content
stringlengths
5
1.05M
#Title: SelectProteins.py #Author: Stephen Tanner, Samuel Payne, Natalie Castellana, Pavel Pevzner, Vineet Bafna #Created: 2005 # Copyright 2007,2008,2009 The Regents of the University of California # All Rights Reserved # # Permission to use, copy, modify and distribute any part of this # program for educational, research and non-profit purposes, by non-profit # institutions only, without fee, and without a written agreement is hereby # granted, provided that the above copyright notice, this paragraph and # the following three paragraphs appear in all copies. # # Those desiring to incorporate this work into commercial # products or use for commercial purposes should contact the Technology # Transfer & Intellectual Property Services, University of California, # San Diego, 9500 Gilman Drive, Mail Code 0910, La Jolla, CA 92093-0910, # Ph: (858) 534-5815, FAX: (858) 534-7345, E-MAIL:invent@ucsd.edu. # # IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY # FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, # INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE, EVEN # IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY # OF SUCH DAMAGE. # # THE SOFTWARE PROVIDED HEREIN IS ON AN "AS IS" BASIS, AND THE UNIVERSITY # OF CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, # ENHANCEMENTS, OR MODIFICATIONS. THE UNIVERSITY OF CALIFORNIA MAKES NO # REPRESENTATIONS AND EXTENDS NO WARRANTIES OF ANY KIND, EITHER IMPLIED OR # EXPRESS, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF # THE SOFTWARE WILL NOT INFRINGE ANY PATENT, TRADEMARK OR OTHER RIGHTS. """ Helper class for FDRUtils.py and FDR.py: Given an f-score cutoff, select a parsimonious collection of proteins which account for most / all of the annotations. """ import os import sys import traceback import struct import ResultsParser from Utils import * Initialize() class ProteinSelector(ResultsParser.ResultsParser): def __init__(self): self.PeptideDict = {} # aminos -> location list self.ProteinPeptideCounts = {} self.ProteinSpectrumCounts = {} #self.SharedProteinPeptides = {} #self.SharedProteinSpectra = {} self.PeptideSpectrumCounts = {} self.ProteinPeptides = {} # Protein -> List of aminos self.ProteinNames = {} self.ProteinSequences = {} self.MQScoreWeight = 0.3 self.DeltaScoreWeight = 1.5 self.MinimumPeptideLength = 7 self.BestScoresByPeptide = {} self.PValueCutoff = None self.MaxFileLines = None # if RetainRepresentativeCount is set, then we remember the # best n spectra for a particular annotation in the dictionary # self.BestRepresentatives self.RetainRepresentativeCount = None self.BestRepresentatives = {} self.AnnotationSpectrumCounts = {} self.FScoreCutoff2 = None self.FScoreCutoff3 = None self.Columns = ResultsParser.Columns() ResultsParser.ResultsParser.__init__(self) def FindPeptideLocations(self, Aminos): PrevPos = -1 LocationList = [] while (1): Pos = self.DB.find(Aminos, PrevPos + 1) if Pos == -1: break # Which protein does Pos lie in? LowIndex = 0 HighIndex = len(self.ProteinPos) - 1 # Pos >= ProteinPos[LowIndex] and Pos < ProteinPos[HighIndex] # Special case - last protein: if Pos >= self.ProteinPos[HighIndex]: ProteinID = HighIndex ResidueNumber = Pos - self.ProteinPos[HighIndex] else: while (1): if LowIndex+1==HighIndex: ProteinID = LowIndex ResidueNumber = Pos - self.ProteinPos[LowIndex] break MidIndex = (LowIndex + HighIndex) / 2 if Pos >= self.ProteinPos[MidIndex]: LowIndex = MidIndex else: HighIndex = MidIndex LocationList.append((ProteinID, ResidueNumber)) PrevPos = Pos return LocationList def OldFindPeptideLocations(self, Aminos): LocationList = [] #print "Find locations for %s..."%Aminos for (ID, Sequence) in self.ProteinSequences.items(): Pos = Sequence.find(Aminos) if Pos != -1: LocationList.append((ID, Pos)) #print "Found at pos %s in %s"%(Pos, ID) if len(LocationList) == 0: print "*** WARNING: Peptide '%s' not found in the database."%Aminos return LocationList def LoadDB(self, DBPath): DBFile = open(DBPath, "rb") self.DB = DBFile.read() DBFile.close() IndexPath = os.path.splitext(DBPath)[0] + ".index" IndexFile = open(IndexPath, "rb") BlockSize = struct.calcsize("<qi80s") ID = 0 PrevID = None self.ProteinPos = [] while (1): Block = IndexFile.read(BlockSize) if not Block: break Info = struct.unpack("<qi80s", Block) Name = Info[2] NullPos = Name.find("\0") if NullPos !=- 1: Name = Name[:NullPos] self.ProteinNames[ID]= Name StartPos = Info[1] self.ProteinPos.append(StartPos) if PrevID != None: self.ProteinSequences[PrevID] = self.DB[self.ProteinPos[PrevID]:StartPos - 1] PrevID = ID ID += 1 self.ProteinSequences[PrevID] = self.DB[self.ProteinPos[PrevID]:] def LoadMultipleDB(self, DBPathList): """" Given a list of DB pathnames, load all the corresponding DB """ ID = 0 self.DB = "" self.ProteinPos = [] for DBPath in DBPathList: print "loading %s"%DBPath DBFile = open(DBPath, "rb") OldDB = self.DB self.DB += DBFile.read() # concatenate all DBs sequentially DBFile.close() IndexPath = os.path.splitext(DBPath)[0] + ".index" IndexFile = open(IndexPath, "rb") BlockSize = struct.calcsize("<qi80s") PrevID = None while (1): Block = IndexFile.read(BlockSize) if not Block: break Info = struct.unpack("<qi80s", Block) Name = Info[2] NullPos = Name.find("\0") if NullPos !=- 1: Name = Name[:NullPos] self.ProteinNames[ID]= Name StartPos = Info[1] + len(OldDB) # adjust StartPos for adding a new DB self.ProteinPos.append(StartPos) if PrevID != None: self.ProteinSequences[PrevID] = self.DB[self.ProteinPos[PrevID]:StartPos - 1] PrevID = ID ID += 1 self.ProteinSequences[PrevID] = self.DB[self.ProteinPos[PrevID]:] def OldLoadDB(self, DBPath): """ Load the database, popluating self.ProteinSequences """ print "LoadDB(%s)"%DBPath IndexPath = os.path.splitext(DBPath)[0] + ".index" IndexFile = open(IndexPath, "rb") DBFile = open(DBPath, "rb") BlockSize = struct.calcsize("<qi80s") PrevName = None PrevID = None PrevStartPos = None ID = 0 while (1): Block = IndexFile.read(BlockSize) if not Block: break Info = struct.unpack("<qi80s", Block) Name = Info[2] NullPos = Name.find("\0") if NullPos !=- 1: Name = Name[:NullPos] StartPos = Info[1] self.ProteinNames[ID] = Name if PrevName != None: DBFile.seek(PrevStartPos) Sequence = DBFile.read(StartPos - PrevStartPos) Sequence = Sequence.replace("*", "") self.ProteinSequences[PrevID] = Sequence PrevName = Name PrevID = ID PrevStartPos = StartPos ID += 1 if PrevName != None: DBFile.seek(StartPos) Sequence = DBFile.read() self.ProteinSequences[PrevID] = Sequence #self.ProteinNames[PrevID] = Name DBFile.close() IndexFile.close() def ChooseProteins(self): """ Iteratively select proteins which account for all the peptides. """ self.SelectedProteins = {} # Protein -> (Peptides, Spectra) self.PeptideProteins = {} # Peptide -> final selection of protein print "\n\n\n" print "CHOOSE PROTEINS:" for (Peptide, SpectrumCount) in self.PeptideSpectrumCounts.items(): for (ProteinID, Pos) in self.PeptideDict[Peptide]: self.ProteinSpectrumCounts[ProteinID] = self.ProteinSpectrumCounts.get(ProteinID, 0) + SpectrumCount print "Loaded %s peptides and %s proteins"%(len(self.PeptideSpectrumCounts.keys()), len(self.ProteinSpectrumCounts.keys())) while (1): BestCandidate = None BestScore = None for Protein in self.ProteinPeptideCounts.keys(): if self.SelectedProteins.has_key(Protein): continue PeptideCount = self.ProteinPeptideCounts[Protein] SpectrumCount = self.ProteinSpectrumCounts.get(Protein, 0) Score = (PeptideCount, SpectrumCount) #print Protein, Score if Score > BestScore or (Score == BestScore and self.ProteinNames[Protein] < self.ProteinNames[BestCandidate]): BestScore = Score BestCandidate = Protein #print "New Best %s, score %s"%(BestCandidate,BestScore) if not BestScore: break (PeptideCount, SpectrumCount) = BestScore if PeptideCount == 0: break #%%% print "Accept protein %s (%s)\n Gets %s peptides, %s spectra"%(BestCandidate, self.ProteinNames[BestCandidate], PeptideCount, SpectrumCount) self.SelectedProteins[BestCandidate] = BestScore # Lay claim to all the (not-yet-claimed) peptides: for Peptide in self.ProteinPeptides[BestCandidate]: #print Peptide if not self.PeptideProteins.has_key(Peptide): self.PeptideProteins[Peptide] = BestCandidate # Other proteins (if not already accepted) lose a peptide, and some spectra: for (OtherProtein, Pos) in self.PeptideDict[Peptide]: if self.SelectedProteins.has_key(OtherProtein): continue self.ProteinPeptideCounts[OtherProtein] -= 1 self.ProteinSpectrumCounts[OtherProtein] = self.ProteinSpectrumCounts.get(OtherProtein, 0) - self.PeptideSpectrumCounts[Peptide] # Sanity check - the selected proteins have peptides, the unselected proteins have 0 for Protein in self.ProteinPeptideCounts.keys(): ProteinName = self.ProteinNames[Protein] PeptideCount = self.ProteinPeptideCounts[Protein] SpectrumCount = self.ProteinSpectrumCounts.get(Protein, 0) if self.SelectedProteins.has_key(Protein) and PeptideCount <= 0: print "** Warning: Selected protein %s (%s) has %s peptides!"%(Protein, ProteinName, PeptideCount) if not self.SelectedProteins.has_key(Protein) and PeptideCount != 0: print "** Warning: Unelected protein %s (%s) has %s peptides!"%(Protein, ProteinName, PeptideCount) def ParseAnnotations(self, FileName): """ Parse annotations, remembering all protein locations for each peptide. """ print "Parse %s..."%FileName File = open(FileName, "rb") OldSpectrum = None Stub = os.path.split(FileName)[1] LineNumber = 0 for FileLine in File: LineNumber += 1 if LineNumber % 100 == 0: print "%s %s..."%(Stub, LineNumber) if self.MaxFileLines != None and LineNumber >= self.MaxFileLines: return # Quick-parse, for debugging only! if FileLine[0] == "#": self.Columns.initializeHeaders(FileLine) continue if not FileLine.strip(): continue Bits = FileLine.split("\t") try: Spectrum = (Bits[self.Columns.getIndex("SpectrumFile")], Bits[self.Columns.getIndex("Scan#")]) except: continue # header line if Spectrum == OldSpectrum: continue OldSpectrum = Spectrum try: MQScore = float(Bits[self.Columns.getIndex("MQScore")]) DeltaScore = float(Bits[self.Columns.getIndex("DeltaScoreOther")]) Charge = int(Bits[self.Columns.getIndex("Charge")]) except: traceback.print_exc() print Bits continue # Apply a threshold: EITHER f-score cutoff (default) OR p-value cutoff if self.PValueCutoff != None: try: PValue = float(Bits[self.Columns.getIndex("InspectFDR")]) except: traceback.print_exc() print Bits continue PeptideScore = (-PValue, MQScore) if PValue > self.PValueCutoff: continue else: if Charge < 3: WeightedScore = self.MQScoreWeight * MQScore + self.DeltaScoreWeight * (DeltaScore / self.MeanDeltaScore2) if WeightedScore < self.FScoreCutoff2: continue else: WeightedScore = self.MQScoreWeight * MQScore + self.DeltaScoreWeight * (DeltaScore / self.MeanDeltaScore3) if WeightedScore < self.FScoreCutoff3: continue PeptideScore = WeightedScore try: Peptide = GetPeptideFromModdedName(Bits[self.Columns.getIndex("Annotation")]) except: continue if len(Peptide.Aminos) < self.MinimumPeptideLength: continue # Remember this peptide: if not self.PeptideDict.get(Peptide.Aminos): # It's a new peptide! Figure out where it falls in the database: LocationList = self.FindPeptideLocations(Peptide.Aminos) for (Protein, Pos) in LocationList: if not self.ProteinPeptides.has_key(Protein): self.ProteinPeptides[Protein] = [] #print "Adding peptide %s to protein %s '%s':"%(Peptide.Aminos,Protein,self.ProteinNames[Protein]) self.ProteinPeptides[Protein].append(Peptide.Aminos) self.PeptideDict[Peptide.Aminos] = LocationList for (ProteinNumber, Dummy) in LocationList: self.ProteinPeptideCounts[ProteinNumber] = self.ProteinPeptideCounts.get(ProteinNumber, 0) + 1 else: # We've seen this peptide before: LocationList = self.PeptideDict[Peptide.Aminos] OldScore = self.BestScoresByPeptide.get(Peptide.Aminos, -9999) self.BestScoresByPeptide[Peptide.Aminos] = max(PeptideScore, OldScore) self.PeptideSpectrumCounts[Peptide.Aminos] = self.PeptideSpectrumCounts.get(Peptide.Aminos, 0) + 1 ############################################################## # Populate self.BestRepresentative, if requested: if self.RetainRepresentativeCount: Peptide.MQScore = MQScore Peptide.PValue = PValue Peptide.SpectrumFilePath = Bits[0] Peptide.ScanNumber = int(Bits[1]) Peptide.SpectrumFilePos = int(Bits[self.Columns.getIndex("SpecFilePos")]) Key = Peptide.GetFullModdedName() RepresentativeList = self.BestRepresentatives.get(Key, []) Tuple = (PeptideScore, Peptide) RepresentativeList.append(Tuple) RepresentativeList.sort() self.BestRepresentatives[Key] = RepresentativeList[-self.RetainRepresentativeCount:] self.AnnotationSpectrumCounts[Key] = self.AnnotationSpectrumCounts.get(Key, 0) + 1 if __name__ == "__main__": # Test Bob = ProteinSelector() Bob.LoadDB("database\DictyCommon.Aug28.FS2.trie") print Bob.FindPeptideLocations("GTVESEMAEQDSLLNKLNK") print Bob.FindPeptideLocations("TSEGDFTLLLGQIVDNQIGDLNKSG") print Bob.FindPeptideLocations("YAVFAPGLADVVIEVVAK")
# TPPM wrapper # Copyright 2021 kensoi # works with projects that's has generated root.py file via TPPM # put this file into folder where you located all your projects. It shall look like this: # your_dir/ # manage.py <-- TPPM wrapper # botName1/ # assets/ # library/ # root.py # botName2/ # assets/ # library/ # root.py # $ python ./manage.py import subprocess projects = ['kyokou', 'kyokou2'] # list of projects by project folder name subprocess.run(f'python -m testcanarybot --run {" ".join(projects)}'.split())
from machamp.models.machamp_model import MachampModel from machamp.models.sentence_decoder import MachampClassifier from machamp.models.tag_decoder import MachampTagger from machamp.models.dependency_decoder import MachampBiaffineDependencyParser from machamp.models.mlm_decoder import MachampMaskedLanguageModel from machamp.models.multiseq_decoder import MachampMultiTagger from machamp.models.crf_decoder import MachampCrfTagger from machamp.models.seq2seq_decoder import MachampSeq2SeqDecoder
from __future__ import division from gltbx import wx_viewer import wx from gltbx.gl import * from scitbx.math import minimum_covering_sphere from scitbx.array_family import flex class MyGLWindow(wx_viewer.show_points_and_lines_mixin): def __init__(self, *args, **kwds): super(MyGLWindow, self).__init__(*args, **kwds) self.points = flex.vec3_double([ (-5,-5,-5), (-4,0,0), (0,-8,0), (0,0,-11) ]) self.line_i_seqs = [ (0,1), (0,2), (0,3), (1,2), (1,3), (2,3) ] self.spheres = [ ((0,0,0), 1) ] self.flag_show_minimum_covering_sphere = False self.minimum_covering_sphere = minimum_covering_sphere(self.points) class MyApp(wx_viewer.App): def init_view_objects(self): box = wx.BoxSizer(wx.VERTICAL) self.view_objects = MyGLWindow(self.frame, size=(600,600)) box.Add(self.view_objects, wx.EXPAND, wx.EXPAND) self.frame.SetSizer(box) box.SetSizeHints(self.frame) if __name__ == '__main__': a = MyApp(title="An example of using gltbx.wx_viewer") a.MainLoop()
import json import re from unidecode import unidecode def load_jsonl(filename): examples = [] with open(filename) as f: for line in f: _example = json.loads(line) examples.append(_example) return examples def load_jsonl_table(filename): tables = dict() with open(filename) as f: for line in f: _table = json.loads(line) tables[_table["id"]] = _table return tables def normalize_string(string: str) -> str: """ These are the transformation rules used to normalize cell in column names in Sempre. See ``edu.stanford.nlp.sempre.tables.StringNormalizationUtils.characterNormalize`` and ``edu.stanford.nlp.sempre.tables.TableTypeSystem.canonicalizeName``. We reproduce those rules here to normalize and canonicalize cells and columns in the same way so that we can match them against constants in logical forms appropriately. """ # Normalization rules from Sempre # \u201A -> , string = unidecode(string.lower()) string = re.sub("‚", ",", string) string = re.sub("„", ",,", string) string = re.sub("[·・]", ".", string) string = re.sub("…", "...", string) string = re.sub("ˆ", "^", string) string = re.sub("˜", "~", string) string = re.sub("‹", "<", string) string = re.sub("›", ">", string) string = re.sub("[‘’´`]", "'", string) string = re.sub("[“”«»]", '"', string) string = re.sub("[•†‡²³]", "", string) string = re.sub("[‐‑–—−]", "-", string) string = re.sub("[ðø′″€⁄ªΣ]", "_", string) string = re.sub("[\\u0180-\\u0210]", "", string).strip() string = re.sub("[\\u0220-\\uFFFF]", "", string).strip() string = string.replace("\\n", "_") string = re.sub("\\s+", " ", string) # Canonicalization rules from Sempre. string = re.sub("[^\\w]", "_", string) string = re.sub("_+", "_", string) string = re.sub("_$", "", string) return string.strip("_")
from .visualwakewords import VisualWakeWords
# MIT License # # Copyright (c) 2018-2019 Red Hat, Inc. # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Generate initial configuration for packit """ import logging from os import getcwd from pathlib import Path import click from packit.cli.types import LocalProjectParameter from packit.cli.utils import cover_packit_exception from packit.config import get_context_settings from packit.constants import CONFIG_FILE_NAMES, PACKIT_CONFIG_TEMPLATE from packit.exceptions import PackitException logger = logging.getLogger(__file__) @click.command("generate", context_settings=get_context_settings()) @click.argument("path_or_url", type=LocalProjectParameter(), default=getcwd()) @click.option( "-f", "--force", is_flag=True, help="Reset config to default if already exists." ) @cover_packit_exception def generate(path_or_url, force): """ Generate new packit config. """ # find name of config file if already exists config_file_name = None for existing_config_file in CONFIG_FILE_NAMES: if (Path.cwd() / existing_config_file).is_file(): config_file_name = existing_config_file if not force: raise PackitException( f"Packit config {config_file_name} already exists." " If you want to regenerate it use `packit generate --force`" ) break template_data = { "upstream_project_name": path_or_url.repo_name, "downstream_package_name": path_or_url.repo_name, } generate_config( write_to_file=True, template_data=template_data, config_file_name=config_file_name, ) def generate_config(write_to_file=False, template_data=None, config_file_name=None): """ Generate config file from provided data :param write_to_file: bool, False by default :param template_data: dict, example: { "upstream_project_name": "packitos", "downstream_package_name": "packit", } :param config_file_name: str, name of config file, `.packit.yaml` by default :return: str, generated config """ # default name config_file_name = config_file_name or ".packit.yaml" output_config = PACKIT_CONFIG_TEMPLATE.format( downstream_package_name=template_data["downstream_package_name"], upstream_project_name=template_data["upstream_project_name"], ) if write_to_file: Path(config_file_name).write_text(output_config) return output_config
from helper import get_input, flatten def get_neighbours(pos, data): row = pos[0] col = pos[1] height = pos[2] neighbours = [] for r in range(-1, 2): for c in range(-1, 2): for h in range(-1, 2): if r == 0 and c == 0 and h == 0: continue if (row + r, col + c, height + h) in data: neighbours.append((row + r, col + c, height + h)) return neighbours def print_data(data): row_pos = [x[0] for x in data] col_pos = [x[1] for x in data] height_pos = [x[2] for x in data] for h in range(min(height_pos), max(height_pos) + 1): print(f'z={h}') for r in range(min(row_pos), max(row_pos) + 1): for c in range(min(col_pos), max(col_pos) + 1): if (r, c, h) in data: print('#', end='') else: print('.', end='') print('\n', end='') print('\n', end='') def main(): input_data = get_input(17) data = flatten([[(i, j, 0) for j, y in enumerate(list(x)) if y == '#'] for i, x in enumerate(input_data.split('\n')) if x]) print_data(data) for _ in range(6): new_data = [] row_pos = [x[0] for x in data] col_pos = [x[1] for x in data] height_pos = [x[2] for x in data] for r in range(min(row_pos)-1, max(row_pos)+2): for c in range(min(col_pos)-1, max(col_pos)+2): for h in range(min(height_pos)-1, max(height_pos)+2): pos = (r, c, h) neighbours = get_neighbours(pos, data) if pos in data and (len(neighbours) == 2 or len(neighbours) == 3): new_data.append(pos) if pos not in data and len(neighbours) == 3: new_data.append(pos) data = new_data # print_data(data) print(len(data)) if __name__ == '__main__': main()
from make_dataframe import make_df df = make_df() print(df.dtypes) print(df.to_markdown())
import logging from pip._internal.cli.base_command import Command class FakeCommand(Command): name = 'fake' summary = name def __init__(self, error=False): self.error = error super(FakeCommand, self).__init__() def main(self, args): args.append("--disable-pip-version-check") return super(FakeCommand, self).main(args) def run(self, options, args): logging.getLogger("pip.tests").info("fake") if self.error: raise SystemExit(1) class FakeCommandWithUnicode(FakeCommand): name = 'fake_unicode' summary = name def run(self, options, args): logging.getLogger("pip.tests").info(b"bytes here \xE9") logging.getLogger("pip.tests").info( b"unicode here \xC3\xA9".decode("utf-8") ) class Test_base_command_logging(object): """ Test `pip.base_command.Command` setting up logging consumers based on options """ def test_log_command_success(self, tmpdir): """ Test the --log option logs when command succeeds """ cmd = FakeCommand() log_path = tmpdir.join('log') cmd.main(['fake', '--log', log_path]) with open(log_path) as f: assert 'fake' == f.read().strip()[:4] def test_log_command_error(self, tmpdir): """ Test the --log option logs when command fails """ cmd = FakeCommand(error=True) log_path = tmpdir.join('log') cmd.main(['fake', '--log', log_path]) with open(log_path) as f: assert 'fake' == f.read().strip()[:4] def test_log_file_command_error(self, tmpdir): """ Test the --log-file option logs (when there's an error). """ cmd = FakeCommand(error=True) log_file_path = tmpdir.join('log_file') cmd.main(['fake', '--log-file', log_file_path]) with open(log_file_path) as f: assert 'fake' == f.read().strip()[:4] def test_unicode_messages(self, tmpdir): """ Tests that logging bytestrings and unicode objects don't break logging """ cmd = FakeCommandWithUnicode() log_path = tmpdir.join('log') cmd.main(['fake_unicode', '--log', log_path])
import logging import subprocess import os def read_bam(bamfilePath): """Reads a .bam line by line""" logging.debug( '[DEBUG] (read_bam) Launching samtools in subprocess to yield the lines of the bamfile {}'.format(bamfilePath)) # Samtools must be installed ! cmd = 'samtools view '+os.path.realpath(bamfilePath) logging.debug('[DEBUG] (read_bam) cmd = {}'.format(cmd)) proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE) # No .sam dropping logging.debug( '[DEBUG] (read_bam) Starting to read output from samtools for {}'.format(bamfilePath)) while True: # We will read the output of samtools line by line. Decoding is needed because popen returns bytes, not strings line = proc.stdout.readline().decode('utf-8') if line: # While there is something to read (else it will break) yield line else: # There is nothing left in the stdout of samtools logging.debug( '[DEBUG] (read_bam) reading bamfile {} seems over'.format(bamfilePath)) break return def read_header(bamfilePath): """ returns the header as a python-string .sam""" logging.debug("[DEBUG] Reading headers of {}".format(bamfilePath)) samtxt = '' cmd = 'samtools view -h -S '+str(bamfilePath) proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stdin=subprocess.PIPE) # We launch samtools view while True: output = proc.stdout.readline().decode('utf-8') if output[0] == '@': samtxt = samtxt + output else: break return samtxt
import copy import logging import random import numpy as np import torch from matminer.featurizers.composition import ElementProperty from sklearn.feature_selection import VarianceThreshold from torch.utils.data import Dataset from tqdm import tqdm from cacgan.data.schema import AtmoStructureGroup, FormulaEncoder, pd from cacgan.utils import Composition, chunks, convert_mno from cacgan.utils import composition_elements, diff2formula, SEED def feat_compositions(feater: ElementProperty, comps: [Composition]) -> np.ndarray: """use matminer ElementProperty to generate an array of features for a list of compositions""" feat_array = np.zeros((len(comps), len(feater.feature_labels()))) for i, c in tqdm(enumerate(comps)): feat_array[i] = feater.featurize(c.fractional_composition) return feat_array def variance_threshold_selector(data: pd.DataFrame, threshold=1e-5) -> pd.DataFrame: """remove columns with a variance less than threshold form a pd.DataFrame""" selector = VarianceThreshold(threshold) selector.fit(data) return data[data.columns[selector.get_support(indices=True)]] def rm_nan_columns(a: np.ndarray, m="any") -> np.ndarray: """remove nan values from an np.ndarray""" if m == "any": return a[:, ~np.isnan(a).any(axis=0)] elif m == "all": return a[:, ~np.isnan(a).all(axis=0)] else: raise ValueError("m must be any or all!") class GroupAB: def __init__(self, group_a: AtmoStructureGroup, group_b: AtmoStructureGroup, ): """ select two AtmoStructureGroup objs to build up dataset """ self.group_a = group_a self.group_b = group_b # elements appear in at least one group self.possible_elements = sorted(set(self.group_a.possible_elements + self.group_b.possible_elements)) self.total_chem_pairs = [] self.total_alchemy_pairs = [] # i2js[i] would return a *set* of all possible j paired to i self.i2js = dict() self.j2is = dict() for i, a in enumerate(self.group_a): ea = composition_elements(a.composition) for j, b in enumerate(self.group_b): eb = composition_elements(b.composition) if ea == eb: self.total_chem_pairs.append((i, j)) if i not in self.i2js: self.i2js[i] = {j, } else: self.i2js[i].add(j) if j not in self.j2is: self.j2is[j] = {i, } else: self.j2is[j].add(i) else: self.total_alchemy_pairs.append((i, j)) self.a_haspair = sorted(set([p[0] for p in self.total_chem_pairs])) self.b_haspair = sorted(set([p[1] for p in self.total_chem_pairs])) self.a_single = [i for i in range(len(self.group_a)) if i not in self.a_haspair] self.b_single = [i for i in range(len(self.group_b)) if i not in self.b_haspair] # # you don't need this # random.shuffle(self.total_chem_pairs) # random.shuffle(self.total_alchemy_pairs) self.encoder = FormulaEncoder(self.possible_elements) self.group_a.encoded = self.encoder.encode_2d( [a.composition.fractional_composition.formula for a in self.group_a]) self.group_b.encoded = self.encoder.encode_2d( [a.composition.fractional_composition.formula for a in self.group_b]) self.Avalues = self.group_a.encoded.copy() self.Bvalues = self.group_b.encoded.copy() class FormulaDataset(Dataset): def __init__(self, gab: GroupAB, mo: bool = False, mno: bool = False): """ dataset passed to pytorch dataloader :param gab: the GroupAB object after selecting two groups of ATMO :param mo: should we use MO composition only? :param mno: only keep composition of 1M 1NM """ self.gab = gab if mo: ga = self.gab.group_a.to_mocomp() gb = self.gab.group_b.to_mocomp() self.gab = GroupAB(ga, gb) if mno: ga = self.gab.group_a.keep_only_mno() gb = self.gab.group_b.keep_only_mno() self.gab = GroupAB(ga, gb) self.convertmno = None # every time an AB pair is drawn, B is converted to the chem sys of A, i.e. "fake" pairing self.setup_params = None self.mode = None def convert_mno(self): """set dataset to include only mno structures""" self.convertmno = True def train(self): """set dataset to training mode""" assert self.setup_params is not None self.mode = "train" def test(self): """set dataset to training mode""" assert self.setup_params is not None self.mode = "test" def as_train(self): """return a copy of the data set and set it to training mode""" d = copy.deepcopy(self) d.train() return d def as_test(self): """return a copy of the data set and set it to test mode""" d = copy.deepcopy(self) d.test() return d def setup( self, length_multiplier=1.0, a_haspair_train=1.0, b_haspair_train=0.66, a_single_train=1.0, b_single_train=1.0, setup_seed=SEED, b_cv_fold=3, b_cv_index=0, b_cv=True, b_cv_rev=False ): """ split train/valid, b_haspair_train should < 1, otherwise there would be no data in valid when a_haspair_train < 1, we split both A and B, that is, For A in train -- a_haspair_train + a_single_train in valid -- a_haspair_valid = (1 - a_haspair_train) For B in train -- b_haspair_train + b_single_train in valid -- b_haspair_valid = (1 - b_haspair_train) the question becomes if we can generate unseen B from unseen A, which sounds a bit weird... for validation we can only use pairs from a_haspair_valid and b_haspair_valid, which may be very few, when a_haspair_train = 1, the same set of A samples are used for train and valid, that is, For A in train -- a_haspair + a_single_train in valid -- a_haspair For B (this stays the same) in train -- b_haspair_train + b_single_train in valid -- b_haspair_valid = (1 - b_haspair_train) the question becomes if we can generate unseen B from already seen A this can guarantee that we are not predicting an unseen chemical system (even we saw it thru A) """ assert 0 <= a_haspair_train <= 1 assert 0 <= b_haspair_train < 1 assert 0 <= a_single_train <= 1 assert 0 <= b_single_train <= 1 self.length_multiplier = length_multiplier random.seed(setup_seed) # remember shuffle is in-place self.train_a_single = random.sample(self.gab.a_single, int(len(self.gab.a_single) * a_single_train)) self.train_a_haspair = random.sample(self.gab.a_haspair, int(len(self.gab.a_haspair) * a_haspair_train)) self.train_a = self.train_a_single + self.train_a_haspair if a_haspair_train < 1: self.test_a = [i for i in self.gab.a_haspair if i not in self.train_a_haspair] self.test_a = random.sample(self.test_a, k=len(self.test_a)) else: assert a_haspair_train == 1 self.test_a = random.sample(self.train_a_haspair, k=len(self.train_a_haspair)) self.train_b_single = random.sample(self.gab.b_single, int(len(self.gab.b_single) * b_single_train)) if b_cv: assert b_cv_index in range(b_cv_fold) b_has_pair = [j for j in self.gab.b_haspair] # print("b_has_pair", self.gab.b_haspair) random.Random(setup_seed).shuffle(b_has_pair) # print("b_has_pair shuffled", b_has_pair) b_haspair_chunks = list(chunks(b_has_pair, len(b_has_pair) // b_cv_fold)) if len(b_has_pair) % b_cv_fold > 0: b_haspair_chunks[-2] = b_haspair_chunks[-2] + b_haspair_chunks[-1] b_haspair_chunks.pop(-1) if b_cv_rev: self.train_b_haspair = b_haspair_chunks[b_cv_index] else: self.train_b_haspair = [] for i in range(b_cv_fold): if i != b_cv_index: self.train_b_haspair += b_haspair_chunks[i] else: random.seed(b_cv_index) self.train_b_haspair = random.sample(self.gab.b_haspair, int(len(self.gab.b_haspair) * b_haspair_train)) random.seed(setup_seed) self.train_b = self.train_b_single + self.train_b_haspair self.test_b = [i for i in self.gab.b_haspair if i not in self.train_b_haspair] self.pairs_in_test = [] for j in self.test_b: i_in_test_pool = set(self.test_a).intersection(self.gab.j2is[j]) for i in i_in_test_pool: self.pairs_in_test.append((i, j)) self.test_apool = [p[0] for p in self.pairs_in_test] self.test_bpool = [p[1] for p in self.pairs_in_test] self.train_apool = self.train_a self.train_bpool = self.train_b random.shuffle(self.train_apool) # these shouldn't matter... random.shuffle(self.train_bpool) self.setup_params = dict( length_multiplier=length_multiplier, a_haspair_train=a_haspair_train, b_haspair_train=b_haspair_train, a_single_train=a_single_train, b_single_train=b_single_train, seed=SEED, b_cv_fold=b_cv_fold, b_cv_index=b_cv_index, b_cv=b_cv, ) self.setup_params["details"] = self.details test_bpool_refcodes = [self.gab.group_b[j].identifier for j in self.test_bpool] self.setup_params["test_bpool_refcodes"] = test_bpool_refcodes @property def details(self): s = "=== meta ===\n" s += "A group size: {}\n".format(len(self.gab.group_a)) s += "B group size: {}\n".format(len(self.gab.group_b)) s += "A group amine: {}\n".format(self.gab.group_a.first_amine) s += "B group amine: {}\n".format(self.gab.group_b.first_amine) s += "total chem pairs: {}\n".format(len(self.gab.total_chem_pairs)) s += "total alchemy pairs: {}\n".format(len(self.gab.total_alchemy_pairs)) s += "=== dataset ===\n" s += "train a single: {}\n".format(len(self.train_a_single)) s += "train b single: {}\n".format(len(self.train_b_single)) s += "train a haspair: {}\n".format(len(self.train_a_haspair)) s += "train b haspair: {}\n".format(len(self.train_b_haspair)) s += "train a pool: {}\n".format(len(self.train_apool)) s += "train b pool: {}\n".format(len(self.train_bpool)) s += "test a: {}\n".format(len(self.test_a)) s += "test b: {}\n".format(len(self.test_b)) s += "test pairs: {}\n".format(len(self.pairs_in_test)) return s def __getitem__(self, index): assert self.mode in ("train", "test",) if self.mode == "train": i = self.train_apool[index % len(self.train_apool)] j = random.choice(self.train_bpool) else: i = self.test_apool[index % len(self.test_apool)] j = self.test_bpool[index % len(self.test_bpool)] Avalue = self.gab.Avalues[i] if self.convertmno and self.mode == "train": Bvalue = convert_mno(Avalue, self.gab.Bvalues[j], self.gab.possible_elements) else: Bvalue = self.gab.Bvalues[j] Acomp = self.gab.group_a[i].composition.formula Bcomp = self.gab.group_b[j].composition.formula item_A = torch.from_numpy(Avalue) # .to(DEVICE) item_B = torch.from_numpy(Bvalue) # .to(DEVICE) d = { 'A': item_A, 'B': item_B, 'Acomp': Acomp, 'Bcomp': Bcomp, } return d def __len__(self): assert self.mode in ("train", "test",) if self.mode == "train": return int(len(self.train_apool) * self.length_multiplier) else: return len(self.test_apool) def get_baseline(self): """only implemented this for a_haspair_train = 1""" assert len(self.train_a_haspair) == len(self.gab.a_haspair) baselines = [] # for each unique j in test, what is the closest a we have seen? for j in self.test_b: bformula = self.gab.group_b[j].composition.formula aformulae = [self.gab.group_a[i].composition.formula for i in self.gab.j2is[j]] deltas = [diff2formula(aformula, bformula) for aformula in aformulae] baselines.append(min(deltas)) return baselines class DimDataset: def __init__(self, x: pd.DataFrame, y: pd.DataFrame, hx=None, hy=None): """ dataset used for dimensionality prediction """ self.x = x self.y = y self.hx = hx self.hy = hy def holdout(self, exclude_refcode: [str]): """ :param exclude_refcode: to exclude a list of structures and put them in holdout data/target """ assert len(exclude_refcode) > 0 refcodes = self.x.index.tolist() hx = self.x.loc[exclude_refcode] hy = self.y.loc[exclude_refcode] remaining = list(set(refcodes).difference(set(exclude_refcode))) x = self.x.loc[remaining] y = self.y.loc[remaining] self.x = x self.y = y self.hx = hx self.hy = hy @classmethod def from_atmogroup(cls, atmo_group: AtmoStructureGroup, feat=False, mocomp=False): """create dimensionality dataset from an AtmoStructureGroup""" if mocomp: structures = atmo_group.to_mocomp().structures else: structures = atmo_group.structures fc = FormulaEncoder(AtmoStructureGroup(structures).possible_elements) comp = fc.encode_2d([a.composition.fractional_composition.formula for a in structures]) data_df = pd.DataFrame(comp, columns=fc.possible_elements) dim_df = pd.DataFrame([a.dim for a in structures], columns=["dimension"]) refcodes = [a.identifier for a in structures] data_df.index = refcodes dim_df.index = refcodes if feat: feat_arrays = [] columns = [] for name in ["magpie", "matscholar_el", "matminer"]: epfeat = ElementProperty.from_preset(name) farray = feat_compositions(epfeat, [s.composition for s in structures]) feat_arrays.append(farray) columns += [n for n in epfeat.feature_labels()] feat_array = np.hstack(feat_arrays) logging.warning("generated feature array shape: {}".format(feat_array.shape)) feat_df = pd.DataFrame(feat_array, columns=columns) feat_df = feat_df.dropna(axis=1, how="any") logging.warning("after removing nan columns: {}".format(feat_array.shape)) feat_df = variance_threshold_selector(feat_df, 1e-5) logging.warning("after removing low variance columns: {}".format(feat_array.shape)) data_df = pd.concat([data_df, feat_df], axis=1) return cls(data_df, dim_df)
import numpy as np from skimage import measure as measure def keep_largest_connected_components(mask, n_classes): ''' Keeps only the largest connected components of each label for a segmentation mask. ''' out_img = np.zeros(mask.shape, dtype=np.uint8) for struc_id in np.arange(1, n_classes): binary_img = mask == struc_id blobs = measure.label(binary_img, connectivity=1) props = measure.regionprops(blobs) if not props: continue area = [ele.area for ele in props] largest_blob_ind = np.argmax(area) largest_blob_label = props[largest_blob_ind].label out_img[blobs == largest_blob_label] = struc_id return out_img
from __future__ import print_function from future.utils import iteritems from xgcm.grid import Axis, raw_interp_function import xarray as xr def generate_axis( ds, axis, name, axis_dim, pos_from="center", pos_to="left", boundary_discontinuity=None, pad="auto", new_name=None, attrs_from_scratch=True, ): """ Creates c-grid dimensions (or coordinates) along an axis of Parameters ---------- ds : xarray.Dataset Dataset with gridinformation used to construct c-grid axis : str The appropriate xgcm axis. E.g. 'X' for longitudes. name : str The name of the variable in ds, providing the original grid. axis_dim : str The dimension of ds[name] corresponding to axis. If name itself is a dimension, this should be equal to name. pos_from : {'center','left','right'}, optional Position of the gridpoints given in 'ds'. pos_to : {'left','center','right'}, optional Position of the gridpoints to be generated. boundary_discontinuity : {None, float}, optional If specified, marks the value of discontinuity across boundary, e.g. 360 for global longitude values and 180 for global latitudes. pad : {'auto', None, float}, optional If specified, determines the padding to be applied across boundary. If float is specified, that value is used as padding. Auto attempts to pad linearly extrapolated values. Can be useful for e.g. depth coordinates (to reconstruct 0 depth). Can lead to unexpected values when coordinate is multidimensional. new_name : str, optional Name of the inferred grid variable. Defaults to name+'_'+pos_to' attrs_from_scratch : bool, optional Determines if the attributes are created from scratch. Should be enabled for dimensions and deactivated for multidimensional coordinates. These can only be calculated after the dims are created. """ if not isinstance(ds, xr.Dataset): raise ValueError("'ds' needs to be xarray.Dataset") if new_name is None: new_name = name + "_" + pos_to # Determine the relative position to interpolate to based on current and # desired position relative_pos_to = _position_to_relative(pos_from, pos_to) # This is bloated. We can probably retire the 'auto' logic in favor of # using 'boundary' and 'fill_value'. But first lets see if this all works. if (boundary_discontinuity is not None) and (pad is not None): raise ValueError( "Coordinate cannot be wrapped and padded at the\ same time" ) elif (boundary_discontinuity is None) and (pad is None): raise ValueError( 'Either "boundary_discontinuity" or "pad" have \ to be specified' ) if pad is None: fill_value = 0.0 boundary = None periodic = True elif pad == "auto": fill_value = 0.0 boundary = "extrapolate" periodic = False else: fill_value = pad boundary = "fill" periodic = False kwargs = dict( boundary_discontinuity=boundary_discontinuity, fill_value=fill_value, boundary=boundary, position_check=False, ) ds = ds.copy() # For a set of coordinates there are two fundamental cases. The coordinates # are a) one dimensional (dimensions) or 2) multidimensional. These are # separated by the keyword attrs_from_scratch. # These two cases are treated differently because for each dataset we need # to recreate all a) cases before we can proceed to 2), hence this is # really the 'raw' data processing step. If we have working one dimensional # coordinates (e.g. after we looped over the axes_dims_dict, we can use the # regular xgcm.Axis to interpolate multidimensional coordinates. # This assures that any changes to the Axis.interp method can directly # propagate to this module. if attrs_from_scratch: # Input coordinate has to be declared as center, # or xgcm.Axis throws error. Will be rewrapped below. ds[name] = _fill_attrs(ds[name], "center", axis) ax = Axis(ds, axis, periodic=periodic) args = ds[name], raw_interp_function, relative_pos_to ds.coords[new_name] = ax._neighbor_binary_func_raw(*args, **kwargs) # Place the correct attributes ds[name] = _fill_attrs(ds[name], pos_from, axis) ds[new_name] = _fill_attrs(ds[new_name], pos_to, axis) else: kwargs.pop("position_check", None) ax = Axis(ds, axis, periodic=periodic) args = ds[name], pos_to ds.coords[new_name] = ax.interp(*args, **kwargs) return ds def generate_grid_ds( ds, axes_dims_dict, axes_coords_dict=None, position=None, boundary_discontinuity=None, pad="auto", new_name=None, ): """ Add c-grid dimensions and coordinates (optional) to observational Dataset Parameters ---------- ds : xarray.Dataset Dataset with gridinformation used to construct c-grid axes_dims_dict : dict Dict with information on the dimension in ds corrsponding to the xgcm axis. E.g. {'X':'lon','Y':'lat'} axes_coords_dict : dict, optional Dict with information on the coordinates in ds corrsponding to the xgcm axis. E.g. {'X':'geolon','Y':'geolat'} position : {None,tuple, dict}, optional Position of the gridpoints given in 'ds' and the desired position to be generated. Defaults to ('center','left'). Can be a tuple like ('center','left'), or a dict with corresponding axes (e.g. {'X':('center','left'),'Z':('left','center')}) boundary_discontinuity : {None, float, dict}, optional Specifies the discontinuity at the boundary to wrap e.g. longitudes without artifacts. Can be defined globally (for all fields defined in axes_dims_dict and axes_coords_dict) {float, None} or per dataset variable (dict e.g. {'longitude':360,'latitude':180}) pad : {'auto', None, float}, optional Specifies the padding at the boundary to extend values past the boundary. Can be defined globally (for all fields defined in axes_dims_dict and axes_coords_dict) {float, None} or per dataset variable ({dict} e.g. {'z':'auto','latitude':0.0}) new_name : str, optional Name of the inferred grid variable. Defaults to name+'_'+position[1] """ if axes_coords_dict is not None: combo_dict = [axes_dims_dict, axes_coords_dict] else: combo_dict = [axes_dims_dict] for di, dd in enumerate(combo_dict): if di == 0: attrs_from_scratch = True infer_dim = False elif di == 1: attrs_from_scratch = False infer_dim = True for ax in dd.keys(): # Get variable name ax_v = dd[ax] # Get dimension name if infer_dim: ax_d = axes_dims_dict[ax] else: ax_d = ax_v # Parse position pos_from, pos_to = _parse_position(position, ax) # Pass wrap characteristics is_discontinous = _parse_boundary_params(boundary_discontinuity, ax_v) # Pass pad characteristics is_padded = _parse_boundary_params(pad, ax_v) ds = generate_axis( ds, ax, ax_v, ax_d, pos_from=pos_from, pos_to=pos_to, boundary_discontinuity=is_discontinous, pad=is_padded, new_name=new_name, attrs_from_scratch=attrs_from_scratch, ) return ds def _parse_boundary_params(in_val, varname): """Parse boundary_discontinuity or pad parameters""" if isinstance(in_val, dict): try: is_valued = in_val[varname] except KeyError: # Set defaults is_valued = None else: is_valued = in_val return is_valued def _parse_position(position, axname, pos_default=("center", "left")): if isinstance(position, dict): try: pos_from = position[axname][0] except KeyError: pos_from = pos_default[0] try: pos_to = position[axname][1] except KeyError: pos_to = pos_default[1] elif isinstance(position, tuple): pos_from = position[0] pos_to = position[1] else: # Set defaults pos_from = pos_default[0] pos_to = pos_default[1] return pos_from, pos_to def _position_to_relative(pos_from, pos_to): """Translate from to positions in relative movement""" if (pos_from == "left" and pos_to == "center") or ( pos_from == "center" and pos_to == "right" ): to = "right" elif (pos_from == "center" and pos_to == "left") or ( pos_from == "right" and pos_to == "center" ): to = "left" elif pos_from == "center" and pos_to == "outer": to = "outer" elif pos_from == "center" and pos_to == "inner": to = "inner" else: raise RuntimeError( "Cannot infer '%s' coordinates \ from '%s'" % (pos_to, pos_from) ) return to def _fill_attrs(da, pos, axis): """Replace comdo attributes according to pos and axis""" attrs = da.attrs attrs["axis"] = axis if pos == "center": attrs.pop("c_grid_axis_shift", None) elif pos in ["left", "outer"]: attrs["c_grid_axis_shift"] = -0.5 elif pos in ["right", "inner"]: attrs["c_grid_axis_shift"] = 0.5 da.attrs = attrs return da
from typing import Union class Vocab(object): def __init__(self, vocab_path: str, unk_token: str = '<unk>', bos_token: str = '<s>', eos_token: str = '</s>', pad_token: str = '<pad>', sep_token: str = '<sep>'): self.unk_token = unk_token self.bos_token = bos_token self.eos_token = eos_token self.pad_token = pad_token self.sep_token = sep_token with open(vocab_path, 'r', encoding='utf-8') as fp: self.additional_tokens = [bos_token, eos_token, pad_token] # The additional tokens would be inserted before the words. self.words = self.additional_tokens + fp.read().split() + [sep_token] self.vocab = {word: i for i, word in enumerate(self.words)} def __getitem__(self, idx_or_token: Union[int, str]) -> Union[str, int]: if isinstance(idx_or_token, str): return self.vocab[idx_or_token] else: return self.words[idx_or_token] def __contains__(self, token: str) -> bool: return token in self.words def __len__(self) -> int: # Note that vocabulary size must be a multiple of 8 although the actual # number of words is less than it. return (len(self.words) + 7) // 8 * 8 @property def unk_idx(self) -> int: return self.vocab[self.unk_token] @property def bos_idx(self) -> int: return self.vocab[self.bos_token] @property def eos_idx(self) -> int: return self.vocab[self.eos_token] @property def pad_idx(self) -> int: return self.vocab[self.pad_token] @property def sep_idx(self) -> int: return self.vocab[self.sep_token]
""" Cellular provisioning classes """ import hashlib import binascii from time import sleep import boto3 from cryptography import x509 from cryptography.hazmat.primitives import serialization from pyawsutils.mar import aws_mar from pyawsutils.aws_cloudformation import MCHP_SANDBOX_ATS_ENDPOINT from pyawsutils.aws_ca_cert import aws_get_root_ca_cert_filename from pytrustplatform.ecc_cert_builder import build_certs_from_ecc from pytrustplatform.device_cert_builder import build_device_cert from ..provisioner import Provisioner, ProvisionerAwsMar, ProvisionerAwsJitr, ProvisionerError from ..config import Config from ..kit_config import kit_configure_disk_link from ..eccstorage import EccStorage from .atprovisioner import AtProvisioner from .sequans_ciphersuites import print_ciphersuites, validate_ciphersuites, DEFAULT_CIPHERSUITES DEFAULT_CELLULAR_PROVIDER = "standard" # list of valid frequency band values. CELLULAR_VALID_FREQ_BANDS = [1, 2, 3, 4, 5, 8, 12, 13, 14, 17, 18, 19, 20, 25, 26, 28, 66, 71, 85] def get_cellular_provisioner(programmer, args): """ Resolves the cellular provisioning algorithm requested by the user """ if args.cloud_provider == "google": # Only one option for Google return CellularProvisionerGoogle(programmer, args.skip_program_provision_firmware, args.port) if args.cloud_provider == "aws": # AWS can be done many ways: if args.provision_method == "mar": # Multi-Account registration (to user account) return CellularProvisionerAwsMar(programmer, args.skip_program_provision_firmware, args.port) if args.provision_method == "jitr": # Just-In-Time Registration (to user account) return CellularProvisionerAwsJitr(programmer, args.skip_program_provision_firmware, args.port) # Microchip sandbox return CellularProvisionerAws(programmer, args.skip_program_provision_firmware, args.port) if args.cloud_provider == "azure": # Azure (preliminary) return CellularProvisionerAzure(programmer, args.skip_program_provision_firmware, args.port) if args.cloud_provider is None: # This choice is valid for debuggerupgrade action return CellularProvisioner(programmer, args.skip_program_provision_firmware, args.port) raise ProvisionerError("Unable find Cellular provisioner for {} - {}".format(args.cloud_provider, args.provision_method)) class CellularProvisioner(Provisioner): """ This class implements provisioning for AVR-IoT Cellular kit. Its subclasses mirrors the structure of the Provisioner class hierarchy. """ DEVICE_CERT_SLOT = 0 DEVICE_PRIVATEKEY_SLOT = 0 ROOT_CERT_SLOT = 19 def __init__(self, programmer, skip_program_provision_fw=False, port=None): super().__init__(programmer, skip_program_provision_fw, port=port) self.provider = DEFAULT_CELLULAR_PROVIDER self.frequency_bands = None # None means don't configure frequency bands for provider. self.aws_profile = None self.ciphersuites = None self.client_key_storage = 1 # Use ECC private key def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.disconnect() def set_cellular_params(self, args): """ Set up Cellular specific parameters that cannot be passed in constructor due to protocol :param args: Parsed-out command-line arguments """ self.provider = None # => Don't change provider self.frequency_bands = None # => Don't change bands. FIXME: move to pysequans? self.ciphersuites = validate_ciphersuites(DEFAULT_CIPHERSUITES.get(args.cloud_provider, [])) self.aws_profile = args.aws_profile def connect(self, function, skip_programming=False): """ Implement additional steps to synchronize with Sequans modem reset after initial FW programming/reset :param function: Firmware function (eg. "iotprovision") as defined :param skip_programming: Skip programming FW. """ super().connect(function, skip_programming) # At this point we should be freshly out of reset and in sync with the firmware, we now should synchronize # with Sequans modem, eg by means of waiting for +SYSSTART URC in bridge mode. # FIXME: However could not make that work, so just do a mystery delay for now. # The minimum delay required is surprisingly consistent 0.9-1.0 seconds sleep(1.2) def do_provision(self, force_new_device_certificate=False, skip_program_provision_firmware=False): """ Common part of Cellular provisioning, independent of cloud provider and method. Subclasses should override this and append their specific parts of provisioning. :param force_new_device_certificate: Force creation of device certificates :param skip_program_provision_firmware: Skip programming provisioning FW. Compatible FW must be programmed previously, this is user's responsibility """ self.connect("iotprovision", skip_programming=skip_program_provision_firmware) # Set up basic connection parameters in modem, common for all cloud providers self.logger.info("Setting up modem") with AtProvisioner(self.fwinterface) as atprovisioner: atprovisioner.set_provider(self.provider) if self.frequency_bands: atprovisioner.set_frequency_bands(self.provider, self.frequency_bands) @staticmethod def validate_int_list(values, valids, base=10): """ Validate list of integer values and convert to integer list. It is assumed all integers in list are in same base. :param values: String with comma-separated integers :param valids: List of valid integer values :param base: Base expected in input :return: List of strings representing values in selected base. Modem expects a specific base in list as a string, depending on command, and all values must be in same base (decimal, hex, ...) :raise: ValueError if invalid values specified """ if values is None: return None if not values: return "" valid = [] invalid = [] for value in values.split(","): try: if int(value, base=base) in valids: valid.append(value) else: invalid.append(value) except ValueError: invalid.append(value) if invalid: raise ValueError(f"Invalid value(s): {','.join(invalid)}") return valid @staticmethod def create_cert_chain(certfiles, outfile=None): """ Create a certificate chain, basically a concatenation of PEM files. :param certfiles: List of input certificate file names in PEM format. :param outfile: Optional output file name for saving chain :return: Certificate chain """ chain = b"" for file in certfiles: with open(file, "rb") as f: chain += f.read() # Make sure cert ends with a newline if not chain.endswith(b"\n"): s += b"\n" if outfile: with open(outfile, "w") as f: f.write(chain) return chain class CellularProvisionerAzure(CellularProvisioner): """ Azure provisioning mechanisms for Cellular """ def __init__(self, programmer, skip_program_provision_fw=False, port=None): super().__init__(programmer, skip_program_provision_fw, port=port) self.cloud_provider = "azure" raise NotImplementedError("'{}' not yet implemented".format(type(self).__name__)) class CellularProvisionerGoogle(CellularProvisioner): """ Google provisioning mechanism for Cellular """ def __init__(self, programmer, skip_program_provision_fw=False, port=None): super().__init__(programmer, skip_program_provision_fw, port=port) self.cloud_provider = "google" raise NotImplementedError("'{}' not yet implemented".format(type(self).__name__)) class CellularProvisionerAws(CellularProvisioner): """ AWS Microchip Sandbox provisioning mechanism for Cellular """ def __init__(self, programmer, skip_program_provision_fw=False, port=None): super().__init__(programmer, skip_program_provision_fw, port=port) self.cloud_provider = "aws" #pylint: disable=unused-argument def generate_certificates(self, force, organization_name, root_common_name, signer_common_name): """ Generate CA certificates Nothing to do for AWS Sandbox """ return def create_device_certs_ecc(self, device_cert_file, signer_cert_file, force=False): """ Create device and signer certificate from ECC, if not already existing :param device_cert_file: Device certificate filename :param signer_cert_file: Signer certificate filename :return: Thing name extracted from certificate """ self.logger.info("Generating device certificates") device_cert, _ = build_certs_from_ecc(self.fwinterface.get_firmware_driver(), signer_cert_file, device_cert_file, force=force) try: # FIXME: Why is this thing name extraction different from custom provisioning? ski = device_cert.extensions.get_extension_for_oid( x509.oid.ExtensionOID.SUBJECT_KEY_IDENTIFIER).value.digest thing_name = binascii.b2a_hex(ski).decode() except x509.ExtensionNotFound: pubkey = device_cert.public_key().public_bytes(encoding=serialization.Encoding.DER, format=serialization.PublicFormat.SubjectPublicKeyInfo) thing_name = hashlib.sha1(pubkey[-65:]).hexdigest() return thing_name def store_provisioning_data(self, thingname, endpoint, device_cert_file, root_ca_cert_file): """ Save provisioning data to kit. :param thingname: AWS thing name :param endpoint: AWS endpoint :param device_cert: Device certificate in PEM format :param root_ca_cert: Root CA certificate, PEM format """ aws_thing_file = Config.Certs.get_path("aws_thing_file", self.serialnumber) self.store_iot_id(thingname, aws_thing_file) self.logger.info("Writing to ECC slot 8:\n" " Thing name: %s\n" " Endpoint: %s", thingname, endpoint) self.fwinterface.eccstorage.create_write_provinfo([ (EccStorage.AWS_THINGNAME, thingname), (EccStorage.AWS_ENDPOINT, endpoint)]) # FIXME: Read back and verify. Remove this when we trust EccStorage entirely self.logger.debug("Verify correct ECC write") data = self.fwinterface.eccstorage.read_provinfo() assert len(data) == 2 assert data[0] == (EccStorage.AWS_THINGNAME, thingname.encode()) assert data[1] == (EccStorage.AWS_ENDPOINT, endpoint.encode()) with open(root_ca_cert_file, "rb") as f: root_ca_cert = f.read() with open(device_cert_file, "rb") as f: device_cert = f.read() self.logger.info("Writing certificates to modem") with AtProvisioner(self.fwinterface) as atprovisioner: atprovisioner.write_slot("certificate", device_cert, self.DEVICE_CERT_SLOT) atprovisioner.write_slot("certificate", root_ca_cert, self.ROOT_CERT_SLOT) atprovisioner.set_security_profile(server_ca=self.ROOT_CERT_SLOT, client_cert=self.DEVICE_CERT_SLOT, ciphersuites=self.ciphersuites, client_key_storage=self.client_key_storage) def do_provision(self, force_new_device_certificate=False, skip_program_provision_firmware=False): """ Sandbox provisioning for AWS """ super().do_provision(force_new_device_certificate, skip_program_provision_firmware) device_cert_file = Config.Certs.get_path("device_cert_file_sandbox", self.serialnumber) signer_cert_file = Config.Certs.get_path("signer_cert_file_sandbox", self.serialnumber) thingname = self.create_device_certs_ecc(device_cert_file, signer_cert_file, force=force_new_device_certificate) self.store_provisioning_data(thingname, MCHP_SANDBOX_ATS_ENDPOINT, device_cert_file, aws_get_root_ca_cert_filename("aws_ca_bundle")) self.disconnect() # Change the disk link after provisioning kit_configure_disk_link(serialnumber=self.serialnumber, cloud_provider=self.cloud_provider, key2_value=thingname) self.debugger_reboot_required = True def get_aws_endpoint(self): """ Get AWS endpoint when custom provisioning is used """ # FIXME: This should be in pyawsutils! aws_session = boto3.session.Session(profile_name=self.aws_profile) aws_iot = aws_session.client("iot") return aws_iot.describe_endpoint(endpointType="iot:Data-ATS").get("endpointAddress") class CellularProvisionerAwsMar(ProvisionerAwsMar, CellularProvisionerAws): """ AWS MAR provisioning mechanism for Cellular """ def __init__(self, programmer, skip_program_provision_fw=False, port=None): CellularProvisionerAws.__init__(self, programmer, skip_program_provision_fw, port=port) def do_provision(self, force_new_device_certificate=False, skip_program_provision_firmware=False): """ Provisioning for AWS MAR """ #FIXME: This is almost the same as sandbox provisioning, consider common method with parameters # (endpoint, disklink) if things don't change- CellularProvisioner.do_provision(self, force_new_device_certificate, skip_program_provision_firmware) device_cert_file = Config.Certs.get_path("device_cert_file", self.serialnumber) signer_cert_file = Config.Certs.get_path("signer_cert_file", self.serialnumber) thingname = self.create_device_certs_ecc(device_cert_file, signer_cert_file, force=force_new_device_certificate) # Register device certificate without CA for custom provisioning with MAR aws_mar_tool = aws_mar(aws_profile=self.aws_profile_name) aws_mar_tool.create_device(certificate_file=device_cert_file, policy_name="zt_policy", thing_type=None) self.store_provisioning_data(thingname, self.get_aws_endpoint(), device_cert_file, aws_get_root_ca_cert_filename("aws_ca_bundle")) self.disconnect() # Change the disk link after reprovisioning # Note: disk link will not lead to data in the user's custom account. kit_configure_disk_link(serialnumber=self.serialnumber, cloud_provider='awscustom', key2_value=thingname) self.debugger_reboot_required = True class CellularProvisionerAwsJitr(ProvisionerAwsJitr, CellularProvisionerAws): """ AWS JITR provisioning mechanism for Cellular """ def __init__(self, programmer, skip_program_provision_fw=False, port=None): CellularProvisionerAws.__init__(self, programmer, skip_program_provision_fw, port=port) def do_provision(self, force_new_device_certificate=False, skip_program_provision_firmware=False): """ Provisioning for AWS JITR """ CellularProvisioner.do_provision(self, force_new_device_certificate, skip_program_provision_firmware) self.logger.info("Generating device certificate") device_cert = build_device_cert(self.fwinterface.get_firmware_driver(), Config.Certs.get_path("signer_ca_cert_file"), Config.Certs.get_path("signer_ca_key_file"), Config.Certs.get_path("device_csr_file", self.serialnumber), Config.Certs.get_path("device_cert_file", self.serialnumber), force=force_new_device_certificate) thingname = None for extension in device_cert.extensions: if extension.oid._name != 'subjectKeyIdentifier': continue # Not the extension we're looking for, skip thingname = binascii.b2a_hex(extension.value.digest).decode('ascii') self.store_provisioning_data(thingname, self.get_aws_endpoint(), Config.Certs.get_path("device_cert_file", self.serialnumber), aws_get_root_ca_cert_filename("aws_ca_bundle")) self.disconnect() # Change the disk link after reprovisioning # Note: disk link will not lead to data in the user's custom account. kit_configure_disk_link(serialnumber=self.serialnumber, cloud_provider='awscustom', key2_value=thingname) self.debugger_reboot_required = True
