is: {status}") LoggerService.error(f"Sandbox {sandbox_id} was not active after the provided timeout of {timeout} minutes")
import os import sys import json projectfile = ".project" def update_key_value(filepath, **kwargs): with open(filepath, "r") as json_file: data = json.load(json_file) data.update(**kwargs) with open(filepath, "w") as json_file: json.dump(data, json_file) def get_key_value(filepath, key): with open(filepath, "r") as json_file: data = json.load(json_file) return data[key] def set_project_name(projectfile, name): data = { "name" : name } update_key_value(projectfile, data) def set_project_nickname(projectfile, nickname): data = { "nickname" : nickname } update_key_value(projectfile, data) def add_department(projectfile, new_department): current_departments = get_key_value(projectfile, "departments") if department in current_departments: if new_department.name == department["name"]: print "Department already exists" return False else: current_departments.append(department.as_dict()) data = { "departments" : current_departments } update_key_value(projectfile, data) print "Added {}".format(project_file) return True def update_department(projectfile, updated_department): current_departments = get_key_value(projectfile, "departments") match = [ x for x in current_departments if x["name"] == updated_department.name ] if len(match) < 1: print "Department does not exist" return False
#Written for Python3 #This code is responsible for connecting, fetching and committing data #to the mariaDB. import mariadb import spooler import configReader config = configReader.parseFile("db") err = None def isError(): global err return err try: conn = mariadb.connect( host=config["dbHost"], port=int(config["dbPort"]), user=config["dbUser"], password=config["dbPassword"], database=config["dbDatabase"] ) cur = conn.cursor() except mariadb.Error as error: print ("Error conntecting to MariaDB.") err = error print (err) def setLimitForUser(userID,limit): try: cur.execute(f"UPDATE mitarbeiter SET INFO={limit} WHERE ID={userID};") conn.commit() print(f"LIMIT {limit}€ updated for mitarbeiter id {userID}") except mariadb.Error as error: global err err = error return err def fetchAllCustomers(): try: cur.execute("SELECT NACHNAME, VORNAME, RFID, ID, INFO FROM mitarbeiter;") tmpLst = [] print("All customers fetched") for entry in cur: tmpLst.append(entry) return tmpLst except mariadb.Error as error: global err err = error return err def setRFID(rfidKey,userID): try: cur.execute(f"UPDATE mitarbeiter SET RFID='{rfidKey}' WHERE ID={userID};") conn.commit() except mariadb.Error as error: global err err = error print(err) return err def fetchRfid(rfidKey): try: cur.execute(f"SELECT ID FROM mitarbeiter WHERE RFID='{rfidKey}';") tmpID = () for entry in cur: tmpID = entry return tmpID[0] return tmpID except mariadb.Error as error: global err err = error return err def fetchAllDrinks(): try: cur.execute("SELECT g.ID, p.ID, g.Name, p.WERT FROM getraenke g LEFT JOIN preise p ON p.ID = g.PREIS WHERE g.ANGEBOT = 1;") tmpLst = [] print("All drinks fetched") for entry in cur: tmpLst.append(entry) return tmpLst except mariadb.Error as error: global err err = error return err def fetchSingleDrink(drinkName): try: cur.execute(f"SELECT ID FROM getraenke WHERE NAME='{drinkName}';") tmpID = () for entry in cur: tmpID = entry print("rofl") return tmpID[0] except mariadb.Error as error: global err err = error return err def buyDrink(rfidKey, drinkID, priceID): try: customerID = int(fetchRfid(rfidKey)) q = (customerID, drinkID, priceID) cur.execute(f"INSERT INTO `kaeufe` (MITARBEITER, GETRAENK, PREISID) VALUES ({customerID},{drinkID},{priceID}) ") conn.commit() print("Kauf erfolgreich") except mariadb.Error as error: global err err = error return err def terminateConnection(): conn.close()
from qtpy import QtWidgets from stream_viewer.widgets.interface import IControlPanel class VisbrainControlPanel(IControlPanel): """ A panel of configuration widgets for configuring a visbrain mesh plot. This widget assumes the renderer is an instance of CortexVB (maybe other VisBrain too). """ def __init__(self, renderer, name="VisbrainControlPanelWidget", **kwargs): super().__init__(renderer, name=name, **kwargs) # Will call _init_widgets and reset_widgets def _init_widgets(self): super()._init_widgets() # Continue filling in the grid of widgets row_ix = self._last_row # Handle Out-of-range ComboBox row_ix += 1 self.layout().addWidget(QtWidgets.QLabel("Out of Range"), row_ix, 0, 1, 1) _combo = QtWidgets.QComboBox() _combo.setObjectName("OutOfRange_ComboBox") _combo.addItems(['clip', 'clip-gray-red', 'mask']) self.layout().addWidget(_combo, row_ix, 1, 1, 1) # Colorbar checkbox row_ix += 1 self.layout().addWidget(QtWidgets.QLabel("Colorbar"), row_ix, 0, 1, 1) _checkbox = QtWidgets.QCheckBox() _checkbox.setObjectName("Colorbar_CheckBox") self.layout().addWidget(_checkbox, row_ix, 1, 1, 1) self._last_row = row_ix def reset_widgets(self, renderer): super().reset_widgets(renderer) # Colorbar checkbox _checkbox = self.findChild(QtWidgets.QCheckBox, name="Colorbar_CheckBox") try: _checkbox.stateChanged.disconnect() except TypeError: pass _checkbox.setChecked(renderer.show_colorbar) _checkbox.stateChanged.connect(renderer.show_colorbar_stateChanged)
# schemas.py # # Starling Bank schema definitions from datetime import datetime from typing import List, Optional from pydantic import BaseModel # = ACCOUNTS ========================================================================================================== class StarlingAccountSchema(BaseModel): """Represents a Starling Bank account.""" accountUid: str name: str accountType: str currency: str createdAt: datetime defaultCategory: str class StarlingAccountsSchema(BaseModel): accounts: List[StarlingAccountSchema] class StarlingMainAccountsSchema(BaseModel): type_name: str accounts: List[StarlingAccountSchema] class StarlingSignedCurrencyAndAmountSchema(BaseModel): currency: str minorUnits: int class StarlingBalanceSchema(BaseModel): clearedBalance: StarlingSignedCurrencyAndAmountSchema pendingTransactions: StarlingSignedCurrencyAndAmountSchema effectiveBalance: StarlingSignedCurrencyAndAmountSchema # = TRANSACTIONS ====================================================================================================== class SourceAmount(BaseModel): """Currency dcit""" currency: str minorUnits: int def compute_amount(self, direction: str) -> float: """Compute a transaction amount in pounds. Outflow is negative.""" if direction == "OUT": sign = -1 else: sign = 1 return sign * self.minorUnits / 100.0 class StarlingTransactionSchema(BaseModel): """Represents a Starling Bank transaction.""" feedItemUid: str transactionTime: datetime counterPartyUid: str counterPartyName: str counterPartyType: str direction: str sourceAmount: SourceAmount reference: Optional[str] = None status: str class StarlingTransactionsSchema(BaseModel): feedItems: List[StarlingTransactionSchema]
#!/usr/bin/env python # -*- mode: python; coding: utf-8 -*- ################################################################## # Documentation """Package containing a collection of custom Keras layers. Attributes: .. moduleauthor:: Wladimir Sidorenko (Uladzimir Sidarenka) """ ################################################################## # Imports from __future__ import absolute_import, print_function, unicode_literals from .attention import Attention, MergeAttention, RawAttention from .cba import CBA from .common import DFLT_INITIALIZER from .lba import LBA from .mvrn import MVRN from .msrn import MSRN from .rn import RN from .rnt import RNT from .membeddings import MatrixEmbedding from .ymembeddings import YMatrixEmbedding from .word2vec import WORD2VEC_LAYER_NAME, Word2Vec ################################################################## # Variables and Constants EMPTY_IDX = 0 UNK_IDX = 1 CUSTOM_OBJECTS = {"Attention": Attention, "MatrixEmbedding": MatrixEmbedding, "Word2Vec": Word2Vec, "CBA": CBA, "LBA": LBA, "MergeAttention": MergeAttention, "MVRN": MVRN, "MSRN": MSRN, "RawAttention": RawAttention, "RN": RN, "RNT": RNT, "YMatrixEmbedding": YMatrixEmbedding} __name__ = "cgsa.dl.layers" __all__ = ["Attention", "EMPTY_IDX", "UNK_IDX", "MVRN", "RN", "RNT", "CBA", "LBA", "MatrixEmbedding", "MergeAttention", "RawAttention", "WORD2VEC_LAYER_NAME", "Word2Vec", "CUSTOM_OBJECTS", "DFLT_INITIALIZER"] __author__ = "Uladzimir Sidarenka" __email__ = "sidarenk at uni dash potsdam dot de" __version__ = "0.1.0"
from user.recommendations.constraints.base_constraint import BaseConstraint class Vegetarian(BaseConstraint): threshold = 0.9 def is_user_vegetarian(self): if self.classification['vegetarian'] is None: return False return self.classification['vegetarian'] > self.threshold and self.classification['meat'] < (1 - self.threshold) def filter(self, query): if self.is_user_vegetarian(): return query.filter(automatic_classification__vegetarian=1) else: return query
import numpy as np import pandas as pd from scipy.stats import variation def row_corr(A,B): #number of columns in A or B N = B.shape[1] # Store row-wise sums of A and B, as they would be used at few places sA = A.sum(1) sB = B.sum(1) # Compute the four terms in pcc matrix-wise p1 = N*np.einsum('ik,jk->ij',A,B) p2 = sB*sA[:,None] p3 = N*((B**2).sum(1)) - (sB**2) p4 = N*((A**2).sum(1)) - (sA**2) # compute pcc as 2D array pcorr = ((p1 - p2)/np.sqrt(p3*p4[:,None])) return pcorr def row_corr_weighted(A,B,weights): # converted to python from here: https://stackoverflow.com/questions/9460664/weighted-pearsons-correlation w = weights/sum(weights) A = A - (A*w).sum(1)[:,None] B = B - (B*w).sum(1)[:,None] pcorr = np.matmul(A,((B*w).T))/np.sqrt(np.matmul(((A**2)*w).sum(1)[:,None],(((B**2)*w).sum(1)[:,None]).T)) return pcorr def match(similarity_matrix,asa_24,ncc,N): TOP = N # set the number of matches to return # Get indices of the top matches from the combined similarity matrix indices_top = np.argsort(-similarity_matrix,axis=1,)[:,:TOP] pcc_top = np.sort(-similarity_matrix,axis=1,)[:,:TOP] iters = [np.arange(0,asa_24.shape[0],1).tolist(),np.arange(0,TOP,1).tolist()] # Construct dataframe to store top results results_cols = asa_24.columns.values.tolist() + ['similarity'] + ncc.columns.values.tolist() mi = pd.MultiIndex.from_product(iters, names=['asa_index', 'match_index']) results_top = pd.DataFrame(index=mi,columns=results_cols) # Copy ASA24 values to left side results_top.loc[results_top.eval('match_index==0'), asa_24.columns] = asa_24.values results_top.loc[:,ncc.columns] = ncc.iloc[indices_top.flatten(),:].values results_top.loc[:,'similarity'] = -pcc_top.flatten() # calculate variation across matches variations = pd.DataFrame(results_top['Lactose (g)'].groupby("asa_index").apply(variation)) for index in results_top.index.get_level_values(0).unique(): results_top.loc[index,'variation'] = variations.loc[index,:].values[0] return results_top
import json import requests import pickle as pkl def save(object, filename): filename = "pickles/" + filename pkl.dump(object, open(filename, "wb")) def load(filename, req=None, try_load=True): filename = "pickles/" + filename if not req and not try_load: return {} if not req and try_load: try: return pkl.load(open(filename, "rb")) except: return {} if req and try_load: try: return pkl.load(open(filename, "rb")) except: data = requests.get(req).json() pkl.dump(data, open(filename, "wb")) return data if req and not try_load: data = requests.get(req).json() pkl.dump(data, open(filename, "wb")) return data def print_json(data, indent=2): print(json.dumps(data, indent=indent))
from trasto.infrastructure.awsmultiprocess.comando_repository import ( COMANDOS_QUEUE_NAME, ComandoRepository) from trasto.infrastructure.memory.repositories import Idefier from trasto.model.commands import (Comando, ComandoNuevaAccion, ComandoNuevaTarea) from trasto.model.entities import Accion, Tarea from trasto.model.value_entities import Idd, TipoAccion def test_comando_nueva_accion(): comando_repo = ComandoRepository() cna = ComandoNuevaAccion( idd=Idd(Idefier()), accion=Accion( idd=Idd(Idefier()), nombre="nombreaccion", script_url="url", tipo=TipoAccion(nombre="buenhumor") ) ) comando_repo.send_comando(cna) count = 0 for ccna in comando_repo.next_comando(): assert not ccna is None assert isinstance(ccna, ComandoNuevaAccion) assert ccna.accion.nombre == "nombreaccion" count = count + 1 break assert count == 1 def test_comando_nueva_tarea(): comando_repo = ComandoRepository() cnt_alta = ComandoNuevaTarea( idd=Idd(Idefier()), tarea=Tarea( idd=Idd(Idefier()), nombre="tareaalta", parametros="parametros", prioridad=1, accionid="accion" ) ) cnt_baja = ComandoNuevaTarea( idd=Idd(Idefier()), tarea=Tarea( idd=Idd(Idefier()), nombre="tareabaja", parametros="parametros", prioridad=0, accionid="accion" ) ) comando_repo.send_comando(cnt_alta) comando_repo.send_comando(cnt_baja) count = 0 for ccnt in comando_repo.next_comando(): assert isinstance(ccnt, ComandoNuevaTarea) assert ccnt.tarea.nombre in ("tareabaja", "tareaalta") print(f"vamos por contador: {count}") count = count + 1 if count == 2: break assert count == 2
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import sys import re import random import numpy as np import h5py BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) # def getDataFiles(list_filename): # return [line.rstrip() for line in open(list_filename)] # def loadDataFile(path): # data = np.loadtxt(path) # num = data.shape[0] # point_xyz = data[:, 0:3] # point_normal = data[:, 3:6] # point_rgb = data[:, 6:9] # # label just a example, should be repalced the real. # # modlenet40 is 0-39, so the label can be 40 and 41 # label = np.ones((num, 1), dtype=int)+39 # return point_xyz, label def change_scale(data): #centre xyz_min = np.min(data[:, 0:3], axis=0) xyz_max = np.max(data[:, 0:3], axis=0) xyz_move = xyz_min+(xyz_max-xyz_min)/2 data[:, 0:3] = data[:, 0:3]-xyz_move #scale scale = np.max(np.sqrt(np.sum(abs(data[:, 0:3])**2, axis=-1))) data[:, 0:3] = data[:, 0:3]/scale return data # def sample_data(data, num_sample): # """ data is in N x ... # we want to keep num_samplexC of them. # if N > num_sample, we will randomly keep num_sample of them. # if N < num_sample, we will randomly duplicate samples. # """ # N = data.shape[0] # if (N == num_sample): # return data, range(N) # elif (N > num_sample): # sample = np.random.choice(N, num_sample) # return data[sample, ...], sample # else: # sample = np.random.choice(N, num_sample-N) # dup_data = data[sample, ...] # return np.concatenate([data, dup_data], 0), list(range(N))+list(sample) def get_csv_list(path): # 获取csv文件列表 csv_file_list = [[], [], []] file_list = os.listdir(path) for file_name in file_list: if file_name.endswith('csv'): filename = re.split('(\.)', file_name)[0] csv_type = len(filename) - len(str(int(filename))) csv_file_list[csv_type].append(path + file_name) return csv_file_list def get_csv_data(path_list_arr): # 创建空的定维数组 sum_data = np.empty([0, 1024, 3], dtype=np.dtype('<f4')) type_data = np.empty([0, 1], dtype=np.dtype('|u1')) # 类型序号 type_serial = -1 # 遍历每个类型的目录 for path_list in path_list_arr: # 每个目录对应一种类型的数据 type_serial += 1 # 遍历每个csv文件 for path in path_list: # 将每个csv文件读取为Numpy的数据 data = np.genfromtxt(path, delimiter=',', dtype=np.dtype('<f4')) data_len = len(data) # 计算空值补缺的数量 empty_len = 1024 - data_len # 以下方法二选一 # 完整的1024个元数据=csv文件数据+在csv文件中随机指定下标数据 count = 0 while count < empty_len: data = np.append(data, [data[random.randint(0, data_len-1)]], axis=0) count += 1 # 完整的1024个元数据=csv文件数据+空值数据 # data = np.append(change_scale(data), change_scale(np.empty([empty_len, 3], dtype=np.dtype('<f4'))), axis=0) # 数据归并 sum_data = np.append(sum_data, [change_scale(data)], axis=0) # 数据类型归并 type_data = np.append(type_data, [[type_serial]], axis=0) return sum_data, type_data if __name__ == "__main__": TRAIN_CSV_PATH = './pointdata3/traindata/csv/' TEST_CSV_PATH = './pointdata3/testdata/csv/' train_csv_list = get_csv_list(TRAIN_CSV_PATH) test_csv_list = get_csv_list(TEST_CSV_PATH) train_data, train_type_data = get_csv_data(train_csv_list) test_data, test_type_data = get_csv_data(test_csv_list) open("plant_train.h5", 'w') with h5py.File('plant_train.h5', 'r+') as f: f.create_dataset('data', data=train_data) f.create_dataset('faceId', data=np.empty([1024,1024], dtype=np.dtype('<i4'))) f.create_dataset('label', data=train_type_data) f.create_dataset('normal', data=train_data) open("plant_test.h5", 'w') with h5py.File('plant_test.h5', 'r+') as f: f.create_dataset('data', data=test_data) f.create_dataset('faceId', data=np.empty([1024,1024], dtype=np.dtype('<i4'))) f.create_dataset('label', data=test_type_data) f.create_dataset('normal', data=test_data) # DATA_FILES = getDataFiles(os.path.join(BASE_DIR, 'file_path.txt')) # num_sample = 4096 # DATA_ALL = [] # for fn in range(len(DATA_FILES)): # current_data, current_label = loadDataFile(DATA_FILES[fn]) # change_data = change_scale(current_data) # data_sample, index = sample_data(change_data, num_sample) # data_label = np.hstack((data_sample, current_label[index])) # DATA_ALL.append(data_label) # output = np.vstack(DATA_ALL) # output = output.reshape(-1, num_sample, 4) # # train and test number, save data # if not os.path.exists('plant_train.h5'): # with h5py.File('plant_train.h5') as f: # f.create_dataset('data', data=output[0:7, 0:3]) # f['labels'] = output[0:8, 4] # if not os.path.exists('plant_test.h5'): # with h5py.File('plant_test.h5') as f: # f['data'] = output[7:9, 0:3] # f['labels'] = output[7:9, 4]
import types import pytest from stp_core.loop.eventually import eventually from plenum.common.constants import DOMAIN_LEDGER_ID from plenum.common.util import updateNamedTuple from plenum.test.helper import sdk_send_random_requests, \ sdk_send_random_and_check from plenum.test.test_node import getNonPrimaryReplicas, \ getPrimaryReplica @pytest.fixture(scope="module") def setup(tconf, looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client): # Patch the 3phase request sending method to send incorrect digest and pr, otherR = getPrimaryReplica(txnPoolNodeSet, instId=0), \ getNonPrimaryReplicas(txnPoolNodeSet, instId=0) sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client, tconf.Max3PCBatchSize) stateRoot = pr.stateRootHash(DOMAIN_LEDGER_ID, to_str=False) origMethod = pr.create3PCBatch malignedOnce = None def badMethod(self, ledgerId): nonlocal malignedOnce pp = origMethod(ledgerId) if not malignedOnce: pp = updateNamedTuple(pp, digest=pp.digest + '123') malignedOnce = True return pp pr.create3PCBatch = types.MethodType(badMethod, pr) sdk_send_random_requests(looper, sdk_pool_handle, sdk_wallet_client, tconf.Max3PCBatchSize) return pr, otherR, stateRoot @pytest.fixture(scope="module") def reverted(setup, looper): pr, otherR, oldStateRoot = setup def chkStateRoot(root): for r in [pr] + otherR: r.stateRootHash(DOMAIN_LEDGER_ID, to_str=False) == root looper.run(eventually(chkStateRoot, oldStateRoot)) @pytest.fixture(scope="module") def viewChanged(reverted, looper, txnPoolNodeSet): def chk(): for n in txnPoolNodeSet: assert n.viewNo == 1 assert all([r.primaryName for r in n.replicas]) looper.run(eventually(chk, retryWait=1, timeout=15)) def testTreeStateRevertedAfterBatchRejection(reverted): """" After a batch is rejected, all nodes revert their trees to last known correct state """ def testViewChangeAfterBatchRejected(viewChanged): """" After a batch is rejected and each batch that was created based on the rejected batch is discarded, the discarded batches are tried again """ def testMoreBatchesWillBeSentAfterViewChange(reverted, viewChanged, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client, tconf, looper): """ After retrying discarded batches, new batches are sent :return: """ sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client, tconf.Max3PCBatchSize)
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-07-31 16:21 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('genevieve_client', '0008_auto_20160628_1453'), ] operations = [ migrations.RenameField( model_name='genomereport', old_name='report_type', new_name='report_source', ), ]
__version__ = '0.0.3a3'
'''Visualization functions''' import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.patheffects as path_effects import matplotlib.patches import matplotlib.collections from matplotlib import cm import numpy as np from .globalVariables import * from . import (visibilityGraphAuxiliaryFunctions, clusteringFunctions, coreFunctions, extendedDataFrame, visibilityGraphCommunityDetection, utilityFunctions) def saveFigure(fig, saveDir, label, extension, dpi, close=True): """Function primarily used internally to save and close figures Parameters: saveDir: str Path of directories to save the object to extension: str, Default '.png' Path of directories to save the object to dpi: int, Default 300 Figure resolution if rasterized close: boolean: Default True Whether to close the figure after saving Returns: None Usage: saveFigure(fig, saveDir, label, extension, dpi) """ utilityFunctions.createDirectories(saveDir) try: if not extension[0]=='.': extension = ''.join(['.', extension]) except Exception as exception: print(exception) print('Chack figure extension/format') if extension in ['.png', '.jpeg', '.tiff']: fig.savefig(os.path.join(saveDir, label + extension), dpi=dpi) elif extension in ['.svg', '.eps', '.pdf']: fig.savefig(os.path.join(saveDir, label + extension)) else: print('Unsupported format. Figure not saved') plt.close(fig) return None def makeDataHistograms(df, saveDir, dataName, figsize=(8,8), range_min=np.min, range_max=np.max, includeTitle=True, title='Data @ timePoint:', fontsize=8, fontcolor='b', N_bins=100, color='b', extension='.png', dpi=300): """Make a histogram for each Series (time point) in a Dataframe. Parameters: df: pandas.DataFrame Data to visualize saveDir: str Path of directories to save the object to dataName: str Label to include in the file name figsize: tuple, Default (8,8) Size of the figure in inches range_min: str, Default How to determine data minimum range_max: int, float or function, Default How to determine data maximum includeTitle: boolean, Default True Path of directories to save the object to title: str, Default 'Data @ timePoint:' Text of the title fontsize: str, Default 8 Fontsize of the labels fontcolor: str, Default 'b' Color of the title font N_bins: int, Default 100 Number of bins in the histogram color: str, Default 'b' Color of the bars extension: str, Default '.png' Path of directories to save the object to dpi: int, Default 300 Figure resolution if rasterized Returns: None Usage: makeDataHistograms(df, '/dir1', 'myData') """ if not os.path.exists(saveDir): os.makedirs(saveDir) for timePoint in df.columns[:]: label = str(timePoint) subset = df[timePoint] subset = subset[~np.isnan(subset.values)].values if type(range_min) is types.FunctionType: range_min = range_min(subset) if type(range_max) is types.FunctionType: range_max = range_max(subset) hist_of_subset = scipy.stats.rv_histogram(np.histogram(subset, bins=N_bins, range=(range_min,range_max))) hist_data = hist_of_subset._hpdf / N_bins hist_bins = hist_of_subset._hbins fig, ax = plt.subplots(figsize=figsize) bar_bin_width = range_max / N_bins ax.bar(hist_bins, hist_data[:-1], width=0.9 * bar_bin_width, color=color, align='center') if includeTitle: ax.set_title(title + label, fontdict={'color': fontcolor}) ax.set_xlabel('Values', fontsize=fontsize) ax.set_ylabel('Density', fontsize=fontsize) ax.set_xlim(range_min - 0.5 * bar_bin_width, range_max + 0.5 * bar_bin_width) fig.tight_layout() saveFigure(fig, saveDir, dataName + '_' + label + '_histogram', extension, dpi) return None def makeLombScarglePeriodograms(df, saveDir, dataName, minNumberOfNonzeroPoints=5, oversamplingRate=100, figsize=(5,5), title1='TimeSeries Data', title2='Lomb-Scargle periodogram' , extension='.png', dpi=300): """Make a combined plot of the signal and its Lomb-Scargle periodogram for each pandas Series (time point) in a Dataframe. Parameters: df: pandas.DataFrame Data to visualize saveDir: str Path of directories to save the object to dataName: str Label to include in the file name minNumberOfNonzeroPoints: int, Default 5 Minimum number of non-zero points in signal to use it oversamplingRate: int, Default 100 Periodogram oversampling rate figsize: tuple, Default (8,8) Size of the figure in inches title1: str, Default 'TimeSeries Data' Text of the upper title title2: str, Default 'Lomb-Scargle periodogram' Text of the lower title extension: str, Default '.png' Path of directories to save the object to dpi: int, Default 300 Figure resolution if rasterized Returns: None Usage: makeLombScarglePeriodograms(df, '/dir1', 'myData') """ if not os.path.exists(saveDir): os.makedirs(saveDir) for geneIndex in range(len(df.index[:])): geneName = df.index[geneIndex].replace(':', '_') subset = df.iloc[geneIndex] subset = subset[subset > 0.] setTimes, setValues, inputSetTimes = subset.index.values, subset.values, df.columns.values if len(subset) < minNumberOfNonzeroPoints: print(geneName, ' skipped (only %s non-zero point%s), ' % (len(subset), 's' if len(subset) != 1 else ''), end=' ', flush=True) continue pgram = coreFunctions.LombScargle(setTimes, setValues, inputSetTimes, OversamplingRate=oversamplingRate) fig, (ax1, ax2) = plt.subplots(2, 1, figsize=figsize) ax1.plot(setTimes, setValues, 'bo', linewidth=3, markersize=5, markeredgecolor='k', markeredgewidth=2) zero_points = np.array(list(set(inputSetTimes) - set(setTimes))) ax1.plot(zero_points, np.zeros((len(zero_points),)), 'ro', linewidth=3, markersize=3, markeredgecolor='k', markeredgewidth=0) ax1.set_aspect('auto') minTime = np.min(inputSetTimes) maxTime = np.max(inputSetTimes) extraTime = (maxTime - minTime) / 10 ax1.set_xlim(minTime - extraTime, maxTime + extraTime) ax1.set_title(title1) ax2.plot(2 * np.pi * pgram[0], pgram[1], 'r-', linewidth=1) ax2.set_aspect('auto') ax2.set_title(title2) fig.tight_layout() saveFigure(fig, saveDir, dataName + '_' + geneName + '_Lomb_Scargle_periodogram', extension, dpi) return None def addVisibilityGraph(data, times, dataName='G1S1', coords=[0.05,0.95,0.05,0.95], numberOfVGs=1, groups_ac_colors=['b'], fig=None, numberOfCommunities=6, printCommunities=False, fontsize=None, nodesize=None, level=0.55, commLineWidth=0.5, lineWidth=1.0, withLabel=True, withTitle=False, layout='circle', radius=0.07, noplot=False, horizontal=False, communities=None, minNumberOfCommunities=2, communitiesMethod='betweenness_centrality', direction='left', weight='distance'): """Draw a Visibility graph of data on a provided Matplotlib figure. We represent each timepoint in a series as a node. Temporal events are detected and indicated with solid blue lines encompassing groups of points, or communities. The shortest path identifies nodes (i.e. timepoints) that display high intensity, and thus dominate the global signal profile, are robust to noise, and are likely drivers of the global temporal behavior. Parameters: data: 2d numpy.array Array of data to visualize times: 1d numpy.array Times corresponding to each data point, used for labels dataName: str, Default 'G1S1' label to include in file name coords: list, Default [0.05,0.95,0.05,0.95] Coordinates of location of the plot on the figure numberOfVGs: int, Default 1 Number of plots to add to this figure groups_ac_colors: list, Default ['b'] Colors corresponding to different groups of graphs fig: matplotlib.figure, Default None Figure object numberOfCommunities: int, Default 6 Number of communities printCommunities: boolean, Default False Whether to print communities details to screen fontsize: float, Default None Size of labels nodesize: float, Default None Size of nodes level: float, Default 0.55 Distance of the community lines to nodes commLineWidth: float, Default 0.5 Width of the community lines lineWidth: float, Default 1.0 Width of the edges between nodes withLabel: boolean, Default True Whether to include label on plot withTitle: boolean, Default False Whether to include title on plot layout: str, Default 'circle' Type of the layout. Other option is 'line' radius: float, Default 0.07 Radius of the circle noplot: boolean, Default False Whether to make a plot or only calculate communities horizontal: boolean, Default False Whether to use horizontal or natural visibility graph. communities: tuple, Default None A tuple containing communities sturcture of network, and networkx Graph: List of list, e.g. [[],[],...] networkx.Graph minNumberOfCommunities: int, Default 2 Number of communities to find depends on the number of splits. This parameter is ignored in methods that automatically estimate optimal number of communities. communitiesMethod: str, Default 'betweenness_centrality' String defining the method to use for communitiy detection: 'Girvan_Newman': edge betweenness centrality based approach 'betweenness_centrality': reflected graph node betweenness centrality based approach 'WDPVG': weighted dual perspective visibility graph method (note to also set weight variable) direction:str, default 'left' The direction that nodes aggregate to communities: None: no specific direction, e.g. both sides. 'left': nodes can only aggregate to the left side hubs, e.g. early hubs 'right': nodes can only aggregate to the right side hubs, e.g. later hubs weight: str, Default 'distance' Type of weight for communitiesMethod='WDPVG': None: no weighted 'time': weight = abs(times[i] - times[j]) 'tan': weight = abs((data[i] - data[j])/(times[i] - times[j])) + 10**(-8) 'distance': weight = A[i, j] = A[j, i] = ((data[i] - data[j])**2 + (times[i] - times[j])**2)**0.5 Returns: tuple (graph_nx, data, communities) Usage: addVisibilityGraph(exampleData, exampleTimes, fig=fig, fontsize=16, nodesize=700, level=0.85, commLineWidth=3.0, lineWidth=2.0, withLabel=False) """ if len(data.shape)>1: data = extendedDataFrame.DataFrame(data=data).imputeMissingWithMedian().apply(lambda data: np.sum(data[data > 0.0]) / len(data), axis=0).values if communities is None: communities, graph_nx = clusteringFunctions.getCommunitiesOfTimeSeries(data, times, minNumberOfCommunities=minNumberOfCommunities, horizontal=horizontal, method=communitiesMethod, direction=direction, weight=weight) else: communities, graph_nx = communities if printCommunities: print('Communities:') [print(community) for community in communities] print('\n') if noplot: return graph_nx, data, communities group = int(dataName[:dataName.find('S')].strip('G')) if fontsize is None: fontsize = 4. * (8. + 5.) / (numberOfVGs + 5.) if nodesize is None: nodesize = 30. * (8. + 5.) / (numberOfVGs + 5.) (x1,x2,y1,y2) = coords axisVG = fig.add_axes([x1,y1,x2 - x1,y2 - y1]) cmap = matplotlib.colors.LinearSegmentedColormap.from_list('GR', [(0, 1, 0), (1, 0, 0)], N=1000) if layout=='line': pos = {i:[float(i)/float(len(graph_nx)), 0.5] for i in range(len(graph_nx))} else: pos = nx.circular_layout(graph_nx) keys = np.array(list(pos.keys())[::-1]) values = np.array(list(pos.values())) values = (values - np.min(values, axis=0))/(np.max(values, axis=0)-np.min(values, axis=0)) keys = np.roll(keys, np.argmax(values.T[1]) - np.argmin(keys)) pos = dict(zip(keys, values)) keys = np.array(list(pos.keys())) values = np.array(list(pos.values())) shortest_path = nx.shortest_path(graph_nx, source=min(keys), target=max(keys)) shortest_path_edges = [(shortest_path[i],shortest_path[i + 1]) for i in range(len(shortest_path) - 1)] if layout=='line': for edge in graph_nx.edges: l = np.array(pos[edge[0]]) r = np.array(pos[edge[1]]) if edge in shortest_path_edges: axisVG.add_artist(matplotlib.patches.Wedge((l+r)/2., 0.5*np.sqrt((l-r)[0]*(l-r)[0]+(l-r)[1]*(l-r)[1]), 0, 180, fill=False, edgecolor='y', linewidth=0.5*3.*lineWidth, alpha=0.7, width=0.001)) axisVG.add_artist(matplotlib.patches.Wedge((l+r)/2., 0.5*np.sqrt((l-r)[0]*(l-r)[0]+(l-r)[1]*(l-r)[1]), 0, 180, fill=False, edgecolor='k', linewidth=0.5*lineWidth, alpha=0.7, width=0.001)) nx.draw_networkx(graph_nx, pos=pos, ax=axisVG, node_color='y', edge_color='y', node_size=nodesize * 1.7, width=0., nodelist=shortest_path, edgelist=shortest_path_edges, with_labels=False) nx.draw_networkx(graph_nx, pos=pos, ax=axisVG, node_color=data, cmap=cmap, alpha=1.0, font_size=fontsize, width=0., font_color='k', node_size=nodesize) else: nx.draw_networkx(graph_nx, pos=pos, ax=axisVG, node_color='y', edge_color='y', node_size=nodesize * 1.7, width=3.0*lineWidth, nodelist=shortest_path, edgelist=shortest_path_edges, with_labels=False) nx.draw_networkx(graph_nx, pos=pos, ax=axisVG, node_color=data, cmap=cmap, alpha=1.0, font_size=fontsize, width=lineWidth, font_color='k', node_size=nodesize) if layout=='line': xmin, xmax = (-1.,1.) ymin, ymax = (-1.,1.) else: xmin, xmax = axisVG.get_xlim() ymin, ymax = axisVG.get_ylim() X, Y = np.meshgrid(np.arange(xmin, xmax, (xmax - xmin) / 300.), np.arange(ymin, ymax, (ymax - ymin) / 300.)) def smooth(Z, N=7.): for ix in range(1,Z.shape[0]-1,1): Z[ix] = ((N-1.)*Z[ix] + (Z[ix-1] + Z[ix+1])/2.)/N return Z for icommunity, community in enumerate(communities): Z = np.exp(X ** 2 - Y ** 2) * 0. nX, nY = tuple(np.array([pos[node] for node in community]).T) for i in range(len(community)-1): p1, p2 = np.array([nX[i], nY[i]]), np.array([nX[i+1], nY[i+1]]) for j in range(-2, 32): pm = p1 + (p2-p1)*float(j)/30. Z[np.where((X-pm[0])**2+(Y-pm[1])**2<=radius**2)] = 1. for _ in range(20): Z = smooth(smooth(Z).T).T CS = axisVG.contour(X, Y, Z, [level], linewidths=commLineWidth, alpha=0.8, colors=groups_ac_colors[group - 1]) #axisVG.clabel(CS, inline=True,fontsize=4,colors=group_colors[group-1], fmt ={level:'C%s'%icommunity}) if layout=='line': axisVG.set_xlim(-0.1,1.) axisVG.set_ylim(-0.1,1.) axisVG.spines['left'].set_visible(False) axisVG.spines['right'].set_visible(False) axisVG.spines['top'].set_visible(False) axisVG.spines['bottom'].set_visible(False) axisVG.set_xticklabels([]) axisVG.set_yticklabels([]) axisVG.set_xticks([]) axisVG.set_yticks([]) if withLabel: axisVG.text(axisVG.get_xlim()[1], (axisVG.get_ylim()[1] + axisVG.get_ylim()[0]) * 0.5, dataName, ha='left', va='center', fontsize=8).set_path_effects([path_effects.Stroke(linewidth=0.4, foreground=groups_ac_colors[group - 1]),path_effects.Normal()]) if withTitle: titleText = dataName + ' (size: ' + str(data.shape[0]) + ')' + ' min=%s max=%s' % (np.round(min(data),2), np.round(max(data),2)) axisVG.set_title(titleText, fontsize=10) return graph_nx, data, communities def makeVisibilityGraph(intensities, positions, saveDir, fileName, communities=None, minNumberOfCommunities=2, communitiesMethod='betweenness_centrality', direction='left', weight='distance', printCommunities=False,fontsize=16, nodesize=500, level=0.5, commLineWidth=3.0, lineWidth=2.0, layout='circle', horizontal=False, radius=0.03, figsize=(10,10), addColorbar=True, colorbarAxisCoordinates=[0.90,0.7,0.02,0.2], colorbarLabelsize=12, colorbarPrecision=2, extension='png', dpi=300): '''Make either horizontal or normal visibility graph of a time series using function addVisibilityGraph. We represent each timepoint in a series as a node. Temporal events are detected and indicated with solid blue lines encompassing groups of points, or communities. The shortest path identifies nodes (i.e. timepoints) that display high intensity, and thus dominate the global signal profile, are robust to noise, and are likely drivers of the global temporal behavior. Parameters: intensities: Data to plot positions: Time points corresponding to data saveDir: str Path of directories to save the object to fileName: str Label to include in the file name horizontal: boolean, Default False Whether to use horizontal or natural visibility graph. Note that if communitiesMethod 'WDPVG' is set, this setting has no effect. communities: tuple, Default None A tuple containing communities sturcture of network, and networkx Graph: List of list, e.g. [[],[],...] networkx.Graph minNumberOfCommunities: int, Default 2 Number of communities to find depends on the number of splits. This parameter is ignored in methods that automatically estimate optimal number of communities. communitiesMethod: str, Default 'betweenness_centrality' String defining the method to use for communitiy detection: 'Girvan_Newman': edge betweenness centrality based approach 'betweenness_centrality': reflected graph node betweenness centrality based approach 'WDPVG': weighted dual perspective visibility graph method (note to also set weight variable) direction:str, default 'left' The direction that nodes aggregate to communities: None: no specific direction, e.g. both sides. 