content
stringlengths
5
1.05M
import unittest import pymysql.cursors # Not a Python dev, this is probably pretty ugly class TestDjConventions(unittest.TestCase): @classmethod def setUpClass(cls): cls.conn = pymysql.connect( host="localhost", user="user", password="password", db="helium_from_dj" ) @classmethod def tearDownClass(cls): cls.conn.close() def test_class_names(self): expected_names = [ "sample_manual", "#sample_lookup", "_sample_imported", "__sample_computed", "sample_master", "sample_master__part1", "sample_master__part2" ] with TestDjConventions.conn.cursor() as cursor: cursor.execute("SHOW TABLES;") tables = [row[0] for row in cursor.fetchall()] for expected_name in expected_names: self.assertIn(expected_name, tables) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python from saml2.saml import NAME_FORMAT_URI __author__ = 'rolandh' import json BASE = "http://localhost:8088" metadata = open("idp_test/idp.xml").read() info = { "entity_id": "%s/idp.xml" % BASE, "interaction": [ { "matches": { "url": "%s/login" % BASE, "title": 'IDP test login' }, "page-type": "login", "control": { "type": "form", "set": {"login": "roland", "password": "dianakra"} } }, { "matches": { "url": "%s/sso/redirect" % BASE, "title": "SAML 2.0 POST" }, "page-type": "other", "control": { "index": 0, "type": "form", "set": {} } }, { "matches": { "url": "%s/sso/post" % BASE, "title": "SAML 2.0 POST" }, "page-type": "other", "control": { "index": 0, "type": "form", "set": {} } }, { "matches": { "url": "%s/slo/post" % BASE, "title": "SAML 2.0 POST" }, "page-type": "other", "control": { "index": 0, "type": "form", "set": {} } } ], "metadata": metadata, "name_format": NAME_FORMAT_URI } print json.dumps(info)
import jieba class TabooChineseChecker: def __init__(self): pass def check(self, sent, word): segmentation = list(jieba.cut(sent)) if word in segmentation: return True else: return False
import csv import os from util.singleton import Singleton class ThrottleFrame: def __init__(self, time: float, distance: float, speed: float): self.time = float(time) self.distance = float(distance) self.speed = float(speed) def copy(self): return ThrottleFrame(self.time, self.distance, self.speed) @Singleton class ThrottleAnalysis(): # Read frames from csv def __init__(self): self.frames = [] filename = 'data/throttle.csv' with open(os.path.join(os.path.dirname(__file__), filename), newline='') as csvfile: reader = csv.DictReader(csvfile) for row in reader: self.frames.append(ThrottleFrame(row['time'], row['distance'], row['speed'])) print(f'Read {len(self.frames)} frames from {filename}') # TODO could be improved with a binary search or gradient descent def get_frame_by_speed(self, speed: float) -> ThrottleFrame: closest = None for frame in self.frames: if closest == None or abs(frame.speed - speed) < abs(closest.speed - speed): closest = frame return closest.copy() # TODO obvious repitition with above, could probably be generalized later def get_frame_by_distance(self, distance: float) -> ThrottleFrame: closest = None for frame in self.frames: if closest == None or abs(frame.distance - distance) < abs(closest.distance - distance): closest = frame return closest.copy() def travel_distance(self, distance: float, initial_speed: float = 0): start = self.get_frame_by_speed(initial_speed) end_dist = start.distance + distance end = self.get_frame_by_distance(end_dist) # Handle speeds greater than than max throttle (e.g. throttle, without boost, while supersonic) if initial_speed > end.speed: end.speed = initial_speed # Interpolate any remaining distance using constant velocity if end_dist > end.distance: dist_left = end_dist - end.distance end.time += dist_left / end.speed end.distance = end_dist return ThrottleFrame(end.time - start.time, end.distance - start.distance, end.speed)
""" LocalStorage ------------ Simple local storage that create directories for packages and put releases files in it. """ import os import re import io import shutil import pkginfo from hashlib import md5 from .base import BaseStorage class LocalStorage(BaseStorage): NAME = 'LocalStorage' def __init__(self, packages_root=None): if packages_root is None: raise RuntimeError("Cannot use LocalStorage without PACKAGES_ROOT set") self.packages_root = packages_root def _get_metadata(self, release): try: metadata = pkginfo.get_metadata(release).__dict__ except Exception: # bad archive metadata = {} md5_hash = md5() with open(release, 'rb') as fp: for content in iter(lambda: fp.read(io.DEFAULT_BUFFER_SIZE), b''): md5_hash.update(content) metadata.update({'md5_digest': md5_hash.hexdigest()}) return metadata def get_releases_metadata(self): """List all releases metadata from PACKAGES_ROOT :return: generator :rtype: list """ for root, dirs, files in os.walk(self.packages_root): for f in files: path = os.path.join(root, f) yield (os.path.basename(path), self._get_metadata(path)) def delete_package(self, package): """Delete entire package directory """ path = os.path.join( self.packages_root, package.name ) try: shutil.rmtree(path) return True except Exception: return False def delete_release(self, package, version): """Delete all files matching specified version """ path = os.path.join(self.packages_root, package.name) if not os.path.isdir(path): return False files = os.listdir(path) regex = '.*-(?P<version>[0-9\.]*)[\.-].*' r = re.compile(regex) files = filter( lambda f: r.match(f) and r.match(f).group('version') == version, files ) files = list(files) for f in files: os.remove(os.path.join(path, f)) return True def create_package(self, package): """Create new directory for a given package """ path = os.path.join( self.packages_root, package.name ) try: os.mkdir(path) return True except OSError: return False def create_release(self, package, release_file): """Copy release file inside package directory If package directory does not exists, it will create it before """ package_path = os.path.join( self.packages_root, package.name ) if not os.path.isdir(package_path): if not self.create_package(package): return False release_path = os.path.join(package_path, release_file.filename) release_file.save(release_path) return True def get_files(self, package, release=None): """Get all files associated to a package If release is not None, it will filter files on release version, based on a regex """ path = os.path.join(self.packages_root, package.name) if not os.path.isdir(path): return None files = os.listdir(path) if release is not None: regex = '.*-(?P<version>[0-9\.]*)[\.-].*'.format(package.name) r = re.compile(regex) v = release.version files = filter( lambda f: r.match(f) and r.match(f).group('version') == v, files ) files = list(files) return files def get_file(self, package, file, release=None): """Get a single file from filesystem """ return os.path.join(self.packages_root, package.name, file)
import abc import time class Question: __metaclass__ = abc.ABCMeta def __init__(self, name: str): self.name = name self.result = None def __enter__(self): self.start_time = time.time() return self def __exit__(self, *args): self.end_time = time.time() self.total_time = self.end_time - self.start_time print(f'[{self.name}] - Result: {self.result}') print(f'[{self.name}] - Total time: {self.total_time:.6f}s') @abc.abstractmethod def solve(self): pass
# # Copyright (C) 2013 eNovance SAS <licensing@enovance.com> # # Author: Frederic Lepied <frederic.lepied@enovance.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import unittest from hardware import megacli from hardware.tests.utils import sample class TestMegacliTest(unittest.TestCase): def setUp(self): def my_run(*args, **arr): return self.output self.run = megacli.run_megacli megacli.run_megacli = my_run def tearDown(self): megacli.run = self.run def test_parse_output_empty(self): self.assertEqual(megacli.parse_output(''), {}) def test_parse_output_simple(self): self.assertEqual(megacli.parse_output(' a : b'), {'A': 'b'}) def test_parse_output_adpcount(self): self.assertEqual(megacli.parse_output(sample('megacli_adpcount')), {'ControllerCount': 1, 'ExitCode': '0x01'}) def test_adp_count(self): self.output = sample('megacli_adpcount') self.assertEqual(megacli.adp_count(), 1) def test_adp_all_info(self): self.output = sample('megacli_adp_all_info') self.assertEqual(megacli.adp_all_info(0), {'CriticalDisks': 0, 'Degraded': 0, 'Disks': 6, 'FwPackageBuild': '21.1.0-0007', 'FailedDisks': 0, 'Offline': 0, 'PhysicalDevices': 7, 'ProductName': 'PERC H710 Mini', 'SerialNo': '29F026R', 'VirtualDrives': 1}) def test_pd_get_num(self): self.output = ''' Number of Physical Drives on Adapter 0: 6''' self.assertEqual(megacli.pd_get_num(0), 6) def test_split_parts(self): self.assertEqual(len(megacli.split_parts(' +Enclosure [0-9]+:', ENC_OUTPUT)), 2) def test_enc_info(self): self.output = ''' Number of enclosures on adapter 0 -- 1 Enclosure 0: Device ID : 32 Number of Slots : 8''' self.assertEqual(megacli.enc_info(0), [{'Enclosure': 0, 'DeviceId': 32, 'NumberOfSlots': 8}]) def test_enc_info2(self): self.output = ENC_OUTPUT info = megacli.enc_info(0) self.assertEqual(len(info), 2) self.assertEqual(info[0]['Enclosure'], 0) self.assertEqual(info[1]['Enclosure'], 1) def test_pdinfo(self): self.output = ''' Enclosure Device ID: 32 Slot Number: 5 Enclosure position: 1 Device Id: 5 WWN: 5000C50054C07E80 Sequence Number: 1 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SAS''' self.assertEqual(megacli.pdinfo(0, 32, 5), {'DeviceId': 5, 'EnclosureDeviceId': 32, 'EnclosurePosition': 1, 'LastPredictiveFailureEventSeqNumber': 0, 'MediaErrorCount': 0, 'OtherErrorCount': 0, 'PdType': 'SAS', 'PredictiveFailureCount': 0, 'SequenceNumber': 1, 'SlotNumber': 5, 'Wwn': '5000C50054C07E80'} ) def test_ld_get_num(self): self.output = ''' Number of Virtual Drives Configured on Adapter 0: 1''' self.assertEqual(megacli.ld_get_num(0), 1) def test_ld_get_info(self): self.output = sample('megacli_ld_get_info') self.assertEqual(megacli.ld_get_info(0, 0), {'Adapter0--VirtualDriveInformation': '', 'BadBlocksExist': 'No', 'CacheCadeType': 'Read Only', 'CanSpinUpIn1Minute': 'Yes', 'CurrentAccessPolicy': 'Read/Write', 'CurrentCachePolicy': 'WriteBack, ReadAdaptive, Direct, ' 'No Write Cache if Bad BBU', 'CurrentPowerSavingsPolicy': 'None', 'DefaultAccessPolicy': 'Read/Write', 'DefaultCachePolicy': 'WriteBack, ReadAdaptive, ' 'Direct, No Write Cache if Bad BBU', 'DefaultPowerSavingsPolicy': 'Controller Defined', 'DiskCachePolicy': "Disk's Default", 'EncryptionType': 'None', 'IsVdCached': 'Yes', "Ld'SIoProfileSupportsMaxPowerSavings" "WithCachedWrites": 'No', 'LdHasDrivesThatSupportT10PowerConditions': 'No', 'MirrorData': '465.25 GB', 'Name': '', 'NumberOfDrives': 2, 'RaidLevel': 'Primary-1, Secondary-0, RAID Level ' 'Qualifier-0', 'SectorSize': 512, 'Size': '465.25 GB', 'SpanDepth': 1, 'State': 'Optimal', 'StripSize': '64 KB'}) ENC_OUTPUT = sample('megacli_enc') if __name__ == "__main__": unittest.main() # test_megacli.py ends here
# -*- coding: utf-8 -*- import PyWMOFiles.Error import PyWMOFiles.BUFR
"""Minimal example Implement a equivariant polynomial to fit the tetris dataset Exact equivariance to :math:`E(3)` This example is minimal: * there is dependency on the distance to the neighbors (tetris pieces are made of edges of length 1) * there is no non-linearities except that the tensor product, therefore this model is a polynomial >>> test() """ import torch from torch_cluster import radius_graph from torch_geometric.data import Data, DataLoader from torch_scatter import scatter from e3nn import o3 from e3nn.o3 import FullyConnectedTensorProduct def tetris(): pos = [ [(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 1, 0)], # chiral_shape_1 [(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, -1, 0)], # chiral_shape_2 [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)], # square [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3)], # line [(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)], # corner [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0)], # L [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1)], # T [(0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 1, 0)], # zigzag ] pos = torch.tensor(pos, dtype=torch.get_default_dtype()) # Since chiral shapes are the mirror of one another we need an *odd* scalar to distinguish them labels = torch.tensor([ [+1, 0, 0, 0, 0, 0, 0], # chiral_shape_1 [-1, 0, 0, 0, 0, 0, 0], # chiral_shape_2 [0, 1, 0, 0, 0, 0, 0], # square [0, 0, 1, 0, 0, 0, 0], # line [0, 0, 0, 1, 0, 0, 0], # corner [0, 0, 0, 0, 1, 0, 0], # L [0, 0, 0, 0, 0, 1, 0], # T [0, 0, 0, 0, 0, 0, 1], # zigzag ], dtype=torch.get_default_dtype()) # apply random rotation pos = torch.einsum('zij,zaj->zai', o3.rand_matrix(len(pos)), pos) # put in torch_geometric format dataset = [Data(pos=pos) for pos in pos] data = next(iter(DataLoader(dataset, batch_size=len(dataset)))) return data, labels class InvariantPolynomial(torch.nn.Module): def __init__(self) -> None: super().__init__() self.irreps_sh = o3.Irreps.spherical_harmonics(3) irreps_mid = o3.Irreps("64x0e + 24x1e + 24x1o + 16x2e + 16x2o") irreps_out = o3.Irreps("0o + 6x0e") self.tp1 = FullyConnectedTensorProduct( irreps_in1=self.irreps_sh, irreps_in2=self.irreps_sh, irreps_out=irreps_mid, ) self.tp2 = FullyConnectedTensorProduct( irreps_in1=irreps_mid, irreps_in2=self.irreps_sh, irreps_out=irreps_out, ) def forward(self, data) -> torch.Tensor: num_neighbors = 2 # typical number of neighbors num_nodes = 4 # typical number of nodes edge_src, edge_dst = radius_graph(data.pos, 1.1, data.batch) # tensors of indices representing the graph edge_vec = data.pos[edge_src] - data.pos[edge_dst] edge_sh = o3.spherical_harmonics(self.irreps_sh, edge_vec, False, normalization='component') # For each node, the initial features are the sum of the spherical harmonics of the neighbors node_features = scatter(edge_sh, edge_dst, dim=0).div(num_neighbors**0.5) # For each edge, tensor product the features on the source node with the spherical harmonics edge_features = self.tp1(node_features[edge_src], edge_sh) node_features = scatter(edge_features, edge_dst, dim=0).div(num_neighbors**0.5) edge_features = self.tp2(node_features[edge_src], edge_sh) node_features = scatter(edge_features, edge_dst, dim=0).div(num_neighbors**0.5) # For each graph, all the node's features are summed return scatter(node_features, data.batch, dim=0).div(num_nodes**0.5) def main(): data, labels = tetris() f = InvariantPolynomial() optim = torch.optim.Adam(f.parameters(), lr=1e-2) for step in range(200): pred = f(data) loss = (pred - labels).pow(2).sum() optim.zero_grad() loss.backward() optim.step() if step % 10 == 0: accuracy = pred.round().eq(labels).double().mean().item() print(f"{100 * accuracy:.1f}% accuracy") # Check equivariance rotated_data, _ = tetris() error = f(rotated_data) - f(data) print(f"Equivariance error = {error.abs().max().item():.1e}") if __name__ == '__main__': main() def test(): data, labels = tetris() f = InvariantPolynomial() pred = f(data) loss = (pred - labels).pow(2).sum() loss.backward() rotated_data, _ = tetris() error = f(rotated_data) - f(data) assert error.abs().max() < 1e-5
#!/usr/bin/env python3 import os from typing import Optional EON = os.path.isfile('/EON') class Service: def __init__(self, port: int, should_log: bool, frequency: float, decimation: Optional[int] = None): self.port = port self.should_log = should_log self.frequency = frequency self.decimation = decimation service_list = { "roadCameraState": Service(8002, True, 20., 1), "sensorEvents": Service(8003, True, 100., 100), "gpsNMEA": Service(8004, True, 9.), "deviceState": Service(8005, True, 2., 1), "can": Service(8006, True, 100.), "controlsState": Service(8007, True, 100., 100), "features": Service(8010, True, 0.), "pandaState": Service(8011, True, 2., 1), "radarState": Service(8012, True, 20., 5), "roadEncodeIdx": Service(8015, True, 20., 1), "liveTracks": Service(8016, True, 20.), "sendcan": Service(8017, True, 100.), "logMessage": Service(8018, True, 0.), "liveCalibration": Service(8019, True, 4., 4), "androidLog": Service(8020, True, 0., 1), "carState": Service(8021, True, 100., 10), "carControl": Service(8023, True, 100., 10), "longitudinalPlan": Service(8024, True, 20., 2), "liveLocation": Service(8025, True, 0., 1), "procLog": Service(8031, True, 0.5), "gpsLocationExternal": Service(8032, True, 10., 1), "ubloxGnss": Service(8033, True, 10.), "clocks": Service(8034, True, 1., 1), "liveMpc": Service(8035, False, 20.), "liveLongitudinalMpc": Service(8036, False, 20.), "ubloxRaw": Service(8042, True, 20.), "liveLocationKalman": Service(8054, True, 20., 2), "uiLayoutState": Service(8060, True, 0.), "liveParameters": Service(8064, True, 20., 2), "cameraOdometry": Service(8066, True, 20., 5), "lateralPlan": Service(8067, True, 20., 2), "thumbnail": Service(8069, True, 0.2, 1), "carEvents": Service(8070, True, 1., 1), "carParams": Service(8071, True, 0.02, 1), "driverCameraState": Service(8072, True, 10. if EON else 20., 1), "driverEncodeIdx": Service(8061, True, 10. if EON else 20., 1), "driverState": Service(8063, True, 10. if EON else 20., 1), "driverMonitoringState": Service(8073, True, 10. if EON else 20., 1), "offroadLayout": Service(8074, False, 0.), "wideRoadEncodeIdx": Service(8075, True, 20., 1), "wideRoadCameraState": Service(8076, True, 20., 1), "modelV2": Service(8077, True, 20., 20), "managerState": Service(8078, True, 2., 1), "testModel": Service(8040, False, 0.), "testLiveLocation": Service(8045, False, 0.), "testJoystick": Service(8056, False, 0.), } def build_header(): h = "" h += "/* THIS IS AN AUTOGENERATED FILE, PLEASE EDIT services.py */\n" h += "#ifndef __SERVICES_H\n" h += "#define __SERVICES_H\n" h += "struct service { char name[0x100]; int port; bool should_log; int frequency; int decimation; };\n" h += "static struct service services[] = {\n" for k, v in service_list.items(): should_log = "true" if v.should_log else "false" decimation = -1 if v.decimation is None else v.decimation h += ' { .name = "%s", .port = %d, .should_log = %s, .frequency = %d, .decimation = %d },\n' % \ (k, v.port, should_log, v.frequency, decimation) h += "};\n" h += "#endif\n" return h if __name__ == "__main__": print(build_header())
import sys import matplotlib.pyplot as plt import torch from sklearn.decomposition import PCA def main(model_filepath, input_filepath): model = torch.load(model_filepath) images, labels = torch.load(input_filepath) print([10], "load") with torch.no_grad(): model.eval() k = 100 perm = torch.randperm(images.shape[0]) idx = perm[:k] inter_rep = model.conv(images[idx]) inter_lab = labels[idx] print([19], "inter load") inter_pca = PCA(n_components=2).fit_transform(inter_rep.view(k, -1)) print([21], "inter tsne") plt.figure(figsize=(4, 4)) plt.scatter(inter_pca[:, 0], inter_pca[:, 1], c=inter_lab) plt.legend() plt.savefig("reports/figures/report.png") plt.show() if __name__ == "__main__": main(sys.argv[1], sys.argv[2])
import numpy as np import math def selfInductance(): firstAmp = float(input('First Amps: ')) firstrads = float(input('First Rads/second: ')) volt = float(input('Volts: ')) max = firstAmp * firstrads Henry = (volt / max) * 1000 print(Henry) print("mH") selfInductance()
from . import data from . import models from . import metrics
# proxy module from __future__ import absolute_import from codetools.blocks.compiler_.ast.ast import *
""" """ from __future__ import absolute_import from qgis.PyQt.QtWidgets import QMenu, QMessageBox from .environment import BASE_DIR from .version import VERSION #include here the new function for a connection with the menu from .dikeline_export import DikelineExport from .observationpoint_export import ObservationPointExport from .polygon_export import PolygonExport from .coastline_export import CoastlineExport from .densify_linestring import DensifyLinestring from .river_profile_export import RiverProfileExport from .dem_export import DEMExport from .database_export import DatabaseExport from .hello_world import HelloWorld from .crosssectioncreator import CrossSectionCreator from .time_viewer import TimeViewer from .rain_generator import RainGenerator from .dam_raster import DAMRasterExport from .cin_point import CINPointExport from .cin_connector import CINConnectorExport from .cin_polygon import CINPolygonExport from .cin_connector_automatic import CINConnectorExportAuto import os class PromaidesToolbox(object): def __init__(self, iface): self.iface = iface #init self.plugin_menu = None self.submenu_hyd = None self.submenu_general = None #HYD self.dikeline_exprt = DikelineExport(self.iface) self.observationpoint_exprt = ObservationPointExport(self.iface) self.polygon_exprt = PolygonExport(self.iface) self.coastline_exprt = CoastlineExport(self.iface) self.crosssection = CrossSectionCreator(self.iface) self.densify = DensifyLinestring(self.iface) self.river_profile_exprt = RiverProfileExport(self.iface) self.dem_export = DEMExport(self.iface) self.time = TimeViewer(self.iface) #HAZ self.rain = RainGenerator(self.iface) #DAM self.dam_raster = DAMRasterExport(self.iface) #CIN self.cin_point = CINPointExport(self.iface) self.cin_polygon = CINPolygonExport(self.iface) self.cin_connector = CINConnectorExport(self.iface) self.cin_connector_automatic = CINConnectorExportAuto(self.iface) #General self.hello_world = HelloWorld(self.iface) self.db_exprt = DatabaseExport(self.iface) def initGui(self): """ """ self.plugin_menu = QMenu('ProMaIDes Toolbox', self.iface.mainWindow()) #Add a submenu self.submenu_general = self.plugin_menu.addMenu('General') self.submenu_haz = self.plugin_menu.addMenu('HAZ') self.submenu_hyd = self.plugin_menu.addMenu('HYD') self.submenu_dam = self.plugin_menu.addMenu('DAM') self.submenu_cin = self.plugin_menu.addMenu('CIN') #Add and coonnect to funtions in other .py-files #HYD self.observationpoint_exprt.initGui(self.submenu_hyd) self.submenu_hyd.addSeparator() self.crosssection.initGui(self.submenu_hyd) self.densify.initGui(self.submenu_hyd) self.river_profile_exprt.initGui(self.submenu_hyd) self.submenu_hyd.addSeparator() self.dem_export.initGui(self.submenu_hyd) self.dikeline_exprt.initGui(self.submenu_hyd) self.polygon_exprt.initGui(self.submenu_hyd) self.submenu_hyd.addSeparator() self.coastline_exprt.initGui(self.submenu_hyd) self.submenu_hyd.addSeparator() self.time.initGui(self.submenu_hyd) #HAZ self.rain.initGui(self.submenu_haz) #DAM self.dam_raster.initGui(self.submenu_dam) #CIN self.cin_point.initGui(self.submenu_cin) self.cin_polygon.initGui(self.submenu_cin) self.cin_connector.initGui(self.submenu_cin) self.cin_connector_automatic.initGui(self.submenu_cin) #General self.hello_world.initGui(self.submenu_general) self.db_exprt.initGui(self.submenu_general) #Add about self.plugin_menu.addAction('About', self.showAbout) self.iface.pluginMenu().addMenu(self.plugin_menu) def unload(self): """ """ #HYD self.dikeline_exprt.unload(self.submenu_hyd) self.observationpoint_exprt.unload(self.submenu_hyd) self.polygon_exprt.unload(self.submenu_hyd) self.coastline_exprt.unload(self.submenu_hyd) self.densify.unload(self.submenu_hyd) self.crosssection.unload(self.submenu_hyd) self.river_profile_exprt.unload(self.submenu_hyd) self.dem_export.unload(self.submenu_hyd) self.time.unload(self.submenu_hyd) #HAZ self.rain.unload(self.submenu_haz) #DAM self.dam_raster.unload(self.submenu_dam) #CIN self.cin_point.unload(self.submenu_cin) self.cin_connector.unload(self.submenu_cin) self.cin_polygon.unload(self.submenu_cin) self.cin_connector_automatic.unload(self.submenu_cin) #General self.db_exprt.unload(self.submenu_general) self.hello_world.unload(self.submenu_general) self.iface.pluginMenu().removeAction(self.plugin_menu.menuAction()) def showAbout(self): about = open(os.path.join(BASE_DIR, 'ABOUT.html')).read().format(version='.'.join(map(str, VERSION))) QMessageBox.about(self.iface.mainWindow(), 'ProMaIDes Toolbox', about)
from app import app from flask import request from werkzeug import secure_filename from os import path, remove as remove_file from random import randrange from time import time from openpyxl import load_workbook def allowed_ext(filename, allowed=[".xlsx"]): # Extension ext = path.splitext(filename)[1] # End return ext in allowed def stringify(value): if value: return bytes(str(value), 'utf-8').decode('utf-8-sig').strip() else: return "" def remove_temp(filepath): if path.isfile(filepath): remove_file(filepath) return True def get_uploaded_import_wb_file(): # Default output output = None # Form name form_name = "file_import" # On post if request.method == "POST": # Check form if form_name in request.files: # Get file file = request.files[form_name] filename = file.filename.strip() is_update = request.form.get("update") == "y" # Check filename if not filename == "": # Check extension if allowed_ext(filename): # Path filename_clean = secure_filename(f"import_{randrange(1000, 9999)}_{int(time())}.xlsx") save_path = path.join( app.config.get("PRIVATE_DIR"), "temp", filename_clean ) # Save file.save(save_path) # Load file try: # Load workbook wb = load_workbook(save_path) # End return (True, save_path, wb, is_update) except Exception as e: # Remove file remove_file(save_path) # End return (False, "Terjadi kesalahan saat memuat file") else: # End return (False, "Ekstensi tidak diizinkan, silahkan upload file berekstensi *.xlsx") else: # End return (False, "Silahkan pilih file terlebih dahulu") else: # End return (False, "Gagal menemukan file pada permintaan form") # End return output
# -*- coding: utf-8 -*- from urllib.parse import urlparse from django.contrib.auth import get_user_model from django.shortcuts import resolve_url from django.test import TestCase class SetupTest(TestCase): def test_initial_setup_redirect(self): resp = self.client.get(resolve_url('login')) self.assertEqual(resp.status_code, 302) url = urlparse(resp['Location']) self.assertEqual(url.path, resolve_url('first_time_setup')) # Don't redirect if there's already a user get_user_model().objects.create_user(username='test') resp = self.client.get(resolve_url('login')) self.assertEqual(resp.status_code, 200) def test_initial_setup_requires(self): resp = self.client.post(resolve_url('first_time_setup')) self.assertEqual(resp.status_code, 400) def test_initial_setup_post(self): resp = self.client.post( resolve_url('first_time_setup'), data={ 'username': '', 'password': 'pass' }) self.assertEqual(resp.status_code, 400) resp = self.client.post( resolve_url('first_time_setup'), data={ 'username': 'test', 'password': '' }) self.assertEqual(resp.status_code, 400) self.assertFalse(get_user_model().objects.exists()) resp = self.client.post( resolve_url('first_time_setup'), data={ 'username': 'test', 'password': 'pass' }) self.assertEqual(resp.status_code, 302) self.assertTrue(get_user_model().objects.exists()) def test_initial_setup_post_with_email(self): resp = self.client.post( resolve_url('first_time_setup'), data={ 'username': 'test', 'email': 'fail', 'password': 'pass' }) self.assertEqual(resp.status_code, 400) self.assertFalse(get_user_model().objects.exists()) resp = self.client.post( resolve_url('first_time_setup'), data={ 'username': 'test', 'email': 'real@email.com', 'password': 'pass' }) self.assertEqual(resp.status_code, 302) self.assertTrue(get_user_model().objects.exists()) def test_cant_setup_with_existing_user(self): get_user_model().objects.create_user(username='test') resp = self.client.post( resolve_url('first_time_setup'), data={ 'username': 'test', 'email': 'real@email.com', 'password': 'pass' }) self.assertEqual(get_user_model().objects.count(), 1)
import logs import veri def monitorStuff(Net): Val = logs.peek(Net) if Val!=0: logs.log_error('PANIC activated on %s %s'%(Net,veri.peek(Net))) return 1 return 0 def monitorStuffs(): panics=0 counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.a_rcount") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.b_rcount") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.c_rcount") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.d_rcount") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.a_ar_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.a_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.a_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.a_ids_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.b_ar_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.b_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.b_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.b_ids_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.c_ar_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.c_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.c_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.c_ids_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.d_ar_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.d_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.d_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger0.axi_rd_4_merger.d_ids_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.panic_acount") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.panic_bcount") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.panic_ccount") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.panic_dcount") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.a_bcount") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.b_bcount") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.c_bcount") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.d_bcount") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.a_aw_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.a_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.a_b_fifo.next_count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.a_b_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.a_win_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.a_win_fifo.int_count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.b_aw_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.b_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.b_b_fifo.next_count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.b_b_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.b_out_fifo.next_count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.b_out_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.b_win_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.b_win_fifo.int_count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.c_aw_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.c_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.c_b_fifo.next_count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.c_b_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.c_win_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.c_win_fifo.int_count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.d_aw_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.d_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.d_b_fifo.next_count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.d_b_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.d_win_fifo.count") counts += monitorStuff("tb.dut.merger0.axi_wr_4_merger.d_win_fifo.int_count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.a_rcount") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.b_rcount") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.c_rcount") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.d_rcount") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.a_ar_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.a_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.a_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.a_ids_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.b_ar_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.b_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.b_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.b_ids_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.c_ar_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.c_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.c_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.c_ids_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.d_ar_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.d_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.d_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger1.axi_rd_4_merger.d_ids_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.panic_acount") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.panic_bcount") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.panic_ccount") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.panic_dcount") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.a_bcount") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.b_bcount") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.c_bcount") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.d_bcount") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.a_aw_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.a_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.a_b_fifo.next_count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.a_b_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.a_win_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.a_win_fifo.int_count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.b_aw_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.b_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.b_b_fifo.next_count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.b_b_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.b_out_fifo.next_count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.b_out_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.b_win_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.b_win_fifo.int_count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.c_aw_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.c_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.c_b_fifo.next_count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.c_b_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.c_win_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.c_win_fifo.int_count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.d_aw_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.d_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.d_b_fifo.next_count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.d_b_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.d_win_fifo.count") counts += monitorStuff("tb.dut.merger1.axi_wr_4_merger.d_win_fifo.int_count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.a_rcount") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.b_rcount") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.c_rcount") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.d_rcount") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.a_ar_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.a_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.a_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.a_ids_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.b_ar_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.b_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.b_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.b_ids_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.c_ar_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.c_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.c_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.c_ids_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.d_ar_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.d_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.d_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger2.axi_rd_4_merger.d_ids_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.panic_acount") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.panic_bcount") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.panic_ccount") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.panic_dcount") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.a_bcount") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.b_bcount") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.c_bcount") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.d_bcount") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.a_aw_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.a_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.a_b_fifo.next_count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.a_b_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.a_win_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.a_win_fifo.int_count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.b_aw_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.b_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.b_b_fifo.next_count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.b_b_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.b_out_fifo.next_count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.b_out_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.b_win_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.b_win_fifo.int_count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.c_aw_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.c_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.c_b_fifo.next_count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.c_b_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.c_win_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.c_win_fifo.int_count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.d_aw_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.d_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.d_b_fifo.next_count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.d_b_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.d_win_fifo.count") counts += monitorStuff("tb.dut.merger2.axi_wr_4_merger.d_win_fifo.int_count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.a_rcount") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.b_rcount") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.c_rcount") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.d_rcount") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.a_ar_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.a_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.a_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.a_ids_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.b_ar_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.b_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.b_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.b_ids_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.c_ar_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.c_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.c_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.c_ids_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.d_ar_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.d_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.d_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger3.axi_rd_4_merger.d_ids_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.panic_acount") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.panic_bcount") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.panic_ccount") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.panic_dcount") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.a_bcount") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.b_bcount") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.c_bcount") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.d_bcount") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.a_aw_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.a_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.a_b_fifo.next_count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.a_b_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.a_win_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.a_win_fifo.int_count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.b_aw_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.b_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.b_b_fifo.next_count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.b_b_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.b_out_fifo.next_count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.b_out_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.b_win_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.b_win_fifo.int_count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.c_aw_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.c_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.c_b_fifo.next_count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.c_b_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.c_win_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.c_win_fifo.int_count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.d_aw_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.d_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.d_b_fifo.next_count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.d_b_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.d_win_fifo.count") counts += monitorStuff("tb.dut.merger3.axi_wr_4_merger.d_win_fifo.int_count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.a_rcount") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.b_rcount") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.c_rcount") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.d_rcount") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.a_ar_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.a_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.a_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.a_ids_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.b_ar_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.b_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.b_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.b_ids_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.c_ar_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.c_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.c_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.c_ids_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.d_ar_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.d_ar_fifo.int_count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.d_ids_fifo.next_count") counts += monitorStuff("tb.dut.merger4.axi_rd_4_merger.d_ids_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.panic_acount") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.panic_bcount") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.panic_ccount") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.panic_dcount") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.a_bcount") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.b_bcount") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.c_bcount") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.d_bcount") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.a_aw_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.a_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.a_b_fifo.next_count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.a_b_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.a_win_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.a_win_fifo.int_count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.b_aw_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.b_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.b_b_fifo.next_count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.b_b_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.b_out_fifo.next_count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.b_out_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.b_win_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.b_win_fifo.int_count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.c_aw_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.c_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.c_b_fifo.next_count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.c_b_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.c_win_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.c_win_fifo.int_count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.d_aw_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.d_aw_fifo.int_count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.d_b_fifo.next_count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.d_b_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.d_win_fifo.count") counts += monitorStuff("tb.dut.merger4.axi_wr_4_merger.d_win_fifo.int_count") counts += monitorStuff("tb.dut.splitter0.axi_rd_4_splitter.ar_fifo.next_count") counts += monitorStuff("tb.dut.splitter0.axi_rd_4_splitter.ar_fifo.count") counts += monitorStuff("tb.dut.splitter0.axi_rd_4_splitter.r_fifo.next_count") counts += monitorStuff("tb.dut.splitter0.axi_rd_4_splitter.r_fifo.count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.a_bcount") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.b_bcount") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.c_bcount") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.d_bcount") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.aw_fifo.next_count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.aw_fifo.count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.b_fifo.next_count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.b_fifo.count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.back_bid_a_fifo.count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.back_bid_a_fifo.int_count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.back_bid_b_fifo.count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.back_bid_b_fifo.int_count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.back_bid_c_fifo.count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.back_bid_c_fifo.int_count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.back_bid_d_fifo.count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.back_bid_d_fifo.int_count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.order_fifo.next_count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.order_fifo.count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.w_fifo.next_count") counts += monitorStuff("tb.dut.splitter0.axi_wr_4_splitter.w_fifo.count") veri.force('tb.Panics',str(panics)) def snapshot(): logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.a_rcount" % logs.peek("tb.dut.merger0.axi_rd_4_merger.a_rcount")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.b_rcount" % logs.peek("tb.dut.merger0.axi_rd_4_merger.b_rcount")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.c_rcount" % logs.peek("tb.dut.merger0.axi_rd_4_merger.c_rcount")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.d_rcount" % logs.peek("tb.dut.merger0.axi_rd_4_merger.d_rcount")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.a_ar_fifo.count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.a_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.a_ar_fifo.int_count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.a_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.a_ids_fifo.next_count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.a_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.a_ids_fifo.count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.a_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.b_ar_fifo.count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.b_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.b_ar_fifo.int_count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.b_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.b_ids_fifo.next_count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.b_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.b_ids_fifo.count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.b_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.c_ar_fifo.count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.c_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.c_ar_fifo.int_count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.c_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.c_ids_fifo.next_count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.c_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.c_ids_fifo.count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.c_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.d_ar_fifo.count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.d_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.d_ar_fifo.int_count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.d_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.d_ids_fifo.next_count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.d_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger0.axi_rd_4_merger.d_ids_fifo.count" % logs.peek("tb.dut.merger0.axi_rd_4_merger.d_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.panic_acount" % logs.peek("tb.dut.merger0.axi_wr_4_merger.panic_acount")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.panic_bcount" % logs.peek("tb.dut.merger0.axi_wr_4_merger.panic_bcount")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.panic_ccount" % logs.peek("tb.dut.merger0.axi_wr_4_merger.panic_ccount")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.panic_dcount" % logs.peek("tb.dut.merger0.axi_wr_4_merger.panic_dcount")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.a_bcount" % logs.peek("tb.dut.merger0.axi_wr_4_merger.a_bcount")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.b_bcount" % logs.peek("tb.dut.merger0.axi_wr_4_merger.b_bcount")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.c_bcount" % logs.peek("tb.dut.merger0.axi_wr_4_merger.c_bcount")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.d_bcount" % logs.peek("tb.dut.merger0.axi_wr_4_merger.d_bcount")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.a_aw_fifo.count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.a_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.a_aw_fifo.int_count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.a_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.a_b_fifo.next_count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.a_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.a_b_fifo.count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.a_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.a_win_fifo.count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.a_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.a_win_fifo.int_count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.a_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.b_aw_fifo.count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.b_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.b_aw_fifo.int_count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.b_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.b_b_fifo.next_count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.b_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.b_b_fifo.count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.b_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.b_out_fifo.next_count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.b_out_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.b_out_fifo.count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.b_out_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.b_win_fifo.count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.b_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.b_win_fifo.int_count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.b_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.c_aw_fifo.count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.c_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.c_aw_fifo.int_count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.c_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.c_b_fifo.next_count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.c_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.c_b_fifo.count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.c_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.c_win_fifo.count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.c_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.c_win_fifo.int_count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.c_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.d_aw_fifo.count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.d_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.d_aw_fifo.int_count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.d_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.d_b_fifo.next_count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.d_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.d_b_fifo.count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.d_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.d_win_fifo.count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.d_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger0.axi_wr_4_merger.d_win_fifo.int_count" % logs.peek("tb.dut.merger0.axi_wr_4_merger.d_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.a_rcount" % logs.peek("tb.dut.merger1.axi_rd_4_merger.a_rcount")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.b_rcount" % logs.peek("tb.dut.merger1.axi_rd_4_merger.b_rcount")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.c_rcount" % logs.peek("tb.dut.merger1.axi_rd_4_merger.c_rcount")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.d_rcount" % logs.peek("tb.dut.merger1.axi_rd_4_merger.d_rcount")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.a_ar_fifo.count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.a_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.a_ar_fifo.int_count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.a_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.a_ids_fifo.next_count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.a_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.a_ids_fifo.count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.a_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.b_ar_fifo.count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.b_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.b_ar_fifo.int_count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.b_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.b_ids_fifo.next_count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.b_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.b_ids_fifo.count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.b_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.c_ar_fifo.count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.c_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.c_ar_fifo.int_count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.c_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.c_ids_fifo.next_count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.c_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.c_ids_fifo.count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.c_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.d_ar_fifo.count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.d_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.d_ar_fifo.int_count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.d_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.d_ids_fifo.next_count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.d_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger1.axi_rd_4_merger.d_ids_fifo.count" % logs.peek("tb.dut.merger1.axi_rd_4_merger.d_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.panic_acount" % logs.peek("tb.dut.merger1.axi_wr_4_merger.panic_acount")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.panic_bcount" % logs.peek("tb.dut.merger1.axi_wr_4_merger.panic_bcount")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.panic_ccount" % logs.peek("tb.dut.merger1.axi_wr_4_merger.panic_ccount")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.panic_dcount" % logs.peek("tb.dut.merger1.axi_wr_4_merger.panic_dcount")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.a_bcount" % logs.peek("tb.dut.merger1.axi_wr_4_merger.a_bcount")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.b_bcount" % logs.peek("tb.dut.merger1.axi_wr_4_merger.b_bcount")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.c_bcount" % logs.peek("tb.dut.merger1.axi_wr_4_merger