content
stringlengths
5
1.05M
#!/usr/bin/env python2 from sys import stdin n = raw_input().split(' ') k = int(n[1]) n = int(n[0]) ans = 0 for i in range(0, n): t = int ( stdin.readline() ) if (t%k) == 0: ans += 1 print (ans)
""" @Time : 2021/8/27 16:00 @Author : Haiyang Mei @E-mail : mhy666@mail.dlut.edu.cn @Project : CVPR2021_PDNet @File : datasets.py @Function: """ import os import os.path from PIL import Image, ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True import torch import numpy as np import torch.utils.data as data from skimage import io import torch.nn.functional as F import random def make_dataset(root): image_path = os.path.join(root, 'image') depth_path = os.path.join(root, 'depth_normalized') mask_path = os.path.join(root, 'mask_single') img_list = [os.path.splitext(f)[0] for f in os.listdir(image_path) if f.endswith('.jpg')] return [(os.path.join(image_path, img_name + '.jpg'), os.path.join(depth_path, img_name + '.png'), os.path.join(mask_path, img_name + '.png')) for img_name in img_list] class ImageFolder(data.Dataset): # image and mask should be in the same folder and have same filename except extended name (jpg and png respectively) def __init__(self, root, joint_transform=None, transform=None, depth_transform=None, target_transform=None): self.root = root self.imgs = make_dataset(root) self.joint_transform = joint_transform self.transform = transform self.depth_transform = depth_transform self.target_transform = target_transform def __getitem__(self, index): img_path, depth_path, gt_path = self.imgs[index] img = Image.open(img_path).convert('RGB') depth_uint16 = io.imread(depth_path) depth = (depth_uint16 / 65535).astype(np.float32) depth = Image.fromarray(depth) target = Image.open(gt_path).convert('L') if self.joint_transform is not None: img, depth, target = self.joint_transform(img, depth, target) if self.transform is not None: img = self.transform(img) if self.depth_transform is not None: depth = self.depth_transform(depth) if self.target_transform is not None: target = self.target_transform(target) return img, depth, target def collate(self, batch): size = [320, 352, 384, 416][random.randint(0, 3)] image, depth, mask = [list(item) for item in zip(*batch)] image = torch.stack(image, dim=0) image = F.interpolate(image, size=(size, size), mode="bilinear", align_corners=False) depth = torch.stack(depth, dim=0) depth = F.interpolate(depth, size=(size, size), mode="bilinear", align_corners=False) mask = torch.stack(mask, dim=0) mask = F.interpolate(mask, size=(size, size), mode="nearest") return image, depth, mask def __len__(self): return len(self.imgs)
from django.contrib import admin from django.urls import path,include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('conjuet/', include('account.urls')), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL,document_root=settings.MEDIA_ROOT)
# coding: utf-8 from __future__ import absolute_import import unittest from flask import json from openapi_server.dbmodels.organization import Organization as DbOrganization # noqa: E501 from openapi_server.test.integration import BaseTestCase from openapi_server.test.integration import util ID_QUERY = [("organizationId", "awesome-organization")] REQUEST_HEADERS = { 'Accept': "application/json", 'Content-Type': "application/json", } RESPONSE_HEADERS = { 'Accept': "application/json", } # TODO: mock 500 responses class TestOrganizationController(BaseTestCase): """OrganizationController integration test stubs""" def setUp(self): util.connect_db() DbOrganization.objects.delete() def tearDown(self): util.disconnect_db() def test_create_organization_with_status201(self): """Test case for create_organization Create an organization (201) """ organization = { 'name': "name", 'shortName': "shortName", 'url': "https://openapi-generator.tech" } response = self.client.open( "/api/v1/organizations", method="POST", headers=REQUEST_HEADERS, data=json.dumps(organization), query_string=ID_QUERY ) self.assertStatus( response, 201, f"Response body is: {response.data.decode('utf-8')}" ) # TODO: update to test for non-JSON connexion request def test_create_organization_with_status400(self): """Test case for create_organization Create a (non-JSON) organization (400) """ organization = { 'name': "name", 'shortName': "shortName", 'url': "https://openapi-generator.tech" } response = self.client.open( "/api/v1/organizations", method="POST", headers=REQUEST_HEADERS, data=organization, query_string=ID_QUERY ) self.assert400( response, f"Response body is: {response.data.decode('utf-8')}" ) def test_create_empty_organization_with_status400(self): """Test case for create_organization Create an empty organization with missing required properties (400) """ organization = {} response = self.client.open( "/api/v1/organizations", method="POST", headers=REQUEST_HEADERS, data=json.dumps(organization), query_string=ID_QUERY ) self.assert400( response, f"Response body is: {response.data.decode('utf-8')}" ) def test_create_organization_with_status409(self): """Test case for create_organization Create a duplicate organization (409) """ util.create_test_organization("awesome-organization") # duplicated org organization = { 'name': "name", 'shortName': "shortName", 'url': "https://openapi-generator.tech" } response = self.client.open( "/api/v1/organizations", method="POST", headers=REQUEST_HEADERS, data=json.dumps(organization), query_string=ID_QUERY ) self.assertStatus( response, 409, f"Response body is: {response.data.decode('utf-8')}" ) def test_delete_organization_with_status200(self): """Test case for delete_organization Delete an existing organization (200) """ organization = util.create_test_organization("awesome-organization") response = self.client.open( f"/api/v1/organizations/{organization.id}", method="DELETE", headers=RESPONSE_HEADERS ) self.assert200( response, f"Response body is: {response.data.decode('utf-8')}" ) def test_delete_organization_with_status404(self): """Test case for delete_organization Delete an unknown organization (404) """ organization_id = "foo" response = self.client.open( f"/api/v1/organizations/{organization_id}", method="DELETE", headers=RESPONSE_HEADERS ) self.assert404( response, f"Response body is: {response.data.decode('utf-8')}" ) def test_get_organization_with_status200(self): """Test case for get_organization Get an existing organization (200) """ organization = util.create_test_organization("awesome-organization") response = self.client.open( f"/api/v1/organizations/{organization.id}", method="GET", headers=RESPONSE_HEADERS ) self.assert200( response, f"Response body is: {response.data.decode('utf-8')}" ) def test_get_organization_with_status404(self): """Test case for get_organization Get an existing organization (200) """ organization_id = "foo" response = self.client.open( f"/api/v1/organizations/{organization_id}", method="GET", headers=RESPONSE_HEADERS ) self.assert404( response, f"Response body is: {response.data.decode('utf-8')}" ) def test_list_organizations_with_status200(self): """Test case for list_organizations Get all organizations (200) """ util.create_test_organization("awesome-organization") query_string = [("limit", 10), ("offset", 0)] response = self.client.open( "/api/v1/organizations", method="GET", headers=RESPONSE_HEADERS, query_string=query_string ) self.assert200( response, f"Response body is: {response.data.decode('utf-8')}" ) def test_list_organizations_with_status400(self): """Test case for list_organizations Get all organizations using an invalid query (400) """ util.create_test_organization("awesome-organization") query_string = [("limit", "no-limit"), ("offset", "none")] response = self.client.open( "/api/v1/organizations", method="GET", headers=RESPONSE_HEADERS, query_string=query_string ) self.assert400( response, f"Response body is: {response.data.decode('utf-8')}" ) if __name__ == "__main__": unittest.main()
""" Finviz Comparison View """ __docformat__ = "numpy" import logging import os from typing import List from openbb_terminal.decorators import log_start_end from openbb_terminal.helper_funcs import export_data, print_rich_table from openbb_terminal.rich_config import console from openbb_terminal.stocks.comparison_analysis import finviz_compare_model logger = logging.getLogger(__name__) @log_start_end(log=logger) def screener(similar: List[str], data_type: str, export: str = ""): """Screener Parameters ---------- similar : List[str] Similar companies to compare income with data_type : str Screener to use. One of {overview, valuation, financial, ownership, performance, technical} export : str Format to export data """ df_screen = finviz_compare_model.get_comparison_data(data_type, similar) if df_screen is None or df_screen.empty: console.print("No screened data found.") else: print_rich_table( df_screen, headers=list(df_screen.columns), show_index=False, title="Stock Screener", ) export_data( export, os.path.dirname(os.path.abspath(__file__)), data_type, df_screen )
''' A library for bringing together various components to interface with and analyze a "real" exported safety project. The function build_program_model() is the primary entry point to this module. ''' from fbdplc.s7xml import parse_static_interface_from_file, parse_tags_from_file from fbdplc.modeling import ProgramModel, program_model from fbdplc.apps import parse_s7xml from fbdplc.functions import Block, Program from z3 import z3 from fbdplc.graph import MemoryProxy from fbdplc import sorts from fbdplc.sorts import UDTInstance, UDTSchema, get_sort_factory, register_udt from fbdplc import s7db import logging logger = logging.getLogger(__name__) class NotSupportedException(Exception): pass def _build_udt(outline, outlines): name = outline['name'] logger.debug(f'Constructing UDT {name}') if name in sorts.g_udt_archive: return sorts.g_udt_archive[name] schema = UDTSchema(name) symbols = outline['symbols'] logger.debug(f'Symbols for {name}: {symbols}') for s in symbols.values(): sort = s['type'] name = s['name'] kind = s['kind'] if kind == 'array': raise NotSupportedException() if sort in sorts.SORT_MAP: # Primitive schema.fields[name] = sorts.SORT_MAP[sort] else: # is a UDT, but do we know about it yet? if sort not in sorts.g_udt_archive: _build_udt(outlines[sort], outlines) schema.fields[name] = sorts.g_udt_archive[sort] register_udt(schema.name, schema) return schema g_counter = 0 def alloc_anonymous(): global g_counter n = f'__anon_struct{g_counter}' g_counter += 1 return n def _process_dbs(db_files, ctx): mem = MemoryProxy('', ctx) for p in db_files: logger.debug(f'Processing {p}') try: outline = s7db.parse_db_file(p) root_name: str = outline['name'] if root_name[0] == '"': root_name = root_name[1:-1] symbols = outline['symbols'] # Is the variable interface an ad-hoc data type or a named type? if type(symbols) == dict: # Ad-hoc for name, entry in symbols.items(): outlined_sort = entry['type'] if isinstance(outlined_sort, str): sort = get_sort_factory(outlined_sort) elif isinstance(outlined_sort, dict): # This is an anonymous struct assert 'name' not in outlined_sort udt_proto = { 'name': alloc_anonymous(), 'symbols': outlined_sort} udt = _build_udt(udt_proto, {}) register_udt(udt.name, udt) sort = udt else: raise RuntimeError( f'Unrecognized type in db outline {outlined_sort} {type(outlined_sort)}') resolved_name = '.'.join([root_name, name]) mem.create(resolved_name, sort) elif type(symbols) == str: # Named logger.debug( f'Allocating a named type {type(symbols)} {symbols}') sort_factory = get_sort_factory(symbols) mem.create(root_name, sort_factory) else: raise AssertionError( f'Bruh, the symbols variable needs to be either a str or dict, not {type(symbols)}') except Exception as e: logger.warning(f'Unable to parse {p}: {e}') logger.debug(f'An exception occurred: {e}', exc_info=True) return mem DEBUG_CONTINUE = True def _build_udts(udt_files): outlines = {} for f in udt_files: logger.debug(f'Considering UDT file {f}') try: udt_outline = s7db.parse_udt_file(f) outlines[udt_outline['name']] = udt_outline except Exception as e: logger.exception(e) if not DEBUG_CONTINUE: raise # Transform these outlines into UDTSchemas, make sure we have definitions for everything, # and register them. for _, outline in outlines.items(): name = outline['name'] logger.debug(f'Processing {name}') try: _build_udt(outline, outlines) except (NotSupportedException, KeyError) as e: logger.warning(f'Unable to parse {name}, {e}') def _build_fb_udts(function_files): ''' Some function blocks, those labeled as "FB", may contain static data that implicitly forms a UDT with the name of the block. ''' outlines = {} for f in function_files: logger.debug(f'Considering block file {f}') static_iface = parse_static_interface_from_file(f) if static_iface: outlines[static_iface['name']] = static_iface for iface in outlines.values(): _build_udt(iface, outlines) def process_tags(tag_files, mem: MemoryProxy): symbols = [] for f in tag_files: logger.debug(f'Considering tag file {f}') tag_table_name, tag_table_symbols = parse_tags_from_file(f) symbols.extend(tag_table_symbols) for entry in symbols: name = entry[0] sort_text = entry[1] try: sort = get_sort_factory(sort_text) mem.create(name, sort) except Exception as e: logger.warning(f'Unable to create {sort_text}. Skipping.') logger.debug(e, exc_info=True) class ProjectContext: ''' Container for project data. See __init__ for details: Be sure to specify an entry point for the analysis. ''' def __init__(self): # 'user data types': Be sure to export with the *.udt type self.udt_srcs = [] # 'data block' files. Define global memory stores. Export with *.db type. self.db_srcs = [] # 'tag files': Memory mapped IO points. Just more global memory to this # analysis. Has a *.xml extension. self.tag_srcs = [] # 'Function block' sources: XML describing the computational graphs that you # draw inside TIA portal. self.fb_srcs = [] # Where do we start analysis? A string corresponding to the function block # where we want to start. # The default here is the the name of the automatically generated TIA portal # safety task entry point. self.entry_point = 'Main_Safety_RTG1' # If your entry point routine is a block of type FB, meaning it has static data # associated with it, then you can additionally specify the name of the global # DB that backs it. If its not specified, then: # 1. The project will look for a db with the name f'{entry_point}_DB' and use # that if it exists. Otherwise, # 2. A global symbol, '__main' with the type of your FB will be allocated. self.entry_point_db = None def build_program_model(project: ProjectContext) -> ProgramModel: ''' Given a project description, this function generates a program model which can be used for analysis by incorporating global symbols with executable code and returning a ProgramModel. Currently there are some global memory accesses (in z3 and in this library) so do not call this from multiple threads. TODO(JMeyer): See about creating a user data type store and making all of this thread safe. ''' # First look at the data types because they may be used in all subsequent steps. Note that this # step populates the g_udt_archive in the sorts module and is therefore not threadsafe. It is a # TODO(Jmeyer) to clean this up. _build_udts(project.udt_srcs) _build_fb_udts(project.fb_srcs) # Loop through the data blocks (global variables) and build up the symbol table: ctx = z3.Context() mem = _process_dbs(project.db_srcs, ctx) # Add on the 'tags', or io mapped memory process_tags(project.tag_srcs, mem) # ... then start parsing the executable code: program = Program('') for f in project.fb_srcs: block = parse_s7xml.parse_function_from_file(f) program.blocks[block.name] = block program.entry = project.entry_point program.entry_point_db = project.entry_point_db program.entry_point_db = resolve_entry_point_db(mem, program) return program_model(program, context=ctx, global_memory=mem) def resolve_entry_point_db(mem: MemoryProxy, program: Program) -> str: entry_block = program.blocks[program.entry] entry_is_fb = entry_block.block_type == Block.BLOCK_TYPE_FB if not entry_is_fb: return '' fb_udt_name = f'"{entry_block.name}"' # If the user did not specify an entry_db, then first try to locate a suitable one, # and, failing that, use a special new one. if program.entry_point_db: logger.debug( f'User specified entry = {program.entry} and entry db = {program.entry_point_db}') # Force an assert mem.read(program.program_entry_db) return program.entry_point_db else: logger.debug( f'User did not specify an entry DB for entry = {program.entry}') # Rule #1: Is there a global memory object with the name and sort of the entry point? expected = f'{entry_block.name}_DB' try: r = mem.read(expected) except AssertionError as e: r = None if isinstance(r, UDTInstance) and r.schema.name == fb_udt_name: logger.warning( f'An entry point with static data did not have a "entry_point_db" specified. Automatically assuming global memory db "{expected}" backs this entry point.') return expected # Rule #2: Create a special entry point variable fb_sort = get_sort_factory(fb_udt_name) logger.warning( f'An entry point with static data did not have a "entry_point_db" specified and no similarly named DB could be located. Creating "__main" to back these statics.') mem.create('__main', fb_sort) return '__main'