# Inspired by https://github.com/pytorch/vision/blob/6e10e3f88158f12b7a304d3c2f803d2bbdde0823/torchvision/ops/boxes.py#L136 import numpy as np import torch from deeptech.model.layers.roi_ops import BoxToRoi convert_to_corners = BoxToRoi() def similarity_iou_2d(pred_boxes, true_boxes): """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (cx, cy, w, h) format. Arguments: pred_boxes (Tensor[B, 4, N]) true_boxes (Tensor[B, 4, M]) Returns: iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ def area(boxes): return (boxes[:, :, 2] - boxes[:, :, 0]) * (boxes[:, :, 3] - boxes[:, :, 1]) pred_boxes = convert_to_corners(pred_boxes).transpose(1, 2) # BN4 true_boxes = convert_to_corners(true_boxes).transpose(1, 2) # BN4 area1 = area(pred_boxes) # BN area2 = area(true_boxes) # BM lt = torch.max(pred_boxes[:,:, None, :2], true_boxes[:,:, :2]) # BNM2 rb = torch.min(pred_boxes[:,:, None, 2:], true_boxes[:,:, 2:]) # BNM2 wh = (rb - lt).clamp(min=0) # BNM2 inter = wh[:, :, :, 0] * wh[:, :, :, 1] # BNM iou = inter / (area1[:, :, None] + area2 - inter) # BNM return iou
import os import sys from sqlalchemy import Column, ForeignKey, Integer, String, DateTime, Boolean from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class User(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True, autoincrement=True) arroba = Column(String(150), nullable=True) tgid = Column(Integer, nullable=False) account_id = Column(Integer, nullable=True) US_id = Column(Integer, nullable=True) EU_id = Column(Integer, nullable=True) KR_id = Column(Integer, nullable=True) TW_id = Column(Integer, nullable=True) display_name = Column(String(50), nullable=True) battle_tag = Column(String(50), nullable=True) created_at = Column(DateTime, nullable=False) modified_at = Column(DateTime, nullable=False)
#!/usr/bin/env python import argparse import os.path import shutil import sys import urllib2 FL_URL='http://rdadolf.com/hosted/fathom-lite/data' VERSION='1.0' DATA_FILES=[ 'mnist-inputs.npz', 'mnist-labels.npz', 'imagenet-inputs.npz', 'imagenet-labels.npz', 'babi-stories.npz', 'babi-questions.npz', 'babi-answers.npz', ] class NetworkError(Exception): pass class MissingDataError(Exception): pass def check_host_has_data(url): file_url = url+'/version' response = urllib2.urlopen(file_url) version_string = response.read().strip() if version_string!=VERSION: raise MissingDataError('Server alive but does not appear to have up-to-date Fathom-lite data.') return True def download_if_not_cached(file_url, file_dest, force=False): if os.path.isfile(file_dest) and not force: print 'File cache found: '+file_dest return False # File cached. (To force download, just remove the file.) dir = os.path.dirname(os.path.abspath(file_dest)) if not os.path.isdir(dir): raise IOError('Destination directory "'+str(dir)+'" does not exist') try: print 'Downloading '+file_url response = urllib2.urlopen(file_url) with open(file_dest,'wb') as f: shutil.copyfileobj(response,f) except urllib2.HTTPError: print 'Error when downloading '+file_url raise return file_dest def get_options(): cli = argparse.ArgumentParser('Download Fathom-lite data files from the Internet.') cli.add_argument('-f','--force', default=False, action='store_true', help='Ignore file caches') cli.add_argument('-n','--no-version', default=False, action='store_true', help='Do not check server for data version number') cli.add_argument('-d','--dir', default='.', type=str, help='Download data to alternate directory.') return cli.parse_args() if __name__=='__main__': opts = get_options() if not opts.force: status = check_host_has_data(FL_URL) for filename in DATA_FILES: file_url = FL_URL+'/'+filename file_dest = os.path.normpath(opts.dir+'/'+filename) download_if_not_cached(file_url, file_dest, force=opts.force)
#!/usr/bin/env python # -*- coding: utf-8 -*- # Part of the PsychoPy library # Copyright (C) 2002-2018 Jonathan Peirce (C) 2019-2021 Open Science Tools Ltd. # Distributed under the terms of the GNU General Public License (GPL). from __future__ import division import copy import psychopy from .text import TextStim from psychopy.data.utils import importConditions, listFromString from psychopy.visual.basevisual import (BaseVisualStim, ContainerMixin, ColorMixin) from psychopy import logging from random import shuffle from pathlib import Path from psychopy.constants import PY3 __author__ = 'Jon Peirce, David Bridges, Anthony Haffey' from ..colors import Color _REQUIRED = -12349872349873 # an unlikely int # a dict of known fields with their default vals _knownFields = { 'index': None, # optional field to index into the rows 'itemText': _REQUIRED, # (question used until 2020.2) 'itemColor': None, 'itemWidth': 0.8, # fraction of the form 'type': _REQUIRED, # type of response box (see below) 'options': ('Yes', 'No'), # for choice box 'ticks': None,#(1, 2, 3, 4, 5, 6, 7), 'tickLabels': None, 'font': None, # for rating/slider 'responseWidth': 0.8, # fraction of the form 'responseColor': None, 'markerColor': None, 'layout': 'horiz', # can be vert or horiz } _doNotSave = [ 'itemCtrl', 'responseCtrl', # these genuinely can't be save 'itemColor', 'itemWidth', 'options', 'ticks', 'tickLabels', # not useful? 'responseWidth', 'responseColor', 'layout', ] _knownRespTypes = { 'heading', 'description', # no responses 'rating', 'slider', # slider is continuous 'free text', 'choice', 'radio' # synonyms (radio was used until v2020.2) } _synonyms = { 'itemText': 'questionText', 'choice': 'radio', 'free text': 'textBox' } class Form(BaseVisualStim, ContainerMixin, ColorMixin): """A class to add Forms to a `psychopy.visual.Window` The Form allows Psychopy to be used as a questionnaire tool, where participants can be presented with a series of questions requiring responses. Form items, defined as questions and response pairs, are presented simultaneously onscreen with a scrollable viewing window. Example ------- survey = Form(win, items=[{}], size=(1.0, 0.7), pos=(0.0, 0.0)) Parameters ---------- win : psychopy.visual.Window The window object to present the form. items : List of dicts or csv or xlsx file a list of dicts or csv file should have the following key, value pairs / column headers: "index": The item index as a number "itemText": item question string, "itemWidth": fraction of the form width 0:1 "type": type of rating e.g., 'radio', 'rating', 'slider' "responseWidth": fraction of the form width 0:1, "options": list of tick labels for options, "layout": Response object layout e.g., 'horiz' or 'vert' textHeight : float Text height. size : tuple, list Size of form on screen. pos : tuple, list Position of form on screen. itemPadding : float Space or padding between form items. units : str units for stimuli - Currently, Form class only operates with 'height' units. randomize : bool Randomize order of Form elements """ knownStyles = { 'light': { 'fillColor': [0.89, 0.89, 0.89], 'borderColor': None, 'itemColor': 'black', 'responseColor': 'black', 'markerColor': [0.89, -0.35, -0.28], 'font': "Open Sans", }, 'dark': { 'fillColor': [-0.19, -0.19, -0.14], 'borderColor': None, 'itemColor': 'white', 'responseColor': 'white', 'markerColor': [0.89, -0.35, -0.28], 'font': "Open Sans", }, } def __init__(self, win, name='default', colorSpace='rgb', fillColor=None, borderColor=None, itemColor='white', responseColor='white', markerColor='red', items=None, font=None, textHeight=.02, size=(.5, .5), pos=(0, 0), style=None, itemPadding=0.05, units='height', randomize=False, autoLog=True, # legacy color=None, foreColor=None ): super(Form, self).__init__(win, units, autoLog=False) self.win = win self.autoLog = autoLog self.name = name self.randomize = randomize self.items = self.importItems(items) self.size = size self._pos = pos self.itemPadding = itemPadding self.scrollSpeed = self.setScrollSpeed(self.items, 4) self.units = units self.depth = 0 # Appearance self.colorSpace = colorSpace self.fillColor = fillColor self.borderColor = borderColor self.itemColor = itemColor self.responseColor = responseColor self.markerColor = markerColor if color: self.foreColor = color if foreColor: self.foreColor = color self.style = style self.font = font or "Open Sans" self.textHeight = textHeight self._scrollBarSize = (0.016, self.size[1]/1.2) self._baseYpositions = [] self.leftEdge = None self.rightEdge = None self.topEdge = None self._currentVirtualY = 0 # Y position in the virtual sheet self._decorations = [] self._externalDecorations = [] # Check units - only works with height units for now if self.win.units != 'height': logging.warning( "Form currently only formats correctly using height units. " "Please change the units in Experiment Settings to 'height'") self._complete = False # Create layout of form self._createItemCtrls() if self.autoLog: logging.exp("Created {} = {}".format(self.name, repr(self))) def __repr__(self, complete=False): return self.__str__(complete=complete) # from MinimalStim def importItems(self, items): """Import items from csv or excel sheet and convert to list of dicts. Will also accept a list of dicts. Note, for csv and excel files, 'options' must contain comma separated values, e.g., one, two, three. No parenthesis, or quotation marks required. Parameters ---------- items : Excel or CSV file, list of dicts Items used to populate the Form Returns ------- List of dicts A list of dicts, where each list entry is a dict containing all fields for a single Form item """ def _checkSynonyms(items, fieldNames): """Checks for updated names for fields (i.e. synonyms)""" replacedFields = set() for field in _synonyms: synonym = _synonyms[field] for item in items: if synonym in item: # convert to new name item[field] = item[synonym] del item[synonym] replacedFields.add(field) for field in replacedFields: fieldNames.append(field) fieldNames.remove(_synonyms[field]) logging.warning("Form {} included field no longer used {}. " "Replacing with new name '{}'" .format(self.name, _synonyms[field], field)) def _checkRequiredFields(fieldNames): """Checks for required headings (do this after checking synonyms)""" for hdr in _knownFields: # is it required and/or present? if _knownFields[hdr] == _REQUIRED and hdr not in fieldNames: raise ValueError("Missing header ({}) in Form ({}). " "Headers found were: {}" .format(hdr, self.name, fieldNames)) def _checkTypes(types, itemText): """A nested function for testing the number of options given Raises ValueError if n Options not > 1 """ itemDiff = set([types]) - set(_knownRespTypes) for incorrItemType in itemDiff: if incorrItemType == _REQUIRED: if self._itemsFile: itemsFileStr = ("in items file '{}'" .format(self._itemsFile)) else: itemsFileStr = "" msg = ("Item {}{} is missing a required " "value for its response type. Permitted types are " "{}.".format(itemText, itemsFileStr, _knownRespTypes)) if self.autoLog: logging.error(msg) raise ValueError(msg) def _addDefaultItems(items): """ Adds default items when missing. Works in-place. Parameters ---------- items : List of dicts headers : List of column headers for each item """ def isPresent(d, field): # check if the field is there and not empty on this row return (field in d and d[field] not in [None, '']) missingHeaders = [] defaultValues = _knownFields for index, item in enumerate(items): defaultValues['index'] = index for header in defaultValues: # if header is missing of val is None or '' if not isPresent(item, header): oldHeader = header.replace('item', 'question') if isPresent(item, oldHeader): item[header] = item[oldHeader] logging.warning( "{} is a deprecated heading for Forms. " "Use {} instead" .format(oldHeader, header) ) continue # Default to colour scheme if specified if defaultValues[header] in ['fg', 'bg', 'em']: item[header] = self.color else: item[header] = defaultValues[header] missingHeaders.append(header) msg = "Using default values for the following headers: {}".format( missingHeaders) if self.autoLog: logging.info(msg) if self.autoLog: logging.info("Importing items...") if not isinstance(items, list): # items is a conditions file self._itemsFile = Path(items) items, fieldNames = importConditions(items, returnFieldNames=True) else: # we already have a list so lets find the fieldnames fieldNames = set() for item in items: fieldNames = fieldNames.union(item) fieldNames = list(fieldNames) # convert to list at the end self._itemsFile = None _checkSynonyms(items, fieldNames) _checkRequiredFields(fieldNames) # Add default values if entries missing _addDefaultItems(items) # Convert options to list of strings for idx, item in enumerate(items): if item['ticks']: item['ticks'] = listFromString(item['ticks']) if 'tickLabels' in item and item['tickLabels']: item['tickLabels'] = listFromString(item['tickLabels']) if 'options' in item and item['options']: item['options'] = listFromString(item['options']) # Check types [_checkTypes(item['type'], item['itemText']) for item in items] # Check N options > 1 # Randomise items if requested if self.randomize: shuffle(items) return items def setScrollSpeed(self, items, multiplier=2): """Set scroll speed of Form. Higher multiplier gives smoother, but slower scroll. Parameters ---------- items : list of dicts Items used to populate the form multiplier : int (default=2) Number used to calculate scroll speed Returns ------- int Scroll speed, calculated using N items by multiplier """ return len(items) * multiplier def _getItemRenderedWidth(self, size): """Returns text width for item text based on itemWidth and Form width. Parameters ---------- size : float, int The question width Returns ------- float Wrap width for question text """ return size * self.size[0] - (self.itemPadding * 2) def _setQuestion(self, item): """Creates TextStim object containing question Parameters ---------- item : dict The dict entry for a single item Returns ------- psychopy.visual.text.TextStim The textstim object with the question string questionHeight The height of the question bounding box as type float questionWidth The width of the question bounding box as type float """ if self.autoLog: logging.exp( u"Question text: {}".format(item['itemText'])) if item['type'] == 'heading': letterScale = 1.5 bold = True else: letterScale = 1.0 bold = False w = self._getItemRenderedWidth(item['itemWidth']) question = psychopy.visual.TextBox2( self.win, text=item['itemText'], units=self.units, letterHeight=self.textHeight * letterScale, anchor='top-left', pos=(self.leftEdge+self.itemPadding, 0), # y pos irrelevant size=[w, None], # expand height with text autoLog=False, colorSpace=self.colorSpace, color=item['itemColor'] or self.itemColor, fillColor=None, padding=0, # handle this by padding between items borderWidth=1, borderColor=None, # add borderColor to help debug editable=False, bold=bold, font=item['font'] or self.font) questionHeight = question.size[1] questionWidth = question.size[0] # store virtual pos to combine with scroll bar for actual pos question._baseY = self._currentVirtualY # Add question objects to Form element dict item['itemCtrl'] = question return question, questionHeight, questionWidth def _setResponse(self, item): """Makes calls to methods which make Slider or TextBox response objects for Form Parameters ---------- item : dict The dict entry for a single item question : TextStim The question text object Returns ------- psychopy.visual.slider.Slider The Slider object for response psychopy.visual.TextBox The TextBox object for response respHeight The height of the response object as type float """ if self.autoLog: logging.info( "Adding response to Form type: {}, layout: {}, options: {}" .format(item['type'], item['layout'], item['options'])) if item['type'].lower() == 'free text': respCtrl, respHeight = self._makeTextBox(item) elif item['type'].lower() in ['heading', 'description']: respCtrl, respHeight = None, 0 elif item['type'].lower() in ['rating', 'slider', 'choice', 'radio']: respCtrl, respHeight = self._makeSlider(item) item['responseCtrl'] = respCtrl return respCtrl, float(respHeight) def _makeSlider(self, item): """Creates Slider object for Form class Parameters ---------- item : dict The dict entry for a single item pos : tuple position of response object Returns ------- psychopy.visual.slider.Slider The Slider object for response respHeight The height of the response object as type float """ # Slider dict def _sliderLabelWidths(): return (item['responseWidth'] * self.size[0]) \ / (len(item['options'])) kind = item['type'].lower() # what are the ticks for the scale/slider? if item['type'].lower() in ['radio', 'choice']: if item['ticks']: ticks = item['ticks'] else: ticks = None tickLabels = item['tickLabels'] or item['options'] or item['ticks'] granularity = 1 style = 'radio' else: if item['ticks']: ticks = item['ticks'] elif item['options']: ticks = range(0, len(item['options'])) else: raise ValueError("We don't appear to have either options or " "ticks for item '{}' of {}." .format(item['itemText'], self.name)) # how to label those ticks if item['tickLabels']: tickLabels = [str(i).strip() for i in item['tickLabels']] elif 'options' in item and item['options']: tickLabels = [str(i).strip() for i in item['options']] else: tickLabels = None # style/granularity if kind == 'slider' and 'granularity' in item: if item['granularity']: granularity = item['granularity'] else: granularity = 0 elif kind == 'slider' and 'granularity' not in item: granularity = 0 else: granularity = 1 style = kind # Create x position of response object x = self.pos[0] # Set radio button layout if item['layout'] == 'horiz': w = (item['responseWidth'] * self.size[0] - self._scrollBarSize[0] - self.itemPadding) * 0.8 h = 0.03 elif item['layout'] == 'vert': # for vertical take into account the nOptions w = 0.03 h = self.textHeight*len(item['options']) item['options'].reverse() # Create Slider resp = psychopy.visual.Slider( self.win, pos=(x, 0), # NB y pos is irrelevant here - handled later size=(w, h), ticks=ticks, labels=tickLabels, units=self.units, labelHeight=self.textHeight, labelWrapWidth=_sliderLabelWidths(), granularity=granularity, flip=True, style=style, autoLog=False, font=item['font'] or self.font, color=item['responseColor'] or self.responseColor, fillColor=item['markerColor'] or self.markerColor, borderColor=item['responseColor'] or self.responseColor, colorSpace=self.colorSpace) if item['layout'] == 'horiz': h += self.textHeight*2 # store virtual pos to combine with scroll bar for actual pos resp._baseY = self._currentVirtualY - h/2 - self.itemPadding return resp, h def _getItemHeight(self, item, ctrl=None): """Returns the full height of the item to be inserted in the form""" if type(ctrl) == psychopy.visual.TextBox2: return ctrl.size[1] if type(ctrl) == psychopy.visual.Slider: # Set radio button layout if item['layout'] == 'horiz': return 0.03 + ctrl.labelHeight*3 elif item['layout'] == 'vert': # for vertical take into account the nOptions return ctrl.labelHeight*len(item['options']) def _makeTextBox(self, item): """Creates TextBox object for Form class NOTE: The TextBox 2 in work in progress, and has not been added to Form class yet. Parameters ---------- item : dict The dict entry for a single item pos : tuple position of response object Returns ------- psychopy.visual.TextBox The TextBox object for response respHeight The height of the response object as type float """ w = (item['responseWidth']*self.size[0] - self.itemPadding - self._scrollBarSize[0]) x = self.rightEdge-self.itemPadding-self._scrollBarSize[0] resp = psychopy.visual.TextBox2( self.win, text='', pos=(x, 0), # y pos irrelevant now (handled by scrollbar) size=(w, None), letterHeight=self.textHeight, units=self.units, anchor='top-right', color=item['responseColor'] or self.responseColor, colorSpace=self.colorSpace, font=item['font'] or self.font, editable=True, borderColor=item['responseColor'] or self.responseColor, borderWidth=2, fillColor=None, onTextCallback=self._layoutY, ) respHeight = resp.size[1] # store virtual pos to combine with scroll bar for actual pos resp._baseY = self._currentVirtualY return resp, respHeight def _setScrollBar(self): """Creates Slider object for scrollbar Returns ------- psychopy.visual.slider.Slider The Slider object for scroll bar """ scroll = psychopy.visual.Slider(win=self.win, size=self._scrollBarSize, ticks=[0, 1], style='scrollbar', borderColor=self.responseColor, fillColor=self.markerColor, pos=(self.rightEdge - .008, self.pos[1]), autoLog=False) return scroll def _setBorder(self): """Creates border using Rect Returns ------- psychopy.visual.Rect The border for the survey """ return psychopy.visual.Rect(win=self.win, units=self.units, pos=self.pos, width=self.size[0], height=self.size[1], colorSpace=self.colorSpace, fillColor=self.fillColor, lineColor=self.borderColor, opacity=None, autoLog=False) def _setAperture(self): """Blocks text beyond border using Aperture Returns ------- psychopy.visual.Aperture The aperture setting viewable area for forms """ aperture = psychopy.visual.Aperture(win=self.win, name='aperture', units=self.units, shape='square', size=self.size, pos=self.pos, autoLog=False) aperture.disable() # Disable on creation. Only enable on draw. return aperture def _getScrollOffset(self): """Calculate offset position of items in relation to markerPos Returns ------- float Offset position of items proportionate to scroll bar """ sizeOffset = (1-self.scrollbar.markerPos) * self.size[1] maxItemPos = self._currentVirtualY - self.size[1] if maxItemPos > -self.size[1]: return 0 return maxItemPos*(1- self.scrollbar.markerPos) + sizeOffset def _createItemCtrls(self): """Define layout of form""" # Define boundaries of form if self.autoLog: logging.info("Setting layout of Form: {}.".format(self.name)) self.leftEdge = self.pos[0] - self.size[0] / 2.0 self.rightEdge = self.pos[0] + self.size[0] / 2.0 # For each question, create textstim and rating scale for item in self.items: # set up the question object self._setQuestion(item) # set up the response object self._setResponse(item) # position a slider on right-hand edge self.scrollbar = self._setScrollBar() self.scrollbar.markerPos = 1 # Set scrollbar to start position self.border = self._setBorder() self.aperture = self._setAperture() # then layout the Y positions self._layoutY() if self.autoLog: logging.info("Layout set for Form: {}.".format(self.name)) def _layoutY(self): """This needs to be done when editable textboxes change their size because everything below them needs to move too""" self.topEdge = self.pos[1] + self.size[1] / 2.0 self._currentVirtualY = self.topEdge - self.itemPadding # For each question, create textstim and rating scale for item in self.items: question = item['itemCtrl'] response = item['responseCtrl'] # update item baseY question._baseY = self._currentVirtualY # and get height to update current Y questionHeight = self._getItemHeight(item=item, ctrl=question) # go on to next line if together they're too wide oneLine = (item['itemWidth']+item['responseWidth'] > 1 or not response) if oneLine: # response on next line self._currentVirtualY -= questionHeight + self.itemPadding # update response baseY if not response: continue # get height to update current Y respHeight = self._getItemHeight(item=item, ctrl=response) # update item baseY # slider needs to align by middle if type(response) == psychopy.visual.Slider: response._baseY = self._currentVirtualY - respHeight/2 else: # hopefully we have an object that can anchor at top? response._baseY = self._currentVirtualY # go on to next line if together they're too wide if oneLine: # response on same line - work out which is bigger self._currentVirtualY -= ( max(questionHeight, respHeight) + self.itemPadding ) else: # response on next line self._currentVirtualY -= respHeight + self.itemPadding self._setDecorations() # choose whether show/hide scroolbar def _setDecorations(self): """Sets Form decorations i.e., Border and scrollbar""" # add scrollbar if it's needed self._decorations = [self.border] fractionVisible = self.size[1] / (-self._currentVirtualY) if fractionVisible < 1.0: self._decorations.append(self.scrollbar) def _inRange(self, item): """Check whether item position falls within border area Parameters ---------- item : TextStim, Slider object TextStim or Slider item from survey Returns ------- bool Returns True if item position falls within border area """ upperRange = self.size[1] lowerRange = -self.size[1] return (item.pos[1] < upperRange and item.pos[1] > lowerRange) def _drawDecorations(self): """Draw decorations on form.""" [decoration.draw() for decoration in self._decorations] def _drawExternalDecorations(self): """Draw decorations outside the aperture""" [decoration.draw() for decoration in self._externalDecorations] def _drawCtrls(self): """Draw elements on form within border range. Parameters ---------- items : List List of TextStim or Slider item from survey """ for idx, item in enumerate(self.items): for element in [item['itemCtrl'], item['responseCtrl']]: if element is None: # e.g. because this has no resp obj continue element.pos = (element.pos[0], element._baseY - self._getScrollOffset()) if self._inRange(element): element.draw() def setAutoDraw(self, value, log=None): """Sets autoDraw for Form and any responseCtrl contained within """ for i in self.items: if i['responseCtrl']: i['responseCtrl'].__dict__['autoDraw'] = value self.win.addEditable(i['responseCtrl']) BaseVisualStim.setAutoDraw(self, value, log) def draw(self): """Draw all form elements""" # Check mouse wheel self.scrollbar.markerPos += self.scrollbar.mouse.getWheelRel()[ 1] / self.scrollSpeed # draw the box and scrollbar self._drawExternalDecorations() # enable aperture self.aperture.enable() # draw the box and scrollbar self._drawDecorations() # Draw question and response objects self._drawCtrls() # disable aperture self.aperture.disable() def getData(self): """Extracts form questions, response ratings and response times from Form items Returns ------- list A copy of the data as a list of dicts """ nIncomplete = 0 nIncompleteRequired = 0 for thisItem in self.items: if 'responseCtrl' not in thisItem or not thisItem['responseCtrl']: continue # maybe a heading or similar responseCtrl = thisItem['responseCtrl'] # get response if available if hasattr(responseCtrl, 'getRating'): thisItem['response'] = responseCtrl.getRating() else: thisItem['response'] = responseCtrl.text if thisItem['response'] in [None, '']: # todo : handle required items here (e.g. ending with * ?) nIncomplete += 1 # get RT if available if hasattr(responseCtrl, 'getRT'): thisItem['rt'] = responseCtrl.getRT() else: thisItem['rt'] = None self._complete = (nIncomplete == 0) return copy.copy(self.items) # don't want users changing orig def addDataToExp(self, exp, itemsAs='rows'): """Gets the current Form data and inserts into an :class:`~psychopy.experiment.ExperimentHandler` object either as rows or as columns Parameters ---------- exp : :class:`~psychopy.experiment.ExperimentHandler` itemsAs: 'rows','cols' (or 'columns') Returns ------- """ data = self.getData() # will be a copy of data (we can trash it) asCols = itemsAs.lower() in ['cols', 'columns'] # iterate over items and fields within each item # iterate all items and all fields before calling nextEntry for ii, thisItem in enumerate(data): # data is a list of dicts for fieldName in thisItem: if fieldName in _doNotSave: continue if asCols: # for columns format, we need index for item columnName = "{}[{}].{}".format(self.name, ii, fieldName) else: columnName = "{}.{}".format(self.name, fieldName) exp.addData(columnName, thisItem[fieldName]) # finished field if not asCols: # for rows format we add a newline each item exp.nextEntry() # finished item # finished form if asCols: # for cols format we add a newline each item exp.nextEntry() def formComplete(self): """Deprecated in version 2020.2. Please use the Form.complete property """ return self.complete @property def pos(self): if hasattr(self, '_pos'): return self._pos @pos.setter def pos(self, value): self._pos = value if hasattr(self, 'aperture'): self.aperture.pos = value if hasattr(self, 'border'): self.border.pos = value self.leftEdge = self.pos[0] - self.size[0] / 2.0 self.rightEdge = self.pos[0] + self.size[0] / 2.0 # Set horizontal position of elements for item in self.items: for element in [item['itemCtrl'], item['responseCtrl']]: if element is None: # e.g. because this has no resp obj continue element.pos = [value[0], element.pos[1]] element._baseY = value[1] if hasattr(element, 'anchor'): element.anchor = 'top-center' # Calculate new position for everything on the y axis self.scrollbar.pos = (self.rightEdge - .008, self.pos[1]) self._layoutY() @property def complete(self): """A read-only property to determine if the current form is complete""" self.getData() return self._complete @property def foreColor(self): """ Sets both `itemColor` and `responseColor` to the same value """ return ColorMixin.foreColor.fget(self) @foreColor.setter def foreColor(self, value): ColorMixin.foreColor.fset(self, value) self.itemColor = value self.responseColor = value @property def fillColor(self): """ Color of the form's background """ return ColorMixin.fillColor.fget(self) @fillColor.setter def fillColor(self, value): ColorMixin.fillColor.fset(self, value) if hasattr(self, "border"): self.border.fillColor = value @property def borderColor(self): """ Color of the line around the form """ return ColorMixin.borderColor.fget(self) @borderColor.setter def borderColor(self, value): ColorMixin.borderColor.fset(self, value) if hasattr(self, "border"): self.border.borderColor = value @property def itemColor(self): """ Color of the text on form items """ return self._itemColor @itemColor.setter def itemColor(self, value): self._itemColor = value # Set text color on each item for item in self.items: if 'itemCtrl' in item: if isinstance(item['itemCtrl'], psychopy.visual.TextBox2): item['itemCtrl'].foreColor = value @property def responseColor(self): """ Color of the lines and text on form responses """ if hasattr(self, "_responseColor"): return self._responseColor @responseColor.setter def responseColor(self, value): self._responseColor = value # Set line color on scrollbar if hasattr(self, "scrollbar"): self.scrollbar.borderColor = value # Set line and label color on each item for item in self.items: if 'responseCtrl' in item: if isinstance(item['responseCtrl'], psychopy.visual.Slider): item['responseCtrl'].borderColor = value item['responseCtrl'].foreColor = value @property def markerColor(self): """ Color of the marker on any sliders in this form """ if hasattr(self, "_markerColor"): return self._markerColor @markerColor.setter def markerColor(self, value): self._markerColor = value # Set marker color on scrollbar if hasattr(self, "scrollbar"): self.scrollbar.fillColor = value # Set marker color on each item for item in self.items: if 'responseCtrl' in item: if isinstance(item['responseCtrl'], psychopy.visual.Slider): item['responseCtrl'].fillColor = value @property def style(self): if hasattr(self, "_style"): return self._style @style.setter def style(self, style): """Sets some predefined styles or use these to create your own. If you fancy creating and including your own styles that would be great! Parameters ---------- style: string Known styles currently include: 'light': black text on a light background 'dark': white text on a dark background """ self._style = style # If style is custom, skip the rest if style in ['custom...', 'None', None]: return # If style is a string of a known style, use that if style in self.knownStyles: style = self.knownStyles[style] # By here, style should be a dict if not isinstance(style, dict): return # Apply each key in the style dict as an attr for key, val in style.items(): if hasattr(self, key): setattr(self, key, val) @property def values(self): # Iterate through each control and append its value to a dict out = {} for item in self.getData(): out.update( {item['index']: item['response']} ) return out @values.setter def values(self, values): for item in self.items: if item['index'] in values: ctrl = item['responseCtrl'] # set response if available if hasattr(ctrl, "rating"): ctrl.rating = values[item['index']] elif hasattr(ctrl, "value"): ctrl.value = values[item['index']] else: ctrl.text = values[item['index']]
try: import psyco psyco.full() except ImportError: pass MAX_N = 300 BRANCH = 4 ra = [0] * MAX_N unrooted = [0] * MAX_N def tree(br, n, l, sum = 1, cnt = 1): global ra, unrooted, MAX_N, BRANCH for b in xrange(br + 1, BRANCH + 1): sum += n if sum >= MAX_N: return # prevent unneeded long math if l * 2 >= sum and b >= BRANCH: return if b == br + 1: c = ra[n] * cnt else: c = c * (ra[n] + (b - br - 1)) / (b - br) if l * 2 < sum: unrooted[sum] += c if b < BRANCH: ra[sum] += c; for m in range(1, n): tree(b, m, l, sum, c) def bicenter(s): global ra, unrooted if not (s & 1): aux = ra[s / 2] unrooted[s] += aux * (aux + 1) / 2 def main(): global ra, unrooted, MAX_N ra[0] = ra[1] = unrooted[0] = unrooted[1] = 1 for n in xrange(1, MAX_N): tree(0, n, n) bicenter(n) print "%d: %d" % (n, unrooted[n]) main()
from django.shortcuts import render from django.http import HttpResponse # Include the `fusioncharts.py` file that contains functions to embed the charts. from ..fusioncharts import FusionCharts from ..models import * # The `chart` function is defined to load data from a `Country` Model. # This data will be converted to JSON and the chart will be rendered. def chart(request): # Chart data is passed to the `dataSource` parameter, as dict, in the form of key-value pairs. dataSource = {} dataSource['chart'] = { "caption": "Top 10 Most Populous Countries", "paletteColors": "#0075c2", "bgColor": "#ffffff", "borderAlpha": "20", "canvasBorderAlpha": "0", "usePlotGradientColor": "0", "plotBorderAlpha": "10", "showXAxisLine": "1", "xAxisLineColor": "#999999", "showValues": "0", "divlineColor": "#999999", "divLineIsDashed": "1", "showAlternateHGridColor": "0" } # Convert the data in the `Country` model into a format that can be consumed by FusionCharts. # The data for the chart should be in an array where in each element of the array is a JSON object # having the `label` and `value` as keys. dataSource['data'] = [] dataSource['linkeddata'] = [] # Iterate through the data in `Country` model and insert in to the `dataSource['data']` list. for key in Country.objects.all(): data = {} data['label'] = key.Name data['value'] = key.Population # Create link for each country when a data plot is clicked. data['link'] = 'newchart-json-' + key.Code dataSource['data'].append(data) # Create the linkData for cities drilldown linkData = {} # Inititate the linkData for cities drilldown linkData['id'] = key.Code linkedchart = {} linkedchart['chart'] = { "caption": "Top 10 Most Populous Cities - " + key.Name, "paletteColors": "#0075c2", "bgColor": "#ffffff", "borderAlpha": "20", "canvasBorderAlpha": "0", "usePlotGradientColor": "0", "plotBorderAlpha": "10", "showXAxisLine": "1", "xAxisLineColor": "#999999", "showValues": "0", "divlineColor": "#999999", "divLineIsDashed": "1", "showAlternateHGridColor": "0" } # Convert the data in the `City` model into a format that can be consumed by FusionCharts. linkedchart['data'] = [] # Filtering the data base on the Country Code for key in City.objects.all().filter(CountryCode=key.Code): arrDara = {} arrDara['label'] = key.Name arrDara['value'] = key.Population linkedchart['data'].append(arrDara) linkData['linkedchart'] = linkedchart dataSource['linkeddata'].append(linkData) # Create an object for the Column 2D chart using the FusionCharts class constructor column2D = FusionCharts("column2D", "ex1", "600", "400", "chart-1", "json", dataSource) return render(request, 'index.html', {'output': column2D.render()})
""" Attacks for TensorFlow Eager """ from distutils.version import LooseVersion import numpy as np from six.moves import xrange import tensorflow as tf from cleverhans import attacks from cleverhans import utils from cleverhans.compat import reduce_sum from cleverhans.model import CallableModelWrapper from cleverhans.model import Model from cleverhans.loss import LossCrossEntropy _logger = utils.create_logger("cleverhans.attacks_tfe") if LooseVersion(tf.__version__) < LooseVersion('1.8.0'): error_msg = ('For eager execution', 'use Tensorflow version greather than 1.8.0.') raise ValueError(error_msg) class Attack(attacks.Attack): """ Abstract base class for all eager attack classes. :param model: An instance of the cleverhans.model.Model class. :param back: The backend to use. Inherited from AttackBase class. :param dtypestr: datatype of the input data samples and crafted adversarial attacks. """ def __init__(self, model, dtypestr='float32'): super(Attack, self).__init__(model, dtypestr=dtypestr) # Validate the input arguments. if dtypestr != 'float32' and dtypestr != 'float64': raise ValueError("Unexpected input for argument dtypestr.") self.tf_dtype = tf.as_dtype(dtypestr) self.np_dtype = np.dtype(dtypestr) if not isinstance(model, Model): raise ValueError("The model argument should be an instance of" " the cleverhans.model.Model class.") # Prepare attributes self.model = model self.dtypestr = dtypestr def construct_graph(self, **kwargs): """ Constructs the graph required to run the attacks. Is inherited from the attack class, is overloaded to raise an error. """ error = "This method is not required for eager execution." raise AttributeError(error) def generate_np(self, x_val, **kwargs): """ Generate adversarial examples and return them as a NumPy array. :param x_val: A NumPy array with the original inputs. :param **kwargs: optional parameters used by child classes. :return: A NumPy array holding the adversarial examples. """ tfe = tf.contrib.eager x = tfe.Variable(x_val) adv_x = self.generate(x, **kwargs) return adv_x.numpy() def construct_variables(self, kwargs): """ Construct the inputs to the attack graph. Is inherited from the attack class, is overloaded to raise an error. """ error = "This method is not required for eager execution." raise AttributeError(error) class FastGradientMethod(Attack, attacks.FastGradientMethod): """ Inherited class from Attack and cleverhans.attacks.FastGradientMethod. This attack was originally implemented by Goodfellow et al. (2015) with the infinity norm (and is known as the "Fast Gradient Sign Method"). This implementation extends the attack to other norms, and is therefore called the Fast Gradient Method. Paper link: https://arxiv.org/abs/1412.6572 """ def __init__(self, model, dtypestr='float32', **kwargs): """ Creates a FastGradientMethod instance in eager execution. :model: CNN network, should be an instance of cleverhans.model.Model, if not wrap the output to probs. :dtypestr: datatype in the string format. """ del kwargs if not isinstance(model, Model): model = CallableModelWrapper(model, 'probs') super(FastGradientMethod, self).__init__(model, dtypestr) def generate(self, x, **kwargs): """ Generates the adversarial sample for the given input. :param x: The model's inputs. :param eps: (optional float) attack step size (input variation) :param ord: (optional) Order of the norm (mimics NumPy). Possible values: np.inf, 1 or 2. :param y: (optional) A tf variable` with the model labels. Only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). Default is None. Labels should be one-hot-encoded. :param y_target: (optional) A tf variable` with the labels to target. Leave y_target=None if y is also set. Labels should be one-hot-encoded. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ # Parse and save attack-specific parameters assert self.parse_params(**kwargs) labels, _nb_classes = self.get_or_guess_labels(x, kwargs) return self.fgm(x, labels=labels, targeted=(self.y_target is not None)) def fgm(self, x, labels, targeted=False): """ TensorFlow Eager implementation of the Fast Gradient Method. :param x: the input variable :param targeted: Is the attack targeted or untargeted? Untargeted, the default, will try to make the label incorrect. Targeted will instead try to move in the direction of being more like y. :return: a tensor for the adversarial example """ # Compute loss with tf.GradientTape() as tape: # input should be watched because it may be # combination of trainable and non-trainable variables tape.watch(x) loss_obj = LossCrossEntropy(self.model, smoothing=0.) loss = loss_obj.fprop(x=x, y=labels) if targeted: loss = -loss # Define gradient of loss wrt input grad = tape.gradient(loss, x) if self.ord == np.inf: # Take sign of gradient normalized_grad = tf.sign(grad) # The following line should not change the numerical results. # It applies only because `normalized_grad` is the output of # a `sign` op, which has zero derivative anyway. # It should not be applied for the other norms, where the # perturbation has a non-zero derivative. normalized_grad = tf.stop_gradient(normalized_grad) elif self.ord == 1: red_ind = list(xrange(1, len(x.get_shape()))) avoid_zero_div = 1e-12 avoid_nan_norm = tf.maximum(avoid_zero_div, reduce_sum(tf.abs(grad), reduction_indices=red_ind, keepdims=True)) normalized_grad = grad / avoid_nan_norm elif self.ord == 2: red_ind = list(xrange(1, len(x.get_shape()))) avoid_zero_div = 1e-12 square = tf.maximum(avoid_zero_div, reduce_sum(tf.square(grad), reduction_indices=red_ind, keepdims=True)) normalized_grad = grad / tf.sqrt(square) else: raise NotImplementedError("Only L-inf, L1 and L2 norms are " "currently implemented.") # Multiply by constant epsilon scaled_grad = self.eps * normalized_grad # Add perturbation to original example to obtain adversarial example adv_x = x + scaled_grad # If clipping is needed # reset all values outside of [clip_min, clip_max] if (self.clip_min is not None) and (self.clip_max is not None): adv_x = tf.clip_by_value(adv_x, self.clip_min, self.clip_max) return adv_x class BasicIterativeMethod(Attack, attacks.BasicIterativeMethod): """ Inherited class from Attack and cleverhans.attacks.BasicIterativeMethod. The Basic Iterative Method (Kurakin et al. 2016). The original paper used hard labels for this attack; no label smoothing. Paper link: https://arxiv.org/pdf/1607.02533.pdf """ FGM_CLASS = FastGradientMethod def __init__(self, model, dtypestr='float32'): """ Creates a BasicIterativeMethod instance in eager execution. :model: CNN network, should be an instance of cleverhans.model.Model, if not wrap the output to probs. :dtypestr: datatype in the string format. """ if not isinstance(model, Model): model = CallableModelWrapper(model, 'probs') super(BasicIterativeMethod, self).__init__(model, dtypestr)
#!/usr/bin/env python2 # -*- coding: UTF-8 -*- # Content: # 地址:http: //www.runoob.com/python/python-exercise-example.html # 知识点: # 地址: # Notes: from bs4 import BeautifulSoup import requests, sys, urllib2 reload(sys) sys.setdefaultencoding("utf8") wttr = "http://wttr.in/?format=1" wttrre = urllib2.Request(wttr) wttrpon = urllib2.urlopen(wttrre, timeout=60) wttrapi = wttrpon.read().replace("\n", "") print(wttrapi) print("---") fwttr = "http://wttr.in?0" fwttrre = urllib2.Request(fwttr) fwttrpon = urllib2.urlopen(fwttrre, timeout=60) fwttrapi = fwttrpon.read() fbs = BeautifulSoup(fwttrapi, "html.parser") a = ( str(fbs.body.get_text()) .replace("\n\n", "\n") .replace("\n", "| trim=false size=16 color=#FFFFFF font=Courier New \n") ) print(a) # //TODO 改造为Python3 的版本
import datetime import warnings from django.test import TestCase from django.core.exceptions import ImproperlyConfigured from regressiontests.views.models import Article, UrlArticle class CreateObjectTest(TestCase): fixtures = ['testdata.json'] urls = 'regressiontests.views.generic_urls' def setUp(self): self.save_warnings_state() warnings.filterwarnings('ignore', category=DeprecationWarning, module='django.views.generic.create_update') def tearDown(self): self.restore_warnings_state() def test_login_required_view(self): """ Verifies that an unauthenticated user attempting to access a login_required view gets redirected to the login page and that an authenticated user is let through. """ view_url = '/create_update/member/create/article/' response = self.client.get(view_url) self.assertRedirects(response, '/accounts/login/?next=%s' % view_url) # Now login and try again. login = self.client.login(username='testclient', password='password') self.assertTrue(login, 'Could not log in') response = self.client.get(view_url) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'views/article_form.html') def test_create_article_display_page(self): """ Ensures the generic view returned the page and contains a form. """ view_url = '/create_update/create/article/' response = self.client.get(view_url) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'views/article_form.html') if not response.context.get('form'): self.fail('No form found in the response.') def test_create_article_with_errors(self): """ POSTs a form that contains validation errors. """ view_url = '/create_update/create/article/' num_articles = Article.objects.count() response = self.client.post(view_url, { 'title': 'My First Article', }) self.assertFormError(response, 'form', 'slug', [u'This field is required.']) self.assertTemplateUsed(response, 'views/article_form.html') self.assertEqual(num_articles, Article.objects.count(), "Number of Articles should not have changed.") def test_create_custom_save_article(self): """ Creates a new article using a custom form class with a save method that alters the slug entered. """ view_url = '/create_update/create_custom/article/' response = self.client.post(view_url, { 'title': 'Test Article', 'slug': 'this-should-get-replaced', 'author': 1, 'date_created': datetime.datetime(2007, 6, 25), }) self.assertRedirects(response, '/create_update/view/article/some-other-slug/', target_status_code=404) class UpdateDeleteObjectTest(TestCase): fixtures = ['testdata.json'] urls = 'regressiontests.views.generic_urls' def setUp(self): self.save_warnings_state() warnings.filterwarnings('ignore', category=DeprecationWarning, module='django.views.generic.create_update') def tearDown(self): self.restore_warnings_state() def test_update_object_form_display(self): """ Verifies that the form was created properly and with initial values. """ response = self.client.get('/create_update/update/article/old_article/') self.assertTemplateUsed(response, 'views/article_form.html') self.assertHTMLEqual(unicode(response.context['form']['title']), u'<input id="id_title" type="text" name="title" value="Old Article" maxlength="100" />') def test_update_object(self): """ Verifies the updating of an Article. """ response = self.client.post('/create_update/update/article/old_article/', { 'title': 'Another Article', 'slug': 'another-article-slug', 'author': 1, 'date_created': datetime.datetime(2007, 6, 25), }) article = Article.objects.get(pk=1) self.assertEqual(article.title, "Another Article") def test_delete_object_confirm(self): """ Verifies the confirm deletion page is displayed using a GET. """ response = self.client.get('/create_update/delete/article/old_article/') self.assertTemplateUsed(response, 'views/article_confirm_delete.html') def test_delete_object(self): """ Verifies the object actually gets deleted on a POST. """ view_url = '/create_update/delete/article/old_article/' response = self.client.post(view_url) try: Article.objects.get(slug='old_article') except Article.DoesNotExist: pass else: self.fail('Object was not deleted.') class PostSaveRedirectTests(TestCase): """ Verifies that the views redirect to the correct locations depending on if a post_save_redirect was passed and a get_absolute_url method exists on the Model. """ fixtures = ['testdata.json'] article_model = Article urls = 'regressiontests.views.generic_urls' create_url = '/create_update/create/article/' update_url = '/create_update/update/article/old_article/' delete_url = '/create_update/delete/article/old_article/' create_redirect = '/create_update/view/article/my-first-article/' update_redirect = '/create_update/view/article/another-article-slug/' delete_redirect = '/create_update/' def setUp(self): self.save_warnings_state() warnings.filterwarnings('ignore', category=DeprecationWarning, module='django.views.generic.create_update') def tearDown(self): self.restore_warnings_state() def test_create_article(self): num_articles = self.article_model.objects.count() response = self.client.post(self.create_url, { 'title': 'My First Article', 'slug': 'my-first-article', 'author': '1', 'date_created': datetime.datetime(2007, 6, 25), }) self.assertRedirects(response, self.create_redirect, target_status_code=404) self.assertEqual(num_articles + 1, self.article_model.objects.count(), "A new Article should have been created.") def test_update_article(self): num_articles = self.article_model.objects.count() response = self.client.post(self.update_url, { 'title': 'Another Article', 'slug': 'another-article-slug', 'author': 1, 'date_created': datetime.datetime(2007, 6, 25), }) self.assertRedirects(response, self.update_redirect, target_status_code=404) self.assertEqual(num_articles, self.article_model.objects.count(), "A new Article should not have been created.") def test_delete_article(self): num_articles = self.article_model.objects.count() response = self.client.post(self.delete_url) self.assertRedirects(response, self.delete_redirect, target_status_code=404) self.assertEqual(num_articles - 1, self.article_model.objects.count(), "An Article should have been deleted.") class NoPostSaveNoAbsoluteUrl(PostSaveRedirectTests): """ Tests that when no post_save_redirect is passed and no get_absolute_url method exists on the Model that the view raises an ImproperlyConfigured error. """ urls = 'regressiontests.views.generic_urls' create_url = '/create_update/no_redirect/create/article/' update_url = '/create_update/no_redirect/update/article/old_article/' def setUp(self): self.save_warnings_state() warnings.filterwarnings('ignore', category=DeprecationWarning, module='django.views.generic.create_update') def tearDown(self): self.restore_warnings_state() def test_create_article(self): self.assertRaises(ImproperlyConfigured, super(NoPostSaveNoAbsoluteUrl, self).test_create_article) def test_update_article(self): self.assertRaises(ImproperlyConfigured, super(NoPostSaveNoAbsoluteUrl, self).test_update_article) def test_delete_article(self): """ The delete_object view requires a post_delete_redirect, so skip testing here. """ pass class AbsoluteUrlNoPostSave(PostSaveRedirectTests): """ Tests that the views redirect to the Model's get_absolute_url when no post_save_redirect is passed. """ urls = 'regressiontests.views.generic_urls' # Article model with get_absolute_url method. article_model = UrlArticle create_url = '/create_update/no_url/create/article/' update_url = '/create_update/no_url/update/article/old_article/' create_redirect = '/urlarticles/my-first-article/' update_redirect = '/urlarticles/another-article-slug/' def setUp(self): self.save_warnings_state() warnings.filterwarnings('ignore', category=DeprecationWarning, module='django.views.generic.create_update') def tearDown(self): self.restore_warnings_state() def test_delete_article(self): """ The delete_object view requires a post_delete_redirect, so skip testing here. """ pass
# Copyright (c) 2021 Mira Geoscience Ltd. # # This file is part of geoapps. # # geoapps is distributed under the terms and conditions of the MIT License # (see LICENSE file at the root of this source code package). import numpy as np from geoh5py.workspace import Workspace from SimPEG import utils from geoapps.utils import get_inversion_output from geoapps.utils.testing import setup_inversion_workspace # import pytest # pytest.skip("eliminating conflicting test.", allow_module_level=True) # To test the full run and validate the inversion. # Move this file out of the test directory and run. target_ip_run = { "data_norm": 0.00796, "phi_d": 8.086, "phi_m": 0.1146, } def test_ip_run( tmp_path, n_electrodes=4, n_lines=3, max_iterations=1, pytest=True, refinement=(4, 6), ): from geoapps.drivers.induced_polarization_inversion import InducedPolarizationDriver from geoapps.io.InducedPolarization.params import InducedPolarizationParams np.random.seed(0) # Run the forward geoh5 = setup_inversion_workspace( tmp_path, background=1e-6, anomaly=1e-1, n_electrodes=n_electrodes, n_lines=n_lines, refinement=refinement, dcip=True, flatten=False, ) tx_obj = geoh5.get_entity("survey (currents)")[0] tx_obj.cells = tx_obj.cells.astype("uint32") model = geoh5.get_entity("model")[0] params = InducedPolarizationParams( forward_only=True, geoh5=geoh5, mesh=model.parent.uid, topography_object=geoh5.get_entity("topography")[0].uid, resolution=0.0, z_from_topo=True, data_object=geoh5.get_entity("survey")[0].uid, starting_model_object=model.parent.uid, starting_model=model.uid, conductivity_model=1e-2, ) params.workpath = tmp_path fwr_driver = InducedPolarizationDriver(params) fwr_driver.run() geoh5 = Workspace(geoh5.h5file) potential = geoh5.get_entity("Predicted_chargeability")[0] # Run the inverse np.random.seed(0) params = InducedPolarizationParams( geoh5=geoh5, mesh=geoh5.get_entity("mesh")[0].uid, topography_object=geoh5.get_entity("topography")[0].uid, resolution=0.0, data_object=potential.parent.uid, conductivity_model=1e-2, starting_model=1e-6, s_norm=0.0, x_norm=0.0, y_norm=0.0, z_norm=0.0, gradient_type="components", chargeability_channel_bool=True, z_from_topo=True, chargeability_channel=potential.uid, chargeability_uncertainty=2e-4, max_iterations=max_iterations, initial_beta=None, initial_beta_ratio=1e0, prctile=100, upper_bound=0.1, tile_spatial=n_lines, ) params.workpath = tmp_path driver = InducedPolarizationDriver(params) driver.run() output = get_inversion_output( driver.params.geoh5.h5file, driver.params.ga_group.uid ) if pytest: np.testing.assert_almost_equal( np.linalg.norm(potential.values), target_ip_run["data_norm"], decimal=3, ) np.testing.assert_almost_equal(output["phi_m"][1], target_ip_run["phi_m"]) np.testing.assert_almost_equal(output["phi_d"][1], target_ip_run["phi_d"]) else: return fwr_driver.starting_model, driver.inverse_problem.model if __name__ == "__main__": # Full run m_start, m_rec = test_ip_run( "./", n_electrodes=20, n_lines=5, max_iterations=20, pytest=False, refinement=(4, 8), ) residual = np.linalg.norm(m_rec - m_start) / np.linalg.norm(m_start) * 100.0 assert ( residual < 80.0 ), f"Deviation from the true solution is {residual:.2f}%. Validate the solution!" print("Conductivity model is within 15% of the answer. You are so special!")
