content
stringlengths
5
1.05M
# coding=utf-8 from phi.tf.flow import * from .pde.pde_base import collect_placeholders_channels from .sequences import StaggeredSequence, SkipSequence, LinearSequence from .hierarchy import PDEExecutor class ControlTraining(LearningApp): def __init__(self, n, pde, datapath, val_range, train_range, trace_to_channel=None, obs_loss_frames=(-1,), trainable_networks=('CFE', 'OP2'), sequence_class=StaggeredSequence, batch_size=16, view_size=16, learning_rate=1e-3, learning_rate_half_life=1000, dt=1.0, new_graph=True): """ :param n: :param pde: :param datapath: :param sequence_matching: :param train_cfe: """ if new_graph: tf.reset_default_graph() LearningApp.__init__(self, 'Control Training', 'Train PDE control: OP / CFE', training_batch_size=batch_size, validation_batch_size=batch_size, learning_rate=learning_rate, stride=50) self.initial_learning_rate = learning_rate self.learning_rate_half_life = learning_rate_half_life if n <= 1: sequence_matching = False diffphys = sequence_class is not None if sequence_class is None: assert 'CFE' not in trainable_networks, 'CRE training requires a sequence_class.' assert len(obs_loss_frames) > 0, 'No loss provided (no obs_loss_frames and no sequence_class).' sequence_class = SkipSequence self.n = n self.dt = dt self.data_path = datapath self.checkpoint_dict = None self.info('Sequence class: %s' % sequence_class) # --- Set up PDE sequence --- world = World(batch_size=batch_size) pde.create_pde(world, 'CFE' in trainable_networks, sequence_class != LinearSequence) # TODO BATCH_SIZE=None world.state = pde.placeholder_state(world, 0) self.add_all_fields('GT', world.state, 0) target_state = pde.placeholder_state(world, n*dt) self.add_all_fields('GT', target_state, n) in_states = [world.state] + [None] * (n-1) + [target_state] for frame in obs_loss_frames: if in_states[frame] is None: in_states[frame] = pde.placeholder_state(world, frame*self.dt) # --- Execute sequence --- executor = self.executor = PDEExecutor(world, pde, target_state, trainable_networks, self.dt) sequence = self.sequence = sequence_class(n, executor) sequence.execute() all_states = self.all_states = [frame.worldstate for frame in sequence if frame is not None] # --- Loss --- loss = 0 reg = None if diffphys: target_loss = pde.target_matching_loss(target_state, sequence[-1].worldstate) self.info('Target loss: %s' % target_loss) if target_loss is not None: loss += target_loss reg = pde.total_force_loss([state for state in all_states if state is not None]) self.info('Force loss: %s' % reg) for frame in obs_loss_frames: supervised_loss = pde.target_matching_loss(in_states[frame], sequence[frame].worldstate) if supervised_loss is not None: self.info('Supervised loss at frame %d: %s' % (frame, supervised_loss)) self.add_scalar('GT_obs_%d' % frame, supervised_loss) self.add_all_fields('GT', in_states[frame], frame) loss += supervised_loss self.info('Setting up loss') if loss is not 0: self.add_objective(loss, 'Loss', reg=reg) for name, scalar in pde.scalars.items(): self.add_scalar(name, scalar) # --- Training data --- self.info('Preparing data') placeholders, channels = collect_placeholders_channels(in_states, trace_to_channel=trace_to_channel) data_load_dict = {p: c for p, c in zip(placeholders, channels)} self.set_data(data_load_dict, val=None if val_range is None else Dataset.load(datapath, val_range), train=None if train_range is None else Dataset.load(datapath, train_range)) # --- Show all states in GUI --- for i, (placeholder, channel) in enumerate(zip(placeholders, channels)): def fetch(i=i): return self.viewed_batch[i] self.add_field('%s %d' % (channel, i), fetch) for i, worldstate in enumerate(all_states): self.add_all_fields('Sim', worldstate, i) for name, field in pde.fields.items(): self.add_field(name, field) def add_all_fields(self, prefix, worldstate, index): with struct.unsafe(): fields = struct.flatten(struct.map(lambda x: x, worldstate, trace=True)) for field in fields: name = '%s[%02d] %s' % (prefix, index, field.path()) if field.value is not None: self.add_field(name, field.value) # else: # self.info('Field %s has value None' % name) def load_checkpoints(self, checkpoint_dict): if not self.prepared: self.prepare() self.checkpoint_dict = checkpoint_dict self.executor.load(self.n, checkpoint_dict, preload_n=True, session=self.session, logf=self.info) def action_save_model(self): self.save_model() def step(self): if self.learning_rate_half_life is not None: self.float_learning_rate = self.initial_learning_rate * 0.5 ** (self.steps / float(self.learning_rate_half_life)) LearningApp.step(self) def infer_all_frames(self, data_range): dataset = Dataset.load(self.data_path, data_range) reader = BatchReader(dataset, self._channel_struct) batch = reader[0:len(reader)] feed_dict = self._feed_dict(batch, True) inferred = self.session.run(self.all_states, feed_dict=feed_dict) return inferred def infer_scalars(self, data_range): dataset = Dataset.load(self.data_path, data_range) reader = BatchReader(dataset, self._channel_struct) batch = reader[0:len(reader)] feed_dict = self._feed_dict(batch, True) scalar_values = self.session.run(self.scalars, feed_dict, summary_key='val', merged_summary=self.merged_scalars, time=self.steps) scalar_values = {name: value for name, value in zip(self.scalar_names, scalar_values)} return scalar_values
import torch.nn as nn import torch import os import torch.nn.functional as F import torchvision.models as models from torch.autograd import Variable import torchvision.utils as vutils import torchvision.transforms as transforms import numpy as np from util.metrics import PSNR from skimage.measure import compare_ssim as SSIM from PIL import Image import cv2 class DeblurModel(nn.Module): def __init__(self): super(DeblurModel, self).__init__() def get_input(self, data): img = data['A'] inputs = img targets = data['B'] inputs, targets = inputs.cuda(), targets.cuda() inputs, targets = Variable(inputs), Variable(targets) return inputs, targets def tensor2im(self, image_tensor, imtype=np.uint8): image_numpy = image_tensor[0].cpu().float().numpy() image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 return image_numpy.astype(imtype) def get_acc(self, output, target, full=False): fake = self.tensor2im(output.data) real = self.tensor2im(target.data) psnr = PSNR(fake, real) ssim = SSIM(fake, real, multichannel=True) return psnr, ssim def get_loss(self, mean_loss, mean_psnr, mean_ssim): return '{:.3f}; psnr={}; ssim={}'.format(mean_loss, mean_psnr, mean_ssim) def visualize_data(self, phase, config, data, outputs, niter, degrad_type): # try: # #images = vutils.make_grid([input_image, result_image, gt_image]) # #images = vutils.make_grid(input_image) # print(data['A'].size()) # images = (vutils.make_grid(torch.squeeze(data['A']).permute(1, 2, 0)) + 1) / 2.0 * 255.0 # writer.add_image('Images', images, niter) # except Exception as e: # print(e) # print('I fucked up', niter, degrad_type) # pass input_image = data['A'][0].cpu().float().numpy() input_image = (np.transpose(input_image, (1, 2, 0)) + 1) / 2.0 * 255.0 gt_image = data['B'][0].cpu().float().numpy() # print(gt_image.shape) gt_image = (np.transpose(gt_image, (1, 2, 0)) + 1) / 2.0 * 255.0 result_image = outputs[0].detach().cpu().float().numpy() result_image = (np.transpose(result_image, (1, 2, 0)) + 1) / 2.0 * 255.0 input_image = input_image.astype('uint8') gt_image = gt_image.astype('uint8') result_image = result_image.astype('uint8') result_image = np.hstack((input_image, result_image, gt_image)) folder_name = phase + '_images_'+str(degrad_type)+'_'+str(config['experiment_desc']) if not os.path.exists(folder_name): os.makedirs(folder_name) cv2.imwrite(os.path.join(folder_name, str(int(niter)) + '.png'), cv2.cvtColor(result_image, cv2.COLOR_RGB2BGR)) def get_model(model_config): return DeblurModel()
import matplotlib.pyplot as plt import torch from torch import nn from torch import optim import torch.nn.functional as F from torchvision import datasets, transforms, models import time import numpy as np from torch.autograd import Variable from PIL import Image import os, random from collections import OrderedDict from get_inputs import get_inputs def Model(): model = models.vgg13(pretrained=True) # Freeze parameters so we don't backprop through them for param in model.parameters(): param.requires_grad = False #define the feed-forward network with relu with dropout,softmax network=nn.Sequential(OrderedDict([ ('fc1', nn.Linear(25088,1024)), ('drop', nn.Dropout(p=0.5)), ('relu', nn.ReLU()), ('fc2', nn.Linear( 1024,512)), ('drop', nn.Dropout(p=0.5)), ('relu', nn.ReLU()), ('fc3', nn.Linear( 512,256)), ('drop2', nn.Dropout(p=0.5)), ('relu2', nn.ReLU()), ('fc4', nn.Linear(256, 102)), ('output', nn.LogSoftmax(dim=1)) ])) model.classifier =network return model if __name__=='__main__': # arch=get_inputs().arch print(Model()) # print(arch)
#!/usr/bin/env python3 # references: # rfc1928(socks5): https://www.ietf.org/rfc/rfc1928.txt # asyncio-socks5 https://github.com/RobberPhex/asyncio-socks5 # handshake # +----+----------+----------+ # |VER | NMETHODS | METHODS | # +----+----------+----------+ # | 1 | 1 | 1 to 255 | # +----+----------+----------+ # request # +----+-----+-------+------+----------+----------+ # |VER | CMD | RSV | ATYP | DST.ADDR | DST.PORT | # +----+-----+-------+------+----------+----------+ # | 1 | 1 | X'00' | 1 | Variable | 2 | # +----+-----+-------+------+----------+----------+ # reply # +----+-----+-------+------+----------+----------+ # |VER | REP | RSV | ATYP | BND.ADDR | BND.PORT | # +----+-----+-------+------+----------+----------+ # | 1 | 1 | X'00' | 1 | Variable | 2 | # +----+-----+-------+------+----------+----------+ # udp relay request and reply # +----+------+------+----------+----------+----------+ # |RSV | FRAG | ATYP | DST.ADDR | DST.PORT | DATA | # +----+------+------+----------+----------+----------+ # | 2 | 1 | 1 | Variable | 2 | Variable | # +----+------+------+----------+----------+----------+
#!/usr/bin/python # Check interface utilization using nicstat # nicstat needs to be in $PATH # Author: Mattias Mikkola import subprocess import sys from optparse import OptionParser from numpy import mean parser = OptionParser() parser.add_option('-i', '--interface', dest='interface', help='Interface to monitor') parser.add_option('-w', '--warning', dest='warn', help='Warning threshhold') parser.add_option('-c', '--critical', dest='crit', help='Critical threshhold') parser.add_option('-n', '--iterations', dest='iter', help='Number of values to read') (options, args) = parser.parse_args() vals = [] p = subprocess.Popen('nicstat -p -i %s 1 %s' % (options.interface, int(options.iter)+1), shell=True, stdout=subprocess.PIPE) for line in p.stdout.readlines(): s = str.split(line, ':') vals.append(float(s[6])) del vals[0] avg = mean(vals) if avg > float(options.crit): status = 'CRITICAL' code = 2 elif avg > float(options.warn): status = 'WARNING' code = 1 else: status = 'OK' code = 0 print('%s: Network utilization: %.2f%%|util=%.2f;%.2f;%.2f;0.00;100.00' % (status, avg, avg, float(options.warn), float(options.crit))) exit(code)
# Generated by Django 3.0.8 on 2020-08-14 13:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0010_auto_20200814_1212'), ] operations = [ migrations.AddField( model_name='contact', name='sap_id', field=models.BigIntegerField(blank=True, null=True, verbose_name='sap_id'), ), migrations.AddField( model_name='product', name='provider', field=models.CharField(default='SITN', max_length=30, verbose_name='provider'), ), ]
from distutils.core import setup, Command from distutils.dir_util import copy_tree import sys import os import pyvx.nodes import pyvx.capi from pyvx import __version__ mydir = os.path.dirname(os.path.abspath(__file__)) class InstallLibCommand(Command): user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): pyvx.capi.build('/usr/local/lib') copy_tree('pyvx/inc/headers/VX', '/usr/local/include/VX') os.system('ldconfig') class PyTestCommand(Command): user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): import pytest errno = pytest.main() sys.exit(errno) ext_modules = [n.ffi.verifier.get_extension() for n in [pyvx.nodes.PlayNode, pyvx.nodes.ShowNode, pyvx.inc.vx] if n.lib] setup( name='PyVX', description='OpenVX implementation', long_description=''' PyVX is an implementation of `OpenVX`_ in python. `OpenVX`_ is a standard for expressing computer vision processing algorithms as a graph of function nodes. This graph is verified once and can then be processed (executed) multiple times. This implementation gains its performance by generating C-code during the verification phase. This code is compiled and loaded dynamically and then called during the process phase. To use this python implementation as an `OpenVX`_ backend from a C program, a shared library is provided. This library embeds python and provides an C API following the `OpenVX`_ specification. That way the C program does not need to be aware of the fact that python is used. Also, any C program following the `OpenVX`_ specification will be compilable with this backend. Further details are provided in the `Documentation`_ .. _`OpenVX`: https://www.khronos.org/openvx .. _`Documentation`: https://pyvx.readthedocs.org ''', version=__version__, packages=['pyvx', 'pyvx.inc'], package_data={'pyvx': ['glview.h', 'avplay.h', 'glview.c', 'avplay.c'], 'pyvx.inc': ['headers/VX/vx_api.h', 'headers/VX/vx.h', 'headers/VX/vx_kernels.h', 'headers/VX/vx_nodes.h', 'headers/VX/vx_types.h', 'headers/VX/vxu.h', 'headers/VX/vx_vendors.h', ]}, zip_safe=False, url='http://pyvx.readthedocs.org', author='Hakan Ardo', author_email='pyvx@googlegroups.com', license='MIT', install_requires=['pycparser', 'cffi'], ext_modules=ext_modules, cmdclass={'test': PyTestCommand, 'libinstall': InstallLibCommand}, tests_require=['pytest'], ) if pyvx.nodes.PlayNode.lib is None: print print "Warning: PlayNode not availible due to mssing dependencies. Try:" print print " apt-get install libavformat-dev libswscale-dev libavdevice-dev" print if pyvx.nodes.ShowNode.lib is None: print print "Warning: ShowNode not availible due to mssing dependencies. Try:" print print " apt-get install freeglut3-dev" print
import warnings import time from skmultiflow.visualization.base_listener import BaseListener from matplotlib.rcsetup import cycler import matplotlib.pyplot as plt from matplotlib import get_backend from skmultiflow.utils import FastBuffer, constants class EvaluationVisualizer(BaseListener): """ This class is responsible for maintaining and updating the plot modules for the evaluators in scikit-multiflow. It uses `matplotlib.pyplot` modules to create the main plot, which depending on the options passed to it as parameter, will create multiple subplots to better display all requested metrics. The plots are dynamically updated depending on frame counts amd time elapsed since last update. This strategy account for fast and slow methods. Line objects are used to describe performance measurements. It supports multiple models per subplot as a way of comparing the performance of different learning algorithms. Parameters ---------- n_wait: int The number of samples tracked in the sliding window for current performance. dataset_name: string (Default: 'Unnamed graph') The title of the plot. Algorithmically it's not important. metrics: list A list containing all the metrics to plot. n_models: int The number of models to compare. Raises ------ ValueError: A ValueError can be raised for a series of reasons. If no plots are passed as parameter to the constructor a ValueError is raised. If the wrong type of parameter is passed to on_new_train_step the same error is raised. Notes ----- Using more than 3 plot types at a time is not recommended, as it can significantly slow down the evaluation time. For the same reason comparing more than 3 learners at a time is not recommended. """ def __init__(self, task_type, n_wait, dataset_name, metrics, n_models, model_names, data_dict): super().__init__() # Default values self._sample_ids = [] self._is_legend_set = False self._frame_cnt = 0 self._plot_trackers = {} self._text_annotations = [] self._last_draw_timestamp = 0 # Configuration self._data_dict = data_dict self.n_wait = n_wait self.dataset_name = dataset_name self.n_models = n_models # Validate inputs if task_type is None or task_type == constants.UNDEFINED: raise ValueError('Task type for visualizer object is undefined.') else: if task_type in [constants.CLASSIFICATION, constants.REGRESSION, constants.MULTI_TARGET_CLASSIFICATION, constants.MULTI_TARGET_REGRESSION]: self.task_type = task_type else: raise ValueError('Invalid task type: {}'.format(task_type)) if model_names is None: self.model_names = ['M{}'.format(i) for i in range(n_models)] else: if isinstance(model_names, list): if len(model_names) != n_models: raise ValueError("Number of model names {} does not match the number of models {}.". format(len(model_names), n_models)) else: self.model_names = model_names else: raise ValueError("model_names must be a list.") if metrics is not None: if len(metrics) < 1: raise ValueError('The metrics list is empty.') else: self.metrics = metrics else: raise ValueError('Invalid metrics {}'.format(metrics)) if constants.DATA_POINTS in metrics and n_models > 1: raise ValueError("Can not use multiple models with data points visualization.") # Proceed with configuration self.__configure() def on_new_train_step(self, sample_id, data_buffer): """ This is the listener main function, which gives it the ability to 'listen' for the caller. Whenever the EvaluationVisualiser should be aware of some new data, the caller will invoke this function, passing the new data buffer. Parameters ---------- sample_id: int The current sample id. data_buffer: EvaluationDataBuffer A buffer containing evaluation data for a single training / visualization step. Raises ------ ValueError: If an exception is raised during the draw operation. """ try: current_time = time.time() self._clear_annotations() self._update_plots(sample_id, data_buffer) # To mitigate re-drawing overhead for fast models use frame counter (default = 5 frames). # To avoid slow refresh rate in slow models use a time limit (default = 1 sec). if (self._frame_cnt == 5) or (current_time - self._last_draw_timestamp > 1): plt.subplots_adjust(right=0.72, bottom=0.22) # Adjust subplots to include metrics annotations if get_backend() == 'nbAgg': self.fig.canvas.draw() # Force draw in'notebook' backend plt.pause(1e-9) self._frame_cnt = 0 self._last_draw_timestamp = current_time else: self._frame_cnt += 1 except BaseException as exception: raise ValueError('Failed when trying to draw plot. Exception: {} | Type: {}'. format(exception, type(exception).__name__)) def __configure(self): """ This function will verify which subplots should be create. Initializing all relevant objects to keep track of the plotting points. Basic structures needed to keep track of plot values (for each subplot) are: lists of values and matplot line objects. The __configure function will also initialize each subplot with the correct name and setup the axis. The subplot size will self adjust to each screen size, so that data can be better viewed in different contexts. """ font_size_small = 8 font_size_medium = 10 font_size_large = 12 plt.rc('font', size=font_size_small) # controls default text sizes plt.rc('axes', titlesize=font_size_medium) # font size of the axes title plt.rc('axes', labelsize=font_size_small) # font size of the x and y labels plt.rc('xtick', labelsize=font_size_small) # font size of the tick labels plt.rc('ytick', labelsize=font_size_small) # font size of the tick labels plt.rc('legend', fontsize=font_size_small) # legend font size plt.rc('figure', titlesize=font_size_large) # font size of the figure title warnings.filterwarnings("ignore", ".*GUI is implemented.*") warnings.filterwarnings("ignore", ".*left==right.*") warnings.filterwarnings("ignore", ".*Passing 1d.*") self._sample_ids = [] memory_time = {} plt.ion() self.fig = plt.figure(figsize=(9, 5)) self.fig.suptitle(self.dataset_name) plot_metrics = [m for m in self.metrics if m not in [constants.RUNNING_TIME, constants.MODEL_SIZE]] base = 11 + len(plot_metrics) * 100 # 3-digit integer describing the position of the subplot. self.fig.canvas.set_window_title('scikit-multiflow') # Subplots handler for metric_id in self.metrics: data_ids = self._data_dict[metric_id] self._plot_trackers[metric_id] = PlotDataTracker(data_ids) plot_tracker = self._plot_trackers[metric_id] if metric_id not in [constants.RUNNING_TIME, constants.MODEL_SIZE]: plot_tracker.sub_plot_obj = self.fig.add_subplot(base) base += 1 if metric_id == constants.TRUE_VS_PREDICTED: handle = [] plot_tracker.sub_plot_obj.set_prop_cycle(cycler('color', ['c', 'm', 'y', 'k'])) for data_id in data_ids: if data_id == constants.Y_TRUE: # True data plot_tracker.data[data_id] = [] label = 'True value' line_style = '--' line_obj = plot_tracker.line_objs if self.task_type == constants.CLASSIFICATION: line_obj[data_id], = plot_tracker.sub_plot_obj.step(self._sample_ids, plot_tracker.data[data_id], label=label, linestyle=line_style) else: line_obj[data_id], = plot_tracker.sub_plot_obj.plot(self._sample_ids, plot_tracker.data[data_id], label=label, linestyle=line_style) handle.append(line_obj[data_id]) else: # Predicted data plot_tracker.data[data_id] = [[] for _ in range(self.n_models)] plot_tracker.line_objs[data_id] = [None for _ in range(self.n_models)] line_obj = plot_tracker.line_objs[data_id] for i in range(self.n_models): label = 'Predicted {}'.format(self.model_names[i]) line_style = '--' if self.task_type == constants.CLASSIFICATION: line_obj[i], = plot_tracker.sub_plot_obj.step(self._sample_ids, plot_tracker.data[data_id][i], label=label, linestyle=line_style) else: line_obj[i], = plot_tracker.sub_plot_obj.plot(self._sample_ids, plot_tracker.data[data_id][i], label=label, linestyle=line_style) handle.append(line_obj[i]) plot_tracker.sub_plot_obj.legend(handles=handle, loc=2, bbox_to_anchor=(1.01, 1.)) plot_tracker.sub_plot_obj.set_title('True vs Predicted') plot_tracker.sub_plot_obj.set_ylabel('y') elif metric_id == constants.DATA_POINTS: plot_tracker.data['buffer_size'] = 100 plot_tracker.data['X'] = FastBuffer(plot_tracker.data['buffer_size']) plot_tracker.data['target_values'] = None plot_tracker.data['predictions'] = FastBuffer(plot_tracker.data['buffer_size']) plot_tracker.data['clusters'] = [] plot_tracker.data['clusters_initialized'] = False elif metric_id == constants.RUNNING_TIME: # Only the current time measurement must be saved for data_id in data_ids: plot_tracker.data[data_id] = [0.0 for _ in range(self.n_models)] # To make the annotations memory_time.update(plot_tracker.data) elif metric_id == constants.MODEL_SIZE: plot_tracker.data['model_size'] = [0.0 for _ in range(self.n_models)] memory_time['model_size'] = plot_tracker.data['model_size'] else: # Default case, 'mean' and 'current' performance handle = [] sorted_data_ids = data_ids.copy() sorted_data_ids.sort() # For better usage of the color cycle, start with 'current' data for data_id in sorted_data_ids: plot_tracker.data[data_id] = [[] for _ in range(self.n_models)] plot_tracker.line_objs[data_id] = [None for _ in range(self.n_models)] line_obj = plot_tracker.line_objs[data_id] for i in range(self.n_models): if data_id == constants.CURRENT: label = '{} (current, {} samples)'.format(self.model_names[i], self.n_wait) line_style = '-' else: label = '{} (mean)'.format(self.model_names[i]) line_style = ':' line_obj[i], = plot_tracker.sub_plot_obj.plot(self._sample_ids, plot_tracker.data[data_id][i], label=label, linestyle=line_style) handle.append(line_obj[i]) self._set_fig_legend(handle) if metric_id == constants.ACCURACY: plot_tracker.sub_plot_obj.set_title('Accuracy') plot_tracker.sub_plot_obj.set_ylabel('acc') elif metric_id == constants.KAPPA: plot_tracker.sub_plot_obj.set_title('Kappa') plot_tracker.sub_plot_obj.set_ylabel('kappa') elif metric_id == constants.KAPPA_T: plot_tracker.sub_plot_obj.set_title('Kappa T') plot_tracker.sub_plot_obj.set_ylabel('kappa t') elif metric_id == constants.KAPPA_M: plot_tracker.sub_plot_obj.set_title('Kappa M') plot_tracker.sub_plot_obj.set_ylabel('kappa m') elif metric_id == constants.HAMMING_SCORE: plot_tracker.sub_plot_obj.set_title('Hamming score') plot_tracker.sub_plot_obj.set_ylabel('hamming score') elif metric_id == constants.HAMMING_LOSS: plot_tracker.sub_plot_obj.set_title('Hamming loss') plot_tracker.sub_plot_obj.set_ylabel('hamming loss') elif metric_id == constants.EXACT_MATCH: plot_tracker.sub_plot_obj.set_title('Exact Match') plot_tracker.sub_plot_obj.set_ylabel('exact match') elif metric_id == constants.J_INDEX: plot_tracker.sub_plot_obj.set_title('Jaccard Index') plot_tracker.sub_plot_obj.set_ylabel('j-index') elif metric_id == constants.MSE: plot_tracker.sub_plot_obj.set_title('Mean Squared Error') plot_tracker.sub_plot_obj.set_ylabel('mse') elif metric_id == constants.MAE: plot_tracker.sub_plot_obj.set_title('Mean Absolute Error') plot_tracker.sub_plot_obj.set_ylabel('mae') elif metric_id == constants.AMSE: plot_tracker.sub_plot_obj.set_title('Average Mean Squared Error') plot_tracker.sub_plot_obj.set_ylabel('amse') elif metric_id == constants.AMAE: plot_tracker.sub_plot_obj.set_title('Average Mean Absolute Error') plot_tracker.sub_plot_obj.set_ylabel('amae') elif metric_id == constants.ARMSE: plot_tracker.sub_plot_obj.set_title('Average Root Mean Squared Error') plot_tracker.sub_plot_obj.set_ylabel('armse') elif metric_id == constants.DATA_POINTS: plot_tracker.sub_plot_obj.set_title('') plot_tracker.sub_plot_obj.set_xlabel('Feature x') plot_tracker.sub_plot_obj.set_ylabel('Feature y') else: plot_tracker.sub_plot_obj.set_title('Unknown metric') plot_tracker.sub_plot_obj.set_ylabel('') if constants.DATA_POINTS not in self.metrics: plt.xlabel('Samples') if constants.RUNNING_TIME in self.metrics or \ constants.MODEL_SIZE in self.metrics: self._update_time_and_memory_annotations(memory_time) self.fig.subplots_adjust(hspace=.5) self.fig.tight_layout(rect=[0, .04, 1, 0.98], pad=2.6, w_pad=0.4, h_pad=1.0) def _set_fig_legend(self, handles=None): if not self._is_legend_set: self.fig.legend(handles=handles, ncol=2, bbox_to_anchor=(0.98, 0.04), loc="lower right") self._is_legend_set = True def _update_plots(self, sample_id, data_buffer): self._sample_ids.append(sample_id) memory_time = {} for metric_id, data_ids in data_buffer.data_dict.items(): # update_xy_limits = True update_xy_limits = metric_id not in [constants.RUNNING_TIME, constants.MODEL_SIZE] y_min = 0.0 y_max = 1.0 pad = 0.1 # Default padding to set above and bellow plots plot_tracker = self._plot_trackers[metric_id] if metric_id == constants.TRUE_VS_PREDICTED: # Process true values data_id = constants.Y_TRUE plot_tracker.data[data_id].append(data_buffer.get_data(metric_id=metric_id, data_id=data_id)) plot_tracker.line_objs[data_id].set_data(self._sample_ids, plot_tracker.data[data_id]) # Process predicted values data_id = constants.Y_PRED data = data_buffer.get_data(metric_id=metric_id, data_id=data_id) for i in range(self.n_models): plot_tracker.data[data_id][i].append(data[i]) plot_tracker.line_objs[data_id][i].set_data(self._sample_ids, plot_tracker.data[data_id][i]) y_min = min([plot_tracker.data[data_id][i][-1], plot_tracker.data[constants.Y_TRUE][-1], y_min]) y_max = max([plot_tracker.data[data_id][i][-1], plot_tracker.data[constants.Y_TRUE][-1], y_max]) elif metric_id == constants.DATA_POINTS: update_xy_limits = False # Process features data_id = 'X' features_dict = data_buffer.get_data(metric_id=metric_id, data_id=data_id) feature_indices = list(features_dict.keys()) feature_indices.sort() # Store tuple of feature values into the buffer, sorted by index plot_tracker.data[data_id].add_element([[features_dict[feature_indices[0]], features_dict[feature_indices[1]]]]) plot_tracker.sub_plot_obj.set_xlabel('Feature {}'.format(feature_indices[0])) plot_tracker.sub_plot_obj.set_ylabel('Feature {}'.format(feature_indices[1])) # TODO consider a fading/update strategy instead plot_tracker.sub_plot_obj.clear() X1 = plot_tracker.data[data_id].get_queue()[-1][0] X2 = plot_tracker.data[data_id].get_queue()[-1][1] # Process target values data_id = 'target_values' plot_tracker.data[data_id] = data_buffer.get_data(metric_id=metric_id, data_id=data_id) if not plot_tracker.data['clusters_initialized']: for j in range(len(plot_tracker.data[data_id])): plot_tracker.data['clusters'].append(FastBuffer(plot_tracker.data['buffer_size'])) # Process predictions data_id = 'predictions' plot_tracker.data[data_id].add_element([data_buffer.get_data(metric_id=metric_id, data_id=data_id)]) for k, cluster in enumerate(plot_tracker.data['clusters']): if plot_tracker.data[data_id].get_queue()[-1] == k: plot_tracker.data['clusters'][k].add_element([(X1, X2)]) # TODO confirm buffer update inside the loop if cluster.get_queue(): temp = cluster.get_queue() plot_tracker.sub_plot_obj.scatter(*zip(*temp), label="Class {k}".format(k=k)) plot_tracker.sub_plot_obj.legend(loc=2, bbox_to_anchor=(1.01, 1.)) elif metric_id == constants.RUNNING_TIME: # Only the current time measurement must be saved for data_id in data_ids: plot_tracker.data[data_id] = data_buffer.get_data( metric_id=metric_id, data_id=data_id ) memory_time.update(plot_tracker.data) elif metric_id == constants.MODEL_SIZE: plot_tracker.data['model_size'] = data_buffer.get_data( metric_id=metric_id, data_id='model_size' ) memory_time['model_size'] = plot_tracker.data['model_size'] else: # Default case, 'mean' and 'current' performance for data_id in data_ids: # Buffer data data = data_buffer.get_data(metric_id=metric_id, data_id=data_id) for i in range(self.n_models): plot_tracker.data[data_id][i].append(data[i]) plot_tracker.line_objs[data_id][i].set_data(self._sample_ids, plot_tracker.data[data_id][i]) # Process data for i in range(self.n_models): # Update annotations self._update_annotations(i, plot_tracker.sub_plot_obj, self.model_names[i], plot_tracker.data[constants.MEAN][i][-1], plot_tracker.data[constants.CURRENT][i][-1]) # Update plot limits if metric_id in [constants.KAPPA_T, constants.KAPPA_M]: y_min = min([plot_tracker.data[constants.MEAN][i][-1], plot_tracker.data[constants.CURRENT][i][-1], y_min]) if metric_id in [constants.MSE, constants.MAE, constants.AMSE, constants.AMAE, constants.ARMSE]: y_min = -1 y_max = max([plot_tracker.data[constants.MEAN][i][-1], plot_tracker.data[constants.CURRENT][i][-1], y_max]) pad = 0.5 * y_max # Padding bellow and above thresholds if update_xy_limits: plot_tracker.sub_plot_obj.set_ylim((y_min-pad, y_max+pad)) plot_tracker.sub_plot_obj.set_xlim(0, self._sample_ids[-1]) if constants.RUNNING_TIME in self.metrics or \ constants.MODEL_SIZE in self.metrics: self._update_time_and_memory_annotations(memory_time) def _clear_annotations(self): """ Clear annotations, so next frame is correctly rendered. """ for i in range(len(self._text_annotations)): self._text_annotations[i].remove() self._text_annotations = [] def _update_annotations(self, idx, subplot, model_name, mean_value, current_value): xy_pos_default = (1.02, .90) # Default xy position for metric annotations shift_y = 10 * (idx + 1) # y axis shift for plot annotations xy_pos = xy_pos_default if idx == 0: self._text_annotations.append(subplot.annotate('{: <12} | {: ^16} | {: ^16}'. format('Model', 'Mean', 'Current'), xy=xy_pos, xycoords='axes fraction')) self._text_annotations.append(subplot.annotate('{: <10.10s}'.format(model_name[:6]), xy=xy_pos, xycoords='axes fraction', xytext=(0, -shift_y), textcoords='offset points')) self._text_annotations.append(subplot.annotate('{: ^16.4f} {: ^16.4f}'.format(mean_value, current_value), xy=xy_pos, xycoords='axes fraction', xytext=(50, -shift_y), textcoords='offset points')) def _update_time_and_memory_annotations(self, memory_time): text_header = '{: <12s}'.format('Model') if constants.RUNNING_TIME in self.metrics: text_header += ' | {: ^16s} | {: ^16s} | {: ^16s}'.\ format('Train (s)', 'Predict (s)', 'Total (s)') if constants.MODEL_SIZE in self.metrics: text_header += ' | {: ^16}'.format('Mem (kB)') last_plot = self.fig.get_axes()[-1] x0, y0, width, height = last_plot.get_position().bounds annotation_xy = (.1, .1) self._text_annotations.append(self.fig.text(s=text_header, x=annotation_xy[0], y=annotation_xy[1])) for i, m_name in enumerate(self.model_names): text_info = '{: <15s}'.format(m_name[:6]) if constants.RUNNING_TIME in self.metrics: text_info += '{: ^19.2f} {: ^19.2f} {: ^19.2f} '.format(memory_time['training_time'][i], memory_time['testing_time'][i], memory_time['total_running_time'][i]) if constants.MODEL_SIZE in self.metrics: text_info += '{: ^19.2f}'.format(memory_time['model_size'][i]) shift_y = .03 * (i + 1) # y axis shift for plot annotations self._text_annotations.append(self.fig.text(s=text_info, x=annotation_xy[0], y=annotation_xy[1] - shift_y)) @staticmethod def hold(): plt.show(block=True) def get_info(self): pass class PlotDataTracker(object): """ A class to track relevant data for plots corresponding to selected metrics. Data buffers and line objects are accessible via the corresponding data_id. """ def __init__(self, data_ids: list): self.data_ids = None self.data = {} self.line_objs = {} self.sub_plot_obj = None self._validate(data_ids) self._configure() def _validate(self, data_ids): if isinstance(data_ids, list): if len(data_ids) > 0: self.data_ids = data_ids else: raise ValueError('data_ids is empty') else: raise TypeError('data_ids must be a list, received: {}'.format(type(data_ids))) def _configure(self): for data_id in self.data_ids: self.data[data_id] = None self.line_objs[data_id] = None