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author mybsdc <mybsdc@gmail.com> @date 2020/10/12 @time 15:05 @issues https://github.com/googleapis/python-firestore/issues/18 https://github.com/firebase/firebase-admin-python/issues/294 https://github.com/firebase/firebase-admin-python/issues/282 https://stackoverflow.com/questions/55876107/how-to-detect-realtime-listener-errors-in-firebase-firestore-database https://uyamazak.hatenablog.com/entry/2019/07/09/221041 """ import os import argparse import sys import json import base64 import time import datetime import traceback import threading from concurrent.futures import ThreadPoolExecutor from google.cloud import firestore from google.api_core.datetime_helpers import DatetimeWithNanoseconds from google.api_core.exceptions import GoogleAPIError from google.cloud.firestore_v1.watch import Watch from loguru import logger import logging def catch_exception(origin_func): def wrapper(self, *args, **kwargs): """ 用于异常捕获的装饰器 :param origin_func: :return: """ try: return origin_func(self, *args, **kwargs) except AssertionError as e: logger.error('参数错误:{}', str(e)) except GoogleAPIError as e: logger.error('GoogleAPIError: ', str(e)) except Exception as e: logger.error('出错:{} 位置:{}', str(e), traceback.format_exc()) finally: pass return wrapper class FirestoreListener(object): @logger.catch def __init__(self): FirestoreListener.check_py_version() # 命令行参数 self.args = self.get_all_args() # 日志 self.__logger_setting() # Firestore 日志:由于 firestore 的异常和日志是在它自己的子进程中处理的,外层无法捕获错误信息,但是 firestore 使用了 logging 模块写日志,故可将日志记录在文件中 logging.basicConfig(filename='logs/firestore.log', level=logging.DEBUG if self.args.debug else logging.INFO, format='[%(asctime)s] %(levelname)s | %(process)d:%(filename)s:%(name)s:%(lineno)d:%(module)s - %(message)s') # firestore 数据库配置 self.db = firestore.Client.from_service_account_json(self.args.key_path) self.collection_id = self.args.collection_id self.restart_interval = self.args.restart_interval self.doc_ref = None self.doc_watch = None # Create an Event for notifying main thread self.callback_done = threading.Event() self.is_first_time = True self.today = FirestoreListener.today() # 线程池 self.max_workers = self.args.max_workers self.thread_pool_executor = ThreadPoolExecutor(max_workers=self.max_workers) @staticmethod def today(): return str(datetime.date.today()) def __logger_setting(self) -> None: logger.remove() level = 'DEBUG' if self.args.debug else 'INFO' format = '<green>[{time:YYYY-MM-DD HH:mm:ss.SSS}]</green> <b><level>{level: <8}</level></b> | <cyan>{process.id}</cyan>:<cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>' logger.add('logs/{time:YYYY-MM-DD}.log', level=level, format=format, encoding='utf-8') logger.add(sys.stderr, colorize=True, level=level, format=format) @staticmethod def check_py_version(major=3, minor=6): if sys.version_info < (major, minor): raise UserWarning(f'请使用 python {major}.{minor} 及以上版本,推荐使用 python 3.8') @staticmethod def get_all_args(): """ 获取所有命令行参数 :return: """ parser = argparse.ArgumentParser(description='需要传给 FirestoreListener 的各种参数及其含义', epilog='e.g. python3.8 -i firestore-listener.py -k=luolongfei-1ad2ca735e37.json') parser.add_argument('-c', '--collection_id', help='collection 名称,或者叫 collection id', default='Message', type=str) parser.add_argument('-k', '--key_path', help='由谷歌提供的 json 格式的密钥文件的路径,更多信息参考:https://googleapis.dev/python/google-api-core/latest/auth.html', required=True, type=str) parser.add_argument('-mw', '--max_workers', help='最大线程数(在执行外部 php 命令时)', default=1, type=int) parser.add_argument('-d', '--debug', help='是否开启 Debug 模式', action='store_true') parser.add_argument('-r', '--restart_interval', help='重启间隔,每隔指定分钟后重启监听动作。单位:分钟', default=20, type=int) return parser.parse_args() @staticmethod def __json_helper(obj): if isinstance(obj, DatetimeWithNanoseconds): return obj.timestamp() raise TypeError(f'{type(obj)} 类型不可序列化为 json') @staticmethod def __php_run(document: dict) -> None: """ 执行外部 php 命令 :param document: :return: """ try: doc_json = json.dumps(document, default=FirestoreListener.__json_helper, ensure_ascii=False).encode('utf-8') doc_b64 = base64.b64encode(doc_json).decode('utf-8') cmd = "php artisan command:fcmpushformessage '{}'".format(doc_b64) status_code = os.system(cmd) if status_code != 0: logger.error('执行外部命令出错:{}', cmd) except Exception as e: logger.error('构造外部命令出错:{}', str(e)) @logger.catch def __on_snapshot(self, col_snapshot, changes, read_time) -> None: """ Firestore 回调 新增文档时触发执行外部命令 :param col_snapshot: :param changes: :param read_time: :return: """ # 常驻执行,更新日志目录 real_today = FirestoreListener.today() if self.today != real_today: self.today = real_today self.__logger_setting() for change in changes: if change.type.name == 'ADDED': if self.is_first_time: self.is_first_time = False return # 将任务添加到线程池 self.thread_pool_executor.submit(FirestoreListener.__php_run, change.document.to_dict()) logger.debug('新增文档 ID: {} 内容: {}', change.document.id, change.document.to_dict()) elif change.type.name == 'MODIFIED': logger.debug('修改文档 ID: {} 内容: {}', change.document.id, change.document.to_dict()) elif change.type.name == 'REMOVED': logger.debug('移除快照或文档 ID: {} 内容: {}', change.document.id, change.document.to_dict()) # 通知主线程,当前线程已经完事儿了,防止阻塞 self.callback_done.set() @logger.catch def __start_snapshot(self, force=False): isinstance(self.doc_watch, Watch) and self.doc_watch.unsubscribe() self.doc_ref = self.db.collection(self.collection_id).order_by('updatedAt', direction=firestore.Query.DESCENDING).limit(1) # 强行重启时防止重复触发回调 if force: self.is_first_time = True self.doc_watch = self.doc_ref.on_snapshot(self.__on_snapshot) @logger.catch def __listen_for_changes(self) -> None: """ 监听文档变化 on_snapshot 方法在每次新增文档时候,会移除旧的快照,创建新的快照 :return: """ logger.debug(f'开始实时监听,每隔 {self.restart_interval} 分钟将自动重启监听动作') start_time = time.time() self.__start_snapshot() while True: if time.time() - int(self.restart_interval) * 60 > start_time: logger.debug('重启监听') self.__start_snapshot(force=True) start_time = time.time() continue if self.doc_watch._closed: logger.error('检测到 firestore 很不仗义的罢工了,将尝试重启') try: self.__start_snapshot(force=True) # 防止异常导致宕机 time.sleep(1) except Exception as e: logger.error('重启失败:{}', str(e)) break time.sleep(0.001) @logger.catch @catch_exception def run(self): self.__listen_for_changes() if __name__ == '__main__': firestore_listener = FirestoreListener() firestore_listener.run()
from django.conf.urls import patterns, url from . import views urlpatterns = patterns( '', url(r'user-name/$', views.user_name, name='user_name'), url(r'approve/(?P<identifier>\w{10})/(?P<id>\d+)/$', views.approve_immediately, name='approve_immediately'), url(r'remove/(?P<identifier>\w{10})/(?P<id>\d+)/$', views.remove_immediately, name='remove_immediately'), url(r'unsubscribed/(?P<id>\d+)/$', views.unsubscribed, name='unsubscribed'), url(r'unsubscribed/$', views.unsubscribed, name='unsubscribed_all'), url(r'unsubscribe/(?P<identifier>\w{10})/(?P<id>\d+)/$', views.unsubscribe, name='unsubscribe_discussion'), url(r'unsubscribe/(?P<identifier>\w{10})/$', views.unsubscribe, name='unsubscribe_all'), url(r'(?P<id>\d+)/latest/$', views.event_data_latest, name='event_data_latest'), url(r'(?P<id>\d+)/$', views.event_data, name='event_data'), )
# Copyright (c) 2020, Zhouxing shi <zhouxingshichn@gmail.com> # Licenced under the BSD 2-Clause License. import os, json res = {} for dataset in ["yelp", "sst"]: for num_layers in range(1, 4): for ln in ["", "_no", "_standard"]: dir = "model_{}_{}{}".format(dataset, num_layers, ln) command = "python main.py --dir={} --data={} --log=log.txt".format(dir, dataset) print(command) os.system(command) with open("log.txt") as file: acc = float(file.readline()) res[dir] = acc with open("res_acc.json", "w") as file: file.write(json.dumps(res, indent=4))
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Samragni Banerjee <samragnibanerjee4@gmail.com> # Alexander Sokolov <alexander.y.sokolov@gmail.com> # import unittest import numpy import math from pyscf import gto from pyscf import scf from pyscf import adc from pyscf import mp mol = gto.Mole() r_CO = 1.21 r_CH = 1.12 theta = 116.5 x = r_CH * math.cos(theta * math.pi/(2 * 180.0)) y = r_CH * math.sin(theta * math.pi/(2 * 180.0)) mol.atom = [ ['C', ( 0.0, 0.0, 0.0)], ['O', ( 0.0, r_CO , 0.0)], ['H', ( 0.0, -x, y)], ['H', ( 0.0, -x , -y)],] mol.basis = {'H': 'aug-cc-pVQZ', 'C': 'aug-cc-pVQZ', 'O': 'aug-cc-pVQZ',} mol.verbose = 0 mol.build() mf = scf.RHF(mol) mf.conv_tol = 1e-12 mf.kernel() myadc = adc.ADC(mf) def tearDownModule(): global mol, mf del mol, mf class KnownValues(unittest.TestCase): def test_check_mp2_energy(self): mp2 = mp.MP2(mf) e_mp2 = mp2.kernel()[0] myadc.max_memory = 20 e_adc_mp2, t_amp1, t_amp2 = myadc.kernel_gs() diff_mp2 = e_adc_mp2 - e_mp2 self.assertAlmostEqual(diff_mp2, 0.0000000000000, 6) def test_check_amplitudes(self): myadc.max_memory = 20 e, t_amp1, t_amp2 = myadc.kernel_gs() t_amp1_n = numpy.linalg.norm(t_amp1[0]) t_amp2_n = numpy.linalg.norm(t_amp2[0]) self.assertAlmostEqual(t_amp1_n, 0.0456504320024, 6) self.assertAlmostEqual(t_amp2_n, 0.2977897530749, 6) if __name__ == "__main__": print("Ground state calculations for small memory RADC methods for H2CO molecule") unittest.main()
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### -*- encoding: utf-8 -*- from openerp.osv import osv,fields from xml.dom import minidom class fiscal_ats_ventaptoemision(osv.osv): _name = 'fiscal.ats_ventaptoemision' def toxml(self, listaventaspto): doc = minidom.Document() ventaspto = doc.createElement('ventasEstablecimiento') doc.appendChild(ventaspto) for v in listaventaspto: detalle = doc.createElement('ventaEst') ventaspto.appendChild(detalle) node = doc.createElement('codEstab') detalle.appendChild(node) txt = doc.createTextNode( v.establecimiento ) node.appendChild(txt) node = doc.createElement('ventasEstab') detalle.appendChild(node) txt = doc.createTextNode("%.2f" % v.total) node.appendChild(txt) return ventaspto _columns = { 'atsproceso_id':fields.many2one('fiscal.ats_proceso','ATS Proceso', required=True,ondelete='cascade'), 'establecimiento':fields.char('Establecimiento',size=3,required=True), 'total': fields.float('Total', digits=(8,2),required=True), 'manual': fields.boolean('Manual', required=True), } _defaults = { 'manual':True } fiscal_ats_ventaptoemision()
from django.urls import path from .views import * from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('home',home, name="home"), path('addproduct',addproduct, name="addproduct"), path('productlist',ProductList.as_view(),name='productlist'), path('edit/<pk>',UpdateProduct.as_view(),name='edit'), path('delete/<pk>',DeleteProduct.as_view(),name='delete'), path('clothing',Clothing.as_view(),name='clothing'), path('watches',Watches.as_view(),name='watches'), path('detail/<pk>',ProductDetail.as_view(),name='detail') ]+static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
# Copyright 2016-2020 the GPflow authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass import numpy as np import pytest import tensorflow as tf import gpflow from gpflow.config import default_float from gpflow.utilities import to_default_float @dataclass(frozen=True) class Datum: rng: np.random.RandomState = np.random.RandomState(0) X: np.ndarray = rng.randn(100, 2) Y: np.ndarray = rng.randn(100, 1) Z: np.ndarray = rng.randn(10, 2) Xs: np.ndarray = rng.randn(10, 2) lik = gpflow.likelihoods.Gaussian() kernel = gpflow.kernels.Matern32() def test_sgpr_qu(): rng = Datum().rng X = to_default_float(rng.randn(100, 2)) Z = to_default_float(rng.randn(20, 2)) Y = to_default_float(np.sin(X @ np.array([[-1.4], [0.5]])) + 0.5 * rng.randn(len(X), 1)) model = gpflow.models.SGPR( (X, Y), kernel=gpflow.kernels.SquaredExponential(), inducing_variable=Z ) gpflow.optimizers.Scipy().minimize(model.training_loss, variables=model.trainable_variables) qu_mean, qu_cov = model.compute_qu() f_at_Z_mean, f_at_Z_cov = model.predict_f(model.inducing_variable.Z, full_cov=True) np.testing.assert_allclose(qu_mean, f_at_Z_mean, rtol=1e-5, atol=1e-5) np.testing.assert_allclose(tf.reshape(qu_cov, (1, 20, 20)), f_at_Z_cov, rtol=1e-5, atol=1e-5)
""" SOI Tax Data (soi_processing.py): ------------------------------------------------------------------------------- Last updated: 6/29/2015. This module creates functions for gathering and processing various SOI Tax data into a NAICS tree. """ # Packages: import os.path import sys import numpy as np import pandas as pd import xlrd # Directories: _CUR_DIR = os.path.dirname(__file__) _PROC_DIR = os.path.join(_CUR_DIR, "processing") _OUT_DIR = os.path.join(_CUR_DIR, "output") _DATA_DIR = os.path.join(_CUR_DIR, "data") # Importing custom modules: import naics_processing as naics import constants as cst # Importing soi tax data helper custom modules sys.path.append(_PROC_DIR) import pull_soi_corp as corp import pull_soi_partner as prt import pull_soi_proprietorship as prop # Dataframe names: _TOT_CORP_DF_NM = cst.TOT_CORP_DF_NM _S_CORP_DF_NM = cst.S_CORP_DF_NM _C_CORP_DF_NM = cst.C_CORP_DF_NM _INC_DF_NM = cst.INC_PRT_DF_NM _AST_DF_NM = cst.AST_PRT_DF_NM _TYP_DF_NM = cst.TYP_PRT_DF_NM _NFARM_DF_NM = cst.NON_FARM_PROP_DF_NM _FARM_DF_NM = cst.FARM_PROP_DF_NM # _ALL_SECTORS = cst.ALL_SECTORS_NMS_LIST _ALL_SECTORS_DICT = cst.ALL_SECTORS_NMS_DICT def load_corporate(soi_tree=naics.generate_tree(), from_out=False, get_all=False, get_tot=False, get_s=False, get_c=False, output_data=False, out_path=None): """ Loading the corporate tax soi data into a NAICS Tree. :param soi_tree: The NAICS tree to put all of the data in. :param from_out: If the corporate soi data is already in an output folder, then it can be read in directly from the output. :param get_all: Get corporate soi data for all kinds of corporations. :param get_tot: Get the aggregate soi data for corporations. :param get_s: Get the soi data for s corporations. :param get_c: Interpolate the soi data for c corporations. :param output_data: Print the corporate dataframes to csv files in the output folder. :param out_path: The output_path, both for reading in output data and for printing to the output file .. note: Because there is only data on the aggregate and s corporations, the c corporations data can only be interpolated if the other two have been calculated. """ # Initializing the output path: if out_path == None: out_path = _OUT_DIR # Initializing booleans based of initial input booleans: if get_all: get_tot = True get_s = True get_c = True if not get_tot or not get_s: get_c = False # Load the total corporate soi data into the NAICS tree: if get_tot: soi_tree = corp.load_soi_tot_corp(data_tree=soi_tree, from_out=from_out) if output_data: naics.print_tree_dfs(tree=soi_tree, out_path=out_path, data_types=[_TOT_CORP_DF_NM]) # Load the S-corporate soi data into the NAICS tree: if get_s: soi_tree = corp.load_soi_s_corp(data_tree=soi_tree, from_out=from_out) if output_data: naics.print_tree_dfs(tree=soi_tree, out_path=out_path, data_types=[_S_CORP_DF_NM]) # Calculate the C-corporate soi data for the NAICS tree: if get_c: soi_tree = corp.calc_c_corp(data_tree=soi_tree, from_out=from_out) if output_data: naics.print_tree_dfs(tree=soi_tree, out_path=out_path, data_types=[_C_CORP_DF_NM]) return soi_tree def load_partner(soi_tree=naics.generate_tree(), from_out=False, output_data=False, out_path=None): """ Loading the partnership tax soi data