content
stringlengths
5
1.05M
from __future__ import annotations from textwrap import dedent from typing import TYPE_CHECKING import numpy as np import pandas as pd from pandas.util._decorators import doc from pandas.util._validators import validate_bool_kwarg from dtoolkit._typing import SeriesOrFrame from dtoolkit.accessor._util import get_mask from dtoolkit.accessor.register import register_dataframe_method from dtoolkit.accessor.series import cols as s_cols from dtoolkit.accessor.series import expand as s_expand from dtoolkit.accessor.series import top_n as s_top_n if TYPE_CHECKING: from typing import Iterable @register_dataframe_method @doc( s_cols, returns=dedent( """ Returns ------- list of str or int The column names. """, ), ) def cols(df: pd.DataFrame) -> list[str | int]: return df.columns.tolist() @register_dataframe_method def drop_inf( df: pd.DataFrame, axis: int | str = 0, how: str = "any", inf: str = "all", subset: list[str] | None = None, inplace: bool = False, ) -> pd.DataFrame | None: """ Remove ``inf`` values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Determine if rows or columns which contain ``inf`` values are removed. * 0, or 'index' : Drop rows which contain ``inf`` values. * 1, or 'columns' : Drop columns which contain ``inf`` value. how : {'any', 'all'}, default 'any' Determine if row or column is removed from :obj:`~pandas.DataFrame`, when we have at least one ``inf`` or all ``inf``. * 'any' : If any ``inf`` values are present, drop that row or column. * 'all' : If all values are ``inf``, drop that row or column. inf : {'all', 'pos', 'neg'}, default 'all' * 'all' : Remove ``inf`` and ``-inf``. * 'pos' : Only remove ``inf``. * 'neg' : Only remove ``-inf``. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame or None DataFrame with ``inf`` entries dropped from it or None if ``inplace=True``. See Also -------- dtoolkit.accessor.series.drop_inf :obj:`~pandas.Series` drops ``inf`` values. Examples -------- >>> import dtoolkit.accessor >>> import pandas as pd >>> import numpy as np >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.inf, 'Batmobile', 'Bullwhip'], ... "born": [np.inf, pd.Timestamp("1940-04-25"), ... -np.inf]}) >>> df name toy born 0 Alfred inf inf 1 Batman Batmobile 1940-04-25 00:00:00 2 Catwoman Bullwhip -inf Drop the rows where at least one element is inf and -inf. >>> df.drop_inf() name toy born 1 Batman Batmobile 1940-04-25 00:00:00 Drop the columns where at least one element is inf and -inf. >>> df.drop_inf(axis='columns') name 0 Alfred 1 Batman 2 Catwoman Drop the rows where all elements are inf and -inf. >>> df.drop_inf(how='all') name toy born 0 Alfred inf inf 1 Batman Batmobile 1940-04-25 00:00:00 2 Catwoman Bullwhip -inf Drop the rows where at least one element is -inf. >>> df.drop_inf(inf='neg') name toy born 0 Alfred inf inf 1 Batman Batmobile 1940-04-25 00:00:00 Define in which columns to look for inf and -inf values. >>> df.drop_inf(subset=['name', 'toy']) name toy born 1 Batman Batmobile 1940-04-25 00:00:00 2 Catwoman Bullwhip -inf Keep the DataFrame with valid entries in the same variable. >>> df.drop_inf(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 00:00:00 """ from dtoolkit.accessor._util import get_inf_range inplace = validate_bool_kwarg(inplace, "inplace") axis = df._get_axis_number(axis) agg_axis = 1 - axis agg_obj = df if subset is not None: ax = df._get_axis(agg_axis) indices = ax.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(list(np.compress(check, subset))) agg_obj = df.take(indices, axis=agg_axis) inf_range = get_inf_range(inf) mask = agg_obj.isin(inf_range) mask = get_mask(how, mask, agg_axis) result = df.loc(axis=axis)[~mask] if not inplace: return result df._update_inplace(result) @register_dataframe_method def filter_in( df: pd.DataFrame, condition: Iterable | pd.Series | pd.DataFrame | dict[str, list[str]], axis: int | str = 0, how: str = "all", inplace: bool = False, ) -> pd.DataFrame | None: """ Filter :obj:`~pandas.DataFrame` contents. Similar to :meth:`~pandas.DataFrame.isin`, but the return is value not bool. Parameters ---------- condition : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. * If ``condition`` is a :obj:`dict`, the keys must be the row/column names, which must match. And ``how`` only works on these gave keys. - ``axis`` is 0 or 'index', keys would be recognize as column names. - ``axis`` is 1 or 'columns', keys would be recognize as index names. * If ``condition`` is a :obj:`~pandas.Series`, that's the index. * If ``condition`` is a :obj:`~pandas.DataFrame`, then both the index and column labels must match. axis : {0 or 'index', 1 or 'columns'}, default 0 Determine if rows or columns which contain value are filtered. * 0, or 'index' : Filter rows which contain value. * 1, or 'columns' : Filter columns which contain value. how : {'any', 'all'}, default 'all' Determine if row or column is filtered from :obj:`~pandas.DataFrame`, when we have at least one value or all value. * 'any' : If any values are present, filter that row or column. * 'all' : If all values are present, filter that row or column. inplace : bool, default is False If True, do operation inplace and return None. Returns ------- DataFrame See Also -------- pandas.DataFrame.isin Whether each element in the DataFrame is contained in values. pandas.DataFrame.filter Subset the dataframe rows or columns according to the specified index labels. Examples -------- >>> import dtoolkit.accessor >>> import pandas as pd >>> df = pd.DataFrame({'num_legs': [2, 4, 2], 'num_wings': [2, 0, 0]}, ... index=['falcon', 'dog', 'cat']) >>> df num_legs num_wings falcon 2 2 dog 4 0 cat 2 0 When ``condition`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings). Filter rows. >>> df.filter_in([0, 2]) num_legs num_wings falcon 2 2 cat 2 0 Filter columns. >>> df.filter_in([0, 2], axis=1) num_wings falcon 2 dog 0 cat 0 When ``condition`` is a :obj:`dict`, we can pass values to check for each row/column (depend on ``axis``) separately. Filter rows, to check under the column (key) whether contains the value. >>> df.filter_in({'num_legs': [2], 'num_wings': [2]}) num_legs num_wings falcon 2 2 Filter columns, to check under the index (key) whether contains the value. >>> df.filter_in({'cat': [2]}, axis=1) num_legs falcon 2 dog 4 cat 2 When ``values`` is a Series or DataFrame the index and column must match. Note that 'spider' doesn't match based on the number of legs in ``other``. >>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> other num_legs num_wings spider 8 0 falcon 2 2 >>> df.filter_in(other) num_legs num_wings falcon 2 2 """ from dtoolkit.accessor._util import isin inplace = validate_bool_kwarg(inplace, "inplace") axis = df._get_axis_number(axis) another_axis = 1 - axis mask = isin(df, condition, axis) if isinstance(condition, dict): # 'how' only works on condition's keys names = condition.keys() mask = mask[names] if axis == 0 else mask.loc[names] mask = get_mask(how, mask, another_axis) result = df.loc(axis=axis)[mask] if not inplace: return result df._update_inplace(result) @register_dataframe_method def repeat( df: pd.DataFrame, repeats: int | list[int], axis: int | str = 0, ) -> pd.DataFrame | None: """ Repeat row or column of a :obj:`~pandas.DataFrame`. Returns a new DataFrame where each row/column is repeated consecutively a given number of times. Parameters ---------- repeats : int or array of ints The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty :obj:`~pandas.DataFrame`. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis along which to repeat. * 0, or 'index' : Along the row to repeat. * 1, or 'columns' : Along the column to repeat. Returns ------- DataFrame Newly created DataFrame with repeated elements. See Also -------- numpy.repeat : This transformer's prototype method. Examples -------- >>> import pandas as pd >>> import dtoolkit.accessor >>> df = pd.DataFrame({'a': [1, 2], 'b':[3, 4]}) >>> df a b 0 1 3 1 2 4 Each row repeat two times. >>> df.repeat(2) a b 0 1 3 0 1 3 1 2 4 1 2 4 Each column repeat two times. >>> df.repeat(2, 1) a a b b 0 1 1 3 3 1 2 2 4 4 ``a`` column repeat 1 times, ``b`` column repeat 2 times. >>> df.repeat([1, 2], 1) a b b 0 1 3 3 1 2 4 4 """ axis = df._get_axis_number(axis) return pd.DataFrame( np.repeat( df._values, repeats, axis=axis, ), index=df.index.repeat(repeats) if axis == 0 else df.index, columns=df.columns.repeat(repeats) if axis == 1 else df.columns, ) @register_dataframe_method def top_n( df: pd.DataFrame, n: int, largest: bool = True, keep: str = "first", prefix: str = "top", delimiter: str = "_", element: str = "index", ) -> pd.DataFrame: """ Returns each row's top `n`. Parameters ---------- n : int Number of top to return. largest : bool, default True - True, the top is the largest. - False, the top is the smallest. keep : {"first", "last", "all"}, default "first" Where there are duplicate values: - first : prioritize the first occurrence(s). - last : prioritize the last occurrence(s). - all : do not drop any duplicates, even it means selecting more than n items. prefix : str, default "top" The prefix name of the new DataFrame column. delimiter : str, default "_" The delimiter between `prefix` and number. element : {"both", "index", "value"}, default "index" To control the structure of return dataframe value. - both: the structure of value is ``({column index}, {value})``. - index: the structure of value is only ``{column index}``. - value: the structure of value is only ``{value}``. Returns ------- DataFrame - The structure of column name is ``{prefix}{delimiter}{number}``. - The default structure of value is ``{column index}`` and could be controlled via ``element``. See Also -------- dtoolkit.accessor.dataframe.expand Transform each element of a list-like to a column. Notes ----- Q: Any different to :meth:`~pandas.DataFrame.nlargest` and :meth:`~pandas.DataFrame.nsmallest`? A: :meth:`~pandas.DataFrame.nlargest` and :meth:`~pandas.DataFrame.nsmallest` base one column to return all selected columns dataframe top `n`. Examples -------- >>> import dtoolkit.accessor >>> import pandas as pd >>> df = pd.DataFrame( ... { ... "a": [1, 3, 2, 1], ... "b": [3, 2, 1, 1], ... "c": [2, 1, 3, 1], ... }, ... ) >>> df a b c 0 1 3 2 1 3 2 1 2 2 1 3 3 1 1 1 Get each row's largest top **2**. >>> df.top_n(2) top_1 top_2 0 b c 1 a b 2 c a 3 a b Get each row's both **index** and **value** of largest top 2. >>> df.top_n(2, element="both") top_1 top_2 0 (b, 3) (c, 2) 1 (a, 3) (b, 2) 2 (c, 3) (a, 2) 3 (a, 1) (b, 1) Get each row's smallest top **1** and **keep** the duplicated values. >>> df.top_n(1, largest=False, keep="all") top_1 top_2 top_3 0 a NaN NaN 1 c NaN NaN 2 b NaN NaN 3 a b c """ if element not in ("both", "index", "value"): raise ValueError('element must be either "both", "index" or "value"') def wrap_s_top_n(*args, **kwargs) -> pd.Series: top = s_top_n(*args, **kwargs) if element == "both": data = zip(top.index, top.values) elif element == "index": data = top.index elif element == "value": data = top.values return pd.Series(data, index=pd.RangeIndex(1, len(top) + 1)) return df.apply( wrap_s_top_n, axis=1, n=n, largest=largest, keep=keep, ).add_prefix(prefix + delimiter) @register_dataframe_method @doc( s_expand, see_also=dedent( """ See Also -------- dtoolkit.accessor.series.expand Transform each element of a list-like to a column. pandas.DataFrame.explode Transform each element of a list-like to a row. """, ), examples=dedent( """ Examples -------- >>> import dtoolkit.accessor >>> import pandas as pd >>> import numpy as np Expand the *list-like* element. >>> df = pd.DataFrame({'A': [[0, 1, 2], 'foo', [], [3, 4]], ... 'B': 1, ... 'C': [['a', 'b', 'c'], np.nan, [], ['d', 'e']]}) >>> df.expand() A_0 A_1 A_2 B C_0 C_1 C_2 0 0 1.0 2.0 1 a b c 1 foo NaN NaN 1 NaN None None 2 None NaN NaN 1 None None None 3 3 4.0 NaN 1 d e None Expand *sub-element* type is list-like. >>> df = pd.DataFrame({"col1": [1, 2], "col2": [("a", "b"), (3, (5, 6))]}) >>> df.expand(flatten=True) col1 col2_0 col2_1 col2_2 0 1 a b NaN 1 2 3 5 6.0 Set the columns of name. >>> df = pd.DataFrame({"col1": [1, 2], "col2": [("a", 3), ("b", 4)]}) >>> df.expand(suffix=["index", "value"], delimiter="-") col1 col2-index col2-value 0 1 a 3 1 2 b 4 Also could handle **different lengths** of element and suffix list. >>> df = pd.DataFrame({"col1": [1, 2], "col2": [(3, 4), (5, 6, 7)]}) >>> df.expand() col1 col2_0 col2_1 col2_2 0 1 3 4 NaN 1 2 5 6 7.0 >>> df.expand(suffix=["a", "b", "c", "d"]) col1 col2_a col2_b col2_c 0 1 3 4 NaN 1 2 5 6 7.0 """, ), ) def expand( df: pd.DataFrame, suffix: list[str | int] | None = None, delimiter: str = "_", flatten: bool = False, ) -> pd.DataFrame: return pd.concat( ( df.get(key=column).expand( suffix=suffix, delimiter=delimiter, flatten=flatten, ) for column in df.cols() ), axis=1, ) @register_dataframe_method def to_series(df: pd.DataFrame, name: str | int = None) -> SeriesOrFrame: """ Transform one column :class:`~pandas.DataFrame` to :class:`~pandas.Series`. Parameters ---------- name : str or int, optional The name of returned Series Returns ------- Series or DataFrame Series if ``df`` is one column else would be DataFrame. Examples -------- >>> import dtoolkit.accessor >>> import pandas as pd >>> df = pd.DataFrame(range(3)) >>> df 0 0 0 1 1 2 2 >>> df.to_series() 0 0 1 1 2 2 Name: 0, dtype: int64 >>> df = pd.DataFrame({'a': [1, 2]}) >>> df a 0 1 1 2 >>> df.to_series() 0 1 1 2 Name: a, dtype: int64 """ if df.shape[1] == 1: # one column DataFrame column = df.columns[0] return df.get(column).rename(name or column) return df
# Meta / Dialog / Closable # Display a #dialog having a close button, and detect when it's closed. #meta # --- from h2o_wave import main, app, Q, ui @app('/demo') async def serve(q: Q): if not q.client.initialized: # Create an empty meta_card to hold the dialog q.page['meta'] = ui.meta_card(box='') # Display a button to launch dialog dialog q.page['example'] = ui.form_card(box='1 1 2 1', items=[ ui.button(name='launch_dialog', label='Launch dialog', primary=True) ]) q.client.initialized = True # Was the launch_dialog button clicked? if q.args.launch_dialog: # Create a dialog with a close button q.page['meta'].dialog = ui.dialog( title='Hello!', name='my_dialog', items=[ ui.text('Click the X button to close this dialog.'), ], # Enable a close button (displayed at the top-right of the dialog) closable=True, # Get notified when the dialog is dismissed. events=['dismissed'], ) # Did we get events from the dialog? if q.events.my_dialog: # Was the dialog dismissed? if q.events.my_dialog.dismissed: # Delete the dialog q.page['meta'].dialog = None await q.page.save()
from dataset_specifications.housing import HousingSet class HouseAgeSet(HousingSet): def __init__(self): super().__init__() self.name = "house_age" self.x_dim = 2 # Modified version of the California house price dataset (housing) # Predict house age only from coordinates of house def preprocess(self, file_path): # Load all data at first loaded_data = super().preprocess(file_path) # Indexes: 1 - house age, 6 - latitude, 7 longitude return loaded_data[:,(6,7,1)]
import pickle import os import time from enum import Enum from .. import config class Status(Enum): """ Enum containing all statuses Ricecooker can have Steps: INIT: Ricecooker process has been started CONSTRUCT_CHANNEL: Ricecooker is ready to call sushi chef's construct_channel method CREATE_TREE: Ricecooker is ready to create relationships between nodes DOWNLOAD_FILES: Ricecooker is ready to start downloading files GET_FILE_DIFF: Ricecooker is ready to get file diff from Kolibri Studio START_UPLOAD: Ricecooker is ready to start uploading files to Kolibri Studio UPLOADING_FILES: Ricecooker is in the middle of uploading files UPLOAD_CHANNEL: Ricecooker is ready to upload the channel to Kolibri Studio PUBLISH_CHANNEL: Ricecooker is ready to publish the channel to Kolibri DONE: Ricecooker is done LAST: Place where Ricecooker left off """ INIT = 0 CONSTRUCT_CHANNEL = 1 CREATE_TREE = 2 DOWNLOAD_FILES = 3 GET_FILE_DIFF = 4 START_UPLOAD = 5 UPLOADING_FILES = 6 UPLOAD_CHANNEL = 7 PUBLISH_CHANNEL = 8 DONE = 9 LAST = 10 class RestoreManager: """ Manager for handling resuming rice cooking process Attributes: restore_path (str): path to .pickle file to store progress channel (Channel): channel Ricecooker is creating tree (ChannelManager): manager Ricecooker is using files_downloaded ([str]): list of files that have been downloaded file_mapping ({filename:...}): filenames mapped to metadata files_failed ([str]): list of files that failed to download file_diff ([str]): list of files that don't exist on Kolibri Studio files_uploaded ([str]): list of files that have been successfully uploaded channel_link (str): link to uploaded channel channel_id (str): id of channel that has been uploaded status (str): status of Ricecooker """ def __init__(self): self.channel = None self.tree = None self.files_downloaded = [] self.file_mapping = {} self.files_failed = [] self.file_diff = [] self.files_uploaded = [] self.channel_link = None self.channel_id = None self.status = Status.INIT self.timestamp = time.time() def check_for_session(self, status=None): """ check_for_session: see if session is in progress Args: status (str): step to check if last session reached (optional) Returns: boolean indicating if session exists """ status = Status.LAST if status is None else status return os.path.isfile(self.get_restore_path(status)) and os.path.getsize(self.get_restore_path(status)) > 0 def get_restore_path(self, status=None): """ get_restore_path: get path to restoration file Args: status (str): step to get restore file (optional) Returns: string path to restoration file """ status = self.get_status() if status is None else status return config.get_restore_path(status.name.lower()) def __record_progress(self, next_step=None): """ __record_progress: save progress to respective restoration file Args: None Returns: None """ with open(self.get_restore_path(Status.LAST), 'wb') as handle, open(self.get_restore_path(), 'wb') as step_handle: pickle.dump(self, handle) pickle.dump(self, step_handle) def load_progress(self, resume_step): """ load_progress: loads progress from restoration file Args: resume_step (str): step at which to resume session Returns: manager with progress from step """ resume_step = Status[resume_step] progress_path = self.get_restore_path(resume_step) # If progress is corrupted, revert to step before while not self.check_for_session(resume_step): config.LOGGER.error("Ricecooker has not reached {0} status. Reverting to earlier step...".format(resume_step.name)) # All files are corrupted or absent, restart process if resume_step.value - 1 < 0: self.init_session() return self resume_step = Status(resume_step.value - 1) progress_path = self.get_restore_path(resume_step) config.LOGGER.error("Starting from status {0}".format(resume_step.name)) # Load manager with open(progress_path, 'rb') as handle: manager = pickle.load(handle) if isinstance(manager, RestoreManager): return manager else: return self def get_status(self): """ get_status: retrieves current status of Ricecooker Args: None Returns: string status of Ricecooker """ return self.status def get_status_val(self): """ get_status_val: retrieves value of status of Ricecooker Args: None Returns: number value of status of Ricecooker """ return self.status.value def init_session(self): """ init_session: sets session to beginning status Args: None Returns: None """ # Clear out previous session's restoration files for status in Status: path = self.get_restore_path(status) if os.path.isfile(path): os.remove(path) self.__record_progress() self.__record_progress(Status.CONSTRUCT_CHANNEL) def set_channel(self, channel): """ set_channel: records progress from constructed channel Args: channel (Channel): channel Ricecooker is creating Returns: None """ self.channel = channel self.__record_progress(Status.CREATE_TREE) def set_tree(self, tree): """ set_channel: records progress from creating the tree Args: tree (ChannelManager): manager Ricecooker is using Returns: None """ self.tree = tree self.__record_progress(Status.DOWNLOAD_FILES) def set_files(self, files_downloaded, files_failed): """ set_files: records progress from downloading files Args: files_downloaded ([str]): list of files that have been downloaded files_failed ([str]): list of files that failed to download Returns: None """ self.files_downloaded = files_downloaded self.files_failed = files_failed self.__record_progress(Status.GET_FILE_DIFF) def set_diff(self, file_diff): """ set_diff: records progress from getting file diff Args: file_diff ([str]): list of files that don't exist on Kolibri Studio Returns: None """ self.file_diff = file_diff self.__record_progress(Status.START_UPLOAD) def set_uploading(self, files_uploaded): """ set_uploading: records progress during uploading files Args: files_uploaded ([str]): list of files that have been successfully uploaded Returns: None """ self.files_uploaded = files_uploaded self.__record_progress(Status.UPLOADING_FILES) def set_uploaded(self, files_uploaded): """ set_uploaded: records progress after uploading files Args: files_uploaded ([str]): list of files that have been successfully uploaded Returns: None """ self.files_uploaded = files_uploaded self.__record_progress(Status.UPLOAD_CHANNEL) def set_channel_created(self, channel_link, channel_id): """ set_channel_created: records progress after creating channel on Kolibri Studio Args: channel_link (str): link to uploaded channel channel_id (str): id of channel that has been uploaded Returns: None """ self.channel_link = channel_link self.channel_id = channel_id self.__record_progress(Status.PUBLISH_CHANNEL if config.PUBLISH else Status.DONE) def set_published(self): """ set_published: records progress after channel has been published Args: None Returns: None """ self.__record_progress(Status.DONE) def set_done(self): """ set_done: records progress after Ricecooker process has been completed Args: None Returns: None """ self.__record_progress(Status.DONE) # Delete restoration point for last step to indicate process has been completed os.remove(self.get_restore_path(Status.LAST))
from PyQt6.QtWidgets import ( QMainWindow, QTreeWidgetItem, QWidget ) from PyQt6.QtGui import ( QIcon ) from .mainwindow_ui import Ui_MainWindow from .defmodules import WIDGETS_DEFAULT from .symmetric import WIDGETS_SYMMETRIC from .asymmetric import WIDGETS_ASYMMETRIC from .cryptotools import WIDGETS_CRYPTOTOOLS WIDGETS_CIPHERS = { "Symmetric ciphers": WIDGETS_SYMMETRIC, "Asymmetric ciphers": WIDGETS_ASYMMETRIC, "Crypto tools": WIDGETS_CRYPTOTOOLS } class MainWindow(QMainWindow): def __init__(self): super(MainWindow, self).__init__() self.ui = Ui_MainWindow() self.ui.setupUi(self) self.setWindowTitle("Crypto methods") self.ui.splitter.setStretchFactor(1, 1) self.ui.tree_widget.clicked.connect(self.tree_widget_item_clicked) self.load_modules() def load_modules(self): # Load default modules for widget in WIDGETS_DEFAULT: self.ui.stacked_widget.addWidget(widget()) # Load other widgets items = [] for title, widgets in WIDGETS_CIPHERS.items(): parent = QTreeWidgetItem((title,)) parent.setIcon(0, QIcon("icons:folder.png")) children = [] for widget in widgets: widget = widget() self.ui.stacked_widget.addWidget(widget) child = QTreeWidgetItem((widget.title,)) child.setIcon(0, QIcon("icons:file.png")) child.setData(1, 1, widget) children.append(child) parent.addChildren(children) items.append(parent) self.ui.tree_widget.invisibleRootItem().addChildren(items) def tree_widget_item_clicked(self): item = self.ui.tree_widget.currentItem() widget = item.data(1, 1) match widget: case QWidget(): self.ui.group_box_right.setTitle(item.text(0)) self.ui.stacked_widget.setCurrentWidget(widget) case _: pass
def fileInput(mainFilePath, inputFilePath): with open(inputFilePath, 'a') as file: file.write('\n') with open(mainFilePath) as file: script = "fileOpenAsInput = open('"+inputFilePath+"')\n" line = file.readline() while line != '': if "fileInput" in line: line = file.readline() continue if "input()" in line: line = line.replace( "input()", "fileOpenAsInput.readline()[:-1]") elif "sys.stdin.readline()" in line: line = line.replace("sys.stdin.readline()", "fileOpenAsInput.readline()[:-1]") script += line line = file.readline() exec(script) quit()
"""Plotting referendum results in pandas. In short, we want to make beautiful map to report results of a referendum. In some way, we would like to depict results with something similar to the maps that you can find here: https://github.com/x-datascience-datacamp/datacamp-assignment-pandas/blob/main/example_map.png To do that, you will load the data as pandas.DataFrame, merge the info and aggregate them by regions and finally plot them on a map using `geopandas`. """ import pandas as pd import geopandas as gpd import matplotlib.pyplot as plt def load_data(): """Load data from the CSV files referundum/regions/departments.""" referendum = pd.read_csv("./data/referendum.csv", sep=";") regions = pd.read_csv("./data/regions.csv") departments = pd.read_csv("./data/departments.csv") return referendum, regions, departments def merge_regions_and_departments(regions, departments): """Merge regions and departments in one DataFrame. The columns in the final DataFrame should be: ['code_reg', 'name_reg', 'code_dep', 'name_dep'] """ columns = ['code_reg', 'name_reg', 'code_dep', 'name_dep'] merge_regions_and_departments = departments.merge(regions, how="left", left_on=["region_code"], right_on=["code"], suffixes=["_dep", "_reg"]) return merge_regions_and_departments[columns] def merge_referendum_and_areas(referendum, regions_and_departments): """Merge referendum and regions_and_departments in one DataFrame. You can drop the lines relative to DOM-TOM-COM departments, and the french living abroad. """ abroad = ["DOM", "TOM", "COM"] r_d_cdep = regions_and_departments["code_dep"] referendum["Department code"] = pd.Series(referendum["Department code"], dtype="string").str.zfill(2) filter_abroad_regions = ~regions_and_departments["code_reg"].isin(abroad) regions_and_departments = regions_and_departments[filter_abroad_regions] r_d_cdep = pd.Series(r_d_cdep, dtype="string") merge_referendum_and_areas = referendum.merge(regions_and_departments, how="left", left_on=["Department code"], right_on=['code_dep']) merge_referendum_and_areas = merge_referendum_and_areas.dropna() return merge_referendum_and_areas def compute_referendum_result_by_regions(referendum_and_areas): """Return a table with the absolute count for each region. The return DataFrame should be indexed by `code_reg` and have columns: ['name_reg', 'Registered', 'Abstentions', 'Null', 'Choice A', 'Choice B'] """ columns = ['name_reg', 'Registered', 'Abstentions', 'Null', 'Choice A', 'Choice B'] cols = columns + ["code_reg"] gby = ["code_reg", "name_reg"] referendum_result_by_regions = referendum_and_areas[cols].groupby(gby).sum() referendum_result_by_regions = referendum_result_by_regions.reset_index() return referendum_result_by_regions[columns] def plot_referendum_map(referendum_result_by_regions): """Plot a map with the results from the referendum. * Load the geographic data with geopandas from `regions.geojson`. * Merge these info into `referendum_result_by_regions`. * Use the method `GeoDataFrame.plot` to display the result map. The results should display the rate of 'Choice A' over all expressed ballots. * Return a gpd.GeoDataFrame with a column 'ratio' containing the results. """ geographic_regions = gpd.read_file('./data/regions.geojson') referendum_map = referendum_result_by_regions.merge(geographic_regions, how="left", left_on=["name_reg"], right_on=['nom'] ) A = referendum_map['Choice A'].astype(int) B = referendum_map["Choice B"].astype(int) tot_ref = A + B referendum_map["ratio"] = referendum_map["Choice A"].astype(int) / tot_ref referendum_map_geodataframe = gpd.GeoDataFrame(referendum_map) referendum_map_geodataframe.plot("ratio") return referendum_map_geodataframe if __name__ == "__main__": referendum, df_reg, df_dep = load_data() regions_and_departments = merge_regions_and_departments( df_reg, df_dep ) referendum_and_areas = merge_referendum_and_areas( referendum, regions_and_departments ) referendum_results = compute_referendum_result_by_regions( referendum_and_areas ) print(referendum_results) plot_referendum_map(referendum_results) plt.show()
import bson.json_util import json import math import numpy import pymongo import scipy.linalg import sys import time from findNodes import run as find_nodes from neighborhood import run as get_neighborhood class Cache: def __init__(self, radius, namefield, host, db, coll): self.radius = radius self.namefield = namefield self.host = host self.db = db self.coll = coll self.cache = {} def get(self, handle): if handle not in self.cache: node = bson.json_util.loads(find_nodes(host=self.host, db=self.db, coll=self.coll, spec=json.dumps({self.namefield: handle}), singleton=json.dumps(True))) self.cache[handle] = signature(get_neighborhood(host=self.host, db=self.db, coll=self.coll, center=node["_id"], radius=self.radius)) return self.cache[handle] def adjacency_matrix(g): index_map = {h: i for i, h in enumerate([x["_id"]["$oid"] for x in g["nodes"]])} links = ({"source": index_map[x["source"]], "target": index_map[x["target"]]} for x in g["links"]) m = numpy.eye(len(g["nodes"])) for link in links: s = link["source"] t = link["target"] m[s][t] = m[t][s] = 1.0 return m def signature(g): m = adjacency_matrix(g) return {"det": scipy.linalg.det(m), "trace": numpy.trace(m)} def norm2(v): def sq(x): return x*x return math.sqrt(sq(v[0]) + sq(v[1])) def similarity(s1, s2): return math.pow(1.01, -norm2([s1["det"] - s2["det"], s1["trace"] - s2["trace"]])) def process(db, source, source_namefield, target, target_namefield): source_cache = Cache(2, source_namefield, "localhost", db, source) target_cache = Cache(2, target_namefield, "localhost", db, target) print "Computing %s -> %s" % (source, target) topk = pymongo.MongoClient("localhost")[db]["topk_%s_%s" % (source, target)] records = topk.find(timeout=False) count = records.count() print "%d records" % (count) start = time.time() for i, rec in enumerate(records): if "2spectral" not in rec: rec["2spectral"] = similarity(source_cache.get(rec["ga"]), target_cache.get(rec["entity"])) topk.save(rec) if i % 10 == 0 and i > 0: elapsed = time.time() - start estimated = (elapsed / i) * count - elapsed m, s = divmod(estimated, 60) h, m = divmod(m, 60) print "%d of %d records complete (time remaining: %02d:%02d:%02d)" % (i, count, h, m, s) def main(): db = "july" twitter = "twitter_nodelink" twitter_namefield = "user_name" instagram = "instagram_nodelink" instagram_namefield = "user_name" #process(db, twitter, twitter_namefield, instagram, instagram_namefield) process(db, instagram, instagram_namefield, twitter, twitter_namefield) if __name__ == "__main__": sys.exit(main())
# -*- coding: utf-8 -*- """ Created on Fri Jan 22 14:51:15 2021 @author: crtjur """ # from tkinter import * import tkinter as tk # class GPIO(tk.Frame): # """Each GPIO class draws a Tkinter frame containing: # - A Label to show the GPIO Port Name # - A data direction spin box to select pin as input or output # - A checkbox to set an output pin on or off # - An LED widget to show the pin's current state # - A Label to indicate the GPIOs current function""" # gpio_modes = ("Passive","Input","Output") # def __init__(self,parent,pin=0,name=None,**kw): # self.pin = pin # if name == None: # self.name = "GPIO %02d" % (self.pin) # tk.Frame.__init__(self,parent,width=150,height=20,relief=tk.SUNKEN,bd=1,padx=5,pady=5) # ##Future capability # ##self.bind('<Double-Button-1>', lambda e, s=self: self._configurePin(e.y)) # self.parent = parent # # self.configure(**kw) # self.state = False # self.cmdState = tk.IntVar() # self.Label = tk.Label(self,text=self.name) # # # self.mode_sel = tk.Spinbox(self,values=gpio_modes,wrap=True,command=self.setMode) # # self.mode_sel = tk.Spinbox(self,values=gpio_modes,wrap=True) # # self.set_state = tk.Checkbutton(self,text="High/Low",variable=self.cmdState,command=self.toggleCmdState) # # self.led = LED(self,20) # self.Label.grid(column=0,row=0) # # self.mode_sel.grid(column=1,row=0) # # self.set_state.grid(column=2,row=0) # # self.current_mode = StringVar() # # self.led.grid(column=3,row=0) # # self.set_state.config(state=DISABLED) # # function = self.getPinFunctionName() # # if function not in ['Input','Output']: # # self.mode_sel.delete(0,'end') # # self.mode_sel.insert(0,function) # # self.mode_sel['state'] = DISABLED class digitalPin(tk.Frame, number): def __init__(self, frame): self.Label = tk.Label(frame, text=number) self.Label.grid(column=0,row=0) def set_state(self): pass def get_state(self): pass # create tkinter window root = tk.Tk() root.title("Welcome to LikeGeeks app") root.geometry('460x350') # create all of the main containers header_frame = tk.Frame(root, bg='grey', width=450, height=50, pady=3) top_frame = tk.Frame(root, bg='grey', width=450, height=50, pady=3) center = tk.Frame(root, bg='gray2', width=50, height=40, padx=3, pady=3) btm_frame = tk.Frame(root, bg='white', width=450, height=45, pady=3) btm_frame2 = tk.Frame(root, bg='lavender', width=450, height=60, pady=3) # layout all of the main containers root.grid_rowconfigure(1, weight=1) root.grid_columnconfigure(0, weight=1) header_frame.grid(row=0, sticky="ew") top_frame.grid(row=1, sticky="ew") center.grid(row=2, sticky="nsew") btm_frame.grid(row=3, sticky="ew") btm_frame2.grid(row=4, sticky="ew") gpio_mode = ('input', 'output') gpio_type = ('digital', 'PWM', 'analog') # create digital pins 2-14 for i in range(2,14): gpio_frame = tk.Frame(top_frame, bg='white', pady=3, highlightbackground="black", highlightthickness=1) gpio_frame.grid(row=i, sticky="ew") # headers if not i: tk.Label(gpio_frame, text='PIN N', width = 5).grid(row=i, column = 0) #, bg = 'grey' tk.Label(gpio_frame, text='MODE', width = 10).grid(row=i, column = 1) tk.Label(gpio_frame, text='TYPE', width = 10).grid(row=i, column = 2) tk.Label(gpio_frame, text='STATUS', width = 10).grid(row=i, column = 3) tk.Label(gpio_frame, text='VALUE', width = 10).grid(row=i, column = 4) print('asd') else: # create the widgets for the top frame pin_text = str(i) pin_label = tk.Label(gpio_frame, text=pin_text, width = 5) mode_sel = tk.Spinbox(gpio_frame, width = 10, values = gpio_mode, wrap=True) type_sel = tk.Spinbox(gpio_frame,width = 10, values = gpio_type, wrap=True) button_label = tk.Button(gpio_frame,width = 10) #height = 100, value = tk.Entry(gpio_frame,background="pink", width = 10) # layout the widgets in the top frame pin_label.grid(row=i, column = 0) # columnspan=1 mode_sel.grid(row=i, column = 1) type_sel.grid(row=i, column = 2) button_label.grid(row=i, column = 3) value.grid(row=i, column=4) # entry_L.grid(row=1, column=3) gpio_frame = tk.Frame(top_frame, bg='white', pady=3, highlightbackground="black", highlightthickness=1) gpio_frame.grid(row=i, sticky="ew") pin = digitalPin(gpio_frame, number =i) # main loop root.mainloop()
# -*- coding: utf-8 -*- # Copyright 2015 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .checks import check_user_id class User(object): """ The User class can be used to call user specific functions. """ def __init__(self, api, user_id, displayname=None): check_user_id(user_id) self.user_id = user_id self.displayname = displayname self.api = api def get_display_name(self): """ Get this users display name. See also get_friendly_name() Returns: str: Display Name """ if not self.displayname: self.displayname = self.api.get_display_name(self.user_id) return self.displayname def get_friendly_name(self): display_name = self.api.get_display_name(self.user_id) return display_name if display_name is not None else self.user_id def set_display_name(self, display_name): """ Set this users display name. Args: display_name (str): Display Name """ self.displayname = display_name return self.api.set_display_name(self.user_id, display_name) def get_avatar_url(self): mxcurl = self.api.get_avatar_url(self.user_id) url = None if mxcurl is not None: url = self.api.get_download_url(mxcurl) return url def set_avatar_url(self, avatar_url): """ Set this users avatar. Args: avatar_url (str): mxc url from previously uploaded """ return self.api.set_avatar_url(self.user_id, avatar_url)
# test_utils.py """Tests for rom_operator_inference.utils.py.""" import pytest import numpy as np from scipy import linalg as la import rom_operator_inference as roi # utils.lstsq_reg() ----------------------------------------------------------- def _test_lstq_reg_single(k,d,r): """Do one test of utils.lstsq_reg().""" A = np.random.random((k, d)) b = np.random.random(k) B = np.random.random((k,r)) I = np.eye(d) # VECTOR TEST x = la.lstsq(A, b)[0] # Ensure that the least squares solution is the usual one when P=0. x_ = roi.utils.lstsq_reg(A, b, P=0)[0] assert np.allclose(x, x_) # Ensure that the least squares solution is the usual one when P=0 (matrix) x_ = roi.utils.lstsq_reg(A, b, np.zeros((d,d)))[0] assert np.allclose(x, x_) # Check that the regularized least squares solution has decreased norm. x_ = roi.utils.lstsq_reg(A, b, P=2)[0] assert la.norm(x_) <= la.norm(x) x_ = roi.utils.lstsq_reg(A, b, P=2*I)[0] assert la.norm(x_) <= la.norm(x) # MATRIX TEST X = la.lstsq(A, B)[0] # Ensure that the least squares solution is the usual one when P=0. X_ = roi.utils.lstsq_reg(A, B, P=0)[0] assert np.allclose(X, X_) # Ensure that the least squares solution is the usual one when P=0 (matrix) X_ = roi.utils.lstsq_reg(A, B, P=0)[0] assert np.allclose(X, X_) # Ensure that the least squares solution is the usual one when P=0 (list) X_ = roi.utils.lstsq_reg(A, B, P=[np.zeros((d,d))]*r)[0] assert np.allclose(X, X_) # Check that the regularized least squares solution has decreased norm. X_ = roi.utils.lstsq_reg(A, B, P=2)[0] assert la.norm(X_) <= la.norm(X) X_ = roi.utils.lstsq_reg(A, B, P=2)[0] assert la.norm(X_) <= la.norm(X) X_ = roi.utils.lstsq_reg(A, B, P=[2*I]*r)[0] assert la.norm(X_) <= la.norm(X) def test_lstsq_reg(n_tests=5): """Test utils.lstsq_reg().""" A = np.random.random((20,10)) B = np.random.random((20, 5)) # Negative regularization parameter not allowed. with pytest.raises(ValueError) as exc: roi.utils.lstsq_reg(A, B, -1) assert exc.value.args[0] == "regularization parameter must be nonnegative" # b must be one- or two-dimensional with pytest.raises(ValueError) as exc: roi.utils.lstsq_reg(A, np.random.random((2,2,2))) assert exc.value.args[0] == "`b` must be one- or two-dimensional" with pytest.raises(ValueError) as exc: roi.utils.lstsq_reg(A, np.array(5)) assert exc.value.args[0] == "`b` must be one- or two-dimensional" with pytest.raises(ValueError) as exc: roi.utils.lstsq_reg(A, B[:,0], [np.random.random((10,10)) for i in range(5)]) assert exc.value.args[0] == "`b` must be two-dimensional with multiple P" # Badly shaped regularization matrix. with pytest.raises(ValueError) as exc: roi.utils.lstsq_reg(A, B, np.random.random((5,5))) assert exc.value.args[0] == \ "P must be (d,d) with d = number of columns of A" with pytest.raises(ValueError) as exc: roi.utils.lstsq_reg(A, B, [np.random.random((10,10)) for i in range(3)]) assert exc.value.args[0] == \ "list P must have r entries with r = number of columns of b" # Do individual tests. k, m = 200, 20 for r in np.random.randint(4, 50, n_tests): s = r*(r+1)//2 _test_lstq_reg_single(k, r+s+m+1, r) # utils.kron_compact() -------------------------------------------------------- def _test_kron_compact_single_vector(n): """Do one vector test of utils.kron_compact().""" x = np.random.random(n) x2 = roi.utils.kron_compact(x) assert x2.ndim == 1 assert x2.shape[0] == n*(n+1)//2 for i in range(n): assert np.allclose(x2[i*(i+1)//2:(i+1)*(i+2)//2], x[i]*x[:i+1]) def _test_kron_compact_single_matrix(n): """Do one matrix test of utils.kron_compact().""" X = np.random.random((n,n)) X2 = roi.utils.kron_compact(X) assert X2.ndim == 2 assert X2.shape[0] == n*(n+1)//2 assert X2.shape[1] == n for i in range(n): assert np.allclose(X2[i*(i+1)//2:(i+1)*(i+2)//2], X[i]*X[:i+1]) def test_kron_compact(n_tests=100): """Test utils.kron_compact().""" # Try with bad input. with pytest.raises(ValueError) as exc: roi.utils.kron_compact(np.random.random((3,3,3))) assert exc.value.args[0] == "x must be one- or two-dimensional" # Correct inputs. for n in np.random.randint(2, 100, n_tests): _test_kron_compact_single_vector(n) _test_kron_compact_single_matrix(n) # utils.kron_col() ------------------------------------------------------------ def _test_kron_col_single_vector(n, m): """Do one vector test of utils.kron_col().""" x = np.random.random(n) y = np.random.random(m) xy = roi.utils.kron_col(x, y) assert xy.ndim == 1 assert xy.shape[0] == x.shape[0] * y.shape[0] for i in range(n): assert np.allclose(xy[i*m:(i+1)*m], x[i]*y) def _test_kron_col_single_matrix(n, k, m): """Do one matrix test of utils.kron_col().""" X = np.random.random((n,k)) Y = np.random.random((m,k)) XY = roi.utils.kron_col(X, Y) assert XY.ndim == 2 assert XY.shape[0] == X.shape[0] * Y.shape[0] assert XY.shape[1] == X.shape[1] for i in range(n): assert np.allclose(XY[i*m:(i+1)*m], X[i]*Y) def test_kron_col(n_tests=100): """Test utils.kron_compact().""" # Try with bad inputs. with pytest.raises(ValueError) as exc: roi.utils.kron_col(np.random.random(5), np.random.random((5,5))) assert exc.value.args[0] == \ "x and y must have the same number of dimensions" x = np.random.random((3,3)) y = np.random.random((3,4)) with pytest.raises(ValueError) as exc: roi.utils.kron_col(x, y) assert exc.value.args[0] == "x and y must have the same number of columns" x, y = np.random.random((2,3,3,3)) with pytest.raises(ValueError) as exc: roi.utils.kron_col(x, y) assert exc.value.args[0] == "x and y must be one- or two-dimensional" for n in np.random.randint(4, 100, n_tests): m = np.random.randint(2, n) k = np.random.randint(2, 100) _test_kron_col_single_vector(n, m) _test_kron_col_single_matrix(n, k, m) # utils.expand_Hc() ----------------------------------------------------------- def _test_expand_Hc_single(r): """Do one test of utils.expand_Hc().""" x = np.random.random(r) # Do a valid expand_Hc() calculation and check dimensions. s = r*(r+1)//2 Hc = np.random.random((r,s)) H = roi.utils.expand_Hc(Hc) assert H.shape == (r,r**2) # Check that Hc(x^2) == H(x⊗x). Hxx = H @ np.kron(x,x) assert np.allclose(Hc @ roi.utils.kron_compact(x), Hxx) # Check properties of the tensor for H. Htensor = H.reshape((r,r,r)) assert np.allclose(Htensor @ x @ x, Hxx) for subH in H: assert np.allclose(subH, subH.T) def test_expand_Hc(n_tests=100): """Test utils.expand_Hc().""" # Try to do expand_Hc() with a bad second dimension. r = 5 sbad = r*(r+3)//2 Hc = np.random.random((r, sbad)) with pytest.raises(ValueError) as exc: roi.utils.expand_Hc(Hc) assert exc.value.args[0] == \ f"invalid shape (r,s) = {(r,sbad)} with s != r(r+1)/2" # Do 100 test cases of varying dimensions. for r in np.random.randint(2, 100, n_tests): _test_expand_Hc_single(r) # utils.compress_H() ---------------------------------------------------------- def _test_compress_H_single(r): """Do one test of utils.expand_Hc().""" x = np.random.random(r) # Do a valid compress_H() calculation and check dimensions. H = np.random.random((r,r**2)) s = r*(r+1)//2 Hc = roi.utils.compress_H(H) assert Hc.shape == (r,s) # Check that Hc(x^2) == H(x⊗x). Hxx = H @ np.kron(x,x) assert np.allclose(Hxx, Hc @ roi.utils.kron_compact(x)) # Check that expand_Hc() and compress_H() are inverses up to symmetry. H2 = roi.utils.expand_Hc(Hc) Ht = H.reshape((r,r,r)) Htnew = np.empty_like(Ht) for l in range(r): Htnew[l] = (Ht[l] + Ht[l].T) / 2 assert np.allclose(H2, Htnew.reshape(H.shape)) def test_compress_H(n_tests=100): """Test utils.expand_Hc().""" # Try to do compress_H() with a bad second dimension. r = 5 r2bad = r**2 + 1 H = np.random.random((r, r2bad)) with pytest.raises(ValueError) as exc: roi.utils.compress_H(H) assert exc.value.args[0] == \ f"invalid shape (r,a) = {(r,r2bad)} with a != r**2" # Do 100 test cases of varying dimensions. for r in np.random.randint(2, 100, n_tests): _test_compress_H_single(r)
""" Setup for different kinds of Goldair climate devices """ from . import DOMAIN from .const import ( CONF_CLIMATE, CONF_DEVICE_ID, CONF_TYPE, CONF_TYPE_AUTO, CONF_TYPE_DEHUMIDIFIER, CONF_TYPE_FAN, CONF_TYPE_GECO_HEATER, CONF_TYPE_GPCV_HEATER, CONF_TYPE_GPPH_HEATER, ) from .dehumidifier.climate import GoldairDehumidifier from .fan.climate import GoldairFan from .geco_heater.climate import GoldairGECOHeater from .gpcv_heater.climate import GoldairGPCVHeater from .heater.climate import GoldairHeater async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the Goldair climate device according to its type.""" data = hass.data[DOMAIN][discovery_info[CONF_DEVICE_ID]] device = data["device"] if discovery_info[CONF_TYPE] == CONF_TYPE_AUTO: discovery_info[CONF_TYPE] = await device.async_inferred_type() if discovery_info[CONF_TYPE] is None: raise ValueError(f"Unable to detect type for device {device.name}") if discovery_info[CONF_TYPE] == CONF_TYPE_GPPH_HEATER: data[CONF_CLIMATE] = GoldairHeater(device) elif discovery_info[CONF_TYPE] == CONF_TYPE_DEHUMIDIFIER: data[CONF_CLIMATE] = GoldairDehumidifier(device) elif discovery_info[CONF_TYPE] == CONF_TYPE_FAN: data[CONF_CLIMATE] = GoldairFan(device) elif discovery_info[CONF_TYPE] == CONF_TYPE_GECO_HEATER: data[CONF_CLIMATE] = GoldairGECOHeater(device) elif discovery_info[CONF_TYPE] == CONF_TYPE_GPCV_HEATER: data[CONF_CLIMATE] = GoldairGPCVHeater(device) if CONF_CLIMATE in data: async_add_entities([data[CONF_CLIMATE]]) async def async_setup_entry(hass, config_entry, async_add_entities): config = {**config_entry.data, **config_entry.options} discovery_info = { CONF_DEVICE_ID: config[CONF_DEVICE_ID], CONF_TYPE: config[CONF_TYPE], } await async_setup_platform(hass, {}, async_add_entities, discovery_info)
#!/usr/bin/env python # Import modules import numpy as np import sklearn from sklearn.preprocessing import LabelEncoder import pickle from sensor_stick.srv import GetNormals from sensor_stick.features import compute_color_histograms from sensor_stick.features import compute_normal_histograms from visualization_msgs.msg import Marker from sensor_stick.marker_tools import * from sensor_stick.msg import DetectedObjectsArray from sensor_stick.msg import DetectedObject from sensor_stick.pcl_helper import * import rospy import tf from geometry_msgs.msg import Pose from std_msgs.msg import Float64 from std_msgs.msg import Int32 from std_msgs.msg import String from pr2_robot.srv import * from rospy_message_converter import message_converter import yaml # Helper function to get surface normals def get_normals(cloud): get_normals_prox = rospy.ServiceProxy('/feature_extractor/get_normals', GetNormals) return get_normals_prox(cloud).cluster # Helper function to create a yaml friendly dictionary from ROS messages def make_yaml_dict(test_scene_num, arm_name, object_name, pick_pose, place_pose): yaml_dict = {} yaml_dict["test_scene_num"] = test_scene_num.data yaml_dict["arm_name"] = arm_name.data yaml_dict["object_name"] = object_name.data yaml_dict["pick_pose"] = message_converter.convert_ros_message_to_dictionary(pick_pose) yaml_dict["place_pose"] = message_converter.convert_ros_message_to_dictionary(place_pose) return yaml_dict # Helper function to output to yaml file def send_to_yaml(yaml_filename, dict_list): data_dict = {"object_list": dict_list} with open(yaml_filename, 'w') as outfile: yaml.dump(data_dict, outfile, default_flow_style=False) # Callback function for your Point Cloud Subscriber def pcl_callback(pcl_msg): cloud = ros_to_pcl(pcl_msg) vox = cloud.make_voxel_grid_filter() # Choose a voxel (also known as leaf) size LEAF_SIZE = 0.003 # Set the voxel (or leaf) size vox.set_leaf_size(LEAF_SIZE, LEAF_SIZE, LEAF_SIZE) # Call the filter function to obtain the resultant downsampled point cloud cloud_filtered = vox.filter() ### Statistical Outlier Removal Filter # Much like the previous filters, we start by creating a filter object: outlier_filter = cloud_filtered.make_statistical_outlier_filter() # Set the number of neighboring points to analyze for any given point outlier_filter.set_mean_k(50) # Set threshold scale factor x = 1.0 # Any point with a mean distance larger than global (mean distance+x*std_dev) will be considered outlier outlier_filter.set_std_dev_mul_thresh(x) cloud_filtered = outlier_filter.filter() ### PassThrough Filter # Create a PassThrough filter object first across the Z axis passThroughZ = cloud_filtered.make_passthrough_filter() filter_axis = 'z' passThroughZ.set_filter_field_name(filter_axis) axis_min = 0.6 axis_max = 1.1 passThroughZ.set_filter_limits(axis_min, axis_max) cloud_filtered = passThroughZ.filter() ## Now, Create a PassThrough filter object across the Y axis passThroughY = cloud_filtered.make_passthrough_filter() filter_axis = 'y' passThroughY.set_filter_field_name(filter_axis) axis_min = -0.5 axis_max = 0.5 passThroughY.set_filter_limits(axis_min, axis_max) cloud_filtered = passThroughY.filter() ### RANSAC Plane Segmentation # Create the segmentation object seg = cloud_filtered.make_segmenter() seg.set_model_type(pcl.SACMODEL_PLANE) seg.set_method_type(pcl.SAC_RANSAC) max_distance = 0.01 seg.set_distance_threshold(max_distance) inliers, coefficients = seg.segment() ### Extract inliers and outliers pcl_table_cloud = cloud_filtered.extract(inliers, negative=False) pcl_object_cloud = cloud_filtered.extract(inliers, negative=True) ### Euclidean Clustering # Go from XYZRGB to RGB since to build the k-d tree we only needs spatial data white_cloud = XYZRGB_to_XYZ(pcl_object_cloud) # Apply function to convert XYZRGB to XYZ tree = white_cloud.make_kdtree() ec = white_cloud.make_EuclideanClusterExtraction() ec.set_ClusterTolerance(0.005) ec.set_MinClusterSize(150) ec.set_MaxClusterSize(50000) ec.set_SearchMethod(tree) cluster_indices = ec.Extract() #Create Cluster-Mask Point Cloud to visualize each cluster separately cluster_color = get_color_list(len(cluster_indices)) color_cluster_point_list = [] for j, indices in enumerate(cluster_indices): for i, indice in enumerate(indices): color_cluster_point_list.append([white_cloud[indice][0], white_cloud[indice][1], white_cloud[indice][2], rgb_to_float(cluster_color[j])]) #Create new cloud containing all clusters, each with unique color cluster_cloud = pcl.PointCloud_PointXYZRGB() cluster_cloud.from_list(color_cluster_point_list) #Convert PCL data to ROS messages ros_cluster_cloud = pcl_to_ros(cluster_cloud) ros_object_cloud = pcl_to_ros(pcl_object_cloud) ros_table_cloud = pcl_to_ros(pcl_table_cloud) #Publish ROS messages pcl_objects_pub.publish(ros_object_cloud) pcl_table_pub.publish(ros_table_cloud) pcl_cluster_pub.publish(ros_cluster_cloud) det_obj_label = [] det_obj = [] # Grab the points for the cluster for index, pts_list in enumerate(cluster_indices): pcl_cluster = pcl_object_cloud.extract(pts_list) ros_cluster = pcl_to_ros(pcl_cluster) # Compute associated feature vector color_hist = compute_color_histograms(ros_cluster, using_hsv=True) norms = get_normals(ros_cluster) norm_hist = compute_normal_histograms(norms) # Make prediction features = np.concatenate((color_hist, norm_hist)) predict = clf.predict(scaler.transform(features.reshape(1,-1))) label = encoder.inverse_transform(predict)[0] det_obj_label.append(label) # Publish a label into RViz label_pos = list(white_cloud[pts_list[0]]) label_pos[2] += .2 object_markers_pub.publish(make_label(label,label_pos,index)) do = DetectedObject() do.label = label do.cloud = ros_cluster det_obj.append(do) rospy.loginfo('Detected {} objects: {}'.format(len(det_obj_label), det_obj_label)) # Publish the list of detected objects detected_objects_pub.publish(det_obj) # Suggested location for where to invoke your pr2_mover() function within pcl_callback() true_object_list = rospy.get_param('/object_list') dropbox_param = rospy.get_param('/dropbox') true_list = [] for i in range(len(true_object_list)): true_list.append(true_object_list[i]['name']) print "\n" print "Need to find: " print true_list print "\n" trueset = set(true_list) detset = set(det_obj_label) # Could add some logic to determine whether or not your object detections are robust # before calling pr2_mover() if detset == trueset: try: pr2_mover(det_obj) except rospy.ROSInterruptException: pass else: rospy.loginfo("Wrong object(s) detected") # function to load parameters and request PickPlace service def pr2_mover(object_list): #Initialize variables test_scene_num = Int32() object_name = String() pick_pose = Pose() place_pose = Pose() arm_name = String() yaml_dict_list = [] test_scene_num.data = 2 dropbox_pose = [] dropbox_name = [] dropbox_group = [] true_object_list = rospy.get_param('/object_list') dropbox_param = rospy.get_param('/dropbox') for i in range(0, len(dropbox_param)): dropbox_pose.append(dropbox_param[i]['position']) dropbox_group.append(dropbox_param[i]['group']) centroids = [] # to be list of tuples (x, y, z) labels = [] for i in range(0, len(true_object_list)): object_name.data = true_object_list[i]['name' ] object_group = true_object_list[i]['group'] for j in object_list: labels.append(j.label) point_arr = ros_to_pcl(j.cloud).to_array() avg = np.mean(point_arr, axis=0)[:3] centroids.append(avg) if object_group == 'red': arm_name.data = 'left' place_pose.position.x = dropbox_pose[0][0] - random.randint(.05,.1) place_pose.position.y = dropbox_pose[0][1] place_pose.position.z = dropbox_pose[0][2] else: arm_name.data = 'right' place_pose.position.x = dropbox_pose[1][0] - random.randint(.05,.1) place_pose.position.y = dropbox_pose[1][1] place_pose.position.z = dropbox_pose[1][2] try: index = labels.index(object_name.data) pick_pose.position.x = np.asscalar(centroids[index][0]) pick_pose.position.y = np.asscalar(centroids[index][1]) pick_pose.position.z = np.asscalar(centroids[index][2]) except ValueError: continue # Create a list of dictionaries for later output to yaml format yaml_dict = make_yaml_dict(test_scene_num, arm_name, object_name, pick_pose, place_pose) yaml_dict_list.append(yaml_dict) rospy.wait_for_service('pick_place_routine') try: pick_place_routine = rospy.ServiceProxy('pick_place_routine', PickPlace) #Insert your message variables to be sent as a service requestc resp = pick_place_routine(test_scene_num, object_name, arm_name, pick_pose, place_pose) print ("Response: ",resp.success) except rospy.ServiceException, e: print "Service call failed: %s"%e #Output your request parameters into output yaml file yaml_filename = 'output_'+str(test_scene_num.data)+'.yaml' send_to_yaml(yaml_filename, yaml_dict_list) return if __name__ == '__main__': # ROS node initialization rospy.init_node('clustering', anonymous=True) # Create Subscribers pcl_sub = rospy.Subscriber("/pr2/world/points", pc2.PointCloud2, pcl_callback,queue_size=1) # Create Publishers pcl_objects_pub = rospy.Publisher("/pcl_objects", PointCloud2,queue_size=1) pcl_table_pub = rospy.Publisher("/pcl_table", PointCloud2, queue_size=1) pcl_cluster_pub = rospy.Publisher("/pcl_cluster", PointCloud2, queue_size=1) object_markers_pub = rospy.Publisher("/object_markers", Marker, queue_size=1) detected_objects_pub = rospy.Publisher("/detected_objects", DetectedObjectsArray, queue_size=1) pr2_base_mover_pub = rospy.Publisher("/pr2/world_joint_controller/command", Float64, queue_size=10) #Load Model From disk model = pickle.load(open('model.sav','rb')) clf = model['classifier'] encoder = LabelEncoder() encoder.classes_ = model['classes'] scaler = model['scaler'] # Initialize color_list get_color_list.color_list = [] # Spin while node is not shutdown while not rospy.is_shutdown(): rospy.spin()