.c_bcount")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.d_bcount" % logs.peek("tb.dut.merger1.axi_wr_4_merger.d_bcount")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.a_aw_fifo.count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.a_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.a_aw_fifo.int_count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.a_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.a_b_fifo.next_count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.a_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.a_b_fifo.count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.a_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.a_win_fifo.count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.a_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.a_win_fifo.int_count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.a_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.b_aw_fifo.count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.b_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.b_aw_fifo.int_count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.b_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.b_b_fifo.next_count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.b_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.b_b_fifo.count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.b_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.b_out_fifo.next_count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.b_out_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.b_out_fifo.count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.b_out_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.b_win_fifo.count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.b_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.b_win_fifo.int_count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.b_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.c_aw_fifo.count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.c_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.c_aw_fifo.int_count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.c_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.c_b_fifo.next_count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.c_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.c_b_fifo.count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.c_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.c_win_fifo.count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.c_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.c_win_fifo.int_count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.c_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.d_aw_fifo.count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.d_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.d_aw_fifo.int_count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.d_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.d_b_fifo.next_count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.d_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.d_b_fifo.count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.d_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.d_win_fifo.count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.d_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger1.axi_wr_4_merger.d_win_fifo.int_count" % logs.peek("tb.dut.merger1.axi_wr_4_merger.d_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.a_rcount" % logs.peek("tb.dut.merger2.axi_rd_4_merger.a_rcount")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.b_rcount" % logs.peek("tb.dut.merger2.axi_rd_4_merger.b_rcount")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.c_rcount" % logs.peek("tb.dut.merger2.axi_rd_4_merger.c_rcount")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.d_rcount" % logs.peek("tb.dut.merger2.axi_rd_4_merger.d_rcount")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.a_ar_fifo.count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.a_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.a_ar_fifo.int_count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.a_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.a_ids_fifo.next_count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.a_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.a_ids_fifo.count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.a_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.b_ar_fifo.count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.b_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.b_ar_fifo.int_count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.b_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.b_ids_fifo.next_count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.b_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.b_ids_fifo.count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.b_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.c_ar_fifo.count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.c_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.c_ar_fifo.int_count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.c_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.c_ids_fifo.next_count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.c_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.c_ids_fifo.count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.c_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.d_ar_fifo.count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.d_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.d_ar_fifo.int_count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.d_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.d_ids_fifo.next_count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.d_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger2.axi_rd_4_merger.d_ids_fifo.count" % logs.peek("tb.dut.merger2.axi_rd_4_merger.d_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.panic_acount" % logs.peek("tb.dut.merger2.axi_wr_4_merger.panic_acount")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.panic_bcount" % logs.peek("tb.dut.merger2.axi_wr_4_merger.panic_bcount")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.panic_ccount" % logs.peek("tb.dut.merger2.axi_wr_4_merger.panic_ccount")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.panic_dcount" % logs.peek("tb.dut.merger2.axi_wr_4_merger.panic_dcount")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.a_bcount" % logs.peek("tb.dut.merger2.axi_wr_4_merger.a_bcount")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.b_bcount" % logs.peek("tb.dut.merger2.axi_wr_4_merger.b_bcount")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.c_bcount" % logs.peek("tb.dut.merger2.axi_wr_4_merger.c_bcount")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.d_bcount" % logs.peek("tb.dut.merger2.axi_wr_4_merger.d_bcount")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.a_aw_fifo.count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.a_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.a_aw_fifo.int_count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.a_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.a_b_fifo.next_count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.a_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.a_b_fifo.count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.a_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.a_win_fifo.count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.a_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.a_win_fifo.int_count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.a_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.b_aw_fifo.count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.b_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.b_aw_fifo.int_count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.b_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.b_b_fifo.next_count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.b_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.b_b_fifo.count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.b_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.b_out_fifo.next_count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.b_out_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.b_out_fifo.count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.b_out_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.b_win_fifo.count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.b_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.b_win_fifo.int_count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.b_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.c_aw_fifo.count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.c_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.c_aw_fifo.int_count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.c_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.c_b_fifo.next_count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.c_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.c_b_fifo.count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.c_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.c_win_fifo.count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.c_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.c_win_fifo.int_count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.c_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.d_aw_fifo.count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.d_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.d_aw_fifo.int_count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.d_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.d_b_fifo.next_count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.d_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.d_b_fifo.count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.d_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.d_win_fifo.count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.d_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger2.axi_wr_4_merger.d_win_fifo.int_count" % logs.peek("tb.dut.merger2.axi_wr_4_merger.d_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.a_rcount" % logs.peek("tb.dut.merger3.axi_rd_4_merger.a_rcount")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.b_rcount" % logs.peek("tb.dut.merger3.axi_rd_4_merger.b_rcount")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.c_rcount" % logs.peek("tb.dut.merger3.axi_rd_4_merger.c_rcount")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.d_rcount" % logs.peek("tb.dut.merger3.axi_rd_4_merger.d_rcount")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.a_ar_fifo.count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.a_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.a_ar_fifo.int_count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.a_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.a_ids_fifo.next_count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.a_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.a_ids_fifo.count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.a_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.b_ar_fifo.count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.b_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.b_ar_fifo.int_count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.b_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.b_ids_fifo.next_count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.b_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.b_ids_fifo.count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.b_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.c_ar_fifo.count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.c_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.c_ar_fifo.int_count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.c_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.c_ids_fifo.next_count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.c_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.c_ids_fifo.count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.c_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.d_ar_fifo.count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.d_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.d_ar_fifo.int_count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.d_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.d_ids_fifo.next_count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.d_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger3.axi_rd_4_merger.d_ids_fifo.count" % logs.peek("tb.dut.merger3.axi_rd_4_merger.d_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.panic_acount" % logs.peek("tb.dut.merger3.axi_wr_4_merger.panic_acount")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.panic_bcount" % logs.peek("tb.dut.merger3.axi_wr_4_merger.panic_bcount")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.panic_ccount" % logs.peek("tb.dut.merger3.axi_wr_4_merger.panic_ccount")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.panic_dcount" % logs.peek("tb.dut.merger3.axi_wr_4_merger.panic_dcount")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.a_bcount" % logs.peek("tb.dut.merger3.axi_wr_4_merger.a_bcount")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.b_bcount" % logs.peek("tb.dut.merger3.axi_wr_4_merger.b_bcount")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.c_bcount" % logs.peek("tb.dut.merger3.axi_wr_4_merger.c_bcount")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.d_bcount" % logs.peek("tb.dut.merger3.axi_wr_4_merger.d_bcount")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.a_aw_fifo.count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.a_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.a_aw_fifo.int_count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.a_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.a_b_fifo.next_count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.a_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.a_b_fifo.count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.a_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.a_win_fifo.count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.a_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.a_win_fifo.int_count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.a_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.b_aw_fifo.count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.b_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.b_aw_fifo.int_count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.b_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.b_b_fifo.next_count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.b_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.b_b_fifo.count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.b_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.b_out_fifo.next_count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.b_out_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.b_out_fifo.count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.b_out_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.b_win_fifo.count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.b_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.b_win_fifo.int_count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.b_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.c_aw_fifo.count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.c_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.c_aw_fifo.int_count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.c_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.c_b_fifo.next_count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.c_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.c_b_fifo.count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.c_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.c_win_fifo.count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.c_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.c_win_fifo.int_count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.c_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.d_aw_fifo.count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.d_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.d_aw_fifo.int_count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.d_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.d_b_fifo.next_count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.d_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.d_b_fifo.count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.d_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.d_win_fifo.count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.d_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger3.axi_wr_4_merger.d_win_fifo.int_count" % logs.peek("tb.dut.merger3.axi_wr_4_merger.d_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.a_rcount" % logs.peek("tb.dut.merger4.axi_rd_4_merger.a_rcount")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.b_rcount" % logs.peek("tb.dut.merger4.axi_rd_4_merger.b_rcount")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.c_rcount" % logs.peek("tb.dut.merger4.axi_rd_4_merger.c_rcount")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.d_rcount" % logs.peek("tb.dut.merger4.axi_rd_4_merger.d_rcount")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.a_ar_fifo.count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.a_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.a_ar_fifo.int_count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.a_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.a_ids_fifo.next_count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.a_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.a_ids_fifo.count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.a_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.b_ar_fifo.count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.b_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.b_ar_fifo.int_count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.b_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.b_ids_fifo.next_count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.b_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.b_ids_fifo.count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.b_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.c_ar_fifo.count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.c_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.c_ar_fifo.int_count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.c_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.c_ids_fifo.next_count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.c_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.c_ids_fifo.count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.c_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.d_ar_fifo.count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.d_ar_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.d_ar_fifo.int_count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.d_ar_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.d_ids_fifo.next_count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.d_ids_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger4.axi_rd_4_merger.d_ids_fifo.count" % logs.peek("tb.dut.merger4.axi_rd_4_merger.d_ids_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.panic_acount" % logs.peek("tb.dut.merger4.axi_wr_4_merger.panic_acount")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.panic_bcount" % logs.peek("tb.dut.merger4.axi_wr_4_merger.panic_bcount")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.panic_ccount" % logs.peek("tb.dut.merger4.axi_wr_4_merger.panic_ccount")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.panic_dcount" % logs.peek("tb.dut.merger4.axi_wr_4_merger.panic_dcount")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.a_bcount" % logs.peek("tb.dut.merger4.axi_wr_4_merger.a_bcount")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.b_bcount" % logs.peek("tb.dut.merger4.axi_wr_4_merger.b_bcount")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.c_bcount" % logs.peek("tb.dut.merger4.axi_wr_4_merger.c_bcount")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.d_bcount" % logs.peek("tb.dut.merger4.axi_wr_4_merger.d_bcount")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.a_aw_fifo.count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.a_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.a_aw_fifo.int_count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.a_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.a_b_fifo.next_count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.a_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.a_b_fifo.count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.a_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.a_win_fifo.count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.a_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.a_win_fifo.int_count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.a_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.b_aw_fifo.count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.b_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.b_aw_fifo.int_count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.b_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.b_b_fifo.next_count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.b_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.b_b_fifo.count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.b_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.b_out_fifo.next_count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.b_out_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.b_out_fifo.count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.b_out_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.b_win_fifo.count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.b_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.b_win_fifo.int_count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.b_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.c_aw_fifo.count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.c_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.c_aw_fifo.int_count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.c_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.c_b_fifo.next_count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.c_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.c_b_fifo.count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.c_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.c_win_fifo.count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.c_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.c_win_fifo.int_count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.c_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.d_aw_fifo.count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.d_aw_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.d_aw_fifo.int_count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.d_aw_fifo.int_count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.d_b_fifo.next_count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.d_b_fifo.next_count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.d_b_fifo.count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.d_b_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.d_win_fifo.count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.d_win_fifo.count")) logs.log_info("SNP %x tb.dut.merger4.axi_wr_4_merger.d_win_fifo.int_count" % logs.peek("tb.dut.merger4.axi_wr_4_merger.d_win_fifo.int_count")) logs.log_info("SNP %x tb.dut.splitter0.axi_rd_4_splitter.ar_fifo.next_count" % logs.peek("tb.dut.splitter0.axi_rd_4_splitter.ar_fifo.next_count")) logs.log_info("SNP %x tb.dut.splitter0.axi_rd_4_splitter.ar_fifo.count" % logs.peek("tb.dut.splitter0.axi_rd_4_splitter.ar_fifo.count")) logs.log_info("SNP %x tb.dut.splitter0.axi_rd_4_splitter.r_fifo.next_count" % logs.peek("tb.dut.splitter0.axi_rd_4_splitter.r_fifo.next_count")) logs.log_info("SNP %x tb.dut.splitter0.axi_rd_4_splitter.r_fifo.count" % logs.peek("tb.dut.splitter0.axi_rd_4_splitter.r_fifo.count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.a_bcount" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.a_bcount")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.b_bcount" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.b_bcount")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.c_bcount" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.c_bcount")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.d_bcount" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.d_bcount")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.aw_fifo.next_count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.aw_fifo.next_count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.aw_fifo.count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.aw_fifo.count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.b_fifo.next_count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.b_fifo.next_count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.b_fifo.count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.b_fifo.count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.back_bid_a_fifo.count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.back_bid_a_fifo.count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.back_bid_a_fifo.int_count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.back_bid_a_fifo.int_count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.back_bid_b_fifo.count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.back_bid_b_fifo.count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.back_bid_b_fifo.int_count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.back_bid_b_fifo.int_count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.back_bid_c_fifo.count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.back_bid_c_fifo.count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.back_bid_c_fifo.int_count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.back_bid_c_fifo.int_count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.back_bid_d_fifo.count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.back_bid_d_fifo.count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.back_bid_d_fifo.int_count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.back_bid_d_fifo.int_count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.order_fifo.next_count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.order_fifo.next_count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.order_fifo.count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.order_fifo.count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.w_fifo.next_count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.w_fifo.next_count")) logs.log_info("SNP %x tb.dut.splitter0.axi_wr_4_splitter.w_fifo.count" % logs.peek("tb.dut.splitter0.axi_wr_4_splitter.w_fifo.count"))
#!/usr/bin/python3 from datetime import datetime import sys filename="shm-lolo-100-delay" try: if sys.argv[1]: fileName = sys.argv[1] except IndexError: print("Using default file name.") fileName = 'loglistener.txt' f = open(fileName,"r") total_count=0 ctr_count=0 RPL_count=0 data_count=0 for line in f: if 'forwarding control' in line: total_count+=1 ctr_count+=1 if 'DIO' in line or "DIS" in line or "DAO" in line: total_count+=1 RPL_count+=1 if 'now sending hello' in line: total_count+=1 data_count+=1 print("data") print(data_count) print("ctr:") print(ctr_count) print("RPL:") print(RPL_count) print("SUM:") print(total_count)
"""Top-level package for python_project_template.""" __author__ = """Mason Lin""" __email__ = 'pizza0117@gmail.com' __version__ = '0.1.0'
# Write a method/function DISPLAYWORDS() in python to read lines from a text file STORY.TXT, and display those words, which are less than 4 characters. def displayWords() : file = open("story.txt", "r") listObj = file.readlines() for index in listObj : word = index.split() for search in word: if len(search) < 4: print(search) file.close() displayWords()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.fluid.core import is_compiled_with_cuda, is_compiled_with_rocm, CUDAPlace if is_compiled_with_cuda() and not is_compiled_with_rocm(): from paddle.fluid.core import CUDAGraph as CoreCUDAGraph class CUDAGraph: def __init__(self, place=None, mode="thread_local"): ALL_MODES = ["global", "thread_local", "relaxed"] self._graph = None if place is None: place = CUDAPlace(0) self._place = place assert mode in ALL_MODES self._mode = ALL_MODES.index(mode) def capture_begin(self): CoreCUDAGraph.begin_capture(self._place, self._mode) def capture_end(self): self._graph = CoreCUDAGraph.end_capture() def replay(self): self._graph.replay() def reset(self): self._graph.reset() else: class CUDAGraph: def __init__(self, place=None, mode="thread_local"): raise NotImplementedError() def capture_begin(self): raise NotImplementedError() def capture_end(self): raise NotImplementedError() def replay(self): raise NotImplementedError() def reset(self): raise NotImplementedError()
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the NiBabel package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Test for scaling / rounding in volumeutils module """ import numpy as np import warnings from io import BytesIO from ..volumeutils import finite_range, apply_read_scaling, array_to_file, array_from_file from ..casting import type_info from ..testing import suppress_warnings from .test_volumeutils import _calculate_scale from numpy.testing import (assert_array_almost_equal, assert_array_equal) import pytest # Debug print statements DEBUG = True @pytest.mark.parametrize("in_arr, res", [ ([[-1, 0, 1], [np.inf, np.nan, -np.inf]], (-1, 1)), (np.array([[-1, 0, 1], [np.inf, np.nan, -np.inf]]), (-1, 1)), ([[np.nan], [np.nan]], (np.inf, -np.inf)), # all nans slices (np.zeros((3, 4, 5)) + np.nan, (np.inf, -np.inf)), ([[-np.inf], [np.inf]], (np.inf, -np.inf)), # all infs slices (np.zeros((3, 4, 5)) + np.inf, (np.inf, -np.inf)), ([[np.nan, -1, 2], [-2, np.nan, 1]], (-2, 2)), ([[np.nan, -np.inf, 2], [-2, np.nan, np.inf]], (-2, 2)), ([[-np.inf, 2], [np.nan, 1]], (1, 2)), # good max case ([[np.nan, -np.inf, 2], [-2, np.nan, np.inf]], (-2, 2)), ([np.nan], (np.inf, -np.inf)), ([np.inf], (np.inf, -np.inf)), ([-np.inf], (np.inf, -np.inf)), ([np.inf, 1], (1, 1)), # only look at finite values ([-np.inf, 1], (1, 1)), ([[], []], (np.inf, -np.inf)), # empty array (np.array([[-3, 0, 1], [2, -1, 4]], dtype=int), (-3, 4)), (np.array([[1, 0, 1], [2, 3, 4]], dtype=np.uint), (0, 4)), ([0., 1, 2, 3], (0, 3)), # Complex comparison works as if they are floats ([[np.nan, -1 - 100j, 2], [-2, np.nan, 1 + 100j]], (-2, 2)), ([[np.nan, -1, 2 - 100j], [-2 + 100j, np.nan, 1]], (-2 + 100j, 2 - 100j)), ]) def test_finite_range(in_arr, res): # Finite range utility function assert finite_range(in_arr) == res assert finite_range(in_arr, False) == res assert finite_range(in_arr, check_nan=False) == res has_nan = np.any(np.isnan(in_arr)) assert finite_range(in_arr, True) == res + (has_nan,) assert finite_range(in_arr, check_nan=True) == res + (has_nan,) in_arr = np.array(in_arr) flat_arr = in_arr.ravel() assert finite_range(flat_arr) == res assert finite_range(flat_arr, True) == res + (has_nan,) # Check float types work as complex if in_arr.dtype.kind == 'f': c_arr = in_arr.astype(np.complex128) assert finite_range(c_arr) == res assert finite_range(c_arr, True) == res + (has_nan,) def test_finite_range_err(): # Test error cases a = np.array([[1., 0, 1], [2, 3, 4]]).view([('f1', 'f')]) with pytest.raises(TypeError): finite_range(a) @pytest.mark.parametrize("out_type", [np.int16, np.float32]) def test_a2f_mn_mx(out_type): # Test array to file mn, mx handling str_io = BytesIO() arr = np.arange(6, dtype=out_type) arr_orig = arr.copy() # safe backup for testing against # Basic round trip to warm up array_to_file(arr, str_io) data_back = array_from_file(arr.shape, out_type, str_io) assert_array_equal(arr, data_back) # Clip low array_to_file(arr, str_io, mn=2) data_back = array_from_file(arr.shape, out_type, str_io) # arr unchanged assert_array_equal(arr, arr_orig) # returned value clipped low assert_array_equal(data_back, [2, 2, 2, 3, 4, 5]) # Clip high array_to_file(arr, str_io, mx=4) data_back = array_from_file(arr.shape, out_type, str_io) # arr unchanged assert_array_equal(arr, arr_orig) # returned value clipped high assert_array_equal(data_back, [0, 1, 2, 3, 4, 4]) # Clip both array_to_file(arr, str_io, mn=2, mx=4) data_back = array_from_file(arr.shape, out_type, str_io) # arr unchanged assert_array_equal(arr, arr_orig) # returned value clipped high assert_array_equal(data_back, [2, 2, 2, 3, 4, 4]) def test_a2f_nan2zero(): # Test conditions under which nans written to zero arr = np.array([np.nan, 99.], dtype=np.float32) str_io = BytesIO() array_to_file(arr, str_io) data_back = array_from_file(arr.shape, np.float32, str_io) assert_array_equal(np.isnan(data_back), [True, False]) # nan2zero ignored for floats array_to_file(arr, str_io, nan2zero=True) data_back = array_from_file(arr.shape, np.float32, str_io) assert_array_equal(np.isnan(data_back), [True, False]) # Integer output with nan2zero gives zero with np.errstate(invalid='ignore'): array_to_file(arr, str_io, np.int32, nan2zero=True) data_back = array_from_file(arr.shape, np.int32, str_io) assert_array_equal(data_back, [0, 99]) # Integer output with nan2zero=False gives whatever astype gives with np.errstate(invalid='ignore'): array_to_file(arr, str_io, np.int32, nan2zero=False) data_back = array_from_file(arr.shape, np.int32, str_io) assert_array_equal(data_back, [np.array(np.nan).astype(np.int32), 99]) @pytest.mark.parametrize("in_type, out_type", [ (np.int16, np.int16), (np.int16, np.int8), (np.uint16, np.uint8), (np.int32, np.int8), (np.float32, np.uint8), (np.float32, np.int16) ]) def test_array_file_scales(in_type, out_type): # Test scaling works for max, min when going from larger to smaller type, # and from float to integer. bio = BytesIO() out_dtype = np.dtype(out_type) arr = np.zeros((3,), dtype=in_type) info = type_info(in_type) arr[0], arr[1] = info['min'], info['max'] slope, inter, mn, mx = _calculate_scale(arr, out_dtype, True) array_to_file(arr, bio, out_type, 0, inter, slope, mn, mx) bio.seek(0) arr2 = array_from_file(arr.shape, out_dtype, bio) arr3 = apply_read_scaling(arr2, slope, inter) # Max rounding error for integer type max_miss = slope / 2. assert np.all(np.abs(arr - arr3) <= max_miss) @pytest.mark.parametrize("category0, category1, overflow",[ # Confirm that, for all ints and uints as input, and all possible outputs, # for any simple way of doing the calculation, the result is near enough ('int', 'int', False), ('uint', 'int', False), # Converting floats to integer ('float', 'int', True), ('float', 'uint', True), ('complex', 'int', True), ('complex', 'uint', True), ]) def test_scaling_in_abstract(category0, category1, overflow): for in_type in np.sctypes[category0]: for out_type in np.sctypes[category1]: if overflow: with suppress_warnings(): check_int_a2f(in_type, out_type) else: check_int_a2f(in_type, out_type) def check_int_a2f(in_type, out_type): # Check that array to / from file returns roughly the same as input big_floater = np.maximum_sctype(np.float64) info = type_info(in_type) this_min, this_max = info['min'], info['max'] if not in_type in np.sctypes['complex']: data = np.array([this_min, this_max], in_type) # Bug in numpy 1.6.2 on PPC leading to infs - abort if not np.all(np.isfinite(data)): if DEBUG: print(f'Hit PPC max -> inf bug; skip in_type {in_type}') return else: # Funny behavior with complex256 data = np.zeros((2,), in_type) data[0] = this_min + 0j data[1] = this_max + 0j str_io = BytesIO() try: scale, inter, mn, mx = _calculate_scale(data, out_type, True) except ValueError as e: if DEBUG: warnings.warn(str((in_type, out_type, e))) return array_to_file(data, str_io, out_type, 0, inter, scale, mn, mx) data_back = array_from_file(data.shape, out_type, str_io) data_back = apply_read_scaling(data_back, scale, inter) assert np.allclose(big_floater(data), big_floater(data_back)) # Try with analyze-size scale and inter scale32 = np.float32(scale) inter32 = np.float32(inter) if scale32 == np.inf or inter32 == np.inf: return data_back = array_from_file(data.shape, out_type, str_io) data_back = apply_read_scaling(data_back, scale32, inter32) # Clip at extremes to remove inf info = type_info(in_type) out_min, out_max = info['min'], info['max'] assert np.allclose(big_floater(data), big_floater(np.clip(data_back, out_min, out_max)))
from vvspy import get_trips """ Check connections between two stations and alarm on delay. Note that there are destination.delay and origin.delay. origin.delay => departure delay on first station destination.delay => arrival delay on the final station """ station_1 = 5006118 # Stuttgart main station station_2 = 5001303 # Weil der Stadt result = get_trips(station_1, station_2) for res in result: if res.connections[0].destination.delay > 0: print(f"{res.connections[0].transportation.number} is too late!" f" Now arriving {res.connections[0].destination.arrival_time_estimated}")
import torch import torchvision import torch.nn as nn import torch.nn.functional as F class BnReluConv(nn.Module): """docstring for BnReluConv""" def __init__(self, inChannels, outChannels, kernelSize = 1, stride = 1, padding = 0): super(BnReluConv, self).__init__() self.inChannels = inChannels self.outChannels = outChannels self.kernelSize = kernelSize self.stride = stride self.padding = padding self.bn = nn.BatchNorm2d(self.inChannels) self.relu = nn.ReLU() self.conv = nn.Conv2d(self.inChannels, self.outChannels, self.kernelSize, self.stride, self.padding) def forward(self, x): x = self.bn(x) x = self.relu(x) x = self.conv(x) return x class Pyramid(nn.Module): """docstring for Pyramid""" def __init__(self, D, cardinality, inputRes): super(Pyramid, self).__init__() self.D = D self.cardinality = cardinality self.inputRes = inputRes self.scale = 2**(-1/self.cardinality) _scales = [] for card in range(self.cardinality): temp = nn.Sequential( nn.FractionalMaxPool2d(2, output_ratio = self.scale**(card + 1)), nn.Conv2d(self.D, self.D, 3, 1, 1), nn.Upsample(size = self.inputRes)#, mode='bilinear') ) _scales.append(temp) self.scales = nn.ModuleList(_scales) def forward(self, x): #print(x.shape, self.inputRes) out = torch.zeros_like(x) for card in range(self.cardinality): out += self.scales[card](x) return out class BnReluPyra(nn.Module): """docstring for BnReluPyra""" def __init__(self, D, cardinality, inputRes): super(BnReluPyra, self).__init__() self.D = D self.cardinality = cardinality self.inputRes = inputRes self.bn = nn.BatchNorm2d(self.D) self.relu = nn.ReLU() self.pyra = Pyramid(self.D, self.cardinality, self.inputRes) def forward(self, x): x = self.bn(x) x = self.relu(x) x = self.pyra(x) return x class ConvBlock(nn.Module): """docstring for ConvBlock""" def __init__(self, inChannels, outChannels): super(ConvBlock, self).__init__() self.inChannels = inChannels self.outChannels = outChannels self.outChannelsby2 = outChannels//2 self.cbr1 = BnReluConv(self.inChannels, self.outChannelsby2, 1, 1, 0) self.cbr2 = BnReluConv(self.outChannelsby2, self.outChannelsby2, 3, 1, 1) self.cbr3 = BnReluConv(self.outChannelsby2, self.outChannels, 1, 1, 0) def forward(self, x): x = self.cbr1(x) x = self.cbr2(x) x = self.cbr3(x) return x class PyraConvBlock(nn.Module): """docstring for PyraConvBlock""" def __init__(self, inChannels, outChannels, inputRes, baseWidth, cardinality, type = 1): super(PyraConvBlock, self).__init__() self.inChannels = inChannels self.outChannels = outChannels self.inputRes = inputRes self.baseWidth = baseWidth self.cardinality = cardinality self.outChannelsby2 = outChannels//2 self.D = self.outChannels // self.baseWidth self.branch1 = nn.Sequential( BnReluConv(self.inChannels, self.outChannelsby2, 1, 1, 0), BnReluConv(self.outChannelsby2, self.outChannelsby2, 3, 1, 1) ) self.branch2 = nn.Sequential( BnReluConv(self.inChannels, self.D, 1, 1, 0), BnReluPyra(self.D, self.cardinality, self.inputRes), BnReluConv(self.D, self.outChannelsby2, 1, 1, 0) ) self.afteradd = BnReluConv(self.outChannelsby2, self.outChannels, 1, 1, 0) def forward(self, x): x = self.branch2(x) + self.branch1(x) x = self.afteradd(x) return x class SkipLayer(nn.Module): """docstring for SkipLayer""" def __init__(self, inChannels, outChannels): super(SkipLayer, self).__init__() self.inChannels = inChannels self.outChannels = outChannels if (self.inChannels == self.outChannels): self.conv = None else: self.conv = nn.Conv2d(self.inChannels, self.outChannels, 1) def forward(self, x): if self.conv is not None: x = self.conv(x) return x class Residual(nn.Module): """docstring for Residual""" def __init__(self, inChannels, outChannels, inputRes=None, baseWidth=None, cardinality=None, type=None): super(Residual, self).__init__() self.inChannels = inChannels self.outChannels = outChannels self.cb = ConvBlock(self.inChannels, self.outChannels) self.skip = SkipLayer(self.inChannels, self.outChannels) def forward(self, x): out = 0 out = out + self.cb(x) out = out + self.skip(x) return out class ResidualPyramid(nn.Module): """docstring for ResidualPyramid""" def __init__(self, inChannels, outChannels, inputRes, baseWidth, cardinality, type = 1): super(ResidualPyramid, self).__init__() self.inChannels = inChannels self.outChannels = outChannels self.inputRes = inputRes self.baseWidth = baseWidth self.cardinality = cardinality self.type = type self.cb = PyraConvBlock(self.inChannels, self.outChannels, self.inputRes, self.baseWidth, self.cardinality, self.type) self.skip = SkipLayer(self.inChannels, self.outChannels) def forward(self, x): out = 0 out = out + self.cb(x) out = out + self.skip(x) return out
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Evaluation script for RL agents. Example invocation: python -m tensor2tensor.rl.evaluator \ --policy_dir=$HOME/t2t/rl_v1/policy \ --eval_metrics_dir=$HOME/t2t/rl_v1/full_eval_metrics \ --hparams_set=rlmb_base \ --hparams='batch_size=64' """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensor2tensor.models.research import rl # pylint: disable=unused-import from tensor2tensor.rl import rl_utils from tensor2tensor.rl import trainer_model_based_params # pylint: disable=unused-import from tensor2tensor.utils import flags as t2t_flags # pylint: disable=unused-import from tensor2tensor.utils import trainer_lib import tensorflow as tf flags = tf.flags FLAGS = flags.FLAGS flags.DEFINE_string("policy_dir", "", "Directory with policy checkpoints.") flags.DEFINE_string( "eval_metrics_dir", "", "Directory to output the eval metrics at." ) flags.DEFINE_bool("full_eval", True, "Whether to ignore the timestep limit.") flags.DEFINE_enum("agent", "policy", ["random", "policy"], "Agent type to use.") flags.DEFINE_bool( "eval_with_learner", True, "Whether to use the PolicyLearner.evaluate function instead of an " "out-of-graph one. Works only with --agent=policy." ) def make_agent( agent_type, env, policy_hparams, policy_dir, sampling_temp ): """Factory function for Agents.""" return { "random": lambda: rl_utils.RandomAgent( # pylint: disable=g-long-lambda env.batch_size, env.observation_space, env.action_space ), "policy": lambda: rl_utils.PolicyAgent( # pylint: disable=g-long-lambda env.batch_size, env.observation_space, env.action_space, policy_hparams, policy_dir, sampling_temp ), }[agent_type]() def make_eval_fn_with_agent(agent_type): """Returns an out-of-graph eval_fn using the Agent API.""" def eval_fn(env, hparams, policy_hparams, policy_dir, sampling_temp): """Eval function.""" base_env = env env = rl_utils.BatchStackWrapper(env, hparams.frame_stack_size) agent = make_agent( agent_type, env, policy_hparams, policy_dir, sampling_temp ) num_dones = 0 first_dones = [False] * env.batch_size observations = env.reset() while num_dones < env.batch_size: actions = agent.act(observations) (observations, _, dones) = env.step(actions) observations = list(observations) now_done_indices = [] for (i, done) in enumerate(dones): if done and not first_dones[i]: now_done_indices.append(i) first_dones[i] = True num_dones += 1 if now_done_indices: # Reset only envs done the first time in this timestep to ensure that # we collect exactly 1 rollout from each env. reset_observations = env.reset(now_done_indices) for (i, observation) in zip(now_done_indices, reset_observations): observations[i] = observation observations = np.array(observations) assert len(base_env.current_epoch_rollouts()) == env.batch_size return eval_fn def evaluate( hparams, policy_dir, eval_metrics_dir, agent_type, eval_with_learner, report_fn=None, report_metric=None ): """Evaluate.""" if eval_with_learner: assert agent_type == "policy" if report_fn: assert report_metric is not None eval_metrics_writer = tf.summary.FileWriter(eval_metrics_dir) kwargs = {} if not eval_with_learner: kwargs["eval_fn"] = make_eval_fn_with_agent(agent_type) eval_metrics = rl_utils.evaluate_all_configs(hparams, policy_dir, **kwargs) rl_utils.summarize_metrics(eval_metrics_writer, eval_metrics, 0) # Report metrics if report_fn: if report_metric == "mean_reward": metric_name = rl_utils.get_metric_name( sampling_temp=hparams.eval_sampling_temps[0], max_num_noops=hparams.eval_max_num_noops, clipped=False ) report_fn(eval_metrics[metric_name], 0) else: report_fn(eval_metrics[report_metric], 0) return eval_metrics def main(_): hparams = trainer_lib.create_hparams(FLAGS.hparams_set, FLAGS.hparams) if FLAGS.full_eval: hparams.eval_rl_env_max_episode_steps = -1 evaluate( hparams, FLAGS.policy_dir, FLAGS.eval_metrics_dir, FLAGS.agent, FLAGS.eval_with_learner ) if __name__ == "__main__": tf.app.run()
""" Better brain parcellations for Region of Interest analysis """ import numbers import numpy as np from scipy.ndimage import label from scipy.stats import scoreatpercentile from sklearn.externals.joblib import Memory from .. import masking from ..input_data import NiftiMapsMasker from .._utils import check_niimg, check_niimg_4d from ..image import new_img_like, resample_img from ..image.image import _smooth_array, threshold_img from .._utils.niimg_conversions import concat_niimgs, _check_same_fov from .._utils.niimg import _safe_get_data from .._utils.compat import _basestring from .._utils.ndimage import _peak_local_max from .._utils.segmentation import _random_walker def _threshold_maps_ratio(maps_img, threshold): """ Automatic thresholding of atlas maps image. Considers the given threshold as a ratio to the total number of voxels in the brain volume. This gives a certain number within the data voxel size which means that nonzero voxels which fall above than this size will be kept across all the maps. Parameters ---------- maps_img: Niimg-like object an image of brain atlas maps. threshold: float If float, value is used as a ratio to n_voxels to get a certain threshold size in number to threshold the image. The value should be positive and within the range of number of maps (i.e. n_maps in 4th dimension). Returns ------- threshold_maps_img: Nifti1Image gives us thresholded image. """ maps = check_niimg(maps_img) n_maps = maps.shape[-1] if not isinstance(threshold, numbers.Real) or threshold <= 0 or threshold > n_maps: raise ValueError("threshold given as ratio to the number of voxels must " "be Real number and should be positive and between 0 and " "total number of maps i.e. n_maps={0}. " "You provided {1}".format(n_maps, threshold)) else: ratio = threshold maps_data = np.nan_to_num(maps.get_data()) abs_maps = np.abs(maps_data) # thresholding cutoff_threshold = scoreatpercentile( abs_maps, 100. - (100. / n_maps) * ratio) maps_data[abs_maps < cutoff_threshold] = 0. threshold_maps_img = new_img_like(maps, maps_data) return threshold_maps_img def connected_regions(maps_img, min_region_size=1350, extract_type='local_regions', smoothing_fwhm=6, mask_img=None): """ Extraction of brain connected regions into separate regions. Note: the region size should be defined in mm^3. See the documentation for more details. .. versionadded:: 0.2 Parameters ---------- maps_img: Niimg-like object an image of brain activation or atlas maps to be extracted into set of separate brain regions. min_region_size: int, default 1350 mm^3, optional Minimum volume in mm3 for a region to be kept. For example, if the voxel size is 3x3x3 mm then the volume of the voxel is 27mm^3. By default, it is 1350mm^3 which means we take minimum size of 1350 / 27 = 50 voxels. extract_type: str {'connected_components', 'local_regions'} \ default local_regions, optional If 'connected_components', each component/region in the image is extracted automatically by labelling each region based upon the presence of unique features in their respective regions. If 'local_regions', each component/region is extracted based on their maximum peak value to define a seed marker and then using random walker segementation algorithm on these markers for region separation. smoothing_fwhm: scalar, default 6mm, optional To smooth an image to extract most sparser regions. This parameter is passed `_smooth_array` and exists only for extract_type 'local_regions'. mask_img: Niimg-like object, default None If given, mask image is applied to input data. If None, no masking is applied. Returns ------- regions_extracted_img: Nifti1Image gives the image in 4D of extracted brain regions. Each 3D image consists of only one separated region. index_of_each_map: numpy array an array of list of indices where each index denotes the identity of each extracted region to their family of brain maps. """ all_regions_imgs = [] index_of_each_map = [] maps_img = check_niimg(maps_img, atleast_4d=True) maps = _safe_get_data(maps_img).copy() affine = maps_img.get_affine() min_region_size = min_region_size / np.prod(np.diag(abs(affine[:3]))) allowed_extract_types = ['connected_components', 'local_regions'] if extract_type not in allowed_extract_types: message = ("'extract_type' should be given either of these {0} " "You provided extract_type='{1}'").format(allowed_extract_types, extract_type) raise ValueError(message) if mask_img is not None: if not _check_same_fov(maps_img, mask_img): mask_img = resample_img(mask_img, target_affine=maps_img.get_affine(), target_shape=maps_img.shape[:3], interpolation="nearest") mask_data, _ = masking._load_mask_img(mask_img) # Set as 0 to the values which are outside of the mask maps[mask_data == 0.] = 0. for index in range(maps.shape[-1]): regions = [] map_3d = maps[..., index] # Mark the seeds using random walker if extract_type == 'local_regions': smooth_map = _smooth_array(map_3d, affine=affine, fwhm=smoothing_fwhm) seeds = _peak_local_max(smooth_map) seeds_label, seeds_id = label(seeds) # Assign -1 to values which are 0. to indicate to ignore seeds_label[map_3d == 0.] = -1 rw_maps = _random_walker(map_3d, seeds_label) # Now simply replace "-1" with "0" for regions separation rw_maps[rw_maps == -1] = 0. label_maps = rw_maps else: # Connected component extraction label_maps, n_labels = label(map_3d) # Takes the size of each labelized region data labels_size = np.bincount(label_maps.ravel()) # set background labels sitting in zero index to zero labels_size[0] = 0. for label_id, label_size in enumerate(labels_size): if label_size > min_region_size: region_data = (label_maps == label_id) * map_3d region_img = new_img_like(maps_img, region_data) regions.append(region_img) index_of_each_map.extend([index] * len(regions)) all_regions_imgs.extend(regions) regions_extracted_img = concat_niimgs(all_regions_imgs) return regions_extracted_img, index_of_each_map class RegionExtractor(NiftiMapsMasker): """Class for brain region extraction. Region Extraction is a post processing technique which is implemented to automatically segment each brain atlas maps into different set of separated brain activated region. Particularly, to show that each decomposed brain maps can be used to focus on a target specific Regions of Interest analysis. .. versionadded:: 0.2 Parameters ---------- maps_img: 4D Niimg-like object Image containing a set of whole brain atlas maps or statistically decomposed brain maps. mask_img: Niimg-like object or None, default None, optional Mask to be applied to input data, passed to NiftiMapsMasker. If None, no masking is applied. min_region_size: int, default 1350 mm^3, optional Minimum volume in mm3 for a region to be kept. For example, if the voxel size is 3x3x3 mm then the volume of the voxel is 27mm^3. By default, it is 1350mm^3 which means we take minimum size of 1350 / 27 = 50 voxels. threshold: number, default 1., optional A value used either in ratio_n_voxels or img_value or percentile `thresholding_strategy` based upon the choice of selection. thresholding_strategy: str {'ratio_n_voxels', 'img_value', 'percentile'}, optional If default 'ratio_n_voxels', we apply thresholding that will keep the more intense nonzero brain voxels (denoted as n_voxels) across all maps (n_voxels being the number of voxels in the brain volume). A float value given in `threshold` parameter indicates the ratio of voxels to keep meaning (if float=2. then maps will together have 2. x n_voxels non-zero voxels). If set to 'percentile', images are thresholded based on the score obtained with the given percentile on the data and the voxel intensities which are survived above this obtained score will be kept. If set to 'img_value', we apply thresholding based on the non-zero voxel intensities across all maps. A value given in `threshold` parameter indicates that we keep only those voxels which have intensities more than this value. extractor: str {'connected_components', 'local_regions'} default 'local_regions', optional If 'connected_components', each component/region in the image is extracted automatically by labelling each region based upon the presence of unique features in their respective regions. If 'local_regions', each component/region is extracted based on their maximum peak value to define a seed marker and then using random walker segementation algorithm on these markers for region separation. standardize: bool, True or False, default False, optional If True, the time series signals are centered and normalized by putting their mean to 0 and variance to 1. Recommended to set as True if signals are not already standardized. passed to class NiftiMapsMasker. detrend: bool, True or False, default False, optional This parameter is passed to nilearn.signal.clean basically indicates whether to detrend timeseries signals or not. passed to class NiftiMapsMasker. low_pass: float, default None, optional This value will be applied on the signals by passing to signal.clean Please see the related documentation signal.clean for more details. passed to class NiftiMapsMasker. high_pass: float, default None, optional This value will be applied on the signals by passing to signal.clean Please see the related documentation signal.clean for more details. passed to NiftiMapsMasker. t_r: float, default None, optional Repetition time in sec. This value is given to signal.clean Please see the related documentation for details. passed to NiftiMapsMasker. memory: instance of joblib.Memory, string, default None, optional Used to cache the masking process. If a string is given, the path is set with this string as a folder name in the directory. passed to NiftiMapsMasker. memory_level: int, default 0, optional Aggressiveness of memory catching. The higher the number, the higher the number of functions that will be cached. Zero mean no caching. passed to NiftiMapsMasker. verbose: int, default 0, optional Indicates the level of verbosity by printing the message. Zero indicates nothing is printed. Attributes ---------- `index_` : numpy array array of list of indices where each index value is assigned to each separate region of its corresponding family of brain maps. `regions_img_` : Nifti1Image List of separated regions with each region lying on an original volume concatenated into a 4D image. References ---------- * Abraham et al. "Region segmentation for sparse decompositions: better brain parcellations from rest fMRI", Sparsity Techniques in Medical Imaging, Sep 2014, Boston, United States. pp.8 """ def __init__(self, maps_img, mask_img=None, min_region_size=1350, threshold=1., thresholding_strategy='ratio_n_voxels', extractor='local_regions', standardize=False, detrend=False, low_pass=None, high_pass=None, t_r=None, memory=Memory(cachedir=None), memory_level=0, verbose=0): super(RegionExtractor, self).__init__( maps_img=maps_img, mask_img=mask_img, standardize=standardize, detrend=detrend, low_pass=low_pass, high_pass=high_pass, t_r=t_r, memory=memory, memory_level=memory_level, verbose=verbose) self.maps_img = maps_img self.min_region_size = min_region_size self.thresholding_strategy = thresholding_strategy self.threshold = threshold self.extractor = extractor def fit(self, X=None, y=None): """ Prepare the data and setup for the region extraction """ maps_img = check_niimg_4d(self.maps_img) list_of_strategies = ['ratio_n_voxels', 'img_value', 'percentile'] if self.thresholding_strategy not in list_of_strategies: message = ("'thresholding_strategy' should be " "either of these {0}").format(list_of_strategies) raise ValueError(message) if self.threshold is None or isinstance(self.threshold, _basestring): raise ValueError("The given input to threshold is not valid. " "Please submit a valid number specific to either of " "the strategy in {0}".format(list_of_strategies)) elif isinstance(self.threshold, numbers.Number): # foreground extraction if self.thresholding_strategy == 'ratio_n_voxels': threshold_maps = _threshold_maps_ratio(maps_img, self.threshold) else: if self.thresholding_strategy == 'percentile': self.threshold = "{0}%".format(self.threshold) threshold_maps = threshold_img(maps_img, mask_img=self.mask_img, threshold=self.threshold) # connected component extraction self.regions_img_, self.index_ = connected_regions(threshold_maps, self.min_region_size, self.extractor) self.maps_img = self.regions_img_ super(RegionExtractor, self).fit() return self