'left': nodes can only aggregate to the left side hubs, e.g. early hubs 'right': nodes can only aggregate to the right side hubs, e.g. later hubs weight: str, Default 'distance' Type of weight for communitiesMethod='WDPVG': None: no weighted 'time': weight = abs(times[i] - times[j]) 'tan': weight = abs((data[i] - data[j])/(times[i] - times[j])) + 10**(-8) 'distance': weight = A[i, j] = A[j, i] = ((data[i] - data[j])**2 + (times[i] - times[j])**2)**0.5 printCommunities: boolean, Default False Whether to print communities details to screen fontsize: float, Default 16 Labels fontsize nodesize: int, Default 500 Node size level: float, Default 0.5 Level commLineWidth: float, Default 3.0 Communities lines width lineWidth: float, Default 2.0 Edge lines width layout: str, Default 'circle' Type of layout, 'circle' or 'line' horizontal: boolean, Default False Whether to make horizontal of normal visibility graph radius: float, Default 0.03 Rounding of the lines figsize: tuple, Default (10,10) Figure size in inches addColorbar: boolean, Default True Whether to add colorbar colorbarAxisCoordinates: list, Default [0.90,0.7,0.02,0.2] colorbar axis coordinates colorbarLabelsize: float, Default 12 Colorbar labels size colorbarPrecision: int, Default 2 colorbar labels rounding extension: str, Default '.png' Figure extension dpi: int, Default 300 Figure resolution Returns: None Usage: makeVisibilityGraph(data, times, 'dir1/', 'myData') ''' fig = plt.figure(figsize=figsize) addVisibilityGraph(intensities, positions, fig=fig, fontsize=fontsize, nodesize=nodesize, level=level, commLineWidth=commLineWidth, lineWidth=lineWidth, withLabel=False, layout=layout, printCommunities=printCommunities, radius=radius, horizontal=horizontal,communities=communities, minNumberOfCommunities=minNumberOfCommunities, communitiesMethod=communitiesMethod, direction=direction, weight=weight) addColorbarToFigure(fig, intensities, axisCoordinates=colorbarAxisCoordinates, labelsize=colorbarLabelsize, precision=colorbarPrecision) saveFigure(fig, saveDir, ('horizontal_' if horizontal else 'normal_') + fileName, extension, dpi) return def makeVisibilityBarGraph(data, times, saveDir, fileName, AdjacencyMatrix=None, horizontal=False, barWidth=0.2, dotColor='b', barColor='r', arrowColor='k', id='', extension='.png', figsize=(8,4), dpi=300): """Bar-plot style visibility graph. Representing the intensities as bars, this is equivalent to connecting the top of each bar to another top if there is a direct line-of-sight to that top. The resulting visibility graph has characteristics that reflect the equivalent time series temporal structure and can be used to identify trends. Parameters: data: 2d numpy.array Numpy array of floats times: 2d numpy.array Numpy array of floats fileName: str Path where to save the figure file fileName: str Name of the figure file to save AdjacencyMatrix: 2d numpy.array, Default None Adjacency matrix of network horizontal: boolean, default False Horizontal or normal visibility graph barWidth: float, default 0.2 Horizontal or normal visibility graph dotColor: str, default 'b' Color of the data points barColor: str, default 'r' Color of the bars arrowColor: str, default 'k' Color of lines id: str or int, default '' Label to add to the figure title extension: str, Default '.png' Figure format figsize: tuple of int, Default (8,4) Figure size in inches dpi: int, Default 300 Figure resolution Returns: None Usage: makeVisibilityBarGraph(A, data, times, 'my_figure') """ fig, ax = plt.subplots(figsize=figsize) if AdjacencyMatrix is None: if horizontal: A = visibilityGraphAuxiliaryFunctions.getAdjacencyMatrixOfHVG(data) else: A = visibilityGraphAuxiliaryFunctions.getAdjacencyMatrixOfNVG(data, times) else: A = AdjacencyMatrix ax.bar(times, data, width=barWidth, color=barColor, align='center', zorder=-np.inf) ax.scatter(times, data, color=dotColor) for i in range(A.shape[0]): for j in range(A.shape[1]): if i>j and A[i,j] == 1: if horizontal: level1 = level2 = np.min([data[i],data[j]]) else: level1 = data[i] level2 = data[j] ax.annotate(text='', xy=(times[i],level1), xytext=(times[j],level2), arrowprops=dict(arrowstyle='<->', shrinkA=0, shrinkB=0, linestyle='--')) ax.set_title('%s Time Series'%(id), fontdict={'color': arrowColor}) ax.set_xlabel('Times', fontsize=8) ax.set_ylabel('Signal intensity', fontsize=8) ax.set_xticks(times) ax.set_xticklabels(times, fontsize=10, rotation=90) ax.set_yticks([]) ax.spines['left'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(True) fig.tight_layout() saveFigure(fig, saveDir, ('horizontal_' if horizontal else 'normal_') + fileName, extension, dpi) return None def makePlotOfPeak(data_all, scores, selected_peak, selected_peak_value, plotID): '''Plot peaks. Function used internally during certain data processing steps''' fig, ax = plt.subplots() ax.plot(data_all.T[0], data_all.T[1], 'g', lw=3) ax.plot(scores.T[0], scores.T[1], 'ro', ms=5) ax.plot(selected_peak, selected_peak_value, 'bo', alpha=0.5, ms=10) # saveFigure(fig, saveDir, 'spline_%s' % ('' if plotID == None else str(plotID)), extension, dpi) return def addColorbarToFigure(fig, data, axisCoordinates=[0.90,0.7,0.02,0.2], cmap=None, norm=None, labelsize=12, precision=2): '''Add colorbar to figure Parameters: fig: matplotlib.figure Data to plot cmap: matplotlib.colors.LinearSegmentedColormap, Default None Colormap to use norm: matplotlib.colors.Normalize, Default None Colormap normalization axisCoordinates: list, Default [0.90,0.7,0.02,0.2] colorbar axis coordinates labelsize: float, Default 12 Colorbar labels size precision: int, Default 2 Colorbar labels rounding Returns: None Usage: addColorbarToFigure(fig, data) ''' data = np.array(data) dataMin = np.min(data) dataMax = np.max(data) axisColor = fig.add_axes(axisCoordinates) if cmap is None: cmap=matplotlib.colors.LinearSegmentedColormap.from_list('GR', [(0, 1, 0), (1, 0, 0)], N=100) if norm is None: norm=matplotlib.colors.Normalize(vmin=dataMin, vmax=dataMax) mapp=cm.ScalarMappable(norm=norm, cmap=cmap) mapp.set_array(data) fig.colorbar(mapp, cax=axisColor, ticks=[dataMax,dataMin]) axisColor.tick_params(labelsize=labelsize) axisColor.set_yticklabels([np.round(dataMax,precision), np.round(dataMin,precision)]) return def makeDendrogramHeatmapOfClusteringObject(ClusteringObject, saveDir, dataName, AutocorrNotPeriodogr=True, textScale=1.0, figsize=(12,8), extension='.png', dpi=300, xLabel='Time', plotLabel='Transformed Expression',horizontal=False, minNumberOfCommunities=2, communitiesMethod='WDPVG', direction='left', weight='distance'): """Make Dendrogram-Heatmap plot along with Visibility graphs. Parameters: ClusteringObject: Clustering object saveDir: str Path of directories to save the object to dataName: str Label to include in the file name AutocorrNotPeriodogr: boolean, Default True Whether to use autocorrelation method instead of periodograms textScale: float, Default 1.0 scaling of text size figsize: tuple, Default (12,8) Figure size in inches extension: str, Default '.png' Figure format extension dpi: int, Default 300 Figure resolution xLabel: str, Default 'Time' Label for the x axis in the heatmap plotLabel: str, Default 'Transformed Expression' Label for the heatmap plot horizontal: boolean, Default False Whether to use horizontal or natural visibility graph. Note that if communitiesMethod 'WDPVG' is set, this setting has no effect. minNumberOfCommunities: int, Default 2 Number of communities to find depends on the number of splits. This parameter is ignored in methods that automatically estimate optimal number of communities. communitiesMethod: str, Default 'WDPVG' String defining the method to use for communitiy detection: 'Girvan_Newman': edge betweenness centrality based approach 'betweenness_centrality': reflected graph node betweenness centrality based approach 'WDPVG': weighted dual perspective visibility graph method (note to also set weight variable) direction:str, default 'left' The direction that nodes aggregate to communities: None: no specific direction, e.g. both sides. 'left': nodes can only aggregate to the left side hubs, e.g. early hubs 'right': nodes can only aggregate to the right side hubs, e.g. later hubs weight: str, Default 'distance' Type of weight for communitiesMethod='WDPVG': None: no weighted 'time': weight = abs(times[i] - times[j]) 'tan': weight = abs((data[i] - data[j])/(times[i] - times[j])) + 10**(-8) 'distance': weight = A[i, j] = A[j, i] = ((data[i] - data[j])**2 + (times[i] - times[j])**2)**0.5 Returns: None Usage: makeDendrogramHeatmap(myObj, '/dir1', 'myData', AutocorrNotPeriodogr=True) """ def addAutocorrelationDendrogramAndHeatmap(ClusteringObject, groupColors, fig, AutocorrNotPeriodogr=AutocorrNotPeriodogr): axisDendro = fig.add_axes([0.68,0.1,0.17,0.8], frame_on=False) n_clusters = len(ClusteringObject.keys()) - 1 hierarchy.set_link_color_palette(groupColors[:n_clusters]) #gist_ncar #nipy_spectral #hsv origLineWidth = matplotlib.rcParams['lines.linewidth'] matplotlib.rcParams['lines.linewidth'] = 0.5 Y_ac = ClusteringObject['linkage'] Z_ac = hierarchy.dendrogram(Y_ac, orientation='left',color_threshold=Y_ac[-n_clusters + 1][2]) hierarchy.set_link_color_palette(None) matplotlib.rcParams['lines.linewidth'] = origLineWidth axisDendro.set_xticks([]) axisDendro.set_yticks([]) posA = ((axisDendro.get_xlim()[0] if n_clusters == 1 else Y_ac[-n_clusters + 1][2]) + Y_ac[-n_clusters][2]) / 2 axisDendro.plot([posA, posA], [axisDendro.get_ylim()[0], axisDendro.get_ylim()[1]], 'k--', linewidth = 1) clusters = [] order = [] tempData = None for group in sorted([item for item in list(ClusteringObject.keys()) if not item=='linkage']): for subgroup in sorted([item for item in list(ClusteringObject[group].keys()) if not item=='linkage']): subgroupData = ClusteringObject[group][subgroup]['dataAutocorr'].values tempData = subgroupData if tempData is None else np.vstack((tempData, subgroupData)) clusters.extend([group for _ in range(subgroupData.shape[0])]) order.extend(ClusteringObject[group][subgroup]['order']) tempData = tempData[np.argsort(order),:][Z_ac['leaves'],:].T[1:].T clusters = np.array(clusters) cluster_line_positions = np.where(clusters - np.roll(clusters,1) != 0)[0] for i in range(n_clusters - 1): posB = cluster_line_positions[i + 1] * (axisDendro.get_ylim()[1] / len(Z_ac['leaves'])) - 5. * 0 axisDendro.plot([posA, axisDendro.get_xlim()[1]], [posB, posB], '--', color='black', linewidth = 1.0) axisDendro.plot([posA, axisDendro.get_xlim()[1]], [0., 0.], '--', color='k', linewidth = 1.0) axisDendro.plot([posA, axisDendro.get_xlim()[1]], [-0. + axisDendro.get_ylim()[1], -0. + axisDendro.get_ylim()[1]], '--', color='k', linewidth = 1.0) axisMatrixAC = fig.add_axes([0.78 + 0.07,0.1,0.18 - 0.075,0.8]) imAC = axisMatrixAC.imshow(tempData, aspect='auto', vmin=np.min(tempData), vmax=np.max(tempData), origin='lower', cmap=plt.cm.bwr) for i in range(n_clusters - 1): axisMatrixAC.plot([-0.5, tempData.shape[1] - 0.5], [cluster_line_positions[i + 1] - 0.5, cluster_line_positions[i + 1] - 0.5], '--', color='black', linewidth = 1.0) axisMatrixAC.set_xticks([i for i in range(tempData.shape[1] - 1)]) axisMatrixAC.set_xticklabels([i + 1 for i in range(tempData.shape[1] - 1)], fontsize=6*textScale) axisMatrixAC.set_yticks([]) axisMatrixAC.set_xlabel('Lag' if AutocorrNotPeriodogr else 'Frequency', fontsize=axisMatrixAC.xaxis.label._fontproperties._size*textScale) axisMatrixAC.set_title('Autocorrelation' if AutocorrNotPeriodogr else 'Periodogram', fontsize=axisMatrixAC.title._fontproperties._size*textScale) axisColorAC = fig.add_axes([0.9 + 0.065,0.55,0.01,0.35]) axisColorAC.tick_params(labelsize=6*textScale) plt.colorbar(imAC, cax=axisColorAC, ticks=[np.round(np.min(tempData),2),np.round(np.max(tempData),2)]) return def addGroupDendrogramAndShowSubgroups(ClusteringObject, groupSize, bottom, top, group, groupColors, fig): Y = ClusteringObject[group]['linkage'] n_clusters = len(sorted([item for item in list(ClusteringObject[group].keys()) if not item=='linkage'])) print("Number of subgroups:", n_clusters) axisDendro = fig.add_axes([left, bottom, dx + 0.005, top - bottom], frame_on=False) hierarchy.set_link_color_palette([matplotlib.colors.rgb2hex(rgb[:3]) for rgb in cm.nipy_spectral(np.linspace(0, 0.5, n_clusters + 1))]) #gist_ncar #nipy_spectral #hsv origLineWidth = matplotlib.rcParams['lines.linewidth'] matplotlib.rcParams['lines.linewidth'] = 0.5 Z = hierarchy.dendrogram(Y, orientation='left',color_threshold=Y[-n_clusters + 1][2]) hierarchy.set_link_color_palette(None) matplotlib.rcParams['lines.linewidth'] = origLineWidth axisDendro.set_xticks([]) axisDendro.set_yticks([]) posA = axisDendro.get_xlim()[0]/2 if n_clusters == groupSize else (Y[-n_clusters + 1][2] + Y[-n_clusters][2])/2 axisDendro.plot([posA, posA], [axisDendro.get_ylim()[0], axisDendro.get_ylim()[1]], 'k--', linewidth = 1) clusters = [] for subgroup in sorted([item for item in list(ClusteringObject[group].keys()) if not item=='linkage']): clusters.extend([subgroup for _ in range(ClusteringObject[group][subgroup]['data'].values.shape[0])]) clusters = np.array(clusters) cluster_line_positions = np.where(clusters - np.roll(clusters,1) != 0)[0] for i in range(n_clusters - 1): posB = cluster_line_positions[i + 1] * (axisDendro.get_ylim()[1] / len(Z['leaves'])) - 5. * 0 axisDendro.plot([posA, axisDendro.get_xlim()[1]], [posB, posB], '--', color='black', linewidth = 1.0) axisDendro.plot([posA, axisDendro.get_xlim()[1]], [0., 0.], '--', color='k', linewidth = 1.0) axisDendro.plot([posA, axisDendro.get_xlim()[1]], [-0. + axisDendro.get_ylim()[1], -0. + axisDendro.get_ylim()[1]], '--', color='k', linewidth = 1.0) axisDendro.text(axisDendro.get_xlim()[0], 0.5 * axisDendro.get_ylim()[1], 'G%s:' % group + str(groupSize), fontsize=14*textScale).set_path_effects([path_effects.Stroke(linewidth=1, foreground=groupColors[group - 1]),path_effects.Normal()]) return n_clusters, clusters, cluster_line_positions def addGroupHeatmapAndColorbar(data_loc, n_clusters, clusters, cluster_line_positions, bottom, top, group, groupColors, fig,xLabel = 'Time',plotLabel = 'Transformed Expression'): axisMatrix = fig.add_axes([left + 0.205, bottom, dx + 0.025 + 0.075, top - bottom]) masked_array = np.ma.array(data_loc, mask=np.isnan(data_loc)) cmap = matplotlib.colors.LinearSegmentedColormap.from_list('GR', [(0, 1, 0), (1, 0, 0)], N=1000) #plt.cm.prism #plt.cm.hsv_r #plt.cm.RdYlGn_r cmap.set_bad('grey') im = axisMatrix.imshow(masked_array, aspect='auto', origin='lower', vmin=np.min(data_loc[np.isnan(data_loc) == False]), vmax=np.max(data_loc[np.isnan(data_loc) == False]), cmap=cmap) for i in range(n_clusters - 1): posB = cluster_line_positions[i + 1] posBm = cluster_line_positions[i] axisMatrix.plot([-0.5, data_loc.shape[1] - 0.5], [posB - 0.5, posB - 0.5], '--', color='black', linewidth = 1.0) def add_label(pos, labelText): return axisMatrix.text(-1., pos, labelText, ha='right', va='center', fontsize=12.*textScale).set_path_effects([path_effects.Stroke(linewidth=0.4, foreground=groupColors[group - 1]),path_effects.Normal()]) order = clusters[np.sort(np.unique(clusters,return_index=True)[1])] - 1 for i in range(n_clusters - 1): if len(data_loc[clusters == i + 1]) >= 5.: try: add_label((cluster_line_positions[np.where(order == i)[0][0]] + cluster_line_positions[np.where(order == i)[0][0] + 1]) * 0.5, 'G%sS%s:%s' % (group,i + 1,len(data_loc[clusters == i + 1]))) except Exception as exception: print(exception) print('Label printing error!') if len(data_loc[clusters == n_clusters]) >= 5.: posC = axisMatrix.get_ylim()[0] if n_clusters == 1 else cluster_line_positions[n_clusters - 1] add_label((posC + axisMatrix.get_ylim()[1]) * 0.5, 'G%sS%s:%s' % (group,n_clusters,len(data_loc[clusters == n_clusters]))) axisMatrix.set_xticks([]) axisMatrix.set_yticks([]) times = ClusteringObject[group][subgroup]['data'].columns.values if group == 1: axisMatrix.set_xticks(range(data_loc.shape[1])) axisMatrix.set_xticklabels([('' if (i%2==1 and textScale>1.3) else np.int(time)) for i, time in enumerate(np.round(times,1))], rotation=0, fontsize=6*textScale) axisMatrix.set_xlabel(xLabel, fontsize=axisMatrix.xaxis.label._fontproperties._size*textScale) if group == sorted([item for item in list(ClusteringObject.keys()) if not item=='linkage'])[-1]: axisMatrix.set_title(plotLabel, fontsize=axisMatrix.title._fontproperties._size*textScale) axisColor = fig.add_axes([0.635 - 0.075 - 0.1 + 0.075,current_bottom + 0.01,0.01, max(0.01,(current_top - current_bottom) - 0.02)]) plt.colorbar(im, cax=axisColor, ticks=[np.max(im._A),np.min(im._A)]) axisColor.tick_params(labelsize=6*textScale) axisColor.set_yticklabels([np.round(np.max(im._A),2),np.round(np.min(im._A),2)]) return signalsInClusteringObject = 0 for group in sorted([item for item in list(ClusteringObject.keys()) if not item=='linkage']): for subgroup in sorted([item for item in list(ClusteringObject[group].keys()) if not item=='linkage']): signalsInClusteringObject += ClusteringObject[group][subgroup]['data'].shape[0] fig = plt.figure(figsize=(12,8)) left = 0.02 bottom = 0.1 current_top = bottom dx = 0.2 dy = 0.8 groupColors = ['b','g','r','c','m','y','k'] [groupColors.extend(groupColors) for _ in range(10)] addAutocorrelationDendrogramAndHeatmap(ClusteringObject, groupColors, fig) for group in sorted([item for item in list(ClusteringObject.keys()) if not item=='linkage']): tempData = None for subgroup in sorted([item for item in list(ClusteringObject[group].keys()) if not item=='linkage']): subgroupData = ClusteringObject[group][subgroup]['data'].values tempData = subgroupData if tempData is None else np.vstack((tempData, subgroupData)) current_bottom = current_top current_top += dy * float(len(tempData)) / float(signalsInClusteringObject) if len(tempData)==1: n_clusters, clusters, cluster_line_positions = 1, np.array([]), np.array([]) else: n_clusters, clusters, cluster_line_positions = addGroupDendrogramAndShowSubgroups(ClusteringObject, len(tempData), current_bottom, current_top, group, groupColors, fig) addGroupHeatmapAndColorbar(tempData, n_clusters, clusters, cluster_line_positions, current_bottom, current_top, group, groupColors, fig,xLabel=xLabel,plotLabel=plotLabel) data_list = [] data_names_list = [] for group in sorted([item for item in list(ClusteringObject.keys()) if not item=='linkage']): for subgroup in sorted([item for item in list(ClusteringObject[group].keys()) if not item=='linkage']): if ClusteringObject[group][subgroup]['data'].shape[0] >= 5: data_list.append(ClusteringObject[group][subgroup]['data'].values) data_names_list.append('G%sS%s' % (group, subgroup)) times = ClusteringObject[group][subgroup]['data'].columns.values for indVG, (dataVG, dataNameVG) in enumerate(zip(data_list, data_names_list)): x_min = 0.57 x_max = 0.66 y_min = 0.1 y_max = 0.9 numberOfVGs = len(data_list) height = min((y_max - y_min) / numberOfVGs, (x_max - x_min) * (12. / 8.)) x_displacement = (x_max - x_min - height / 1.5) * 0.5 y_displacement = (y_max - y_min - numberOfVGs * height) / numberOfVGs coords = [x_min + x_displacement, x_min + x_displacement + height / (12. / 8.), y_min + indVG * height + (0.5 + indVG) * y_displacement, y_min + (indVG + 1) * height + (0.5 + indVG) * y_displacement] addVisibilityGraph(dataVG, times, dataNameVG, coords, numberOfVGs, groupColors, fig,horizontal=horizontal, minNumberOfCommunities=minNumberOfCommunities, communitiesMethod=communitiesMethod, direction=direction, weight=weight) saveFigure(fig, saveDir, dataName + '_DendrogramHeatmap', extension, dpi) return None def plotHVGBarGraphDual(A, data, times, fileName, title='', fontsize=8, barwidth=0.05, figsize=(8,4), dpi=600): """Bar-plot style horizontal visibility graph with different link colors for different perspectives Parameters: A: 2d numpy.array Adjacency matrix data: 2d numpy.array Data used to make the visibility graph times: 1d numpy.array Times corresponding to data points fileName: str Name of the figure file to save title: str, Default '' Label to add to the figure title figsize: tuple of int, Default (8,4) Figure size in inches dpi: int, 600 Resolution of the image barwidth: float, Default 0.05 The bar width fontsize:int, Default 8 The text font size Returns: None Usage: PlotHorizontalVisibilityGraph(A, data, times, 'Figure.png', 'Test Data') """ fig, ax = plt.subplots(figsize=figsize) ax.bar(times, data, width = barwidth, color='k', align='center', zorder=-np.inf) ax.scatter(times, data, color='k') for i in range(A.shape[0]): for j in range(A.shape[1]): if i>j and A[i,j] > 0: if data[i] > 0 and data[j] >0: level = np.min([data[i],data[j]]) elif data[i] < 0 and data[j] < 0: level = np.max([data[i],data[j]]) else: level = 0 ax.annotate(text='', xy=(times[i],level), xytext=(times[j],level), arrowprops=dict(arrowstyle='->', shrinkA=0, shrinkB=0,linestyle='--', color='r')) if i>j and A[i,j] < 0: if data[i] > 0 and data[j] >0: level = np.min([data[i],data[j]]) elif data[i] < 0 and data[j] < 0: level = np.max([data[i],data[j]]) else: level = 0 ax.annotate(text='', xy=(times[i],level), xytext=(times[j],level), arrowprops=dict(arrowstyle='->', shrinkA=0, shrinkB=0,linestyle='--', color='b')) ax.set_title('%s'%(id), fontdict={'color': 'k'},fontsize=fontsize) ax.set_xlabel('Times', fontsize=fontsize) ax.set_ylabel('Signal intensity', fontsize=fontsize) ax.set_xticks(times) ax.set_xticklabels([str(item) for item in np.round(times,2)],fontsize=fontsize, rotation=0) ax.set_yticks([]) ax.axhline(y=0, color='k') ax.spines['left'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(True) fig.tight_layout() fig.savefig(fileName, dpi=dpi) plt.close(fig) return None def plotNVGBarGraphDual(A, data, times, fileName, title='', fontsize=8, barwidth=0.05, figsize=(8,4), dpi=600): """Bar-plot style natural visibility graph with different link colors for different perspectives Parameters: A: 2d numpy.array Adjacency matrix data: 2d numpy.array Data used to make the visibility graph times: 1d numpy.array Times corresponding to data points fileName: str Name of the figure file to save title: str, Default '' Label to add to the figure title figsize: tuple of int, Default (8,4) Figure size in inches dpi: int, 600 Resolution of the image barwidth: float, Default 0.05 The bar width fontsize:int, Default 8 The text font size Returns: None Usage: PlotVisibilityGraph(A, data, times, 'FIgure.png', 'Test Data') """ fig, ax = plt.subplots(figsize=figsize) ax.bar(times, data, width = barwidth, color='k', align='center', zorder=-np.inf) ax.scatter(times, data, color='k') for i in range(A.shape[0]): for j in range(A.shape[1]): if i>j and A[i,j] > 0: ax.annotate(text='', xy=(times[i],data[i]), xytext=(times[j],data[j]), arrowprops=dict(arrowstyle='->', shrinkA=0, shrinkB=0,linestyle='--',color='r')) if i>j and A[i,j] < 0: ax.annotate(text='', xy=(times[i],data[i]), xytext=(times[j],data[j]), arrowprops=dict(arrowstyle='->', shrinkA=0, shrinkB=0,linestyle='--',color='b')) ax.set_title('%s'%(title), fontdict={'color': 'k'},fontsize=fontsize) ax.set_xlabel('Times', fontsize=fontsize) ax.set_ylabel('Signal intensity', fontsize=fontsize) ax.set_xticks(times) ax.set_xticklabels([str(item) for item in np.round(times,2)],fontsize=fontsize, rotation=0) ax.set_yticks([]) ax.axhline(y=0, color='k') ax.spines['left'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(True) fig.tight_layout() fig.savefig(fileName, dpi=dpi) plt.close(fig) return None
# -*- coding: utf-8 -*- """ test_extract ======== Test extraction of chemical schematic diagrams """ import unittest import os import chemschematicresolver as csr tests_dir = os.path.dirname(os.path.abspath(__file__)) img_dir = os.path.join(tests_dir, 'data') # train_markush_small_dir = os.path.join(train_dir, 'train_markush_small') # r_group_diag_dir = os.path.join(train_dir, 'r_group_diags') # train_imgs_dir = os.path.join(train_dir, 'train_imgs') class TestExtract(unittest.TestCase): """ Tests the overall extraction case""" def do_extract_small(self, filename, gold): """ Extract images from the small markush directory""" path = os.path.join(img_dir, filename) result = csr.extract.extract_image(path, debug=True) self.assertEqual(gold, result) return result def do_extract_all_imgs(self, dir_name=img_dir): """ Run extraction on the 'train_imgs' directory (no assertions)""" test_path = img_dir test_imgs = os.listdir(test_path) for img_path in test_imgs: full_path = os.path.join(test_path, img_path) csr.extract.extract_image(full_path, debug=True) def test_run_train_imgs(self): """ Run all images in train_imgs directory""" self.do_extract_all_imgs() def test_r_group_extract(self): gold = [(['EtNAPH'], 'c1c2n(c3c(c2ccc1)cc(cc3)/C=C/c1ccc(/C=C/c2ccc3n(c4ccccc4c3c2)CC)c2c1cccc2)CC'), (['MeNAPH'], 'c1c(ccc(c1)N(c1ccc(/C=C/c2c3c(c(cc2)/C=C/c2ccc(N(c4ccc(C)cc4)c4ccc(cc4)C)cc2)cccc3)cc1)c1ccc(C)cc1)C'), (['MeONAPH'], 'c1c(ccc(c1)N(c1ccc(/C=C/c2c3c(c(cc2)/C=C/c2ccc(N(c4ccc(OC)cc4)c4ccc(cc4)OC)cc2)cccc3)cc1)c1ccc(OC)cc1)OC')] foo = img_dir self.do_extract_small('S014372081630119X_gr1.jpg', gold) def test_r_group_extract2(self): # This example fails as the chemical names need to be resolved gold = [] self.do_extract_small('S0143720816300286_gr1.jpg', gold) def test_r_group_extract3(self): # NB : This test is automatically filtering out the failed R-group resolution from the presence of wildcards gold = [(['107'], 'c1c2ccc3cccc4c3c2c(cc4)cc1/C=N/CCSSCC/N=C/c1cc2ccc3cccc4ccc(c1)c2c34'), (['106'], 'c1c2ccc3cc(/C=N/c4ccccc4O)c(O)c4c3c2c(cc1)cc4')] self.do_extract_small('S0143720816301115_r75.jpg', gold) def test_r_group_extract4(self): # Identified one of the numeric labels as an atom indicator (inside osra) # Could be solved by doing a numerical clean gold = [(['1'], 'N(CC)(CC)c1ccc2cc(C#N)c(=N)oc2c1'), (['2'], 'N(CC)(CC)c1ccc2cc(C#N)/c(=N/C(=O)OCC)/oc2c1'), (['3'], 'N(CC)(CC)c1ccc2cc(C#N)c(=O)oc2c1'), (['4'], 'N(CC)(CC)c1ccc2ccc(=O)oc2c1')] self.do_extract_small('S0143720816301681_gr1.jpg', gold) def do_extract_r_group_diags(self, filename, gold): """ Extract images from the small markush directory""" path = os.path.join(img_dir, filename) result = csr.extract.extract_image(path, debug=True) self.assertEqual(gold, result) def test_r_group_diag_1(self): # Identified numerical points as labels gold = [] self.do_extract_r_group_diags('S0143720816301565_gr1.jpg', gold) def test_r_group_diag_2(self): # Octyl and Hectyl resolved correctly. NB the smiles are still wrong though due to OSRA failing # Need to improve the relative label-detection as well : at the moment it's just returning all candidates gold = [(['A'], 'c1(ccc(s1)c1cc(F)c(c2cc3S4(c5c(c3s2)sc(c5)c2c([F]CC(C4)CCCC)cc(c3sc(c4ccc(CCCCCC)s4)cc3)c3nsnc23)CC(CC)CCCC)c2nsnc12)c1sc(CCCCCC)cc1'), (['1'], 'N1(C(=O)c2c(C1=O)ccc(c1sc(c3cc(F)c(c4cc5S6(c7c(c5s4)sc(c7)c4c([F]CC(C6)CCCC)cc(c5sc(cc5)c5ccc6C(=O)N(C(=O)c6c5)CCCCCCCC)c5nsnc45)CC(CC)CCCC)c4nsnc34)cc1)c2)CCCCCCCC'), (['2'], 'N1(C(=O)c2c(C1=O)ccc(c1sc(c3cc(F)c(c4cc5S6(c7c(c5s4)sc(c7)c4c([F]CC(C6)CCCC)cc(c5sc(cc5)c5ccc6C(=O)N(C(=O)c6c5)CCCCCC)c5nsnc45)CC(CC)CCCC)c4nsnc34)cc1)c2)CCCCCC')] self.do_extract_r_group_diags('S0143720816302054_sc1.jpg', gold) def test_r_group_diag_3(self): # Has assigned the same label to both diagrams, resulting in different outcomes # Either some of the 4 R-values are not resolved, or something else is going wrong on the rgroup diag gold = [] self.do_extract_r_group_diags('S0143720816302108_gr1.jpg', gold) def test_r_group_diag_4(self): # Schematic flow diagram, including arrows etc gold = [] self.do_extract_r_group_diags('S0143720816301826_sc1.jpg', gold) def test_r_group_diag_5(self): # Containing segmenting lines, and large R-groups gold = [] self.do_extract_r_group_diags('S0143720816301401_gr5.jpg', gold) def do_extract_train_imgs(self, filename, gold): """ Extract images from the train_imgs directory""" path = os.path.join(img_dir, filename) result = csr.extract.extract_image(path, debug=False) self.assertEqual(gold, result) def test_train_imgs_1(self): gold = [] self.do_extract_train_imgs('S0143720816301115_gr1.jpg', gold) def test_extract_document(self): path = os.path.join(img_dir, 'train_docs', '10.1039_C4TC01753F.html') records = csr.extract.extract_document(path) import pprint pp = pprint.PrettyPrinter(indent=4) pp.pprint(records) def test_substitute_labels(self): records = [{'names': ['pyrenes']}, {'names': ['Godumala Mallesham']}, {'names': ['Cedex']}, {'names': ['diphenyl phosphine–oxide']}, {'names': ['diarylamino']}, {'names': ['anthracene']}, {'names': ['triphenylamine']}, {'names': ['diphenyl']}, {'names': ['phosphine']}, {'names': ['oxide']}, {'names': ['biphenyl']}, {'diag': ['csd']}, {'names': ['bromo pyrene 1']}, {'names': ['2,7-dibromo-9,9-dimethyl-9H-fluorene']}, {'names': ['aryl lithio']}, {'names': ['hydrogen peroxide']}, {'names': ['non-pyrene']}, {'names': ['amine']}, {'names': ['hydroxyl']}, {'names': ['C2–H2 ⋯ O1']}, {'diag': ['csd']}, {'names': ['calomel']}, {'names': ['ferrocenium']}, {'names': ['acetonitrile']}, {'names': ['methanol']}, {'names': ['diphenyl phospheneoxide']}, {'names': ['4,4′-bis[N-(1-naphthyl)-N-phenyl amino ] biphenyl']}, {'names': ['Cd']}, {'names': ['carbozole–dimesitylborane']}, {'names': ['triphenylamine–imidazole']}, {'names': ['Li']}, {'names': ['1 × 10 − 4 to 5 × 10 − 4 cm2 V−1 s−1']}, {'names': ['toluene']}, {'names': ['nitrogen gas']}, {'names': ['n-hexane']}, {'names': ['chloroform–hexane']}, {'names': ['dry methanol']}, {'names': ['sodium sulfate']}, {'names': ['H2O2']}, {'names': ['diethyl ether']}, {'names': ['C28H19OP']}, {'names': ['12H']}, {'names': ['C40H27OP']}, {'names': ['( hexane–ethylacetate 1 : 1 )']}, {'names': ['C43H31OP']}, {'names': ['phosphoric acid']}, {'names': ['CH']}, {'names': ['glassy carbon']}, {'names': ['Ag']}, {'names': ['AgCl']}, {'names': ['platinum']}, {'names': ['alumina']}, {'names': ['Ti']}, {'names': ['sapphire']}, {'names': ['CH3OH–CHCl3']}, {'names': ['trichloroethylene']}, {'names': ['acetone']}, {'names': ['isopropyl alcohol']}, {'names': ['ozone']}, {'names': ['quartz']}, {'names': ['N,N-Diphenyl-N′,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine']}, {'names': ['2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline', 'BCP']}, {'names': ['tris(8-hydroxyquinoline)-aluminium']}, {'names': ['Hyderabad 500007']}, {'names': ['C–H ⋯ O']}, {'names': ['fluorene']}, {'names': ['methyl']}, {'labels': ['3'], 'names': ['dibromo'], 'roles': ['derivative']}, {'labels': ['4'], 'roles': ['compound']}, {'names': ['1,4-dibromobenzene', '1,4-Dibromobenzene']}, {'names': ['4,4′-dibromobiphenyl']}, {'names': ['1,3-dibromobenzene']}, {'names': ['1,4-dibromo-2,5-dimethylbenzene']}, {'names': ['H']}, {'names': ['hydrogen']}, {'names': ['O']}, {'names': ['ferrocene']}, {'names': ['aryl']}, {'names': ['quinine sulphate']}, {'names': ['Na2SO4']}, {'names': ['dichloromethane']}, {'names': ['THF']}, {'names': ['C–H']}, {'names': ['phenyl']}, {'names': ['diphenyl phosphine oxide', 'diphenylphosphine oxide']}, {'names': ['TCNQ', '2,3,5,6-tetrafluoro-7,7′,8,8′-tetracyanoquinodimethane']}, {'labels': ['6'], 'melting_points': [{'units': '°C', 'value': '217–220'}], 'names': ['1-(4′-bromobiphenyl-4-yl)pyrene'], 'nmr_spectra': [{'apparatus': 'Bruker Avance', 'frequency': '300', 'frequency_units': 'MHz', 'nucleus': '1H', 'peaks': [{'multiplicity': 'm', 'number': '4H', 'shift': '8.28–8.16'}, {'multiplicity': 'm', 'number': '2H', 'shift': '8.13–8.10'}, {'multiplicity': 'm', 'number': '3H', 'shift': '8.08–8.00'}, {'multiplicity': 'm', 'number': '4H', 'shift': '7.79–7.69'}, {'multiplicity': 'm', 'number': '4H', 'shift': '7.66–7.57'}], 'solvent': 'CDCl3'}], 'roles': ['product', 'compound']}, {'names': ['Pd(PPh3)4']}, {'names': ['K2CO3']}, {'labels': ['7'], 'melting_points': [{'units': '°C', 'value': '125–127'}], 'names': ['1-(3-bromophenyl)pyrene'], 'nmr_spectra': [{'apparatus': 'Bruker Avance', 'frequency': '300', 'frequency_units': 'MHz', 'nucleus': '1H', 'peaks': [{'coupling': '7.8', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '2H', 'shift': '8.21'}, {'coupling': '7.8', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '8.17'}, {'multiplicity': 'm', 'number': '3H', 'shift': '8.13–8.07'}, {'multiplicity': 'm', 'number': '2H', 'shift': '8.06–8.00'}, {'coupling': '7.9', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '7.93'}, {'coupling': '1.5', 'coupling_units': 'Hz', 'multiplicity': 't', 'number': '1H', 'shift': '7.79'}, {'coupling': '8.1', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '7.60'}, {'coupling': '7.6', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '7.55'}, {'coupling': '7.8', 'coupling_units': 'Hz', 'multiplicity': 't', 'number': '1H', 'shift': '7.42'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '75', 'frequency_units': 'MHz', 'nucleus': '13C', 'peaks': [{'shift': '143.26'}, {'shift': '135.85'}, {'shift': '133.33'}, {'shift': '131.35'}, {'shift': '130.85'}, {'shift': '130.81'}, {'shift': '130.23'}, {'shift': '129.80'}, {'shift': '129.21'}, {'shift': '128.33'}, {'shift': '127.80'}, {'shift': '127.64'}, {'shift': '127.38'}, {'shift': '127.27'}, {'shift': '126.05'}, {'shift': '125.28'}, {'shift': '124.99'}, {'shift': '124.82'}, {'shift': '124.72'}, {'shift': '124.67'}, {'shift': '124.57'}, {'shift': '122.44'}], 'solvent': 'CDCl3'}], 'roles': ['product', 'compound']}, {'labels': ['8'], 'melting_points': [{'units': '°C', 'value': '119–121'}], 'names': ['1-(4-bromo-2,5-dimethylphenyl)pyrene'], 'nmr_spectra': [{'apparatus': 'Bruker Avance', 'frequency': '300', 'frequency_units': 'MHz', 'nucleus': '1H', 'peaks': [{'coupling': '7.9', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '2H', 'shift': '8.17'}, {'multiplicity': 'm', 'number': '1H', 'shift': '8.16–8.11'}, {'multiplicity': 's', 'number': '2H', 'shift': '8.07'}, {'multiplicity': 'm', 'number': '2H', 'shift': '8.01–7.93'}, {'coupling': '7.7', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '7.80'}, {'coupling': '9.1', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '7.68'}, {'multiplicity': 's', 'number': '1H', 'shift': '7.56'}, {'multiplicity': 's', 'number': '1H', 'shift': '7.21'}, {'multiplicity': 's', 'number': '3H', 'shift': '2.43'}, {'multiplicity': 's', 'number': '3H', 'shift': '1.96'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '75', 'frequency_units': 'MHz', 'nucleus': '13C', 'peaks': [{'shift': '139.86'}, {'shift': '136.36'}, {'shift': '136.04'}, {'shift': '134.88'}, {'shift': '133.38'}, {'shift': '132.87'}, {'shift': '131.33'}, {'shift': '130.89'}, {'shift': '130.62'}, {'shift': '128.77'}, {'shift': '127.60'}, {'shift': '127.38'}, {'shift': '127.35'}, {'shift': '127.09'}, {'shift': '126.02'}, {'shift': '125.17'}, {'shift': '125.08'}, {'shift': '124.99'}, {'shift': '124.73'}, {'shift': '124.66'}, {'shift': '124.50'}, {'shift': '123.91'}, {'shift': '22.38'}, {'shift': '19.47'}], 'solvent': 'CDCl3'}], 'roles': ['product', 'compound']}, {'labels': ['2'], 'names': ['borolane'], 'roles': ['compound', 'derivative']}, {'labels': ['9'], 'melting_points': [{'units': '°C', 'value': '186–188'}], 'names': ['1-(7-bromo-9,9-dimethyl-9H-fluoren-2-yl)pyrene'], 'nmr_spectra': [{'apparatus': 'Bruker Avance', 'frequency': '300', 'frequency_units': 'MHz', 'nucleus': '1H', 'peaks': [{'coupling': '2.0', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '8.25'}, {'coupling': '3.4', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '8.24'}, {'coupling': '7.6 , 1.1', 'coupling_units': 'Hz', 'multiplicity': 'dd', 'number': '1H', 'shift': '8.21'}, {'coupling': '7.6', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '8.17'}, {'coupling': '0.6', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '2H', 'shift': '8.11'}, {'multiplicity': 'm', 'number': '3H', 'shift': '8.06–8.01'}, {'coupling': '7.8', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '7.86'}, {'multiplicity': 'm', 'number': '2H', 'shift': '7.70–7.66'}, {'multiplicity': 'm', 'number': '2H', 'shift': '7.64–7.61'}, {'coupling': '8.1 , 1.8', 'coupling_units': 'Hz', 'multiplicity': 'dd', 'number': '1H', 'shift': '7.52'}, {'multiplicity': 's', 'number': '6H', 'shift': '1.57'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '75', 'frequency_units': 'MHz', 'nucleus': '13C', 'peaks': [{'shift': '155.89'}, {'shift': '153.43'}, {'shift': '140.63'}, {'shift': '137.90'}, {'shift': '137.82'}, {'shift': '137.20'}, {'shift': '131.43'}, {'shift': '130.89'}, {'shift': '130.54'}, {'shift': '130.19'}, {'shift': '129.74'}, {'shift': '128.46'}, {'shift': '127.60'}, {'shift': '127.51'}, {'shift': '127.38'}, {'shift': '126.19'}, {'shift': '125.99'}, {'shift': '125.16'}, {'shift': '125.12'}, {'shift': '124.88'}, {'shift': '124.79'}, {'shift': '124.63'}, {'shift': '121.47'}, {'shift': '121.13'}, {'shift': '119.88'}, {'shift': '47.23'}, {'shift': '27.04'}], 'solvent': 'CDCl3'}], 'roles': ['product', 'compound']}, {'names': ['chloroform']}, {'names': ['chloroform–diethyl ether']}, {'names': ['cyclohexane']}, {'names': ['ethyl acetate']}, {'names': ['n-BuLi']}, {'names': ['chlorodiphenylphosphine']}, {'names': ['31P']}, {'names': ['nitrogen']}, {'names': ['LiF']}, {'names': ['Al']}, {'names': ['Phosphine oxide', 'phosphine oxide']}, {'names': ['ITO', 'indium tin oxide', 'indium – tin oxide', 'indium–tin oxide']}, {'names': ['CHCl3']}, {'names': ['α-NPD']}, {'labels': ['5', '1'], 'melting_points': [{'units': '°C', 'value': '142–144'}], 'names': ['1-(4-bromophenyl)pyrene', 'mono bromo', 'bromo'], 'nmr_spectra': [{'apparatus': 'Bruker Avance', 'frequency': '300', 'frequency_units': 'MHz', 'nucleus': '1H', 'peaks': [{'coupling': '7.9', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '2H', 'shift': '8.18'}, {'multiplicity': 'm', 'number': '2H', 'shift': '8.16–8.09'}, {'multiplicity': 's', 'number': '2H', 'shift': '8.07'}, {'multiplicity': 'm', 'number': '2H', 'shift': '8.03–7.96'}, {'coupling': '7.9', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '7.90'}, {'coupling': '8.3', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '2H', 'shift': '7.67'}, {'coupling': '8.3', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '2H', 'shift': '7.47'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '75', 'frequency_units': 'MHz', 'nucleus': '13C', 'peaks': [{'shift': '144.87'}, {'shift': '136.05'}, {'shift': '133.09'}, {'shift': '132.13'}, {'shift': '131.99'}, {'shift': '131.92'}, {'shift': '131.26'}, {'shift': '130.88'}, {'shift': '130.71'}, {'shift': '130.53'}, {'shift': '128.58'}, {'shift': '128.44'}, {'shift': '128.21'}, {'shift': '127.80'}, {'shift': '127.68'}, {'shift': '127.25'}, {'shift': '127.18'}, {'shift': '126.04'}, {'shift': '125.26'}, {'shift': '124.97'}, {'shift': '124.77'}, {'shift': '124.57'}], 'solvent': 'CDCl3'}], 'roles': ['product', 'compound', 'intermediates']}, {'names': ['hexane']}, {'names': ['2H']}, {'ir_spectra': [{'peaks': [{'units': 'cm−1', 'value': '3041'}, {'units': 'cm−1', 'value': '1589'}, {'units': 'cm−1', 'value': '1197'}, {'units': 'cm−1', 'value': '831'}, {'units': 'cm−1', 'value': '692'}], 'solvent': 'KBr'}], 'labels': ['11'], 'melting_points': [{'units': '°C', 'value': '208'}], 'names': ['diphenyl(4-(pyren-1-yl)phenyl)phosphine oxide'], 'nmr_spectra': [{'apparatus': 'Bruker Avance', 'frequency': '75', 'frequency_units': 'MHz', 'nucleus': '13C', 'peaks': [{'shift': '144.98'}, {'shift': '144.95'}, {'shift': '136.13'}, {'shift': '133.20'}, {'shift': '132.17'}, {'shift': '132.04'}, {'shift': '131.98'}, {'shift': '131.82'}, {'shift': '131.34'}, {'shift': '130.94'}, {'shift': '130.78'}, {'shift': '130.73'}, {'shift': '130.57'}, {'shift': '128.62'}, {'shift': '128.46'}, {'shift': '128.28'}, {'shift': '127.83'}, {'shift': '127.72'}, {'shift': '127.28'}, {'shift': '127.24'}, {'shift': '126.07'}, {'shift': '125.32'}, {'shift': '125.00'}, {'shift': '124.85'}, {'shift': '124.70'}, {'shift': '124.62'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '500', 'frequency_units': 'MHz', 'nucleus': '31P', 'peaks': [{'shift': '29.141'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '300', 'frequency_units': 'MHz', 'nucleus': '1H', 'peaks': [{'coupling': '7.8', 'coupling_units': 'Hz', 'multiplicity': 't', 'number': '2H', 'shift': '8.19'}, {'coupling': '7.5', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '8.15'}, {'coupling': '9.2', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '8.11'}, {'coupling': '1.4', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '2H', 'shift': '8.07'}, {'multiplicity': 'm', 'number': '2H', 'shift': '8.03–7.98'}, {'coupling': '7.8', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '7.93'}, {'multiplicity': 'm', 'number': '6H', 'shift': '7.88–7.78'}, {'coupling': '8.1 , 2.4', 'coupling_units': 'Hz', 'multiplicity': 'dd', 'number': '2H', 'shift': '7.72'}, {'multiplicity': 'm', 'number': '6H', 'shift': '7.60–7.50'}], 'solvent': 'CDCl3'}], 'quantum_yields': [{'type': 'Φf', 'value': '0.67'}], 'roles': ['product', 'compound'], 'uvvis_spectra': [{'apparatus': 'Jasco V-550 spectrophotometer', 'peaks': [{'units': 'nm', 'value': '270'}, {'units': 'nm', 'value': '281'}, {'units': 'nm', 'value': '330'}, {'units': 'nm', 'value': '346'}, {'units': 'nm', 'value': '355'}], 'solvent': 'chloroform'}, {'apparatus': 'Jasco V-550 spectrophotometer', 'peaks': [{'units': 'nm', 'value': '480'}], 'solvent': 'chloroform'}]}, {'ir_spectra': [{'peaks': [{'units': 'cm−1', 'value': '3047'}, {'units': 'cm−1', 'value': '1594'}, {'units': 'cm−1', 'value': '1180'}, {'units': 'cm−1', 'value': '849'}, {'units': 'cm−1', 'value': '696'}], 'solvent': 'KBr'}], 'labels': ['12'], 'melting_points': [{'units': '°C', 'value': '244'}], 'names': ['diphenyl(4′-(pyren-1-yl)-[1,1′-biphenyl]-4-yl)phosphine oxide'], 'nmr_spectra': [{'apparatus': 'Bruker Avance', 'frequency': '75', 'frequency_units': 'MHz', 'nucleus': '13C', 'peaks': [{'shift': '144.24'}, {'shift': '141.11'}, {'shift': '138.64'}, {'shift': '136.85'}, {'shift': '133.21'}, {'shift': '132.74'}, {'shift': '132.60'}, {'shift': '132.15'}, {'shift': '132.01'}, {'shift': '131.41'}, {'shift': '131.15'}, {'shift': '130.88'}, {'shift': '130.69'}, {'shift': '130.50'}, {'shift': '128.61'}, {'shift': '128.45'}, {'shift': '127.59'}, {'shift': '127.51'}, {'shift': '127.47'}, {'shift': '127.34'}, {'shift': '127.19'}, {'shift': '127.03'}, {'shift': '126.03'}, {'shift': '125.18'}, {'shift': '125.03'}, {'shift': '124.87'}, {'shift': '124.66'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '500', 'frequency_units': 'MHz', 'nucleus': '31P', 'peaks': [{'shift': '28.996'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '300', 'frequency_units': 'MHz', 'nucleus': '1H', 'peaks': [{'multiplicity': 'm', 'number': '4H', 'shift': '8.24–8.15'}, {'multiplicity': 's', 'number': '2H', 'shift': '8.09'}, {'multiplicity': 'm', 'number': '3H', 'shift': '8.05–7.98'}, {'multiplicity': 'm', 'number': '12H', 'shift': '7.81–7.70'}, {'multiplicity': 'm', 'number': '6H', 'shift': '7.60–7.47'}], 'solvent': 'CDCl3'}], 'quantum_yields': [{'type': 'Φf', 'value': '0.87'}], 'roles': ['product', 'compound'], 'uvvis_spectra': [{'apparatus': 'Jasco V-550 spectrophotometer', 'peaks': [{'units': 'nm', 'value': '269'}, {'units': 'nm', 'value': '281'}, {'units': 'nm', 'value': '330'}, {'units': 'nm', 'value': '347'}, {'units': 'nm', 'value': '362'}], 'solvent': 'chloroform'}, {'apparatus': 'Jasco V-550 spectrophotometer', 'peaks': [{'units': 'nm', 'value': '476'}], 'solvent': 'chloroform'}]}, {'names': ['13C']}, {'names': ['1H']}, {'ir_spectra': [{'peaks': [{'units': 'cm−1', 'value': '3048'}, {'units': 'cm−1', 'value': '2917'}, {'units': 'cm−1', 'value': '1598'}, {'units': 'cm−1', 'value': '1186'}, {'units': 'cm−1', 'value': '848'}, {'units': 'cm−1', 'value': '717'}], 'solvent': 'KBr'}], 'labels': ['14'], 'melting_points': [{'units': '°C', 'value': '188'}], 'names': ['(2,5-dimethyl-4-(pyren-1-yl)phenyl)diphenyl phosphine oxide'], 'nmr_spectra': [{'apparatus': 'Bruker Avance', 'frequency': '300', 'frequency_units': 'MHz', 'nucleus': '1H', 'peaks': [{'coupling': '7.9', 'coupling_units': 'Hz', 'multiplicity': 't', 'number': '2H', 'shift': '8.21'}, {'coupling': '7.2', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '8.17'}, {'multiplicity': 's', 'number': '2H', 'shift': '8.10'}, {'multiplicity': 'm', 'number': '2H', 'shift': '8.03–7.99'}, {'coupling': '7.9', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '7.84'}, {'multiplicity': 'm', 'number': '4H', 'shift': '7.83–7.77'}, {'coupling': '9.1', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '7.67'}, {'multiplicity': 'm', 'number': '6H', 