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from matplotlib import pyplot from sklearn.linear_model import LinearRegression from sklearn import ensemble from sklearn.cross_validation import train_test_split #%% def DataRead(str1, useCols, tablenames): dataTable = pd.read_csv("%s" % str1, header=None, sep="\s*\;",usecols=useCols, names=tablenames, engine='python') dataTable.drop(dataTable.index[[0]], inplace=True) return dataTable #%% def CollumnFill (name, data, index, df): df[name][index] = data return #%% def CollumnAppend (name, data, df): df = df.append(data, ignore_index=True) return #%% Define: tablePath = "C:/Users/rsabedra/Documents/Python/example_sprit_cut_prices.csv" tablePath2 = "C:/Users/rsabedra/Documents/Python/example_sprit_cut_station.csv" #%% useColls = [0, 1, 2, 3, 4] tableCollumns = ['ID', 'E5', 'E10', 'DIESEL', 'DATA'] table = DataRead(tablePath, useColls , tableCollumns) table.E5 = pd.to_numeric(table.E5, errors='coerce') table.E10 = pd.to_numeric(table.E10, errors='coerce') table.DIESEL = pd.to_numeric(table.DIESEL, errors='coerce') useColls2 = [0, 4, 7,10,11] tableCollumns2 = ['ID', 'BRAND', 'POST_CODE', 'LAT', 'LNG'] table2 = DataRead(tablePath2, useColls2 , tableCollumns2) # ============================================================================= # Organizing and cleaning the data # ============================================================================= table = table.dropna() table = table.drop(table[table.E5 > 8000].index) table = table.drop(table[table.E5 < 10].index) table = table.drop(table[table.E10 > 8000].index) table = table.drop(table[table.E10 < 10].index) table = table.drop(table[table.DIESEL > 8000].index) table = table.drop(table[table.DIESEL < 10].index) table = table.reset_index(drop=True) table = table.drop_duplicates(inplace=False) table2 = table2.dropna() table2 = table2.reset_index(drop=True) table2 = table2.drop_duplicates(inplace=False) #%% # ============================================================================= # Auxiliary function to create a months list based on the data # ============================================================================= MonthsTotal = list() monthAux = table.iloc[0, 4][1:-20] MonthsTotal.append(monthAux) for x in range (0, len(table.DATA)): if (monthAux != table.iloc[x, 4][1:-20]): value = table.iloc[x, 4][1:-20] monthAux = table.iloc[x, 4][1:-20] MonthsTotal.append(value) MonthsTotal = list(set(MonthsTotal)) MonthsTotal.sort() #%% # ============================================================================= # How many different brands are there? # ============================================================================= tst = table2.groupby(['BRAND']).groups.keys() len(tst) #%% # ============================================================================= # How many different locations are present in the data? # ============================================================================= len(table2.groupby(['LAT' , 'LNG']).count()) #%% # ============================================================================= # # What is the min, max price for each gasoline type, per month? # ============================================================================= listMaxE5 = list() listMaxE10 = list() listMaxDIESEL = list() listMinE5 = list() listMinE10 = list() listMinDIESEL = list() listLocMinDIESEL = list() var = table.iloc[0, 4][1:-20] for y in range (0, len(MonthsTotal)): E5Max = 0 E10Max = 0 DIESELMax = 0 E5Min = 9999999 E10Min = 9999999 DIESELMin = 9999999 for x in range (0, len(table.DATA)): if(MonthsTotal[y] == table.iloc[x, 4][1:-20]): if (E5Max < table.iloc[x, 1]): E5Max = table.iloc[x, 1] elif (E5Min > table.iloc[x, 1]): E5Min = table.iloc[x, 1] if (E10Max < table.iloc[x, 2]): E10Max = table.iloc[x, 2] elif (E10Min > table.iloc[x, 2]): E10Min = table.iloc[x, 2] if (DIESELMax < table.iloc[x, 3]): DIESELMax = table.iloc[x, 3] elif (DIESELMin > table.iloc[x, 3]): DIESELMin = table.iloc[x, 3] IdDiesel= table.iloc[x, 0] listMaxE5.append(E5Max) listMaxE10.append(E10Max) listMaxDIESEL.append(DIESELMax) listMinE5.append(E5Min) listMinE10.append(E10Min) listMinDIESEL.append(DIESELMin) listLocMinDIESEL.append(IdDiesel) MaxMinGasolineMonth = pd.DataFrame( {'Month': MonthsTotal, 'MaxE5': listMaxE5, 'MinE5': listMinE5, 'MaxE10': listMaxE10, 'MinE10': listMinE10, 'MaxDIESEL': listMaxDIESEL, 'MinDIESEL': listMinDIESEL }) MaxMinGasolineMonth['Month'] = pd.to_datetime(MaxMinGasolineMonth['Month'], format='%Y-%m') MaxMinGasolineMonth.plot.line(x='Month') plt.title('What is the min, max price for each gasoline type, per month?') plt.xlabel('Date') plt.ylabel('Price') #%% # ============================================================================= # #What is the mean of each gasoline type? # ============================================================================= table.describe() boxplot = pd.DataFrame() boxplot['ID'] = table['ID'] boxplot['DIESEL'] = table['DIESEL'] boxplot['E5'] = table['E5'] boxplot['E10'] = table['E10'] ax = sns.boxplot( data=boxplot) ax.set_title('What is the mean of each gasoline type?') #%% # ============================================================================= # #What is the brand with major number of gas stations? # ============================================================================= listQuantOfBrands = list() for y in range (0, len(tst)): cont = 0 for x in range (0, len(table2.BRAND)): if(tst[y] == table2.iloc[x, 1]): cont += 1 listQuantOfBrands.append(cont) majorGasStations = pd.DataFrame( { 'Brands':[x for x in tst], 'Count':[ x for x in listQuantOfBrands] }) majorGasStations = majorGasStations.drop(majorGasStations[majorGasStations.Count < 12].index) a4_dims = (11.7, 8.27) fig, ax = pyplot.subplots(figsize=a4_dims) ax = sns.barplot(x="Brands", y="Count", data=majorGasStations) ax.set_title('What is the brand with major number of gas stations?') #%% # ============================================================================= # #What is the maximum range of each gasoline type per month? # ============================================================================= listRangeE5 = list() listRangeE10 = list() listRangeDIESEL = list() for x in range (0, len(MonthsTotal)): listRangeE5.append(listMaxE5[x] - listMinE5[x]) listRangeE10.append(listMaxE10[x] - listMinE10[x]) listRangeDIESEL.append(listMaxDIESEL[x] - listMinDIESEL[x]) RangePrices = pd.DataFrame( { 'Month': MonthsTotal, 'E5': listRangeE5, 'E10': listRangeE10, 'DIESEL': listRangeDIESEL }) f, ax = plt.subplots(1, 1, sharey=True) ax.scatter(RangePrices.Month, RangePrices.E5) ax.scatter(RangePrices.Month, RangePrices.E10) ax.scatter(RangePrices.Month, RangePrices.DIESEL) plt.title('What is the maximum range of each gasoline type per month?') plt.xlabel('Date') plt.ylabel('Price') plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.xticks(rotation=35) #%% # ============================================================================= # #What is the region with most concentration of gas stations? # ============================================================================= listPostReg = list() for x in range (0, len(table2.POST_CODE)): listPostReg.append(table2.iloc[x, 2][0:-3]) RegionsGasStations = [[x,listPostReg.count(x)] for x in set(listPostReg)] RegionsGasStations2 = pd.DataFrame( { 'Region':[ x[0] for x in RegionsGasStations], 'Count':[ x[1] for x in RegionsGasStations] }) RegionsGasStations2 = RegionsGasStations2.iloc[2:] ax = sns.barplot(x="Region", y="Count", data=RegionsGasStations2) ax.set_title('What is the region with most concentration of gas stations?') #%% # ============================================================================= # What is the whole Diesel variation? # ============================================================================= diesel = pd.DataFrame() diesel['ID'] = table['ID'] diesel['DIESEL'] = table['DIESEL'] diesel['DATA'] = pd.to_datetime(table['DATA'], format='"%Y-%m-%d %H:%M:%S.%f"') diesel.set_index('DATA', inplace=True) diesel.groupby('ID')['DIESEL'].plot(legend=False) plt.title('What is the whole Diesel variation?') plt.xlabel('Date') plt.ylabel('Price') # ============================================================================= # Machine learning predictor # ============================================================================= #Preparing variables datadates = diesel.DATA.values datamonths = pd.Series(data=[pd.to_datetime(x).month for x in datadates], name='month') datadays = pd.Series([pd.to_datetime(x).day for x in datadates], name='day') datahour = pd.Series([pd.to_datetime(x).hour for x in datadates], name='hour') diesel['DAY'] = datadays diesel['MONTH'] = datamonths diesel['HOUR'] = datahour #%% reg = LinearRegression() teste = pd.DataFrame() teste = diesel teste['E5'] = table['E5'] teste['E10'] = table['E10'] teste= teste.iloc[:500000,:] labels = teste['DIESEL'] train1 = teste.drop(['ID', 'DIESEL', 'DATA'],axis=1) # ============================================================================= # Simple Linear Regressor # ============================================================================= x_train, x_test, y_train, y_test =train_test_split(train1, labels, test_size=0.40, random_state=2) reg.fit(x_train, y_train) reg.score(x_test, y_test) #%% # ============================================================================= # Gradient Boosting Regressor # ============================================================================= clf = ensemble.GradientBoostingRegressor(n_estimators = 800, max_depth = 8, min_samples_split = 4, learning_rate = 0.4, loss = 'ls') clf.fit(x_train, y_train) clf.score(x_test,y_test) #%% # ============================================================================= # #%% # #What is the region with the least cost of DIESEL? # # # listOfBrands = list() # listOfCode = list() # # for i in range (0, len(table2.ID)): # for j in range (0, len(DieselLocation.ID)): # if (table2.iloc[i, 0] == DieselLocation.iloc[j, 0]): # listOfBrands.append(table2.iloc[i, 1]) # listOfCode.append(table2.iloc[i, 2][0:-3]) # # # # # DieselMinInfo = pd.DataFrame( # { # 'ID': listLocMinDIESEL, # 'MinDIESEL': listMinDIESEL, # 'Brands': listOfBrands, # 'Code': listOfCode # }) # # #%% # from sklearn import linear_model # regr = linear_model.LinearRegression() # regr.fit(table, table.DATA) # LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False) # print(regr.coef_) # # # # The mean square error # np.mean((regr.predict(table)-table.DATA)**2) # # # # Explained variance score: 1 is perfect prediction # # and 0 means that there is no linear relationship # # between X and y. # regr.score(table, table.DATA) # # =============================================================================
import codecs import os from setuptools import setup here = os.path.abspath(os.path.dirname(__file__)) with codecs.open(os.path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='ampr', version='1.0.0', description='Amateur Packet Radio API client', long_description=long_description, url='https://github.com/pd0mz/ampr', author='Wijnand Modderman-Lenstra', author_email='maze@pyth0n.org', license='MIT', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', ], keywords='ampr amateur packet radio api', py_modules=['ampr'], install_requires=['requests'], )
from django.conf.urls import url from django.conf.urls.static import static from django.urls import path, include, re_path from provarme_tenant.views import (TenantRegisterView, Login, Logout, activate, TenantProfile, PendingPageView, ThankPageView, create_purchase_upnid) from provarme import settings app_name="provarme_tenant" urlpatterns = [ path('login/', Login.as_view(), name='login'), path('logout/', Logout.as_view(), name="logout"), # rota para ativação do tenant path('activate/<int:id>/<token>/', activate, name='activate'), #webhook upnid compra instancia path('compra_plano_upnid/', create_purchase_upnid, name='purchase'), # rota para perfil do usuario tenant path('profile/', TenantProfile.as_view(), name='profile'), ] if settings.DEBUG is True: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
import feedparser import models import time import datetime as dt from bs4 import BeautifulSoup VALID_IMAGE_ATTRIBUTES = ('alt', 'title', 'src') def fetch(url): f = feedparser.parse(url) feed = models.Feed() feed.link = url feed.website = f.feed.get('link') feed.title = f.feed.get('title') feed.author = f.feed.get('author') entries = [] for e in f.entries: entry = models.Entry() entry.link = e.get('link') entry.title = e.get('title') published = get_first_or_default( e, ('updated_parsed', 'published_parsed')) if published: entry.published = dt.datetime.fromtimestamp(time.mktime(published)) if 'content' in e and e.content and isinstance(e.content, list): first_content = e.content[0] content = first_content.get('value') else: content = e.get('description') entry.content = content if content: entry.image_content = get_comic_image(content) entries.append(entry) return (feed, entries) def get_comic_image(html): soup = BeautifulSoup(html) img = soup.find('img') if img: img.attrs = {key: value for key, value in img.attrs.iteritems() if key in VALID_IMAGE_ATTRIBUTES} return unicode(img) else: return None def get_first_or_default(d, sequence, default=None): for element in sequence: if element in d: return d[element] return default
#!/usr/bin/python """ Plot parameter 1D marginal constraints as a fn. of FG subtraction efficiency. """ import numpy as np import pylab as P from rfwrapper import rf nsurveys = 2 #5 nbins = 14 name = ['SD', 'Interferom.'] #name = ['A', 'B', 'C', 'D', 'E'] cols = ['b', 'g', 'c', 'r', 'y'] P.subplot(111) for j in range(nsurveys): for i in range(1): #range(nbins): # FIXME: Just z=0.1 #if j == 0: continue fname_smooth = "tmp/pk_surveys_smooth_powspec_"+str(j)+"_"+str(i)+".npy" fname_constr = "tmp/pk_surveys_constraints_"+str(j)+"_"+str(i)+".npy" k, pk, fbao, pksmooth = np.load(fname_smooth).T kc, pkc, pkerr, fbao_c, pkcsmooth = np.load(fname_constr).T pkerr[np.where(np.isinf(pkerr))] = 1e9 #pkerr[np.where(np.isnan(pkerr))] = 1e9 P.plot(kc, pkerr, color=cols[j], label=name[j], marker='.', lw=1.5) print pkerr # FIXME: h^-1 units? #P.plot(k, pk) #yup, ylow = rf.fix_log_plot(pkc, pkerr*pkc) #P.errorbar(kc, pkc, yerr=[ylow, yup], marker='.', ls='none', color='r') P.xscale('log') P.yscale('log') P.xlim((4e-3, 2.)) #P.ylim((3e-3, 1e1)) # Display options P.legend(loc='upper left', prop={'size':'x-large'}, ncol=2) P.ylabel("$\Delta P(k) / P(k) \; (z=0)$", fontdict={'fontsize':'22'}) P.xlabel("$k \,[Mpc^{-1}]$", fontdict={'fontsize':'20'}) fontsize = 18. for tick in P.gca().yaxis.get_major_ticks(): tick.label1.set_fontsize(fontsize) for tick in P.gca().xaxis.get_major_ticks(): tick.label1.set_fontsize(fontsize) P.tight_layout() P.show()
# import unittest # from main import randomly_distribute # class TestRandomlyDistribute(unittest.TestCase): # def test_random_distribute(self): # tokens = 10 # for i in range(10): # groups = 5 + i # result = randomly_distribute(tokens, groups) # self.assertEqual(sum(result), tokens) # self.assertEqual(len(result), groups) # if __name__ == '__main__': # unittest.main()
import numpy as np import cv2 import argparse import sys import time from calibration_store import load_stereo_coefficients def depth_map(imgL, imgR): """ Depth map calculation. Works with SGBM and WLS. Need rectified images, returns depth map ( left to right disparity ) """ # SGBM Parameters ----------------- window_size = 3 # wsize default 3; 5; 7 for SGBM reduced size image; 15 for SGBM full size image (1300px and above); 5 Works nicely left_matcher = cv2.StereoSGBM_create( minDisparity=-1, numDisparities=12*16, # max_disp has to be dividable by 16 f. E. HH 192, 256 blockSize=window_size, P1=8 * 3 * window_size, # wsize default 3; 5; 7 for SGBM reduced size image; 15 for SGBM full size image (1300px and above); 5 Works nicely P2=32 * 3 * window_size, disp12MaxDiff=12, uniquenessRatio=10, speckleWindowSize=50, speckleRange=32, preFilterCap=63, mode=cv2.STEREO_SGBM_MODE_SGBM_3WAY ) right_matcher = cv2.ximgproc.createRightMatcher(left_matcher) # FILTER Parameters lmbda = 80000 sigma = 1.3 visual_multiplier = 6 #6 wls_filter = cv2.ximgproc.createDisparityWLSFilter(matcher_left=left_matcher) wls_filter.setLambda(lmbda) wls_filter.setSigmaColor(sigma) displ = left_matcher.compute(imgL, imgR) # .astype(np.float32)/16 dispr = right_matcher.compute(imgR, imgL) # .astype(np.float32)/16 displ = np.int16(displ) dispr = np.int16(dispr) filteredImg = wls_filter.filter(displ, imgL, None, dispr) # important to put "imgL" here!!! filteredImg = cv2.normalize(src=filteredImg, dst=filteredImg, beta=0, alpha=255, norm_type=cv2.NORM_MINMAX); filteredImg = np.uint8(filteredImg) #filteredImg = cv2.applyColorMap(filteredImg, cv2.COLORMAP_AUTUMN) return filteredImg def stereo_depth(calibration_file, left_source, right_source, is_real_time, save_path): K1, D1, K2, D2, R, T, E, F, R1, R2, P1, P2, Q = load_stereo_coefficients(calibration_file) # Get cams params leftFrame = cv2.imread(left_source,1) leftFrame = cv2.rotate(leftFrame, cv2.ROTATE_90_COUNTERCLOCKWISE) leftFrame = cv2.resize(leftFrame, (1824,1368)) #left_resized = cv2.resize(leftFrame, (0,0), fx=.3, fy=.3) #cv2.imshow('left(R)', original_resized) rightFrame = cv2.imread(right_source,1) rightFrame = cv2.rotate(rightFrame, cv2.ROTATE_90_COUNTERCLOCKWISE) rightFrame = cv2.resize(rightFrame, (1824,1368)) #right_resized = cv2.resize(rightFrame, (0,0), fx=.3, fy=.3) #cv2.imshow('right(R)', original_resized) height, width, channel = leftFrame.shape # We will use the shape for remap # Undistortion and Rectification part! leftMapX, leftMapY = cv2.initUndistortRectifyMap(K1, D1, R1, P1, (width, height), cv2.CV_32FC1) left_rectified = cv2.remap(leftFrame, leftMapX, leftMapY, cv2.INTER_LINEAR, cv2.BORDER_CONSTANT) left_rect_save = cv2.resize(left_rectified, (640,448)) cv2.imwrite(save_path+"/left_rectified.jpg",left_rect_save) #original_resized = cv2.resize(left_rectified, (0,0), fx=.3, fy=.3) #cv2.imshow('retleft(R)', original_resized) rightMapX, rightMapY = cv2.initUndistortRectifyMap(K2, D2, R2, P2, (width, height), cv2.CV_32FC1) right_rectified = cv2.remap(rightFrame, rightMapX, rightMapY, cv2.INTER_LINEAR, cv2.BORDER_CONSTANT) right_rect_save = cv2.resize(right_rectified, (640,448)) cv2.imwrite(save_path+"/right_rectified.jpg",right_rect_save) #original_resized = cv2.resize(right_rectified, (0,0), fx=.3, fy=.3) #cv2.imshow('retright(R)', original_resized) # We need grayscale for disparity map. gray_left = cv2.cvtColor(left_rectified, cv2.COLOR_BGR2GRAY) gray_right = cv2.cvtColor(right_rectified, cv2.COLOR_BGR2GRAY) disparity_image = depth_map(gray_left, gray_right) # Get the disparity map cv2.imwrite(save_path+"/depth.jpg", disparity_image) return 1 # Show the images #original_resized = cv2.resize(leftFrame, (0,0), fx=.3, fy=.3) #cv2.imshow('left(R)', original_resized) #original_resized = cv2.resize(rightFrame, (0,0), fx=.3, fy=.3) #cv2.imshow('right(R)', original_resized) #original_resized = cv2.resize(disparity_image, (0,0), fx=.2, fy=.2) #cv2.imshow('Disparity', original_resized) # Release the sources. #cv2.destroyAllWindows()
def for_FIVE(): """printing numbr 'FIVE' using for loop""" for row in range(5): for col in range(4): if col==0 and row!=3 or col==3 and row!=1 or row==0 or row==2 or row==4: print("*",end=" ") else: print(" ",end=" ") print() def while_FIVE(): """printing number 'FIVE' using while loop""" i=0 while i<5: j=0 while j<4: if i==0 or i==2 or i==4 or j==3 and i in(0,2,3,4)or j==0 and i==1: print("*",end=" ") else: print(" ",end=" ") j+=1 i+=1 print()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Written by Lucas Sinclair and Paul Rougieux. JRC biomass Project. Unit D1 Bioeconomy. """ # Third party modules # # First party modules # # Internal modules # from cbmcfs3_runner.graphs.inventory import InventoryAtStart, InventoryAtEnd from cbmcfs3_runner.graphs.harvest import HarvestExpProvVol, HarvestExpProvArea # Constants # __all__ = [ 'InventoryAtStart', 'InventoryAtEnd', 'HarvestExpProvVol', 'HarvestExpProvArea' ]
from django.conf import settings from django.utils.translation import ugettext_lazy as _ from badges.utils import MetaBadge from studio.helpers.mixins import BadgeMixin from ..figures.models import Model3D class ModelBadgeMixin: model = Model3D def get_user(self, instance): return instance.designer class StarBadge(BadgeMixin, ModelBadgeMixin, MetaBadge): id = 'star' title = _('Star') description = _('Award for %(val)s views and more') % {'val': settings.MINIMUM_VIEWS_FOR_STAR_BADGE} level = settings.BADGE_LEVEL.BADGE_STAR.value def check_view_counter(self, instance): return instance.view_counter >= settings.MINIMUM_VIEWS_FOR_STAR_BADGE class CollectorBadge(BadgeMixin, ModelBadgeMixin, MetaBadge): id = 'collector' title = _('Collector') description = _('Award for %(val)s models or more') % {'val': settings.MINIMUM_UPLOAD_FOR_COLLECTOR_BADGE} level = settings.BADGE_LEVEL.BADGE_COLLECTOR.value def check_model_counter(self, instance): return self.model.objects.filter( designer=instance.designer ).count() >= settings.MINIMUM_UPLOAD_FOR_COLLECTOR_BADGE def register_badges(): for klass in (CollectorBadge, StarBadge): klass()
from flask import Blueprint bp = Blueprint('routes', __name__) from . import index_view, auth_user, cuentas_views, librodiario_view
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Created by techno at 27/05/19 #Feature: #Enter feature name here # Enter feature description here #Scenario: # Enter scenario name here # Enter steps here import numpy as np my_array = np.array([1,2,3,4]) my_2d_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) my_3d_array = np.array([ [[ 1, 2, 3, 4], [ 5, 6, 7, 8]], [[ 1, 2, 3, 4], [ 9, 10, 11, 12]]]) # Select the element at the 1st index print(my_array[1]) # Select the element at row 1 column 2 print(my_2d_array[1][2]) # Select the element at row 1, column 2 and for i in range(4): print(my_3d_array[1,1,i]) #y = np.ones([4,4]) #print(y) # Select items at index 0 and 1 print(my_array[0:2]) # Select items at row 0 and 1, column 1 print(my_2d_array[0:2,1]) # Select items at row 1 # This is the same as saying `my_3d_array[1,:,:] print(my_3d_array[0,...]) """ a[start:end] # items start through the end (but the end is not included!) a[start:] # items start through the rest of the array a[:end] # items from the beginning through the end (but the end is not included!) """ print() # Try out a simple example print(my_array[my_array<2]) # Specify a condition bigger_than_3 = (my_3d_array >= 3) # Use the condition to index our 3d array print(my_3d_array[bigger_than_3]) print(" first print") # Select elements at (1,0), (0,1), (1,2) and (0,0) print(my_2d_array[[1, 0, 1, 0],[0, 1, 2, 0]]) print("second print") # Select a subset of the rows and columns print(my_2d_array[[1, 0, 1, 0]][:,[0,1,2,0]])
from bype import Bype class MyServer(object): def __init__(self, host, port=9090): self.host = host self.port = port self.isrunning = False def start(self): self.isrunning = True print 'server started at %s:%d' % (self.host, self.port) def _handle_isprime(self, context): number = context['number'] isprime = True for i in range(2, number / 2 + 1): if (number % i) == 0: isprime = False break return 200, {'isprime': isprime} def request(self, url, context=None): assert self.isrunning context = context or dict() status = 404 response = { 'code': status, 'error': 'Page not found' } if url == '/isprime': status, response = self._handle_isprime(context) return status, response class MyWorkflow(Bype): def __init__(self, docstring=None): self.server = None self.status = None self.response = {} def kick_off_server(self, host, port=9090): self.server = MyServer(host, port=port) self.server.start() def make_request(self, url, context=None): print 'requesting %s...' % url self.status, self.response = self.server.request(url, context=context) print 'got response', self.status, self.response def await_response(self, status, response=None): print 'assertion', status, response, 'against', self.status, self.response response = response or dict() assert self.status == status for key in response: assert response[key] == self.response[key] def test_simple(): MyWorkflow(''' Simple request-response workflow ''' ).kick_off_server( 'localhost', port=9090 ).make_request( '/isprime', { 'number': 13 } ).await_response( 200, { 'isprime': True } )
from flask import Flask, render_template app = Flask(__name__) @app.route('/api/') def index(): return "Hello World" if __name__ == '__main__': app.run(debug=True)
from output.models.ms_data.regex.re_i10_xsd.re_i10 import ( Regex, Doc, ) __all__ = [ "Regex", "Doc", ]
import os, sys os.chdir("G:\\My Drive\\Academic\\Research\\Neural Heap") import tensorflow as tf class TFGraphUtils(object): def _init__( self): pass def set_args( self, config): self.config = config def initialize_weights_cpu( self, name, shape, standard_deviation=0.01, decay_factor=None, collection=None): with tf.device("/cpu:0"): weights = tf.get_variable( name, shape, initializer=tf.truncated_normal_initializer( stddev=standard_deviation, dtype=tf.float32), dtype=tf.float32) if decay_factor is not None and collection is not None: weight_decay = tf.multiply( tf.nn.l2_loss(weights), decay_factor, name=(name + self.config.EXTENSION_LOSS)) tf.add_to_collection(collection, weight_decay) return weights def initialize_biases_cpu( self, name, shape): with tf.device("/cpu:0"): biases = tf.get_variable( name, shape, initializer=tf.constant_initializer(1.0), dtype=tf.float32) return biases def l2_loss( self, prediction, labels, collection): l2_norm = tf.nn.l2_loss( labels - prediction) tf.add_to_collection(collection, l2_norm) return l2_norm def cross_entropy( self, prediction, labels, collection): entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2( labels=labels, logits=prediction)) tf.add_to_collection(collection, entropy) return entropy def minimize( self, loss, parameters): learning_rate = tf.train.exponential_decay( self.config.INITIAL_LEARNING_RATE, tf.get_collection(self.config.GLOBAL_STEP_OP)[0], self.config.DECAY_STEPS, self.config.DECAY_FACTOR, staircase=True) optimizer = tf.train.AdamOptimizer(learning_rate) gradient = optimizer.minimize( loss, var_list=parameters) return gradient def argmax_state_tuple( self, state_buffer, best_q_enumerated): state_batch = [] for z in range(self.config.LSTM_DEPTH): cell_state = tf.stack([ state_buffer[a][z].c for a in range(self.config.OP_SIZE) ], axis=1) cell_state = tf.gather_nd( cell_state, best_q_enumerated) hidden_state = tf.stack([ state_buffer[a][z].h for a in range(self.config.OP_SIZE) ], axis=1) hidden_state = tf.gather_nd( hidden_state, best_q_enumerated) lstm_tuple = tf.contrib.rnn.LSTMStateTuple( cell_state, hidden_state) state_batch += [lstm_tuple] return tuple(state_batch) def expand_hidden_state( self, actions_batch, x_inputs, lstm_forward, state_batch, q_function_w, q_function_b): hidden_buffer = [] state_buffer = [] q_buffer = [] for a in actions_batch: a_inputs = tf.concat([ x_inputs, a], axis=1) q_hidden_batch, q_state_batch = lstm_forward.call( a_inputs, state_batch) hidden_buffer += [q_hidden_batch] state_buffer += [q_state_batch] q_buffer += [tf.add(tf.tensordot( q_hidden_batch, q_function_w, 1), q_function_b)] best_q = tf.reduce_max( tf.stack(q_buffer, axis=1), axis=1) best_q_indices = tf.argmax( tf.stack(q_buffer, axis=1), axis=1, output_type=tf.int32) best_q_enumerated = tf.stack([ tf.range(self.config.BATCH_SIZE, dtype=tf.int32), best_q_indices], axis=1) return (hidden_buffer, state_buffer, best_q, best_q_enumerated, best_q_indices) def prepare_inputs_actions( self, x_batch): inputs_batch = [ tf.reshape(tf.slice(x_batch, [0, i, 0], [ self.config.BATCH_SIZE, 1, self.config.DATASET_RANGE]), [self.config.BATCH_SIZE, self.config.DATASET_RANGE]) for i in range(self.config.DATASET_COLUMNS * 2)] actions_batch = [ tf.tile( tf.reshape( tf.one_hot(i, self.config.OP_SIZE), [1, self.config.OP_SIZE]), [self.config.BATCH_SIZE, 1]) for i in range(self.config.OP_SIZE)] return inputs_batch, actions_batch
""" Subsample from CS6 GT only those images that are used in the Dets or HP JSON. srun --mem 10000 python tools/face/mod_json_gt_det.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import sys sys.path.append('./tools') import numpy as np import os, cv2 import argparse import os.path as osp import time import skvideo.io import json import csv from six.moves import xrange from PIL import Image from tqdm import tqdm GT_JSON_FILE = 'data/CS6_annot/cs6-train-easy-gt.json' HP_JSON_FILE = 'data/CS6_annot/cs6-train-easy-hp.json' # OUT_DIR = '/mnt/nfs/work1/elm/arunirc/Data/CS6_annots' OUT_DIR = 'Outputs/modified_annots/' DEBUG = False def parse_args(): parser = argparse.ArgumentParser(description='Modifying CS6 ground truth data') parser.add_argument( '--output_dir', help='directory for saving outputs', default=OUT_DIR, type=str ) parser.add_argument( '--gt_json_file', default=GT_JSON_FILE ) parser.add_argument( '--hp_json_file', default=HP_JSON_FILE ) parser.add_argument( '--imdir', help="root directory for loading dataset images", default='data/CS6_annot', type=str) return parser.parse_args() _GREEN = (18, 127, 15) color_dict = {'red': (0,0,225), 'green': (0,255,0), 'yellow': (0,255,255), 'blue': (255,0,0), '_GREEN':(18, 127, 15), '_GRAY': (218, 227, 218)} # ----------------------------------------------------------------------------------- def draw_detection_list(im, dets): # ----------------------------------------------------------------------------------- """ Draw bounding boxes on a copy of image and return it. [x0 y0 w h conf_score] """ im_det = im.copy() if dets.ndim == 1: dets = dets[np.newaxis,:] # handle single detection case # format into [xmin, ymin, xmax, ymax] dets[:, 2] = dets[:, 2] + dets[:, 0] dets[:, 3] = dets[:, 3] + dets[:, 1] for i, det in enumerate(dets): bbox = dets[i, :4] x0, y0, x1, y1 = [int(x) for x in bbox] line_color = color_dict['yellow'] cv2.rectangle(im_det, (x0, y0), (x1, y1), line_color, thickness=2) return im_det if __name__ == '__main__': args = parse_args() if not osp.exists(args.output_dir): os.makedirs(args.output_dir, exist_ok=True) # Load gt JSON with open(args.gt_json_file) as f: ann_dict = json.load(f) # Load HP JSON with open(args.hp_json_file) as f: hp_ann_dict = json.load(f) # Keep gt annots only for images in HP annots hp_images = set([ x['file_name'] for x in hp_ann_dict['images'] ]) keep_images = [x for x in ann_dict['images'] if x['file_name'] in hp_images] keep_image_ids = set([x['id'] for x in keep_images]) keep_annots = [x for x in ann_dict['annotations'] if x['image_id'] in keep_image_ids] # replace the images and annotations ann_dict['images'] = keep_images ann_dict['annotations'] = keep_annots out_file = osp.join(args.output_dir, osp.splitext(osp.basename(args.gt_json_file))[0]) + '-sub.json' with open(out_file, 'w', encoding='utf8') as outfile: outfile.write(json.dumps(ann_dict))
#!/usr/bin/python #given a smarts rxn file (backwards), a core scaffold smarts file (with name containing connecting atoms) # an sdf file with the results of clustering scaffolds and an input sdf file and an #output prefix, output the extracted reactant conformations aligned to their scaffold import sys,gzip,argparse from rdkit.Chem import AllChem def subMol(mol, match): #not sure why this functionality isn't implemented natively #but get the interconnected bonds for the match atoms = set(match) bonds = set() for a in atoms: atom = mol.GetAtomWithIdx(a) for b in atom.GetBonds(): if b.GetOtherAtomIdx(a) in atoms: bonds.add(b.GetIdx()) return AllChem.PathToSubmol(mol,list(bonds)) #return index of closest scaffold in scaffold to mol def closestScaffold(scaffolds, pattern, core, mol): ret = -1 match = mol.GetSubstructMatch(pattern) if match: sub = subMol(mol, match) cmatch = sub.GetSubstructMatch(core) if cmatch: min = float('inf') for (i,(s,smatch)) in enumerate(scaffolds): r = AllChem.GetBestRMS(s, sub, maps=[zip(cmatch,smatch)]) if r < min: min = r ret = i mmatch = mol.GetSubstructMatch(core) AllChem.GetBestRMS(s,mol,maps=[zip(mmatch,smatch)]) return ret #MAIN parser = argparse.ArgumentParser() parser.add_argument('-r','--rxn', help="Reaction file") parser.add_argument('-c','--core',help="Core scaffold with connecting atoms in name") parser.add_argument('-i','--input',help="Input conformers") parser.add_argument('-s','--scaffolds',help="Scaffold conformers") parser.add_argument('-o','--output',help="Output prefix") args = parser.parse_args() rxnf = open(args.rxn) rxnsm = rxnf.readline().split()[0] #ignore any name rxn = AllChem.ReactionFromSmarts(rxnsm) rxn.Initialize() if rxn.GetNumReactantTemplates() != 1: print "Need backwards reaction" sys.exit(-1) coref = open(args.core) corel = coref.readline() coreconnects = corel.split()[1:] core = AllChem.MolFromSmarts(corel.split()[0]) inscaffolds = AllChem.SDMolSupplier(args.scaffolds,False) if inscaffolds is None: print "Could not open ",args.scaffolds sys.exit(-1) inmols = AllChem.SDMolSupplier(args.input) if inmols is None: print "Could not open ",args.input sys.exit(-1) smart = AllChem.MolToSmarts(rxn.GetReactantTemplate(0)) pattern = AllChem.MolFromSmarts(smart) #read in scaffolds scaffolds = list() for mol in inscaffolds: #compute match of core cmatch = mol.GetSubstructMatch(core) scaffolds.append((mol,cmatch)) #setup output file, one for each reactant product outputs = list() for i in xrange(rxn.GetNumProductTemplates()): outputs.append(list()) for j in xrange(len(scaffolds)): sdwriter = AllChem.SDWriter("%s_%d_%d.sdf" % (args.output,i,j)) outputs[i].append(sdwriter) for mol in inmols: #for each mol, decompose it into its reactants mol = AllChem.AddHs(mol) #figure out which scaffold conformation is closest c = closestScaffold(scaffolds, pattern, core, mol) prods = rxn.RunReactants([mol]) if c >= 0: for p in prods: #there may be multiple possible products for (i,react) in enumerate(p): react = AllChem.RemoveHs(react) react.SetProp('_Name',AllChem.MolToSmiles(react)) outputs[i][c].write(react)
""" You're given a string s consisting solely of "(" and ")". Return whether the parentheses are balanced. Constraints n ≤ 100,000 where n is the length of s. https://binarysearch.com/problems/Balanced-Brackets """ from collections import deque class Solution: def solve(self, s): left = 0 for c in s: if c == ")": if left == 0: return False else: left -= 1 else: left += 1 return left == 0 def solve2(self, s): slen = len(s) if slen == 0: return True stack = deque([]) for c in s: if c == ")" and (not stack or stack.pop() != "("): return False elif c == "(": stack.append(c) return len(stack) == 0
# Adam Shaat # program that outputs whether it is a weekday # or a weekend import datetime now = datetime.datetime.now() day = now.weekday() weekend = (5,6) dayname ={0:'Monday', 1:'Tuesday', 2:'Wednesday', 3:'Thursday', 4:'Friday', 5:'Saturday', 6:'Sunday'} # assigning to print the weekday print(dayname[day]) if day in weekend: print ("It is the weekend, yay!") else: print("unfortunately today is a weekday.")