from django import forms from django.contrib import messages from django.contrib.auth.decorators import login_required from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin, PermissionRequiredMixin from django.core.exceptions import ObjectDoesNotExist from django.db.models import Q from django.shortcuts import render, redirect, get_object_or_404 from django.urls import reverse_lazy from django.views.generic import ListView, DeleteView, DetailView from django.views.generic.base import View from product_manager_ices.forms import AddIceForm, AddFlavourForm, AddOrderItem from product_manager_ices.models import Ices, Order, OrderItem class Homepage(View): """ Welcome Page """ def get(self, request): return render(request, 'Homepage.html') class AddIce(LoginRequiredMixin, View): """ Class to add products by type and flavoures, Two separate forms given """ def get(self, request): form_type = AddIceForm() form_flavour = AddFlavourForm() return render(request, 'product_manager_ices/add_ices.html', context={"form_type": form_type, "form_flavour": form_flavour, }) def post(self, request): form_type = AddIceForm(request.POST) form_flavour = AddFlavourForm(request.POST) if form_type.is_valid(): form_type.save() messages.success(request, "Type Added") return redirect("add-ice") if form_flavour.is_valid(): form_flavour.save() messages.success(request, "Flavour Added") return redirect("add-ice") else: form_type = AddIceForm() form_flavour = AddFlavourForm() messages.success(request, "Wrong Data") return render(request, 'product_manager_ices/add_ices.html', context={"form_type": form_type, "form_flavour": form_flavour, }) class CreateOrder(LoginRequiredMixin, View): """ Main Page to service the Ice sale: Choosing type,quantity,flavoures SideBar Shop Cart Only one order can be open and being active / orders can be postpone or deleted """ def get(self, request): add_order_form = AddOrderItem() try: order_in_cart = Order.objects.get(worker_owner=request.user, status=1) sumarize = order_in_cart.get_total() except ObjectDoesNotExist: order_in_cart = None sumarize = None return render(request, 'product_manager_ices/order_form.html', context={"add_order_form": add_order_form, "order_in_cart": order_in_cart, "sumarize": sumarize, }) def post(self, request): add_order_form = AddOrderItem(request.POST) if add_order_form.is_valid(): ice = add_order_form.cleaned_data.get('ice') quantity = add_order_form.cleaned_data.get('quantity') # Create order_items-ices ice_in_order = OrderItem.objects.create(ice_id=ice, quantity=quantity) # Adding flavoure to orderitem(ice) ice_in_order.flavour.set(request.POST.getlist('flavour')) # Order add order_items-ices to cart order = Order.objects.get(worker_owner=request.user, status=1) ice_in_order.order.add(order.id) ice_in_order.save() messages.success(request, "OrderItem Added to cart") return redirect("create-order") else: add_order_form = AddOrderItem() messages.info(request, "OrdetItem must be made of type and flavoure") return redirect("create-order") @login_required def open_order(request): """ OPEN NEW ORDER , one user can have only one order opened """ if request.method == "POST": order_opened = Order.objects.filter(worker_owner=request.user, status=1).exists() if not order_opened: Order.objects.create(worker_owner=request.user, status=1) return redirect("create-order") else: messages.info(request, "You have opened order") return redirect("create-order") @login_required def delete_orderitem(request, id=None): """ Deleting orderitems in current order CART """ if request.method == "POST": order_to_delete = OrderItem.objects.get(id=id) order_to_delete.delete() return redirect('create-order') @login_required def change_status_order_for_finish(request, id=None): """ Change status of order to finished Boostrap Modal > buttons PAY>Finish """ if request.method == "POST": order_to_change_status = Order.objects.get(id=id, worker_owner=request.user, status=1) order_to_change_status.status = 3 order_to_change_status.save() return redirect('create-order') @login_required def postpone_order(request, id): """ Postpone current order in CART button> POSTPONE """ if request.method == "POST": order_to_change_status = Order.objects.get(id=id, worker_owner=request.user, status="1") order_to_change_status.status = 2 order_to_change_status.save() return redirect('create-order') @login_required def return_order(request, id=None): """ Change status of order form postpone to started List-of-orders button> return order to active Only the same user can return the order to active ONLY ONE ORDER CAN BE ACTIVE IN CART """ if Order.objects.filter(worker_owner=request.user, status=1).exists(): messages.info(request, "You have active order opened, Please postpone or delete it") return redirect('create-order') else: order_to_change_status = Order.objects.get(worker_owner=request.user, id=id) order_to_change_status.status = 1 order_to_change_status.save() return redirect('create-order') class OrderDelete(LoginRequiredMixin, DeleteView): """ Deleting whole current order in CART """ model = Order success_url = reverse_lazy("create-order") class ListOfOrders(LoginRequiredMixin, ListView): """ List of finished orders Search of orders by USER/TIMESELL/FLAVOUR/TYPEOFICE Only the same user can return the order to active """ model = Order context_object_name = "orderlist" paginate_by = 7 def get_queryset(self): query = self.request.GET.get('q') if query: queryset = Order.objects.filter(Q(worker_owner__username__icontains=query) | Q(time_sell__icontains=query) | Q(orderitem__flavour__flavour__icontains=query) | Q(orderitem__ice__type__contains=query)).order_by( "-time_sell").distinct() else: queryset = Order.objects.filter(worker_owner=self.request.user).order_by("-time_sell") return queryset class OrderDetail(UserPassesTestMixin, LoginRequiredMixin, DetailView): """ Detail of every order Only owner of order can see the details. """ model = Order def test_func(self): user = Order.objects.get(id=self.kwargs.get("pk")) return self.request.user.id == user.worker_owner.id
import network import time import _thread def connwifithread(ssid, clave): nic = network.WLAN(network.STA_IF) try: nic.active(True) except Exception as e: print("No se pudo activar WiFi: "+str(e)) if nic.active(): print("WiFi activado") while True: if not nic.isconnected(): try: nic.connect(ssid, clave) except Exception as e: print(e) time.sleep(3) if nic.isconnected(): print("Se ha conectado a la red") print(nic.ifconfig()) elif nic.isconnected(): pass else: print("Intentar ejecutar el metodo connectwifi de nuevo") def connectwifi(nombre, clave): _thread.start_new_thread(connwifithread(nombre, clave), ())
import time def wait(sec): time.sleep(sec) while True: wait(0.1) print("----------") wait(0.1) print("*---------") wait(0.1) print("**--------") wait(0.1) print("***-------") wait(0.1) print("****------") wait(0.1) print("*****-----") wait(0.1) print("******----") wait(0.1) print("*******---") wait(0.1) print("********--") wait(0.1) print("*********-") wait(0.1) print("**********") wait(0.1) print("*********-") wait(0.1) print("********--") wait(0.1) print("*******---") wait(0.1) print("******----") wait(0.1) print("*****-----") wait(0.1) print("****------") wait(0.1) print("***-------") wait(0.1) print("**--------") wait(0.1) print("*---------")
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest from pytext.config.doc_classification import ModelInput, ModelInputConfig from pytext.config.field_config import FeatureConfig from pytext.data import DocClassificationDataHandler, RawData from pytext.data.featurizer import SimpleFeaturizer from pytext.utils.test_utils import import_tests_module tests_module = import_tests_module() class DocClassificationDataHandlerTest(unittest.TestCase): def setUp(self): handler_config = DocClassificationDataHandler.Config() handler_config.columns_to_read.append(ModelInput.DENSE_FEAT) self.data_handler = DocClassificationDataHandler.from_config( DocClassificationDataHandler.Config(), ModelInputConfig(), [], featurizer=SimpleFeaturizer.from_config( SimpleFeaturizer.Config(), FeatureConfig() ), ) def test_create_from_config(self): expected_columns = [ RawData.DOC_LABEL, RawData.TEXT, RawData.DICT_FEAT, ModelInput.DENSE_FEAT, ] # check that the list of columns is as expected self.assertTrue(self.data_handler.raw_columns == expected_columns) def test_read_from_file(self): file_name = tests_module.test_file("train_dense_features_tiny.tsv") data = self.data_handler.read_from_file( file_name, self.data_handler.raw_columns ) # Check if the data has 10 rows and 6 columns self.assertEqual(len(data), 10) self.assertEqual(len(data[0]), 4) self.assertEqual(data[0][RawData.DOC_LABEL], "alarm/modify_alarm") def test_tokenization(self): file_name = tests_module.test_file("train_dense_features_tiny.tsv") data = self.data_handler.read_from_file( file_name, self.data_handler.raw_columns ) data = list(self.data_handler.preprocess(data)) # test tokenization without language-specific tokenizers self.assertEqual( data[0][ModelInput.WORD_FEAT][0], "16:24:datetime,39:57:datetime" ) self.assertIsNotNone(data[0][ModelInput.DENSE_FEAT])
from werkzeug.utils import cached_property from xml.etree.ElementTree import parse from homebank.libraries.banking.account import Account from homebank.libraries.banking.category import Category from homebank.libraries.banking.payee import Payee from homebank.libraries.banking.transaction import Transaction class Banking(object): def __init__(self, filename): self.tree = parse(filename) self.root = self.tree.getroot() def _get_list(self, predicate, cls): data = [] for x in self.root.iter(predicate): data.append(cls(self, x)) return data @cached_property def accounts(self): return self._get_list("account", Account) @property def transactions(self): data = self._get_list("ope", Transaction) for i, t in enumerate(data): t.id = i return data @property def categories(self): return self._get_list("cat", Category) @property def payees(self): return self._get_list("pay", Payee)
""" This example shows how the Fisher statistics can be computed and displayed. *Based on example 5.21 and example 5.23 in* [Fisher1993]_. ============= =========== ========== Data in: Table B2 (page 279) Mean Vector: 144.2/57.2 (page 130) K-Value: 109 (page 130) Fisher-Angle: 2.7 deg. (page 132) ============= =========== ========== Reference --------- .. [Fisher1993] Fisher, N.I., Lewis, T., Embleton, B.J.J. (1993) "Statistical Analysis of Spherical Data" """ import matplotlib.pyplot as plt import mplstereonet as mpl decl = [122.5, 130.5, 132.5, 148.5, 140.0, 133.0, 157.5, 153.0, 140.0, 147.5, 142.0, 163.5, 141.0, 156.0, 139.5, 153.5, 151.5, 147.5, 141.0, 143.5, 131.5, 147.5, 147.0, 149.0, 144.0, 139.5] incl = [55.5, 58.0, 44.0, 56.0, 63.0, 64.5, 53.0, 44.5, 61.5, 54.5, 51.0, 56.0, 59.5, 56.5, 54.0, 47.5, 61.0, 58.5, 57.0, 67.5, 62.5, 63.5, 55.5, 62.0, 53.5, 58.0] confidence = 95 fig = plt.figure() ax = fig.add_subplot(111, projection='stereonet') ax.line(incl, decl, color="black", markersize=2) vector, stats = mpl.find_fisher_stats(incl, decl, conf=confidence) template = (u"Mean Vector P/B: {plunge:0.0f}\u00B0/{bearing:0.0f}\u00B0\n" "Confidence: {conf}%\n" u"Fisher Angle: {fisher:0.2f}\u00B0\n" u"R-Value {r:0.3f}\n" "K-Value: {k:0.2f}") label = template.format(plunge=vector[0], bearing=vector[1], conf=confidence, r=stats[0], fisher=stats[1], k=stats[2]) ax.line(vector[0], vector[1], color="red", label=label) ax.cone(vector[0], vector[1], stats[1], facecolor="None", edgecolor="red") ax.legend(bbox_to_anchor=(1.1, 1.1), numpoints=1) plt.show()
abc = 'With three words or four' stuff = abc.split() print(stuff) print(len(stuff)) print(stuff[1]) print('\n') for i in stuff: print(i) line = 'A lot' etc = line.split() print(etc) line = 'first;second;third;fourth' thing = line.split() print(thing) print(len(thing)) thing = line.split(';') print(thing) print(len(thing)) # parsing fhand = open('mbox-short.text') for line in fhand: line = line.rstrip() if not line.startswith('From '):continue words = line.split() print(words[2]) # double split words = line.split() email = words[1] pieces = email.split('@') print(pieces[1])
import os import sys from unittest.mock import Mock import pytest from hg.gfx.sprite_renderer.sprite import Image from hg.gfx.sprite_renderer.renderer import SpriteRenderer from hg.res.loaders.image_loader import ImageLoader from hg.res.loaders.loader import Loader from hg.res.loaders.sprite_sheet_loader import SpriteSheetLoader class SDL2(Mock): @classmethod def SDL_GetTicks(cls): return 0 sys.modules['sdl2'] = SDL2() class _ImageLoader(Loader): def load(self, path): return Image(path=os.path.basename(path), width=32, height=32) @pytest.fixture def inject_config(mocker): return { ImageLoader: _ImageLoader, SpriteSheetLoader: SpriteSheetLoader, SpriteRenderer: lambda: SpriteRenderer(sdl_renderer=mocker.Mock()), } @pytest.fixture def inject(inject_config): import inject def bind(binder: inject.Binder): for cls, constructor in inject_config.items(): binder.bind_to_constructor(cls, constructor) inject.clear_and_configure(bind) yield inject.clear() def pytest_configure(config): config.addinivalue_line('markers', 'inject: configure the dependency injector for a given test') def pytest_collection_modifyitems(session, config, items): for item in items: if item.get_closest_marker('inject'): item.fixturenames.append('inject')
"""Imports for Python API. This file is MACHINE GENERATED! Do not edit. Generated by: tensorflow/tools/api/generator/create_python_api.py script. """ from tensorflow.python.ops.sets import set_difference from tensorflow.python.ops.sets import set_intersection from tensorflow.python.ops.sets import set_size from tensorflow.python.ops.sets import set_union
# Generated by Django 3.2.4 on 2021-07-03 20:43 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('museum_site', '0063_auto_20210703_2039'), ] operations = [ migrations.RenameField( model_name='detail', old_name='visibile', new_name='visible', ), ]
#!/usr/local/bin/python3 """Para_breaker.py""" paragraph = """\ We hold these truths to be self-evident, that all men are created equal, that they are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty and the pursuit of Happiness. - That to secure these rights, Governments are instituted among Men, deriving their just powers from the consent of the governed, - That whenever any Form of Government becomes destructive of these ends, it is the Right of the People to alter or to abolish it, and to institute new Government, laying its foundation on such principles and organizing its powers in such form, as to them shall seem most likely to effect their Safety and Happiness. Prudence, indeed, will dictate that Governments long established should not be changed for light and transient causes; and accordingly all experience hath shewn that mankind are more disposed to suffer, while evils are sufferable than to right themselves by abolishing the forms to which they are accustomed. But when a long train of abuses and usurpations, pursuing invariably the same Object evinces a design to reduce them under absolute Despotism, it is their right, it is their duty, to throw off such Government, and to provide new Guards for their future security. - Such has been the patient sufferance of these Colonies; and such is now the necessity which constrains them to alter their former Systems of Government. The history of the present King of Great Britain is a history of repeated injuries and usurpations, all having in direct object the establishment of an absolute Tyranny over these States. To prove this, let Facts be submitted to a candid world.""" for i, sentence in enumerate(paragraph.split(".")): print("*" * 50) print("Sentence #{0}".format(i+1)) for i, phrase in enumerate(sentence.split(",")): while phrase.startswith(" "): phrase = phrase[1:] print("Phrase {0}: {1:<60}".format(i+1, phrase))
#!/usr/bin/python ########################################################################### # Copyright (c) 2014, Yahoo. # All rights reserved. # # Redistribution and use of this software in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the # following disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the # following disclaimer in the documentation and/or other # materials provided with the distribution. # # * Neither the name of Yahoo. nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior # written permission of Yahoo. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ########################################################################### import sys, ConfigParser try: import argparse except: print("'argparse' python library not found.\n If using Ubuntu, run 'sudo apt-get install python-argparse'") sys.exit() from Discovery import * from ConnectionUtils import * DEFAULT_APP_ID = "0xeTgF3c" DEFAULT_CONSUMER_KEY = "dj0yJmk9T1Y0MmVIWWEzWVc3JmQ9WVdrOU1IaGxWR2RHTTJNbWNHbzlNVEUzTkRFM09ERTJNZy0tJnM9Y29uc3VtZXJzZWNyZXQmeD0yNA--" DEFAULT_SECRET = "1b8f0feb4d8d468676293caa769e19958bf36843" DEFAULT_APP_NAME = "Test Client (client.py)" IS_RUNNING=False class ReceiverThread(threading.Thread): def __init__(self, connection): threading.Thread.__init__(self) self.connection=connection self.isClosing=False def run(self): while not self.isClosing: cmnd = getUserInput("SEND: ") if cmnd == "" or cmnd == -1 : continue if cmnd == "q": break self.connection.handler.push(cmnd) self.connection.handler.close_when_done() userInputState = {"prompt":"", "isWaiting":False} def printMessage(msg): if(userInputState["isWaiting"]): print "\n",msg sys.stdout.write(userInputState["prompt"]) else: print msg def getUserInput(prompt): userInputState["isWaiting"] = True userInputState["prompt"] = prompt data = raw_input(prompt) userInputState["isWaiting"] = False return data def api(args): def onMessageRecieved(msg): print "RCVD:", msg client = Connection(args.host, args.port, onMessageRecieved=onMessageRecieved) if args.instanceId: resetSession(client, args.instanceId) elif args.manual_auth == False: createSession(client, args.app_id, args.consumer_key, args.secret, args.app_name) authSession(client, raw_input("Please enter code:")) inputReader = ReceiverThread(client) inputReader.start() client.startLoop(); inputReader.isClosing=True def setupReadlineHistory(historyFile): try: readline.read_history_file(historyFile) readline.parse_and_bind("set set editing-mode vi") readline.parse_and_bind("set horizontal-scroll-mode On") except IOError, e: print(e) pass import atexit atexit.register(readline.write_history_file, historyFile) def parse_args(): parser = argparse.ArgumentParser(description='Connect to a Device Communication-enabled TV and send messages') parser.add_argument('host', nargs='?', help='hostname or IP to connect to, omit for automatic search') parser.add_argument('port', type=int, nargs='?', default=8099, help='port of device, defaults to 8099') parser.add_argument('-m', '--manual-auth', action='store_true', help='do not prompt for code, just connect') parser.add_argument('-i', '--instanceId', help='use an instanceID to connect, will override --manual-auth') parser.add_argument('-y', '--history', default=os.path.join(os.environ["HOME"], ".client.py.hist"), help='use non-default history file') parser.add_argument('-c', '--config', default=os.path.join(os.environ["HOME"], ".client.py.config"), help='configuration file that stores authorization keys, leave blank to use default non-production keys. See config.sample for configuration file example. Default location: %s' % os.path.join(os.environ["HOME"], ".client.py.config")) return parser.parse_args() def load_config(args): config = ConfigParser.RawConfigParser({"app_id": DEFAULT_APP_ID, "consumer_key":DEFAULT_CONSUMER_KEY, "secret": DEFAULT_SECRET, "app_name":DEFAULT_APP_NAME}) configsRead = config.read(args.config) if configsRead is None: print("WARNING: Using default auth keys. Note these can only be used in a simulator environment. See --help for more information." % args.config) elif args.config not in configsRead: print("Unable to load config file %s, using default auth keys. Note these can only be used in a simulator environment." % args.config) args.app_id = config.get("DEFAULT", "app_id") args.consumer_key = config.get("DEFAULT", "consumer_key") args.secret = config.get("DEFAULT", "secret") args.app_name = config.get("DEFAULT", "app_name") def main(): args = parse_args() load_config(args) if not args.host and PYBONJOUR_AVAILABLE: print("Starting automatic discovery... For manual usage, see the -h option") args.host, args.port = discover() if args.host is None or args.port is None: print("Unable to automatically resolve host and port. For manual usage, see the -h option") elif not args.host and not PYBONJOUR_AVAILABLE: print("Automatic search not available, please install pybonjour") if args.host != None and args.port != None: setupReadlineHistory(args.history) api(args) if __name__ == "__main__": main()
import math def main(): people = int(input("How many people are eating? ")) slices_per_person = float(input("How many slices per person? ")) slices = slices_per_person * people slices_per_pie = int(input("How many slices per pie? ")) pizzas = math.ceil(slices / slices_per_pie) print("You need", pizzas, "pizzas to feed", people, "people.") total_slices = slices_per_pie * pizzas slices_left = total_slices - slices print("There will be", slices_left, "leftover slices.") main()
#!/usr/bin/env python """ test_python_binding.py Test that passing types to Python bindings works successfully. mlpack is free software; you may redistribute it and/or modify it under the terms of the 3-clause BSD license. You should have received a copy of the 3-clause BSD license along with mlpack. If not, see http://www.opensource.org/licenses/BSD-3-Clause for more information. """ import unittest import pandas as pd import numpy as np import copy from mlpack.test_python_binding import test_python_binding class TestPythonBinding(unittest.TestCase): """ This class tests the basic functionality of the Python bindings. """ def testRunBindingCorrectly(self): """ Test that when we run the binding correctly (with correct input parameters), we get the expected output. """ output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True) self.assertEqual(output['string_out'], 'hello2') self.assertEqual(output['int_out'], 13) self.assertEqual(output['double_out'], 5.0) def testRunBindingNoFlag(self): """ If we forget the mandatory flag, we should get wrong results. """ output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0]) self.assertNotEqual(output['string_out'], 'hello2') self.assertNotEqual(output['int_out'], 13) self.assertNotEqual(output['double_out'], 5.0) def testRunBindingWrongString(self): """ If we give the wrong string, we should get wrong results. """ output = test_python_binding(string_in='goodbye', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True) self.assertNotEqual(output['string_out'], 'hello2') def testRunBindingWrongInt(self): """ If we give the wrong int, we should get wrong results. """ output = test_python_binding(string_in='hello', int_in=15, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True) self.assertNotEqual(output['int_out'], 13) def testRunBindingWrongDouble(self): """ If we give the wrong double, we should get wrong results. """ output = test_python_binding(string_in='hello', int_in=12, double_in=2.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True) self.assertNotEqual(output['double_out'], 5.0) def testRunBadFlag(self): """ If we give the second flag, this should fail. """ output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True, flag2=True) self.assertNotEqual(output['string_out'], 'hello2') self.assertNotEqual(output['int_out'], 13) self.assertNotEqual(output['double_out'], 5.0) def testNumpyMatrix(self): """ The matrix we pass in, we should get back with the third dimension doubled and the fifth forgotten. """ x = np.random.rand(100, 5); z = copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], matrix_in=z) self.assertEqual(output['matrix_out'].shape[0], 100) self.assertEqual(output['matrix_out'].shape[1], 4) self.assertEqual(output['matrix_out'].dtype, np.double) for i in [0, 1, 3]: for j in range(100): self.assertEqual(x[j, i], output['matrix_out'][j, i]) for j in range(100): self.assertEqual(2 * x[j, 2], output['matrix_out'][j, 2]) def testNumpyMatrixForceCopy(self): """ The matrix we pass in, we should get back with the third dimension doubled and the fifth forgotten. """ x = np.random.rand(100, 5); output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], matrix_in=x, copy_all_inputs=True) self.assertEqual(output['matrix_out'].shape[0], 100) self.assertEqual(output['matrix_out'].shape[1], 4) self.assertEqual(output['matrix_out'].dtype, np.double) for i in [0, 1, 3]: for j in range(100): self.assertEqual(x[j, i], output['matrix_out'][j, i]) for j in range(100): self.assertEqual(2 * x[j, 2], output['matrix_out'][j, 2]) def testNumpyFContiguousMatrix(self): """ The matrix with F_CONTIGUOUS set we pass in, we should get back with the third dimension doubled and the fifth forgotten. """ x = np.array(np.random.rand(100, 5), order='F'); z = copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], matrix_in=z) self.assertEqual(output['matrix_out'].shape[0], 100) self.assertEqual(output['matrix_out'].shape[1], 4) self.assertEqual(output['matrix_out'].dtype, np.double) for i in [0, 1, 3]: for j in range(100): self.assertEqual(x[j, i], output['matrix_out'][j, i]) for j in range(100): self.assertEqual(2 * x[j, 2], output['matrix_out'][j, 2]) def testNumpyFContiguousMatrixForceCopy(self): """ The matrix with F_CONTIGUOUS set we pass in, we should get back with the third dimension doubled and the fifth forgotten. """ x = np.array(np.random.rand(100, 5), order='F'); output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], matrix_in=x, copy_all_inputs=True) self.assertEqual(output['matrix_out'].shape[0], 100) self.assertEqual(output['matrix_out'].shape[1], 4) self.assertEqual(output['matrix_out'].dtype, np.double) for i in [0, 1, 3]: for j in range(100): self.assertEqual(x[j, i], output['matrix_out'][j, i]) for j in range(100): self.assertEqual(2 * x[j, 2], output['matrix_out'][j, 2]) def testPandasSeriesMatrix(self): """ Test that we can pass pandas.Series as input parameter. """ x = pd.Series(np.random.rand(100)) z = x.copy(deep=True) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], smatrix_in=z) self.assertEqual(output['smatrix_out'].shape[0], 100) self.assertEqual(output['smatrix_out'].dtype, np.double) for i in range(100): self.assertEqual(output['smatrix_out'][i,0], x.iloc[i] * 2) def testPandasSeriesMatrixForceCopy(self): """ Test that we can pass pandas.Series as input parameter. """ x = pd.Series(np.random.rand(100)) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], smatrix_in=x, copy_all_inputs=True) self.assertEqual(output['smatrix_out'].shape[0], 100) self.assertEqual(output['smatrix_out'].dtype, np.double) for i in range(100): self.assertEqual(output['smatrix_out'][i,0], x.iloc[i] * 2) def testPandasSeriesUMatrix(self): """ Test that we can pass pandas.Series as input parameter. """ x = pd.Series(np.random.randint(0, high=500, size=100)) z = x.copy(deep=True) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], s_umatrix_in=z) self.assertEqual(output['s_umatrix_out'].shape[0], 100) self.assertEqual(output['s_umatrix_out'].dtype, np.dtype('intp')) for i in range(100): self.assertEqual(output['s_umatrix_out'][i, 0], x.iloc[i] * 2) def testPandasSeriesUMatrixForceCopy(self): """ Test that we can pass pandas.Series as input parameter. """ x = pd.Series(np.random.randint(0, high=500, size=100)) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], s_umatrix_in=x, copy_all_inputs=True) self.assertEqual(output['s_umatrix_out'].shape[0], 100) self.assertEqual(output['s_umatrix_out'].dtype, np.dtype('intp')) for i in range(100): self.assertEqual(output['s_umatrix_out'][i, 0], x.iloc[i] * 2) def testPandasSeries(self): """ Test a Pandas Series input paramter """ x = pd.Series(np.random.rand(100)) z = copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], col_in=z) self.assertEqual(output['col_out'].shape[0], 100) self.assertEqual(output['col_out'].dtype, np.double) for i in range(100): self.assertEqual(output['col_out'][i], z[i] * 2) def testPandasSeriesForceCopy(self): """ Test a Pandas Series input paramter """ x = pd.Series(np.random.rand(100)) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], col_in=x, copy_all_inputs=True) self.assertEqual(output['col_out'].shape[0], 100) self.assertEqual(output['col_out'].dtype, np.double) for i in range(100): self.assertEqual(output['col_out'][i], x[i] * 2) def testPandasDataFrameMatrix(self): """ The matrix we pass in, we should get back with the third dimension doubled and the fifth forgotten. """ x = pd.DataFrame(np.random.rand(100, 5)) z = x.copy(deep=True) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], matrix_in=z) self.assertEqual(output['matrix_out'].shape[0], 100) self.assertEqual(output['matrix_out'].shape[1], 4) self.assertEqual(output['matrix_out'].dtype, np.double) for i in [0, 1, 3]: for j in range(100): self.assertEqual(x.iloc[j, i], output['matrix_out'][j, i]) for j in range(100): self.assertEqual(2 * x.iloc[j, 2], output['matrix_out'][j, 2]) def testPandasDataFrameMatrixForceCopy(self): """ The matrix we pass in, we should get back with the third dimension doubled and the fifth forgotten. """ x = pd.DataFrame(np.random.rand(100, 5)) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], matrix_in=x, copy_all_inputs=True) self.assertEqual(output['matrix_out'].shape[0], 100) self.assertEqual(output['matrix_out'].shape[1], 4) self.assertEqual(output['matrix_out'].dtype, np.double) for i in [0, 1, 3]: for j in range(100): self.assertEqual(x.iloc[j, i], output['matrix_out'][j, i]) for j in range(100): self.assertEqual(2 * x.iloc[j, 2], output['matrix_out'][j, 2]) def testArraylikeMatrix(self): """ Test that we can pass an arraylike matrix. """ x = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], matrix_in=x) self.assertEqual(output['matrix_out'].shape[0], 3) self.assertEqual(output['matrix_out'].shape[1], 4) self.assertEqual(output['matrix_out'].dtype, np.double) self.assertEqual(output['matrix_out'][0, 0], 1) self.assertEqual(output['matrix_out'][0, 1], 2) self.assertEqual(output['matrix_out'][0, 2], 6) self.assertEqual(output['matrix_out'][0, 3], 4) self.assertEqual(output['matrix_out'][1, 0], 6) self.assertEqual(output['matrix_out'][1, 1], 7) self.assertEqual(output['matrix_out'][1, 2], 16) self.assertEqual(output['matrix_out'][1, 3], 9) self.assertEqual(output['matrix_out'][2, 0], 11) self.assertEqual(output['matrix_out'][2, 1], 12) self.assertEqual(output['matrix_out'][2, 2], 26) self.assertEqual(output['matrix_out'][2, 3], 14) def testArraylikeMatrixForceCopy(self): """ Test that we can pass an arraylike matrix. """ x = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], matrix_in=x, copy_all_inputs=True) self.assertEqual(output['matrix_out'].shape[0], 3) self.assertEqual(output['matrix_out'].shape[1], 4) self.assertEqual(len(x), 3) self.assertEqual(len(x[0]), 5) self.assertEqual(output['matrix_out'].dtype, np.double) self.assertEqual(output['matrix_out'][0, 0], 1) self.assertEqual(output['matrix_out'][0, 1], 2) self.assertEqual(output['matrix_out'][0, 2], 6) self.assertEqual(output['matrix_out'][0, 3], 4) self.assertEqual(output['matrix_out'][1, 0], 6) self.assertEqual(output['matrix_out'][1, 1], 7) self.assertEqual(output['matrix_out'][1, 2], 16) self.assertEqual(output['matrix_out'][1, 3], 9) self.assertEqual(output['matrix_out'][2, 0], 11) self.assertEqual(output['matrix_out'][2, 1], 12) self.assertEqual(output['matrix_out'][2, 2], 26) self.assertEqual(output['matrix_out'][2, 3], 14) def testNumpyUmatrix(self): """ Same as testNumpyMatrix() but with an unsigned matrix. """ x = np.random.randint(0, high=500, size=[100, 5]) z = copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], umatrix_in=z) self.assertEqual(output['umatrix_out'].shape[0], 100) self.assertEqual(output['umatrix_out'].shape[1], 4) self.assertEqual(output['umatrix_out'].dtype, np.dtype('intp')) for i in [0, 1, 3]: for j in range(100): self.assertEqual(x[j, i], output['umatrix_out'][j, i]) for j in range(100): self.assertEqual(2 * x[j, 2], output['umatrix_out'][j, 2]) def testNumpyUmatrixForceCopy(self): """ Same as testNumpyMatrix() but with an unsigned matrix. """ x = np.random.randint(0, high=500, size=[100, 5]) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], umatrix_in=x, copy_all_inputs=True) self.assertEqual(output['umatrix_out'].shape[0], 100) self.assertEqual(output['umatrix_out'].shape[1], 4) self.assertEqual(output['umatrix_out'].dtype, np.dtype('intp')) for i in [0, 1, 3]: for j in range(100): self.assertEqual(x[j, i], output['umatrix_out'][j, i]) for j in range(100): self.assertEqual(2 * x[j, 2], output['umatrix_out'][j, 2]) def testArraylikeUmatrix(self): """ Test that we can pass an arraylike unsigned matrix. """ x = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], umatrix_in=x) self.assertEqual(output['umatrix_out'].shape[0], 3) self.assertEqual(output['umatrix_out'].shape[1], 4) self.assertEqual(output['umatrix_out'].dtype, np.dtype('intp')) self.assertEqual(output['umatrix_out'][0, 0], 1) self.assertEqual(output['umatrix_out'][0, 1], 2) self.assertEqual(output['umatrix_out'][0, 2], 6) self.assertEqual(output['umatrix_out'][0, 3], 4) self.assertEqual(output['umatrix_out'][1, 0], 6) self.assertEqual(output['umatrix_out'][1, 1], 7) self.assertEqual(output['umatrix_out'][1, 2], 16) self.assertEqual(output['umatrix_out'][1, 3], 9) self.assertEqual(output['umatrix_out'][2, 0], 11) self.assertEqual(output['umatrix_out'][2, 1], 12) self.assertEqual(output['umatrix_out'][2, 2], 26) self.assertEqual(output['umatrix_out'][2, 3], 14) def testArraylikeUmatrixForceCopy(self): """ Test that we can pass an arraylike unsigned matrix. """ x = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], umatrix_in=x, copy_all_inputs=True) self.assertEqual(output['umatrix_out'].shape[0], 3) self.assertEqual(output['umatrix_out'].shape[1], 4) self.assertEqual(len(x), 3) self.assertEqual(len(x[0]), 5) self.assertEqual(output['umatrix_out'].dtype, np.dtype('intp')) self.assertEqual(output['umatrix_out'][0, 0], 1) self.assertEqual(output['umatrix_out'][0, 1], 2) self.assertEqual(output['umatrix_out'][0, 2], 6) self.assertEqual(output['umatrix_out'][0, 3], 4) self.assertEqual(output['umatrix_out'][1, 0], 6) self.assertEqual(output['umatrix_out'][1, 1], 7) self.assertEqual(output['umatrix_out'][1, 2], 16) self.assertEqual(output['umatrix_out'][1, 3], 9) self.assertEqual(output['umatrix_out'][2, 0], 11) self.assertEqual(output['umatrix_out'][2, 1], 12) self.assertEqual(output['umatrix_out'][2, 2], 26) self.assertEqual(output['umatrix_out'][2, 3], 14) def testCol(self): """ Test a column vector input parameter. """ x = np.random.rand(100) z = copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], col_in=z) self.assertEqual(output['col_out'].shape[0], 100) self.assertEqual(output['col_out'].dtype, np.double) for i in range(100): self.assertEqual(output['col_out'][i], x[i] * 2) def testColForceCopy(self): """ Test a column vector input parameter. """ x = np.random.rand(100) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], col_in=x, copy_all_inputs=True) self.assertEqual(output['col_out'].shape[0], 100) self.assertEqual(output['col_out'].dtype, np.double) for i in range(100): self.assertEqual(output['col_out'][i], x[i] * 2) def testUcol(self): """ Test an unsigned column vector input parameter. """ x = np.random.randint(0, high=500, size=100) z = copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], ucol_in=z) self.assertEqual(output['ucol_out'].shape[0], 100) self.assertEqual(output['ucol_out'].dtype, np.dtype('intp')) for i in range(100): self.assertEqual(output['ucol_out'][i], x[i] * 2) def testUcolForceCopy(self): """ Test an unsigned column vector input parameter. """ x = np.random.randint(0, high=500, size=100) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], ucol_in=x, copy_all_inputs=True) self.assertEqual(output['ucol_out'].shape[0], 100) self.assertEqual(output['ucol_out'].dtype, np.dtype('intp')) for i in range(100): self.assertEqual(output['ucol_out'][i], x[i] * 2) def testRow(self): """ Test a row vector input parameter. """ x = np.random.rand(100) z = copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], row_in=z) self.assertEqual(output['row_out'].shape[0], 100) self.assertEqual(output['row_out'].dtype, np.double) for i in range(100): self.assertEqual(output['row_out'][i], x[i] * 2) def testRowForceCopy(self): """ Test a row vector input parameter. """ x = np.random.rand(100) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], row_in=x, copy_all_inputs=True) self.assertEqual(output['row_out'].shape[0], 100) self.assertEqual(output['row_out'].dtype, np.double) for i in range(100): self.assertEqual(output['row_out'][i], x[i] * 2) def testUrow(self): """ Test an unsigned row vector input parameter. """ x = np.random.randint(0, high=500, size=100) z = copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], urow_in=z) self.assertEqual(output['urow_out'].shape[0], 100) self.assertEqual(output['urow_out'].dtype, np.dtype('intp')) for i in range(100): self.assertEqual(output['urow_out'][i], x[i] * 2) def testUrowForceCopy(self): """ Test an unsigned row vector input parameter. """ x = np.random.randint(0, high=500, size=100) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], urow_in=x, copy_all_inputs=True) self.assertEqual(output['urow_out'].shape[0], 100) self.assertEqual(output['urow_out'].dtype, np.dtype('intp')) for i in range(100): self.assertEqual(output['urow_out'][i], x[i] * 2) def testMatrixAndInfoNumpy(self): """ Test that we can pass a matrix with all numeric features. """ x = np.random.rand(100, 10) z = copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], matrix_and_info_in=z) self.assertEqual(output['matrix_and_info_out'].shape[0], 100) self.assertEqual(output['matrix_and_info_out'].shape[1], 10) for i in range(10): for j in range(100): self.assertEqual(output['matrix_and_info_out'][j, i], x[j, i] * 2.0) def testMatrixAndInfoNumpyForceCopy(self): """ Test that we can pass a matrix with all numeric features. """ x = np.random.rand(100, 10) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], matrix_and_info_in=x, copy_all_inputs=True) self.assertEqual(output['matrix_and_info_out'].shape[0], 100) self.assertEqual(output['matrix_and_info_out'].shape[1], 10) for i in range(10): for j in range(100): self.assertEqual(output['matrix_and_info_out'][j, i], x[j, i] * 2.0) def testMatrixAndInfoPandas(self): """ Test that we can pass a matrix with some categorical features. """ x = pd.DataFrame(np.random.rand(10, 4), columns=list('abcd')) x['e'] = pd.Series(['a', 'b', 'c', 'd', 'a', 'b', 'e', 'c', 'a', 'b'], dtype='category') z = x.copy(deep=True) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], matrix_and_info_in=z) self.assertEqual(output['matrix_and_info_out'].shape[0], 10) self.assertEqual(output['matrix_and_info_out'].shape[1], 5) cols = list('abcde') for i in range(4): for j in range(10): self.assertEqual(output['matrix_and_info_out'][j, i], z[cols[i]][j] * 2) for j in range(10): self.assertEqual(output['matrix_and_info_out'][j, 4], z[cols[4]][j]) def testMatrixAndInfoPandasForceCopy(self): """ Test that we can pass a matrix with some categorical features. """ x = pd.DataFrame(np.random.rand(10, 4), columns=list('abcd')) x['e'] = pd.Series(['a', 'b', 'c', 'd', 'a', 'b', 'e', 'c', 'a', 'b'], dtype='category') output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], matrix_and_info_in=x, copy_all_inputs=True) self.assertEqual(output['matrix_and_info_out'].shape[0], 10) self.assertEqual(output['matrix_and_info_out'].shape[1], 5) cols = list('abcde') for i in range(4): for j in range(10): self.assertEqual(output['matrix_and_info_out'][j, i], x[cols[i]][j] * 2) for j in range(10): self.assertEqual(output['matrix_and_info_out'][j, 4], x[cols[4]][j]) def testIntVector(self): """ Test that we can pass a vector of ints and get back that same vector but with the last element removed. """ x = [1, 2, 3, 4, 5] output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], vector_in=x) self.assertEqual(output['vector_out'], [1, 2, 3, 4]) def testStringVector(self): """ Test that we can pass a vector of strings and get back that same vector but with the last element removed. """ x = ['one', 'two', 'three', 'four', 'five'] output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], str_vector_in=x) self.assertEqual(output['str_vector_out'], ['one', 'two', 'three', 'four']) def testModel(self): """ First create a GaussianKernel object, then send it back and make sure we get the right double value. """ output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], build_model=True) output2 = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], model_in=output['model_out']) self.assertEqual(output2['model_bw_out'], 20.0) def testOneDimensionNumpyMatrix(self): """ Test that we can pass one dimension matrix from matrix_in """ x = np.random.rand(100) z = copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], smatrix_in=z) self.assertEqual(output['smatrix_out'].shape[0], 100) self.assertEqual(output['smatrix_out'].dtype, np.double) for i in range(100): self.assertEqual(output['smatrix_out'][i, 0], x[i] * 2) def testOneDimensionNumpymatrixForceCopy(self): """ Test that we can pass one dimension matrix from matrix_in """ x = np.random.rand(100) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], smatrix_in=x, copy_all_inputs=True) self.assertEqual(output['smatrix_out'].shape[0], 100) self.assertEqual(output['smatrix_out'].dtype, np.double) for i in range(100): self.assertEqual(output['smatrix_out'][i, 0], x[i] * 2) def testOneDimensionNumpyUmatrix(self): """ Same as testNumpyMatrix() but with an unsigned matrix and One Dimension Matrix. """ x = np.random.randint(0, high=500, size=100) z = copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], s_umatrix_in=z) self.assertEqual(output['s_umatrix_out'].shape[0], 100) self.assertEqual(output['s_umatrix_out'].dtype, np.dtype('intp')) for i in range(100): self.assertEqual(output['s_umatrix_out'][i, 0], x[i] * 2) def testOneDimensionNumpyUmatrixForceCopy(self): """ Same as testNumpyMatrix() but with an unsigned matrix and One Dimension Matrix. """ x = np.random.randint(0, high=500, size=100) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], s_umatrix_in=x, copy_all_inputs=True) self.assertEqual(output['s_umatrix_out'].shape[0], 100) self.assertEqual(output['s_umatrix_out'].dtype, np.dtype('intp')) for i in range(100): self.assertEqual(output['s_umatrix_out'][i, 0], x[i] * 2) def testTwoDimensionCol(self): """ Test that we pass Two Dimension column vetor as input paramter """ x = np.random.rand(100,1) z = copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], col_in=z) self.assertEqual(output['col_out'].shape[0], 100) self.assertEqual(output['col_out'].dtype, np.double) for i in range(100): self.assertEqual(output['col_out'][i], x[i] * 2) def testTwoDimensionColForceCopy(self): """ Test that we pass Two Dimension column vetor as input paramter """ x = np.random.rand(100,1) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], col_in=x, copy_all_inputs=True) self.assertEqual(output['col_out'].shape[0], 100) self.assertEqual(output['col_out'].dtype, np.double) for i in range(100): self.assertEqual(output['col_out'][i], x[i] * 2) def testTwoDimensionUcol(self): """ Test that we pass Two Dimension unsigned column vector input parameter. """ x = np.random.randint(0, high=500, size=[100, 1]) z = copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], ucol_in=z) self.assertEqual(output['ucol_out'].shape[0], 100) self.assertEqual(output['ucol_out'].dtype, np.dtype('intp')) for i in range(100): self.assertEqual(output['ucol_out'][i], x[i] * 2) def testTwoDimensionUcolForceCopy(self): """ Test that we pass Two Dimension unsigned column vector input parameter. """ x = np.random.randint(0, high=500, size=[100, 1]) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], ucol_in=x, copy_all_inputs=True) self.assertEqual(output['ucol_out'].shape[0], 100) self.assertEqual(output['ucol_out'].dtype, np.dtype('intp')) for i in range(100): self.assertEqual(output['ucol_out'][i], x[i] * 2) def testTwoDimensionRow(self): """ Test a two dimensional row vector input parameter. """ x = np.random.rand(100,1) z =copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], row_in=x) self.assertEqual(output['row_out'].shape[0], 100) self.assertEqual(output['row_out'].dtype, np.double) for i in range(100): self.assertEqual(output['row_out'][i], z[i] * 2) def testTwoDimensionRowForceCopy(self): """ Test a two dimensional row vector input parameter. """ x = np.random.rand(100,1) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], row_in=x, copy_all_inputs=True) self.assertEqual(output['row_out'].shape[0], 100) self.assertEqual(output['row_out'].dtype, np.double) for i in range(100): self.assertEqual(output['row_out'][i], x[i] * 2) def testTwoDimensionUrow(self): """ Test an unsigned two dimensional row vector input parameter. """ x = np.random.randint(0, high=500, size=[100, 1]) z = copy.deepcopy(x) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], urow_in=z) self.assertEqual(output['urow_out'].shape[0], 100) self.assertEqual(output['urow_out'].dtype, np.dtype('intp')) for i in range(100): self.assertEqual(output['urow_out'][i], x[i] * 2) def testTwoDimensionUrowForceCopy(self): """ Test an unsigned two dimensional row vector input parameter. """ x = np.random.randint(5, high=500, size=[1, 101]) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], urow_in=x, copy_all_inputs=True) self.assertEqual(output['urow_out'].shape[0], 101) self.assertEqual(output['urow_out'].dtype, np.dtype('intp')) for i in range(101): self.assertEqual(output['urow_out'][i], x[0][i] * 2) def testOneDimensionMatrixAndInfoPandas(self): """ Test that we can pass a one dimension matrix with some categorical features. """ x = pd.DataFrame(np.random.rand(10)) z = x.copy(deep=True) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], matrix_and_info_in=z[0]) self.assertEqual(output['matrix_and_info_out'].shape[0], 10) for i in range(10): self.assertEqual(output['matrix_and_info_out'][i, 0], x[0][i] * 2) def testOneDimensionMatrixAndInfoPandasForceCopy(self): """ Test that we can pass a one dimension matrix with some categorical features. """ x = pd.DataFrame(np.random.rand(10)) output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], matrix_and_info_in=x[0], copy_all_inputs=True) self.assertEqual(output['matrix_and_info_out'].shape[0], 10) for j in range(10): self.assertEqual(output['matrix_and_info_out'][j, 0], x[0][j]*2) def testThrownException(self): """ Test that we pass wrong type and get back TypeError """ self.assertRaises(TypeError, lambda : test_python_binding(string_in=10, int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=10.0, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in='bad', mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True, flag2=10)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True, matrix_in= 10.0)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True, matrix_in= 1)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True, matrix_and_info_in = 10.0)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True, copy_all_inputs = 10.0)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True, col_in = 10)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True, row_in = 10.0)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True, str_vector_in = 'bad')) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True, urow_in = 10.0)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True, ucol_in = 10.0)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True, umatrix_in = 10.0)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True, verbose = 10)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], flag1=True, vector_in = 10.0)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=False, col_req_in=[1.0], flag1=True)) self.assertRaises(TypeError, lambda : test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=False, flag1=True)) def testModelForceCopy(self): """ First create a GaussianKernel object, then send it back and make sure we get the right double value. """ output = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], build_model=True) output2 = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], model_in=output['model_out'], copy_all_inputs=True) output3 = test_python_binding(string_in='hello', int_in=12, double_in=4.0, mat_req_in=[[1.0]], col_req_in=[1.0], model_in=output['model_out']) self.assertEqual(output2['model_bw_out'], 20.0) self.assertEqual(output3['model_bw_out'], 20.0) if __name__ == '__main__': unittest.main()
# `from __future__` has to be the very first thing in a module # otherwise a syntax error is raised from __future__ import annotations # type: ignore # noqa # Python 3.6 linters complain from dataclasses import dataclass, fields from enum import Enum import pytest from omegaconf import OmegaConf, ValidationError class Height(Enum): SHORT = 0 TALL = 1 @dataclass class SimpleTypes: num: int = 10 pi: float = 3.1415 is_awesome: bool = True height: "Height" = Height.SHORT # test forward ref description: str = "text" def simple_types_class() -> None: # confirm that the type annotations are in fact stored as strings # i.e., that the `from future` import worked num_field = fields(SimpleTypes)[0] assert isinstance(num_field.type, str) assert num_field.type == "int" conf = OmegaConf.structured(SimpleTypes) assert conf.num == 10 assert conf.pi == 3.1415 assert conf.is_awesome is True assert conf.height == Height.SHORT assert conf.description == "text" def conversions() -> None: conf: SimpleTypes = OmegaConf.structured(SimpleTypes) conf.num = 20 conf.num = "20" # type: ignore assert conf.num == 20 with pytest.raises(ValidationError): # ValidationError: "one" cannot be converted to an integer conf.num = "one" # type: ignore
#!/usr/bin/env python kingdoms = ['Bacteria', 'Protozoa', 'Chromista', 'Plantae', 'Fungi', 'Animalia'] print(kingdoms[0]) print(kingdoms[5]) print(kingdoms[0:3]) print(kingdoms[2:5]) print(kingdoms[4:])
from django.shortcuts import render, redirect from django.contrib.auth.decorators import login_required from .forms import * from django.http import HttpResponse from sep.settings import MEDIA_URL from django.contrib.sites.shortcuts import get_current_site from django.utils.encoding import force_bytes, force_text from django.utils.http import urlsafe_base64_encode, urlsafe_base64_decode from django.template.loader import render_to_string from django.core.mail import EmailMessage from django.views import View from .models import * from dashboard.models import * from authenticate_app.tokens import account_activation_token from sep import settings from dashboard import views # Create your views here def index(request): books = Book.objects.all() categories = Category.objects.all() context = { "books":books, "categories":categories, } if request.user.is_authenticated: pass else: pass return render(request,'store/index.html',context) @login_required(login_url="/auth/login") def user_profile(request): if request.user.is_authenticated: if request.method == 'POST': print(request.POST) user_form = UserForm(data=request.POST, instance=request.user) user = UserProfileInfo.objects.get(user=request.user) print(user) form = UserProfileInfoForm(data=request.POST, instance=request.user) print(form) type_form = None if user: if user.type == '1': # Student type_form = StudentForm(data=request.POST,instance=request.user) elif user.type == '2': # Faculty type_form = FacultyForm(data=request.POST,instance=request.user) else: # Alumni type_form = AlumniForm(data=request.POST,instance=request.user) print(type_form) if user_form.is_valid() and form.is_valid() and type_form.is_valid(): u = user_form.save() t = form.save(False) form.user = u form.save() custom_form = type_form.save(commit=False) #print(custom_form) type_form.user = u type_form.save() args = {} args['user_form'] = user_form args['form'] = form args['type_form'] = type_form args['success'] = "Profile updated successfully!" return render(request, 'store/my_profile.html', args) else: return render(request, 'store/my_profile.html', {"error":str(form.errors) + " " + str(type_form.errors)}) else: user_form = UserForm(instance=request.user) print(request.user) user = UserProfileInfo.objects.get(user=request.user) print(user) form = UserProfileInfoForm(instance=user) print(form) type_form = None if user: if user.type == '1': # Student user = Student.objects.get(user=request.user) type_form = StudentForm(instance=user) elif user.type == '2': # Faculty user = Faculty.objects.get(user=request.user) type_form = FacultyForm(instance=user) else: # Alumni user = Alumni.objects.get(user=request.user) type_form = AlumniForm(instance=user) print(type_form) args = {} args['user_form'] = user_form args['form'] = form args['type_form'] = type_form return render(request, 'store/my_profile.html', args) else: return redirect('authenticate_app:user_login') def about_us(request): return render(request,'store/about_us.html') def contact_us(request): return render(request,'store/contact_us.html') @login_required(login_url="/auth/login") def send_request(request, book): current_site = get_current_site(request) mail_subject = 'Share-E-Pustak: A Request for your Book' message = render_to_string('store/book_request_link.html', { 'book': book, 'request_user': request.user, 'domain': current_site.domain, 'uid': urlsafe_base64_encode(force_bytes(book.user.pk)), 'token':account_activation_token.make_token(book.user), }) to_email = book.user.email email = EmailMessage(mail_subject, message,settings.EMAIL_HOST_USER, to=[to_email]) email.send() def request_accepted(request, uidb64, token, book): try: uid = force_text(urlsafe_base64_decode(uidb64)) user = User.objects.get(pk=uid) except(TypeError, ValueError, OverflowError, User.DoesNotExist): user = None if user is not None and account_activation_token.check_token(user, token): views.degrade_stock(book.id, book.isbn) # current_site = get_current_site(request) # mail_subject = 'Share-E-Pustak: Your request has been accepted' # message = "Hi, you request for the book " + book.title + " has been accepted." # to_email = book.user.email # email = EmailMessage(mail_subject, message,settings.EMAIL_HOST_USER, to=[to_email]) # email.send() return HttpResponse('Thank you! The donee is now notified.') else: return HttpResponse('Link is invalid!')
