content
stringlengths
5
1.05M
from pathlib import Path from ...graphs import Graph003 from ...utils import BaseGraphSystemTester from ....engine_input import SubprefixHijack from ....engine import BGPSimpleAS from ....engine import BGPAS from ....engine import ROVSimpleAS from ....engine import ROVAS class BaseFig2Tester(BaseGraphSystemTester): GraphInfoCls = Graph003 EngineInputCls = SubprefixHijack base_dir = Path(__file__).parent adopting_asns = [3, 4] class Test007Fig2BGPSimple(BaseFig2Tester): BaseASCls = BGPSimpleAS AdoptASCls = BGPSimpleAS class Test008Fig2BGP(BaseFig2Tester): BaseASCls = BGPAS AdoptASCls = BGPAS class Test009Fig2ROVSimple(BaseFig2Tester): BaseASCls = BGPSimpleAS AdoptASCls = ROVSimpleAS class Test010ROV(BaseFig2Tester): BaseASCls = BGPAS AdoptASCls = ROVAS
import subprocess as sub import sys import os import uuid import calendar import datetime import cPickle as pickle import shutil #input_file = open('/shrg1/wind/sw/STICS_data_processing/input_info/input_info.txt', 'r') input_file=open('/home/kploof/STICS_data_processing/input_info/input_info.txt', 'r') file_lines = input_file.readlines() input_file.close() batch_info = [x.strip('\n') for x in file_lines] #variables determined from batch info text file start_date = '' stop_date = '' ion_list = [] coincidence = '' save_dir = '/tmp/' wtdc_write_dir = '/shrg1/wind/LV2_development/v2/' ctr = 0 #handling input from text file for batch_line in batch_info: ctr = ctr + 1 if batch_line[0] == '#': continue elif 'ion list' in batch_line: if ion_list: print ('Input file has incorrect format') print ('Multiple ion lists provided') sys.exit(1) name_and_vars = batch_line.split(':') unfiltered_ion_list = name_and_vars[1] ion_list = [ion.strip() for ion in unfiltered_ion_list.split(',')] elif 'start date' in batch_line: if start_date: print ('Input file has incorrect format') print ('Multiple start dates provided') sys.exit(1) name_and_vars = batch_line.split(':') start_date = name_and_vars[1].strip() elif 'stop date' in batch_line: if stop_date: print ('Input file has incorrect format') print ('Multiple stop dates provided') sys.exit(1) name_and_vars = batch_line.split(':') stop_date = name_and_vars[1].strip() elif 'coincidence' in batch_line: if coincidence: print ('Input file has incorrect format') print ('Multiple coincidences provided') sys.exit(1) name_and_vars = batch_line.split(':') coincidence_full = name_and_vars[1].strip().lower() if coincidence_full == 'double': coincidence = '0' elif coincidence_full == 'triple': coincidence = '1' else: print ('Input file has incorrect format') print ('Coincidence must be either double or triple. Different method selected in input') sys.exit(1) else: print ('Invalid line (' + str(ctr) + ') in input file, skipping over') #make sure all necessary variables are included if not ion_list: print ('Input file has missing parameters') print ('Must provide ion list') sys.exit(1) if not start_date: print ('Input file has missing parameters') print ('Must provide start date') sys.exit(1) if not stop_date: print ('Input file has missing parameters') print ('Must provide stop date') sys.exit(1) if not coincidence: print ('Input file has missing parameters') print ('Must provide ion list') sys.exit(1) #create directories for run cur_time = datetime.datetime.now() cur_time_str = cur_time.isoformat() cur_date = str(cur_time_str.split('T')[0]) cur_date = cur_date[0:4]+cur_date[5:7]+cur_date[8:10] processing_year = start_date[0:4] salt = str(uuid.uuid4()) save_dir = save_dir + cur_date + '_' + processing_year + '_' + salt + '/' if not os.path.exists(save_dir): os.makedirs(save_dir) wtdc_write_dir = wtdc_write_dir + processing_year + '/' if not os.path.exists(wtdc_write_dir): os.makedirs(wtdc_write_dir) os.makedirs(wtdc_write_dir+'double_coincidence/') os.makedirs(wtdc_write_dir+'double_coincidence/qsub/') os.makedirs(wtdc_write_dir+'double_coincidence/AFM/') os.makedirs(wtdc_write_dir+'double_coincidence/AFM/msph/') os.makedirs(wtdc_write_dir+'double_coincidence/AFM/sw/') os.makedirs(wtdc_write_dir+'double_coincidence/AFM_plots/') os.makedirs(wtdc_write_dir+'double_coincidence/AFM_plots/msph/') os.makedirs(wtdc_write_dir+'double_coincidence/AFM_plots/sw/') os.makedirs(wtdc_write_dir+'double_coincidence/ERPA/') os.makedirs(wtdc_write_dir+'double_coincidence/ERPA/msph/') os.makedirs(wtdc_write_dir+'double_coincidence/ERPA/sw/') os.makedirs(wtdc_write_dir+'double_coincidence/ERPA_plots/') os.makedirs(wtdc_write_dir+'double_coincidence/ERPA_plots/msph/') os.makedirs(wtdc_write_dir+'double_coincidence/ERPA_plots/sw/') os.makedirs(wtdc_write_dir+'double_coincidence/moments/') os.makedirs(wtdc_write_dir+'double_coincidence/moments/msph/') os.makedirs(wtdc_write_dir+'double_coincidence/moments/sw/') os.makedirs(wtdc_write_dir+'double_coincidence/VDF/') os.makedirs(wtdc_write_dir+'double_coincidence/VDF/msph/') os.makedirs(wtdc_write_dir+'double_coincidence/VDF/sw/') os.makedirs(wtdc_write_dir+'double_coincidence/pha_dump/') os.makedirs(wtdc_write_dir+'triple_coincidence/') os.makedirs(wtdc_write_dir+'triple_coincidence/qsub/') os.makedirs(wtdc_write_dir+'triple_coincidence/AFM/') os.makedirs(wtdc_write_dir+'triple_coincidence/AFM/msph/') os.makedirs(wtdc_write_dir+'triple_coincidence/AFM/sw/') os.makedirs(wtdc_write_dir+'triple_coincidence/AFM_plots/') os.makedirs(wtdc_write_dir+'triple_coincidence/AFM_plots/msph/') os.makedirs(wtdc_write_dir+'triple_coincidence/AFM_plots/sw/') os.makedirs(wtdc_write_dir+'triple_coincidence/ERPA/') os.makedirs(wtdc_write_dir+'triple_coincidence/ERPA/msph/') os.makedirs(wtdc_write_dir+'triple_coincidence/ERPA/sw/') os.makedirs(wtdc_write_dir+'triple_coincidence/ERPA_plots/') os.makedirs(wtdc_write_dir+'triple_coincidence/ERPA_plots/msph/') os.makedirs(wtdc_write_dir+'triple_coincidence/ERPA_plots/sw/') os.makedirs(wtdc_write_dir+'triple_coincidence/moments/') os.makedirs(wtdc_write_dir+'triple_coincidence/moments/msph/') os.makedirs(wtdc_write_dir+'triple_coincidence/moments/sw/') os.makedirs(wtdc_write_dir+'triple_coincidence/VDF/') os.makedirs(wtdc_write_dir+'triple_coincidence/VDF/msph/') os.makedirs(wtdc_write_dir+'triple_coincidence/VDF/sw/') os.makedirs(wtdc_write_dir+'triple_coincidence/pha_dump/') #Specify Accumulation Time------------ # accum_time=30*60 #sec accum_time=3*60 #sec #Data type output options-------------- #0-counts, 1-PSD, 2-dJ/dE # data_type_list=['C','DF','dJ'] data_type_list=['DF'] #just PSD, this should the only one we have to run with new reprocessed output files data_type_dict=dict(C=0, DF=1, dJ=2) #Create moment files?----------- moment_toggle=1 #1= create file, 0=don't create #########################End of inputs############################### #preallocate list to store resultant filenames dateFile_list=[]; #Generate list of start and stop dates num_days=(datetime.date(int(stop_date[0:4]), int(stop_date[4:6]), int(stop_date[6:8])) - datetime.date(int(start_date[0:4]), int(start_date[4:6]), int(start_date[6:8])) ).days+1 count = num_days * len(ion_list) - 1 # 0 index so subtract 1 base = datetime.date(int(start_date[0:4]), int(start_date[4:6]), int(start_date[6:8])) date_list = [base + datetime.timedelta(days=x) for x in range(0, num_days)] #range cuts off last one string_list=[temp.strftime('%Y%m%d') for temp in date_list] year_month_day_list=string_list if coincidence[0] == '0': wtdc_write_dir = wtdc_write_dir + 'double_coincidence/' else: wtdc_write_dir = wtdc_write_dir + 'triple_coincidence/' for k in xrange(len(year_month_day_list)): for j in xrange(len(ion_list)): for i in xrange(len(data_type_list)): year_month_day=year_month_day_list[k] ion=ion_list[j] data_type=data_type_dict[data_type_list[i]] #open pipe to "driver.pl" so I can make an output file pipe=sub.Popen("/home/kploof/STICS_data_processing/scripts/batch_file_setup.pl", stdin=sub.PIPE, stdout=sub.PIPE, stderr=sub.PIPE) #setup piping pipe.stdin.write(ion+"\n") #select ion pipe.stdin.write(str(accum_time)+"\n") #select accumulation time pipe.stdin.write("0.0\n") #selection efficiency threshold pipe.stdin.write("0\n") #select dimensionality of data pipe.stdin.write(str(coincidence)+"\n") #select TOF binning #edited to TOF (was previous MOQ) Vishnu 10-06-2018 0 = double coincidence, 1 = triple coincidence pipe.stdin.write(str(data_type)+"\n") #select output data type if data_type == 1: #if data type set to PSD if moment_toggle: pipe.stdin.write("1\n") #toggle for moment file creation, only asked this if output data type =1 #set lower SW velocity bound to 0.0 pipe.stdin.write("0.0\n") #set lower bound for SW velocity filer, only asks this if moment file #create toggle is =1 else: pipe.stdin.write("0\n") pipe.stdin.write("/shrg1/wind/sw/wtdcLV2_Lite/SWE_Files/"+ year_month_day[0:4]+"_WIND_SWE_90Sec.dat"+"\n") #SWE data location #ex. -> ../SWE_Files/2000_WIND_SWE_90Sec.dat, access the "year" portion of the date string pipe.stdin.write(wtdc_write_dir + "\n") #data storage directory pipe.stdin.write("2\n") #time range input select pipe.stdin.write(year_month_day+"\n") #select day of year (yyyymmdd) pipe.stdin.close() #close off input to file while pipe.returncode is None: #this part seems to be included in online samples... pipe.poll() print(pipe.stdout.read()) print(pipe.stderr.read()) uniq_filename=('dateFile_'+year_month_day+'_'+ion+'_'+ data_type_list[i]+'_'+str(uuid.uuid4())+'.dat') shutil.move('dateFile.dat', save_dir+uniq_filename) #had to change from os.rename since wind is mounted, and python renaming from one file system to another is not allowed #want to save list of filenames generated dateFile_list.append(save_dir+uniq_filename) #save final list of file names save_name='driver_file_list' f1=open(save_dir+save_name+'.pkl', 'wb') pickle.dump(dateFile_list, f1) #save to file f1.close() #close file print '# of dateFiles produced = ' print str(len(dateFile_list)) count = len(dateFile_list) - 1 #save information for qsub to use count_file = open('/shrg1/wind/sw/STICS_data_processing/input_info/counts.txt', 'w+') count_file.write(str(count)) count_file.close() savedir_file = open('/shrg1/wind/sw/STICS_data_processing/input_info/input_dir.txt', 'w+') savedir_file.write(save_dir) savedir_file.close() wtdc_write_dir_file = open('/shrg1/wind/sw/STICS_data_processing/input_info/wtdc_write_dir.txt', 'w+') wtdc_write_dir_file.write(wtdc_write_dir) wtdc_write_dir_file.close() coincidence_file = open('/shrg1/wind/sw/STICS_data_processing/input_info/coincidence.txt', 'w+') coincidence_file.write(coincidence[0]) coincidence_file.close() year_file = open('/shrg1/wind/sw/STICS_data_processing/input_info/year.txt', 'w+') year_file.write(processing_year) year_file.close()
from CommonCode.convertJSONTOPb import ConvertJSONToPb from CommonCode.convertPbToJSON import ConvertPbToJSON from Services.sendPushNotificationService import SendPushNotificationService from protobuff import pushnotification_pb2 class SendPushNotificationHandler: @staticmethod def snedNotification(builder): service = SendPushNotificationService() m_converter = ConvertJSONToPb() m_convertPbtoJson = ConvertPbToJSON() builder = m_converter.converjsontoPBProper(response=builder, instanceType=pushnotification_pb2.PushNotificationRequestPb()) return m_convertPbtoJson.converPbtojson(service.sendNotification(pushNotificationRequestPb=builder))
#!/usr/bin/env python3 import argparse from aircrushcore.cms import compute_node, compute_node_collection, session_collection, task_instance_collection from aircrushcore.controller.configuration import AircrushConfig from aircrushcore.dag import Workload from aircrushcore.cms import * from aircrushcore.datacommons.data_commons import DataCommons from os.path import exists,dirname import os,sys import importlib import getpass #from operators import invoke_operator import datetime import ast import subprocess import argparse import socket aircrush=None crush_host=None args=None def ready(): #Sense readiness to do something return True def getOperatorClassDefinition(task_uuid:str): #This function uses the task uuid to load the associated operator module #and return a class defintion task = TaskCollection(cms_host=crush_host).get_one(task_uuid) #fetch task definition operator=task.field_operator #identify the operator to execute module=f"{task.field_operator}_operator" #build filename for dynamic load operator_module=importlib.import_module(f"operators.{module}") #dynamically import identified operator op_class=getattr(operator_module,operator) #get class defintion return op_class def getMyComputeNodeUUID(): cluster=aircrush.config['COMPUTE']['cluster'] account=aircrush.config['COMPUTE']['account'] working_dir=aircrush.config['COMPUTE']['working_directory'] #os.environ.get("SCRATCH") username=getpass.getuser() metadata={ "title":f"{cluster}/{username}", "field_host":cluster, "field_username":username, "field_password":"", "field_working_directory":working_dir, "cms_host":crush_host } cn_col = ComputeNodeCollection(cms_host=crush_host) matching_cn = cn_col.get(filter=f"&filter[field_username][value]={username}&filter[field_host][value]={cluster}") for match in matching_cn: metadata['uuid']=match break n = ComputeNode(metadata=metadata) nuid=n.upsert() return nuid def pullContainer(uri:str): #return "requirements.txt" ##TODO if (args.container): return args.container container_dir=aircrush.config['COMPUTE']['singularity_container_location'] sif = f"{container_dir}/{uri[uri.rfind('/')+1:len(uri)].replace(':','_')}.sif" if os.path.isfile(sif): print(f"Container exists - will not overwrite ({sif})") return sif cmdArray=["singularity","pull","--dir",container_dir,uri] print(cmdArray) ret = subprocess.call(cmdArray) if not os.path.isfile(sif): raise Exception(f"Failed to pull container specified. {sif} not found") return sif def pull_source_data(project,subject,session): wd=aircrush.config['COMPUTE']['working_directory'] datacommons=aircrush.config['COMPUTE']['commons_path'] #Test if we are on an HCP node, use sbatch to perform rsync if so root=f"/projects/{project.field_path_to_exam_data}/datasets/source" #If none of the if statements below match, the entire source will be cloned print(f"start root:{datacommons}/{root}") if os.path.isdir(f"{datacommons}/{root}/{subject.title}"): root=f"{root}/{subject.title}" if os.path.isdir(f"{datacommons}/{root}/{session.title}"): root=f"{datacommons}/{root}/{session.title}" if os.path.isdir(f"{datacommons}/{root}/sub-{subject.title}"): root=f"{root}/sub-{subject.title}" if os.path.isdir(f"{datacommons}/{root}/ses-{session.title}"): root=f"{root}/ses-{session.title}" print(f"new root: {root}") source_session_dir=f"{datacommons}/{root}" target_session_dir=f"{wd}/{root}" # if os.path.isdir(target_session_dir): # #It's already there, ignore quietly # print(f"{target_session_dir} Already exists") # return # else: print(f"Cloning ({source_session_dir}) to local working directory ({target_session_dir})") os.makedirs(target_session_dir,exist_ok=True) # ret = subprocess.getstatusoutput("which sbatch") # if ret[0]==0: # print("sbatch exists, starting asynchronous copy") # else: # print("SBATCH doesn't exist, performing synchronous copy") if not os.path.isdir(source_session_dir): raise Exception(f"Subject/session not found on data commons ({source_session_dir})") rsync_cmd=f"rsync -r {source_session_dir} {target_session_dir}" print(rsync_cmd) ret = subprocess.getstatusoutput(rsync_cmd) if ret[0]!=0: raise Exception(f"Failed to copy session directory: {ret[1]}") def pull_data(stage,project,subject,session): if stage=="source": pull_source_data(project,subject,session) else: wd=aircrush.config['COMPUTE']['working_directory'] ##Get the hostname of cluster hosting data commons for remote rsync ##user must have setup known_hosts for unattended rsync if aircrush.config['COMMONS']['data_transfer_node']: data_transfer_node=aircrush.config['COMMONS']['data_transfer_node'] if not data_transfer_node=="": if not data_transfer_node[-1]==":": #Add a colon to the end for rsync syntax if necessary data_transfer_node=f"{data_transfer_node}:" print(f"The data commons is found on another cluster {data_transfer_node} User must have setup unattended rsync using ssh-keygen for this process to be scheduled.") else: data_transfer_node="" datacommons=aircrush.config['COMMONS']['commons_path'] root=f"projects/{project.field_path_to_exam_data}/datasets/{stage}/sub-{subject.title}/ses-{session.title}/" source_session_dir=f"{data_transfer_node}{datacommons}/{root}" target_session_dir=f"{wd}/{root}" print(f"Cloning ({source_session_dir}) to local working directory ({target_session_dir})") os.makedirs(target_session_dir,exist_ok=True) print(f"DTN:[{data_transfer_node}]") if data_transfer_node=="": if not os.path.isdir(source_session_dir): raise Exception(f"Subject/session not found on data commons ({source_session_dir})") rsync_cmd=["rsync","-r",f"{source_session_dir}",f"{target_session_dir}"] ret,out = getstatusoutput(rsync_cmd) if ret!=0: raise Exception(f"Failed to copy session directory: {out}") def getstatusoutput(command): print(command) process = subprocess.Popen(command, stdout=subprocess.PIPE) out, _ = process.communicate() return (process.returncode, out) def push_data(stage,project,subject,session,**kwargs): if stage=="source": print("ERROR: Source data is read-only. It cannot be pushed back to the data commons") return else: wd=aircrush.config['COMPUTE']['working_directory'] ##Get the hostname of cluster hosting data commons for remote rsync ##user must have setup known_hosts for unattended rsync if aircrush.config['COMMONS']['data_transfer_node']: data_transfer_node=aircrush.config['COMMONS']['data_transfer_node'] if not data_transfer_node=="": if not data_transfer_node[-1]==":": #Add a colon to the end for rsync syntax if necessary data_transfer_node=f"{data_transfer_node}:" print(f"The data commons is found on another cluster {data_transfer_node} User must have setup unattended rsync using ssh-keygen for this process to be scheduled.") else: data_transfer_node="" datacommons=aircrush.config['COMMONS']['commons_path'] #Test if we are on an HCP node, use sbatch to perform rsync if so if stage=="derivatives": if "pipelines" in kwargs: pipelines=kwargs['pipelines'] for pipeline in pipelines: root=f"projects/{project.field_path_to_exam_data}/datasets/{pipeline.field_id}/{stage}/sub-{subject.title}/ses-{session.title}/" source_session_dir=f"{wd}/{root}" target_session_dir=f"{data_transfer_node}{datacommons}/{root}" print(f"Cloning ({source_session_dir}) back to data commons ({target_session_dir})") print(f"DTN:[{data_transfer_node}]") rsync_cmd=["rsync","-r",f"{source_session_dir}",f"{target_session_dir}"] ret,out = getstatusoutput(rsync_cmd) if ret!=0: raise Exception(f"Failed to copy session directory: {out}") else: raise Exception("WARNING: You attepted to return derivatives to the data commons but did not specify which pipelines.") else: root=f"projects/{project.field_path_to_exam_data}/datasets/{stage}/sub-{subject.title}/ses-{session.title}/" source_session_dir=f"{wd}/{root}" target_session_dir=f"{data_transfer_node}{datacommons}/{root}" print(f"Cloning ({source_session_dir}) back to data commons ({target_session_dir})") print(f"DTN:[{data_transfer_node}]") rsync_cmd=["rsync","-r",f"{source_session_dir}",f"{target_session_dir}"] ret,out = getstatusoutput(rsync_cmd) if ret!=0: raise Exception(f"Failed to copy session directory: {out}") def parameter_expansion(cmdArray,parms_to_add,**kwargs): project=None subject=None session=None workingdir="" datacommons="" pipeline="" if 'project' in kwargs: project=kwargs['project'] if 'subject' in kwargs: subject=kwargs['subject'] if 'session' in kwargs: session=kwargs['session'] if 'workingdir' in kwargs: workingdir=kwargs['workingdir'] if 'datacommons' in kwargs: datacommons=kwargs['datacommons'] if 'pipeline' in kwargs: pipeline=kwargs['pipeline'] for k in parms_to_add: parm= parms_to_add[k] parm = parm.replace("#workingdir",workingdir) parm = parm.replace("#datacommons",datacommons) parm = parm.replace("#pipeline",pipeline) parm = parm.replace("#subject",subject.title) parm = parm.replace("#session",session.title) parm = parm.replace('#project',project.field_path_to_exam_data) parm = parm.replace('#datasetdir',f"{workingdir}/projects/{project.field_path_to_exam_data}/datasets/") if not k[0:7]=="sbatch-": cmdArray.append(f"--{k}") cmdArray.append(parm) return cmdArray def ini_settings(): homedir=os.path.expanduser('~') crush_config=f"{homedir}/.crush.ini" if not os.path.isfile(crush_config): settings={} settings['REST']={} settings['COMPUTE']={} settings['COMMONS']={} print(f"Looks like this is your first time here. Let's get setup, settings will be stored in ~/.crush.ini") conf = open(crush_config, "w") settings['REST']['endpoint']=input("What is the URL of your Aircrush CMS [http://20.63.59/9/]:") if settings['REST']['endpoint'] == "": settings['REST']['endpoint']= "http://20.63.59.9/" settings['REST']['username']=input("Aircrush username:") while settings['REST']['username']=="": settings['REST']['username']=input("Aircrush username:") settings['REST']['password']=input("Aircrush password:") while settings['REST']['password']=="": settings['REST']['password']=input("Aircrush password:") hostname=os.environ.get("CC_CLUSTER") if hostname==None: hostname=socket.gethostname() settings['COMPUTE']['cluster']=input(f"Cluster name [{hostname}]") if settings['COMPUTE']['cluster']=="": settings['COMPUTE']['cluster']=hostname settings['COMPUTE']['account']=input("SLURM account to charge (e.g. def-username):") while settings['COMPUTE']['account']=="": settings['COMPUTE']['account']=input("SLURM account to charge (e.g. def-username):") scratch=os.environ.get("SCRATCH") if scratch==None: scratch="~/scratch" settings['COMPUTE']['working_directory']=input(f"Working directory for scratch [{scratch}/aircrush]:") if settings['COMPUTE']['working_directory']=="": settings['COMPUTE']['working_directory']=f"{scratch}/aircrush" os.makedirs(settings['COMPUTE']['working_directory']) settings['COMPUTE']['concurrency_limit']=input("Max concurrent jobs [10]:") if settings['COMPUTE']['concurrency_limit']=="": settings['COMPUTE']['concurrency_limit']=10 settings['COMPUTE']['seconds_between_failures']=input("Seconds to wait between failures[18000](default 5 hrs, providing time for mitigation):") if settings['COMPUTE']['seconds_between_failures']=="": settings['COMPUTE']['seconds_between_failures']=18000 settings['COMMONS']['commons_path']=input(f"Location of data commons. If DC is remote, provide path on that host. (e.g. ...[HERE]/projects/project-id/datasets/source):") while settings['COMMONS']['commons_path']=="": print("\thint: /home/username/projects/def-username/shared/") settings['COMMONS']['commons_path']=input(f"Location of data commons (e.g. ...[HERE]/projects/project-id/datasets/source):") settings['COMMONS']['data_tranfer_node']=input(f"Data transfer node of cluster hosting data commons (leave blank if the data commons is on this cluster):") settings['COMPUTE']['singularity_container_location']=input(f"Location for storing active singularity containers [{settings['COMMONS']['commons_path']}/code/containers]:") if settings['COMPUTE']['singularity_container_location']=="": settings['COMPUTE']['singularity_container_location']=f"{settings['COMMONS']['commons_path']}/code/containers" os.makedirs(settings['COMPUTE']['singularity_container_location']) print("Writing file") L = [ "[REST]\n", f"username={settings['REST']['username']}\n", f"password={settings['REST']['password']}\n", f"endpoint={settings['REST']['endpoint']}\n\n", "[COMPUTE]\n", f"cluster={settings['COMPUTE']['cluster']}\n", f"account={settings['COMPUTE']['account']}\n", f"working_directory={settings['COMPUTE']['working_directory']}\n", f"concurrency_limit={settings['COMPUTE']['concurrency_limit']}\n", f"seconds_between_failures={settings['COMPUTE']['seconds_between_failures']}\n" f"singularity_container_location={settings['COMPUTE']['singularity_container_location']}\n\n", "[COMMONS]\n", f"commons_path={settings['COMMONS']['commons_path']}\n", f"data_transfer_node={settings['COMMONS']['data_transfer_node']}\n" ] conf.writelines(L) conf.close() return AircrushConfig(crush_config) def createJob(cmdArray,parms_to_add,**kwargs): taskinstance_uid=kwargs['taskinstance_uid'] if 'taskinstance_uid' in kwargs else None project=kwargs['project'].field_path_to_exam_data if 'project' in kwargs else "" subject=kwargs['subject'].title if 'subject' in kwargs else "" session=kwargs['session'].title if 'session' in kwargs else "" workingdir=kwargs['workingdir'] if 'workingdir' in kwargs else aircrush.config['COMPUTE']['working_directory'] datacommons=kwargs['datacommons'] if 'datacommons' in kwargs else aircrush.config['COMPUTE']['commons_path'] pipeline=kwargs['pipeline'] if 'pipeline' in kwargs else "" sbatch_time = parms_to_add['sbatch-time'] if 'sbatch-time' in parms_to_add else "" sbatch_account = aircrush.config['COMPUTE']['account'] sbatch_cpus_per_task = parms_to_add['sbatch-cpus-per-task'] if 'sbatch-cpus-per-task' in parms_to_add else "" sbatch_mem_per_cpu = parms_to_add['sbatch-mem-per-cpu'] if 'sbatch-mem-per-cpu' in parms_to_add else "" if not os.path.exists(f"{workingdir}/jobs/{project}/{subject}"): os.makedirs(f"{workingdir}/jobs/{project}/{subject}") attempt=1 basefile=f"{workingdir}/jobs/{project}/{subject}/{session}_{taskinstance_uid}_{attempt}" while os.path.isfile(f"{basefile}.sl"): attempt+=1 basefile=f"{workingdir}/jobs/{project}/{subject}/{session}_{taskinstance_uid}_{attempt}" jobfile=f"{basefile}.sl" stdoutfile=f"{basefile}.out" stderrfile=f"{basefile}.err" conf = open(jobfile, "w") L = [ "#!/bin/bash", f"#SBATCH -e {stderrfile}", f"#SBATCH -o {stdoutfile}", f"#SBATCH --time {sbatch_time}" if not sbatch_time=="" else "", f"#SBATCH --account {sbatch_account}" if not sbatch_account=="" else "", f"#SBATCH --cpus-per-task {sbatch_cpus_per_task}" if not sbatch_cpus_per_task=="" else "", f"#SBATCH --mem-per-cpu {sbatch_mem_per_cpu}" if not sbatch_mem_per_cpu=="" else "", "module load singularity/3.8", ' '.join(cmdArray), ] job_script = '\n'.join(L) conf.write(job_script) conf.close() print(f"Slurm job written to {jobfile}") toreturn={} toreturn['jobfile']=jobfile toreturn['stdout']=stdoutfile toreturn['stderr']=stderrfile return toreturn def get_slurm_id(stdout:str): print(f"given {stdout}") lines=stdout.split('\n') if len(lines)>0: if lines[0][:20]=="Submitted batch job ": tokens=lines[0].split() jobid=tokens[-1] return jobid return 0 def get_seff_completion_state(stdout:str): lines=stdout.split('\n') for line in lines: if line[:6]=="State:": tokens=line.split() status=tokens[1] return status return None ########### PENDING # Job ID: 18982311 # Cluster: cedar # User/Group: dmattie/dmattie # State: PENDING # Cores: 1 # Efficiency not available for jobs in the PENDING state. return 'COMPLETED' def check_running_jobs(node_uuid): w=Workload(aircrush) tis =w.get_running_tasks(node_uuid) active_tis=len(tis) reviewed_tis=active_tis if active_tis>0: print(f"Checking for status on {active_tis} jobs thought to be running on this compute node.") for ti in tis: if tis[ti].field_jobid: #seff_cmd=f"/usr/bin/local/seff {tis[ti].field_jobid}" seff_cmd=['seff',f"{tis[ti].field_jobid}"] try: ret = subprocess.run(seff_cmd,stdout=subprocess.PIPE,stderr=subprocess.PIPE, universal_newlines=True,shell=True) # ret = subprocess.call(cmdArray) if ret.returncode==0: status=get_seff_completion_state(ret.stdout) if status=='COMPLETED': tis[ti].field_seff=ret.stdout if tis[ti].field_logfile and os.path.isfile(tis[ti].field_logfile): logfile = open(tis[ti].field_logfile,'r') log_contents = logfile.read() if len(log_contents)>2000: log_contents=f"log file has been truncated. see output log for complete detail\n\n{log_contents[-2000:]}" tis[ti].body=log_contents updateStatus(tis[ti],"completed") if status=='FAILED': if tis[ti].field_errorfile and os.path.isfile(tis[ti].field_errorfile): logfile = open(tis[ti].field_errorfile,'r') error_contents = logfile.read() if len(error_contents)>2000: error_contents=f"log file has been truncated. see error log for complete detail\n\n{error_contents[-2000:]}" tis[ti].field_errorlog=error_contents if not tis[ti].field_remaining_retries: tis[ti].field_remaining_retries=5 tis[ti].field_seff=ret.stdout updateStatus(tis[ti],"failed") else: if tis[ti]==0: tis[ti].field_seff=ret.stdout updateStatus(tis[ti],"halted","Too many failed retries. This job will not continue without manual intervention") else: tis[ti].field_remaining_retries-=1 tis[ti].field_seff=ret.stdout updateStatus(tis[ti],"failed") reviewed_tis=reviewed_tis-1 except Exception as e: print(f"Failed to execute seff, {e}") if reviewed_tis > 0: print(f"\t{reviewed_tis} jobs not accounted for") else: print("\tAll running jobs on this node accounted for and updated in CMS") def doSomething(): nuid = "4d065840-dd33-44dc-be97-623e7d743bce" #dmattie on narval #nuid = getMyComputeNodeUUID() # check_running_jobs(nuid) cascade_status_to_subject(nuid) if args.statusonly: return w=Workload(aircrush) #The list of things to do todo = w.get_next_task(node_uuid=nuid) #Do whatever the big brain tells us to do next if(todo): #Todo is a TaskInstance print("----------Got one-------------") task_col = TaskCollection(cms_host=crush_host) task = task_col.get_one(uuid=todo.field_task) #execute(operator=task.field_operator,params=task.field_parameters) #Invocation INFO messages=[] now = datetime.datetime.now() try: #updateStatus(todo,"running","","") messages.append(f"Invoking operator: {task.field_operator} =====================") messages.append(f"Current date and time: {str(now)}") session_col = SessionCollection(cms_host=crush_host) session = session_col.get_one(todo.field_associated_participant_ses) subject=None project=None if not session == None: subject = session.subject() if not subject == None: project = subject.project() container = pullContainer(task.field_singularity_container) workingdir=aircrush.config['COMPUTE']['working_directory'] datacommons=aircrush.config['COMMONS']['commons_path'] bindings="" if args.bind: mounts=args.bind.split() for mount in mounts: bindings=bindings+f"-B {mount} " cmdArray=["singularity","run","--app",task.field_operator,bindings,container] try: parms = ast.literal_eval(task.field_parameters) except: msg=f"Parameters for task {task.field_operator} are malformed. Expected valid JSON string:{task.field_parameters}" print(msg) sys.exit(1) # pullSession(project,subject,session) # pulldata print(f"Pulling any necessary data for operation") #pull_data("source",project,subject,session) pull_data("rawdata",project,subject,session) #pull_data("derivatives",project,subject,session) # # for k in parms: # if parms[k]=="source": # pull_data("source",project,subject,session) # if parms[k]=="rawdata": # pull_data("rawdata",project,subject,session) # if parms[k=="#erivatives": # pull_data("derivatives",project,subject,session) print("Performing Parameter Keyword Expansion") cmdArray = parameter_expansion(cmdArray,parms, datacommons=datacommons, workingdir=workingdir, project=project, subject=subject, session=session) #messages.append(f"cmdArray:{cmdArray}") print("Creating SLURM job") jobfiles = createJob(cmdArray,parms, datacommons=datacommons, workingdir=workingdir, project=project, subject=subject, session=session, taskinstance_uid=todo.uuid) sbatch_cmd=["sbatch",jobfiles['jobfile']] print(sbatch_cmd) ret = subprocess.run(sbatch_cmd,stdout=subprocess.PIPE,stderr=subprocess.PIPE, universal_newlines=True,shell=True) if ret.returncode==0: jobid=get_slurm_id(ret.stdout) print(f"SLURM assingned job id:{jobid}") if jobid!=0: todo.field_jobid=jobid todo.field_seff="" todo.field_errorfile=jobfiles['stderr'] todo.field_logfile=jobfiles['stdout'] if os.path.isfile(jobfiles['jobfile']): sbatch_contents_handle = open(jobfiles['jobfile'],'r') sbatch_contents = sbatch_contents_handle.read() messages.append(sbatch_contents) updateStatus(todo,"running",'<br/>\n'.join(messages),ret.stderr) else: messages.append(f"\nERROR: SLURM ID returned was unexpectedly 0.") updateStatus(todo,"failed",'<br/>\n'.join(messages),ret.stderr) else: updateStatus(todo,"failed",'<br/>\n'.join(messages),ret.stderr) except Exception as e: print(e) print("there") if hasattr(e, 'message'): new_errors=e.message else: new_errors=str(e) messages.append(f"Current date and time: {str(now)}") updateStatus(todo,"failed",'<br/>\n'.join(messages),new_errors) # op = invoke_operator(id=todo.uuid,cms_host=crush_host) #op_class = getOperatorClassDefinition(todo.field_task) #use the task UUID to determine which operator to use #op = op_class(id=todo.uuid,cms_host=crush_host) #instantiate it based on task instance # op.execute(aircrush) #Let's do this! else: print("Nothing to do.") # if(todo): #Todo is a TaskInstance # print("-----------------------") # op_class = getOperatorClassDefinition(todo.field_task) #use the task UUID to determine which operator to use # op = op_class(id=todo.uuid,cms_host=crush_host) #instantiate it based on task instance # op.execute(aircrush) #Let's do this! # else: # print("Nothing to do.") #def execute(operator:str,params:str):#**kwargs): def updateStatus(task_instance,status:str,detail:str="",new_errors:str=""): # Valid statuses ########################### # notstarted,running,failed,completed task_instance.field_status=status task_instance.body = detail task_instance.field_errorlog = new_errors print(f"Updating job status to CMS:{task_instance.field_jobid} ({task_instance.title}") uuid=task_instance.upsert() def cascade_status_to_subject(node_uuid): node_col=ComputeNodeCollection(cms_host=crush_host); node=node_col.get_one(uuid=node_uuid) attached_sessions=node.allocated_sessions() subjects_of_attached_sessions={} for session_uuid in attached_sessions: session=attached_sessions[session_uuid] count_running=0 count_failed=0 count_completed=0 count_notstarted=0 pipelines={} ti_col=TaskInstanceCollection(cms_host=crush_host,session=session.uuid) tis_for_session=ti_col.get() for ti in tis_for_session: if tis_for_session[ti].field_status=='completed': count_completed+=1 continue if tis_for_session[ti].field_status=='running': count_running+=1 continue if tis_for_session[ti].field_status=='failed': count_failed+=1 continue count_notstarted+=1 if ti.field_pipeline: pipelines[ti.field_pipeline]=ti.pipeline() session.field_status=derive_parent_status(count_failed,count_running,count_completed,count_notstarted) subject=session.subject() subjects_of_attached_sessions[subject.uuid]=subject project=subject.project() if session.field_status=='completed': push_data("rawdata",project,subject,session) push_data("derivatives",project,subject,session,pipelines=pipelines) session.field_responsible_compute_node=None #Free up a slot on compute node for more session.upsert() for subject in subjects_of_attached_sessions: count_running=0 count_failed=0 count_completed=0 count_notstarted=0 ses_col=SessionCollection(cms_host=crush_host,subject=subject) sessions_for_subject=ses_col.get() for sess in sessions_for_subject: if sessions_for_subject[sess].field_status=='completed': count_completed+=1 continue if sessions_for_subject[sess].field_status=='running': count_running+=1 continue if sessions_for_subject[sess].field_status=='failed': count_failed+=1 continue count_notstarted+=1 subjects_of_attached_sessions[subject].field_status=derive_parent_status(count_failed,count_running,count_completed,count_notstarted) subjects_of_attached_sessions[subject].upsert() def derive_parent_status(failed,running,completed,notstarted): if running>0: if failed>0: return "limping" if failed==0: return "running" if failed>0: if notstarted==0: return "failed" else: return "limping" if completed>0: if notstarted==0: return "completed" else: return "running" return "notstarted" def doSync(): dc=DataCommons(aircrush) dc.initialize() dc.SyncWithCMS() def purge(): endpoint = aircrush.config['REST']['endpoint'] yn = input(f"Are you sure you want to delete all task instance, sessions and subjects from {endpoint} ? [N|y]") if yn=='y' or yn=='Y': print("Purging task instances") ti_collection = TaskInstanceCollection(cms_host=crush_host) tis = ti_collection.get() print(f"\tfound {len(tis)} to delete") for ti in tis: tis[ti].delete() print("Purging Subjects") sub_collection=SubjectCollection(cms_host=crush_host) subjects = sub_collection.get() print(f"\tfound {len(subjects)} to delete") for sub in subjects: subjects[sub].delete() print("Purging sessions") ses_collection = SessionCollection(cms_host=crush_host) sessions = ses_collection.get() print(f"\tfound {len(sessions)} to delete") for ses in sessions: sessions[ses].delete() def main(): global aircrush,crush_host,args parser = argparse.ArgumentParser( description="CRUSH client command line utility. Start all tasks with this command") parser.add_argument('-sync',action='store_true', help="Synchronize subjects and exams in the data commons with the CMS") parser.add_argument('-container',action='store',type=str, help="Specify a local container to override whatever the pipeline task intends to use.") parser.add_argument('-purge',action='store_true', help='Permanently remove all task instances, sessions, and subjects from the CMS' ) parser.add_argument('-republish',action='store_true', help='For any objects in CMS that are unpublished, re-publish them if they probably should be') parser.add_argument('-bind',action='store',type=str, help='A comma separated list of directories that should be bound to the singularity container so files are accessible to the container') parser.add_argument('-statusonly',action='store_true', help="Update the status of running jobs, do not invoke more work") args = parser.parse_args() aircrush=ini_settings() try: crush_host=Host( endpoint=aircrush.config['REST']['endpoint'], username=aircrush.config['REST']['username'], password=aircrush.config['REST']['password'] ) except Exception as e: print("[ERROR] Unable to connect to CMS. Check host and settings found in ~/.crush.ini; in section [REST]. Is the CMS accessible?") print(e) sys.exit(1) try: os.putenv('AIRCRUSH_CONTAINERS',aircrush.config['COMPUTE']['singularity_container_location']) except: print("[ERROR] .ini setting now found; expected 'singularity_container_location' in section [COMPUTE]") sys.exit(1) if (args.sync): doSync() exit() if (args.purge): purge() exit() if ready(): doSomething() if __name__ == '__main__': main()
#!/usr/bin/env python # -*- coding: utf-8 -*- #Zenine #!/usr/bin/env python import urllib2 import sys import sqlite3 import cookielib from lxml import etree from bs4 import BeautifulSoup import time #coding changing reload(sys) #SQL_RESULT,数据库清洗SQL,还要一个模块未实现 #1.SELECT * FROM company58 WHERE email !='' AND LENGTH(PHONE_NO)==11 AND SUBSTR(PHONE_NO,1,1)=='1' #2.SELECT * FROM company58 WHERE email =='' AND LENGTH(PHONE_NO)==11 AND SUBSTR(PHONE_NO,1,1)=='1' #3.SELECT * FROM company58 WHERE not (LENGTH(PHONE_NO)==11 AND SUBSTR(PHONE_NO,1,1)=='1') and hr!="" #print sys.getdefaultencoding() sys.setdefaultencoding("utf-8") headers = {'User-Agent': '"Mozilla/5.0 (Windows NT 6.1; WOW64; rv:26.0) Gecko/20100101 Firefox/26.0"'} cookie = cookielib.CookieJar() opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookie)) #数据库名称及城市名称进行设置 city = "sh" database="HR_hunter_%s.db"%city conn = sqlite3.connect(database) #设置区# business_list={'zplvyoujiudian':'餐饮','jiazhengbaojiexin':'家政保洁/安保','meirongjianshen':'美容/美发','zpjiudian':'酒店/旅游','zpwentiyingshi':'娱乐/休闲','zpanmo':'保健按摩','zpjianshen':'运动健身','renli':'人事/行政/后勤','siji':'司机','zpguanli':'高级管理','yewu':'销售','kefu':'客服','zpshangwumaoyi':'贸易/采购','chaoshishangye':'超市/百货/零售','zptaobao':'淘宝职位','zpfangchan':'房产中介','shichang':'市场/媒介/公关','zpguanggao':'广告/会展/咨询','zpmeishu':'美术/设计/创意','zpshengchankaifa':'普工/技工','zpshengchan':'生产管理/研发','zpwuliucangchu':'物流/仓储','xiaofeipin':'服装/纺织/食品','zhikonganfang':'质控/安防','zpqiche':'汽车制造/服务','tech':'计算机/互联网/通信','zpjixieyiqi':'电子/电气','zpjixie':'机械/仪器仪表','zpfalvzixun':'法律','zhuanye':'教育培训','fanyizhaopin':'翻译','zpxiezuochuban':'编辑/出版/印刷','zpcaiwushenji':'财务/审计/统计','jinrongtouzi':'金融/银行/证券/投资','zpjinrongbaoxian':'保险','zpyiyuanyiliao':'医院/医疗/护理','zpzhiyao':'制药/生物工程','huanbao':'环保','zpfangchanjianzhu':'建筑','zpwuye':'物业管理','nonglinmuyu':'农/林/牧/渔业','zhaopin':'其他职位'} city_list = {'bj': '北京', 'sh': '上海', 'gz': '广州', 'sz': '深圳', 'nj': '南京', 'hz': '杭州', 'su': '苏州', 'tj': '天津', 'cq':'重庆', 'cd':'成都', 'wh':'武汉','qd':'青岛','wx':'无锡','dl':'大连'} def get_company(city ,business ,page): #电脑端爬取公司信息 url = "http://" + city + ".58.com/" + business + "/pn" + str(page) + "/?PGTID=0d30365b-0004-f8b5-cb93-88ed5156515e&ClickID=1" req = urllib2.Request(url, headers = headers) content = urllib2.urlopen(req, timeout=60).read() if isinstance(content, unicode): pass else: content = content.encode('utf-8') bsobj = BeautifulSoup(content, "lxml") company = bsobj.find_all(["a"], class_="fl") for each in company: company_name = each.get("title") company_url = each.get("href") for i in range(2, len(company_url)): if company_url[-i] == '/': company_id = company_url[-i+1: -1] break if company_name == None or company_id.isdigit() != True: continue save_company(city,company_name,company_id,company_url,business,page) # print company_url, company_id, company_name, get_info(company_id) def get_info(id): #返回手机端信息 url="http://qy.m.58.com/m_detail/"+str(id) req = urllib2.Request(url, headers=headers) content = urllib2.urlopen(req, timeout=60).read() # if isinstance(content, unicode): # pass # else: # content = content.encode('GBK') htmlSource = etree.HTML(content) #company_name=htmlSource.xpath("/html/body/div[1]/div[3]/h1")[0].text try: phone=htmlSource.xpath("/html/body/div[1]/div[5]/div/div[2]/dl/dd[1]/p/span[1]")[0].text hr=htmlSource.xpath("/html/body/div[1]/div[5]/div/div[2]/dl/dd[1]/p/span[2]")[0].text.encode('raw_unicode_escape') except Exception as e: print id return ["" ,"" ,""] try: email = htmlSource.xpath("/html/body/div[1]/div[5]/div/div[2]/dl/dd[2]")[0].text if email == "\r\n\t\t\t\t\t\t": email = "" except Exception as e: email = "" return [phone, hr, email] def save_company(city, company_name, company_id, company_url, business, page): #存数据库 sql_inq="select count(*) from company58 WHERE COMPANY_ID='" +company_id+"'" cu = conn.cursor() cu.execute(sql_inq) result = cu.fetchone() if result[0] : return [phone, hr, email]=get_info(company_id) sql_insert = "insert into company58(CITY,COMPANY_NAME,COMPANY_ID,COMPANY_URL,BUSINESS,PAGE,HR,PHONE_NO,EMAIL)values("\ + "'" + city + "'," + "'" + company_name + "'" + ",'" + str(company_id) + "','" + \ company_url + "','" + business_list[business]+ "','" +str(page) + "','"+str(hr)+"','"+phone+"','"+email+"')" cu.execute(sql_insert) conn.commit() time.sleep(1) def patch(): #补丁 sql_inq = "select * from company58 where HR='' Order by company_ID" cu = conn.cursor() cu.execute(sql_inq) result = cu.fetchall() length = len(result) count = 0 for i in range(length): try: [phone, hr, email] = get_info(result[i][6]) except Exception as e : print e, result[i][6] if hr == "": continue sql_update = "update company58 set HR= '" + hr + "', PHONE_NO= '" + phone + "', EMAIL= '" + email + "'WHERE COMPANY_ID= '" + result[i][6] + "'" cu.execute(sql_update) conn.commit() count += 1 print sql_update time.sleep(4) print "updated:" + str(count) + " all :" + str(length) # print result def patch2(): sql_inq = "select * from company58 where email like '% %' " cu = conn.cursor() cu.execute(sql_inq) result = cu.fetchall() length = len(result) for i in range(length): sql_update = "update company58 set EMAIL= '' WHERE COMPANY_ID= '" + result[i][6] + "'" cu.execute(sql_update) conn.commit() print str(length) + "EMAIL have been updated" for business in business_list: for page in range(1, 100): try: get_company(city, business, page) except urllib2.HTTPError, e: print('HTTPError: ', e.code, city, business, page,) except Exception as e: print e, city, business, page, patch() patch2() conn.close()
