content
stringlengths
5
1.05M
# response status for client use # if value is tuple, the second value will be returned as the error message # database db_add_err = 'db_add_err', 'Database Add Error' db_delete_err = 'db_delete_err', 'Database Delete Error' db_update_err = 'db_update_err', 'Database Update Error' db_query_err = 'db_query_err', 'Database Query Error' db_data_not_found = 'db_data_not_found', 'Data Not Found' db_data_already_exist = 'db_data_already_exist', 'Data Already Exists' db_data_in_use = 'db_data_in_use', 'Data In Use' # remote request api_request_err = "api_req_err", 'Remote api request error' # error uri_unauthorized = 'uri_unauthorized', 'Unauthorized' # 401 Unauthorized, need login uri_forbidden = 'uri_forbidden', 'Forbidden' # 403 Forbidden, need permission uri_not_found = 'uri_not_found', 'Not Found' # 404 Not Found method_not_allowed = 'method_not_allowed', 'Method Not Allowed' # 405 HTTP method is not supported internal_server_error = 'internal_server_error', 'Internal Server Error' # 500 bad_request = 'bad_request', 'Bad Request' # 400 Bad Request, payload error # account account_not_found = 'account_not_found', 'No Account Found' account_disabled = 'account_disabled', "Account Disabled" account_verify_err = 'account_verify_err', 'Wrong Password' # others
#!/usr/bin/env python # Copyright (c) 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Functions for adding results to perf dashboard.""" import calendar import datetime import httplib import json import os import urllib import urllib2 from slave import slave_utils # The paths in the results dashboard URLs for sending and viewing results. SEND_RESULTS_PATH = '/add_point' RESULTS_LINK_PATH = '/report?masters=%s&bots=%s&tests=%s&rev=%s' # CACHE_DIR/CACHE_FILENAME will be created in options.build_dir to cache # results which need to be retried. CACHE_DIR = 'results_dashboard' CACHE_FILENAME = 'results_to_retry' def SendResults(data, url, build_dir): """Sends results to the Chrome Performance Dashboard. This function tries to send the given data to the dashboard, in addition to any data from the cache file. The cache file contains any data that wasn't successfully sent in a previous run. Args: data: The data to try to send. Must be JSON-serializable. url: Performance Dashboard URL (including schema). build_dir: Directory name, where the cache directory shall be. """ results_json = json.dumps(data) # Write the new request line to the cache file, which contains all lines # that we shall try to send now. cache_file_name = _GetCacheFileName(build_dir) _AddLineToCacheFile(results_json, cache_file_name) # Send all the results from this run and the previous cache to the dashboard. fatal_error, errors = _SendResultsFromCache(cache_file_name, url) # Print out a Buildbot link annotation. link_annotation = _LinkAnnotation(url, data) if link_annotation: print link_annotation # Print any errors; if there was a fatal error, it should be an exception. for error in errors: print error if fatal_error: print 'Error uploading to dashboard.' print '@@@STEP_EXCEPTION@@@' return False return True def _GetCacheFileName(build_dir): """Gets the cache filename, creating the file if it does not exist.""" cache_dir = os.path.join(os.path.abspath(build_dir), CACHE_DIR) if not os.path.exists(cache_dir): os.makedirs(cache_dir) cache_filename = os.path.join(cache_dir, CACHE_FILENAME) if not os.path.exists(cache_filename): # Create the file. open(cache_filename, 'wb').close() return cache_filename def _AddLineToCacheFile(line, cache_file_name): """Appends a line to the given file.""" with open(cache_file_name, 'ab') as cache: cache.write('\n' + line) def _SendResultsFromCache(cache_file_name, url): """Tries to send each line from the cache file in a separate request. This also writes data which failed to send back to the cache file. Args: cache_file_name: A file name. Returns: A pair (fatal_error, errors), where fatal_error is a boolean indicating whether there there was a major error and the step should fail, and errors is a list of error strings. """ with open(cache_file_name, 'rb') as cache: cache_lines = cache.readlines() total_results = len(cache_lines) fatal_error = False errors = [] lines_to_retry = [] for index, line in enumerate(cache_lines): line = line.strip() if not line: continue print 'Sending result %d of %d to dashboard.' % (index + 1, total_results) # TODO(rnephew): Get rid of this when crbug.com/525214 is resolved. print line # Check that the line that was read from the file is valid JSON. If not, # don't try to send it, and don't re-try it later; just print an error. if not _CanParseJSON(line): errors.append('Could not parse JSON: %s' % line) continue error = _SendResultsJson(url, line) # If the dashboard returned an error, we will re-try next time. if error: if 'HTTPError: 400' in error: # If the remote app rejects the JSON, it's probably malformed, # so we don't want to retry it. print 'Discarding JSON, error:\n%s' % error fatal_error = True break if index != len(cache_lines) - 1: # The very last item in the cache_lines list is the new results line. # If this line is not the new results line, then this results line # has already been tried before; now it's considered fatal. fatal_error = True # The lines to retry are all lines starting from the current one. lines_to_retry = [l.strip() for l in cache_lines[index:] if l.strip()] errors.append(error) break # Write any failing requests to the cache file. cache = open(cache_file_name, 'wb') cache.write('\n'.join(set(lines_to_retry))) cache.close() return fatal_error, errors def _CanParseJSON(my_json): """Returns True if the input can be parsed as JSON, False otherwise.""" try: json.loads(my_json) except ValueError: return False return True def MakeListOfPoints(charts, bot, test_name, buildername, buildnumber, supplemental_columns): """Constructs a list of point dictionaries to send. The format output by this function is the original format for sending data to the perf dashboard. Args: charts: A dictionary of chart names to chart data, as generated by the log processor classes (see process_log_utils.GraphingLogProcessor). bot: A string which comes from perf_id, e.g. linux-release. test_name: A test suite name, e.g. sunspider. buildername: Builder name (for stdio links). buildnumber: Build number (for stdio links). supplemental_columns: A dictionary of extra data to send with a point. Returns: A list of dictionaries in the format accepted by the perf dashboard. Each dictionary has the keys "master", "bot", "test", "value", "revision". The full details of this format are described at http://goo.gl/TcJliv. """ results = [] # The master name used for the dashboard is the CamelCase name returned by # GetActiveMaster(), and not the canonical master name with dots. master = slave_utils.GetActiveMaster() for chart_name, chart_data in sorted(charts.items()): point_id, revision_columns = _RevisionNumberColumns(chart_data, prefix='r_') for trace_name, trace_values in sorted(chart_data['traces'].items()): is_important = trace_name in chart_data.get('important', []) test_path = _TestPath(test_name, chart_name, trace_name) result = { 'master': master, 'bot': bot, 'test': test_path, 'revision': point_id, 'supplemental_columns': {} } # Add the supplemental_columns values that were passed in after the # calculated revision column values so that these can be overwritten. result['supplemental_columns'].update(revision_columns) result['supplemental_columns'].update( _GetStdioUriColumn(test_name, buildername, buildnumber)) result['supplemental_columns'].update(supplemental_columns) result['value'] = trace_values[0] result['error'] = trace_values[1] # Add other properties to this result dictionary if available. if chart_data.get('units'): result['units'] = chart_data['units'] if is_important: result['important'] = True results.append(result) return results def MakeDashboardJsonV1(chart_json, revision_dict, test_name, bot, buildername, buildnumber, supplemental_dict, is_ref): """Generates Dashboard JSON in the new Telemetry format. See http://goo.gl/mDZHPl for more info on the format. Args: chart_json: A dict containing the telmetry output. revision_dict: Dictionary of revisions to include, include "rev", which determines the point ID. test_name: A test suite name, e.g. sunspider. bot: A string which comes from perf_id, e.g. linux-release. buildername: Builder name (for stdio links). buildnumber: Build number (for stdio links). supplemental_dict: A dictionary of extra data to send with a point; this includes revisions and annotation data. is_ref: True if this is a reference build, False otherwise. Returns: A dictionary in the format accepted by the perf dashboard. """ if not chart_json: print 'Error: No json output from telemetry.' print '@@@STEP_FAILURE@@@' # The master name used for the dashboard is the CamelCase name returned by # GetActiveMaster(), and not the canonical master name with dots. master = slave_utils.GetActiveMaster() point_id, versions = _RevisionNumberColumns(revision_dict, prefix='') supplemental = {} for key in supplemental_dict: if key.startswith('r_'): versions[key.replace('r_', '', 1)] = supplemental_dict[key] if key.startswith('a_'): supplemental[key.replace('a_', '', 1)] = supplemental_dict[key] supplemental.update( _GetStdioUriColumn(test_name, buildername, buildnumber)) fields = { 'master': master, 'bot': bot, 'test_suite_name': test_name, 'point_id': point_id, 'supplemental': supplemental, 'versions': versions, 'chart_data': chart_json, 'is_ref': is_ref, } return fields def _GetStdioUriColumn(test_name, buildername, buildnumber): """Gets a supplemental column containing buildbot stdio link.""" if not buildername or not buildnumber: return {} url = '%sbuilders/%s/builds/%s/steps/%s/logs/stdio' % ( _GetBuildBotUrl(), urllib.quote(buildername), urllib.quote(str(buildnumber)), urllib.quote(test_name)) return _CreateLinkColumn('stdio_uri', 'Buildbot stdio', url) def _CreateLinkColumn(name, label, url): """Returns a column containing markdown link to show on dashboard.""" return {'a_' + name: '[%s](%s)' % (label, url)} def _GetBuildBotUrl(): """Gets the buildbot URL which contains hostname and master name.""" return os.environ.get('BUILDBOT_BUILDBOTURL', 'http://build.chromium.org/p/chromium/') def _GetTimestamp(): """Get the Unix timestamp for the current time.""" return int(calendar.timegm(datetime.datetime.utcnow().utctimetuple())) def _RevisionNumberColumns(data, prefix): """Get the revision number and revision-related columns from the given data. Args: data: A dict of information from one line of the log file. master: The name of the buildbot master. prefix: Prefix for revision type keys. 'r_' for non-telemetry json, '' for telemetry json. Returns: A tuple with the point id (which must be an int), and a dict of revision-related columns. """ revision_supplemental_columns = {} # The dashboard requires points' x-values to be integers, and points are # ordered by these x-values. If data['rev'] can't be parsed as an int, assume # that it's a git commit hash and use timestamp as the x-value. try: revision = int(data['rev']) if revision and revision > 300000 and revision < 1000000: # Revision is the commit pos. # TODO(sullivan,qyearsley): use got_revision_cp when available. revision_supplemental_columns[prefix + 'commit_pos'] = revision except ValueError: # The dashboard requires ordered integer revision numbers. If the revision # is not an integer, assume it's a git hash and send a timestamp. revision = _GetTimestamp() revision_supplemental_columns[prefix + 'chromium'] = data['rev'] # For other revision data, add it if it's present and not undefined: for key in ['webkit_rev', 'webrtc_rev', 'v8_rev']: if key in data and data[key] != 'undefined': revision_supplemental_columns[prefix + key] = data[key] # If possible, also send the git hash. if 'git_revision' in data and data['git_revision'] != 'undefined': revision_supplemental_columns[prefix + 'chromium'] = data['git_revision'] return revision, revision_supplemental_columns def _TestPath(test_name, chart_name, trace_name): """Get the slash-separated test path to send. Args: test: Test name. Typically, this will be a top-level 'test suite' name. chart_name: Name of a chart where multiple trace lines are grouped. If the chart name is the same as the trace name, that signifies that this is the main trace for the chart. trace_name: The "trace name" is the name of an individual line on chart. Returns: A slash-separated list of names that corresponds to the hierarchy of test data in the Chrome Performance Dashboard; doesn't include master or bot name. """ # For tests run on reference builds by builds/scripts/slave/telemetry.py, # "_ref" is appended to the trace name. On the dashboard, as long as the # result is on the right chart, it can just be called "ref". if trace_name == chart_name + '_ref': trace_name = 'ref' chart_name = chart_name.replace('_by_url', '') # No slashes are allowed in the trace name. trace_name = trace_name.replace('/', '_') # The results for "test/chart" and "test/chart/*" will all be shown on the # same chart by the dashboard. The result with path "test/path" is considered # the main trace for the chart. test_path = '%s/%s/%s' % (test_name, chart_name, trace_name) if chart_name == trace_name: test_path = '%s/%s' % (test_name, chart_name) return test_path def _SendResultsJson(url, results_json): """Make a HTTP POST with the given JSON to the Performance Dashboard. Args: url: URL of Performance Dashboard instance, e.g. "https://chromeperf.appspot.com". results_json: JSON string that contains the data to be sent. Returns: None if successful, or an error string if there were errors. """ # When data is provided to urllib2.Request, a POST is sent instead of GET. # The data must be in the application/x-www-form-urlencoded format. data = urllib.urlencode({'data': results_json}) req = urllib2.Request(url + SEND_RESULTS_PATH, data) try: urllib2.urlopen(req) except urllib2.HTTPError as e: return ('HTTPError: %d. Reponse: %s\n' 'JSON: %s\n' % (e.code, e.read(), results_json)) except urllib2.URLError as e: return 'URLError: %s for JSON %s\n' % (str(e.reason), results_json) except httplib.HTTPException as e: return 'HTTPException for JSON %s\n' % results_json return None def _LinkAnnotation(url, data): """Prints a link annotation with a link to the dashboard if possible. Args: url: The Performance Dashboard URL, e.g. "https://chromeperf.appspot.com" data: The data that's being sent to the dashboard. Returns: An annotation to print, or None. """ if not data: return None if isinstance(data, list): master, bot, test, revision = ( data[0]['master'], data[0]['bot'], data[0]['test'], data[0]['revision']) else: master, bot, test, revision = ( data['master'], data['bot'], data['chart_data']['benchmark_name'], data['point_id']) results_link = url + RESULTS_LINK_PATH % ( urllib.quote(master), urllib.quote(bot), urllib.quote(test.split('/')[0]), revision) return '@@@STEP_LINK@%s@%s@@@' % ('Results Dashboard', results_link)
from binance.client import Client import pandas as pd from utils import configure_logging from multiprocessing import Process, freeze_support, Pool, cpu_count import os try: from credentials import API_KEY, API_SECRET except ImportError: API_KEY = API_SECRET = None exit("CAN'T RUN SCRIPT WITHOUT BINANCE API KEY/SECRET") log = configure_logging() class FuturesDataPuller(Process): SYMBOLS = ['BTCUSDT', 'ETHUSDT', 'LTCUSDT', 'LINKUSDT'] # 'BTCUSDT', 'XRPUSDT', 'SXPUSDT', 'ADAUSDT', 'EOSUSDT', 'DOTUSDT', 'VETUSDT', 'ETHUSDT', 'LTCUSDT', 'LINKUSDT' KLINE_INTERVALS = ['1m', '3m', '5m', '15m', '30m', '1h', '2h', '4h', '6h', '8h', '12h', '1d', '3d', '1w', '1M'] def __init__(self, client, symbol, *args, **kwargs): super().__init__(*args, **kwargs) self.client = client self.symbol = symbol def run(self): klines = self.get_klines( interval='1m', start_date="15 Feb 2021 00:00:00", end_date="19 Feb 2021 12:00:00", ) funding_rates = self.get_funding_rate(klines=klines) df = self.reformat_data(klines=klines, funding_rates=funding_rates) self.to_csv(df=df) def get_klines(self, interval, start_date, end_date): """ :param interval: str, one of the supported intervals from KLINES_INTERVALS list :param start_date: str, format 'DD MMM YYYY HH:mm:ss' :param end_date: str :return: list of lists with klines[Open_time: int, Open: Decimal, High: Decimal, Low: Decimal, Close: Decimal, Volume: Decimal, Close_time: int, Quote asset volume: Decimal, Number of trades: int, Taker buy base asset volume: Decimal, Taker buy quote asset volume: Decimal, Ignore: Decimal] """ try: data = self.client.get_historical_klines( symbol=self.symbol, interval=interval, start_str=start_date, end_str=end_date, ) except Exception as exc: log.exception(exc) return {'msg': exc} return data def get_funding_rate(self, klines: list): """ Uses first and last kline time to get funding rates for that period :param klines: trade klines :return: list of dicts(symbol=(str), fundingTime=(int), fundingRate=(Decimal)) """ start, bypass_limit, end = klines[0][0], klines[int(len(klines)/2)][0], klines[len(klines) - 1][0] try: data = self.client.futures_funding_rate( symbol=self.symbol, startTime=start, endTime=bypass_limit, ) data_2 = self.client.futures_funding_rate( symbol=self.symbol, startTime=bypass_limit, endTime=end, ) except Exception as exc: log.exception(exc) return {'msg': exc} for instance in data_2: data.append(instance) return data def to_csv(self, df): """ :param df: pd.DataFrame obj. :return: .csv file with data """ file_directory = 'data' file_full_path = os.path.join(file_directory, f'{self.symbol}.csv') if not os.path.exists(file_directory): os.makedirs(name=file_directory) df.to_csv(path_or_buf=file_full_path, sep=',') @staticmethod def reformat_data(klines, funding_rates): """ :return: pd.DataFrame obj. with required_data """ df = pd.DataFrame.from_records(klines) df = df.drop(range(5, 12), axis=1) col_names = ['time', 'open', 'high', 'low', 'close'] df.columns = col_names for col in col_names: df[col] = df[col].astype(float) df['date'] = pd.to_datetime(df['time'] * 1000000, format='%Y-%m-%d %H:%M:%S') df['date'] = df['date'].dt.floor('s') df['close_diff'] = (df['close'] - df['open']) / df['open'] df['fundingRate'] = None df_fund = pd.DataFrame.from_records(funding_rates) df_fund = df_fund.drop(columns='symbol') for column in df_fund.columns: df_fund[column] = df_fund[column].astype(float) df_fund['date'] = pd.to_datetime(df_fund['fundingTime'] * 1000000, format='%Y-%m-%d %H:%M:%S') df_fund['date'] = df_fund['date'].dt.floor('s') for ind, date in enumerate(df['date']): for ind_2, date_2 in enumerate(df_fund['date']): if date == date_2: df.iat[ind, 7] = df_fund.iat[ind_2, 1] return df def main(): client = Client(API_KEY, API_SECRET) pool = Pool(processes=cpu_count()) pullers = [] for symbol in FuturesDataPuller.SYMBOLS: puller = FuturesDataPuller(client=client, symbol=symbol) pullers.append(puller) for puller in pullers: pool.apply_async(puller.run()) while True: if not any(puller.is_alive() for puller in pullers): break pool.close() pool.join() if __name__ == '__main__': freeze_support() main()
#!/usr/bin/env python # -*- encoding: utf-8 -*- # @author: James Zhang # @data : 2021/3/15 from functools import wraps from selenium.common.exceptions import NoSuchElementException, \ TimeoutException, StaleElementReferenceException import allure from easy_automation.utils.custom_logging import Logs log = Logs(__name__) AFTER_ERROR_EVENTS = [] def after_error(func): """ define if location element error, will trigger function this function will return false or True. execute successfully should return True, execute failed should return False. note: this func should always not error occurred. and only have a param: driver :param func: :return: """ AFTER_ERROR_EVENTS.append(func) return func def after_error_hook(func): @wraps(func) def wrap(self, *args, **kwargs): try: return func(self, *args, **kwargs) except (NoSuchElementException, TimeoutException, StaleElementReferenceException) as exc: for event in AFTER_ERROR_EVENTS: res = event(self.driver) if res: # use handle_blacklist decorator call func again, # to deal with multiple blacklist display at same time. return after_error_hook(func)(self, *args, *kwargs) else: allure.attach(self.screenshot(), attachment_type=allure.attachment_type.PNG) log.error(f'Element find failed: {exc}') raise exc return wrap
from typing import List class TreeNode: def __init__(self, x): self.val = x self.left = self.right = None def insert(nums: List[int]) -> TreeNode: root = TreeNode(nums[0]) for node in nums[1:]: insert_helper(root, node) return root def insert_helper(root: TreeNode, node: int) -> None: parent, current = None, root while current is not None: parent = current if node < current.val: current = current.left else: current = current.right if node < parent.val: parent.left = TreeNode(node) else: parent.right = TreeNode(node) def in_order_traversal(root: TreeNode) -> None: stack = [] while root or stack: while root: stack.append(root) root = root.left root = stack.pop() print(root.val, end=" ") root = root.right def post_order_traversal(root: TreeNode) -> None: stack = [] while len(stack) > 0 or root is not None: while root is not None: stack.append(root) root = root.left temp = stack[-1].right if temp is None: temp = stack.pop() print(temp.val, end=" ") while len(stack) > 0 and temp == stack[-1].right: temp = stack.pop() print(temp.val, end=" ") else: root = temp def level_order_traversal(root: TreeNode) -> list: queue = [root] res = [] while queue: curr = queue.pop(0) res += [[curr.val]] if curr.left: queue.append(curr.left) if curr.right: queue.append(curr.right) return res nodes = [7, 5, 11, 1, 6, 9, 15] r = insert(nodes) # # in_order_traversal(r) # print() post_order_traversal(r) print() # print(level_order_traversal(r))
from peewee import SqliteDatabase from . import db from .models import * def create_staff(forename, surname, username, password): Staff.create(forename, surname, username, password) def create_module(code, name, leaders, assessors=None): pass
""" Example UCT implementation in Python, which (with a Java wrapper) can be used to play in the Ludii general game system. The implementation is based on our Example UCT implementation in Java (see: https://github.com/Ludeme/LudiiExampleAI/blob/master/src/mcts/ExampleUCT.java) NOTE: because we don't extend the abstract AI class from Java, we can't inherit the "wantsInterrupt" flag and hence can't make our AI automatically stop when the Pause button is pressed in the GUI. @author Dennis Soemers """ import math import numpy as np import random import time def rank_to_util(rank, num_players): """ Helper method to convert a rank into a utility value (copied from AIUtils in the Ludii Java code) :param rank: :param num_players: :return: """ if num_players == 1: return 2.0 * rank - 1.0 else: return 1.0 - ((rank - 1.0) * (2.0 / (num_players - 1))) def utilities(context): """ Helper method to compute an array of utility values for a given Ludii context object (copied from AIUtils in the Ludii Java code) :param context: :return: """ ranking = context.trial().ranking() utils = np.zeros(len(ranking)) num_players = len(ranking) - 1 for p in range(1, len(ranking)): rank = ranking[p] if num_players > 1 and rank == 0.0: rank = context.computeNextDrawRank() utils[p] = rank_to_util(rank, num_players) return utils class UCT: """ UCT class in Python, implements Ludii's (Java) abstract class "AI" """ def __init__(self): """ Constructor """ self._player_id = -1 def init_ai(self, game, player_id): """ Initialises the AI :param game: :param player_id: """ self._player_id = player_id def select_action(self, game, context, max_seconds, max_iterations, max_depth): """ Returns an action to play :param game: :param context: :param max_seconds: :param max_iterations: :param max_depth: :return: """ # Start out by creating a new root node (no tree reuse in this example) root = Node(None, None, context) num_players = game.players().count() # We'll respect any limitations on max seconds and max iterations # (don't care about max depth) stop_time = time.time() + max_seconds if max_seconds > 0.0 else math.inf max_its = max_iterations if max_iterations > 0 else math.inf num_iterations = 0 # Our main loop through MCTS iterations while num_iterations < max_its and time.time() < stop_time: # Start in root node current = root # Traverse tree while True: if current.context.trial().over(): # We've reached a terminal state break current = self.select(current) if current.visit_count == 0: # We've expanded a new node, time for playout! break context_end = current.context if not context_end.trial().over(): # Run a playout if we don't already have a terminal # game state in node context_end = context_end.deepCopy() game.playout(context_end, None, -1.0, None, 0, -1, None) # This computes utilities for all players at the of the playout, # which will all be values in [-1.0, 1.0] utils = utilities(context_end) # Backpropagate utilities through the tree while current is not None: current.visit_count += 1 for p in range(1, num_players): current.score_sums[p] += utils[p] current = current.parent # Increment iteration count num_iterations += 1 # Return the move we wish to play return self.final_move_selection(root) def select(self, current): """ UCB1 Selection (+ Expansion phase) :param current: :return: """ if len(current.unexpanded_moves) > 0: # Randomly select an unexpanded move (already shuffled, # so just remove last element) move = current.unexpanded_moves.pop() # Create a copy of context context = current.context.deepCopy() # Apply the move context.game().apply(context, move) # Create new node and return it return Node(current, move, context) # Use UCB1 equation to select from all children, # with random tie-breaking best_child = None best_value = -math.inf two_parent_log = 2.0 * math.log(max(1, current.visit_count)) num_best_found = 0 num_children = len(current.children) mover = current.context.state().mover() for i in range(num_children): child = current.children[i] exploit = child.score_sums[mover] / child.visit_count explore = math.sqrt(two_parent_log / child.visit_count) ucb1_value = exploit + explore if ucb1_value > best_value: best_value = ucb1_value; best_child = child; num_best_found = 1; elif ucb1_value == best_value: rand = random.randint(0, num_best_found + 1) if rand == 0: best_child = child num_best_found += 1 return best_child def final_move_selection(self, root_node): """ Selects final move to play in the real game (uses the Robust Child strategy) :param root_node: :return: """ best_child = None best_visit_count = -math.inf num_best_found = 0 num_children = len(root_node.children) for i in range(num_children): child = root_node.children[i] visit_count = child.visit_count if visit_count > best_visit_count: best_visit_count = visit_count best_child = child num_best_found = 1 elif visit_count == best_visit_count: # This case implements random tie-breaking rand = random.randint(0, num_best_found + 1) if rand == 0: best_child = child num_best_found += 1 return best_child.move_from_parent class Node: """ Class for Nodes in the search tree built by UCT """ def __init__(self, parent, move_from_parent, context): """ Constructs a new node :param parent: Parent node :param move_from_parent: Move that leads from parent to this node :param context: Context / game state """ self.visit_count = 0 self.children = [] self.parent = parent self.move_from_parent = move_from_parent self.context = context game = self.context.game() self.score_sums = np.zeros(game.players().count() + 1) legal_moves = game.moves(context).moves() num_legal_moves = legal_moves.size() self.unexpanded_moves = [legal_moves.get(i) for i in range(num_legal_moves)] random.shuffle(self.unexpanded_moves) if parent is not None: parent.children.append(self)
from pandas import DataFrame, concat from pandas.core.apply import frame_apply from sklearn import linear_model from smart_fruit.feature_class import FeatureClassMeta from smart_fruit.model_selection import train_test_split from smart_fruit.utils import csv_open __all__ = ["Model"] class ModelMeta(type): def __init__(cls, name, bases, namespace): super().__init__(name, bases, namespace) for feature_type in ['Input', 'Output']: feature_class = getattr(cls, feature_type) setattr(cls, feature_type, FeatureClassMeta(feature_class.__name__, (feature_class,), {})) class Model(metaclass=ModelMeta): model_class = linear_model.LinearRegression class Input: pass class Output: pass def __init__(self, *args, **kwargs): self.model = self.model_class(*args, **kwargs) @classmethod def input_features_from_list(cls, lists): for l in lists: yield cls.Input(*l).validate() @classmethod def input_features_from_json(cls, json): for feature in json: yield cls.Input.from_json(feature).validate() @classmethod def input_features_from_csv(cls, csv_path): yield from cls.input_features_from_json(csv_open(csv_path, cls.Input._fields)) @classmethod def features_from_list(cls, lists): for l in lists: yield cls.Input(*l[:len(cls.Input._fields)]).validate(), cls.Output(*l[len(cls.Input._fields):]).validate() @classmethod def features_from_json(cls, json): for feature in json: yield cls.Input.from_json(feature).validate(), cls.Output.from_json(feature).validate() @classmethod def features_from_csv(cls, csv_path): yield from cls.features_from_json(csv_open(csv_path, cls.Input._fields + cls.Output._fields)) @staticmethod def _to_raw_features(dataframe, feature_class): return concat([ column.apply(feature_type.to_series) for (i, column), feature_type in zip(dataframe.iteritems(), feature_class) ], axis=1) def _dataframes_from_features(self, features): dataframe = DataFrame(list(input_) + list(output) for input_, output in features) input_dataframe = self._to_raw_features(dataframe, self.Input) output_dataframe = self._to_raw_features(dataframe.loc[:, len(self.Input):], self.Output) return input_dataframe, output_dataframe @classmethod def train(cls, features, train_test_split_ratio=None, test_sample_count=None, random_state=None): if train_test_split_ratio is not None or test_sample_count is not None: train_features, test_features = train_test_split( features, train_test_split_ratio=train_test_split_ratio, test_sample_count=test_sample_count, random_state=random_state ) model = cls.train(train_features) return model, model.score(test_features) model = cls() model.model.fit(*model._dataframes_from_features(features)) return model def score(self, features): return self.model.score(*self._dataframes_from_features(features)) @staticmethod def _chunk_dataframe(dataframe, feature_types): start = 0 for feature_type in feature_types: chunk = dataframe.loc[:, start:start + feature_type.feature_count - 1] chunk.columns = range(len(chunk.columns)) yield chunk, feature_type start += feature_type.feature_count def predict(self, input_features, yield_inputs=False): input_features_dataframe = DataFrame(input_features) raw_features = self._to_raw_features(input_features_dataframe, self.Input) raw_prediction_dataframe = DataFrame(self.model.predict(raw_features)) # Using frame_apply instead of chunk.apply as chunk.apply doesn't behave as expected for 0 columns prediction_dataframe = concat([ frame_apply(chunk, feature_type.from_series, axis=1).apply_standard() for chunk, feature_type in self._chunk_dataframe(raw_prediction_dataframe, self.Output) ], axis=1) if yield_inputs: for (_, input_series), (_, output_series) in zip( input_features_dataframe.iterrows(), prediction_dataframe.iterrows() ): yield self.Input(*input_series), self.Output(*output_series) else: for _, output_series in prediction_dataframe.iterrows(): yield self.Output(*output_series)
from django.contrib import admin from django.contrib import admin from .models import Department from modeltranslation.admin import TranslationAdmin # Register your models here. @admin.register(Department) class DepartmentAdmin(TranslationAdmin): list_display = ("name", "short_description") prepopulated_fields = {"slug": ("name",)} filter_horizontal = ('staff',)
#coding: utf-8 __author__ = "Lário dos Santos Diniz" import requests import json class ApiConnection: def __init__(self, url = ""): self._url = 'http://127.0.0.1:8080/' if url != '': self._url = url def checks_cutting_work(self, job_id): try: r = requests.get(self._url+'api/cutting_jobs/{}/'.format(job_id)) except ConnectionError: return 'Erro de conexão' if r.status_code == 200: retorno = r.json() return retorno['message'] def post_program(self, program, path): p = { 'title':program.title, 'start_time':program.start_time, 'end_time':program.end_time, 'path':path} headers = {'content-type': 'application/json'} try: r = requests.post(self._url+'api/programs/', data=json.dumps(p), headers=headers) except ConnectionError: return 'Erro de conexão' if r.status_code == 201: return ('success', r.json()) else: return 'Erro {}'.format(r.status_code) def post_globo_play(self, video_process): p = { 'title':video_process[0], 'name':video_process[1], 'duration':video_process[2] } headers = {'content-type': 'application/json'} try: r = requests.post(self._url+'api/globo_play/', data=json.dumps(p), headers=headers) except ConnectionError: return 'Erro de conexão' if r.status_code == 201: return ('success', r.json()) else: return 'Erro {}'.format(r.status_code)
import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.ensemble import BaggingClassifier from sklearn.linear_model import LinearRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier df = pd.read_csv("data/reglab1.txt", sep="\t") # print(df) X = np.asarray(df.iloc[:, -1]).reshape(-1, 1) y = np.asarray(df.iloc[:, 1]) clf = LinearRegression().fit(X, y) print("\nx(y):", clf.score(X, y)) X = np.asarray(df.iloc[:, -1]).reshape(-1, 1) y = np.asarray(df.iloc[:, 0]) clf = LinearRegression().fit(X, y) print("x(z):", clf.score(X, y)) X = np.asarray(df.iloc[:, 1]).reshape(-1, 1) y = np.asarray(df.iloc[:, -1]) clf = LinearRegression().fit(X, y) print("y(x):", clf.score(X, y)) X = np.asarray(df.iloc[:, 0]).reshape(-1, 1) y = np.asarray(df.iloc[:, -1]) clf = LinearRegression().fit(X, y) print("y(z):", clf.score(X, y)) X = np.asarray(df.iloc[:, 1]).reshape(-1, 1) y = np.asarray(df.iloc[:, 0]) clf = LinearRegression().fit(X, y) print("z(x):", clf.score(X, y)) X = np.asarray(df.iloc[:, -1]).reshape(-1, 1) y = np.asarray(df.iloc[:, 0]) clf = LinearRegression().fit(X, y) print("z(y):", clf.score(X, y)) X = np.asarray(df.iloc[:, 1:]) y = np.asarray(df.iloc[:, 0]) clf = LinearRegression().fit(X, y) print("z(x, y):", clf.score(X, y)) X = np.asarray(df.iloc[:, 0:-1]) y = np.asarray(df.iloc[:, -1]) clf = LinearRegression().fit(X, y) print("y(x, z):", clf.score(X, y)) y = np.asarray(df.iloc[:, 1]) df.drop('x', axis=1, inplace=True) X = np.asarray(df) clf = LinearRegression().fit(X, y) print("x(y, z):", clf.score(X, y))
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from django import template register = template.Library() @register.filter(name='preview_position_h') def preview_position_h(value): result = "" if value % 5 + 1 > 3: result = "from-right" return result @register.simple_tag def preview_position_v(length, index): result = "" round = 5 * math.ceil(length/5.0) if length > 5 and index > round-5: result = "from-bottom" return result @register.filter def is_registered(box, user): return box.is_registered(user)
# -*- coding: utf-8 -*- # Line segmentation script for images with PAGE xml. # Derived from the `import_from_larex.py` script, parts of kraken and ocropy, # with additional tweaks e.g. pre rotation of text regions # # nashi project: # https://github.com/andbue/nashi # ocropy: # https://github.com/tmbdev/ocropy/ # kraken: # https://github.com/mittagessen/kraken from ocr4all_helper_scripts.lib import imgmanipulate, morph, sl, pseg, nlbin from ocr4all_helper_scripts.utils.datastructures import Record from ocr4all_helper_scripts.utils import pageutils, imageutils from pathlib import Path import sys from typing import List, Tuple import logging import numpy as np from skimage.measure import find_contours, approximate_polygon from skimage.draw import line_aa from scipy.ndimage.filters import gaussian_filter, uniform_filter import math from lxml import etree from PIL import Image, ImageChops from shapely.geometry import Polygon # Add printing for every thread from threading import Lock s_print_lock = Lock() logging.getLogger('shapely.geos').setLevel(logging.CRITICAL) def s_print(*args, **kwargs): with s_print_lock: print(*args, **kwargs) def s_print_error(*objs): s_print("ERROR: ", *objs, file=sys.stderr) def compute_lines(segmentation: np.ndarray, smear_strength: Tuple[float, float], scale: int, growth: Tuple[float, float], max_iterations: int, filter_strength: float, bounding_box: bool) -> List[Record]: """Given a line segmentation map, computes a list of tuples consisting of 2D slices and masked images. Implementation derived from ocropy with changes to allow extracting the line coords/polygons. """ lobjects = morph.find_objects(segmentation) lines = [] for i, o in enumerate(lobjects): if o is None: continue if sl.dim1(o) < 2 * scale * filter_strength or sl.dim0(o) < scale * filter_strength: s_print(f"Filter strength of {filter_strength} too high. Skipping detected line object...") continue mask = (segmentation[o] == i + 1) if np.amax(mask) == 0: continue result = Record() result.label = i + 1 result.bounds = o polygon = [] if ((segmentation[o] != 0) == (segmentation[o] != i + 1)).any() and not bounding_box: ppoints = approximate_smear_polygon(mask, smear_strength, growth, max_iterations) ppoints = ppoints[1:] if ppoints else [] polygon = [(o[1].start + x, o[0].start + y) for x, y in ppoints] if not polygon: polygon = [(o[1].start, o[0].start), (o[1].stop, o[0].start), (o[1].stop, o[0].stop), (o[1].start, o[0].stop)] result.polygon = polygon result.mask = mask lines.append(result) return lines def compute_gradmaps(binary: np.array, scale: float, vscale: float = 1.0, hscale: float = 1.0, usegauss: bool = False) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Use gradient filtering to find baselines """ boxmap = pseg.compute_boxmap(binary, scale) cleaned = boxmap * binary if usegauss: # this uses Gaussians grad = gaussian_filter(1.0 * cleaned, (vscale * 0.3 * scale, hscale * 6 * scale), order=(1, 0)) else: # this uses non-Gaussian oriented filters grad = gaussian_filter(1.0 * cleaned, (max(4, vscale * 0.3 * scale), hscale * scale), order=(1, 0)) grad = uniform_filter(grad, (vscale, hscale * 6 * scale)) def norm_max(a): return a / np.amax(a) bottom = norm_max((grad < 0) * (-grad)) top = norm_max((grad > 0) * grad) return bottom, top, boxmap def boundary(contour: np.ndarray) -> List[np.float64]: """Calculates boundary of contour """ x_min = np.min(contour[:, 0]) x_max = np.max(contour[:, 0]) y_min = np.min(contour[:, 1]) y_max = np.max(contour[:, 1]) return [x_min, x_max, y_min, y_max] def approximate_smear_polygon(line_mask: np.ndarray, smear_strength: Tuple[float, float] = (1.0, 2.0), growth: Tuple[float, float] = (1.1, 1.1), max_iterations: int = 50): """Approximate a single polygon around high pixels in a mask, via smearing """ padding = 1 work_image = np.pad(np.copy(line_mask), pad_width=padding, mode='constant', constant_values=False) contours = find_contours(work_image, 0.5, fully_connected="low") if len(contours) > 0: iteration = 1 while len(contours) > 1: # Get bounds with dimensions bounds = [boundary(contour) for contour in contours] widths = [b[1] - b[0] for b in bounds] heights = [b[3] - b[2] for b in bounds] # Calculate x and y median distances (or at least 1) width_median = sorted(widths)[int(len(widths) / 2)] height_median = sorted(heights)[int(len(heights) / 2)] # Calculate x and y smear distance smear_distance_x = math.ceil(width_median * smear_strength[0] * (iteration * growth[0])) smear_distance_y = math.ceil(height_median * smear_strength[1] * (iteration * growth[1])) # Smear image in x and y direction height, width = work_image.shape gaps_current_x = [float('Inf')] * height for x in range(width): gap_current_y = float('Inf') for y in range(height): if work_image[y, x]: # Entered Contour gap_current_x = gaps_current_x[y] if gap_current_y < smear_distance_y and gap_current_y > 0: # Draw over work_image[y - gap_current_y:y, x] = True if gap_current_x < smear_distance_x and gap_current_x > 0: # Draw over work_image[y, x - gap_current_x:x] = True gap_current_y = 0 gaps_current_x[y] = 0 else: # Entered/Still in Gap gap_current_y += 1 gaps_current_x[y] += 1 # Find contours of current smear contours = find_contours(work_image, 0.5, fully_connected="low") # Failsave if contours can't be smeared together after x iterations # Draw lines between the extreme points of each contour in order if iteration >= max_iterations and len(contours) > 1: s_print(f"Start fail save, since precise line generation took too many iterations ({max_iterations}).") extreme_points = [] for contour in contours: sorted_x = sorted(contour, key=lambda c: c[0]) sorted_y = sorted(contour, key=lambda c: c[1]) extreme_points.append((tuple(sorted_x[0]), tuple(sorted_y[0]), tuple(sorted_x[-1]), tuple(sorted_y[-1]))) sorted_extreme = sorted(extreme_points, key=lambda e: e) for c1, c2 in zip(sorted_extreme, sorted_extreme[1:]): for p1 in c1: nearest = None nearest_dist = math.inf for p2 in c2: distance = math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) if distance < nearest_dist: nearest = p2 nearest_dist = distance if nearest: # Draw line between nearest points yy, xx, _ = line_aa(int(p1[0]), int(nearest[0]), int(p2[1]), int(nearest[1])) # Remove border points line_points = [(x, y) for x, y in zip(xx, yy) if 0 < x < width and 0 < y < height] xx_filtered, yy_filtered = zip(*line_points) # Paint work_image[yy_filtered, xx_filtered] = True contours = find_contours(work_image, 0.5, fully_connected="low") iteration += 1 return [(p[1] - padding, p[0] - padding) for p in approximate_polygon(contours[0], 0.1)] return [] def segment(im: Image, scale: float = None, max_blackseps: int = 0, widen_blackseps: int = 10, max_whiteseps: int = 3, minheight_whiteseps: int = 10, filter_strength: float = 1.0, smear_strength: Tuple[float, float] = (1.0, 2.0), growth: Tuple[float, float] = (1.1, 1.1), orientation: int = 0, fail_save_iterations: int = 50, vscale: float = 1.0, hscale: float = 1.0, minscale: float = 12.0, maxlines: int = 300, threshold: float = 0.2, usegauss: bool = False, bounding_box: bool = False): """ Segments a page into text lines. Segments a page into text lines and returns the absolute coordinates of each line in reading order. """ colors = im.getcolors(2) if (im.mode not in ['1', "L"]) and not (colors is not None and len(colors) == 2): raise ValueError('Image is not bi-level') # rotate input image for vertical lines im_rotated = im.rotate(-orientation, expand=True, fillcolor="white") a = np.array(im_rotated.convert('L')) if im_rotated.mode == '1' else np.array(im_rotated) binary = np.array(a > 0.5 * (np.amin(a) + np.amax(a)), 'i') binary = 1 - binary if not scale: scale = pseg.estimate_scale(binary) if scale < minscale: s_print_error(f"scale ({scale}) less than --minscale; skipping") return binary = pseg.remove_hlines(binary, scale) # emptyish images will cause exceptions here. try: colseps, binary = pseg.compute_colseps(binary, scale, max_blackseps, widen_blackseps, max_whiteseps, minheight_whiteseps) except ValueError: return [] bottom, top, boxmap = compute_gradmaps(binary, scale, vscale, hscale, usegauss) seeds = pseg.compute_line_seeds(binary, bottom, top, colseps, scale, threshold=threshold) llabels1 = morph.propagate_labels(boxmap, seeds, conflict=0) spread = morph.spread_labels(seeds, maxdist=scale) llabels = np.where(llabels1 > 0, llabels1, spread * binary) segmentation = llabels * binary if np.amax(segmentation) > maxlines: s_print_error(f"too many lines {np.amax(segmentation)}") return lines_and_polygons = compute_lines(segmentation, smear_strength, scale, growth, fail_save_iterations, filter_strength, bounding_box) # Translate each point back to original delta_x = (im_rotated.width - im.width) / 2 delta_y = (im_rotated.height - im.height) / 2 center_x = im_rotated.width / 2 center_y = im_rotated.height / 2 def translate_back(point): # rotate point around center orient_rad = -1 * orientation * (math.pi / 180) rotated_x = ((point[0] - center_x) * math.cos(orient_rad) - (point[1] - center_y) * math.sin(orient_rad) + center_x) rotated_y = ((point[0] - center_x) * math.sin(orient_rad) + (point[1] - center_y) * math.cos(orient_rad) + center_y) # move point return int(rotated_x - delta_x), int(rotated_y - delta_y) return [[translate_back(p) for p in record.polygon] for record in lines_and_polygons] def pagelineseg(xmlfile: str, imgpath: str, scale: float = None, vscale: float = 1.0, hscale: float = 1.0, max_blackseps: int = 0, widen_blackseps: int = 10, max_whiteseps: int = -1, minheight_whiteseps: int = 10, minscale: float = 12.0, maxlines: int = 300, smear_strength: Tuple[float, float] = (1.0, 2.0), growth: Tuple[float, float] = (1.1, 1.1), filter_strength: float = 1.0, fail_save_iterations: int = 50, maxskew: float = 2.0, skewsteps: int = 8, usegauss: bool = False, remove_images: bool = False, bounding_box: bool = False): name = Path(imgpath).name.split(".")[0] s_print(f"""Start process for '{name}' |- Image: '{imgpath}' |- Annotations: '{xmlfile}' """) root = pageutils.get_root(xmlfile) s_print(f"[{name}] Retrieve TextRegions") pageutils.convert_point_notation(root) coordmap = pageutils.construct_coordmap(root) s_print(f"[{name}] Extract Textlines from TextRegions") im = Image.open(imgpath) width, height = im.size if remove_images: imageutils.remove_images(im, root) pageutils.remove_existing_textlines(root) for coord_idx, coord in enumerate(sorted(coordmap)): region_coords = coordmap[coord]['coords'] if len(region_coords) < 3: continue cropped, [min_x, min_y, max_x, max_y] = imgmanipulate.cutout(im, region_coords) if coordmap[coord].get("orientation"): orientation = coordmap[coord]['orientation'] else: orientation = -1 * nlbin.estimate_skew(cropped, 0, maxskew=maxskew, skewsteps=skewsteps) s_print(f"[{name}] Skew estimate between +/-{maxskew} in {skewsteps} steps. Estimated {orientation}°") if cropped is not None: # Check whether cropped are is completely white or black and skip if true if not cropped.getbbox() or not ImageChops.invert(cropped).getbbox(): s_print(f"[{name}] Skipping fully black / white region...") continue colors = cropped.getcolors(2) if not (colors is not None and len(colors) == 2): cropped = Image.fromarray(nlbin.adaptive_binarize(np.array(cropped)).astype(np.uint8)) if coordmap[coord]["type"] == "drop-capital": lines = [1] else: lines = segment(cropped, scale=scale, max_blackseps=max_blackseps, widen_blackseps=widen_blackseps, max_whiteseps=max_whiteseps, minheight_whiteseps=minheight_whiteseps, filter_strength=filter_strength, smear_strength=smear_strength, growth=growth, orientation=orientation, fail_save_iterations=fail_save_iterations, vscale=vscale, hscale=hscale, minscale=minscale, maxlines=maxlines, usegauss=usegauss, bounding_box=bounding_box) else: lines = [] # Interpret whole region as TextLine if no TextLines are found if not lines or len(lines) == 0: coord_str = " ".join([f"{x},{y}" for x, y in region_coords]) textregion = root.find(f'.//{{*}}TextRegion[@id="{coord}"]') if orientation: textregion.set('orientation', str(orientation)) linexml = etree.SubElement(textregion, "TextLine", attrib={"id": "{}_l{:03d}".format(coord, coord_idx + 1)}) etree.SubElement(linexml, "Coords", attrib={"points": coord_str}) else: for poly_idx, poly in enumerate(lines): if coordmap[coord]["type"] == "drop-capital": coord_str = coordmap[coord]["coordstring"] else: line_coords = Polygon([(x + min_x, y + min_y) for x, y in poly]) sanitized_coords = pageutils.sanitize(line_coords, Polygon(region_coords), width, height) coord_str = " ".join([f"{int(x)},{int(y)}" for x, y in sanitized_coords]) textregion = root.find(f'.//{{*}}TextRegion[@id="{coord}"]') if orientation: textregion.set('orientation', str(orientation)) linexml = etree.SubElement(textregion, "TextLine", attrib={"id": "{}_l{:03d}".format(coord, poly_idx + 1)}) etree.SubElement(linexml, "Coords", attrib={"points": coord_str}) s_print(f"[{name}] Generate new PAGE XML with text lines") xmlstring = etree.tounicode(root.getroottree()).replace( "http://schema.primaresearch.org/PAGE/gts/pagecontent/2010-03-19", "http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15") return xmlstring
import phidgets_relay_class as relay import time print(f'Starting relay init ') brd_ser_nums = [439515, 449740, 449901, 439525] brd1 = relay.phidget_relay_class(brd_ser_nums[0]) brd2 = relay.phidget_relay_class(brd_ser_nums[1]) brd3 = relay.phidget_relay_class(brd_ser_nums[2]) brd4 = relay.phidget_relay_class(brd_ser_nums[3]) # reset all relay blocks brd1.relay_reset_all() brd2.relay_reset_all() brd3.relay_reset_all() brd4.relay_reset_all() def relay_FR_HA(sing_gnd, pwr): relay_sensor(brd1, 0, brd2, 0, sing_gnd, pwr) def relay_FL_HA(sing_gnd, pwr): relay_sensor(brd1, 1, brd2, 1, sing_gnd, pwr) def relay_RR_HA(sing_gnd, pwr): relay_sensor(brd1, 2, brd2, 2, sing_gnd, pwr) def relay_RL_HA(sing_gnd, pwr): relay_sensor(brd1, 3, brd2, 3, sing_gnd, pwr) def relay_FR_HEIGHT(sing_gnd, pwr): relay_sensor(brd1, 4, brd2, 4, sing_gnd, pwr) def relay_FL_HEIGHT(sing_gnd, pwr): relay_sensor(brd1, 5, brd2, 5, sing_gnd, pwr) def relay_RR_HEIGHT(sing_gnd, pwr): relay_sensor(brd1, 6, brd2, 6, sing_gnd, pwr) def relay_RL_HEIGHT(sing_gnd, pwr): relay_sensor(brd1, 7, brd2, 7, sing_gnd, pwr) def relay_AIR_PRESS(sing_gnd, pwr): relay_sensor(brd3, 0, brd3, 1, sing_gnd, pwr) def relay_uprlata(sing_gnd, pwr): brd4.relay_switch(3, sing_gnd) def relay_lwrlata(sing_gnd, pwr): brd4.relay_switch(2, sing_gnd) def relay_lower_sig(state): brd3.relay_switch(2, state) def relay_ris_sig(state): brd3.relay_switch(3, state) def relay_dig_in3(state): brd3.relay_switch(4, state) def relay_dig_in4(state): brd3.relay_switch(5, state) def relay_air_sus_cont(state): brd3.relay_switch(6, state) def relay_ign_in(state): brd3.relay_switch(7, state) def relay_sensor_source_supply(state): brd4.relay_switch(1, state) def relay_group1_switch(state): relay_air_sus_cont(state) relay_lower_sig(state) relay_ris_sig(state) relay_dig_in3(state) relay_dig_in4(state) relay_AIR_PRESS(state, 0) def relay_group2_switch(state): relay_ign_in(state) relay_AIR_PRESS(state, 0) def relay_group3_switch(state): relay_FR_HA(state, 0) relay_FL_HA(state, 0) relay_RR_HA(state, 0) relay_RL_HA(state, 0) relay_FR_HEIGHT(state, 0) relay_FL_HEIGHT(state, 0) relay_RR_HEIGHT(state, 0) relay_RL_HEIGHT(state, 0) relay_AIR_PRESS(state, 0) relay_sensor_source_supply(state) def relay_power(wire_name, state=0): if wire_name.lower() == "all": brd4.relay_switch(4, state) # V_bat_A brd4.relay_switch(5, state) # V_BAT_B brd4.relay_switch(6, state) # V_BAT_C brd4.relay_switch(7, state) #power supply connect powet rail elif wire_name.lower() == "p_vbat_a": brd4.relay_switch(4, state) brd4.relay_switch(7, state) elif wire_name.lower() == "p_vbat_b": brd4.relay_switch(5, state) brd4.relay_switch(7, state) elif wire_name.lower() == "p_vbat_c": brd4.relay_switch(6, state) brd4.relay_switch(7, state) elif wire_name.lower() == "all_on": brd4.relay_switch(4, 1) brd4.relay_switch(5, 1) brd4.relay_switch(6, 1) brd4.relay_switch(7, 1) elif wire_name.lower() == "all_off": brd4.relay_switch(7, 0) brd4.relay_switch(4, 0) brd4.relay_switch(5, 0) brd4.relay_switch(6, 0) elif wire_name.lower() == "p_vbat_a_only": #print(wire_name) brd4.relay_switch(4, 1) brd4.relay_switch(5, 1) brd4.relay_switch(6, 1) brd4.relay_switch(7, 1) delay() brd4.relay_switch(5, 0) # V_BAT_B brd4.relay_switch(6, 0) # V_BAT_C delay() elif wire_name.lower() == "p_vbat_b_only": #print(wire_name) brd4.relay_switch(4, 1) brd4.relay_switch(5, 1) brd4.relay_switch(6, 1) brd4.relay_switch(7, 1) delay() brd4.relay_switch(4, 0) # V_bat_A brd4.relay_switch(6, 0) # V_BAT_C delay() elif wire_name.lower() == "p_vbat_c_only": #print(wire_name) brd4.relay_switch(4, 1) brd4.relay_switch(5, 1) brd4.relay_switch(6, 1) brd4.relay_switch(7, 1) delay() brd4.relay_switch(4, 0) # V_bat_A brd4.relay_switch(5, 0) # V_BAT_B delay() else: print(f"Function: relay_power() Wrong signal name: {wire_name}, state: {state}") print("Available: all, p_vbat_a, p_vbat_b, p_vbat_c, all_on, all_off, p_vbat_a_only, p_vbat_b_only, p_vbat_c_only") def relay_dmm(pwr_sensor): # state = 0 - dmm connected to 5V sensor power bus # state = 1 - dmm connected to sensor input bus brd4.relay_switch(0, pwr_sensor) def relay_sensor_source_supply(state): brd4.relay_switch(1, state) if __name__ == "__main__": try: # relay_power("all_on") # relay_sensor_source_supply(1) # while 1: # print("On") # relay_group1_switch(1) # time.sleep(5) # print("Off") # relay_group1_switch(0) # time.sleep(5) # print("start self test ") # # print("brd1") # # brd1.relay_self_test() # # print("brd2") # # brd2.relay_self_test() # # print("brd3") # # brd3.relay_self_test() # print("brd4") # brd4.relay_self_test() sensor_5VON_volt = [["FR_HA_5V", 0, relay_FR_HA], ["FL_HA_5V", 0, relay_FL_HA], ["RR_HA_5V", 0, relay_RR_HA], ["RL_HA_5V", 0, relay_RL_HA], ["FR_HEIGHT_5V", 0, relay_FR_HEIGHT], ["FL_HEIGHT_5V", 0, relay_FL_HEIGHT], ["RR_HEIGHT_5V", 0, relay_RR_HEIGHT], ["RL_HEIGHT_5V", 0, relay_RL_HEIGHT], ["AIR_PRESS_5V", 0, relay_AIR_PRESS], ] print(len(sensor_5VON_volt)) except: brd1.close() brd2.close() brd3.close() brd4.close()