import radio # 导入radio from mpython import * # 导入mpython import music # 导入music CH = 1 # channel变量 radio.on() radio.config(channel=CH) # radio通道设置 btna_stat, btnb_stat, touch_stat = [0] * 3 # 按键状态标志 def set_channel(): # radio 通道设置函数 global CH, btna_stat, btnb_stat if button_a.value() == 0 and btna_stat == 0: # a按键,减通道 CH -= 1 if CH < 1: CH = 13 radio.config(channel=CH) # radio通道设置 oled.DispChar("Channel: %02d" % CH, 25, 5) # 通道显示 oled.show() btna_stat = 1 elif button_a.value() == 1: btna_stat = 0 if button_b.value() == 0 and btnb_stat == 0: # b按键,加通道 CH += 1 if CH > 13: CH = 1 radio.config(channel=CH) # radio通道设置 oled.DispChar("Channel: %02d" % CH, 25, 5) # 通道显示 oled.show() btnb_stat = 1 elif button_b.value() == 1: btnb_stat = 0 def ding(): # 叮叮响 global touch_stat if touchPad_T.read() < 300 and touch_stat == 0: # 检测按键按下时,发出‘ding’响,并广播 music.pitch(500, 100, wait=False) # 播放"ding" radio.send('ding') # radio 广播 "ding" touch_stat = 1 elif touchPad_T.read() >= 300: touch_stat = 0 oled.DispChar("Channel: %d" % CH, 25, 5) # 开机显示 oled.DispChar("电报机:触摸T", 25, 25) oled.show() while True: set_channel() # 设置通道函数 ding() # 叮叮响函数 temp = radio.receive() # radio接收广播 if temp == 'ding': # 当接收到"ding"广播,发出叮响 rgb.fill((0, 10, 0)) # 指示灯 rgb.write() music.pitch(500, 100, wait=False) else: rgb.fill((0, 0, 0)) rgb.write()
""" MyHDL utility functions (c) 2019 The Bonfire Project License: See LICENSE """ from myhdl import intbv from math import log2 def signed_resize(v,size): result = intbv(0)[size:] result[len(v):]=v sign = v[len(v)-1] for i in range(len(v),size): result[i] =sign return result def int_log2(v): l = log2(v) assert int(l)==l, "{} must be power of 2".format(v) return int(l)
import numpy as np import glob import matplotlib.image as mpimg import matplotlib.pyplot as plt import matplotlib.colors as color import math def ParamToInten(AoP, DoP, Inten, angle): return ((Inten/2.0) * (1 + DoP*np.cos(math.radians(2*AoP) - 2*math.radians(angle)))) if __name__ == "__main__": imagedir = "output/image/" listimage = glob.glob(f"{imagedir}*.tiff") for pth in listimage: img = color.rgb_to_hsv(mpimg.imread(pth)) #array = np.zeros_like(img) AoP = img[:, :, 0] * 360.0 DoP = img[:, :, 1] * 100.0 Inten = img[:, :, 2] / 255.0 print(np.amax(AoP)) # plt.imshow(img) # plt.show()
import re from typing import List import requests from youtube_series_downloader.core.channel import Channel from youtube_series_downloader.core.video import Video class YoutubeGateway: __RSS_PREFX: str = "https://www.youtube.com/feeds/videos.xml?channel_id=" __REGEX = re.compile( r"<entry>.*?<yt:videoId>(.*?)<\/yt:videoId>.*?<title>(.*?)<\/title>.*?<published>(.*?)<\/published>.*?<\/entry>", re.DOTALL, ) @staticmethod def get_videos(channel: Channel) -> List[Video]: url = YoutubeGateway.__RSS_PREFX + channel.id xml = requests.get(url).text matches = YoutubeGateway.__REGEX.findall(xml) matches.reverse() videos = [] for groups in matches: id = groups[0] title = groups[1] date = groups[2] video = Video(id, date, title) videos.append(video) return videos
# Copyright (c) 2016-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import namedtuple import logging # When a task is started, it will register a set of triggers # which, for a specific kind of event (see below) and a further given # filtering condition, it will call the specified event_handler function Trigger = namedtuple('Trigger', ('type', 'condition', 'event_handler')) class EventManager: def __init__(self): self.triggers = {} self.logger = logging.getLogger(__name__) def register(self, observer, trigger): ''' Register a trigger (a tuple containing an ActivationCondition -a function/functor- and an EventHandler - another function/functor-) ''' # initialize a list for each type of event (it's just an optimizaiton) if trigger.type not in self.triggers: self.triggers[trigger.type] = [] self.logger.debug( "Registering Trigger for {0} event with handler {1} of object of " "type {2}".format(trigger.type.__name__, trigger.event_handler, observer.__class__.__name__)) # save the trigger self.triggers[trigger.type].append((observer, trigger)) def deregister(self, observer, trigger): self.triggers[trigger.type].remove((observer, trigger)) def clear(self): ''' Deregisters all triggers ''' self.triggers.clear() def raise_event(self, event): handled = False # check if we have any trigger at all of this type of event if event.__class__ in self.triggers: # for all the triggers registered for this type of event for observer, trigger in self.triggers[event.__class__]: # check if the filtering condition is a go condition_outcome = trigger.condition(event) if condition_outcome: # save, if the event expects it, the outcome of the # condition checking try: event.condition_outcome = condition_outcome except AttributeError: self.logger.debug("Couldn't save condition outcome for " "event {0}".format(event)) self.logger.debug('{0} handled by {1}'.format( event, trigger.event_handler)) # call the event handler trigger.event_handler(observer, event) # remember we handled the event and # keep on processing other events handled = True return handled
from mesa import Agent, Model from mesa.space import MultiGrid import networkx as nx class RunnerAgent(Agent): ''' This class will represent runners in this model ''' def __init__(self, unique_id, model): super().__init__(unique_id, model) self.reset_runner_info() self.day_to_run = [] def reset_runner_info(self): # Personal attributes self.type = 'runner' self.preference = None self.state = 'rest' self.distance_gone = 0 self.estimate_distance_back_home = 0 self.estimate_distance_back_home_previous = 0 self.estimate_distance_cell_to_init_point = 0 self.check_closer_or_farer = 0 self.want_to_go_home = False self.begin_going_home = False # Possibility rate that runner choose an alternative road only once at intersection on the way home instead of following shortest path self.possibility_change_way_home = 0.2 # Possibility rate that runner choose an alternative road only once at intersection on the way to park instead of following shostest path self.possibility_change_way_park = 0.1 # NODE GONE MEMORY self.memory_node_osmid = [] self.memory_node_coord = [] # NODE DEAD END MEMORY self.memory_deadend_osmid = [] self.memory_deadend_coord = [] # ADDITION MEMORY ON THE WAY GO HOME self.memory_node_osmid_way_home = [] self.memory_node_coord_way_home = [] # EDGE/ROAD ATTRIBUTES self.init_road_name = None self.init_road_index = None self.init_road_type = None self.init_index = None # choose one index from init road index self.current_road_name = None self.current_road_index = None self.current_road_type = None self.current_road_cells = None self.current_road_length = None self.amount_added = None # index of cell within the list cells of current edge self.current_cell_index_on_roadset = None self.num_cells_gone_on_road = None # END POINTS OF A STRAIGHT ROAD self.endpoint1 = None self.endpoint2 = None self.start_from_one_endpoint = False self.finish_at_one_endpoint = False # total length of this current straight road self.straight_road_length = 0 # NODE ATTRIBUTES self.current_node_index = None self.current_node_position = None self.next_node_index = None # osmid of next node self.next_node_position = None # grid coord of next node/intersection. self.previous_node_index = None self.previous_node_position = None self.to_node = None # 'u' or 'v' # CONSIDER NEXT NODE AT INTERSECTION self.possible_next_node_index = [] self._set_consider_list_node() # type of roads around, not including previous road self.type_roads_around = [] # ON THE PARK FLAG self.on_the_park = False self.target_node_coming_park = None self.current_set_node_on_park = None self.target_node_running_around_park = None self.start_on_road = False self.key = None # POSSIBILITY RATE # to make a turn at the traffic signals point self.pr_turn_at_traffic_signals = None # to go straight (get over) at the traffic signals point self.pr_go_straight_at_traffic_signals = None self.pr_turn_on_ter = None # to make a turn on tertiary roads self.pr_turn_on_sec = None # to make a turn on secondary roads self.pr_turn_on_pri = None # to make a turn on primary roads self.pr_turn_on_res = None # to make a turn on residential roads # to go to the park at first self.pr_go_to_park = None # to continue its running on the park when come across self.pr_continue_on_park = None # distance want to run on around park self.distance_run_around_park = None # the distance point that once reached, runner will go home or get out park and continue running self.distance_will_get_out_park = None # follow preference 1 when start on residential road self.pr_start_pref1_on_res = None # follow preference 2 when start on tertiary or secondary road self.pr_start_pref2_on_ter_sec = None # Preference while running self.preference = None def _set_consider_list_node(self): self.list_node_on_same_road_name = [] self.list_node_on_same_road_type = [] self.list_node_on_other_road_type = [] def get_initial_road_info(self): # Flag start on road for calculating the distance self.start_on_road = True self.num_cells_gone_on_road = 0 # Figure out what road the runner is standing now for key, value in self.model.cells_of_edge.items(): if self.init_position in value: u, v, k = key # EDGE/ROAD # Get road info self.init_road_name = self.model.graph_edges.loc[key]['name'] self.current_road_name = self.model.graph_edges.loc[key]['name'] self.current_road_type = self.model.graph_edges.loc[key]['highway'] self.current_road_length = self.model.graph_edges.loc[key]['length'] # Find list of all cells in this current road self.current_road_cells = self.model.cells_of_edge[key] # store the tuple key of this initial road self.init_road_index = key self.current_road_index = key self.init_road_type = self.model.graph_edges.loc[key]['highway'] # NODES # Choose one of these nodes as next destination self.next_node_index = self.random.choice([u, v]) # Find the pos of next node self.next_node_position = self.model.cell_of_node[self.next_node_index] # Find current index of cell start, in the list of the current road cells self.current_cell_index_on_roadset = self.current_road_cells.index( self.init_position) # Store cell behind as memory so runner could avoid at first if self.next_node_index != u: self.memory_node_osmid.append(u) self.memory_node_coord.append(self.model.cell_of_node[u]) self.memory_node_coord elif self.next_node_index != v: self.memory_node_osmid.append(v) self.memory_node_coord.append(self.model.cell_of_node[v]) # check to see runner goes to u or v if self.next_node_index == u: self.to_node = 'u' else: self.to_node = 'v' break def reset_possibility_rate(self): # POSSIBILITY RATE AT AN INTERSECTION self.pr_turn_at_traffic_signals = 0.8 self.pr_go_straight_at_traffic_signals = 0.2 # POSSIBILITY RATE TO TURN if self.init_road_type == 'primary': self.pr_turn_on_pri = None self.pr_turn_on_sec = 0.5 self.pr_turn_on_ter = 0.5 self.pr_turn_on_res = 0.2 elif self.init_road_type == 'tertiary' or self.init_road_type == 'secondary': self.pr_turn_on_pri = 0.4 self.pr_turn_on_sec = 0.4 self.pr_turn_on_ter = 0.4 self.pr_turn_on_res = 0.1 elif self.init_road_type == 'residential': if self.gender == 'male': self.pr_turn_on_pri = 0.2 self.pr_turn_on_sec = 0.4 self.pr_turn_on_ter = 0.4 self.pr_turn_on_res = 0.3 elif self.gender == 'female': self.pr_turn_on_pri = 0.2 self.pr_turn_on_sec = 0.4 self.pr_turn_on_ter = 0.4 self.pr_turn_on_res = 0.3 # POSSIBILITY TO GO TO PARK AT FIRST AND CONTINUE RUNNING ON THE PARK (when come across) # POSSIBILITY TO START WITH PREFERENCE 1 AT FIRST if self.gender == 'male': if self.fitness_level == 'low': self.pr_go_to_park = 0.4 self.pr_start_pref1_on_res = 0.3 self.pr_start_pref2_on_ter_sec = 0.9 elif self.fitness_level == 'moderate': self.pr_go_to_park = 0.35 self.pr_start_pref1_on_res = 0.4 self.pr_start_pref2_on_ter_sec = 0.85 elif self.fitness_level == 'high': self.pr_go_to_park = 0.2 self.pr_start_pref1_on_res = 0.6 self.pr_start_pref2_on_ter_sec = 0.8 elif self.fitness_level == 'very_high': self.pr_go_to_park = 0.15 self.pr_start_pref1_on_res = 0.7 self.pr_start_pref2_on_ter_sec = 0.8 self.pr_continue_on_park = 0.12 if self.gender == 'female': if self.fitness_level == 'low': self.pr_go_to_park = 0.6 self.pr_start_pref1_on_res = 0.1 self.pr_start_pref2_on_ter_sec = 0.9 elif self.fitness_level == 'moderate': self.pr_go_to_park = 0.45 self.pr_start_pref1_on_res = 0.2 self.pr_start_pref2_on_ter_sec = 0.85 elif self.fitness_level == 'high': self.pr_go_to_park = 0.4 self.pr_start_pref1_on_res = 0.3 self.pr_start_pref2_on_ter_sec = 0.8 elif self.fitness_level == 'very_high': self.pr_go_to_park = 0.3 self.pr_start_pref1_on_res = 0.4 self.pr_start_pref2_on_ter_sec = 0.8 self.pr_continue_on_park = 0.2 # distance run around park self.distance_run_around_park = None # the distance point to go home or get out park self.distance_will_get_out_park = None def _set_distance_run_around_park(self): # SET THE DISTANCE THAT RUNNERS WILL RUN BEFORE ASSIGNED preference 2 TO CONTINUE if self.fitness_level == 'low' or self.fitness_level == 'moderate': portion = self.random.randrange(60, 90) # 60% - 90% elif self.fitness_level == 'high' or self.fitness_level == 'very_high': portion = self.random.randrange(30, 60) # 30% - 60% self.distance_run_around_park = ( portion / 100) * (self.distance_goal - self.distance_gone - self.estimate_distance_back_home) # reach this distance, then go home or get out of park self.distance_will_get_out_park = self.distance_run_around_park + self.distance_gone def get_ready(self): self.state = '_continue_forward' # CHECK IF WANT TO GO TO PARK AT FIRST # find the length of shortest path length_shortest_path = None for index in self.model.footway_nodes_access: length = nx.shortest_path_length( self.model.graph, self.next_node_index, index, weight='length') if length_shortest_path == None or length < length_shortest_path: length_shortest_path = length # if len of shortest path < 480m and fall within rate if length_shortest_path < 480 and self.random.random() < self.pr_go_to_park: self.preference = 'preference3' if self.preference == None: if self.current_road_type == 'residential': # check if want to start with pref 1 if self.random.random() < self.pr_start_pref1_on_res: self.preference = 'preference1' # otherwise, assign pref 2 else: self.preference = 'preference2' elif self.current_road_type == 'tertiary' or self.current_road_type == 'secondary': # check if want to start with pref 2 if self.random.random() < self.pr_start_pref2_on_ter_sec: self.preference = 'preference2' else: self.preference = 'preference1' elif self.current_road_type == 'primary': self.preference = 'preference2' else: # for a few agents in special area (footway but not footway in real life) self.preference = 'preference1' def step(self): # Reaasigne preference 2 for preference 1 if runners are on one-way road (avoid error) if self.preference == 'preference2' and self.model.graph_edges.loc[self.current_road_index]['oneway'] == True: self.preference = 'preference1' # FOLLOW STATE MACHINE BY ITS OWN TYPE AND PREFERENCE if self.want_to_go_home and self.pos == self.init_position: self.state = 'rest' elif not self.want_to_go_home: if self.preference == 'preference1': self.preference1() elif self.preference == 'preference2': self.preference2() elif self.preference == 'preference3': self.preference3() elif self.want_to_go_home: self.preference4() # RUNNING ON ROADS AS STRAIGHT AS POSSIBLE, AND AVOID REPEATING ROUTES def preference1(self): if self.state == '_continue_forward': self.continue_forward() elif self.state == '_intersection': self.intersection1() # RUNNING ON A STRAIGHT ROAD BACK AND FORTH def preference2(self): if self.state == '_continue_forward': self.continue_forward() elif self.state == '_intersection': self.intersection2() # GET TO THE PARK AS SOON AS IT CAN AND RUNNING A WHILE UNTIL WANT TO GO HOME OR CHANGE TO OTHER STATE AND KEEP RUNNING def preference3(self): if self.state == '_continue_forward': self.continue_forward() elif self.state == '_intersection': self.intersection3() # GET BACK TO THE INITIAL POSSITION AS SOON AS IT CAN BY FOLLOWING THE SHORTEST PATH def preference4(self): if self.state == '_continue_forward': self.continue_forward() elif self.state == '_intersection': self.intersection4() def continue_forward(self): # About to get to the destination if at the an endpoint (before node) of road if self.to_node == 'u' and self.current_cell_index_on_roadset == 0: # update previous node before current node self.previous_node_index = self.current_node_index self.previous_node_position = self.current_node_position self.current_node_index = self.next_node_index self.current_node_position = self.next_node_position # get to u position self.next_position = self.next_node_position # update distance self._adding_distance_goal() # change state self.state = '_intersection' # About to get to the destination if at the an endpoint (after node) of road elif self.to_node == 'v' and self.current_cell_index_on_roadset == len(self.current_road_cells) - 1: # update previous node before current node self.previous_node_index = self.current_node_index self.previous_node_position = self.current_node_position self.current_node_index = self.next_node_index self.current_node_position = self.next_node_position # get to v position self.next_position = self.next_node_position # update distance self._adding_distance_goal() # change state self.state = '_intersection' # Move to next cell if still on road elif self.to_node == 'u': self.current_cell_index_on_roadset = self.current_cell_index_on_roadset - 1 self.next_position = self.current_road_cells[self.current_cell_index_on_roadset] elif self.to_node == 'v': self.current_cell_index_on_roadset = self.current_cell_index_on_roadset + 1 self.next_position = self.current_road_cells[self.current_cell_index_on_roadset] # Make a move self._move_agent_update_attributes() def switch_previous_and_current_node_index(self): # update previous node before current node self.previous_node_index = self.current_node_index self.previous_node_position = self.previous_node_position self.current_node_index = self.next_node_index self.current_node_position = self.next_node_position pass def intersection1(self): # STORE INTERSECTION FOR MEMORY # intersection memory self.memory_node_osmid.append(self.current_node_index) self.memory_node_coord.append(self.current_node_position) # dead end memory if len(self.model.graph_edges.loc[self.current_node_index]['osmid']) == 1 and self.current_node_index not in self.init_road_index: self.memory_deadend_osmid.append(self.current_node_index) self.memory_deadend_coord.append(self.current_node_position) # CHOOSE NEXT NODE IN THE SAME ROAD OR SAME TYPE # find all possible nodes around self.possible_next_node_index = self.model.node_connections[self.current_node_index] # ignore all known dead ends self.possible_next_node_index_copy = [ index for index in self.possible_next_node_index if index not in self.memory_deadend_osmid] # ignore previous road self.possible_next_node_index_copy1 = [ index for index in self.possible_next_node_index if index != self.previous_node_index] # ignore all roads have been gone self.possible_next_node_index_copy2 = [ index for index in self.possible_next_node_index if index not in self.memory_node_osmid] # if at dead end for first time --> u turn (intersection of 1) if len(self.possible_next_node_index_copy1) == 0: self.next_node_index = self.possible_next_node_index_copy[0] # encounter traffic signals elif self.model.graph_nodes.loc[self.current_node_index]['highway'] == 'traffic_signals': self.list_straight_road = [index for index in self.possible_next_node_index_copy1[:] if self.model.graph_edges.loc[( self.current_node_index, index, 0)]['name'] == self.current_road_name] # make a turn if don't have straight road or fall within the possibility rate of turning if len(self.list_straight_road) == 0 or self.random.random() < self.pr_turn_at_traffic_signals: self.next_node_index = self.random.choice([index for index in self.possible_next_node_index_copy1[:] if self.model.graph_edges.loc[( self.current_node_index, index, 0)]['name'] != self.current_road_name]) # or go straight else: self.next_node_index = self.list_straight_road[0] # choose a random road if all roads around have been gone (intersection of 3-4) elif len(self.possible_next_node_index_copy2) == 0: self.next_node_index = self.random.choice( self.possible_next_node_index_copy1) # otherwise, take the road have the same name # no same name, choose same type of road # no same type of road, prefer primary, secondary, tertiary, or residential else: self._set_consider_list_node() for index in self.possible_next_node_index_copy2: self.current_road_index = (self.current_node_index, index, 0) # list node on current road name if self.model.graph_edges.loc[self.current_road_index]['name'] == self.current_road_name: self.list_node_on_same_road_name.append(index) # list node on current road type elif self.model.graph_edges.loc[self.current_road_index]['highway'] == self.current_road_type: self.list_node_on_same_road_type.append(index) # list node on other road types else: self.list_node_on_other_road_type.append(index) # prefer to choose same road name first if len(self.list_node_on_same_road_name) != 0: self.next_node_index = self.list_node_on_same_road_name[0] # if not, choose same road type elif len(self.list_node_on_same_road_type) != 0: self.next_node_index = self.random.choice( self.list_node_on_same_road_type) # if not, choose the other road type elif len(self.list_node_on_other_road_type) != 0: self.next_node_index = self.random.choice( self.list_node_on_other_road_type) self._update_road_info() self._check_next_node_in_same_or_next_cell() self._make_move() def intersection2(self): # STORE INTERSECTION FOR MEMORY # intersection memory self.memory_node_osmid.append(self.current_node_index) self.memory_node_coord.append(self.current_node_position) # dead end memory if len(self.model.graph_edges.loc[self.current_node_index]['osmid']) == 1 and self.current_node_index not in self.init_road_index: self.memory_deadend_osmid.append(self.current_node_index) self.memory_deadend_coord.append(self.current_node_position) # find all possible nodes around self.possible_next_node_index = self.model.node_connections[self.current_node_index] # ignore previous road self.possible_next_node_index_copy = [ index for index in self.possible_next_node_index if index != self.previous_node_index] # GET LIST ROADS AROUND HAVING DIFFERENT TYPE TO TURN, IF NO DIFFERENT TYPE, THEN LIST INCLUDE SAME TYPE NOT SAME NAME (NOT STRAIGHT), not including previous road self.type_roads_around = [] self.type_roads_around_nodes = [] if len(self.possible_next_node_index_copy) != 0: # IGNORE STRAIGHT ROAD (ROAD HAS SAME NAME) self.possible_next_node_index_copy3 = [] for index in self.possible_next_node_index_copy: if self.model.graph_edges.loc[(self.current_node_index, index, 0)]['name'] != self.current_road_name: self.possible_next_node_index_copy3.append(index) for index in self.possible_next_node_index_copy3: type_road = self.model.graph_edges.loc[( self.current_node_index, index, 0)]['highway'] self.type_roads_around.append(type_road) self.type_roads_around_nodes.append(index) # GET OUT OF A STRAIGHT ROAD THAT HAS LENGTH < 300 if self.straight_road_length < 300 and self.endpoint1 != None and self.endpoint2 != None: if len(self.possible_next_node_index_copy) > 0: self.next_node_index = self.random.choice( self.possible_next_node_index_copy) self._update_endpoint_when_make_a_turn() else: self.next_node_index = self.random.choice( self.possible_next_node_index) # POSSIBILITY TO TURN WHILE RUNNING STRAIGHT # turn to tertiary # rate != None, have tertiary road to turn, fall within rate elif self.pr_turn_on_ter != None and ('tertiary' in self.type_roads_around) and self.random.random() < self.pr_turn_on_ter: index = self.type_roads_around.index('tertiary') self.next_node_index = self.type_roads_around_nodes[index] self._update_endpoint_when_make_a_turn() # turn to secondary # rate != None, have secondary road to turn, fall within rate elif self.pr_turn_on_sec != None and ('secondary' in self.type_roads_around) and self.random.random() < self.pr_turn_on_sec: index = self.type_roads_around.index('secondary') self.next_node_index = self.type_roads_around_nodes[index] self._update_endpoint_when_make_a_turn() # turn to residential # rate != None, have residential road to turn, fall within rate elif self.pr_turn_on_res != None and ('residential' in self.type_roads_around) and self.random.random() < self.pr_turn_on_res: index = self.type_roads_around.index('residential') self.next_node_index = self.type_roads_around_nodes[index] self._update_endpoint_when_make_a_turn() # turn to primary # rate != None, have primary road to turn, fall within rate elif self.pr_turn_on_pri != None and ('primary' in self.type_roads_around) and self.random.random() < self.pr_turn_on_pri: index = self.type_roads_around.index('primary') self.next_node_index = self.type_roads_around_nodes[index] self._update_endpoint_when_make_a_turn() # ENCOUNTER TRAFFIC SIGNALS, MAKE A U TURN OR GO STRAIGHT elif self.model.graph_nodes.loc[self.current_node_index]['highway'] == 'traffic_signals': # go straight if fall within the possibility rate self.list_straight_road = [index for index in self.possible_next_node_index_copy[:] if self.model.graph_edges.loc[( self.current_node_index, index, 0)]['name'] == self.current_road_name] if len(self.list_straight_road) != 0 and self.random.random() < self.pr_go_straight_at_traffic_signals: self.next_node_index = self.list_straight_road[0] # otherwise, make U-turn else: self._set_node_to_make_u_turn_on_straight_road() # update endpoint self._update_endpoint_when_make_u_turn() # CHOOSE NEXT NODE IN THE SAME ROAD (straight road) # if at dead end for first time --> u turn (intersection of 1) elif len(self.possible_next_node_index_copy) == 0 and len(self.model.graph_edges.loc[self.current_node_index]['osmid']) == 1: self.next_node_index = self.previous_node_index # Store one endpoint if not set yet self._update_endpoint_when_make_u_turn() else: # choose road forward (straight road) have_forward_road = False for index in self.possible_next_node_index_copy: self.current_road_index = (self.current_node_index, index, 0) # list node on current road name if self.model.graph_edges.loc[self.current_road_index]['name'] == self.current_road_name: self.next_node_index = index have_forward_road = True break # at intersection of 3, previous road is same road, 2 other roads are different roads. Therefore, U-turn if not have_forward_road: self._set_node_to_make_u_turn_on_straight_road() # Store one endpoint if not set yet self._update_endpoint_when_make_u_turn() self._update_road_info() self._check_next_node_in_same_or_next_cell() self._make_move() def _update_endpoint_when_make_u_turn(self): if self.endpoint1 == None: self.endpoint1 = self.current_node_index self.start_from_one_endpoint = True elif self.endpoint2 == None: self.endpoint2 = self.current_node_index self.start_from_one_endpoint = False def _update_endpoint_when_make_a_turn(self): # reset endpoint for new road self.straight_road_length = 0 self.endpoint1 = None self.endpoint2 = None # since runner could turn to the middle of road self.start_from_one_endpoint = False def _set_node_to_make_u_turn_on_straight_road(self): # U-turn on any road if self.previous_node_index != None: self.next_node_index = self.previous_node_index # U-turn on the init road elif self.current_node_index == self.current_road_index[0]: self.next_node_index = self.current_road_index[1] elif self.current_node_index == self.current_road_index[1]: self.next_node_index = self.current_road_index[0] def intersection3(self): # Change to mode running on park once runner stand on the node of park if self.current_node_index == self.target_node_coming_park: self.on_the_park = True # Reset target node while running on park once runner's on the target node if self.current_node_index == self.target_node_running_around_park: self.target_node_running_around_park = None # STORE INTERSECTION FOR MEMORY # intersection memory self.memory_node_osmid.append(self.current_node_index) self.memory_node_coord.append(self.current_node_position) # dead end memory if len(self.model.graph_edges.loc[self.current_node_index]['osmid']) == 1 and self.current_node_index not in self.init_road_index: self.memory_deadend_osmid.append(self.current_node_index) self.memory_deadend_coord.append(self.current_node_position) # FIND ALL POSSIBLE ROADS AROUND CURRENT POSITION self.possible_next_node_index = self.model.node_connections[self.current_node_index] # ignore previous road starting from the second intersection from the point want to go home if len(self.memory_node_osmid_way_home) == 1: self.possible_next_node_index_copy = self.possible_next_node_index[:] else: self.possible_next_node_index_copy = [ index for index in self.possible_next_node_index if index != self.previous_node_index] # got to the node of park on the initial road if self.current_node_index in self.model.footway_all_nodes: self.on_the_park = True # ON THE WAY TO PARK if not self.on_the_park: # if it just start, set the next node index as the current node index if self.current_node_index == None: self.current_node_index = self.next_node_index # find the shortest path and the nodes of that shortest_length = None for index in self.model.footway_nodes_access: length = nx.shortest_path_length( self.model.graph, self.current_node_index, index, weight='length') if shortest_length == None: shortest_length = length self.target_node_coming_park = index elif length < shortest_length: shortest_length = length self.target_node_coming_park = index # get shortest path to that node self.shortest_path = nx.shortest_path( self.model.graph, self.current_node_index, self.target_node_coming_park, weight='length') # choose to follow the shortest path if self.random.random() > self.possibility_change_way_park: self.next_node_index = self.shortest_path[1] # if not, choose one of the way around that current node else: if len(self.possible_next_node_index_copy) != 0: self.next_node_index = self.random.choice( self.possible_next_node_index_copy) else: self.next_node_index = self.random.choice( self.possible_next_node_index) # GET TO THE PARK ALREADY AND RUNNING AROUND elif self.on_the_park: # set the set node around the current node on park if don't have yet if self.current_set_node_on_park == None: if self.current_node_index in self.model.footway_nodes_set1: self.current_set_node_on_park = self.model.footway_nodes_set1[:] elif self.current_node_index in self.model.footway_nodes_set2: self.current_set_node_on_park = self.model.footway_nodes_set2[:] # set distance running on park if don't have yet if self.distance_run_around_park == None: self._set_distance_run_around_park() # choose next cell from the set data and avoid previous road as much as it can if self.target_node_running_around_park == None: self.target_node_running_around_park = self.random.choice( [index for index in self.current_set_node_on_park if index != self.current_node_index and index != self.previous_node_index]) self.possible_next_node_index = nx.shortest_path( self.model.graph, self.current_node_index, self.target_node_running_around_park, weight='length') self.next_node_index = self.possible_next_node_index[1] self._update_road_info() self._check_next_node_in_same_or_next_cell() self._make_move() # REACH THE DISTANCE SET TO RUN AROUND PARK, THEN GO HOME OR GET OUT OF PARK if self.distance_will_get_out_park != None and self.distance_gone > self.distance_will_get_out_park and not self.want_to_go_home: self.preference = 'preference2' def intersection4(self): # STORE INTERSECTION FOR MEMORY # intersection memory self.memory_node_osmid.append(self.current_node_index) self.memory_node_coord.append(self.current_node_position) # dead end memory if len(self.model.graph_edges.loc[self.current_node_index]['osmid']) == 1 and self.current_node_index not in self.init_road_index: self.memory_deadend_osmid.append(self.current_node_index) self.memory_deadend_coord.append(self.current_node_position) # on way home memory if not self.begin_going_home: # ignore the first starting point going home self.memory_node_osmid_way_home.append(self.current_node_index) self.memory_node_coord_way_home.append(self.current_node_position) self.begin_going_home = False # CHOOSE AN INDEX FROM INITIAL ROAD INDEX AS A TARGET POINT TO GET BACK HOME if self.init_index == None: self.init_index = self.random.choice( [self.init_road_index[0], self.init_road_index[1]]) # FIND ALL POSSIBLE ROADS AROUND CURRENT POSITION self.possible_next_node_index = self.model.node_connections[self.current_node_index] # ignore previous road starting from the second intersection from the point want to go home if len(self.memory_node_osmid_way_home) == 1: self.possible_next_node_index_copy = self.possible_next_node_index[:] else: self.possible_next_node_index_copy = [ index for index in self.possible_next_node_index if index != self.previous_node_index] # stand on the init_index if self.current_node_index == self.init_index: u, v, k = self.init_road_index if self.current_node_index == u: self.next_node_index = v else: self.next_node_index = u # choose to follow the shortest path elif self.random.random() > self.possibility_change_way_home: self.shortest_path = nx.shortest_path( self.model.graph, self.current_node_index, self.init_index, weight='length') self.next_node_index = self.shortest_path[1] # change, want to explore/try a section of road # select randomly a road for this step else: if len(self.possible_next_node_index_copy) > 0: self.next_node_index = self.random.choice( self.possible_next_node_index_copy) else: self.next_node_index = self.random.choice( self.possible_next_node_index) self._update_road_info() self._check_next_node_in_same_or_next_cell() self._make_move() def _update_road_info(self): # update current_road_index and next_node_position self.current_road_index = ( self.current_node_index, self.next_node_index, 0) self.next_node_position = self.model.cell_of_node[self.next_node_index] # UPDATE NEW ROAD INFO self.current_road_name = self.model.graph_edges.loc[self.current_road_index]['name'] self.current_road_type = self.model.graph_edges.loc[self.current_road_index]['highway'] self.current_road_cells = self.model.cells_of_edge[self.current_road_index] self.current_road_length = self.model.graph_edges.loc[self.current_road_index]['length'] self.current_cell_index_on_roadset = 0 def _check_next_node_in_same_or_next_cell(self): # WHAT IF THE NEXT NODE IS IN THE SAME OR NEXT CELL? if len(self.current_road_cells) == 0: self.next_position = self.next_node_position self.switch_previous_and_current_node_index() self._adding_distance_goal() # keep state else: self.next_position = self.current_road_cells[self.current_cell_index_on_roadset] # CHANGE STATE BACK TO _continue_forward self.state = '_continue_forward' def _make_move(self): # MAKE A MOVE self.to_node = 'v' self._move_agent_update_attributes() def _adding_distance_goal(self): # ADDING DISTANCE GONE if self.start_on_road: if self.num_cells_gone_on_road == 0: self.num_cells_gone_on_road = 1 self.amount_added = round(((self.num_cells_gone_on_road / len( self.current_road_cells)) * self.current_road_length), 0) self.distance_gone += self.amount_added self.start_on_road = False else: self.amount_added = self.current_road_length self.distance_gone += self.amount_added # CHECK TO SEE IF IT WILL RUNNER GETS FARER OR CLOSER FROM INIT POS & UPDATE DISTANCE BACK HOME a, b = self.init_position x, y = self.next_node_position # calculate to find appro. distance self.check_closer_or_farer = (a - x)**2 + (b - y)**2 # set previous distance back home self.estimate_distance_back_home_previous = self.estimate_distance_back_home # check to see add or subtract if self.check_closer_or_farer > self.estimate_distance_cell_to_init_point: self.estimate_distance_back_home += self.amount_added elif self.check_closer_or_farer < self.estimate_distance_cell_to_init_point: self.estimate_distance_back_home -= self.amount_added # set new estimate distance cell to init point by the new number self.estimate_distance_cell_to_init_point = self.check_closer_or_farer # UPDATE EDGES' USING MEMORY self.model.memory_edge_using[self.current_road_index] += 1 # ADD LENGTH FOR STRAIGHT ROAD self._add_length_straight_road() def _add_length_straight_road(self): # START ADDING DISTANCE FROM ENDPOINT 1 OF A STRAIGHT ROAD if self.start_from_one_endpoint: self.straight_road_length += self.amount_added def _move_agent_update_attributes(self): x, y = self.next_position # IF JUST STARTS ON A ROAD, NEED TO ADD NUM OF CELLS GONE TO CALCULATE APPRO. LENGTH if self.start_on_road: self.num_cells_gone_on_road += 1 # MOVE AGENT self.model.grid.move_agent(self, self.next_position) # UPDATE THE HEATMAP FOR EVERYTIME IT GOES TO A NEW LOCATION self.model.heatmap_data[y][x] += 1 # SET WANT TO GO HOME MODE ONCE DISTANCE GONE + DISTANCE BACK HOME > DISTANCE GOAL if (self.distance_gone + self.estimate_distance_back_home) >= self.distance_goal: # self.state = 'rest' self.want_to_go_home = True self.begin_going_home = True self.preference = 'preference4'
import pytest from wikidict import gen_dict @pytest.mark.parametrize( "locale, words", [ ("fr", "logiciel"), # Single word ("fr", "base,logiciel"), # Multiple words ("fr", "cercle unité"), # Accentued word + space ], ) @pytest.mark.parametrize("format", ["kobo", "stardict"]) def test_gen_dict(locale, words, format, tmp_path): res = gen_dict.main(locale, words, tmp_path, format=format) assert res == 0