'shift': '7.61–7.50'}, {'coupling': '4.3', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '7.31'}, {'coupling': '14.3', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '7.09'}, {'multiplicity': 's', 'number': '3H', 'shift': '2.47'}, {'multiplicity': 's', 'number': '3H', 'shift': '1.90'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '75', 'frequency_units': 'MHz', 'nucleus': '13C', 'peaks': [{'shift': '144.58'}, {'shift': '140.10'}, {'shift': '139.99'}, {'shift': '135.91'}, {'shift': '135.07'}, {'shift': '134.92'}, {'shift': '134.28'}, {'shift': '134.14'}, {'shift': '133.96'}, {'shift': '133.79'}, {'shift': '133.56'}, {'shift': '132.19'}, {'shift': '132.04'}, {'shift': '131.93'}, {'shift': '131.78'}, {'shift': '131.26'}, {'shift': '130.82'}, {'shift': '130.68'}, {'shift': '128.64'}, {'shift': '128.47'}, {'shift': '127.68'}, {'shift': '127.45'}, {'shift': '127.27'}, {'shift': '126.69'}, {'shift': '126.02'}, {'shift': '125.21'}, {'shift': '125.03'}, {'shift': '124.92'}, {'shift': '124.45'}, {'shift': '21.23'}, {'shift': '19.75'}], 'solvent': 'CDCl3'}], 'quantum_yields': [{'type': 'Φf', 'value': '0.51'}], 'roles': ['product', 'compound', 'compounds', 'data of'], 'uvvis_spectra': [{'apparatus': 'Jasco V-550 spectrophotometer', 'peaks': [{'units': 'nm', 'value': '269'}, {'units': 'nm', 'value': '279'}, {'units': 'nm', 'value': '315'}, {'units': 'nm', 'value': '330'}, {'units': 'nm', 'value': '345'}, {'units': 'nm', 'value': '341'}], 'solvent': 'chloroform'}, {'apparatus': 'Jasco V-550 spectrophotometer', 'peaks': [{'units': 'nm', 'value': '465'}], 'solvent': 'chloroform'}]}, {'names': ['CDCl3']}, {'ir_spectra': [{'peaks': [{'units': 'cm−1', 'value': '3038'}, {'units': 'cm−1', 'value': '2961'}, {'units': 'cm−1', 'value': '1598'}, {'units': 'cm−1', 'value': '1434'}, {'units': 'cm−1', 'value': '1192'}, {'units': 'cm−1', 'value': '844'}, {'units': 'cm−1', 'value': '696'}], 'solvent': 'KBr'}], 'labels': ['15'], 'melting_points': [{'units': '°C', 'value': '273'}], 'names': ['(9,9-dimethyl-7-(pyren-1-yl)-9H-fluoren-2-yl)diphenylphosphine ' 'oxide'], 'nmr_spectra': [{'apparatus': 'Bruker Avance', 'frequency': '500', 'frequency_units': 'MHz', 'nucleus': '31P', 'peaks': [{'shift': '29.932'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '300', 'frequency_units': 'MHz', 'nucleus': '1H', 'peaks': [{'coupling': '9.1', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '2H', 'shift': '8.22'}, {'coupling': '7.6', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '8.18'}, {'coupling': '7.6', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '8.15'}, {'multiplicity': 's', 'number': '2H', 'shift': '8.08'}, {'multiplicity': 'm', 'number': '4H', 'shift': '8.05–7.97'}, {'coupling': '7.6', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '7.90'}, {'coupling': '7.8 , 2.3', 'coupling_units': 'Hz', 'multiplicity': 'dd', 'number': '1H', 'shift': '7.82'}, {'multiplicity': 'm', 'number': '5H', 'shift': '7.78–7.70'}, {'coupling': '7.8', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '7.62'}, {'multiplicity': 'm', 'number': '7H', 'shift': '7.58–7.46'}, {'multiplicity': 's', 'number': '6H', 'shift': '1.56'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '75', 'frequency_units': 'MHz', 'nucleus': '13C', 'peaks': [{'shift': '154.52'}, {'shift': '154.10'}, {'shift': '153.94'}, {'shift': '142.69'}, {'shift': '141.48'}, {'shift': '137.59'}, {'shift': '136.87'}, {'shift': '133.51'}, {'shift': '132.10'}, {'shift': '131.97'}, {'shift': '131.84'}, {'shift': '131.35'}, {'shift': '131.27'}, {'shift': '131.19'}, {'shift': '130.81'}, {'shift': '130.54'}, {'shift': '129.88'}, {'shift': '129.74'}, {'shift': '128.50'}, {'shift': '128.35'}, {'shift': '127.52'}, {'shift': '127.39'}, {'shift': '127.30'}, {'shift': '126.46'}, {'shift': '126.34'}, {'shift': '125.95'}, {'shift': '125.09'}, {'shift': '125.01'}, {'shift': '124.97'}, {'shift': '124.77'}, {'shift': '124.58'}, {'shift': '120.54'}, {'shift': '119.86'}, {'shift': '119.68'}, {'shift': '47.28'}, {'shift': '26.90'}], 'solvent': 'CDCl3'}], 'quantum_yields': [{'type': 'Φf', 'value': '0.88'}], 'roles': ['product', 'compound'], 'uvvis_spectra': [{'apparatus': 'Jasco V-550 spectrophotometer', 'peaks': [{'units': 'nm', 'value': '268'}, {'units': 'nm', 'value': '280'}, {'units': 'nm', 'value': '312'}, {'units': 'nm', 'value': '351'}, {'units': 'nm', 'value': '368'}], 'solvent': 'chloroform'}, {'apparatus': 'Jasco V-550 spectrophotometer', 'peaks': [{'units': 'nm', 'value': '473'}], 'solvent': 'chloroform'}]}, {'ir_spectra': [{'peaks': [{'units': 'cm−1', 'value': '3049'}, {'units': 'cm−1', 'value': '1585'}, {'units': 'cm−1', 'value': '1187'}, {'units': 'cm−1', 'value': '847'}, {'units': 'cm−1', 'value': '695'}], 'solvent': 'KBr'}], 'labels': ['10'], 'melting_points': [{'units': '°C', 'value': '243'}], 'names': ['diphenyl(pyren-1-yl)phosphine oxide'], 'nmr_spectra': [{'apparatus': 'Bruker Avance', 'frequency': '300', 'frequency_units': 'MHz', 'nucleus': '1H', 'peaks': [{'coupling': '9.1', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '8.93'}, {'multiplicity': 'm', 'number': '3H', 'shift': '8.27–8.15'}, {'multiplicity': 'm', 'number': '4H', 'shift': '8.11–8.00'}, {'multiplicity': 'm', 'number': '5H', 'shift': '7.80–7.67'}, {'multiplicity': 'm', 'number': '2H', 'shift': '7.60–7.52'}, {'multiplicity': 'm', 'number': '4H', 'shift': '7.51–7.42'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '75', 'frequency_units': 'MHz', 'nucleus': '13C', 'peaks': [{'shift': '134.16'}, {'shift': '133.89'}, {'shift': '132.50'}, {'shift': '132.22'}, {'shift': '132.09'}, {'shift': '131.85'}, {'shift': '131.22'}, {'shift': '131.06'}, {'shift': '130.94'}, {'shift': '130.34'}, {'shift': '129.82'}, {'shift': '128.87'}, {'shift': '128.66'}, {'shift': '128.50'}, {'shift': '127.06'}, {'shift': '126.44'}, {'shift': '126.28'}, {'shift': '126.15'}, {'shift': '123.59'}, {'shift': '123.41'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '500', 'frequency_units': 'MHz', 'nucleus': '31P', 'peaks': [{'shift': '32.886'}], 'solvent': 'CDCl3'}], 'quantum_yields': [{'type': 'Φf', 'value': '0.91'}], 'roles': ['data of', 'product', 'compound', 'compounds', 'data for', 'derivatives'], 'uvvis_spectra': [{'apparatus': 'Jasco V-550 spectrophotometer', 'peaks': [{'units': 'nm', 'value': '491'}], 'solvent': 'chloroform'}, {'apparatus': 'Jasco V-550 spectrophotometer', 'peaks': [{'units': 'nm', 'value': '271'}, {'units': 'nm', 'value': '282'}, {'units': 'nm', 'value': '325'}, {'units': 'nm', 'value': '339'}, {'units': 'nm', 'value': '353'}, {'units': 'nm', 'value': '350'}], 'solvent': 'chloroform'}]}, {'ir_spectra': [{'peaks': [{'units': 'cm−1', 'value': '3039'}, {'units': 'cm−1', 'value': '1582'}, {'units': 'cm−1', 'value': '1187'}, {'units': 'cm−1', 'value': '851'}, {'units': 'cm−1', 'value': '697'}], 'solvent': 'KBr'}], 'labels': ['13'], 'melting_points': [{'units': '°C', 'value': '196'}], 'names': ['pyrene', 'Pyrene', 'diphenyl(3-(pyren-1-yl)phenyl)phosphine oxide'], 'nmr_spectra': [{'apparatus': 'Bruker Avance', 'frequency': '300', 'frequency_units': 'MHz', 'nucleus': '1H', 'peaks': [{'coupling': '7.8', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '2H', 'shift': '8.17'}, {'coupling': '7.8', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '1H', 'shift': '8.14'}, {'coupling': '2.9', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '2H', 'shift': '8.05'}, {'multiplicity': 'm', 'number': '3H', 'shift': '8.03–7.93'}, {'coupling': '7.8', 'coupling_units': 'Hz', 'multiplicity': 'd', 'number': '2H', 'shift': '7.91'}, {'multiplicity': 'm', 'number': '6H', 'shift': '7.86–7.75'}, {'coupling': '7.6 , 2.9', 'coupling_units': 'Hz', 'multiplicity': 'td', 'number': '1H', 'shift': '7.66'}, {'multiplicity': 'm', 'number': '6H', 'shift': '7.56–7.45'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '75', 'frequency_units': 'MHz', 'nucleus': '13C', 'peaks': [{'shift': '141.45'}, {'shift': '141.36'}, {'shift': '136.08'}, {'shift': '134.07'}, {'shift': '134.05'}, {'shift': '133.92'}, {'shift': '133.84'}, {'shift': '133.37'}, {'shift': '132.80'}, {'shift': '132.55'}, {'shift': '132.09'}, {'shift': '132.01'}, {'shift': '131.97'}, {'shift': '131.95'}, {'shift': '131.31'}, {'shift': '130.93'}, {'shift': '130.85'}, {'shift': '130.80'}, {'shift': '130.73'}, {'shift': '128.61'}, {'shift': '128.56'}, {'shift': '128.52'}, {'shift': '128.46'}, {'shift': '128.25'}, {'shift': '127.73'}, {'shift': '127.62'}, {'shift': '127.47'}, {'shift': '127.23'}, {'shift': '126.02'}, {'shift': '125.25'}, {'shift': '124.91'}, {'shift': '124.79'}, {'shift': '124.67'}, {'shift': '124.59'}, {'shift': '124.51'}], 'solvent': 'CDCl3'}, {'apparatus': 'Bruker Avance', 'frequency': '500', 'frequency_units': 'MHz', 'nucleus': '31P', 'peaks': [{'shift': '29.01'}], 'solvent': 'CDCl3'}], 'quantum_yields': [{'type': 'Φf', 'value': '0.54'}], 'roles': ['product', 'compound', 'data for', 'data of', 'derivative'], 'uvvis_spectra': [{'apparatus': 'Jasco V-550 spectrophotometer', 'peaks': [{'units': 'nm', 'value': '272'}, {'units': 'nm', 'value': '281'}, {'units': 'nm', 'value': '330'}, {'units': 'nm', 'value': '348'}, {'units': 'nm', 'value': '354'}], 'solvent': 'chloroform'}, {'apparatus': 'Jasco V-550 spectrophotometer', 'peaks': [{'units': 'nm', 'value': '467'}], 'solvent': 'chloroform'}]}] results = [ [ ( ['12'], 'c12cccc3ccc4c(ccc(cc1)c4c23)c1ccc(C2=CC=C(CC2)P(=O)(C2=CCCC=C2)C2CCCCC2)cc1'), ( ['15'], 'c1c2ccc3ccc(c4ccc5C6=C(C=C(CC6)[C](=O)(C6=CCCC=C6)C6C=CC=CC6)C(C)(C)c5c4)c4ccc(cc1)c2c34'), ( ['11'], 'c1c2ccc3CCC(=c4ccc(cc1)c2c34)c1ccc(P(C2CCCCC2)(O)C2C=CC=CC2)cc1'), (['u'], ''), ( ['13'], 'C1C2=c3c(=CC1)ccc1c(ccc(CC2)c31)C1=CC(=CCC1)[C]1(=CC=CC=C1)(C1=CCCC=C1)(C1=CCCC=C1)O'), (['10'], '')], [(['znuum'], '')]] csr.extract.substitute_labels(records, results)
"""Tests for :func:`nilearn.plotting.plot_roi`.""" import pytest import numpy as np import matplotlib.pyplot as plt from nibabel import Nifti1Image from nilearn.plotting import plot_roi from nilearn.image.resampling import coord_transform from .testing_utils import MNI_AFFINE def demo_plot_roi(**kwargs): """Demo plotting an ROI.""" data = np.zeros((91, 109, 91)) # Color a asymmetric rectangle around Broca area. x, y, z = -52, 10, 22 x_map, y_map, z_map = coord_transform(x, y, z, np.linalg.inv(MNI_AFFINE)) data[int(x_map) - 5:int(x_map) + 5, int(y_map) - 3:int(y_map) + 3, int(z_map) - 10:int(z_map) + 10] = 1 img = Nifti1Image(data, MNI_AFFINE) return plot_roi(img, title="Broca's area", **kwargs) @pytest.mark.parametrize('view_type', ['contours', 'continuous']) @pytest.mark.parametrize('black_bg', [True, False]) @pytest.mark.parametrize('threshold', [.5, .2]) @pytest.mark.parametrize('alpha', [.7, .1]) def test_plot_roi_view_types(view_type, black_bg, threshold, alpha): """Smoke-test for plot_roi. Tests different combinations of parameters `view_type`, `black_bg`, `threshold`, and `alpha`. """ kwargs = dict() if view_type == 'contours': kwargs["linewidth"] = 2. demo_plot_roi(view_type=view_type, black_bg=black_bg, threshold=threshold, alpha=alpha, **kwargs) plt.close() def test_plot_roi_view_type_error(): """Test error message for invalid view_type.""" with pytest.raises(ValueError, match='Unknown view type:'): demo_plot_roi(view_type='flled') def test_demo_plot_roi_output_file(tmpdir): """Tests plot_roi file saving capabilities.""" filename = str(tmpdir.join('test.png')) with open(filename, 'wb') as fp: out = demo_plot_roi(output_file=fp) assert out is None
# Generated by Django 3.1.7 on 2021-02-26 15:37 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Individual', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('gedcom_id', models.CharField(blank=True, max_length=200)), ('name_last', models.CharField(default='НЕИЗВЕСТНО', max_length=200)), ('name_first', models.CharField(blank=True, max_length=200)), ('patronym', models.CharField(blank=True, max_length=200)), ('name_maiden', models.CharField(blank=True, max_length=200)), ('gender', models.CharField(blank=True, choices=[('F', 'женский'), ('M', 'мужской'), ('U', 'неизвестно')], max_length=3)), ('date_birth', models.CharField(blank=True, max_length=200)), ('date_death', models.CharField(blank=True, max_length=200)), ('place_birth', models.CharField(blank=True, max_length=200)), ('place_death', models.CharField(blank=True, max_length=200)), ('individual_notes', models.TextField(blank=True, max_length=500)), ], ), migrations.CreateModel( name='Role', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('role_name', models.CharField(blank=True, max_length=200)), ], ), migrations.CreateModel( name='Relationship', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('relationship_type', models.CharField(blank=True, max_length=200)), ('individual_1_role', models.CharField(blank=True, max_length=200)), ('individual_2_role', models.CharField(blank=True, max_length=200)), ('marriage_date', models.CharField(blank=True, max_length=200)), ('individual_1_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='Individual_1', to='familyroster.individual')), ('individual_2_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='Individual_2', to='familyroster.individual')), ], ), ]
from ._resource import Resource from ._resource_provider import ResourceProvider from ._swagger_module import SwaggerModule, DataPlaneModule, MgmtPlaneModule from ._swagger_specs import SwaggerSpecs from ._swagger_loader import SwaggerLoader
import os import torch as t from utils.config import opt from data.dataset import Dataset, TestDataset from torch.utils import data as data_ from tqdm import tqdm from model import FasterRCNNVGG16 from trainer import FasterRCNNTrainer from data.util import read_image from utils.vis_tool import vis_bbox from utils import array_tool as at from utils.eval_tool import calc_detection_voc_prec_rec import numpy as np def eval_detection_voc( pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults=None, iou_thresh=0.5): prec, rec = calc_detection_voc_prec_rec( pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults, iou_thresh) return prec, rec def eval(dataloader, faster_rcnn, test_num=10000): total = 0 pred_bboxes, pred_labels, pred_scores = list(), list(), list() gt_bboxes, gt_labels, gt_difficults = list(), list(), list() for ii, (imgs, sizes, gt_bboxes_, gt_labels_, gt_difficults_) in tqdm(enumerate(dataloader)): sizes = [sizes[0][0].item(), sizes[1][0].item()] pred_bboxes_, pred_labels_, pred_scores_ = faster_rcnn.predict(imgs, [sizes]) gt_bboxes += list(gt_bboxes_.numpy()) gt_labels += list(gt_labels_.numpy()) gt_difficults += list(gt_difficults_.numpy()) pred_bboxes += pred_bboxes_ pred_labels += pred_labels_ pred_scores += pred_scores_ if ii == test_num: break # for target,predict in zip(gt_labels,pred_labels): # print('target:',target,'predict',predict) # total += len(i) # print('labels:',len(total)) result = eval_detection_voc( pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults) return result faster_rcnn = FasterRCNNVGG16() trainer = FasterRCNNTrainer(faster_rcnn).cuda() trainer.load('/home/kdd/Documents/simple-faster-rcnn-pytorch/checkpoints/fasterrcnn_11101036_0.5348237306784394') opt.caffe_pretrain=True # get dataloader testset = TestDataset(opt) test_dataloader = data_.DataLoader(testset, batch_size=1, num_workers=opt.test_num_workers, shuffle=False, \ pin_memory=True ) result = eval(test_dataloader,faster_rcnn) prec, recall = result[0], result[1]
x=int(input()) v=0 if x>=1 and x<=100: for y in range(0,x): a=input().split(' ') z=[] v+=1 for i in a: if (int(i))<=1000: try: int(i) z.append(int(i)) except: continue if len(z)==3: z.sort() print(f'Case {v}: {z[0]} {z[1]} {z[2]}')
import pyDes import base64 from secret import security key = security.key iv = security.iv def encrypt(data): k = pyDes.des(key, pyDes.CBC, iv, pad=None, padmode=pyDes.PAD_PKCS5) return base64.b64encode(k.encrypt(data)) def decrypt(data): k = pyDes.des(key, pyDes.CBC, iv, pad=None, padmode=pyDes.PAD_PKCS5) return k.decrypt(base64.b64decode(data))
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: object_detection/protos/multiscale_anchor_generator.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n9object_detection/protos/multiscale_anchor_generator.proto\x12\x17object_detection.protos\"\xba\x01\n\x19MultiscaleAnchorGenerator\x12\x14\n\tmin_level\x18\x01 \x01(\x05:\x01\x33\x12\x14\n\tmax_level\x18\x02 \x01(\x05:\x01\x37\x12\x17\n\x0c\x61nchor_scale\x18\x03 \x01(\x02:\x01\x34\x12\x15\n\raspect_ratios\x18\x04 \x03(\x02\x12\x1c\n\x11scales_per_octave\x18\x05 \x01(\x05:\x01\x32\x12#\n\x15normalize_coordinates\x18\x06 \x01(\x08:\x04true') _MULTISCALEANCHORGENERATOR = DESCRIPTOR.message_types_by_name['MultiscaleAnchorGenerator'] MultiscaleAnchorGenerator = _reflection.GeneratedProtocolMessageType('MultiscaleAnchorGenerator', (_message.Message,), { 'DESCRIPTOR' : _MULTISCALEANCHORGENERATOR, '__module__' : 'object_detection.protos.multiscale_anchor_generator_pb2' # @@protoc_insertion_point(class_scope:object_detection.protos.MultiscaleAnchorGenerator) }) _sym_db.RegisterMessage(MultiscaleAnchorGenerator) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _MULTISCALEANCHORGENERATOR._serialized_start=87 _MULTISCALEANCHORGENERATOR._serialized_end=273 # @@protoc_insertion_point(module_scope)
## # # Logistic regression # # Y_{i} | \beta \sim \textrm{Bin}\left(n_{i},e^{x_{i}^{T}\beta}/(1+e^{x_{i}^{T}\beta})\right) # \beta \sim N\left(\beta_{0},\Sigma_{0}\right) # ## import sys import numpy as np ######################################################################################## ## Handle batch job arguments: nargs = len(sys.argv) print 'Command line arguments: ' + str(sys.argv) #### # sim_start ==> Lowest simulation number to be analyzed by this particular batch job ### ####################### sim_start = 1000 length_datasets = 200 ####################### # Note: this only sets the random seed for numpy, so if you intend # on using other modules to generate random numbers, then be sure # to set the appropriate RNG here if (nargs==0): sim_num = sim_start + 1 np.random.seed(1330931) else: # Decide on the job number, usually start at 1000: sim_num = sim_start + int(sys.argv[2]) # Set a different random seed for every job number!!! np.random.seed(762*sim_num + 1330931) # Simulation datasets numbered 1001-1200 ######################################################################################## ######################################################################################## def bayes_logreg(n,y,X,beta_0,Sigma_0_inv,niter=10000,burnin=1000,print_every=1000,retune=100,verbose=False): # Stuff... return None ################################################# beta_0 = np.zeros(2) Sigma_0_inv = np.diag(np.ones(p)) # More stuff... ################################################# # Read data corresponding to appropriate sim_num: # Extract X and y: # Fit the Bayesian model: # Extract posterior quantiles... # Write results to a (99 x p) csv file... # Go celebrate.
#!/usr/bin/env python3 from .ast import Ast from .error_logger import ErrorLogger from .token_types import Token, TokenType class ParseError(RuntimeError): pass class Parser: def __init__(self, tokens): self.current = 0 self.tokens = tokens def peek(self) -> Token: return self.tokens[self.current] def previous(self) -> Token: return self.tokens[self.current - 1] def advance(self) -> Token: token = self.peek() if not self.is_end(): self.current += 1 return token def is_end(self) -> bool: return self.peek().token_type == TokenType.EOF def match(self, *token_types) -> bool: for token_type in token_types: if self.check(token_type): self.advance() return True return False def check(self, token_type: TokenType): return (not self.is_end()) and self.peek().token_type == token_type def consume(self, token_type: TokenType, message: str) -> Token: if self.check(token_type): return self.advance() self.error(self.peek(), message) def error(self, token: Token, message: str): ErrorLogger.error(token=token, message=message) raise ParseError() def parse(self) -> Ast.Expr: """ program -> declaration* EOF """ statements = [] while not self.is_end(): statements.append(self.declaration()) return statements def declaration(self): """ declaration -> funDecl | varDecl | statement """ try: if self.match(TokenType.FUN): return self.function_declaration("function") if self.match(TokenType.VAR): return self.variable_declaration() return self.statement() except ParseError: self.synchronize() def function_declaration(self, kind): """ funDecl -> IDENTIFIER "(" params? ")" block params -> IDENTIFIER ("," IDENTIFIER)* """ name = self.consume(TokenType.IDENTIFIER, f"expected {kind} name.") self.consume(TokenType.LEFT_PAREN, f"expected ( after {kind} name.") params = [] if not self.check(TokenType.RIGHT_PAREN): params.append(self.consume(TokenType.IDENTIFIER, "expected identifier.")) while self.match(TokenType.COMMA): params.append( self.consume(TokenType.IDENTIFIER, "expected identifier.") ) self.consume(TokenType.RIGHT_PAREN, "expected ) after params") self.consume(TokenType.LEFT_BRACE, f"expected {{ before {kind} body.") body = self.block() return Ast.Function(name, params, body) def variable_declaration(self): """ varDecl -> "var" IDENTIFIER ( "=" expression )? ; """ name = self.consume(TokenType.IDENTIFIER, "expected identifier") val = None if self.match(TokenType.EQUAL): val = self.expression() self.consume(TokenType.SEMI_COLON, "expected ;") return Ast.Var(name, val) def statement(self): """ statement -> if_statement | while_statement | for_statement | expr_statement | print_statement | return_statement | block """ if self.match(TokenType.IF): return self.if_statement() if self.match(TokenType.WHILE): return self.while_statement() if self.match(TokenType.FOR): return self.for_statement() if self.match(TokenType.PRINT): return self.print_statement() if self.match(TokenType.RETURN): return self.return_statement() if self.match(TokenType.LEFT_BRACE): return self.block() return self.expression_statement() def while_statement(self): """ while_statement => "while" "(" expression ")" statement """ self.consume(TokenType.LEFT_PAREN, "Expected (") cond = self.expression() self.consume(TokenType.RIGHT_PAREN, "Expected )") body = self.statement() return Ast.While(cond, body) def for_statement(self): """ for_statement => "for" "(" (varDecl | expression_statement | ";") (expression)? ; (expression)?")" statement """ self.consume(TokenType.LEFT_PAREN, "Expected (") if self.match(TokenType.SEMI_COLON): init = None if self.match(TokenType.VAR): init = self.variable_declaration() else: init = self.expression_statement() cond = Ast.Literal(True) if not self.check(TokenType.SEMI_COLON): cond = self.expression() self.consume(TokenType.SEMI_COLON, "expected ;") increment = None if not self.check(TokenType.RIGHT_PAREN): increment = self.expression() self.consume(TokenType.RIGHT_PAREN, "expected )") body = self.statement() if increment is not None: body = Ast.Block([body, Ast.Expression(increment)]) body = Ast.While(cond, body) if init is not None: body = Ast.Block([init, body]) return body def if_statement(self): """ if_statement => "if" "(" expression ")" statement ("else" statement)? """ self.consume(TokenType.LEFT_PAREN, "Expected (") cond = self.expression() self.consume(TokenType.RIGHT_PAREN, "Expected )") then_branch = self.statement() else_branch = None if self.match(TokenType.ELSE): else_branch = self.statement() return Ast.If(cond, then_branch, else_branch) def print_statement(self): expr = self.expression() self.consume(TokenType.SEMI_COLON, "expected semicolon") return Ast.Print(expr) def return_statement(self): expr = None if not self.check(TokenType.SEMI_COLON): expr = self.expression() self.consume(TokenType.SEMI_COLON, "expected semicolon") return Ast.Return(expr) def expression_statement(self): expr = self.expression() self.consume(TokenType.SEMI_COLON, "expected semicolon") return Ast.Expression(expr) def block(self) -> Ast.Block: """ block = "{" (declaration)* "}" """ declarations = [] while not (self.check(TokenType.RIGHT_BRACE) or self.is_end()): declaration = self.declaration() declarations.append(declaration) self.consume(TokenType.RIGHT_BRACE, "expected }.") return Ast.Block(declarations) def expression(self) -> Ast.Expr: """ expression -> assignment """ return self.assignment() def assignment(self) -> Ast.Assign: """ assignment -> IDENTIFIER "=" assignment | logic_or """ expr = self.logic_or() if self.match(TokenType.EQUAL): token = self.previous() value = self.assignment() if isinstance(expr, Ast.Variable): return Ast.Assign(expr.name, value) self.error(token, "Invalid assignement target") return expr def logic_or(self): """ logic_or -> logic_and ("or" logic_and)* """ left = self.logic_and() right = None while self.match(TokenType.OR): op = self.previous() right = self.logic_and() left = Ast.Logical(left, op, right) return left def logic_and(self): """ logic_and -> equality ("or" equality)* """ left = self.equality() while self.match(TokenType.AND): op = self.previous() right = self.equality() left = Ast.Logical(left, op, right) return left def equality(self) -> Ast.Expr: """ equality -> comparison (('==' | '!=') equality)* """ expr = self.comparison() while self.match(TokenType.EQUAL_EQUAL, TokenType.NOT_EQUAL): op = self.previous() right = self.equality() expr = Ast.Binary(expr, op, right) return expr def comparison(self) -> Ast.Expr: """ comparison -> addition ((">" | ">=" | "<" | "<=") comparison)* """ expr = self.addition() while self.match( TokenType.LESSER, TokenType.LESSER_EQUAL, TokenType.GREATER, TokenType.GREATER_EQUAL, ): op = self.previous() right = self.comparison() expr = Ast.Binary(expr, op, right) return expr def addition(self) -> Ast.Expr: """ addition -> multiplication (("+" | "-") addition)* """ expr = self.multiplication() while self.match(TokenType.PLUS, TokenType.MINUS): op = self.previous() right = self.addition() expr = Ast.Binary(expr, op, right) return expr def multiplication(self) -> Ast.Expr: """ multiplication -> unary (("*" | "/") multiplication)* """ expr = self.unary() while self.match(TokenType.STAR, TokenType.SLASH): op = self.previous() right = self.multiplication() expr = Ast.Binary(expr, op, right) return expr def unary(self) -> Ast.Expr: """ unary -> ("!" | "-") unary | call" """ if self.match(TokenType.MINUS, TokenType.NOT): op = self.previous() right = self.unary() expr = Ast.Unary(op, right) return expr return self.call() def call(self) -> Ast.Expr: """ call -> primary ("(" arguments? ")")* """ expr = self.primary() while self.match(TokenType.LEFT_PAREN): args = self.arguments() token = self.consume(TokenType.RIGHT_PAREN, "expected ).") expr = Ast.Call(expr, token, args) return expr def arguments(self) -> list: """ arguments -> expression (", " expression)* """ args = [] while not self.check(TokenType.RIGHT_PAREN): args.append(self.expression()) while self.match(TokenType.COMMA): args.append(self.expression()) if len(args) > 255: self.error(self.peek(), "cannot have more than 255 arguments") return args def primary(self) -> Ast.Expr: """ primary -> NUMBER | STRING | "false" | "true" | "nil" | "(" expression ")" | IDENTIFIER """ if self.match(TokenType.FALSE): return Ast.Literal(False) if self.match(TokenType.TRUE): return Ast.Literal(True) if self.match(TokenType.NIL): return Ast.Literal(None) if self.match(TokenType.STRING, TokenType.NUMBER): return Ast.Literal(self.previous().literal) if self.match(TokenType.IDENTIFIER): return Ast.Variable(self.previous()) if self.match(TokenType.LEFT_PAREN): expr = self.expression() self.consume(TokenType.RIGHT_PAREN, "Exprected ')' after expression") return Ast.Grouping(expr) self.error(self.peek(), "Expcted expression") def synchronize(self): while not self.is_end(): if self.match(TokenType.SEMI_COLON): return for token_type in [ TokenType.CLASS, TokenType.FUN, TokenType.VAR, TokenType.FOR, TokenType.IF, TokenType.WHILE, TokenType.PRINT, TokenType.RETURN, ]: if self.check(token_type): return self.advance()
# coding=utf-8 import chatcommunicate import chatcommands from globalvars import GlobalVars from datahandling import _remove_pickle import collections import io import os import os.path import pytest import threading import time import yaml from fake import Fake from unittest.mock import Mock, patch def test_validate_yaml(): with open("rooms.yml", "r") as f: room_data = yaml.safe_load(f.read()) with open("users.yml", "r") as f: user_data = yaml.safe_load(f.read()) flatten = lambda l: [item for sublist in l for item in sublist] privileged_users = [] for site, site_rooms in room_data.items(): for room_id, room in site_rooms.items(): if "privileges" not in room: continue if "additional" in room["privileges"]: privileged_users.append(room["privileges"]["additional"]) if "inherit" not in room["privileges"]: privileged_users.append(room["privileges"]) privileged_users = set(flatten(privileged_users)) for uid in privileged_users: if uid not in user_data: pytest.fail("Privileged user {} does not have a corresponding entry in users.yml".format(uid)) def test_parse_room_config(): chatcommunicate.parse_room_config("test/test_rooms.yml") assert ("stackexchange.com", 11540) in chatcommunicate._command_rooms assert ("stackexchange.com", 30332) in chatcommunicate._command_rooms assert ("stackoverflow.com", 111347) in chatcommunicate._command_rooms assert ("stackexchange.com", 3) not in chatcommunicate._command_rooms assert ("stackexchange.com", 54445) not in chatcommunicate._command_rooms assert ("meta.stackexchange.com", 89) not in chatcommunicate._command_rooms assert ("stackexchange.com", 11540) in chatcommunicate._watcher_rooms assert ("stackexchange.com", 3) in chatcommunicate._watcher_rooms assert ("meta.stackexchange.com", 89) in chatcommunicate._watcher_rooms assert ("stackexchange.com", 30332) not in chatcommunicate._watcher_rooms assert ("stackexchange.com", 54445) not in chatcommunicate._watcher_rooms assert ("stackoverflow.com", 111347) not in chatcommunicate._watcher_rooms assert chatcommunicate._privileges[("stackexchange.com", 11540)] == {121520, 10145} assert chatcommunicate._privileges[("stackexchange.com", 30332)] == {121520, 10145} assert chatcommunicate._privileges[("stackexchange.com", 3)] == set() assert chatcommunicate._privileges[("stackexchange.com", 54445)] == set() assert chatcommunicate._privileges[("meta.stackexchange.com", 89)] == {262823} assert chatcommunicate._privileges[("stackoverflow.com", 111347)] == {3160466, 603346} assert len(chatcommunicate._room_roles) == 5 assert chatcommunicate._room_roles["debug"] == {("stackexchange.com", 11540)} assert chatcommunicate._room_roles["all"] == {("stackexchange.com", 11540), ("stackexchange.com", 54445), ("stackoverflow.com", 111347)} assert chatcommunicate._room_roles["metatavern"] == {("meta.stackexchange.com", 89)} assert chatcommunicate._room_roles["delay"] == {("meta.stackexchange.com", 89)} assert chatcommunicate._room_roles["no-all-caps title"] == {("meta.stackexchange.com", 89)} @patch("chatcommunicate.threading.Thread") @patch("chatcommunicate.Client") @patch("chatcommunicate.parse_room_config") def test_init(room_config, client_constructor, thread): client = Mock() client_constructor.return_value = client client.login.side_effect = Exception() # https://stackoverflow.com/questions/23337471/ with pytest.raises(Exception) as e: chatcommunicate.init("shoutouts", "to simpleflips", try_cookies=False) assert str(e.value).endswith("Failed to log into {}, max retries exceeded".format(next(iter(chatcommunicate._clients)))) client.login.side_effect = None client.login.reset_mock() client_constructor.reset_mock() room_config.side_effect = lambda _: room_config.get_original()("test/test_rooms.yml") GlobalVars.standby_mode = True # See GitHub Issue #2498, temporary workaround try: chatcommunicate.init("shoutouts", "to simpleflips", try_cookies=False) except Exception: return # This interferes with the following tests assert len(chatcommunicate._rooms) == 0 assert client_constructor.call_count == 3 client_constructor.assert_any_call("stackexchange.com") client_constructor.assert_any_call("stackoverflow.com") client_constructor.assert_any_call("meta.stackexchange.com") assert thread.call_count == 2 thread.assert_any_call(name="pickle ---rick--- runner", target=chatcommunicate.pickle_last_messages, daemon=True) thread.assert_any_call(name="message sender", target=chatcommunicate.send_messages, daemon=True) client.login.reset_mock() client_constructor.reset_mock() thread.reset_mock() GlobalVars.standby_mode = False counter = 0 def throw_every_other(*_): nonlocal counter counter += 1 if counter & 1: raise Exception() client.login.side_effect = throw_every_other # See GitHub Issue #2498, temporary workaround try: chatcommunicate.init("shoutouts", "to simpleflips", try_cookies=False) except Exception as e: return # Because this causes the following checks to fail assert client_constructor.call_count == 3 client_constructor.assert_any_call("stackexchange.com") client_constructor.assert_any_call("stackoverflow.com") client_constructor.assert_any_call("meta.stackexchange.com") assert thread.call_count == 2 thread.assert_any_call(name="pickle ---rick--- runner", target=chatcommunicate.pickle_last_messages, daemon=True) thread.assert_any_call(name="message sender", target=chatcommunicate.send_messages, daemon=True) assert len(chatcommunicate._rooms) == 3 assert chatcommunicate._rooms[("stackexchange.com", 11540)].deletion_watcher is True assert chatcommunicate._rooms[("stackexchange.com", 30332)].deletion_watcher is False assert chatcommunicate._rooms[("stackoverflow.com", 111347)].deletion_watcher is False @pytest.mark.skipif(os.path.isfile("messageData.p"), reason="shouldn't overwrite file") @patch("chatcommunicate.pickle.dump") def test_pickle_rick(dump): try: threading.Thread(target=chatcommunicate.pickle_last_messages, daemon=True).start() chatcommunicate._pickle_run.set() # Yield to the pickling thread until it acquires the lock again while len(chatcommunicate._pickle_run._cond._waiters) == 0: time.sleep(0) assert dump.call_count == 1 call, _ = dump.call_args_list[0] assert isinstance(call[0], chatcommunicate.LastMessages) assert isinstance(call[1], io.IOBase) and call[1].name == "messageData.p" finally: _remove_pickle("messageData.p") @patch("chatcommunicate._pickle_run") def test_message_sender(pickle_rick): chatcommunicate._last_messages = chatcommunicate.LastMessages({}, collections.OrderedDict()) threading.Thread(target=chatcommunicate.send_messages, daemon=True).start() room = chatcommunicate.RoomData(Mock(), -1, False) room.room.id = 11540 room.room._client.host = "stackexchange.com" room.room._client._do_action_despite_throttling.return_value = Fake({"json": lambda: {"id": 1}}) chatcommunicate._msg_queue.put((room, "test", None)) while not chatcommunicate._msg_queue.empty(): time.sleep(0) room.room._client._do_action_despite_throttling.assert_called_once_with(("send", 11540, "test")) room.room.reset_mock() assert chatcommunicate._last_messages.messages[("stackexchange.com", 11540)] == collections.deque((1,)) room.room.id = 30332 room.room._client._do_action_despite_throttling.return_value = Fake({"json": lambda: {"id": 2}}) chatcommunicate._msg_queue.put((room, "test", "did you hear about what happened to pluto")) while not chatcommunicate._msg_queue.empty(): time.sleep(0) room.room._client._do_action_despite_throttling.assert_called_once_with(("send", 30332, "test")) assert chatcommunicate._last_messages.messages[("stackexchange.com", 11540)] == collections.deque((1,)) assert chatcommunicate._last_messages.reports == collections.OrderedDict({("stackexchange.com", 2): "did you hear about what happened to pluto"}) @patch("chatcommunicate._msg_queue.put") @patch("chatcommunicate.get_last_messages") def test_on_msg(get_last_messages, post_msg): client = Fake({ "_br": { "user_id": 1337 }, "host": "stackexchange.com" }) room_data = chatcommunicate.RoomData(Mock(), -1, False) chatcommunicate._rooms[("stackexchange.com", 11540)] = room_data chatcommunicate.on_msg(Fake({}, spec=chatcommunicate.events.MessageStarred), None) # don't reply to events we don't care about msg1 = Fake({ "message": { "room": { "id": 11540, }, "owner": { "id": 1, }, "parent": None, "content": "shoutouts to simpleflips" } }, spec=chatcommunicate.events.MessagePosted) chatcommunicate.on_msg(msg1, client) msg2 = Fake({ "message": { "room": { "id": 11540 }, "owner": { "id": 1337 }, "id": 999, "parent": None, "content": "!!/not_actually_a_command" } }, spec=chatcommunicate.events.MessagePosted) chatcommunicate.on_msg(msg2, client) msg3 = Fake({ "message": { "room": { "id": 11540, }, "owner": { "id": 1 }, "id": 999, "parent": None, "content": "!!/a_command" } }, spec=chatcommunicate.events.MessagePosted) mock_command = Mock(side_effect=lambda *_, **kwargs: "hi" if not kwargs["quiet_action"] else "") chatcommunicate._prefix_commands["a_command"] = (mock_command, (0, 0)) chatcommunicate.on_msg(msg3, client) assert post_msg.call_count == 1 assert post_msg.call_args_list[0][0][0][1] == ":999 hi" mock_command.assert_called_once_with(original_msg=msg3.message, alias_used="a_command", quiet_action=False) post_msg.reset_mock() mock_command.reset_mock() msg3.message.content = "!!/a_command-" chatcommunicate.on_msg(msg3, client) post_msg.assert_not_called() mock_command.assert_called_once_with(original_msg=msg3.message, alias_used="a_command", quiet_action=True) post_msg.reset_mock() mock_command.reset_mock() chatcommunicate._prefix_commands["a_command"] = (mock_command, (0, 1)) chatcommunicate.on_msg(msg3, client) post_msg.assert_not_called() mock_command.assert_called_once_with(None, original_msg=msg3.message, alias_used="a_command", quiet_action=True) post_msg.reset_mock() mock_command.reset_mock() msg3.message.content = "!!/a_command 1 2 3" chatcommunicate.on_msg(msg3, client) assert post_msg.call_count == 1 assert post_msg.call_args_list[0][0][0][1] == ":999 hi" mock_command.assert_called_once_with("1 2 3", original_msg=msg3.message, alias_used="a_command", quiet_action=False) post_msg.reset_mock() mock_command.reset_mock() chatcommunicate._prefix_commands["a_command"] = (mock_command, (1, 2)) msg3.message.content = "!!/a_command" chatcommunicate.on_msg(msg3, client) assert post_msg.call_count == 1 assert post_msg.call_args_list[0][0][0][1] == ":999 Too few arguments." mock_command.assert_not_called() post_msg.reset_mock() mock_command.reset_mock() msg3.message.content = "!!/a_command 1 2 oatmeal" chatcommunicate.on_msg(msg3, client) assert post_msg.call_count == 1 assert post_msg.call_args_list[0][0][0][1] == ":999 Too many arguments." mock_command.assert_not_called() post_msg.reset_mock() mock_command.reset_mock() msg3.message.content = "!!/a_command- 1 2" chatcommunicate.on_msg(msg3, client) post_msg.assert_not_called() mock_command.assert_called_once_with("1", "2", original_msg=msg3.message, alias_used="a_command", quiet_action=True) post_msg.reset_mock() mock_command.reset_mock() msg3.message.content = "!!/a_command 3" chatcommunicate.on_msg(msg3, client) assert post_msg.call_count == 1 assert post_msg.call_args_list[0][0][0][1] == ":999 hi" mock_command.assert_called_once_with("3", None, original_msg=msg3.message, alias_used="a_command", quiet_action=False) post_msg.reset_mock() mock_command.reset_mock() msg4 = Fake({ "message": { "room": { "id": 11540, }, "owner": { "id": 1 }, "parent": { "owner": { "id": 2 } }, "id": 1000, "content": "asdf" } }, spec=chatcommunicate.events.MessageEdited) chatcommunicate.on_msg(msg4, client) msg5 = Fake({ "message": { "room": { "id": 11540, }, "owner": { "id": 1 }, "parent": { "owner": { "id": 1337 } }, "id": 1000, "content": "@SmokeDetector why " } }, spec=chatcommunicate.events.MessageEdited) chatcommunicate._reply_commands["why"] = (mock_command, (0, 0)) threw_exception = False try: chatcommunicate.on_msg(msg5, client) except AssertionError: threw_exception = True assert threw_exception mock_command.assert_not_called() post_msg.assert_not_called() chatcommunicate._reply_commands["why"] = (mock_command, (1, 1)) chatcommunicate.on_msg(msg5, client) assert post_msg.call_count == 1 assert post_msg.call_args_list[0][0][0][1] == ":1000 hi" mock_command.assert_called_once_with(msg5.message.parent, original_msg=msg5.message, alias_used="why", quiet_action=False) post_msg.reset_mock() mock_command.reset_mock() msg5.message.content = "@SmokeDetector why@!