# Generated by Django 2.2.7 on 2019-12-02 12:17 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('accounts', '0001_initial'), ] operations = [ migrations.CreateModel( name='Project', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date', models.DateTimeField()), ('is_accepted', models.BooleanField(default=False)), ('accepted_date', models.DateTimeField(blank=True, null=True)), ('client', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='accounts.Client')), ('suppliers', models.ManyToManyField(blank=True, to='accounts.Supplier')), ], ), ]
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # ############################################################################### # Module: args # Purpose: Module defining all switches and arguments used by the following # components: # # - InitSync # - CDCExtract # - CDCApply # # Notes: # ############################################################################### import json import os import sys import configargparse import multiprocessing import data_pipeline.constants.const as const import data_pipeline.utils.filesystem as filesystem_utils import data_pipeline.utils.utils as utils from pprint import PrettyPrinter def positive_int_type(x): x = int(x) if x < 0: raise configargparse.ArgumentTypeError("A negative number was supplied") return x def commitpoint_type(x): x = int(x) if x < const.MIN_COMMIT_POINT: raise configargparse.ArgumentTypeError( "Minimum allowed commitpoint is: {}" .format(const.MIN_COMMIT_POINT)) return x class AppendDateTimeDirAction(configargparse.Action): def __init__(self, option_strings, dest, nargs=None, **kwargs): super(AppendDateTimeDirAction, self).__init__(option_strings, dest, **kwargs) def __call__(self, parser, namespace, values, option_string=None): values = filesystem_utils.append_datetime_dir(values) setattr(namespace, self.dest, values) def _is_initsync(mode): return (mode == const.INITSYNC or mode == const.INITSYNCEXTRACT or mode == const.INITSYNCAPPLY) def _is_extract(mode): return mode == const.CDCEXTRACT def _is_apply(mode): return mode == const.CDCAPPLY def parse_args(arg_list, mode): common_args_parser = configargparse.ArgumentParser( config_file_parser_class=configargparse.YAMLConfigFileParser, usage='%(prog)s [options]', add_help=False) common_args_parser.add_argument( "-c", "--config", is_config_file=True, help="config file path") common_args_parser.add_argument( "--quiet", action="store_true", help="quiet mode") common_args_parser.add_argument( "--verbose", action="store_true", help="verbose mode") common_args_parser.add_argument( "--veryverbose", action="store_true", help="very verbose mode") common_args_parser.add_argument( "--tempdirectory", nargs='?', help="temporary working directory") common_args_parser.add_argument( "--workdirectory", nargs='?', action=AppendDateTimeDirAction, help="output working directory") common_args_parser.add_argument( "--audituser", nargs='?', help=("process audit user credentials requried for logging processing " "metrics")) common_args_parser.add_argument( "--auditschema", nargs='?', default='', help="schema name containing process audit tables") common_args_parser.add_argument( "--streamchannel", nargs='?', help="stream channel name / kafka topic") common_args_parser.add_argument( "--streamgroup", nargs='?', help="stream group identifer / kafka consumer group ") common_args_parser.add_argument( "--streamhost", nargs='?', help="stream host name / kafka cluster host") common_args_parser.add_argument( "--streamschemahost", nargs='?', help="stream schema host name / kafka cluster host") common_args_parser.add_argument( "--streamschemafile", nargs='?', help="stream schema file") common_args_parser.add_argument( "--dateformat", nargs='?', default='dd-mon-yyyy', help="date format mask used for data extraction") common_args_parser.add_argument( "--timeformat", nargs='?', default='hh24:mi:ss', help="time format mask used for data extraction") common_args_parser.add_argument( "--timestampformat", nargs='?', default='dd-mon-yyyy hh24:mi:ss', help="timestamp format mask used for data extraction") common_args_parser.add_argument( "--outputfile", nargs='?', help=("name of file where data is written to prior to being sent to " "an external source")) common_args_parser.add_argument( "--rawfile", nargs='?', help="name of file where raw extract source output is written to") common_args_parser.add_argument( "--tablelist", nargs='+', help="list of table(s) or file contain table list") common_args_parser.add_argument( "--profilename", nargs='?', help=("list of table(s) held as an application profile in process " "control database")) common_args_parser.add_argument( "--profileversion", nargs='?', type=float, help="application profile version number") common_args_parser.add_argument( "--delimiter", nargs='?', default=const.DELIMITER, help="fields-data value separator character") common_args_parser.add_argument( "--sourcedbtype", nargs='?', default=const.ORACLE, choices=[const.FILE, const.ORACLE, const.MSSQL, const.POSTGRES, const.GREENPLUM], help="") common_args_parser.add_argument( "--samplerows", nargs='?', type=positive_int_type, help="process a row sample") common_args_parser.add_argument( "--clientencoding", nargs='?', default='utf-8', help="source data character encoding") common_args_parser.add_argument( "--donotload", action="store_true", help="do not stream data - used for debugging source extraction") common_args_parser.add_argument( "--donotsend", action="store_true", help="do not stream data - used for debugging source extraction") common_args_parser.add_argument( "--sourcesystem", nargs='?', help="source system identifier (code)") common_args_parser.add_argument( "--kill", action="store_true", default=False, help=("Insert a poison pill down into kafka topic as a signal for " "consumers to exit gracefully")) common_args_parser.add_argument( "--auditcommitpoint", type=commitpoint_type, default=1000, help=("when looping over a large number of records, " "this will log audit updates every given number of records")) common_args_parser.add_argument( "--arraysize", nargs='?', type=int, default=const.DEFAULT_ARRAYSIZE, help=("this read-write attribute specifies the number of rows to " "fetch at a time internally and is the default number of rows " "to fetch with the fetchmany() call. Note this attribute can " "drastically affect the performance of a query since it " "directly affects the number of network round trips that need " "to be performed")) common_args_parser.add_argument( "--notifysmtpserver", nargs='?', default="localhost", help="hostname of the smtp server for sending emails") common_args_parser.add_argument( "--notifysender", nargs='?', default="data_pipleine@example.com", help="sender email address used when sending notification emails") common_args_parser.add_argument( "--notifyerrorlist", nargs='+', default=[], help=("space-separated list of recipient email addresses who will " "receive notifications upon an error in the application")) common_args_parser.add_argument( "--notifysummarylist", nargs='+', default=[], help=("space-separated list of recipient email addresses who will " "receive notifications of summary details and statistics upon " "completion of a run")) common_args_parser.add_argument( "--sslmode", choices=[ const.SSLMODE_DISABLE, const.SSLMODE_ALLOW, const.SSLMODE_PREFER, const.SSLMODE_REQUIRE, const.SSLMODE_VERIFY_CA, const.SSLMODE_VERIFY_FULL, ], default=const.SSLMODE_PREFER, nargs='?', help=("use this sslmode for the database connection")) common_args_parser.add_argument( "--sslcert", nargs='?', default=("{home}/.postgresql/postgresql.crt" .format(home=os.environ['HOME'])), help=("this parameter specifies the file name of the client SSL " "certificate")) common_args_parser.add_argument( "--sslrootcert", nargs='?', default=("{home}/.postgresql/root.crt" .format(home=os.environ['HOME'])), help=("this parameter specifies the name of a file containing SSL " "certificate authority (CA) certificate(s)")) common_args_parser.add_argument( "--sslkey", nargs='?', default=("{home}/.postgresql/postgresql.key" .format(home=os.environ['HOME'])), help=("this parameter specifies the location for the secret key used " "for the client certificate")) common_args_parser.add_argument( "--sslcrl", nargs='?', default=("{home}/.postgresql/root.crl" .format(home=os.environ['HOME'])), help=("this parameter specifies the file name of the SSL certificate " "revocation list (CRL). Certificates listed in this file, if it " "exists, will be rejected while attempting to authenticate the " "server's certificate")) if _is_initsync(mode): initsync_args_parser = configargparse.ArgumentParser( prog=const.INITSYNC, add_help=True, parents=[common_args_parser]) initsync_args_parser.add_argument( "--sourceuser", nargs='?', help=("source database user credentials in the form: " "dbuser/dbpasswd@SRCSID[:PORT]")) initsync_args_parser.add_argument( "--sourceschema", nargs='?', help="schema name where source tables reside") initsync_args_parser.add_argument( "--sourceformat", nargs='?', default=const.TEXT, choices=[const.CSV, const.TEXT], help="format type of extracted data") initsync_args_parser.add_argument( "--loaddefinition", nargs='?', default=const.SRC, choices=[const.SRC, const.DEST], help="sql file or dictionary where ddl definition is extracted") initsync_args_parser.add_argument( "--parallelmode", nargs='?', type=int, default=2, help=("execute extraction query in parallel mode if supported by " "database server")) initsync_args_parser.add_argument( "--querycondition", nargs='+', help="extra sql condition added to extraction query") initsync_args_parser.add_argument( "--sourcerowcount", action="store_true", help="get source row count") initsync_args_parser.add_argument( "--removectrlchars", nargs='?', help="remove control characters from extracted data") initsync_args_parser.add_argument( "--lock", action="store_true", help="execute extraction query without share lock") initsync_args_parser.add_argument( "--directunload", action="store_true", help=("use a direct unload utility to extract data from source - " "mssql: bcp")) initsync_args_parser.add_argument( "--inputfile", nargs='?', help="full path to the stream data file - bypasses stream polling") initsync_args_parser.add_argument( "--targetdbtype", nargs='?', choices=[const.POSTGRES, const.GREENPLUM, const.JSON], help="") initsync_args_parser.add_argument( "--targetuser", nargs='?', help=("target database user credentials in the form: " "dbuser/dbpasswd@SRCSID[:PORT]")) initsync_args_parser.add_argument( "--targetschema", nargs='?', help="schema name where target tables reside") initsync_args_parser.add_argument( "--datatypemap", nargs='?', help=("full path to the yaml config file containing the source->" "target data type mappings")) initsync_args_parser.add_argument( "--numprocesses", nargs='?', type=int, default=multiprocessing.cpu_count(), help=("pool size of available processes for executing initsync. " "A process will be dedicated for each table being synced")) initsync_args_parser.add_argument( "--buffersize", nargs='?', type=int, default=8192, help=("Size, in bytes, of the buffer used to read data into " "before flushing to target")) initsync_args_parser.add_argument( "--extracttimeout", nargs='?', default=None, help=("Seconds to wait before timing out. By default, " "initsync will wait indefinitely for extractor")) initsync_args_parser.add_argument( "--delete", action="store_true", help="Delete table records on target prior to initsync") initsync_args_parser.add_argument( "--truncate", action="store_true", help="Truncate tables on target prior to initsync") initsync_args_parser.add_argument( "--metacols", type=json.loads, default="{}", help=("enable metadata columns to be populated on target. " "The format must be in json format (no spaces) of " "supported metadata columns paired with their respective " "target metadata column names. For example: " "--metacols '{\"insert_timestamp_column\":\"ctl_ins_ts\"," "\"update_timestamp_column\":\"ctl_upd_ts\"}'. Supported metadata " "columns are: " "[insert_timestamp_column, update_timestamp_column]")) initsync_args_parser.add_argument( "--vacuum", action="store_true", help=("executes a VACCUM FULL on target DB " "per table after successful apply")) initsync_args_parser.add_argument( "--analyze", action="store_true", help="executes an ANALYZE on target DB after successful apply") initsync_args_parser.add_argument( "--consumertimeout", nargs='?', default=const.KAFKA_DEFAULT_POLL_TIMEOUT, help=("Time to wait in blocking poll state while consuming " "to end of queue at the end of an initsync")) initsync_args_parser.add_argument( "--extractlsn", action="store_true", help=("enables capturing of the source lsn at the point of " "extract. Note, this will only be used on source " "databases that support the concept of an " "LSN/SCN/transactionid")) initsync_args_parser.add_argument( "--nullstring", nargs='?', default=const.NULL, help="the string used to identify a NULL value") parsed_args = initsync_args_parser.parse_args(arg_list) initsync_args_parser.print_values() elif _is_extract(mode): extract_args_parser = configargparse.ArgumentParser( prog=const.CDCEXTRACT, add_help=True, parents=[common_args_parser]) extract_args_parser.add_argument( "--startscn", nargs='?', help="start scn or lsn for cdc transaction search") extract_args_parser.add_argument( "--endscn", nargs='?', help="end scn or lsn for cdc transaction search") extract_args_parser.add_argument( "--starttime", nargs='?', help="start time for cdc transaction search") extract_args_parser.add_argument( "--endtime", nargs='?', help="end time or lsn cdc for transaction search") extract_args_parser.add_argument( "--sourceschema", nargs='?', help="schema name where source tables reside") extract_args_parser.add_argument( "--sourcehost", nargs='?', help=("source server name or ip address containing application " "database")) extract_args_parser.add_argument( "--sourceuser", nargs='?', help=("source database user credentials in the form: " "dbuser/dbpasswd@SRCSID[:PORT]")) extract_args_parser.add_argument( "--scanlogs", nargs='?', type=int, help="number of archived logs to scan") extract_args_parser.add_argument( "--sourcedictionary", nargs='?', choices=[const.ONLINE_DICT, const.REDOLOG_DICT], default=const.ONLINE_DICT, help="source dictionary to use when running logminer") extract_args_parser.add_argument( "--checkexistingextract", action="store_true", help=("Enables checking of existing extracts with the same " "profile name and version which are currently in progress. " "Use this to prevent multiple extract process from running " "concurrently.")) extract_args_parser.add_argument( "--extractnewtables", action="store_true", help="Enables extraction of new create table DDLs") parsed_args = extract_args_parser.parse_args(arg_list) extract_args_parser.print_values() elif _is_apply(mode): applier_args_parser = configargparse.ArgumentParser( prog=const.CDCAPPLY, add_help=True, parents=[common_args_parser]) applier_args_parser.add_argument( "--targetdbtype", nargs='?', choices=[const.POSTGRES, const.GREENPLUM, const.JSON], help="") applier_args_parser.add_argument( "--targethost", nargs='?', help=("target server name or ip address containing destination " "database")) applier_args_parser.add_argument( "--targetuser", nargs='?', help=("target database user credentials in the form: " "dbuser/dbpasswd@SRCSID[:PORT]")) applier_args_parser.add_argument( "--targetschema", nargs='?', help="schema name where target tables reside") applier_args_parser.add_argument( "--bulkapply", action="store_true", help=("Enables bulk applying of DML statements for improved " "performance")) applier_args_parser.add_argument( "--bulkinsertlimit", nargs='?', type=int, default=50, help="max number of rows within a bulk insert") applier_args_parser.add_argument( "--insertnull", action="store_true", help="blank and empty strings are loaded as NULL values") applier_args_parser.add_argument( "--generatestatistics", action="store_true", help="generate table statistics after load") applier_args_parser.add_argument( "--donotapply", action="store_true", help=("do not apply parsed sql statments to target database - " "for testing purposes")) applier_args_parser.add_argument( "--donotcommit", action="store_true", help=("do not commit sql statements to target database - for " "testing purposes")) applier_args_parser.add_argument( "--inputfile", nargs='?', help=("full path to the stream data file - for testing purposes, " "bypasses stream polling")) applier_args_parser.add_argument( "--datatypemap", nargs='?', help=("full path to the yaml config file containing the " "source->target data type mappings")) applier_args_parser.add_argument( "--skipbatch", nargs='?', default=0, help=("skips the given number of batches without processing, " "while still committing the offset")) applier_args_parser.add_argument( "--targetcommitpoint", type=commitpoint_type, default=1000, help=("when looping over a large number of records, this will " "cause a commit of executed transactions on target " "every given number of records")) applier_args_parser.add_argument( "--seektoend", action="store_true", help="Seek to the end of the kafka queue") applier_args_parser.add_argument( "--metacols", type=json.loads, default="{}", help=("enable metadata columns to be populated on target. " "The format must be in json format (no spaces) of " "supported metadata columns paired with their respective " "target metadata column names. For example: " "--metacols '{\"insert_timestamp_column\":\"ctl_ins_ts\"," "\"update_timestamp_column\":\"ctl_upd_ts\"}'. Supported metadata " "columns are: " "[insert_timestamp_column, update_timestamp_column]")) applier_args_parser.add_argument( "--retry", nargs='?', type=int, default=0, help=("When the applier exits due to an ERROR (environmental, " "data etc), prior to exiting - retry execution from last " "statement (the statement where error was detected) this " "many times prior to exiting")) applier_args_parser.add_argument( "--retrypause", nargs='?', default=5, type=int, help="Pauses this number of seconds prior to retrying") parsed_args = applier_args_parser.parse_args(arg_list) applier_args_parser.print_values() else: parsed_args = None parsed_args = prefix_workdirectory_to_file_args(parsed_args) return parsed_args def prefix_workdirectory_to_file_args(parsed_args): parsed_args = join_dir_and_file(parsed_args, parsed_args.workdirectory, 'outputfile') parsed_args = join_dir_and_file(parsed_args, parsed_args.workdirectory, 'rawfile') return parsed_args def join_dir_and_file(parsed_args, directory, file_attribute_name): filename_arg = getattr(parsed_args, file_attribute_name) if filename_arg: filename = os.path.join(directory, filename_arg) filesystem_utils.ensure_path_exists(filename) setattr(parsed_args, file_attribute_name, filename) return parsed_args def get_program_args(mode): argv = parse_args(sys.argv[1:], mode) pp = PrettyPrinter() print("Program input arguments:") print("========================") print(pp.pprint(argv.__dict__)) return argv
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def levelOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ self.result = [] self.buildOrder(root, 0) return self.result def buildOrder(self, root, depth): if not root: return None if len(self.result) == depth: self.result.append([]) self.result[depth].append(root.val) self.buildOrder(root.left, depth+1) self.buildOrder(root.right, depth+1)
# -*- coding: utf-8 -*- import json import os import random import sys sys.path.append('../') from config import base_dir data_dir = os.path.join(base_dir, 'data') src = 'jieba' target = 'fasttext' process_name = ['train', 'valid', 'test'] def function(): for name in process_name: content =open(os.path.join(data_dir, 'data_{}_jieba.json'.format(name))) lables = open(os.path.join(data_dir, 'data_{}_content_label.json'.format(name))) targetfile = open(os.path.join(data_dir, 'data_{}_{}.txt'.format(name, target)), 'w') for x_cut, label in zip(content, lables): x_cut = json.loads(x_cut) x_cut[-1] = x_cut[-1][:-1] label = json.loads(label) targetfile.write('{} __label__{}\n'.format(' '.join(x_cut), ' __label__'.join(label))) content.close() lables.close() targetfile.close() if __name__ == "__main__": function()
#!/usr/bin/env python # -*- coding: utf-8 -*- # Git grep wrapper for arguments re-ordering, that can use options after filenames # # Usage: git-gerp [<git-grep-argument>...] # # Copyright (c) 2018 htaketani <h.taketani@gmail.com> # This software is released under the MIT License. import sys import re import subprocess # git grep command COMMAND = ['git', 'grep'] # git grep options that require a parameter OPTS_WITH_PARAM = ['--max-depth', '--open-files-in-pager', '--context', '--after-context', '--before-context', '--threads', '-O', '-C', '-A', '-B', '-f', '-e'] def is_double_dash(token): return token == '--' def is_opt(token): return is_long_opt(token) or is_short_opt(token) or is_group_opt(token) def is_long_opt(token): return re.match(r'^--.+', token) def is_short_opt(token): return re.match(r'^-\w+$', token) def is_group_opt(token): return token in ['(', ')'] def is_long_opt_without_param(token): return is_long_opt(token) and ('=' not in token) def tail_short_opt(token): return '-' + token[-1] def requires_param(token): opt = token if is_long_opt_without_param(token) else tail_short_opt(token) if is_short_opt(token) else None return opt in OPTS_WITH_PARAM def replace_args(args): args = args[:] opt_args = [] # option (and parameter) args plain_args = [] # non-option args while len(args): token = args.pop(0) if is_double_dash(token): plain_args.append(token) plain_args.extend(args) break; elif is_opt(token): opt_args.append(token) if requires_param(token) and len(args): opt_args.append(args.pop(0)) else: plain_args.append(token) return opt_args + plain_args def git_gerp(args): replaced_args = replace_args(args) return subprocess.call(COMMAND + replaced_args) def main(): args = sys.argv[1:] rc = git_gerp(args) sys.exit(rc) if __name__ == '__main__': main()
from .getDepends import getDepends def importLib(): """Load python dependent libraries dynamically""" libList = getDepends() from pip._internal import main as pip_main import importlib def install(package): pip_main(['install', package]) createVar = locals() for lib in libList: print(lib) try: createVar[lib["name"]] = importlib.import_module(lib["name"]) except Exception as e: try: install(f'{lib["name"]}=={lib["version"]}') createVar[lib["name"]] = importlib.import_module(lib["name"]) except Exception as e: print(e)
# Copyright 2013-2014 Eucalyptus Systems, Inc. # # Redistribution and use of this software in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import unittest class Mock(object): def __init__(self, **kwargs): self.__dict__.update(kwargs) class MockConfig(Mock): def __init__(self): self.tweens = [] def add_tween(self, mpath): self.tweens.append(mpath) class MockHandler(object): def __init__(self, content_type=None): self.headers = {} self.content_type = content_type def __call__(self, request): return Mock(content_type=self.content_type, headers=self.headers) class MockRequest(object): def __init__(self): self.environ = {} class TestSetup(unittest.TestCase): def test_it(self): from eucaconsole.tweens import setup_tweens config = MockConfig() self.assertTrue(len(config.tweens) == 0) setup_tweens(config) self.assertTrue(len(config.tweens) > 1) class TestCTHeaders(unittest.TestCase): def test_factory(self): from eucaconsole.tweens import \ CTHeadersTweenFactory as factory tween = factory(None, None) self.assertTrue(callable(tween)) def test_tween(self): from eucaconsole.tweens import \ CTHeadersTweenFactory as factory tween = factory(MockHandler('image/jpeg'), None) res = tween(None) for name, value in factory.header_map['text/html'].items(): # make sure html resources *are* getting header self.assertFalse(name in res.headers) tween = factory(MockHandler('text/html'), None) res = tween(None) for name, value in factory.header_map['text/html'].items(): # make sure html resources *are* getting header self.assertTrue(name in res.headers) self.assertTrue(res.headers[name] == value) class TestHTTPSTween(unittest.TestCase): def test_it(self): from eucaconsole.tweens import \ https_tween_factory as factory tween = factory(MockHandler(), None) request = Mock(scheme=None, environ={}) tween(request) self.assertTrue(request.scheme is None) request = Mock(scheme=None, environ={'HTTP_X_FORWARDED_PROTO': 'https'}) tween(request) self.assertEqual(request.scheme, 'https') class TestRequestIDTween(unittest.TestCase): def test_it(self): from eucaconsole.tweens import request_id_tween_factory as factory tween = factory(MockHandler(), None) request = Mock(id=None) request.session = dict(account='foo') tween(request) self.assertFalse(request.id is None)
from auth0_client.commands import administration, tickets, tenants, stats, jobs, guardian, emails, email_templates, blacklists, users_by_email, users, user_blocks, rules_config, rules, resource_servers, logs, client_grants,clients, connections, custom_domains, device_credentials, grants
"""Integration tests for Constellix""" from unittest import TestCase from lexicon.tests.providers.integration_tests import IntegrationTestsV2 # Constellix does not currently have a sandbox and they enforce domain # uniqueness across the service. You'll need your own production credentials # and a unique domain name if you want to run these tests natively. class ConstellixProviderTests(TestCase, IntegrationTestsV2): """TestCase for Constellix""" provider_name = "constellix" domain = "example.org" def _filter_headers(self): return ["x-cnsdns-apiKey", "x-cnsdns-hmac", "x-cnsdns-requestDate"]
# Collected error samples: # {'errorMessage': 'Pair(s) not found', 'event': 'subscriptionStatus', 'status': 'error'} # {'errorMessage': ['Unknown field.']} # => currently handled in subscription status schema
"""Top-level package for zillionare-backtest.""" __author__ = """Aaron Yang""" __email__ = "aaron_yang@jieyu.ai"
import iprofile import math import numpy as np import scipy.cluster.hierarchy as sch import navigate import matplotlib.pyplot as plt """ Reads file rms.matrix to fetch centroid RMSD and Similarity in I(Q) for all centroid pairs. Finally, compare RMSD and Similarity """ # Location of sassena files containing I(Q) sId = '/SNS/CAMM/users/jbq/development/LDRDSANS/scrkinase/sassena' cframe = tuple(str(int(l.strip())) for l in open('centroids.names').readlines()) # trajectory frame for each centroid ncentroids = len(cframe) qp_pair = lambda idx: iprofile.profile('{}/frame{}.h5.gz'.format(sId, cframe[idx])) # Populate rms and sim matrixes rmsM = np.zeros(ncentroids ** 2).reshape(ncentroids, ncentroids) simM = np.zeros(ncentroids ** 2).reshape(ncentroids, ncentroids) counter = 0 for line in open('rms.matrix', 'r').readlines(): id1, id2, rms = list(i for i in line.strip().split()) id1 = int(id1) id2 = int(id2) if id1 < 0: break rmsM[id1][id2] = float(rms) rmsM[id2][id1] = rmsM[id1][id2] q, p1 = qp_pair(id1) p2 = qp_pair(id2).i simM[id1][id2] = math.sqrt(iprofile.similarity(p1, p2)) simM[id2][id1] = simM[id1][id2] counter += 1 print(counter) # Calculate average rms and average sim between clusters rmsl = list() siml = list() max_cluster_level = 3 Z = np.loadtxt('./centroids.linkage_matrix') root_node = sch.to_tree(Z) cad = navigate.clusters_afloat_depth(root_node, depth=max_cluster_level) for level in range(1, len(cad)): clusters = cad[level] # list of clusters at a particular level from the root node nclusters = len(clusters) for i in range(nclusters-1): for j in range(i+1, nclusters): rms = 0.0 sim = 0.0 ileafs = [leaf.id for leaf in navigate.leafs_under_node(clusters[i])] jleafs = [leaf.id for leaf in navigate.leafs_under_node(clusters[j])] for il in ileafs: for jl in jleafs: rms += rmsM[il][jl] sim += simM[il][jl] rmsl.append(rms/(len(ileafs)*len(jleafs))) siml.append(sim/(len(ileafs)*len(jleafs))) np.savetxt('correlate_avrms_avI.dat',np.array([rmsl,siml]).transpose()) plt.scatter(rmsl, siml) plt.show()
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A demo that runs hand tracking and object detection on camera frames using OpenCV. 2 EDGETPU """ import argparse import collections import common import cv2 import numpy as np import os import math from PIL import Image import re from edgetpu.detection.engine import DetectionEngine import gi gi.require_version('Gtk', '3.0') from gi.repository import Gtk import time import svgwrite import gstreamer from pose_engine import PoseEngine import tflite_runtime.interpreter as tflite Object = collections.namedtuple('Object', ['id', 'score', 'bbox']) #============================== EDGES = ( ('nose', 'left eye'), ('nose', 'right eye'), ('nose', 'left ear'), ('nose', 'right ear'), ('left ear', 'left eye'), ('right ear', 'right eye'), ('left eye', 'right eye'), ('left shoulder', 'right shoulder'), ('left shoulder', 'left elbow'), ('left shoulder', 'left hip'), ('right shoulder', 'right elbow'), ('right shoulder', 'right hip'), ('left elbow', 'left wrist'), ('right elbow', 'right wrist'), ('left hip', 'right hip'), ('left hip', 'left knee'), ('right hip', 'right knee'), ('left knee', 'left ankle'), ('right knee', 'right ankle'), ) HEADCHECK = ('nose', 'left eye','right eye' ,'left ear', 'right ear') SHOULDERCHECK = ('left shoulder', 'right shoulder') HIPCHECK = ('left hip','right hip') KNEECHECK = ('left knee','right knee') ANKLECHECK = ('left ankle','right ankle') def shadow_text(cv2_im, x, y, text, font_size=16): cv2_im = cv2.putText(cv2_im, text, (x + 1, y + 1), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 2) #dwg.add(dwg.text(text, insert=, fill='black', # font_size=font_size, style='font-family:sans-serif')) #dwg.add(dwg.text(text, insert=(x, y), fill='white', # font_size=font_size, style='font-family:sans-serif')) def draw_pose(cv2_im, cv2_sodidi, pose, numobject, src_size, color='yellow', threshold=0.2): box_x = 0 box_y = 0 box_w = 641 box_h = 480 scale_x, scale_y = src_size[0] / box_w, src_size[1] / box_h xys = {} #==bien dung de tinh khoang cach giua cac bo phan trong co the ============ pts_sodidi = [] headarea={} shoulderarea={} elbow={} lengbackbone=60 lengleg= 86 lengface = 30 #======================================================= for label, keypoint in pose.keypoints.items(): if keypoint.score < threshold: continue # Offset and scale to source coordinate space. kp_y = int((keypoint.yx[0] - box_y) * scale_y) kp_x = int((keypoint.yx[1] - box_x) * scale_x) cv2_im = cv2.putText(cv2_im, str(numobject),(kp_x + 1, kp_y + 1), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 2) xys[label] = (numobject,kp_x, kp_y) cv2.circle(cv2_im,(int(kp_x),int(kp_y)),5,(0,255,255),-1) return xys ''' for a, b in EDGES: if a not in xys or b not in xys: continue anum,ax, ay = xys[a] bnum,bx, by = xys[b] print(numobject,a,xys[a],b,xys[b]) cv2.line(cv2_im,(ax, ay), (bx, by),(0,255,255)) ''' def mapcamto2dplane(pts_in): # provide points from image 1 pts_src = np.array([[154, 174], [702, 349], [702, 572],[1, 572], [1, 191]]) # corresponding points from image 2 (i.e. (154, 174) matches (212, 80)) pts_dst = np.array([[154, 174], [702, 349], [702, 572],[1, 572], [1, 191]])#np.array([[212, 80],[489, 80],[505, 180],[367, 235], [144,153]]) # calculate matrix H h, status = cv2.findHomography(pts_src, pts_dst) # provide a point you wish to map from image 1 to image 2 #pts_in = np.array([[154, 174]], dtype='float32') #pts_in = np.array([pts_in]) # finally, get the mapping pointsOut = cv2.perspectiveTransform(pts_in, h) pointsOut = np.array([pointsOut]) point_out = [b for a in pointsOut for b in a] return point_out def check_distance(x1,y1,x2,y2): dist = math.sqrt((x2-x1)**2 + (y2-y1)**2) return dist def avg_fps_counter(window_size): window = collections.deque(maxlen=window_size) prev = time.monotonic() yield 0.0 # First fps value. while True: curr = time.monotonic() window.append(curr - prev) prev = curr yield len(window) / sum(window) #============================== def load_labels(path): p = re.compile(r'\s*(\d+)(.+)') with open(path, 'r', encoding='utf-8') as f: lines = (p.match(line).groups() for line in f.readlines()) return {int(num): text.strip() for num, text in lines} class BBox(collections.namedtuple('BBox', ['xmin', 'ymin', 'xmax', 'ymax'])): """Bounding box. Represents a rectangle which sides are either vertical or horizontal, parallel to the x or y axis. """ __slots__ = () def get_output(interpreter, score_threshold, top_k, image_scale=1.0): """Returns list of detected objects.""" boxes = common.output_tensor(interpreter, 0) class_ids = common.output_tensor(interpreter, 1) scores = common.output_tensor(interpreter, 2) count = int(common.output_tensor(interpreter, 3)) def make(i): ymin, xmin, ymax, xmax = boxes[i] return Object( id=int(class_ids[i]), score=scores[i], bbox=BBox(xmin=np.maximum(0.0, xmin), ymin=np.maximum(0.0, ymin), xmax=np.minimum(1.0, xmax), ymax=np.minimum(1.0, ymax))) return [make(i) for i in range(top_k) if scores[i] >= score_threshold] def main(): default_model_dir = '../all_models' default_model = 'posenet/posenet_mobilenet_v1_075_481_641_quant_decoder_edgetpu.tflite' default_labels = 'hand_label.txt' parser = argparse.ArgumentParser() parser.add_argument('--model', help='.tflite model path', default=os.path.join(default_model_dir,default_model)) parser.add_argument('--labels', help='label file path', default=os.path.join(default_model_dir, default_labels)) parser.add_argument('--top_k', type=int, default=1, help='number of categories with highest score to display') parser.add_argument('--camera_idx', type=str, help='Index of which video source to use. ', default = 0) parser.add_argument('--threshold', type=float, default=0.5, help='classifier score threshold') args = parser.parse_args() #print('Loading Handtracking model {} with {} labels.'.format(args.model, args.labels)) #engine = DetectionEngine(args.model) #labels = load_labels(args.labels) #===================================================================== src_size = (640, 480) print('Loading Pose model {}'.format(args.model)) engine = PoseEngine(args.model) #engine = PoseEngine('models/mobilenet/posenet_mobilenet_v1_075_481_641_quant_decoder_edgetpu.tflite') #===================================================================== # for detection print('Loading Detection model {} with {} labels.'.format('../all_models/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite', '../all_models/coco_labels.txt')) #interpreter2 = common.make_interpreter('../all_models/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite') #interpreter2.allocate_tensors() engine2 = DetectionEngine('../all_models/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite') labels2 = load_labels('../all_models/coco_labels.txt') cap = cv2.VideoCapture(args.camera_idx) while cap.isOpened(): ret, frame = cap.read() if not ret: break cv2_im = frame cv2_im_rgb = cv2.cvtColor(cv2_im, cv2.COLOR_BGR2RGB) pil_im = Image.fromarray(cv2_im_rgb) #declare new window for show pose in 2d plane======================== h_cap, w_cap, _ = cv2_im.shape cv2_sodidi = np.zeros((h_cap,w_cap,3), np.uint8) #======================================pose processing================================= poses, inference_time = engine.DetectPosesInImage(np.uint8(pil_im.resize((641, 481), Image.NEAREST))) #print('Posese is',poses) n = 0 sum_process_time = 0 sum_inference_time = 0 ctr = 0 fps_counter = avg_fps_counter(30) input_shape = engine.get_input_tensor_shape() inference_size = (input_shape[2], input_shape[1]) #print('Shape is',input_shape) #print('inference size is:',inference_size) start_time = time.monotonic() end_time = time.monotonic() n += 1 sum_process_time += 1000 * (end_time - start_time) sum_inference_time += inference_time avg_inference_time = sum_inference_time / n text_line = 'PoseNet: %.1fms (%.2f fps) TrueFPS: %.2f' % ( avg_inference_time, 1000 / avg_inference_time, next(fps_counter) ) shadow_text(cv2_im, 10, 20, text_line) numobject = 0 xys={} pts_sodidi_arr=[] pts_xys_arr=[] listwarning=[] #draw_pose(cv2_im, poses, dis, src_size) for pose in poses: for i in range(len(poses)-1): pose = poses[i] for label, keypoint in pose.keypoints.items(): #print(label) #print(keypoint) if keypoint.score < 0.2: continue if (label=='nose'): print('yx0,',keypoint.yx) for j in range(len(poses)): pose1 = poses[j] #print(pose.keypoints.items()) for label, keypoint in pose1.keypoints.items(): if keypoint.score < 0.2: continue if (label=='nose'): print('yx1,',keypoint.yx) ''' pts_sodidi, xys = draw_pose(cv2_im,cv2_sodidi, pose, numobject, src_size) #print(pts_sodidi) pts_sodidi_arr.append(pts_sodidi) pts_xys_arr.append(xys) numobject += 1 #print('len coor_av',coor_ave) #print(xys,coor_ave)kghkkgkgkgerg.hbjbbsbdbs pts_sodidi_arr = np.array([pts_sodidi_arr]) v2 = [b for a in pts_sodidi_arr for b in a] print(v2) print(xys) print(numobject) #leng = coor_ave.length #print(leng) #for a in pts_sodidi_arr: # for b in a: # print(b[0]) for i in range(0,len(v2)): a,x1,y1 = v2[i] for j in range(1,len(v2)): if i == j: break b,x2,y2 = v2[j] distance = check_distance(x1,y1,x2,y2) print('distance',distance) if distance > 100: cv2_sodidi = cv2.circle(cv2_sodidi,(int(x1),int(y1)),5,(0,0,255),-1) cv2_sodidi = cv2.circle(cv2_sodidi,(int(x2),int(y2)),5,(0,0,255),-1) listwarning.append(i) listwarning.append(j) else: cv2_sodidi = cv2.circle(cv2_sodidi,(int(x1),int(y1)),5,(255,0,0),-1) cv2_sodidi = cv2.circle(cv2_sodidi,(int(x2),int(y2)),5,(255,0,0),-1) print('listwarning',listwarning) for a, b in EDGES: if a not in xys or b not in xys: continue num,ax, ay = xys[a] num,bx, by = xys[b] if num in listwarning: #print(numobject,a,xys[a],b,xys[b]) cv2.line(cv2_im,(ax, ay), (bx, by),(0,0,255)) else: cv2.line(cv2_im,(ax, ay), (bx, by),(255,0,0)) #============================================================================================== #cv2_im = append_objs_to_img(cv2_im, objs, labels) # detection #common.set_input(interpreter2, pil_im) #interpreter2.invoke() #objs = get_output(interpreter2, score_threshold=0.2, top_k=3) objs = engine2.detect_with_image(pil_im, threshold=0.2, keep_aspect_ratio=True, relative_coord=True, top_k=3) cv2_im = append_objs_to_img(cv2_im, objs, labels2) cv2.imshow('frame', cv2_im) cv2.imshow('1', cv2_sodidi) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() def append_objs_to_img(cv2_im, objs, labels): height, width, channels = cv2_im.shape for obj in objs: x0, y0, x1, y1 = obj.bounding_box.flatten().tolist() #list(obj.bbox) x0, y0, x1, y1 = int(x0*width), int(y0*height), int(x1*width), int(y1*height) percent = int(100 * obj.score) label = '{}% {}'.format(percent, labels.get(obj.label_id, obj.label_id)) if(labels.get(obj.label_id, obj.label_id)=='person'): cv2_im = cv2.rectangle(cv2_im, (x0, y0), (x1, y1), (0, 255, 0), 2) cv2_im = cv2.putText(cv2_im, label, (x0, y0+30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 2) return cv2_im ''' height, width, channels = cv2_im.shape boxes_ob = [] confidences = [] classIDs = [] for obj in objs: x0, y0, x1, y1 = obj.bounding_box.flatten().tolist() #list(obj.bbox) x0, y0, x1, y1 = int(x0*width), int(y0*height), int(x1*width), int(y1*height) percent = int(100 * obj.score) confidence = obj.score label = '{}% {}'.format(percent, labels.get(obj.label_id, obj.label_id)) if(labels.get(obj.label_id, obj.label_id)=='person'): classIDs.append(0) confidences.append(float(confidence)) boxes_ob.append([x0, y0, x1,y1]) #cv2_im = cv2.rectangle(cv2_im, (x0, y0), (x1, y1), (0, 255, 0), 2) #cv2_im = cv2.putText(cv2_im, label, (x0, y0+30), # cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 2) idxs = cv2.dnn.NMSBoxes(boxes_ob, confidences, 0.5,0.3) #print('idxs',idxs) #print('classID',classIDs) ind = [] for i in range(0,len(classIDs)): if(classIDs[i]==0): ind.append(i) a = [] b = [] if len(idxs) > 0: for i in idxs.flatten(): (x, y) = (boxes_ob[i][0], boxes_ob[i][1]) (w, h) = (boxes_ob[i][2], boxes_ob[i][3]) a.append(x) b.append(y) distance=[] nsd = [] for i in range(0,len(a)-1): for k in range(1,len(a)): if(k==i): break else: x_dist = (a[k] - a[i]) y_dist = (b[k] - b[i]) d = math.sqrt(x_dist * x_dist + y_dist * y_dist) distance.append(d) if(d <=1000): nsd.append(i) nsd.append(k) nsd = list(dict.fromkeys(nsd)) print(nsd) color = (0, 0, 255) for i in nsd: (x, y) = (boxes_ob[i][0], boxes_ob[i][1]) (w, h) = (boxes_ob[i][2], boxes_ob[i][3]) cv2_im=cv2.rectangle(cv2_im, (x, y), (x + w, y + h), color, 2) text = "Alert" cv2_im=cv2.putText(cv2_im, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,0.5, color, 2) color = (0, 255, 0) if len(idxs) > 0: for i in idxs.flatten(): if (i in nsd): break else: (x, y) = (boxes_ob[i][0], boxes_ob[i][1]) (w, h) = (boxes_ob[i][2], boxes_ob[i][3]) cv2_im=cv2.rectangle(cv2_im, (x, y), (x + w, y + h), color, 2) text = 'OK' cv2_im=cv2.putText(cv2_im, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,0.5, color, 2) #cv2.imshow("Social Distancing Detector", image) return cv2_im ''' if __name__ == '__main__': main()