#!/usr/bin/env python2.7 """ This module is a utility module for Windows. The Win32 ThreeSpace Utils module is a collection of classes, functions, structures, and static variables use exclusivly for Windows. All functions in this module are used to scan for available ThreeSpace devices on the host system and information on them. This module can be used with a system running Python 2.5 and newer (including Python 3.x). """ __authors__ = [ '"Chris George" <cgeorge@yeitechnology.com>', '"Dan Morrison" <dmorrison@yeitechnology.com>', ] from threespace_utils import * import struct # import serial # from serial.win32 import ULONG_PTR, is_64bit import re import sys import copy import ctypes from ctypes.wintypes import HANDLE from ctypes.wintypes import BOOL from ctypes.wintypes import HWND from ctypes.wintypes import DWORD from ctypes.wintypes import WORD from ctypes.wintypes import LONG from ctypes.wintypes import ULONG from ctypes.wintypes import LPCSTR from ctypes.wintypes import HKEY from ctypes import c_ubyte as BYTE from ctypes import c_longlong as ULONGLONG from ctypes import c_wchar as WCHAR from ctypes import c_ushort as USHORT from serial.win32 import ULONG_PTR, is_64bit ### Globals ### NULL = 0 HDEVINFO = ctypes.c_void_p PCTSTR = ctypes.c_char_p CHAR = ctypes.c_char LPDWORD = PDWORD = ctypes.POINTER(DWORD) LPBYTE = PBYTE = ctypes.c_void_p # XXX avoids error about types PHKEY = ctypes.POINTER(HKEY) ACCESS_MASK = DWORD REGSAM = ACCESS_MASK UCHAR = BYTE BTH_ADDR = ULONGLONG BLUETOOTH_MAX_NAME_SIZE = 248 HBLUETOOTH_DEVICE_FIND = HANDLE # Common error enums ERROR_NO_MORE_ITEMS = 259 ERROR_INVALID_PARAMETER = 87 ERROR_REVISION_MISMATCH = 1306 ERROR_OUTOFMEMORY = 14 ERROR_SUCCESS = 0 ERROR_INVALID_HANDLE = 6 ERROR_MORE_DATA = 234 # hardware enumeration flags DIGCF_PRESENT = 2 DIGCF_DEVICEINTERFACE = 16 DIGCF_ALLCLASSES = 4 INVALID_HANDLE_VALUE = 0 ERROR_INSUFFICIENT_BUFFER = 122 SPDRP_HARDWAREID = 1 SPDRP_FRIENDLYNAME = 12 ERROR_NO_MORE_ITEMS = 259 DICS_FLAG_GLOBAL = 1 DIREG_DEV = 0x00000001 KEY_READ = 0x20019 REG_SZ = 1 SPDRP_DEVICEDESC = 0 SPDRP_DEVTYPE = 19 SPDRP_DRIVER = 9 SPDRP_ENUMERATOR_NAME = 0x16 SPDRP_LOCATION_INFORMATION = 0xD SPDRP_PHYSICAL_DEVICE_OBJECT_NAME = 0xE SPDRP_MFG = 0xB SPDRP_SERVICE = 4 SPDRP_CLASS = 7 SPDRP_COMPATIBLEIDS = 2 SPDRP_CLASSGUID = 0x8 SPDRP_ADDRESS = 0x1C # libraries we use bthprops = ctypes.windll["bthprops.cpl"] kernel32 = ctypes.windll["Kernel32.dll"] setupapi = ctypes.windll.LoadLibrary("setupapi") advapi32 = ctypes.windll.LoadLibrary("Advapi32") PortName = b'PortName' ### Classes ### # COM Port stuctures class GUID(ctypes.Structure): _fields_ = [ ('Data1', DWORD), ('Data2', WORD), ('Data3', WORD), ('Data4', BYTE * 8), ] def __str__(self): return "{%08X-%04X-%04X-%s-%s}" % ( self.Data1, self.Data2, self.Data3, ''.join(["%02X" % d for d in self.Data4[:2]]), ''.join(["%02X" % d for d in self.Data4[2:]]), ) class SP_DEVINFO_DATA(ctypes.Structure): _fields_ = [ ('cbSize', DWORD), ('ClassGuid', GUID), ('DevInst', DWORD), ('Reserved', ULONG_PTR), ] def __str__(self): return "ClassGuid:%s DevInst:%s" % (self.ClassGuid, self.DevInst) class SP_DEVICE_INTERFACE_DATA(ctypes.Structure): _fields_ = [ ('cbSize', DWORD), ('InterfaceClassGuid', GUID), ('Flags', DWORD), ('Reserved', ULONG_PTR), ] def __str__(self): return "InterfaceClassGuid:%s Flags:%s" % (self.InterfaceClassGuid, self.Flags) # Bluetooth structures class BLUETOOTH_DEVICE_SEARCH_PARAMS(ctypes.Structure): _fields_ = [ ('cbSize', DWORD), ('fReturnAuthenticated', BOOL), ('fReturnRemembered', BOOL), ('fReturnUnknown', BOOL), ('fReturnConnected', BOOL), ('fIssueInquiry', BOOL), ('cTimeoutMultiplier', UCHAR), ('hRadio', HANDLE), ] class BLUETOOTH_ADDRESS(ctypes.Union): _fields_ = [ ('ullLong', BTH_ADDR), ('rgBytes', UCHAR * 6), ] def __str__(self): return self.__repr__() def __repr__(self): addr_str = "" for i in range(len(self.rgBytes) - 1, -1, -1): tmp_str = hex(self.rgBytes[i])[2:].upper() if len(tmp_str) < 2: tmp_str = "0" + tmp_str if i != 0: tmp_str += ":" addr_str += tmp_str return addr_str def __eq__(self, other): if str(self) == str(other): return True else: return False class SYSTEMTIME(ctypes.Structure): _fields_ = [ ('wYear', WORD), ('wMonth', WORD), ('wDayOfWeek', WORD), ('wDay', WORD), ('wHour', WORD), ('wMinute', WORD), ('wSecond', WORD), ('wMilliseconds', WORD), ] def __str__(self): month_map = { 0: "Month_Zero", 1: "January", 2: "February", 3: "March", 4: "April", 5: "May", 6: "June", 7: "July", 8: "August", 9: "September", 10: "October", 11: "November", 12: "December" } day_of_week_map = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday" } return "%s, %s %d, %d\n%d:%d:%d.%d" % ( day_of_week_map[self.wDayOfWeek], month_map[self.wMonth], self.wDay, self.wYear, self.wHour, self.wMinute, self.wSecond, self.wMilliseconds ) class BLUETOOTH_DEVICE_INFO(ctypes.Structure): _fields_ = [ ('cbSize', DWORD), ('Address', BLUETOOTH_ADDRESS), ('ulClassofDevice', ULONG), ('fConnected', BOOL), ('fRemembered', BOOL), ('fAuthenticated', BOOL), ('stLastSeen', SYSTEMTIME), ('stLastUsed', SYSTEMTIME), ('szName', WCHAR * BLUETOOTH_MAX_NAME_SIZE), ] def __str__(self): class_str = hex(self.ulClassofDevice) if class_str[-1] == "L": class_str = class_str[:-1] while len(class_str) < 10: class_str = "0x0" + class_str[2:] if self.fConnected == 0: connected_str = "False" else: connected_str = "True" if self.fRemembered == 0: remembered_str = "False" else: remembered_str = "True" if self.fAuthenticated == 0: authenticated_str = "False" else: authenticated_str = "True" return ( "Size: %d\n" % self.cbSize + "Address: %s\n" % str(self.Address) + "Class Of Device: %s\n" % class_str + "Connected: %s\n" % connected_str + "Remembered: %s\n" % remembered_str + "Authenticated: %s\n" % authenticated_str + "Last Seen: %s\n" % str(self.stLastSeen) + "Last Used: %s\n" % str(self.stLastUsed) + "Name: %s" % str(self.szName) ) ### Helper Functions ### if sys.version_info >= (3, 0): def toLong(number, base=None): if base: return int(number, base) return int(number) else: def toLong(number, base=None): if base: return long(number, base) return long(number) def _byteBuffer(length): return (BYTE * length)() def _string(buffer): s = [] for c in buffer: if c == 0: break s.append(chr(c & 0xff)) # "& 0xff": hack to convert signed to unsigned return ''.join(s) def _validHandle(value, func, arguments): if value == 0: raise ctypes.WinError() return value def _stringToGUID(GUID_string): """ Assuming GUID string is formatted as such: '{XXXXXXXX-XXXX-XXXX-XXXXXXXXXXXX}' """ return GUID( toLong(GUID_string[1:9], 16), toLong(GUID_string[10:14], 16), toLong(GUID_string[15:19], 16), (BYTE * 8)( int(GUID_string[20:22], 16), int(GUID_string[22:24], 16), int(GUID_string[25:27], 16), int(GUID_string[27:29], 16), int(GUID_string[29:31], 16), int(GUID_string[31:33], 16), int(GUID_string[33:35], 16), int(GUID_string[35:37], 16) ) ) def _stringToBluetoothAddress(address_string): """ Assumming address string is formatted as such: 'XXXXXXXXXXXX' """ tmp_addr = BLUETOOTH_ADDRESS() tmp_addr.ullLong = toLong(address_string, 16) return tmp_addr ### Structures/Class Pointers ### PSP_DEVINFO_DATA = ctypes.POINTER(SP_DEVINFO_DATA) PSP_DEVICE_INTERFACE_DATA = ctypes.POINTER(SP_DEVICE_INTERFACE_DATA) PSP_DEVICE_INTERFACE_DETAIL_DATA = ctypes.c_void_p SetupDiDestroyDeviceInfoList = setupapi.SetupDiDestroyDeviceInfoList SetupDiDestroyDeviceInfoList.argtypes = [HDEVINFO] SetupDiDestroyDeviceInfoList.restype = BOOL SetupDiGetClassDevs = setupapi.SetupDiGetClassDevsA SetupDiGetClassDevs.argtypes = [ctypes.POINTER(GUID), PCTSTR, HWND, DWORD] SetupDiGetClassDevs.restype = HDEVINFO SetupDiGetClassDevs.errcheck = _validHandle SetupDiEnumDeviceInterfaces = setupapi.SetupDiEnumDeviceInterfaces SetupDiEnumDeviceInterfaces.argtypes = [HDEVINFO, PSP_DEVINFO_DATA, ctypes.POINTER(GUID), DWORD, PSP_DEVICE_INTERFACE_DATA] SetupDiEnumDeviceInterfaces.restype = BOOL SetupDiGetDeviceInterfaceDetail = setupapi.SetupDiGetDeviceInterfaceDetailA SetupDiGetDeviceInterfaceDetail.argtypes = [HDEVINFO, PSP_DEVICE_INTERFACE_DATA, PSP_DEVICE_INTERFACE_DETAIL_DATA, DWORD, PDWORD, PSP_DEVINFO_DATA] SetupDiGetDeviceInterfaceDetail.restype = BOOL SetupDiGetDeviceRegistryProperty = setupapi.SetupDiGetDeviceRegistryPropertyA SetupDiGetDeviceRegistryProperty.argtypes = [HDEVINFO, PSP_DEVINFO_DATA, DWORD, PDWORD, PBYTE, DWORD, PDWORD] SetupDiGetDeviceRegistryProperty.restype = BOOL SetupDiOpenDevRegKey = setupapi.SetupDiOpenDevRegKey SetupDiOpenDevRegKey.argtypes = [HDEVINFO, PSP_DEVINFO_DATA, DWORD, DWORD, DWORD, REGSAM] SetupDiOpenDevRegKey.restype = HKEY RegCloseKey = advapi32.RegCloseKey RegCloseKey.argtypes = [HKEY] RegCloseKey.restype = LONG RegQueryValueEx = advapi32.RegQueryValueExA RegQueryValueEx.argtypes = [HKEY, LPCSTR, LPDWORD, LPDWORD, LPBYTE, LPDWORD] RegQueryValueEx.restype = LONG # Used to find 3-Space Sensor devices connected via USB GUID_DEVINTERFACE_SERENUM_BUS_ENUMERATOR = GUID(toLong(0x4D36E978), 0xE325, 0x11CE, (BYTE * 8)(0xBF, 0xC1, 0x08, 0x00, 0x2B, 0xE1, 0x03, 0x18)) # Used to find Bluetooth and Unknown devices GUID_DEVINTERFACE_COMPORT = GUID(toLong(0x86E0D1E0), 0x8089, 0x11D0, (BYTE * 8)(0x9C, 0xE4, 0x08, 0x00, 0x3E, 0x30, 0x1F, 0x73)) ### Functions ### def _getBluetoothDevices(): found_devices = [] ## Create our needed structures m_SearchParams = BLUETOOTH_DEVICE_SEARCH_PARAMS() m_SearchParams.cbSize = ctypes.sizeof(m_SearchParams) m_SearchParams.fReturnAuthenticated = 1 # true m_SearchParams.fReturnRemembered = 0 # false m_SearchParams.fReturnUnknown = 1 # true m_SearchParams.fReturnConnected = 1 # true m_SearchParams.fIssueInquiry = 1 # true m_SearchParams.cTimeoutMultiplier = 1 m_SearchParams.hRadio = 0 # Search all available radios m_DeviceInfo = BLUETOOTH_DEVICE_INFO() m_DeviceInfo.cbSize = ctypes.sizeof(m_DeviceInfo) device_find_handle = bthprops.BluetoothFindFirstDevice(ctypes.byref(m_SearchParams), ctypes.byref(m_DeviceInfo)) if device_find_handle == 0: # We failed to find a device error_code = kernel32.GetLastError() # Not sure this is ever returned, but who knows if error_code == ERROR_NO_MORE_ITEMS: return found_devices elif '-d' in sys.argv: if error_code == ERROR_INVALID_PARAMETER: raise Exception("FindFirstDevice: Either the search params or the device info structure is NULL.") elif error_code == ERROR_REVISION_MISMATCH: raise Exception("FindFirstDevice: Either the search params or the device info structure is the wrong size.") else: raise Exception("FindFirstDevice: Unknown function error: %d" % error_code) else: # We found an initial device found_devices.append(copy.deepcopy(m_DeviceInfo)) while True: # Now to find more devices found_more_devices = bthprops.BluetoothFindNextDevice(device_find_handle, ctypes.byref(m_DeviceInfo)) if found_more_devices == 0: # We failed to find a device error_code = kernel32.GetLastError() if error_code == ERROR_NO_MORE_ITEMS: break elif '-d' in sys.argv: if error_code == ERROR_INVALID_HANDLE: raise Exception("FindNextDevice: The find handle is NULL.") elif error_code == ERROR_OUTOFMEMORY: raise Exception("FindNextDevice: Out of memory.") else: raise Exception("FindNextDevice: Unknown function error: %d" % error_code) else: found_devices.append(copy.deepcopy(m_DeviceInfo)) return found_devices def _yeiGrep(reg_exp): for port, desc, hw_id, vid_pid in _yeiComPorts(): if (re.search(reg_exp, port, re.I) or re.search(reg_exp, desc) or re.search(reg_exp, hw_id)): yield port, desc, hw_id, vid_pid def _yeiComPorts(): """ This generator scans the device registry for com ports and yields port, desc, hw_id """ GUID_list = [GUID_DEVINTERFACE_SERENUM_BUS_ENUMERATOR, GUID_DEVINTERFACE_COMPORT] ports_yielded = [] bt_device_list = None for device_GUID in GUID_list: g_hdi = SetupDiGetClassDevs(ctypes.byref(device_GUID), None, NULL, DIGCF_PRESENT|DIGCF_DEVICEINTERFACE) for dw_index in range(256): friendly_name_string = "" did = SP_DEVICE_INTERFACE_DATA() did.cbSize = ctypes.sizeof(did) if not SetupDiEnumDeviceInterfaces(g_hdi, None, ctypes.byref(device_GUID), dw_index, ctypes.byref(did)): if ctypes.GetLastError() != ERROR_NO_MORE_ITEMS: if '-d' in sys.argv: raise ctypes.WinError() break dw_needed = DWORD() # Get the size if not SetupDiGetDeviceInterfaceDetail(g_hdi, ctypes.byref(did), None, 0, ctypes.byref(dw_needed), None): # Ignore ERROR_INSUFFICIENT_BUFFER if ctypes.GetLastError() != ERROR_INSUFFICIENT_BUFFER: if '-d' in sys.argv: raise ctypes.WinError() # Allocate buffer class SP_DEVICE_INTERFACE_DETAIL_DATA_A(ctypes.Structure): _fields_ = [ ('cbSize', DWORD), ('DevicePath', CHAR * (dw_needed.value - ctypes.sizeof(DWORD))), ] def __str__(self): return "DevicePath: %s" % self.DevicePath idd = SP_DEVICE_INTERFACE_DETAIL_DATA_A() if is_64bit(): idd.cbSize = 8 else: idd.cbSize = 5 dev_info = SP_DEVINFO_DATA() dev_info.cbSize = ctypes.sizeof(dev_info) if not SetupDiGetDeviceInterfaceDetail(g_hdi, ctypes.byref(did), ctypes.byref(idd), dw_needed, None, ctypes.byref(dev_info)): if '-d' in sys.argv: raise ctypes.WinError() # hardware ID sz_hardware_id = _byteBuffer(1024) if not SetupDiGetDeviceRegistryProperty(g_hdi, ctypes.byref(dev_info), SPDRP_HARDWAREID, None, ctypes.byref(sz_hardware_id), ctypes.sizeof(sz_hardware_id) - 1, None): # Ignore ERROR_INSUFFICIENT_BUFFER if ctypes.GetLastError() != ERROR_INSUFFICIENT_BUFFER: if '-d' in sys.argv: raise ctypes.WinError() #Build VID/PID string vid_pid_string = "" hw_string = _string(sz_hardware_id) hw_string = hw_string.upper() vid_idx = hw_string.find("VID_") pid_idx = hw_string.find("PID_") if vid_idx != -1 and pid_idx != -1: vid_end = hw_string.find("&", vid_idx + 1) vid = hw_string[vid_idx:vid_end] pid_end = hw_string.find("&", pid_idx + 1) pid = hw_string[pid_idx:pid_end] vid_pid_string = vid + "&" + pid enum_name_buff = _byteBuffer(1024) if SetupDiGetDeviceRegistryProperty(g_hdi, ctypes.byref(dev_info), SPDRP_ENUMERATOR_NAME, None, ctypes.byref(enum_name_buff), ctypes.sizeof(enum_name_buff) - 1, None): if _string(enum_name_buff).upper() == "BTHENUM": # This is a bluetooth enumerator, we should do further # investigation if bt_device_list is None: bt_device_list = _getBluetoothDevices() device_path_str = idd.DevicePath if type(device_path_str) is bytes: device_path_str = bytes.decode(device_path_str) start_idx = device_path_str.rfind("&") + 1 end_idx = start_idx + 12 bt_addr_string = device_path_str[start_idx:end_idx] bt_address = _stringToBluetoothAddress(bt_addr_string) if bt_address == _stringToBluetoothAddress("0"): continue connected_dev = None for bt_dev in bt_device_list: if bt_dev.Address == bt_address: connected_dev = bt_dev break if connected_dev is not None: if (str(connected_dev.szName).find("YEI_3SpaceBT") != -1): # The device is a 3-Space Sensor! vid_pid_string = "VID_2476&PID_1060" friendly_name_string = "3 Space Bluetooth over Bluetooth link " sz_friendly_name = _byteBuffer(1024) if not SetupDiGetDeviceRegistryProperty(g_hdi, ctypes.byref(dev_info), SPDRP_FRIENDLYNAME, None, ctypes.byref(sz_friendly_name), ctypes.sizeof(sz_friendly_name) - 1, None): # Ignore ERROR_INSUFFICIENT_BUFFER if ctypes.GetLastError() != ERROR_INSUFFICIENT_BUFFER: if '-d' in sys.argv: raise IOError("Failed to get details for %s (%s)" % (dev_info, sz_hardware_id.value)) port_name = None else: # The real com port name has to read differently... h_key = SetupDiOpenDevRegKey(g_hdi, ctypes.byref(dev_info), DICS_FLAG_GLOBAL, 0, DIREG_DEV, KEY_READ) port_name_buffer = _byteBuffer(1024) port_name_length = ULONG(ctypes.sizeof(port_name_buffer)) RegQueryValueEx(h_key, PortName, None, None, ctypes.byref(port_name_buffer), ctypes.byref(port_name_length)) RegCloseKey(h_key) # We either use the generated friendly name or our overridden # one, with preference to the overridden one. if friendly_name_string == "": friendly_name_string = _string(sz_friendly_name) else: friendly_name_string += "(" + _string(port_name_buffer) + ")" if _string(port_name_buffer) not in ports_yielded: ports_yielded.append(_string(port_name_buffer)) yield (_string(port_name_buffer), friendly_name_string, _string(sz_hardware_id), vid_pid_string) SetupDiDestroyDeviceInfoList(g_hdi) def getComPorts(filter=TSS_FIND_ALL): """ Queries the system for all available serial COM ports and returns a list of them. Args: filter: An interger denoting a flag of what 3-Space Sensors device type to be found (default is TSS_FIND_ALL) Returns: A list of all known serial COM ports. Each element of the list is a tuple formatted as such: (COM_PORT_NAME, FRIENDLY_NAME, YEI_TECH_DEVICE_TYPE) Note: YEI_TECH_DEVICE_TYPE will be an empty string if the port's driver's vendor and product IDs do not match any known YEI Techology products. Possible YEI_TECH_DEVICE_TYPE strings are: '???' - Unknown 'BTL' - Bootloader (No Firmware) 'USB' - USB 'DNG' - Dongle 'WL' - Wireless 'EM' - Embedded 'DL' - Data-logging 'BT' - Bluetooth """ port_list = [] serial_port_list = _yeiComPorts() pid_map = { "PID_1000": ("BTL", TSS_FIND_BTL), "PID_1010": ("USB", TSS_FIND_USB), "PID_1020": ("DNG", TSS_FIND_DNG), "PID_1030": ("WL", TSS_FIND_WL), "PID_1040": ("EM", TSS_FIND_EM), "PID_1050": ("DL", TSS_FIND_DL), "PID_1060": ("BT", TSS_FIND_BT) } for cur_port in serial_port_list: hw_string = cur_port[2] if cur_port[3] != "": vid, pid = cur_port[3].split("&") if vid == "VID_2476" and pid in pid_map and pid_map[pid][1] & filter: port_list.append(ComInfo(cur_port[0], cur_port[1], pid_map[pid][0])) continue elif TSS_FIND_UNKNOWN & filter: port_list.append(ComInfo(cur_port[0], cur_port[1], "???")) return port_list def _getSoftwareVersionFromPort(serial_port): # Figure out whether the current hardware is on "old" or "new" firmware serial_port.write(bytearray((0xf7, 0xdf, 0xdf))) response = convertString(serial_port.read(9)) if len(response) == 0: # Check and see if in bootloader return None elif response[:3] == "TSS": # Old firmware version remainder serial_port.read(9) raise Exception("Firmware for device on ( %s ) is out of date for this API. Recommend updating to latest firmware." % serial_port.name) # Hour-minute remainder serial_port.read(3) return response def getDeviceInfoFromComPort(port_name, poll_device=True): """ Analyzes a serial COM port of a 3-Space Sensor and returns details about the device. Args: port_name: A string representing the name of the serial COM port to analyze. poll_device: An optional boolean that controls whether the named COM port is written to and queried for information about the device. If this value is True, please take caution as the COM port's device will be written to and may produce undesired effects if the device is unknown or not a 3-Space Sensor (default is True) Returns: A list of 5 values describing various details about the COM port's device: Friendly name, 3-Space Type, 3-Space ID, 3-Space Firmware Version String, 3-Space Hardware Version String, isInBootloader Raises: No explicit exceptions are raised. """ friendly_name = "" dev_type = "???" dev_serial = 0 dev_fw_ver = "" dev_hw_ver = "" in_bootloader = False pid_map = { "PID_1000": "BTL", "PID_1010": "USB", "PID_1020": "DNG", "PID_1030": "WL", "PID_1040": "EM", "PID_1050": "DL", "PID_1060": "BT" } matched_ports = _yeiGrep(port_name) for cur_port in matched_ports: if cur_port[0] == port_name: # friendly name friendly_name = cur_port[1] # device type if cur_port[3] != "": vid, pid = cur_port[3].split("&") if vid == "VID_2476": # The VID matches the YEI vendor ID if pid in pid_map: dev_type = pid_map[pid] break if poll_device: tmp_port = None try: tmp_port = serial.Serial(port_name, timeout=0.1, baudrate=115200) if dev_type == "BT": tmp_port.timeout = 5.0 except: tmp_port = None if tmp_port is not None: # Try to get the serial, if it fails try to see if in bootloader tmp_port.write(bytearray((0xf7, 0xed, 0xed))) response = tmp_port.read(4) if len(response) == 4: dev_serial = "{0:08X}".format(struct.unpack('>I', response)[0]) # Get the version strings (and device type if the # previous method did not resolve it) software_version = _getSoftwareVersionFromPort(tmp_port) if software_version is not None: # This is in fact a 3-Space sensor dev_fw_ver = software_version tmp_port.write(bytearray((0xf7, 0xe6, 0xe6))) hardware_version = convertString(tmp_port.read(32)) dev_hw_ver = hardware_version if dev_type == "???": dev_type = hardware_version[4:-8].strip() else: tmp_port.write(bytearray((0x3f,))) # this is ascii '?' response = convertString(tmp_port.read(2)) if response: if response == "OK": in_bootloader = True dev_type = "BTL" else: raise Exception("Either device on( %s ) is not a 3-Space Sensor or the firmware is out of date for this API and recommend updating to latest firmware." % port_name) tmp_port.close() return SensorInfo( friendly_name, dev_type, dev_serial, dev_fw_ver, dev_hw_ver, in_bootloader )
from __future__ import ( absolute_import, unicode_literals, ) import os import signal import sys import unittest from pysoa.test.compatibility import mock standalone = None def setup_module(_): """ We want this setup to run before any of the tests in this module, to ensure that the `standalone` module gets imported. """ global standalone try: from pysoa.server import standalone assert False, 'Should not have been able to import standalone; should have received SystemExit' except SystemExit as e: # This first bit is actually a test; it confirms that the double-import trap is triggered assert e.args[0] == 99 # Now we actually import the module, but we have to make sure the double-import trap isn't triggered before we do. # Running `pytest` or `setup.py` looks to `standalone` like there is a problem, so we temporarily remove `pytest` # or `setup.py` from the first path item... prev_path_0 = sys.path[0] sys.path[0] = '' try: from pysoa.server import standalone except SystemExit as e: assert False, 'Expected import to succeed, instead got SystemExit with code {}'.format(e.args[0]) finally: # ...and then we put it back in so that we haven't caused any problems. sys.path[0] = prev_path_0 class TestSimpleMain(unittest.TestCase): def setUp(self): self.assertIsNotNone(standalone, 'Something went wrong with setup_module or the import') self.prev_argv = sys.argv def tearDown(self): sys.argv = self.prev_argv def test_no_arguments(self): server_getter = mock.MagicMock() sys.argv = ['/path/to/example_service/standalone.py'] standalone.simple_main(server_getter) server_getter.assert_called_once_with() server_getter.return_value.main.assert_called_once_with() @mock.patch('pysoa.server.autoreload.get_reloader') def test_only_file_watcher_argument_no_values(self, mock_get_reloader): server_getter = mock.MagicMock() sys.argv = ['/path/to/example_service/standalone.py', '--use-file-watcher'] standalone.simple_main(server_getter) server_getter.assert_called_once_with() self.assertFalse(server_getter.return_value.main.called) mock_get_reloader.assert_called_once_with('', None, signal_forks=False) self.assertEqual(1, mock_get_reloader.return_value.main.call_count) self.assertEqual( server_getter.return_value, mock_get_reloader.return_value.main.call_args_list[0][0][1][1], ) @mock.patch('pysoa.server.autoreload.get_reloader') def test_only_file_watcher_argument_some_values(self, mock_get_reloader): server_getter = mock.MagicMock() sys.argv = ['/path/to/example_service/standalone.py', '--use-file-watcher', 'example,pysoa,conformity'] standalone.simple_main(server_getter) server_getter.assert_called_once_with() self.assertFalse(server_getter.return_value.main.called) mock_get_reloader.assert_called_once_with('', ['example', 'pysoa', 'conformity'], signal_forks=False) self.assertEqual(1, mock_get_reloader.return_value.main.call_count) self.assertEqual(0, mock_get_reloader.return_value.main.call_args_list[0][0][1][0].fork_processes) self.assertEqual( server_getter.return_value, mock_get_reloader.return_value.main.call_args_list[0][0][1][1], ) @mock.patch('pysoa.server.autoreload.get_reloader') def test_file_watcher_argument_no_values_with_forking(self, mock_get_reloader): server_getter = mock.MagicMock() sys.argv = ['/path/to/example_service/standalone.py', '--use-file-watcher', '-f', '5'] standalone.simple_main(server_getter) server_getter.assert_called_once_with() self.assertFalse(server_getter.return_value.main.called) mock_get_reloader.assert_called_once_with('', None, signal_forks=True) self.assertEqual(1, mock_get_reloader.return_value.main.call_count) self.assertEqual(5, mock_get_reloader.return_value.main.call_args_list[0][0][1][0].fork_processes) self.assertEqual( server_getter.return_value, mock_get_reloader.return_value.main.call_args_list[0][0][1][1], ) @mock.patch('pysoa.server.autoreload.get_reloader') def test_file_watcher_argument_some_values_with_forking(self, mock_get_reloader): server_getter = mock.MagicMock() sys.argv = ['/path/to/example_service/standalone.py', '--use-file-watcher', 'pysoa', '-f', '5'] standalone.simple_main(server_getter) server_getter.assert_called_once_with() self.assertFalse(server_getter.return_value.main.called) mock_get_reloader.assert_called_once_with('', ['pysoa'], signal_forks=True) self.assertEqual(1, mock_get_reloader.return_value.main.call_count) self.assertEqual(5, mock_get_reloader.return_value.main.call_args_list[0][0][1][0].fork_processes) self.assertEqual( server_getter.return_value, mock_get_reloader.return_value.main.call_args_list[0][0][1][1], ) @mock.patch('multiprocessing.Process') @mock.patch('multiprocessing.cpu_count') def test_only_forking_not_limited(self, mock_cpu_count, mock_process): server_getter = mock.MagicMock() mock_cpu_count.return_value = 2 sys.argv = ['/path/to/example_service/standalone.py', '-f', '10'] prev_sigint = prev_sigterm = prev_sighup = False try: prev_sigint = signal.signal(signal.SIGINT, signal.SIG_IGN) prev_sigterm = signal.signal(signal.SIGTERM, signal.SIG_IGN) prev_sighup = signal.signal(signal.SIGHUP, signal.SIG_IGN) processes = [mock.MagicMock() for _ in range(0, 10)] mock_process.side_effect = processes standalone.simple_main(server_getter) server_getter.assert_called_once_with() self.assertFalse(server_getter.return_value.main.called) self.assertEqual(10, mock_process.call_count) i = 0 for i, call in enumerate(mock_process.call_args_list): self.assertEqual(server_getter.return_value.main, call[1]['target']) self.assertEqual('pysoa-worker-{}'.format(i), call[1]['name']) i += 1 self.assertEqual(10, i) for i, process in enumerate(processes): self.assertTrue(process.start.called, 'Process {} was not started'.format(i)) self.assertTrue(process.join.called, 'Process {} was not joined'.format(i)) self.assertFalse(process.terminate.called, 'Process {} should not have been terminated'.format(i)) os.kill(os.getpid(), signal.SIGHUP) for i, process in enumerate(processes): self.assertTrue(process.terminate.called, 'Process {} was terminated'.format(i)) finally: if prev_sigint is not False: signal.signal(signal.SIGINT, prev_sigint or signal.SIG_IGN) if prev_sigterm is not False: signal.signal(signal.SIGTERM, prev_sigterm or signal.SIG_IGN) if prev_sighup is not False: signal.signal(signal.SIGHUP, prev_sighup or signal.SIG_IGN) @mock.patch('multiprocessing.Process') @mock.patch('multiprocessing.cpu_count') def test_only_forking_limited(self, mock_cpu_count, mock_process): server_getter = mock.MagicMock() mock_cpu_count.return_value = 1 sys.argv = ['/path/to/example_service/standalone.py', '-f', '10'] prev_sigint = prev_sigterm = prev_sighup = False try: prev_sigint = signal.signal(signal.SIGINT, signal.SIG_IGN) prev_sigterm = signal.signal(signal.SIGTERM, signal.SIG_IGN) prev_sighup = signal.signal(signal.SIGHUP, signal.SIG_IGN) processes = [mock.MagicMock() for _ in range(0, 5)] mock_process.side_effect = processes standalone.simple_main(server_getter) server_getter.assert_called_once_with() self.assertFalse(server_getter.return_value.main.called) self.assertEqual(5, mock_process.call_count) i = 0 for i, call in enumerate(mock_process.call_args_list): self.assertEqual(server_getter.return_value.main, call[1]['target']) self.assertEqual('pysoa-worker-{}'.format(i), call[1]['name']) i += 1 self.assertEqual(5, i) for i, process in enumerate(processes): self.assertTrue(process.start.called, 'Process {} was not started'.format(i)) self.assertTrue(process.join.called, 'Process {} was not joined'.format(i)) self.assertFalse(process.terminate.called, 'Process {} should not have been terminated'.format(i)) os.kill(os.getpid(), signal.SIGHUP) for i, process in enumerate(processes): self.assertTrue(process.terminate.called, 'Process {} was terminated'.format(i)) finally: if prev_sigint is not False: signal.signal(signal.SIGINT, prev_sigint or signal.SIG_IGN) if prev_sigterm is not False: signal.signal(signal.SIGTERM, prev_sigterm or signal.SIG_IGN) if prev_sighup is not False: signal.signal(signal.SIGHUP, prev_sighup or signal.SIG_IGN)
from django.conf.urls import url from rest_framework_jwt.views import obtain_jwt_token from .views import statistical, users urlpatterns = [ # 登录 url(r'^authorizations/$', obtain_jwt_token), # -------------------- 数据统计 -------------------- # 用户总量 url(r'^statistical/total_count/$', statistical.UserCountView.as_view()), # 日增用户 url(r'^statistical/day_increment/$', statistical.UserDayCountView.as_view()), # 日活用户 url(r'^statistical/day_active/$', statistical.UserDayActiveCountView.as_view()), # 下单用户 url(r'^statistical/day_orders/$', statistical.UserDayOrdersCountView.as_view()), # 月增用户 url(r'^statistical/month_increment/$', statistical.UserMonthCountView.as_view()), # 日分类商品访问量 url(r'^statistical/goods_day_views/$', statistical.UserGoodsCountView.as_view()), # -------------------- 用户管理路由 -------------------- url(r'^users/$', users.UserView.as_view()), ]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ .. codeauthor:: Cédric Dumay <cedric.dumay@gmail.com> Schema allow to specify a mapping for :class:`logging.LogRecord`. It based on :class:`marshmallow.Schema`. All schema MUST inherit from :class:`logging_gelf.schemas.GelfSchema`. """ import socket import time from marshmallow import Schema, fields from logging_gelf import SYSLOG_LEVELS from marshmallow import post_dump GELF_1_1_FIELDS = [ 'version', 'host', 'short_message', 'full_message', 'timestamp', 'level', 'line', 'file' ] class GelfSchema(Schema): version = fields.Constant("1.1") host = fields.String(required=True, default=socket.gethostname) short_message = fields.Method('to_message') full_message = fields.String() timestamp = fields.Method('to_timestamp') level = fields.Method('to_syslog_level') lineno = fields.Integer(dump_to="line") pathname = fields.String(dump_to="file") @classmethod def to_syslog_level(cls, value): """description of to_syslog_level""" return SYSLOG_LEVELS.get(value.levelno, 1) @classmethod def to_timestamp(cls, value): """to_timestamp""" if value.created: return value.created else: return time.time() @classmethod def to_message(cls, value): """description of to_message""" return value.getMessage() % vars(value) @staticmethod def key_path(*args): """description of key_path""" return "_".join(args) @staticmethod def to_flat_dict(prefix, data): flat_result = dict() for dkey, dvalue in data.items(): path = GelfSchema.key_path(prefix, dkey) if isinstance(dvalue, dict): flat_result.update(GelfSchema.to_flat_dict(path, dvalue)) else: flat_result[path] = dvalue return flat_result @post_dump def fix_additional_fields(self, data): """description of fix_additional_fields""" result = dict() for key, value in data.items(): rkey = key if key in GELF_1_1_FIELDS else '_{}'.format(key) if isinstance(value, dict): result.update(self.to_flat_dict(rkey, value)) else: result[rkey] = value return result
__version__ = "0.0.1" import logging from logging import NullHandler from .vault import get_secret_or_env, get_vault_secret_keys, is_vault_initialised __all__ = [ "get_secret_or_env", "get_vault_secret_keys", "is_vault_initialised" ] logging.getLogger(__name__).addHandler(NullHandler())
# ref: https://www.youtube.com/watch?v=O20Y1XR6g0A&list=PLoVvAgF6geYMb029jpxqMuz5dRDtO0ydM&index=4 #import os from influxdb import InfluxDBClient from config import HOST, PORT, USERNAME, PASSWORD, DATABASE, TEMPERATURE, HUMIDITY, ROOM1 # following config moved to config.py file # InfluxDB credentials #HOST = os.environ.get('INFLUXDB_HOST', 'localhost') #PORT = os.environ.get('INFLUXDB_PORT', 8086) #USERNAME = os.environ.get('INFLUXDB_USER', 'influxDBuser') #PASSWORD = os.environ.get('INFLUXDB_USER_PASSWORD', 'influxDBpass') #DATABASE = os.environ.get('INFLUXDB_DB', 'strawberry_factory') def client(): # InfluxDB client setup client = InfluxDBClient(host=HOST, port=int(PORT), username=USERNAME, password=PASSWORD) # databases #client.get_list_database() # create a database client.create_database(DATABASE) # use a database client.switch_database(DATABASE) # measurements/tables #client.get_list_measurements() return client def save(db_client, measurement, fields, tags=None): # json data """ json_body = {} json_body['measurement'] = measurement if tags != None: json_body['tags'] = tags json_body['fields'] = fields # make list json_body = [json_body] """ # alternatively json_body = [{'measurement': measurement, 'tags': tags, 'fields': fields}] # write / save into a row db_client.write_points(json_body) def send_influxdb(data, measurement='temperature'): # InfluxDB server db_client = client() if measurement == 'temperature': # json body for temperature t_measurement = TEMPERATURE t_tags = { "place": ROOM1 } t_fields = { "value" : data} # save @influxdb save(db_client, t_measurement, t_fields, tags=t_tags) elif measurement == 'humidity': # json body for humidity h_measurement = HUMIDITY h_tags = { "place": ROOM1 } h_fields = { "value" : data} # save @influxdb save(db_client, h_measurement, h_fields, tags=h_tags) else: print("Positional argument (measurement) required!")
# Code generated by `typeddictgen`. DO NOT EDIT. """V1beta1RunAsGroupStrategyOptionsDict generated type.""" from typing import TypedDict, List from kubernetes_typed.client import V1beta1IDRangeDict V1beta1RunAsGroupStrategyOptionsDict = TypedDict( "V1beta1RunAsGroupStrategyOptionsDict", { "ranges": List[V1beta1IDRangeDict], "rule": str, }, total=False, )
# coding=utf-8 # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import sys import io from azure.cli.testsdk import LiveScenarioTest from contextlib import contextmanager @contextmanager def capture_output(): class stream_buffer_tee(object): def __init__(self): self.stdout = sys.stdout self.buffer = io.StringIO() def write(self, message): self.stdout.write(message) self.buffer.write(message) def flush(self): self.stdout.flush() self.buffer.flush() def get_output(self): return self.buffer.getvalue() def close(self): self.buffer.close() _stdout = sys.stdout buffer_tee = stream_buffer_tee() sys.stdout = buffer_tee try: yield buffer_tee finally: sys.stdout = _stdout buffer_tee.close() class CaptureOutputLiveScenarioTest(LiveScenarioTest): def __init__(self, test_scenario): super(CaptureOutputLiveScenarioTest, self).__init__(test_scenario) # TODO: @digimaun - Maybe put a helper like this in the shared lib, when you create it? def command_execute_assert(self, command, asserts): from . import capture_output with capture_output() as buffer: self.cmd(command, checks=None) output = buffer.get_output() for a in asserts: assert a in output return output
import re import unittest import ir_datasets from ir_datasets.formats import GenericDoc, GenericQuery, TrecQrel from .base import DatasetIntegrationTest _logger = ir_datasets.log.easy() # Note: there's > 100k combinations here, so we are only testing a few cases class TestCLIRMatrix(DatasetIntegrationTest): def test_docs(self): self._test_docs('clirmatrix/af', count=87705, items={ 0: GenericDoc('123393', 'Weeskindertjies (plant) weeskind'), 9: GenericDoc('14515', re.compile('^Die Groot Beer \\(Latyn: Ursa Major\\) is ’n sterrebeeld wat heeljaar in die Noordelike Halfrond sigbaar.{873}8\xa0mag\\. 47\xa0Ursae Majoris het twee bevestigde planete, wat 2,54 en 0,76 keer die massa van Jupiter is\\.$', flags=48)), 87704: GenericDoc('18801', re.compile('^Die Suid\\-Afrikaanse Leër is die landmagkomponent van die Suid\\-Afrikaanse Nasionale Weermag en van sy.{964}Amptelike webwerf Hierdie artikel is ’n saadjie\\. Voel vry om Wikipedia te help deur dit uit te brei\\.$', flags=48)), }) self._test_docs('clirmatrix/en', count=5984197, items={ 0: GenericDoc('4274592', re.compile('^Transtar was the model name given to the line of trucks produced by the Studebaker Corporation of So.{910}asons, the Transtar name was dropped for the 1959 4E series Studebaker trucks and changed to Deluxe\\.$', flags=48)), 9: GenericDoc('23065547', re.compile('^Standard sea\\-level conditions \\(SSL\\), also known as sea\\-level standard \\(SLS\\), defines a set of atmosp.{827}orda, Introduction to Aerospace Engineering with a Flight Test Perspective, John Wiley \\& Sons, 2017\\.$', flags=48)), 5984196: GenericDoc('2160901', re.compile('^Resentment \\(also called ranklement or bitterness\\) is a complex, multilayered emotion that has been d.{1021}of by others; and having achievements go unrecognized, while others succeed without working as hard\\.$', flags=48)), }) self._test_docs('clirmatrix/simple', count=153408, items={ 0: GenericDoc('12559', re.compile('^A superlative, in grammar, is an adjective describing a noun that is the best example of a given qua.{684}the adverb "most" before the adjective\\. For instance, you do not say "funnest," or "interestingest"\\.$', flags=48)), 9: GenericDoc('120355', re.compile('^Occult refers to an area of knowledge or thought that is hidden\\. The word occult has many uses in th.{1069}pretation of Hinduism within Theosophy or the various occult interpretations of the Jewish Kabbalah\\.$', flags=48)), 153407: GenericDoc('54463', re.compile('^The history of the Christian religion and the Christian church began with Jesus and his apostles\\. Ch.{934}t\\. Peter, was that they did not, and the matter was further addressed with the Council of Jerusalem\\.$', flags=48)), }) self._test_docs('clirmatrix/zh', count=1089043, items={ 0: GenericDoc('449241', '虿盆,商朝时酷刑之一。将作弊官人跣剥干净,送下坑中,餵毒蛇、毒蝎等物。相传商朝最后一任君主纣王曾在大将黄飞虎之妻与纣王之妃子苏妲己发生口角之后将其推下虿盆,令其惨死。此刑罚在历史上使用较少。'), 9: GenericDoc('664068', re.compile('^篡位是一個貶义詞,即不合法或有爭議地取得王位\\(皇位\\)。包括殺上任皇帝/太子/廢立/逼迫上現任皇帝或君主交出皇位 在非君主制语境下,亦可泛指非法谋夺更高权力的行为(例如違反憲法而推行独裁,或在權限以外越.{29}为在元武宗\\(1307年\\)至元寧宗\\(1332年\\)的25年間,竟然換了八個皇帝,当中有三位皇帝\\(元天順帝、元明宗、元寧宗\\)在位時間甚至不足一年。 在同一王朝中通过杀害或逼退合法继承人或在位者的篡位者 政变$', flags=48)), 1089042: GenericDoc('6844113', re.compile('^谷風隧道為台灣的一條公路隧道,屬「台9線蘇花公路山區路段改善計劃」\\(蘇花改\\)南澳\\~和平段的其中一座隧道,北起鼓音橋,南接漢本高架橋,它穿越中央山脈鼓音溪至花蓮縣漢本的山區。谷風隧道南下及北上線均為45.{425}作、避難聯絡通道襯砌、通風隔板施作、新建通風機房,此外還須在避難聯絡通道內安裝照明系統及通訊設備,主隧道亦須安裝隧道照明燈具結線,安裝水霧支管,安裝噴流風機,此外隧道的所有土建工程及機電工程同步施工。$', flags=48)), }) def test_queries(self): self._test_queries('clirmatrix/af/bi139-base/en/train', count=9999, items={ 0: GenericQuery('690', 'Aruba'), 9: GenericQuery('5615', 'Cretaceous'), 9998: GenericQuery('62732112', 'Efrain Gusquiza'), }) self._test_queries('clirmatrix/af/bi139-base/en/dev', count=1000, items={ 0: GenericQuery('2038', 'August Horch'), 9: GenericQuery('77606', 'Charles VIII of France'), 999: GenericQuery('62708410', '2020 in Morocco'), }) self._test_queries('clirmatrix/af/bi139-base/en/test1', count=1000, items={ 0: GenericQuery('3649', 'Geography of the British Virgin Islands'), 9: GenericQuery('107443', 'Coalinga, California'), 999: GenericQuery('62716625', 'Kevin Hall (disambiguation)'), }) self._test_queries('clirmatrix/af/bi139-base/en/test2', count=1000, items={ 0: GenericQuery('6011', 'Chomsky hierarchy'), 9: GenericQuery('97597', 'Flag of San Marino'), 999: GenericQuery('62707449', 'Machiel Kiel'), }) self._test_queries('clirmatrix/en/bi139-base/af/train', count=10000, items={ 0: GenericQuery('3', 'Lys van Afrikaanse skrywers'), 9: GenericQuery('95', 'Geskiedenis'), 9999: GenericQuery('285953', 'Jean-Claude Casadesus'), }) self._test_queries('clirmatrix/en/bi139-full/af/train', count=58745, items={ 0: GenericQuery('3', 'Lys van Afrikaanse skrywers'), 9: GenericQuery('26', 'Benue-Kongo-tale'), 58744: GenericQuery('286010', 'Lugmag van die Volksbevrydingsleër'), }) self._test_queries('clirmatrix/en/multi8/fr/train', count=10000, items={ 0: GenericQuery('45187', 'Mort'), 9: GenericQuery('7740', 'Lituanie'), 9999: GenericQuery('28573', 'Chiffres arabes'), }) self._test_queries('clirmatrix/fr/multi8/en/train', count=10000, items={ 0: GenericQuery('8221', 'Death'), 9: GenericQuery('17675', 'Lithuania'), 9999: GenericQuery('1786', 'Arabic numerals'), }) self._test_queries('clirmatrix/de/multi8/en/train', count=10000, items={ 0: GenericQuery('8221', 'Death'), 9: GenericQuery('17675', 'Lithuania'), 9999: GenericQuery('1786', 'Arabic numerals'), }) def test_qrels(self): self._test_qrels('clirmatrix/af/bi139-base/en/train', count=999900, items={ 0: TrecQrel('690', '14013', 6, '0'), 9: TrecQrel('690', '15050', 0, '0'), 999899: TrecQrel('62732112', '259879', 0, '0'), }) self._test_qrels('clirmatrix/af/bi139-base/en/dev', count=100000, items={ 0: TrecQrel('2038', '13762', 3, '0'), 9: TrecQrel('2038', '272786', 0, '0'), 99999: TrecQrel('62708410', '258719', 0, '0'), }) self._test_qrels('clirmatrix/af/bi139-base/en/test1', count=100000, items={ 0: TrecQrel('3649', '50129', 5, '0'), 9: TrecQrel('3649', '93300', 0, '0'), 99999: TrecQrel('62716625', '140128', 0, '0'), }) self._test_qrels('clirmatrix/af/bi139-base/en/test2', count=100000, items={ 0: TrecQrel('6011', '11475', 6, '0'), 9: TrecQrel('6011', '69338', 0, '0'), 99999: TrecQrel('62707449', '112726', 0, '0'), }) self._test_qrels('clirmatrix/en/bi139-base/af/train', count=1000000, items={ 0: TrecQrel('3', '1617690', 5, '0'), 9: TrecQrel('3', '3943287', 3, '0'), 999999: TrecQrel('285953', '43443609', 0, '0'), }) self._test_qrels('clirmatrix/en/bi139-full/af/train', count=3011938, items={ 0: TrecQrel('3', '1617690', 5, '0'), 9: TrecQrel('3', '3943287', 3, '0'), 3011937: TrecQrel('286010', '400853', 1, '0'), }) self._test_qrels('clirmatrix/en/multi8/fr/train', count=1000000, items={ 0: TrecQrel('45187', '49703357', 5, '0'), 9: TrecQrel('45187', '12161221', 3, '0'), 999999: TrecQrel('28573', '40255894', 0, '0'), }) self._test_qrels('clirmatrix/fr/multi8/en/train', count=1000000, items={ 0: TrecQrel('8221', '45187', 6, '0'), 9: TrecQrel('8221', '1331378', 4, '0'), 999999: TrecQrel('1786', '9567503', 0, '0'), }) self._test_qrels('clirmatrix/de/multi8/en/train', count=1000000, items={ 0: TrecQrel('8221', '5204', 6, '0'), 9: TrecQrel('8221', '1092811', 4, '0'), 999999: TrecQrel('1786', '10264293', 0, '0'), }) if __name__ == '__main__': unittest.main()
""" Python 3.6 PyTorch 0.4 """ from abc import ABC, abstractmethod from functools import partialmethod import logging import os import torch import utils import Networks.MNIST_model as MNIST_model import Networks.DCGAN_64 as DCGAN_64 Models = {'mnist': MNIST_model, 'fashion_mnist': MNIST_model, 'small-mnist':MNIST_model, 'cifar10': DCGAN_64, } class AbstractModel(ABC): """ the abstract class of each model """ def __init__(self, dataset, hidden_dim, tanh = True, gpu_mode = True, lr = 1e-4, **kwargs): super(AbstractModel, self).__init__() # parameter self.dataset = dataset.lower() self.hidden_dim = hidden_dim self.tanh = tanh self.lr = lr self.model_name = None self.traversal_code_limit = 6 # device self.device = torch.device('cuda:0') if gpu_mode else torch.device('cpu') self.num_visual_samples = 6**2 self.fixed_noise = self.get_noise( self.num_visual_samples ) logging.debug('AbstractModel initialized.') @abstractmethod def init_net_arch(self, specified_net_arch = None): raise NotImplementedError # models = Models[self.dataset] if specified_net_arch == None else specified_net_arch # # your G E D R or something # self.name_model_dict = {'Encoder': self.E, 'Decoder': self.G} # self.init_net_component(**self.name_model_dict) def init_net_component(self, **nets): """ initialise a network component """ for name, net in nets.items(): # info logging.debug(f'Initialzing {name} of {self.model_name}.') # init weights utils.initialize_weights_kaiming_normal(net) # cuda() or cpu() net.to(self.device) # print net arch info logging.debug( utils.network_num_parameters(net) ) logging.debug( str(net) ) @abstractmethod def init_optimizer(self): raise NotImplementedError # beta1, beta2 = 0.5, 0.99 # self.G_optimizer = optim.Adam(self.G.parameters(), lr=self.lr, betas=(beta1, beta2), weight_decay = 0) # self.D_optimizer = optim.Adam(self.D.parameters(), lr=self.lr, betas=(beta1, beta2), weight_decay = 0) # utils.print_line() # print('Use ADAM optimizers for G and D.') def set_fixed_noise(self, num_visual_samples): """ reset the numbe of fixed visual samples """ self.num_visual_samples = num_visual_samples self.fixed_noise = self.get_noise( num_visual_samples ) # ================ training part ================ def get_noise(self, num_ = 1): """ get the noise in the hidden space of the predefined distribution """ out_noise = torch.randn(num_, self.hidden_dim, device=self.device) return out_noise @abstractmethod def stepTraining(self, batch_x): """ training of each step, implemented by the model """ raise NotImplementedError # ================ sampling part ================ def sample(self, in_noise): """ sample num_visual_samples images from current G model. """ assert in_noise.size(1) == self.hidden_dim self.G.eval() in_noise = in_noise.to(self.device) with torch.no_grad(): samples = self.G( in_noise ) return samples.cpu() def sampleN(self, N): """ N random samples from self.sample(). """ return self.sample( self.get_noise( max(N, 1) ) ) sampleOne = partialmethod(sampleN, N = 1) def sample_fixed(self): """ sample from the fixed noise """ return self.sample(self.fixed_noise) def sample_yielder(self, num = 0): """ a python generator of the generator. Gives a random new sample. """ if num == 0: while True: yield self.sampleOne() else: for _ in range(num): yield self.sampleOne() def encode(self, X): """ encode and decode the samples X with the encoder and the decoder of the model. """ if not hasattr(self, 'E'): logging.warning(f'{self.__name__} does not have Encoder.') return None self.E.eval() X = X.to(self.device) with torch.no_grad(): z = self.E( X ) mu, log_var = torch.chunk(z, 2, dim=1) # mean and log variance. return mu.cpu() def reconstruct(self, X): """ encode and decode the samples X with the encoder and the decoder of the model. """ if not hasattr(self, 'E'): logging.warning(f'{self.model.__name__} does not have Encoder.') return None self.E.eval() self.G.eval() X = X.to(self.device) with torch.no_grad(): z = self.E( X ) mu, log_var = torch.chunk(z, 2, dim=1) # mean and log variance. samples = self.G( mu ) return samples.cpu() def latent_traversal_dim(self, dim, num_range = 61): """ Generate the samples when the the specified hidden code varies. Return a list of torch tensors. num_range : the num of code to change """ code_variant = torch.linspace(-self.traversal_code_limit, self.traversal_code_limit, num_range).to(self.device) zeros = torch.zeros(1, self.hidden_dim, device = self.device) images = [] # each sub picture for varying_code in code_variant: this_code = torch.cat( [ self.fixed_noise.clone(), zeros ], 0 ) this_code[:, dim] = varying_code samples = self.sample(this_code) images.append(samples) return images def latent_traversal_given_samples_dim(self, X, dim, num_range =61): """ Reconstruct the sample sequence when the the specified hidden code varies. Return a list of torch tensors. num_range : the num of code to change """ # encode the samples codes = self.encode(X) print(self.model_name, self.traversal_code_limit) code_variant = torch.linspace(-self.traversal_code_limit, self.traversal_code_limit, num_range).to(self.device) # reconstruct images = [] # each sub picture for varying_code in code_variant: this_code = codes.clone().to(self.device) this_code[:, dim] = varying_code samples = self.sample(this_code) images.append(samples) return images # ================ Save / Load part ================ def save(self, save_path): """ save models in the specific save path """ for name, model in self.name_model_dict.items(): torch.save(model.state_dict(), os.path.join(save_path, f"{name}.pkl") ) logging.info("Models saving completed!") def load(self, save_path): """ load models in the specific save path """ flag = True for name, model in self.name_model_dict.items(): try: model.load_state_dict( torch.load(os.path.join(save_path, f"{name}.pkl")) ) except FileNotFoundError as e: logging.critical(f'The model {name} is not found!') flag = False if flag: logging.info("Models loading completed!")