import argparse import json import os from tqdm import tqdm from experiment import * from results import MultipleResults from joblib.parallel import Parallel, delayed parser = None folder = None run_times = None random_seed = None def create_model(model_params): if 'ridge_model' in model_params: model_name = 'ridge_model' model = lambda : ridge_model(**model_params['ridge_model']) print(f"Using model: {model_name}") yield model, model_name def create_dataset(dataset_params): if 'make_regression' in dataset_params: data_name = "make_regression" print(f"Using dataset: {data_name}") dataset = lambda : get_synthetic_dataset(**dataset_params['make_regression']) yield dataset, data_name def single_model(dataset_params, model_params, params): print(f"Running single-model experiment") for dataset, data_name in create_dataset(dataset_params): X, y, _ = dataset() for model, model_name in create_model(model_params): for trial in tqdm(range(0, run_times)): save_to = f"{folder}/{data_name}/{trial}" os.makedirs(f"{save_to}", exist_ok=True) prepare_params = {k: params[k] for k in params.keys() & {'train_size'}} prepare_params.update({k: dataset_params[data_name][k] for k in dataset_params[data_name].keys() & {'use_log'}}) single_model_experiment(X, y, model, model_name=f"{save_to}/{model_name}", **prepare_params) def hidden_loop(dataset_params, model_params, params): print(f"Running hidden-loop experiment") for dataset, data_name in create_dataset(dataset_params): X, y, _ = dataset() for model, model_name in create_model(model_params): hle_results = MultipleResults(model_name, **HiddenLoopExperiment.default_state) def process_trial(trial): hle_local = MultipleResults(model_name, **HiddenLoopExperiment.default_state) hle = HiddenLoopExperiment(X, y, model, model_name) prepare_params = {k: params[k] for k in params.keys() & {'train_size', 'A'}} prepare_params.update({k: dataset_params[data_name][k] for k in dataset_params[data_name].keys() & {'use_log'}}) hle.prepare_data(**prepare_params) loop_params = {k: params[k] for k in params.keys() & {'adherence', 'usage', 'step'}} hle.run_experiment(**loop_params) hle_local.add_state(trial=trial, **vars(hle)) return hle_local results = Parallel(n_jobs=-1, verbose=10)(delayed(process_trial)(trial) for trial in range(0, run_times)) for hle_result in results: hle_results.add_results(**hle_result.get_state) target_folder = f"{folder}/{data_name}" os.makedirs(target_folder, exist_ok=True) hle_results.plot_multiple_results(target_folder, **HiddenLoopExperiment.default_figures) hle_results.save_state(f"{target_folder}") def init_random(random_seed): return init_random_state(random_seed) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("kind", type=str, help="Kind of experiment: single-model, hidden-loop") parser.add_argument("--params", type=str, help="A json string with experiment parameters") parser.add_argument("--model_params", type=str, help="A json string with model name and parameters") parser.add_argument("--folder", type=str, help="Save results to this folder", default="./results") parser.add_argument("--random_seed", type=int, help="Use the provided value to init the random state", default=42) parser.add_argument("--run_times", type=int, help="How many time to repeat the trial", default=1) parser.add_argument("--dataset", type=str, help="Name of the dataset ('boston') or json for make_regression", default='\"boston\"') args = parser.parse_args() model_str = args.model_params params_str = args.params dataset_str = args.dataset kind = args.kind folder = args.folder random_seed = args.random_seed run_times = args.run_times os.makedirs(folder, exist_ok=True) model_dict = json.loads(model_str) params_dict = json.loads(params_str) dataset_params = json.loads(dataset_str) init_random_state(random_seed) if kind == "single-model": single_model(dataset_params, model_dict, params_dict) elif kind == "hidden-loop": hidden_loop(dataset_params, model_dict, params_dict) else: parser.error("Unknown experiment kind: " + kind)
import unittest import os from DockerBuildSystem import DockerComposeTools from DockerFeed.Handlers.StackHandler import StackHandler from tests import TestUtilities class TestStackHandler(unittest.TestCase): def test_DeployRemove(self): handler: StackHandler = TestUtilities.CreateStackHandler() handler.Init() TestUtilities.AssertInfrastructureExists(True) handler.Deploy(['nginx_test']) TestUtilities.AssertStacksExists(["nginx_test"], True) handler.Remove(['nginx_test']) TestUtilities.AssertStacksExists(["nginx_test"], False) handler.Deploy(['nginx_test>=1.1.0']) TestUtilities.AssertStacksExists(["nginx_test"], True) handler.Remove(['nginx_test']) TestUtilities.AssertStacksExists(["nginx_test"], False) self.assertRaises(Exception, handler.Deploy, ['nginx_test>=2.1.0']) self.assertRaises(Exception, handler.Deploy, ['non_existent_nginx_test>=2.1.0']) def test_DeployOnlyValidStacks(self): handler: StackHandler = TestUtilities.CreateStackHandler(source="tests/invalidTestStacks", verifyStacksOnDeploy=True) handler.Init() TestUtilities.AssertInfrastructureExists(True) handler.Deploy(['nginx_test_invalid_config']) TestUtilities.AssertStacksExists(["nginx_test_invalid_config"], False) handler.Deploy(['nginx_test_invalid_secret']) TestUtilities.AssertStacksExists(["nginx_test_invalid_secret"], False) handler.Deploy(['nginx_test_invalid_volume']) TestUtilities.AssertStacksExists(["nginx_test_invalid_volume"], False) handler.Deploy(['nginx_test_invalid_port']) TestUtilities.AssertStacksExists(["nginx_test_invalid_port"], False) def test_InitPrune(self): handler: StackHandler = TestUtilities.CreateStackHandler() handler.Init() TestUtilities.AssertInfrastructureExists(True) handler.Deploy() TestUtilities.AssertStacksExists(['nginx_test'], True) handler.Prune() TestUtilities.AssertStacksExists(['nginx_test'], False) stacks = handler.List() self.assertGreater(len(stacks), 0) TestUtilities.AssertStacksExists(stacks, False) def test_List(self): handler: StackHandler = TestUtilities.CreateStackHandler() stacks = handler.List() self.assertFalse('nginx_test==1.0.0' in stacks) self.assertFalse('nginx_test==1.1.0' in stacks) self.assertTrue('nginx_test==1.1.1' in stacks) self.assertTrue('nginx_test_digest==1.1.0' in stacks) stacks = handler.List(['nginx_test>1.0.0']) self.assertFalse('nginx_test==1.0.0' in stacks) self.assertFalse('nginx_test==1.1.0' in stacks) self.assertTrue('nginx_test==1.1.1' in stacks) def test_Verify(self): handler: StackHandler = TestUtilities.CreateStackHandler() self.assertFalse(handler.Verify()) self.assertTrue(handler.Verify(['nginx_test_digest'])) def test_Run(self): DockerComposeTools.DockerComposeBuild(["tests/testBatchStacks/docker-compose.batch.1.0.0.yml"]) handler: StackHandler = TestUtilities.CreateStackHandler(source="tests/testBatchStacks", swmInfrastructureFiles=["tests/testBatchStacks/swarm.management,yml"]) handler.Init() os.environ['SHOULD_FAIL'] = 'false' self.assertTrue(handler.Run()) os.environ['SHOULD_FAIL'] = 'true' self.assertFalse(handler.Run(['batch==1.0.0'])) if __name__ == '__main__': unittest.main()
import h5py import numpy as np import matplotlib.pyplot as plt original_results = '../output/cell_vars.h5' def plot_figs(nrn_results=None): orig_h5 = h5py.File(original_results, 'r') new_h5 = h5py.File(nrn_results, 'r') gids = np.array(new_h5['/mapping/gids']) indx_ptrs = np.array(new_h5['/mapping/index_pointer']) for plot_num, (gid, indx) in enumerate(zip(gids, indx_ptrs)): new_voltage = np.array(new_h5['/v/data']) if len(new_h5['/v/data'].shape) == 1 else np.array(new_h5['/v/data'][:, indx]) orig_voltage = np.array(orig_h5['/v/data'][:, gid]) plt.subplot(1, 1, 1) times = np.linspace(0.0, 4000.0, len(orig_voltage)) plt.plot(times, new_voltage[1:], label='NEURON') plt.plot(times, orig_voltage, label='AIBS') plt.legend() plt.title('gid = {}'.format(gid)) plt.show() #plot_figs('cellvar_gid0_472363762_Scnn1a.h5') #plot_figs('cellvar_gid1_473863510_Rorb.h5') #plot_figs('cellvar_gid2_473863035_Nr5a1.h5') #plot_figs('cellvar_gid3_472912177_PV1.h5') plot_figs('cellvar_gid4_473862421_PV2.h5')
import setuptools with open("README.md", "rb") as fh: long_description = fh.read().decode('utf-8') setuptools.setup( name="packel", version="1.0.1", author="kiwec", author_email="c.wolf@kiwec.net", description="Packet serialization/deserialization in a Pythonic way.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/kiwec/packel", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: Public Domain", "Operating System :: OS Independent", "Topic :: Software Development :: Libraries :: Python Modules", ], )
class RemovedInWagtailMenus31Warning(DeprecationWarning): pass removed_in_next_version_warning = RemovedInWagtailMenus31Warning class RemovedInWagtailMenus32Warning(PendingDeprecationWarning): pass class RemovedInWagtailMenus33Warning(PendingDeprecationWarning): pass
## Copyright (c) Microsoft Corporation. ## Licensed under the MIT License. # empty __init__.py file to allow this directory to be imported from elsewhere
import datetime import re import gws import gws.tools.misc import gws.types as t _default_editor = { t.AttributeType.bool: 'checkbox', t.AttributeType.bytes: 'file', t.AttributeType.date: 'date', t.AttributeType.datetime: 'datetime', t.AttributeType.float: 'float', t.AttributeType.geometry: '', t.AttributeType.int: 'int', t.AttributeType.intlist: 'list', t.AttributeType.str: 'str', t.AttributeType.text: 'text', t.AttributeType.time: 'time', } #:export class ModelEditor(t.Data): accept: t.Optional[str] items: t.Optional[t.Any] max: t.Optional[float] min: t.Optional[float] multiple: t.Optional[bool] pattern: t.Optional[str] type: str #:export class ModelRule(t.Data): """Attribute conversion rule""" editable: bool = True #: attribute is editable editor: t.Optional[ModelEditor] expression: str = '' #: attribute conversion expression format: t.FormatStr = '' #: attribute formatter name: str = '' #: target attribute name source: str = '' #: source attribute name title: str = '' #: target attribute title type: t.AttributeType = 'str' #: target attribute type value: t.Optional[str] #: constant value class Config(t.Config): """Data model""" crs: t.Optional[t.Crs] #: CRS for this model geometryType: t.Optional[t.GeometryType] #: specific geometry type rules: t.List[ModelRule] #: attribute conversion rules class ModelRuleProps(t.Props): editable: bool editor: ModelEditor name: str title: str type: str class ModelProps(t.Props): geometryType: str crs: str rules: t.List[ModelRuleProps] #:export IModel class Object(gws.Object, t.IModel): def configure(self): super().configure() p = self.var('rules', default=[]) self.rules: t.List[t.ModelRule] = [self._configure_rule(r) for r in p] self.geometry_type: t.GeometryType = self.var('geometryType') self.geometry_crs: t.Crs = self.var('crs') @property def props(self): return ModelProps( rules=[ ModelRuleProps( name=r.name, editable=r.editable, editor=r.editor, title=r.title, type=r.type, ) for r in self.rules ], geometryType=self.geometry_type, crs=self.geometry_crs, ) def apply(self, atts: t.List[t.Attribute]) -> t.List[t.Attribute]: return self.apply_to_dict({a.name: a.value for a in atts}) def apply_to_dict(self, d: dict) -> t.List[t.Attribute]: return [t.Attribute( title=r.title, name=r.name, value=self._apply_rule(r, d), type=r.type, editable=r.editable, ) for r in self.rules] @property def attribute_names(self) -> t.List[str]: """List of attributes used by the model.""" names = set() for r in self.rules: if r.get('value'): continue if r.get('source'): names.add(r.source) continue if r.get('format'): names.update(re.findall(r'{([\w.]+)', r.format)) continue names.add(r.name) return sorted(names) def _apply_rule(self, rule: t.ModelRule, d: dict): s = rule.get('value') if s is not None: return s s = rule.get('source') if s: # @TODO if rule.get('type') == 'bytes': return None return d.get(s) s = rule.get('format') if s: if '{' not in s: return s return gws.tools.misc.format_placeholders(s, d) # no value/source/format present - return values[name] return d.get(rule.name, '') def _configure_rule(self, r): rule = t.ModelRule(r) name = rule.get('name') title = rule.get('title') if not name: name = gws.as_uid(title) if title else rule.get('source') if not name: raise gws.Error('missing attribute name') rule.name = name rule.title = title or name rule.type = rule.get('type') or t.AttributeType.str if not rule.editor: rule.editor = ModelEditor(type=_default_editor.get(rule.type, 'str')) return rule
from unittest.mock import patch from django.core.management import call_command from django.db.utils import OperationalError from django.test import TestCase import sys # to write the output while running unit tests class CommandTests(TestCase): def test_wait_for_db_ready(self): """Test waiting for db when db is not available""" # override the behavior of the ConnectionHandler # use patch to mock the ConnectionHandler with patch('django.db.utils.ConnectionHandler.__getitem__') as gi: # the __getitem__ is actually called when you retrieve the database # mock the __getitem__ using patch and assign as a variable 'gi' # during the test the mock item will override django behavior and # replace with mock object which will return value 'True' and allow # to monitor how many times the command was called gi.return_value = True call_command('wait_for_db') # testing the command 'wait_for_db' self.assertEqual(gi.call_count, 1) # testing the command is called # once sys.stderr.write(repr('test 1 is done') + '\n') @patch('time.sleep', return_value=True) # in the test it won't wait the # seconds, rather speed up the test by replacing the behavior of time.sleep # this code does the same as line 14, and it would pass in as an argument # to test_wait_for_db function, that is why we use 'ts' even though we are # not using it in the test def test_wait_for_db(self, ts): """test waiting for db""" # the number is 6 is used to make it reseasonable in realtime execution # any number higher than 1 can be used here with patch('django.db.utils.ConnectionHandler.__getitem__') as gi: # 5 times raise the operational error, and the 6th time doesn't gi.side_effect = [OperationalError] * 5 + [True] call_command('wait_for_db') self.assertEqual(gi.call_count, 6) sys.stderr.write(repr('test 2 is done') + '\n')
from .__main__ import FFTTransform __all__ = [ 'FFTTransform' ]
import argparse import json from . import categories, category, palette, search def main() -> int: parser = argparse.ArgumentParser( description='Search for emoji information') group = parser.add_mutually_exclusive_group() group.add_argument('--search', type=str, required=False, default="", help='Emoji to search for') group.add_argument('--category', type=str, required=False, default="", help='Category to get list of emojis') group.add_argument('--categories', required=False, action='store_true', default=False, help='Get list of emoji categories') group.add_argument('--palette', required=False, action='store_true', default=False, help='Get JSON object of all categories and their emojis') args = parser.parse_args() if args.search: print(json.dumps(dict(search(args.search)), ensure_ascii=False)) elif args.category: print(category(args.category)) elif args.palette: print(json.dumps(dict(palette()), ensure_ascii=False)) elif args.categories: print(categories) else: parser.error("Invalid command") return 1 return 0 if __name__ == "__main__": exit(main())
from app.main import db import jwt from app.main.models.ChallengesModel import ChallengesModel from app.main.models.TestCasesModel import TestCasesModel import json def save_changes(data): try: db.session.add(data) db.session.commit() except Exception as e: db.session.rollback() def change(row): row = dict(row) row["created_at"] = str(row["created_at"]) return row def get_all_challenge(): challenges = db.engine.execute( "select challenges.challenge_name,challenges.id, count(test_cases.id) as count from challenges join test_cases on challenges.id=test_cases.challenge_id group by challenges.id") # print(challenges.created_at) challenges = [dict(row) for row in challenges] return { "challenges": challenges } def get_contest_challenge(): print("helllo")
import numpy as np from progress.bar import Bar import time from constants import MAX_COLOR_VALUE def normalize(arr): """ Normalize a vector using numpy. Args: arr(darray): Input vector Returns: darray: Normalized input vector """ norm = np.linalg.norm(arr) if norm == 0: return arr return arr / norm def distance(p1, p2): """ Get the distance between points p1 and p2 Args: p1(ndarray): Point 1 p2(ndarray): Point 2 Returns: float: Distance """ dist = np.linalg.norm(p1 - p2) return dist def humanize_time(secs): mins, secs = divmod(secs, 60) hours, mins = divmod(mins, 60) return '%02d:%02d:%02d' % (hours, mins, secs) def degrees2radians(degrees): return (degrees / 360) * 2 * np.pi def normalize_color(color): return color / MAX_COLOR_VALUE def blerp(img_arr, x, y): # Interpolate values of pixel neighborhood of x and y i = int(np.round(x)) j = int(np.round(y)) # But not in the borders height, width, _ = img_arr.shape # Flip y value to go from top to bottom y = height - y if i == 0 or j == 0 or i == width or j == height: if i == width: i -= 1 if j == height: j -= 1 return img_arr[j][i] # t and s are interpolation parameters that go from 0 to 1 t = x - i + 0.5 s = y - j + 0.5 # Bilinear interpolation color = ( img_arr[j - 1][i - 1] * (1 - t) * (1 - s) + img_arr[j - 1][i] * t * (1 - s) + img_arr[j][i - 1] * (1 - t) * s + img_arr[j][i] * t * s ) return color def adjust(normal_map_pixel): """ Adjust the normal map pixel so that it can have negative values. Args: normal_map_pixel(ndarray): Three channels RGB pixel representing a normal vector. Returns: ndarray: A ready to use unit normal vector """ r, g, b = normal_map_pixel # x and y will be from [-1 to 1] and z from [0 to 1] x = 2 * r - 1 y = 2 * g - 1 z = b normal_vector = np.array([x, y, z]) normalized = normalize(normal_vector) return normalized def progress_bar(iterations, msg): step_size = np.round(iterations / 100).astype(int) bar = Bar(msg, max=100, suffix='%(percent)d%%') return bar, step_size class Timer: def __init__(self): self.start_time = 0 self.end_time = 0 self.elapsed_time = 0 def start(self): self.start_time = time.time() def stop(self): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time def __str__(self): return humanize_time(self.elapsed_time)
# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train rednet30.""" import argparse import os import time import mindspore.nn as nn from mindspore import context from mindspore import dataset as ds from mindspore.context import ParallelMode from mindspore.communication.management import init, get_rank from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.common import set_seed from mindspore.train.model import Model from mindspore.train.loss_scale_manager import DynamicLossScaleManager from src.dataset import Dataset from src.model import REDNet30 def train_net(opt): """train""" device_id = int(os.getenv('DEVICE_ID', '0')) rank_id = int(os.getenv('RANK_ID', '0')) device_num = int(os.getenv('DEVICE_NUM', '1')) if opt.platform == "GPU": context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="GPU") else: context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend", device_id=device_id) # if distribute: if opt.is_distributed: init() rank_id = get_rank() context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, device_num=device_num, gradients_mean=True) # dataset print("============== Loading Data ==============") train_dataset = Dataset(opt.dataset_path, opt.patch_size) train_de_dataset = ds.GeneratorDataset(train_dataset, ["input", "label"], num_shards=device_num, shard_id=rank_id, shuffle=True) train_de_dataset = train_de_dataset.batch(opt.batch_size, drop_remainder=True) step_size = train_de_dataset.get_dataset_size() print("============== Loading Model ==============") model = REDNet30() optimizer = nn.Adam(model.trainable_params(), learning_rate=opt.lr) loss = nn.MSELoss() loss_scale_manager = DynamicLossScaleManager(init_loss_scale=opt.init_loss_scale, scale_window=1000) model = Model(model, loss_fn=loss, optimizer=optimizer, loss_scale_manager=loss_scale_manager, amp_level="O3") time_cb = TimeMonitor(data_size=step_size) loss_cb = LossMonitor() cb = [time_cb, loss_cb] config_ck = CheckpointConfig(keep_checkpoint_max=opt.ckpt_save_max) ckpt_cb = ModelCheckpoint(prefix='RedNet30_{}'.format(rank_id), directory=os.path.join("ckpt", 'ckpt_' + str(rank_id) + '/'), config=config_ck) cb += [ckpt_cb] print("============== Starting Training ==============") model.train(opt.num_epochs, train_de_dataset, callbacks=cb, dataset_sink_mode=True) print("================== Finished ==================") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--dataset_path', type=str, default='./data/BSD300', help='training image path') parser.add_argument('--platform', type=str, default='GPU', choices=('Ascend', 'GPU'), help='run platform') parser.add_argument('--is_distributed', type=bool, default=False, help='distributed training') parser.add_argument('--patch_size', type=int, default=50, help='training patch size') parser.add_argument('--batch_size', type=int, default=16, help='training batch size') parser.add_argument('--num_epochs', type=int, default=1000, help='epoch number') parser.add_argument('--lr', type=float, default=1e-4, help='learning rate') parser.add_argument('--seed', type=int, default=1, help='random seed') parser.add_argument('--ckpt_save_max', type=int, default=5, help='maximum number of checkpoint files can be saved') parser.add_argument('--init_loss_scale', type=float, default=65536., help='initialize loss scale') option = parser.parse_args() set_seed(option.seed) time_start = time.time() train_net(option) time_end = time.time() print('train time: %f' % (time_end - time_start))
#Test modwsgi. #Hello world test application to make sure modwsgi runs. Link from you apache file to here to test. def application(environ, start_response): status = '200 OK' output = 'Hello World!' #print >> sys.stderr, "sys.stderr" #print >> environ["wsgi.errors"], "wsgi.errors" response_headers = [('Content-type', 'text/plain'), ('Content-Length', str(len(output)))] start_response(status, response_headers) return [output]
import importlib import itertools from collections import namedtuple import pytest from dsch import exceptions, frontend, schema from dsch.backends import inmem backend_data = namedtuple('backend_data', ('module', 'storage_path')) @pytest.fixture(params=('hdf5', 'mat', 'npz')) def backend(request, tmpdir): backend = backend_data( module=importlib.import_module('dsch.backends.' + request.param), storage_path=str(tmpdir.join('test_frontend.' + request.param)) ) return backend @pytest.fixture(params=('hdf5', 'inmem', 'mat', 'npz')) def foreign_backend(request, tmpdir): if request.param == 'inmem': storage_path = '::inmem::' else: storage_path = str(tmpdir.join('test_frontend_foreign.' + request.param)) backend = backend_data( module=importlib.import_module('dsch.backends.' + request.param), storage_path=storage_path ) return backend def test_create(backend): schema_node = schema.Bool() storage = frontend.create(backend.storage_path, schema_node) assert isinstance(storage, backend.module.Storage) assert storage.schema_node == schema_node def test_create_inmem(): schema_node = schema.Bool() storage = frontend.create('::inmem::', schema_node) assert isinstance(storage, inmem.Storage) assert storage.schema_node == schema_node def test_create_from(backend, foreign_backend): schema_node = schema.Bool() source_storage = frontend.create(foreign_backend.storage_path, schema_node) source_storage.data.value = True dest_storage = frontend.create_from(backend.storage_path, source_storage) assert dest_storage.schema_node.hash() == source_storage.schema_node.hash() assert dest_storage.data.value is True def test_load(backend): schema_node = schema.Bool() storage = frontend.create(backend.storage_path, schema_node) storage.data.value = True storage.save() new_storage = frontend.load(backend.storage_path) assert isinstance(new_storage, backend.module.Storage) assert new_storage.data.value is True def test_load_require_schema(backend): schema_node = schema.Bool() storage = frontend.create(backend.storage_path, schema_node) storage.data.value = True storage.save() frontend.load(backend.storage_path, required_schema=schema_node) def test_load_required_schema_hash(backend): schema_node = schema.Bool() storage = frontend.create(backend.storage_path, schema_node) storage.data.value = True storage.save() schema_hash = storage.schema_hash() frontend.load(backend.storage_path, required_schema_hash=schema_hash) def test_load_validation_fail(backend): schema_node = schema.String(max_length=3) storage = frontend.create(backend.storage_path, schema_node) storage.data.value = 'spam' storage.save(force=True) with pytest.raises(exceptions.ValidationError): frontend.load(backend.storage_path) # With force=True, no exception must be raised. frontend.load(backend.storage_path, force=True) class TestPseudoStorageNode: """Tests for the PseudoStorage class when given a data node.""" @pytest.fixture def storage(self, foreign_backend): schema_node = schema.Compilation({ 'spam': schema.Bool(), 'eggs': schema.Bytes(), }) return frontend.create(foreign_backend.storage_path, schema_node) def test_context(self, storage): pseudo = frontend.PseudoStorage(storage.data.spam, schema.Bool(), True) with pseudo as p: assert p.data is not None assert p.storage is None assert pseudo.schema_node == storage.data.spam.schema_node assert pseudo.data is None assert pseudo.storage is None assert pseudo.schema_node is None def test_init(self, storage): pseudo = frontend.PseudoStorage(storage.data.spam, schema.Bool(), False) assert pseudo.data is not None assert pseudo.storage is None assert pseudo.schema_node is not None def test_init_deferred(self, storage): pseudo = frontend.PseudoStorage(storage.data.spam, schema.Bool(), True) assert pseudo.data is None assert pseudo.storage is None assert pseudo.schema_node is None def test_open_close(self, storage): pseudo = frontend.PseudoStorage(storage.data.spam, schema.Bool(), True) pseudo.open() assert pseudo.data is not None assert pseudo.storage is None assert pseudo.schema_node == storage.data.spam.schema_node pseudo.close() assert pseudo.data is None assert pseudo.storage is None assert pseudo.schema_node is None def test_open_fail(self, storage): pseudo = frontend.PseudoStorage(storage.data.spam, schema.Bytes(), True) with pytest.raises(exceptions.InvalidSchemaError): pseudo.open() def test_schema_alternative(self, storage): pseudo = frontend.PseudoStorage(storage.data.spam, schema.Bytes(), True, (schema.Bool(),)) pseudo.open() assert pseudo.schema_node == storage.data.spam.schema_node def test_schema_alternative_fail(self, storage): pseudo = frontend.PseudoStorage(storage.data.spam, schema.Bytes(), True, (schema.String(),)) with pytest.raises(exceptions.InvalidSchemaError): pseudo.open() class TestPseudoStorageStr: """Tests for the PseudoStorage class when given a string.""" @pytest.fixture(params=tuple( (b, e) for b, e in itertools.product( ('hdf5', '::inmem::', 'npz', 'mat'), (False, True) ) if not (b == '::inmem::' and e) )) def storage_path(self, request, tmpdir): """Prepare storage path for all valid variants. Variants are tuples ``(backend, existing)``, where ``existing`` indicates whether a storage should be created before the test. """ backend, existing = request.param if backend in ('hdf5', 'npz', 'mat'): # File backends storage_path = str(tmpdir.join('test_pseudo.' + backend)) elif backend == '::inmem::': storage_path = '::inmem::' if existing: storage = frontend.create(storage_path, schema.Bool()) storage.data.value = True if hasattr(storage, 'save') and callable(storage.save): storage.save() del storage return storage_path @pytest.fixture(params=('hdf5', 'npz', 'mat')) def storage_path_existing(self, request, tmpdir): storage_path = str(tmpdir.join('test_pseudo.' + request.param)) storage = frontend.create(storage_path, schema.Bool()) storage.data.value = True storage.save() del storage return storage_path def test_context(self, storage_path): pseudo = frontend.PseudoStorage(storage_path, schema.Bool(), True) with pseudo as p: assert p.data is not None assert p.storage is not None assert p.schema_node == p.storage.data.schema_node assert pseudo.data is None assert pseudo.storage is None assert pseudo.schema_node is None def test_init(self, storage_path): pseudo = frontend.PseudoStorage(storage_path, schema.Bool(), False) assert pseudo.data is not None assert pseudo.storage is not None assert pseudo.storage.storage_path == storage_path assert pseudo.schema_node is not None def test_init_deferred(self, storage_path): pseudo = frontend.PseudoStorage(storage_path, schema.Bool(), True) assert pseudo.data is None assert pseudo.storage is None assert pseudo.schema_node is None def test_open_close(self, storage_path): pseudo = frontend.PseudoStorage(storage_path, schema.Bool(), True) pseudo.open() assert pseudo.data is not None assert pseudo.storage is not None assert pseudo.schema_node == pseudo.storage.data.schema_node pseudo.close() assert pseudo.data is None assert pseudo.storage is None assert pseudo.schema_node is None def test_open_fail(self, storage_path_existing): pseudo = frontend.PseudoStorage(storage_path_existing, schema.Bytes(), True) with pytest.raises(exceptions.InvalidSchemaError): pseudo.open() def test_schema_alternative(self, storage_path_existing): pseudo = frontend.PseudoStorage(storage_path_existing, schema.Bytes(), True, (schema.Bool(),)) pseudo.open() assert pseudo.schema_node == pseudo.storage.data.schema_node def test_schema_alternative_fail(self, storage_path_existing): pseudo = frontend.PseudoStorage(storage_path_existing, schema.Bytes(), True, (schema.String(),)) with pytest.raises(exceptions.InvalidSchemaError): pseudo.open()
import importlib import subprocess import sys def _package_exists(config: dict) -> bool: """Check to see whether a package exists.""" try: importlib.import_module(config["import"]) except ModuleNotFoundError: return False return True def package_from_config(config: dict) -> str: """Given a config return the pip install string.""" install_str = config["url"] if install_str.endswith(".git"): install_str = install_str[:-4] install_branch = config.get("github_branch", "main") return f"git+{install_str}@{install_branch}#egg={config['import']}" def _install(package): """Install a package using pip.""" subprocess.check_call([sys.executable, "-m", "pip", "install", package]) def install_package(config: dict, allow_install: bool = False): """Install the python package if it doesn't exist.""" # now check to see whether the package exists if not _package_exists(config): package = package_from_config(config) if allow_install: _install(package) else: raise Exception( "Package does not exist. Try installing it with: \n" f"`!pip install -e {package}`" )
""" Autogenerated by ghenerate script, part of Quantarhei http://github.com/tmancal74/quantarhei Tomas Mancal, tmancal74@gmai.com Generated on: 2018-11-12 14:35:11 Edit the functions below to give them desired functionality. In present version of `ghenerate`, no edits or replacements are perfomed in the feature file text. """ import numpy from behave import given from behave import when from behave import then import quantarhei as qr # # Given ... # @given('that I have an aggregate of three molecules with no dephasing set') def step_given_1(context): """ Given that I have an aggregate of three molecules with no dephasing set """ agg = qr.TestAggregate("trimer-2") with qr.energy_units("1/cm"): agg.set_resonance_coupling(0,1, 100.0) agg.build() context.agg = agg # # When ... # @when('I ask the aggregate to return PureDephasing object') def step_when_2(context): """ When I ask the aggregate to return PureDephasing object """ agg = context.agg pd = agg.get_PureDephasing() context.pd = pd # # Then ... # @then('I get an empty PureDephasing object') def step_then_3(context): """ Then I get an empty PureDephasing object """ pd = context.pd agg = context.agg Ntot = agg.Ntot comp = numpy.zeros((Ntot,Ntot), dtype=qr.REAL) numpy.testing.assert_allclose(comp, pd.data) # # Given ... # @given('that I have an aggregate of three molecules with dephasing rates set') def step_given_4(context): """ Given that I have an aggregate of three molecules with dephasing rates set """ agg = qr.TestAggregate("trimer-2") for mol in agg.monomers: mol.set_transition_width((0,1), 1.0/100.0) with qr.energy_units("1/cm"): agg.set_resonance_coupling(0,1, 100.0) agg.build() context.agg = agg # # Then ... # @then('I get a PureDephasing object with some rates') def step_then_5(context): """ Then I get a PureDephasing object with some rates """ pd = context.pd agg = context.agg Ntot = agg.Ntot comp = numpy.zeros((Ntot,Ntot), dtype=qr.REAL) a1 = numpy.array(comp.shape) a2 = numpy.array(pd.data.shape) numpy.testing.assert_allclose(a1, a2) # # Given ... # @given('that I have an aggregate of two identical molecules with dephasing rates set') def step_given_6(context): """ Given that I have an aggregate of two identical molecules with dephasing rates set """ agg = qr.TestAggregate("homodimer-2") for mol in agg.monomers: mol.set_transition_width((0,1), 1.0/100.0) with qr.energy_units("1/cm"): agg.set_resonance_coupling(0,1, 100.0) agg.build() context.agg = agg # # Then ... # @then('I get a PureDephasing object with electronic dephasing rates equal to zero') def step_then_7(context): """ Then I get a PureDephasing object with electronic dephasing rates equal to zero """ pd = context.pd a1 = pd.data a2 = numpy.zeros(pd.data.shape, dtype=qr.REAL) a2[:,:] = a1 a2[1,2] = 0.0 a2[2,1] = 0.0 numpy.testing.assert_allclose(a1, a2) # # Given ... # @given('that I have an aggregate of two molecules with nuclear mode each and with electronic dephasing rates set') def step_given_8(context): """ Given that I have an aggregate of two molecules with nuclear mode each and with electronic dephasing rates set """ agg = qr.TestAggregate("dimer-2-vib") for mol in agg.monomers: mol.set_transition_width((0,1), 1.0/100.0) with qr.energy_units("1/cm"): agg.set_resonance_coupling(0,1, 100.0) agg.build() context.agg = agg
import csv import dateutil.parser import os import splparser.parser from user import * from query import * from logging import getLogger as get_logger from os import path from splparser.exceptions import SPLSyntaxError, TerminatingSPLSyntaxError BYTES_IN_MB = 1048576 LIMIT = 2000*BYTES_IN_MB logger = get_logger("queryutils") def get_users_from_file(filename, users): """Populate the users dictionary with users and their queris from the given file. :param filename: The .csv file containing user queries :type filename: str :param users: The user dict into which to place the users :type users: dict :rtype: None """ logger.debug("Reading from file:" + filename) first = True with open(filename) as datafile: reader = csv.DictReader(datafile) for row in reader: logger.debug("Attempting to read row.") # Get basic user information. username = row.get('user', None) if username is not None: username = unicode(username.decode("utf-8")) case = row.get('case_id', None) if case is not None: case = unicode(case.decode("utf-8")) # Check if we've seen this user before. user = None userhash = None if username is not None and case is not None: userhash = ".".join([username, case]) user = users.get(userhash, None) elif username is not None and case is None: userhash = username user = users.get(userhash, None) else: userhash = "" user = users.get(userhash, None) if user is None: user = User(username) users[userhash] = user user.case_id = case # Get basic query information. timestamp = row.get('_time', None) if timestamp is not None: timestamp = float(dateutil.parser.parse(timestamp).strftime('%s.%f')) querystring = row.get('search', None) if querystring is not None: querystring = unicode(querystring.decode("utf-8")).strip() # Tie the query and the user together. query = Query(querystring, timestamp) user.queries.append(query) query.user = user # Get additional query information and add it to the query. runtime = row.get('runtime', None) if runtime is None: runtime = row.get('total_run_time', None) if runtime is not None: try: runtime = float(runtime.decode("utf-8")) except: runtime = None query.execution_time = runtime search_et = row.get('search_et', None) if search_et is not None: try: search_et = float(search_et.decode("utf-8")) except: search_et = None query.earliest_event = search_et search_lt = row.get('search_lt', None) if search_lt is not None: try: search_lt = float(search_lt.decode("utf-8")) except: search_lt = None query.latest_event = search_lt range = row.get('range', None) if range is not None: try: range = float(range.decode("utf-8")) except: range = None query.range = range is_realtime = row.get('is_realtime', None) if is_realtime is not None and is_realtime == "false": is_realtime = False if is_realtime is not None and is_realtime == "true": is_realtime = True query.is_realtime = is_realtime searchtype = row.get('searchtype', None) if searchtype is None: searchtype = row.get('search_type', None) if searchtype is not None: searchtype = unicode(searchtype.decode("utf-8")) query.search_type = searchtype if query.search_type == "adhoc": query.is_interactive = True splunk_id = row.get('search_id', None) if splunk_id is not None: splunk_id = unicode(splunk_id.decode("utf-8")) query.splunk_search_id = splunk_id savedsearch_name = row.get('savedsearch_name', None) if savedsearch_name is not None: savedsearch_name = unicode(savedsearch_name.decode("utf-8")) query.saved_search_name = savedsearch_name logger.debug("Successfully read query.") def get_users_from_directory(directory, users, limit=LIMIT): """Populate the users dict with users from the .csv files. :param directory: The path to the directory containing the .csv files :type directory: str :param users: The dict to contain the users read from the .csv files :type users: dict :param limit: The approximate number of bytes to read in (for testing) :type limit: int :rtype: None """ raw_data_files = get_csv_files(directory, limit=limit) for f in raw_data_files: get_users_from_file(f, users) def get_csv_files(dir, limit=LIMIT): """Return the paths to all the .csv files in the given directory. :param dir: The path to the given directory :type dir: str :param limit: The approximate number of bytes to read in (for testing) :type limit: int :rtype: list """ csv_files = [] bytes_added = 0. for (dirpath, dirnames, filenames) in os.walk(dir): for filename in filenames: if filename[-4:] == '.csv': full_filename = path.join(path.abspath(dir), filename) csv_files.append(full_filename) bytes_added += path.getsize(full_filename) if bytes_added > limit: return csv_files return csv_files