import carto2gpd import pytest import pandas as pd def test_limit(): url = "https://phl.carto.com/api/v2/sql" gdf = carto2gpd.get(url, "shootings", limit=5) assert len(gdf) == 5 def test_fields(): url = "https://phl.carto.com/api/v2/sql" fields = ["age", "fatal"] gdf = carto2gpd.get(url, "shootings", fields=fields, limit=5) assert all(col in gdf.columns for col in ["age", "fatal", "geometry"]) def test_where(): url = "https://phl.carto.com/api/v2/sql" where = "fatal > 0" gdf = carto2gpd.get(url, "shootings", where=where, limit=5) assert (gdf.fatal > 0).all() def test_bad_table(): url = "https://phl.carto.com/api/v2/sql" with pytest.raises(ValueError): gdf = carto2gpd.get(url, "nonexistent_table", limit=5) def test_bad_where(): url = "https://phl.carto.com/api/v2/sql" where = "bad_column > 0" with pytest.raises(ValueError): gdf = carto2gpd.get(url, "shootings", where=where, limit=5) def test_no_geometry(): url = "https://phl.carto.com/api/v2/sql" df = carto2gpd.get(url, "li_com_act_licenses", limit=5) assert isinstance(df, pd.DataFrame)
# <<BEGIN-copyright>> # Copyright 2021, Lawrence Livermore National Security, LLC. # See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: BSD-3-Clause # <<END-copyright>> __metaclass__ = type from . import values as valuesModule from . import base as baseModule from . import standards as standardsModule symmetryNoneToken = 'none' symmetryLowerToken = 'lower' symmetryUpperToken = 'upper' symmetryOptions = ( symmetryNoneToken, symmetryLowerToken, symmetryUpperToken ) permutationPlusToken = '+' permutationMinusToken = '-' permutationOptions = ( permutationPlusToken, permutationMinusToken ) storageRowToken = 'row-major' storageColumnToken = 'column-major' class arrayBase( baseModule.xDataCoreMembers ) : moniker = 'array' def __init__( self, shape = None, symmetry = None, storageOrder = storageRowToken, offset = None, permutation = permutationPlusToken, index = None, label = None ) : if( not( isinstance( self.compression, str ) ) ) : raise TypeError( 'compression must be a string' ) baseModule.xDataCoreMembers.__init__( self, self.moniker, index = index, label = label ) shape = tuple( int( value ) for value in shape ) if( len( shape ) == 0 ) : raise ValueError( 'shape must contain at least one value' ) if( min( shape ) <= 0 ) : raise ValueError( 'illegal shape "%s": lengths must all be greater than 0' % str(shape) ) self.__shape = shape if( self.dimension > 3 ) : raise Exception( 'Currently, dimension = %d > 3 not supported' % len( self ) ) if( not( isinstance( symmetry, str ) ) ) : raise TypeError( 'symmetry must be a string' ) if( symmetry not in symmetryOptions ) : raise ValueError( 'invalid symmetry = "%s"' % symmetry ) self.__symmetry = symmetry if( symmetry != symmetryNoneToken ) : for length in shape : if( length != shape[0] ) : raise ValueError( 'a symmetrical array must be "square": shape = %s' % shape ) if( permutation != permutationPlusToken ) : raise TypeError( 'currently, only "%s" permutation is supported' % permutationPlusToken ) self.__permutation = permutationPlusToken if( not( isinstance( storageOrder, str ) ) ) : raise TypeError( 'storageOrder must be a string' ) if( storageOrder not in [ storageRowToken, storageColumnToken ] ) : raise ValueError( 'invalid storageOrder = "%s"' % storageOrder ) self.__storageOrder = storageOrder if( offset is not None ) : offset = [ int( value ) for value in offset ] if( len( offset ) != len( shape ) ) : raise ValueError( 'offset must contain one value for each dimension' ) if( min( offset ) < 0 ) : raise ValueError( 'offsets must be non-negative: %s' % offset ) self.__offset = offset def __len__( self ) : return( self.dimension ) @property def dimension( self ) : return( len( self.__shape ) ) @property def shape( self ) : return( self.__shape ) @property def size( self ) : size = 1 for length in self.__shape : size *= length return( size ) @property def symmetry( self ) : return( self.__symmetry ) @property def permutation( self ) : return( self.__permutation ) @property def compression( self ) : return( self.compression ) @property def storageOrder( self ) : return( self.__storageOrder ) @property def offset( self ) : return( self.__offset ) def offsetScaleValues( self, offset, scale ): """Modify every element in the array: multiply by scale and add offset.""" self.values.offsetScaleValues( offset, scale ) def attributesToXMLAttributeStr( self ) : attributeStr = ' shape="%s"' % ','.join( [ "%d" % length for length in self.shape ] ) if( self.compression != full.compression ) : attributeStr += ' compression="%s"' % self.compression if( self.symmetry != symmetryNoneToken ) : attributeStr += ' symmetry="%s"' % self.symmetry if( self.permutation != permutationPlusToken ) : attributeStr += ' permutation="%s"' % self.permutation if( self.offset is not None ) : attributeStr += ' offset="%s"' % ','.join( [ "%d" % offset for offset in self.offset ] ) if( self.storageOrder != storageRowToken ) : attributeStr += ' storageOrder="%s"' % self.storageOrder attributeStr += baseModule.xDataCoreMembers.attributesToXMLAttributeStr( self ) return( attributeStr ) def toXML( self, indent = '', **kwargs ) : return( '\n'.join( self.toXMLList( indent = indent, **kwargs ) ) ) @classmethod def parseXMLNode( cls, xDataElement, xPath, linkData, **kwargs ) : xPath.append( xDataElement.tag ) attributes = arrayBase.parseXMLNodeAttributes( xDataElement ) compression = attributes.pop( 'compression' ) numberOfValues = { full.compression : [ 1 ], diagonal.compression : [ 1, 2 ], flattened.compression : [ 3 ], embedded.compression : [ -1 ] }[compression] if( ( numberOfValues[0] != -1 ) and ( len( xDataElement ) not in numberOfValues ) ) : raise Exception( '%s array expects %s sub-elements: got %d' % ( cls.compression, numberOfValues, len( xDataElement ) ) ) shape = attributes.pop( 'shape' ) valuesDict = {} if( compression != embedded.compression ) : values = [ valuesModule.values.parseXMLNode( valuesElements, xPath, linkData ) for valuesElements in xDataElement ] for value in values : label = value.label if( value.label is None ) : label = 'data' valuesDict[label] = value if( compression == full.compression ) : array1 = full( shape, valuesDict['data'], **attributes ) elif( compression == diagonal.compression ) : if( 'startingIndices' not in valuesDict ) : valuesDict['startingIndices'] = None array1 = diagonal( shape, valuesDict['data'], valuesDict['startingIndices'], **attributes ) elif( compression == flattened.compression ) : array1 = flattened( shape, valuesDict['data'], valuesDict['starts'], valuesDict['lengths'], **attributes ) elif( compression == embedded.compression ) : array1 = embedded( shape, **attributes ) for subArrayElement in xDataElement : array2 = arrayBase.parseXMLNode( subArrayElement, xPath, linkData ) array1.addArray( array2 ) else : raise TypeError( 'Unsupported array type = "%s"' % compression ) xPath.pop( ) return( array1 ) @classmethod def parseXMLString( cls, XMLString ) : from xml.etree import cElementTree return( cls.parseXMLNode( cElementTree.fromstring( XMLString ), xPath=[], linkData={} ) ) @staticmethod def parseXMLNodeAttributes( xDataElement ) : attributes = { 'shape' : ( None, str ), 'symmetry' : ( symmetryNoneToken, str ), 'permutation' : ( permutationPlusToken, str ), 'storageOrder' : ( storageRowToken, str ), 'offset' : ( None, str ), 'compression' : ( None, str ), 'index' : ( None, int ), 'label' : ( None, str ) } attrs = {} for key, item in list( attributes.items( ) ) : attrs[key] = item[0] for key, item in list( xDataElement.items( ) ) : if( key not in attributes ) : raise TypeError( 'Invalid attribute "%s"' % key ) attrs[key] = attributes[key][1]( item ) if( attrs['shape'] is None ) : raise ValueError( 'shape attribute is missing from array' ) attrs['shape'] = attrs['shape'].split( ',' ) if( attrs['offset'] is not None ) : attrs['offset'] = attrs['offset'].split( ',' ) if( attrs['compression'] is None ) : attrs['compression'] = full.compression return( attrs ) @staticmethod def indicesToFlatIndices( shape, indices ) : flatIndices = [] for index in indices : if( len( index ) != len( shape ) ) : raise Exception( 'len( index ) = %d != len( shape ) = %d' % ( len( index ), len( shape ) ) ) length, flatIndex = 1, 0 for i1, i2 in enumerate( index ) : flatIndex *= length flatIndex += i2 length = shape[i1] flatIndices.append( flatIndex ) return( flatIndices ) @staticmethod def flatIndicesToIndices( shape, flatIndices ) : indices = [] products = [ 1 ] for s1 in shape : products.append( s1 * products[-1] ) del products[-1] products.reverse( ) for i1 in flatIndices : index = [] for product in products : i2, i1 = divmod( i1, product ) index.append( i2 ) indices.append( index ) return( indices ) class full( arrayBase ) : compression = 'full' ancestryMembers = baseModule.xDataCoreMembers.ancestryMembers + ( 'values', ) def __init__( self, shape = None, data = None, symmetry = symmetryNoneToken, storageOrder = storageRowToken, offset = None, permutation = permutationPlusToken, index = None, label = None ) : arrayBase.__init__( self, shape, symmetry = symmetry, storageOrder = storageOrder, offset = offset, permutation = permutation, index = index, label = label ) if( not( isinstance( data, valuesModule.values ) ) ) : data = valuesModule.values( data ) if( symmetry == symmetryNoneToken ) : size = self.size else : # Will be a 'square' array. Checked in arrayBase. length, size = self.shape[0], 1 for i1 in range( self.dimension ) : size = size * ( length + i1 ) / ( i1 + 1 ) if( size != len( data ) ) : raise ValueError( 'shape requires %d values while data has %d values' % ( size, len( data ) ) ) self.values = data self.values.setAncestor( self ) def constructArray( self ) : import numpy if( self.symmetry == symmetryNoneToken ) : array1 = numpy.array( [ value for value in self.values ] ) elif len(self.shape) == 2: array1 = numpy.zeros( self.shape ) if( self.symmetry == symmetryLowerToken ) : array1[numpy.tril_indices(self.shape[0])] = list(self.values) il = numpy.tril_indices(self.shape[0], -1) iu = (il[1],il[0]) array1[iu] = array1[il] elif( self.symmetry == symmetryUpperToken ) : array1[numpy.triu_indices(self.shape[0])] = list(self.values) iu = numpy.triu_indices(self.shape[0], 1) il = (iu[1],iu[0]) array1[il] = array1[iu] else : import itertools array1 = numpy.zeros( self.size ) dimension = self.dimension length = self.shape[0] indexRange = range( len( self ) ) indices = dimension * [ 0 ] indexChange = dimension - 1 mode = ( ( self.symmetry == symmetryUpperToken ) and ( self.storageOrder == storageRowToken ) ) or \ ( self.symmetry == symmetryLowerToken ) and ( self.storageOrder == storageColumnToken ) for value in self.values : permutations = itertools.permutations( indices ) for permutation in permutations : index = permutation[0] for p1 in permutation[1:] : index = length * index + p1 array1[index] = value if( mode ) : for i1 in indexRange : indices[i1] += 1 if( indices[i1] < length ) : break for i2 in indexRange : if( i1 == i2 ) : break indices[i2] = indices[i1] else : indexChange += 1 if( indexChange == dimension ) : indexChange -= 1 value = indices[indexChange] for i1 in indexRange : if( i1 == ( dimension - 1 ) ) : break if( indices[indexChange-1] > value ) : break indices[indexChange] = 0 indexChange -= 1 indices[indexChange] += 1 order = { storageRowToken : 'C', storageColumnToken : 'F' }[self.storageOrder] return( array1.reshape( self.shape, order = order ) ) def copy( self ) : return( full( self.shape, self.values.copy( ), symmetry = self.symmetry, storageOrder = self.storageOrder, offset = self.offset, permutation = self.permutation, index = self.index, label = self.label ) ) def toXMLList( self, indent = '', **kwargs ) : indent2 = indent + kwargs.get( 'incrementalIndent', ' ' ) attributesStr = self.attributesToXMLAttributeStr( ) XMLList = [ '%s<%s%s>' % ( indent, self.moniker, attributesStr ) ] XMLList += self.values.toXMLList( indent2, **kwargs ) XMLList[-1] += '</%s>' % self.moniker return( XMLList ) class diagonal( arrayBase ) : compression = 'diagonal' ancestryMembers = baseModule.xDataCoreMembers.ancestryMembers + ( 'values', ) def __init__( self, shape = None, data = None, startingIndices = None, symmetry = symmetryNoneToken, storageOrder = storageRowToken, offset = None, permutation = permutationPlusToken, index = None, label = None ) : arrayBase.__init__( self, shape, symmetry, storageOrder = storageOrder, offset = offset, permutation = permutation, index = index, label = label ) dimension = self.dimension if( not( isinstance( data, valuesModule.values ) ) ) : data = valuesModule.values( data ) if( startingIndices is None ) : self.startingIndicesOriginal = None startingIndices = dimension * [ 0 ] else : if( not( isinstance( startingIndices, valuesModule.values ) ) ) : startingIndices = valuesModule.values( startingIndices, valueType = standardsModule.types.integer32Token ) if( startingIndices.valueType not in [ standardsModule.types.integer32Token ] ) : raise TypeError( 'startingIndices must be a list of integers' ) self.startingIndicesOriginal = startingIndices self.startingIndicesOriginal.label = 'startingIndices' if( ( len( startingIndices ) == 0 ) or ( ( len( startingIndices ) % dimension ) != 0 ) ) : raise ValueError( 'lenght of startingIndices = %d must be a multiple of dimension = %d' % ( len( startingIndices ), dimension ) ) startingIndices = [ value for value in startingIndices ] if( min( startingIndices ) < 0 ) : raise ValueError( 'negative starting index not allowed' ) self.startingIndices = [] size = 0 while( len( startingIndices ) > 0 ) : self.startingIndices.append( startingIndices[:dimension] ) startingIndices = startingIndices[dimension:] startingIndex = self.startingIndices[-1] offset = self.shape[0] for i1, length in enumerate( self.shape ) : offset = min( offset, length - startingIndex[i1] ) if( offset < 0 ) : raise ValueError( 'starting index must be less than length: %s' % startingIndex ) size += offset if( size != len( data ) ) : raise ValueError( 'shape requires %d values while data has %d values' % ( size, len( data ) ) ) self.values = data self.values.setAncestor( self ) def constructArray( self ) : import numpy import itertools valuesIndex = 0 array1 = numpy.zeros( self.size ) shape = self.shape range1 = range( self.dimension ) for startIndex in self.startingIndices : si = [ index for index in startIndex ] moreToDo = True while( moreToDo ) : value = self.values[valuesIndex] valuesIndex += 1 if( self.symmetry == symmetryNoneToken ) : permutations = [ si ] else : permutations = itertools.permutations( si ) for permutation in permutations : scale, flatIndex = 1, 0 for i1, index in enumerate( permutation ) : flatIndex = flatIndex * scale + index scale = shape[i1] array1[flatIndex] = value for i1 in range1 : si[i1] += 1 if( si[i1] >= shape[i1] ) : moreToDo = False order = { storageRowToken : 'C', storageColumnToken : 'F' }[self.storageOrder] return( array1.reshape( self.shape, order = order ) ) def copy( self ) : startingIndicesOriginal = self.startingIndicesOriginal if( startingIndicesOriginal is not None ) : startingIndicesOriginal = self.startingIndicesOriginal.copy( ) return( diagonal( self.shape, self.values.copy( ), startingIndicesOriginal, symmetry = self.symmetry, storageOrder = self.storageOrder, offset = self.offset, permutation = self.permutation, index = self.index, label = self.label ) ) def toXMLList( self, indent = '', **kwargs ) : indent2 = indent + kwargs.get( 'incrementalIndent', ' ' ) attributesStr = self.attributesToXMLAttributeStr( ) XMLList = [ '%s<%s%s>' % ( indent, self.moniker, attributesStr ) ] if( self.startingIndicesOriginal is not None ) : XMLList += self.startingIndicesOriginal.toXMLList( indent2, **kwargs ) XMLList += self.values.toXMLList( indent2, **kwargs ) XMLList[-1] += '</%s>' % self.moniker return( XMLList ) class flattened( arrayBase ) : compression = 'flattened' ancestryMembers = baseModule.xDataCoreMembers.ancestryMembers + ( 'values', 'lengths', 'starts' ) def __init__( self, shape = None, data = None, starts = None, lengths = None, symmetry = symmetryNoneToken, storageOrder = storageRowToken, offset = None, permutation = permutationPlusToken, index = None, label = None, dataToString = None ) : arrayBase.__init__( self, shape, symmetry, storageOrder = storageOrder, offset = offset, permutation = permutation, index = index, label = label ) self.dataToString = dataToString if( not( isinstance( data, valuesModule.values ) ) ) : data = valuesModule.values( data ) if( not( isinstance( starts, valuesModule.values ) ) ) : starts = valuesModule.values( starts, valueType = standardsModule.types.integer32Token ) if( not( isinstance( lengths, valuesModule.values ) ) ) : lengths = valuesModule.values( lengths, valueType = standardsModule.types.integer32Token ) if( len( starts ) != len( lengths ) ) : raise ValueError( 'length of starts = %d must equal length of lengths = %d' % ( len( starts ), len( lengths ) ) ) size = len( data ) length = 0 for i1 in lengths : length += i1 if( size != length ) : raise ValueError( 'number of data = %d and sum of length = %d differ' % ( size, length ) ) indexPriorEnd = -1 for i1, start in enumerate( starts ) : if( start < 0 ) : raise ValueError( 'negative start (=%d) not allowed' % start ) if( start < indexPriorEnd ) : raise ValueError( 'data overlap: prior index end = %d current start = %d' % ( indexPriorEnd, start ) ) length = lengths[i1] if( length < 0 ) : raise ValueError( 'negative length (=%d) not allowed' % length ) indexPriorEnd = start + length if( indexPriorEnd > self.size ) : raise ValueError( 'data beyond array boundary: indexPriorEnd = %d, size = %d', ( indexPriorEnd, self.size ) ) self.starts = starts starts.label = 'starts' self.starts.setAncestor( self ) self.lengths = lengths lengths.label = 'lengths' self.lengths.setAncestor( self ) self.values = data self.values.setAncestor( self ) def constructArray( self ) : import numpy index = 0 array1 = numpy.zeros( self.size ) for i1, start in enumerate( self.starts ) : length = self.lengths[i1] for i2 in range( length ) : array1[start+i2] = self.values[index] index += 1 order = { storageRowToken : 'C', storageColumnToken : 'F' }[self.storageOrder] array1 = array1.reshape( self.shape, order = order ) if self.symmetry == symmetryLowerToken: array1 = numpy.tril(array1) + numpy.tril(array1, -1).T elif self.symmetry == symmetryUpperToken: array1 = numpy.triu(array1) + numpy.triu(array1, -1).T return array1 def copy( self ) : return( flattened( self.shape, self.values.copy( ), self.starts.copy( ), self.lengths.copy( ), symmetry = self.symmetry, storageOrder = self.storageOrder, offset = self.offset, permutation = self.permutation, index = self.index, label = self.label ) ) @staticmethod def fromNumpyArray( array, symmetry = symmetryNoneToken, nzeroes = 4 ): """ Generate a sparse flattened array that represents an arbitrary numpy array. Only supports 'full' or 'lower-symmetric' matrices, with row-major data storage. :param array: input numpy array :param symmetry: allowed values are 'none' or 'lower' :param nzeroes: how many zeroes to allow before adding a new 'start' and 'length' :return: """ starts, lengths, sparseData = [], [], [] def helper( data, offset = 0 ): idx = 0 end = len(data) while idx < end: if data[idx] != 0: stop = idx+1 while stop < end: if data[stop] != 0: stop += 1 elif any(data[stop:stop + nzeroes]): for i in range(nzeroes): if stop + i < end and data[stop + i] != 0: stop += i else: break starts.append( idx + offset ) lengths.append( stop - idx ) sparseData.extend( data[idx:stop] ) idx = stop idx += 1 if symmetry == symmetryNoneToken: helper( array.flatten() ) elif symmetry == symmetryLowerToken: rows, cols = array.shape for row in range(rows): dat = array[row][:row+1] helper( dat, offset = row * cols ) else: raise NotImplementedError("Symmetry = '%s'" % symmetry) return flattened(shape=array.shape, data=sparseData, starts=starts, lengths=lengths, symmetry=symmetry) def toXMLList( self, indent = '', **kwargs ) : indent2 = indent + kwargs.get( 'incrementalIndent', ' ' ) attributesStr = self.attributesToXMLAttributeStr( ) XMLList = [ '%s<%s%s>' % ( indent, self.moniker, attributesStr ) ] XMLList += self.starts.toXMLList( indent2, **kwargs ) XMLList += self.lengths.toXMLList( indent2, **kwargs ) XMLList += self.values.toXMLList( indent2, **kwargs ) XMLList[-1] += '</%s>' % self.moniker return( XMLList ) class embedded( arrayBase ) : compression = 'embedded' def __init__( self, shape = None, symmetry = symmetryNoneToken, storageOrder = storageRowToken, offset = None, permutation = permutationPlusToken, index = None, label = None ) : arrayBase.__init__( self, shape, symmetry, storageOrder = storageOrder, offset = offset, permutation = permutation, index = index, label = label ) self.arrays = [] def addArray( self, array ) : if( not( isinstance( array, arrayBase ) ) ) : raise TypeError( 'variable not an array instance' ) if( self.dimension < array.dimension ) : raise ValueError( 'cannot embedded array into a smaller dimensional array: %s %s' % ( self.dimension, array.dimension ) ) shape = list( reversed( array.shape ) ) if( array.offset is None ) : raise TypeError( 'embedded array must have offset defined' ) offsets = list( reversed( array.offset ) ) shapeOfParent = list( reversed( self.shape ) ) for i1, offset in enumerate( offsets ) : if( ( offset + shape[i1] ) > shapeOfParent[i1] ) : raise ValueError( 'child array outside of parent: %s %s %s' % ( self.shape, array.shape, array.offset ) ) self.arrays.append( array ) def constructArray( self ) : import numpy order = { storageRowToken : 'C', storageColumnToken : 'F' }[self.storageOrder] array1 = numpy.zeros( self.shape, order = order ) for array in self.arrays : array2 = array.constructArray( ) slice1 = [ slice( offset, offset + array2.shape[i1] ) for i1, offset in enumerate( array.offset ) ] array1[slice1] = array2 return( array1 ) def copy( self ) : array1 = embedded( self.shape, symmetry = self.symmetry, storageOrder = self.storageOrder, offset = self.offset, permutation = self.permutation, index = self.index, label = self.label ) for array in self.arrays : array1.addArray( array.copy( ) ) return array1 def offsetScaleValues( self, offset, scale ): """Modify every sub-array: multiply by scale and add offset.""" for subarray in self.arrays: subarray.offsetScaleValues( offset, scale ) def toXMLList( self, indent = '', **kwargs ) : indent2 = indent + kwargs.get( 'incrementalIndent', ' ' ) attributesStr = self.attributesToXMLAttributeStr( ) XMLList = [ '%s<%s%s>' % ( indent, self.moniker, attributesStr ) ] for array in self.arrays : XMLList += array.toXMLList( indent2, **kwargs ) XMLList[-1] += '</%s>' % self.moniker return( XMLList )
########################################################################## # # Copyright (c) 2017, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import unittest import imath import IECore import Gaffer import GafferTest class PlugAlgoTest( GafferTest.TestCase ) : def testPromote( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n1"] = GafferTest.AddNode() s["b"]["n1"]["op1"].setValue( -10 ) s["n2"] = GafferTest.AddNode() self.assertTrue( Gaffer.PlugAlgo.canPromote( s["b"]["n1"]["op1"] ) ) self.assertFalse( Gaffer.PlugAlgo.canPromote( s["n2"]["op1"], parent = s["b"]["user"] ) ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n1"]["op1"] ) ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n1"]["op2"] ) ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["n2"]["op1"] ) ) p = Gaffer.PlugAlgo.promote( s["b"]["n1"]["op1"] ) self.assertEqual( p.getName(), "op1" ) self.assertTrue( p.parent().isSame( s["b"] ) ) self.assertTrue( s["b"]["n1"]["op1"].getInput().isSame( p ) ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( s["b"]["n1"]["op1"] ) ) self.assertFalse( Gaffer.PlugAlgo.canPromote( s["b"]["n1"]["op1"] ) ) self.assertEqual( p.getValue(), -10 ) def testPromoteColor( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = Gaffer.Node() s["b"]["n"]["c"] = Gaffer.Color3fPlug() s["b"]["n"]["c"].setValue( imath.Color3f( 1, 0, 1 ) ) self.assertTrue( Gaffer.PlugAlgo.canPromote( s["b"]["n"]["c"] ) ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"] ) ) p = Gaffer.PlugAlgo.promote( s["b"]["n"]["c"] ) self.assertTrue( isinstance( p, Gaffer.Color3fPlug ) ) self.assertTrue( s["b"]["n"]["c"].getInput().isSame( p ) ) self.assertTrue( s["b"]["n"]["c"]["r"].getInput().isSame( p["r"] ) ) self.assertTrue( s["b"]["n"]["c"]["g"].getInput().isSame( p["g"] ) ) self.assertTrue( s["b"]["n"]["c"]["b"].getInput().isSame( p["b"] ) ) self.assertEqual( p.getValue(), imath.Color3f( 1, 0, 1 ) ) def testPromoteCompoundPlugAndSerialise( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = GafferTest.CompoundPlugNode() s["b"]["n"]["p"]["s"].setValue( "hello" ) Gaffer.PlugAlgo.promote( s["b"]["n"]["p"] ) ss = s.serialise() s = Gaffer.ScriptNode() s.execute( ss ) self.assertEqual( s["b"]["n"]["p"]["s"].getValue(), "hello" ) def testPromoteDynamicColorPlugAndSerialise( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = Gaffer.Node() s["b"]["n"]["c"] = Gaffer.Color3fPlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) Gaffer.PlugAlgo.promote( s["b"]["n"]["c"] ) ss = s.serialise() s = Gaffer.ScriptNode() s.execute( ss ) self.assertTrue( isinstance( s["b"]["c"], Gaffer.Color3fPlug ) ) self.assertTrue( s["b"]["n"]["c"].getInput().isSame( s["b"]["c"] ) ) def testPromoteNonDynamicColorPlugAndSerialise( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = Gaffer.Random() p = Gaffer.PlugAlgo.promote( s["b"]["n"]["baseColor"] ) p.setValue( imath.Color3f( 1, 2, 3 ) ) p.setName( "c" ) self.assertTrue( isinstance( s["b"]["c"], Gaffer.Color3fPlug ) ) self.assertTrue( s["b"]["n"]["baseColor"].getInput().isSame( s["b"]["c"] ) ) self.assertTrue( s["b"]["n"]["baseColor"]["r"].getInput().isSame( s["b"]["c"]["r"] ) ) self.assertTrue( s["b"]["n"]["baseColor"]["g"].getInput().isSame( s["b"]["c"]["g"] ) ) self.assertTrue( s["b"]["n"]["baseColor"]["b"].getInput().isSame( s["b"]["c"]["b"] ) ) self.assertEqual( s["b"]["c"].getValue(), imath.Color3f( 1, 2, 3 ) ) s2 = Gaffer.ScriptNode() s2.execute( s.serialise() ) self.assertTrue( isinstance( s2["b"]["c"], Gaffer.Color3fPlug ) ) self.assertTrue( s2["b"]["n"]["baseColor"].getInput().isSame( s2["b"]["c"] ) ) self.assertTrue( s2["b"]["n"]["baseColor"]["r"].getInput().isSame( s2["b"]["c"]["r"] ) ) self.assertTrue( s2["b"]["n"]["baseColor"]["g"].getInput().isSame( s2["b"]["c"]["g"] ) ) self.assertTrue( s2["b"]["n"]["baseColor"]["b"].getInput().isSame( s2["b"]["c"]["b"] ) ) self.assertEqual( s2["b"]["c"].getValue(), imath.Color3f( 1, 2, 3 ) ) def testCantPromoteNonSerialisablePlugs( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = Gaffer.Node() s["b"]["n"]["p"] = Gaffer.IntPlug( flags = Gaffer.Plug.Flags.Default & ~Gaffer.Plug.Flags.Serialisable ) self.assertEqual( Gaffer.PlugAlgo.canPromote( s["b"]["n"]["p"] ), False ) self.assertRaises( RuntimeError, Gaffer.PlugAlgo.promote, s["b"]["n"]["p"] ) def testUnpromoting( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n1"] = GafferTest.AddNode() p = Gaffer.PlugAlgo.promote( s["b"]["n1"]["op1"] ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( s["b"]["n1"]["op1"] ) ) self.assertTrue( p.node().isSame( s["b"] ) ) Gaffer.PlugAlgo.unpromote( s["b"]["n1"]["op1"] ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n1"]["op1"] ) ) self.assertTrue( p.node() is None ) def testColorUnpromoting( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = Gaffer.Node() s["b"]["n"]["c"] = Gaffer.Color3fPlug() p = Gaffer.PlugAlgo.promote( s["b"]["n"]["c"] ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"] ) ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["r"] ) ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["g"] ) ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["b"] ) ) self.assertTrue( p.node().isSame( s["b"] ) ) Gaffer.PlugAlgo.unpromote( s["b"]["n"]["c"] ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"] ) ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["r"] ) ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["g"] ) ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["b"] ) ) self.assertTrue( p.node() is None ) def testIncrementalUnpromoting( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = Gaffer.Node() s["b"]["n"]["c"] = Gaffer.Color3fPlug() p = Gaffer.PlugAlgo.promote( s["b"]["n"]["c"] ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"] ) ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["r"] ) ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["g"] ) ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["b"] ) ) self.assertTrue( p.node().isSame( s["b"] ) ) Gaffer.PlugAlgo.unpromote( s["b"]["n"]["c"]["r"] ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"] ) ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["r"] ) ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["g"] ) ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["b"] ) ) self.assertTrue( p.node().isSame( s["b"] ) ) Gaffer.PlugAlgo.unpromote( s["b"]["n"]["c"]["g"] ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"] ) ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["r"] ) ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["g"] ) ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["b"] ) ) self.assertTrue( p.node().isSame( s["b"] ) ) Gaffer.PlugAlgo.unpromote( s["b"]["n"]["c"]["b"] ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"] ) ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["r"] ) ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["g"] ) ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( s["b"]["n"]["c"]["b"] ) ) self.assertTrue( p.node() is None ) def testCantPromoteReadOnlyPlug( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = Gaffer.Node() s["b"]["n"]["i"] = Gaffer.IntPlug() s["b"]["n"]["c"] = Gaffer.Color3fPlug() self.assertTrue( Gaffer.PlugAlgo.canPromote( s["b"]["n"]["i"] ) ) self.assertTrue( Gaffer.PlugAlgo.canPromote( s["b"]["n"]["c"] ) ) self.assertTrue( Gaffer.PlugAlgo.canPromote( s["b"]["n"]["c"]["r"] ) ) s["b"]["n"]["i"].setFlags( Gaffer.Plug.Flags.ReadOnly, True ) s["b"]["n"]["c"].setFlags( Gaffer.Plug.Flags.ReadOnly, True ) s["b"]["n"]["c"]["r"].setFlags( Gaffer.Plug.Flags.ReadOnly, True ) self.assertFalse( Gaffer.PlugAlgo.canPromote( s["b"]["n"]["i"] ) ) self.assertFalse( Gaffer.PlugAlgo.canPromote( s["b"]["n"]["c"] ) ) self.assertFalse( Gaffer.PlugAlgo.canPromote( s["b"]["n"]["c"]["r"] ) ) self.assertRaises( RuntimeError, Gaffer.PlugAlgo.promote, s["b"]["n"]["i"] ) self.assertRaises( RuntimeError, Gaffer.PlugAlgo.promote, s["b"]["n"]["c"] ) self.assertRaises( RuntimeError, Gaffer.PlugAlgo.promote, s["b"]["n"]["c"]["r"] ) k = s["b"].keys() uk = s["b"]["user"].keys() try : Gaffer.PlugAlgo.promote( s["b"]["n"]["i"] ) except Exception, e : self.assertTrue( "Cannot promote" in str( e ) ) self.assertTrue( "read only" in str( e ) ) self.assertEqual( s["b"].keys(), k ) self.assertEqual( s["b"]["user"].keys(), uk ) def testCantPromotePlugWithReadOnlyChildren( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = Gaffer.Node() s["b"]["n"]["c"] = Gaffer.Color3fPlug() self.assertTrue( Gaffer.PlugAlgo.canPromote( s["b"]["n"]["c"] ) ) self.assertTrue( Gaffer.PlugAlgo.canPromote( s["b"]["n"]["c"]["r"] ) ) s["b"]["n"]["c"]["r"].setFlags( Gaffer.Plug.Flags.ReadOnly, True ) self.assertFalse( Gaffer.PlugAlgo.canPromote( s["b"]["n"]["c"] ) ) self.assertFalse( Gaffer.PlugAlgo.canPromote( s["b"]["n"]["c"]["r"] ) ) self.assertRaises( RuntimeError, Gaffer.PlugAlgo.promote, s["b"]["n"]["c"] ) self.assertRaises( RuntimeError, Gaffer.PlugAlgo.promote, s["b"]["n"]["c"]["r"] ) k = s["b"].keys() uk = s["b"]["user"].keys() try : Gaffer.PlugAlgo.promote( s["b"]["n"]["c"] ) except Exception, e : self.assertTrue( "Cannot promote" in str( e ) ) self.assertTrue( "read only" in str( e ) ) self.assertEqual( s["b"].keys(), k ) self.assertEqual( s["b"]["user"].keys(), uk ) def testMakePlugReadOnlyAfterPromoting( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = GafferTest.AddNode() s["b"]["n"]["op1"].setValue( 0 ) s["b"]["n"]["op2"].setValue( 0 ) self.assertEqual( s["b"]["n"]["sum"].getValue(), 0 ) op1 = Gaffer.PlugAlgo.promote( s["b"]["n"]["op1"] ) s["b"]["n"]["op1"].setFlags( Gaffer.Plug.Flags.ReadOnly, True ) op1.setValue( 1 ) self.assertEqual( s["b"]["n"]["sum"].getValue(), 1 ) def testPromoteOutputPlug( self ) : b = Gaffer.Box() b["n"] = GafferTest.AddNode() self.assertTrue( Gaffer.PlugAlgo.canPromote( b["n"]["sum"] ) ) sum = Gaffer.PlugAlgo.promote( b["n"]["sum"] ) self.assertTrue( b.isAncestorOf( sum ) ) self.assertTrue( sum.direction() == Gaffer.Plug.Direction.Out ) self.assertEqual( sum.getInput(), b["n"]["sum"] ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( b["n"]["sum"] ) ) self.assertFalse( Gaffer.PlugAlgo.canPromote( b["n"]["sum"] ) ) self.assertRaises( RuntimeError, Gaffer.PlugAlgo.promote, b["n"]["sum"] ) b["n"]["op1"].setValue( 10 ) b["n"]["op2"].setValue( 12 ) self.assertEqual( sum.getValue(), 22 ) Gaffer.PlugAlgo.unpromote( b["n"]["sum"] ) self.assertFalse( Gaffer.PlugAlgo.isPromoted( b["n"]["sum"] ) ) self.assertTrue( sum.parent() is None ) self.assertTrue( Gaffer.PlugAlgo.canPromote( b["n"]["sum"] ) ) def testPromoteDynamicBoxPlugAndSerialise( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = Gaffer.Node() s["b"]["n"]["p"] = Gaffer.Box2iPlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) p = Gaffer.PlugAlgo.promote( s["b"]["n"]["p"] ) p.setValue( imath.Box2i( imath.V2i( 1, 2 ), imath.V2i( 3, 4 ) ) ) p.setName( "c" ) self.assertTrue( isinstance( s["b"]["c"], Gaffer.Box2iPlug ) ) self.assertTrue( s["b"]["n"]["p"].getInput().isSame( s["b"]["c"] ) ) self.assertTrue( s["b"]["n"]["p"]["min"].getInput().isSame( s["b"]["c"]["min"] ) ) self.assertTrue( s["b"]["n"]["p"]["max"].getInput().isSame( s["b"]["c"]["max"] ) ) self.assertEqual( s["b"]["c"].getValue(), imath.Box2i( imath.V2i( 1, 2 ), imath.V2i( 3, 4 ) ) ) s2 = Gaffer.ScriptNode() s2.execute( s.serialise() ) self.assertTrue( isinstance( s2["b"]["c"], Gaffer.Box2iPlug ) ) self.assertTrue( s2["b"]["n"]["p"].getInput().isSame( s2["b"]["c"] ) ) self.assertTrue( s2["b"]["n"]["p"]["min"].getInput().isSame( s2["b"]["c"]["min"] ) ) self.assertTrue( s2["b"]["n"]["p"]["max"].getInput().isSame( s2["b"]["c"]["max"] ) ) self.assertEqual( s2["b"]["c"].getValue(), imath.Box2i( imath.V2i( 1, 2 ), imath.V2i( 3, 4 ) ) ) def testPromoteStaticPlugsWithChildren( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = GafferTest.CompoundPlugNode() s["b"]["n"]["valuePlug"]["i"].setValue( 10 ) p = Gaffer.PlugAlgo.promote( s["b"]["n"]["valuePlug"] ) p.setName( "p" ) s2 = Gaffer.ScriptNode() s2.execute( s.serialise() ) self.assertEqual( s2["b"]["n"]["valuePlug"]["i"].getValue(), 10 ) self.assertTrue( s2["b"]["n"]["valuePlug"]["i"].getInput().isSame( s2["b"]["p"]["i"] ) ) def testPromoteDynamicPlugsWithChildren( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = Gaffer.Node() s["b"]["n"]["user"]["p"] = Gaffer.Plug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) s["b"]["n"]["user"]["p"]["p"] = Gaffer.Plug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) s["b"]["n"]["user"]["p"]["p"]["i"] = Gaffer.IntPlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) s["b"]["n"]["user"]["v"] = Gaffer.ValuePlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) s["b"]["n"]["user"]["v"]["v"] = Gaffer.ValuePlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) s["b"]["n"]["user"]["v"]["v"]["i"] = Gaffer.IntPlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) p = Gaffer.PlugAlgo.promote( s["b"]["n"]["user"]["p"] ) p.setName( "p" ) p["p"]["i"].setValue( 10 ) v = Gaffer.PlugAlgo.promote( s["b"]["n"]["user"]["v"] ) v.setName( "v" ) v["v"]["i"].setValue( 20 ) def assertValid( script ) : self.assertEqual( script["b"]["n"]["user"]["p"]["p"]["i"].getValue(), 10 ) self.assertTrue( script["b"]["n"]["user"]["p"]["p"]["i"].getInput().isSame( script["b"]["p"]["p"]["i"] ) ) self.assertTrue( script["b"]["n"]["user"]["p"]["p"].getInput().isSame( script["b"]["p"]["p"] ) ) self.assertTrue( script["b"]["n"]["user"]["p"].getInput().isSame( script["b"]["p"] ) ) self.assertEqual( script["b"]["n"]["user"]["v"]["v"]["i"].getValue(), 20 ) self.assertTrue( script["b"]["n"]["user"]["v"]["v"]["i"].getInput().isSame( script["b"]["v"]["v"]["i"] ) ) self.assertTrue( script["b"]["n"]["user"]["v"]["v"].getInput().isSame( script["b"]["v"]["v"] ) ) self.assertTrue( script["b"]["n"]["user"]["v"].getInput().isSame( script["b"]["v"] ) ) assertValid( s ) s2 = Gaffer.ScriptNode() s2.execute( s.serialise() ) assertValid( s2 ) def testPromoteArrayPlug( self ) : s = Gaffer.ScriptNode() s["a"] = GafferTest.AddNode() s["b"] = Gaffer.Box() s["b"]["n"] = GafferTest.ArrayPlugNode() p = Gaffer.PlugAlgo.promote( ( s["b"]["n"]["in"] ) ) p.setName( "p" ) s["b"]["p"][0].setInput( s["a"]["sum"] ) s["b"]["p"][1].setInput( s["a"]["sum"] ) self.assertEqual( len( s["b"]["n"]["in"] ), 3 ) self.assertTrue( s["b"]["n"]["in"].getInput().isSame( s["b"]["p"] ) ) s2 = Gaffer.ScriptNode() s2.execute( s.serialise() ) self.assertEqual( len( s2["b"]["n"]["in"] ), 3 ) self.assertTrue( s2["b"]["n"]["in"].getInput().isSame( s2["b"]["p"] ) ) def testPromotionIncludesArbitraryMetadata( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = Gaffer.Node() s["b"]["n"]["user"]["p"] = Gaffer.IntPlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) Gaffer.Metadata.registerValue( s["b"]["n"]["user"]["p"], "testInt", 10 ) Gaffer.Metadata.registerValue( s["b"]["n"]["user"]["p"], "testString", "test" ) p = Gaffer.PlugAlgo.promote( s["b"]["n"]["user"]["p"] ) p.setName( "p" ) self.assertEqual( Gaffer.Metadata.value( p, "testInt" ), 10 ) self.assertEqual( Gaffer.Metadata.value( p, "testString" ), "test" ) s2 = Gaffer.ScriptNode() s2.execute( s.serialise() ) self.assertEqual( Gaffer.Metadata.value( s2["b"]["p"], "testInt" ), 10 ) self.assertEqual( Gaffer.Metadata.value( s2["b"]["p"], "testString" ), "test" ) def testPromotionIncludesArbitraryChildMetadata( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n"] = Gaffer.Node() s["b"]["n"]["user"]["p"] = Gaffer.Plug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) s["b"]["n"]["user"]["p"]["i"] = Gaffer.IntPlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) Gaffer.Metadata.registerValue( s["b"]["n"]["user"]["p"], "testInt", 10 ) Gaffer.Metadata.registerValue( s["b"]["n"]["user"]["p"]["i"], "testString", "test" ) p = Gaffer.PlugAlgo.promote( s["b"]["n"]["user"]["p"] ) p.setName( "p" ) self.assertEqual( Gaffer.Metadata.value( p, "testInt" ), 10 ) self.assertEqual( Gaffer.Metadata.value( p["i"], "testString" ), "test" ) s2 = Gaffer.ScriptNode() s2.execute( s.serialise() ) self.assertEqual( Gaffer.Metadata.value( s2["b"]["p"], "testInt" ), 10 ) self.assertEqual( Gaffer.Metadata.value( s2["b"]["p"]["i"], "testString" ), "test" ) def testPromoteToNonBoxParent( self ) : n = Gaffer.Node() n["n"] = GafferTest.AddNode() self.assertTrue( Gaffer.PlugAlgo.canPromote( n["n"]["op1"] ) ) p = Gaffer.PlugAlgo.promote( n["n"]["op1"] ) self.assertTrue( p.isSame( n["op1"] ) ) self.assertTrue( n["n"]["op1"].getInput().isSame( n["op1"] ) ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( n["n"]["op1"] ) ) self.assertFalse( n["op1"].getFlags( Gaffer.Plug.Flags.Dynamic ) ) Gaffer.PlugAlgo.unpromote( n["n"]["op1"] ) self.assertTrue( "op1" not in "n" ) self.assertTrue( n["n"]["op1"].getInput() is None ) def testPromotionParent( self ) : n1 = Gaffer.Node() n1["n"] = GafferTest.AddNode() n2 = Gaffer.Node() self.assertTrue( Gaffer.PlugAlgo.canPromote( n1["n"]["op1"], parent = n1["user"] ) ) self.assertFalse( Gaffer.PlugAlgo.canPromote( n1["n"]["op1"], parent = n2["user"] ) ) self.assertRaises( RuntimeError, Gaffer.PlugAlgo.promote, n1["n"]["op1"], parent = n2["user"] ) p = Gaffer.PlugAlgo.promote( n1["n"]["op1"], parent = n1["user"] ) self.assertTrue( p.parent().isSame( n1["user"] ) ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( n1["n"]["op1"] ) ) def testPromotionExcludingMetadata( self ) : n = Gaffer.Node() n["a"] = GafferTest.AddNode() Gaffer.Metadata.registerValue( n["a"]["op1"], "test", "testValue" ) Gaffer.Metadata.registerValue( n["a"]["op2"], "test", "testValue" ) p1 = Gaffer.PlugAlgo.promote( n["a"]["op1"] ) self.assertEqual( Gaffer.Metadata.value( p1, "test" ), "testValue" ) p2 = Gaffer.PlugAlgo.promote( n["a"]["op2"], excludeMetadata = "*" ) self.assertEqual( Gaffer.Metadata.value( p2, "test" ), None ) def testPromotedNonBoxMetadataIsNonPersistent( self ) : n = Gaffer.Node() n["a"] = GafferTest.AddNode() Gaffer.Metadata.registerValue( n["a"]["op1"], "testPersistence", 10 ) p = Gaffer.PlugAlgo.promote( n["a"]["op1"] ) self.assertEqual( Gaffer.Metadata.value( p, "testPersistence" ), 10 ) self.assertTrue( "testPersistence" in Gaffer.Metadata.registeredValues( p ) ) self.assertTrue( "testPersistence" not in Gaffer.Metadata.registeredValues( p, persistentOnly = True ) ) def testPromoteWithName( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["n1"] = GafferTest.AddNode() p = Gaffer.PlugAlgo.promoteWithName( s["b"]["n1"]["op1"], 'newName' ) self.assertEqual( p.getName(), 'newName' ) def testPromotePlugWithDescendantValues( self ) : n = Gaffer.Node() n["a"] = Gaffer.Node() n["a"]["p"] = Gaffer.Plug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) n["a"]["p"]["c"] = Gaffer.Plug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) n["a"]["p"]["c"]["i"] = Gaffer.IntPlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) n["a"]["p"]["c"]["v"] = Gaffer.V3fPlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) n["a"]["p"]["c"]["i"].setValue( 10 ) n["a"]["p"]["c"]["v"].setValue( imath.V3f( 1, 2, 3 ) ) p = Gaffer.PlugAlgo.promote( n["a"]["p"] ) self.assertEqual( n["a"]["p"]["c"]["i"].getValue(), 10 ) self.assertEqual( n["a"]["p"]["c"]["v"].getValue(), imath.V3f( 1, 2, 3 ) ) def testPromoteNonSerialisableOutput( self ) : s = Gaffer.ScriptNode() s["b"] = Gaffer.Box() s["b"]["a"] = GafferTest.AddNode() s["b"]["a"]["sum"].setFlags( Gaffer.Plug.Flags.Serialisable, False ) Gaffer.PlugAlgo.promote( s["b"]["a"]["sum"] ) self.assertTrue( s["b"]["sum"].getInput().isSame( s["b"]["a"]["sum"] ) ) s2 = Gaffer.ScriptNode() s2.execute( s.serialise() ) self.assertTrue( s2["b"]["sum"].getInput().isSame( s2["b"]["a"]["sum"] ) ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python import rospy from std_msgs.msg import Float32MultiArray from sensor_msgs.msg import Joy EPS = 0.22 SPEED_FACTOR = 500 class teleJoy(object): def __init__(self): self.joy = rospy.Subscriber('/joy', Joy, self.__callback_func) self.pub = rospy.Publisher('/bot_vel', Float32MultiArray, queue_size=1) self.vels = [0.0, 0.0, 0.0, 0.0] #x, y, w, stop self.mode = 0 print('Initialized') def __mode(self, mode_truth): """This function can be used to select between different modes of driving. Assing any button to any action you want. """ pass def __callback_func(self, msg): """ Function to get called every time a new joystick msg is received. Args: msg (Joy): ROS msg containing bot speeds. """ if (abs(msg.axes[1]) > EPS): self.vels[0] = msg.axes[1] * SPEED_FACTOR else: self.vels[0] = 0.0 if (abs(msg.axes[0]) > EPS): self.vels[1] = msg.axes[0] * SPEED_FACTOR else: self.vels[1] = 0.0 if (abs(msg.axes[3]) > EPS): self.vels[2] = msg.axes[3] * SPEED_FACTOR else: self.vels[2] = 0.0 if msg.buttons[0] == 1: # stop button self.vels[3] = (self.vels[3] + 1) % 2 arr_msg = Float32MultiArray() arr_msg.data = self.vels rospy.sleep(0.001) self.pub.publish(arr_msg) rospy.loginfo('Data received: {}'.format(self.vels)) def __arr_pub(self, arr_msg): """ If there are more than one topic to publish, define a function to publish in order to make code cleaner. """ pass if __name__ == "__main__": rospy.init_node("bot_teleop_control") joy_ctrl = teleJoy() rospy.spin()
import math import sys file = 'input.txt' # For using test input instead of file input comment out following line # file = 'input_example.txt' with open(file) as f: t = f.read() # read complete file, results string of lines with endings print(' -------------- part 1: -------------- ') print(' -------------- read in tiles --------------') def revstr(s): return ''.join(reversed(s)) # Reversed returns reversed iterator. Join its results to empty string. tilesCount = 0 tilesBorder = dict() tilesPic = dict() for tile in t.split('\n\n'): # datasets separated by empty lines, change into list, lines still with endings tile = tile.split('\n') # lines in tile tile = [line.rstrip('\n') for line in tile] # each line without return # get name and tile description name = tile[0][-5:-1] # first line contains tile name ("Tile 3557:") tilePic = tile[1:] # the other lines contain the tile # get four strings of the border characters, borders read clockwise top = tilePic[0] bottom = ''.join(reversed(tilePic[-1])) # last line in reversed order left = ''.join(reversed([line[0] for line in tilePic])) # first column in reversed order right = ''.join([line[-1] for line in tilePic]) # last column # store results tilesCount += 1 tilesBorder[name] = (top, right, bottom, left) tilesPic[name] = tilePic tilesNoInLine = int(math.sqrt(tilesCount)) print("tileDim", tilesNoInLine) print() print('--- configure tiles in TSP_br17 (position, rotation, flip) with, in overlapping, consistent borders ----') # for each tile in the TSP_br17, store name, rotation, flip and resulting border in dictionaries tileNameAtPos = dict() rotAtPos = dict() flipAtPos = dict() tileBorderAtPos = dict() # for a given partial configuration up to previous tile, continue with next tile at tilePos # with the tiles in tileNames def configTiles(tilePos, tileNames): posY, posX = tilePos // tilesNoInLine, tilePos % tilesNoInLine # y/x of tile in TSP_br17 for tileName in tileNames: # at that position, try each of the given tiles t1, r1, b1, l1 = tilesBorder[tileName] for rot in range(4): # try every possible rotation if rot > 0: t1, r1, b1, l1 = l1, t1, r1, b1 # rotate border once for flip in range(2): # try both without and with vertical flip if flip > 0 or rot > 0: t1, r1, b1, l1 = revstr(b1), revstr(r1), revstr(t1), revstr(l1) # vertical flip border once if posX != 0: # if there is a left neighbor in TSP_br17 t2, r2, b2, l2 = tileBorderAtPos[tilePos - 1] if r2 != revstr(l1): # check, if its right boarder fits my left boarder, both top to bottom ok = False continue if posY != 0: # if there is a neighbor above in TSP_br17 t2, r2, b2, l2 = tileBorderAtPos[tilePos - tilesNoInLine] if revstr(b2) != t1: # check, if its bottom boarder fits my top boarder, both left to right ok = False continue # current tile configuration fits, store it to position tileNameAtPos[tilePos] = tileName tileBorderAtPos[tilePos] = (t1, r1, b1, l1) rotAtPos[tilePos] = rot flipAtPos[tilePos] = flip if tilePos == tilesCount - 1: # no further tiles to fit in: solution found tl, tr, br, bl = tileNameAtPos[0], \ tileNameAtPos[tilesNoInLine - 1], \ tileNameAtPos[tilesCount - tilesNoInLine], \ tileNameAtPos[tilesCount - 1] print(tl, tr, br, bl) print("res:", int(tl) * int(tr) * int(br) * int(bl)) return True else: # further tiles to fit in, try recursively further configuration ok = configTiles(tilePos + 1, [n for n in tileNames if n != tileName]) if ok: # return from found complete configuration return ok return False configTiles(0, list(tilesBorder)) print(tileNameAtPos) # 51214443014783 print() print('---------------- part 2 ------------------') tilesSize = len(tilesBorder[list(tilesBorder.keys())[0]][0]) # len(top(first tile)) print("tilesSize", tilesSize) print('--------- create full picture of the consistent configuration found in part 1 --------') picture = dict() for by in range(tilesNoInLine): for bx in range(tilesNoInLine): tilePos = by * tilesNoInLine + bx tileName = tileNameAtPos[tilePos] tileRot = rotAtPos[tilePos] tileFlip = flipAtPos[tilePos] tile = tilesPic[tileName] for y in range(tilesSize - 2): # two less, because top and bottom rows are left out for x in range(tilesSize - 2): # two less, because left and right columns are left out cx, cy = x + 1, y + 1 # access positions for leaving out top row and left column if tileFlip: cx, cy = cx, (tilesSize - 1) - cy # to flip tile vertically, flip get coordinates vertically for r in range(tileRot): cx, cy = (tilesSize - 1) - cy, cx # to rotate tile clockwise, rotate get coordinates ccw picture[(by * (tilesSize - 2) + y), (bx * (tilesSize - 2) + x)] = tile[cy][cx] # copy pixel picDim = tilesNoInLine * (tilesSize - 2) # we left out two pixels of boarder per tile, and have tilesNoInLine of it def testPrint(picture, picDim): for y in range(picDim): s = "" for x in range(picDim): s = s + picture[y, x] print(s) #testPrint(picture, picDim) print('--------- find monsters --------') # ------------------ monsterStrings = [ " # ", "# ## ## ###", " # # # # # # "] monsterHeight, monsterWidth = len(monsterStrings), len(monsterStrings[0]) monsterPosList = [ (y, x) for y in range(3) for x in range(20) if monsterStrings[y][x] == "#" ] print(monsterPosList) # try all combinations of rotation and with/without vertical flipping # of the picture to find any monsters for rot in range(4): for flip in range(2): rotPic = dict() for px in range(picDim): for py in range(picDim): cx, cy = px, py if flip: cx, cy = cx, (picDim - 1) - cy # to flip tile vertically, flip get coordinates vertically for r in range(rot): cx, cy = (picDim - 1) - cy, cx # to rotate tile clockwise, rotate get coordinates ccw rotPic[(py, px)] = picture[(cy, cx)] # search monster in positions in picture, where its dimensions would fit in monsterArea = set() for px in range(picDim - monsterWidth): for py in range(picDim - monsterHeight): ok = True for my, mx in monsterPosList: if rotPic[(py + my, px + mx)] != "#": ok = False # no monster here, if expected monster pixel is missing break if not ok: continue print("monster at", py, px) for my, mx in monsterPosList: monsterArea.add((py + my, px + mx)) if len(monsterArea) > 0: print("flip and rot:", flip, rot) testPrint(rotPic, picDim) print("monster area", len(monsterArea)) hashArea = len([ (x, y) for x in range(picDim) for y in range(picDim) if rotPic[(y, x)] == "#"]) print("rest", hashArea - len(monsterArea)) sys.exit() # rest 2065
import logging from re import T from algs_wrapper.base import Base logger = logging.getLogger(__name__) class VPCC(Base): def __init__(self): super().__init__() def make_encode_cmd(self, in_pcfile, bin_file): cmd = [ self._algs_cfg['encoder'], f'--uncompressedDataPath={in_pcfile}', f'--compressedStreamPath={bin_file}', '--configurationFolder=cfg/', '--config=cfg/common/ctc-common.cfg', f'--config={self._algs_cfg["condition_cfg"]}', f'--config={self._algs_cfg[self.rate]["rate_cfg"]}', f'--videoEncoderOccupancyPath={self._algs_cfg["videoEncoder"]}', f'--videoEncoderGeometryPath={self._algs_cfg["videoEncoder"]}', f'--videoEncoderAttributePath={self._algs_cfg["videoEncoder"]}', '--frameCount=1', '--computeMetrics=0', '--computeChecksum=0' ] try: assert self._has_color except AssertionError as e: logger.error( "V-PCC only supports point cloud with color, please check the " "input point cloud." ) raise e return cmd def make_decode_cmd(self, bin_file, out_pcfile): cmd = [ self._algs_cfg['decoder'], f'--compressedStreamPath={bin_file}', f'--reconstructedDataPath={out_pcfile}', f'--videoDecoderOccupancyPath={self._algs_cfg["videoDecoder"]}', f'--videoDecoderGeometryPath={self._algs_cfg["videoDecoder"]}', f'--videoDecoderAttributePath={self._algs_cfg["videoDecoder"]}', f'--inverseColorSpaceConversionConfig={self._algs_cfg["inverseColorSpaceConversionConfig"]}', '--computeMetrics=0', '--computeChecksum=0' ] return cmd
import glob import os SOUNDSCAPES_FOLDER = "../data/Analysis/" # input OUTPUT_FILE = "n_events.txt" output = [] for soundscape_jam in glob.glob(SOUNDSCAPES_FOLDER + "*.jams"): soundscape_name = str(os.path.basename(soundscape_jam).split(".")[0]) n_events = "err" with (open(soundscape_jam)) as jams_file: # "n_events": 14, for line in jams_file.readlines(): index = line.find("n_events") if index > -1: n_events = line[index + 11: index + 13] break output.append(soundscape_name + " " + n_events) with open(OUTPUT_FILE, 'w', newline="") as file: print("\r\n".join(output), file=file)
""" Protocol Constants """ """ Message Codes First Byte of Frame payload contains the messages code """ # TODO: Does not need a full byte to be transfered REQUEST = 0 REQUEST_ACK = 1 ACK = 2 RESPONSE_INFO = 3 DATA = 4 REQUEST_FIN = 5 """ IDs For a better performance: Lower IDs are better than higher IDs Identifier should dynamically match priority. This is ignored here for simplicity """ LOW_PRIO = 0xffffffff # Navigation NAV_HMI_RESP = 0x000001 NAV_HMI_REQ = 0x000011 # air conditioning AC_HMI_RESP = 0x000002 AC_HMI_REQ = 0x000021 # cd player CDP_HMI_RESP = 0x000003 CDP_HMI_REQ = 0x000031 """ Request Codes """ # Navigation NAV_REQ_DESTINATION = 10 # Air conditioning AC_REQ_TEMPERATURE = 20 # cd player CDP_REQ_TRACK_NO = 30
import json from typing import Optional import pytest from requests import Response from fidesops.schemas.saas.saas_config import SaaSRequest from fidesops.schemas.saas.shared_schemas import SaaSRequestParams, HTTPMethod from fidesops.common_exceptions import FidesopsException from fidesops.schemas.saas.strategy_configuration import ( OffsetPaginationConfiguration, ) from fidesops.service.pagination.pagination_strategy_offset import ( OffsetPaginationStrategy, ) @pytest.fixture(scope="function") def response_with_body(): response = Response() response._content = bytes( json.dumps({"conversations": [{"id": 1}, {"id": 2}, {"id": 3}]}), "utf-8", ) return response def test_offset(response_with_body): config = OffsetPaginationConfiguration( incremental_param="page", increment_by=1, limit=10 ) request_params: SaaSRequestParams = SaaSRequestParams( method=HTTPMethod.GET, path="/conversations", query_params={"page": 1}, ) paginator = OffsetPaginationStrategy(config) next_request: Optional[SaaSRequestParams] = paginator.get_next_request( request_params, {}, response_with_body, "conversations" ) assert next_request == SaaSRequestParams( method=HTTPMethod.GET, path="/conversations", query_params={"page": 2}, ) def test_offset_with_connector_param_reference(response_with_body): config = OffsetPaginationConfiguration( incremental_param="page", increment_by=1, limit={"connector_param": "limit"}, ) connector_params = {"limit": 10} request_params: SaaSRequestParams = SaaSRequestParams( method=HTTPMethod.GET, path="/conversations", query_params={"page": 1}, ) paginator = OffsetPaginationStrategy(config) next_request: Optional[SaaSRequestParams] = paginator.get_next_request( request_params, connector_params, response_with_body, "conversations" ) assert next_request == SaaSRequestParams( method=HTTPMethod.GET, path="/conversations", query_params={"page": 2}, ) def test_offset_with_connector_param_reference_not_found(response_with_body): config = OffsetPaginationConfiguration( incremental_param="page", increment_by=1, limit={"connector_param": "limit"}, ) request_params: SaaSRequestParams = SaaSRequestParams( method=HTTPMethod.GET, path="/conversations", query_params={"page": 1}, ) paginator = OffsetPaginationStrategy(config) with pytest.raises(FidesopsException) as exc: paginator.get_next_request( request_params, {}, response_with_body, "conversations" ) assert ( f"Unable to find value for 'limit' with the connector_param reference '{config.limit.connector_param}'" == str(exc.value) ) def test_offset_limit(response_with_body): config = OffsetPaginationConfiguration( incremental_param="page", increment_by=1, limit=10 ) request_params: SaaSRequestParams = SaaSRequestParams( method=HTTPMethod.GET, path="/conversations", query_params={"page": 10}, ) paginator = OffsetPaginationStrategy(config) next_request: SaaSRequestParams = paginator.get_next_request( request_params, {}, response_with_body, "conversations" ) assert next_request is None def test_offset_increment_by_zero(): with pytest.raises(ValueError) as exc: OffsetPaginationConfiguration( incremental_param="page", increment_by=0, limit=10 ) assert f"'increment_by' cannot be zero" in str(exc.value) def test_offset_increment_by_negative(): with pytest.raises(ValueError) as exc: OffsetPaginationConfiguration( incremental_param="page", increment_by=-1, limit=10 ) assert f"'increment_by' cannot be negative" in str(exc.value) def test_offset_missing_start_value(response_with_body): config = OffsetPaginationConfiguration( incremental_param="page", increment_by=1, limit=10 ) request_params: SaaSRequestParams = SaaSRequestParams( method=HTTPMethod.GET, path="/conversations", query_params={"row": 1}, ) paginator = OffsetPaginationStrategy(config) with pytest.raises(FidesopsException) as exc: paginator.get_next_request( request_params, {}, response_with_body, "conversations" ) assert ( f"Unable to find query param named '{config.incremental_param}' in request" == str(exc.value) ) def test_validate_request(): query_params = [{"name": "page", "value": 1}] pagination = { "strategy": "offset", "configuration": { "incremental_param": "page", "increment_by": 1, "limit": 10, }, } SaaSRequest(method="GET", path="/test", query_params=query_params, pagination=pagination) def test_validate_request_missing_param(): query_params = [{"name": "row", "value": 1}] pagination = { "strategy": "offset", "configuration": { "incremental_param": "page", "increment_by": 1, "limit": 10, }, } with pytest.raises(ValueError) as exc: SaaSRequest(method="GET", path="/test", query_params=query_params, pagination=pagination) assert "Query param 'page' not found." in str(exc.value)