from datetime import datetime from typing import List, Optional, Any from sqlalchemy.orm import Session from lib import aes from lib.account.account import Account from lib.account.account_entity import AccountEntity from lib.account.account_entity_adapter import AccountEntityAdapter from lib.db import session_scope from lib.kms import Kms class AccountRepository: session: Session kms: Kms def __init__(self, session: Session, kms: Kms): self.session = session self.kms = kms def get_all_active_accounts(self, alias: Optional[str] = None) -> List[Account]: db: Session accounts: List[AccountEntity] with session_scope(self.session) as db: start_of_day = datetime.now().replace(hour=0, minute=0, second=0, microsecond=0) query = db.query(AccountEntity) \ .filter(AccountEntity.enabled, AccountEntity.expired_at >= start_of_day) \ if alias: query.filter(AccountEntity.alias == alias) accounts = query.all() return [AccountEntityAdapter(self.__decrypt(account)) for account in accounts] def get_active_account(self) -> Optional[Account]: db: Session account: AccountEntity with session_scope(self.session) as db: account = db.query(AccountEntity) \ .filter_by(enabled=True) \ .first() return AccountEntityAdapter(self.__decrypt(account)) if account is not None else None def add_account(self, vendor: str, access_key: str, secret_key: str, expired_at: datetime, alias: str): db: Session account: AccountEntity data_key, plain_key = self.kms.create_data_key() key = plain_key.decode("utf-8") access_key_enc = aes.encrypt(plaintext=access_key, key=key) secret_key_enc = aes.encrypt(plaintext=secret_key, key=key) with session_scope(self.session) as db: account = AccountEntity( vendor=vendor, enabled=True, access_key=access_key_enc, secret_key=secret_key_enc, expired_at=expired_at, alias=alias, data_key=data_key ) db.add(account) def __decrypt(self, account: AccountEntity): key = self.kms.decrypt_data_key(blob=account.data_key) account.access_key = aes.decrypt(cipher_text=account.access_key, key=key) account.secret_key = aes.decrypt(cipher_text=account.secret_key, key=key) return account
# --------------------------------------------------------------------- # Report Discovery Link Summary # --------------------------------------------------------------------- # Copyright (C) 2007-2019 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Third-party modules from collections import defaultdict # NOC modules from noc.lib.app.simplereport import SimpleReport, PredefinedReport, SectionRow, TableColumn from noc.lib.app.reportdatasources.base import ReportModelFilter from noc.main.models.pool import Pool from noc.sa.models.managedobject import ManagedObject from noc.core.translation import ugettext as _ class ReportFilterApplication(SimpleReport): title = _("Discovery Links Summary") predefined_reports = {"default": PredefinedReport(_("Discovery Links Summary"), {})} save_perc = None def calc_percent(self, column, val): if column != _("All polling"): if val == 0: return "%.2f %%" % 100 else: r = "%.2f %%" % ((val / float(self.save_perc)) * 100) # self.save_perc = None return r elif column == _("All polling"): self.save_perc = val return "" def get_data(self, request, **kwargs): columns, columns_desr = [], [] r_map = [ (_("All polling"), "2is1.6is1.9a2"), # "Is Managed, object type defined" (_("0"), "2is1.6is1.9a2.3hs0"), # "Has 0 Links w type defined" (_("1"), "2is1.6is1.3hs2"), # "Has 1 links" (_("2"), "2is1.6is1.3hs3"), # "Has 2 links" (_("More 3"), "2is1.6is1.3hs4"), # "Has more 3 links" ] for x, y in r_map: columns += [y] columns_desr += [x] report = ReportModelFilter() result = report.proccessed(",".join(columns)) summary = defaultdict(int) data = [] # url = "/sa/reportstat/repstat_download/?report=%s" url = "/sa/reportobjectdetail/download/?" + "&".join( [ "o_format=xlsx", "columns=object_name,object_address,object_profile,object_status,profile_name,admin_domain,segment", "detail_stat=%s&pool=%s", ] ) for p in Pool.objects.filter().order_by("name"): m = [] moss = set(ManagedObject.objects.filter(pool=p).values_list("id", flat=True)) for col in columns: m += [len(result[col.strip()].intersection(moss))] summary[col] += m[-1] data += [SectionRow(name=p.name)] data += [ (x, y, self.calc_percent(x, y), url % (columns[columns_desr.index(x)], p.name)) for x, y in zip(columns_desr, m) ] return self.from_dataset( title=self.title, columns=[ _("Links count"), _("MO Count"), _("Percent at All"), TableColumn(_("Detail"), format="url"), ], data=data, )
# import argparse import logging.config import optparse import os from elastichq import create_app from elastichq.globals import socketio from elastichq.utils import find_config default_host = '0.0.0.0' default_port = 5000 default_debug = False default_enable_ssl = False default_ca_certs = None default_verify_certs = True default_client_key = None default_client_cert = None default_url = 'http://localhost:9200' is_gunicorn = "gunicorn" in os.environ.get("SERVER_SOFTWARE", "") application = create_app() # set default url, override with env for docker application.config['DEFAULT_URL'] = os.environ.get('HQ_DEFAULT_URL', default_url) application.config['ENABLE_SSL'] = os.environ.get('HQ_ENABLE_SSL', default_enable_ssl) application.config['CA_CERTS'] = os.environ.get('HQ_CA_CERTS', default_ca_certs) application.config['HQ_VERIFY_CERTS'] = os.environ.get('HQ_VERIFY_CERTS', default_verify_certs) application.config['DEBUG'] = os.environ.get('HQ_DEBUG', default_debug) application.config['CLIENT_KEY'] = os.environ.get('CLIENT_KEY', default_client_key) application.config['CLIENT_CERT'] = os.environ.get('CLIENT_CERT', default_client_cert) if os.environ.get('HQ_DEBUG') == 'True': config = find_config('logger_debug.json') logging.config.dictConfig(config) if __name__ == '__main__': # Set up the command-line options parser = optparse.OptionParser() parser.add_option("-H", "--host", help="Hostname of the Flask app " + \ "[default %s]" % default_host, default=default_host) parser.add_option("-P", "--port", help="Port for the Flask app " + \ "[default %s]" % default_port, default=default_port) parser.add_option("-d", "--debug", action="store_true", dest="debug", default=default_debug, help=optparse.SUPPRESS_HELP) parser.add_option("-u", "--url", default=default_url) parser.add_option("-s", "--enable-ssl", action="store_true", default=default_enable_ssl) parser.add_option("-c", "--ca-certs", default=default_ca_certs, help='Required when --use-ssl is set. ' + \ 'Path to CA file or directory [default %s]' % default_ca_certs) parser.add_option("-v", "--verify_certs", default=default_verify_certs, help='Set to False when using self-signed certs.') parser.add_option("-x", "--client_cert", default=default_client_cert, help='Set to path of the client cert file.') parser.add_option("-X", "--client_key", default=default_client_key, help='Set to path of the client key file.') options, _ = parser.parse_args() application.config['DEFAULT_URL'] = os.environ.get('HQ_DEFAULT_URL', options.url) application.config['ENABLE_SSL'] = os.environ.get('HQ_ENABLE_SSL', options.enable_ssl) application.config['CA_CERTS'] = os.environ.get('HQ_CA_CERTS', options.ca_certs) application.config['VERIFY_CERTS'] = os.environ.get('HQ_VERIFY_CERTS', options.verify_certs) application.config['CLIENT_KEY'] = os.environ.get('CLIENT_KEY', options.client_key) application.config['CLIENT_CERT'] = os.environ.get('CLIENT_CERT', options.client_cert) hq_host = os.environ.get('HQ_HOST', options.host) hq_port = os.environ.get('HQ_PORT', options.port) if is_gunicorn: if options.debug: config = find_config('logger_debug.json') logging.config.dictConfig(config) # we set reloader False so gunicorn doesn't call two instances of all the Flask init functions. socketio.run(application, hq_host, hq_port, debug=options.debug, use_reloader=False) else: if options.debug: config = find_config('logger_debug.json') logging.config.dictConfig(config) socketio.run(application, hq_host, hq_port, debug=options.debug)
'''99 Units of Disposable Asset''' from itertools import chain # main :: IO () def main(): '''Modalised asset dispersal procedure.''' # localisation :: (String, String, String) localisation = ( 'on the wall', 'Take one down, pass it around', 'Better go to the store to buy some more' ) print((unlines(list(map( incantation(localisation), enumFromThenTo(99)(98)(0) ))))) # incantation :: (String, String, String) -> Int -> String def incantation(localisation): '''Versification of asset disposal and inventory update.''' location, distribution, solution = localisation def inventory(n): return unwords([asset(n), location]) return lambda n: solution if 0 == n else ( unlines([ inventory(n), asset(n), distribution, inventory(pred(n)) ]) ) # asset :: Int -> String def asset(n): '''Quantified asset.''' def suffix(n): return [] if 1 == n else 's' return unwords([ str(n), concat(reversed(concat(cons(suffix(n))(["elttob"])))) ]) # GENERIC ------------------------------------------------- # concat :: [[a]] -> [a] # concat :: [String] -> String def concat(xxs): '''The concatenation of all the elements in a list.''' xs = list(chain.from_iterable(xxs)) unit = '' if isinstance(xs, str) else [] return unit if not xs else ( ''.join(xs) if isinstance(xs[0], str) else xs ) # cons :: a -> [a] -> [a] def cons(x): '''Construction of a list from x as head, and xs as tail.''' return lambda xs: [x] + xs if ( isinstance(xs, list) ) else chain([x], xs) # enumFromThenTo :: Int -> Int -> Int -> [Int] def enumFromThenTo(m): '''Integer values enumerated from m to n with a step defined by nxt-m.''' def go(nxt, n): d = nxt - m return list(range(m, d + n, d)) return lambda nxt: lambda n: ( go(nxt, n) ) # pred :: Enum a => a -> a def pred(x): '''The predecessor of a value. For numeric types, (- 1).''' return x - 1 if isinstance(x, int) else ( chr(ord(x) - 1) ) # unlines :: [String] -> String def unlines(xs): '''A single string derived by the intercalation of a list of strings with the newline character.''' return '\n'.join(xs) # unwords :: [String] -> String def unwords(xs): '''A space-separated string derived from a list of words.''' return ' '.join(xs) if __name__ == '__main__': main()
x = [ [5,2,3], [10,8,9] ] students = [ {'first_name': 'Michael', 'last_name' : 'Jordan'}, {'first_name' : 'John', 'last_name' : 'Rosales'} ] sports_directory = { 'basketball' : ['Kobe', 'Jordan', 'James', 'Curry'], 'soccer' : ['Messi', 'Ronaldo', 'Rooney'] } z = [ {'x': 10, 'y': 20} ] # Change the value 10 in x to 15. x will now be [ [5,2,3], [15,8,9] ]. x[1][0] = 15 print(x) # Change the last_name of the first student from 'Jordan' to 'Bryant' students[0]['last_name'] = "Bryant" print(students) # In the sports_directory, change 'Messi' to 'Andres' sports_directory['soccer'][0] = 'Andres' print( sports_directory['soccer']) # Change the value 20 in z to 30 z[0]['y'] = 30 print(z) # Iterating Through a List of Dictionaries # Create a function iterateDictionary(some_list) that, given a list of dictionaries, # the function loops through each dictionary in the list and prints each key and the # associated value. For example, given the following list: students = [ {'first_name': 'Michael', 'last_name' : 'Jordan'}, {'first_name' : 'John', 'last_name' : 'Rosales'}, {'first_name' : 'Mark', 'last_name' : 'Guillen'}, {'first_name' : 'KB', 'last_name' : 'Tonel'} ] def iterate_dictionary(list): # def for i in range(0, len(list)): output = "" for key,val in list[i].items(): output += f" {key} - {val}," print(output) iterate_dictionary(students) # this will output: (it's okay if each key-value pair # ends up on 2 separate lines) # bonus section: bonus to get them to appear exactly as below: # first_name - Michael, last_name - Jordan # first_name - John, last_name - Rosales # first_name - Mark, last_name - Guillen # first_name - KB, last_name - Tonel # getting value from the list of dictionaries # create a function iterateDictionary2(key_name, some_list) # that given a list of dictionaries and a key name, # the function prints the value stored in that key for each dictionary. # For example, iterateDictionary2('first_name', students) should output: # Michael # John # Mark # KB def iterate_dictionary2(key_name,list): for i in range(0, len(list)): for key,val in list[i].items(): if key == key_name: print(val) iterate_dictionary2('first_name',students) iterate_dictionary2('last_name',students) # And # iterateDictionary2('last_name', students) should output: # Jordan # Rosales # Guillen # Tonel # Iterating through the dictionary with list values # Create a function printInfo(some_dict) # that given a dictionary whose values are all lists, # prints the name of each key along with the size of its list, # and then prints the associated values within each key's list. # For example: dojo = { 'locations': ['San Jose', 'Seattle', 'Dallas', 'Chicago', 'Tulsa', 'DC', 'Burbank'], 'instructors': ['Michael', 'Amy', 'Eduardo', 'Josh', 'Graham', 'Patrick', 'Minh', 'Devon'] } def print_info(dict): for key,val in dict.items(): print("--------------") # separation of the print statements print(f"{len(val)} {key.upper()}") for i in range(0, len(val)): print(val[i]) print_info(dojo) # output: # 7 LOCATIONS # San Jose # Seattle # Dallas # Chicago # Tulsa # DC # Burbank # output after break: # 8 INSTRUCTORS # Michael # Amy # Eduardo # Josh # Graham # Patrick # Minh # Devon
from types import MethodType from PySide6.QtCore import QMimeData, QModelIndex, Slot from PySide6.QtGui import QIcon from PySide6.QtWidgets import QGridLayout, QHBoxLayout, QLineEdit, QListWidget, QListWidgetItem, QPushButton, QTableWidget, QTextEdit, QWidget, QLabel from models.datasheet import DatasheetCollection from models.settings import Settings from LocalLogging.logger import LoggerBase from models.tags import Tag, TagManager class TagView(QWidget): #region Init def __init__( self, logger: LoggerBase, settings: Settings, tagManager: TagManager, datasheets: DatasheetCollection, updateTagsCallback: MethodType, parent=None ) -> None: super(TagView, self).__init__(parent) #region Parameters self.tagManager: TagManager = tagManager self.datasheets = datasheets self.settings = settings self.logger = logger self.selectedTag: Tag = None self.updateTagsCallback = updateTagsCallback #endregion #region Tag List self.tagList = QListWidget() self.tagList.itemClicked.connect(self.selectedTagChanged) # self.updateTags() #endregion #region Controls self.controlsLayout = QHBoxLayout() self.addTagBtn = QPushButton(QIcon(), 'Add') self.addTagBtn.clicked.connect(self.addTag) self.controlsLayout.addWidget(self.addTagBtn) self.addText = QLineEdit('') self.addText.setPlaceholderText('New Tag') self.addText.returnPressed.connect(self.addTag) self.controlsLayout.addWidget(self.addText) self.removeTagBtn = QPushButton(QIcon(), 'Remove') self.removeTagBtn.clicked.connect(self.removeTag) self.controlsLayout.addWidget(self.removeTagBtn) #endregion #region Layout self.mainLayout = QGridLayout() self.mainLayout.addLayout(self.controlsLayout, 0, 0) self.mainLayout.addWidget(self.tagList, 1, 0) self.setLayout(self.mainLayout) #endregion #endregion #region Methods def updateTags(self): tags = self.tagManager.getTags() self.tagList.clear() for tag in tags: newItem = QListWidgetItem(QIcon('./src/Resources/Icons/TagIcon.png'), tag.name) self.tagList.addItem(newItem) self.updateTagsCallback() @Slot() def addTag(self): self.tagManager.add(self.addText.text()) self.updateTags() @Slot() def removeTag(self): if self.selectedTag != None: self.datasheets.deleteTag(self.selectedTag) self.tagManager.remove(self.selectedTag) self.updateTags() @Slot() def selectedTagChanged(self, args: QListWidgetItem): self.selectedTag = self.tagManager.find(args.text()) #endregion
#!usr/bin/python # -*- coding:utf8 -*- # 加上锁 import time import threading class Singleton(object): _instance_lock = threading.Lock() def __init__(self): time.sleep(1) print(self) def __new__(cls, *args, **kwargs): with cls._instance_lock: if not hasattr(cls, '_instance'): cls._instance = super(Singleton, cls).__new__(cls) return cls._instance def task(): obj = Singleton() print(id(obj)) for i in range(10): t = threading.Thread(target=task) t.start()
# -*- coding: utf-8 -*- {{{ # vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et: # Copyright (c) 2017, SLAC National Laboratory / Kisensum Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # The views and conclusions contained in the software and documentation # are those of the authors and should not be interpreted as representing # official policies, either expressed or implied, of the FreeBSD # Project. # # This material was prepared as an account of work sponsored by an # agency of the United States Government. Neither the United States # Government nor the United States Department of Energy, nor SLAC / Kisensum, # nor any of their employees, nor any jurisdiction or organization that # has cooperated in the development of these materials, makes any # warranty, express or implied, or assumes any legal liability or # responsibility for the accuracy, completeness, or usefulness or any # information, apparatus, product, software, or process disclosed, or # represents that its use would not infringe privately owned rights. # # Reference herein to any specific commercial product, process, or # service by trade name, trademark, manufacturer, or otherwise does not # necessarily constitute or imply its endorsement, recommendation, or # favoring by the United States Government or any agency thereof, or # SLAC / Kisensum. The views and opinions of authors # expressed herein do not necessarily state or reflect those of the # United States Government or any agency thereof. # # }}} import time import pytest import gevent import requests from volttron.platform import get_services_core DRIVER_NAME = 'sep2' DEVICE_ID = "097935300833" TEST_CONFIG = { "devices": [ { "sfdi": "097935300833", "lfdi": "247bd68e3378fe57ba604e3c8bdf9e3f78a3d743", "load_shed_device_category": "0200", "pin_code": "130178" }, { "sfdi": "111576577659", "lfdi": "2990c58a59935a7d5838c952b1a453c967341a07", "load_shed_device_category": "0200", "pin_code": "130178" } ], "sep2_server_sfdi": "413707194130", "sep2_server_lfdi": "29834592834729384728374562039847629", "load_shed_device_category": "0020", "timezone": "America/Los_Angeles" } REGISTRY_CONFIG_STRING = """Volttron Point Name,SEP2 Resource Name,SEP2 Field Name,Units,Writable,Default b1_Md,DeviceInformation,mfModel,NA,FALSE,NA b1_Opt,DeviceInformation,lFDI,NA,FALSE,NA b1_SN,DeviceInformation,sFDI,NA,FALSE,NA b1_Vr,DeviceInformation,mfHwVer,NA,FALSE,NA b113_A,MirrorMeterReading,PhaseCurrentAvg,NA,FALSE,NA b113_DCA,MirrorMeterReading,InstantPackCurrent,A,FALSE,NA b113_DCV,MirrorMeterReading,LineVoltageAvg,V,FALSE,NA b113_DCW,MirrorMeterReading,PhasePowerAvg,W,FALSE,NA b113_PF,MirrorMeterReading,PhasePFA,%,FALSE,NA b113_WH,MirrorMeterReading,EnergyIMP,Wh,FALSE,NA b120_AhrRtg,DERCapability,rtgAh,Ah,FALSE,NA b120_ARtg,DERCapability,rtgA,A,FALSE,NA b120_MaxChaRte,DERCapability,rtgMaxChargeRate,W,FALSE,NA b120_MaxDisChaRte,DERCapability,rtgMaxDischargeRate,W,FALSE,NA b120_WHRtg,DERCapability,rtgWh,Wh,FALSE,NA b120_WRtg,DERCapability,rtgW,W,FALSE,NA b121_WMax,DERSettings,setMaxChargeRate,W,FALSE,NA b122_ActWh,MirrorMeterReading,EnergyEXP,Wh,FALSE,NA b122_StorConn,DERStatus,storConnectStatus,NA,FALSE,NA b124_WChaMax,DERControl,DERControlBase.opModFixedFlow,W,TRUE,NA b403_Tmp,MirrorMeterReading,InstantPackTemp,C,FALSE,NA b404_DCW,PowerStatus,PEVInfo.chargingPowerNow,W,FALSE,NA b404_DCWh,DERAvailability,SOC,Wh,FALSE,NA b802_LocRemCtl,DERStatus,localControlModeStatus,NA,FALSE,NA b802_SoC,DERStatus,inverterStatus,%,FALSE,NA b802_State,DERStatus,stateOfChargeStatus,NA,FALSE,NA""" ASSERTED_VALUES = { 'b1_Md': 'Mf Model', 'b1_SN': '097935300833', 'b1_Vr': 'MF-HW: 1.0.0', 'b113_A': '24.0', 'b113_DCA': '125.0', 'b113_DCV': '125.0', 'b113_DCW': '125.0', 'b113_PF': '126.0', 'b113_WH': '127.0', 'b120_AhrRtg': '350.0', 'b120_ARtg': '330.0', 'b120_MaxChaRte': '220.0', 'b120_MaxDisChaRte': '10.0', 'b120_WHRtg': '1230.0', 'b120_WRtg': '10.0', 'b121_WMax': '20.0', 'b122_ActWh': '128.0', 'b122_StorConn': '777', 'b124_WChaMax': '10.0', 'b403_Tmp': '128000.0', 'b404_DCW': '3000.0', 'b404_DCWh': '305.755555556', 'b802_LocRemCtl': '777', 'b802_SoC': '777', 'b802_State': '7.77'} web_address = "" @pytest.fixture(scope="module") def agent(request, volttron_instance_module_web): test_agent = volttron_instance_module_web.build_agent() # Configure a SEP2 device in the Master Driver test_agent.vip.rpc.call('config.store', 'manage_delete_store', 'platform.driver').get(timeout=10) test_agent.vip.rpc.call('config.store', 'manage_store', 'platform.driver', 'devices/{}'.format(DRIVER_NAME), """{ "driver_config": { "sfdi": "097935300833", "sep2_agent_id": "test_sep2agent" }, "campus": "campus", "building": "building", "unit": "sep2", "driver_type": "sep2", "registry_config": "config://sep2.csv", "interval": 15, "timezone": "US/Pacific", "heart_beat_point": "Heartbeat" }""", 'json').get(timeout=10) test_agent.vip.rpc.call('config.store', 'manage_store', 'platform.driver', 'sep2.csv', REGISTRY_CONFIG_STRING, 'csv').get(timeout=10) # Install and start a MasterDriverAgent md_id = volttron_instance_module_web.install_agent(agent_dir=get_services_core("MasterDriverAgent"), config_file={}, start=True) print('master driver agent id: ', md_id) # Install and start a SEP2Agent sep2_id = volttron_instance_module_web.install_agent(agent_dir=get_services_core("SEP2Agent"), config_file=TEST_CONFIG, vip_identity='test_sep2agent', start=True) print('sep2 agent id: ', sep2_id) global web_address web_address = volttron_instance_module_web.bind_web_address def stop(): volttron_instance_module_web.stop_agent(md_id) volttron_instance_module_web.stop_agent(sep2_id) test_agent.core.stop() gevent.sleep(10) # wait for agents and devices to start request.addfinalizer(stop) return test_agent class TestSEP2Driver: """Regression tests for the SEP2 driver.""" def test_all_points(self, agent): self.put_sep2_data('edev/0/di', 'edev.di') # device_information self.put_sep2_data('edev/0/der/1/derg', 'der.derg') # der_settings self.put_sep2_data('edev/0/der/1/ders', 'der.ders') # der_status self.put_sep2_data('edev/0/der/1/dera', 'der.dera') # der_availability self.put_sep2_data('edev/0/der/1/dercap', 'der.dercap') # der_capabililty self.put_sep2_data('edev/0/ps', 'edev.ps') # power_status self.put_sep2_data('mup', 'mup.mup') # mup self.put_sep2_data('mup/0', 'mup.mup2') # mup (update) self.put_sep2_data('mup/0', 'mup.mmr') # mmr # Wait a few seconds to allow the HTTP requests to be processed (asynchronously?) time.sleep(5) # Set the one settable point, the dispatched power value, and test that it comes back on a get_point dispatch_point_name = 'b124_WChaMax' dispatched_value = ASSERTED_VALUES[dispatch_point_name] self.set_point(agent, dispatch_point_name, dispatched_value) assert self.get_point(agent, dispatch_point_name) == dispatched_value # Test that each point has the test value that was posted to it for point_name, expected_value in ASSERTED_VALUES.iteritems(): assert self.get_point(agent, point_name) == expected_value @staticmethod def get_point(test_agent, point_name): return test_agent.vip.rpc.call('platform.driver', 'get_point', DRIVER_NAME, point_name).get(timeout=10) @staticmethod def set_point(test_agent, point_name, value): return test_agent.vip.rpc.call('platform.driver', 'set_point', DRIVER_NAME, point_name, value).get(timeout=10) @staticmethod def put_sep2_data(sep2_resource_name, sep2_filename): """ PUT data for a SEP2 resource, using the contents of an XML file in the current directory. @param sep2_resource_name: The distinguishing part of the name of the SEP2 resource as it appears in the URL. @param sep2_filename: The distinguishing part of the SEP2 sample data file name. """ url = '{}/dcap/{}'.format(web_address, sep2_resource_name) headers = {'content-type': 'application/sep+xml'} requests.post(url, data=open(get_services_core("SEP2Agent/tests/{}.PUT.xml".format(sep2_filename)), 'rb'), headers=headers)
import os import unittest from pathlib import Path from pyutil import IOUtils from .TestSupport import TestSupport class test_IOUtils(unittest.TestCase): def test_cd(self): with TestSupport.get_playground_path(): oldpath = Path.cwd() testpath = Path("./aaa").resolve() testpath.mkdir() with IOUtils.cd(testpath): # Checks if changed directory successfully self.assertEqual(testpath, Path.cwd()) # end with # Checks if returned to old directory successfully self.assertEqual(oldpath, Path.cwd()) # end with return if __name__ == '__main__': unittest.main()
""" This app was created to specifically monitor the OESS-FVD communication. It could be used to generate alarms when a packetIn is received with current time sent by the FVD too high compared with the time when the packet was captured. """ from datetime import datetime, timedelta from libs.core.debugging import debugclass from libs.core.topo_reader import TopoReader from libs.tcpiplib.process_data import get_protocol OFP_PACKET_IN = 10 OFP_PACKET_OUT = 13 @debugclass class OessFvdTracer: """ OessFvdTracer is an app to evaluate the OESS FVD app. """ WARN = 10 CRITICAL = 30 def __init__(self, options): self.links = dict() self.layout = '%-20s %-14s %-30s %-30s %s' self.starting() self.last_printed = None self.get_params(options) @staticmethod def starting(): """ Just print the app name """ print('OESS Forwarding Verification Monitoring') def get_params(self, options): """ Process params provided via CLI """ self.WARN = int(options.split(":")[0]) self.CRITICAL = int(options.split(":")[1]) def process_packet(self, pkt): """ Method called by ofp_sniffer to process the IP+OF packet We are only interested in Packet_Ins because these are messages coming from the switch, which means, the end of the OESS FV cycle: (OESS -> packetOut -> dpid -> packetIn -> OESS) Args: pkt: Packet class """ for msg in pkt.ofmsgs: if msg.ofp.header.message_type in [OFP_PACKET_IN]: fvd = get_protocol(msg.ofp.data, oess=True) if fvd is not False: self.add_link(fvd, pkt.l1.time) def add_link(self, fvd, capture_time): """ Add detected OESS link to self.links dictionary Args: fvd: OESS class capture_time: time when the packet was capture by ofp_sniffer """ if fvd.side_a not in self.links: self.links[fvd.side_a] = dict() capture_time = datetime.strptime(capture_time, '%Y-%m-%d %H:%M:%S.%f') time_diff = self.calculate_time_diff(capture_time, fvd.timestamp) self.links[fvd.side_a][fvd.port_a] = {'remote': fvd.side_z, 'port': fvd.port_z, 'timestamp': fvd.timestamp, 'last_seen': capture_time, 'diff': time_diff} self.print_link_status(fvd.side_a, fvd.port_a) @staticmethod def calculate_time_diff(capture_time, oess_time): """ Calculate the time difference between packet sent via PacketOut and the packet received via PacketIn. Args: capture_time: PacketIn time oess_time: PacketOut time Returns: difference """ return capture_time - datetime.fromtimestamp(oess_time) def print_link_status(self, dpid, port, alert=False): """ Now, just print the OESS link detected. The idea of this method is to generate alarms when time different from the moment packet is seen by ofp_sniffer with the time packet was sent is over many seconds. Args: dpid: source DPID in the OESS message port: source port in the OESS message alert: print only warning and critical """ link = self.links[dpid][port] timestamp = str(datetime.fromtimestamp(link['timestamp'])) topo_link = TopoReader().get_link_aliases(dpid, port, link['remote'], link['port'], option="Full") source_dpid = TopoReader().get_datapath_name(dpid) if link['diff'] < timedelta(seconds=0): print("Time Difference is < 0. Adjust NTP of the OF controller") elif timedelta(seconds=self.CRITICAL) > link['diff'] >= timedelta(seconds=self.WARN): link['diff'] = str(link['diff']) + ' <-- Warning!' alert = True elif link['diff'] >= timedelta(seconds=self.CRITICAL): link['diff'] = str(link['diff']) + ' <-- Critical!' alert = True if alert: if len(topo_link) > 0: self.print_header(True) print(self.layout % (topo_link, source_dpid, timestamp, link['last_seen'], link['diff'])) else: self.print_header() print('%-24s %-4s %-24s %-4s %s\t %s\t %s' % (dpid, port, link['remote'], link['port'], timestamp, link['last_seen'], link['diff'])) def print_header(self, topo_link=False): """ Print headers just once. In case it keeps changing (because link was not found in the topology.json), prints the header again. Args: topo_link: indicates if link was found in the topology.json """ if topo_link and self.last_printed in [None, 'not_topo_link']: print(self.layout % ('Link', 'Source DPID', 'Sent by OESS-FVD', 'Received by OFP_Sniffer', 'Delay')) self.last_printed = 'topo_link' elif not topo_link and self.last_printed in [None, 'topo_link']: print('%-24s %-4s %-24s %-4s %s\t\t\t\t\t %s\t\t\t\t\t\t %s' % ('DPID', 'Port', 'Neighbor', 'Port', 'Sent', 'Seen', 'Delay')) self.last_printed = 'not_topo_link'
import gc import time import tensorflow as tf import numpy as np from hyperka.et_apps.util import embed_init, glorot, zeros from hyperka.hyperbolic.poincare import PoincareManifold from hyperka.et_funcs.test_funcs import eval_type_hyperbolic class GCNLayer: def __init__(self, adj, input_dim, output_dim, layer_id, poincare, bias=True, act=None, name=""): self.poincare = poincare self.bias = bias self.act = act self.adj = adj with tf.compat.v1.variable_scope(name + "_gcn_layer_" + str(layer_id)): self.weight_mat = tf.compat.v1.get_variable("gcn_weights" + str(layer_id), shape=[input_dim, output_dim], initializer=tf.glorot_uniform_initializer(), dtype=tf.float64) if bias: self.bias_vec = tf.compat.v1.get_variable("gcn_bias" + str(layer_id), shape=[1, output_dim], initializer=tf.zeros_initializer(), dtype=tf.float64) def call(self, inputs, drop_rate=0.0): pre_sup_tangent = self.poincare.log_map_zero(inputs) if drop_rate > 0.0: pre_sup_tangent = tf.nn.dropout(pre_sup_tangent, rate=drop_rate) * (1 - drop_rate) # not scaled up output = tf.matmul(pre_sup_tangent, self.weight_mat) output = tf.sparse.sparse_dense_matmul(self.adj, output) output = self.poincare.hyperbolic_projection(self.poincare.exp_map_zero(output)) if self.bias: bias_vec = self.poincare.hyperbolic_projection(self.poincare.exp_map_zero(self.bias_vec)) output = self.poincare.mobius_addition(output, bias_vec) output = self.poincare.hyperbolic_projection(output) if self.act is not None: output = self.act(self.poincare.log_map_zero(output)) output = self.poincare.hyperbolic_projection(self.poincare.exp_map_zero(output)) return output class HyperKA: def __init__(self, ins_list, onto_list, cross, ins_adj, onto_adj, params): self.ins_ent_num = ins_list[3] self.ins_rel_num = ins_list[4] self.onto_ent_num = onto_list[3] self.onto_rel_num = onto_list[4] self.ins_entities = ins_list[0].ent_list self.onto_entities = onto_list[0].ent_list self.ins_sup_ent1 = [item[0] for item in (ins_list[1])] self.ins_sup_ent2 = [item[2] for item in (ins_list[1])] self.onto_sup_ent1 = [item[0] for item in (onto_list[1])] self.onto_sup_ent2 = [item[2] for item in (onto_list[1])] self.ins_ref_ent1 = [item[0] for item in (ins_list[2])] self.ins_ref_ent2 = [item[2] for item in (ins_list[2])] self.onto_ref_ent1 = [item[0] for item in (onto_list[2])] self.onto_ref_ent2 = [item[2] for item in (onto_list[2])] self.seed_sup_ent1 = cross[0][0] self.seed_sup_ent2 = cross[0][1] self.seed_links = list() for i in range(len(self.seed_sup_ent1)): self.seed_links.append((self.seed_sup_ent1[i], self.seed_sup_ent2[i])) print("# seed associations:", len(self.seed_links)) self.seed_link_set = set(self.seed_links) self.ref_ent1 = cross[1][0] self.ref_ent2 = cross[1][1] self.ref_links = list() for i in range(len(self.ref_ent1)): self.ref_links.append((self.ref_ent1[i], self.ref_ent2[i])) print("# ref associations:", len(self.ref_links)) self.all_ref_type = cross[1][2] self.params = params self.poincare = PoincareManifold() self.ins_adj_mat = tf.SparseTensor(indices=ins_adj[0], values=ins_adj[1], dense_shape=ins_adj[2]) self.onto_adj_mat = tf.SparseTensor(indices=onto_adj[0], values=onto_adj[1], dense_shape=onto_adj[2]) self.activation = tf.tanh self.ins_layers = list() self.onto_layers = list() self.ins_output = list() self.onto_output = list() self.ins_layer_num = params.ins_layer_num self.onto_layer_num = params.onto_layer_num config = tf.ConfigProto() config.gpu_options.allow_growth = True self.session = tf.Session(config=config) self._generate_variables() self._generate_triple_graph() self._generate_mapping_graph() tf.global_variables_initializer().run(session=self.session) def _graph_convolution(self): self.ins_output = list() # reset self.onto_output = list() # ************************* instance gnn *************************** # In this case, we assume that the initialized embeddings are in the hyperbolic space. ins_output_embeddings = self.poincare.hyperbolic_projection(self.ins_ent_embeddings) # ins_output_embeddings = self.poincare.hyperbolic_projection(self.poincare.exp_map_zero(self.ins_ent_embeddings)) self.ins_output.append(ins_output_embeddings) for i in range(self.ins_layer_num): activation = self.activation if i == self.ins_layer_num - 1: activation = None gcn_layer = GCNLayer(self.ins_adj_mat, self.params.dim, self.params.dim, i, self.poincare, act=activation, name="inst") self.ins_layers.append(gcn_layer) ins_output_embeddings = gcn_layer.call(ins_output_embeddings) ins_output_embeddings = self.poincare.mobius_addition(ins_output_embeddings, self.ins_output[-1]) ins_output_embeddings = self.poincare.hyperbolic_projection(ins_output_embeddings) self.ins_output.append(ins_output_embeddings) # ************************* ontology gnn *************************** # In this case, we assume that the initialized embeddings are in the hyperbolic space. onto_output_embeddings = self.poincare.hyperbolic_projection(self.onto_ent_embeddings) # onto_output_embeddings = self.poincare.hyperbolic_projection(self.poincare.exp_map_zero(self.onto_ent_embeddings)) self.onto_output.append(onto_output_embeddings) for i in range(self.onto_layer_num): activation = self.activation if i == self.onto_layer_num - 1: activation = None gcn_layer = GCNLayer(self.onto_adj_mat, self.params.onto_dim, self.params.onto_dim, i, self.poincare, act=activation, name="onto") self.onto_layers.append(gcn_layer) onto_output_embeddings = gcn_layer.call(onto_output_embeddings) onto_output_embeddings = self.poincare.mobius_addition(onto_output_embeddings, self.onto_output[-1]) onto_output_embeddings = self.poincare.hyperbolic_projection(onto_output_embeddings) self.onto_output.append(onto_output_embeddings) def _generate_variables(self): with tf.variable_scope('instance_entity' + 'embeddings'): self.ins_ent_embeddings = embed_init(self.ins_ent_num, self.params.dim, "ins_ent_embeds", method='glorot_uniform_initializer') self.ins_ent_embeddings = self.poincare.hyperbolic_projection( self.poincare.exp_map_zero(self.ins_ent_embeddings)) with tf.variable_scope('ontology_entity' + 'embeddings'): self.onto_ent_embeddings = embed_init(self.onto_ent_num, self.params.onto_dim, "onto_ent_embeds", method='glorot_uniform_initializer') self.onto_ent_embeddings = self.poincare.hyperbolic_projection( self.poincare.exp_map_zero(self.onto_ent_embeddings)) with tf.variable_scope('instance_relation' + 'embeddings'): self.ins_rel_embeddings = embed_init(self.ins_rel_num, self.params.dim, "ins_rel_embeds", method='glorot_uniform_initializer') self.ins_rel_embeddings = self.poincare.hyperbolic_projection( self.poincare.exp_map_zero(self.ins_rel_embeddings)) with tf.variable_scope('ontology_relation' + 'embeddings'): self.onto_rel_embeddings = embed_init(self.onto_rel_num, self.params.onto_dim, "onto_rel_embeds", method='glorot_uniform_initializer') self.onto_rel_embeddings = self.poincare.hyperbolic_projection( self.poincare.exp_map_zero(self.onto_rel_embeddings)) if self.params.mapping: with tf.variable_scope('instance_mapping' + 'embeddings'): print("init instance mapping matrix using", "orthogonal", "with dim of", self.params.dim) self.ins_mapping_matrix = tf.get_variable('mapping_matrix', dtype=tf.float64, shape=[self.params.dim, self.params.onto_dim], initializer=tf.initializers.orthogonal(dtype=tf.float64)) def _generate_riemannian_optimizer(self, loss): opt = tf.train.AdamOptimizer(self.params.learning_rate) trainable_grad_vars = opt.compute_gradients(loss) grad_vars = [(g, v) for g, v in trainable_grad_vars if g is not None] rescaled = [(g * (1. - tf.reshape(tf.norm(v, axis=1), (-1, 1)) ** 2) ** 2 / 4., v) for g, v in grad_vars] train_op = opt.apply_gradients(rescaled) return train_op def _generate_triple_loss(self, phs, prs, pts, nhs, nrs, nts): pos_distance = self.poincare.distance(self.poincare.mobius_addition(phs, prs), pts) neg_distance = self.poincare.distance(self.poincare.mobius_addition(nhs, nrs), nts) pos_score = tf.reduce_sum(pos_distance, 1) neg_score = tf.reduce_sum(neg_distance, 1) pos_loss = tf.reduce_sum(tf.nn.relu(pos_score)) neg_loss = tf.reduce_sum(tf.nn.relu(tf.constant(self.params.neg_triple_margin, dtype=tf.float64) - neg_score)) return pos_loss + neg_loss def _generate_triple_graph(self): self.ins_pos_h = tf.placeholder(tf.int32, shape=[None], name="ins_pos_h") self.ins_pos_r = tf.placeholder(tf.int32, shape=[None], name="ins_pos_r") self.ins_pos_t = tf.placeholder(tf.int32, shape=[None], name="ins_pos_t") self.ins_neg_h = tf.placeholder(tf.int32, shape=[None], name="ins_neg_h") self.ins_neg_r = tf.placeholder(tf.int32, shape=[None], name="ins_neg_r") self.ins_neg_t = tf.placeholder(tf.int32, shape=[None], name="ins_neg_t") self.onto_pos_h = tf.placeholder(tf.int32, shape=[None], name="onto_pos_h") self.onto_pos_r = tf.placeholder(tf.int32, shape=[None], name="onto_pos_r") self.onto_pos_t = tf.placeholder(tf.int32, shape=[None], name="onto_pos_t") self.onto_neg_h = tf.placeholder(tf.int32, shape=[None], name="onto_neg_h") self.onto_neg_r = tf.placeholder(tf.int32, shape=[None], name="onto_neg_h") self.onto_neg_t = tf.placeholder(tf.int32, shape=[None], name="onto_neg_h") # *********************************************************************************** ins_ent_embeddings = self.poincare.hyperbolic_projection(self.ins_ent_embeddings) ins_rel_embeddings = self.poincare.hyperbolic_projection(self.ins_rel_embeddings) onto_ent_embeddings = self.poincare.hyperbolic_projection(self.onto_ent_embeddings) onto_rel_embeddings = self.poincare.hyperbolic_projection(self.onto_rel_embeddings) # ins_ent_embeddings = self.poincare.hyperbolic_projection(self.poincare.exp_map_zero(self.ins_ent_embeddings)) # ins_rel_embeddings = self.poincare.hyperbolic_projection(self.poincare.exp_map_zero(self.ins_rel_embeddings)) # onto_ent_embeddings = self.poincare.hyperbolic_projection(self.poincare.exp_map_zero(self.onto_ent_embeddings)) # onto_rel_embeddings = self.poincare.hyperbolic_projection(self.poincare.exp_map_zero(self.onto_rel_embeddings)) ins_phs_embeds = tf.nn.embedding_lookup(ins_ent_embeddings, self.ins_pos_h) ins_prs_embeds = tf.nn.embedding_lookup(ins_rel_embeddings, self.ins_pos_r) ins_pts_embeds = tf.nn.embedding_lookup(ins_ent_embeddings, self.ins_pos_t) ins_nhs_embeds = tf.nn.embedding_lookup(ins_ent_embeddings, self.ins_neg_h) ins_nrs_embeds = tf.nn.embedding_lookup(ins_rel_embeddings, self.ins_neg_r) ins_nts_embeds = tf.nn.embedding_lookup(ins_ent_embeddings, self.ins_neg_t) self.ins_triple_loss = self._generate_triple_loss(ins_phs_embeds, ins_prs_embeds, ins_pts_embeds, ins_nhs_embeds, ins_nrs_embeds, ins_nts_embeds, ) onto_phs_embeds = tf.nn.embedding_lookup(onto_ent_embeddings, self.onto_pos_h) onto_prs_embeds = tf.nn.embedding_lookup(onto_rel_embeddings, self.onto_pos_r) onto_pts_embeds = tf.nn.embedding_lookup(onto_ent_embeddings, self.onto_pos_t) onto_nhs_embeds = tf.nn.embedding_lookup(onto_ent_embeddings, self.onto_neg_h) onto_nrs_embeds = tf.nn.embedding_lookup(onto_rel_embeddings, self.onto_neg_r) onto_nts_embeds = tf.nn.embedding_lookup(onto_ent_embeddings, self.onto_neg_t) self.onto_triple_loss = self._generate_triple_loss(onto_phs_embeds, onto_prs_embeds, onto_pts_embeds, onto_nhs_embeds, onto_nrs_embeds, onto_nts_embeds, ) self.triple_loss = self.ins_triple_loss + self.onto_triple_loss self.triple_optimizer = self._generate_riemannian_optimizer(self.triple_loss) def _generate_mapping_graph(self): self.cross_pos_left = tf.placeholder(tf.int32, shape=[None], name="cross_pos_left") self.cross_pos_right = tf.placeholder(tf.int32, shape=[None], name="cross_pos_right") self._graph_convolution() ins_embeddings = self.ins_output[-1] onto_embeddings = self.onto_output[-1] if self.params.combine: ins_embeddings = self.poincare.mobius_addition(ins_embeddings, self.ins_output[0]) onto_embeddings = self.poincare.mobius_addition(onto_embeddings, self.onto_output[0]) cross_left = tf.nn.embedding_lookup(ins_embeddings, self.cross_pos_left) cross_left = self.poincare.hyperbolic_projection(cross_left) cross_right = tf.nn.embedding_lookup(onto_embeddings, self.cross_pos_right) cross_right = self.poincare.hyperbolic_projection(cross_right) mapped_sup_embeds1 = tf.matmul(self.poincare.log_map_zero(cross_left), self.ins_mapping_matrix) mapped_sup_embeds1 = self.poincare.exp_map_zero(mapped_sup_embeds1) mapped_sup_embeds1 = self.poincare.hyperbolic_projection(mapped_sup_embeds1) # mapped_sup_embeds1 = self.poincare.mobius_matmul(cross_left, self.ins_mapping_matrix) sup_distance = self.poincare.distance(mapped_sup_embeds1, cross_right) sup_distance = tf.reduce_sum(sup_distance, 1) # *****************add neg sample*********************************************** self.cross_neg_left = tf.placeholder(tf.int32, shape=[None], name="cross_neg_left") self.cross_neg_right = tf.placeholder(tf.int32, shape=[None], name="cross_neg_right") neg_embeds1 = tf.nn.embedding_lookup(ins_embeddings, self.cross_neg_left) neg_embeds2 = tf.nn.embedding_lookup(onto_embeddings, self.cross_neg_right) neg_embeds1 = self.poincare.hyperbolic_projection(neg_embeds1) neg_embeds2 = self.poincare.hyperbolic_projection(neg_embeds2) mapped_neg_embeds1 = tf.matmul(self.poincare.log_map_zero(neg_embeds1), self.ins_mapping_matrix) mapped_neg_embeds1 = self.poincare.exp_map_zero(mapped_neg_embeds1) mapped_neg_embeds1 = self.poincare.hyperbolic_projection(mapped_neg_embeds1) # mapped_neg_embeds1 = self.poincare.mobius_matmul(neg_embeds1, self.ins_mapping_matrix) neg_distance = self.poincare.distance(mapped_neg_embeds1, neg_embeds2) neg_distance = tf.reduce_sum(neg_distance, 1) pos_loss = tf.reduce_sum(tf.nn.relu(sup_distance)) neg_loss = tf.reduce_sum( tf.nn.relu(tf.constant(self.params.neg_typing_margin, dtype=tf.float64) - neg_distance)) self.mapping_loss = pos_loss + neg_loss self.mapping_optimizer = self._generate_riemannian_optimizer(self.mapping_loss) def test(self): t = time.time() ins_embeddings = self.ins_output[-1] onto_embeddings = self.onto_output[-1] if self.params.combine: ins_embeddings = self.poincare.mobius_addition(ins_embeddings, self.ins_output[0]) onto_embeddings = self.poincare.mobius_addition(onto_embeddings, self.onto_output[0]) ref_ins_embed = tf.nn.embedding_lookup(ins_embeddings, self.ref_ent1) ref_ins_embed = self.poincare.hyperbolic_projection(ref_ins_embed) ref_ins_embed = tf.matmul(self.poincare.log_map_zero(ref_ins_embed), self.ins_mapping_matrix) ref_ins_embed = self.poincare.exp_map_zero(ref_ins_embed) ref_ins_embed = self.poincare.hyperbolic_projection(ref_ins_embed) # ref_ins_embed = self.poincare.mobius_matmul(ref_ins_embed, self.ins_mapping_matrix) ref_ins_embed = ref_ins_embed.eval(session=self.session) onto_embed = onto_embeddings onto_embed = self.poincare.hyperbolic_projection(onto_embed) onto_embed = onto_embed.eval(session=self.session) hits1 = eval_type_hyperbolic(ref_ins_embed, onto_embed, self.all_ref_type, self.params.ent_top_k, self.params.nums_threads, greedy=True, mess="greedy ent typing by hyperbolic") eval_type_hyperbolic(ref_ins_embed, onto_embed, self.all_ref_type, self.params.ent_top_k, self.params.nums_threads, greedy=False, mess="ent typing by hyperbolic") print("test totally costs time = {:.3f} s ".format(time.time() - t)) return hits1 def eval_ins_input_embed(self, is_map=False): embeds = tf.nn.embedding_lookup(self.ins_ent_embeddings, self.ins_entities) if is_map: embeds = self.poincare.mobius_matmul(embeds, self.ins_mapping_matrix) return embeds.eval(session=self.session) def eval_onto_input_embed(self): return tf.nn.embedding_lookup(self.onto_ent_embeddings, self.onto_entities).eval(session=self.session)