into a NAICS Tree. :param soi_tree: The NAICS tree to put all of the data in. :param from_out: If the corporate soi data is already in an output file, then it can be read in directly from the output. :param output_data: Print the corporate dataframes to csv files in the output folder. :param out_path: The output_path, both for reading in output data and for printing to the output file """ # Initializing the output path: if out_path == None: out_path = _OUT_DIR # Load the soi income data into the NAICS tree: soi_tree = prt.load_income(data_tree=soi_tree, from_out=from_out) # Load the soi asset data into the NAICS tree: soi_tree = prt.load_asset(data_tree=soi_tree, from_out=from_out) # Load the soi partnership types data into the NAICS tree: soi_tree = prt.load_type(data_tree=soi_tree, from_out=from_out) # Output the data to csv files in the output folder: if output_data: naics.print_tree_dfs(tree=soi_tree, out_path=out_path, data_types=[_INC_DF_NM, _AST_DF_NM, _TYP_DF_NM]) return soi_tree def load_proprietorship(soi_tree=naics.generate_tree(), from_out=False, get_all=False, get_nonfarm=False, get_farm=False, output_data=False, out_path=None): """ Loading the proprietorship tax soi data into a NAICS Tree. :param soi_tree: The NAICS tree to put all of the data in. :param from_out: If the corporate soi data is already in an output file, then it can be read in directly from the output. :param output_data: Print the corporate dataframes to csv files in the output folder. :param out_path: The output_path, both for reading in output data and for printing to the output file """ # Initializing the output path: if out_path == None: out_path = _OUT_DIR # Load the soi nonfarm data into the NAICS tree: if get_nonfarm: soi_tree = prop.load_soi_nonfarm_prop( data_tree=soi_tree, from_out=from_out ) # Load the farm data into to the NAICS tree: if get_farm: soi_tree = prop.load_soi_farm_prop( data_tree=soi_tree, from_out=from_out ) # Output the data to csv files in the output folder: if output_data: naics.print_tree_dfs(tree=soi_tree, out_path=out_path, data_types=[_NFARM_DF_NM, _FARM_DF_NM]) return soi_tree def calc_assets(soi_tree, asset_tree=naics.generate_tree()): """ Calculating a breakdown of the various sector type's assets into fixed assets, inventories, and land. :param asset_tree: The NAICS tree to put all of the data in. :param soi_tree: A NAICS tree containing all the pertinent soi data. """ # Initializing dataframes for all NAICS industries: asset_tree.append_all(df_nm="FA", df_cols=_ALL_SECTORS) asset_tree.append_all(df_nm="INV", df_cols=_ALL_SECTORS) asset_tree.append_all(df_nm="LAND", df_cols=_ALL_SECTORS) # Calculate fixed assets, inventories, and land for each industry/sector for i in range(0, len(asset_tree.enum_inds)): cur_dfs = soi_tree.enum_inds[i].data.dfs out_dfs = asset_tree.enum_inds[i].data.dfs # Total of all the partner data for the current industry: partner_sum = sum(cur_dfs[_TYP_DF_NM].iloc[0,:]) # C-Corporations: sector = _ALL_SECTORS_DICT["C_CORP"] cur_df = cur_dfs[_C_CORP_DF_NM] out_dfs["FA"][sector][0] = cur_df["depreciable_assets"][0] out_dfs["INV"][sector][0] = cur_df["inventories"][0] out_dfs["LAND"][sector][0] = cur_df["land"][0] # S-Corporations: sector = _ALL_SECTORS_DICT["S_CORP"] cur_df = cur_dfs[_S_CORP_DF_NM] out_dfs["FA"][sector][0] = cur_df["depreciable_assets"][0] out_dfs["INV"][sector][0] = cur_df["inventories"][0] out_dfs["LAND"][sector][0] = cur_df["land"][0] # Partnership sectors: for sector in cst.DFLT_PRT_TYP_DF_COL_NMS_DICT.values(): if partner_sum != 0: ratio = abs(float(cur_dfs[_TYP_DF_NM][sector][0]))/partner_sum else: ratio = abs(1.0/float(cur_dfs[_TYP_DF_NM].shape[0])) cur_df = cur_dfs[_AST_DF_NM] out_dfs["FA"][sector][0] = abs( ratio*cur_df["depreciable_assets_net"][0] ) out_dfs["INV"][sector][0] = abs( ratio*cur_df["inventories_net"][0] ) out_dfs["LAND"][sector][0] = abs( ratio*cur_df["land_net"][0] ) # Sole Proprietorships: sector = _ALL_SECTORS_DICT["SOLE_PROP"] if cur_dfs[_INC_DF_NM]["depreciation"][0] != 0: ratio = abs(float(cur_dfs[_NFARM_DF_NM]["depreciation_deductions"][0])/ cur_dfs[_INC_DF_NM]["depreciation"][0]) else: ratio = 0.0 cur_df = cur_dfs[_AST_DF_NM] out_dfs["FA"][sector][0] = abs( (ratio* cur_df["depreciable_assets_net"][0])+ cur_dfs[_FARM_DF_NM]["FA"][0] ) out_dfs["INV"][sector][0] = abs( (ratio*cur_df["inventories_net"][0])+ cur_dfs[_FARM_DF_NM]["Land"][0] ) out_dfs["LAND"][sector][0] = abs(ratio*cur_df["land_net"][0]) return asset_tree
# ********************************************************************************** # # # # Project: FastClassAI workbecnch # # # # Author: Pawel Rosikiewicz # # Contact: prosikiewicz_gmail.com # # # # This notebook is a part of Skin AanaliticAI development kit, created # # for evaluation of public datasets used for skin cancer detection with # # large number of AI models and data preparation pipelines. # # # # License: MIT # # Copyright (C) 2021.01.30 Pawel Rosikiewicz # # https://opensource.org/licenses/MIT # # # # ********************************************************************************** # #!/usr/bin/env python # -*- coding: utf-8 -*- import os # allow changing, and navigating files and folders, import sys import re # module to use regular expressions, import glob # lists names in folders that match Unix shell patterns import random # functions that use and generate random numbers import numpy as np # support for multi-dimensional arrays and matrices import pandas as pd # library for data manipulation and analysis import seaborn as sns # advance plots, for statistics, import matplotlib as mpl # to get some basif functions, heping with plot mnaking import tensorflow_hub as hub import tensorflow as tf # tf.__version__ import tensorflow.keras as keras import matplotlib.pyplot as plt # for making plots, import scipy.stats as stats # library for statistics and technical programming, from tensorflow.keras.preprocessing.image import ImageDataGenerator from PIL import Image, ImageDraw from IPython.display import display from tensorflow.keras import backend as K # used for housekeeping of tf models, # Function, ........................................................................ def make_keyword_list(input_item): ''' helper function that turns, lists with str, and enbded list, mixed together, into one flatten list of strings, tranforms, floats and integers into string, ''' keyword_list = [] if isinstance(input_item, str): keyword_list.append(input_item) elif isinstance(input_item, int) or isinstance(input_item, float): keyword_list.append(str(input_item)) elif isinstance(input_item, list): for item in input_item: if isinstance(item, str): keyword_list.append(item) elif isinstance(item, int) or isinstance(item, float): keyword_list.append(str(input_item)) elif isinstance(item, list): keyword_list.extend(item) return keyword_list # Function, ........................................................................ def find_strings_mathing_any_pattern(*, input_list=None, pattern_list=None, match_any=True, verbose=False): ''' helper function that will return list wiht items from input list that match pattern in at least one item in the pattern_list match_any : bool, if True, function returns items that match any patter in pattern list if False, it will return only the list matchin all the patterns in all files in the list ''' if input_list is None: if verbose==True: print(f"No data provided") else: pass return None else: # tuns string and embded lists into one flat list input_list = make_keyword_list(input_list) # turn input list into pd series to allow using pandas str functions, input_series = pd.Series(input_list) if pattern_list is not None: # tuns string and embded lists into one flat list pattern_list = make_keyword_list(pattern_list) # find any item in input items that match any pattern pattern for i, key in enumerate(pattern_list): if i==0: resdf = input_series.str.contains(key) else: resdf = pd.concat([resdf, input_series.str.contains(key)], axis=1) # turn if isinstance(resdf, pd.core.series.Series): result_list = input_series.loc[(resdf==True).values.tolist()].values.tolist() else: if match_any==True: result_list = input_series.loc[(resdf.sum(axis=1)>0).values.tolist()].values.tolist() else: result_list = input_series.loc[(resdf.sum(axis=1)==resdf.shape[1]).values.tolist()].values.tolist() else: result_list = input_list if verbose==True: print(f"Provided {len(input_list)} items and {len(pattern_list)} possible patterns to match in each file") print(f"Returned {len(result_list)} items that matched to at least one pattern from pattern list") else: pass return result_list # Function, ........................................................................ def collect_results(*, paths, # str, or list wiht str, filename_keywords, # required, at least one. dirname_keywords=None, filename_match_any=False, dirname_match_any=True, verbose=False ): """ Helper function that will load csv files, in a given file paths : str, or list wiht str, filename_keywords, : str, or list, or list in list, or mixed, required, at least one. dirname_keywords : str, or list, or list in list, or mixed, or None, if None, path/s are the final directory where the files will be search, if not None, keywords will be used to find selected filenames, if "", all files in each provided path/s will be searched for files filename_keywords filename_match_any : bool, def=False, if True, filenames that have at least one pattern provided in filename_keywords will be used if False, only the files that have all keywords in the name will be loaded dirname_match_any : bool, same as filename_match_any, but applied to directory names searched within provided path/s """ # set path with results files, path_list = make_keyword_list(paths) c=0 for path in path_list: os.chdir(path) if dirname_keywords is not None: # find and selectct folders inside the path dirmane_list=[] for dirname in glob.glob("*"): dirmane_list.append(dirname) selected_dirmane_list = find_strings_mathing_any_pattern( input_list = dirmane_list, pattern_list = dirname_keywords, match_any = dirname_match_any ) else: selected_dirmane_list=[None] # load all files that match ALL patterns provided wiht filename_keywords for dirname in selected_dirmane_list: # if no dirmane is selected, it means the path/s are the final destination, if dirname is not None: path_to_file = os.path.join(path, dirname) else: path_to_file = path os.chdir(path_to_file) # final all files inside using selected patterns such as file extension, filename_list=[] for filename in glob.glob("*"): filename_list.append(filename) selected_filename_list = find_strings_mathing_any_pattern( input_list = filename_list, pattern_list = filename_keywords, match_any = filename_match_any, # returns only the files that contain all provided patterns, ) for filename in selected_filename_list: # load the file and add info on the file name and path to it, one_results_df = pd.read_csv(filename) one_results_df["full_path"] = path_to_file one_results_df["file_name"] = filename # concatenate all the results into one df, if c==0: results_df = one_results_df else: results_df = pd.concat([results_df, one_results_df], axis=0) results_df.reset_index(inplace=True, drop=True) c+=1 if verbose==True: print(f"Adding: {filename}") print(f"df shape: {results_df.shape}") else: pass return results_df
# Copyright 2018 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finds heads for constituency spans using a head rules table. """ # Types of head rules. LEFT = 1 # for a given tag, find the leftmost child with that tag RIGHT = 2 # for a given tag, find the rightmost child with that tag LEFTDIS = 3 # find the leftmost child with tag amongst given tags RIGHTDIS = 4 # find the rightmost child with tag amongst given tags # Head rule. class Rule: def __init__(self, type, tags): self.type = type # e.g. LEFT self.tags = tags # POS tags list # Head rules table. # It is a map: constituent tag -> list of rules ordered by descending priority. class RulesTable: # Backoff POS tag. UNKNOWN_POS = '<UNK>' # Creates an empty rules table. def __init__(self): self.table = {} self.default_rules = [] # Adds a rule to the table. # 'parent' is the constituency tag, rule_type is the type of rule to # be added and 'tags' is the comma-separated POS tags string for that rule. def add(self, parent, rule_type, tags): rules = self.table.get(parent, None) if rules is None: rules = [] self.table[parent] = rules tags = tags.split(',') # Add backoff POS tag if no tags are specified. if len(tags) == 0: tags.append(RulesTable.UNKNOWN_POS) rules.append(Rule(rule_type, tags)) # Adds a default rule to the table. def default(self, type): self.default_rules = [Rule(type, tags=[RulesTable.UNKNOWN_POS])] # Returns the rules list for the constituency tag 'parent', falling back # to the default rules. def get(self, parent): return self.table.get(parent, self.default_rules) # Returns Michael Collins' head rules as per his 1999 thesis. def collins_head_table(): table = [ ('ADJP', LEFT, \ 'NNS,QP,NN,$,ADVP,JJ,VBN,VBG,ADJP,JJR,NP,JJS,DT,FW,RBR,RBS,SBAR,RB'), ('ADVP', RIGHT, 'RB,RBR,RBS,FW,ADVP,TO,CD,JJR,JJ,IN,NP,JJS,NN'), ('CONJP', RIGHT, 'CC,RB,IN'), ('FRAG', RIGHT, ''), ('INTJ', LEFT, ''), ('LST', RIGHT, 'LS,:'), ('NAC', LEFT, \ 'NN,NNS,NNP,NNPS,NP,NAC,EX,$,CD,QP,PRP,VBG,JJ,JJS,JJR,ADJP,FW'), ('NX', LEFT, ''), ('PP', RIGHT, 'IN,TO,VBG,VBN,RP,FW'), ('PRN', LEFT, ''), ('PRT', RIGHT, 'RP'), ('QP', LEFT, '$,IN,NNS,NN,JJ,RB,DT,CD,NCD,QP,JJR,JJS'), ('RRC', RIGHT, 'VP,NP,ADVP,ADJP,PP'), ('S', LEFT, 'TO,IN,VP,S,SBAR,ADJP,UCP,NP'), ('SBAR', LEFT, 'WHNP,WHPP,WHADVP,WHADJP,IN,DT,S,SQ,SINV,SBAR,FRAG'), ('SBARQ', LEFT, 'SQ,S,SINV,SBARQ,FRAG'), ('SINV', LEFT, 'VBZ,VBD,VBP,VB,MD,VP,S,SINV,ADJP,NP'), ('SQ', LEFT, 'VBZ,VBD,VBP,VB,MD,VP,SQ'), ('UCP', RIGHT, ''), ('VP', LEFT, 'TO,VBD,VBN,MD,VBZ,VB,VBG,VBP,AUX,AUXG,VP,ADJP,NN,NNS,NP'), ('WHADJP', LEFT, 'CC,WRB,JJ,ADJP'), ('WHADVP', RIGHT, 'CC,WRB'), ('WHNP', LEFT, 'WDT,WP,WP$,WHADJP,WHPP,WHNP'), ('WHPP', RIGHT, 'IN,TO,FW'), ('X', RIGHT, ''), ('NP', RIGHTDIS, 'NN,NNP,NNPS,NNS,NX,POS,JJR,NML'), ('NP', LEFT, 'NP'), ('NP', RIGHTDIS, '$,ADJP,PRN'), ('NP', RIGHT, 'CD'), ('NP', RIGHTDIS, 'JJ,JJS,RB,QP'), ('NML', RIGHTDIS, 'NN,NNP,NNPS,NNS,NX,NML,POS,JJR'), ('NML', LEFT, 'NP,PRP'), ('NML', RIGHTDIS, '$,ADJP,JJP,PRN'), ('NML', RIGHT, 'CD'), ('NML', RIGHTDIS, 'JJ,JJS,RB,QP,DT,WDT,RBR,ADVP') ] rules = RulesTable() rules.default(LEFT) for t in table: rules.add(t[0], t[1], t[2]) return rules # Returns Yamada and Matsumoto head rules (Yamada and Matsumoto, IWPT 2003). def yamada_matsumoto_head_table(): rules = RulesTable() # By default, report the first non-punctuation child from the left as head. rules.default(LEFT) table = [ ('NP', RIGHTDIS, 'POS,NN,NNP,NNPS,NNS'), ('NP', RIGHT, 'NX,JJR,CD,JJ,JJS,RB,QP,NP'), ('ADJP', RIGHT, \ 'NNS,QP,NN,$,ADVP,JJ,VBN,VBG,ADJP,JJR,NP,JJS,DT,FW,RBR,RBS,SBAR,RB'), ('ADVP', LEFT, 'RB,RBR,RBS,FW,ADVP,TO,CD,JJR,JJ,IN,NP,JJS,NN'), ('CONJP', LEFT, 'CC,RB,IN'), ('FRAG', LEFT, ''), ('INTJ', RIGHT, ''), ('LST', LEFT, 'LS,:'), ('NAC', RIGHTDIS, 'NN,NNS,NNP,NNPS'), ('NAC', RIGHT, 'NP,NAC,EX,$,CD,QP,PRP,VBG,JJ,JJS,JJR,ADJP,FW'), ('PP', LEFT, 'IN,TO,VBG,VBN,RP,FW'), ('PRN', RIGHT, ''), ('PRT', LEFT, 'RP'), ('QP', RIGHT, '$,IN,NNS,NN,JJ,RB,DT,CD,NCD,QP,JJR,JJS'), ('RRC', LEFT, 'VP,NP,ADVP,ADJP,PP'), ('S', RIGHT, 'TO,IN,VP,S,SBAR,ADJP,UCP,NP'), ('SBAR', RIGHT, 'WHNP,WHPP,WHADVP,WHADJP,IN,DT,S,SQ,SINV,SBAR,FRAG'), ('SBARQ', RIGHT, 'SQ,S,SINV,SBARQ,FRAG'), ('SINV', RIGHT, 'VBZ,VBD,VBP,VB,MD,VP,S,SINV,ADJP,NP'), ('SQ', RIGHT, 'VBZ,VBD,VBP,VB,MD,VP,SQ'), ('UCP', LEFT, ''), ('VP', LEFT, 'VBD,VBN,MD,VBZ,VB,VBG,VBP,VP,ADJP,NN,NNS,NP'), ('WHADJP', RIGHT, 'CC,WRB,JJ,ADJP'), ('WHADVP', LEFT, 'CC,WRB'), ('WHNP', RIGHT, 'WDT,WP,WP$,WHADJP,WHPP,WHNP'), ('WHPP', LEFT, 'IN,TO,FW'), ('NX', RIGHTDIS, 'POS,NN,NNP,NNPS,NNS'), ('NX', RIGHT, 'NX,JJR,CD,JJ,JJS,RB,QP,NP'), ('X', RIGHT, '') ] for t in table: rules.add(t[0], t[1], t[2]) return rules # Head finder takes a head rules table and a constituency node, and outputs # the token index of the head for that node. The node is assumed to be a rooted # tree that goes all the way down to individual tokens with POS tags. class HeadFinder: def __init__(self, statistics=None, rulestype="collins"): self.punctuation = [".", ",", "(", ")", ":", "``", "''"] self.rules = None if rulestype == "collins": self.rules = collins_head_table() else: self.rules = yamada_matsumoto_head_table() # Various counters. self.num_default = None # default rule usage self.num_backoff = None # backoff head computation self.num_none_heads = None # no head could be found self.num_total = None # total invocations self.backoff_usage_histogram = None # constituency tag -> backoff heads self.default_usage_histogram = None # constituency tag -> default rules if statistics is not None: self.num_default = statistics.counter("HeadFinder/DefaultRuleUsage") self.num_backoff = statistics.counter("HeadFinder/BackoffHeads") self.num_none_heads = statistics.counter("HeadFinder/NoHead") self.num_total = statistics.counter("HeadFinder/Total") self.default_usage_histogram = \ statistics.histogram("HeadFinder/DefaultRuleUsageByTag") self.backoff_usage_histogram = \ statistics.histogram("HeadFinder/BackoffUsageByTag") # Returns whether POS tag 'tag' is not a punctuation. def not_punctuation(self, tag): return tag not in self.punctuation # Computes head token for node 'root' as per 'rule'. # Nodes are assumed to have the following fields: children, head, label. # Children's heads should already have been computed. # # Returns the tuple (head, whether backoff was used). def head_from_rule(self, root, rule, force): backoff = None children = root.children if rule.type in [RIGHT, RIGHTDIS]: children = reversed(root.children) # right->left children traversal if rule.type in [LEFT, RIGHT]: for tag in rule.tags: for child in children: if child.label == tag: return child.head, False if backoff is None and force and self.not_punctuation(child.label): backoff = child.head else: assert rule.type in [LEFTDIS, RIGHTDIS], rule.type for child in children: for tag in rule.tags: if child.label == tag: return child.head, False if backoff is None and force and self.not_punctuation(child.label): backoff = child.head if backoff is not None and self.num_backoff is not None: self.num_backoff.increment() return backoff, backoff is not None # Recursively finds the head for all nodes starting at 'root'. def find(self, root): if root.head is not None: return root.head if self.num_total is not None: self.num_total.increment() if root.leaf(): assert root.begin == root.end - 1 # should be token root.head = root.begin # token is its own head elif len(root.children) == 1: root.head = self.find(root.children[0]) else: # Find heads of all children. for child in root.children: self.find(child) # Apply rules to select a head. rules = self.rules.get(root.label) if rules is self.rules.default_rules and self.num_default is not None: self.num_default.increment() self.default_usage_histogram.increment(root.label) for rule in rules: head, via_backoff = self.head_from_rule(root, rule, rule == rules[-1]) if head is not None: root.head = head if via_backoff and self.backoff_usage_histogram is not None: self.backoff_usage_histogram.increment(root.label) break if root.head is None and self.num_none_heads is not None: self.num_none_heads.increment() return root.head
from typing import Dict import pytest import nest_asyncio from mds.agg_mds import datastore from unittest.mock import patch from conftest import AsyncMock # https://github.com/encode/starlette/issues/440 nest_asyncio.apply() @pytest.mark.asyncio async def test_aggregate_commons(client): with patch.object( datastore, "get_commons", AsyncMock(return_value={}) ) as datastore_mock: resp = client.get("/aggregate/commons") assert resp.status_code == 200 assert resp.json() == {} datastore.get_commons.assert_called_with() with patch.object( datastore, "get_commons", AsyncMock(return_value={"commons": ["commons1", "commons2"]}), ) as datastore_mock: resp = client.get("/aggregate/commons") assert resp.status_code == 200 assert resp.json() == {"commons": ["commons1", "commons2"]} datastore.get_commons.assert_called_with() @pytest.mark.asyncio async def test_aggregate_metadata(client): with patch.object( datastore, "get_all_metadata", AsyncMock(return_value=[]) ) as datastore_mock: resp = client.get("/aggregate/metadata") assert resp.status_code == 200 assert resp.json() == [] datastore.get_all_metadata.assert_called_with(20, 0) mock_data = { "commons1": [ { "study1": {}, } ], "commons2": [ { "study2": {}, } ], } with patch.object( datastore, "get_all_metadata", AsyncMock(return_value=mock_data) ) as datastore_mock: resp = client.get("/aggregate/metadata") assert resp.status_code == 200 assert resp.json() == mock_data datastore.get_all_metadata.assert_called_with(20, 0) @pytest.mark.asyncio async def test_aggregate_metadata_name(client): with patch.object( datastore, "get_all_named_commons_metadata", AsyncMock(return_value=None) ) as datastore_mock: resp = client.get("/aggregate/metadata/commons1") assert resp.status_code == 404 assert resp.json() == { "detail": { "code": 404, "message": "no common exists with the given: commons1", } } datastore.get_all_named_commons_metadata.assert_called_with("commons1") with patch.object( datastore, "get_all_named_commons_metadata", AsyncMock(return_value=[{"study1": {}}]), ) as datastore_mock: resp = client.get("/aggregate/metadata/commons1") assert resp.status_code == 200 assert resp.json() == [{"study1": {}}] datastore.get_all_named_commons_metadata.assert_called_with("commons1") @pytest.mark.asyncio async def test_aggregate_metadata_tags(client): with patch.object( datastore, "get_commons_attribute", AsyncMock(return_value=None) ) as datastore_mock: resp = client.get("/aggregate/metadata/commons1/tags") assert resp.status_code == 404 assert resp.json() == { "detail": { "code": 404, "message": "no common exists with the given: commons1", } } with patch.object( datastore, "get_commons_attribute", AsyncMock(return_value=["mytag1"]) ) as datastore_mock: resp = client.get("/aggregate/metadata/commons1/tags") assert resp.status_code == 200 assert resp.json() == ["mytag1"] datastore.get_commons_attribute.assert_called_with("commons1", "tags") @pytest.mark.asyncio async def test_aggregate_metadata_info(client): with patch.object( datastore, "get_commons_attribute", AsyncMock(return_value=None) ) as datastore_mock: resp = client.get("/aggregate/metadata/commons1/info") assert resp.status_code == 404 assert resp.json() == { "detail": { "code": 404, "message": "no common exists with the given: commons1", } } datastore.get_commons_attribute.assert_called_with("commons1", "info") with patch.object( datastore, "get_commons_attribute", AsyncMock(return_value={"commons_url": "http://commons"}), ) as datastore_mock: resp = client.get("/aggregate/metadata/commons1/info") assert resp.status_code == 200 assert resp.json() == {"commons_url": "http://commons"} datastore.get_commons_attribute.assert_called_with("commons1", "info") @pytest.mark.asyncio async def test_metadata_aggregations(client): with patch.object( datastore, "get_aggregations", AsyncMock(return_value=None) ) as datastore_mock: resp = client.get("/aggregate/metadata/commons1/aggregations") assert resp.status_code == 404 assert resp.json() == { "detail": { "code": 404, "message": "no common exists with the given: commons1", } } datastore.get_aggregations.assert_called_with("commons1") @pytest.mark.asyncio async def test_aggregate_metadata_name_guid(client): with patch.object( datastore, "get_by_guid", AsyncMock(return_value=None) ) as datastore_mock: resp = client.get("/aggregate/metadata/guid/123") assert resp.status_code == 404 assert resp.json() == { "detail": { "code": 404, "message": "no entry exists with the given guid: 123", } } datastore.get_by_guid.assert_called_with("123") with patch.object( datastore, "get_by_guid", AsyncMock(return_value={"study2": {}}) ) as datastore_mock: resp = client.get("/aggregate/metadata/guid/123") assert resp.status_code == 200 assert resp.json() == {"study2": {}} datastore.get_by_guid.assert_called_with("123")
"""Bipartite.py Two-color graphs and find related structures. D. Eppstein, May 2004. """ import unittest from sets import Set from Biconnectivity import BiconnectedComponents import Graphs import DFS class NonBipartite(Exception): pass def TwoColor(G): """ Find a bipartition of G, if one exists. Raises NonBipartite or returns dict mapping vertices to two colors (True and False). """ color = {} for v,w,edgetype in DFS.search(G): if edgetype is DFS.forward: color[w] = not color.get(v,False) elif edgetype is DFS.nontree and color[v] == color[w]: raise NonBipartite return color def Bipartition(G): """ Find a bipartition of G, if one exists. Raises NonBipartite or returns sequence of vertices on one side of the bipartition. """ color = TwoColor(G) for v in color: if color[v]: yield v def isBipartite(G): """ Return True if G is bipartite, False otherwise. """ try: TwoColor(G) return True except NonBipartite: return False def BipartiteOrientation(G,adjacency_list_type=Set): """ Given an undirected bipartite graph G, return a directed graph in which the edges are oriented from one side of the bipartition to the other. The second argument has the same meaning as in Graphs.copyGraph. """ B = Bipartition(G) return dict([(v,adjacency_list_type(iter(G[v]))) for v in B]) def OddCore(G): """ Subgraph of vertices and edges that participate in odd cycles. Aka, the union of nonbipartite biconnected components. """ return Graphs.union(*[C for C in BiconnectedComponents(G) if not isBipartite(C)]) # If run as "python Bipartite.py", run tests on various small graphs # and check that the correct results are obtained. class BipartitenessTest(unittest.TestCase): def cycle(self,n): return dict([(i,[(i-1)%n,(i+1)%n]) for i in range(n)]) def testEvenCycles(self): for i in range(4,12,2): self.assertEqual(isBipartite(self.cycle(i)), True) def testOddCycles(self): for i in range(3,12,2): self.assertEqual(isBipartite(self.cycle(i)), False) if __name__ == "__main__": unittest.main()
from bitmath import GiB from bitmath import MiB class Album: def __init__(self, artist, album, url, band_url='', slug_text='', num_comments=0, tralbum_id=0, art_id=0, genre='', band_id=0, genre_id=0, year=1970, size='0MB', cover_art='' ): # Version field for enabling smarter updates self.ver = 1 # Bandcamp Hub API fields self.artist = artist self.title = album self.tralbum_url = url self.band_url = band_url self.slug_text = slug_text self.num_comments = num_comments self.tralbum_id = tralbum_id self.art_id = art_id # cover art? self.genre = genre self.genre_id = genre_id self.band_id = band_id # Custom properties self.cover_art = cover_art self.size = size self.year = year self.duration = '' self.tracklist = [] self.tags = [] self.about = '' self.is_free = False def add_track(self, track_title, track_duration): """ Adds a track to an album, recalculating the duration time :param track_title: Track title :param track_duration: track is a string in a form hours:mins:secs (1:09:23 or 4:59) """ self.tracklist.append(track_title) time = self.duration.split(':') if ':' in self.duration else [] new_track = track_duration.split(':') if len(time) > len(new_track): for x in range(0, (len(time) - len(new_track))): new_track.insert(0, '00') if len(new_track) > len(time): for x in range(0, (len(new_track) - len(time))): time.insert(0, '00') add_one = False new_album_time = '' for l in range(0, len(time)): index = len(time) - l - 1 additional = 1 if add_one else 0 add_one = False length = int(new_track[index]) + int(time[index]) + additional if (l in [0, 1]) and length > 60: add_one = True length %= 60 slength = str(length).zfill(2) new_album_time = slength + ':' + new_album_time if new_album_time != '' else slength self.duration = new_album_time def duration_seconds(self): seconds = 0 time = self.duration.split(':') if ':' in self.duration else [] for i in range(0, len(time)): multiply = pow(60, i) seconds += int(time[len(time) - i - 1]) * multiply return seconds def size_bytes(self): if 'GB' in self.size: return GiB(float(self.size.replace('GB', ''))).bytes if 'MB' in self.size: return MiB(float(self.size.replace('MB', ''))).bytes # for unknown size, let's return some heuristic value based on album duration return self.duration_seconds() * 1024 * 100 def big(self): """ Is the album big? :return True if the size of the album is more than 300MB, false otherwise """ return MiB(300).bytes < self.size_bytes()
import calendar as cal import os import tempfile import zipfile import logging import fiona from shapely import geometry import seaice.nasateam as nt log = logging.getLogger(__name__) OCEAN = 0 ICE = 1 COAST = nt.FLAGS['coast'] LAND = nt.FLAGS['land'] MISSING = nt.FLAGS['missing'] def _clim_string(range): return '_{:04}-{:04}'.format(*range) def _shapefile_name(config): """Returns a string containing the shapefile name (without file extension). Arguments --------- config: dictionary containing various settings. hemi: nt.NORTH or nt.SOUTH year: int month: int day: int dayofyear: int version_str: str polygon: True or False; incompatible with polyline polyline: True or False; incompatible with polygon median: True or False range: list of ints, defines the range of years for the median """ if config['polygon']: kind = 'polygon' elif config['polyline']: kind = 'polyline' if config['median']: median_part = 'median_' clim_str = _clim_string(config['range']) else: median_part = '' clim_str = '' if 'dayofyear' in config: date_str = '{dayofyear:03}'.format(dayofyear=config['dayofyear']) elif 'year' in config and 'month' in config and 'day' not in config: date_str = '{year}{month:02}'.format(year=config['year'], month=config['month']) elif 'year' not in config and 'month' in config and 'day' in config: date_str = '{month:02}_{day:02}'.format(month=config['month'], day=config['day']) elif 'year' not in config and 'month' in config and 'day' not in config: date_str = '{month:02}'.format(month=config['month']) return '{median_part}extent_{hemi}_{date_str}{clim_str}_{kind}_{version}'.format( median_part=median_part, hemi=config['hemi']['short_name'], date_str=date_str, clim_str=clim_str, kind=kind, version=config['version_str'] ) def _create_shapefile(config, *geoms): """Create a zip file containing a .shp and the other files composing a Shapefile. Returns the path to the zip file. Arguments --------- config: nasateam dictionary containing various settings. hemi: nt.NORTH or nt.SOUTH output_dir: directory in which to save the created .zip file polygon, polyline: determines what kind of shapefile to create; one of these options must be True, and the other False geoms: list of shapely.geometry.BaseGeometry objects that can be passed to shapely.geometry.mapping to write to a shapefile. If creating a polygon shapefile, these should be Polygon (or similar) objects; if creating a polyline shapefile, these should be MultiLineString objects. """ shapefile_name = _shapefile_name(config) tree_struct = '' if not config['flatten']: tree_struct = _default_archive_paths(config) os.makedirs(os.path.join(config['output_dir'], tree_struct), exist_ok=True) shapefile_zip = os.path.join(config['output_dir'], tree_struct, shapefile_name + '.zip') if config['polygon']: schema = {'properties': {}, 'geometry': 'Polygon'} elif config['polyline']: schema = {'properties': {}, 'geometry': 'MultiLineString'} with tempfile.TemporaryDirectory() as tmpdir: shapefile_shp = os.path.join(tmpdir, shapefile_name + '.shp') with fiona.collection(shapefile_shp, 'w', 'ESRI Shapefile', schema=schema, crs=config['hemi']['crs']) as output: for geom in geoms: output.write({'geometry': geometry.mapping(geom), 'properties': {}}) with zipfile.ZipFile(shapefile_zip, 'w') as z: for f in os.listdir(tmpdir): z.write(os.path.join(tmpdir, f), arcname=f) log.info('Created {}'.format(shapefile_zip)) return shapefile_zip def _default_archive_paths(config): """ Default output directory structure for writing shapefiles. Output roots may be different. /hemi/monthly/shapefiles/shp_extent/[MM]_[Mon]/extent_[NS]_[YYYYMM]_poly[gon|line]_{ver}.zip /shp_median/median_[NS]_[MM]_1981_2010_polyline_{ver}.zip /dayofyear_median/median_extent_[NS}_[DOY]_1981-2010_polyline_{ver}.zip """ log.debug('keys used to create archive paths') log.debug('month %s', config.get('month', 'no key found for month')) log.debug('dayofyear %s', config.get('dayofyear', 'no key found for dayofyear')) log.debug('median %s', config.get('median', 'no key found for median')) log.debug('hemi %s', config['hemi']['short_name']) if config.get('median', None): if config.get('dayofyear'): temporality = 'daily' last_dir = 'dayofyear_median' else: temporality = 'monthly' last_dir = 'shp_median' return os.path.join(config['hemi']['long_name'], temporality, 'shapefiles', last_dir) # It's not a median file, so we know how to build the output path. month_dir = '{:02}_{}'.format(config['month'], cal.month_abbr[config['month']]) return os.path.join(config['hemi']['long_name'], 'monthly', 'shapefiles', 'shp_extent', month_dir)