#!/usr/bin/env python2 # -*- coding: utf8 -*- import sys reload(sys) sys.setdefaultencoding("utf8") import time from selenium import webdriver from bs4 import BeautifulSoup import codecs from selenium.common.exceptions import NoSuchElementException import os import os.path chrome_options = Options() chrome_options.add_experimental_option( "prefs",{'profile.managed_default_content_settings.javascript': 2}) driver = webdriver.Chrome('chromedriver',chrome_options=chrome_options) wait = WebDriverWait(driver, 10) # The file containing the links should be in the working directory or make sure that the command has the correct path. with open("urls.txt") as f: urls = f.readlines() # Checks if directory name "html" exists, if not, it creates directory. newpath = r'html' if not os.path.exists(newpath): os.makedirs(newpath) driver.get("http://www.dianping.com/search/keyword/58/0_%E6%B1%89%E5%A0%A1") Print("Diangping recently changed the architecture of their website. The old web site looks like Yelp while the new website looks more like Google Maps. Please review website before continuing") conti = input("Press 1 if page is new format (Looks like Google Maps), 2 if page is old style (Looks like Yelp), 0 to quit ") if conti==0: driver.quit() quit() elif conti == 2: snext = "next" elif conti == 1: snext = "NextPage" # function checks if there is more than one page with results def checkpages(url): try: driver.find_element_by_class_name(snext) return True except NoSuchElementException: return False # function saves every html page and names it by numerical order def htmlwriter(): n = len([name for name in os.listdir('.') if os.path.isfile(name)]) n1 = "%04d"%n html = driver.page_source html_file = codecs.open(str(n1) +".html", "w", "utf-8") print "retrieved " +str(n1) print driver.current_url html_file.write(html) html_file.close() for item in urls: driver.get(item) time.sleep(10) htmlwriter() while checkpages(driver)==True: try: time.sleep(10) element = driver.find_element_by_class_name(snext) element.click() except NoSuchElementException: htmlwriter() break time.sleep(2) htmlwriter() driver.quit()
import asyncio from chunk import Chunk from datetime import datetime import pickle from typing import Callable, Dict import numpy as np import open3d as o3d from .message import BaseMessage, ResponseMessage, MeshesMessage, DeformableMeshesMessage class MeshChunksHandler: """ A middleware to merge chunks into its MeshesMessage Params ------ next_handler: the method to deal with the reconstructed fully- received AddRigidBodyMeshMessage, or other messages """ def __init__(self, next_handler: Callable[[BaseMessage], None]): self.mesh_name_2_msg: Dict[str, MeshesMessage] = {} self.mesh_name_2_chunks: Dict[str, Chunk] = {} self.handler = next_handler def __call__(self, msg: BaseMessage): if isinstance(msg, MeshesMessage): self.mesh_name_2_msg[msg.mesh_name] = msg elif isinstance(msg, MeshesMessage.Chunk): name = msg.mesh_name if name not in self.mesh_name_2_chunks: self.mesh_name_2_chunks[name] = [msg] else: self.mesh_name_2_chunks[name].append(msg) # check whether all the chunks has been collected if name in self.mesh_name_2_msg and \ len(self.mesh_name_2_chunks[name]) == self.mesh_name_2_msg[name].chunk_num: self.mesh_name_2_chunks[name].sort(key = lambda x: x.chunk_id) meshmsg = self.mesh_name_2_msg[name] for chunk in self.mesh_name_2_chunks[name]: meshmsg.chunks.append(chunk) del self.mesh_name_2_chunks[name] del self.mesh_name_2_msg[name] if name.startswith("MPM::MESHES::"): # a open3d re-constructed meshes from point cloud pcdMessage: DeformableMeshesMessage = pickle.loads(meshmsg.mesh_file) self.handler(pcdMessage) else: # a nomal meshes self.handler(meshmsg) else: self.handler(msg) class AsyncServer: """ An async server Params ------ message_handler: a callback to hangle the incoming message **NOTE** You don't need to care about the chunks of a mesh file, because the above middleware will merge the chunks into one AddMeshMessageHandler """ def __init__(self, message_handler: Callable[[BaseMessage], None], logger:Callable[[str], None] = None) -> None: self.message_handler = MeshChunksHandler(message_handler) self.logger = logger if logger else (lambda s: print('[DEBUG]', datetime.now(), s)) async def _handle_incoming_request(self, reader: asyncio.StreamReader, writer): """ When there is request coming from the client, the method retrieve the message object from the request, verify the message, respond to the client and finally invoke the callback `message_handler` to deal with the message Params ------ reader: from which the request is to be read writer: to which the response will be written """ bstr, done = b'', False while not done: line = await reader.read(1024) bstr += line done = len(line) < 1024 self.logger(f"{len(bstr)} bytes are read") request, err = BaseMessage.unpack(bstr) self.logger(f"No.{request.message_idx if request != None else 'Unknow'} message of type {type(request)} is decoded with error: {err}, preparing response") if request != None: response = ResponseMessage(request.message_idx, err) else: response = ResponseMessage(0, err) writer.write(pickle.dumps(response)) await writer.drain() self.logger(f"No.{request.message_idx if request != None else 'Unknow'} message's response has been sent") writer.close() self.logger(f"connection terminated") if not err: self.message_handler(request) async def run_server(self): """ Start the server Call asyncio.run(server.run_server()) in the main to start. """ self.logger(f"starting server at 127.0.0.1:{BaseMessage.port}") server = await asyncio.start_server( self._handle_incoming_request, '127.0.0.1', BaseMessage.port ) async with server: await server.serve_forever()
# coding=utf-8 # Copyright 2018 The Batfish Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains Batfish client commands that query the Batfish service.""" from __future__ import absolute_import, print_function import base64 import json import logging import os import tempfile from typing import Any, Dict, List, Optional, Union # noqa: F401 import six from requests import HTTPError from pybatfish.client.consts import CoordConsts, WorkStatusCode from pybatfish.client.diagnostics import (_upload_diagnostics, _warn_on_snapshot_failure) from pybatfish.datamodel.primitives import ( # noqa: F401 AutoCompleteSuggestion, AutoCompletionType, Edge, Interface) from pybatfish.datamodel.referencelibrary import (NodeRoleDimension, NodeRolesData, ReferenceBook, ReferenceLibrary) from pybatfish.exception import BatfishException from pybatfish.settings.issues import IssueConfig # noqa: F401 from pybatfish.util import (BfJsonEncoder, get_uuid, validate_name, zip_dir) from . import resthelper, restv2helper, workhelper from .options import Options from .session import Session from .workhelper import (get_work_status, kill_work) # TODO: normally libraries don't configure logging in code _bfDebug = True bf_logger = logging.getLogger("pybatfish.client") bf_session = Session(bf_logger) if _bfDebug: bf_logger.setLevel(logging.INFO) bf_logger.addHandler(logging.StreamHandler()) else: bf_logger.addHandler(logging.NullHandler()) __all__ = ['bf_add_analysis', 'bf_add_issue_config', 'bf_add_node_role_dimension', 'bf_add_reference_book', 'bf_auto_complete', 'bf_delete_analysis', 'bf_delete_issue_config', 'bf_delete_network', 'bf_delete_node_role_dimension', 'bf_delete_reference_book', 'bf_delete_snapshot', 'bf_extract_answer_summary', 'bf_fork_snapshot', 'bf_generate_dataplane', 'bf_get_analysis_answers', 'bf_get_answer', 'bf_get_info', 'bf_get_issue_config', 'bf_get_node_role_dimension', 'bf_get_node_roles', 'bf_get_reference_book', 'bf_get_reference_library', 'bf_get_snapshot_inferred_node_role_dimension', 'bf_get_snapshot_inferred_node_roles', 'bf_get_snapshot_node_role_dimension', 'bf_get_snapshot_node_roles', 'bf_get_work_status', 'bf_init_analysis', 'bf_init_snapshot', 'bf_kill_work', 'bf_list_analyses', 'bf_list_networks', 'bf_list_incomplete_works', 'bf_list_questions', 'bf_list_snapshots', 'bf_logger', 'bf_put_node_roles', 'bf_read_question_settings', 'bf_run_analysis', 'bf_session', 'bf_set_network', 'bf_set_snapshot', 'bf_upload_diagnostics', 'bf_write_question_settings'] def bf_add_analysis(analysisName, questionDirectory): return _bf_init_or_add_analysis(analysisName, questionDirectory, False) def bf_add_issue_config(issue_config): # type: (IssueConfig) -> None """ Add or update the active network's configuration for an issue . :param issue_config: The IssueConfig object to add or update :type issue_config: :class:`pybatfish.settings.issues.IssueConfig` """ restv2helper.add_issue_config(bf_session, issue_config) def bf_add_node_role_dimension(dimension): # type: (NodeRoleDimension) -> None """ Adds another role dimension to the active network. Individual roles within the dimension must have a valid (java) regex. The node list within those roles, if present, is ignored by the server. :param dimension: The NodeRoleDimension object for the dimension to add :type dimension: :class:`pybatfish.datamodel.referencelibrary.NodeRoleDimension` """ if dimension.type == "AUTO": raise ValueError("Cannot add a dimension of type AUTO") restv2helper.add_node_role_dimension(bf_session, dimension) def bf_add_reference_book(book): # type: (ReferenceBook) -> None """ Adds another reference book to the active network. :param book: The ReferenceBook object to add :type book: :class:`pybatfish.datamodel.referencelibrary.ReferenceBook` """ restv2helper.add_reference_book(bf_session, book) def bf_auto_complete(completionType, query, maxSuggestions=None): # type: (AutoCompletionType, str, Optional[int]) -> List[AutoCompleteSuggestion] """Auto complete the partial query based on its type.""" jsonData = workhelper.get_data_auto_complete(bf_session, completionType, query, maxSuggestions) response = resthelper.get_json_response(bf_session, CoordConsts.SVC_RSC_AUTO_COMPLETE, jsonData) if CoordConsts.SVC_KEY_SUGGESTIONS in response: suggestions = [AutoCompleteSuggestion.from_dict(json.loads(suggestion)) for suggestion in response[CoordConsts.SVC_KEY_SUGGESTIONS]] return suggestions raise BatfishException("Unexpected response: {}.".format(response)) def bf_delete_analysis(analysisName): jsonData = workhelper.get_data_delete_analysis(bf_session, analysisName) jsonResponse = resthelper.get_json_response(bf_session, CoordConsts.SVC_RSC_DEL_ANALYSIS, jsonData) return jsonResponse def bf_delete_issue_config(major, minor): # type: (str, str) -> None """Deletes the issue config for the active network.""" restv2helper.delete_issue_config(bf_session, major, minor) def bf_delete_network(name): # type: (str) -> None """ Delete network by name. :param name: name of the network to delete :type name: string """ if name is None: raise ValueError('Network to be deleted must be supplied') jsonData = workhelper.get_data_delete_network(bf_session, name) resthelper.get_json_response(bf_session, CoordConsts.SVC_RSC_DEL_NETWORK, jsonData) def bf_delete_node_role_dimension(dimension): # type: (str) -> None """Deletes the definition of the given role dimension for the active network.""" restv2helper.delete_node_role_dimension(bf_session, dimension) def bf_delete_reference_book(book_name): # type: (str) -> None """Deletes the reference book with the specified name for the active network.""" restv2helper.delete_reference_book(bf_session, book_name) def bf_delete_snapshot(name): # type: (str) -> None """ Delete named snapshot from current network. :param name: name of the snapshot to delete :type name: string """ _check_network() if name is None: raise ValueError('Snapshot to be deleted must be supplied') json_data = workhelper.get_data_delete_snapshot(bf_session, name) resthelper.get_json_response(bf_session, CoordConsts.SVC_RSC_DEL_SNAPSHOT, json_data) def bf_extract_answer_summary(answer_dict): """Get the answer for a previously asked question.""" if "status" not in answer_dict or answer_dict["status"] != "SUCCESS": raise BatfishException("Question was not answered successfully") if "summary" not in answer_dict: raise BatfishException("Summary not found in the answer") return answer_dict["summary"] def bf_fork_snapshot(base_name, name=None, overwrite=False, background=False, deactivate_interfaces=None, deactivate_links=None, deactivate_nodes=None, restore_interfaces=None, restore_links=None, restore_nodes=None, add_files=None): # type: (str, Optional[str], bool, bool, Optional[List[Interface]], Optional[List[Edge]], Optional[List[str]], Optional[List[Interface]], Optional[List[Edge]], Optional[List[str]], Optional[str]) -> Union[str, Dict, None] """Copy an existing snapshot and deactivate or reactivate specified interfaces, nodes, and links on the copy. :param base_name: name of the snapshot to copy :type base_name: string :param name: name of the snapshot to initialize :type name: string :param overwrite: whether or not to overwrite an existing snapshot with the same name :type overwrite: bool :param background: whether or not to run the task in the background :type background: bool :param deactivate_interfaces: list of interfaces to deactivate in new snapshot :type deactivate_interfaces: list[Interface] :param deactivate_links: list of links to deactivate in new snapshot :type deactivate_links: list[Edge] :param deactivate_nodes: list of names of nodes to deactivate in new snapshot :type deactivate_nodes: list[str] :param restore_interfaces: list of interfaces to reactivate :type restore_interfaces: list[Interface] :param restore_links: list of links to reactivate :type restore_links: list[Edge] :param restore_nodes: list of names of nodes to reactivate :type restore_nodes: list[str] :param add_files: path to zip file or directory containing files to add :type add_files: str :return: name of initialized snapshot, JSON dictionary of task status if background=True, or None if the call fails :rtype: Union[str, Dict, None] """ if bf_session.network is None: raise ValueError('Network must be set to fork a snapshot.') if name is None: name = Options.default_snapshot_prefix + get_uuid() validate_name(name) if name in bf_list_snapshots(): if overwrite: bf_delete_snapshot(name) else: raise ValueError( 'A snapshot named ''{}'' already exists in network ''{}'''.format( name, bf_session.network)) encoded_file = None if add_files is not None: file_to_send = add_files if os.path.isdir(add_files): temp_zip_file = tempfile.NamedTemporaryFile() zip_dir(add_files, temp_zip_file) file_to_send = temp_zip_file.name if os.path.isfile(file_to_send): with open(file_to_send, "rb") as f: encoded_file = base64.b64encode(f.read()).decode('ascii') json_data = { "snapshotBase": base_name, "snapshotNew": name, "deactivateInterfaces": deactivate_interfaces, "deactivateLinks": deactivate_links, "deactivateNodes": deactivate_nodes, "restoreInterfaces": restore_interfaces, "restoreLinks": restore_links, "restoreNodes": restore_nodes, "zipFile": encoded_file } restv2helper.fork_snapshot(bf_session, json_data) return _parse_snapshot(name, background) def bf_generate_dataplane(snapshot=None): # type: (Optional[str]) -> str """Generates the data plane for the supplied snapshot. If no snapshot argument is given, uses the last snapshot initialized.""" snapshot = bf_session.get_snapshot(snapshot) work_item = workhelper.get_workitem_generate_dataplane(bf_session, snapshot) answer_dict = workhelper.execute(work_item, bf_session) return str(answer_dict["status"].value) def bf_get_analysis_answers(name, snapshot=None, reference_snapshot=None): # type: (str, str, Optional[str]) -> Any """Get the answers for a previously asked analysis.""" snapshot = bf_session.get_snapshot(snapshot) json_data = workhelper.get_data_get_analysis_answers( bf_session, name, snapshot, reference_snapshot) json_response = resthelper.get_json_response( bf_session, CoordConsts.SVC_RSC_GET_ANALYSIS_ANSWERS, json_data) answers_dict = json.loads(json_response['answers']) return answers_dict def bf_get_answer(questionName, snapshot, reference_snapshot=None): # type: (str, str, Optional[str]) -> Any """ Get the answer for a previously asked question. :param questionName: the unique identifier of the previously asked question :param snapshot: the snapshot the question is run on :param reference_snapshot: if present, the snapshot against which the answer was computed differentially. """ jsonData = workhelper.get_data_get_answer(bf_session, questionName, snapshot, reference_snapshot) response = resthelper.get_json_response(bf_session, CoordConsts.SVC_RSC_GET_ANSWER, jsonData) answerJson = json.loads(response["answer"]) return answerJson def bf_get_info(): jsonResponse = resthelper.get_json_response(bf_session, '', useHttpGet=True) return jsonResponse def bf_get_issue_config(major, minor): # type: (str, str) -> IssueConfig """Returns the issue config for the active network.""" return IssueConfig.from_dict( restv2helper.get_issue_config(bf_session, major, minor)) def bf_get_node_role_dimension(dimension): # type: (str) -> NodeRoleDimension """Returns the definition of the given node role dimension for the active network.""" return NodeRoleDimension.from_dict( restv2helper.get_node_role_dimension(bf_session, dimension)) def bf_get_node_roles(): # type: () -> NodeRolesData """Returns the definitions of node roles for the active network.""" return NodeRolesData.from_dict(restv2helper.get_node_roles(bf_session)) def bf_get_reference_book(book_name): # type: (str) -> ReferenceBook """Returns the reference book with the specified for the active network.""" return ReferenceBook.from_dict( restv2helper.get_reference_book(bf_session, book_name)) def bf_get_reference_library(): # type: () -> ReferenceLibrary """Returns the reference library for the active network.""" return ReferenceLibrary.from_dict( restv2helper.get_reference_library(bf_session)) def bf_get_snapshot_inferred_node_roles(): # type: () -> NodeRolesData """Gets suggested definitions and hypothetical assignments of node roles for the active network and snapshot.""" return NodeRolesData.from_dict( restv2helper.get_snapshot_inferred_node_roles(bf_session)) def bf_get_snapshot_inferred_node_role_dimension(dimension): # type: (str) -> NodeRoleDimension """Gets the suggested definition and hypothetical assignments of node roles for the given inferred dimension for the active network and snapshot.""" return NodeRoleDimension.from_dict( restv2helper.get_snapshot_inferred_node_role_dimension(bf_session, dimension)) def bf_get_snapshot_node_roles(): # type: () -> NodeRolesData """Returns the definitions and assignments of node roles for the active network and snapshot.""" return NodeRolesData.from_dict( restv2helper.get_snapshot_node_roles(bf_session)) def bf_get_snapshot_node_role_dimension(dimension): # type: (str) -> NodeRoleDimension """Returns the defintion and assignments of node roles for the given dimension for the active network and snapshot.""" return NodeRoleDimension.from_dict( restv2helper.get_snapshot_node_role_dimension(bf_session, dimension)) def bf_get_work_status(wItemId): return get_work_status(wItemId, bf_session) def _bf_init_or_add_analysis(analysisName, questionDirectory, newAnalysis): from pybatfish.question.question import _load_questions_from_dir _check_network() questions = _load_questions_from_dir(questionDirectory) analysis = { question_name: question_class(question_name=question_name) for question_name, question_class in six.iteritems(questions) } with tempfile.NamedTemporaryFile() as tempFile: with open(tempFile.name, 'w') as analysisFile: json.dump(analysis, analysisFile, indent=2, sort_keys=True, cls=BfJsonEncoder) json_data = workhelper.get_data_configure_analysis( bf_session, newAnalysis, analysisName, tempFile.name, None) json_response = resthelper.get_json_response( bf_session, CoordConsts.SVC_RSC_CONFIGURE_ANALYSIS, json_data) return json_response def bf_init_analysis(analysisName, questionDirectory): return _bf_init_or_add_analysis(analysisName, questionDirectory, True) def bf_init_snapshot(upload, name=None, overwrite=False, background=False): # type: (str, Optional[str], bool, bool) -> Union[str, Dict[str, str]] """Initialize a new snapshot. :param upload: snapshot to upload :type upload: zip file or directory :param name: name of the snapshot to initialize :type name: string :param overwrite: whether or not to overwrite an existing snapshot with the same name :type overwrite: bool :param background: whether or not to run the task in the background :type background: bool :return: name of initialized snapshot, or JSON dictionary of task status if background=True :rtype: Union[str, Dict] """ if name is None: name = Options.default_snapshot_prefix + get_uuid() validate_name(name) if bf_session.network is None: bf_set_network() if name in bf_list_snapshots(): if overwrite: bf_delete_snapshot(name) else: raise ValueError( 'A snapshot named ''{}'' already exists in network ''{}'''.format( name, bf_session.network)) file_to_send = upload if os.path.isdir(upload): temp_zip_file = tempfile.NamedTemporaryFile() zip_dir(upload, temp_zip_file) file_to_send = temp_zip_file.name json_data = workhelper.get_data_upload_snapshot(bf_session, name, file_to_send) resthelper.get_json_response(bf_session, CoordConsts.SVC_RSC_UPLOAD_SNAPSHOT, json_data) return _parse_snapshot(name, background) def _parse_snapshot(name, background): # type: (str, bool) -> Union[str, Dict[str, str]] """Parse specified snapshot. :param name: name of the snapshot to initialize :type name: str :param background: whether or not to run the task in the background :type background: bool :return: name of initialized snapshot, or JSON dictionary of task status if background=True :rtype: Union[str, Dict] """ work_item = workhelper.get_workitem_parse(bf_session, name) answer_dict = workhelper.execute(work_item, bf_session, background=background) if background: bf_session.baseSnapshot = name return answer_dict status = WorkStatusCode(answer_dict["status"]) if status != WorkStatusCode.TERMINATEDNORMALLY: init_log = restv2helper.get_work_log(bf_session, name, work_item.id) raise BatfishException( 'Initializing snapshot {ss} failed with status {status}\n{log}'.format( ss=name, status=status, log=init_log)) else: bf_session.baseSnapshot = name bf_logger.info("Default snapshot is now set to %s", bf_session.baseSnapshot) if bf_session.enable_diagnostics: _warn_on_snapshot_failure() return bf_session.baseSnapshot def bf_kill_work(wItemId): return kill_work(bf_session, wItemId) def bf_list_analyses(): _check_network() jsonData = workhelper.get_data_list_analyses(bf_session) jsonResponse = resthelper.get_json_response(bf_session, CoordConsts.SVC_RSC_LIST_ANALYSES, jsonData) answer = jsonResponse['analysislist'] return answer def bf_list_networks(): # type: () -> List[str] """ List networks the session's API key can access. :return: a list of network names """ json_data = workhelper.get_data_list_networks(bf_session) json_response = resthelper.get_json_response( bf_session, CoordConsts.SVC_RSC_LIST_NETWORKS, json_data) return list(map(str, json_response['networklist'])) def bf_list_incomplete_works(): jsonData = workhelper.get_data_list_incomplete_work(bf_session) jsonResponse = resthelper.get_json_response(bf_session, CoordConsts.SVC_RSC_LIST_INCOMPLETE_WORK, jsonData) return jsonResponse def bf_list_questions(): _check_network() jsonData = workhelper.get_data_list_questions(bf_session) jsonResponse = resthelper.get_json_response(bf_session, CoordConsts.SVC_RSC_LIST_QUESTIONS, jsonData) answer = jsonResponse['questionlist'] return answer def bf_list_snapshots(verbose=False): # type: (bool) -> Union[List[str], List[Dict[str,Any]]] """ List snapshots for the current network. :param verbose: If true, return the full output of Batfish, including snapshot metadata. :return: a list of snapshot names or the full json response containing snapshots and metadata (if `verbose=True`) """ return restv2helper.list_snapshots(bf_session, verbose) def bf_put_node_roles(node_roles_data): # type: (NodeRolesData) -> None """Writes the definitions of node roles for the active network. Completely replaces any existing definitions.""" restv2helper.put_node_roles(bf_session, node_roles_data) def bf_read_question_settings(question_class, json_path=None): # type: (str, Optional[List[str]]) -> Dict[str, Any] """ Retrieves the network-wide JSON settings tree for the specified question class. :param question_class: The class of question whose settings are to be read :type question_class: string :param json_path: If supplied, return only the subtree reached by successively traversing each key in json_path starting from the root. :type json_path: list """ return restv2helper.read_question_settings(bf_session, question_class, json_path) def bf_run_analysis(name, snapshot, reference_snapshot=None): # type: (str, str, Optional[str]) -> Any work_item = workhelper.get_workitem_run_analysis( bf_session, name, snapshot, reference_snapshot) work_answer = workhelper.execute(work_item, bf_session) if work_answer["status"] != WorkStatusCode.TERMINATEDNORMALLY: raise BatfishException("Failed to run analysis") return bf_get_analysis_answers(name, snapshot, reference_snapshot) def bf_set_network(name=None, prefix=Options.default_network_prefix): # type: (str, str) -> str """ Configure the network used for analysis. :param name: name of the network to set. If `None`, a name will be generated using prefix. :type name: string :param prefix: prefix to prepend to auto-generated network names if name is empty :type name: string :return: The name of the configured network, if configured successfully. :rtype: string :raises BatfishException: if configuration fails """ if name is None: name = prefix + get_uuid() validate_name(name, "network") try: net = restv2helper.get_network(bf_session, name) bf_session.network = str(net['name']) return bf_session.network except HTTPError as e: if e.response.status_code != 404: raise BatfishException('Unknown error accessing network', e) json_data = workhelper.get_data_init_network(bf_session, name) json_response = resthelper.get_json_response( bf_session, CoordConsts.SVC_RSC_INIT_NETWORK, json_data) network_name = json_response.get(CoordConsts.SVC_KEY_NETWORK_NAME) if network_name is None: raise BatfishException( "Network initialization failed. Server response: {}".format( json_response)) bf_session.network = str(network_name) return bf_session.network def bf_set_snapshot(name=None, index=None): # type: (Optional[str], Optional[int]) -> str """ Set the current snapshot by name or index. :param name: name of the snapshot to set as the current snapshot :type name: string :param index: set the current snapshot to the ``index``-th most recent snapshot :type index: int :return: the name of the successfully set snapshot :rtype: str """ if name is None and index is None: raise ValueError('One of name and index must be set') if name is not None and index is not None: raise ValueError('Only one of name and index can be set') snapshots = bf_list_snapshots() # Index specified, simply give the ith snapshot if index is not None: if not (-len(snapshots) <= index < len(snapshots)): raise IndexError( "Server has only {} snapshots: {}".format( len(snapshots), snapshots)) bf_session.baseSnapshot = str(snapshots[index]) # Name specified, make sure it exists. else: assert name is not None # type-hint to Python if name not in snapshots: raise ValueError( 'No snapshot named ''{}'' was found in network ''{}'': {}'.format( name, bf_session.network, snapshots)) bf_session.baseSnapshot = name bf_logger.info("Default snapshot is now set to %s", bf_session.baseSnapshot) return bf_session.baseSnapshot def bf_upload_diagnostics(dry_run=True, netconan_config=None): # type: (bool, str) -> str """ Fetch, anonymize, and optionally upload snapshot diagnostics information. This runs a series of diagnostic questions on the current snapshot (including collecting parsing and conversion information). The information collected is anonymized with `Netconan <https://github.com/intentionet/netconan>`_ which either anonymizes passwords and IP addresses (default) or uses the settings in the provided `netconan_config`. The anonymous information is then either saved locally (if `dry_run` is True) or uploaded to Batfish developers (if `dry_run` is False). The uploaded information will be accessible only to Batfish developers and will be used to help diagnose any issues you encounter. :param dry_run: whether or not to skip upload; if False, anonymized files will be stored locally, otherwise anonymized files will be uploaded to Batfish developers :type dry_run: bool :param netconan_config: path to Netconan configuration file :type netconan_config: string :return: location of anonymized files (local directory if doing dry run, otherwise upload ID) :rtype: string """ return _upload_diagnostics(dry_run=dry_run, netconan_config=netconan_config) def bf_write_question_settings(settings, question_class, json_path=None): # type: (Dict[str, Any], str, Optional[List[str]]) -> None """ Write the network-wide JSON settings tree for the specified question class. :param settings: The JSON representation of the settings to be written :type settings: dict :param question_class: The class of question to configure :type question_class: string :param json_path: If supplied, write settings to the subtree reached by successively traversing each key in json_path starting from the root. Any absent keys along the path will be created. :type json_path: list """ restv2helper.write_question_settings(bf_session, settings, question_class, json_path) def _check_network(): """Check if current network is set.""" if bf_session.network is None: raise BatfishException("Network is not set")
# encoding: utf-8 __author__ = 'jesuejunior'
"""Task definitions for machine translation tasks.""" import codecs import collections import math import os from typing import Iterable, List, Sequence, Type from allennlp.data import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer from allennlp.training.metrics import Average from ..utils.data_loaders import process_sentence from .registry import register_task from .tasks import ( UNK_TOK_ALLENNLP, UNK_TOK_ATOMIC, SequenceGenerationTask, atomic_tokenize, sentence_to_text_field, ) # TODO: remove dummy / debug tasks @register_task("wmt_debug", rel_path="wmt_debug/", max_targ_v_size=5000) @register_task("wmt17_en_ru", rel_path="wmt17_en_ru/", max_targ_v_size=20000) @register_task("wmt14_en_de", rel_path="wmt14_en_de/", max_targ_v_size=20000) class MTTask(SequenceGenerationTask): """Machine Translation Task""" def __init__(self, path, max_seq_len, max_targ_v_size, name, **kw): """ """ super().__init__(name, **kw) self.scorer1 = Average() self.scorer2 = Average() self.scorer3 = Average() self.scorers = [self.scorer1, self.scorer2, self.scorer3] self.val_metric = "%s_perplexity" % self.name self.val_metric_decreases = True self.max_seq_len = max_seq_len self._label_namespace = self.name + "_tokens" self.max_targ_v_size = max_targ_v_size self.target_indexer = {"words": SingleIdTokenIndexer(namespace=self._label_namespace)} self.files_by_split = { split: os.path.join(path, "%s.txt" % split) for split in ["train", "val", "test"] } def load_data(self): # Data is exposed as iterable: no preloading pass def get_split_text(self, split: str): """ Get split text as iterable of records. Split should be one of 'train', 'val', or 'test'. """ return self.get_data_iter(self.files_by_split[split]) def get_all_labels(self) -> List[str]: """ Build vocabulary and return it as a list """ word2freq = collections.Counter() for split in ["train", "val"]: for _, sent in self.get_data_iter(self.files_by_split[split]): for word in sent: word2freq[word] += 1 return [w for w, _ in word2freq.most_common(self.max_targ_v_size)] def get_data_iter(self, path): """ Load data """ with codecs.open(path, "r", "utf-8", errors="ignore") as txt_fh: for row in txt_fh: row = row.strip().split("\t") if len(row) < 2 or not row[0] or not row[1]: continue src_sent = process_sentence(self._tokenizer_name, row[0], self.max_seq_len) # Currently: force Moses tokenization on targets tgt_sent = process_sentence("MosesTokenizer", row[1], self.max_seq_len) yield (src_sent, tgt_sent) def get_sentences(self) -> Iterable[Sequence[str]]: """ Yield sentences, used to compute vocabulary. """ for split in self.files_by_split: # Don't use test set for vocab building. if split.startswith("test"): continue path = self.files_by_split[split] yield from self.get_data_iter(path) def count_examples(self): """ Compute here b/c we're streaming the sentences. """ example_counts = {} for split, split_path in self.files_by_split.items(): example_counts[split] = sum( 1 for _ in codecs.open(split_path, "r", "utf-8", errors="ignore") ) self.example_counts = example_counts def process_split(self, split, indexers) -> Iterable[Type[Instance]]: """ Process split text into a list of AllenNLP Instances. """ def _make_instance(input_, target): d = { "inputs": sentence_to_text_field(input_, indexers), "targs": sentence_to_text_field(target, self.target_indexer), } return Instance(d) for sent1, sent2 in split: yield _make_instance(sent1, sent2) def get_metrics(self, reset=False): """Get metrics specific to the task""" avg_nll = self.scorer1.get_metric(reset) unk_ratio_macroavg = self.scorer3.get_metric(reset) return { "perplexity": math.exp(avg_nll), "bleu_score": 0, "unk_ratio_macroavg": unk_ratio_macroavg, } @register_task("reddit_s2s", rel_path="Reddit/", max_targ_v_size=0) @register_task("reddit_s2s_3.4G", rel_path="Reddit_3.4G/", max_targ_v_size=0) class RedditSeq2SeqTask(MTTask): """ Task for seq2seq using reddit data Note: max_targ_v_size doesn't do anything here b/c the target is in English""" def __init__(self, path, max_seq_len, max_targ_v_size, name, **kw): super().__init__( path=path, max_seq_len=max_seq_len, max_targ_v_size=max_targ_v_size, name=name, **kw ) self._label_namespace = None self.target_indexer = {"words": SingleIdTokenIndexer("tokens")} self.files_by_split = { "train": os.path.join(path, "train.csv"), "val": os.path.join(path, "val.csv"), "test": os.path.join(path, "test.csv"), } def get_data_iter(self, path): """ Load data """ with codecs.open(path, "r", "utf-8", errors="ignore") as txt_fh: for row in txt_fh: row = row.strip().split("\t") if len(row) < 4 or not row[2] or not row[3]: continue src_sent = process_sentence(self._tokenizer_name, row[2], self.max_seq_len) tgt_sent = process_sentence(self._tokenizer_name, row[3], self.max_seq_len) yield (src_sent, tgt_sent) def process_split(self, split, indexers) -> Iterable[Type[Instance]]: """ Process split text into a list of AllenNLP Instances. """ def _make_instance(input_, target): d = { "inputs": sentence_to_text_field(input_, indexers), "targs": sentence_to_text_field(target, self.target_indexer), } return Instance(d) for sent1, sent2 in split: yield _make_instance(sent1, sent2) @register_task("wiki2_s2s", rel_path="WikiText2/", max_targ_v_size=0) @register_task("wiki103_s2s", rel_path="WikiText103/", max_targ_v_size=0) class Wiki103Seq2SeqTask(MTTask): """ Skipthought objective on Wiki103 """ def __init__(self, path, max_seq_len, max_targ_v_size, name, **kw): """ Note: max_targ_v_size does nothing here """ super().__init__(path, max_seq_len, max_targ_v_size, name, **kw) # for skip-thoughts setting, all source sentences are sentences that # followed by another sentence (which are all but the last one). # Similar for self.target_sentences self._nonatomic_toks = [UNK_TOK_ALLENNLP, "<unk>"] self._label_namespace = None self.target_indexer = {"words": SingleIdTokenIndexer("tokens")} self.files_by_split = { "train": os.path.join(path, "train.sentences.txt"), "val": os.path.join(path, "valid.sentences.txt"), "test": os.path.join(path, "test.sentences.txt"), } def get_data_iter(self, path): """ Load data """ nonatomic_toks = self._nonatomic_toks with codecs.open(path, "r", "utf-8", errors="ignore") as txt_fh: for row in txt_fh: toks = row.strip() if not toks: continue sent = atomic_tokenize( toks, UNK_TOK_ATOMIC, nonatomic_toks, self.max_seq_len, tokenizer_name=self._tokenizer_name, ) yield sent, [] @classmethod def get_num_examples(cls, split_text): """ Return number of examples in the result of get_split_text. Subclass can override this if data is not stored in column format. """ # pair sentences# = sent# - 1 return len(split_text) - 1 def process_split(self, split, indexers) -> Iterable[Type[Instance]]: """ Process a language modeling split. Split is a single list of sentences here. """ def _make_instance(prev_sent_, sent_): d = { "inputs": sentence_to_text_field(prev_sent_, indexers), "targs": sentence_to_text_field(sent_, self.target_indexer), } return Instance(d) prev_sent = None for sent, _ in split: if prev_sent is None: prev_sent = sent continue yield _make_instance(prev_sent, sent) prev_sent = sent
import os from uploader.api import ( get_repo_list, create_repo, get_repo, upload_file, get_share_link, get_token ) from uploader.logger import get_logger logger = get_logger(__name__) def upload_local_file( server, token, repo_id, upload_url, repo_path, file_path, replace=True ): file_name = os.path.basename(file_path) with open(file_path, 'rb') as file_obj: return ( upload_file( server, token, repo_id, upload_url, repo_path, file_name, file_obj, replace ), file_name ) def get_target_repo(server, token, repo_name): logger.info('Looking for library "{}"'.format(repo_name)) for repo in get_repo_list(server, token): if repo['name'] == repo_name: return repo logger.info('Creating library "{}"'.format(repo_name)) return get_repo( server, token, create_repo(server, token, repo_name)['repo_id'] ) def upload( server, filepath, token, login, password, reponame, repoid, uploadurl, repopath, fpassword, fexpiration ): try: logger.info('Seafile-uploader started') if not token: token = get_token(server, login, password) if not repoid: repo = get_target_repo(server, token, reponame) repoid = repo['id'] logger.info('Uploading "{}"'.format(filepath)) _, file_name = upload_local_file( server, token, repoid, uploadurl, repopath, filepath ) library_file_path = repopath + file_name logger.info('Getting share link of "{}"'.format(library_file_path)) link = get_share_link( server, token, repoid, library_file_path, password=fpassword, expire_days=fexpiration ) logger.info('Success: {}'.format(link)) except Exception as err: logger.error(err) return err return link
from django.contrib.gis.db import models from django.utils.translation import ugettext_lazy as _ from ..reversion_utils import InitialRevisionManagerMixin class WaterParcelManager(InitialRevisionManagerMixin, models.GeoManager): pass class WaterParcel(models.Model): """ A parcel defined by the Philadelphia Water Department. May not be strictly the same as parcels as defined by Records. """ objects = WaterParcelManager() geometry = models.MultiPolygonField(_('geometry'), blank=True, null=True) # IDs parcel_id = models.CharField(_('parcel id'), max_length=20, blank=True, null=True, help_text=_('The parcel ID assigned by the Water Dept'), ) parcelid = models.IntegerField(_('parcel id (int)'), blank=True, null=True, help_text=_('The parcel ID assigned by the Water Dept'), ) brt_account = models.CharField(_('BRT account'), max_length=20, blank=True, null=True, help_text=_('The OPA/BRT account according to the Water Dept'), ) ten_code = models.CharField(_('ten code'), max_length=20, blank=True, null=True, ) # parcel information owner1 = models.CharField(_('owner1'), max_length=256, blank=True, null=True, ) owner2 = models.CharField(_('owner1'), max_length=256, blank=True, null=True, ) address = models.CharField(_('address'), max_length=256, blank=True, null=True, ) gross_area = models.DecimalField(_('gross area'), max_digits=20, decimal_places=2, blank=True, null=True, help_text=_('The area of the parcel in square feet') ) impervious_area = models.DecimalField(_('impervious area'), max_digits=20, decimal_places=2, blank=True, null=True, help_text=_('The impervious area of the parcel in square feet') ) # These fields will have hints to vacancy--eg, 'building_description' # startswith 'VAC LAND' building_type = models.CharField(_('building type'), max_length=50, blank=True, null=True, ) building_description = models.CharField(_('building description'), max_length=100, blank=True, null=True, ) building_code = models.CharField(_('building code'), max_length=20, blank=True, null=True, ) def _percent_permeable(self): return (1 - (self.impervious_area / self.gross_area )) * 100 percent_permeable = property(_percent_permeable) def __unicode__(self): return '%s at %s, owned by %s, %s' % (self.parcel_id, self.address, self.owner1, self.owner2 or '') class WaterAccount(models.Model): """An account with the Philadelphia Water Department.""" water_parcel = models.ForeignKey('WaterParcel', verbose_name=_('water parcel') ) account_id = models.CharField(_('account ID'), max_length=30, blank=True, null=True, help_text=_('The ID of this account with the Water Department'), ) account_number = models.CharField(_('account number'), max_length=30, blank=True, null=True, help_text=_('A slightly expanded version of the account ID'), ) customer_id = models.CharField(_('customer ID'), max_length=20, blank=True, null=True, help_text=_('The ID for this customer with the Water Department'), ) customer_name = models.CharField(_('customer name'), max_length=100, blank=True, null=True, ) inst_id = models.CharField(_('inst ID'), max_length=20, blank=True, null=True, ) # TODO 'Discontinued' could indicate vacancy account_status = models.CharField(_('account status'), max_length=30, blank=True, null=True, help_text=_('Discontinued / Current'), ) account_status_abbreviation = models.CharField(_('account status abbreviation'), max_length=10, blank=True, null=True, ) meter_size = models.CharField(_('meter size'), max_length=30, blank=True, null=True, ) meter_size_abbreviation = models.CharField(_('meter size abbreviation'), max_length=10, blank=True, null=True, ) service_type = models.CharField(_('service type'), max_length=10, blank=True, null=True, ) # TODO '3 - Stormwater Only' might indicate vacancy service_type_label = models.CharField(_('service type label'), max_length=50, blank=True, null=True, ) stormwater_status = models.CharField(_('stormwater status'), max_length=30, blank=True, null=True, help_text=_('Billed / Not Billed'), ) def __unicode__(self): return '%s (%s), %s' % (self.account_id, self.account_status, self.service_type_label) # Mapping only includes data available in the shapefile provided by the Water # Department. Other model fields are filled, on demand, using the API. waterparcel_mapping = { 'parcelid' : 'PARCELID', 'ten_code' : 'TENCODE', 'address' : 'ADDRESS', 'owner1' : 'OWNER1', 'owner2' : 'OWNER2', 'building_code' : 'BLDG_CODE', 'building_description' : 'BLDG_DESC', 'brt_account' : 'BRT_ID', 'gross_area' : 'GROSS_AREA', 'geometry' : 'POLYGON', }
'''OpenGL extension INGR.color_clamp This module customises the behaviour of the OpenGL.raw.GL.INGR.color_clamp to provide a more Python-friendly API Overview (from the spec) Various RGBA color space conversions require clamping to values in a more constrained range than [0, 1]. This extension allows the definition of independent color clamp values for each of the four color components as part of the Final Conversion in the pixel transfer path for draws, reads, and copies. The official definition of this extension is available here: http://www.opengl.org/registry/specs/INGR/color_clamp.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GL import _types, _glgets from OpenGL.raw.GL.INGR.color_clamp import * from OpenGL.raw.GL.INGR.color_clamp import _EXTENSION_NAME def glInitColorClampINGR(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
#-*- coding:utf-8 -*- from PyQt5.QtWidgets import QMainWindow, QFrame, QDesktopWidget, QApplication from PyQt5.QtCore import Qt, QBasicTimer, pyqtSignal from PyQt5.QtGui import QPainter, QColor from board import Board class Tetris(QMainWindow): def __init__(self): super().__init__() self.initUI() def initUI(self): self.tboard = Board(self) self.setCentralWidget(self.tboard) self.statusbar = self.statusBar() self.tboard.msg2Statusbar[str].connect(self.statusbar.showMessage) self.tboard.start() self.resize(180, 380) self.center() self.setWindowTitle('Tetris') self.show() def center(self): """ 获得显示器分辨率,将本应用移动到桌面中央 """ screen = QDesktopWidget().screenGeometry() size = self.geometry() self.move( (screen.width() - size.width()) / 2, (screen.height() - size.height()) / 2) if __name__ == '__main__': import sys app = QApplication([]) tetris = Tetris() sys.exit(app.exec_())
# Generated by Django 2.1 on 2018-08-19 14:51 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("mainapp", "0057_add_status_to_relief_camp"), ] operations = [ migrations.CreateModel( name="DataCollection", fields=[ ("id", models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name="ID",),), ("created_at", models.DateTimeField(auto_now_add=True)), ( "document_name", models.CharField(blank=True, max_length=255, null=True, verbose_name="Document name",), ), ("document", models.FileField(blank=True, upload_to="camp_data")), ("tag", models.CharField(blank=True, max_length=255, null=True)), ], options={"verbose_name": "Data: Collection", "verbose_name_plural": "Data: Collections",}, ), migrations.DeleteModel(name="ReliefCampData",), ]
# # Copyright (c) 2021 Airbyte, Inc., all rights reserved. # from typing import Any, Dict, List, Mapping from unittest.mock import patch import pytest from airbyte_cdk import AirbyteLogger from source_s3.source_files_abstract.stream import FileStream from .abstract_test_parser import create_by_local_file, memory_limit LOGGER = AirbyteLogger() class TestFileStream: @pytest.mark.parametrize( # set return_schema to None for an expected fail "schema_string, return_schema", [ ( '{"id": "integer", "name": "string", "valid": "boolean", "code": "integer", "degrees": "number", "birthday": "string", "last_seen": "string"}', { "id": "integer", "name": "string", "valid": "boolean", "code": "integer", "degrees": "number", "birthday": "string", "last_seen": "string", }, ), ('{"single_column": "boolean"}', {"single_column": "boolean"}), (r"{}", {}), ('{this isn\'t right: "integer"}', None), # invalid json ('[ {"a":"b"} ]', None), # array instead of object ('{"a": "boolean", "b": {"string": "integer"}}', None), # object as a value ('{"a": ["boolean", "string"], "b": {"string": "integer"}}', None), # array and object as values ('{"a": "integer", "b": "NOT A REAL DATATYPE"}', None), # incorrect datatype ('{"a": "NOT A REAL DATATYPE", "b": "ANOTHER FAKE DATATYPE"}', None), # multiple incorrect datatypes ], ) @memory_limit(512) def test_parse_user_input_schema(self, schema_string: str, return_schema: str) -> None: if return_schema is not None: assert str(FileStream._parse_user_input_schema(schema_string)) == str(return_schema) else: with pytest.raises(Exception) as e_info: FileStream._parse_user_input_schema(schema_string) LOGGER.debug(str(e_info)) @pytest.mark.parametrize( # set expected_return_record to None for an expected fail "target_columns, record, expected_return_record", [ ( # simple case ["id", "first_name", "last_name"], {"id": "1", "first_name": "Frodo", "last_name": "Baggins"}, {"id": "1", "first_name": "Frodo", "last_name": "Baggins", "_ab_additional_properties": {}}, ), ( # additional columns ["id", "first_name", "last_name"], {"id": "1", "first_name": "Frodo", "last_name": "Baggins", "location": "The Shire", "items": ["The One Ring", "Sting"]}, { "id": "1", "first_name": "Frodo", "last_name": "Baggins", "_ab_additional_properties": {"location": "The Shire", "items": ["The One Ring", "Sting"]}, }, ), ( # missing columns ["id", "first_name", "last_name", "location", "items"], {"id": "1", "first_name": "Frodo", "last_name": "Baggins"}, { "id": "1", "first_name": "Frodo", "last_name": "Baggins", "location": None, "items": None, "_ab_additional_properties": {}, }, ), ( # additional and missing columns ["id", "first_name", "last_name", "friends", "enemies"], {"id": "1", "first_name": "Frodo", "last_name": "Baggins", "location": "The Shire", "items": ["The One Ring", "Sting"]}, { "id": "1", "first_name": "Frodo", "last_name": "Baggins", "friends": None, "enemies": None, "_ab_additional_properties": {"location": "The Shire", "items": ["The One Ring", "Sting"]}, }, ), ], ids=["simple_case", "additional_columns", "missing_columns", "additional_and_missing_columns"], ) @patch( "source_s3.source_files_abstract.stream.FileStream.__abstractmethods__", set() ) # patching abstractmethods to empty set so we can instantiate ABC to test def test_match_target_schema( self, target_columns: List[str], record: Dict[str, Any], expected_return_record: Mapping[str, Any] ) -> None: fs = FileStream(dataset="dummy", provider={}, format={}, path_pattern="") if expected_return_record is not None: assert fs._match_target_schema(record, target_columns) == expected_return_record else: with pytest.raises(Exception) as e_info: fs._match_target_schema(record, target_columns) LOGGER.debug(str(e_info)) @pytest.mark.parametrize( # set expected_return_record to None for an expected fail "extra_map, record, expected_return_record", [ ( # one extra field {"friend": "Frodo"}, {"id": "1", "first_name": "Samwise", "last_name": "Gamgee"}, {"id": "1", "first_name": "Samwise", "last_name": "Gamgee", "friend": "Frodo"}, ), ( # multiple extra fields {"friend": "Frodo", "enemy": "Gollum", "loves": "PO-TAY-TOES"}, {"id": "1", "first_name": "Samwise", "last_name": "Gamgee"}, {"id": "1", "first_name": "Samwise", "last_name": "Gamgee", "friend": "Frodo", "enemy": "Gollum", "loves": "PO-TAY-TOES"}, ), ( # empty extra_map {}, {"id": "1", "first_name": "Samwise", "last_name": "Gamgee"}, {"id": "1", "first_name": "Samwise", "last_name": "Gamgee"}, ), ], ids=["one_extra_field", "multiple_extra_fields", "empty_extra_map"], ) @patch( "source_s3.source_files_abstract.stream.FileStream.__abstractmethods__", set() ) # patching abstractmethods to empty set so we can instantiate ABC to test @memory_limit(512) def test_add_extra_fields_from_map( self, extra_map: Mapping[str, Any], record: Dict[str, Any], expected_return_record: Mapping[str, Any] ) -> None: fs = FileStream(dataset="dummy", provider={}, format={}, path_pattern="") if expected_return_record is not None: assert fs._add_extra_fields_from_map(record, extra_map) == expected_return_record else: with pytest.raises(Exception) as e_info: fs._add_extra_fields_from_map(record, extra_map) LOGGER.debug(str(e_info)) @pytest.mark.parametrize( "patterns, filepaths, expected_filepaths", [ ( # 'everything' case "**", [ "file.csv", "file.parquet", "folder/file.csv", "folder/file.parquet", "folder/nested/file.csv", "folder/nested/file.parquet", "a/b/c/d/e/f/file", ], [ "file.csv", "file.parquet", "folder/file.csv", "folder/file.parquet", "folder/nested/file.csv", "folder/nested/file.parquet", "a/b/c/d/e/f/file", ], ), ( # specific filetype only "**/*.csv", [ "file.csv", "file.parquet", "folder/file.csv", "folder/file.parquet", "folder/nested/file.csv", "folder/nested/file.parquet", "a/b/c/d/e/f/file", ], ["file.csv", "folder/file.csv", "folder/nested/file.csv"], ), ( # specific filetypes only "**/*.csv|**/*.parquet", [ "file.csv", "file.parquet", "folder/file.csv", "folder/file.parquet", "folder/nested/file.csv", "folder/nested/file.parquet", "a/b/c/d/e/f/file", ], [ "file.csv", "file.parquet", "folder/file.csv", "folder/file.parquet", "folder/nested/file.csv", "folder/nested/file.parquet", ], ), ( # 'everything' only 1 level deep "*/*", [ "file.csv", "file.parquet", "folder/file.csv", "folder/file.parquet", "folder/nested/file.csv", "folder/nested/file.parquet", "a/b/c/d/e/f/file", ], ["folder/file.csv", "folder/file.parquet"], ), ( # 'everything' at least 1 level deep "*/**", [ "file.csv", "file.parquet", "folder/file.csv", "folder/file.parquet", "folder/nested/file.csv", "folder/nested/file.parquet", "a/b/c/d/e/f/file", ], ["folder/file.csv", "folder/file.parquet", "folder/nested/file.csv", "folder/nested/file.parquet", "a/b/c/d/e/f/file"], ), ( # 'everything' at least 3 levels deep "*/*/*/**", [ "file.csv", "file.parquet", "folder/file.csv", "folder/file.parquet", "folder/nested/file.csv", "folder/nested/file.parquet", "a/b/c/d/e/f/file", ], ["a/b/c/d/e/f/file"], ), ( # specific filetype at least 1 level deep "*/**/*.csv", [ "file.csv", "file.parquet", "folder/file.csv", "folder/file.parquet", "folder/nested/file.csv", "folder/nested/file.parquet", "a/b/c/d/e/f/file", ], ["folder/file.csv", "folder/nested/file.csv"], ), ( # 'everything' with specific filename (any filetype) "**/file.*|**/file", [ "NOT_THIS_file.csv", "folder/NOT_THIS_file.csv", "file.csv", "file.parquet", "folder/file.csv", "folder/file.parquet", "folder/nested/file.csv", "folder/nested/file.parquet", "a/b/c/d/e/f/file", ], [ "file.csv", "file.parquet", "folder/file.csv", "folder/file.parquet", "folder/nested/file.csv", "folder/nested/file.parquet", "a/b/c/d/e/f/file", ], ), ( # specific dir / any dir / specific dir / any file "folder/*/files/*", [ "file.csv", "folder/file.csv", "wrongfolder/xyz/files/1", "a/b/c/d/e/f/file", "folder/abc/files/1", "folder/abc/logs/1", "folder/xyz/files/1", ], ["folder/abc/files/1", "folder/xyz/files/1"], ), ( # specific file prefix and filetype, anywhere "**/prefix*.csv", [ "file.csv", "prefix-file.parquet", "prefix-file.csv", "folder/file.parquet", "folder/nested/prefixmylovelyfile.csv", "folder/nested/prefix-file.parquet", ], ["prefix-file.csv", "folder/nested/prefixmylovelyfile.csv"], ), ], ids=[ "everything case", "specific filetype only", "specific filetypes only", "everything only 1 level deep", "everything at least 1 level deep", "everything at least 3 levels deep", "specific filetype at least 1 level deep", "everything with specific filename (any filetype)", "specific dir / any dir / specific dir / any file", "specific file prefix and filetype, anywhere", ], ) @patch( "source_s3.source_files_abstract.stream.FileStream.__abstractmethods__", set() ) # patching abstractmethods to empty set so we can instantiate ABC to test @memory_limit(512) def test_pattern_matched_filepath_iterator(self, patterns: str, filepaths: List[str], expected_filepaths: List[str]) -> None: fs = FileStream(dataset="dummy", provider={}, format={}, path_pattern=patterns) file_infos = [create_by_local_file(filepath) for filepath in filepaths] assert set([p.key for p in fs.pattern_matched_filepath_iterator(file_infos)]) == set(expected_filepaths)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Apr 5 12:39:28 2022 @author: brunocr """ '''Define a function that removes from a given array of integers all the values contained in a second array''' def popper (father_array: list, popper: list)->list: res=[] for i, c in enumerate(father_array): #Tengo i y c porque enumerate devuelve una lista de tuplas con el index (i) y el value(c) if c not in popper: res.append(father_array[i]) return res def popper2 (father_array: list, popper: list)->list: res=[] for value in father_array: if value not in popper: res.append(value) return res def popper3 (father_array: list, popper: list)->list: res=father_array[:] #clave esta forma de copiar la lista para que no se piren los IDs for value in father_array: for plop in popper: if value == plop: res.remove(value) return res
import logging import os.path import json logger = logging.getLogger(__name__) uri = "/isam/ssl_certificates" def get_all_certificates (isamAppliance, check_mode=False, force=False): """ Get information about all certificates on the appliance """ import time epoch_time = int(time.time()) certs=[] dbs_obj = isamAppliance.invoke_get("Retrieve all certificate databases", uri) dbs=dbs_obj['data'] for db in dbs: pcert_obj=isamAppliance.invoke_get("Retrieve personal certificates", "{0}/{1}/personal_cert".format(uri,db['id'])) logger.info("Got object {0}".format(pcert_obj)) pcerts=pcert_obj['data'] for pcert in pcerts: cert_epoch = int(pcert['notafter_epoch']) certs.append({ "db_id":db['id'], "cert_id":pcert['id'], "issuer":pcert['issuer'], "subject":pcert['subject'], "type":"personal", "exp_epoch":pcert['notafter_epoch'], "exp_date":pcert['notafter'], "expired":cert_epoch < epoch_time }) scert_obj=isamAppliance.invoke_get("Retrieve signer certificates", "{0}/{1}/signer_cert".format(uri,db['id'])) scerts=scert_obj['data'] for scert in scerts: cert_epoch = int(scert['notafter_epoch']) certs.append({ "db_id":db['id'], "cert_id":scert['id'], "issuer":scert['issuer'], "subject":scert['subject'], "type":"signer", "exp_epoch":scert['notafter_epoch'], "exp_date":scert['notafter'], "expired":cert_epoch < epoch_time}) return_obj = isamAppliance.create_return_object() return_obj['data'] = certs return return_obj