#!/usr/bin/env python import os import django def get_all_subjects(): """ Get all subjects with more than one period and annonate with active_period_objects """ from devilry.apps.core.models import Subject subject_queryset = Subject.objects.all().prefetch_active_period_objects() return subject_queryset def get_all_assignments_in_period(period): """ Fetch all assignments for a given period """ return period.assignments.all() def get_assignments_with_matching_shortname_in_previous_periods(subject, assignment): """ Fetch the assignments in earlier periods with same subject that have equal matching shortname E.g. oblig1 - 2019 matches oblig1 - 2020 """ from devilry.apps.core.models import Assignment short_name = assignment.short_name assignments = Assignment.objects.none() for period in subject.periods.exclude(id=assignment.period.id): assignments = assignments.union(period.assignments.filter(short_name=short_name)) return assignments def print_assignment_statistics(assignment): """ Fetch the statistics from the given assignments - Assignment name - The total number of assignment groups within the given assignment - The total number of first attempts given within all feedbackset across all groups within assignment - The total number of first attempts with no deliveries within all feedbackset across all groups within assignment - The total number of first attempts with deliveries within all feedbackset across all groups within assignment - The total number of new attempts given within all feedbackset across all groups within assignment - The total number of new attempts with no deliveries within all feedbackset across all groups within assignment - The total number of new attempts with deliveries within all feedbackset across all groups within assignment - The total number of moved deadlines with no deliveries in feedbackset across all groups within assignment """ from devilry.devilry_group.models import (FeedbackSet, FeedbackSetDeadlineHistory, GroupComment) from django.db.models import F statistics = { 'assignment': assignment, 'number_of_groups': assignment.assignmentgroups.all().count(), 'number_of_firstattempts': 0, 'number_of_newattempts': 0, 'number_of_firstattempts_with_no_delivery': 0, 'number_of_newattempts_with_no_delivery': 0, 'number_of_firstattempts_with_deliveries': 0, 'number_of_newattempts_with_deliveries': 0, 'number_of_moved_deadlines_with_no_delivery': 0 } for group in assignment.assignmentgroups.all(): feedbackset_queryset = FeedbackSet.objects\ .filter(group=group) for feedbackset in feedbackset_queryset: number_of_group_comment_from_student = GroupComment.objects\ .filter(user_role=GroupComment.USER_ROLE_STUDENT)\ .filter(feedback_set=feedbackset).count() if feedbackset.feedbackset_type == FeedbackSet.FEEDBACKSET_TYPE_NEW_ATTEMPT: statistics['number_of_newattempts'] += 1 if number_of_group_comment_from_student == 0: statistics['number_of_newattempts_with_no_delivery'] += 1 else: statistics['number_of_newattempts_with_deliveries'] += 1 elif feedbackset.feedbackset_type == FeedbackSet.FEEDBACKSET_TYPE_FIRST_ATTEMPT: statistics['number_of_firstattempts'] += 1 if number_of_group_comment_from_student == 0: statistics['number_of_firstattempts_with_no_delivery'] += 1 else: statistics['number_of_firstattempts_with_deliveries'] += 1 feedbackset_deadline_edit_count = FeedbackSetDeadlineHistory.objects.filter( feedback_set=feedbackset).filter(deadline_old__lt=F('deadline_new')).count() statistics['number_of_moved_deadlines_with_no_delivery'] += feedbackset_deadline_edit_count print("{assignment},{number_of_groups},{number_of_firstattempts},{number_of_newattempts},{number_of_firstattempts_with_no_delivery},{number_of_newattempts_with_no_delivery},{number_of_firstattempts_with_deliveries},{number_of_newattempts_with_deliveries},{number_of_moved_deadlines_with_no_delivery}".format( **statistics)) return statistics if __name__ == "__main__": # For development: os.environ.setdefault('DJANGOENV', 'develop') os.environ.setdefault("DJANGO_SETTINGS_MODULE", "devilry.project.settingsproxy") django.setup() # For production: Specify python path to your settings file here # os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'devilry_settings') # django.setup() # Get number of deliveries subject_set = get_all_subjects() print("'assignment', 'number_of_groups', 'number_of_firstattempts', 'number_of_newattempts', 'number_of_firstattempts_with_no_delivery', 'number_of_newattempts_with_no_delivery', 'number_of_firstattempts_with_deliveries', 'number_of_newattempts_with_deliveries', 'number_of_moved_deadlines_with_no_delivery'") for subject in subject_set: for period in subject.active_period_objects: for assignment in get_all_assignments_in_period(period): print_assignment_statistics(assignment) assignments_with_similar_shortname = get_assignments_with_matching_shortname_in_previous_periods( subject, assignment) for assignment_with_similar_shortname in assignments_with_similar_shortname: print_assignment_statistics(assignment_with_similar_shortname)
from torch.nn.parallel import DataParallel, DistributedDataParallel from rflib.utils import Registry MODULE_WRAPPERS = Registry('module wrapper') MODULE_WRAPPERS.register_module(module=DataParallel) MODULE_WRAPPERS.register_module(module=DistributedDataParallel)
""" Converting simple structured data from XML or JSON into authorityspoke objects. These functions will usually be called by functions from the io.loaders module after they import some data from a file. """ from typing import Any, NamedTuple from typing import Dict, List, Optional, Tuple, Sequence, Union from anchorpoint.textselectors import TextQuoteSelector from legislice.download import Client from legislice.enactments import AnchoredEnactmentPassage, RawEnactment from nettlesome.entities import Entity from authorityspoke.decisions import Decision, DecisionReading, RawDecision from authorityspoke.facts import Fact, Exhibit, Evidence, Allegation, Pleading from authorityspoke.holdings import Holding, RawHolding from authorityspoke.opinions import ( AnchoredHoldings, EnactmentWithAnchors, TermWithAnchors, HoldingWithAnchors, ) from authorityspoke.facts import RawFactor from authorityspoke.io.name_index import index_names, Mentioned, collect_enactments from authorityspoke.io.text_expansion import expand_shorthand RawSelector = Union[str, Dict[str, str]] FACTOR_SUBCLASSES = { class_obj.__name__: class_obj for class_obj in (Allegation, Entity, Exhibit, Evidence, Fact, Pleading) } def read_fact(record: RawFactor) -> Fact: r""" Construct a :class:`Fact` after loading a dict from YAML. :param record: parameter values to pass to :class:`authorityspoke.schemas_yaml.FactSchema`\. :returns: a :class:`Fact`, with optional mentioned factors """ record = expand_shorthand(record) record, mentioned = index_names(record) expanded = expand_factor(record, mentioned) return Fact(**expanded) class HoldingsIndexed(NamedTuple): """Lists :class:`.Holding` objects with corresponding text selectors.""" holdings: List[Holding] mentioned: Mentioned holding_anchors: List[List[TextQuoteSelector]] def collect_anchors_from_index(object_index, field_name: str): """Get text anchors out of an index of terms or enactments.""" result = [] for key, value in object_index.items(): if value.get("anchors"): anchored_object: Dict[str, Any] = {} anchors = value.pop("anchors") if isinstance(anchors, List): anchors = [anchor for anchor in anchors if anchor != "|"] anchored_object["anchors"] = anchors anchored_object[field_name] = value result.append(anchored_object) return result, object_index def read_holdings_with_anchors( record: Dict[str, Union[List[RawHolding], List[RawSelector]]], client: Optional[Client] = None, ) -> AnchoredHoldings: r""" Load a list of Holdings from JSON, with text links. :param record: a list of dicts representing holdings, in the JSON input format :param client: Legislice client for downloading missing fields from `record` :returns: a namedtuple listing :class:`.Holding` objects with a list matching :class:`.Holding`\s to selectors and an index matching :class:`.Factor`\s to selectors. """ ( holdings, enactment_anchors, factor_anchors, holding_anchors, ) = extract_anchors_from_holding_record(record, client) holdings_with_anchors = [] for i, holding in enumerate(holdings): new = HoldingWithAnchors(holding=holding, anchors=holding_anchors[i]) holdings_with_anchors.append(new) return AnchoredHoldings( holdings=holdings_with_anchors, named_anchors=factor_anchors, enactment_anchors=enactment_anchors, ) def expand_factor( record: Union[str, RawFactor], factor_index: Mentioned ) -> Union[str, RawFactor]: """Expand fields of Factor from index of mentioned factors.""" to_expand = [ "statement", "statement_attribution", "fact", "offered_by", "exhibit", "to_effect", "filer", "pleading", ] expanded = ( factor_index.get_if_present(record) if isinstance(record, str) else record ) if not isinstance(expanded, Dict): return expanded if "terms" in expanded: expanded["terms"] = expand_names(expanded["terms"], factor_index) for field in to_expand: if field in expanded: expanded[field] = expand_factor(expanded[field], factor_index) return expanded def expand_names( record: List[Union[str, RawFactor]], factor_index: Mentioned ) -> List[RawFactor]: r"""Expand a list of names into a list of factors.""" if isinstance(record, str): record = [record] if isinstance(record, bool): return record result = [] for name in record: result.append(expand_factor(name, factor_index=factor_index)) return result def expand_enactments( record: List[Union[str, RawEnactment]], enactment_index: Mentioned ) -> List[RawEnactment]: r""" Expand a list of enactments into a list of dicts. :param record: a list of enactments, either as strings or dicts :param enactment_index: a dict of names to enactments :returns: a list of dicts representing enactments """ return [enactment_index.get_if_present(name) for name in record] def walk_tree_and_expand( obj: Union[Dict, List], mentioned: Mentioned, ignore: Sequence[str] = () ) -> Union[Dict, List]: """ Traverse tree of dicts and lists, and modify each node. :param obj: the object to traverse :param func: the function to call on each dict node, returning a dict :param ignore: the names of keys that should not be explored :returns: a version of the tree with every node modified by `func` """ if isinstance(obj, str): obj = mentioned.get_if_present(obj) if isinstance(obj, List): obj = [mentioned.get_if_present(item) for item in obj] return [walk_tree_and_expand(item, mentioned, ignore) for item in obj] if isinstance(obj, Dict): obj_dict: Dict = {} for key, value in obj.items(): if key not in ignore: obj_dict[key] = mentioned.get_if_present(value) else: obj_dict[key] = value for key, value in obj_dict.items(): if isinstance(value, (Dict, List)) and key not in ignore: obj_dict[key] = walk_tree_and_expand(value, mentioned, ignore) return obj_dict return obj def expand_holding( record: RawHolding, factor_index: Mentioned, enactment_index: Mentioned ) -> RawHolding: """Expand one holding from index of expanded terms and enactments.""" new_index = Mentioned({**factor_index, **enactment_index}) return walk_tree_and_expand( record, mentioned=new_index, ignore=["predicate", "enactment", "selection", "name"], ) def expand_holdings( record: List[Union[str, RawHolding]], factor_index: Mentioned, enactment_index: Mentioned, ) -> List[RawHolding]: """Expand holdings from index of expanded terms and enactments.""" if isinstance(record, dict): record = [record] holdings = [factor_index.get_if_present(holding) for holding in record] holdings = [ expand_holding( holding, factor_index=factor_index, enactment_index=enactment_index ) for holding in holdings ] return holdings def extract_anchors_from_holding_record( record: List[RawHolding], client: Optional[Client] = None ) -> Tuple[ List[RawHolding], List[EnactmentWithAnchors], List[TermWithAnchors], List[Dict[str, str]], ]: r""" Load a list of Holdings from JSON, with text links. :param record: a list of dicts representing holdings, in the JSON input format :param client: Legislice client for downloading missing fields from `record` :returns: a tuple of four objects containing holdings, terms, enactments, and anchors. """ record_post_enactments, enactment_index = collect_enactments(record) if client: enactment_index_post_client = client.update_entries_in_enactment_index( enactment_index ) else: enactment_index_post_client = enactment_index enactment_anchors, enactment_index_post_anchors = collect_anchors_from_index( enactment_index_post_client, "passage" ) enactment_result = [] for anchor in enactment_anchors: anchor["passage"] = enactment_index_post_anchors.get_if_present( anchor["passage"] ) enactment_result.append(EnactmentWithAnchors(**anchor)) record_post_terms, factor_index = index_names(record_post_enactments) factor_anchors, factor_index_post_anchors = collect_anchors_from_index( factor_index, "term" ) factor_result = [] for anchor in factor_anchors: anchor["term"] = expand_holding( anchor["term"], factor_index=factor_index_post_anchors, enactment_index=enactment_index_post_anchors, ) factor_result.append(TermWithAnchors(**anchor)) factor_anchors = [TermWithAnchors(**anchor) for anchor in factor_anchors] expanded = expand_holdings( record_post_terms, factor_index=factor_index_post_anchors, enactment_index=enactment_index_post_anchors, ) holding_anchors = [holding.pop("anchors", None) for holding in expanded] result = [] for holding in expanded: result.append(Holding(**holding)) return result, enactment_result, factor_result, holding_anchors def read_holdings( record: List[RawHolding], client: Optional[Client] = None ) -> List[Holding]: r""" Load a list of :class:`Holdings`\s from JSON. :param record: a list of dicts representing holdings, in the JSON input format :parame regime: A collection of :class:`.Jurisdiction`\s and the :class:`.Code`\s that have been enacted in each. Used for constructing :class:`.Enactment`\s referenced by :class:`.Holding`\s. :returns: a list of :class:`.Holding` objects """ ( holdings, enactment_anchors, factor_anchors, holding_anchors, ) = extract_anchors_from_holding_record(record, client) return holdings def read_decision(decision: Union[RawDecision, Decision]) -> DecisionReading: r""" Create and return a :class:`~authorityspoke.decisions.DecisionReading` from a dict API response. Relies on the JSON format from the `Caselaw Access Project API <https://api.case.law/v1/cases/>`_. :param decision_dict: A dict created from a Caselaw Access Project API response. """ if not isinstance(decision, Decision): decision = Decision(**decision) return DecisionReading(decision=decision)
from letra._helpers import _check_for_duplicate_templates from letra import Label from ..helpers import stub_labels from pytest import raises def test__check_for_duplicate_templates_raises_on_duplicates(): dup_label = Label(name="dup", description="oops", color="a24b2a") dup_first_copy = Label(name="dup", description="big oops", color="ffffff") dup_second_copy = Label(name="dup", description="so bad", color="aaaaaa") unique_label = Label(name="unique", description="special", color="abcdef") second_dup = Label( name="repeated", description="not again", color="bbbbbb" ) second_dup_copy = Label( name="repeated", description="yikes", color="cccccc" ) templates = [ dup_label, second_dup, dup_first_copy, second_dup_copy, unique_label, dup_second_copy, ] exp_err = ( "Found duplicative label templates. The `name` of each " "label template must be unique.\nDuplicate templates found:\n" f"{dup_label.name}: 3 instances\n" f"{second_dup.name}: 2 instances\n" ) with raises(ValueError) as err: _check_for_duplicate_templates(templates) assert (str(err.value)) == exp_err def test__check_for_duplicate_templates_does_not_raise_for_unique(): _check_for_duplicate_templates(stub_labels)
# Generated by Django 2.2.10 on 2020-04-06 13:46 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import simple_history.models import uuid class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('salespipes', '0029_auto_20200330_0700'), ('contacts', '0029_historicalcandidate_historicalclient'), ('commissions', '0011_auto_20200328_1143'), ] operations = [ migrations.CreateModel( name='HistoricalCommission', fields=[ ('is_deleted', models.BooleanField(blank=True, default=False)), ('id', models.UUIDField(db_index=True, default=uuid.uuid4, editable=False)), ('date', models.DateField()), ('rate_role_type', models.CharField(max_length=100, null=True)), ('rate_used', models.DecimalField(decimal_places=2, max_digits=10)), ('amount', models.DecimalField(decimal_places=2, max_digits=10)), ('is_paid', models.BooleanField(default=False)), ('history_id', models.AutoField(primary_key=True, serialize=False)), ('history_date', models.DateTimeField()), ('history_change_reason', models.CharField(max_length=100, null=True)), ('history_type', models.CharField(choices=[('+', 'Created'), ('~', 'Changed'), ('-', 'Deleted')], max_length=1)), ('employee', models.ForeignKey(blank=True, db_constraint=False, null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name='+', to='contacts.Employee')), ('history_user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to=settings.AUTH_USER_MODEL)), ('pipeline', models.ForeignKey(blank=True, db_constraint=False, null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name='+', to='salespipes.Pipeline')), ], options={ 'verbose_name': 'historical commission', 'ordering': ('-history_date', '-history_id'), 'get_latest_by': 'history_date', }, bases=(simple_history.models.HistoricalChanges, models.Model), ), ]
def binary_search(arr, ele): first = 0 last = len(arr) - 1 found = False while first <= last and found == False: mid = (first + last) // 2 if arr[mid] == ele: found = True else: if arr[mid] > ele: last = mid - 1 else: first = mid + 1 return found print(binary_search([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 4))
from django.forms import Form from rest_framework.response import Response from rest_framework.serializers import HyperlinkedModelSerializer from backend.models import Arena, Card def raise_error(message, status=500): return Response({'error': {'message': message}}, status=status) def refresh_error(message, status=403): return raise_error('Your request cannot be proceeded, ' + message, status=status) def not_found_error(object, id, status=404): return raise_error("%s %s was not found." % (object.title(), id), status=status) def form_error(form: Form, status=403): return Response({ 'success': False, 'errors': dict(form.errors.items()), }, status=status) class ArenaSerializer(HyperlinkedModelSerializer): class Meta: model = Arena fields = ('key', 'name', 'arena', 'min_trophy_limit', 'max_trophy_limit') class CardSerializer(HyperlinkedModelSerializer): class Meta: model = Card fields = ('key', 'name', 'rarity', 'arena', 'elixir', 'type', 'image')
import sys import re import pandas as pd util_path = str ( sys.argv[1]) cpu_model_path = str ( sys.argv[2]) gpu_model_path = str ( sys.argv[3]) cpu_gpu_timeline_path = str ( sys.argv[4]) cpu_model = {} fp = open ( cpu_model_path, 'r') for line in fp: m = re.match ( '(\S+),(\S+)', line) if m != None: freq = int ( m.group ( 1)) comp = float ( m.group ( 2)) cpu_model[freq] = comp continue m = re.match ( '(\S+),$', line) if m != None: cpu_base = float ( m.group ( 1)) gpu_busy_model = {} gpu_idle_model = {} fp = open ( gpu_model_path, 'r') for line in fp: m = re.match ( '(\S+),(\S+),(\S+)', line) if m != None: freq = int ( m.group ( 1)) busy = float ( m.group ( 2)) idle = float ( m.group ( 2)) gpu_busy_model[freq] = busy gpu_idle_model[freq] = idle df = pd.DataFrame ( columns=['Time','CPU','GPU']) fp = open ( util_path, 'r') for line in fp: m = re.match ( '\s+(\S+)\s+(\S+)\s+(\S+)\s+\| (.*) \| (.*)', line) if m != None: start_time = float ( m.group ( 1)) end_time = float ( m.group ( 2)) avg_current = float ( m.group ( 3)) cpu_current = cpu_base cpu_utils = m.group ( 4).split ( ',')[:-1] for cpu_util in cpu_utils: m_sub = re.match ( '\s*\((\S+):(\S+)\)', cpu_util) if m_sub != None: freq = int ( m_sub.group ( 1)) util = float ( m_sub.group ( 2)) sub_current = cpu_model[freq]*util cpu_current += sub_current gpu_current = 0 gpu_utils = m.group ( 5).split ( ',')[:-1] for gpu_util in gpu_utils: m_sub = re.match ( '\s*\((\S+):(\S+):(\S+)\)', gpu_util) if m_sub != None: freq = int ( m_sub.group ( 1)) busy_util = float ( m_sub.group ( 2)) idle_util = float ( m_sub.group ( 2)) sub_current = gpu_busy_model[freq]*busy_util + gpu_idle_model[freq]*idle_util gpu_current += sub_current df.loc[df.shape[0]] = [ end_time, cpu_current, gpu_current] fp.close () df.to_csv ( cpu_gpu_timeline_path, index=False)
from django.contrib import admin from .models import member # Register your models here. admin.site.index_title="DASHBOARD" admin.site.site_title="ADMIN" admin.site.site_header="Nidaghatta Family-ADMIN" class memberAdmin(admin.ModelAdmin): list_display = ('name',"image") list_filter = ('is_requested_to_delete',) admin.site.register(member,memberAdmin)
from sys import stdin,stdout # stdin = open("/home/shiva/Learning/1.txt","r") # stdout = open("/home/shiva/Learning/2.txt","w") primelist = [2] append = primelist.append def mysieve(n): primes = [True] * (n); sqrtn = (int(n**.5)+1) | 1 for i in range(3,sqrtn,2): if primes[i]: append(i) primes[i*i::2*i] = [False] * ((n-(i*i)-1)//(2*i)+1) for i in range(sqrtn,n,2): if primes[i]: append(i) return primelist def isSumTwoSquare(n): for i in primelist: cnt = 0 while n%i==0: n/=i cnt+=1 if i%4==3 and cnt%2==1: return False if n%4==3: return False return True mysieve(10**6+1) # stdout.write(str(primelist)) t = int(stdin.readline()) for i in range(t): flag = False; n = int(stdin.readline()) if(int(n**.5) == n): stdout.write("Yes\n") else: if isSumTwoSquare(n): stdout.write("Yes\n") else: stdout.write("No\n")
import numpy from cupy import _core from cupy._core import _fusion_interface from cupy._core import fusion from cupy._sorting import search from cupy_backends.cuda.api import runtime def copyto(dst, src, casting='same_kind', where=None): """Copies values from one array to another with broadcasting. This function can be called for arrays on different devices. In this case, casting, ``where``, and broadcasting is not supported, and an exception is raised if these are used. Args: dst (cupy.ndarray): Target array. src (cupy.ndarray): Source array. casting (str): Casting rule. See :func:`numpy.can_cast` for detail. where (cupy.ndarray of bool): If specified, this array acts as a mask, and an element is copied only if the corresponding element of ``where`` is True. .. seealso:: :func:`numpy.copyto` """ src_type = type(src) src_is_python_scalar = src_type in ( int, bool, float, complex, fusion._FusionVarScalar, _fusion_interface._ScalarProxy) if src_is_python_scalar: src_dtype = numpy.dtype(type(src)) can_cast = numpy.can_cast(src, dst.dtype, casting) else: src_dtype = src.dtype can_cast = numpy.can_cast(src_dtype, dst.dtype, casting) if not can_cast: raise TypeError('Cannot cast %s to %s in %s casting mode' % (src_dtype, dst.dtype, casting)) if fusion._is_fusing(): if where is None: _core.elementwise_copy(src, dst) else: fusion._call_ufunc(search._where_ufunc, where, src, dst, dst) return if where is not None: _core.elementwise_copy(src, dst, _where=where) return if dst.size == 0: return if src_is_python_scalar: dst.fill(src) return if _can_memcpy(dst, src): dst.data.copy_from_async(src.data, src.nbytes) return device = dst.device prev_device = runtime.getDevice() try: runtime.setDevice(device.id) if src.device != device: src = src.copy() _core.elementwise_copy(src, dst) finally: runtime.setDevice(prev_device) def _can_memcpy(dst, src): c_contiguous = dst.flags.c_contiguous and src.flags.c_contiguous f_contiguous = dst.flags.f_contiguous and src.flags.f_contiguous return (c_contiguous or f_contiguous) and dst.dtype == src.dtype and \ dst.size == src.size
# -*- coding: utf-8 -*- from mamaprofile.myprofile import profile
# coding: utf-8 # BlackSmith mark.2 # exp_name = "allweb" # /code.py v.x28 # Id: 26~27c # Code © (2011-2013) by WitcherGeralt [alkorgun@gmail.com] class expansion_temp(expansion): def __init__(self, name): expansion.__init__(self, name) UserAgents = UserAgents import htmlentitydefs, json UserAgent = ("User-Agent", "%s/%s" % (ProdName[:10], CapsVer)) UserAgent_Moz = (UserAgent[0], "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/30.0.1599.101 Safari/537.36".format(UserAgents.get(DefLANG, "en-US"))) Web.Opener.addheaders = [UserAgent_Moz] edefs = dict() for Name, Numb in htmlentitydefs.name2codepoint.iteritems(): edefs[Name] = unichr(Numb) del Name, Numb edefs["&apos;"] = unichr(39) TagsDesc = { "<br>": chr(10), "<br />": chr(10) } compile_st = compile__("<[^<>]+?>") compile_ehtmls = compile__("&(#?[xX]?(?:[0-9a-fA-F]+|\w{1,8}));") def sub_ehtmls(self, data): if data.count("&"): def e_sb(co): co = co.group(1) if co.startswith("#"): if chr(120) == co[1].lower(): Char, c06 = co[2:], 16 else: Char, c06 = co[1:], 10 try: Numb = int(Char, c06) assert (-1 < Numb < 65535) Char = unichr(Numb) except Exception: Char = self.edefs.get(Char, "&%s;" % co) else: Char = self.edefs.get(co, "&%s;" % co) return Char data = self.compile_ehtmls.sub(e_sb, data) return data def decodeHTML(self, data): data = sub_desc(data, self.TagsDesc) data = self.compile_st.sub("", data) data = self.sub_ehtmls(data) return data.strip() def command_jc(self, stype, source, body, disp): if Chats.has_key(source[1]): if body: cName = body.lower() if cName.count("@conf"): cName = (cName.split("@conf"))[0] else: cName = (source[1].split("@conf"))[0] Opener = Web("http://jc.jabber.ru/search.html?", [("search", cName.encode("utf-8"))]) try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("utf-8") comp = compile__("<li>((?:.|\s)+?)</li>", 16) list = comp.findall(data) if list: ls = [] for numb, line in enumerate(list, 1): line = line.strip() ls.append("%d) %s" % (numb, line)) answer = chr(10) + self.decodeHTML(str.join(chr(10)*2, ls)) else: answer = self.AnsBase[5] else: answer = AnsBase[0] Answer(answer, stype, source, disp) gCache = [] sMark = 1 tMark = 2 def command_google(self, stype, source, body, disp): if body: if (chr(42) != body): Opener = Web("http://ajax.googleapis.com/ajax/services/search/web?", [("v", "1.0"), ("q", body.encode("utf-8"))]) try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: try: data = self.json.loads(data) except Exception: answer = self.AnsBase[1] else: try: list = data["responseData"]["results"] desc = list.pop(0) except (TypeError, LookupError): answer = self.AnsBase[5] else: ls = [] ls.append(desc.get("title", "")) ls.append(desc.get("content", "")) ls.append(desc.get("unescapedUrl", "")) answer = self.decodeHTML(str.join(chr(10), ls)) if list: source_ = get_source(source[1], source[2]) if source_: for ls in self.gCache: if ls[:2] == (source_, self.sMark): self.gCache.pop(self.gCache.index(ls)) break Numb = (len(Clients.keys())*8) while len(self.gCache) >= Numb: self.gCache.pop(0) self.gCache.append((source_, self.sMark, list)) answer += self.AnsBase[4] % len(list) else: source_ = get_source(source[1], source[2]) if source_: list = [] for ls in self.gCache: if ls[:2] == (source_, self.sMark): list = self.gCache.pop(self.gCache.index(ls))[2] break if list: desc = list.pop(0) ls = [] ls.append(desc.get("title", "")) ls.append(desc.get("content", "")) ls.append(desc.get("unescapedUrl", "")) answer = self.decodeHTML(str.join(chr(10), ls)) if list: self.gCache.append((source_, self.sMark, list)) answer += self.AnsBase[4] % len(list) else: answer = self.AnsBase[2] else: answer = self.AnsBase[3] else: answer = AnsBase[1] Answer(answer, stype, source, disp) LangMap = LangMap def command_google_translate(self, stype, source, body, disp): if body: if (chr(42) != body): body = body.split(None, 2) if len(body) == 3: lang0, langX, body = body if langX in self.LangMap and (lang0 in self.LangMap or lang0 == "auto"): desc = (("client", "bs-2"), ("sl", lang0), ("tl", langX), ("text", body.encode("utf-8"))) Opener = Web("http://translate.google.com/translate_a/t?", desc, headers = {"Accept-Charset": "utf-8"}) try: data = Opener.get_page(self.UserAgent_Moz) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: try: data = self.json.loads(data) except Exception: answer = self.AnsBase[1] else: try: body = data["sentences"][0]["trans"] except (TypeError, LookupError): answer = self.AnsBase[1] else: if lang0 == "auto": try: lang0 = data["src"] except KeyError: pass answer = "%s -> %s:\n%s" % (lang0, langX, body) try: list = data["dict"][0]["terms"] except LookupError: pass else: source_ = get_source(source[1], source[2]) if source_: if body in list: list.pop(list.index(body)) if list: for ls in self.gCache: if ls[:2] == (source_, self.tMark): self.gCache.pop(self.gCache.index(ls)) break Numb = (len(Clients.keys())*8) while len(self.gCache) >= Numb: self.gCache.pop(0) self.gCache.append((source_, self.tMark, list)) answer += self.AnsBase[7] % len(list) else: answer = self.AnsBase[6] else: answer = AnsBase[2] else: source_ = get_source(source[1], source[2]) if source_: list = [] for ls in self.gCache: if ls[:2] == (source_, self.tMark): list = self.gCache.pop(self.gCache.index(ls))[2] break if list: answer = self.decodeHTML(list.pop(0)) if list: self.gCache.append((source_, self.tMark, list)) answer += self.AnsBase[7] % len(list) else: answer = self.AnsBase[2] else: answer = self.AnsBase[3] else: answer = self.AnsBase[8] + str.join(chr(10), ["%s - %s" % (k, l) for k, l in sorted(self.LangMap.items())]) if stype == sBase[1]: Message(source[0], answer, disp) answer = AnsBase[11] Answer(answer, stype, source, disp) kinoHeaders = { "Host": "m.kinopoisk.ru", "Accept": "text/html", "Accept-Charset": "cp1251", "Accept-Language": "ru" } C3oP = "СЗоР" def command_kino(self, stype, source, body, disp): if body: ls = body.split() c1st = (ls.pop(0)).lower() if c1st in ("top250", "топ250".decode("utf-8")): if ls: limit = apply(int, (ls.pop(0),)) if limit <= 5: limit = 5 else: limit = None kinoHeaders = self.kinoHeaders.copy() kinoHeaders["Host"] = "www.kinopoisk.ru" Opener = Web("http://www.kinopoisk.ru/level/20/", headers = kinoHeaders) try: data = Opener.get_page(self.UserAgent_Moz) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("cp1251") list = get_text(data, "<tr height=25>", "</table>") if list: comp = compile__('<a href="/film/\d+?/" class="all">(.+?)</a>(?:.|\s)+' \ '?<a href="/film/\d+?/votes/" class="continue">(.+?)</a> <span.*?>(.+?)</span>', 16) list = comp.findall(list) if list: ls = ["\n[#] [Name, Year] [Rating] (Votes)"] for Number, (Name, Numb, Count) in enumerate(list, 1): ls.append("%d) %s - %s %s" % (Number, self.sub_ehtmls(Name), Numb, sub_desc(Count, ["&nbsp;"]))) if limit and limit <= Number: break if not limit or limit > 25: if stype == sBase[1]: Answer(AnsBase[11], stype, source, disp) Top250 = str.join(chr(10), ls) Message(source[0], Top250, disp) else: answer = str.join(chr(10), ls) elif data.count(self.C3oP): answer = self.AnsBase[-1] else: answer = self.AnsBase[1] elif isNumber(body): Opener = Web("http://m.kinopoisk.ru/movie/%d" % int(body), headers = self.kinoHeaders.copy()) try: data = Opener.get_page(self.UserAgent_Moz) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("cp1251") rslt = get_text(data, "<p class=\"title\">", "</div>") if rslt: rslt = self.decodeHTML(rslt) ls = ["\->"] for line in rslt.splitlines(): line = line.strip() if line: if line[0].islower(): line = "{1}{0}".format(line[1:], line[0].upper()) ls.append(line) answer = str.join(chr(10), ls) elif data.count(self.C3oP): answer = self.AnsBase[-1] else: answer = self.AnsBase[5] else: body = (body if chr(42) != c1st else body[2:].strip()) if body: body = body.encode("cp1251") Opener = Web("http://m.kinopoisk.ru/search/%s" % Web.One.quote_plus(body), headers = self.kinoHeaders.copy()) try: data = Opener.get_page(self.UserAgent_Moz) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("cp1251") comp = compile__("<a href=\"http://m.kinopoisk.ru/movie/(\d+?)/\">(.+?)</a>") list = comp.findall(data) if list: ls = ["\n[#] [Name, Year] (#id)"] for Number, (Numb, Name) in enumerate(list, 1): ls.append("%d) %s (#%s)" % (Number, self.sub_ehtmls(Name), Numb)) answer = str.join(chr(10), ls) elif data.count(self.C3oP): answer = self.AnsBase[-1] else: answer = self.AnsBase[5] else: answer = AnsBase[2] else: answer = AnsBase[1] if locals().has_key(sBase[6]): Answer(answer, stype, source, disp) IMDbHeaders = {"Accept-Language": "%s,en" % UserAgents.get(DefLANG, "en-US")} IMDbRequest = { # imdbapi.org "type": "json", # "id": "tt", # get info by ID # "q": "any title", # for the search # "limit": str(choice(range(1, 11))), # for the search "plot": "none", # or "simple" or "full" "episode": "0", # or "1" "lang": UserAgents.get(DefLANG, "en-US"), "aka": "simple", # or "full" "release": "simple", # or "full" } def command_imdb(self, stype, source, body, disp): if body: ls = body.split() c1st = (ls.pop(0)).lower() if c1st in ("top250", "топ250".decode("utf-8")): if ls: limit = apply(int, (ls.pop(0),)) if limit <= 5: limit = 5 else: limit = None Opener = Web("http://m.imdb.com/chart/top_json", headers = self.IMDbHeaders) try: data = Opener.get_page(self.UserAgent_Moz) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: try: data = self.json.loads(data) except Exception: answer = self.AnsBase[1] else: try: data = data["list"] except (TypeError, LookupError): answer = self.AnsBase[1] else: ls = ["\n[#] [Name, Year] [Rating] (Votes)"] comp = compile__("([\d\.,]+).*\s([\d\.,]+)") try: assert isinstance(data, list) for Number, desc in enumerate(data, 1): Name = desc["title"] Year = desc["extra"] Numb, Count = comp.search(desc["detail"]).groups() ls.append("%s) %s %s - %s (%s)" % (Number, Name, Year, Numb, Count)) if limit and limit <= Number: break except (AssertionError, TypeError, LookupError): answer = self.AnsBase[5] else: if not limit or limit > 25: if stype == sBase[1]: Answer(AnsBase[11], stype, source, disp) Top250 = str.join(chr(10), ls) Message(source[0], Top250, disp) else: answer = str.join(chr(10), ls) elif isNumber(body): IMDbRequest = self.IMDbRequest.copy() IMDbRequest["id"] = ("tt" + body) IMDbRequest["plot"] = "full" Opener = Web("http://imdbapi.org/?", IMDbRequest.items()) try: data = Opener.get_page(self.UserAgent_Moz) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: try: data = self.json.loads(data) except Exception: answer = self.AnsBase[1] else: ls = ["\->"] try: assert isinstance(data, dict) ls.append("%s, %s, %s." % (data["title"], data["year"], str.join(chr(32), data.get("runtime", ("??",))))) ls.append(", ".join(data["genres"])) ls.append(", ".join(data["country"])) temp = data.get("directors") if temp: ls.append("Directors: " + ", ".join(temp[:3])) temp = data.get("writers") if temp: ls.append("Writers: " + ", ".join(temp[:3])) temp = data.get("actors") if temp: ls.append("Stars: " + ", ".join(temp[:5])) temp = data.get("plot") or data.get("plot_simple") if temp: ls.append(unichr(171) + temp + unichr(187)) temp = data.get("rating") if temp: ls.append("IMDb rating: %s (%s)" % (temp, data.get("rating_count", 0))) except (AssertionError, TypeError, LookupError): answer = self.AnsBase[5] else: answer = self.sub_ehtmls(str.join(chr(10), ls)) else: body = (body if chr(42) != c1st else body[2:].strip()) if body: body = body.encode("utf-8") IMDbRequest = self.IMDbRequest.copy() IMDbRequest["q"] = body IMDbRequest["limit"] = "10" Opener = Web("http://imdbapi.org/?", IMDbRequest.items()) try: data = Opener.get_page(self.UserAgent_Moz) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: try: data = self.json.loads(data) except Exception: answer = self.AnsBase[1] else: try: assert isinstance(data, list) data = sorted([(desc.get("rating"), desc["title"], desc["year"], desc["imdb_id"][2:]) for desc in data], reverse = True) except (AssertionError, TypeError, LookupError): answer = self.AnsBase[5] else: ls = ["\n[#] [Name, Year] (#id)"] for Number, (Numb, Name, Year, ID) in enumerate(data, 1): ls.append("%d) %s, %s (#%s)" % (Number, Name, Year, ID)) answer = self.sub_ehtmls(str.join(chr(10), ls)) else: answer = AnsBase[2] else: answer = AnsBase[1] if locals().has_key(sBase[6]): Answer(answer, stype, source, disp) def command_python(self, stype, source, body, disp): Opener = Web("http://python.org/") try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("koi8-r") data = get_text(data, "<h2 class=\"news\">", "</div>") if data: data = self.decodeHTML(data) ls = [] for line in data.splitlines(): if line.strip(): ls.append(line) answer = str.join(chr(10), ls) else: answer = self.AnsBase[1] Answer(answer, stype, source, disp) def command_url_shorten(self, stype, source, body, disp): if body: Opener = Web("http://is.gd/create.php?", [("format", "json"), ("url", body.encode("utf-8"))]) try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: try: data = self.json.loads(data) except Exception: answer = self.AnsBase[1] else: try: answer = data["shorturl"] except KeyError: try: answer = data["errormessage"] except KeyError: answer = self.AnsBase[1] else: answer = AnsBase[1] Answer(answer, stype, source, disp) downloadLock = ithr.allocate_lock() def download_process(self, info, blockNumb, blockSize, size, fb): if not blockNumb: Print("\n") Print(str(info), color3) elif size >= blockSize: fb[3] += blockSize if not fb[4]: fb[4] = (size / 100) if fb[4] in (0, 1): fb[4] = 2 else: residue = fb[4] % blockSize if fb[4] == residue: fb[4] = 2 while fb[4] < residue: fb[4] *= 2 elif residue: fb[4] -= residue if fb[3] >= size: Print("Done.", color3) elif not fb[3] % fb[4]: Pcts = fb[3] / fb[4] if Pcts == 100: Pcts = 99.95 Print("loaded - {0}%".format(Pcts), color4) Time = time.time() if Time - fb[1] >= 30: fb[1] = Time Message(fb[0], self.AnsBase[9].format(Pcts), fb[2]) def command_download(self, stype, source, body, disp): if body: if not self.downloadLock.locked(): with self.downloadLock: body = body.split() if len(body) == 1: link = body.pop() folder = None filename = None elif len(body) == 2: link, folder = body filename = None else: link, folder, filename = body[:3] if not enough_access(source[1], source[2], 8): folder = "Downloads" if filename: filename = os.path.basename(filename.rstrip("\\/")) if folder: folder = os.path.normpath(folder) if AsciiSys: folder = folder.encode("utf-8") if not os.path.isdir(folder): try: os.makedirs(folder) except Exception: link = None if AsciiSys: folder = folder.decode("utf-8") if link: Message(source[0], self.AnsBase[10], disp) Opener = Web(link) try: data = Opener.download(filename, folder, self.download_process, [source[0], time.time(), disp, 0, 0], self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except SelfExc as exc: answer = "Error! %s." % exc[0].capitalize() except Exception: answer = self.AnsBase[0] else: answer = "Done.\nPath: %s\nSize: %s" % (data[0], Size2Text(data[2])) else: answer = AnsBase[2] else: answer = self.AnsBase[11] else: answer = AnsBase[1] Answer(answer, stype, source, disp) PasteLangs = PasteLangs def command_paste(self, stype, source, body, disp): if body: args = body.split(None, 1) arg0 = (args.pop(0)).lower() if arg0 in self.PasteLangs: if args: body = args.pop() else: body = None answer = AnsBase[2] else: arg0 = "text" if body: Opener = Web("http://paste.ubuntu.com/", data = Web.encode({"poster": ProdName, "syntax": arg0, "content": body.encode("utf-8")})) try: fp = Opener.open(self.UserAgent) answer = fp.url fp.close() except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: answer = self.AnsBase[8] + str.join(chr(10), ["%s - %s" % (k, l) for k, l in sorted(self.PasteLangs.items())]) if stype == sBase[1]: Message(source[0], answer, disp) answer = AnsBase[11] Answer(answer, stype, source, disp) if DefLANG in ("RU", "UA"): def command_chuck(self, stype, source, body, disp): if body and isNumber(body): Opener = Web("http://chucknorrisfacts.ru/quote/%d" % int(body)) else: Opener = Web("http://chucknorrisfacts.ru/random") try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("cp1251") comp = compile__("<a href=/quote/(\d+?)>.+?<blockquote>(.+?)</blockquote>", 16) data = comp.search(data) if data: answer = self.decodeHTML("#%s\n%s" % data.groups()) else: answer = self.AnsBase[1] Answer(answer, stype, source, disp) def command_bash(self, stype, source, body, disp): if body and isNumber(body): Opener = Web("http://bash.im/quote/%d" % int(body)) else: Opener = Web("http://bash.im/random") try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("cp1251") comp = compile__('<span id="v\d+?" class="rating">(.+?)</span>(?:.|\s)+?<a href="/quote/\d+?" class="id">#(\d+?)</a>\s*?</div>\s+?<div class="text">(.+?)</div>', 16) data = comp.search(data) if data: answer = self.decodeHTML("#{1} +[{0}]-\n{2}".format(*data.groups())) else: answer = self.AnsBase[1] Answer(answer, stype, source, disp) else: def command_chuck(self, stype, source, body, disp): Opener = Web("http://www.chucknorrisfacts.com/all-chuck-norris-facts?page=%d" % randrange(974)) # 04:12 09.11.2012 by UTC number of pages was 974 try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("utf-8") comp = compile__("<span class=\"field-content\"><a.*?>(.+?)</a></span>", 16) list = comp.findall(data) if list: answer = self.decodeHTML(choice(list)) else: answer = self.AnsBase[1] Answer(answer, stype, source, disp) def command_bash(self, stype, source, body, disp): if body and isNumber(body): Opener = Web("http://bash.org/?%d" % int(body)) else: Opener = Web("http://bash.org/?random") try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("iso-8859-1") comp = compile__('<b>#(\d+?)</b></a>\s<a.*?>\+</a>\((.+?)\)<a.*?>-</a>\s<a.*?>\[X\]</a></p><p class="qt">(.+?)</p>', 16) data = comp.search(data) if data: answer = self.decodeHTML("#%s +[%s]-\n%s" % data.groups()) else: answer = self.AnsBase[1] Answer(answer, stype, source, disp) def command_currency(self, stype, source, body, disp): if body: ls = body.split() Code = (ls.pop(0)).lower() if Code in ("code", "аббревиатура".decode("utf-8")): if ls: Code = (ls.pop(0)).upper() if Code in self.CurrencyDesc: answer = self.CurrencyDesc[Code].decode("utf-8") else: answer = self.AnsBase[1] else: answer = AnsBase[2] elif Code in ("list", "список".decode("utf-8")): if stype == sBase[1]: Answer(AnsBase[11], stype, source, disp) Curls = ["\->"] + ["%s: %s" % desc for desc in sorted(self.CurrencyDesc.items())] Message(source[0], str.join(chr(10), Curls), disp) elif Code in ("calc", "перевести".decode("utf-8")): if len(ls) >= 2: Number = ls.pop(0) if isNumber(Number) and ls[0].isalpha(): Number = int(Number) Code = (ls.pop(0)).upper() if (Code == "RUB"): answer = "%d %s" % (Number, Code) elif Code in self.CurrencyDesc: Opener = Web("http://www.cbr.ru/scripts/XML_daily.asp") try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("cp1251") comp = compile__("<CharCode>%s</CharCode>\s+?<Nominal>(.+?)</Nominal>\s+?<Name>.+?</Name>\s+?<Value>(.+?)</Value>" % (Code), 16) data = comp.search(data) if data: No, Numb = data.groups() Numb = Numb.replace(chr(44), chr(46)) No = No.replace(chr(44), chr(46)) try: Numb = (Number*(float(Numb)/float(No))) except Exception: answer = AnsBase[7] else: answer = "%.2f RUB" % (Numb) else: answer = self.AnsBase[1] else: answer = AnsBase[2] else: answer = AnsBase[2] else: answer = AnsBase[2] elif (Code != "rub") and Code.isalpha(): Code = Code.upper() if Code in self.CurrencyDesc: Opener = Web("http://www.cbr.ru/scripts/XML_daily.asp") try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("cp1251") comp = compile__("<CharCode>%s</CharCode>\s+?<Nominal>(.+?)</Nominal>\s+?<Name>.+?</Name>\s+?<Value>(.+?)</Value>" % (Code), 16) data = comp.search(data) if data: No, Numb = data.groups() answer = "%s/RUB - %s/%s" % (Code, No, Numb) else: answer = self.AnsBase[1] else: answer = AnsBase[2] else: answer = AnsBase[2] else: Opener = Web("http://www.cbr.ru/scripts/XML_daily.asp") try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("cp1251") comp = compile__("<CharCode>(.+?)</CharCode>\s+?<Nominal>(.+?)</Nominal>\s+?<Name>.+?</Name>\s+?<Value>(.+?)</Value>", 16) list = comp.findall(data) if list: ls, Number = ["\->"], itypes.Number() for Code, No, Numb in sorted(list): ls.append("%d) %s/RUB - %s/%s" % (Number.plus(), Code, No, Numb)) if stype == sBase[1]: Answer(AnsBase[11], stype, source, disp) Curls = str.join(chr(10), ls) Message(source[0], Curls, disp) else: answer = self.AnsBase[1] if locals().has_key(sBase[6]): Answer(answer, stype, source, disp) def command_jquote(self, stype, source, body, disp): if body and isNumber(body): Opener = Web("http://jabber-quotes.ru/api/read/?id=%d" % int(body)) else: Opener = Web("http://jabber-quotes.ru/api/read/?id=random") try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("utf-8") comp = compile__("<id>(\d+?)</id>\s+?<author>(.+?)</author>\s+?<quote>(.+?)</quote>", 16) data = comp.search(data) if data: Numb, Name, Quote = data.groups() lt = chr(10)*3 answer = self.decodeHTML("Quote: #%s | by %s\n%s" % (Numb, Name, Quote)) while (lt in answer): answer = answer.replace(lt, lt[:2]) else: answer = self.AnsBase[1] Answer(answer, stype, source, disp) def command_ithappens(self, stype, source, body, disp): if body and isNumber(body): Opener = Web("http://ithappens.ru/story/%d" % int(body)) else: Opener = Web("http://ithappens.ru/random") try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("cp1251") data = get_text(data, "<div class=\"text\">", "</p>") if data: answer = self.decodeHTML(sub_desc(data, {"<p class=\"date\">": chr(32)})) else: answer = self.AnsBase[1] Answer(answer, stype, source, disp) def command_gismeteo(self, stype, source, body, disp): if body: ls = body.split(None, 1) Numb = ls.pop(0) if ls and isNumber(Numb): Numb = int(Numb) City = ls.pop(0) else: Numb = None City = body if -1 < Numb < 13 or not Numb: Opener = Web("http://m.gismeteo.ru/citysearch/by_name/?", [("gis_search", City.encode("utf-8"))]) try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("utf-8") data = get_text(data, "<a href=\"/weather/", "/(1/)*?\">", "\d+") if data: if Numb != None: data = str.join(chr(47), [data, str(Numb) if Numb != 0 else "weekly"]) Opener = Web("http://m.gismeteo.ru/weather/%s/" % data) try: data = Opener.get_page(self.UserAgent) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("utf-8") mark = get_text(data, "<th colspan=\"2\">", "</th>") if Numb != 0: comp = compile__('<tr class="tbody">\s+?<th.*?>(.+?)</th>\s+?<td.+?/></td>\s+?</tr>\s+?<tr>\s+?<td.+?>(.+?)</td>\s+?</tr>\s+?<tr class="dl">\s+?<td>&nbsp;</td>\s+?<td class="clpersp"><p>(.*?)</p></td>\s+?</tr>\s+?<tr class="dl"><td class="left">(.+?)</td><td>(.+?)</td></tr>\s+?<tr class="dl"><td class="left">(.+?)</td><td>(.+?)</td></tr>\s+?<tr class="dl bottom"><td class="left">(.+?)</td><td>(.+?)</td></tr>', 16) list = comp.findall(data) if list: ls = [(self.decodeHTML(mark) if mark else "\->")] for data in list: ls.append("{0}:\n\t{2}, {1}\n\t{3} {4}\n\t{5} {6}\n\t{7} {8}".format(*data)) ls.append(self.AnsBase[-2]) answer = self.decodeHTML(str.join(chr(10), ls)) else: answer = self.AnsBase[1] else: comp = compile__('<tr class="tbody">\s+?<td class="date" colspan="3"><a.+?>(.+?)</a></td>\s+?</tr>\s+?<tr>\s+?<td rowspan="2"><a.+?/></a></td>\s+?<td class="clpersp"><p>(.*?)</p></td>\s+?</tr>\s+?<tr>\s+?<td.+?>(.+?)</td>', 16) list = comp.findall(data) if list: ls = [(self.decodeHTML(mark) if mark else "\->")] for data in list: ls.append("%s:\n\t%s, %s" % (data)) ls.append(self.AnsBase[-2]) answer = self.decodeHTML(str.join(chr(10), ls)) else: answer = self.AnsBase[1] else: answer = self.AnsBase[5] else: answer = AnsBase[2] else: answer = AnsBase[1] Answer(answer, stype, source, disp) def command_yandex_market(self, stype, source, body, disp): if body: ls = body.split() c1st = (ls.pop(0)).lower() if isNumber(c1st): if ls: c2nd = ls.pop(0) if isNumber(c2nd): Opener = Web("http://m.market.yandex.ru/spec.xml?hid=%d&modelid=%d" % (int(c1st), int(c2nd))) try: data = Opener.get_page(self.UserAgent_Moz) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("utf-8", "replace") data = get_text(data, "<h2 class=\"b-subtitle\">", "</div>") if data: answer = self.decodeHTML(sub_desc(data, (chr(10), ("<li>", chr(10)), ("<h2 class=\"b-subtitle\">", chr(10)*2), ("</h2>", chr(10))))) else: answer = self.AnsBase[5] else: answer = AnsBase[30] else: answer = AnsBase[2] else: body = (body if chr(42) != c1st else body[2:].strip()) if body: body = body.encode("utf-8") Opener = Web("http://m.market.yandex.ru/search.xml?", [("nopreciser", "1"), ("text", body)]) try: data = Opener.get_page(self.UserAgent_Moz) except Web.Two.HTTPError as exc: answer = str(exc) except Exception: answer = self.AnsBase[0] else: data = data.decode("utf-8", "replace") comp = compile__("<a href=\"http://m\.market\.yandex\.ru/model\.xml\?hid=(\d+?)&amp;modelid=(\d+?)&amp;show-uid=\d+?\">(.+?)</a>", 16) list = comp.findall(data) if list: Number = itypes.Number() ls = ["\n[#] [Model Name] (hid & modelid)"] for hid, modelid, name in list: if not name.startswith("<img"): ls.append("%d) %s (%s %s)" % (Number.plus(), self.sub_ehtmls(name), hid, modelid)) answer = str.join(chr(10), ls) else: answer = self.AnsBase[5] else: answer = AnsBase[2] else: answer = AnsBase[1] Answer(answer, stype, source, disp) commands = ( (command_jc, "jc", 2,), (command_google, "google", 2,), (command_google_translate, "tr", 2,), (command_imdb, "imdb", 2,), (command_python, "python", 2,), (command_url_shorten, "shorten", 2,), (command_download, "download", 7,), (command_paste, "paste", 2,), (command_chuck, "chuck", 2,), (command_bash, "bash", 2,) ) if DefLANG in ("RU", "UA"): commands = commands.__add__(( (command_kino, "kino", 2,), (command_currency, "currency", 2,), (command_jquote, "jquote", 2,), (command_ithappens, "ithappens", 2,), (command_gismeteo, "gismeteo", 2,), (command_yandex_market, "market", 2,) )) CurrencyDesc = CurrencyDesc else: del kinoHeaders, C3oP, command_kino, command_currency, command_jquote, command_ithappens, command_gismeteo if DefLANG in ("RU", "UA"): del CurrencyDesc del UserAgents, PasteLangs, LangMap
from ._filter import Filter from ._registration._apply_transform import ApplyTransform from ._registration._learn_transform import LearnTransform from ._segmentation import Segmentation