@#-" chatcommunicate.on_msg(msg5, client) post_msg.assert_not_called() mock_command.assert_called_once_with(msg5.message.parent, original_msg=msg5.message, alias_used="why", quiet_action=True) msg6 = Fake({ "message": { "room": { "id": 11540, }, "owner": { "id": 1 }, "id": 1000, "parent": None, "content": "sd why - 2why 2why- 2- why- " } }, spec=chatcommunicate.events.MessageEdited) get_last_messages.side_effect = lambda _, num: (Fake({"id": i}) for i in range(num)) chatcommunicate.on_msg(msg6, client) assert post_msg.call_count == 1 assert post_msg.call_args_list[0][0][0][1] == ":1000 [:0] hi\n[:1] <skipped>\n[:2] hi\n[:3] hi\n[:4] <processed without return value>\n[:5] <processed without return value>\n[:6] <skipped>\n[:7] <skipped>\n[:8] <processed without return value>" def test_message_type(): fake1 = Fake({}, spec=chatcommunicate.Message) assert chatcommands.message(fake1) == fake1 fake2 = Fake({}) threw_exception = False try: chatcommands.message(fake2) except AssertionError: threw_exception = True assert threw_exception
""" A Python implementation of the blob detector algorithm described in Shyam Madhusudhana, Anita Murray, and Christine Erbe. (2020). "Automatic detectors for low-frequency vocalizations of Omura’s whales, Balaenoptera omurai: A performance comparison." The Journal of the Acoustical Society of America. 147(4). DOI: 10.1121/10.000108 for the detection of Omura's whale vocalizations. If you use this software, we request that you please cite the above article. Author: Shyam Madhusudhana <shyamm@cornell.edu> """ import numpy as np from scipy.signal import butter, sosfiltfilt, spectrogram from scipy.signal.windows import hann import librosa import argparse from timeit import default_timer as timer from detectsound import BlobExtractor from matplotlib import pyplot as plt from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection def detect_omuras(audio_file, output_file=None): """Detect Omura's whale vocalizations in the recording 'audio_file'. If 'output_file' is None, the detections will be displayed on-screen. Otherwise, 'output_file' must specify a path where detections will be written in Raven Selection Table format.""" t_start = timer() # Measure data load time # Load audio from file. Up/downsample (as necessary) to 200 Hz. data, fs = librosa.load(audio_file, sr=200) time_load = timer() - t_start # Build a Butterworth filter to suppress energies outside the # 5-68 Hz band. wn = np.array([5, 68]) / (fs / 2) # convert to angular frequency filter_sos = butter(64, wn, btype='bandpass', output='sos') t_start = timer() # Measure data preparation time # Filter the audio data = sosfiltfilt(filter_sos, data).astype(np.float32) # Compute spectrogram with 1.0 s Hann window (and NFFT) and 70% overlap f, t, spec = spectrogram(data, fs=fs, window=hann(200), nperseg=200, noverlap=140, nfft=200, detrend=False, mode='psd') # Find out the indices of where to clip the frequency axis valid_f_idx_start = f.searchsorted(5, side='left') valid_f_idx_end = f.searchsorted(68, side='right') - 1 # Clip frequency extents spec = spec[valid_f_idx_start:(valid_f_idx_end + 1), :] f = f[valid_f_idx_start:(valid_f_idx_end + 1)] # Convert to decibels spec = 10 * np.log10(spec + 1e-15) time_prep = timer() - t_start t_start = timer() # Measure detector time # Create a detector instance with parameters tuned for detection # of Omura's whale vocalizations. be = BlobExtractor(len(f), centroid_bounds=[17, 39], # Translates to 22-44 Hz min_snr=0., # All non-negative SNRs cost_std=[1.5, 2.5, 2.0], min_frames=5, # Translates to 1.5 s first_scale=1.3, t_blur_sigma=3) # Run the detector on the spectrogram detections = be.extract_blobs(spec) time_detect = timer() - t_start print('Source : {:s}'.format(audio_file)) print('Audio duration: {:.6f} s'.format(len(data) / fs)) print('Time taken: ') print(' Audio load: {:.6f} s'.format(time_load)) print(' Audio prep: {:.6f} s'.format(time_prep)) print(' Detection : {:.6f} s'.format(time_detect)) if output_file is not None: # Write out detections into a Raven Selection Table file. with open(output_file, 'w') as of: # Write header of.write('Selection\tBegin Time (s)\tEnd Time (s)\t' + 'Low Freq (Hz)\tHigh Freq (Hz)\tScore\n') discarded = 0 for b_idx, blob in enumerate(detections): # Discard very narrow blobs (median bandwidth of 5 Hz) if np.median(f[blob.edges[:, 1]] - f[blob.edges[:, 0]]) < 5: discarded += 1 continue of.write( '{:d}\t{:.4f}\t{:.4f}\t{:.3f}\t{:.3f}\t{:.4f}\n'.format( b_idx + 1 - discarded, t[blob.first_frame], t[blob.last_frame], f[blob.edges[:, 0].min()], f[blob.edges[:, 1].max()], np.median(blob.snrs))) print('{:d} detections written to {:s}'.format( len(detections) - discarded, output_file)) else: # Display detections fig, ax = plt.subplots() # Show the spectrogram ax.imshow(spec, cmap=plt.cm.gray_r, extent=(t[0] - (t[1] - t[0]) / 2, t[-1] + (t[1] - t[0]) / 2, f[0] - (f[1] - f[0]) / 2, f[-1] + (f[1] - f[0]) / 2), interpolation='none', origin='lower', aspect='auto') # Overlay detections patches = [] snrs = [] discarded = 0 for blob in detections: # Discard very narrow blobs (median bandwidth of 5 Hz) if np.median(f[blob.edges[:, 1]] - f[blob.edges[:, 0]]) < 5: discarded += 1 continue # Build list of polygon points from reported blob edges temp = np.arange(blob.first_frame, blob.last_frame + 1) time_axis = t[np.concatenate([temp, np.flip(temp), [temp[0]]])] freq_axis = f[ np.concatenate([blob.edges[:, 0], np.flip(blob.edges[:, 1]), blob.edges[0:1, 0]])] patches.append(Polygon(np.stack([time_axis, freq_axis]).T, True)) snrs.append(np.median(blob.snrs)) p = PatchCollection(patches, cmap=plt.cm.Greens, alpha=0.4, ec='k') p.set_array(np.asarray(snrs)) ax.add_collection(p) ax.set_xlabel('Time (s)') ax.set_ylabel('Frequency (Hz)') ax.set_title('{:s}: {:d} detections'.format( repr(audio_file), len(detections) - discarded)) plt.show() if __name__ == '__main__': parser = argparse.ArgumentParser( prog='omura_detector', allow_abbrev=False, description='Detect Omura\'s whale vocalizations in recordings.') parser.add_argument( 'src', metavar='<AUDIO SOURCE>', help='Path to the audio file to process.') parser.add_argument( 'out', metavar='<OUTPUT FILE>', nargs='?', help='(Optional) Path to an output file into which detection ' + 'results (Raven selection tables) will be written. If not ' + 'specified, detection results will be displayed on screen.') args = parser.parse_args() detect_omuras(args.src, args.out)
# -*- coding: utf-8 -*- """ @author: J. Massey @description: Script to check convergence and call kill if need be @contact: masseyjmo@gmail.com """ # Imports import numpy as np import postproc.io as io import postproc.frequency_spectra import postproc.visualise.plotter import subprocess import sys from pathlib import Path import matplotlib.pyplot as plt def remove(string): string = string.replace(" ", "") return string def _plot_ts(ti, f): """ Just tidying up the above code by holding the plotting func Args: ti: time f: force Returns: Time series plot """ fig1, ax1 = plt.subplots(figsize=(7, 5)) ax1.tick_params(bottom="on", top="on", right="on", which='both', direction='in', length=2) # Edit frame, labels and legend ax1.set_xlabel(r"$torch/length_scale$") ax1.set_ylabel(f"${sys.argv[2]}$") ax1.plot_fill(t, u, c='r') plt.savefig(Path.cwd().joinpath(f"figures/time_series_{sys.argv[2]}.png"), bbox_inches='tight', dpi=600, transparent=False) plt.close() def _plot_err(ti, e): """ Just tidying up the above code by holding the plotting func Args: ti: time e: ensemble error Returns: Ensemble error against time """ fig, ax = plt.subplots(figsize=(7, 5)) ax.tick_params(bottom="on", top="on", right="on", which='both', direction='in', length=2) # Edit frame, labels and legend ax.set_xlabel(r"$torch/length_scale$") ax.set_ylabel(r"$\int \sqrt(\overline{s_{0,n}} - \overline{s_{0,n+1}})^2 df/ \int \overline{s_{0,n+1}}$") ax.plot_fill(ti, e, c='r') plt.savefig(Path.cwd().joinpath(f"figures/ensemble_error_{sys.argv[2]}.png"), bbox_inches='tight', dpi=600, transparent=False) plt.close() if __name__=="__main__": # plt.style.use(['science', 'grid']) print("Checking whether spectra have converged") if float(sys.argv[1]) < 15: print( "This number of cycles is probably too" "small and will probably give a false positive," "check the tail end of the ensemble error is reducing smoothly") data_root = Path.cwd().joinpath('fort.9') fos = io.unpack_flex_forces(data_root, remove(sys.argv[3]).split(',')) forces_dic = dict(zip(remove(sys.argv[3]).split(','), fos)) t = forces_dic['torch'] assert (max(t) - min(t)) >= 2 * float(sys.argv[1]), "You need > two windows to be able check convergence" u = forces_dic[sys.argv[2]] n = int(np.floor((np.max(t) - np.min(t)) / float(sys.argv[1]))) criteria = postproc.frequency_spectra.FreqConv(t, u, n=n, OL=0.5) normed_error, window_t = criteria.f_conv(float(sys.argv[1])) if normed_error[-1] < 0.1: print("You've converged!") subprocess.call('touch ../.kill', shell=True, cwd=Path(data_root).parent) subprocess.call('mkdir -p figures', shell=True, cwd=Path(data_root).parent) # Plot a couple of figs to show that the method behaves _plot_ts(t, u) _plot_err(window_t, normed_error) else: print("Hasn'torch yet, hold tight!")
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-08-29 09:56 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('base', '0006_auto_20170828_1247'), ] operations = [ migrations.AddField( model_name='mahasiswa', name='fakultas', field=models.CharField(default='fakultasxx', max_length=30), preserve_default=False, ), migrations.AddField( model_name='mahasiswa', name='program_studi', field=models.CharField(default='prodixx', max_length=30), preserve_default=False, ), ]
import os, glob import requests from io import BytesIO from shutil import copyfile, copytree from zipfile import ZipFile import param from .element import (_Element, Feature, Tiles, # noqa (API import) WMTS, LineContours, FilledContours, Text, Image, Points, Path, Polygons, Shape, Dataset, RGB, Contours, Graph, TriMesh, Nodes, EdgePaths, QuadMesh, VectorField) from . import data # noqa (API import) from . import operation # noqa (API import) from . import plotting # noqa (API import) from . import feature # noqa (API import) __version__ = param.Version(release=(1,4,2), fpath=__file__, commit="$Format:%h$", reponame='geoviews') SAMPLE_DATA_URL = 'http://assets.holoviews.org/geoviews-sample-data.zip' def examples(path='geoviews-examples', include_data=False, verbose=False): """ Copies the example notebooks to the supplied path. If include_data is enabled the sample data is also downloaded. """ candidates = [os.path.join(__path__[0], '../doc/'), os.path.join(__path__[0], '../../../../share/geoviews-examples')] path = os.path.abspath(path) asset_path = os.path.join(path, 'assets') if not os.path.exists(path): os.makedirs(path) if verbose: print('Created directory %s' % path) for source in candidates: if os.path.exists(source): if not os.path.exists(asset_path): copytree(os.path.join(source, 'assets'), asset_path) if verbose: print('Copied assets to %s' % asset_path) for nb in glob.glob(os.path.join(source, '*.ipynb')): nb_name = os.path.basename(nb) nb_path = os.path.join(path, nb_name) copyfile(nb, nb_path) if verbose: print("%s copied to %s" % (nb_name, path)) break if include_data: data_path = os.path.join(path, 'sample-data') sample_data(data_path, verbose) def sample_data(path='../doc/sample-data', verbose=False): """ Downloads and unzips the sample data to a particular location. """ url = requests.get(SAMPLE_DATA_URL) zipfile = ZipFile(BytesIO(url.content)) zip_names = zipfile.namelist() path = os.path.abspath(path) if not os.path.exists(path): os.makedirs(path) if verbose: print('Created directory %s' % path) for nc_file in zip_names: extracted_file = zipfile.open(nc_file).read() save_path = os.path.join(path, nc_file) with open(save_path, 'wb') as f: f.write(extracted_file) if verbose: print("%s downloaded to %s" % (nc_file, path))
from modeling import * d=0 n_train=1 #seed=5646 std=.3 n_shots = 8192 n_swap = 1 balanced = True n = 200 test_size = .1 X, y = load_data(n=n, std=std) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=123, test_size=test_size) Y_vector_train = label_to_array(y_train) Y_vector_test = label_to_array(y_test) predictions = [] np.random.seed(seed) for x_test, y_ts in zip(X_test, Y_vector_test): ix = np.random.choice(int(n*(1-test_size)), 1)[0] x_train = X_train[ix] x_tr = normalize_custom(x_train) y_tr = Y_vector_train[ix] x_ts = normalize_custom(x_test) qc = cos_classifier(x_tr, x_ts, y_tr) r = exec_simulator(qc, n_shots=n_shots) if '0' not in r.keys(): r['0'] = 0 elif '1' not in r.keys(): r['1'] = 0 predictions.append(retrieve_proba(r)) a, b = evaluation_metrics(predictions, X_test, y_test, save=False) print('seed:', seed, ' Accuracy:', a, ' Brier score:', b) file = open("output/result_single_classifier.csv", 'a') file.write("%d, %d, %d, %d, %s,%f, %f, %f, %f, %d\n" % (n, n_train, n_swap, d, balanced, test_size, std, a, b, seed)) file.close()
import sys import os import re import curses from atig.migration import Migration, MigrationCollection class Atig(): def __init__(self): self.valid_migration = re.compile(r'[0-9a-f]{12}\_.*\.py') self.migrations = None self.migration_collection = None self.debug_message = 'Welcome to ATIG 8^)' self.window_open = False self.display_window_contents = [] self.close_atig = False if self.is_in_alembic_directory() and self.alembic_is_installed(): # first run ls, get all self.migrations and all hashes self.migrations = os.listdir('alembic/versions/') self.migrations = map( lambda x: Migration('alembic/versions/' + x), filter(self.valid_migration.match, self.migrations)) self.migration_collection = MigrationCollection( list(self.migrations)) self.migrations = list(self.migration_collection.list_migrations()) def init_screen(self, stdscr): self.stdscr = stdscr self.k = 0 self.cursor_x = 0 self.cursor_y = 0 # Clear and refresh the screen for a blank canvas self.stdscr.clear() self.stdscr.refresh() # Start colors in curses curses.start_color() curses.init_pair(1, curses.COLOR_CYAN, curses.COLOR_BLACK) curses.init_pair(2, curses.COLOR_RED, curses.COLOR_BLACK) curses.init_pair(3, curses.COLOR_BLACK, curses.COLOR_WHITE) self.event_loop() def process_input(self): if self.k == curses.KEY_DOWN: self.cursor_y = self.cursor_y + 1 elif self.k == curses.KEY_UP: self.cursor_y = self.cursor_y - 1 elif self.k == curses.KEY_RIGHT: self.cursor_x = self.cursor_x + 1 elif self.k == curses.KEY_LEFT: self.cursor_x = self.cursor_x - 1 elif self.k in [curses.KEY_ENTER, 10, 13]: self.debug_message = '' self.window_open = True self.display_window = curses.newwin(0, self.width // 2, 0, self.width // 2) if self.cursor_y >= 1 and self.cursor_y <= len(self.migrations): curr = self.migrations[self.cursor_y - 1] self.debug_message = curr.hash self.display_window_contents = curr.contents.split( '\n')[:self.height - 2] else: self.debug_message = 'no migration selected' elif self.k == ord('q'): if self.window_open: self.window_open = False self.display_window.erase() self.display_window.refresh() self.debug_message = '' self.display_window_contents = [] else: self.close_atig = True self.cursor_x = max(0, self.cursor_x) self.cursor_x = min(self.width - 1, self.cursor_x) self.cursor_y = max(0, self.cursor_y) self.cursor_y = min(self.height - 1, self.cursor_y) def render_status_bar(self): statusbarstr = f"Press 'q' to exit | {self.debug_message} | Pos: {self.cursor_x}, {self.cursor_y}" # Render status bar self.stdscr.attron(curses.color_pair(3)) self.stdscr.addstr(self.height - 1, 0, statusbarstr) self.stdscr.addstr(self.height - 1, len(statusbarstr), " " * (self.width - len(statusbarstr) - 1)) self.stdscr.attroff(curses.color_pair(3)) def event_loop(self): # Initialization self.stdscr.clear() self.height, self.width = self.stdscr.getmaxyx() # Loop where k is the last character pressed while (not self.close_atig): self.render_status_bar() if not self.alembic_is_installed(): self.render_alembic_install_error() # check if we are in the right directory elif self.is_in_alembic_directory(): self.fetch_migration_information() else: self.render_directory_error() self.stdscr.move(self.cursor_y, self.cursor_x) # Refresh the screen self.stdscr.refresh() if self.window_open: for i, row in enumerate(self.display_window_contents): self.display_window.addstr(i + 1, 1, row[:(self.width // 2) - 2]) self.display_window.border() self.display_window.refresh() # Wait for next input self.k = self.stdscr.getch() self.process_input() curses.endwin() def fetch_migration_information(self): title = "Alembic Migrations"[:self.width - 1] start_x_title = int((self.width // 2) - (len(title) // 2) - len(title) % 2) # Turning on attributes for title self.stdscr.attron(curses.color_pair(2)) self.stdscr.attron(curses.A_BOLD) # Rendering title self.stdscr.addstr(0, start_x_title, title) # Turning off attributes for title self.stdscr.attroff(curses.color_pair(2)) self.stdscr.attroff(curses.A_BOLD) # finally we need to render them on the screen for i, migration in enumerate( self.migration_collection.list_migrations()): self.stdscr.addstr(1 + i, 0, migration.date, curses.color_pair(0)) if self.migration_collection.current in migration.name: self.stdscr.attron(curses.color_pair(2)) self.stdscr.attron(curses.A_BOLD) self.stdscr.addstr(1 + i, 20, migration.stringify() + ' (curr)', curses.color_pair(2)) self.stdscr.attroff(curses.color_pair(2)) self.stdscr.attroff(curses.A_BOLD) else: self.stdscr.addstr(1 + i, 20, migration.stringify(), curses.color_pair(1)) def render_alembic_install_error(self): self.render_error("Alembic is not Installed") def render_directory_error(self): self.render_error("Not In Valid Alembic Directory") def render_error(self, message): # Declaration of strings title = message[:self.width - 1] keystr = "Press q to exit"[:self.width - 1] # Centering calculations start_x_title = int((self.width // 2) - (len(title) // 2) - len(title) % 2) start_x_keystr = int((self.width // 2) - (len(keystr) // 2) - len(keystr) % 2) start_y = int((self.height // 2) - 2) # Turning on attributes for title self.stdscr.attron(curses.color_pair(2)) self.stdscr.attron(curses.A_BOLD) # Rendering title self.stdscr.addstr(start_y, start_x_title, title) # Turning off attributes for title self.stdscr.attroff(curses.color_pair(2)) self.stdscr.attroff(curses.A_BOLD) # Print rest of text self.stdscr.addstr(start_y + 3, (self.width // 2) - 2, '-' * 4) self.stdscr.addstr(start_y + 5, start_x_keystr, keystr) def is_in_alembic_directory(self): return os.path.exists('alembic') and \ os.path.exists('alembic/versions') def alembic_is_installed(self): return os.popen('which alembic').read() != '' def main(): atig = Atig() curses.wrapper(atig.init_screen) if __name__ == "__main__": main()
"""Async API This module contains the API for parallelism in TorchScript, notably: * torch.jit.fork * torch.jit.wait This is not intended to be imported directly; please use the exposed functionalities in `torch.jit`. """ import torch from torch.utils import set_module from torch.jit._builtins import _register_builtin from torch._jit_internal import Future set_module(Future, "torch.jit") def fork(func, *args, **kwargs): """ Creates an asynchronous task executing `func` and a reference to the value of the result of this execution. `fork` will return immediately, so the return value of `func` may not have been computed yet. To force completion of the task and access the return value invoke `torch.jit.wait` on the Future. `fork` invoked with a `func` which returns `T` is typed as `torch.jit.Future[T]`. `fork` calls can be arbitrarily nested, and may be invoked with positional and keyword arguments. Asynchronous execution will only occur when run in TorchScript. If run in pure python, `fork` will not execute in parallel. `fork` will also not execute in parallel when invoked while tracing, however the `fork` and `wait` calls will be captured in the exported IR Graph. Warning: `fork` tasks will execute non-deterministicly. We recommend only spawning parallel fork tasks for pure functions that do not modify their inputs, module attributes, or global state. Arguments: func (callable or torch.nn.Module): A Python function or `torch.nn.Module` that will be invoked. If executed in TorchScript, it will execute asynchronously, otherwise it will not. Traced invocations of fork will be captured in the IR. ``*args``, ``**kwargs``: arguments to invoke `func` with. Returns: `torch.jit.Future[T]`: a reference to the execution of `func`. The value `T` can only be accessed by forcing completion of `func` through `torch.jit.wait`. Example (fork a free function): .. testcode:: import torch from torch import Tensor def foo(a : Tensor, b : int) -> Tensor: return a + b def bar(a): fut : torch.jit.Future[Tensor] = torch.jit.fork(foo, a, b=2) return torch.jit.wait(fut) script_bar = torch.jit.script(bar) input = torch.tensor(2) # only the scripted version executes asynchronously assert script_bar(input) == bar(input) # trace is not run asynchronously, but fork is captured in IR graph = torch.jit.trace(bar, (input,)).graph assert "fork" in str(graph) Example (fork a module method): .. testcode:: import torch from torch import Tensor class SubMod(torch.nn.Module): def forward(self, a: Tensor, b : int): return a + b class Mod(torch.nn.Module): def __init__(self): super(self).__init__() self.mod = SubMod() def forward(self, input): fut = torch.jit.fork(self.mod, a, b=2) return torch.jit.wait(fut) input = torch.tensor(2) mod = Mod() assert mod(input) == torch.jit.script(mod).forward(input) """ return torch._C.fork(func, *args, **kwargs) def wait(future): """ Forces completion of a `torch.jit.Future[T]` asynchronous task, returning the result of the task. See :func:`~fork` for docs and examples. Arguments: func (torch.jit.Future[T]): an asynchronous task reference, created through `torch.jit.fork` Returns: `T`: the return value of the the completed task """ return torch._C.wait(future) _register_builtin(wait, "aten::wait")
# Build/install the npcomp-torch package. # This uses PyTorch's setuptools support and requires an existing installation # of npcomp-core in order to access its headers/libraries. from pathlib import Path from setuptools import find_packages, setup, Extension from torch.utils import cpp_extension try: from npcomp import build as npcomp_build except ModuleNotFoundError: raise ModuleNotFoundError( f"Could not import npcomp.build " f"(do you have the npcomp-core package installed)") # Get our sources. this_dir = Path(__file__).parent extension_sources = [str(p) for p in this_dir.joinpath("csrc").rglob("*.cpp")] # Npcomp bits. include_dirs = npcomp_build.get_include_dirs() lib_dirs = npcomp_build.get_lib_dirs() npcomp_libs = [npcomp_build.get_capi_link_library_name()] # TODO: Export this in some way from an npcomp config file include vs needing # it loose here. compile_args = ["-DMLIR_PYTHON_PACKAGE_PREFIX=npcomp."] setup( name="npcomp-torch", ext_modules=[ cpp_extension.CppExtension( name="_torch_mlir", sources=extension_sources, include_dirs=include_dirs, library_dirs=lib_dirs, libraries=npcomp_libs, extra_compile_args=compile_args), ], cmdclass={ "build_ext": cpp_extension.BuildExtension }, package_dir={ "": "./python", }, packages=find_packages("./python", include=[ "torch_mlir", "torch_mlir.*", "torch_mlir_torchscript", "torch_mlir_torchscript.*", "torch_mlir_torchscript_e2e_test_configs", "torch_mlir_torchscript_e2e_test_configs.*", ]), )
# -*- coding: utf-8 -*- """Main module.""" import numpy as np import scipy.stats as ss import matplotlib.pyplot as plt import argparse def getinput(): input = argparse.ArgumentParser() input.add_argument('--initial_position', type = float, default = 0, help = 'Initial position of the particle, default = 0' ) input.add_argument('--initial_velocity', type = float, default = 0, help = 'Initial velocity of the particle, default = 0' ) input.add_argument('--temperature', type = float, default = 300, help = 'Temperature of the molecule, default = 300' ) input.add_argument('--damping_coefficient', type = float, default = 0.1, help = 'Damping Coefficient of the molecule, default = 0.1' ) input.add_argument('--time_step', type = float, default = 0.2, help = 'Time interval of the simulation, default = 0.01' ) input.add_argument('--wall_size', type = float, default = 5, help = 'Wall size of the simulation, default = 5' ) input.add_argument('--total_time', type = float, default = 1000, help = 'Total time of the simulation, default = 1000' ) inp = input.parse_args() return inp def acceleration(gamma=0.1,velocity=0,temperature=300,timestep=0.1,mass=1): sigma=np.sqrt(2*temperature*gamma*1*timestep) return (-gamma*velocity/mass + np.random.normal(0,sigma))*timestep def checkwall(position, wallsize): if position >= wallsize or position<=0: return True else: return False def lgmotion(velocity,timestep): return velocity*timestep def integrate(position=0,velocity=0,temperature=300,gamma=0.1,timestep=0.1,wallsize=5,totaltime=1000,mass=1): timepass=0 indexnum=0 index=[] while timepass < totaltime : indexnum +=1 index.append([indexnum,timepass,position,velocity]) timepass+=timestep velocity += acceleration(gamma, velocity, temperature, timestep) position += lgmotion(velocity, timestep) if checkwall(position,wallsize): if position >= wallsize: position = wallsize index.append([indexnum+1,timepass,position,velocity]) else: position= 0 index.append([indexnum+1,timepass,position,velocity]) break return timepass,index def filecreation(index): indexf=np.array(index) timef=indexf[:,1] positionf=indexf[:,2] velocityf=indexf[:,3] with open('Langevin_Motion.txt','w+') as file: file.write('Index Time Position Velocity \n') for i in range(len(timef)): file.write('{} {:.3f} {:.5f} {:.5f} \n'.format(i,timef[i],positionf[i],velocityf[i])) def histogram(arr): plt.figure(0) plt.hist(arr,bins=20) plt.title('100 runs of Langevin Motion') plt.xlabel('Time passed') plt.ylabel('Number of runs') plt.savefig('histogram.png') def trajectory(x,y): plt.figure(1) plt.plot(x,y) plt.title('Position vs Time') plt.xlabel('Time passed') plt.ylabel('Position') plt.savefig('trajectory.png') def main(): #get input for simulation inp=getinput() #run for 100 times, collecting all the relavant data t_arr=[] #time for i in range(100): t,idx=integrate(position=inp.initial_position,velocity=inp.initial_velocity,temperature=inp.temperature,gamma=inp.damping_coefficient,timestep=inp.time_step,wallsize=inp.wall_size,totaltime=inp.total_time,mass=1) t_arr.append(t) #plot the histogram of 100 runs histogram(t_arr) #plot the position vs time plot of the last run trjdata=np.array(idx) xdata=trjdata[:,1] ydata=trjdata[:,2] trajectory(xdata,ydata) #write the index in to a txt file of the first run filecreation(idx) if __name__ == '__main__': main()
# -*- coding: utf-8 -*- # @Time : 2020-06-03 11:34 # @Author : yingyuankai # @Email : yingyuankai@aliyun.com # @File : electra.py import tensorflow as tf from aispace.utils.hparams import Hparams from aispace.layers.encoders.transformer import Transformer from aispace.layers.pretrained.bert import BertPooler from aispace.layers.embeddings import ElectraEmbeddings from aispace.layers.base_layer import BaseLayer from aispace.utils.tf_utils import get_shape from aispace.layers.activations import ACT2FN class TFElectraDiscriminatorPredictions(tf.keras.layers.Layer): def __init__(self, hparams: Hparams, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(hparams.hidden_size, name="dense") self.dense_prediction = tf.keras.layers.Dense(1, name="dense_prediction") self._act_fn = ACT2FN[hparams.hidden_act] def call(self, discriminator_hidden_states, training=False): hidden_states = self.dense(discriminator_hidden_states) hidden_states = self._act_fn(hidden_states) logits = tf.squeeze(self.dense_prediction(hidden_states)) return logits class TFElectraGeneratorPredictions(tf.keras.layers.Layer): def __init__(self, hparams: Hparams, **kwargs): super().__init__(**kwargs) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=hparams.layer_norm_eps, name="LayerNorm") self.dense = tf.keras.layers.Dense(hparams.embedding_size, name="dense") self._act_fn = ACT2FN[hparams.hidden_act] def call(self, generator_hidden_states, training=False): hidden_states = self.dense(generator_hidden_states) hidden_states = self._act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states @BaseLayer.register("electra") class Electra(BaseLayer): def __init__(self, hparams: Hparams, **kwargs): super(Electra, self).__init__(hparams, **kwargs) self.embeddings = ElectraEmbeddings(hparams.config, name="embeddings") if hparams.config.embedding_size != hparams.config.hidden_size: self.embeddings_project = tf.keras.layers.Dense(hparams.config.hidden_size, name="embeddings_project") self.encoder = Transformer(hparams.config, name="encoder") def get_input_embeddings(self): return self.embeddings def get_extended_attention_mask(self, attention_mask, input_shape): if attention_mask is None: attention_mask = tf.fill(input_shape, 1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, tf.float32) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def get_head_mask(self, head_mask): if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self._hparams.config.num_hidden_layers return head_mask def call( self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False, ): if isinstance(inputs, (tuple, list)): input_ids = inputs[0] attention_mask = inputs[1] if len(inputs) > 1 else attention_mask token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids position_ids = inputs[3] if len(inputs) > 3 else position_ids head_mask = inputs[4] if len(inputs) > 4 else head_mask inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds assert len(inputs) <= 6, "Too many inputs." elif isinstance(inputs, dict): input_ids = inputs.get("input_ids") attention_mask = inputs.get("attention_mask", attention_mask) token_type_ids = inputs.get("token_type_ids", token_type_ids) position_ids = inputs.get("position_ids", position_ids) head_mask = inputs.get("head_mask", head_mask) inputs_embeds = inputs.get("inputs_embeds", inputs_embeds) assert len(inputs) <= 6, "Too many inputs." else: input_ids = inputs if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = get_shape(input_ids) elif inputs_embeds is not None: input_shape = get_shape(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) head_mask = self.get_head_mask(head_mask) hidden_states = self.embeddings([input_ids, position_ids, token_type_ids, inputs_embeds], training=training) if hasattr(self, "embeddings_project"): hidden_states = self.embeddings_project(hidden_states, training=training) encoder_outputs = self.encoder([hidden_states, extended_attention_mask, head_mask], training=training) sequence_output = encoder_outputs[0] pooled_output = sequence_output[:, 0] outputs = (sequence_output, pooled_output,) + encoder_outputs[1:] return outputs
from kubernetes import client from kubernetes.watch import Watch from loguru import logger from .consts import CONTAINER_NAME, DEPLOYMENT_PREFIX, NAMESPACE def create_deployment(v1, image, num_replicas): container = client.V1Container(name=CONTAINER_NAME, image=image) container_spec = client.V1PodSpec(containers=[container]) meta = client.V1ObjectMeta(labels=dict(app="kbench")) template_spec = client.V1PodTemplateSpec(spec=container_spec, metadata=meta) selector = client.V1LabelSelector(match_labels=dict(app="kbench")) deployment_spec = client.V1DeploymentSpec(template=template_spec, replicas=num_replicas, selector=selector) meta = client.V1ObjectMeta(generate_name=DEPLOYMENT_PREFIX) deployment_spec = client.V1Deployment(spec=deployment_spec, metadata=meta) deployment = v1.create_namespaced_deployment(body=deployment_spec, namespace=NAMESPACE) return deployment.metadata.name def delete_deployment(v1, name): v1.delete_namespaced_deployment(name=name, namespace=NAMESPACE) def wait_for_deployment_rescale(v1, name, target_replicas): watch = Watch() for event in watch.stream(v1.list_namespaced_deployment, namespace=NAMESPACE): deployment = event["object"] if deployment.metadata.name != name: continue ready_replicas = deployment.status.ready_replicas if ready_replicas is None: ready_replicas = 0 logger.trace("Deployment {} has {} replicas", name, ready_replicas) if ready_replicas == target_replicas: return def rescale_deployment(v1, name, num_replicas): logger.info("Rescaling deployment {} to {} replicas", name, num_replicas) scale = client.V1Scale(spec=client.V1ScaleSpec(replicas=num_replicas)) v1.patch_namespaced_deployment_scale(name=name, namespace=NAMESPACE, body=scale)
#!/usr/bin/env python3 import sys from phockup import main from src.printer import Printer if __name__ == '__main__': try: main(sys.argv[1:]) except KeyboardInterrupt: Printer().empty().line('Exiting...') sys.exit(0)
"""Command generator for running a script against a Redshift cluster. Contains the method to compile the Redshift specific script execution command based on generic arguments (sql script, output destination) and Redshift specific arguments (flag values). """ __author__ = 'p3rf@google.com' from absl import flags flags.DEFINE_string('host', None, 'Redshift host.') flags.DEFINE_string('database', None, 'Redshift Database.') flags.DEFINE_string('user', None, 'Redshift User.') flags.DEFINE_string('password', None, 'Redshift Password.') flags.mark_flags_as_required(['host', 'database', 'user', 'password']) FLAGS = flags.FLAGS def generate_provider_specific_cmd_list(script, driver, output, error): """Method to compile the Redshift specific script execution command. Arguments: script: SQL script which contains the query. driver: Driver that contains the Redshift specific script executor. output: Output log file. error: Error log file. Returns: Command list to execute the supplied script. """ return [driver, FLAGS.host, FLAGS.database, FLAGS.user, FLAGS.password, script, output, error]
# Class definition of planet # Should include the keplerian elements: # - Semi-major axis (a) in m, km, or AU # - Eccentricity (e) no unit: 0 -> circle # - Inclination (i) in degrees ° # - Longitude of ascending node (o) in degrees ° # - Argument of periapsis (w) in degrees ° # - True anomaly at t0 (v0) in degrees # # In addition the following are specified # - Gravitational constant (mu) # - Radius for plotting (r) # - Color for plotting import geometry_3d as geo import datetime # Epoch t0 T0 = datetime.datetime(2000, 1, 1, 12) class Planet: def __init__(self, master=None, a: float = 0., e: float = 0., v0: float = 0., i: float = 0., o: float = 0., w: float = 0., r: float = 0., color: str = 'k', mu: float = 0., name: str = None): """ Class definition for a planet orbiting a central mass :param master: Object of central mass (other planet) :param a: Orbit-Parameter: Semi-Major axis (a) :param e: Orbit-Parameter: Eccentricity (e) :param v0: Orbit-Parameter: True anomaly at epoch t0 (nu_0) :param i: Orbit-Parameter: Inclination (i) :param o: Orbit-Parameter: Longitude of ascending node (Omega) :param w: Orbit-Parameter: Argument of periapsis (omega) :param r: Radius of planet :param color: Color for painting :param mu: Gravitational parameter of planet :param name: Name of planet All distances are specified in m (SI) and all angles in degrees """ self.name = name # If master is None, then this planet is the most central element (e.g. sun) self.master = master self.mu = mu if self.master is not None: # Calculate orbital period (and inverse) self.n = (self.master.mu / a**3)**0.5 self.orbit_period = 2 * 3.14 / self.n else: self.n = 0. self.r = r self.a = a self.e = e self.i = i self.o = o self.w = w self.v0 = v0 # Mean anomaly at epoch t0 self.m0 = mean_from_true(v0, e) self.b = (a**2. - a**2. * e**2.)**.5 # Semi-minor axis # Vectors of orbit ellipse plane self.ue = geo.rotate_z(geo.rotate_y(geo.rotate_z( geo.Vector(1, 0, 0), self.w), self.i), self.o) self.ve = geo.rotate_z(geo.rotate_y(geo.rotate_z( geo.Vector(0, 1, 0), self.w), self.i), self.o) self.ne = geo.rotate_z(geo.rotate_y(geo.Vector(0, 0, 1), self.i), self.o) # Vectors of semi-major and semi-minor axis self.a_vec = self.a * self.ue self.b_vec = self.b * self.ve # List of matplotlib objects associated with this planet self.shapes = [] self.color = color def get_v(self, t: datetime.datetime = None): """ Calculation of true anomaly (angle on ellipse) at a certain time :param t: datetime.datetime object :return: True anomaly at time t """ if self.master is None: return dt = t - T0 dt = dt.total_seconds() # Mean anomaly m increases linearly along the orbit m = self.m0 + (self.n * dt) * 180. / geo.np.pi m = m % 360 v = true_from_mean(m, self.e) return v def get_position(self, t: datetime.datetime = None): """ Get xyz-position of planet at a certain time :param t: datetime.datetime object :return: Vector with xyz coordinates of planet """ if self.master is None: # Most central planet is always in the center return geo.Vector(0., 0., 0.) # Get true anomaly v = self.get_v(t) # Calculate distance from central mass r = self.a * (1 - self.e**2) / (1 + self.e * geo.np.cos(v * geo.np.pi / 180.)) # Create vector and rotate in ellipsis planet r_vec = r * geo.rotate_z(geo.Vector(1, 0, 0), v) r_vec = geo.rotate_z(geo.rotate_y(geo.rotate_z(r_vec, self.w), self.i), self.o) # Position of planet is relative to position of central mass return self.master.get_position(t) - r_vec def get_orbit_center(self, t: datetime.datetime = None): """ Get xyz-position of center of orbit ellipse :param t: datetime.datetime object :return: Vector with xyz coordinates of planet """ if self.master is None: return None return self.master.get_position(t) + (self.a_vec * self.e) def remove_shapes(self): """ Delete all matplotlib shapes associated with planet """ for shape in self.shapes: shape.remove() self.shapes = [] def mean_from_true(v, e): """ Calculate mean anomaly from true anomaly (Source: https://en.wikipedia.org/wiki/Mean_anomaly#Formulae) :param v: True anomaly (nu) :param e: Eccentricity (e) :return: Mean anomaly (m) """ v = v * geo.np.pi / 180. m = geo.np.arctan2((1 - e**2)**0.5 * geo.np.sin(v) / (1 + e * geo.np.cos(v)), (e + geo.np.cos(v)) / (1 + e * geo.np.cos(v))) - \ e * (1 - e**2)**0.5 * geo.np.sin(v) / (1 + e * geo.np.cos(v)) return m * 180. / geo.np.pi def true_from_mean(m, e): """ Calculate true anomaly from mean anomaly (Source: https://en.wikipedia.org/wiki/True_anomaly#From_the_mean_anomaly) :param m: Mean anomaly (m) :param e: Eccentricity (e) :return: True anomaly (nu) """ m = m * geo.np.pi / 180. v = m + (2 * e - 1 / 4 * e**3) * geo.np.sin(m) + \ 5 / 4 * e**2 * geo.np.sin(2 * m) + \ 13 / 12 * e**3 * geo.np.sin(3 * m) return v * 180. / geo.np.pi
# Copyright 2016 Twitter. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module includes a bunch of library functions relevant for dealing with the topology structure """ import sets from heron.proto import topology_pb2 from heron.common.src.python import constants def get_topology_config(topology, key): """ Helper function to get the value of key in topology config. Return None if the key is not present. """ for kv in topology.topology_config.kvs: if kv.key == key: return kv.value return None def get_component_parallelism(topology): """ The argument is the proto object for topology. Returns a map of components to their parallelism. """ cmap = {} components = list(topology.spouts) + list(topology.bolts) for component in components: component_name = component.comp.name for kv in component.comp.config.kvs: if kv.key == constants.TOPOLOGY_COMPONENT_PARALLELISM: cmap[component_name] = int(kv.value) return cmap def get_nstmgrs(topology): """ The argument is the proto object for topology. Returns the number of stream managers for the topology. This is equal to the number of containers. If not present, return 1 as default. """ return int(get_topology_config(topology, constants.TOPOLOGY_STMGRS) or 1) def get_instance_opts(topology): """ The argument is the proto object for topology. Returns the topology worker child options. If not present, return empty string. """ return str(get_topology_config(topology, constants.TOPOLOGY_WORKER_CHILDOPTS) or "") def get_total_instances(topology): """ The argument is the proto object for topology. Returns the total number of instances based on all parallelisms. """ cmap = get_component_parallelism(topology) return sum(cmap.values()) def get_additional_classpath(topology): """ The argument is the proto object for topology. Returns an empty string if no additional classpath specified """ additional_classpath = str(get_topology_config( topology, constants.TOPOLOGY_ADDITIONAL_CLASSPATH) or "") return additional_classpath def get_cpus_per_container(topology): """ The argument is the proto object for topology. Calculate and return the CPUs per container. It can be calculated in two ways: 1. It is passed in config. 