r""" Contains two classes used for sweep functionalities. NOTE : Both of these classes are not intended to be directly instanciated by the user. :class:`Simulation <quanguru.classes.Simulation.Simulation>` objects **has** ``Sweep/s`` as their attributes, and ``_sweep/s`` are intended to be created by calling the relevant methods over ``Simulation.Sweep``. .. currentmodule:: quanguru.classes.QSweep .. autosummary:: _sweep Sweep .. |c| unicode:: U+2705 .. |x| unicode:: U+274C .. |w| unicode:: U+2000 ======================= ================== ============== ================ =============== **Function Name** **Docstrings** **Examples** **Unit Tests** **Tutorials** ======================= ================== ============== ================ =============== `_sweep` |w| |w| |w| |c| |w| |w| |x| |w| |w| |x| |w| |w| |x| `Sweep` |w| |w| |w| |c| |w| |w| |x| |w| |w| |x| |w| |w| |x| ======================= ================== ============== ================ =============== """ from functools import reduce from numpy import arange, logspace from .base import qBase, _recurseIfList from .baseClasses import updateBase __all__ = [ 'Sweep' ] class _sweep(updateBase): # pylint: disable=too-many-instance-attributes r""" Implements methods and attributes to sweep the value of an attribute for some objects for a list of values. The default sweep :meth:`~_defSweep` sweeps the value for a given attribute (a string stored in :py:attr:`~_sweep.key`) of objects in ``subSys`` dictionary. The list of values (stored in :py:attr:`_sweepList`) to be swept are set either directly by giving a ``list`` or the ``sweepMin-sweepMax-sweepStep`` with ``logSweep``. Default sweep function can be replaced with any custom method by re-assigning the :py:attr:`~sweepFunction` to the function reference. The default sweep method requires the index of the value from the list of values to set the next value, this index is provided by the modularSweep and useful for multi-parameter sweeps. It keeps a value fixed by re-assigning it using the same index, and the :class:`~paramBoundBase` and other relevant classes uses the custom setattr methods (see :meth:`~setAttr` and :meth:`~setAttrParam`) to make sure that ``paramUpdated`` boolean is not set to ``True`` for the same value. This class implements a single sweep, and multi parameter sweep is achieved by the :class:`~Sweep` class. """ #: (**class attribute**) class label used in default naming label = '_sweep' #: (**class attribute**) number of instances created internally by the library _internalInstances: int = 0 #: (**class attribute**) number of instances created explicitly by the user _externalInstances: int = 0 #: (**class attribute**) number of total instances = _internalInstances + _externalInstances _instances: int = 0 __slots__ = ['sweepMax', 'sweepMin', 'sweepStep', '_sweepList', 'logSweep', 'multiParam', '_sweepIndex'] #@sweepInitError def __init__(self, **kwargs): super().__init__() #: protected attribute pointing to a sweep function, by default :meth:`~_defSweep`. This attribute get&set #: using the sweepFunction property to replace default with a customized sweep method. self._updateBase__function = self._defSweep # pylint: disable=assigning-non-slot #: maximum value for the swept parameter, used with other attributes to create the sweepList self.sweepMax = None #: minimum value for the swept parameter, used with other attributes to create the sweepList self.sweepMin = None #: corresponds to the step size in a linearly spaced sweepList, or number of steps in logarithmic case, #: used with other attributes to create the sweepList self.sweepStep = None #: protected attribute to store a list of values for the swept parameter. Can be given a full list or #: be created using sweepMin-sweepMax-sweepStep values. self._sweepList = None #: boolean to create either linearly or logarithmically spaced list values (from sweepMin-sweepMax-sweepStep). self.logSweep = False #: boolean to determine, if two different sweeps are swept simultaneously (same length of list and pair of #: values at the same index are swept) or a multi-parameter sweep (fix one sweep the other and repeat). self.multiParam = False #: stores the index of the value (from the _sweepList) currently being assigned by the sweep function. Used by #: the default methods but also useful for custom methods. It is calculated by the modular arithmetic in #: modularSweep and passed to here by :class:`~Sweep` object containing self in its subSys. It starts from -1 #: and the correspoding property returns _sweepIndex + 1, while the :meth:`~runSweep` sets it to ind+1 for a given #: ind from modularSweep. This whole ordeal is due to make sure that python list indexing and modular arithmetic #: properly agrees for the sweep functionality. I feel it can be improved but will leave as it is for now. self._sweepIndex = -1 self._named__setKwargs(**kwargs) # pylint: disable=no-member @property def index(self): r""" returns ``self._sweepIndex + 1``. reason for +1 is explained in :py:attr:`~_sweepIndex`. There is no setter, the value of _sweepIndex is updated by the :meth:`~runSweep` and is an internal process. """ return self._sweepIndex + 1 @property def sweepFunction(self): r""" gets and set :py:attr:`~_updateBase__function`, which should point to a Callable. """ return self._updateBase__function # pylint: disable=no-member @sweepFunction.setter def sweepFunction(self, func): self._updateBase__function = func # pylint: disable=assigning-non-slot @property def sweepKey(self): r""" gets and sets :py:attr:`~_updateBase__key`, which should be string. """ return self._updateBase__key # pylint: disable=no-member @sweepKey.setter def sweepKey(self, keyStr): self._updateBase__key = keyStr # pylint: disable=assigning-non-slot @property def sweepList(self): r""" gets and sets :py:attr:`~_sweepList`. Setter requires a list input, if it is not set, getter tries creating the list (and setting :py:attr:`~_sweepList`) using sweepMin-sweepMax-sweepStep attributes. """ if self._sweepList is None: try: if self.logSweep is False: self._sweepList = arange(self.sweepMin, self.sweepMax + self.sweepStep, # pylint: disable=no-member self.sweepStep) # pylint: disable=no-member elif self.logSweep is True: self._sweepList = logspace(self.sweepMin, self.sweepMax, num=self.sweepStep, base=10.0) # pylint: disable=no-member except: #pylint:disable=bare-except # noqa: E722 pass return self._sweepList @sweepList.setter def sweepList(self, sList): self._sweepList = sList @staticmethod def _defSweep(self): # pylint: disable=bad-staticmethod-argument r""" This is the default sweep function, and it just calls the :meth:`_runUpdate <quanguru.classes.updateBase.updateBase._runUpdate>` by feeding it the value from the ``sweepList`` at the position ``ind``. :meth:`_runUpdate <quanguru.classes.updateBase.updateBase._runUpdate>` function just sets the attribute (for the given key) of every ``subSys`` to a given value (``val``). The modularSweep methods uses multiplication of length of ``sweepList/s`` (stored in __inds attribute of :class:`Sweep` instances) as a loop range, and the current loop counter is used by the :meth:`~_indicesForSweep` to calculate which indices of multi _sweep is currently needed. Parameters ---------- ind : int Index of the value from ``sweepList`` """ val = self.sweepList[self.index] self._runUpdate(val) def runSweep(self, ind): r""" Wraps the ``_updateBase__function``, so that this will be the function that is always called to run the sweeps. This is not essential and could be removed, but it kind of creates a duck-typing with ``Sweep`` class, when we might want to use a nested sweep. """ self._sweepIndex = ind-1 # pylint: disable=assigning-non-slot self._updateBase__function(self) # pylint: disable=no-member class Sweep(qBase): r""" A container class for :class:`_sweep` objects and relevant methods for creating/removing and carrying multi-parameter sweeps. It stores :class:`_sweep` objects in its ``subSys`` dictionary, and it has two additional private attributes to store sweep lengths and their multiplications, which are used in modularSweep and by :meth:`~_indicesForSweep` to carry multi parameter sweeps. Instances of this class are used as attributes of :class:`Simulation <quanguru.classes.Simulation.Simulation>` objects, and those are intended to be used for ``_sweep`` creations. """ #: Used in default naming of objects. See :attr:`label <quanguru.classes.QUni.qUniversal.label>`. label = 'Sweep' #: (**class attribute**) number of instances created internally by the library _internalInstances: int = 0 #: (**class attribute**) number of instances created explicitly by the user _externalInstances: int = 0 #: (**class attribute**) number of total instances = _internalInstances + _externalInstances _instances: int = 0 __slots__ = ['__inds', '__indMultip'] # TODO init errors def __init__(self, **kwargs): super().__init__() self.__inds = [] r""" a list of ``sweepList`` length/s of multi-parameter ``_sweep`` object/s in ``subSys`` dictionary, meaning the length for simultaneously swept ``_sweep`` objects are not repeated. the values are appended to the list, if it is the first ``sweep`` to be included into ``subSys`` or ``multiParam is True``. """ self.__indMultip = 1 r""" the multiplication of all the indices in ``inds``. This value is used as the loop range by modularSweep. """ self._named__setKwargs(**kwargs) # pylint: disable=no-member @property def inds(self): r""" ``returns _Sweep__inds`` and there is no setter """ return self._Sweep__inds @property def indMultip(self): r""" ``returns _Sweep__indMultip``, and there is no setter NOTE : The reason this property returns a pre-assingned value rather than calculating from the ``inds`` is to avoid calculating it over and over again, which could be avoided by checking if ``_Sweep__indMultip is None``, but that might create other issues, such as re-running the same simulation after a change in ``sweepList`` length/s. It still can be improved, and it is possible to avoid such issues and get rid of :meth:`prepare`, which is called in ``run`` methods of ``Simulations``, by some modifications in these properties. """ return self._Sweep__indMultip @property def sweeps(self): r""" The sweeps property wraps ``subSys`` dictionary to create new terminology, it works exactly as :meth:`subSys <quanguru.classes.base.qBase.subSys>`. """ return self._qBase__subSys # pylint: disable=no-member @sweeps.setter def sweeps(self, sysDict): super().addSubSys(sysDict) @_recurseIfList def removeSweep(self, sys): r""" Removes a ``_sweep`` it self, or all the ``_sweep`` objects that contain a particular ``sys`` in it. Since, it uses :meth:`removeSubSys <quanguru.classes.base.qBase.removeSubSys>`, it works exactly the same, meaning names/aliases/objects/listOfObjects can be used to remove. If the argument ``sys`` is an :class:`_sweep` object, this method calls :meth:`removeSubSys <quanguru.classes.base.qBase.removeSubSys>` (since ``_sweep`` objects are stored in ``subSys`` dictionary of ``Sweep`` objects). Else, it calls the :meth:`removeSubSys <quanguru.classes.base.qBase.removeSubSys>` on every ``_sweep`` in its ``subSys`` dictionary (since ``systems`` are stored in ``subSys`` dictionary of ``_sweep`` objects). """ if isinstance(sys, _sweep): super().removeSubSys(sys, _exclude=[]) else: sweeps = list(self.subSys.values()) for sweep in sweeps: sweep.removeSubSys(sys, _exclude=[]) if len(sweep.subSys) == 0: super().removeSubSys(sweep, _exclude=[]) def createSweep(self, system=None, sweepKey=None, **kwargs): r""" Creates a instance of ``_sweep`` and assing its ``system`` and ``sweepKey`` to given system and sweepKey arguments of this method. Keyworded arguments are used to set the other attributes of the newly created ``_sweep`` object. Parameters ---------- system : Any Since ``system`` property setter of ``_sweep`` behaves exactly as :meth:`subSys <quanguru.classes.base.qBase.subSys>` setter, this can be various things, from a single system to name/alias of the system, or from a class to a list/tuple contaning any combination of these. sweepKey : str Name of the attribute of system/s that will be swept :returns: The new ``_sweep`` instance. """ if system is None: system = self.superSys.superSys if system is None: raise ValueError('?') newSweep = _sweep(superSys=self, subSys=system, sweepKey=sweepKey, **kwargs) if system is not self.auxObj: if not isinstance(sweepKey, str): raise ValueError("key") # newSweep._aux = True #pylint: disable=protected-access if hasattr(list(newSweep.subSys.values())[0], sweepKey): for sys in newSweep.subSys.values(): if not hasattr(sys, sweepKey): raise AttributeError("?") else: newSweep._aux = True #pylint: disable=protected-access # ignores when object is given with a key it does not have #elif not hasattr(list(newSweep.subSys.values())[0], sweepKey): # newSweep._aux = True #pylint: disable=protected-access super().addSubSys(newSweep) return newSweep def prepare(self): r""" This method is called inside ``run`` method of ``Simulation`` object/s to update ``inds`` and ``indMultip`` attributes/properties. The reason for this a bit argued in :meth:`indMultip`, but it is basically to ensure that any changes to ``sweepList/s`` or ``multiParam/s`` are accurately used/reflected (especially on re-runs). """ if len(self.subSys) > 0: self._Sweep__inds = [] # pylint: disable=assigning-non-slot for indx, sweep in enumerate(self.subSys.values()): if ((sweep.multiParam is True) or (indx == 0)): self._Sweep__inds.insert(0, len(sweep.sweepList)) self._Sweep__indMultip = reduce(lambda x, y: x*y, self._Sweep__inds) # pylint: disable=assigning-non-slot def runSweep(self, indList): r""" called in modularSweep to run all the ``_sweep`` objects in a ``Sweep``. indices from a given list ``indList`` are used by the ``runSweep`` method of ``_sweep`` objects, and it switches to a new index, if the ``multiParam is True``. This means that the ``_sweeps`` **should be created in an order** such that ``_sweep`` objects that run simultaneously **have to be** added to ``subSys`` one after the other. Also, for nested Sweeps, the indList should be a properly nested list. """ indx = 0 for sweep in self.sweeps.values(): if sweep.multiParam is True: indx += 1 sweep.runSweep(indList[indx]) # function used in modular sweep @staticmethod def _indicesForSweep(ind, *args): r""" method used in modularSweep to calculate indices for each sweepList from the loop counter ``ìnd`` using the total lengths ``*args``. It is hard to describe the exact calculation in words, but it is trivial to see from the math (TODO) which i will do later. the loop counter can at max be :math:`(\prod_{i = 1}^{len(args)} args[i]) - 1`, and multi-parameter sweeps loops the first sweepList while fixing the others. So, at each inp = args[0] the first list should start from zero, and the second list moves to next item, and this relation goes up in the chain, e.g. at each inp = args[0]*args[1], the index of the third need to be increased, and so on. Therefore, the current index for the first sweepList simply is the reminder of inp with args[0]. """ indices = [] for arg in args: remain = ind%arg ind = (ind-remain)/arg indices.insert(0, int(remain)) return indices
# -*- coding: utf-8 -*- # Pytest test suite import pytest from result import Result, Ok, Err @pytest.mark.parametrize('instance', [ Ok(1), Result.Ok(1), ]) def test_ok_factories(instance): assert instance._value == 1 assert instance.is_ok() is True @pytest.mark.parametrize('instance', [ Err(2), Result.Err(2), ]) def test_err_factories(instance): assert instance._value == 2 assert instance.is_err() is True def test_eq(): assert Ok(1) == Ok(1) assert Err(1) == Err(1) assert Ok(1) != Err(1) assert Ok(1) != Ok(2) assert not (Ok(1) != Ok(1)) assert Ok(1) != "abc" assert Ok("0") != Ok(0) def test_hash(): assert len({Ok(1), Err("2"), Ok(1), Err("2")}) == 2 assert len({Ok(1), Ok(2)}) == 2 assert len({Ok("a"), Err("a")}) == 2 def test_repr(): assert Ok(u"£10") == eval(repr(Ok(u"£10"))) assert Ok("£10") == eval(repr(Ok("£10"))) def test_ok(): res = Ok('haha') assert res.is_ok() is True assert res.is_err() is False assert res.value == 'haha' def test_err(): res = Err(':(') assert res.is_ok() is False assert res.is_err() is True assert res.value == ':(' def test_ok_method(): o = Ok('yay') n = Err('nay') assert o.ok() == 'yay' assert n.ok() is None def test_err_method(): o = Ok('yay') n = Err('nay') assert o.err() is None assert n.err() == 'nay' def test_no_arg_ok(): top_level = Ok() assert top_level.is_ok() is True assert top_level.ok() is True class_method = Result.Ok() assert class_method.is_ok() is True assert class_method.ok() is True def test_no_constructor(): """ Constructor should not be used directly. """ with pytest.raises(RuntimeError): Result(is_ok=True, value='yay')
# Write a function day_name that converts an integer number 0 to 6 into the name of a day. # Assume day 0 is “Sunday”. # Once again, return None if the arguments to the function are not valid. Here are some tests that should pass: # test(day_name(3) == "Wednesday") # test(day_name(6) == "Saturday") # test(day_name(42) == None) import sys weekday = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"] def day_name(d): if 6 >= int(d) >= 0: return weekday[d] else: return def test(did_pass): """ Print the result of a test. """ linenum = sys._getframe(1).f_lineno # Get the caller's line number. if did_pass: msg = "Test at line {0} ok.".format(linenum) else: msg = ("Test at line {0} FAILED.".format(linenum)) print(msg) def test_suite(): """ Run the suite of tests for code in this module (this file). """ test(day_name(3) == "Wednesday") test(day_name(6) == "Saturday") test(day_name(42) == None) test_suite() # Here is the call to run the tests
import sys import random from PyQt5 import QtCore from PyQt5.QtWidgets import QApplication from rx import Observable from rx.subjects import Subject from rx.concurrency import QtScheduler from client.client_window import ClientWindow REFRESH_STOCK_INTERVAL = 100 def random_stock(x): symbol_names = [ ['ABC', 'Abc Manufacturing'], ['DEF', 'Desert Inc.'], ['GHI', 'Ghi Ghi Inc.'], ['A', 'A Plus Consulting'], ['GS', 'Great Security Inc'], ['GO', 'Go Go Consulting'], ] stock = random.choice(symbol_names) return [ stock[0], stock[1], round(random.uniform(21, 22), 2), round(random.uniform(20, 21), 2) ] def order_is_valid(order): if order['symbol'] != '' and order['price'] >= 0.01: return True return False if __name__ == '__main__': app = QApplication(sys.argv) scheduler = QtScheduler(QtCore) stock_prices = Observable.interval(REFRESH_STOCK_INTERVAL, scheduler) \ .map(random_stock) \ .publish() client_window = ClientWindow(stock_prices_stream=stock_prices) client_window.get_orders() \ .filter(order_is_valid) \ .subscribe(lambda x: print(x), lambda x: print('error')) stock_prices.connect() client_window.show() sys.exit(app.exec_())
import matplotlib.pyplot as plt import pandas as pd def print_data(csv_1, csv_2, ax, title): # Uses the first column for the x axes. csv_1.plot(x=csv_1.columns[0], marker='o', xticks=[32,256,512], ax=ax) csv_2.plot(x=csv_2.columns[0], marker='x', xticks=[32,256,512], ax=ax) # Set the title. ax.set_title(title, fontsize=20) ax.set_yscale("log") def main(): """ Print the CPU and GPU execution times obtained from the "lib/examples/op_time_functions.cpp" test (that records the execution time of every function). The file obtained from the test should be placed in the "data/" directory. """ NB_OPERATIONS = 12 * 2 NB_ROWS = 4 NB_COLS = 6 OPERATIONS = ["Linear", "Linear derivative", "Binary Step", "Binary Step derivative", "Sigmoid", "Sigmoid derivative", "Relu", "Relu derivative", "Tanh", "Tanh derivative", "Softmax", "Softmax derivative", "MSE", "MSE derivative", "MAE", "MAE derivative", "MBE", "MBE derivative", "Hinge Loss", "Hinge Loss derivative", "BCE", "BCE derivative", "CE", "CE derivative"] XLABEL = "Size of a side of\nthe squared input matrices" YLABEL = "Execution time (ms)" fig, ax = plt.subplots(nrows=NB_ROWS, ncols=NB_COLS) plt.tight_layout() index_activation = 0 index_loss = int(NB_OPERATIONS / 2) for i in range(0, NB_ROWS): for j in range(0, NB_COLS): index = 0 if j < NB_COLS / 2: index = index_activation index_activation += 1 else: index = index_loss index_loss += 1 data_1 = pd.read_csv("data/" + str(index) + "_functions_gpu.csv", delimiter=';') data_2 = pd.read_csv("data/" + str(index) + "_functions_cpu.csv", delimiter=';') print_data(data_1, data_2, ax[i][j], OPERATIONS[index]) # Set the labels. for i in range(0, NB_ROWS): plt.setp(ax[i, :], xlabel="") plt.setp(ax[-1, :], xlabel=XLABEL) plt.setp(ax[0:, 0], ylabel=YLABEL) plt.setp(ax[0:, int(NB_COLS/2)], ylabel=YLABEL) # Full screen. manager = plt.get_current_fig_manager() manager.full_screen_toggle() # Save into pdf. plt.savefig("op_time_functions", format="pdf", dpi=1200) # Show the graph. plt.show() if __name__ == "__main__": main()
# Use by adding e.g. "command script import ~/uno/scripts/unolldb.py" to ~/.lldbinit import lldb from sets import Set moduleName = __name__ logFile = '/tmp/' + moduleName + '.log' unoPrimitiveTypes = { "Uno.Long": "int64_t", "Uno.Int": "int32_t", "Uno.Short": "int16_t", "Uno.SByte": "int8_t", "Uno.ULong": "uint64_t", "Uno.UInt": "uint32_t", "Uno.UShort": "uint16_t", "Uno.Byte": "uint8_t", "Uno.Bool": "bool", "Uno.Double": "double", "Uno.Float": "float" } def reverseString(s): return s[::-1] def rreplace(str, x, y, max): return reverseString(reverseString(str).replace(x, y, max)) def cppTypeFromUnoTypeName(module, unoTypeName): primitiveTypeName = unoPrimitiveTypes.get(unoTypeName, None) if primitiveTypeName is not None: log("Finding primitive type name " + primitiveTypeName) t = module.FindFirstType(primitiveTypeName) if t.IsValid(): log("Mapped primitive uno type " + unoTypeName + " to " + t.GetName()) return t; numDots = unoTypeName.count('.') log('Trying to get the C++ type for ' + unoTypeName) for i in range(numDots + 1): cppTypeName = 'g::' + rreplace(unoTypeName, '.', '::', numDots - i).replace('.', '__') log(' Looking up C++ type ' + cppTypeName) t = module.FindFirstType(cppTypeName) if t.IsValid(): log(' Success!') return t else: log(' No such C++ type') class FirstChildSynthProvider: def __init__(self, valobj, internal_dict): log('FirstChildSynthProvider ' + valobj.GetTypeName()) self.obj = valobj; while self.obj.GetNumChildren() == 1 and self.obj.GetChildAtIndex(0).GetNumChildren() == 1: self.obj = self.obj.GetChildAtIndex(0) def num_children(self): return self.obj.GetNumChildren() def get_child_index(self,name): return self.obj.GetIndexOfChildWithName(name) def get_child_at_index(self,index): return self.obj.GetChildAtIndex(index) def update(self): return def has_children(self): return True class UObjectSynthProvider: def __init__(self, valobj, internal_dict): log('UObjectSynthProvider ' + valobj.GetTypeName()) if not valobj.TypeIsPointerType(): self.obj = valobj return address = getPtrAddress(valobj) frame = valobj.GetFrame() unoType = callMethodRaw(frame, 'uObject*', address, 'GetType()->FullName') if not unoType.IsValid(): self.obj = valobj return unoTypeName = getCString(unoType) module = frame.GetModule() cppType = cppTypeFromUnoTypeName(module, unoTypeName) if cppType == None or not cppType.IsValid(): self.obj = valobj return cppPointerType = cppType.GetPointerType() log(' The C++ (pointer) type is ' + cppPointerType.GetName()) cppTypeName = cppType.GetName() typeIsStruct = frame.EvaluateExpression(cppTypeName + '_typeof()->Type == uTypeType::uTypeTypeStruct').GetValueAsSigned(0) != 0 typeIsEnum = frame.EvaluateExpression(cppTypeName + '_typeof()->Type == uTypeType::uTypeTypeEnum').GetValueAsSigned(0) != 0 offset = frame.EvaluateExpression('sizeof(uObject)').GetValueAsSigned(0) if typeIsStruct or typeIsEnum else 0 log(' Address is ' + hex(address) + ' offset ' + str(offset) + ' = ' + hex(address + offset)) replacedValobj = frame.EvaluateExpression('(' + cppPointerType.GetName() + ')' + hex(address + offset)).Dereference() log(' replacedValobj ' + str(replacedValobj.IsValid())) self.obj = replacedValobj if replacedValobj.IsValid() else valobj def num_children(self): return self.obj.GetNumChildren() def get_child_index(self,name): return self.obj.GetIndexOfChildWithName(name) def get_child_at_index(self,index): return self.obj.GetChildAtIndex(index) def update(self): return def has_children(self): return True class UArraySynthProvider: def trace(self, message): # For debugging messages uncomment following line # log(message) pass def __init__(self, valobj, internal_dict): self.trace("UArraySynthProvider.__init__ path: \"" + valobj.path + "\" type: \"" + valobj.GetTypeName() + "\"") self.valobj = valobj self.length = None self.unoElementName = None self.cppElementType = None self.ptr = None def num_children(self): self.trace("UArraySynthProvider.num_children") result = self.length self.trace("UArraySynthProvider.num_children exit") return result def get_child_index(self, name): self.trace("UArraySynthProvider.get_child_index") return int(name.lstrip("[").rstrip("]")) def get_child_at_index(self, index): self.trace("UArraySynthProvider.get_child_at_index") self.trace(" unoElementTypeName is " + self.unoElementTypeName) self.trace(" cppElementType is " + self.cppElementType.GetName()) if index >= self.length or index < 0: return None # Pointer to pointer.. result = self.ptr.CreateChildAtOffset("[" + str(index) + "]", self.cppElementType.GetByteSize() * index, self.cppElementType) self.trace("UArraySynthProvider.get_child_at_index completed") return result def update(self): self.update_impl() return True def update_impl(self): self.trace("UArraySynthProvider.update") self.unoElementTypeName = uArrayElementTypeString(self.valobj) self.trace(" update unoElementTypeName is " + self.unoElementTypeName) cppElementType = cppTypeFromUnoTypeName(self.valobj.GetFrame().GetModule(), self.unoElementTypeName) if (not isValueType(self.valobj.GetFrame(), cppElementType)): cppElementType = cppElementType.GetPointerType() self.cppElementType = cppElementType self.trace(" update cppElementType is " + self.cppElementType.GetName()) self.trace(" type for valobj is now " + self.valobj.GetTypeName()) self.length = self.valobj.GetChildMemberWithName('_length').GetValueAsSigned(0) self.trace(" update length is " + str(self.length)) self.ptr = self.valobj.GetChildMemberWithName("_ptr").Cast(self.cppElementType.GetPointerType()) self.trace("UArraySynthProvider.update Element type is " + self.unoElementTypeName) self.trace("UArraySynthProvider.update exit") def has_children(self): self.trace("UArraySynthProvider.has_children") return True def clearLog(): # f = open(logFile, 'w') # f.close() pass def log(str): # f = open(logFile, 'a') # f.write(str + '\n') # f.close() pass def getCString(cstr): # hackety hax return cstr.summary[1:-1] # remove quotes def getUtf16String(ptr, length): log('getUtf16String') if length == 0: return '' data = ptr.GetPointeeData(0, length) bytes = data.ReadRawData(lldb.SBError(), 0, 2 * length) str = bytes.decode('utf-16').encode('utf-8') log('getUtf16String result ' + str) return str def getPtrAddress(value): return value.data.GetAddress(lldb.SBError(), 0) def isStructType(frame, cppType): return frame.EvaluateExpression(cppType.GetName() + '_typeof()->Type == uTypeType::uTypeTypeStruct').GetValueAsSigned(0) != 0 def isEnumType(frame, cppType): return frame.EvaluateExpression(cppType.GetName() + '_typeof()->Type == uTypeType::uTypeTypeEnum').GetValueAsSigned(0) != 0 def isValueType(frame, cppType): # Definition taken from U_IS_VALUE macro in ObjectModel.h of uno typeType = frame.EvaluateExpression(cppType.GetName() + '_typeof()->Type').GetValueAsSigned(0) typeTypeByRefConst = frame.EvaluateExpression("uTypeType::uTypeTypeByRef").GetValueAsSigned(0) return typeType < typeTypeByRefConst def callMethodRaw(frame, typeName, address, methodName): expr = '((' + typeName + ')' + hex(address) + ')->' + methodName log('callMethodRaw ' + expr) return frame.EvaluateExpression(expr) def callMethod(thisValue, methodName): return callMethodRaw(thisValue.frame, thisValue.GetTypeName(), getPtrAddress(thisValue), methodName) def getUStringString(value): log('getUStringString') ptr = value.GetChildMemberWithName('_ptr') length = value.GetChildMemberWithName('_length').GetValueAsSigned(0) str = getUtf16String(ptr, length) return str def isNull(value): if value.TypeIsPointerType(): address = value.GetData().GetAddress(lldb.SBError(), 0) return address == 0 else: return False def uObjectToString(value): log('uObjectToString') if isNull(value): return 'null' ustring = None if value.TypeIsPointerType(): log('Object?') ustring = callMethod(value, 'ToString()') else: x = 'uBoxPtr(%s_typeof(), (void*)%s, nullptr, false)->ToString()' % (value.GetTypeName(), hex(getPtrAddress(value.AddressOf()))) log('Struct? ' + x) ustring = value.frame.EvaluateExpression(x) string = getUStringString(ustring) log('uObjectToString result ' + string) return string def uArrayElementTypeString(value): log('uArrayElementType ' + value.GetTypeName()) elementTypeUString = value.frame.EvaluateExpression( '((uArrayType*)((uArray*)%s)->GetType())->ElementType->ToString()' % hex(getPtrAddress(value))) return getUStringString(elementTypeUString) def uStringSummary(value, *rest): log('- uStringSummary') if isNull(value): return 'null' return '"%s"' % getUStringString(value) def uObjectSummary(value, *rest): log('- uObjectSummary ' + value.GetTypeName()) return uObjectToString(value) def uTypeSummary(value, *rest): log('- uTypeSummary ' + value.GetTypeName()) return uObjectToString(value) def uArraySummary(value, *rest): log(' - uArraySummary') if isNull(value): return 'null' length = callMethod(value, 'Length()').GetValueAsSigned(0) log('Length ' + str(length)) return uArrayElementTypeString(value) + "[" + str(length) + "]" def firstChildSummary(value, *rest): log('- firstChildSummary ' + value.GetTypeName()) log(str(value.GetNumChildren())) while value.GetNumChildren() == 1: value = value.GetChildAtIndex(0) return value.GetSummary() def __lldb_init_module(debugger, dict): clearLog() log('********************************** init module 3') category = debugger.GetDefaultCategory() for type in ['uString', 'uObject', 'uType', 'uArray']: summary = lldb.SBTypeSummary.CreateWithFunctionName(moduleName + '.' + type + 'Summary') isRegex = False debugger.GetDefaultCategory().AddTypeSummary(lldb.SBTypeNameSpecifier(type, isRegex), summary) for type in ['uStrong', 'uSStrong', 'uWeak', 'uSWeak']: summary = lldb.SBTypeSummary.CreateWithFunctionName(moduleName + '.firstChildSummary') isRegex = True category.AddTypeSummary(lldb.SBTypeNameSpecifier(type + '<.*>', isRegex), summary) synthetic = lldb.SBTypeSynthetic.CreateWithClassName(moduleName + '.FirstChildSynthProvider') synthetic.SetOptions(lldb.eTypeOptionCascade) category.AddTypeSynthetic(lldb.SBTypeNameSpecifier(type + '<.*>', isRegex), synthetic) summary = lldb.SBTypeSummary.CreateWithFunctionName(moduleName + '.uObjectSummary') isRegex = True category.AddTypeSummary(lldb.SBTypeNameSpecifier('g::.+', isRegex), summary) synthetic = lldb.SBTypeSynthetic.CreateWithClassName(moduleName + '.UObjectSynthProvider') synthetic.SetOptions(lldb.eTypeOptionCascade) category.AddTypeSynthetic(lldb.SBTypeNameSpecifier('uObject', False), synthetic) synthetic = lldb.SBTypeSynthetic.CreateWithClassName(moduleName + '.UObjectSynthProvider') synthetic.SetOptions(lldb.eTypeOptionCascade) category.AddTypeSynthetic(lldb.SBTypeNameSpecifier('g::.+', True), synthetic) synthetic = lldb.SBTypeSynthetic.CreateWithClassName(moduleName + '.UArraySynthProvider') synthetic.SetOptions(lldb.eTypeOptionCascade) category.AddTypeSynthetic(lldb.SBTypeNameSpecifier('uArray', False), synthetic)
from securityheaders.models.xcontenttypeoptions import XContentTypeOptions from securityheaders.checkers import Checker class XContentTypeOptionsChecker(Checker): def __init__(self): pass def getxcontenttypeoptions(self, headers): return self.extractheader(headers, XContentTypeOptions)
# source: https://github.com/kuangliu/pytorch-cifar/blob/master/models/densenet.py '''DenseNet in PyTorch.''' import math import torch import torch.nn as nn import torch.nn.functional as F from cnns.nnlib.pytorch_layers.conv_picker import Conv def conv3x3(in_planes, out_planes, args, stride=1): """3x3 convolution with padding""" # return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, # padding=1, bias=False) return Conv(kernel_sizes=[3], in_channels=in_planes, out_channels=[out_planes], strides=[stride], padding=[1], args=args, is_bias=False).get_conv() def conv1x1(in_planes, out_planes, args, stride=1): """1x1 convolution""" # return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, # bias=False) # It is rather unnecessary to use fft convolution for kernels of size 1x1. return Conv(kernel_sizes=[1], in_channels=in_planes, out_channels=[out_planes], strides=[stride], padding=[0], args=args, is_bias=False).get_conv() class Bottleneck(nn.Module): def __init__(self, in_planes, growth_rate, args): super(Bottleneck, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) # self, in_channels, out_channels, kernel_size, stride=1, adding=0, dilation=1, groups=1, bias=True # self.conv1 = nn.Conv2d(in_planes, 4*growth_rate, kernel_size=1, bias=False) # self.conv1 = Conv(in_planes, 4*growth_rate, kernel_size=1, bias=False) self.conv1 = conv1x1(in_planes=in_planes, out_planes=4 * growth_rate, args=args) self.bn2 = nn.BatchNorm2d(4 * growth_rate) # self.conv2 = nn.Conv2d(4*growth_rate, growth_rate, kernel_size=3, padding=1, bias=False) self.conv2 = conv3x3(in_planes=4 * growth_rate, out_planes=growth_rate, args=args) def forward(self, x): out = self.conv1(F.relu(self.bn1(x))) out = self.conv2(F.relu(self.bn2(out))) out = torch.cat([out, x], 1) return out class Transition(nn.Module): def __init__(self, in_planes, out_planes, args=None): super(Transition, self).__init__() self.bn = nn.BatchNorm2d(in_planes) # self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False) self.conv = conv1x1(in_planes, out_planes, args) def forward(self, x): out = self.conv(F.relu(self.bn(x))) out = F.avg_pool2d(out, 2) return out class DenseNet(nn.Module): def __init__(self, block, nblocks, args, growth_rate=12, reduction=0.5): super(DenseNet, self).__init__() self.growth_rate = growth_rate num_planes = 2 * growth_rate # self.conv1 = nn.Conv2d(3, num_planes, kernel_size=3, padding=1, bias=False) self.conv1 = conv3x3(in_planes=3, out_planes=num_planes, args=args) self.dense1 = self._make_dense_layers(block, num_planes, nblocks[0], args=args) num_planes += nblocks[0] * growth_rate out_planes = int(math.floor(num_planes * reduction)) self.trans1 = Transition(num_planes, out_planes, args=args) num_planes = out_planes self.dense2 = self._make_dense_layers(block, num_planes, nblocks[1], args=args) num_planes += nblocks[1] * growth_rate out_planes = int(math.floor(num_planes * reduction)) self.trans2 = Transition(num_planes, out_planes, args=args) num_planes = out_planes self.dense3 = self._make_dense_layers(block, num_planes, nblocks[2], args=args) num_planes += nblocks[2] * growth_rate out_planes = int(math.floor(num_planes * reduction)) self.trans3 = Transition(num_planes, out_planes, args=args) num_planes = out_planes self.dense4 = self._make_dense_layers(block, num_planes, nblocks[3], args=args) num_planes += nblocks[3] * growth_rate self.bn = nn.BatchNorm2d(num_planes) self.linear = nn.Linear(num_planes, args.num_classes) def _make_dense_layers(self, block, in_planes, nblock, args): layers = [] for i in range(nblock): layers.append(block(in_planes, self.growth_rate, args=args)) in_planes += self.growth_rate return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.trans1(self.dense1(out)) out = self.trans2(self.dense2(out)) out = self.trans3(self.dense3(out)) out = self.dense4(out) out = F.avg_pool2d(F.relu(self.bn(out)), 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DenseNet121(args): return DenseNet(Bottleneck, [6, 12, 24, 16], growth_rate=32, args=args) def DenseNet169(args): return DenseNet(Bottleneck, [6, 12, 32, 32], growth_rate=32, args=args) def DenseNet201(args): return DenseNet(Bottleneck, [6, 12, 48, 32], growth_rate=32, args=args) def DenseNet161(args): return DenseNet(Bottleneck, [6, 12, 36, 24], growth_rate=48, args=args) def densenet_cifar(args): return DenseNet(Bottleneck, [6, 12, 24, 16], growth_rate=12, args=args) def test(): net = densenet_cifar() x = torch.randn(1, 3, 32, 32) y = net(x) print(y)
from datetime import datetime import errno import fcntl import os import socket import sys import traceback import threading import xml.etree.ElementTree as ET from zmq.eventloop import ioloop from tornado import iostream from pyfire import configuration as config from pyfire.errors import XMPPProtocolError from pyfire.logger import Logger from pyfire.stream import processor from pyfire.stream.stanzas import TagHandler log = Logger(__name__) class XMPPServer(object): """A non-blocking, single-threaded XMPP server.""" def __init__(self, io_loop=None): self.io_loop = io_loop or ioloop.IOLoop.instance() self._sockets = {} # fd -> socket object self._started = False self._connections = {} self.checker = ioloop.PeriodicCallback( self.check_for_closed_connections, 30000) def listen(self, port, address=""): """Binds to the given port and starts the server in a single process. This method is a shortcut for: server.bind(port, address) server.start() """ self.bind(port, address) self.start() def bind(self, port, address=None, family=socket.AF_UNSPEC): """Binds this server to the given port on the given address. To start the server, call start(). You can call listen() as a shortcut to the sequence of bind() and start() calls. Address may be either an IP address or hostname. If it's a hostname, the server will listen on all IP addresses associated with the name. Address may be an empty string or None to listen on all available interfaces. Family may be set to either socket.AF_INET or socket.AF_INET6 to restrict to ipv4 or ipv6 addresses, otherwise both will be used if available. This method may be called multiple times prior to start() to listen on multiple ports or interfaces. """ if address == "": address = None for res in socket.getaddrinfo(address, port, family, socket.SOCK_STREAM, 0, socket.AI_PASSIVE | socket.AI_ADDRCONFIG): af, socktype, proto, canonname, sockaddr = res sock = socket.socket(af, socktype, proto) flags = fcntl.fcntl(sock.fileno(), fcntl.F_GETFD) flags |= fcntl.FD_CLOEXEC fcntl.fcntl(sock.fileno(), fcntl.F_SETFD, flags) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) if af == socket.AF_INET6: # On linux, ipv6 sockets accept ipv4 too by default, # but this makes it impossible to bind to both # 0.0.0.0 in ipv4 and :: in ipv6. On other systems, # separate sockets *must* be used to listen for both ipv4 # and ipv6. For consistency, always disable ipv4 on our # ipv6 sockets and use a separate ipv4 socket when needed. if hasattr(socket, "IPPROTO_IPV6"): sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 1) sock.setblocking(0) sock.bind(sockaddr) sock.listen(128) log.info("Starting to listen on IP %s Port %s for connections" % sockaddr) self._sockets[sock.fileno()] = sock if self._started: self.io_loop.add_handler(sock.fileno(), self._handle_events, ioloop.IOLoop.READ) def start(self): """Starts this server in the IOLoop.""" assert not self._started for fd in self._sockets.keys(): self.io_loop.add_handler(fd, self._handle_events, ioloop.IOLoop.READ) def stop(self): """Stops listening for new connections. Streams currently running may still continue after the server is stopped. """ for fd, sock in self._sockets.iteritems(): self.io_loop.remove_handler(fd) sock.close() def _handle_events(self, fd, events): while True: try: connection, address = self._sockets[fd].accept() except(socket.error, e): if e.args[0] in (errno.EWOULDBLOCK, errno.EAGAIN): return raise try: stream = iostream.IOStream(connection, io_loop=self.io_loop) log.info("Starting new connection for client connection from %s:%s" % address) self._connections[address] = XMPPConnection(stream, address) if not self.checker._running: self.checker.start() except (Exception, e): exc_type, exc_value, exc_traceback = sys.exc_info() log.error("Error in connection callback, %s" % str(e)) for line in traceback.format_tb(exc_traceback): if line.find("\n") >= 0: for subline in line.split("\n"): log.error(subline) else: log.error(line.rstrip("\n")) def check_for_closed_connections(self): log.debug("checking for closed connections") for address in self._connections.keys(): connection = self._connections[address] if connection.closed(): log.debug("detected dead stream/connection: %s:%s" % connection.address) del self._connections[address] if len(self._connections) == 0: log.debug("stopping checker") self.checker.stop() class XMPPConnection(object): """One XMPP connection initiated by class:`XMPPServer`""" def __init__(self, stream, address): self.stream = stream self.address = address self.connectiontime = self.last_seen = datetime.now() self.taghandler = TagHandler(self) self.parser = processor.StreamProcessor( self.taghandler.streamhandler, self.taghandler.contenthandler) self.stream.read_bytes(1, self._read_char) def _read_char(self, data): """Reads from client in byte mode""" try: if data == " ": log.debug("Found whitespace keepalive") self.stream.read_bytes(1, self._read_char) else: log.debug("Processing byte: %s" % data) self.parser.feed(data) self.stream.read_until(">", self._read_xml) self.last_seen = datetime.now() except IOError: self.done() def _read_xml(self, data): """Reads from client until closing tag for xml is found""" try: self.last_seen = datetime.now() log.debug("Processing chunk: %s" % data) self.parser.feed(data) if self.parser.depth >= 2: self.stream.read_until(">", self._read_xml) else: self.stream.read_bytes(1, self._read_char) except IOError: self.done() def send_string(self, string, raises_error=True): """Sends a string to client""" try: self.stream.write(string) log.debug("Sent string to client:" + string) except IOError: if raises_error: raise def send_element(self, element, raises_error=True): """Serializes and send an ET Element""" self.send_string(ET.tostring(element), raises_error) def stop_connection(self): """Sends stream close, discards stream closed errors""" # Ignore IOErrors as stream already has been closed # as there is no need so send stream end element on closed streams ;) try: self.taghandler.close() self.send_string("</stream:stream>") except IOError: pass self.done() def done(self): """Does cleanup work""" self.stream.close() def closed(self): """Checks if underlying stream is closed""" return self.stream.closed()