from abc import ABC, abstractmethod, abstractproperty from functools import wraps from time import sleep import pyvisa def reject_nan(func): @wraps(func) def wrapped(*args, **kwargs): for _ in range(10): response = func(*args, **kwargs) if response == response: return response sleep(0.2) return None return wrapped def strip_str(func): @wraps(func) def wrapped(*args, **kwargs): response = func(*args, **kwargs) try: response = response.strip() except: pass return response return wrapped def to_float(func): @wraps(func) def wrapped(*args, **kwargs): response = func(*args, **kwargs) try: response = float(response) except: pass return response return wrapped class AbstractConnection(ABC): @abstractmethod def write(self, command): pass @abstractmethod def read(self, command): pass @abstractmethod def close(self): pass class SCPIConnection(AbstractConnection): def __init__(self, comm_type, address, gpib_port=0, timeout=10000): self.gpib_port = gpib_port self.address = self._type_to_address(comm_type, address) self.timeout = timeout try: rm = pyvisa.ResourceManager() self.conn = rm.open_resource(self.address) self.conn.timeout = timeout except pyvisa.VisaIOError as e: print(e) def _type_to_address(self, comm_type, address): if comm_type == "gpib": return self._parse_gpib(address) elif comm_type == "lan": return self._parse_lan(address) elif comm_type == "usb": return self._parse_usb(address) raise ValueError(f"SCPIConnection: Invalid address {address}") def _parse_gpib(self, address): return f"GPIB{self.gpib_port}::{address}::INSTR" def _parse_lan(self, address): return f"TCPIP::{address}::INSTR" def _parse_usb(self, address): pass def write(self, command): try: self.conn.write(command) except pyvisa.VisaIOError as e: print(e) except pyvisa.InvalidSession as e: print(e) @reject_nan @to_float @strip_str def read(self, command): response = None try: response = self.conn.query(command) except pyvisa.VisaIOError as e: print(e) except pyvisa.InvalidSession as e: print(e) return response def read_bytes(self, command): response = None try: response = self.conn.query_binary_values(command) except pyvisa.VisaIOError as e: print(e) except pyvisa.InvalidSession as e: print(e) return response def close(self): self.conn.close() class SerialConnection(AbstractConnection): pass class NoConnection(AbstractConnection): def __init__(self, *args, **kwargs): pass def write(self, command): print(command) def read(self, command): print(command) return 0 def close(self): print("close")
import shutil from pathlib import Path from typing import IO import pytest from setup import _Package _INIT_CONTENT = ''' """Package stands for pytest plugin.""" __author__: str = 'Volodymyr Yahello' __email__: str = 'vyahello@gmail.com' __license__: str = 'MIT' __version__: str = '0.0.0' __package_name__: str = 'pytest-confluence-report' ''' @pytest.fixture() def package() -> _Package: """Returns a test package.""" report: Path = Path('test-report') if not report.exists(): report.mkdir() with (report / '__init__.py').open(mode='w') as init: # type: IO[str] init.write(_INIT_CONTENT) yield _Package(path=report) shutil.rmtree(path=report) def test_package_version(package: _Package) -> None: assert package.version == '0.0.0', 'Package version is wrong' def test_package_name(package: _Package) -> None: assert package.name == 'pytest-confluence-report', 'Package name is wrong' def test_package_author(package: _Package) -> None: assert package.author == 'Volodymyr Yahello', 'Package author is wrong' def test_package_email(package: _Package) -> None: assert package.email == 'vyahello@gmail.com', 'Package email is wrong' def test_package_license(package: _Package) -> None: assert package.license_ == 'MIT', 'Package license is wrong' def test_package_goal(package: _Package) -> None: assert ( package.goal == 'Package stands for pytest plugin.' ), 'Package goal is wrong' def test_package_read_property(package: _Package) -> None: assert ( package._read(pattern=r"(?<=__license__: str = ')[\w-]+") == 'MIT' ), 'Package property is wrong'
# Time: O(m + n) # Space: O(1) class Solution(object): def mergeAlternately(self, word1, word2): """ :type word1: str :type word2: str :rtype: str """ result = [] i = 0 while i < len(word1) or i < len(word2): if i < len(word1): result.append(word1[i]) if i < len(word2): result.append(word2[i]) i += 1 return "".join(result)
from sys import stdin, stdout def coinFlip(I, N, Q): if N % 2 == 0: return N // 2 else: if I == 1: if Q == 1: return N // 2 else: return (N // 2) + 1 else: if Q == 1: return (N // 2) + 1 else: return N // 2 for _ in range(int(stdin.readline())): G = int(stdin.readline()) for _ in range(G): I, N, Q = map(int, input().split()) stdout.write(str(coinFlip(I, N, Q)) + "\n")
import importlib import traceback info = { "name": "reload", "type": 1, "description": "Reloads a command", "id": "reload", "options": [ { "name": "command", "description": "Command name", "type": 3, "required": True }, { "name": "send", "description": "Update command JSON?", "type": 5, "required": False } ], "default_permission": False } async def command(WS, msg): options = msg["data"]["options"][0]["value"] try: update = msg["data"]["options"][1]["value"] print(update) except: update = False try: current = WS.cache.commands[options].module try: current.extras except: pass else: for m in current.extras: importlib.reload(m) importlib.reload(current) WS.cache.commands[options].command = current.command if update: #str(current.info) != str(WS.cache.commands[options].info): resp = await WS.post(WS.cache.commands[options].url, headers = {"Authorization": "Bot " + WS.TOKENS.bot}, json = current.info) print(resp) WS.cache.commands[current.info["name"]] = WS.classify({ "command": current.command, "module": current, "info": current.info, "data": resp, "url": WS.cache.commands[options].url }) WS.cache.commands[options].data resp = await WS.post(WS.interaction(msg), data = WS.form({ "type": 4, "data": { "embeds": [ { "title": "RELOADED ;]", "description": f"Command `/{options}` reloaded", "color": 0x00ff00 } ] } })) except Exception as ex: print(f"\x1b[91;1m{ex}\x1b[0m") tb = "\n".join(traceback.format_tb(ex.__traceback__)) resp = await WS.post(WS.interaction(msg), data = WS.form({ "type": 4, "data": { "embeds": [ { "title": f"{type(ex)} ;[", "description": f'{ex}\n```{tb}```', "color": 0xff0000 } ] } })) #print(resp)
class Solution: def numberOfArithmeticSlices(self, A): """ :type A: List[int] :rtype: int """ if len(A) < 3: return 0 left, right = 0,3 results = 0 while right <= len(A): sli = A[left:right] if sli[1] - sli[0] == sli[2] - sli[1]: c = sli[1] - sli[0] new = right while new < len(A): if A[new] - sli[-1] == c: sli.append(A[new]) new += 1 else: new -= 1 break results += sum(range(1, len(sli)-1)) left = new right = left+3 else: left += 1 right += 1 return results
import rebound import unittest import ctypes def getc(sim): c = [] for i in range(sim.N): c.append(sim.particles[0].x) c.append(sim.particles[0].y) c.append(sim.particles[0].z) c.append(sim.particles[0].vx) c.append(sim.particles[0].vy) c.append(sim.particles[0].vz) c.append(sim.particles[0].m) c.append(sim.particles[0].r) return c class TestTransformations(unittest.TestCase): def test_democratichelio(self): sim = rebound.Simulation() sim.add(m=1.2354) sim.add(m=0.1,a=1.24,e=0.123,inc=0.14,omega=0.12,Omega=0.64,l=0.632) sim.add(m=0.01,a=5.24,e=0.2123,inc=0.014,omega=0.012,Omega=0.0164,l=10.18632) sim.add(m=1e-7,a=7.24,e=0.22123,inc=0.3014,omega=0.4012,Omega=0.110164,l=2.18632) elems = (rebound.Particle * sim.N)() p = ctypes.cast(elems,ctypes.POINTER(rebound.Particle)) c0 = getc(sim) cl = rebound.clibrebound cl.reb_transformations_inertial_to_democraticheliocentric_posvel(sim._particles,p,sim.N) for i in range(sim.N): sim.particles[i].x = 1234. sim.particles[i].vx = 1234. cl.reb_transformations_democraticheliocentric_to_inertial_posvel(sim._particles,p,sim.N) c1 = getc(sim) for i in range(len(c0)): self.assertAlmostEqual(c0[i],c1[i],delta=1e-16) for i in range(sim.N): sim.particles[i].x = 1234. cl.reb_transformations_democraticheliocentric_to_inertial_pos(sim._particles,p,sim.N) c1 = getc(sim) for i in range(len(c0)): self.assertAlmostEqual(c0[i],c1[i],delta=1e-16) def test_whds(self): sim = rebound.Simulation() sim.add(m=1.2354) sim.add(m=0.1,a=1.24,e=0.123,inc=0.14,omega=0.12,Omega=0.64,l=0.632) sim.add(m=0.01,a=5.24,e=0.2123,inc=0.014,omega=0.012,Omega=0.0164,l=10.18632) sim.add(m=1e-7,a=7.24,e=0.22123,inc=0.3014,omega=0.4012,Omega=0.110164,l=2.18632) elems = (rebound.Particle * sim.N)() p = ctypes.cast(elems,ctypes.POINTER(rebound.Particle)) c0 = getc(sim) cl = rebound.clibrebound cl.reb_transformations_inertial_to_whds_posvel(sim._particles,p,sim.N) for i in range(sim.N): sim.particles[i].x = 1234. sim.particles[i].vx = 1234. cl.reb_transformations_whds_to_inertial_posvel(sim._particles,p,sim.N) c1 = getc(sim) for i in range(len(c0)): self.assertAlmostEqual(c0[i],c1[i],delta=1e-16) for i in range(sim.N): sim.particles[i].x = 1234. cl.reb_transformations_whds_to_inertial_pos(sim._particles,p,sim.N) c1 = getc(sim) for i in range(len(c0)): self.assertAlmostEqual(c0[i],c1[i],delta=1e-16) def test_jacoobi(self): sim = rebound.Simulation() sim.add(m=1.2354) sim.add(m=0.1,a=1.24,e=0.123,inc=0.14,omega=0.12,Omega=0.64,l=0.632) sim.add(m=0.01,a=5.24,e=0.2123,inc=0.014,omega=0.012,Omega=0.0164,l=10.18632) sim.add(m=1e-7,a=7.24,e=0.22123,inc=0.3014,omega=0.4012,Omega=0.110164,l=2.18632) elems = (rebound.Particle * sim.N)() p = ctypes.cast(elems,ctypes.POINTER(rebound.Particle)) elemse = (ctypes.c_double * sim.N)() c0 = getc(sim) cl = rebound.clibrebound cl.reb_transformations_inertial_to_jacobi_posvel(sim._particles,p,sim._particles,sim.N) for i in range(sim.N): sim.particles[i].x = 1234. sim.particles[i].vx = 1234. cl.reb_transformations_jacobi_to_inertial_posvel(sim._particles,p,sim._particles,sim.N) c1 = getc(sim) for i in range(len(c0)): self.assertAlmostEqual(c0[i],c1[i],delta=1e-16) for i in range(sim.N): sim.particles[i].x = 1234. cl.reb_transformations_jacobi_to_inertial_pos(sim._particles,p,sim._particles,sim.N) c1 = getc(sim) for i in range(len(c0)): self.assertAlmostEqual(c0[i],c1[i],delta=1e-16) if __name__ == "__main__": unittest.main()
# SPDX-FileCopyrightText: 2018 ladyada for Adafruit Industries # SPDX-FileCopyrightText: 2018 Michael Schroeder (sommersoft) # # SPDX-License-Identifier: MIT # This is a library for the Adafruit Trellis w/HT16K33 # # Designed specifically to work with the Adafruit Trellis # ----> https://www.adafruit.com/products/1616 # ----> https://www.adafruit.com/products/1611 # # These displays use I2C to communicate, 2 pins are required to # interface # Adafruit invests time and resources providing this open source code, # please support Adafruit and open-source hardware by purchasing # products from Adafruit! # # Also utilized functions from the CircuitPython HT16K33 library # written by Radomir Dopieralski & Tony DiCola for Adafruit Industries # https://github.com/adafruit/Adafruit_CircuitPython_HT16K33 """ `adafruit_trellis` - Adafruit Trellis Monochrome 4x4 LED Backlit Keypad ========================================================================= CircuitPython library to support Adafruit's Trellis Keypad. * Author(s): Limor Fried, Radomir Dopieralski, Tony DiCola, Scott Shawcroft, and Michael Schroeder Implementation Notes -------------------- **Hardware:** * Adafruit `Trellis Monochrome 4x4 LED Backlit Keypad <https://www.adafruit.com/product/1616>`_ (Product ID: 1616) **Software and Dependencies:** * Adafruit CircuitPython firmware (2.2.0+) for the ESP8622 and M0-based boards: https://github.com/adafruit/circuitpython/releases * Adafruit's Bus Device library: https://github.com/adafruit/Adafruit_CircuitPython_BusDevice """ __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_Trellis.git" from micropython import const from adafruit_bus_device import i2c_device # HT16K33 Command Contstants _HT16K33_OSCILATOR_ON = const(0x21) _HT16K33_BLINK_CMD = const(0x80) _HT16K33_BLINK_DISPLAYON = const(0x01) _HT16K33_CMD_BRIGHTNESS = const(0xE0) _HT16K33_KEY_READ_CMD = const(0x40) # LED Lookup Table ledLUT = ( 0x3A, 0x37, 0x35, 0x34, 0x28, 0x29, 0x23, 0x24, 0x16, 0x1B, 0x11, 0x10, 0x0E, 0x0D, 0x0C, 0x02, ) # Button Loookup Table buttonLUT = ( 0x07, 0x04, 0x02, 0x22, 0x05, 0x06, 0x00, 0x01, 0x03, 0x10, 0x30, 0x21, 0x13, 0x12, 0x11, 0x31, ) # pylint: disable=missing-docstring, protected-access class TrellisLEDs: def __init__(self, trellis_obj): self._parent = trellis_obj def __getitem__(self, x): if 0 < x >= self._parent._num_leds: raise ValueError( ("LED number must be between 0 -", self._parent._num_leds - 1) ) led = ledLUT[x % 16] >> 4 mask = 1 << (ledLUT[x % 16] & 0x0F) return bool( ( ( self._parent._led_buffer[x // 16][(led * 2) + 1] | self._parent._led_buffer[x // 16][(led * 2) + 2] << 8 ) & mask ) > 0 ) def __setitem__(self, x, value): if 0 < x >= self._parent._num_leds: raise ValueError( ("LED number must be between 0 -", self._parent._num_leds - 1) ) led = ledLUT[x % 16] >> 4 mask = 1 << (ledLUT[x % 16] & 0x0F) if value: self._parent._led_buffer[x // 16][(led * 2) + 1] |= mask & 0xFF self._parent._led_buffer[x // 16][(led * 2) + 2] |= mask >> 8 elif not value: self._parent._led_buffer[x // 16][(led * 2) + 1] &= ~mask self._parent._led_buffer[x // 16][(led * 2) + 2] &= ~mask >> 8 else: raise ValueError("LED value must be True or False") if self._parent._auto_show: self._parent.show() # pylint: disable=invalid-name def fill(self, on): fill = 0xFF if on else 0x00 for buff in range(len(self._parent._i2c_devices)): for i in range(1, 17): self._parent._led_buffer[buff][i] = fill if self._parent._auto_show: self._parent.show() # pylint: enable=missing-docstring, protected-access class Trellis: """ Driver base for a single Trellis Board :param ~busio.I2C i2c: The `busio.I2C` object to use. This is the only required parameter when using a single Trellis board. :param list addresses: The I2C address(es) of the Trellis board(s) you're using. Defaults to ``[0x70]`` which is the default address for Trellis boards. See Trellis product guide for using different/multiple I2C addresses. https://learn.adafruit.com/adafruit-trellis-diy-open-source-led-keypad .. literalinclude:: ../examples/trellis_simpletest.py :caption: Usage Example :linenos: """ def __init__(self, i2c, addresses=None): if addresses is None: addresses = [0x70] self._i2c_devices = [] self._led_buffer = [] self._buttons = [] for i2c_address in addresses: self._i2c_devices.append(i2c_device.I2CDevice(i2c, i2c_address)) self._led_buffer.append(bytearray(17)) self._buttons.append([bytearray(6), bytearray(6)]) self._num_leds = len(self._i2c_devices) * 16 self._temp = bytearray(1) self._blink_rate = None self._brightness = None self._auto_show = True self.led = TrellisLEDs(self) """ The LED object used to interact with Trellis LEDs. - ``trellis.led[x]`` returns the current LED status of LED ``x`` (True/False) - ``trellis.led[x] = True`` turns the LED at ``x`` on - ``trellis.led[x] = False`` turns the LED at ``x`` off - ``trellis.led.fill(bool)`` turns every LED on (True) or off (False) """ self.led.fill(False) self._write_cmd(_HT16K33_OSCILATOR_ON) self.blink_rate = 0 self.brightness = 15 def _write_cmd(self, byte): self._temp[0] = byte for device in self._i2c_devices: with device: device.write(self._temp) @property def blink_rate(self): """ The current blink rate as an integer range 0-3. """ return self._blink_rate @blink_rate.setter def blink_rate(self, rate): if not 0 <= rate <= 3: raise ValueError("Blink rate must be an integer in the range: 0-3") rate = rate & 0x03 self._blink_rate = rate self._write_cmd(_HT16K33_BLINK_CMD | _HT16K33_BLINK_DISPLAYON | rate << 1) @property def brightness(self): """ The current brightness as an integer range 0-15. """ return self._brightness @brightness.setter def brightness(self, brightness): if not 0 <= brightness <= 15: raise ValueError("Brightness must be an integer in the range: 0-15") brightness = brightness & 0x0F self._brightness = brightness self._write_cmd(_HT16K33_CMD_BRIGHTNESS | brightness) def show(self): """Refresh the LED buffer and show the changes.""" pos = 0 for device in self._i2c_devices: temp_led_buffer = bytearray(self._led_buffer[pos]) with device: device.write(temp_led_buffer) pos += 1 @property def auto_show(self): """ Current state of sending LED updates directly the Trellis board(s). ``True`` or ``False``. """ return self._auto_show @auto_show.setter def auto_show(self, value): if value not in (True, False): raise ValueError("Auto show value must be True or False") self._auto_show = value def read_buttons(self): """ Read the button matrix register on the Trellis board(s). Returns two lists: 1 for new button presses, 1 for button relases. """ for i in range(len(self._buttons)): self._buttons[i][0] = bytearray(self._buttons[i][1]) self._write_cmd(_HT16K33_KEY_READ_CMD) pos = 0 for device in self._i2c_devices: with device: device.readinto(self._buttons[pos][1]) pos += 1 pressed = [] released = [] for i in range(self._num_leds): if self._just_pressed(i): pressed.append(i) elif self._just_released(i): released.append(i) return pressed, released def _is_pressed(self, button): mask = 1 << (buttonLUT[button % 16] & 0x0F) return self._buttons[button // 16][1][(buttonLUT[button % 16] >> 4)] & mask def _was_pressed(self, button): mask = 1 << (buttonLUT[button % 16] & 0x0F) return self._buttons[button // 16][0][(buttonLUT[button % 16] >> 4)] & mask def _just_pressed(self, button): # pylint: disable=invalid-unary-operand-type return self._is_pressed(button) & ~self._was_pressed(button) def _just_released(self, button): # pylint: disable=invalid-unary-operand-type return ~self._is_pressed(button) & self._was_pressed(button)
import argparse import os import sys import preprocessing.util as util import preprocessing.config as config import traceback def wikidump_to_new_format(): doc_cnt = 0 hyperlink2EntityId = util.EntityNameIdMap() hyperlink2EntityId.init_hyperlink2id() if args.debug: infilepath = config.base_folder + "data/mydata/tokenized_toy_wiki_dump2.txt" outfilepath = args.out_folder+"toy_wikidump.txt" else: infilepath = config.base_folder+"data/basic_data/tokenizedWiki.txt" outfilepath = args.out_folder+"wikidump.txt" with open(infilepath) as fin,\ open(outfilepath, "w") as fout: in_mention = False for line in fin: line = line.rstrip() # omit the '\n' character if line.startswith('<doc\xa0id="'): docid = line[9:line.find('"', 9)] doctitle = line[line.rfind('="') + 2:-2] fout.write("DOCSTART_" + docid + "_" + doctitle.replace(' ', '_') + "\n") elif line.startswith('<a\xa0href="'): ent_id = hyperlink2EntityId.hyperlink2id(line) if ent_id != config.unk_ent_id: in_mention = True fout.write("MMSTART_"+ent_id+"\n") elif line == '</doc>': fout.write("DOCEND\n") doc_cnt += 1 if doc_cnt % 5000 == 0: print("document counter: ", doc_cnt) elif line == '</a>': if in_mention: fout.write("MMEND\n") in_mention = False else: fout.write(line+"\n") def subset_wikidump_only_relevant_mentions(): # consider only the RLTD entities (484048). take them from the files entities_universe = set() with open("/home/other_projects/deep_ed/data/generated/nick/" "wikiid2nnid.txt") as fin: for line in fin: ent_id = line.split('\t')[0] entities_universe.add(ent_id) # filter wikidump doc_cnt = 0 mention_errors = 0 if args.debug: infilepath = args.out_folder+"toy_wikidump.txt" outfilepath = args.out_folder+"toy_wikidumpRLTD.txt" else: infilepath = args.out_folder+"wikidump.txt" outfilepath = args.out_folder+"wikidumpRLTD.txt" with open(infilepath) as fin, open(outfilepath, "w") as fout: in_mention_acc = [] for line in fin: if line.startswith('DOCSTART_'): document_acc = [line] paragraph_acc = [] paragraph_relevant = False in_mention_acc = [] elif line == '*NL*\n': # the or not necessary. # there is always a *NL* before DOCEND # end of paragraph so check if relevant if in_mention_acc: in_mention_acc.append(line) else: paragraph_acc.append(line) # normal word if in_mention_acc: # we have a parsing error resulting to enter a mention but #print("in_mention_acc", in_mention_acc) mention_errors += 1 # never detecting the end of it so still in_mention paragraph_acc.extend(in_mention_acc[1:]) #print("paragraph_acc", paragraph_acc) in_mention_acc = [] if paragraph_relevant: try: assert(len(paragraph_acc) >= 4) # MMSTART, word, MMEND *NL*orDOCEND assert(len(document_acc) >= 1) document_acc.extend(paragraph_acc) except AssertionError: _, _, tb = sys.exc_info() traceback.print_tb(tb) # Fixed format tb_info = traceback.extract_tb(tb) filename, line, func, text = tb_info[-1] print('An error occurred on line {} in statement {}'.format(line, text)) print("in_mention_acc", in_mention_acc) print("paragraph_acc", paragraph_acc) paragraph_acc = [] paragraph_relevant = False elif line == "DOCEND\n": assert(in_mention_acc == []) # because there is always an *NL* before DOCEND if len(document_acc) > 1: document_acc.append(line) fout.write(''.join(document_acc)) document_acc = [] # those 3 commands are not necessary paragraph_acc = [] paragraph_relevant = False doc_cnt += 1 if doc_cnt % 5000 == 0: print("document counter: ", doc_cnt) elif line.startswith('MMSTART_'): if in_mention_acc: # not a parsing error resulting to enter a mention but #print("in_mention_acc", in_mention_acc) mention_errors += 1 # never detecting the end of it so still in_mention paragraph_acc.extend(in_mention_acc[1:]) #print("paragraph_acc", paragraph_acc) in_mention_acc = [] ent_id = line.rstrip()[8:] # assert that ent_id in wiki_name_id_map if ent_id in entities_universe: paragraph_relevant = True in_mention_acc.append(line) elif line == 'MMEND\n': if in_mention_acc: in_mention_acc.append(line) paragraph_acc.extend(in_mention_acc) in_mention_acc = [] # else this mention is not in our universe so we don't accumulate it. else: if in_mention_acc: in_mention_acc.append(line) else: paragraph_acc.append(line) # normal word print("mention_errors =", mention_errors) def _parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--entities_universe_file", default="/home/master_thesis_share/data/entities/entities_universe.txt") parser.add_argument("--out_folder", default="/home/master_thesis_share/data/new_datasets/wikidump/") parser.add_argument("--debug", type=bool, default=False) return parser.parse_args() if __name__ == "__main__": args = _parse_args() #if args.debug: # wikidump_to_new_format() subset_wikidump_only_relevant_mentions()
#C1949699 # # import math import random import re import time from turtle import numinput from cv2 import INTER_AREA, INTER_BITS, INTER_CUBIC, INTER_LANCZOS4, INTER_LINEAR, INTER_LINEAR_EXACT, INTER_MAX, imread, imshow, waitKey import numpy as np import cv2 import os from multiprocessing import Process, Manager data_path = os.getcwd() dataset_path = data_path+"\\cross_validation\\" imageDataLocation = dataset_path+"\\images\\" truthDataLocation = dataset_path+"\\truth\\" LOG = [] datasetTrain = [] datasetVal = [] runTimeNumber = int(1) smallRangeWorker = np.arange(55,101,5) LongRangeWorker = np.arange(3,31,3) confidenceList = np.divide(np.subtract(np.arange(15,85,15),5),100) #REGION functions # Threshold to detect object def calculateSTD(evaluationList, evaluationMean): n = 1 if len(evaluationList)!=1: n = len(evaluationList)-1 sumX = 0 for score in evaluationList: sumX+=(score-evaluationMean)**2 standardDeviation = sumX / n standardDeviation = math.sqrt(standardDeviation) return standardDeviation def runTimeCount(): i = 1 fileList = os.listdir(data_path) while "log"+str(i)+".txt" in fileList: i+=1 return int(i) def saveLog(): i = 1 fileList = os.listdir(data_path) if "log1.txt" not in fileList: with open("log"+str(i)+".txt","a") as f: for line in LOG: f.write(line+"\n") else: while "log"+str(i)+".txt" in fileList: i+=1 with open("log"+str(i)+".txt","a") as f: for line in LOG: f.write(line+"\n") LOG.clear() def addToLog(line,varname): # print("Line",line) if varname == "BinaryMasks": LOG.append(varname,line) elif isinstance(line, list): # log.append(varname) LOG.append(str(varname+" "+f'{line}'.split('=')[0])) elif isinstance(line, str or int): # log.append(varname) LOG.append(str(varname)+" "+str(line)) elif isinstance(line, float): LOG.append(str(varname)+" "+str(line)) def calc_IoU(mask1, mask2): # From the question. mask1_area = np.count_nonzero(mask1) mask2_area = np.count_nonzero(mask2) # print(mask1_area, " : ", mask2_area) intersection = np.count_nonzero(np.logical_and( mask1, mask2)) # print("intersection",intersection) iou = intersection/(mask1_area+mask2_area-intersection) return iou # def runTest(): def atoi(text): return int(text) if text.isdigit() else text def natural_keys(text): return [ atoi(c) for c in re.split(r'(\d+)', text) ] def select_new_dataset(): datasetTrain.clear() datasetVal.clear() files = os.listdir(imageDataLocation) for i in range(14): file = random.choice(files) while file in datasetTrain: file = random.choice(files) datasetTrain.append(file) for file in files: if file not in datasetTrain: datasetVal.append(file) #ENDREGION # configPath = 'frozen_inference_graph.pb' configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt' weightsPath = 'frozen_inference_graph.pb' net4 = cv2.dnn_DetectionModel(weightsPath,configPath) net4.setInputSize(320,320) net4.setInputScale(1.0/127.5) net4.setInputMean((127.5,127.5,127.5)) net4.setInputSwapRB(True) # test_data_path = os.path.dirname(os.getcwd())+"\\data\\new_test_data\\" def selectParameters4():#selecting the parameters that will be swapped for each iteration PARAMETERS = list() PARAMETERS.append(random.choice(confidenceList)) PARAMETERS.append(random.choice(smallRangeWorker)) PARAMETERS.append(random.choice(LongRangeWorker)) return PARAMETERS def workFunc(img, workerRange,x,y): count = 0 down = 0 up = 0 left = 0 right = 0 tempFalse = False for i in range(x+1,min(x+workerRange,len(img))): if img[i][y] != 0: if tempFalse!= True: count+=1 down+=1 tempFalse=True break tempFalse = False for i in range(x-1,max(x-workerRange,-1),-1): if img[i][y] != 0: if tempFalse != True: count+=1 up+=1 tempFalse=True break tempFalse = False for i in range(y+1,min(y+workerRange,len(img[0])-1)): if img[x][i] != 0: if tempFalse!= True: count+=1 right+=1 tempFalse=True break tempFalse = False for i in range(y-1,max(y-workerRange,-1),-1): if img[x][i] != 0: if tempFalse != True: count+=1 left+=1 tempFalse=True break return count # return up,down,left,right def fillSmallSpace(img, workerRange,x,y): count = 0 down = 0 up = 0 left = 0 right = 0 tempFalse = False for i in range(x+1,min(x+workerRange,len(img))): if img[i][y] != 0: if tempFalse!= True: count+=1 down+=1 tempFalse=True break tempFalse = False for i in range(x-1,max(x-workerRange,-1),-1): if img[i][y] != 0: if tempFalse != True: count+=1 up+=1 tempFalse=True break if count == 2: return count else: count = 0 tempFalse = False for i in range(y+1,min(y+workerRange,len(img[0])-1)): if img[x][i] != 0: if tempFalse!= True: count+=1 right+=1 tempFalse=True break tempFalse = False for i in range(y-1,max(y-workerRange,-1),-1): if img[x][i] != 0: if tempFalse != True: count+=1 left+=1 tempFalse=True break return count # return up,down,left,right def find_optimal_lines(ogSlice,numb): temp = ogSlice.copy() temp = cv2.GaussianBlur(ogSlice, (13,13), cv2.BORDER_CONSTANT) # ogSlice = cv2.Canny(ogSlice,125,150) temp = cv2.Canny(temp,100,175) size = np.size(temp) whiteCount = np.count_nonzero(temp) compactness = (whiteCount/size)*100 print("Compactness ",compactness,"%1",numb) # while (compactness < 6 or compactness > 9): if compactness < 3: temp = ogSlice.copy() temp = cv2.GaussianBlur(ogSlice, (5,5), cv2.BORDER_CONSTANT) temp = cv2.Canny(temp,100,175) size = np.size(temp) whiteCount = np.count_nonzero(temp) compactness = (whiteCount/size)*100 print("Compactness ",compactness,"%2",numb) if compactness < 3.5: temp = ogSlice.copy() temp = cv2.GaussianBlur(ogSlice, (5,5), cv2.BORDER_CONSTANT) # threshold temp = cv2.Canny(temp,100,175) size = np.size(temp) whiteCount = np.count_nonzero(temp) compactness = (whiteCount/size)*100 print("Compactness ",compactness,"%5",numb) if compactness > 8: temp = ogSlice.copy() temp = cv2.GaussianBlur(ogSlice, (7,7), cv2.BORDER_REFLECT) temp = cv2.Canny(temp,100,175) size = np.size(temp) whiteCount = np.count_nonzero(temp) compactness = (whiteCount/size)*100 print("Compactness ",compactness,"%3",numb) if compactness > 9: temp = ogSlice.copy() temp = cv2.GaussianBlur(ogSlice, (9,9), cv2.BORDER_CONSTANT) temp = cv2.Canny(temp,100,175) size = np.size(temp) whiteCount = np.count_nonzero(temp) compactness = (whiteCount/size)*100 print("Compactness ",compactness,"%4",numb) if compactness < 6: temp = ogSlice.copy() temp = cv2.GaussianBlur(ogSlice, (5,5), cv2.BORDER_CONSTANT) # threshold temp = cv2.Canny(temp,150,175) size = np.size(temp) whiteCount = np.count_nonzero(temp) compactness = (whiteCount/size)*100 print("Compactness ",compactness,"%5",numb) print("Compactness ",compactness,"%",numb) return temp def v4(img,numb,PARAMETERS,dictOfBinaryMask): thres = PARAMETERS[0] classIds, confs, bbox = net4.detect(img,confThreshold = thres) # print("BOX: ",bbox[0]) # x1 = bbox[0][0] # y1 = bbox[0][1] # x2 = bbox[0][2] # y2 = bbox[0][3] boxes = [] confidenceList = [] imgNew = img.copy() imgNew.fill(0) if not isinstance(classIds,tuple): for classId,confidence,box in zip(classIds.flatten(),confs.flatten(),bbox): x1 = box[0] y1 = box[1] x2 = box[2] y2 = box[3] boxes.append([x1,y1,x2,y2]) confidenceList.append(confs) # cv2.rectangle(img,[x1,y1,x2,y2],color=(0,0,255),thickness=2) maxX = 0 maxY = 0 minX = len(img)*len(img[0]) minY = len(img)*len(img[0]) for b in boxes: for i in range(b[0],b[2]+b[0]): for j in range(b[1],b[3]+b[1]): imgNew[j][i] = img[j][i] for b in boxes: maxX = max(maxX,b[0]+b[2]) maxY = max(maxY,b[1]+b[3]) minX = min(minX,b[0]) minY = min(minY,b[1]) fMask = np.copy(img) fMask.fill(0) ogSlice = img[minY:maxY,minX:maxX] ogSlice = find_optimal_lines(ogSlice,numb) ogSlice = cv2.dilate(ogSlice,(7,7)) newSlice = ogSlice.copy() newSlice.fill(0) for b in boxes: for i in range(b[0]-minX,(b[2]+b[0])-minX): for j in range(b[1]-minY,(b[3]+b[1])-minY): newSlice[j][i] = ogSlice[j][i] ogSlice = newSlice cpSlice = ogSlice.copy() smallRange = int(max(len(ogSlice)/PARAMETERS[1],len(ogSlice[0])/PARAMETERS[1])) longRange = int(max(len(ogSlice)/PARAMETERS[2],len(ogSlice[0])/PARAMETERS[2])) workVal = 0 ogSlice = cpSlice.copy() for i in range(len(ogSlice)): for j in range(len(ogSlice[0])): workVal = fillSmallSpace(ogSlice,smallRange,i,j) if(ogSlice[i][j] != 255): if workVal == 2: cpSlice[i][j] = 255 ogSlice = cpSlice.copy() for i in range(len(ogSlice)): for j in range(len(ogSlice[0])): workVal = workFunc(ogSlice,longRange,i,j) if(ogSlice[i][j] != 255): if workVal > 3: cpSlice[i][j] = 255 ogSlice = cpSlice.copy() # print(tempRange) for i in range(len(ogSlice)): for j in range(len(ogSlice[0])): workVal = fillSmallSpace(ogSlice,smallRange,i,j) if(ogSlice[i][j] != 255): if workVal == 2: cpSlice[i][j] = 255 ogSlice[i][j] = 255 # imshow("ogSlice",ogSlice) # imshow("cpSlice",cpSlice) # waitKey(0) ogSlice = cpSlice.copy() for i in range(len(ogSlice)): for j in range(len(ogSlice[0])): workVal = workFunc(ogSlice,smallRange,i,j) if(ogSlice[i][j] != 255): if workVal == 4: cpSlice[i][j] = 255 elif(ogSlice[i][j] != 0): if workVal < 2: # ogSlice[i][j] = 0 cpSlice[i][j] = 0 # imshow("ogSlice",ogSlice) # imshow("cpSlice",cpSlice) # waitKey(0) rmSlice = cpSlice.copy() drcontours = rmSlice.copy() drcontours = cv2.cvtColor(drcontours, cv2.COLOR_GRAY2RGB) removeIslands = cv2.pyrDown(rmSlice) _, threshed = cv2.threshold(rmSlice, 0, 255, cv2.THRESH_BINARY) contours,_ = cv2.findContours(threshed, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # print("Cont",contours) #find maximum contour and draw # print("NUMB",numb) if len(contours) > 0: cmax = max(contours, key = cv2.contourArea) epsilon = 0.002 * cv2.arcLength(cmax, True) approx = cv2.approxPolyDP(cmax, epsilon, True) cv2.drawContours(drcontours, [approx], -1, (0, 255, 0), 2) width, height = rmSlice.shape # imshow("Contour", drcontours) # waitKey(0) #fill maximum contour and draw removeIslands = np.zeros( [width, height, 3],dtype=np.uint8 ) cv2.fillPoly(removeIslands, pts =[cmax], color=(255,255,255)) cpSlice = cv2.cvtColor(removeIslands, cv2.COLOR_BGR2GRAY) # print("Cont",cmax) for i in range(len(ogSlice)): for j in range(len(ogSlice[0])): fMask[minY+i][minX+j] = cpSlice[i][j] fMask = cv2.cvtColor(fMask, cv2.COLOR_BGR2GRAY) dictOfBinaryMask[numb] = fMask else: fMask = img.copy() fMask = cv2.cvtColor(fMask, cv2.COLOR_BGR2GRAY) fMask.fill(0) dictOfBinaryMask[numb] = fMask def findOptimalParams(listOfEvaluations,evaluationParameters,dictOfBinaryMask,PARAMETERS,datasetTrain): for i in range(1): PARAMETERS = selectParameters4() print("PARAMS ",PARAMETERS) if PARAMETERS in evaluationParameters: break evaluationParameters.append(PARAMETERS)#[PARAMETERS[0],PARAMETERS[1],PARAMETERS[2]] # print(evaluationParameters) # addToLog(PARAMETERS.copy(),"Parameters") jobs = [] for image in datasetTrain: current = imread(imageDataLocation+image) p1 = Process(target=v4,args=[current,image,PARAMETERS,dictOfBinaryMask]) p1.start() jobs.append(p1) for job in jobs: job.join() averageIOU=0 for image in datasetTrain: imageNumber = int(re.compile(r'\d+(?:\.\d+)?').findall(image)[0]) max_IoU = 0 for i in range (1,6): mask2 = str(imageNumber)+"_gt"+str(i)+".jpg" mask2 = imread(truthDataLocation+mask2) mask2 = cv2.cvtColor(mask2,cv2.COLOR_BGR2GRAY) max_IoU = max(max_IoU,calc_IoU(dictOfBinaryMask[image],mask2)) averageIOU+=max_IoU averageIOU /= len(datasetTrain) # print(averageIOU) listOfEvaluations.append(averageIOU) def runTestV4(): listTestEvaluations = [] numRange = 50 for i in range(numRange): if i % 10 == 0 and numRange > 9: print(i*2,"% Done") elif numRange < 10: print(i,"iteration") addToLog(i,"Loop: ") select_new_dataset() addToLog(datasetTrain,f'{datasetTrain=}'.split('=')[0]) addToLog(datasetVal,f'{datasetVal=}'.split('=')[0]) # listOfBinaryMask = [] # for i in range(10): listOfEvaluations = [] evaluationParameters = [] averageIOU = 0 optimalParams = [] with Manager() as manager: dictOfBinaryMask = manager.dict() evaluationParameters = manager.list() listOfEvaluations = manager.list() PARAMETERS = manager.list() jobs = [] for i in range(6): p1 = Process(target=findOptimalParams,args=[listOfEvaluations,evaluationParameters,dictOfBinaryMask,PARAMETERS,datasetTrain]) p1.start() jobs.append(p1) for job in jobs: job.join() jobs.clear() for i in range(6): p1 = Process(target=findOptimalParams,args=[listOfEvaluations,evaluationParameters,dictOfBinaryMask,PARAMETERS,datasetTrain]) p1.start() jobs.append(p1) for job in jobs: job.join() jobs.clear() for i in range(6): p1 = Process(target=findOptimalParams,args=[listOfEvaluations,evaluationParameters,dictOfBinaryMask,PARAMETERS,datasetTrain]) p1.start() jobs.append(p1) for job in jobs: job.join() jobs.clear() for i in range(6): p1 = Process(target=findOptimalParams,args=[listOfEvaluations,evaluationParameters,dictOfBinaryMask,PARAMETERS,datasetTrain]) p1.start() jobs.append(p1) for job in jobs: job.join() jobs.clear() print("Length of listOfEvaluations",len(listOfEvaluations)) print("Length of evaluationParameters",len(evaluationParameters)) print("Length of listTestEvaluations",len(listTestEvaluations)) optimalParamsResults = listOfEvaluations[listOfEvaluations.index(max(listOfEvaluations))] optimalParams = evaluationParameters[listOfEvaluations.index(max(listOfEvaluations))] addToLog(optimalParamsResults,"Evaluation Score Train Set") print("Second part") for image in datasetVal: current = imread(imageDataLocation+image) p1 = Process(target=v4,args=[current,image,optimalParams,dictOfBinaryMask]) p1.start() jobs.append(p1) for job in jobs: job.join() averageIOU=0 for image in datasetVal: imageNumber = int(re.compile(r'\d+(?:\.\d+)?').findall(image)[0]) max_IoU = 0 for i in range (1,6): mask2 = str(imageNumber)+"_gt"+str(i)+".jpg" mask2 = imread(truthDataLocation+mask2) mask2 = cv2.cvtColor(mask2,cv2.COLOR_BGR2GRAY) max_IoU = max(max_IoU,calc_IoU(dictOfBinaryMask[image],mask2)) averageIOU+=max_IoU averageIOU /= len(datasetVal) addToLog(optimalParams,"Optimal Parameters") addToLog(averageIOU,"Evaluation Score Validation Set") listTestEvaluations.append(averageIOU) averageTestScore = sum(listTestEvaluations)/len(listTestEvaluations) addToLog(averageTestScore,"Average Validation Score") addToLog(calculateSTD(listTestEvaluations,averageTestScore), "Standard Deviation") addToLog("V4","Pipeline: ") if __name__ == "__main__": start_time = time.time() runTestV4() print("--- %s seconds ---" % (time.time() - start_time)) runTimeNumber = str(runTimeCount()) saveLog() print("Run time number ",runTimeNumber)
""" This is a dedicated editor for specifying camera set rigs. It allows the artist to preset a multi-rig type. They can then use the create menus for quickly creating complicated rigs. """ class BaseUI: """ Each region of the editor UI is abstracted into a UI class that contains all of the widgets for that objects and relavant callbacks. This base class should not be instanced as this is only a container for common code. """ def __init__(self, parent): """ Class initialization. We simply hold onto the parent layout. """ pass def control(self): """ Return the master control for this UI. """ pass def parent(self): """ Return the parent instace of this UI. This can be None. """ pass def setControl(self, control): """ Set the pointer to the control handle for this UI. This is the main control that parents or children can reference for UI updates. """ pass class NewCameraSetUI(BaseUI): """ UI for adding 'new' camera set. """ def __init__(self, parent): """ Class constructor """ pass def buildLayout(self): """ Construct the UI for this class. """ pass def name(self): """ Name of this UI component. """ pass def newTemplate(self, *args): """ Create a new template and adding the template to the UI layout for user manipulation. """ pass def rebuild(self): """ Rebuild the UI. We find the parent class and tell it to kickstart the rebuild. """ pass def resetSettings(self, *args): """ Reset to the default settings and rebuild the UI. """ pass def resetUI(self): """ Tells all ui templates to reset their ui handles. This is done because this UI templates hold onto some local data that must be cleared out before rebuilding """ pass def saveSettings(self, *args): """ Call the template manager to store its current settings """ pass class NamingTemplateUI(BaseUI): """ This class encapsulates all of the UI around multi rig naming templates. """ def __init__(self, parent, mgr, template): """ Class initializer. """ pass def addLayer(self, *args): """ Add a new layer to this object. """ pass def autoCreateCkboxChange(self, args, layer='0'): """ Called when the check box is changed. """ pass def buildLayout(self): """ Build a new multi-rig template UI. """ pass def cameraSetNameChanged(self, arg): pass def createIt(self, *args): """ Function called when the user clicks the 'Create' button. This will force the creation of a new rig. """ pass def deleteLayer(self, args, layer='0'): """ Called when the delete layer button is clicked. """ pass def layerCameraChanged(self, args, layer='0'): """ Called when the option menu group changes. """ pass def layerPrefixChanged(self, args, layer='0'): """ Called when the prefix changes for a layer. """ pass def layoutForLayer(self, layer): """ Build the UI for the specified layer. We need to access the UI data later in callbacks. So we store the data inside a dictionary for reference layer. """ pass def multiRigNameChanged(self, ui): """ Called when the user changes the name of this multi-rig using the supplied text box. """ pass def namingPrefixChanged(self, arg): """ Called when the users changes the prefix name used for the multi-rig. """ pass def removeDef(self, *args): """ Remove this object from the list. """ pass def resetUI(self): pass class CameraSetEditor(BaseUI): """ Main class for the camera set editor. """ def __init__(self, parent='None'): """ Class constructor. """ pass def buildLayout(self): """ Build the main layout for the class. This will kickstart all UI creation for the class. You should have a window instance created for the layouts to parent under. """ pass def create(self): """ Create a new instance of the window. If there is already a instance then show it instead of creating a new instance. """ pass def name(self): """ Return the name for this editor. """ pass def rebuild(self): """ Force the rebuild of the UI. This happens when users create new templates. """ pass def createIt(): """ Create a new window instance of the Camera Set Editor. """ pass gEditorWindowInstance = None
################################################################################ # file: settings.py # description: energydash settings ################################################################################ # Copyright 2013 Chris Linstid # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ ################################################################################ # Local settings ################################################################################ DEBUG=True LOCAL_TIMEZONE='America/New_York' ################################################################################ # MongoDB settings ################################################################################ MONGO_DATABASE_NAME='energydash' # Host name, user name and password are defined in a file NOT in revision # control. import mongodb_secret MONGO_USER=mongodb_secret.MONGO_USER MONGO_PASSWORD=mongodb_secret.MONGO_PASSWORD MONGO_HOST=mongodb_secret.MONGO_HOST MONGO_REPLICA_SET=mongodb_secret.MONGO_REPLICA_SET # The XML provided by the EnviR includes "days since birth" so we need to know # the "birth date" so we can calculate the actual timestamp for each message. ENVIR_BIRTH_YEAR = 2013 ENVIR_BIRTH_MONTH = 5 ENVIR_BIRTH_DAY = 18 ENVIR_BIRTH_TZ_NAME = LOCAL_TIMEZONE # Serial port options ENVIR_SERIAL_PORT = '/dev/ttyUSB0' ENVIR_SERIAL_BAUDRATE = 57600 import serial ENVIR_SERIAL_BYTESIZE = serial.EIGHTBITS ENVIR_SERIAL_PARITY = serial.PARITY_NONE ENVIR_SERIAL_STOPBITS = serial.STOPBITS_ONE ENVIR_SERIAL_TIMEOUT = 1
import os import json import pandas as pd import numpy as np from matplotlib import pyplot as plt from segmenter.visualizers.BaseVisualizer import BaseVisualizer class BoostVisualizer(BaseVisualizer): def boxplot(self, clazz, results): results = results[["loss", "fold", "boost_fold"]] results = results.groupby(['fold', 'boost_fold']).min().reset_index() results = results.sort_values(["fold", "boost_fold"]) results["loss"] = pd.to_numeric(results["loss"], errors='coerce') results["baseline"] = results.apply(lambda x: results[ (results["fold"] == x["fold"]) & (results["boost_fold"] == 0)].iloc[0].loss, axis=1) results["improvement"] = results.apply( lambda x: 100 * (x["baseline"] - x["loss"]) / x["baseline"], axis=1) results = results[results["boost_fold"] > 0] plot = results.boxplot(column=['improvement'], by='boost_fold', grid=False) title = "Loss Improvement by Number of Boost Folds" subtitle = "{} - Class {}".format(self.label, clazz) fig = plot.get_figure() plt.title('') fig.suptitle(title, y=1.05, fontsize=14) plt.figtext(.5, .96, subtitle, fontsize=12, ha='center') plot.set_ylabel('Improvement Over Baseline Loss (%)') plot.set_xlabel('Number of Boost Folds') outfile = os.path.join(self.data_dir, "boost_boxplot.png") fig.savefig(outfile, dpi=150, bbox_inches='tight', pad_inches=0.5) plt.close() def lineplot(self, clazz, results): results = results[["epoch", "loss", "boost_fold"]] results = results.rename(columns={'boost_fold': 'Boost Fold'}) results["loss"] = pd.to_numeric(results["loss"], errors='coerce') results = results[results['loss'].notna()] results = results.groupby(["epoch", 'Boost Fold']).mean().unstack() plot = results["loss"].plot.line() title = "Mean Validation Loss by Training Epoch" subtitle = "{} - Class {}".format(self.label, clazz) fig = plot.get_figure() plt.title('') fig.suptitle(title, y=1.05, fontsize=14) plt.figtext(.5, .96, subtitle, fontsize=12, ha='center') plt.ylabel('Validation Loss') plt.xlabel('Training Epoch') outfile = os.path.join(self.data_dir, "boost_lineplot.png") fig.savefig(outfile, dpi=150, bbox_inches='tight', pad_inches=0.5) plt.close() def execute(self): csv_file = os.path.join(self.data_dir, "train_results.csv") clazz = self.data_dir.split("/")[-2] if not os.path.exists(csv_file): print("CSV file does not exist {}".format(csv_file)) return results = pd.read_csv(csv_file) self.boxplot(clazz, results.copy()) self.lineplot(clazz, results.copy())
# Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html # useful for handling different item types with a single interface from os import link from itemadapter import ItemAdapter from selenium import webdriver from selenium.webdriver.common.keys import Keys from scrapy.exceptions import DropItem import time class AmazonbotPipeline: def process_item(self, item, spider): return item class AmazonbotSellersRankFilterPipeline: def process_item(self, item, spider): asin = item['asin'] total_tr_price = item['total_tr_price'] total_us_price = item['total_us_price'] us_sellers_rank = item['us_sellers_rank'] if not us_sellers_rank or us_sellers_rank > spider.max_sellers_rank: raise DropItem(f"DROPPED - ASIN: {asin} - Sellers rank is not defined or not below {spider.max_sellers_rank}") else: return { "asin": asin, "total_tr_price": total_tr_price, "total_us_price": total_us_price, "us_sellers_rank": us_sellers_rank } class AmazonbotFBAProfitabilityFilterPipeline: INCH_TO_CM = 2.54 USD_TO_TRY = 8.5 POUND_TO_KG = 0.4535923 AIR_COST_PER_W = 5.5 # Cost per weight as USD SEA_COST_PER_W = 3 # Cost per weight as USD FBA_SELLING_FEE_RATE = 0.15 MINIMUM_ALLOWED_NET_PROFIT = -2 # as USD def __init__(self): self.driver = webdriver.Chrome() self.fba_calculator_url = "https://sellercentral.amazon.com/hz/fba/profitabilitycalculator/index?lang=en_US" def process_item(self, item, spider): asin = item['asin'] total_tr_price = item['total_tr_price'] if not total_tr_price: raise DropItem(f"DROPPED - ASIN: {asin} - Missing total_tr_price") total_us_price = item['total_us_price'] if not total_us_price: raise DropItem(f"DROPPED - ASIN: {asin} - Missing total_us_price") us_sellers_rank = item['us_sellers_rank'] self.driver.get(self.fba_calculator_url) time.sleep(5) # If link continue popup occurs, click that try_count = 0 while try_count < 5: link_continue = self.driver.find_elements_by_xpath("//*[@id='link_continue']") if link_continue: link_continue[0].click() time.sleep(5) break try_count += 1 time.sleep(3) # Enter asin search_string = self.driver.find_element_by_xpath("//*[@id='search-string']") for s in asin: search_string.send_keys(s) time.sleep(0.5) search_string.send_keys(Keys.ENTER) time.sleep(5) # Product dimensions and weight product_length = float(self.driver.find_element_by_xpath("//*[@id='product-info-length']").text) product_width = float(self.driver.find_element_by_xpath("//*[@id='product-info-width']").text) product_height = float(self.driver.find_element_by_xpath("//*[@id='product-info-height']").text) dimensional_weight = (product_length * self.INCH_TO_CM) * (product_width * self.INCH_TO_CM) * (product_height * self.INCH_TO_CM) / 5000 product_weight = float(self.driver.find_element_by_xpath("//*[@id='product-info-weight']").text) max_product_weight = max(dimensional_weight, product_weight) # Product revenue revenue = total_us_price # Revenue thought as minimum of the us sellers prices # Click Calculate button to see fulfillment fee self.driver.find_element_by_xpath("//*[@id='update-fees-link-announce']").click() time.sleep(5) # Fees fba_fulfillment_fee = float(self.driver.find_element_by_xpath("//*[@id='afn-amazon-fulfillment-fees']").text) air_ship_to_amazon_cost = self.AIR_COST_PER_W * max_product_weight sea_ship_to_amazon_cost = self.SEA_COST_PER_W * max_product_weight fba_charge = max(0.3, total_us_price*self.FBA_SELLING_FEE_RATE) air_total_fulfillment_cost = air_ship_to_amazon_cost + fba_charge sea_total_fulfillment_cost = sea_ship_to_amazon_cost + fba_charge # Storage cost storage_cost = 0 # Product cost product_cost = total_tr_price / self.USD_TO_TRY # Calculate Profitability air_net_profit = revenue - fba_fulfillment_fee - air_total_fulfillment_cost - storage_cost - product_cost sea_net_profit = revenue - fba_fulfillment_fee - sea_total_fulfillment_cost - storage_cost - product_cost air_roi = round(air_net_profit / (air_ship_to_amazon_cost+product_cost),2) sea_roi = round(sea_net_profit / (sea_ship_to_amazon_cost+product_cost),2) if air_net_profit > self.MINIMUM_ALLOWED_NET_PROFIT: return { "asin": asin, "total_tr_price": total_tr_price, "total_us_price": total_us_price, "us_sellers_rank": us_sellers_rank, "net_profit": air_net_profit, "roi": air_roi, "profitable_with": 'AIR_SHIPPING' } elif sea_net_profit > self.MINIMUM_ALLOWED_NET_PROFIT: return { "asin": asin, "total_tr_price": total_tr_price, "total_us_price": total_us_price, "us_sellers_rank": us_sellers_rank, "net_profit": sea_net_profit, "roi": sea_roi, "profitable_with": 'SEA_SHIPPING' } else: raise DropItem(f"DROPPED - ASIN: {asin} - Product is not profitable, Air Net Profit: {air_net_profit}, Sea Net Profit: {sea_net_profit}")