2. Allocate 1 CPU per instance in a container, and 1 extra for stmrs. """ cpus = get_topology_config(topology, constants.TOPOLOGY_CONTAINER_CPU_REQUESTED) if not cpus: ninstances = get_total_instances(topology) nstmgrs = get_nstmgrs(topology) cpus = float(ninstances) / nstmgrs + 1 # plus one for stmgr return float(cpus) def get_disk_per_container(topology): """ The argument is the proto object for topology. Calculate and return the disk per container. It can be calculated in two ways: 1. It is passed in config. 2. Allocate 1 GB per instance in a container, and 12 GB extra for the rest. """ disk = get_topology_config(topology, constants.TOPOLOGY_CONTAINER_DISK_REQUESTED) if not disk: ninstances = get_total_instances(topology) nstmgrs = get_nstmgrs(topology) # Round to the ceiling maxInstanceInOneContainer = (ninstances + nstmgrs - 1) / nstmgrs disk = maxInstanceInOneContainer * constants.GB + constants.DEFAULT_DISK_PADDING_PER_CONTAINER return disk def get_ram_per_container(topology): """ The argument is the proto object for topology. Calculate and return RAM per container for the topology based container rammap. Since rammap takes into account all the configs and cases, we just add some ram for stmgr and return it. """ component_distribution = get_component_distribution(topology) rammap = get_component_rammap(topology) maxsize = 0 for (_, container_items) in component_distribution.items(): ramsize = 0 for (component_name, _, _) in container_items: ramsize += int(rammap[component_name]) if ramsize > maxsize: maxsize = ramsize return maxsize + constants.RAM_FOR_STMGR def get_component_rammap(topology): """ The argument is the proto object for topology. It is calculated based on the following priority: 1. Form the user specified component rammap. If the rammap is complete, return it. 2. If only some component rams are specified, assign them the default RAM, and return it. 3. If no component RAM is specified, take the container ram requested and divide it equally among the max possible instances. 4. If container RAM was not requested, assign the default RAM to all components. Returns a map from component name to ram in bytes """ component_distribution = get_component_distribution(topology) components = list(topology.spouts) + list(topology.bolts) # first check if user has specified the rammap rammap = get_user_rammap(topology) or {} # Some or all of them are there, so assign default to those components # that are not specified. if len(rammap.keys()) > 0: for component in components: component_name = component.comp.name if component_name not in rammap: rammap[component_name] = constants.DEFAULT_RAM_FOR_INSTANCE return rammap max_instances_in_a_container = max(map(lambda x: len(x[1]), component_distribution.items())) # User has not specified any kind of rammap # We just find the ram needed for a container and divide # memory equally requested_ram_per_container = get_container_ram_requested(topology) if requested_ram_per_container != None: ram_for_jvms = requested_ram_per_container - constants.RAM_FOR_STMGR ram_per_instance = int(ram_for_jvms / max_instances_in_a_container) rammap = {} for component in components: component_name = component.comp.name rammap[component_name] = ram_per_instance return rammap # Nothing was specified. # The default is to allocate one 1gb per instance of all components ram_per_instance = int(constants.DEFAULT_RAM_FOR_INSTANCE) rammap = {} for component in components: component_name = component.comp.name rammap[component_name] = ram_per_instance return rammap def strip_java_objects(topology): """ The argument is the proto object for topology. The java objects are huge objects and topology is stripped off these objects so that it can be stored in zookeeper. """ stripped_topology = topology_pb2.Topology() stripped_topology.CopyFrom(topology) components = list(stripped_topology.spouts) + list(stripped_topology.bolts) for component in components: if component.comp.HasField("serialized_object"): component.comp.ClearField("serialized_object") return stripped_topology def get_component_distribution(topology): """ The argument is the proto object for topology. Distribute components and their instances evenly across containers in a round robin fashion Return value is a map from container id to a list. Each element of a list is a tuple (component_name, global_task_id, component_index) This is essentially the physical plan of the topology. """ containers = {} nstmgrs = get_nstmgrs(topology) for i in range(1, nstmgrs + 1): containers[i] = [] index = 1 global_task_id = 1 for (component_name, ninstances) in get_component_parallelism(topology).items(): component_index = 0 for i in range(ninstances): containers[index].append((str(component_name), str(global_task_id), str(component_index))) component_index = component_index + 1 global_task_id = global_task_id + 1 index = index + 1 if index == nstmgrs + 1: index = 1 return containers def get_user_rammap(topology): """ The argument is the proto object for topology. Returns a dict of component to ram as specified by user. Expected user input is "comp1:42,comp2:24,..." where 42 and 24 represents the ram requested in bytes. Returns None if nothing is specified. """ rammap = get_topology_config(topology, constants.TOPOLOGY_COMPONENT_RAMMAP) if rammap: rmap = {} for component_ram in rammap.split(","): component, ram = component_ram.split(":") rmap[component] = int(ram) return rmap return None def get_container_ram_requested(topology): """ The argument is the proto object for topology. Returns the container ram as requested by the user. Returns None if not specified. """ ram = get_topology_config(topology, constants.TOPOLOGY_CONTAINER_RAM_REQUESTED) return int(ram) if ram else None def get_component_jvmopts(topology): """ The argument is the proto object for topology. Returns the jvm options if specified by user. """ return str(get_topology_config(topology, constants.TOPOLOGY_COMPONENT_JVMOPTS) or "") def get_topology_state_string(topology): """ The argument is the proto object for topology. Returns the topology state as one of: 1. RUNNING 2. PAUSED 3. KILLED """ return topology_pb2.TopologyState.Name(topology.state) # pylint: disable=too-many-return-statements, too-many-branches def sane(topology): """ First check if topology name is ok """ if topology.name == "": print "Topology name cannot be empty" return False if '.' in topology.name or '/' in topology.name: print "Topology name cannot contain . or /" return False component_names = set() for spout in topology.spouts: component_name = spout.comp.name if component_name in component_names: print component_name + " is duplicated twice" return False component_names.add(component_name) for bolt in topology.bolts: component_name = bolt.comp.name if component_name in component_names: print component_name + " is duplicated twice" return False component_names.add(component_name) ninstances = get_total_instances(topology) nstmgrs = get_nstmgrs(topology) if nstmgrs > ninstances: print "Number of containers are greater than number of instances" return False for kv in topology.topology_config.kvs: if kv.key == constants.TOPOLOGY_COMPONENT_RAMMAP: rammap = str(kv.value).split(',') for component_ram in rammap: component_and_ram = component_ram.split(':') if len(component_and_ram) != 2: print "TOPOLOGY_COMPONENT_RAMMAP is set incorrectly" return False if not component_and_ram[0] in component_names: print "TOPOLOGY_COMPONENT_RAMMAP is set incorrectly" return False # Now check if bolts are reading streams that some component emits all_outputs = sets.Set() for spout in topology.spouts: for outputstream in spout.outputs: all_outputs.add((outputstream.stream.id, outputstream.stream.component_name)) for bolt in topology.bolts: for outputstream in bolt.outputs: all_outputs.add((outputstream.stream.id, outputstream.stream.component_name)) for bolt in topology.bolts: for inputstream in bolt.inputs: if (inputstream.stream.id, inputstream.stream.component_name) not in all_outputs: print "Bolt " + bolt.comp.name + " has an input stream that no one emits" return False return True
# Generated by Django 3.1.2 on 2020-11-16 12:47 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('feedback', '0001_initial'), ('users', '0001_initial'), ] operations = [ migrations.AddField( model_name='home', name='doctor', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='users.doctor'), ), migrations.AddField( model_name='feedback', name='doctor', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='users.doctor'), ), migrations.AddField( model_name='feedback', name='patient', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='users.patient'), ), ]
from clases.Edificio_LA import Edificio_LA from clases.Edificio_NY import Edificio_NY from clases.Empleado_LA import Empleados_LA from clases.Edificio_NY import Empleados_NY from clases.LosAngeles import LosAngeles from clases.NewYork import NewYork from clases.inmortal import Yin from clases.inmortal import Yang from clases.interfaz import Interfaz_cristal from clases.interfaz import Pared from clases.interfaz import Ventana from clases.interfaz import Casa from clases.interfaz import ParedCortina if __name__ == '__main__': Edificio_LA() Edificio_NY() Empleados_LA() Empleados_NY() LosAngeles() NewYork() ciudad = str(input('¿Que ciudad deseas destruir, New York o Los Ángeles?')) if ciudad == 'New York': NY = NewYork() del NY elif ciudad == 'Los Ángeles': LA = LosAngeles() del LA else: print('La opción seleccionada no es válida') if __name__ == '__main__': Yin() Yang() if __name__ == '__main__': Interfaz_cristal() Pared() Ventana() Casa() ParedCortina()
#!/usr/bin/env python import sys import math, pdb, random import list_funcs import array #import pysam class BED_Track: """A BED track, following the format defined in the UCSC browser website.""" def __init__(self, trackInput, peaksTrack=False, refGenomeFilename=None): # Each chromosome of BED items will be held in an array, referenced # by a dictionary. This allows separate chromosome's data to be # easily retrieved: self.chroms = {} # Determine the type of input, and initialise this BED_Track according # to that type: if (isinstance(trackInput, file)): self.initFromFile(trackInput, peaksTrack=peaksTrack) else: assert (isinstance(trackInput, list)) self.initFromList(trackInput) # The name of a file containing the reference genome corresponding # to the assembly for this BED_Track object. self.refGenomeFilename = refGenomeFilename def getRefGenomeFilename(self): return self.refGenomeFilename def setRefGenomeFilename(self, filename): self.refGenomeFilename = filename def initFromList(self, inList): """Private method for initialising this object from an input list.""" for inputBED in inList: assert(isinstance(inputBED, BED_line)) bed_chrom = inputBED.getChrom() # Add the bed data item to the correct chromosome: if self.chroms.has_key(bed_chrom): self.chroms[bed_chrom].append(inputBED) else: self.chroms[bed_chrom] = [inputBED] # Sort the bed_items according to chromosomal location for each # chromosome: for key in self.chroms.keys(): bed_items = self.chroms[key] bed_items.sort(chrom_compare) tuple_bed_items = tuple(bed_items) self.chroms[key] = tuple_bed_items def initFromFile(self, inFile, peaksTrack=False): """Private method for initialising this object from an input file.""" # Parse the BED track from the specified file, creating a BED_Track # object: try: for line in inFile: elems = line.split() # Only add the line if it is a chromosomal location: #if ((len(elems) > 0) and (elems[0][0:3] == "chr")): # FIXME: The above condition was broken, so I changed it # to only filter out comment lines: if ((len(elems) > 0) and (elems[0][0] != "#")): # Generate either a regular BED_line or a peaks_BED_line, # depending on the value of the optional peaksTrack # parameter. This is done to allow this class to optionally # represent a track of ChIP-seq peak data, with extra # attributes on each line: curr_bed = None if (peaksTrack): curr_bed = peak_BED_line(line, track=self) else: curr_bed = BED_line(line, track=self) bed_chrom = curr_bed.getChrom() # Add the bed data item to the correct chromosome: if self.chroms.has_key(bed_chrom): self.chroms[bed_chrom].append(curr_bed) else: self.chroms[bed_chrom] = [curr_bed] # Sort the bed_items according to chromosomal location, if # necessary, for each chromosome: for key in self.chroms.keys(): bed_items = self.chroms[key] bed_items.sort(chrom_compare) tuple_bed_items = tuple(bed_items) self.chroms[key] = tuple_bed_items except IOError: # If the file does not open, throw this exception upwards, rather # than dealing with it here: raise except ValueError: # A value error here means that a BED_line was invalid. pdb.set_trace() dummy = 1 raise # Added on 10th November 2009: def getAllBEDs(self): allBEDs = [] for chrom in (self.get_chroms()): allBEDs = allBEDs + list(self.get_BEDs(chrom)) return allBEDs # Function to retrieve all bed items for a specified chromosome, from # this object. If there are no bed items for that chromosome (for this # track), then return an empty list: def get_BEDs(self, chrom): if (self.chroms.has_key(chrom)): return self.chroms[chrom] else: return [] # Added on July 15th 2013: def getBEDsForRegion(self, region): """Returns a list of BED_line items whose start and end positions are located inside the specified region (specified as a BED_line object).""" chrom = region.getChrom() allBedItems = self.get_BEDs(chrom) # NOTE/FIXME: This assumes that the bed items in this track are of equal # size, and will return misleading output otherwise. # To fix this, I need to have separate indexes of the beds according # to chrom start and chrom end. # Get the index of the first bed item starting immediately inside the # specified region... idxOfBedClosestToStart = \ list_funcs.find_closest_idx(region, allBedItems, get_disp_chrStartChrStart) bedClosestToStart = allBedItems[idxOfBedClosestToStart] if bedClosestToStart.getChromStart() > region.getChromStart(): # That bed item is to the right of the start of the region. bedToGet_startIdx = idxOfBedClosestToStart else: # Will start from the next bed item over: bedToGet_startIdx = idxOfBedClosestToStart + 1 # Get the index of the bed item ending just before the end of the # specified region... idxOfBedClosestToEnd = \ list_funcs.find_closest_idx(region, allBedItems, get_disp_chrEndChrEnd ) bedClosestToEnd = allBedItems[idxOfBedClosestToEnd] if bedClosestToEnd.getChromEnd() < region.getChromEnd(): # That bed item is to the inside the region. bedToGet_endIdx = idxOfBedClosestToEnd else: # Will end at the previous bed item: bedToGet_endIdx = idxOfBedClosestToEnd - 1 return allBedItems[bedToGet_startIdx:bedToGet_endIdx+1] def get_chroms(self): """Returns a list of the the chromosomes included in this bed object.""" return self.chroms.keys() # Function to retrieve the item closest to the chromStart of the specified # BED line position, in log(N) time. def get_closest_item(self, query_item): # Retrieve the bed items for the specified chromosome: bed_items = self.get_BEDs(query_item.getChrom()) # If no item is located on the same chromosome, then return None: if (len(bed_items) == 0): return None # Locate the item in the (sorted) list of bed items that is located # closest to the specified item: closest = list_funcs.find_closest(query_item, bed_items, get_disp) return closest # Function to retrieve the item whose chromEnd is closest to the # chromStart of the specified BED line position, in log(N) time. def get_closest_chromEnd(self, query_item): # Retrieve the bed items for the specified chromosome: bed_items = self.get_BEDs(query_item.getChrom()) # If no item is located on the same chromosome, then return None: if (len(bed_items) == 0): return None # Locate the item in the (sorted) list of bed items that is located # closest to the specified item: closest = list_funcs.find_closest(query_item, bed_items, get_disp2) return closest # This function finds the closest bed item that occurs {upstream of and on # the same strand as} the specified query bed item: def get_closest_upstreamSameStrand(self, query_item): # Retrieve the bed items for the specified chromosome: bed_items = self.get_BEDs(query_item.getChrom()) # If no item is located on the same chromosome, then return None: if (len(bed_items) == 0): return None # Iterate through the bed items from the *downstream* end of the # chromosome's beds, until the first {*upstream* bed on the same strand} # is encountered: if (query_item.getStrand() == "+"): # The query item is on the positive strand => Start scanning # from the *end* of the chromosome... bed_idx = len(bed_items) - 1 # Logically, there must be at least one item in list, so the # following array indexing should not yield an error: curr_bed = bed_items[bed_idx] while ((bed_idx >= 0) and ((curr_bed.getStrand() == "-") or (curr_bed.getChromStart() > query_item.getChromStart()))): curr_bed = bed_items[bed_idx] bed_idx = bed_idx - 1 else: # The query item is on the negative strand => Start scanning # from the *end* of the chromosome... bed_idx = 0 # Logically, there must be at least one item in list, so the # following array indexing should not yield an error: curr_bed = bed_items[bed_idx] while ((bed_idx < len(bed_items)) and ((curr_bed.getStrand() == "+") or (curr_bed.getChromEnd() < query_item.getChromEnd()))): curr_bed = bed_items[bed_idx] bed_idx = bed_idx + 1 if ((bed_idx < 0) or (bed_idx >= len(bed_items))): return None else: return curr_bed def writeToFile(self, outFile): """Writes a bed file for this track.""" for chrom in self.get_chroms(): for bedItem in self.get_BEDs(chrom): outFile.write(bedItem.to_string() + "\n") outFile.flush() # FIXME: Currently, explicitly printing just the first 4 fields. # It would be nice to have a more flexible and general printing # mechanism. # outStr = \ # bedItem.getChrom() + " " + \ # bedItem.getChromStart() + " " + \ # bedItem.getChromEnd() + " " + \ # bedItem.getName() + "\n" # file.write(outStr) def toArray(self): """Returns a flattened version of this data structure; i.e. a list of BED_line objects.""" arr = [] for chrom in self.get_chroms(): for bedItem in self.get_BEDs(chrom): arr.append(bedItem) return arr def sampleBEDs(self, nBEDs, sample="random"): # Sample the required number of bed items from all those in this # track... allBEDs = self.getAllBEDs() if (sample == "random"): # Sample items randomly: random.shuffle(allBEDs) return allBEDs[:nBEDs] elif (sample == "highScoreFilt"): # Select the highest scoring items after first ignoring the # top 5% of items: allBEDs.sort(compareScores, reverse=True) index5percent = int(len(allBEDs)/20.0) return allBEDs[:(index5percent+nBEDs)][-nBEDs:] else: # Select the highest scoring items: assert (sample == "highScore") allBEDs.sort(compareScores, reverse=True) return allBEDs[:nBEDs] def gffPeaks2bed(gffFilename, outFilename): """Converts a specified gff file of ChIP-seq peaks into chip-seq peak- specific bed format.""" # Introduced on October 1, 2010, for my chipseqQC analysis software: gffFile = open(gffFilename) outFile = open(outFilename, 'w') # FIXME: Should probably improve the parsing here in the future, to # introduce some error checking. # Generate an output line from each output line, and write it out: for line in gffFile: elems = line.split() # Minor error checking here. Just check that the line has the required # number of fields in it: if (len(elems) < 9): print >> sys.stderr, "Invalid input line in peaks gff file " + \ gffFilename + ":", line sys.exit(1) chrom = "chr" + elems[0] chrStart = elems[1] chrEnd = elems[2] summit = elems[3] peakHeight = elems[4] peakVolume = elems[5] negCntrl = elems[6] fcRatio = elems[7] pVal = elems[8] extraInfo = peakVolume + "_" + \ negCntrl + "_" + fcRatio + "_" + pVal # FIXME: Currently, I am excluding the extra info (above) for the peak, # rather than including it in the bed output line. Improve on this # later. outLine = chrom + " " + chrStart + " " + chrEnd + " NoName " + \ peakHeight + " # " + pVal + " " + fcRatio + " " + summit + "\n" outFile.write(outLine) outFile.flush() outFile.close() # This function returns the displacement between the chromStart of the first # element, and the chromEnd of the second, assuming that they are located on # the same chromosome as each other: def get_disp2(bed1, bed2): assert(bed1.getChrom() == bed2.getChrom()) return (bed1.getChromStart() - bed2.getChromEnd()) # This function returns the displacement from the chromStart of the second # element to the chromStart of the first, assuming that they are located on # the same chromosome as each other: def get_disp_chrStartChrStart(bed1, bed2): assert(bed1.getChrom() == bed2.getChrom()) return (bed1.getChromStart() - bed2.getChromStart()) # This function returns the displacement from the chromEnd of the second # element to the chromEnd of the first, assuming that they are located on # the same chromosome as each other: def get_disp_chrEndChrEnd(bed1, bed2): assert(bed1.getChrom() == bed2.getChrom()) return (bed1.getChromEnd() - bed2.getChromEnd()) # This function returns the displacement between the two elements, assuming # that they are located on the same chromosome as each other: def get_disp(bed1, bed2): if (bed1.getChromStart() > bed2.getChromEnd()): # Bed1 is "to the right" of bed2: return (bed1.getChromStart() - bed2.getChromEnd()) elif (bed1.getChromEnd() < bed2.getChromStart()): # Bed1 is "to the left" of bed2 (so negative displacement): return -(bed2.getChromStart() - bed1.getChromEnd()) else: # The two items must overlap => Report a displacement of zero: return 0 # This function chooses the bed line with the lowest score, out of the two # options: def get_lowest(line1, line2): if (line1.getScore() < line2.getScore()): return line1 elif (line1.getScore() == line2.getScore()): print >> sys.stderr, "Lines have equal scores:\n", line1.to_string(), \ "\n", line2.to_string() return line2 else: return line2 # A comparator function. This function compares two bed lines objects according # to their score values, and reports -1, 0, or 1, according to the outcome # of the comparison. def compareScores(line1, line2): if (line1.getScore() < line2.getScore()): return -1 elif (line1.getScore() == line2.getScore()): return 0 else: return 1 # A comparator function. Compares two chromosomal locations. def chrom_compare(line1, line2): # Sort lexicographically according to chromosome first: if (line1.chrom > line2.chrom): return 1 elif (line1.chrom < line2.chrom): return -1 # If chromosomes are then same, then sort according to chromStart: elif (line1.chromStart > line2.chromStart): return 1 elif (line1.chromStart == line2.chromStart): return 0 else: return -1 class BED_line(object): """A line of data in BED format. Modified on 6th of October 2010: Introduced a comments field. Now, any non-compulsory field will be regarded as a comment if it occurs after a "#" character. I did this to allow me to extend the class and to include extra information in the comments field for the extending class peak_BED_line.""" def __init__(self, line, track=None): items = line.split() # Introduced on 29th October 2010 to allow storage of wiggle track data # for an individual BED item: # August 1st 2013: # Removing reference to parent track; I suspect it could create a # "reference cycle", which would make garbage collection not happen: #self.track=track # The track to which this BED line belongs (if any) self.wigVals = {} try: # Parse the compulsory fields (chrom, start, end): self.chrom = items[0] self.chromStart = int(items[1]) self.chromEnd = int(items[2]) # Parse the remaining fields on the line... self.comment = None self.name = None self.score = None self.strand = None # For each remaining item from the 4th onwards, check if it # starts with "#". If so, store the remaining sections of the string # as a comment and stop parsing the line. Otherwise, store the # field as the appropriate attribute in the class: item_idx = 3 while ((self.comment == None) and (len(items) > item_idx)): currItem = items[item_idx] if (currItem[0] == "#"): # The remaining fields on the line comprise a comment. # Reconstitute the string from those fields, and store # the resulting comment: commentStr = reduce(lambda tok1, tok2: tok1 + " " + tok2, items[item_idx:])[1:] self.comment = commentStr else: # The field is a regular optional bed line field. Parse # it as such: if (item_idx == 3): self.name = currItem if (item_idx == 4): self.score = float(currItem) if (item_idx == 5): if (currItem == "None"): # Added on 15th October 2010: Allow "None" as # a valid strand string: self.strand = None else: if (currItem != '-' and currItem != '+'): raise ValueError("Invalid strand string: " + currItem) self.strand = currItem item_idx = item_idx + 1 except ValueError: # If the BED line is not formatted correctly, then raise the # exception to the calling code. raise # FIXME: The following fields of BED objects are not being # used in my current applications. => Comment them out (ie don't # make them attributes of the class) for the time being. # if (len(items) > 6): # self.thickStart = items[6] # else: # self.thickStart = None # if (len(items) > 7): # self.thickEnd = items[7] # else: # self.thickEnd = None # if (len(items) > 8): # self.itemRgb = items[8] # else: # self.itemRgb = None # if (len(items) > 9): # self.blockCount = items[9] # else: # self.blockCount = None # if (len(items) > 10): # self.blockSizes = items[10] # else: # self.blockSizes = None # if (len(items) > 11): # self.blockStarts = items[11] # else: # self.blockStarts = None # Converts this bed line to a string: def to_string(self): str_rep = self.chrom + " " + str(self.chromStart) + " " + \ str(self.chromEnd) + " " + str(self.name) + " " + str(self.score) \ + " " + str(self.strand) return str_rep # August 1st 2013: # Removing reference to parent track; I suspect it could create a # "reference cycle", which would make garbage collection not happen: #def getTrack(self): # return self.track def getChrom(self): return self.chrom def getChromStart(self): return self.chromStart def setChromStart(self, newStart): self.chromStart = newStart def setChromEnd(self, newEnd): self.chromEnd = newEnd def getChromEnd(self): return self.chromEnd def getLen(self): """Return the length of this genomic interval.""" return self.getChromEnd() - self.getChromStart() + 1 def getScore(self): return self.score def setScore(self, score): self.score = score def setName(self, name): self.name = name def getStrand(self): return self.strand def getName(self): return self.name # Returns true if this bed line overlaps the specified item's chromStart. # Returns false otherwise: def overlaps(self, bed_item): if (self.getChrom() != bed_item.getChrom()): return False start = self.getChromStart() end = self.getChromEnd() if ((start <= bed_item.getChromStart()) and \ (end >= bed_item.getChromStart())): return True else: return False def overlaps2(self, bed_item): """Returns true if this bed line overlaps any of the specified item's region. Returns false otherwise:""" if (self.getChrom() != bed_item.getChrom()): return False start = self.getChromStart() end = self.getChromEnd() if ((start <= bed_item.getChromStart()) and (end >= bed_item.getChromStart())): return True elif ((start <= bed_item.getChromEnd()) and (end >= bed_item.getChromEnd())): return True elif ((start >= bed_item.getChromStart()) and (end <= bed_item.getChromEnd())): return True else: return False def setWig(self, wigKey, wigArray): """Sets wiggle data for this BED object. Stores the specified array under the specified object key, which will be used as a dictionary key.""" self.wigVals[wigKey] = wigArray def getWig(self, wigKey): """Returns the wiggle data for the specified key.""" return self.wigVals[wigKey] def spansBED(self, bedTrack): """"Returns true if there is at least one {bed item in the specified bedTrack} whose end occurs within the bounds of this bed item.""" regStart = self.getChromStart() regEnd = self.getChromEnd() regMiddle = int((regStart + regEnd)/2.0) tmpBedLineStr = self.getChrom() + " " + str(regMiddle) + " " + \ str(regMiddle) halfRegSize = (regEnd - regStart)/2.0 regMiddle_BED = BED_line(tmpBedLineStr) bedMiddleClosestPeak = bedTrack.get_closest_item(regMiddle_BED) if ((bedMiddleClosestPeak != None) and \ (abs(get_disp(bedMiddleClosestPeak, regMiddle_BED)) < \ halfRegSize)): return True else: return False def spanningBED(self, bedTrack): """"Returns the closest item in bedTrack if there is at least one {bed item in the specified bedTrack} that spans the middle of this bed item. Otherwise returns None""" regStart = self.getChromStart() regEnd = self.getChromEnd() regMiddle = int((regStart + regEnd)/2.0) tmpBedLineStr = self.getChrom() + " " + str(regMiddle) + " " + \ str(regMiddle) regMiddle_BED = BED_line(tmpBedLineStr) bedMiddleClosestItem = bedTrack.get_closest_item(regMiddle_BED) if ((bedMiddleClosestItem != None) and (bedMiddleClosestItem.getChromStart() < regMiddle) and (bedMiddleClosestItem.getChromEnd() > regMiddle)): return bedMiddleClosestItem else: return None def getBedCoordStr(self): """Returns a single-word representation of the coordinates of this bed object.""" return str(self.getChrom()) + ":" + str(self.getChromStart()) + "-" + \ str(self.getChromEnd()) # NOTE: Added this functionality on 1st October 2010 in order to support # the chipseq QC analysis code: # DEPRECATED ON 14TH OCTOBER 2010, as I have refactored my code => # Commenting this out. # def seq2fasta(self, genomeFilename, outFilename, noZero=False): # """This method retrieves the genomic sequence corresponding to the # BED line's coordinates, and writes that sequence out to the specified # file, in fasta format.""" # # noZero is a boolean specifying whether a zero-length sequence is # # to be output. # # FIXME: Currently, I am assuming the input reference genome chromosome # # sequences are named just by number, without a preceding "chr". This # # assumption is very volatile, and I should improve the mechanism # # here to make it robust in the future - e.g. by parsing part of # # the genome fasta file to ensure it follows that format. # chrLocStr = self.getChrom()[3:] + ":" + str(self.getChromStart()) + \ # "-" + str(self.getChromEnd()) # # print >> sys.stderr, \ # # "seq2fasta called. Attempting to run pysam.faidx for the inputs", \ # # genomeFilename, "and", chrLocStr # seqGetter = getSeqFa.seqRetriever(genomeFilename) # seq = seqGetter.getSequence(chrLocStr) # # Output the sequence in fasta format... # seqNameLine = ">" + chrLocStr + "\n" # outFile = open(outFilename, 'a') # if (noZero): # if (len(seq) > 0): # # Sequence is non-zero length => can print it: # outFile.write(seqNameLine) # outFile.write(seq + "\n") # else: # # Output the sequence, irrespective of it's length: # outFile.write(seq + "\n") # outFile.write(line) # outFile.flush() # outFile.close() def peaksFcCmp(peakBED1, peakBED2): """Comparator function that compares two peak beds on fold-change.""" if (peakBED1.foldChange < peakBED2.foldChange): return -1 elif (peakBED1.foldChange == peakBED2.foldChange): return 0 else: return 1 class peak_BED_line(BED_line): """A class representing a special kind of BED line, which represents a chip-seq peak. This line has three extra attributes (pValue, foldChange, and summit), which are stored as space-delimited items in that order in the comment string of the input line. I have done it this way because the standard bed line does not include these attributes as defined by UCSC.""" def __init__(self, line, track=None): # Instantiate all the fields on the line: super(peak_BED_line, self).__init__(line, track=track) # Parse the comment string of the parent class, and extract the 3 # required fields from it. Report an error if the comment string # formatting is invalid... try: # Check that the comments field has been instantiated and that # it has three items. If it doesn't, report this input error as # an exception: if ((self.comment == None) or (len(self.comment.split()) != 3)): raise ValueError(\ "Invalid input line for peak_BED_line creation:" + \ str(self.comment)) toks = self.comment.split() self.pVal = float(toks[0]) self.foldChange = float(toks[1]) self.summit = int(toks[2]) # Parse the comment line, storing except ValueError: # If the BED line is not formatted correctly, then raise the # exception to the calling code. raise # The peak sequence is also introduced as an attribute of this # BED_line subclass: peakSequence = None def get_pVal(self): return self.pVal def get_fc(self): return self.foldChange def get_summit(self): return self.summit def to_string(self): """Returns a string representation of this peak bed object. Simply appends the additional variables onto the end of the string generated by the superclass.""" superStrRep = super(peak_BED_line, self).to_string() str_rep = superStrRep + " # " + str(self.get_pVal()) + " " + \ str(self.get_fc()) + " " + str(self.get_summit()) return str_rep # August 1st 2013: # Removing reference to parent track; I suspect it could create a # "reference cycle", which would make garbage collection not happen: # def getRefGenomeFilename(self): # return self.getTrack().getRefGenomeFilename() # September 18th 2013: # Re-adding the getPeakSequence method, but this time the user has # to pass in a seqGetter object: def getPeakSequence(self, flankWidth, seqGetter): """Returns the peak's sequence, corresponding to the sequence surrounding the summit with the specified flanking sequence width.""" # Generate a new chromosomal loc string, centred on the peak's # summit, and with the specified width: startPos = str(self.get_summit() - flankWidth) endPos = str(self.get_summit() + flankWidth) if (int(startPos) < 0): print >> sys.stderr, "WARNING: Ignoring peak as extended start " + \ "is below 0:", self.to_string() return None centredPeakLoc = self.getChrom() + ":" + startPos + "-" + endPos # Retrieve the genomic sequence corresponding to that location, # and set this peak's sequence accordingly... # March 4th 2013: Trim the start of the chromosome string name # if needed. Figure out whether to trim based on the genome # filename contents. I don't like this solution but it is the # best solution I can come up with in the current design, since # option passing is not flexible enough in chipseq_analysis.py: firstGenomeLine = open(seqGetter.seqFilename).readline() chrLocQueryStr = None if firstGenomeLine[:4] == ">chr": chrLocQueryStr = centredPeakLoc else: chrLocQueryStr = centredPeakLoc[3:] try: peakSequence = seqGetter.getSequence(chrLocQueryStr) # Ensure that the peak sequence is the correct size given # the flanking width specified. If it is not, then set the # peakSequence to null and report this as a warning: requiredSeqSize = (flankWidth*2)+1 if (len(peakSequence) != requiredSeqSize): print >> sys.stderr, "WARNING!: Genomic sequence for " + \ "peak " + self.to_string() + " is not the required size" + \ " of " + str(requiredSeqSize) + ". Setting sequence to null" + \ " instead." return None else: return peakSequence except ValueError, e: # If the peak's sequence could not be retrieved, report this # error (a possible user input error) but do not crash: print >> sys.stderr, "WARNING!: Could not retrieve sequence" + \ " for peak " + self.to_string() + "." # Sequence retrieval failed for this peak for some reason => # Make sure that the peakSequence is returned as null # to flag this fact: return None def writeFasta(self, outFile, flankWidth, seqGetter): """Write the sequence for this peak to the specified output fasta file. The sequence name written is exactly the same as the string returned by the parent class's method getBedCoordStr().""" seqName = ">" + self.getBedCoordStr() # NOTE: Potentially confusing point: The sequence returned probably # does *not* correspond to the printed sequence name; This is because # "getPeakSequence" retrieves the region flanking the peak summit, # whereas the sequence name specifies the start and end of the peak # itself. seq = self.getPeakSequence(flankWidth, seqGetter) outFile.write(seqName + "\n") outFile.write(seq + "\n") def copy(self): """Introduced on January 21st 2011 to facilitate spamo analysis. Returns a copy of this peak_BED_line object.""" # Generate a string representing the line, which is required by # the constructor of this class: strRep = self.to_string() # Generate the copy and return it: copy = peak_BED_line(strRep) copy.track = self.getTrack() return copy def setStart(self, newStart): """Introduced on January 21st 2011 to facilitate spamo analysis. Sets the start coordinates of this BED_line object. NOTE: This is a bit dodgy as I had originally planned for the start and end of a given BED_line object to be immutable.""" self.chromStart = newStart def setEnd(self, newEnd): """Introduced on January 21st 2011 to facilitate spamo analysis. Sets the end coordinates of this BED_line object. NOTE: This is a bit dodgy as I had originally planned for the start and end of a given BED_line object to be immutable.""" self.chromEnd = newEnd class FixedStep_Track_From_BED: """A fixedStep wiggle track class that is created by reading in a bed- formatted file.""" def __init__(self, file, bg_score): # A hashtable with chromosomal locs as keys and scores from the # bed items as values. Supports O(1) retrieval of values on the basis # of chromosomal location, assuming that no collisions occur. self.values = {} # The background score: self.bg_score = bg_score # Parse the contents of the specified file to produce the wiggle # track object: try: for line in file: elems = line.split() # Will just ignore the line if it is empty; empty lines are # valid: if (len(elems) > 0): # Only add values for the line if it is a chromosomal # location: first_elem = elems[0] if (first_elem[0:3] == "chr"): # Each bed entry must have a score entry if the bed # object is going to be converted into a fixedStep # wiggle track object: if (len(elems) < 5): raise ValueError( "Line invalid for FixedStep_Track_From_BED:\n" \ + line) chrom = elems[0] start = int(elems[1]) end = int(elems[2]) score = float(elems[4]) # Generate a list of chromosomal locations, spanning the # specified start to the specified end: for loc in (range(start,(end - 1))): curr_pos = (chrom, loc) # Add each resulting chromosomal location string to # the values hashtable, with the items score as the # value: self.values[curr_pos] = score except IOError: # If the file does not open, throw this exception upwards, rather # than dealing with it here: raise except ValueError: # A value error here means that a BED_line was invalid. raise # Retrieves the wiggle track's value at the specified chromosomal position. def get_value(self, chrom_name, pos): if (self.values.has_key((chrom_name,pos))): return self.values[(chrom_name,pos)] else: return self.bg_score # No explicit value => Return background value. class FixedStep_Track: """A fixedStep wiggle track.""" # Added max_chrom_size on 24th July 2008. It specifies the maximum size # a chromosome can be. If it is specified, then the array of float for # each chromosome is pre-allocated and filled in. If left as null, the # array is grown using append, instead. def __init__(self, file, max_chrom_size=None): print >> sys.stderr, "Reading file: ", file.name # Trace # # Insist that the first line must define the fixedStep interval. Read # # in that info: # first_line = file.readline() # elems = first_line.split() # if (elems[0] != "Track"): # raise ValueError("First line of file " + file.name + \ # " must start with \"track\"." + items[5]) # The arrays of data, corresponding to the different chromosomes, will # be stored in a dictionary for easy retrieval: self.chroms = {} # Discard the lines at the start of the file until a "fixedStep" line # is found: curr_line = file.readline() while ((curr_line != "") and (len(curr_line.split()) > 0) and \ (curr_line.split()[0] != "fixedStep")): curr_line = file.readline() # Keep reading data and placing it in "Chromosome" objects until no # more lines are available in the file: while (curr_line != ""): # Current line is a "fixedStep" definition line. Retrieve the # chrom, start, and step values from it: elems = curr_line.split() chrom_str = elems[1] start_str = elems[2] step_str = elems[3] chrom = chrom_str.split("=")[1] start = int(start_str.split("=")[1]) step = int(step_str.split("=")[1]) # Read in data until the end of the file is reached or a new # chromosome is reached: if (max_chrom_size == None): chrom_data = array.array('f', []) print >> sys.stderr, "STARTING WITH ARRAY OF SIZE ZERO." else: # 25th July 2008: Forced to use python arrays, to reduce # memory usage. # The maximum size for the chromosome has been specified: # Default value; -100 value seems OK... default_val = -100 chrom_data = array.array('f', [default_val]*max_chrom_size) print >> sys.stderr, "STARTING WITH EMPTY ARRAY OF SIZE", \ max_chrom_size curr_chrom_idx = 0 curr_line = file.readline() while ((curr_line != "") and (len(curr_line.split()) > 0) and \ (curr_line.split()[0] != "fixedStep")): if (max_chrom_size == None): chrom_data.append(float(curr_line)) else: chrom_data[curr_chrom_idx] = float(curr_line) curr_chrom_idx = curr_chrom_idx + 1 curr_line = file.readline() print >> sys.stderr, "FINISHED PROCESSING FIXEDSTEP BLOCK." # Create a new chromosome, containing the values. These wiggle # tracks are only allowed to have one segment of data per # chromosome, for simplicity. Note that hence this class # does not fully implement a wiggle track. Check this here: if (self.chroms.has_key(chrom)): raise ValueError( \ "More than one segment of data for a single chromosome: " \ + chrom + " . File: " + file.name) self.chroms[chrom] = Chromosome(chrom, start, step, chrom_data) # Retrieves the wiggle track's value at the specified chromosomal position. # Returns None if the wiggle track does not record a value at that location: def get_value(self, chrom_name, pos): # Retrieve the specified chromosome: curr_chrom = self.chroms[chrom_name] return curr_chrom.get_value(pos) # Prints the data for the specified chromosome, for this fixedStep Wiggle # track: def print_chrom(self, outfile, chrom_name, chrom_len): assert(self.chroms.has_key(chrom_name)) # The length of the chromosome must be specified, as this is not # specified when the track is first created. FIXME: Could improve that. print >> outfile, self.chroms[chrom_name].to_string(chrom_len) class Chromosome: def __init__(self, chrom, start, step, chrom_data): self.chrom = chrom self.start = start # Start of the data values in this chromosome self.step = step self.data = chrom_data def get_value(self, pos): # Calculate index of specified position into the array: arr_idx = int(math.floor(float(pos - self.start)/self.step)) # int(math.ceil(float(pos - self.start)/self.step) - 1) # If there is an item of data at that location, return it. Otherwise # return None to indicate that the location did not have a value # in this wiggle track: if ((arr_idx >= 0) and (arr_idx < len(self.data))): return self.data[arr_idx] else: return None def to_string(self, chrom_len): out_str = "CHROM: " + str(self.chrom) + "\n" out_str = out_str + "START: " + str(self.start) + "\n" out_str = out_str + "STEP: " + str(self.step) + "\n" for pos in range(1, chrom_len + 1): out_str = out_str + str(self.get_value(pos)) + "\n" return out_str def file_is_fixedStep(filename): """Scans the file, and returns if it is in fixedStep format, false otherwise""" file = open(filename) for line in file: elems = line.split() if (elems[0] == "fixedStep"): return True return False def file_is_bed(filename): """Scans the file, and returns if it is in BED format, false otherwise""" file = open(filename) for line in file: elems = line.split() if (elems[0][0:3] == "chr"): return True return False def getChromSizes(infoFile): """Returns a hashtable containing the lengths of the chromosomes, as recorded in the specified file.""" sizeHash = {} for line in infoFile: elems = line.split() sizeHash[elems[0]] = int(elems[1]) return sizeHash