#!/usr/bin/env python # -*- coding: utf-8 -*- import base64 import urllib import urlparse from saml2 import BINDING_HTTP_POST from saml2 import BINDING_HTTP_REDIRECT from saml2 import config from saml2 import class_name from saml2 import extension_elements_to_elements from saml2 import saml from saml2 import samlp from saml2 import sigver from saml2 import s_utils from saml2.assertion import Assertion from saml2.authn_context import INTERNETPROTOCOLPASSWORD from saml2.client import Saml2Client from saml2.config import SPConfig from saml2.response import LogoutResponse from saml2.saml import NAMEID_FORMAT_PERSISTENT, EncryptedAssertion from saml2.saml import NAMEID_FORMAT_TRANSIENT from saml2.saml import NameID from saml2.server import Server from saml2.sigver import pre_encryption_part, rm_xmltag from saml2.s_utils import do_attribute_statement from saml2.s_utils import factory from saml2.time_util import in_a_while from fakeIDP import FakeIDP from fakeIDP import unpack_form AUTHN = { "class_ref": INTERNETPROTOCOLPASSWORD, "authn_auth": "http://www.example.com/login" } def add_subelement(xmldoc, node_name, subelem): s = xmldoc.find(node_name) if s > 0: x = xmldoc.rindex("<", 0, s) tag = xmldoc[x+1:s-1] c = s+len(node_name) spaces = "" while xmldoc[c] == " ": spaces += " " c += 1 xmldoc = xmldoc.replace( "<%s:%s%s/>" % (tag, node_name, spaces), "<%s:%s%s>%s</%s:%s>" % (tag, node_name, spaces, subelem, tag, node_name)) return xmldoc def for_me(condition, me): for restriction in condition.audience_restriction: audience = restriction.audience if audience.text.strip() == me: return True def ava(attribute_statement): result = {} for attribute in attribute_statement.attribute: # Check name_format ?? name = attribute.name.strip() result[name] = [] for value in attribute.attribute_value: result[name].append(value.text.strip()) return result def _leq(l1, l2): return set(l1) == set(l2) # def test_parse_3(): # xml_response = open(XML_RESPONSE_FILE3).read() # response = samlp.response_from_string(xml_response) # client = Saml2Client({}) # (ava, name_id, real_uri) = \ # client.do_response(response, "xenosmilus.umdc.umu.se") # print 40*"=" # print ava # print 40*"," # print name_id # assert False REQ1 = {"1.2.14": """<?xml version='1.0' encoding='UTF-8'?> <ns0:AttributeQuery Destination="https://idp.example.com/idp/" ID="id1" IssueInstant="%s" Version="2.0" xmlns:ns0="urn:oasis:names:tc:SAML:2 .0:protocol"><ns1:Issuer Format="urn:oasis:names:tc:SAML:2 .0:nameid-format:entity" xmlns:ns1="urn:oasis:names:tc:SAML:2 .0:assertion">urn:mace:example.com:saml:roland:sp</ns1:Issuer><ns1:Subject xmlns:ns1="urn:oasis:names:tc:SAML:2.0:assertion"><ns1:NameID Format="urn:oasis:names:tc:SAML:2 .0:nameid-format:persistent">E8042FB4-4D5B-48C3-8E14-8EDD852790DD</ns1:NameID ></ns1:Subject></ns0:AttributeQuery>""", "1.2.16": """<?xml version='1.0' encoding='UTF-8'?> <ns0:AttributeQuery xmlns:ns0="urn:oasis:names:tc:SAML:2.0:protocol" xmlns:ns1="urn:oasis:names:tc:SAML:2.0:assertion" Destination="https://idp .example.com/idp/" ID="id1" IssueInstant="%s" Version="2.0"><ns1:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">urn:mace:example .com:saml:roland:sp</ns1:Issuer><ns1:Subject><ns1:NameID Format="urn:oasis:names:tc:SAML:2 .0:nameid-format:persistent">E8042FB4-4D5B-48C3-8E14-8EDD852790DD</ns1:NameID ></ns1:Subject></ns0:AttributeQuery>"""} nid = NameID(name_qualifier="foo", format=NAMEID_FORMAT_TRANSIENT, text="123456") class TestClient: def setup_class(self): self.server = Server("idp_conf") conf = config.SPConfig() conf.load_file("server_conf") self.client = Saml2Client(conf) def test_create_attribute_query1(self): req_id, req = self.client.create_attribute_query( "https://idp.example.com/idp/", "E8042FB4-4D5B-48C3-8E14-8EDD852790DD", format=saml.NAMEID_FORMAT_PERSISTENT, message_id="id1") reqstr = "%s" % req.to_string() assert req.destination == "https://idp.example.com/idp/" assert req.id == "id1" assert req.version == "2.0" subject = req.subject name_id = subject.name_id assert name_id.format == saml.NAMEID_FORMAT_PERSISTENT assert name_id.text == "E8042FB4-4D5B-48C3-8E14-8EDD852790DD" issuer = req.issuer assert issuer.text == "urn:mace:example.com:saml:roland:sp" attrq = samlp.attribute_query_from_string(reqstr) print attrq.keyswv() assert _leq(attrq.keyswv(), ['destination', 'subject', 'issue_instant', 'version', 'id', 'issuer']) assert attrq.destination == req.destination assert attrq.id == req.id assert attrq.version == req.version assert attrq.issuer.text == issuer.text assert attrq.issue_instant == req.issue_instant assert attrq.subject.name_id.format == name_id.format assert attrq.subject.name_id.text == name_id.text def test_create_attribute_query2(self): req_id, req = self.client.create_attribute_query( "https://idp.example.com/idp/", "E8042FB4-4D5B-48C3-8E14-8EDD852790DD", attribute={ ("urn:oid:2.5.4.42", "urn:oasis:names:tc:SAML:2.0:attrname-format:uri", "givenName"): None, ("urn:oid:2.5.4.4", "urn:oasis:names:tc:SAML:2.0:attrname-format:uri", "surname"): None, ("urn:oid:1.2.840.113549.1.9.1", "urn:oasis:names:tc:SAML:2.0:attrname-format:uri"): None, }, format=saml.NAMEID_FORMAT_PERSISTENT, message_id="id1") print req.to_string() assert req.destination == "https://idp.example.com/idp/" assert req.id == "id1" assert req.version == "2.0" subject = req.subject name_id = subject.name_id assert name_id.format == saml.NAMEID_FORMAT_PERSISTENT assert name_id.text == "E8042FB4-4D5B-48C3-8E14-8EDD852790DD" assert len(req.attribute) == 3 # one is givenName seen = [] for attribute in req.attribute: if attribute.name == "urn:oid:2.5.4.42": assert attribute.name_format == saml.NAME_FORMAT_URI assert attribute.friendly_name == "givenName" seen.append("givenName") elif attribute.name == "urn:oid:2.5.4.4": assert attribute.name_format == saml.NAME_FORMAT_URI assert attribute.friendly_name == "surname" seen.append("surname") elif attribute.name == "urn:oid:1.2.840.113549.1.9.1": assert attribute.name_format == saml.NAME_FORMAT_URI if getattr(attribute, "friendly_name"): assert False seen.append("email") assert _leq(seen, ["givenName", "surname", "email"]) def test_create_attribute_query_3(self): req_id, req = self.client.create_attribute_query( "https://aai-demo-idp.switch.ch/idp/shibboleth", "_e7b68a04488f715cda642fbdd90099f5", format=saml.NAMEID_FORMAT_TRANSIENT, message_id="id1") assert isinstance(req, samlp.AttributeQuery) assert req.destination == "https://aai-demo-idp.switch" \ ".ch/idp/shibboleth" assert req.id == "id1" assert req.version == "2.0" assert req.issue_instant assert req.issuer.text == "urn:mace:example.com:saml:roland:sp" nameid = req.subject.name_id assert nameid.format == saml.NAMEID_FORMAT_TRANSIENT assert nameid.text == "_e7b68a04488f715cda642fbdd90099f5" def test_create_auth_request_0(self): ar_str = "%s" % self.client.create_authn_request( "http://www.example.com/sso", message_id="id1")[1] ar = samlp.authn_request_from_string(ar_str) print ar assert ar.assertion_consumer_service_url == ("http://lingon.catalogix" ".se:8087/") assert ar.destination == "http://www.example.com/sso" assert ar.protocol_binding == BINDING_HTTP_POST assert ar.version == "2.0" assert ar.provider_name == "urn:mace:example.com:saml:roland:sp" assert ar.issuer.text == "urn:mace:example.com:saml:roland:sp" nid_policy = ar.name_id_policy assert nid_policy.allow_create == "false" assert nid_policy.format == saml.NAMEID_FORMAT_TRANSIENT def test_create_auth_request_vo(self): assert self.client.config.vorg.keys() == [ "urn:mace:example.com:it:tek"] ar_str = "%s" % self.client.create_authn_request( "http://www.example.com/sso", "urn:mace:example.com:it:tek", # vo nameid_format=NAMEID_FORMAT_PERSISTENT, message_id="666")[1] ar = samlp.authn_request_from_string(ar_str) print ar assert ar.id == "666" assert ar.assertion_consumer_service_url == "http://lingon.catalogix" \ ".se:8087/" assert ar.destination == "http://www.example.com/sso" assert ar.protocol_binding == BINDING_HTTP_POST assert ar.version == "2.0" assert ar.provider_name == "urn:mace:example.com:saml:roland:sp" assert ar.issuer.text == "urn:mace:example.com:saml:roland:sp" nid_policy = ar.name_id_policy assert nid_policy.allow_create == "false" assert nid_policy.format == saml.NAMEID_FORMAT_PERSISTENT assert nid_policy.sp_name_qualifier == "urn:mace:example.com:it:tek" def test_sign_auth_request_0(self): #print self.client.config req_id, areq = self.client.create_authn_request( "http://www.example.com/sso", sign=True, message_id="id1") ar_str = "%s" % areq ar = samlp.authn_request_from_string(ar_str) assert ar assert ar.signature assert ar.signature.signature_value signed_info = ar.signature.signed_info #print signed_info assert len(signed_info.reference) == 1 assert signed_info.reference[0].uri == "#id1" assert signed_info.reference[0].digest_value print "------------------------------------------------" try: assert self.client.sec.correctly_signed_authn_request( ar_str, self.client.config.xmlsec_binary, self.client.config.metadata) except Exception: # missing certificate self.client.sec.verify_signature(ar_str, node_name=class_name(ar)) def test_response(self): IDP = "urn:mace:example.com:saml:roland:idp" ava = {"givenName": ["Derek"], "sn": ["Jeter"], "mail": ["derek@nyy.mlb.com"], "title": ["The man"]} nameid_policy = samlp.NameIDPolicy(allow_create="false", format=saml.NAMEID_FORMAT_PERSISTENT) resp = self.server.create_authn_response( identity=ava, in_response_to="id1", destination="http://lingon.catalogix.se:8087/", sp_entity_id="urn:mace:example.com:saml:roland:sp", name_id_policy=nameid_policy, userid="foba0001@example.com", authn=AUTHN) resp_str = "%s" % resp resp_str = base64.encodestring(resp_str) authn_response = self.client.parse_authn_request_response( resp_str, BINDING_HTTP_POST, {"id1": "http://foo.example.com/service"}) assert authn_response is not None assert authn_response.issuer() == IDP assert authn_response.response.assertion[0].issuer.text == IDP session_info = authn_response.session_info() print session_info assert session_info["ava"] == {'mail': ['derek@nyy.mlb.com'], 'givenName': ['Derek'], 'sn': ['Jeter'], 'title': ["The man"]} assert session_info["issuer"] == IDP assert session_info["came_from"] == "http://foo.example.com/service" response = samlp.response_from_string(authn_response.xmlstr) assert response.destination == "http://lingon.catalogix.se:8087/" # One person in the cache assert len(self.client.users.subjects()) == 1 subject_id = self.client.users.subjects()[0] print "||||", self.client.users.get_info_from(subject_id, IDP) # The information I have about the subject comes from one source assert self.client.users.issuers_of_info(subject_id) == [IDP] # --- authenticate another person ava = {"givenName": ["Alfonson"], "sn": ["Soriano"], "mail": ["alfonson@chc.mlb.com"], "title": ["outfielder"]} resp_str = "%s" % self.server.create_authn_response( identity=ava, in_response_to="id2", destination="http://lingon.catalogix.se:8087/", sp_entity_id="urn:mace:example.com:saml:roland:sp", name_id_policy=nameid_policy, userid="also0001@example.com", authn=AUTHN) resp_str = base64.encodestring(resp_str) self.client.parse_authn_request_response( resp_str, BINDING_HTTP_POST, {"id2": "http://foo.example.com/service"}) # Two persons in the cache assert len(self.client.users.subjects()) == 2 issuers = [self.client.users.issuers_of_info(s) for s in self.client.users.subjects()] # The information I have about the subjects comes from the same source print issuers assert issuers == [[IDP], [IDP]] def test_init_values(self): entityid = self.client.config.entityid print entityid assert entityid == "urn:mace:example.com:saml:roland:sp" print self.client.metadata.with_descriptor("idpsso") location = self.client._sso_location() print location assert location == 'http://localhost:8088/sso' my_name = self.client._my_name() print my_name assert my_name == "urn:mace:example.com:saml:roland:sp" def test_sign_then_encrypt_assertion(self): # Begin with the IdPs side _sec = self.server.sec assertion = s_utils.assertion_factory( subject=factory(saml.Subject, text="_aaa", name_id=factory( saml.NameID, format=saml.NAMEID_FORMAT_TRANSIENT)), attribute_statement=do_attribute_statement( { ("", "", "surName"): ("Jeter", ""), ("", "", "givenName"): ("Derek", ""), } ), issuer=self.server._issuer(), ) assertion.signature = sigver.pre_signature_part( assertion.id, _sec.my_cert, 1) sigass = _sec.sign_statement(assertion, class_name(assertion), key_file="pki/mykey.pem", node_id=assertion.id) # Create an Assertion instance from the signed assertion _ass = saml.assertion_from_string(sigass) response = sigver.response_factory( in_response_to="_012345", destination="https:#www.example.com", status=s_utils.success_status_factory(), issuer=self.server._issuer(), assertion=_ass ) enctext = _sec.crypto.encrypt_assertion(response, _sec.cert_file, pre_encryption_part()) seresp = samlp.response_from_string(enctext) # Now over to the client side _csec = self.client.sec if seresp.encrypted_assertion: decr_text = _csec.decrypt(enctext) seresp = samlp.response_from_string(decr_text) resp_ass = [] sign_cert_file = "pki/mycert.pem" for enc_ass in seresp.encrypted_assertion: assers = extension_elements_to_elements( enc_ass.extension_elements, [saml, samlp]) for ass in assers: if ass.signature: if not _csec.verify_signature("%s" % ass, sign_cert_file, node_name=class_name(ass)): continue resp_ass.append(ass) seresp.assertion = resp_ass seresp.encrypted_assertion = None #print _sresp assert seresp.assertion def test_sign_then_encrypt_assertion2(self): # Begin with the IdPs side _sec = self.server.sec nameid_policy = samlp.NameIDPolicy(allow_create="false", format=saml.NAMEID_FORMAT_PERSISTENT) asser = Assertion({"givenName": "Derek", "sn": "Jeter"}) assertion = asser.construct( self.client.config.entityid, "_012345", "http://lingon.catalogix.se:8087/", factory(saml.NameID, format=saml.NAMEID_FORMAT_TRANSIENT), policy=self.server.config.getattr("policy", "idp"), issuer=self.server._issuer(), attrconvs=self.server.config.attribute_converters, authn_class=INTERNETPROTOCOLPASSWORD, authn_auth="http://www.example.com/login") assertion.signature = sigver.pre_signature_part( assertion.id, _sec.my_cert, 1) sigass = _sec.sign_statement(assertion, class_name(assertion), key_file=self.client.sec.key_file, node_id=assertion.id) sigass = rm_xmltag(sigass) response = sigver.response_factory( in_response_to="_012345", destination="https://www.example.com", status=s_utils.success_status_factory(), issuer=self.server._issuer(), encrypted_assertion=EncryptedAssertion() ) xmldoc = "%s" % response # strangely enough I get different tags if I run this test separately # or as part of a bunch of tests. xmldoc = add_subelement(xmldoc, "EncryptedAssertion", sigass) enctext = _sec.crypto.encrypt_assertion(xmldoc, _sec.cert_file, pre_encryption_part()) #seresp = samlp.response_from_string(enctext) resp_str = base64.encodestring(enctext) # Now over to the client side resp = self.client.parse_authn_request_response( resp_str, BINDING_HTTP_POST, {"_012345": "http://foo.example.com/service"}) #assert resp.encrypted_assertion == [] assert resp.assertion assert resp.ava == {'givenName': ['Derek'], 'sn': ['Jeter']} # Below can only be done with dummy Server IDP = "urn:mace:example.com:saml:roland:idp" class TestClientWithDummy(): def setup_class(self): self.server = FakeIDP("idp_all_conf") conf = SPConfig() conf.load_file("servera_conf") self.client = Saml2Client(conf) self.client.send = self.server.receive def test_do_authn(self): binding = BINDING_HTTP_REDIRECT response_binding = BINDING_HTTP_POST sid, http_args = self.client.prepare_for_authenticate( IDP, "http://www.example.com/relay_state", binding=binding, response_binding=response_binding) assert isinstance(sid, basestring) assert len(http_args) == 4 assert http_args["headers"][0][0] == "Location" assert http_args["data"] == [] redirect_url = http_args["headers"][0][1] _, _, _, _, qs, _ = urlparse.urlparse(redirect_url) qs_dict = urlparse.parse_qs(qs) req = self.server.parse_authn_request(qs_dict["SAMLRequest"][0], binding) resp_args = self.server.response_args(req.message, [response_binding]) assert resp_args["binding"] == response_binding def test_do_attribute_query(self): response = self.client.do_attribute_query( IDP, "_e7b68a04488f715cda642fbdd90099f5", attribute={"eduPersonAffiliation": None}, nameid_format=NAMEID_FORMAT_TRANSIENT) def test_logout_1(self): """ one IdP/AA logout from""" # information about the user from an IdP session_info = { "name_id": nid, "issuer": "urn:mace:example.com:saml:roland:idp", "not_on_or_after": in_a_while(minutes=15), "ava": { "givenName": "Anders", "surName": "Andersson", "mail": "anders.andersson@example.com" } } self.client.users.add_information_about_person(session_info) entity_ids = self.client.users.issuers_of_info(nid) assert entity_ids == ["urn:mace:example.com:saml:roland:idp"] resp = self.client.global_logout(nid, "Tired", in_a_while(minutes=5)) print resp assert resp assert len(resp) == 1 assert resp.keys() == entity_ids response = resp[entity_ids[0]] assert isinstance(response, LogoutResponse) def test_post_sso(self): binding = BINDING_HTTP_POST response_binding = BINDING_HTTP_POST sid, http_args = self.client.prepare_for_authenticate( "urn:mace:example.com:saml:roland:idp", relay_state="really", binding=binding, response_binding=response_binding) _dic = unpack_form(http_args["data"][3]) req = self.server.parse_authn_request(_dic["SAMLRequest"], binding) resp_args = self.server.response_args(req.message, [response_binding]) assert resp_args["binding"] == response_binding # Normally a response would now be sent back to the users web client # Here I fake what the client will do # create the form post http_args["data"] = urllib.urlencode(_dic) http_args["method"] = "POST" http_args["dummy"] = _dic["SAMLRequest"] http_args["headers"] = [('Content-type', 'application/x-www-form-urlencoded')] response = self.client.send(**http_args) print response.text _dic = unpack_form(response.text[3], "SAMLResponse") resp = self.client.parse_authn_request_response(_dic["SAMLResponse"], BINDING_HTTP_POST, {sid: "/"}) ac = resp.assertion.authn_statement[0].authn_context assert ac.authenticating_authority[0].text == \ 'http://www.example.com/login' assert ac.authn_context_class_ref.text == INTERNETPROTOCOLPASSWORD # if __name__ == "__main__": # tc = TestClient() # tc.setup_class() # tc.test_response() if __name__ == "__main__": tc = TestClientWithDummy() tc.setup_class() tc.test_do_attribute_query()
# https://colab.research.google.com/drive/16B56hyMC-apzhoYOjFnF--ejHUpS0f77?usp=sharing # -*- coding: utf-8 -*- """bigo.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/16B56hyMC-apzhoYOjFnF--ejHUpS0f77 # Big-O Notation: Plots The purpose of this notebook is to visualize the order of growth of some functions used frequently in the algorithm analysis. Note that this is an interactive notebook meaning that besides of just running all the code below you may also fool around with it. Try to plug in you favorite functions and/or change the ranges below and see what happens. Proceed by repeatedly clicking the Run button. To start over, select Kernel -> Restart and Clear Output. ## Definitions We start by reminding the definitions. Consider two functions $f(n)$ and $g(n)$ that are defined for all positive integers and take on non-negative real values. (Some frequently used functions used in algorithm design: $\log n$, $\sqrt{n}$, $n\log n$, $n^3$, $2^n$). We say that **$f$ grows slower than $g$** and write $f \prec g$, if $\frac{f(n)}{g(n)}$ goes to 0 as $n$ grows. We say that **$f$ grows no faster than $g$** and write $f \preceq g$, if there exists a constant $c$ such that $f(n) \le c \cdot g(n)$ for all $n$. Three important remarks. 1. $f \prec g$ is the same as $f=o(g)$ (small-o) and $f \preceq g$ is the same as $f=O(g)$ (big-O). In this notebook, we've decided to stick to the $\preceq$ notation, since many learners find this notation more intuitive. One source of confusion is the following: many learners are confused by the statement like "$5n^2=O(n^3)$". When seeing such a statement, they claim: "But this is wrong! In fact, $5n^2=O(n^2)$!" At the same time, both these statements are true: $5n^2=O(n^3)$ and also $5n^2=O(n^2)$. They both just say that $5n^2$ grows no faster than both $n^2$ and $n^3$. In fact, $5n^2$ grows no faster than $n^2$ and grows slower than $n^3$. In $\preceq$ notation, this is expressed as follows: $5n^2 \preceq n^2$ and $5n^2 \preceq n^3$. This resembles comparing integers: if $x=2$, then both statements $x \le 2$ and $x \le 3$ are correct. 2. Note that if $f \prec g$, then also $f \preceq g$. In plain English: if $f$ grows slower than $g$, then $f$ certainly grows no faster than $g$. 3. Note that we need to use a fancy $\preceq$ symbol instead of the standard less-or-equal sign $\le$, since the latter one is typically used as follows: $f \le g$ if $f(n) \le g(n)$ for all $n$. Hence, for example, $5n^2 \not \le n^2$, but $5n^2 \preceq n^2$. ## Plotting: two simple examples We start by loading two modules responsible for plotting. """ # Commented out IPython magic to ensure Python compatibility. # %matplotlib inline import matplotlib.pyplot as plt import numpy as np """Now, plotting a function is as easy as the following three lines of code. It shows the plot of a function $7n^2+6n+5$ in the range $1 \le n \le 100$. Note that the scale of the $y$-axis adjusts nicely.""" n = np.linspace(1, 100) plt.plot(n, 7 * n * n + 6 * n + 5) plt.show() """Now, let us add a function $20n$ to the previous example to visualize that $20n$ grows slower than $7n^2+6n+5$.""" n = np.linspace(1, 100) plt.plot(n, 7 * n * n + 6 * n + 5, label="7n^2+6n+5") plt.plot(n, 20 * n, label="20n") plt.legend(loc='upper left') plt.show() """## Common rules Before proceeding with visualizations, let's review the common rules of comparing the order of growth of functions arising frequently in algorithm analysis. 1. Multiplicative constants can be omitted: $c \cdot f \preceq f$. Examples: $5n^2 \preceq n^2$, $\frac{n^2}{3} \preceq n^2$. 2. Out of two polynomials, the one with larger degree grows faster: $n^a \preceq n^b$ for $0 \le a \le b$. Examples: $n \prec n^2$, $\sqrt{n} \prec n^{2/3}$, $n^2 \prec n^3$, $n^0 \prec \sqrt{n}$. 3. Any polynomial grows slower than any exponential: $n^a \prec b^n$ for $a \ge 0, b>1$. Examples: $n^3 \prec 2^n$, $n^{10} \prec 1.1^n$. 4. Any polylogarithm grows slower than any polynomial: $(\log n)^a \prec n^b$ for $a, b>0$. Examples: $(\log n)^3 \prec \sqrt{n}$, $n\log n \prec n^2$. 5. Smaller terms can be ommited: if $f \prec g$, then $f+g\preceq g$. Examples: $n^2+n \preceq n^2$, $2^n+n^9 \preceq 2^n$. ## Rule 5: Smaller terms can be omitted Consider $7n^2+6n+5$ again. Both $6n$ and $5$ grow slower than $7n^2$. For this reason, they can be omitted. To visualize this, let's first plot the functions $7n^2+6n+5$ and $7n^2$ for $1 \le n \le 5$. """ n = np.linspace(1, 5) plt.plot(n, 7 * n * n + 6 * n + 5, label="7n^2+6n+5") plt.plot(n, 7 * n * n, label="7n^2") plt.legend(loc='upper left') plt.show() """As expected, $7n^2+6n+5$ is always larger than $7n^2$ (as $n$ is positive). Next, we plot the same two functions but for $1 \le n \le 100$.""" n = np.linspace(1, 100) plt.plot(n, 7 * n * n + 6 * n + 5, label="7n^2+6n+5") plt.plot(n, 7 * n * n, label="7n^2") plt.legend(loc='upper left') plt.show() """We see that as $n$ grows, the contribution of $6n+5$ becomes more and more negligible. Another way of justifying this, is to plot the function $\frac{7n^2+6n+5}{7n^2}$. """ x = np.linspace(1, 100) plt.plot(n, (7 * n * n + 6 * n + 5)/(7 * n * n)) plt.show() """As we see, as $n$ grows, the fraction approaches 1. ## Rule 1: Multiplicative constants can be ommitted In terms of big-O notation, $7n^2+6n+5=O(n^2)$, i.e., $7n^2+6n+5$ grows no faster than $n^2$. This again can be visualized by plotting their fraction. As we see, their fraction is always at most 18 and approaches 7. In other words, $7n^2+6n+5 \le 18n^2$ for all $n \ge 1$. """ n = np.linspace(1, 100) plt.plot(n, (7 * n * n + 6 * n + 5)/(n * n)) plt.show() """## Rule 2: Out of two polynomials, the one with larger degree grows faster For constants $a > b > 0$, $n^a$ grows faster than $n^b$. This, in particular, means that $n^b=O(n^a)$. To visualize it, let's plot $n$, $n^2$, and $n^3$. """ n = np.linspace(1, 10) plt.plot(n, n, label="n") plt.plot(n, n * n, label="n^2") plt.plot(n, n * n * n, label="n^3") plt.legend(loc='upper left') plt.show() """Let's now see what happens on a bigger scale: instead of the range $1 \le n \le 10$, consider the range $1 \le n \le 100$.""" n = np.linspace(1, 100) plt.plot(n, n, label="n") plt.plot(n, n * n, label="n^2") plt.plot(n, n * n * n, label="n^3") plt.legend(loc='upper left') plt.show() """## Rule 3: Any polynomial grows slower than any exponential Let's plot $n^4$ and $2^n$ in the range $1 \le n \le 10$. """ n = np.linspace(1, 10) plt.plot(n, n ** 4, label="n^4") plt.plot(n, 2 ** n, label="2^n") plt.legend(loc='upper left') plt.show() """The plot reveals that in this range $n^4$ is always greater than $2^n$. This however does not mean that $n^4$ grows faster than $2^n$! To ensure this, let's take a look at a larger range $1 \le n \le 20$.""" n = np.linspace(1, 20) plt.plot(n, n ** 4, label="n^4") plt.plot(n, 2 ** n, label="2^n") plt.legend(loc='upper left') plt.show() """## Rule 4: Any polylogarithm grows slower than any polynomial To visualize this rule, we start by plotting the two most standard representatives: $\log n$ and $n$. The following plot shows that $\log n$ indeed grows slower than $n$. """ n = np.linspace(1, 20) plt.plot(n, n, label="n") plt.plot(n, np.log(n), label="log n") plt.legend(loc='upper left') plt.show() """Now consider a more exotic example: $(\log n)^3$ versus $\sqrt{n}$ (recall that $\sqrt{n}$ is a polynomial function since $\sqrt{n}=n^{0.5}$).""" n = np.linspace(1, 100) plt.plot(n, n ** .5, label="n^.5") plt.plot(n, np.log(n) ** 3, label="(log n)^3") plt.legend(loc='upper left') plt.show() """This looks strange: it seems that $(\log n)^3$ grows faster than $\sqrt{n}$. Let's do the standard trick: increase the range from $[1,100]$ to, say, $[1, 1\,000\,000]$.""" n = np.linspace(1, 10 ** 6) plt.plot(n, n ** .5, label="n^.5") plt.plot(n, np.log(n) ** 3, label="(log n)^3") plt.legend(loc='upper left') plt.show() """Surprisingly, the logaritmic function is still above the polynomial one! This shows that it is in fact dangerous to decide which function grows faster just by looking at how they behave for some not so large values of $n$. The rule "any polynomial grows faster than any polylogarithm" means that **eventually** the polynomial function will become larger and larger than polylogarithmic. But the rule does not specify for what value of $n$ this happens for the first time. To finally ensure that $\sqrt{n}$ outperforms $(\log n)^3$ eventually, let's increase the range to $10^8$. """ n = np.linspace(1, 10 ** 8) plt.plot(n, n ** .5, label="n^.5") plt.plot(n, np.log(n) ** 3, label="(log n)^3") plt.legend(loc='upper left') plt.show() """Also, let's consider an even large interval to make sure that these two functions don't switch back.""" n = np.linspace(1, 10 ** 15) plt.plot(n, n ** .5, label="n^.5") plt.plot(n, np.log(n) ** 3, label="(log n)^3") plt.legend(loc='upper left') plt.show() """## Exercise As the final exercise, try to find the value of $n$ where $n^{0.1}$ becomes larger than $(\log n)^5$. """ n = np.linspace(1, 100) plt.plot(n, n ** .1, label="n^.1") plt.plot(n, np.log(n) ** 5, label="(log n)^5") plt.legend(loc='upper left') plt.show()
def getResizedLeftSMPLX_UpperLeg(vertices, customerEstimatedUpperLegLenInches, customerEstimatedHeightInches, customerEstimatedMaxLowerLegWidthInches_X, customerEstimatedMaxLowerLegDepthInches_Z, customerEstimatedMaxUpperLegWidthInches_X, customerEstimatedMaxUpperLegDepthInches_Z): # Idea: have this spit out all the body parts with centroids at (0,0,0) ? Then it's a different function's job to "put Humpty-Dumpty back together again" -NXB, August 15, 2020 # NOTE: generalize this to be "getResizedLeftSMPLX_BodyPartNameHere(..., otherParams, ...)" ? # -nxb, August 15, 2020 ''' # Idea: This function can be generalized to each body part? Code reuse would prevent some headaches, make it so changing error-catching in just the general function would fix the error(s) for all the body parts rather than just the one, # -nxb, August 15, 2020 ''' def scaleLegLinearlyWithYHeight(verts, yTop, yBot, xWidthAtTopYHeight_RealCustomerInches, xWidthAtBotYHeight_RealCustomerInches, zDepthAtTopYHeight_RealCustomerInches, zDepthAtBotYHeight_RealCustomerInches): ''' This old code was pasted here at 4:47 P.M. on August 31, 2020 -NXB ''' # TODO: make this fast (AKA "performant"). (vectorize it) -nxb; August 24, 2020 at 5:15 P.M. # NOTE: the code is fairly performant. (about 5 secs. O(5 seconds) ) At least while I'm only scaling the LowerLeg, most of the time is spent on file-IO rather than in this method. (see output from "cProfile" below ) : #============================================================================================================ ''' Some output from the "cProfile" command (sort by total time taken) ============================================================================================================= Some output from the "cProfile" command (sort by total time taken) ============================================================================================================= "`p3 -m cProfile -s tottime examples/nxb_demo.py --model-folder /home/nathan_bendich/Downloads/SMPL-X_Models/models/ --plot-joints=True --gender="male" `" -nxb, August 28, 2020 ============================================================================================================= ========================================================================== ncalls tottime percall cumtime percall filename:lineno(function) ========================================================================== ====================================================================================================== 1336 0.596 0.000 0.596 0.000 {method 'read' of '_io.FileIO' objects} 91/88 0.558 0.006 0.562 0.006 {built-in method _imp.create_dynamic} 322 0.316 0.001 0.316 0.001 {method 'decompress' of 'zlib.Decompress' objects} 1336 0.209 0.000 0.209 0.000 {built-in method marshal.loads} 5603 0.201 0.000 0.201 0.000 {built-in method posix.stat} 396 0.157 0.000 0.157 0.000 {method 'read' of '_io.BufferedReader' objects} 2292 0.154 0.000 0.154 0.000 {method 'format' of 'str' objects} 286/207 0.147 0.001 0.181 0.001 {built-in method numpy.core._multiarray_umath.implement_array_function} 1336 0.115 0.000 0.711 0.001 <frozen importlib._bootstrap_external>:830(get_data) 1081 0.114 0.000 0.114 0.000 {built-in method builtins.compile} 2725/2666 0.113 0.000 0.289 0.000 {built-in method builtins.__build_class__} ====================================================================================================== ''' # TODO: make this fast (AKA "performant"). (vectorize it) -nxb; August 24, 2020 at 5:15 P.M. # TODO: fix all these "hell-names" while also making sure the names are actually descriptive to future readers. Perhaps you should just document? -nxb, August 27, 2020 at 6:12 P.M. # There's no way to make everything PERFECT, Bendich. # By "hell-names," I mean shit like "xWidthAtTopYHeight_RealCustomerInches", "xWidthAtBotYHeight_RealCustomerInches", -nxb, August 27, 2020 at 6:12 P.M. # It was even worse at other time(s): ridiculously long names and shit like "xWidth_RealCustomerMeasure_InInches_atTopYHeightTheYValueOfWhichIsInPixelInches" # -nxb, August 27, 2020 at 6:12 P.M. # TODO: find the bug(s) in this function and/or approach. -nxb; Aug 24, 3:39 P.M. # TODO: rename variables so it's clear to future-NXB that xWidthAtBotYHeight_RealCustomerInches, xWidthAtTopYHeight_RealCustomerInches, zDepthAtBotYHeight_RealCustomerInches, and zDepthAtTopYHeight_RealCustomerInches are REAL_CUSTOMER_MEASURES_IN_INCHES. # TODO: write this function with proper error-checking. rewrite this with proper error-checking, proper input of parameters into the function "scaleLegLinearlyWithYHeight(verts, ... , ... , ... , ... , ... , ... )" instead of just "moreParams" as we put in the funccall to scaleLegLinearlyWithYHeight() on line 619 in the function entitled "makeLeftLeg()" -nxb, August 27, 2020 # TODO # TODO: make sure "`np.isclose()`" has a high enough tolerance. (ie. the assertion shouldn't fail when everything is fine) -nxb, August 24, 2020 # TODO #assert np.isclose(verts[:,Y].max(), yTop) and np.isclose(verts[:,Y].min(), yBot) # TODO: rewrite this with proper error-checking, proper input of parameters into the function "scaleLegLinearlyWithYHeight(verts, ... , ... , ... , ... , ... , ... )" instead of just "moreParams" as we put in the funccall to scaleLegLinearlyWithYHeight() on line 619 in the function entitled "makeLeftLeg()" # TODO # TODO: make sure "`np.isclose()`" has a high enough tolerance. (ie. the assertion shouldn't fail when everything is fine) -nxb, August 24, 2020 # TODO #=================================================================================================== # in main() # This stub/function header was written on August 17, 2020: -nxb """ leftLegVerts = makeLeftLeg( resizedLeftUpperLegVerts, resizedLeftLowerLegVerts, mergingParams={"leftUpperLegParams":leftUpperLegParams, "leftLowerLegParams":leftLowerLegParams} ) vs = ... """ """ DON'T DELETE! this information is always always always pretty useful. DON'T DELETE! this information is always always always pretty useful. DON'T DELETE! this information is always always always pretty useful. DON'T DELETE! this information is always always always pretty useful. DON'T DELETE! this information is always always always pretty useful. maxesAndMins: NOTE: was this from "`verts`" or from "`joints`" ? -nxb, August 14, 2020 {'xMax': 0.8656285, 'xMin': -0.8656085, 'yMax': 0.43483356, 'yMin': -1.3589503, 'zMax': 0.15359592, 'zMin': -0.1527159} """ #=================================================================================================== # in main() # TODO: automate estimating customer's lowerLeg length from video(s) and OpenPose. -nxb, August 14, 2020 #==================================================== # Move the lowerLeg back and forth and # left and right until it's directly # under the upperLeg # # -nxb, August 18, 2020 #==================================================== # (I begun a more technical way of saying it, # but I figure the code is the technically arcane, hard-to-understand version anyway. # In case you want to see my "failures," here's the more "arcane" diction-style comment: # "Calculate the "lateral" shift to align the vertices:" -nxb, August 18, 2020 #==================================================== #=================================================================================================== #=================================================================================================== # old docstring for "leftLowerLeg(...)" ''' This lowerLeg function SHOULD do the following: (August 18, 2020) (This docstring was written on August 18, 2020) """ Expected, desired, non-buggy behavior: 1. Returns vertices **__MOSTLY__** centered on (0,0,0), except the yMin is now 0. 2. The truth is a little more detailed: a. Basically, the SMPL-X base model I'm using has the center of the chest at (0,0,0). (ie. The sternum is at the right xy position. The anatomical location of z==0 is about as "deep" in the human body as the armpit(s)) b. Therefore, the output mesh should have the "bottom of the lowerLeg" at y==0 for easier matching This is only the way it should be for bodyParts like the upperLeg-lowerLeg boundary where the translation-before-smoothing is all along the **__Y__** axis. For instance, for the foreArm-upperArm boundary in T-pose, the boundary should be along the **__X__** axis **__INSTEAD__** """ ''' #=================================================================================================== #raise Exception( "fucking finish your code, Bendich.") # Idea: have this spit out all the body parts with centroids at (0,0,0) ? Then it's a different function's job to "put Humpty-Dumpty back together again" -NXB, August 15, 2020 # NOTE: generalize this to be "getResizedLeftSMPLX_BodyPartNameHere(..., otherParams, ...)" ? # -nxb, August 15, 2020 ''' This function can be generalized to each body part? Code reuse would prevent some headaches, make it so changing error-catching in just the general function would fix the error(s) for all the body parts rather than just the one, August 15, 2020 ''' # TODO: find the EXACT RIGHT VERTEX in SMPL-X that will let us scale the lowerLeg correctly #=================================================================================================== #=================================================================================================== #=================================================================================================== #=================================================================================================== #=================================================================================================== # NOTE NOTE NOTE NOTE NOTE this iteration isn't perfect. Especially when it comes to the measurement detail(s) from just a few "regular" RGB images # NOTE: NOTE: NOTE: NOTE: NOTE: slight assumption that causes a problem: I can't really scale the lowerLeg directly to yHeight==1, because the SMPL-X lowerLeg we get in T-Pose IS SLANTED, not completely "vertical," EVEN WHEN the pose is the "canonical T-Pose" # TODO: find the exact right vertex (multiple vertic(es), ESPECIALLY when the WHOLE BODY comes into play) in SMPL-X that will let us scale the lowerLeg correctly # NOTE NOTE NOTE NOTE NOTE #=================================================================================================== #=================================================================================================== #=================================================================================================== #=================================================================================================== #===================================================================================================
# encoding:utf-8 import urllib2 import cookielib """ 下面的这个程序完成的是从响应中将cookie信息提取出来 """ # 创建一个对象存储cookie cookie = cookielib.CookieJar() # 自动提取 header = urllib2.HTTPCookieProcessor(cookie) # 处理cookie opener = urllib2.build_opener(header) response = opener.open("http://www.renren.com/") cookies = "" for data in cookie: cookies = cookies + data.name + "=" + data.value + "\r\n" print(cookies)
N = int(input()) div = [] i = 1 while i * i <= N: if N % i == 0: div.append(i) if N // i != i: div.append(N // i) i += 1 div.sort() prev = 0 ans = 0 for d in div: m = N // d - 1 if m > 0 and N // m == N % m: ans += m print(ans)
from models.base.EntityBase import EntityBase from models.base.integration.DataIntegrationConnectionDatabaseBase import DataIntegrationConnectionDatabaseBase from models.base.integration.DataIntegrationConnectionFileBase import DataIntegrationConnectionFileBase from models.base.integration.DataIntegrationConnectionQueueBase import DataIntegrationConnectionQueueBase from infrastructor.json.BaseConverter import BaseConverter @BaseConverter.register class DataIntegrationConnectionBase(EntityBase): def __init__(self, SourceOrTarget: int = None, DataIntegrationId: int = None, ConnectionId: int = None, DataIntegration=None, Connection=None, Database:DataIntegrationConnectionDatabaseBase=None, File:DataIntegrationConnectionFileBase=None, Queue:DataIntegrationConnectionQueueBase=None, *args, **kwargs): super().__init__(*args, **kwargs) self.SourceOrTarget: int = SourceOrTarget self.DataIntegrationId: str = DataIntegrationId self.ConnectionId: str = ConnectionId self.DataIntegration = DataIntegration self.Connection = Connection self.Database = Database self.File = File self.Queue = Queue
""" This is the Journal Module """ import os def load_journal(name): """ This method creates and loads a new ourn :param name: the name of the journal :return: a list with entries in the journal as its elements """ data = [] filename = get_journal_path(name) if os.path.exists(filename): with open(filename) as fin: for entry in fin.readlines(): data.append(entry.rstrip()) return data def add_entry(entry, data): """ Appends entry to journal data :param entry: The entry of our journal :param data: The journal data structure :return: None """ data.append(entry) def save_journal(name, data): """ writes and saves the data in the journal :param the name of the file to be written to :param the journal :return: None """ filename = get_journal_path(name) print("....saving to '{}'".format(filename)) with open(filename, 'w') as fout: for entry in data: fout.write(entry + "\n") def get_journal_path(name): """ Gets the full path to the journal :param the name of the journal :return: The filepath to the journal """ filename = os.path.abspath(os.path.join(".", "journals", name + '.jrl')) return filename