# # PySNMP MIB module CISCOSB-RMON (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCOSB-RMON # Produced by pysmi-0.3.4 at Mon Apr 29 18:07:17 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ValueSizeConstraint, ConstraintsIntersection, SingleValueConstraint, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ValueSizeConstraint", "ConstraintsIntersection", "SingleValueConstraint", "ValueRangeConstraint") switch001, = mibBuilder.importSymbols("CISCOSB-MIB", "switch001") OwnerString, EntryStatus = mibBuilder.importSymbols("RMON-MIB", "OwnerString", "EntryStatus") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") Integer32, MibScalar, MibTable, MibTableRow, MibTableColumn, MibIdentifier, Gauge32, ObjectIdentity, IpAddress, iso, NotificationType, ModuleIdentity, Unsigned32, Counter64, Counter32, Bits, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "Integer32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "MibIdentifier", "Gauge32", "ObjectIdentity", "IpAddress", "iso", "NotificationType", "ModuleIdentity", "Unsigned32", "Counter64", "Counter32", "Bits", "TimeTicks") RowStatus, TruthValue, TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "RowStatus", "TruthValue", "TextualConvention", "DisplayString") rlRmonControl = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49)) rlRmonControl.setRevisions(('2004-06-01 00:00',)) if mibBuilder.loadTexts: rlRmonControl.setLastUpdated('200406010000Z') if mibBuilder.loadTexts: rlRmonControl.setOrganization('Cisco Small Business') rlRmonControlMibVersion = MibScalar((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlRmonControlMibVersion.setStatus('current') rlRmonControlHistoryControlQuotaBucket = MibScalar((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535)).clone(8)).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlRmonControlHistoryControlQuotaBucket.setStatus('current') rlRmonControlHistoryControlMaxGlobalBuckets = MibScalar((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535)).clone(300)).setMaxAccess("readonly") if mibBuilder.loadTexts: rlRmonControlHistoryControlMaxGlobalBuckets.setStatus('current') rlHistoryControlTable = MibTable((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 4), ) if mibBuilder.loadTexts: rlHistoryControlTable.setStatus('current') rlHistoryControlEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 4, 1), ).setIndexNames((0, "CISCOSB-RMON", "rlHistoryControlIndex")) if mibBuilder.loadTexts: rlHistoryControlEntry.setStatus('current') rlHistoryControlIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 4, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: rlHistoryControlIndex.setStatus('current') rlHistoryControlDataSource = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 4, 1, 2), ObjectIdentifier()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlHistoryControlDataSource.setStatus('current') rlHistoryControlBucketsRequested = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 4, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535)).clone(50)).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlHistoryControlBucketsRequested.setStatus('current') rlHistoryControlBucketsGranted = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 4, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: rlHistoryControlBucketsGranted.setStatus('current') rlHistoryControlInterval = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 4, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 3600)).clone(1800)).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlHistoryControlInterval.setStatus('current') rlHistoryControlOwner = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 4, 1, 6), OwnerString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlHistoryControlOwner.setStatus('current') rlHistoryControlStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 4, 1, 7), EntryStatus()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlHistoryControlStatus.setStatus('current') rlHistoryTable = MibTable((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 5), ) if mibBuilder.loadTexts: rlHistoryTable.setStatus('current') rlHistoryEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 5, 1), ).setIndexNames((0, "CISCOSB-RMON", "rlHistoryIndex"), (0, "CISCOSB-RMON", "rlHistorySampleIndex")) if mibBuilder.loadTexts: rlHistoryEntry.setStatus('current') rlHistoryIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 5, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: rlHistoryIndex.setStatus('current') rlHistorySampleIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 5, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))).setMaxAccess("readonly") if mibBuilder.loadTexts: rlHistorySampleIndex.setStatus('current') rlHistoryIntervalStart = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 5, 1, 3), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlHistoryIntervalStart.setStatus('current') rlHistoryValue = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 5, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlHistoryValue.setStatus('current') rlControlHistoryControlQuotaBucket = MibScalar((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535)).clone(8)).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlControlHistoryControlQuotaBucket.setStatus('current') rlControlHistoryControlMaxGlobalBuckets = MibScalar((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 7), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535)).clone(300)).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlControlHistoryControlMaxGlobalBuckets.setStatus('current') rlControlHistoryMaxEntries = MibScalar((1, 3, 6, 1, 4, 1, 9, 6, 1, 101, 49, 8), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535)).clone(300)).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlControlHistoryMaxEntries.setStatus('current') mibBuilder.exportSymbols("CISCOSB-RMON", rlHistoryEntry=rlHistoryEntry, PYSNMP_MODULE_ID=rlRmonControl, rlRmonControlMibVersion=rlRmonControlMibVersion, rlRmonControlHistoryControlQuotaBucket=rlRmonControlHistoryControlQuotaBucket, rlHistoryControlTable=rlHistoryControlTable, rlControlHistoryControlQuotaBucket=rlControlHistoryControlQuotaBucket, rlHistoryIntervalStart=rlHistoryIntervalStart, rlHistoryControlBucketsGranted=rlHistoryControlBucketsGranted, rlControlHistoryMaxEntries=rlControlHistoryMaxEntries, rlHistoryControlInterval=rlHistoryControlInterval, rlHistoryControlBucketsRequested=rlHistoryControlBucketsRequested, rlHistoryIndex=rlHistoryIndex, rlRmonControl=rlRmonControl, rlHistoryControlIndex=rlHistoryControlIndex, rlRmonControlHistoryControlMaxGlobalBuckets=rlRmonControlHistoryControlMaxGlobalBuckets, rlControlHistoryControlMaxGlobalBuckets=rlControlHistoryControlMaxGlobalBuckets, rlHistorySampleIndex=rlHistorySampleIndex, rlHistoryControlStatus=rlHistoryControlStatus, rlHistoryTable=rlHistoryTable, rlHistoryControlOwner=rlHistoryControlOwner, rlHistoryValue=rlHistoryValue, rlHistoryControlDataSource=rlHistoryControlDataSource, rlHistoryControlEntry=rlHistoryControlEntry)
""" @Author : Ailitonia @Date : 2021/07/17 2:04 @FileName : config.py @Project : nonebot2_miya @Description : @GitHub : https://github.com/Ailitonia @Software : PyCharm """ from pydantic import BaseSettings class Config(BaseSettings): # 是否启用正则匹配matcher # 如果 bot 配置了命令前缀, 但需要额外响应无前缀的 "签到" 等消息, 请将本选项设置为 True # 如果 bot 没有配置命令前缀或空白前缀, 请将本选项设置为 False, 避免重复响应 enable_regex_matcher: bool = True # 是否启用自动下载签到头图的定时任务 enable_pic_preparing_scheduler: bool = True # 缓存的签到头图的数量限制 cache_pic_limit: int = 2000 # 相关数值显示命令 favorability_alias: str = '好感度' energy_alias: str = '能量值' currency_alias: str = '硬币' # 能量值与好感度的兑换比例 公式为(能量值 * 兑换比 = 好感度) ef_exchange_rate: float = 0.25 class Config: extra = "ignore"
# Generated by Django 2.1.2 on 2018-11-02 15:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("data_refinery_common", "0005_auto_20181030_1955"), ] operations = [ migrations.AddField( model_name="surveyjob", name="nomad_job_id", field=models.CharField(max_length=256, null=True), ), migrations.AddField( model_name="surveyjob", name="ram_amount", field=models.IntegerField(default=256), ), ]
"""Sleight of Hand ported from https://twitter.com/MunroHoberman/status/1345134382810619913 """ from pypico8 import ( Table, add, circ, cos, delete, pico8_to_python, print, printh, rectfill, rnd, run, sin, t, ) printh( pico8_to_python( """ d={}r,e=rectfill,rnd::_::for i=0,999do circ(e(128),e(128),1)end for z=1,52do f=d[z]or add(d,{0,0,z})a=z/52+t()/4x=f[1]y=f[2]f[1]+=(cos(a)*55+60-x)/9f[2]+=(sin(a)*55+57-y)/9r(x,y,x+9,y+14,6)r(x,y,x+8,y+13,7) ?chr(128+f[3]),x+1,y+4,f[3]*8 end add(d,del(d,e(d)),e(#d)+1)flip()goto _ """ ) ) def _init(): global d, r, e d = Table() r, e = rectfill, rnd def _update(): pass def _draw(): for _ in range(0, 1000): circ(e(128), e(128), 1) for z in range(1, 53): f = d[z] or add(d, Table([0, 0, z])) a = z / 52 + t() / 4 x = f[1] y = f[2] f[1] += (cos(a) * 55 + 60 - x) / 9 f[2] += (sin(a) * 55 + 57 - y) / 9 r(x, y, x + 9, y + 14, 6) r(x, y, x + 8, y + 13, 7) print(chr(128 + f[3]), x + 1, y + 4, f[3] * 8) add(d, delete(d, e(d)), e(len(d)) + 1) run(_init, _update, _draw)
# coding: utf-8 # flake8: noqa """ Account API The <b>Account API</b> gives sellers the ability to configure their eBay seller accounts, including the seller's policies (seller-defined custom policies and eBay business policies), opt in and out of eBay seller programs, configure sales tax tables, and get account information. <br><br>For details on the availability of the methods in this API, see <a href=\"/api-docs/sell/account/overview.html#requirements\">Account API requirements and restrictions</a>. # noqa: E501 OpenAPI spec version: v1.7.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import # import models into model package from ...sell_account.models.amount import Amount from ...sell_account.models.category_type import CategoryType from ...sell_account.models.compact_custom_policy_response import CompactCustomPolicyResponse from ...sell_account.models.custom_policy import CustomPolicy from ...sell_account.models.custom_policy_create_request import CustomPolicyCreateRequest from ...sell_account.models.custom_policy_request import CustomPolicyRequest from ...sell_account.models.custom_policy_response import CustomPolicyResponse from ...sell_account.models.deposit import Deposit from ...sell_account.models.error import Error from ...sell_account.models.error_parameter import ErrorParameter from ...sell_account.models.fulfillment_policy import FulfillmentPolicy from ...sell_account.models.fulfillment_policy_request import FulfillmentPolicyRequest from ...sell_account.models.fulfillment_policy_response import FulfillmentPolicyResponse from ...sell_account.models.international_return_override_type import InternationalReturnOverrideType from ...sell_account.models.kyc_check import KycCheck from ...sell_account.models.kyc_response import KycResponse from ...sell_account.models.payment_method import PaymentMethod from ...sell_account.models.payment_policy import PaymentPolicy from ...sell_account.models.payment_policy_request import PaymentPolicyRequest from ...sell_account.models.payment_policy_response import PaymentPolicyResponse from ...sell_account.models.payments_program_onboarding_response import PaymentsProgramOnboardingResponse from ...sell_account.models.payments_program_onboarding_steps import PaymentsProgramOnboardingSteps from ...sell_account.models.payments_program_response import PaymentsProgramResponse from ...sell_account.models.program import Program from ...sell_account.models.programs import Programs from ...sell_account.models.rate_table import RateTable from ...sell_account.models.rate_table_response import RateTableResponse from ...sell_account.models.recipient_account_reference import RecipientAccountReference from ...sell_account.models.region import Region from ...sell_account.models.region_set import RegionSet from ...sell_account.models.return_policy import ReturnPolicy from ...sell_account.models.return_policy_request import ReturnPolicyRequest from ...sell_account.models.return_policy_response import ReturnPolicyResponse from ...sell_account.models.sales_tax import SalesTax from ...sell_account.models.sales_tax_base import SalesTaxBase from ...sell_account.models.sales_taxes import SalesTaxes from ...sell_account.models.selling_limit import SellingLimit from ...sell_account.models.selling_privileges import SellingPrivileges from ...sell_account.models.set_fulfillment_policy_response import SetFulfillmentPolicyResponse from ...sell_account.models.set_payment_policy_response import SetPaymentPolicyResponse from ...sell_account.models.set_return_policy_response import SetReturnPolicyResponse from ...sell_account.models.shipping_option import ShippingOption from ...sell_account.models.shipping_service import ShippingService from ...sell_account.models.time_duration import TimeDuration
from multiprocessing import Pool from collections import defaultdict import gym from el_agent import ELAgent from frozen_lake_util import show_q_value class CompareAgent(ELAgent): def __init__(self, q_learning=True, epsilon=0.33): self.q_learning = q_learning super().__init__(epsilon) def learn(self, env, episode_count=1000, gamma=0.9, learning_rate=0.1, render=False, report_interval=50): self.init_log() self.Q = defaultdict(lambda: [0] * len(actions)) actions = list(range(env.action_space.n)) for e in range(episode_count): s = env.reset() done = False a = self.policy(s, actions) while not done: if render: env.render() n_state, reward, done, info = env.step(a) if done and reward == 0: reward = -0.5 # Reward as penalty n_action = self.policy(n_state, actions) if self.q_learning: gain = reward + gamma * max(self.Q[n_state]) else: gain = reward + gamma * self.Q[n_state][n_action] estimated = self.Q[s][a] self.Q[s][a] += learning_rate * (gain - estimated) s = n_state if self.q_learning: a = self.policy(s, actions) else: a = n_action else: self.log(reward) if e != 0 and e % report_interval == 0: self.show_reward_log(episode=e) def train(q_learning): env = gym.make("FrozenLakeEasy-v0") agent = CompareAgent(q_learning=q_learning) agent.learn(env, episode_count=3000) return dict(agent.Q) if __name__ == "__main__": with Pool() as pool: results = pool.map(train, ([True, False])) for r in results: show_q_value(r)
import socket from smtplib import * from configuration import * debug = False verbose = True version = "1.0.0" key_sender = 'sender' key_subject = 'subject' key_username = 'username' key_password = 'password' key_receivers = 'receivers' key_smtp_server = 'smtp_server' key_smtp_server_port = 'smtp_server_port' param_configuration_names = '--configuration' def log(what): if verbose: print what def notify(content, configuration_names): if configuration_names: for configuration_name in configuration_names: if debug: log("Using '" + configuration_name + "' configuration") if configuration_name in configurations: configuration = configurations[configuration_name] notify_with_configuration(content, configuration) else: log("There is no configuration with the name: '" + configuration_name + "'") else: if debug: log("Using all configurations.") for configuration in configurations: notify_with_configuration(content, configurations[configuration]) def notify_with_configuration(content, configuration): receivers_str = "" for receiver_str in configuration[key_receivers]: if configuration[key_receivers].index(receiver_str) > 0: receivers_str += ", " + receiver_str else: receivers_str += receiver_str message = """From: %s To: %s Subject: %s %s """ % (configuration[key_sender], receivers_str, configuration[key_subject], content) if debug: log("We will send the following message:\n" + message) try: server = SMTP(configuration[key_smtp_server], configuration[key_smtp_server_port], timeout=30) if key_username in configuration: username = configuration[key_username] log("Logging in user: " + username) password = "" if key_password in configuration: password = configuration[key_password] server.login(username, password) receivers = configuration[key_receivers] log("Sending mail to: " + str(receivers)) server.sendmail(configuration[key_sender], receivers, message) log("Shutting down connection.") server.quit() return True except (SMTPHeloError, SMTPAuthenticationError, SMTPAuthenticationError, SMTPException, SMTPRecipientsRefused, SMTPSenderRefused, SMTPDataError, socket.timeout) as e: log("Error: " + str(e)) pass return False
# Objective: check whether win conditions can be achieved in one step def check_horizontale(grille, x, y): """Alignements horizontaux""" symbole = grille.grid[y][x] # Alignement horizontal de trois jetons consécutifs, le noeud (x,y) étant le plus à droite if grille.is_far_from_left(x): if all(symbole == grille.grid[y][x - i - 1] for i in range(2)): my_play = grille.play_if_possible(x - 3, y) if my_play is not None: return my_play # Alignements horizontaux, le noeud (x,y) étant le plus à gauche if grille.is_far_from_right(x): # Alignement horizontal de trois jetons consécutifs if all(symbole == grille.grid[y][x + i + 1] for i in range(2)): my_play = grille.play_if_possible(x + 3, y) if my_play is not None: return my_play # Alignement horizontal de trois jetons non consécutifs if symbole == grille.grid[y][x + 3]: # Alignement horizontal de la forme X.XX if symbole == grille.grid[y][x + 2]: my_play = grille.play_if_possible(x + 1, y) if my_play is not None: return my_play # Alignement horizontal de la forme XX.X if symbole == grille.grid[y][x + 1]: my_play = grille.play_if_possible(x + 2, y) if my_play is not None: return my_play return None def check_verticale(grille, x, y): """Alignement vertical""" symbole = grille.grid[y][x] # Alignement vertical de trois jetons consécutifs, le noeud (x,y) étant le plus haut if grille.is_quite_far_from_bottom(y) and not (grille.is_at_top(y)): if all(symbole == grille.grid[y + i + 1][x] for i in range(2)): my_play = grille.play_if_possible(x, y - 1) if my_play is not None: return my_play return None def check_oblique_montante(grille, x, y): """Alignements diagonaux montants (/) : allant du coin bas gauche au coin haut droit""" symbole = grille.grid[y][x] # Alignement diagonal montant de la forme XXX., le noeud (x,y) étant le plus bas et à gauche if grille.is_far_from_top(y) and grille.is_far_from_right(x): if all(symbole == grille.grid[y - i - 1][x + i + 1] for i in range(2)): my_play = grille.play_if_possible(x + 3, y - 2) if my_play is not None: return my_play # Alignements diagonaux montants, le noeud (x,y) étant le plus haut et à droite if grille.is_far_from_bottom(y) and grille.is_far_from_left(x): # Alignement diagonal de la forme .XXX if all(symbole == grille.grid[y + i + 1][x - i - 1] for i in range(2)): if grille.is_very_far_from_bottom(y): my_play = grille.play_if_possible(x - 3, y + 3) if my_play is not None: return my_play if symbole == grille.grid[y + 3][x - 3]: # Alignement diagonal de la forme X.XX if symbole == grille.grid[y + 2][x - 2]: my_play = grille.play_if_possible(x - 1, y + 1) if my_play is not None: return my_play # Alignement diagonal de la forme XX.X if symbole == grille.grid[y + 1][x - 1]: my_play = grille.play_if_possible(x - 2, y + 2) if my_play is not None: return my_play return None def check_oblique_descendante(grille, x, y): """Alignements diagonaux descendants (\) : allant du coin haut gauche au coin bas droit""" symbole = grille.grid[y][x] # Alignement diagonal descendant de la forme .XXX, le noeud (x,y) étant le plus bas et à droite if grille.is_far_from_top(y) and grille.is_far_from_left(x): if all(symbole == grille.grid[y - i - 1][x - i - 1] for i in range(2)): my_play = grille.play_if_possible(x - 2, y - 3) if my_play is not None: return my_play # Alignements diagonaux descendants, le noeud (x,y) étant le plus haut et à gauche if grille.is_far_from_bottom(y) and grille.is_far_from_right(x): # Alignement diagonal de la forme XXX. if all(symbole == grille.grid[y + i + 1][x + i + 1] for i in range(2)): if grille.is_very_far_from_bottom(y): my_play = grille.play_if_possible(x + 3, y + 3) if my_play is not None: return my_play if symbole == grille.grid[y + 3][x + 3]: # Alignement diagonal de la forme X.XX if symbole == grille.grid[y + 2][x + 2]: my_play = grille.play_if_possible(x + 1, y + 1) if my_play is not None: return my_play # Alignement diagonal de la forme XX.X if symbole == grille.grid[y + 1][x + 1]: my_play = grille.play_if_possible(x + 2, y + 2) if my_play is not None: return my_play return None def look_for_obvious_steps(grille, player_symbol='X', opponent_symbol='O'): """Vérifier s'il est possible de gagner pour l'un ou l'autre joueur. Rechercher un coup qui permette (d'abord) ou empêche (ensuite) un alignement de quatre jetons. Si oui, renvoyer le numéro de la colonne à jouer, sinon None""" # Check the player symbol first, so that a winning step is preferred to a step to avoid a loss for checked_symbol in [player_symbol, opponent_symbol]: for y in range(len(grille.grid)): for x in range(len(grille.grid[y])): if grille.grid[y][x] == checked_symbol: my_play = check_horizontale(grille, x, y) if my_play is not None: return my_play my_play = check_verticale(grille, x, y) if my_play is not None: return my_play my_play = check_oblique_montante(grille, x, y) if my_play is not None: return my_play my_play = check_oblique_descendante(grille, x, y) if my_play is not None: return my_play # Aucun coup urgent, alors renvoyer -1 return None
user='shalom@somewhere.net' password='secretsecret' base_url = 'http://cdn.mydomain.net' platform = 'production' lambda_region = 'us-east-1' sourcebucket = 'mybucket' # not used yet sdb_region = 'us-east-1' sdb_domain = 'purge-akamai' sdb_item='bucket-map'
# -*- coding: utf-8 -*- from marshmallow import ValidationError from pyramid.view import view_config from pyramid.httpexceptions import HTTPBadRequest from amnesia.modules.content.validation import IdListSchema from amnesia.modules.content import SessionResource def includeme(config): ''' Pyramid includeme ''' config.scan(__name__) @view_config(name='scopy', request_method='POST', renderer='json', context=SessionResource, permission='copy') def copy_oids_to_session(context, request): ''' Copy oids to session ''' try: result = IdListSchema().load(request.POST.mixed()) except ValidationError as error: raise HTTPBadRequest(error.messages) oids = context.copy_oids(result['oid']) return {'oids': oids} @view_config(name='sremove', request_method='POST', renderer='json', context=SessionResource, permission='delete') def remove_oids_from_session(context, request): ''' Clear the session oids ''' removed = context.clear_oids() return {'removed': removed}
graph = [ [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, "cat", 0, 1, 0, 0, 0], [0, 1, 0, 1, 0, "bone", 0], [0, 0, 0, 0, 0, 0, 0] ] class Node: # 表示从cat方块到当前方框的距离 G = 0 # 当前方块到目标点(我们把它称为点B,代表骨头!)的移动量估算值 H = 0 # G = G+H 表示路径增量 F = 0 def __init__(self,x,y): self.x = x self.y = y cat_x = 1 cat_y = 3 bone_x = 4 bone_y = 5 # 一个记录下所有被考虑来寻找最短路径的方块(称为open列表) open = [] # 保存已确定点的横纵坐标 closed = [] width= len(graph)-1 height= len(graph[0])-1 for i in range(len(graph)): for j in range(len(graph[i])): if graph[i][j] == "cat": cat_x, cat_y = i, j if graph[i][j] == "bone": bone_x, bone_y = i, j # print((cat_x,cat_y),(bone_x,bone_y)) # 判断一个方格是否符合条件 def is_good(x,y): if x >= 0 and x <= width and y>=0 and y <= height: if graph[x][y] != 1 and (x,y) not in closed: return True else: return False else: return False # 获取当前方块到"bone"方块的距离 def get_instance(x,y): return abs(bone_x-x)+abs(y-bone_y) # 获取具有最小F值的格子 def get_node_with_MinFValue(node_list): temp_set = set() for node in node_list: temp_set.add(node.F) if len(temp_set) == 1: print("F值相等,选择最后一个") return node_list[-1] else: sorted_node_list = sorted(node_list,key = lambda node:node.F) print("F值不相等,选择第一个") print(waited_nodes(sorted_node_list)) return sorted_node_list[0] # 生成可行的node候选集 def get_proper_nodes(current_node): temp = [] if is_good(current_node.x,current_node.y-1): temp.append((current_node.x,current_node.y-1)) if is_good(current_node.x,current_node.y+1): temp.append((current_node.x,current_node.y+1)) if is_good(current_node.x+1,current_node.y): temp.append((current_node.x+1,current_node.y)) if is_good(current_node.x-1,current_node.y): temp.append((current_node.x-1,current_node.y)) return temp # 获取node对象列表中的坐标值列表 def waited_nodes(open): node_list = [] for node in open: node_list.append((node.x,node.y)) return node_list node_cat = Node(cat_x,cat_y) node_cat.G = 0 node_cat.H = get_instance(cat_x,cat_y) node_cat.F = node_cat.G + node_cat.H open.append(node_cat) while True: print("候选点:",waited_nodes(open)) current_node = get_node_with_MinFValue(open) print("选择的下一个点:",(current_node.x,current_node.y)) print("\n") closed.append((current_node.x,current_node.y)) open.remove(current_node) if (bone_x,bone_y) in closed: # 已找到路径 break proper_node = get_proper_nodes(current_node) if len(proper_node) > 0: for (x,y) in proper_node: temp_node = Node(x,y) temp_node.G = current_node.G + 1 temp_node.H = get_instance(x,y) print("({},{}).G:{}".format(x,y,temp_node.G)) print("({},{}).H:{}".format(x,y,temp_node.H)) temp_node.F = temp_node.G + temp_node.H if temp_node not in open: open.append(temp_node) # if its already in the open list # test if using the current G score make the aSquare F score lower, # if yes update the parent because it means its a better path else: print("已在open中的node:",(temp_node.x,temp_node.y)) # if temp_node.G< if len(open) == 0: # Continue until there is no more available square in the open list (which means there is no path) break print("closed表:",closed) closed_copy = closed[:] # for i in range(len(closed_copy)-1): # if (abs(closed_copy[i][0]-closed_copy[i+1][0])+abs(closed_copy[i][1]-closed_copy[i+1][1]))>1: # closed.remove((closed_copy[i+1][0],closed_copy[i+1][1])) # 倒序删除,解决长度变化问题 for i in range(len(closed_copy)-1,-1,-1): if (abs(closed_copy[i][0]-closed_copy[i-1][0])+abs(closed_copy[i][1]-closed_copy[i-1][1]))>1 and i>0: print(closed_copy[i-1]) closed_copy.remove(closed_copy[i-1]) print("最短路径表:",closed_copy) print("最短路径长度:",len(closed_copy))
from __future__ import unicode_literals from django.test import TestCase from django.urls import reverse from django.contrib.auth import get_user_model
from random import random import theme_utils import input_utils def pick_theme(themes): sum_of_ratings = sum([theme['rating'] for theme in themes]) random_number = random() * sum_of_ratings chosen_theme_number = 0 while themes[chosen_theme_number]['rating'] < random_number: random_number -= themes[chosen_theme_number]['rating'] chosen_theme_number += 1 return themes[chosen_theme_number] batch = [{'theme': theme_utils.generate_random_theme()} for _ in range(5)] while True: print('\nStarting round...\n') for theme in batch: theme_utils.preview_theme(theme['theme']) theme['rating'] = float(input_utils.get_input( 'Please rate theme: ', lambda x: input_utils.is_int(x) and int(x) >= 0)) new_batch = [] for theme in batch: new_batch.append({'theme': theme_utils.mutate_theme( theme_utils.theme_from_parents(*[pick_theme(batch)['theme'] for _ in range(2)]))}) batch = new_batch
import os import sys from setuptools import setup, find_packages if sys.version_info[0] < 3: with open('README.rst') as f: long_description = f.read() else: with open('README.rst', encoding='utf-8') as f: long_description = f.read() setup( name='piotr', version='1.0.2', description='Piotr is an instrumentation tool for qemu-system-arm able to emulate ARM-based embedded devices.', long_description=long_description, url='https://github.com/virtualabs/piotr', author='virtualabs', author_email='virtualabs@gmail.com', packages=find_packages('src'), package_dir={"":"src"}, package_data = { 'piotr':[ 'data/*' ] }, classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: MIT License', 'Operating System :: POSIX :: Linux' ], entry_points = { 'console_scripts': [ 'piotr=piotr:main', 'piotr-shell=piotr.shell:guest_shell', 'piotr-ps=piotr.shell:host_ps', 'piotr-debug=piotr.shell:debug_process' ], }, install_requires = [ 'blessings', 'psutil', 'pyyaml' ], python_requires='>=3.5', test_suite='tests' )
# Copyright (c) 2016, Intel Corporation. # # This program is free software; you can redistribute it and/or modify it # under the terms and conditions of the GNU General Public License, # version 2, as published by the Free Software Foundation. # # This program is distributed in the hope it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # """Build performance test base classes and functionality""" import json import logging import os import re import resource import socket import shutil import time import unittest import xml.etree.ElementTree as ET from collections import OrderedDict from datetime import datetime, timedelta from functools import partial from multiprocessing import Process from multiprocessing import SimpleQueue from xml.dom import minidom import oe.path from oeqa.utils.commands import CommandError, runCmd, get_bb_vars from oeqa.utils.git import GitError, GitRepo # Get logger for this module log = logging.getLogger('build-perf') # Our own version of runCmd which does not raise AssertErrors which would cause # errors to interpreted as failures runCmd2 = partial(runCmd, assert_error=False, limit_exc_output=40) class KernelDropCaches(object): """Container of the functions for dropping kernel caches""" sudo_passwd = None @classmethod def check(cls): """Check permssions for dropping kernel caches""" from getpass import getpass from locale import getdefaultlocale cmd = ['sudo', '-k', '-n', 'tee', '/proc/sys/vm/drop_caches'] ret = runCmd2(cmd, ignore_status=True, data=b'0') if ret.output.startswith('sudo:'): pass_str = getpass( "\nThe script requires sudo access to drop caches between " "builds (echo 3 > /proc/sys/vm/drop_caches).\n" "Please enter your sudo password: ") cls.sudo_passwd = bytes(pass_str, getdefaultlocale()[1]) @classmethod def drop(cls): """Drop kernel caches""" cmd = ['sudo', '-k'] if cls.sudo_passwd: cmd.append('-S') input_data = cls.sudo_passwd + b'\n' else: cmd.append('-n') input_data = b'' cmd += ['tee', '/proc/sys/vm/drop_caches'] input_data += b'3' runCmd2(cmd, data=input_data) def str_to_fn(string): """Convert string to a sanitized filename""" return re.sub(r'(\W+)', '-', string, flags=re.LOCALE) class ResultsJsonEncoder(json.JSONEncoder): """Extended encoder for build perf test results""" unix_epoch = datetime.utcfromtimestamp(0) def default(self, obj): """Encoder for our types""" if isinstance(obj, datetime): # NOTE: we assume that all timestamps are in UTC time return (obj - self.unix_epoch).total_seconds() if isinstance(obj, timedelta): return obj.total_seconds() return json.JSONEncoder.default(self, obj) class BuildPerfTestResult(unittest.TextTestResult): """Runner class for executing the individual tests""" # List of test cases to run test_run_queue = [] def __init__(self, out_dir, *args, **kwargs): super(BuildPerfTestResult, self).__init__(*args, **kwargs) self.out_dir = out_dir self.hostname = socket.gethostname() self.product = os.getenv('OE_BUILDPERFTEST_PRODUCT', 'oe-core') self.start_time = self.elapsed_time = None self.successes = [] def addSuccess(self, test): """Record results from successful tests""" super(BuildPerfTestResult, self).addSuccess(test) self.successes.append(test) def addError(self, test, err): """Record results from crashed test""" test.err = err super(BuildPerfTestResult, self).addError(test, err) def addFailure(self, test, err): """Record results from failed test""" test.err = err super(BuildPerfTestResult, self).addFailure(test, err) def addExpectedFailure(self, test, err): """Record results from expectedly failed test""" test.err = err super(BuildPerfTestResult, self).addExpectedFailure(test, err) def startTest(self, test): """Pre-test hook""" test.base_dir = self.out_dir log.info("Executing test %s: %s", test.name, test.shortDescription()) self.stream.write(datetime.now().strftime("[%Y-%m-%d %H:%M:%S] ")) super(BuildPerfTestResult, self).startTest(test) def startTestRun(self): """Pre-run hook""" self.start_time = datetime.utcnow() def stopTestRun(self): """Pre-run hook""" self.elapsed_time = datetime.utcnow() - self.start_time def all_results(self): compound = [('SUCCESS', t, None) for t in self.successes] + \ [('FAILURE', t, m) for t, m in self.failures] + \ [('ERROR', t, m) for t, m in self.errors] + \ [('EXPECTED_FAILURE', t, m) for t, m in self.expectedFailures] + \ [('UNEXPECTED_SUCCESS', t, None) for t in self.unexpectedSuccesses] + \ [('SKIPPED', t, m) for t, m in self.skipped] return sorted(compound, key=lambda info: info[1].start_time) def write_buildstats_json(self): """Write buildstats file""" buildstats = OrderedDict() for _, test, _ in self.all_results(): for key, val in test.buildstats.items(): buildstats[test.name + '.' + key] = val with open(os.path.join(self.out_dir, 'buildstats.json'), 'w') as fobj: json.dump(buildstats, fobj, cls=ResultsJsonEncoder) def write_results_json(self): """Write test results into a json-formatted file""" results = OrderedDict([('tester_host', self.hostname), ('start_time', self.start_time), ('elapsed_time', self.elapsed_time), ('tests', OrderedDict())]) for status, test, reason in self.all_results(): test_result = OrderedDict([('name', test.name), ('description', test.shortDescription()), ('status', status), ('start_time', test.start_time), ('elapsed_time', test.elapsed_time), ('measurements', test.measurements)]) if status in ('ERROR', 'FAILURE', 'EXPECTED_FAILURE'): test_result['message'] = str(test.err[1]) test_result['err_type'] = test.err[0].__name__ test_result['err_output'] = reason elif reason: test_result['message'] = reason results['tests'][test.name] = test_result with open(os.path.join(self.out_dir, 'results.json'), 'w') as fobj: json.dump(results, fobj, indent=4, cls=ResultsJsonEncoder) def write_results_xml(self): """Write test results into a JUnit XML file""" top = ET.Element('testsuites') suite = ET.SubElement(top, 'testsuite') suite.set('name', 'oeqa.buildperf') suite.set('timestamp', self.start_time.isoformat()) suite.set('time', str(self.elapsed_time.total_seconds())) suite.set('hostname', self.hostname) suite.set('failures', str(len(self.failures) + len(self.expectedFailures))) suite.set('errors', str(len(self.errors))) suite.set('skipped', str(len(self.skipped))) test_cnt = 0 for status, test, reason in self.all_results(): test_cnt += 1 testcase = ET.SubElement(suite, 'testcase') testcase.set('classname', test.__module__ + '.' + test.__class__.__name__) testcase.set('name', test.name) testcase.set('description', test.shortDescription()) testcase.set('timestamp', test.start_time.isoformat()) testcase.set('time', str(test.elapsed_time.total_seconds())) if status in ('ERROR', 'FAILURE', 'EXP_FAILURE'): if status in ('FAILURE', 'EXP_FAILURE'): result = ET.SubElement(testcase, 'failure') else: result = ET.SubElement(testcase, 'error') result.set('message', str(test.err[1])) result.set('type', test.err[0].__name__) result.text = reason elif status == 'SKIPPED': result = ET.SubElement(testcase, 'skipped') result.text = reason elif status not in ('SUCCESS', 'UNEXPECTED_SUCCESS'): raise TypeError("BUG: invalid test status '%s'" % status) for data in test.measurements.values(): measurement = ET.SubElement(testcase, data['type']) measurement.set('name', data['name']) measurement.set('legend', data['legend']) vals = data['values'] if data['type'] == BuildPerfTestCase.SYSRES: ET.SubElement(measurement, 'time', timestamp=vals['start_time'].isoformat()).text = \ str(vals['elapsed_time'].total_seconds()) attrib = dict((k, str(v)) for k, v in vals['iostat'].items()) ET.SubElement(measurement, 'iostat', attrib=attrib) attrib = dict((k, str(v)) for k, v in vals['rusage'].items()) ET.SubElement(measurement, 'rusage', attrib=attrib) elif data['type'] == BuildPerfTestCase.DISKUSAGE: ET.SubElement(measurement, 'size').text = str(vals['size']) else: raise TypeError('BUG: unsupported measurement type') suite.set('tests', str(test_cnt)) # Use minidom for pretty-printing dom_doc = minidom.parseString(ET.tostring(top, 'utf-8')) with open(os.path.join(self.out_dir, 'results.xml'), 'w') as fobj: dom_doc.writexml(fobj, addindent=' ', newl='\n', encoding='utf-8') class BuildPerfTestCase(unittest.TestCase): """Base class for build performance tests""" SYSRES = 'sysres' DISKUSAGE = 'diskusage' build_target = None def __init__(self, *args, **kwargs): super(BuildPerfTestCase, self).__init__(*args, **kwargs) self.name = self._testMethodName self.base_dir = None self.start_time = None self.elapsed_time = None self.measurements = OrderedDict() self.buildstats = OrderedDict() # self.err is supposed to be a tuple from sys.exc_info() self.err = None self.bb_vars = get_bb_vars() # TODO: remove 'times' and 'sizes' arrays when globalres support is # removed self.times = [] self.sizes = [] @property def tmp_dir(self): return os.path.join(self.base_dir, self.name + '.tmp') def shortDescription(self): return super(BuildPerfTestCase, self).shortDescription() or "" def setUp(self): """Set-up fixture for each test""" if not os.path.isdir(self.tmp_dir): os.mkdir(self.tmp_dir) if self.build_target: self.run_cmd(['bitbake', self.build_target, '--runall=fetch']) def tearDown(self): """Tear-down fixture for each test""" if os.path.isdir(self.tmp_dir): shutil.rmtree(self.tmp_dir) def run(self, *args, **kwargs): """Run test""" self.start_time = datetime.now() super(BuildPerfTestCase, self).run(*args, **kwargs) self.elapsed_time = datetime.now() - self.start_time def run_cmd(self, cmd): """Convenience method for running a command""" cmd_str = cmd if isinstance(cmd, str) else ' '.join(cmd) log.info("Logging command: %s", cmd_str) try: runCmd2(cmd) except CommandError as err: log.error("Command failed: %s", err.retcode) raise def _append_measurement(self, measurement): """Simple helper for adding measurements results""" if measurement['name'] in self.measurements: raise ValueError('BUG: two measurements with the same name in {}'.format( self.__class__.