from collections import deque class ZigzagIterator2: """ @param: vecs: a list of 1d vectors """ def __init__(self, vecs): # do intialization if necessary self.queue = [deque(vector) for vector in vecs] """ @return: An integer """ def next(self): # write your code here for i in range(len(self.queue)): if self.queue[i]: ele = self.queue[i].popleft() self.queue.append(self.queue.pop(i)) break return ele """ @return: True if has next """ def hasNext(self): # write your code here for q in self.queue: if q: return True return False # Your ZigzagIterator2 object will be instantiated and called as such: # solution, result = ZigzagIterator2(vecs), [] # while solution.hasNext(): result.append(solution.next()) # Output result
import re ranks = { 'S': -1, 'G': -2, 'F': -3, 'O': -4, 'P': -5 } class KrakenTaxon: __slots__ = ('percent', 'cum_reads', 'unique_reads', 'rank', 'taxid', 'name', 'indent', 'parent') def __init__(self, percent, cum_reads, unique_reads, rank, taxid, name, indent): self.percent = percent self.cum_reads = cum_reads self.unique_reads = unique_reads self.rank = rank self.taxid = taxid self.name = name self.indent = indent self.parent = None def __repr__(self): return 'KrakenTaxon(percent={}, cum_reads={}, unique_reads={}, rank={}, taxid={}, name={})'.format( self.percent, self.cum_reads, self.unique_reads, self.rank, self.taxid, self.name) @classmethod def create_tree(cls, taxons): indent_stack = {} for t in taxons: if t.name == 'unclassified': yield t continue elif t.name == 'root': indent_stack[t.indent] = t yield t else: t.parent = indent_stack[t.indent - 1] indent_stack[t.indent] = t yield t def read_kraken_report(f): for line in f: parts = line.strip().split('\t') percent = float(parts[0]) cum_reads = int(parts[1]) unique_reads = int(parts[2]) rank = parts[3] taxid = int(parts[4]) mo = re.search('^( *)(.*)', parts[5]) indent = len(mo.group(1)) / 2 yield KrakenTaxon(percent, cum_reads, unique_reads, rank, taxid, mo.group(2), indent) def generate_tree(kraken_taxons): tree = KrakenTaxon.create_tree(kraken_taxons) return tree def process_kraken_report(kraken_report_fn, taxid=None): with open(kraken_report_fn) as f: kraken_taxons = read_kraken_report(f) tree = list(generate_tree(kraken_taxons)) root_taxon = tree[1] if taxid: genus_taxon = None species_taxon = None for t in tree: if taxid == t.taxid: assert t.rank == 'S' species_taxon = t tp = t while True: tp = tp.parent if tp.rank == 'G': genus_taxon = tp if tp.taxid == 1: break percents = [] if species_taxon is not None: species_percent = species_taxon.percent else: species_percent = 0 if genus_taxon is not None: genus_percent = genus_taxon.percent else: genus_percent = 0 try: percents = ['{:.4f}'.format(x/100.) for x in [species_percent, genus_percent, root_taxon.percent]] except: print(kraken_report_fn, taxid) raise return [str(taxid)] + percents
"""Shows some basic dispatch examples.""" # Local package imports from lhrhost.messaging.dispatch import Dispatcher from lhrhost.messaging.presentation import Message, MessagePrinter def print_dispatcher(dispatcher): """Print some deserializations.""" messages = [ Message('e', 123), Message('e0', 123), Message('v'), Message('v0'), Message('v1'), Message('v2'), Message('v3'), Message('l', 0), Message('ll', 0), Message('lb', 1), Message('lbn', 1), Message('lbp', 1) ] for message in messages: print(message) dispatcher.on_message(message) def main(): """Run some tests of BasicTranslator.""" printer_e = MessagePrinter(prefix=' Printer e: ') printer_v = MessagePrinter(prefix=' Printer v: ') printer_l = MessagePrinter(prefix=' Printer l: ') printer = MessagePrinter(prefix=' Printer: ') literal_dispatcher = Dispatcher(receivers={ 'e': [printer_e], 'v0': [printer_v], 'v1': [printer_v], 'v2': [printer_v], 'l': [printer_l], 'lb': [printer_l], 'lbn': [printer_l], None: [printer] }) prefix_dispatcher = Dispatcher(prefix_receivers={ 'e': [printer_e], 'v': [printer_v], 'l': [printer_l], '': [printer] }) print('Literal dispatcher:') print_dispatcher(literal_dispatcher) print('\nPrefix dispatcher:') print_dispatcher(prefix_dispatcher) if __name__ == '__main__': main()
# Using batch size 4 instead of 1024 decreases runtime from 35 secs to 4 secs. # Standard Library import os import shutil import time from datetime import datetime # Third Party import mxnet as mx import pytest from mxnet import autograd, gluon, init from mxnet.gluon import nn from mxnet.gluon.data.vision import datasets, transforms # First Party from smdebug import SaveConfig, modes from smdebug.core.access_layer.utils import has_training_ended from smdebug.core.config_constants import CHECKPOINT_CONFIG_FILE_PATH_ENV_VAR from smdebug.mxnet.hook import Hook as t_hook from smdebug.trials import create_trial def acc(output, label): return (output.argmax(axis=1) == label.astype("float32")).mean().asscalar() def run_mnist( hook=None, set_modes=False, num_steps_train=None, num_steps_eval=None, epochs=2, save_interval=None, save_path="./saveParams", ): batch_size = 4 normalize_mean = 0.13 mnist_train = datasets.FashionMNIST(train=True) X, y = mnist_train[0] ("X shape: ", X.shape, "X dtype", X.dtype, "y:", y) text_labels = [ "t-shirt", "trouser", "pullover", "dress", "coat", "sandal", "shirt", "sneaker", "bag", "ankle boot", ] transformer = transforms.Compose( [transforms.ToTensor(), transforms.Normalize(normalize_mean, 0.31)] ) mnist_train = mnist_train.transform_first(transformer) mnist_valid = gluon.data.vision.FashionMNIST(train=False) train_data = gluon.data.DataLoader( mnist_train, batch_size=batch_size, shuffle=True, num_workers=4 ) valid_data = gluon.data.DataLoader( mnist_valid.transform_first(transformer), batch_size=batch_size, num_workers=4 ) # Create Model in Gluon net = nn.HybridSequential() net.add( nn.Conv2D(channels=6, kernel_size=5, activation="relu"), nn.MaxPool2D(pool_size=2, strides=2), nn.Conv2D(channels=16, kernel_size=3, activation="relu"), nn.MaxPool2D(pool_size=2, strides=2), nn.Flatten(), nn.Dense(120, activation="relu"), nn.Dense(84, activation="relu"), nn.Dense(10), ) net.initialize(init=init.Xavier(), ctx=mx.cpu()) if hook is not None: # Register the forward Hook hook.register_hook(net) softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss() trainer = gluon.Trainer(net.collect_params(), "sgd", {"learning_rate": 0.1}) hook.register_hook(softmax_cross_entropy) # Start the training. for epoch in range(epochs): train_loss, train_acc, valid_acc = 0.0, 0.0, 0.0 tic = time.time() if set_modes: hook.set_mode(modes.TRAIN) i = 0 for data, label in train_data: data = data.as_in_context(mx.cpu(0)) # forward + backward with autograd.record(): output = net(data) loss = softmax_cross_entropy(output, label) loss.backward() # update parameters trainer.step(batch_size) # calculate training metrics train_loss += loss.mean().asscalar() train_acc += acc(output, label) i += 1 if num_steps_train is not None and i >= num_steps_train: break # calculate validation accuracy if set_modes: hook.set_mode(modes.EVAL) i = 0 for data, label in valid_data: data = data.as_in_context(mx.cpu(0)) val_output = net(data) valid_acc += acc(val_output, label) loss = softmax_cross_entropy(val_output, label) i += 1 if num_steps_eval is not None and i >= num_steps_eval: break print( "Epoch %d: loss %.3f, train acc %.3f, test acc %.3f, in %.1f sec" % ( epoch, train_loss / len(train_data), train_acc / len(train_data), valid_acc / len(valid_data), time.time() - tic, ) ) if save_interval is not None and (epoch % save_interval) == 0: net.save_parameters("{0}/params_{1}.params".format(save_path, epoch)) @pytest.mark.slow # 0:01 to run def test_spot_hook(): os.environ[ CHECKPOINT_CONFIG_FILE_PATH_ENV_VAR ] = "./tests/mxnet/test_json_configs/checkpointconfig.json" checkpoint_path = "/tmp/savedParams" if not os.path.exists(checkpoint_path): os.mkdir(checkpoint_path) save_config = SaveConfig(save_steps=[10, 11, 12, 13, 14, 40, 50, 60, 70, 80]) """ Run the training for 2 epochs and save the parameter after every epoch. We expect that steps 0 to 14 will be written. """ run_id_1 = "trial_" + datetime.now().strftime("%Y%m%d-%H%M%S%f") out_dir_1 = "/tmp/newlogsRunTest/" + run_id_1 hook = t_hook( out_dir=out_dir_1, save_config=save_config, include_collections=["weights", "gradients"] ) assert has_training_ended(out_dir_1) == False run_mnist( hook=hook, num_steps_train=10, num_steps_eval=10, epochs=2, save_interval=1, save_path=checkpoint_path, ) """ Run the training again for 4 epochs and save the parameter after every epoch. We DONOT expect that steps 0 to 14 are written. We expect to read steps 40, 50, 60, 70 and 80 """ run_id_2 = "trial_" + datetime.now().strftime("%Y%m%d-%H%M%S%f") out_dir_2 = "/tmp/newlogsRunTest/" + run_id_2 hook = t_hook( out_dir=out_dir_2, save_config=save_config, include_collections=["weights", "gradients"] ) assert has_training_ended(out_dir_2) == False run_mnist( hook=hook, num_steps_train=10, num_steps_eval=10, epochs=4, save_interval=1, save_path=checkpoint_path, ) # Unset the environ variable before validation so that it won't affect the other scripts in py test environment. del os.environ[CHECKPOINT_CONFIG_FILE_PATH_ENV_VAR] # Validation print("Created the trial with out_dir {0} for the first training".format(out_dir_1)) tr = create_trial(out_dir_1) assert tr available_steps_1 = tr.steps() assert 40 not in available_steps_1 assert 80 not in available_steps_1 print(available_steps_1) print("Created the trial with out_dir {0} for the second training".format(out_dir_2)) tr = create_trial(out_dir_2) assert tr available_steps_2 = tr.steps() assert 40 in available_steps_2 assert 50 in available_steps_2 assert 60 in available_steps_2 assert 70 in available_steps_2 assert 80 in available_steps_2 assert 0 not in available_steps_2 assert 10 not in available_steps_2 assert 11 not in available_steps_2 assert 12 not in available_steps_2 print(available_steps_2) print("Cleaning up.") shutil.rmtree(os.path.dirname(out_dir_1)) shutil.rmtree(checkpoint_path, ignore_errors=True)
import math import money class adpackmoney: def __init__(self, bal, advert): self.advert = advert self.balance = bal class adpack: def __init__(self, worth, course, args): self.worth = worth self.course = course self.args = args self.earning = adpackmoney(0.0, 0.0) def getDistrbutedEarnings(self, amount): dollars = money.money(self.args) self.earning = adpackmoney(dollars.CalcBalance(amount), dollars.CalcWinningsAdAcc(amount)) return self.earning def GetDailyEarning(self): if self.worth >= self.course: self.worth -= self.course return self.getDistrbutedEarnings(self.course) holder = self.worth self.worth = 0 return self.getDistrbutedEarnings(holder) class adpacks: def __init__(self, adpacks, bal, advert, worth, course, args, date): self.balance = float(bal) self.total = float(bal) self.advert = float(advert) self.date = date self.worth = float(worth) self.course = float(course) self.args = args self.adpacks = self.genAdpacks(int(adpacks)) self.totalsub = 0 self.totalBought = int(adpacks) def genAdpacks(self, amount): i = 0 arr = [] while i < amount: arr.append(adpack(self.worth, self.course, self.args)) i += 1 return arr def getAdpacksInXDays(self, days): self.SimulateXDaysReinvest(days) return len(self.adpacks) def SimulateXDaysReinvest(self, days): i = 0 self.total = self.balance _money = money.money(self.args) while i < days: # gain the money.money from your adpacks j = 0 while j < len(self.adpacks): earnings = self.adpacks[j].GetDailyEarning() self.balance += earnings.balance self.advert += earnings.advert self.total += earnings.balance if self.args.payoutprofit: substract = _money.CalcWinningsBalance(earnings.balance) self.balance -= substract self.totalsub += substract if self.adpacks[j].worth <= 0: del self.adpacks[j] j += 1 # check to see if you can buy a new adpack if self.balance > 50: amount = math.floor(self.balance / 50) if amount > (1000 - len(self.adpacks)): amount = 1000 - len(self.adpacks) k = 0 while k < amount: self.adpacks.append(adpack(self.worth, self.course, self.args)) self.totalBought+=1 k += 1 self.balance -= (50.0 * amount) i += 1 self.printInfo() def SimulateXDaysNoReinvest(self, days): i = 0 while i < days: # gain the money.money from your adpacks j = 0 while j < len(self.adpacks): earnings = self.adpacks[j].GetDailyEarning() self.balance += earnings.balance self.advert += earnings.advert self.total += earnings.balance if self.adpacks[j].worth == 0: del self.adpacks[j] j += 1 i += 1 return self.balance def predictAdpacks(self): if self.args.days and self.args.adpacks and self.args.balance: f_date = self.args.date Newdate = self.date.getDateFromString(f_date) days = self.date.getDaysFromNow(Newdate) if self.args.reinvest: amount = self.getAdpacksInXDays(days) print("You will have " + str(amount) + " adpacks in " + str(days) + " days") self.TotalDailyProfit(int(self.args.adpacks),amount) elif self.args.printbalance: amount = self.SimulateXDaysNoReinvest(days) print("After " + str(days) + " days you will have earned " + str(amount) + " dollar") if self.args.total: print("And your total accumulated balance is the same") money.money(self.args).profit(True, amount, days) def TotalDailyProfit(self,original,now): if self.args.totalprofit: MoneyVar = money.money(self.args) delta = now - original #adpacks that purely generate profit originalBal = MoneyVar.CalcWinningsBalance(self.calcAmountFromAdpack(original)) #calculate the profit the original adpacks generate deltaBal = self.calcAmountFromAdpack(delta) - MoneyVar.CalcWinningsAdAcc(self.calcAmountFromAdpack(delta)) total = originalBal + deltaBal print("The total profit you gain each day is " + str(total) + " dollars know that this will slowly remove your adpacks until you have " + str(original) + " left.") def AdpackProfit(self): moneyVar = money.money(self.args) if self.args.adpacks: adpacks = int(self.args.adpacks) winnings = self.calcAmountFromAdpack(adpacks) bal = winnings - moneyVar.CalcWinningsAdAcc(winnings) add = moneyVar.CalcWinningsAdAcc(winnings) print("Your daily profit will be " + str(winnings) + " dollars") print("Your daily advertising account profit will be " + str(add) + " dollars") money.money(self.args).profit(self.args.profit, bal, 1) def CalcBalancefromWinning(self, winning): moneyVar = money.money(self.args) # profit of one adpack winst_one = moneyVar.profitOnePack() return int(winning / winst_one) + 1 def calcAmountFromAdpack(self, packs): if self.args.holiday: return packs * float(self.args.course) * 0.9 return packs * float(self.args.course) def calcAmountFromAdpackNOHd(self, packs): return packs * float(self.args.course) def targetProfit(self): moneyVar = money.money(self.args) if self.args.targetprofit: #adpacks = float(self.args.targetprofit) / (((((float(self.args.course)-h) / 60.0) * (57.0)) / 120) * (20.0-h2)) adpacks = self.CalcBalancefromWinning(float(self.args.targetprofit)) winnings = self.calcAmountFromAdpackNOHd(adpacks) bal = winnings - moneyVar.CalcWinningsAdAcc(winnings) profit = moneyVar.CalcWinningsBalance(winnings) print("You will need a minimum of " + str((adpacks)) + " adpacks this will generate " + str( self.calcAmountFromAdpack(adpacks)) + " dollars and " + str(profit) + " dollars of profit daily") def amountOver(self, value, earning): rest = value / earning Irest = int(rest) over = rest - float(Irest) reverse = 1.0 - over return earning * reverse def predictTime(self): h = 0.0 if self.args.holiday: h = float(self.args.course) * 0.1 if self.args.extra and self.args.adpacks: adpacks = int(self.args.adpacks) required = 50.0 DailyProfit = adpacks * ((float(self.args.course) - h) / 60.0) * 57.0 amount = math.floor(required / DailyProfit) + 1 if DailyProfit < 50.0: rest = self.amountOver(50.0, DailyProfit) else: rest = DailyProfit - 50.0 print("In " + str(amount) + " days you will be able to buy an extra adpack and will have " + str( rest) + " spare dollars") def printInfo(self): if self.args.printbalance: print("your balance is " + str(self.balance)) if self.args.total: print("your total accumulated balance is: " + str(self.total)) if self.args.printadvert: print("Your advertisment balance is: " + str(self.advert)) if self.args.payoutprofit: print("Your payout is " + str(self.totalsub)) if self.args.totalbought: print("The total amount of adpacks you have bought is: " + str(self.totalBought))
import os from pytest_shutil import env, run TEMP_NAME = 'JUNK123_456_789' def test_set_env_ok_if_exists(): ev = os.environ[TEMP_NAME] = 'junk_name' try: with env.set_env(TEMP_NAME, 'anything'): out = run.run('env', capture_stdout=True) for o in out.split('\n'): if o.startswith(TEMP_NAME): assert o == '%s=anything' % TEMP_NAME break else: assert False, '%s not found in os.environ' % TEMP_NAME assert os.environ[TEMP_NAME] == ev finally: if TEMP_NAME in os.environ: del os.environ[TEMP_NAME] def test_set_env_ok_if_not_exists(): if TEMP_NAME in os.environ: del os.environ[TEMP_NAME] with env.set_env(TEMP_NAME, 'anything'): out = run.run('env', capture_stdout=True) for o in out.split('\n'): if o.startswith(TEMP_NAME): assert o == '%s=anything' % TEMP_NAME break else: assert False, '%s not found in os.environ' % TEMP_NAME def test_subprocecmdline(): ev = os.environ[TEMP_NAME] = 'junk_name' try: with env.no_env(TEMP_NAME): out = run.run('env', capture_stdout=True) for o in out.split('\n'): if o.startswith(TEMP_NAME): assert False, '%s found in os.environ' % TEMP_NAME assert os.environ[TEMP_NAME] == ev finally: if TEMP_NAME in os.environ: del os.environ[TEMP_NAME] def test_no_env_ok_if_not_exists(): if TEMP_NAME in os.environ: del os.environ[TEMP_NAME] with env.no_env(TEMP_NAME): out = run.run('env', capture_stdout=True) for o in out.split('\n'): if o.startswith(TEMP_NAME): assert False, '%s found in os.environ' % TEMP_NAME assert TEMP_NAME not in os.environ
def summation(num): return sum(xrange(1, num + 1))
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-01-20 23:30 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import portfolio.models import taggit.managers class Migration(migrations.Migration): initial = True dependencies = [ ('taggit', '0002_auto_20150616_2121'), ] operations = [ migrations.CreateModel( name='Image', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('publish', models.BooleanField(default=False)), ('name', models.CharField(max_length=140)), ('caption', models.CharField(blank=True, max_length=140)), ('image', models.ImageField(upload_to=portfolio.models.imageLocation)), ('imgType', models.CharField(choices=[('gal', 'Gallery')], default='gal', max_length=3)), ('order', models.PositiveIntegerField(default=0)), ('dateCreated', models.DateField(auto_now_add=True)), ], options={ 'ordering': ['order', 'dateCreated'], }, ), migrations.CreateModel( name='Link', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=140)), ('link', models.URLField()), ('order', models.PositiveIntegerField(default=0)), ], options={ 'ordering': ['order', 'name'], }, ), migrations.CreateModel( name='LinkCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=140)), ('image', models.ImageField(null=True, upload_to=portfolio.models.imageLocation)), ], options={ 'ordering': ['name'], }, ), migrations.CreateModel( name='Project', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('publish', models.BooleanField(default=False)), ('name', models.CharField(max_length=140)), ('smallDescription', models.CharField(blank=True, max_length=140)), ('description', models.TextField(blank=True)), ('image', models.ImageField(upload_to=portfolio.models.imageLocation)), ('order', models.PositiveIntegerField(default=0)), ('date', models.DateField(null=True)), ('dateCreated', models.DateField(auto_now_add=True)), ('dateUpdated', models.DateField(auto_now=True)), ], options={ 'ordering': ['order', 'name'], }, ), migrations.CreateModel( name='ProjectCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=140)), ('order', models.PositiveIntegerField(default=0)), ('smallDescription', models.CharField(blank=True, max_length=140)), ('description', models.TextField(blank=True)), ('image', models.ImageField(null=True, upload_to='')), ], options={ 'ordering': ['order', 'name'], }, ), migrations.CreateModel( name='Video', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('publish', models.BooleanField(default=False)), ('name', models.CharField(max_length=140)), ('caption', models.CharField(blank=True, max_length=140)), ('video', models.FileField(upload_to=portfolio.models.videoLocation)), ('order', models.PositiveIntegerField(default=0)), ('dateCreated', models.DateField(auto_now_add=True)), ], options={ 'ordering': ['order', 'dateCreated'], }, ), migrations.AddField( model_name='project', name='category', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='portfolio.ProjectCategory'), ), migrations.AddField( model_name='project', name='tags', field=taggit.managers.TaggableManager(help_text='A comma-separated list of tags.', through='taggit.TaggedItem', to='taggit.Tag', verbose_name='Tags'), ), migrations.AddField( model_name='link', name='category', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='portfolio.LinkCategory'), ), ]
from Rationale_Analysis.models.rationale_extractors.base_rationale_extractor import RationaleExtractor from allennlp.models.model import Model import math import numpy as np @Model.register("max_length") class MaxLengthRationaleExtractor(RationaleExtractor) : def __init__(self, max_length_ratio: float) : self._max_length_ratio = max_length_ratio super().__init__() def forward(self, attentions, metadata) : rationales = self.extract_rationale(attentions=attentions, metadata=metadata) output_dict = {'metadata' : metadata, 'rationale' : rationales} return output_dict def extract_rationale(self, attentions, metadata): # attentions : (B, L), metadata: List[Dict] of size B cumsumed_attention = attentions.cumsum(-1) sentences = [x["tokens"] for x in metadata] rationales = [] for b in range(cumsumed_attention.shape[0]): attn = cumsumed_attention[b] sentence = [x.text for x in sentences[b]] best_v = np.zeros((len(sentence),)) max_length = math.ceil(len(sentence) * self._max_length_ratio) for i in range(0, len(sentence) - max_length + 1): j = i + max_length best_v[i] = attn[j - 1] - (attn[i - 1] if i - 1 >= 0 else 0) index = np.argmax(best_v) i, j, v = index, index + max_length, best_v[index] top_ind = list(range(i, j)) rationales.append({ 'document' : " ".join([x for idx, x in enumerate(sentence) if idx in top_ind]), 'spans' : [{'span' : (i, j), 'value' : float(v)}], 'metadata' : None }) return rationales
from wand.contrib.linux import get_hostname from wand.apps.relations.kafka_relation_base import KafkaRelationBase __all__ = [ "KafkaSRURLNotSetError", "KafkaSchemaRegistryRelation", "KafkaSchemaRegistryProvidesRelation", "KafkaSchemaRegistryRequiresRelation", ] class KafkaSRURLNotSetError(Exception): def __init__(self, message="Missing URL to connect to Schema Registry."): super().__init__(message) class KafkaSchemaRegistryRelation(KafkaRelationBase): def __init__(self, charm, relation_name, user="", group="", mode=0): super().__init__(charm, relation_name, user, group, mode) @property def get_schema_url(self): if "url" not in self.relation.data[self.model.app]: raise KafkaSRURLNotSetError() return self.relation.data[self.model.app]["url"] def on_schema_registry_relation_joined(self, event): pass def on_schema_registry_relation_changed(self, event): pass class KafkaSchemaRegistryProvidesRelation(KafkaSchemaRegistryRelation): def __init__(self, charm, relation_name, user="", group="", mode=0): super().__init__(charm, relation_name, user, group, mode) self._clientauth = False @property def schema_url(self): if not self.relations: return for r in self.relations: if "url" in r.data[self.model.app]: return r.data[self.model.app]["url"] @schema_url.setter def schema_url(self, u): if not self.relations: return if not self.unit.is_leader(): return for r in self.relations: if u != r.data[self.model.app].get("url", ""): r.data[self.model.app]["url"] = u def set_converter(self, converter): if not self.relations: return if not self.unit.is_leader(): return for r in self.relations: if converter != r.data[self.model.app].get("converter", ""): r.data[self.model.app]["converter"] = converter def set_enhanced_avro_support(self, enhanced_avro): if not self.relations: return if not self.unit.is_leader(): return a = str(enhanced_avro) for r in self.relations: if a != r.data[self.model.app].get("enhanced_avro", ""): r.data[self.model.app]["enhanced_avro"] = a def set_schema_url(self, url, port, prot): """DEPRECATED Use schema_url instead""" if not self.relations: return if not self.unit.is_leader(): return # URL is set to config on schema registry, then the same value will # be passed by each of the schema registry instances. On the requester # side, the value collected is put on a set, which will end as one # single URL. for r in self.relations: r.data[self.model.app]["url"] = \ "{}://{}:{}".format( prot if len(prot) > 0 else "https", url if len(url) > 0 else get_hostname( self.advertise_addr), port) def set_client_auth(self, clientauth): if not self.relation: return c = str(self._clientauth) if c != self.relation.data[self.unit]["client_auth"]: self.relation.data[self.unit]["client_auth"] = c class KafkaSchemaRegistryRequiresRelation(KafkaSchemaRegistryRelation): def __init__(self, charm, relation_name, user="", group="", mode=0): super().__init__(charm, relation_name, user, group, mode) @property def converter(self): return self.get_param("converter") @property def enhanced_avro(self): return self.get_param("enhanced_avro") @property def url(self): # Set is used to avoid repetitive URLs if schema_url config # is set instead of get_hostname of each advertise_addr return self.get_param("url") def get_param(self, param): if not self.relations: return None for r in self.relations: if param in r.data[r.app]: return r.data[r.app][param] return None def generate_configs(self, ts_path, ts_pwd, enable_ssl, ks_path, ks_pwd): if not self.relations: return None sr_props = {} if len(ts_path) > 0: sr_props["schema.registry.ssl.truststore.location"] = ts_path sr_props["schema.registry.ssl.truststore.password"] = ts_pwd if enable_ssl: sr_props["schema.registry.ssl.key.password"] = ks_pwd sr_props["schema.registry.ssl.keystore.location"] = ks_path sr_props["schema.registry.ssl.keystore.password"] = ks_pwd sr_props["schema.registry.url"] = self.url return sr_props if len(sr_props) > 0 else None
#-*- coding: utf-8 -*- from __future__ import print_function from __future__ import division import sys, os.path pkg_dir = os.path.dirname(os.path.realpath(__file__)) + '/../../' sys.path.append(pkg_dir) from scipy.stats import t from collections import Counter from MPBNP import * np.set_printoptions(suppress=True) class CollapsedGibbs(BaseSampler): def __init__(self, cl_mode = True, alpha = 1.0, cl_device = None, record_best = True): """Initialize the class. """ BaseSampler.__init__(self, record_best, cl_mode, cl_device) if cl_mode: program_str = open(pkg_dir + 'MPBNP/crp/kernels/crp_cl.c', 'r').read() self.prg = cl.Program(self.ctx, program_str).build() # set some prior hyperparameters self.alpha = np.float32(alpha) def read_csv(self, filepath, header=True): """Read the data from a csv file. """ BaseSampler.read_csv(self, filepath, header) # convert the data to floats self.new_obs = [] for row in self.obs: self.new_obs.append([float(_) for _ in row]) self.obs = np.array(self.new_obs).astype(np.float32) try: self.dim = np.int32(self.obs.shape[1]) except IndexError: self.dim = np.int32(1) if self.dim == 1: self.gamma_alpha0, self.gamma_beta0 = np.float32(1.0), np.float32(1.0) self.gaussian_mu0, self.gaussian_k0 = np.float32(0.0), np.float32(0.001) else: self.wishart_v0 = np.float32(self.dim) self.wishart_T0 = np.identity(self.dim, dtype=np.float32) self.gaussian_mu0 = np.zeros(self.dim, dtype=np.float32) self.gaussian_k0 = np.float32(0.001) if self.cl_mode: self.d_obs = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = self.obs) return def do_inference(self, init_labels = None, output_file = None): """Perform inference on the given observations assuming data are generated by a Gaussian CRP Mixture Model. """ BaseSampler.do_inference(self, output_file) if init_labels is None: init_labels = np.random.randint(low = 0, high = min(self.N, 10), size = self.N).astype(np.int32) else: init_labels = init_labels.astype(np.int32) if output_file is not None: print(*(['d%d' % _ for _ in xrange(self.N)]), file = output_file, sep=',') if self.cl_mode: if self.dim == 1: timing_stats = self.cl_infer_1dgaussian(init_labels = init_labels, output_file = output_file) else: timing_stats = self.cl_infer_kdgaussian(init_labels = init_labels, output_file = output_file) else: if self.dim == 1: timing_stats = self.infer_1dgaussian(init_labels = init_labels, output_file = output_file) else: timing_stats = self.infer_kdgaussian(init_labels = init_labels, output_file = output_file) if self.record_best and output_file: print(*self.best_sample[0], file=output_file, sep=',') return timing_stats def infer_1dgaussian(self, init_labels, output_file = None): """Perform inference on class labels assuming data are 1-d gaussian, without OpenCL acceleration. """ total_time = 0 a_time = time() cluster_labels = init_labels if self.record_best: self.auto_save_sample(cluster_labels) for i in xrange(self.niter): # identify existing clusters and generate a new one uniq_labels = np.unique(cluster_labels) _, _, new_cluster_label = smallest_unused_label(uniq_labels) uniq_labels = np.hstack((new_cluster_label, uniq_labels)) # compute the sufficient statistics of each cluster logpost = np.empty((self.N, uniq_labels.shape[0])) for label_index in xrange(uniq_labels.shape[0]): label = uniq_labels[label_index] if label == new_cluster_label: n, mu, var = 0, 0, 0 else: cluster_obs = self.obs[np.where(cluster_labels == label)] n = cluster_obs.shape[0] mu = np.mean(cluster_obs) var = np.var(cluster_obs) k_n = self.gaussian_k0 + n mu_n = (self.gaussian_k0 * self.gaussian_mu0 + n * mu) / k_n alpha_n = self.gamma_alpha0 + n / 2 beta_n = self.gamma_beta0 + 0.5 * var * n + \ self.gaussian_k0 * n * (mu - self.gaussian_mu0) ** 2 / (2 * k_n) Lambda = alpha_n * k_n / (beta_n * (k_n + 1)) t_frozen = t(df = 2 * alpha_n, loc = mu_n, scale = (1 / Lambda) ** 0.5) logpost[:,label_index] = t_frozen.logpdf(self.obs[:,0]) logpost[:,label_index] += np.log(n/(self.N + self.alpha)) if n > 0 else np.log(self.alpha/(self.N+self.alpha)) # sample and implement the changes temp_cluster_labels = np.empty(cluster_labels.shape, dtype=np.int32) for j in xrange(self.N): target_cluster = sample(a = uniq_labels, p = lognormalize(logpost[j])) temp_cluster_labels[j] = target_cluster if self.record_best: if self.auto_save_sample(temp_cluster_labels): cluster_labels = temp_cluster_labels if self.no_improvement(500): break else: if i >= self.burnin and i % self.thining == 0: print(*temp_cluster_labels, file = output_file, sep=',') self.total_time += time() - a_time return self.gpu_time, self.total_time, Counter(cluster_labels).most_common() def cl_infer_1dgaussian(self, init_labels, output_file = None): """Implementing concurrent sampling of class labels with OpenCL. """ total_a_time = time() cluster_labels = init_labels if self.record_best: self.auto_save_sample(cluster_labels) gpu_a_time = time() d_hyper_param = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = np.array([self.gaussian_mu0, self.gaussian_k0, self.gamma_alpha0, self.gamma_beta0, self.alpha]).astype(np.float32)) d_labels = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = cluster_labels) self.gpu_time += time() - gpu_a_time for i in xrange(self.niter): uniq_labels = np.unique(cluster_labels) _, _, new_cluster_label = smallest_unused_label(uniq_labels) uniq_labels = np.hstack((new_cluster_label, uniq_labels)).astype(np.int32) suf_stats = np.empty((uniq_labels.shape[0], 4)) for label_index in xrange(uniq_labels.shape[0]): label = uniq_labels[label_index] if label == new_cluster_label: suf_stats[label_index] = (label, 0, 0, 0) else: cluster_obs = self.obs[np.where(cluster_labels == label)] cluster_mu = np.mean(cluster_obs) cluster_ss = np.var(cluster_obs) * cluster_obs.shape[0] suf_stats[label_index] = (label, cluster_mu, cluster_ss, cluster_obs.shape[0]) gpu_a_time = time() d_uniq_label = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = uniq_labels) d_mu = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = suf_stats[:,1].astype(np.float32)) d_ss = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = suf_stats[:,2].astype(np.float32)) d_n = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = suf_stats[:,3].astype(np.int32)) d_logpost = cl.array.empty(self.queue,(self.obs.shape[0], uniq_labels.shape[0]), np.float32, allocator=self.mem_pool) d_rand = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = np.random.random(self.obs.shape).astype(np.float32)) if self.device_type == cl.device_type.CPU: self.prg.normal_1d_logpost_loopy(self.queue, self.obs.shape, None, d_labels, self.d_obs, d_uniq_label, d_mu, d_ss, d_n, np.int32(uniq_labels.shape[0]), d_hyper_param, d_rand, d_logpost.data) else: self.prg.normal_1d_logpost(self.queue, (self.obs.shape[0], uniq_labels.shape[0]), None, d_labels, self.d_obs, d_uniq_label, d_mu, d_ss, d_n, np.int32(uniq_labels.shape[0]), d_hyper_param, d_rand, d_logpost.data) self.prg.resample_labels(self.queue, (self.obs.shape[0],), None, d_labels, d_uniq_label, np.int32(uniq_labels.shape[0]), d_rand, d_logpost.data) temp_cluster_labels = np.empty(cluster_labels.shape, dtype=np.int32) cl.enqueue_copy(self.queue, temp_cluster_labels, d_labels) self.gpu_time += time() - gpu_a_time if self.record_best: if self.auto_save_sample(temp_cluster_labels): cluster_labels = temp_cluster_labels if self.no_improvement(): break else: if i >= self.burnin and i % self.thining == 0: print(*temp_cluster_labels, file = output_file, sep=',') self.total_time += time() - total_a_time return self.gpu_time, self.total_time, Counter(cluster_labels).most_common() def infer_kdgaussian(self, init_labels, output_file = None): """Implementing concurrent sampling of partition labels without OpenCL. """ a_time = time() cluster_labels = init_labels for i in xrange(self.niter): # at the beginning of each iteration, identify the unique cluster labels uniq_labels = np.unique(cluster_labels) _, _, new_cluster_label = smallest_unused_label(uniq_labels) uniq_labels = np.hstack((new_cluster_label, uniq_labels)) # compute the sufficient statistics of each cluster n = np.empty(uniq_labels.shape) mu = np.empty((uniq_labels.shape[0], self.dim)) cov_mu0 = np.empty((uniq_labels.shape[0], self.dim, self.dim)) cov_obs = np.empty((uniq_labels.shape[0], self.dim, self.dim)) logpost = np.empty((self.N, uniq_labels.shape[0])) for label_index in xrange(uniq_labels.shape[0]): label = uniq_labels[label_index] if label == new_cluster_label: cov_obs[label_index], cov_mu0[label_index] = (0,0) mu[label_index], n[label_index] = (0,0) else: cluster_obs = self.obs[np.where(cluster_labels == label)] mu[label_index] = np.mean(cluster_obs, axis = 0) obs_deviance = cluster_obs - mu[label_index] mu0_deviance = np.reshape(gaussian_mu0 - mu[label_index], (self.dim, 1)) cov_obs[label_index] = np.dot(obs_deviance.T, obs_deviance) cov_mu0[label_index] = np.dot(mu0_deviance, mu0_deviance.T) n[label_index] = cluster_obs.shape[0] kn = self.gaussian_k0 + n[label_index] vn = self.wishart_v0 + n[label_index] sigma = (self.wishart_T0 + cov_obs[label_index] + (self.gaussian_k0 * n[label_index]) / kn * cov_mu0[label_index]) * (kn + 1) / kn / (vn - self.dim + 1) det = np.linalg.det(sigma) inv = np.linalg.inv(sigma) df = vn - self.dim + 1 logpost[:,label_index] = math.lgamma(df / 2.0 + self.dim / 2.0) - math.lgamma(df / 2.0) - 0.5 * np.log(det) - 0.5 * self.dim * np.log(df * math.pi) - \ 0.5 * (df + self.dim) * np.log(1.0 + (1.0 / df) * np.dot(np.dot(self.obs - mu[label_index], inv), (self.obs - mu[label_index]).T).diagonal()) logpost[:,label_index] += np.log(n[label_index]) if n[label_index] > 0 else np.log(self.alpha) # resample the labels and implement the changes temp_cluster_labels = np.empty(cluster_labels.shape, dtype=np.int32) for j in xrange(self.N): target_cluster = sample(a = uniq_labels, p = lognormalize(logpost[j])) temp_cluster_labels[j] = target_cluster if self.record_best: if self.auto_save_sample(temp_cluster_labels): cluster_labels = temp_cluster_labels if self.no_improvement(): break else: if i >= self.burnin and i % self.thining == 0: print(*temp_cluster_labels, file = output_file, sep=',') self.total_time += time() - a_time return self.gpu_time, self.total_time, Counter(cluster_labels).most_common() def cl_infer_kdgaussian(self, init_labels, output_file = None): """Implementing concurrent sampling of class labels with OpenCL. """ total_time = time() # set some prior hyperparameters d_T0 = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = self.wishart_T0.astype(np.float32)) cluster_labels = init_labels.astype(np.int32) # push initial labels onto the openCL device d_labels = cl.Buffer(self.ctx, self.mf.READ_WRITE | self.mf.COPY_HOST_PTR, hostbuf = cluster_labels) for i in xrange(self.niter): if output_file is not None and i >= self.burnin: print(*cluster_labels, file = output_file, sep = ',') # at the beginning of each iteration, identity the unique cluster labels uniq_labels = np.unique(cluster_labels) _, _, new_cluster_label = smallest_unused_label(uniq_labels) uniq_labels = np.hstack((new_cluster_label, uniq_labels)).astype(np.int32) num_of_clusters = np.int32(uniq_labels.shape[0]) # compute the sufficient statistics of each cluster h_n = np.empty(uniq_labels.shape).astype(np.int32) h_mu = np.empty((uniq_labels.shape[0], self.dim)).astype(np.float32) h_cov_mu0 = np.empty((uniq_labels.shape[0], self.dim, self.dim)).astype(np.float32) h_cov_obs = np.empty((uniq_labels.shape[0], self.dim, self.dim)).astype(np.float32) h_sigma = np.empty((uniq_labels.shape[0], self.dim, self.dim)).astype(np.float32) for label_index in xrange(uniq_labels.shape[0]): label = uniq_labels[label_index] if label == new_cluster_label: h_cov_obs[label_index], h_cov_mu0[label_index] = (0,0) h_mu[label_index], h_n[label_index] = (0,0) else: cluster_obs = self.obs[np.where(cluster_labels == label)] h_mu[label_index] = np.mean(cluster_obs, axis = 0) obs_deviance = cluster_obs - h_mu[label_index] mu0_deviance = np.reshape(self.gaussian_mu0 - h_mu[label_index], (self.dim, 1)) h_cov_obs[label_index] = np.dot(obs_deviance.T, obs_deviance) h_cov_mu0[label_index] = np.dot(mu0_deviance, mu0_deviance.T) h_n[label_index] = cluster_obs.shape[0] # using OpenCL to compute the log posterior of each item and perform resampling gpu_time = time() d_n = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = h_n) d_mu = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = h_mu) d_cov_mu0 = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = h_cov_mu0) d_cov_obs = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = h_cov_obs) d_sigma = cl.array.empty(self.queue, h_cov_obs.shape, np.float32, allocator=self.mem_pool) self.prg.normal_kd_sigma_matrix(self.queue, h_cov_obs.shape, None, d_n, d_cov_obs, d_cov_mu0, d_T0, self.gaussian_k0, self.wishart_v0, d_sigma.data) # copy the sigma matrix to host memory and calculate determinants and inversions h_sigma = d_sigma.get() h_determinants = np.linalg.det(h_sigma).astype(np.float32) h_inverses = np.array([np.linalg.inv(_) for _ in h_sigma]).astype(np.float32) d_uniq_label = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = uniq_labels) d_determinants = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = h_determinants) d_inverses = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = h_inverses) d_rand = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = np.random.random(self.N).astype(np.float32)) d_logpost = cl.array.empty(self.queue, (self.N, uniq_labels.shape[0]), np.float32, allocator = self.mem_pool) # if the OpenCL device is CPU, use the kernel with loops over clusters if self.device_type == cl.device_type.CPU: self.prg.normal_kd_logpost_loopy(self.queue, (self.obs.shape[0],), None, d_labels, self.d_obs, d_uniq_label, d_mu, d_n, d_determinants, d_inverses, num_of_clusters, self.alpha, self.dim, self.wishart_v0, d_logpost.data, d_rand) # otherwise, use the kernel that fully unrolls data points and clusters else: self.prg.normal_kd_logpost(self.queue, (self.obs.shape[0], uniq_labels.shape[0]), None, d_labels, self.d_obs, d_uniq_label, d_mu, d_n, d_determinants, d_inverses, num_of_clusters, self.alpha, self.dim, self.wishart_v0, d_logpost.data, d_rand) self.prg.resample_labels(self.queue, (self.obs.shape[0],), None, d_labels, d_uniq_label, num_of_clusters, d_rand, d_logpost.data) temp_cluster_labels = np.empty(cluster_labels.shape, dtype=np.int32) cl.enqueue_copy(self.queue, temp_cluster_labels, d_labels) self.gpu_time += time() - gpu_time if self.record_best: if self.auto_save_sample(temp_cluster_labels): cluster_labels = temp_cluster_labels if self.no_improvement(1000): break else: if i >= self.burnin and i % self.thining == 0: print(*temp_cluster_labels, file = output_file, sep=',') self.total_time = time() - total_time return self.gpu_time, self.total_time, Counter(cluster_labels).most_common() def _logprob(self, sample): """Calculate the joint log probability of data and model given a sample. """ assert(len(sample) == len(self.obs)) total_logprob = 0 if self.dim == 1 and self.cl_mode == False: cluster_dict = {} N = 0 for label, obs in zip(sample, self.obs): obs = obs[0] if label in cluster_dict: n = len(cluster_dict[label]) y_bar = np.mean(cluster_dict[label]) var = np.var(cluster_dict[label]) else: n, y_bar, var = 0, 0, 0 k_n = self.gaussian_k0 + n mu_n = (self.gaussian_k0 * self.gaussian_mu0 + n * y_bar) / k_n alpha_n = self.gamma_alpha0 + n / 2 beta_n = self.gamma_beta0 + 0.5 * var * n + \ self.gaussian_k0 * n * (y_bar - self.gaussian_mu0) ** 2 / (2 * k_n) Lambda = alpha_n * k_n / (beta_n * (k_n + 1)) t_frozen = t(df = 2 * alpha_n, loc = mu_n, scale = (1 / Lambda) ** 0.5) loglik = t_frozen.logpdf(obs) loglik += np.log(n / (N + self.alpha)) if n > 0 else np.log(self.alpha / (N + self.alpha)) # modify the counts and dict try: cluster_dict[label].append(obs) except KeyError: cluster_dict[label] = [obs] N += 1 total_logprob += loglik if self.dim == 1 and self.cl_mode: gpu_a_time = time() d_labels = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = sample) d_hyper_param = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = np.array([self.gaussian_mu0, self.gaussian_k0, self.gamma_alpha0, self.gamma_beta0, self.alpha]).astype(np.float32)) d_logprob = cl.array.empty(self.queue, (self.N,), np.float32, allocator=self.mem_pool) self.prg.joint_logprob_1d(self.queue, self.obs.shape, None, d_labels, self.d_obs, d_hyper_param, d_logprob.data) total_logprob = d_logprob.get().sum() self.gpu_time += time() - gpu_a_time if self.dim > 1:# and self.cl_mode == False: cluster_dict = {} N = 0 for label, obs in zip(sample, self.obs): if label in cluster_dict: cluster_obs = np.array(cluster_dict[label]) n = cluster_obs.shape[0] mu = np.mean(cluster_obs, axis = 0) obs_deviance = cluster_obs - mu mu0_deviance = np.reshape(self.gaussian_mu0 - mu, (self.dim, 1)) cov_obs = np.dot(obs_deviance.T, obs_deviance) cov_mu0 = np.dot(mu0_deviance, mu0_deviance.T) else: n, mu, cov_obs, cov_mu0 = 0, 0, 0, 0 kn = self.gaussian_k0 + n vn = self.wishart_v0 + n sigma = (self.wishart_T0 + cov_obs + (self.gaussian_k0 * n) / kn * cov_mu0) * (kn + 1) / kn / (vn - self.dim + 1) det = np.linalg.det(sigma) inv = np.linalg.inv(sigma) df = vn - self.dim + 1 loglik = math.lgamma(df / 2.0 + self.dim / 2.0) - math.lgamma(df / 2.0) - 0.5 * np.log(det) - 0.5 * self.dim * np.log(df * math.pi) - \ 0.5 * (df + self.dim) * np.log(1.0 + (1.0 / df) * np.dot(np.dot(obs - mu, inv), (obs - mu).T)) loglik += np.log(n / (N + self.alpha)) if n > 0 else np.log(self.alpha / (N + self.alpha)) # modify the counts and dict try: cluster_dict[label].append(obs) except KeyError: cluster_dict[label] = [obs] N += 1 total_logprob += loglik return total_logprob
"proto_ts_library.bzl provides the proto_ts_library rule" load("@build_bazel_rules_nodejs//:providers.bzl", "DeclarationInfo", "JSModuleInfo") def _proto_ts_library_impl(ctx): """ Implementation for proto_ts_library rule Args: ctx: the rule context object Returns: list of providers """ # list<depset<File>> transitive_dts = [depset(ctx.files.deps)] # list<depset<File>>> transitive_js_modules = [] # gather transitive .d.ts files for dep in ctx.attr.deps: if DeclarationInfo in dep: transitive_dts.append(dep[DeclarationInfo].transitive_declarations) if JSModuleInfo in dep: transitive_js_modules.append(dep[JSModuleInfo].sources) # list<File>: .d.ts files that will be created by the tsc action dts_outputs = [] # .js files that will be created by the tsc action js_outputs = [] # all srcs files are expected to be .ts files. for f in ctx.files.srcs: (base, _, _) = f.basename.rpartition(".") dts_outputs.append( ctx.actions.declare_file(base + ".d.ts", sibling = f), ) # js_outputs.append( # ctx.actions.declare_file(base + ".js", sibling = f), # ) # all outputs (.d.ts + .js) outputs = js_outputs + dts_outputs # for the JSModuleInfo provider js_module = depset(js_outputs) transitive_js_modules.append(js_module) # build the tsc command command = [ctx.executable.tsc.path, " --declaration"] command += ctx.attr.args command += [f.path for f in ctx.files.srcs] ctx.actions.run_shell( command = " ".join(command), inputs = depset( direct = ctx.files.srcs, transitive = transitive_dts, ), mnemonic = "TscProtoLibrary", outputs = outputs, progress_message = "tsc %s" % ctx.label, tools = [ctx.executable.tsc], ) return [ # primary provider needed for downstream rules such as ts_project. DeclarationInfo( declarations = dts_outputs, # ts_project wants direct /and/ transitive .d.ts in 'transitive' transitive_declarations = depset( transitive = [depset(dts_outputs)] + transitive_dts, ), type_blocklisted_declarations = depset(), ), # default info contains all files, in case someone wanted it for a # filegroup etc. DefaultInfo(files = depset(direct = outputs)), # js files, in the event someone would like this for js_library etc. JSModuleInfo( direct_sources = js_module, sources = depset(transitive = transitive_js_modules), ), ] proto_ts_library = rule( implementation = _proto_ts_library_impl, attrs = { "deps": attr.label_list( doc = "dependencies that provide .d.ts files (typically other proto_ts_library rules)", providers = [DeclarationInfo], ), "srcs": attr.label_list( allow_files = True, doc = "source .ts files", ), "tsc": attr.label( allow_files = True, cfg = "host", mandatory = True, doc = "typescript compiler executable", executable = True, ), "args": attr.string_list( doc = "additional arguments for the tsc compile action", ), }, )