import re import datetime import decimal from twisted.internet import defer from scrapy.spider import BaseSpider from scrapy.http import Request, Response from scrapy.utils.py26 import json class SpiderReferencer(object): """Class to serialize (and deserialize) objects (typically dicts) containing references to running spiders (ie. Spider objects). This is required because simplejson fails to serialize dicts containing non-primitive types as keys, even when you override ScrapyJSONEncoder.default() with a custom encoding mechanism. """ spider_ref_re = re.compile('^spider:([0-9a-f]+)?:?(.+)?$') def __init__(self, crawler): self.crawler = crawler def get_reference_from_spider(self, spider): return 'spider:%x:%s' % (id(spider), spider.name) def get_spider_from_reference(self, ref): """Returns the Spider referenced by text, if text is a spider reference. Otherwise it returns the text itself. If the text references a non-running spider it raises a RuntimeError. """ m = self.spider_ref_re.search(ref) if m: spid, spname = m.groups() for spider in self.crawler.engine.open_spiders: if "%x" % id(spider) == spid or spider.name == spname: return spider raise RuntimeError("Spider not running: %s" % ref) return ref def encode_references(self, obj): """Look for Spider objects and replace them with spider references""" if isinstance(obj, BaseSpider): return self.get_reference_from_spider(obj) elif isinstance(obj, dict): d = {} for k, v in obj.items(): k = self.encode_references(k) v = self.encode_references(v) d[k] = v return d elif isinstance(obj, (list, tuple)): return [self.encode_references(x) for x in obj] else: return obj def decode_references(self, obj): """Look for spider references and replace them with Spider objects""" if isinstance(obj, basestring): return self.get_spider_from_reference(obj) elif isinstance(obj, dict): d = {} for k, v in obj.items(): k = self.decode_references(k) v = self.decode_references(v) d[k] = v return d elif isinstance(obj, (list, tuple)): return [self.decode_references(x) for x in obj] else: return obj class ScrapyJSONEncoder(json.JSONEncoder): DATE_FORMAT = "%Y-%m-%d" TIME_FORMAT = "%H:%M:%S" def __init__(self, *a, **kw): crawler = kw.pop('crawler', None) self.spref = kw.pop('spref', None) or SpiderReferencer(crawler) super(ScrapyJSONEncoder, self).__init__(*a, **kw) def encode(self, o): if self.spref: o = self.spref.encode_references(o) return super(ScrapyJSONEncoder, self).encode(o) def default(self, o): if isinstance(o, datetime.datetime): return o.strftime("%s %s" % (self.DATE_FORMAT, self.TIME_FORMAT)) elif isinstance(o, datetime.date): return o.strftime(self.DATE_FORMAT) elif isinstance(o, datetime.time): return o.strftime(self.TIME_FORMAT) elif isinstance(o, decimal.Decimal): return str(o) elif isinstance(o, defer.Deferred): return str(o) elif isinstance(o, Request): return "<%s %s %s>" % (type(o).__name__, o.method, o.url) elif isinstance(o, Response): return "<%s %s %s>" % (type(o).__name__, o.status, o.url) else: return super(ScrapyJSONEncoder, self).default(o) class ScrapyJSONDecoder(json.JSONDecoder): def __init__(self, *a, **kw): crawler = kw.pop('crawler', None) self.spref = kw.pop('spref', None) or SpiderReferencer(crawler) super(ScrapyJSONDecoder, self).__init__(*a, **kw) def decode(self, s): o = super(ScrapyJSONDecoder, self).decode(s) if self.spref: o = self.spref.decode_references(o) return o
from bokeh.io import output_file, show from bokeh.models import CustomJS, Slider, Div, Column # NOTE: the JS functions to forvide the format code for strings is found the answer # from the user fearphage at http://stackoverflow.com/questions/610406/javascript-equivalent-to-printf-string-format callback = CustomJS(code=""" var s1 = slider1.get('value') var s2 = slider2.get('value') var s3 = slider3.get('value') if (!String.prototype.format) { String.prototype.format = function() { var args = arguments; return this.replace(/{(\d+)}/g, function(match, number) { return typeof args[number] != 'undefined' ? args[number] : match ; }); }; } para.set('text', "<h1>Slider Values</h1><p>Slider 1: {0}<p>Slider 2: {1}<p>Slider 3: {2}".format(s1, s2, s3)) """) para = Div(text="<h1>Slider Values:</h1><p>Slider 1: 0<p>Slider 2: 0<p>Slider 3: 0") s1 = Slider(title="Slider 1 (Continuous)", start=0, end=1000, value=0, step=1, callback=callback, callback_policy="continuous") s2 = Slider(title="Slider 2 (Throttle)", start=0, end=1000, value=0, step=1, callback=callback, callback_policy="throttle", callback_throttle=2000) s3 = Slider(title="Slider 3 (Mouse Up)", start=0, end=1000, value=0, step=1, callback=callback, callback_policy="mouseup") callback.args['para'] = para callback.args['slider1'] = s1 callback.args['slider2'] = s2 callback.args['slider3'] = s3 output_file('slider_callback_policy.html') show(Column(s1, s2, s3, para))
from .fluent import Fluent ___red_end_user_data_statement__ = ( "This cog does not persistently store data about users. This cog uses google's free translator api" ) def setup(bot): cog = Fluent(bot) bot.add_cog(cog)
from django.urls import path from . import views app_name = "sheets" urlpatterns = [ path('feature_values', views.get_feature, name="feature_values"), path('feature_name_tree', views.get_feature_name_tree, name="feature_name_tree"), path('feature_search_list', views.get_feature_search_list, name="feature_search_list") ]
# Copyright (c) 2017 Midokura SARL # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import netaddr from tempest.common import waiters from tempest.lib.common.utils import data_utils from tempest.lib import decorators from tempest import test import testscenarios from testscenarios.scenarios import multiply_scenarios from neutron.tests.tempest.common import ssh from neutron.tests.tempest import config from neutron.tests.tempest.scenario import base from neutron.tests.tempest.scenario import constants CONF = config.CONF load_tests = testscenarios.load_tests_apply_scenarios class FloatingIpTestCasesMixin(object): credentials = ['primary', 'admin'] @classmethod @test.requires_ext(extension="router", service="network") def resource_setup(cls): super(FloatingIpTestCasesMixin, cls).resource_setup() cls.network = cls.create_network() cls.subnet = cls.create_subnet(cls.network) cls.router = cls.create_router_by_client() cls.create_router_interface(cls.router['id'], cls.subnet['id']) cls.keypair = cls.create_keypair() cls.secgroup = cls.os_primary.network_client.create_security_group( name=data_utils.rand_name('secgroup-'))['security_group'] cls.security_groups.append(cls.secgroup) cls.create_loginable_secgroup_rule(secgroup_id=cls.secgroup['id']) cls.create_pingable_secgroup_rule(secgroup_id=cls.secgroup['id']) if cls.same_network: cls._dest_network = cls.network else: cls._dest_network = cls._create_dest_network() @classmethod def _create_dest_network(cls): network = cls.create_network() subnet = cls.create_subnet(network, cidr=netaddr.IPNetwork('10.10.0.0/24')) cls.create_router_interface(cls.router['id'], subnet['id']) return network def _create_server(self, create_floating_ip=True, network=None): if network is None: network = self.network port = self.create_port(network, security_groups=[self.secgroup['id']]) if create_floating_ip: fip = self.create_and_associate_floatingip(port['id']) else: fip = None server = self.create_server( flavor_ref=CONF.compute.flavor_ref, image_ref=CONF.compute.image_ref, key_name=self.keypair['name'], networks=[{'port': port['id']}])['server'] waiters.wait_for_server_status(self.os_primary.servers_client, server['id'], constants.SERVER_STATUS_ACTIVE) return {'port': port, 'fip': fip, 'server': server} def _test_east_west(self): # The proxy VM is used to control the source VM when it doesn't # have a floating-ip. if self.src_has_fip: proxy = None proxy_client = None else: proxy = self._create_server() proxy_client = ssh.Client(proxy['fip']['floating_ip_address'], CONF.validation.image_ssh_user, pkey=self.keypair['private_key']) # Source VM if self.src_has_fip: src_server = self._create_server() src_server_ip = src_server['fip']['floating_ip_address'] else: src_server = self._create_server(create_floating_ip=False) src_server_ip = src_server['port']['fixed_ips'][0]['ip_address'] ssh_client = ssh.Client(src_server_ip, CONF.validation.image_ssh_user, pkey=self.keypair['private_key'], proxy_client=proxy_client) # Destination VM if self.dest_has_fip: dest_server = self._create_server(network=self._dest_network) else: dest_server = self._create_server(create_floating_ip=False, network=self._dest_network) # Check connectivity self.check_remote_connectivity(ssh_client, dest_server['port']['fixed_ips'][0]['ip_address']) if self.dest_has_fip: self.check_remote_connectivity(ssh_client, dest_server['fip']['floating_ip_address']) class FloatingIpSameNetwork(FloatingIpTestCasesMixin, base.BaseTempestTestCase): scenarios = multiply_scenarios([ ('SRC with FIP', dict(src_has_fip=True)), ('SRC without FIP', dict(src_has_fip=False)), ], [ ('DEST with FIP', dict(dest_has_fip=True)), ('DEST without FIP', dict(dest_has_fip=False)), ]) same_network = True @decorators.idempotent_id('05c4e3b3-7319-4052-90ad-e8916436c23b') def test_east_west(self): self._test_east_west() class FloatingIpSeparateNetwork(FloatingIpTestCasesMixin, base.BaseTempestTestCase): scenarios = multiply_scenarios([ ('SRC with FIP', dict(src_has_fip=True)), ('SRC without FIP', dict(src_has_fip=False)), ], [ ('DEST with FIP', dict(dest_has_fip=True)), ('DEST without FIP', dict(dest_has_fip=False)), ]) same_network = False @decorators.idempotent_id('f18f0090-3289-4783-b956-a0f8ac511e8b') def test_east_west(self): self._test_east_west()
from redbot.core import commands from .loot import Loot def setup(bot: commands.Bot): bot.add_cog(Loot(bot))
from .delete import random_deletion from .swap import random_swap
from flask import Flask, render_template, request, session import os from flask_session import Session #Configure app app = Flask(__name__) #Configure session app.config["SESSION_PERMANENT"]= False app.config["SESSION_TYPE"]="filesystem" Session(app) images=os.path.join("static", "images") app.config["UPLOAD_FOLDER"]= images chocolate_Images = os.listdir("static/images/chocolates") print(len(chocolate_Images)) @app.route("/") def index(): return render_template("index.html") @app.route("/favorites", methods=["GET", "POST"]) def favorites(): #Ensure favorites exist if "favourite" not in session: session["favourite"]= {} if request.method == "POST": image_path = request.form.get("id") favorite_dic = session["favourite"] if image_path not in favorite_dic: favorite_dic[image_path] = image_path print(favorite_dic) return render_template("favorites.html") return render_template("favorites.html") @app.route("/pricelist") def pricelist(): return render_template("/pricelist.html") @app.route("/chocolates") def chocolates(): # chocolate_images = os.listdir("static/images/chocolates") chocolate_images = ["images/chocolates/" + images for images in chocolate_Images] # len_chocolates = len(chocolate_images) # chocolate = {} # for k,v in enumerate(chocolate_images): # key = k # image = v # chocolate[key] = image return render_template("/chocolates.html", chocolate=chocolate_images) @app.route("/decorations") def decorations(): return render_template("/decorations.html") @app.route("/gifts") def gifts(): return render_template("/gifts.html")
#/usr/bin/env python3.4 # # Copyright (C) 2016 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """ Test script to exercises different ways Ble Advertisements can run in concurrency. This test was designed to be run in a shield box. """ import concurrent import os import time from queue import Empty from acts.test_utils.bt.BluetoothBaseTest import BluetoothBaseTest from acts.test_utils.bt.BleEnum import AdvertiseSettingsAdvertiseMode from acts.test_utils.bt.BleEnum import ScanSettingsCallbackType from acts.test_utils.bt.BleEnum import ScanSettingsScanMode from acts.test_utils.bt.bt_test_utils import adv_succ from acts.test_utils.bt.bt_test_utils import generate_ble_advertise_objects from acts.test_utils.bt.bt_test_utils import generate_ble_scan_objects from acts.test_utils.bt.bt_test_utils import get_advanced_droid_list from acts.test_utils.bt.bt_test_utils import reset_bluetooth from acts.test_utils.bt.bt_test_utils import scan_result from acts.test_utils.bt.bt_test_utils import take_btsnoop_logs class ConcurrentBleAdvertisingTest(BluetoothBaseTest): default_timeout = 10 max_advertisements = 4 def __init__(self, controllers): BluetoothBaseTest.__init__(self, controllers) self.droid_list = get_advanced_droid_list(self.android_devices) self.scn_ad = self.android_devices[0] self.adv_ad = self.android_devices[1] self.max_advertisements = self.droid_list[1]['max_advertisements'] if self.max_advertisements == 0: self.tests = () return def on_fail(self, test_name, begin_time): self.log.debug( "Test {} failed. Gathering bugreport and btsnoop logs".format( test_name)) take_btsnoop_logs(self.android_devices, self, test_name) reset_bluetooth(self.android_devices) def setup_test(self): return reset_bluetooth(self.android_devices) def _verify_n_advertisements(self, num_advertisements, filter_list): test_result = False address_list = [] self.scn_ad.droid.bleSetScanSettingsCallbackType( ScanSettingsCallbackType.CALLBACK_TYPE_ALL_MATCHES.value) self.scn_ad.droid.bleSetScanSettingsScanMode( ScanSettingsScanMode.SCAN_MODE_LOW_LATENCY.value) self.adv_ad.droid.bleSetAdvertiseSettingsAdvertiseMode( AdvertiseSettingsAdvertiseMode.ADVERTISE_MODE_LOW_LATENCY.value) advertise_data = self.adv_ad.droid.bleBuildAdvertiseData() advertise_settings = self.adv_ad.droid.bleBuildAdvertiseSettings() advertise_callback_list = [] for i in range(num_advertisements): advertise_callback = self.adv_ad.droid.bleGenBleAdvertiseCallback() advertise_callback_list.append(advertise_callback) self.adv_ad.droid.bleStartBleAdvertising( advertise_callback, advertise_data, advertise_settings) try: self.adv_ad.ed.pop_event( adv_succ.format(advertise_callback), self.default_timeout) self.log.info("Advertisement {} started.".format(i + 1)) except Empty as error: self.log.info("Advertisement {} failed to start.".format(i + 1)) self.log.debug("Test failed with Empty error: {}".format( error)) return False except concurrent.futures._base.TimeoutError as error: self.log.debug( "Test failed, filtering callback onSuccess never occurred: " "{}".format(error)) return False scan_settings = self.scn_ad.droid.bleBuildScanSetting() scan_callback = self.scn_ad.droid.bleGenScanCallback() self.scn_ad.droid.bleStartBleScan(filter_list, scan_settings, scan_callback) start_time = time.time() while (start_time + self.default_timeout) > time.time(): event = None try: event = self.scn_ad.ed.pop_event( scan_result.format(scan_callback), self.default_timeout) except Empty as error: self.log.debug("Test failed with: {}".format(error)) return test_result except concurrent.futures._base.TimeoutError as error: self.log.debug("Test failed with: {}".format(error)) return test_result address = event['data']['Result']['deviceInfo']['address'] if address not in address_list: address_list.append(address) if len(address_list) == num_advertisements: test_result = True break for callback in advertise_callback_list: self.adv_ad.droid.bleStopBleAdvertising(callback) self.scn_ad.droid.bleStopBleScan(scan_callback) return test_result @BluetoothBaseTest.bt_test_wrap def test_max_advertisements_defaults(self): """Testing max advertisements. Test that a single device can have the max advertisements concurrently advertising. Steps: 1. Setup the scanning android device. 2. Setup the advertiser android device. 3. Start scanning on the max_advertisements as defined in the script. 4. Verify that all advertisements are found. Expected Result: All advertisements should start without errors. Returns: Pass if True Fail if False TAGS: LE, Advertising, Concurrency Priority: 0 """ test_result = True filter_list = self.scn_ad.droid.bleGenFilterList() self.scn_ad.droid.bleBuildScanFilter(filter_list) test_result = self._verify_n_advertisements(self.max_advertisements, filter_list) return test_result @BluetoothBaseTest.bt_test_wrap def test_max_advertisements_include_device_name_and_filter_device_name( self): """Testing max advertisement variant. Test that a single device can have the max advertisements concurrently advertising. Include the device name as a part of the filter and advertisement data. Steps: 1. Setup the scanning android device. 2. Setup the advertiser android device. 3. Include device name in each advertisement. 4. Include device name filter in the scanner. 5. Start scanning on the max_advertisements as defined in the script. 6. Verify that all advertisements are found. Expected Result: All advertisements should start without errors. Returns: Pass if True Fail if False TAGS: LE, Advertising, Concurrency Priority: 2 """ test_result = True self.adv_ad.droid.bleSetAdvertiseDataIncludeDeviceName(True) filter_list = self.scn_ad.droid.bleGenFilterList() self.scn_ad.droid.bleSetScanFilterDeviceName( self.adv_ad.droid.bluetoothGetLocalName()) self.scn_ad.droid.bleBuildScanFilter(filter_list) test_result = self._verify_n_advertisements(self.max_advertisements, filter_list) return test_result @BluetoothBaseTest.bt_test_wrap def test_max_advertisements_exclude_device_name_and_filter_device_name( self): """Test max advertisement variant. Test that a single device can have the max advertisements concurrently advertising. Include the device name as a part of the filter but not the advertisement data. Steps: 1. Setup the scanning android device. 2. Setup the advertiser android device. 3. Include device name filter in the scanner. 4. Start scanning on the max_advertisements as defined in the script. 5. Verify that no advertisements are found. Expected Result: All advertisements should start without errors. Returns: Pass if True Fail if False TAGS: LE, Advertising, Concurrency Priority: 2 """ test_result = True self.adv_ad.droid.bleSetAdvertiseDataIncludeDeviceName(False) filter_list = self.scn_ad.droid.bleGenFilterList() self.scn_ad.droid.bleSetScanFilterDeviceName( self.adv_ad.droid.bluetoothGetLocalName()) self.scn_ad.droid.bleBuildScanFilter(filter_list) test_result = self._verify_n_advertisements(self.max_advertisements, filter_list) return not test_result @BluetoothBaseTest.bt_test_wrap def test_max_advertisements_with_manufacturer_data(self): """Test max advertisement variant. Test that a single device can have the max advertisements concurrently advertising. Include the manufacturer data as a part of the filter and advertisement data. Steps: 1. Setup the scanning android device. 2. Setup the advertiser android device. 3. Include manufacturer data in each advertisement. 4. Include manufacturer data filter in the scanner. 5. Start scanning on the max_advertisements as defined in the script. 6. Verify that all advertisements are found. Expected Result: All advertisements should start without errors. Returns: Pass if True Fail if False TAGS: LE, Advertising, Concurrency Priority: 2 """ test_result = True filter_list = self.scn_ad.droid.bleGenFilterList() self.scn_ad.droid.bleSetScanFilterManufacturerData(1, "1") self.scn_ad.droid.bleBuildScanFilter(filter_list) self.adv_ad.droid.bleAddAdvertiseDataManufacturerId(1, "1") test_result = self._verify_n_advertisements(self.max_advertisements, filter_list) return test_result @BluetoothBaseTest.bt_test_wrap def test_max_advertisements_with_manufacturer_data_mask(self): """Test max advertisements variant. Test that a single device can have the max advertisements concurrently advertising. Include the manufacturer data mask as a part of the filter and advertisement data. Steps: 1. Setup the scanning android device. 2. Setup the advertiser android device. 3. Include manufacturer data in each advertisement. 4. Include manufacturer data mask filter in the scanner. 5. Start scanning on the max_advertisements as defined in the script. 6. Verify that all advertisements are found. Expected Result: All advertisements should start without errors. Returns: Pass if True Fail if False TAGS: LE, Advertising, Concurrency Priority: 2 """ test_result = True filter_list = self.scn_ad.droid.bleGenFilterList() self.scn_ad.droid.bleSetScanFilterManufacturerData(1, "1", "1") self.scn_ad.droid.bleBuildScanFilter(filter_list) self.adv_ad.droid.bleAddAdvertiseDataManufacturerId(1, "1") test_result = self._verify_n_advertisements(self.max_advertisements, filter_list) return test_result @BluetoothBaseTest.bt_test_wrap def test_max_advertisements_with_service_data(self): """Test max advertisement variant. Test that a single device can have the max advertisements concurrently advertising. Include the service data as a part of the filter and advertisement data. Steps: 1. Setup the scanning android device. 2. Setup the advertiser android device. 3. Include service data in each advertisement. 4. Include service data filter in the scanner. 5. Start scanning on the max_advertisements as defined in the script. 6. Verify that all advertisements are found. Expected Result: All advertisements should start without errors. Returns: Pass if True Fail if False TAGS: LE, Advertising, Concurrency Priority: 2 """ test_result = True filter_list = self.scn_ad.droid.bleGenFilterList() self.scn_ad.droid.bleSetScanFilterServiceData( "0000110A-0000-1000-8000-00805F9B34FB", "11,17,80") self.scn_ad.droid.bleBuildScanFilter(filter_list) self.adv_ad.droid.bleAddAdvertiseDataServiceData( "0000110A-0000-1000-8000-00805F9B34FB", "11,17,80") test_result = self._verify_n_advertisements(self.max_advertisements, filter_list) return test_result @BluetoothBaseTest.bt_test_wrap def test_max_advertisements_with_manufacturer_data_mask_and_include_device_name( self): """Test max advertisement variant. Test that a single device can have the max advertisements concurrently advertising. Include the device name and manufacturer data as a part of the filter and advertisement data. Steps: 1. Setup the scanning android device. 2. Setup the advertiser android device. 3. Include device name and manufacturer data in each advertisement. 4. Include device name and manufacturer data filter in the scanner. 5. Start scanning on the max_advertisements as defined in the script. 6. Verify that all advertisements are found. Expected Result: All advertisements should start without errors. Returns: Pass if True Fail if False TAGS: LE, Advertising, Concurrency Priority: 2 """ test_result = True filter_list = self.scn_ad.droid.bleGenFilterList() self.adv_ad.droid.bleSetAdvertiseDataIncludeDeviceName(True) self.scn_ad.droid.bleSetScanFilterDeviceName( self.adv_ad.droid.bluetoothGetLocalName()) self.scn_ad.droid.bleSetScanFilterManufacturerData(1, "1", "1") self.scn_ad.droid.bleBuildScanFilter(filter_list) self.adv_ad.droid.bleAddAdvertiseDataManufacturerId(1, "1") test_result = self._verify_n_advertisements(self.max_advertisements, filter_list) return test_result @BluetoothBaseTest.bt_test_wrap def test_max_advertisements_with_service_uuids(self): """Test max advertisement variant. Test that a single device can have the max advertisements concurrently advertising. Include the service uuid as a part of the filter and advertisement data. Steps: 1. Setup the scanning android device. 2. Setup the advertiser android device. 3. Include service uuid in each advertisement. 4. Include service uuid filter in the scanner. 5. Start scanning on the max_advertisements as defined in the script. 6. Verify that all advertisements are found. Expected Result: All advertisements should start without errors. Returns: Pass if True Fail if False TAGS: LE, Advertising, Concurrency Priority: 1 """ test_result = True filter_list = self.scn_ad.droid.bleGenFilterList() self.scn_ad.droid.bleSetScanFilterServiceUuid( "00000000-0000-1000-8000-00805f9b34fb") self.scn_ad.droid.bleBuildScanFilter(filter_list) self.adv_ad.droid.bleSetAdvertiseDataSetServiceUuids( ["00000000-0000-1000-8000-00805f9b34fb"]) test_result = self._verify_n_advertisements(self.max_advertisements, filter_list) return test_result @BluetoothBaseTest.bt_test_wrap def test_max_advertisements_with_service_uuid_and_service_mask(self): """Test max advertisements variant. Test that a single device can have the max advertisements concurrently advertising. Include the service mask as a part of the filter and advertisement data. Steps: 1. Setup the scanning android device. 2. Setup the advertiser android device. 3. Include service uuid in each advertisement. 4. Include service mask filter in the scanner. 5. Start scanning on the max_advertisements as defined in the script. 6. Verify that all advertisements are found. Expected Result: All advertisements should start without errors. Returns: Pass if True Fail if False TAGS: LE, Advertising, Concurrency Priority: 2 """ test_result = True filter_list = self.scn_ad.droid.bleGenFilterList() self.scn_ad.droid.bleSetScanFilterServiceUuid( "00000000-0000-1000-8000-00805f9b34fb", "00000000-0000-1000-8000-00805f9b34fb") self.scn_ad.droid.bleBuildScanFilter(filter_list) self.adv_ad.droid.bleSetAdvertiseDataSetServiceUuids( ["00000000-0000-1000-8000-00805f9b34fb"]) test_result = self._verify_n_advertisements(self.max_advertisements, filter_list) return test_result @BluetoothBaseTest.bt_test_wrap def test_max_advertisements_plus_one(self): """Test max advertisements plus one. Test that a single device can have the max advertisements concurrently advertising but fail on starting the max advertisements plus one. filter and advertisement data. Steps: 1. Setup the scanning android device. 2. Setup the advertiser android device. 3. Start max_advertisements + 1. Expected Result: The last advertisement should fail. Returns: Pass if True Fail if False TAGS: LE, Advertising, Concurrency Priority: 0 """ test_result = True filter_list = self.scn_ad.droid.bleGenFilterList() self.scn_ad.droid.bleBuildScanFilter(filter_list) test_result = self._verify_n_advertisements( self.max_advertisements + 1, filter_list) return not test_result @BluetoothBaseTest.bt_test_wrap def test_start_two_advertisements_on_same_callback(self): """Test invalid advertisement scenario. Test that a single device cannot have two advertisements start on the same callback. Steps: 1. Setup the scanning android device. 2. Setup the advertiser android device. 3. Call start ble advertising on the same callback. Expected Result: The second call of start advertising on the same callback should fail. Returns: Pass if True Fail if False TAGS: LE, Advertising, Concurrency Priority: 1 """ test_result = True advertise_callback, advertise_data, advertise_settings = ( generate_ble_advertise_objects(self.adv_ad.droid)) self.adv_ad.droid.bleStartBleAdvertising( advertise_callback, advertise_data, advertise_settings) try: self.adv_ad.ed.pop_event( adv_succ.format(advertise_callback), self.default_timeout) except Empty as error: self.log.debug("Test failed with Empty error: {}".format(error)) return False except concurrent.futures._base.TimeoutError as error: self.log.debug( "Test failed, filtering callback onSuccess never occurred: {}" .format(error)) try: self.adv_ad.droid.bleStartBleAdvertising( advertise_callback, advertise_data, advertise_settings) self.adv_ad.ed.pop_event( adv_succ.format(advertise_callback), self.default_timeout) test_result = False except Empty as error: self.log.debug("Test passed with Empty error: {}".format(error)) except concurrent.futures._base.TimeoutError as error: self.log.debug( "Test passed, filtering callback onSuccess never occurred: {}" .format(error)) return test_result @BluetoothBaseTest.bt_test_wrap def test_toggle_advertiser_bt_state(self): """Test forcing stopping advertisements. Test that a single device resets its callbacks when the bluetooth state is reset. There should be no advertisements. Steps: 1. Setup the scanning android device. 2. Setup the advertiser android device. 3. Call start ble advertising. 4. Toggle bluetooth on and off. 5. Scan for any advertisements. Expected Result: No advertisements should be found after toggling Bluetooth on the advertising device. Returns: Pass if True Fail if False TAGS: LE, Advertising, Concurrency Priority: 2 """ test_result = True advertise_callback, advertise_data, advertise_settings = ( generate_ble_advertise_objects(self.adv_ad.droid)) self.adv_ad.droid.bleStartBleAdvertising( advertise_callback, advertise_data, advertise_settings) try: self.adv_ad.ed.pop_event( adv_succ.format(advertise_callback), self.default_timeout) except Empty as error: self.log.debug("Test failed with Empty error: {}".format(error)) return False except concurrent.futures._base.TimeoutError as error: self.log.debug( "Test failed, filtering callback onSuccess never occurred: {}".format( error)) filter_list, scan_settings, scan_callback = generate_ble_scan_objects( self.scn_ad.droid) self.scn_ad.droid.bleStartBleScan(filter_list, scan_settings, scan_callback) try: self.scn_ad.ed.pop_event( scan_result.format(scan_callback), self.default_timeout) except Empty as error: self.log.debug("Test failed with: {}".format(error)) return False except concurrent.futures._base.TimeoutError as error: self.log.debug("Test failed with: {}".format(error)) return False self.scn_ad.droid.bleStopBleScan(scan_callback) test_result = reset_bluetooth([self.android_devices[1]]) self.scn_ad.droid.bleStartBleScan(filter_list, scan_settings, scan_callback) if not test_result: return test_result try: self.scn_ad.ed.pop_event( scan_result.format(scan_callback), self.default_timeout) return False except Empty as error: self.log.debug("Test passed with: {}".format(error)) except concurrent.futures._base.TimeoutError as error: self.log.debug("Test passed with: {}".format(error)) self.scn_ad.droid.bleStopBleScan(scan_callback) self.adv_ad.droid.bleStopBleAdvertising(advertise_callback) return test_result @BluetoothBaseTest.bt_test_wrap def test_restart_advertise_callback_after_bt_toggle(self): """Test starting an advertisement on a cleared out callback. Test that a single device resets its callbacks when the bluetooth state is reset. Steps: 1. Setup the scanning android device. 2. Setup the advertiser android device. 3. Call start ble advertising. 4. Toggle bluetooth on and off. 5. Call start ble advertising on the same callback. Expected Result: Starting an advertisement on a callback id after toggling bluetooth should fail. Returns: Pass if True Fail if False TAGS: LE, Advertising, Concurrency Priority: 1 """ test_result = True advertise_callback, advertise_data, advertise_settings = ( generate_ble_advertise_objects(self.adv_ad.droid)) self.adv_ad.droid.bleStartBleAdvertising( advertise_callback, advertise_data, advertise_settings) try: self.adv_ad.ed.pop_event( adv_succ.format(advertise_callback), self.default_timeout) except Empty as error: self.log.debug("Test failed with Empty error: {}".format(error)) test_result = False except concurrent.futures._base.TimeoutError as error: self.log.debug( "Test failed, filtering callback onSuccess never occurred: {}".format( error)) test_result = reset_bluetooth([self.android_devices[1]]) if not test_result: return test_result self.adv_ad.droid.bleStartBleAdvertising( advertise_callback, advertise_data, advertise_settings) try: self.adv_ad.ed.pop_event( adv_succ.format(advertise_callback), self.default_timeout) except Empty as error: self.log.debug("Test failed with Empty error: {}".format(error)) test_result = False except concurrent.futures._base.TimeoutError as error: self.log.debug( "Test failed, filtering callback onSuccess never occurred: {}".format( error)) return test_result
#!/usr/bin/python3 # coding: utf-8 import numpy as np import plotly.graph_objects as go from scipy import fftpack def fft_denoise(x, y, showFigure=True, freq_int=0.15, freq_th=0.18, freq_min_A=0.03): n = len(x) if showFigure: fig = go.Figure() fig.add_trace(go.Scatter(x=x, y=y)) fig.show() y_hat = fftpack.fft(y) / (n/2) if showFigure: fig = go.Figure() fig.add_trace(go.Scatter(x=x, y=y_hat.real)) fig.show() freq = fftpack.fftfreq(n, freq_int) if showFigure and False: fig = go.Figure() fig.add_trace(go.Scatter(x=x, y=freq)) fig.show() y_hat[freq < 0] = 0 y_hat[freq > freq_th] = 0 y_hat[np.abs(y_hat) < freq_min_A] = 0 if showFigure: fig = go.Figure() fig.add_trace(go.Scatter(x=x, y=y_hat.real)) fig.show() y2 = np.real(fftpack.ifft(y_hat) * (n)) if showFigure: fig = go.Figure() fig.add_trace(go.Scatter(x=x, y=y, mode='lines', line=dict(width=.5, color='red'))) fig.add_trace(go.Scatter(x=x, y=y2, mode='lines+markers', marker=dict(size=1, color='blue'))) fig.show() return y2
import argparse import boto3 import configparser import datetime import math import json import time from decimal import Decimal from binance.exceptions import BinanceAPIException from binance.client import Client def get_timestamp(): ts = time.time() return datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S') parser = argparse.ArgumentParser( description=""" This is a basic Binance DCA buying/selling bot. ex: ETH-BTC SELL 0.00125 BTC (sell 0.00125 BTC worth of ETH) ETH-BTC SELL 0.1 ETH (sell 0.1 ETH) """, formatter_class=argparse.RawTextHelpFormatter ) # Required positional arguments parser.add_argument('market_name', help="(e.g. BTC-USD, ETH-BTC, etc)") parser.add_argument('order_side', type=str, choices=["BUY", "SELL"]) parser.add_argument('amount', type=Decimal, help="The quantity to buy or sell in the amount_currency") parser.add_argument('amount_currency', help="The currency the amount is denominated in") # Optional switches parser.add_argument('-c', '--settings_config', default="settings.conf", dest="settings_config_file", help="Override default settings config file location") parser.add_argument('-d', '--dynamic_dca', action='store_true', default=False, dest="dynamic_dca", help="""Scale the trade amount up or down depending on 24hr price change""") parser.add_argument('-l', '--live', action='store_true', default=False, dest="live_mode", help="""Submit live orders. When omitted, just tests API connection and amount without submitting actual orders""") parser.add_argument('-j', '--job', action='store_true', default=False, dest="job_mode", help="""Suppress the confirmation step before submitting actual orders""") if __name__ == "__main__": args = parser.parse_args() market_name = args.market_name order_side = args.order_side.lower() amount = args.amount amount_currency = args.amount_currency is_dynamic_dca = args.dynamic_dca live_mode = args.live_mode job_mode = args.job_mode print("%s: STARTED: %s" % (get_timestamp(), args)) if not live_mode: print("\n") print("\t================= NOT in Live mode =================") print("\t* *") print("\t* No actual trades being submitted! *") print("\t* *") print("\t====================================================") print("\n") # Read settings config = configparser.ConfigParser() config.read(args.settings_config_file) api_key = config.get('API', 'API_KEY') api_secret = config.get('API', 'SECRET_KEY') try: sns_topic = config.get('AWS', 'SNS_TOPIC') aws_access_key_id = config.get('AWS', 'AWS_ACCESS_KEY_ID') aws_secret_access_key = config.get('AWS', 'AWS_SECRET_ACCESS_KEY') except configparser.NoSectionError: sns_topic = None if sns_topic: # Prep boto SNS client for email notifications sns = boto3.client( "sns", aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name="us-east-1" # N. Virginia ) # Instantiate API client client = Client(api_key, api_secret) # Get exchange info (pairs available, min order sizes, etc.) exchange_info = client.get_exchange_info() """ { "symbol": "ETHBTC", "status": "TRADING", "baseAsset": "ETH", "baseAssetPrecision": 8, "quoteAsset": "BTC", "quotePrecision": 8, "quoteAssetPrecision": 8, "baseCommissionPrecision": 8, "quoteCommissionPrecision": 8, "orderTypes": [ "LIMIT", "LIMIT_MAKER", "MARKET", "STOP_LOSS_LIMIT", "TAKE_PROFIT_LIMIT" ], "icebergAllowed": true, "ocoAllowed": true, "quoteOrderQtyMarketAllowed": true, "isSpotTradingAllowed": true, "isMarginTradingAllowed": true, "filters": [ { "filterType": "PRICE_FILTER", "minPrice": "0.00000100", "maxPrice": "100000.00000000", "tickSize": "0.00000100" }, { "filterType": "PERCENT_PRICE", "multiplierUp": "5", "multiplierDown": "0.2", "avgPriceMins": 5 }, { "filterType": "LOT_SIZE", "minQty": "0.00100000", "maxQty": "100000.00000000", "stepSize": "0.00100000" }, { "filterType": "MIN_NOTIONAL", "minNotional": "0.00010000", "applyToMarket": true, "avgPriceMins": 5 }, { "filterType": "ICEBERG_PARTS", "limit": 10 }, { "filterType": "MARKET_LOT_SIZE", "minQty": "0.00000000", "maxQty": "8949.33836294", "stepSize": "0.00000000" }, { "filterType": "MAX_NUM_ORDERS", "maxNumOrders": 200 }, { "filterType": "MAX_NUM_ALGO_ORDERS", "maxNumAlgoOrders": 5 } ], "permissions": [ "SPOT", "MARGIN" ] } """ for market in exchange_info.get("symbols"): if market.get("symbol") == market_name: base_currency = market.get("baseAsset") quote_currency = market.get("quoteAsset") quote_asset_precision = market.get("quoteAssetPrecision") # What's this asset's minimum purchase? for filter in market.get("filters"): if filter.get('filterType') == 'MIN_NOTIONAL': base_min_size = Decimal(filter.get("minNotional")).normalize() elif filter.get('filterType') == 'LOT_SIZE': base_increment = Decimal(filter.get("stepSize")).normalize() elif filter.get('filterType') == 'PRICE_FILTER': quote_increment = Decimal(filter.get("tickSize")).normalize() if not base_min_size: raise Exception("MIN_NOTIONAL.minNotional not found in %s info" % market_name) if not base_increment: raise Exception("LOT_SIZE.stepSize not found in %s info" % market_name) if not quote_increment: raise Exception("PRICE_FILTER.tickSize not found in %s info" % market_name) if amount_currency == quote_currency: amount_currency_is_quote_currency = True elif amount_currency == base_currency: amount_currency_is_quote_currency = False else: raise Exception("amount_currency %s not in market %s" % (amount_currency, market_name)) print(market) print("base_min_size: %s" % base_min_size) print("base_increment: %s" % base_increment) print("quote_increment: %s" % quote_increment) if live_mode and not job_mode: print("\n================================================\n") response = input("\tLive purchase! Confirm Y/[n]: ") if response != 'Y': print("Exiting without submitting orders.") exit() purchase_summary = "" if is_dynamic_dca: step_size = Decimal("5.0") amount_multiplier = Decimal("1.0") amount_divider = Decimal("0.5") orig_amount = amount # Get the current 24hr price diff ticker = client.get_ticker(symbol=market_name) percent_change = Decimal(ticker.get("priceChangePercent")) steps = int(math.floor(abs(percent_change / step_size))) print(f"\tDynamic DCA\n" + f"\tpercent_change: {percent_change}%\n" + f"\tsteps: {steps}") if steps > 0: if (order_side == 'buy' and percent_change < 0.0) or \ (order_side == 'sell' and percent_change > 0.0): # We want to multiply up our trade amount amount += amount * amount_multiplier * Decimal(steps) print(f"Dynamic DCA scaling amount up {steps}x to {amount}") else: # Divide down the trade amount amount -= amount * amount_divider * Decimal(steps) if amount <= 0.0: print(f"Dynamic DCA canceling trade at {percent_change}%") amount = Decimal("0.0") else: print(f"Dynamic DCA scaling amount down {steps}x to {amount}") else: # No changes to apply is_dynamic_dca = False # What's the current best offer? # Binance maker/taker fees are the same so just do a market order for fast order # fills. depth = client.get_order_book(symbol=market_name, limit=5) if order_side == 'buy': market_price = Decimal(depth.get("bids")[0][0]) else: market_price = Decimal(depth.get("asks")[0][0]) print("market_price: %s %s" % (market_price, quote_currency)) # Denominate our target amount as necessary, then quantize to base_increment if amount_currency_is_quote_currency: base_currency_amount = (amount / market_price).quantize(base_increment) else: base_currency_amount = Decimal(amount).quantize(base_increment) print("base_currency_amount: %s %s" % (base_currency_amount, base_currency)) order_value = (base_currency_amount * market_price).quantize( Decimal('1e-%d' % quote_asset_precision) ) if order_value < base_min_size: message = f"Cannot purchase {float(base_currency_amount)} {base_currency} @ {market_price} {quote_currency}. " + \ f"Resulting order of {order_value:.8f} {quote_currency} " + \ f"is below the minNotional value of {base_min_size} {quote_currency}" print(message) if is_dynamic_dca: purchase_summary = "Dynamic DCA: %0.2f%% (%dx): %s %s order of %s (%s) %s CANCELED" % ( percent_change, steps, market_name, order_side, amount, orig_amount, amount_currency ) print(purchase_summary) if sns_topic and live_mode: sns.publish( TopicArn=sns_topic, Subject=purchase_summary, Message=message ) exit() else: print("order_value: %s %s" % (order_value, quote_currency)) if not live_mode: if order_side == 'buy': side = Client.SIDE_BUY else: side = Client.SIDE_SELL order = client.create_test_order( symbol=market_name, side=side, type=Client.ORDER_TYPE_MARKET, quantity=float(base_currency_amount) ) if order: print(order) else: try: if order_side == 'buy': order = client.order_market_buy( symbol=market_name, quantity=float(base_currency_amount)) else: order = client.order_market_sell( symbol=market_name, quantity=float(base_currency_amount)) except BinanceAPIException as e: print(f'Unable to place {market_name} order: {e}') if sns_topic and live_mode: sns.publish( TopicArn=sns_topic, Subject=f'Unable to place {market_name} order', Message=str(e) ) exit() print(json.dumps(order, indent=4)) """ { "symbol": "ADABTC", "orderId": 194439891, "orderListId": -1, "clientOrderId": "jfsd09eijfsdkl", "transactTime": 1596984553336, "price": "0.00000000", "origQty": "10.00000000", "executedQty": "10.00000000", "cummulativeQuoteQty": "0.00012380", "status": "FILLED", "timeInForce": "GTC", "type": "MARKET", "side": "SELL", "fills": [ { "price": "0.00001238", "qty": "10.00000000", "commission": "0.00004701", "commissionAsset": "BNB", "tradeId": 40016638 } ] } """ market_price = order.get("fills")[0].get("price") if is_dynamic_dca: purchase_summary = "Dynamic DCA: %0.2f%% (%dx): %s %s order of %s (%s) %s %s @ %s %s" % ( percent_change, steps, market_name, order_side, amount, orig_amount, amount_currency, order.get("status"), market_price, quote_currency ) else: purchase_summary = "%s %s order of %s %s %s @ %s %s" % ( market_name, order_side, amount, amount_currency, order.get("status"), market_price, quote_currency ) if sns_topic and live_mode: sns.publish( TopicArn=sns_topic, Subject=purchase_summary, Message=json.dumps(order, indent=4) ) print("\n================================================") print(purchase_summary) if not live_mode: print("(NOT in live mode - no actual orders placed!)")