import unittest as t from py3tftp.exceptions import BadRequest, UnacknowledgedOption from py3tftp.tftp_parsing import (blksize_parser, parse_req, timeout_parser, validate_req) class TestTimeoutParser(t.TestCase): def test_lower_bound(self): low_val = b'-11' with self.assertRaises(UnacknowledgedOption): timeout_parser(low_val) def test_upper_bound(self): high_val = b'999' with self.assertRaises(UnacknowledgedOption): timeout_parser(high_val) def test_float_within_acceptable_range(self): val = b'20.5' self.assertEqual(timeout_parser(val), 20.5) def test_garbage_data(self): val = b'\x41' with self.assertRaises(ValueError): timeout_parser(val) class TestBlksizeParser(t.TestCase): def test_lower_bound(self): low_val = b'4' with self.assertRaises(UnacknowledgedOption): blksize_parser(low_val) def test_upper_bound_capped(self): high_val = b'70000' self.assertEqual(blksize_parser(high_val, upper_bound=4096), 4096) def test_int_within_acceptable_range(self): val = b'2048' self.assertEqual(blksize_parser(val), 2048) def test_garbage_data(self): val = b'\x41' with self.assertRaises(ValueError): blksize_parser(val) class TestParseReq(t.TestCase): def test_not_enough_values(self): req = b'fname\x00' with self.assertRaises(BadRequest): parse_req(req) def test_odd_number_of_opts(self): req = b'fname\x00mode\x00opt1\x00val1\x00opt2' fname, mode, opts = parse_req(req) self.assertDictEqual(opts, {b'opt1': b'val1'}) def test_correct_output(self): req = b'fname\x00mode\x00opt1\x00val1\x00opt2\x00val2' fname, mode, opts = parse_req(req) self.assertEqual(fname, b'fname') self.assertEqual(mode, b'mode') self.assertDictEqual(opts, {b'opt1': b'val1', b'opt2': b'val2'}) class TestValidateReq(t.TestCase): def setUp(self): self.fname = b'fname' self.mode = b'mode' self.opts = {b'opt1': b'val1'} self.opt1_parser = lambda opt: opt.decode('ascii') def test_fname_is_ascii(self): fname, *_ = validate_req(self.fname, self.mode, self.opts) self.assertEqual(fname, 'fname') def test_drops_unsupported_opts(self): _, _, opts = validate_req( self.fname, self.mode, self.opts, supported_opts={b'opt1': self.opt1_parser}) self.assertDictEqual(opts, {b'opt1': 'val1'}) def test_drops_garbage_opts(self): _, _, opts = validate_req( self.fname, self.mode, {**self.opts, **{b'opt2': 'val2'}}, supported_opts={b'opt1': self.opt1_parser}) self.assertDictEqual(opts, {b'opt1': 'val1'})
print("""Exercício Python 078: Faça um programa que leia 5 valores numéricos e guarde-os em uma lista. No final, mostre qual foi o maior e o menor valor digitado e as suas respectivas posições na lista. """) lista=[] cont = 0 for i in range (0,5): lista.append(str(input("digite um numero "))) cont += 1 if cont == 1 : maior = lista[i] menor = lista[i] else: if lista[i] > maior : maior = lista[i] if lista[i] < menor: maior = lista[i] for i in range (0,5): print(lista[i], end= " ") print(f'\nO maior numero é {maior}') print(f'O menor numero é {menor}')
import praw import datetime import time from requests.exceptions import HTTPError from praw.errors import ExceptionList, APIException, InvalidCaptcha, InvalidUser, RateLimitExceeded import sqlite3 as sql from bs4 import BeautifulSoup from emailGlobals import sendEmail from inboxHandler import readInbox from getMatchInfo import returnSoup import HTMLParser def updateLiveScores(r): ArrayOfCurrentlyRunningFixtures = getArrayOfCurrentlyRunningFixtures() if not ArrayOfCurrentlyRunningFixtures: return for runningFixture in ArrayOfCurrentlyRunningFixtures: matchThreadLink = runningFixture[0] liveThreadLink = runningFixture[1] try: matchScoreUpdater(r,liveThreadLink,matchThreadLink) except: sendEmail("Couldn't update live score","Quitting this loop, will try again next loop.") return def getArrayOfCurrentlyRunningFixtures(): con = None con = sql.connect('rCricket.db',detect_types=sql.PARSE_COLNAMES) cur = con.cursor() currentGMT=datetime.datetime.utcnow() TwelveHoursAgo=currentGMT - datetime.timedelta(0,0,0,0,0,10) #is actually 10 hours ago cur.execute("select matchThreadLink,liveThreadLink from MatchThreads where creationTime between ? and ?",(TwelveHoursAgo,currentGMT)) data=cur.fetchall() return data def matchScoreUpdater(r,liveThreadLink,matchThreadLink): iFrameLink=getiFrameLink(liveThreadLink) liveScoreText=getLiveScoreText(iFrameLink) updateMatchThread(r,matchThreadLink,liveScoreText) def getiFrameLink(liveThreadLink): return liveThreadLink+'?template=iframe_desktop' def updateMatchThread(r,matchThreadLink,liveScoreText): submission = r.get_submission(matchThreadLink) selfText = submission.selftext html_parser = HTMLParser.HTMLParser() start = selfText.find("***") end = selfText.find("***",(start+3)) + 3 selfText = selfText[:start] + liveScoreText + selfText[end:] selfText = html_parser.unescape(selfText) submission.edit(selfText) def getLiveScoreText(iFrameLink): returnText=["","",""] returnText[1]="***\n\n|Team|Score|\n|:---|:---|" soup = returnSoup(iFrameLink) for Table in soup.find_all(class_="desktopPanelContent"): returnText[1]=returnText[1]+HTMLTableToPythonTable(Table)[1]+"\n\n" returnText[2]=returnText[2]+HTMLTableToPythonTable(Table)[2] index=returnText[1].find("|Batsmen|R|B|4s|6s|")+len("|Batsmen|R|B|4s|6s|") finalReturnText=returnText[1][:index]+"\n|:---|:---|:---|:---|:---|"+returnText[1][index:] finalReturnText=finalReturnText + returnText[2] finalReturnText=finalReturnText+"***" return finalReturnText def HTMLTableToPythonTable(Table): returnText=["","",""] for TableRow in Table.find_all("tr"): if len(TableRow.find_all("td"))>1: returnText[1]=returnText[1]+"\n" returnText[1]=returnText[1]+"|" for TableData in TableRow.find_all("td"): if TableData.string: returnText[1]=returnText[1]+TableData.string+"|" else: returnText[1]=returnText[1]+" |" for TableRow in Table.find_all("tr"): if len(TableRow.find_all("td"))==1: TableData=TableRow.find("td") if TableData.string: returnText[2]=returnText[2]+TableData.string+"\n\n" return returnText
from selenium import webdriver import time PATH = "driver/geckodriver.exe" try: browser = webdriver.Firefox(executable_path=PATH) print("Success.") except Exception as e: print(f"Browser cannot be started. ERROR {e}") URL = "https://curso-python-selenium.netlify.app/exercicio_01.html" browser.get(URL) time.sleep(2) dictP = {"h1": {"text1": "text", "text2": "text", "text3": "text"}} for i in range(3): p = browser.find_elements_by_tag_name("p") dictP['h1'][f'text{i+1}'] = p[i].text print(dictP) browser.quit()
from pydantic import BaseModel, Field class ViveTrackerMessage(BaseModel): valid: bool = Field(default=False) x: float = Field(default=0.0) y: float = Field(default=0.0) z: float = Field(default=0.0) roll: float = Field(default=0.0) pitch: float = Field(default=0.0) yaw: float = Field(default=0.0) device_name: str = Field(default="Tracker") vel_x: float = Field(default=0.0) vel_y: float = Field(default=0.0) vel_z: float = Field(default=0.0) def __repr__(self): return f"device name: {self.device_name} -> " \ f"x: {round(self.x, 5)} | y: {round(self.y, 5)} | z: {round(self.z, 5)} | " \ f"pitch: {round(self.pitch, 5)} | yaw: {round(self.yaw, 5)} | roll: {round(self.roll, 5)}" def __str__(self): return self.__repr__()
# -*- coding: utf-8 -*- import json import re from django.conf import settings from django.utils import six from rest_framework.parsers import JSONParser, ParseError # Parser logic taken from vbabiy's djangorestframework-camel-case project # https://github.com/vbabiy/djangorestframework-camel-case first_cap_re = re.compile('(.)([A-Z][a-z]+)') all_cap_re = re.compile('([a-z0-9])([A-Z])') def camel_to_underscore(name): s1 = first_cap_re.sub(r'\1_\2', name) return all_cap_re.sub(r'\1_\2', s1).lower() def underscoreize(data): if isinstance(data, dict): new_dict = {} for key, value in data.items(): if key in ['From', 'To', 'Cc', 'Bcc']: key = key + 'Email' new_key = camel_to_underscore(key) new_dict[new_key] = underscoreize(value) return new_dict if isinstance(data, (list, tuple)): for i in range(len(data)): data[i] = underscoreize(data[i]) return data return data class PostmarkJSONParser(JSONParser): """ Append "Email" to the from/to/cc/bcc keys in Postmark's JSON request. We do this because Postmark's "From" key conflicts with the Python keyword of the same name and therefore we cannot use it as a model/serializer field. By using fields named from_email, to_email, etc we can match to the renamed keys from Postmark's JSON (FromEmail, ToEmail, etc) """ def parse(self, stream, media_type=None, parser_context=None): parser_context = parser_context or {} encoding = parser_context.get('encoding', settings.DEFAULT_CHARSET) try: data = stream.read().decode(encoding) return underscoreize(json.loads(data)) except ValueError as exc: raise ParseError('JSON parse error - %s' % six.text_type(exc))
from keras.models import model_from_json import cv2 import numpy as np class GazeNN(object): def __init__(self, json_model_file, h5_model_file): json_file = open(json_model_file, 'r') self.loaded_model_json = json_file.read() json_file.close() self.loaded_model = model_from_json(self.loaded_model_json) self.loaded_model.load_weights(h5_model_file) self.cap = cv2.VideoCapture(0) self.face_cascade = cv2.CascadeClassifier( 'C:/Users/vasy1/AppData/Local/Continuum/anaconda3/pkgs/opencv-3.3.1-py36h20b85fd_1/Library/etc/haarcascades/haarcascade_frontalface_default.xml') self.loaded_model.predict(np.zeros((1, 50, 140, 1))) def process_image(self): ret, img = self.cap.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = self.face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: # preprocess image roi_gray = gray[int(y + 30):int(y + h / 1.9), x + 25:x + w - 25] roi_gray = cv2.resize(roi_gray, (140, 50)) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(5, 5)) cl1 = clahe.apply(roi_gray) prezi = cv2.resize(cl1, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) cv2.imshow('gaze', prezi) key_press = cv2.waitKey(1) # prepare input for model image = np.asarray(roi_gray) image.resize((1, 50, 140, 1)) image = image.astype(np.float32) image /= np.max(image) # Normalise data to [0, 1] range prediction = self.loaded_model.predict(image, batch_size=32, verbose=0) return np.argmax(prediction), key_press return -1, -1
class Solution(object): def movesToChessboard(self, board): """ :type board: List[List[int]] :rtype: int """ size = len(board) half, raw_sum, col_sum = size >> 1, 0, 0 for i in range(size): raw_sum += board[0][i] col_sum += board[i][0] if size & 1 == 0: if raw_sum != half or col_sum != half: return -1 elif raw_sum != half and raw_sum != half + 1: return -1 elif col_sum != half and col_sum != half + 1: return -1 for i in range(1, size): for j in range(1, size): if board[i][j] != board[0][0] ^ board[i][0] ^ board[0][j]: return -1 step_raw, step_col = 0, 0 if size & 1 == 0: raw_ref, col_ref = board[0][0], board[0][0] else: raw_ref = 0 if raw_sum == half else 1 col_ref = 0 if col_sum == half else 1 for i in range(0, size): if board[0][i] != (i & 1) ^ raw_ref: step_raw += 1 if board[i][0] != (i & 1) ^ col_ref: step_col += 1 if size & 1 == 0: step_raw = min(step_raw, size - step_raw) step_col = min(step_col, size - step_col) return (step_raw + step_col) // 2 print(Solution().movesToChessboard([[0, 1, 1, 0], [0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1]])) print(Solution().movesToChessboard([[0, 1], [1, 0]])) print(Solution().movesToChessboard([[1, 0], [1, 0]])) print(Solution().movesToChessboard([[0, 0, 1], [1, 1, 0], [1, 1, 0]])) print(Solution().movesToChessboard([[0, 0, 1], [1, 0, 0], [0, 1, 0]])) print(Solution().movesToChessboard([[0,0,1,0,1,1],[1,1,0,1,0,0],[1,1,0,1,0,0],[0,0,1,0,1,1],[1,1,0,1,0,0],[0,0,1,0,1,1]])) # An N x N board contains only 0s and 1s. In each move, you can swap any 2 rows with each other, or any 2 columns with each other. # What is the minimum number of moves to transform the board into a "chessboard" - a board where no 0s and no 1s are 4-directionally adjacent? If the task is impossible, return -1. # Examples: # Input: board = [[0,1,1,0],[0,1,1,0],[1,0,0,1],[1,0,0,1]] # Output: 2 # Explanation: # One potential sequence of moves is shown below, from left to right: # 0110 1010 1010 # 0110 --> 1010 --> 0101 # 1001 0101 1010 # 1001 0101 0101 # The first move swaps the first and second column. # The second move swaps the second and third row. # Input: board = [[0, 1], [1, 0]] # Output: 0 # Explanation: # Also note that the board with 0 in the top left corner, # 01 # 10 # is also a valid chessboard. # Input: board = [[1, 0], [1, 0]] # Output: -1 # Explanation: # No matter what sequence of moves you make, you cannot end with a valid chessboard. # Note: # board will have the same number of rows and columns, a number in the range [2, 30]. # board[i][j] will be only 0s or 1s. # 来源:力扣(LeetCode) # 链接:https://leetcode-cn.com/problems/transform-to-chessboard # 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
# Generated by Django 2.0.8 on 2018-08-27 09:48 from django.db import migrations class Migration(migrations.Migration): dependencies = [("hordak", "0026_auto_20190723_0929")] operations = [ migrations.RunSQL( """ CREATE OR REPLACE FUNCTION update_full_account_codes() RETURNS TRIGGER AS $$ BEGIN -- Set empty string codes to be NULL UPDATE hordak_account SET code = NULL where code = ''; -- Set full code to the combination of the parent account's codes UPDATE hordak_account AS a SET full_code = ( SELECT string_agg(code, '' order by lft) FROM hordak_account AS a2 WHERE a2.lft <= a.lft AND a2.rght >= a.rght AND a.tree_id = a2.tree_id AND code IS NOT NULL ) WHERE tree_id IN (SELECT DISTINCT tree_id FROM hordak_account WHERE code IS NOT NULL); -- search only account trees without null codes -- Set full codes to NULL where a parent account includes a NULL code UPDATE hordak_account AS a SET full_code = NULL WHERE ( SELECT COUNT(*) FROM hordak_account AS a2 WHERE a2.lft <= a.lft AND a2.rght >= a.rght AND a.tree_id = a2.tree_id AND a2.code IS NULL ) > 0 AND full_code IS NOT NULL; -- search only account trees without null codes RETURN NULL; END; $$ LANGUAGE plpgsql; """, "DROP FUNCTION update_full_account_codes()", ), ]
#! /usr/bin/env python3 # _*_ coding:utf-8 _*_ import re import os import time import operator import serial import json import serial.tools.list_ports #from serial.serialutil import * """ operate on windows COM """ def test_com(): """test windows COM recv and send data""" port = [] plist = list(serial.tools.list_ports.comports()) for p in plist: pcom = list(p) device = pcom[0] name = pcom[1] info = pcom[2] print('serial_device: ' + device) print('serial_name: ' + name) print('serial_info: ' + info) if re.search(r'USB-to-Serial', name) is not None: port.append(device) print(port) if len(port) <= 0: print("not find windows serial port") return False loop_num = 100 if 1 == len(port): serial_fd = serial.Serial(port[0], 9600, 8, 'N', 1, 10) if serial_fd.is_open: print('serial already open OK') while loop_num > 0: serial_fd.write("send".encode('utf-8')) time.sleep(1) data = serial_fd.read(7) print(data) loop_num -= 1 else: print("COM open NOK") global_msg_type = {'set_config':0xE1, 'get_config':0xE2, 'set_capk': 0xE3, 'get_capk': 0xE4, 'del_capk': 0xE5, 'get_poll_mode': 0xE6, 'reset': 0xE7, 'get_serial_num': 0xE8, 'get_fw_version': 0xE9, 'get_payment_version': 0xEA, 'get_vas_version': 0xEB, 'start_transaction': 0xEC, 'get_trans_status': 0xED, 'get_trans_result': 0xEE, 'cancel_transaction': 0xEF, 'get_trans_log': 0xF0, 'clear_trans_log': 0xF1, 'close': 0xF2 } class RS232(object): """ RS232 class supply operation on COM """ def __init__(self, devName): """init COM some parameter""" self.instance = None self.port = devName self.baud_rate = 9600 self.byte_size = 8 self.parity = 'N' self.stop_bits = 1 self.serial_timeout = 10 self.recv_timeout = 5 self.com_open = False self.__msg_len = 4096 - 12 #after adding msg header and msg info, finally, not exceed 255bytes port_list = list(serial.tools.list_ports.comports(True)) port = [] # loop all com in system for p in port_list: pcom = list(p) device = pcom[0] name = pcom[1] if re.search(r'USB-to-Serial', name) is not None: port.append(device) # if only one serial com, set this default, otherwise, set devName if 1 == len(port): self.port = port[0] try: self.instance = serial.Serial(self.port, self.baud_rate, self.byte_size, self.parity, self.stop_bits, self.serial_timeout) except SerialException as e: print('exception occur: %s' % e) else: if self.instance is not None: if self.instance.is_open: self.com_open = True print('create and open COM on ' + self.port) else: print("assigned port NOT matched in system") def __calc_lrc(self, content): lrc_value = 0 for i in content: lrc_value ^= i return lrc_value def __check_lrc(self, content): lrc_value = 0 for i in content[:-1]: lrc_value ^= i if lrc_value == content[-1]: return True else: return False def __check_msg(self, content): """ ensure the content is entire POS command message""" if content is None: return False if operator.lt(len(content), 13): return False msg_len = content[4:5]*256 + content[5:6] if msg_len == len(content[6:-2]): data_len = content[11:12]*256 + content[12:13] if data_len == len(content[13:-2]): return __check_lrc(content[1:]) return False def __get_data(self, content): data = content[13:-2] return data def __create_cmd(self, msg_type, content): """ construct POS cmd msg""" cmd = bytearray() content_len = 0 cmd.append(0x02) #STX # Message Header cmd.append(0x00) #DID, Destination ID cmd.append(0x00) #SID, SourceID cmd.append(0x00) #MTI, Message Type Indicator if content is not None: content_len = len(content) + 6 # add ETX & LRC else: content_len = 6 # add ETX & LRC msg_len = int(content_len//256) cmd.extend(msg_len.to_bytes(1, byteorder='big')) #MSB Len msg_len = int(content_len % 256) cmd.extend(msg_len.to_bytes(1, byteorder='big')) #LSB Len # Message Info cmd.append(0x01) # Type, 01-command, 02-response cmd.append(msg_type) # ID cmd.append(0x00) # P1 cmd.append(0x00) # P2 if content is not None: content_len = len(content) else: content_len = 0 # add ETX & LRC msg_len = int(content_len // 256) cmd.extend(msg_len.to_bytes(1, byteorder='big')) # MSB Len msg_len = int(content_len % 256) cmd.extend(msg_len.to_bytes(1, byteorder='big')) # LSB Len if content is not None: cmd.extend(content) cmd.append(0x03) # ETX msg_len = int(self.__calc_lrc(cmd[1:])) cmd.extend(msg_len.to_bytes(1, byteorder='big')) print(cmd) return cmd def __send_data(self, msg_type, content): """ send request command message """ if self.instance is None: return False send_data = self.__create_cmd(msg_type, content) left_len = len(send_data) index = 0 max_send_len = 0 while 0 < left_len: # send data if self.__msg_len < left_len: max_send_len = self.__msg_len else: max_send_len = left_len try: send_len = self.instance.write(send_data[index:index+max_send_len]) except TypeError as e: print(e) break else: index += send_len left_len -= send_len # check send result if 0 == left_len: return True else: return False def __recv_data(self, timeout): """ receive com message from terminal """ data = bytearray() if self.instance is None: return bytes() since = time.time() while 0 < self.instance.inWaiting(): data.extend(self.instance.read()) if operator.gt(timeout, 0): if (0 == len(data) and (time.time() < since + timeout)): break return bytes(data) def __check_recv_response(self): response_data = bytearray() data = self.__recv_data(self.recv_timeout) if operator.eq(len(data), 0): return bytes() if self.__check_msg(data): response_data.extend(self.__get_data(data)) # error code if operator.le(len(response_data), 2): print("recv msg Invalid") return bytes() else: print('recv msg OK') return bytes(response_data) else: print("recv msg Invalid") return bytes() def __clear_cache(self): if self.instance is not None: self.instance.flushInput() self.instance.flushOutput() def setConfig(self, reader_config_object): """ set static reader configuration """ reader_config = bytes(json.dumps(reader_config_object), "utf-8") self.__clear_cache() if self.__send_data(global_msg_type['set_config'], reader_config): print('send request msg[%d] OK' % len(reader_config)) else: print('send request msg NOK, stop') def getConfig(self): """ get current config values """ reader_config = {} self.__clear_cache() if self.__send_data(global_msg_type['get_config'], None): data = self.__check_recv_response() if operator.gt(len(data), 0): reader_config = json.loads(self.__get_data(data)) return reader_config #@property def getCAPK(self): """ CAPK info """ capk_tuple = () self.__clear_cache() if self.__send_data(global_msg_type['get_capk'], None): data = self.__check_recv_response() if operator.gt(len(data), 0): capk_config = json.loads(self.__get_data(data)) if isinstance(capk_config, dict): for x in range(len(capk_config)): if isinstance(x, dict): tmp_tuple = tuple(x) capk_tuple += tmp_tuple return capk_tuple def setCAPK(self, CAPK_object): """ set CAPK """ capk_config = bytes(json.dumps(CAPK_object), "utf-8") self.__clear_cache() if self.__send_data(global_msg_type['set_config'], capk_config): print('send request msg[%d] OK' % len(capk_config)) else: print('send request msg NOK, stop') def deleteCAPK(self, CAPK_object): """ delete CAPK """ capk_config = bytes(json.dumps(CAPK_object), "utf-8") self.__clear_cache() if self.__send_data(global_msg_type['del_capk'], capk_config): print('send request msg[%d] OK' % len(capk_config)) else: print('send request msg NOK, stop') def getPollingModes(self): """ get supported polling modes """ polling_mode = bytearray() self.__clear_cache() if self.__send_data(global_msg_type['get_poll_mode'], None): # recv response data = self.__check_recv_response() if operator.gt(len(data), 0): polling_mode.extend(self.__get_data(data)) return polling_mode.decode('utf-8') def reset(self): """ reset or reboot terminal """ self.__clear_cache() if self.__send_data(global_msg_type['reset'], None): # recv response data = self.__check_recv_response() if operator.gt(len(data), 0): return True else: print("recv msg Invalid") return False else: print('send request msg NOK, stop') return False def getSerialNumber(self): """ get terminal serial number """ serial_number = bytearray() self.__clear_cache() if self.__send_data(global_msg_type['get_serial_num'], None): # recv response data = self.__check_recv_response() if operator.gt(len(data), 0): serial_number.extend(self.__get_data(data)) else: print("recv msg Invalid") else: print('send request msg NOK, stop') return serial_number.decode('utf-8') def getFWVersion(self): """ FW version installed on terminal """ fw_version = bytearray() self.__clear_cache() if self.__send_data(global_msg_type['get_fw_version'], None): # recv response data = self.__check_recv_response() if operator.gt(len(data), 0): fw_version.extend(self.__get_data(data)) else: print("recv msg Invalid") else: print('send request msg NOK, stop') return fw_version.decode('utf-8') def getPaymentAppletVersion(self): """ return payment applet version installed on reader """ payment_version = bytearray() self.__clear_cache() if self.__send_data(global_msg_type['get_payment_version'], None): # recv response data = self.__check_recv_response() if operator.gt(len(data), 0): payment_version.extend(self.__get_data(data)) else: print("recv msg Invalid") else: print('send request msg NOK, stop') return payment_version.decode('utf-8') def getVASAppletVersion(self): """ return VAS applet version installed on reader """ vas_version = bytearray() self.__clear_cache() if self.__send_data(global_msg_type['get_vas_version'], None): # recv response data = self.__check_recv_response() if operator.gt(len(data), 0): vas_version.extend(self.__get_data(data)) else: print("recv msg Invalid") else: print('send request msg NOK, stop') return vas_version.decode('utf-8') def startTransaction(self, transaction_start_object): """ put terminal in vas or payment mode """ trans_config = bytes(json.dumps(transaction_start_object), "utf-8") self.__clear_cache() if self.__send_data(global_msg_type['start_transaction'], trans_config): print('send request msg[%d] OK' % len(trans_config)) else: print('send request msg NOK, stop') def getTransactionStatus(self): """ get transaction status inprogress, complete, or errorcode """ trans_status = {} self.__clear_cache() if self.__send_data(global_msg_type['get_trans_status'], None): data = self.__check_recv_response() if operator.gt(len(data), 0): trans_status = json.loads(self.__get_data(data)) else: print("recv msg Invalid") else: print('send request msg NOK, stop') return trans_status def getTransactionResult(self): """ get transaction status which consist of vas or payment status """ trans_result = {} self.__clear_cache() if self.__send_data(global_msg_type['get_trans_result'], None): data = self.__check_recv_response() if operator.gt(len(data), 0): trans_result = json.loads(self.__get_data(data)) else: print("recv msg Invalid") else: print('send request msg NOK, stop') return trans_result def cancelTransaction(self): """ cancel current transaction or vas mode and return to idle mode """ if self.__send_data(global_msg_type['cancel_transaction'], None): # recv response data = self.__check_recv_response() if operator.gt(len(data), 0): return True else: return False else: print('send request msg NOK, stop') return False def getTransactionLog(self): """ return logObject which consist of a tuple of byte strings for each apdu logged duringvas or/ and payment transaction """ data = bytearray() tmp_data = bytearray() trans_log = {} trans_log_flag = 0 self.__clear_cache() if self.__send_data(global_msg_type['get_trans_log'], None): since = time.time() while True: if 0 < self.instance.inWaiting(): data.extend(self.instance.read()) if operator.ge(len(data), 3): if operator.eq(data[-3], 0xFF): break if operator.gt(time.time() - since, 3): if operator.eq(len(data), 0): # break continue if self.__check_msg(data): tmp_data = self.__get_data(data) if operator.gt(len(tmp_data, 1)): #error code trans_log = {tmp_data[0:-1], tmp_data[-1:]} return trans_log def clearTransactionLog(self): """ close log file for next logging session """ if self.__send_data(global_msg_type['clear_trans_log'], None): # recv response data = self.__check_recv_response() if operator.gt(len(data), 0): return True else: return False else: print('send request msg NOK, stop') return False def close(self): """ close COM connection """ self.__clear_cache() if self.__send_data(global_msg_type['close'], None): # recv response data = self.__check_recv_response() if operator.gt(len(data), 0): if self.com_open: self.instance.close() self.com_open = False print('close connection on COM ' + self.port) else: print('connection on COM already closed') return True else: return False else: print('send request msg NOK, stop') return False """ reader_config_object { "RestoreDefault":h, "TransactionLogging":boolean, "TransactionLogSize":h, "TransCurrencyCode":h, "TransCurrencyExponent":h, "TransType":h, "AmountAuthorized":h, "AmountOther":h, "TerminalCountryCode":h, "TerminalFloorLimit":h, "TerminalCapabilities":h, "TerminalType":h, "AdditionalTermCapabilities":h, "TerminalCTLSFloorLimit":h, "VisaTTQ":h, "Timeout":time value in ms, "mChipMobileSupport":h, "ExpressPayTerminalCapabilities":h, "TerminalCTLSTransLimit":h, "CVMRequiredLimit":h, "TerminalActionCodeOnline":h, "TerminalActionCodeDefault":h, "TerminalActionCodeDenial":h, "pollingMode":h, "pollingTechnology":h, … “VAS”: { 'Merchants' : [ { "merchantID" : string "url" : string "filter" : byte string }, … ] } } transaction_start_object { "VASTerminalMode":h, "ProtocolMode":h, "AmountAuthorized":h, "Timeout":time value in ms "TransDate":h, "TransTime":time value in HHMMSS, "TransType":h, "TransCurrencyCode":h, "TerminalCountryCode":h, "AccountType":int, "AmountOther":h, } vas_result_object { "token" : h "data' : h "merchantID" : string "result code" : int } CAPK_object { "RID":h, "CAPKIndex":h, "CAHashAlgoIndicator":h, "CAPKAlgoIndicator":h, "CAPKModulus":h, "CAPKExponent":h, "CAPKCheckSum":h, } transaction_result_object { "VASResults" : [ (one for each VAS request in transaction) vas_result_object_1, vas_result_object_2, … vas_result_object_n ] "PaymentResult" : { "rawdata" : h, "track 1": h, "track 2": h, … some basic values } } transaction_status_object { transactionStatus:h, VAS and Payment specs } logObject { getLog:string, clearLog:boolean, } server_response_object { "Online Authorization/Results":string, } """ def test_interface(): #test data reader_config_object = { "RestoreResult": 12345678, "TransactionLogging": True, "TransactionLogSize": 1024, "VAS": { 'Merchant': [{ 'merchantID': "D48EF64464F332DB2E97CD7DEDEE17E82E92086B23027F4FE777A244BE536F16", 'url': "https://test.pass.mcr.com", 'filter': "5682" }, { 'merchantID': "3F22543BAF0AC5E4ABFC25681A6EBF6EDF5AC196746C55F4D4370819FFF921C3", 'url': "", 'filter': "" }] } } CAPK_object = {} transaction_start_object = { "VASTerminalMode": 0x01, "ProtocolMode": 0x00 } print('********************************') print('* 0 -> exit ') print('* 1 -> setConfig ') print('* 2 -> getConfig ') print('* 3 -> setCAPK ') print('* 4 -> getCAPK ') print('* 5 -> deleteCAPK ') print('* 6 -> getPollingModes ') print('* 7 -> reset ') print('* 8 -> getSerialNumber ') print('* 9 -> getFWVersion ') print('* A -> getPaymentAppletVersion ') print('* B -> getVASAppletVersion ') print('* C -> startTransaction ') print('* D -> getTransactionStatus ') print('* E -> getTransactionResult ') print('* F -> cancelTransaction ') print('* 10 -> getTransactionLog ') print('* 11 -> clearTransactionLog ') print('* 12 -> close ') print('********************************') rs232 = RS232('COM4') while True: print(' ') index = input('plz choose case: ') # setconfig if operator.eq(index, '1'): if rs232.setConfig(reader_config_object): print('set config OK') else: print('set config NOK') if rs232.close(): print('close OK') else: print('close NOK') # getconfig if operator.eq(index, '2'): if rs232.setConfig(reader_config_object): print('set config OK') else: print('set config NOK') if rs232.getConfig(): print('get config OK') else: print('get config NOK') if rs232.close(): print('close OK') else: print('close NOK') # setCAPK if operator.eq(index, '3'): if rs232.setCAPK(CAPK_object): print('set CAPK OK') else: print('set CAPK NOK') if rs232.close(): print('close OK') else: print('close NOK') # getCAPK if operator.eq(index, '4'): if rs232.getCAPK(): print('get CAPK OK') else: print('get CAPK NOK') if rs232.close(): print('close OK') else: print('close NOK') # deleteCAPK if operator.eq(index, '5'): if rs232.deleteCAPK(CAPK_object): print('delete CAPK OK') else: print('delete CAPK NOK') if rs232.close(): print('close OK') else: print('close NOK') # getPollingModes if operator.eq(index, '6'): if rs232.getPollingModes(): print('get polling Modes OK') else: print('get polling Modes NOK') if rs232.close(): print('close OK') else: print('close NOK') if operator.eq(index, '7'): if rs232.reset(): print('reset OK') else: print('reset NOK') if rs232.close(): print('close OK') else: print('close NOK') if operator.eq(index, '8'): if rs232.getSerialNumber(): print('get SerialNumber OK') else: print('get SerialNumber NOK') if rs232.close(): print('close OK') else: print('close NOK') if operator.eq(index, '9'): if rs232.getFWVersion(): print('get FWVersion OK') else: print('get FWVersion NOK') if rs232.close(): print('close OK') else: print('close NOK') if operator.eq(index, 'A') or operator.eq(index, 'a'): if rs232.getPaymentAppletVersion(): print('get PaymentAppletVersion OK') else: print('get PaymentAppletVersion NOK') if rs232.close(): print('close OK') else: print('close NOK') if operator.eq(index, 'B') or operator.eq(index, 'b'): if rs232.getVASAppletVersion(): print('get VASAppletVersion OK') else: print('get VASAppletVersion NOK') if rs232.close(): print('close OK') else: print('close NOK') if operator.eq(index, 'C') or operator.eq(index, 'c'): if rs232.startTransaction(transaction_start_object): print('start Transaction OK') else: print('start Transaction NOK') if rs232.close(): print('close OK') else: print('close NOK') if operator.eq(index, 'D') or operator.eq(index, 'd'): if rs232.getTransactionStatus(): print('get Transaction Status OK') else: print('get Transaction Status NOK') if rs232.close(): print('close OK') else: print('close NOK') if operator.eq(index, 'E') or operator.eq(index, 'e'): if rs232.getTransactionResult(): print('get Transaction Result OK') else: print('get Transaction Result NOK') if rs232.close(): print('close OK') else: print('close NOK') if operator.eq(index, 'F') or operator.eq(index, 'f'): if rs232.cancelTransaction(): print('cancel Transaction OK') else: print('cancel Transaction NOK') if rs232.close(): print('close OK') else: print('close NOK') if operator.eq(index, '10'): if rs232.getTransactionLog(): print('get TransactionLog OK') else: print('get TransactionLog NOK') if rs232.close(): print('close OK') else: print('close NOK') if operator.eq(index, '11'): if rs232.clearTransactionLog(): print('clear TransactionLog OK') else: print('clear TransactionLog NOK') if rs232.close(): print('close OK') else: print('close NOK') if operator.eq(index, '12'): if rs232.close(): print('close OK') else: print('close NOK') if operator.eq(index, '0'): break def check_modules(modules): #installed_modules = sys.modules.keys() #installed_modules = os.spawn("pip freeze") #fin, fout = popen2.popen2("sort") installed_modules = os.popen("pip freeze").read() for chk_mod in modules: m = re.search(chk_mod, installed_modules, 0) if m is not None: print(chk_mod + ' module already installed') else: os.system('pip install ' + chk_mod) if __name__ == "__main__": #test_com() check_modules(['pyserial',]) test_interface()
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-11-03 18:38 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='SpeakerWordCounts', fields=[ ('bioguide_id', models.CharField(max_length=7, primary_key=True, serialize=False)), ('crec_id', models.CharField(max_length=64)), ('date', models.DateField()), ('named_entities', models.TextField()), ('noun_chunks', models.TextField()), ], ), ]
#Adapted from https://github.com/hpcaitech/ColossalAI-Examples/blob/main/language/gpt/model/gpt1d.py #!/usr/bin/env python # -*- encoding: utf-8 -*- import math from colossalai.utils.activation_checkpoint import checkpoint import torch from torch import nn as nn, Tensor from colossalai.core import global_context as gpc from colossalai.nn.layer.utils import divide, ACT2FN from colossalai.utils import checkpoint from colossalai.nn.layer import Linear1D_Col, Linear1D_Row from colossalai.nn.layer.base_layer import ParallelLayer from colossalai import kernel from colossalai.kernel.cuda_native.scaled_softmax import AttnMaskType from colossalai import nn as col_nn class MLP1D(ParallelLayer): def __init__(self, in_features: int, mlp_ratio: float, act_func: str = 'gelu', dropout_prob: float = 0., dtype=None, checkpoint: bool = False, skip_bias_add: bool = False, ): super().__init__() self.in_features = in_features self.mlp_ratio = mlp_ratio self.checkpoint = checkpoint self.skip_bias_add = skip_bias_add self.act = ACT2FN[act_func] skip_dense_1_add_bias = False # Project to mlp_ratio * h. self.dense_1 = Linear1D_Col( self.in_features, int(self.mlp_ratio * self.in_features), dtype=dtype, gather_output=False, skip_bias_add=skip_dense_1_add_bias, ) # Project back to h. self.dense_2 = Linear1D_Row( int(self.mlp_ratio * self.in_features), self.in_features, dtype=dtype, parallel_input=True, ) self.dropout = col_nn.Dropout(dropout_prob) def _forward(self, hidden_states: Tensor) -> Tensor: intermediate_output = self.dense_1(hidden_states) intermediate_output = self.act(intermediate_output) output = self.dense_2(intermediate_output) output = self.dropout(output) return output def _checkpoint_forward(self, hidden_states: Tensor) -> Tensor: return checkpoint(self._forward, hidden_states) def forward(self, hidden_states: Tensor) -> Tensor: if self.checkpoint: return self._checkpoint_forward(hidden_states) else: return self._forward(hidden_states) class GenericSelfAttention1D(ParallelLayer): def __init__(self, hidden_size: int, num_attention_heads: int, attention_dropout_prob: float, hidden_dropout_prob: float, dtype=None, checkpoint: bool = False, max_position_embeddings=1024, ): super().__init__() self.hidden_size = hidden_size self.attention_head_size = divide(hidden_size, num_attention_heads) self.num_attention_heads_per_partition = divide(num_attention_heads, gpc.tensor_parallel_size) self.hidden_size_per_partition = divide(hidden_size, gpc.tensor_parallel_size) self.checkpoint = checkpoint self.query_key_value = Linear1D_Col( hidden_size, 3 * hidden_size, dtype=dtype, ) self.attention_dropout = col_nn.Dropout(attention_dropout_prob) self.dense = Linear1D_Row( hidden_size, hidden_size, dtype=dtype, parallel_input=True, ) self.dropout = col_nn.Dropout(hidden_dropout_prob) def softmax_forward(self, attention_scores, attention_mask, query_layer, key_layer): raise NotImplementedError def _forward(self, hidden_states: Tensor, attention_mask=None) -> Tensor: query_key_value = self.query_key_value(hidden_states) new_qkv_shape = query_key_value.shape[:-1] + \ (self.num_attention_heads_per_partition, 3 * self.attention_head_size) query_key_value = query_key_value.view(new_qkv_shape) query_key_value = query_key_value.permute((0, 2, 1, 3)) query_layer, key_layer, value_layer = torch.chunk( query_key_value, 3, dim=-1) attention_scores = torch.matmul( query_layer, key_layer.transpose(-1, -2)) attention_scores = self.softmax_forward(attention_scores, attention_mask, query_layer, key_layer) attention_scores = attention_scores.type(value_layer.dtype) attention_probs = self.attention_dropout(attention_scores) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.transpose(1, 2) new_context_layer_shape = context_layer.size()[ :-2] + (self.hidden_size_per_partition,) context_layer = context_layer.reshape(new_context_layer_shape) output = self.dense(context_layer) output = self.dropout(output) return output def _checkpoint_forward(self, hidden_states: Tensor, attention_mask=None) -> Tensor: return checkpoint(self._forward, hidden_states, attention_mask) def forward(self, hidden_states: Tensor, attention_mask=None) -> Tensor: if self.checkpoint: return self._checkpoint_forward(hidden_states, attention_mask) else: return self._forward(hidden_states, attention_mask) class DeepNetSelfAttention1D(GenericSelfAttention1D): def __init__(self, hidden_size: int, num_attention_heads: int, attention_dropout_prob: float, hidden_dropout_prob: float, dtype=None, checkpoint: bool = False, max_position_embeddings=1024): super().__init__(hidden_size, num_attention_heads, attention_dropout_prob, hidden_dropout_prob, dtype=dtype, checkpoint=checkpoint, max_position_embeddings=max_position_embeddings) self.softmax = nn.Softmax(dim=-1) max_positions = max_position_embeddings self.register_buffer( "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view( 1, 1, max_positions, max_positions ), ) self.register_buffer("masked_bias", torch.tensor(-1e4)) def softmax_forward(self, attention_scores, attention_mask, query_layer, key_layer): attention_scores = attention_scores / math.sqrt(self.attention_head_size) # causal mask query_length, key_length = query_layer.size(-2), key_layer.size(-2) causal_mask = self.bias[:, :, key_length - query_length: key_length, :key_length].bool() attention_scores = torch.where(causal_mask, attention_scores, self.masked_bias.to(attention_scores)) if attention_mask is not None: # Apply the attention mask attention_scores = attention_scores + attention_mask attention_scores = self.softmax(attention_scores) return attention_scores class FusedDeepNetSelfAttention1D(GenericSelfAttention1D): def __init__(self, hidden_size: int, num_attention_heads: int, attention_dropout_prob: float, hidden_dropout_prob: float, dtype=None, checkpoint: bool = False, max_position_embeddings=1024): super().__init__(hidden_size, num_attention_heads, attention_dropout_prob, hidden_dropout_prob, dtype=dtype, checkpoint=checkpoint, max_position_embeddings=max_position_embeddings) self.softmax = kernel.FusedScaleMaskSoftmax(input_in_fp16=True, input_in_bf16=False, attn_mask_type=AttnMaskType.causal, scaled_masked_softmax_fusion=True, mask_func=None, softmax_in_fp32=True, scale=math.sqrt(self.attention_head_size)) def softmax_forward(self, attention_scores, attention_mask, query_layer, key_layer): return self.softmax(attention_scores, attention_mask) class GenericDeepNetTransformerLayer1D(ParallelLayer): def __init__(self, hidden_size: int, num_attention_heads: int, act_func: str = 'gelu', mlp_ratio: float = 4.0, attention_dropout_prob: float = 0., hidden_dropout_prob: float = 0., dtype=None, checkpoint: bool = False, max_position_embeddings: int = 1024, alpha: float = 1.0, layer_norm_epsilon: float = 1e-5, apply_post_layer_norm: bool = False, attention=None, layer_norm=None ): super().__init__() self.checkpoint = checkpoint self.dtype = dtype self.norm1 = layer_norm(hidden_size, eps=layer_norm_epsilon) self.attention = attention( hidden_size=hidden_size, num_attention_heads=num_attention_heads, attention_dropout_prob=attention_dropout_prob, hidden_dropout_prob=hidden_dropout_prob, dtype=dtype, max_position_embeddings=max_position_embeddings, checkpoint=False, ) self.alpha = alpha self.norm2 = layer_norm(hidden_size, eps=layer_norm_epsilon) self.mlp = MLP1D( in_features=hidden_size, dropout_prob=hidden_dropout_prob, act_func=act_func, mlp_ratio=mlp_ratio, dtype=dtype, checkpoint=False, ) def _forward(self, hidden_states, attention_mask) -> Tensor: residual = hidden_states attention_output = self.attention(hidden_states, attention_mask) hidden_states = self.norm1(residual*self.alpha + attention_output) residual = hidden_states feed_forward_hidden_states = self.mlp(hidden_states) hidden_states = self.norm2(residual*self.alpha + feed_forward_hidden_states) output = (hidden_states, attention_mask) return output def forward(self, hidden_states, attention_mask): if self.checkpoint: return checkpoint(self._forward, hidden_states, attention_mask) else: return self._forward(hidden_states, attention_mask) class DeepNetTransformerLayer1D(GenericDeepNetTransformerLayer1D): def __init__(self, hidden_size: int, num_attention_heads: int, act_func: str = 'gelu', mlp_ratio: float = 4, attention_dropout_prob: float = 0, hidden_dropout_prob: float = 0, dtype=None, checkpoint: bool = False, max_position_embeddings: int = 1024, layer_norm_epsilon: float = 0.00001, alpha: float = 1.0): attention = DeepNetSelfAttention1D layer_norm = nn.LayerNorm super().__init__(hidden_size, num_attention_heads, act_func=act_func, mlp_ratio=mlp_ratio, attention_dropout_prob=attention_dropout_prob, hidden_dropout_prob=hidden_dropout_prob, dtype=dtype, checkpoint=checkpoint, max_position_embeddings=max_position_embeddings, layer_norm_epsilon=layer_norm_epsilon, alpha=alpha, attention=attention, layer_norm=layer_norm) class FusedDeepNetTransformerLayer1D(GenericDeepNetTransformerLayer1D): def __init__(self, hidden_size: int, num_attention_heads: int, act_func: str = 'gelu', mlp_ratio: float = 4, attention_dropout_prob: float = 0, hidden_dropout_prob: float = 0, dtype=None, checkpoint: bool = False, max_position_embeddings: int = 1024, layer_norm_epsilon: float = 0.00001, alpha: float = 1.0): attention = FusedDeepNetSelfAttention1D layer_norm = kernel.LayerNorm super().__init__(hidden_size, num_attention_heads, act_func=act_func, mlp_ratio=mlp_ratio, attention_dropout_prob=attention_dropout_prob, hidden_dropout_prob=hidden_dropout_prob, dtype=dtype, checkpoint=checkpoint, max_position_embeddings=max_position_embeddings, layer_norm_epsilon=layer_norm_epsilon, alpha=alpha, attention=attention, layer_norm=layer_norm)
from pathlib import Path import pandas as pd from typer import secho import os from shutil import move # from os import path def read_list(list_path:Path): if str(list_path).endswith('.csv'): list = pd.read_csv(list_path, sep=';') from_col = [] to_col = [] for i in list['from']: from_col.append(i) for i in list['to']: to_col.append(i) list = {} for i in range(len(from_col)): list[from_col[i]] = to_col[i] return list if str(list_path).endswith('.txt'): f = open(list_path, encoding="utf-8") list = {} for i in f.readlines(): pair = i.split(';') list[pair[0]] = pair[1] return list else: secho('El formato de la lista no es soportado') def move_files(path:Path, create_folders:bool): for dir,cp,files in os.walk(path): for file in files: # print(dir) folder_name = os.path.join(dir,str(file[:str(file).rfind('.')])) # print(folder_name) os.makedirs(folder_name, exist_ok=True) if create_folders: create_folders_inside(path) move(os.path.join(dir,file),folder_name) # read_list('./list.csv') def create_folders_inside(path): # print(path) for dir,cp,files in os.walk(path): # folder_name = os.path.join(dir,str(file[:str(file).rfind('.')])) # print(dir) if str(dir) == str(path): # print("True") continue for i in ['metadata', 'access', 'preservation', 'service', 'submissionDocumentation']: # print(os.path.join(dir, i)) os.makedirs(os.path.join(dir, i), exist_ok=True)
from delivery.extensions.auth.controller import create_user, save_user_photo from delivery.extensions.auth.form import UserForm from flask import Blueprint, redirect, render_template, request bp = Blueprint("site", __name__) @bp.route("/") def index(): return render_template("index.html") @bp.route("/about") def about(): return render_template("about.html") @bp.route("/restaurants") def restaurants(): return render_template("restaurants.html") @bp.route("/signup", methods=["POST", "GET"]) def signup(): form = UserForm() if form.validate_on_submit(): create_user( email=form.email.data, password=form.password.data, name=form.name.data, ) photo = request.files.get("photo") if photo: save_user_photo(photo.filename, photo) return redirect("/") return render_template("userform.html", form=form)
import tensorflow as tf def vgg_block(num_convs, num_channels): blk = tf.keras.models.Sequential() for _ in range(num_convs): # strides默认 = (1, 1) blk.add(tf.keras.layers.Conv2D(num_channels,kernel_size=3, padding='same',activation='relu')) blk.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2)) return blk def build_vggnet(conv_arch): net = tf.keras.models.Sequential() for (num_convs, num_channels) in conv_arch: net.add(vgg_block(num_convs,num_channels)) net.add(tf.keras.models.Sequential([tf.keras.layers.Flatten(), tf.keras.layers.Dense(4096,activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(4096,activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10,activation='softmax')])) return net def build_vgg(keyword = 'vgg11'): if keyword == 'vgg11': conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512)) #VGG11 if keyword == 'vgg16': conv_arch = ((2, 64), (2, 128), (3, 256), (3, 512), (3, 512)) #VGG16 if keyword == 'vgg19': conv_arch = ((2, 64), (2, 128), (4, 256), (4, 512), (4, 512)) #VGG16 net = build_vggnet(conv_arch) return net
# Copyright 2014-2015 PUNCH Cyber Analytics Group # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Overview ======== Bitwise rotation of a payload """ from stoq.plugins import StoqDecoderPlugin class BitwiseRotateDecoder(StoqDecoderPlugin): def __init__(self): super().__init__() def activate(self, stoq): self.stoq = stoq super().activate() def decode(self, payload, **kwargs): """ Bitwise rotation of a payload :param bytes payload: Payload to be decoded :param **kwargs direction: left or right rotation of bits. Defaults to right. :param **kwargs bits: Defaults to 4 for nibble swapping. Valid range is 0 - 8. :returns: Bitwise rotated payload :rtype: list of tuples """ try: if 'bits' in kwargs: bits = kwargs['bits'] else: bits = 4 if 'direction' in kwargs: direction = kwargs['direction'].lower() else: direction = 'right' # Ensure rotation value is between 0 and 8 if (bits < 0) or (bits > 8): raise ValueError('Rotation out of bounds (1-8)') payload = self.to_bytearray(payload) payload_length = len(payload) for index in range(payload_length): byte_value = payload[index] if direction == 'left': payload[index] = (byte_value << bits | byte_value >> (8 - bits)) & 0xFF else: payload[index] = (byte_value >> bits | byte_value << (8 - bits)) & 0xFF # Define the metadata we want to return meta = {} meta['size'] = payload_length meta['bits'] = bits meta['direction'] = direction # Return the results as a list of tuples return [(meta, payload)] except Exception as err: self.log.error("Unable to bitwise rotate payload: {}".format(str(err))) return None
import torch from ..utils.manifold_multi import multiprod, multitransp, multisym from .manifold import Manifold class Hyperbolic(Manifold): """ Class for Hyperbolic manifold with shape (k x N) or N With k > 1 it applies product of k Hyperbolas """ def __init__(self, n, k=1): if n < 2: raise ValueError("Need n >= 2 Value supplied was n = {}".format(n)) if k < 1: raise ValueError("Need k >= 1 Value supplied was k = {}".format(k)) super(Manifold, self).__init__() # Set the dimensions of the Hyperbolic manifold self._n = n self._k = k self.eps = 0 # Set dimension #TODO: confirm self._dim = self._k * (self._n) if k == 1: self._size = torch.Size((n,)) else: self._size = torch.Size((k, n)) def __str__(self): if self._k == 1: return "Hyperbolic manifold ({})".format(self._n) elif self._k >= 2: return "Product Hyperbolic manifold ({})^{}".format( self._n, self._k) def rand(self): """ Generate random Hyperbolic point in range (-0.001, 0.001) """ u_range = (-0.001, 0.001) if self._k == 1: X = torch.randn(self._n)# * (u_range[1] - u_range[0]) + u_range[0] X[0] = torch.sqrt(1 + torch.sum(X[1:]**2)) return X X = torch.randn(self._k, self._n)# * (u_range[1] - u_range[0]) + u_range[0] X[:, 0] = torch.sqrt(1 + torch.sum(X[:, 1:]**2, dim=1)) return X def _lorentz_scalar_product(self, u, v): if u.shape == v.shape: if len(v.shape) == 1: val = torch.sum(u*v) - 2*u[0]*v[0] return val elif len(v.shape) == 2: val = torch.sum(u*v, dim=1) - 2*u[:, 0]*v[:, 0] return val raise ValueError("u, v can not be {}-dimensional".format(len(v.shape))) raise ValueError("u,v shape should be same") def proj(self, X, U): if self._k == 1: return U + self._lorentz_scalar_product(X, U) * X else: return U + self._lorentz_scalar_product(X, U).reshape(self._k, -1) * X def egrad2rgrad(self, X, U): gl = torch.diag(torch.ones(self._n)) gl[0, 0] = -1 if self._k == 1: return self.proj(X, multiprod(gl, U)) else: return self.proj(X, multitransp(multiprod(gl, multitransp(U)))) def retr(self, X, G): """ retaction is same as exp """ return self.exp(X, G) def exp(self, X, G): # check for multi dimenstions G_lnorm = self.norm(X, G) if self._k == 1: ex = torch.cosh(G_lnorm) * X + torch.sinh(G_lnorm) * (G/G_lnorm) if G_lnorm == 0: ex = X return ex else: G_lnorm = G_lnorm.view(-1, 1) ex = torch.cosh(G_lnorm) * X + torch.sinh(G_lnorm) * (G/G_lnorm) exclude = G_lnorm == 0 exclude = exclude.view(-1) ex[exclude, :] = X[exclude, :] return ex def inner(self, X, G1, G2): return torch.sum(G1 * G2) def norm(self, X, G): linear_product = self._lorentz_scalar_product(G, G) return torch.sqrt(torch.max(linear_product, torch.ones_like(linear_product) * self.eps)) def transp(self, x1, x2, d): return self.proj(x2, d) def _acosh(self, x): return torch.log(x+(x**2-1)**0.5) def dist(self, X, Y): # arccosh(max (1, -<X,Y>_L) ) linear_product = -1 * self._lorentz_scalar_product(X, Y) return self._acosh(torch.max(linear_product, torch.ones_like(linear_product))) # TODO: inner, norm transp check
""" Small WSGI filter that interprets headers added by proxies to fix some values available in the request. """ import re from typing import Callable, Dict, Any SEP_RE = re.compile(r', *') class Filter: def __init__(self, application: Callable[[Dict[str, str], Any], Any]): self._application = application def __call__(self, environ: Dict[str, str], start_response: Any) -> Any: if 'HTTP_FORWARDED' in environ: forwarded = SEP_RE.split(environ.pop('HTTP_FORWARDED'))[0] fields = dict(tuple(f.split('=', maxsplit=1)) for f in forwarded.split(";")) # type: ignore if 'for' in fields: environ['REMOTE_ADDR'] = fields['for'] if 'host' in fields: environ['HTTP_HOST'] = fields['host'] if 'proto' in fields: environ['wsgi.url_scheme'] = fields['proto'] # the rest is taken from paste.deploy.config.PrefixMiddleware if 'HTTP_X_FORWARDED_SERVER' in environ: environ['SERVER_NAME'] = environ['HTTP_HOST'] = \ environ.pop('HTTP_X_FORWARDED_SERVER').split(',')[0] if 'HTTP_X_FORWARDED_HOST' in environ: environ['HTTP_HOST'] = environ.pop('HTTP_X_FORWARDED_HOST').split(',')[0] if 'HTTP_X_FORWARDED_FOR' in environ: environ['REMOTE_ADDR'] = environ.pop('HTTP_X_FORWARDED_FOR').split(',')[0] if 'HTTP_X_FORWARDED_SCHEME' in environ: environ['wsgi.url_scheme'] = environ.pop('HTTP_X_FORWARDED_SCHEME') elif 'HTTP_X_FORWARDED_PROTO' in environ: environ['wsgi.url_scheme'] = environ.pop('HTTP_X_FORWARDED_PROTO') return self._application(environ, start_response)