import unittest from mock import MagicMock import bilby class TestPymultinest(unittest.TestCase): def setUp(self): self.likelihood = MagicMock() self.priors = bilby.core.prior.PriorDict( dict(a=bilby.core.prior.Uniform(0, 1), b=bilby.core.prior.Uniform(0, 1)) ) self.priors["a"] = bilby.core.prior.Prior(boundary="periodic") self.priors["b"] = bilby.core.prior.Prior(boundary="reflective") self.sampler = bilby.core.sampler.Pymultinest( self.likelihood, self.priors, outdir="outdir", label="label", use_ratio=False, plot=False, skip_import_verification=True, ) def tearDown(self): del self.likelihood del self.priors del self.sampler def test_default_kwargs(self): expected = dict(importance_nested_sampling=False, resume=True, verbose=True, sampling_efficiency='parameter', n_live_points=500, n_params=2, n_clustering_params=None, wrapped_params=None, multimodal=True, const_efficiency_mode=False, evidence_tolerance=0.5, n_iter_before_update=100, null_log_evidence=-1e90, max_modes=100, mode_tolerance=-1e90, seed=-1, context=0, write_output=True, log_zero=-1e100, max_iter=0, init_MPI=False, dump_callback='dumper') self.sampler.kwargs['dump_callback'] = 'dumper' # Check like the dynesty print_func self.assertListEqual([1, 0], self.sampler.kwargs['wrapped_params']) # Check this separately self.sampler.kwargs['wrapped_params'] = None # The dict comparison can't handle lists self.assertDictEqual(expected, self.sampler.kwargs) def test_translate_kwargs(self): expected = dict(importance_nested_sampling=False, resume=True, verbose=True, sampling_efficiency='parameter', n_live_points=123, n_params=2, n_clustering_params=None, wrapped_params=None, multimodal=True, const_efficiency_mode=False, evidence_tolerance=0.5, n_iter_before_update=100, null_log_evidence=-1e90, max_modes=100, mode_tolerance=-1e90, seed=-1, context=0, write_output=True, log_zero=-1e100, max_iter=0, init_MPI=False, dump_callback='dumper') for equiv in bilby.core.sampler.base_sampler.NestedSampler.npoints_equiv_kwargs: new_kwargs = self.sampler.kwargs.copy() del new_kwargs["n_live_points"] new_kwargs[ "wrapped_params" ] = None # The dict comparison can't handle lists new_kwargs['dump_callback'] = 'dumper' # Check this like Dynesty print_func new_kwargs[equiv] = 123 self.sampler.kwargs = new_kwargs self.assertDictEqual(expected, self.sampler.kwargs) if __name__ == "__main__": unittest.main()
def return_cst(): return 1
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Using the new (beta) MovieStim2 to play a video file. Requires: * vlc, matching your python bitness * pip install python-vlc """ from __future__ import absolute_import, division from psychopy import visual, core, event, data, logging, monitors from psychopy.constants import (NOT_STARTED, STARTED, PLAYING, PAUSED, STOPPED, FINISHED, PRESSED, RELEASED, FOREVER) import time, os, sys, glob videopath = r'C:\Users\fitch\downloads\huge.mp4' if not os.path.exists(videopath): raise RuntimeError("Video path could not be found: " + videopath) win = visual.Window( size=[1440, 900], fullscr=True, screen=0, allowGUI=False, allowStencil=False, monitor='testMonitor', color=[-1,-1,-1], colorSpace='rgb', blendMode='avg', useFBO=True, units='height') experimenter_text = visual.TextStim(win, "IT'S A MOVIE", pos=(0, -450), units = 'pix') mov = visual.VlcMovieStim(win, videopath, units=None, pos=(0, 0.15), loop=False) mov.size = (1.0, .5625) # ------Prepare to start Routine "experimenter"------- shouldflip = mov.play() continueRoutine = True while continueRoutine: # Only flip when a new frame should be displayed. if shouldflip: # Movie has already been drawn, so just draw text stim and flip experimenter_text.draw() win.flip() else: # Give the OS a break if a flip is not needed time.sleep(0.001) shouldflip = mov.draw() for key in event.getKeys(): if key in ['escape', 'q']: # TODO: Let them select a different file? win.close() core.quit() elif key in ['space']: continueRoutine = False
from dataclasses import dataclass, asdict from enum import Enum, auto from typing import Type import torch import wandb from datargs import argsclass from torch import nn, Tensor from preprocessor_meta import Preprocessor, filter_sig_meta from gw_data import * from models import HyperParameters, ModelManager class RegressionHead(Enum): LINEAR = auto() AVG_LINEAR = auto() def to_odd(i: int) -> int: return (i // 2) * 2 + 1 @argsclass(name="sig_cnn") @dataclass class SigCnnHp(HyperParameters): batch: int = 512 epochs: int = 10 lr: float = 0.0003 dtype: torch.dtype = torch.float32 conv1w: int = 105 conv1out: int = 150 conv1stride: int = 1 mp1w: int = 1 conv2w: int = 8 conv2out: int = 40 conv2stride: int = 1 mp2w: int = 4 conv3w: int = 8 conv3out: int = 50 conv3stride: int = 1 mp3w: int = 1 conv4w: int = 33 conv4out: int = 50 conv4stride: int = 1 mp4w: int = 3 head: RegressionHead = RegressionHead.AVG_LINEAR lindrop: float = 0.22 @property def manager_class(self) -> Type[ModelManager]: return Manager def __post_init__(self): self.conv1w = to_odd(self.conv1w) self.conv2w = to_odd(self.conv2w) self.conv3w = to_odd(self.conv3w) self.conv4w = to_odd(self.conv4w) class ConvBlock(nn.Module): def __init__( self, w: int, in_channels: int, out_channels: int, stride: int, mpw: int ): super().__init__() self.conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=(w,), stride=(stride,), padding=w // 2, ) self.bn = nn.BatchNorm1d(out_channels) self.activation = nn.ReLU() self.mp = nn.MaxPool1d(kernel_size=mpw) def forward(self, x: Tensor, use_activation: bool): out = self.conv(x) out = self.bn(out) if use_activation: out = self.activation(out) out = self.mp(out) return out class SigCnn(nn.Module): """ Applies a CNN to the output of preprocess filter_sig and produces one logit as output. input size: (batch_size, N_SIGNALS, SIGNAL_LEN) output size: (batch_size, 1) """ def __init__(self, device: torch.device, hp: SigCnnHp): super().__init__() self.hp = hp self.device = device self.conv1 = ConvBlock( w=hp.conv1w, in_channels=N_SIGNALS, out_channels=hp.conv1out, stride=hp.conv1stride, mpw=hp.mp1w, ) self.conv2 = ConvBlock( w=hp.conv2w, in_channels=hp.conv1out, out_channels=hp.conv2out, stride=hp.conv2stride, mpw=hp.mp2w, ) self.conv3 = ConvBlock( w=hp.conv3w, in_channels=hp.conv2out, out_channels=hp.conv3out, stride=hp.conv3stride, mpw=hp.mp3w, ) self.conv4 = ConvBlock( w=hp.conv4w, in_channels=hp.conv3out, out_channels=hp.conv4out, stride=hp.conv4stride, mpw=hp.mp4w, ) self.outw = ( SIGNAL_LEN // hp.conv1stride // hp.mp1w // hp.conv2stride // hp.mp2w // hp.conv3stride // hp.mp3w // hp.conv4stride // hp.mp4w ) if self.outw == 0: raise ValueError("strides and maxpools took output width to zero") self.linear_dropout = nn.Dropout(hp.lindrop) linear_in_features = hp.conv4out * ( self.outw if hp.head == RegressionHead.LINEAR else 1 ) self.linear = nn.Linear(in_features=linear_in_features, out_features=1) def forward(self, x: Tensor) -> Tensor: batch_size = x.size()[0] out = self.conv1(x, use_activation=True) out = self.conv2(out, use_activation=True) out = self.conv3(out, use_activation=True) out = self.conv4(out, use_activation=False) if self.hp.head == RegressionHead.LINEAR: out = torch.flatten(out, start_dim=1) else: assert self.hp.head == RegressionHead.AVG_LINEAR # Average across w, leaving (batch, channels) out = torch.mean(out, dim=2) out = self.linear_dropout(out) out = self.linear(out) assert out.size() == (batch_size, 1) return out class Manager(ModelManager): def train( self, data_dir: Path, n: Optional[int], device: torch.device, hp: HyperParameters, submission: bool, ): if not isinstance(hp, SigCnnHp): raise ValueError("wrong hyper-parameter class: {hp}") wandb.init(project="g2net-" + __name__, entity="wisdom", config=asdict(hp)) self._train( SigCnn(device, hp), device, data_dir, n, [filter_sig_meta], hp, submission )
from hsm.api.openstack import wsgi from hsm.api.views import versions as views_versions VERSIONS = { "v1.0": { "id": "v1.0", "status": "CURRENT", "updated": "2012-01-04T11:33:21Z", "links": [ { "rel": "describedby", "type": "application/pdf", "href": "http://jorgew.github.com/block-storage-api/" "content/os-block-storage-1.0.pdf", }, { "rel": "describedby", "type": "application/vnd.sun.wadl+xml", "href": "http://docs.rackspacecloud.com/" "servers/api/v1.1/application.wadl", }, ], "media-types": [ { "base": "application/xml", "type": "application/vnd.openstack.storage+xml;version=1", }, { "base": "application/json", "type": "application/vnd.openstack.storage+json;version=1", } ], } } class Versions(wsgi.Resource): def __init__(self): super(Versions, self).__init__(None) def index(self, req): """Return all versions.""" builder = views_versions.get_view_builder(req) return builder.build_versions(VERSIONS) @wsgi.response(300) def multi(self, req): """Return multiple choices.""" builder = views_versions.get_view_builder(req) return builder.build_choices(VERSIONS, req) def get_action_args(self, request_environment): """Parse dictionary created by routes library.""" args = {} if request_environment['PATH_INFO'] == '/': args['action'] = 'index' else: args['action'] = 'multi' return args class HardwareVersionV1(object): def show(self, req): builder = views_versions.get_view_builder(req) return builder.build_version(VERSIONS['v1.0']) def create_resource(): return wsgi.Resource(HardwareVersionV1())
from urllib.parse import urlparse import os from archive_api.models import DataSet, MeasurementVariable, Site, Person, Plot, Author from django.urls import resolve from django.db import transaction from rest_framework import serializers from rest_framework.reverse import reverse class StringToIntReadOnlyField(serializers.ReadOnlyField): """ Readonly field that uses a character externally and integer internally """ def to_representation(self, obj): return str(obj) class StringToIntField(serializers.Field): """ field that uses a character externally and integer internally """ def to_internal_value(self, data): return int(data) def to_representation(self, obj): return str(obj) class AuthorsField(serializers.SerializerMethodField): """ Author objects are serialized and deserialized for reading and writing """ def __init__(self, **kwargs): super(AuthorsField, self).__init__(**kwargs) self.read_only = False def to_internal_value(self, data): """ Resolve person Urls into Person objects :param data: list of Person urls :type data: list :return: dict with 'authors' key containing a list of Person objects """ authors = [] for author in data: path = urlparse(author).path resolved_func, __, resolved_kwargs = resolve(path) person = resolved_func.cls.queryset.get(pk=resolved_kwargs['pk']) authors.append(person) return {'authors': authors} class DataSetSerializer(serializers.HyperlinkedModelSerializer): """ DataSet serializer that converts models.DataSet """ managed_by = serializers.ReadOnlyField(source='managed_by.username') modified_by = serializers.ReadOnlyField(source='modified_by.username') archive_filename = serializers.SerializerMethodField() submission_date = serializers.ReadOnlyField() publication_date = serializers.ReadOnlyField() authors = AuthorsField() archive = serializers.SerializerMethodField() status = StringToIntReadOnlyField() qaqc_status = StringToIntField(required=False,allow_null=True) access_level = StringToIntField(required=False, allow_null=True) def get_archive_filename(self,instance): if instance.archive: base, filename = os.path.split(instance.archive.name) return filename else: return None def get_archive(self, instance): """ Returns the archive access url""" if instance.archive: url_kwargs = { 'pk': instance.pk, } url = reverse('dataset-detail', kwargs=url_kwargs, request=self.context["request"]) url += "archive/" return url return None def get_authors(self, instance): """ Serialize the authors. This should be an ordered list of authors :param instance: :return: """ # Get Authors in the specified order author_order = Author.objects \ .filter(dataset_id=instance.id) \ .order_by('order') # Put in a list authors = [a.author for a in author_order] # Return a list of person urls serializers = PersonSerializer(authors, many=True, context={'request': self.context['request']}).data return [p["url"] for p in serializers] class Meta: model = DataSet fields = ('url', 'data_set_id', 'name', 'version', 'status', 'description', 'status_comment', 'doi', 'start_date', 'end_date', 'qaqc_status', 'qaqc_method_description', 'ngee_tropics_resources', 'funding_organizations', 'doe_funding_contract_numbers', 'acknowledgement', 'reference', 'additional_reference_information', 'access_level', 'additional_access_information', 'originating_institution', 'submission_date', 'contact', 'sites', 'authors', 'plots', 'variables', 'archive', 'archive_filename', 'managed_by', 'created_date', 'modified_by', 'modified_date' , 'cdiac_import', 'cdiac_submission_contact','publication_date') read_only_fields = ('cdiac_import', 'cdiac_submission_contact', 'url', 'version', 'managed_by', 'created_date', 'modified_by', 'modified_date', 'status', 'archive', 'archive_filename', 'submission_date', 'data_set_id','publication_date') def validate(self, data): """ Validate the fields. """ errors = dict() # Validate the data range if {'start_date', 'end_date'}.issubset(data.keys()) and data['start_date'] and data['end_date'] and data[ 'start_date'] > data['end_date']: errors["end_date"]="Start date must come before end date" # Validate the selected plots if 'plots' in data.keys(): if 'sites' not in data.keys(): errors.setdefault('plots', []) errors["plots"].append("A site must be selected.") else: for plot in data["plots"]: if plot.site not in data["sites"]: errors.setdefault('plots', []) errors["plots"].append("Select the site corresponding to plot {}:{}".format(plot.plot_id, plot.name)) # If the dataset is approved or submitted there are an extra set of fields # that are required if self.instance and self.instance.status > DataSet.STATUS_DRAFT: if not self.instance.archive: errors.setdefault('missingRequiredFields', []) errors['missingRequiredFields'].append("archive") for field in ['sites', 'authors', 'name', 'description', 'contact', 'variables', 'ngee_tropics_resources', 'funding_organizations', 'originating_institution', 'access_level']: # Check for required fields if field in data.keys(): if data[field] is None or (isinstance(data[field], (list, tuple, str)) and not data[field]): errors.setdefault('missingRequiredFields', []) errors['missingRequiredFields'].append(field) else: errors.setdefault('missingRequiredFields', []) errors['missingRequiredFields'].append(field) if len(errors) > 0: raise serializers.ValidationError(errors) return data def create(self, validated_data): """ Override the serializer create method to handle Dataset and Author creation in an atomic transaction :param validated_data: :return: dataset """ # Use an atomic transaction for managing dataset and authors with transaction.atomic(): # Pop off authors data, if exists author_data = [] sites_data = [] plots_data = [] variables_data = [] if "authors" in validated_data.keys(): author_data = validated_data.pop('authors') if "sites" in validated_data.keys(): sites_data = validated_data.pop('sites') if "plots" in validated_data.keys(): plots_data = validated_data.pop('plots') if "variables" in validated_data.keys(): variables_data = validated_data.pop('variables') # Create dataset first dataset = DataSet.objects.create(**validated_data) dataset.clean() dataset.save() # save the author data self.add_authors(author_data, dataset) for obj in sites_data: dataset.sites.add(obj) for obj in plots_data: dataset.plots.add(obj) for obj in variables_data: dataset.variables.add(obj) dataset.save() return dataset def update(self, instance, validated_data): """ Override the serializer update method to handle Dataset and Author update in an atomic transaction :param validated_data: :return: dataset """ # Use an atomic transaction for managing dataset and authors with transaction.atomic(): # pop off the authors data if "authors" in validated_data.keys(): author_data = validated_data.pop('authors') # remove the existing authors Author.objects.filter(dataset_id=instance.id).delete() # delete first self.add_authors(author_data, instance) # Update Dataset metadata super(self.__class__, self).update(instance=instance, validated_data=validated_data) return instance def add_authors(self, author_data, instance): """ Enumerate over author data and create ordered author objects :param author_data: Person objects :type author_data: list :param instance: dataset to add authors to :type instance: DataSet """ for idx, author in enumerate(author_data): Author.objects.create(dataset=instance, order=idx, author=author) class MeasurementVariableSerializer(serializers.HyperlinkedModelSerializer): """ MeasurementVariable serializer that convers models.MeasurementVariable """ class Meta: model = MeasurementVariable fields = '__all__' class SiteSerializer(serializers.HyperlinkedModelSerializer): """ Site serializer that converts models.Site """ class Meta: model = Site fields = '__all__' class PersonSerializer(serializers.HyperlinkedModelSerializer): """ Person serializer that converts models.Person """ class Meta: model = Person fields = ('url', 'first_name', 'last_name', 'email', 'institution_affiliation', 'orcid') class PlotSerializer(serializers.HyperlinkedModelSerializer): """ Plot serializer that converts models.Plot """ class Meta: model = Plot fields = '__all__'
#q.no.1 year=int(input("enter a year to check it is leap year or not:")) if year%4==0: print("it is a leap year") else: print("it is not a leap year") #q.no.2 length=int(input("enter length:")) breadth=int(input("enter breadth:")) def dimensions(l,b): if l==b: return("dimensions of square") else: return ("dimensions of rectangle") print(dimensions(length,breadth)) #q.no.3 p1=int(input("enter the first age of a person:")) p2=int(input("enter the age of second person:")) p3=int(input("enter the age of third person:")) old_person=max(p1,p2,p3) youngest_person=min(p1,p2,p3) print("the oldest of the three person is:",old_person) print("the youngest of the three person is:",youngest_person) #q.no.4 emp_age=int(input("enter the age:")) emp_sex = str(input("enter the sex(M or F):")) emp_status = str(input("enter the martial status(Y or N):")) if(emp_sex==('F')): print("she will work in urban areas") elif(emp_sex==('M'))and (20<=emp_age<40): print("he work in anywhere") elif(emp_sex==('M'))and (40<=emp_age<60): print("he will work in urban areas") else: print("ERROR!!!!") #Q.NO.5 qt=int(input("enter the quantity of items to buy:")) cost=(qt*100) if cost>1000: discount=(cost)*.10 cost-=discount print("the cost of the iem is:",cost) else: print("the cost of item is:",cost) #Q.NO.6 x=[] for i in range(10): x.append(input("enter a number:")) print(x,sep='\n') #Q.NO.7 while True: print("infinite loop") #q.no.9 l=[1,"danish",3,5] l1=[] l2=[] l3=[] for i in l: if type(i)==int: l1.append(i) print(l1) elif type(i)==int: l2.append(i) print(l2) else: l.append(i) print(3) #Q.N0.10 l=[] for i in range(1,101): if i>1: for j in range(2,i): if i%j==0: break else: l.append(i) print(l) #q.no.11 for i in range(1,5): print("* *i") #Q.NO.12 n=int(input("enter total number of elements:")) l=[] for i in range(n): n1=int(input("enter number:")) l.append(n1) print(l) n2=int(input("enter element to be searched:")) for j in 1: if j==n2: k=l.index(j) l.pop() print(l)
#! /usr/bin/env python # -*- coding: UTF-8 -*- from base.dependency.dependency_if import ModuleGrouper from base.modules_if import ModuleListSupply from commons.configurator import Configurator from commons.config_util import ClassLoader import logging import sys config_module_list_supply = ModuleListSupply() config_module_grouper = ModuleGrouper def main(): logging.basicConfig(stream=sys.stderr,level=logging.DEBUG) Configurator().default() if len(sys.argv) > 1: module_grouper_class = ClassLoader.get_class(qualified_class_name = sys.argv[1]) else: module_grouper_class = config_module_grouper module_grouper = module_grouper_class(config_module_list_supply.get_module_list()) for prefix in sorted(module_grouper.node_group_prefixes()): print "%s (%s)" % (prefix, list(module for module in config_module_list_supply.get_module_list() if prefix==module_grouper.get_node_group_prefix(module))) if __name__ == "__main__": main()
#### # EECS1015: Lab 5 # Name: Mahfuz Rahman # Student ID: 217847518 # Email: mafu@my.yorku.ca #### import random names = ("Masha", "Kevin", "Ruigang", "Vlad", "Ramesh", \ "Aditi", "Caroline", "Panos", "Chuck", "Grani", \ "Rutha", "Stan", "Qiong", "Alexi", "Carlos") cities = ("Toronto", "Ottawa", "Hamilton") testDict = {"Richard": "Toronto", "Jia-Tao": "Toronto", "Justin": "Ottawa", "Lars": "Ottawa"} def getRandomItem(x): return x[random.randint(0, len(x)-1)] # Getting random item from the tuple passed def createNameDictionary(): citizens = {} for a in range(len(names)): citizens[names[a]] = getRandomItem(cities) # Assigning cities to people randomly return citizens def fromCity(dict, city): city_list = [] for a in dict: # Variable a extracts the keys of dictionary as well helps in iterating the loop if (dict[a] == city): # Checking the values of dictionary with the city name city_list.append(a) return city_list def removePeopleFrom(dict, city): dict_copy = dict.copy() # Making a copy of the dictionary for using in the loop as the dict parameter gets modified for a in dict_copy: if (dict[a] == city): del dict[a] def printNameDict(dict,city): serial=1 # This variable will be used for numbering for a in city: # Extracting the city name print(f"People from {a}:") if a in dict.values(): # Checking if the city is in the dictionary for b in dict: # Extracting the dictionary key if dict[b] == a: # Checking if value of extracted key(b) equals to the city(a) print(f"{serial}.{b}") serial=serial+1 serial=1 else: # If city is not in dictionary print("*None*") def main(): print("Part 1 - Testing functions with `testDict' ") print("Testing getRandomItem() function") print(cities) print("Item = "+ getRandomItem(cities)) print("Testing fromCity() function") print(fromCity(testDict, "Toronto")) print(fromCity(testDict, "Ottawa")) print("Testing printNameDict() function") printNameDict(testDict, ("Toronto", "Ottawa")) print("Testing removePeopleFrom() function") removePeopleFrom(testDict, "Ottawa") printNameDict(testDict, ("Toronto", "Ottawa")) print("\nPart 2 - Main\n") citizens = createNameDictionary() printNameDict(citizens,cities) for a in cities: print(f"{a} List:") print(fromCity(citizens,a)) print("Removing all people from Toronto...") removePeopleFrom(citizens,"Toronto") print("Removing all people from Hamilton...") removePeopleFrom(citizens,"Hamilton") printNameDict(citizens,cities) input() if __name__ == '__main__': main()
from .views import ProductViewSet, UserAPIView from django.urls import path urlpatterns = [ path('products', ProductViewSet.as_view({ 'get': 'getAllProducts', 'post': 'postProduct' })), path('products/<str:pk>', ProductViewSet.as_view({ 'get': 'getProduct', 'put': 'updateProduct', 'delete': 'deleteProduct' })), path('user', UserAPIView.as_view()), ]
# -*- coding: utf-8 -*- """This is a module demonstrating a script A collection of functions that print 'script'. Example: This is an example that exemplifies in the ``Example`` section:: $ python script.py New Section. Attributes: module_variable (str): A variable mentioned in the ``Attributes`` section: Todo: * Something with your life. .. _This is a link: https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html """ module_variable = 'script' def printscript(): """Prints 'script' Args: Returns: str: The string returned """ print(module_variable) return module_variable def script_generator(n): """Generates repeated words. Args: n(int): The upper limit of the number of the range to generate Yields: str: the `module_variable` Examples: Doctest example. >>> print([s for s in script_generator(3)]) ['script', 'script', 'script'] """ for i in range(n): yield module_variable if __name__ == "__main__": import doctest doctest.testmod()
import torch import torch.optim as optim from sketch import SketchAlgorithm import torch.nn.functional as F import logging import bagua.torch_api as bagua from bagua.torch_api.algorithms import gradient_allreduce USE_SKETCH = True sketch_biases = False def main(): torch.manual_seed(42) torch.cuda.set_device(bagua.get_local_rank()) bagua.init_process_group() logging.getLogger().setLevel(logging.INFO) model = torch.nn.Sequential(torch.nn.Linear(200, 1)).cuda() for m in model.modules(): if hasattr(m, "bias") and m.bias is not None: m.bias.do_sketching = sketch_biases if USE_SKETCH: optimizer = optim.SGD(model.parameters(), lr=1) algorithm = SketchAlgorithm(optimizer) else: optimizer = optim.SGD(model.parameters(), lr=0.01) algorithm = gradient_allreduce.GradientAllReduceAlgorithm() model = model.with_bagua( [optimizer], algorithm, do_flatten=True, ) model.train() X = torch.randn(1000, 200).cuda() y = torch.zeros(1000, 1).cuda() for epoch in range(1, 101): optimizer.zero_grad() output = model(X) loss = F.mse_loss(output, y) loss.backward() optimizer.step() logging.info(f"it {epoch}, loss: {loss.item():.6f}") if __name__ == "__main__": main()
#vim: fileencoding=utf8 from __future__ import division, print_function import sys, os.path, codecs, traceback from rays import * from rays.compat import * from .base import * import pytest class TestEmbpy(Base): # {{{ def template(self, name): return os.path.join(self.TEST_DIR, "templates", name) def cache(self, name): return os.path.join(self.TEST_DIR, "templates", "caches", name) def clear_caches(self): for v in os.listdir( os.path.join(self.TEST_DIR, "templates", "caches")): os.remove(os.path.join(self.TEST_DIR, "templates", "caches", v)) def setup_method(self, method): try: os.mkdir(os.path.join(self.TEST_DIR, "templates", "caches")) except: pass Base.setup_method(self, method) self.clear_caches() return def teardown_method(self, method): Base.teardown_method(self, method) self.clear_caches() try: os.rmdir(os.path.join(self.TEST_DIR, "templates", "caches")) except: pass return def test_set_and_get_template_globals(self): embpy = Embpy(codecs.open(self.template("index.html")), self.cache("index.html"), {"global_value": "global"}) assert {"u_":u_, "b_":b_, "n_":n_, "global_value":"global"} == embpy.template_globals def test_render_without_filter(self): embpy = Embpy(codecs.open(self.template("index.html")), self.cache("index.html")) assert u_("""<div> 値1 値2 </div> <div> <p>value1</p> </div> """) == embpy.render({"text_values": [u_("値1"), u_("値2")], "html_values": [u_("<p>value1</p>")]}) return embpy def test_cache(self): embpy = self.test_render_without_filter() assert embpy.is_cached() self.test_render_without_filter() data = open(self.template("index.html"), "rb").read() open(self.template("index.html"), "wb").write(data) assert (not embpy.is_cached()) self.test_render_without_filter() def test_render_with_filter(self): def filter(s): return "filtered_"+s embpy = Embpy(codecs.open(self.template("index.html")), self.cache("index.html"), filter = filter) assert u_("""<div> filtered_値1 filtered_値2 </div> <div> <p>value1</p> </div> """) == embpy.render({"text_values": [u_("値1"), u_("値2")], "html_values": [u_("<p>value1</p>")]}) def test_compound_statements(self): embpy = Embpy(codecs.open(self.template("compound_statements.html")), self.cache("compound_statements.html"), encoding="cp932") assert u_(""" 表示される(SJIS) while """) == embpy.render() def test_syntax_error(self): embpy = Embpy(codecs.open(self.template("syntax_error.html")), self.cache("syntax_error.html")) try: embpy.render({"text_values":[]}) assert False except SyntaxError as e: exc_type, exc_value, exc_traceback = sys.exc_info() output = "".join(traceback.format_exception(exc_type, exc_value, exc_traceback)) assert "File \"<string>\", line 6" in output def test_occur_errors_in_rendering(self): embpy = Embpy(codecs.open(self.template("index.html")), self.cache("index.html")) try: embpy.render() # <= template values does not given by the caller except NameError as e: exc_type, exc_value, exc_traceback = sys.exc_info() output = "".join(traceback.format_exception(exc_type, exc_value, exc_traceback)) print(output) assert "File \"<string>\", line 6" in output assert "NameError: name 'text_values' is not defined" in output else: assert False # }}} class TestRendererAndHelper(Base): TEMPLATE_DIR = os.path.join(Base.TEST_DIR, "templates") CACHE_DIR = os.path.join(Base.TEST_DIR, "templates", "caches") def clear_caches(self): if os.path.exists(self.CACHE_DIR): for v in os.listdir(self.CACHE_DIR): os.remove(os.path.join(self.CACHE_DIR, v)) else: os.mkdir(self.CACHE_DIR) def setup_method(self, method): Base.setup_method(self, method) self.clear_caches() return def teardown_method(self, method): Base.teardown_method(self, method) self.clear_caches() return def test_render_file(self): renderer = Renderer(self.TEMPLATE_DIR, self.CACHE_DIR) assert u_("""<div> 値1 値2 </div> <div> <p>value1</p> </div> """) == renderer.render_file("index", {"text_values": [u_("値1"), u_("値2")], "html_values": [u_("<p>value1</p>")]}) def test_render_file_with_encoding(self): renderer = Renderer(self.TEMPLATE_DIR, self.CACHE_DIR) assert u_(""" 表示される(SJIS) while """) == renderer.render_file("compound_statements", encoding="cp932") def test_render_string(self): renderer = Renderer(self.TEMPLATE_DIR, self.CACHE_DIR) assert u_("""文字:あ""") == renderer.render_string(u_("""文字:<%= v %>"""), {"v": u_("あ")}) def test_render_with_layouts(self): renderer = Renderer(self.TEMPLATE_DIR, self.CACHE_DIR) assert u_("""<body> <h1>layout test</h1> <div>body</div> </body> """) == renderer.contents({}) def test_capture(self): renderer = Renderer(self.TEMPLATE_DIR, self.CACHE_DIR) assert u_(""" 連結 <div> ok </div> """) == renderer.capture_outputs({}) def test_htmlquote(self): h = Helper() assert u_("&amp;&lt;&gt;&#39;&quot;") == h.htmlquote(u_("&<>'\"")) assert u_("&amp;&lt;&gt;&#39;&quot;") == Helper.htmlquote(u_("&<>'\""))
''' Classifier : K Nearest Neighbour DataSet : Inbuilt Winne Predictor Dataset Features : Alcohol, Malic acid , Ash, Alcalinity of ash , Magnesium ,Total phenols , Flavanoids , : Nonflavanoid phenols , Proanthocyanins , Color intensity, Hue , OD280/OD315 of diluted wines, Proline. Labels : Class 1, Class 2, Class 3 Training Dataset : 70% of 178 Entries Testing Dataset : 30% of 178 Entries Author : Prasad Dangare Function Name : Wine_Predictor ''' # ******************** # Imports # ******************** from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn import tree # ******************** # ML Operation # ******************** def Wine_Predictor(): wine = load_wine() #print(wine.data) print("\nTotal Volume Of Dataset..") print(wine.data.shape) print("\n") #print(wine.target) print("Grade Of Wines In Class..") print(wine.target_names) print("\n") print("13 Features Of Wines...") print(wine.feature_names) print("\n") Data = wine.data Target = wine.target Data_train, Data_test, Target_train, Target_test = train_test_split(Data, Target, test_size = 0.5) print("Data Split For Training Is 50%") print(Data_train.shape) print("\n") print("Data Split For Testing Is 50%") print(Data_test.shape) print("\n") #k = 7 #cobj = KNeighborsClassifier(n_neighbors = k) cobj = tree.DecisionTreeClassifier() cobj.fit(Data_train, Target_train) output = cobj.predict(Data_test) Accuracy = accuracy_score(Target_test, output) print("Accuracy Using Decision Tree is : ", Accuracy*100, "%") #Test_Dataset = [[14.23,1.71,2.43,15.6,127,2.8,3.06,0.28,2.29,5.64,1.04,3.92,1065]] # step 3, 5 (class 0) #Test_Dataset = [[12.37,0.94,1.36,10.6,88,1.98,0.57,0.28,0.42,1.95,1.05,1.82,520]] # (class 1) Test_Dataset = [[12.86,1.35,2.32,18,122,1.51,1.25,0.21,0.94,4.1,0.76,1.29,630]] # (class 2) Result = cobj.predict(Test_Dataset) print("Wine Grade Is : ", wine.target_names [Result]) print("\n") # ******************** # Entry Point # ******************** def main(): print("\t\t__________________Wine Predictor___________________") Wine_Predictor() # ******************** # Starter # ******************** if __name__ == "__main__": main()
from __future__ import print_function import os import numpy as np import matplotlib.pyplot as plt import pandas as pd import healpy as hp from scipy.stats import binned_statistic from ipywidgets import widgets from IPython.display import display import time # LSST libraries, MAF metrics import lsst.sims.maf.slicers as slicers import lsst.sims.maf.metrics as metrics import lsst.sims.maf.db as db from lsst.sims.featureScheduler import utils as schedUtils import lsst.sims.maf.metricBundles as mb import lsst.sims.maf.plots as plots import lsst.sims.maf.batches as batches
class IdentifierManager(object): def __init__(self, start_id = 0): self.next_id = start_id def next(self): self.next_id += 1 return self.next_id - 1 def next_n(self, n): ret = xrange(self.next_id, self.next_id + n) self.next_id += n return ret def get_identifiers(self): return set(xrange(self.next_id)) def all_ids(self): return set(xrange(self.next_id))
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorboard.plugins.mesh.summary.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import tensorflow as tf from tensorboard.compat.proto import summary_pb2 from tensorboard.plugins.mesh import summary from tensorboard.plugins.mesh import metadata from tensorboard.plugins.mesh import plugin_data_pb2 from tensorboard.plugins.mesh import test_utils class MeshSummaryTest(tf.test.TestCase): def pb_via_op(self, summary_op): """Parses pb proto.""" actual_pbtxt = summary_op.eval() actual_proto = summary_pb2.Summary() actual_proto.ParseFromString(actual_pbtxt) return actual_proto def get_components(self, proto): return metadata.parse_plugin_metadata( proto.metadata.plugin_data.content ).components def verify_proto(self, proto, name): """Validates proto.""" self.assertEqual(3, len(proto.value)) self.assertEqual("%s_VERTEX" % name, proto.value[0].tag) self.assertEqual("%s_FACE" % name, proto.value[1].tag) self.assertEqual("%s_COLOR" % name, proto.value[2].tag) self.assertEqual(14, self.get_components(proto.value[0])) self.assertEqual(14, self.get_components(proto.value[1])) self.assertEqual(14, self.get_components(proto.value[2])) def test_get_tensor_summary(self): """Tests proper creation of tensor summary with mesh plugin metadata.""" name = "my_mesh" display_name = "my_display_name" description = "my mesh is the best of meshes" tensor_data = test_utils.get_random_mesh(100) components = 14 with tf.compat.v1.Graph().as_default(): tensor_summary = summary._get_tensor_summary( name, display_name, description, tensor_data.vertices, plugin_data_pb2.MeshPluginData.VERTEX, components, "", None, ) with self.test_session(): proto = self.pb_via_op(tensor_summary) self.assertEqual("%s_VERTEX" % name, proto.value[0].tag) self.assertEqual( metadata.PLUGIN_NAME, proto.value[0].metadata.plugin_data.plugin_name, ) self.assertEqual( components, self.get_components(proto.value[0]) ) def test_op(self): """Tests merged summary with different types of data.""" name = "my_mesh" tensor_data = test_utils.get_random_mesh( 100, add_faces=True, add_colors=True ) config_dict = {"foo": 1} with tf.compat.v1.Graph().as_default(): tensor_summary = summary.op( name, tensor_data.vertices, faces=tensor_data.faces, colors=tensor_data.colors, config_dict=config_dict, ) with self.test_session() as sess: proto = self.pb_via_op(tensor_summary) self.verify_proto(proto, name) plugin_metadata = metadata.parse_plugin_metadata( proto.value[0].metadata.plugin_data.content ) self.assertEqual( json.dumps(config_dict, sort_keys=True), plugin_metadata.json_config, ) def test_pb(self): """Tests merged summary protobuf with different types of data.""" name = "my_mesh" tensor_data = test_utils.get_random_mesh( 100, add_faces=True, add_colors=True ) config_dict = {"foo": 1} proto = summary.pb( name, tensor_data.vertices, faces=tensor_data.faces, colors=tensor_data.colors, config_dict=config_dict, ) self.verify_proto(proto, name) plugin_metadata = metadata.parse_plugin_metadata( proto.value[0].metadata.plugin_data.content ) self.assertEqual( json.dumps(config_dict, sort_keys=True), plugin_metadata.json_config ) if __name__ == "__main__": tf.test.main()
from .anvilGoogleAuth import *
import pytest from fileDownloader import FileDownloader import requests import os from customErrors import DirectoryNotFoundError import logging from zipfile import ZipFile class TestFileDownloader: def test_validUrl(self, tmpdir): with pytest.raises(requests.exceptions.MissingSchema): FileDownloader('dakfldfjasfk', str(tmpdir)) @pytest.mark.webtest def test_onlineUrl(self, tmpdir): with pytest.raises(requests.exceptions.HTTPError): #url is a valid test url that returns a 404 FileDownloader('https://reqres.in/api/users/23', str(tmpdir)) def test_validSaveDir(self, tmpdir): validUrl = r'https://reqres.in/api/users?page=2' invalidDir = os.path.join(str(tmpdir), 'nonExistent') with pytest.raises(DirectoryNotFoundError): FileDownloader(validUrl, invalidDir) @pytest.mark.webtest def test_downloadZip(self, tmpdir): fileUrl = r'https://www.stats.govt.nz/assets/Uploads/Business-financial-data/Business-financial-data-March-2021-quarter/Download-data/business-financial-data-march-2021-quarter-csv.zip' fileName = r'business-financial-data-march-2021-quarter-csv.zip' downloader = FileDownloader(fileUrl, str(tmpdir)) try: path = downloader.download() except Exception as e: logging.exception(e) assert False else: assert path == os.path.join(str(tmpdir), fileName) #asserting that the zipfile is valid and uncorrupted assert ZipFile(path).testzip() is None
import discord from discord.ext import commands import cogs import settings import random bot = commands.Bot(command_prefix='=') bot.add_cog(cogs.Moderation(bot)) bot.add_cog(cogs.Fun(bot)) bot.add_cog(cogs.Utility(bot)) @bot.event async def on_ready(): activity = discord.Activity(name=bot.command_prefix+'help', type=discord.ActivityType.watching) await bot.change_presence(activity = activity) print('Logged in as '+str(bot.user)+'\n---\nGuilds: '+str(len(bot.guilds))) @bot.event async def on_command_error(ctx, error): if isinstance(error, discord.ext.commands.MissingPermissions): await ctx.send("You don't have the required permissions to use that command.\nMissing permission(s): `"+', '.join(error.missing_perms)+'`.') if isinstance(error, discord.ext.commands.BotMissingPermissions): await ctx.send("I don't have permission to do that here!\nAsk a server owner to give me the `"+', '.join(error.missing_perms)+"` permission(s).") if isinstance(error, discord.ext.commands.MissingRequiredArgument): await ctx.send("Looks like you're missing a required argument there.") if isinstance(error, discord.ext.commands.BadArgument): await ctx.send("Invalid argument(s) provided.") print(str(error)) class AutoArchHelpCommand(commands.MinimalHelpCommand): def get_command_signature(self, command): return '{0.clean_prefix}{1.qualified_name} {1.signature}'.format(self, command) async def send_bot_help(self, mapping): ctx = self.context help_embed = discord.Embed( title = 'Commands', description = self.get_opening_note(), colour = discord.Colour.gold() ) help_embed.set_footer(text = random.choice(settings.quotes_short)) help_embed.set_author(name=str(ctx.author), icon_url=ctx.author.avatar_url) for cog in mapping.keys(): name = 'Other' if cog != None: name = cog.qualified_name if hasattr(cog, 'custom_icon'): name = cog.custom_icon + ' ' + name help_embed.add_field(name = name, value = ', '.join([command.name for command in mapping[cog]])) await self.get_destination().send(embed = help_embed) async def send_command_help(self, command): ctx = self.context help_embed = discord.Embed( title = self.get_command_signature(command), description = command.help, colour = discord.Colour.gold() ) help_embed.set_footer(text = random.choice(settings.quotes_short)) help_embed.set_author(name=str(ctx.author), icon_url=ctx.author.avatar_url) await self.get_destination().send(embed = help_embed) async def send_cog_help(self, cog): ctx = self.context commands = ', '.join([command.qualified_name for command in cog.get_commands()]) help_embed = discord.Embed( title = cog.qualified_name, description = commands, colour = discord.Colour.gold() ) help_embed.set_footer(text = random.choice(settings.quotes_short)) help_embed.set_author(name=str(ctx.author), icon_url=ctx.author.avatar_url) await self.get_destination().send(embed = help_embed) async def send_group_help(self, group): ctx = self.context commands = ', '.join([command.qualified_name for command in group.commands]) help_embed = discord.Embed( title = group.qualified_name + ' Subcommands', description = commands, colour = discord.Colour.gold() ) help_embed.set_footer(text = random.choice(settings.quotes_short)) help_embed.set_author(name=str(ctx.author), icon_url=ctx.author.avatar_url) await self.get_destination().send(embed = help_embed) @bot.command(help = 'Link to the bot\'s GitHub repo.') async def source(ctx): source_embed = discord.Embed( title = 'Bot Source', description = 'The full source code is available at\n'+settings.source+'\nand is licensed under '+settings.license+'.', colour = discord.Colour.gold() ) source_embed.set_thumbnail(url = ctx.bot.user.avatar_url) source_embed.set_footer(text = random.choice(settings.quotes_short)) source_embed.set_author(name=str(ctx.author), icon_url=ctx.author.avatar_url) await ctx.send(embed = source_embed) bot.help_command = AutoArchHelpCommand() bot.run(settings.token)
daftar = ['jeruk','mangga','apel'] while True: cari = raw_input('Cari BUah : ') if not cari: print "selesai" break if cari in daftar: print "Ditemukan pada index ke ", print 1+ daftar.index(cari) else: print "tidak ketemu"
import os import requests import logging import json from time import time from glob import glob from .file_system_cache import FileSystemCache DEFAULT_ENDPOINT = 'https://pangeabio.io' logger = logging.getLogger('pangea_api') # Same name as calling module logger.addHandler(logging.NullHandler()) # No output unless configured by calling program def clean_url(url): if url[-1] == '/': url = url[:-1] return url class TokenAuth(requests.auth.AuthBase): """Attaches MetaGenScope Token Authentication to the given Request object.""" def __init__(self, token): self.token = token def __call__(self, request): """Add authentication header to request.""" request.headers['Authorization'] = f'Token {self.token}' return request def __str__(self): """Return string representation of TokenAuth.""" return self.token class PangeaGeneralError(requests.exceptions.HTTPError): pass class PangeaNotFoundError(PangeaGeneralError): pass class PangeaForbiddenError(PangeaGeneralError): pass class PangeaInternalError(PangeaGeneralError): pass class PangeaOtherError(PangeaGeneralError): pass class Knex: def __init__(self, endpoint_url=DEFAULT_ENDPOINT): self.endpoint_url = endpoint_url self.endpoint_url += '/api' self.auth = None self.headers = {'Accept': 'application/json'} self.cache = FileSystemCache() def _logging_info(self, **kwargs): base = {'endpoint_url': self.endpoint_url, 'headers': self.headers} base.update(kwargs) return base def _clean_url(self, url, url_options={}): url = clean_url(url) url = url.replace(self.endpoint_url, '') if url[0] == '/': url = url[1:] if url_options: opts = [f'{key}={val}' for key, val in url_options.items()] opts = '&'.join(opts) if '?' in url: url += '&' + opts else: url += '?' + opts return url def add_auth_token(self, token): self.auth = TokenAuth(token) def login(self, username, password): d = self._logging_info(email=username, password='*' * len(password)) logger.debug(f'Sending log in request. {d}') blob = self.cache.get_cached_blob(username) if not blob: response = requests.post( f'{self.endpoint_url}/auth/token/login', headers=self.headers, json={ 'email': username, 'password': password, } ) response.raise_for_status() logger.debug(f'Received log in response. {response.json()}') blob = response.json() self.cache.cache_blob(username, blob) self.add_auth_token(blob['auth_token']) return self def _handle_response(self, response, json_response=True): try: response.raise_for_status() except requests.exceptions.HTTPError as e: if response.status_code == 403: raise PangeaForbiddenError(e) if response.status_code == 404: raise PangeaNotFoundError(e) if response.status_code == 500: raise PangeaInternalError(e) raise PangeaOtherError(e) except Exception as e: logger.debug(f'Request failed. {response}\n{response.content}') raise if json_response: return response.json() return response def get(self, url, url_options={}, **kwargs): url = self._clean_url(url, url_options=url_options) d = self._logging_info(url=url, auth_token=self.auth) logger.debug(f'Sending GET request. {d}') response = requests.get( f'{self.endpoint_url}/{url}', headers=self.headers, auth=self.auth, ) return self._handle_response(response, **kwargs) def post(self, url, json={}, url_options={}, **kwargs): url = self._clean_url(url, url_options=url_options) d = self._logging_info(url=url, auth_token=self.auth, json=json) logger.debug(f'Sending POST request. {d}') response = requests.post( f'{self.endpoint_url}/{url}', headers=self.headers, auth=self.auth, json=json ) return self._handle_response(response, **kwargs) def put(self, url, json={}, url_options={}, **kwargs): url = self._clean_url(url, url_options=url_options) d = self._logging_info(url=url, auth_token=self.auth, json=json) logger.debug(f'Sending PUT request. {d}') response = requests.put( f'{self.endpoint_url}/{url}', headers=self.headers, auth=self.auth, json=json ) return self._handle_response(response, **kwargs) def patch(self, url, json={}, url_options={}, **kwargs): url = self._clean_url(url, url_options=url_options) d = self._logging_info(url=url, auth_token=self.auth, json=json) logger.debug(f'Sending PATCH request. {d}') response = requests.patch( f'{self.endpoint_url}/{url}', headers=self.headers, auth=self.auth, json=json ) return self._handle_response(response, **kwargs) def delete(self, url, url_options={}, **kwargs): url = self._clean_url(url, url_options=url_options) d = self._logging_info(url=url, auth_token=self.auth) logger.debug(f'Sending DELETE request. {d}') response = requests.delete( f'{self.endpoint_url}/{url}', headers=self.headers, auth=self.auth, ) logger.debug(f'DELETE request response:\n{response}') return self._handle_response(response, json_response=False, **kwargs)