from syft import node from syft.message import execute_capability import numpy as np port = 50051 iface = "0.0.0.0" target_addr = f"http://{iface}:{port}" remote_caps = node.request_capabilities(target_addr) print(f"Node at: {target_addr} has capabilities: {remote_caps}") message = execute_capability(target_addr, "hello", "Client 1") print(message) sum1 = execute_capability(target_addr, "sum", [1, 2, 3]) print(sum1) sum2 = execute_capability(target_addr, "sum_np", [1, 2, 3]) print(sum2)
string = "The b"; count = 0; for i in range(0, len(string)): if(string[i] != ' '): count = count + 1; print("Total number of characters in a string: ",count);
import requests import json import config class dns: api_token: str email : str zoneid : str dnsrecords : json def __init__(self, API_TOKEN: str, EMAIL: str, ZONE_ID: str): self.api_token = API_TOKEN self.email = EMAIL self.zoneid = ZONE_ID def get_dnsrecords(self) -> None: # Initialize your dns records. dnsrec = requests.get("https://api.cloudflare.com/client/v4/zones/"+ self.zoneid +"/dns_records", headers={ "X-Auth-Email" : self.email, "X-Auth-Key" : self.api_token, "Content-Type" : "application/json" }) self.dnsrecords = json.loads(dnsrec.text) def print_dnsrecords(self) -> None: # Print your dns records, debug purposes. print("ZONES AVAILABLE") for i in self.dnsrecords["result"]: print("----------------") print("ID: "+ i["id"]) print("ZONE NAME: " + i["zone_name"]) print("NAME: " + i["name"]) print("TYPE: " + i["type"]) print("CONTENT: "+ i["content"]) def dns_update(self, name: str=config.DOMAIN) -> bool: # Update the dns pointed ip. id="" type : str ttl : int proxied : bool for i in self.dnsrecords["result"]: if i["name"] == name: id = i["id"] type = i["type"] ttl = i["ttl"] proxied = i["proxied"] if id=="": raise Exception("DNS RECORD DOES NOT EXISTS.") upddns= requests.put("https://api.cloudflare.com/client/v4/zones/"+self.zoneid+"/dns_records/"+id, headers={ "X-Auth-Email": self.email, "X-Auth-Key" : self.api_token, "Content-Type" : "application/json" }, data=json.dumps({"type":type, "name": config.DOMAIN,"content":config.IP, "ttl":ttl,"proxied": proxied}, indent=4)) return bool(json.loads(upddns.text)["success"]) if __name__ == "__main__": dnsrecord = dns(config.API_TOKEN, config.EMAIL, config.ZONE_ID) dnsrecord.get_dnsrecords() # UNCOMMENT THIS LINE TO CHECK NAMES OF DNS RECORDS # dnsrecord.print_dnsrecords() if dnsrecord.dns_update(): print("Success")
from .control import common_process, interactive_process, CommonProcess, InteractiveProcess, TimingContent, common_run, \ timing_run, mutual_run, ProcessResult, RunResult, RunResultStatus, ResourceLimit, Identification from .entry import DispatchRunner, load_pji_script from .service import DispatchTemplate, Dispatch, TaskTemplate, Task
import boto3 from config.constants import DEFAULT_S3_RETRIES from config.settings import (S3_BUCKET, BEIWE_SERVER_AWS_ACCESS_KEY_ID, BEIWE_SERVER_AWS_SECRET_ACCESS_KEY, S3_REGION_NAME) from libs import encryption class S3VersionException(Exception): pass conn = boto3.client('s3', aws_access_key_id=BEIWE_SERVER_AWS_ACCESS_KEY_ID, aws_secret_access_key=BEIWE_SERVER_AWS_SECRET_ACCESS_KEY, region_name=S3_REGION_NAME) def s3_upload(key_path, data_string, study_object_id, raw_path=False): if not raw_path: key_path = study_object_id + "/" + key_path data = encryption.encrypt_for_server(data_string, study_object_id) conn.put_object(Body=data, Bucket=S3_BUCKET, Key=key_path, ContentType='string') def s3_retrieve(key_path, study_object_id, raw_path=False, number_retries=DEFAULT_S3_RETRIES): """ Takes an S3 file path (key_path), and a study ID. Takes an optional argument, raw_path, which defaults to false. When set to false the path is prepended to place the file in the appropriate study_id folder. """ if not raw_path: key_path = study_object_id + "/" + key_path encrypted_data = _do_retrieve(S3_BUCKET, key_path, number_retries=number_retries)['Body'].read() return encryption.decrypt_server(encrypted_data, study_object_id) def _do_retrieve(bucket_name, key_path, number_retries=DEFAULT_S3_RETRIES): """ Run-logic to do a data retrieval for a file in an S3 bucket.""" try: return conn.get_object(Bucket=bucket_name, Key=key_path, ResponseContentType='string') except Exception: if number_retries > 0: print("s3_retrieve failed, retrying on %s" % key_path) return _do_retrieve(bucket_name, key_path, number_retries=number_retries - 1) raise def s3_list_files(prefix, as_generator=False): """ Method fetches a list of filenames with prefix. note: entering the empty string into this search without later calling the object results in a truncated/paginated view.""" return _do_list_files(S3_BUCKET, prefix, as_generator=as_generator) def s3_list_versions(prefix, allow_multiple_matches=False): """ Page structure - each page is a dictionary with these keys: Name, ResponseMetadata, Versions, MaxKeys, Prefix, KeyMarker, IsTruncated, VersionIdMarker We only care about 'Versions', which is a list of all object versions matching that prefix. Versions is a list of dictionaries with these keys: LastModified, VersionId, ETag, StorageClass, Key, Owner, IsLatest, Size returns a list of dictionaries. If allow_multiple_matches is False the keys are LastModified, VersionId, IsLatest. If allow_multiple_matches is True the key 'Key' is added, containing the s3 file path. """ paginator = conn.get_paginator('list_object_versions') page_iterator = paginator.paginate(Bucket=S3_BUCKET, Prefix=prefix) versions = [] for page in page_iterator: # versions are not guaranteed, usually this means the file was deleted and only has deletion markers. if 'Versions' not in page.keys(): continue for s3_version in page['Versions']: if not allow_multiple_matches and s3_version['Key'] != prefix: raise S3VersionException("the prefix '%s' was not an exact match" % prefix) versions.append({ 'VersionId': s3_version["VersionId"], 'Key': s3_version['Key'], }) return versions def _do_list_files(bucket_name, prefix, as_generator=False): paginator = conn.get_paginator('list_objects_v2') page_iterator = paginator.paginate(Bucket=bucket_name, Prefix=prefix) if as_generator: return _do_list_files_generator(page_iterator) else: items = [] for page in page_iterator: if 'Contents' in page.keys(): for item in page['Contents']: items.append(item['Key'].strip("/")) return items def _do_list_files_generator(page_iterator): for page in page_iterator: if 'Contents' not in page.keys(): return for item in page['Contents']: yield item['Key'].strip("/") def s3_delete(key_path): raise Exception("NO DONT DELETE") ################################################################################ ######################### Client Key Management ################################ ################################################################################ def create_client_key_pair(patient_id, study_id): """Generate key pairing, push to database, return sanitized key for client.""" public, private = encryption.generate_key_pairing() s3_upload("keys/" + patient_id + "_private", private, study_id ) s3_upload("keys/" + patient_id + "_public", public, study_id ) def get_client_public_key_string(patient_id, study_id): """Grabs a user's public key string from s3.""" key_string = s3_retrieve( "keys/" + patient_id +"_public" , study_id) return encryption.prepare_X509_key_for_java( key_string ) def get_client_public_key(patient_id, study_id): """Grabs a user's public key file from s3.""" key = s3_retrieve( "keys/" + patient_id +"_public", study_id ) return encryption.import_RSA_key( key ) def get_client_private_key(patient_id, study_id): """Grabs a user's private key file from s3.""" key = s3_retrieve( "keys/" + patient_id +"_private", study_id) return encryption.import_RSA_key( key )
coffee_src_type = [".coffee"] cjsx_src_type = [".cjsx", ".coffee"] def _cjsx_compile_dir(ctx, dir, srcs, generate_dts): """ Compiles a single directory of JSX/CoffeeScript files into JavaScript files. """ out_dir = ctx.configuration.bin_dir.path + "/" + dir arguments = [out_dir] outputs = [] for src in srcs: if src.extension == "cjsx": js_name = src.basename.replace(".cjsx", ".js") elif src.extension == "coffee": js_name = src.basename.replace(".coffee", ".js") else: fail('%s has unknown ext "%s"' % (src.short_path, src.extension)) js_output = ctx.actions.declare_file(js_name) outputs.append(js_output) dts_path = "" if generate_dts: dts_name = js_name.replace(".js", ".d.ts") dts_output = ctx.actions.declare_file(dts_name) outputs.append(dts_output) dts_path = dts_output.path arguments.append("%s=%s=%s" % (src.path, js_output.path, dts_path)) ctx.actions.run( mnemonic = "CompileCJSX", executable = ctx.executable._cjsxc, arguments = arguments, inputs = srcs, tools = [ctx.executable._node], outputs = outputs, ) return outputs def cjsx_compile(ctx, srcs, generate_dts): srcs_by_dir = {} for src in srcs: dir = src.dirname if dir not in srcs_by_dir: srcs_by_dir[dir] = [src] else: srcs_by_dir[dir].append(src) outputs = [] for dir in srcs_by_dir: outputs += _cjsx_compile_dir(ctx, dir, srcs_by_dir[dir], generate_dts) return [DefaultInfo(files = depset(outputs))] def cjsx_srcs_impl(ctx): return cjsx_compile(ctx, ctx.files.srcs, ctx.attr.generate_dts) def cjsx_src_impl(ctx): return cjsx_compile(ctx, ctx.files.src, generate_dts = False) # ----------------------------------------------------------------------------- cjsx_attrs = { "generate_dts": attr.bool(default = True), "_node": attr.label( default = Label("@com_vistarmedia_rules_js//js/toolchain:node"), cfg = "host", executable = True, allow_files = True, ), "_cjsxc": attr.label( default = Label("//coffee/toolchain:cjsxc"), executable = True, cfg = "host", ), } cjsx_srcs = rule( cjsx_srcs_impl, attrs = dict( cjsx_attrs, srcs = attr.label_list(allow_files = cjsx_src_type), ), ) cjsx_src = rule( cjsx_src_impl, attrs = dict( cjsx_attrs, src = attr.label(allow_files = cjsx_src_type), ), )
import docutils.frontend import docutils.parsers.rst import docutils.utils import pyautogui import pynput.keyboard as kb import queue import subprocess as sp import threading import time slide = 0 slides = [ ''' # Give the Gift of Python ## Grant Jenks # 1. Python trainer for Fortune 100 companies. # 2. Married to Chemistry teacher, father of two. # 3. 100s of hours of 4-12th grade instruction. '''.splitlines(), ''' ## Setup # 1. Install Python: https://www.python.org/ # 2. Run IDLE: $ python -m idlelib.idle # 3. Use built-in Turtle module! '''.splitlines(), [ '', '## Open the Turtle Window', '', 'from turtle import *', 0.5, 'reset()', 0.5, ], [ '', '## Basic Commands', '', 'forward(100)', 1, 'right(90)', 1, 'fd(100)', 1, 'rt(90)', 1, 'backward(-100)', 1, 'left(-90)', 1, 'forward(100)', 1, 'right(90)', 1, 'undo()', 1, 'undo()', 1, ], [ '', '## Loops', '', 'reset()', 0.5, 'for each in range(5):', 0.5, 'bk(100)', 0.5, 'lt(144)', 0.5, '', 3, ], [ '', '## Functions and Shapes', '', 'def square():', 0.5, 'begin_fill()', 0.5, 'for each in range(4):', 0.5, 'forward(100)', 0.5, 'right(90)', 0.5, -1, 'end_fill()', 0.5, '', 'reset()', 0.5, 'square()', 3, ], [ '', '## Dots', '', 'reset()', 0.5, 'help(dot)', 1, 'dot(100)', 1, ], [ '', '## Colors' '', 'reset()', 0.5, 'from itertools import *', 0.5, "colors = cycle(['red', 'green', 'blue', 'purple'])", 0.5, 'def present():', 0.5, 'for i in range(4):', 0.5, 'color(next(colors))', 0.5, 'square()', 0.5, 'left(90)', 0.5, '', 'present()', 5, ], [ '', '## Locations', '', 'reset()', 0.5, 'def line(a, b, x, y):', 0.5, 'up()', 0.5, 'goto(a, b)', 0.5, 'down()', 0.5, 'goto(x, y)', 0.5, '', "color('red')", 0.5, 'width(20)', 0.5, 'line(-100, -100, 0, 200)', 1, 'line(0, 200, 100, -100)', 1, 'line(100, -100, -100, -100)', 1, ], [ '', '## Mouse Inputs', '', 'width(10)', 0.5, "color('green')", 0.5, 'def tap(x, y):', 0.5, 'goto(x, y)', 0.5, 'dot(20)', 0.5, '', 'onscreenclick(tap)', 0.5, ], [ '', '## Keyboard Events', '', 'reset()', 0.5, 'width(10)', 0.5, "onkey(lambda: fd(30), 'Up')", 0.5, "onkey(lambda: bk(30), 'Down')", 0.5, "onkey(lambda: lt(30), 'Left')", 0.5, "onkey(lambda: rt(30), 'Right')", 0.5, 'listen()', 0.5, ], [ '', '## Animation', '', 'hideturtle()', 0.5, 'tracer(False)', 0.5, 'running = True', 0.5, 'def draw():', 0.5, 'clear()', 0.5, 'present()', 0.5, 'update()', 0.5, 'left(1)', 0.5, 'if running:', 0.5, 'ontimer(draw, 100)', '', 'reset()', 0.5, 'draw()', 0.5, ], ''' ## Free Python Games # 1. Search: Free Python Games # 2. $ python -m pip install freegames # 3. http://www.grantjenks.com/docs/freegames/ '''.splitlines(), ] def worker(): global slide while True: key = inputs.get() if key == kb.Key.esc: print('Typing slide', slide) parts = slides[slide] for part in parts: if part == '': pyautogui.press('enter') time.sleep(0.25) elif part == -1: pyautogui.press('backspace') elif isinstance(part, str): pyautogui.typewrite(part, interval=0.1) pyautogui.press('enter') else: time.sleep(part) slide += 1 def ticker(): def on_press(key): inputs.put(key) with kb.Listener(on_press=on_press) as listener: listener.join() def commander(): global slide while True: value = input() if value == 'q': exit() try: slide = int(value) except ValueError: pass def main(): global inputs idle = sp.Popen(['python', '-m', 'idlelib.idle']) inputs = queue.Queue() work = threading.Thread(target=worker) work.start() tick = threading.Thread(target=ticker) tick.start() cmdr = threading.Thread(target=commander) cmdr.start() cmdr.join() tick.join() work.join() idle.wait() if __name__ == '__main__': main()
""" Test cases for the wiutils.summarizing.compute_count_summary function. """ import numpy as np import pandas as pd import pytest from wiutils.summarizing import compute_count_summary @pytest.fixture(scope="function") def images(): return pd.DataFrame( { "deployment_id": [ "001", "001", "001", "002", "002", "002", "002", "002", "002", ], "class": [ "Mammalia", "Mammalia", "Mammalia", "Aves", "No CV Result", "Mammalia", "Aves", "Aves", "Mammalia", ], "order": [ "Carnivora", "Carnivora", "Rodentia", "Pelecaniformes", "No CV Result", "Primates", "Passeriformes", "Passeriformes", "Carnivora", ], "family": [ "Felidae", "Felidae", np.nan, "Ardeidae", "No CV Result", "Cebidae", "Corvidae", "Tyrannidae", "Felidae", ], "genus": [ "Leopardus", "Leopardus", np.nan, "Bubulcus", "No CV Result", "Saimiri", "Cyanocorax", "Elaenia", "Leopardus", ], "species": [ "pardalis", "pardalis", np.nan, "ibis", "No CV Result", "sciureus", "violaceus", np.nan, "pardalis", ], "timestamp": [ "2020-11-24 00:06:26", "2020-11-24 00:54:12", "2020-12-20 22:16:10", "2020-12-18 16:48:04", "2020-12-23 07:26:33", "2020-12-24 08:09:32", "2020-12-24 09:15:01", "2020-12-24 13:48:12", "2020-12-21 03:12:21", ], "number_of_objects": [1, 1, 2, 1, 1, 3, 1, 1, 1], } ) @pytest.fixture(scope="function") def deployments(): return pd.DataFrame({"deployment_id": ["001", "002"], "placename": ["AAA", "AAA"]}) def test_groupby_deployment(images): result = compute_count_summary(images, groupby="deployment") expected = pd.DataFrame( { "deployment_id": ["001", "002"], "total_images": [3, 6], "identified_images": [3, 5], "records": [4, 7], "taxa": [2, 5], } ) pd.testing.assert_frame_equal(result, expected, check_dtype=False) def test_groupby_location(images, deployments): result = compute_count_summary(images, deployments, groupby="location") expected = pd.DataFrame( { "placename": ["AAA"], "total_images": [9], "identified_images": [8], "records": [11], "taxa": [6], } ) pd.testing.assert_frame_equal(result, expected, check_dtype=False) def test_add_records_by_class_deployment(images): result = compute_count_summary( images, groupby="deployment", add_records_by_class=True ) expected = pd.DataFrame( { "deployment_id": ["001", "002"], "total_images": [3, 6], "identified_images": [3, 5], "records": [4, 7], "records_mammalia": [4, 4], "records_aves": [0, 3], "taxa": [2, 5], } ) pd.testing.assert_frame_equal(result, expected, check_dtype=False) def test_add_records_by_class_location(images, deployments): result = compute_count_summary( images, deployments, groupby="location", add_records_by_class=True ) expected = pd.DataFrame( { "placename": ["AAA"], "total_images": [9], "identified_images": [8], "records": [11], "records_mammalia": [8], "records_aves": [3], "taxa": [6], } ) pd.testing.assert_frame_equal(result, expected, check_dtype=False) def test_add_species_by_class_deployment(images): result = compute_count_summary( images, groupby="deployment", add_species_by_class=True ) expected = pd.DataFrame( { "deployment_id": ["001", "002"], "total_images": [3, 6], "identified_images": [3, 5], "records": [4, 7], "taxa": [2, 5], "taxa_mammalia": [2, 2], "taxa_aves": [0, 3], } ) pd.testing.assert_frame_equal(result, expected, check_dtype=False) def test_add_species_by_class_location(images, deployments): result = compute_count_summary( images, deployments, groupby="location", add_species_by_class=True ) expected = pd.DataFrame( { "placename": ["AAA"], "total_images": [9], "identified_images": [8], "records": [11], "taxa": [6], "taxa_mammalia": [3], "taxa_aves": [3], } ) pd.testing.assert_frame_equal(result, expected, check_dtype=False) def test_remove_unidentified_kws(images): result = compute_count_summary(images, remove_unidentified_kws={"rank": "species"}) expected = pd.DataFrame( { "deployment_id": ["001", "002"], "total_images": [3, 6], "identified_images": [2, 4], "records": [2, 6], "taxa": [1, 4], } ) pd.testing.assert_frame_equal(result, expected, check_dtype=False) def test_remove_duplicates_kws(images): result = compute_count_summary( images, remove_duplicates_kws={"interval": 60, "unit": "minutes"} ) expected = pd.DataFrame( { "deployment_id": ["001", "002"], "total_images": [3, 6], "identified_images": [3, 5], "records": [3, 7], "taxa": [2, 5], } ) pd.testing.assert_frame_equal(result, expected, check_dtype=False) def test_invalid_groupby(images, deployments): with pytest.raises(ValueError): compute_count_summary(images, deployments, groupby="placename") def test_no_deployments(images): with pytest.raises(ValueError): compute_count_summary(images, groupby="location") def test_intact_input(images, deployments): images_original = images.copy() deployments_original = deployments.copy() compute_count_summary(images) pd.testing.assert_frame_equal(images_original, images) pd.testing.assert_frame_equal(deployments_original, deployments)