# *-* coding: utf-8 *-* import sys import os from email.mime.application import MIMEApplication from asn1crypto import cms, core from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.primitives.asymmetric import padding from endesive import signer class EncryptedData(object): def email(self, data): msg = MIMEApplication(data) del msg['Content-Type'] msg['Content-Disposition'] = 'attachment; filename="smime.p7m"' msg['Content-Type'] = 'application/x-pkcs7-mime; smime-type=enveloped-data; name="smime.p7m"' data = msg.as_string() return data def pad(self, s, block_size): n = (block_size - len(s)) % block_size n = bytes([n] * n) return s + n def recipient_info(self, cert, session_key): public_key = cert.get_pubkey().to_cryptography_key() encrypted_key = public_key.encrypt(session_key, padding.PKCS1v15()) cert = signer.cert2asn(cert.to_cryptography()) tbs_cert = cert['tbs_certificate'] # TODO: use subject_key_identifier when available return cms.RecipientInfo( name=u'ktri', value={ 'version': u'v0', 'rid': cms.RecipientIdentifier( name=u'issuer_and_serial_number', value={ 'issuer': tbs_cert['issuer'], 'serial_number': tbs_cert['serial_number'] } ), 'key_encryption_algorithm': { 'algorithm': u'rsa', }, 'encrypted_key': core.OctetString(encrypted_key) } ) def build(self, data, certs, algo): key_size = { 'aes128': 16, 'aes192': 24, 'aes256': 32, }[algo.split('_', 1)[0]] block_size = 16 session_key = os.urandom(key_size) iv = os.urandom(block_size) cipher = Cipher(algorithms.AES(session_key), getattr(modes, algo.split('_', 1)[1].upper())(iv), default_backend()) data = self.pad(data, block_size) encryptor = cipher.encryptor() data = encryptor.update(data) + encryptor.finalize() recipient_infos = [] for cert in certs: recipient_info = self.recipient_info(cert, session_key) recipient_infos.append(recipient_info) algo = unicode(algo) if sys.version[0] < '3' else algo enveloped_data = cms.ContentInfo({ 'content_type': u'enveloped_data', 'content': { 'version': u'v0', 'recipient_infos': recipient_infos, 'encrypted_content_info': { 'content_type': u'data', 'content_encryption_algorithm': { 'algorithm': algo, 'parameters': iv }, 'encrypted_content': data } } }) data = self.email(enveloped_data.dump()) return data def encrypt(data, certs, algo=u'aes256_cbc'): assert algo[:3] == 'aes' and algo.split('_', 1)[1] in ('cbc', 'ofb') cls = EncryptedData() return cls.build(data, certs, algo)
# Here is the list of modules we need to import # from . import authorizations from authorizations import at,at_url,headers_at,encoded_u,encoded_u_td,td_base_url,get_headers import atws import atws.monkeypatch.attributes import pandas as pd import requests def get_notes_for_list_of_note_ids(id_=[]): query_notes=atws.Query('TicketNote') query_notes.open_bracket('AND') if len(id_)==1: query_notes.WHERE('id',query_notes.Equals,id_[0]) # query_notes.AND('NoteType',query_notes.Equals,3) #at.picklist['TicketNote']['NoteType']['Task Notes'] else: query_notes.WHERE('id',query_notes.Equals,id_[0]) # query_notes.AND('NoteType',query_notes.Equals,3) #at.picklist['TicketNote']['NoteType']['Task Notes'] for element in id_[1:]: query_notes.OR('id',query_notes.Equals,element) query_notes.close_bracket() query_notes.open_bracket('AND') query_notes.AND('NoteType',query_notes.NotEqual,13) query_notes.AND('Publish',query_notes.Equals,1) query_notes.close_bracket() notes = at.query(query_notes).fetch_all() df = pd.DataFrame([dict(note) for note in notes]) return df,notes # def get_ticket_notes_at(id_=[0]): # """ # Returns all notes, belonging to the tickets from the given list. # Parameters: # id_ [list]: list of Autotask ticket ids # at [Autotask connect object] : Autotask atws.connect object # Returns: # Tuple: (Python DataFrame, list of notes) # """ # query_notes=atws.Query('TicketNote') # query_notes.AND('NoteType',query_notes.Equals,3) # if len(id_)==1: # query_notes.WHERE('TicketID',query_notes.Equals,id_[0]) # else: # query_notes.WHERE('TicketID',query_notes.Equals,id_[0]) # for element in id_[1:]: # query_notes.OR('TicketID',query_notes.Equals,element) # notes = at.query(query_notes).fetch_all() # df = pd.DataFrame([dict(note) for note in notes]) # return df,notes def get_ticket_notes_at(id_=[0]): """ Returns all notes, belonging to the tickets from the given list. Parameters: id_ [list]: list of Autotask ticket ids at [Autotask connect object] : Autotask atws.connect object Returns: Tuple: (Python DataFrame, list of notes) """ query_notes=atws.Query('TicketNote') # query_notes.WHERE('NoteType',query_notes.Equals,3) # query.open_bracket('AND') query_notes.open_bracket('AND') if len(id_)==1: query_notes.WHERE('TicketID',query_notes.Equals,id_[0]) else: query_notes.WHERE('TicketID',query_notes.Equals,id_[0]) for element in id_[1:]: query_notes.OR('TicketID',query_notes.Equals,element) query_notes.close_bracket() query_notes.open_bracket('AND') query_notes.AND('NoteType',query_notes.NotEqual,13) query_notes.AND('Publish',query_notes.Equals,1) query_notes.close_bracket() notes = at.query(query_notes).fetch_all() df = pd.DataFrame([dict(note) for note in notes]) return df,notes def make_note_in_at(title='Title',descr='Long description 3200 chars',note_type=6,ticket_id=0): note = at.new('TicketNote') note.Title = title note.Description = descr note.NoteType = 3 note.TicketID= ticket_id note.Publish = 1 note.create() return note
import os import gzip import cPickle import numpy as np from scipy.io import loadmat import pyhsmm_spiketrains.models reload(pyhsmm_spiketrains.models) from pyhsmm_spiketrains.internals.utils import split_train_test def load_synth_data(T, K, N, T_test=1000, model='hdp-hmm', version=1, alpha_obs=1.0, beta_obs=1.0): """ Make a synthetic HMM dataset :param T: Number of time bins :param K: Number of latent states (or max number in the HDP case :param N: Number of neurons :return: """ data_dir = "data" file_name = 'synth_%s_K%d_T%d_N%d_v%d.pkl' % (model, K, T, N, version) data_file = os.path.join(data_dir, file_name) if os.path.exists(data_file): with gzip.open(data_file, "r") as f: res = cPickle.load(f) else: if model == 'hmm': hmm = pyhsmm_spiketrains.models.PoissonHMM( N=N, K=K, alpha_obs=alpha_obs, beta_obs=beta_obs, alpha=12.0, gamma=12.0, init_state_concentration=1.0 ) elif model == 'hdp-hmm': hmm = pyhsmm_spiketrains.models.PoissonHDPHMM( N=N, K_max=K, alpha_obs=alpha_obs, beta_obs=beta_obs, alpha=12.0, gamma=12.0, init_state_concentration=1.0, ) else: raise Exception('Unrecognized model') S_train, Z_train = hmm.generate(T) S_test, Z_test = hmm.generate(T_test) print "Num used states: ", len(np.unique(Z_train)) res = hmm, S_train, Z_train, S_test, Z_test with gzip.open(data_file, "w") as f: cPickle.dump(res, f, protocol=-1) return res def load_hipp_data(dataname="hipp_2dtrack_a", trainfrac=0.8): raw_data = loadmat("data/%s.mat" % dataname) S = raw_data['S'].astype(np.int).copy("C") # Get the time stamps T,N = S.shape dt = 0.25 ts = np.arange(T) * dt # Get the corresponding position pos = raw_data['pos'] S_train, pos_train, S_test, pos_test = split_train_test(S, pos, trainfrac=trainfrac) if "cp" in raw_data and "r" in raw_data: center = raw_data['cp'].ravel() radius = np.float(raw_data['r']) else: center = radius = None return N, S_train, pos_train, S_test, pos_test, center, radius
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2016 claviering <claviering@sunn> # # Distributed under terms of the WTFPL license. from sys import stdout for j in range(2,1001): k = [] n = -1 s = j for i in range(1,j): if j % i == 0: n += 1 s -= i k.append(i) if s == 0: print j for i in range(n): stdout.write(str(k[i])) stdout.write(' ') print k[n]
import mock import unittest2 import urllib import urllib2 from mlabns.util import constants from mlabns.util import message from mlabns.util import prometheus_status class ParseSliverToolStatusTest(unittest2.TestCase): def test_parse_sliver_tool_status_returns_successfully_parsed_tuple(self): status = { "metric": { "experiment": "ndt.iupui", "machine": "mlab1-abc01.mlab-oti.measurement-lab.org" }, "value": [1522782427.81, "1"] } expected_parsed_status = ( 'ndt-iupui-mlab1-abc01.mlab-oti.measurement-lab.org', '1', constants.PROMETHEUS_TOOL_EXTRA) actual_parsed_status = prometheus_status.parse_sliver_tool_status( status) self.assertTupleEqual(expected_parsed_status, actual_parsed_status) def test_parse_sliver_tool_status_raises_PrometheusStatusUnparseableError_because_of_illformatted_status( self): status = 'mock status' with self.assertRaises( prometheus_status.PrometheusStatusUnparseableError): prometheus_status.parse_sliver_tool_status(status) class GetSliceInfoTest(unittest2.TestCase): def setUp(self): self.prometheus_base_url = 'https://prom.mock.mlab.net/api/?query=' def test_get_slice_info_returns_none_with_nonexistent_tool(self): retrieved = prometheus_status.get_slice_info(self.prometheus_base_url, 'nonexistent_tool', '') self.assertIsNone(retrieved) def test_get_slice_info_returns_valid_objects_when_tools_stored(self): ndt_url_ipv4 = self.prometheus_base_url + urllib.quote_plus( prometheus_status.QUERIES['ndt']) ndt_url_ipv6 = self.prometheus_base_url + urllib.quote_plus( prometheus_status.QUERIES['ndt_ipv6']) neubot_url_ipv4 = self.prometheus_base_url + urllib.quote_plus( prometheus_status.QUERIES['neubot']) neubot_url_ipv6 = self.prometheus_base_url + urllib.quote_plus( prometheus_status.QUERIES['neubot_ipv6']) expected_slice_data = { 'ndt': { 'info': prometheus_status.PrometheusSliceInfo(ndt_url_ipv4, 'ndt', ''), 'info_ipv6': prometheus_status.PrometheusSliceInfo( ndt_url_ipv6, 'ndt', '_ipv6'), }, 'neubot': { 'info': prometheus_status.PrometheusSliceInfo(neubot_url_ipv4, 'neubot', ''), 'info_ipv6': prometheus_status.PrometheusSliceInfo( neubot_url_ipv6, 'neubot', '_ipv6'), } } retrieved = prometheus_status.get_slice_info(self.prometheus_base_url, 'ndt', '') self.assertEqual(expected_slice_data['ndt']['info'], retrieved) retrieved = prometheus_status.get_slice_info(self.prometheus_base_url, 'ndt', '_ipv6') self.assertEqual(expected_slice_data['ndt']['info_ipv6'], retrieved) retrieved = prometheus_status.get_slice_info(self.prometheus_base_url, 'neubot', '') self.assertEqual(expected_slice_data['neubot']['info'], retrieved) retrieved = prometheus_status.get_slice_info(self.prometheus_base_url, 'neubot', '_ipv6') self.assertEqual(expected_slice_data['neubot']['info_ipv6'], retrieved) class StatusUpdateHandlerTest(unittest2.TestCase): def setUp(self): self.mock_response = mock.Mock() self.mock_response.msg = 'mock message' self.mock_response.code = '200' @mock.patch.object(urllib2.OpenerDirector, 'open', autospec=True) def test_get_slice_status_returns_none_with_invalid_json(self, mock_open): self.mock_response.read.return_value = '{lol, not valid json' mock_open.return_value = self.mock_response result = prometheus_status.get_slice_status( 'https://prometheus.measurementlab.mock.net', urllib2.OpenerDirector()) self.assertIsNone(result) @mock.patch.object(urllib2.OpenerDirector, 'open', autospec=True) @mock.patch.object(prometheus_status, 'parse_sliver_tool_status') def test_get_slice_status_returns_populated_dictionary_when_it_gets_valid_statuses( self, mock_parse_sliver_tool_status, mock_open): self.mock_response.read.return_value = """ { "status": "success", "data": { "resultType": "vector", "result": [ { "metric": { "experiment": "mock", "machine": "mlab1-xyz01.mlab-oti.measurement-lab.org" }, "value": [1522782427.81, "1"] }, { "metric": { "experiment": "mock", "machine": "mlab2-xyz01.mlab-oti.measurement-lab.org" }, "value": [1522773427.51, "0"] } ] } }""" mock_open.return_value = self.mock_response mock_parse_sliver_tool_status.side_effect = [ ('mock-mlab1-xyz01.mlab-oti.measurement-lab.org', '1', constants.PROMETHEUS_TOOL_EXTRA), ('mock-mlab2-xyz01.mlab-oti.measurement-lab.org', '0', constants.PROMETHEUS_TOOL_EXTRA) ] expected_status = { 'mock-mlab1-xyz01.mlab-oti.measurement-lab.org': { 'status': message.STATUS_ONLINE, 'tool_extra': constants.PROMETHEUS_TOOL_EXTRA }, 'mock-mlab2-xyz01.mlab-oti.measurement-lab.org': { 'status': message.STATUS_OFFLINE, 'tool_extra': constants.PROMETHEUS_TOOL_EXTRA } } actual_status = prometheus_status.get_slice_status( 'https://prometheus.measurementlab.mock.net', urllib2.OpenerDirector()) self.assertDictEqual(actual_status, expected_status) @mock.patch.object(urllib2.OpenerDirector, 'open', autospec=True) def test_get_slice_status_returns_none_when_a_HTTPError_is_raised_by_urlopen( self, mock_open): # urllib2.HTTPError() requires 6 arguments. Subclassing to override # __init__ makes instantiating this easier. class MockHttpError(urllib2.HTTPError): def __init__(self, cause): self.cause = cause self.mock_response.read.side_effect = MockHttpError('mock http error') mock_open.return_value = self.mock_response self.assertIsNone(prometheus_status.get_slice_status( 'https://prometheus.measurementlab.mock.net', urllib2.OpenerDirector())) if __name__ == '__main__': unittest2.main()
# Copyright 2015 NEC Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from magnumclient.common.apiclient import exceptions from magnumclient.tests.v1 import shell_test_base from magnumclient.v1.baymodels import BayModel class FakeBayModel(BayModel): def __init__(self, manager=None, info={}, **kwargs): BayModel.__init__(self, manager=manager, info=info) self.apiserver_port = kwargs.get('apiserver_port', None) self.uuid = kwargs.get('uuid', 'x') self.links = kwargs.get('links', []) self.server_type = kwargs.get('server_type', 'vm') self.image_id = kwargs.get('image_id', 'x') self.tls_disabled = kwargs.get('tls_disabled', False) self.registry_enabled = kwargs.get('registry_enabled', False) self.coe = kwargs.get('coe', 'x') self.public = kwargs.get('public', False) self.name = kwargs.get('name', 'x') class ShellTest(shell_test_base.TestCommandLineArgument): def _get_expected_args_list(self, limit=None, sort_dir=None, sort_key=None, detail=False): expected_args = {} expected_args['limit'] = limit expected_args['sort_dir'] = sort_dir expected_args['sort_key'] = sort_key expected_args['detail'] = detail return expected_args def _get_expected_args(self, image_id, external_network_id, coe, master_flavor_id=None, name=None, keypair_id=None, fixed_network=None, fixed_subnet=None, network_driver=None, volume_driver=None, dns_nameserver='8.8.8.8', flavor_id='m1.medium', docker_storage_driver='devicemapper', docker_volume_size=None, http_proxy=None, https_proxy=None, no_proxy=None, labels={}, tls_disabled=False, public=False, master_lb_enabled=False, server_type='vm', registry_enabled=False, floating_ip_enabled=None): expected_args = {} expected_args['image_id'] = image_id expected_args['external_network_id'] = external_network_id expected_args['coe'] = coe expected_args['master_flavor_id'] = master_flavor_id expected_args['name'] = name expected_args['keypair_id'] = keypair_id expected_args['fixed_network'] = fixed_network expected_args['fixed_subnet'] = fixed_subnet expected_args['network_driver'] = network_driver expected_args['volume_driver'] = volume_driver expected_args['dns_nameserver'] = dns_nameserver expected_args['flavor_id'] = flavor_id expected_args['docker_volume_size'] = docker_volume_size expected_args['docker_storage_driver'] = docker_storage_driver expected_args['http_proxy'] = http_proxy expected_args['https_proxy'] = https_proxy expected_args['no_proxy'] = no_proxy expected_args['labels'] = labels expected_args['tls_disabled'] = tls_disabled expected_args['public'] = public expected_args['master_lb_enabled'] = master_lb_enabled expected_args['server_type'] = server_type expected_args['registry_enabled'] = registry_enabled return expected_args @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--image-id test_image ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--coe swarm ' '--dns-nameserver test_dns ' '--flavor-id test_flavor ' '--fixed-network private ' '--fixed-subnet private-subnet ' '--volume-driver test_volume ' '--network-driver test_driver ' '--labels key=val ' '--master-flavor-id test_flavor ' '--docker-volume-size 10 ' '--docker-storage-driver devicemapper ' '--public ' '--server-type vm ' '--master-lb-enabled ' '--floating-ip-enabled ') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', dns_nameserver='test_dns', public=True, flavor_id='test_flavor', master_flavor_id='test_flavor', fixed_network='private', fixed_subnet='private-subnet', server_type='vm', network_driver='test_driver', volume_driver='test_volume', docker_storage_driver='devicemapper', docker_volume_size=10, master_lb_enabled=True, labels={'key': 'val'}) expected_args['floating_ip_enabled'] = True mock_create.assert_called_with(**expected_args) self._test_arg_success('baymodel-create ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe kubernetes ' '--name test ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='kubernetes', external_network_id='test_net', server_type='vm') mock_create.assert_called_with(**expected_args) self._test_arg_success('baymodel-create ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe kubernetes ' '--name test ' '--server-type vm ' '--floating-ip-disabled ') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='kubernetes', external_network_id='test_net', server_type='vm', floating_ip_enabled=False) mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_success_no_servertype(self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--image-id test_image ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--coe swarm ' '--dns-nameserver test_dns ' '--flavor-id test_flavor ' '--fixed-network public ' '--network-driver test_driver ' '--labels key=val ' '--master-flavor-id test_flavor ' '--docker-volume-size 10 ' '--docker-storage-driver devicemapper ' '--public ') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', dns_nameserver='test_dns', public=True, flavor_id='test_flavor', master_flavor_id='test_flavor', fixed_network='public', network_driver='test_driver', docker_storage_driver='devicemapper', docker_volume_size=10, labels={'key': 'val'}) mock_create.assert_called_with(**expected_args) self._test_arg_success('baymodel-create ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe kubernetes ' '--name test ') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='kubernetes', external_network_id='test_net') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_success_with_registry_enabled( self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--network-driver test_driver ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--registry-enabled') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', network_driver='test_driver', registry_enabled=True) mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_public_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --network-driver test_driver ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--public ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', public=True, server_type='vm', network_driver='test_driver') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_success_with_master_flavor(self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--image-id test_image ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--coe swarm ' '--dns-nameserver test_dns ' '--master-flavor-id test_flavor') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', dns_nameserver='test_dns', master_flavor_id='test_flavor') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_docker_vol_size_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --docker-volume-size 4514 ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', server_type='vm', docker_volume_size=4514) mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_docker_storage_driver_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--docker-storage-driver devicemapper ' '--coe swarm' ) expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', docker_storage_driver='devicemapper') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_fixed_network_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --fixed-network private ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', fixed_network='private', external_network_id='test_net', server_type='vm') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_network_driver_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --network-driver test_driver ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', server_type='vm', network_driver='test_driver') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_volume_driver_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --volume-driver test_volume ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', server_type='vm', volume_driver='test_volume') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_http_proxy_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --fixed-network private ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--http-proxy http_proxy ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', fixed_network='private', server_type='vm', http_proxy='http_proxy') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_https_proxy_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --fixed-network private ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--https-proxy https_proxy ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', fixed_network='private', server_type='vm', https_proxy='https_proxy') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_no_proxy_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --fixed-network private ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--no-proxy no_proxy ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', fixed_network='private', server_type='vm', no_proxy='no_proxy') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_labels_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--labels key=val ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', server_type='vm', labels={'key': 'val'}) mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_separate_labels_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--labels key1=val1 ' '--labels key2=val2 ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', server_type='vm', labels={'key1': 'val1', 'key2': 'val2'}) mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_combined_labels_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--labels key1=val1,key2=val2 ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', server_type='vm', labels={'key1': 'val1', 'key2': 'val2'}) mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_failure_few_arg(self, mock_create): self._test_arg_failure('baymodel-create ' '--name test', self._mandatory_arg_error) mock_create.assert_not_called() self._test_arg_failure('baymodel-create ' '--image-id test', self._mandatory_arg_error) mock_create.assert_not_called() self._test_arg_failure('baymodel-create ' '--keypair-id test', self._mandatory_arg_error) mock_create.assert_not_called() self._test_arg_failure('baymodel-create ' '--external-network-id test', self._mandatory_arg_error) mock_create.assert_not_called() self._test_arg_failure('baymodel-create ' '--coe test', self._mandatory_arg_error) mock_create.assert_not_called() self._test_arg_failure('baymodel-create ' '--server-type test', self._mandatory_arg_error) mock_create.assert_not_called() self._test_arg_failure('baymodel-create', self._mandatory_arg_error) mock_create.assert_not_called() @mock.patch('magnumclient.v1.baymodels.BayModelManager.get') def test_baymodel_show_success(self, mock_show): self._test_arg_success('baymodel-show xxx') mock_show.assert_called_once_with('xxx') @mock.patch('magnumclient.v1.baymodels.BayModelManager.get') def test_baymodel_show_failure_no_arg(self, mock_show): self._test_arg_failure('baymodel-show', self._few_argument_error) mock_show.assert_not_called() @mock.patch('magnumclient.v1.baymodels.BayModelManager.delete') def test_baymodel_delete_success(self, mock_delete): self._test_arg_success('baymodel-delete xxx') mock_delete.assert_called_once_with('xxx') @mock.patch('magnumclient.v1.baymodels.BayModelManager.delete') def test_baymodel_delete_multiple_id_success(self, mock_delete): self._test_arg_success('baymodel-delete xxx xyz') calls = [mock.call('xxx'), mock.call('xyz')] mock_delete.assert_has_calls(calls) @mock.patch('magnumclient.v1.baymodels.BayModelManager.delete') def test_baymodel_delete_failure_no_arg(self, mock_delete): self._test_arg_failure('baymodel-delete', self._few_argument_error) mock_delete.assert_not_called() @mock.patch('magnumclient.v1.baymodels.BayModelManager.update') def test_baymodel_update_success(self, mock_update): self._test_arg_success('baymodel-update test add test=test') patch = [{'op': 'add', 'path': '/test', 'value': 'test'}] mock_update.assert_called_once_with('test', patch) @mock.patch('magnumclient.v1.baymodels.BayModelManager.update') def test_baymodel_update_success_many_attribute(self, mock_update): self._test_arg_success('baymodel-update test ' 'add test=test test1=test1') patch = [{'op': 'add', 'path': '/test', 'value': 'test'}, {'op': 'add', 'path': '/test1', 'value': 'test1'}] mock_update.assert_called_once_with('test', patch) @mock.patch('magnumclient.v1.baymodels.BayModelManager.update') def test_baymodel_update_failure_wrong_op(self, mock_update): _error_msg = [ '.*?^usage: magnum baymodel-update ', '.*?^error: argument <op>: invalid choice: ', ".*?^Try 'magnum help baymodel-update' for more information." ] self._test_arg_failure('baymodel-update test wrong test=test', _error_msg) mock_update.assert_not_called() @mock.patch('magnumclient.v1.baymodels.BayModelManager.update') def test_baymodel_update_failure_few_args(self, mock_update): _error_msg = [ '.*?^usage: magnum baymodel-update ', '.*?^error: (the following arguments|too few arguments)', ".*?^Try 'magnum help baymodel-update' for more information." ] self._test_arg_failure('baymodel-update', _error_msg) mock_update.assert_not_called() self._test_arg_failure('baymodel-update test', _error_msg) mock_update.assert_not_called() @mock.patch('magnumclient.v1.baymodels.BayModelManager.list') def test_baymodel_list_success(self, mock_list): self._test_arg_success('baymodel-list') expected_args = self._get_expected_args_list() mock_list.assert_called_once_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.list') def test_baymodel_list_success_with_arg(self, mock_list): self._test_arg_success('baymodel-list ' '--limit 1 ' '--sort-dir asc ' '--sort-key uuid') expected_args = self._get_expected_args_list(1, 'asc', 'uuid') mock_list.assert_called_once_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.list') def test_baymodel_list_success_detailed(self, mock_list): self._test_arg_success('baymodel-list ' '--detail') expected_args = self._get_expected_args_list(detail=True) mock_list.assert_called_once_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.list') def test_baymodel_list_ignored_duplicated_field(self, mock_list): mock_list.return_value = [FakeBayModel()] self._test_arg_success('baymodel-list --fields coe,coe,coe,name,name', keyword='\n| uuid | name | Coe |\n') # Output should be # +------+------+-----+ # | uuid | name | Coe | # +------+------+-----+ # | x | x | x | # +------+------+-----+ expected_args = self._get_expected_args_list() mock_list.assert_called_once_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.list') def test_baymodel_list_failure_with_invalid_field(self, mock_list): mock_list.return_value = [FakeBayModel()] _error_msg = [".*?^Non-existent fields are specified: ['xxx','zzz']"] self.assertRaises(exceptions.CommandError, self._test_arg_failure, 'baymodel-list --fields xxx,coe,zzz', _error_msg) expected_args = self._get_expected_args_list() mock_list.assert_called_once_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.list') def test_baymodel_list_failure_invalid_arg(self, mock_list): _error_msg = [ '.*?^usage: magnum baymodel-list ', '.*?^error: argument --sort-dir: invalid choice: ', ".*?^Try 'magnum help baymodel-list' for more information." ] self._test_arg_failure('baymodel-list --sort-dir aaa', _error_msg) mock_list.assert_not_called() @mock.patch('magnumclient.v1.baymodels.BayModelManager.list') def test_baymodel_list_failure(self, mock_list): self._test_arg_failure('baymodel-list --wrong', self._unrecognized_arg_error) mock_list.assert_not_called()
import time import os # for organization, encode parameters in dir name def setOutDir(params): timestamp = str(int(time.time())) try: jobid = os.environ['SLURM_JOBID'] except: jobid = 'NOID' if params['root'] is None: root = os.path.join(os.environ['HOME'], "STM", "experiments") else: root = params['root'] if os.environ['IS_INTERACTIVE'] == 'true': vers = "tmp" else: vers = params['version'] out_dir = os.path.abspath(os.path.join( root, params.get("type", "unknown_type"), # classifier/agent "runs", vers, jobid + "_" + timestamp)) if params.get("type", "unknown_type") == "agent": out_dir += "_mbs" + str(params['miniBatchSize']) out_dir += "_tau" + str(params['tau']) out_dir += "_es" + str(params['epsilonStart']) out_dir += "_en" + str(params['epsilonStop']) out_dir += "_opt" + str(params['optimizer']) out_dir += "_lr" + str(params['learning-rate']) if params['batchnorm']: out_dir += "_bn" else: out_dir += "_noBn" out_dir += "_rew" + str(params['reward']) print("Number of random episodes: ", params['randomEps']) out_dir += "_randEps" + str(params['randomEps']) print("gamma: ", params['gamma']) out_dir += "_gamma" + str(params['gamma']) if params['dqnNN'] is not None: try: out_dir += "_init" + params['dqnNN'].split("/")[8].split("_")[0] except: pass elif params['useClassNN'] is not None: try: out_dir += "_init" + params['classNN'].split("/")[8].split("_")[0] except: pass else: out_dir += "_initRand" return out_dir if params.get("type", "unknown_type") == "classifier": print("Number of training steps: ", params['numTrainSteps']) out_dir += "_" + str(params['numTrainSteps']) print("miniBatchSize: ", params['miniBatchSize']) out_dir += "_" + str(params['miniBatchSize']) print("dropout", params['dropout']) if params['dropout']: out_dir += "_" + "drp" + str(params['dropout']) else: out_dir += "_" + "noDrp" if params['distortBrightnessRelative'] or params['distortContrast']: params['distorted'] = True print("distorted", params['distorted']) if params['distorted']: out_dir += "_" + "augm" delta = params['distortBrightnessRelative'] factor = params['distortContrast'] stddev = params['distortGaussian'] fracSP = params['distortSaltPepper'] if delta != 0: out_dir += "_Br" + str(delta) if factor != 0: out_dir += "_Cntr-" + str(factor) if stddev != 0: out_dir += "_Gau-" + str(stddev) if fracSP != 0: out_dir += "_SP-" + str(fracSP) else: out_dir += "_" + "noAugm" print("batchnorm", params['batchnorm']) if params['batchnorm']: out_dir += "_" + "bn-" + str(params['batchnorm-decay']) else: out_dir += "_" + "noBn" out_dir += "_" + "cSz" + str(params['pxRes']) print("weight decay", params['weight-decay']) out_dir += "_wd" + str(params['weight-decay']) print("learning rate", params['learning-rate']) out_dir += "_lr" + str(params['learning-rate']) if params["lr-decay"]: out_dir += "Dc" print("momentum", params['momentum']) out_dir += "_mom" + str(params['momentum']) print("optimizer", params['optimizer']) out_dir += "_opt" + params['optimizer'] if params['in_dir'] is not None: print("reading data from: ", params['in_dir']) out_dir += params['in_dir'].split("/")[-1] if params['aucLoss']: out_dir += "_auc" if params['penalizeFP']: out_dir += "_penFP" if params['relWeightPosSamples'] is not None: out_dir += "_wPos" + str(params['relWeightPosSamples']) if params['RANSAC']: out_dir += "_ransac" else: out_dir += "_noRansac" return out_dir
# -*- coding: utf-8 -*- import os, sys, pdb import argparse import torch from torch.utils import data import torchvision.transforms as standard_transforms import numpy as np FILE_PATH = os.path.abspath(__file__) PRJ_PATH = os.path.dirname(os.path.dirname(FILE_PATH)) sys.path.append(PRJ_PATH) from yolo_v2.proj_utils.local_utils import mkdirs from yolo_v2.cfgs.config_knee import cfg from yolo_v2.darknet import Darknet19 from yolo_v2.datasets.knee import Knee from yolo_v2.train_yolo import train_eng def set_args(): # Arguments settinge parser = argparse.ArgumentParser(description="Knee Bone Detection") parser.add_argument('--batch_size', type=int, default=8, help='batch size.') parser.add_argument('--maxepoch', type=int, default=500, help='number of epochs to train') parser.add_argument('--lr', type=float, default=2.0e-4, help='learning rate') parser.add_argument('--lr_decay', type=float, default=0.8, help='learning rate') parser.add_argument('--lr_decay_epochs', type=list, default=[60, 120, 180, 240, 300, 360, 420, 480], help='decay the learning rate at this epoch') parser.add_argument('--weight_decay', type=float, default=0.0, help='weight decay for training') parser.add_argument('--momentum', type=float, default=0.9, help='SGD momentum (default: 0.9)') parser.add_argument('--display_freq', type=int, default=10, help='plot the results per batches') parser.add_argument('--save_freq', type=int, default=10, help='how frequent to save the model') parser.add_argument('--device-id', type=int, default=0) parser.add_argument('--model-name', type=str, default='kneedet') parser.add_argument('--seed', type=int, default=1234) args = parser.parse_args() return args if __name__ == '__main__': args = set_args() np.random.seed(args.seed) # Data and Model settings data_root = "../../data/DetKneeData" model_root = os.path.join(data_root, args.model_name) mkdirs(model_root, erase=True) # Replace as mean and std input_transform = standard_transforms.Compose([ standard_transforms.ToTensor(), standard_transforms.Normalize(cfg.rgb_mean, cfg.rgb_var)]) train_dataset = Knee(data_root, "train", transform=input_transform) train_dataloader = data.DataLoader(train_dataset, batch_size=args.batch_size) val_dataset = Knee(data_root, "val", transform=input_transform) val_dataloader = data.DataLoader(val_dataset, batch_size=args.batch_size) # Set Darknet net = Darknet19(cfg) # CUDA Settings cuda_avail = torch.cuda.is_available() print("\n==== Starting training ====\n" + "===="*20) if cuda_avail: print("CUDA {} in use".format(args.device_id)) net.cuda(args.device_id) import torch.backends.cudnn as cudnn cudnn.benchmark = True else: print("CPU in use") # print ('>> START training ') train_eng(train_dataloader, val_dataloader, model_root, net, args)
# # cogs/messages.py # # mawabot - Maware's selfbot # Copyright (c) 2017 Ma-wa-re, Ammon Smith # # mawabot is available free of charge under the terms of the MIT # License. You are free to redistribute and/or modify it under those # terms. It is distributed in the hopes that it will be useful, but # WITHOUT ANY WARRANTY. See the LICENSE file for more details. # ''' Has several commands that deal with messages ''' import asyncio import json import logging import discord from discord.ext import commands MAX_DELETE_POSTS = 80 logger = logging.getLogger(__name__) class Messages: __slots__ = ( 'bot', ) def __init__(self, bot): self.bot = bot # Helper methods @staticmethod async def _get_messages(channel, ids): ''' Gets a list of the messages with the given IDs, in that order ''' messages = [] async for msg in channel.history(): try: messages.append((ids.index(msg.id), msg)) except ValueError: pass return map(lambda t: t[1], sorted(messages)) @staticmethod async def _hit(ctx, content): if content is not None: await ctx.send(content=content, delete_after=0) # Commands @commands.command() async def hit(self, ctx, *, content: str = None): ''' Sends the given message and then immediately deletes it ''' await asyncio.gather( self._hit(ctx, content), ctx.message.delete(), ) @commands.command() async def delay(self, ctx, seconds: float, *, content: str): ''' Sends the given message after the specified number of seconds ''' logger.info(f'Queued up delayed message for {seconds} seconds from now') await asyncio.gather( asyncio.sleep(seconds), ctx.message.delete(), ) logger.info(f'Posting delayed message: {content}') await ctx.send(content=content) @commands.command() async def embed(self, ctx, *, content: str): ''' Inserts the given message into an embed. ''' try: args = json.loads(content) embed = discord.Embed(**args) except: embed = discord.Embed(type='rich', description=content) await asyncio.gather( ctx.send(embed=embed), ctx.message.delete(), ) @commands.command() async def quote(self, ctx, id: int, cid: int = 0): ''' Quotes the given post(s) ''' tasks = [ctx.message.delete()] if cid: channel = self.bot.get_channel(cid) if channel is None: logger.warning(f'Cannot find the channel with ID {cid}') return else: channel = ctx.channel to_quote = await self._get_messages(channel, (id,)) for msg in to_quote: embed = discord.Embed(type='rich', description=msg.content) embed.set_author(name=msg.author.display_name, icon_url=msg.author.avatar_url) embed.timestamp = msg.created_at if msg.attachments: urls = '\n'.join(attach.url for attach in msg.attachments) embed.add_field(name='Attachments:', value=urls) tasks.append(ctx.send(embed=embed)) tasks.append(self.bot.output_send(embed=embed)) await asyncio.gather(*tasks) @commands.command() async def dump(self, ctx, *ids: int): ''' Outputs the literal contents of the given post(s) ''' tasks = [ctx.message.delete()] to_copy = await self._get_messages(ctx.channel, ids) for msg in to_copy: if msg.content: content = '\n'.join(( 'Plain:', '```', msg.content.replace("`", "'"), '```', '', 'Chars:', '```', ' '.join(f'{ord(c):02x}' for c in msg.content), '```', )) else: content = '(Message is empty)' embed = discord.Embed(type='rich', description=content) embed.set_author(name=msg.author.display_name, icon_url=msg.author.avatar_url) embed.timestamp = msg.edited_at or msg.created_at if msg.attachments: urls = '\n'.join(attach.url for attach in msg.attachments) embed.add_field(name='Attachments:', value=urls) tasks.append(self.bot.output_send(embed=embed)) tasks += [self.bot.send(embed=embed) for embed in msg.embeds] await asyncio.gather(*tasks) @commands.command(aliases=['delet']) async def delete(self, ctx, posts: int = 1): ''' Deletes the last X posts you made, including the trigger ''' if posts > MAX_DELETE_POSTS: logger.error((f'Asked to delete {posts} posts which is greater than ' f'the self-imposed limit of {MAX_DELETE_POSTS}')) return tasks = [ctx.message.delete()] deleted = 0 async for msg in ctx.channel.history(): if msg.author == self.bot.user: tasks.append(msg.delete()) deleted += 1 if deleted >= posts + 1: break await asyncio.gather(*tasks) @commands.command() async def purge(self, ctx, posts: int = 1): ''' Deletes the last X posts in the channel ''' if posts > MAX_DELETE_POSTS: logger.error((f'Asked to delete {posts} posts which is greater than ' f'the self-imposed limit of {MAX_DELETE_POSTS}')) return tasks = [] async for msg in ctx.channel.history(limit=posts + 1): tasks.append(msg.delete()) await asyncio.gather(*tasks)
#Crie um programa que tenha uma funcao chamada voto() que vai receber como parametro o ano de nascimento #de uma pessoa, retornando um valor literal indicando se uma pessoa tem voto NEGADO, OPCIONAL ou OBRIGATORIO nas #eleicoes. #minha resposta def voto(ano): from datetime import date atual = date.today().year idade = atual - ano if idade < 16: return f'Com {idade} anos: NÃO VOTA' if 16 <= idade < 18 or idade > 65: return f'Com {idade} anos: VOTO OPCIONAL' else: return f'Com {idade} anos: VOTO OBRIGATORIO' #Programa principal nasc = int(input('Em que ano voce nasceu? ')) print(voto(nasc))
def octal_to_string(octal): result = "" value_letters = [(4,"r"),(2,"w"),(1,"x")] for octet in [int(n) for n in str(octal)]: b = format(octet, '03b') for n,v in enumerate(b): if (int(v) > 0): result += value_letters[n][-1] else: result += '-' return result print(octal_to_string(755)) # Should be rwxr-xr-x print(octal_to_string(644)) # Should be rw-r--r-- print(octal_to_string(750)) # Should be rwxr-x--- print(octal_to_string(600)) # Should be rw-------
# -*- coding: utf-8 -* from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os import argparse import numpy as np import random from time import sleep sys.path.append(os.path.join(os.path.dirname(__file__), 'common')) from common import face_image import cv2 import time def to_rgb(img): w, h = img.shape ret = np.empty((w, h, 3), dtype=np.uint8) ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img return ret def main(args): # facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = face_image.get_dataset('lfw', args.input_dir) print('dataset size', 'lfw', len(dataset)) output_filename = os.path.join(args.output_dir, 'train.lst') with open(output_filename, "w") as text_file: nrof_images_total = 0 nrof = np.zeros((5,), dtype=np.int32) for fimage in dataset: if nrof_images_total % 50000 == 0: print("Processing %d, (%s)" % (nrof_images_total, nrof)) nrof_images_total += 1 _paths = fimage.image_path.split('/') a, b = _paths[-2], _paths[-1] target_dir = os.path.join(args.input_dir, a) # if not os.path.exists(target_dir): # os.makedirs(target_dir) target_file = os.path.join(target_dir, b) oline = '%d\t%s\t%d\n' % (1, target_file, int(fimage.classname)) text_file.write(oline) def parse_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument('--input-dir', type=str, help='Directory with unaligned images.', default='/data1t/mask/glint-mask') parser.add_argument('--output-dir', type=str, help='Directory with aligned face thumbnails.', default='/data1t/mask/mask-output') return parser.parse_args(argv) if __name__ == '__main__': main(parse_arguments(sys.argv[1:]))
import requests import lxml.html as lh import pandas as pd url = 'https://www.bphc.org/onlinenewsroom/Blog/Lists/Posts/Post.aspx?List=24ee0d58%2D2a85%2D4a4a%2D855b%2Df5af9d781627&ID=1282&RootFolder=%2Fonlinenewsroom%2FBlog%2FLists%2FPosts&Source=https%3A%2F%2Fwww%2Ebphc%2Eorg%2FPages%2Fdefault%2Easpx&Web=03126e14%2D4972%2D4333%2Db8a3%2D800cbc1cafce' page = requests.get(url) doc = lh.fromstring(page.content) table = doc.xpath('//tbody')[-1] for row in table.iterchildren(): for col in row.iterchildren(): print(col.text_content().strip())
from pathlib import Path import json from commiter.src.backend.tasks import Task1, AbstractTask from typing import * import pandas as pd class Backend: def __init__(self, path: Path, tasks_parsers: Sequence[AbstractTask]): self.path = path self.tasks_parsers = tasks_parsers if not self.path.is_file(): self.data = self.get_default_project_content() self.write() self.read() def get_default_project_content(self) -> dict: return { "project_properties": {}, "tasks": [], } def read(self): with open(self.path) as fp: data = json.load(fp) self.data = data tasks = [] for dico in data["tasks"]: parsed = False for parser in self.tasks_parsers: if parser.can_parse_dico(dico): try: tasks.append(parser.parse_dico(dico)) parsed = True except Exception: pass break if not parsed: raise Exception(f"Unable to parse task {dico}") self.data["tasks"] = tasks def write(self): tasks = [] for task in self.get_tasks(): tasks.append(task.get_dico()) self.data["tasks"] = tasks with open(self.path, "w") as fp: json.dump(self.data, fp) def get_tasks_dataframe(self): l_tasks_formatted = [t.get_dico() for t in self.get_tasks()] return pd.DataFrame(l_tasks_formatted) def from_tasks_dataframe(self, df: pd.DataFrame): for dico in df.to_dict('records'): parsed = False for task_parser in self.tasks_parsers: if task_parser.can_parse_dico(dico): self.data["tasks"].append(task_parser.parse_dico(dico)) parsed = True break if not parsed: print( f"Cannot parse task {dico} with parsers {self.tasks_parsers}" ) def add_task(self, tasks: Sequence[AbstractTask]): """:warning: This method add as it the objects (potential mutability problems)""" self.data["tasks"].extend(tasks) def delete_task(self, tasks: Sequence[int]): new_tasks = [t for i, t in enumerate( self.get_tasks()) if i not in tasks] self.data["tasks"] = new_tasks def get_tasks(self) -> List[AbstractTask]: return self.data["tasks"]