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import base64 import time from azure.core.exceptions import ServiceRequestError from azure.core.pipeline.policies import HTTPPolicy class AAZBearerTokenCredentialPolicy(HTTPPolicy): """ Followed the implement of azure.core.pipeline.policies.BearerTokenCredentialPolicy """ def __init__(self, credential, *scopes, **kwargs): # pylint:disable=unused-argument super().__init__() self._scopes = scopes self._credential = credential self._token = None self._aux_tokens = None @staticmethod def _enforce_https(request): # move 'enforce_https' from options to context so it persists # across retries but isn't passed to a transport implementation option = request.context.options.pop("enforce_https", None) # True is the default setting; we needn't preserve an explicit opt in to the default behavior if option is False: request.context["enforce_https"] = option enforce_https = request.context.get("enforce_https", True) if enforce_https and not request.http_request.url.lower().startswith("https"): raise ServiceRequestError( "Bearer token authentication is not permitted for non-TLS protected (non-https) URLs." ) def _update_headers(self, headers): """Updates the Authorization header with the bearer token. :param dict headers: The HTTP Request headers """ headers["Authorization"] = "Bearer {}".format(self._token.token) if self._aux_tokens: headers["x-ms-authorization-auxiliary"] = ', '.join( "Bearer {}".format(token.token) for token in self._aux_tokens) @property def _need_new_token(self): if not self._token: return True return self._token.expires_on - time.time() < 300 @property def _need_new_aux_tokens(self): if not self._aux_tokens: return True for token in self._aux_tokens: if token.expires_on - time.time() < 300: return True return False def on_request(self, request): """Called before the policy sends a request. The base implementation authorizes the request with a bearer token. :param ~azure.core.pipeline.PipelineRequest request: the request """ self._enforce_https(request) if self._need_new_token: self._token = self._credential.get_token(*self._scopes) if self._need_new_aux_tokens: self._aux_tokens = self._credential.get_auxiliary_tokens(*self._scopes) self._update_headers(request.http_request.headers) def authorize_request(self, request, *scopes, **kwargs): """Acquire a token from the credential and authorize the request with it. Keyword arguments are passed to the credential's get_token method. The token will be cached and used to authorize future requests. :param ~azure.core.pipeline.PipelineRequest request: the request :param str scopes: required scopes of authentication """ self._token = self._credential.get_token(*scopes, **kwargs) self._aux_tokens = self._credential.get_auxiliary_tokens(*self._scopes) self._update_headers(request.http_request.headers) def send(self, request): """Authorize request with a bearer token and send it to the next policy :param request: The pipeline request object :type request: ~azure.core.pipeline.PipelineRequest """ self.on_request(request) try: response = self.next.send(request) self.on_response(request, response) except Exception: # pylint:disable=broad-except handled = self.on_exception(request) if not handled: raise else: if response.http_response.status_code == 401: self._token = None # any cached token is invalid if "WWW-Authenticate" in response.http_response.headers: request_authorized = self.on_challenge(request, response) if request_authorized: try: response = self.next.send(request) self.on_response(request, response) except Exception: # pylint:disable=broad-except handled = self.on_exception(request) if not handled: raise return response def on_challenge(self, request, response): """Authorize request according to an authentication challenge This method is called when the resource provider responds 401 with a WWW-Authenticate header. :param ~azure.core.pipeline.PipelineRequest request: the request which elicited an authentication challenge :param ~azure.core.pipeline.PipelineResponse response: the resource provider's response :returns: a bool indicating whether the policy should send the request """ # pylint:disable=unused-argument,no-self-use return False def on_response(self, request, response): """Executed after the request comes back from the next policy. :param request: Request to be modified after returning from the policy. :type request: ~azure.core.pipeline.PipelineRequest :param response: Pipeline response object :type response: ~azure.core.pipeline.PipelineResponse """ def on_exception(self, request): """Executed when an exception is raised while executing the next policy. This method is executed inside the exception handler. :param request: The Pipeline request object :type request: ~azure.core.pipeline.PipelineRequest :return: False by default, override with True to stop the exception. :rtype: bool """ # pylint: disable=no-self-use,unused-argument return False class AAZARMChallengeAuthenticationPolicy(AAZBearerTokenCredentialPolicy): """Adds a bearer token Authorization header to requests. This policy internally handles Continuous Access Evaluation (CAE) challenges. When it can't complete a challenge, it will return the 401 (unauthorized) response from ARM. :param ~azure.core.credentials.TokenCredential credential: credential for authorizing requests :param str scopes: required authentication scopes """ @staticmethod def _parse_claims_challenge(challenge): """Parse the "claims" parameter from an authentication challenge Example challenge with claims: Bearer authorization_uri="https://login.windows-ppe.net/", error="invalid_token", error_description="User session has been revoked", claims="eyJhY2Nlc3NfdG9rZW4iOnsibmJmIjp7ImVzc2VudGlhbCI6dHJ1ZSwgInZhbHVlIjoiMTYwMzc0MjgwMCJ9fX0=" :return: the challenge's "claims" parameter or None, if it doesn't contain that parameter """ encoded_claims = None for parameter in challenge.split(","): if "claims=" in parameter: if encoded_claims: # multiple claims challenges, e.g. for cross-tenant auth, would require special handling return None encoded_claims = parameter[parameter.index("=") + 1:].strip(" \"'") if not encoded_claims: return None padding_needed = -len(encoded_claims) % 4 try: decoded_claims = base64.urlsafe_b64decode(encoded_claims + "=" * padding_needed).decode() return decoded_claims except Exception: # pylint:disable=broad-except return None def on_challenge(self, request, response): # pylint:disable=unused-argument """Authorize request according to an ARM authentication challenge :param ~azure.core.pipeline.PipelineRequest request: the request which elicited an authentication challenge :param ~azure.core.pipeline.PipelineResponse response: ARM's response :returns: a bool indicating whether the policy should send the request """ challenge = response.http_response.headers.get("WWW-Authenticate") if challenge: claims = self._parse_claims_challenge(challenge) if claims: self.authorize_request(request, *self._scopes, claims=claims) return True return False
import random import uuid from math import gcd import numpy as np from ._population import Population from pychemia import Composition, Structure, pcm_log from pychemia.analysis import StructureAnalysis, StructureChanger, StructureMatch from pychemia.analysis.splitting import SplitMatch from pychemia.utils.mathematics import unit_vector from pychemia.utils.periodic import atomic_number, covalent_radius from pymongo import ASCENDING from pychemia.db import get_database from pychemia.crystal import CrystalSymmetry class RelaxStructures(Population): def evaluate_entry(self, entry_id): pass def __init__(self, name, composition=None, tag='global', target_forces=1E-3, value_tol=1E-2, distance_tolerance=0.3, min_comp_mult=2, max_comp_mult=8, pcdb_source=None, pressure=0.0, target_stress=None, target_diag_stress=None, target_nondiag_stress=None): """ Defines a population of PyChemia Structures, The 'name' of the database is used to create the MongoDB database and the structures are uniform in composition. A specific 'tag' could be attached to differentiate the other instances running concurrently. The 'delta' argument is the scaling factor for changers and mixers. In the case of populations supported on PyChemia databases the 'new' will erase the database :param name: The name of the population. ie the name of the database :param composition: The composition uniform for all the members :param tag: A tag to differentiate different instances running concurrently :return: A new StructurePopulation object """ if composition is not None: self.composition = Composition(composition) else: self.composition = None self.tag = tag self.target_forces = target_forces self.value_tol = value_tol self.min_comp_mult = min_comp_mult self.max_comp_mult = max_comp_mult self.pcdb_source = pcdb_source self.pressure = pressure if target_stress is None: self.target_stress = target_forces else: self.target_stress = target_stress if target_diag_stress is None: self.target_diag_stress = self.target_stress else: self.target_diag_stress = target_diag_stress if target_diag_stress is None: self.target_nondiag_stress = self.target_stress else: self.target_nondiag_stress = target_nondiag_stress self.name = name Population.__init__(self, name, tag, distance_tolerance=distance_tolerance) if self.pcdb_source is not None: self.sources = {} for i in range(min_comp_mult, max_comp_mult+1): self.sources[i] = [] for entry in self.pcdb_source.entries.find({'structure.natom': i*self.composition.natom, 'structure.nspecies': self.composition.nspecies}, {'_id': 1}): self.sources[i].append(entry['_id']) def recover(self): data = self.get_population_info() if data is not None: self.distance_tolerance = data['distance_tol'] self.value_tol = data['value_tol'] self.name = data['name'] self.target_forces = data['target_forces'] def get_structure(self, entry_id): entry = self.get_entry(entry_id) return Structure.from_dict(entry['structure']) @staticmethod def new_identifier(): return str(uuid.uuid4())[-12:] def new_entry(self, structure, active=True): properties = {'forces': None, 'stress': None, 'energy': None} status = {self.tag: active, 'tag': self.tag} entry = {'structure': structure.to_dict, 'properties': properties, 'status': status} entry_id = self.insert_entry(entry) pcm_log.debug('Added new entry: %s with tag=%s: %s' % (str(entry_id), self.tag, str(active))) return entry_id def get_max_force_stress(self, entry_id): entry = self.get_entry(entry_id, projection={'properties': 1}) max_force = None max_diag_stress = None max_nondiag_stress = None if entry is not None and entry['properties'] is not None: properties = entry['properties'] if 'forces' in properties and 'stress' in properties: if properties['forces'] is not None and properties['stress'] is not None: forces = np.array(entry['properties']['forces']) stress = np.array(entry['properties']['stress']) max_force = np.max(np.apply_along_axis(np.linalg.norm, 1, forces)) max_diag_stress = np.max(np.abs(stress[:3])) max_nondiag_stress = np.max(np.abs(stress[4:])) return max_force, max_diag_stress, max_nondiag_stress def is_evaluated(self, entry_id): max_force, max_diag_stress, max_nondiag_stress = self.get_max_force_stress(entry_id) if max_force is None or max_diag_stress is None or max_nondiag_stress is None: return False elif max_force < self.target_forces and max_diag_stress < self.target_diag_stress + self.pressure: if max_nondiag_stress < self.target_nondiag_stress: return True else: return False else: return False def add_random(self, random_probability=0.3): """ Add one random structure to the population """ entry_id = None structure = Structure() if self.composition is None: raise ValueError('No composition associated to this population') factor = np.random.randint(self.min_comp_mult, self.max_comp_mult + 1) comp = self.composition.composition.copy() # print("Initial composition: %s" % comp) # print(Composition(comp)) # print(Composition(comp).symbols) for i in comp: comp[i] *= factor new_comp = Composition(comp) while True: rnd = random.random() condition = {'structure.nspecies': new_comp.nspecies, 'structure.natom': new_comp.natom} if self.pcdb_source is None: rnd = 0 elif len(self.sources[factor]) == 0: rnd = 0 if self.pcdb_source is None or rnd < random_probability: pcm_log.debug('Random Structure') structure = Structure.random_cell(new_comp, method='stretching', stabilization_number=5, nparal=5, periodic=True) break else: pcm_log.debug('From source') entry_id = self.sources[factor][np.random.randint(0, len(self.sources[factor]))] structure = self.pcdb_source.get_structure(entry_id) print("chosen structure from database =", structure) sym = CrystalSymmetry(structure) scale_factor = float(np.max(covalent_radius(new_comp.species)) / np.max(covalent_radius(structure.species))) reduce_scale = scale_factor ** (1. / 3) # WIH msg = 'Mult: %d natom: %d From source: %s Spacegroup: %d Scaling: %7.3f' print(msg % (factor, structure.natom, structure.formula, sym.number(), scale_factor)) # structure.set_cell(np.dot(scale_factor * np.eye(3), structure.cell)) # WIH structure.set_cell(np.dot(reduce_scale * np.eye(3), structure.cell)) # WIH print("symbols before change = ", structure.symbols) structure.symbols = new_comp.symbols print("symbols after change = ", structure.symbols) self.sources[factor].remove(entry_id) break return self.new_entry(structure), entry_id def check_duplicates(self, ids): """ Computes duplicate structures measuring its distance when their value is larger than value_tol. If the distance is lower than 'distance_tol' the structures will be cosidered as duplicates. :param ids: :return: (dict) Dictionary of duplicates, the keys are the ids of the duplicates and the value is the structure from which the structure is duplicated. In general the energy of the 'value' is lower than the 'key' """ ret = {} selection = self.ids_sorted(ids) values = np.array([self.value(i) for i in selection]) if len(values) == 0: return ret diffs = np.ediff1d(values) for i in range(len(diffs)): idiff = diffs[i] if idiff < self.value_tol: ident1 = selection[i] ident2 = selection[i + 1] pcm_log.debug('Testing distances between %s and %s' % (str(ident1), str(ident2))) distance = self.distance(ident1, ident2) # print 'Distance = ', distance if distance < self.distance_tolerance: pcm_log.debug('Distance %7.3f < %7.3f' % (distance, self.distance_tolerance)) ret[ident2] = ident1 if len(ret) > 0: pcm_log.debug('Number of duplicates %d' % len(ret)) return ret def get_duplicates(self, ids, tolerance, fast=False): dupes_dict = {} dupes_list = [] values = {} for i in ids: values[i] = self.value(i) selection = self.ids_sorted(ids) print('Searching duplicates in %d structures' % len(selection)) for i in range(len(selection) - 1): entry_id = selection[i] value_i = values[entry_id] for j in range(i + 1, len(selection)): entry_jd = selection[j] if fast and entry_jd in dupes_list: continue value_j = values[entry_jd] if abs(value_i - value_j) < self.value_tol: distance = self.distance(entry_id, entry_jd) if distance < tolerance: if entry_id in dupes_dict: dupes_dict[entry_id].append(entry_jd) else: dupes_dict[entry_id] = [entry_jd] dupes_list.append(entry_jd) return dupes_dict, [x for x in selection if x in dupes_list] def cleaned_from_duplicates(self, ids): selection = self.ids_sorted(ids) duplicates_dict = self.check_duplicates(selection) return [x for x in selection if x not in duplicates_dict.keys()] def diff_values_matrix(self): members = self.members ret = np.zeros((len(members), len(members))) for i in range(len(members)): for j in range(i, len(members)): if self.value(members[i]) is not None and self.value(members[j]) is not None: ret[i, j] = np.abs(self.value(members[i]) - self.value(members[j])) else: ret[i, j] = float('nan') ret[j, i] = ret[i, j] return ret def distance(self, entry_id, entry_jd, rcut=50): ids_pair = [entry_id, entry_jd] ids_pair.sort() distance_entry = self.pcdb.db.distances.find_one({'pair': ids_pair}, {'distance': 1}) self.pcdb.db.distances.create_index([("pair", ASCENDING)]) if distance_entry is None: print('Distance not in DB') fingerprints = {} for entry_ijd in [entry_id, entry_jd]: if self.pcdb.db.fingerprints.find_one({'_id': entry_ijd}) is None: structure = self.get_structure(entry_ijd) analysis = StructureAnalysis(structure, radius=rcut) x, ys = analysis.fp_oganov() fingerprint = {'_id': entry_ijd} for k in ys: atomic_number1 = atomic_number(structure.species[k[0]]) atomic_number2 = atomic_number(structure.species[k[1]]) pair = '%06d' % min(atomic_number1 * 1000 + atomic_number2, atomic_number2 * 1000 + atomic_number1) fingerprint[pair] = list(ys[k]) if self.pcdb.db.fingerprints.find_one({'_id': entry_ijd}) is None: self.pcdb.db.fingerprints.insert(fingerprint) else: self.pcdb.db.fingerprints.update({'_id': entry_ijd}, fingerprint) fingerprints[entry_ijd] = fingerprint else: fingerprints[entry_ijd] = self.pcdb.db.fingerprints.find_one({'_id': entry_ijd}) dij = [] for pair in fingerprints[entry_id]: if pair in fingerprints[entry_jd] and pair != '_id': uvect1 = unit_vector(fingerprints[entry_id][pair]) uvect2 = unit_vector(fingerprints[entry_jd][pair]) dij.append(0.5 * (1.0 - np.dot(uvect1, uvect2))) distance = float(np.mean(dij)) self.pcdb.db.distances.insert({'pair': ids_pair, 'distance': distance}) else: distance = distance_entry['distance'] return distance def add_from_db(self, db_settings, sizemax=1): if self.composition is None: raise ValueError('No composition associated to this population') comp = Composition(self.composition) readdb = get_database(db_settings) index = 0 for entry in readdb.entries.find({'structure.formula': comp.formula, 'structure.natom': {'$lte': self.min_comp_mult * comp.natom, '$gte': self.max_comp_mult * comp.natom}}): if index < sizemax: print('Adding entry ' + str(entry['_id']) + ' from ' + readdb.name) self.new_entry(readdb.get_structure(entry['_id'])) index += 1 def move_random(self, entry_id, factor=0.2, in_place=False, kind='move'): structure = self.get_structure(entry_id) changer = StructureChanger(structure=structure) if kind == 'move': changer.random_move_many_atoms(epsilon=factor) else: # change changer.random_change(factor) if in_place: return self.set_structure(entry_id, changer.new_structure) else: return self.new_entry(changer.new_structure, active=False) def move(self, entry_id, entry_jd, factor=0.2, in_place=False): """ Moves entry_id in the direction of entry_jd If in_place is True the movement occurs on the same address as entry_id :param factor: :param entry_id: :param entry_jd: :param in_place: :return: """ structure_mobile = self.get_structure(entry_id) structure_target = self.get_structure(entry_jd) if structure_mobile.natom != structure_target.natom: # Moving structures with different number of atoms is only implemented for smaller structures moving # towards bigger ones by making a super-cell and only if their size is smaller that 'max_comp_mult' mult1 = structure_mobile.get_composition().gcd mult2 = structure_target.get_composition().gcd lcd = mult1 * mult2 / gcd(mult1, mult2) if lcd > self.max_comp_mult: # The resulting structure is bigger than the limit # cannot move if not in_place: return self.new_entry(structure_mobile) else: return entry_id # We will move structure1 in the direction of structure2 match = StructureMatch(structure_target, structure_mobile) match.match_size() match.match_shape() match.match_atoms() displacements = match.reduced_displacement() new_reduced = match.structure2.reduced + factor * displacements new_cell = match.structure2.cell new_symbols = match.structure2.symbols new_structure = Structure(reduced=new_reduced, symbols=new_symbols, cell=new_cell) if in_place: return self.set_structure(entry_id, new_structure) else: return self.new_entry(new_structure, active=False) def __str__(self): ret = '\n' ret += '[%s] Population type: %s\n' % (self.tag, 'Relax Structures') ret += '[%s] Database: %s\n' % (self.tag, self.name) ret += '[%s] Tag: %s\n' % (self.tag, self.tag) ret += '[%s] Target-Forces: %7.2E\n' % (self.tag, self.target_forces) ret += '[%s] Value tolerance: %7.2E\n' % (self.tag, self.value_tol) ret += '[%s] Distance tolerance: %7.2E\n\n' % (self.tag, self.distance_tolerance) if self.composition is not None: ret += '[%s] Composition: %s\n' % (self.tag, self.composition.formula) ret += '[%s] Minimal composition multiplier: %d\n' % (self.tag, self.min_comp_mult) ret += '[%s] Maximal composition multiplier: %d\n' % (self.tag, self.max_comp_mult) ret += '[%s] Members: %d\n' % (self.tag, len(self.members)) ret += '[%s] Actives: %d\n' % (self.tag, len(self.actives)) ret += '[%s] Evaluated: %d\n' % (self.tag, len(self.evaluated)) ret += '\n' return ret def value(self, entry_id): entry = self.get_entry(entry_id) structure = self.get_structure(entry_id) if 'properties' not in entry: pcm_log.debug('This entry has no properties %s' % str(entry['_id'])) return None elif entry['properties'] is None: return None elif 'energy' not in entry['properties']: pcm_log.debug('This entry has no energy in properties %s' % str(entry['_id'])) return None else: return entry['properties']['energy'] / structure.get_composition().gcd @property def to_dict(self): return {'name': self.name, 'tag': self.tag, 'target_forces': self.target_forces, 'value_tol': self.value_tol, 'distance_tolerance': self.distance_tolerance} def from_dict(self, population_dict): return RelaxStructures(name=population_dict['name'], tag=population_dict['tag'], target_forces=population_dict['target_forces'], value_tol=population_dict['value_tol'], distance_tolerance=population_dict['distance_tolerance']) def cross(self, ids): assert len(ids) == 2 structure1 = self.get_structure(ids[0]) structure2 = self.get_structure(ids[1]) split_match = SplitMatch(structure1, structure2) st1, st2 = split_match.get_simple_match() entry_id = self.new_entry(st1, active=True) entry_jd = self.new_entry(st2, active=True) return entry_id, entry_jd def str_entry(self, entry_id): struct = self.get_structure(entry_id) return str(struct)
#!/usr/bin/python """ PN DCI """ # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # from ansible.module_utils.basic import AnsibleModule import shlex import time DOCUMENTATION = """ --- module: pn_dci author: 'Pluribus Networks (devops@pluribusnetworks.com)' short_description: Module to implement a DCI. description: This module is to plan and implement a DCI architecture. options: pn_cliusername: description: - Provide login username if user is not root. required: False type: str pn_clipassword: description: - Provide login password if user is not root. required: False type: str pn_fabric_name: description: - Specify name of the fabric. required: False type: str pn_current_switch: description: - Specify name of the current switch. required: True type: str pn_run_initial_setup: description: - Flag to accept eula required: True type: bool pn_spine_list: description: - Specify list of third party spine switches. required: True type: list pn_leaf_list: description: - Specify list of all DC leaf switches. required: True type: list pn_inband_ip: description: - Specify the inband ip address. required: False type: str pn_loopback_ip: description: - Specify the loopback interface ip. required: False type: str pn_bgp_ip: description: - Specify the bgp ip for creating neighbor. required: False type: str pn_bgp_redistribute: description: - Specify bgp_redistribute value to be added to vrouter. required: False type: str choices: ['none', 'static', 'connected', 'rip', 'ospf'] default: 'connected' pn_bgp_maxpath: description: - Specify bgp_maxpath value to be added to vrouter. required: False type: str default: '16' pn_ibgp_vlan: description: - Specify vlan for iBGP configuration. required: False type: str default: '4040' pn_ibgp_ip_range: description: - Specify iBGP ip range to assigned during iBGP configuration. required: False type: str default: '75.75.75.0/30' pn_csv_data: description: - Specify VRRP and vxlan config data in the form of csv. required: False type: str pn_third_party_bgp_data: description: - Specify third party bgp config data in the form of csv. required: False type: str """ EXAMPLES = """ - name: Accept EULA, Join Fabric, Configure eBGP pn_dci: pn_cliusername: "{{ USERNAME }}" pn_clipassword: "{{ PASSWORD }}" pn_fabric_name: 'ansible_dci_fabric' pn_current_switch: "{{ inventory_hostname }}" pn_run_initial_setup: True pn_spine_list: "{{ groups['spine'] }}" pn_leaf_list: "{{ groups['leaf'] }}" pn_inband_ip: '172.18.0.0/24' pn_loopback_ip: '108.108.108.0/24' pn_bgp_ip: '100.1.1.0/30' pn_csv_data: "{{ lookup('file', '{{ dci_file }}') }}" pn_third_party_bgp_data: "{{ lookup('file', '{{ third_party_file }}') }}" - name: Configure iBGP, VRRP and Vxlan pn_dci: pn_cliusername: "{{ USERNAME }}" pn_clipassword: "{{ PASSWORD }}" pn_fabric_name: 'ansible_dci_fabric' pn_current_switch: "{{ inventory_hostname }}" pn_run_initial_setup: False pn_spine_list: "{{ groups['spine'] }}" pn_leaf_list: "{{ groups['leaf'] }}" pn_inband_ip: '172.18.0.0/24' pn_loopback_ip: '108.108.108.0/24' pn_bgp_ip: '100.1.1.0/30' pn_csv_data: "{{ lookup('file', '{{ dci_file }}') }}" pn_third_party_bgp_data: "{{ lookup('file', '{{ third_party_file }}') }}" """ RETURN = """ stdout: description: The set of responses for each command. returned: always type: str changed: description: Indicates whether the CLI caused changes on the target. returned: always type: bool failed: description: Indicates whether or not the execution failed on the target. returned: always type: bool """ CHANGED_FLAG = [] def pn_cli(module): """ Method to generate the cli portion to launch the Netvisor cli. :param module: The Ansible module to fetch username and password. :return: The cli string for further processing. """ username = module.params['pn_cliusername'] password = module.params['pn_clipassword'] if username and password: cli = '/usr/bin/cli --quiet --user %s:%s ' % (username, password) else: cli = '/usr/bin/cli --quiet ' return cli def run_cli(module, cli): """ Method to execute the cli command on the target node(s) and returns the output. :param module: The Ansible module to fetch input parameters. :param cli: The complete cli string to be executed on the target node(s). :return: Output/Error or Success msg depending upon the response from cli. """ cli = shlex.split(cli) rc, out, err = module.run_command(cli) if out: return out if err: module.exit_json( error='1', failed=True, stderr=err.strip(), msg='Operation Failed: ' + str(cli), changed=False ) else: return 'Success' def auto_accept_eula(module): """ Method to accept the EULA when we first login to a new switch. :param module: The Ansible module to fetch input parameters. :return: The output of run_cli() method. """ password = module.params['pn_clipassword'] cli = ' /usr/bin/cli --quiet --skip-setup eula-show ' cli = shlex.split(cli) rc, out, err = module.run_command(cli) if err: cli = '/usr/bin/cli --quiet' cli += ' --skip-setup --script-password ' cli += ' switch-setup-modify password ' + password cli += ' eula-accepted true ' return run_cli(module, cli) elif out: return ' EULA has been accepted already ' def update_switch_names(module, switch_name): """ Method to update switch names. :param module: The Ansible module to fetch input parameters. :param switch_name: Name to assign to the switch. :return: String describing switch name got modified or not. """ cli = pn_cli(module) cli += ' switch-setup-show format switch-name ' if switch_name in run_cli(module, cli).split()[1]: return ' Switch name is same as hostname! ' else: cli = pn_cli(module) cli += ' switch-setup-modify switch-name ' + switch_name run_cli(module, cli) return ' Updated switch name to match hostname! ' def assign_inband_ip(module): """ Method to assign in-band ips to switches. :param module: The Ansible module to fetch input parameters. :return: String describing if in-band ip got assigned or not. """ global CHANGED_FLAG inband_ip = module.params['pn_inband_ip'] leaf_list = module.params['pn_leaf_list'] current_switch = module.params['pn_current_switch'] switch_position = leaf_list.index(current_switch) + 1 address = inband_ip.split('.') static_part = str(address[0]) + '.' + str(address[1]) + '.' last_octet = str(address[3]).split('/') subnet = last_octet[1] ip = static_part + str(switch_position) + '.' ip += str(switch_position) + '/' + subnet cli = pn_cli(module) cli += 'switch-setup-modify in-band-ip %s ' % ip if 'Setup completed successfully' in run_cli(module, cli): CHANGED_FLAG.append(True) return ' %s: In-band ip assigned with ip %s \n' % (current_switch, ip) return '' def create_switch_routes(module, inband_ip): """ Method to create a switch routes :param module: The Ansible module to fetch input parameters. :param inband_ip: in-band ip of the switch. """ inband_address = inband_ip.split(':')[1].split('.') static_part = str(inband_address[0]) + '.' + str(inband_address[1]) + '.' gateway_static_part = static_part + str(inband_address[2]) + '.' last_octet = str(inband_address[3]).split('/') subnet = last_octet[1] gateway_ip = gateway_static_part + str(int(last_octet[0]) + 1) switch_count = 1 while switch_count <= len(module.params['pn_leaf_list']): network_ip = static_part + str(switch_count) + '.' + str(0) network_ip += '/' + subnet cli = pn_cli(module) cli += ' switch-route-create network %s gateway-ip %s ' % ( network_ip, gateway_ip ) switch_count += 1 cli = shlex.split(cli) module.run_command(cli) def configure_fabric(module, switch): """ Method to configure (create/join) fabric. :param module: The Ansible module to fetch input parameters. :param switch: Name of the current switch. :return: String describing fabric creation/joining description. """ global CHANGED_FLAG output = '' fabric_name = module.params['pn_fabric_name'] switch_index = module.params['pn_leaf_list'].index(switch) address = module.params['pn_inband_ip'].split('.') inband_static_part = str(address[0]) + '.' + str(address[1]) + '.' last_octet = str(address[3]).split('/') subnet = last_octet[1] if switch_index == 0: cli = pn_cli(module) clicopy = cli cli += 'fabric-show format name no-show-headers' existing_fabric = run_cli(module, cli).split() # Create fabric if not already created. if fabric_name not in existing_fabric: cli = clicopy cli += 'fabric-create name %s ' % fabric_name cli += ' fabric-network in-band control-network in-band ' run_cli(module, cli) output += ' %s: Fabric %s created \n' % (switch, fabric_name) CHANGED_FLAG.append(True) else: output += ' %s: Fabric %s already exists \n' % (switch, fabric_name) # Indicate all subnets of the in-band interfaces of switches, # that will be part of the fabric. output += fabric_inband_net_create(module, inband_static_part, subnet, switch) else: switch_ip = inband_static_part + str(1) + '.' + str(1) # Join existing fabric. if 'Already' in join_fabric(module, switch_ip): output += ' %s: Already part of fabric %s \n' % (switch, fabric_name) else: output += ' %s: Joined fabric %s \n' % (switch, fabric_name) CHANGED_FLAG.append(True) return output def find_clustered_switches(module): """ Method to find clustered switches from the input csv file. :param module: The Ansible module to fetch input parameters. :return: It returns a dict whose first value is list of pairs of cluster and second is list of switches in cluster. """ csv_data = module.params['pn_csv_data'] csv_data = csv_data.replace(' ', '') csv_data = csv_data.split('\n') cluster_dict_info = {} cluster_list = [] cluster_switches = [] for line in csv_data: if line != '': line = line.split(',') cluster_node_1 = line[2] cluster_node_2 = line[3] if not cluster_node_2.isdigit(): temp_list = [cluster_node_1, cluster_node_2] if temp_list not in cluster_list: cluster_switches.append(cluster_node_1) cluster_switches.append(cluster_node_2) cluster_list.append(temp_list) cluster_dict_info[0] = cluster_list cluster_dict_info[1] = cluster_switches return cluster_dict_info def fabric_inband_net_create(module, inband_static_part, subnet, switch): """ Method to create fabric in-band network. :param module: The Ansible module to fetch input parameters. :param inband_static_part: In-band ip address till second octet. :param subnet: Subnet mask of in-band ip address. :param switch: Name of the 1st switch in the DC. :return: String describing if fabric in-band network got created or not. """ global CHANGED_FLAG output = '' leaf_list = module.params['pn_leaf_list'] cli = pn_cli(module) clicopy = cli for leaf in leaf_list: switch_position = leaf_list.index(leaf) + 1 inband_network_ip = inband_static_part + str(switch_position) + '.' inband_network_ip += str(switch_position) cli = clicopy cli += 'fabric-in-band-network-show format network no-show-headers' existing_networks = run_cli(module, cli).split() if inband_network_ip not in existing_networks: cli = clicopy cli += 'fabric-in-band-network-create network ' + inband_network_ip cli += ' netmask ' + subnet if 'Success' in run_cli(module, cli): output += ' %s: Fabric in-band network created for %s \n' % ( switch, inband_network_ip ) CHANGED_FLAG.append(True) else: output += ' %s: Fabric in-band network %s already exists \n' % ( switch, inband_network_ip ) return output def join_fabric(module, switch_ip): """ Method to join existing fabric by pointing to in-band ip of first switch. :param module: The Ansible module to fetch input parameters. :param switch_ip: In-band ip of the first/originator switch. :return: The output of run_cli() method. """ cli = pn_cli(module) clicopy = cli cli += ' fabric-info format name no-show-headers' cli = shlex.split(cli) rc, out, err = module.run_command(cli) if err: cli = clicopy cli += ' fabric-join switch-ip %s ' % switch_ip elif out: return ' Already in a fabric \n' return run_cli(module, cli) def create_vrouter(module, switch, bgp_as, router_id, bgp_nic_ip, bgp_nic_l3_port, neighbor_ip, remote_as, in_band_nic_ip, in_band_nic_netmask, fabric_network_address): """ Method to create vrouter. :param module: The Ansible module to fetch input parameters. :param switch: Name of the current switch. :param bgp_as: BGP AS value of this switch. :param router_id: Router id to be assigned to this vrouter. :param bgp_nic_ip: Bgp_nic_ip for the vrouter creation. :param bgp_nic_l3_port: L3 port number connected to neighbor switch. :param neighbor_ip: Ip of the BGP neighbor node. :param remote_as: BGP AS value of the neighbor node. :param in_band_nic_ip: In-band nic ip of this switch. :param in_band_nic_netmask: Netmask of in-band nic ip. :param fabric_network_address: Fabric network address of the existing fabric :return: String describing if vrouter got created or if it already exists. """ global CHANGED_FLAG vrouter_name = switch + '-vrouter' cli = pn_cli(module) clicopy = cli cli += ' vrouter-show format name no-show-headers ' existing_vrouter_names = run_cli(module, cli).split() if vrouter_name not in existing_vrouter_names: cli = clicopy cli += ' fabric-comm-vrouter-bgp-create name %s ' % vrouter_name cli += ' bgp-as %s router-id %s ' % (bgp_as, router_id) cli += ' bgp-nic-ip %s ' % bgp_nic_ip cli += ' bgp-nic-l3-port %s ' % bgp_nic_l3_port cli += ' neighbor %s remote-as %s ' % (neighbor_ip, remote_as) cli += ' bfd in-band-nic-ip %s ' % in_band_nic_ip cli += ' in-band-nic-netmask %s ' % in_band_nic_netmask cli += ' fabric-network %s ' % fabric_network_address cli += ' allowas-in ' run_cli(module, cli) CHANGED_FLAG.append(True) return ' %s: Created %s \n' % (switch, vrouter_name) else: return ' %s: %s already exists \n' % (switch, vrouter_name) def get_l3_port(module, neighbor_name): """ Method to get l3 port number which is connected to given neighbor. :param module: The Ansible module to fetch input parameters. :param neighbor_name: Name of the bgp neighbor host. :return: l3 port number. """ cli = pn_cli(module) cli += 'port-show hostname %s format port no-show-headers' % ( neighbor_name ) ports = run_cli(module, cli).split() cli = pn_cli(module) cli += 'trunk-show ports %s format trunk-id no-show-headers ' % ( ports[0] ) trunk_id = run_cli(module, cli) if len(trunk_id) == 0 or trunk_id == 'Success': return ports[0] else: return trunk_id def configure_loopback_interface(module, switch, router_id): """ Method to configure looack interface on a vrouter. :param module: The Ansible module to fetch input parameters. :param switch: Name of the switch. :param router_id: Router id which is same as loopback ip. :return: String describing if loopback interface got configured or not """ global CHANGED_FLAG vrouter_name = switch + '-vrouter' cli = pn_cli(module) clicopy = cli cli += ' vrouter-loopback-interface-show vrouter-name %s ' % vrouter_name cli += ' format ip no-show-headers ' existing_ip = run_cli(module, cli) if router_id not in existing_ip: cli = clicopy cli += ' vrouter-loopback-interface-add