import numpy as np import pandas as pd import json import argparse def convert_factors_to_numeric(dataset): # DATASET with open('../Configs/'+dataset+'.json') as config_file: config = json.load(config_file) dataset = pd.read_csv('../Data/'+config['filtered_data_with_headers'], header = 0) factors = pd.read_csv('../Outputs/'+config['factors'], header = 0) dataset = dataset.values X = dataset factors = factors.values cols = factors[0,:].astype(int) k = 0 for i in cols: col = X[:,i-1] for j, val in enumerate(factors[1:,k]): col[col == val] = j+1 X[:, i-1] = col k += 1 op = pd.DataFrame(X, columns=config['columns']) pd.DataFrame(op).to_csv("../Data/"+config['data_numeric'], index = False) if __name__ == "__main__": parser = argparse.ArgumentParser(description = 'Instance metrics', allow_abbrev=False) parser.add_argument('--dataset', type=str, required=True, help = 'name of the dataset') (args, _) = parser.parse_known_args() convert_factors_to_numeric(args.dataset)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 21 15:22:29 2022 @author: tonifuc3m """ import argparse import warnings import livingner_app import livingner_ner_norm def warning_on_one_line(message, category, filename, lineno, file=None, line=None): return '%s:%s: %s: %s\n' % (filename, lineno, category.__name__, message) warnings.formatwarning = warning_on_one_line def parse_arguments(): ''' DESCRIPTION: Parse command line arguments ''' parser = argparse.ArgumentParser(description='process user given parameters') parser.add_argument("-g", "--gs_path", required = True, dest = "gs_path", help = "path to GS file") parser.add_argument("-p", "--pred_path", required = True, dest = "pred_path", help = "path to predictions file") parser.add_argument("-c", "--valid_codes_path", required = False, default = '../ncbi_codes_unique.tsv', dest = "codes_path", help = "path to valid codes TSV") parser.add_argument('-s', '--subtask', required = True, dest = 'subtask', choices=['ner', 'norm', 'app'], help = 'Subtask name') args = parser.parse_args() gs_path = args.gs_path pred_path = args.pred_path codes_path = args.codes_path subtask = args.subtask return gs_path, pred_path, codes_path, subtask if __name__ == '__main__': gs_path, pred_path, codes_path, subtask = parse_arguments() if subtask == 'app': livingner_app.main(gs_path, pred_path, codes_path) elif subtask == 'ner': livingner_ner_norm.main(gs_path, pred_path, codes_path, subtask='ner') elif subtask == 'norm': livingner_ner_norm.main(gs_path, pred_path, codes_path, subtask='norm')
import os import time import json import sys import shutil def write_file(base_dir, filename, text): path = "{}/out/data/{}".format(base_dir, filename) with open(path, "w") as out: out.write(text) def write_event(base_dir, filename, event): path = "{}/out/events/{}".format(base_dir, filename) with open(path, 'w') as out: json.dump(event, out) def write_insight(base_dir, insight): path = "{}/out/insights.json".format(base_dir) with open(path, 'w') as out: json.dump(insight, out) def spinning_cursor(): while True: for cursor in '|/-\\': yield cursor
import contextlib import sqlite3 from typing import Iterator class RDB: def __init__(self, database: str, table: str, schema: str): self.con = sqlite3.connect(database) self.table = table self.schema = schema self.initialize() def initialize(self): """テーブルの初期化""" q = f"CREATE TABLE IF NOT EXISTS {self.table} {self.schema}" with self.execute(q, ()): pass @contextlib.contextmanager def execute(self, query: str, params: tuple): cur = self.con.cursor() cur.execute(query, params) yield cur cur.close() self.con.commit() def to_dict(self, item): raise NotImplementedError def insert(self, item) -> bool: """アイテムの挿入 Returns ------- インサートできたかどうか """ d = self.to_dict(item) names = [] values = [] for name, value in d.items(): names.append(name) values.append(value) fields = ",".join(names) num = len(names) placeholder = ",".join(["?"] * num) q = f"INSERT INTO {self.table}({fields}) VALUES ({placeholder})" with self.execute(q, tuple(values)) as cur: return cur.rowcount > 0 def __len__(self) -> int: """レコード数""" q = f"SELECT COUNT(*) FROM {self.table}" with self.execute(q, ()) as cur: (count,) = cur.fetchone() return count def __iter__(self) -> Iterator: """レコードの全列挙""" q = f"SELECT * FROM {self.table}" with self.execute(q, ()) as cur: return iter(cur.fetchall()) class WorkDB(RDB): """作品 References ---------- - https://developers.annict.com/docs/rest-api/v1/works """ def __init__(self): schema = """ ( id INTEGER PRIMARY KEY NOT NULL, title TEXT, image_url TEXT, dt TIMESTAMP DEFAULT CURRENT_TIMESTAMP ) """ super().__init__("dataset/works.db", "works", schema) def to_dict(self, item: dict) -> dict: id = item["id"] title = item["title"] image_url = item["images"]["recommended_url"] return { "id": id, "title": title, "image_url": image_url, } class ReviewDB(RDB): """作品への記録 References ---------- - https://developers.annict.com/docs/rest-api/v1/reviews """ def __init__(self): schema = """ ( id INTEGER PRIMARY KEY NOT NULL, user_id INTEGER NOT NULL, work_id INTEGER NOT NULL, rating_overall_state TEXT, dt TIMESTAMP DEFAULT CURRENT_TIMESTAMP ) """ super().__init__("dataset/reviews.db", "reviews", schema) def to_dict(self, item) -> dict: id = item["id"] user_id = item["user"]["id"] work_id = item["work"]["id"] rating_overall_state = item["rating_overall_state"] return { "id": id, "user_id": user_id, "work_id": work_id, "rating_overall_state": rating_overall_state, } class RecordDB(RDB): """エピソードへの記録 References ---------- - https://developers.annict.com/docs/rest-api/v1/records """ def __init__(self): schema = """ ( id INTEGER PRIMARY KEY NOT NULL, user_id INTEGER NOT NULL, work_id INTEGER NOT NULL, rating_state TEXT, dt TIMESTAMP DEFAULT CURRENT_TIMESTAMP ) """ super().__init__("dataset/records.db", "records", schema) def to_dict(self, item) -> dict: id = item["id"] user_id = item["user"]["id"] work_id = item["work"]["id"] rating_state = item["rating_state"] return { "id": id, "user_id": user_id, "work_id": work_id, "rating_state": rating_state, } class StaffDB(RDB): """スタッフ情報 References ---------- - https://developers.annict.com/docs/rest-api/v1/staffs """ def __init__(self): schema = """ ( id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, work_id INTEGER NOT NULL, dt TIMESTAMP DEFAULT CURRENT_TIMESTAMP ) """ super().__init__("dataset/staffs.db", "staffs", schema) def to_dict(self, item) -> dict: id = item["id"] name = item["name"] work_id = item["work"]["id"] return { "id": id, "name": name, "work_id": work_id, }
# Season - Fall 2016 # Week Date Time Ice Home Team Away Team Home Score Away Score Shootout Clock Operator Disc Jockey First Star Second Star Third Star # Week 1 9/12/2016 09:00 PM Olympic North Stars Nordiques 1 2 False Todd Maff Proctor Coan Trent # 9/12/2016 10:00 PM Olympic Whalers Golden Seals 3 4 False Drager Troy # Week 2 9/19/2016 09:00 PM Olympic Nordiques Whalers 4 1 False Chad Turnbull Paulinski/Pistol Pete Hardy McCrackin # 9/19/2016 10:00 PM Olympic Golden Seals North Stars 5 8 False Hal Brauny # Week 3 9/26/2016 09:00 PM Olympic North Stars Whalers 3 2 True Suokas Drager Proctor Manny Paulinski # 9/26/2016 10:00 PM Olympic Golden Seals Nordiques 7 4 False Charles Troy # Week 4 10/3/2016 09:00 PM Olympic Whalers Golden Seals 0 6 False Brennan Myers Swanberg Coan ShaunE # 10/3/2016 10:00 PM Olympic Nordiques North Stars 4 3 False Kevan Paul # Season - Fall 2017 # Week Date Time Ice Home Team Away Team Home Score Away Score Shootout Clock Operator Disc Jockey Ref #1 Ref #2 First Star Second Star Third Star # Week 1 9/11/2017 09:00 PM Olympic Whalers Golden Seals 3 2 True Suokas Pete Jim Greg Myers Trent JFlo # 9/11/2017 10:00 PM Olympic Americans Mighty Ducks 4 2 False Greg Peso Proctor Starr Drago # 9/11/2017 10:00 PM NHL Nordiques North Stars 1 3 False Whoop Jim Trent Troy Serda Bin # Week 2 9/18/2017 09:00 PM Olympic North Stars Americans 2 3 False Panty Pete Jim Greg Proctor McCrackin Hetes # 9/18/2017 10:00 PM Olympic Nordiques Whalers 4 1 False Braun Allen Jim Troy Coan Joe Ellis Kimmel # 9/18/2017 10:00 PM NHL Golden Seals Mighty Ducks 4 2 False Manny Antioch Greg Chad Riley Matt Taylor Peso
import json import numpy as np from pypokerengine.players import BasePokerPlayer from treys import Card import os from sample_player.tools.models import load from sample_player.tools.utils import hand_strength_estimation, hand_strength_estimation_with_time def save_board_in_tab_and_return_equity(nb_players, saved_tab, hole_card, tmp_hole_card, community_card): hand_equity = 0 string_community = ' '.join(map(str, community_card)) if len(tmp_hole_card) > 1: hand = tmp_hole_card string_hand = ' '.join(map(str, hand)) else: hand = hole_card string_hand = ' '.join(map(str, hand)) found = False for board, equity in saved_tab[string_hand].items(): if len(set(community_card).intersection(set(board.split()))) == len(community_card): hand_equity = equity found = True if found is False: a = set(hole_card).intersection(set(board.split())) # hand_equity = hand_strength_estimation(100000, nb_players, hand, community_card) hand_equity = hand_strength_estimation_with_time(5, nb_players, hand, community_card) saved_tab[string_hand].update({string_community: hand_equity}) return hand_equity, saved_tab def get_state_equity(nb_players, hole_card, tmp_hole_card, community_card=None): string_hole_card = ' '.join(map(str, hole_card)) label_pre_flop = "pre_flop" saved_tab = grab_state_equity() hand_equity = 0 if community_card is not None and len(community_card) > 0: hand_equity, saved_tab = save_board_in_tab_and_return_equity(nb_players, saved_tab, hole_card, tmp_hole_card, community_card) else: try: hand_equity = saved_tab[string_hole_card][label_pre_flop] except Exception as e: found = False for key, board in saved_tab.items(): if len(set(hole_card).intersection(set(key.split()))) == 2: hand_equity = board['pre_flop'] tmp_hole_card = key.split(" ") found = True break if found is False: # hand_equity = hand_strength_estimation(100000, nb_players, hole_card, community_card) hand_equity = hand_strength_estimation_with_time(5, nb_players, hole_card, community_card) saved_tab[string_hole_card] = {"pre_flop": hand_equity} save_state_equity(saved_tab) return hand_equity, tmp_hole_card class MCPlayer(BasePokerPlayer): uuid = 0 uuid_adverse = 1 tmp_hole_card = [] my_position = 0 def receive_game_start_message(self, game_info): if game_info["seats"][0]["name"] == "MonteCarloAgent": self.uuid = game_info["seats"][0]["uuid"] self.uuid_adverse = game_info["seats"][1]["uuid"] else: self.uuid = game_info["seats"][1]["uuid"] self.uuid_adverse = game_info["seats"][0]["uuid"] def receive_round_start_message(self, round_count, hole_card, seats): print("MonteCarlo cards : ", hole_card) if seats[0]["name"] == "MonteCarloAgent": self.my_position = 0 else: self.my_position = 1 self.tmp_hole_card = [] def declare_action(self, valid_actions, hole_card, round_state): street = round_state["street"] big_blind = round_state['small_blind_amount'] * 2 my_stack = round_state['seats'][0]['stack'] opposing_stack = round_state['seats'][1]['stack'] nb_players = 2 pot = round_state['pot']['main']['amount'] my_bb_stack = my_stack / big_blind opposing_bb_stack = opposing_stack / big_blind action = 'call' raise_amount = 0 treys_hand = convert_card_to_treys(hole_card) suited_hand = is_suited_hand(hole_card) # push or fold if short stack or or if opponent is short stack if my_bb_stack < 20 or opposing_bb_stack < 20 or my_bb_stack > (opposing_bb_stack * 20 + pot/big_blind): model = load("sample_player/tools/push_or_fold") print("Push or fold") # model.summary() # Si premier à parler if round_state['small_blind_pos'] == self.my_position: print("premier de parole") my_features = np.concatenate((treys_hand, np.array( [suited_hand, 1, my_bb_stack]))).reshape((1, 16)) allQ_sb = model.predict(my_features) action_sb = np.argmax(allQ_sb) # fold if action_sb == 0: action = 'fold' raise_amount = 0 # shove elif action_sb == 1: action = 'raise' raise_amount = valid_actions[2]['amount']['max'] # Si on est second à parler else: print("deuxieme de parole") bb_features = np.concatenate((treys_hand, np.array( [suited_hand, 0, my_bb_stack]))).reshape((1, 16)) allQ_bb = model.predict(bb_features) action_bb = np.argmax(allQ_bb) # Si action fold if action_bb == 0: # Check si possible if (valid_actions[1]['amount'] == big_blind and street == "preflop") or valid_actions[1]['amount'] == 0 and street != "preflop": action = 'call' raise_amount = 0 # Sinon fold else: action = 'fold' raise_amount = 0 # Si pas fold => partir à tapis elif action_bb == 1: action = 'raise' raise_amount = valid_actions[2]['amount']['max'] # not push or fold else: # Calcul de l'équité de la main (use monte carlo) hand_equity, self.tmp_hole_card = get_state_equity(nb_players, hole_card, self.tmp_hole_card, round_state['community_card']) # Si premier relanceur ( call amount = 0 ) if valid_actions[1]['amount'] < 2 * big_blind: # Si équité > 65 if hand_equity > 0.5600: # relance un montant fixe 1/2 de la taille du pot action = 'raise' if pot > big_blind * 3: raise_amount = round(pot / 2, 0) else: raise_amount = round(big_blind * 3, 0) # si équité < 35 elif hand_equity < 0.3500: print("bluff low equity") # relance meme montant fixe + haut ( bluff ) 1/2 du pot action = 'raise' raise_amount = round(pot / 2, 0) # sinon call 0 else: action = 'call' raise_amount = 0 # Si il y relance avant else: # calcul de la cote action_info = valid_actions[1] amount = action_info["amount"] cote = amount / pot # Si côte au dessus d'un stade call n'importe quel mise if hand_equity > 0.8750 and round_state["street"] == "river": if valid_actions[2]['amount']['max'] != -1: action = 'raise' raise_amount = valid_actions[2]['amount']['max'] else: action = 'call' raise_amount = 0 elif hand_equity > 0.6900: action = 'call' raise_amount = 0 elif hand_equity > 0.5600 and valid_actions[1]['amount'] < 6 * big_blind: action = 'call' raise_amount = 0 elif hand_equity > cote: action = 'call' raise_amount = 0 # Sinon calcul de la cote pour savoir si call ou fold else: action = 'fold' raise_amount = 0 return action_to_return(action, valid_actions, raise_amount) def receive_street_start_message(self, street, round_state): pass def receive_game_update_message(self, action, round_state): pass def receive_round_result_message(self, winners, hand_info, round_state): pass def action_to_return(action, valid_actions, raise_amount): if action == "raise": action_info = valid_actions[2] if raise_amount < action_info["amount"]["min"]: amount = action_info["amount"]["min"] elif raise_amount > action_info["amount"]["max"]: amount = action_info["amount"]["max"] else: amount = raise_amount if action == "call": action_info = valid_actions[1] amount = action_info["amount"] if action == "fold": action_info = valid_actions[0] amount = action_info["amount"] print("MonteCarloAgent action :", action, "amount", amount) return action, amount # action returned here is sent to the poker engine def save_state_equity(saved_tab): if os.getcwd() == '/home/benoit/Documents/Projet_IA/Perso/Poker/PokerAI': with open("sample_player/tools/hu_hands_equity.json", "w") as file: json.dump(saved_tab, file) else: with open("tools/hu_hands_equity.json", "w") as file: json.dump(saved_tab, file) def grab_state_equity(): if os.getcwd() == '/home/benoit/Documents/Projet_IA/Perso/Poker/PokerAI': with open("sample_player/tools/hu_hands_equity.json", "r") as file: saved_tab = json.load(file) return saved_tab else: with open("tools/hu_hands_equity.json", "r") as file: saved_tab = json.load(file) return saved_tab def convert_card_to_treys(hand): num = [] color = [] for card in hand: color.append(card[0]) num.append(card[1]) card1 = Card.new(num[0].upper() + color[0].lower()) card2 = Card.new(num[1].upper() + color[1].lower()) feat = np.zeros(13) for c in [card1, card2]: feat[Card.get_rank_int(c)] = 1 return feat def is_suited_hand(hand): color = [] for card in hand: color.append(card[0]) if color[0] == color[1]: return True else: return False def setup_ai(): return MCPlayer()