import os import math import re from collections import OrderedDict import numpy as np import sys FWD_ALGO_list=[ "CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM", "CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM", "CUDNN_CONVOLUTION_FWD_ALGO_GEMM", "CUDNN_CONVOLUTION_FWD_ALGO_DIRECT", "CUDNN_CONVOLUTION_FWD_ALGO_FFT", "CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING", "CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD", "CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED"] BWD_ALGO_DATA_list= [ "CUDNN_CONVOLUTION_BWD_DATA_ALGO_0", "CUDNN_CONVOLUTION_BWD_DATA_ALGO_1", "CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT", "CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING", "CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD", "CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED"] BWD_ALGO_FILTER_list=["CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0", "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1", "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT", "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3", "CUDNN_CONVOLUTION_BWD_FILTER_WINOGRAD_NONFUSED", "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING"] FWD_ALGO_TENSORCORE=["CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM", "CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED" ] BWD_ALGO_DATA_TENSORCORE=["CUDNN_CONVOLUTION_BWD_DATA_ALGO_1", "CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED"] BWD_ALGO_FILTER_TENSORCORE=["CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1", "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED"] MATH_OPS_list= ['CUDNN_TENSOR_OP_MATH', 'CUDNN_DEFAULT_MATH'] def todict(LIST): return OrderedDict([(itm, [re.compile(itm), 0]) for itm in LIST]) def count_occurences(filepath, line_bounds, ord_dict_list): line_lb, line_ub = line_bounds with open(filepath,'r') as f: for (num_line,line) in enumerate(f): if num_line > line_lb and num_line < line_ub: for ord_dict in ord_dict_list: for key, itm in ord_dict.items(): if itm[0].search(line): ord_dict[key][1] += 1 def ceil_lg2(n): return math.ceil(math.log(n) / math.log(2)) def extract_conv_ops(filepath, line_bounds, steps, times, debug=False): line_lb, line_ub = line_bounds total_flops = 0.0 flops = 0.0 dims = [] num_line = 0 with open(filepath, 'r') as f: for _ in range(line_lb): f.readline() num_line += 1 lines = f.__iter__() l = lines.readline() num_line += 1 while 'xfunction cudnnConvolutionBackward' not in l: if 'function cudnnConvolutionForward' not in l: #if 'function cudnnConvolutionBackwardFilter' not in l: try: l = lines.readline() num_line += 1 except StopIteration: break continue dims = [] for i in range(3): while 'dimA' not in l: l = lines.readline() num_line += 1 m = re.search(r'dimA: type=int; val=\[(\d+),(\d+),(\d+),(\d+)\]', l) assert m is not None dims.append(tuple(int(d) for d in m.groups())) l = lines.readline() num_line += 1 while 'dataType' not in l: l = lines.readline() num_line += 1 dtype = re.search(r'val=CUDNN_DATA_(\S+)', l).group(1) while 'mathType' not in l: l = lines.readline() num_line += 1 mtype = re.search(r'val=CUDNN_(\S+)_MATH', l).group(1) while 'algo' not in l: l = lines.readline() num_line += 1 #algo = re.search(r'val=CUDNN_CONVOLUTION_FWD_ALGO_(\S+)', l).group(1) algo = re.search(r'val=CUDNN_CONVOLUTION_(\S+)', l).group(1) t_in, t_filt, t_out = dims if 'ALGO_FFT' in l: # fft size needs to be sum of input and filter dimensions to # allow for zero padding fft_h = t_in[2] + t_filt[2] fft_w = t_in[3] + t_filt[3] fft_flops = (5 * fft_h * fft_w * ceil_lg2(fft_h) * ceil_lg2(fft_w)) # we do NC + KC forward ffts and NK backwards ffts num_ffts = ((t_in[0] * t_in[1]) + (t_filt[0] * t_filt[1]) + (t_out[0] * t_out[1])) # and finally we need NKC element-wise products in frequency space freq_mults = (t_in[0] * t_filt[0] * t_filt[1] * fft_h * fft_w) flops = fft_flops * num_ffts + freq_mults else: flops = (2 * t_out[0] * # N t_out[2] * # H t_out[3] * # W t_in[1] * # C t_out[1] * # K t_filt[2] * # R t_filt[3]) # S if num_line >= line_lb and num_line <= line_ub: total_flops += flops if debug: print('in={} filt={} out={} flops={} algo={} dtype={} mtype={}'.format(t_in, t_filt, t_out, flops, algo, dtype, mtype)) if num_line > line_ub: break print('Trace from training step=%d to step=%d' %(steps[0], steps[1])) print('Training Step = %2.3e FLOP (floating-point operations)' % (3*total_flops/(steps[-1] - steps[0]))) if debug: print('inference = %2.2e FLOP' % (total_flops/(steps[-1] - steps[0]))) print('Training Step = %2.3e FLOPS (floating-point operations per sec)\n' % (3*total_flops/(times[-1] - times[0]))) if debug: print('inference = %2.2e FLOPS' % (total_flops/(times[-1] - times[0]))) return total_flops def rank_entries(ord_dict_list, steps): FWD_ALGO_TENSORCORE=["CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM", "CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED" ] BWD_ALGO_DATA_TENSORCORE=["CUDNN_CONVOLUTION_BWD_DATA_ALGO_1", "CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED"] BWD_ALGO_FILTER_TENSORCORE=["CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1", "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED"] for ord_dict in ord_dict_list: arr_counts = np.array([itm[1] for _, itm in ord_dict.items()]) indices = np.argsort(arr_counts)[::-1] keys = list(ord_dict.keys()) print('Trace from training step=%d to step=%d' %(steps[0], steps[1])) print('CUDA FUNCTION, # CUDA CALLS, TENSORCORES USAGE') for ind in indices: algo_name = keys[ind] if algo_name in FWD_ALGO_TENSORCORE+BWD_ALGO_DATA_TENSORCORE+BWD_ALGO_FILTER_TENSORCORE: tensorcore_usage = "YES" else: tensorcore_usage = "NO" print('%s, %d ,%s ' %(algo_name, ord_dict[algo_name][1], tensorcore_usage)) print('\n') def get_step_timing(logfile, step_start=90, step_end=100): step_1 = re.compile('step= %d' %step_start) step_2 = re.compile('step= %d' %step_end) times, steps = [], [] with open(logfile, mode='r') as f: for line in f: if step_1.search(line) or step_2.search(line): stream = line.split(',') time = stream[0].split('=')[-1] step = stream[1].split('=')[-1] times.append(float(time)) steps.append(int(step)) return times, steps def get_lines_bounds(times, logfile): pattern = re.compile('Time:') lines = [] cudnn_times = [] #print(times) with open(logfile, mode='r') as f: for i,line in enumerate(f): if pattern.search(line): time_list = re.findall('\d+',line) if len(time_list) == 11: # assert len(time_list) == 11, print('Time format is not as expected in Line %d: Found %s, Expected: len(Time)=11. Results may be wrong.' # % (i, format(time_list))) hour,minute,sec,millsec = time_list[3:7] total_time = int(hour) * 3600 total_time += int(minute) * 60 total_time += int(sec) total_time += int(millsec) * 10 ** (-len(millsec)) cudnn_times.append(total_time) if len(cudnn_times) > 1: total_time -= cudnn_times[0] # assume that first printed step lines up with cudnn start of trace if total_time >= times[0] and total_time <= times[1]: lines.append(i) return lines[0], lines[-1] def main(argv): if len(argv) == 1: print('Usage: python cudnn_parser.py cudnn_logfile train_logfile step_start step_end.') else: cudnn_logfile, train_logfile, step_start, step_end = argv[1:] # Dictionaries FWD_ALGO = todict(FWD_ALGO_list) BWD_DATA_ALGO = todict(BWD_ALGO_DATA_list) BWD_FILTER_ALGO = todict(BWD_ALGO_FILTER_list) MATH_OPS = todict(MATH_OPS_list) ord_dict_list = [FWD_ALGO, BWD_DATA_ALGO, BWD_FILTER_ALGO, MATH_OPS] # parsing times, steps = get_step_timing(train_logfile,step_start=int(step_start), step_end=int(step_end)) print(times, steps) line_lb, line_ub = get_lines_bounds(times, cudnn_logfile) extract_conv_ops(cudnn_logfile, [line_lb, line_ub], steps, times) count_occurences(cudnn_logfile, [line_lb, line_ub], ord_dict_list) rank_entries(ord_dict_list, steps) if __name__ == "__main__": main(sys.argv)
from .datagroup import DataGroup __all__ = ["DataGroup"]
# -*- coding: utf-8 -*- """ Created on Thu Sep 23 08:06:31 2021 @author: bcamc """ #%% Import Packages import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import InsetPosition, inset_axes from matplotlib.lines import Line2D import pandas as pd import numpy as np import scipy from scipy.stats.stats import pearsonr, spearmanr import cartopy import cartopy.crs as ccrs from mpl_toolkits.axes_grid1 import make_axes_locatable import xarray as xr from sklearn.decomposition import IncrementalPCA import os from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score from datetime import datetime from sklearn import linear_model import datetime import cartopy.io.shapereader as shpreader from cartopy.feature import ShapelyFeature import shapely.geometry as sgeom from shapely.ops import unary_union from shapely.prepared import prep import joblib from joblib import Parallel, delayed from obspy.geodetics import kilometers2degrees, degrees2kilometers import cmocean import seaborn as sns from tabulate import tabulate # Progress bar package from tqdm import tqdm # Gibbs seawater properties packages import gsw # Import pre-built mapping functions from SO_mapping_templates import haversine, South_1ax_map, South_1ax_flat_map # Import function to calculate fluxes from Fluxes import calculate_fluxes # Import taylor diagram script from taylorDiagram import TaylorDiagram #%% Define directories front_dir = 'C:/Users/bcamc/OneDrive/Desktop/Python/Projects/sulfur/southern_ocean/' lana_dir = 'C:/Users/bcamc/OneDrive/Desktop/Python/Projects/sulfur/southern_ocean/dmsclimatology/' jarnikova_dir = 'C:/Users/bcamc/OneDrive/Desktop/Python/Projects/sulfur/southern_ocean/Jarnikova_SO_files/' #%% Set working directories dir_ = 'C:\\Users\\bcamc\\OneDrive\\Desktop\\Python\\Projects\\sulfur\\southern_ocean\\Scripts' if os.getcwd() != dir_: os.chdir(dir_) #%% Read in data (optional) export_dir = 'C:/Users/bcamc/OneDrive/Desktop/Python/Projects/sulfur/southern_ocean/export_data/' models_combined = pd.read_csv(export_dir+'models_combined.csv').set_index(['datetime','latbins','lonbins']).squeeze('columns') X_full_plus = pd.read_csv(export_dir+'X_full_plus.csv').set_index(['datetime','latbins','lonbins']) # ANN_y_pred = pd.read_csv(export_dir+'ANN_y_pred.csv').set_index(['datetime','latbins','lonbins']).squeeze('columns') # RFR_y_pred = pd.read_csv(export_dir+'RFR_y_pred.csv').set_index(['datetime','latbins','lonbins']).squeeze('columns') # y = pd.read_csv(export_dir+'y.csv').set_index(['datetime','latbins','lonbins']).squeeze('columns') # X = pd.read_csv(export_dir+'X.csv').set_index(['datetime','latbins','lonbins']) # X_full = X_full_plus.drop(['dSSHA','currents','SRD'],axis=1) #%% Post-processing # ***** Load in models/data using "SO_DMS_build_models.py" ***** # for plotting reordered_months = np.array([10.,11.,12.,1.,2.,3.,4.]) # Average predictions RFR_y_pred_mean = np.sinh(RFR_y_pred).groupby(['latbins','lonbins']).mean() ANN_y_pred_mean = np.sinh(ANN_y_pred).groupby(['latbins','lonbins']).mean() # calculate Si* Si_star = (X_full.loc[:,'Si']-X_full.loc[:,'SSN']).squeeze() X_full_plus['Si_star'] = Si_star #------------------------------------------------------------------------------ # Import ACC front locations front_data = xr.open_dataset(front_dir+'Park_durand_fronts.nc') fronts = dict() to_bin = lambda x: np.round(x /grid) * grid #------------------------------------------------------------------------------ # NB front fronts['NB'] = pd.DataFrame(np.stack([front_data.LatNB.values, front_data.LonNB.values, np.ones(front_data.LonNB.values.shape)],axis=1), columns=['latbins','lonbins','locs']) fronts['NB'] = fronts['NB'].sort_values('lonbins') fronts['NB']['latbins'] = fronts['NB']['latbins'].map(to_bin).round(3) fronts['NB']['lonbins'] = fronts['NB']['lonbins'].map(to_bin).round(3) fronts['NB'] = fronts['NB'].set_index(['latbins','lonbins']).squeeze() fronts['NB'] = fronts['NB'][~fronts['NB'].index.duplicated(keep='first')] # fronts['NB'] = fronts['NB'].reindex_like(models_combined.loc[1]) #------------------------------------------------------------------------------ # SAF front fronts['SAF'] = pd.DataFrame(np.stack([front_data.LatSAF.values, front_data.LonSAF.values, np.ones(front_data.LonSAF.values.shape)],axis=1), columns=['latbins','lonbins','locs']) fronts['SAF'] = fronts['SAF'].sort_values('lonbins') fronts['SAF']['latbins'] = fronts['SAF']['latbins'].map(to_bin).round(3) fronts['SAF']['lonbins'] = fronts['SAF']['lonbins'].map(to_bin).round(3) fronts['SAF'] = fronts['SAF'].set_index(['latbins','lonbins']).squeeze() fronts['SAF'] = fronts['SAF'][~fronts['SAF'].index.duplicated(keep='first')] # fronts['SAF'] = fronts['SAF'].reindex_like(models_combined.loc[1]) #------------------------------------------------------------------------------ # PF front fronts['PF'] = pd.DataFrame(np.stack([front_data.LatPF.values, front_data.LonPF.values, np.ones(front_data.LonPF.values.shape)],axis=1), columns=['latbins','lonbins','locs']) fronts['PF'] = fronts['PF'].sort_values('lonbins') fronts['PF']['latbins'] = fronts['PF']['latbins'].map(to_bin).round(3) fronts['PF']['lonbins'] = fronts['PF']['lonbins'].map(to_bin).round(3) fronts['PF'] = fronts['PF'].set_index(['latbins','lonbins']).squeeze() fronts['PF'] = fronts['PF'][~fronts['PF'].index.duplicated(keep='first')] # fronts['PF'] = fronts['PF'].reindex_like(models_combined.loc[1]) #------------------------------------------------------------------------------ # SACCF front fronts['SACCF'] = pd.DataFrame(np.stack([front_data.LatSACCF.values, front_data.LonSACCF.values, np.ones(front_data.LonSACCF.values.shape)],axis=1), columns=['latbins','lonbins','locs']) fronts['SACCF'] = fronts['SACCF'].sort_values('lonbins') fronts['SACCF']['latbins'] = fronts['SACCF']['latbins'].map(to_bin).round(3) fronts['SACCF']['lonbins'] = fronts['SACCF']['lonbins'].map(to_bin).round(3) fronts['SACCF'] = fronts['SACCF'].set_index(['latbins','lonbins']).squeeze() fronts['SACCF'] = fronts['SACCF'][~fronts['SACCF'].index.duplicated(keep='first')] # fronts['SACCF'] = fronts['SACCF'].reindex_like(models_combined.loc[1]) #------------------------------------------------------------------------------ # SB front fronts['SB'] = pd.DataFrame(np.stack([front_data.LatSB.values, front_data.LonSB.values, np.ones(front_data.LonSB.values.shape)],axis=1), columns=['latbins','lonbins','locs']) fronts['SB'] = fronts['SB'].sort_values('lonbins') fronts['SB']['latbins'] = fronts['SB']['latbins'].map(to_bin).round(3) fronts['SB']['lonbins'] = fronts['SB']['lonbins'].map(to_bin).round(3) fronts['SB'] = fronts['SB'].set_index(['latbins','lonbins']).squeeze() fronts['SB'] = fronts['SB'][~fronts['SB'].index.duplicated(keep='first')] # fronts['SB'] = fronts['SB'].reindex_like(models_combined.loc[1]) # front_data.close(); del front_data #------------------------------------------------------------------------------ SA = gsw.SA_from_SP(SP=X_full.loc[:,'SAL'].values, p=1, lon=X_full.index.get_level_values('lonbins').values, lat=X_full.index.get_level_values('latbins').values) CT = gsw.CT_from_t(SA=SA, t=X_full.loc[:,'SST'].values, p=1) density = gsw.density.rho(SA=SA,CT=CT,p=1) density = pd.Series(density, index=X_full.loc[:,'chl'].index) #%% Model Sea-Air Fluxes #----------------------------------------------------------------------------- #~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # =================== # RFR Model # =================== #----------------------------------------------------------------------------- # Fluxes (umol m^-2 d^-1): RFR_flux = dict() k_dms, RFR_flux['GM12'] = calculate_fluxes(data=np.sinh(RFR_y_pred).values, ice_cover=X_full.loc[:,'ice'].values, wind_speed=X_full.loc[:,'wind'].values, T=X_full.loc[:,'SST'].values, parameterization='GM12') _, RFR_flux['SD02'] = calculate_fluxes(data=np.sinh(RFR_y_pred).values, ice_cover=X_full.loc[:,'ice'].values, wind_speed=X_full.loc[:,'wind'].values, T=X_full.loc[:,'SST'].values, parameterization='SD02') # ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # Set as series RFR_flux['GM12'] = pd.Series(RFR_flux['GM12'], index=X_full.loc[:,'SST'].index, name='DMS flux') # filter out negative estimates RFR_flux['GM12'] = RFR_flux['GM12'][(RFR_flux['GM12'] >= 0) & (RFR_flux['GM12'].notna())].reindex_like(RFR_y_pred) RFR_flux['SD02'] = pd.Series(RFR_flux['SD02'], index=X_full.loc[:,'SST'].index, name='DMS flux') #----------------------------------------------------------------------------- # =================== # ANN Model # =================== #----------------------------------------------------------------------------- ANN_flux = dict() _, ANN_flux['GM12'] = calculate_fluxes(data=np.sinh(ANN_y_pred).values, ice_cover=X_full.loc[:,'ice'].values, wind_speed=X_full.loc[:,'wind'].values, T=X_full.loc[:,'SST'].values, parameterization='GM12') _, ANN_flux['SD02'] = calculate_fluxes(data=np.sinh(ANN_y_pred).values, ice_cover=X_full.loc[:,'ice'].values, wind_speed=X_full.loc[:,'wind'].values, T=X_full.loc[:,'SST'].values, parameterization='SD02') # ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # Set as series ANN_flux['GM12'] = pd.Series(ANN_flux['GM12'], index=X_full.loc[:,'SST'].index, name='DMS flux') # filter out negative estimates ANN_flux['GM12'] = ANN_flux['GM12'][(ANN_flux['GM12'] >= 0) & (ANN_flux['GM12'].notna())].reindex_like(ANN_y_pred) ANN_flux['SD02'] = pd.Series(ANN_flux['SD02'], index=X_full.loc[:,'SST'].index, name='DMS flux') #----------------------------------------------------------------------------- # =================== # Actual # =================== #----------------------------------------------------------------------------- obs_flux = dict() _, obs_flux['GM12'] = calculate_fluxes(data=np.sinh(y).values, ice_cover=X.loc[:,'ice'].values, wind_speed=X.loc[:,'wind'].values, T=X.loc[:,'SST'].values, parameterization='GM12') _, obs_flux['SD02'] = calculate_fluxes(data=np.sinh(y).values, ice_cover=X.loc[:,'ice'].values, wind_speed=X.loc[:,'wind'].values, T=X.loc[:,'SST'].values, parameterization='SD02') # ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # Set as series obs_flux['GM12'] = pd.Series(obs_flux['GM12'], index=X.loc[:,'SST'].index, name='DMS flux') # filter out negative estimates obs_flux['GM12'] = obs_flux['GM12'][(obs_flux['GM12'] >= 0) & (obs_flux['GM12'].notna())].reindex_like(y) obs_flux['SD02'] = pd.Series(obs_flux['SD02'], index=X.loc[:,'SST'].index, name='DMS flux') #----------------------------------------------------------------------------- # =================== # Regional Fluxes # =================== #----------------------------------------------------------------------------- #~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # Constants: A = ((max_lat-min_lat)*111*1000)*((max_lon-min_lon)*111*1000) # total regional area A_ocean = A*frac_ocean # fraction of total area covered by ocean S_mol_mass = 32.06 # molar mass of sulfur num_days = np.sum(np.array([31,30,31,31,28,31,30])) # number of total days in the dataset #----------------------------------------------------------------------------- # Regional modelled flux (convert to Tg over total days) RFR_flux_reg = (RFR_flux['GM12']*S_mol_mass*A_ocean*num_days)/(1e6*1e12) ANN_flux_reg = (ANN_flux['GM12']*S_mol_mass*A_ocean*num_days)/(1e6*1e12) obs_flux_reg = (obs_flux['GM12']*S_mol_mass*A_ocean*num_days)/(1e6*1e12) fluxes_combined = pd.concat([RFR_flux['GM12'], ANN_flux['GM12']], axis=1).mean(axis=1) #%% Lana Climatology Sea-air Fluxes files = os.listdir(lana_dir) # Set 1x1o coords lana_coords = dict() lana_coords['lat'] = pd.Series(np.arange(-89,91,1), name='latbins') lana_coords['lon'] = pd.Series(np.arange(-179,181,1), name='lonbins') time_match = {'OCT':10,'NOV':11,'DEC':12,'JAN':1,'FEB':2,'MAR':3,'APR':4} # Retrive DMS climatology values, adding lats/lons to dataframes lana_clim = [] for file in files: frame = pd.DataFrame(np.flipud(pd.read_csv(lana_dir+file, header=None)), index=lana_coords['lat'], columns=lana_coords['lon']) frame = frame.stack(dropna=False) frame = frame.reset_index() frame['datetime'] = np.tile(float(time_match[file.split('.')[0][-3:]]), len(frame)) frame = frame.set_index(['datetime','latbins','lonbins']).squeeze() frame.name = 'DMS' lana_clim.append(frame) lana_clim = pd.concat(lana_clim) # Regrid variables to compute sea-air fluxes lana = dict() for var in ['wind','ice','SST']: lana[var] = X_full.loc[:,var].copy() lana[var] = lana[var].reset_index() lana[var] = lana[var].rename(columns={'lonbins':'lon','latbins':'lat'}) # regrid to nearest degree (i.e. 1x1o grid) lana[var]['latbins'] = lana[var].lat.round(0).astype('int32') lana[var]['lonbins'] = lana[var].lon.round(0).astype('int32') lana[var] = lana[var].set_index(['datetime','latbins','lonbins']) lana[var] = lana[var].drop(columns=['lat','lon']) lana[var] = lana[var].groupby(['datetime','latbins','lonbins']).mean().squeeze() lana[var] = lana[var].sort_index().reindex_like(lana_clim) print(var+' regrid complete') # Compute sea-air flux #----------------------------------------------------------------------------- lana_flux = dict() _, lana_flux['GM12'] = calculate_fluxes(data=lana_clim.values, ice_cover=lana['ice'].values, wind_speed=lana['wind'].values, T=lana['SST'].values, parameterization='GM12') _, lana_flux['SD02'] = calculate_fluxes(data=lana_clim.values, ice_cover=lana['ice'].values, wind_speed=lana['wind'].values, T=lana['SST'].values, parameterization='SD02') # ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # Set as series lana_flux['GM12'] = pd.Series(lana_flux['GM12'], index=lana['SST'].index, name='DMS flux') # filter out negative estimates lana_flux['GM12'] = lana_flux['GM12'][(lana_flux['GM12'] >= 0) & (lana_flux['GM12'].notna())].reindex_like(lana_clim) lana_flux['SD02'] = pd.Series(lana_flux['SD02'], index=lana['SST'].index, name='DMS flux') #----------------------------------------------------------------------------- del frame #%% Jarnikova Climatology Sea-air Fluxes # This climatology is from Dec to Feb (Jarnikova & Tortell, 2016) mat = scipy.io.loadmat(jarnikova_dir+'nov26product.mat') tj_dms = mat['structname'][0,1]['barnessmooth'][0,0] tj_lats = mat['structname'][0,1]['latvec'][0,0][0,:] tj_lons = mat['structname'][0,1]['lonvec'][0,0][0,:] jarnikova_clim = pd.DataFrame(tj_dms, index=tj_lats, columns=tj_lons) jarnikova_clim.index = jarnikova_clim.index.rename('latbins') jarnikova_clim.columns = jarnikova_clim.columns.rename('lonbins') jarnikova_clim = jarnikova_clim.stack() # Reindex like lana et al. climatology jarnikova_clim = jarnikova_clim.reindex_like(lana_clim.loc[[12,1,2]].groupby(['latbins','lonbins']).mean()) # Calculate the fluxes #----------------------------------------------------------------------------- jarnikova_flux = dict() _, jarnikova_flux['GM12'] = calculate_fluxes(data=jarnikova_clim, ice_cover=lana['ice'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean(), wind_speed=lana['wind'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean(), T=lana['SST'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean(), parameterization='GM12') _, jarnikova_flux['SD02'] = calculate_fluxes(data=jarnikova_clim.values, ice_cover=lana['ice'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean().values, wind_speed=lana['wind'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean().values, T=lana['SST'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean().values, parameterization='SD02') # ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # Set as series jarnikova_flux['GM12'] = pd.Series(jarnikova_flux['GM12'], index=lana['SST'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean().index, name='DMS flux') # filter out negative estimates jarnikova_flux['GM12'] = jarnikova_flux['GM12'][(jarnikova_flux['GM12'] >= 0) & (jarnikova_flux['GM12'].notna())].reindex_like(jarnikova_clim) jarnikova_flux['SD02'] = pd.Series(jarnikova_flux['SD02'], index=lana['SST'].loc[[12,1,2]].groupby(['latbins','lonbins']).mean().index, name='DMS flux') #----------------------------------------------------------------------------- del mat #%% Compute KDEs for fluxes def KDE(y): """ A modifed wrapper function pulled from the Pandas source code (https://github.com/pandas-dev/pandas/blob/0.21.x/pandas/plotting/_core.py#L1381-L1430) that returns the kernel density estimates of a Pandas Series/sliced DataFrame using scipy's gaussian_kde function. It is efficient like the pandas native plotting function (because it only fits a subset of only 1000 points from the distribution) but it returns the actual values instead of an axes handle. Parameters ---------- y : Series or sliced Dataframe Input data. Returns ------- evals : Series or Dataframe col1: Fitted indices (1000 samples between data max/min bounds); col2: evaluated kernel density estimates at each indice. """ from scipy.stats import gaussian_kde y = y.dropna() sample_range = np.nanmax(y) - np.nanmin(y) ind = np.linspace(np.nanmin(y) - 0.5 * sample_range, np.nanmax(y) + 0.5 * sample_range, 1000) kde = gaussian_kde(y.dropna()) vals = kde.evaluate(ind) evals = pd.concat([pd.Series(ind, name='ind'), pd.Series(vals, name='kde')],axis=1) return evals # Function speeds up computation, but its still faster to load up the data # rather than rerun the function: if first_run is True: # Calculate the KDEs lana_kde = KDE(lana_flux['GM12']) jarnikova_kde = KDE(jarnikova_flux['GM12']) RFR_kde = KDE(RFR_flux['GM12']) RFR_kde_3mon = KDE(RFR_flux['GM12'].loc[[12,1,2],:,:]) ANN_kde = KDE(ANN_flux['GM12']) ANN_kde_3mon = KDE(ANN_flux['GM12'].loc[[12,1,2],:,:]) # Write each to a csv files lana_kde.to_csv(write_dir[:-14]+'lana_kde.csv') jarnikova_kde.to_csv(write_dir[:-14]+'jarnikova_kde.csv') RFR_kde.to_csv(write_dir[:-14]+'RFR_kde.csv') RFR_kde_3mon.to_csv(write_dir[:-14]+'RFR_kde_3mon.csv') ANN_kde.to_csv(write_dir[:-14]+'ANN_kde.csv') ANN_kde_3mon.to_csv(write_dir[:-14]+'ANN_kde_3mon.csv') else: # load up the csv files lana_kde = pd.read_csv(write_dir[:-14]+'lana_kde.csv') jarnikova_kde = pd.read_csv(write_dir[:-14]+'jarnikova_kde.csv') RFR_kde = pd.read_csv(write_dir[:-14]+'RFR_kde.csv') RFR_kde_3mon = pd.read_csv(write_dir[:-14]+'RFR_kde_3mon.csv') ANN_kde = pd.read_csv(write_dir[:-14]+'ANN_kde.csv') ANN_kde_3mon = pd.read_csv(write_dir[:-14]+'ANN_kde_3mon.csv') #%% Convert fluxes to Tg S bounds=[max_lat, min_lat, max_lon, min_lon] def convert_fluxes(fluxes, to_mask, unique_dates, bounds): from calendar import monthrange max_lat, min_lat, max_lon, min_lon = bounds[0], bounds[1], bounds[2], bounds[3] frac_ocean = to_mask.dropna().size/to_mask.size # calculate the fraction of the total bounded area that is ocean A = ((max_lat-min_lat)*111*1000)*((max_lon-min_lon)*111*1000) # total regional area A_ocean = A*frac_ocean # fraction of total area covered by ocean S_mol_mass = 32.06 # molar mass of sulfur # Get unique dates - average across leap years in the climatology dates = pd.DataFrame(np.array([list(monthrange(int(i[:4]),int(i[5:]))) for i in unique_dates])) dates = dates.set_index(0) num_days = dates.groupby(0).mean().sum().values return (fluxes*S_mol_mass*A_ocean*num_days)/(1e6*1e12) print('RFR') print(f'{convert_fluxes(RFR_flux["GM12"], to_mask, unique_dates, bounds).mean():.1f}', '+/-', f'{convert_fluxes(RFR_flux["GM12"], to_mask, unique_dates, bounds).std():.1f}') print(f'{convert_fluxes(RFR_flux["SD02"], to_mask, unique_dates, bounds).mean():.1f}', '+/-', f'{convert_fluxes(RFR_flux["SD02"], to_mask, unique_dates, bounds).std():.1f}') print('\nANN') print(f'{convert_fluxes(ANN_flux["GM12"], to_mask, unique_dates, bounds).mean():.1f}', '+/-', f'{convert_fluxes(ANN_flux["GM12"], to_mask, unique_dates, bounds).std():.1f}') print(f'{convert_fluxes(ANN_flux["SD02"], to_mask, unique_dates, bounds).mean():.1f}', '+/-', f'{convert_fluxes(ANN_flux["SD02"], to_mask, unique_dates, bounds).std():.1f}') print('\nCombined') print(f'{np.nanmean([convert_fluxes(RFR_flux["GM12"], to_mask, unique_dates, bounds), convert_fluxes(ANN_flux["GM12"], to_mask, unique_dates, bounds)]):.1f}', '+/-', f'{np.nanstd([convert_fluxes(RFR_flux["GM12"], to_mask, unique_dates, bounds), convert_fluxes(ANN_flux["GM12"], to_mask, unique_dates, bounds)]):.1f}') print(f'{np.nanmean([convert_fluxes(RFR_flux["SD02"], to_mask, unique_dates, bounds), convert_fluxes(ANN_flux["SD02"], to_mask, unique_dates, bounds)]):.1f}', '+/-', f'{np.nanstd([convert_fluxes(RFR_flux["SD02"], to_mask, unique_dates, bounds), convert_fluxes(ANN_flux["SD02"], to_mask, unique_dates, bounds)]):.1f}') print('\nCumulative Combined') print(f'{np.nanmean([convert_fluxes(RFR_flux["GM12"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum(), convert_fluxes(ANN_flux["GM12"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum()]):.1f}', '+/-', f'{np.std([convert_fluxes(RFR_flux["GM12"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum(), convert_fluxes(ANN_flux["GM12"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum()]):.1f}') print(f'{np.nanmean([convert_fluxes(RFR_flux["SD02"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum(), convert_fluxes(ANN_flux["SD02"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum()]):.1f}', '+/-', f'{np.std([convert_fluxes(RFR_flux["SD02"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum(), convert_fluxes(ANN_flux["SD02"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum()]):.1f}') print('\nPropagated uncertainity between cumulative combined flux') print(np.nanmean([convert_fluxes(RFR_flux["GM12"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum(), convert_fluxes(ANN_flux["GM12"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum(), convert_fluxes(RFR_flux["SD02"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum(), convert_fluxes(ANN_flux["SD02"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum()])) print('+/-') print(np.sqrt(np.sum([np.nanstd(convert_fluxes(RFR_flux["GM12"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum())**2, np.nanstd(convert_fluxes(ANN_flux["GM12"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum())**2, np.nanstd(convert_fluxes(RFR_flux["SD02"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum())**2, np.nanstd(convert_fluxes(ANN_flux["SD02"], to_mask, unique_dates, bounds).groupby(["latbins","lonbins"]).sum())**2]))*0.5) #%% MLR, LM & LIT models - run to validate models #----------------------------------------------------------------------------- #### Linear regression models (run 1 for each variable) LM_preds = np.empty([y_test.shape[0],np.shape(X_test.columns)[0]]) LM_R2 = np.empty([np.shape(X_test.columns)[0],1]) LM_coef = np.empty([np.shape(X_test.columns)[0],1]) LM_RMSE = np.empty([np.shape(X_test.columns)[0],1]) lm = linear_model.LinearRegression() for i, var_ in enumerate(X_test.columns.values): LM_model = lm.fit(X_test.loc[:,[var_]],np.sinh(y_test)) ypred_LM = lm.predict(X_test.loc[:,[var_]]) LM_preds[:,i] = ypred_LM LM_R2[i,:] = lm.score(X_test.loc[:,[var_]],np.sinh(y_test)) LM_coef[i,:] = lm.coef_ LM_RMSE[i,:] = np.sqrt(metrics.mean_squared_error(np.sinh(y_test), ypred_LM)) #----------------------------------------------------------------------------- #### Calculate stds, pearson correlations for linear regression models: LM_stds = np.std(np.arcsinh(LM_preds), axis=0) LM_corrcoefs = np.empty([LM_preds.shape[1]]) for i in range(LM_preds.shape[1]): rs = pearsonr(np.arcsinh(LM_preds[:,i]),y_test) LM_corrcoefs[i] = rs[0] R2_LM = np.empty([LM_preds.shape[1]]) for i in range(LM_preds.shape[1]): R2_LM[i] = r2_score(y_test, np.arcsinh(LM_preds[:,i])) print() print('Linear Regression Results: ') d = {'Variable':[x for x in X_test.columns.values],'Coefs':LM_coef[:,0],'R2':LM_R2[:,0],'RMSE':LM_RMSE[:,0]} LM_results = pd.DataFrame(data=d).sort_values('RMSE') print(LM_results) print() #----------------------------------------------------------------------------- #### MLR lm_MLR = linear_model.LinearRegression() MLR_model = lm_MLR.fit(X_train,np.sinh(y_train)) ypred_MLR_train = lm_MLR.predict(X_train) #y predicted by MLR lm_MLR = linear_model.LinearRegression() MLR_model = lm_MLR.fit(X_test,np.sinh(y_test)) ypred_MLR = lm_MLR.predict(X_test) #y predicted by MLR intercept_MLR = lm_MLR.intercept_ #intercept predicted by MLR coef_MLR = lm_MLR.coef_ #regression coefficients in MLR model R2_MLR = lm_MLR.score(X_test,np.sinh(y_test)) #R-squared value from MLR model RMSE_MLR = np.sqrt(metrics.mean_squared_error(np.sinh(y_test), ypred_MLR)) #----------------------------------------------------------------------------- #### Calculate stds, pearson correlations for multiple linear regression model: MLR_stds = np.std(np.arcsinh(ypred_MLR)) MLR_corrcoefs = pearsonr(np.arcsinh(ypred_MLR), y_test)[0] print('MLR results:') print('a0 (intercept) = ' + str(intercept_MLR)[:5]) for i, val in enumerate(coef_MLR): print('a%.0f = %.3f' % (i,val)+' ('+X.columns.values[i]+')') print('') print('R^2 = ' + str(R2_MLR)[:4]) print('RMSE = ' + str(RMSE_MLR)[:4]) print('') #----------------------------------------------------------------------------- # literature algorithms # ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ # First descale X values: X_test_orig = pd.DataFrame(scaler.inverse_transform(X_test), index=X_test.index, columns=X_test.columns) #----------------------------------------------------------------------------- #### SD02 - Simo & Dachs (2002) # First run model with global coefs from paper: global_coefs = np.array([5.7, 55.8, 0.6]) def SD02_model(X, a,b,c): coefs = np.array([a,b,c]) # Chl = X.loc[:,['Chlorophyll a']].values Chl = X.loc[:,['chl']].values MLD = X.loc[:,['MLD']].values Chl_MLD = Chl/MLD SD02 = np.empty([Chl.shape[0],Chl.shape[1]]) for i, val in enumerate(Chl_MLD): if val < 0.02: SD02[i,0] = -np.log(MLD[i])+coefs[0] elif val >= 0.02: SD02[i,0] = coefs[1]*(Chl_MLD[i])+coefs[2] SD02 = SD02[:,0] return SD02 SD02 = SD02_model(X_test_orig, global_coefs[0], global_coefs[1], global_coefs[2]) # Now regionally optimize using least squares: w, _ = scipy.optimize.curve_fit(SD02_model, X_test_orig, np.sinh(y_test), p0=global_coefs) SD02_ls_optimized = SD02_model(X_test_orig, w[0], w[1], w[2]) # Now transform to compare: SD02 = np.arcsinh(SD02) SD02_ls_optimized = np.arcsinh(SD02_ls_optimized) # Calculate correlation coefficients, R2, and SDs SD02_stds = np.std(SD02, axis=0) SD02_corrcoefs = pearsonr(SD02.flatten(), y_test)[0] R2_SD02 = r2_score(y_test, SD02.flatten()) SD02_ls_optimized_stds = np.std(SD02_ls_optimized, axis=0) SD02_ls_optimized_corrcoefs = pearsonr(SD02_ls_optimized.flatten(), y_test)[0] R2_SD02_ls_optimized = r2_score(y_test, SD02_ls_optimized.flatten()) #----------------------------------------------------------------------------- #### VS07 - Vallina & Simo (2007) # First run model with global coefs from paper: global_coefs = np.array([0.492,0.019]) def VS07_model(X, a, b): coefs = np.array([a,b]) PAR = X.loc[:,['PAR']].values Kd = vars_interp['Kd'].reindex_like(X).values MLD = X.loc[:,['MLD']].values z = MLD # surface depth in m SRD = (PAR/(Kd*MLD))*(1-np.exp(-Kd*z)) VS07 = coefs[0]+(coefs[1]*SRD) VS07 = VS07[:,0] return VS07 VS07 = VS07_model(X_test_orig, global_coefs[0], global_coefs[1]) # Now regionally optimize using least squares: w, _ = scipy.optimize.curve_fit(VS07_model, X_test_orig, np.sinh(y_test), p0=global_coefs) VS07_ls_optimized = VS07_model(X_test_orig, w[0], w[1]) # Now transform to compare: VS07 = np.arcsinh(VS07) VS07_ls_optimized = np.arcsinh(VS07_ls_optimized) # Calculate correlation coefficients, R2, and SDs VS07_stds = np.std(VS07, axis=0) VS07_corrcoefs = pearsonr(VS07.flatten(), y_test)[0] R2_VS07 = r2_score(y_test, VS07.flatten()) VS07_ls_optimized_stds = np.std(VS07_ls_optimized, axis=0) VS07_ls_optimized_corrcoefs = pearsonr(VS07_ls_optimized.flatten(), y_test)[0] R2_VS07_ls_optimized = r2_score(y_test, VS07_ls_optimized.flatten()) #----------------------------------------------------------------------------- #### G18 - Gali et al. (2018) # First run model with global coefs from paper: global_coefs = np.array([1.237,0.578,0.0180]) def G18_model(X,a,b,c): coefs = np.array([a,b,c]) Kd = vars_interp['Kd'].reindex_like(X).values.reshape(-1,1) MLD = X.loc[:,['MLD']].values Chl = X.loc[:,['chl']].values SST = X.loc[:,['SST']].values PAR = X.loc[:,['PAR']].values Z_eu = 4.6/Kd # euphotic layer depth Z_eu_MLD = Z_eu/MLD DMSPt = np.empty([MLD.shape[0], MLD.shape[1]]) for i,val in enumerate(Z_eu_MLD): if val >= 1: DMSPt[i,0] = (1.70+(1.14*np.log10(Chl[i]))\ +(0.44*np.log10(Chl[i]**2))\ +(0.063*SST[i])-(0.0024*(SST[i]**2))) elif val < 1: DMSPt[i,0] = (1.74+(0.81*np.log10(Chl[i]))+(0.60*np.log10(Z_eu_MLD[i]))) G18 = -coefs[0]+(coefs[1]*DMSPt)+(coefs[2]*PAR) G18 = 10**(G18[:,0]) return G18 G18 = G18_model(X_test_orig, global_coefs[0],global_coefs[1],global_coefs[2]) #### Now regionally optimize using least squares: w, _ = scipy.optimize.curve_fit(G18_model, X_test_orig, np.sinh(y_test), p0=global_coefs) G18_ls_optimized = G18_model(X_test_orig, w[0], w[1], w[2]) #### Now transform to compare: G18 = np.arcsinh(G18) G18_ls_optimized = np.arcsinh(G18_ls_optimized) #### Calculate correlation coefficients, R2, and SDs G18_stds = np.std(G18, axis=0) G18_corrcoefs = pearsonr(G18.flatten(), y_test)[0] R2_G18 = r2_score(y_test, G18.flatten()) G18_ls_optimized_stds = np.std(G18_ls_optimized, axis=0) G18_ls_optimized_corrcoefs = pearsonr(G18_ls_optimized.flatten(), y_test)[0] R2_G18_ls_optimized = r2_score(y_test, G18_ls_optimized.flatten()) #### Print results table=[['SD02',R2_SD02],['SD02 LS',R2_SD02_ls_optimized],['VS07',R2_VS07],['VS07 LS',R2_VS07_ls_optimized],['G18',R2_G18],['G18 R2',R2_G18_ls_optimized]] print(tabulate(table, headers=['Model','R2'])) #%% ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ #%% Plot Taylor Diagram #----------------------------------------------------------------------------- # Calculate the std of DMS data stdrefs = y_test.std() #----------------------------------------------------------------------------- # Plot Taylor Diagram: fig = plt.figure(figsize=(12,12)) font={'family':'sans-serif', 'weight':'normal', 'size':'24'} plt.rc('font', **font) # sets the specified font formatting globally dia = TaylorDiagram(stdrefs, fig=fig, rect=111, srange=(0,1.31), label='Reference', extend=False, normalize=True) contours = dia.add_contours(levels=[0,0.25,0.5,0.75,1,1.25,1.5], colors='r') # 5 levels in grey plt.clabel(contours, inline=1, fontsize=20, fmt='%.2f') dia.add_text(0.87,0.14,s='RMSE', fontsize=16, color='r', rotation=50) # Add RFR values dia.add_sample(RFR_stds, RFR_corrcoefs, marker='o', ms=10, ls='', mfc='b', mec='k', label='RFR', normalize=True, zorder=2) # Add ANN values dia.add_sample(ANN_stds, ANN_corrcoefs, marker='o', ms=10, ls='', mfc='r', mec='k', label='ANN', normalize=True, zorder=1) # Add MLR values dia.add_sample(MLR_stds, MLR_corrcoefs, marker='+', ms=20, ls='', mew='4', mfc='k', mec='deepskyblue', label="MLR", normalize=True, zorder=10) # Add Optimized SD02 values dia.add_sample(SD02_ls_optimized_stds, SD02_ls_optimized_corrcoefs, marker='s', ms=15, ls='', mew='1', mfc='yellow', mec='k', label="SD02 (LS optimized)", normalize=True, zorder=11) # Add Optimized VS07 values dia.add_sample(VS07_ls_optimized_stds, VS07_ls_optimized_corrcoefs, marker='D', ms=15, ls='', mew='1', mfc='cyan', mec='k', label="VS07 (LS optimized)", normalize=True, zorder=10) # Add Optimized G18 values dia.add_sample(G18_ls_optimized_stds, G18_ls_optimized_corrcoefs, marker='^', ms=15, ls='', mew='1', mfc='darkorange', mec='k', label="G18 (LS optimized)", normalize=True, zorder=9) # Add SD02 values dia.add_sample(SD02_stds, SD02_ls_optimized_corrcoefs, marker='s', ms=15, ls='', mew='1', mfc='r', mec='k', label="SD02", normalize=True, zorder=11) # Add VS07 values dia.add_sample(VS07_stds, VS07_ls_optimized_corrcoefs, marker='D', ms=15, ls='', mew='1', mfc='r', mec='k', label="VS07", normalize=True, zorder=10) # Add G18 values dia.add_sample(G18_stds, G18_corrcoefs, marker='^', ms=15, ls='', mew='1', mfc='r', mec='k', label="G18", normalize=True, zorder=9) dia._ax.axis[:].major_ticks.set_tick_out(True) dia.add_grid(lw=1, ls='--') fig.legend(dia.samplePoints, [ p.get_label() for p in dia.samplePoints ], numpoints=1, bbox_to_anchor=(1.2, 0.9), prop=dict(size='small'), loc='upper right', facecolor='none') # plt.tight_layout() fig.savefig(save_to_path+str('Taylor.png'), dpi=500, bbox_inches='tight') #%% Plot MLR vs. RFR vs. ANN fig = plt.figure(figsize=(24, 6)) # fig = plt.figure(figsize=(9,18)) # if stacking vertically font={'family':'DejaVu Sans', 'weight':'normal', 'size':'24'} plt.rc('font', **font) # sets the specified font formatting globally ax3=fig.add_subplot(131) ax4=fig.add_subplot(133) ax5=fig.add_subplot(132) #----------------------------------------------------------------------------- # Plot MLR Fit ax3.scatter(y_train,np.arcsinh(ypred_MLR_train),s=10,c='k',marker='+',label='Training') ax3.scatter(y_test,np.arcsinh(ypred_MLR),s=10,c='deepskyblue',marker='+',label='Testing (R${^2}$ = ' + str(round(R2_MLR,2))+')') l1 = np.min(ax3.get_xlim()) l2 = np.max(ax3.get_xlim()) ax3.plot([l1,l2], [l1,l2], ls="--", c=".3", zorder=0) ax3.set_xlim([0, RFR_model.predict(scaler.transform(X)).max()]) ax3.set_xlabel(r'arcsinh(DMS$_{\rmmeasured}$)') ax3.set_ylabel(r'arcsinh(DMS$_{\rmmodel}$)') ax3.legend(loc='upper center', markerscale=3, fontsize=20, facecolor='none') ax3.text(0.79,0.06,'MLR', transform=ax3.transAxes, fontweight='bold',bbox=dict(facecolor='none',edgecolor='k')) ax3.text(0.03,0.9,'$\mathbf{a}$',fontsize='24',transform=ax3.transAxes) #----------------------------------------------------------------------------- # Plot ANN Fit ax4.scatter(y_train,ANN_y_train_pred,s=10,c='k', label="Training") ax4.scatter(y_test,ANN_y_test_pred,s=10,c='r', label="Testing (R${^2}$ = "+ str(round(ANN_ensemble_R2,2))+")") l1 = np.min(ax4.get_xlim()) l2 = np.max(ax4.get_xlim()) ax4.plot([l1,l2], [l1,l2], ls="--", c=".3", zorder=0) ax4.set_xlim([0, RFR_model.predict(scaler.transform(X)).max()]) ax4.set_xlabel(r'arcsinh(DMS$_{\rmmeasured}$)') # ax4.set_ylabel(r'arcsinh(DMS$_{\rmmodel}$)') ax4.legend(loc='upper center', markerscale=3, fontsize=20, facecolor='none') ax4.text(0.79,0.06,'ANN', transform=ax4.transAxes,fontweight='bold',bbox=dict(facecolor='none',edgecolor='k')) ax4.text(0.03,0.9,'$\mathbf{c}$',fontsize='24',transform=ax4.transAxes) #----------------------------------------------------------------------------- # Plot RFR Fit ax5.scatter(y_train,RFR_model.predict(X_train),s=10,c='k', label="Training") ax5.scatter(y_test,RFR_model.predict(X_test),s=10,c='b', label="Testing (R${^2}$ = "+ str(round(RFR_model_R2,2))+")") l1 = np.min(ax5.get_xlim()) l2 = np.max(ax5.get_xlim()) ax5.plot([l1,l2], [l1,l2], ls="--", c=".3", zorder=0) ax5.set_xlim([0, RFR_model.predict(scaler.transform(X)) .max()]) ax5.set_xlabel(r'arcsinh(DMS$_{\rmmeasured}$)') # ax5.set_ylabel(r'arcsinh(DMS$_{\rmmodel}$)') ax5.legend(loc='upper center', markerscale=3, fontsize=20, facecolor='none') ax5.text(0.79,0.06,'RFR', transform=ax5.transAxes,fontweight='bold',bbox=dict(facecolor='none',edgecolor='k')) ax5.text(0.03,0.9,'$\mathbf{b}$',fontsize='24',transform=ax5.transAxes) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fig.subplots_adjust(hspace=2) # fig.subplots_adjust(wspace=0.1) # if stacking vertically # fig.savefig(save_to_path+str('Ensemble_performance.png'), dpi=500, transparent=True, bbox_inches='tight') #%% Print summary statistics for fluxes from tabulate import tabulate param_ = 'GM12' headers = ['model', 'mean', 'SD', 'min', 'max'] data = [('RFR',np.nanmean(RFR_flux[param_]), np.nanstd(RFR_flux[param_]),np.nanmin(RFR_flux[param_]),np.nanmax(RFR_flux[param_])), ('ANN',np.nanmean(ANN_flux[param_]), np.nanstd(ANN_flux[param_]),np.nanmin(ANN_flux[param_]),np.nanmax(ANN_flux[param_])), ('L11',np.nanmean(lana_flux[param_]), np.nanstd(lana_flux[param_]),np.nanmin(lana_flux[param_]),np.nanmax(lana_flux[param_])), ('JT16',np.nanmean(jarnikova_flux[param_]), np.nanstd(jarnikova_flux[param_]),np.nanmin(jarnikova_flux[param_]),np.nanmax(jarnikova_flux[param_]))] print(f'\nParmaeterization: {param_}') print(tabulate(data, headers)) param_ = 'SD02' headers = ['model', 'mean', 'SD', 'min', 'max'] data = [('RFR',np.nanmean(RFR_flux[param_]), np.nanstd(RFR_flux[param_]),np.nanmin(RFR_flux[param_]),np.nanmax(RFR_flux[param_])), ('ANN',np.nanmean(ANN_flux[param_]), np.nanstd(ANN_flux[param_]),np.nanmin(ANN_flux[param_]),np.nanmax(ANN_flux[param_])), ('L11',np.nanmean(lana_flux[param_]), np.nanstd(lana_flux[param_]),np.nanmin(lana_flux[param_]),np.nanmax(lana_flux[param_])), ('JT16',np.nanmean(jarnikova_flux[param_]), np.nanstd(jarnikova_flux[param_]),np.nanmin(jarnikova_flux[param_]),np.nanmax(jarnikova_flux[param_]))] print(f'\nParmaeterization: {param_}') print(tabulate(data, headers)) #%% Plot sea-air fluxes - compare climatologies label_size = 32 fig = plt.figure(figsize=(24,38)) font={'family':'DejaVu Sans', 'weight':'normal', 'size':'24'} plt.rc('font', **font) # sets the specified font formatting globally gs = fig.add_gridspec(10, 2) # main plots # Increase resolution of projection - needed to draw polygons accurately map_proj = ccrs.Orthographic(central_latitude=-90.0, central_longitude=0) map_proj._threshold /= 100 ax = fig.add_subplot(gs[0:3, 0], projection=map_proj) ax2 = fig.add_subplot(gs[3:6, 0], projection=map_proj) ax3 = fig.add_subplot(gs[0:3, 1], projection=map_proj) ax4 = fig.add_subplot(gs[3:6, 1], projection=map_proj) # cax = fig.add_subplot(gs[6,0:]) # for colorbar cax = fig.add_axes([ax2.get_position().x0, ax2.get_position().y0-0.05, (ax2.get_position().x1-ax2.get_position().x0)*2+(ax3.get_position().x0-ax2.get_position().x1), 0.02]) ax5 = fig.add_subplot(gs[7:9, 0]) ax6 = fig.add_subplot(gs[9, 0]) ax7 = fig.add_subplot(gs[7:9, 1]) ax8 = fig.add_subplot(gs[9, 1]) vmin=0 vmax=30 #------------------------------------------------------------------------------ # Plot ML fluxes (full climatology) h, ax = South_1ax_map(ax=ax, data=fluxes_combined.groupby(['latbins','lonbins']).mean().unstack('lonbins'), vmin=vmin, vmax=vmax, cmap=cmocean.cm.haline) ax.set_title('Mean ML Predictions \nOct-Apr, 20.0 km') ax.text(-0.05,1,'$\mathbf{a}$',fontsize=label_size,transform=ax.transAxes, zorder=500) #------------------------------------------------------------------------------ # Plot Lana Climatology h2, ax2 = South_1ax_map(ax=ax2, data=lana_flux['GM12'].groupby(['latbins','lonbins']).mean().unstack('lonbins'), vmin=vmin, vmax=vmax, cmap=cmocean.cm.haline) ax2.set_title(f'L11 Climatology \nOct-Apr, {degrees2kilometers(1):.1f} km') ax2.text(-0.05,1,'$\mathbf{c}$',fontsize=label_size,transform=ax2.transAxes, zorder=500) #------------------------------------------------------------------------------ # Plot ML fluxes (full climatology) h, ax3 = South_1ax_map(ax=ax3, data=fluxes_combined.loc[[12,1,2],:,:].groupby(['latbins','lonbins']).mean().unstack('lonbins'), vmin=vmin, vmax=vmax, cmap=cmocean.cm.haline) ax3.set_title('Mean ML Predictions \nDec-Feb, 20.0 km') ax3.text(-0.05,1,'$\mathbf{b}$',fontsize=label_size,transform=ax3.transAxes, zorder=500) #------------------------------------------------------------------------------ # Plot Jarnikova Climatology h5, ax4 = South_1ax_map(ax=ax4, data=jarnikova_flux['GM12'].unstack('lonbins'), vmin=vmin, vmax=vmax, cmap=cmocean.cm.haline) cb = plt.colorbar(h, cax=cax, fraction=0.001, extend='max', orientation='horizontal') cb.set_ticks(np.arange(vmin,vmax+(vmax-vmin)/10,(vmax-vmin)/10)) cb.set_ticklabels(np.arange(vmin,vmax+(vmax-vmin)/10,(vmax-vmin)/10)) cb.set_label(r'DMS flux ($\mathrm{\mu}$mol $\mathrm{m^{-2}}$ $\mathrm{d^{-1}}$)', size=label_size) ax4.set_title(f'JT16 Climatology \nDec-Feb, {degrees2kilometers(1):.1f} km') ax4.text(-0.05,1,'$\mathbf{d}$',fontsize=label_size,transform=ax4.transAxes, zorder=500) #------------------------------------------------------------------------------ # Plot KDEs of flux distributions (ML vs. Lana) max_kde = [] for i in [lana_kde, RFR_kde, ANN_kde]: max_kde.append(i['kde'].max()) max_kde = np.array(max_kde) ax5.plot(RFR_kde['ind'],RFR_kde['kde']/max_kde.max(),'b-', lw=2, label='RFR') ax5.plot(ANN_kde['ind'],ANN_kde['kde']/max_kde.max(),'r-', lw=2, label='ANN') ax5.plot(lana_kde['ind'],lana_kde['kde']/max_kde.max(),c='gray',ls='--', lw=2, label='L11') ax5.set_xlim(0,30) ax5.set_ylim(0,1) ax5.yaxis.set_minor_locator(mpl.ticker.AutoMinorLocator()) ax5.tick_params('both', length=10, width=1, which='major') ax5.tick_params('both', length=5, width=1, which='minor') ax5.set_xticks([]) ax5.legend() ax5.set_ylabel('Probability Density (norm.)') ax5.text(-0.05,1.05,'$\mathbf{e}$',fontsize=label_size,transform=ax5.transAxes, zorder=500) #------------------------------------------------------------------------------ # Plot boxplot of fluxes (ML vs. Lana) labels = ['RFR', 'ANN', 'L11'] bplot1 = ax6.boxplot([RFR_flux['GM12'].dropna(),ANN_flux['GM12'].dropna(),lana_flux['GM12'].dropna()], widths=0.5, vert=False, showfliers=False, patch_artist=True, # fill with color labels=labels) # fill with colors colors = ['blue', 'red', 'gray'] for patch, color in zip(bplot1['boxes'], colors): patch.set_facecolor(color) patch.set_alpha(0.6) for patch in bplot1['medians']: patch.set_color('black') ax6.set_xlim([0,30]) ax6.xaxis.set_minor_locator(mpl.ticker.AutoMinorLocator()) ax6.tick_params('both', length=10, width=1, which='major') ax6.tick_params('both', length=5, width=1, which='minor') ax6.set_xlabel(r"DMS flux ($\mathrm{\mu}$mol $\mathrm{m^{-2}}$ $\mathrm{d^{-1}}$)") ax6.text(-0.05,1.05,'$\mathbf{g}$',fontsize=label_size-2,transform=ax6.transAxes, zorder=1000) #------------------------------------------------------------------------------ # Plot KDEs of flux distributions (ML vs. Jarnikova) - normalized max_kde = [] for i in [jarnikova_kde, RFR_kde_3mon, ANN_kde_3mon]: max_kde.append(i['kde'].max()) max_kde = np.array(max_kde) ax7.plot(RFR_kde_3mon['ind'],RFR_kde_3mon['kde']/max_kde.max(),'b-', lw=2, label='RFR') ax7.plot(ANN_kde_3mon['ind'],ANN_kde_3mon['kde']/max_kde.max(),'r-', lw=2, label='ANN') ax7.plot(jarnikova_kde['ind'],jarnikova_kde['kde']/max_kde.max(),c='darkorange',ls='--', lw=2, label='JT16') ax7.set_xlim(0,30) ax7.set_ylim(0,1) ax7.yaxis.set_minor_locator(mpl.ticker.AutoMinorLocator()) ax7.tick_params('both', length=10, width=1, which='major') ax7.tick_params('both', length=5, width=1, which='minor') ax7.set_xticks([]) ax7.legend() ax7.text(-0.05,1.05,'$\mathbf{f}$',fontsize=label_size,transform=ax7.transAxes, zorder=500) #------------------------------------------------------------------------------ # Plot boxplot of fluxes (ML vs. Jarnikova) labels = ['RFR', 'ANN', 'JT16'] bplot1 = ax8.boxplot([RFR_flux['GM12'].loc[[12,1,2],:,:].dropna(),ANN_flux['GM12'].loc[[12,1,2],:,:].dropna(),jarnikova_flux['GM12'].dropna()], widths=0.5, vert=False, showfliers=False, patch_artist=True, # fill with color labels=labels) # fill with colors colors = ['blue', 'red', 'darkorange'] for patch, color in zip(bplot1['boxes'], colors): patch.set_facecolor(color) patch.set_alpha(0.6) for patch in bplot1['medians']: patch.set_color('black') ax8.set_xlim([0,30]) ax8.xaxis.set_minor_locator(mpl.ticker.AutoMinorLocator()) ax8.tick_params('both', length=10, width=1, which='major') ax8.tick_params('both', length=5, width=1, which='minor') ax8.set_xlabel(r"DMS flux ($\mathrm{\mu}$mol $\mathrm{m^{-2}}$ $\mathrm{d^{-1}}$)") ax8.text(-0.05,1.05,'$\mathbf{h}$',fontsize=label_size-2,transform=ax8.transAxes, zorder=1000) fig.subplots_adjust(hspace=0.5) #%% Map predictions, observations, and deviance label_size = 32 sizing = 24 #------------------------------------------------------------------------------ # set color scale range vmin = 0 vmax = 10 # set deviance scale range dev_vmin = -5 dev_vmax = 5 # colorbar step size dev_step = (dev_vmax-dev_vmin)/10 step = 0.25 #------------------------------------------------------------------------------ # Map the averages # fig = plt.figure(figsize=(36,18)) fig = plt.figure(figsize=(24,24)) font={'family':'DejaVu Sans', 'weight':'normal', 'size':'22'} plt.rc('font', **font) # sets the specified font formatting globally ax = fig.add_subplot(2,2,1, projection=ccrs.Orthographic(central_longitude=0, central_latitude=-90)) ax2 = fig.add_subplot(2,2,2, projection=ccrs.Orthographic(central_longitude=0, central_latitude=-90)) ax3 = fig.add_subplot(2,2,3, projection=ccrs.Orthographic(central_longitude=0, central_latitude=-90)) ax4 = fig.add_subplot(2,2,4, projection=ccrs.Orthographic(central_longitude=0, central_latitude=-90)) #----------------------------------------------------------------------------- #### Map RFR h, ax = South_1ax_map(ax=ax, data=RFR_y_pred_mean.unstack('lonbins'), plottype='mesh', cmap=cmocean.cm.haline, vmin=vmin, vmax=vmax, extend="max", ) newcmap = cmocean.tools.crop_by_percent(cmocean.cm.turbid, 50, which='max', N=None) cs = newcmap(np.linspace(0,1,4)) hs = [] for i,key in enumerate(list(fronts.keys())[:-1]): h = ax.scatter(x=fronts[key].index.get_level_values('lonbins').values, y=fronts[key].index.get_level_values('latbins').values, s=fronts[key].values, color=cs[i], transform=ccrs.PlateCarree()) hs.append(h) ax.legend(handles=hs, labels=fronts.keys(), loc='center', bbox_to_anchor=(0.9,-0.225,0.5,0.5), markerscale=15, prop={'size': 30}) for ha in ax.legend_.legendHandles: ha.set_edgecolor("k") ax.set_title('RFR') ax.text(-0.05,1,'$\mathbf{a}$',fontsize=label_size,transform=ax.transAxes, zorder=500) #----------------------------------------------------------------------------- #### Map ANN h2, ax2 = South_1ax_map(ax=ax2, data=ANN_y_pred_mean.unstack('lonbins'), plottype='mesh', cmap=cmocean.cm.haline, vmin=vmin, vmax=vmax, extend="max", ) newcmap = cmocean.tools.crop_by_percent(cmocean.cm.turbid, 50, which='max', N=None) cs = newcmap(np.linspace(0,1,4)) hs = [] for i,key in enumerate(list(fronts.keys())[:-1]): h = ax2.scatter(x=fronts[key].index.get_level_values('lonbins').values, y=fronts[key].index.get_level_values('latbins').values, s=fronts[key].values, color=cs[i], transform=ccrs.PlateCarree()) hs.append(h) ax2.set_title('ANN') ax2.text(-0.05,1,'$\mathbf{b}$',fontsize=label_size,transform=ax2.transAxes, zorder=500) #----------------------------------------------------------------------------- #### Map deviance norm = mpl.colors.TwoSlopeNorm(vmin=dev_vmin, vcenter=0, vmax=dev_vmax) # scales to accentuate depth colors, and diverge at 0 h3, ax3 = South_1ax_map(ax=ax3, data=(RFR_y_pred_mean-ANN_y_pred_mean).unstack('lonbins'), plottype='mesh', cmap='RdBu', norm=norm, vmin=dev_vmin, vmax=dev_vmax, extend="both", ) ax3.set_title('Deviation') # add colorbar divider = make_axes_locatable(ax3) ax_cb = divider.new_vertical(size="5%", pad=0.2, axes_class=plt.Axes, pack_start=True) fig.add_axes(ax_cb) cb = plt.colorbar(h3, cax=ax_cb, orientation="horizontal") cb.ax.tick_params(labelsize=sizing) cb.set_label('Model Deviation (RFR-ANN, nM)', fontsize=sizing) cb.set_ticks(np.arange(dev_vmin, dev_vmax+dev_step, dev_step)) cb.set_ticklabels(np.arange(dev_vmin, dev_vmax+dev_step, dev_step).astype(int)) ax3.text(-0.05,1,'$\mathbf{c}$',fontsize=label_size,transform=ax3.transAxes, zorder=500) #----------------------------------------------------------------------------- #### Map Observations h4,ax4 = South_1ax_map(ax=ax4, data=np.sinh(y).groupby(['latbins','lonbins']).mean().unstack('lonbins'), s=5, plottype='scatter', cmap=cmocean.cm.haline, vmin=vmin, vmax=vmax, ) ax4.set_title('Obs.') # add colorbar divider = make_axes_locatable(ax4) ax_cb = divider.new_vertical(size="5%", pad=0.2, axes_class=plt.Axes, pack_start=True) fig.add_axes(ax_cb) cb = plt.colorbar(h4, cax=ax_cb, orientation="horizontal", extend='max') cb.ax.tick_params(labelsize=sizing) cb.set_label(r'DMS (nM)', fontsize=sizing) cb.set_ticks(np.arange(vmin, vmax+2, 2)) cb.set_ticklabels(np.arange(vmin, vmax+2, 2)) ax4.text(-0.05,1,'$\mathbf{d}$',fontsize=label_size,transform=ax4.transAxes, zorder=500) #%% Wind speed vs DMS label_size = 32 fig = plt.figure(figsize=(34,24)) font={'family':'DejaVu Sans', 'weight':'normal', 'size':'22'} plt.rc('font', **font) # sets the specified font formatting globally gs = fig.add_gridspec(2, 4) # main plots ax = fig.add_subplot(gs[0:1,0:2], projection=ccrs.Orthographic(central_longitude=0, central_latitude=-90)) ax2 = fig.add_subplot(gs[1:2,0:2], projection=ccrs.Orthographic(central_longitude=0, central_latitude=-90)) ax3 = fig.add_subplot(gs[0:2,2:]) #------------------------------------------------------------------------------ #### Map DMS vmin=0 vmax=10 h, ax = South_1ax_map(ax=ax, data=models_combined.groupby(['latbins','lonbins']).mean().unstack('lonbins'), plottype='mesh', # levels=np.linspace(vmin, vmax, 100), vmin=vmin, vmax=vmax, extend='max', cmap=cmocean.cm.haline, ) h2 = ax.contour(X_full.loc[:,'MLD'].groupby(['latbins','lonbins']).mean().unstack('lonbins').columns.values, X_full.loc[:,'MLD'].groupby(['latbins','lonbins']).mean().unstack('lonbins').index.values, X_full.loc[:,'MLD'].groupby(['latbins','lonbins']).mean().unstack('lonbins').values, levels=[60], colors='w', transform=ccrs.PlateCarree()) ax.clabel(h2) divider = make_axes_locatable(ax) ax_cb = divider.new_vertical(size="5%", pad=0.2, axes_class=plt.Axes, pack_start=True) fig.add_axes(ax_cb) cb = plt.colorbar(h, cax=ax_cb, orientation="horizontal", extend='max') cb.set_ticks(np.arange(vmin,vmax+(vmax-vmin)/10,(vmax-vmin)/10)) cb.set_ticklabels(np.arange(vmin,vmax+(vmax-vmin)/10,(vmax-vmin)/10)) cb.set_label(r'DMS$_{\rmmodel}$ (nM)', size=22) ax.text(-0.05,1,'$\mathbf{a}$',fontsize=label_size,transform=ax.transAxes, zorder=500) #------------------------------------------------------------------------------ #### Map Winds wind_vmin = X_full.loc[:,'wind'].groupby(['latbins','lonbins']).mean().min() wind_vmax = X_full.loc[:,'wind'].groupby(['latbins','lonbins']).mean().max() h3, ax2 = South_1ax_map(ax=ax2, data=X_full.loc[:,'wind'].groupby(['latbins','lonbins']).mean().unstack('lonbins'), plottype='mesh', # levels=np.linspace(wind_vmin, wind_vmax, 100), vmin=wind_vmin, vmax=wind_vmax, cmap='Spectral_r', ) h4 = ax2.contour(X_full.loc[:,'MLD'].groupby(['latbins','lonbins']).mean().unstack('lonbins').columns.values, X_full.loc[:,'MLD'].groupby(['latbins','lonbins']).mean().unstack('lonbins').index.values, X_full.loc[:,'MLD'].groupby(['latbins','lonbins']).mean().unstack('lonbins').values, levels=[60], colors='k', transform=ccrs.PlateCarree()) ax.clabel(h4) divider = make_axes_locatable(ax2) ax_cb = divider.new_vertical(size="5%", pad=0.2, axes_class=plt.Axes, pack_start=True) fig.add_axes(ax_cb) cb = plt.colorbar(h3, cax=ax_cb, orientation="horizontal") cb.set_ticks(np.round(np.arange(2,wind_vmax+1,2),0)) cb.set_ticklabels(np.round(np.arange(2,wind_vmax+1,2),0)) cb.set_label(r'Wind Speed (m $s^{-1}$)', size=22) ax2.text(-0.05,1,'$\mathbf{b}$',fontsize=label_size,transform=ax2.transAxes, zorder=500) #------------------------------------------------------------------------------ #### Bivariate wind speed vs DMS # fit a linear model to the time-averaged data lm = linear_model.LinearRegression().fit(X_full.loc[:,['wind']].groupby(['latbins','lonbins']).mean(), np.log10(models_combined).groupby(['latbins','lonbins']).mean().to_frame()) wind_r2 = lm.score(X_full.loc[:,['wind']].groupby(['latbins','lonbins']).mean(), np.log10(models_combined).groupby(['latbins','lonbins']).mean().to_frame()) wind_preds = lm.predict(X_full.loc[:,['wind']].groupby(['latbins','lonbins']).mean()) # Plot the data cbaxes = inset_axes(ax3, width="30%", height="3%", loc='lower left', bbox_to_anchor=(0.03, 0.06, 0.99, 0.9), bbox_transform=ax3.transAxes) ax3.scatter(X_full.loc[:,'wind'].groupby(['latbins','lonbins']).mean(), np.log10(models_combined.groupby(['latbins','lonbins']).mean()), # models_combined.groupby(['latbins','lonbins']).mean(), s=2, color='k', marker='.') h = sns.histplot(x=X_full.loc[:,'wind'].groupby(['latbins','lonbins']).mean(), y=np.log10(models_combined.groupby(['latbins','lonbins']).mean()), stat='density', bins=100, pthresh=.1, cmap="mako", ax=ax3, cbar=True, cbar_ax=cbaxes, cbar_kws={'orientation':'horizontal'}, zorder=2) # set name and fontsizes of colorbar h.figure.axes[-1].set_xlabel('Counts', size=22) h.figure.axes[-1].tick_params(labelsize=22) ax3.plot(X_full.loc[:,['wind']].groupby(['latbins','lonbins']).mean().values, wind_preds, 'r-', zorder=3) ax3.set_ylabel(r'log$_{10}$(DMS$_{\rmmodel}$)') ax3.set_xlabel('Wind Speed (m s$^{-1}$)') ax3.set_xlim(X_full.loc[:,'wind'].groupby(['latbins','lonbins']).mean().min(), X_full.loc[:,'wind'].groupby(['latbins','lonbins']).mean().max()+2) ax3.set_ylim(np.log10(1),np.log10(models_combined.groupby(['latbins','lonbins']).mean().max())) # Format ticks ax3.tick_params('both', length=10, width=1, which='major') ax3.tick_params('both', length=8, width=1, which='minor') ax3.set_xscale('linear') ax3.get_yaxis().set_major_formatter(mpl.ticker.ScalarFormatter()) ax3.text(-0.05,1,'$\mathbf{c}$',fontsize=label_size,transform=ax3.transAxes, zorder=500) #------------------------------------------------------------------------------ #### Miniplot of winds vs. DMS observations # Define mini axes to plot in left, bottom, width, height = [0.74, 0.66, 0.15, 0.2] ax4 = fig.add_axes([left, bottom, width, height]) # Bin data binned = pd.concat([X.loc[:,'wind'],np.log10(np.sinh(y))], axis=1) wind_binned = binned.groupby(pd.cut(binned['wind'], np.arange(4,12,1))).mean() wind_binned_std = binned.groupby(pd.cut(binned['wind'], np.arange(4,12,1))).std() # Plot scatter of observations ax4.errorbar(wind_binned['wind'], wind_binned['DMS'], yerr=wind_binned_std['DMS'], capsize=3, elinewidth=2, ecolor='k', ls='None', marker='.', mfc='k', mec='k', ms=15) # Plot the binned data ax4.scatter(X.loc[:,'wind'].groupby(['latbins','lonbins']).mean(), np.log10(np.sinh(y).groupby(['latbins','lonbins']).mean()), s=2, color='gray', marker='.') # Fit linear model, plot line of best fit lm = linear_model.LinearRegression().fit(wind_binned[['wind']],wind_binned[['DMS']]) wind_r22 = lm.score(wind_binned[['wind']],wind_binned[['DMS']]) ax4.plot(binned['wind'], lm.predict(binned[['wind']]), 'r-', zorder=3) # Format axis labels and ticks ax4.set_ylabel(r'log$_{10}$(DMS$_{\rmobs}$)', fontsize=18) ax4.set_xlabel('Wind Speed (m s$^{-1}$)', fontsize=18) ax4.set_xlim(X.loc[:,'wind'].groupby(['latbins','lonbins']).mean().min(), X.loc[:,'wind'].groupby(['latbins','lonbins']).mean().max()) ax4.set_ylim(np.log10(0.1),np.log10(np.sinh(y).groupby(['latbins','lonbins']).mean().max())) ax4.tick_params('both', length=10, width=1, which='major') ax4.tick_params('both', length=8, width=1, which='minor') ax4.set_xlim(2.5,12.5) ax4.get_yaxis().set_major_formatter(mpl.ticker.ScalarFormatter()) print(wind_r2) print(wind_r22) # fig.subplots_adjust(wspace=0.1) #%% Map DMS, ice, Si* label_size = 32 fig = plt.figure(figsize=(24,12)) font={'family':'DejaVu Sans', 'weight':'normal', 'size':'22'} plt.rc('font', **font) # sets the specified font formatting globally ax = fig.add_subplot(1,2,1, projection=ccrs.Orthographic(central_longitude=0, central_latitude=-90)) ax2 = fig.add_subplot(1,2,2, projection=ccrs.Orthographic(central_longitude=0, central_latitude=-90)) vmin=0 vmax=10 front_color = 'magenta' #------------------------------------------------------------------------------ #### Mean DMS h, ax = South_1ax_map(ax=ax, data=models_combined.groupby(['latbins','lonbins']).mean().unstack('lonbins'), plottype='mesh', # levels=np.linspace(vmin, vmax, 100), vmin=vmin, vmax=vmax, extend='max', cmap=cmocean.cm.haline, ) h2 = ax.contour(X_full_plus.loc[:,'Si_star'].groupby(['latbins','lonbins']).mean().unstack('lonbins').columns.values, X_full_plus.loc[:,'Si_star'].groupby(['latbins','lonbins']).mean().unstack('lonbins').index.values, X_full_plus.loc[:,'Si_star'].groupby(['latbins','lonbins']).mean().unstack('lonbins').values, levels=[-10,0,20,40,50], colors='w', # linewidths=1, transform=ccrs.PlateCarree()) ax.clabel(h2, fontsize=20) divider = make_axes_locatable(ax) ax_cb = divider.new_vertical(size="5%", pad=0.2, axes_class=plt.Axes, pack_start=True) fig.add_axes(ax_cb) cb = plt.colorbar(h, cax=ax_cb, orientation="horizontal", extend='max') cb.set_ticks(np.arange(vmin,vmax+(vmax-vmin)/10,(vmax-vmin)/10)) cb.set_ticklabels(np.arange(vmin,vmax+(vmax-vmin)/10,(vmax-vmin)/10)) cb.set_label(r'DMS$_{\rmmodel}$ (nM)', size=22) ax.text(-0.05,1,'$\mathbf{a}$',fontsize=label_size,transform=ax.transAxes, zorder=500) # #------------------------------------------------------------------------------ #### Ice newcmap = cmocean.tools.crop_by_percent(cmocean.cm.ice, 20, which='min', N=None) h3, ax2 = South_1ax_map(ax=ax2, data=(X_full.loc[:,'ice']/X_full.loc[:,'ice'].max()).groupby(['latbins','lonbins']).mean().unstack('lonbins'), plottype='mesh', # levels=np.linspace(0, X_full.loc[:,'ice'].groupby(['latbins','lonbins']).mean().max(), 100), vmin=0, vmax=(X_full.loc[:,'ice']/X_full.loc[:,'ice'].max()).groupby(['latbins','lonbins']).mean().max()-0.5, cmap=newcmap, ) divider = make_axes_locatable(ax2) ax_cb = divider.new_vertical(size="5%", pad=0.2, axes_class=plt.Axes, pack_start=True) fig.add_axes(ax_cb) cb = plt.colorbar(h3, cax=ax_cb, orientation="horizontal", extend='max') cb.set_label(r'Fraction of Sea Ice Coverage', size=22) ax2.text(-0.05,1,'$\mathbf{b}$',fontsize=label_size,transform=ax2.transAxes, zorder=500) #------------------------------------------------------------------------------ #%% Temporal Correlations (Per Pixel) if first_run == True: # pull out dates into columns - do this before the loops to speed up computations DMS_indexed = models_combined.unstack('datetime') vars_indexed = X_full.unstack('datetime') # create an empty list corrs_by_date = [] # now iterate by predictor, computing correlations per coordinate over time (i.e. per row) for i,var_ in enumerate(X_full.columns): for j in tqdm(range(len(DMS_indexed))): corrs_by_date.append(spearmanr(DMS_indexed.iloc[j,:], vars_indexed.loc[:,var_].iloc[j,:])[0]) if i == 0: corr_matrix = pd.Series(np.array(corrs_by_date), index=DMS_indexed.index, name=var_) else: iterated_var = pd.Series(np.array(corrs_by_date), index=DMS_indexed.index, name=var_) corr_matrix = pd.concat([corr_matrix, iterated_var], axis=1) corrs_by_date = [] corr_matrix.to_csv(write_dir[:69]+'/'+'point_correlation_map_data.csv') del DMS_indexed, vars_indexed else: corr_matrix = pd.read_csv(write_dir[:69]+'/'+'point_correlation_map_data.csv',index_col=[0,1], header=[0]) #%% Map correlations sizing = 24 vmin = -1 vmax = 1 # Map predictors for var in corr_matrix.columns: if var == 'PAR': fig = plt.figure(figsize=(18,18)) font={'family':'DejaVu Sans', 'weight':'normal', 'size':'22'} plt.rc('font', **font) # sets the specified font formatting globally gs = fig.add_gridspec(1, 1) # main plots ax = fig.add_subplot(gs[0,0], projection=ccrs.Orthographic(central_longitude=0, central_latitude=-90)) norm = mpl.colors.TwoSlopeNorm(vmin=vmin, vcenter=0, vmax=vmax) # scales to accentuate depth colors, and diverge at 0 h, ax = South_1ax_map(ax=ax, data=corr_matrix.loc[:,var].unstack('lonbins'), # data=corrs_to_map.loc[:,var].unstack('lonbins'), plottype='mesh', vmin=vmin, vmax=vmax, cmap='RdBu_r', norm=norm, ) divider = make_axes_locatable(ax) ax_cb = divider.new_vertical(size="5%", pad=0.2, axes_class=plt.Axes, pack_start=True) fig.add_axes(ax_cb) cb = plt.colorbar(h, cax=ax_cb, orientation="horizontal") cb.ax.tick_params(labelsize=sizing) cb.set_label(var, fontsize=sizing) cb.set_ticks(np.arange(vmin, vmax, np.round(((vmax-vmin)/10),2))) # cb.set_ticklabels(np.arange(vmin, vmax+np.round(((vmax-vmin)/10),2), np.round(((vmax-vmin)/10),2))) #%% PCA #### Setup PCA PCA_input = models_combined.unstack('datetime').T.reindex(index=reordered_months).dropna(axis=1) # transpose so eigenvectors are in space PCA_scaler = StandardScaler() PCA_scaler.fit(PCA_input.values) data_norm = pd.DataFrame(PCA_scaler.transform(PCA_input.values), index=PCA_input.index, columns=PCA_input.columns) #### Apply IPCA - runs PCA incrementally to reduce memory consumption n_modes = np.min(np.shape(data_norm)) pca = IncrementalPCA(n_components = n_modes, batch_size=1000) PCs = -1*pca.fit_transform(data_norm) eigvecs = -1*pca.components_ fracVar = pca.explained_variance_ratio_ #### Plot Fraction of Variance per Mode plt.figure(figsize=(18,12)) font={'family':'DejaVu Sans', 'weight':'normal', 'size':'22'} plt.rc('font', **font) # sets the specified font formatting globally plt.subplot(1,1,1) plt.plot(range(1,len(fracVar)+1),fracVar,'k--o',ms=10) plt.xlabel('Mode Number') plt.ylabel('Fraction Variance Explained') plt.title('Variance Explained by All Modes') plt.tight_layout() plt.show() #### Plot PCA spatial and temporal patterns # choose number of modes to plot n = 2 fig = plt.figure(figsize=(13*n,30)) font={'family':'DejaVu Sans', 'weight':'normal', 'size':'22'} plt.rc('font', **font) # sets the specified font formatting globally for k in range(n): kPCs = PCs[:,k] if k==0: kPCs = -1*kPCs ax = fig.add_subplot(3,n,k+1) ax.plot(range(len(reordered_months)),kPCs,'k--') ax.scatter(range(len(reordered_months)), kPCs, s=300, c=PCs[:,k], edgecolors='k', cmap='RdBu_r', vmin=-600, vmax=700, zorder=10) ax.set_xticks(range(len(reordered_months))) ax.set_xticklabels(['Oct','Nov','Dec','Jan','Feb','Mar','Apr']) ax.set_ylim(-600,700) ax.set_title('PCs of Mode #' + str(k+1)) ax.set_xlabel('Month') ax.text(0.05, 0.9, f'Variance = {fracVar[k]*100:.2f}%', transform=ax.transAxes, fontsize=22, va='center', ha='left', ma='left', zorder=500) norm = mpl.colors.TwoSlopeNorm(vmin=eigvecs[:n,:].min(), vcenter=0, vmax=eigvecs[:n,:].max()) # scales to accentuate depth colors, and diverge at 0 ax2 = fig.add_subplot(3,n,(n)+k+1,projection=ccrs.Orthographic(central_longitude=0, central_latitude=-90)) keigvecs = pd.DataFrame(eigvecs[k,:].T, index=PCA_input.columns).squeeze() if k==0: keigvecs = -1*keigvecs h, ax2 = South_1ax_map(ax=ax2, data=keigvecs.unstack('lonbins'), plottype='mesh', vmin=eigvecs[:n,:].min(), vmax=eigvecs[:n,:].max(), norm=norm, cmap='RdBu_r', ) ax2.set_title('Eigenvectors of Mode #' + str(k+1)) if k == 1: divider = make_axes_locatable(ax2) ax_cb = divider.new_horizontal(size="5%", pad=0.6, axes_class=plt.Axes) fig.add_axes(ax_cb) cb1 = plt.colorbar(h, cax=ax_cb) cb1.ax.tick_params(labelsize=20) cb1.set_ticks(np.linspace(np.round(eigvecs[:n,:].min(),3),np.round(eigvecs[:n,:].max(),3),5)) cb1.set_label('$\it{v}$', fontsize=20) ax2.scatter(x=fronts['PF'].index.get_level_values('lonbins').values, y=fronts['PF'].index.get_level_values('latbins').values, s=fronts['PF'].values, c='k', transform=ccrs.PlateCarree()) ax3 = fig.add_subplot(3,n,(2*n)+k+1,projection=ccrs.Orthographic(central_longitude=0, central_latitude=-90)) names = ['MLD','SST','SAL'] h2, ax3 = South_1ax_map(ax=ax3, data=corr_matrix.loc[:,names[k]].unstack('lonbins'), plottype='mesh', vmin=-1, vmax=1, cmap='RdBu_r', ) ax3.set_title(names[k]) if k == 1: divider = make_axes_locatable(ax3) ax_cb = divider.new_horizontal(size="5%", pad=0.6, axes_class=plt.Axes) fig.add_axes(ax_cb) cb1 = plt.colorbar(h2, cax=ax_cb) cb1.ax.tick_params(labelsize=20) cb1.set_label(r'$\rho$', fontsize=20) ax3.scatter(x=fronts['PF'].index.get_level_values('lonbins').values, y=fronts['PF'].index.get_level_values('latbins').values, s=fronts['PF'].values, c='k', transform=ccrs.PlateCarree()) fig.subplots_adjust(hspace=0.2) #%% Plot Mesoscale variability at Kerguelen Region label_size = 32 fig = plt.figure(figsize=(40,22)) font={'family':'DejaVu Sans', 'weight':'normal', 'size':'24'} plt.rc('font', **font) # sets the specified font formatting globally gs = fig.add_gridspec(4, 5) # main plots # Increase resolution of projection - needed to draw polygons accurately map_proj = ccrs.Orthographic(central_latitude=-90.0, central_longitude=0) map_proj._threshold /= 100 ax = fig.add_subplot(gs[0:3, 0:2], projection=map_proj) ax3 = fig.add_subplot(gs[0:2, 2:5], projection=ccrs.PlateCarree()) ax4 = fig.add_subplot(gs[2:5, 2:5], projection=ccrs.PlateCarree()) ax5 = fig.add_subplot(gs[3, 0], projection=ccrs.PlateCarree()) ax6 = fig.add_subplot(gs[3, 1], projection=ccrs.PlateCarree()) #------------------------------------------------------------------------------ extent = [60, 90, -54, -40] newextent = [67, 77, -54, -46] month = 1 #------------------------------------------------------------------------------ #### Plot SSHA correlations h, ax = South_1ax_map(ax=ax, data=corr_matrix.loc[:,'SSHA'].unstack('lonbins'), # data=corr_matrix.loc[:,'SSHA'].where((corr_matrix.loc[:,'SSHA']>0.5) | (corr_matrix.loc[:,'SSHA']<-0.5)).unstack('lonbins'), plottype='mesh', vmin=corr_matrix.loc[:,'SSHA'].unstack('lonbins').loc[extent[2]:extent[3],extent[0]:extent[1]].min().min(), vmax=corr_matrix.loc[:,'SSHA'].unstack('lonbins').loc[extent[2]:extent[3],extent[0]:extent[1]].max().max(), cmap='RdBu_r') ax.gridlines(draw_labels=True, lw=3, color="k", y_inline=True, xlocs=range(-180,180,30), ylocs=range(-80,91,10), zorder=50, ) divider = make_axes_locatable(ax) ax_cb = divider.new_vertical(size="5%", pad=0.12, axes_class=plt.Axes, pack_start=True) fig.add_axes(ax_cb) cb1 = plt.colorbar(h, cax=ax_cb, orientation='horizontal') cb1.ax.tick_params(labelsize=20) cb1.set_label(r'$\rho$(DMS, SSHA)', fontsize=20) ax.text(-0.05,1,'$\mathbf{a}$',fontsize=label_size,transform=ax.transAxes, zorder=500) def custom_mark_zoom(axA, axB, direction='right', extent=None, fc=None, ec='k', alpha=1, transform=None): # starting point: # https://stackoverflow.com/questions/51268493/drawing-filled-shapes-between-different-axes-in-matplotlib import matplotlib.patches as patches import numpy as np import matplotlib as mpl xx = [extent[0], extent[1]] yy = [extent[2], extent[3]] xy = (xx[0], yy[0]) width = xx[1] - xx[0] height = yy[1] - yy[0] xyB1 = (0,1) xyB2 = (0,0) xyA1 = transform.transform_point(60,-40,ccrs.PlateCarree()) xyA2 = transform.transform_point(90,-40,ccrs.PlateCarree()) coordsA='data' coordsB='axes fraction' # First mark the patch in the main axes pp = axA.add_patch(patches.Rectangle(xy, width, height, fc=fc, ec=ec, zorder=5, alpha=alpha, transform=ccrs.PlateCarree())) # Add a second identical patch w/o alpha & face color (i.e. make the edge color dark) pp = axA.add_patch(patches.Rectangle(xy, width, height, fc='None', ec=ec, lw=2, zorder=5, transform=ccrs.PlateCarree())) # now draw an anchor line to the zoomed in axis p1 = axA.add_patch(patches.ConnectionPatch( xyA=xyA1, xyB=xyB1, coordsA=coordsA, coordsB=coordsB, axesA=axA, axesB=axB)) # draw a 2nd anchor line to the zoomed in axes p2 = axA.add_patch(patches.ConnectionPatch( xyA=xyA2, xyB=xyB2, coordsA=coordsA, coordsB=coordsB, axesA=axA, axesB=axB)) return pp, p1, p2 # add the connection lines and shading pp, p1, p2 = custom_mark_zoom(ax, ax3, direction='right', extent=[60, 90, -54, -40], fc='gray', alpha=0.5, transform=map_proj) #------------------------------------------------------------------------------ #### Plot DMS subregion h2, ax3, gl = South_1ax_flat_map(ax=ax3, data=models_combined.loc[month].unstack('lonbins'), plottype='mesh', # levels=100, vmin=0, vmax=10, # cmap='viridis', cmap=cmocean.cm.haline, extent=extent) gl.bottom_labels = False var = 'SSHA' h0 = ax3.contour(X_full.loc[:,var].loc[month].unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].columns.values, X_full.loc[:,var].loc[month].unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].index.values, X_full.loc[:,var].loc[month].unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].values, levels=[-0.25,-0.2,-0.15,-0.1,-0.05,0.05,0.1,0.15,0.2,0.25], # levels=10, colors='k', linewidths=0.5, transform=ccrs.PlateCarree()) ax3.clabel(h0, fontsize=10) # Plot PF and SAF fronts ax3.plot(front_data.LonPF.values, front_data.LatPF.values, 'r-', linewidth=3, transform=ccrs.PlateCarree()) ax3.plot(front_data.LonSAF.values, front_data.LatSAF.values, 'w-', linewidth=3, transform=ccrs.PlateCarree()) # Contour topography h01 = ax3.contour(etopo.unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].columns.values, etopo.unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].index.values, etopo.unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].values, levels=[-1500], colors='w', linestyles='dashed', linewidths=2, transform=ccrs.PlateCarree()) for c in h01.collections: c.set_dashes([(0, (2.0, 5.0))]) ax3.set_title(f'Kerguelen Plateau ({var_months_[month]})') divider = make_axes_locatable(ax3) ax_cb = divider.new_horizontal(size="5%", pad=0.2, axes_class=plt.Axes) fig.add_axes(ax_cb) cb1 = plt.colorbar(h2, cax=ax_cb, extend='max') cb1.ax.tick_params(labelsize=20) cb1.set_label(r'DMS$_{\rmmodel}$ (nM)') # Add legend from matplotlib.patches import Patch from matplotlib.lines import Line2D legend_elements = [Line2D([0], [0], color='r', label='Polar Front (PF)'), Line2D([0], [0], color='w', label='Southern Antarctic Front (SAF)'), ] ax3.legend(handles=legend_elements, loc='lower left',framealpha=0.7) ax3.text(-0.05,1,'$\mathbf{b}$',fontsize=label_size,transform=ax3.transAxes, zorder=500) #------------------------------------------------------------------------------ #### Plot 2nd variable for subregion mapvar = 'chl' h3, ax4, _ = South_1ax_flat_map(ax=ax4, data=X_full.loc[:,mapvar].loc[month].unstack('lonbins'), plottype='mesh', # levels=100, vmin=X_full.loc[:,mapvar].loc[1,extent[2]-3:extent[3],extent[0]:extent[1]].min(), vmax=X_full.loc[:,mapvar].loc[1,extent[2]-3:extent[3],extent[0]:extent[1]].max(), cmap=cmocean.cm.thermal, extent=extent) var = 'SSHA' h0 = ax4.contour(X_full.loc[:,var].loc[month].unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].columns.values, X_full.loc[:,var].loc[month].unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].index.values, X_full.loc[:,var].loc[month].unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].values, levels=[-0.25,-0.2,-0.15,-0.1,-0.05,0.05,0.1,0.15,0.2,0.25], # levels=15, colors='w', linewidths=0.5, transform=ccrs.PlateCarree()) ax4.clabel(h0, fontsize=10) # mark the inset box ax4.add_patch(mpl.patches.Rectangle(xy=(newextent[0], newextent[2]), width=newextent[1]-newextent[0], height=newextent[3]-newextent[2], ec='r', linestyle='-', lw=4, fill=False, alpha=1, zorder=1000, transform=ccrs.PlateCarree())) divider = make_axes_locatable(ax4) ax_cb = divider.new_horizontal(size="5%", pad=0.2, axes_class=plt.Axes) fig.add_axes(ax_cb) cb1 = plt.colorbar(h3, cax=ax_cb, extend='both') cb1.ax.tick_params(labelsize=20) cb1.set_label(r'chl-a (mg m$^{-3}$)') # Plot PF and SAF fronts h0 = ax4.plot(front_data.LonPF.values, front_data.LatPF.values, 'r-', linewidth=3, transform=ccrs.PlateCarree()) h0 = ax4.plot(front_data.LonSAF.values, front_data.LatSAF.values, 'w-', linewidth=3, transform=ccrs.PlateCarree()) # Contour topography h01 = ax4.contour(etopo.unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].columns.values, etopo.unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].index.values, etopo.unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].values, levels=[-1500], colors='w', linestyles='dashed', linewidths=2, transform=ccrs.PlateCarree()) for c in h01.collections: c.set_dashes([(0, (2.0, 5.0))]) ax4.text(-0.05,1,'$\mathbf{c}$',fontsize=label_size, transform=ax4.transAxes, zorder=500) #------------------------------------------------------------------------------ #### Plot CDOM over plateau h2, ax5, _ = South_1ax_flat_map(ax=ax5, data=X_full.loc[month,'CDOM'].unstack('lonbins'), plottype='mesh', cmap=cmocean.cm.thermal, vmin=np.nanmin(X_full.loc[month,'CDOM'].loc[newextent[2]:newextent[3],newextent[0]:newextent[1]]), vmax=np.nanmax(X_full.loc[month,'CDOM'].loc[newextent[2]:newextent[3],newextent[0]:newextent[1]]), extent=newextent ) divider = make_axes_locatable(ax5) ax_cb = divider.new_horizontal(size="5%", pad=0.2, axes_class=plt.Axes) fig.add_axes(ax_cb) cb1 = plt.colorbar(h2, cax=ax_cb, extend='both') cb1.ax.tick_params(labelsize=20) cb1.set_label(r'a$_{443}$ (m$^{-1}$)') # Plot PF and SAF fronts h0 = ax5.plot(front_data.LonPF.values, front_data.LatPF.values, 'r-', linewidth=3, transform=ccrs.PlateCarree()) h0 = ax5.plot(front_data.LonSAF.values, front_data.LatSAF.values, 'w-', linewidth=3, transform=ccrs.PlateCarree()) # Contour topography h01 = ax5.contour(etopo.unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].columns.values, etopo.unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].index.values, etopo.unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].values, levels=[-1500], colors='w', linestyles='dashed', linewidths=2, transform=ccrs.PlateCarree()) for c in h01.collections: c.set_dashes([(0, (2.0, 5.0))]) ax5.text(-0.1,1,'$\mathbf{d}$',fontsize=label_size,transform=ax5.transAxes, zorder=500) #------------------------------------------------------------------------------ #### Plot SSN over plateau h2, ax6, gl = South_1ax_flat_map(ax=ax6, data=X_full.loc[month,'SSN'].unstack('lonbins'), plottype='mesh', cmap=cmocean.cm.thermal, vmin=np.nanmin(X_full.loc[month,'SSN'].loc[newextent[2]:newextent[3],newextent[0]:newextent[1]]), vmax=np.nanmax(X_full.loc[month,'SSN'].loc[newextent[2]:newextent[3],newextent[0]:newextent[1]]), extent=newextent ) gl.left_labels = False divider = make_axes_locatable(ax6) ax_cb = divider.new_horizontal(size="5%", pad=0.2, axes_class=plt.Axes) fig.add_axes(ax_cb) cb1 = plt.colorbar(h2, cax=ax_cb, extend='both') cb1.ax.tick_params(labelsize=20) cb1.set_label(r'SSN ($\mathrm{\mu}$mol $\mathrm{kg^{-1}}$)') # Plot PF and SAF fronts h0 = ax6.plot(front_data.LonPF.values, front_data.LatPF.values, 'r-', linewidth=3, transform=ccrs.PlateCarree()) h0 = ax6.plot(front_data.LonSAF.values, front_data.LatSAF.values, 'w-', linewidth=3, transform=ccrs.PlateCarree()) # Contour topography h01 = ax6.contour(etopo.unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].columns.values, etopo.unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].index.values, etopo.unstack('lonbins').loc[extent[2]-3:extent[3],extent[0]:extent[1]].values, levels=[-1500], colors='w', linestyles='dashed', linewidths=2, transform=ccrs.PlateCarree()) for c in h01.collections: c.set_dashes([(0, (2.0, 5.0))]) ax5.text(-0.1,1,'$\mathbf{e}$',fontsize=label_size,transform=ax6.transAxes, zorder=500) fig.subplots_adjust(hspace=0.3) #%% Spatial Correlations # Use spearman rank to assess non-linear relationships X_full_plus = X_full.copy() X_full_plus['Si_star'] = Si_star X_plus = X.copy() X_plus['Si_star'] = (X.loc[:,'Si']-X.loc[:,'SSN']).squeeze() #----------------------------------------------------------------------------- #### RFR correlations rhos = [] pvals = [] names = X_full_plus.columns.values for i in range(len(X_full_plus.columns.values)): rho, pval = spearmanr(X_full_plus.iloc[:,i].values,np.sinh(RFR_y_pred.values)) rhos.append(rho) pvals.append(pval) RFR_correlations = pd.concat([pd.Series(names),pd.Series(rhos),pd.Series(np.array(rhos)**2),pd.Series(pvals)], axis=1) RFR_correlations.columns = ['Variable','rho','R2','p-value'] RFR_correlations.set_index('Variable', inplace=True) # RFR_correlations = RFR_correlations.reindex(RFR_correlations.rho.abs().sort_values(ascending=False).index) #----------------------------------------------------------------------------- #### ANN correlations rhos = [] pvals = [] names = X_full_plus.columns.values for i in range(len(X_full_plus.columns.values)): rho, pval = spearmanr(X_full_plus.iloc[:,i].values,np.sinh(ANN_y_pred.values)) rhos.append(rho) pvals.append(pval) ANN_correlations = pd.concat([pd.Series(names),pd.Series(rhos),pd.Series(np.array(rhos)**2),pd.Series(pvals)], axis=1) ANN_correlations.columns = ['Variable','rho','R2','p-value'] ANN_correlations.set_index('Variable', inplace=True) # ANN_correlations = ANN_correlations.reindex(ANN_correlations.rho.abs().sort_values(ascending=False).index) #------------------------------------------------------------------------------ #### Raw Data rhos = [] pvals = [] names = X_plus.columns.values for i in range(len(X_plus.columns.values)): rho, pval = spearmanr(X_plus.iloc[:,i].values,np.sinh(y.values)) rhos.append(rho) pvals.append(pval) correlations = pd.concat([pd.Series(names),pd.Series(rhos),pd.Series(np.array(rhos)**2),pd.Series(pvals)], axis=1) correlations.columns = ['Variable','rho','R2','p-value'] correlations.set_index('Variable', inplace=True) # correlations = correlations.reindex(correlations.rho.abs().sort_values(ascending=False).index) #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ print(RFR_correlations) print(ANN_correlations) print(correlations) #------------------------------------------------------------------------------ corr_mat = pd.concat([correlations['rho'],RFR_correlations['rho'],ANN_correlations['rho']],axis=1) corr_mat.columns=['Obs.','RFR','ANN'] corr_mat=corr_mat.T #### Plot heatmap fig = plt.figure(figsize=(24,24)) font = {'family' : 'DejaVu Sans', 'weight' : 'normal', 'size' : 22} mpl.rc('font', **font) ax = fig.add_subplot(111) # Set up diverging colormaps... # colors1 = plt.cm.gist_heat(np.linspace(0, 1, 128)) # colors2 = plt.cm.gist_heat_r(np.linspace(0, 1, 128)) colors1 = plt.cm.Blues_r(np.linspace(0, 1, 128)) colors2 = plt.cm.Reds(np.linspace(0, 1, 128)) # ...combine them and build a new colormap colors = np.vstack((colors1, colors2)) cmap = mpl.colors.LinearSegmentedColormap.from_list('my_colormap', colors) # normalize cmap to diverge at 0 norm = mpl.colors.TwoSlopeNorm(vmin=-0.4, vcenter=0, vmax=0.4) # plot data im = ax.imshow(corr_mat, cmap=cmap, norm=norm) # We want to show all ticks... ax.set_xticks(np.arange(len(corr_mat.columns.values))) ax.set_yticks(np.arange(len(corr_mat.index.values))) # ... and label them with the respective list entries ax.set_xticklabels(corr_mat.columns.values) ax.set_yticklabels(corr_mat.index.values) # Rotate the tick labels and set their alignment plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") # Loop over data dimensions and create text annotations for i in range(len(corr_mat.index.values)): for j in range(len(corr_mat.columns.values)): if corr_mat.iloc[i, j]<0.1 and corr_mat.iloc[i, j]>-0.1: text = ax.text(j, i, round(corr_mat.iloc[i, j], ndigits=2), ha="center", va="center", color="k") else: text = ax.text(j, i, round(corr_mat.iloc[i, j], ndigits=2), ha="center", va="center", color="w") ax.set_title(r'Spearman Rank Correlations ($\rho$)') # plt.colorbar(im, ax=ax, shrink=0.2) divider = make_axes_locatable(ax) ax_cb2 = divider.new_horizontal(size="3%", pad=0.2, axes_class=plt.Axes) fig.add_axes(ax_cb2) cb2 = plt.colorbar(im, cax=ax_cb2) cb2.ax.tick_params(labelsize=20) cb2.set_label(r'$\rho$') # fig.savefig(save_to_path+str('heatmap.png'), dpi=500, transparent=True, bbox_inches='tight')
"""Invoice views""" # Django REST Framework from rest_framework import mixins, viewsets, status from rest_framework.generics import get_object_or_404 from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated # Serializers from bugal.invoices.serializers import InvoiceModelSerializer # Models from bugal.base.models import Contact, Invoice # Permissions from ..permissions import IsAccountOwner class InvoiceViewSet( mixins.CreateModelMixin, mixins.ListModelMixin, mixins.RetrieveModelMixin, mixins.UpdateModelMixin, viewsets.GenericViewSet ): """Client view set.""" queryset = Invoice.objects.all() serializer_class = InvoiceModelSerializer permission_classes = (IsAuthenticated, IsAccountOwner) def get_object(self): """Retrieve and return authenticated user""" return self.request.user def get_queryset(self): """Return objects for the current authenticated user only""" queryset = Invoice.objects.filter(user=self.request.user) return queryset def retrieve(self, request, *args, **kwargs): """Add extra data to the response.""" instance = Contact.objects.filter(user=self.request.user, id=int(kwargs['pk'])).first() serializer = self.get_serializer(instance, data=request.data, partial=True) serializer.is_valid(raise_exception=True) return Response(serializer.data) def perform_create(self, serializer): """Create a new Client.""" serializer.save(user=self.request.user) def partial_update(self, request, *args, **kwargs): """Update Invoice""" instance = Invoice.objects.filter(user=self.request.user, id=int(kwargs['pk'])).first() serializer = self.get_serializer(instance, data=request.data, partial=True) serializer.is_valid(raise_exception=True) print("\nInstance: {0}\n".format(instance)) print("\nValid: {0}\n".format(serializer.is_valid)) serializer.save() return Response({'success': True}, status=status.HTTP_200_OK)
# Copyright 2004-2008 Roman Yakovenko. # Distributed under the Boost Software License, Version 1.0. (See # accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) """ This file contains indexing suite v2 code """ file_name = "indexing_suite/element_proxy_traits.hpp" code = """// Copyright (c) 2003 Raoul M. Gough // // Use, modification and distribution is subject to the Boost Software // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy // at http://www.boost.org/LICENSE_1_0.txt) // // Header file element_proxy_traits.hpp // // Note: element_proxy.hpp must be included before this header // // This is a separate header so that element_proxy.hpp is not // dependant on register_ptr_to_python.hpp. This avoids a problem with // two-phase name lookup, where register_ptr_to_python must be // included *after* the element_proxy overload of boost::get_pointer // is declared. // // History // ======= // 2003/10/23 rmg File creation // 2008/12/08 Roman Change indexing suite layout // // $Id: element_proxy_traits.hpp,v 1.1.2.5 2003/12/05 17:36:14 raoulgough Exp $ // #ifndef BOOST_PYTHON_INDEXING_ELEMENT_PROXY_TRAITS_HPP #define BOOST_PYTHON_INDEXING_ELEMENT_PROXY_TRAITS_HPP #include <indexing_suite/element_proxy.hpp> #include <indexing_suite/value_traits.hpp> #include <boost/python/register_ptr_to_python.hpp> #include <boost/python/implicit.hpp> namespace boost { namespace python { namespace indexing { template<typename ContainerProxy> struct element_proxy_traits : public value_traits< BOOST_DEDUCED_TYPENAME ContainerProxy::raw_value_type> { typedef element_proxy<ContainerProxy> element_proxy_type; typedef typename ContainerProxy::raw_value_type raw_value_type; typedef value_traits<raw_value_type> base_type; // Wrap the base class versions of the comparisons using // indirection struct less : std::binary_function<element_proxy_type, element_proxy_type, bool> { typename base_type::less m_base_compare; bool operator()( element_proxy_type const &p1, element_proxy_type const &p2) const { return m_base_compare (*p1, *p2); } }; struct equal_to : std::binary_function<raw_value_type, element_proxy_type, bool> { // First param is raw_value_type to interface smoothly with the // bind1st used in default_algorithms::find typename base_type::equal_to m_base_compare; bool operator()( raw_value_type const &v, element_proxy_type const &p) const { return m_base_compare (v, *p); } }; template<typename PythonClass, typename Policy> static void visit_container_class (PythonClass &, Policy const &) { register_ptr_to_python<element_proxy_type>(); implicitly_convertible<raw_value_type, element_proxy_type>(); } }; #if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) // value_traits partial specialization for element_proxy instances template<typename ContainerProxy> struct value_traits<element_proxy<ContainerProxy> > : element_proxy_traits<ContainerProxy> { }; #endif } } } #endif // BOOST_PYTHON_INDEXING_ELEMENT_PROXY_TRAITS_HPP """
""" __name__ = model.py __author__ = Yash Patel __description__ = Defines model to be trained on the Cartpole data, predicting the directioal action to take given 4D observation state """ from keras.models import Sequential from keras.layers import Dense, Dropout def create_model(): model = Sequential() model.add(Dense(128, input_shape=(4,), activation="relu")) model.add(Dropout(0.6)) model.add(Dense(256, activation="relu")) model.add(Dropout(0.6)) model.add(Dense(512, activation="relu")) model.add(Dropout(0.6)) model.add(Dense(256, activation="relu")) model.add(Dropout(0.6)) model.add(Dense(128, activation="relu")) model.add(Dropout(0.6)) model.add(Dense(2, activation="softmax")) model.compile( loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) return model if __name__ == "__main__": model = create_model()
import sqlite3 class Database: """ DB connection and methods """ base_recipe_query = 'SELECT * FROM RECIPE' def __init__(self, connection_str): self.connection_str = connection_str def connect(self): self.connection = sqlite3.connect(self.connection_str) return self.connection def disconnect(self): return self.connection.close() def get_recipes(self): return self.connection.execute(self.base_recipe_query).fetchall() def get_recipe(self, recipe_name): return self.connection.execute(self.base_recipe_query + ' WHERE name = "' + recipe_name + '"').fetchone()
# CORES NO TERMINAL print("\033[1;30m---------SISTEMA ANSI DE CORES---------\033[m") print(" ") print("Código de abertura: Código de fechamento:") print("\033[1;30m\ 0 3 3 [0;30;40m + STRING + \ 0 3 3 [m\033[m") print(" ") print("Preenchimento do código de abertura:") print("\033[1;30m\ 0 3 3 [ ESTILO ; COR DO TEXTO ; COR DE FUNDO m\033[m") print("\033[0;30mS/FORMATAÇÃO - 0 ; BRANCO - 30 ; \033[1;37;40m BRANCO - 40\033[m") print("\033[1;31m NEGRITO - 1 ; VERMELHO - 31 ; \033[1;37;41m VERMELHO - 41\033[m") print("\033[4;32m SUBLINHADO - 4 ; VERDE - 32 ; \033[1;37;42m VERDE - 42\033[m") print("\033[7;33m NEGATIVO -7 ;\033[m" + "\033[0;33m AMARELO - 33\033[m") print("\033[1;34;m ; AZUL - 34 ; \033[1;30;44 AZUL - 44\033[m") print("\033[0;30mS/FORMATAÇÃO - 0 ; AZUL - 30 ; \033[1;37;40m BRANCO - 40\033[m") print("\033[0;30mS/FORMATAÇÃO - 0 ; BRANCO - 30 ; \033[1;37;40m BRANCO - 40\033[m") print("\033[0;30mS/FORMATAÇÃO - 0 ; BRANCO - 30 ; \033[1;37;40m BRANCO - 40\033[m")
#!/usr/bin/python3 import ctypes import os,sys,copy,math this_path = os.path.dirname(os.path.realpath(__file__)) assert(0==os.system('cd "%s" && make default' % this_path)) fds_lib = None libnames = ['fds_x86_64.so','fds_x86.so'] while libnames: so = libnames.pop() try: fds_lib = ctypes.CDLL(os.path.join(this_path,so)) break except OSError: # load failed if not libnames: raise # Errors from fds.h errtab = {} for errno, (name, desc) in enumerate( [("FDS_SUCCESS", "The operation completed successfully."), ("FDS_ERR_OPERATION_TIMEOUT", "The operation timed out."), ("FDS_ERR_NOT_INITIALIZED", "The module has not been initialized."), ("FDS_ERR_UNALIGNED_ADDR", "The input data is not aligned to a word boundary."), ("FDS_ERR_INVALID_ARG", "The parameter contains invalid data."), ("FDS_ERR_NULL_ARG", "The parameter is NULL."), ("FDS_ERR_NO_OPEN_RECORDS", "The record is not open, so it cannot be closed."), ("FDS_ERR_NO_SPACE_IN_FLASH", "There is no space in flash memory."), ("FDS_ERR_NO_SPACE_IN_QUEUES", "There is no space in the internal queues."), ("FDS_ERR_RECORD_TOO_LARGE", "The record exceeds the maximum allowed size."), ("FDS_ERR_NOT_FOUND", "The record was not found."), ("FDS_ERR_NO_PAGES", "No flash pages are available."), ("FDS_ERR_USER_LIMIT_REACHED", "The maximum number of users has been reached."), ("FDS_ERR_CRC_CHECK_FAILED", "The CRC check failed."), ("FDS_ERR_BUSY", "The underlying flash subsystem was busy."), ("FDS_ERR_INTERNAL", "An internal error occurred."), ]): locals()[name]=errno errtab[errno] = name, desc def crc16_compute(data): dbuf = ctypes.create_string_buffer(data, len(data)) ret = fds_lib.crc16_compute(dbuf, len(data), 0) return int(ret) class FDSException(Exception): def __init__(self, errno): try: name, desc = errtab[errno] except KeyError: name = "FDS_UNKNOWN_%d"%errno desc = "Unknown error #%d"%errno self.args = errno,name,desc class Fds(object): def __init__(self, image=None): size = fds_lib.api_fs_size() if image: if len(image) != size: raise Exception("Image must be exactly %d bytes."%size) else: image = b'\xff'*size self.mount(image) def mount(self, image): """Supply an image (as bytes) to mount as fds filesystem. All bytes = 255 for a new filesystem""" size = fds_lib.api_fs_size() assert len(image) == size self.im = ctypes.create_string_buffer(image, size) fds_lib.api_fds_mount.restype = ctypes.c_int result = fds_lib.api_fds_mount(self.im) if result: raise FDSException(result) def unmount(self): pass def dir(self): """Gets a list of record_ids, not too meaningful by themselves. See read_all() for a more useful function.""" entries=[] def collect_entry(record_id): entries.append(int(record_id)) EntryCallback = ctypes.CFUNCTYPE(None, ctypes.c_uint32, # record_id ) entry_cb = EntryCallback(collect_entry) result = fds_lib.api_fds_dir(entry_cb) if result: raise FDSException(result) return entries def write_record(self, record_key, file_id, data): pad_len = (4-len(data)%4)%4 data += b'\0'*pad_len assert 0 == len(data)%4 assert 0 <= record_key < 0x10000 assert 0 <= file_id < 0x10000 result = fds_lib.api_write_record(record_key, file_id, data, len(data)//4) if result: raise FDSException(result) def update_record(self, record_id, data): "Replaces a record by creating a new one and deleting the old one" pad_len = (4-len(data)%4)%4 data += b'\0'*pad_len assert 0 == len(data)%4 assert 0 <= record_id < 0x100000000 result = fds_lib.api_update_record(record_id, data, len(data)//4) if result: raise FDSException(result) def read_record(self, record_id): "Reads an individual record given the record_id" key = ctypes.c_uint16() file_id = ctypes.c_uint16() data = ctypes.POINTER(ctypes.c_uint8)() data_len_words = ctypes.c_int() result = fds_lib.api_get_record(record_id, ctypes.byref(file_id), ctypes.byref(key), ctypes.byref(data_len_words), ctypes.byref(data)) if result: raise FDSException(result) file_id = int(file_id.value) key = int(key.value) data_len_words = int(data_len_words.value) data = bytes(data[i] for i in range(4*data_len_words)) return file_id,key,data def read_all(self): "Returns a list-of-dicts of all records" ret = [] for record_id in self.dir(): file_id,key,data = self.read_record(record_id) ret.append({'file_id':file_id, 'key':key, 'record_id':record_id, 'data':data}) return ret def delete_record(self, record_id): "Removes a single record." result = fds_lib.api_del_record(record_id) if result: raise FDSException(result) def delete_file(self, file_id): "Marks all records belonging to file as deleted." result = fds_lib.api_del_file(file_id) if result: raise FDSException(result) def gc(self): "Garbage collect." result = fds_lib.api_gc() if result: raise FDSException(result) @property def contents(self): return bytes(self.im) def hd(self): "Prints a hexdump of the image to stdout using 'hd'" with open('/tmp/image.bin','wb') as fd: fd.write(self.contents) os.system('hd < /tmp/image.bin | tee /tmp/hexdump') return open('/tmp/hexdump').read() def _tests(fds_mount): s = fds_mount ids = s.dir() assert len(ids)==0 s.write_record(file_id=6, record_key=100, data=b"Hello World.") ids = s.dir() assert len(ids)==1 fid,key,data = s.read_record(ids[0]) assert fid==6 assert key==100 assert data==b"Hello World." s.write_record(file_id=6, record_key=100, data=b"Hello World2.") ids = s.dir() print(ids) assert len(ids)==2 s.delete_record(ids[-1]) ids = s.dir() assert len(ids)==1 k = 0 while 1: try: s.write_record(record_key=100, file_id=6, data=("Hello World %d."%k).encode()) except FDSException as e: if e.args[0] == FDS_ERR_NO_SPACE_IN_FLASH: break else: raise k += 1 assert len(s.dir())==1+k s.gc() assert len(s.dir())==1+k s.delete_file(6) assert len(s.dir())==0 try: s.write_record(file_id=8, record_key=1234, data=b"This data won't fit."*8) except FDSException as e: assert e.args[0] == FDS_ERR_NO_SPACE_IN_FLASH else: assert False # didn't get the exception we wanted s.gc() # now records will fit s.write_record(file_id=66, record_key=234, data=b"This is the first data.") ids = s.dir() assert len(ids)==1 s.update_record(ids[0], data=b"This is the second data.") ids = s.dir() assert len(ids)==1 fid,key,data = s.read_record(ids[0]) assert fid==66 assert key==234 assert data==b"This is the second data." s.write_record(file_id=66, record_key=234, data=b"This is the third data.") all_data = s.read_all() assert len(all_data)==2 assert all_data[0]['file_id']==66 assert all_data[0]['key']==234 assert all_data[0]['data']==b"This is the second data." s.hd() if __name__=="__main__": fs = Fds() _tests(fs)