''' Created on Apr 19, 2015 @author: tristan ''' import inspect from sqlalchemy.orm.collections import InstrumentedList def obj_map(src, dest, rules=None, mapper=None): ''' dest could be 1) instance => copy the data to dest and return it 2) class => create a class instance, copy the data and return it rules: conversion rule ''' if inspect.isclass(dest): target = dest() else: target = dest if hasattr(target, '_sa_instance_state'): columns = target._sa_instance_state.attrs._data.keys() else: columns = target.__dict__.keys() src_columns = dir(src) if rules is not None: src_columns = src_columns + rules.keys() for prop_name in src_columns: if not prop_name.startswith('_') and prop_name in columns: # if it is list then map each # else map itself if rules is not None and rules.has_key(prop_name): setattr(target, prop_name, None if rules[prop_name] is None else rules[prop_name](src)) continue elif hasattr(src, prop_name): srcValue = getattr(src,prop_name) else: srcValue = None if type(srcValue) is list or type(srcValue) is InstrumentedList: c = list() for v in srcValue: c.append(obj_map(v, mapper[type(v)], rules, mapper)) setattr(target, prop_name, c) elif type(srcValue) is object: setattr(target, prop_name, obj_map(srcValue, mapper[type(srcValue)], rules=rules, mapper=mapper)) else: setattr(target,prop_name, srcValue) return target
import csv import hashlib import inspect import logging from numbers import Number from namespace import * import codecs import os import petl as etl import re from loader.prefixes import PREFIX_LANGUAGE, PREFIX_MULTIMEDIA from lxml import etree from petl.util.base import Table from rdflib import Literal, RDF, RDFS, XSD # A logger to be used for logging warnings or errors detected during loading. warning_log = logging.getLogger("load_warnings") warning_log.setLevel(logging.WARNING) def num_to_str(num): """ Converts a number to a string. If the number is already a string, then just returns. """ if isinstance(num, Number): return str(int(num)) return num def join_if_not_empty(items, sep=" "): """ Joins a list of items with a provided separator. Skips an empty item. """ joined = "" for item in items: if item and len(item) > 0: if joined != "": joined += sep joined += item return joined def to_hash_identifier(prefix, parts): """ Return an identifier composed of the prefix and hash of the parts. """ hash_parts = hashlib.md5("".join([unicode(part) for part in parts if part]).encode("utf-8")) return "%s-%s" % (prefix, hash_parts.hexdigest()) def season_to_month(season): """ Converts a season to the corresponding month. """ return { "Spring": 1, "Summer": 5, "Fall": 8 }[season] months = ("January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December") def month_str_to_month_int(month_str): """ Converts a month name to the corresponding month number. If already a number, returns the number. Also, tries to convert the string to a number. """ if isinstance(month_str, Number): return month_str try: return int(month_str) except ValueError: pass return months.index(month_str)+1 def month_int_to_month_str(month_int): if isinstance(month_int, basestring): return month_int return months[month_int-1] def add_date(date_uri, year, g, month=None, day=None, label=None): """ Adds triples for a date. Return True if date was added. """ # Date # Filtering out dates that are set to 1900. if year and str(year) != "1900": g.add((date_uri, RDF.type, VIVO.DateTimeValue)) # Day, month, and year if day and month: g.add((date_uri, VIVO.dateTimePrecision, VIVO.yearMonthDayPrecision)) g.add((date_uri, VIVO.dateTime, Literal("%s-%02d-%02dT00:00:00" % ( year, month_str_to_month_int(month), day), datatype=XSD.dateTime))) g.add((date_uri, RDFS.label, Literal(label or "%s %s, %s" % (month_int_to_month_str(month), num_to_str(day), num_to_str(year))))) # Month and year elif month: g.add((date_uri, VIVO.dateTimePrecision, VIVO.yearMonthPrecision)) g.add((date_uri, VIVO.dateTime, Literal("%s-%02d-01T00:00:00" % ( year, month_str_to_month_int(month)), datatype=XSD.dateTime))) g.add((date_uri, RDFS.label, Literal(label or "%s %s" % (month, num_to_str(year))))) else: # Just year g.add((date_uri, VIVO.dateTimePrecision, VIVO.yearPrecision)) g.add((date_uri, VIVO.dateTime, Literal("%s-01-01T00:00:00" % ( year), datatype=XSD.dateTime))) g.add((date_uri, RDFS.label, Literal(label or num_to_str(year)))) return True return False term_re = re.compile("(Spring|Summer|Fall) (\d\d\d\d)") def add_season_date(date_uri, date_str, g): """ Parses a season date (e.g., Spring 2012) and adds tripes. Returns true if parse was successful. """ if date_str: m = term_re.match(date_str) if m: season = m.group(1) year = m.group(2) return add_date(date_uri, year, g, season_to_month(season), label=date_str) return False def add_date_interval(interval_uri, subject_uri, g, start_uri=None, end_uri=None): """ Adds triples for a date interval. """ if start_uri or end_uri: g.add((interval_uri, RDF.type, VIVO.DateTimeInterval)) g.add((subject_uri, VIVO.dateTimeInterval, interval_uri)) if start_uri: g.add((interval_uri, VIVO.start, start_uri)) if end_uri: g.add((interval_uri, VIVO.end, end_uri)) language_map = { "ARAB": "Arabic", "BENG": "Bengali", "CHIN": "Chinese", "FREN": "French", "GERM": "German", "HIND": "Hindi/Urdu", "ITAL": "Italian", "JAPN": "Japanese", "KREN": "Korean", "MAND": "Mandarin", "PORT": "Portuguese", "PUNJ": "Punjabi", "RUSS": "Russian", "SPAN": "Spanish" } def add_language(language, person_uri, g): language_uri = D[to_hash_identifier(PREFIX_LANGUAGE, (language,))] g.add((language_uri, RDF.type, LINKVOJ.Lingvo)) g.add((language_uri, RDFS.label, Literal(language))) g.add((person_uri, LINKVOJ.expertUnderstanding, language_uri)) def add_multimedia(multimedia, person_uri, multimedia_predicate, g): if not multimedia.endswith(","): multimedia += "," for multimedia_string in re.findall(r".\|.+?\|.+?,", multimedia): (multimedia_type, multimedia_label, multimedia_url) = multimedia_string[:-1].split("|") multimedia_uri = D[to_hash_identifier(PREFIX_MULTIMEDIA, multimedia_url)] if multimedia_type == "A": multimedia_class = BIBO.AudioDocument elif multimedia_type == "O": multimedia_class = BIBO.Webpage else: multimedia_class = VIVO.Video g.add((multimedia_uri, RDF.type, multimedia_class)) g.add((person_uri, multimedia_predicate, multimedia_uri)) g.add((multimedia_uri, RDFS.label, Literal(multimedia_label))) g.add((multimedia_uri, VCARD.url, Literal(multimedia_url, datatype=XSD.anyURI))) def strip_gw_prefix(string): if isinstance(string, basestring) and string.startswith("GW_"): return string[3:] return string def xml_result_generator(filepath): """ Returns a generator that provides maps of field names to values read from xml produced by mysql --xml. """ # Using lxml because recover=True makes it tolerant of unicode encoding problems. for event, row_elem in etree.iterparse(filepath, tag="row", recover=True): result = {} for field_elem in row_elem.iter("field"): if "xsi:nil" in field_elem.attrib or not field_elem.text: value = None else: # Strip whitespace value = field_elem.text.strip() result[field_elem.get("name")] = value row_elem.clear() yield result def remove_extra_args(func_args, func): """ Removes values from map of function arguments that are not necessary to invoke the function. """ (arg_names, varargs, keywords, defaults) = inspect.getargspec(func) for key in list(func_args.keys()): if key not in arg_names: del func_args[key] def valid_department_name(name): if name and name not in ("No Department", "University-level Dept"): return True return False def valid_college_name(name): if name and name not in ("University", "No College Designated"): return True return False # Register banner dialect csv.register_dialect("banner", delimiter="|") # Map of banner position codes to VIVO classes pos_code_to_classes = { # Research scientist or related "28101": "NonFacultyAcademic", "28301": "NonFacultyAcademic", "28302": "NonFacultyAcademic", "28502": "NonFacultyAcademic", "283R2": "NonFacultyAcademic", "283R1": "NonFacultyAcademic", "28102": "NonFacultyAcademic", "19S01": "NonFacultyAcademic", "28501": "NonFacultyAcademic", "27401": "NonFacultyAcademic", # Postdoc "289A1": "Postdoc", "289A2": "Postdoc", # Librarian "OC221": "Librarian", "OC231": "Librarian", "OD311": "Librarian", "OC241": "Librarian", "OC211": "Librarian", "30401": "Librarian", "OC341": "Librarian", "OA411": "Librarian", "OC321": "Librarian" } def get_netid_lookup(data_dir): """ Returns a map of gwids to netids. """ netid_map = {} with codecs.open(os.path.join(data_dir, "vivo_demographic.txt"), 'r', encoding="utf-8") as csv_file: reader = csv.DictReader(csv_file, dialect="banner") for row in reader: netid_map[row["EMPLOYEEID"]] = row["NETID"] return netid_map def demographic_intersection(gwids, data_dir): """ Returns the intersection of a provided list of gwids and the gwids in banner demographic data. """ demo_gwids = set() with codecs.open(os.path.join(data_dir, "vivo_demographic.txt"), 'r', encoding="utf-8") as csv_file: reader = csv.DictReader(csv_file, dialect="banner") for row in reader: demo_gwids.add(row["EMPLOYEEID"]) return list(demo_gwids.intersection(gwids)) def get_non_faculty_gwids(data_dir, non_fac_limit=None): """ Returns the list of non-faculty gwids. This is determined by taking the intersection of gwids in banner demographic data and gwids in mygw data and removing all faculty gwids. """ mygw_gwids = [] for result in xml_result_generator(os.path.join(data_dir, "mygw_users.xml")): mygw_gwids.append(result["gw_id"]) # Only gwids with demographic data demo_gwids = demographic_intersection(mygw_gwids, data_dir) # Not faculty gwids fac_gwids = get_faculty_gwids(data_dir) gwids = [gw_id for gw_id in demo_gwids if gw_id not in fac_gwids] if non_fac_limit is not None and len(gwids) > non_fac_limit: return gwids[:non_fac_limit] else: return gwids def get_faculty_gwids(data_dir, fac_limit=None): """ Returns the list of faculty gwids. This is determined by taking the intersection of gwids in banner demographic data and fis_faculty in certain roles. """ gwids = set() # fis faculty for result in xml_result_generator(os.path.join(data_dir, "fis_faculty.xml")): if result["role"] in ("Dean", "Dep Head", "Provost", "Faculty", "Faculty-COI", "CLAD"): gwids.add(result["gw_id"]) demo_gwids = demographic_intersection(gwids, data_dir) if fac_limit is not None and len(demo_gwids) > fac_limit: return demo_gwids[:fac_limit] else: return demo_gwids def mediaexpert_intersection(gwids, data_dir): """ Returns the intersection of a provided list of gwids and the gwids in mediaexpert data. """ mediaexpert_gwids = set() for result in xml_result_generator(os.path.join(data_dir, "mygw_mediaexperts.xml")): mediaexpert_gwids.add(result["gw_id"]) return list(mediaexpert_gwids.intersection(gwids)) def get_skip_name_gwids(data_dir): """ Returns the list of gwids for mediaexperts that have names. """ skip_name_gwids = set() for result in xml_result_generator(os.path.join(data_dir, "mygw_mediaexperts.xml")): if result["last_name"]: skip_name_gwids.add(result["gw_id"]) return list(skip_name_gwids) def format_phone_number(phone_number): if phone_number: clean_phone_number = phone_number.replace("-", "").replace(" ", "") if len(clean_phone_number) == 10: return "%s-%s-%s" % (clean_phone_number[0:3], clean_phone_number[3:6], clean_phone_number[6:]) return None def frommysqlxml(filename): return MySqlXmlView(filename) etl.frommysqlxml = frommysqlxml class MySqlXmlView(Table): def __init__(self, filename): self.filename = filename def __iter__(self): yielded_field_names = False for event, row_elem in etree.iterparse(self.filename, tag="row", recover=True): field_names = [] values = [] for field_elem in row_elem.iter("field"): if "xsi:nil" in field_elem.attrib or not field_elem.text: value = None else: # Strip whitespace value = unicode(field_elem.text).strip() field_names.append(field_elem.get("name")) values.append(value) row_elem.clear() if not yielded_field_names: yield field_names yielded_field_names = True yield values
def swap(arr, index_1, index_2): temp = arr[index_1] arr[index_1] = arr[index_2] arr[index_2] = temp def bubble_sort(arr): for i in range(len(arr)): # iterate through unplaced elements for idx in range(len(arr) - i - 1): if arr[idx] > arr[idx + 1]: # swap elements arr[idx], arr[idx + 1] = arr[idx + 1], arr[idx] nums = [5, 2, 9, 1, 5, 6] print("Pre-Sort: {0}".format(nums)) bubble_sort(nums) print("Post-Sort: {0}".format(nums))
from bake import * from scheme import * from spire.schema import Schema from spire.support.task import SpireTask from spire.util import get_package_data try: import alembic except ImportError: alembic = None else: from alembic import command class CreateSchema(SpireTask): name = 'spire.schema.create' description = 'creates a spire schema within a database' parameters = { 'incremental': Boolean(description='only create new tables', default=False), 'schemas': Sequence(Text(nonnull=True), description='the schemas to create'), } def run(self, runtime): schemas = self['schemas'] if schemas is None: schemas = [] for token, conf in self.assembly.filter_configuration('schema').iteritems(): schemas.append(conf['schema']) if not schemas: runtime.report('no schemas specified or configured; aborting') return from spire.schema import Schema for name in schemas: interface = Schema.interface(name) if not self['incremental']: interface.drop_schema() runtime.report('creating %r schema' % name) interface.create_schema() class DeploySchema(SpireTask): name = 'spire.schema.deploy' description = 'deploys a spire schema' parameters = { 'drop': Boolean(default=False), 'schema': Text(nonempty=True), } def run(self, runtime): from spire.schema import Schema name = self['schema'] interface = Schema.interface(name) if self['drop']: runtime.report('dropping schema %r' % name) interface.drop_schema() runtime.report('deploying schema %r to %r' % (name, interface.url)) interface.deploy_schema() class MigrationTask(SpireTask): supported = bool(alembic) parameters = { 'path': Path(description='path to migrations directory', required=True), 'schema': Text(description='name of target schema'), } @property def config(self): from alembic.config import Config config = Config() config.set_main_option('script_location', str(self['path'])) return config @property def schema(self): schema = self['schema'] if schema: return schema candidates = Schema.schemas.keys() if len(candidates) == 1: return candidates[0] raise TaskError('no schema specified') def prepare_environment(self): root = self['path'] (root / 'versions').mkdir_p() class InitializeMigrations(MigrationTask): name = 'spire.migrations.init' description = 'initialize a migrations directory for a schema' def run(self, runtime): root = self['path'] schema = self['schema'] if root.exists(): runtime.report('migrations directory exists for %r; aborting' % schema) return root.makedirs_p() (root / 'versions').mkdir() script = get_package_data('spire.schema:templates/script.py.mako.tmpl') (root / 'script.py.mako').write_bytes(script) env = get_package_data('spire.schema:templates/env.py.tmpl') (root / 'env.py').write_bytes(env % { 'schema': self.schema, }) runtime.report('created migrations directory for %r' % self.schema) class CreateMigration(MigrationTask): name = 'spire.migrations.create' description = 'creates a new schema migration' parameters = { 'autogenerate': Boolean(description='autogenerate migration', default=False), 'title': Text(description='short title for migration', required=True), } def run(self, runtime): self.prepare_environment() command.revision(self.config, message=self['title'], autogenerate=self['autogenerate']) class Downgrade(MigrationTask): name = 'spire.migrations.downgrade' description = 'downgrade to an older version of the schema' parameters = { 'revision': Text(description='revision to downgrade to', default='base'), 'sql': Boolean(description='generate sql instead of downgrading database', default=False), } def run(self, runtime): command.downgrade(self.config, revision=self['revision'], sql=self['sql']) class Upgrade(MigrationTask): name = 'spire.migrations.upgrade' description = 'upgrade to an newer version of the schema' parameters = { 'revision': Text(description='revision to upgrade to', default='head'), 'sql': Boolean(description='generate sql instead of upgrading database', default=False), } def run(self, runtime): command.upgrade(self.config, revision=self['revision'], sql=self['sql']) class ShowBranches(MigrationTask): name = 'spire.migrations.branches' description = 'show un-spliced branch points' def run(self, runtime): command.branches(self.config) class ShowCurrent(MigrationTask): name = 'spire.migrations.current' description = 'show current migration revision' def run(self, runtime): command.current(self.config) class ShowHistory(MigrationTask): name = 'spire.migrations.history' description = 'show changeset history' def run(self, runtime): command.history(self.config)
import caffe import scipy.io as sio import os import cv2 import numpy as np import yaml from multiprocessing import Process, Queue import random import h5py import fast_rcnn.bbox_transform from utils.cython_bbox import bbox_overlaps import numpy as np import utils.zl_utils as zl import random def bbox_transform_inv(boxes, deltas): if boxes.shape[0] == 0: return np.zeros((0, deltas.shape[1]), dtype=deltas.dtype) boxes = boxes.astype(deltas.dtype, copy=False) widths = boxes[:, 2] - boxes[:, 0] + 1.0 heights = boxes[:, 3] - boxes[:, 1] + 1.0 ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights dx = deltas[:, 0::4] dy = deltas[:, 1::4] dw = deltas[:, 2::4] dh = deltas[:, 3::4] pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis] pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis] pred_w = np.exp(dw) * widths[:, np.newaxis] pred_h = np.exp(dh) * heights[:, np.newaxis] pred_boxes = np.zeros(deltas.shape, dtype=deltas.dtype) # x1 pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # y1 pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # x2 pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # y2 pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h return pred_boxes def bbox_transform(ex_rois, gt_rois): ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0 ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0 ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + 1.0 gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + 1.0 gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights targets_dw = np.log(gt_widths / ex_widths) targets_dh = np.log(gt_heights / ex_heights) targets = np.vstack( (targets_dx, targets_dy, targets_dw, targets_dh)).transpose() return targets class RelationDatalayer(caffe.Layer): def get_minibatch(self): blobs = {} data = [] visual = [] classeme = [] classeme_s = [] classeme_o = [] visual_s = [] visual_o = [] loc_s = [] loc_o = [] location = [] labels = [] cnt = 0 while cnt < self._batch_size: if self.imidx >=len(self.imids): random.shuffle(self.imids) self.imidx = 0 imid = self.imids[self.imidx] self.imidx += 1 gt_rlp_labels = self.gt_labels[imid]['rlp_labels'] gt_sub_boxes= self.gt_labels[imid]['sub_boxes'] gt_obj_boxes = self.gt_labels[imid]['obj_boxes'] classemes = self.vgg_data[imid]['classemes'] visuals = self.vgg_data[imid]['visuals'] locations = self.vgg_data[imid]['locations'] cls_confs = self.vgg_data[imid]['cls_confs'] for i in xrange(gt_rlp_labels.shape[0]): gt_rlp_label = gt_rlp_labels[i] gt_sub_box = gt_sub_boxes[i] gt_obj_box= gt_obj_boxes[i] overlaps = bbox_overlaps( np.array([gt_sub_box, gt_obj_box]), locations.astype(np.float)) if overlaps.shape[0] == 0: continue sub_sorted = overlaps[0].argsort()[-30:][::-1] obj_sorted = overlaps[1].argsort()[-30:][::-1] while len(sub_sorted) > 0 and overlaps[0][sub_sorted[-1]] < .7: sub_sorted = sub_sorted[:-1] while len(obj_sorted) > 0 and overlaps[1][obj_sorted[-1]] < .7: obj_sorted = obj_sorted[:-1] if len(sub_sorted) <= 0 or len(obj_sorted) <= 0: continue for s in sub_sorted[:1]: for o in obj_sorted[:1]: if s != o and cnt < self._batch_size: sub_visual = visuals[s] obj_visual = visuals[o] sub_clsmemes = classemes[s] obj_clsmemes = classemes[o] sub_box_encoded = bbox_transform(np.array([locations[o]]), np.array([locations[s]]))[0] obj_box_encoded = bbox_transform(np.array([locations[s]]), np.array([locations[o]]))[0] pre_lbl = gt_rlp_label[1] labels.append(np.float32(pre_lbl)) classeme_s.append(sub_clsmemes) classeme_o.append(obj_clsmemes) visual_s.append(sub_visual) visual_o.append(obj_visual) loc_s.append(sub_box_encoded) loc_o.append(obj_box_encoded) visual.append(np.hstack((sub_visual, obj_visual))) classeme.append(np.hstack((sub_clsmemes, obj_clsmemes))) location.append(np.hstack((sub_box_encoded, obj_box_encoded))) cnt += 1 if cnt >= self._batch_size: break blobs['classeme'] = np.array(classeme) blobs['visual'] = np.array(visual) blobs['location'] = np.array(location) blobs['label'] = np.array(labels) return blobs def setup(self, bottom, top): self._cur_idx = 0 self.vgg_data = {} self.gt_labels = {} vgg_h5 = h5py.File("output/precalc/vg1_2_2016_train.hdf5", 'r') if os.path.exists('output/cache/vg1_2_2016_train.pkl'): self.vgg_data = zl.load('output/cache/vg1_2_2016_train.pkl') print 'loaded train data from cache' else: print 'Preloading training data' zl.tick() for k in vgg_h5.keys(): classemes = vgg_h5[k]['classemes'][...] visuals = vgg_h5[k]['visuals'][...] locations = vgg_h5[k]['locations'][...] cls_confs = vgg_h5[k]['cls_confs'][...] self.vgg_data[k]={} self.vgg_data[k]['classemes']=classemes self.vgg_data[k]['visuals']=visuals self.vgg_data[k]['cls_confs']=cls_confs self.vgg_data[k]['locations']=locations print 'done preloading training data %f'%zl.tock() zl.save('output/cache/vg1_2_2016_train.pkl',self.vgg_data) vgg_h5.close() self.meta = h5py.File('/home/zawlin/Dropbox/proj/vg1_2_meta.h5', 'r') if os.path.exists('output/cache/vg1_2_2016_gt.pkl'): self.gt_labels = zl.load('output/cache/vg1_2_2016_gt.pkl') print 'loaded gt data from cache' else: print 'Preloading gt' zl.tick() for k in self.meta['gt/train'].keys(): rlp_labels = self.meta['gt/train/%s/rlp_labels'%k][...] sub_boxes = self.meta['gt/train/%s/sub_boxes'%k][...].astype(np.float) obj_boxes = self.meta['gt/train/%s/obj_boxes'%k][...].astype(np.float) self.gt_labels[k] = {} self.gt_labels[k]['rlp_labels']=rlp_labels self.gt_labels[k]['sub_boxes']=sub_boxes self.gt_labels[k]['obj_boxes']=obj_boxes print 'done preloading gt %f'%zl.tock() zl.save('output/cache/vg1_2_2016_gt.pkl',self.gt_labels) self.imids = [] for k in self.vgg_data.keys(): self.imids.append(k) self.imidx = 0 random.shuffle(self.imids) layer_params = yaml.load(self.param_str_) self._batch_size = layer_params['batch_size'] self.train_data = [] self._name_to_top_map = {} top[0].reshape(self._batch_size, 201*2) top[1].reshape(self._batch_size, 4096*2) top[2].reshape(self._batch_size, 4*2) top[3].reshape(self._batch_size) self._name_to_top_map['classeme'] = 0 self._name_to_top_map['visual'] = 1 self._name_to_top_map['location'] = 2 self._name_to_top_map['label'] = 3 def forward(self, bottom, top): """Get blobs and copy them into this layer's top blob vector.""" blobs = self.get_minibatch() for blob_name, blob in blobs.iteritems(): top_ind = self._name_to_top_map[blob_name] # Reshape net's input blobs top[top_ind].reshape(*(blob.shape)) # Copy data into net's input blobs top[top_ind].data[...] = blob.astype(np.float32, copy=False) def backward(self, top, propagate_down, bottom): """This layer does not propagate gradients.""" pass def reshape(self, bottom, top): """Reshaping happens during the call to forward.""" pass
# Generated by Django 3.1.2 on 2020-10-02 10:11 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('audiobook', '0001_initial'), ] operations = [ migrations.RenameField( model_name='audiobook', old_name='file', new_name='file_field', ), ]
# Desenvolva um programa que leia as duas notas de um aluno, # calcule e mostre a sua média. not1 = float(input('Digite a nota 1: ')) not2 = float(input('Digite a nota 2: ')) média = (not1 + not2)/2 print('A média do aluno entre {} e {} será de {:.1f}'.format(not1, not2, média))
# The guess API is already defined for you. # @param num, your guess # @return -1 if my number is lower, 1 if my number is higher, otherwise return 0 # def guess(num): import sys class Solution(object): #accepted def guessNumber(self, n): """ :type n: int :rtype: int """ res = -sys.maxsize low, high = 1, n while low <= high: mid = low + (high-low) // 2 g = guess(mid) if g == 0: res = mid break elif g < 0: high = mid -1 else: low = mid + 1 return res
#!_PYTHONLOC # # (C) COPYRIGHT 2020 Ahasuerus # ALL RIGHTS RESERVED # # The copyright notice above does not evidence any actual or # intended publication of such source code. # # Version: $Revision: 477 $ # Date: $Date: 2019-12-01 20:16:10 -0500 (Sun, 01 Dec 2019) $ import string import sys import MySQLdb from isfdb import * from common import * from login import * from SQLparsing import * from library import * from xml.dom import minidom from xml.dom import Node if __name__ == '__main__': PrintHeader('Recent Activity') PrintNavbar('recent_activity', 0, 0, 'recent_activity.cgi', 0) print '<ul>' print '<li>%s' % ISFDBLink('recent.cgi', '', 'Recent Edits') print '<li>%s' % ISFDBLink('recent_primary_ver.cgi', '', 'Recent Primary Verifications') print '<li>%s' % ISFDBLink('recentver.cgi', '', 'Recently Added Secondary Verifications') print '<li>%s' % ISFDBLink('removed_secondary_verifications.cgi', '', 'Recently Removed Secondary Verifications') print '</ul>' PrintTrailer('recent_activity', 0, 0)
import logging class PowerSourceItem: def __init__(self, device_id, DeviceClass, device_instance=None): self.device_id = device_id self.DeviceClass = DeviceClass self.capacity = None self.load = 0.0 self.price = None self.device_instance = device_instance self.capacity_changed = False self.load_changed = False self.logger = logging.LoggerAdapter(logging.getLogger("lpdm"), {"sim_seconds": "", "device_id": "psi"}) def __repr__(self): return "id: {}, class: {}, capacity: {}, load: {}, price: {}".format( self.device_id, self.DeviceClass, self.capacity, self.load, self.price ) def update_status(self): if not self.device_instance is None: self.device_instance.update_status() def is_configured(self): """Is this power source configured? ie has capacity and price been set?""" return not self.capacity is None and not self.price is None def is_available(self): """Is this power source configured? ie has capacity and price been set?""" return self.is_configured() and self.capacity > 0 def can_handle_load(self, new_load): """Can this power souce handle the additional load?""" if self.capacity is None: raise Exception("The capacity for {} has not been set.".format(self.device_id)) if self.price is None: raise Exception("The price for {} has not been set.".format(self.device_id)) return (self.load + new_load) <= self.capacity def add_load(self, new_load): """Add additional load to the power source""" if self.can_handle_load(new_load): self.set_load(self.load + new_load) self.logger.debug("message: Add load {}".format(new_load)) self.logger.debug("message: Total load {}".format(self.load)) return True else: return False def set_load(self, load): """ Set the load for the power source. Also set a boolean flag indicating the load has changed. """ if load > 0 and not self.is_available(): raise Exception("Attempted to put load of {} on a power source that has not been configured.".format(load)) if load != self.load: self.load_changed = True self.load = load # if there's an actual device instance connected then set that load as well if self.device_instance: self.device_instance.set_load(load) def set_capacity(self, capacity): """ Set the capacity for the power source. Also set a boolean flag indicating the capacity has changed. """ if capacity != self.capacity: self.capacity_changed = True self.capacity = capacity # if self.load > self.capacity: # raise Exception("Load > capacity ({} > {})".format(self.load, self.capacity)) def has_changed(self): """Has this power source been changed""" return self.capacity_changed or self.load_changed def reset_changed(self): """Set the load/capacity changed flags to False""" self.capacity_changed = False self.load_changed = False
#!/usr/bin/env python # -*- coding: utf-8 -*- # file: extensions.py # authors: jonathan kelley, anthony tarola # --- # license: the mit license # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the above copyright notice and this permission notice shall being included # in all copies or substantial portions of the Software. import logging import os import os.path import pipes import re import subprocess from tornado import gen from tornado.process import Subprocess from tornado.ioloop import IOLoop import toro log = logging.getLogger(__name__) class SecurityFaultDangerousUserInput(Exception): """ this will be raised if an escape sequence is attempted in parameters if you try to pull tricks, the json parser errors expecting a delimiter (like a newline) but this can't be fulfilled because that triggers this exception again, in a recurisve manner. if you send the ANSI CR or LF characters you will also fail and be trapped by the json decoder for invalid input as the pipes function will escape those sort of control characters. this should provide a reasonable layer of security unless there is an attack on the regex, or python string libraries that is currently unpublished. as always, use a reasonable layer of authentication in front of this API as absolutely no security measure is close to foolproof. """ def __init___(self, dErrorArguments): Exception.__init__(self, "{0}".format(dErrArguments)) self.dErrorArguments = dErrorArguements class ExtensionCollection(dict): """ load the collection of extensions """ def __init__(self, *args, **kwargs): dict.__init__(self, *args, **kwargs) def metadata(self, tags): """ return the metadata for all of the extensions, keyed by name """ output = {} for key, value in self.items(): if (tags['tags']) or (tags['not_tags']) or (tags['any_tags']): if (set(tags['tags']).issubset(value.tags)) and (tags['tags']): output[key] = value.metadata() continue if tags['not_tags']: output[key] = value.metadata() for tag in tags['not_tags']: if (tag in value.tags): output.pop(key, None) break for tag in tags['any_tags']: if tag in value.tags: output[key] = value.metadata() break else: output[key] = value.metadata() return output def name(self, tags): """ return a list of just the names of all extensions """ output = [] for key, value in self.items(): if (tags['tags']) or (tags['not_tags']) or (tags['any_tags']): if (set(tags['tags']).issubset(value.tags)) and (tags['tags']): output.append(value.name) continue if tags['not_tags']: output.append(value.name) for tag in tags['not_tags']: if (tag in value.tags): output.remove(value.name) break for tag in tags['any_tags']: if tag in value.tags: output.append(value.name) break else: output.append(value.name) return output class Extension(object): """ a single route extension in the directory """ def __init__(self, filename, name, description, params, filtered_params, tags, http_method, output, needs_lock): self.lock = toro.Lock() self.filename = filename self.name = name self.description = description self.params = params self.filtered_params = filtered_params self.tags = tags self.http_method = http_method self.needs_lock = needs_lock self.output = output def filter_params(self, params): filtered_params = dict(params) for k, v in filtered_params.items(): if k in self.filtered_params: filtered_params[k] = 'FILTERED' return filtered_params @gen.engine def execute(self, params, callback): log.info("Executing extension: {0} with params: {1}".format( self.filename, self.filter_params(params))) if self.needs_lock: with (yield gen.Task(self.lock.aquire(self.lock))): response = yield gen.Task(self.do_execute, params) else: response = yield gen.Task(self.do_execute, params) callback(response) @gen.engine def do_execute(self, params, callback): env = self.create_env(params) if env == False: # If the environment has manipulated string input, raise raise SecurityFaultDangerousUserInput(params) extension_dir = os.path.dirname(self.filename) os.chdir(extension_dir) if self.output == 'combined': child = Subprocess( self.filename, env=env, stdout=Subprocess.STREAM, stderr=subprocess.STDOUT, io_loop=IOLoop.instance() ) retcode, stdout = yield [ gen.Task(child.set_exit_callback), gen.Task(child.stdout.read_until_close) ] callback((child.returncode, stdout.split())) else: child = Subprocess( self.filename, env=env, stdout=Subprocess.STREAM, stderr=Subprocess.STREAM, io_loop=IOLoop.instance() ) retcode, stdout, stderr = yield [ gen.Task(child.set_exit_callback), gen.Task(child.stdout.read_until_close), gen.Task(child.stderr.read_until_close) ] callback((child.returncode, stdout.splitlines(), stderr.splitlines())) def param_attempts_escape(self, parameter): """ Perform a scan to see if this is an escaping parameter. """ empty_parameter_value = "''\"'\"''\"'\"''" open_sequence = len(tuple(re.finditer(r"''\"'\"'", parameter))) close_sequence = len(tuple(re.finditer(r"'\"'\"''", parameter))) escapes = open_sequence + close_sequence if escapes > 0 and parameter != empty_parameter_value: return True else: return False def create_env(self, input): output = {} stop = False # add all the parameters as env variables for param in self.params: name = param['name'] value = input.get(name, '') real_param = pipes.quote(pipes.quote(value)) output[name.upper()] = real_param if self.param_attempts_escape(real_param): return False return output def metadata(self): return { "filename": self.filename, "http_method": self.http_method, "name": self.name, "description": self.description, "params": self.params, "filtered_params": self.filtered_params, "tags": self.tags, "output": self.output, "lock": self.needs_lock } def __repr__(self): return "<{0} {1}>".format(self.__class__.__name__, self.metadata()) def create_collection(directory): """ create the extension collection for the directory """ log.info("Getting extension from directory {0}".format(directory)) collection = ExtensionCollection() for (dirpath, _, filenames) in os.walk(directory): for filename in filenames: # grab the file's absolute path, and name path = os.path.join(dirpath, filename) full_path = os.path.abspath(path) # format the name for sanity name = path.replace(directory + os.sep, '') name = '.'.join(name.split(".")[:-1]) name = re.sub(r'(\W)+', '_', name) log.info("Adding extension with name: {0} and path: {1}".format( name, full_path)) extension = create_extension(name, full_path) if extension is not None: collection[name] = extension return collection def create_extension(extension_name, filename): """ parse a extension, returning a Extension object """ # script defaults description = None params = [] filtered_params = [] tags = [] http_method = 'post' output = 'split' lock = False # warn the user if we can't execute this file if not os.access(filename, os.X_OK): log.error("Filename {0} not executable, file ignored".format(filename)) return None # grab file contents with open(filename) as f: contents = list(f) in_block = False # loop over the contents of the file for line in contents: # all lines should be bash style comments if not line.startswith("#"): continue # we don't need the first comment, or extranious whitespace line = line.replace("#", "").strip() # start of the extension block if not in_block and line.startswith("-- config --"): in_block = True continue # end of the extension block, so we'll stop here if in_block and line.startswith("-- config --") \ or in_block and line.startswith("-- end config --"): in_block = False break # make sure the line is good if not ':' in line: continue # prep work for later key, value = [item.strip() for item in line.split(':')] # description if in_block and key == "description": description = value continue # http_method if in_block and key == "http_method": if value.lower() in ['get', 'post', 'put', 'delete']: http_method = value.lower() continue else: log.warn( "Unrecognized http_method type in -- config -- block: {0}".format(value.lower())) continue if value.lower() in ['split', 'combined']: output = value.lower() continue else: log.warn( "Unrecognized output type in -- config -- block: {0}".format(value.lower())) continue # param if in_block and key == "param": # handle the optional description if "-" in value: name, desc = [item.strip() for item in value.split('-')] params.append({'name': name, 'description': desc}) continue params.append({'name': value}) continue # filtered_params if in_block and key == "filtered_params": filter_values = [filter_value.strip() for filter_value in value.split(',')] if len(filter_values) > 1: for filter_value in filter_values: filtered_params.append(filter_value) continue filtered_params.append(value) continue # tags if in_block and key == "tags": tag_values = [tag_value.strip() for tag_value in value.split(',')] if len(tag_values) > 1: for tag_value in tag_values: tags.append(tag_value) continue tags.append(value) continue # lock if in_block and key == "lock": lock = (value == "True") continue # ignore PEP 263 Source Code Encodings if line.startswith("-*- coding:") or line.startswith("coding=") or line.startswith("vim: set fileencoding="): continue # pass for license heading or config block comment lines if line.lower().startswith("license:") or line.startswith("---"): continue log.warn("Unrecognized line in -- config -- block: {0}".format(line)) # if in_bock is true, then we never got an end to the block, which is bad if in_block: log.error( "File with filename {0} missing a -- config -- end block, ignoring".format(filename)) return None return Extension(filename, extension_name, description, params, filtered_params, tags, http_method, output, lock)
from django.contrib import admin from .models import Cases class Cases_Admin(admin.ModelAdmin): readonly_fields = ('date_created','date_modified') admin.site.register(Cases, Cases_Admin)
# this is a virtual module that is entirely implemented server side # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['stableinterface'], 'supported_by': 'core'} DOCUMENTATION = r''' --- module: template version_added: historical short_description: Templates a file out to a remote server. description: - Templates are processed by the Jinja2 templating language (U(http://jinja.pocoo.org/docs/)) - documentation on the template formatting can be found in the Template Designer Documentation (U(http://jinja.pocoo.org/docs/templates/)). - "Six additional variables can be used in templates: C(ansible_managed) (configurable via the C(defaults) section of C(ansible.cfg)) contains a string which can be used to describe the template name, host, modification time of the template file and the owner uid. C(template_host) contains the node name of the template's machine. C(template_uid) the numeric user id of the owner. C(template_path) the path of the template. C(template_fullpath) is the absolute path of the template. C(template_run_date) is the date that the template was rendered." options: src: description: - Path of a Jinja2 formatted template on the Ansible controller. This can be a relative or absolute path. required: true dest: description: - Location to render the template to on the remote machine. required: true backup: description: - Create a backup file including the timestamp information so you can get the original file back if you somehow clobbered it incorrectly. choices: [ "yes", "no" ] default: "no" newline_sequence: description: - Specify the newline sequence to use for templating files. choices: [ '\n', '\r', '\r\n' ] default: '\n' version_added: '2.4' block_start_string: description: - The string marking the beginning of a block. default: '{%' version_added: '2.4' block_end_string: description: - The string marking the end of a block. default: '%}' version_added: '2.4' variable_start_string: description: - The string marking the beginning of a print statement. default: '{{' version_added: '2.4' variable_end_string: description: - The string marking the end of a print statement. default: '}}' version_added: '2.4' trim_blocks: description: - If this is set to True the first newline after a block is removed (block, not variable tag!). default: "no" version_added: '2.4' force: description: - the default is C(yes), which will replace the remote file when contents are different than the source. If C(no), the file will only be transferred if the destination does not exist. choices: [ "yes", "no" ] default: "yes" notes: - For Windows you can use M(win_template) which uses '\r\n' as C(newline_sequence). - Including a string that uses a date in the template will result in the template being marked 'changed' each time - "Since Ansible version 0.9, templates are loaded with C(trim_blocks=True)." - "Also, you can override jinja2 settings by adding a special header to template file. i.e. C(#jinja2:variable_start_string:'[%', variable_end_string:'%]', trim_blocks: False) which changes the variable interpolation markers to [% var %] instead of {{ var }}. This is the best way to prevent evaluation of things that look like, but should not be Jinja2. raw/endraw in Jinja2 will not work as you expect because templates in Ansible are recursively evaluated." author: - Ansible Core Team - Michael DeHaan extends_documentation_fragment: - files - validate ''' EXAMPLES = r''' # Example from Ansible Playbooks - template: src: /mytemplates/foo.j2 dest: /etc/file.conf owner: bin group: wheel mode: 0644 # The same example, but using symbolic modes equivalent to 0644 - template: src: /mytemplates/foo.j2 dest: /etc/file.conf owner: bin group: wheel mode: "u=rw,g=r,o=r" # Create a DOS-style text file from a template - template: src: config.ini.j2 dest: /share/windows/config.ini newline_sequence: '\r\n' # Copy a new "sudoers" file into place, after passing validation with visudo - template: src: /mine/sudoers dest: /etc/sudoers validate: 'visudo -cf %s' # Update sshd configuration safely, avoid locking yourself out - template: src: etc/ssh/sshd_config.j2 dest: /etc/ssh/sshd_config owner: root group: root mode: '0600' validate: /usr/sbin/sshd -t -f %s backup: yes '''
import torch import torch.nn as nn class SeqModel(nn.Module): def __init__( self, embedding_size=200, vocab_size=300, output_size=5, hidden_size=200, num_layers=2, nonlin="tanh", dropout_rate=0.7, mode=0, unit="lstm", more_features=False, ): # add glove param here? ^^ super(SeqModel, self).__init__() self.mode = mode self.unit = unit self.more_features = more_features self.embedding = nn.Embedding( num_embeddings=vocab_size, embedding_dim=embedding_size ) self.embedding.weight.data.normal_(0.0, 0.05) # mean=0.0, mu=0.05 if mode == 0: if unit == "lstm": self.lstm_rnn = nn.LSTM( input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, ) elif unit == "gru": self.gru_rnn = nn.GRU( input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, ) else: # baseline: unidirectional rnn self.rnn = nn.RNN( input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, nonlinearity=nonlin, ) if more_features: self.linear_layer = nn.Linear( hidden_size + len(numeric_features), output_size ) else: self.linear_layer = nn.Linear(hidden_size, output_size) # model with dropout: if mode == 1: if unit == "lstm": self.lstm_rnn = nn.LSTM( input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout_rate, ) elif unit == "gru": self.gru_rnn = nn.GRU( input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout_rate, ) else: self.rnn = nn.RNN( input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, nonlinearity=nonlin, dropout=dropout_rate, ) if more_features: self.linear_layer = nn.Linear( hidden_size + len(numeric_features), output_size ) else: self.linear_layer = nn.Linear(hidden_size, output_size) # Bidirectional model if mode == 2: if unit == "lstm": self.lstm_rnn = nn.LSTM( input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout_rate, bidirectional=True, ) elif unit == "gru": self.gru_rnn = nn.GRU( input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout_rate, bidirectional=True, ) else: self.rnn = nn.RNN( input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, nonlinearity=nonlin, dropout=dropout_rate, bidirectional=True, ) if more_features: self.linear_layer = nn.Linear( hidden_size * 2 + len(numeric_features), output_size ) else: self.linear_layer = nn.Linear(hidden_size * 2, output_size) self.activation_fn = nonlin self.softmax_layer = nn.LogSoftmax(dim=1) def forward(self, x, x_concat=None): # permute x? out = self.embedding(x) if self.unit == "lstm": out, (h_state, c_state) = self.lstm_rnn(out) elif self.unit == "gru": out, h_state = self.gru_rnn(out) else: out, h_state = self.rnn(out) out = out[-1] if self.more_features: out = torch.cat((out, x_concat.permute(1, 0)), dim=1) out = self.linear_layer(out) out = self.softmax_layer(out) return out