"""Displays the metrics of Keras History dictionaries in folder 'Data/NNResults'. """ import pickle import matplotlib.pyplot as plt # ************************* Config ************************************* # Choose wether custom metrics like TPR or MCC were calculated during training. custom_metrics = False # Set this to the directory of the local git repository. root_dir = './' combine_data = True benchmark_names_comb = ['combined_without_mgc_fft_2_1500epochs_normalized', 'combined_without_mgc_fft_2_3000epochs_normalized', 'combined_without_mgc_fft_2_3000epochs', 'combined_without_mgc_fft_2_6000epochs_normalized', 'combined_without_mgc_fft_2_750epochs_normalized', 'combined_without_mgc_fft_2_600epochs_normalized', 'combined_without_mgc_fft_2_6000epochs', ] # ************************* Config ************************************* def print_history(fname_history, custom_metrics): with open(fname_history, 'rb') as f: history_dict = pickle.load(f) print('Metrics for benchmark', benchmark_name + ' for last epoch:') if custom_metrics: # Extract metrics from last epoch of training SPC = history_dict['specificity'][-1] ACC = history_dict['accuracy_K'][-1] accuracy = history_dict['acc'][-1] TPR = history_dict['true_positive_rate'][-1] FPR = history_dict['false_positive_rate'][-1] MCC = history_dict['matthews_correlation_coefficient'][-1] TP = history_dict['TP'][-1] TN = history_dict['TN'][-1] FP = history_dict['FP'][-1] FN = history_dict['FN'][-1] num_total = history_dict['num_total'][-1] num_shorts = history_dict['num_shorts'][-1] print('Number of samples:', num_total) print('Number of shorts:', num_shorts) print('Number of True Positives:', TP) print('Number of True Negatives:', TN) print('Number of False Positives:', FP) print('Number of False Negatives:', FN) print('accuracy:', accuracy) print('Sensitivity or True Positive Rate (TPR):', TPR) print('Specificity (SPC):', SPC) print('False Alarm Rate (FPR):', FPR) print('Accuracy (ACC):', ACC) print('Matthews Correlation Coefficient (MCC):', MCC) else: entries = ['loss', 'acc', 'binary_crossentropy', 'val_loss', 'val_acc', 'val_binary_crossentropy'] for entry in entries: print(entry + ':', history_dict[entry][-1]) if (entry == 'loss') or (entry == 'val_loss'): plt.semilogy(range(1, len(history_dict[entry][:]) + 1), history_dict[entry][:]) else: plt.plot(range(1, len(history_dict[entry][:]) + 1), history_dict[entry][:]) plt.xlabel('Epochs') plt.ylabel(entry) fname_fig = root_dir + 'Data/NNResults/figures/'+ benchmark_name + '_' + entry + '.png' plt.savefig(fname_fig) plt.clf() print('') if combine_data: for benchmark_name in benchmark_names_comb: fname_history = root_dir + 'Data/NNResults/' + benchmark_name + '_history.pickle' print_history(fname_history, custom_metrics) else: benchmark_names=['mgc_des_perf_1', 'mgc_des_perf_a', 'mgc_des_perf_b', 'mgc_fft_1', 'mgc_fft_2', 'mgc_fft_a', 'mgc_matrix_mult_1', 'mgc_matrix_mult_a', 'mgc_pci_bridge32_a', 'mgc_pci_bridge32_b'] for benchmark_name in benchmark_names: # Load history dictionary from disk fname_history = root_dir + 'Data/NNResults/' + benchmark_name + '_history.pickle'
''' Joe Walter difficulty: 20% run time: 0:00 answer: 1322 *** 064 Odd Period Square Roots How many continued fractions of sqrt(n) for n≤10000 have an odd period? ''' # https://en.wikipedia.org/wiki/Periodic_continued_fraction#Canonical_form_and_repetend from math import isqrt def nonsquare(m): n = 2 while n < m: if isqrt(n)**2 != n: yield n n += 1 def frac_len(n): m = [0] d = [1] a = [isqrt(n)] while True: m_new = d[-1]*a[-1] - m[-1] d_new = (n - m_new**2)//d[-1] a_new = (a[0] + m_new)//d_new m.append(m_new) d.append(d_new) a.append(a_new) if a_new == 2*a[0]: break return len(a) - 1 ans = sum( 1 for n in nonsquare(10001) if frac_len(n) % 2 == 1 ) print(ans)
from django_filters import ( CharFilter, FilterSet, NumberFilter, CharFilter, OrderingFilter, ) from graphene import relay, ObjectType from graphene_django.types import DjangoObjectType from graphene_django.filter import DjangoFilterConnectionField from coordinator.api.models.task import Task class TaskNode(DjangoObjectType): """ A task run on a task service during a release """ class Meta: model = Task filter_fields = {} interfaces = (relay.Node,) class TaskFilter(FilterSet): created_before = NumberFilter(field_name="created_at", lookup_expr="lt") created_after = NumberFilter(field_name="created_at", lookup_expr="gt") release = CharFilter(field_name="release__kf_id") task_service = CharFilter(field_name="task_service__kf_id") order_by = OrderingFilter(fields=("created_at",)) class Meta: model = Task fields = ["kf_id", "state"] class Query: task = relay.Node.Field(TaskNode, description="Retrieve a single task") all_tasks = DjangoFilterConnectionField( TaskNode, filterset_class=TaskFilter, description="Get all tasks from the Coordinator", ) def resolve_all_tasks(self, info, **kwargs): user = info.context.user if hasattr(user, "auth_roles") and ( "ADMIN" in user.auth_roles or "DEV" in user.auth_roles ): return Task.objects.all() queryset = Task.objects.filter(release__state="published") # Return tasks from any releases that the user has a study in if user and hasattr(user, "auth_groups") and len(user.auth_groups) > 0: queryset = queryset | Task.objects.filter( release__studies__kf_id__in=user.auth_groups ) return queryset
from enum import Enum class AdminOperation(Enum): CREATE = 0 UPDATE = 1 DELETE = 2 class AdminItemType(Enum): Announcement = "announcement" QueryEngine = "query_engine" QueryMetastore = "query_metastore" Admin = "admin" Environment = "environment" Task = "task"
import torch from torch.autograd import Variable from .lazy_variable import LazyVariable class ConstantMulLazyVariable(LazyVariable): def __init__(self, lazy_var, constant): if not isinstance(constant, Variable): tensor_cls = lazy_var.tensor_cls constant = Variable(tensor_cls(1).fill_(constant)) super(ConstantMulLazyVariable, self).__init__(lazy_var, constant) self.lazy_var = lazy_var self.constant = constant def _matmul_closure_factory(self, *args): lazy_var_closure = self.lazy_var._matmul_closure_factory(*args[:-1]) constant = args[-1] def closure(rhs_mat): res = lazy_var_closure(rhs_mat) res = res * constant.expand_as(res) return res return closure def _derivative_quadratic_form_factory(self, *args): lazy_var_closure = self.lazy_var._derivative_quadratic_form_factory(*args[:-1]) constant = args[-1] def closure(left_factor, right_factor): res = list(lazy_var_closure(left_factor, right_factor)) for i, item in enumerate(res): if torch.is_tensor(item) and res[i].sum(): res[i] = res[i] * constant.expand_as(res[i]) # Gradient with respect to the constant res.append(left_factor.new(1).fill_((left_factor * right_factor).sum())) return res return closure def _size(self): return self.lazy_var.size() def _transpose_nonbatch(self): return ConstantMulLazyVariable(self.lazy_var._transpose_nonbatch(), self.constant) def _batch_get_indices(self, batch_indices, left_indices, right_indices): res = self.lazy_var._batch_get_indices(batch_indices, left_indices, right_indices) return self.constant.expand_as(res) * res def _get_indices(self, left_indices, right_indices): res = self.lazy_var._get_indices(left_indices, right_indices) return self.constant.expand_as(res) * res def repeat(self, *sizes): return ConstantMulLazyVariable(self.lazy_var.repeat(*sizes), self.constant) def __getitem__(self, i): return self.lazy_var.__getitem__(i) * self.constant
from django.urls import reverse from wagtail.images.views.serve import generate_signature def generate_image_url(image, filter_spec='original'): """Return generated URL for image.""" signature = generate_signature(image.id, filter_spec) url = reverse('wagtailimages_serve', urlconf='wagtail.images.urls', args=(signature, image.id, filter_spec)) return url
# this defines the input size of the images we will be feeding into our model target_size = 28 # create an instance of a sequential model model = models.Sequential() # first block of convolutional layers model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(target_size, target_size, 1))) model.add(layers.MaxPooling2D((2, 2))) # final dense layer for classification model.add(layers.Flatten()) model.add(layers.Dense(256, activation='relu')) model.add(layers.Dense(10, activation='softmax')) # compile the model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # train the model using 20% of the data for validation history = model.fit(X, y, batch_size=256, epochs = 5, validation_split = 0.2)
from math import pi,sin,cos,acos def dis(lat1,long1,lat2,long2): '''Calculates the distance from a second airport and returns it as a float''' r_earth=6378.1 theta1=long1*(2*pi)/360 theta2=long1*(2*pi)/360 phi1=(90-lat1)*(2*pi)/360 phi2=(90-lat2)*(2*pi)/360 distance=acos(sin(phi1)*sin(phi2)*cos(theta1-theta2)+cos(phi1)*cos(phi2))*r_earth return distance
""" All command line related exceptions """ # standart python imports import logging import sys # 3rd party imports import click # Creates a ClickLogger logger = logging.getLogger(__name__) class Two1Error(click.ClickException): """ A ClickException with customized formatting. """ def __init__(self, message, json=None): self.json = json if json else {} super(Two1Error, self).__init__(message) def format_message(self): return click.style(str(self.message), fg='red') def show(self, file=None): """ Same as base method but without printing "Error: " """ if file is None: file = sys.stderr click.echo(self.format_message(), file=file) class UnloggedException(Two1Error): """ An error used to exit out of a commnad and not log the exception """ class MiningDisabledError(UnloggedException): """ A error indicating that the mining limit has been reached """ class UpdateRequiredError(UnloggedException): """ Error during a request os made and the client is out of date """ class FileDecodeError(Exception): """ Error when a config file cannot be decoded """ class ServerRequestError(Two1Error): """ Error during a request to a server """ def __init__(self, response, message=''): self.response = response self.status_code = response.status_code try: # For 4XX responses we expect the response json to have this format: # {"error": "invalid_login", "message": "Incorrect username or password"} self.data = response.json() except ValueError: self.data = {} message = ( message or self.data.get('message') or self.data.get('error') or 'Unspecified HTTP error (%d).' % self.status_code) super(ServerRequestError, self).__init__(message) class ServerConnectionError(Two1Error): """Error during a connection to a server""" def __init__(self, message=""): super(ServerConnectionError, self).__init__(message) class BitcoinComputerNeededError(ServerRequestError): """ Error during a request made on a protected api """ class ValidationError(Two1Error): """ Manifest validation error occurs when parsing manifest file """
#! /usr/bin/env python """ Variables that are shared between modules """ import sys import codecs version = "" scriptPath = "" scriptName = "" mediaInfoExe = "" mets_ns = "" mods_ns = "" premis_ns = "" ebucore_ns = "" xlink_ns = "" xsi_ns = "" isolyzer_ns = "" cdInfo_ns = "" dfxml_ns = "" dc_ns = "" hfs_ns = "" metsSchema = "" modsSchema = "" premisSchema = "" ebucoreSchema = "" NSMAP = {} failedPPNs = [] errors = 0 warnings = 0 createSIPs = False pruneBatch = False skipChecksumFlag = False batchErr = "" dirOut = "" dirsInMetaCarriers = [] carrierTypeAllowedValues = [] iromlabMajorVersion = 0 iromlabMinorVersion = 11 # Set encoding of the terminal to UTF-8 if sys.version.startswith("2"): out = codecs.getwriter("UTF-8")(sys.stdout) err = codecs.getwriter("UTF-8")(sys.stderr) elif sys.version.startswith("3"): out = codecs.getwriter("UTF-8")(sys.stdout.buffer) err = codecs.getwriter("UTF-8")(sys.stderr.buffer)
import torch def save_checkpoint(save_dir, model, optimizer): torch.save({'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict()}, save_dir) return True def load_checkpoint(load_dir): checkpoint = torch.load(load_dir) return checkpoint
from pyspark.mllib.feature import Word2Vec from xframes.spark_context import CommonSparkContext class TextModel(object): def __init__(self, model): self.model = model def find_associations(self, word, num=10): return self.model.findSynonyms(word, num) class TextBuilder(object): def __init__(self, corpus, vector_size=100, seed=42): self.corpus = corpus self.vector_size = vector_size self.seed = seed def train(self): sc = CommonSparkContext().sc() rdd = self.corpus.to_spark_rdd() model = Word2Vec().setVectorSize(self.vector_size).setSeed(self.seed).fit(rdd) return TextModel(model)
print(int(5.5))
import numpy as np import netCDF4 as nc
#!/usr/bin/env python3 def good(sol): n = len(sol) for i in range(n): for j in range(i+1,n): dy = sol[i]-sol[j] dx = i-j if dy==0: return False if dy==dx or dy==-dx: return False return True def solve(n,m=3): tot = n**n sol = [0]*n cnt = 0 for i in range(tot): for j in range(n-1,-1,-1): sol[j]=(i%n)+1 i = i//n if good(sol): cnt += 1 if cnt<=m: print(*sol) print(cnt) n=int(input()) solve(n)
import os class Config: def __init__(self, recipe): self.recipe = recipe self.app_dir = os.path.abspath(self.recipe.get_item('AppDir/path')) self.arch = self.recipe.get_item('AppDir/yum/arch') self.include_list = self.recipe.get_item('AppDir/yum/include') self.exclude_list = self.recipe.get_item('AppDir/yum/exclude', []) self.cache_root = self._get_cache_dir() self.archives_path = self._get_archives_path() def configure(self): os.makedirs(self.cache_root, exist_ok=True) os.makedirs(self.archives_path, exist_ok=True) def _get_cache_dir(self): return os.path.abspath('appimage-builder-cache') def _get_archives_path(self): return os.path.join(self.cache_root, 'yum', 'archives')