def align_tokens(tokens, text): point, spans = 0, [] for token in tokens: start = text.find(token, point) if start < 0: raise ValueError(f'substring "{token}" not found in "{text}"') end = start + len(token) spans.append((start, end)) point = end return spans
import os import sqlite3 from flask import Flask, render_template, g, request from flask_bootstrap import Bootstrap from flask_nav import Nav from flask_nav.elements import Navbar, View from forms import DangersForm, DiceRollForm, TravelForm from functions import fetch_animals_and_monsters, dice_roll import odatasfunctions as of app = Flask(__name__) bootstrap = Bootstrap(app) nav = Nav() nav.init_app(app) secret_key = os.environ.get('FLASK_KEY') app.secret_key = secret_key if secret_key else 'development_key' db_path = '%s/odatastools.db' % os.path.dirname(os.path.realpath(__file__)) @nav.navigation() def get_navbar(): return Navbar('DSA5 MeisterTools', View('Home', 'index'), View('Reisehelfer','travel'), View('Wildtiere und Ungeheuer', 'dangers'), View('Würfeln', 'dice')) def get_database(): db = getattr(g, '_database', None) if not db: g._database = sqlite3.connect(db_path) db = g._database return db @app.route('/') def index(): return render_template('index.html') class TravelComputationResult(object): def __init__(self, travel_days, trans_cost, trans_method_cost, food, water): self.travel_days = int(travel_days) self.transport_cost = of.Geldrechner(trans_cost, 'Heller') self.food_cost = of.Geldrechner(food, 'Heller') self.total_cost = of.Geldrechner(trans_cost + food, 'Heller') qs_multipliers = [1.3, 1, 0.95, 0.92, 0.9, 0.89, 0.87, 0.8] row_labels = ['Fehlschlag', 'QS 1', 'QS 2', 'QS 3', 'QS 4', 'QS 5', 'QS 6'] self.haggling_table = [] for label, qs_multiplier in zip(row_labels, qs_multipliers): col = [label] for cost in [food] + list(trans_method_cost): c = of.GeldrechnerKurz(qs_multiplier * cost, 'Heller') col.append(c) self.haggling_table.append(col) @app.route('/travel', methods=['GET', 'POST']) def travel(): form = TravelForm() if request.method == 'GET': form.group_size.data = form.group_size_default form.dist_foot.data = form.dist_default form.dist_boat.data = form.dist_default form.dist_carriage.data = form.dist_default form.dist_sea_hammock.data = form.dist_default form.dist_sea_cabin.data = form.dist_default form.dist_horse.data = form.dist_default form.travel_conditions.data = form.travel_conditions_default form.computation_methods.data = form.computation_methods_default travel_cost_result = None if form.validate_on_submit(): group_size = form.group_size.data dist_foot = form.dist_foot.data dist_boat = form.dist_boat.data dist_carriage = form.dist_carriage.data dist_sea_hammock = form.dist_sea_hammock.data dist_sea_cabin = form.dist_sea_cabin.data dist_horse = form.dist_horse.data travel_conditions = form.travel_conditions.data computation_methods = form.computation_methods.data simulation = computation_methods == 'simulation' distances = (dist_horse, dist_foot, dist_boat, dist_carriage, dist_sea_hammock, dist_sea_cabin) travel_days, trans_cost, trans_method_cost = of.reisedauerrechnung(distances, group_size, travel_conditions, simulation) food, water = of.berechne_nahrungsbedarf(travel_days, group_size, travel_conditions, simulation) travel_cost_result = TravelComputationResult(travel_days, trans_cost, trans_method_cost, food, water) return render_template('travel.html', form=form, travel_cost_result=travel_cost_result) @app.route('/dangers', methods=['GET', 'POST']) def dangers(): form = DangersForm() region = form.select_region_choices[0][0] if form.validate_on_submit(): region = form.region.data db_conn = get_database() animal_rows, monster_rows = fetch_animals_and_monsters(db_conn, form.query_names[region]) return render_template('dangers.html', form=form, animal_rows=animal_rows, monster_rows=monster_rows) @app.route('/dice', methods=['GET', 'POST']) def dice(): default_value = 13 form = DiceRollForm() if request.method == 'GET': form.attribute1.data = form.attribute_default form.attribute2.data = form.attribute_default form.attribute3.data = form.attribute_default form.skill.data = form.skill_default form.mod.data = form.mod_defaut if form.validate_on_submit(): att1 = form.attribute1.data att2 = form.attribute2.data att3 = form.attribute3.data skill = form.skill.data mod = form.mod.data rolls, result_str = dice_roll(att1, att2, att3, skill, mod) return render_template('dice.html', form=form, rolls=rolls, result_str=result_str) return render_template('dice.html', form=form) if __name__ == '__main__': app.run(host='0.0.0.0')
import sys sys.path.append('..') import torch from model.encoder import swin_transformer,simplenet,trans_plus_conv,resnet def build_encoder(arch='resnet18', weights=None, **kwargs): arch = arch.lower() if arch.startswith('resnet'): backbone = resnet.__dict__[arch](**kwargs) elif arch.startswith('swin_transformer'): backbone = swin_transformer.__dict__[arch](**kwargs) elif arch.startswith('simplenet'): backbone = simplenet.__dict__[arch](**kwargs) elif arch.startswith('swinplus'): backbone = trans_plus_conv.__dict__[arch](**kwargs) else: raise Exception('Architecture undefined!') if weights is not None and isinstance(weights, str): print('Loading weights for backbone') backbone.load_state_dict( torch.load(weights, map_location=lambda storage, loc: storage), strict=False) return backbone if __name__ == '__main__': import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' # net = build_encoder('swin_transformer',n_channels=1) # net = build_encoder('resnet18',n_channels=1) net = build_encoder('swinplusr18',n_channels=1) # net = build_encoder('simplenet',n_channels=1) net = net.cuda() net.train() input = torch.randn((1,1,512,512)).cuda() output = net(input) for item in output: print(item.size()) import sys sys.path.append('..') from utils import count_params_and_macs count_params_and_macs(net.cuda(),(1,1,512,512))
#!/usr/bin/env python import json import yaml import urllib import os import sys from jsonref import JsonRef # type: ignore import click from openapi2jsonschema.log import info, debug, error from openapi2jsonschema.util import ( additional_properties, replace_int_or_string, allow_null_optional_fields, change_dict_values, append_no_duplicates, ) from openapi2jsonschema.errors import UnsupportedError @click.command() @click.option( "-o", "--output", default="schemas", metavar="PATH", help="Directory to store schema files", ) @click.option( "-p", "--prefix", default="_definitions.json", help="Prefix for JSON references (only for OpenAPI versions before 3.0)", ) @click.option( "--stand-alone", is_flag=True, help="Whether or not to de-reference JSON schemas" ) @click.option( "--expanded", is_flag=True, help="Expand Kubernetes schemas by API version" ) @click.option( "--kubernetes", is_flag=True, help="Enable Kubernetes specific processors" ) @click.option( "--no-all", is_flag=True, help="Do not generate all.json file" ) @click.option( "--strict", is_flag=True, help="Prohibits properties not in the schema (additionalProperties: false)", ) @click.argument("schema", metavar="SCHEMA_URL") def default(output, schema, prefix, stand_alone, expanded, kubernetes, no_all, strict): """ Converts a valid OpenAPI specification into a set of JSON Schema files """ info("Downloading schema") if sys.version_info < (3, 0): response = urllib.urlopen(schema) else: if os.path.isfile(schema): schema = "file://" + os.path.realpath(schema) req = urllib.request.Request(schema) response = urllib.request.urlopen(req) info("Parsing schema") # Note that JSON is valid YAML, so we can use the YAML parser whether # the schema is stored in JSON or YAML data = yaml.load(response.read(), Loader=yaml.SafeLoader) if "swagger" in data: version = data["swagger"] elif "openapi" in data: version = data["openapi"] if not os.path.exists(output): os.makedirs(output) if version < "3": with open("%s/_definitions.json" % output, "w") as definitions_file: info("Generating shared definitions") definitions = data["definitions"] if kubernetes: definitions["io.k8s.apimachinery.pkg.util.intstr.IntOrString"] = { "oneOf": [{"type": "string"}, {"type": "integer"}] } # Although the kubernetes api does not allow `number` as valid # Quantity type - almost all kubenetes tooling # recognizes it is valid. For this reason, we extend the API definition to # allow `number` values. definitions["io.k8s.apimachinery.pkg.api.resource.Quantity"] = { "oneOf": [{"type": "string"}, {"type": "number"}] } # For Kubernetes, populate `apiVersion` and `kind` properties from `x-kubernetes-group-version-kind` for type_name in definitions: type_def = definitions[type_name] if "x-kubernetes-group-version-kind" in type_def: for kube_ext in type_def["x-kubernetes-group-version-kind"]: if expanded and "apiVersion" in type_def["properties"]: api_version = ( kube_ext["group"] + "/" + kube_ext["version"] if kube_ext["group"] else kube_ext["version"] ) append_no_duplicates( type_def["properties"]["apiVersion"], "enum", api_version, ) if "kind" in type_def["properties"]: kind = kube_ext["kind"] append_no_duplicates( type_def["properties"]["kind"], "enum", kind ) if strict: definitions = additional_properties(definitions) definitions_file.write(json.dumps( {"definitions": definitions}, indent=2)) types = [] info("Generating individual schemas") if version < "3": components = data["definitions"] else: components = data["components"]["schemas"] generated_files = [] for title in components: kind = title.split(".")[-1].lower() if kubernetes: group = title.split(".")[-3].lower() api_version = title.split(".")[-2].lower() specification = components[title] specification["$schema"] = "http://json-schema.org/schema#" specification.setdefault("type", "object") if strict: specification["additionalProperties"] = False if kubernetes and expanded: if group in ["core", "api"]: full_name = "%s-%s" % (kind, api_version) else: full_name = "%s-%s-%s" % (kind, group, api_version) else: full_name = kind types.append(title) try: debug("Processing %s" % full_name) # These APIs are all deprecated if kubernetes: if title.split(".")[3] == "pkg" and title.split(".")[2] == "kubernetes": raise UnsupportedError( "%s not currently supported, due to use of pkg namespace" % title ) # This list of Kubernetes types carry around jsonschema for Kubernetes and don't # currently work with openapi2jsonschema if ( kubernetes and stand_alone and kind in [ "jsonschemaprops", "jsonschemapropsorarray", "customresourcevalidation", "customresourcedefinition", "customresourcedefinitionspec", "customresourcedefinitionlist", "customresourcedefinitionspec", "jsonschemapropsorstringarray", "jsonschemapropsorbool", ] ): raise UnsupportedError("%s not currently supported" % kind) updated = change_dict_values(specification, prefix, version) specification = updated if stand_alone: # Put generated file on list for dereferencig $ref elements # after all files will be generated generated_files.append(full_name) if "additionalProperties" in specification: if specification["additionalProperties"]: updated = change_dict_values( specification["additionalProperties"], prefix, version ) specification["additionalProperties"] = updated if strict and "properties" in specification: updated = additional_properties(specification["properties"]) specification["properties"] = updated if kubernetes and "properties" in specification: updated = replace_int_or_string(specification["properties"]) updated = allow_null_optional_fields(updated) specification["properties"] = updated with open("%s/%s.json" % (output, full_name), "w") as schema_file: debug("Generating %s.json" % full_name) schema_file.write(json.dumps(specification, indent=2)) except Exception as e: error("An error occured processing %s: %s" % (kind, e)) if stand_alone: base = "file://%s/%s/" % (os.getcwd(), output) for file_name in generated_files: full_path = "%s/%s.json" % (output, file_name) specification = json.load(open(full_path)) specification = JsonRef.replace_refs( specification, base_uri=base) with open(full_path, "w") as schema_file: schema_file.write(json.dumps(specification, indent=2)) if not no_all: with open("%s/all.json" % output, "w") as all_file: info("Generating schema for all types") contents = {"oneOf": []} for title in types: if version < "3": contents["oneOf"].append( {"$ref": "%s#/definitions/%s" % (prefix, title)} ) else: contents["oneOf"].append( {"$ref": (title.replace("#/components/schemas/", "") + ".json")} ) all_file.write(json.dumps(contents, indent=2)) if __name__ == "__main__": default()
import os.path import numpy from scipy.spatial import Delaunay import meshio from meshplex import MeshTri def simple0(): # # 3___________2 # |\_ 2 _/| # | \_ _/ | # | 3 \4/ 1 | # | _/ \_ | # | _/ \_ | # |/ 0 \| # 0-----------1 # X = numpy.array( [ [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.5, 0.0], ] ) cells = numpy.array([[0, 1, 4], [1, 2, 4], [2, 3, 4], [3, 0, 4]]) return X, cells def simple1(): # # 3___________2 # |\_ 2 _/| # | \_ _/ | # | 3 \4/ 1 | # | _/ \_ | # | _/ \_ | # |/ 0 \| # 0-----------1 # X = numpy.array([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.4, 0.5]]) cells = numpy.array([[0, 1, 4], [1, 2, 4], [2, 3, 4], [3, 0, 4]]) return X, cells def simple2(): # # 3___________2 # |\_ 3 _/ \_ # | \_ _/ 2 \_ # | 4 \4/_________\5 # | _/ \_ _/ # | _/ \_ 1 _/ # |/ 0 \ / # 0-----------1 # X = numpy.array( [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.7, 0.5], [1.7, 0.5]] ) cells = numpy.array([[0, 1, 4], [1, 5, 4], [2, 4, 5], [2, 3, 4], [3, 0, 4]]) return X, cells def simple3(): # # 5___________4___________3 # |\_ 6 _/ \_ 4 _/| # | \_ _/ 5 \_ _/ | # | 7 \6/_________\7/ 3 | # | _/ \_ _/ \_ | # | _/ \_ 1 _/ 2 \_ | # |/ 0 \ / \| # 0-----------1-----------2 # X = numpy.array( [ [0.0, 0.0], [1.0, 0.0], [2.0, 0.0], [2.0, 1.0], [1.0, 1.0], [0.0, 1.0], [0.7, 0.5], [1.7, 0.5], ] ) cells = numpy.array( [ [0, 1, 6], [1, 7, 6], [1, 2, 7], [2, 3, 7], [3, 4, 7], [4, 6, 7], [4, 5, 6], [5, 0, 6], ] ) return X, cells def pacman(): this_dir = os.path.dirname(os.path.realpath(__file__)) mesh = meshio.read(os.path.join(this_dir, "meshes", "pacman.vtk")) return mesh.points[:, :2], mesh.cells["triangle"] def circle_gmsh(): this_dir = os.path.dirname(os.path.realpath(__file__)) mesh = meshio.read(os.path.join(this_dir, "meshes", "circle-gmsh.vtk")) c = mesh.cells["triangle"].astype(numpy.int) return mesh.points[:, :2], c def circle_random(): n = 40 radius = 1.0 k = numpy.arange(n) boundary_pts = radius * numpy.column_stack( [numpy.cos(2 * numpy.pi * k / n), numpy.sin(2 * numpy.pi * k / n)] ) # Compute the number of interior nodes such that all triangles can be somewhat # equilateral. edge_length = 2 * numpy.pi * radius / n domain_area = numpy.pi - n * ( radius ** 2 / 2 * (edge_length - numpy.sin(edge_length)) ) cell_area = numpy.sqrt(3) / 4 * edge_length ** 2 target_num_cells = domain_area / cell_area # Euler: # 2 * num_points - num_boundary_edges - 2 = num_cells # <=> # num_interior_points ~= 0.5 * (num_cells + num_boundary_edges) + 1 - num_boundary_points m = int(0.5 * (target_num_cells + n) + 1 - n) # generate random points in circle; <http://mathworld.wolfram.com/DiskPointPicking.html> numpy.random.seed(0) r = numpy.random.rand(m) alpha = 2 * numpy.pi * numpy.random.rand(m) interior_pts = numpy.column_stack( [numpy.sqrt(r) * numpy.cos(alpha), numpy.sqrt(r) * numpy.sin(alpha)] ) pts = numpy.concatenate([boundary_pts, interior_pts]) tri = Delaunay(pts) pts = numpy.column_stack([pts[:, 0], pts[:, 1], numpy.zeros(pts.shape[0])]) # Make sure there are exactly `n` boundary points mesh = MeshTri(pts, tri.simplices) assert numpy.sum(mesh.is_boundary_node) == n return pts, tri.simplices def circle_rotated(): pts, cells = circle_random() # <https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula> theta = numpy.pi / 4 k = numpy.array([1.0, 0.0, 0.0]) pts = ( pts * numpy.cos(theta) + numpy.cross(k, pts) * numpy.sin(theta) + numpy.outer(numpy.einsum("ij,j->i", pts, k), k) * (1.0 - numpy.cos(theta)) ) meshio.write_points_cells("out.vtk", pts, {"triangle": cells}) return pts, cells
#!/usr/bin/env python3 import sys, os, unittest, logging, tempfile # Extend PYTHONPATH with local 'lib' folder jasyroot = os.path.normpath(os.path.join(os.path.abspath(sys.argv[0]), os.pardir, os.pardir, os.pardir)) sys.path.insert(0, jasyroot) import jasy.core.Project as Project class Tests(unittest.TestCase): def writeFile(self, path, fileName, content): handle = open(os.path.join(path, fileName), mode="w", encoding="utf-8") handle.write(content) handle.close() def readFile(self, path, fileName): return open(os.path.join(path, fileName), mode="r", encoding="utf-8").read() def createjpyaml(self, path): self.writeFile(path, "jasyproject.yaml", """name: myproject """) def createjpyaml_withContent(self, path): self.writeFile(path, "jasyproject.yaml", """name: myproject content: {myproject.Main: [man/Main.js, man/Add.js], myproject/main.css: [man/main.css]} """) def createCaseOne(self): #manual path = os.path.join(tempfile.TemporaryDirectory().name, "myproject") os.makedirs(path) def createFolders(): os.makedirs(os.path.join(path, "man")) def createSampleClasses(): self.writeFile(os.path.join(path, "man"), "index.html", """<html></html>""") self.writeFile(os.path.join(path, "man"), "Main.js", ";") self.writeFile(os.path.join(path, "man"), "Add.js", ";") def createSampleAssets(): self.writeFile(os.path.join(path, "man"), "main.css", """html{}""") createFolders() self.createjpyaml_withContent(path) createSampleClasses() createSampleAssets() return Project.getProjectFromPath(path) def createCaseTwo(self): #application path = os.path.join(tempfile.TemporaryDirectory().name, "myproject") os.makedirs(path) def createFolders(): os.makedirs(os.path.join(path, "source")) os.makedirs(os.path.join(os.path.join(path, "source"), "class")) os.makedirs(os.path.join(os.path.join(path, "source"), "asset")) os.makedirs(os.path.join(os.path.join(path, "source"), "translation")) def createSampleClasses(): self.writeFile(os.path.join(path, "source"), "index.html", """<html></html>""") self.writeFile(os.path.join(os.path.join(path, "source"), "class"), "Main.js", ";") def createSampleAssets(): self.writeFile(os.path.join(os.path.join(path, "source"), "asset"), "main.css", """html{}""") def createSampleTranslations(): self.writeFile(os.path.join(os.path.join(path, "source"), "translation"), "de.po", " ") createFolders() self.createjpyaml(path) createSampleClasses() createSampleAssets() createSampleTranslations() return Project.getProjectFromPath(path) def createCaseThree(self): #src path = os.path.join(tempfile.TemporaryDirectory().name, "myproject") os.makedirs(path) def createFolders(): os.makedirs(os.path.join(path, "src")) def createSampleClasses(): self.writeFile(os.path.join(path, "src"), "index.html", """<html></html>""") self.writeFile(os.path.join(path, "src"), "Main.js", ";") def createSampleAssets(): self.writeFile(os.path.join(path, "src"), "main.css", """html{}""") createFolders() self.createjpyaml(path) createSampleClasses() createSampleAssets() return Project.getProjectFromPath(path) def createCaseFour(self): #resource path = os.path.join(tempfile.TemporaryDirectory().name, "myproject") os.makedirs(path) def createFolders(): os.makedirs(os.path.join(path, "class")) os.makedirs(os.path.join(path, "asset")) os.makedirs(os.path.join(path, "translation")) def createSampleClasses(): self.writeFile(os.path.join(path, "class"), "index.html", """<html></html>""") self.writeFile(os.path.join(path, "class"), "Main.js", ";") def createSampleAssets(): self.writeFile(os.path.join(path, "asset"), "main.css", """html{}""") def createSampleTranslations(): self.writeFile(os.path.join(path, "translation"), "de.po", " ") createFolders() self.createjpyaml(path) createSampleClasses() createSampleAssets() createSampleTranslations() return Project.getProjectFromPath(path) def getProjects(self): return [self.createCaseOne(),self.createCaseTwo(),self.createCaseThree(),self.createCaseFour()] def test_get_project(self): for project in self.getProjects(): self.assertEqual(project.getName(), "myproject") def test_get_name_from_path(self): for project in self.getProjects(): self.assertEqual(Project.getProjectNameFromPath(project.getPath()), "myproject") def test_scan(self): for project in self.getProjects(): project.scan() self.assertEqual(project.scanned, True) def test_has_requires(self): for project in self.getProjects(): self.assertEqual(project.hasRequires(), False) def test_fields(self): for project in self.getProjects(): self.assertEqual(project.getFields(), {}) def test_get_class_by_name(self): for project in self.getProjects(): self.assertEqual(project.getClassByName("myproject.Main"), project.getClasses()["myproject.Main"]) self.assertEqual(type(project.getClassByName("myproject.Main")).__name__, "ClassItem") def test_assets(self): for project in self.getProjects(): self.assertEqual(type(project.getAssets()["myproject/main.css"]).__name__, "AssetItem") def test_translations(self): for project in [self.createCaseTwo(), self.createCaseFour()]: self.assertEqual(type(project.getTranslations()["myproject.de"]).__name__, "TranslationItem") def test_manual_class_fusion(self): self.assertEqual(self.createCaseOne().getClassByName("myproject.Main").getText(), ";;") if __name__ == '__main__': logging.getLogger().setLevel(logging.ERROR) suite = unittest.TestLoader().loadTestsFromTestCase(Tests) unittest.TextTestRunner(verbosity=2).run(suite)
# -*- coding: utf-8 -*- ''' myword ''' #from snsapi.plugin.renren import RenrenAPI from snsapi.snspocket import SNSPocket import json import sys import urllib2 import hashlib import time REPLY_GAP = 10 # seconds, 10 seems the minimum NEWS_QUERY_COUNT = 5 MY_NAME = "hsama2012" def can_reply(status): """ A filter function of the status you want to reply """ if not status.parsed.text.find("@" + MY_NAME) == -1: return True else: return False def get_word(text): """ To the get word in a message """ text = text.replace("@" + MY_NAME +" ","") return text def translate(word): """ Translate a word with dic.zhan-dui.com """ url = "http://dic.zhan-dui.com/api.php?s=" + word + "&type=json" req = urllib2.Request(url, data='') req.add_header('User_Agent', 'toolbar') results = json.load(urllib2.urlopen(req)) if "error_code" in results: return word +" " + " not found" else: mean = "" for c in results["simple_dic"]: mean = mean + c return word + " " + mean def main(): """docstring for main""" #set system default encoding to utf-8 to avoid encoding problems reload(sys) sys.setdefaultencoding( "utf-8" ) #load channel configurations channels = json.load(open('conf/channel.json')) #find one account rr = SNSPocket() for c in channels: rr.add_channel(c) if rr is None: print "cannot find one renren platform in channel.json" return else: rr.load_config() rr.auth() #load record to avoid repeated reply try: sIDs = json.load(open('statusID.json')) except IOError, e: if e.errno == 2: #no such file sIDs = {} else: raise e status_list = rr.home_timeline(NEWS_QUERY_COUNT) for s in status_list: s.show() msg_string = "".join( unicode(x) for x in \ [s.parsed.time, s.ID, s.parsed.username, \ s.parsed.userid, s.parsed.text]) sig = hashlib.sha1(msg_string.encode('utf-8')).hexdigest() if not sig in sIDs and can_reply(s): print '[reply it]' REPLY_STRING = translate(get_word(s.parsed.text)) ret = rr.reply(s.ID, REPLY_STRING.decode('utf-8')) print "[ret: %s]" % ret print "[wait for %d seconds]" % REPLY_GAP time.sleep(REPLY_GAP) if ret: sIDs[sig] = msg_string else: print '[no reply]' #save reply record json.dump(sIDs, open('statusID.json', 'w')) if __name__ == '__main__': main()
from .base import Filth from .. import exceptions class CredentialFilth(Filth): type = 'credential' # specify how the username/password are replaced username_placeholder = 'USERNAME' password_placeholder = 'PASSWORD' @property def placeholder(self): ubeg, uend = self.match.span('username') pbeg, pend = self.match.span('password') return ( self.match.string[self.match.start():ubeg] + self.prefix + self.username_placeholder + self.suffix + self.match.string[uend:pbeg] + self.prefix + self.password_placeholder + self.suffix ) # override the replace_with method for credentials because the # prefix/suffix components are mixed into the placeholder def replace_with(self, replace_with='placeholder', **kwargs): if replace_with == 'placeholder': return self.placeholder else: raise exceptions.InvalidReplaceWith(replace_with)
import tkinter widget = tkinter.Label(None, text='Hello GUI world!') widget.pack() widget.mainloop()
"""Helpful fixtures for testing with pytest and PostgreSQL. Use these fixtures to test code that requires access to a PostgreSQL database. """ import pathlib from typing import Callable, Generator, Union import psycopg2 import psycopg2.extensions import psycopg2.sql import pytest import testing.postgresql import lathorp @pytest.fixture(scope='session') def pg() -> Generator[testing.postgresql.Postgresql, None, None]: """A session-scoped temporary PostgreSQL instance. Add this fixture to your test function to get access to a temporary PostgreSQL database. Because setting up a temporary database is a costly operation that slow your tests down, this fixture is scoped at the session level, so the database is set up only once per testing session. You can create a connection to the temporary database as follows: >> conn = psycopg2.connect(**pg.dsn()) Yields: A temporary database. """ Postgresql = testing.postgresql.PostgresqlFactory(cache_initialized_db=True) pg = Postgresql() yield pg pg.stop() Postgresql.clear_cache() Connector = Callable[[Union[pathlib.Path, None], Union[psycopg2.extensions.cursor, None]], psycopg2.extensions.connection] """A type alias for the function returned by the pg_conn fixture.""" @pytest.fixture(scope='function') def pg_connect(request, pg) -> Connector: """Returns a function that opens a connection to a temporary PostgreSQL instance. To get a connection in your test function, use it like so: >> conn = pg_connect(data_path=pathlib.Path('my_path'), cursor_factory=psycopg2.extras.NamedTupleCursor) You may also omit any or both arguments: >> conn = pg_connect() Use the data_path argument to copy test data into the database prior to running your test function. The data is automatically deleted after the test function is done, so test functions do not leak side effects. The data_path argument may point to a single data file, or a directory of files. Note that a schema definition must be loaded before the data can be copied. Use `load_schema_definitions` for that, perhaps together with another session-scoped fixture. See `tests/conftest.py::init_schema` for an example. Use the cursor_factory argument to specify a cursor factory for the new connection. The arguments to the fixture itself are auto-loaded by pytest. """ def connector(data_path=None, cursor_factory=None): dsn = psycopg2.extensions.make_dsn(**pg.dsn()) conn = psycopg2.connect(dsn, cursor_factory=cursor_factory) tables = [] if data_path: tables = lathorp.copy_data(conn, data_path) def finalize(): lathorp.delete_data(conn, tables) conn.close() request.addfinalizer(finalize) return conn return connector
# coding=utf-8 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Actor network for Register Allocation.""" from typing import Optional, Sequence, Callable, Text, Any import gin import tensorflow as tf from tf_agents.networks import categorical_projection_network from tf_agents.networks import encoding_network from tf_agents.networks import network from tf_agents.typing import types from tf_agents.utils import nest_utils class RegAllocEncodingNetwork(encoding_network.EncodingNetwork): def __init__(self, **kwargs): super(RegAllocEncodingNetwork, self).__init__(**kwargs) # remove the first layer (Flatten) in postprocessing_layers cause this will # flatten the B x T x 33 x dim to B x T x (33 x dim). self._postprocessing_layers = self._postprocessing_layers[1:] class RegAllocProbProjectionNetwork( categorical_projection_network.CategoricalProjectionNetwork): def __init__(self, **kwargs): super(RegAllocProbProjectionNetwork, self).__init__(**kwargs) # shape after projection_layer: B x T x 33 x 1; then gets re-shaped to # B x T x 33. self._projection_layer = tf.keras.layers.Dense( 1, kernel_initializer=tf.compat.v1.keras.initializers.VarianceScaling( scale=kwargs['logits_init_output_factor']), bias_initializer=tf.keras.initializers.Zeros(), name='logits') @gin.configurable class RegAllocRNDEncodingNetwork(RegAllocEncodingNetwork): def __init__(self, **kwargs): pooling_layer = tf.keras.layers.GlobalMaxPool1D(data_format='channels_last') super(RegAllocRNDEncodingNetwork, self).__init__(**kwargs) # add a pooling layer at the end to to convert B x T x 33 x dim to # B x T x dim. self._postprocessing_layers.append(pooling_layer) @gin.configurable class RegAllocNetwork(network.DistributionNetwork): """Creates the actor network for register allocation policy training.""" def __init__( self, input_tensor_spec: types.NestedTensorSpec, output_tensor_spec: types.NestedTensorSpec, preprocessing_layers: Optional[types.NestedLayer] = None, preprocessing_combiner: Optional[tf.keras.layers.Layer] = None, conv_layer_params: Optional[Sequence[Any]] = None, fc_layer_params: Optional[Sequence[int]] = (200, 100), dropout_layer_params: Optional[Sequence[float]] = None, activation_fn: Callable[[types.Tensor], types.Tensor] = tf.keras.activations.relu, kernel_initializer: Optional[tf.keras.initializers.Initializer] = None, batch_squash: bool = True, dtype: tf.DType = tf.float32, name: Text = 'RegAllocNetwork'): """Creates an instance of `RegAllocNetwork`. Args: input_tensor_spec: A nest of `tensor_spec.TensorSpec` representing the input. output_tensor_spec: A nest of `tensor_spec.BoundedTensorSpec` representing the output. preprocessing_layers: (Optional.) A nest of `tf.keras.layers.Layer` representing preprocessing for the different observations. All of these layers must not be already built. For more details see the documentation of `networks.EncodingNetwork`. preprocessing_combiner: (Optional.) A keras layer that takes a flat list of tensors and combines them. Good options include `tf.keras.layers.Add` and `tf.keras.layers.Concatenate(axis=-1)`. This layer must not be already built. For more details see the documentation of `networks.EncodingNetwork`. conv_layer_params: Optional list of convolution layers parameters, where each item is a length-three tuple indicating (filters, kernel_size, stride). fc_layer_params: Optional list of fully_connected parameters, where each item is the number of units in the layer. dropout_layer_params: Optional list of dropout layer parameters, each item is the fraction of input units to drop or a dictionary of parameters according to the keras.Dropout documentation. The additional parameter `permanent`, if set to True, allows to apply dropout at inference for approximated Bayesian inference. The dropout layers are interleaved with the fully connected layers; there is a dropout layer after each fully connected layer, except if the entry in the list is None. This list must have the same length of fc_layer_params, or be None. activation_fn: Activation function, e.g. tf.nn.relu, slim.leaky_relu, ... kernel_initializer: Initializer to use for the kernels of the conv and dense layers. If none is provided a default glorot_uniform. batch_squash: If True the outer_ranks of the observation are squashed into the batch dimension. This allow encoding networks to be used with observations with shape [BxTx...]. dtype: The dtype to use by the convolution and fully connected layers. name: A string representing name of the network. Raises: ValueError: If `input_tensor_spec` contains more than one observation. """ if not kernel_initializer: kernel_initializer = tf.compat.v1.keras.initializers.glorot_uniform() # input: B x T x obs_spec # output: B x T x 33 x dim encoder = RegAllocEncodingNetwork( input_tensor_spec=input_tensor_spec, preprocessing_layers=preprocessing_layers, preprocessing_combiner=preprocessing_combiner, conv_layer_params=conv_layer_params, fc_layer_params=fc_layer_params, dropout_layer_params=dropout_layer_params, activation_fn=activation_fn, kernel_initializer=kernel_initializer, batch_squash=batch_squash, dtype=dtype) projection_network = RegAllocProbProjectionNetwork( sample_spec=output_tensor_spec, logits_init_output_factor=0.1) output_spec = projection_network.output_spec super(RegAllocNetwork, self).__init__( input_tensor_spec=input_tensor_spec, state_spec=(), output_spec=output_spec, name=name) self._encoder = encoder self._projection_network = projection_network self._output_tensor_spec = output_tensor_spec @property def output_tensor_spec(self): return self._output_tensor_spec def call(self, observations: types.NestedTensor, step_type: types.NestedTensor, network_state=(), training: bool = False, mask=None): state, network_state = self._encoder( observations, step_type=step_type, network_state=network_state, training=training) outer_rank = nest_utils.get_outer_rank(observations, self.input_tensor_spec) # mask un-evictable registers. distribution, _ = self._projection_network( state, outer_rank, training=training, mask=observations['mask']) return distribution, network_state
import random import itertools import csv from typing import List, Union, Optional, NamedTuple # Configuration SIMULATE_ROUNDS = 1000 MATCH_SIZE = 4 MAX_RESHUFFLES = 10 # Data types class Card(NamedTuple): suit: str rank: Union[str, int] Hand = List[Card] class Player: @property def number(self): return self._number def __init__(self, number: int): self._number: int = number self.hand: Hand = [] self.pending_card: Optional[None] = None # Constants SUITS = ('hearts', 'clubs', 'diamonds', 'spades') RANKS = list(range(1, 10)) + ['jack', 'queen', 'king', 'ace'] CARDS = [Card(suit=suit, rank=rank) for suit in SUITS for rank in RANKS] class TakeTurnResult(NamedTuple): next_card: Card is_winning: bool def take_turn(player: Player, card: Card) -> TakeTurnResult: "Returns the card passed to the next player" # group cards for easier processing groups = dict() for c in player.hand: group = None if c.rank in groups: group = groups[c.rank] else: group = [] groups[c.rank] = group group.append(c) sorted_groups = [{'count': len(v), 'rank': k} for (k, v) in groups.items()] sorted_groups.sort(key=lambda group: group['count']) next_card = card if card.rank in groups.keys(): # we'll sacrifice a card from the smallest group, but only # if that would make a bigger group than that card already belongs to size_of_match = len(groups[card.rank]) + 1 # find the smallest group, we'll sacrifice a card from it smallest_group = sorted_groups[0] if smallest_group['count'] < size_of_match: old_card = next( c for c in player.hand if c.rank == smallest_group['rank']) player.hand.remove(old_card) player.hand.append(card) next_card = old_card return TakeTurnResult(next_card=next_card, is_winning=hand_is_winning(player.hand)) def hand_is_winning(hand: Hand) -> bool: rank = hand[0].rank for card in hand: if card.rank != rank: return False return True def format_card(card: Card) -> str: return f'{card.rank} of {card.suit}' def format_hand(hand: Hand) -> List[str]: return [format_card(card) for card in hand] def format_players(players: List[Player]) -> List[str]: return [f'{player.number}:{format_card(player.pending_card) if player.pending_card else "..."}' for player in players] def play_round(num_players: int): if ((num_players * MATCH_SIZE) + num_players > len(CARDS)): raise Exception( "num_players is too high; there are not enough cards to deal out starting hands and complete a round") # set up players: List[Player] = [Player(number=i) for i in range(num_players)] deck = list(CARDS) random.shuffle(deck) # deal out starting hands for _ in range(MATCH_SIZE): for p in players: p.hand.append(deck.pop()) dealer = players[0] player_after_dealer = players[1] draws = 0 turns = 0 reshuffles = 0 winner = None discard: List[Card] = [] while True: # each iteration of this loop is a "draw" (as in the dealer drawing a card) draws += 1 # make sure the deck has cards left. If not, recycle the discard pile if (len(deck) == 0): if reshuffles > MAX_RESHUFFLES: # don't get caught in an infinite loop break deck, discard = discard, [] random.shuffle(deck) reshuffles += 1 # first, the dealer will draw a card and take their turn new_card = deck.pop() turns += 1 dealer_turn = take_turn(dealer, new_card) if dealer_turn.is_winning: winner = dealer break player_after_dealer.pending_card = dealer_turn.next_card # to simulate the parallel nature of the game, loop in reverse order through each player # that has a pending card players_in_order = [ player for player in players[::-1] if player.pending_card] for player in players_in_order: turns += 1 turn = take_turn(player, player.pending_card) player.pending_card = None if turn.is_winning: winner = player break # hand the card off to either the next player, or if none, the discard pile next_player_index = player.number + 1 if (next_player_index < len(players)): players[next_player_index].pending_card = turn.next_card else: discard.append(turn.next_card) if winner: break return { 'reshuffles': reshuffles, 'draws': draws, 'turns': turns, 'winner': winner.number if winner != None else None } with open('output.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow(["# Players", "Winner", "Reshuffles", "Draws", "Turns"]) for num_players in range(2, 11): for round_num in range(SIMULATE_ROUNDS): result = play_round(num_players) writer.writerow([num_players, result['winner'] if result['winner'] != None else "N/A", result['reshuffles'], result['draws'], result['turns']])
import datetime from arend.settings import base from arend.queue.task import QueueTask class ProgressUpdater: def __init__( self, queue_task: QueueTask, suppress_exception: bool = True, verbose: bool = 1 ): self.queue_task = queue_task self.verbose = verbose self.suppress_exception = suppress_exception def notify(self, message: str): self.queue_task.detail += f"- {message}\n" def __call__(self, **kwargs): self.__dict__.update(kwargs) return self def __enter__(self): self.queue_task.start_time = datetime.datetime.utcnow() return self def __exit__(self, exc_type, exc_val, exc_tb): self.queue_task.end_time = datetime.datetime.utcnow() if exc_type: self.queue_task.status = base.FAIL self.queue_task.detail = exc_val self.queue_task.save() return self.suppress_exception elif not self._finished: self.queue_task.status = base.FINISHED self.queue_task.result = exc_val self.queue_task.save() return True
from django.contrib import admin # Register your models here. from .models import OrderModel, WoodFormModel, SkinFormModel, PaperFormModel admin.site.register(OrderModel) admin.site.register(WoodFormModel) admin.site.register(SkinFormModel) admin.site.register(PaperFormModel)
import numpy as np import matplotlib.pyplot as plt from skimage import measure regions = np.zeros((100,200,5)) print(regions.shape) regions[10:30,10:30,0] = 1 regions[10:30,40:70,0] = 2 regions[50:80,80:140,0] = 3 regions[85:100,100:150,0] = 4 regions[15:40,150:180,0] = 5 regions[10:30,10:70,1] = 1 regions[50:80,80:140,1] = 2 regions[85:100,100:150,1] = 3 regions[15:40,150:180,1] = 4 regions[10:30,10:70,2] = 1 regions[50:80,80:140,2] = 2 regions[85:100,100:150,2] = 3 regions[15:40,150:180,2] = 4 regions[10:30,10:60,3] = 1 regions[50:80,90:120,3] = 2 regions[85:100,110:140,3] = 3 regions[15:40,160:180,3] = 4 regions[10:30,10:65,4] = 1 regions[50:80,90:125,4] = 2 regions[85:100,110:157,4] = 3 regions[15:43,160:190,4] = 4 mask = np.ones((100,200)) for i in range(5): mask = mask*regions[:,:,i] mask[mask>0] = 1 labels = measure.label(mask, background=0) plt.subplot(2,3,1) plt.imshow(regions[:,:,0]) plt.subplot(2,3,2) plt.imshow(regions[:,:,1]) plt.subplot(2,3,3) plt.imshow(regions[:,:,2]) plt.subplot(2,3,4) plt.imshow(regions[:,:,3]) plt.subplot(2,3,5) plt.imshow(regions[:,:,4]) plt.subplot(2,3,6) plt.imshow(labels) plt.title("common mask") plt.show()
from .Cilindro import Cilindro from . import BinWriter as bin import os class Indice: def __init__(self, pkey, ruta): self.indx = [None]*30 self.intervalo = 30 self.pkey = pkey self.ruta = ruta self.readI() def readI(self): if os.path.exists(self.ruta+"/indx.b"): data = bin.read(self.ruta+"/indx.b") i = 0 if type(data[-1]) is list: self.pkey = data[-1] for d in data: if type(d) is str: self.indx[i] = Cilindro(d, self.pkey, i, self.ruta) elif d is None: self.indx[i] = None i+=1 def writeI(self): data=[] for x in self.indx: if x != None: data.append(x.nombre) else: data.append(None) data.append(self.pkey) bin.write(data, self.ruta+"/indx.b") def hash(self, val): e = self._checkKey(val) if type(e) is int: i = self._hashn(e) else: i = self._hashl(e) return i def insert(self, registro): val = [] try: for key in self.pkey: val.append(registro[key]) i = self.hash(val[0]) if self.indx[i] == None: self.indx[i] = Cilindro("CS" + str(i), self.pkey, i, self.ruta) bin.write([None] * 30, self.ruta + "/" + "CS" + str(i) + ".b") self.writeI() return self.indx[i].insert(registro) except: return 1 def _checkKey(self, key): try: r = int(key) return r except: return key def _hashl(self, key): fst = ord(key[0].upper()) return (fst - 65) % self.intervalo def _hashn(self, key): return (key // 30) % self.intervalo def update(self, register, val): try: if type(val[0]) is int: i = self._hashn(val[0]) else: i = self._hashl(val[0]) if self.indx[i] is None: return 4 return self.indx[i].update(register, val) except: return 1 def delete(self, val): try: if type(val[0]) is int: i = self._hashn(val[0]) else: i = self._hashl(val[0]) if self.indx[i] is None: return 4 return self.indx[i].delete(val) except: return 1 def extractRow(self, val): try: if type(val[0]) is int: i = self._hashn(val[0]) else: i = self._hashl(val[0]) if self.indx[i] is None: return [] return self.indx[i].extractRow(val) except: return 1 def readAll(self): data=[] try: for cil in self.indx: if cil == None: continue data.extend(cil.readAll()) return data except: return None def readRange(self, columnNumber ,lower, upper): data = [] try: for cil in self.indx: if cil == None: continue data.extend(cil.readRange(columnNumber, lower, upper)) return data except: return None #actualiza todos los registros a su version mas reciente y reescribe el indice a su version mas reciente def refreshMem(self): for x in self.indx: if x != None: x.indx = bin.read(self.ruta +"/"+ x.nombre + ".b") x.pkeys = self.pkey self.writeI()
############################################################################## # # Copyright (c) 2003 Zope Corporation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Test Element meta-class. $Id: test_element.py 39768 2005-10-31 13:57:35Z tlotze $ """ import unittest from zope.interface.interface import Element class TestElement(unittest.TestCase): def test_taggedValues(self): """Test that we can update tagged values of more than one element """ e1 = Element("foo") e2 = Element("bar") e1.setTaggedValue("x", 1) e2.setTaggedValue("x", 2) self.assertEqual(e1.getTaggedValue("x"), 1) self.assertEqual(e2.getTaggedValue("x"), 2) def test_suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestElement)) return suite if __name__ == '__main__': unittest.main(defaultTest='test_suite')
import PikaStdLib import machine time = machine.Time() pwm = machine.PWM() pwm.setPin('PA8') pwm.setFrequency(2000) pwm.setDuty(0.5) pwm.enable() mem = PikaStdLib.MemChecker() while True: mem.now() time.sleep_ms(500) pwm.setDuty(0.5) time.sleep_ms(500) pwm.setDuty(0.001)
from django.conf import settings from django.views.static import serve urlpatterns = [ url(r'^Object_Detection/(?P<path>.*)$', serve, { 'document_root': settings.MEDIA_ROOT, }), ]
#------------------------------------------------------------------------------- # Name: Logistic Regression # Purpose: # # Author: Nonlining # # Created: 17/04/2017 # Copyright: (c) Nonlining 2017 # Licence: <your licence> #------------------------------------------------------------------------------- import string import sys import numpy as np def extract(data_frame, features, label): data_frame['constant'] = 1.0 features = ['constant'] + features features_matrix = data_frame[features].to_numpy() if label != None: label_array = data_frame[label].to_numpy() else: label_array = [] return(features_matrix, label_array) def remove_punctuation(text): if type(text) is str: return text.translate(None, string.punctuation) else: return str(text).translate(None, string.punctuation) def countWords(string): wordCount = {} for i in string.split(' '): if i in wordCount: wordCount[i] += 1 else: wordCount[i] = 1 return wordCount def get_classification_accuracy(model, data, true_labels): pred_result = model.predict(data) correct = sum(pred_result == true_labels) accuracy = correct/float(len(true_labels)) return accuracy def compute_probability(score): return 1.0/(1 + np.exp(-score))
# -*- coding: utf-8 -*- from django.contrib.contenttypes.models import ContentType from django.core.exceptions import ImproperlyConfigured def ret_contenttypes(*args, **kwargs): """ Takes a blacklist or a whitelist of model names and returns queryset of ContentTypes """ if not 'app_label' in kwargs.keys(): raise ImproperlyConfigured('Missing app_label') app_label = kwargs['app_label'] whitelist = kwargs['whitelist'] if 'whitelist' in kwargs.keys() else None blacklist = kwargs['blacklist'] if 'blacklist' in kwargs.keys() else None if whitelist and blacklist: raise ImproperlyConfigured("Dont configure kwargs['blacklist'] and kwargs['whitelist']") if blacklist: return ContentType.objects.filter(app_label=app_label).exclude(model__in=blacklist) if whitelist: tmp_whitelist = ContentType.objects.none() for name in whitelist: tmp_whitelist = tmp_whitelist | ContentType.objects.filter(app_label=app_label, model=name) return tmp_whitelist return ContentType.objects.filter(app_label=app_label)
def funcTwo(): print("can you add stuff?")