vrouter-name %s ' % vrouter_name cli += ' ip %s ' % router_id run_cli(module, cli) cli = clicopy cli += ' vrouter-bgp-network-add vrouter-name %s ' % vrouter_name cli += ' network %s netmask 255.255.255.255 ' % router_id run_cli(module, cli) CHANGED_FLAG.append(True) return ' %s: Configured loopback interface with ip %s \n' % (switch, router_id) else: return ' %s: Loopback interface %s has been already configured \n' % ( switch, router_id ) def configure_ebgp_connections(module, switch, third_party_data, bgp_nic_ip): """ Method to configure eBGP connection to remaining third party neighbors. :param module: The Ansible module to fetch input parameters. :param switch: Name of the switch. :param third_party_data: Third party BGP data in csv format. :param bgp_nic_ip: Ip of first bgp neighbor added. :return: String describing eBGP configuration. """ global CHANGED_FLAG output = '' vrouter_name = switch + '-vrouter' skip_flag = False address = bgp_nic_ip.split('.') bgp_static_part = str(address[0]) + '.' + str(address[1]) + '.' bgp_static_part += str(address[2]) + '.' bgp_last_octet = str(address[3]).split('/') bgp_subnet = bgp_last_octet[1] for row in third_party_data: row = row.split(',') if not skip_flag and row[4] == switch: skip_flag = True continue if skip_flag and row[4] == switch: neighbor_name = row[0] neighbor_ip = row[1] remote_as = row[2] address = neighbor_ip.split('.') static_part = str(address[0]) + '.' + str(address[1]) + '.' static_part += str(address[2]) + '.' last_octet = str(int(address[3]) - 1) ip = static_part + last_octet + '/' + bgp_subnet l3_port = get_l3_port(module, neighbor_name) cli = pn_cli(module) clicopy = cli cli += ' vrouter-interface-show vrouter-name %s ' % vrouter_name cli += ' format ip no-show-headers ' exisiting_ip = run_cli(module, cli).split() if ip not in exisiting_ip: cli = clicopy cli += ' vrouter-interface-add vrouter-name %s ' % vrouter_name cli += ' l3-port %s ip %s ' % (l3_port, ip) run_cli(module, cli) output += ' %s: Added vrouter interface %s \n' % (switch, ip) else: output += ' %s: Vrouter interface %s already added \n' % ( switch, ip ) cli = clicopy cli += ' vrouter-bgp-show vrouter-name %s ' % vrouter_name cli += ' format neighbor no-show-headers ' exisiting_neighbor = run_cli(module, cli).split() if neighbor_ip not in exisiting_neighbor: cli = clicopy cli += ' vrouter-bgp-add vrouter-name %s ' % vrouter_name cli += ' neighbor %s remote-as %s bfd ' % (neighbor_ip, remote_as) cli += ' allowas-in ' run_cli(module, cli) output += ' %s: Added eBGP neighbor %s \n' % (switch, neighbor_ip) cli = clicopy cli += ' vrouter-modify name %s ' % vrouter_name cli += ' bgp-max-paths %s ' % module.params['pn_bgp_max_path'] cli += ' bgp-bestpath-as-path multipath-relax ' run_cli(module, cli) else: output += ' %s: eBGP neighbor %s already added \n' % ( switch, neighbor_ip ) return output def create_vlan(module, vlan_id, switch, scope): """ Method to create local vlan. :param module: The Ansible module to fetch input parameters. :param vlan_id: vlan id to create. :param switch: Name of the switch. :param scope: Scope of the vlan to create. :return: String describing vlan creation details. """ global CHANGED_FLAG cli = pn_cli(module) clicopy = cli cli += ' switch %s vlan-show format id no-show-headers ' % switch existing_vlan_ids = run_cli(module, cli).split() existing_vlan_ids = list(set(existing_vlan_ids)) if vlan_id not in existing_vlan_ids: cli = clicopy cli += ' switch %s vlan-create id %s scope %s ' % (switch, vlan_id, scope) run_cli(module, cli) CHANGED_FLAG.append(True) return ' %s: Vlan id %s with scope %s created \n' % ( switch, vlan_id, scope ) else: return ' %s: Vlan id %s with scope %s already exists \n' % ( switch, vlan_id, scope ) def configure_ibgp_connection(module, switch, local_ip, remote_ip, remote_as): """ Method to configure iBGP connection between cluster members. :param module: The Ansible module to fetch input parameters. :param switch: Name of the switch. :param local_ip: Vrouter interface ip of local switch. :param remote_ip: Vrouter interface ip of remote switch. :param remote_as: Remote-as value of cluster. :return: String describing details of iBGP configuration made. """ global CHANGED_FLAG output = '' vrouter_name = switch + '-vrouter' vlan_id = module.params['pn_ibgp_vlan'] cli = pn_cli(module) clicopy = cli cli += ' switch %s vrouter-interface-show vrouter-name %s ' % (switch, vrouter_name) cli += ' format ip no-show-headers ' exisiting_ip = run_cli(module, cli).split() if local_ip not in exisiting_ip: cli = clicopy cli += ' switch %s vrouter-interface-add vrouter-name %s ' % ( switch, vrouter_name ) cli += ' ip %s vlan %s ' % (local_ip, vlan_id) run_cli(module, cli) output += ' %s: Added vrouter interface with ip %s on %s \n' % ( switch, local_ip, vrouter_name ) CHANGED_FLAG.append(True) else: output += ' %s: iBGP interface %s already added \n' % (switch, local_ip) remote_ip = remote_ip.split('/')[0] cli = clicopy cli += ' switch %s vrouter-bgp-show vrouter-name %s ' % (switch, vrouter_name) cli += ' format neighbor no-show-headers ' exisiting_neighbor = run_cli(module, cli).split() if remote_ip not in exisiting_neighbor: cli = clicopy cli += ' switch %s vrouter-bgp-add vrouter-name %s ' % (switch, vrouter_name) cli += ' neighbor %s remote-as %s next-hop-self bfd ' % (remote_ip, remote_as) run_cli(module, cli) output += ' %s: Added iBGP neighbor %s for %s \n' % (switch, remote_ip, vrouter_name) CHANGED_FLAG.append(True) else: output += ' %s: iBGP neighbor %s already added \n' % (switch, remote_ip) return output def create_cluster(module, name, cluster_list): """ Method to create a cluster between two switches. :param module: The Ansible module to fetch input parameters. :param name: The name of the cluster to create. :param cluster_list: List of cluster switches. :return: String describing if cluster got created or if it already exists. """ global CHANGED_FLAG cluster_node1 = cluster_list[0] cluster_node2 = cluster_list[1] cli = pn_cli(module) clicopy = cli cli += ' switch %s cluster-show format name no-show-headers ' % ( cluster_node1) existing_clusters = run_cli(module, cli).split() if name not in existing_clusters: cli = clicopy cli += ' switch %s cluster-create name %s ' % (cluster_node1, name) cli += ' cluster-node-1 %s cluster-node-2 %s ' % (cluster_node1, cluster_node2) if 'Success' in run_cli(module, cli): CHANGED_FLAG.append(True) return ' %s: %s created successfully \n' % (cluster_node1, name) else: return ' %s: %s already exists \n' % (cluster_node1, name) def modify_vrouter(module, switch, vrrp_id): """ Method to add vrrp id to a vrouter. :param module: The Ansible module to fetch input parameters. :param switch: Name of the switch. :param vrrp_id: vrrp id to be assigned to vrouter. :return: String describing if vrrp id got assigned or not. """ global CHANGED_FLAG vrouter_name = switch + '-vrouter' cli = pn_cli(module) clicopy = cli cli += ' vrouter-show name %s format hw-vrrp-id ' % vrouter_name cli += ' no-show-headers ' existing_vrrp_id = run_cli(module, cli).split() if vrrp_id not in existing_vrrp_id: cli = clicopy cli += ' switch %s vrouter-modify name %s ' % (switch, vrouter_name) cli += ' hw-vrrp-id %s ' % vrrp_id run_cli(module, cli) return ' %s: Assigned vrrp_id %s to %s \n' % (switch, vrrp_id, vrouter_name) else: return ' %s: Vrrp-id %s already assigned to %s \n' % (switch, vrrp_id, vrouter_name) def create_vrouter_interface(module, switch, vrrp_ip, vlan_id, vrrp_id, ip_count, vrrp_priority): """ Method to add vrouter interface and assign IP to it along with vrrp_id and vrrp_priority. :param module: The Ansible module to fetch input parameters. :param switch: The switch name on which interfaces will be created. :param vrrp_ip: IP address to be assigned to vrouter interface. :param vlan_id: vlan_id to be assigned. :param vrrp_id: vrrp_id to be assigned. :param vrrp_priority: priority to be given(110 for active switch). :param ip_count: The value of fourth octet in the ip. :return: String describing if vrouter interface got added or not. """ global CHANGED_FLAG vrouter_name = switch + '-vrouter' ip_addr = vrrp_ip.split('.') fourth_octet = ip_addr[3].split('/') subnet = fourth_octet[1] static_ip = ip_addr[0] + '.' + ip_addr[1] + '.' + ip_addr[2] + '.' vip = static_ip + '1' + '/' + subnet interface_ip = static_ip + ip_count + '/' + subnet cli = pn_cli(module) clicopy = cli cli += ' vrouter-interface-show vlan %s ip %s ' % (vlan_id, interface_ip) cli += ' format switch no-show-headers ' existing_vrouter = run_cli(module, cli).split() existing_vrouter = list(set(existing_vrouter)) if vrouter_name not in existing_vrouter: cli = clicopy cli += ' switch %s vrouter-interface-add vrouter-name %s ' % ( switch, vrouter_name ) cli += ' ip ' + interface_ip cli += ' vlan %s if data ' % vlan_id run_cli(module, cli) output = ' %s: Added vrouter interface with ip %s to %s \n' % ( switch, interface_ip, vrouter_name ) CHANGED_FLAG.append(True) else: output = ' %s: Vrouter interface %s already exists for %s \n' % ( switch, interface_ip, vrouter_name ) cli = clicopy cli += ' vrouter-interface-show vrouter-name %s ip %s vlan %s ' % ( vrouter_name, interface_ip, vlan_id ) cli += ' format nic no-show-headers ' eth_port = run_cli(module, cli).split() eth_port.remove(vrouter_name) cli = clicopy cli += ' vrouter-interface-show vlan %s ip %s vrrp-primary %s ' % ( vlan_id, vip, eth_port[0] ) cli += ' format switch no-show-headers ' existing_vrouter = run_cli(module, cli).split() existing_vrouter = list(set(existing_vrouter)) if vrouter_name not in existing_vrouter: cli = clicopy cli += ' switch %s vrouter-interface-add vrouter-name %s ' % ( switch, vrouter_name ) cli += ' ip ' + vip cli += ' vlan %s if data vrrp-id %s ' % (vlan_id, vrrp_id) cli += ' vrrp-primary %s vrrp-priority %s ' % (eth_port[0], vrrp_priority) run_cli(module, cli) output += ' %s: Added vrouter interface with ip %s to %s \n' % ( switch, vip, vrouter_name ) CHANGED_FLAG.append(True) else: output += ' %s: Vrouter interface %s already exists for %s \n' % ( switch, vip, vrouter_name ) return output def add_vrouter_interface_for_non_cluster_switch(module, vrrp_ip, switch, vlan_id): """ Method to add vrouter interface for non clustered switches. :param module: The Ansible module to fetch input parameters. :param vrrp_ip: Vrouter interface ip to be added. :param switch: Name of non clustered switch. :param vlan_id: vlan id. :return: String describing if vrouter interface got added or not. """ global CHANGED_FLAG vrouter_name = switch + '-vrouter' ip_addr = vrrp_ip.split('.') fourth_octet = ip_addr[3].split('/') subnet = fourth_octet[1] static_ip = ip_addr[0] + '.' + ip_addr[1] + '.' + ip_addr[2] + '.' gateway_ip = static_ip + '1' + '/' + subnet cli = pn_cli(module) clicopy = cli cli += ' vrouter-interface-show ip %s vlan %s ' % (gateway_ip, vlan_id) cli += ' format switch no-show-headers ' existing_vrouter = run_cli(module, cli).split() existing_vrouter = list(set(existing_vrouter)) if vrouter_name not in existing_vrouter: cli = clicopy cli += ' switch %s vrouter-interface-add vrouter-name %s ' % ( switch, vrouter_name ) cli += ' vlan ' + vlan_id cli += ' ip ' + gateway_ip run_cli(module, cli) CHANGED_FLAG.append(True) return ' %s: Added vrouter interface with ip %s on %s \n' % ( switch, gateway_ip, vrouter_name ) else: return ' %s: Vrouter interface %s already exists on %s \n' % ( switch, gateway_ip, vrouter_name ) def configure_vrrp(module): """ Method to configure VRRP L3. :param module: The Ansible module to fetch input parameters. :return: Output string of configuration. """ output = '' csv_data = module.params['pn_csv_data'] csv_data = csv_data.replace(" ", "") csv_data_list = csv_data.split('\n') # Parse csv file data and configure VRRP. for row in csv_data_list: elements = row.split(',') cluster_list = [] vlan_id = elements[0] vrrp_ip = elements[1] cluster_node1 = str(elements[2]) if len(elements) > 5: # Configure VRRP for clustered switches cluster_node2 = str(elements[3]) vrrp_id = elements[4] active_switch = str(elements[5]) cluster_list.append(cluster_node1) cluster_list.append(cluster_node2) cluster_name = cluster_node1 + '-to-' + cluster_node2 + '-cluster' host_count = 1 # Create a cluster and vlan with scope cluster output += create_cluster(module, cluster_name, cluster_list) output += create_vlan(module, vlan_id, cluster_node1, 'cluster') for switch in cluster_list: output += modify_vrouter(module, switch, vrrp_id) host_count += 1 vrrp_priority = '110' if switch == active_switch else '100' output += create_vrouter_interface(module, switch, vrrp_ip, vlan_id, vrrp_id, str(host_count), vrrp_priority) else: # Configure VRRP for non clustered switches. output += create_vlan(module, vlan_id, cluster_node1, 'local') output += add_vrouter_interface_for_non_cluster_switch( module, vrrp_ip, cluster_node1, vlan_id) return output def add_vxlan_to_vlan(module, vlan_id, vxlan, switch): """ Method to add vxlan mapping to vlan. :param module: The Ansible module to fetch input parameters. :param vlan_id: vlan id to be modified. :param vxlan: vxlan id to be assigned to vlan. :param switch: Name of the switch on which vlan is present. :return: String describing if vxlan for added or not. """ global CHANGED_FLAG cli = pn_cli(module) cli += ' switch %s vlan-show id %s format vxlan ' % (switch, vlan_id) cli += ' no-show-headers ' existing_vxlan = run_cli(module, cli).split() if vxlan not in existing_vxlan: cli = pn_cli(module) cli += ' switch %s vlan-modify id %s vxlan %s ' % (switch, vlan_id, vxlan) run_cli(module, cli) return ' %s: Added vxlan %s to vlan %s \n' % (switch, vxlan, vlan_id) else: return ' %s: Vxlan %s has been added to vlan %s \n' % (switch, vxlan, vlan_id) def get_vrouter_interface_ip(module, switch, vlan): """ Method to get vrouter interface ip to be used as local ip. :param module: The Ansible module to fetch input parameters. :param switch: Name of the local switch. :param vlan: Vlan id for which to find vrouter interface ip. :return: Vrouter interface ip. """ vrouter_name = switch + '-vrouter' cli = pn_cli(module) cli += ' switch %s vrouter-interface-show vrouter-name %s ' % (switch, vrouter_name) cli += ' vlan %s format ip no-show-headers ' % vlan output = run_cli(module, cli).split() output = list(set(output)) output.remove(vrouter_name) address = output[0].split('.') ip = address[0] + '.' + address[1] + '.' ip += address[2] + '.' + str(1) return ip def create_tunnel(module, local_switch, tunnel_name, scope, local_ip, remote_ip, peer_switch=None): """ Method to create tunnel to carry vxlan traffic. :param module: The Ansible module to fetch input parameters. :param local_switch: Name of the switch on which tunnel will be created. :param tunnel_name: Name of the tunnel to create. :param scope: Scope of the tunnel to create. :param local_ip: Local vrouter interface ip. :param remote_ip: Remote vrouter interface ip. :param peer_switch: Name of the peer clustered switch. In case of unclustered switch, this will be None. :return: String describing if tunnel got created or if it already exists. """ global CHANGED_FLAG cli = pn_cli(module) cli += ' switch %s tunnel-show format name no-show-headers ' % local_switch existing_tunnels = run_cli(module, cli).split() if tunnel_name not in existing_tunnels: cli = pn_cli(module) cli += ' switch %s tunnel-create name %s scope %s ' % (local_switch, tunnel_name, scope) cli += ' local-ip %s remote-ip %s ' % (local_ip, remote_ip) cli += ' vrouter-name %s ' % (local_switch + '-vrouter') if peer_switch is not None: cli += ' peer-vrouter-name %s ' % (peer_switch + '-vrouter') if 'Success' in run_cli(module, cli): CHANGED_FLAG.append(True) return ' %s: %s created successfully \n ' % (local_switch, tunnel_name) else: return ' %s: Could not create %s \n' % (local_switch, tunnel_name) else: return ' %s: %s already exists \n' % (local_switch, tunnel_name) def add_vxlan_to_tunnel(module, vxlan, tunnel_name, switch): """ Method to add vxlan to created tunnel so that it can carry vxlan traffic. :param module: The Ansible module to fetch input parameters. :param vxlan: vxlan id to add to tunnel. :param tunnel_name: Name of the tunnel on which vxlan will be added. :param switch: Name of the switch on which tunnel exists. :return: String describing if vxlan got added to tunnel or not. """ global CHANGED_FLAG cli = pn_cli(module) cli += ' switch %s tunnel-vxlan-show format switch no-show-headers ' % ( switch) existing_tunnel_vxlans = run_cli(module, cli).split() if tunnel_name not in existing_tunnel_vxlans: cli = pn_cli(module) cli += ' switch %s tunnel-vxlan-add name %s vxlan %s ' % (switch, tunnel_name, vxlan) if 'Success' in run_cli(module, cli): CHANGED_FLAG.append(True) return ' %s: Added vxlan %s to %s \n' % (switch, vxlan, tunnel_name) else: return ' %s: Could not add vxlan %s to %s \n' % (switch, vxlan, tunnel_name) else: return ' %s: vxlan %s already added to %s \n' % (switch, vxlan, tunnel_name) def configure_vxlan(module): """ Method to configure vxlan. :param module: The Ansible module to fetch input parameters. :return: Output string of configuration. """ output = '' vxlan_switches_list = [] csv_data = module.params['pn_csv_data'] csv_data = csv_data.replace(" ", "") csv_data_list = csv_data.split('\n') for row in csv_data_list: elements = row.split(',') vlan_id = elements[0] leaf_switch_1 = elements[2] if len(elements) == 7: leaf_switch_2 = elements[3] vxlan_id = elements[6] vxlan_switches_list.append([leaf_switch_1, leaf_switch_2, vlan_id]) output += add_vxlan_to_vlan(module, vlan_id, vxlan_id, leaf_switch_1) output += add_vxlan_to_vlan(module, vlan_id, vxlan_id, leaf_switch_2) elif len(elements) == 4: vxlan_id = elements[3] vxlan_switches_list.append([leaf_switch_1, vlan_id]) output += add_vxlan_to_vlan(module, vlan_id, vxlan_id, leaf_switch_1) for row in csv_data_list: elements = row.split(',') vlan_id = elements[0] leaf_switch_1 = elements[2] if len(elements) == 7 or len(elements) == 4: if len(elements) == 7: leaf_switch_2 = elements[3] vxlan_id = elements[6] cluster = [leaf_switch_1, leaf_switch_2, vlan_id] scope = 'cluster' else: leaf_switch_2 = None vxlan_id = elements[3] cluster = [leaf_switch_1, vlan_id] scope = 'local' for switches in vxlan_switches_list: if switches == cluster: continue else: tunnel_name = leaf_switch_1 + '-' + switches[0] + '-tunnel' local_ip = get_vrouter_interface_ip(module, leaf_switch_1, vlan_id) if len(switches) == 3: remote_vlan = switches[2] else: remote_vlan = switches[1] remote_ip = get_vrouter_interface_ip(module, switches[0], remote_vlan) output += create_tunnel(module, leaf_switch_1, tunnel_name, scope, local_ip, remote_ip, leaf_switch_2) output += add_vxlan_to_tunnel(module, vxlan_id, tunnel_name, leaf_switch_1) return output def configure_ibgp_vrrp_vxlan(module): """ Method to configure iBGP, VRRP and Vxlan for DCI. :param module: The Ansible module to fetch input parameters. :return: String describing details of all configurations. """ global CHANGED_FLAG output = '' cluster_dict_info = find_clustered_switches(module) cluster_list = cluster_dict_info[0] # Configure iBGP connection between clusters for cluster in cluster_list: cluster_node1 = cluster[0] cluster_node2 = cluster[1] vlan_id = module.params['pn_ibgp_vlan'] vlan_scope = 'local' ibgp_ip_range = module.params['pn_ibgp_ip_range'] subnet_count = 0 # Create local vlans on both cluster nodes. output += create_vlan(module, vlan_id, cluster_node1, vlan_scope) output += create_vlan(module, vlan_id, cluster_node2, vlan_scope) address = ibgp_ip_range.split('.') static_part = str(address[0]) + '.' + str(address[1]) + '.' static_part += str(address[2]) + '.' last_octet = str(address[3]).split('/') subnet = last_octet[1] ip_count = subnet_count * 4 node1_ip = static_part + str(ip_count + 1) + '/' + subnet node2_ip = static_part + str(ip_count + 2) + '/' + subnet subnet_count += 1 # Get the bgp-as values of cluster nodes. third_party_data = module.params['pn_third_party_bgp_data'].replace(' ', '') third_party_data = third_party_data.split('\n') for row in third_party_data: row = row.split(',') if row[4] == cluster_node1 or row[4] == cluster_node2: bgp_as = row[3] break # Configure iBGP connection. output += configure_ibgp_connection(module, cluster_node1, node1_ip, node2_ip, bgp_as) output += configure_ibgp_connection(module, cluster_node2, node2_ip, node1_ip, bgp_as) # Configure VRRP to be used for VTEP HA output += configure_vrrp(module) # Configure vxlan tunnels output += configure_vxlan(module) return output def implement_dci(module): """ Method to implement initial DCI setup: fabric creation/join and eBGP. :param module: The Ansible module to fetch input parameters. :return: String describing details of DCI implementation. """ global CHANGED_FLAG output = '' current_switch = module.params['pn_current_switch'] bgp_ip = module.params['pn_bgp_ip'] leaf_list = module.params['pn_leaf_list'] loopback_ip = module.params['pn_loopback_ip'] third_party_data = module.params['pn_third_party_bgp_data'].replace(' ', '') third_party_data = third_party_data.split('\n') address = bgp_ip.split('.') bgp_static_part = str(address[0]) + '.' + str(address[1]) + '.' bgp_static_part += str(address[2]) + '.' bgp_last_octet = str(address[3]).split('/') bgp_subnet = bgp_last_octet[1] address = loopback_ip.split('.') loopback_static_part = str(address[0]) + '.' + str(address[1]) + '.' # Calculate router-id to be assigned to vrouter. switch_index = leaf_list.index(current_switch) router_count = switch_index + 1 router_id = loopback_static_part + str(router_count) + '.' router_id += str(router_count) # Calculate in-band-nic-ip and in-band-nic-netmask for vrouter creation. cli = pn_cli(module) cli += ' switch-setup-show format in-band-ip no-show-headers ' inband_ip = run_cli(module, cli) address = inband_ip.split(':')[1] address = address.replace(' ', '') address = address.split('.') inband_static_part = str(address[0]) + '.' + str(address[1]) + '.' inband_static_part += str(address[2]) + '.' inband_last_octet = str(address[3]).split('/') inband_nic_ip = inband_static_part + str(int(inband_last_octet[0]) + 1) inband_nic_netmask = inband_last_octet[1] # Get the neighbor ip and remote-as value of the first neighbor # Third party csv format: (third party switch name, neighbor-ip, # bgp-as of third party switch, remote-as, neighbor switch name) neighbor_name, neighbor_ip, remote_as, bgp_as = None, None, None, None for row in third_party_data: row = row.split(',') if row[4] == current_switch: neighbor_name = row[0] neighbor_ip = row[1] remote_as = row[2] bgp_as = row[3] break if neighbor_name is None or neighbor_ip is None or remote_as is None: return ' %s: Could not find remote bgp data \n' % current_switch # Calculate bgp-nic-l3-port number connected to first neighbor bgp_nic_l3_port = get_l3_port(module, neighbor_name) # Calculate fabric-network address fabric_network_address = str(address[0]) + '.' + str(address[1]) + '.' fabric_network_address += str(1) + '.' + str(0) + '/' fabric_network_address += inband_nic_netmask address = neighbor_ip.split('.') n_static_part = str(address[0]) + '.' + str(address[1]) + '.' n_static_part += str(address[2]) + '.' n_last_octet = str(int(address[3]) - 1) bgp_nic_ip = n_static_part + n_last_octet + '/' + bgp_subnet # Create and configure vrouter on this switch. output += create_vrouter(module, current_switch, bgp_as, router_id, bgp_nic_ip, bgp_nic_l3_port, neighbor_ip, remote_as, inband_nic_ip, inband_nic_netmask, fabric_network_address) # Configure other eBGP connection to third party switches output += configure_ebgp_connections(module, current_switch, third_party_data, bgp_nic_ip) # Configure loopback interface for debugging purpose. output += configure_loopback_interface(module, current_switch, router_id) # Create a switch routes to all other switches if switch_index != 0: create_switch_routes(module, inband_ip) time.sleep(10) # Configure fabric output += configure_fabric(module, current_switch) return output def toggle_40g_local(module): """ Method to toggle 40g ports to 10g ports. :param module: The Ansible module to fetch input parameters. :return: The output messages for assignment. """ output = '' cli = pn_cli(module) clicopy = cli cli += ' lldp-show format local-port no-show-headers ' local_ports = run_cli(module, cli).split() cli = clicopy cli += ' port-config-show speed 40g ' cli += ' format port no-show-headers ' ports_40g = run_cli(module, cli) if len(ports_40g) > 0 and ports_40g != 'Success': ports_40g = ports_40g.split() ports_to_modify = list(set(ports_40g) - set(local_ports)) for port in ports_to_modify: next_port = str(int(port) + 1) cli = clicopy cli += ' port-show port %s format bezel-port' % next_port cli += ' no-show-headers' bezel_port = run_cli(module, cli).split()[0] if '.2' in bezel_port: end_port = int(port) + 3 range_port = port + '-' + str(end_port) cli = clicopy cli += ' port-config-modify port %s ' % port cli += ' disable ' output += 'port ' + port + ' disabled' output += run_cli(module, cli) cli = clicopy cli += ' port-config-modify port %s ' % port cli += ' speed 10g ' output += 'port ' + port + ' converted to 10g' output += run_cli(module, cli) cli = clicopy cli += ' port-config-modify port %s ' % range_port cli += ' enable ' output += 'port range_port ' + range_port + ' enabled' output += run_cli(module, cli) time.sleep(10) return output def main(): """ This section is for arguments parsing """ module = AnsibleModule( argument_spec=dict( pn_cliusername=dict(required=False, type='str'), pn_clipassword=dict(required=False, type='str', no_log=True), pn_fabric_name=dict(required=False, type='str'), pn_run_initial_setup=dict(required=True, type='bool'), pn_current_switch=dict(required=False, type='str'), pn_spine_list=dict(required=True, type='list'), pn_leaf_list=dict(required=True, type='list'), pn_inband_ip=dict(required=False, type='str', default='172.16.0.0/24'), pn_loopback_ip=dict(required=False, type='str', default='109.109.109.0/24'), pn_bgp_ip=dict(required=False, type='str', default='100.1.1.0/24'), pn_bgp_redistribute=dict(required=False, type='str', default='connected'), pn_bgp_max_path=dict(required=False, type='str', default='16'), pn_ibgp_vlan=dict(required=False, type='str', default='4040'), pn_ibgp_ip_range=dict(required=False, type='str', default='75.75.75.0/30'), pn_csv_data=dict(required=False, type='str'), pn_third_party_bgp_data=dict(required=False, type='str'), ) ) current_switch = module.params['pn_current_switch'] message = '' global CHANGED_FLAG if module.params['pn_run_initial_setup']: # Auto accept EULA if 'Setup completed successfully' in auto_accept_eula(module): message += ' %s: EULA accepted \n' % current_switch CHANGED_FLAG.append(True) else: message += ' %s: EULA has already been accepted \n' % current_switch # Update switch names to match host names from hosts file if 'Updated' in update_switch_names(module, current_switch): CHANGED_FLAG.append(True) # Toggle 40g ports to 10g if toggle_40g_local(module): message += ' %s: Toggled 40G ports to 10G \n' % current_switch CHANGED_FLAG.append(True) # Assign in-band ip message += assign_inband_ip(module) # Implement Data Center Interconnect message += implement_dci(module) else: # Configure iBGP, VRRP and vxlan message += configure_ibgp_vrrp_vxlan(module) # Exit the module and return the required JSON module.exit_json( stdout=message, error='0', failed=False, changed=True if True in CHANGED_FLAG else False ) if __name__ == '__main__': main()
0:'manicTimeDur' 1:'alpiskidur' 2:'climbdur' 3:'downskidur' 4:'mtbikedur' 5:'roadbikedur' 6:'swimdur' 7:'viadur' 8:'walkdur' 9:'nbkeys' 10:'nbclicks' 11:'totcal' 12:'totsteps' 13:'alpiskical' 14:'alpiskisteps' 15:'climbcal' 16:'climbsteps' 17:'downskical' 18:'downskisteps' 19:'mtbikecal' 20:'mtbikesteps' 21:'roadbikecal' 22:'roadbikesteps' 23:'swimcal' 24:'swimsteps' 25:'viacal' 26:'viasteps' 27:'walkcal' 28:'walksteps' 29:'stress' 30:'mood' 31:'socquant' 32:'weight' 33:'paper' 34:'ubuntu' 35:'driving' 36:'store' 37:'effortInt' climbOrViaMaxInt 38:'ridingcar' 39:'screenSaver' 0:'Knees' 1:'Head' 2:'Hands' 3:'meanIntensity' 4:'maxIntensity'
import copy from distutils.version import LooseVersion import pickle import numpy as np from numpy.linalg import LinAlgError from numpy.testing import ( assert_allclose, assert_array_almost_equal, assert_equal, assert_no_warnings, assert_raises, assert_warns, suppress_warnings, ) import pytest from randomgen import MT19937, PCG64, ExtendedGenerator try: from numpy.random import Generator except ImportError: from randomgen import Generator # type: ignore[misc] try: from scipy import linalg # noqa: F401 HAS_SCIPY = True except ImportError: HAS_SCIPY = False SEED = 1234567890 MV_SEED = 123456789 @pytest.fixture(scope="module") def seed(): return SEED @pytest.fixture(scope="module") def mv_seed(): return MV_SEED @pytest.fixture(scope="function") def extended_gen(): pcg = PCG64(0, mode="sequence") return ExtendedGenerator(pcg) @pytest.fixture(scope="function") def extended_gen_legacy(): return ExtendedGenerator(MT19937(mode="legacy")) _mt19937 = MT19937(SEED, mode="legacy") random = ExtendedGenerator(_mt19937) NP_LT_118 = LooseVersion(np.__version__) < LooseVersion("1.18.0") @pytest.mark.skipif(NP_LT_118, reason="Can only test with NumPy >= 1.18") @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"]) def test_multivariate_normal_method(seed, method): from numpy.random import MT19937 as NPMT19937 random = ExtendedGenerator(NPMT19937(seed)) mean = (0.123456789, 10) cov = [[1, 0], [0, 1]] size = (3, 2) actual = random.multivariate_normal(mean, cov, size, method=method) desired = np.array( [ [ [-1.747478062846581, 11.25613495182354], [-0.9967333370066214, 10.342002097029821], ], [ [0.7850019631242964, 11.181113712443013], [0.8901349653255224, 8.873825399642492], ], [ [0.7130260107430003, 9.551628690083056], [0.7127098726541128, 11.991709234143173], ], ] ) assert_array_almost_equal(actual, desired, decimal=15) # Check for default size, was raising deprecation warning actual = random.multivariate_normal(mean, cov, method=method) desired = np.array([0.233278563284287, 9.424140804347195]) assert_array_almost_equal(actual, desired, decimal=15) # Check path with scalar size works correctly scalar = random.multivariate_normal(mean, cov, 3, method=method) tuple1d = random.multivariate_normal(mean, cov, (3,), method=method) assert scalar.shape == tuple1d.shape == (3, 2) # Check that non symmetric covariance input raises exception when # check_valid='raises' if using default svd method. mean = [0, 0] cov = [[1, 2], [1, 2]] assert_raises( ValueError, random.multivariate_normal, mean, cov, check_valid="raise" ) # Check that non positive-semidefinite covariance warns with # RuntimeWarning cov = [[1, 2], [2, 1]] assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov) assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov, method="eigh") assert_raises(LinAlgError, random.multivariate_normal, mean, cov, method="cholesky") # and that it doesn't warn with RuntimeWarning check_valid='ignore' assert_no_warnings(random.multivariate_normal, mean, cov, check_valid="ignore") # and that it raises with RuntimeWarning check_valid='raises' assert_raises( ValueError, random.multivariate_normal, mean, cov, check_valid="raise" ) assert_raises( ValueError, random.multivariate_normal, mean, cov, check_valid="raise", method="eigh", ) # check degenerate samples from singular covariance matrix cov = [[1, 1], [1, 1]] if method in ("svd", "eigh"): samples = random.multivariate_normal(mean, cov, size=(3, 2), method=method) assert_array_almost_equal(samples[..., 0], samples[..., 1], decimal=6) else: assert_raises( LinAlgError, random.multivariate_normal, mean, cov, method="cholesky" ) cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32) with suppress_warnings() as sup: random.multivariate_normal(mean, cov, method=method) w = sup.record(RuntimeWarning) assert len(w) == 0 mu = np.zeros(2) cov = np.eye(2) assert random.multivariate_normal(mu, cov, size=3).shape == (3, 2) assert_raises( ValueError, random.multivariate_normal, mean, cov, check_valid="other" ) assert_raises(ValueError, random.multivariate_normal, np.zeros((2, 1, 1)), cov) assert_raises(ValueError, random.multivariate_normal, mu, np.empty((3, 2))) assert_raises(ValueError, random.multivariate_normal, mu, np.eye(3)) @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"]) def test_multivariate_normal_basic_stats(seed, method): random = ExtendedGenerator(MT19937(seed, mode="sequence")) n_s = 1000 mean = np.array([1, 2]) cov = np.array([[2, 1], [1, 2]]) s = random.multivariate_normal(mean, cov, size=(n_s,), method=method) s_center = s - mean cov_emp = (s_center.T @ s_center) / (n_s - 1) # these are pretty loose and are only designed to detect major errors assert np.all(np.abs(s_center.mean(-2)) < 0.1) assert np.all(np.abs(cov_emp - cov) < 0.2) @pytest.mark.parametrize("size", [(4, 3, 2), (5, 4, 3, 2)]) @pytest.mark.parametrize("mean", [np.zeros(2), np.zeros((3, 3))]) def test_multivariate_normal_bad_size(mean, size): cov = np.eye(4) with pytest.raises(ValueError): random.multivariate_normal(mean, cov) mean = np.zeros((2, 3, 4)) with pytest.raises(ValueError): random.multivariate_normal(mean, cov, size=size) with pytest.raises(ValueError): random.multivariate_normal(0, [[1]], size=size) with pytest.raises(ValueError): random.multivariate_normal([0], [1], size=size) def test_multivariate_normal(seed): random.bit_generator.seed(seed) mean = (0.123456789, 10) cov = [[1, 0], [0, 1]] size = (3, 2) actual = random.multivariate_normal(mean, cov, size) desired = np.array( [ [ [-3.34929721161096100, 9.891061435770858], [-0.12250896439641100, 9.295898449738300], ], [ [0.48355927611635563, 10.127832101772366], [3.11093021424924300, 10.283109168794352], ], [ [-0.20332082341774727, 9.868532121697195], [-1.33806889550667330, 9.813657233804179], ], ] ) assert_array_almost_equal(actual, desired, decimal=15) # Check for default size, was raising deprecation warning actual = random.multivariate_normal(mean, cov) desired = np.array([-1.097443117192574, 10.535787051184261]) assert_array_almost_equal(actual, desired, decimal=15) # Check that non positive-semidefinite covariance warns with # RuntimeWarning mean = [0, 0] cov = [[1, 2], [2, 1]] assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov) # and that it doesn"t warn with RuntimeWarning check_valid="ignore" assert_no_warnings(random.multivariate_normal, mean, cov, check_valid="ignore") # and that it raises with RuntimeWarning check_valid="raises" assert_raises( ValueError, random.multivariate_normal, mean, cov, check_valid="raise" ) cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32) with suppress_warnings() as sup: random.multivariate_normal(mean, cov) w = sup.record(RuntimeWarning) assert len(w) == 0 mu = np.zeros(2) cov = np.eye(2) assert_raises( ValueError, random.multivariate_normal, mean, cov, check_valid="other" ) assert_raises(ValueError, random.multivariate_normal, np.zeros((2, 1, 1)), cov) assert_raises(ValueError, random.multivariate_normal, mu, np.empty((3, 2))) assert_raises(ValueError, random.multivariate_normal, mu, np.eye(3)) def test_complex_normal(seed): random.bit_generator.seed(seed) actual = random.complex_normal(loc=1.0, gamma=1.0, relation=0.5, size=(3, 2)) desired = np.array( [ [ -2.007493185623132 - 0.05446928211457126j, 0.7869874090977291 - 0.35205077513085050j, ], [ 1.3118579018087224 + 0.06391605088618339j, 3.5872278793967554 + 0.14155458439717636j, ], [ 0.7170022862582056 - 0.06573393915140235j, -0.26571837106621987 - 0.0931713830979103j, ], ] ) assert_array_almost_equal(actual, desired, decimal=15) random.bit_generator.seed(seed) actual = random.complex_normal(loc=0, gamma=1.0, relation=0.5, size=3) assert_array_almost_equal(actual, desired.flat[:3] - 1.0, decimal=15) random.bit_generator.seed(seed) actual = random.complex_normal(loc=2.0, gamma=1.0, relation=0.5) assert_array_almost_equal(actual, 1.0 + desired[0, 0], decimal=15) def test_complex_normal_invalid(): assert_raises(ValueError, random.complex_normal, gamma=1 + 0.5j) assert_raises(ValueError, random.complex_normal, relation=2) assert_raises(ValueError, random.complex_normal, relation=-3) assert_raises(ValueError, random.complex_normal, relation=10j) assert_raises(ValueError, random.complex_normal, gamma=[1 + 0.5j]) assert_raises(ValueError, random.complex_normal, relation=[2]) assert_raises(ValueError, random.complex_normal, relation=[-3]) assert_raises(ValueError, random.complex_normal, relation=[10j]) def test_random_uintegers(): assert len(random.uintegers(10)) == 10 assert len(random.uintegers(10, bits=32)) == 10 assert isinstance(random.uintegers(), int) assert isinstance(random.uintegers(bits=32), int) with pytest.raises(ValueError): with pytest.deprecated_call(): random.uintegers(bits=128) def test_str_repr(): assert "ExtendedGenerator" in str(random) assert "ExtendedGenerator" in repr(random) assert "MT19937" in str(random) def test_pickle_and_copy(seed): gen = ExtendedGenerator(MT19937(seed, mode="legacy")) reloaded = pickle.loads(pickle.dumps(gen)) assert isinstance(reloaded, ExtendedGenerator) copied = copy.deepcopy(gen) gen_rv = gen.uintegers(10, bits=64) reloaded_rv = reloaded.uintegers(10, bits=64) copied_rv = copied.uintegers(10, bits=64) assert_equal(gen_rv, reloaded_rv) assert_equal(gen_rv, copied_rv) def test_set_get_state(seed): state = _mt19937.state gen = ExtendedGenerator(MT19937(seed, mode="legacy")) gen.state = state assert_equal(gen.state["state"]["key"], state["state"]["key"]) assert_equal(gen.state["state"]["pos"], state["state"]["pos"]) def test_complex_normal_size(mv_seed): random = ExtendedGenerator(MT19937(mv_seed, mode="legacy")) state = random.state loc = np.ones((1, 2)) gamma = np.ones((3, 1)) relation = 0.5 * np.ones((3, 2)) actual = random.complex_normal(loc=loc, gamma=gamma, relation=relation) desired = np.array( [ [ 1.393937478212015 - 0.31374589731830593j, 0.9474905694736895 - 0.16424530802218726j, ], [ 1.119247463119766 + 0.023956373851168843j, 0.8776366291514774 + 0.2865220655803411j, ], [ 0.5515508326417458 - 0.15986016780453596j, -0.6803993941303332 + 1.1782711493556892j, ], ] ) assert_array_almost_equal(actual, desired, decimal=15) random.state = state actual = random.complex_normal(loc=loc, gamma=1.0, relation=0.5, size=(3, 2)) assert_array_almost_equal(actual, desired, decimal=15) def test_invalid_capsule(): class fake: capsule = "capsule" with pytest.raises(ValueError): ExtendedGenerator(fake()) def test_default_pcg64(): eg = ExtendedGenerator() assert isinstance(eg.bit_generator, PCG64) assert eg.bit_generator.variant == "dxsm" @pytest.mark.parametrize("df", [2, 5, 10]) @pytest.mark.parametrize("dim", [2, 5, 10]) @pytest.mark.parametrize("size", [None, 5, (3, 7)]) def test_standard_wishart_reproduce(df, dim, size): pcg = PCG64(0, mode="sequence") eg = ExtendedGenerator(pcg) w = eg.standard_wishart(df, dim, size) if size is not None: sz = size if isinstance(size, tuple) else (size,) assert w.shape[:-2] == sz else: assert w.ndim == 2 assert w.shape[-2:] == (dim, dim) pcg = PCG64(0, mode="sequence") eg = ExtendedGenerator(pcg) w2 = eg.standard_wishart(df, dim, size) assert_allclose(w, w2) @pytest.mark.parametrize("scale_dim", [0, 1, 2]) @pytest.mark.parametrize("df", [8, [10], [[5], [6]]]) def test_wishart_broadcast(df, scale_dim): dim = 5 pcg = PCG64(0, mode="sequence") eg = ExtendedGenerator(pcg) scale = np.eye(dim) for i in range(scale_dim): scale = np.array([scale, scale]) w = eg.wishart(df, scale) assert w.shape[-2:] == (dim, dim) if np.isscalar(df) and scale_dim == 0: assert w.ndim == 2 elif scale_dim > 0: z = np.zeros(scale.shape[:-2]) assert w.shape[:-2] == np.broadcast(df, z).shape size = w.shape[:-2] pcg = PCG64(0, mode="sequence") eg = ExtendedGenerator(pcg) w2 = eg.wishart(df, scale, size=size) assert_allclose(w, w2) METHODS = ["svd", "eigh"] if HAS_SCIPY: METHODS += ["cholesky"] @pytest.mark.parametrize("method", METHODS) def test_wishart_reduced_rank(method): scale = np.eye(3) scale[0, 1] = scale[1, 0] = 1.0 pcg = PCG64(0, mode="sequence") eg = ExtendedGenerator(pcg) w = eg.wishart(10, scale, method=method, rank=2) assert w.shape == (3, 3) assert np.linalg.matrix_rank(w) == 2 @pytest.mark.skipif(HAS_SCIPY, reason="Cannot test with SciPy") def test_missing_scipy_exception(): scale = np.eye(3) scale[0, 1] = scale[1, 0] = 1.0 pcg = PCG64(0, mode="sequence") eg = ExtendedGenerator(pcg) with