__name__)) self.measurements[measurement['name']] = measurement def measure_cmd_resources(self, cmd, name, legend, save_bs=False): """Measure system resource usage of a command""" def _worker(data_q, cmd, **kwargs): """Worker process for measuring resources""" try: start_time = datetime.now() ret = runCmd2(cmd, **kwargs) etime = datetime.now() - start_time rusage_struct = resource.getrusage(resource.RUSAGE_CHILDREN) iostat = OrderedDict() with open('/proc/{}/io'.format(os.getpid())) as fobj: for line in fobj.readlines(): key, val = line.split(':') iostat[key] = int(val) rusage = OrderedDict() # Skip unused fields, (i.e. 'ru_ixrss', 'ru_idrss', 'ru_isrss', # 'ru_nswap', 'ru_msgsnd', 'ru_msgrcv' and 'ru_nsignals') for key in ['ru_utime', 'ru_stime', 'ru_maxrss', 'ru_minflt', 'ru_majflt', 'ru_inblock', 'ru_oublock', 'ru_nvcsw', 'ru_nivcsw']: rusage[key] = getattr(rusage_struct, key) data_q.put({'ret': ret, 'start_time': start_time, 'elapsed_time': etime, 'rusage': rusage, 'iostat': iostat}) except Exception as err: data_q.put(err) cmd_str = cmd if isinstance(cmd, str) else ' '.join(cmd) log.info("Timing command: %s", cmd_str) data_q = SimpleQueue() try: proc = Process(target=_worker, args=(data_q, cmd,)) proc.start() data = data_q.get() proc.join() if isinstance(data, Exception): raise data except CommandError: log.error("Command '%s' failed", cmd_str) raise etime = data['elapsed_time'] measurement = OrderedDict([('type', self.SYSRES), ('name', name), ('legend', legend)]) measurement['values'] = OrderedDict([('start_time', data['start_time']), ('elapsed_time', etime), ('rusage', data['rusage']), ('iostat', data['iostat'])]) if save_bs: self.save_buildstats(name) self._append_measurement(measurement) # Append to 'times' array for globalres log e_sec = etime.total_seconds() self.times.append('{:d}:{:02d}:{:05.2f}'.format(int(e_sec / 3600), int((e_sec % 3600) / 60), e_sec % 60)) def measure_disk_usage(self, path, name, legend, apparent_size=False): """Estimate disk usage of a file or directory""" cmd = ['du', '-s', '--block-size', '1024'] if apparent_size: cmd.append('--apparent-size') cmd.append(path) ret = runCmd2(cmd) size = int(ret.output.split()[0]) log.debug("Size of %s path is %s", path, size) measurement = OrderedDict([('type', self.DISKUSAGE), ('name', name), ('legend', legend)]) measurement['values'] = OrderedDict([('size', size)]) self._append_measurement(measurement) # Append to 'sizes' array for globalres log self.sizes.append(str(size)) def save_buildstats(self, measurement_name): """Save buildstats""" def split_nevr(nevr): """Split name and version information from recipe "nevr" string""" n_e_v, revision = nevr.rsplit('-', 1) match = re.match(r'^(?P<name>\S+)-((?P<epoch>[0-9]{1,5})_)?(?P<version>[0-9]\S*)$', n_e_v) if not match: # If we're not able to parse a version starting with a number, just # take the part after last dash match = re.match(r'^(?P<name>\S+)-((?P<epoch>[0-9]{1,5})_)?(?P<version>[^-]+)$', n_e_v) name = match.group('name') version = match.group('version') epoch = match.group('epoch') return name, epoch, version, revision def bs_to_json(filename): """Convert (task) buildstats file into json format""" bs_json = OrderedDict() iostat = OrderedDict() rusage = OrderedDict() with open(filename) as fobj: for line in fobj.readlines(): key, val = line.split(':', 1) val = val.strip() if key == 'Started': start_time = datetime.utcfromtimestamp(float(val)) bs_json['start_time'] = start_time elif key == 'Ended': end_time = datetime.utcfromtimestamp(float(val)) elif key.startswith('IO '): split = key.split() iostat[split[1]] = int(val) elif key.find('rusage') >= 0: split = key.split() ru_key = split[-1] if ru_key in ('ru_stime', 'ru_utime'): val = float(val) else: val = int(val) rusage[ru_key] = rusage.get(ru_key, 0) + val elif key == 'Status': bs_json['status'] = val bs_json['elapsed_time'] = end_time - start_time bs_json['rusage'] = rusage bs_json['iostat'] = iostat return bs_json log.info('Saving buildstats in JSON format') bs_dirs = sorted(os.listdir(self.bb_vars['BUILDSTATS_BASE'])) if len(bs_dirs) > 1: log.warning("Multiple buildstats found for test %s, only " "archiving the last one", self.name) bs_dir = os.path.join(self.bb_vars['BUILDSTATS_BASE'], bs_dirs[-1]) buildstats = [] for fname in os.listdir(bs_dir): recipe_dir = os.path.join(bs_dir, fname) if not os.path.isdir(recipe_dir): continue name, epoch, version, revision = split_nevr(fname) recipe_bs = OrderedDict((('name', name), ('epoch', epoch), ('version', version), ('revision', revision), ('tasks', OrderedDict()))) for task in os.listdir(recipe_dir): recipe_bs['tasks'][task] = bs_to_json(os.path.join(recipe_dir, task)) buildstats.append(recipe_bs) self.buildstats[measurement_name] = buildstats def rm_tmp(self): """Cleanup temporary/intermediate files and directories""" log.debug("Removing temporary and cache files") for name in ['bitbake.lock', 'conf/sanity_info', self.bb_vars['TMPDIR']]: oe.path.remove(name, recurse=True) def rm_sstate(self): """Remove sstate directory""" log.debug("Removing sstate-cache") oe.path.remove(self.bb_vars['SSTATE_DIR'], recurse=True) def rm_cache(self): """Drop bitbake caches""" oe.path.remove(self.bb_vars['PERSISTENT_DIR'], recurse=True) @staticmethod def sync(): """Sync and drop kernel caches""" runCmd2('bitbake -m', ignore_status=True) log.debug("Syncing and dropping kernel caches""") KernelDropCaches.drop() os.sync() # Wait a bit for all the dirty blocks to be written onto disk time.sleep(3) class BuildPerfTestLoader(unittest.TestLoader): """Test loader for build performance tests""" sortTestMethodsUsing = None class BuildPerfTestRunner(unittest.TextTestRunner): """Test loader for build performance tests""" sortTestMethodsUsing = None def __init__(self, out_dir, *args, **kwargs): super(BuildPerfTestRunner, self).__init__(*args, **kwargs) self.out_dir = out_dir def _makeResult(self): return BuildPerfTestResult(self.out_dir, self.stream, self.descriptions, self.verbosity)
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import typing as tp from .experiment import Datapoint def _build_columns_list(datapoints: tp.List[Datapoint]) -> tp.List[str]: columns: tp.Set[str] = set() for dp in datapoints: columns = columns.union(dp.values.keys()) for reserved_col in ['uid', 'from_uid']: try: columns.remove(reserved_col) except KeyError: pass return list(columns) def compress(datapoints: tp.List[Datapoint]) -> tp.Dict[str, tp.Any]: columns = _build_columns_list(datapoints) rows: tp.List[tp.Any] = [] for dp in datapoints: d: tp.List[tp.Any] = [dp.uid, dp.from_uid] for c in columns: d.append(dp.values.get(c)) rows.append(d) return { "columns": columns, "rows": rows }
""" bing.py Copyright 2006 Andres Riancho This file is part of w3af, http://w3af.org/ . w3af is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation version 2 of the License. w3af is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with w3af; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """ import urllib import re from w3af.core.data.search_engines.search_engine import SearchEngine from w3af.core.data.parsers.doc.url import URL class bing(SearchEngine): """ This class is a wrapper for doing bing searches. It allows the user to use GET requests to search bing.com. :author: Andres Riancho (andres.riancho@gmail.com) """ BLACKLISTED_DOMAINS = {'cc.bingj.com', 'www.microsofttranslator.com', 'onlinehelp.microsoft.com', 'go.microsoft.com', 'msn.com'} def __init__(self, urlOpener): SearchEngine.__init__(self) self._uri_opener = urlOpener def search(self, query, start, count=10): """ Search the web with Bing. This method is based from the msn.py file from the massive enumeration toolset, coded by pdp and released under GPL v2. """ url = 'http://www.bing.com/search?' query = urllib.urlencode({'q': query, 'first': start + 1, 'FORM': 'PERE'}) url_instance = URL(url + query) response = self._uri_opener.GET(url_instance, headers=self._headers, cache=True, grep=False, follow_redirects=True) # This regex might become outdated, but the good thing is that we have # test_bing.py which is going to fail and tell us that it's outdated re_match = re.findall('<a href="((http|https)(.*?))" h="ID=SERP,', response.get_body()) results = set() for url, _, _ in re_match: try: url = URL(url) except ValueError: pass else: # Test for full match. if url.get_domain() not in self.BLACKLISTED_DOMAINS: # Now test for partial match for blacklisted_domain in self.BLACKLISTED_DOMAINS: if blacklisted_domain in url.get_domain(): # ignore this domain. break else: bing_result = BingResult(url) results.add(bing_result) return results class BingResult(object): """ Dummy class that represents the search result. """ def __init__(self, url): if not isinstance(url, URL): msg = ('The url __init__ parameter of a BingResult object must' ' be of url.URL type.') raise TypeError(msg) self.URL = url def __repr__(self): return '<bing result %s>' % self.URL def __eq__(self, other): return self.URL == other.URL def __hash__(self): return hash(self.URL)
# --- coding: utf-8 --- import sqlite3 from ipaddress import ip_address, ip_network from settings import snmp_user, snmp_password from pprint import pprint from pysnmp.entity.rfc3413.oneliner import cmdgen, mibvar from pysnmp.proto.rfc1902 import OctetString from check import check_ip import paramiko from pprint import pprint class Mac(OctetString): def prettyPrint(self): res = '' arr = bytearray(self._value) for i in range(len(arr)): res += '%02X'%arr[i] if i != 5: res += ':' return res db_path = '/opt/modgud/3.0.0/etc/modgud/configuration.sqlite3' db_query = 'select network, ip from bundles left join ranges on bundles.id=ranges.bundle_id where ranges.id >= 9000;' snmp_oid_prefix = [ '1.3.6.1.2.1.3.1.1.2.16.1.', '1.3.6.1.2.1.3.1.1.2.15.1.', '1.3.6.1.2.1.3.1.1.2.14.1.', '1.3.6.1.2.1.3.1.1.2.13.1.', '1.3.6.1.2.1.3.1.1.2.12.1.', '1.3.6.1.2.1.3.1.1.2.11.1.' ] snmp_command = '/usr/bin/snmpget' def get_gateway(ip): print 'get_gateway:' print ip if not ip or not check_ip(ip): return None address = ip_address(ip.decode('latin-1')) query = db_query res = None try: con = sqlite3.connect(db_path) cur = con.cursor() cur.execute(query) res = cur.fetchall() con.close() except: pass gateway = None if res: for net, gw in res: if address in ip_network(net).hosts(): gateway = gw break return gateway def snmp_get_mac(gw, ip): print 'snmp_get_mac:' print gw + ' -- ' + ip mac = None for prefix in snmp_oid_prefix: pprint( (prefix + ip).encode('latin-1')) try: errorIndication, errorStatus, errorIndex, varBind = cmdgen.CommandGenerator().getCmd( cmdgen.UsmUserData(snmp_user, snmp_password, authProtocol=cmdgen.usmHMACMD5AuthProtocol, privProtocol=cmdgen.usmDESPrivProtocol), cmdgen.UdpTransportTarget((gw, 161)), mibvar.MibVariable((prefix + ip).encode('latin-1')) ) if not (errorIndication or errorStatus): (var, val) = varBind[0] mac = Mac(val).prettyPrint() if mac: break except Exception as e: print 'snmp exception ' print e pass return mac def get_mac(ip): mac = '00:00:00:00:00:00' gw = get_gateway(ip) if gw: m = snmp_get_mac(gw, ip) if m: mac = m return mac if __name__ == '__main__': print get_mac('10.101.0.222')
from .openapi import ( JSONResponse, Parameter, ParameterIn, register_operation, RequestBody, Response, setup, ) __all__ = ( "JSONResponse", "Parameter", "ParameterIn", "register_operation", "RequestBody", "Response", "setup", )
import re import os class DevelopmentConfigs: _sds_pool_base = os.path.join(os.getcwd(), 'dev/sds_pool') _test_base = os.path.join(os.getcwd(), 'dev/test') SDS_PDF_FILES = os.path.join(_sds_pool_base, 'sds_pdf_files') SDS_TEXT_FILES = os.path.join(_sds_pool_base, 'sds_text_files') TEST_SDS_PDF_FILES = os.path.join(_test_base, 'test_sds_pdf_files') TEST_SDS_TEXT_FILES = os.path.join(_test_base, 'test_sds_text_files') class SDSRegexes: # list of keys used for regex lookup REQUEST_KEYS = [ 'manufacturer', 'product_name', 'flash_point', 'specific_gravity', 'nfpa_fire', 'nfpa_health', 'nfpa_reactivity', 'sara_311', 'revision_date', 'physical_state', 'cas_number', ] # SDS_FORMAT_REGEXES is a dict mapping manufacturer names ('Takasago', 'Robertet', etc.) # to a dict of regexes specific to the manufacturer SDS format where the keys are data_request_keys # and the values are regexes for those specific data searches SDS_FORMAT_REGEXES = { 'citrus_and_allied': { 'manufacturer': (r"(?P<data>\bcitrus\s*?and\s*?allied\b)", re.I), 'product_name': (r"chemical\s*?identification[\s:]*(?P<data>.*?)product", (re.S|re.I)), 'flash_point': (r"flash\s?point.*?(?P<data>\d+)[^c]{3}", (re.S|re.I)), 'specific_gravity': (r"specific\s*?gravity.*?:.*?(?P<data>[\d.]+)", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"NFPA.*?[F|f]ire.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_health': (r"NFPA.*?[H|h]ealth.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_reactivity': (r"NFPA.*?(([R|r]eactivity)|([I|i]nstability)).*?(?P<data>[0-4])", (re.S|re.I)), 'sara_311': (r"SARA 311(?P<data>.{80})", (re.S|re.I)), 'revision_date': (r"revision\s*?date\D*(?P<data>[\d\-\/]{6,15})", (re.S|re.I)), 'physical_state': (r"appearance.{0,80}(?P<data>(liquid|solid))", (re.S|re.I)) }, 'excellentia': { 'manufacturer': (r"(?P<data>\bexcellentia\b)", re.I), 'product_name': (r"trade\s*?name(\(s\))[\s:]*(?P<data>.*?)(·|article)", (re.S|re.I)), 'flash_point': (r"flash\s*?point([\sC\d°:\(\).]*?(?P<data>[0-9.]*)\s*?°?\s*?F)?", (re.S|re.I)), 'specific_gravity': (r"relative\s*?density[:\s]*(?P<data>[\d.]*)", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"nfpa.*?fire\D*(?P<data>\d)", (re.S|re.I)), 'nfpa_health': (r"nfpa.*?health\D*(?P<data>\d)", (re.S|re.I)), 'nfpa_reactivity': (r"nfpa.*?reactivity\D*(?P<data>\d)", (re.S|re.I)), 'sara_311': (r"sara 311(?P<data>.{80})", (re.S|re.I)), 'revision_date': (r"last\s*?revision\D*(?P<data>[\d\/]*)", (re.S|re.I)), 'physical_state': (r"appearance.{0,10}form\W*(?P<data>\w*)", (re.S|re.I)) }, 'firmenich': { 'manufacturer': (r"(?P<data>\bfirmenich\b)", re.I), 'product_name': (r"(chemical\s*?name|product)[\s:\d\w\-]*?(?P<data>[^\-\d:]*?)(revised|synonyms)", (re.S|re.I)), 'flash_point': (r"flash\s*?point.*?((?P<fahrenheit>\d[\d.,\s]*)°?\s*?(\bF\b|Fahrenheit)|(?P<celsius>\d[\d.,\s]*)°?C(?!.{1,50}?(\bF\b|Fahrenheit)))", (re.S|re.I)), 'specific_gravity': (r"specific\s*?gravity.{1,50}?(?P<data>\d*\.\d*)", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"NFPA.*?[F|f]ire.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_health': (r"NFPA.*?[H|h]ealth.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_reactivity': (r"NFPA.*?(([R|r]eactivity)|([I|i]nstability)).*?(?P<data>[0-4])", (re.S|re.I)), 'sara_311': (r"SARA 311(?P<data>.{80})", (re.S|re.I)), 'revision_date': (r"[R|r]evision [D|d]ate(?P<data>.{20})", (re.S|re.I)), 'physical_state': (r"F[\s]*?o[\s]*?r[\s]*?m[\s]*?\W(?P<data>.{30})", (re.S|re.I)) }, 'fisher': { 'manufacturer': (r"(?P<data>\bfisher\b)", re.I), 'product_name': (r"product\s*name\W*(?P<data>[()\d\-\w\s,+%]*?)(cat\b|stock)", (re.S|re.I)), 'flash_point': (r"flash\s*point.*?(?P<data>\d*)", (re.S|re.I)), 'specific_gravity': (r"(relative\s*density|specific\s*gravity)\D*?(?P<data>[\d.]*)", (re.S|re.I)), 'cas_number': (r"product\s*name.{1,250}[^a-z]cas\b.*?(?P<data>\d{2,7}-\d{2}-\d)", (re.S|re.I)), 'nfpa_fire': (r"NFPA.{0,1000}?flammability.{0,10}?(?P<data>[0-4]+?)", (re.S|re.I)), 'nfpa_health': (r"NFPA.{0,1000}?health.{0,10}?(?P<data>[0-4]+?)", (re.S|re.I)), 'nfpa_reactivity': (r"NFPA.{0,1000}?(reactivity|instability).{0,10}?(?P<data>[0-4]+?)", (re.S|re.I)), 'sara_311': (r"SARA 311(?P<data>.{80})", (re.S|re.I)), 'revision_date': (r"revision\s*date\s*?(?P<data>([\d\-\/.,a-z]|\s(?=(\d|jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)))*\d)", (re.S|re.I)), 'physical_state': (r"((P|p)hysical\s*(S|s)tate|\b(F|f)orm\b:?)\s*(?P<data>[A-Z][a-z]*)", (re.S)) }, 'frutarom': { 'manufacturer': (r"(?P<data>\bf\s*?r\s*?u\s*?t\s*?a\s*?r\s*?o\s*?m\b)", re.I), 'product_name': (r"\s[P|p]roduct\s(?P<data>.{80})", (re.S|re.I)), 'flash_point': (r"[F|f]lash\s*?[P|p]oint(?P<data>.{30})", (re.S|re.I)), 'specific_gravity': (r"([R|r]elative [D|d]ensity|[S|s]pecific [G|g]ravity)(?P<data>.{30})", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"NFPA.*?[F|f]ire.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_health': (r"NFPA.*?[H|h]ealth.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_reactivity': (r"NFPA.*?(([R|r]eactivity)|([I|i]nstability)).*?(?P<data>[0-4])", (re.S|re.I)), 'sara_311': (r"SARA 311(?P<data>.{80})", (re.S|re.I)), 'revision_date': (r"[R|r]evision [D|d]ate(?P<data>.{20})", (re.S|re.I)), 'physical_state': (r"F[\s]*?o[\s]*?r[\s]*?m[\s]*?\W(?P<data>.{30})", (re.S|re.I)) }, 'givaudan': { 'manufacturer': (r"(?P<data>\bgivaudan\b)", re.I), 'product_name': (r"sales\s*?no\.[:\s\d]*\s*?(?P<data>.*?)relevant", (re.S|re.I)), 'flash_point': (r"flash\s*?point([\sC\d°:\(.\)]*?(?P<data>[0-9.]*)\s*?°?\s*?F)?", (re.S|re.I)), 'specific_gravity': (r"(?<!bulk\s)density[\s:]*(?P<data>[\d\W]*)", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"nfpa.*fire.*?(?P<data>\d)", (re.S|re.I)), 'nfpa_health': (r"nfpa.*fire.*?(?P<data>\d)", (re.S|re.I)), 'nfpa_reactivity': (r"nfpa.*fire.*?(?P<data>\d)", (re.S|re.I)), 'sara_311': (r"sara\s*?311.*?((?P<fire>fire hazard\s*)|(?P<acute>acute health hazard\s*)|(?P<chronic>chronic health hazard\s*)|(?P<reactive>reactive hazard\s*)|(?P<sudden>sudden release of pressure\s*))+", (re.S|re.I)), 'revision_date': (r"revision\s*?date[:\s]*(?P<data>[\d\-\/\w\s]*?)\bp", (re.S|re.I)), 'physical_state': (r"physical\s*?state[\s:]*(?P<data>[\w]*)", (re.S|re.I)) }, 'iff': { 'manufacturer': (r"(?P<data>\biff\b)", re.I), 'product_name': (r"\sproduct\s*?name[:\s]*(?P<data>.*?)\biff\b", (re.S|re.I)), 'flash_point': (r"flash\s*?point([\sC\d°:\(.]*?(?P<data>[0-9.]*)\s*?°?\s*?F)?", (re.S|re.I)), 'specific_gravity': (r"relative\s*?density\s*?.*?:(?P<data>[\d\.\s]*)", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"NFPA.*?[F|f]ire.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_health': (r"NFPA.*?[H|h]ealth.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_reactivity': (r"NFPA.*?(([R|r]eactivity)|([I|i]nstability)).*?(?P<data>[0-4])", (re.S|re.I)), 'sara_311': (r"sara\s*?311.*?:(?P<data>(\s|fire|hazard|health|acute|chronic)*)", (re.S|re.I)), 'revision_date': (r"revision\s*?date[\s:]*(?P<data>[\d\/\-\s]*)", (re.S|re.I)), 'physical_state': (r"physical\s*?state[\s:]*(?P<data>\w*)", (re.S|re.I)) }, 'kerry': { 'manufacturer': (r"(?P<data>\bkerry\b)", re.I), 'product_name': (r"product\s*?name[\s:]*(?P<data>\D*)(\d|product)", (re.S|re.I)), 'flash_point': (r"flash\s*?point\D*(?P<data>[0-9. °CF]+)", (re.S|re.I)), 'specific_gravity': (r"relative\s*?density\D*(?P<data>[\d.]+)", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"NFPA.*?[F|f]ire.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_health': (r"NFPA.*?[H|h]ealth.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_reactivity': (r"NFPA.*?(([R|r]eactivity)|([I|i]nstability)).*?(?P<data>[0-4])", (re.S|re.I)), 'sara_311': (r"SARA 311(?P<data>.{80})", (re.S|re.I)), 'revision_date': (r"date\s*?of\s*?revision\D*(?P<data>[\d.\-\/]+)", (re.S|re.I)), 'physical_state': (r"appearance.{0,80}(?P<data>(liquid|solid))", (re.S|re.I)) }, 'pepsico_inc': { 'manufacturer': (r"(?P<data>\bpepsico\s*?inc\b)", re.I), 'product_name': (r"product\s*?name[\s:]*(?P<data>\D*)document", (re.S|re.I)), 'flash_point': (r"flash\s*point.{1,50}?((?P<farenheit>\d[\d°\s,]+)°\s*?f|(?P<celcius>\d[\d°\s,]+C(?![\d\s\(>,°]{1,50}?f)))", (re.S|re.I)), 'specific_gravity': (r"specific\s*?gravity\D{0,25}(?P<data>[\d,]*)", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"NFPA.*?[F|f]ire.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_health': (r"NFPA.*?[H|h]ealth.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_reactivity': (r"NFPA.*?(([R|r]eactivity)|([I|i]nstability)).*?(?P<data>[0-4])", (re.S|re.I)), 'sara_311': (r"SARA 311(?P<data>.{80})", (re.S|re.I)), 'revision_date': (r"revision\s*?date\D{0,25}(?P<data>\d[\d\-\w]*\d)", (re.S|re.I)), 'physical_state': (r"physical\s*?state[:\-\s]*(?P<data>\w*)", (re.S|re.I)) }, 'robertet': { 'manufacturer': (r"(?P<data>\br\s*?o\s*?b\s*?e\s*?r\s*?t\s*?e\s*?t\b)", re.I), 'product_name': (r"\s[P|p]roduct\s(?P<data>.{80})", (re.S|re.I)), 'flash_point': (r"[F|f]lash\s*?[P|p]oint(?P<data>.{30})", (re.S|re.I)), 'specific_gravity': (r"([R|r]elative [D|d]ensity|[S|s]pecific [G|g]ravity)(?P<data>.{30})", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"NFPA.*?[F|f]ire.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_health': (r"NFPA.*?[H|h]ealth.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_reactivity': (r"NFPA.*?(([R|r]eactivity)|([I|i]nstability)).*?(?P<data>[0-4])", (re.S|re.I)), 'sara_311': (r"SARA 311(?P<data>.{80})", (re.S|re.I)), 'revision_date': (r"[R|r]evision [D|d]ate(?P<data>.{20})", (re.S|re.I)), 'physical_state': (r"F[\s]*?o[\s]*?r[\s]*?m[\s]*?\W(?P<data>.{30})", (re.S|re.I)) }, 'sigma_aldrich': { 'manufacturer': (r"(?P<data>\bsigma[\-\s]*?aldrich\b)", re.I), 'product_name': (r"product\s*?name[\s:]*(?P<data>.*?)product", (re.S|re.I)), 'flash_point': (r"flash\s*?point([\sC\d°:\(.]*?(?P<data>[0-9.]*)\s*?°?\s*?F)?", (re.S|re.I)), 'specific_gravity': (r"relative\s*?density\D*(?P<data>[\d.]*)", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"nfpa.*fire.*?(?P<data>\d)", (re.S|re.I)), 'nfpa_health': (r"nfpa.*health.*?(?P<data>\d)", (re.S|re.I)), 'nfpa_reactivity': (r"nfpa.*reactivity.*?(?P<data>\d)", (re.S|re.I)), 'sara_311': (r"sara\s*?311\/312((?P<fire>fire hazard\s*)|(?P<acute>acute health hazard\s*)|(?P<chronic>chronic health hazard\s*)|(?P<reactive>reactive hazard\s*)|(?P<sudden>sudden release of pressure\s*)|\s|hazards)*", (re.S|re.I)), 'revision_date': (r"revision\s*?date\D*(?P<data>[\d\-\/]{6,15})", (re.S|re.I)), 'physical_state': (r"appearance.{0,10}form\W*(?P<data>\w*)", (re.S|re.I)) }, 'symrise': { 'manufacturer': (r"(?P<data>\bsymrise\b)", re.I), 'product_name': (r"product\s*?name[\s:]*(?P<data>.*?)material", (re.S|re.I)), 'flash_point': (r"flash\s*?point([\sC\d°:\(.]*?(?P<data>[0-9.]*)\s*?°?\s*?(F|C))?", (re.S|re.I)), 'specific_gravity': (r"relative\s*?density[:\s]*(?P<data>[\d.]*)", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"NFPA.*?[F|f]ire.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_health': (r"NFPA.*?[H|h]ealth.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_reactivity': (r"NFPA.*?(([R|r]eactivity)|([I|i]nstability)).*?(?P<data>[0-4])", (re.S|re.I)), 'sara_311': (r"SARA 311(?P<data>.{80})", (re.S|re.I)), 'revision_date': (r"revision\s*?date\D*(?P<data>[\d.]*)", (re.S|re.I)), 'physical_state': (r"F[\s]*?o[\s]*?r[\s]*?m[\s]*?\W(?P<data>.{30})", (re.S|re.I)) }, 'takasago': { 'manufacturer': (r"(?P<data>takasago)", re.I), 'product_name': (r"\s[P|p]roduct\s(?P<data>.{80})", (re.S|re.I)), 'flash_point': (r"[F|f]lash\s*?[P|p]oint(?P<data>.{30})", (re.S|re.I)), 'specific_gravity': (r"([R|r]elative [D|d]ensity|[S|s]pecific [G|g]ravity)(?P<data>.{30})", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"NFPA.*?[F|f]ire.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_health': (r"NFPA.*?[H|h]ealth.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_reactivity': (r"NFPA.*?(([R|r]eactivity)|([I|i]nstability)).*?(?P<data>[0-4])", (re.S|re.I)), 'sara_311': (r"SARA 311(?P<data>.{80})", (re.S|re.I)), 'revision_date': (r"[R|r]evision [D|d]ate(?P<data>.{20})", (re.S|re.I)), 'physical_state': (r"F[\s]*?o[\s]*?r[\s]*?m[\s]*?\W(?P<data>.{30})", (re.S|re.I)) }, 'treatt': { 'manufacturer': (r"(?P<data>\btreatt\b)", re.I), 'product_name': (r"product\s*identifier.*?product\s*name\s*(?P<data>[^\d]+)", (re.S|re.I)), 'flash_point': (r"flash\s*point.{1,50}?((?P<farenheit>\d[\d°\s,.]+°?\s*?f)|(?P<celcius>\d[\d°\s,“]+C(?![\d\s\(>,.°“\/]{1,50}?f)))", (re.S|re.I)), 'specific_gravity': (r"(relative density|specific gravity)(?P<data>.{30})", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"NFPA.*?[F|f]ire.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_health': (r"NFPA.*?[H|h]ealth.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_reactivity': (r"NFPA.*?(([R|r]eactivity)|([I|i]nstability)).*?(?P<data>[0-4])", (re.S|re.I)), 'sara_311': (r"SARA 311(?P<data>.{80})", (re.S|re.I)), 'revision_date': (r"revision\s*?date\s*(?P<data>[\d\-\w]*\d)", (re.S|re.I)), 'physical_state': (r"physical\s*?state\s*(?P<data>[\w ]*)", (re.S|re.I)) }, 'ungerer': { 'manufacturer': (r"(?P<data>\bungerer\s*?and\s*?company\b)", re.I), 'product_name': (r"product\s*?name\s*\w*\s?(?P<data>.*?)\d", (re.S|re.I)), 'flash_point': (r"flash\s*?point[\s\dc€°\/]*?(?P<data>[\d.]*)\s*?[€°]*?\s*?f", (re.S|re.I)), 'specific_gravity': (r"specific\s*?gravity\s*?(?P<data>[\d.]*)", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"nfpa.*flammability.*?(?P<data>\d)", (re.S|re.I)), 'nfpa_health': (r"nfpa.*health.*?(?P<data>\d)", (re.S|re.I)), 'nfpa_reactivity': (r"nfpa.*instability.*?(?P<data>\d)", (re.S|re.I)), 'sara_311': (r"sara\s*?311\/312(((?P<acute>acute health hazard)yes)|((?P<chronic>chronic health hazard)yes)|((?P<fire>fire hazard)yes)|((?P<sudden>sudden release of pressure hazard)yes)|((?P<reactive>reactive hazard)yes)|\s|hazard|categories|acute|health|yes|€|chronic|no|fire|sudden release of pressure|reactive)*", (re.S|re.I)), 'revision_date': (r"revision\s*?date[:€\s]*(?P<data>[\d\-\/\w]*?)€", (re.S|re.I)), 'physical_state': (r"physical\s*?state[\s\W\dc]*(?P<data>[\w]*)", (re.S|re.I)) }, } DEFAULT_SDS_FORMAT = { 'manufacturer': (r"[C|c]ompany(?P<data>.{80})", (re.S|re.I)), 'product_name': (r"\s[P|p]roduct\s(?P<data>.{80})", (re.S|re.I)), 'flash_point': (r"[F|f]lash\s*?[P|p]oint(?P<data>.{30})", (re.S|re.I)), 'specific_gravity': (r"([R|r]elative [D|d]ensity|[S|s]pecific [G|g]ravity)(?P<data>.{30})", (re.S|re.I)), 'cas_number': (r"CAS(?P<data>.{30})", (re.S|re.I)), 'nfpa_fire': (r"NFPA.*?[F|f]ire.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_health': (r"NFPA.*?[H|h]ealth.*?(?P<data>[0-4])", (re.S|re.I)), 'nfpa_reactivity': (r"NFPA.*?(([R|r]eactivity)|([I|i]nstability)).*?(?P<data>[0-4])", (re.S|re.I)), 'sara_311': (r"SARA 311(?P<data>.{80})", (re.S|re.I)), 'revision_date': (r"[R|r]evision [D|d]ate(?P<data>.{20})", (re.S|re.I)), 'physical_state': (r"F[\s]*?o[\s]*?r[\s]*?m[\s]*?\W(?P<data>.{30})", (re.S|re.I)) }
""" Created on Aug 20, 2020 @author: joseph-hellerstein Codes that provide various analyses of residuals. There are 3 types of timeseries: observed, fitted, and residuals (observed - fitted). Plots are organized by the timeseries and the characteristic analyzed. These characteristics are: (a) over time, (b) histogram. """ from SBstoat.namedTimeseries import NamedTimeseries import SBstoat._plotOptions as po from SBstoat import timeseriesPlotter as tp from docstring_expander.expander import Expander import numpy as np PLOT = "plot" class ResidualsAnalyzer(): def __init__(self, observedTS:NamedTimeseries, fittedTS:NamedTimeseries, residualsTS:NamedTimeseries=None, meanFittedTS=None, stdFittedTS=None, bandLowTS:NamedTimeseries=None, bandHighTS:NamedTimeseries=None, isPlot:bool=True): """ Parameters ---------- observedTS: Observed values residualsTS: same time values as observedTS fittedTS: fitted values may have different times than observedTS meanFittedTS: fitted values with same times as observedTS stdFittedTS: fitted values with same times as observedTS bandLowTS: timeseries that describes the lower band for timeseries1 bandhighTS: timeseries that describes the higher band for timeseries1 """ self.observedTS = observedTS self.fittedTS = fittedTS self.meanFittedTS = meanFittedTS self.stdFittedTS = stdFittedTS self.bandLowTS = bandLowTS self.bandHighTS = bandHighTS if residualsTS is None: self.residualsTS = self.observedTS.copy() cols = self.residualsTS.colnames self.residualsTS[cols] -= self.fittedTS[cols] self.residualsTS[cols] \ = np.nan_to_num(self.residualsTS[cols], nan=0.0) else: self.residualsTS = residualsTS.copy() ### Plotter self._plotter = tp.TimeseriesPlotter(isPlot=isPlot) @staticmethod def _addKeyword(kwargs:dict, key:str, value:object): if not key in kwargs: kwargs[key] = value @Expander(po.KWARGS, po.BASE_OPTIONS, indent=8, header=po.HEADER) def plotAll(self, **kwargs:dict): """ Does all residual plots. Parameters ---------- #@expand """ for name in dir(self): if name == "plotAll": continue if name[0:4] == PLOT: statement = "self.%s(**kwargs)" % name exec(statement) @Expander(po.KWARGS, po.BASE_OPTIONS, indent=8, header=po.HEADER) def plotResidualsOverTime(self, **kwargs:dict): """ Plots residuals of a fit over time. Parameters ---------- #@expand """ ResidualsAnalyzer._addKeyword(kwargs, po.MARKER, "o") ResidualsAnalyzer._addKeyword(kwargs, po.SUPTITLE, "Residuals Over Time") self._plotter.plotTimeSingle(self.residualsTS, **kwargs) @Expander(po.KWARGS, po.BASE_OPTIONS, indent=8, header=po.HEADER) def plotFittedObservedOverTime(self, **kwargs:dict): """ Plots the fit with observed data over time. Parameters ---------- #@expand """ title = "Observed vs. fitted" if self.bandLowTS is not None: title += " (with shading for 95th percentile)" ResidualsAnalyzer._addKeyword(kwargs, po.SUPTITLE, title) ResidualsAnalyzer._addKeyword(kwargs, po.MARKER, [None, "o", "^"]) legends = ["fitted", "observed"] if self.meanFittedTS is not None: legends.append("bootstrap fitted") ResidualsAnalyzer._addKeyword(kwargs, po.LEGEND, legends) ResidualsAnalyzer._addKeyword(kwargs, po.COLOR, ["b", "b", "r"]) self._plotter.plotTimeSingle( self.fittedTS, timeseries2=self.observedTS, meanTS=self.meanFittedTS, stdTS=self.stdFittedTS, bandLowTS=self.bandLowTS, bandHighTS=self.bandHighTS, **kwargs) @Expander(po.KWARGS, po.BASE_OPTIONS, includes=[po.BINS], indent=8, header=po.HEADER) def plotResidualsHistograms(self, **kwargs:dict): """ Plots histographs of parameter values from a bootstrap. Parameters ---------- parameters: List of parameters to do pairwise plots #@expand """ ResidualsAnalyzer._addKeyword(kwargs, po.SUPTITLE, "Residual Distributions") self._plotter.plotHistograms(self.residualsTS, **kwargs) @Expander(po.KWARGS, po.BASE_OPTIONS, indent=8, header=po.HEADER) def plotResidualsAutoCorrelations(self, **kwargs:dict): """ Plots auto correlations between residuals of columns. Parameters ---------- parameters: List of parameters to do pairwise plots #@expand """ ResidualsAnalyzer._addKeyword(kwargs, po.SUPTITLE, "Residual Autocorrelations") self._plotter.plotAutoCorrelations(self.residualsTS, **kwargs) @Expander(po.KWARGS, po.BASE_OPTIONS, indent=8, header=po.HEADER) def plotResidualCrossCorrelations(self, **kwargs:dict): """ Plots cross correlations between residuals of columns. Parameters ---------- parameters: List of parameters to do pairwise plots #@expand """ ResidualsAnalyzer._addKeyword(kwargs, po.SUPTITLE, "Residual Cross Correlations") self._plotter.plotCrossCorrelations(self.residualsTS, **kwargs)
import numpy as np def create_vocabulary(input_text): flat = ' '.join(input_text) vocabulary = list(set(flat)) vocab_size = len(vocabulary) char_to_idx = {char: idx for idx, char in enumerate(vocabulary)} idx_to_char = {idx: char for idx, char in enumerate(vocabulary)} return {'vocab_size': vocab_size, 'encoder': char_to_idx, 'decoder': idx_to_char} def train_test_split(lines, test_size=0.1): """ Split data into a train and test set. Set test size to control the fraction of rows in the test set. :param Xs: :param ys: :param test_size: :return: """ assert (0 < test_size < 1), "test_size must be between 0 and 1 (exclusive)" n_examples = len(lines) test_samples = int(round(n_examples * test_size)) train_samples = n_examples - test_samples idxs = np.arange(len(lines)) # mutable shuffling of indices np.random.shuffle(idxs) train_idxs = idxs[:train_samples] test_idxs = idxs[train_samples:] l_train = lines[train_idxs] l_test = lines[test_idxs] return l_train, l_test def text_to_input_and_target(text_lines): flattened = ' '.join(text_lines) xs = flattened[:-1] ys = flattened[1:] return xs, ys
def load(h): return ({'abbr': '2tplm10', 'code': 1, 'title': '2m temperature probability less than -10 C %'}, {'abbr': '2tplm5', 'code': 2, 'title': '2m temperature probability less than -5 C %'}, {'abbr': '2tpl0', 'code': 3, 'title': '2m temperature probability less than 0 C %'}, {'abbr': '2tpl5', 'code': 4, 'title': '2m temperature probability less than 5 C %'}, {'abbr': '2tpl10', 'code': 5, 'title': '2m temperature probability less than 10 C %'}, {'abbr': '2tpg25', 'code': 6, 'title': '2m temperature probability greater than 25 C %'}, {'abbr': '2tpg30', 'code': 7, 'title': '2m temperature probability greater than 30 C %'}, {'abbr': '2tpg35', 'code': 8, 'title': '2m temperature probability greater than 35 C %'}, {'abbr': '2tpg40', 'code': 9, 'title': '2m temperature probability greater than 40 C %'}, {'abbr': '2tpg45', 'code': 10, 'title': '2m temperature probability greater than 45 C %'}, {'abbr': 'mn2tplm10', 'code': 11, 'title': 'Minimum 2 metre temperature probability less than -10 C %'}, {'abbr': 'mn2tplm5', 'code': 12, 'title': 'Minimum 2 metre temperature probability less than -5 C %'}, {'abbr': 'mn2tpl0', 'code': 13, 'title': 'Minimum 2 metre temperature probability less than 0 C %'}, {'abbr': 'mn2tpl5', 'code': 14, 'title': 'Minimum 2 metre temperature probability less than 5 C %'}, {'abbr': 'mn2tpl10', 'code': 15, 'title': 'Minimum 2 metre temperature probability less than 10 C %'}, {'abbr': 'mx2tpg25', 'code': 16, 'title': 'Maximum 2 metre temperature probability greater than 25 C %'}, {'abbr': 'mx2tpg30', 'code': 17, 'title': 'Maximum 2 metre temperature probability greater than 30 C %'}, {'abbr': 'mx2tpg35', 'code': 18, 'title': 'Maximum 2 metre temperature probability greater than 35 C %'}, {'abbr': 'mx2tpg40', 'code': 19, 'title': 'Maximum 2 metre temperature probability greater than 40 C %'}, {'abbr': 'mx2tpg45', 'code': 20, 'title': 'Maximum 2 metre temperature probability greater than 45 C %'}, {'abbr': '10spg10', 'code': 21, 'title': '10 metre wind speed probability of at least 10 m/s %'}, {'abbr': '10spg15', 'code': 22, 'title': '10 metre wind speed probability of at least 15 m/s %'}, {'abbr': '10spg20', 'code': 23, 'title': '10 metre wind speed probability of at least 20 m/s %'}, {'abbr': '10spg35', 'code': 24, 'title': '10 metre wind speed probability of at least 35 m/s %'}, {'abbr': '10spg50', 'code': 25, 'title': '10 metre wind speed probability of at least 50 m/s %'}, {'abbr': '10gpg20', 'code': 26, 'title': '10 metre wind gust probability of at least 20 m/s %'}, {'abbr': '10gpg35', 'code': 27, 'title': '10 metre wind gust probability of at least 35 m/s %'}, {'abbr': '10gpg50', 'code': 28, 'title': '10 metre wind gust probability of at least 50 m/s %'}, {'abbr': '10gpg75', 'code': 29, 'title': '10 metre wind gust probability of at least 75 m/s %'}, {'abbr': '10gpg100', 'code': 30, 'title': '10 metre wind gust probability of at least 100 m/s %'}, {'abbr': 'tppg1', 'code': 31, 'title': 'Total precipitation probability of at least 1 mm %'}, {'abbr': 'tppg5', 'code': 32, 'title': 'Total precipitation probability of at least 5 mm %'}, {'abbr': 'tppg10', 'code': 33, 'title': 'Total precipitation probability of at least 10 mm %'}, {'abbr': 'tppg20', 'code': 34, 'title': 'Total precipitation probability of at least 20 mm %'}, {'abbr': 'tppg40', 'code': 35, 'title': 'Total precipitation probability of at least 40 mm %'}, {'abbr': 'tppg60', 'code': 36, 'title': 'Total precipitation probability of at least 60 mm %'}, {'abbr': 'tppg80', 'code': 37, 'title': 'Total precipitation probability of at least 80 mm %'}, {'abbr': 'tppg100', 'code': 38, 'title': 'Total precipitation probability of at least 100 mm %'}, {'abbr': 'tppg150', 'code': 39, 'title': 'Total precipitation probability of at least 150 mm %'}, {'abbr': 'tppg200', 'code': 40, 'title': 'Total precipitation probability of at least 200 mm %'}, {'abbr': 'tppg300', 'code': 41, 'title': 'Total precipitation probability of at least 300 mm %'}, {'abbr': 'sfpg1', 'code': 42, 'title': 'Snowfall probability of at least 1 mm %'}, {'abbr': 'sfpg5', 'code': 43, 'title': 'Snowfall probability of at least 5 mm %'}, {'abbr': 'sfpg10', 'code': 44, 'title': 'Snowfall probability of at least 10 mm %'}, {'abbr': 'sfpg20', 'code': 45, 'title': 'Snowfall probability of at least 20 mm %'}, {'abbr': 'sfpg40', 'code': 46, 'title': 'Snowfall probability of at least 40 mm %'}, {'abbr': 'sfpg60', 'code': 47, 'title': 'Snowfall probability of at least 60 mm %'}, {'abbr': 'sfpg80', 'code': 48, 'title': 'Snowfall probability of at least 80 mm %'}, {'abbr': 'sfpg100', 'code': 49, 'title': 'Snowfall probability of at least 100 mm %'}, {'abbr': 'sfpg150', 'code': 50, 'title': 'Snowfall probability of at least 150 mm %'}, {'abbr': 'sfpg200', 'code': 51, 'title': 'Snowfall probability of at least 200 mm %'}, {'abbr': 'sfpg300', 'code': 52, 'title': 'Snowfall probability of at least 300 mm %'}, {'abbr': 'tccpg10', 'code': 53, 'title': 'Total Cloud Cover probability greater than 10% %'}, {'abbr': 'tccpg20', 'code': 54, 'title': 'Total Cloud Cover probability greater than 20% %'}, {'abbr': 'tccpg30', 'code': 55, 'title': 'Total Cloud Cover probability greater than 30% %'}, {'abbr': 'tccpg40', 'code': 56, 'title': 'Total Cloud Cover probability greater than 40% %'}, {'abbr': 'tccpg50', 'code': 57, 'title': 'Total Cloud Cover probability greater than 50% %'}, {'abbr': 'tccpg60', 'code': 58, 'title': 'Total Cloud Cover probability greater than 60% %'}, {'abbr': 'tccpg70', 'code': 59, 'title': 'Total Cloud Cover probability greater than 70% %'}, {'abbr': 'tccpg80', 'code': 60, 'title': 'Total Cloud Cover probability greater than 80% %'}, {'abbr': 'tccpg90', 'code': 61, 'title': 'Total Cloud Cover probability greater than 90% %'}, {'abbr': 'tccpg99', 'code': 62, 'title': 'Total Cloud Cover probability greater than 99% %'}, {'abbr': 'hccpg10', 'code': 63, 'title': 'High Cloud Cover probability greater than 10% %'}, {'abbr': 'hccpg20', 'code': 64, 'title': 'High Cloud Cover probability greater than 20% %'}, {'abbr': 'hccpg30', 'code': 65, 'title': 'High Cloud Cover probability greater than 30% %'}, {'abbr': 'hccpg40', 'code': 66, 'title': 'High Cloud Cover probability greater than 40% %'}, {'abbr': 'hccpg50', 'code': 67, 'title': 'High Cloud Cover probability greater than 50% %'}, {'abbr': 'hccpg60', 'code': 68, 'title': 'High Cloud Cover probability greater than 60% %'}, {'abbr': 'hccpg70', 'code': 69, 'title': 'High Cloud Cover probability greater than 70% %'}, {'abbr': 'hccpg80', 'code': 70, 'title': 'High Cloud Cover probability greater than 80% %'}, {'abbr': 'hccpg90', 'code': 71, 'title': 'High Cloud Cover probability greater than 90% %'}, {'abbr': 'hccpg99', 'code': 72, 'title': 'High Cloud Cover probability greater than 99% %'}, {'abbr': 'mccpg10', 'code': 73, 'title': 'Medium Cloud Cover probability greater than 10% %'}, {'abbr': 'mccpg20', 'code': 74, 'title': 'Medium Cloud Cover probability greater than 20% %'}, {'abbr': 'mccpg30', 'code': 75, 'title': 'Medium Cloud Cover probability greater than 30% %'}, {'abbr': 'mccpg40', 'code': 76, 'title': 'Medium Cloud Cover probability greater than 40% %'}, {'abbr': 'mccpg50', 'code': 77, 'title': 'Medium Cloud Cover probability greater than 50% %'}, {'abbr': 'mccpg60', 'code': 78, 'title': 'Medium Cloud Cover probability greater than 60% %'}, {'abbr': 'mccpg70', 'code': 79, 'title': 'Medium Cloud Cover probability greater than 70% %'}, {'abbr': 'mccpg80', 'code': 80, 'title': 'Medium Cloud Cover probability greater than 80% %'}, {'abbr': 'mccpg90', 'code': 81, 'title': 'Medium Cloud Cover probability greater than 90% %'}, {'abbr': 'mccpg99', 'code': 82, 'title': 'Medium Cloud Cover probability greater than 99% %'}, {'abbr': 'lccpg10', 'code': 83, 'title': 'Low Cloud Cover probability greater than 10% %'}, {'abbr': 'lccpg20', 'code': 84, 'title': 'Low Cloud Cover probability greater than 20% %'}, {'abbr': 'lccpg30', 'code': 85, 'title': 'Low Cloud Cover probability greater than 30% %'}, {'abbr': 'lccpg40', 'code': 86, 'title': 'Low Cloud Cover probability greater than 40% %'}, {'abbr': 'lccpg50', 'code': 87, 'title': 'Low Cloud Cover probability greater than 50% %'}, {'abbr': 'lccpg60', 'code': 88, 'title': 'Low Cloud Cover probability greater than 60% %'}, {'abbr': 'lccpg70', 'code': 89, 'title': 'Low Cloud Cover probability greater than 70% %'}, {'abbr': 'lccpg80', 'code': 90, 'title': 'Low Cloud Cover probability greater than 80% %'}, {'abbr': 'lccpg90', 'code': 91, 'title': 'Low Cloud Cover probability greater than 90% %'}, {'abbr': 'lccpg99', 'code': 92, 'title': 'Low Cloud Cover probability greater than 99% %'})