import yaml import os # CHeck if running from inside jupyter # From https://stackoverflow.com/questions/47211324/check-if-module-is-running-in-jupyter-or-not def type_of_script(): try: ipy_str = str(type(get_ipython())) if 'zmqshell' in ipy_str: return 'jupyter' if 'terminal' in ipy_str: return 'ipython' except: return 'terminal' def load_config(model_name): path = os.path.dirname(__file__) configs = yaml.safe_load(open(os.path.join(path, "model-config.yaml"), encoding="utf8")) try: model_config = configs[model_name] model_config = pack_tokenizer_config(model_config) except KeyError: raise ValueError( f"The model '{model_name}' is not defined in Ecco's 'model-config.yaml' file and" f" so is not explicitly supported yet. Supported models are:", list(configs.keys())) from KeyError() return model_config def pack_tokenizer_config(model_config): """ Convenience method to package tokenizer configs into one element to more easily pass it to JavaScript rendering code. Args: model_config: dict of model configuration options used for model-config or in __init__.py Returns: model_config dict with 'tokenizer_config' elements """ tokenizer_config = {'token_prefix': model_config['token_prefix'], 'partial_token_prefix': model_config['partial_token_prefix']} model_config['tokenizer_config'] = tokenizer_config return model_config def strip_tokenizer_prefix(model_config, token, ellipsis_partial_tokens=False): token = token.lstrip(model_config['token_prefix']) token = token.lstrip(model_config['partial_token_prefix']) token= token.lstrip(' ') return token def is_partial_token(model_config, token): if (token[0: len(model_config['partial_token_prefix'])] == model_config['partial_token_prefix']) and \ ((len(model_config['token_prefix']) == 0) or \ token[0:len(model_config['token_prefix'])] != model_config['token_prefix']): return True else: return False
# encoding: utf-8 from datetime import date import pytest from mock import Mock try: from django.db.models import Value except ImportError: Value = Mock() try: from django.db.models.functions import Concat except ImportError: Concat = Mock(return_value=Mock(output_field=None)) from .app_management.models import (ApplicationWithClassBasedProperties, ApplicationWithDecoratorBasedProperties, CategoryWithClassBasedProperties, CategoryWithDecoratorBasedProperties) from .dummy_lib.models import ReleaseTypeModel @pytest.fixture def categories(): return [ CategoryWithClassBasedProperties.objects.create(name='Linux apps'), CategoryWithClassBasedProperties.objects.create(name='Windows apps'), CategoryWithDecoratorBasedProperties.objects.create(name='Linux apps'), CategoryWithDecoratorBasedProperties.objects.create(name='Windows apps'), ] @pytest.fixture def applications(categories): apps = [ ApplicationWithClassBasedProperties.objects.create(name='My cool App'), ApplicationWithClassBasedProperties.objects.create(name='Another App'), ApplicationWithDecoratorBasedProperties.objects.create(name='My cool App'), ApplicationWithDecoratorBasedProperties.objects.create(name='Another App'), ] apps[0].categories.add(categories[0]) apps[1].categories.add(categories[0]) apps[1].categories.add(categories[1]) apps[2].categories.add(categories[2]) apps[3].categories.add(categories[2]) apps[3].categories.add(categories[3]) return apps @pytest.fixture def versions(applications): objs = [] for application in applications: objs.extend([ application.versions.create(major=1, minor=2, patch=3, release_type=ReleaseTypeModel.BETA, supported_until=date(2016, 12, 31)), application.versions.create(major=1, minor=3, patch=0, supported_from=date(2017, 1, 1), supported_until=date(2017, 12, 31)), application.versions.create(major=1, minor=3, patch=1, supported_from=date(2018, 1, 1), supported_until=date(2018, 12, 31)), application.versions.create(major=2, minor=0, patch=0, changes='Amazing new features', release_type=ReleaseTypeModel.ALPHA, supported_from=date(2018, 11, 1)), ]) return objs
import importlib aws_iam = importlib.import_module('aws-iam') def test_series_upgrade(): assert aws_iam.hookenv.status_set.call_count == 0 aws_iam.pre_series_upgrade() assert aws_iam.hookenv.status_set.call_count == 1
from common_fixtures import * # NOQA import time def test_agent_create(super_client): uri = "sim://" + str(time.time()) agent = super_client.create_agent(uri=uri) assert agent.state == "registering" assert agent.uri == uri assert agent.transitioning == "yes" agent = super_client.wait_success(agent) assert agent.transitioning == "no" assert agent.state == "active" assert agent.account() is not None count = len(agent.account().credentials()) assert count == 1 account = agent.account() assert account.uuid.startswith("agentAccount") assert account.state == "active" assert account.kind == "agent" creds = filter(lambda x: x.kind == 'agentApiKey', account.credentials()) assert len(creds) == 1 assert creds[0].state == "active" assert creds[0].publicValue is not None assert creds[0].secretValue is not None def test_agent_create_for_container(context, super_client): client = context.client c = context.create_container(labels={ 'io.rancher.container.create_agent': 'true' }) c = super_client.reload(c) agent = c.agent() account_id = get_plain_id(c.account()) assert agent.state == 'active' assert agent.data.agentResourcesAccountId == int(account_id) client.delete(c) c = client.wait_success(c) assert c.state == 'removed' agent = super_client.wait_success(super_client.reload(agent)) assert agent.state == 'removed' def test_agent_create_for_env_role(context, super_client): c = context.create_container(labels={ 'io.rancher.container.create_agent': 'true', 'io.rancher.container.agent.role': 'environment' }) c = super_client.reload(c) agent = super_client.wait_success(c.agent()) assert agent.state == 'active' cred = agent.account().credentials()[0] assert cred.publicValue is not None assert cred.secretValue is not None agent_client = api_client(cred.publicValue, cred.secretValue) assert 'POST' in agent_client.schema.types['container'].collectionMethods def test_agent_create_for_not_env_role(context, super_client): c = context.create_container(labels={ 'io.rancher.container.create_agent': 'true', 'io.rancher.container.agent.role': 'user' }) c = super_client.reload(c) agent = super_client.wait_success(c.agent()) assert agent.state == 'active' cred = agent.account().credentials()[0] assert cred.publicValue is not None assert cred.secretValue is not None agent_client = api_client(cred.publicValue, cred.secretValue) assert 'container' not in agent_client.schema.types
# Copyright (c) 2012-2022, Mark Peek <mark@peek.org> # All rights reserved. # # See LICENSE file for full license. # # *** Do not modify - this file is autogenerated *** from . import AWSObject, AWSProperty, PropsDictType from .validators import boolean, double, integer from .validators.batch import ( validate_allocation_strategy, validate_environment_state, validate_launch_template_specification, validate_queue_state, ) class Ec2ConfigurationObject(AWSProperty): """ `Ec2ConfigurationObject <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-ec2configurationobject.html>`__ """ props: PropsDictType = { "ImageIdOverride": (str, False), "ImageType": (str, True), } class LaunchTemplateSpecification(AWSProperty): """ `LaunchTemplateSpecification <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html>`__ """ props: PropsDictType = { "LaunchTemplateId": (str, False), "LaunchTemplateName": (str, False), "Version": (str, False), } def validate(self): validate_launch_template_specification(self) class ComputeResources(AWSProperty): """ `ComputeResources <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html>`__ """ props: PropsDictType = { "AllocationStrategy": (validate_allocation_strategy, False), "BidPercentage": (integer, False), "DesiredvCpus": (integer, False), "Ec2Configuration": ([Ec2ConfigurationObject], False), "Ec2KeyPair": (str, False), "ImageId": (str, False), "InstanceRole": (str, False), "InstanceTypes": ([str], False), "LaunchTemplate": (LaunchTemplateSpecification, False), "MaxvCpus": (integer, True), "MinvCpus": (integer, False), "PlacementGroup": (str, False), "SecurityGroupIds": ([str], False), "SpotIamFleetRole": (str, False), "Subnets": ([str], True), "Tags": (dict, False), "Type": (str, True), } class ComputeEnvironment(AWSObject): """ `ComputeEnvironment <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html>`__ """ resource_type = "AWS::Batch::ComputeEnvironment" props: PropsDictType = { "ComputeEnvironmentName": (str, False), "ComputeResources": (ComputeResources, False), "ServiceRole": (str, False), "State": (validate_environment_state, False), "Tags": (dict, False), "Type": (str, True), "UnmanagedvCpus": (integer, False), } class Environment(AWSProperty): """ `Environment <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-environment.html>`__ """ props: PropsDictType = { "Name": (str, False), "Value": (str, False), } class FargatePlatformConfiguration(AWSProperty): """ `FargatePlatformConfiguration <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-fargateplatformconfiguration.html>`__ """ props: PropsDictType = { "PlatformVersion": (str, False), } class Device(AWSProperty): """ `Device <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html>`__ """ props: PropsDictType = { "ContainerPath": (str, False), "HostPath": (str, False), "Permissions": ([str], False), } class Tmpfs(AWSProperty): """ `Tmpfs <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html>`__ """ props: PropsDictType = { "ContainerPath": (str, True), "MountOptions": ([str], False), "Size": (integer, True), } class LinuxParameters(AWSProperty): """ `LinuxParameters <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html>`__ """ props: PropsDictType = { "Devices": ([Device], False), "InitProcessEnabled": (boolean, False), "MaxSwap": (integer, False), "SharedMemorySize": (integer, False), "Swappiness": (integer, False), "Tmpfs": ([Tmpfs], False), } class Secret(AWSProperty): """ `Secret <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-secret.html>`__ """ props: PropsDictType = { "Name": (str, True), "ValueFrom": (str, True), } class LogConfiguration(AWSProperty): """ `LogConfiguration <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html>`__ """ props: PropsDictType = { "LogDriver": (str, True), "Options": (dict, False), "SecretOptions": ([Secret], False), } class MountPoints(AWSProperty): """ `MountPoints <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html>`__ """ props: PropsDictType = { "ContainerPath": (str, False), "ReadOnly": (boolean, False), "SourceVolume": (str, False), } class NetworkConfiguration(AWSProperty): """ `NetworkConfiguration <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-networkconfiguration.html>`__ """ props: PropsDictType = { "AssignPublicIp": (str, False), } class ResourceRequirement(AWSProperty): """ `ResourceRequirement <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-resourcerequirement.html>`__ """ props: PropsDictType = { "Type": (str, False), "Value": (str, False), } class Ulimit(AWSProperty): """ `Ulimit <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html>`__ """ props: PropsDictType = { "HardLimit": (integer, True), "Name": (str, True), "SoftLimit": (integer, True), } class AuthorizationConfig(AWSProperty): """ `AuthorizationConfig <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-authorizationconfig.html>`__ """ props: PropsDictType = { "AccessPointId": (str, False), "Iam": (str, False), } class EfsVolumeConfiguration(AWSProperty): """ `EfsVolumeConfiguration <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html>`__ """ props: PropsDictType = { "AuthorizationConfig": (AuthorizationConfig, False), "FileSystemId": (str, True), "RootDirectory": (str, False), "TransitEncryption": (str, False), "TransitEncryptionPort": (integer, False), } class VolumesHost(AWSProperty): """ `VolumesHost <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumeshost.html>`__ """ props: PropsDictType = { "SourcePath": (str, False), } class Volumes(AWSProperty): """ `Volumes <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html>`__ """ props: PropsDictType = { "EfsVolumeConfiguration": (EfsVolumeConfiguration, False), "Host": (VolumesHost, False), "Name": (str, False), } class ContainerProperties(AWSProperty): """ `ContainerProperties <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html>`__ """ props: PropsDictType = { "Command": ([str], False), "Environment": ([Environment], False), "ExecutionRoleArn": (str, False), "FargatePlatformConfiguration": (FargatePlatformConfiguration, False), "Image": (str, True), "InstanceType": (str, False), "JobRoleArn": (str, False), "LinuxParameters": (LinuxParameters, False), "LogConfiguration": (LogConfiguration, False), "Memory": (integer, False), "MountPoints": ([MountPoints], False), "NetworkConfiguration": (NetworkConfiguration, False), "Privileged": (boolean, False), "ReadonlyRootFilesystem": (boolean, False), "ResourceRequirements": ([ResourceRequirement], False), "Secrets": ([Secret], False), "Ulimits": ([Ulimit], False), "User": (str, False), "Vcpus": (integer, False), "Volumes": ([Volumes], False), } class NodeRangeProperty(AWSProperty): """ `NodeRangeProperty <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-noderangeproperty.html>`__ """ props: PropsDictType = { "Container": (ContainerProperties, False), "TargetNodes": (str, True), } class NodeProperties(AWSProperty): """ `NodeProperties <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html>`__ """ props: PropsDictType = { "MainNode": (integer, True), "NodeRangeProperties": ([NodeRangeProperty], True), "NumNodes": (integer, True), } class EvaluateOnExit(AWSProperty): """ `EvaluateOnExit <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html>`__ """ props: PropsDictType = { "Action": (str, True), "OnExitCode": (str, False), "OnReason": (str, False), "OnStatusReason": (str, False), } class RetryStrategy(AWSProperty): """ `RetryStrategy <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-retrystrategy.html>`__ """ props: PropsDictType = { "Attempts": (integer, False), "EvaluateOnExit": ([EvaluateOnExit], False), } class Timeout(AWSProperty): """ `Timeout <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-timeout.html>`__ """ props: PropsDictType = { "AttemptDurationSeconds": (integer, False), } class JobDefinition(AWSObject): """ `JobDefinition <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html>`__ """ resource_type = "AWS::Batch::JobDefinition" props: PropsDictType = { "ContainerProperties": (ContainerProperties, False), "JobDefinitionName": (str, False), "NodeProperties": (NodeProperties, False), "Parameters": (dict, False), "PlatformCapabilities": ([str], False), "PropagateTags": (boolean, False), "RetryStrategy": (RetryStrategy, False), "SchedulingPriority": (integer, False), "Tags": (dict, False), "Timeout": (Timeout, False), "Type": (str, True), } class ComputeEnvironmentOrder(AWSProperty): """ `ComputeEnvironmentOrder <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobqueue-computeenvironmentorder.html>`__ """ props: PropsDictType = { "ComputeEnvironment": (str, True), "Order": (integer, True), } class JobQueue(AWSObject): """ `JobQueue <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html>`__ """ resource_type = "AWS::Batch::JobQueue" props: PropsDictType = { "ComputeEnvironmentOrder": ([ComputeEnvironmentOrder], True), "JobQueueName": (str, False), "Priority": (integer, True), "SchedulingPolicyArn": (str, False), "State": (validate_queue_state, False), "Tags": (dict, False), } class ShareAttributes(AWSProperty): """ `ShareAttributes <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-shareattributes.html>`__ """ props: PropsDictType = { "ShareIdentifier": (str, False), "WeightFactor": (double, False), } class FairsharePolicy(AWSProperty): """ `FairsharePolicy <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html>`__ """ props: PropsDictType = { "ComputeReservation": (double, False), "ShareDecaySeconds": (double, False), "ShareDistribution": ([ShareAttributes], False), } class SchedulingPolicy(AWSObject): """ `SchedulingPolicy <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html>`__ """ resource_type = "AWS::Batch::SchedulingPolicy" props: PropsDictType = { "FairsharePolicy": (FairsharePolicy, False), "Name": (str, False), "Tags": (dict, False), }
# -*- coding: utf-8 -*- """ NEUROscience Tool for Interactive Characterization Curate, visualize, annotate, and share your behavioral ephys data using Python """ import os import sys import shutil import copy import pkg_resources import collections.abc import logging import logging.handlers import toml from .version import version as __version__ from .version import git_revision as __git_revision__ # set the user's directory for global settings file, logs, and more neurotic_dir = os.path.join(os.path.expanduser('~'), '.neurotic') if not os.path.exists(neurotic_dir): os.mkdir(neurotic_dir) class FileLoggingFormatter(logging.Formatter): """ A custom formatter for file logging """ default_msec_format = '%s.%03d' # use period radix point instead of comma in decimal seconds def format(self, record): if logging.getLogger(__name__).level <= logging.DEBUG: # include more detail if the logger level (not the record level) is # debug or lower self._style._fmt = '[%(asctime)s] [%(levelname)-8s] [%(threadName)-10s] [%(name)s:%(lineno)d (%(funcName)s)] %(message)s' else: self._style._fmt = '[%(asctime)s] [%(levelname)-8s] %(message)s' return super().format(record) class StreamLoggingFormatter(logging.Formatter): """ A custom formatter for stream logging """ def format(self, record): if record.levelno == logging.INFO: # exclude the level name ("INFO") from common log records self._style._fmt = '[neurotic] %(message)s' else: self._style._fmt = '[neurotic] %(levelname)s: %(message)s' return super().format(record) # set the file path for logging log_file = os.path.join(neurotic_dir, 'neurotic-log.txt') # set the default level for logging to INFO unless it was set to a custom level # before importing the package logger = logging.getLogger(__name__) if logger.level == logging.NOTSET: default_log_level = logging.INFO logger.setLevel(default_log_level) else: default_log_level = logger.level # write log records to a file, rotating files if it exceeds 10 MB logger_filehandler = logging.handlers.RotatingFileHandler(filename=log_file, maxBytes=10000000, backupCount=2) logger_filehandler.setFormatter(FileLoggingFormatter()) logger.addHandler(logger_filehandler) logger.info('===========================') # file logger only logger.info(f'Importing neurotic {__version__}') # file logger only # stream log records to stderr logger_streamhandler = logging.StreamHandler(stream=sys.stderr) logger_streamhandler.setFormatter(StreamLoggingFormatter()) logger.addHandler(logger_streamhandler) global_config = { 'defaults': { # defaults used by the command line interface 'file': False, 'dataset': False, 'debug': False, 'lazy': True, 'thick_traces': False, 'show_datetime': False, 'ui_scale': 'medium', 'theme': 'light', }, 'gdrive': { # parameters for Google Drive access 'client_secret_file': os.path.join(neurotic_dir, 'gdrive-creds', 'client_secret.json'), 'tokens_file': os.path.join(neurotic_dir, 'gdrive-creds', 'tokens.json'), 'save_tokens': False, }, 'app': { 'auto_check_for_updates': True, }, } # keep a copy of the original config before it is modified _global_config_factory_defaults = copy.deepcopy(global_config) # the global config file is a text file in TOML format owned by the user that # allows alternate defaults to be specified to replace those in global_config global_config_file = os.path.join(neurotic_dir, 'neurotic-config.txt') if not os.path.exists(global_config_file): # copy a template global config file containing commented-out defaults shutil.copy( pkg_resources.resource_filename( 'neurotic', 'global_config_template.txt'), global_config_file) def update_dict(d, d_new): """ Recursively update the contents of a dictionary. Unlike dict.update(), this function preserves items in inner dictionaries that are absent from d_new. For example, if given >>> d = {'x': 0, 'inner': {'a': 1, 'b': 2}} >>> d_new = {'inner': {'c': 3}} then using d.update(d_new) will entirely replace d['inner'] with d_new['inner']: >>> d.update(d_new) >>> d == {'x': 0, 'inner': {'c': 3}} In contrast, update_dict(d, d_new) will preserve items found in d['inner'] but not in d_new['inner']: >>> update_dict(d, d_new) >>> d == {'x': 0, 'inner': {'a': 1, 'b': 2, 'c': 3}} """ for k_new, v_new in d_new.items(): if isinstance(v_new, collections.abc.Mapping): d[k_new] = update_dict(d.get(k_new, {}), v_new) else: d[k_new] = v_new return d def update_global_config_from_file(file=global_config_file): """ Update the global_config dictionary with data from the global config file, using recursion to traverse nested dictionaries. """ with open(file, 'r') as f: update_dict(global_config, toml.loads(f.read())) try: update_global_config_from_file() except Exception as e: logger.error(f'Ignoring global config file due to parsing error ({global_config_file}): {e}') # create directories for storing Google Drive credentials if necessary for file in [global_config['gdrive']['client_secret_file'], global_config['gdrive']['tokens_file']]: if file and not os.path.exists(os.path.dirname(file)): os.mkdir(os.path.dirname(file)) from .datasets import * from .gui import * from .scripts import *
# Generated by Django 3.0.5 on 2021-06-26 00:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('myapp', '0011_form_assigned_supervisor_id'), ] operations = [ migrations.AddField( model_name='form', name='action', field=models.CharField(blank=True, default='Save', max_length=55, null=True), ), ]
import torch import numpy as np import pandas as pd import sacred from datetime import datetime import h5py import feature.util as util dataset_ex = sacred.Experiment("dataset") @dataset_ex.config def config(): # Path to reference genome FASTA reference_fasta = "/users/amtseng/genomes/hg38.fasta" # Path to chromosome sizes chrom_sizes_tsv = "/users/amtseng/genomes/hg38.canon.chrom.sizes" # The size of DNA sequences to fetch as input sequences input_length = 1346 # The size of profiles to fetch for each coordinate profile_length = 1000 # One-hot encoding has this depth input_depth = 4 # Whether or not to perform reverse complement augmentation revcomp = True # Maximum size of jitter to the input for augmentation; set to 0 to disable jitter_size = 128 # Batch size; will be multiplied by two if reverse complementation is done batch_size = 64 # Sample X negatives randomly from the genome for every positive example negative_ratio = 1 # Use this stride when tiling coordinates across a peak peak_tiling_stride = 25 # Amount of dataset for each task to keep; can be a set number of peaks, or # a fraction (if < 1); set to None to keep everything peak_retention = None # Number of workers for the data loader num_workers = 10 # Negative seed (for selecting negatives) negative_seed = None # Jitter seed (for applying random jitter to peaks) jitter_seed = None # Shuffle seed (for shuffling data points) shuffle_seed = None class GenomeIntervalSampler: """ Samples a random interval from the genome. The sampling is performed uniformly at random (i.e. longer chromosomes are more likely to be sampled from). Arguments: `chrom_sizes_tsv`: path to 2-column TSV listing sizes of each chromosome `sample_length`: length of sampled sequence `chroms_keep`: an iterable of chromosomes that specifies which chromosomes to keep from the sizes; sampling will only occur from these chromosomes """ def __init__( self, chrom_sizes_tsv, sample_length, chroms_keep=None, seed=None ): self.sample_length = sample_length # Create DataFrame of chromosome sizes chrom_table = self._import_chrom_sizes(chrom_sizes_tsv) if chroms_keep: chrom_table = chrom_table[chrom_table["chrom"].isin(chroms_keep)] # Cut off sizes to avoid overrunning ends of chromosome chrom_table["max_size"] -= sample_length chrom_table["weight"] = \ chrom_table["max_size"] / chrom_table["max_size"].sum() self.chrom_table = chrom_table self.rng = np.random.RandomState(seed) def _import_chrom_sizes(self, chrom_sizes_tsv): """ Imports a TSV of chromosome sizes, mapping chromosome to maximum size. Arguments: `chrom_sizes_tsv`: a 2-column TSV mapping chromosome name to size Returns a Pandas DataFrame """ return pd.read_csv( chrom_sizes_tsv, sep="\t", header=None, names=["chrom", "max_size"] ) def sample_intervals(self, num_intervals): """ Returns a 2D NumPy array of randomly sampled coordinates. Returns `num_intervals` intervals, uniformly randomly sampled from the genome. """ chrom_sample = self.chrom_table.sample( n=num_intervals, replace=True, weights=self.chrom_table["weight"], random_state=self.rng ) chrom_sample["start"] = ( self.rng.rand(num_intervals) * chrom_sample["max_size"] ).astype(int) chrom_sample["end"] = chrom_sample["start"] + self.sample_length return chrom_sample[["chrom", "start", "end"]].values.astype(object) class CoordsToVals: """ From an HDF5 file that maps genomic coordinates to profiles, this creates an object that maps a list of coordinates to a NumPy array of profiles. Arguments: `hdf5_path`: path to HDF5 containing profiles; this HDF5 must have a separate dataset for each chromosome, and it is expected to return profiles of shape O x P x S, where O is the profile size, P is the number of profile tracks, and S is for the strands in each track `profile_size`: for each genomic coordinate, center it and pad it on both sides to this length to get the final profile; if this is smaller than the coordinate interval given, then the interval will be cut to this size by centering """ def __init__(self, hdf5_path, profile_size): self.hdf5_path = hdf5_path self.profile_size = profile_size def _resize_interval(start, end, size): """ Resizes the interval by centering and trimming/padding to the given size. """ center = int(0.5 * (start + end)) half_size = int(0.5 * size) left = center - half_size right = left + size return left, right def _get_profile(self, chrom, start, end, hdf5_reader): """ Fetches the profile for the given coordinates, with an instantiated HDF5 reader. Returns the profile as a NumPy array of numbers. This may pad or cut from the center to a specified length. """ if self.profile_size: start, end = CoordsToVals._resize_interval( start, end, self.profile_size ) return hdf5_reader[chrom][start:end] def _get_ndarray(self, coords): """ From an iterable of coordinates, retrieves a values for that coordinate. This will be a 4D NumPy array of corresponding profile values. Note that all coordinate intervals need to be of the same length (after padding). """ with h5py.File(self.hdf5_path, "r") as reader: profiles = np.stack([ self._get_profile(chrom, start, end, reader) \ for chrom, start, end in coords ]) return profiles def __call__(self, coords): return self._get_ndarray(coords) class SamplingCoordsBatcher(torch.utils.data.sampler.Sampler): """ Creates a batch producer that batches positive coordinates and samples negative coordinates. Each batch will have some positives and negatives according to `neg_ratio`. When multiple sets of positive coordinates are given, the coordinates are all pooled together and drawn from uniformly. Arguments: `pos_coords_beds`: list of paths to gzipped BED files containing the sets of positive coordinates for various tasks; these BED files should be in ENCODE NarrowPeak format `batch_size`: number of samples per batch `neg_ratio`: number of negatives to select for each positive example `jitter`: maximum random amount to jitter each positive coordinate example by `chrom_sizes_tsv`: path to 2-column TSV listing sizes of each chromosome `sample_length`: length of sampled sequence `genome_sampler`: a GenomeIntervalSampler instance, which samples intervals randomly from the genome `chroms_keep`: if specified, only considers this set of chromosomes from the coordinate BEDs `peak_retention`: if specified, keeps only this amount of peaks (taking most confident peaks preferentially); can be a fraction of the original BED file (if value is < 1), or a number of peaks (if value is >= 1) `return_peaks`: if True, returns the peaks and summits sampled from the peak set as a B x 3 array `shuffle_before_epoch`: Whether or not to shuffle all examples before each epoch """ def __init__( self, pos_coords_beds, batch_size, neg_ratio, jitter, chrom_sizes_tsv, sample_length, genome_sampler, chroms_keep=None, peak_retention=None, return_peaks=False, shuffle_before_epoch=False, jitter_seed=None, shuffle_seed=None ): self.batch_size = batch_size self.neg_ratio = neg_ratio self.jitter = jitter self.genome_sampler = genome_sampler self.return_peaks = return_peaks self.shuffle_before_epoch = shuffle_before_epoch chrom_sizes_table = self._import_chrom_sizes(chrom_sizes_tsv) all_pos_table = [] for i, pos_coords_bed in enumerate(pos_coords_beds): peaks_table = self._import_peaks(pos_coords_bed) coords = self._format_peaks_table( peaks_table, chroms_keep, peak_retention, sample_length, jitter, chrom_sizes_table ) # Add in the status column coords = np.concatenate( [coords, np.tile(i + 1, (len(coords), 1))], axis=1 ) # Shape: _ x 7 all_pos_table.append(coords) self.all_pos_table = np.concatenate(all_pos_table) # Shape: N x 7 self.num_total_pos = len(self.all_pos_table) # Number of positives and negatives per batch self.neg_per_batch = int(batch_size * neg_ratio / (neg_ratio + 1)) self.pos_per_batch = batch_size - self.neg_per_batch if shuffle_before_epoch: self.shuffle_rng = np.random.RandomState(shuffle_seed) if self.jitter: self.jitter_rng = np.random.RandomState(jitter_seed) def _import_peaks(self, peaks_bed): """ Imports a peaks BED file in NarrowPeak format as a Pandas DataFrame. Arguments: `peaks_bed`: a BED file (gzipped or not) containing peaks in ENCODE NarrowPeak format Returns a Pandas DataFrame """ return pd.read_csv( peaks_bed, sep="\t", header=None, # Infer compression names=[ "chrom", "peak_start", "peak_end", "name", "score", "strand", "signal", "pval", "qval", "summit_offset" ] ) def _import_chrom_sizes(self, chrom_sizes_tsv): """ Imports a TSV of chromosome sizes, mapping chromosome to maximum size. Arguments: `chrom_sizes_tsv`: a 2-column TSV mapping chromosome name to size Returns a Pandas DataFrame """ return pd.read_csv( chrom_sizes_tsv, sep="\t", header=None, names=["chrom", "max_size"] ) def _format_peaks_table( self, peaks_table, chroms_keep, peak_retention, sample_length, jitter, chrom_sizes_table ): """ Takes a table of imported peaks and formats it. This function performs the following tasks: 1. Optionally filters peaks to only retain a subset of chromosomes 2. Optionally cuts down the set of peaks to a subset of high-confidence peaks 3. Computes the intervals for inputs being centered around the summits 4. Drops any intervals that would overrun chromosome boundaries Arguments: `peaks_table`: a table imported by `_import_peaks` `chrom_sizes_table`: a table imported by `_import_chrom_sizes` Returns an N x 6 array, where columns 1-3 are the coordinate of the input samples centered at summits, columns 4-5 are the original peak location, and column 6 is the summit location. """ if chroms_keep: # Keep only chromosomes specified peaks_table = peaks_table[peaks_table["chrom"].isin(chroms_keep)] if peak_retention is not None: # Sort coordinates by confidence first peaks_table = peaks_table.sort_values(by="signal", ascending=False) # Keep only a subset of the peaks in the table keep_num = int(len(peaks_table) * peak_retention) if \ peak_retention < 1 else peak_retention peaks_table = peaks_table.head(keep_num) # Expand the coordinates to be of size `sample_length`, centered # around the summits peaks_table["start"] = peaks_table["peak_start"] + \ peaks_table["summit_offset"] - (sample_length // 2) peaks_table["end"] = peaks_table["start"] + sample_length # Toss out any coordinates that (with jittering) may go past # chromosome boundaries # Add in the maximum size column peaks_table = peaks_table.merge(chrom_sizes_table, on="chrom") # Keep only coordinates that won't overrun the ends left_mask = peaks_table["start"] - jitter >= 0 right_mask = peaks_table["end"] + jitter < peaks_table["max_size"] peaks_table = peaks_table.loc[left_mask & right_mask] # Compute the summit location from offset and peak start peaks_table["summit"] = peaks_table["peak_start"] + \ peaks_table["summit_offset"] # Extract the columns desired coords = peaks_table[[ "chrom", "start", "end", "peak_start", "peak_end", "summit" ]].values.astype(object) return coords def __getitem__(self, index): """ Fetches a full batch of positive and negative coordinates by filling the batch with some positive coordinates, and sampling randomly from the rest of the genome for the negatives. Returns a B x 3 2D NumPy array of coordinates, along with a parallel B-array of status. Status is 0 for negatives, and [1, n] for positives, where the status is 1 plus the index of the coordinate BED file it came from. This method may also perform jittering for dataset augmentation. If `return_peaks` was specified at object creation-time, also return a B x 3 2D NumPy array containing the peak information for the original peaks, consisting of the peak boundaries and the summit location (respectively); for negative samples drawn from the GenomeIntervalSampler, these values are all -1. """ pos_table = self.all_pos_table[ index * self.pos_per_batch : (index + 1) * self.pos_per_batch ] pos_coords, pos_peaks, pos_statuses = \ pos_table[:, :3], pos_table[:, 3:6], pos_table[:, 6] # If specified, apply random jitter to each positive coordinate if self.jitter: jitter_vals = self.jitter_rng.randint( -self.jitter, self.jitter + 1, size=len(pos_coords) ) pos_coords[:, 1] += jitter_vals pos_coords[:, 2] += jitter_vals # Fetch the negatives to fill out the batch if self.neg_per_batch: neg_coords = self.genome_sampler.sample_intervals( self.neg_per_batch ) else: neg_coords = np.empty(shape=(0, 3), dtype=object) # At this point, `pos_coords` and `neg_coords` are both _ x 3 # Concatenate the coordinates together coords = np.concatenate([pos_coords, neg_coords], axis=0) # Concatenate the statuses together; status for negatives is just 0 status = np.concatenate( [pos_statuses, np.zeros(len(neg_coords))] # Col 7 ).astype(int) if self.return_peaks: # Concatenate the peaks together; peaks for negatives is all -1 neg_peaks = np.full((len(neg_coords), 3), -1) peaks = np.concatenate([pos_peaks, neg_peaks]) return coords, status, peaks else: return coords, status def __len__(self): return int(np.ceil(self.num_total_pos / float(self.pos_per_batch))) def on_epoch_start(self): if self.shuffle_before_epoch: perm = self.shuffle_rng.permutation(self.num_total_pos) self.all_pos_table = self.all_pos_table[perm] class SummitCenteringCoordsBatcher(SamplingCoordsBatcher): """ Creates a batch producer that batches positive coordinates only, each one centered at a summit. Arguments: `pos_coords_beds`: list of paths to gzipped BED files containing the sets of positive coordinates for various tasks `batch_size`: number of samples per batch `chroms_keep`: if specified, only considers this set of chromosomes from the coordinate BEDs `chrom_sizes_tsv`: path to 2-column TSV listing sizes of each chromosome `sample_length`: length of sampled sequence `return_peaks`: if True, returns the peaks and summits sampled from the peak set as a B x 3 array `shuffle_before_epoch`: Whether or not to shuffle all examples before each epoch """ def __init__( self, pos_coords_beds, batch_size, chrom_sizes_tsv, sample_length, chroms_keep=None, return_peaks=False, shuffle_before_epoch=False, shuffle_seed=None ): # Same as a normal SamplingCoordsBatcher, but with no negatives and no # jitter, since the coordinates in the positive coordinate BEDs are # already centered at the summits super().__init__( pos_coords_beds=pos_coords_beds, batch_size=batch_size, neg_ratio=0, jitter=0, chrom_sizes_tsv=chrom_sizes_tsv, sample_length=sample_length, genome_sampler=None, chroms_keep=chroms_keep, return_peaks=return_peaks, shuffle_before_epoch=shuffle_before_epoch, shuffle_seed=shuffle_seed ) class PeakTilingCoordsBatcher(SamplingCoordsBatcher): """ Creates a batch producer that batches positive coordinates only, where the coordinates are tiled such that all coordinate centers overlap with a peak. Arguments: `pos_coords_beds`: list of paths to gzipped BED files containing the sets of positive coordinates for various tasks `stride`: amount of stride when tiling the coordinates `batch_size`: number of samples per batch `chrom_sizes_tsv`: path to 2-column TSV listing sizes of each chromosome `sample_length`: length of sampled sequence `chroms_keep`: if specified, only considers this set of chromosomes from the coordinate BEDs `return_peaks`: if True, returns the peaks and summits sampled from the peak set as a B x 3 array `shuffle_before_epoch`: Whether or not to shuffle all examples before each epoch """ def __init__( self, pos_coords_beds, stride, batch_size, chrom_sizes_tsv, sample_length, chroms_keep=None, return_peaks=False, shuffle_before_epoch=False, shuffle_seed=None ): # Similar to normal SamplingCoordsBatcher, but with no negatives and no # jitter; initialization is similar, but replicate the peaks so that # there are many summits tiled across each peak self.batch_size = batch_size self.jitter = 0 self.chroms_keep = chroms_keep self.return_peaks = return_peaks self.shuffle_before_epoch = shuffle_before_epoch chrom_sizes_table = self._import_chrom_sizes(chrom_sizes_tsv) def tile_peaks(row): peak_start, peak_end = row[1], row[2] summit_offsets = np.arange(0, peak_end - peak_start, stride) num_expand = len(summit_offsets) row_expand = np.tile(row, (num_expand, 1)) row_expand[:, -1] = summit_offsets return row_expand all_pos_table = [] for i, pos_coords_bed in enumerate(pos_coords_beds): peaks_table = self._import_peaks(pos_coords_bed) # Formatting peaks table will expand the peaks to the right sample # length and filter for anything that overruns the chromosome # boundaries, so perform replication before peaks_values = peaks_table.values expanded_peaks_values = np.concatenate([ tile_peaks(row) for row in peaks_values ], axis=0) expanded_peaks_table = pd.DataFrame.from_records( expanded_peaks_values, columns=list(peaks_table) ) # Now format peaks table into N x 6 array coords = self._format_peaks_table( expanded_peaks_table, chroms_keep, None, sample_length, 0, chrom_sizes_table ) # Add in the status column coords = np.concatenate( [coords, np.tile(i + 1, (len(coords), 1))], axis=1 ) # Shape: _ x 7 all_pos_table.append(coords) self.all_pos_table = np.concatenate(all_pos_table) # Shape: N x 7 self.num_total_pos = len(self.all_pos_table) # Number of positives and negatives per batch self.num_coords = len(self.all_pos_table) self.neg_per_batch = 0 self.pos_per_batch = self.batch_size if shuffle_before_epoch: self.shuffle_rng = np.random.RandomState(shuffle_seed) class CoordDataset(torch.utils.data.IterableDataset): """ Generates single samples of a one-hot encoded sequence and value. Arguments: `coords_batcher (CoordsDownsampler): maps indices to batches of coordinates (split into positive and negative binding) `coords_to_seq (CoordsToSeq)`: maps coordinates to 1-hot encoded sequences `coords_to_vals (CoordsToVals)`: instantiated CoordsToVals object, mapping coordinates to profiles `revcomp`: whether or not to perform revcomp to the batch; this will double the batch size implicitly `return_coords`: if True, along with the 1-hot encoded sequences and values, the batch also returns the set of coordinates used for the batch, and the peak/summit locations for the positive examples """ def __init__( self, coords_batcher, coords_to_seq, coords_to_vals, revcomp=False, return_coords=False ): self.coords_batcher = coords_batcher self.coords_to_seq = coords_to_seq self.coords_to_vals = coords_to_vals self.revcomp = revcomp self.return_coords = return_coords # The dataset returns coordinates iff the batcher returns peak info assert coords_batcher.return_peaks == return_coords def get_batch(self, index): """ Returns a batch, which consists of an B x I x 4 NumPy array of 1-hot encoded sequence (I is the length of the input sequence), the associated profiles, and a 1D length-B NumPy array of statuses. The profiles will be a B x P x O x S array of profiles. O is the profile length, P is the number of tracks returned, and S is the number of strands per track (1 or 2). Coordinates and peaks may also be returned as a B x 3 array. """ # Get batch of coordinates for this index if self.return_coords: coords, status, peaks = self.coords_batcher[index] else: coords, status = self.coords_batcher[index] # Map this batch of coordinates to 1-hot encoded sequences seqs = self.coords_to_seq(coords, revcomp=self.revcomp) # Map this batch of coordinates to the associated values profiles = self.coords_to_vals(coords) # Profiles are returned as B x O x P x S, so transpose to get # B x P x O x S profiles = np.swapaxes(profiles, 1, 2) # If reverse complementation was done, double sizes of everything else if self.revcomp: profiles = np.concatenate( # To reverse complement, we must swap the strands AND the # directionality of each strand (i.e. we are assigning the other # strand to be the plus strand, but still 5' to 3'). If the # profiles are unstranded, then flipping the last axis will do # nothing [profiles, np.flip(profiles, axis=(2, 3))] ) status = np.concatenate([status, status]) if self.return_coords: if self.revcomp: coords_ret = np.concatenate([coords, coords]) peaks_ret = np.concatenate([peaks, peaks]) else: coords_ret, peaks_ret = coords, peaks return seqs, profiles, status, coords_ret, peaks_ret else: return seqs, profiles, status def __iter__(self): """ Returns an iterator over the batches. If the dataset iterator is called from multiple workers, each worker will be give a shard of the full range. """ worker_info = torch.utils.data.get_worker_info() num_batches = len(self.coords_batcher) if worker_info is None: # In single-processing mode start, end = 0, num_batches else: worker_id = worker_info.id num_workers = worker_info.num_workers shard_size = int(np.ceil(num_batches / num_workers)) start = shard_size * worker_id end = min(start + shard_size, num_batches) return (self.get_batch(i) for i in range(start, end)) def __len__(self): return len(self.coords_batcher) def on_epoch_start(self): """ This should be called manually before the beginning of every epoch (i.e. before the iteration begins). """ self.coords_batcher.on_epoch_start() @dataset_ex.capture def create_data_loader( peaks_bed_paths, profile_hdf5_path, sampling_type, batch_size, reference_fasta, chrom_sizes_tsv, input_length, profile_length, negative_ratio, peak_tiling_stride, peak_retention, num_workers, revcomp, jitter_size, negative_seed, shuffle_seed, jitter_seed, chrom_set=None, shuffle=True, return_coords=False ): """ Creates an IterableDataset object, which iterates through batches of coordinates and returns profiles for the coordinates. Arguments: `peaks_bed_paths`: a list of paths to gzipped 6-column BED files containing coordinates of positive-binding coordinates `profile_hdf5_path`: path to HDF5 containing reads mapped to each coordinate; this HDF5 must be organized by chromosome, with each dataset being L x S x 2, where L is the length of the chromosome, S is the number of tracks stored, and 2 is for each strand `sampling_type`: one of ("SamplingCoordsBatcher", "SummitCenteringCoordsBatcher", or "PeakTilingCoordsBatcher"), which corresponds to sampling positive and negative regions, taking only positive regions centered around summits, and taking only positive regions tiled across peaks `chrom_set`: a list of chromosomes to restrict to for the positives and sampled negatives; defaults to all coordinates in the given BEDs and sampling over the entire genome `shuffle`: if specified, shuffle the coordinates before each epoch `return_coords`: if specified, also return the underlying coordinates and peak data along with the profiles in each batch """ assert sampling_type in ( "SamplingCoordsBatcher", "SummitCenteringCoordsBatcher", "PeakTilingCoordsBatcher" ) # Maps set of coordinates to profiles coords_to_vals = CoordsToVals(profile_hdf5_path, profile_length) if sampling_type == "SamplingCoordsBatcher": # Randomly samples from genome genome_sampler = GenomeIntervalSampler( chrom_sizes_tsv, input_length, chroms_keep=chrom_set, seed=negative_seed ) # Yields batches of positive and negative coordinates coords_batcher = SamplingCoordsBatcher( peaks_bed_paths, batch_size, negative_ratio, jitter_size, chrom_sizes_tsv, input_length, genome_sampler, chroms_keep=chrom_set, peak_retention=peak_retention, return_peaks=return_coords, shuffle_before_epoch=shuffle, jitter_seed=jitter_seed, shuffle_seed=shuffle_seed ) elif sampling_type == "SummitCenteringCoordsBatcher": # Yields batches of positive coordinates, centered at summits coords_batcher = SummitCenteringCoordsBatcher( peaks_bed_paths, batch_size, chrom_sizes_tsv, input_length, chroms_keep=chrom_set, return_peaks=return_coords, shuffle_before_epoch=shuffle, shuffle_seed=shuffle_seed ) else: # Yields batches of positive coordinates, tiled across peaks coords_batcher = PeakTilingCoordsBatcher( peaks_bed_paths, peak_tiling_stride, batch_size, chrom_sizes_tsv, input_length, chroms_keep=chrom_set, return_peaks=return_coords, shuffle_before_epoch=shuffle, shuffle_seed=shuffle_seed ) # Maps set of coordinates to 1-hot encoding, padded coords_to_seq = util.CoordsToSeq( reference_fasta, center_size_to_use=input_length ) # Dataset dataset = CoordDataset( coords_batcher, coords_to_seq, coords_to_vals, revcomp=revcomp, return_coords=return_coords ) # Dataset loader: dataset is iterable and already returns batches loader = torch.utils.data.DataLoader( dataset, batch_size=None, num_workers=num_workers, collate_fn=lambda x: x ) return loader data = None loader = None @dataset_ex.automain def main(): global data, loader import os import tqdm import json import matplotlib.pyplot as plt paths_json_path = "/users/amtseng/att_priors/data/processed/ENCODE_TFChIP/profile/config/SPI1/SPI1_training_paths.json" with open(paths_json_path, "r") as f: paths_json = json.load(f) peak_beds = paths_json["peak_beds"] profile_hdf5 = paths_json["profile_hdf5"] splits_json_path = "/users/amtseng/att_priors/data/processed/chrom_splits.json" with open(splits_json_path, "r") as f: splits_json = json.load(f) train_chroms, val_chroms, test_chroms = \ splits_json["1"]["train"], splits_json["1"]["val"], \ splits_json["1"]["test"] loader = create_data_loader( peak_beds, profile_hdf5, "SamplingCoordsBatcher", return_coords=True, chrom_set=val_chroms, jitter_size=128, jitter_seed=123, peak_retention=0.1, shuffle_seed=123, negative_seed=123 ) loader.dataset.on_epoch_start() start_time = datetime.now() for batch in tqdm.tqdm(loader, total=len(loader.dataset)): data = batch end_time = datetime.now() print("Time: %ds" % (end_time - start_time).seconds) k = 2 rc_k = int(len(data[0]) / 2) + k seqs, profiles, statuses, coords, peaks = data seq, prof, status = seqs[k], profiles[k], statuses[k] rc_seq, rc_prof, rc_status = \ seqs[rc_k], profiles[rc_k], statuses[rc_k] coord, peak = coords[k], peaks[k] rc_coord, rc_peak = coords[rc_k], peaks[rc_k] def print_one_hot_seq(one_hot): s = util.one_hot_to_seq(one_hot) print(s[:20] + "..." + s[-20:]) print_one_hot_seq(seq) print_one_hot_seq(rc_seq) print(status, rc_status) print(coord, rc_coord) print(peak, rc_peak) task_ind = 0 num_strands = prof.shape[2] fig, ax = plt.subplots(2, 1) for i in range(num_strands): ax[0].plot(prof[task_ind][:, i]) ax[1].plot(rc_prof[task_ind][:, i]) plt.show()