# https://leetcode.com/problems/binary-tree-maximum-path-sum/ # # algorithms # Hard (29.46%) # Total Accepted: 177,254 # Total Submissions: 601,635 # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def maxPathSum(self, root): """ :type root: TreeNode :rtype: int """ res = [root.val] def recursive(node): if not node: return float('-inf') left, right = recursive(node.left), recursive(node.right) l, r = left + node.val, right + node.val a = l + r - node.val res[0] = max(res[0], left, right, l, r, node.val, a) return max(l, r, node.val) recursive(root) return res[0]
#!/usr/bin/env python """ Helper script to ingest generated data to a search index. You must have access to a search index for this to work. """ import json import globus_sdk from login import load_tokens import argparse # 'cr3' index INDEX = '11f4dbe5-1449-4d65-af83-72d322b117f3' SEARCH_DATA = 'gmeta_ingest_doc.json' def ingest(): with open(SEARCH_DATA) as f: ingest_doc = json.loads(f.read()) tokens = load_tokens() auther = globus_sdk.AccessTokenAuthorizer( tokens['search.api.globus.org']['access_token']) sc = globus_sdk.SearchClient(authorizer=auther) preview = [ent['subject'] for ent in ingest_doc['ingest_data']['gmeta']] print('\n'.join(preview)) print('Ingest these to "{}"?'.format( sc.get_index(INDEX).data['display_name'])) user_input = input('Y/N> ') if user_input in ['yes', 'Y', 'y', 'yarr']: sc.ingest(INDEX, ingest_doc) print('Finished') else: print('Aborting') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-i", help="input Gmet json data file") args = parser.parse_args() if args.i: SEARCH_DATA = args.i ingest()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 29 15:25:20 2020 @author: babraham """ import json import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import dash_bootstrap_components as dbc import pandas as pd import plotly.graph_objs as go import plotly.figure_factory as ff import os import numpy as np import datetime as dt from django_plotly_dash import DjangoDash from va_explorer.va_data_management.models import Location, VerbalAutopsy from django.forms.models import model_to_dict import re import time # ================APP DEFINITION===============# # NOTE: to include external stylesheets, set external_stylesheets parameter in constructor # app = dash.Dash(__name__) # Dash constructor app = DjangoDash(name="va_dashboard", serve_locally=True, add_bootstrap_links=True) # TODO: We should eventually move this mapping to someplace where it's more configurable # ===========INITIAL CONFIG VARIABLES=============# # initial timefraome for map data to display INITIAL_TIMEFRAME = "1 year" # folder where geojson is kept JSON_DIR = "va_explorer/va_analytics/dash_apps/geojson" # Zambia Geojson pulled from: https://adr.unaids.org/dataset/zambia-geographic-data-2019 JSON_FILE = "zambia_geojson.json" # initial granularity INITIAL_GRANULARITY = "province" # initial metric to plot on map INITIAL_MAP_METRIC = "Total Deaths" # ============Lookup dictionaries =================# def load_lookup_dicts(): lookup = dict() # dictionary mapping time labels to days (or all) lookup["time_dict"] = {"1 week": 7, "1 month": 30, "1 year": 365, "all": "all"} # dictionary mapping demographic variable names to corresponding VA survey columns lookup["demo_to_col"] = { "age group": "age_group", "sex": "Id10019", "place of death": "Id10058", } # colors used for plotting lookup["color_list"] = [ "rgb(24,162,185)", "rgb(201,0,1)", "rgb(8,201,0)", "rgb(240,205,21)", "rgb(187,21,240)", "rgb(250,250,248)", "rgb(162,162,162)", ] # colorscale used for map lookup["map_colorscale"] = [(0.0, 'rgb(255,255,255)'), (0.01, 'rgb(255,255,255)'), (0.01, 'rgb(0, 147, 146)'), (0.16666666666666666, 'rgb(0, 147, 146)'), (0.16666666666666666, 'rgb(57, 177, 133)'), (0.3333333333333333, 'rgb(57, 177, 133)'), (0.3333333333333333, 'rgb(156, 203, 134)'), (0.5, 'rgb(156, 203, 134)'), (0.5, 'rgb(233, 226, 156)'), (0.6666666666666666, 'rgb(233, 226, 156)'), (0.6666666666666666, 'rgb(238, 180, 121)'), (0.8333333333333333, 'rgb(238, 180, 121)'), (0.8333333333333333, 'rgb(232, 132, 113)'), (1.0, 'rgb(232, 132, 113)')] # dictionary mapping raw map metrics to human-readable names lookup["metric_names"] = { "Total Deaths": "Total Deaths", "Mean Age of Death": "Mean Age of Death", "HIV/AIDS related death": "HIV/AIDS", "Diabetes mellitus": "Diabetes Mellitus", "Acute resp infect incl pneumonia": "Pneumonia", "Other and unspecified cardiac dis": "Other Cardiac", "Diarrhoeal diseases": "Diarrhoeal Diseases", "Other and unspecified neoplasms": "Unspecified Neoplasm", "Renal failure": "Renal Failure", "Liver cirrhosis": "Liver Cirrhosis", "Digestive neoplasms": "Digestive Neoplasm", "Other and unspecified infect dis": "Other", } # dictionary mapping place of death names to more human-readable names lookup["death_location_names"] = { "on_route_to_hospital_or_facility": "En Route to Facility", "DK": "Unknown", "other_health_facility": "Other Health Facility", } # formats for montly, weekly, and yearly dates lookup["date_display_formats"] = { "week": "%d/%m/%Y", "month": "%m/%Y", "year": "%Y", } return lookup LOOKUP = load_lookup_dicts() # =============Geo dictionaries and global variables ========# # load geojson data from flat file (will likely migrate to a database later) def load_geojson_data(json_file): geojson = None if os.path.isfile(json_file): geojson = json.loads(open(json_file, "r").read()) # add min and max coordinates for mapping for i, g in enumerate(geojson["features"]): coordinate_list = g["geometry"]["coordinates"] coordinate_stat_tables = [] for coords in coordinate_list: if len(coords) == 1: coords = coords[0] coordinate_stat_tables.append( pd.DataFrame(coords, columns=["lon", "lat"]).describe() ) g["properties"]["area_name"] += " {}".format(g["properties"]["area_level_label"]) g["properties"]["min_x"] = min( [stat_df["lon"]["min"] for stat_df in coordinate_stat_tables] ) g["properties"]["max_x"] = max( [stat_df["lon"]["max"] for stat_df in coordinate_stat_tables] ) g["properties"]["min_y"] = min( [stat_df["lat"]["min"] for stat_df in coordinate_stat_tables] ) g["properties"]["max_y"] = max( [stat_df["lat"]["max"] for stat_df in coordinate_stat_tables] ) geojson["features"][i] = g # save total districts and provinces for future use geojson["district_count"] = len([f for f in geojson["features"] \ if f["properties"]["area_level_label"] == "District"]) geojson["province_count"] = len([f for f in geojson["features"] \ if f["properties"]["area_level_label"] == "Province"]) return geojson GEOJSON = load_geojson_data(json_file=f"{JSON_DIR}/{JSON_FILE}") # ============ VA Data ================= def load_va_data(geographic_levels=None): return_dict = {"data": pd.DataFrame()} valid_vas = VerbalAutopsy.objects.exclude(causes=None).prefetch_related("location").prefetch_related("causes") if len(valid_vas) > 0: # Grab exactly the fields we need, including location and cause data va_data = [ { "id": va.id, "Id10019": va.Id10019, "Id10058": va.Id10058, "ageInYears": va.ageInYears, "location": va.location.name, "cause": va.causes.all()[0].cause, # Don't use first() to take advantage of the prefetch } for va in valid_vas ] # Build a location ancestors lookup and add location information at all levels to all vas # TODO: This is not efficient (though it's better than 2 DB queries per VA) # TODO: This assumes that all VAs will occur in a facility, ok? locations, location_types = dict(), dict() location_ancestors = { location.id:location.get_ancestors() for location in Location.objects.filter(location_type="facility") } for i, va in enumerate(valid_vas): # location_types[va.location.depth] = va.location.location_type # locations.add(va.location.name) for ancestor in location_ancestors[va.location.id]: va_data[i][ancestor.location_type] = ancestor.name location_types[ancestor.depth] = ancestor.location_type locations[ancestor.name] = ancestor.location_type va_df = pd.DataFrame.from_records(va_data) # clean up age fields and assign to age bin va_df["age"] = va_df["ageInYears"].replace( to_replace=["dk"], value=np.random.randint(1, 80) ) va_df["age"] = pd.to_numeric(va_df["age"]) va_df["age_group"] = va_df["age"].apply(assign_age_group) cur_date = dt.datetime.today() # TODO: This random date of death assignment needs to be correctly handled # NOTE: date field called -Id10023 in VA form, but no dates in curent responses va_df["date"] = [ cur_date - dt.timedelta(days=int(x)) for x in np.random.randint(3, 400, size=va_df.shape[0]) ] # convert location_types to an ordered list location_types = [l for _,l in sorted(location_types.items(), key=lambda x: x[0])] return_dict = {"data": va_df, "location_types": location_types, "max_depth": len(location_types) - 1, "locations": locations} return return_dict def assign_age_group(age): if age <= 1: return "neonate" elif age <= 16: return "child" else: return "adult" # ===============APP LAYOUT====================# app.layout = html.Div( id="app-body-container", children=[ html.Div( [ # global filters (affect entire dashboard) dbc.Row( [ html.Span("Analytics Dashboard", className="dashboard-title"), html.Div( className="dashboard-comp-container", children=[ html.P("Time Frame", className="input-label"), dcc.Dropdown( id="timeframe", options=[ {"label": o, "value": o.lower()} for o in [ "1 Day ", "1 Week", "1 Month", "1 Year", "All", ] ], value="1 year", style={ "margin-top": "5px", "margin-bottom": "5px", "width": "120px", }, searchable=False, clearable=False, ), ], style={ "display": "flex", "margin-right": "10px", "margin-left": "10px", }, ), html.Div([html.A(dbc.Button("Download Data", color="info"), href="/va_analytics/download")], style={ "margin-top": "10px", "margin-left": "20px" } ) ], style={"margin-left": "0px"}, ), html.Div( [ dbc.Col( [ dbc.Row( [ html.Div( id="callout-container", style={ "display": "flex", "text-align": "center", }, ) ], style={"margin-left": "0px"}, ), dbc.Row( [ html.Div( className="dashboard-comp-container", children=[ html.P( "Map Metric", className="input-label", ), dcc.Dropdown( id="map_metric", style={ "margin-top": "5px", "margin-bottom": "5px", "width": "200px", }, searchable=False, clearable=False, ), ], style={"display": "flex"}, ), html.Div(className='dashborad-comp-container', id='search-container', children = [ dcc.Dropdown( id='map_search', options= [], multi=False, placeholder='Search Locations', clearable=True, )], style={ "margin-left": "10px", "width": "220px", } ), html.Div( className="dashboard-comp-container", children=[ html.P( "View", id="view_label", className="input-label", ), dcc.Dropdown( id="view_level", # options = [{"value": o, "label": o.capitalize()} # for o in [INITIAL_GRANULARITY]], # value=INITIAL_GRANULARITY, value="", placeholder = "Auto", style={ "margin-top": "5px", "margin-bottom": "5px", "width": "100px", }, searchable=False, clearable=False, disabled=False ), ], style={"display": "flex"}, ), html.Div(className='dashboard-comp-container', children = [ dbc.Button("Reset Map", id="reset", color="info", className="mr-1", n_clicks=0) ] ) ], style={"align-items": "center"}, ), # map container dcc.Loading(id='map-loader', type='circle', children=[ html.Div( id="choropleth-container", children=dcc.Graph(id="choropleth"), ) ]), html.Div(id="bounds"), html.Div(id="va_data", style={"display": "none"}), html.Div(id="locations", style={"display": "none"}), html.Div(id="location_types", style={"display": "none"}), html.Div(id="filter_dict", style={"display": "none"}), ], width=7, ), dbc.Col( [ dcc.Tabs( [ # graph tabs dcc.Tab( label="COD Analysis", children=[ # tab 1: COD Analysis html.Div( id="cod_buttons", children=[ html.Div( [ html.P( "Demographic", className="input-label", ), dcc.Dropdown( id="cod_factor", options=[ { "label": o, "value": o, } for o in [ "All", "Age Group", "Sex", ] ], value="All", style={ "margin-top": "5px", "margin-bottom": "5px", "width": "120px", }, searchable=False, clearable=False, ), ], style={ "display": "flex", "margin-right": "30px", }, ), html.Div( [ html.P( "N", className="input-label", ), dcc.Dropdown( id="cod_n", options=[ { "label": o, "value": o, } for o in [5,10,15,20] ], value=10, style={ "margin-top": "5px", "margin-bottom": "5px", "width": "60px", }, searchable=False, clearable=False, ), ], style={"display": "flex"}, ), dbc.RadioItems( id="cod-aggtype", options=[ { "label": "% of Total", "value": "percent_total", }, { "label": "Counts", "value": "counts", }, ], value="cts", labelStyle={ "display": "inline-block" }, labelClassName="radio-group-labels", labelCheckedClassName="radio-group-labels-checked", style={ "margin-left": "30px", "display": "flex", }, ), ], style={ "display": "flex", "align-items": "center", }, ), dcc.Loading(html.Div(id="cod-container"), type='circle'), ], ), dcc.Tab( label="Age Distribution", children=[dcc.Loading(html.Div(id="age-container"), type='circle')] ), dcc.Tab( label="Gender Distribution", children=[dcc.Loading(html.Div(id="sex-container"))] ), dcc.Tab( label="Place of Death Distribution", children=[dcc.Loading(html.Div(id="pod-container"))] ), dcc.Tab( label="VA Trends", children=[ html.Div( id="ts_buttons", children=[ html.Div( [ html.P( "Aggregation", className="input-label", ), dcc.Dropdown( id="group_period", options=[ { "label": o, "value": o, } for o in [ "Day", "Week", "Month", "Year", ] ], value="Month", style={ "margin-top": "5px", "margin-bottom": "5px", "width": "120px", "margin-right": "30px", }, searchable=False, clearable=False, ), html.P( "Demographic", className="input-label", ), dcc.Dropdown( id="ts_factor", options=[ { "label": o, "value": o, } for o in [ "All", "Age Group", "Sex", "Place of Death", ] ], value="All", style={ "margin-top": "5px", "margin-bottom": "5px", "width": "140px", }, searchable=False, clearable=False, ), ], style={ "display": "flex", "margin-right": "30px", }, ), dcc.Loading(html.Div(id="ts-container"), type='circle'), ], ) ], ), ] ) ] ), ], style={"display": "flex", "margin-top": "10px"}, ), ] ) ], ) #=============Reset logic (reset map to default)====================# @app.callback( [ Output(component_id="map_search", component_property="value"), Output(component_id="map_metric", component_property="value") ], [ Input(component_id="reset", component_property="n_clicks") ] ) def reset(n_clicks=0): return "", INITIAL_MAP_METRIC # ============ VA data (loaded from database and shared across components) ======== @app.callback( [ Output(component_id="va_data", component_property="children"), Output(component_id="locations", component_property="children"), Output(component_id="location_types", component_property="children") ], [ Input(component_id="timeframe", component_property="value"), ] ) def va_data(timeframe="All"): res = load_va_data() va_data = res["data"].to_json() locations = json.dumps(res["locations"]) location_types = json.dumps(res["location_types"]) return va_data, locations, location_types # ============ Location search options (loaded after load_va_data())================== @app.callback( Output(component_id="map_search", component_property="options"), [Input(component_id="map_search", component_property="search_value"), Input(component_id="locations", component_property="children")] ) def update_options(search_value, location_json): if search_value and location_json: locations = json.loads(location_json).keys() options = [{'label':l, 'value':l} for l in locations \ if search_value.lower() in l.lower()] return options else: raise dash.exceptions.PreventUpdate #============ Filter logic (update filter table used by other componenets)========# @app.callback( Output(component_id="filter_dict", component_property="children"), [ Input(component_id="va_data", component_property="children"), Input(component_id="choropleth", component_property="selectedData"), Input(component_id="timeframe", component_property="value"), Input(component_id="map_search", component_property="value"), Input(component_id="locations", component_property="children"), Input(component_id="location_types", component_property="children") ] ) def filter_data( va_data, selected_json, timeframe="All", search_terms=[], locations=None, location_types=None ): filter_df = pd.read_json(va_data) granularity = INITIAL_GRANULARITY locations = json.loads(locations) if type(locations) is str else locations search_terms = [] if search_terms is None else search_terms location_types = json.loads(location_types) if location_types is not None else location_types # dictionary storing data we want to share across callbacks filter_dict = { "geo_filter": (selected_json is not None) or (len(search_terms) > 0), "plot_regions": [] } if filter_dict["geo_filter"]: # first, check if user searched anything. If yes, use that as filter. if search_terms is not None: if len(search_terms) > 0: search_terms = [search_terms] if type(search_terms) is str else search_terms granularity = locations.get(search_terms[0], granularity) filter_df = filter_df[filter_df[granularity].isin(set(search_terms))] # then, check for locations clicked on map. if selected_json is not None: point_df = pd.DataFrame(selected_json["points"]) chosen_regions = point_df["location"].tolist() granularity = locations.get(chosen_regions[0], granularity) filter_df = filter_df[filter_df[granularity].isin(set(chosen_regions))] # get parent location type from current granularity parent_location_type = shift_granularity(granularity, location_types, move_up=True) # get all locations in parent(s) of chosen regions for plotting plot_regions = list() for parent_name in filter_df[parent_location_type].unique(): location_object = Location.objects.get(name=parent_name) children = location_object.get_children() children_names = [c.name for c in location_object.get_children()] plot_regions = plot_regions + children_names + [parent_name] # set final granularity to same level of children granularity = children[0].location_type filter_dict["plot_regions"] = plot_regions # finally, apply time filter if necessary if timeframe != "all": cutoff = dt.datetime.today() - dt.timedelta( days=LOOKUP["time_dict"][timeframe] ) filter_df = filter_df[filter_df["date"] >= cutoff] filter_ids = filter_df.index.tolist() filter_dict["ids"] = filter_ids filter_dict["granularity"] = granularity #ret = f"{granularity} | {children_names[0]} " return json.dumps(filter_dict) # try to move one level up or down in the geographical hierarchy. If not possible, # return current level def shift_granularity(current_granularity, levels, move_up=False): current_granularity = current_granularity.lower() if current_granularity in levels: current_idx = levels.index(current_granularity) if move_up: new_idx = max(current_idx - 1, 0) else: new_idx = min(current_idx + 1, len(levels) - 1) return levels[new_idx] # =========Map Metrics =======================# # Top metrics to track for map dropdown @app.callback( Output(component_id="map_metric", component_property="options"), [ Input(component_id="va_data", component_property="children"), Input(component_id="filter_dict", component_property="children") ] ) def get_metrics(va_data, filter_dict=None, N=10): # by default, start with aggregate measures metrics = [ "Total Deaths", "Mean Age of Death", ] metric_data = pd.read_json(va_data) if metric_data.size > 0: if filter_dict is not None: filter_dict = json.loads(filter_dict) metric_data = metric_data.iloc[filter_dict["ids"], :] # add top N CODs by incidence to metric list metrics = metrics + (metric_data["cause"] .value_counts() .sort_values(ascending=False) .head(N) .index .tolist()) return [{"label": LOOKUP["metric_names"].get(m,m),"value": m} for m in metrics] def get_metric_display_names(map_metrics): names = [] for metric in map_metrics: metric_name = LOOKUP["metric_names"].get(metric, None) if metric_name is None: metric_name = " ".join([x.capitalize() for x in metric.strip().split(" ")]) names.append(metric_name) return names # ====================Geographic Levels (View options)============# @app.callback( [ Output(component_id="view_level", component_property="options"), Output(component_id="view_level", component_property="disabled"), Output(component_id="view_label", component_property="className") ], [ Input(component_id="filter_dict", component_property="children"), Input(component_id="location_types", component_property="children"), ] ) def update_view_options(filter_dict, location_types): if filter_dict is not None: filter_dict = json.loads(filter_dict) # only activate this dropdown when user is zoomed out disable = filter_dict["geo_filter"] if not disable: view_options = json.loads(location_types) label_class = "input-label" else: view_options = [] label_class = "input-label-disabled" options = [{'label': o.capitalize(), 'value': o} for o in view_options] return options, disable, label_class # when view dropdown is disabled, reset selected value to null @app.callback( Output(component_id="view_level", component_property="value"), [ Input(component_id="view_level", component_property="disabled"), ] ) def reset_view_value(is_disabled=False): if is_disabled: return "" else: raise dash.exceptions.PreventUpdate # ====================Map Logic===================================# @app.callback( # [ Output(component_id="choropleth-container", component_property="children"), # Output(component_id="bounds", component_property="children") # ], [ Input(component_id="va_data", component_property="children"), Input(component_id="timeframe", component_property="value"), Input(component_id="map_metric", component_property="value"), Input(component_id="view_level", component_property="value"), Input(component_id="location_types", component_property="children"), Input(component_id="filter_dict", component_property="children"), ], ) def update_choropleth( va_data, timeframe, map_metric="Total Deaths", view_level=None,\ location_types=None, filter_dict=None, geojson=GEOJSON ): # first, see which input triggered update. If granularity change, only run # if value is non-empty context = dash.callback_context trigger = context.triggered[0] if trigger["prop_id"].split('.')[0] == "view_level" and trigger["value"] == "": raise dash.exceptions.PreventUpdate plot_data = pd.read_json(va_data) return_value = html.Div(id="choropleth") zoom_in = False granularity = INITIAL_GRANULARITY location_types = json.loads(location_types) if plot_data.size > 0: timeframe = timeframe.lower() feature_id = "properties.area_name" chosen_regions = geojson["features"] # if dashboard filter applied, carry over to data if filter_dict is not None: filter_dict = json.loads(filter_dict) granularity = filter_dict.get('granularity', granularity) plot_data = plot_data.iloc[filter_dict["ids"], :] # geo_filter is true if user clicked on map or searches for location zoom_in = filter_dict["geo_filter"] # if zoom in necessary, filter geojson to only chosen region(s) if zoom_in: plot_regions = filter_dict["plot_regions"] chosen_regions = [ g for g in geojson["features"] if g["properties"]["area_name"] in plot_regions ] # if user has clicked on map and granularity is providence level, change to district level granularity = shift_granularity(granularity, location_types, move_up=False) if map_metric not in ["Total Deaths", "Mean Age of Death"]: plot_data = plot_data[plot_data["cause"] == map_metric] # if user has not chosen a view level or its disabled, default to using granularity view_level = view_level if len(view_level) > 0 else granularity # get map tooltips to match view level (disstrict or province) map_df = generate_map_data(plot_data, chosen_regions, view_level, zoom_in, map_metric) data_value = "age_mean" if len(re.findall("[mM]ean", map_metric)) > 0 else "age_count" figure = go.Figure( data=go.Choropleth( locations=map_df[view_level], z=map_df[data_value].astype(float), locationmode="geojson-id", geojson=geojson, featureidkey=feature_id, colorscale=LOOKUP["map_colorscale"], hovertext=map_df["tooltip"], hoverinfo="text", autocolorscale=False, marker_line_color="black", # line markers between states marker_line_width=0.25, colorbar=dict( title="{} by {}".format( map_metric.capitalize(), granularity.capitalize() ), thicknessmode="fraction", thickness=0.03, lenmode="fraction", len=0.8, yanchor="middle", ticks="outside", nticks=10, ), ) ) # update figure layout figure.update_layout( margin={"r": 0, "t": 0, "l": 0, "b": 0}, clickmode="event" if zoom_in else "event+select", #clickmode="none", dragmode="select", ) # additional styling config = {"displayModeBar": True} figure.update_geos( fitbounds="locations", visible=True, showcountries=True, showlakes=False, countrycolor="lightgray", showsubunits=True, landcolor="rgb(250,250,248)", framewidth=0, ) return_value = dcc.Graph(id="choropleth", figure=figure, config=config) return return_value # ==========Map dataframe (built from va dataframe)============# def generate_map_data(va_df, chosen_geojson, view_level="district", zoom_in=False, metric="Total Deaths"): if va_df.size > 0: map_df = ( va_df[[view_level, "age", "location"]] .groupby(view_level) .agg({"age": ["mean", "count"], "location": [pd.Series.nunique]}) ) map_df.columns = ['_'.join(tup) for tup in map_df.columns.to_flat_index()] map_df.reset_index(inplace=True) # generate tooltips for regions with data metric_name = LOOKUP['metric_names'].get(metric, metric) map_df["age_mean"] = np.round(map_df["age_mean"], 1) map_df["tooltip"] = ( "<b>"+ map_df[view_level] + "</b>" + "<br>" + f"<b>{metric_name}: </b>" + map_df["age_count"].astype(str) + "<br>" + "<b>Average Lifespan: </b>" + map_df["age_mean"].astype(str) + "<br>" + "<b>Active Facilities: </b>" + map_df["location_nunique"].astype(str) ) # join with all region names to ensure each region has a record chosen_region_names = [(f['properties']['area_name'], f['properties']['area_id'])\ for f in chosen_geojson\ if f['properties']['area_level_label'] == view_level.capitalize()] geo_df = pd.DataFrame.from_records(chosen_region_names, columns=[view_level, 'area_id']) map_df = geo_df.merge(map_df, how='left', on=view_level) # fill NAs with 0s and rename empty tooltips to "No Data" map_df["tooltip"].fillna("No Data", inplace=True) map_df.fillna(0, inplace=True) return map_df return pd.DataFrame() # =========Callout Boxes Logic============================================# @app.callback( Output(component_id="callout-container", component_property="children"), [ Input(component_id="va_data", component_property="children"), Input(component_id="timeframe", component_property="value"), Input(component_id="filter_dict", component_property="children"), ], ) def update_callouts(va_data, timeframe, filter_dict=None, geojson=GEOJSON): plot_data = pd.read_json(va_data) granularity = INITIAL_GRANULARITY if plot_data.size > 0: if filter_dict is not None: filter_dict = json.loads(filter_dict) plot_data = plot_data.iloc[filter_dict["ids"], :] granularity = filter_dict.get('granularity', granularity) # total VAs total_vas = plot_data.shape[0] # active facilities active_facilities = plot_data["location"].nunique() # TODO: get field worker data from ODK - this is just a janky hack num_field_workers = int(1.25 * active_facilities) # region coverage total_regions = geojson[f"{granularity}_count"] if filter_dict is not None: if len(filter_dict["plot_regions"]) > 0: total_regions = len(filter_dict["plot_regions"]) # TODO: fix this to be more generic if granularity == 'province': granularity = 'district' regions_covered = ( plot_data[[granularity, "age"]].dropna()[granularity].nunique() ) coverage = "{}%".format(np.round(100 * regions_covered / total_regions, 0)) return [ make_card(total_vas, header="Total VAs"), make_card(active_facilities, header="Active Facilities"), make_card(num_field_workers, header="Field Workers"), make_card(coverage, header="Region Coverage"), ] else: return [[html.Div() for i in range(4)]] # build a calloutbox with specific value # colors: primary, secondary, info, success, warning, danger, light, dark def make_card( value, header=None, description="", color="light", inverse=False, style=None ): card_content = [] if header is not None: card_content.append(dbc.CardHeader(header)) body = dbc.CardBody( [ html.H3(value, className="card-title"), html.P(description, className="card-text",), ], style={"padding": ".5rem"}, ) card_content.append(body) if style is None: style = {"width": "190px"} card_obj = dbc.Card(card_content, color=color, inverse=inverse, className="mr-2") card_container = html.Div(card_obj, style=style) return card_container # =========Cause of Death Plot Logic============================================# @app.callback( Output(component_id="cod-container", component_property="children"), [ Input(component_id="va_data", component_property="children"), Input(component_id="timeframe", component_property="value"), Input(component_id="cod_factor", component_property="value"), Input(component_id="cod_n", component_property="value"), Input(component_id="cod-aggtype", component_property="value"), Input(component_id="filter_dict", component_property="children"), ], ) def cod_plot(va_data, timeframe, factor="All", N=10, agg_type="counts", filter_dict=None): figure = go.Figure() plot_data = pd.read_json(va_data) if plot_data.size > 0: if filter_dict is not None: plot_data = plot_data.iloc[json.loads(filter_dict)["ids"], :] factor = factor.lower() if factor != "all": assert factor in ["age group", "sex"] factor_col = LOOKUP["demo_to_col"][factor] factor_title = "by " + factor.capitalize() counts = plot_data.pivot_table( index="cause", columns=factor_col, values="id", aggfunc=pd.Series.nunique, fill_value=0, margins=True, ) plot_fn = go.Scatter else: counts = pd.DataFrame({"All": plot_data.cause.value_counts()}) factor_title = "Overall" plot_fn = go.Bar counts["cod"] = counts.index counts = counts[counts["cod"] != "All"] counts = counts.sort_values(by="All", ascending=False).head(N) groups = list(set(counts.columns).difference(set(["cod"]))) if factor != "all": groups.remove("All") for i, group in enumerate(groups): if agg_type != "counts": counts[group] = 100 * counts[group] / counts[group].sum() figure.add_trace( plot_fn( y=counts[group], x=counts["cod"], name=group.capitalize(), orientation="v", marker=dict( color=LOOKUP["color_list"][i], line=dict(color="rgb(158,158,158)", width=1), ), ) ) figure.update_layout( barmode="stack", title_text="Top {} Causes of Death {}".format(N, factor_title), xaxis_tickangle=-45, yaxis_title="Count" if agg_type == "counts" else "Percent", ) return dcc.Graph(id="cod_plot", figure=figure) # =========Age Distribution Plot Logic============================================# @app.callback( Output(component_id="age-container", component_property="children"), [ Input(component_id="va_data", component_property="children"), Input(component_id="timeframe", component_property="value"), Input(component_id="filter_dict", component_property="children"), ], ) def age_plot(va_data, timeframe, filter_dict=None, bins=9): figure = go.Figure() plot_data = pd.read_json(va_data) if plot_data.size > 0: if filter_dict is not None: plot_data = plot_data.iloc[json.loads(filter_dict)["ids"], :] historgram_data = [plot_data["age"].dropna().tolist()] group_labels = ["Verbal Autopsies"] # name of the dataset figure = ff.create_distplot( historgram_data, group_labels, show_rug=False, bin_size=[bins] ) figure.update_layout( title_text="Verbal Autopsy Age Distribution", xaxis_title="Age", yaxis_title="Density", ) return dcc.Graph(id="age_plot", figure=figure) # =========Gender Plot Logic============================================# @app.callback( Output(component_id="sex-container", component_property="children"), [ Input(component_id="va_data", component_property="children"), Input(component_id="timeframe", component_property="value"), Input(component_id="filter_dict", component_property="children"), ], ) def sex_plot(va_data, timeframe, filter_dict=None): figure = go.Figure() plot_data = pd.read_json(va_data) if plot_data.size > 0: if filter_dict is not None: plot_data = plot_data.iloc[json.loads(filter_dict)["ids"], :] column_name = LOOKUP["demo_to_col"]["sex"] sex_counts = plot_data[column_name].value_counts() figure.add_trace( go.Pie(labels=sex_counts.index.tolist(), values=sex_counts.values, hole=0.3) ) figure.update_layout(title_text="Verbal Autopsies by Gender") return dcc.Graph(id="sex_plot", figure=figure) # ========= Time Series Plot Logic============================================# @app.callback( Output(component_id="ts-container", component_property="children"), [ Input(component_id="va_data", component_property="children"), Input(component_id="timeframe", component_property="value"), Input(component_id="group_period", component_property="value"), Input(component_id="filter_dict", component_property="children"), Input(component_id="ts_factor", component_property="value"), ], ) def trend_plot(va_data, timeframe, group_period, filter_dict=None, factor="All"): figure = go.Figure() plot_data = pd.read_json(va_data) if plot_data.size > 0: if filter_dict is not None: plot_data = plot_data.iloc[json.loads(filter_dict)["ids"], :] group_period = group_period.lower() aggregate_title = group_period.capitalize() plot_data["date"] = pd.to_datetime(plot_data["date"]) plot_data["timegroup"] = pd.to_datetime(plot_data["date"]) if group_period == "week": plot_data["timegroup"] = pd.to_datetime( plot_data["date"] .dt.to_period("W") .apply(lambda x: x.strftime("%Y-%m-%d")) ) elif group_period == "month": plot_data["timegroup"] = pd.to_datetime( plot_data["date"].dt.to_period("M").apply(lambda x: x.strftime("%Y-%m")) ) elif group_period == "year": plot_data["timegroup"] = plot_data["date"].dt.to_period("Y").astype(str) dtype = "category" if group_period == "year" else "date" factor = factor.lower() if factor != "all": assert factor in LOOKUP["demo_to_col"] factor_col = LOOKUP["demo_to_col"][factor] trend_counts = plot_data.pivot_table( index="timegroup", columns=factor_col, values="id", aggfunc=pd.Series.nunique, fill_value=0, margins=False, ) plot_fn = go.Scatter else: trend_counts = ( plot_data[["timegroup", "id"]] .groupby("timegroup") .count() .rename(columns={"id": "all"}) ) plot_fn = go.Bar for i, group in enumerate(trend_counts.columns.tolist()): figure.add_trace( plot_fn( y=trend_counts[group], x=trend_counts.index, name=group.capitalize(), marker=dict( color=LOOKUP["color_list"][i], line=dict(color=LOOKUP["color_list"][i], width=1), ), ) ) figure.update_layout( title_text="Verbal Autopsies by {}".format(aggregate_title), xaxis_title=aggregate_title, yaxis_title="Verbal Autopsy Count", xaxis_type=dtype, xaxis_tickangle=-45, xaxis_tickformatstops=[ dict( dtickrange=[None, None], value=LOOKUP["date_display_formats"].get(group_period, "%d/%m/%Y"), ) ], ) return dcc.Graph(id="trend_plot", figure=figure) # =========Place of Death Plot Logic============================================# @app.callback( Output(component_id="pod-container", component_property="children"), [ Input(component_id="va_data", component_property="children"), Input(component_id="filter_dict", component_property="children") ], ) def place_of_death_plt(va_data, filter_dict=None): figure = go.Figure() plot_data = pd.read_json(va_data) if plot_data.size > 0: if filter_dict is not None: plot_data = plot_data.iloc[json.loads(filter_dict)["ids"], :] plot_data["Id10058"] = plot_data["Id10058"].apply( lambda x: LOOKUP["death_location_names"].get(x, x.capitalize()) ) location_counts = plot_data["Id10058"].value_counts() figure = go.Figure( go.Pie( labels=location_counts.index.tolist(), values=location_counts.values, hole=0.3, ) ) figure.update_layout(title_text="VAs by Place of Death") return dcc.Graph(id="pod_plt", figure=figure) # uncomment this if running as Dash app (as opposed to DjangoDash app) # app.run_server(debug= True)
""" Django settings for django_blog project. Generated by 'django-admin startproject' using Django 1.11.2. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '8q@q!u=s#vgqz7=s)2au6w4ae@4mt8i=#76x6ll-x_jbs-_zh%' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = ['127.0.0.1', 'localhost', '.aaron-zhao.com'] # Application definition INSTALLED_APPS = [ 'rest_framework', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog', 'ckeditor', 'ckeditor_uploader', 'django.contrib.sites', 'django.contrib.sitemaps', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.github', 'allauth.socialaccount.providers.weibo', 'crispy_forms', 'imagekit', 'robots', 'mptt', 'easy_comment', 'notifications', 'online_status', 'django_celery_results', ] CRISPY_TEMPLATE_PACK = 'bootstrap3' REST_FRAMEWORK = { 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.AllowAny' ], 'DEFAULT_RENDERER_CLASSES': [ 'rest_framework.renderers.JSONRenderer', 'rest_framework.renderers.BrowsableAPIRenderer', ], } MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'online_status.middleware.OnlineStatusMiddleware', ] ROOT_URLCONF = 'django_blog.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'blog.views.global_setting', ], }, }, ] WSGI_APPLICATION = 'django_blog.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'blogdb', 'USER': 'root', "PASSWORD": 'mangui710', 'HOST': '127.0.0.1', 'PORT': '3700', } } CACHES = { "default": { "BACKEND": "django_redis.cache.RedisCache", "LOCATION": "redis://127.0.0.1:6379/0", "OPTIONS": { "CLIENT_CLASS": "django_redis.client.DefaultClient", } } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'zh-hans' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') # Media root 设置 MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # 富文本编辑器设置 CKEDITOR_UPLOAD_PATH = 'upload/' CKEDITOR_IMAGE_BACKEND = 'pillow' CKEDITOR_ALLOW_NONIMAGE_FILES = False CKEDITOR_RESTRICT_BY_USER = True CKEDITOR_RESTRICT_BY_DATE = True CKEDITOR_BROWSE_SHOW_DIRS = True CKEDITOR_CONFIGS = { 'default': { 'skin': 'moono', 'language':'zh-cn', 'width': '750px', 'height': '500px', 'toolbar_Basic': [ ['Source', '-', 'Bold', 'Italic'] ], 'toolbar_YourCustomToolbarConfig': [ {'name': 'basicstyles', 'items': ['Bold', 'Italic', 'Underline', 'Strike']}, {'name': 'paragraph', 'items': ['NumberedList', 'BulletedList', '-', 'Outdent', 'Indent', '-', 'Blockquote', '-','JustifyLeft', 'JustifyCenter', 'JustifyRight', 'JustifyBlock']}, {'name': 'links', 'items': ['Link', 'Unlink', 'Anchor', '-', 'RemoveFormat']}, {'name': 'insert', 'items': ['Image', '-', 'Flash', 'Iframe', '-', 'Table', 'CodeSnippet', 'Templates']}, '/', {'name': 'colors', 'items': ['TextColor', 'BGColor']}, {'name': 'styles', 'items': ['Format', 'Font', 'FontSize']}, {'name': 'special', 'items': ['Subscript', 'Superscript', '-', 'HorizontalRule', 'SpecialChar', 'Smiley']}, {'name': 'tools', 'items': ['Undo', 'Redo', '-', 'Source', 'Preview', 'Save', '-', 'Maximize']} ], 'toolbar': 'YourCustomToolbarConfig', 'image_previewText':' ', 'tabSpaces': 4, 'extraPlugins': ','.join( [ 'div', 'autolink', 'autoembed', 'embedsemantic', 'autogrow', 'widget', 'lineutils', 'clipboard', 'dialog', 'dialogui', 'elementspath', 'codesnippet', 'uploadimage', 'uploadfile', 'prism', ]), }, 'comment': { # 编辑器的宽高请根据你的页面自行设置 'width': 'auto', 'height': '150px', 'image_previewText': ' ', 'tabSpaces': 4, 'toolbar': 'Custom', 'toolbar_Custom': [ ['Bold', 'Italic', 'Underline', 'RemoveFormat'], ['NumberedList', 'BulletedList'], ['CodeSnippet'], ['Image', 'Link', 'Unlink'] ], 'extraPlugins': ','.join(['codesnippet', 'uploadimage', 'prism', 'widget', 'lineutils', ]), } } # 自定义日志输出信息 LOGGING = { 'version': 1, 'disable_existing_loggers': True, 'formatters': { 'standard': { 'format': '%(asctime)s [%(threadName)s:%(thread)d] [%(name)s:%(lineno)d] [%(module)s:%(funcName)s] [%(levelname)s]- %(message)s'} #日志格式 }, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse', }, 'require_debug_true': { '()': 'django.utils.log.RequireDebugTrue', }, }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters':['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler', 'include_html': True, }, 'default': { 'level':'INFO', 'class':'logging.handlers.RotatingFileHandler', 'filename': 'log/all.log', #日志输出文件 'maxBytes': 1024*1024*5, #文件大小 'backupCount': 5, #备份份数 'formatter':'standard', #使用哪种formatters日志格式 }, 'error': { 'level':'ERROR', 'class':'logging.handlers.RotatingFileHandler', 'filename': 'log/error.log', 'maxBytes':1024*1024*5, 'backupCount': 5, 'formatter':'standard', }, 'console':{ 'level': 'INFO', 'filters':['require_debug_true'], 'class': 'logging.StreamHandler', 'formatter': 'standard', }, 'request_handler': { 'level':'DEBUG', 'class':'logging.handlers.RotatingFileHandler', 'filename': 'log/script.log', 'maxBytes': 1024*1024*5, 'backupCount': 5, 'formatter':'standard', }, 'scripts_handler': { 'level':'DEBUG', 'class':'logging.handlers.RotatingFileHandler', 'filename':'log/script.log', 'maxBytes': 1024*1024*5, 'backupCount': 5, 'formatter':'standard', } }, 'loggers': { 'django': { 'handlers': ['default', 'mail_admins'], 'level': 'DEBUG', 'propagate': False }, 'django.request': { 'handlers': ['request_handler', 'console', 'mail_admins'], 'level': 'DEBUG', 'propagate': False, }, 'scripts': { 'handlers': ['scripts_handler'], 'level': 'INFO', 'propagate': False }, 'blog.views': { 'handlers': ['default', 'error', 'mail_admins'], 'level': 'DEBUG', 'propagate': True }, } } # Website INFO Global Var SITE_NAME = 'Python学习笔记、Django学习笔记 - AA的博客' SITE_DESCP = 'AA的博客是分享学习Python技术与经验的个人博客,由Python、Django以及资源分享等分类组成,内容主要是Django博客开发。' SITE_KEYWORDS = 'AA的博客, Python学习笔记, Django博客开发, Django学习笔记' # 自定义用户model AUTH_USER_MODEL = 'blog.user' # django-allauth相关设置 AUTHENTICATION_BACKENDS = ( # django admin所使用的用户登录与django-allauth无关 'django.contrib.auth.backends.ModelBackend', # `allauth` specific authentication methods, such as login by e-mail 'allauth.account.auth_backends.AuthenticationBackend', ) # 前面我们app里添加了django.contrib.sites,需要设置SITE_ID SITE_ID = 1 ACCOUNT_AUTHENTICATION_METHOD = 'username_email' ACCOUNT_EMAIL_REQUIRED = True LOGIN_REDIRECT_URL = '/' LOGIN_URL = '/accounts/login' SOCIALACCOUNT_EMAIL_VERIFICATION = 'none' ACCOUNT_EMAIL_VERIFICATION = 'mandatory' ACCOUNT_EMAIL_CONFIRMATION_COOLDOWN = 180 ACCOUNT_LOGOUT_ON_GET = True # Email setting # SMTP服务器,我使用的是sendclound的服务 EMAIL_HOST = 'smtp.mxhichina.com' EMAIL_HOST_USER = 'support@aaron-zhao.com' EMAIL_HOST_PASSWORD = '1234' EMAIL_PORT = 465 #EMAIL_HOST = 'smtpcloud.sohu.com' #EMAIL_HOST_USER = 'Aaroon_test_N05MI9' 'bguqzpoxqlhccaig' qq #EMAIL_HOST_PASSWORD = 'u7qFYbkRKK08PMtR' #EMAIL_PORT = 25 # 是否使用了SSL 或者TLS EMAIL_USE_SSL = True #EMAIL_USE_TLS = True # 默认发件人,不设置的话django默认使用的webmaster@localhost DEFAULT_FROM_EMAIL = 'Support <support@aaron-zhao.com>' ADMINS = (('Aaron', 'rudy710@qq.com'), ('Barry', 'zhruyao@163.com')) #非空链接,却发生404错误,发送通知MANAGERS SEND_BROKEN_LINK_EMAILS = True MANAGERS = ADMINS # easy_comment setting COMMENT_ENTRY_MODEL = 'blog.post' ROBOTS_USE_HOST = False # notification setting NOTIFICATIONS_USE_JSONFIELD=True SEND_NOTIFICATION_EMAIL = True #redis settings REDIS_HOST = '127.0.0.1' REDIS_PORT = 6379 REDIS_DB = 0 #celery settings CELERY_BROKER_URL = 'redis://127.0.0.1:6379/0' # CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0' CELERY_RESULT_BACKEND = 'django-cache'