#!/usr/bin/env python # -*- coding: ISO-8859-1 -*- # generated by wxGlade 0.4 on Sun Mar 26 01:48:08 2006 import wx class mainFrame(wx.Frame): def __init__(self, *args, **kwds): # begin wxGlade: mainFrame.__init__ kwds["style"] = wx.DEFAULT_FRAME_STYLE wx.Frame.__init__(self, *args, **kwds) self.panel_1 = wx.Panel(self, -1) self.sizer_4_staticbox = wx.StaticBox(self.panel_1, -1, "Message log") # Menu Bar self.frame_1_menubar = wx.MenuBar() self.SetMenuBar(self.frame_1_menubar) self.fileExitId = wx.NewId() self.windowGraphEditorId = wx.NewId() self.windowPythonShellId = wx.NewId() self.windowMinimiseChildrenId = wx.NewId() self.windowRestoreChildrenId = wx.NewId() self.testingAllTestsId = wx.NewId() self.helpContentsId = wx.NewId() self.helpAboutId = wx.NewId() wxglade_tmp_menu = wx.Menu() wxglade_tmp_menu.Append(self.fileExitId, "E&xit", "Exit DSCAS", wx.ITEM_NORMAL) self.frame_1_menubar.Append(wxglade_tmp_menu, "&File") wxglade_tmp_menu = wx.Menu() wxglade_tmp_menu.Append(self.windowGraphEditorId, "&Graph Editor", "Open up the graph editor window", wx.ITEM_NORMAL) wxglade_tmp_menu.Append(self.windowPythonShellId, "&Python Shell", "Show the Python Shell interface", wx.ITEM_NORMAL) wxglade_tmp_menu.AppendSeparator() wxglade_tmp_menu.Append(self.windowMinimiseChildrenId, "&Minimise children", "Minimise (iconise) all the child windows of the main window", wx.ITEM_NORMAL) wxglade_tmp_menu.Append(self.windowRestoreChildrenId, "&Restore children", "Restore all child windows of the main window.", wx.ITEM_NORMAL) self.frame_1_menubar.Append(wxglade_tmp_menu, "&Window") wxglade_tmp_menu = wx.Menu() wxglade_tmp_menu.Append(self.testingAllTestsId, "&All Tests", "Run all test suites.", wx.ITEM_NORMAL) self.frame_1_menubar.Append(wxglade_tmp_menu, "&Testing") wxglade_tmp_menu = wx.Menu() wxglade_tmp_menu.Append(self.helpContentsId, "&Contents\tF1", "Show the main help contents", wx.ITEM_NORMAL) wxglade_tmp_menu.Append(self.helpAboutId, "&About", "Get information about DeVIDE", wx.ITEM_NORMAL) self.frame_1_menubar.Append(wxglade_tmp_menu, "&Help") # Menu Bar end self.frame_1_statusbar = self.CreateStatusBar(1, 0) self.progressText = wx.StaticText(self.panel_1, -1, "...") self.progressGauge = wx.Gauge(self.panel_1, -1, 100) self.progressRaiseCheckBox = wx.CheckBox(self.panel_1, -1, "Raise this window when the progress is updated.") self.messageLogTextCtrl = wx.TextCtrl(self.panel_1, -1, "", style=wx.TE_MULTILINE|wx.TE_READONLY|wx.HSCROLL) self.__set_properties() self.__do_layout() # end wxGlade def __set_properties(self): # begin wxGlade: mainFrame.__set_properties self.SetTitle("DeVIDE main window") self.frame_1_statusbar.SetStatusWidths([-1]) # statusbar fields frame_1_statusbar_fields = ["Welcome to DeVIDE"] for i in range(len(frame_1_statusbar_fields)): self.frame_1_statusbar.SetStatusText(frame_1_statusbar_fields[i], i) self.progressText.SetFont(wx.Font(12, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "")) self.progressGauge.SetBackgroundColour(wx.Colour(50, 50, 204)) self.progressRaiseCheckBox.SetToolTipString("Each time the progress is updated, this window will be brought to the front. If you do not wish this behaviour, uncheck this box.") self.messageLogTextCtrl.SetFont(wx.Font(10, wx.DEFAULT, wx.NORMAL, wx.NORMAL, 0, "")) # end wxGlade def __do_layout(self): # begin wxGlade: mainFrame.__do_layout sizer_1 = wx.BoxSizer(wx.VERTICAL) sizer_3 = wx.BoxSizer(wx.VERTICAL) sizer_2 = wx.BoxSizer(wx.VERTICAL) sizer_4 = wx.StaticBoxSizer(self.sizer_4_staticbox, wx.HORIZONTAL) sizer_2.Add(self.progressText, 0, 0, 4) sizer_2.Add(self.progressGauge, 0, wx.EXPAND, 5) sizer_2.Add(self.progressRaiseCheckBox, 0, wx.TOP|wx.EXPAND|wx.ALIGN_CENTER_VERTICAL, 7) sizer_4.Add(self.messageLogTextCtrl, 1, wx.ALL|wx.EXPAND, 7) sizer_4.Add((0, 150), 0, 0, 0) sizer_2.Add(sizer_4, 1, wx.TOP|wx.EXPAND, 7) sizer_2.Add((600, 0), 0, 0, 0) sizer_3.Add(sizer_2, 1, wx.ALL|wx.EXPAND, 7) self.panel_1.SetAutoLayout(True) self.panel_1.SetSizer(sizer_3) sizer_3.Fit(self.panel_1) sizer_3.SetSizeHints(self.panel_1) sizer_1.Add(self.panel_1, 1, wx.EXPAND, 0) self.SetAutoLayout(True) self.SetSizer(sizer_1) sizer_1.Fit(self) sizer_1.SetSizeHints(self) self.Layout() # end wxGlade # end of class mainFrame if __name__ == "__main__": app = wx.PySimpleApp(0) wx.InitAllImageHandlers() frame_1 = mainFrame(None, -1, "") app.SetTopWindow(frame_1) frame_1.Show() app.MainLoop()
import json from pathlib import Path from typing import Tuple, Union from openff.recharge.aromaticity import AromaticityModels from openff.recharge.charges.bcc import ( BCCCollection, BCCParameter, original_am1bcc_corrections, ) from openff.recharge.charges.library import LibraryChargeCollection from openff.recharge.charges.qc import QCChargeSettings from openff.recharge.charges.vsite import ( BondChargeSiteParameter, DivalentLonePairParameter, VirtualSiteCollection, ) from openff.recharge.conformers import ConformerSettings ChargeCollection = Union[ Tuple[ConformerSettings, QCChargeSettings], LibraryChargeCollection ] def save_charge_model( output_directory: Path, charge_collection: ChargeCollection, bcc_collection: BCCCollection, v_site_collection: VirtualSiteCollection, ): output_directory.mkdir(parents=True, exist_ok=True) with Path(output_directory, "initial-parameters-base.json").open("w") as file: if isinstance(charge_collection, LibraryChargeCollection): file.write(charge_collection.json(indent=2)) else: json.dump( (charge_collection[0].dict(), charge_collection[1].dict()), file, indent=2, ) with Path(output_directory, "initial-parameters-bcc.json").open("w") as file: file.write(bcc_collection.json(indent=2)) with Path(output_directory, "initial-parameters-v-site.json").open("w") as file: file.write(v_site_collection.json(indent=2)) def generate_pyridine_only_model(conformer_settings: ConformerSettings): save_charge_model( output_directory=Path("pyridine-only", "no-v-sites"), charge_collection=(conformer_settings, QCChargeSettings(theory="am1")), bcc_collection=original_am1bcc_corrections(), v_site_collection=VirtualSiteCollection(parameters=[]), ) save_charge_model( output_directory=Path("pyridine-only", "v-sites"), charge_collection=(conformer_settings, QCChargeSettings(theory="am1")), bcc_collection=BCCCollection( parameters=[ BCCParameter( smirks=( "[#6X3H1a:1]1:" "[#7X2a:2]:" "[#6X3H1a]:" "[#6X3a]:" "[#6X3a]:" "[#6X3a]1" ), value=0.0, provenance=None, ), BCCParameter( smirks=( "[#1:2]" "[#6X3H1a:1]1:" "[#7X2a]:" "[#6X3H1a]:" "[#6X3a]:" "[#6X3a]:" "[#6X3a]1" ), value=0.0, provenance=None, ), *original_am1bcc_corrections().parameters, ], aromaticity_model=AromaticityModels.AM1BCC, ), v_site_collection=VirtualSiteCollection( parameters=[ DivalentLonePairParameter( smirks=( "[#6X3H1a:2]1:" "[#7X2a:1]:" "[#6X3H1a:3]:" "[#6X3a]:" "[#6X3a]:" "[#6X3a]1" ), name="EP", distance=0.35, out_of_plane_angle=0.0, charge_increments=(0.0, 0.35, 0.0), sigma=0.0, epsilon=0.0, match="once", ) ] ), ) def generate_halogen_only_model(conformer_settings: ConformerSettings): save_charge_model( output_directory=Path("halogens", "no-v-sites"), charge_collection=(conformer_settings, QCChargeSettings(theory="am1")), bcc_collection=original_am1bcc_corrections(), v_site_collection=VirtualSiteCollection(parameters=[]), ) save_charge_model( output_directory=Path("halogens", "v-sites-1"), charge_collection=(conformer_settings, QCChargeSettings(theory="am1")), bcc_collection=original_am1bcc_corrections(), v_site_collection=VirtualSiteCollection( parameters=[ BondChargeSiteParameter( smirks="[#6A:2]-[#17:1]", name="EP1", distance=1.0, charge_increments=(-0.05, 0.0), sigma=0.0, epsilon=0.0, match="all-permutations", ), BondChargeSiteParameter( smirks="[#6A:2]-[#35:1]", name="EP1", distance=1.0, charge_increments=(-0.05, 0.0), sigma=0.0, epsilon=0.0, match="all-permutations", ), ] ), ) save_charge_model( output_directory=Path("halogens", "v-sites-2"), charge_collection=(conformer_settings, QCChargeSettings(theory="am1")), bcc_collection=original_am1bcc_corrections(), v_site_collection=VirtualSiteCollection( parameters=[ BondChargeSiteParameter( smirks="[#6A:2]-[#17:1]", name="EP1", distance=0.35, charge_increments=(0.05, 0.0), sigma=0.0, epsilon=0.0, match="all-permutations", ), BondChargeSiteParameter( smirks="[#6A:2]-[#17:1]", name="EP2", distance=1.0, charge_increments=(-0.05, 0.0), sigma=0.0, epsilon=0.0, match="all-permutations", ), BondChargeSiteParameter( smirks="[#6A:2]-[#35:1]", name="EP1", distance=0.35, charge_increments=(0.05, 0.0), sigma=0.0, epsilon=0.0, match="all-permutations", ), BondChargeSiteParameter( smirks="[#6A:2]-[#35:1]", name="EP2", distance=1.0, charge_increments=(-0.05, 0.0), sigma=0.0, epsilon=0.0, match="all-permutations", ), ] ), ) def generate_vam1bcc_v1_charge_model(conformer_settings: ConformerSettings): save_charge_model( output_directory=Path("vam1bcc-v1", "no-v-sites"), charge_collection=(conformer_settings, QCChargeSettings(theory="am1")), bcc_collection=original_am1bcc_corrections(), v_site_collection=VirtualSiteCollection(parameters=[]), ) save_charge_model( output_directory=Path("vam1bcc-v1", "v-sites"), charge_collection=(conformer_settings, QCChargeSettings(theory="am1")), bcc_collection=BCCCollection( parameters=[ BCCParameter( smirks=( "[#6X3H1a:1]1:" "[#7X2a:2]:" "[#6X3H1a]:" "[#6X3a]:" "[#6X3a]:" "[#6X3a]1" ), value=0.0, provenance=None, ), BCCParameter( smirks=( "[#1:2]" "[#6X3H1a:1]1:" "[#7X2a]:" "[#6X3H1a]:" "[#6X3a]:" "[#6X3a]:" "[#6X3a]1" ), value=0.0, provenance=None, ), *original_am1bcc_corrections().parameters, ], aromaticity_model=AromaticityModels.AM1BCC, ), v_site_collection=VirtualSiteCollection( parameters=[ BondChargeSiteParameter( smirks="[#6a:2]-[#17:1]", name="EP1", distance=1.45, charge_increments=(-0.063, 0.0), sigma=0.0, epsilon=0.0, match="all-permutations", ), BondChargeSiteParameter( smirks="[#6A:2]-[#17:1]", name="EP1", distance=1.45, charge_increments=(-0.063, 0.0), sigma=0.0, epsilon=0.0, match="all-permutations", ), BondChargeSiteParameter( smirks="[#6a:2]-[#35:1]", name="EP1", distance=1.55, charge_increments=(-0.082, 0.0), sigma=0.0, epsilon=0.0, match="all-permutations", ), BondChargeSiteParameter( smirks="[#6A:2]-[#35:1]", name="EP1", distance=1.55, charge_increments=(-0.082, 0.0), sigma=0.0, epsilon=0.0, match="all-permutations", ), DivalentLonePairParameter( smirks=( "[#6X3H1a:2]1:" "[#7X2a:1]:" "[#6X3H1a:3]:" "[#6X3a]:" "[#6X3a]:" "[#6X3a]1" ), name="EP", distance=0.45, out_of_plane_angle=0.0, charge_increments=(0.0, 0.45, 0.0), sigma=0.0, epsilon=0.0, match="once", ), ] ), ) def main(): conformer_settings = ConformerSettings( method="omega-elf10", sampling_mode="dense", max_conformers=10 ) generate_pyridine_only_model(conformer_settings) generate_halogen_only_model(conformer_settings) generate_vam1bcc_v1_charge_model(conformer_settings) if __name__ == "__main__": main()
# Copyright 2020 Richard Jiang, Prashant Singh, Fredrik Wrede and Andreas Hellander # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Absolute epsilon selector """ from sciope.utilities.epsilonselectors.epsilon_selector import * class AbsoluteEpsilonSelector(EpsilonSelector): """ Creates an epsilon selector based on a fixed sequence. """ def __init__(self, epsilon_sequence): """ Parameters ---------- epsilon_sequence : Seqeunce[float] Sequence of epsilons to use. """ assert (len(epsilon_sequence) > 0) self.epsilon_sequence = epsilon_sequence self.last_round = len(self.epsilon_sequence) - 1 def get_initial_epsilon(self): """Gets the first epsilon in the sequence. Returns ------- epsilon : float The initial epsilon value of this sequence percentile : bool Whether the epsilon should be interpreted as a percentile has_more : bool Whether there are more epsilons after this one """ return self.epsilon_sequence[0], False, len(self.epsilon_sequence) == 1 def get_epsilon(self, round, abc_history): """Returns the n-th epsilon in the seqeunce. Parameters ---------- round : int the round to get the epsilon for abc_history : type A list of dictionaries with keys `accepted_samples` and `distances` representing the history of all ABC runs up to this point. Returns ------- epsilon : float The epsilon value for ABC-SMC percentile : bool Whether the epsilon should be interpreted as a percentile terminate : bool Whether to stop after this epsilon """ return self.epsilon_sequence[round], False, round == last_round
__version__="1.0.2"
# vFabric Administration Server API # Copyright (c) 2012 VMware, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from vas.sqlfire.AgentInstances import AgentInstance from vas.sqlfire.ServerInstances import ServerInstance from vas.sqlfire.Groups import Group from vas.sqlfire.InstallationImages import InstallationImage from vas.sqlfire.Installations import Installations, Installation from vas.sqlfire.LocatorInstances import LocatorInstance from vas.test.VasTestCase import VasTestCase class TestInstallations(VasTestCase): def test_list(self): self._assert_collection( Installations(self._client, 'https://localhost:8443/sqlfire/v1/groups/1/installations/')) def test_create(self): installation_image_location = 'https://localhost:8443/sqlfire/v1/installation-images/0/' location = 'https://localhost:8443/sqlfire/v1/groups/0/installations/' self._return_location('https://localhost:8443/sqlfire/v1/groups/1/installations/2/') installation = Installations(self._client, location).create( InstallationImage(self._client, installation_image_location)) self.assertIsInstance(installation, Installation) self._assert_post(location, {'image': installation_image_location}, 'installation') def test_detail(self): self._assert_item(Installation(self._client, 'https://localhost:8443/sqlfire/v1/groups/1/installations/2/'), [ ('version', '6.6.1'), ('group', lambda actual: self.assertIsInstance(actual, Group)), ('agent_instances', [ AgentInstance(self._client, 'https://localhost:8443/sqlfire/v1/groups/1/agent-instances/3/') ]), ('installation_image', lambda actual: self.assertIsInstance(actual, InstallationImage)), ('locator_instances', [ LocatorInstance(self._client, 'https://localhost:8443/sqlfire/v1/groups/1/locator-instances/6/'), LocatorInstance(self._client, 'https://localhost:8443/sqlfire/v1/groups/1/locator-instances/5/') ]), ('server_instances', [ ServerInstance(self._client, 'https://localhost:8443/sqlfire/v1/groups/1/server-instances/4/') ]) ]) def test_delete(self): self._assert_deletable( Installation(self._client, 'https://localhost:8443/sqlfire/v1/groups/1/installations/2/'))
# -*- coding: utf-8 -*- """Writer for travis.yml files.""" from __future__ import unicode_literals import os from l2tdevtools.dependency_writers import interface class TravisYMLWriter(interface.DependencyFileWriter): """Travis.yml file writer.""" _TEMPLATE_DIRECTORY = os.path.join('data', 'templates', '.travis.yml') PATH = '.travis.yml' def _GenerateFromTemplate(self, template_filename, template_mappings): """Generates file context based on a template file. Args: template_filename (str): path of the template file. template_mappings (dict[str, str]): template mappings, where the key maps to the name of a template variable. Returns: str: output based on the template string. Raises: RuntimeError: if the template cannot be formatted. """ template_filename = os.path.join( self._l2tdevtools_path, self._TEMPLATE_DIRECTORY, template_filename) return super(TravisYMLWriter, self)._GenerateFromTemplate( template_filename, template_mappings) def Write(self): """Writes a .travis.yml file.""" template_mappings = {} file_content = [] template_data = self._GenerateFromTemplate('header', template_mappings) file_content.append(template_data) if self._project_definition.name in ('dfvfs', 'plaso'): template_data = self._GenerateFromTemplate('jenkins', template_mappings) file_content.append(template_data) template_data = self._GenerateFromTemplate( 'allow_failures', template_mappings) file_content.append(template_data) template_data = self._GenerateFromTemplate('footer', template_mappings) file_content.append(template_data) file_content = ''.join(file_content) file_content = file_content.encode('utf-8') with open(self.PATH, 'wb') as file_object: file_object.write(file_content)
# -*- coding: utf-8 -*- import codecs import nltk from nltk.tokenize import sent_tokenize from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk import pos_tag from nltk.stem import WordNetLemmatizer from nltk.stem import PorterStemmer from nltk.corpus import treebank #mytext = """ربما كانت أحد أهم التطورات التي قامت بها الرياضيات العربية التي بدأت في هذا الوقت بعمل الخوارزمي و هي بدايات الجبر، و من المهم فهم كيف كانت هذه الفكرة الجديدة مهمة، فقد كانت خطوة ثورية بعيدا عن المفهوم اليوناني للرياضيات التي هي في جوهرها هندسة، الجبر كان نظرية موحدة تتيح الأعداد الكسرية و الأعداد اللا كسرية، و قدم وسيلة للتنمية في هذا الموضوع مستقبلا. و جانب آخر مهم لإدخال أفكار الجبر و هو أنه سمح بتطبيق الرياضيات على نفسها بطريقة لم تحدث من قبل""" mytext = """Perhaps one of the most significant advances made byArabic mathematicsbegan at this time with the work of al-Khwarizmi, namely the beginnings of algebra. It is important to understand just how significant this new idea was. It was a revolutionary move away from the Greek concept of mathematics which was essentially geometry. Algebra was a unifying theory which allowedrational numbers,irrational numbers, geometrical magnitudes, etc., to all be treated as "algebraic objects". It gave mathematics a whole new development path so much broader in concept to that which had existed before, and provided a vehicle for future development of the subject. Another important aspect of the introduction of algebraic ideas was that it allowed mathematics to be applied to itselfin a way which had not happened before.""" words = word_tokenize(mytext) phrase = sent_tokenize(mytext) print("\nsent_tokenize : ", phrase) print("#" * 50) print("\nword_tokenize : ", words) stopWords = set(stopwords.words('english')) wordsFiltered = [] lemmatizing = [] stemming = [] for w in words: if w not in stopWords: wordsFiltered.append(w) lemmatizing.append(WordNetLemmatizer().lemmatize(w)) stemming.append(PorterStemmer().stem(w)) tagg = pos_tag(wordsFiltered) print("#" * 50) print(tagg) print("#" * 50) print(nltk.chunk.ne_chunk(tagg)) print("#" * 50) print(lemmatizing) print("#" * 50) print(stemming) print("#" * 50) #tree_bank = treebank.parsed_sents('wsj_0001.mrg')[0] # tree_bank.draw()
import logging import time from useful.resource.readers import ResourceURL, readers from useful.resource.parsers import parsers _log = logging.getLogger(__name__) def cached_load(timeout=300): """ Define timeout to be used in `load()` function. Args: timeout (int, optional): Number of seconds to cache data without checking if it has changed in any way. Defaults to 300. Returns: function: A function using timeout variable """ memory = {} def load(url, mimetype=None, parser=None, hook=None): """ Load resource from uri or cache if already used before. Args: url (str): String represeting URL specified in RFC 1738. mimetype (str, optional): Forced MIME type if not None. Defaults to None. parser (useful.resource.parsers.Parser, optional): A parser class to use instead of parsers from useful.resource.parsers.parsers. Defaults to None. hook (callable, optional): An optional function to call after reading and parsing the data. Defaults to None. Raises: ValueError: No reader supports provided url scheme ValueError: No parser supports provided mimetype Returns: object: Final data after running reader, parser and hook on the resource url """ hash_ = None # get the reader from url resource_url = ResourceURL(url, mimetype=mimetype) try: reader = readers[resource_url.scheme] except KeyError: raise ValueError( f"Unsupported reader scheme '{resource_url.scheme}'") reader = reader(url=resource_url) # if url has been cached for less than `timeout` or hash sum of the # resource is still equal, return cached value if url in memory: now = time.time() if now - memory[url]['time'] < timeout: _log.debug( f"Url '{url}' in memory for less then {timeout} seconds", extra={"url": url, "timeout": timeout}) return memory[url]['data'] else: hash_ = reader.hash() if hash_ == memory[url]['hash']: _log.debug( f"Url '{url}' in memory hasn't changed hash sum", extra={"url": url, "hash": hash_}) # update object timestamp in memory memory[url]['time'] = now return memory[url]['data'] # if url has been cached but needs to update use cached hook as a # hook, otherwise use function parameter hook as hook object hook = memory.get(url, {}).get("hook", hook) # use already calculated above hash sum or calculate hash sum if it was # never calculated hash_ = hash_ or reader.hash() # use user-provided parser or get parser from mimetype try: parser = parser or parsers[resource_url.mimetype] parser = parser(reader=reader) except KeyError: raise ValueError( f"Unsupported parser mimetype {resource_url.mimetype}") # parse data provided by reader data = parser.parse() # call hook on data if hook is not None: data = hook(data) # cache results and other relevant data memory[url] = { 'time': time.time(), 'hash': hash_, 'data': data, 'hook': hook } _log.debug(f"Upserting url '{url}' in memory", extra={"url": url, "hash": hash_}) return data return load load = cached_load(timeout=300)
# coding: utf-8 """ Workflow Execution Service No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v1 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import libica.openapi.libwes from libica.openapi.libwes.api.workflow_versions_api import WorkflowVersionsApi # noqa: E501 from libica.openapi.libwes.rest import ApiException class TestWorkflowVersionsApi(unittest.TestCase): """WorkflowVersionsApi unit test stubs""" def setUp(self): self.api = libica.openapi.libwes.api.workflow_versions_api.WorkflowVersionsApi() # noqa: E501 def tearDown(self): pass def test_create_workflow_version(self): """Test case for create_workflow_version Create a new workflow version # noqa: E501 """ pass def test_get_workflow_version(self): """Test case for get_workflow_version Get the details of a workflow version # noqa: E501 """ pass def test_launch_workflow_version(self): """Test case for launch_workflow_version Launch a workflow version # noqa: E501 """ pass def test_list_all_workflow_versions(self): """Test case for list_all_workflow_versions Get a list of all workflow versions # noqa: E501 """ pass def test_list_workflow_versions(self): """Test case for list_workflow_versions Get a list of workflow versions # noqa: E501 """ pass def test_update_workflow_version(self): """Test case for update_workflow_version Update an existing workflow version # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: tfutils.py # Author: Qian Ge <geqian1001@gmail.com> import tensorflow as tf def sample_normal_single(mean, stddev, name=None): return tf.random_normal( # shape=mean.get_shape(), shape=tf.shape(mean), mean=mean, stddev=stddev, dtype=tf.float32, seed=None, name=name, )
import sys from importlib import reload from django.urls import clear_url_caches import pytest pytestmark = pytest.mark.django_db DOCS_URL = "/docs/" @pytest.fixture def all_urlconfs(): return [ "apps.core.urls", "apps.users.urls", "conf.urls", # The ROOT_URLCONF must be last! ] @pytest.fixture def reloaded_urlconfs(all_urlconfs): def _reloaded_urlconfs(): """ Use this to ensure all urlconfs are reloaded as needed before the test. """ clear_url_caches() for urlconf in all_urlconfs: if urlconf in sys.modules: reload(sys.modules[urlconf]) return _reloaded_urlconfs def test_docs_view_public_api_doc_true(client, settings, reloaded_urlconfs): """Test docs view when PUBLIC_API_DOCUMENTATION is True.""" settings.STATICFILES_STORAGE = ( "django.contrib.staticfiles.storage.StaticFilesStorage" ) # added because swagger need statifiles to show web page settings.PUBLIC_API_DOCUMENTATION = True settings.DEBUG = False reloaded_urlconfs() response = client.get(DOCS_URL) assert response.status_code == 200 def test_docs_view_debug_true(client, settings, reloaded_urlconfs): """Test docs view when DEBUG is True.""" settings.STATICFILES_STORAGE = ( "django.contrib.staticfiles.storage.StaticFilesStorage" ) # added because swagger need statifiles to show web page settings.DEBUG = True settings.PUBLIC_API_DOCUMENTATION = False reloaded_urlconfs() response = client.get(DOCS_URL) assert response.status_code == 200 def test_docs_view_env_false(client, settings, reloaded_urlconfs): """Test docs view when PUBLIC_API_DOCUMENTATION is False.""" settings.PUBLIC_API_DOCUMENTATION = False settings.DEBUG = False reloaded_urlconfs() response = client.get(DOCS_URL) assert response.status_code == 404
# -*- coding: utf-8 -*- """Align the Prefix Commons with the Bioregistry.""" from typing import Any, Dict, Mapping, Sequence from bioregistry.align.utils import Aligner from bioregistry.external.prefix_commons import get_prefix_commons __all__ = [ "PrefixCommonsAligner", ] class PrefixCommonsAligner(Aligner): """Aligner for Prefix Commons.""" key = "prefixcommons" getter = get_prefix_commons curation_header = ["formatter", "identifiers", "purl"] def get_skip(self) -> Mapping[str, str]: """Get entries for prefix commons that should be skipped.""" return { "fbql": "not a real resource, as far as I can tell", } def prepare_external(self, external_id, external_entry) -> Dict[str, Any]: """Prepare Prefix Commons data to be added to the Prefix Commons for each BioPortal registry entry.""" formatter = external_entry["formatter"].strip() return { "formatter": formatter, "is_identifiers": formatter.startswith("http://identifiers.org"), "is_obo": formatter.startswith("http://purl.obolibrary.org"), } def get_curation_row(self, external_id, external_entry) -> Sequence[str]: """Prepare curation rows for unaligned Prefix Commons registry entries.""" formatter = external_entry["formatter"].strip() return [ formatter, formatter.startswith("http://identifiers.org"), formatter.startswith("http://purl.obolibrary.org"), ] if __name__ == "__main__": PrefixCommonsAligner.align()
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import ast import time from heatclient import client as heat_client from heatclient import exc as heat_exc from keystoneclient.v2_0 import client as keyclient from neutron._i18n import _LE from neutron._i18n import _LW from neutron.db import model_base from neutron import manager from neutron.plugins.common import constants as pconst from oslo_config import cfg from oslo_log import helpers as log from oslo_log import log as logging from oslo_serialization import jsonutils import sqlalchemy as sa from gbpservice.neutron.services.servicechain.common import exceptions as exc LOG = logging.getLogger(__name__) cfg.CONF.import_group('keystone_authtoken', 'keystonemiddleware.auth_token') service_chain_opts = [ cfg.IntOpt('stack_delete_retries', default=5, help=_("Number of attempts to retry for stack deletion")), cfg.IntOpt('stack_delete_retry_wait', default=3, help=_("Wait time between two successive stack delete " "retries")), cfg.StrOpt('heat_uri', default='http://localhost:8004/v1', help=_("Heat server address to create services " "specified in the service chain.")), cfg.StrOpt('heat_ca_certificates_file', default=None, help=_('CA file for heatclient to verify server certificates')), cfg.BoolOpt('heat_api_insecure', default=False, help=_("If True, ignore any SSL validation issues")), ] cfg.CONF.register_opts(service_chain_opts, "simplechain") # Service chain API supported Values sc_supported_type = [pconst.LOADBALANCER, pconst.FIREWALL] STACK_DELETE_RETRIES = cfg.CONF.simplechain.stack_delete_retries STACK_DELETE_RETRY_WAIT = cfg.CONF.simplechain.stack_delete_retry_wait class ServiceChainInstanceStack(model_base.BASEV2): """ServiceChainInstance stacks owned by the servicechain driver.""" __tablename__ = 'sc_instance_stacks' instance_id = sa.Column(sa.String(36), nullable=False, primary_key=True) stack_id = sa.Column(sa.String(36), nullable=False, primary_key=True) class SimpleChainDriver(object): @log.log_method_call def initialize(self): pass @log.log_method_call def create_servicechain_node_precommit(self, context): if context.current['service_profile_id'] is None: if context.current['service_type'] not in sc_supported_type: raise exc.InvalidServiceTypeForReferenceDriver() elif context.current['service_type']: LOG.warning(_LW('Both service_profile_id and service_type are' 'specified, service_type will be ignored.')) @log.log_method_call def create_servicechain_node_postcommit(self, context): pass @log.log_method_call def update_servicechain_node_precommit(self, context): if (context.original['config'] != context.current['config']): filters = {'servicechain_spec': context.original[ 'servicechain_specs']} sc_instances = context._plugin.get_servicechain_instances( context._plugin_context, filters) if sc_instances: raise exc.NodeUpdateNotSupported() @log.log_method_call def update_servicechain_node_postcommit(self, context): pass @log.log_method_call def delete_servicechain_node_precommit(self, context): pass @log.log_method_call def delete_servicechain_node_postcommit(self, context): pass @log.log_method_call def create_servicechain_spec_precommit(self, context): pass @log.log_method_call def create_servicechain_spec_postcommit(self, context): pass @log.log_method_call def update_servicechain_spec_precommit(self, context): pass @log.log_method_call def update_servicechain_spec_postcommit(self, context): if context.original['nodes'] != context.current['nodes']: filters = {'servicechain_spec': [context.original['id']]} sc_instances = context._plugin.get_servicechain_instances( context._plugin_context, filters) for sc_instance in sc_instances: self._update_servicechain_instance(context, sc_instance, context._sc_spec) @log.log_method_call def delete_servicechain_spec_precommit(self, context): pass @log.log_method_call def delete_servicechain_spec_postcommit(self, context): pass @log.log_method_call def create_servicechain_instance_precommit(self, context): pass @log.log_method_call def create_servicechain_instance_postcommit(self, context): sc_instance = context.current sc_spec_ids = sc_instance.get('servicechain_specs') for sc_spec_id in sc_spec_ids: sc_spec = context._plugin.get_servicechain_spec( context._plugin_context, sc_spec_id) sc_node_ids = sc_spec.get('nodes') self._create_servicechain_instance_stacks(context, sc_node_ids, sc_instance, sc_spec) @log.log_method_call def update_servicechain_instance_precommit(self, context): pass @log.log_method_call def update_servicechain_instance_postcommit(self, context): original_spec_ids = context.original.get('servicechain_specs') new_spec_ids = context.current.get('servicechain_specs') if set(original_spec_ids) != set(new_spec_ids): for new_spec_id in new_spec_ids: newspec = context._plugin.get_servicechain_spec( context._plugin_context, new_spec_id) self._update_servicechain_instance(context, context.current, newspec) @log.log_method_call def delete_servicechain_instance_precommit(self, context): pass @log.log_method_call def delete_servicechain_instance_postcommit(self, context): self._delete_servicechain_instance_stacks(context._plugin_context, context.current['id']) @log.log_method_call def create_service_profile_precommit(self, context): if context.current['service_type'] not in sc_supported_type: raise exc.InvalidServiceTypeForReferenceDriver() @log.log_method_call def create_service_profile_postcommit(self, context): pass @log.log_method_call def update_service_profile_precommit(self, context): pass @log.log_method_call def update_service_profile_postcommit(self, context): pass @log.log_method_call def delete_service_profile_precommit(self, context): pass @log.log_method_call def delete_service_profile_postcommit(self, context): pass def _get_ptg(self, context, ptg_id): return self._get_resource(self._grouppolicy_plugin, context._plugin_context, 'policy_target_group', ptg_id) def _get_pt(self, context, pt_id): return self._get_resource(self._grouppolicy_plugin, context._plugin_context, 'policy_target', pt_id) def _get_port(self, context, port_id): return self._get_resource(self._core_plugin, context._plugin_context, 'port', port_id) def _get_ptg_subnet(self, context, ptg_id): ptg = self._get_ptg(context, ptg_id) return ptg.get("subnets")[0] def _get_member_ips(self, context, ptg_id): ptg = self._get_ptg(context, ptg_id) pt_ids = ptg.get("policy_targets") member_addresses = [] for pt_id in pt_ids: pt = self._get_pt(context, pt_id) port_id = pt.get("port_id") port = self._get_port(context, port_id) ipAddress = port.get('fixed_ips')[0].get("ip_address") member_addresses.append(ipAddress) return member_addresses def _fetch_template_and_params(self, context, sc_instance, sc_spec, sc_node): stack_template = sc_node.get('config') # TODO(magesh):Raise an exception ?? if not stack_template: LOG.error(_LE("Service Config is not defined for the service" " chain Node")) return stack_template = jsonutils.loads(stack_template) config_param_values = sc_instance.get('config_param_values', {}) stack_params = {} # config_param_values has the parameters for all Nodes. Only apply # the ones relevant for this Node if config_param_values: config_param_values = jsonutils.loads(config_param_values) config_param_names = sc_spec.get('config_param_names', []) if config_param_names: config_param_names = ast.literal_eval(config_param_names) # This service chain driver knows how to fill in two parameter values # for the template at present. # 1)Subnet -> Provider PTG subnet is used # 2)PoolMemberIPs -> List of IP Addresses of all PTs in Provider PTG # TODO(magesh):Process on the basis of ResourceType rather than Name # eg: Type: OS::Neutron::PoolMember # Variable number of pool members is not handled yet. We may have to # dynamically modify the template json to achieve that member_ips = [] provider_ptg_id = sc_instance.get("provider_ptg_id") # If we have the key "PoolMemberIP*" in template input parameters, # fetch the list of IPs of all PTs in the PTG for key in config_param_names or []: if "PoolMemberIP" in key: member_ips = self._get_member_ips(context, provider_ptg_id) break member_count = 0 for key in config_param_names or []: if "PoolMemberIP" in key: value = (member_ips[member_count] if len(member_ips) > member_count else '0') member_count = member_count + 1 config_param_values[key] = value elif key == "Subnet": value = self._get_ptg_subnet(context, provider_ptg_id) config_param_values[key] = value node_params = (stack_template.get('Parameters') or stack_template.get('parameters')) if node_params: for parameter in config_param_values.keys(): if parameter in node_params.keys(): stack_params[parameter] = config_param_values[parameter] return (stack_template, stack_params) def _create_servicechain_instance_stacks(self, context, sc_node_ids, sc_instance, sc_spec): heatclient = HeatClient(context._plugin_context) for sc_node_id in sc_node_ids: sc_node = context._plugin.get_servicechain_node( context._plugin_context, sc_node_id) stack_template, stack_params = self._fetch_template_and_params( context, sc_instance, sc_spec, sc_node) stack_name = ("stack_" + sc_instance['name'] + sc_node['name'] + sc_instance['id'][:8]) stack = heatclient.create( stack_name.replace(" ", ""), stack_template, stack_params) self._insert_chain_stack_db( context._plugin_context.session, sc_instance['id'], stack['stack']['id']) def _delete_servicechain_instance_stacks(self, context, instance_id): stack_ids = self._get_chain_stacks(context.session, instance_id) heatclient = HeatClient(context) for stack in stack_ids: heatclient.delete(stack.stack_id) for stack in stack_ids: self._wait_for_stack_delete(heatclient, stack.stack_id) self._delete_chain_stacks_db(context.session, instance_id) # Wait for the heat stack to be deleted for a maximum of 15 seconds # we check the status every 3 seconds and call sleep again # This is required because cleanup of subnet fails when the stack created # some ports on the subnet and the resource delete is not completed by # the time subnet delete is triggered by Resource Mapping driver def _wait_for_stack_delete(self, heatclient, stack_id): stack_delete_retries = STACK_DELETE_RETRIES while True: try: stack = heatclient.get(stack_id) if stack.stack_status == 'DELETE_COMPLETE': return elif stack.stack_status == 'DELETE_FAILED': heatclient.delete(stack_id) except Exception: LOG.exception(_LE( "Service Chain Instance cleanup may not have " "happened because Heat API request failed " "while waiting for the stack %(stack)s to be " "deleted"), {'stack': stack_id}) return else: time.sleep(STACK_DELETE_RETRY_WAIT) stack_delete_retries = stack_delete_retries - 1 if stack_delete_retries == 0: LOG.warning(_LW( "Resource cleanup for service chain instance" " is not completed within %(wait)s seconds" " as deletion of Stack %(stack)s is not" " completed"), {'wait': (STACK_DELETE_RETRIES * STACK_DELETE_RETRY_WAIT), 'stack': stack_id}) return else: continue def _get_instance_by_spec_id(self, context, spec_id): filters = {'servicechain_spec': [spec_id]} return context._plugin.get_servicechain_instances( context._plugin_context, filters) def _update_servicechain_instance(self, context, sc_instance, newspec): self._delete_servicechain_instance_stacks(context._plugin_context, sc_instance['id']) sc_node_ids = newspec.get('nodes') self._create_servicechain_instance_stacks(context, sc_node_ids, sc_instance, newspec) def _delete_chain_stacks_db(self, session, sc_instance_id): with session.begin(subtransactions=True): stacks = session.query(ServiceChainInstanceStack ).filter_by(instance_id=sc_instance_id ).all() for stack in stacks: session.delete(stack) def _insert_chain_stack_db(self, session, sc_instance_id, stack_id): with session.begin(subtransactions=True): chainstack = ServiceChainInstanceStack( instance_id=sc_instance_id, stack_id=stack_id) session.add(chainstack) def _get_chain_stacks(self, session, sc_instance_id): with session.begin(subtransactions=True): stack_ids = session.query(ServiceChainInstanceStack.stack_id ).filter_by(instance_id=sc_instance_id ).all() return stack_ids def _get_resource(self, plugin, context, resource, resource_id): obj_getter = getattr(plugin, 'get_' + resource) obj = obj_getter(context, resource_id) return obj @property def _core_plugin(self): # REVISIT(Magesh): Need initialization method after all # plugins are loaded to grab and store plugin. return manager.NeutronManager.get_plugin() @property def _grouppolicy_plugin(self): # REVISIT(Magesh): Need initialization method after all # plugins are loaded to grab and store plugin. plugins = manager.NeutronManager.get_service_plugins() grouppolicy_plugin = plugins.get(pconst.GROUP_POLICY) if not grouppolicy_plugin: LOG.error(_LE("No Grouppolicy service plugin found.")) raise exc.ServiceChainDeploymentError() return grouppolicy_plugin class HeatClient(object): def __init__(self, context, password=None): api_version = "1" self.tenant = context.tenant self._keystone = None endpoint = "%s/%s" % (cfg.CONF.simplechain.heat_uri, self.tenant) kwargs = { 'token': self._get_auth_token(self.tenant), 'username': context.user_name, 'password': password, 'cacert': cfg.CONF.simplechain.heat_ca_certificates_file, 'insecure': cfg.CONF.simplechain.heat_api_insecure } self.client = heat_client.Client(api_version, endpoint, **kwargs) self.stacks = self.client.stacks def create(self, name, data, parameters=None): fields = { 'stack_name': name, 'timeout_mins': 10, 'disable_rollback': True, 'password': data.get('password') } fields['template'] = data fields['parameters'] = parameters return self.stacks.create(**fields) def delete(self, stack_id): try: self.stacks.delete(stack_id) except heat_exc.HTTPNotFound: LOG.warning(_LW( "Stack %(stack)s created by service chain driver is " "not found at cleanup"), {'stack': stack_id}) def get(self, stack_id): return self.stacks.get(stack_id) @property def keystone(self): if not self._keystone: keystone_conf = cfg.CONF.keystone_authtoken if keystone_conf.get('auth_uri'): auth_url = keystone_conf.auth_uri else: auth_url = ('%s://%s:%s/v2.0/' % ( keystone_conf.auth_protocol, keystone_conf.auth_host, keystone_conf.auth_port)) user = (keystone_conf.get('admin_user') or keystone_conf.username) pw = (keystone_conf.get('admin_password') or keystone_conf.password) self._keystone = keyclient.Client( username=user, password=pw, auth_url=auth_url, tenant_id=self.tenant) return self._keystone def _get_auth_token(self, tenant): return self.keystone.get_token(tenant)