class Job(object): def __init__(self, pipeline_connector, **kwargs): self.kwargs = kwargs self._pipeline_connector = pipeline_connector def pipeline_context(self): return self._pipeline_connector.pipeline_context() def serialize(self): from foundations_internal.serializer import serialize return serialize(self) @staticmethod def deserialize(serialized_self): from foundations_internal.serializer import deserialize return deserialize(serialized_self)
""" To run: $ python lstm_frag.py --data_path=path/to/train.list """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys sys.path.insert(0, "../src/") from utils.vector_manager import VectorManager import numpy as np import tensorflow as tf import subprocess import inspect import time flags = tf.flags logging = tf.logging flags.DEFINE_string( "model", "small", "A type of model. Possible options are: small, medium, large.") flags.DEFINE_string( "tasks", "all", "Tasks to be performed. Possible options are: all, train, test, valid") flags.DEFINE_string( "word_to_id_path", "../models/eos/word2id_1000.pklz", "A type of model. Possible options are: small, medium, large.") flags.DEFINE_string( "embeddings", "../models/eos/idWordVec_", "Embeddings path") flags.DEFINE_string("data_path", None, "Where the training/test data is stored.") flags.DEFINE_string("save_path", None, "Model output directory.") flags.DEFINE_bool("use_fp16", False, "Train using 16-bit floats instead of 32bit floats") FLAGS = flags.FLAGS def data_type(): return tf.float16 if FLAGS.use_fp16 else tf.float32 def get_vocab_size(): word_to_id = VectorManager.read_vector(FLAGS.word_to_id_path) size = len(word_to_id) print("Vocabulary size: %s" % size) return size def generate_arrays_from_list(name, files, embeddings, num_steps=35, batch_size=20, embedding_size=200): debug = False while 1: for file_name in files: print("Generating from file %s for %s" % (file_name, name)) raw_list = VectorManager.parse_into_list(open(file_name).read()) n_words = len(raw_list) batch_len = n_words // batch_size data = np.reshape(raw_list[0:batch_size*batch_len], [batch_size, batch_len]) for i in range(0, n_words - num_steps, 1): x = data[0:batch_size, i * num_steps:(i + 1) * num_steps] x = [[embeddings[int(elem)][2] for elem in l] for l in x] y = data[0:batch_size, i * num_steps + 1:(i + 1) * num_steps + 1] if len(x[0]) < num_steps or len(y[0]) < num_steps: break if debug: print("Batch size %s\nNum steps %s\nEmbedding size %s" % (batch_size, num_steps, embedding_size )) print("Len(x): %s\n Len(x[0] %s\n Len(x[0][0] %s" % (len(x), len(x[0]), len(x[0][0]))) print("Len(y): %s\n Len(y[0] %s" % (len(y), len(y[0]))) x = np.reshape(x, newshape=(batch_size, num_steps, embedding_size)) y = np.reshape(y, newshape=(batch_size, num_steps)) yield x, y class WPModel(object): """Word Prediction model.""" def __init__(self, is_training, config): self.config = config batch_size = config.batch_size num_steps = config.num_steps size = config.hidden_size vocab_size = config.vocab_size embedding_size = config.embedding_size def lstm_cell(): # With the latest TensorFlow source code (as of Mar 27, 2017), # the BasicLSTMCell will need a reuse parameter which is unfortunately not # defined in TensorFlow 1.0. To maintain backwards compatibility, we add # an argument check here: # if 'reuse' in inspect.getargspec( # tf.contrib.rnn.BasicLSTMCell.__init__).args: # return tf.contrib.rnn.BasicLSTMCell( # size, forget_bias=0.0, state_is_tuple=True, # reuse=tf.get_variable_scope().reuse) # else: return tf.contrib.rnn.BasicLSTMCell( size, forget_bias=0.0, state_is_tuple=True) attn_cell = lstm_cell if is_training and config.keep_prob < 1: def attn_cell(): return tf.contrib.rnn.DropoutWrapper( lstm_cell(), output_keep_prob=config.keep_prob) cell = tf.contrib.rnn.MultiRNNCell( [attn_cell() for _ in range(config.num_layers)], state_is_tuple=True) self._initial_state = cell.zero_state(batch_size, data_type()) with tf.device("/cpu:0"): self.inputs = tf.placeholder(dtype=data_type(), shape=(batch_size, num_steps, embedding_size)) self.targets = tf.placeholder(dtype=tf.int32, shape=(batch_size, num_steps)) if is_training and config.keep_prob < 1: # Dropout allows to use the net for train and testing # See: https://stackoverflow.com/questions/34597316/why-input-is-scaled-in-tf-nn-dropout-in-tensorflow # and: http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf inputs = tf.nn.dropout(self.inputs, config.keep_prob) else: inputs = self.inputs inputs = tf.unstack(inputs, num=num_steps, axis=1) outputs, state = tf.contrib.rnn.static_rnn( cell, inputs, initial_state=self._initial_state) output = tf.reshape(tf.stack(axis=1, values=outputs), [-1, size]) softmax_w = tf.get_variable( "softmax_w", [size, vocab_size], dtype=data_type()) softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type()) logits = tf.matmul(output, softmax_w) + softmax_b loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example( [logits], [tf.reshape(self.targets, [-1])], [tf.ones([batch_size * num_steps], dtype=data_type())]) self._cost = cost = tf.reduce_sum(loss) / batch_size self._final_state = state if not is_training: return self._lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(self._lr) self._train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=tf.contrib.framework.get_or_create_global_step()) self._new_lr = tf.placeholder( tf.float32, shape=[], name="new_learning_rate") self._lr_update = tf.assign(self._lr, self._new_lr) def assign_lr(self, session, lr_value): session.run(self._lr_update, feed_dict={self._new_lr: lr_value}) @property def input(self): return self._input @property def initial_state(self): return self._initial_state @property def cost(self): return self._cost @property def final_state(self): return self._final_state @property def lr(self): return self._lr @property def train_op(self): return self._train_op class SmallConfig(object): """Small config.""" init_scale = 0.1 learning_rate = 1.0 max_grad_norm = 5 num_layers = 1 num_steps = 20 hidden_size = 200 max_epoch = 2 max_max_epoch = 13 keep_prob = 1.0 lr_decay = 0.5 batch_size = 20 vocab_size = 126930 embedding_size = 200 epoch_size = 1 class MediumConfig(object): """Medium config.""" init_scale = 0.05 learning_rate = 1.0 max_grad_norm = 5 num_layers = 1 num_steps = 35 hidden_size = 512 max_epoch = 6 max_max_epoch = 39 keep_prob = 0.5 lr_decay = 0.8 batch_size = 20 vocab_size = 126930 embedding_size = 200 epoch_size = 1 class LargeConfig(object): """Large config.""" init_scale = 0.04 learning_rate = 1.0 max_grad_norm = 10 num_layers = 1 num_steps = 35 hidden_size = 1024 max_epoch = 14 max_max_epoch = 55 keep_prob = 0.35 lr_decay = 1 / 1.15 batch_size = 20 vocab_size = 126930 embedding_size = 1000 epoch_size = 1 class TestConfig(object): """Tiny config, for testing.""" init_scale = 0.1 learning_rate = 1.0 max_grad_norm = 1 num_layers = 1 num_steps = 2 hidden_size = 2 max_epoch = 1 max_max_epoch = 1 keep_prob = 1.0 lr_decay = 0.5 batch_size = 10 vocab_size = 126930 embedding_size = 200 epoch_size = 1 def run_epoch(session, generator, model, eval_op=None, verbose=False): """Runs the model on the given data.""" start_time = time.time() costs = 0.0 iters = 0 config = model.config state = session.run(model.initial_state) fetches = { "cost": model.cost, "final_state": model.final_state, } if eval_op is not None: fetches["eval_op"] = eval_op print("Epoch size starting training %s" % config.epoch_size) for step in range(config.epoch_size): x, y = next(generator) feed_dict = {} for i, (c, h) in enumerate(model.initial_state): feed_dict[c] = state[i].c feed_dict[h] = state[i].h feed_dict[model.inputs] = x feed_dict[model.targets] = y vals = session.run(fetches, feed_dict) cost = vals["cost"] state = vals["final_state"] costs += cost iters += config.num_steps # if verbose and step % 100 == 0: print("%.3f perplexity: %.3f speed: %.0f wps" % (step * 1.0 / config.epoch_size, np.exp(costs / iters), iters * config.batch_size / (time.time() - start_time))) sys.stdout.flush() return np.exp(costs / iters) def get_config(): if FLAGS.model == "small": return SmallConfig() elif FLAGS.model == "medium": return MediumConfig() elif FLAGS.model == "large": return LargeConfig() elif FLAGS.model == "test": return TestConfig() else: raise ValueError("Invalid model: %s", FLAGS.model) def get_epoch_size(files, config): total = 0 for file in files: file_words = subprocess.check_output(['wc', '-w', file]) number = file_words.split()[0] words = int(number) total += words - (words % (config.batch_size * config.num_steps)) print("Total words: %s, Batch size: %s, Num steps: %s" % (total, config.batch_size, config.num_steps)) sys.stdout.flush() epoch_size = ((total // config.batch_size) - 1) // config.num_steps return epoch_size def main(_): if not FLAGS.data_path: raise ValueError("Must set --data_path to wiki data directory list") vocab_size = 126930 config = get_config() config.vocab_size = vocab_size valid_config = get_config() config.vocab_size = vocab_size eval_config = get_config() eval_config.batch_size = 1 eval_config.num_steps = 1 eval_config.vocab_size = vocab_size print("Embeddings path: {}".format(FLAGS.embeddings)) embeddings = VectorManager.read_vector(FLAGS.embeddings) files = open(FLAGS.data_path).read().split() training_list = files[0:int(0.8 * len(files))] validation_list = files[int(0.8 * len(files)):int(0.9 * len(files))] testing_list = files[int(0.9 * len(files)):len(files)] config.epoch_size = get_epoch_size(training_list, config) valid_config.epoch_size = get_epoch_size(validation_list, valid_config) eval_config.epoch_size = get_epoch_size(testing_list, eval_config) gen_train = generate_arrays_from_list("Train", training_list, embeddings, batch_size=config.batch_size, embedding_size=config.embedding_size, num_steps=config.num_steps) gen_valid = generate_arrays_from_list("Validation", validation_list, embeddings, batch_size=valid_config.batch_size, embedding_size=valid_config.embedding_size, num_steps=valid_config.num_steps) gen_test = generate_arrays_from_list("Test", testing_list, embeddings, batch_size=eval_config.batch_size, embedding_size=eval_config.embedding_size, num_steps=eval_config.num_steps) print("Epoch sizes\n * Training: %s\n * Validation: %s\n * Testing: %s" % (config.epoch_size, valid_config.epoch_size, eval_config.epoch_size)) sys.stdout.flush() with tf.Graph().as_default(): # Args: [minval, maxval] initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale) with tf.name_scope("Train"): with tf.variable_scope("Model", reuse=None, initializer=initializer): m = WPModel(is_training=True, config=config) tf.summary.scalar("Training Loss", m.cost) tf.summary.scalar("Learning Rate", m.lr) with tf.name_scope("Valid"): with tf.variable_scope("Model", reuse=True, initializer=initializer): mvalid = WPModel(is_training=False, config=valid_config) tf.summary.scalar("Validation Loss", mvalid.cost) with tf.name_scope("Test"): with tf.variable_scope("Model", reuse=True, initializer=initializer): mtest = WPModel(is_training=False, config=eval_config) sv = tf.train.Supervisor(logdir=FLAGS.save_path) with sv.managed_session() as session: for i in range(config.max_max_epoch): lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0) m.assign_lr(session, config.learning_rate * lr_decay) print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr))) train_perplexity = run_epoch(session, generator=gen_train, model=m, eval_op=m.train_op, verbose=True) print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity)) valid_perplexity = run_epoch(session, generator=gen_valid, model=mvalid) print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity)) test_perplexity = run_epoch(session, generator=gen_test, model=mtest) print("Test Perplexity: %.3f" % test_perplexity) if FLAGS.save_path: print("Saving model to %s." % FLAGS.save_path) sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step) if __name__ == "__main__": tf.app.run()
from django.apps import AppConfig class PofileDiffReduceConfig(AppConfig): name = 'pofile_diff_reduce'
#!/usr/local/bin/python3 def main(): # Test suite tests = [ [None, None], # Should throw a TypeError [0, False], [1, True], [2, True], [15, False], [16, True], [65536, True], [65538, False] ] for item in tests: try: temp_result = is_power_of_two(item[0]) if temp_result == item[1]: print('PASSED: is_power_of_two({}) returned {}'.format(item[0], temp_result)) else: print('FAILED: is_power_of_two({}) returned {}, should have returned {}'.format(item[0], temp_result, item[1])) except TypeError: print('PASSED TypeError test') return 0 def is_power_of_two(val): ''' Determines if val is a power of two Input: val is a positive integer Output: Boolean ''' # Check input if type(val) is not int: raise TypeError('Input must be an integer') # Trivial cases if val <= 0: return False if val == 1: return True # Repeat divisions by 2 until val = 2 while val > 1: if val % 2 == 1: return False val /= 2 return True if __name__ == '__main__': main()
# Lesson 6 # Sometimes, we want to protect some of the data or methods in our classes class RestroomStall: def __init__(self): self._occupants = 0 # protected variables discourage use self.__bathroom_cam = 0 # private variables prevent use def is_occupied(self): return self._occupants != 0 def enter(self): if not self.is_occupied(): print('You have entered the bathroom') self._occupants += 1 else: print("You can't enter the bathroom, it's occupied!") def exit(self): if self.is_occupied(): print("You're exiting the bathroom") self._occupants -= 1 else: print('ERROR! Attempted restroom exit with 0 occupants!') stall = RestroomStall() stall.enter() stall.exit() stall.enter() stall.enter() # If we really need to, we can access protected variables, # but the class author is trying to tell you that modification is dangerous! stall._occupants = 0 stall.enter() # However, we cannot access private variables! stall.__bathroom_cam
import numpy as np from numpy import load from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt import matplotlib.patches as mpatches train_split = 0.8 lead_time = 1 data_path = 'data/' out_path = 'out/' y = load(data_path + 'y.npy') for lead_time in [1, 2, 3, 6, 12, 23]: # Create a persistence model. num_examples = len(y) num_train = int(num_examples * train_split) y_test = y[num_train+lead_time:] pred = y[num_train:-lead_time] # Test the model. test_mse = mean_squared_error(y_test, pred, squared=True) test_rmse = mean_squared_error(y_test, pred, squared=False) print('Test MSE:', test_mse) print("----------") print() fig, ax = plt.subplots(figsize=(12, 8)) plt.xlabel('Month') plt.ylabel('SSTA') plt.title('Persist_SSTAGraphDataset_leadtime_' + str(lead_time) + '_numsample_1679_trainsplit_0.8_MSE_' + str(round(test_mse, 4)), fontsize=12) blue_patch = mpatches.Patch(color='blue', label='Predicted') red_patch = mpatches.Patch(color='red', label='Observed') ax.legend(handles=[blue_patch, red_patch]) month = np.arange(0, len(y_test), 1, dtype=int) ax.plot(month, pred, 'o', color='blue') ax.plot(month, y_test, 'o', color='red') plt.savefig(out_path + 'plot_persist_SSTAGraphDataset_leadtime_' + str(lead_time) + '_numsample_1679_trainsplit_0.8.png') print("Save the observed vs. predicted plot.") print("--------------------") print()
# -*- coding: utf-8 -*- __all__ = [ "cublas", ] from functools import reduce from operator import mul import numpy as np # Local imports from cublas_import import (cublas_axpy, cublas_copy, cublas_destroy, cublas_gemm, cublas_gemm_strided_batched, cublas_init, cublas_nrm2, cublas_rf_batched, cublas_ri_batched, cublas_scal, cublas_setstream, cublasx_diag) # Datatype identifier. cuBLAS currently supports these. _blas_types = {np.dtype('f4'):0, np.dtype('f8'):1, np.dtype('c8'):2, np.dtype('c16'):3, np.dtype('f2'):4} def check_vectors(x, y): try: if x.dtype != y.dtype: raise TypeError('Dtype mismatch between vectors x and y in axpy.') except (TypeError): exit('Could not complete request.') class cublas(object): def __init__(self, stream=None): """ Initialize a blas handle, and tie the stream to it if one is passed in. Parameters ---------- stream : c_void_p (cudastream_t*), optional CUDA stream to initialize the blas handle to. Attributes ---------- blas_handle : c_void_p (cublasHandle_t *) Pointer reference to cuBLAS handle. """ self._stream = stream self._blas_handle = cublas_init() if self.stream is not None: cublas_setstream(self.handle, self.stream) def axpy(self, alpha, x, y, xinc=1, yinc=1, n=None): """ cuBLAS function ax plus y. Parameters ---------- alpha : blas_types[dtype] Scalar used for multiplication. x : Device_Ptr object Device pointer object with dev_ptr to vector x. y : Device_Ptr object Device pointer object with dev_ptr to vector x. xinc : int, optional Stride between consecutive elements of x. yinc : int, optional Stride between consecutive elements of y. n : int, optional Number of elements in the vectors x and y. """ if type(alpha) is not np.ndarray: alpha = np.array(alpha, dtype=x.dtype) n = n or len(x) check_vectors(x,y) cublas_axpy(self.handle, n, alpha, x.ptr, xinc, y.ptr, yinc, _blas_types[x.dtype]) def copy(self, x, y, xinc=1, yinc=1, n=None): """ cuBLAS function copy vector x to y. Parameters ---------- x : Device_Ptr object Device pointer object with dev_ptr to vector x. y : Device_Ptr object Device pointer object with dev_ptr to vector y. xinc : int, optional Stride between consecutive elements of x. yinc : int, optional Stride between consecutive elements of y. n : int Number of elements in the vectors x and y. Notes ----- This is the equivalent of doing a cuda_memcpyd2d(...) """ check_vectors(x,y) n = n or len(y) cublas_copy(self.handle, n, x.ptr, xinc, y.ptr, yinc, _blas_types[x.dtype]) def diag(self, x): batch_size, n, m = x.shape cublasx_diag(x.ptr, m, n, batch_size, _blas_types[x.dtype], self.stream) def gemm(self, a, b, c, alpha=1., beta=0., OPA='N', OPB='N', m3m=False): """ cuBLAS function gemm. Parameters ---------- alpha : blas_types[dtype] Scalar used for multiplication. a : Device_Ptr object Device pointer object with dev_ptr to input matrix a. b : Device_Ptr object Device pointer object with dev_ptr to input matrix b. c : Device_Ptr object Device pointer object with dev_ptr to output matrix c. beta : blas_types[dtype], optional Not really sure what beta does. Documentation sets this to zero when doing a gemm. OPA : str, optional CUBLAS_OP_N ('N') or CUBLAS_OP_T ('T') or CUBLAS_OP_C ('C') OPB : str, optional CUBLAS_OP_N ('N') or CUBLAS_OP_T ('T') or CUBLAS_OP_C ('C') m3m : bool, optional Use the Gaussian reduction optimization for complex type for a small speed boost. Only supported for complex float at this time. Notes ----- Dealing with cuBLAS FORTRAN style indexing: https://peterwittek.com/cublas-matrix-c-style.html """ check_vectors(a,b) check_vectors(b,c) m, n = c.shape[-2:] k = a.shape[-1] if OPA == 'N' else a.shape[-2] if type(alpha) is not np.ndarray: alpha = np.array([alpha], dtype=a.dtype) if type(beta) is not np.ndarray: beta = np.array([beta], dtype=a.dtype) ldc = n ldb = n if OPB == 'N' else k lda = k if OPA == 'N' else m cublas_gemm(self.handle, {'N':0, 'T':1, 'C':2}[OPB], {'N':0, 'T':1, 'C':2}[OPA], n, m, k, alpha, b.ptr, ldb, a.ptr, lda, beta, c.ptr, ldc, _blas_types[a.dtype], m3m) def gemm_strided_batched(self, a, b, c, alpha=1., beta=0., strideA=None, strideB=None, strideC=None, OPA='N', OPB='N', m3m=False): """ cuBLAS function gemm. Parameters ---------- alpha : blas_types[dtype] Scalar used for multiplication. a : Device_Ptr object Device pointer object with dev_ptr to input matrix a. b : Device_Ptr object Device pointer object with dev_ptr to input matrix b. c : Device_Ptr object Device pointer object with dev_ptr to output matrix c. beta : blas_types[dtype], optional Not really sure what beta does. Documentation sets this to zero when doing a gemm. OPA : str, optional CUBLAS_OP_N ('N') or CUBLAS_OP_T ('T') or CUBLAS_OP_C ('C') OPB : str, optional CUBLAS_OP_N ('N') or CUBLAS_OP_T ('T') or CUBLAS_OP_C ('C') m3m : bool, optional Use the Gaussian reduction optimization for complex type for a small speed boost. Only supported for complex float at this time. Notes ----- Dealing with cuBLAS FORTRAN style indexing: https://peterwittek.com/cublas-matrix-c-style.html """ check_vectors(a,b) check_vectors(b,c) batch_size = c.shape[0] m, n = c.shape[-2:] k = a.shape[-1] if OPA == 'N' else a.shape[-2] if type(alpha) is not np.ndarray: alpha = np.array(alpha, dtype=a.dtype) if type(beta) is not np.ndarray: beta = np.array(beta, dtype=a.dtype) ldc = n ldb = n if OPB == 'N' else k lda = k if OPA == 'N' else m strideA = strideA or reduce(mul,a.shape[-2:]) if len(a) > 1 else 0 strideB = strideB or reduce(mul,b.shape[-2:]) if len(b) > 1 else 0 strideC = strideC or reduce(mul,c.shape[-2:]) if len(c) > 1 else 0 cublas_gemm_strided_batched( self.handle, {'N':0, 'T':1, 'C':2}[OPB], {'N':0, 'T':1, 'C':2}[OPA], n, m, k, alpha, b.ptr, ldb, strideB, a.ptr, lda, strideA, beta, c.ptr, ldc, strideC, batch_size, _blas_types[a.dtype], m3m) def nrm2(self, x, xinc=1, n=None): """ Computes the Euclidean norm of the vector x, and stores the result on host array y. Parameters ---------- x : Device_Ptr object Device pointer object with dev_ptr to vector x. xinc : int, optional Stride between consecutive elements of x. n : int, optional Number of elements in the vectors x Returns ------- y : blas_types[dtype] Euclidean norm of the vector x. """ y = np.empty(1, dtype=x.dtype) n = n or len(x) cublas_nrm2(self.handle, n, x.ptr, xinc, y, _blas_types[x.dtype]) return y[0] def rf_batched(self, x, p, i, n, batch_size): cublas_rf_batched(self.handle, n, x.ptr, p.ptr, i.ptr, batch_size, _blas_types[x.dtype]) def ri_batched(self, x, y, p, i, n, batch_size): cublas_ri_batched(self.handle, n, x.ptr, p.ptr, y.ptr, i.ptr, batch_size, _blas_types[x.dtype]) def scal(self, alpha, x, xinc=1, n=None): """ Scales the vector x by the scalar alpha and overwrites itself with the result. Parameters ---------- alpha : blas_types[dtype] Scalar used for multiplication. x : Device_Ptr object Device pointer object with dev_ptr to vector x. xinc : int, optional Stride between consecutive elements of x. n : int, optional Number of elements in the vectors x """ if type(alpha) is not np.ndarray: alpha = np.array(alpha, dtype=x.dtype) n = n or len(x) cublas_scal(self.handle, n, alpha, x.ptr, xinc, _blas_types[x.dtype]) @property def handle(self): return self._blas_handle @property def stream(self): return self._stream def __enter__(self): return self def __exit__(self, *args, **kwargs): cublas_destroy(self.handle)
from citrination_client.search.core.query.filter import Filter from citrination_client.search.pif.query.chemical.chemical_field_query import ChemicalFieldQuery from citrination_client.search.pif.query.chemical.composition_query import CompositionQuery from citrination_client.search.pif.query.core.base_object_query import BaseObjectQuery from citrination_client.search.pif.query.core.classification_query import ClassificationQuery from citrination_client.search.pif.query.core.field_query import FieldQuery from citrination_client.search.pif.query.core.id_query import IdQuery from citrination_client.search.pif.query.core.process_step_query import ProcessStepQuery from citrination_client.search.pif.query.core.property_query import PropertyQuery from citrination_client.search.pif.query.core.quantity_query import QuantityQuery from citrination_client.search.pif.query.core.reference_query import ReferenceQuery from citrination_client.search.pif.query.core.source_query import SourceQuery class PifSystemQuery(BaseObjectQuery): """ Class to store information about a PIF query. """ def __init__(self, logic=None, weight=None, simple=None, simple_weight=None, extract_as=None, extract_all=None, extract_when_missing=None, tags=None, length=None, offset=None, uid=None, updated_at=None, names=None, ids=None, classifications=None, source=None, quantity=None, chemical_formula=None, composition=None, properties=None, preparation=None, references=None, sub_systems=None, query=None, **kwargs): """ Constructor. :param logic: Logic for this filter. Must be equal to one of "MUST", "MUST_NOT", "SHOULD", or "OPTIONAL". :param weight: Weight of the query. :param simple: String with the simple search to run against all fields. :param simple_weight: Dictionary of relative paths to their weights for simple queries. :param extract_as: String with the alias to save this field under. :param extract_all: Boolean setting whether all values in an array should be extracted. :param extract_when_missing: Any valid JSON-supported object or PIF object. This value is returned when a value is missing that should be extracted (and the overall query is still satisfied). :param tags: One or more :class:`FieldQuery` operations against the tags field. :param length: One or more :class:`FieldQuery` operations against the length field. :param offset: One or more :class:`FieldQuery` operations against the offset field. :param uid: One or more :class:`Filter` objects with the filters against the uid field. :param updated_at: One or more :class:`Filter` objects with filters against the time that the PIF record was last updated. :param names: One or more :class:`FieldQuery` objects with queries against the names field. :param ids: One or more :class:`IdQuery` objects with queries against the ids field. :param classifications: One or more :class:`ClassificationQuery` objects with queries against the classifications field. :param source: One or more :class:`SourceQuery` objects with queries against the source field. :param quantity: One or more :class:`QuantityQuery` objects with queries against the quantity field. :param chemical_formula: One or more :class:`ChemicalFieldQuery` objects with queries against the chemicalFormula field. :param composition: One or more :class:`CompositionQuery` objects with queries against the composition field. :param properties: One or more :class:`PropertyQuery` objects with queries against the properties field. :param preparation: One or more :class:`ProcessStepQuery` objects with queries against the preparation field. :param references: One or more :class:`ReferenceQuery` objects with queries against the references field. :param sub_systems: One or more :class:`PifSystemQuery` objects with queries against the subSystems field. :param query: One or more :class:`PifSystemQuery` objects with nested queries. """ super(PifSystemQuery, self).__init__( logic=logic, weight=weight, simple=simple, simple_weight=simple_weight, extract_as=extract_as, extract_all=extract_all, extract_when_missing=extract_when_missing, tags=tags, length=length, offset=offset, **kwargs) self._uid = None self.uid = uid self._updated_at = None self.updated_at = updated_at self._names = None self.names = names self._ids = None self.ids = ids self._classifications = None self.classifications = classifications self._source = None self.source = source self._quantity = None self.quantity = quantity self._chemical_formula = None self.chemical_formula = chemical_formula self._composition = None self.composition = composition self._properties = None self.properties = properties self._preparation = None self.preparation = preparation self._references = None self.references = references self._sub_systems = None self.sub_systems = sub_systems self._query = None self.query = query @property def uid(self): return self._uid @uid.setter def uid(self, uid): self._uid = self._get_object(Filter, uid) @uid.deleter def uid(self): self._uid = None @property def updated_at(self): return self._updated_at @updated_at.setter def updated_at(self, updated_at): self._updated_at = self._get_object(Filter, updated_at) @updated_at.deleter def updated_at(self): self._updated_at = None @property def names(self): return self._names @names.setter def names(self, names): self._names = self._get_object(FieldQuery, names) @names.deleter def names(self): self._names = None @property def ids(self): return self._ids @ids.setter def ids(self, ids): self._ids = self._get_object(IdQuery, ids) @ids.deleter def ids(self): self._ids = None @property def classifications(self): return self._classifications @classifications.setter def classifications(self, classifications): self._classifications = self._get_object(ClassificationQuery, classifications) @classifications.deleter def classifications(self): self._classifications = None @property def source(self): return self._source @source.setter def source(self, source): self._source = self._get_object(SourceQuery, source) @source.deleter def source(self): self._source = None @property def quantity(self): return self._quantity @quantity.setter def quantity(self, quantity): self._quantity = self._get_object(QuantityQuery, quantity) @quantity.deleter def quantity(self): self._quantity = None @property def chemical_formula(self): return self._chemical_formula @chemical_formula.setter def chemical_formula(self, chemical_formula): self._chemical_formula = self._get_object(ChemicalFieldQuery, chemical_formula) @chemical_formula.deleter def chemical_formula(self): self._chemical_formula = None @property def composition(self): return self._composition @composition.setter def composition(self, composition): self._composition = self._get_object(CompositionQuery, composition) @composition.deleter def composition(self): self._composition = None @property def properties(self): return self._properties @properties.setter def properties(self, properties): self._properties = self._get_object(PropertyQuery, properties) @properties.deleter def properties(self): self._properties = None @property def preparation(self): return self._preparation @preparation.setter def preparation(self, preparation): self._preparation = self._get_object(ProcessStepQuery, preparation) @preparation.deleter def preparation(self): self._preparation = None @property def references(self): return self._references @references.setter def references(self, references): self._references = self._get_object(ReferenceQuery, references) @references.deleter def references(self): self._references = None @property def sub_systems(self): return self._sub_systems @sub_systems.setter def sub_systems(self, sub_systems): self._sub_systems = self._get_object(PifSystemQuery, sub_systems) @sub_systems.deleter def sub_systems(self): self._sub_systems = None @property def query(self): return self._query @query.setter def query(self, query): self._query = self._get_object(PifSystemQuery, query) @query.deleter def query(self): self._query = None
from twilio.rest import TwilioRestClient import os, sys TWILIO_NUMBER = os.environ.get('TWILIO_NUMBER') # Helpful link content FLASK = """ Some helpful links: - Flask: http://bit.ly/1eU7R5M - twilio-python: http://bit.ly/1pKlW3E - Ngrok: https://ngrok.com/""" TESTING = """ Interested in testing? - py.test http://bit.ly/1UdIVR1 - coverage.py http://bit.ly/1MERWLa - Unit testing web apps http://bit.ly/1UOSyEJ""" CI = """ Continuous Integration (CI) and Travis resources: - CI overview http://bit.ly/28LwM2A - Travis http://bit.ly/28MY5Nt - Coveralls https://coveralls.io/""" HEROKU = """ Deployment and Heroku: - Deploying http://bit.ly/28Ob0Nr - Heroku http://bit.ly/28Ni1h9""" CONTACT = """ Thanks for coming out tonight! Helpful links: - Repo http://bit.ly/28LJgrM - My Twitter https://twitter.com/andrewtorkbaker - My email abaker@twilio.com""" # Instantiate our Twilio client client = TwilioRestClient() def get_audience_numbers(): """Retrieves the phone numbers of audience members who have texted in""" # Get all the messages we've received on our Twilio number messages = client.messages.list(To=TWILIO_NUMBER) # Extract the 'from' number from each message we have received audience_numbers = set() for message in messages: audience_numbers.add(message.from_) return audience_numbers def send_helpful_links(section): """Sends some helpful links to the audience for a section in the presentation""" # Get the audience numbers numbers = get_audience_numbers() # Yes, this is dangerous and foolish body = eval(section.upper()) for number in numbers: client.messages.create( to=number, from_=TWILIO_NUMBER, body=body, ) print('Sent helpful links to {} people'.format(len(numbers))) if __name__ == '__main__': send_helpful_links(sys.argv[1])
# Copyright 2022 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Contains the condition transform. """ from functools import wraps from typing import Type from pennylane.measurements import MeasurementValue from pennylane.operation import AnyWires, Operation from pennylane.transforms import make_tape class ConditionalTransformError(ValueError): """Error for using qml.cond incorrectly""" class Conditional(Operation): """A Conditional Operation. Unless you are a Pennylane plugin developer, **you should NOT directly use this class**, instead, use the :func:`qml.cond <.cond>` function. The ``Conditional`` class is a container class that defines an operation that should by applied relative to a single measurement value. Support for executing ``Conditional`` operations is device-dependent. If a device doesn't support mid-circuit measurements natively, then the QNode will apply the :func:`defer_measurements` transform. Args: expr (MeasurementValue): the measurement outcome value to consider then_op (Operation): the PennyLane operation to apply conditionally do_queue (bool): indicates whether the operator should be recorded when created in a tape context id (str): custom label given to an operator instance, can be useful for some applications where the instance has to be identified """ num_wires = AnyWires def __init__( self, expr: MeasurementValue[bool], then_op: Type[Operation], do_queue=True, id=None, ): self.meas_val = expr self.then_op = then_op super().__init__(wires=then_op.wires, do_queue=do_queue, id=id) def cond(condition, true_fn, false_fn=None): """Condition a quantum operation on the results of mid-circuit qubit measurements. Support for using :func:`~.cond` is device-dependent. If a device doesn't support mid-circuit measurements natively, then the QNode will apply the :func:`defer_measurements` transform. Args: condition (.MeasurementValue[bool]): a conditional expression involving a mid-circuit measurement value (see :func:`.pennylane.measure`) true_fn (callable): The quantum function of PennyLane operation to apply if ``condition`` is ``True`` false_fn (callable): The quantum function of PennyLane operation to apply if ``condition`` is ``False`` Returns: function: A new function that applies the conditional equivalent of ``true_fn``. The returned function takes the same input arguments as ``true_fn``. **Example** .. code-block:: python3 dev = qml.device("default.qubit", wires=3) @qml.qnode(dev) def qnode(x, y): qml.Hadamard(0) m_0 = qml.measure(0) qml.cond(m_0, qml.RY)(x, wires=1) qml.Hadamard(2) qml.RY(-np.pi/2, wires=[2]) m_1 = qml.measure(2) qml.cond(m_1 == 0, qml.RX)(y, wires=1) return qml.expval(qml.PauliZ(1)) .. code-block :: pycon >>> first_par = np.array(0.3, requires_grad=True) >>> sec_par = np.array(1.23, requires_grad=True) >>> qnode(first_par, sec_par) tensor(0.32677361, requires_grad=True) .. note:: If the first argument of ``cond`` is a measurement value (e.g., ``m_0`` in ``qml.cond(m_0, qml.RY)``), then ``m_0 == 1`` is considered internally. .. details:: :title: Usage Details **Conditional quantum functions** The ``cond`` transform allows conditioning quantum functions too: .. code-block:: python3 dev = qml.device("default.qubit", wires=2) def qfunc(par, wires): qml.Hadamard(wires[0]) qml.RY(par, wires[0]) @qml.qnode(dev) def qnode(x): qml.Hadamard(0) m_0 = qml.measure(0) qml.cond(m_0, qfunc)(x, wires=[1]) return qml.expval(qml.PauliZ(1)) .. code-block :: pycon >>> par = np.array(0.3, requires_grad=True) >>> qnode(par) tensor(0.3522399, requires_grad=True) **Passing two quantum functions** In the qubit model, single-qubit measurements may result in one of two outcomes. Such measurement outcomes may then be used to create conditional expressions. According to the truth value of the conditional expression passed to ``cond``, the transform can apply a quantum function in both the ``True`` and ``False`` case: .. code-block:: python3 dev = qml.device("default.qubit", wires=2) def qfunc1(x, wires): qml.Hadamard(wires[0]) qml.RY(x, wires[0]) def qfunc2(x, wires): qml.Hadamard(wires[0]) qml.RZ(x, wires[0]) @qml.qnode(dev) def qnode1(x): qml.Hadamard(0) m_0 = qml.measure(0) qml.cond(m_0, qfunc1, qfunc2)(x, wires=[1]) return qml.expval(qml.PauliZ(1)) .. code-block :: pycon >>> par = np.array(0.3, requires_grad=True) >>> qnode1(par) tensor(-0.1477601, requires_grad=True) The previous QNode is equivalent to using ``cond`` twice, inverting the conditional expression in the second case using the ``~`` unary operator: .. code-block:: python3 @qml.qnode(dev) def qnode2(x): qml.Hadamard(0) m_0 = qml.measure(0) qml.cond(m_0, qfunc1)(x, wires=[1]) qml.cond(~m_0, qfunc2)(x, wires=[1]) return qml.expval(qml.PauliZ(1)) .. code-block :: pycon >>> qnode2(par) tensor(-0.1477601, requires_grad=True) **Quantum functions with different signatures** It may be that the two quantum functions passed to ``qml.cond`` have different signatures. In such a case, ``lambda`` functions taking no arguments can be used with Python closure: .. code-block:: python3 dev = qml.device("default.qubit", wires=2) def qfunc1(x, wire): qml.Hadamard(wire) qml.RY(x, wire) def qfunc2(x, y, z, wire): qml.Hadamard(wire) qml.Rot(x, y, z, wire) @qml.qnode(dev) def qnode(a, x, y, z): qml.Hadamard(0) m_0 = qml.measure(0) qml.cond(m_0, lambda: qfunc1(a, wire=1), lambda: qfunc2(x, y, z, wire=1))() return qml.expval(qml.PauliZ(1)) .. code-block :: pycon >>> par = np.array(0.3, requires_grad=True) >>> x = np.array(1.2, requires_grad=True) >>> y = np.array(1.1, requires_grad=True) >>> z = np.array(0.3, requires_grad=True) >>> qnode(par, x, y, z) tensor(-0.30922805, requires_grad=True) """ if callable(true_fn): # We assume that the callable is an operation or a quantum function with_meas_err = ( "Only quantum functions that contain no measurements can be applied conditionally." ) @wraps(true_fn) def wrapper(*args, **kwargs): # We assume that the callable is a quantum function # 1. Apply true_fn conditionally tape = make_tape(true_fn)(*args, **kwargs) if tape.measurements: raise ConditionalTransformError(with_meas_err) for op in tape.operations: Conditional(condition, op) if false_fn is not None: # 2. Apply false_fn conditionally else_tape = make_tape(false_fn)(*args, **kwargs) if else_tape.measurements: raise ConditionalTransformError(with_meas_err) inverted_condition = ~condition for op in else_tape.operations: Conditional(inverted_condition, op) else: raise ConditionalTransformError( "Only operations and quantum functions with no measurements can be applied conditionally." ) return wrapper
""" Calculate the subcomponents that will later be combined into the moving foreground. """ from baboon_tracking.stages.motion_detector.generate_mask_subcomponents.foreground.foreground import ( Foreground, ) from baboon_tracking.stages.motion_detector.generate_mask_subcomponents.generate_history_of_dissimilarity import ( GenerateHistoryOfDissimilarity, ) from pipeline import Parallel class GenerateMaskSubcomponents(Parallel): """ Calculate the subcomponents that will later be combined into the moving foreground. """ def __init__(self) -> None: Parallel.__init__( self, "GenerateMaskSubcomponents", GenerateHistoryOfDissimilarity, Foreground, )
####################################################################################################################################################### #######################################################################Imports######################################################################### ####################################################################################################################################################### #from itertools import product # forms cartesian products #from tqdm import tqdm_notebook as tqdm #import pickle import numpy as np import pandas as pd import scipy as sp from functools import reduce from more_itertools import random_product #import math from joblib import Parallel, delayed from collections.abc import Iterable #from scipy.integrate import quad from sklearn.model_selection import train_test_split #from sklearn.metrics import accuracy_score, log_loss, roc_auc_score, f1_score, mean_absolute_error, r2_score from similaritymeasures import frechet_dist, area_between_two_curves, dtw import tensorflow as tf import random from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.utils import plot_model from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau #udf import #from utilities.LambdaNet import * from utilities.metrics import * from utilities.utility_functions import * import copy ####################################################################################################################################################### #############################################################Setting relevant parameters from current config########################################### ####################################################################################################################################################### def initialize_LambdaNet_config_from_curent_notebook(config): try: globals().update(config['data']) except KeyError: print(KeyError) try: globals().update(config['lambda_net']) except KeyError: print(KeyError) try: globals().update(config['i_net']) except KeyError: print(KeyError) try: globals().update(config['evaluation']) except KeyError: print(KeyError) try: globals().update(config['computation']) except KeyError: print(KeyError) random.seed(RANDOM_SEED) np.random.seed(RANDOM_SEED) if int(tf.__version__[0]) >= 2: tf.random.set_seed(RANDOM_SEED) else: tf.set_random_seed(RANDOM_SEED) global list_of_monomial_identifiers from utilities.utility_functions import flatten, rec_gen, gen_monomial_identifier_list list_of_monomial_identifiers_extended = [] if laurent: variable_sets = [list(flatten([[_d for _d in range(d+1)], [-_d for _d in range(1, neg_d+1)]])) for _ in range(n)] list_of_monomial_identifiers_extended = rec_gen(variable_sets) if len(list_of_monomial_identifiers_extended) < 500: print(list_of_monomial_identifiers_extended) list_of_monomial_identifiers = [] for monomial_identifier in tqdm(list_of_monomial_identifiers_extended): if np.sum(monomial_identifier) <= d: if monomial_vars == None or len(list(filter(lambda x: x != 0, monomial_identifier))) <= monomial_vars: list_of_monomial_identifiers.append(monomial_identifier) else: variable_list = ['x'+ str(i) for i in range(n)] list_of_monomial_identifiers = gen_monomial_identifier_list(variable_list, d, n) ####################################################################################################################################################### ##################################################################Lambda Net Wrapper################################################################### ####################################################################################################################################################### class LambdaNetDataset(): lambda_net_list = None weight_list = None train_settings_list = None index_list = None target_polynomial_list = None lstsq_lambda_pred_polynomial_list = None lstsq_target_polynomial_list = None X_test_data_list = None y_test_data_list = None def __init__(self, lambda_net_list): self.lambda_net_list = lambda_net_list self.weight_list = [lambda_net.weights for lambda_net in lambda_net_list] self.train_settings_list = {} for key in lambda_net_list[0].train_settings.keys(): self.train_settings_list[key] = [] for lambda_net in lambda_net_list: for key in lambda_net.train_settings.keys(): self.train_settings_list[key].append(lambda_net.train_settings[key]) self.index_list = [lambda_net.index for lambda_net in lambda_net_list] self.target_polynomial_list = [lambda_net.target_polynomial for lambda_net in lambda_net_list] self.lstsq_lambda_pred_polynomial_list = [lambda_net.lstsq_lambda_pred_polynomial for lambda_net in lambda_net_list] self.lstsq_target_polynomial_list = [lambda_net.lstsq_target_polynomial for lambda_net in lambda_net_list] self.X_test_data_list = [lambda_net.X_test_data for lambda_net in lambda_net_list] self.y_test_data_list = [lambda_net.y_test_data for lambda_net in lambda_net_list] def __repr__(self): return str(self.as_pandas().head()) def __str__(self): return str(self.as_pandas().head()) def __len__(self): return len(self.lambda_net_list) def make_prediction_on_dataset(self, evaluation_dataset): assert evaluation_dataset.shape[1] == n lambda_network_preds_list = [] for weights in self.weight_list: lambda_network_preds = weights_to_pred(weights, evaluation_dataset) lambda_network_preds_list.append(lambda_network_preds) return np.array(lambda_network_preds_list) def make_prediction_on_test_data(self): lambda_network_preds_list = [] for lambda_net in self.lambda_net_list: lambda_network_preds = lambda_net.make_prediction_on_test_data() lambda_network_preds_list.append(lambda_network_preds) return np.array(lambda_network_preds_list) def return_target_poly_fvs_on_dataset(self, evaluation_dataset, n_jobs_parallel_fv=10, backend='threading'): from utilities.utility_functions import parallel_fv_calculation_from_polynomial assert evaluation_dataset.shape[1] == n, 'evaluation dataset has wrong shape ' + str(evaluation_dataset.shape) + ' but required (x, ' + str(n) + ')' target_poly_fvs_list = parallel_fv_calculation_from_polynomial(self.target_polynomial_list, [evaluation_dataset for _ in range(len(self.target_polynomial_list))], force_complete_poly_representation=True, n_jobs_parallel_fv=10, backend='threading') return np.array(target_poly_fvs_list) def return_target_poly_fvs_on_test_data(self, n_jobs_parallel_fv=10, backend='threading'): from utilities.utility_functions import parallel_fv_calculation_from_polynomial target_poly_fvs_list = parallel_fv_calculation_from_polynomial(self.target_polynomial_list, self.X_test_data_list, force_complete_poly_representation=True, n_jobs_parallel_fv=10, backend='threading') return np.array(target_poly_fvs_list) def return_lstsq_lambda_pred_polynomial_fvs_on_dataset(self, evaluation_dataset, n_jobs_parallel_fv=10, backend='threading'): from utilities.utility_functions import parallel_fv_calculation_from_polynomial assert evaluation_dataset.shape[1] == n, 'evaluation dataset has wrong shape ' + str(evaluation_dataset.shape) + ' but required (x, ' + str(n) + ')' lstsq_lambda_pred_polynomial_fvs_list = parallel_fv_calculation_from_polynomial(self.lstsq_lambda_pred_polynomial_list, [evaluation_dataset for _ in range(len(self.target_polynomial_list))], force_complete_poly_representation=True, n_jobs_parallel_fv=10, backend='threading') return np.array(lstsq_lambda_pred_polynomial_fvs_list) def return_lstsq_lambda_pred_polynomial_fvs_on_test_data(self, n_jobs_parallel_fv=10, backend='threading'): from utilities.utility_functions import parallel_fv_calculation_from_polynomial lstsq_lambda_pred_polynomial_fvs_list = parallel_fv_calculation_from_polynomial(self.lstsq_lambda_pred_polynomial_list, self.X_test_data_list, force_complete_poly_representation=True, n_jobs_parallel_fv=10, backend='threading') return np.array(lstsq_lambda_pred_polynomial_fvs_list) def return_lstsq_target_polynomial_fvs_on_dataset(self, evaluation_dataset, n_jobs_parallel_fv=10, backend='threading'): from utilities.utility_functions import parallel_fv_calculation_from_polynomial assert evaluation_dataset.shape[1] == n, 'evaluation dataset has wrong shape ' + str(evaluation_dataset.shape) + ' but required (x, ' + str(n) + ')' lstsq_target_polynomial_fvs_list = parallel_fv_calculation_from_polynomial(self.lstsq_target_polynomial_list, [evaluation_dataset for _ in range(len(self.target_polynomial_list))], force_complete_poly_representation=True, n_jobs_parallel_fv=10, backend='threading') return np.array(lstsq_target_polynomial_fvs_list) def return_lstsq_target_polynomial_fvs_on_test_data(self, n_jobs_parallel_fv=10, backend='threading'): from utilities.utility_functions import parallel_fv_calculation_from_polynomial lstsq_target_polynomial_fvs_list = parallel_fv_calculation_from_polynomial(self.lstsq_target_polynomial_list, self.X_test_data_list, force_complete_poly_representation=True, n_jobs_parallel_fv=10, backend='threading') return np.array(lstsq_target_polynomial_fvs_list) def as_pandas(self): lambda_dataframe = pd.DataFrame(data=[lambda_net.as_array() for lambda_net in self.lambda_net_list], columns=self.lambda_net_list[0].return_column_names(), index=[lambda_net.index for lambda_net in self.lambda_net_list]) lambda_dataframe['seed'] = lambda_dataframe['seed'].astype(int) return lambda_dataframe def get_lambda_nets_by_seed(self, seed_list): lambda_nets_by_seed = [] for lambda_net in self.lambda_net_list: if lambda_net.train_settings['seed'] in seed_list: lambda_nets_by_seed.append(lambda_net) return LambdaNetDataset(lambda_nets_by_seed) def get_lambda_nets_by_lambda_index(self, lambda_index_list): lambda_nets_by_lambda_index = [] for lambda_net in self.lambda_net_list: if lambda_net.index in lambda_index_list: lambda_nets_by_lambda_index.append(lambda_net) return LambdaNetDataset(lambda_nets_by_lambda_index) def get_lambda_net_by_lambda_index(self, lambda_index): for lambda_net in self.lambda_net_list: if lambda_net.index in lambda_index: return lambda_net return None def sample(self, size, seed=42): assert isinstance(size, int) or isinstance(size, float), 'Wrong sample size specified' random.seed(seed) sample_lambda_net_list = None if isinstance(size, int): sample_lambda_net_list = random.sample(self.lambda_net_list, size) elif isinstance(size, float): size = int(np.round(len(self.lambda_net_list)*size)) sample_lambda_net_list = random.sample(self.lambda_net_list, size) return LambdaNetDataset(sample_lambda_net_list) class LambdaNet(): weights = None model = None train_settings = None index = None target_polynomial = None lstsq_lambda_pred_polynomial = None lstsq_target_polynomial = None X_test_data = None y_test_data = None def __init__(self, line_weights, line_X_data, line_y_data): assert isinstance(line_weights, np.ndarray), 'line is no array: ' + str(line_weights) from utilities.utility_functions import shaped_network_parameters_to_array, normal_neural_net, shape_flat_network_parameters, generate_base_model self.index = int(line_weights[0]) try: self.train_settings = {'seed': int(line_weights[1])} except ValueError: self.train_settings = {'seed': -1} self.target_polynomial = line_weights[range(2, sparsity+2)].astype(float) self.lstsq_lambda_pred_polynomial = line_weights[range(sparsity+2, sparsity*2+2)].astype(float) self.lstsq_target_polynomial = line_weights[range(sparsity*2+2, sparsity*3+2)].astype(float) assert self.target_polynomial.shape[0] == sparsity, 'target polynomial has incorrect shape ' + str(self.target_polynomial.shape[0]) + ' but should be ' + str(sparsity) assert self.lstsq_lambda_pred_polynomial.shape[0] == sparsity, 'lstsq lambda pred polynomial has incorrect shape ' + str(self.lstsq_lambda_pred_polynomial.shape[0]) + ' but should be ' + str(sparsity) assert self.lstsq_target_polynomial.shape[0] == sparsity, 'lstsq target polynomial has incorrect shape ' + str(self.lstsq_target_polynomial.shape[0]) + ' but should be ' + str(sparsity) self.weights = line_weights[sparsity*3+2:].astype(float) assert self.weights.shape[0] == number_of_lambda_weights, 'weights have incorrect shape ' + str(self.weights.shape[0]) + ' but should be ' + str(number_of_lambda_weights) line_X_data = line_X_data[1:] line_y_data = line_y_data[1:] self.X_test_data = np.transpose(np.array([line_X_data[i::n] for i in range(n)])) self.y_test_data = line_y_data.reshape(-1,1) if normalize_lambda_nets: if self.index == 1: print('NORMALIZE PRE') print(self.weights) print(weights_to_pred(self.weights, self.X_test_data[:5])) self.weights = shaped_network_parameters_to_array(normal_neural_net(shape_flat_network_parameters(copy.deepcopy(self.weights), generate_base_model().get_weights()))) if self.index == 1: print('NORMALIZE AFTER') print(self.weights) print(weights_to_pred(self.weights, self.X_test_data[:5])) def __repr__(self): return str(self.weights) def __str__(self): return str(self.weights) def make_prediction_on_dataset(self, evaluation_dataset): assert evaluation_dataset.shape[1] == n lambda_network_preds = weights_to_pred(self.weights, evaluation_dataset) return lambda_network_preds def make_prediction_on_test_data(self): lambda_network_preds = weights_to_pred(self.weights, self.X_test_data) return lambda_network_preds def return_target_poly_fvs_on_dataset(self, evaluation_dataset, n_jobs_parallel_fv=10, backend='threading'): from utilities.utility_functions import parallel_fv_calculation_from_polynomial assert evaluation_dataset.shape[1] == n, 'evaluation dataset has wrong shape ' + str(evaluation_dataset.shape) + ' but required (x, ' + str(n) + ')' target_poly_fvs = parallel_fv_calculation_from_polynomial([self.target_polynomial], [evaluation_dataset], force_complete_poly_representation=True, n_jobs_parallel_fv=10, backend='threading') return target_poly_fvs def return_target_poly_fvs_on_test_data(self, n_jobs_parallel_fv=10, backend='threading'): from utilities.utility_functions import parallel_fv_calculation_from_polynomial target_poly_fvs = parallel_fv_calculation_from_polynomial([self.target_polynomial], [self.X_test_data], force_complete_poly_representation=True, n_jobs_parallel_fv=10, backend='threading') return target_poly_fvs def return_lstsq_lambda_pred_polynomial_fvs_on_dataset(self, evaluation_dataset, n_jobs_parallel_fv=10, backend='threading'): from utilities.utility_functions import parallel_fv_calculation_from_polynomial assert evaluation_dataset.shape[1] == n, 'evaluation dataset has wrong shape ' + str(evaluation_dataset.shape) + ' but required (x, ' + str(n) + ')' lstsq_lambda_pred_polynomial_fvs = parallel_fv_calculation_from_polynomial([self.lstsq_lambda_pred_polynomial], [evaluation_dataset], force_complete_poly_representation=True, n_jobs_parallel_fv=10, backend='threading') return lstsq_lambda_pred_polynomial_fvs def return_lstsq_lambda_pred_polynomial_fvs_on_test_data(self, n_jobs_parallel_fv=10, backend='threading'): from utilities.utility_functions import parallel_fv_calculation_from_polynomial lstsq_lambda_pred_polynomial_fvs = parallel_fv_calculation_from_polynomial([self.lstsq_lambda_pred_polynomial], [self.X_test_data], force_complete_poly_representation=True, n_jobs_parallel_fv=10, backend='threading') return lstsq_lambda_pred_polynomial_fvs def return_lstsq_target_polynomial_fvs_on_dataset(self, evaluation_dataset, n_jobs_parallel_fv=10, backend='threading'): from utilities.utility_functions import parallel_fv_calculation_from_polynomial assert evaluation_dataset.shape[1] == n, 'evaluation dataset has wrong shape ' + str(evaluation_dataset.shape) + ' but required (x, ' + str(n) + ')' lstsq_target_polynomial_fvs = parallel_fv_calculation_from_polynomial([self.lstsq_target_polynomial], [evaluation_dataset], force_complete_poly_representation=True, n_jobs_parallel_fv=10, backend='threading') return lstsq_target_polynomial_fvs def return_lstsq_target_polynomial_fvs_on_test_data(self, n_jobs_parallel_fv=10, backend='threading'): from utilities.utility_functions import parallel_fv_calculation_from_polynomial lstsq_target_polynomial_fvs = parallel_fv_calculation_from_polynomial([self.lstsq_target_polynomial], [self.X_test_data], force_complete_poly_representation=True, n_jobs_parallel_fv=10, backend='threading') return lstsq_target_polynomial_fvs def as_pandas(self): columns = return_column_names(self) data = as_array(self) df = pd.DataFrame(data=data, columns=columns, index=[self.index]) df['seed'] = df['seed'].astype(int) return df def as_array(self): data = np.hstack([self.train_settings['seed'], self.target_polynomial, self.lstsq_lambda_pred_polynomial, self.lstsq_target_polynomial, self.weights]) return data def return_column_names(self): from utilities.utility_functions import flatten list_of_monomial_identifiers_string = [''.join(str(e) for e in monomial_identifier) for monomial_identifier in list_of_monomial_identifiers] if n > 1 else [str(monomial_identifier[0]) for monomial_identifier in list_of_monomial_identifiers] target_polynomial_identifiers = [monomial_identifiers + str('-target') for monomial_identifiers in list_of_monomial_identifiers_string] lstsq_lambda_pred_polynomial_identifiers = [monomial_identifiers + str('-lstsq_lambda') for monomial_identifiers in list_of_monomial_identifiers_string] lstsq_target_polynomial_identifiers = [monomial_identifiers + str('-lstsq_target') for monomial_identifiers in list_of_monomial_identifiers_string] weight_identifiers = ['wb_' + str(i) for i in range(self.weights.shape[0])] columns = list(flatten(['seed', target_polynomial_identifiers, lstsq_lambda_pred_polynomial_identifiers, lstsq_target_polynomial_identifiers, weight_identifiers])) return columns def return_model(self, config=None): model = weights_to_model(self.weights, config) return model def split_LambdaNetDataset(dataset, test_split, random_seed='RANDOM_SEED'): if random_seed == 'RANDOM_SEED': random_seed = RANDOM_SEED assert isinstance(dataset, LambdaNetDataset) lambda_nets_list = dataset.lambda_net_list if len(lambda_nets_list) == test_split: return None, dataset elif isinstance(test_split, int) or isinstance(test_split, float): lambda_nets_train_list, lambda_nets_test_list = train_test_split(lambda_nets_list, test_size=test_split, random_state=random_seed) elif isinstance(test_split, list): lambda_nets_test_list = [lambda_nets_list[i] for i in test_split] lambda_nets_train_list = list(set(lambda_nets_list) - set(lambda_nets_test_list)) #lambda_nets_train_list = lambda_nets_list.copy() #for i in sorted(test_split, reverse=True): # del lambda_nets_train_list[i] assert len(lambda_nets_list) == len(lambda_nets_train_list) + len(lambda_nets_test_list) return LambdaNetDataset(lambda_nets_train_list), LambdaNetDataset(lambda_nets_test_list) def generate_base_model(): #without dropout base_model = Sequential() base_model.add(Dense(lambda_network_layers[0], activation='relu', input_dim=n)) for neurons in lambda_network_layers[1:]: base_model.add(Dense(neurons, activation='relu')) base_model.add(Dense(1)) return base_model def shape_flat_weights(flat_weights, target_weights): from utilities.utility_functions import flatten #print('shape_flat_weights') shaped_weights =[] start = 0 for el in target_weights: target_shape = el.shape size = len(list(flatten(el))) shaped_el = np.reshape(flat_weights[start:start+size], target_shape) shaped_weights.append(shaped_el) start += size return shaped_weights def weights_to_pred(weights, x, base_model=None): if base_model is None: base_model = generate_base_model() else: base_model = tf.keras.models.clone_model(base_model) base_model_weights = base_model.get_weights() # Shape weights (flat) into correct model structure shaped_weights = shape_flat_weights(weights, base_model_weights) model = tf.keras.models.clone_model(base_model) # Make prediction model.set_weights(shaped_weights) y = model.predict(x).ravel() return y def weights_to_model(weights, config=None, base_model=None): #print('W-FUNCTION START') if config != None: globals().update(config) if base_model is None: base_model = Sequential() #kerase defaults: kernel_initializer='glorot_uniform', bias_initializer='zeros' if fixed_initialization_lambda_training: base_model.add(Dense(lambda_network_layers[0], activation='relu', input_dim=n, kernel_initializer=tf.keras.initializers.GlorotUniform(seed=current_seed), bias_initializer='zeros')) else: base_model.add(Dense(lambda_network_layers[0], activation='relu', input_dim=n)) if dropout > 0: base_model.add(Dropout(dropout)) for neurons in lambda_network_layers[1:]: if fixed_initialization_lambda_training: base_model.add(Dense(neurons, activation='relu', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=current_seed), bias_initializer='zeros')) else: base_model.add(Dense(neurons, activation='relu')) if dropout > 0: base_model.add(Dropout(dropout)) if fixed_initialization_lambda_training: base_model.add(Dense(1, kernel_initializer=tf.keras.initializers.GlorotUniform(seed=self.train_settings['seed']), bias_initializer='zeros')) else: base_model.add(Dense(1)) else: base_model = tf.keras.models.clone_model(base_model) base_model_weights = base_model.get_weights() # Shape weights (flat) into correct model structure shaped_weights = shape_flat_weights(weights, base_model_weights) model = tf.keras.models.clone_model(base_model) model.set_weights(shaped_weights) model.compile(optimizer=optimizer_lambda, loss=loss_lambda, metrics=[r2_keras_loss, 'mae', tf.keras.metrics.RootMeanSquaredError()]) return model ####################################################################################################################################################### #################################################################Lambda Net TRAINING################################################################### ####################################################################################################################################################### def train_nn(lambda_index, X_data_lambda, y_data_real_lambda, polynomial, seed_list, callbacks=None, return_history=False, each_epochs_save=None, printing=False, return_model=False): from utilities.utility_functions import generate_paths, calculate_function_values_from_polynomial, pairwise global loss_lambda global list_of_monomial_identifiers if polynomial is not None: paths_dict = generate_paths(path_type = 'lambda_net') else: paths_dict = generate_paths(path_type = 'interpretation_net') current_seed = None if fixed_seed_lambda_training or fixed_initialization_lambda_training: current_seed = seed_list[lambda_index%number_different_lambda_trainings] if fixed_seed_lambda_training: random.seed(current_seed) np.random.seed(current_seed) if int(tf.