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/cloud/billing/budgets_v1beta1/proto/budget_model.proto import sys _b = sys.version_info[0] < 3 and (lambda x: x) or (lambda x: x.encode("latin1")) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import field_behavior_pb2 as google_dot_api_dot_field__behavior__pb2 from google.api import resource_pb2 as google_dot_api_dot_resource__pb2 from google.type import money_pb2 as google_dot_type_dot_money__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name="google/cloud/billing/budgets_v1beta1/proto/budget_model.proto", package="google.cloud.billing.budgets.v1beta1", syntax="proto3", serialized_options=_b( "\n(com.google.cloud.billing.budgets.v1beta1P\001ZKgoogle.golang.org/genproto/googleapis/cloud/billing/budgets/v1beta1;budgets" ), serialized_pb=_b( '\n=google/cloud/billing/budgets_v1beta1/proto/budget_model.proto\x12$google.cloud.billing.budgets.v1beta1\x1a\x1fgoogle/api/field_behavior.proto\x1a\x19google/api/resource.proto\x1a\x17google/type/money.proto"\xde\x03\n\x06\x42udget\x12\x11\n\x04name\x18\x01 \x01(\tB\x03\xe0\x41\x03\x12\x14\n\x0c\x64isplay_name\x18\x02 \x01(\t\x12H\n\rbudget_filter\x18\x03 \x01(\x0b\x32,.google.cloud.billing.budgets.v1beta1.FilterB\x03\xe0\x41\x01\x12G\n\x06\x61mount\x18\x04 \x01(\x0b\x32\x32.google.cloud.billing.budgets.v1beta1.BudgetAmountB\x03\xe0\x41\x02\x12Q\n\x0fthreshold_rules\x18\x05 \x03(\x0b\x32\x33.google.cloud.billing.budgets.v1beta1.ThresholdRuleB\x03\xe0\x41\x02\x12S\n\x10\x61ll_updates_rule\x18\x06 \x01(\x0b\x32\x34.google.cloud.billing.budgets.v1beta1.AllUpdatesRuleB\x03\xe0\x41\x01\x12\x11\n\x04\x65tag\x18\x07 \x01(\tB\x03\xe0\x41\x01:]\xea\x41Z\n$billingbudgets.googleapis.com/Budget\x12\x32\x62illingAccounts/{billing_account}/budgets/{budget}"\xa5\x01\n\x0c\x42udgetAmount\x12.\n\x10specified_amount\x18\x01 \x01(\x0b\x32\x12.google.type.MoneyH\x00\x12T\n\x12last_period_amount\x18\x02 \x01(\x0b\x32\x36.google.cloud.billing.budgets.v1beta1.LastPeriodAmountH\x00\x42\x0f\n\rbudget_amount"\x12\n\x10LastPeriodAmount"\xcd\x01\n\rThresholdRule\x12\x1e\n\x11threshold_percent\x18\x01 \x01(\x01\x42\x03\xe0\x41\x02\x12S\n\x0bspend_basis\x18\x02 \x01(\x0e\x32\x39.google.cloud.billing.budgets.v1beta1.ThresholdRule.BasisB\x03\xe0\x41\x01"G\n\x05\x42\x61sis\x12\x15\n\x11\x42\x41SIS_UNSPECIFIED\x10\x00\x12\x11\n\rCURRENT_SPEND\x10\x01\x12\x14\n\x10\x46ORECASTED_SPEND\x10\x02"H\n\x0e\x41llUpdatesRule\x12\x19\n\x0cpubsub_topic\x18\x01 \x01(\tB\x03\xe0\x41\x02\x12\x1b\n\x0eschema_version\x18\x02 \x01(\tB\x03\xe0\x41\x02"\x90\x02\n\x06\x46ilter\x12\x15\n\x08projects\x18\x01 \x03(\tB\x03\xe0\x41\x01\x12\x66\n\x16\x63redit_types_treatment\x18\x04 \x01(\x0e\x32\x41.google.cloud.billing.budgets.v1beta1.Filter.CreditTypesTreatmentB\x03\xe0\x41\x01\x12\x15\n\x08services\x18\x03 \x03(\tB\x03\xe0\x41\x01"p\n\x14\x43reditTypesTreatment\x12&\n"CREDIT_TYPES_TREATMENT_UNSPECIFIED\x10\x00\x12\x17\n\x13INCLUDE_ALL_CREDITS\x10\x01\x12\x17\n\x13\x45XCLUDE_ALL_CREDITS\x10\x02\x42y\n(com.google.cloud.billing.budgets.v1beta1P\x01ZKgoogle.golang.org/genproto/googleapis/cloud/billing/budgets/v1beta1;budgetsb\x06proto3' ), dependencies=[ google_dot_api_dot_field__behavior__pb2.DESCRIPTOR, google_dot_api_dot_resource__pb2.DESCRIPTOR, google_dot_type_dot_money__pb2.DESCRIPTOR, ], ) _THRESHOLDRULE_BASIS = _descriptor.EnumDescriptor( name="Basis", full_name="google.cloud.billing.budgets.v1beta1.ThresholdRule.Basis", filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name="BASIS_UNSPECIFIED", index=0, number=0, serialized_options=None, type=None, ), _descriptor.EnumValueDescriptor( name="CURRENT_SPEND", index=1, number=1, serialized_options=None, type=None ), _descriptor.EnumValueDescriptor( name="FORECASTED_SPEND", index=2, number=2, serialized_options=None, type=None, ), ], containing_type=None, serialized_options=None, serialized_start=992, serialized_end=1063, ) _sym_db.RegisterEnumDescriptor(_THRESHOLDRULE_BASIS) _FILTER_CREDITTYPESTREATMENT = _descriptor.EnumDescriptor( name="CreditTypesTreatment", full_name="google.cloud.billing.budgets.v1beta1.Filter.CreditTypesTreatment", filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name="CREDIT_TYPES_TREATMENT_UNSPECIFIED", index=0, number=0, serialized_options=None, type=None, ), _descriptor.EnumValueDescriptor( name="INCLUDE_ALL_CREDITS", index=1, number=1, serialized_options=None, type=None, ), _descriptor.EnumValueDescriptor( name="EXCLUDE_ALL_CREDITS", index=2, number=2, serialized_options=None, type=None, ), ], containing_type=None, serialized_options=None, serialized_start=1300, serialized_end=1412, ) _sym_db.RegisterEnumDescriptor(_FILTER_CREDITTYPESTREATMENT) _BUDGET = _descriptor.Descriptor( name="Budget", full_name="google.cloud.billing.budgets.v1beta1.Budget", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="name", full_name="google.cloud.billing.budgets.v1beta1.Budget.name", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b("\340A\003"), file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="display_name", full_name="google.cloud.billing.budgets.v1beta1.Budget.display_name", index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="budget_filter", full_name="google.cloud.billing.budgets.v1beta1.Budget.budget_filter", index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b("\340A\001"), file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="amount", full_name="google.cloud.billing.budgets.v1beta1.Budget.amount", index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b("\340A\002"), file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="threshold_rules", full_name="google.cloud.billing.budgets.v1beta1.Budget.threshold_rules", index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b("\340A\002"), file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="all_updates_rule", full_name="google.cloud.billing.budgets.v1beta1.Budget.all_updates_rule", index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b("\340A\001"), file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="etag", full_name="google.cloud.billing.budgets.v1beta1.Budget.etag", index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b("\340A\001"), file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=_b( "\352AZ\n$billingbudgets.googleapis.com/Budget\0222billingAccounts/{billing_account}/budgets/{budget}" ), is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=189, serialized_end=667, ) _BUDGETAMOUNT = _descriptor.Descriptor( name="BudgetAmount", full_name="google.cloud.billing.budgets.v1beta1.BudgetAmount", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="specified_amount", full_name="google.cloud.billing.budgets.v1beta1.BudgetAmount.specified_amount", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="last_period_amount", full_name="google.cloud.billing.budgets.v1beta1.BudgetAmount.last_period_amount", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name="budget_amount", full_name="google.cloud.billing.budgets.v1beta1.BudgetAmount.budget_amount", index=0, containing_type=None, fields=[], ) ], serialized_start=670, serialized_end=835, ) _LASTPERIODAMOUNT = _descriptor.Descriptor( name="LastPeriodAmount", full_name="google.cloud.billing.budgets.v1beta1.LastPeriodAmount", filename=None, file=DESCRIPTOR, containing_type=None, fields=[], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=837, serialized_end=855, ) _THRESHOLDRULE = _descriptor.Descriptor( name="ThresholdRule", full_name="google.cloud.billing.budgets.v1beta1.ThresholdRule", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="threshold_percent", full_name="google.cloud.billing.budgets.v1beta1.ThresholdRule.threshold_percent", index=0, number=1, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b("\340A\002"), file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="spend_basis", full_name="google.cloud.billing.budgets.v1beta1.ThresholdRule.spend_basis", index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b("\340A\001"), file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[_THRESHOLDRULE_BASIS], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=858, serialized_end=1063, ) _ALLUPDATESRULE = _descriptor.Descriptor( name="AllUpdatesRule", full_name="google.cloud.billing.budgets.v1beta1.AllUpdatesRule", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="pubsub_topic", full_name="google.cloud.billing.budgets.v1beta1.AllUpdatesRule.pubsub_topic", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b("\340A\002"), file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="schema_version", full_name="google.cloud.billing.budgets.v1beta1.AllUpdatesRule.schema_version", index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b("\340A\002"), file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1065, serialized_end=1137, ) _FILTER = _descriptor.Descriptor( name="Filter", full_name="google.cloud.billing.budgets.v1beta1.Filter", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="projects", full_name="google.cloud.billing.budgets.v1beta1.Filter.projects", index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b("\340A\001"), file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="credit_types_treatment", full_name="google.cloud.billing.budgets.v1beta1.Filter.credit_types_treatment", index=1, number=4, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b("\340A\001"), file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="services", full_name="google.cloud.billing.budgets.v1beta1.Filter.services", index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b("\340A\001"), file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[_FILTER_CREDITTYPESTREATMENT], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1140, serialized_end=1412, ) _BUDGET.fields_by_name["budget_filter"].message_type = _FILTER _BUDGET.fields_by_name["amount"].message_type = _BUDGETAMOUNT _BUDGET.fields_by_name["threshold_rules"].message_type = _THRESHOLDRULE _BUDGET.fields_by_name["all_updates_rule"].message_type = _ALLUPDATESRULE _BUDGETAMOUNT.fields_by_name[ "specified_amount" ].message_type = google_dot_type_dot_money__pb2._MONEY _BUDGETAMOUNT.fields_by_name["last_period_amount"].message_type = _LASTPERIODAMOUNT _BUDGETAMOUNT.oneofs_by_name["budget_amount"].fields.append( _BUDGETAMOUNT.fields_by_name["specified_amount"] ) _BUDGETAMOUNT.fields_by_name[ "specified_amount" ].containing_oneof = _BUDGETAMOUNT.oneofs_by_name["budget_amount"] _BUDGETAMOUNT.oneofs_by_name["budget_amount"].fields.append( _BUDGETAMOUNT.fields_by_name["last_period_amount"] ) _BUDGETAMOUNT.fields_by_name[ "last_period_amount" ].containing_oneof = _BUDGETAMOUNT.oneofs_by_name["budget_amount"] _THRESHOLDRULE.fields_by_name["spend_basis"].enum_type = _THRESHOLDRULE_BASIS _THRESHOLDRULE_BASIS.containing_type = _THRESHOLDRULE _FILTER.fields_by_name[ "credit_types_treatment" ].enum_type = _FILTER_CREDITTYPESTREATMENT _FILTER_CREDITTYPESTREATMENT.containing_type = _FILTER DESCRIPTOR.message_types_by_name["Budget"] = _BUDGET DESCRIPTOR.message_types_by_name["BudgetAmount"] = _BUDGETAMOUNT DESCRIPTOR.message_types_by_name["LastPeriodAmount"] = _LASTPERIODAMOUNT DESCRIPTOR.message_types_by_name["ThresholdRule"] = _THRESHOLDRULE DESCRIPTOR.message_types_by_name["AllUpdatesRule"] = _ALLUPDATESRULE DESCRIPTOR.message_types_by_name["Filter"] = _FILTER _sym_db.RegisterFileDescriptor(DESCRIPTOR) Budget = _reflection.GeneratedProtocolMessageType( "Budget", (_message.Message,), dict( DESCRIPTOR=_BUDGET, __module__="google.cloud.billing.budgets_v1beta1.proto.budget_model_pb2", __doc__="""A budget is a plan that describes what you expect to spend on Cloud projects, plus the rules to execute as spend is tracked against that plan, (for example, send an alert when 90% of the target spend is met). Currently all plans are monthly budgets so the usage period(s) tracked are implied (calendar months of usage back-to-back). Attributes: name: Output only. Resource name of the budget. The resource name implies the scope of a budget. Values are of the form ``billingAccounts/{billingAccountId}/budgets/{budgetId}``. display_name: User data for display name in UI. Validation: <= 60 chars. budget_filter: Optional. Filters that define which resources are used to compute the actual spend against the budget. amount: Required. Budgeted amount. threshold_rules: Required. Rules that trigger alerts (notifications of thresholds being crossed) when spend exceeds the specified percentages of the budget. all_updates_rule: Optional. Rules to apply to all updates to the actual spend, regardless of the thresholds set in ``threshold_rules``. etag: Optional. Etag to validate that the object is unchanged for a read-modify-write operation. An empty etag will cause an update to overwrite other changes. """, # @@protoc_insertion_point(class_scope:google.cloud.billing.budgets.v1beta1.Budget) ), ) _sym_db.RegisterMessage(Budget) BudgetAmount = _reflection.GeneratedProtocolMessageType( "BudgetAmount", (_message.Message,), dict( DESCRIPTOR=_BUDGETAMOUNT, __module__="google.cloud.billing.budgets_v1beta1.proto.budget_model_pb2", __doc__="""The budgeted amount for each usage period. Attributes: budget_amount: Specification for what amount to use as the budget. specified_amount: A specified amount to use as the budget. ``currency_code`` is optional. If specified, it must match the currency of the billing account. The ``currency_code`` is provided on output. last_period_amount: Use the last period's actual spend as the budget for the present period. """, # @@protoc_insertion_point(class_scope:google.cloud.billing.budgets.v1beta1.BudgetAmount) ), ) _sym_db.RegisterMessage(BudgetAmount) LastPeriodAmount = _reflection.GeneratedProtocolMessageType( "LastPeriodAmount", (_message.Message,), dict( DESCRIPTOR=_LASTPERIODAMOUNT, __module__="google.cloud.billing.budgets_v1beta1.proto.budget_model_pb2", __doc__="""Describes a budget amount targeted to last period's spend. At this time, the amount is automatically 100% of last period's spend; that is, there are no other options yet. Future configuration will be described here (for example, configuring a percentage of last period's spend). """, # @@protoc_insertion_point(class_scope:google.cloud.billing.budgets.v1beta1.LastPeriodAmount) ), ) _sym_db.RegisterMessage(LastPeriodAmount) ThresholdRule = _reflection.GeneratedProtocolMessageType( "ThresholdRule", (_message.Message,), dict( DESCRIPTOR=_THRESHOLDRULE, __module__="google.cloud.billing.budgets_v1beta1.proto.budget_model_pb2", __doc__="""ThresholdRule contains a definition of a threshold which triggers an alert (a notification of a threshold being crossed) to be sent when spend goes above the specified amount. Alerts are automatically e-mailed to users with the Billing Account Administrator role or the Billing Account User role. The thresholds here have no effect on notifications sent to anything configured under ``Budget.all_updates_rule``. Attributes: threshold_percent: Required. Send an alert when this threshold is exceeded. This is a 1.0-based percentage, so 0.5 = 50%. Validation: non- negative number. spend_basis: Optional. The type of basis used to determine if spend has passed the threshold. Behavior defaults to CURRENT\_SPEND if not set. """, # @@protoc_insertion_point(class_scope:google.cloud.billing.budgets.v1beta1.ThresholdRule) ), ) _sym_db.RegisterMessage(ThresholdRule) AllUpdatesRule = _reflection.GeneratedProtocolMessageType( "AllUpdatesRule", (_message.Message,), dict( DESCRIPTOR=_ALLUPDATESRULE, __module__="google.cloud.billing.budgets_v1beta1.proto.budget_model_pb2", __doc__="""AllUpdatesRule defines notifications that are sent on every update to the billing account's spend, regardless of the thresholds defined using threshold rules. Attributes: pubsub_topic: Required. The name of the Cloud Pub/Sub topic where budget related messages will be published, in the form ``projects/{project_id}/topics/{topic_id}``. Updates are sent at regular intervals to the topic. The topic needs to be created before the budget is created; see https://cloud.google.com/billing/docs/how-to/budgets#manage- notifications for more details. Caller is expected to have ``pubsub.topics.setIamPolicy`` permission on the topic when it's set for a budget, otherwise, the API call will fail with PERMISSION\_DENIED. See https://cloud.google.com/pubsub/docs/access-control for more details on Pub/Sub roles and permissions. schema_version: Required. The schema version of the notification. Only "1.0" is accepted. It represents the JSON schema as defined in https://cloud.google.com/billing/docs/how- to/budgets#notification\_format """, # @@protoc_insertion_point(class_scope:google.cloud.billing.budgets.v1beta1.AllUpdatesRule) ), ) _sym_db.RegisterMessage(AllUpdatesRule) Filter = _reflection.GeneratedProtocolMessageType( "Filter", (_message.Message,), dict( DESCRIPTOR=_FILTER, __module__="google.cloud.billing.budgets_v1beta1.proto.budget_model_pb2", __doc__="""A filter for a budget, limiting the scope of the cost to calculate. Attributes: projects: Optional. A set of projects of the form ``projects/{project_id}``, specifying that usage from only this set of projects should be included in the budget. If omitted, the report will include all usage for the billing account, regardless of which project the usage occurred on. Only zero or one project can be specified currently. credit_types_treatment: Optional. If not set, default behavior is ``INCLUDE_ALL_CREDITS``. services: Optional. A set of services of the form ``services/{service_id}``, specifying that usage from only this set of services should be included in the budget. If omitted, the report will include usage for all the services. The service names are available through the Catalog API: https://cloud.google.com/billing/v1/how-tos/catalog-api. """, # @@protoc_insertion_point(class_scope:google.cloud.billing.budgets.v1beta1.Filter) ), ) _sym_db.RegisterMessage(Filter) DESCRIPTOR._options = None _BUDGET.fields_by_name["name"]._options = None _BUDGET.fields_by_name["budget_filter"]._options = None _BUDGET.fields_by_name["amount"]._options = None _BUDGET.fields_by_name["threshold_rules"]._options = None _BUDGET.fields_by_name["all_updates_rule"]._options = None _BUDGET.fields_by_name["etag"]._options = None _BUDGET._options = None _THRESHOLDRULE.fields_by_name["threshold_percent"]._options = None _THRESHOLDRULE.fields_by_name["spend_basis"]._options = None _ALLUPDATESRULE.fields_by_name["pubsub_topic"]._options = None _ALLUPDATESRULE.fields_by_name["schema_version"]._options = None _FILTER.fields_by_name["projects"]._options = None _FILTER.fields_by_name["credit_types_treatment"]._options = None _FILTER.fields_by_name["services"]._options = None # @@protoc_insertion_point(module_scope)
# ABC167B - Easy Linear Programming def main(): # input A, B, C, K = map(int, input().split()) # compute kotae = A+(K-A)*0-(K-A-B) # output print(kotae) if __name__ == '__main__': main()
import re import asyncio import sys import os from pyrogram.types import InlineKeyboardMarkup, InlineKeyboardButton from utils import * from instaloader import Profile from pyrogram import Client, filters from config import Config chat_idd = int(Config.chat_idd) USER = Config.USER OWNER = Config.OWNER HOME_TEXT = Config.HOME_TEXT HOME_TEXT_OWNER = Config.HOME_TEXT_OWNER HELP = Config.HELP session = f"./{USER}" STATUS = Config.STATUS insta = Config.L buttons = InlineKeyboardMarkup( [ [ InlineKeyboardButton("👨🏼‍💻Developer", url='https://t.me/Shnider_Bots'), InlineKeyboardButton("🤖Other Bots", url="https://t.me/Shnider_Bots"), ], [ InlineKeyboardButton("🔗Source Code", url="https://t.me/Shnider_Bots"), InlineKeyboardButton("🧩Deploy Own Bot", url="https://t.me/Shnider_Bots") ], [ InlineKeyboardButton("👨🏼‍🦯How To Use?", callback_data="help#subin"), InlineKeyboardButton("⚙️Update Channel", url="https://t.me/Shnider_Bots") ] ] ) @Client.on_message(filters.command("start") & filters.private) async def account(bot, message): if str(message.from_user.id) != OWNER: await message.reply_text( HOME_TEXT.format(message.from_user.first_name, message.from_user.id, USER, USER, USER, int(OWNER)), disable_web_page_preview=True, reply_markup=InlineKeyboardMarkup( [ [ InlineKeyboardButton("👨🏼‍💻Developer", url='https://t.me/Shnider_Bots'), InlineKeyboardButton("🤖Other Bots", url="https://t.me/Shnider_Bots"), ], [ InlineKeyboardButton("🔗Source Code", url="https://t.me/Shnider_Bots"), InlineKeyboardButton("🧩Deploy Own Bot", url="https://t.me/Shnider_Bots") ], [ InlineKeyboardButton("👨🏼‍🦯How To Use?", callback_data="help#subin"), InlineKeyboardButton("⚙️Update Channel", url="https://t.me/Shnider_Bots") ] ] ) ) return if 1 in STATUS: m = await message.reply_text("Getting Your data") try: profile = Profile.own_profile(insta.context) mediacount = profile.mediacount name = profile.full_name bio = profile.biography profilepic = profile.profile_pic_url username = profile.username igtvcount = profile.igtvcount followers = profile.followers following = profile.followees reply_markup = InlineKeyboardMarkup( [ [ InlineKeyboardButton("تحميل المنشورات المحفوضة 📥 ", callback_data=f"saved#{username}") ], [ InlineKeyboardButton(" ", callback_data="0") ], ] ) await m.delete() await bot.send_photo( chat_id=message.from_user.id, photo=profilepic, caption=f"🏷 **Name**: {name}\n🔖 **Username**: {profile.username}\n📝**Bio**: {bio}\n📍 **Account Type**: {acc_type(profile.is_private)}\n🏭 **Is Business Account?**: {yes_or_no(profile.is_business_account)}\n👥 **Total Followers**: {followers}\n👥 **Total Following**: {following}\n📸 **Total Posts**: {mediacount}\n📺 **IGTV Videos**: {igtvcount}", reply_markup=reply_markup ) except Exception as e: await m.edit(e) else: await message.reply_text("You must login first by /login") @Client.on_message(filters.command("saved") & filters.private) async def saved(bot, message): if str(message.from_user.id) != OWNER: await message.reply_text( HOME_TEXT.format(message.from_user.first_name, message.from_user.id, USER, USER, USER, OWNER), reply_markup=buttons, disable_web_page_preview=True ) return text = message.text username = USER if 1 not in STATUS: await message.reply_text("يجب عليك تسجيل الدخول أولا / تسجيل الدخول") return count = None if " " in text: cmd, count = text.split(' ') m = await message.reply_text(f"جاري تنزيل المحفوضات 🔃 .") chat_id = message.from_user.id dir = f"{chat_id}/{username}" await m.edit("بدء التنزيل ..\nقد يستغرق هذا وقتًا أطول اعتمادًا على عدد المنشورات ✅✅ .") if count: command = [ "instaloader", "--no-metadata-json", "--no-compress-json", "--no-profile-pic", "--no-posts", "--no-captions", "--no-video-thumbnails", "--login", USER, "-f", session, "--dirname-pattern", dir, ":saved", "--count", count ] else: command = [ "instaloader", "--no-metadata-json", "--no-compress-json", "--no-profile-pic", "--no-posts", "--no-captions", "--no-video-thumbnails", "--login", USER, "-f", session, "--dirname-pattern", dir, ":saved" ] await download_insta(command, m, dir) await upload(m, bot, chat_id, chat_idd, dir) @Client.on_message(filters.command("help") & filters.private) async def help(bot, cmd): await cmd.reply_text( HELP, disable_web_page_preview=True, reply_markup=InlineKeyboardMarkup( [ [ InlineKeyboardButton("👨🏼‍💻Developer", url='https://t.me/Shnider_Bots'), InlineKeyboardButton("🤖Other Bots", url="https://t.me/Shnider_Bots") ], [ InlineKeyboardButton("⚙️Update Channel", url="https://t.me/Shnider_Bots") ] ] ) ) @Client.on_message(filters.command("restart") & filters.private) async def stop(bot, cmd): if str(cmd.from_user.id) != OWNER: await cmd.reply_text( HOME_TEXT.format(cmd.from_user.first_name, cmd.from_user.id, USER, USER, USER, OWNER), disable_web_page_preview=True, reply_markup=InlineKeyboardMarkup( [ [ InlineKeyboardButton("👨🏼‍💻Developer", url='https://t.me/Shnider_Bots'), InlineKeyboardButton("🤖Other Bots", url="https://t.me/Shnider_Bots") ], [ InlineKeyboardButton("⚙️Update Channel", url="https://t.me/Shnider_Bots") ] ] ) ) return msg = await bot.send_message( text="Restarting your bot..", chat_id=cmd.from_user.id ) await asyncio.sleep(2) await msg.edit("All Processes Stopped and Restarted") os.execl(sys.executable, sys.executable, *sys.argv) @Client.on_message(filters.text & filters.private & filters.incoming) async def start(bot, cmd): text = cmd.text if text == "المطور" and str(cmd.from_user.id) != OWNER: await cmd.reply_text( HOME_TEXT.format(cmd.from_user.first_name, cmd.from_user.id, USER, USER, USER, OWNER), disable_web_page_preview=True, reply_markup=InlineKeyboardMarkup( [ [ InlineKeyboardButton("👨🏼‍💻Developer", url='https://t.me/Shnider_Bots'), InlineKeyboardButton("🤖Other Bots", url="https://t.me/Shnider_Bots") ], [ InlineKeyboardButton("⚙️Update Channel", url="https://t.me/Shnider_Bots") ] ] ) )
# 查票类,目的是将查到的票输出到文件,让用户选票 import json import re import requests from requests.packages.urllib3.exceptions import InsecureRequestWarning # 忽略 Warning 用 requests.packages.urllib3.disable_warnings(InsecureRequestWarning) # 忽略 Warning 用 class Crawl: def __init__(self, departure_date, from_station_chs, to_station_chs): """此处为整个查询系统需要用到的属性""" self.__departure_date = departure_date # 出发日期 self.__from_station_CHS = from_station_chs # 出发地的火车站 self.__to_station_CHS = to_station_chs # 目的地火车站 # 读取当前目录下的城市字典 CityCode.txt with open('CityCode1.txt', 'r', encoding='gb18030') as city_code: self.__city = city_code.read() self.__from_station = re.findall(self.__from_station_CHS + '\|(.+)', self.__city)[0] # 将出发地改为相应的城市代码 self.__to_station = re.findall(self.__to_station_CHS + '\|(.+)', self.__city)[0] # 将目的地地改为相应的城市代码 def getTicketsList(self, js): """格式化列车的信息""" print('正在获取今日车次信息列表') today_list = [] # 用来保存获取到的火车票信息字典 i = 0 # 火车票的序号,方便选择车次 for item in js['data']['result']: ticket = item.split('|')[1:] # 以字符 | 分割字符串,得到火车票的信息列表 if ticket[0] != '预订': continue # 此处防止备注栏不是'预订',目的是使序号与 12306buyer 中的余票 ticket_list = { '序号': str(i), '车次': ticket[2], '车次状态': ticket[0], '列车始发地': re.findall('(.*?)\|' + ticket[3], self.__city)[0], # 将获取的始发站的代码转换成中文城市 '列车终点站': re.findall('(.*?)\|' + ticket[4], self.__city)[0], # 同上 '出发时间': ticket[7], '到达时间': ticket[8], '时间花费': ticket[9], '商务座': ticket[-3], '特等座': ticket[-10], '一等座': ticket[-4], '二等座': ticket[-5], '高级卧铺': ticket[-14], '软卧': ticket[-12], '硬卧': ticket[-7], '软座': ticket[-11], '硬座': ticket[-6], '无座': ticket[-9], '其他': ticket[-8] } # 构造火车票的信息字典,方便写入文件 today_list.append(ticket_list) # 将火车票的信息字典添加到一个数组中,方便整体输出 i += 1 return today_list @staticmethod # 由于并没有用到此类本身的属性,故函数需要 static def storeText(today_list): """将当前得到的火车票信息字典写入文件""" with open('choice.txt', 'w') as out_file: for tic in today_list: for t in tic.keys(): out_file.write(t + ' : ' + tic[t] + '\n') out_file.write('\n') def getTicketsJson(self): """获取 departure_date 在 12306 网站的 json 数据""" url = 'https://kyfw.12306.cn/otn/leftTicket/query?leftTicketDTO.train_date=' + self.__departure_date + '&le' + \ 'ftTicketDTO.from_station=' + self.__from_station + '&leftTicketDTO.to_station=' + self.__to_station + \ '&purpose_codes=ADULT' # 构建 url html = requests.get(url, verify=False).text # 取得 12306 在 departure_date 日期的车次信息 return json.loads(html) # 用 json 库解析 json 数据 def getData(self): """对于今日余票列表的获取函数""" js = self.getTicketsJson() # 接受从 getTicketJson 函数返回的 json 对象 today_list = self.getTicketsList(js) # 获取 getTicketsList 函数返回的 今日车次信息 self.storeText(today_list) # 调用储存函数 return today_list def getSpecificTicket(self): """对于抢票脚本专门设计的函数,用来获取专门的车次信息从而提高效率""" pass if __name__ == '__main__': Crawl('2017-05-28', '出发地', '目的地').getData()
# -*- coding: utf-8 -*- # # Copyright (C) 2012-2013 Ben Kurtovic <ben.kurtovic@gmail.com> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import unicode_literals from . import tokens from ..compat import str from ..nodes import (Argument, Comment, ExternalLink, Heading, HTMLEntity, Tag, Template, Text, Wikilink) from ..nodes.extras import Attribute, Parameter from ..smart_list import SmartList from ..wikicode import Wikicode __all__ = ["Builder"] class Builder(object): """Combines a sequence of tokens into a tree of ``Wikicode`` objects. To use, pass a list of :py:class:`~.Token`\ s to the :py:meth:`build` method. The list will be exhausted as it is parsed and a :py:class:`~.Wikicode` object will be returned. """ def __init__(self): self._tokens = [] self._stacks = [] def _wrap(self, nodes): """Properly wrap a list of nodes in a ``Wikicode`` object.""" return Wikicode(SmartList(nodes)) def _push(self): """Push a new node list onto the stack.""" self._stacks.append([]) def _pop(self, wrap=True): """Pop the current node list off of the stack. If *wrap* is ``True``, we will call :py:meth:`_wrap` on the list. """ if wrap: return self._wrap(self._stacks.pop()) return self._stacks.pop() def _write(self, item): """Append a node to the current node list.""" self._stacks[-1].append(item) def _handle_parameter(self, default): """Handle a case where a parameter is at the head of the tokens. *default* is the value to use if no parameter name is defined. """ key = None showkey = False self._push() while self._tokens: token = self._tokens.pop() if isinstance(token, tokens.TemplateParamEquals): key = self._pop() showkey = True self._push() elif isinstance(token, (tokens.TemplateParamSeparator, tokens.TemplateClose)): self._tokens.append(token) value = self._pop() if key is None: key = self._wrap([Text(str(default))]) return Parameter(key, value, showkey) else: self._write(self._handle_token(token)) def _handle_template(self): """Handle a case where a template is at the head of the tokens.""" params = [] default = 1 self._push() while self._tokens: token = self._tokens.pop() if isinstance(token, tokens.TemplateParamSeparator): if not params: name = self._pop() param = self._handle_parameter(default) params.append(param) if not param.showkey: default += 1 elif isinstance(token, tokens.TemplateClose): if not params: name = self._pop() return Template(name, params) else: self._write(self._handle_token(token)) def _handle_argument(self): """Handle a case where an argument is at the head of the tokens.""" name = None self._push() while self._tokens: token = self._tokens.pop() if isinstance(token, tokens.ArgumentSeparator): name = self._pop() self._push() elif isinstance(token, tokens.ArgumentClose): if name is not None: return Argument(name, self._pop()) return Argument(self._pop()) else: self._write(self._handle_token(token)) def _handle_wikilink(self): """Handle a case where a wikilink is at the head of the tokens.""" title = None self._push() while self._tokens: token = self._tokens.pop() if isinstance(token, tokens.WikilinkSeparator): title = self._pop() self._push() elif isinstance(token, tokens.WikilinkClose): if title is not None: return Wikilink(title, self._pop()) return Wikilink(self._pop()) else: self._write(self._handle_token(token)) def _handle_external_link(self, token): """Handle when an external link is at the head of the tokens.""" brackets, url = token.brackets, None self._push() while self._tokens: token = self._tokens.pop() if isinstance(token, tokens.ExternalLinkSeparator): url = self._pop() self._push() elif isinstance(token, tokens.ExternalLinkClose): if url is not None: return ExternalLink(url, self._pop(), brackets) return ExternalLink(self._pop(), brackets=brackets) else: self._write(self._handle_token(token)) def _handle_entity(self): """Handle a case where an HTML entity is at the head of the tokens.""" token = self._tokens.pop() if isinstance(token, tokens.HTMLEntityNumeric): token = self._tokens.pop() if isinstance(token, tokens.HTMLEntityHex): text = self._tokens.pop() self._tokens.pop() # Remove HTMLEntityEnd return HTMLEntity(text.text, named=False, hexadecimal=True, hex_char=token.char) self._tokens.pop() # Remove HTMLEntityEnd return HTMLEntity(token.text, named=False, hexadecimal=False) self._tokens.pop() # Remove HTMLEntityEnd return HTMLEntity(token.text, named=True, hexadecimal=False) def _handle_heading(self, token): """Handle a case where a heading is at the head of the tokens.""" level = token.level self._push() while self._tokens: token = self._tokens.pop() if isinstance(token, tokens.HeadingEnd): title = self._pop() return Heading(title, level) else: self._write(self._handle_token(token)) def _handle_comment(self): """Handle a case where an HTML comment is at the head of the tokens.""" self._push() while self._tokens: token = self._tokens.pop() if isinstance(token, tokens.CommentEnd): contents = self._pop() return Comment(contents) else: self._write(self._handle_token(token)) def _handle_attribute(self, start): """Handle a case where a tag attribute is at the head of the tokens.""" name, quoted = None, False self._push() while self._tokens: token = self._tokens.pop() if isinstance(token, tokens.TagAttrEquals): name = self._pop() self._push() elif isinstance(token, tokens.TagAttrQuote): quoted = True elif isinstance(token, (tokens.TagAttrStart, tokens.TagCloseOpen, tokens.TagCloseSelfclose)): self._tokens.append(token) if name: value = self._pop() else: name, value = self._pop(), None return Attribute(name, value, quoted, start.pad_first, start.pad_before_eq, start.pad_after_eq) else: self._write(self._handle_token(token)) def _handle_tag(self, token): """Handle a case where a tag is at the head of the tokens.""" close_tokens = (tokens.TagCloseSelfclose, tokens.TagCloseClose) implicit, attrs, contents, closing_tag = False, [], None, None wiki_markup, invalid = token.wiki_markup, token.invalid or False self._push() while self._tokens: token = self._tokens.pop() if isinstance(token, tokens.TagAttrStart): attrs.append(self._handle_attribute(token)) elif isinstance(token, tokens.TagCloseOpen): padding = token.padding or "" tag = self._pop() self._push() elif isinstance(token, tokens.TagOpenClose): contents = self._pop() self._push() elif isinstance(token, close_tokens): if isinstance(token, tokens.TagCloseSelfclose): tag = self._pop() self_closing = True padding = token.padding or "" implicit = token.implicit or False else: self_closing = False closing_tag = self._pop() return Tag(tag, contents, attrs, wiki_markup, self_closing, invalid, implicit, padding, closing_tag) else: self._write(self._handle_token(token)) def _handle_token(self, token): """Handle a single token.""" if isinstance(token, tokens.Text): return Text(token.text) elif isinstance(token, tokens.TemplateOpen): return self._handle_template() elif isinstance(token, tokens.ArgumentOpen): return self._handle_argument() elif isinstance(token, tokens.WikilinkOpen): return self._handle_wikilink() elif isinstance(token, tokens.ExternalLinkOpen): return self._handle_external_link(token) elif isinstance(token, tokens.HTMLEntityStart): return self._handle_entity() elif isinstance(token, tokens.HeadingStart): return self._handle_heading(token) elif isinstance(token, tokens.CommentStart): return self._handle_comment() elif isinstance(token, tokens.TagOpenOpen): return self._handle_tag(token) def build(self, tokenlist): """Build a Wikicode object from a list tokens and return it.""" self._tokens = tokenlist self._tokens.reverse() self._push() while self._tokens: node = self._handle_token(self._tokens.pop()) self._write(node) return self._pop()
from datetime import datetime from unittest.mock import patch import pytz from django.core.management import call_command from django.test import TestCase from registrations.models import JembiSubmission class JembiSubmitEventsTests(TestCase): @patch("registrations.management.commands.jembi_submit_events.push_to_jembi_api") def test_since_filter(self, task): """ Should not submit any events before the "since" date """ s = JembiSubmission.objects.create(request_data={}) s.timestamp = datetime(2016, 1, 1, tzinfo=pytz.UTC) s.save() call_command( "jembi_submit_events", since=datetime(2016, 1, 2), submit=True, all=True ) task.delay.assert_not_called() @patch("registrations.management.commands.jembi_submit_events.push_to_jembi_api") def test_until_filter(self, task): """ Should not submit any events after the "until" date """ s = JembiSubmission.objects.create(request_data={}) s.timestamp = datetime(2016, 1, 2, tzinfo=pytz.UTC) s.save() call_command( "jembi_submit_events", until=datetime(2016, 1, 1), submit=True, all=True ) task.delay.assert_not_called() @patch("registrations.management.commands.jembi_submit_events.push_to_jembi_api") def test_all_filter(self, task): """ Should not submit already submitted events if "--all" is not specified """ JembiSubmission.objects.create(request_data={}, submitted=True) call_command("jembi_submit_events", submit=True, all=False) task.delay.assert_not_called() @patch("registrations.management.commands.jembi_submit_events.push_to_jembi_api") def test_submit_filter(self, task): """ If submit isn't specified, then we should not submit the events """ JembiSubmission.objects.create(request_data={}) call_command("jembi_submit_events") task.delay.assert_not_called() @patch("registrations.management.commands.jembi_submit_events.push_to_jembi_api") def test_submit_event(self, task): """ If the event should be submitted, then we should submit it """ s = JembiSubmission.objects.create(path="test", request_data={"test": "data"}) call_command("jembi_submit_events", submit=True) task.delay.assert_called_once_with((s.id, "test", {"test": "data"}))
from __future__ import print_function, absolute_import from .image import ImageSoftmaxEngine, ImageTripletEngine from .image import ImageTripletEngine_DG, ImageQAConvEngine from .video import VideoSoftmaxEngine, VideoTripletEngine from .engine import Engine
################################################################################ # # This file implements the interface of different kinds of # data modules. # # Author(s): Nik Vaessen ################################################################################ from abc import abstractmethod, ABCMeta from typing import List from pytorch_lightning import LightningDataModule from src.evaluation.speaker.evaluation import EvaluationPair ################################################################################ # implement a data module for speaker recognition data class SpeakerLightningDataModule(LightningDataModule): @property @abstractmethod def num_speakers(self) -> int: pass @property @abstractmethod def val_pairs(self) -> List[EvaluationPair]: pass @property @abstractmethod def test_pairs(self) -> List[EvaluationPair]: pass @property @abstractmethod def test_names(self) -> List[str]: pass
''' Created on 15 Sep 2017 @author: gavin ''' from .basehandler import TcpHandler class netbios(TcpHandler): NAME = "NetBIOS Session" DESCRIPTION = '''Responds to NetBIOS session requests. To be used along side SMB handler.''' CONFIG = {} def __init__(self, *args): ''' Constructor ''' TcpHandler.__init__(self, *args) def base_handle(self): data = self.handle_request() if data[0] == "\x81": self.send_response(b"\x82\x00\x00\x00")
# Generated by Django 3.2.5 on 2021-08-14 10:16 from django.db import migrations, models import django.db.models.deletion import modelcluster.fields import wagtail.contrib.routable_page.models import wagtail.core.fields class Migration(migrations.Migration): initial = True dependencies = [ ('blog', '0001_app_separation'), ('wagtailimages', '0023_add_choose_permissions'), ('wagtailcore', '0062_comment_models_and_pagesubscription'), ] operations = [ migrations.CreateModel( name='HomePage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.page')), ('banner_title', models.CharField(max_length=100, null=True)), ('banner_subtitle', wagtail.core.fields.RichTextField()), ('banner_cta_link_url', models.URLField(blank=True, help_text="Leave empty if link leads to one of this site's pages.", max_length=500)), ('banner_cta_text', models.TextField()), ('banner_cta_link_page', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailcore.page')), ('banner_image', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.image')), ], options={ 'verbose_name': 'Home Page', 'verbose_name_plural': 'Home Pages', }, bases=(wagtail.contrib.routable_page.models.RoutablePageMixin, 'wagtailcore.page'), ), migrations.CreateModel( name='AlbumItems', fields=[ ('sort_order', models.IntegerField(blank=True, editable=False, null=True)), ('linked_page', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, primary_key=True, serialize=False, to='blog.gameblogpage')), ('image', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.image')), ('root_page', modelcluster.fields.ParentalKey(on_delete=django.db.models.deletion.CASCADE, related_name='album_images', to='home.homepage')), ], options={ 'ordering': ['sort_order'], 'abstract': False, }, ), ]
# Copyright © 2021 Dar Gilboa, Ari Pakman and Thibault Vatter # This file is part of the mdma library and licensed under the terms of the MIT license. # For a copy, see the LICENSE file in the root directory. from mdma import fit import torch as t import numpy as np from experiments.UCI.gas import GAS from experiments.UCI.hepmass import HEPMASS from experiments.UCI.miniboone import MINIBOONE from experiments.UCI.power import POWER def fit_uci(): h = fit.get_default_h() data = load_dataset(h) outs = fit.fit_mdma(h, data) def load_dataset(h): if h.dataset == 'gas': dataset = GAS(h.data_dir + '/gas/ethylene_CO.pickle') elif h.dataset == 'hepmass': dataset = HEPMASS(h.data_dir + '/hepmass') elif h.dataset == 'miniboone': dataset = MINIBOONE(h.data_dir + '/miniboone/data.npy') elif h.dataset == 'power': dataset = POWER(h.data_dir + '/power/data.npy') else: raise RuntimeError() if h.missing_data_pct > 0: # create missing data masks mask = np.random.rand(*dataset.trn.x.shape) > h.missing_data_pct data_and_mask = np.array([dataset.trn.x, mask]).swapaxes(0, 1) dataset_train = t.utils.data.TensorDataset(t.tensor(data_and_mask).float()) val_mask = np.random.rand(*dataset.val.x.shape) > h.missing_data_pct val_data_and_mask = np.array([dataset.val.x, val_mask]).swapaxes(0, 1) dataset_valid = t.utils.data.TensorDataset( t.tensor(val_data_and_mask).float()) else: dataset_train = t.utils.data.TensorDataset( t.tensor(np.expand_dims(dataset.trn.x, 1)).float()) dataset_valid = t.utils.data.TensorDataset( t.tensor(np.expand_dims(dataset.val.x, 1)).float()) data_loader_train = t.utils.data.DataLoader(dataset_train, batch_size=h.batch_size, shuffle=True) data_loader_valid = t.utils.data.DataLoader(dataset_valid, batch_size=h.batch_size, shuffle=False) dataset_test = t.utils.data.TensorDataset(t.tensor(dataset.tst.x).float()) data_loader_test = t.utils.data.DataLoader(dataset_test, batch_size=h.batch_size, shuffle=False) h.d = dataset.n_dims h.M = len(dataset_train) h.M_val = len(dataset_valid) return [data_loader_train, data_loader_valid, data_loader_test] if __name__ == '__main__': fit_uci()
import argparse from io import StringIO import os from pathlib import Path import time import gym import matplotlib.pyplot as plt import numpy as np import pandas as pd from utils.annealing import Step, TReciprocal, ExponentialDecay from utils.logger import Logger from utils.path import get_run_path from utils.visualisation import Dashboard from agent import CartPoleAgent parser = argparse.ArgumentParser(description='Train a Q-Learning agent on the CartPole problem.') parser.add_argument('--n-episodes', type=int, default=100, help='the number of episodes to run.') parser.add_argument('--checkpoint-rate', type=int, default=500, help='how often the logs and model should be checkpointed (in episodes). \ Set to -1 to disable checkpoints') parser.add_argument('--render', action='store_true', help='flag to indicate the training should be rendered.') parser.add_argument('--live-plot', action='store_true', help='flag to indicate the training data should be plotted in real-time.') parser.add_argument('--no-plot', action='store_true', help='flag to indicate the no plot should be shown.') parser.add_argument('--plot-update-rate', type=int, default=100, help='how often the live-plot should be updated.') parser.add_argument('--log-verbosity', type=int, default=Logger.Verbosity.MINIMAL, choices=Logger.Verbosity.ALL, help='the verbosity level of the logger.') parser.add_argument('--model-name', type=str, default='RoleyPoley', help='the name of the model. Used as the filename when saving the model.') parser.add_argument('--model-path', type=str, help='the path to a previous model. If this is set the designated model will be used for training.') args = parser.parse_args() if args.no_plot: args.live_plot = False if not args.no_plot: dashboard = Dashboard(ema_alpha=1e-2, real_time=args.live_plot) # Setup logger logger = Logger(verbosity=args.log_verbosity, filename_prefix=args.model_name) logger.log('episode_info', 'episode,timesteps') logger.log('learning_rate', 'learning_rate') logger.log('exploration_rate', 'exploration_rate') # Load OpenAI Gym and agent. env = gym.make('CartPole-v0') model_filename = args.model_name + '.q' checkpoint_filename_format = args.model_name + '-checkpoint-{:03d}.q' if args.model_path: agent = CartPoleAgent.load(args.model_path) args.model_name = Path(args.model_path).name agent.model_path = get_run_path(prefix='data/') else: agent = CartPoleAgent(env.action_space, env.observation_space, n_buckets=6, learning_rate=1, learning_rate_annealing=ExponentialDecay(k=1e-3), exploration_rate=1, exploration_rate_annealing=Step(k=2e-2, step_after=100), discount_factor=0.9, input_mask=[0, 1, 1, 1]) start = time.time() for i_episode in range(args.n_episodes): # per episode setup observation = env.reset() prev_observation = [] prev_action = 0 episode_start = time.time() # logging episode = '[Episode {}]'.format(i_episode) logger.log('observations', episode) logger.log('rewards', episode) logger.log('actions', episode) if agent.learning_rate_annealing: logger.log('learning_rate', agent.learning_rate_annealing(agent.learning_rate, i_episode)) else: logger.log('learning_rate', agent.learning_rate) if agent.exploration_rate_annealing: logger.log('exploration_rate', agent.exploration_rate_annealing(agent.exploration_rate, i_episode)) else: logger.log('exploration_rate', agent.exploration_rate) # checkpointing if i_episode % args.checkpoint_rate == 0: checkpoint = i_episode // args.checkpoint_rate logger.print('Checkpoint #{}'.format(checkpoint)) logger.print('Total elapsed time: {:02.4f}s'.format(time.time() - start)) agent.save(checkpoint_filename_format.format(checkpoint)) if not args.live_plot: logger.write(mode='a') logger.clear() else: logger.write(mode='w') if args.live_plot and i_episode == 1: dashboard.warmup(logger, agent.q_table) if args.live_plot and (i_episode > 0 and i_episode % args.plot_update_rate == 0): dashboard.draw(logger, agent.q_table) cumulative_reward = 0 for t in range(200): action = agent.get_action(observation, i_episode) logger.print('Observation:\n{}\nAction:\n{}\n'.format(observation, action), Logger.Verbosity.FULL) prev_observation = observation prev_action = action observation, reward, done, info = env.step(action) cumulative_reward += reward logger.print('Reward for last observation: {}'.format(cumulative_reward), Logger.Verbosity.FULL) agent.update(prev_observation, prev_action, cumulative_reward, observation, i_episode) logger.log('observations', observation) logger.log('rewards', reward) logger.log('actions', action) if args.render: env.render() if done: msg = "Episode {:02d} finished after {:02d} timesteps in {:02.4f}s".format(i_episode, t + 1, time.time() - episode_start) logger.log('episode_info', '{:02d}, {:02d}'.format(i_episode, t + 1)) logger.print(msg, Logger.Verbosity.MINIMAL) break env.close() logger.write(mode='w' if args.live_plot else 'a') agent.save(model_filename) if args.live_plot or not args.no_plot: if args.live_plot: dashboard.draw(logger, agent.q_table) else: dashboard.warmup(logger, agent.q_table) dashboard.keep_on_screen() dashboard.close()
import locale import warnings from django.test import TestCase from django_celery_beat.models import DAYS import snitch from snitch.models import Event from snitch.schedules.models import Schedule from snitch.schedules.tasks import clean_scheduled_tasks, execute_schedule_task from tests.app.events import ( ACTIVATED_EVENT, CONFIRMED_EVENT, DUMMY_EVENT, EVERY_HOUR, SMALL_EVENT, ActivatedHandler, ConfirmedHandler, DummyHandler, ) from tests.app.factories import ( ActorFactory, OtherStuffFactory, StuffFactory, TargetFactory, TriggerFactory, ) from tests.app.helpers import dispatch_dummy_event, dispatch_explicit_dummy_event from tests.app.models import Notification from tests.factories import UserFactory class SnitchTestCase(TestCase): def test_swappable_notification_model(self): notification_model_class = snitch.get_notification_model() self.assertTrue(issubclass(notification_model_class, Notification)) def test_register_event(self): # This test assume that there is an events.py file in the testing app self.assertIn(ACTIVATED_EVENT, snitch.manager._verbs) self.assertIn(ACTIVATED_EVENT, snitch.manager._registry) self.assertTrue( issubclass(snitch.manager._registry[ACTIVATED_EVENT], snitch.EventHandler) ) def test_dispatch_event(self): self.assertEqual(0, Event.objects.filter(verb=ACTIVATED_EVENT).count()) stuff = StuffFactory() stuff.activate() self.assertEqual(1, Event.objects.filter(verb=ACTIVATED_EVENT).count()) event = Event.objects.filter(verb=ACTIVATED_EVENT).first() self.assertTrue(isinstance(event.handler(), ActivatedHandler)) handler = event.handler() self.assertEqual(ActivatedHandler.title, handler.get_title()) def test_dispatch_event_with_backends(self): users = UserFactory.create_batch(size=5) self.assertEqual(0, Event.objects.filter(verb=CONFIRMED_EVENT).count()) stuff = StuffFactory() stuff.confirm() self.assertEqual(1, Event.objects.filter(verb=CONFIRMED_EVENT).count()) event = Event.objects.filter(verb=CONFIRMED_EVENT).first() self.assertTrue(isinstance(event.handler(), ConfirmedHandler)) handler = event.handler() self.assertEqual(ConfirmedHandler.title, handler.get_title()) self.assertTrue(event.notified) self.assertEqual(len(users), Notification.objects.all().count()) notification_handler = Notification.objects.first().handler() self.assertIsNotNone(notification_handler.notification) def test_dispatch_event_from_function(self): self.assertEqual(0, Event.objects.filter(verb=DUMMY_EVENT).count()) dispatch_dummy_event( actor=ActorFactory(), target=TargetFactory(), trigger=TriggerFactory() ) self.assertEqual(1, Event.objects.filter(verb=DUMMY_EVENT).count()) event = Event.objects.filter(verb=DUMMY_EVENT).first() self.assertTrue(isinstance(event.handler(), DummyHandler)) self.assertIsNotNone(event.target) self.assertIsNotNone(event.trigger) def test_dispatch_event_from_function_explicit(self): self.assertEqual(0, Event.objects.filter(verb=DUMMY_EVENT).count()) dispatch_explicit_dummy_event( actor=ActorFactory(), target=TargetFactory(), trigger=TriggerFactory() ) self.assertEqual(1, Event.objects.filter(verb=DUMMY_EVENT).count()) event = Event.objects.filter(verb=DUMMY_EVENT).first() self.assertTrue(isinstance(event.handler(), DummyHandler)) self.assertIsNotNone(event.target) self.assertIsNotNone(event.trigger) def test_dispatch_event_from_function_bad_attributes(self): self.assertEqual(0, Event.objects.filter(verb=DUMMY_EVENT).count()) dispatch_dummy_event(ActorFactory(), TargetFactory(), TriggerFactory()) self.assertEqual(0, Event.objects.filter(verb=DUMMY_EVENT).count()) def test_create_other_stuff(self): schedules = Schedule.objects.all().count() self.assertEqual(0, schedules) OtherStuffFactory() self.assertEqual(1, Schedule.objects.filter(verb=DUMMY_EVENT).count()) self.assertTrue(Schedule.objects.filter(verb=DUMMY_EVENT).exists()) schedule = Schedule.objects.filter(verb=DUMMY_EVENT).first() self.assertEqual(DAYS, schedule.period) self.assertEqual(2, schedule.every) self.assertEqual(1, schedule.limit) def test_create_other_stuff_every_hour(self): schedules = Schedule.objects.all().count() self.assertEqual(0, schedules) other_stuff = OtherStuffFactory() self.assertEqual(1, Schedule.objects.filter(verb=EVERY_HOUR).count()) self.assertTrue(Schedule.objects.filter(verb=EVERY_HOUR).exists()) schedule = Schedule.objects.filter(verb=EVERY_HOUR).first() self.assertEqual(str(other_stuff.created.minute), schedule.minute) self.assertEqual("*/1", schedule.hour) def test_execute_schedule_task(self): OtherStuffFactory() schedule = Schedule.objects.filter(verb=DUMMY_EVENT).first() self.assertEqual(0, schedule.counter) schedule_pk = execute_schedule_task(schedule.pk) self.assertEqual(schedule_pk, schedule.pk) schedule.refresh_from_db() self.assertEqual(1, schedule.counter) def test_execute_schedule_task_not_found(self): OtherStuffFactory() schedule = Schedule.objects.filter(verb=DUMMY_EVENT).first() self.assertEqual(0, schedule.counter) schedule_pk = execute_schedule_task(0) self.assertIsNone(schedule_pk) schedule.refresh_from_db() self.assertEqual(0, schedule.counter) def test_clean_scheduled_tasks(self): OtherStuffFactory() schedule = Schedule.objects.filter(verb=DUMMY_EVENT).first() execute_schedule_task(schedule.pk) clean_scheduled_tasks() self.assertEqual(0, Schedule.objects.filter(verb=DUMMY_EVENT).count()) def test_scheduled_task_without_actor(self): OtherStuffFactory() schedule = Schedule.objects.filter(verb=DUMMY_EVENT).first() schedule.actor = None schedule.save() with warnings.catch_warnings(record=True) as warns: warnings.simplefilter("always") schedule.run() self.assertEqual(1, len(warns)) self.assertEqual(warns[-1].category, UserWarning) self.assertEqual(0, Event.objects.filter(verb=DUMMY_EVENT).count()) def test_clean_scheduled_tasks_run(self): OtherStuffFactory() schedule = Schedule.objects.filter(verb=DUMMY_EVENT).first() schedule.run() self.assertEqual(1, Event.objects.filter(verb=DUMMY_EVENT).count()) def test_ephemeral_event(self): self.assertEqual(0, Event.objects.filter(verb=SMALL_EVENT).count()) stuff = StuffFactory() stuff.small() self.assertEqual(1, Event.objects.filter(verb=SMALL_EVENT).count()) self.assertEqual( 0, Notification.objects.filter(event__verb=SMALL_EVENT).count() )
from ...hek.defs.swat import *
from event_model import unpack_event_page from qtpy.QtGui import QStandardItemModel, QStandardItem from qtpy.QtWidgets import QTableView, QWidget, QVBoxLayout class BaselineModel(QStandardItemModel): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setHorizontalHeaderLabels(['Before', 'After']) def __call__(self, name, doc): if name == 'event_page': for event in unpack_event_page(doc): self.__call__('event', event) elif name == 'event': column = doc['seq_num'] - 1 for row, val in enumerate(val for _, val in sorted(doc['data'].items())): self.setItem(row, column, QStandardItem(str(val))) self.setVerticalHeaderLabels(doc['data'].keys()) class BaselineWidget(QTableView): ... class BaselineFactory: def __init__(self, add_tab): container = QWidget() self.layout = QVBoxLayout() container.setLayout(self.layout) add_tab(container, 'Baseline') def __call__(self, name, start_doc): def subfactory(name, descriptor_doc): if descriptor_doc.get('name') == 'baseline': baseline_widget = BaselineWidget() baseline_model = BaselineModel() baseline_widget.setModel(baseline_model) self.layout.addWidget(baseline_widget) return [baseline_model] else: return [] return [], [subfactory]
# Author info: # Github | rlyonheart # Twitter| rly0nheart # Instagram | rlyonheart #import color module import termcolor from termcolor import colored,cprint # import the random module import random # import the time module(not that important) import time # import sys module(using this to terminate the program) import sys cprint("\t\t --P4SSW0RD G3N3RAT0R-- \n\n",'red',attrs=['bold','underline']) cprint("Generate password:\n",'white',attrs=['bold','underline']) if __name__ == '__main__': ui=input().lower() chars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYS1234567890" len = 10 x = ''.join(random.sample(chars, len)) if "passgen" in ui: time.sleep(1) cprint("\nPlease Wait",'blue',attrs=['bold']) time.sleep(1) cprint(".",'cyan',attrs=['bold']) time.sleep(1) cprint(".",'red',attrs=['bold']) time.sleep(1) cprint(".",'green',attrs=['bold']) time.sleep(1) cprint(".",'blue',attrs=['bold']) time.sleep(1) cprint(".",'yellow',attrs=['bold']) time.sleep(1) cprint("Password generated!..",'yellow',attrs=['bold']) time.sleep(2) cprint("\nyour new password is: ",'red',attrs=['bold']) time.sleep(0.7) print("\t\t\t",x) time.sleep(1) cprint('''\n\n\n\nTip: Do not show this password to anyone, if you are going to use it.\n\n''','green',attrs=['bold']) else: time.sleep(1) cprint("\nProcessing",'blue',attrs=['bold']) time.sleep(1) cprint(".",'cyan',attrs=['bold']) time.sleep(1) cprint(".",'yellow',attrs=['bold']) time.sleep(1) cprint(".",'green',attrs=['bold']) time.sleep(1) cprint(".",'blue',attrs=['bold']) time.sleep(1) cprint(".",'red',attrs=['bold']) cprint("\nINVALID INPUT!",'red',attrs=['bold']) time.sleep(1.5) sys.exit(colored("program terminated due to invalid input by user.",'white','on_red',attrs=['bold'])) # ©2020 # thank you, for using Password generator!