import json import time from fidesops.core.config import load_toml from fidesops.models.connectionconfig import ( AccessLevel, ConnectionConfig, ConnectionType, ) from fidesops.models.datasetconfig import DatasetConfig import pytest import pydash import os from typing import Any, Dict, Generator from tests.fixtures.application_fixtures import load_dataset from tests.fixtures.saas_example_fixtures import load_config from sqlalchemy.orm import Session from fidesops.schemas.saas.shared_schemas import SaaSRequestParams, HTTPMethod from fidesops.service.connectors import SaaSConnector from fidesops.util import cryptographic_util from fidesops.util.saas_util import format_body saas_config = load_toml("saas_config.toml") HUBSPOT_FIRSTNAME = "SomeoneFirstname" @pytest.fixture(scope="function") def hubspot_secrets(): return { "domain": pydash.get(saas_config, "hubspot.domain") or os.environ.get("HUBSPOT_DOMAIN"), "hapikey": pydash.get(saas_config, "hubspot.hapikey") or os.environ.get("HUBSPOT_HAPIKEY"), } @pytest.fixture(scope="function") def hubspot_identity_email(): return pydash.get(saas_config, "hubspot.identity_email") or os.environ.get( "HUBSPOT_IDENTITY_EMAIL" ) @pytest.fixture(scope="session") def hubspot_erasure_identity_email(): return f"{cryptographic_util.generate_secure_random_string(13)}@email.com" @pytest.fixture def hubspot_config() -> Dict[str, Any]: return load_config("data/saas/config/hubspot_config.yml") @pytest.fixture def hubspot_dataset() -> Dict[str, Any]: return load_dataset("data/saas/dataset/hubspot_dataset.yml")[0] @pytest.fixture(scope="function") def connection_config_hubspot( db: Session, hubspot_config, hubspot_secrets, ) -> Generator: fides_key = hubspot_config["fides_key"] connection_config = ConnectionConfig.create( db=db, data={ "key": fides_key, "name": fides_key, "connection_type": ConnectionType.saas, "access": AccessLevel.write, "secrets": hubspot_secrets, "saas_config": hubspot_config, }, ) yield connection_config connection_config.delete(db) @pytest.fixture def dataset_config_hubspot( db: Session, connection_config_hubspot: ConnectionConfig, hubspot_dataset, hubspot_config, ) -> Generator: fides_key = hubspot_config["fides_key"] connection_config_hubspot.name = fides_key connection_config_hubspot.key = fides_key connection_config_hubspot.save(db=db) dataset = DatasetConfig.create( db=db, data={ "connection_config_id": connection_config_hubspot.id, "fides_key": fides_key, "dataset": hubspot_dataset, }, ) yield dataset dataset.delete(db=db) @pytest.fixture(scope="function") def hubspot_erasure_data(connection_config_hubspot, hubspot_erasure_identity_email) -> Generator: """ Gets the current value of the resource and restores it after the test is complete. Used for erasure tests. """ connector = SaaSConnector(connection_config_hubspot) body = json.dumps({ "properties": { "company": "test company", "email": hubspot_erasure_identity_email, "firstname": HUBSPOT_FIRSTNAME, "lastname": "SomeoneLastname", "phone": "(123) 123-1234", "website": "someone.net" } }) updated_headers, formatted_body = format_body({}, body) # create contact contacts_request: SaaSRequestParams = SaaSRequestParams( method=HTTPMethod.POST, path=f"/crm/v3/objects/contacts", headers=updated_headers, body=formatted_body, ) contacts_response = connector.create_client().send(contacts_request) contacts_body = contacts_response.json() contact_id = contacts_body["id"] # no need to subscribe contact, since creating a contact auto-subscribes them # Allows contact to be propagated in Hubspot before calling access / erasure requests remaining_tries = 5 while _contact_exists(hubspot_erasure_identity_email, connector) is False: if remaining_tries < 1: raise Exception(f"Contact with contact id {contact_id} could not be added to Hubspot") time.sleep(5) yield contact_id # delete contact delete_request: SaaSRequestParams = SaaSRequestParams( method=HTTPMethod.DELETE, path=f"/crm/v3/objects/contacts/{contact_id}", ) connector.create_client().send(delete_request) # verify contact is deleted remaining_tries = 5 while _contact_exists(hubspot_erasure_identity_email, connector) is True: if remaining_tries < 1: raise Exception(f"Contact with contact id {contact_id} could not be deleted from Hubspot") time.sleep(5) # Ensures contact is deleted def _contact_exists(hubspot_erasure_identity_email: str, connector: SaaSConnector) -> bool: """ Confirm whether contact exists by calling search api and comparing firstname str. """ body = json.dumps({ "filterGroups": [{ "filters": [{ "value": hubspot_erasure_identity_email, "propertyName": "email", "operator": "EQ" }] }] }) updated_headers, formatted_body = format_body({}, body) contact_request: SaaSRequestParams = SaaSRequestParams( method=HTTPMethod.POST, path="/crm/v3/objects/contacts/search", headers=updated_headers, body=formatted_body, ) contact_response = connector.create_client().send(contact_request) contact_body = contact_response.json() return bool(contact_body["results"] and contact_body["results"][0]["properties"]["firstname"] == HUBSPOT_FIRSTNAME)
#!/usr/bin/python3 # coding : utf-8 def letter_position(letter): # Lowercase if letter >= 97 and letter <= 122: return letter - 97 # Uppercase elif letter >= 65 and letter <= 90: return letter - 65 else: return 0 def letter_case(letter): # Lowercase if letter >= 97 and letter <= 122: return 'lowercase' # Uppercase elif letter >= 65 and letter <= 90: return 'uppercase' # Other else: return 'other'
import os from datetime import datetime from course_lib.Base.Evaluation.Evaluator import EvaluatorHoldout from scripts.model_selection.cross_validate_utils import write_results_on_file, get_seed_list from scripts.scripts_utils import read_split_load_data from src.data_management.data_reader import get_ICM_train_new, get_ignore_users from src.model import new_best_models from src.model.KNN.ItemKNNCBFCFRecommender import ItemKNNCBFCFRecommender from src.model_management.CrossEvaluator import EvaluatorCrossValidationKeepKOut from src.utils.general_utility_functions import get_project_root_path, get_seed_lists, get_split_seed # CONSTANTS TO MODIFY K_OUT = 1 CUTOFF = 10 ALLOW_COLD_USERS = False LOWER_THRESHOLD = -1 # Remove users below or equal this threshold (default value: -1) UPPER_THRESHOLD = 22 # Remove users above or equal this threshold (default value: 2**16-1) IGNORE_NON_TARGET_USERS = True # VARIABLES TO MODIFY model_name = "item_cbf_cf" recommender_class = ItemKNNCBFCFRecommender model_parameters = new_best_models.ItemCBF_CF.get_best_parameters() if __name__ == '__main__': # Set seed in order to have same splitting of data seed_list = get_seed_list() num_folds = len(seed_list) URM_train_list = [] evaluator_list = [] ICM_train_list = [] for i in range(num_folds): data_reader = read_split_load_data(K_OUT, ALLOW_COLD_USERS, seed_list[i]) URM_train, URM_test = data_reader.get_holdout_split() ICM_all, _ = get_ICM_train_new(data_reader) ignore_users = get_ignore_users(URM_train, data_reader.get_original_user_id_to_index_mapper(), lower_threshold=LOWER_THRESHOLD, upper_threshold=UPPER_THRESHOLD, ignore_non_target_users=IGNORE_NON_TARGET_USERS) evaluator = EvaluatorHoldout(URM_test, cutoff_list=[CUTOFF], ignore_users=ignore_users) URM_train_list.append(URM_train) evaluator_list.append(evaluator) ICM_train_list.append(ICM_all) # Setting evaluator evaluator = EvaluatorCrossValidationKeepKOut(URM_train_list, evaluator_list, cutoff=CUTOFF) results = evaluator.crossevaluateContentRecommender(recommender_class, model_parameters, ICM_train_list) # Writing on file cross validation results date_string = datetime.now().strftime('%b%d_%H-%M-%S') cross_valid_path = os.path.join(get_project_root_path(), "report/cross_validation/") file_path = os.path.join(cross_valid_path, "cross_valid_{}_{}.txt".format(model_name, date_string)) write_results_on_file(file_path, recommender_class.RECOMMENDER_NAME, model_parameters, num_folds, seed_list, results)
# Test akara.dist.setup() import sys import os import tempfile import subprocess import shutil from akara import dist class SetupException(Exception): pass # Do a bit of extra work since nosetests might run in the top-level # Akara directory or in test/ . dirname = os.path.dirname(__file__) setup_scripts_dir = os.path.join(dirname, "setup_scripts") assert os.path.isdir(setup_scripts_dir), setup_scripts_dir def call_setup(args): p = subprocess.Popen([sys.executable] + args, stdout = subprocess.PIPE, stderr = subprocess.STDOUT, cwd=setup_scripts_dir) stdout = p.stdout.read() p.wait() if p.returncode != 0: raise SetupException("setup.py failure %d: %s" % (p.returncode, stdout,)) # print here to help in case of failures; # nosetests prints captured stdout print stdout def test_basic(): dirname = tempfile.mkdtemp(prefix="akara_setup_test_") try: call_setup(["setup_basic.py", "install", "--root", dirname, "--akara-modules-dir", dirname]) assert os.path.exists(os.path.join(dirname, "blah.py")) finally: shutil.rmtree(dirname) def test_missing(): try: call_setup(["setup_missing.py", "install", "--root", "/../this/does/not/exist", "--akara-modules-dir", "/../this/does/not/exist"]) raise AssertionError except SetupException, err: s = str(err) assert "you need to include the 'akara_extensions' parameter" in s, s def test_bad_ext(): try: call_setup(["setup_bad_ext.py", "install", "--root", "/../this/does/not/exist", "--akara-modules-dir", "/../this/does/not/exist"]) raise AssertionError except SetupException, err: s = str(err) assert "Akara extensions must end with '.py'" in s, s def test_specifying_config(): dirname = tempfile.mkdtemp(prefix="akara_setup_test_") config_filename = os.path.join(dirname, "akara.conf") try: f = open(config_filename, "w") f.write("class Akara: ConfigRoot = %r + '/blather'\n" % dirname) f.close() call_setup(["setup_basic.py", "install", "--root", dirname, "--akara-config", config_filename]) assert os.path.exists(os.path.join(dirname, "blather", "modules", "blah.py")) finally: shutil.rmtree(dirname) # dirname has priority def test_specifying_config_and_dir(): dirname = tempfile.mkdtemp(prefix="akara_setup_test_") try: try: call_setup(["setup_basic.py", "install", "--root", dirname, "--akara-config", "setup_akara.conf", "--akara-modules-dir", dirname]) assert os.path.exists(os.path.join(dirname, "blah.py")) except SetupException, err: s = str(err) assert "flapdoodle" in s, s finally: shutil.rmtree(dirname)
from sklearn.model_selection import GridSearchCV class HypoSearcher(object): def __init__(self, clf): self.clf = clf def optimize(self, x, y, params): clf_search = GridSearchCV(self.clf, params, verbose=100).fit(x, y) clf = clf_search.best_estimator_ return clf
""" This file is part of the L3Morpho package. L3Morpho is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. L3Morpho is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with L3Morpho. If not, see <http://www.gnu.org/licenses/>. ------------------------------------------------------- Cascades of weighted finite state transducers. -- 2011-05-20 Split off from fst.py. """ import re, os, time, functools from .semiring import * from .fst import FST ###################################################################### # CONTENTS ###################################################################### # 1. Finite State Transducer Cascade # 2. Alternation Rules # 3. Morphotactics ###################################################################### ###################################################################### # Constants ###################################################################### FST_DIRECTORY = os.path.join(os.path.dirname(__file__), os.path.pardir, 'FST') ## Regexs for parsing cascades # string_set_label={chars1, chars1, chars2, ...} SS_RE = re.compile('(\S+)\s*=\s*\{(.*)\}', re.U) # weighting = UNIFICATION WEIGHTING_RE = re.compile('weighting\s*=\s*(.*)') # >fst< CASC_FST_RE = re.compile(r'>(.*?)<') # cascade name = {0, 1, 3, ...} SUBCASC_RE = re.compile('cascade\s*(\S+)\s*=\s*\{(.*)\}') # +lex+ CASC_LEX_RE = re.compile(r'\+(.*?)\+') ###################################################################### # Finite State Transducer Cascade ###################################################################### class FSTCascade(list): """ A list of FSTs to be composed. """ def __init__(self, label, *fsts): list.__init__(self, fsts) self.label = label # String sets, abbreviated in cascade file self._stringsets = {} # Semiring weighting for all FSTs; defaults to FSS with unification self._weighting = UNIFICATION_SR # Composition of FSTs self._composition = None # All FSTs, including those not in the composition self._fsts = {} # Language this cascade belongs to self.language = None # Initial weight to use during transduction self.init_weight = None # Dictionary of lists of FST indices, for particular purposes self._cascades = {} def __str__(self): """Print name for cascade.""" return 'FST cascade ' + self.label def add(self, fst): """Add an FST to the dictionary with its label as key.""" self._fsts[fst.label] = fst def inverted(self): """Return a list of inverted FSTs in the cascade.""" fsts = [(fst.inverted() if isinstance(fst, FST) else fst) for fst in self] inv = FSTCascade(self.label + '_inv', *fsts) inv.init_weight = self.init_weight inv._weighting = self._weighting inv._stringsets = self._stringsets return inv def compose(self, begin=0, end=None, first=None, last=None, subcasc=None, backwards=False, relabel=True, trace=0): """Compose the FSTs that make up the cascade list or a sublist, including possible first and last FSTs.""" if len(self) == 1: return self[0] else: fsts = [] if subcasc: if subcasc not in self._cascades: raise ValueError("%r is not a valid subscascade label" % subcasc) fsts = [self[i] for i in self._cascades[subcasc]] else: fsts = self[begin:(end if end != None else len(self))] # end could be 0 if first: fsts = [first] + fsts if last: fsts.append(last) return FST.compose(fsts, self.label + '@', relabel=relabel, trace=trace) def mult_compose(self, ends): begin = 0 fsts = [] for end in ends: fsts.append(self.compose(begin, end)) begin = end fsts.append(self.compose(begin, len(self))) return fsts def rev_compose(self, split_index, begin=0, trace=0): """Compose the FSTs in the cascade in two steps.""" # Compose from split_index to end c1 = self.compose(begin=split_index, trace=trace) # Compose from beginning to split_index return self.compose(begin=begin, end=split_index, last=c1, trace=trace) def compose_backwards(self, indices=[], subcasc=None, trace=0): if not indices: if subcasc: # Use a copy of the cascade indices because we're going to reverse them indices = list(self._cascades[subcasc]) else: indices = range(len(self)) indices.reverse() c = FST.compose([self[indices[1]], self[indices[0]]], trace=trace) for n in indices[2:]: c = FST.compose([self[n], c], trace=trace) return c def composition(self, begin=0, end=None): """The composed FSTs.""" if not self._composition: self._composition = self.compose(begin=begin, end=end or len(self)) return self._composition def transduce(self, inp_string, inp_weight, fsts, seg_units=[]): result = [[inp_string, inp_weight]] for fst in fsts: print(fst.label) result = reduce_lists([fst.transduce(x[0], x[1], seg_units=seg_units) for x in result]) if not result: return False return result def stringset(self, label): """A labeled set of strings.""" return self._stringsets.get(label, None) def stringset_label(self, stringset): """The label for a stringset if it's in the dict.""" for label, sset in self._stringsets.items(): if stringset == sset: return label def stringset_intersection(self, ss_label1=None, ss_label2=None, ss1=None, ss2=None): """Label for the intersection of two stringsets or element if only one. Either the labels or the stringsets or both are provided.""" ss1 = ss1 or self.stringset(ss_label1) ss2 = ss2 or self.stringset(ss_label2) ss_label1 = ss_label1 or self.stringset_label(ss1) ss_label2 = ss_label2 or self.stringset_label(ss2) if ss1 and ss2: intersect = ss1 & ss2 if intersect: # could be empty if len(intersect) == 1: # If there's only one element, don't create a new stringset return list(intersect)[0] # Otherwise create a new stringset i_label = self.stringset_label(intersect) if i_label: # The stringset intersection is already in the dict return i_label # The stringset intersection is not in the dict # Add it and return its label new_label = FSTCascade.simplify_intersection_label(ss_label1, ss_label2) return new_label @staticmethod def simplify_intersection_label(label1, label2): """Simplify an intersection label by eliminating common elements.""" if not '&' in label1 and not '&' in label2: # the two expressions between with the same stringset return FSTCascade.simplify_difference_intersection_labels(label1, label2) else: return '&'.join(set(label1.split('&')) | set(label2.split('&'))) @staticmethod def simplify_difference_intersection_labels(label1, label2): """Simplify an intersection of differences if first elements are the same.""" labels1 = label1.split('-') labels2 = label2.split('-') if labels1[0] == labels2[0]: set1 = set(labels1[1].split(',')) if len(labels1) > 1 else set() set2 = set(labels2[1].split(',')) if len(labels2) > 1 else set() subtracted = set1 | set2 return labels1[0] + '-' + ','.join(subtracted) else: return label1 + '&' + label2 def generate_stringset(self, label): """Make a stringset from a label. L: stored stringset L1-L2: difference of two stored stringsets L1-abc: difference of stringset L1 and the set of characters {abc} L1&L2: intersection of two stringsets (stored or generated) """ ss = self.stringset(label) if ss: return ss if '-' in label or '&' in label: return self.intersect_stringsets(label.split('&')) def subtract_stringsets(self, label1, label2): """Difference between stringsets with labels or sets of characters.""" ss1 = self.stringset(label1) if not ss1: ss1 = set([label1]) ss2 = self.stringset(label2) if not ss2: ss2 = set([label2]) # set consisting of single phoneme/grapheme return ss1 - ss2 def intersect_stringsets(self, labels): """Intersection of stringsets with given labels.""" return functools.reduce(lambda x, y: x.intersection(y), [self.diff_stringset(label) for label in labels]) def diff_stringset(self, label): """label is either a stored stringset or a stringset difference expression.""" ss = self.stringset(label) if ss: return ss labels = label.split("-") # Assume there's only one - return self.subtract_strings(labels[0], labels[1]) def subtract_strings(self, label1, label2): """Difference between stringsets with labels or sets of characters.""" ss1 = self.stringset(label1) if not ss1: ss1 = set(label1.split(',')) ss2 = self.stringset(label2) if not ss2: ss2 = set(label2.split(',')) return ss1 - ss2 def add_stringset(self, label, seq): """Add a labeled set of strings, updating sigma accordingly.""" self._stringsets[label] = frozenset(seq) def weighting(self): """The weighting semiring for the cascade.""" return self._weighting def set_weighting(self, label): """Set the weighting for the cascade.""" label = label.lower() if 'uni' in label: self._weighting = UNIFICATION_SR elif 'prob' in label: self._weighting = PROBABILITY_SR elif 'trop' in label: self._weighting = TROPICAL_SR def get(self, label): """The FST with the given label.""" return self._fsts.get(label) def set_init_weight(self, fs): self.init_weight = FSSet(fs) @staticmethod def load(filename, seg_units=[], create_networks=True, subcasc=None, language=None, weight_constraint=None, verbose=True): """ Load an FST cascade from a file. If not create_networks, only create the weighting and string sets. """ if verbose: print('Loading FST cascade from', filename) directory, fil = os.path.split(filename) label = del_suffix(fil, '.') return FSTCascade.parse(label, open(filename, encoding='utf-8').read(), directory=directory, subcasc=subcasc, create_networks=create_networks, seg_units=seg_units, language=language, weight_constraint=weight_constraint, verbose=verbose) @staticmethod def parse(label, s, directory='', create_networks=True, seg_units=[], subcasc=None, language=None, weight_constraint=None, verbose=False): """ Parse an FST cascade from the contents of a file as a string. If not create_networks, only create the weighting and string sets. """ cascade = FSTCascade(label) cascade.language = language cascade.seg_units = seg_units lines = s.split('\n')[::-1] subcasc_indices = [] while lines: line = lines.pop().split('#')[0].strip() # strip comments if not line: continue # Weighting for all FSTs m = WEIGHTING_RE.match(line) if m: cascade.set_weighting(m.group(1)) continue # Subcascade, specifying indices # label = {i, j, ...} m = SUBCASC_RE.match(line) if m: label, indices = m.groups() indices = [int(i.strip()) for i in indices.split(',')] cascade._cascades[label] = indices # If we're only loading a certain subcascade and this is it, save its indices if label == subcasc: subcasc_indices = indices continue # String set (a list, converted to a frozenset) m = SS_RE.match(line) if m: label, strings = m.groups() # Characters may contain unicode # strings = strings.decode('utf8') cascade.add_stringset(label, [s.strip() for s in strings.split(',')]) continue # FST m = CASC_FST_RE.match(line) if m: if create_networks: label = m.group(1) filename = label + '.fst' if not subcasc_indices or len(cascade) in subcasc_indices: fst = FST.load(os.path.join(directory, filename), cascade=cascade, weighting=cascade.weighting(), seg_units=seg_units, weight_constraint=weight_constraint, verbose=verbose) else: fst = 'FST' + str(len(cascade)) if verbose: print('Skipping FST', label) cascade.append(fst) continue # FST in a lex file m = CASC_LEX_RE.match(line) if m: if create_networks: label = m.group(1) # handle specs filename = label + '.lex' if not subcasc_indices or len(cascade) in subcasc_indices: fst = FST.load(os.path.join(directory, filename), cascade=cascade, weighting=cascade.weighting(), seg_units=seg_units, weight_constraint=weight_constraint, verbose=verbose, lex_features=True) if verbose: print('Adding lex FST', label, 'to cascade') else: fst = 'FST' + str(len(cascade)) if verbose: print('Skipping lex FST', label) cascade.append(fst) continue raise ValueError("bad line: %r" % line) return cascade
import gdb class Register : """ Helper to access register bitfield >>> reg = Register(0x80000000000812d0) >>> hex(reg.get_bitfield(60, 4)) '0x8' >>> hex(reg.get_bitfield(0, 44)) '0x812d0' >>> reg.set_bitfield(60, 4, 9) >>> hex(reg.value) '0x90000000000812d0' >>> reg.set_bitfield(0, 44, 0x1A15d6) >>> hex(reg.value) '0x90000000001a15d6' """ def __init__(self, value): self.value = int(value) & 0xffffffffffffffff def get_bitfield(self, bitIdx, size): """get bitfield value of a register Args: bitIdx ([integer]): least signifiant bit of the bitfield to get in register size ([integer]): size of the bitfield to get Returns: [integer]: the data field that start at bit 'bitIdx' index of length 'size' """ mask = (1 << size) - 1 val = (self.value & (mask << bitIdx)) >> bitIdx return (val) def set_bitfield(self, bitIdx, size, value): """get bitfield value of a register Args: bitIdx ([integer]): least signifiant bit of the bitfield to set in register size ([integer]): [description] value ([integer]): [description] """ mask = (1 << size) - 1 self.value = self.value & ~(mask << bitIdx) bitfield = (value & mask) << bitIdx self.value = self.value | bitfield class VAddrTranslate(gdb.Command): """Print translated address form virtual memory""" PPNSIZE = 44 def _read_phy_memory(self, address, length): current_inferior = gdb.selected_inferior () satp = Register(gdb.parse_and_eval("$satp")) previous_mode = satp.get_bitfield(60, 4) satp.set_bitfield(60, 4, 0) gdb.execute("set $satp =" + hex(satp.value)) try: value = current_inferior.read_memory(address, length) finally: satp.set_bitfield(60, 4, previous_mode) gdb.execute("set $satp =" + hex(satp.value)) return(value) def _translate_SVXX(self, vAddr, PTESize, levels, pageSize, VPNSize, VASize, ppnLengths): # valid for RV64 satp = Register(gdb.parse_and_eval("$satp")) ppn = satp.get_bitfield(0, self.PPNSIZE) asid = satp.get_bitfield(self.PPNSIZE, 16) mode = satp.get_bitfield(60, 4) if mode == 0 : print("No translation or protection") return vpn = [] vAddr = Register(vAddr) for i in range(levels): vpn.append(vAddr.get_bitfield(12 + i * VPNSize, VPNSize)) #step 1 i = levels - 1 a = ppn * pageSize while (i >= 0) : # step 2 pte_val = self._read_phy_memory(a + vpn[i] * PTESize, 8) pte_val = int.from_bytes(pte_val, "little", signed=False) pte = Register(pte_val) # step 3 pte_v = pte.get_bitfield(0,1) pte_r = pte.get_bitfield(1,1) pte_w = pte.get_bitfield(2,1) pte_x = pte.get_bitfield(3,1) if (pte_v == 0) or (pte_r == 0 and pte_w == 1) : print("error page-fault should have been raised\n") return None # step 4 if (pte_r == 1) or (pte_x == 1) : break else : i = i - 1 if i < 0 : print("error page-fault should have been raised\n") return else : a = pte.get_bitfield(10,44) * pageSize # step 5 : print access rights print("access rights: " + "r:" + str(pte_r) + " w:" + str(pte_w) + " x:" + str(pte_x)) # step 6 check missaligned if (i > 0) and pte.get_bitfield(10, i * 9) != 0: print("error page-fault should be raised: misaligned superpage\n") return # cannot do step 7 checks pAddr = Register(0) # add offset pAddr.set_bitfield(0,12, vAddr.get_bitfield(0,12)) if i > 0 : va_vpn = vAddr.get_bitfield(12, 9 * i) pAddr.set_bitfield(12, 9 * i, va_vpn) pAddr.set_bitfield(12 + sum(ppnLengths[0:i]), sum(ppnLengths[i:levels]), pte.get_bitfield(10 + sum(ppnLengths[0:i]), sum(ppnLengths[i:levels]))) print("pAddr: " + hex(pAddr.value)) class SV39AddrTranslate(VAddrTranslate): """Print translated address form virtual memory""" def __init__(self): super(SV39AddrTranslate, self).__init__( "sv39translate", gdb.COMMAND_USER ) def _translate_SV39(self, vAddr): PTESIZE = 8 LEVELS = 3 PAGESIZE = 4096 VPNSIZE = 9 VASIZE = 39 PPNLENGTHS = [9,9,26] self._translate_SVXX(vAddr, PTESIZE, LEVELS, PAGESIZE, VPNSIZE, VASIZE, PPNLENGTHS) def invoke(self, args, from_tty): addr = int(gdb.parse_and_eval(args)) self._translate_SV39(addr) class SV48AddrTranslate(VAddrTranslate): """Print translated address form virtual memory""" def __init__(self): super(SV48AddrTranslate, self).__init__( "sv48translate", gdb.COMMAND_USER ) def _translate_SV48(self, vAddr): PTESIZE = 8 LEVELS = 4 PAGESIZE = 4096 VPNSIZE = 9 VASIZE = 48 PPNLENGTHS = [9,9,9,17] self._translate_SVXX(vAddr, PTESIZE, LEVELS, PAGESIZE, VPNSIZE, VASIZE, PPNLENGTHS) def invoke(self, args, from_tty): addr = int(gdb.parse_and_eval(args)) self._translate_SV48(addr) SV39AddrTranslate() SV48AddrTranslate()
import sys with open(sys.argv[1], "r") as a_file: for line in a_file: print(line.strip() .replace(u'\u00AD', ' '))
from django import forms class DocumentForm(forms.Form): docfile = forms.FileField(label='Select a file') def clean_file(self): docfile = self.cleaned_data['docfile'] ext = docfile.name.split('.')[-1].lower() if ext not in ["pdf"]: raise forms.ValidationError("Only pdf and pdf files are allowed.") return docfile
# Generated by Django 2.1.7 on 2019-03-11 02:00 import django.utils.datetime_safe from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("db_data", "0012_auto_20190210_1637")] operations = [ migrations.AddField( model_name="officer", name="officer_since", field=models.DateField(default=django.utils.datetime_safe.date.today), preserve_default=False, ) ]
"""Package signing.""" import pickle from django_q import core_signing as signing from django_q.conf import Conf BadSignature = signing.BadSignature class SignedPackage: """Wraps Django's signing module with custom Pickle serializer.""" @staticmethod def dumps(obj, compressed: bool = Conf.COMPRESSED) -> str: return signing.dumps( obj, key=Conf.SECRET_KEY, salt=Conf.PREFIX, compress=compressed, serializer=PickleSerializer, ) @staticmethod def loads(obj) -> any: return signing.loads( obj, key=Conf.SECRET_KEY, salt=Conf.PREFIX, serializer=PickleSerializer ) class PickleSerializer: """Simple wrapper around Pickle for signing.dumps and signing.loads.""" @staticmethod def dumps(obj) -> bytes: return pickle.dumps(obj, protocol=pickle.HIGHEST_PROTOCOL) @staticmethod def loads(data) -> any: return pickle.loads(data)
#!/usr/bin/env python import subprocess import os import datetime import settings import logging import ssl import sqlite3 import psutil import requests import json import paho.mqtt.client as paho from prom_lib import prometheus as prom class speedbot(): def __init__(self): #connect to the mqtt broker #self.client = paho.Client() #self.client.tls_set(settings.SSLCERTPATH+"/"+settings.SSLCERT,tls_version=ssl.PROTOCOL_TLSv1_2) #self.client.tls_insecure_set(True) try: self.emit = prom() except Exception as e: logging.warn(e) logging.warn("Can not emit Prometheus metrics.") try: #connect to the sqlite process self.sqlcon = sqlite3.connect(settings.DB_PATH+'iotDB.db') self.cursor = self.sqlcon.cursor() except Exception as e: logging.warn(e) logging.warn("Could not connect to the IOT sqlite DB.") try: self.cursor.execute('''CREATE TABLE speedbot (upload_Mbps text, download_Mbps text, packetloss text, timestamp text, location text, country text, testhost text)''') except Exception as e: logging.warn(e) logging.warn("Speedbot table already exists.") def get_hostname(self): """ DESC: Get the hostname of the device INPUT: None OUTPUT: hostname NOTE: None """ out_array = [] try: proc = subprocess.Popen("hostname", stdout=subprocess.PIPE, shell=True) (output, err) = proc.communicate() hostname = output.decode('utf-8').strip() except Exception as e: logging.error(e) logging.error("Could not get the hostname") return hostname def set_hostname(self, hostname=None): """ DESC: Set the hostname of the speedbot INPUT: hostname OUTPUT: None NOTES: None """ logging.info('Setting the system hostname.') if hostname == None: hostname = settings.HOSTNAME try: proc = subprocess.Popen("hostname %s"%hostname, stdout=subprocess.PIPE, shell=True) (output,err) = proc.communicate() out_array = output.decode('utf-8').strip().split() logging.info('Set the hostname to %s'%hostname) except Exception as e: logging.error(e) logging.error("Could not set the Speedbot hostname.") #Set the hostname permenately try: if os.path.exists('/etc/hostname'): logging.info('Removed the hostname file and rewrote with new hostname %s'%hostname) os.remove('/etc/hostname') else: loggin.warn('No /etc/hostname file') except Exception as e: logging.error(e) logging.error('Could not delete /etc/hostname file.') #Write the hostname try: new_file = open("/etc/hostname","w") new_file.write(hostname) new_file.close() logging.info('Wrote new hostname file.') except Exception as e: logging.error(e) logging.error("Could not create new hostname file.") def get_location(self, ext_ip): """ DESC: Get the location of the speedbit based on the external IP INPUT: ext_ip - ip of the internet faceing IP OUTPUT: NOTES: Get the external IP of the network(outward faceing NAT) from the check_speed function """ try: output = requests.get("https://geolocation-db.com/json/ext_ip&position=true").json() except Exception as e: output = 'unknown' logging.error('Could not determin the location') return output def get_ext_ip(self): """ DESC: Get the external ip of the NAT if using one. INPUT: None OUTPUT: External ipv4 ip address NOTES: Can also get the external IP of the network(outward faceing NAT) from the check_speed function """ try: output = requests.get("http://whatismyip.akamai.com/") except Exception as e: output = 'unknown' logging.error('Could not determin the IP') return output.text def get_uptime(self): """ DESC: Run get system uptime INPUT: None OUTPUT: out_dict - days - hours - minutes - start_date - start_time """ up = True out_dict = {} try: uptime = subprocess.Popen("uptime -p", stdout=subprocess.PIPE, shell=True) (out, error) = uptime.communicate() out = out.decode("utf-8").rstrip().split() except Exception as e: logging.error("Could not get uptime %s: %s"%error, e) up = False try: since = subprocess.Popen("uptime -s", stdout=subprocess.PIPE, shell=True) (sout, serror) = since.communicate() sout = sout.decode("utf-8").rstrip().split() except Exception as e: logging.error("Could not get uptime %s: %s"%serror, e) up = False #make the out data useful if up: out_dict['uptime'] = out out_dict['start_date'] = sout[0] out_dict['start_time'] = sout[1] return out_dict def get_cpu_temp(self): #cat /etc/armbianmonitor/datasources/soctemp #/etc/update-motd.d/30-armbian-sysinfo """ DESC: Get the cpu temperature in C or F INPUT: None OUTPUT: out_dict - temp - scale """ raw = open("/etc/armbianmonitor/datasources/soctemp", "r") raw_temp = raw.read() temp = int(raw_temp.strip())/1000 if settings.TEMP_SCALE == 'F': temp = temp * 9/5.0 + 32 return {'temp':temp, 'scale':settings.TEMP_SCALE} def get_network_status(self, nic=None): """ DESC: Get the netwotk transmit recieve on the selected nic. INPUT: nic - nic name OUTPUT: out_dict - recieve - transmit """ if nic is None: nic = settings.PHYSNET try: out = psutil.net_io_counters(pernic=True) except Exception as e: logging.error('Get network error: %s'%e) return out[nic] def get_system_memory(self): """ DESC: Get the system memory stats INPUT: None OUTPUT: out_dict - total_mem - used_mem - free_mem - total_swap - used_swap - free_swap """ out_dict = {} memory = {'total_mem':'$2', 'used_mem':'$3', 'free_mem':'$4'} for k, v in memory.items(): try: logging.info("Getting the %s"%(k)) raw = subprocess.Popen("free -hm | grep Mem | awk '{print %s}'"%(v), stdout=subprocess.PIPE, shell=True) (mout, merror) = raw.communicate() mout = mout.decode("utf-8").rstrip().split() except Exception as e: logging.error("Failed to get the %s"%(k)) logging.error(e) out_dict['%s'%(k)] = mout[0] swap = {'total_swap':'$2', 'used_swap':'$3', 'free_swap':'$4'} for k, v in swap.items(): try: logging.info("Getting the %s"%(k)) raw = subprocess.Popen("free -hm | grep Swap | awk '{print %s}'"%(v), stdout=subprocess.PIPE, shell=True) (sout, serror) = raw.communicate() sout = sout.decode("utf-8").rstrip().split() except Exception as e: logging.error("Failed to get the %s"%(k)) logging.error(e) out_dict['%s'%(k)] = sout[0] return out_dict def get_system_status(self): """ DESC: Return a system status overview INPUT: None OUTPUT: out_dict - hostname - total_mem - cpu_temp - ip - uptime - node_id """ hostname = self.get_hostname() cpu_temp = self.get_cpu_temp() mem = self.get_system_memory() #ip = self.get_network_status(settings.PHYSNET) uptime = self.get_uptime() nodeid = self.get_hostname() return {'hostname':hostname, 'cpu_temp':cpu_temp['temp'], 'scale':cpu_temp['scale'], 'total_mem':mem['total_mem'], #'ip':ip['ip'], 'uptime':uptime, 'node_id':nodeid } ####DB#### def db_insert(self,input_dict): """ DESC: Insert the values in the sqlite DB INPUT: input_dict - upload_Mbps - download_Mbps - packetloss - timestamp - location - country - testhost OUTPUT: None NOTE: None """ try: logging.info("Inserting speed info into db. %s"%(input_dict)) self.cursor.execute("INSERT INTO speedbot VALUES ('"+input_dict['upload_Mbps']+"','"+input_dict['download_Mbps']+"','"+input_dict['packetloss']+"','"+input_dict['timestamp']+"','" + input_dict['location'] + "','"+input_dict['country']+"','"+input_dict['testhost']+"')") self.sqlcon.commit() except Exception as e: logging.error(e) logging.error("Could not insert data %s into the database"%(input_dict)) def db_read(self): pass def db_purge(self): pass ####System##### def check_speed(self): #run the OOkla speed test. args = ['speedtest', '--accept-license','-I', settings.PHYSNET, '-p', 'no', '-f', 'json'] try: cmd = subprocess.Popen(args, stdout=subprocess.PIPE) output = json.loads(cmd.communicate()[0].decode("utf-8").rstrip()) except Exception as e: logging.error("speedtest error: %s"%e) output = 'ERROR' #upload megabytes up = ((int(output['upload']['bytes']) * 8) / int(output['upload']['elapsed'])) /1000 #download megabytes down = ((int(output['download']['bytes']) * 8) / int(output['download']['elapsed'])) /1000 try: self.db_insert({'upload_Mbps':str(up), 'download_Mbps':str(down), 'packetloss':str(output['packetLoss']), 'timestamp':str(output['timestamp']), 'location':str(output['server']['location']), 'country':str(output['server']['country']), 'testhost':str(output['server']['host']) }) logging.info("Inserted speed info into Speedbot DB.") except Exception as e: logging.error("could not insert: %s"%e) logging.info({'timestamp':output['timestamp'], 'external_ip':output['interface']['externalIp'], 'upload_Mbps':up, 'download_Mbps':down, 'server_location':output['server']['location'], 'country':output['server']['country'], 'testhost':output['server']['host'], 'packetloss':output['packetLoss'], 'jitter':output['ping']['jitter'], 'latency':output['ping']['latency'], 'result':output['result'] }) return {'timestamp':output['timestamp'], 'external_ip':output['interface']['externalIp'], 'upload_Mbps':up, 'download_Mbps':down, 'server_location':output['server']['location'], 'country':output['server']['country'], 'testhost':output['server']['host'], 'packetloss':output['packetLoss'], 'jitter':output['ping']['jitter'], 'latency':output['ping']['latency'], 'result':output['result'] } def write_config(self): pass
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (C) 2012 Yahoo! Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from anvil import exceptions as excp from anvil import log as logging from anvil import type_utils as tu from anvil import utils LOG = logging.getLogger(__name__) class Component(object): def __init__(self, name, subsystems, instances, options, siblings, distro, passwords, **kwargs): # Subsystems this was requested with self.subsystems = subsystems # The component name (from config) self.name = name # Any component options self.options = options # All the other active instances self.instances = instances # All the other class names that can be used alongside this class self.siblings = siblings # The distribution 'interaction object' self.distro = distro # Turned on and off as phases get activated self.activated = False # How we get any passwords we need self.passwords = passwords def get_password(self, option): pw_val = self.passwords.get(option) if pw_val is None: raise excp.PasswordException("Password asked for option %s but none was pre-populated!" % (option)) return pw_val def get_option(self, option, *options, **kwargs): option_value = utils.get_deep(self.options, [option] + list(options)) if option_value is None: return kwargs.get('default_value') else: return option_value def get_bool_option(self, option, *options, **kwargs): if 'default_value' not in kwargs: kwargs['default_value'] = False return tu.make_bool(self.get_option(option, *options, **kwargs)) def get_int_option(self, option, *options, **kwargs): if 'default_value' not in kwargs: kwargs['default_value'] = 0 return int(self.get_option(option, *options, **kwargs)) @property def env_exports(self): return {} def verify(self): pass def __str__(self): return "%s@%s" % (tu.obj_name(self), self.name) @property def params(self): # Various params that are frequently accessed return { 'APP_DIR': self.get_option('app_dir'), 'COMPONENT_DIR': self.get_option('component_dir'), 'CONFIG_DIR': self.get_option('cfg_dir'), 'TRACE_DIR': self.get_option('trace_dir'), } def warm_configs(self): # Before any actions occur you get the chance to # warmup the configs u might use (ie for prompting for passwords # earlier rather than later) pass
from dataclasses import field from typing import Optional from pydantic.dataclasses import dataclass @dataclass class Book: title: str price: int quantity: Optional[int] = 0 _price: int = field(init=False, repr=False) @property def total(self): return self.price * self.quantity @property def price(self): print("price getter") return self._price @price.setter def price(self, value): print("price setter") if not isinstance(value, (int, float)): raise TypeError("Значение должно быть числом") if not value >= 0: raise ValueError("Значение должно быть положительным") self._price = float(value) book1 = Book("Good Omens", "24", 1000)