__version__[0]) >= 2: tf.random.set_seed(current_seed) else: tf.set_random_seed(current_seed) if each_epochs_save_lambda != None: epochs_save_range = range(1, epochs_lambda//each_epochs_save_lambda+1) if each_epochs_save_lambda == 1 else range(epochs_lambda//each_epochs_save_lambda+1) else: epochs_save_range = None if isinstance(X_data_lambda, pd.DataFrame): X_data_lambda = X_data_lambda.values if isinstance(y_data_real_lambda, pd.DataFrame): y_data_real_lambda = y_data_real_lambda.values X_train_lambda_with_valid, X_test_lambda, y_train_real_lambda_with_valid, y_test_real_lambda = train_test_split(X_data_lambda, y_data_real_lambda, test_size=0.25, random_state=current_seed) X_train_lambda, X_valid_lambda, y_train_real_lambda, y_valid_real_lambda = train_test_split(X_train_lambda_with_valid, y_train_real_lambda_with_valid, test_size=0.25, random_state=current_seed) model = Sequential() #kerase defaults: kernel_initializer='glorot_uniform', bias_initializer='zeros' if fixed_initialization_lambda_training: model.add(Dense(lambda_network_layers[0], activation='relu', input_dim=X_data_lambda.shape[1], kernel_initializer=tf.keras.initializers.GlorotUniform(seed=current_seed), bias_initializer='zeros')) else: model.add(Dense(lambda_network_layers[0], activation='relu', input_dim=X_data_lambda.shape[1])) if dropout > 0: model.add(Dropout(dropout)) for neurons in lambda_network_layers[1:]: if fixed_initialization_lambda_training: model.add(Dense(neurons, activation='relu', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=current_seed), bias_initializer='zeros')) else: model.add(Dense(neurons, activation='relu')) if dropout > 0: model.add(Dropout(dropout)) if fixed_initialization_lambda_training: model.add(Dense(1, kernel_initializer=tf.keras.initializers.GlorotUniform(seed=current_seed), bias_initializer='zeros')) else: model.add(Dense(1)) try: loss_lambda = tf.keras.losses.get(loss_lambda) except ValueError as error_message: if loss_lambda == 'r2': loss_lambda = r2_keras_loss else: print(error_message) model.compile(optimizer=optimizer_lambda, loss=loss_lambda, metrics=[r2_keras_loss, 'mae', tf.keras.metrics.RootMeanSquaredError()] ) if early_stopping_lambda: if callbacks == None: callbacks = [] early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10, min_delta=early_stopping_min_delta_lambda, verbose=0, mode='min', restore_best_weights=True) callbacks.append(early_stopping) weights = [] polynomial_lstsq_pred_list = [] polynomial_lstsq_true_list = [] lstsq_data = np.random.uniform(low=x_min, high=x_max, size=(random_evaluation_dataset_size, n)) #y_train_pred_lambda.ravel() terms_matrix = generate_term_matric_for_lstsq(lstsq_data, list_of_monomial_identifiers) terms_matrix_train = generate_term_matric_for_lstsq(X_train_lambda, list_of_monomial_identifiers) #y_train_real_lambda = y_train_real_lambda.astype(float) #y_valid_real_lambda = y_valid_real_lambda.astype(float) #y_test_real_lambda = y_test_real_lambda.astype(float) if each_epochs_save == None or each_epochs_save==epochs_lambda: model_history = model.fit(X_train_lambda, y_train_real_lambda, epochs=epochs_lambda, batch_size=batch_lambda, callbacks=callbacks, validation_data=(X_valid_lambda, y_valid_real_lambda), verbose=0, workers=0) weights.append(model.get_weights()) history = model_history.history y_train_pred_lambda = model.predict(X_train_lambda) y_valid_pred_lambda = model.predict(X_valid_lambda) y_test_pred_lambda = model.predict(X_test_lambda) y_random_pred_lambda = model.predict(lstsq_data) polynomial_lstsq_pred, _, _, _ = np.linalg.lstsq(terms_matrix, y_random_pred_lambda.ravel(), rcond=-1)#[::-1] polynomial_lstsq_true, _, _, _ = np.linalg.lstsq(terms_matrix_train, y_train_real_lambda.ravel(), rcond=-1)#[::-1] polynomial_lstsq_pred_list.append(polynomial_lstsq_pred) polynomial_lstsq_true_list.append(polynomial_lstsq_true) y_train_pred_lambda_poly_lstsq = calculate_function_values_from_polynomial(polynomial_lstsq_pred, X_train_lambda, force_complete_poly_representation=True, list_of_monomial_identifiers=list_of_monomial_identifiers) y_train_real_lambda_poly_lstsq = calculate_function_values_from_polynomial(polynomial_lstsq_true, X_train_lambda, force_complete_poly_representation=True, list_of_monomial_identifiers=list_of_monomial_identifiers) y_valid_pred_lambda_poly_lstsq = calculate_function_values_from_polynomial(polynomial_lstsq_pred, X_valid_lambda, force_complete_poly_representation=True, list_of_monomial_identifiers=list_of_monomial_identifiers) y_valid_real_lambda_poly_lstsq = calculate_function_values_from_polynomial(polynomial_lstsq_true, X_valid_lambda, force_complete_poly_representation=True, list_of_monomial_identifiers=list_of_monomial_identifiers) y_test_pred_lambda_poly_lstsq = calculate_function_values_from_polynomial(polynomial_lstsq_pred, X_test_lambda, force_complete_poly_representation=True, list_of_monomial_identifiers=list_of_monomial_identifiers) y_test_real_lambda_poly_lstsq = calculate_function_values_from_polynomial(polynomial_lstsq_true, X_test_lambda, force_complete_poly_representation=True, list_of_monomial_identifiers=list_of_monomial_identifiers) pred_list = {'lambda_index': lambda_index, 'y_train_real_lambda': y_train_real_lambda, 'y_train_pred_lambda': y_train_pred_lambda, 'y_train_pred_lambda_poly_lstsq': y_train_pred_lambda_poly_lstsq, #y_train_real_lambda_poly_lstsq, 'X_train_lambda': X_train_lambda, 'y_valid_real_lambda': y_valid_real_lambda, 'y_valid_pred_lambda': y_valid_pred_lambda, 'y_valid_pred_lambda_poly_lstsq': y_valid_pred_lambda_poly_lstsq, #y_valid_real_lambda_poly_lstsq, 'X_valid_lambda': X_valid_lambda, 'y_test_real_lambda': y_test_real_lambda, 'y_test_pred_lambda': y_test_pred_lambda, 'y_test_pred_lambda_poly_lstsq': y_test_pred_lambda_poly_lstsq, #y_test_real_lambda_poly_lstsq, 'X_test_lambda': X_test_lambda} scores_train, std_train, mean_train = evaluate_lambda_net('TRAIN', X_train_lambda, y_train_real_lambda, y_train_pred_lambda, y_train_pred_lambda_poly_lstsq, y_train_real_lambda_poly_lstsq) scores_valid, std_valid, mean_valid = evaluate_lambda_net('VALID', X_valid_lambda, y_valid_real_lambda, y_valid_pred_lambda, y_valid_pred_lambda_poly_lstsq, y_valid_real_lambda_poly_lstsq) scores_test, std_test, mean_test = evaluate_lambda_net('TEST', X_test_lambda, y_test_real_lambda, y_test_pred_lambda, y_test_pred_lambda_poly_lstsq, y_test_real_lambda_poly_lstsq) scores_std = {} for aDict in (std_train, std_valid, std_test): scores_std.update(aDict) scores_mean = {} for aDict in (mean_train, mean_valid, mean_test): scores_mean.update(aDict) scores_list = [lambda_index, scores_train, scores_valid, scores_test, scores_std, scores_mean] else: scores_list = [] pred_list = [] for i in epochs_save_range: train_epochs_step = each_epochs_save if i > 1 else max(each_epochs_save-1, 1) if i==1 else 1 model_history = model.fit(X_train_lambda, y_train_real_lambda, epochs=train_epochs_step, batch_size=batch_lambda, callbacks=callbacks, validation_data=(X_valid_lambda, y_valid_real_lambda), verbose=0, workers=1, use_multiprocessing=False) #history adjustment for continuing training if i == 0 and each_epochs_save != 1 or i == 1 and each_epochs_save == 1: history = model_history.history else: history = mergeDict(history, model_history.history) weights.append(model.get_weights()) y_train_pred_lambda = model.predict(X_train_lambda) y_valid_pred_lambda = model.predict(X_valid_lambda) y_test_pred_lambda = model.predict(X_test_lambda) y_random_pred_lambda = model.predict(lstsq_data) polynomial_lstsq_pred, _, _, _ = np.linalg.lstsq(terms_matrix, y_random_pred_lambda.ravel(), rcond=-1)#[::-1] #does not change over time if i == 0 and each_epochs_save != 1 or i == 1 and each_epochs_save == 1: polynomial_lstsq_true, _, _, _ = np.linalg.lstsq(terms_matrix_train, y_train_real_lambda.ravel(), rcond=-1)#[::-1] polynomial_lstsq_pred_list.append(polynomial_lstsq_pred) polynomial_lstsq_true_list.append(polynomial_lstsq_true) y_train_pred_lambda_poly_lstsq = calculate_function_values_from_polynomial(polynomial_lstsq_pred, X_train_lambda, force_complete_poly_representation=True, list_of_monomial_identifiers=list_of_monomial_identifiers) y_valid_pred_lambda_poly_lstsq = calculate_function_values_from_polynomial(polynomial_lstsq_pred, X_valid_lambda, force_complete_poly_representation=True, list_of_monomial_identifiers=list_of_monomial_identifiers) y_test_pred_lambda_poly_lstsq = calculate_function_values_from_polynomial(polynomial_lstsq_pred, X_test_lambda, force_complete_poly_representation=True, list_of_monomial_identifiers=list_of_monomial_identifiers) if i == 0 and each_epochs_save != 1 or i == 1 and each_epochs_save == 1: y_train_real_lambda_poly_lstsq = calculate_function_values_from_polynomial(polynomial_lstsq_true, X_train_lambda, force_complete_poly_representation=True, list_of_monomial_identifiers=list_of_monomial_identifiers) y_valid_real_lambda_poly_lstsq = calculate_function_values_from_polynomial(polynomial_lstsq_true, X_valid_lambda, force_complete_poly_representation=True, list_of_monomial_identifiers=list_of_monomial_identifiers) y_test_real_lambda_poly_lstsq = calculate_function_values_from_polynomial(polynomial_lstsq_true, X_test_lambda, force_complete_poly_representation=True, list_of_monomial_identifiers=list_of_monomial_identifiers) pred_list.append({'lambda_index': lambda_index, 'y_train_real_lambda': y_train_real_lambda, 'y_train_pred_lambda': y_train_pred_lambda, 'y_train_pred_lambda_poly_lstsq': y_train_pred_lambda_poly_lstsq, #y_train_real_lambda_poly_lstsq, 'X_train_lambda': X_train_lambda, 'y_valid_real_lambda': y_valid_real_lambda, 'y_valid_pred_lambda': y_valid_pred_lambda, 'y_valid_pred_lambda_poly_lstsq': y_valid_pred_lambda_poly_lstsq, #y_valid_real_lambda_poly_lstsq, 'X_valid_lambda': X_valid_lambda, 'y_test_real_lambda': y_test_real_lambda, 'y_test_pred_lambda': y_test_pred_lambda, 'y_test_pred_lambda_poly_lstsq': y_test_pred_lambda_poly_lstsq, #y_test_real_lambda_poly_lstsq, 'X_test_lambda': X_test_lambda}) scores_train, std_train, mean_train = evaluate_lambda_net('TRAIN', X_train_lambda, y_train_real_lambda, y_train_pred_lambda, y_train_pred_lambda_poly_lstsq, y_train_real_lambda_poly_lstsq) scores_valid, std_valid, mean_valid = evaluate_lambda_net('VALID', X_valid_lambda, y_valid_real_lambda, y_valid_pred_lambda, y_valid_pred_lambda_poly_lstsq, y_valid_real_lambda_poly_lstsq) scores_test, std_test, mean_test = evaluate_lambda_net('TEST', X_test_lambda, y_test_real_lambda, y_test_pred_lambda, y_test_pred_lambda_poly_lstsq, y_test_real_lambda_poly_lstsq) scores_std = {} for aDict in (std_train, std_valid, std_test): scores_std.update(aDict) scores_mean = {} for aDict in (mean_train, mean_valid, mean_test): scores_mean.update(aDict) scores_list_single_epoch = [lambda_index, scores_train, scores_valid, scores_test, scores_std, scores_mean] scores_list.append(scores_list_single_epoch) if printing and polynomial is not None: for i, (weights_for_epoch, polynomial_lstsq_pred_for_epoch, polynomial_lstsq_true_for_epoch) in enumerate(zip(weights, polynomial_lstsq_pred_list, polynomial_lstsq_true_list)): directory = './data/weights/weights_' + paths_dict['path_identifier_lambda_net_data'] + '/' if each_epochs_save == None or each_epochs_save==epochs_lambda: path_weights = directory + 'weights_epoch_' + str(epochs_lambda).zfill(3) + '.txt' else: index = (i+1)*each_epochs_save if each_epochs_save==1 else i*each_epochs_save if i > 1 else each_epochs_save if i==1 else 1 path_weights = directory + 'weights_epoch_' + str(index).zfill(3) + '.txt' with open(path_weights, 'a') as text_file: text_file.write(str(lambda_index)) text_file.write(', ' + str(current_seed)) for i, value in enumerate(polynomial.values): text_file.write(', ' + str(value)) for value in polynomial_lstsq_pred_for_epoch: text_file.write(', ' + str(value)) for value in polynomial_lstsq_true_for_epoch: text_file.write(', ' + str(value)) for layer_weights, biases in pairwise(weights_for_epoch): #clf.get_weights() for neuron in layer_weights: for weight in neuron: text_file.write(', ' + str(weight)) for bias in biases: text_file.write(', ' + str(bias)) text_file.write('\n') text_file.close() path_X_data = directory + 'lambda_X_test_data.txt' path_y_data = directory + 'lambda_y_test_data.txt' with open(path_X_data, 'a') as text_file: text_file.write(str(lambda_index)) for row in X_test_lambda: for value in row: text_file.write(', ' + str(value)) text_file.write('\n') text_file.close() with open(path_y_data, 'a') as text_file: text_file.write(str(lambda_index)) for value in y_test_real_lambda.flatten(): text_file.write(', ' + str(value)) text_file.write('\n') text_file.close() if return_model: return (lambda_index, current_seed, polynomial, polynomial_lstsq_pred_list, polynomial_lstsq_true_list), scores_list, pred_list, history, model elif return_history: return (lambda_index, current_seed, polynomial, polynomial_lstsq_pred_list, polynomial_lstsq_true_list), scores_list, pred_list, history, #polynomial_lstsq_pred_list, polynomial_lstsq_true_list#, weights, history else: return (lambda_index, current_seed, polynomial, polynomial_lstsq_pred_list, polynomial_lstsq_true_list), scores_list, pred_list#, weights
from time import time import subprocess import os def lambda_handler(event, context): file_size = event['file_size'] byte_size = int(event['byte_size']) file_write_path = '/tmp/file' start = time() with open(file_write_path, 'wb', buffering=byte_size) as f: f.write(os.urandom(file_size * 1024 * 1024)) f.flush() os.fsync(f.fileno()) disk_write_latency = time() - start disk_write_bandwidth = file_size / disk_write_latency output = subprocess.check_output(['ls', '-alh', '/tmp/']) print(output) start = time() with open(file_write_path, 'rb', buffering=byte_size) as f: byte = f.read(byte_size) while byte != "": byte = f.read(byte_size) disk_read_latency = time() - start disk_read_bandwidth = file_size / disk_read_latency rm = subprocess.Popen(['rm', '-rf', file_write_path]) rm.communicate() return { 'disk_write_bandwidth':disk_write_bandwidth, 'disk_write_latency':disk_write_latency, 'disk_read_bandwidth':disk_read_bandwidth, 'disk_read_latency':disk_read_latency }
import threading # on importe threading, une librairie qui permet du faire du multithread import socket # on importe socket, une libraire pour le tcp/ip import chess # on importe chess, une librairie moteur d'échec import json # on importe json, une librairue pour traiter du json import random # on importe random, une librairie pour générer des nombres aléatoires import time # on importe time, une librairie de temps import os # on importe la librairie système linux = False def clear(): # On définit la fonction pour nettoyer le terminal os.system("clear" if linux else "cls") # On execute cls sour windows ou clear sous linux class Game(threading.Thread): # on initialise une nouvelle classe "Game" def __init__(self): # Fonction d'initialisation threading.Thread.__init__(self) self.board = chess.Board() # On initie un plateau self.id = (int(time.time()*100) ^ random.randint(1, 1000)) # on génère une clé avec du xor # On initialise des variables self.isWhiteUsed = None self.isBlackUsed = None self.tour = 0 # %2==0 is that it's white to play def run(self): while (self.isWhiteUsed is None) or (self.isBlackUsed is None): # On attend que les deux soient connectés pass self.begin() # On initialise def getColor(self, conn): # On définit la fonction qui désigne la couleur if(self.isWhiteUsed is None and self.isBlackUsed is None): # on regarde si ni les blancs ni les noirs sont pris x = random.randint(0, 1) # On pioche au hasard if x: # Si on a choisi 1 donc noir self.isBlackUsed = conn # On affecte la connection à la variable return 1 # On renvoie qu'on a choisi noir else: # Sinon on a choisi blanc self.isWhiteUsed = conn # On affecte la connection à la variable return -1 # On renvoie qu'on a choisi blanc elif(self.isBlackUsed is None): # Si le noir n'est pas utilisé (et que les blancs sont donc pris) self.isBlackUsed = conn # On affecte la connection à la variable return 1 # On renvoie que l'utilisateur sera noir elif(self.isWhiteUsed is None): # Si le blanc n'est pas utilisé (et que les noirs sont donc pris) self.isWhiteUsed = conn # On affecte la connection à la variable return -1 # On renvoie que l'utilisateur sera blanc else: # C'est que déjà deux joueurs sont présents return 0 # On renvoie une erreur def move(self, color, moveName): # Fonction pour commander une pièce if not(self.isWhiteUsed is None) and not(self.isBlackUsed is None): # Est ce que les deux joueurs sont présents if color == (-1 if self.tour%2==0 else 1): # Est ce que c'est à la bonne personne de jouer if not(self.board.is_game_over()): if len(moveName) == 4: if chess.Move.from_uci(moveName) in self.board.legal_moves: # Est ce que le mouvement est possible m = chess.Move.from_uci(moveName) # On inscrit le mouvement self.board.push(m) # On le mets dans le plateau self.tour += 1 # On incrémente le tour if color == -1: # Si couleur blanche self.isWhiteUsed.send(json.dumps({"error": 0}).encode()) #dire qu'il n'y a pas d'erreur else: # Sinon self.isBlackUsed.send(json.dumps({"error": 0}).encode()) # dire qu'il n'y a pas d'erreur return 0 # On renvoie que c'est bon else: # Si le mouvement est illégal if not(0 if self.tour%2==0 else 1): # Si c'est aux blancs self.isWhiteUsed.send(json.dumps({"over": self.board.is_game_over(), "error": 4, "board": self.board.fen(), "is2Play": (-1 if self.tour%2==0 else 1)}).encode()) # On lui envoie une erreur 4 else: # Si c'est au noirs self.isBlackUsed.send(json.dumps({"over": self.board.is_game_over(), "error": 4, "board": self.board.fen(), "is2Play": (-1 if self.tour%2==0 else 1)}).encode()) # On lui envoie une erreur 4 return 4 # On return l'error else: if not(0 if self.tour%2==0 else 1): # Si c'est aux blancs self.isWhiteUsed.send(json.dumps({"over": self.board.is_game_over(), "error": 4, "board": self.board.fen(), "is2Play": (-1 if self.tour%2==0 else 1)}).encode()) # On lui envoie une erreur 4 else: # Si c'est au noirs self.isBlackUsed.send(json.dumps({"over": self.board.is_game_over(), "error": 4, "board": self.board.fen(), "is2Play": (-1 if self.tour%2==0 else 1)}).encode()) # On lui envoie une erreur 4 return 4 # On return l'error else: # Si c'est echec pass # Ben on s'en fout message = {"board": self.board.fen(), "is2Play": (-1 if self.tour%2==0 else 1)} # On envoie l'objet du plateau message["over"] = self.board.is_game_over() # On ajoute l'echec et mat self.isBlackUsed.send(json.dumps(message).encode()) # On envoie le message au client noir self.isWhiteUsed.send(json.dumps(message).encode()) # On envoie le message au client blanc else: # Si un des utilisateur est pas connecté self.isWhiteUsed.send(json.dumps({"over": self.board.is_game_over(), "error": 3, "board": self.board.fen(), "is2Play": (-1 if self.tour%2==0 else 1)}).encode()) # On lui envoie une erreur 3 self.isBlackUsed.send(json.dumps({"over": self.board.is_game_over(), "error": 3, "board": self.board.fen(), "is2Play": (-1 if self.tour%2==0 else 1)}).encode()) # On lui envoie une erreur 3 return 3 # Erreur 3 (errors.txt) def begin(self): message = {"board": self.board.fen(), "is2Play": (-1 if self.tour%2==0 else 1)} # On envoie l'objet du plateau self.isBlackUsed.send(json.dumps(message).encode()) # On envoie le message au client noir self.isWhiteUsed.send(json.dumps(message).encode()) # On envoie le message au client blanc class Supervisor(threading.Thread): def __init__(self, parent, parentOfParent): threading.Thread.__init__(self) self.parent = parentOfParent self._self = parent def run(self): print(self.parent.connections) message = self._self.conn.recv(2048) # On prends le message du client qui contient si on ouvre ou on crée une partie message = json.loads(message.decode()) # On convertit la chaîne de caractère formatée JSON en tableau if message["party"] == "new": # Si on crée une partie gInst = Game() # On initialise une nouvelle instance de Game gInst.start() # On démarre le thread self._self.conn.send(json.dumps({"id": gInst.id}).encode()) # On envoie l'ID self._self.parent.games[gInst.id] = gInst # On renseigne le moteur de jeu grace à son id self._self.parent.connections[-1].gameObject = gInst # On l'affecte à la connection self._self.parent.connections[-1].gameId = gInst.id # Ainsi que l'ID de partie elif message["party"] == "join": # Si on joint une partie _pass = True # Retour du try: link = 0 # POur eviter les problèmes try: # On essaye link = int(message["link"]) # de transformer en int except: # Si qq passe pas bien _pass = False # On le sauvegarde if link in self.parent.games and _pass: # Si l'id de partie est connue et pas d'erreur self._self.conn.send(json.dumps({"error": 0}).encode()) # On renvoie au client qu'il n'y a pas d'erreur self._self.parent.connections[-1].gameObject = self._self.parent.games[link] # On l'affecte à la connection self._self.parent.connections[-1].gameId = self._self.parent.games[link].id # Ainsi que l'ID de partie else: # Sinon self._self.conn.send(json.dumps({"error": 5}).encode()) # Erreur (pour changer) class Connection(threading.Thread): # On crée une classe Multithread qui gère UNE connection via TCP/IP def __init__(self, conn, addr, id, parent): # on définit la fonction utilisation threading.Thread.__init__(self) # On configure le thread # On copie les variables self.conn = conn self.addr = addr self.id = id # On initialise les variables self.gameId = None self.gameObject = None self.black_white = None self.stop = False # On stop le thread self.parent = parent self.s = Supervisor(self, self.parent) def run(self): # Lancement du thread self.s.start() self.s.join() print("Supervisor finished "+str(self.addr)) while (self.gameId is None) or (self.gameObject is None): # On attend d'avoir un game ID pass print("GameObject satisfied "+str(self.addr)) self.black_white = self.gameObject.getColor(self.conn) # On obtient la couleur if(self.black_white == 0): # Si la fonction renvoie 0 c'est que le jeu est déja satisfait self.conn.send(json.dumps({"error": 1}).encode()) # Donc on envoie le code 1 (errors.txt) au client else: # Couleur choisie self.conn.send(json.dumps({"error": 0, "color": self.black_white}).encode()) # On envoie au client que c'est bon while (self.gameObject.isWhiteUsed is None) or (self.gameObject.isBlackUsed is None): # On attend qu'ils soient connectés pass print("Game satisfied "+str(self.addr)) while not self.stop: # Tant que ce n'est pas stoppé message = self.conn.recv(2048) # On récupère un message du client print("163"+message.decode()) # On débug :) if message.decode() != "": # Si c'est pas vide message = json.loads(message.decode()) # On le décode if(message["move"] is not None): # Si on lui demande de bouger quelque chose result = self.gameObject.move(self.black_white, message["move"])#On appelle la fonction move renvoi = {} # On initialise la variable renvoi renvoi["over"] = self.gameObject.board.is_game_over() # On ajoute si mat renvoi["board"] = self.gameObject.board.fen() # On renvoie le plateau renvoi["error"] = result # On renvoie le message d'erreur print("172"+str(renvoi)) # On débug ;) # self.conn.send(json.dumps(renvoi).encode()) # On utilise la connexion du client pour lui envoyer la variable renvoi. self.gameObject.isWhiteUsed.send(json.dumps(renvoi).encode()) # On envoie le message self.gameObject.isBlackUsed.send(json.dumps(renvoi).encode()) # Idem self.gameObject.begin() # On utilise begin() comme il faut pas XD else: # Si le message ne contient pas de mouvement self.conn.send(json.dumps({"error": 4}).encode()) # On envoie l'erreur else: # Sinon message = {"move": None} # On s'en fout et on évite les bugs class MainThread(threading.Thread): # On crée jne classe multiThread qui est le coeur du système def __init__(self, port=554, ip="127.0.0.1"): # On définit la fonction d'initialisation threading.Thread.__init__(self) # On définit le thread # On copie la variable port mais pas trop globale :) self.port = port self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # On initialise le socket self.sock.bind((ip, self.port)) # On affecte le port au socket # Initialisation des variables self.stop = False self.accept = True self.games = {} self.connections = [] def run(self): # On définit la fonction principal self.sock.listen(1) # On commence écouter while not self.stop: # Tant que le thread n'est pas fini if self.accept: # Si on accepte : try: # Pour eviter les erreures lors d'un arrêt méchant conn, addr = self.sock.accept() # On attends la venu d'une connection et on accepte except: # Si ya des erreures break # On quitte print("Nouvelle connection avec "+str(addr)) # On débug self.connections.append(Connection(conn, addr, len(self.connections), self)) # On ouvre une nouvelle instance de Connection et on la mets dans la variable self.connections self.connections[-1].start() # On démare l'instance de connection for conn in self.connections: # Pour toutes les conections conn.conn.close() # Auf widersehen conn.stop = True # On arrête le thread conn.join() # On attend qu'ils s'arrête if __name__ == "__main__": # Si le code est éxecuté et pas ouvert par un autre programme python clear() # On clear le terminal port = 554 # On définit le port hostname = socket.gethostname() # On récupère le nom du pc IPAddr = socket.gethostbyname(hostname) # et son ip print("Serveur démaré sur le port "+str(port)) # Quand on a pas envie de lire la doc ;) mt = MainThread(port=port, ip=IPAddr) # On ouvre une instance de MainThread sur le port 554 mt.start() # et on la démarre stop = False # On définit la variable du stop while not(stop): # tant qu'on s'arrête pas m = input("$ ") # On demande une commande if "stop" in m: # si on a entré fini stop = True # on s'arrête mt.stop = True # On coupe le thread mt.sock.close() # On arrete violamanet le serveur grâce à de merveilleuses erreures mt.join() # On attend que le thread soit coupé print("Stop") # On affiche stop exit(1) # On quitte
import re import unicodedata import numpy as np import torch def get_ner_BIO(label_list): # list_len = len(word_list) # assert(list_len == len(label_list)), "word list size unmatch with label list" list_len = len(label_list) begin_label = 'B' inside_label = 'I' whole_tag = '' index_tag = '' tag_list = [] stand_matrix = [] for i in range(0, list_len): # wordlabel = word_list[i] current_label = label_list[i].upper() if begin_label in current_label: if index_tag == '': # whole_tag = 'answer' + '[' + str(i) whole_tag = '[' + str(i) index_tag = 'answer' # whole_tag = current_label.replace(begin_label,"",1) +'[' +str(i) # index_tag = current_label.replace(begin_label,"",1) else: tag_list.append(whole_tag + ',' + str(i-1)) # whole_tag = 'answer' + '[' + str(i) whole_tag = '[' + str(i) index_tag = 'answer' # whole_tag = current_label.replace(begin_label,"",1) + '[' + str(i) # index_tag = current_label.replace(begin_label,"",1) elif inside_label in current_label: if 'answer' == index_tag: whole_tag = whole_tag else: if (whole_tag != '')&(index_tag != ''): tag_list.append(whole_tag + ',' + str(i-1)) whole_tag = '' index_tag = '' else: if (whole_tag != '')&(index_tag != ''): tag_list.append(whole_tag + ',' + str(i-1)) whole_tag = '' index_tag = '' # if (whole_tag != '')&(index_tag != ''): # tag_list.append(whole_tag) if whole_tag !='' and ',' not in whole_tag: tag_list.append(whole_tag + ',' + str(list_len - 1)) tag_list_len = len(tag_list) for i in range(0, tag_list_len): if len(tag_list[i]) > 0: tag_list[i] = tag_list[i] + ']' insert_list = reverse_style(tag_list[i]) stand_matrix.append(eval(insert_list)) return stand_matrix def reverse_style(input_string): target_position = input_string.index('[') input_len = len(input_string) output_string = input_string[target_position:input_len] + input_string[0:target_position] return output_string def is_string(s): """判断是否是字符串 """ return isinstance(s, str) def padding(seqs, is_float=False, batch_first=False): lengths = [len(s) for s in seqs] seqs = [torch.Tensor(s) for s in seqs] batch_length = max(lengths) seq_tensor = torch.FloatTensor(batch_length, len(seqs)).fill_(float(0)) if is_float \ else torch.LongTensor(batch_length, len(seqs)).fill_(0) for i, s in enumerate(seqs): end_seq = lengths[i] seq_tensor[:end_seq, i].copy_(s[:end_seq]) if batch_first: seq_tensor = seq_tensor.t() return seq_tensor, lengths def mpn_padding(seqs, label, class_num, is_float=False, use_bert=False): lengths = [len(s) for s in seqs] seqs = [torch.Tensor(s) for s in seqs] batch_length = max(lengths) o1_tensor = torch.FloatTensor(len(seqs), batch_length, class_num).fill_(float(0)) if is_float \ else torch.LongTensor(len(seqs), batch_length, class_num).fill_(0) o2_tensor = torch.FloatTensor(len(seqs), batch_length, class_num).fill_(float(0)) if is_float \ else torch.LongTensor(len(seqs), batch_length, class_num).fill_(0) for i, label_ in enumerate(label): for attr in label_: if use_bert: o1_tensor[i, attr.value_pos_start + 1, attr.attr_type_id] = 1 o2_tensor[i, attr.value_pos_end, attr.attr_type_id] = 1 else: o1_tensor[i, attr.value_pos_start, attr.attr_type_id] = 1 o2_tensor[i, attr.value_pos_end - 1, attr.attr_type_id] = 1 return o1_tensor, o2_tensor def spo_padding(seqs, label, class_num, is_float=False, use_bert=False): lengths = [len(s) for s in seqs] seqs = [torch.Tensor(s) for s in seqs] batch_length = max(lengths) o1_tensor = torch.FloatTensor(len(seqs), batch_length, class_num).fill_(float(0)) if is_float \ else torch.LongTensor(len(seqs), batch_length, class_num).fill_(0) o2_tensor = torch.FloatTensor(len(seqs), batch_length, class_num).fill_(float(0)) if is_float \ else torch.LongTensor(len(seqs), batch_length, class_num).fill_(0) for i, label_ in enumerate(label): for po in label_: if use_bert: o1_tensor[i, po.object_start + 1, po.predict_type_id] = 1 o2_tensor[i, po.object_end, po.predict_type_id] = 1 else: o1_tensor[i, po.object_start, po.predict_type_id] = 1 o2_tensor[i, po.object_end - 1, po.predict_type_id] = 1 return o1_tensor, o2_tensor def _handle_pos_limit(pos, limit=30): for i, p in enumerate(pos): if p > limit: pos[i] = limit if p < -limit: pos[i] = -limit return [p + limit + 1 for p in pos] def find_position(entity_name, text): start = text.find(entity_name, 0) return start, start + len(entity_name) class BasicTokenizer(object): """分词器基类 """ def __init__(self, do_lower_case=False): """初始化 """ self._token_pad = '[PAD]' self._token_cls = '[CLS]' self._token_sep = '[SEP]' self._token_unk = '[UNK]' self._token_mask = '[MASK]' self._do_lower_case = do_lower_case def tokenize(self, text, add_cls=True, add_sep=True, max_length=None): """分词函数 """ if self._do_lower_case: text = unicodedata.normalize('NFD', text) text = ''.join( [ch for ch in text if unicodedata.category(ch) != 'Mn']) text = text.lower() tokens = self._tokenize(text) if add_cls: tokens.insert(0, self._token_cls) if add_sep: tokens.append(self._token_sep) if max_length is not None: self.truncate_sequence(max_length, tokens, None, -2) return tokens def token_to_id(self, token): """token转换为对应的id """ raise NotImplementedError def tokens_to_ids(self, tokens): """token序列转换为对应的id序列 """ return [self.token_to_id(token) for token in tokens] def truncate_sequence(self, max_length, first_sequence, second_sequence=None, pop_index=-1): """截断总长度 """ if second_sequence is None: second_sequence = [] while True: total_length = len(first_sequence) + len(second_sequence) if total_length <= max_length: break elif len(first_sequence) > len(second_sequence): first_sequence.pop(pop_index) else: second_sequence.pop(pop_index) def encode(self, first_text, second_text=None, max_length=None, first_length=None, second_length=None): """输出文本对应token id和segment id 如果传入first_length,则强行padding第一个句子到指定长度; 同理,如果传入second_length,则强行padding第二个句子到指定长度。 """ if is_string(first_text): first_tokens = self.tokenize(first_text) else: first_tokens = first_text if second_text is None: second_tokens = None elif is_string(second_text): second_tokens = self.tokenize(second_text, add_cls=False) else: second_tokens = second_text if max_length is not None: self.truncate_sequence(max_length, first_tokens, second_tokens, -2) first_token_ids = self.tokens_to_ids(first_tokens) if first_length is not None: first_token_ids = first_token_ids[:first_length] first_token_ids.extend([self._token_pad_id] * (first_length - len(first_token_ids))) first_segment_ids = [0] * len(first_token_ids) if second_text is not None: second_token_ids = self.tokens_to_ids(second_tokens) if second_length is not None: second_token_ids = second_token_ids[:second_length] second_token_ids.extend( [self._token_pad_id] * (second_length - len(second_token_ids))) second_segment_ids = [1] * len(second_token_ids) first_token_ids.extend(second_token_ids) first_segment_ids.extend(second_segment_ids) return first_token_ids, first_segment_ids def id_to_token(self, i): """id序列为对应的token """ raise NotImplementedError def ids_to_tokens(self, ids): """id序列转换为对应的token序列 """ return [self.id_to_token(i) for i in ids] def decode(self, ids): """转为可读文本 """ raise NotImplementedError def _tokenize(self, text): """基本分词函数 """ raise NotImplementedError class Tokenizer(BasicTokenizer): """Bert原生分词器 纯Python实现,代码修改自keras_bert的tokenizer实现 """ def __init__(self, token_dict, do_lower_case=False): """初始化 """ super(Tokenizer, self).__init__(do_lower_case) if is_string(token_dict): token_dict = load_vocab(token_dict) self._token_dict = token_dict self._token_dict_inv = {v: k for k, v in token_dict.items()} for token in ['pad', 'cls', 'sep', 'unk', 'mask']: try: _token_id = token_dict[getattr(self, '_token_%s' % token)] setattr(self, '_token_%s_id' % token, _token_id) except: pass self._vocab_size = len(token_dict) def token_to_id(self, token): """token转换为对应的id """ return self._token_dict.get(token, self._token_unk_id) def id_to_token(self, i): """id转换为对应的token """ return self._token_dict_inv[i] def decode(self, ids, tokens=None): """转为可读文本 """ tokens = tokens or self.ids_to_tokens(ids) tokens = [token for token in tokens if not self._is_special(token)] text, flag = '', False for i, token in enumerate(tokens): if token[:2] == '##': text += token[2:] elif len(token) == 1 and self._is_cjk_character(token): text += token elif len(token) == 1 and self._is_punctuation(token): text += token text += ' ' elif i > 0 and self._is_cjk_character(text[-1]): text += token else: text += ' ' text += token text = re.sub(' +', ' ', text) text = re.sub('\' (re|m|s|t|ve|d|ll) ', '\'\\1 ', text) punctuation = self._cjk_punctuation() + '+-/={(<[' punctuation_regex = '|'.join([re.escape(p) for p in punctuation]) punctuation_regex = '(%s) ' % punctuation_regex text = re.sub(punctuation_regex, '\\1', text) text = re.sub('(\d\.) (\d)', '\\1\\2', text) return text.strip() def _tokenize(self, text): """基本分词函数 """ spaced = '' for ch in text: if self._is_punctuation(ch) or self._is_cjk_character(ch): spaced += ' ' + ch + ' ' elif self._is_space(ch): spaced += ' ' elif ord(ch) == 0 or ord(ch) == 0xfffd or self._is_control(ch): continue else: spaced += ch tokens = [] for word in spaced.strip().split(): tokens.extend(self._word_piece_tokenize(word)) return tokens def _word_piece_tokenize(self, word): """word内分成subword """ if word in self._token_dict: return [word] tokens = [] start, stop = 0, 0 while start < len(word): stop = len(word) while stop > start: sub = word[start:stop] if start > 0: sub = '##' + sub if sub in self._token_dict: break stop -= 1 if start == stop: stop += 1 tokens.append(sub) start = stop return tokens @staticmethod def _is_space(ch): """空格类字符判断 """ return ch == ' ' or ch == '\n' or ch == '\r' or ch == '\t' or \ unicodedata.category(ch) == 'Zs' @staticmethod def _is_punctuation(ch): """标点符号类字符判断(全/半角均在此内) """ code = ord(ch) return 33 <= code <= 47 or \ 58 <= code <= 64 or \ 91 <= code <= 96 or \ 123 <= code <= 126 or \ unicodedata.category(ch).startswith('P') @staticmethod def _cjk_punctuation(): return u'\uff02\uff03\uff04\uff05\uff06\uff07\uff08\uff09\uff0a\uff0b\uff0c\uff0d\uff0f\uff1a\uff1b\uff1c\uff1d\uff1e\uff20\uff3b\uff3c\uff3d\uff3e\uff3f\uff40\uff5b\uff5c\uff5d\uff5e\uff5f\uff60\uff62\uff63\uff64\u3000\u3001\u3003\u3008\u3009\u300a\u300b\u300c\u300d\u300e\u300f\u3010\u3011\u3014\u3015\u3016\u3017\u3018\u3019\u301a\u301b\u301c\u301d\u301e\u301f\u3030\u303e\u303f\u2013\u2014\u2018\u2019\u201b\u201c\u201d\u201e\u201f\u2026\u2027\ufe4f\ufe51\ufe54\xb7\uff01\uff1f\uff61\u3002' @staticmethod def _is_cjk_character(ch): """CJK类字符判断(包括中文字符也在此列) 参考:https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) """ code = ord(ch) return 0x4E00 <= code <= 0x9FFF or \ 0x3400 <= code <= 0x4DBF or \ 0x20000 <= code <= 0x2A6DF or \ 0x2A700 <= code <= 0x2B73F or \ 0x2B740 <= code <= 0x2B81F or \ 0x2B820 <= code <= 0x2CEAF or \ 0xF900 <= code <= 0xFAFF or \ 0x2F800 <= code <= 0x2FA1F @staticmethod def _is_control(ch): """控制类字符判断 """ return unicodedata.category(ch) in ('Cc', 'Cf') @staticmethod def _is_special(ch): """判断是不是有特殊含义的符号 """ return bool(ch) and (ch[0] == '[') and (ch[-1] == ']') def load_vocab(dict_path, encoding='utf-8', simplified=False, startwith=None): """从bert的词典文件中读取词典 """ token_dict = {} with open(dict_path, encoding=encoding) as reader: for line in reader: token = line.strip() token_dict[token] = len(token_dict) if simplified: # 过滤冗余部分token new_token_dict, keep_tokens = {}, [] startwith = startwith or [] for t in startwith: new_token_dict[t] = len(new_token_dict) keep_tokens.append(token_dict[t]) for t, _ in sorted(token_dict.items(), key=lambda s: s[1]): if t not in new_token_dict: keep = True if len(t) > 1: for c in (t[2:] if t[:2] == '##' else t): if (Tokenizer._is_cjk_character(c) or Tokenizer._is_punctuation(c)): keep = False break if keep: new_token_dict[t] = len(new_token_dict) keep_tokens.append(token_dict[t]) return new_token_dict, keep_tokens else: return token_dict def search(pattern, sequence): """从sequence中寻找子串pattern 如果找到,返回第一个下标;否则返回-1。 """ n = len(pattern) for i in range(len(sequence)): if sequence[i:i + n] == pattern: return i return -1 def sequence_padding(inputs, length=None, padding=0, is_float=False): """Numpy函数,将序列padding到同一长度 """ if length is None: length = max([len(x) for x in inputs]) outputs = np.array([ np.concatenate([x, [padding] * (length - len(x))]) if len(x) < length else x[:length] for x in inputs ]) out_tensor = torch.FloatTensor(outputs) if is_float \ else torch.LongTensor(outputs) return torch.tensor(out_tensor) def batch_gather(data: torch.Tensor, index: torch.Tensor): length = index.shape[0] t_index = index.cpu().numpy() t_data = data.cpu().data.numpy() result = [] for i in range(length): result.append(t_data[i, t_index[i], :]) return torch.from_numpy(np.array(result)).to(data.device) def select_padding(seqs, select, is_float=False, class_num=None): lengths = [len(s) for s in seqs] batch_length = max(lengths) seq_tensor = torch.FloatTensor(len(seqs), batch_length, class_num, batch_length).fill_(float(0)) if is_float \ else torch.LongTensor(len(seqs), batch_length, class_num, batch_length).fill_(0) # NA = BAIDU_SELECT['NA'] # seq_tensor[:, :, NA, :] = 1 for i, triplet_list in enumerate(select): for triplet in triplet_list: subject_pos = triplet[0] object_pos = triplet[1] predicate = triplet[2] seq_tensor[i, subject_pos, predicate, object_pos] = 1 # seq_tensor[i, subject_pos, NA, object_pos] = 0 return seq_tensor if __name__=='__main__': a = ['O', 'B', 'I', 'I', 'O', 'O', 'O', 'B', 'I'] print(get_ner_BIO(a))
import os from pathlib import Path import numpy as np from padertorch.contrib.examples.audio_tagging.data import get_datasets from padertorch.contrib.examples.audio_tagging.models import CRNN from paderbox.utils.timer import timeStamped from padertorch.contrib.je.modules.augment import ( MelWarping, LogTruncNormalSampler, TruncExponentialSampler ) from padertorch.train.optimizer import Adam from padertorch.train.trainer import Trainer from sacred import Experiment as Exp from sacred.commands import print_config from sacred.observers import FileStorageObserver nickname = 'audio_tagging' ex = Exp(nickname) storage_dir = str( Path(os.environ['STORAGE_ROOT']) / nickname / timeStamped('')[1:] ) observer = FileStorageObserver.create(storage_dir) ex.observers.append(observer) @ex.config def config(): resume = False # Data configuration audio_reader = { 'source_sample_rate': None, 'target_sample_rate': 44100, } stft = { 'shift': 882, 'window_length': 2*882, 'size': 2048, 'fading': None, 'pad': False, } batch_size = 24 num_workers = 8 prefetch_buffer = 10 * batch_size max_total_size = None max_padding_rate = 0.1 bucket_expiration = 1000 * batch_size # Trainer configuration trainer = { 'model': { 'factory': CRNN, 'feature_extractor': { 'sample_rate': audio_reader['target_sample_rate'], 'fft_length': stft['size'], 'n_mels': 128, 'warping_fn': { 'factory': MelWarping, 'alpha_sampling_fn': { 'factory': LogTruncNormalSampler, 'scale': .07, 'truncation': np.log(1.3), }, 'fhi_sampling_fn': { 'factory': TruncExponentialSampler, 'scale': .5, 'truncation': 5., }, }, 'max_resample_rate': 1., 'n_time_masks': 1, 'max_masked_time_steps': 70, 'max_masked_time_rate': .2, 'n_mel_masks': 1, 'max_masked_mel_steps': 16, 'max_masked_mel_rate': .2, 'max_noise_scale': .0, }, 'cnn_2d': { 'out_channels': [16, 16, 32, 32, 64, 64, 128, 128, 256], 'pool_size': [1, 2, 1, 2, 1, 2, 1, (2, 1), (2, 1)], # 'residual_connections': [None, 3, None, 5, None, 7, None], 'output_layer': False, 'kernel_size': 3, 'norm': 'batch', 'activation_fn': 'relu', # 'pre_activation': True, 'dropout': .0, }, 'cnn_1d': { 'out_channels': 3*[512], # 'residual_connections': [None, 3, None], 'input_layer': False, 'output_layer': False, 'kernel_size': 3, 'norm': 'batch', 'activation_fn': 'relu', # 'pre_activation': True, 'dropout': .0, }, 'rnn_fwd': { 'hidden_size': 512, 'num_layers': 2, 'dropout': .0, }, 'clf_fwd': { 'out_channels': [512, 527], 'input_layer': False, 'kernel_size': 1, 'norm': 'batch', 'activation_fn': 'relu', 'dropout': .0, }, 'rnn_bwd': { 'hidden_size': 512, 'num_layers': 2, 'dropout': .0, }, 'clf_bwd': { 'out_channels': [512, 527], 'input_layer': False, 'kernel_size': 1, 'norm': 'batch', 'activation_fn': 'relu', 'dropout': .0, }, }, 'optimizer': { 'factory': Adam, 'lr': 3e-4, 'gradient_clipping': 20., }, 'storage_dir': storage_dir, 'summary_trigger': (100, 'iteration'), 'checkpoint_trigger': (1000, 'iteration'), 'stop_trigger': (100000, 'iteration') } Trainer.get_config(trainer) @ex.automain def train( _run, audio_reader, stft, num_workers, batch_size, max_padding_rate, trainer, resume, ): print_config(_run) trainer = Trainer.from_config(trainer) train_iter, validation_iter = get_datasets( audio_reader=audio_reader, stft=stft, num_workers=num_workers, batch_size=batch_size, max_padding_rate=max_padding_rate, storage_dir=trainer.storage_dir ) trainer.test_run(train_iter, validation_iter) trainer.register_validation_hook( validation_iter, metric='macro_fscore', maximize=True ) trainer.train(train_iter, resume=resume)
from shared.card import CARD_PLACEHOLDER_LENGTH import pygame import pygame.locals as pl from twisted.logger import Logger class View(object): log = Logger() def __init__(self, display): self.display = display self.first_call = False self.tab_order = [] self.tab_position = 0 if self.display.accessibility: from .speech import Speaker self.speaker = Speaker() def update(self): if not self.first_call: self.firstUpdate() self.first_call = True def render(self): pass def handleEvent(self, event): if len(self.tab_order) == 0: return if event.type == pygame.KEYDOWN: if event.key == pl.K_TAB: try: self.tab_order[self.tab_position].setFocus(False) except AttributeError: pass # some weird problem here # after restoring the focus of the window by tabbing back into # it, the mod attribute won't be set correctly # that's why we will try to guess it here in a different way if pygame.key.get_mods() & pl.KMOD_LSHIFT == pl.KMOD_LSHIFT or \ pygame.key.get_mods() & pl.KMOD_RSHIFT == \ pl.KMOD_RSHIFT: self.tab_position -= 1 if self.tab_position < 0: self.tab_position = len(self.tab_order) - 1 else: self.tab_position += 1 if self.tab_position >= len(self.tab_order): self.tab_position = 0 self.speak(self.tab_order[self.tab_position].getLabel(), True) try: self.tab_order[self.tab_position].setFocus(True) except AttributeError: pass elif event.key == pl.K_LCTRL or pygame.key == pl.K_RCTRL: self.speak(self.tab_order[self.tab_position].getLabel(), True) elif event.key == pl.K_RETURN: try: if self.tab_order[self.tab_position].getEnable(): self.tab_order[self.tab_position].getCallback()() sound = self.tab_order[self.tab_position].getClickSound() sound.stop() sound.play() except (AttributeError, TypeError): pass def speak(self, text, interrupt=False): if not self.display.accessibility: return self.speaker.output(text.replace('_'*CARD_PLACEHOLDER_LENGTH, "("+self.display.translator.translate("free space")+")"), interrupt) # will only be called once the view receives it's first update def firstUpdate(self): if len(self.tab_order) == 0: return self.speak(self.tab_order[0].getLabel(), False) try: self.tab_order[0].setFocus(True) except AttributeError: pass # can be overwritten # will be called each time the view will be removed def leave(self): pass def setNewTabPosition(self, position): self.tab_position = position def getTabOrder(self): return self.tab_order
from sympy import Matrix from numbers import Number from CompartmentalSystems.helpers_reservoir import numsol_symbolical_system, numerical_function_from_expression ,make_cut_func_set,f_of_t_maker from copy import copy,deepcopy from testinfrastructure.helpers import pe from scipy.interpolate import interp1d, UnivariateSpline class BastinModel(): # Bastonification of a reservoir model def __init__(self,srm,u_expr,z_sym): self.z_sym=z_sym self.u_expr=u_expr crm=deepcopy(srm) cof= crm.output_fluxes cif= crm.input_fluxes # up to now we can only built # single input single output models assert(len(cof)==1) assert(len(cif)==1) F_SD=list(cof.values())[0] cif= crm.input_fluxes #index of the single input receiving pool ii=list(cif.items())[0][0] d=cif[ii] cif[ii] = u_expr*d crm.input_fluxes=cif self.state_vector=Matrix(list(srm.state_vector)+[z_sym]) z_dot=F_SD-u_expr*d #rhs self.F=Matrix(list(crm.F)+[z_dot]) self.time_symbol=srm.time_symbol self.srm=crm class BastinModelRun(): def __init__(self,bm,par_dict, start_values, times, func_dict): self.bm=bm self.par_dict=par_dict self.start_values=start_values self.times=times self.func_dict=func_dict def solve(self): bm=self.bm soln = numsol_symbolical_system( bm.state_vector, bm.time_symbol, bm.F, [self.par_dict], [self.func_dict], self.start_values, self.times ) return soln[0] def _flux_funcs(self, expr_dict): bm = self.bm srm=bm.srm sol_funcs = self.sol_funcs() flux_funcs = {} tup = tuple(bm.state_vector) + (bm.time_symbol,) for key, expr in expr_dict.items(): if isinstance(expr,Number): # if expr is a number like 5.1 lambdify does not create a vectorized function # so the output is always a number and not an array with identical exprs which is a problem in plots def expr_func(arg_arr): return expr*np.ones_like(arg_arr) flux_funcs[key]=expr_func else: ol=numerical_function_from_expression(expr,tup,self.par_dict,self.func_dict) flux_funcs[key] = f_of_t_maker(sol_funcs, ol) return flux_funcs def sol_funcs(self): """Return linearly interpolated solution functions. Returns: Python function ``f``: ``f(times)`` returns a numpy.array containing the pool contents at times ``times``. """ sol = self.solve() times = self.times sol_funcs = [] for i in range(sol.shape[1]): sol_inter = interp1d(times, sol[:,i]) sol_funcs.append(sol_inter) return sol_funcs def external_input_flux_funcs(self): """Return a dictionary of the external input fluxes. The resulting functions base on sol_funcs and are linear interpolations. Returns: dict: ``{key: func}`` with ``key`` representing the pool which receives the input and ``func`` a function of time that returns a ``float``. """ return self._flux_funcs(self.bm.srm.input_fluxes) def internal_flux_funcs(self): """Return a dictionary of the internal fluxes. The resulting functions base on sol_funcs and are linear interpolations. Returns: dict: ``{key: func}`` with ``key=(pool_from, pool_to)`` representing the pools involved and ``func`` a function of time that returns a ``float``. """ return self._flux_funcs(self.bm.srm.internal_fluxes) def external_output_flux_funcs(self): """Return a dictionary of the external output fluxes. The resulting functions base on sol_funcs and are linear interpolations. Returns: dict: ``{key: func}`` with ``key`` representing the pool from which the output comes and ``func`` a function of time that returns a ``float``. """ return self._flux_funcs(self.bm.srm.output_fluxes) def phi_num(self,tup): bm=self.bm u_num= numerical_function_from_expression(bm.u_expr,tup,self.par_dict,self.func_dict) return u_num