from ruby.network.buffer.Encoder import Encoder class Tests: @staticmethod def send(data): encoder = Encoder() message = encoder.encoder(data) print(message) pass
import os import unittest from ....BaseTestCase import BaseTestCase from kombi.Crawler import Crawler from kombi.Crawler.PathHolder import PathHolder from kombi.Crawler.Fs.Texture import TextureCrawler class TextureCrawlerTest(BaseTestCase): """Test Texture crawler.""" __exrFile = os.path.join(BaseTestCase.dataTestsDirectory(), "test_DIFF_u1_v1.exr") __tifFile = os.path.join(BaseTestCase.dataTestsDirectory(), "test_bump_1002.tif") __badExrFile = os.path.join(BaseTestCase.dataTestsDirectory(), "test_0001.exr") def testTextureCrawler(self): """ Test that the Texture crawler test works properly. """ crawler = Crawler.create(PathHolder(self.__exrFile)) self.assertIsInstance(crawler, TextureCrawler) crawler = Crawler.create(PathHolder(self.__tifFile)) self.assertIsInstance(crawler, TextureCrawler) crawler = Crawler.create(PathHolder(self.__badExrFile)) self.assertNotIsInstance(crawler, TextureCrawler) def testTextureVariables(self): """ Test that variables are set properly. """ crawler = Crawler.create(PathHolder(self.__exrFile)) self.assertEqual(crawler.var("type"), "texture") self.assertEqual(crawler.var("category"), "texture") self.assertEqual(crawler.var("assetName"), "test") self.assertEqual(crawler.var("mapType"), "DIFF") self.assertEqual(crawler.var("udim"), 1001) self.assertEqual(crawler.var("variant"), "default") crawler = Crawler.create(PathHolder(self.__tifFile)) self.assertEqual(crawler.var("assetName"), "test") self.assertEqual(crawler.var("mapType"), "BUMP") self.assertEqual(crawler.var("udim"), 1002) self.assertEqual(crawler.var("variant"), "default") def testTextureTags(self): """ Test that the tags are set properly. """ crawler = Crawler.create(PathHolder(self.__exrFile)) self.assertEqual(crawler.tag("group"), "test-default") if __name__ == "__main__": unittest.main()
def get_client(url): from verta import Client return Client(url)
from datetime import timedelta from django_performance_testing.timing import TimeCollector from freezegun import freeze_time import pytest from testapp.test_helpers import capture_result_collected @pytest.mark.parametrize('seconds', [10, 5, 0.04]) def test_captures_and_measures_elapsed_time(seconds): with capture_result_collected() as captured: with freeze_time('2016-09-22 15:57:01') as frozen_time: with TimeCollector(): frozen_time.tick(timedelta(seconds=seconds)) assert len(captured.calls) == 1 assert pytest.approx(seconds) == captured.calls[0]['results'][0].value
from enum import Enum, auto # List of palettes to use. Remember to wrap the first + last colors! class Palette(Enum): Autumn = [ [0.00, [69, 21, 21]], [0.33, [35, 25, 25]], [0.67, [98, 58, 26]], [1.00, [69, 21, 21]], ] Beach = [ [0, [0,177,56]], [0.25, [226,168,110]], [0.5, [5,111,142]], [0.75, [6,73,163]], [1, [0,177,56]], ] Fire = [ [0, [160,0,0]], [0.33, [240,60,5]], [0.66, [255,245,60]], [1, [160,0,0]], ] Forest = [ [0, [106, 255, 61]], [0.25, [48, 90, 34]], [0.5, [81, 230, 68]], [0.75, [140, 90, 40]], [1, [106, 255, 61]], ] Ocean = [ [0, [30,170,180]], [0.33, [0,20,250]], [0.66, [30,250,50]], [1, [30,170,180]], ] Pink = [ [0, [250,30,60]], [0.33, [80,30,200]], [0.66, [100,70,100]], [1, [250,30,60]], ] Rainbow = [ [0, [255,0,0]], [0.33, [0,255,0]], [0.66, [0,0,255]], [1, [255,0,0]], ] Sorbet = [ [0, [62, 65, 137]], [0.25, [54, 129, 109]], [0.5, [210, 158, 46]], [0.75, [140, 79, 94]], [1, [62, 65, 137]], ] class Palettes: # NOTE: These values will be overridden by Config MAX_BRIGHTNESS = 20 BRIGHTNESS_SCALAR = MAX_BRIGHTNESS / 255 @classmethod def updateBrightness(cls, newValue): cls.MAX_BRIGHTNESS = max(0, min(20, newValue)) # safety measure to make sure we never go above 20 for all leds at once cls.BRIGHTNESS_SCALAR = cls.MAX_BRIGHTNESS / 255 @classmethod def hsv_to_rgb(cls, h, s, v): if s == 0.0: v*=255; return [v, v, v] i = int(h*6.) # XXX assume int() truncates! f = (h*6.)-i; p,q,t = int(255*(v*(1.-s))), int(255*(v*(1.-s*f))), int(255*(v*(1.-s*(1.-f)))); v*=255; i%=6 if i == 0: return [v, t, p] if i == 1: return [q, v, p] if i == 2: return [p, v, t] if i == 3: return [p, q, v] if i == 4: return [t, p, v] if i == 5: return [v, p, q] @classmethod def hsv_to_rgb_int(cls, h, s, v): rgb = cls.hsv_to_rgb(h, s, v) return [int(rgb[0]), int(rgb[1]), int(rgb[2])] @classmethod def lerp(cls, a, b, t, scaled=False): if scaled: return int((a + (b-a) * t) * cls.BRIGHTNESS_SCALAR) else: return int(a + (b-a) * t) @classmethod def lerpColor(cls, a, b, t, scaled=False): return [cls.lerp(a[0], b[0], t, scaled), cls.lerp(a[1], b[1], t, scaled), cls.lerp(a[2], b[2], t, scaled)] @classmethod def generatePalette(cls, gradient, LED_COUNT): palette = [] i = 0 for step in range(len(gradient) - 1): left = gradient[step] right = gradient[step + 1] percent = i / (LED_COUNT - 1) while percent <= right[0]: t = (percent - left[0]) / (right[0] - left[0]) # palette.append([i, step, t, lerpColor(left[1], right[1], t)]) palette.append(cls.lerpColor(left[1], right[1], t, True)) i += 1 percent = i / (LED_COUNT - 1) return palette
""" BPJS Calculator """ class Bpjs: """ BPJS Class """ def __init__(self, employee_information, configuration): """ Args: employee_information (dictionary): base_salary -- (Integer) Gaji Pokok fixed_allowances -- (Integer) Tunjangan Tetap non_fixed_allowances -- (Integer) Tunjangan Tidak Tetap is_salary_allowances -- (Boolean), True it means we calculate SALARY + ALLOWANCE , False it means we calculate SALARY ONLY accident_insurance_status -- (Boolean) BPJS Jaminan Kecelakaan Enrollment Status pension_insurance_status -- (Boolean) BPJS Jaminan Pensiun Enrollment Status death_insurance_status -- (Boolean) BPJS Jaminan Kematian Enrollment Status health_insurance_status -- (Boolean) BPJS Jaminan Kesehatan Enrollment Status industry_risk_rate -- (Float) Industry Risk Rate (ex : 0.24) configuration -- (dictionary): pension_max_fee -- (Integer) Jumlah Maksimal BPJS Pensiun health_max_fee -- (Integer) Jumlah Maksimal BPJS old_pension_max_fee -- (Integer) Jumlah Maksimal BPJS individual_health_insurance_rate -- (Integer) Jumlah Maksimal BPJS company_health_insurance_rate -- (Integer) Jumlah Maksimal BPJS death_insurance_rate -- (Integer) Jumlah Maksimal BPJS individual_old_age_insurance_rate -- (Integer) Jumlah Maksimal BPJS company_old_age_insurance_rate -- (Integer) Jumlah Maksimal BPJS individual_pension_insurance_rate -- (Integer) Jumlah Maksimal BPJS company_pension_insurance_rate -- (Integer) Jumlah Maksimal BPJS """ self.base_salary = employee_information["base_salary"] self.fixed_allowances = employee_information["fixed_allowances"] self.non_fixed_allowances = employee_information["non_fixed_allowances"] self.is_salary_allowances = employee_information["is_salary_allowances"] self.accident_insurance_status = employee_information["accident_insurance_status"] self.pension_insurance_status = employee_information["pension_insurance_status"] self.old_age_insurance_status = employee_information["old_age_insurance_status"] self.death_insurance_status = employee_information["death_insurance_status"] self.health_insurance_status = employee_information["health_insurance_status"] self.industry_risk_rate = employee_information["industry_risk_rate"] self.health_max_fee = configuration["health_max_fee"] self.pension_max_fee = configuration["pension_max_fee"] self.old_pension_max_fee = configuration["old_pension_max_fee"] self.individual_health_insurance_rate =\ configuration["individual_health_insurance_rate"] self.company_health_insurance_rate =\ configuration["company_health_insurance_rate"] self.death_insurance_rate =\ configuration["death_insurance_rate"] self.individual_old_age_insurance_rate=\ configuration["individual_old_age_insurance_rate"] self.company_old_age_insurance_rate=\ configuration["company_old_age_insurance_rate"] self.individual_pension_insurance_rate =\ configuration["individual_pension_insurance_rate"] self.company_pension_insurance_rate =\ configuration["company_pension_insurance_rate"] #end def @staticmethod def summarize(allowances): """ Function to summarize allowances Args: allowances (dictionary): { } Returns: allowances(int) : total allowances """ total_allowances = 0 if isinstance(allowances, dict): for key, value in allowances.items(): total_allowances = total_allowances + int(value) #end for else: total_allowances = allowances return total_allowances #end def def _individual_health_insurance(self, total_salary): """ Function to calculate bpjs health individual Args: total_salary (int): The amount of base salary that person receive each month. Returns: individual_health_insurance(int) : the amount of bpjs health insurance that person have to pay monthly """ individual_health_insurance = 0 if total_salary <= self.health_max_fee: individual_health_insurance = total_salary \ * self.individual_health_insurance_rate else: individual_health_insurance = self.health_max_fee\ * self.individual_health_insurance_rate #end if return individual_health_insurance #end def def _company_health_insurance(self, total_salary): """ Function to calculate bpjs health that paid by company Args: total_salary (int): The amount of base salary that person receive each month. Returns: company_health_insurance (int) : the amount of \ bpjs health insurance that person have to pay monthly """ company_health_insurance = 0 if total_salary <= self.health_max_fee: company_health_insurance = total_salary *\ self.company_health_insurance_rate else: company_health_insurance = self.health_max_fee\ * self.company_health_insurance_rate #end if return company_health_insurance #end def @staticmethod def _accident_insurance(total_salary, industry_risk_rate): """ Function to calculate bpjs accident insurance Args: total_salary (int): The amount of base salary that person receive each month. industry_risk_rate (float) : the risk percentage amout\ based on industry that person work on Returns: accident_insurance(int) : the amount of bpjs accident\ insurance that person have to pay monthly """ industry_type_rate = industry_risk_rate / 100 accident_insurance_rate = industry_type_rate accident_insurance = accident_insurance_rate * total_salary return round(accident_insurance, 1) #end def def _death_insurance(self, total_salary): """ Function to calculate BPJS death insurance Args: total_salary (int): The amount of base salary that person receive each month. Returns: death_insurance(int) : amount of accident insurance that person have to pay """ return int(total_salary * self.death_insurance_rate) #end def def _company_old_age_insurance(self, total_salary): """ Function to calculate company old age insurance Args: total_salary (int): The amount of base salary that person receive each month. Returns: company_old_age_insurance(int) : \ amount of company person old age insurance fee. """ return self.company_old_age_insurance_rate * total_salary #end def def _individual_old_age_insurance(self, total_salary): """ Function to calculate person old age insurance Args: total_salary (int): The amount of base salary that person receive each month. Returns: individual_health_insurance (int) :\ amount of company person old age insurance fee. """ return self.individual_old_age_insurance_rate * total_salary #end def def _individual_pension_insurance(self, total_salary, month=None, year=None): """ Function to calculate person pension contribution fee Args: base_salary (int): The amount of base salary that person receive each month. Returns: individual_pension_insurance(int) : amount of individual pension insurance. """ individual_pension_insurance = 0 pension_max_fee = self.pension_max_fee # special case in 2018 if year == 2018: if month <= 2: pension_max_fee = self.old_pension_max_fee #end if #end if if total_salary > pension_max_fee: individual_pension_insurance = pension_max_fee \ * self.individual_pension_insurance_rate else: individual_pension_insurance = total_salary \ * self.individual_pension_insurance_rate #end if return individual_pension_insurance #end def def _company_pension_insurance(self, total_salary, month=None, year=None): """ Function to calculate company pension contribution fee Args: base_salary (int): The amount of base salary that person receive each month. Returns: company_pension_insurance (int) : amount of person company penson insurance. """ company_pension_insurance = 0 pension_max_fee = self.pension_max_fee # special case in 2018 if year == 2018: if month <= 2: pension_max_fee = self.old_pension_max_fee #end if #end if if total_salary > pension_max_fee: company_pension_insurance = pension_max_fee *\ self.company_pension_insurance_rate else: company_pension_insurance = total_salary * \ self.company_pension_insurance_rate #end if return company_pension_insurance #end def def monthly_fee(self): """ calculate person bpjs monthly fee return: old_age_insurance pension_insurance health_insurance death_insurance accident_insurance """ total_salary = self.base_salary if self.is_salary_allowances is True: fixed_allowances = self.summarize( self.fixed_allowances ) non_fixed_allowances = self.summarize( self.non_fixed_allowances ) total_salary = total_salary + non_fixed_allowances + fixed_allowances #end if company_old_age_insurance = 0 individual_old_age_insurance = 0 if self.old_age_insurance_status is True: company_old_age_insurance = \ self._company_old_age_insurance(total_salary) individual_old_age_insurance = \ self._individual_old_age_insurance(total_salary) #end if company_pension_insurance = 0 individual_pension_insurance = 0 if self.pension_insurance_status is True: company_pension_insurance = \ self._company_pension_insurance(total_salary) individual_pension_insurance = \ self._individual_pension_insurance(total_salary) #end if company_health_insurance = 0 individual_health_insurance = 0 if self.health_insurance_status is True: company_health_insurance = \ self._company_health_insurance(total_salary) individual_health_insurance = \ self._individual_health_insurance(total_salary) #end if death_insurance = 0 if self.death_insurance_status is True: death_insurance = self._death_insurance(total_salary) #end if accident_insurance = 0 if self.accident_insurance_status is True: accident_insurance = \ self._accident_insurance(total_salary, \ self.industry_risk_rate) #end if monthly = { "old_age_insurance" : { "company" : company_old_age_insurance, "individual" : individual_old_age_insurance, }, "pension_insurance" : { "company" : company_pension_insurance, "individual" : individual_pension_insurance, }, "health_insurance" : { "company" : company_health_insurance, "individual" : individual_health_insurance, }, "death_insurance" : death_insurance, "accident_insurance" : accident_insurance } return monthly #end def def annual_fee(self, working_months, year, with_bpjs=True): """ calculate annual bpjs fee args: working_months year with_bpjs parameter: working_months -- working_months year -- year """ monthly_bpjs = [] total_salary = self.base_salary if self.is_salary_allowances is True: fixed_allowances = self.summarize( self.fixed_allowances ) non_fixed_allowances = self.summarize( self.non_fixed_allowances ) total_salary = total_salary + non_fixed_allowances + fixed_allowances #end if # initialize variable for storing the annual bpjs annual_c_old_age_insurance = 0 annual_i_old_age_insurance = 0 annual_c_pension_insurance = 0 annual_i_pension_insurance = 0 annual_c_health_insurance = 0 annual_i_health_insurance = 0 annual_death_insurance = 0 annual_accident_insurance = 0 if with_bpjs is True: # only calculate bpjs if is enabled and automatically set everthing to zero when is false start_month = 1 for month in range(start_month, working_months+1): company_old_age_insurance = 0 individual_old_age_insurance = 0 if self.old_age_insurance_status is True: company_old_age_insurance = \ self._company_old_age_insurance(total_salary) individual_old_age_insurance = \ self._individual_old_age_insurance(total_salary) #end if company_pension_insurance = 0 individual_pension_insurance = 0 if self.pension_insurance_status is True: company_pension_insurance = \ self._company_pension_insurance(total_salary, month, year) individual_pension_insurance = \ self._individual_pension_insurance(total_salary, month, year) #end if company_health_insurance = 0 individual_health_insurance = 0 if self.health_insurance_status is True: company_health_insurance = \ self._company_health_insurance(total_salary) individual_health_insurance = \ self._individual_health_insurance(total_salary) #end if death_insurance = 0 if self.death_insurance_status is True: death_insurance = self._death_insurance(total_salary) #end if accident_insurance = 0 if self.accident_insurance_status is True: accident_insurance = \ self._accident_insurance(total_salary, \ self.industry_risk_rate) #end if monthly = { "old_age_insurance" : { "company" : company_old_age_insurance, "individual" : individual_old_age_insurance, }, "pension_insurance" : { "company" : company_pension_insurance, "individual" : individual_pension_insurance, }, "health_insurance" : { "company" : company_health_insurance, "individual" : individual_health_insurance, }, "death_insurance" : death_insurance, "accident_insurance" : accident_insurance } monthly_bpjs.append(monthly) annual_c_old_age_insurance = annual_c_old_age_insurance \ + company_old_age_insurance annual_i_old_age_insurance = annual_i_old_age_insurance \ + individual_old_age_insurance annual_c_pension_insurance = annual_c_pension_insurance \ + company_pension_insurance annual_i_pension_insurance = annual_i_pension_insurance \ + individual_pension_insurance annual_c_health_insurance = annual_c_health_insurance \ + company_health_insurance annual_i_health_insurance = annual_i_health_insurance \ + individual_health_insurance annual_death_insurance = annual_death_insurance\ + death_insurance annual_accident_insurance = annual_accident_insurance\ + accident_insurance #end for annual_bpjs = { "old_age_insurance" : { "company" : annual_c_old_age_insurance, "individual" : annual_i_old_age_insurance, }, "pension_insurance" : { "company" : annual_c_pension_insurance, "individual" : annual_i_pension_insurance, }, "health_insurance" : { "company" : annual_c_health_insurance, "individual" : annual_i_health_insurance, }, "death_insurance" : annual_death_insurance, "accident_insurance" : annual_accident_insurance } return annual_bpjs #end def #end class
from crispy_forms.layout import Layout, HTML from django.contrib import messages from django.http import HttpResponseRedirect from mezzanine.pages.page_processors import processor_for from .forms import UpdateSQLiteLayout, SeriesSelectionLayout, TimeSeriesMetaDataLayout, \ UTCOffSetLayout, UTCOffSetForm from hs_app_timeseries.models import TimeSeriesResource from hs_core import page_processors from hs_core.views import add_generic_context @processor_for(TimeSeriesResource) def landing_page(request, page): """ A typical Mezzanine page processor. """ content_model = page.get_content_model() edit_resource = page_processors.check_resource_mode(request) if content_model.metadata.is_dirty and content_model.can_update_sqlite_file: messages.info(request, "SQLite file is out of sync with metadata changes.") extended_metadata_exists = False if content_model.metadata.sites or \ content_model.metadata.variables or \ content_model.metadata.methods or \ content_model.metadata.processing_levels or \ content_model.metadata.time_series_results: extended_metadata_exists = True series_ids = content_model.metadata.series_ids_with_labels if 'series_id' in request.GET: selected_series_id = request.GET['series_id'] if selected_series_id not in list(series_ids.keys()): # this will happen only in case of CSV file upload when data is written # first time to the blank sqlite file as the series ids get changed to # uuids selected_series_id = list(series_ids.keys())[0] if 'series_id' in request.session: if selected_series_id != request.session['series_id']: request.session['series_id'] = selected_series_id else: request.session['series_id'] = selected_series_id else: selected_series_id = list(series_ids.keys())[0] if list(series_ids.keys()) else None request.session['series_id'] = selected_series_id ts_result_value_count = None if content_model.metadata.series_names and selected_series_id is not None: sorted_series_names = sorted(content_model.metadata.series_names) selected_series_name = sorted_series_names[int(selected_series_id)] ts_result_value_count = int(content_model.metadata.value_counts[selected_series_name]) # view depends on whether the resource is being edited if not edit_resource: # resource in VIEW Mode context = _get_resource_view_context(page, request, content_model, selected_series_id, series_ids, extended_metadata_exists) if isinstance(context, HttpResponseRedirect): # sending user to login page return context else: # resource in EDIT Mode context = _get_resource_edit_context(page, request, content_model, selected_series_id, series_ids, ts_result_value_count, extended_metadata_exists) # TODO: can we refactor to make it impossible to skip adding the generic context hs_core_context = add_generic_context(request, page) context.update(hs_core_context) return context def _get_resource_view_context(page, request, content_model, selected_series_id, series_ids, extended_metadata_exists): # get the context from hs_core context = page_processors.get_page_context(page, request.user, resource_edit=False, extended_metadata_layout=None, request=request) context['extended_metadata_exists'] = extended_metadata_exists context['selected_series_id'] = selected_series_id context['series_ids'] = series_ids context['sites'] = [site for site in content_model.metadata.sites if selected_series_id in site.series_ids] context['variables'] = [variable for variable in content_model.metadata.variables if selected_series_id in variable.series_ids] context['methods'] = [method for method in content_model.metadata.methods if selected_series_id in method.series_ids] context['processing_levels'] = [pro_level for pro_level in content_model.metadata.processing_levels if selected_series_id in pro_level.series_ids] context['timeseries_results'] = [ts_result for ts_result in content_model.metadata.time_series_results if selected_series_id in ts_result.series_ids] context['utc_offset'] = content_model.metadata.utc_offset.value if \ content_model.metadata.utc_offset else None return context def _get_resource_edit_context(page, request, content_model, selected_series_id, series_ids, ts_result_value_count, extended_metadata_exists): from hs_file_types.models.timeseries import create_site_form, create_variable_form, \ create_method_form, create_processing_level_form, create_timeseries_result_form utcoffset_form = None if content_model.has_csv_file: utc_offset = content_model.metadata.utc_offset utcoffset_form = UTCOffSetForm(instance=utc_offset, res_short_id=content_model.short_id, element_id=utc_offset.id if utc_offset else None, selected_series_id=selected_series_id) # create timeseries specific metadata element forms site_form = create_site_form(target=content_model, selected_series_id=selected_series_id) variable_form = create_variable_form(target=content_model, selected_series_id=selected_series_id) method_form = create_method_form(target=content_model, selected_series_id=selected_series_id) processing_level_form = create_processing_level_form(target=content_model, selected_series_id=selected_series_id) timeseries_result_form = create_timeseries_result_form(target=content_model, selected_series_id=selected_series_id) ext_md_layout = Layout(UpdateSQLiteLayout, SeriesSelectionLayout, TimeSeriesMetaDataLayout, UTCOffSetLayout) if content_model.files.all().count() == 0: ext_md_layout = Layout(HTML("""<div class="alert alert-warning"><strong>No resource specific metadata is available. Add an ODM2 SQLite file or CSV file to see metadata.</strong></div>""")) # get the context from hs_core context = page_processors.get_page_context(page, request.user, resource_edit=True, extended_metadata_layout=ext_md_layout, request=request) # customize base context context['extended_metadata_exists'] = extended_metadata_exists context['resource_type'] = 'Time Series Resource' context['selected_series_id'] = selected_series_id context['series_ids'] = series_ids context['utcoffset_form'] = utcoffset_form context['site_form'] = site_form context['variable_form'] = variable_form context['method_form'] = method_form context['processing_level_form'] = processing_level_form context['timeseries_result_form'] = timeseries_result_form return context def _get_series_label(series_id, resource): label = "{site_code}:{site_name}, {variable_code}:{variable_name}, {units_name}, " \ "{pro_level_code}, {method_name}" site = [site for site in resource.metadata.sites if series_id in site.series_ids][0] variable = [variable for variable in resource.metadata.variables if series_id in variable.series_ids][0] method = [method for method in resource.metadata.methods if series_id in method.series_ids][0] pro_level = [pro_level for pro_level in resource.metadata.processing_levels if series_id in pro_level.series_ids][0] ts_result = [ts_result for ts_result in resource.metadata.time_series_results if series_id in ts_result.series_ids][0] label = label.format(site_code=site.site_code, site_name=site.site_name, variable_code=variable.variable_code, variable_name=variable.variable_name, units_name=ts_result.units_name, pro_level_code=pro_level.processing_level_code, method_name=method.method_name) return label def _get_element_update_form_action(element_name, resource_id, element_id): action = "/hsapi/_internal/{}/{}/{}/update-metadata/" return action.format(resource_id, element_name, element_id)
# -*- coding: utf-8 -*- # This file is part of pygal # # A python svg graph plotting library # Copyright © 2012-2016 Kozea # # This library is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) any # later version. # # This library is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with pygal. If not, see <http://www.gnu.org/licenses/>. """Style related tests""" from pygal import Line from pygal.style import ( LightStyle, LightenStyle, DarkenStyle, SaturateStyle, DesaturateStyle, RotateStyle ) STYLES = LightenStyle, DarkenStyle, SaturateStyle, DesaturateStyle, RotateStyle def test_parametric_styles(): """Test that no parametric produce the same result""" chart = None for style in STYLES: line = Line(style=style('#f4e83a')) line.add('_', [1, 2, 3]) line.x_labels = 'abc' new_chart = line.render() assert chart != new_chart chart = new_chart def test_parametric_styles_with_parameters(): """Test a parametric style with parameters""" line = Line(style=RotateStyle( '#de3804', step=12, max_=180, base_style=LightStyle)) line.add('_', [1, 2, 3]) line.x_labels = 'abc' assert line.render()
from queue import Queue, Empty, Full import logging logger = logging.getLogger(__name__) #own classes from networking import Connection from networking import Message from .router_base import RouterBase class GroupRouter(RouterBase): participating_in_groups = set() def __init__(self, node_id, queue, router): super(GroupRouter, self).__init__(node_id, queue) self.data_queues = {} self.outgoing_timers = {} self.unbound_connections = {} self.groups = {} self.router = router def stop(self): logger.warning("Stopping group router!") GroupRouter.participating_in_groups = set() super(GroupRouter, self).stop() logger.warning("Group router successfully stopped!"); def publish(self, channel, data): if channel not in self.outgoing_timers: return False # we are not in any group for this channel self._call_command({"_command": "GroupRouter__publish", "channel": channel, "data": data}) return True # data will be published def create_group(self, channel, ip_list, interval): self._call_command({"_command": "GroupRouter__create_group", "channel": channel, "ip_list": ip_list, "interval": interval}) def __dump_state(self): return { "outgoing_timers": self.outgoing_timers, "unbound_connections": self.unbound_connections, "groups": self.groups } def _add_connection_command(self, command): con = command["connection"] peer_ip = con.get_peer_ip() self.connections[peer_ip] = con # try to initialize all known groups for channel in list(self.unbound_connections.keys()): self._init_group(channel) def _remove_connection_command(self, command): con = command["connection"] peer_ip = con.get_peer_ip() if peer_ip in list(self.connections.keys()): del self.connections[peer_ip] def _init_group(self, channel): interval = self.unbound_connections[channel]["interval"] # test if all connections for this channel are established all_established = True for con in self.unbound_connections[channel]["connections"]: if con.connection_state != "ESTABLISHED": all_established = False break if all_established: logger.info("All group connections for channel '%s' established, sending out init messages..." % channel) msg = Message("%s_init" % self.__class__.__name__, { "channel": channel, "interval": self.unbound_connections[channel]["interval"], }) for con in list(self.unbound_connections[channel]["connections"]): logger.info("Sending group init for channel '%s' to %s..." % (channel, str(con))) con.send_msg(msg) self.groups[channel] = { "connections": self.unbound_connections[channel]["connections"], "received": {}, } del self.unbound_connections[channel] def _route_data(self, msg, incoming_connection=None): if msg.get_type().endswith("_init"): return self._route_init(msg, incoming_connection) elif msg.get_type().endswith("_deinit"): return self._route_deinit(msg, incoming_connection) elif msg.get_type().endswith("_data"): return self._route_real_data(msg, incoming_connection) def _route_init(self, msg, incoming_connection): logger.info("Routing init: %s coming from %s..." % (str(msg), str(incoming_connection))) command = {"_command": "GroupRouter__publish_data", "channel": msg["channel"], "interval": msg["interval"], "connection": incoming_connection} self._call_command(command) def _route_deinit(self, msg, incoming_connection): logger.info("Routing deinit: %s coming from %s..." % (str(msg), str(incoming_connection))) if msg["channel"] in self.outgoing_timers: logger.info("Ignoring unknown outgoing_timers channel '%s'..." % str(msg["channel"])) self._abort_timer(self.outgoing_timers[msg["channel"]]["timer"]) del self.outgoing_timers[msg["channel"]] del self.data_queues[msg["channel"]] def _route_real_data(self, msg, incoming_connection): logger.info("Routing data: %s coming from %s..." % (str(msg), str(incoming_connection))) if msg["channel"] not in self.groups: # ignore unknown groups logger.info("Ignoring unknown group channel '%s'..." % str(msg["channel"])) return # add message to received list if msg["counter"] not in self.groups[msg["channel"]]["received"]: self.groups[msg["channel"]]["received"][msg["counter"]] = {} self.groups[msg["channel"]]["received"][msg["counter"]][incoming_connection.get_peer_ip()] = msg # check if we received all messages for any known (incomplete) counter for counter in list(self.groups[msg["channel"]]["received"].keys()): if len(self.groups[msg["channel"]]["received"][counter]) == len(self.groups[msg["channel"]]["connections"]): logger.info("Received round %s for channel '%s', publishing data on behalf of group members..." % (str(counter), str(msg["channel"]))) for data_msg in self.groups[msg["channel"]]["received"][counter].values(): # extract all data messages and publish them if data_msg["type"] == "data": self.router.publish(data_msg["channel"], data_msg["data"]); del self.groups[msg["channel"]]["received"][counter] # counter was complete --> remove it from list def __publish_data_command(self, command): # reshedule this command if command["channel"] in self.outgoing_timers: self._abort_timer(self.outgoing_timers[command["channel"]]["timer"]) self.outgoing_timers[command["channel"]] = { # increment counter by one starting with zero "counter": self.outgoing_timers[command["channel"]]["counter"] + 1 if command["channel"] in self.outgoing_timers else 0, # create new timer "timer": self._add_timer(command["interval"], command) } # send data to RS try: if command["channel"] not in self.data_queues: # treat non existent queue as empty raise Empty data = self.data_queues[command["channel"]].get(False) self.data_queues[command["channel"]].task_done() logger.info("Sending out data message for round %s in channel '%s'..." % (str(self.outgoing_timers[command["channel"]]["counter"]), str(command["channel"]))) msg = Message("%s_data" % self.__class__.__name__, { "type": "data", "channel": command["channel"], "data": data, "counter": self.outgoing_timers[command["channel"]]["counter"], }) except Empty as err: logger.info("Sending out dummy message for round %s in channel '%s'..." % (str(self.outgoing_timers[command["channel"]]["counter"]), str(command["channel"]))) msg = Message("%s_data" % self.__class__.__name__, { "type": "dummy", "channel": command["channel"], "data": "DEADBEEF", "counter": self.outgoing_timers[command["channel"]]["counter"], }) command["connection"].send_msg(msg) def __publish_command(self, command): if command["channel"] not in self.data_queues: self.data_queues[command["channel"]] = Queue() self.data_queues[command["channel"]].put(command["data"]) def __create_group_command(self, command): # deinit old group if neccessary if command["channel"] in self.groups: msg = Message("%s_deinit" % self.__class__.__name__, { "channel": command["channel"], }) for con in self.groups[command["channel"]]["connections"]: con.send_msg(msg) # create connections and add them to self.unbound_connections (init message will be sent when all those connections are established) self.unbound_connections[command["channel"]] = {"interval": command["interval"], "connections": set()} for ip in command["ip_list"]: if ip in self.connections: con = self.connections[ip] # reuse connections else: con = Connection.connect_to("group", ip) self.unbound_connections[command["channel"]]["connections"].add(con) self._init_group(command["channel"])
"""Circle package main functions.""" import math import tkinter def calculate_circumference(radius: float): if radius < 0: raise ValueError("Radius must be positive!") return radius * 2 * math.pi def calculate_area(radius: float): if radius < 0: raise ValueError("Radius must be positive!") return radius ** 2 * math.pi def circle_data_gui(): window = tkinter.Tk() window.title("Circle Calculations") canvas = tkinter.Canvas(window, height=150, width=500, bg="#c2eaee") canvas.pack() radius = tkinter.Label(window, text="Radius: ", bg="#c2eaee") canvas.create_window(180, 25, window=radius) radius_input = tkinter.Entry(window, width=15) radius_input.focus() canvas.create_window(280, 25, window=radius_input) circumference = tkinter.Label(window, text="Circumference: ", bg="#c2eaee") canvas.create_window(250, 100, window=circumference) area = tkinter.Label(window, text="Area: ", bg="#c2eaee") canvas.create_window(250, 120, window=area) def get_data(): try: circint = calculate_circumference(float(radius_input.get())) areaint = calculate_area(float(radius_input.get())) circumference.configure(text="Circumference: " + str(circint)) area.configure(text="Area: " + str(areaint)) except ValueError: error = tkinter.Toplevel() error.title("ValueError") error_canvas = tkinter.Canvas(error, height=100, width=400, bg="#c2eaee") error_canvas.pack() error_label = tkinter.Label(error, text="Radius must be a positive number!", bg="#c2eaee", fg="red", font=("TKDefaultFont", 20)) error_canvas.create_window(200, 50, window=error_label) button = tkinter.Button(text="Calculate", command=get_data) canvas.create_window(250, 60, window=button) window.mainloop()
from onmt.modules.Transformer.Models import TransformerEncoder, TransformerDecoder, Transformer # For flake8 compatibility. __all__ = [TransformerEncoder, TransformerDecoder, Transformer]
from multiprocessing import Process, Queue, Value from yaml import load import queue import time import sys def mqtt_proc(q, mqtt_basetopic, mqtt_host, mqtt_port, mqtt_user, mqtt_pass): import paho.mqtt.client as mqtt def on_connect(mqttc, obj, flags, rc): if rc == 0: print("[+] MQTT connection successful") mqttc.subscribe("%s#" % (mqtt_basetopic,), 0) else: print("[-] MQTT connection failed: "+mqtt.connack_string(rc)) time.sleep(5.0) def on_subscribe(mqttc, obj, mid, granted_qos): print("[+] Subscribed to MQTT with QoS: " + str(granted_qos[0])) def on_message(mqttc, obj, msg): try: #Both values must be representable as integers objid = int(msg.topic.rpartition('/')[2]) value = int(msg.payload) #Payload must be representable as an integer between 0 and 255 if value < 0 or value > 255: raise ValueError except ValueError: print("[-] Invalid MQTT message received: topic \"%s\", payload \"%s\"" % (msg.topic, str(msg.payload))) return print("Set object %s to value %s" % (objid, value)) try: q.put_nowait((objid,value)) except queue.Full: print("[-] Message queue full, discarding message!") mqttc = mqtt.Client() if mqtt_user and mqtt_pass: mqttc.username_pw_set(mqtt_user, mqtt_pass) mqttc.on_message = on_message mqttc.on_connect = on_connect mqttc.on_subscribe = on_subscribe while(True): try: mqttc.connect(mqtt_host, mqtt_port, 60) mqttc.loop_forever(retry_first_connection=True) except OSError: print("[-] OSError during MQTT connection, retrying in 10 sec.") time.sleep(10.0) def csrmesh_proc(q, wdt_val, pin, mac_list): import csrmesh as cm from bluepy import btle backoff = False while(True): #Skip on 1st iteration, otherwase wait 5 sec for retrying if backoff: time.sleep(5.0) backoff = True #Try to make a connection. #Also keep the watchdog timer from counting up with wdt_val.get_lock(): csrconn = cm.gatt.connect(mac_list,True) #We failed to connect, retry if not csrconn: continue print("[+] Connected to mesh") #For as long as we are connected, reset the WDT, and try to get and deliver a message while(True): with wdt_val.get_lock(): wdt_val.value = 0 try: oid, value = q.get(block=True, timeout=5) except queue.Empty: #Send no-op command to make connection is still alive cm.gatt.send_packet(csrconn,0,b'00') continue res = cm.lightbulb.set_light(csrconn,pin,value,value,value,value,oid,True) if not res: #Failed, so reconnect cm.gatt.disconnect(csrconn) break if __name__== '__main__': conf = None #Load config file if len(sys.argv) != 2: print("Usage: %s <config file>" % sys.argv[0]) with open(sys.argv[1],'r') as f: conf = load(f) #Forever while(1): #Startup q = Queue() wdt_val = Value('i',0) mqtt_phandle = Process(target=mqtt_proc, args=(q,conf['mqtt']['basetopic'], conf['mqtt']['host'], conf['mqtt']['port'], conf['mqtt']['user'], conf['mqtt']['pass'])) mqtt_phandle.daemon = True csr_phandle = Process(target=csrmesh_proc, args=(q,wdt_val, conf['csrmesh']['pin'], conf['csrmesh']['mac_list'])) csr_phandle.daemon = True #Start MQTT and csrmesh processes print("[+] Initializing MQTT to CSRMesh gateway") mqtt_phandle.start() csr_phandle.start() #Bluepy hangs when the device disappears, so restart if the WDT stops being reset while(wdt_val.value < 3): with wdt_val.get_lock(): wdt_val.value += 1 time.sleep(10.0) #Terminate processes, and reinitialize the whole system print("[!] bluepy unresponsive, reloading...") csr_phandle.terminate() mqtt_phandle.terminate()
import serial ser = serial.Serial('/dev/ttyACM1',9600) ser.close() ser.open() while True: data = ser.readline() print(data.decode())
#!/usr/bin/python #coding=utf-8 #desc: 休息一下,打开舒适音乐 #author:gengkun123@gmail.com import webbrowser import time time.sleep(2) webbrowser.open("https://www.youtube.com/watch?v=kRaJ_9FFzBQ")
from unittest import TestCase from src.core import get_message class HelloworldTestCase(TestCase): def test_helloworld(self): self.assertEqual(get_message(), 'Hello World!')