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['UserHierarchyGroupArgs', 'UserHierarchyGroup'] @pulumi.input_type class UserHierarchyGroupArgs: def __init__(__self__, *, instance_arn: pulumi.Input[str], name: Optional[pulumi.Input[str]] = None, parent_group_arn: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a UserHierarchyGroup resource. :param pulumi.Input[str] instance_arn: The identifier of the Amazon Connect instance. :param pulumi.Input[str] name: The name of the user hierarchy group. :param pulumi.Input[str] parent_group_arn: The Amazon Resource Name (ARN) for the parent user hierarchy group. """ pulumi.set(__self__, "instance_arn", instance_arn) if name is not None: pulumi.set(__self__, "name", name) if parent_group_arn is not None: pulumi.set(__self__, "parent_group_arn", parent_group_arn) @property @pulumi.getter(name="instanceArn") def instance_arn(self) -> pulumi.Input[str]: """ The identifier of the Amazon Connect instance. """ return pulumi.get(self, "instance_arn") @instance_arn.setter def instance_arn(self, value: pulumi.Input[str]): pulumi.set(self, "instance_arn", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the user hierarchy group. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="parentGroupArn") def parent_group_arn(self) -> Optional[pulumi.Input[str]]: """ The Amazon Resource Name (ARN) for the parent user hierarchy group. """ return pulumi.get(self, "parent_group_arn") @parent_group_arn.setter def parent_group_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "parent_group_arn", value) class UserHierarchyGroup(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, instance_arn: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, parent_group_arn: Optional[pulumi.Input[str]] = None, __props__=None): """ Resource Type definition for AWS::Connect::UserHierarchyGroup :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] instance_arn: The identifier of the Amazon Connect instance. :param pulumi.Input[str] name: The name of the user hierarchy group. :param pulumi.Input[str] parent_group_arn: The Amazon Resource Name (ARN) for the parent user hierarchy group. """ ... @overload def __init__(__self__, resource_name: str, args: UserHierarchyGroupArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Resource Type definition for AWS::Connect::UserHierarchyGroup :param str resource_name: The name of the resource. :param UserHierarchyGroupArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(UserHierarchyGroupArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, instance_arn: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, parent_group_arn: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = UserHierarchyGroupArgs.__new__(UserHierarchyGroupArgs) if instance_arn is None and not opts.urn: raise TypeError("Missing required property 'instance_arn'") __props__.__dict__["instance_arn"] = instance_arn __props__.__dict__["name"] = name __props__.__dict__["parent_group_arn"] = parent_group_arn __props__.__dict__["user_hierarchy_group_arn"] = None super(UserHierarchyGroup, __self__).__init__( 'aws-native:connect:UserHierarchyGroup', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'UserHierarchyGroup': """ Get an existing UserHierarchyGroup resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = UserHierarchyGroupArgs.__new__(UserHierarchyGroupArgs) __props__.__dict__["instance_arn"] = None __props__.__dict__["name"] = None __props__.__dict__["parent_group_arn"] = None __props__.__dict__["user_hierarchy_group_arn"] = None return UserHierarchyGroup(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="instanceArn") def instance_arn(self) -> pulumi.Output[str]: """ The identifier of the Amazon Connect instance. """ return pulumi.get(self, "instance_arn") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the user hierarchy group. """ return pulumi.get(self, "name") @property @pulumi.getter(name="parentGroupArn") def parent_group_arn(self) -> pulumi.Output[Optional[str]]: """ The Amazon Resource Name (ARN) for the parent user hierarchy group. """ return pulumi.get(self, "parent_group_arn") @property @pulumi.getter(name="userHierarchyGroupArn") def user_hierarchy_group_arn(self) -> pulumi.Output[str]: """ The Amazon Resource Name (ARN) for the user hierarchy group. """ return pulumi.get(self, "user_hierarchy_group_arn")
import time from selenium import webdriver from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.support.ui import WebDriverWait, Select from selenium.webdriver.common.by import By from ensconce.dao import resources, groups from tests.functional import SeleniumTestController class ResourcesTest(SeleniumTestController): """ Test resources module. """ def setUp(self): super(ResourcesTest, self).setUp() self.login() def tearDown(self): self.logout() super(ResourcesTest, self).tearDown() def test_sub_navigation(self): """ Test the resource sub nav. """ self.open_url('/resource/list') self.wd.find_element(By.ID, "subnav-list").click() time.sleep(0.5) # FIXME: Need to figure out how to wait on page loads; this is supposed to happen automatically ... self.assertEquals('Resource List', self.wd.title) self.open_url('/resource/list') self.wd.find_element(By.ID, "subnav-create").click() time.sleep(0.5) # FIXME: Need to figure out how to wait on page loads; this is supposed to happen automatically ... self.assertEquals('Add Resource', self.wd.title) # Copy/paste to check the other page self.open_url('/resource/add') self.wd.find_element(By.ID, "subnav-list").click() time.sleep(0.5) # FIXME: Need to figure out how to wait on page loads; this is supposed to happen automatically ... self.assertEquals('Resource List', self.wd.title) self.open_url('/resource/add') self.wd.find_element(By.ID, "subnav-create").click() time.sleep(0.5) # FIXME: Need to figure out how to wait on page loads; this is supposed to happen automatically ... self.assertEquals('Add Resource', self.wd.title) def test_add_no_group(self): """ Test adding a resource w/o specifying a group. """ self.open_url('/resource/add') name = "ResourceTest.test_add_fail" el = self.wd.find_element(By.ID, "name") el.send_keys(name) self.submit_form("resource_form") self.assertEquals('Add Resource', self.wd.title) def test_add_success(self): """ Test adding a resource. """ self.open_url('/resource/add') name = "ResourceTest.test_add_success" el = self.wd.find_element(By.ID, "name") el.send_keys(name) # Choose '6th group' from the select list. sel = Select(self.wd.find_element(By.ID, "group_ids")) sel.select_by_visible_text("6th group") self.submit_form("resource_form") self.assertEquals('View Resource', self.wd.title) self.assert_in_data_table(name, row=1) self.open_url('/resource/list') self.assertEquals('Resource List', self.wd.title) self.assert_in_list_table(name, nobr=True) def test_add_duplicate(self): """ Test adding a resource with duplicate name. """ self.open_url('/resource/add') name = "Bikeshed PIN" el = self.wd.find_element(By.ID, "name") el.send_keys(name) # Choose '6th group' from the select list. sel = Select(self.wd.find_element(By.ID, "group_ids")) sel.select_by_visible_text("First Group") self.submit_form("resource_form") self.assert_form_error("Resource \"{0}\" already exists in group \"First Group\".".format(name)) def test_edit_duplicate(self): """ Test editing a resource and specifying duplicate name. """ name = "Bikeshed PIN" new_name = "BoA" # A name we know to exist in First Group r1 = resources.get_by_name(name) self.open_url('/resource/edit/{0}'.format(r1.id)) el = self.wd.find_element(By.ID, "name") el.clear() el.send_keys(new_name) self.submit_form("resource_form") self.assert_form_error("Resource \"{0}\" already exists in group \"First Group\".".format(new_name)) def test_edit_link(self): """ Test clicking the edit link (prompt) """ r = resources.get_by_name("BoA") self.open_url('/resource/list') editlink = self.wd.find_element(By.ID, "edit-link-{0}".format(r.id)) editlink.click() time.sleep(0.5) # FIXME: Need to figure out how to wait on page loads; this is supposed to happen automatically ... self.assertEquals('Edit Resource', self.wd.title) namefield = self.wd.find_element(By.ID, "name") self.assertEquals("BoA", namefield.get_attribute('value')) def test_delete_link_no_passwords(self): """ Test clicking the delete link when no passwords. (prompt) """ r = resources.get_by_name("Bikeshed PIN") self.open_url('/resource/list') deletelink = self.wd.find_element(By.ID, "delete-link-{0}".format(r.id)) deletelink.click() alert = self.wd.switch_to_alert() self.assertEqual("Are you sure you want to remove resource {0} (id={1})".format(r.name, r.id), alert.text) alert.accept() self.assert_notification("Resource deleted: {0} (id={1})".format(r.name, r.id)) self.assert_not_in_list_table(r.name) def test_delete_link_passwords(self): """ Test clicking the delete link with passwords (confirm page) """ r = resources.get_by_name("BoA") self.open_url('/resource/list') deletelink = self.wd.find_element(By.ID, "delete-link-{0}".format(r.id)) deletelink.click() self.assertEquals('Delete Resource', self.wd.title) self.submit_form("delete_form") alert = self.wd.switch_to_alert() self.assertEqual("Are you sure you wish to permanently delete this resource and passwords?", alert.text) alert.accept() self.assert_notification("Resource deleted: {0} (id={1})".format(r.name, r.id)) self.assert_not_in_list_table(r.name)
import torch import numpy as np import os import pandas as pd import SimpleITK as sitk from torch.utils.data import Dataset, DataLoader from tqdm import tqdm class NiftyDatasetFromTSV(Dataset): """Creates a PyTorch Dataset using a .tsv file of .nii.gz paths and labels.""" def __init__(self, tsv_file, age_limit=None, data_limit=None, normalizer=None, resampler=None, aug=False, seed=42): """ Args: tsv_file: (string) - path to tsv file. The file should contain columns: 0: (str) - list of .nii.gz filepaths 1: (str) - list of corresponding masks 2: (int) - age 3: (int) - sex - 0 = female, 1 = male 4: (int) - scanner - all identical if the same scanner. data_limit: (int) - the maximum number of samples to include. age_limit: (list of int, len = 2) - list of 2 ints [min_age, max_age], e.g. [48, 71] normalizer: (string) - if not None, one of `tanh` or `sigmoid` to normalize image intensities. aug: (bool) - whether to apply augmentations to the data. Returns: A PyTorch dataset. """ np.random.seed(seed) self.data = pd.read_csv(tsv_file) if age_limit: self.data = self.data[self.data.iloc[:, 3].astype(float) >= age_limit[0]] self.data = self.data[self.data.iloc[:, 3].astype(float) <= age_limit[1]] self.data = self.data.reindex(np.random.permutation(self.data.index)) if data_limit: self.data = self.data[:data_limit] self.data = self.data[:200] self.normalizer = None if normalizer: self.normalizer = torch.tanh if normalizer=='tanh' else self.normalizer self.normalizer = torch.sigmoid if normalizer == 'sigmoid' else self.normalizer self.aug = aug self.samples = [] for idx in range(len(self.data)): img_path = self.data.iloc[idx, 1] mask_path = self.data.iloc[idx, 2] age = np.array(self.data.iloc[idx, 3]/100, dtype='float64') sex = np.array(self.data.iloc[idx, 4], dtype='float64') scanner = np.array(self.data.iloc[idx, 5], dtype='int64') sample = {'image': img_path, 'mask': mask_path, 'sex': sex, 'age':age, 'scanner': scanner} if self.samples == []: self.samples = [sample] else: self.samples.append(sample) def __len__(self): return len(self.data) def do_translate(self, image, dx=0, dy=0, dz=0): """ Performs random translation of the input image. Args: image: (np.array floats) [H, W, D] - the input image to augment. dx, dy, dz: (int) - the translation to apply in the x, y and z directions in pixels. If dx=dy=dz=0, random translation is applied. Returns: translated_image: (np.array floats [H, W, D] - the translated input image. """ if not (dx & dy & dz): dx, dy, dz = [np.random.randint(-3, 3, 1)[0], np.random.randint(-3, 3, 1)[0], np.random.randint(-3, 1, 1)[0]] orig_h, orig_w, orig_d = image.shape max_shift = np.max(np.abs([dx, dy, dz])) canvas = np.pad(image, max_shift) canvas_center = np.array(canvas.shape) // 2 nx = canvas_center[0] - orig_h//2 + dx ny = canvas_center[1] - orig_w//2 + dy nz = canvas_center[2] - orig_d//2 + dz translated = canvas[nx:nx+orig_h, ny:ny+orig_w, nz:nz+orig_d] return translated.astype(np.float32), dx, dy, dz def __getitem__(self, item): sample = self.samples[item] image = sitk.ReadImage(os.path.join('/vol/biomedic2/rdr16/pymira/pymira/apps/data_harmonization', sample['image'][2:]), sitk.sitkFloat32) mask = sitk.ReadImage(os.path.join('/vol/biomedic2/rdr16/pymira/pymira/apps/data_harmonization',sample['mask'][2:]), sitk.sitkFloat32) image_np = sitk.GetArrayFromImage(image) mask_np = sitk.GetArrayFromImage(mask) if self.aug: if np.random.uniform() < 0.5: image_np, dx, dy, dz = self.do_translate(image_np) mask_np, _, _, _ = self.do_translate(mask_np, dx, dy, dz) if np.random.uniform() < 0.5: image_np = np.flip(image_np, 2).astype(np.float32) mask_np = np.flip(mask_np, 2).astype(np.float32) image = torch.from_numpy(image_np).unsqueeze(0) mask = torch.from_numpy(mask_np).unsqueeze(0) sex = sample['sex'] age = sample['age'] scanner = sample['scanner'] del image_np, mask_np return {'image': image, 'mask': mask, 'sex': sex, 'age': age, 'scanner': scanner} def get_sample(self, item): return self.samples[item]
def calculate_investment_value(initial_value, percentage, years): result = initial_value * (1 + percentage / 100) ** years return result
from requests import get, exceptions from re import compile, match, MULTILINE from sys import exit # url = "https://raw.githubusercontent.com/fire1ce/DDNS-Cloudflare-PowerShell/main/README.md" # section_name = "License" # section_name = "License" url = "https://raw.githubusercontent.com/wsargent/docker-cheat-sheet/master/READMEdd.md" section_name = "## CPU Constraints" # check if url is valid and had ".md" extension def is_valid_url(url): if not match(r"^https?:\/\/.*\.md$", url): print(f"Error! {url} is not a valid url") exit(1) return True # get markdown from url if status code is 200 def get_markdown_from_url(url): try: response = get(url) if response.status_code == 200: # remove the heading markdown = response.text markdown = markdown[markdown.find("\n") + 1 :] return markdown else: print(f"Error! {url} returned status code: {str(response.status_code)}") exit(1) except exceptions.ConnectionError: print(f"Error! {url} returned connection error") exit(1) # get the section content from markdown def get_section_from_markdown(markdown, section_name): # Get the section level from section_name try: section_level = compile("^#+ ").search(section_name).span()[1] - 1 except: print( f"Error! Missing markdown section level at the beginning of section name: {section_name}" ) exit(1) # Gets the srart index of the section from markdown try: start_index = compile("^" + section_name + "$", MULTILINE).search(markdown).span()[1] except: print(f'Error! Section: "{section_name}" not found in markdown {url}') exit(1) # Gets the end index of the section from markdown (last section handle) try: end_index = ( compile("^#{2," + str(section_level) + "} ", MULTILINE) .search(markdown[start_index:]) .span()[0] ) markdown = markdown[start_index : end_index + start_index] except: markdown = markdown[start_index:] return markdown # get the markdown from url or markdown section def external_markdown(url, section_name): is_valid_url(url) if section_name: markdown = get_markdown_from_url(url) if markdown: return get_section_from_markdown(markdown, section_name) else: return get_markdown_from_url(url) print(external_markdown(url, section_name))
# # PySNMP MIB module ELTEX-ARP-INTERFACE-TABLE-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ELTEX-ARP-INTERFACE-TABLE-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 18:45:32 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ConstraintsUnion, ValueSizeConstraint, ValueRangeConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ConstraintsUnion", "ValueSizeConstraint", "ValueRangeConstraint", "ConstraintsIntersection") eltMesArpSpec, = mibBuilder.importSymbols("ELTEX-MES-IP", "eltMesArpSpec") rsArpInterfaceEntry, = mibBuilder.importSymbols("RADLAN-IP", "rsArpInterfaceEntry") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") IpAddress, ObjectIdentity, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter32, ModuleIdentity, iso, Integer32, MibIdentifier, Unsigned32, Counter64, NotificationType, Gauge32, Bits, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "IpAddress", "ObjectIdentity", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter32", "ModuleIdentity", "iso", "Integer32", "MibIdentifier", "Unsigned32", "Counter64", "NotificationType", "Gauge32", "Bits", "TimeTicks") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") eltArpInterfaceTable = MibTable((1, 3, 6, 1, 4, 1, 35265, 1, 23, 91, 3, 1), ) if mibBuilder.loadTexts: eltArpInterfaceTable.setStatus('current') eltArpInterfaceEntry = MibTableRow((1, 3, 6, 1, 4, 1, 35265, 1, 23, 91, 3, 1, 1), ) rsArpInterfaceEntry.registerAugmentions(("ELTEX-ARP-INTERFACE-TABLE-MIB", "eltArpInterfaceEntry")) eltArpInterfaceEntry.setIndexNames(*rsArpInterfaceEntry.getIndexNames()) if mibBuilder.loadTexts: eltArpInterfaceEntry.setStatus('current') eltArpInterfaceArpLocalProxy = MibTableColumn((1, 3, 6, 1, 4, 1, 35265, 1, 23, 91, 3, 1, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enable", 1), ("disable", 2))).clone('disable')).setMaxAccess("readwrite") if mibBuilder.loadTexts: eltArpInterfaceArpLocalProxy.setStatus('current') mibBuilder.exportSymbols("ELTEX-ARP-INTERFACE-TABLE-MIB", eltArpInterfaceEntry=eltArpInterfaceEntry, eltArpInterfaceArpLocalProxy=eltArpInterfaceArpLocalProxy, eltArpInterfaceTable=eltArpInterfaceTable)
#!/usr/bin/python # -*- coding: utf-8 -*- # pylint: disable=C0103 # pylint: disable=E1101 # Python 2/3 compatibility from __future__ import print_function import glob import os import math import numpy as np def getCenterAndWH(name): lines = open(name, "rt").readlines() centerAndWH = [int(line) for line in lines[3:7]] return centerAndWH def getTruePosition(): txtnames = glob.glob("headPose/Per*/*.txt") d = {} for p in txtnames: jpgname = p.replace(".txt", ".jpg") d[jpgname] = getCenterAndWH(p) return d def cosd(deg): return math.cos(math.pi*deg/180.0) def sind(deg): return math.sin(math.pi*deg/180.0) def getRotatedPoint(point, deg, imgCenter): a = np.array(point) - np.array(imgCenter) deg = -deg rotated = np.array((cosd(deg)*a[0] -sind(deg)*a[1], sind(deg)*a[0] +cosd(deg)*a[1]), dtype=np.int) r = rotated + imgCenter return (int(r[0]), int(r[1])) def getAngles(p): base = os.path.basename(p) base = os.path.splitext(base)[0] base = base.replace("+", "_+").replace("-", "_-") f = base.split("_") return f[-2:] if __name__ == "__main__": d = getTruePosition() size = [384, 288] imgCenter = (size[0]/2, size[1]/2) keys = d.keys() keys.sort() deg = 90 for k in keys: print(k, d[k], end='') point = tuple(d[k][:2]) print(getRotatedPoint(point, deg, imgCenter))
import collections #ChainMap提供了一种方便的方法,用于创建一个新实例, # 在maps列表的前面有一个额外的映射, # 以便于避免修改现有的底层数据结构。 a = {'a': 'A', 'c': 'C'} b = {'b': 'B', 'c': 'D'} m1 = collections.ChainMap(a, b) m2 = m1.new_child() print('m1 before:', m1) print('m2 before:', m2) m2['c'] = 'E' print('m1 after:', m1) print('m2 after:', m2) """ m1 before: ChainMap({'a': 'A', 'c': 'C'}, {'b': 'B', 'c': 'D'}) m2 before: ChainMap({}, {'a': 'A', 'c': 'C'}, {'b': 'B', 'c': 'D'}) m1 after: ChainMap({'a': 'A', 'c': 'C'}, {'b': 'B', 'c': 'D'}) m2 after: ChainMap({'c': 'E'}, {'a': 'A', 'c': 'C'}, {'b': 'B', 'c': 'D'}) """
#!/usr/bin/env python import roslib import rospy import math from std_msgs.msg import Float64 from random import random def main(): rospy.init_node("cos") pub = rospy.Publisher("/cos", Float64, queue_size=1) counter = 0 RESOLUTION = 100 while not rospy.is_shutdown(): if counter == RESOLUTION: counter = 0 val = math.cos(2 * math.pi / RESOLUTION * counter) pub.publish(Float64(val)) rospy.sleep(0.05) counter = counter + 1 if __name__ == "__main__": main()
from datetime import date, timedelta from decouple import config from itsdangerous import (TimedJSONWebSignatureSerializer as Serializer, BadSignature, SignatureExpired) from passlib.apps import custom_app_context as pwd_context from api.app import db class User(db.Model): __tablename__ = "users" id = db.Column(db.Integer, primary_key=True) email = db.Column(db.String(120), unique=True) nome = db.Column(db.String(120)) cidade = db.Column(db.String(120)) estado = db.Column(db.String(120)) genero = db.Column(db.String(32)) tipo_sanguineo = db.Column(db.String(32)) data_nascimento = db.Column(db.Date()) data_ultima_doacao = db.Column(db.Date()) senha_hash = db.Column(db.String(128)) def encrypt_password(self, password): self.senha_hash = pwd_context.encrypt(password) def verify_password(self, password): return pwd_context.verify(password, self.senha_hash) def generate_auth_token(self, expiration=600): s = Serializer(config('SECRET_KEY'), expires_in=expiration) return s.dumps({'id': self.id}) @property def age(self): age = 0 today = date.today() birthdate = self.data_nascimento if birthdate: age = today.year - birthdate.year - ((today.month, today.day) < (birthdate.month, birthdate.day)) return age @property def next_donation_date(self): last_donation = self.data_ultima_doacao if last_donation: return last_donation + timedelta(days=120) return date.today() @property def is_able_to_donate(self): able = False age = self.age today = date.today() if age >= 16 and age <= 69: if today >= self.next_donation_date: able = True return able @staticmethod def verify_auth_token(token): s = Serializer(config('SECRET_KEY')) try: data = s.loads(token) except SignatureExpired: return None # valid token, but expired except BadSignature: return None # invalid token user = User.query.get(data['id']) return user def __repr__(self) -> str: return f'<User {self.email}>'
import numpy as np import argparse import osgeo.gdal as gdal from scipy.spatial import voronoi_plot_2d, Voronoi import matplotlib.cm as cm import matplotlib.pyplot as plt from scipy.spatial import ConvexHull, convex_hull_plot_2d from numpy import genfromtxt import pandas as pd import gdal import os import xarray as xr import clhs as cl import csv import numpy as np from scipy.linalg import solve_triangular, get_lapack_funcs, get_blas_funcs from maxvolpy.maxvol import maxvol # -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= def f_no_cut(idx, i, copy=False): if copy: idx = np.copy(idx) idx[i] = 0 return idx def f_cut_eps(idx, i, X, eps=0.1, copy=False): if copy: idx = np.copy(idx) #print(np.abs(X - X[i]) < eps) print(idx.shape, X.shape) idx[np.abs(X - X[i]) < eps] = 0 return idx def rect_maxvol_cut(A, tol = 1., maxK = None, min_add_K = None, minK = None, start_maxvol_iters = 10, identity_submatrix = True, top_k_index = -1, cut_fun=None, penalty=None): """Python implementation of rectangular 2-volume maximization. For information see :py:func:`rect_maxvol` function""" # tol2 - square of parameter tol tol2 = tol**2 # N - number of rows, r - number of columns of matrix A N, r = A.shape if N <= r: return np.arange(N, dtype = int), np.eye(N, dtype = A.dtype) if maxK is None or maxK > N: maxK = N if maxK < r: maxK = r if minK is None or minK < r: minK = r if minK > N: minK = N if min_add_K is not None: minK = max(minK, r + min_add_K) if minK > maxK: minK = maxK if top_k_index == -1 or top_k_index > N: top_k_index = N if top_k_index < r: top_k_index = r if cut_fun is None: cut_fun = f_no_cut if penalty is None: #penalty_fun = np.ones(top_k_index, dtype=int) chosen = np.ones(top_k_index, dtype=int) else: chosen = np.copy(penalty) index = np.zeros(N, dtype = int) tmp_index, C = maxvol(A, tol = 1, max_iters = start_maxvol_iters, top_k_index = top_k_index) # -- index[:r] = tmp_index #chosen[tmp_index] = 0 -- replaced for ti in tmp_index: cut_fun(chosen, ti) C = np.asfortranarray(C) # compute square 2-norms of each row in matrix C row_norm_sqr = np.array([chosen[i]*np.linalg.norm(C[i], 2)**2 for i in range(top_k_index)]) # find maximum value in row_norm_sqr i = np.argmax(row_norm_sqr) K = r # set cgeru or zgeru for complex numbers and dger or sger for float numbers try: ger = get_blas_funcs('geru', [C]) except: ger = get_blas_funcs('ger', [C]) while (row_norm_sqr[i] > tol2 and K < maxK) or K < minK: # add i to index and recompute C and square norms of each row by SVM-formula index[K] = i #chosen[i] = 0 -- replaced by the next line #print(chosen) cut_fun(chosen, i) if (chosen == 0).all(): print('Failed') c = C[i].copy() v = C.dot(c.conj()) l = 1.0/(1+v[i]) ger(-l,v,c,a=C,overwrite_a=1) C = np.hstack([C, l*v.reshape(-1,1)]) row_norm_sqr -= (l*v[:top_k_index]*v[:top_k_index].conj()).real row_norm_sqr *= chosen # find maximum value in row_norm_sqr i = row_norm_sqr.argmax() K += 1 if identity_submatrix: C[index[:K]] = np.eye(K, dtype = C.dtype) return index[:K].copy(), C def make_dist(X): n = len(X) A = np.empty((n, n), dtype=X.dtype) for ix, x in enumerate(X): for iy, y in enumerate(X): A[ix, iy] = np.abs(x - y) return A def f_penal(X, bnd, level=0.0): Xmin = np.min(X) Xmax = np.max(X) bnd_abs = (Xmax - Xmin)*bnd dist = np.minimum(np.abs(X - Xmin), np.abs(Xmax - X)) def lin_func(x): if bnd == 0: return x*0.0 + 1.0 # crookedly, but it works. Ann, never do like this! else: return (1.0 - level)*np.minimum(x, bnd_abs)/bnd_abs + level return lin_func(dist) def f_penal_2D(X, Y, bnd, level=0.0): return f_penal(X, bnd=bnd, level=level)*f_penal(Y, bnd=bnd, level=level) def norm_data(X, bounds=(-1.0, 1.0), copy=True): X = np.array(X, copy=copy).T for i, x in enumerate(X): # print(len(x)) min_v, max_v = np.min(x), np.max(x) b = (bounds[0]*max_v - bounds[1]*min_v)/(max_v-min_v) k = float(bounds[1] - bounds[0])/(max_v-min_v) X[i] *= k X[i] += b return X.T def points_selection(X, max_n_pnts, min_n_pnts, cut_fun=None, penalty = None): """Function for selecting optimal parameters for dimentionality reduction method and for clustering. Parameters ---------------- X: array with shape (number_of_pixels*number_of_features) Initial data """ #MaxVol res = rect_maxvol_cut(X, maxK=max_n_pnts, minK=min_n_pnts, cut_fun=cut_fun, penalty=penalty)[0] return res def add_coords(X=None, size=(285, 217), order='C', idx_good_mask=None): """ order can by 'C' or 'F' """ w, h = size x_coord, y_coord = np.meshgrid(np.arange(h), np.arange(w)) if idx_good_mask is None: idx_good_mask = np.arange(x_coord.size) if X is None: return np.hstack(( x_coord.flatten(order=order)[idx_good_mask, None], y_coord.flatten(order=order)[idx_good_mask, None])) else: return np.hstack((np.array(X, copy=False), x_coord.flatten(order=order)[idx_good_mask, None], y_coord.flatten(order=order)[idx_good_mask, None])) def gen_input(mode, data, shapes,mask): modes = ['usual', 'normed', 'XY', 'XY_normed'] fn_X_embedded = modes[mode] return [ lambda x: np.array(x), lambda x: norm_data(x), lambda x: add_coords( x, size=shapes[0], idx_good_mask=mask), lambda x: norm_data(gen_input(2, x, shapes, mask)[0], copy=False), ][mode](data), fn_X_embedded def my_score(a, b): a = np.array(a, copy=False) b = np.array(b, copy=False) n = len(a) assert len(b) == n, 'Arrays of differnet shapes :(((' m = len(a[a==b]) return float(m)/float(n) def f_no_cut(idx, i, copy=False): if copy: idx = np.copy(idx) idx[i] = 0 return idx def f_cut_eps(idx, i, X, eps=0.1, copy=False): if copy: idx = np.copy(idx) xx = X[:, -2] yy = X[:, -1] #idx[i] = 0 idx[(xx - xx[i])**2 + (yy-yy[i])**2 <= eps**2] = 0 return idx def calc_score(idx, X, y, to_ret_pred=True): gnb = GaussianNB() gnb_model = gnb.fit(X[idx], y[idx]) if to_ret_pred: scores = extend_score(y, gnb_model.predict(X)) else: scores = gnb_model.score(X, y) return scores def good_points_brute_force(idx, num, X, y): sc = -1 cmb_good = None for comb in combinations(idx, num): comb = np.array(comb) #print(comb) sc_curr = calc_score(comb, X=X, y=y, to_ret_pred=True) if sc_curr > sc: sc = sc_curr cmb_good = comb return cmb_good, sc def idx_to_idx(idx_big, idx): hass = dict() for i, elem in enumerate(idx_big): hass[elem] = i return np.array([hass[i] for i in idx]) class MaxVolSampling(): """ Class to proccess data with MaxVol, cLHS and Random Input: DEM, terrain features Return: Sampling points indices """ def __init__(self): self.original_data = None self.maxvol_dist = None self.cLHS_dist = None self.random_dist = None self.maxvol_indices = None self.soil_feature = None self.num_of_points = 15 self.path_to_file_with_indices = None self.wd = None self.soil_data = None self.X = None self.lons = None self.lats = None self.path_to_interpolation_file = None self.interpolation_array = None def data_preparation(self, wd, data_m, dem_dir): """ Function to orginize tif files in flatten vectos, remove NaN and stack vectors into matrix """ fl_names = list(filter(lambda fl: fl.endswith('.tif'), os.listdir(wd+'/ndvi_features/'))) files = list(map(lambda x: gdal.Open(os.path.join(wd+'/ndvi_features/', x)), fl_names)) arrays = list(map(lambda x: x.ReadAsArray().flatten(), files)) shapes = [x.ReadAsArray().shape for x in files] nodatas = list(map(lambda x: x.GetRasterBand(1).GetNoDataValue(), files)) names = list(map(lambda x: x.replace('.tif','').split('.')[0], fl_names)) if dem_dir is None: dem_raw = gdal.Open(wd+'/dem.tif') dem = dem_raw.ReadAsArray() else: dem_raw = gdal.Open(dem_dir) dem = dem_raw.ReadAsArray() xmin, xres, xskew, ymax, yskew, yres = dem_raw.GetGeoTransform() xmax = xmin + (dem_raw.RasterXSize * xres) ymin = ymax + (dem_raw.RasterYSize * yres) boundary_box = {'xmin':xmin, 'xmax':xmax, 'ymin':ymin, 'ymax':ymax} dem_flat = dem.flatten() dem_nodata = dem_raw.GetRasterBand(1).GetNoDataValue() init_dem_shape = dem.shape idx_nodata_0 = np.where(dem_flat == dem_nodata)[0] arrays_no_nodatas = np.zeros((len(arrays[0])-len(idx_nodata_0), len(arrays))) idx_dem_nodata = np.where(dem_flat == dem_nodata)[0] idx_dem = np.where(dem_flat != dem_nodata)[0] dem_no_nodata = np.delete(dem_flat, idx_dem_nodata) #process with interp data if self.path_to_interpolation_file is not None: interpolation_raw_data = np.load(self.path_to_interpolation_file)[::-1] flatten_interpolation = interpolation_raw_data.flatten() interpolation_no_nan = np.delete(flatten_interpolation, np.isnan(flatten_interpolation)) self.interpolation_array = interpolation_no_nan for i in range(len(arrays)): idx_nodata = np.where(arrays[i] == nodatas[i])[0] array = arrays[i].copy() array[idx_nodata]=0 arrays_no_nodatas[:,i] = np.delete(array, idx_nodata_0) data_arr = arrays_no_nodatas.copy() # Prepare data # U can normilize data, and/or add coords to it mode = data_m # Change to 0, 1, 2 or 3 X, fn_X_embedded = gen_input(mode, data_arr, shapes, idx_dem) self.X = X # X = np.vstack((X, X[:1,:])) return X, dem_flat, dem_nodata, init_dem_shape, idx_dem, boundary_box def create_polygon(self, shape, vertices, value=1): """ Creates np.array with dimensions defined by shape Fills polygon defined by vertices with ones, all other values zero""" base_array = np.zeros(shape, dtype=float) # Initialize your array of zeros fill = np.ones(base_array.shape) * True # Initialize boolean array defining shape fill # Create check array for each edge segment, combine into fill array for k in range(vertices.shape[0]): fill = np.all([fill, self.check(vertices[k-1], vertices[k], base_array)], axis=0) # Set all values inside polygon to one base_array[fill] = value return base_array,fill def find_nearest(self, array, value): array = np.asarray(array) idx = np.unravel_index(np.argmin((np.abs(array - value)), axis=None), array.shape) return array[idx], idx def check(self, p1, p2, base_array): """ Uses the line defined by p1 and p2 to check array of input indices against interpolated value Returns boolean array, with True inside and False outside of shape """ idxs = np.indices(base_array.shape) # Create 3D array of indices p1 = p1.astype(float) p2 = p2.astype(float) # Calculate max column idx for each row idx based on interpolated line between two points if p1[0] == p2[0]: max_col_idx = (idxs[0] - p1[0]) * idxs.shape[1] sign = np.sign(p2[1] - p1[1]) else: max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1] sign = np.sign(p2[0] - p1[0]) return idxs[1] * sign <= max_col_idx * sign def original_soil_data(self, feature): soil_data = self.soil_data data = soil_data[feature] self.original_data = np.array(data) def dataframe_to_points(self): dem_raw = gdal.Open('dem.tif') #('/home/apetrovskaya/maxvol_soil_sampling/src/dem.tif') dem = dem_raw.ReadAsArray() self.init_dem_shape = dem.shape FEATURE = self.soil_feature soil_data = self.soil_data lons=soil_data['LON'] self.lons = lons lats=soil_data['LAT'] self.lats = lats data = soil_data[FEATURE] self.original_data = np.array(data) #coordinate mesh xmin, ymin, xmax, ymax = [416949.0957, 5750852.2926,417891.8549,5751465.6945] #!!!HARDCODE st = dem xv = np.linspace(xmin,xmax, num=st.shape[1]) yv = np.linspace(ymax,ymin, num=st.shape[0]) coords = np.meshgrid(xv,yv) number_of_points=len(lons) points_idx=np.zeros((number_of_points,2)) for i in range(number_of_points): a = self.find_nearest(coords[0],lons[i])[1][1] b = self.find_nearest(coords[1],lats[i])[1][0] points_idx[i,:]=[a,b] points_idx = points_idx.astype(int) return points_idx, data def distr_from_voronoi(self): points_idx,data = self.dataframe_to_points() #add points for right simplex points_idx_add = points_idx.copy() for i in range(-50,self.init_dem_shape[0]+50,50): points_idx_add = np.vstack((points_idx_add,[-50, i])) points_idx_add = np.vstack((points_idx_add,[self.init_dem_shape[1]+50,i])) for i in range(-50,self.init_dem_shape[1]+50,50): points_idx_add = np.vstack((points_idx_add,[i, -50])) points_idx_add = np.vstack((points_idx_add,[i,self.init_dem_shape[0]+50])) # generate Voronoi tessellation vor_add=Voronoi(points_idx_add) # cycle to fill regions in numpy array pol=np.zeros((self.init_dem_shape[1],self.init_dem_shape[0])) for r in range(len(vor_add.point_region)): region = vor_add.regions[vor_add.point_region[r]] if not -1 in region: value = data[r] polygon = [vor_add.vertices[i] for i in region] polygon = np.asarray(polygon) hull = ConvexHull(polygon) _, fill = self.create_polygon((self.init_dem_shape[1],self.init_dem_shape[0]),polygon[hull.vertices][::-1]) pol[fill] = value pol[pol<min(data)]=min(data) polygons_in_array=pol.T self.voronoi_map = polygons_in_array.flatten() return self.voronoi_map def i_am_maxvol_function(self): self.num_of_points dist_pts = 0.1 wd = self.wd data_m=3 dem_dir = None max_n_pnts = self.num_of_points min_n_pnts = self.num_of_points X, dem_flat, dem_nodata, init_dem_shape, idx_dem, boundary_box = self.data_preparation(wd, data_m, dem_dir) #function for distance between points f_cut = lambda idx, i : f_cut_eps(idx, i, X=X, eps = dist_pts) #function for distance from border # f_penal = f_penal_2D(X = X[:, -2], Y = X[:, -1], bnd = 0.3, level = 0.3) f_penal = f_penal_2D(X = X[:, -2], Y = X[:, -1], bnd = 0.2, level = 0.3) #Change to 0.2 result = points_selection(X, max_n_pnts = max_n_pnts, min_n_pnts = min_n_pnts, cut_fun = f_cut, penalty = f_penal) #coordinates # xmin, ymin, xmax, ymax = [37.7928399,51.90236556, 37.8064010,51.90774268] xmin = boundary_box['xmin'] xmax = boundary_box['xmax'] ymin = boundary_box['ymin'] ymax = boundary_box['ymax'] dem_flat_img = dem_flat.copy()-np.min(dem_flat) dem_flat_img[np.where(dem_flat == dem_nodata)] = float('NaN') st = dem_flat_img.reshape(init_dem_shape) xv = np.linspace(xmin,xmax, num=st.shape[1]) yv = np.linspace(ymax,ymin, num=st.shape[0]) coords = np.meshgrid(xv,yv) mask = idx_dem #select corresponding points by indecies y_c,x_c = coords[0].flatten()[mask, None],coords[1].flatten()[mask, None] y_idx, x_idx = y_c[result],x_c[result] coord_idx = np.hstack((y_idx,x_idx)) self.maxvol_indices = result return self.maxvol_indices def i_am_clhs(self, num_iter): n_pnts = self.num_of_points #cLHS sampled=cl.clhs(self.X[:,:-2], n_pnts, max_iterations=num_iter, progress=False) self.cLHS_indices = sampled['sample_indices'] return self.cLHS_indices def i_am_random(self): random_dist = np.random.randint(low=0,high=self.X.shape[0],size=self.num_of_points) return random_dist if __name__ == "__main__": SAR = MaxVolSampling()
import json from datetime import datetime as dt import d4rl import gym import numpy as np import torch from oraaclib.agent import BCQ, BEAR from oraaclib.environment import get_env from oraaclib.util.logger import Logger from oraaclib.util.rollout import oraac_rollout from oraaclib.util.utilities import get_dict_hyperparams from oraaclib.util.torch_utilities import EarlyStopping from torch.utils.tensorboard import SummaryWriter from utils.utilities import (dotdict, get_names, parse_args) record_tensorboard = True # if 'cluster' in os.getcwd() else False save_model = True # if 'cluster' in os.getcwd() else False render_eval = False args = parse_args() if args.model_path: args.eval = True if args.render: render_eval = True torch.set_num_threads(args.num_threads) config_name = args.config_name date = dt.now().strftime("%Y_%m_%d_%H%M%S_%f") if not args.eval: with open('json_params/BEAR_BCQ/'+config_name) as f: params = json.load(f) for k, v in args.__dict__.items(): if v is not None: for main_key in params.keys(): for dk in params[main_key].keys(): if k == dk: params[main_key][dk] = v if args.env_name is not None: params['env']['name'] = args.env_name if args.agent_name is not None: params['agent']['name'] = args.agent_name p = dotdict(params) p.agent = dotdict(params["agent"]) p.env = dotdict(params["env"]) # Defining name_file: name_file, name_tb, name_save, name_logger_folder = \ get_names(p, args, date, record_tensorboard, save_model) tb = SummaryWriter('{}'.format(name_tb)) if name_tb is not None else None logger = Logger(folder=name_logger_folder, name=f'{name_file}') torch.manual_seed(p.agent.SEED) np.random.seed(p.agent.SEED) hyper_params = get_dict_hyperparams(p) env, dataset = get_env(p) early_stopper_rew = EarlyStopping( name_save=name_save, patience=20, verbose=True, delta=1, evol_type='Mean_cumreward', env_properties=p.env, agent_properties=p.agent) early_stopper_var = EarlyStopping( name_save=name_save, patience=20, verbose=True, delta=1, evol_type='Cvar_cumreward', env_properties=p.env, agent_properties=p.agent) if p.agent.name == 'BEAR': agent = BEAR(env=env, dataset=dataset, hyper_params=hyper_params, eval=False, early_stopper_rew=early_stopper_rew, early_stopper_var=early_stopper_var, logger=logger, name_save=name_save) elif p.agent.name == 'BCQ': agent = BCQ(env=env, dataset=dataset, hyper_params=hyper_params, eval=False, early_stopper_rew=early_stopper_rew, early_stopper_var=early_stopper_var, logger=logger, name_save=name_save) else: raise ValueError(f'Agent "{p.agent.name}"" is not implemented. Only' 'BEAR and BCQ available') gradient_steps = 10000000 max_episodes = 2000 MAX_EVAL_STEPS = 200 print(f'Start training algorithm with {agent.__class__.__name__} algorithm') oraac_rollout(env, agent, gradient_steps=p.agent.GRADIENT_STEPS, max_episodes=p.agent.max_episodes, max_episode_steps=p.agent.MAX_EVAL_STEPS, eval_freq=p.agent.eval_freq, times_eval=20)
import io import os import json import subprocess import shutil import boto3 from .storage import Storage class S3Storage(Storage): def __init__(self, bucket: str, key: str, local_path: str): super().__init__() self.bucket = bucket self.key = key self.index_key = key+"/index" self.annoy_index_key = self.index_key+"/index.ann" self.reverse_index_key = self.index_key+"/reverse_index.json" self.vector_key = key+"/vector" self.metadata_key = key+"/metadata" self.local_index_path = local_path+"/index" self.local_annoy_index_path = self.local_index_path+"/index.ann" self.local_reverse_index_path = self.local_index_path+"/reverse_index.json" self.local_vector_path = local_path+"/vector" self.s3_client = boto3.client("s3") def save(self, id: str, vector: list, metadata: dict = {}): vector_key = self.vector_key+"/"+id+".json" self.s3_client.upload_fileobj(io.BytesIO(json.dumps(vector, indent=4, sort_keys=True).encode("utf-8")), self.bucket, vector_key) metadata_key = self.metadata_key+"/"+id+".json" self.s3_client.upload_fileobj(io.BytesIO(json.dumps(metadata, indent=4, sort_keys=True).encode("utf-8")), self.bucket, metadata_key) def delete(self, id: str): pass def vector_generator(self): remote_path = "s3://"+self.bucket+"/"+self.vector_key subprocess.call(["aws", "s3", "sync", remote_path, self.local_vector_path, "--delete"]) files = os.listdir(self.local_vector_path) files = [os.path.join(self.local_vector_path, f) for f in files] files.sort() for f in files: with open(f) as fp: yield json.load(fp), f.split("/")[-1].split(".")[0] def save_index(self, index_path: str, reverse_index_path: str): self.s3_client.upload_file( index_path, self.bucket, self.annoy_index_key) self.s3_client.upload_file( reverse_index_path, self.bucket, self.reverse_index_key) def get_local_index_path(self): index_remote_path = "s3://"+self.bucket+"/"+self.index_key subprocess.call(["aws", "s3", "sync", index_remote_path, self.local_index_path, "--delete"]) return self.local_annoy_index_path, self.local_reverse_index_path