from src.harness.agentThread import AgentThread class DefaultName(AgentThread): def __init__(self, config, motion_config): super(DefaultName, self).__init__(config, motion_config) def initialize_vars(self): self.locals = {} self.locals['added'] = False self.locals['finalsum'] = None self.create_aw_var('sum', int, 0) self.create_aw_var('numadded', int, 0) self.initialize_lock('adding') def loop_body(self): if not self.locals['added']: if not self.lock('adding'): return self.write_to_shared('sum', None, self.read_from_shared('sum', None) + self.pid() * 2) self.write_to_shared('numadded', None, self.read_from_shared('numadded', None) + 1) self.locals['added'] = True self.unlock('adding') return if self.read_from_shared('numadded', None) == self.num_agents(): self.locals['finalsum'] = self.read_from_shared('sum', None) self.log(self.locals['finalsum']) self.stop() return
#!/usr/bin/env python3 from linkedlist import LinkedList, Node import random random.seed(42) class IntersectingLinkedList(LinkedList): def __init__(self, data_a: list, data_b: list): self.head_a = self.__build_list(data_a) self.head_b = self.__build_list(data_b) self.intersect() def intersect(self): intersection_point = 5 current_b = self.head_b for i in range(intersection_point): current_b = current_b.next_node current_a = self.head_a while current_a.next_node != None: current_a = current_a.next_node current_a.next_node = current_b def __build_list(self, data: list): head = None for item in data: if head == None: head = Node(item) current = head else: current.next_node = Node(item) current = current.next_node current.next_node = None return head def get(self, head=None): if head == None: return elif head == "a": current = self.head_a elif head == "b": current = self.head_b def recurse(node, string=""): if node.next_node == None: string += f"{node.data} -> END" return string else: string += f"{node.data} -> " return recurse(node.next_node, string) return recurse(current) class Detector: def __init__(self, head_a: Node, head_b: Node): self.head_a = head_a self.head_b = head_b def detect(self): current_a = self.head_a len_a = 1 while current_a.next_node != None: len_a += 1 current_a = current_a.next_node current_b = self.head_b len_b = 1 while current_b.next_node != None: len_b += 1 current_b = current_b.next_node if current_a != current_b: return f"No Intersections" ptr_a = self.head_a ptr_b = self.head_b if len_a > len_b: moves = len_a - len_b for move in range(moves): ptr_a = ptr_a.next_node elif len_b > len_a: moves = len_b - len_a for move in range(moves): ptr_b = ptr_b.next_node while id(ptr_a) != id(ptr_b): ptr_a = ptr_a.next_node ptr_b = ptr_b.next_node return f"Intersects at: {ptr_a}" def main(): data_a = [num for num in range(11, 18)] data_b = [random.randint(0, 10) for num in range(8)] print(f"{data_a}\n{data_b}") myll = IntersectingLinkedList(data_a, data_b) print(myll.get("a")) print(myll.get("b")) d = Detector(myll.head_a, myll.head_b) print(d.detect()) myll2 = LinkedList([i for i in range(5)]) myll3 = LinkedList([i for i in range(5)]) d = Detector(myll2.head, myll3.head) print(d.detect()) if __name__ == "__main__": main()
""" Based on Scipy's cookbook: http://scipy-cookbook.readthedocs.io/items/bundle_adjustment.html """ import math import sys import logging from functools import lru_cache import numpy as np import quaternion from scipy.sparse import lil_matrix from scipy.optimize import least_squares from visnav.algo import tools # logger = logging.getLogger(__name__) CHECK_JACOBIAN = 0 USE_WORLD_CAM_FRAME = 0 USE_OWN_PSEUDO_HUBER_LOSS = 1 def bundle_adj(poses: np.ndarray, pts3d: np.ndarray, pts2d: np.ndarray, cam_idxs: np.ndarray, pt3d_idxs: np.ndarray, K: np.ndarray, px_err_sd: np.ndarray=None, dtype=np.float64, log_writer=None, max_nfev=None, skip_pose_n=1, poses_only=False, huber_coef=False): """ Returns the bundle adjusted parameters, in this case the optimized rotation and translation vectors. basepose with shape (6,) is the pose of the first frame that is used as an anchor poses with shape (n_cameras, 6) contains initial estimates of parameters for all cameras. First 3 components in each row form a rotation vector, next 3 components form a translation vector pts3d with shape (n_points, 3) contains initial estimates of point coordinates in the world frame. pts2d with shape (n_observations, 2) contains measured 2-D coordinates of points projected on images in each observations. cam_idxs with shape (n_observations,) contains indices of cameras (from 0 to n_cameras - 1) involved in each observation. pt3d_idxs with shape (n_observations,) contains indices of points (from 0 to n_points - 1) involved in each observation. """ assert len(poses.shape) == 2 and poses.shape[1] == 6, 'wrong shape poses: %s' % (poses.shape,) assert len(pts3d.shape) == 2 and pts3d.shape[1] == 3, 'wrong shape pts3d: %s' % (pts3d.shape,) assert len(pts2d.shape) == 2 and pts2d.shape[1] == 2, 'wrong shape pts2d: %s' % (pts2d.shape,) assert len(cam_idxs.shape) == 1, 'wrong shape cam_idxs: %s' % (cam_idxs.shape,) assert len(pt3d_idxs.shape) == 1, 'wrong shape pt3d_idxs: %s' % (pt3d_idxs.shape,) assert K.shape == (3, 3), 'wrong shape K: %s' % (K.shape,) n_cams = poses.shape[0] n_pts = pts3d.shape[0] pose0 = poses[0:skip_pose_n].ravel() x0 = [poses[skip_pose_n:].ravel()] if poses_only: fixed_pt3d = pts3d else: fixed_pt3d = np.zeros((0, 3)) x0.append(pts3d.ravel()) x0 = np.hstack(x0) I = np.stack((np.ones((len(poses) - skip_pose_n, 3), dtype=bool), np.zeros((len(poses) - skip_pose_n, 3), dtype=bool)), axis=1).ravel() x0 = Manifold(x0.shape, buffer=x0.astype(dtype), dtype=dtype) x0.set_so3_groups(I) px_err_sd = np.ones((len(pts2d),)) if px_err_sd is None else px_err_sd m = cam_idxs.size * 2 orig_dtype = pts2d.dtype if dtype != orig_dtype: pose0, fixed_pt3d, pts2d, K, px_err_sd = map( lambda x: x.astype(dtype), (pose0, fixed_pt3d, pts2d, K, px_err_sd)) if 0: err = _costfun(x0, pose0, fixed_pt3d, n_cams, n_pts, cam_idxs, pt3d_idxs, pts2d, K, px_err_sd, meas_r, meas_aa, meas_idxs, loc_err_sd, ori_err_sd) print('ERR: %.4e' % (np.sum(err**2)/2)) if CHECK_JACOBIAN: if 1: jac = _jacobian(x0, pose0, fixed_pt3d, n_cams, n_pts, cam_idxs, pt3d_idxs, pts2d, K, px_err_sd).toarray() jac_ = numerical_jacobian(lambda x: _costfun(x, pose0, fixed_pt3d, n_cams, n_pts, cam_idxs, pt3d_idxs, pts2d, K, px_err_sd), x0, 1e-4) else: jac = _rot_pt_jac(x0, pose0, fixed_pt3d, n_cams, n_pts, cam_idxs, pt3d_idxs, pts2d, K, px_err_sd) jac_ = numerical_jacobian(lambda x: _rotated_points(x, pose0, fixed_pt3d, n_cams, n_pts, cam_idxs, pt3d_idxs, pts2d, K, px_err_sd), x0, 1e-4) import matplotlib.pyplot as plt fig, axs = plt.subplots(1, 2, sharex=True, sharey=True) axs[0].imshow(np.sign(jac) * np.abs(jac) ** (1/8)) axs[0].set_title('analytical') axs[1].imshow(np.sign(jac_) * np.abs(jac_) ** (1/8)) axs[1].set_title('numerical') plt.show() @lru_cache(1) def _cfun(x): return _costfun(x, pose0, fixed_pt3d, n_cams, n_pts, cam_idxs, pt3d_idxs, pts2d, K, px_err_sd) def cfun(x): err = _cfun(tuple(x)) if USE_OWN_PSEUDO_HUBER_LOSS: sqrt_phl_err = np.sqrt(tools.pseudo_huber_loss(err, huber_coef)) if huber_coef is not False else err else: sqrt_phl_err = err return sqrt_phl_err def jac(x): # apply pseudo huber loss derivative J = _jacobian(x, pose0, fixed_pt3d, n_cams, n_pts, cam_idxs, pt3d_idxs, pts2d, K, px_err_sd) if USE_OWN_PSEUDO_HUBER_LOSS and huber_coef is not False: ## derivative of pseudo huber loss can be applied afterwards by multiplying with the err derivative # NOTE: need extra (.)**0.5 term as least_squares applies extra (.)**2 on top of our cost function # - d (weight * phl(e))**0.5/dksi = d (weight * phl(e))**0.5/d phl(e) * d phl(e)/de * de/dksi # - d (weight * phl(e))**0.5/d phl(e) = weight**0.5 * 0.5 * phl(e)**(-0.5) # - d phl(e)/de = e/sqrt(1+e**2/delta**2) # - de/dksi is solved next err = _cfun(tuple(x)) phl_err = tools.pseudo_huber_loss(err, huber_coef) dhuber = 0.5 * np.sqrt(1 / phl_err) * err / np.sqrt(1 + err ** 2 / huber_coef ** 2) J = J.multiply(dhuber.reshape((-1, 1))) return J tmp = sys.stdout if log_writer is not None: sys.stdout = log_writer res = least_squares(cfun, x0, verbose=2, ftol=1e-4, xtol=1e-5, method='trf', x_scale='jac', jac=jac, max_nfev=max_nfev, loss='linear' if USE_OWN_PSEUDO_HUBER_LOSS or huber_coef is None else 'huber', f_scale=huber_coef or 1.0) sys.stdout = tmp # TODO (1): return res.fun somewhat processed (per frame: mean px err, meas errs), # so that can follow the errors and notice/debug problems assert isinstance(res.x, Manifold), 'somehow manifold lost during optimization' new_poses, new_pts3d = _unpack(res.x.to_array(), n_cams - skip_pose_n, 0 if poses_only else n_pts) if new_poses.dtype != orig_dtype: new_poses = new_poses.astype(orig_dtype) new_pts3d = new_pts3d.astype(orig_dtype) return new_poses, new_pts3d def _costfun(params, pose0, fixed_pt3d, n_cams, n_pts, cam_idxs, pt3d_idxs, pts2d, K, px_err_sd): """ Compute residuals. `params` contains camera parameters and 3-D coordinates. """ if isinstance(params, (tuple, list)): params = np.array(params) params = np.hstack((pose0, params)) poses, pts3d = _unpack(params, n_cams, n_pts if len(fixed_pt3d) == 0 else 0) points_3d = fixed_pt3d if len(pts3d) == 0 else pts3d points_proj = _project(points_3d[pt3d_idxs], poses[cam_idxs], K) px_err = ((pts2d - points_proj) / px_err_sd[:, None]).ravel() return px_err def _jacobian(params, pose0, fixed_pt3d, n_cams, n_pts, cam_idxs, pt3d_idxs, pts2d, K, px_err_sd): """ cost function jacobian, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891346/ """ params = np.hstack((pose0, params)) poses, pts3d = _unpack(params, n_cams, n_pts if len(fixed_pt3d) == 0 else 0) poses_only = len(fixed_pt3d) > 0 points_3d = fixed_pt3d if poses_only else pts3d points_3d_rot = _rotate(points_3d[pt3d_idxs], poses[cam_idxs, :3]) points_3d_cf = points_3d_rot + poses[cam_idxs, 3:6] # error term count (2d reprojection errors) m = cam_idxs.size * 2 # parameter count (6d poses, n x 3d keypoint locations, 1d time offset) n1 = n_cams * 6 n2 = (0 if poses_only else n_pts * 3) n = n1 + n2 J = lil_matrix((m, n), dtype=np.float32) i = np.arange(cam_idxs.size) # poses affect reprojection error terms ######################################## # - NOTE: for the following to work, need the poses in cam-to-world, i.e. rotation of world origin first, # then translation in rotated coordinates # - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891346/ equation (11) # - also https://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf, section 10.3.5, eq 10.23 # - ksi: first three location, second three rotation # - de/dksi = de/dU' * dU'/dksi # - de/dU' = -[[fx/Zc, 0, -fx*Xc/Zc**2], # [0, fy/Zc, -fy*Yc/Zc**2]] # - dU'/dw = [I3 | -[U']^] = [[1, 0, 0, 0, Zr, -Yr], # [0, 1, 0, -Zr, 0, Xr], # [0, 0, 1, Yr, -Xr, 0]] # - -[[fx/Zc, 0, -Xc*fx/Zc**2, | -Xc*Yr*fx/Zc**2, Xc*Xr*fx/Zc**2 + fx*Zr/Zc, -Yr*fx/Zc], # [0, fy/Zc, -Yc*fy/Zc**2, | -Yc*Yr*fy/Zc**2 - fy*Zr/Zc, Xr*Yc*fy/Zc**2, Xr*fy/Zc]] / px_err_sd fx, fy = K[0, 0], K[1, 1] Xr, Yr, Zr = points_3d_rot[:, 0], points_3d_rot[:, 1], points_3d_rot[:, 2] Xc, Yc, iZc = points_3d_cf[:, 0], points_3d_cf[:, 1], 1 / points_3d_cf[:, 2] px_err_sd = px_err_sd.flatten() # camera location J[2 * i + 0, cam_idxs*6 + 3] = -(fx*iZc) / px_err_sd J[2 * i + 0, cam_idxs*6 + 5] = -(-Xc*fx*iZc**2) / px_err_sd J[2 * i + 1, cam_idxs*6 + 4] = -(fy*iZc) / px_err_sd J[2 * i + 1, cam_idxs*6 + 5] = -(-Yc*fy*iZc**2) / px_err_sd # camera rotation J[2 * i + 0, cam_idxs*6 + 0] = -(-Xc*Yr*fx*iZc**2) / px_err_sd J[2 * i + 0, cam_idxs*6 + 1] = -(Xc*Xr*fx*iZc**2 + fx*Zr*iZc) / px_err_sd J[2 * i + 0, cam_idxs*6 + 2] = -(-Yr*fx*iZc) / px_err_sd J[2 * i + 1, cam_idxs*6 + 0] = -(-Yc*Yr*fy*iZc**2 - fy*Zr*iZc) / px_err_sd J[2 * i + 1, cam_idxs*6 + 1] = -(Xr*Yc*fy*iZc**2) / px_err_sd J[2 * i + 1, cam_idxs*6 + 2] = -(Xr*fy*iZc) / px_err_sd # keypoint locations affect reprojection error terms #################################################### # similar to above, first separate de/dU => de/dU' * dU'/dU, # first one (de/dU') is [[fx/Z', 0, -fx*X'/Z'**2], # [0, fy/Z', -fy*Y'/Z'**2]] # second one (dU'/dU => d/dU (RU + P) = R) is the camera rotation matrix R # => i.e. rotate de/dU' by R^-1 if not poses_only: dEu = -np.stack((fx * iZc, np.zeros((len(iZc),)), -fx * Xc * iZc**2), axis=1) / px_err_sd[:, None] dEv = -np.stack((np.zeros((len(iZc),)), fy * iZc, -fy * Yc * iZc**2), axis=1) / px_err_sd[:, None] dEuc = _rotate(dEu, -poses[cam_idxs, :3]) dEvc = _rotate(dEv, -poses[cam_idxs, :3]) J[2 * i + 0, n1 + pt3d_idxs * 3 + 0] = dEuc[:, 0] J[2 * i + 0, n1 + pt3d_idxs * 3 + 1] = dEuc[:, 1] J[2 * i + 0, n1 + pt3d_idxs * 3 + 2] = dEuc[:, 2] J[2 * i + 1, n1 + pt3d_idxs * 3 + 0] = dEvc[:, 0] J[2 * i + 1, n1 + pt3d_idxs * 3 + 1] = dEvc[:, 1] J[2 * i + 1, n1 + pt3d_idxs * 3 + 2] = dEvc[:, 2] # maybe skip first poses if pose0.size > 0: J = J[:, pose0.size:] # for debugging if 0: import matplotlib.pyplot as plt plt.figure(2) plt.imshow((J.toarray() != 0).astype(int)) plt.show() return J.tocsr() def numerical_jacobian(fun, x0, eps=1e-4): if 1: from tqdm import tqdm y0 = fun(x0) J = np.zeros((len(y0), len(x0))) for j in tqdm(range(len(x0))): d = np.zeros((len(x0),)) d[j] = eps x1 = x0 + d y1 = fun(x1) yd = (y1 - y0) / eps J[:, j] = yd elif 0: from scipy.optimize._numdiff import approx_derivative J = approx_derivative(fun, x0, method='2-point') else: from scipy.optimize import approx_fprime y0 = fun(x0) J = np.zeros((len(y0), len(x0))) for i in tqdm(range(10)): #len(y0))): J[i, :] = approx_fprime(x0, lambda x: fun(x)[i], epsilon=eps) return J def _rotated_points(params, pose0, fixed_pt3d, n_cams, n_pts, cam_idxs, pt3d_idxs, pts2d, K, px_err_sd): """ Compute residuals. `params` contains camera parameters and 3-D coordinates. """ if isinstance(params, (tuple, list)): params = np.array(params) params = np.hstack((pose0, params)) poses, pts3d, t_off = _unpack(params, n_cams, n_pts if len(fixed_pt3d) == 0 else 0) points_3d = fixed_pt3d if len(pts3d) == 0 else pts3d points_3d_cf = _rotate(points_3d[pt3d_idxs], poses[cam_idxs, :3]) + poses[cam_idxs, 3:6] return points_3d_cf.flatten() def _rot_pt_jac(params, pose0, fixed_pt3d, n_cams, n_pts, cam_idxs, pt3d_idxs, pts2d, K, px_err_sd): params = np.hstack((pose0, params)) poses, pts3d, t_off = _unpack(params, n_cams, n_pts if len(fixed_pt3d) == 0 else 0) poses_only = len(fixed_pt3d) > 0 points_3d = fixed_pt3d if poses_only else pts3d points_3d_cf = _rotate(points_3d[pt3d_idxs], poses[cam_idxs, :3]) #+ poses[cam_idxs, 3:6] # output term count (rotated coords) m = cam_idxs.size * 3 # parameter count (6d poses) n = n_cams * 6 J = np.zeros((m, n)) i = np.arange(cam_idxs.size) # poses affect reprojection error terms ######################################## # - NOTE: for the following to work, need the poses in cam-to-world, i.e. rotation of world origin first, # then translation in rotated coordinates # - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891346/ equation (11) # - also https://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf, section 10.3.5, eq 10.23 # - ksi: first three location, second three rotation # - de/dksi = de/dU' * dU'/dksi # - de/dU' = -[[fx/Zc, 0, -fx*Xc/Zc**2], # [0, fy/Zc, -fy*Yc/Zc**2]] # - dU'/dw = [I3 | -[U']^] = [[1, 0, 0, 0, Zc, -Yc], # [0, 1, 0, -Zc, 0, Xc], # [0, 0, 1, Yc, -Xc, 0]] # - -[[fx/Zc, 0, -Xc*fx/Zc**2, | -Xc*Yc*fx/Zc**2, Xc**2*fx/Zc**2 + fx, -Yc*fx/Zc], # [0, fy/Zc, -Yc*fy/Zc**2, | -Yc**2*fy/Zc**2 - fy, Xc*Yc*fy/Zc**2, Xc*fy/Zc]] / px_err_sd Xc, Yc, Zc = points_3d_cf[:, 0], points_3d_cf[:, 1], points_3d_cf[:, 2] # camera location J[3 * i + 0, cam_idxs*6 + 3] = 1 J[3 * i + 0, cam_idxs*6 + 4] = 0 J[3 * i + 0, cam_idxs*6 + 5] = 0 J[3 * i + 1, cam_idxs*6 + 3] = 0 J[3 * i + 1, cam_idxs*6 + 4] = 1 J[3 * i + 1, cam_idxs*6 + 5] = 0 J[3 * i + 2, cam_idxs*6 + 3] = 0 J[3 * i + 2, cam_idxs*6 + 4] = 0 J[3 * i + 2, cam_idxs*6 + 5] = 1 # camera rotation J[3 * i + 0, cam_idxs*6 + 0] = 0 J[3 * i + 0, cam_idxs*6 + 1] = Zc J[3 * i + 0, cam_idxs*6 + 2] = -Yc J[3 * i + 1, cam_idxs*6 + 0] = -Zc J[3 * i + 1, cam_idxs*6 + 1] = 0 J[3 * i + 1, cam_idxs*6 + 2] = Xc J[3 * i + 2, cam_idxs*6 + 0] = Yc J[3 * i + 2, cam_idxs*6 + 1] = -Xc J[3 * i + 2, cam_idxs*6 + 2] = 0 return J def _unpack(params, n_cams, n_pts): """ Retrieve camera parameters and 3-D coordinates. """ a = n_cams * 6 b = a + n_pts * 3 poses = params[:a].reshape((n_cams, 6)) # poses[:, :3] = poses[:, :3]/180*np.pi pts3d = params[a:b].reshape((n_pts, 3)) return poses, pts3d def _rotate(points, rot_vecs): """Rotate points by given rotation vectors. Rodrigues' rotation formula is used. """ # return _cached_rotate(tuple(points.flatten()), tuple(rot_vecs.flatten())) # #@lru_cache(maxsize=1) # def _cached_rotate(points, rot_vecs): # points = np.array(points).reshape((-1, 3)) # rot_vecs = np.array(rot_vecs).reshape((-1, 3)) theta = np.linalg.norm(rot_vecs, axis=1)[:, np.newaxis] with np.errstate(invalid='ignore'): k = rot_vecs / theta k = np.nan_to_num(k) dot = np.sum(points * k, axis=1)[:, np.newaxis] cos_theta = np.cos(theta) sin_theta = np.sin(theta) rot_points = cos_theta * points + sin_theta * np.cross(k, points) + dot * (1 - cos_theta) * k return rot_points def _rotate_rotations(rot_vecs_adj, rot_vecs_base): """Rotate rotation vectors by given rotation vectors. Rodrigues' rotation formula is used, from https://math.stackexchange.com/questions/382760/composition-of-two-axis-angle-rotations """ a = np.linalg.norm(rot_vecs_adj, axis=1)[:, np.newaxis] b = np.linalg.norm(rot_vecs_base, axis=1)[:, np.newaxis] with np.errstate(invalid='ignore'): sin_a, cos_a = np.sin(0.5 * a), np.cos(0.5 * a) sin_b, cos_b = np.sin(0.5 * b), np.cos(0.5 * b) va = rot_vecs_adj / a vb = rot_vecs_base / b va = np.nan_to_num(va) vb = np.nan_to_num(vb) c = 2 * np.arccos(np.clip(cos_a * cos_b - sin_a * sin_b * np.sum(va * vb, axis=1)[:, None], -1, 1)) sin_c = np.sin(0.5 * c) with np.errstate(invalid='ignore'): res = (c / sin_c) * (sin_a * cos_b * va + cos_a * sin_b * vb + sin_a * sin_b * np.cross(va, vb)) res = np.nan_to_num(res) return res def _project(pts3d, poses, K): """Convert 3-D points to 2-D by projecting onto images.""" if USE_WORLD_CAM_FRAME: pts3d_rot = _rotate(pts3d - poses[:, 3:6], -poses[:, 0:3]) else: pts3d_rot = _rotate(pts3d, poses[:, 0:3]) + poses[:, 3:6] pts2d_proj = K.dot(pts3d_rot.T).T # own addition pts2d_proj = pts2d_proj[:, 0:2] / pts2d_proj[:, 2:3] # own addition return pts2d_proj def project(pts3d, poses, K): return _project(pts3d, poses, K) def wedge(w): is_mx = len(w.shape) == 2 and w.shape[1] != 1 w_ = w.reshape((-1, 3)) zero = np.zeros((len(w_),)) what = np.array([[zero, -w_[:, 2], w_[:, 1]], [w_[:, 2], zero, -w_[:, 0]], [-w_[:, 1], w_[:, 0], zero]]).transpose((2, 0, 1)) return what if is_mx else what.squeeze() def vee(R): R_ = R.reshape((-1, 3, 3)) x = (R_[:, 2, 1] - R_[:, 1, 2]) / 2 y = (R_[:, 0, 2] - R_[:, 2, 0]) / 2 z = (R_[:, 1, 0] - R_[:, 0, 1]) / 2 w = np.array([x, y, z]).T R_ -= wedge(w) # assert np.any(np.isclose(np.linalg.norm(R_, axis=(1, 2)) / np.linalg.norm(w, axis=1), 0)) return w if len(R.shape) == 3 else w.squeeze() def logR(R): ax1, ax2 = list(range(len(R.shape)))[-2:] c = (np.trace(R, axis1=ax1, axis2=ax2) - 1) / 2 s, th = np.sqrt(1 - c ** 2), np.arccos(c) with np.errstate(invalid='ignore'): tmp = (0.5 * th / s).reshape((-1, *((1,) * ax2))) tmp = np.nan_to_num(tmp) log_R = tmp * (R - R.swapaxes(ax1, ax2)) w = vee(log_R) return w def dlogR_dR(R): # from section 10.3.2, eq 10.11, https://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf assert R.shape == (3, 3), 'wrong size rotation matrix' c = (np.trace(R) - 1) / 2 if np.isclose(c, 1): S1 = np.array([[0, 0, 0], [0, 0, -.5], [0, .5, 0]]) S2 = np.array([[0, 0, .5], [0, 0, 0], [-.5, 0, 0]]) S3 = np.array([[0, -.5, 0], [.5, 0, 0], [0, 0, 0]]) return np.hstack((S1, S2, S3)) s, th = np.sqrt(1 - c**2), np.arccos(c) a1, a2, a3 = np.array([R[2, 1] - R[1, 2], R[0, 2] - R[2, 0], R[1, 0] - R[0, 1]]) * (0.25 * (th*c - s) / s**3) b = 0.5 * th / s S1 = np.array([[a1, 0, 0], [a2, 0, -b], [a3, b, 0]]) S2 = np.array([[0, a1, b], [0, a2, 0], [-b, a3, 0]]) S3 = np.array([[0, -b, a1], [b, 0, a2], [0, 0, a3]]) return np.hstack((S1, S2, S3)) class Manifold(np.ndarray): def __new__(cls, *args, **kwargs): self = super().__new__(cls, *args, **kwargs) # for some strange reason, super().__init__ is called without specifying it self.so3 = None self.not_so3 = None return self def set_so3_groups(self, so3): assert isinstance(so3, np.ndarray) and len(so3.shape) == 1 and so3.dtype == bool, \ 'invalid index array type, must be 1-d bool ndarray' self.so3 = so3.copy() self.not_so3 = np.logical_not(self.so3) def copy(self, order='C'): new = super(Manifold, self).copy(order) new.so3 = self.so3.copy() new.not_so3 = self.not_so3.copy() return new def __add__(self, other): assert type(other) == np.ndarray, 'Can only sum an ndarray to this Manifold implementation' new = self.to_array(new=True) new[self.not_so3] += other[self.not_so3] new[self.so3] = _rotate_rotations(other[self.so3].reshape((-1, 3)), new[self.so3].reshape((-1, 3))).flatten() new = Manifold(new.shape, buffer=new, dtype=self.dtype) new.set_so3_groups(self.so3) return new def __sub__(self, other): assert type(other) in (np.ndarray, Manifold) if type(other) == Manifold: assert np.all(self.so3 == other.so3) return self.__add__(-other.to_array()) else: return self.__add__(-other) def to_array(self, new=False): return np.frombuffer(np.copy(self) if new else self, dtype=self.dtype) def astype(self, dtype, order='K', casting='unsafe', subok=True, copy=True): if dtype in (float, np.float32, np.float64): return self return self.to_array().astype(dtype, order, casting, subok, copy)
import json from typing import TYPE_CHECKING, Type, TypedDict, cast import jwt import requests from django.conf import settings from django.contrib.auth import get_user_model from django.core.exceptions import ValidationError from django.utils import timezone from requests.auth import HTTPBasicAuth if TYPE_CHECKING: from apps.users import models User = cast(Type["models.User"], get_user_model()) CLIENT_ID = settings.DATAPORTEN_ID UserInfo = TypedDict( "UserInfo", { "sub": str, "name": str, "email": str, "email_verified": bool, "dataporten-userid_sec": list[str], "connect-userid_sec": list[str], }, ) class TokenResponse(TypedDict): access_token: str id_token: str class DataportenAuth: """ Class implementing the backend part of authenticating a user with Dataporten. Upon receiving an authorization code from frontend this class completes the authentication by obtaining an access token from Dataporten, which can then be used to access user data at Dataporten. """ @staticmethod def complete_dataporten_auth(code: str) -> TokenResponse: """ https://docs.feide.no/service_providers/openid_connect/feide_obtaining_tokens.html """ params = { "code": code, "grant_type": "authorization_code", "redirect_uri": settings.DATAPORTEN_REDIRECT_URI, "client_id": CLIENT_ID, } try: response = requests.post( "https://auth.dataporten.no/oauth/token", params, auth=HTTPBasicAuth( CLIENT_ID, settings.DATAPORTEN_SECRET, ), ) # Raises exceptions upon HTTP errors response.raise_for_status() except requests.exceptions.RequestException: raise RuntimeError("En feil oppstod under fullføring av Dataporten-autentisering.") return response.json() @staticmethod def validate_response(token_response: TokenResponse): """ https://docs.feide.no/reference/oauth_oidc/openid_connect_details.html """ id_token = token_response["id_token"] # Collect available public keys, mapping each key's ID to its parsed representation try: response = requests.get("https://auth.dataporten.no/openid/jwks") response.raise_for_status() jwks = response.json() except requests.exceptions.RequestException: raise RuntimeError("En systemfeil oppstod under validering av brukeren.") public_keys = {} for jwk in jwks["keys"]: kid = jwk["kid"] public_keys[kid] = jwt.algorithms.RSAAlgorithm.from_jwk(json.dumps(jwk)) # look up the public key corresponding to the private key with which the token was signed kid = jwt.get_unverified_header(id_token)["kid"] key = public_keys[kid] try: jwt.decode( id_token, key=key, algorithms=["RS256"], issuer="https://auth.dataporten.no", audience=CLIENT_ID, ) except jwt.PyJWTError: raise ValidationError("Kunne ikke validere brukeren.") @staticmethod def confirm_indok_enrollment(access_token: str) -> bool: params = { "Authorization": f"Bearer {access_token}", } try: response = requests.get( "https://groups-api.dataporten.no/groups/me/groups/fc:fs:fs:prg:ntnu.no:MTIØT", headers=params, ) response.raise_for_status() except requests.exceptions.RequestException: return False data = response.json() enrolled = False if "basic" in data and "active" in data: enrolled = data["basic"] == "member" and data["active"] return enrolled @staticmethod def get_user(access_token: str) -> "models.User": """ https://docs.feide.no/service_providers/openid_connect/oidc_authentication.html """ params = { "Authorization": f"Bearer {access_token}", } try: response = requests.get("https://auth.dataporten.no/openid/userinfo", headers=params) response.raise_for_status() except requests.exceptions.RequestException: raise Exception("Kunne ikke hente brukerinfo fra Dataporten.") data: UserInfo = response.json() feide_userid = data["sub"] first_name, last_name = data["name"].rsplit(" ", 1) username = next( (id for id in data["dataporten-userid_sec"] if id.endswith("@ntnu.no")), data["dataporten-userid_sec"][0] ) username = username[username.index(":") + 1 : username.index("@")] email = data["email"] try: return User.objects.get(feide_userid=feide_userid) except User.DoesNotExist: return User( first_name=first_name, last_name=last_name, feide_userid=feide_userid, email=email, username=username, feide_email=email, ) @classmethod def authenticate_and_get_user(cls, code: str) -> "models.User": # Complete authentication of user response = cls.complete_dataporten_auth(code) cls.validate_response(response) access_token = response["access_token"] # Fetch user info from Dataporten user = cls.get_user(access_token) if not user.pk: user.is_indok = cls.confirm_indok_enrollment(access_token) user.last_login = timezone.now() user.save() return user
import json import logging class FwtSpec: def __init__(self, spec_json): try: spec_json_obj = json.load(spec_json) self.column_names = spec_json_obj['ColumnNames'] self.offsets = spec_json_obj['Offsets'] self.include_header = spec_json_obj['IncludeHeader'] self.encoding_format_fwt = spec_json_obj['FixedWidthEncoding'] self.encoding_format_del = spec_json_obj['DelimitedEncoding'] self.offsets_int = [int(i) for i in self.offsets] if len(self.offsets) == len(self.column_names): self.spec_dict = dict(zip(self.column_names, self.offsets_int)) else: raise ValueError("The number of columns do not match the number of offsets in the spec.") if self.include_header not in ["True", "False"]: logging.warning("Invalid value for the key 'IncludeHeader', expected one of [\"True\", \"False\"]. " "Setting 'Include Header' = True.") self.include_header = True except AttributeError: logging.error("Invalid config param, expected : File Pointer.") except (KeyError, ValueError) as e: logging.error("Invalid config specification.") logging.exception("Exception:", exc_info=True)
""" Database Initialization and storage handling module. See docs for how to set up the database. Logging messages to a log file is not needed here as this is run directly as a command-line script. The detailed creation of places might be good to move to a log file with only summary level data printed to the console. """ import os from sqlobject import SQLObjectNotFound from sqlobject.dberrors import DuplicateEntryError import models from etc import base_data from lib import locations from lib.config import AppConf # Make model objects available on the database module. from models import * # noqa: F403 from models.connection import conn # noqa: F401 conf = AppConf() def _getModelClasses(): return [getattr(models, tableName) for tableName in models.__all__] def _dropTables(verbose=True): """ Drop all tables. """ modelsList = _getModelClasses() if verbose: print("Dropping tables...") for m in modelsList: if verbose: print("-> Dropping {0}".format(m.__name__)) m.dropTable(ifExists=True, cascade=True) return None def _createTables(verbose=True): """ Create all tables which do not already exist. """ modelsList = _getModelClasses() if verbose: print("Creating tables...") for m in modelsList: if verbose: print("-> Creating {0}".format(m.__name__)) m.createTable(ifNotExists=True) return None def addWorldAndContinents(): """ Insert default data into the database. This should be called when the database is initialized. """ # Create the world as a Place. woeid = 1 name = "Worldwide" try: world = Supername(woeid=woeid, name=name) # noqa: F405 print("Created - Supername: `{}`.".format(name)) except DuplicateEntryError: world = Supername.byWoeid(1) # noqa: F405 print("Exists - Supername: `{}`.".format(name)) # Create the continents as Places, with the world as the parent. for woeid, name in base_data.continentBase.items(): try: Continent(woeid=woeid, name=name, supernameID=world.id) # noqa: F405 print("Created - Continent: `{}`.".format(name)) except DuplicateEntryError: print("Exists - Continent: `{}`.".format(name)) def addTownsAndCountries(maxTowns=None): """ Add Town and Country level data extracted from Twitter API to the database. The function in locations will get the sample location file provided with the repo but can also reference a custom JSON. :param maxTowns: When running tests, you can set this optionally to an integer for a maximum number of towns to insert into the DB. The total is usually around 400. :return: None """ # Load from JSON file of Twitter locations. This is a generator so we don't # store it as a variable. Otherwise the 2nd time we iterate it is finished. for loc in locations.getJSON(): if loc["placeType"]["name"].lower() == "country": woeid = loc["woeid"] name = loc["name"] countryCode = loc["countryCode"] try: Country(woeid=woeid, name=name, countryCode=countryCode) # noqa: F405 print("Country - created: {}.".format(name)) except DuplicateEntryError: print("Country - exists: {}.".format(name)) townCount = 0 for loc in locations.getJSON(): if maxTowns is not None and townCount == maxTowns: break # Increment on both new and existing town. townCount += 1 if loc["placeType"]["name"].lower() == "town": try: parentCountryID = Country.byWoeid(loc["parentid"]).id # noqa: F405 except SQLObjectNotFound as e: parentCountryID = None msg = ( "Unable to find parent country in DB with WOEID {woeid}" " for town {name}.".format(woeid=loc["parentid"], name=loc["name"]) ) print("ERROR {type}. {msg}".format(type=type(e).__name__, msg=msg)) woeid = loc["woeid"] name = loc["name"] try: Town(woeid=woeid, name=name, countryID=parentCountryID) # noqa: F405 print("Town - created: {}.".format(name)) except DuplicateEntryError: print("Town - exists: {}.".format(name)) def mapCountriesToContinents(): """ Iterate through the countries in the database and ensure they have a parent continent set. :return: None """ for c in Country.select(): # noqa: F405 # If Continent is not already set for the Country, then iterate # through our mapping to find the appropriate Continent name. if not c.continent: for continent, countries in base_data.continentMapping.items(): # Check if the country name in the DB falls in the countries # list we have mapped to the current continent. if c.name in countries: # We have found the right continent. break else: raise ValueError( "Continent could not be found for country: {}".format(c) ) # Lookup Continent object. Returns as None if no match. # Use order by to avoid ambiguity error on id. continentResults = Continent.selectBy(name=continent).orderBy( # noqa: F405 "place.id" ) if continentResults: # Update the country object with the continent we found. continentRecord = continentResults.getOne() c.continentID = continentRecord.id print( "Link - created: {continent:15} <-- {country:15}".format( continent=continentRecord.name, country=c.name ) ) else: print( "Link - exists: {continent:15} <-- {country:15}".format( continent=c.continent.name, country=c.name ) ) def addLocationData(maxTowns=None): """ Add location data and associations to database. Using preset data and also JSON extracted from Twitter API. Any existing data is skipped and is not overwritten and should not raise errors. In development and testing, set maxTowns to a low integer to save time rather than adding about 400 towns to the db. TODO: Improve these with bulk insert statements, using Python to build the insert statements or SQLite. This takes too long to do on setting up the application. :return: None """ addWorldAndContinents() addTownsAndCountries(maxTowns) mapCountriesToContinents() def _path(): print(conf.dbPath) def _checkDBexists(): status = os.path.exists(conf.dbPath) print(conf.dbPath) print("DB file exists." if status else "DB file not created yet.") print() return status def _baseLabels(): print("Inserting all base labels...") categoryKeys = ("fetchProfiles", "influencers", "search", "lookupTweets") campaignKeys = ("fetchTweets", "search", "lookupTweets") for key in categoryKeys: label = conf.get("Labels", key) try: categoryRec = Category(name=label) # noqa: F405 print("Created category: {0}".format(categoryRec.name)) except DuplicateEntryError: print("Skipped category: {0}".format(label)) for key in campaignKeys: label = conf.get("Labels", key) try: campaignRec = Campaign(name=label, searchQuery=None) # noqa: F405 print("Created campaign: {0}".format(campaignRec.name)) except DuplicateEntryError: print("Skipped campaign: {0}".format(label)) def _populate(maxTowns=None): # TODO Make this and the internal calls not verbose for tests. print("Adding default data...") if isinstance(maxTowns, int): addLocationData(maxTowns) else: addLocationData() print("-> Added fixtures data.\n") return maxTowns
""" Work on hashtags """ import re HASHTAG_PATTERN=re.compile(r'(^|\s)#([^\d\s]\w+\b)') def extract_hashtags(content): """ Extract twitter-like hashtags from a given content """ return [ matches[1] for matches in HASHTAG_PATTERN.findall(content) ]
# -*- coding: utf-8 -*- """ This script calculates SEMA score between two AMRs """ import argparse import codecs import logging from amr import AMR class Sema: """ SEMA: an Extended Semantic Metric Evaluation for AMR. """ def __init__(self): """ Constructor. Initiates the variables """ # general values self.m, self.t, self.c = 0.0, 0.0, 0.0 # top values self.top_m, self.top_t, self.top_c = 0.0, 0.0, 0.0 # concept values self.concept_m, self.concept_t, self.concept_c = 0.0, 0.0, 0.0 # relation values self.relation_m, self.relation_t, self.relation_c = 0.0, 0.0, 0.0 def compute_sema(self, amr_test, amr_gold): """ Calculates sema metric. Evaluates the test AMR against reference AMR :param amr_test: test AMR :param amr_gold: reference AMR :return: """ test_concepts, test_attributes, test_relations = amr_test.get_triples() gold_concepts, gold_attributes, gold_relations = amr_gold.get_triples() visited = [] # remove TOP relation test_attributes, gold_attributes = self.remove_top_relation(test_attributes, gold_attributes) # test_relations, gold_relations = self.remove_duplicate_relation(test_relations, gold_relations) self.compute_root(test_concepts[0][2], gold_concepts[0][2], visited) self.compute_relations(test_relations, gold_relations, test_concepts, gold_concepts, visited) self.compute_attributes(test_attributes, gold_attributes, test_concepts, gold_concepts, visited) self.c += self._get_total_triples(test_concepts, test_relations, test_attributes) self.t += self._get_total_triples(gold_concepts, gold_relations, gold_attributes) @staticmethod def remove_duplicate_relation(test_relations, gold_relations): """ Removes duplicate relations (Not used) :param test_relations: test relations :param gold_relations: reference relations :return: relations without duplicates """ return list(set(test_relations)), list(set(gold_relations)) @staticmethod def _get_total_triples(concepts, relations, attributes): """ Gets the total number of triples :param concepts: concepts :param relations: relations :param attributes: attributes :return: total number of triples """ return len(concepts) + len(relations) + len(attributes) @staticmethod def _get_previous_node(pre_g, gold_concepts): """ Gets the previous node :param pre_g: previous gold node :param gold_concepts: gold concepts :return: gold node """ node_g = [(rel, var, nod) for rel, var, nod in gold_concepts if var == pre_g][0] return node_g @staticmethod def _check_dependence(pre_t, pre_g, test_concepts, gold_concepts): """ Checks if the nodes of the test and reference AMRs are dependents :param pre_t: previous test node :param pre_g: previous reference node :param test_concepts: test AMR concepts :param gold_concepts: reference AMR concepts :return: true if nodes are equal """ node_t = [(rel, var, nod) for rel, var, nod in test_concepts if var == pre_t][0][2] node_g = [(rel, var, nod) for rel, var, nod in gold_concepts if var == pre_g][0][2] if node_t == node_g: return True return False @staticmethod def _get_neighbors(pos_t=None, pos_g=None, test_concepts=None, gold_concepts=None): """ Gets neighbors from node :param pos_t: posterior test node :param pos_g: posterior reference node :param test_concepts: test concepts :param gold_concepts: reference concepts :return: All neighbors nodes """ test_concept = [(rel, var, nod) for rel, var, nod in test_concepts if var == pos_t] gold_concept = [(rel, var, nod) for rel, var, nod in gold_concepts if var == pos_g] return [test_concept[0][2]], gold_concept[0], [gold_concept[0][2]] @staticmethod def remove_top_relation(test_attributes, gold_attributes): """ Removes :TOP relation from test and reference AMRs :param test_attributes: test attributes :param gold_attributes: reference attributes :return: attributes without :TOP relation """ index1 = [y[0] for y in test_attributes].index('TOP') index2 = [y[0] for y in gold_attributes].index('TOP') del test_attributes[index1] del gold_attributes[index2] return test_attributes, gold_attributes def compute_root(self, test_root, gold_root, visited): """ Computes the root node :param test_root: test root :param gold_root: reference root :param visited: visited triples :return: """ if test_root == gold_root: self.m += 1 self.top_m += 1 visited.append(('instance', 'b0', gold_root)) def compute_relations(self, test_relations, gold_relations, test_concepts, gold_concepts, visited): """ Computes relation triples take into account its dependence :param test_relations: test relations :param gold_relations: reference relations :param test_concepts: test concepts :param gold_concepts: reference concepts :param visited: visited triples :return: """ for rel_t, pre_t, pos_t in test_relations: for rel_g, pre_g, pos_g in gold_relations: # if relations are equal if rel_t == rel_g: # if previous concepts are equal if self._check_dependence(pre_t, pre_g, test_concepts, gold_concepts): # gets neighbors test_concept, current_node, gold_concept = self._get_neighbors(pos_t=pos_t, pos_g=pos_g, test_concepts=test_concepts, gold_concepts=gold_concepts) relation = (rel_g, pre_g, pos_g) previous_node = self._get_previous_node(pre_g, gold_concepts) self.compute_concepts(test_concept, gold_concept, current_node, relation, previous_node, visited) def compute_concepts(self, test_concepts, gold_concepts, current_node, relation, previous_node, visited): """ Computes the concepts take into account its dependence :param test_concepts: test concepts :param gold_concepts: reference concepts :param current_node: current node :param relation: previous relation :param previous_node: previous node :param visited: visited triples :return: """ for test_node in test_concepts: for gold_node in gold_concepts: if test_node == gold_node: if current_node not in visited and relation not in visited: self.m += 2 visited.append(current_node) visited.append(relation) if previous_node not in visited: self.m += 1 visited.append(previous_node) if current_node in visited and previous_node in visited and relation not in visited: flag = False for triple in visited: if relation[1] == triple[1] and relation[2] == triple[2]: flag = True if not flag: self.m += 1 visited.append(relation) def compute_attributes(self, test_attributes, gold_attributes, test_concepts, gold_concepts, visited): """ Computes attributes test triples against attributes reference triples :param test_attributes: test attributes :param gold_attributes: reference attributes :param test_concepts: test concepts :param gold_concepts: reference concepts :param visited: visited triples :return: """ for rel_t, pre_t, pos_t in test_attributes: for rel_g, pre_g, pos_g in gold_attributes: # if relation and constant are equal to reference values if self._check_dependence(pre_t, pre_g, test_concepts, gold_concepts): if rel_t == rel_g and pos_t == pos_g and (rel_g, pre_g, pos_g) not in visited: self.m += 1 visited.append((rel_g, pre_g, pos_g)) def get_sema_value(self): """ Calculates precision, recall, and f-score precision = correct triples / produced triples recall = correct triples / total triples :return: precision, recall, and f-score """ try: precision = self.m / self.c recall = self.m / self.t f1 = 2 * precision * recall / (precision + recall) return precision, recall, f1 except ZeroDivisionError: return 0, 0, 0 def main(data): logging.basicConfig(level=logging.ERROR) logger = logging.getLogger(__name__) test = codecs.open(data.test, 'r', 'utf-8') gold = codecs.open(data.gold, 'r', 'utf-8') flag = False sema = Sema() while True: cur_amr1 = AMR.get_amr_line(test) cur_amr2 = AMR.get_amr_line(gold) if cur_amr1 == '' and cur_amr2 == '': break if cur_amr1 == '': logger.error('Error: File 1 has less AMRs than file 2') logger.error('Ignoring remaining AMRs') flag = True break if cur_amr2 == '': logger.error('Error: File 2 has less AMRs than file 1') logger.error('Ignoring remaining AMRs') flag = True break try: amr1 = AMR.parse_AMR_line(cur_amr1) except Exception as e: logger.error('Error in parsing amr 1: %s' % cur_amr1) logger.error("Please check if the AMR is ill-formatted. Ignoring remaining AMRs") logger.error("Error message: %s" % str(e)) flag = True break try: amr2 = AMR.parse_AMR_line(cur_amr2) except Exception as e: logger.error("Error in parsing amr 2: %s" % cur_amr2) logger.error("Please check if the AMR is ill-formatted. Ignoring remaining AMRs") logger.error("Error message: %s" % str(e)) flag = True break prefix_test = 'a' prefix_gold = 'b' amr1.rename_node(prefix_test) amr2.rename_node(prefix_gold) sema.compute_sema(amr1, amr2) if not flag: precision, recall, f1 = sema.get_sema_value() print(f'SEMA: P {precision:.2f} R {recall:.2f} F1 {f1:.2f}') if __name__ == '__main__': args = argparse.ArgumentParser(description='SEMA metric', epilog='Usage: python sema.py -t parsedAMR.txt -g referenceAMR.txt') args.add_argument('-t', '--test', help='test AMR', required=True) args.add_argument('-g', '--gold', help='Reference AMR', required=True) main(args.parse_args())
try: import Tkinter as tk import tkMessageBox as tkmb except ImportError: import tkinter as tk from tkinter import messagebox as tkmb def show_error(title, message): root = tk.Tk() root.withdraw() tkmb.showerror(title=title, message=message) def show_message(title, message): root = tk.Tk() root.withdraw() tkmb.showinfo(title=title, message=message) if __name__ == '__main__': import math show_message('Informative Message', 'You are about to see several\ndemonstrations ' 'of tkinter\'s messagebox\nshow_error and show_message methods.') try: x = 1 y = 0 print(x/y) except ZeroDivisionError as e: show_error('Error', e) try: print(math.log(y)) except ValueError as e: show_error("Error", e) try: percent_effort_given = 101 if percent_effort_given < 50: show_message('Inspirational Message', 'Try harder!') elif percent_effort_given > 100: raise ValueError('You can\'t give more than 100%') except ValueError as e: show_error('Error', e)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Tools for the impurity caluclation plugin and its workflows """ #use print('message') instead of print 'message' in python 2.7 as well: from __future__ import print_function # redefine raw_input for python 3/2.7 compatilbility from __future__ import absolute_import from builtins import object from sys import version_info from six.moves import range from six.moves import input if version_info[0] >= 3: def raw_input(msg): return eval(eval(input(msg))) __copyright__ = (u"Copyright (c), 2018, Forschungszentrum Jülich GmbH," "IAS-1/PGI-1, Germany. All rights reserved.") __license__ = "MIT license, see LICENSE.txt file" __version__ = "0.3" __contributors__ = u"Philipp Rüßmann" class modify_potential(object): """ Class for old modify potential script, ported from modify_potential script, initially by D. Bauer """ def _check_potstart(self, str1, mode='pot', shape_ver='new'): if mode=='shape': if shape_ver=='new': check1='Shape number' in str1 else: check1= (len(str1)==11) else: check1='exc:' in str1 return check1 def _read_input(self, filepath): #print(filepath) with open(filepath) as file: data = file.readlines() if 'shapefun' in filepath: mode = 'shape' else: mode = 'pot' #print(mode, len(data)) # read file index1=[];index2=[] for i in range(len(data)): if self._check_potstart(data[i], mode=mode): index1.append(i) if len(index1)>1: index2.append(i-1) index2.append(i) # read shapefun if old style is used if mode=='shape' and len(index1)<1: index1=[];index2=[] for i in range(len(data)): if self._check_potstart(data[i], mode=mode, shape_ver='old'): index1.append(i) if len(index1)>1: index2.append(i-1) index2.append(i) """ print(index1) print(index2) print('Potential file read') print('found %i potentials in file'%len(index1)) print('') """ return index1, index2, data def shapefun_from_scoef(self, scoefpath, shapefun_path, atom2shapes, shapefun_new): """ Read shapefun and create impurity shapefun using scoef info and shapes array :param scoefpath: absolute path to scoef file :param shapefun_path: absolute path to input shapefun file :param shapes: shapes array for mapping between atom index and shapefunction index :param shapefun_new: absolute path to output shapefun file to which the new shapefunction will be written """ index1, index2, data = self._read_input(shapefun_path) order=list(range(len(index1))) natomtemp = int(open(scoefpath).readlines()[0]) filedata=open(scoefpath).readlines()[1:natomtemp+1] listnew=[] for line in filedata: if (len(line.split())>1): listnew.append(atom2shapes[int(line.split()[3])-1]-1) order = listnew datanew=[] for i in range(len(order)): for ii in range(index1[order[i]], index2[order[i]]+1 ): datanew.append(data[ii]) # add header to shapefun_new tmp = datanew datanew = [] datanew.append(' %i\n' %(len(order))) datanew.append(' 1.000000000000E+00\n') datanew += tmp with open(shapefun_new,'w') as f: f.writelines(datanew) def neworder_potential(self, potfile_in, potfile_out, neworder, potfile_2=None, replace_from_pot2=None): """ Read potential file and new potential using a list describing the order of the new potential. If a second potential is given as input together with an index list, then the corresponding of the output potential are overwritten with positions from the second input potential. :param potfile_in: absolute path to input potential :type potfile_in: str :param potfile_out: absolute path to output potential :type potfile_out: str :param neworder: list after which output potential is constructed from input potential :type neworder: list :param potfile_2: optional, absolute path to second potential file if positions in new list of potentials shall be replaced by positions of second potential, requires *replace_from_pot* to be given as well :type potfile_2: str :param replace_from_pot: optional, list containing tuples of (position in newlist that is to be replaced, position in pot2 with which position is replaced) :type replace_from_pot: list :usage: 1. modify_potential().neworder_potential(<path_to_input_pot>, <path_to_output_pot>, []) """ from numpy import array, shape index1, index2, data = self._read_input(potfile_in) if potfile_2 is not None: index12, index22, data2 = self._read_input(potfile_2) # check if also replace_from_pot2 is given correctly if replace_from_pot2 is None: raise ValueError('replace_from_pot2 not given') else: replace_from_pot2 = array(replace_from_pot2) if shape(replace_from_pot2)[1]!=2: raise ValueError('replace_from_pot2 needs to be a 2D array!') else: if replace_from_pot2 is not None: raise ValueError('replace_from_pot2 given but potfile_2 not given') # set order in which potential file is written # ensure that numbers are integers: order = [int(i) for i in neworder] datanew=[] for i in range(len(order)): # check if new position is replaced with position from old pot if replace_from_pot2 is not None and i in replace_from_pot2[:,0]: replace_index = replace_from_pot2[replace_from_pot2[:,0]==i][0][1] for ii in range(index12[replace_index], index22[replace_index]+1 ): datanew.append(data2[ii]) else: # otherwise take new potntial according to input list for ii in range(index1[order[i]], index2[order[i]]+1 ): datanew.append(data[ii]) # write out new potential with open(potfile_out,'w') as f: f.writelines(datanew)
from functools import wraps from os import PathLike from typing import Callable, Union __all__ = [ 'read_lines', 'read_json' ] def read_lines(path: str, *, filter_empty=True): from typing import List def decorator(func: Callable[..., List[str]]): @wraps(func) def wrapper(*args, **kwargs): with open(path, 'r') as f: lines = f.readlines() if filter_empty: lines = [line for line in lines if line.strip()] wrapper.lines = lines return func(*args, **kwargs) return wrapper return decorator def read_json(path: Union[str, bytes, PathLike, int]): from typing import Dict def decorator(func: Callable[..., Dict]): @wraps(func) def wrapper(*args, **kwargs): import json with open(path, 'r') as f: jsn = json.loads(f.read()) wrapper.json = jsn return func(*args, **kwargs) return wrapper return decorator
import datetime import unittest import genetic def get_fitness(genes): return genes.count(1) def display(candidate, startTime): timeDiff = datetime.datetime.now() - startTime print( "{0}...{1}\t{2:3.2f}\t{3}".format( "".join(map(str, candidate.Genes[:15])), "".join(map(str, candidate.Genes[-15:])), candidate.Fitness, str(timeDiff), ) ) result = [] for i in candidate.Genes: result += str(candidate.Genes[i]) return result class OneMaxTests(unittest.TestCase): def test_benchmark(self): genetic.Benchmark.run(lambda: self.test(4000)) def test(self, length=100): geneset = [0, 1] startTime = datetime.datetime.now() def fnDisplay(candidate): display(candidate, startTime) def fnGetFitness(genes): return get_fitness(genes) optimalFitness = length best = genetic.get_best( fnGetFitness, length, optimalFitness, geneset, fnDisplay ) self.assertEqual(best.Fitness, optimalFitness) # EOF