import os # Integrates the programs or resources of the Operating System print("#" * 60) ip_or_host = input("Type the IP or host to be checked: ") print("-" * 60) os.system('ping -c 6 {}' .format(ip_or_host)) # -c -> Set limit to desire number of ping packets print("-" * 60)
# Copyright 2022, Lefebvre Dalloz Services # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Shared functions related to benchmarks. """ import logging import time from collections import OrderedDict from contextlib import contextmanager from typing import Dict, List, Tuple, Union import numpy as np import torch def print_timings(name: str, timings: List[float]) -> None: """ Format and print inference latencies. :param name: inference engine name :param timings: latencies measured during the inference """ mean_time = 1e3 * np.mean(timings) std_time = 1e3 * np.std(timings) min_time = 1e3 * np.min(timings) max_time = 1e3 * np.max(timings) median, percent_95_time, percent_99_time = 1e3 * np.percentile(timings, [50, 95, 99]) print( f"[{name}] " f"mean={mean_time:.2f}ms, " f"sd={std_time:.2f}ms, " f"min={min_time:.2f}ms, " f"max={max_time:.2f}ms, " f"median={median:.2f}ms, " f"95p={percent_95_time:.2f}ms, " f"99p={percent_99_time:.2f}ms" ) def setup_logging(level: int = logging.INFO) -> None: """ Set the generic Python logger :param level: logger level """ logging.basicConfig(format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=level) @contextmanager def track_infer_time(buffer: List[int]) -> None: """ A context manager to perform latency measures :param buffer: a List where to save latencies for each input """ start = time.perf_counter() yield end = time.perf_counter() buffer.append(end - start) def generate_input( seq_len: int, batch_size: int, input_names: List[str], device: str = "cuda" ) -> Tuple[Dict[str, torch.Tensor], Dict[str, np.ndarray]]: """ Generate dummy inputs. :param seq_len: number of token per input. :param batch_size: first dimension of the tensor :param input_names: tensor input names to generate :param device: where to store tensors (Pytorch only). One of [cpu, cuda] :return: a tuple of tensors, Pytorch and numpy """ assert device in ["cpu", "cuda"] shape = (batch_size, seq_len) inputs_pytorch: OrderedDict[str, torch.Tensor] = OrderedDict() for name in input_names: inputs_pytorch[name] = torch.ones(size=shape, dtype=torch.int32, device=device) inputs_onnx: Dict[str, np.ndarray] = { k: np.ascontiguousarray(v.detach().cpu().numpy()) for k, v in inputs_pytorch.items() } return inputs_pytorch, inputs_onnx def generate_multiple_inputs( seq_len: int, batch_size: int, input_names: List[str], nb_inputs_to_gen: int, device: str ) -> Tuple[List[Dict[str, torch.Tensor]], List[Dict[str, np.ndarray]]]: """ Generate multiple random inputs. :param seq_len: sequence length to generate :param batch_size: number of sequences per batch to generate :param input_names: tensor input names to generate :param nb_inputs_to_gen: number of batches of sequences to generate :param device: one of [cpu, cuda] :return: generated sequences """ all_inputs_pytorch: List[Dict[str, torch.Tensor]] = list() all_inputs_onnx: List[Dict[str, np.ndarray]] = list() for _ in range(nb_inputs_to_gen): inputs_pytorch, inputs_onnx = generate_input( seq_len=seq_len, batch_size=batch_size, input_names=input_names, device=device ) all_inputs_pytorch.append(inputs_pytorch) all_inputs_onnx.append(inputs_onnx) return all_inputs_pytorch, all_inputs_onnx def compare_outputs(pytorch_output: List[torch.Tensor], engine_output: List[Union[np.ndarray, torch.Tensor]]) -> float: """ Compare 2 model outputs by computing the mean of absolute value difference between them. :param pytorch_output: reference output :param engine_output: other engine output :return: difference between outputs as a single float """ if isinstance(pytorch_output[0], torch.Tensor): pytorch_output = [t.detach().cpu().numpy() for t in pytorch_output] pt_output = np.asarray(pytorch_output) if isinstance(engine_output[0], torch.Tensor): engine_output = [t.detach().cpu().numpy() for t in engine_output] eng_output = np.asarray(engine_output) return np.mean(np.abs(pt_output - eng_output))
import io_model import numpy as np from scipy import stats import sequence from statsmodels.formula.api import ols from statsmodels.stats.anova import anova_lm import torch def get_loss(predictions, targets): loss_function = torch.nn.BCELoss() # binary cross entropy return loss_function(predictions, targets).item() def get_learning_rate(predictions, inputs): learning_rate = torch.empty_like(predictions) n_time_steps = learning_rate.size(0) prediction_prior = 0.5 learning_rate[0] = (predictions[0] - prediction_prior) / (inputs[0] - prediction_prior) learning_rate[1:n_time_steps] = (predictions[1:n_time_steps] - predictions[0:n_time_steps-1]) / (inputs[1:n_time_steps] - predictions[0:n_time_steps-1]) return learning_rate def get_confidence_from_sds(sds): return -torch.log(sds) def get_sds_from_confidence(confidence): return torch.exp(-confidence) def get_logits_from_ps(ps): # logit = log-odds function return torch.log(ps / (1. - ps)) def get_ps_from_logits(logits): return logits.sigmoid() def get_chance_loss(inputs, targets): constant_outputs = torch.ones_like(inputs) * 0.5 return get_loss(constant_outputs, targets) def get_io_loss(inputs, targets, gen_process): io = io_model.IOModel(gen_process) io_predictions = io.get_predictions(inputs) return get_loss(io_predictions, targets) def get_percent_value(values, ref_0, ref_100): return (values - ref_0) / (ref_100 - ref_0) * 100. def get_summary_stats(values, axis=0, ci_threshold=0.95): n_values = values.shape[axis] mean = values.mean(axis=axis) sem = stats.sem(values, axis=axis) ci_lower, ci_upper = \ stats.t.interval(ci_threshold, n_values - 1, loc=mean, scale=sem) if np.any(sem == 0): ci_lower[sem == 0] = mean[sem == 0] ci_upper[sem == 0] = mean[sem == 0] return dict(mean=mean, sem=sem, ci_lower=ci_lower, ci_upper=ci_upper) def get_median_ci(values, ci_threshold=0.95): # reference: https://github.com/minddrummer/median-confidence-interval/blob/master/Median_CI.py # flat to one dimension array assert len(values.shape) == 1, "need 1D array" N = values.shape[0] data = np.sort(values) low_count, up_count = stats.binom.interval(ci_threshold, N, 0.5, loc=0) low_count -= 1 # indexing starts at 0 return data[int(low_count)], data[int(up_count)] def stats_twoway_anova_table(data, iv1_name, iv2_name, dv_name, type=1, test="F"): # Fit a two-way ANOVA model on the data anova_formula = f"{dv_name} ~ C({iv1_name}) + C({iv2_name}) + C({iv1_name}):C({iv2_name})" anova_model = ols(anova_formula, data=data).fit() return anova_lm(anova_model, test=test, typ=type) def cat_features(tensors): return torch.cat(tensors, dim=2) def get_vector(tensor): """ - input: torch.tensor(n_time_steps, n_samples, n_features) - output: np.ndarray(n_time_steps * n_samples, n_features) where: output[0:n_samples, :] = input[0, 0:n_samples, :], output[n_samples:2*n_samples,:] = input[1, 0:n_samples, :], ...""" n_features = tensor.size(2) if len(tensor.shape) > 2 else 1 return tensor.reshape((-1, n_features)).numpy() def get_tensor(vector, n_time_steps, n_samples): """ Inverse function of get_vector() - input: np.ndarray(n_time_steps * n_samples, n_features) - output: torch.tensor(n_time_steps, n_samples, n_features) where: output[0, 0:n_samples, :] = input[0:n_samples, :], output[1, 0:n_samples, :] = input[n_samples:2*n_samples,:], ...""" assert n_time_steps * n_samples == vector.shape[0], "Inconsistent sizes" n_features = vector.shape[1] if len(vector.shape) > 1 else 1 return torch.tensor(vector).reshape(n_time_steps, n_samples, n_features) def get_decoded_tensor(decoder, predictor_tensor): n_time_steps, n_samples = predictor_tensor.size(0), predictor_tensor.size(1) decoded_vector = decoder.predict(get_vector(predictor_tensor)) return get_tensor(decoded_vector, n_time_steps, n_samples) def get_predictor_tensor_dict_from_activations(a): # we include as predictors # - hidden state at time t # - hidden gates at time t+1 # - both (hidden state at time t, gates at time t+1) # - output of network at time t (as a control) # this requires discarding one time step: # the first one for state, the last for gates predictor_tensor_dict = {} has_state = "hidden_state" in a has_gates = "reset_gate" in a and "update_gate" in a if has_state: state_t = a["hidden_state"][:-1, :, :] predictor_tensor_dict["hidden_state"] = state_t if has_gates: gates_tplus1 = cat_features((a["reset_gate"], a["update_gate"]))[1:, :, :] predictor_tensor_dict["hidden_gates_tplus1"] = gates_tplus1 if has_state and has_gates: hidden_all = cat_features((state_t, gates_tplus1)) predictor_tensor_dict["hidden_all"] = hidden_all if "outputs" in a: output_t = a["outputs"][:-1, :, :].detach() predictor_tensor_dict["output"] = output_t return predictor_tensor_dict def get_predictor_vector_dict_from_activations(a): predictor_tensor_dict = get_predictor_tensor_dict_from_activations(a) predictor_vector_dict = { key: get_vector(tensor) for key, tensor in predictor_tensor_dict.items() } return predictor_vector_dict def get_decoder_target_vector_dict_from_io_outputs_inputs(io_outputs, inputs, gen_process): decoder_target_tensor_dict = \ get_decoder_target_tensor_dict_from_io_outputs_inputs(io_outputs, inputs, gen_process) decoder_target_vector_dict = { key: get_vector(tensor) for key, tensor in decoder_target_tensor_dict.items() } return decoder_target_vector_dict def get_decoder_target_tensor_dict_from_io_outputs_inputs(io_outputs, inputs, gen_process): # we include as decoder targets: # - bayes confidence at time t # - bayes evidence at time t # - bayes apparent learning rate at time t+1 # this requires discarding one time step: # the first one for confidence and evidence, the last for learning rate io_ps = io_outputs["mean"] io_sds = io_outputs["sd"] if gen_process.is_markov(): io_confidence = get_confidence_from_sds(io_sds)[:-1, :, :] io_evidence = get_logits_from_ps(io_ps)[:-1, :, :] io_lr_tplus1 = get_learning_rate(io_ps, inputs)[1:, :, :] io_confidence_0 = io_confidence[:, :, 0] io_confidence_1 = io_confidence[:, :, 1] io_evidence_0 = io_evidence[:, :, 0] io_evidence_1 = io_evidence[:, :, 1] io_lr_tplus1_0 = io_lr_tplus1[:, :, 0] io_lr_tplus1_1 = io_lr_tplus1[:, :, 1] # the "relevant" estimate is the one that is conditional on the input at time t # (i.e. the estimate that is used for prediction at time t and then is updated at time t+1) conditional_inputs = inputs[:-1, :, :] io_confidence_xt = sequence.get_relevant_estimates_given_inputs(io_confidence, conditional_inputs) io_confidence_1minusxt = sequence.get_relevant_estimates_given_inputs(io_confidence, 1 - conditional_inputs) io_evidence_xt = sequence.get_relevant_estimates_given_inputs(io_evidence, conditional_inputs) io_evidence_1minusxt = sequence.get_relevant_estimates_given_inputs(io_evidence, 1 - conditional_inputs) io_lr_tplus1_xt = sequence.get_relevant_estimates_given_inputs(io_lr_tplus1, conditional_inputs) io_lr_tplus1_1minusxt = sequence.get_relevant_estimates_given_inputs(io_lr_tplus1, 1 - conditional_inputs) decoder_target_tensor_dict = dict( io_confidence_0=io_confidence_0, io_confidence_1=io_confidence_1, io_evidence_0=io_evidence_0, io_evidence_1=io_evidence_1, io_lr_tplus1_0=io_lr_tplus1_0, io_lr_tplus1_1=io_lr_tplus1_1, io_confidence_xt=io_confidence_xt, io_confidence_1minusxt=io_confidence_1minusxt, io_evidence_xt=io_evidence_xt, io_evidence_1minusxt=io_evidence_1minusxt, io_lr_tplus1_xt=io_lr_tplus1_xt, io_lr_tplus1_1minusxt=io_lr_tplus1_1minusxt ) else: io_confidence = get_confidence_from_sds(io_sds)[:-1, :, :] io_evidence = get_logits_from_ps(io_ps)[:-1, :, :] io_lr_tplus1 = get_learning_rate(io_ps, inputs)[1:, :, :] decoder_target_tensor_dict = dict(io_confidence=io_confidence, io_evidence=io_evidence, io_lr_tplus1=io_lr_tplus1) return decoder_target_tensor_dict
import sqlite3 as sql DB_PATH = "dispositivo.db" def createDB(): conn = sql.connect(DB_PATH) conn.commit() conn.close() def createTable(): conn = sql.connect(DB_PATH) cursor = conn.cursor() cursor.execute( """CREATE TABLE dispositivo ( id interger, nombre_de_equipo text, tipodispositivoId text, fecha_de_alta text, fecha_de_actualización text, potencia_actual interger, statusDispositivoId text )""" ) conn.commit() conn.close() def addValues(): conn = sql.connect(DB_PATH) cursor = conn.cursor() data = [ (1, "1", "Celda", "1/1/2021", "2/2/2021", 1, "en mantenimiento"), (2, "2", "aerogenerador", "1/1/2021", "2/2/2021", 1, "En operación"), (3, "3", "turbina hidroeléctrica", "1/1/2021", "2/2/2021", 1, "en mantenimiento"), (4, "4", "Celda", "1/1/2021", "2/2/2021", 1, "En operación"), ] cursor.executemany("""INSERT INTO dispositivo VALUES (?, ?, ?)""", data) cursor.commit() cursor.close() if __name__ == "__main__": createDB() ##createTable() addValues()
import tkinter as tk import widgets import client import struct def update(conn, root, plot, ch0, ch1, prev_init): data = conn.send_recv(0x01) if data is None: return fields = struct.unpack('>ffB', data) print(fields) if fields[2]: if not prev_init: plot.clear() plot.put(ch0, fields[0]) plot.put(ch1, fields[1]) root.after(100, update, conn, root, plot, ch0, ch1, fields[2]) def main(): conn = client.Connection('192.168.43.1', 17777) conn.connect() root = tk.Tk() plot = widgets.Plot1D(root, 700, 300, 500, 0, 10) plot.grid(column=0, row=0) ch0 = plot.add_channel((255, 0, 0)) ch1 = plot.add_channel((0, 255, 0)) root.after(0, update, conn, root, plot, ch0, ch1, 0) root.mainloop() if __name__ == '__main__': main()
from utils import test def mergesort(l): """ Implementation of the mergesort algorithm, not in-place Sorts list l by the following steps: 1. Look at list l. If the length is less than 2 (either 1 or 0), return the list, as it must be sorted. 2. If the list is longer than two, split it in half, and sort each half independently starting at step 1. 3. Merge the two halves via the included merge function 4. The final, merged list will be sorted. """ if len(l) < 2: return l else: midpoint = int(len(l)/2) left = l[:midpoint] right = l[midpoint:] left = mergesort(left) right = mergesort(right) return merge(left, right) def merge(left, right): """ Merge two lists by the following method: 1. Begin iterating through both halves simultaneously 2. Compare the currently indexed value of each half 3. Add the smaller value to the final, merged list, increment """ worklist = [] lindex = 0 rindex = 0 while lindex < len(left) and rindex < len(right): if left[lindex] > right[rindex]: worklist.append(right[rindex]) rindex += 1 else: worklist.append(left[lindex]) lindex += 1 # It is necessary to append the remainder of the lists to the end of the # worklist because we used `and` instead of `or` for the loop's # conditional. Using `or` would be more concise, but less efficient. worklist += left[lindex:] worklist += right[rindex:] return worklist if __name__ == "__main__": test(mergesort)
from handlers import base_handlers from models import User class HandleLogin(base_handlers.BaseAction): def handle_post(self, google_user): user = User.query(ancestor=User.PARENT_KEY).filter(User.email == google_user.email().lower()).get() if not user: newUser = User(parent=User.PARENT_KEY, name=google_user.nickname(), email=google_user.email().lower(), groups=[]) newUser.put() self.redirect("/groups") elif self.request.get("group-key"): user.name = google_user.nickname() user.put() self.redirect('/groups?group-key='+self.request.get("group-key")) else: self.redirect("/groups")
try: from typing import Dict, List, Optional, Tuple from integral_timber_joints.process import RFLPathPlanner, RobotClampAssemblyProcess except: pass import itertools from copy import deepcopy from compas.geometry import Frame from integral_timber_joints.assembly import Assembly, BeamAssemblyMethod from integral_timber_joints.process.action import * from integral_timber_joints.process.dependency import ComputationalResult from integral_timber_joints.process.movement import * from integral_timber_joints.process.state import SceneState from integral_timber_joints.tools import Clamp, Gripper, Tool ###################################################### # Beam level functions - Assigning tool_type / tool_id ###################################################### def assign_tool_type_to_joints(process, beam_id, verbose=False): # type: (RobotClampAssemblyProcess, str, Optional[bool]) -> ComputationalResult """Assign tool_types to joints based on the (priority 1) user proference or (priority 2) joint's preference. If request tools are not available or not enough, return None. State Change ------------ This functions sets the joint attribute `tool_type` Return ------ `ComputationalResult.ValidCannotContinue` if no suitable clamp is found not satisfied `ComputationalResult.ValidCanContinue` otherwise (this function should not fail) """ # Loop through all the beams and look at their previous_built neighbour. assembly = process.assembly something_failed = False something_changed = False assembly_method = assembly.get_assembly_method(beam_id) joint_ids = assembly.get_joint_ids_with_tools_for_beam(beam_id) if len(joint_ids) == 0: return ComputationalResult.ValidNoChange def vprint(str): if verbose: print(str) vprint("Beam %s (%s). Joints that need assignment: %s" % (beam_id, BeamAssemblyMethod.value_to_names_dict[assembly_method], joint_ids)) # * Function to set the assignment results back to Joint Attributes def _set_assignments_to_joints(joint_ids, assignment): # type: (List[Tuple[str, str]], List[Tuple[str, str]]) -> None for (joint_id, (tool_type, tool_id)) in zip(joint_ids, assignment): assembly.set_joint_attribute(joint_id, 'tool_type', tool_type) assembly.set_joint_attribute(joint_id, 'tool_id', tool_id) # * For SCREWED_WITHOUT_GRIPPER, put the grasping joint first if assembly_method == BeamAssemblyMethod.SCREWED_WITHOUT_GRIPPER: grasping_joint_id = process.assembly.get_grasping_joint_id(beam_id) joint_ids.remove(grasping_joint_id) joint_ids.insert(0, grasping_joint_id) # * (Priority 1) Try assign according to user preference + joint request type_requests = [] for joint_id in joint_ids: preference = assembly.get_joint_attribute(joint_id, 'tool_type_preference') tool_type_request_from_joint = process.assembly.joint(joint_id).assembly_tool_types(assembly_method) if preference is not None: if preference in tool_type_request_from_joint: type_requests.append([preference]) else: vprint("Warning: tool_type_preference: %s for Joint %s is no longer valid. Valid options are %s" % (preference, joint_id, tool_type_request_from_joint)) type_requests.append(tool_type_request_from_joint) else: type_requests.append(tool_type_request_from_joint) assignment = assign_tool_types_by_formulated_request(process, type_requests) vprint("Type Request with user preference: %s" % type_requests) vprint("Assignment with user preference: %s" % assignment) if assignment is not None: _set_assignments_to_joints(joint_ids, assignment) return ComputationalResult.ValidCanContinue # (Priority 2) Ignore User Preference use joint.assembly_tool_types only type_requests = [process.assembly.joint(joint_id).assembly_tool_types(assembly_method) for joint_id in joint_ids] assignment = assign_tool_types_by_formulated_request(process, type_requests) vprint("Assignment with only joint reequest: %s" % assignment) if assignment is not None: _set_assignments_to_joints(joint_ids, assignment) return ComputationalResult.ValidCanContinue else: [assembly.set_joint_attribute(joint_id, 'tool_type', None) for joint_id in joint_ids] return ComputationalResult.ValidCannotContinue def assign_tool_types_by_formulated_request(process, joints_tool_types_request): # type: (RobotClampAssemblyProcess, List[List[str]]) -> List[Tuple[str, str]] """Assign the tool_types to the request according to a given list of possible tool_types. `type_request is a list (per joint) of list (of tool_type). Returns a list of tuple containing assigned `tool_types` and `tool_id` in the same order of the original `joints_tool_types_request` If request tools are not available or not enough, return None. """ if any([len(request) == 0 for request in joints_tool_types_request]): return None available_tools = process.get_available_tool_type_dict() assigned_tool_types = [] def assign_one_joint(possible_types): """Returns True of success.""" for tool_type in possible_types: if tool_type in available_tools and len(available_tools[tool_type]) > 0: assigned_tool_types.append((tool_type, available_tools[tool_type].pop(0))) return True return False # None of the possible type are available # * Assigning to all the joints for tool_types_request in joints_tool_types_request: if not assign_one_joint(tool_types_request): return None # If passing all assignemnts return assigned_tool_types if __name__ == "__main__": pass
from enum import Enum import attr class PgObjectType(Enum): """PostgreSQL object type.""" TABLE = 'TABLE' SEQUENCE = 'SEQUENCE' FUNCTION = 'FUNCTION' LANGUAGE = 'LANGUAGE' SCHEMA = 'SCHEMA' DATABASE = 'DATABASE' TABLESPACE = 'TABLESPACE' TYPE = 'TYPE' FOREIGN_DATA_WRAPPER = 'FOREIGN DATA WRAPPER' FOREIGN_SERVER = 'FOREIGN SERVER' FOREIGN_TABLE = 'FOREIGN TABLE' LARGE_OBJECT = 'LARGE OBJECT' @attr.s(slots=True) class Privileges: """Stores information from a parsed privilege string. .. seealso:: :func:`~.parse.parse_acl_item` """ grantee = attr.ib() grantor = attr.ib() privs = attr.ib(factory=list) privswgo = attr.ib(factory=list) def as_grant_statements(self, type_: PgObjectType, target, **kwargs): """Return array of :func:`~.sql.grant` statements that can be executed to grant these privileges. Refer to the function documentation for the meaning of `target` and additional keyword arguments. .. note:: This requires installing with the ``sqlalchemy`` extra. """ from .sql import grant statements = [] if self.privs: statements.append( grant(self.privs, type_, target, self.grantee, **kwargs)) if self.privswgo: statements.append(grant( self.privswgo, type_, target, self.grantee, grant_option=True, **kwargs)) return statements def as_revoke_statements(self, type_: PgObjectType, target, **kwargs): """Return array of :func:`~.sql.revoke` statements that can be executed to revoke these privileges. Refer to the function documentation for the meaning of `target` and additional keyword arguments. .. note:: The statement for the `privswgo` privileges will revoke them fully, not only their grant options. .. note:: This requires installing with the ``sqlalchemy`` extra. """ from .sql import revoke statements = [] if self.privs: statements.append( revoke(self.privs, type_, target, self.grantee, **kwargs)) if self.privswgo: statements.append(revoke( self.privswgo, type_, target, self.grantee, **kwargs)) return statements @attr.s(slots=True) class RelationInfo: """Holds object information and privileges as queried using the :mod:`.query` submodule.""" #: Row identifier. oid = attr.ib() #: Name of the table, sequence, etc. name = attr.ib() #: Owner of the relation. owner = attr.ib() #: Access control list. acl = attr.ib() @attr.s(slots=True) class SchemaRelationInfo(RelationInfo): """Holds object information and privileges as queried using the :mod:`.query` submodule.""" #: The name of the schema that contains this relation. schema = attr.ib() @attr.s(slots=True) class FunctionInfo(SchemaRelationInfo): """Holds object information and privileges as queried using the :mod:`.query` submodule.""" #: Data types of the function arguments. arg_types = attr.ib() @attr.s(slots=True) class ColumnInfo: """Holds object information and privileges as queried using the :mod:`.query` submodule.""" #: Table identifier. table_oid = attr.ib() #: The name of the schema that contains the table. schema = attr.ib() #: Name of the table. table = attr.ib() #: Name of the column. column = attr.ib() #: Owner of the table. owner = attr.ib() #: Column access control list. acl = attr.ib()
"""Changement objectif Revision ID: b64307cd3c69 Revises: 39ed6dfe1eff Create Date: 2021-07-22 14:55:56.245601 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'b64307cd3c69' down_revision = '39ed6dfe1eff' branch_labels = None depends_on = None def upgrade(): op.execute(""" UPDATE recommandation SET objectif = 'Aujourd’hui votre recommmandation est un conseil pratique pour ' || objectif WHERE objectif != ''; """) def downgrade(): pass
#!/usr/bin/env python import os, sys, subprocess is_master_commit = ( os.environ["GITHUB_REPOSITORY"] == "lihaoyi/mill" and os.environ["GITHUB_REF"].endswith("/master") ) if is_master_commit: subprocess.check_call(sys.argv[1:])
class Solution: """ @param s: The first string @param b: The second string @return true or false """ def anagram(self, s, t): # write your code here return sorted(s) == sorted(t)
# -*- coding: utf-8 -*- """ (Description) Created on Dec 20, 2013 """ from ce1sus.db.classes.definitions import AttributeHandler from ce1sus.db.common.broker import BrokerBase __author__ = 'Weber Jean-Paul' __email__ = 'jean-paul.weber@govcert.etat.lu' __copyright__ = 'Copyright 2013, GOVCERT Luxembourg' __license__ = 'GPL v3+' class AttributeHandlerBroker(BrokerBase): """ Attribute handler broker """ def get_broker_class(self): """ overrides BrokerBase.get_broker_class """ return AttributeHandler
# -*- coding: utf-8 -*- import markdown MD = markdown.Markdown(extensions=[ 'markdown.extensions.fenced_code', 'markdown.extensions.codehilite', ]) class TagStripper(object): def __init__(self, tag): self._tag0 = '<{0}>'.format(tag) self._tag1 = '</{0}>'.format(tag) self._len_tag0 = len(self._tag0) self._len_tag1 = len(self._tag1) def strip(self, text): if text.startswith(self._tag0) and text.endswith(self._tag1): return text[self._len_tag0:-self._len_tag1] else: return text TS = TagStripper('p') # Used outside this module md_convert = MD.convert def md_iconvert(txt): return TS.strip(MD.convert(txt))
def encryption(text,key): result = "" final="" for i in range(len(text)): word = text[i] if (word.isupper()): result += chr((ord(word) + key-65) % 26 + 65) elif(word==" "): result += " " else: result += chr((ord(word) + key - 97) % 26 + 97) if(result=="k"): final=final+" " else: final=result print(final) def decryption(ciphertext, key): if(len(ciphertext)==len(key)): plaintext = [] for i in range(len(ciphertext)): x = (ord(ciphertext[i]) - ord(key[i]) + 26) % 26 x = x+65 plaintext.append(chr(x)) return("" . join(plaintext)) else: print("key is not equal to the size of ciphertext") text = "PHHW PH DIWHU WKH WRJD SDUWB" key = -3 encryption(text,key) ciphertext = "ZICVTWQNGKZEIIGASXSTSLVVWLA" key = "DECEPTIVEWEAREDISCOVEREDSAV" print("Plaintext :",decryption(ciphertext, key))
# -*- coding: utf-8 -*- from django.conf.urls import patterns, url #from avaliacao import views from . import views urlpatterns = patterns(views, url('^$', views.index, name='home'), )
from django.db import models class Payment(models.Model): IDR = 'IDR' USD = 'USD' CURRENCY_CHOICES = ( (USD, 'USD'), (IDR, 'IDR') ) amount = models.DecimalField(decimal_places=2, max_digits=10) currency = models.CharField(max_length=10, choices=CURRENCY_CHOICES)
$NetBSD: patch-myhdl___always__seq.py,v 1.1 2018/12/27 16:01:54 joerg Exp $ --- myhdl/_always_seq.py.orig 2018-12-25 21:39:40.951802739 +0000 +++ myhdl/_always_seq.py @@ -45,7 +45,7 @@ _error.EmbeddedFunction = "embedded func class ResetSignal(_Signal): - def __init__(self, val, active, async): + def __init__(self, val, active, is_async): """ Construct a ResetSignal. This is to be used in conjunction with the always_seq decorator, @@ -53,7 +53,7 @@ class ResetSignal(_Signal): """ _Signal.__init__(self, bool(val)) self.active = bool(active) - self.async = async + self.is_async = is_async def always_seq(edge, reset): @@ -91,8 +91,8 @@ class _AlwaysSeq(_Always): if reset is not None: self.genfunc = self.genfunc_reset active = self.reset.active - async = self.reset.async - if async: + is_async = self.reset.is_async + if is_async: if active: senslist.append(reset.posedge) else:
import random from typing import List import hydra.utils import torch from torch import nn import utils from losses import SupConLoss from nets import LinearClassifier class Encoder(nn.Module): def __init__(self, cfg): super(Encoder, self).__init__() self.cfg = cfg self._encoders = nn.ModuleList( [ hydra.utils.instantiate(self.cfg.encoder, in_channel=depth) for depth in self.cfg.colorspace.view_depths ] ) self._optimizer = torch.optim.Adam(self._encoders.parameters(), lr=self.cfg.lr, betas=(self.cfg.beta_1, self.cfg.beta_2)) self._criterion = SupConLoss( contrast_mode='all' if self.cfg.full_graph else 'one', temperature=self.cfg.temperature, base_temperature=self.cfg.temperature ) def output_dim(self, layer): return self._encoders[0].output_dim(layer) * len(self._encoders) def forward(self, x, layer): return self.encode(x, layer, concat=True) def encode(self, x: torch.Tensor, layer=None, concat=False): views_list = list(torch.split(x, list(self.cfg.colorspace.view_depths), dim=1)) vectors_list = [self._encoders[i](views, layer) for i, views in enumerate(views_list)] if concat: vectors_list = torch.cat(vectors_list, dim=1) return vectors_list def update(self, x: torch.Tensor): self._optimizer.zero_grad() vectors_list = self.encode(x) loss = self._criterion(torch.stack(vectors_list, dim=1)) # loss = self.full_graph_loss(vectors_list) if self.cfg.full_graph else self.core_view_loss(vectors_list) loss.backward() self._optimizer.step() return loss.item() def _contrast_loss(self, vectors_1, vectors_2): i = random.randint(0, vectors_1.shape[0] - 1) z1 = vectors_1[i].repeat((vectors_1.shape[0], 1)) z2 = vectors_2 similarities = torch.cosine_similarity(z1, z2, eps=0) critic = torch.log_softmax(similarities * self.cfg.temperature, dim=0)[i] return - critic def _two_view_loss(self, vectors_1, vectors_2): return self._contrast_loss(vectors_1, vectors_2) + self._contrast_loss(vectors_2, vectors_1) def core_view_loss(self, vectors_list): loss = torch.tensor(0, dtype=torch.float, device=utils.device()) for i in range(1, len(vectors_list)): loss += self._two_view_loss(vectors_list[0], vectors_list[i]) return loss def full_graph_loss(self, vectors_list): loss = torch.tensor(0, dtype=torch.float, device=utils.device()) for i in range(len(vectors_list)-1): for j in range(i+1, len(vectors_list)): loss += self._two_view_loss(vectors_list[i], vectors_list[j]) return loss class Classifier(nn.Module): def __init__(self, cfg, feature_dim): super(Classifier, self).__init__() self.cfg = cfg self._classifier = LinearClassifier(feature_dim, 10) self._optimizer = torch.optim.Adam( self._classifier.parameters(), lr=self.cfg.lr, betas=(self.cfg.beta_1, self.cfg.beta_2), ) self._criterion = nn.CrossEntropyLoss() def update(self, x: torch.Tensor, y: torch.Tensor): self._optimizer.zero_grad() output = self._classifier(x) loss = self._criterion(output, y) loss.backward() self._optimizer.step() loss = loss.item() score = ((output.argmax(dim=1) == y) * 1.).mean().item() return loss, score def evaluate(self, x: torch.Tensor, y: torch.Tensor): output = self._classifier(x) loss = self._criterion(output, y) loss = loss.item() score = ((output.argmax(dim=1) == y) * 1.).mean().item() return loss, score
from django.urls import path from partners import views app_name = 'partners' urlpatterns = [ path('', views.partners_list, name='partners_list'), path('contractor/detail/<int:id>', views.contractor_detail, name='contractor_detail'), path('contractor/add/', views.update_contractor, name='add_contractor'), path('contractor/update/<int:id>', views.update_contractor, name='update_contractor'), path('contractor/delete/<int:id>', views.delete_contractor, name='delete_contractor'), path('supplier/detail/<int:id>', views.supplier_detail, name='supplier_detail'), path('supplier/add/', views.update_supplier, name='add_supplier'), path('supplier/update/<int:id>', views.update_supplier, name='update_supplier'), path('supplier/delete/<int:id>', views.delete_supplier, name='delete_supplier'), path('company/comments/add/', views.leave_comment, name='leave_comment'), path('company/comments/delete/<int:id>', views.delete_comment, name='delete_comment'), ]
# Manel Ferré # Busqueda de vulnerabilidades en el sistema operativo # por fecha de hoy basado en vuls-control # por versión, busca si la versión instalada es vulnerable #from operator import truediv import sys #from sys import exit from os import remove from os import path import argparse # Cargamos funciones segun su sistema operativo /win32/Linux/Darwin sistemaOperativo = sys.platform if(sistemaOperativo == "win32"): import fwindows elif(sistemaOperativo == "linux"): import flinux elif(sistemaOperativo == "darwin"): import fmac # Funcion de busqueda de vulnerabilidades en CVE Details import fvulns # Configuración Constantes import config # Variables globales listTranslate=[] # Lista de sinónimos listForzar=[] # Lista de aplicaciones a monitorizar forzosas listDemo=[] # Lista de aplicaciones para DEMO (vulnerables) # lee el fichero de translate para cambiar el nombre que nos dice el SO con el que tiene dado de alta CVDetails def leeSinonimos(): source = open(config.ConstFileSinonimos, 'r') for line in source: if not line.startswith('#') and line.strip(): listTranslate.append(line) source.close() # Aplicaciones a verificar aunque no las tengamos en el sistema def leeAppFozar(): source = open(config.ConstFileAppForzar, 'r') for line in source: if not line.startswith('#') and line.strip(): listForzar.append(line) source.close() # para demos, aplicaciones vulnerables def leeAppDemoVulnerables(): source = open(config.ConstDemoVulnerables, 'r') for line in source: if not line.startswith('#') and line.strip(): listDemo.append(line) source.close() # mueve las listas def ini(): if(sistemaOperativo == "win32"): fwindows.listTranslate = listTranslate elif(sistemaOperativo == "Linux"): flinux.listTranslate = listTranslate elif(sistemaOperativo == "Darwin"): fmac.listTranslate = listTranslate # crea los ficheros de aplicaciones def createFile(): if(sistemaOperativo == "win32"): fwindows.createFile() elif(sistemaOperativo == "Linux"): flinux.createFile() elif(sistemaOperativo == "Darwin"): fmac.createFile() # Carga las demos def vulnDemo(): if len(listDemo)>0: for x in listDemo: nametemp = x.split(";") fvulns.busca_cve(nametemp[0], nametemp[1]) # Busca segun version def vulnVersion(): if(sistemaOperativo == "win32"): fwindows.vulnVersion() elif(sistemaOperativo == "Linux"): flinux.vulnVersion() elif(sistemaOperativo == "Darwin"): fmac.vulnVersion() def gestionargumentos(): appdesc = "HorusEye Buscador de vuberabilidades CVEs de programas instalados." parser = argparse.ArgumentParser(description=appdesc) # argumentos parser.add_argument('-c', dest='create_file', action='store_true', default='False', required=False, help='Crea fichero temporal.') parser.add_argument('-m', dest='monitorizar_apps', action='store_true', default='False', required=False, help='Monitoriza el sistema.') parser.add_argument('-s', dest='search_vulns', action='store_true', default='False', required=False, help='Busca vulnerabilidades por versión.') parser.add_argument('-v', dest='verbose', action='store_true', default='False', required=False, help='Muestra información por pantalla') parser.add_argument('-d', dest='demo', action='store_true', default='False', required=False, help='Ejecuta la demo') return parser.parse_args() def print_log(_verb, Text): if (_verb == True): print(Text) def main(): namespace = gestionargumentos() _verbose = namespace.verbose if(sistemaOperativo == "win32"): print_log (_verbose, "Sistema operativo Windows") elif(sistemaOperativo == "Linux"): print_log (_verbose, "Sistema operativo Linux") elif(sistemaOperativo == "Darwin"): print_log (_verbose, "Sistema operativo Mac") print_log (_verbose, "Inicio de proceso") # borramos ficheros de apps y errores if (namespace.create_file is True): if path.exists(config.ConstFileAppInstaladas): remove(config.ConstFileAppInstaladas) if path.exists(config.ConstFileAppNoEncontradas): remove(config.ConstFileAppNoEncontradas) # leemos lista sinonimos if path.exists(config.ConstFileSinonimos): print_log (_verbose, "Lectura de sinónimos") leeSinonimos() # leemos lista Aplicaciones a verificar si o si if path.exists(config.ConstFileAppForzar): print_log (_verbose, "Lectura de Aplicaciones forzadas") leeAppFozar() # leemos lista Aplicaciones a verificar si o si if path.exists(config.ConstDemoVulnerables): print_log (_verbose, "Lectura de Aplicaciones vulnerables (DEMO)") leeAppDemoVulnerables() # mueve listas ini() # creamos el fichero de applicaciones del servidor if (namespace.create_file is True): print_log (_verbose, "Creamos ficheros temporales") createFile() # Buscamos vulnerabilidades a fecha de hoy # se basa en los ficheros generados y en el de forzado if (namespace.monitorizar_apps is True): print_log (_verbose, "Monitorizando aplicaciones") fvulns.monitorizarapps() # Buscamos vulnerabilidades segun version instalada if (namespace.search_vulns is True): print_log (_verbose, "Buscando vulnerabilidades del software instalado, segun versión instalada") vulnVersion() if (namespace.demo is True): print_log (_verbose, "buscamos las aplicaicones DEMO que son vulnerables") vulnDemo() if __name__ == '__main__': main()
import sys, itertools lines = [int(x) for x in sys.stdin.readlines()] print(sum(lines)) seen = {0} freq = 0 for l in itertools.cycle(lines): freq += l if freq in seen: break seen.add(freq) print(freq)
import math channel_bw = input("Enter the 5G Channel Bandwidth (MHz): ") scs = input("Enter the Subcarrier Spacing (KHz): ") mimo_layers = input("Enter the number of MIMO layers: ") class prbs: def __init__(self, channel_bw, scs) -> None: self.channel_bw = channel_bw self.scs = scs
# -*- coding: utf-8 -*- import redis from core import config from core.datasources.movielens_source import MovieLensSource from core.warehouse import FileWarehouse """ Various global objects that can be loaded on demand""" redis_conn = redis.StrictRedis(host=config.REDIS_HOST, port=config.REDIS_PORT) _source = MovieLensSource(name='movielens', ratings_file='external_data/ml-1m/ratings.dat', products_file='external_data/ml-1m/movies.dat', encoding='ISO-8859-1') # needed for the server component warehouse = FileWarehouse(partition=_source.name)
import requests from celery_app.utils.utils import insert_vuln_db from celery_app.config.config import web_port_short #检测到 WEB-INF web.xml plugin_id=63 default_port_list=web_port_short def check(host, port=80): scheme = 'https' if '443' in str(port) else 'http' target = '{}://{}:{}'.format(scheme, host, port) uris = ['/WEB-INF/web.xml'] hits = ['</web-app>', '</servlet-mapping>'] try: targets = ['{}{}'.format(target, uri) for uri in uris] requests.packages.urllib3.disable_warnings() with requests.Session() as session: for target in targets: response = session.get(target, timeout=7, verify=False) for hit in hits: if hit in response.text and response.status_code in [200]: output = response.text insert_vuln_db(host, target, output, plugin_id) return True, host, target, output except Exception as error: return False return False
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Create a mesh file with the number of vertical levels as nodal value """ from schimpy.schism_mesh import read_mesh, write_mesh import numpy as np def create_arg_parser(): """ Create an argument parser """ import argparse description = ("Create a mesh file with the number of vertical levels", " as nodal values ") parser = argparse.ArgumentParser(description=description) parser.add_argument('--hgrid', default='hgrid.gr3', help="Horizontal grid name") parser.add_argument('--vgrid', default='vgrid.in', help="Vertical grid file name") parser.add_argument('--output', default='n_levels.gr3', help="Output file name") return parser def main(): """ Just a main function """ parser = create_arg_parser() args = parser.parse_args() mesh = read_mesh(args.hgrid, args.vgrid) print(mesh.vmesh.n_vert_levels()) n_levels = mesh.vmesh.n_vert_levels() - np.array(mesh.vmesh.kbps) write_mesh(mesh, args.output, node_attr=n_levels) if __name__ == '__main__': main()