pytest.raises(ImportError): eg.wishart(10, scale, method="cholesky", rank=2) def test_wishart_exceptions(): eg = ExtendedGenerator() with pytest.raises(ValueError, match="scale must be non-empty"): eg.wishart(10, [10]) with pytest.raises(ValueError, match="scale must be non-empty"): eg.wishart(10, 10) with pytest.raises(ValueError, match="scale must be non-empty"): eg.wishart(10, np.array([[1, 2]])) with pytest.raises(ValueError, match="At least one"): eg.wishart([], np.eye(2)) with pytest.raises(ValueError, match="df must contain strictly"): eg.wishart(-1, np.eye(2)) with pytest.raises(ValueError, match="df must contain strictly"): df = np.ones((3, 4, 5)) df[-1, -1, -1] = -1 eg.wishart(df, np.eye(2)) with pytest.raises(ValueError, match="cannot convert float"): eg.wishart(np.nan, np.eye(2)) with pytest.raises(ValueError, match=r"size \(3,\) is not compatible"): eg.wishart([[10, 9, 8], [10, 9, 8]], np.eye(2), size=3) @pytest.mark.parametrize("size", [None, 10, (10,), (10, 10)]) @pytest.mark.parametrize("df", [100, [100] * 10, [[100] * 10] * 10]) @pytest.mark.parametrize("tile", [None, (10,), (10, 10)]) def test_wishart_size(size, df, tile): eg = ExtendedGenerator() scale = np.eye(3) if tile: scale = np.tile(scale, tile + (1, 1)) expected_shape = base_shape = (3, 3) sz = (size,) if isinstance(size, int) else size if np.asarray(df).ndim or tile: tile_shape = () if tile is None else tile shape = np.broadcast(np.asarray(df), np.ones(tile_shape)).shape expected_shape = shape + base_shape if size: if len(sz) < len(shape): with pytest.raises(ValueError, match=""): eg.wishart(df, scale, size=size) return if size: expected_shape = sz + base_shape w = eg.wishart(df, scale, size=size) assert w.shape == expected_shape def test_broadcast_both_paths(): eg = ExtendedGenerator() w = eg.wishart([3, 5], np.eye(4), size=(100, 2)) assert w.shape == (100, 2, 4, 4) def test_factor_wishart(): pcg = PCG64(0, mode="sequence") eg = ExtendedGenerator(pcg) w = eg.wishart([3, 5], 2 * np.eye(4), size=(10000, 2), method="factor") assert_allclose(np.diag((w[:, 0] / 3).mean(0)).mean(), 4, rtol=1e-2) assert_allclose(np.diag((w[:, 1] / 5).mean(0)).mean(), 4, rtol=1e-2) def test_wishart_chi2(extended_gen): state = extended_gen.state w = extended_gen.standard_wishart(10, 1, 10, rescale=False) extended_gen.state = state bg = extended_gen.bit_generator c = Generator(bg).chisquare(10, size=10) assert_allclose(np.squeeze(w), c) @pytest.mark.parametrize("df", [3, 5]) def test_standard_vs_full_wishart(extended_gen, df): state = extended_gen.state sw = extended_gen.standard_wishart(df, 4, size=(3, 4, 5), rescale=False) extended_gen.state = state w = extended_gen.wishart(df, np.eye(4), size=(3, 4, 5)) assert_allclose(sw, w) def test_standard_wishart_direct_small(extended_gen): bg = extended_gen.bit_generator state = bg.state w = extended_gen.standard_wishart(3, 4, 2, rescale=False) bg.state = state gen = Generator(bg) for i in range(2): n = gen.standard_normal((3, 4)) direct = n.T @ n assert_allclose(direct, w[i]) def test_standard_wishart_direct_large(extended_gen): bg = extended_gen.bit_generator state = bg.state w = extended_gen.standard_wishart(3, 2, 2, rescale=False) bg.state = state gen = Generator(bg) direct = np.zeros((2, 2)) for i in range(2): v11 = gen.chisquare(3) n = gen.standard_normal() v22 = gen.chisquare(2) direct[0, 0] = v11 direct[1, 1] = n ** 2 + v22 direct[1, 0] = direct[0, 1] = n * np.sqrt(v11) assert_allclose(direct, w[i]) upper = np.zeros((2, 2)) upper[0, 0] = np.sqrt(v11) upper[0, 1] = n upper[1, 1] = np.sqrt(v22) direct2 = upper.T @ upper assert_allclose(direct2, w[i]) @pytest.mark.parametrize("ex_gamma", [True, False]) @pytest.mark.parametrize("ex_rel", [True, False]) @pytest.mark.parametrize("ex_loc", [True, False]) @pytest.mark.parametrize("size", [None, (5, 4, 3, 2)]) def test_mv_complex_normal(extended_gen, ex_gamma, ex_rel, ex_loc, size): gamma = np.array([[2, 0 + 1.0j], [-0 - 1.0j, 2]]) if ex_gamma: gamma = np.tile(gamma, (2, 1, 1)) rel = np.array([[0.22, 0 + 0.1j], [+0 + 0.1j, 0.22]]) if ex_rel: rel = np.tile(rel, (3, 1, 1, 1)) loc = np.zeros(2) if ex_loc: loc = np.tile(loc, (4, 1, 1, 1)) extended_gen.multivariate_complex_normal(np.zeros(2), size=size) extended_gen.multivariate_complex_normal(np.zeros(2), size=size) extended_gen.multivariate_complex_normal(np.zeros(2), gamma, size=size) extended_gen.multivariate_complex_normal(np.zeros(2), gamma, rel, size=size) extended_gen.multivariate_complex_normal(np.zeros(2), gamma, rel, size=size) def test_mv_complex_normal_exceptions(extended_gen): with pytest.raises(ValueError, match="loc"): extended_gen.multivariate_complex_normal(0.0) with pytest.raises(ValueError, match="gamma"): extended_gen.multivariate_complex_normal([0.0], 1.0) with pytest.raises(ValueError, match="gamma"): extended_gen.multivariate_complex_normal([0.0], [1.0]) with pytest.raises(ValueError, match="gamma"): extended_gen.multivariate_complex_normal([0.0], np.ones((2, 3, 2))) with pytest.raises(ValueError, match="relation"): extended_gen.multivariate_complex_normal([0.0, 0.0], np.eye(2), 0.0) with pytest.raises(ValueError, match="relation"): extended_gen.multivariate_complex_normal([0.0, 0.0], np.eye(2), 0.0) with pytest.raises(ValueError, match="relation"): extended_gen.multivariate_complex_normal([0.0, 0.0], relation=0.0) with pytest.raises(ValueError, match="The covariance matrix implied"): extended_gen.multivariate_complex_normal( [0.0, 0.0], np.array([[1.0, 0 + 1.0j], [0 + 1.0j, 1]]) ) with pytest.raises(ValueError, match="The leading dimensions"): extended_gen.multivariate_complex_normal( [0.0, 0.0], np.ones((4, 1, 3, 2, 2)), np.ones((1, 1, 2, 2, 2)) ) def test_wishart_edge(extended_gen): with pytest.raises(ValueError, match="scale must be non-empty"): extended_gen.wishart(5, np.empty((0, 0))) with pytest.raises(ValueError, match="scale must be non-empty"): extended_gen.wishart(5, np.empty((0, 2, 2))) with pytest.raises(ValueError, match="scale must be non-empty"): extended_gen.wishart(5, [[]]) with pytest.raises(ValueError, match="At least one value is required"): extended_gen.wishart(np.empty((0, 2, 3)), np.eye(2)) def test_mv_complex_normal_edge(extended_gen): with pytest.raises(ValueError, match="loc must be non-empty and at least"): extended_gen.multivariate_complex_normal(np.empty((0, 2))) with pytest.raises(ValueError, match="gamma must be non-empty"): extended_gen.multivariate_complex_normal([0, 0], np.empty((0, 2, 2))) with pytest.raises(ValueError, match="relation must be non-empty"): extended_gen.multivariate_complex_normal([0, 0], np.eye(2), np.empty((0, 2, 2))) def test_random_long_double(extended_gen): out = extended_gen.random(dtype="longdouble") types_equiv = np.empty(1, np.longdouble).dtype == np.empty(1, np.double).dtype expected_type = float if types_equiv else np.longdouble assert isinstance(out, expected_type) out = extended_gen.random(dtype=np.longdouble) assert isinstance(out, expected_type) out = extended_gen.random(size=10, dtype=np.longdouble) expected_type = np.double if types_equiv else np.longdouble assert out.dtype == expected_type def test_random_long_double_out(extended_gen): state = extended_gen.state out = np.empty((10, 10), dtype=np.longdouble) ret = extended_gen.random(out=out, dtype=np.longdouble) assert ret is out extended_gen.state = state alt = extended_gen.random(size=(10, 10), dtype=np.longdouble) assert_allclose(out, alt) def test_random_other_type(extended_gen): with pytest.raises(TypeError, match="Unsupported dtype"): extended_gen.random(dtype=int) f16 = getattr(np, "float16", np.uint32) with pytest.raises(TypeError, match="Unsupported dtype"): extended_gen.random(dtype=f16) def test_random(extended_gen_legacy): extended_gen_legacy.bit_generator.seed(SEED) actual = extended_gen_legacy.random((3, 2)) desired = np.array( [ [0.61879477158567997, 0.59162362775974664], [0.88868358904449662, 0.89165480011560816], [0.4575674820298663, 0.7781880808593471], ] ) assert_array_almost_equal(actual, desired, decimal=15) extended_gen_legacy.bit_generator.seed(SEED) actual = extended_gen_legacy.random() assert_array_almost_equal(actual, desired[0, 0], decimal=15) def test_random_float(extended_gen_legacy): extended_gen_legacy.bit_generator.seed(SEED) actual = extended_gen_legacy.random((3, 2)) desired = np.array( [[0.6187948, 0.5916236], [0.8886836, 0.8916548], [0.4575675, 0.7781881]] ) assert_array_almost_equal(actual, desired, decimal=7) def test_random_float_scalar(extended_gen_legacy): extended_gen_legacy.bit_generator.seed(SEED) actual = extended_gen_legacy.random(dtype=np.float32) desired = 0.6187948 assert_array_almost_equal(actual, desired, decimal=7) def test_random_long_double_direct(extended_gen): state = extended_gen.state actual = extended_gen.random(10, dtype=np.longdouble) extended_gen.state = state nmant = np.finfo(np.longdouble).nmant denom = np.longdouble(str(2 ** (nmant + 1))) c = np.longdouble(1.0) / denom def twopart(u1, u2, a, b, c): v = int(u1) >> a if b: v = (v << (64 - b)) + (int(u2) >> b) return np.longdouble(str(v)) * c if nmant == 52: a, b = 11, 0 elif nmant == 63: a, b = 0, 0 elif nmant == 105: a, b = 11, 11 elif nmant == 112: a, b = 7, 8 else: raise NotImplementedError(f"No test for {nmant} bits") direct = np.empty(10, dtype=np.longdouble) u = extended_gen.bit_generator.random_raw(10 * (1 + (b > 0))) for i in range(10): if b: u1, u2 = u[2 * i : 2 * i + 2] else: u1, u2 = u[i], None direct[i] = twopart(u1, u2, a, b, c) assert_allclose(actual, direct)
from torch.utils.data import random_split, DataLoader from pytorch_lightning.core.datamodule import LightningDataModule from tests.base.datasets import TrialMNIST class TrialMNISTDataModule(LightningDataModule): def __init__(self, data_dir: str = './'): super().__init__() self.data_dir = data_dir def prepare_data(self): TrialMNIST(self.data_dir, train=True, download=True) TrialMNIST(self.data_dir, train=False, download=True) def setup(self): mnist_full = TrialMNIST(root=self.data_dir, train=True, num_samples=64, download=True) self.mnist_train, self.mnist_val = random_split(mnist_full, [128, 64]) self.dims = tuple(self.mnist_train[0][0].shape) self.mnist_test = TrialMNIST(root=self.data_dir, train=False, num_samples=32, download=True) def train_dataloader(self): return DataLoader(self.mnist_train, batch_size=32) def val_dataloader(self): return DataLoader(self.mnist_val, batch_size=32) def test_dataloader(self): return DataLoader(self.mnist_test, batch_size=32)
from django.shortcuts import render from django.http import HttpResponse from .forms import TestForm import tweepy consumer_key = '1ajVPYtNS09p27YPq8SLo54y7' consumer_secret = 'DP7VOUXFd7sLWRWsJnhMIthxHac4MgCETUA2KSvxzVXAOfw4xl' access_token = '142843393-tITe8g8Z3DsqZKXFoqRHGXjJwvwui1GG0pRYrLRk' access_token_secret = 'yufRfuVQ05VYEBqsPqUbXsai9a2QF2q6Lk1cDX2U1g2ZS' auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) #APIインスタンスを作成 api = tweepy.API(auth) def index(request): Message = { 'words': request.GET.get('words'), } msg = Message['words'] #api.update_status(msg) return render(request, 'tweets/index.html', Message)
#!/usr/bin/env python __doc__ = """ Script resizes all images in the folder. Parameters which can be specified by the user. scale (default = 0.5) <= how much we downscale images e.g 0.5 makes images of 1/4 or area of orig. modify (default = True) <= are images changed in place (origs are overwritten) path (default = '.') <= where to look for images (with subdirectories) Requires: * xvfb to not block the screen Python: * requires python-3.2 :bug: None known. :organization: ETH """ __authors__="""Szymon Stoma""" __contact__="<Your contact>" __license__="Cecill-C" __date__="17-11-01" __version__="0.1" __docformat__= "restructuredtext en" # ----------------------------------------------------------- imports import os from fnmatch import fnmatch import argparse import subprocess # ----------------------------------------------------------- conf conf_fiji_args = ['--headless', '-batch'] # ----------------------------------------------------------- parsing args parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--scale', type=float, help='how much we downscale images e.g 0.5 makes images of 1/4 or area of orig.', default=0.5 ) parser.add_argument('--modify', help='are images changed in place (origs are overwritten)?', default=True ) parser.add_argument('--path', help='where to look for images (with subdirectories)', default='.' ) parser.add_argument('--file_regexp', help='what files to include?', default='*' ) parser.add_argument('--fiji_path', help='path to executable fiji', default='fiji' ) parser.add_argument('--version', action='version', version='%(prog)s '+str(__version__)) args = parser.parse_args() # ----------------------------------------------------------- getting info about files """ root = args.path pattern = args.file_regexp to_process = [] for path, subdirs, files in os.walk(root): for name in files: if fnmatch(name, pattern): to_process.append(os.path.join(path, name)) """ # print(to_process) # ----------------------------------------------------------- converting files subprocess.run([args.fiji_path, *conf_fiji_args])
# Generated by Django 3.1 on 2020-08-30 02:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('somms', '0001_initial'), ] operations = [ migrations.AlterField( model_name='somm', name='updated', field=models.DateTimeField(auto_now=True), ), ]
import json from django.dispatch import receiver from django.http import HttpRequest, HttpResponse from django.template.loader import get_template from django.urls import resolve from django.utils.translation import gettext_lazy as _ from pretix.base.middleware import _merge_csp, _parse_csp, _render_csp from pretix.base.signals import logentry_display, register_payment_providers from pretix.presale.signals import html_head, process_response from pretix_adyen.payment import AdyenSettingsHolder @receiver(register_payment_providers, dispatch_uid="payment_adyen") def register_payment_provider(sender, **kwargs): from .payment import ( AdyenSettingsHolder, AdyenScheme, AdyenGiropay, AdyenMBWay ) return [AdyenSettingsHolder, AdyenScheme, AdyenGiropay, AdyenMBWay] @receiver(html_head, dispatch_uid="payment_adyen_html_head") def html_head_presale(sender, request=None, **kwargs): from .payment import AdyenMethod provider = AdyenMethod(sender) url = resolve(request.path_info) if provider.settings.get('_enabled', as_type=bool) and ("checkout" in url.url_name or "order.pay" in url.url_name): template = get_template('pretix_adyen/presale_head.html') ctx = { 'locale': request.LANGUAGE_CODE, 'environment': 'test' if sender.testmode else provider.settings.prod_env, 'originKey': provider._get_originKey('test' if provider.event.testmode else provider.settings.prod_env), } return template.render(ctx) else: return "" @receiver(signal=process_response, dispatch_uid="payment_adyen_middleware_resp") def signal_process_response(sender, request: HttpRequest, response: HttpResponse, **kwargs): provider = AdyenSettingsHolder(sender) url = resolve(request.path_info) if provider.settings.get('_enabled', as_type=bool) and ("checkout" in url.url_name or "order.pay" in url.url_name): if 'Content-Security-Policy' in response: h = _parse_csp(response['Content-Security-Policy']) else: h = {} sources = ['frame-src', 'style-src', 'script-src', 'img-src', 'connect-src'] env = 'test' if sender.testmode else provider.settings.prod_env csps = {src: ['https://checkoutshopper-{}.adyen.com'.format(env)] for src in sources} # Adyen unfortunately applies styles through their script-src # Also, the unsafe-inline needs to specified within single quotes! csps['style-src'].append("'unsafe-inline'") _merge_csp(h, csps) if h: response['Content-Security-Policy'] = _render_csp(h) return response @receiver(signal=logentry_display, dispatch_uid="adyen_logentry_display") def pretixcontrol_logentry_display(sender, logentry, **kwargs): if logentry.action_type != 'pretix_adyen.adyen.event': return data = json.loads(logentry.data) outcome = data.get('success', None) reason = data.get('reason', None) if outcome == 'true': outcome = 'successful.' else: outcome = 'unsuccessful.' if reason: outcome = '{} ({})'.format(outcome, reason) return _('Adyen reported an event: {} {}').format(data.get('eventCode'), outcome)
try : from tools.assistant import ask_question from tools.AI.data import data , youtube , wiki , google , youtube_play , goto_keys from tools.AI.data import install_keys , calc_keys , should_not_learn , version_keys from tools.wiki_search import wiki_search from settings.logs import * from tools.browser.search import * from tools.browser.goto import find_goto_address from system.install import install , command from system.screen_text import command_sep from tools.string_processing import is_matched from tools.json_manager import JsonManager from tools.calculation import google_calculation from tools.run_program import if_run_type from system.notifications import notify from settings.settings import bot , DEBUG , LEARN from tools.shell import if_shell_type from tools.OJ.cp import if_cp_type from termcolor import cprint from tools.downloader import wget_downloader from settings.config import if_config_type from tools.credits import if_credit_type from system.path import getpath from settings.config import train_path import os import time except Exception as e: print(e) def check(msg,mp,need = 90): logger.debug('check->' + msg) for word in mp : if is_matched(word,msg,need): return True return False def version_type(msg) : try : if msg in version_keys : from system.__about__ import __version__ x = "Current version is : "+ __version__ return (True,x) return (False,'') except: return (False,'') def rep(msg,mp): msg = msg.lower() # for key in mp : # for word in key: # for w in msg: # if w == word: # w = word # return msg.strip().capitalize() for word in mp : if word in msg: return msg.replace(word,'',1).strip() return msg.strip() def ai(msg,orginal_path) : """ Little ai for reacting to the msg. Written by Saurav-Paul""" logger.debug('Processing with ai') msg = msg.replace(' ',' ') msg = msg.replace(bot['name'],'') msg = msg.replace(bot['name'].lower(),'') msg = msg.replace(bot['name'].capitalize(),'') reply = "I don't know what to do, sir ." # print('you said ' , msg, bot['name']) is_type = version_type(msg) if is_type[0]: return is_type[1] if if_cp_type(msg): return 'Good luck sir.' if if_config_type(msg): return 'Good luck sir.' if if_shell_type(msg): return 'Good luck sir.' if if_run_type(msg): return 'Good luck sir.' if if_credit_type(msg): return 'Good luck sir.' else : try : msg = msg.strip().lower() for line in data : if is_matched(msg,line,95): reply = data[line] return reply # logger.info('Not found in common data') # from history if(check(msg,['change dir','change directory','chdir','-cd'],100)): # print(os.getcwd()) cprint('Enter the path: ','cyan',end='') path = input() os.chdir(path) return 'Directory changed.' if check(msg,youtube_play): msg = rep(msg,youtube_play) logger.info(msg) find_goto_address(msg) reply = 'Enjoy sir. :D' elif check(msg,goto_keys): msg = rep(msg,goto_keys) find_goto_address(msg) reply = 'check browser' notify('Check Browser',':D',t=5) elif check(msg,youtube): msg = rep(msg,youtube) search_youtube(msg) reply = 'check browser.' notify('Check Browser',':D',t=5) elif check(msg,wiki): msg = rep(msg,wiki) # search_wiki(msg) msg = 'en.wikipedia.org '+msg find_goto_address(msg) reply = 'check browser.' notify('Check Browser',':D',t=5) elif msg == 'download': cprint('Enter the url : ','cyan',end='') url = input() wget_downloader(url) reply = 'Done.' elif check(msg,google): msg = rep(msg,google) # print('here = ',msg) search_google(msg) reply = 'check browser.' notify('Check Browser',':D',t=5) elif check(msg,install_keys): msg = rep(msg,install_keys) reply = install(msg) elif check(msg,calc_keys): msg = rep(msg,calc_keys) reply = google_calculation(msg) if reply == "sorry": search_google(msg) reply = "check browser" notify('Check Browser',':D',t=5) else : if 0 and 'cmd:' in msg or '-s' in msg: msg = rep(msg,{'cmd:'}) msg = rep(msg,{'-s'}) command_sep() command(msg.lower()) command_sep() reply = 'done sir' else : try : f = getpath(__file__)+'.learnt' history = JsonManager.json_read(f) for line in history: if is_matched(msg,line,95): logging.info('Learnt this before') return history[line] except : logging.error("Can't read history file") try : ft = train_path history = JsonManager.json_read(ft) for line in history: if is_matched(msg,line,95): logging.info('You have trained this before.') return history[line] except : logger.info("Can't read trained data") t = time.time() reply = ask_question(msg) t = time.time()-t logger.info(str(t)+' sec') # cprint(t,'red') ok = True for word in should_not_learn: if word in msg.lower() or word in reply.lower(): ok = False break if ok: logger.info('reply -> ' + reply) if LEARN == False: cprint("(Automatically LEARN MODE is disable)Enter y to learn : ",'red',attrs=['bold'],end='') learn = input('') else : learn = 'y' if learn.lower() == 'y': try : history.update({msg:reply}) JsonManager.json_write(f,history) logger.info('Learnt') except Exception as e: logger.info("Exception while writing learnt : "+e) return reply except Exception as e: logger.info('Getting some error in ai') logger.info(e) return reply
# usr/bin/env python3 import pandas as pd import sys import matplotlib.pyplot as plt def readExcel(url): data= pd.ExcelFile(url) print(data.sheet_names) data_gender= data.parse('Paciente',skiprows=0)#skipfooter=0,names=[) data_gender.set_index('idPais',inplace=True) data_gender.plot() plt.show() print(data_gender) print(type(data)) print(type(data_gender)) if __name__=="__main__": if len(sys.argv)<2: print("Ingrese una <PATH> relativa") exit(0) try: readExcel(sys.argv[1]) except Exception as e: print(e)
from datetime import date import pandas as pd import lxml from nsepy import get_history print('Enter symbol---') cols=['Date','Open','High','Low','Close','Volume'] df_new=pd.DataFrame(columns=cols) #sym=input() print(df_new) stock = input("Enter stock name(ex:GOOGL, AAPL): ") df = get_history(symbol=stock, start=date(2015,1,1), end=date(2015,1,10)) print(df.head()) df.reset_index(drop = False, inplace = True) print(df.head()) #df.reset_index() #df_new=df[['Date','Open','High','Low','Close']].copy() #df_new.set_index('Date') #df_new.set_index('Date') df_new['Date']=df['Date'] df_new['Open']=df['Open'] df_new['High']=df['High'] df_new['Low']=df['Low'] df_new['Close']=df['Close'] df_new['Volume']=df['Volume'] df_new.set_index('Date',inplace=True) print(df_new.head())
# -*- coding: utf-8 -*- """ fix_self_assert - lib2to3 fix for replacing assertXXX() method calls by their larky assertpy (assertion library for larky equivalent). """ # # Mostly inspired by Hartmut Goebel <h.goebel@crazy-compilers.com> # and the amazing project of unittest2pytest. # # Obligatory license... # unittest2pytest is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import binascii import re import unittest import uuid from functools import partial from lib2to3.fixer_base import BaseFix from lib2to3.fixer_util import ( Attr, Call, Comma, Dot, LParen, Leaf, Name, Newline, Node, Number, RParen, String, does_tree_import, find_indentation, find_root, parenthesize, syms, token, ) from typing import List from py2star import utils TEMPLATE_PATTERN = re.compile("[\1\2]|[^\1\2]+") def _insert_import(import_stmt, nearest_parent_node, file_input): """This inserts an import in a very similar way as lib2to3.fixer_util.touch_import, but try to maintain encoding and shebang prefixes on top of the file when there is no import nearest_parent_node here is like the enclosing testcase """ import_nodes = utils.get_import_nodes(file_input) if import_nodes: last_import_stmt = import_nodes[-1].parent i = file_input.children.index(last_import_stmt) + 1 # no import found, so add right before the test case else: i = file_input.children.index(nearest_parent_node) import_stmt.prefix = nearest_parent_node.prefix nearest_parent_node.prefix = "" file_input.insert_child(i, import_stmt) def add_import(import_name, node, ns="stdlib"): suite = utils.get_parent_of_type(node, syms.suite) test_case = suite while test_case.parent.type != syms.file_input: test_case = test_case.parent file_input = test_case.parent if does_tree_import(None, import_name, node): return n = Call( Name("load"), args=[ String(f'"@{ns}//{import_name}"'), Comma(), String(f'"{import_name}"'), ], ) import_stmt = Node(syms.simple_stmt, [n, Newline()]) # Check to see if we have already added this import. for c in file_input.children: for x in c.children: if ( c.type == syms.simple_stmt and x.type == syms.power and x.parent == import_stmt ): # We have already added this import statement, so # we do not need to add it again. return _insert_import(import_stmt, test_case, file_input) def CompOp(op, left, right, kws): left = parenthesize_expression(left) right = parenthesize_expression(right) left.prefix = "" if "\n" not in right.prefix: right.prefix = "" # trailer< '.' 'assert_that' > trailer< '(' '1' ')' > _left_asserts = Call(Name("assert_that"), args=[left]) new = Node( syms.power, # trailer< '.' 'is_equal_to' > trailer< '(' '2' ')' > > Attr(_left_asserts, Name(op)) + [Node(syms.trailer, [LParen(), right, RParen()])], ) return new def UnaryOp(prefix, postfix, value, kws): """ Converts a method like: ``self.failUnless(True)`` to asserts.assert_that(value).is_true() Example: unittest: ``self.failUnless(v4)`` pattern: ``UnaryOp('is_true', '', Leaf(1, 'v4'), OrderedDict([('expr', Leaf(1, 'v4')), ('msg', None)]))`` Translates to ``assert_that(v4).is_true()`` """ if postfix: value = parenthesize_expression(value) kids = [] left = Call(Name(prefix), args=[value]) kids.append(left) if postfix: _obj, node = Attr(left, Name(postfix)) kids.append(node) kids.append(Node(syms.trailer, [LParen(), RParen()])) return Node(syms.power, kids) # These symbols have lower precedence than the CompOps we use and thus # need to be parenthesized. For details see # https://docs.python.org/3/reference/expressions.html#operator-precedence _NEEDS_PARENTHESIS = [ syms.test, # if – else syms.or_test, syms.and_test, syms.not_test, syms.comparison, ] def parenthesize_expression(value): if value.type in _NEEDS_PARENTHESIS: parenthesized = parenthesize(value.clone()) parenthesized.prefix = parenthesized.children[1].prefix parenthesized.children[1].prefix = "" value = parenthesized return value def fill_template(template, *args): parts = TEMPLATE_PATTERN.findall(template) kids = [] for p in parts: if p == "": continue elif p in "\1\2\3\4\5": p = args[ord(p) - 1] p.prefix = "" else: p = Name(p) kids.append(p.clone()) return kids def DualOp(template, first, second, kws): kids = fill_template(template, first, second) return Node(syms.test, kids, prefix=" ") def SequenceEqual(left, right, kws): if "seq_type" in kws: # :todo: implement `assert isinstance(xx, seq_type)` pass return CompOp("==", left, right, kws) def AlmostOp(places_op, delta_op, first, second, kws): first.prefix = "" second.prefix = "" first = parenthesize_expression(first) second = parenthesize_expression(second) abs_op = Call(Name("abs"), [Node(syms.factor, [first, Name("-"), second])]) if kws.get("delta", None) is not None: # delta return CompOp(delta_op, abs_op, kws["delta"], {}) else: # `7` is the default in unittest.TestCase.asserAlmostEqual places = kws["places"] or Number(7) places.prefix = " " round_op = Call(Name("round"), (abs_op, Comma(), places)) return CompOp(places_op, round_op, Number(0), {}) def indent(level) -> List[Leaf]: return [Leaf(token.INDENT, " ") for i in range(level)] def dedent(level) -> List[Leaf]: return [Leaf(token.DEDENT, "") for i in range(level)] def _ellipsis() -> Node: return Node(syms.atom, [Dot(), Dot(), Dot()]) def parameters(arg_names: List[str]) -> Node: # children = [Leaf(token.LPAR, '(')] children = [] for name in arg_names: prefix = "" if ( children and children[-1].type == token.COMMA and children[-2].type == token.NAME ): prefix = " " children.extend( [Leaf(token.NAME, name, prefix=prefix), Leaf(token.COMMA, ",")] ) return Node( syms.parameters, [ Leaf(token.LPAR, "("), Node(syms.typedargslist, children), Leaf(token.RPAR, ")"), ], ) def get_funcdef_node( funcname: str, args: List[str], body: List, decorators: List[str], indentation_level=1, ) -> Node: to_prepend = [] for decorator in decorators: decorator_node = Node( syms.decorator, [ Leaf(token.INDENT, " " * indentation_level), Leaf(token.AT, "@"), Leaf(token.NAME, decorator), Newline(), ], ) to_prepend.append(decorator_node) return Node( syms.suite, [ Newline(), *to_prepend, Leaf(token.INDENT, " " * indentation_level), Node( syms.funcdef, [ Leaf(token.NAME, "def"), Leaf(token.NAME, funcname, prefix=" "), parameters(args), # Leaf(token.RARROW, '->', prefix=' '), # Leaf(token.NAME, return_type, prefix=' '), Leaf(token.COLON, ":"), Node( syms.suite, [ Newline(), *indent(indentation_level + 1), *body, Newline(), *dedent(indentation_level + 1), ], ), ], ), ], ) def _rand(): return f"_larky_{binascii.crc32(uuid.uuid4().bytes)}" def get_lambdef_node(args, name=None): # name = 'lambda_'+str(id) # lambda: if name is None: name = "" return Node( syms.lambdef, [Name("lambda"), Name(name, prefix=" "), Leaf(token.COLON, ":")] + args, ) def RaisesOp(context, exceptionClass, indent, kws, arglist, node): # asserts.assert_fails(lambda: -1 in b("abc"), "int in bytes: -1 out of range") exceptionClass.prefix = "" args = [ String('"', prefix=" "), # unquoted on purpose String(".*?"), # match anything until the exception we are looking for String(f"{str(exceptionClass)}"), ] # this would be the second parameter # Add match keyword arg to with statement if an expected regex was provided. if "expected_regex" in kws: expected_regex = kws.get("expected_regex").clone() expected_regex.prefix = "" args.append(String(".*")) args.append(expected_regex) args.append(String('"')) # close quote # # assertRaises(exception, callable, *args, **kwds) # # assertRaises(exception, *, msg=None) # # Test that an exception is raised when callable is called with any # # positional or keyword arguments that are also passed to # # assertRaises(). # # To catch any of a group of exceptions, a tuple containing the # # exception classes may be passed as exception. # with_item = Call(Name(context), args) # pytest.raises(TypeError) # with_item.prefix = " " # args = [] arglist = [a.clone() for a in arglist.children[4:]] if arglist: arglist[0].prefix = "" func = None # :fixme: this uses hardcoded parameter names, which may change if "callableObj" in kws: func = kws["callableObj"] elif "callable_obj" in kws: func = kws["callable_obj"] elif kws["args"]: # any arguments assigned to `*args` func = kws["args"][0] else: func = None if func and func.type == syms.lambdef: suite = func.children[-1].clone() else: if func is None: # Context manager, so let us convert it to a function definition # let us create a function first. func = get_funcdef_node( funcname=_rand(), args=[], body=arglist, decorators=[], indentation_level=1, ) # append it as a child to the root node find_root(node).append_child(func) # return Node(syms.with_stmt, [with_item]) # TODO: Newlines within arguments are not handled yet. # If argment prefix contains a newline, all whitespace around this # ought to be replaced by indent plus 4+1+len(func) spaces. suite = get_lambdef_node([Call(Name(str(func)), arglist)]) # suite.prefix = indent + (4 * " ") # new = Node( # syms.power, # # trailer< '.' 'is_equal_to' > trailer< '(' '2' ')' > > # Attr(_left_asserts, Name(op)) # + [Node(syms.trailer, [LParen(), right, RParen()])], # ) return Call( Name("assert_fails"), args=[suite, Comma()] + args, ) # return Node( # syms.with_stmt, [Name("with"), with_item, Name(":"), Newline(), suite] # ) def RaisesRegexOp( context, designator, exceptionClass, expected_regex, indent, kws, arglist, node, ): arglist = [a.clone() for a in arglist.children] pattern = arglist[2] del arglist[2:4] # remove pattern and comma arglist = Node(syms.arglist, arglist) with_stmt = RaisesOp(context, exceptionClass, indent, kws, arglist, node) # if this is already part of a with statement we need to insert re.search # after the last leaf with content if node.parent.type == syms.with_stmt: parent_with = node.parent for leaf in reversed(list(parent_with.leaves())): if leaf.value.strip(): break i = leaf.parent.children.index(leaf) return with_stmt else: return Node(syms.suite, [with_stmt]) _method_map = { # simple equals # asserts.eq(A, B) || asserts.assert_that(A).is_equal_to(B) "assertDictEqual": partial(CompOp, "is_equal_to"), "assertListEqual": partial(CompOp, "is_equal_to"), "assertMultiLineEqual": partial(CompOp, "is_equal_to"), "assertSetEqual": partial(CompOp, "is_equal_to"), "assertTupleEqual": partial(CompOp, "is_equal_to"), "assertSequenceEqual": partial(CompOp, "is_equal_to"), "assertEqual": partial(CompOp, "is_equal_to"), "assertNotEqual": partial(CompOp, "is_not_equal_to"), "assertIs": partial(CompOp, "is_equal_to"), "assertGreater": partial(CompOp, "is_greater_than"), "assertLessEqual": partial(CompOp, "is_lte_to"), "assertLess": partial(CompOp, "is_less_than"), "assertGreaterEqual": partial(CompOp, "is_gte_to"), "assertIn": partial(CompOp, "is_in"), "assertIsNot": partial(CompOp, "is_not_equal_to"), "assertNotIn": partial(CompOp, "is_not_in"), "assertIsInstance": partial(CompOp, "is_instance_of"), "assertNotIsInstance": partial(CompOp, "is_not_instance_of"), # unary operations "assertIsNone": partial(UnaryOp, "assert_that", "is_none"), "assertIsNotNone": partial(UnaryOp, "assert_that", "is_not_none"), "assertFalse": partial(UnaryOp, "assert_that", "is_false"), "failIf": partial(UnaryOp, "assert_that", "is_false"), "assertTrue": partial(UnaryOp, "assert_that", "is_true"), "failUnless": partial(UnaryOp, "assert_that", "is_true"), "assert_": partial(UnaryOp, "assert_that", "is_true"), # "exceptions" in larky do not exist but we have asserts.assert_fails... "assertRaises": partial(RaisesOp, "asserts"), "assertWarns": partial(RaisesOp, "asserts"), # types ones "assertDictContainsSubset": partial(DualOp, "dict(\2, **\1) == \2"), "assertItemsEqual": partial(DualOp, "sorted(\1) == sorted(\2)"), "assertRegex": partial(DualOp, "re.search(\2, \1)"), "assertNotRegex": partial(DualOp, "not re.search(\2, \1)"), # new Py 3.2 "assertAlmostEqual": partial(AlmostOp, "==", "<"), "assertNotAlmostEqual": partial(AlmostOp, "!=", ">"), # "assertRaisesRegex": partial(RaisesRegexOp, "pytest.raises", "excinfo"), # "assertWarnsRegex": partial(RaisesRegexOp, "pytest.warns", "record"), # 'assertLogs': -- not to be handled here, is an context handler only } for newname, oldname in ( ("assertRaisesRegex", "assertRaisesRegexp"), ("assertRegex", "assertRegexpMatches"), ): if not hasattr(unittest.TestCase, newname): # use old name _method_map[oldname] = _method_map[newname] del _method_map[newname] for m in list(_method_map.keys()): if not hasattr(unittest.TestCase, m): del _method_map[m] # (Deprecated) Aliases _method_aliases = { "assertEquals": "assertEqual", "assertNotEquals": "assertNotEqual", "assert_": "assertTrue", "assertAlmostEquals": "assertAlmostEqual", "assertNotAlmostEquals": "assertNotAlmostEqual", "assertRegexpMatches": "assertRegex", "assertRaisesRegexp": "assertRaisesRegex", "failUnlessEqual": "assertEqual", "failIfEqual": "assertNotEqual", "failUnless": "assertTrue", "failIf": "assertFalse", "failUnlessRaises": "assertRaises", "failUnlessAlmostEqual": "assertAlmostEqual", "failIfAlmostEqual": "assertNotAlmostEqual", } for a, o in list(_method_aliases.items()): if o not in _method_map: # if the original name is not a TestCase method, remove the alias del _method_aliases[a] class FixAsserts(BaseFix): order = "pre" run_order = 2 PATTERN = """ power< 'self' trailer< '.' method=( %s ) > trailer< '(' arglist=any ')' > > """ % " | ".join( map(repr, (set(_method_map.keys()) | set(_method_aliases.keys()))) ) def transform(self, node, results): def process_arg(arg): if isinstance(arg, Leaf) and arg.type == token.COMMA: return elif ( isinstance(arg, Node) and arg.type == syms.argument and arg.children[1].type == token.EQUAL ): # keyword argument name, equal, value = arg.children assert name.type == token.NAME assert equal.type == token.EQUAL value = value.clone() kwargs[name.value] = value if "\n" in arg.prefix: value.prefix = arg.prefix else: value.prefix = arg.prefix.strip() + " " else: if ( isinstance(arg, Node) and arg.type == syms.argument and arg.children[0].type == 36 and arg.children[0].value == "**" ): return assert ( not kwargs ), "all positional args are assumed to come first" if ( isinstance(arg, Node) and arg.type == syms.argument and arg.children[1].type == syms.comp_for ): # argument is a generator expression w/o # parenthesis, add parenthesis value = arg.clone() value.children.insert(0, Leaf(token.LPAR, "(")) value.children.append(Leaf(token.RPAR, ")")) posargs.append(value) else: posargs.append(arg.clone()) method = results["method"][0].value # map (deprecated) aliases to original to avoid analysing # the decorator function method = _method_aliases.get(method, method) posargs = [] kwargs = {} # This is either a "arglist" or a single argument if results["arglist"].type == syms.arglist: for arg in results["arglist"].children: process_arg(arg) else: process_arg(results["arglist"]) try: test_func = getattr(unittest.TestCase, method) except AttributeError: raise RuntimeError( "Your unittest package does not support '%s'. " "consider updating the package" % method ) required_args, argsdict = utils.resolve_func_args( test_func, posargs, kwargs ) if method.startswith(("assertRaises", "assertWarns")): n_stmt = Node( syms.simple_stmt, [ Name("asserts."), _method_map[method]( *required_args, indent=find_indentation(node), kws=argsdict, arglist=results["arglist"], node=node, ), ], ) else: n_stmt = Node( syms.simple_stmt, [ Name("asserts."), _method_map[method](*required_args, kws=argsdict), ], ) if argsdict.get("msg", None) is not None: n_stmt.children.extend((Name(","), argsdict["msg"])) def fix_line_wrapping(x): for c in x.children: # no need to worry about wrapping of "[", "{" and "(" if c.type in [token.LSQB, token.LBRACE, token.LPAR]: break if c.prefix.startswith("\n"): c.prefix = c.prefix.replace("\n", " \\\n") fix_line_wrapping(c) fix_line_wrapping(n_stmt) # the prefix should be set only after fixing line wrapping # because it can contain a '\n' n_stmt.prefix = node.prefix # add necessary imports if "Raises" in method or "Warns" in method: add_import("pytest", node) if ( "Regex" in method and not "Raises" in method and not "Warns" in method ): add_import("re", node) add_import("asserts", node, ns="vendor") return n_stmt
from python_structure.data_structures.linked_list.node import Node class LinkedList: def __init__(self): self.head = None def append_node(self, data): """ Add a Node to the Linked List :param data: :return: """ if not self.head: self.head = Node(data) return else: current = self.head while current.next: current = current.next current.next = Node(data) def print_list(self): """ Print all the Nodes in the list :return: string in the built-in 'print()' method """ node = self.head while node is not None: print(node.data, " ") node = node.next print("\n") def return_list(self): """ Save all the Nodes of the linked list to a list and return it :return: Nodes' list """ result = [] node = self.head while node is not None: result.append(node.data) node = node.next return result def search(self, target): """ Search 'target' in the linked list. :param target: :return: """ current = self.head while current is not None: if current.data == target: print("'{}' found!".format(target)) return True else: current = current.next print("'{}' NOT found.".format(target)) return False
from ..factory import Type class publicMessageLink(Type): link = None # type: "string" html = None # type: "string"
'''OpenGL extension SGIX.blend_alpha_minmax Automatically generated by the get_gl_extensions script, do not edit! ''' from OpenGL import platform, constants, constant, arrays from OpenGL import extensions from OpenGL.GL import glget import ctypes EXTENSION_NAME = 'GL_SGIX_blend_alpha_minmax' _DEPRECATED = False GL_ALPHA_MIN_SGIX = constant.Constant( 'GL_ALPHA_MIN_SGIX', 0x8320 ) GL_ALPHA_MAX_SGIX = constant.Constant( 'GL_ALPHA_MAX_SGIX', 0x8321 ) def glInitBlendAlphaMinmaxSGIX(): '''Return boolean indicating whether this extension is available''' return extensions.hasGLExtension( EXTENSION_NAME )