# -*- coding: utf-8 -*- r""" Bending of focusing mirror -------------------------- Uses :mod:`shadow` backend. File: `\\examples\\withShadow\\04_06\\05_VFM_bending.py` Pictures at the sample position, :ref:`type 1 of global normalization<globalNorm>` +---------+---------+---------+---------+ | |VFMR1| | |VFMR2| | |VFMR3| | | +---------+---------+---------+ |VFMR4| | | |VFMR7| | |VFMR6| | |VFMR5| | | +---------+---------+---------+---------+ .. |VFMR1| image:: _images/VFM_R0317731_norm1.* :scale: 35 % .. |VFMR2| image:: _images/VFM_R0363711_norm1.* :scale: 35 % .. |VFMR3| image:: _images/VFM_R0416345_norm1.* :scale: 35 % .. |VFMR4| image:: _images/VFM_R0476597_norm1.* :scale: 35 % :align: middle .. |VFMR5| image:: _images/VFM_R0545567_norm1.* :scale: 35 % .. |VFMR6| image:: _images/VFM_R0624518_norm1.* :scale: 35 % .. |VFMR7| image:: _images/VFM_R0714895_norm1.* :scale: 35 % """ __author__ = "Konstantin Klementiev" __date__ = "1 Mar 2012" import sys sys.path.append(r"c:\Alba\Ray-tracing\with Python") import numpy as np import xrt.plotter as xrtp import xrt.runner as xrtr import xrt.backends.shadow as shadow def main(): plot1 = xrtp.XYCPlot('star.04') plot1.caxis.offset = 6000 plot1.xaxis.limits = [-1, 1] plot1.yaxis.limits = [-1, 1] plot1.yaxis.factor *= -1 textPanel1 = plot1.fig.text(0.86, 0.8, '', transform=plot1.fig.transFigure, size=12, color='r', ha='center') #========================================================================== threads = 4 #========================================================================== start01 = shadow.files_in_tmp_subdirs('start.01', threads) start04 = shadow.files_in_tmp_subdirs('start.04', threads) rmirr0 = 744680. shadow.modify_input(start01, ('RMIRR', str(rmirr0))) angle = 4.7e-3 tIncidence = 90 - angle * 180 / np.pi shadow.modify_input( start01, ('T_INCIDENCE', str(tIncidence)), ('T_REFLECTION', str(tIncidence))) shadow.modify_input( start04, ('T_INCIDENCE', str(tIncidence)), ('T_REFLECTION', str(tIncidence))) rmaj0 = 476597.0 def plot_generator(): for rmaj in np.logspace(-1, 1, 7, base=1.5) * rmaj0: shadow.modify_input(start04, ('R_MAJ', str(rmaj))) filename = 'VFM_R%07i' % rmaj plot1.title = filename plot1.saveName = [filename + '.pdf', filename + '.png'] textToSet = 'focusing mirror\nmeridional radius\n$R =$ %.1f km'\ % (rmaj * 1e-5) textPanel1.set_text(textToSet) yield xrtr.run_ray_tracing( plot1, repeats=640, updateEvery=2, threads=threads, energyRange=[5998, 6002], generator=plot_generator, globalNorm=True, backend='shadow') #this is necessary to use multiprocessing in Windows, otherwise the new Python #contexts cannot be initialized: if __name__ == '__main__': main()
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Mikhail Kyosev <mialygk@gmail.com> # License: BSD - 2-caluse from __future__ import print_function from collections import OrderedDict import re import glob import time import os import datetime import functools import curses from subprocess import Popen, PIPE class Readings: def __init__(self): self.start_time = int(time.time()) self.delta_t = {} def run(self): current = {} stdscr = curses.initscr() curses.noecho() curses.cbreak() stdscr.keypad(True) try: while True: now = int(time.time()) - int(self.start_time) self.save_data(current, self.fetch_data()) stdscr.clear() stdscr.refresh() self.output(current, "C") print("\rRunning from: {0:10}".format(str(datetime.timedelta(seconds = now)))) print("\rPress CTRL + C to exit...\r\n") time.sleep(1) except KeyboardInterrupt: pass curses.nocbreak() stdscr.keypad(False) curses.echo() curses.endwin() def fetch_data(self): readings = {} sensors = sorted(glob.glob("/sys/class/hwmon/hwmon*/")) for sensor in sensors: name = self.__readfile(sensor + "name") readings[name] = {} temps = sorted(glob.glob(sensor + "temp*_input")) for temp in temps: t = int(int(self.__readfile(temp)) / 1000) index = re.match(r'temp([0-9]+)_input', os.path.basename(temp)).group(1) try: label = self.__readfile(sensor + "temp" + index + "_label") except: label = "Item #" + index readings[name][label] = { 'type': 'temp', 'value': t } fans = sorted(glob.glob(sensor + "fan*_input")) for fan in fans: t = int(self.__readfile(fan)) index = re.match(r'fan([0-9]+)_input', os.path.basename(fan)).group(1) try: label = self.__readfile(sensor + "fan" + index + "_label") except: label = "Fan #" + index readings[name][label] = { 'type': "rotary", 'value': t } voltage = sorted(glob.glob(sensor + "in*_input")) for volt in voltage: t = int(self.__readfile(volt)) index = re.match(r'in([0-9]+)_input', os.path.basename(volt)).group(1) try: label = self.__readfile(sensor + "in" + index + "_label") except: label = "Voltage #" + index readings[name][label] = { 'type': 'voltage', 'value': t / 1000.0 } try: readings.setdefault("nvidia", {}) readings["nvidia"]["Core"] = { 'type': 'temp', 'value': self.nvidia_temp() } except: pass try: readings.setdefault("nvidia", {}) readings['nvidia']['Fan'] = { 'type': 'rotary', 'value': self.nvidia_fan() } except: pass if not len(readings["nvidia"].keys()): del(readings["nvidia"]) return readings def save_data(self, current, new): for s in new: if not s in current: current[s] = {} for i in new[s]: val = new[s][i]['value'] typ = new[s][i]['type'] reading = i + "_" + s if not reading in self.delta_t: self.delta_t[reading] = {} if not val in self.delta_t[reading]: self.delta_t[reading][val] = 1 else: self.delta_t[reading][val] += 1 if not i in current[s]: current[s][i] = [ ('cur', val), ('min', val), ('max', val), ('avg', val), ('type', typ) ] else: current[s][i] = [ ('cur', val), ('min', val if val < current[s][i][1][1] else current[s][i][1][1]), ('max', val if val > current[s][i][2][1] else current[s][i][2][1]), ('avg', self.__avg_delta(reading)), ('type', typ) ] return current def output(self, readings, scale = 'C'): # sort sensors rkeys = readings.keys() rkeys = sorted(rkeys) rkeys = sorted(rkeys, key=len, reverse=True) fmt_string = u"\r{0:>25s}{1:>13s}{2:>13s}{3:>13s}{4:>15s}" for s in rkeys: print(fmt_string.format(u"Sensor '" + s + u"'", "Current", "Min", "Max", "Avg")) print("\r" + ("-" * 80)) # sort labels keys = sorted(readings[s].items(), key=functools.cmp_to_key(self.__sort_temp)) keys = enumerate(OrderedDict(keys).keys()) last_type = 'temp' for index, i in keys: typ = readings[s][i][4][1] if typ == 'temp': cur = self.degree(readings[s][i][0][1], scale) min = self.degree(readings[s][i][1][1], scale) max = self.degree(readings[s][i][2][1], scale) avg = self.degree(readings[s][i][3][1], scale, digits=1) elif typ == "rotary": cur = self.rpm(readings[s][i][0][1]) min = self.rpm(readings[s][i][1][1]) max = self.rpm(readings[s][i][2][1]) avg = self.rpm(readings[s][i][3][1], digits=1) elif typ == 'voltage': cur = self.voltage(readings[s][i][0][1]) min = self.voltage(readings[s][i][1][1]) max = self.voltage(readings[s][i][2][1]) avg = self.voltage(readings[s][i][3][1]) else: continue if index and last_type != typ: print('\n', end='') print(fmt_string.format(i, cur, min, max, avg)) last_type = typ print('\n', end='') def degree(self, temp, scale='C', digits=0): sign = u'\N{DEGREE SIGN}' if scale == 'K': temp = temp + 273.15 sign = "" elif scale == 'F': temp = temp * 9/5.0 + 32 else: scale = "C" return self.rounding(temp, digits) + ' ' + sign + scale def rpm(self, value, digits=0): return self.rounding(value, digits) + ' rpm' def voltage(self, value, digits=2): sign = '+' if value < 0: sign = '-' return sign + self.rounding(value, digits) + ' V' def rounding(self, value, digits=0): fmt = u"{0:." + str(digits) + "f}" return (fmt.format(round(value + 0.0, digits))) def nvidia_temp(self): try: process = Popen(['nvidia-settings', '-q', 'gpucoretemp', '-t'], stdout=PIPE, stderr=PIPE) temp, stderr = process.communicate() if not temp: raise Exception("None reading") return int(temp) except: try: process = Popen(['nvidia-smi', '-q', '-d', 'TEMPERATURE'], stdout=PIPE, stderr=PIPE) temp, stderr = process.communicate() temp = int(re.search(r': ([0-9]+) C', temp, re.M | re.I).group(1)) return temp except: raise Exception("Invalid reading") def nvidia_fan(self): process = Popen(['nvidia-settings', '-q', 'GPUCurrentFanSpeedRPM', '-t'], stdout=PIPE, stderr=PIPE) val, stderr = process.communicate() if not val: raise Exception("None reading") return int(val) def __readfile(self, filename): with open(filename, 'r') as f: return f.readline().strip() def __avg_delta(self, name): total = 0 count = 0 for key, value in self.delta_t[name].items(): count += value total += key * value return total / (count + 0.0) def __sort_temp(self, a, b): if a[1][4][1] != b[1][4][1]: return len(a[1][4][1]) - len(b[1][4][1]) # asc sort by names if len(a[0]) == len(b[0]): return -1 if a[0] < b[0] else 1 if a[0] > b[0] else 0 # desc sort by length return len(b[0]) - len(a[0]) if __name__ == "__main__": app = Readings() app.run()
import logging import click from bson.json_util import dumps from flask.cli import with_appcontext from scout.commands.utils import builds_option from scout.export.gene import export_genes from scout.server.extensions import store from .utils import build_option, json_option LOG = logging.getLogger(__name__) @click.command("genes", short_help="Export genes") @build_option @json_option @with_appcontext def genes(build, json): """Export all genes from a build""" LOG.info("Running scout export genes") adapter = store result = adapter.all_genes(build=build) gene_list = list(result) if build == "GRCh38": for gene_obj in gene_list: if gene_obj["chromosome"] == "MT": gene_obj["chromosome"] = "M" gene_obj["chromosome"] = "".join(["chr", gene_obj["chromosome"]]) if json: click.echo(dumps(gene_list)) return gene_string = "{0}\t{1}\t{2}\t{3}\t{4}" click.echo("#Chromosome\tStart\tEnd\tHgnc_id\tHgnc_symbol") for gene_obj in gene_list: click.echo( gene_string.format( gene_obj["chromosome"], gene_obj["start"], gene_obj["end"], gene_obj["hgnc_id"], gene_obj["hgnc_symbol"], ) )
from setuptools import setup, find_packages, Extension from io import open from os import path import pathlib # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README file README = (HERE / "README.md").read_text() # automatically captured required modules for install_requires in requirements.txt and as well as configure dependency links with open(path.join(HERE, 'requirements.txt'), encoding='utf-8') as f: all_reqs = f.read().split('\n') install_requires = [x.strip() for x in all_reqs if ('git+' not in x) and ( not x.startswith('#')) and (not x.startswith('-'))] dependency_links = [x.strip().replace('git+', '') for x in all_reqs if 'git+' not in x] setup( name='photofitter', description='Fit your photos into canvases for printing', version='1.0.1', packages=find_packages(), # list of all packages install_requires=install_requires, python_requires='>=3.6', # any python greater than 2.7 entry_points=''' [console_scripts] photofitter=photofitter.__main__:main ''', author="Miguel Ángel (@mianfg)", keyword="photofitter, photos, canvas, rendering, fitting", long_description=README, long_description_content_type="text/markdown", license='MIT', url='https://go.mianfg.me/photofitter', download_url='https://go.mianfg.me/photofitter/download', dependency_links=dependency_links, author_email='hello@mianfg.me', classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", ] )
""" The Flask Server for the PWA """ import sys import os import requests import cv2 import socket import numpy as np import logging from sys import stdout from utils import * from camera import Camera from flask import Flask, session, render_template, request, url_for, flash, redirect, jsonify, Response from flask_socketio import SocketIO, emit sys.path.append("../") sys.path.append("./") from Instance_Segementation import live_seg import time from ESPNet import test_seg from Priority import priority # Initialize Flask app = Flask(__name__) app.config["SECRET_KEY"] = 'ks2334' socketio = SocketIO(app) # Load ESPNet modelESPNet, device = test_seg.load_model() # Load MaskRCNN modelInstance = live_seg.load_instance_model() # Load Depth depth = None globals()["depth"] = __import__("Depth_Model.depth") globals()["objectmotion"] = __import__("Depth_Model.objectmotion") # Load Depth Model sess, inference_model = depth.depth.load_depth_model( "../Trained-Models/depth-model/model-199160") @app.route("/") def index(): return render_template('index.html') @socketio.on('connect', namespace='/videoStream') def videoStream_connect(): print("Client Connected") # Socket code for connecting to the client for video streaming from client-server import time @socketio.on('inputImage', namespace='/videoStream') def videoStream_message(input): start = time.time() print("Received Frame") input = input.split(",")[1] # Decoding the base64 image input_img = base64_to_pil_image(input).convert('RGB') cvImg = np.array(input_img) # Convert RGB to BGR cvImg = cvImg[:, :, ::-1].copy() cv2.imshow("Received Frame", cvImg) # Semantic Segmentation segmented_img = test_seg.evaluate(modelESPNet, cvImg, device) # Instance Segmentation instance_img, instance_img_colored = live_seg.run_instance_model( modelInstance, cvImg) cv2.imshow("Instance Mask", instance_img_colored) # Depth and Object Motion color_map = depth.depth.run_inference( sess=sess, model=inference_model, frame=cvImg) color_map = (color_map*255).astype(np.uint8) color_map = cv2.cvtColor(color_map, cv2.COLOR_RGB2BGR) cv2.imshow("Depth", color_map) closest_message = priority.get_the_closest( color_map, instance_img, instance_img_colored) path_message = priority.get_the_path_message(segmented_img) final_message = "" print("priorityOutput", closest_message + path_message) emit("priorityOutput", closest_message + path_message) print("Inference time:", time.time() - start) if cv2.waitKey(1) == 27: return if __name__ == '__main__': host = os.system("hostname -I") socketio.run(app, debug=True, host="0.0.0.0", port=5000, keyfile="./key.pem", certfile="./cert.pem", use_reloader=False) # Code for lower Django version, if you get error for keyfile and certfile syntac # socketio.run(app, debug=True, host="192.168.43.165", port=5000, # ssl_context=('./cert.pem', './key.pem'), use_reloader=False)
import calendar import copy import datetime import time from django.conf import settings from django.db.models.signals import post_save from django.contrib import auth from django.contrib.auth.models import User COOKIE_USER_DATA_KEY = '_UD' COOKIE_USER_DATA_TS_KEY = '_UDT' # Defaults to 4 hours in seconds COOKIE_USER_REFRESH_TIME = getattr(settings, 'COOKIE_USER_REFRESH_TIME', 14400) auth_get_user = copy.deepcopy(auth.get_user) def datetime_to_timestamp(dt): ts = calendar.timegm(dt.timetuple()) + (dt.microsecond / 1000000.0) return long(ts * 1000000.0) def timestamp_to_datetime(ts): return datetime.datetime.utcfromtimestamp(ts / 1000000.0) def cookie_set_user(request, force=False): user = request.user data = [ user.username, user.first_name, user.last_name, user.email, user.password, user.is_staff, user.is_active, user.is_superuser, datetime_to_timestamp(user.last_login), datetime_to_timestamp(user.date_joined), ] if force or data != request.session.get(COOKIE_USER_DATA_KEY): request.session[COOKIE_USER_DATA_KEY] = data request.session[COOKIE_USER_DATA_TS_KEY] = time.time() def cookie_get_user(request): # If it's been more than COOKIE_USER_REFRESH_TIME since the last time that # we set the user data stuff, then pull the user from the backend rather # than from the cookie. if COOKIE_USER_DATA_TS_KEY in request.session: diff = time.time() - request.session[COOKIE_USER_DATA_TS_KEY] if diff > COOKIE_USER_REFRESH_TIME: request._force_update_user = True return auth_get_user(request) user_id = request.session.get(auth.SESSION_KEY) if not user_id: return auth_get_user(request) data = request.session.get(COOKIE_USER_DATA_KEY) if not data: return auth_get_user(request) user = User() try: user.id = user_id user.username = data[0] user.first_name = data[1] user.last_name = data[2] user.email = data[3] user.password = data[4] user.is_staff = data[5] user.is_active = data[6] user.is_superuser = data[7] user.last_login = timestamp_to_datetime(data[8]) user.date_joined = timestamp_to_datetime(data[9]) except (IndexError, TypeError): return auth_get_user(request) return user class SessionUserMiddleware(object): def __init__(self): """ It makes me sad that ``auth.get_user`` can't be customized, but instead we have to monkeypatch it. """ auth.get_user = cookie_get_user def process_request(self, request): if getattr(request, 'user', None) is None: return None # If the user isn't authenticated, then there's no way that the # "current user" could see any user attribute changes, since there is # no "current user" if not request.user.is_authenticated(): # Set a property we can check later to see if the user logged in request._force_update_user = True return None # We create a function that's has a closure on the current request def post_user_save(sender, instance, **kwargs): # If the saved user is different from the current user, bail early if instance.id != request.user.id: return None # Otherwise, replace the request's user with the newly-saved user request.user = instance # And then we actually save a reference to it on the request request.post_user_save = post_user_save # Connect the signal post_save.connect(post_user_save, sender=User) def process_response(self, request, response): if getattr(request, 'user', None) is None: return response # If there's a post_user_save function on the request, disconnect it post_user_save = getattr(request, 'post_user_save', None) if post_user_save: post_save.disconnect(post_user_save, sender=User) # If the user is now logged in, make sure the cookie matches the data # that's stored on the request's user object if request.user.is_authenticated(): # If we've explicitly set the force flag, make it True force = getattr(request, '_force_update_user', False) cookie_set_user(request, force=force) return response
#!/usr/bin/python # poll the AWS Trusted Advisor for resource limits and posts an SNS message to a topic with AZ and resource information # Import the SDK import boto3 import uuid import json import ec2Limits import rdsLimits import cloudformationLimits import ConfigParser # Instantiate a new client for AWS Support API and SNS. config = ConfigParser.ConfigParser() config_dict = {} regions = [] config.read("default.config") options = config.options('Settings') for option in options: config_dict[option] = config.get('Settings', option) sns_arn = config_dict['arn'] regions = config_dict['regions'].split(',') support_client = boto3.client('support', region_name='us-east-1') sns_client = boto3.client('sns', region_name='us-west-2') # SNS ARN. This should be replaced with the name of the topic ARN that you want to publish # sns_arn = "arn:aws:sns:us-west-2:141820633316:AWS-Limits" # Configure the regions that you want to poll in the list below # # regions = ['us-east-1', 'us-west-1', 'us-west-2', 'ap-northeast-1'] def limitPoll(): # call trusted advisor for the limit checks response = support_client.describe_trusted_advisor_check_result( checkId='eW7HH0l7J9', language='en' ) print "Contacting Trusted Advisor..." return response; def publishSNS(warn_list, sns_client, sns_arn): # if warn_list has data, publish a message to the SNS_ARN if not warn_list: print "All systems green!" else: print "Publishing message to SNS topic..." sns_client.publish( TargetArn=sns_arn, Message=makeMessage(warn_list) ) return; def makeMessage(warn_list): #make the message that we send to the SNS topic sns_message = 'You have limits approaching their upper threshold. Please take action accordingly. \n' sns_message += '\n Region - Resource:' sns_message += '\n ------------------------' for rs in warn_list: sns_message += '\n' + rs sns_message += '\n' sns_message += '\n EC2 Usage:' sns_message += '\n ------------------------' for rgn in regions: # if (float(ec2Limits.get_actual(rgn)) / float(ec2Limits.get_limit(rgn)) >= 0.8): sns_message += "\n Region: " + rgn sns_message += "\n Instance Limit: " sns_message += ec2Limits.get_limit(rgn) sns_message += "\n Actual Usage: " sns_message += ec2Limits.get_actual(rgn) sns_message += "\n" # else: # sns_message += "\n Region: " + rgn # sns_message += "\n All Green \n" sns_message += '\n' sns_message += '\n RDS Usage:' sns_message += '\n ------------------------' for rgn in regions: rdsLimit, rdsActual = rdsLimits.get_limit(rgn) sns_message += "\n Region: " + rgn sns_message += "\n Instance Limit: " sns_message += str(rdsLimit) sns_message += "\n Actual Usage: " sns_message += str(rdsActual) sns_message += "\n" sns_message += '\n' sns_message += '\n Cloudformation Usage:' sns_message += '\n -------------------------' for rgn in regions: # if (int(cloudformationLimits.get_actual(rgn)) / int(cloudformationLimits.get_limit(rgn)) >= 0.8): sns_message += "\n Region: " + rgn sns_message += "\n Stack Limit: " sns_message += cloudformationLimits.get_limit(rgn) sns_message += "\n Actual Stacks: " sns_message += cloudformationLimits.get_actual(rgn) sns_message += "\n" # else: # sns_message += "\n Region: " + rgn # sns_message += "\n All Green \n" print sns_message return sns_message; def lambda_handler(event, context): response = limitPoll(); # parse the json and find flagged resources that are in warning mode flag_list = response['result']['flaggedResources'] warn_list=[] for fr in flag_list: if fr['metadata'][5] != "Green": warn_list.append(fr['metadata'][0]+' - '+fr['metadata'][2]) print json.dumps(fr, indent=4, separators=(',', ': ')) publishSNS(warn_list, sns_client, sns_arn); return; #test mode #warn_list = [] #makeMessage(warn_list)
from colorama import Fore, init init(autoreset=True) def leiaint(numero_inteiro): """ :param numero_inteiro: Número inteiro digitado :return: int(param) else ERROR """ while True: try: return int(numero_inteiro) except Exception: print(Fore.RED + 'ERRO! Digite um valor inteiro válido!') numero_inteiro = input('Digite novamente um número inteiro: ') def leiafloat(numero_real): """ :param numero_real: Número real digitado :return: float(param) else ERROR """ while True: try: return float(numero_real) except Exception: print(Fore.RED + 'ERRO! Digite um número real válido!') numero_real = input('Digite novamente um número real: ')
import numpy as np import math import sys # # this run control defines 8 parameters, with total number of expected instances # of 1 * 1 * 1 * 1 = 1 # # fidelity levels, 1 * 1 * 1 = 1 f_rxtr = 0 f_fc = 2 f_loc = 0 # reactor params, 1 = 1 n_rxtr = 1 r_t_f = 1.0 r_th_pu = 1.0 # supplier params, 3 = 3 r_s_th = 0.08 # 2 plants per 25 reactors r_s_mox_uox = 0.4 # ratio used but uox supports are thrown away r_s_mox = 0.2 # 1 plant per 5 reactors r_s_thox = 0.2 # 1 plant per 5 reactors d_th = [0, 1, 0] # th mox assem d_f_mox = [0, 0, 1, 0] # f mox assem d_f_thox = [0, 0, 0, 1] # f thox assem
/home/runner/.cache/pip/pool/f6/94/02/3149708d154718ac19c6fc1de1b5b9a7ef6fed55dc7e510b1089878358
import torch import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self,input_channels, output_channels): super().__init__() self.block = nn.Sequential( nn.Conv2d(input_channels, output_channels, 3, stride = 1, padding=1), nn.BatchNorm2d(output_channels), nn.PReLU(), nn.Conv2d(output_channels, output_channels, 3, stride = 1, padding =1), nn.BatchNorm2d(output_channels), nn.PReLU() ) def forward(self, x): x = self.block(x) + x return x class Generator(nn.Module): def __init__(self,in_channels): super().__init__() self.l1 = nn.Sequential( nn.Conv2d(in_channels,64, 9, stride =1, padding = 4), nn.PReLU() ) self.r1 = ResidualBlock(64,64) self.r2 = ResidualBlock(64,64) self.r3 = ResidualBlock(64,64) self.r4 = ResidualBlock(64,64) self.r5 = ResidualBlock(64,64) self.l2 = nn.Sequential( nn.Conv2d(64, 64, 3, stride=1, padding =1), nn.BatchNorm2d(64) ) self.l3 = nn.Sequential( nn.Conv2d(64,256, 3, stride =1, padding = 1), nn.PixelShuffle(2), nn.PReLU(), nn.Conv2d(64,256, 3, stride =1, padding = 1), nn.PixelShuffle(2), nn.PReLU(), nn.Conv2d(64, in_channels, 9, stride =1, padding =4) ) def forward(self, x): x = self.l1(x) x = self.r1(x) x = self.r2(x) x = self.r3(x) x = self.r4(x) x = self.r5(x) x = x + self.l2(x) x = self.l3(x) return x class Discriminator(nn.Module): def __init__(self, in_channels): super().__init__() self.model = nn.Sequential( nn.Conv2d(in_channels, 64, 3, stride =1, padding = 1), nn.LeakyReLU(0.2), nn.Conv2d(64,64,3,stride = 2, padding =1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.Conv2d(64,128,3,stride = 1, padding =1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128,128,3,stride = 2, padding =1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128,256,3,stride = 1, padding =1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.Conv2d(256,256,3,stride = 2, padding =1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.Conv2d(256,512,3,stride = 1, padding =1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.Conv2d(512,512,3,stride = 2, padding =1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.AdaptiveAvgPool2d(1), nn.Conv2d(512,1024,1), nn.LeakyReLU(0.2), nn.Conv2d(1024, 1, 1), nn.Sigmoid() ) def forward(self,x): return self.model(x)
from django.db import models from apps.base.models import Timestampable class Transaction(Timestampable): address = models.CharField(max_length=255) vhost = models.CharField(max_length=255, default='default') agent_ping_time = models.DateTimeField(blank=True) time_avg = models.FloatField(default=999, blank=True) class Meta: db_table = 'transactions' def __str__(self): return self.address
class Log: @staticmethod def log(message, app, type = 'INFO'): app.logger.info(message) return 'LOG:' + message @staticmethod def info(message, app): _message = ' >> ' + message app.logger.info(_message) return _message @staticmethod def debug(message, app): _message = ' >> ' + message app.logger.debug(_message) return _message
# -*- coding: utf-8 -*- """Plots and EDA_v1 Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1Y0k-MwXaSWQIZ64sOD2wDa14P3xRNZTe """ !pip install yfinance import pandas_datareader as web from pandas_datareader import data as pdr import yfinance as yfin import pandas as pd yfin.pdr_override() BTC = pdr.get_data_yahoo("BTC-USD", start="2014-01-01", end="2021-10-31") ETH = pdr.get_data_yahoo("ETH-USD", start="2014-01-01", end="2021-10-31") DOGE = pdr.get_data_yahoo("DOGE-USD", start="2014-01-01", end="2021-10-31") SP5 = pdr.get_data_yahoo("^GSPC", start="2014-01-01", end="2021-10-31") BTC.reset_index(level=0, inplace=True) ETH.reset_index(level=0, inplace=True) DOGE.reset_index(level=0, inplace=True) SP5.reset_index(level=0, inplace=True) print(BTC.head(1)) print(ETH.head(1)) print(DOGE.head(1)) print(SP5.head(1)) Merged = SP5.merge(ETH, how = 'outer', on = "Date") Merged = Merged.merge(DOGE, how = 'outer', on = "Date") Merged = Merged.merge(BTC, how = 'outer', on = "Date") Merged.head(10) SP5.describe() Merged.columns = ["Date","Open_SP5", 'High_SP5' ,'Low_SP5', 'Close_SP5', 'Adj_Close_SP5','Volume_SP5',"Open_ETH", 'High_ETH' ,'Low_ETH', 'Close_ETH', 'Adj_Close_ETH','Volume_ETH',"Open_DOGE", 'High_DOGE' ,'Low_DOGE', 'Close_DOGE', 'Adj_Close_DOGE','Volume_BTC',"Open_BTC", 'High_BTC' ,'Low_BTC', 'Close_BTC', 'Adj_Close_BTC','Volume_BTC'] Merged.head(10) #Testing Append Merge BTC2=BTC.copy() ETH2=ETH.copy() DOGE2=DOGE.copy() SP52=SP5.copy() BTC2['asset']='BTC' ETH2['asset']='ETH' DOGE2['asset']='DOGE' SP52['asset']='SP5' Merged2 = SP52.append(ETH2, ignore_index=True) Merged2 = Merged2.append(DOGE2, ignore_index=True) Merged2=Merged2.append(BTC2, ignore_index=True) Merged2.head() Merged2['delta']=(Merged2['Close']-Merged2['Open'])/Merged2['Open'] Merged2 piv_m2= Merged2.pivot(index='Date', columns='asset',values='delta') piv_m2 piv_m2.corr() #Making a data frame of the closing price for utilizing percent change of the dataframe. c1 is for change dataframe. Merged.columns c1_col=['Date','Adj_Close_SP5','Adj_Close_ETH','Adj_Close_DOGE','Adj_Close_BTC'] c1=Merged[c1_col] c1['Date']=pd.to_datetime(c1.Date) #printing c1 to see if it is converting to date. c1.sort_values('Date') #Setting the index to date. c1 = c1.set_index(Merged['Date']) c1 c1.plot() #made new percent change df to limit constant recalculation. pc1= c1.pct_change() pc1=pc1*100 pc1.plot() #calculating correlation of the percent change columns. pc1.corr() #Creating multiple histograms. Can see from the plots below that eth and BTC #have significantly more volatility. import matplotlib.pyplot as plt import numpy as np plt.figure(figsize=(8,6)) plt.hist(pc1['Adj_Close_SP5'], bins=30, alpha=.5, label='Adj_Close_SP5'); plt.hist(pc1['Adj_Close_BTC'], bins=30, alpha=.5, label='Adj_Close_BTC'); plt.hist(pc1['Adj_Close_ETH'], bins=30, alpha=.5, label='Adj_Close_ETH'); plt.legend() #plt.hist(pc1['Adj Close_DOGE'], bins=30, alpha=.5, label='Adj Close_DOGE'); #took out doge because distorted plot. #asking max if a power transformation would be appropriate here. #daily variance is much higher for ETH, BTC DOGE. Approx 6-10 percent. pc1.describe() pc1.shape """Section below is in progress to subset the overall data set when the SP500 has a significant negative movement. """ #Subsetting the SP5 data for when there is a significant drop. This helps evaluation if eth, btc are really #counter cyclical. 3 standard deviations away from mean would be considered a very large drop. SP_sdev=-3*pc1['Adj_Close_SP5'].std() pc1[pc1.Adj_Close_SP5 < SP_sdev] pc2=pc1 pc2['num']=range(0,pc2.shape[0]) neg_days= pc2.num[pc2.Adj_Close_SP5<SP_sdev] def twendays(x): l1=list(range(x,x+20)) return(l1) neg_days_value =neg_days.apply(twendays) import itertools neg_days_index=list(itertools.chain.from_iterable(neg_days_value)) #Subsetting for when the sp 500 is 3 standard deviations negative. pc_s =pc2.iloc[neg_days_index] pc_s.drop('num',axis=1,) #Dropping number column for correlation. Correlation is much greater when pc_s.drop('num',axis=1,inplace=True) pc_s.corr() plt.figure(figsize=(8,6)) plt.hist(pc_s['Adj_Close_SP5'], bins=30, alpha=.5, label='Adj_Close_SP5'); plt.hist(pc_s['Adj_Close_BTC'], bins=30, alpha=.5, label='Adj_Close_BTC'); plt.hist(pc_s['Adj_Close_ETH'], bins=30, alpha=.5, label='Adj_Close_ETH'); plt.legend() #looks like more negative downside present in the tails of eth and btc distributions. """General Time series predictions Rolling Averages over x days Using days as a hyper parameter and finding how long it takes the markets to react to a large change Taking recency into account as well, How does correlation look within the last year vs last 5 year Outside parameters """
#!/usr/bin/python # coding=utf-8 import numpy as np import pytest import socket from http.server import HTTPServer from threading import Thread from app import MyHandler from service import MNIST @pytest.fixture(scope="session") def mnist_class(): return MNIST() @pytest.fixture(scope='session') def port_number(): return 5050 @pytest.fixture(scope="session") def json_out(mnist_class): return mnist_class.format_payload(index=0, y_pred=np.array([0, 0, 0, 1, 0, 0, 0, 0, 0, 0])) @pytest.fixture(scope="session") def test_image(): return np.zeros(shape=(28, 28)) @pytest.fixture(scope='session') def mock_port(): """Find a free port to run mock server on.""" test_socket = socket.socket(socket.AF_INET, type=socket.SOCK_STREAM) test_socket.bind(('localhost', 0)) _, port = test_socket.getsockname() test_socket.close() return port @pytest.fixture(scope='session') def mock_thread(mock_port): """Set up mock server and run on a new thread. :param get_free_port: port to start server on :return: None """ mock_server = HTTPServer(('', mock_port), MyHandler) mock_thread = Thread(target=mock_server.serve_forever) mock_thread.setDaemon(True) mock_thread.start()
#! usr/bin/env python3 # -*- coding: utf-8 -*- import datetime import logging import re from concurrent.futures import ThreadPoolExecutor from typing import Optional import sqlalchemy.sql import whois_alt from sqlalchemy import select, insert from sqlalchemy.exc import SQLAlchemyError from sqlalchemy.dialects.postgresql import insert from ..db.model import async_engine, all_domains, dangerous_domains, registrars logger = logging.getLogger(__name__) # Executor is needed to run blocking logging operations in a separate thread executor = ThreadPoolExecutor(max_workers=1) REG_RU_NAMES = ["registrar of domain names reg.ru llc", "registrar of domain names reg.ru, llc", "regru-ru"] RUCENTER_NAMES = ["regional network information center, jsc dba ru-center", "ru-center-ru", "ru-center-rf"] def prepare_url(url: str): """Drop 'http://' or 'https://' in the beginning of a url so that it could be passed to whois API""" try: url_match = re.match(r"https?://(.+)", url) main_url_part = url_match.group(1) return main_url_part except AttributeError: executor.submit( logger.error, f"Regexp did not find a match for url: {url}" ) return url def get_whois_record(url: str) -> dict: """Get whois information on url. :return a dict containing four parameters of a retrieved whois record: 'domain_name', 'owner_name', 'registrar_name', 'abuse_emails' """ prepared_url = prepare_url(url) try: whois_record = whois_alt.get_whois(prepared_url) registrar_name = whois_record["registrar"][0] if ( "registrar" in whois_record and whois_record["registrar"]) else "" abuse_emails = ", ".join(whois_record["emails"]) if ( "emails" in whois_record and whois_record["emails"]) else "" if "contacts" in whois_record and whois_record["contacts"]: owner_name = whois_record["contacts"]["registrant"] owner_name = owner_name["organization"] if ( owner_name and "organization" in owner_name) else "" else: owner_name = "" return {"domain_name": url, "owner_name": owner_name, "registrar_name": registrar_name, "abuse_emails": abuse_emails} except whois_alt.shared.WhoisException as e: executor.submit( logger.info, f"Have not found whois record for {prepared_url}. " f"Error message: {e}") return {"domain_name": url, "owner_name": "", "registrar_name": "", "abuse_emails": ""} async def find_domain_id(domain_name: str) -> Optional[int]: select_stmt = ( select(all_domains.c.domain_id). where(all_domains.c.url == domain_name) ) try: async with async_engine.begin() as conn: result = await conn.execute(select_stmt) domain_id = result.fetchone() result.close() if domain_id: domain_id = domain_id[0] return domain_id except Exception as e: executor.submit(logger.error, f"Unexpected error occurred: {e}") return sqlalchemy.sql.null() async def find_registrar_id(registrar_name: str) -> Optional[int]: select_stmt = select(registrars.c.registrar_id). \ where(registrars.c.registrar_name == registrar_name) try: async with async_engine.begin() as conn: result = await conn.execute(select_stmt) registrar_id = result.fetchone() result.close() if registrar_id: registrar_id = registrar_id[0] return registrar_id except Exception as e: logger.error(f"Unexpected error occurred: {e}") async def save_registrar_info(registrar_name: str, abuse_emails: str): insert_stmt = ( insert(registrars). values(registrar_name=registrar_name, abuse_emails=abuse_emails) ) try: async with async_engine.begin() as conn: await conn.execute(insert_stmt) except SQLAlchemyError as e: logger.error(f"SQL error occurred: {e}") async def save_domain_info(domain_id: int, owner_name: str, registrar_id: Optional[int]): now = datetime.datetime.utcnow() insert_stmt = ( insert(dangerous_domains). values(domain_id=domain_id, owner_name=owner_name, registrar_id=registrar_id, last_updated=now) ) update_stmt = insert_stmt.on_conflict_do_update( constraint="pk__dangerous_domains", set_=dict(owner_name=owner_name, registrar_id=registrar_id, last_updated=now) ) async with async_engine.begin() as conn: await conn.execute(update_stmt) async def save_whois_record(whois_record: dict): domain_id = await find_domain_id(whois_record["domain_name"]) registrar_name = whois_record["registrar_name"].lower().strip() abuse_emails = whois_record["abuse_emails"] owner_name = whois_record["owner_name"] registrar_id = sqlalchemy.sql.null() if registrar_name: if registrar_name in REG_RU_NAMES: registrar_name = "regru-ru" if registrar_name in RUCENTER_NAMES: registrar_name = "rucenter-ru" registrar_id = await find_registrar_id(registrar_name) if not registrar_id: await save_registrar_info(registrar_name, abuse_emails) registrar_id = await find_registrar_id(registrar_name) await save_domain_info(domain_id, owner_name, registrar_id) logger.info( f"Saved whois record for {whois_record['domain_name']} to database" )
# -*- coding: utf-8 -*- ''' Bandidos estocásticos: introducción, algoritmos y experimentos TFG Informática Sección 7.1 Figuras 3, 4 y 5 Autor: Marcos Herrero Agustín ''' import scipy.stats as stats import matplotlib.pyplot as plt import numpy as np def regretEFFavsFirst(n,m,arms,gaps): rwds = 2*[0] for i in range(m): rwds[0] += arms[0].rvs() rwds[1] += arms[1].rvs() bestarm = min([i for i in range(2) if rwds[i] == max(rwds)]) return m*sum(gaps)+(n-2*m)*gaps[bestarm] def regretEFFavsSecond(n,m,arms,gaps): rwds = 2*[0] for i in range(m): rwds[0] += arms[0].rvs() rwds[1] += arms[1].rvs() bestarm = max([i for i in range(2) if rwds[i] == max(rwds)]) return m*sum(gaps)+(n-2*m)*gaps[bestarm] n = 1000 nsamples = 100 ms = np.array(range(0,201,2)) numms = len(ms) arms = 2*[None] arms[0] = stats.norm(0,1) arms[1] = stats.norm(-0.1,1) gaps = 2*[0] gaps[0] = 0 gaps[1] = 0.1 regretFavsFirst = numms*[0] regretFavsSecond = numms*[0] for i in range(numms): for k in range(nsamples): regretFavsFirst[i] = k/(k+1)*regretFavsFirst[i] + 1/(k+1)*regretEFFavsFirst(n,ms[i],arms,gaps) regretFavsSecond[i] = k/(k+1)*regretFavsSecond[i] + 1/(k+1)*regretEFFavsSecond(n,ms[i],arms,gaps) colors = ['tab:blue','tab:red'] legend = ['Fav. brazo 1','Fav. brazo 2'] ''' box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) ax.legend(legend, loc = 'center left', bbox_to_anchor=(1, 0.5)) fig.savefig('EFDesempate.pdf',format='pdf') plt.show() ''' fig = plt.figure() ax = plt.subplot(111) ax.plot(ms,regretFavsFirst,color = colors[0]) ax.plot(ms,regretFavsSecond, color = colors[1]) plt.xlabel('m') plt.ylabel('Remordimiento esperado') plt.legend(legend,loc = 'upper right') fig.savefig('EFDesempate.pdf',format='pdf') plt.show()
# Generated by Django 2.0.5 on 2018-05-06 16:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('patients', '0004_auto_20180506_1612'), ] operations = [ migrations.AlterField( model_name='patient', name='profile_image', field=models.ImageField(blank=True, height_field='image_height', null=True, upload_to='patients/', width_field='image_width'), ), ]
import os import logging from abc import ABCMeta, abstractmethod from pyfasta import Fasta, FastaRecord from pyfasta.fasta import FastaNotFound from .helpers import fasta_filepath from .helpers import supported_build from .helpers import parse_build from .md5 import calculate_md5 from .. import SUPPORTED_BUILDS from .. import SOURCE_DATA_MD5 from .. import MD5_CHECK_FAIL from .. import errors logger = logging.getLogger('veppy') class FastaFile(object): __metaclass__ = ABCMeta # -- Util methods @classmethod def load_build(klass, build): try: translated_build = supported_build(build) if not klass.BUILD_CACHE.get(translated_build): klass.BUILD_CACHE[translated_build] = \ klass(build, klass.filepath_for_build(translated_build)) except (FastaNotFound, errors.FastaFileException), e: logger.fatal( 'Error loading FastA file for build %s: %s' % (build, e) ) raise @classmethod def for_build(klass, build): _build = supported_build(build) if not _build: raise errors.VeppyFileException( 'Unsupported build \'%s\'.' % build) klass.load_build(_build) return klass.BUILD_CACHE[_build] @classmethod @abstractmethod def filepath_for_build(klass, build): pass def index(self, reindex=False): return self.get_sequence('1', 1, 1) # --- def __init__(self, build, filepath, index=False): self.build = build self.filepath = filepath # check for FastA file... if not os.path.exists(self.filepath): raise errors.FastaFileException( 'FastA file \'%s\' not found!' % self.filepath ) # check for FastA file... index files FIRST (!!) because Fasta(...) # __init__ checks for indexes and greedily creates # them if they don't exist... if not os.path.exists(self.filepath + '.flat') or \ not os.path.exists(self.filepath + '.gdx'): logger.warn( 'FASTA indexes not found. Indexing...\'%s\'. ' 'This may take 10 minutes or more.' % self.filepath ) self._fasta = Fasta(self.filepath, record_class=FastaRecord, flatten_inplace=True) # Ensure the MD5s are correct # TODO: This is slow (3s per file). Move somewhere else. files = [self.filepath, self.filepath + '.flat', self.filepath + '.gdx'] for f in files: calculated = calculate_md5(f) expected = SOURCE_DATA_MD5.get(os.path.basename(f)) if calculated != expected: message = \ 'FASTA file {} did not pass MD5 check. ' \ 'Expected: {} Found: {}' \ .format(f, expected, calculated) if MD5_CHECK_FAIL: raise errors.FastaFileException(message) else: logger.warn(message) else: logger.info('Fasta file {} passed MD5 check.' .format(f)) # TODO: eventually, this should be dynamic and file-specific self.chromosomes = \ map(lambda x: str(x), range(1, 23)) + ['MT', 'X', 'Y'] def get(self, chromosome, start, stop): fasta_chromosome = self.get_chromosome(chromosome) if not fasta_chromosome: logger.warning('Invalid chromosome requested in FASTA reader: {}' .format(chromosome)) return None # protect pyfasta from itself...if start > stop, PyFasta will # happily fetch the wrapping range of [stop:] + [:start] # and more than likely OOM you into oblivion in the process. if start > stop: logger.debug( 'Invalid range found. chr: %s, range: [%s, %s].' % (chromosome, start, stop) ) return '' return fasta_chromosome[start - 1:stop - 1 + 1] # backwards compat w/ Sequence API def get_sequence(self, chromosome, start, stop): return self.get(chromosome, start, stop) def get_slice(self, chromosome, _slice): return self.get(chromosome, _slice.start, _slice.stop - 1) @abstractmethod def get_chromosome(self, chromosome): pass @abstractmethod def get_chromosome_accession(self, chromosome): pass @staticmethod def supported_chromosome_accession(chromosome_accession): return chromosome_accession.upper() in \ REFSEQ_CHROMOSOME_ACCESSIONS @staticmethod def get_build_from_chromosome_accession(chromosome_accession): if FastaFile.supported_chromosome_accession(chromosome_accession): return REFSEQ_CHROMOSOME_ACCESSIONS[ chromosome_accession.upper()]['build'] return None @staticmethod def get_chromosome_from_chromosome_accession(chromosome_accession): if FastaFile.supported_chromosome_accession(chromosome_accession): return REFSEQ_CHROMOSOME_ACCESSIONS[ chromosome_accession.upper()]['chromosome'] return None # Genbank sequence Fasta file class GenbankFastaFile(FastaFile): BUILD_CACHE = {k: None for k in SUPPORTED_BUILDS} FASTA_CHROMOSOME_ACCESSIONS = { 'GRCH37': { 'CM000663.1': 'NC_000001.10', 'CM000664.1': 'NC_000002.11', 'CM000665.1': 'NC_000003.11', 'CM000666.1': 'NC_000004.11', 'CM000667.1': 'NC_000005.9', 'CM000668.1': 'NC_000006.11', 'CM000669.1': 'NC_000007.13', 'CM000670.1': 'NC_000008.10', 'CM000671.1': 'NC_000009.11', 'CM000672.1': 'NC_000010.10', 'CM000673.1': 'NC_000011.9', 'CM000674.1': 'NC_000012.11', 'CM000675.1': 'NC_000013.10', 'CM000676.1': 'NC_000014.8', 'CM000677.1': 'NC_000015.9', 'CM000678.1': 'NC_000016.9', 'CM000679.1': 'NC_000017.10', 'CM000680.1': 'NC_000018.9', 'CM000681.1': 'NC_000019.9', 'CM000682.1': 'NC_000020.10', 'CM000683.1': 'NC_000021.8', 'CM000684.1': 'NC_000022.10', 'CM000685.1': 'NC_000023.10', 'CM000686.1': 'NC_000024.9' } } @classmethod def filepath_for_build(klass, build): (release, version) = parse_build(build) logger.info( 'Loading build %s (release: %s, version: %s).' % (build, release, version or 'None') ) return fasta_filepath(build, 'genbank') # chromosomes entries in *.fa files look like: # 'gi|224384768|gb|CM000663.1| Homo sapiens chromosome 1, GRC primary reference assembly' # noqa # given an input chromosome 'chrN', strip leading 'ch(r)' and lookup based # on keys that match 'N ' def _get_fasta_key_for_chromosome(self, chromosome): chr_clean = chromosome.upper().lstrip('CHR') for k in self._fasta.keys(): if k.split(', ')[0].upper().endswith(' %s' % chr_clean): return k return None def get_chromosome(self, chromosome): k = self._get_fasta_key_for_chromosome(chromosome) return self._fasta.get(k) if k else None def get_chromosome_accessions(self): return self.REFSEQ_CHROMOSOME_ACCESSIONS[self.build.upper()] def get_chromosome_accession(self, chromosome): fasta_key = self._get_fasta_key_for_chromosome(chromosome) if fasta_key: chr_accession = fasta_key.split('|')[3] return self.FASTA_CHROMOSOME_ACCESSIONS[self.build.upper()] \ .get(chr_accession) return None REFSEQ_CHROMOSOME_ACCESSIONS = { 'NC_000001.10': { 'chromosome': '1', 'build': 'GRCh37' }, 'NC_000002.11': { 'chromosome': '2', 'build': 'GRCh37' }, 'NC_000003.11': { 'chromosome': '3', 'build': 'GRCh37' }, 'NC_000004.11': { 'chromosome': '4', 'build': 'GRCh37' }, 'NC_000005.9': { 'chromosome': '5', 'build': 'GRCh37' }, 'NC_000006.11': { 'chromosome': '6', 'build': 'GRCh37' }, 'NC_000007.13': { 'chromosome': '7', 'build': 'GRCh37' }, 'NC_000008.10': { 'chromosome': '8', 'build': 'GRCh37' }, 'NC_000009.11': { 'chromosome': '9', 'build': 'GRCh37' }, 'NC_000010.10': { 'chromosome': '10', 'build': 'GRCh37' }, 'NC_000011.9': { 'chromosome': '11', 'build': 'GRCh37' }, 'NC_000012.11': { 'chromosome': '12', 'build': 'GRCh37' }, 'NC_000013.10': { 'chromosome': '13', 'build': 'GRCh37' }, 'NC_000014.8': { 'chromosome': '14', 'build': 'GRCh37' }, 'NC_000015.9': { 'chromosome': '15', 'build': 'GRCh37' }, 'NC_000016.9': { 'chromosome': '16', 'build': 'GRCh37' }, 'NC_000017.10': { 'chromosome': '17', 'build': 'GRCh37' }, 'NC_000018.9': { 'chromosome': '18', 'build': 'GRCh37' }, 'NC_000019.9': { 'chromosome': '19', 'build': 'GRCh37' }, 'NC_000020.10': { 'chromosome': '20', 'build': 'GRCh37' }, 'NC_000021.8': { 'chromosome': '21', 'build': 'GRCh37' }, 'NC_000022.10': { 'chromosome': '22', 'build': 'GRCh37' }, 'NC_000023.10': { 'chromosome': 'X', 'build': 'GRCh37' }, 'NC_000024.9': { 'chromosome': 'Y', 'build': 'GRCh37' } }
import django import wagtail from wagtail_storages import backends, utils HOOK_ORDER = getattr( django.conf.settings, 'WAGTAIL_STORAGES_DOCUMENT_HOOK_ORDER', 100 ) @wagtail.core.hooks.register('before_serve_document', order=HOOK_ORDER) def serve_document_from_s3(document, request): # Skip this hook if not using django-storages boto3 backend. if not utils.is_s3_boto3_storage_used(): return # Send document_served signal. wagtail.documents.models.document_served.send( sender=wagtail.documents.models.get_document_model(), instance=document, request=request ) # If document has restrictions, generate a signed URL, otherwise # return its public URL. if document.collection.get_view_restrictions(): backend = backends.S3Boto3StorageForWagtailDocument() file_url = backend.url(document.file.name) else: file_url = document.file.url # Generate redirect response and add never_cache headers. response = django.shortcuts.redirect(file_url) del response['Cache-control'] django.utils.cache.add_never_cache_headers(response) return response