from aws_cdk import core from aws_cdk import aws_s3 as s3 from aws_cdk import aws_ssm as ssm from aws_cdk import aws_logs as logs class CdkMinecraftS3Stack(core.Stack): def __init__(self, scope: core.Construct, construct_id: str, **kwargs) -> None: super().__init__(scope, construct_id, **kwargs) # This stack defines the S3 buckets that we want to reference in the main stack, but not re-recreate when rebuilding minecraft itself minecraft_files = s3.Bucket(self, "MinecraftFiles", block_public_access = s3.BlockPublicAccess.BLOCK_ALL ) ssm.StringParameter(self, "FileBucketURL", parameter_name = "s3_bucket_files", string_value = minecraft_files.bucket_arn) if self.node.try_get_context("useS3Backup"): minecraft_backups = s3.Bucket(self, "MinecraftBackups", block_public_access = s3.BlockPublicAccess.BLOCK_ALL, lifecycle_rules = [s3.LifecycleRule(expiration = core.Duration.days(365))]) ssm.StringParameter(self, "BackupBucketName", parameter_name = "s3_bucket_backups", string_value = minecraft_backups.bucket_arn) minecraft_log = logs.LogGroup(self, "MinecraftLog", log_group_name = "minecraft.log", retention = logs.RetentionDays.ONE_MONTH) messages_log = logs.LogGroup(self, "MessagesLog", log_group_name = "/var/log/messages", retention = logs.RetentionDays.ONE_MONTH)
from checkov.terraform.checks.resource.base_resource_value_check import BaseResourceValueCheck from checkov.common.models.enums import CheckCategories, CheckResult class GoogleCloudDNSSECEnabled(BaseResourceValueCheck): """ Looks for DNSSEC state at dns_managed_zone: https://www.terraform.io/docs/providers/google/r/dns_managed_zone.html#state """ def __init__(self): name = "Ensure that DNSSEC is enabled for Cloud DNS" id = "CKV_GCP_16" supported_resources = ["google_dns_managed_zone"] categories = [CheckCategories.ENCRYPTION] super().__init__(name=name, id=id, categories=categories, supported_resources=supported_resources) def scan_resource_conf(self, conf): if 'visibility' in conf: if conf['visibility'][0] == 'private': return CheckResult.UNKNOWN # check is irrelevant (cannot set DNSSEC to anything else) # default visibility is public; just use base class implementation return super().scan_resource_conf(conf) def get_inspected_key(self): return "dnssec_config/[0]/state" def get_expected_value(self): return "on" def get_expected_values(self): return [self.get_expected_value(), "transfer"] check = GoogleCloudDNSSECEnabled()
{ 'targets': [ { 'target_name': 'huffin', 'include_dirs' : [ "<!(node -e \"require('nan')\")", "<(nodedir)/deps/openssl/openssl/include", 'deps/libsodium/src/libsodium/include', 'deps/ed25519-donna', ], 'defines': [ 'ED25519_SSE2', ], 'sources': [ 'deps/ed25519-donna/ed25519.c', 'src/binding.cc', ], 'xcode_settings': { 'OTHER_CFLAGS': [ '-g', '-O3', ] }, 'cflags': [ '-g', '-O3', ], 'libraries': [ '<!(node preinstall.js --print-lib)' ], 'conditions': [ ['OS=="linux"', { 'link_settings': { 'libraries': [ "-Wl,-rpath=\\$$ORIGIN/"] } }], ], } ] }
token = "NjAzODc5NDE2NDE3ODc4MDQ3.XTl0iA.PTZPdcnhpiV0Zm3iNmaMUgpphPg" prefix = "~" amqp_url = "amqp://guest:guest@127.0.0.1:5672/%2f" redis_url = "redis://127.0.0.1:6379/0" owner = 446290930723717120 cogs = [ "events", "general", ]
import json from . import fields from . import validate try: import urllib2 as request except ImportError: from urllib import request ENABLED_HUMAN_VALUE_MAP = { 0 : 'Disabled', 1 : 'Enabled' } class Thermostat(object): """ This class implements the most basic functionality of communicating with an actual thermostat. """ MODEL = '' # The current API doesn't require this header, but it also doesn't hurt, # and it's the right thing to do. JSON_HEADER = {'Content-Type' : 'application/json'} def __init__(self, host, timeout=4): self.host = host self.timeout = timeout def get(self, relative_url): """ :param relative_url: The relative URL from the root of the website. :returns: file-like object as returned by urllib[2,.request].urlopen """ url = self._construct_url(relative_url) return request.urlopen(url, timeout=self.timeout) def post(self, relative_url, value): """ :param relative_url: The relative URL from the root of the website. :param value: Value to set this attribute to :returns: file-like object as returned by urllib[2,.request].urlopen """ url = self._construct_url(relative_url) request_instance = request.Request(url, value, self.JSON_HEADER) return request.urlopen(request_instance, timeout=self.timeout) def _construct_url(self, relative_url): """ :param relative_url: The relative URL from the root of the website :returns: Full URL, for example 'http://192.168.0.2/tstat' """ return 'http://%s/%s' % (self.host, relative_url.lstrip('/')) class CommonThermostat(Thermostat): """ This class implements the common API features that are available and work across all models of thermostat. """ def reboot(self): """reboots the thermostat""" response = self.post('/sys/command', json.dumps({'command' : 'reboot'}).encode('utf-8')) validate.validate_response(response) ### tstat subsystem ### tstat = fields.ReadOnlyField('/tstat', None, validate_response=validate.validate_tstat_response) model = fields.ReadOnlyField('/tstat/model', 'model') version = fields.Field('/tstat/version', 'version') temp = fields.ReadOnlyField('/tstat', 'temp') tmode = fields.Field('/tstat', 'tmode', human_value_map={ 0 : 'Off', 1 : 'Heat', 2 : 'Cool', 3 : 'Auto' }) fmode = fields.Field('/tstat', 'fmode', human_value_map={ 0 : 'Auto', 1 : 'Auto/Circulate', 2 : 'On' }) override = fields.ReadOnlyField('/tstat', 'override', human_value_map=ENABLED_HUMAN_VALUE_MAP) hold = fields.Field('/tstat', 'hold', human_value_map=ENABLED_HUMAN_VALUE_MAP) led = fields.Field('/tstat/led', 'energy_led') t_heat = fields.Field('/tstat/ttemp', 't_heat', post_url='/tstat') t_cool = fields.Field('/tstat/ttemp', 't_cool', post_url='/tstat') it_heat = fields.Field('/tstat/ttemp', 't_heat', post_url='/tstat', post_name='it_heat') it_cool = fields.Field('/tstat/ttemp', 't_cool', post_url='/tstat', post_name='it_cool') tstate = fields.ReadOnlyField('/tstat', 'tstate', human_value_map={ 0 : 'Off', 1 : 'Heat', 2 : 'Cool' }) fstate = fields.ReadOnlyField('/tstat', 'fstate', human_value_map={ 0 : 'Off', 1 : 'On' }) time = fields.Field('/tstat', 'time') pump = fields.ReadOnlyField('/tstat/hvac_settings', 'pump', human_value_map={ 1 : 'Normal', 2 : 'Heat Pump' }) aux_type = fields.ReadOnlyField('/tstat/hvac_settings', 'aux_type', human_value_map={ 1 : 'Gas', 2 : 'Electric' }) # LED status values: 1 = green, 2 = yellow, 4 = red energy_led = fields.WriteOnlyField('/tstat/led', 'energy_led', None) # This isn't documented. It might be postable, but I'm not going to try. power = fields.ReadOnlyField('/tstat/power', 'power') program_cool = fields.ReadOnlyField('/tstat/program/cool', None) program_heat = fields.ReadOnlyField('/tstat/program/heat', None) datalog = fields.ReadOnlyField('/tstat/datalog', None) # Remote temperature control; posting to rem_temp sets rem_mode to 1 rem_mode = fields.Field('/tstat/remote_temp', 'rem_mode', human_value_map=ENABLED_HUMAN_VALUE_MAP) rem_temp = fields.WriteOnlyField('/tstat/remote_temp', 'rem_temp', None) ### sys subsystem ### sys = fields.ReadOnlyField('/sys', None) name = fields.Field('/sys/name', 'name') services = fields.ReadOnlyField('/sys/services', None) mode = fields.Field('/sys/mode', 'mode', human_value_map={ 0 : 'Provisioning', 1: 'Normal' }) network = fields.ReadOnlyField('/sys/network', None) security = fields.ReadOnlyField('/sys/network', 'security', human_value_map = { 1 : 'WEP', 3 : 'WPA', 4 : 'WPA2 Personal' }) ### cloud subsystem ### cloud = fields.ReadOnlyField('/cloud', None) ### methods ### def set_day_program(self, heat_cool, day, program): """ Sets the program for a particular day. See the API docs for details, as it is a bit complicated. :param heat_cool: Ether the string 'heat' or 'cool' :param day: One of 'mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun' :param program: See thermostat API docs :type program: dict """ self.post('/tstat/program/%s/%s' % (heat_cool, day), json.dumps(program).encode('utf-8')) class CT30(CommonThermostat): """ Base model for CT30-based thermostats (including the 3M-50) """ MODEL = 'CT30' hvac_code = fields.ReadOnlyField('/tstat/hvac_settings', 'hvac_code', human_value_map={ 1 : '1 stage heat, 1 stage cool', 2 : '2 stage heat, 1 stage cool', 3 : '2 stage heat, 2 stage cool', 4 : '2 stage heat, 1 stage cool', 5 : '2 stage heat, 2 stage cool', 10 : '1 stage pump, 1 stage aux', 11 : '1 stage pump, 1 stage aux', 12 : '1 stage pump, no aux', }) class CT80(CommonThermostat): """ Base model for CT80-based thermostats """ MODEL = 'CT80' ### Program Mode (extended tstat subsystem) program_mode = fields.Field('/tstat', 'program_mode', human_value_map={ 0 : 'Program A', 1 : 'Program B', 2 : 'Vacation', 3 : 'Holiday' }) # These three stages attributes take place of the CT30's hvac_code heat_stages = fields.ReadOnlyField('/tstat/hvac_settings', 'heat_stages') cool_stages = fields.ReadOnlyField('/tstat/hvac_settings', 'cool_stages') aux_stages = fields.ReadOnlyField('/tstat/hvac_settings', 'aux_stages') ### (De)humidifier system ### humidity = fields.ReadOnlyField('/tstat/humidity', 'humidity') humidifier_mode = fields.Field('/tstat/humidifier', 'humidifier_mode', human_value_map = { 0: 'Off', 1: 'Run only with heat', 2: 'Run any time (runs fan)', }) humidifier_setpoint = fields.Field('/tstat/thumidity', 'thumidity') class CT80RevB(CT80): """ Base model for all Revision B versions of the CT80 """ MODEL = 'CT80 RevB' swing = fields.Field('/tstat/tswing', 'tswing') # Dehumidifier attributes dehumidifier_mode = fields.Field('/tstat/dehumidifier', 'mode', human_value_map = { 0: 'Off', 1: 'On with fan', 2: 'On without fan', }) dehumidifier_setpoint = fields.Field('/tstat/dehumidifier', 'setpoint') # External dehumidifier external_dehumidifier_mode = fields.Field('/tstat/ext_dehumidifier', 'mode', human_value_map = { 0: 'Off', 1: 'On with fan', 2: 'On without fan', }) external_dehumidifier_setpoint = fields.Field('/tstat/ext_dehumidifier', 'setpoint') # Note: the night light is tricky and will return the last-set intensity even if it's off! night_light = fields.Field('/tstat/night_light', 'intensity', human_value_map = { 0: 'Off', 1: '25%', 2: '50%', 3: '75%', 4: '100%', }) # Note: lock_mode 3 can only be changed remotely lock_mode = fields.Field('/tstat/lock', 'lock_mode', human_value_map={ 0 : 'Lock disabled', 1 : 'Partial lock', 2 : 'Full lock', 3 : 'Utility lock' }) simple_mode = fields.Field('/tstat/simple_mode', 'simple_mode', human_value_map={ 1 : 'Normal mode', 2 : 'Simple mode' }) # Specific model classes class CT50(CT30): MODEL = 'CT50' class CT30v175(CT30): """ Defines API features that differ for this specific model from CommonThermostat """ MODEL = 'CT30 V1.75' class CT30v192(CT30): """ Defines API features that differ for this specific model from CommonThermostat """ MODEL = 'CT30 V1.92' class CT30v194(CT30): """ Defines API features that differ for this specific model from CommonThermostat4 """ MODEL = 'CT30 V1.94' class CT30v199(CT30): """ Defines API features that differ for this specific model from CommonThermostat """ MODEL = 'CT30 V1.99' class CT50v109(CT50): """ Defines API features that differ for this specific model from CommonThermostat """ MODEL = 'CT50 V1.09' class CT50v188(CT50): """ Defines API features that differ for this specific model from CommonThermostat """ MODEL = 'CT50 V1.88' class CT50v192(CT30): """ Defines API features that differ for this specific model from CommonThermostat """ MODEL = 'CT50 V1.92' class CT50v194(CT50): """ Defines API features that differ for this specific model from CommonThermostat """ MODEL = 'CT50 V1.94' class CT80RevB1v100(CT80RevB): MODEL = 'CT80 Rev B1 V1.00' class CT80RevB2v100(CT80RevB): MODEL = 'CT80 Rev B2 V1.00' class CT80RevB2v103(CT80RevB): MODEL = 'CT80 Rev B2 V1.03' class CT80RevB2v109(CT80RevB): MODEL = 'CT80 Rev B2 V1.09'
# Silvio Dunst # Create a tuple that stores the months of the year, # from that tuple create another tuple with just the summer months (May, June, July), # print out the summer months one at a time. # Tuples months = ("January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December" ) summer = months[4:7] # Create a new Tuples (summer), copies the elements/Array from Position 4(May) til Position 7-1 Position 6(July) # in the new Tuples summer 7-1 the real Position for month in summer: # Create a new Tuples (month), loops the amount of the elements/array Positions in the tuples summer print(month) # prints out the new Tuple month
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Plot the results from the classification of lab by loading in the .pkl files generated by figure3f_decoding_lab_membership_basic and figure3f_decoding_lab_membership_full Guido Meijer 18 Jun 2020 """ import pandas as pd import numpy as np import seaborn as sns from os.path import join import matplotlib.pyplot as plt from paper_behavior_functions import seaborn_style, figpath, load_csv, FIGURE_WIDTH, FIGURE_HEIGHT # Settings FIG_PATH = figpath() colors = [[1, 1, 1], [1, 1, 1], [0.6, 0.6, 0.6]] seaborn_style() # Load in results from csv file decoding_result = load_csv('classification_results', 'classification_results_full_bayes.pkl') # Calculate if decoder performs above chance chance_level = decoding_result['original_shuffled'].mean() significance = np.percentile(decoding_result['original'], 2.5) sig_control = np.percentile(decoding_result['control'], 0.001) if chance_level > significance: print('Classification performance not significanlty above chance') else: print('Above chance classification performance!') # %% f, ax1 = plt.subplots(1, 1, figsize=(FIGURE_WIDTH/5, FIGURE_HEIGHT)) sns.violinplot(data=pd.concat([decoding_result['control'], decoding_result['original_shuffled'], decoding_result['original']], axis=1), palette=colors, ax=ax1) ax1.plot([-1, 3.5], [chance_level, chance_level], '--', color='k', zorder=-10) ax1.set(ylabel='Decoding accuracy', xlim=[-0.8, 2.4], ylim=[-0.1, 0.62]) ax1.set_xticklabels(['Positive\ncontrol', 'Shuffle', 'Mouse\nbehavior'], rotation=90, ha='center') plt.tight_layout() sns.despine(trim=True) plt.savefig(join(FIG_PATH, 'suppfig_decoding_first_biased.pdf')) plt.savefig(join(FIG_PATH, 'suppfig_decoding_first_biased.png'), dpi=300) # %% f, ax1 = plt.subplots(1, 1, figsize=(FIGURE_WIDTH/4, FIGURE_HEIGHT)) n_labs = decoding_result['confusion_matrix'][0].shape[0] sns.heatmap(data=decoding_result['confusion_matrix'].mean(), vmin=0, vmax=0.4) ax1.plot([0, 7], [0, 7], '--w') ax1.set(xticklabels=np.arange(1, n_labs + 1), yticklabels=np.arange(1, n_labs + 1), ylim=[0, n_labs], xlim=[0, n_labs], title='', ylabel='Actual lab', xlabel='Predicted lab') plt.setp(ax1.xaxis.get_majorticklabels(), rotation=40) plt.setp(ax1.yaxis.get_majorticklabels(), rotation=40) plt.gca().invert_yaxis() plt.tight_layout() plt.savefig(join(FIG_PATH, 'suppfig_confusion_matrix_first_biased.pdf')) plt.savefig(join(FIG_PATH, 'suppfig_confusion_matrix_first_biased.png'), dpi=300)
from qasrl.nn.initializers import PretrainedModelInitializer_Prefixing
import csv class Player: # 初始化玩家,每人發 20000 遊戲幣以及出發位置為 0 def __init__(self,money = 20000, po = 0): self.__money = money self.__po = po self.__status = 0 # 設定玩家名稱 def setName(self,name,id): self.__name = name self.__id = id with open('players.csv','a',newline='') as csvfile: writer = csv.writer(csvfile, delimiter=',') writer.writerow([self.__id,self.__name,self.__money,self.__po,self.__status]) # 取得玩家名稱 def getName(self): return self.__name # 修改玩家遊戲幣 def setMoney(self,money,id): self.__money += money table = [['id','name','money','po','status']] with open('players.csv','r',newline='') as csvfile: rows = csv.DictReader(csvfile) for row in rows: if (row.get('id') == str(id)): row['money'] = str(int(row['money'])+money) table.append([row['id'],row['name'],row['money'],row['po'],row['status']]) with open('players.csv','w',newline='') as csvfile: writer = csv.writer(csvfile) writer.writerows(table) # 取得玩家遊戲幣 def getMoney(self): return self.__money # 修改玩家位置 def setPo(self,move): self.__po += move # 取得玩家位置 def getPo(self): return self.__po if __name__ == "__main__": myplayer = Player() myplayer.setMoney(1000,0)
import spidev from .abstract_transport import AbstractTransport from .gpio_interrupt import GPIOInterrupt class SPITransport(AbstractTransport): __READ_FLAG = 0x80 __MAGNETOMETER_READ_FLAG = 0xC0 __DUMMY = 0xFF data_ready_interrupt: GPIOInterrupt def __init__(self, spi_device: int, magnetometer: bool, data_ready_pin: int = None): super().__init__() self.magnetometer = magnetometer self.spi = spidev.SpiDev() self._init_spi(spi_device) self.data_ready_interrupt = None if data_ready_pin: self.data_ready_interrupt = GPIOInterrupt(data_ready_pin) def _init_spi(self, spi_device: int): self.spi.open(0, spi_device) self.spi.mode = 0b00 self.spi.max_speed_hz = 8_000_000 def close(self): self.spi.close() if self.data_ready_interrupt: self.data_ready_interrupt.close() def write_byte(self, address: int, value: int): self.spi.writebytes([address, value]) def read_byte(self, address: int) -> int: return self.spi.xfer([address | self.__READ_FLAG, self.__DUMMY])[1] def read_bytes(self, reg_address, length): request = [self.__DUMMY] * (length + 1) if self.magnetometer: # Need to set bit 1 for multi-byte reads by the magnetometer or we # just keep reading the same byte request[0] = reg_address | self.__MAGNETOMETER_READ_FLAG else: request[0] = reg_address | self.__READ_FLAG response = self.spi.xfer(request) return response[1:] def data_ready(self, timeout: int) -> bool: if self.data_ready_interrupt: return self.data_ready_interrupt.wait_for(timeout) else: raise RuntimeError('SPITransport needs a GPIO pin to support data_ready().')
from django.dispatch import Signal # This signal is sent when we get a sub subscription_update = Signal(providing_args=["user"]) gift_accepted = Signal()
import _plotly_utils.basevalidators class DimensionsValidator(_plotly_utils.basevalidators.CompoundArrayValidator): def __init__( self, plotly_name='dimensions', parent_name='parcoords', **kwargs ): super(DimensionsValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str='Dimension', data_docs=""" constraintrange The domain range to which the filter on the dimension is constrained. Must be an array of `[fromValue, toValue]` with `fromValue <= toValue`, or if `multiselect` is not disabled, you may give an array of arrays, where each inner array is `[fromValue, toValue]`. label The shown name of the dimension. multiselect Do we allow multiple selection ranges or just a single range? range The domain range that represents the full, shown axis extent. Defaults to the `values` extent. Must be an array of `[fromValue, toValue]` with finite numbers as elements. tickformat Sets the tick label formatting rule using d3 formatting mini-language which is similar to those of Python. See https://github.com/d3/d3-f ormat/blob/master/README.md#locale_format ticktext Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to *array*. Used with `tickvals`. ticktextsrc Sets the source reference on plot.ly for ticktext . tickvals Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to *array*. Used with `ticktext`. tickvalssrc Sets the source reference on plot.ly for tickvals . values Dimension values. `values[n]` represents the value of the `n`th point in the dataset, therefore the `values` vector for all dimensions must be the same (longer vectors will be truncated). Each value must be a finite number. valuessrc Sets the source reference on plot.ly for values . visible Shows the dimension when set to `true` (the default). Hides the dimension for `false`.""", **kwargs )
#!/usr/bin/env python # # Can we calculate the flux density of the moon and an antenna G/T based off # that? # # 1/2019 - Kyle Eberhart # # Based on - Darko Sekuljica - "Using the Moon as a calibrated noise source # to measure the G/T figure-of-merit of an X-band satellite receiving station # with a large antenna 200...400 wavelengths in diameter" # http://antena.fe.uni-lj.si/literatura/Razno/Diplome/Sekuljica/Master%20Thesis%20-%20popravki%2017-01-2017.pdf # # William C. Daywitt - "An Error Analysis for the Use of Presently Avaliable # Lunar Radio Flux Data in Broadbeam Antenna-System Measurements" # # This project made use of Skyfield, http://rhodesmill.org/skyfield/ # # This project made use of Astropy, http://www.astropy.org a # community-developed core Python package for Astronomy astropy:2013, # astropy:2018 # #------------------------------------------------------------------ import math from skyfield.api import load from skyfield.api import Topos from skyfield.almanac import phase_angle from astropy import units as u from datetime import timedelta import itur class MoonGoT: '''Wrap up the Moon Flux and G/T in a class''' def __init__(self, test=None): # some constants and globals to use self.press = None self.temp = None self.humid = None self.k1 = None self.gt_lin = None self.gt_db = None # Boltzmanns constant (m^2 kg s^-2 K^-1) self.k_bolt = 1.38064852e-23 # Plancks constant (m^2 kg s^-1) self.h_planck = 6.62607004e-34 # the speed of light in (m s^-1) self.c = 299792458 self.moon_dia_km = 3476 # Configure and pre-calculate a bit self.ts = load.timescale(builtin=True) self.e = load('de421.bsp') self.earth, self.luna = self.e['earth'], self.e['moon'] if test is None: # The 13M antennas are close enough together to make no real difference. # We will use 13M-2 as the location of reference. #------------------------------------------------------------- # Change this value to the correct date and time of measurement self.t = self.ts.utc(2019, 1, 27, 14, 10) # #------------------------------------------------------------ #self.t = self.ts.now() self.diam = 13.0 self.lat = 64.97381 self.lon = -147.50575 self.alt = 385.0 self.observer = self.earth + Topos(latitude_degrees=self.lat, longitude_degrees=self.lon, elevation_m=self.alt) self.phi() self.theta_moon() else: # use the values from the paper to check stuff self.t = self.ts.utc(2016, 10, 13, 19, 23) self.diam = 11.28 self.frequency = 8177500000 self.y = 2.226 self.k2est = 5.71 self.lat = 40.6664 self.lon = 16.6043 self.alt = 100.0 self.observer = self.earth + Topos(latitude_degrees=self.lat, longitude_degrees=self.lon, elevation_m=self.alt) self.phi() self.theta_moon() self.calc_g_over_t() def set_dtg(self, date=None): if date is None: self.t = self.ts.now() else: self.t = self.ts.from_datetime(date) def phi(self, time=None): '''Calculate the lunar phase angle in degrees''' # uses the skyfield library which seems to calculate the phase # angle of the moon weird. Its 180 out from the regular convention that # I can find. if time is None: time = self.t pa_ = phase_angle(self.e, "moon", time) pa = 180 - (pa_.to(u.deg)).value return pa def theta_moon(self, time=None): # Moons angular diameter in degrees if time is None: time = self.t astrometric = self.observer.at(time).observe(self.luna) el, az, d = astrometric.apparent().altaz() self.elevation = el.to(u.deg) self.azimuth = az.to(u.deg) self.distance = d.to(u.km) arcsec = ((206265 * self.moon_dia_km*u.km) / self.distance)*u.arcsec self.theta = (arcsec.to(u.deg)).value return self.theta def calc_t_moon(self, deg, f=None): # The average brightness temperature of the Moon in (K) # f is frequency in Hz # deg is phi, the lunar phase angle in degrees # - if phase angle is degreasing use 360 - phi # # from equation [4.14 - 4.16] # if f is None: f = self.frequency self.deg = deg five_min = timedelta(minutes=5) now_five = self.ts.utc(self.t.utc_datetime() + five_min) p1 = self.phi(now_five) self.t0 = 207.7 + (24.43/(f*10**-9)) # from the paper self.t1overt0 = 0.004212 * math.pow((f*10**-9),1.224) # From our moon spreadsheet # self.t1overt0 = 0.004212 * (f*10**-9) * math.pow(math.e, 1.224) self.psi = 43.83 / (1 + 0.0109 * (f*10**-9)) if deg > p1: self.t_moon = self.t0 * ( 1 - self.t1overt0 * math.cos(math.radians((360-deg) - self.psi))) # print(360-deg, "phi -lunar phase angle in degrees, descending value calc.") return self.t_moon else: self.t_moon = self.t0 * ( 1 - self.t1overt0 * math.cos(math.radians(deg - self.psi))) # print(deg, "phi- lunar phase angle in degrees, ascending value calc.") return self.t_moon def calc_moon_flux(self, f=None): # this is all from a paper by Darko Sekuljica, "Using the Moon as a calibrated # noise source to measure the G/T ...." it goes on. At any rate equation [4.13] # # s_moon = (2*k_bolt*pi^3)/(4*180^2*c^2) * f^2 * T_moon * Omega_moon # # Flux density of the moon in (W m^-2 Hz-1) # if f is None: f = self.frequency # The first term? is all constants... term_1 = (2*self.k_bolt*math.pow(math.pi, 3))/(4*math.pow(180,2)*math.pow(self.c,2)) term_2 = math.pow(f, 2) term_3 = self.calc_t_moon(self.phi()) term_4 = math.pow(self.theta, 2) self.s_moon = term_1 * term_2 * term_3 * term_4 return self.s_moon def calc_wavelength(self, f=None): # convert frequency to wavelength if f is None: f = self.frequency self.wavelength = float(self.c)/float(f) return self.wavelength def calc_hpbw(self): '''calculate the Half Power Beam Width of our antenna.''' # Our 13M antennas have the S-Band feed at the prime focus and the # X-band feed is double-shaped, with two reflectors. # # also I have learned that this is not necissarily the best formula for # calculaing HPBW, but we ned to know the edge taper of the dish for # better results. if self.frequency > 3*10**9: self.hpbw = 59.0 * self.wavelength / self.diam else: self.hpbw = 67.5 * self.wavelength / self.diam return self.hpbw def calc_k2(self, diam=None): # Calculate the correction factor for angular source size and antennas HPBW # This seems to work for X-Band frequencies but it is throwing an error # when the source is smaller than the beamwidth. Such as at S-Band frequencies. if diam is None: diam = self.diam moonbw = self.theta self.calc_hpbw() if self.hpbw/moonbw > 1: # When the source is narrower than the HPBW from the DOC study x2 = 0.6441*math.pow(moonbw/self.hpbw, 2) self.k2est = x2 / (1 - math.pow(math.e, -x2)) # from our sun worksheet not sure of its origin, I wouldn't expect # it to work in this case... # self.k2est = math.pow(1 + .18 * math.pow(self.theta/self.hpbw, 2), 2) # from our cas-a worksheet, from Datron we think # x2 = (self.hpbw*60) # self.k2est = (1-0.041025/x2 # +8.00685/math.pow(x2, 2) # -10.673775/math.pow(x2, 3) # +41.662351/math.pow(x2, 4)) else: # when the source is wider than the HPBW common_bit = math.log(2) * math.pow(moonbw/self.hpbw, 2) self.k2est = common_bit / 1 - math.exp(-common_bit) return self.k2est def lin_to_db(self, val): '''turn a amp factor to a dB value.''' result = 10*math.log10(val) return result def db_to_lin(self, val): '''turn a dB to amp factor.''' result = math.pow(10, (val/10)) return result def calc_g_over_t(self, y=None, f=None, k1=None, k2=None): '''calculate the G/T using this fun pile of a class.''' if y is None: y = self.y else: self.y = y if f is None: f = self.frequency else: self.frequency = f self.calc_wavelength() if k1 is None: k1 = self.calc_k1() else: self.k1 = k1 if k2 is None: k2 = self.calc_k2() else: k2 = self.k2est S = self.calc_moon_flux() self.gt_lin = ((8*math.pi*self.k_bolt*(y-1))/(math.pow(self.wavelength,2)*S)*k1*k2) try: self.gt_db = 10*math.log10(self.gt_lin) except ValueError,e: self.gt_db = 0 print "Somethings wrong with a log by less than 0." print str(e) def calc_k1(self): '''Calculate the k1 atmospheric attenuation value.''' if self.temp is None: # estimate the k1 based on our spreadsheet and my school notes if (7.0 < (self.frequency*10**-9) < 9.0): A_t = 0.060 elif (1.0 < (self.frequency*10**-9) < 3.0): A_t = 0.032 else: A_t = 10*math.log(1 + (1/self.elevation.value)) k1 = math.pow(math.e, (+A_t/( 4.343 * math.sin(+(self.elevation.value*math.pi/180))))) self.k1 = self.db_to_lin(k1) else: # this uses the cool itur equations, but it is really slow... T = self.temp * itur.u.deg_C P = self.press * itur.u.hPa H = self.humid f = (self.frequency*10**-9) * itur.u.GHz el = self.elevation hs = (self.alt*10**-3) * itur.u.km D = self.diam * itur.u.m p = 0.1 # calculated atmospheric parameters rho_p = itur.surface_water_vapour_density(self.lat, self.lon, p, hs) # compute attenuation values # A_g = itur.gaseous_attenuation_slant_path(f, el, rho_p, P, T) # A_r = itur.rain_attenuation(lat, lon, f, el, hs=hs, p=p) # A_c = itur.cloud_attenuation(lat, lon, el, f, p) # A_s = itur.scintillation_attenuation(lat, lon, f, el, p, D) A_t = itur.atmospheric_attenuation_slant_path(self.lat, self.lon, f, el, p, D, hs=hs, rho=rho_p, T=T, H=H, P=P) # print("\n") # print("- Rain attenuation ", A_r, " dB") # print("- Gaseous attenuation ", A_g, " dB") # print("- Cloud attenuation ", A_c, " dB") # print("- Scintillation attenuation ", A_s, " dB") # print("- Total attenuation ", A_t, " dB") print A_t print A_t.value self.k1 = self.db_to_lin(A_t.value) return self.k1 def __str__(self): '''Lets print what we have done.''' if self.k1 is None: self.k1 = 0.0 if self.gt_lin is None: self.gt_lin = 0.0 if self.gt_db is None: self.gt_db = 0.0 compose = [ "{:16} {:>11.4f} {:<13}".format('Distance', self.distance, ''), "{:16} {:>11.4f} {:<13}".format('Wavelength', self.wavelength, 'm'), "{:16} {:>11.4f} {:<13}".format('HPBW', self.hpbw, 'deg'), "{:16} {:>11.4f} {:<13}".format('T0', self.t0, 'K'), "{:16} {:>11.4f} {:<13}".format('T1/T0', self.t1overt0, ""), "{:16} {:>11.4f} {:<13} (apparent temperature of the moon)".format('Tmoon', self.t_moon, "K"), "{:16} {:>10g} {:<13} (Moon flux density)".format('Smoon', self.s_moon, "W m^-2 Hz^-1"), "{:16} {:>11.4f} {:<13} (lunar phase lag)".format('psi', self.psi, "deg"), "{:16} {:>11.4f} {:<13} (lunar phase angle)".format('phi', self.deg, "deg"), "{:16} {:>11.4f} {:<13} (lunar angular diameter)".format('Theta_moon', self.theta, "deg"), "{:16} {:>11.4f} {:<13} (atmospheric correction factor [linear])".format('K1', self.k1, ""), "{:16} {:>11.4f} {:<13} (extended source size correction factor [linear])".format('K2', self.k2est, ""), "\n Measurement Data", "{:16} {:>11.4f} {:<13}".format('Frequency', self.frequency, "Hz"), "{:16} {:>11.4f} {:<13}".format('Y-factor', self.y, ""), "{:16} {:>11.4f} {:<13}".format('Elevation', self.elevation, ''), "{:16} {:>11.4f} {:<13}".format('Azimuth', self.azimuth, ''), "{:16} {:>11.4f} {:<13} ([linear])".format('G/T', self.gt_lin, ""), "{:16} {:>11.4f} {:<13} ".format('G/T', self.gt_db, "dB/K"), "\n", ] output = "\n".join(compose) return output def freq_input(self, freq): '''ingest the frequency fed in by the user. Convert whatever to Hz.''' if 'MHZ' in freq.upper(): f_ = (freq.upper()).split('MHZ') f = float(f_[0])*10**6 self.frequency = f elif 'GHZ' in freq.upper(): f_ = (freq.upper()).split('GHZ') f = float(f_[0])*10**9 self.frequency = f elif 'HZ' in freq.upper(): f_ = (freq.upper()).split('HZ') f = float(f_[0]) self.frequency = f elif freq.find('.') is 1: f = float(freq)*10**9 self.frequency = f print "Labels are nice. I think you entered a frequency in GHz." elif freq.find('.') is 4: f = float(freq)*10**6 self.frequency = f print "Labels are nice. I think you entered a frequency in MHz." elif freq.isdigit(): f = float(freq) self.frequency = f print "Labels are nice. I think you entered a frequency in Hz." if self.frequency > 10*10**9: print str(self.frequency*10**-9)+" GHz is out of range. Try between 10 and 1 GHz." sys.exit() elif self.frequency < 1*10**9: print str(self.frequency*10**-9)+" GHZ is out of range. Try between 10 and 1 GHz." sys.exit() print str(f*10**-9)+" GHz is what I'll use." def y_input(self, y): '''Ingest the y-factor for later use. convert whatever to linear units[W].''' if 'DB' in y.upper(): y_ = (y.upper()).split('DB') self.y = self.db_to_lin(float(y_[0])) elif y.isdigit(): self.y = float(y) print "No Y-factor labels, it must have been a linear value." def temp_input(self, temp): '''store the temperature.''' self.temp = float(temp) def press_input(self, press): '''Store the pressure.''' self.press = float(press) def humid_input(self, humid): '''Store the humidity''' self.humid = float(humid) if __name__ == "__main__": import sys arguments = len(sys.argv) - 1 if arguments is 0: print "\n" print "This command requires a Y factor[W] and a Frequency [Hz] Temp[C] Pressure[hPA] Humidity[%] " print "For example 'figure_of_merit.py Y.YY FFFFFFFFFF TT PPPP HH'" sys.exit() if arguments is 1: merit = MoonGoT(test='yes') print merit if arguments is 2: y_fac = sys.argv[1] freq = sys.argv[2] merit = MoonGoT() merit.freq_input(freq) merit.y_input(y_fac) merit.calc_g_over_t() print merit if arguments is 5: merit = MoonGoT() print "\n" merit.y_input(sys.argv[1]) merit.freq_input(sys.argv[2]) merit.temp_input(sys.argv[3]) merit.press_input(sys.argv[4]) merit.humid_input(sys.argv[5]) print "\n" merit.calc_g_over_t() print merit # got = MoonGoT() # got.calc_g_over_t(2.266, 8177500000) # print got # iot = MoonGoT(test='yes') # print iot #g_over_t(2.266, 8177500000, 11.28)
from .data import SHARD_DATA_MAP from .events import Event class Telemetry: def __init__(self, data, url): self.shard = 'xbox' if 'xbox-' in url else 'pc' self.events = [ Event.instance(event_data) for event_data in self.generate_events_data(data) ] def generate_events_data(self, data): data_class = SHARD_DATA_MAP[self.shard] for event in data: yield data_class(event) def events_from_type(self, _type): return [ev for ev in self.events if type(ev).__name__ == _type]
# Copyright 2021 Alibaba Group Holding Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import signal import click from .common import global_mgr @click.group(name='process') def process_group(): pass def _send_signal_to_process(pid: int or None, sig: int): if not pid: return print('kill process %d with signal %d', pid, sig) os.kill(pid, sig) @click.command(name='kill') def kill_engine_process(): _send_signal_to_process(global_mgr.engine().engine_process_id(), signal.SIGKILL) process_group.add_command(kill_engine_process) @click.command(name='stop') def stop_engine_process(): _send_signal_to_process(global_mgr.engine().engine_process_id(), signal.SIGSTOP) process_group.add_command(stop_engine_process) @click.command(name='continue') def continue_engine_process(): _send_signal_to_process(global_mgr.engine().engine_process_id(), signal.SIGCONT) process_group.add_command(continue_engine_process)
from rsm import test1,test2,test3 import numpy as np from time import time as perf_counter N = 40 M = 20 V = 20 mem = np.zeros((N,M), dtype=np.int32) neg = np.zeros((N,V), dtype=np.int32) out = np.zeros(N, dtype=np.int32) input = np.zeros(M, dtype=np.int32) input[0]=1 for i in range(1,M): input[i] = i*10 test1(mem,input) # test 2 a=test2(mem,input,out) print(out) print(a) R=10000 t0=perf_counter() for i in range(R): test2(mem,input,out) dt=perf_counter()-t0 print(1.0*R/dt) # test3 -> 5x szybszy dla N=40 out.fill(0) test3(mem,input,out) print(out) R=10000 t0=perf_counter() for i in range(R): test3(mem,input,out) dt=perf_counter()-t0 print(1.0*R/dt)
from flask import Flask, request, session, g, current_app from subprocess import Popen import pprint, time, threading, os, sys, sqlite3, shutil # Borg pattern, all processManager objects will have the same states # meaning they all reference the same processes, lock and thread. class Borg: _shared_state = {} def __init__(self): self.__dict__ = self._shared_state # Pokes the processes to see their exit status. Stops when there is no running thread left. class processManager(Borg): class pollProcesses (threading.Thread): def __init__(self, pManager): threading.Thread.__init__(self) self.pManager = pManager def run(self): while True: #poll exit codes: #None Running #0 Finished nicely #-n terminated by signal n time.sleep(30) pprint.pprint("-----------") stop = True self.pManager.lock.acquire() updatedProcesses = [] for p in self.pManager.processes: keep = True status = p.poll() pprint.pprint(str(p.jobid)+" "+str(p.pid)+" "+str(status)) # If the job is running if status is None: stop = False # keep the thread alive job = self.pManager.getJob(p.jobid) if job["status"] == 2: self.pManager.stopProcess(p.jobid, True) continue; else: if status != 0: status = 2 try: self.pManager.updateJob(p.jobid, status) keep = False #once we have the new status, keeping track of the process is useless except OperationalError: #If the database is locked, we force looping again stop = False if keep: updatedProcesses.append(p) self.pManager.processes = updatedProcesses self.pManager.lock.release() if stop: pprint.pprint("-----------") pprint.pprint("No process running, stopping poll.") break; def __init__(self): Borg.__init__(self) if not hasattr(self, "processes"): self.processes = [] if not hasattr(self, "lock"): self.lock = threading.Lock() if not hasattr(self, "thread"): self.thread = None def addProcess(self, job, projectdir, zoomLevels, metatile, extent): pprint.pprint("-----------") path = os.path.realpath(__file__) # Create mapcache folder if not exist if not os.path.exists(projectdir+"/mapcache"): os.makedirs(projectdir+"/mapcache") #If there is a gitignore file, add the mapcache directory if os.path.exists(projectdir+"/.gitignore"): with open(projectdir+"/.gitignore", "r+") as gitignore: lines = gitignore.readlines() found = False for line in lines: if "mapcache" in line: found = True if not found: gitignore.writelines("mapcache/*") jobdir = projectdir+"/mapcache/job-"+job['title']+str(job['id']) os.makedirs(jobdir) inFile = open(path.replace("processManager.py","mapcacheConfig.xml.default")) outFile = open(jobdir+"/mapcacheConfig.xml","w") replacements = {'<!--SCRIBEUIPATH-->':jobdir, '<!--SCRIBEUITITLE-->':"job-"+job['title']+str(job['id']), '<!--SCRIBEUIMAPFILEPATH-->':projectdir+'/map/'+job['map_name']+'.map'} for line in inFile: for src, target in replacements.iteritems(): line = line.replace(src, target) outFile.write(line) inFile.close() outFile.close() #start mapcache pprint.pprint("Adding new process") p = Popen(["mapcache_seed", "-c", jobdir+"/mapcacheConfig.xml", "-t", "default", "-z", zoomLevels, "-M", metatile, "-e",extent], shell=False) p.jobid = job['id'] # Lock the processes list before adding data self.lock.acquire() self.processes.append(p) #If thread is finished, start it up if self.thread is None or not self.thread.isAlive(): self.thread = None self.thread = self.pollProcesses(self) self.thread.start() self.lock.release() return #Stops the process. # If locked is True, the process array cannot be changed as it is already locked # by the caller, so accessing it is safe def stopProcess(self, jobid, locked): pprint.pprint("STOP job"+str(jobid)) if not locked: self.lock.acquire() for p in self.processes: if p.jobid == jobid: p.terminate() if not locked: self.lock.release() return def updateJob(self, jobid, status): con = None try: con = sqlite3.connect('db/database.db') cur = con.cursor() cur.execute('UPDATE jobs SET status = ? WHERE id=?', [status, jobid]) con.commit() except sqlite3.Error, e: print "Error %s:" % e.args[0] sys.exit(1) finally: if con: con.close() def getJob(self, jobid): con = None try: con = sqlite3.connect('db/database.db') cur = con.cursor() cur.execute('select * from jobs WHERE id=?', [jobid]) rv = [dict((cur.description[idx][0], value) for idx, value in enumerate(row)) for row in cur.fetchall()] return rv[0]; except sqlite3.Error, e: print "Error %s:" % e.args[0] sys.exit(1) finally: if con: con.close()
import matplotlib.pyplot as plt from matplotlib import pyplot as plt import numpy as np #%matplotlib inline import random dados1 = random.sample(range(100), k=20) dados2 = random.sample(range(100), k=20) print(dados1) print(dados2) plt.plot(dados1, dados2) print(plt.plot(dados1, dados2)) fig, ax = plt.subplots(1,2, figsize=(12, 5)) x = range(5) print(np.array(x)) print(fig) x = np.array(x) print(x**3) print("Tipo de ax = ", type(ax)) print("Conteúdo de ax[0] = ", ax[0]) print("Conteúdo de ax[1] = ", ax[1]) ax[0].plot(x, x, label='eq_1') # cria gráfico sobre eixo 0 ax[0].plot(x, x**2, label='eq_2') # cria gráfico sobre eixo 0 ax[0].plot(x, x**3, label='eq_3') # cria gráfico sobre eixo 0 ax[0].set_xlabel('Eixo x') #nomeia o gráfico para o eixo x ax[0].set_ylabel('Eixo y') # nomeia o gráfico para o eixo y ax[0].set_title("Gráfico 1") # titulo para o gráfico ax[0].legend()
__author__ = 'casper'
# Time: O(|V| + |E|) # Space: O(|V| + |E|) # graph, dfs, bfs class Solution(object): def distanceToCycle(self, n, edges): """ :type n: int :type edges: List[List[int]] :rtype: List[int] """ def cycle(parent, v, u): result = [parent[v], v] while u != parent[v]: result.append(u) u = parent[u] return result def iter_dfs(adj): stk = [0] parent = [-2]*len(adj) parent[0] = -1 while stk: u = stk.pop() for v in reversed(adj[u]): if parent[v] != -2: if v == parent[u]: continue return cycle(parent, v, u) parent[v] = u stk.append(v) def bfs(adj, q): result = [-1]*n for x in q: result[x] = 0 d = 1 while q: new_q = [] for u in q: for v in adj[u]: if result[v] != -1: continue result[v] = d new_q.append(v) q = new_q d += 1 return result adj = [[] for _ in xrange(n)] for u, v in edges: adj[u].append(v) adj[v].append(u) return bfs(adj, iter_dfs(adj))