# Copyright (C) 2020 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path import stat import shutil import subprocess import sys import zipfile import _jsonnet import requests import yaml from ._globals import HELM_CHARTS TEMPLATES = [ "charts/namespace.yaml", "charts/prometheus", "charts/promtail", "charts/loki", "charts/grafana", "promtail", ] HELM_REPOS = { "grafana": "https://grafana.github.io/helm-charts", "loki": "https://grafana.github.io/loki/charts", "prometheus-community": "https://prometheus-community.github.io/helm-charts", } LOOSE_RESOURCES = [ "namespace.yaml", "configuration", "dashboards", "storage", ] def _create_dashboard_configmaps(output_dir, namespace): dashboards_dir = os.path.abspath("./dashboards") output_dir = os.path.join(output_dir, "dashboards") if not os.path.exists(output_dir): os.mkdir(output_dir) for dir_path, _, files in os.walk(dashboards_dir): for dashboard in files: dashboard_path = os.path.join(dir_path, dashboard) dashboard_name, ext = os.path.splitext(dashboard) if ext == ".json": source = f"--from-file={dashboard_path}" elif ext == ".jsonnet": json = _jsonnet.evaluate_file(dashboard_path, ext_codes={"publish": "false"}) source = f"--from-literal={dashboard_name}.json='{json}'" else: continue output_file = f"{output_dir}/{dashboard_name}.dashboard.yaml" command = ( f"kubectl create configmap {dashboard_name} -o yaml " f"{source} --dry-run=client --namespace={namespace} " f"> {output_file}" ) try: subprocess.check_output(command, shell=True) except subprocess.CalledProcessError as err: print(err.output) with open(output_file, "r") as f: dashboard_cm = yaml.load(f, Loader=yaml.SafeLoader) dashboard_cm["metadata"]["labels"] = dict() dashboard_cm["metadata"]["labels"]["grafana_dashboard"] = dashboard_name dashboard_cm["data"][f"{dashboard_name}.json"] = dashboard_cm["data"][ f"{dashboard_name}.json" ].replace('"${DS_PROMETHEUS}"', "null") with open(output_file, "w") as f: yaml.dump(dashboard_cm, f) def _create_promtail_configs(config, output_dir): if not os.path.exists(os.path.join(output_dir, "promtail")): os.mkdir(os.path.join(output_dir, "promtail")) with open(os.path.join(output_dir, "promtailLocalConfig.yaml")) as f: for promtail_config in yaml.load_all(f, Loader=yaml.SafeLoader): with open( os.path.join( output_dir, "promtail", "promtail-%s" % promtail_config["scrape_configs"][0]["static_configs"][0][ "labels" ]["host"], ), "w", ) as f: yaml.dump(promtail_config, f) os.remove(os.path.join(output_dir, "promtailLocalConfig.yaml")) if not config["tls"]["skipVerify"]: try: with open( os.path.join(output_dir, "promtail", "promtail.ca.crt"), "w" ) as f: f.write(config["tls"]["caCert"]) except TypeError: print("CA certificate for TLS verification has to be given.") def _download_promtail(output_dir): with open(os.path.abspath("./promtail/VERSION"), "r") as f: promtail_version = f.readlines()[0].strip() output_dir = os.path.join(output_dir, "promtail") output_zip = os.path.join(output_dir, "promtail.zip") response = requests.get( "https://github.com/grafana/loki/releases/download/v%s/promtail-linux-amd64.zip" % promtail_version, stream=True, ) with open(output_zip, "wb") as f: for chunk in response.iter_content(chunk_size=512): f.write(chunk) with zipfile.ZipFile(output_zip) as f: f.extractall(output_dir) promtail_exe = os.path.join(output_dir, "promtail-linux-amd64") os.chmod( promtail_exe, os.stat(promtail_exe).st_mode | stat.S_IEXEC | stat.S_IXGRP | stat.S_IXOTH, ) os.remove(output_zip) def _run_ytt(config, output_dir): config_string = "#@data/values\n---\n" config_string += yaml.dump(config) command = [ "ytt", ] for template in TEMPLATES: command += ["-f", template] command += [ "--output-files", output_dir, "--ignore-unknown-comments", "-f", "-", ] try: # pylint: disable=E1123 print(subprocess.check_output(command, input=config_string, text=True)) except subprocess.CalledProcessError as err: print(err.output) def _update_helm_repos(): for repo, url in HELM_REPOS.items(): command = ["helm", "repo", "add", repo, url] try: subprocess.check_output(" ".join(command), shell=True) except subprocess.CalledProcessError as err: print(err.output) try: print(subprocess.check_output(["helm", "repo", "update"]).decode("utf-8")) except subprocess.CalledProcessError as err: print(err.output) def _deploy_loose_resources(output_dir): for resource in LOOSE_RESOURCES: command = [ "kubectl", "apply", "-f", f"{output_dir}/{resource}", ] print(subprocess.check_output(command).decode("utf-8")) def _get_installed_charts_in_namespace(namespace): command = ["helm", "ls", "-n", namespace, "--short"] return subprocess.check_output(command).decode("utf-8").split("\n") def _install_or_update_charts(output_dir, namespace): installed_charts = _get_installed_charts_in_namespace(namespace) charts_path = os.path.abspath("./charts") for chart, repo in HELM_CHARTS.items(): chart_name = chart + "-" + namespace with open(f"{charts_path}/{chart}/VERSION", "r") as f: chart_version = f.readlines()[0].strip() command = ["helm"] command.append("upgrade" if chart_name in installed_charts else "install") command += [ chart_name, repo, "--version", chart_version, "--values", f"{output_dir}/{chart}.yaml", "--namespace", namespace, ] try: print(subprocess.check_output(command).decode("utf-8")) except subprocess.CalledProcessError as err: print(err.output) def install(config_manager, output_dir, dryrun, update_repo): """Create the final configuration for the helm charts and Kubernetes resources and install them to Kubernetes, if not run in --dryrun mode. Arguments: config_manager {AbstractConfigManager} -- ConfigManager that contains the configuration of the monitoring setup to be uninstalled. output_dir {string} -- Path to the directory where the generated files should be safed in dryrun {boolean} -- Whether the installation will be run in dryrun mode update_repo {boolean} -- Whether to update the helm repositories locally """ config = config_manager.get_config() if not os.path.exists(output_dir): os.mkdir(output_dir) elif os.listdir(output_dir): while True: response = input( ( "Output directory already exists. This may lead to file conflicts " "and unwanted configuration applied to the cluster. Do you want " "to empty the directory? [y/n] " ) ) if response == "y": shutil.rmtree(output_dir) os.mkdir(output_dir) break if response == "n": print("Aborting installation. Please provide empty directory.") sys.exit(1) print("Unknown input.") _run_ytt(config, output_dir) namespace = config_manager.get_config()["namespace"] _create_dashboard_configmaps(output_dir, namespace) if os.path.exists(os.path.join(output_dir, "promtailLocalConfig.yaml")): _create_promtail_configs(config, output_dir) if not dryrun: _download_promtail(output_dir) if not dryrun: if update_repo: _update_helm_repos() _deploy_loose_resources(output_dir) _install_or_update_charts(output_dir, namespace)
import multiprocessing from time import time import socket import websocket from socscrollsave.core.constants import Constants from socscrollsave.common.logger import Logger as Log TAG = "Socket" class SocketProcess(multiprocessing.Process): """ Socket client """ def __init__(self, parser_process): """ Initialises values for process. :param parser_process: Reference to a ParserProcess instance. :type parser_process: ParserProcess """ multiprocessing.Process.__init__(self) self._exit = multiprocessing.Event() self._parser = parser_process self._socket_client = websocket.WebSocket() Log.i(TAG, "Process Ready") def open(self, port='ger', speed='million', timeout=0.01): try: self._socket_client.connect("ws://192.168.4.1:81/") Log.i(TAG, "Socket open") return True except TimeoutError: Log.w(TAG, "Error") return False def run(self): """ Reads the socket until a stop call is made. :return: """ buffer_size = 20 Log.i(TAG, "Process starting...") timestamp = time() while not self._exit.is_set(): stamp = time() - timestamp try: data = self._socket_client.recv() #print(data) if len(data) > 0: self._parser.add([stamp, data]) except: print("Data_error") Log.i(TAG, "Process finished") def stop(self): """ Signals the process to stop acquiring data. :return: """ Log.i(TAG, "Process finishing...") self._socket_client.close() self._exit.set()
try: from src import __wallaby_local as w # for VSCode support except ImportError: import imp; wallaby = imp.load_source('wallaby', '/usr/lib/wallaby.py') import wallaby as w # so it works on actual robot from src.helpers.functions import map MOTOR_MAX_TIME = 5.0 """This is multiplied by `motor.speed` to achieve the time in seconds required to move the motor. """ class base_motor: """The base class for motors and servos. Provides a common initializer for both by providing a port and speed value. """ def __init__(self, port, speed): """Creates a new base_motor. Arguments: port {int} -- The GPIO port of the motor. See Wallaby documentation for details. speed {float} -- The speed of the motor. 0.0 is the slowest, 1.0 is the fastest. """ self.port = port self.speed = speed
# Copyright (c) 2012-2019, Mark Peek <mark@peek.org> # All rights reserved. # # See LICENSE file for full license. # # *** Do not modify - this file is autogenerated *** # Resource specification version: 10.2.0 from . import AWSObject from . import AWSProperty from .validators import boolean from .validators import integer class EBSStorageInfo(AWSProperty): props = { 'VolumeSize': (integer, False), } class StorageInfo(AWSProperty): props = { 'EBSStorageInfo': (EBSStorageInfo, False), } class BrokerNodeGroupInfo(AWSProperty): props = { 'BrokerAZDistribution': (basestring, False), 'ClientSubnets': ([basestring], True), 'InstanceType': (basestring, True), 'SecurityGroups': ([basestring], False), 'StorageInfo': (StorageInfo, False), } class Tls(AWSProperty): props = { 'CertificateAuthorityArnList': ([basestring], False), } class ClientAuthentication(AWSProperty): props = { 'Tls': (Tls, False), } class ConfigurationInfo(AWSProperty): props = { 'Arn': (basestring, True), 'Revision': (integer, True), } class EncryptionAtRest(AWSProperty): props = { 'DataVolumeKMSKeyId': (basestring, True), } class EncryptionInTransit(AWSProperty): props = { 'ClientBroker': (basestring, False), 'InCluster': (boolean, False), } class EncryptionInfo(AWSProperty): props = { 'EncryptionAtRest': (EncryptionAtRest, False), 'EncryptionInTransit': (EncryptionInTransit, False), } class JmxExporter(AWSProperty): props = { 'EnabledInBroker': (boolean, True), } class NodeExporter(AWSProperty): props = { 'EnabledInBroker': (boolean, True), } class Prometheus(AWSProperty): props = { 'JmxExporter': (JmxExporter, False), 'NodeExporter': (NodeExporter, False), } class OpenMonitoring(AWSProperty): props = { 'Prometheus': (Prometheus, True), } class Firehose(AWSProperty): props = { 'DeliveryStream': (basestring, True), "Enabled": (boolean, True), } class CloudWatchLogs(AWSProperty): props = { 'Enabled': (boolean, True), 'LogGroup': (basestring, False), } class S3(AWSProperty): props = { 'Bucket': (basestring, False), 'Enabled': (boolean, True), 'Prefix': (basestring, False), } class BrokerLogs(AWSProperty): props = { 'CloudWatchLogs': (CloudWatchLogs, False), 'Firehose': (Firehose, False), 'S3': (S3, False), } class LoggingInfo(AWSProperty): props = { 'BrokerLogs': (BrokerLogs, True), } class Cluster(AWSObject): resource_type = "AWS::MSK::Cluster" props = { 'BrokerNodeGroupInfo': (BrokerNodeGroupInfo, True), 'ClientAuthentication': (ClientAuthentication, False), 'ClusterName': (basestring, True), 'ConfigurationInfo': (ConfigurationInfo, False), 'EncryptionInfo': (EncryptionInfo, False), 'EnhancedMonitoring': (basestring, False), 'KafkaVersion': (basestring, True), 'LoggingInfo': (LoggingInfo, False), 'NumberOfBrokerNodes': (integer, True), 'OpenMonitoring': (OpenMonitoring, False), 'Tags': (dict, False), }
# # Copyright (c) 2015 nexB Inc. and others. All rights reserved. # http://nexb.com and https://github.com/nexB/scancode-toolkit/ # The ScanCode software is licensed under the Apache License version 2.0. # Data generated with ScanCode require an acknowledgment. # ScanCode is a trademark of nexB Inc. # # You may not use this software except in compliance with the License. # You may obtain a copy of the License at: http://apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # # When you publish or redistribute any data created with ScanCode or any ScanCode # derivative work, you must accompany this data with the following acknowledgment: # # Generated with ScanCode and provided on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, either express or implied. No content created from # ScanCode should be considered or used as legal advice. Consult an Attorney # for any legal advice. # ScanCode is a free software code scanning tool from nexB Inc. and others. # Visit https://github.com/nexB/scancode-toolkit/ for support and download. from __future__ import absolute_import, print_function import unittest from commoncode import version class TestVersionHint(unittest.TestCase): def test_version_hint(self): data = { '/xmlgraphics/fop/source/fop-1.0-src.zip': '1.0', '/xml/xindice/xml-xindice-1.2m1-src.zip': '1.2m1', '/xmlgraphics/fop/binaries/fop-0.94-bin-jdk1.3.tar.gz': '0.94', '/xmlgraphics/batik/batik-src-1.7beta1.zip': '1.7beta1', '/xmlgraphics/batik/batik-1.7-jre13.zip': '1.7', '/xmlbeans/source/xmlbeans-2.3.0-src.tgz': '2.3.0', '/xml/xindice/source/xml-xindice-1.2m1-src.tar.gz': '1.2m1', '/xml/xerces-p/binaries/XML-Xerces-2.3.0-4-win32.zip': '2.3.0-4', '/xml/xerces-p/source/XML-Xerces-2.3.0-3.tar.gz': '2.3.0-3', '/xml/xalan-j/source/xalan-j_2_7_0-src-2jars.tar.gz': '2_7_0', '/xml/security/java-library/xml-security-src-1_0_5D2.zip': '1_0_5D2', '/xml/commons/binaries/xml-commons-external-1.4.01-bin.zip': '1.4.01', '/xml/commons/xml-commons-1.0.b2.zip': '1.0.b2', '/xml/cocoon/3.0/cocoon-all-3.0.0-alpha-1-dist.tar.gz': '3.0.0-alpha-1', '/xerces/j/source/Xerces-J-tools.2.10.0-xml-schema-1.1-beta.tar.gz': '2.10.0', '/xerces/c/3/binaries/xerces-c-3.1.1-x86_64-solaris-cc-5.10.tar.gz': '3.1.1', '/xerces/c/3/binaries/xerces-c-3.1.1-x86_64-windows-vc-8.0.zip': '3.1.1', '/xerces/c/2/binaries/xerces-c_2_8_0-x86-windows-vc_7_1.zip': '2_8_0', '/ws/woden/1.0M8/apache-woden-src-1.0M8.tar.gz': '1.0M8', '/ws/scout/0_7rc1/source/scout-0.7rc1-src.zip': '0.7rc1', '/ws/juddi/3_0/juddi-portal-bundle-3.0.0.rc1.zip': '3.0.0.rc1', '/ws/juddi/3_0/juddi-portal-bundle-3.0.0.beta.zip': '3.0.0.beta', '/ws/juddi/2_0RC7/juddi-tomcat-2.0rc7.zip': '2.0rc7', '/ws/axis2/tools/1_4_1/axis2-wsdl2code-maven-plugin-1.4.1.jar': '1.4.1', '/ws/axis/1_4/axis-src-1_4.zip': '1_4', '/ws/axis-c/source/win32/axis-c-1.6b-Win32-trace-src.zip': '1.6b', '/tuscany/java/sca/2.0-M5/apache-tuscany-sca-all-2.0-M5-src.tar.gz': '2.0-M5', '/turbine/turbine-2.3.3-rc1/source/turbine-2.3.3-RC1-src.zip': '2.3.3-RC1', '/tomcat/tomcat-connectors/jk/binaries/win64/jk-1.2.30/ia64/symbols-1.2.30.zip': '1.2.30', '/tomcat/tomcat-7/v7.0.0-beta/bin/apache-tomcat-7.0.0-windows-i64.zip': '7.0.0', '/tomcat/tomcat-4/v4.1.40/bin/apache-tomcat-4.1.40-LE-jdk14.exe': '4.1.40', '/tapestry/tapestry-src-5.1.0.5.tar.gz': '5.1.0.5', '/spamassassin/source/Mail-SpamAssassin-rules-3.3.0.r901671.tgz': '3.3.0.r901671', '/spamassassin/Mail-SpamAssassin-rules-3.3.1.r923257.tgz': '3.3.1.r923257', '/shindig/1.1-BETA5-incubating/shindig-1.1-BETA5-incubating-source.zip': '1.1-BETA5', '/servicemix/nmr/1.0.0-m3/apache-servicemix-nmr-1.0.0-m3-src.tar.gz': '1.0.0-m3', '/qpid/0.6/qpid-dotnet-0-10-0.6.zip': '0.6', '/openjpa/2.0.0-beta/apache-openjpa-2.0.0-beta-binary.zip': '2.0.0-beta', '/myfaces/source/portlet-bridge-2.0.0-alpha-2-src-all.tar.gz': '2.0.0-alpha-2', '/myfaces/source/myfaces-extval20-2.0.3-src.tar.gz': '2.0.3', '/harmony/milestones/6.0/debian/amd64/harmony-6.0-classlib_0.0r946981-1_amd64.deb': '6.0', '/geronimo/eclipse/updates/plugins/org.apache.geronimo.st.v21.ui_2.1.1.jar': '2.1.1', '/directory/studio/update/1.x/plugins/org.apache.directory.studio.aciitemeditor_1.5.2.v20091211.jar': '1.5.2.v20091211', '/db/torque/torque-3.3/source/torque-gen-3.3-RC3-src.zip': '3.3-RC3', '/cayenne/cayenne-3.0B1.tar.gz': '3.0B1', '/cayenne/cayenne-3.0M4-macosx.dmg': '3.0M4', '/xmlgraphics/batik/batik-docs-current.zip': 'current', '/xmlgraphics/batik/batik-docs-previous.zip': 'previous', '/poi/dev/bin/poi-bin-3.7-beta1-20100620.zip': '3.7-beta1-20100620', '/excalibur/avalon-logkit/source/excalibur-logkit-2.0.dev-0-src.zip': '2.0.dev-0', '/db/derby/db-derby-10.4.2.0/derby_core_plugin_10.4.2.zip': '10.4.2', '/httpd/modpython/win/2.7.1/mp152dll.zip': '2.7.1', '/perl/mod_perl-1.31/apaci/mod_perl.config.sh': '1.31', '/xml/xerces-j/old_xerces2/Xerces-J-bin.2.0.0.alpha.zip': '2.0.0.alpha', '/xml/xerces-p/archives/XML-Xerces-1.7.0_0.tar.gz': '1.7.0_0', '/httpd/docs/tools-2004-05-04.zip': '2004-05-04', '/ws/axis2/c/M0_5/axis2c-src-M0.5.tar.gz': 'M0.5', '/jakarta/poi/dev/src/jakarta-poi-1.8.0-dev-src.zip': '1.8.0-dev', '/tapestry/tapestry-4.0-beta-8.zip': '4.0-beta-8', '/openejb/3.0-beta-1/openejb-3.0-beta-1.zip': '3.0-beta-1', '/tapestry/tapestry-4.0-rc-1.zip': '4.0-rc-1', '/jakarta/tapestry/source/3.0-rc-3/Tapestry-3.0-rc-3-src.zip': '3.0-rc-3', '/jakarta/lucene/binaries/lucene-1.3-final.tar.gz': '1.3-final', '/jakarta/tapestry/binaries/3.0-beta-1a/Tapestry-3.0-beta-1a-bin.zip': '3.0-beta-1a', '/poi/release/bin/poi-bin-3.0-FINAL-20070503.tar.gz': '3.0-FINAL-20070503', '/harmony/milestones/M4/apache-harmony-hdk-r603534-linux-x86-32-libstdc++v6-snapshot.tar.gz': 'r603534', '/ant/antidote/antidote-20050330.tar.bz2': '20050330', '/apr/not-released/apr_20020725223645.tar.gz': '20020725223645', '/ibatis/source/ibatis.net/src-revision-709676.zip': 'revision-709676', '/ws/axis-c/source/win32/axis-c-src-1-2-win32.zip': '1-2', '/jakarta/slide/most-recent-2.0rc1-binaries/jakarta-slide 2.0rc1 jakarta-tomcat-4.1.30.zip': '2.0rc1', '/httpd/modpython/win/3.0.1/python2.2.1-apache2.0.43.zip': '2.2.1', '/ant/ivyde/updatesite/features/org.apache.ivy.feature_2.1.0.cr1_20090319213629.jar': '2.1.0.cr1_20090319213629', '/jakarta/poi/dev/bin/poi-2.0-pre1-20030517.jar': '2.0-pre1-20030517', '/jakarta/poi/release/bin/jakarta-poi-1.5.0-FINAL-bin.zip': '1.5.0-FINAL', '/jakarta/poi/release/bin/poi-bin-2.0-final-20040126.zip': '2.0-final-20040126', '/activemq/apache-activemq/5.0.0/apache-activemq-5.0.0-sources.jar': '5.0.0', '/turbine/turbine-2.2/source/jakarta-turbine-2.2-B1.tar.gz': '2.2-B1', '/ant/ivyde/updatesite/features/org.apache.ivy.feature_2.0.0.cr1.jar': '2.0.0.cr1', '/ant/ivyde/updatesite/features/org.apache.ivy.feature_2.0.0.final_20090108225011.jar': '2.0.0.final_20090108225011', '/ws/axis/1_2RC3/axis-src-1_2RC3.zip': '1_2RC3', '/commons/lang/old/v1.0-b1.1/commons-lang-1.0-b1.1.zip': '1.0-b1.1', '/commons/net/binaries/commons-net-1.2.0-release.tar.gz': '1.2.0-release', '/ant/ivyde/2.0.0.final/apache-ivyde-2.0.0.final-200907011148-RELEASE.tgz': '2.0.0.final-200907011148-RELEASE', '/geronimo/eclipse/updates/plugins/org.apache.geronimo.jetty.j2ee.server.v11_1.0.0.jar': 'v11_1.0.0', '/jakarta/cactus/binaries/jakarta-cactus-13-1.7.1-fixed.zip': '1.7.1-fixed', '/jakarta/jakarta-turbine-maven/maven/jars/maven-1.0-b5-dev.20020731.085427.jar': '1.0-b5-dev.20020731.085427', '/xml/xalan-j/source/xalan-j_2_5_D1-src.tar.gz': '2_5_D1', '/ws/woden/IBuilds/I20051002_1145/woden-I20051002_1145.tar.bz2': 'I20051002_1145', '/commons/beanutils/source/commons-beanutils-1.8.0-BETA-src.tar.gz': '1.8.0-BETA', '/cocoon/BINARIES/cocoon-2.0.3-vm14-bin.tar.gz': '2.0.3-vm14', '/felix/xliff_filters_v1_2_7_unix.jar': 'v1_2_7', '/excalibur/releases/200702/excalibur-javadoc-r508111-15022007.tar.gz': 'r508111-15022007', '/geronimo/eclipse/updates/features/org.apache.geronimo.v20.feature_2.0.0.jar': 'v20.feature_2.0.0', '/geronimo/2.1.6/axis2-jaxws-1.3-G20090406.jar': '1.3-G20090406', '/cassandra/debian/pool/main/c/cassandra/cassandra_0.4.0~beta1-1.diff.gz': '0.4.0~beta1-1', '/ha-api-3.1.6.jar': '3.1.6', 'ha-api-3.1.6.jar': '3.1.6' } # FIXME: generate a test function for each case for path in data: expected = data[path] if not expected.lower().startswith('v'): expected = 'v ' + expected assert expected == version.hint(path)
"""Tests for the object departures module.""" import responses # initialize package, and does not mix up names import test as _test import navitia_client import requests class DeparturesTest(_test.TestCase): def setUp(self): self.user = 'leo' self.core_url = "https://api.navitia.io/v1/" self.client = navitia_client.Client(self.user) self.coords = '2.333333;48.866667' def test_no_region_nor_coords(self): # Should raise error if no region nor coords specified pass
""" cloudRemover.py, Sam Murphy (2017-07-11) Collection of cloud removal methods for Sentinel 2 and Landsat for details: https://github.com/samsammurphy/cloud-masking-sentinel2 """ import ee import math def ESAclouds(toa): """ European Space Agency (ESA) clouds from 'QA60', i.e. Quality Assessment band at 60m parsed by Nick Clinton """ qa = toa.select('QA60') # bits 10 and 11 are clouds and cirrus cloudBitMask = int(2**10) cirrusBitMask = int(2**11) # both flags set to zero indicates clear conditions. clear = qa.bitwiseAnd(cloudBitMask).eq(0).And(\ qa.bitwiseAnd(cirrusBitMask).eq(0)) # cloud is not clear cloud = clear.eq(0) return cloud def shadowMask(toa,cloudMask): """ Finds cloud shadows in images Originally by Gennadii Donchyts, adapted by Ian Housman """ def potentialShadow(cloudHeight): """ Finds potential shadow areas from array of cloud heights returns an image stack (i.e. list of images) """ cloudHeight = ee.Number(cloudHeight) # shadow vector length shadowVector = zenith.tan().multiply(cloudHeight) # x and y components of shadow vector length x = azimuth.cos().multiply(shadowVector).divide(nominalScale).round() y = azimuth.sin().multiply(shadowVector).divide(nominalScale).round() # affine translation of clouds cloudShift = cloudMask.changeProj(cloudMask.projection(), cloudMask.projection().translate(x, y)) # could incorporate shadow stretch? return cloudShift # solar geometry (radians) azimuth = ee.Number(toa.get('solar_azimuth')).multiply(math.pi).divide(180.0).add(ee.Number(0.5).multiply(math.pi)) zenith = ee.Number(0.5).multiply(math.pi ).subtract(ee.Number(toa.get('solar_zenith')).multiply(math.pi).divide(180.0)) # find potential shadow areas based on cloud and solar geometry nominalScale = cloudMask.projection().nominalScale() cloudHeights = ee.List.sequence(500,4000,500) potentialShadowStack = cloudHeights.map(potentialShadow) potentialShadow = ee.ImageCollection.fromImages(potentialShadowStack).max() # shadows are not clouds potentialShadow = potentialShadow.And(cloudMask.Not()) # (modified) dark pixel detection darkPixels = toa.normalizedDifference(['green', 'swir2']).gt(0.25) # shadows are dark shadow = potentialShadow.And(darkPixels).rename(['shadows']) # might be scope for one last check here. Dark surfaces (e.g. water, basalt, etc.) cause shadow commission errors. # perhaps using a NDWI (e.g. green and nir) return shadow # class CloudRemover: ESAclouds = ESAclouds shadowMask = shadowMask def sentinel2mask(img): """ Masks cloud (and shadow) pixels from Sentinel 2 image """ # top of atmosphere reflectance toa = img.select(['B1','B2','B3','B4','B6','B8A','B9','B10', 'B11','B12'],\ ['aerosol', 'blue', 'green', 'red', 'red2','red4','h2o', 'cirrus','swir1', 'swir2'])\ .divide(10000).addBands(img.select('QA60'))\ .set('solar_azimuth',img.get('MEAN_SOLAR_AZIMUTH_ANGLE'))\ .set('solar_zenith',img.get('MEAN_SOLAR_ZENITH_ANGLE')) # ESA clouds ESAcloud = CloudRemover.ESAclouds(toa) # Shadow shadow = CloudRemover.shadowMask(toa, ESAcloud) # cloud and shadow mask mask = ESAcloud.Or(shadow).eq(0) return img.updateMask(mask) def landsatMask(img): """ Masks cloud (and shadow) pixels from Landsat images """ # FMASK fmask = img.select('fmask') # cloud and shadow cloud = fmask.eq(4) shadow = fmask.eq(2) # cloudFree pixels are not cloud or shadow cloudFree = cloud.Or(shadow).eq(0) return img.updateMask(cloudFree) def fromMission(mission): switch = { 'sentinel2': CloudRemover.sentinel2mask, 'landsat8': CloudRemover.landsatMask, 'landsat7': CloudRemover.landsatMask, 'landsat5': CloudRemover.landsatMask, 'landsat4': CloudRemover.landsatMask, } return switch[mission.lower()]
# models.py # cavaliba.app_sirene # (C) Cavaliba - 2020 import datetime from datetime import datetime, timedelta from django.db import models from django.utils import timezone from django.forms import ModelForm # null : DB # blank : forms # char/text : null=False # ------------------------------------------------------------- # Contacts # ------------------------------------------------------------- class Contact(models.Model): email = models.CharField('Email', max_length=128, blank=False) mobile = models.CharField('GSM', max_length=15, blank=False) firstname = models.CharField('Prenom', max_length=128, blank=True) lastname = models.CharField('Nom', max_length=128, blank=True) is_active = models.BooleanField('Actif', default=True) want_email= models.BooleanField('Email', default=True) want_sms = models.BooleanField('SMS', default=True) comment = models.CharField('Commentaire', max_length=128, blank=True) class Meta: ordering = ['pk','lastname','firstname'] def __str__(self): return self.email class ContactGroup(models.Model): name = models.CharField('Name', max_length=128, blank=False) description = models.TextField('Description', max_length=300, blank=True) contacts = models.ManyToManyField(Contact, blank=True) class Meta: ordering = ['name'] def size(self): return self.contacts.count() def __str__(self): return self.name # ------------------------------------------------------------- # Site # ------------------------------------------------------------- class Site(models.Model): name = models.CharField('Label', max_length=32, blank=False) description = models.CharField('Description', max_length=128, blank=False) class Meta: ordering = ['name'] def __str__(self): return self.name + ' (' + self.description + ')' # ------------------------------------------------------------- # Service # ------------------------------------------------------------- class Service(models.Model): name = models.CharField('Label', max_length=64, blank=False) description = models.CharField('Description', max_length=128, blank=False) class Meta: ordering = ['name'] def __str__(self): return self.name + ' (' + self.description + ')' # ------------------------------------------------------------- # Info # ------------------------------------------------------------- INFO_CATEGORY = ( (0, "N/A"), (1, "Incident"), (2, "Maintenance"), (3, "Information"), ) INFO_STATUS = ( (0, "N/A"), (1, "Planifié"), (2, "En cours"), (3, "Terminé"), ) INFO_PRIORITY = ( (0,"N/A"), (1,"P1 - Critique"), (2,"P2 - Haute"), (3,"P3 - Moyenne"), (4,"P4 - Faible"), ) class Info(models.Model): category = models.IntegerField('Catégorie', choices=INFO_CATEGORY, default=1) title = models.CharField('Titre', max_length=120, blank=False) status = models.IntegerField('Etat', choices=INFO_STATUS, default=2) priority = models.IntegerField('Priorité', choices=INFO_PRIORITY, default=0) start = models.DateTimeField('Début', blank=False, default=datetime.now, help_text="Format : dd/mm/YYYY hh:mm:ss") duration = models.IntegerField('Durée', default=0, blank=True, null=True, help_text="Durée estimée/définitive en minutes.") downtime = models.IntegerField('Indisponibilité', default=0, blank=True, null=True, help_text="Indisponibilité estimée/définitive en minutes.") detail = models.TextField('Description', max_length=4000, blank=True, null=True) services = models.ManyToManyField(Service, blank=True) sites = models.ManyToManyField(Site, blank=True) # notifications notify_groups = models.ManyToManyField(ContactGroup, blank=True) send_email = models.BooleanField('Envoi de mail', default=True) send_sms = models.BooleanField('Envoi de SMS', default=False) # template is_template = models.BooleanField('Modèle', default=False) template_name = models.CharField('Nom de modele', max_length=120, blank=True) # meta author = models.CharField('Auteur', max_length=200, blank=False, help_text="Saisir ici l'identité du déclarant de l'événement.") visible = models.BooleanField('Visible', default=True) # created_on = models.DateTimeField('Création', auto_now_add=True) # updated_on = models.DateTimeField('Mise à jour', auto_now_add=True) created_on = models.DateTimeField('Création',editable=False) updated_on = models.DateTimeField('Mise à jour',editable=False) def save(self, *args, **kwargs): ''' On save, update timestamps ''' if not self.id: self.created_on = timezone.now() self.updated_on = timezone.now() return super(Info, self).save(*args, **kwargs) class Meta: ordering = ['start', 'priority', 'category'] def __str__(self): return self.title
import pandas as pd def get_dataset_dtypes(dataframe_list): # dataframe_list # List of pandas dataframe objects ### # Student code (create additional functions as necessary) ### # mock-up for demonstration - remove after development # this is only a partial column list # actual list will come from columns in each dataframe relationship_dict = {'airlines': {}, 'airports': {}, 'flights': {}, 'trip_logs': {}} relationship_dict['airlines']['carrier'] = {'dtype':'O'} relationship_dict['airports']['dest'] = {'dtype': 'O'} relationship_dict['flights']['dest'] = {'dtype': 'O'} relationship_dict['flights']['carrier'] = {'dtype': 'O'} relationship_dict['flights']['flight_id'] = {'dtype': 'O'} relationship_dict['trip_logs']['flight_id'] = {'dtype': 'O'} # return relationship structure return relationship_dict def find_primary_key_candidates(dataframe_list, relationship_dict=None): # dataframe_list # List of pandas dataframe objects # # relationship_dict # This is an existing relationship_dict. If None, a new # relationship_dict should be created # adds relationship_dict if there isn't one for table in dataframe_list: if table not in relationship_dict: relationship_dict[table] = {} print('table: ', end='') print(table) for col in dataframe_list[table].columns: if col not in relationship_dict[table]: relationship_dict[table][col] = {} print(' col: ', end='') print(col, end=': ') # primary key candidate must have unique values total = dataframe_list[table][col].count() unique = dataframe_list[table][col].nunique() print(total, end=': ') print(unique) if total == unique: relationship_dict[table][col]['key_candidate'] = True print('found a primary key candidate') else: relationship_dict[table][col]['key_candidate'] = False ### # Student code (create additional functions as necessary) ### # mock-up for demonstration - remove after development # relationship_dict['airlines']['carrier']['key_candidate'] = True # relationship_dict['airports']['dest']['key_candidate'] = True # relationship_dict['flights']['dest']['key_candidate'] = False # relationship_dict['flights']['carrier']['key_candidate'] = False # relationship_dict['flights']['flight_id']['key_candidate'] = True # relationship_dict['trip_logs']['flight_id']['key_candidate'] = False # return relationship structure return relationship_dict
import os import time import torch import torch.nn as nn from torch.optim import SGD from modules.binarizer import L1ColBinarizer, L1RowBinarizer, MagnitudeBinarizer from modules.masked_nn import MaskedLinear # # Returns mask of inputs matrix # # mask = 0 in rows of inputs with smallest L1 norm # def l1_percentage_mask(inputs:torch.Tensor, threshold: float): # mask = inputs.clone() # use clone for gradient prop # # calculate norms of each matrix # L1_mean = torch.mean(inputs.abs(), dim=1) # # sort # _, idx = L1_mean.sort(descending=True) # num_to_keep = int(threshold*L1_mean.numel()) # mask[idx[:num_to_keep],:] = 1.0 # largest num_to_keep rows are kept by writing one to their mask # mask[idx[num_to_keep:],:] = 0.0 # return mask class MLP(nn.Module): def __init__(self, in_features: int, classes: int, pruning_method: str = "row", ): super(MLP, self).__init__() dim1=in_features dim2=int(in_features) dim3=int(in_features/4) self.lin1 = MaskedLinear(in_features=dim1, out_features=dim2, bias=True, mask_init="constant", mask_scale=0.0, pruning_method=pruning_method) self.lin2 = MaskedLinear(in_features=dim2, out_features=dim3, bias=True, mask_init="constant", mask_scale=0.0, pruning_method=pruning_method) self.lin3 = nn.Linear(in_features=dim3, out_features=classes, bias=True) self.in_features = in_features self.classes = classes self.pruning_method = pruning_method def forward(self, inputs, threshold): x = self.lin1(inputs, threshold) x = nn.functional.relu(x) x = self.lin2(x, threshold) x = nn.functional.relu(x) x = self.lin3(x, threshold) return x class MLPNeuronMasked(nn.Module): def __init__(self, in_features: int, classes: int, ): super(MLPNeuronMasked, self).__init__() dim1=in_features dim2=int(in_features) dim3=int(in_features/4) self.lin1 = nn.Linear(in_features=dim1, out_features=dim2, bias=True) self.lin1.mask_scores = torch.ones(dim2, dtype=torch.float, requires_grad=True) # scores to regularize which will choose neurons self.lin1.mask = torch.ones(dim2, dtype=torch.float, requires_grad=False) # binary mask to disable neurons after pruning self.lin2 = nn.Linear(in_features=dim2, out_features=dim3, bias=True) self.lin2.mask_scores = torch.ones(dim3, dtype=torch.float, requires_grad=True) self.lin2.mask = torch.ones(dim2, dtype=torch.float, requires_grad=False) self.lin3 = nn.Linear(in_features=dim3, out_features=classes, bias=True) self.in_features = in_features self.classes = classes def forward(self, inputs): x = self.lin1(inputs) x = nn.functional.relu(x) xmasked = x * self.lin1.mask_scores # Data type got changed to float64??? x = self.lin2(xmasked) x = nn.functional.relu(x) x = x * self.lin2.mask_scores #* self.mask2 x = self.lin3(x) return x # def prune_neurons(self, self. ): # def self_test(self, threshold=0.6): # optimizer = torch.optim.SGD(self.parameters(), lr=.1) # dummy_data=torch.rand((self.in_features)).unsqueeze(0) # dummy_target=torch.rand((self.classes)).unsqueeze(0) # for thresh in [1.0,.8,.6,.4,.2, .1, .05]: # print('Threshold = ', thresh) # for i in range (5): # optimizer.zero_grad() # out = self.forward(dummy_data, threshold=thresh) # # print(out.size()) # # print(out) # loss=nn.functional.mse_loss(out, dummy_target) # print(loss.item()) # loss.backward() # optimizer.step() # optimizer.zero_grad() # out = self.forward(dummy_data, threshold=0.9) # # print(out.size()) # print(out) # loss=nn.functional.cross_entropy(out, torch.Tensor([1]).long()) # loss.backward() # optimizer.step() # test pruning with simple MLP and dummy data # dim=10 # classes=10 # model = MLP(dim, classes, "topK") # model.self_test(threshold=0.6) # test with mnist import torchvision def mnist_eval(model, test_loader, threshold, device): total=0; correct=0 for idx, batch in enumerate(test_loader): batch_x = torch.flatten(batch[0], start_dim=1).to(device) batch_y = batch[1].to(device) out = model(batch_x, threshold) pred_idx = torch.argmax(out, dim=-1) correct += torch.sum(pred_idx == batch_y) total+=batch_x.shape[0] accuracy = correct*1.0/(total) print('threshold: ', threshold, 'acc: ', accuracy) def mnist_neuron_pruning(num_fine_tune_epochs, lambdas, model_dir, model_dir_out): # device = 'cuda' if torch.cuda.is_available() else 'cpu' device='cpu' train_data = torchvision.datasets.MNIST('/home/ahoffman/research/transformers/examples/alex/struct-pruning/emmental', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])) train_loader = torch.utils.data.DataLoader(train_data, batch_size=128, shuffle=True) test_batch_size=32 test_data = torchvision.datasets.MNIST('/home/ahoffman/research/transformers/examples/alex/struct-pruning/emmental', train=False, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])) test_loader = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=True) model = MLPNeuronMasked(28*28, 10).to(device) # load pretrained model if possible to save training time if os.path.exists(model_dir): model.load_state_dict(torch.load(model_dir)) model = model.to(device) print('loaded pretrained weights') target_dims = {'lin1.mask_scores': 28*28-50} optimizer = torch.optim.SGD(model.parameters(), lr=.01) for reg_lambda in lambdas: for epoch in range(num_fine_tune_epochs): print('training epoch ', epoch) cum_loss=0.0 for idx, batch in enumerate(test_loader): batch_x = torch.flatten(batch[0], start_dim=1).to(device) batch_y = batch[1].to(device) optimizer.zero_grad() out = model(batch_x) reg = l1_reg_neuron(model) loss = nn.functional.cross_entropy(out, batch_y) + reg_lambda * reg loss.backward() optimizer.step() cum_loss+=loss post_prefixes = {'lin1': 'lin2', 'lin2':'lin3'} # gotta be a better way than this.... prune_neuron_weights(model, target_dims, post_prefixes) # save model torch.save(model.state_dict(), model_dir_out) def l1_reg_neuron(model): reg=0.0 for name, param in model.named_parameters(): if "mask_scores" in name: reg += torch.sum(param) # l1 norm is sum of weights return reg # should just feed a list of layer names accessible in model.state_dict() so i can more easily parse def prune_neuron_weights(model, target_dims: dict, post_prefixes:dict): '''prune model to match target dims\\ target dims is dict of neuron mask name, dimension\\ post prefixes is a dict of layer name, next layer name. The prunable layers surrounding neuron mask ''' for name, param in model.named_parameters(): # BUG: my mask scores are not in the named parameters section because i didn't register them. should store them somewhere they're accessible or register them as parameters if "mask_scores" in name: _, idx = param.sort() num_to_keep = target_dims[name] # get prev and next layers prefix = name[:len(name)-12] post_prefix = post_prefixes[prefix] prev_weight = model.state_dict()[prefix+'.weight'] # mask will correspond to input layer post_weight = model.state_dict()[post_prefix+'.weight'] # for name param in model.parameters # if prefix of current name matches # incoming_weights = model.named_parameters()[1] incoming_weights = incoming_weights[idx[:num_to_keep], :] # prune rows of incoming weight matrix # remove corresponding weights def mnist_pruning_test(num_epochs, model_dir, pruning_method="row"): os.environ["CUDA_VISIBLE_DEVICES"]="0" # device = 'cuda' if torch.cuda.is_available() else 'cpu' device='cpu' train_data = torchvision.datasets.MNIST('/home/ahoffman/research/transformers/examples/alex/struct-pruning/emmental', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])) train_loader = torch.utils.data.DataLoader(train_data, batch_size=128, shuffle=True) test_batch_size=128 test_data = torchvision.datasets.MNIST('/home/ahoffman/research/transformers/examples/alex/struct-pruning/emmental', train=False, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])) test_loader = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=True) model = MLP(28*28, 10, pruning_method).to(device) # load pretrained model if possible to save training time if os.path.exists(model_dir): model.load_state_dict(torch.load(model_dir)) model = model.to(device) else: # train optimizer = torch.optim.SGD(model.parameters(), lr=.01) threshold=1.0 for threshold in [0.6]: #,.8,.6,.4,.2]: for epoch in range(num_epochs): print('training epoch ', epoch) cum_loss=0.0 for idx, batch in enumerate(test_loader): batch_x = torch.flatten(batch[0], start_dim=1).to(device) batch_y = batch[1].to(device) optimizer.zero_grad() out = model(batch_x, threshold) loss = nn.functional.cross_entropy(out, batch_y) cum_loss+=loss loss.backward() optimizer.step() # save model torch.save(model.state_dict(), model_dir) # step 1: init pretrained model with neurons # step 2: add regularization to loss function # step 3: fine-tune, view neurons # step 4: prune weights using neuron scores # eval # mnist_eval(model, test_loader, 1.0, device) # model.lin1.pruning_method="row" # model.lin2.pruning_method="row" # model.lin3.pruning_method="row" # model.lin3.bias.data = torch.zeros(model.lin3.bias.shape).to(device) # mnist_eval(model, test_loader, 0.6, device) # model.lin1.pruning_method="col" # model.lin2.pruning_method="col" # model.lin3.pruning_method="col" # mnist_eval(model, test_loader, 0.6, device) # making the final pruning method 'row' reduces performance a ton, but the outputs are not zeroed # this is because it zeros one of the output neurons, making it impossible to learn features specific to that one. Fix this by actually pruning neurons. Not row after row or col after col # def prune_neurons() # def prune_neurons_using_rows(model, mag_threshold, kperc, method="row"): # weights = (model.lin1.data, model.lin2.data) # L1_dim=1 # if method=="row": # L1_dim=0 # for weight in weights: # L1_mean = torch.mean(weight.abs(), dim=L1_dim) # _, idx = L1_mean.sort(descending=True) # num_to_keep = int(threshold*L1_mean.numel()) # mask[idx[:num_to_keep],:] = 1.0 # largest num_to_keep rows are kept by writing one to their mask # mask[idx[num_to_keep:],:] = 0.0 # return mask if __name__=="__main__": # mnist_pruning_test(5, os.path.join(os.path.dirname(os.path.abspath(__file__)),"mnist_mlp_model.pt"), pruning_method="row") mnist_neuron_pruning(5, [1], os.path.join(os.path.dirname(os.path.abspath(__file__)),"mnist_mlp_model.pt"), os.path.join(os.path.dirname(os.path.abspath(__file__)),"mnist_mlp_model_pruned.pt")) # threshold=0.6 # percent to keep # dim=10 # dim2=dim+2 # weight = torch.rand((dim,dim2)) # weight.requires_grad=True # x = torch.rand((dim)) # row_mask = L1RowBinarizer.apply(weight, threshold) # col_mask = L1ColBinarizer.apply(weight, threshold) # # print(row_mask) # trg = torch.ones((dim2)) # optimizer = SGD([weight], lr=.1) # for mask in [row_mask, col_mask]: # optimizer.zero_grad() # masked_weight = mask*weight # out = torch.mv(masked_weight.transpose(0,1), x) # matrix vector mult # loss = torch.nn.functional.l1_loss(out, trg) # loss.backward() # print(out) # print(weight.grad) # optimizer.zero_grad() # # masked_weight = mask*weight # out = torch.mv(weight.transpose(0,1), x) # matrix vector mult # loss = torch.nn.functional.l1_loss(out, trg) # loss.backward() # print(out) # print(weight.grad) # print('x') # print(x) # for i in range(10): # optimizer.zero_grad() # masked_weight = row_mask*weight # out = torch.mv(masked_weight.transpose(0,1), x) # matrix vector mult # loss1 = torch.nn.functional.l1_loss(out, trg, reduction='sum') # loss1.backward() # optimizer.step() # print(loss1) # prune threshold dims=[64,512,2048] def runtime_analysis(dims): for dim in dims: threshold=0.5 inputs = torch.rand((dim,dim)) then=time.time() mask = inputs.clone() _, idx = inputs.abs().flatten().sort(descending=True) j = int(threshold * inputs.numel()) # flat_out and mask access the same memory. flat_out = mask.flatten() flat_out[idx[j:]] = 0 flat_out[idx[:j]] = 1 now=time.time() print(dim,"elapsed:",now-then) # fixed magnitude threshold, no sorting then=time.time() mask=inputs>threshold now=time.time() print(dim," no sort elapsed:",now-then) # L1 mean sorting then=time.time() mask= l1_percentage_mask(inputs, threshold) now=time.time() print(dim," l1 elapsed:",now-then) device = 'cuda' if torch.cuda.is_available() else 'cpu' inputs.to(device) dims=[64,512,2048] for dim in dims: threshold=0.5 inputs = torch.rand((dim,dim)) then=time.time() mask = inputs.clone() _, idx = inputs.abs().flatten().sort(descending=True) j = int(threshold * inputs.numel()) # flat_out and mask access the same memory. flat_out = mask.flatten() flat_out[idx[j:]] = 0 flat_out[idx[:j]] = 1 now=time.time() print(dim,"elapsed:",now-then) # fixed magnitude threshold, no sorting then=time.time() mask=inputs>threshold now=time.time() print(dim," no sort elapsed:",now-then) # L1 mean sorting then=time.time() mask= L1RowBinarizer.apply(inputs, threshold) now=time.time() print(dim," l1 elapsed:",now-then) # conclusion: sorting the L1 means is faster than sorting every weight, but slower than applying simple # magnitude threshold
######################################## # CS/CNS/EE 155 2018 # Problem Set 1 # # Author: Andrew Kang # Description: Set 1 SGD helper ######################################## import numpy as np import matplotlib.pyplot as plt from matplotlib import animation from mpl_toolkits.mplot3d import Axes3D from matplotlib.animation import FuncAnimation # All functions operate under the assumption that: # - We are dealing with SGD in the 2-dimensional case # - The dataset is drawn from points in the domain [-1, 1] X [-1, 1] #################### # DATASET FUNCTIONS #################### def generate_dataset(N, f, noise): # Generates an approximately linearly separable dataset: # - X is drawn from [-1, 1] X [-1, 1]. # - Y is the dot product of X with some f plus some noise. X = np.random.uniform(-1, 1, (N, 2)) Y = np.dot(f, X.T) + noise * np.random.rand(N) return X, Y def generate_dataset1(): # A specific instance of generate_dataset(). np.random.seed(155) return generate_dataset(500, np.array([0.5, -0.1]).T, 0.1) def generate_dataset2(): # A specific instance of generate_dataset(). np.random.seed(155) return generate_dataset(500, np.array([-0.2, -0.3]).T, 0.1) #################### # PLOTTING FUNCTIONS #################### def plot_dataset(X, Y, show=True): # Create a new figure and get its axes. plt.close('all') fig = plt.figure() ax = fig.gca() # Plot X and Y with the 'bwr' colormap centered at zero. plt.set_cmap('bwr') plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolor='black', linewidth=0.5, vmin=min(np.min(Y), -np.max(Y)), vmax=max(np.max(Y), -np.min(Y))) plt.colorbar() # Label the axes. plt.xlabel('x_1') plt.ylabel('x_2') # Ugly code. if show: plt.show() else: return fig, ax def get_loss_grid(x_params, y_params, X, Y, loss): # Get 2D meshgrid. dx = np.linspace(*x_params) dy = np.linspace(*y_params) w_grid = np.meshgrid(dx, dy) # Evaluate loss on each point of the meshgrid. loss_grid = np.zeros_like(w_grid[0]) for i in range(len(loss_grid)): for j in range(len(loss_grid[0])): w = np.array([w_grid[0][i, j], w_grid[1][i, j]]) loss_grid[i, j] = loss(X, Y, w) return w_grid, loss_grid def plot_loss_function(X_grid, Y_grid, loss_grid): # Create a new figure and get its axes. plt.close('all') fig = plt.figure() ax = fig.gca(projection='3d') # Plot the loss function in 3D. surf = ax.plot_surface(X_grid, Y_grid, loss_grid, color='yellow', zorder=0) return fig, ax, surf #################### # SGD ANIMATION FUNCTIONS #################### def multiSGD(SGD, X, Y, params, N_epochs): # Arrays to store the results of SGD. losses_lst = np.zeros((len(params), N_epochs)) W_lst = np.zeros((len(params), N_epochs, 2)) for i, param in enumerate(params): print('Performing SGD with parameters', param, '...') # Run SGD on the current set of parameters and store the results. W, losses = SGD(X, Y, param['w_start'], param['eta'], N_epochs) W_lst[i] = W losses_lst[i] = losses # some abysmal variable naming here... lol whoops return W_lst, losses_lst def animate_sgd_suite(SGD, loss, X, Y, params, N_epochs, step, ms=1): delay = 5 # Run SGD on each set of parameters. W_lst, losses_lst = multiSGD(SGD, X, Y, params, N_epochs) # Get the loss grid and plot it. w_grid, loss_grid = get_loss_grid((-1, 1, 100), (-1, 1, 100), X, Y, loss) fig, ax, surf = plot_loss_function(w_grid[0], w_grid[1], loss_grid) # Label the axes: ax.set_xlabel('x_1') ax.set_ylabel('x_2') # Plot w_start values. _, = ax.plot(W_lst[:, 0, 0], W_lst[:, 0, 1], losses_lst[:, 0], '+', mew=2, ms=10, c='black') # Initialize graph to animate on. graph, = ax.plot([], [], [], 'o', ms=ms, c='black') graph.set_markeredgecolor('black') graph.set_markeredgewidth(1) # Define frame animation function. def animate(i): if i > delay: i -= delay graph.set_data(W_lst[:, :step*(i+1), 0].flatten(), W_lst[:, :step*(i+1), 1].flatten()) graph.set_3d_properties(losses_lst[:, :step*(i+1)].flatten()) surf.set_zorder(0) graph.set_zorder(1) return surf, graph # Animate! print('\nAnimating...') anim = FuncAnimation(fig, animate, frames=int(N_epochs/step)+delay, interval=50) return anim def animate_convergence(X, Y, W, step): delay = 5 # Plot w_start values. fig, ax = plot_dataset(X, Y, show=False) # Initialize graph to animate on. graph, = ax.plot([], []) # Define frame animation function. def animate(i): if i > delay: i -= delay w = W[i] x_ax = np.linspace(-1, 1, 100) graph.set_data(x_ax, - (w[0] / w[1]) * x_ax) return graph # Animate! print('\nAnimating...') anim = FuncAnimation(fig, animate, frames=int(len(W)/step)+delay, interval=50) return anim # Hey there! Hope you're having fun with the set :^)
"""Utilities for dealing with wordlists.""" import fnmatch import os from typing import List def find_wordlist(wordlist_dirs: List[str], fnpattern: str) -> None: """Recursively search wordlist directories for a specified filename.""" for wordlist_dir in wordlist_dirs: _walk_iter = os.walk(wordlist_dir, followlinks=True) for dirpath, dirnames, filenames in _walk_iter: for match in fnmatch.filter(filenames, fnpattern): print(os.path.join(dirpath, match)) def walk_wordlists(wordlist_dirs: List[str]) -> None: """Recursively walk the wordlist directories and print all files.""" for wordlist_dir in wordlist_dirs: _walk_iter = os.walk(wordlist_dir, followlinks=True) for dirpath, dirnames, filenames in _walk_iter: if not filenames: continue print(dirpath) for filename in filenames: print(filename) print()
"""Defines exceptions that can occur when interacting with job data""" class InvalidConnection(Exception): """Exception indicating that the provided job connection was invalid """ pass class InvalidData(Exception): """Exception indicating that the provided job data was invalid """ pass class InvalidConfiguration(Exception): """Exception indicating that the provided job configuration was invalid """ pass class StatusError(Exception): """Exception indicating that an operation cannot be completed due to the current job status. """ pass
#!/usr/bin/env python # coding: utf-8 import json from pyquery import PyQuery query = PyQuery("https://nijisanji.ichikara.co.jp/member/") member_urls = [element.get("href") for element in list(query("#liver_list a"))] member_list = [] for member_url in member_urls: query = PyQuery(member_url) member_name_raw = query("title").text() member_name = member_name_raw.split(" ")[0] channel_url_raw = query(".elementor-social-icon-youtube")[0].get("href") channel_url = channel_url_raw.split("?")[0] member_list.append({"name": member_name, "url": channel_url}) print( json.dumps( sorted(member_list, key=lambda x: x["name"]), indent=2, ensure_ascii=False ) )
import gym import os import re import argparse import pickle import torch import datetime from train import PolicyGradientTrainer from test import Tester from paint import Painter class Options(object): def __init__(self): parser = argparse.ArgumentParser() parser.add_argument('--n_episodes', type=int, default=500, help='train episodes') parser.add_argument('--emb_dim', type=list, default=[20, 20, 20, 20], help='dim of embedding layers') parser.add_argument('--gamma', type=float, default=0.95, help='decline factor for step reward') parser.add_argument('--lr', type=float, default=1e-3, help='learning rate') parser.add_argument('--step_size', type=int, default=100, help='step size in lr_scheduler for optimizer') self.parser = parser def parse(self): arg = self.parser.parse_args(args=[]) return arg if __name__ == '__main__': current_time = re.sub(r'\D', '', str(datetime.datetime.now())[0:-7]) if not os.path.exists('./checkpoints/' + current_time): os.makedirs('./checkpoints/' + current_time) record_path = './checkpoints/' + current_time + '/data.pkl' n_repeat = 10 args = Options().parse() args.env = gym.make('CartPole-v1') args.model_path = './checkpoints/' + current_time + '/model.pth.tar' ''' env_name: CartPole-v1 states : (位置x, x加速度, 偏移角度theta, 角加速度) actions : (向左 0, 向右 1) ''' best_reward = 0.0 rewards = [] store_flag = True for i in range(n_repeat): print(f'========== Repeated Experiment # {i:02d} ===========') trainer = PolicyGradientTrainer(args) reward = trainer.train() rewards.append(reward) d = {'episode': range(args.n_episodes), 'reward': rewards} with open(record_path, 'wb') as f: pickle.dump(d, f, pickle.HIGHEST_PROTOCOL) estimate_reward = torch.median(torch.tensor(rewards[-10:])) if best_reward < estimate_reward: # store the first trained agent in the repeated experiments state = {'state_dict': trainer.model.state_dict(), 'estimate_reward': estimate_reward} torch.save(state, args.model_path) best_reward = estimate_reward painter = Painter(record_path) painter.paint() tester = Tester(args) tester.test()
#!/usr/bin/python3 # Halide tutorial lesson 6. # This lesson demonstrates how to evaluate a Func over a domain that # does not start at (0, 0). # This lesson can be built by invoking the command: # make tutorial_lesson_06_realizing_over_shifted_domains # in a shell with the current directory at the top of the halide source tree. # Otherwise, see the platform-specific compiler invocations below. # On linux, you can compile and run it like so: # g++ lesson_06*.cpp -g -I ../include -L ../bin -lHalide -lpthread -ldl -o lesson_06 -std=c++11 # LD_LIBRARY_PATH=../bin ./lesson_06 # On os x: # g++ lesson_06*.cpp -g -I ../include -L ../bin -lHalide -o lesson_06 -std=c++11 # DYLD_LIBRARY_PATH=../bin ./lesson_06 #include "Halide.h" #include <stdio.h> #using namespace Halide from halide import * def main(): # The last lesson was quite involved, and scheduling complex # multi-stage pipelines is ahead of us. As an interlude, let's # consider something easy: evaluating funcs over rectangular # domains that do not start at the origin. # We define our familiar gradient function. gradient = Func ("gradient") x, y = Var("x"), Var("y") gradient[x, y] = x + y # And turn on tracing so we can see how it is being evaluated. gradient.trace_stores() # Previously we've realized gradient like so: # # gradient.realize(8, 8) # # This does three things internally: # 1) Generates code than can evaluate gradient over an arbitrary # rectangle. # 2) Allocates a new 8 x 8 image. # 3) Runs the generated code to evaluate gradient for all x, y # from (0, 0) to (7, 7) and puts the result into the image. # 4) Returns the new image as the result of the realize call. # What if we're managing memory carefully and don't want Halide # to allocate a new image for us? We can call realize another # way. We can pass it an image we would like it to fill in. The # following evaluates our Func into an existing image: print("Evaluating gradient from (0, 0) to (7, 7)") result = Image(Int(32), 8, 8) gradient.realize(result) # Let's check it did what we expect: for yy in range(8): for xx in range(8): if result(xx, yy) != xx + yy: print("Something went wrong!") return -1 # Now let's evaluate gradient over a 5 x 7 rectangle that starts # somewhere else -- at position (100, 50). So x and y will run # from (100, 50) to (104, 56) inclusive. # We start by creating an image that represents that rectangle: shifted = Image(Int(32), 5, 7) # In the constructor we tell it the size. shifted.set_min(100, 50) # Then we tell it the top-left corner. print("Evaluating gradient from (100, 50) to (104, 56)") # Note that this won't need to compile any new code, because when # we realized it the first time, we generated code capable of # evaluating gradient over an arbitrary rectangle. gradient.realize(shifted) # From C++, we also access the image object using coordinates # that start at (100, 50). for yy in range(50, 57): for xx in range(100, 105): if shifted(xx, yy) != xx + yy: print("Something went wrong!") return -1 # The image 'shifted' stores the value of our Func over a domain # that starts at (100, 50), so asking for shifted(0, 0) would in # fact read out-of-bounds and probably crash. # What if we want to evaluate our Func over some region that # isn't rectangular? Too bad. Halide only does rectangles :) print("Success!") return 0 if __name__ == "__main__": main()