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from ._enums import * __all__ = [ 'AgentPropertiesArgs', 'ArgumentArgs', 'AuthInfoArgs', 'BaseImageTriggerArgs', 'CredentialsArgs', 'CustomRegistryCredentialsArgs', 'DockerBuildRequestArgs', 'EncodedTaskRunRequestArgs', 'ExportPipelineTargetPropertiesArgs', 'FileTaskRunRequestArgs', 'IPRuleArgs', 'IdentityPropertiesArgs', 'ImportPipelineSourcePropertiesArgs', 'LoggingPropertiesArgs', 'NetworkRuleSetArgs', 'OverrideTaskStepPropertiesArgs', 'ParentPropertiesArgs', 'PipelineRunRequestArgs', 'PipelineRunSourcePropertiesArgs', 'PipelineRunTargetPropertiesArgs', 'PipelineSourceTriggerPropertiesArgs', 'PipelineTriggerPropertiesArgs', 'PlatformPropertiesArgs', 'PoliciesArgs', 'PrivateEndpointArgs', 'PrivateLinkServiceConnectionStateArgs', 'QuarantinePolicyArgs', 'RetentionPolicyArgs', 'SecretObjectArgs', 'SetValueArgs', 'SkuArgs', 'SourceControlAuthInfoArgs', 'SourcePropertiesArgs', 'SourceRegistryCredentialsArgs', 'SourceRepositoryPropertiesArgs', 'SourceTriggerArgs', 'StorageAccountPropertiesArgs', 'SyncPropertiesArgs', 'TaskRunRequestArgs', 'TaskStepPropertiesArgs', 'TimerTriggerArgs', 'TokenCertificateArgs', 'TokenCredentialsPropertiesArgs', 'TokenPasswordArgs', 'TriggerPropertiesArgs', 'TrustPolicyArgs', 'UserIdentityPropertiesArgs', 'VirtualNetworkRuleArgs', ] @pulumi.input_type class AgentPropertiesArgs: def __init__(__self__, *, cpu: Optional[pulumi.Input[int]] = None): """ The properties that determine the run agent configuration. :param pulumi.Input[int] cpu: The CPU configuration in terms of number of cores required for the run. """ if cpu is not None: pulumi.set(__self__, "cpu", cpu) @property @pulumi.getter def cpu(self) -> Optional[pulumi.Input[int]]: """ The CPU configuration in terms of number of cores required for the run. """ return pulumi.get(self, "cpu") @cpu.setter def cpu(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "cpu", value) @pulumi.input_type class ArgumentArgs: def __init__(__self__, *, name: pulumi.Input[str], value: pulumi.Input[str], is_secret: Optional[pulumi.Input[bool]] = None): """ The properties of a run argument. :param pulumi.Input[str] name: The name of the argument. :param pulumi.Input[str] value: The value of the argument. :param pulumi.Input[bool] is_secret: Flag to indicate whether the argument represents a secret and want to be removed from build logs. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "value", value) if is_secret is None: is_secret = False if is_secret is not None: pulumi.set(__self__, "is_secret", is_secret) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ The name of the argument. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter def value(self) -> pulumi.Input[str]: """ The value of the argument. """ return pulumi.get(self, "value") @value.setter def value(self, value: pulumi.Input[str]): pulumi.set(self, "value", value) @property @pulumi.getter(name="isSecret") def is_secret(self) -> Optional[pulumi.Input[bool]]: """ Flag to indicate whether the argument represents a secret and want to be removed from build logs. """ return pulumi.get(self, "is_secret") @is_secret.setter def is_secret(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_secret", value) @pulumi.input_type class AuthInfoArgs: def __init__(__self__, *, token: pulumi.Input[str], token_type: pulumi.Input[Union[str, 'TokenType']], expires_in: Optional[pulumi.Input[int]] = None, refresh_token: Optional[pulumi.Input[str]] = None, scope: Optional[pulumi.Input[str]] = None): """ The authorization properties for accessing the source code repository. :param pulumi.Input[str] token: The access token used to access the source control provider. :param pulumi.Input[Union[str, 'TokenType']] token_type: The type of Auth token. :param pulumi.Input[int] expires_in: Time in seconds that the token remains valid :param pulumi.Input[str] refresh_token: The refresh token used to refresh the access token. :param pulumi.Input[str] scope: The scope of the access token. """ pulumi.set(__self__, "token", token) pulumi.set(__self__, "token_type", token_type) if expires_in is not None: pulumi.set(__self__, "expires_in", expires_in) if refresh_token is not None: pulumi.set(__self__, "refresh_token", refresh_token) if scope is not None: pulumi.set(__self__, "scope", scope) @property @pulumi.getter def token(self) -> pulumi.Input[str]: """ The access token used to access the source control provider. """ return pulumi.get(self, "token") @token.setter def token(self, value: pulumi.Input[str]): pulumi.set(self, "token", value) @property @pulumi.getter(name="tokenType") def token_type(self) -> pulumi.Input[Union[str, 'TokenType']]: """ The type of Auth token. """ return pulumi.get(self, "token_type") @token_type.setter def token_type(self, value: pulumi.Input[Union[str, 'TokenType']]): pulumi.set(self, "token_type", value) @property @pulumi.getter(name="expiresIn") def expires_in(self) -> Optional[pulumi.Input[int]]: """ Time in seconds that the token remains valid """ return pulumi.get(self, "expires_in") @expires_in.setter def expires_in(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "expires_in", value) @property @pulumi.getter(name="refreshToken") def refresh_token(self) -> Optional[pulumi.Input[str]]: """ The refresh token used to refresh the access token. """ return pulumi.get(self, "refresh_token") @refresh_token.setter def refresh_token(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "refresh_token", value) @property @pulumi.getter def scope(self) -> Optional[pulumi.Input[str]]: """ The scope of the access token. """ return pulumi.get(self, "scope") @scope.setter def scope(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "scope", value) @pulumi.input_type class BaseImageTriggerArgs: def __init__(__self__, *, base_image_trigger_type: pulumi.Input[Union[str, 'BaseImageTriggerType']], name: pulumi.Input[str], status: Optional[pulumi.Input[Union[str, 'TriggerStatus']]] = None): """ The trigger based on base image dependency. :param pulumi.Input[Union[str, 'BaseImageTriggerType']] base_image_trigger_type: The type of the auto trigger for base image dependency updates. :param pulumi.Input[str] name: The name of the trigger. :param pulumi.Input[Union[str, 'TriggerStatus']] status: The current status of trigger. """ pulumi.set(__self__, "base_image_trigger_type", base_image_trigger_type) pulumi.set(__self__, "name", name) if status is None: status = 'Enabled' if status is not None: pulumi.set(__self__, "status", status) @property @pulumi.getter(name="baseImageTriggerType") def base_image_trigger_type(self) -> pulumi.Input[Union[str, 'BaseImageTriggerType']]: """ The type of the auto trigger for base image dependency updates. """ return pulumi.get(self, "base_image_trigger_type") @base_image_trigger_type.setter def base_image_trigger_type(self, value: pulumi.Input[Union[str, 'BaseImageTriggerType']]): pulumi.set(self, "base_image_trigger_type", value) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ The name of the trigger. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter def status(self) -> Optional[pulumi.Input[Union[str, 'TriggerStatus']]]: """ The current status of trigger. """ return pulumi.get(self, "status") @status.setter def status(self, value: Optional[pulumi.Input[Union[str, 'TriggerStatus']]]): pulumi.set(self, "status", value) @pulumi.input_type class CredentialsArgs: def __init__(__self__, *, custom_registries: Optional[pulumi.Input[Mapping[str, pulumi.Input['CustomRegistryCredentialsArgs']]]] = None, source_registry: Optional[pulumi.Input['SourceRegistryCredentialsArgs']] = None): """ The parameters that describes a set of credentials that will be used when a run is invoked. :param pulumi.Input[Mapping[str, pulumi.Input['CustomRegistryCredentialsArgs']]] custom_registries: Describes the credential parameters for accessing other custom registries. The key for the dictionary item will be the registry login server (myregistry.azurecr.io) and the value of the item will be the registry credentials for accessing the registry. :param pulumi.Input['SourceRegistryCredentialsArgs'] source_registry: Describes the credential parameters for accessing the source registry. """ if custom_registries is not None: pulumi.set(__self__, "custom_registries", custom_registries) if source_registry is not None: pulumi.set(__self__, "source_registry", source_registry) @property @pulumi.getter(name="customRegistries") def custom_registries(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input['CustomRegistryCredentialsArgs']]]]: """ Describes the credential parameters for accessing other custom registries. The key for the dictionary item will be the registry login server (myregistry.azurecr.io) and the value of the item will be the registry credentials for accessing the registry. """ return pulumi.get(self, "custom_registries") @custom_registries.setter def custom_registries(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input['CustomRegistryCredentialsArgs']]]]): pulumi.set(self, "custom_registries", value) @property @pulumi.getter(name="sourceRegistry") def source_registry(self) -> Optional[pulumi.Input['SourceRegistryCredentialsArgs']]: """ Describes the credential parameters for accessing the source registry. """ return pulumi.get(self, "source_registry") @source_registry.setter def source_registry(self, value: Optional[pulumi.Input['SourceRegistryCredentialsArgs']]): pulumi.set(self, "source_registry", value) @pulumi.input_type class CustomRegistryCredentialsArgs: def __init__(__self__, *, identity: Optional[pulumi.Input[str]] = None, password: Optional[pulumi.Input['SecretObjectArgs']] = None, user_name: Optional[pulumi.Input['SecretObjectArgs']] = None): """ Describes the credentials that will be used to access a custom registry during a run. :param pulumi.Input[str] identity: Indicates the managed identity assigned to the custom credential. If a user-assigned identity this value is the Client ID. If a system-assigned identity, the value will be `system`. In the case of a system-assigned identity, the Client ID will be determined by the runner. This identity may be used to authenticate to key vault to retrieve credentials or it may be the only source of authentication used for accessing the registry. :param pulumi.Input['SecretObjectArgs'] password: The password for logging into the custom registry. The password is a secret object that allows multiple ways of providing the value for it. :param pulumi.Input['SecretObjectArgs'] user_name: The username for logging into the custom registry. """ if identity is not None: pulumi.set(__self__, "identity", identity) if password is not None: pulumi.set(__self__, "password", password) if user_name is not None: pulumi.set(__self__, "user_name", user_name) @property @pulumi.getter def identity(self) -> Optional[pulumi.Input[str]]: """ Indicates the managed identity assigned to the custom credential. If a user-assigned identity this value is the Client ID. If a system-assigned identity, the value will be `system`. In the case of a system-assigned identity, the Client ID will be determined by the runner. This identity may be used to authenticate to key vault to retrieve credentials or it may be the only source of authentication used for accessing the registry. """ return pulumi.get(self, "identity") @identity.setter def identity(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "identity", value) @property @pulumi.getter def password(self) -> Optional[pulumi.Input['SecretObjectArgs']]: """ The password for logging into the custom registry. The password is a secret object that allows multiple ways of providing the value for it. """ return pulumi.get(self, "password") @password.setter def password(self, value: Optional[pulumi.Input['SecretObjectArgs']]): pulumi.set(self, "password", value) @property @pulumi.getter(name="userName") def user_name(self) -> Optional[pulumi.Input['SecretObjectArgs']]: """ The username for logging into the custom registry. """ return pulumi.get(self, "user_name") @user_name.setter def user_name(self, value: Optional[pulumi.Input['SecretObjectArgs']]): pulumi.set(self, "user_name", value) @pulumi.input_type class DockerBuildRequestArgs: def __init__(__self__, *, docker_file_path: pulumi.Input[str], platform: pulumi.Input['PlatformPropertiesArgs'], type: pulumi.Input[str], agent_configuration: Optional[pulumi.Input['AgentPropertiesArgs']] = None, agent_pool_name: Optional[pulumi.Input[str]] = None, arguments: Optional[pulumi.Input[Sequence[pulumi.Input['ArgumentArgs']]]] = None, credentials: Optional[pulumi.Input['CredentialsArgs']] = None, image_names: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, is_archive_enabled: Optional[pulumi.Input[bool]] = None, is_push_enabled: Optional[pulumi.Input[bool]] = None, log_template: Optional[pulumi.Input[str]] = None, no_cache: Optional[pulumi.Input[bool]] = None, source_location: Optional[pulumi.Input[str]] = None, target: Optional[pulumi.Input[str]] = None, timeout: Optional[pulumi.Input[int]] = None): """ The parameters for a docker quick build. :param pulumi.Input[str] docker_file_path: The Docker file path relative to the source location. :param pulumi.Input['PlatformPropertiesArgs'] platform: The platform properties against which the run has to happen. :param pulumi.Input[str] type: The type of the run request. Expected value is 'DockerBuildRequest'. :param pulumi.Input['AgentPropertiesArgs'] agent_configuration: The machine configuration of the run agent. :param pulumi.Input[str] agent_pool_name: The dedicated agent pool for the run. :param pulumi.Input[Sequence[pulumi.Input['ArgumentArgs']]] arguments: The collection of override arguments to be used when executing the run. :param pulumi.Input['CredentialsArgs'] credentials: The properties that describes a set of credentials that will be used when this run is invoked. :param pulumi.Input[Sequence[pulumi.Input[str]]] image_names: The fully qualified image names including the repository and tag. :param pulumi.Input[bool] is_archive_enabled: The value that indicates whether archiving is enabled for the run or not. :param pulumi.Input[bool] is_push_enabled: The value of this property indicates whether the image built should be pushed to the registry or not. :param pulumi.Input[str] log_template: The template that describes the repository and tag information for run log artifact. :param pulumi.Input[bool] no_cache: The value of this property indicates whether the image cache is enabled or not. :param pulumi.Input[str] source_location: The URL(absolute or relative) of the source context. It can be an URL to a tar or git repository. If it is relative URL, the relative path should be obtained from calling listBuildSourceUploadUrl API. :param pulumi.Input[str] target: The name of the target build stage for the docker build. :param pulumi.Input[int] timeout: Run timeout in seconds. """ pulumi.set(__self__, "docker_file_path", docker_file_path) pulumi.set(__self__, "platform", platform) pulumi.set(__self__, "type", 'DockerBuildRequest') if agent_configuration is not None: pulumi.set(__self__, "agent_configuration", agent_configuration) if agent_pool_name is not None: pulumi.set(__self__, "agent_pool_name", agent_pool_name) if arguments is not None: pulumi.set(__self__, "arguments", arguments) if credentials is not None: pulumi.set(__self__, "credentials", credentials) if image_names is not None: pulumi.set(__self__, "image_names", image_names) if is_archive_enabled is None: is_archive_enabled = False if is_archive_enabled is not None: pulumi.set(__self__, "is_archive_enabled", is_archive_enabled) if is_push_enabled is None: is_push_enabled = True if is_push_enabled is not None: pulumi.set(__self__, "is_push_enabled", is_push_enabled) if log_template is not None: pulumi.set(__self__, "log_template", log_template) if no_cache is None: no_cache = False if no_cache is not None: pulumi.set(__self__, "no_cache", no_cache) if source_location is not None: pulumi.set(__self__, "source_location", source_location) if target is not None: pulumi.set(__self__, "target", target) if timeout is None: timeout = 3600 if timeout is not None: pulumi.set(__self__, "timeout", timeout) @property @pulumi.getter(name="dockerFilePath") def docker_file_path(self) -> pulumi.Input[str]: """ The Docker file path relative to the source location. """ return pulumi.get(self, "docker_file_path") @docker_file_path.setter def docker_file_path(self, value: pulumi.Input[str]): pulumi.set(self, "docker_file_path", value) @property @pulumi.getter def platform(self) -> pulumi.Input['PlatformPropertiesArgs']: """ The platform properties against which the run has to happen. """ return pulumi.get(self, "platform") @platform.setter def platform(self, value: pulumi.Input['PlatformPropertiesArgs']): pulumi.set(self, "platform", value) @property @pulumi.getter def type(self) -> pulumi.Input[str]: """ The type of the run request. Expected value is 'DockerBuildRequest'. """ return pulumi.get(self, "type") @type.setter def type(self, value: pulumi.Input[str]): pulumi.set(self, "type", value) @property @pulumi.getter(name="agentConfiguration") def agent_configuration(self) -> Optional[pulumi.Input['AgentPropertiesArgs']]: """ The machine configuration of the run agent. """ return pulumi.get(self, "agent_configuration") @agent_configuration.setter def agent_configuration(self, value: Optional[pulumi.Input['AgentPropertiesArgs']]): pulumi.set(self, "agent_configuration", value) @property @pulumi.getter(name="agentPoolName") def agent_pool_name(self) -> Optional[pulumi.Input[str]]: """ The dedicated agent pool for the run. """ return pulumi.get(self, "agent_pool_name") @agent_pool_name.setter def agent_pool_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "agent_pool_name", value) @property @pulumi.getter def arguments(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['ArgumentArgs']]]]: """ The collection of override arguments to be used when executing the run. """ return pulumi.get(self, "arguments") @arguments.setter def arguments(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['ArgumentArgs']]]]): pulumi.set(self, "arguments", value) @property @pulumi.getter def credentials(self) -> Optional[pulumi.Input['CredentialsArgs']]: """ The properties that describes a set of credentials that will be used when this run is invoked. """ return pulumi.get(self, "credentials") @credentials.setter def credentials(self, value: Optional[pulumi.Input['CredentialsArgs']]): pulumi.set(self, "credentials", value) @property @pulumi.getter(name="imageNames") def image_names(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The fully qualified image names including the repository and tag. """ return pulumi.get(self, "image_names") @image_names.setter def image_names(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "image_names", value) @property @pulumi.getter(name="isArchiveEnabled") def is_archive_enabled(self) -> Optional[pulumi.Input[bool]]: """ The value that indicates whether archiving is enabled for the run or not. """ return pulumi.get(self, "is_archive_enabled") @is_archive_enabled.setter def is_archive_enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_archive_enabled", value) @property @pulumi.getter(name="isPushEnabled") def is_push_enabled(self) -> Optional[pulumi.Input[bool]]: """ The value of this property indicates whether the image built should be pushed to the registry or not. """ return pulumi.get(self, "is_push_enabled") @is_push_enabled.setter def is_push_enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_push_enabled", value) @property @pulumi.getter(name="logTemplate") def log_template(self) -> Optional[pulumi.Input[str]]: """ The template that describes the repository and tag information for run log artifact. """ return pulumi.get(self, "log_template") @log_template.setter def log_template(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "log_template", value) @property @pulumi.getter(name="noCache") def no_cache(self) -> Optional[pulumi.Input[bool]]: """ The value of this property indicates whether the image cache is enabled or not. """ return pulumi.get(self, "no_cache") @no_cache.setter def no_cache(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "no_cache", value) @property @pulumi.getter(name="sourceLocation") def source_location(self) -> Optional[pulumi.Input[str]]: """ The URL(absolute or relative) of the source context. It can be an URL to a tar or git repository. If it is relative URL, the relative path should be obtained from calling listBuildSourceUploadUrl API. """ return pulumi.get(self, "source_location") @source_location.setter def source_location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "source_location", value) @property @pulumi.getter def target(self) -> Optional[pulumi.Input[str]]: """ The name of the target build stage for the docker build. """ return pulumi.get(self, "target") @target.setter def target(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "target", value) @property @pulumi.getter def timeout(self) -> Optional[pulumi.Input[int]]: """ Run timeout in seconds. """ return pulumi.get(self, "timeout") @timeout.setter def timeout(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "timeout", value) @pulumi.input_type class EncodedTaskRunRequestArgs: def __init__(__self__, *, encoded_task_content: pulumi.Input[str], platform: pulumi.Input['PlatformPropertiesArgs'], type: pulumi.Input[str], agent_configuration: Optional[pulumi.Input['AgentPropertiesArgs']] = None, agent_pool_name: Optional[pulumi.Input[str]] = None, credentials: Optional[pulumi.Input['CredentialsArgs']] = None, encoded_values_content: Optional[pulumi.Input[str]] = None, is_archive_enabled: Optional[pulumi.Input[bool]] = None, log_template: Optional[pulumi.Input[str]] = None, source_location: Optional[pulumi.Input[str]] = None, timeout: Optional[pulumi.Input[int]] = None, values: Optional[pulumi.Input[Sequence[pulumi.Input['SetValueArgs']]]] = None): """ The parameters for a quick task run request. :param pulumi.Input[str] encoded_task_content: Base64 encoded value of the template/definition file content. :param pulumi.Input['PlatformPropertiesArgs'] platform: The platform properties against which the run has to happen. :param pulumi.Input[str] type: The type of the run request. Expected value is 'EncodedTaskRunRequest'. :param pulumi.Input['AgentPropertiesArgs'] agent_configuration: The machine configuration of the run agent. :param pulumi.Input[str] agent_pool_name: The dedicated agent pool for the run. :param pulumi.Input['CredentialsArgs'] credentials: The properties that describes a set of credentials that will be used when this run is invoked. :param pulumi.Input[str] encoded_values_content: Base64 encoded value of the parameters/values file content. :param pulumi.Input[bool] is_archive_enabled: The value that indicates whether archiving is enabled for the run or not. :param pulumi.Input[str] log_template: The template that describes the repository and tag information for run log artifact. :param pulumi.Input[str] source_location: The URL(absolute or relative) of the source context. It can be an URL to a tar or git repository. If it is relative URL, the relative path should be obtained from calling listBuildSourceUploadUrl API. :param pulumi.Input[int] timeout: Run timeout in seconds. :param pulumi.Input[Sequence[pulumi.Input['SetValueArgs']]] values: The collection of overridable values that can be passed when running a task. """ pulumi.set(__self__, "encoded_task_content", encoded_task_content) pulumi.set(__self__, "platform", platform) pulumi.set(__self__, "type", 'EncodedTaskRunRequest') if agent_configuration is not None: pulumi.set(__self__, "agent_configuration", agent_configuration) if agent_pool_name is not None: pulumi.set(__self__, "agent_pool_name", agent_pool_name) if credentials is not None: pulumi.set(__self__, "credentials", credentials) if encoded_values_content is not None: pulumi.set(__self__, "encoded_values_content", encoded_values_content) if is_archive_enabled is None: is_archive_enabled = False if is_archive_enabled is not None: pulumi.set(__self__, "is_archive_enabled", is_archive_enabled) if log_template is not None: pulumi.set(__self__, "log_template", log_template) if source_location is not None: pulumi.set(__self__, "source_location", source_location) if timeout is None: timeout = 3600 if timeout is not None: pulumi.set(__self__, "timeout", timeout) if values is not None: pulumi.set(__self__, "values", values) @property @pulumi.getter(name="encodedTaskContent") def encoded_task_content(self) -> pulumi.Input[str]: """ Base64 encoded value of the template/definition file content. """ return pulumi.get(self, "encoded_task_content") @encoded_task_content.setter def encoded_task_content(self, value: pulumi.Input[str]): pulumi.set(self, "encoded_task_content", value) @property @pulumi.getter def platform(self) -> pulumi.Input['PlatformPropertiesArgs']: """ The platform properties against which the run has to happen. """ return pulumi.get(self, "platform") @platform.setter def platform(self, value: pulumi.Input['PlatformPropertiesArgs']): pulumi.set(self, "platform", value) @property @pulumi.getter def type(self) -> pulumi.Input[str]: """ The type of the run request. Expected value is 'EncodedTaskRunRequest'. """ return pulumi.get(self, "type") @type.setter def type(self, value: pulumi.Input[str]): pulumi.set(self, "type", value) @property @pulumi.getter(name="agentConfiguration") def agent_configuration(self) -> Optional[pulumi.Input['AgentPropertiesArgs']]: """ The machine configuration of the run agent. """ return pulumi.get(self, "agent_configuration") @agent_configuration.setter def agent_configuration(self, value: Optional[pulumi.Input['AgentPropertiesArgs']]): pulumi.set(self, "agent_configuration", value) @property @pulumi.getter(name="agentPoolName") def agent_pool_name(self) -> Optional[pulumi.Input[str]]: """ The dedicated agent pool for the run. """ return pulumi.get(self, "agent_pool_name") @agent_pool_name.setter def agent_pool_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "agent_pool_name", value) @property @pulumi.getter def credentials(self) -> Optional[pulumi.Input['CredentialsArgs']]: """ The properties that describes a set of credentials that will be used when this run is invoked. """ return pulumi.get(self, "credentials") @credentials.setter def credentials(self, value: Optional[pulumi.Input['CredentialsArgs']]): pulumi.set(self, "credentials", value) @property @pulumi.getter(name="encodedValuesContent") def encoded_values_content(self) -> Optional[pulumi.Input[str]]: """ Base64 encoded value of the parameters/values file content. """ return pulumi.get(self, "encoded_values_content") @encoded_values_content.setter def encoded_values_content(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "encoded_values_content", value) @property @pulumi.getter(name="isArchiveEnabled") def is_archive_enabled(self) -> Optional[pulumi.Input[bool]]: """ The value that indicates whether archiving is enabled for the run or not. """ return pulumi.get(self, "is_archive_enabled") @is_archive_enabled.setter def is_archive_enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_archive_enabled", value) @property @pulumi.getter(name="logTemplate") def log_template(self) -> Optional[pulumi.Input[str]]: """ The template that describes the repository and tag information for run log artifact. """ return pulumi.get(self, "log_template") @log_template.setter def log_template(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "log_template", value) @property @pulumi.getter(name="sourceLocation") def source_location(self) -> Optional[pulumi.Input[str]]: """ The URL(absolute or relative) of the source context. It can be an URL to a tar or git repository. If it is relative URL, the relative path should be obtained from calling listBuildSourceUploadUrl API. """ return pulumi.get(self, "source_location") @source_location.setter def source_location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "source_location", value) @property @pulumi.getter def timeout(self) -> Optional[pulumi.Input[int]]: """ Run timeout in seconds. """ return pulumi.get(self, "timeout") @timeout.setter def timeout(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "timeout", value) @property @pulumi.getter def values(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['SetValueArgs']]]]: """ The collection of overridable values that can be passed when running a task. """ return pulumi.get(self, "values") @values.setter def values(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['SetValueArgs']]]]): pulumi.set(self, "values", value) @pulumi.input_type class ExportPipelineTargetPropertiesArgs: def __init__(__self__, *, key_vault_uri: pulumi.Input[str], type: Optional[pulumi.Input[str]] = None, uri: Optional[pulumi.Input[str]] = None): """ The properties of the export pipeline target. :param pulumi.Input[str] key_vault_uri: They key vault secret uri to obtain the target storage SAS token. :param pulumi.Input[str] type: The type of target for the export pipeline. :param pulumi.Input[str] uri: The target uri of the export pipeline. When 'AzureStorageBlob': "https://accountName.blob.core.windows.net/containerName/blobName" When 'AzureStorageBlobContainer': "https://accountName.blob.core.windows.net/containerName" """ pulumi.set(__self__, "key_vault_uri", key_vault_uri) if type is not None: pulumi.set(__self__, "type", type) if uri is not None: pulumi.set(__self__, "uri", uri) @property @pulumi.getter(name="keyVaultUri") def key_vault_uri(self) -> pulumi.Input[str]: """ They key vault secret uri to obtain the target storage SAS token. """ return pulumi.get(self, "key_vault_uri") @key_vault_uri.setter def key_vault_uri(self, value: pulumi.Input[str]): pulumi.set(self, "key_vault_uri", value) @property @pulumi.getter def type(self) -> Optional[pulumi.Input[str]]: """ The type of target for the export pipeline. """ return pulumi.get(self, "type") @type.setter def type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "type", value) @property @pulumi.getter def uri(self) -> Optional[pulumi.Input[str]]: """ The target uri of the export pipeline. When 'AzureStorageBlob': "https://accountName.blob.core.windows.net/containerName/blobName" When 'AzureStorageBlobContainer': "https://accountName.blob.core.windows.net/containerName" """ return pulumi.get(self, "uri") @uri.setter def uri(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "uri", value) @pulumi.input_type class FileTaskRunRequestArgs: def __init__(__self__, *, platform: pulumi.Input['PlatformPropertiesArgs'], task_file_path: pulumi.Input[str], type: pulumi.Input[str], agent_configuration: Optional[pulumi.Input['AgentPropertiesArgs']] = None, agent_pool_name: Optional[pulumi.Input[str]] = None, credentials: Optional[pulumi.Input['CredentialsArgs']] = None, is_archive_enabled: Optional[pulumi.Input[bool]] = None, log_template: Optional[pulumi.Input[str]] = None, source_location: Optional[pulumi.Input[str]] = None, timeout: Optional[pulumi.Input[int]] = None, values: Optional[pulumi.Input[Sequence[pulumi.Input['SetValueArgs']]]] = None, values_file_path: Optional[pulumi.Input[str]] = None): """ The request parameters for a scheduling run against a task file. :param pulumi.Input['PlatformPropertiesArgs'] platform: The platform properties against which the run has to happen. :param pulumi.Input[str] task_file_path: The template/definition file path relative to the source. :param pulumi.Input[str] type: The type of the run request. Expected value is 'FileTaskRunRequest'. :param pulumi.Input['AgentPropertiesArgs'] agent_configuration: The machine configuration of the run agent. :param pulumi.Input[str] agent_pool_name: The dedicated agent pool for the run. :param pulumi.Input['CredentialsArgs'] credentials: The properties that describes a set of credentials that will be used when this run is invoked. :param pulumi.Input[bool] is_archive_enabled: The value that indicates whether archiving is enabled for the run or not. :param pulumi.Input[str] log_template: The template that describes the repository and tag information for run log artifact. :param pulumi.Input[str] source_location: The URL(absolute or relative) of the source context. It can be an URL to a tar or git repository. If it is relative URL, the relative path should be obtained from calling listBuildSourceUploadUrl API. :param pulumi.Input[int] timeout: Run timeout in seconds. :param pulumi.Input[Sequence[pulumi.Input['SetValueArgs']]] values: The collection of overridable values that can be passed when running a task. :param pulumi.Input[str] values_file_path: The values/parameters file path relative to the source. """ pulumi.set(__self__, "platform", platform) pulumi.set(__self__, "task_file_path", task_file_path) pulumi.set(__self__, "type", 'FileTaskRunRequest') if agent_configuration is not None: pulumi.set(__self__, "agent_configuration", agent_configuration) if agent_pool_name is not None: pulumi.set(__self__, "agent_pool_name", agent_pool_name) if credentials is not None: pulumi.set(__self__, "credentials", credentials) if is_archive_enabled is None: is_archive_enabled = False if is_archive_enabled is not None: pulumi.set(__self__, "is_archive_enabled", is_archive_enabled) if log_template is not None: pulumi.set(__self__, "log_template", log_template) if source_location is not None: pulumi.set(__self__, "source_location", source_location) if timeout is None: timeout = 3600 if timeout is not None: pulumi.set(__self__, "timeout", timeout) if values is not None: pulumi.set(__self__, "values", values) if values_file_path is not None: pulumi.set(__self__, "values_file_path", values_file_path) @property @pulumi.getter def platform(self) -> pulumi.Input['PlatformPropertiesArgs']: """ The platform properties against which the run has to happen. """ return pulumi.get(self, "platform") @platform.setter def platform(self, value: pulumi.Input['PlatformPropertiesArgs']): pulumi.set(self, "platform", value) @property @pulumi.getter(name="taskFilePath") def task_file_path(self) -> pulumi.Input[str]: """ The template/definition file path relative to the source. """ return pulumi.get(self, "task_file_path") @task_file_path.setter def task_file_path(self, value: pulumi.Input[str]): pulumi.set(self, "task_file_path", value) @property @pulumi.getter def type(self) -> pulumi.Input[str]: """ The type of the run request. Expected value is 'FileTaskRunRequest'. """ return pulumi.get(self, "type") @type.setter def type(self, value: pulumi.Input[str]): pulumi.set(self, "type", value) @property @pulumi.getter(name="agentConfiguration") def agent_configuration(self) -> Optional[pulumi.Input['AgentPropertiesArgs']]: """ The machine configuration of the run agent. """ return pulumi.get(self, "agent_configuration") @agent_configuration.setter def agent_configuration(self, value: Optional[pulumi.Input['AgentPropertiesArgs']]): pulumi.set(self, "agent_configuration", value) @property @pulumi.getter(name="agentPoolName") def agent_pool_name(self) -> Optional[pulumi.Input[str]]: """ The dedicated agent pool for the run. """ return pulumi.get(self, "agent_pool_name") @agent_pool_name.setter def agent_pool_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "agent_pool_name", value) @property @pulumi.getter def credentials(self) -> Optional[pulumi.Input['CredentialsArgs']]: """ The properties that describes a set of credentials that will be used when this run is invoked. """ return pulumi.get(self, "credentials") @credentials.setter def credentials(self, value: Optional[pulumi.Input['CredentialsArgs']]): pulumi.set(self, "credentials", value) @property @pulumi.getter(name="isArchiveEnabled") def is_archive_enabled(self) -> Optional[pulumi.Input[bool]]: """ The value that indicates whether archiving is enabled for the run or not. """ return pulumi.get(self, "is_archive_enabled") @is_archive_enabled.setter def is_archive_enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_archive_enabled", value) @property @pulumi.getter(name="logTemplate") def log_template(self) -> Optional[pulumi.Input[str]]: """ The template that describes the repository and tag information for run log artifact. """ return pulumi.get(self, "log_template") @log_template.setter def log_template(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "log_template", value) @property @pulumi.getter(name="sourceLocation") def source_location(self) -> Optional[pulumi.Input[str]]: """ The URL(absolute or relative) of the source context. It can be an URL to a tar or git repository. If it is relative URL, the relative path should be obtained from calling listBuildSourceUploadUrl API. """ return pulumi.get(self, "source_location") @source_location.setter def source_location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "source_location", value) @property @pulumi.getter def timeout(self) -> Optional[pulumi.Input[int]]: """ Run timeout in seconds. """ return pulumi.get(self, "timeout") @timeout.setter def timeout(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "timeout", value) @property @pulumi.getter def values(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['SetValueArgs']]]]: """ The collection of overridable values that can be passed when running a task. """ return pulumi.get(self, "values") @values.setter def values(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['SetValueArgs']]]]): pulumi.set(self, "values", value) @property @pulumi.getter(name="valuesFilePath") def values_file_path(self) -> Optional[pulumi.Input[str]]: """ The values/parameters file path relative to the source. """ return pulumi.get(self, "values_file_path") @values_file_path.setter def values_file_path(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "values_file_path", value) @pulumi.input_type class IPRuleArgs: def __init__(__self__, *, i_p_address_or_range: pulumi.Input[str], action: Optional[pulumi.Input[Union[str, 'Action']]] = None): """ IP rule with specific IP or IP range in CIDR format. :param pulumi.Input[str] i_p_address_or_range: Specifies the IP or IP range in CIDR format. Only IPV4 address is allowed. :param pulumi.Input[Union[str, 'Action']] action: The action of IP ACL rule. """ pulumi.set(__self__, "i_p_address_or_range", i_p_address_or_range) if action is None: action = 'Allow' if action is not None: pulumi.set(__self__, "action", action) @property @pulumi.getter(name="iPAddressOrRange") def i_p_address_or_range(self) -> pulumi.Input[str]: """ Specifies the IP or IP range in CIDR format. Only IPV4 address is allowed. """ return pulumi.get(self, "i_p_address_or_range") @i_p_address_or_range.setter def i_p_address_or_range(self, value: pulumi.Input[str]): pulumi.set(self, "i_p_address_or_range", value) @property @pulumi.getter def action(self) -> Optional[pulumi.Input[Union[str, 'Action']]]: """ The action of IP ACL rule. """ return pulumi.get(self, "action") @action.setter def action(self, value: Optional[pulumi.Input[Union[str, 'Action']]]): pulumi.set(self, "action", value) @pulumi.input_type class IdentityPropertiesArgs: def __init__(__self__, *, principal_id: Optional[pulumi.Input[str]] = None, tenant_id: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input['ResourceIdentityType']] = None, user_assigned_identities: Optional[pulumi.Input[Mapping[str, pulumi.Input['UserIdentityPropertiesArgs']]]] = None): """ Managed identity for the resource. :param pulumi.Input[str] principal_id: The principal ID of resource identity. :param pulumi.Input[str] tenant_id: The tenant ID of resource. :param pulumi.Input['ResourceIdentityType'] type: The identity type. :param pulumi.Input[Mapping[str, pulumi.Input['UserIdentityPropertiesArgs']]] user_assigned_identities: The list of user identities associated with the resource. The user identity dictionary key references will be ARM resource ids in the form: '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/ providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}'. """ if principal_id is not None: pulumi.set(__self__, "principal_id", principal_id) if tenant_id is not None: pulumi.set(__self__, "tenant_id", tenant_id) if type is not None: pulumi.set(__self__, "type", type) if user_assigned_identities is not None: pulumi.set(__self__, "user_assigned_identities", user_assigned_identities) @property @pulumi.getter(name="principalId") def principal_id(self) -> Optional[pulumi.Input[str]]: """ The principal ID of resource identity. """ return pulumi.get(self, "principal_id") @principal_id.setter def principal_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "principal_id", value) @property @pulumi.getter(name="tenantId") def tenant_id(self) -> Optional[pulumi.Input[str]]: """ The tenant ID of resource. """ return pulumi.get(self, "tenant_id") @tenant_id.setter def tenant_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "tenant_id", value) @property @pulumi.getter def type(self) -> Optional[pulumi.Input['ResourceIdentityType']]: """ The identity type. """ return pulumi.get(self, "type") @type.setter def type(self, value: Optional[pulumi.Input['ResourceIdentityType']]): pulumi.set(self, "type", value) @property @pulumi.getter(name="userAssignedIdentities") def user_assigned_identities(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input['UserIdentityPropertiesArgs']]]]: """ The list of user identities associated with the resource. The user identity dictionary key references will be ARM resource ids in the form: '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/ providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}'. """ return pulumi.get(self, "user_assigned_identities") @user_assigned_identities.setter def user_assigned_identities(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input['UserIdentityPropertiesArgs']]]]): pulumi.set(self, "user_assigned_identities", value) @pulumi.input_type class ImportPipelineSourcePropertiesArgs: def __init__(__self__, *, key_vault_uri: pulumi.Input[str], type: Optional[pulumi.Input[Union[str, 'PipelineSourceType']]] = None, uri: Optional[pulumi.Input[str]] = None): """ The properties of the import pipeline source. :param pulumi.Input[str] key_vault_uri: They key vault secret uri to obtain the source storage SAS token. :param pulumi.Input[Union[str, 'PipelineSourceType']] type: The type of source for the import pipeline. :param pulumi.Input[str] uri: The source uri of the import pipeline. When 'AzureStorageBlob': "https://accountName.blob.core.windows.net/containerName/blobName" When 'AzureStorageBlobContainer': "https://accountName.blob.core.windows.net/containerName" """ pulumi.set(__self__, "key_vault_uri", key_vault_uri) if type is None: type = 'AzureStorageBlobContainer' if type is not None: pulumi.set(__self__, "type", type) if uri is not None: pulumi.set(__self__, "uri", uri) @property @pulumi.getter(name="keyVaultUri") def key_vault_uri(self) -> pulumi.Input[str]: """ They key vault secret uri to obtain the source storage SAS token. """ return pulumi.get(self, "key_vault_uri") @key_vault_uri.setter def key_vault_uri(self, value: pulumi.Input[str]): pulumi.set(self, "key_vault_uri", value) @property @pulumi.getter def type(self) -> Optional[pulumi.Input[Union[str, 'PipelineSourceType']]]: """ The type of source for the import pipeline. """ return pulumi.get(self, "type") @type.setter def type(self, value: Optional[pulumi.Input[Union[str, 'PipelineSourceType']]]): pulumi.set(self, "type", value) @property @pulumi.getter def uri(self) -> Optional[pulumi.Input[str]]: """ The source uri of the import pipeline. When 'AzureStorageBlob': "https://accountName.blob.core.windows.net/containerName/blobName" When 'AzureStorageBlobContainer': "https://accountName.blob.core.windows.net/containerName" """ return pulumi.get(self, "uri") @uri.setter def uri(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "uri", value) @pulumi.input_type class LoggingPropertiesArgs: def __init__(__self__, *, audit_log_status: Optional[pulumi.Input[Union[str, 'AuditLogStatus']]] = None, log_level: Optional[pulumi.Input[Union[str, 'LogLevel']]] = None): """ The logging properties of the connected registry. :param pulumi.Input[Union[str, 'AuditLogStatus']] audit_log_status: Indicates whether audit logs are enabled on the connected registry. :param pulumi.Input[Union[str, 'LogLevel']] log_level: The verbosity of logs persisted on the connected registry. """ if audit_log_status is None: audit_log_status = 'Disabled' if audit_log_status is not None: pulumi.set(__self__, "audit_log_status", audit_log_status) if log_level is None: log_level = 'Information' if log_level is not None: pulumi.set(__self__, "log_level", log_level) @property @pulumi.getter(name="auditLogStatus") def audit_log_status(self) -> Optional[pulumi.Input[Union[str, 'AuditLogStatus']]]: """ Indicates whether audit logs are enabled on the connected registry. """ return pulumi.get(self, "audit_log_status") @audit_log_status.setter def audit_log_status(self, value: Optional[pulumi.Input[Union[str, 'AuditLogStatus']]]): pulumi.set(self, "audit_log_status", value) @property @pulumi.getter(name="logLevel") def log_level(self) -> Optional[pulumi.Input[Union[str, 'LogLevel']]]: """ The verbosity of logs persisted on the connected registry. """ return pulumi.get(self, "log_level") @log_level.setter def log_level(self, value: Optional[pulumi.Input[Union[str, 'LogLevel']]]): pulumi.set(self, "log_level", value) @pulumi.input_type class NetworkRuleSetArgs: def __init__(__self__, *, default_action: pulumi.Input[Union[str, 'DefaultAction']], ip_rules: Optional[pulumi.Input[Sequence[pulumi.Input['IPRuleArgs']]]] = None, virtual_network_rules: Optional[pulumi.Input[Sequence[pulumi.Input['VirtualNetworkRuleArgs']]]] = None): """ The network rule set for a container registry. :param pulumi.Input[Union[str, 'DefaultAction']] default_action: The default action of allow or deny when no other rules match. :param pulumi.Input[Sequence[pulumi.Input['IPRuleArgs']]] ip_rules: The IP ACL rules. :param pulumi.Input[Sequence[pulumi.Input['VirtualNetworkRuleArgs']]] virtual_network_rules: The virtual network rules. """ if default_action is None: default_action = 'Allow' pulumi.set(__self__, "default_action", default_action) if ip_rules is not None: pulumi.set(__self__, "ip_rules", ip_rules) if virtual_network_rules is not None: pulumi.set(__self__, "virtual_network_rules", virtual_network_rules) @property @pulumi.getter(name="defaultAction") def default_action(self) -> pulumi.Input[Union[str, 'DefaultAction']]: """ The default action of allow or deny when no other rules match. """ return pulumi.get(self, "default_action") @default_action.setter def default_action(self, value: pulumi.Input[Union[str, 'DefaultAction']]): pulumi.set(self, "default_action", value) @property @pulumi.getter(name="ipRules") def ip_rules(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['IPRuleArgs']]]]: """ The IP ACL rules. """ return pulumi.get(self, "ip_rules") @ip_rules.setter def ip_rules(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['IPRuleArgs']]]]): pulumi.set(self, "ip_rules", value) @property @pulumi.getter(name="virtualNetworkRules") def virtual_network_rules(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['VirtualNetworkRuleArgs']]]]: """ The virtual network rules. """ return pulumi.get(self, "virtual_network_rules") @virtual_network_rules.setter def virtual_network_rules(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['VirtualNetworkRuleArgs']]]]): pulumi.set(self, "virtual_network_rules", value) @pulumi.input_type class OverrideTaskStepPropertiesArgs: def __init__(__self__, *, arguments: Optional[pulumi.Input[Sequence[pulumi.Input['ArgumentArgs']]]] = None, context_path: Optional[pulumi.Input[str]] = None, file: Optional[pulumi.Input[str]] = None, target: Optional[pulumi.Input[str]] = None, update_trigger_token: Optional[pulumi.Input[str]] = None, values: Optional[pulumi.Input[Sequence[pulumi.Input['SetValueArgs']]]] = None): """ :param pulumi.Input[Sequence[pulumi.Input['ArgumentArgs']]] arguments: Gets or sets the collection of override arguments to be used when executing a build step. :param pulumi.Input[str] context_path: The source context against which run has to be queued. :param pulumi.Input[str] file: The file against which run has to be queued. :param pulumi.Input[str] target: The name of the target build stage for the docker build. :param pulumi.Input[str] update_trigger_token: Base64 encoded update trigger token that will be attached with the base image trigger webhook. :param pulumi.Input[Sequence[pulumi.Input['SetValueArgs']]] values: The collection of overridable values that can be passed when running a Task. """ if arguments is not None: pulumi.set(__self__, "arguments", arguments) if context_path is not None: pulumi.set(__self__, "context_path", context_path) if file is not None: pulumi.set(__self__, "file", file) if target is not None: pulumi.set(__self__, "target", target) if update_trigger_token is not None: pulumi.set(__self__, "update_trigger_token", update_trigger_token) if values is not None: pulumi.set(__self__, "values", values) @property @pulumi.getter def arguments(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['ArgumentArgs']]]]: """ Gets or sets the collection of override arguments to be used when executing a build step. """ return pulumi.get(self, "arguments") @arguments.setter def arguments(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['ArgumentArgs']]]]): pulumi.set(self, "arguments", value) @property @pulumi.getter(name="contextPath") def context_path(self) -> Optional[pulumi.Input[str]]: """ The source context against which run has to be queued. """ return pulumi.get(self, "context_path") @context_path.setter def context_path(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "context_path", value) @property @pulumi.getter def file(self) -> Optional[pulumi.Input[str]]: """ The file against which run has to be queued. """ return pulumi.get(self, "file") @file.setter def file(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "file", value) @property @pulumi.getter def target(self) -> Optional[pulumi.Input[str]]: """ The name of the target build stage for the docker build. """ return pulumi.get(self, "target") @target.setter def target(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "target", value) @property @pulumi.getter(name="updateTriggerToken") def update_trigger_token(self) -> Optional[pulumi.Input[str]]: """ Base64 encoded update trigger token that will be attached with the base image trigger webhook. """ return pulumi.get(self, "update_trigger_token") @update_trigger_token.setter def update_trigger_token(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "update_trigger_token", value) @property @pulumi.getter def values(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['SetValueArgs']]]]: """ The collection of overridable values that can be passed when running a Task. """ return pulumi.get(self, "values") @values.setter def values(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['SetValueArgs']]]]): pulumi.set(self, "values", value) @pulumi.input_type class ParentPropertiesArgs: def __init__(__self__, *, sync_properties: pulumi.Input['SyncPropertiesArgs'], id: Optional[pulumi.Input[str]] = None): """ The properties of the connected registry parent. :param pulumi.Input['SyncPropertiesArgs'] sync_properties: The sync properties of the connected registry with its parent. :param pulumi.Input[str] id: The resource ID of the parent to which the connected registry will be associated. """ pulumi.set(__self__, "sync_properties", sync_properties) if id is not None: pulumi.set(__self__, "id", id) @property @pulumi.getter(name="syncProperties") def sync_properties(self) -> pulumi.Input['SyncPropertiesArgs']: """ The sync properties of the connected registry with its parent. """ return pulumi.get(self, "sync_properties") @sync_properties.setter def sync_properties(self, value: pulumi.Input['SyncPropertiesArgs']): pulumi.set(self, "sync_properties", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ The resource ID of the parent to which the connected registry will be associated. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value) @pulumi.input_type class PipelineRunRequestArgs: def __init__(__self__, *, artifacts: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, catalog_digest: Optional[pulumi.Input[str]] = None, pipeline_resource_id: Optional[pulumi.Input[str]] = None, source: Optional[pulumi.Input['PipelineRunSourcePropertiesArgs']] = None, target: Optional[pulumi.Input['PipelineRunTargetPropertiesArgs']] = None): """ The request properties provided for a pipeline run. :param pulumi.Input[Sequence[pulumi.Input[str]]] artifacts: List of source artifacts to be transferred by the pipeline. Specify an image by repository ('hello-world'). This will use the 'latest' tag. Specify an image by tag ('hello-world:latest'). Specify an image by sha256-based manifest digest ('hello-world@sha256:abc123'). :param pulumi.Input[str] catalog_digest: The digest of the tar used to transfer the artifacts. :param pulumi.Input[str] pipeline_resource_id: The resource ID of the pipeline to run. :param pulumi.Input['PipelineRunSourcePropertiesArgs'] source: The source properties of the pipeline run. :param pulumi.Input['PipelineRunTargetPropertiesArgs'] target: The target properties of the pipeline run. """ if artifacts is not None: pulumi.set(__self__, "artifacts", artifacts) if catalog_digest is not None: pulumi.set(__self__, "catalog_digest", catalog_digest) if pipeline_resource_id is not None: pulumi.set(__self__, "pipeline_resource_id", pipeline_resource_id) if source is not None: pulumi.set(__self__, "source", source) if target is not None: pulumi.set(__self__, "target", target) @property @pulumi.getter def artifacts(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ List of source artifacts to be transferred by the pipeline. Specify an image by repository ('hello-world'). This will use the 'latest' tag. Specify an image by tag ('hello-world:latest'). Specify an image by sha256-based manifest digest ('hello-world@sha256:abc123'). """ return pulumi.get(self, "artifacts") @artifacts.setter def artifacts(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "artifacts", value) @property @pulumi.getter(name="catalogDigest") def catalog_digest(self) -> Optional[pulumi.Input[str]]: """ The digest of the tar used to transfer the artifacts. """ return pulumi.get(self, "catalog_digest") @catalog_digest.setter def catalog_digest(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "catalog_digest", value) @property @pulumi.getter(name="pipelineResourceId") def pipeline_resource_id(self) -> Optional[pulumi.Input[str]]: """ The resource ID of the pipeline to run. """ return pulumi.get(self, "pipeline_resource_id") @pipeline_resource_id.setter def pipeline_resource_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "pipeline_resource_id", value) @property @pulumi.getter def source(self) -> Optional[pulumi.Input['PipelineRunSourcePropertiesArgs']]: """ The source properties of the pipeline run. """ return pulumi.get(self, "source") @source.setter def source(self, value: Optional[pulumi.Input['PipelineRunSourcePropertiesArgs']]): pulumi.set(self, "source", value) @property @pulumi.getter def target(self) -> Optional[pulumi.Input['PipelineRunTargetPropertiesArgs']]: """ The target properties of the pipeline run. """ return pulumi.get(self, "target") @target.setter def target(self, value: Optional[pulumi.Input['PipelineRunTargetPropertiesArgs']]): pulumi.set(self, "target", value) @pulumi.input_type class PipelineRunSourcePropertiesArgs: def __init__(__self__, *, name: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input[Union[str, 'PipelineRunSourceType']]] = None): """ :param pulumi.Input[str] name: The name of the source. :param pulumi.Input[Union[str, 'PipelineRunSourceType']] type: The type of the source. """ if name is not None: pulumi.set(__self__, "name", name) if type is None: type = 'AzureStorageBlob' if type is not None: pulumi.set(__self__, "type", type) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the source. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def type(self) -> Optional[pulumi.Input[Union[str, 'PipelineRunSourceType']]]: """ The type of the source. """ return pulumi.get(self, "type") @type.setter def type(self, value: Optional[pulumi.Input[Union[str, 'PipelineRunSourceType']]]): pulumi.set(self, "type", value) @pulumi.input_type class PipelineRunTargetPropertiesArgs: def __init__(__self__, *, name: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input[Union[str, 'PipelineRunTargetType']]] = None): """ :param pulumi.Input[str] name: The name of the target. :param pulumi.Input[Union[str, 'PipelineRunTargetType']] type: The type of the target. """ if name is not None: pulumi.set(__self__, "name", name) if type is None: type = 'AzureStorageBlob' if type is not None: pulumi.set(__self__, "type", type) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the target. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def type(self) -> Optional[pulumi.Input[Union[str, 'PipelineRunTargetType']]]: """ The type of the target. """ return pulumi.get(self, "type") @type.setter def type(self, value: Optional[pulumi.Input[Union[str, 'PipelineRunTargetType']]]): pulumi.set(self, "type", value) @pulumi.input_type class PipelineSourceTriggerPropertiesArgs: def __init__(__self__, *, status: pulumi.Input[Union[str, 'TriggerStatus']]): """ :param pulumi.Input[Union[str, 'TriggerStatus']] status: The current status of the source trigger. """ if status is None: status = 'Enabled' pulumi.set(__self__, "status", status) @property @pulumi.getter def status(self) -> pulumi.Input[Union[str, 'TriggerStatus']]: """ The current status of the source trigger. """ return pulumi.get(self, "status") @status.setter def status(self, value: pulumi.Input[Union[str, 'TriggerStatus']]): pulumi.set(self, "status", value) @pulumi.input_type class PipelineTriggerPropertiesArgs: def __init__(__self__, *, source_trigger: Optional[pulumi.Input['PipelineSourceTriggerPropertiesArgs']] = None): """ :param pulumi.Input['PipelineSourceTriggerPropertiesArgs'] source_trigger: The source trigger properties of the pipeline. """ if source_trigger is not None: pulumi.set(__self__, "source_trigger", source_trigger) @property @pulumi.getter(name="sourceTrigger") def source_trigger(self) -> Optional[pulumi.Input['PipelineSourceTriggerPropertiesArgs']]: """ The source trigger properties of the pipeline. """ return pulumi.get(self, "source_trigger") @source_trigger.setter def source_trigger(self, value: Optional[pulumi.Input['PipelineSourceTriggerPropertiesArgs']]): pulumi.set(self, "source_trigger", value) @pulumi.input_type class PlatformPropertiesArgs: def __init__(__self__, *, os: pulumi.Input[Union[str, 'OS']], architecture: Optional[pulumi.Input[Union[str, 'Architecture']]] = None, variant: Optional[pulumi.Input[Union[str, 'Variant']]] = None): """ The platform properties against which the run has to happen. :param pulumi.Input[Union[str, 'OS']] os: The operating system type required for the run. :param pulumi.Input[Union[str, 'Architecture']] architecture: The OS architecture. :param pulumi.Input[Union[str, 'Variant']] variant: Variant of the CPU. """ pulumi.set(__self__, "os", os) if architecture is not None: pulumi.set(__self__, "architecture", architecture) if variant is not None: pulumi.set(__self__, "variant", variant) @property @pulumi.getter def os(self) -> pulumi.Input[Union[str, 'OS']]: """ The operating system type required for the run. """ return pulumi.get(self, "os") @os.setter def os(self, value: pulumi.Input[Union[str, 'OS']]): pulumi.set(self, "os", value) @property @pulumi.getter def architecture(self) -> Optional[pulumi.Input[Union[str, 'Architecture']]]: """ The OS architecture. """ return pulumi.get(self, "architecture") @architecture.setter def architecture(self, value: Optional[pulumi.Input[Union[str, 'Architecture']]]): pulumi.set(self, "architecture", value) @property @pulumi.getter def variant(self) -> Optional[pulumi.Input[Union[str, 'Variant']]]: """ Variant of the CPU. """ return pulumi.get(self, "variant") @variant.setter def variant(self, value: Optional[pulumi.Input[Union[str, 'Variant']]]): pulumi.set(self, "variant", value) @pulumi.input_type class PoliciesArgs: def __init__(__self__, *, quarantine_policy: Optional[pulumi.Input['QuarantinePolicyArgs']] = None, retention_policy: Optional[pulumi.Input['RetentionPolicyArgs']] = None, trust_policy: Optional[pulumi.Input['TrustPolicyArgs']] = None): """ The policies for a container registry. :param pulumi.Input['QuarantinePolicyArgs'] quarantine_policy: The quarantine policy for a container registry. :param pulumi.Input['RetentionPolicyArgs'] retention_policy: The retention policy for a container registry. :param pulumi.Input['TrustPolicyArgs'] trust_policy: The content trust policy for a container registry. """ if quarantine_policy is not None: pulumi.set(__self__, "quarantine_policy", quarantine_policy) if retention_policy is not None: pulumi.set(__self__, "retention_policy", retention_policy) if trust_policy is not None: pulumi.set(__self__, "trust_policy", trust_policy) @property @pulumi.getter(name="quarantinePolicy") def quarantine_policy(self) -> Optional[pulumi.Input['QuarantinePolicyArgs']]: """ The quarantine policy for a container registry. """ return pulumi.get(self, "quarantine_policy") @quarantine_policy.setter def quarantine_policy(self, value: Optional[pulumi.Input['QuarantinePolicyArgs']]): pulumi.set(self, "quarantine_policy", value) @property @pulumi.getter(name="retentionPolicy") def retention_policy(self) -> Optional[pulumi.Input['RetentionPolicyArgs']]: """ The retention policy for a container registry. """ return pulumi.get(self, "retention_policy") @retention_policy.setter def retention_policy(self, value: Optional[pulumi.Input['RetentionPolicyArgs']]): pulumi.set(self, "retention_policy", value) @property @pulumi.getter(name="trustPolicy") def trust_policy(self) -> Optional[pulumi.Input['TrustPolicyArgs']]: """ The content trust policy for a container registry. """ return pulumi.get(self, "trust_policy") @trust_policy.setter def trust_policy(self, value: Optional[pulumi.Input['TrustPolicyArgs']]): pulumi.set(self, "trust_policy", value) @pulumi.input_type class PrivateEndpointArgs: def __init__(__self__, *, id: Optional[pulumi.Input[str]] = None): """ The Private Endpoint resource. :param pulumi.Input[str] id: This is private endpoint resource created with Microsoft.Network resource provider. """ if id is not None: pulumi.set(__self__, "id", id) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ This is private endpoint resource created with Microsoft.Network resource provider. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value) @pulumi.input_type class PrivateLinkServiceConnectionStateArgs: def __init__(__self__, *, actions_required: Optional[pulumi.Input[Union[str, 'ActionsRequired']]] = None, description: Optional[pulumi.Input[str]] = None, status: Optional[pulumi.Input[Union[str, 'ConnectionStatus']]] = None): """ The state of a private link service connection. :param pulumi.Input[Union[str, 'ActionsRequired']] actions_required: A message indicating if changes on the service provider require any updates on the consumer. :param pulumi.Input[str] description: The description for connection status. For example if connection is rejected it can indicate reason for rejection. :param pulumi.Input[Union[str, 'ConnectionStatus']] status: The private link service connection status. """ if actions_required is not None: pulumi.set(__self__, "actions_required", actions_required) if description is not None: pulumi.set(__self__, "description", description) if status is not None: pulumi.set(__self__, "status", status) @property @pulumi.getter(name="actionsRequired") def actions_required(self) -> Optional[pulumi.Input[Union[str, 'ActionsRequired']]]: """ A message indicating if changes on the service provider require any updates on the consumer. """ return pulumi.get(self, "actions_required") @actions_required.setter def actions_required(self, value: Optional[pulumi.Input[Union[str, 'ActionsRequired']]]): pulumi.set(self, "actions_required", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ The description for connection status. For example if connection is rejected it can indicate reason for rejection. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def status(self) -> Optional[pulumi.Input[Union[str, 'ConnectionStatus']]]: """ The private link service connection status. """ return pulumi.get(self, "status") @status.setter def status(self, value: Optional[pulumi.Input[Union[str, 'ConnectionStatus']]]): pulumi.set(self, "status", value) @pulumi.input_type class QuarantinePolicyArgs: def __init__(__self__, *, status: Optional[pulumi.Input[Union[str, 'PolicyStatus']]] = None): """ The quarantine policy for a container registry. :param pulumi.Input[Union[str, 'PolicyStatus']] status: The value that indicates whether the policy is enabled or not. """ if status is None: status = 'disabled' if status is not None: pulumi.set(__self__, "status", status) @property @pulumi.getter def status(self) -> Optional[pulumi.Input[Union[str, 'PolicyStatus']]]: """ The value that indicates whether the policy is enabled or not. """ return pulumi.get(self, "status") @status.setter def status(self, value: Optional[pulumi.Input[Union[str, 'PolicyStatus']]]): pulumi.set(self, "status", value) @pulumi.input_type class RetentionPolicyArgs: def __init__(__self__, *, days: Optional[pulumi.Input[int]] = None, status: Optional[pulumi.Input[Union[str, 'PolicyStatus']]] = None): """ The retention policy for a container registry. :param pulumi.Input[int] days: The number of days to retain an untagged manifest after which it gets purged. :param pulumi.Input[Union[str, 'PolicyStatus']] status: The value that indicates whether the policy is enabled or not. """ if days is None: days = 7 if days is not None: pulumi.set(__self__, "days", days) if status is None: status = 'disabled' if status is not None: pulumi.set(__self__, "status", status) @property @pulumi.getter def days(self) -> Optional[pulumi.Input[int]]: """ The number of days to retain an untagged manifest after which it gets purged. """ return pulumi.get(self, "days") @days.setter def days(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "days", value) @property @pulumi.getter def status(self) -> Optional[pulumi.Input[Union[str, 'PolicyStatus']]]: """ The value that indicates whether the policy is enabled or not. """ return pulumi.get(self, "status") @status.setter def status(self, value: Optional[pulumi.Input[Union[str, 'PolicyStatus']]]): pulumi.set(self, "status", value) @pulumi.input_type class SecretObjectArgs: def __init__(__self__, *, type: Optional[pulumi.Input[Union[str, 'SecretObjectType']]] = None, value: Optional[pulumi.Input[str]] = None): """ Describes the properties of a secret object value. :param pulumi.Input[Union[str, 'SecretObjectType']] type: The type of the secret object which determines how the value of the secret object has to be interpreted. :param pulumi.Input[str] value: The value of the secret. The format of this value will be determined based on the type of the secret object. If the type is Opaque, the value will be used as is without any modification. """ if type is not None: pulumi.set(__self__, "type", type) if value is not None: pulumi.set(__self__, "value", value) @property @pulumi.getter def type(self) -> Optional[pulumi.Input[Union[str, 'SecretObjectType']]]: """ The type of the secret object which determines how the value of the secret object has to be interpreted. """ return pulumi.get(self, "type") @type.setter def type(self, value: Optional[pulumi.Input[Union[str, 'SecretObjectType']]]): pulumi.set(self, "type", value) @property @pulumi.getter def value(self) -> Optional[pulumi.Input[str]]: """ The value of the secret. The format of this value will be determined based on the type of the secret object. If the type is Opaque, the value will be used as is without any modification. """ return pulumi.get(self, "value") @value.setter def value(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "value", value) @pulumi.input_type class SetValueArgs: def __init__(__self__, *, name: pulumi.Input[str], value: pulumi.Input[str], is_secret: Optional[pulumi.Input[bool]] = None): """ The properties of a overridable value that can be passed to a task template. :param pulumi.Input[str] name: The name of the overridable value. :param pulumi.Input[str] value: The overridable value. :param pulumi.Input[bool] is_secret: Flag to indicate whether the value represents a secret or not. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "value", value) if is_secret is None: is_secret = False if is_secret is not None: pulumi.set(__self__, "is_secret", is_secret) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ The name of the overridable value. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter def value(self) -> pulumi.Input[str]: """ The overridable value. """ return pulumi.get(self, "value") @value.setter def value(self, value: pulumi.Input[str]): pulumi.set(self, "value", value) @property @pulumi.getter(name="isSecret") def is_secret(self) -> Optional[pulumi.Input[bool]]: """ Flag to indicate whether the value represents a secret or not. """ return pulumi.get(self, "is_secret") @is_secret.setter def is_secret(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_secret", value) @pulumi.input_type class SkuArgs: def __init__(__self__, *, name: pulumi.Input[Union[str, 'SkuName']]): """ The SKU of a container registry. :param pulumi.Input[Union[str, 'SkuName']] name: The SKU name of the container registry. Required for registry creation. """ pulumi.set(__self__, "name", name) @property @pulumi.getter def name(self) -> pulumi.Input[Union[str, 'SkuName']]: """ The SKU name of the container registry. Required for registry creation. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[Union[str, 'SkuName']]): pulumi.set(self, "name", value) @pulumi.input_type class SourceControlAuthInfoArgs: def __init__(__self__, *, token: pulumi.Input[str], expires_in: Optional[pulumi.Input[int]] = None, refresh_token: Optional[pulumi.Input[str]] = None, scope: Optional[pulumi.Input[str]] = None, token_type: Optional[pulumi.Input[Union[str, 'TokenType']]] = None): """ The authorization properties for accessing the source code repository. :param pulumi.Input[str] token: The access token used to access the source control provider. :param pulumi.Input[int] expires_in: Time in seconds that the token remains valid :param pulumi.Input[str] refresh_token: The refresh token used to refresh the access token. :param pulumi.Input[str] scope: The scope of the access token. :param pulumi.Input[Union[str, 'TokenType']] token_type: The type of Auth token. """ pulumi.set(__self__, "token", token) if expires_in is not None: pulumi.set(__self__, "expires_in", expires_in) if refresh_token is not None: pulumi.set(__self__, "refresh_token", refresh_token) if scope is not None: pulumi.set(__self__, "scope", scope) if token_type is not None: pulumi.set(__self__, "token_type", token_type) @property @pulumi.getter def token(self) -> pulumi.Input[str]: """ The access token used to access the source control provider. """ return pulumi.get(self, "token") @token.setter def token(self, value: pulumi.Input[str]): pulumi.set(self, "token", value) @property @pulumi.getter(name="expiresIn") def expires_in(self) -> Optional[pulumi.Input[int]]: """ Time in seconds that the token remains valid """ return pulumi.get(self, "expires_in") @expires_in.setter def expires_in(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "expires_in", value) @property @pulumi.getter(name="refreshToken") def refresh_token(self) -> Optional[pulumi.Input[str]]: """ The refresh token used to refresh the access token. """ return pulumi.get(self, "refresh_token") @refresh_token.setter def refresh_token(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "refresh_token", value) @property @pulumi.getter def scope(self) -> Optional[pulumi.Input[str]]: """ The scope of the access token. """ return pulumi.get(self, "scope") @scope.setter def scope(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "scope", value) @property @pulumi.getter(name="tokenType") def token_type(self) -> Optional[pulumi.Input[Union[str, 'TokenType']]]: """ The type of Auth token. """ return pulumi.get(self, "token_type") @token_type.setter def token_type(self, value: Optional[pulumi.Input[Union[str, 'TokenType']]]): pulumi.set(self, "token_type", value) @pulumi.input_type class SourcePropertiesArgs: def __init__(__self__, *, repository_url: pulumi.Input[str], source_control_type: pulumi.Input[Union[str, 'SourceControlType']], branch: Optional[pulumi.Input[str]] = None, source_control_auth_properties: Optional[pulumi.Input['AuthInfoArgs']] = None): """ The properties of the source code repository. :param pulumi.Input[str] repository_url: The full URL to the source code repository :param pulumi.Input[Union[str, 'SourceControlType']] source_control_type: The type of source control service. :param pulumi.Input[str] branch: The branch name of the source code. :param pulumi.Input['AuthInfoArgs'] source_control_auth_properties: The authorization properties for accessing the source code repository and to set up webhooks for notifications. """ pulumi.set(__self__, "repository_url", repository_url) pulumi.set(__self__, "source_control_type", source_control_type) if branch is not None: pulumi.set(__self__, "branch", branch) if source_control_auth_properties is not None: pulumi.set(__self__, "source_control_auth_properties", source_control_auth_properties) @property @pulumi.getter(name="repositoryUrl") def repository_url(self) -> pulumi.Input[str]: """ The full URL to the source code repository """ return pulumi.get(self, "repository_url") @repository_url.setter def repository_url(self, value: pulumi.Input[str]): pulumi.set(self, "repository_url", value) @property @pulumi.getter(name="sourceControlType") def source_control_type(self) -> pulumi.Input[Union[str, 'SourceControlType']]: """ The type of source control service. """ return pulumi.get(self, "source_control_type") @source_control_type.setter def source_control_type(self, value: pulumi.Input[Union[str, 'SourceControlType']]): pulumi.set(self, "source_control_type", value) @property @pulumi.getter def branch(self) -> Optional[pulumi.Input[str]]: """ The branch name of the source code. """ return pulumi.get(self, "branch") @branch.setter def branch(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "branch", value) @property @pulumi.getter(name="sourceControlAuthProperties") def source_control_auth_properties(self) -> Optional[pulumi.Input['AuthInfoArgs']]: """ The authorization properties for accessing the source code repository and to set up webhooks for notifications. """ return pulumi.get(self, "source_control_auth_properties") @source_control_auth_properties.setter def source_control_auth_properties(self, value: Optional[pulumi.Input['AuthInfoArgs']]): pulumi.set(self, "source_control_auth_properties", value) @pulumi.input_type class SourceRegistryCredentialsArgs: def __init__(__self__, *, login_mode: Optional[pulumi.Input[Union[str, 'SourceRegistryLoginMode']]] = None): """ Describes the credential parameters for accessing the source registry. :param pulumi.Input[Union[str, 'SourceRegistryLoginMode']] login_mode: The authentication mode which determines the source registry login scope. The credentials for the source registry will be generated using the given scope. These credentials will be used to login to the source registry during the run. """ if login_mode is not None: pulumi.set(__self__, "login_mode", login_mode) @property @pulumi.getter(name="loginMode") def login_mode(self) -> Optional[pulumi.Input[Union[str, 'SourceRegistryLoginMode']]]: """ The authentication mode which determines the source registry login scope. The credentials for the source registry will be generated using the given scope. These credentials will be used to login to the source registry during the run. """ return pulumi.get(self, "login_mode") @login_mode.setter def login_mode(self, value: Optional[pulumi.Input[Union[str, 'SourceRegistryLoginMode']]]): pulumi.set(self, "login_mode", value) @pulumi.input_type class SourceRepositoryPropertiesArgs: def __init__(__self__, *, repository_url: pulumi.Input[str], source_control_type: pulumi.Input[Union[str, 'SourceControlType']], is_commit_trigger_enabled: Optional[pulumi.Input[bool]] = None, source_control_auth_properties: Optional[pulumi.Input['SourceControlAuthInfoArgs']] = None): """ The properties of the source code repository. :param pulumi.Input[str] repository_url: The full URL to the source code repository :param pulumi.Input[Union[str, 'SourceControlType']] source_control_type: The type of source control service. :param pulumi.Input[bool] is_commit_trigger_enabled: The value of this property indicates whether the source control commit trigger is enabled or not. :param pulumi.Input['SourceControlAuthInfoArgs'] source_control_auth_properties: The authorization properties for accessing the source code repository. """ pulumi.set(__self__, "repository_url", repository_url) pulumi.set(__self__, "source_control_type", source_control_type) if is_commit_trigger_enabled is None: is_commit_trigger_enabled = False if is_commit_trigger_enabled is not None: pulumi.set(__self__, "is_commit_trigger_enabled", is_commit_trigger_enabled) if source_control_auth_properties is not None: pulumi.set(__self__, "source_control_auth_properties", source_control_auth_properties) @property @pulumi.getter(name="repositoryUrl") def repository_url(self) -> pulumi.Input[str]: """ The full URL to the source code repository """ return pulumi.get(self, "repository_url") @repository_url.setter def repository_url(self, value: pulumi.Input[str]): pulumi.set(self, "repository_url", value) @property @pulumi.getter(name="sourceControlType") def source_control_type(self) -> pulumi.Input[Union[str, 'SourceControlType']]: """ The type of source control service. """ return pulumi.get(self, "source_control_type") @source_control_type.setter def source_control_type(self, value: pulumi.Input[Union[str, 'SourceControlType']]): pulumi.set(self, "source_control_type", value) @property @pulumi.getter(name="isCommitTriggerEnabled") def is_commit_trigger_enabled(self) -> Optional[pulumi.Input[bool]]: """ The value of this property indicates whether the source control commit trigger is enabled or not. """ return pulumi.get(self, "is_commit_trigger_enabled") @is_commit_trigger_enabled.setter def is_commit_trigger_enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_commit_trigger_enabled", value) @property @pulumi.getter(name="sourceControlAuthProperties") def source_control_auth_properties(self) -> Optional[pulumi.Input['SourceControlAuthInfoArgs']]: """ The authorization properties for accessing the source code repository. """ return pulumi.get(self, "source_control_auth_properties") @source_control_auth_properties.setter def source_control_auth_properties(self, value: Optional[pulumi.Input['SourceControlAuthInfoArgs']]): pulumi.set(self, "source_control_auth_properties", value) @pulumi.input_type class SourceTriggerArgs: def __init__(__self__, *, name: pulumi.Input[str], source_repository: pulumi.Input['SourcePropertiesArgs'], source_trigger_events: pulumi.Input[Sequence[pulumi.Input[Union[str, 'SourceTriggerEvent']]]], status: Optional[pulumi.Input[Union[str, 'TriggerStatus']]] = None): """ The properties of a source based trigger. :param pulumi.Input[str] name: The name of the trigger. :param pulumi.Input['SourcePropertiesArgs'] source_repository: The properties that describes the source(code) for the task. :param pulumi.Input[Sequence[pulumi.Input[Union[str, 'SourceTriggerEvent']]]] source_trigger_events: The source event corresponding to the trigger. :param pulumi.Input[Union[str, 'TriggerStatus']] status: The current status of trigger. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "source_repository", source_repository) pulumi.set(__self__, "source_trigger_events", source_trigger_events) if status is None: status = 'Enabled' if status is not None: pulumi.set(__self__, "status", status) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ The name of the trigger. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter(name="sourceRepository") def source_repository(self) -> pulumi.Input['SourcePropertiesArgs']: """ The properties that describes the source(code) for the task. """ return pulumi.get(self, "source_repository") @source_repository.setter def source_repository(self, value: pulumi.Input['SourcePropertiesArgs']): pulumi.set(self, "source_repository", value) @property @pulumi.getter(name="sourceTriggerEvents") def source_trigger_events(self) -> pulumi.Input[Sequence[pulumi.Input[Union[str, 'SourceTriggerEvent']]]]: """ The source event corresponding to the trigger. """ return pulumi.get(self, "source_trigger_events") @source_trigger_events.setter def source_trigger_events(self, value: pulumi.Input[Sequence[pulumi.Input[Union[str, 'SourceTriggerEvent']]]]): pulumi.set(self, "source_trigger_events", value) @property @pulumi.getter def status(self) -> Optional[pulumi.Input[Union[str, 'TriggerStatus']]]: """ The current status of trigger. """ return pulumi.get(self, "status") @status.setter def status(self, value: Optional[pulumi.Input[Union[str, 'TriggerStatus']]]): pulumi.set(self, "status", value) @pulumi.input_type class StorageAccountPropertiesArgs: def __init__(__self__, *, id: pulumi.Input[str]): """ The properties of a storage account for a container registry. Only applicable to Classic SKU. :param pulumi.Input[str] id: The resource ID of the storage account. """ pulumi.set(__self__, "id", id) @property @pulumi.getter def id(self) -> pulumi.Input[str]: """ The resource ID of the storage account. """ return pulumi.get(self, "id") @id.setter def id(self, value: pulumi.Input[str]): pulumi.set(self, "id", value) @pulumi.input_type class SyncPropertiesArgs: def __init__(__self__, *, message_ttl: pulumi.Input[str], token_id: pulumi.Input[str], schedule: Optional[pulumi.Input[str]] = None, sync_window: Optional[pulumi.Input[str]] = None): """ The sync properties of the connected registry with its parent. :param pulumi.Input[str] message_ttl: The period of time for which a message is available to sync before it is expired. Specify the duration using the format P[n]Y[n]M[n]DT[n]H[n]M[n]S as per ISO8601. :param pulumi.Input[str] token_id: The resource ID of the ACR token used to authenticate the connected registry to its parent during sync. :param pulumi.Input[str] schedule: The cron expression indicating the schedule that the connected registry will sync with its parent. :param pulumi.Input[str] sync_window: The time window during which sync is enabled for each schedule occurrence. Specify the duration using the format P[n]Y[n]M[n]DT[n]H[n]M[n]S as per ISO8601. """ pulumi.set(__self__, "message_ttl", message_ttl) pulumi.set(__self__, "token_id", token_id) if schedule is not None: pulumi.set(__self__, "schedule", schedule) if sync_window is not None: pulumi.set(__self__, "sync_window", sync_window) @property @pulumi.getter(name="messageTtl") def message_ttl(self) -> pulumi.Input[str]: """ The period of time for which a message is available to sync before it is expired. Specify the duration using the format P[n]Y[n]M[n]DT[n]H[n]M[n]S as per ISO8601. """ return pulumi.get(self, "message_ttl") @message_ttl.setter def message_ttl(self, value: pulumi.Input[str]): pulumi.set(self, "message_ttl", value) @property @pulumi.getter(name="tokenId") def token_id(self) -> pulumi.Input[str]: """ The resource ID of the ACR token used to authenticate the connected registry to its parent during sync. """ return pulumi.get(self, "token_id") @token_id.setter def token_id(self, value: pulumi.Input[str]): pulumi.set(self, "token_id", value) @property @pulumi.getter def schedule(self) -> Optional[pulumi.Input[str]]: """ The cron expression indicating the schedule that the connected registry will sync with its parent. """ return pulumi.get(self, "schedule") @schedule.setter def schedule(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "schedule", value) @property @pulumi.getter(name="syncWindow") def sync_window(self) -> Optional[pulumi.Input[str]]: """ The time window during which sync is enabled for each schedule occurrence. Specify the duration using the format P[n]Y[n]M[n]DT[n]H[n]M[n]S as per ISO8601. """ return pulumi.get(self, "sync_window") @sync_window.setter def sync_window(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "sync_window", value) @pulumi.input_type class TaskRunRequestArgs: def __init__(__self__, *, task_id: pulumi.Input[str], type: pulumi.Input[str], agent_pool_name: Optional[pulumi.Input[str]] = None, is_archive_enabled: Optional[pulumi.Input[bool]] = None, log_template: Optional[pulumi.Input[str]] = None, override_task_step_properties: Optional[pulumi.Input['OverrideTaskStepPropertiesArgs']] = None): """ The parameters for a task run request. :param pulumi.Input[str] task_id: The resource ID of task against which run has to be queued. :param pulumi.Input[str] type: The type of the run request. Expected value is 'TaskRunRequest'. :param pulumi.Input[str] agent_pool_name: The dedicated agent pool for the run. :param pulumi.Input[bool] is_archive_enabled: The value that indicates whether archiving is enabled for the run or not. :param pulumi.Input[str] log_template: The template that describes the repository and tag information for run log artifact. :param pulumi.Input['OverrideTaskStepPropertiesArgs'] override_task_step_properties: Set of overridable parameters that can be passed when running a Task. """ pulumi.set(__self__, "task_id", task_id) pulumi.set(__self__, "type", 'TaskRunRequest') if agent_pool_name is not None: pulumi.set(__self__, "agent_pool_name", agent_pool_name) if is_archive_enabled is None: is_archive_enabled = False if is_archive_enabled is not None: pulumi.set(__self__, "is_archive_enabled", is_archive_enabled) if log_template is not None: pulumi.set(__self__, "log_template", log_template) if override_task_step_properties is not None: pulumi.set(__self__, "override_task_step_properties", override_task_step_properties) @property @pulumi.getter(name="taskId") def task_id(self) -> pulumi.Input[str]: """ The resource ID of task against which run has to be queued. """ return pulumi.get(self, "task_id") @task_id.setter def task_id(self, value: pulumi.Input[str]): pulumi.set(self, "task_id", value) @property @pulumi.getter def type(self) -> pulumi.Input[str]: """ The type of the run request. Expected value is 'TaskRunRequest'. """ return pulumi.get(self, "type") @type.setter def type(self, value: pulumi.Input[str]): pulumi.set(self, "type", value) @property @pulumi.getter(name="agentPoolName") def agent_pool_name(self) -> Optional[pulumi.Input[str]]: """ The dedicated agent pool for the run. """ return pulumi.get(self, "agent_pool_name") @agent_pool_name.setter def agent_pool_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "agent_pool_name", value) @property @pulumi.getter(name="isArchiveEnabled") def is_archive_enabled(self) -> Optional[pulumi.Input[bool]]: """ The value that indicates whether archiving is enabled for the run or not. """ return pulumi.get(self, "is_archive_enabled") @is_archive_enabled.setter def is_archive_enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_archive_enabled", value) @property @pulumi.getter(name="logTemplate") def log_template(self) -> Optional[pulumi.Input[str]]: """ The template that describes the repository and tag information for run log artifact. """ return pulumi.get(self, "log_template") @log_template.setter def log_template(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "log_template", value) @property @pulumi.getter(name="overrideTaskStepProperties") def override_task_step_properties(self) -> Optional[pulumi.Input['OverrideTaskStepPropertiesArgs']]: """ Set of overridable parameters that can be passed when running a Task. """ return pulumi.get(self, "override_task_step_properties") @override_task_step_properties.setter def override_task_step_properties(self, value: Optional[pulumi.Input['OverrideTaskStepPropertiesArgs']]): pulumi.set(self, "override_task_step_properties", value) @pulumi.input_type class TaskStepPropertiesArgs: def __init__(__self__, *, context_access_token: Optional[pulumi.Input[str]] = None, context_path: Optional[pulumi.Input[str]] = None): """ Base properties for any task step. :param pulumi.Input[str] context_access_token: The token (git PAT or SAS token of storage account blob) associated with the context for a step. :param pulumi.Input[str] context_path: The URL(absolute or relative) of the source context for the task step. """ if context_access_token is not None: pulumi.set(__self__, "context_access_token", context_access_token) if context_path is not None: pulumi.set(__self__, "context_path", context_path) @property @pulumi.getter(name="contextAccessToken") def context_access_token(self) -> Optional[pulumi.Input[str]]: """ The token (git PAT or SAS token of storage account blob) associated with the context for a step. """ return pulumi.get(self, "context_access_token") @context_access_token.setter def context_access_token(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "context_access_token", value) @property @pulumi.getter(name="contextPath") def context_path(self) -> Optional[pulumi.Input[str]]: """ The URL(absolute or relative) of the source context for the task step. """ return pulumi.get(self, "context_path") @context_path.setter def context_path(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "context_path", value) @pulumi.input_type class TimerTriggerArgs: def __init__(__self__, *, name: pulumi.Input[str], schedule: pulumi.Input[str], status: Optional[pulumi.Input[Union[str, 'TriggerStatus']]] = None): """ The properties of a timer trigger. :param pulumi.Input[str] name: The name of the trigger. :param pulumi.Input[str] schedule: The CRON expression for the task schedule :param pulumi.Input[Union[str, 'TriggerStatus']] status: The current status of trigger. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "schedule", schedule) if status is None: status = 'Enabled' if status is not None: pulumi.set(__self__, "status", status) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ The name of the trigger. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter def schedule(self) -> pulumi.Input[str]: """ The CRON expression for the task schedule """ return pulumi.get(self, "schedule") @schedule.setter def schedule(self, value: pulumi.Input[str]): pulumi.set(self, "schedule", value) @property @pulumi.getter def status(self) -> Optional[pulumi.Input[Union[str, 'TriggerStatus']]]: """ The current status of trigger. """ return pulumi.get(self, "status") @status.setter def status(self, value: Optional[pulumi.Input[Union[str, 'TriggerStatus']]]): pulumi.set(self, "status", value) @pulumi.input_type class TokenCertificateArgs: def __init__(__self__, *, encoded_pem_certificate: Optional[pulumi.Input[str]] = None, expiry: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[Union[str, 'TokenCertificateName']]] = None, thumbprint: Optional[pulumi.Input[str]] = None): """ The properties of a certificate used for authenticating a token. :param pulumi.Input[str] encoded_pem_certificate: Base 64 encoded string of the public certificate1 in PEM format that will be used for authenticating the token. :param pulumi.Input[str] expiry: The expiry datetime of the certificate. :param pulumi.Input[str] thumbprint: The thumbprint of the certificate. """ if encoded_pem_certificate is not None: pulumi.set(__self__, "encoded_pem_certificate", encoded_pem_certificate) if expiry is not None: pulumi.set(__self__, "expiry", expiry) if name is not None: pulumi.set(__self__, "name", name) if thumbprint is not None: pulumi.set(__self__, "thumbprint", thumbprint) @property @pulumi.getter(name="encodedPemCertificate") def encoded_pem_certificate(self) -> Optional[pulumi.Input[str]]: """ Base 64 encoded string of the public certificate1 in PEM format that will be used for authenticating the token. """ return pulumi.get(self, "encoded_pem_certificate") @encoded_pem_certificate.setter def encoded_pem_certificate(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "encoded_pem_certificate", value) @property @pulumi.getter def expiry(self) -> Optional[pulumi.Input[str]]: """ The expiry datetime of the certificate. """ return pulumi.get(self, "expiry") @expiry.setter def expiry(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "expiry", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[Union[str, 'TokenCertificateName']]]: return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[Union[str, 'TokenCertificateName']]]): pulumi.set(self, "name", value) @property @pulumi.getter def thumbprint(self) -> Optional[pulumi.Input[str]]: """ The thumbprint of the certificate. """ return pulumi.get(self, "thumbprint") @thumbprint.setter def thumbprint(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "thumbprint", value) @pulumi.input_type class TokenCredentialsPropertiesArgs: def __init__(__self__, *, certificates: Optional[pulumi.Input[Sequence[pulumi.Input['TokenCertificateArgs']]]] = None, passwords: Optional[pulumi.Input[Sequence[pulumi.Input['TokenPasswordArgs']]]] = None): """ The properties of the credentials that can be used for authenticating the token. """ if certificates is not None: pulumi.set(__self__, "certificates", certificates) if passwords is not None: pulumi.set(__self__, "passwords", passwords) @property @pulumi.getter def certificates(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['TokenCertificateArgs']]]]: return pulumi.get(self, "certificates") @certificates.setter def certificates(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['TokenCertificateArgs']]]]): pulumi.set(self, "certificates", value) @property @pulumi.getter def passwords(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['TokenPasswordArgs']]]]: return pulumi.get(self, "passwords") @passwords.setter def passwords(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['TokenPasswordArgs']]]]): pulumi.set(self, "passwords", value) @pulumi.input_type class TokenPasswordArgs: def __init__(__self__, *, creation_time: Optional[pulumi.Input[str]] = None, expiry: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[Union[str, 'TokenPasswordName']]] = None): """ The password that will be used for authenticating the token of a container registry. :param pulumi.Input[str] creation_time: The creation datetime of the password. :param pulumi.Input[str] expiry: The expiry datetime of the password. :param pulumi.Input[Union[str, 'TokenPasswordName']] name: The password name "password1" or "password2" """ if creation_time is not None: pulumi.set(__self__, "creation_time", creation_time) if expiry is not None: pulumi.set(__self__, "expiry", expiry) if name is not None: pulumi.set(__self__, "name", name) @property @pulumi.getter(name="creationTime") def creation_time(self) -> Optional[pulumi.Input[str]]: """ The creation datetime of the password. """ return pulumi.get(self, "creation_time") @creation_time.setter def creation_time(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "creation_time", value) @property @pulumi.getter def expiry(self) -> Optional[pulumi.Input[str]]: """ The expiry datetime of the password. """ return pulumi.get(self, "expiry") @expiry.setter def expiry(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "expiry", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[Union[str, 'TokenPasswordName']]]: """ The password name "password1" or "password2" """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[Union[str, 'TokenPasswordName']]]): pulumi.set(self, "name", value) @pulumi.input_type class TriggerPropertiesArgs: def __init__(__self__, *, base_image_trigger: Optional[pulumi.Input['BaseImageTriggerArgs']] = None, source_triggers: Optional[pulumi.Input[Sequence[pulumi.Input['SourceTriggerArgs']]]] = None, timer_triggers: Optional[pulumi.Input[Sequence[pulumi.Input['TimerTriggerArgs']]]] = None): """ The properties of a trigger. :param pulumi.Input['BaseImageTriggerArgs'] base_image_trigger: The trigger based on base image dependencies. :param pulumi.Input[Sequence[pulumi.Input['SourceTriggerArgs']]] source_triggers: The collection of triggers based on source code repository. :param pulumi.Input[Sequence[pulumi.Input['TimerTriggerArgs']]] timer_triggers: The collection of timer triggers. """ if base_image_trigger is not None: pulumi.set(__self__, "base_image_trigger", base_image_trigger) if source_triggers is not None: pulumi.set(__self__, "source_triggers", source_triggers) if timer_triggers is not None: pulumi.set(__self__, "timer_triggers", timer_triggers) @property @pulumi.getter(name="baseImageTrigger") def base_image_trigger(self) -> Optional[pulumi.Input['BaseImageTriggerArgs']]: """ The trigger based on base image dependencies. """ return pulumi.get(self, "base_image_trigger") @base_image_trigger.setter def base_image_trigger(self, value: Optional[pulumi.Input['BaseImageTriggerArgs']]): pulumi.set(self, "base_image_trigger", value) @property @pulumi.getter(name="sourceTriggers") def source_triggers(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['SourceTriggerArgs']]]]: """ The collection of triggers based on source code repository. """ return pulumi.get(self, "source_triggers") @source_triggers.setter def source_triggers(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['SourceTriggerArgs']]]]): pulumi.set(self, "source_triggers", value) @property @pulumi.getter(name="timerTriggers") def timer_triggers(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['TimerTriggerArgs']]]]: """ The collection of timer triggers. """ return pulumi.get(self, "timer_triggers") @timer_triggers.setter def timer_triggers(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['TimerTriggerArgs']]]]): pulumi.set(self, "timer_triggers", value) @pulumi.input_type class TrustPolicyArgs: def __init__(__self__, *, status: Optional[pulumi.Input[Union[str, 'PolicyStatus']]] = None, type: Optional[pulumi.Input[Union[str, 'TrustPolicyType']]] = None): """ The content trust policy for a container registry. :param pulumi.Input[Union[str, 'PolicyStatus']] status: The value that indicates whether the policy is enabled or not. :param pulumi.Input[Union[str, 'TrustPolicyType']] type: The type of trust policy. """ if status is None: status = 'disabled' if status is not None: pulumi.set(__self__, "status", status) if type is None: type = 'Notary' if type is not None: pulumi.set(__self__, "type", type) @property @pulumi.getter def status(self) -> Optional[pulumi.Input[Union[str, 'PolicyStatus']]]: """ The value that indicates whether the policy is enabled or not. """ return pulumi.get(self, "status") @status.setter def status(self, value: Optional[pulumi.Input[Union[str, 'PolicyStatus']]]): pulumi.set(self, "status", value) @property @pulumi.getter def type(self) -> Optional[pulumi.Input[Union[str, 'TrustPolicyType']]]: """ The type of trust policy. """ return pulumi.get(self, "type") @type.setter def type(self, value: Optional[pulumi.Input[Union[str, 'TrustPolicyType']]]): pulumi.set(self, "type", value) @pulumi.input_type class UserIdentityPropertiesArgs: def __init__(__self__, *, client_id: Optional[pulumi.Input[str]] = None, principal_id: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[str] client_id: The client id of user assigned identity. :param pulumi.Input[str] principal_id: The principal id of user assigned identity. """ if client_id is not None: pulumi.set(__self__, "client_id", client_id) if principal_id is not None: pulumi.set(__self__, "principal_id", principal_id) @property @pulumi.getter(name="clientId") def client_id(self) -> Optional[pulumi.Input[str]]: """ The client id of user assigned identity. """ return pulumi.get(self, "client_id") @client_id.setter def client_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "client_id", value) @property @pulumi.getter(name="principalId") def principal_id(self) -> Optional[pulumi.Input[str]]: """ The principal id of user assigned identity. """ return pulumi.get(self, "principal_id") @principal_id.setter def principal_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "principal_id", value) @pulumi.input_type class VirtualNetworkRuleArgs: def __init__(__self__, *, virtual_network_resource_id: pulumi.Input[str], action: Optional[pulumi.Input[Union[str, 'Action']]] = None): """ Virtual network rule. :param pulumi.Input[str] virtual_network_resource_id: Resource ID of a subnet, for example: /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{vnetName}/subnets/{subnetName}. :param pulumi.Input[Union[str, 'Action']] action: The action of virtual network rule. """ pulumi.set(__self__, "virtual_network_resource_id", virtual_network_resource_id) if action is None: action = 'Allow' if action is not None: pulumi.set(__self__, "action", action) @property @pulumi.getter(name="virtualNetworkResourceId") def virtual_network_resource_id(self) -> pulumi.Input[str]: """ Resource ID of a subnet, for example: /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{vnetName}/subnets/{subnetName}. """ return pulumi.get(self, "virtual_network_resource_id") @virtual_network_resource_id.setter def virtual_network_resource_id(self, value: pulumi.Input[str]): pulumi.set(self, "virtual_network_resource_id", value) @property @pulumi.getter def action(self) -> Optional[pulumi.Input[Union[str, 'Action']]]: """ The action of virtual network rule. """ return pulumi.get(self, "action") @action.setter def action(self, value: Optional[pulumi.Input[Union[str, 'Action']]]): pulumi.set(self, "action", value)
"""init""" NAME = "test01"
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Add volume_targets table Revision ID: 1a59178ebdf6 Revises: daa1ba02d98 Create Date: 2016-02-25 11:25:29.836535 """ # revision identifiers, used by Alembic. revision = '1a59178ebdf6' down_revision = 'daa1ba02d98' from alembic import op import sqlalchemy as sa def upgrade(): op.create_table('volume_targets', sa.Column('created_at', sa.DateTime(), nullable=True), sa.Column('updated_at', sa.DateTime(), nullable=True), sa.Column('id', sa.Integer(), nullable=False), sa.Column('uuid', sa.String(length=36), nullable=True), sa.Column('node_id', sa.Integer(), nullable=True), sa.Column('volume_type', sa.String(length=64), nullable=True), sa.Column('properties', sa.Text(), nullable=True), sa.Column('boot_index', sa.Integer(), nullable=True), sa.Column('volume_id', sa.String(length=36), nullable=True), sa.Column('extra', sa.Text(), nullable=True), sa.ForeignKeyConstraint(['node_id'], ['nodes.id'], ), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('node_id', 'boot_index', name='uniq_volumetargets0node_id0' 'boot_index'), sa.UniqueConstraint('uuid', name='uniq_volumetargets0uuid'), mysql_charset='utf8', mysql_engine='InnoDB')
#!/usr/bin/env python """ _SiblingSubscriptionsComplete_ Oracle implementation of Subscription.SiblingSubscriptionsComplete """ from WMCore.WMBS.MySQL.Subscriptions.SiblingSubscriptionsComplete import \ SiblingSubscriptionsComplete as SiblingCompleteMySQL class SiblingSubscriptionsComplete(SiblingCompleteMySQL): pass
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import re from pathlib import Path from typing import List class _MarkdownLink: """Handle to a markdown link, for easy existence test and printing (external links are not tested) """ def __init__(self, root: Path, file: Path, string: str, link: str) -> None: self._root = root self._file = file self._string = string self._link = link def exists(self) -> bool: if self._link.startswith("http"): # We don't check external urls. return True link = self._link.split("#")[0] if not link: return False fullpath = self._root / self._file.parent / link return fullpath.exists() def __repr__(self) -> str: return f"[{self._link}]({self._string}) in file {self._file}" def _get_root() -> Path: root = Path(__file__).parent.parent.absolute() assert (root / "setup.py").exists(), f"Wrong root folder: {root}" return root def _get_markdown_files(root: Path) -> List[Path]: return [md for pattern in ("*.md", "submitit/**/*.md", "docs/**/*.md") for md in root.glob(pattern)] def _get_all_markdown_links(root: Path, files: List[Path]) -> List[_MarkdownLink]: """Returns a list of all existing markdown links""" pattern = re.compile(r"\[(?P<string>.+?)\]\((?P<link>\S+?)\)") links = [] for file in files: for match in pattern.finditer(file.read_text()): links.append(_MarkdownLink(root, file, match.group("string"), match.group("link"))) return links def test_assert_markdown_links_not_broken() -> None: root = _get_root() files = _get_markdown_files(root) assert len(files) > 3 links = _get_all_markdown_links(root, files) assert len(links) > 5, "There should be several hyperlinks!" broken_links = [l for l in links if not l.exists()] assert not broken_links