import gym import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.distributions import Normal import numpy as np import collections, random # Hyperparameters lr_pi = 0.0005 lr_q = 0.001 init_alpha = 0.01 gamma = 0.98 batch_size = 32 buffer_limit = 50000 tau = 0.01 # for target network soft update target_entropy = -1.0 # for automated alpha update lr_alpha = 0.001 # for automated alpha update class ReplayBuffer(): def __init__(self): self.buffer = collections.deque(maxlen=buffer_limit) def put(self, transition): self.buffer.append(transition) def sample(self, n): mini_batch = random.sample(self.buffer, n) s_lst, a_lst, r_lst, s_prime_lst, done_mask_lst = [], [], [], [], [] for transition in mini_batch: s, a, r, s_prime, done = transition s_lst.append(s) a_lst.append([a]) r_lst.append([r]) s_prime_lst.append(s_prime) done_mask = 0.0 if done else 1.0 done_mask_lst.append([done_mask]) return torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst, dtype=torch.float), \ torch.tensor(r_lst, dtype=torch.float), torch.tensor(s_prime_lst, dtype=torch.float), \ torch.tensor(done_mask_lst, dtype=torch.float) def size(self): return len(self.buffer) class PolicyNet(nn.Module): def __init__(self, learning_rate): super(PolicyNet, self).__init__() self.fc1 = nn.Linear(3, 128) self.fc_mu = nn.Linear(128, 1) self.fc_std = nn.Linear(128, 1) self.optimizer = optim.Adam(self.parameters(), lr=learning_rate) self.log_alpha = torch.tensor(np.log(init_alpha)) self.log_alpha.requires_grad = True self.log_alpha_optimizer = optim.Adam([self.log_alpha], lr=lr_alpha) def forward(self, x): x = F.relu(self.fc1(x)) mu = self.fc_mu(x) std = F.softplus(self.fc_std(x)) dist = Normal(mu, std) action = dist.rsample() log_prob = dist.log_prob(action) real_action = torch.tanh(action) real_log_prob = log_prob - torch.log(1 - torch.tanh(action).pow(2) + 1e-7) return real_action, real_log_prob def train_net(self, q1, q2, mini_batch): s, _, _, _, _ = mini_batch a, log_prob = self.forward(s) entropy = -self.log_alpha.exp() * log_prob q1_val, q2_val = q1(s, a), q2(s, a) q1_q2 = torch.cat([q1_val, q2_val], dim=1) min_q = torch.min(q1_q2, 1, keepdim=True)[0] loss = -min_q - entropy # for gradient ascent self.optimizer.zero_grad() loss.mean().backward() self.optimizer.step() self.log_alpha_optimizer.zero_grad() alpha_loss = -(self.log_alpha.exp() * (log_prob + target_entropy).detach()).mean() alpha_loss.backward() self.log_alpha_optimizer.step() class QNet(nn.Module): def __init__(self, learning_rate): super(QNet, self).__init__() self.fc_s = nn.Linear(3, 64) self.fc_a = nn.Linear(1, 64) self.fc_cat = nn.Linear(128, 32) self.fc_out = nn.Linear(32, 1) self.optimizer = optim.Adam(self.parameters(), lr=learning_rate) def forward(self, x, a): h1 = F.relu(self.fc_s(x)) h2 = F.relu(self.fc_a(a)) cat = torch.cat([h1, h2], dim=1) q = F.relu(self.fc_cat(cat)) q = self.fc_out(q) return q def train_net(self, target, mini_batch): s, a, r, s_prime, done = mini_batch loss = F.smooth_l1_loss(self.forward(s, a), target) self.optimizer.zero_grad() loss.mean().backward() self.optimizer.step() def soft_update(self, net_target): for param_target, param in zip(net_target.parameters(), self.parameters()): param_target.data.copy_(param_target.data * (1.0 - tau) + param.data * tau) def calc_target(pi, q1, q2, mini_batch): s, a, r, s_prime, done = mini_batch with torch.no_grad(): a_prime, log_prob = pi(s_prime) entropy = -pi.log_alpha.exp() * log_prob q1_val, q2_val = q1(s_prime, a_prime), q2(s_prime, a_prime) q1_q2 = torch.cat([q1_val, q2_val], dim=1) min_q = torch.min(q1_q2, 1, keepdim=True)[0] target = r + gamma * done * (min_q + entropy) return target def main(): env = gym.make('Pendulum-v1') memory = ReplayBuffer() q1, q2, q1_target, q2_target = QNet(lr_q), QNet(lr_q), QNet(lr_q), QNet(lr_q) pi = PolicyNet(lr_pi) q1_target.load_state_dict(q1.state_dict()) q2_target.load_state_dict(q2.state_dict()) score = 0.0 print_interval = 20 for n_epi in range(10000): s = env.reset() done = False while not done: env.render() a, log_prob = pi(torch.from_numpy(s).float()) s_prime, r, done, info = env.step([2.0 * a.item()]) memory.put((s, a.item(), r / 10.0, s_prime, done)) score += r s = s_prime if memory.size() > 1000: for i in range(20): mini_batch = memory.sample(batch_size) td_target = calc_target(pi, q1_target, q2_target, mini_batch) q1.train_net(td_target, mini_batch) q2.train_net(td_target, mini_batch) entropy = pi.train_net(q1, q2, mini_batch) q1.soft_update(q1_target) q2.soft_update(q2_target) if n_epi % print_interval == 0 and n_epi != 0: print("# of episode :{}, avg score : {:.1f} alpha:{:.4f}".format(n_epi, score / print_interval, pi.log_alpha.exp())) score = 0.0 env.close() if __name__ == '__main__': main()
def section1(): import dtlpy as dl # Get project and dataset project = dl.projects.get(project_name='project_name') dataset = project.datasets.get(dataset_name='dataset_name') def section2(): item.metadata['user']['MyKey'] = 'MyValue' annotation.metadata['user']['MyKey'] = 'MyValue' def section3(): item.metadata['user']['MyKey'] = 3 annotation.metadata['user']['MyKey'] = 3 def section4(): item.metadata['user']['MyKey'] = True annotation.metadata['user']['MyKey'] = True def section5(): item.metadata['user']['MyKey'] = None annotation.metadata['user']['MyKey'] = None def section6(): # add metadata of a list (can contain elements of different types). item.metadata['user']['MyKey'] = ["A", 2, False] annotation.metadata['user']['MyKey'] = ["A", 2, False] def section7(): item.metadata['user']['MyKey'].append(3) item = item.update() annotation.metadata['user']['MyKey'].append(3) annotation = annotation.update() def section8(): # upload and claim item item = dataset.items.upload(local_path=r'C:/home/project/images/item.mimetype') # or get item item = dataset.items.get(item_id='write-your-id-number') # modify metadata item.metadata['user'] = dict() item.metadata['user']['MyKey'] = 'MyValue' # update and reclaim item item = item.update() # item in platform should have section 'user' in metadata with field 'MyKey' and value 'MyValue' def section9(): # Get annotation annotation = dl.annotations.get(annotation_id='my-annotation-id') # modify metadata annotation.metadata['user'] = dict() item.metadata['user']['red'] = True # update and reclaim annotation annotation = annotation.update() # annotation in platform should have section 'user' in metadata with field 'red' and value True def section10(): project = dl.projects.get(project_name='project_name') dataset = project.datasets.get(dataset_name='dataset_name') def section11(): # upload and claim item item = dataset.items.upload(local_path=r'C:/home/project/images/item.mimetype') # or get item item = dataset.items.get(item_id='write-your-id-number') # modify metadata item.metadata['user'] = dict() item.metadata['user']['MyKey'] = 'MyValue' # update and reclaim item item = item.update() def section12(): filters = dl.Filters() # set resource - optional - default is item filters.resource = dl.FiltersResource.ITEM def section13(): filters.add(field='metadata.user.Key', values='Value') def section14(): pages = dataset.items.list(filters=filters) # Go over all item and print the properties for page in pages: for item in page: item.print() def section15(): # upload and claim item item = dataset.items.upload(local_path=r'C:/home/project/images/item.mimetype') # or get item item = dataset.items.get(item_id='write-your-id-number') # modify metadata if 'user' not in item.metadata: item.metadata['user'] = dict() item.metadata['user']['MyKey'] = 'MyValue' # update and reclaim item item = item.update()
""" Serializers for the Transaction Logging API """ from rest_framework import serializers from .models import TransactionRecord class TransactionRecordSerializer(serializers.ModelSerializer): """ Serializer for TransactionRecord objects """ class Meta: """ TransactionRecordSerializer Django Metadata """ model = TransactionRecord fields = "__all__"
import math class Points(object): def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __sub__(self, no): return Points((self.x-no.x), (self.y-no.y), (self.z-no.z)) #dot product def dot(self, no): return (self.x*no.x)+(self.y*no.y)+(self.z*no.z) # cross product def cross(self, no): return Points((self.y*no.z-self.z*no.y), (self.z*no.x-self.x*no.z), (self.x*no.y-self.y*no.x)) def absolute(self): return pow((self.x ** 2 + self.y ** 2 + self.z ** 2), 0.5) if __name__ == '__main__': points = [] points.append([0, 4, 5]) points.append([1, 7, 6]) points.append([0, 5, 9]) points.append([1, 7, 2]) a, b, c, d = Points(*points[0]), Points(*points[1] ), Points(*points[2]), Points(*points[3]) x = (b - a).cross(c - b) y = (c - b).cross(d - c) angle = math.acos(x.dot(y) / (x.absolute() * y.absolute())) print("%.2f" % math.degrees(angle))
def test_range(): simple = list(range(0, 10)) results = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] assert simple == results def test_range_with_steps(): with_steps = list(range(0, 10, 2)) results = [0, 2, 4, 6, 8] assert with_steps == results def test_range_with_negative_steps(): with_steps = list(range(10, 0, -2)) results = [10, 8, 6, 4, 2] assert with_steps == results
import argparse import os import functools import time import subprocess from augmentation.utilities.config import * from augmentation.utilities.metrics import * from augmentation.datasets.utils import get_processed_dataset_info, apply_modifier_to_dataset_payload, load_dataset from augmentation.dataflows.utils import dataflow_len from augmentation.augment.utils import create_augmentation_pipelines from augmentation.models.models import * from augmentation.methods.cyclegan.utils import * from augmentation.utilities.checkpoint import * from augmentation.utilities.visualize import * from augmentation.utilities.wandb import load_wandb_run, load_most_recent_keras_model_weights, \ get_most_recent_model_file, particular_checkpoint_step_extractor from augmentation.utilities.utils import basic_setup def train_cyclegan(config): # Do basic setup basic_setup(seed=config.seed, logical_gpu_memory_limits=(14336,)) # Set up the source dataset source_dataset_payload = load_dataset(config.source_dataset, config.source_dataset_version, config.datadir, config.validation_frac) target_dataset_payload = load_dataset(config.target_dataset, config.target_dataset_version, config.datadir, config.validation_frac) # Get some dataset information source_proc_dataset_info = get_processed_dataset_info(source_dataset_payload.dataset_info, config.validation_frac, config.batch_size) target_proc_dataset_info = get_processed_dataset_info(target_dataset_payload.dataset_info, config.validation_frac, config.batch_size) source_input_shape = source_proc_dataset_info.input_shape target_input_shape = target_proc_dataset_info.input_shape # Do selection on each dataset source_dataset_payload = apply_modifier_to_dataset_payload(source_dataset_payload, config.source_dataset_modifier) target_dataset_payload = apply_modifier_to_dataset_payload(target_dataset_payload, config.target_dataset_modifier) # Setup the augmentation pipeline we'll be using train_augmentations, val_augmentations, test_augmentations = \ create_augmentation_pipelines(config.train_daug_pipeline, config.train_daug_pipeline_args, config.val_daug_pipeline, config.val_daug_pipeline_args, config.test_daug_pipeline, config.test_daug_pipeline_args) # Create the data generators train_generator = create_cyclegan_data_generator(source_dataset_payload.train_dataset, target_dataset_payload.train_dataset, config.batch_size, train_augmentations, config.dataflow, config.cache_dir + 'train') test_generator = create_cyclegan_data_generator(source_dataset_payload.test_dataset, target_dataset_payload.test_dataset, config.batch_size, test_augmentations, config.dataflow, config.cache_dir + 'test') # Create the models generator_g, generator_f, discriminator_x, discriminator_y = \ build_models(source_input_shape, target_input_shape, config.norm_type, config.output_init, config.residual_outputs) generator_g.summary() generator_f.summary() discriminator_x.summary() discriminator_y.summary() # Set up the optimizers generator_optimizer, _, discriminator_optimizer, _ = build_optimizers(lr_gen=config.lr_gen, lr_disc=config.lr_disc, beta_1_gen=config.beta_1_gen, beta_1_disc=config.beta_1_disc, lr_scheduler=config.lr_scheduler, lr_decay_steps=config.n_epochs * dataflow_len(train_generator)) # Compile the models compile_keras_models([generator_g, generator_f, discriminator_x, discriminator_y], [generator_optimizer, generator_optimizer, discriminator_optimizer, discriminator_optimizer]) # Create the replay buffers for the discriminators disc_x_replay, disc_y_replay = ReplayBuffer(config.replay_buffer_size), ReplayBuffer(config.replay_buffer_size) # Define the loss function to pass to the generator and discriminator gan_loss_fn = build_gan_loss_fn(config.gan_loss) # By default, assume we're starting training from scratch start_epoch, start_step = 0, 0 if config.resume: # If we're resuming a run prev_run = load_wandb_run(config.prev_wandb_run_id, config.prev_wandb_project, config.prev_wandb_entity) # If the previous run crashed, wandb_ckpt_path should be '': this is the typical use case # but this should be changed in the future step_extraction_fn = lambda fname: fname.split("_")[1].split(".")[0] _, gen_g_ep = load_most_recent_keras_model_weights(generator_g, prev_run, model_name='generator_g', wandb_ckpt_path=config.prev_ckpt_path, step_extractor=step_extraction_fn) _, gen_f_ep = load_most_recent_keras_model_weights(generator_f, prev_run, model_name='generator_f', wandb_ckpt_path=config.prev_ckpt_path, step_extractor=step_extraction_fn) _, disc_x_ep = load_most_recent_keras_model_weights(discriminator_x, prev_run, model_name='discriminator_x', wandb_ckpt_path=config.prev_ckpt_path, step_extractor=step_extraction_fn) _, disc_y_ep = load_most_recent_keras_model_weights(discriminator_y, prev_run, model_name='discriminator_y', wandb_ckpt_path=config.prev_ckpt_path, step_extractor=step_extraction_fn) assert gen_g_ep == gen_f_ep == disc_x_ep == disc_y_ep, 'All restored models should be from the same epoch.' if gen_g_ep is not None: start_epoch, start_step = gen_g_ep, 0 for line in prev_run.history(): if 'epochs' in line and line['epochs'] == start_epoch: start_step = line['steps'] break # Reloading the optimizer states from that epoch step_extraction_fn = lambda fname: fname.split(".")[0].split("_")[-1] gen_opt_ckpt = get_most_recent_model_file(prev_run, wandb_ckpt_path=config.prev_ckpt_path, model_name='generator_optimizer', step_extractor= particular_checkpoint_step_extractor(start_epoch, step_extractor= step_extraction_fn)) load_tf_optimizer_state(generator_optimizer, gen_opt_ckpt.name) disc_opt_ckpt = get_most_recent_model_file(prev_run, wandb_ckpt_path=config.prev_ckpt_path, model_name='discriminator_optimizer', step_extractor= particular_checkpoint_step_extractor(start_epoch, step_extractor= step_extraction_fn)) load_tf_optimizer_state(discriminator_optimizer, disc_opt_ckpt.name) # Set up weights and biases while True: try: if not config.resume: # Start a new Weights and Biases run wandb.init(entity=config.wandb_entity, project=config.wandb_project, group=config.wandb_group, job_type=config.wandb_job_type, reinit=True, config=config) else: # Resume a previous Weights and Biases run wandb.init(entity=config.prev_wandb_entity, project=config.prev_wandb_project, id=config.prev_wandb_run_id, reinit=True, resume=True) os.makedirs(f'{wandb.run.dir}/{config.checkpoint_path}', exist_ok=True) break except: continue _train_cyclegan(train_data_generator=train_generator, val_data_generator=test_generator, generator_g=generator_g, generator_f=generator_f, discriminator_x=discriminator_x, discriminator_y=discriminator_y, generator_optimizer=generator_optimizer, discriminator_optimizer=discriminator_optimizer, discriminator_x_replay=disc_x_replay, discriminator_y_replay=disc_y_replay, metrics=None, batch_size=None, n_epochs=config.n_epochs, gan_loss_fn=gan_loss_fn, cycle_loss_scale_x=config.cycle_loss_scale, cycle_loss_scale_y=config.cycle_loss_scale * (1 - config.source_cycle_loss_only), identity_loss_scale=config.identity_loss_scale, grad_penalty=config.grad_penalty, grad_penalty_scale=config.grad_penalty_scale, checkpoint_path=config.checkpoint_path, checkpoint_freq=config.checkpoint_freq, image_log_freq=config.image_log_freq, start_step=start_step, start_epoch=start_epoch) def _train_cyclegan(train_data_generator, val_data_generator, generator_g, generator_f, discriminator_x, discriminator_y, generator_optimizer, discriminator_optimizer, discriminator_x_replay, discriminator_y_replay, metrics, batch_size, n_epochs, gan_loss_fn, cycle_loss_scale_x, cycle_loss_scale_y, identity_loss_scale, grad_penalty, grad_penalty_scale, checkpoint_path, checkpoint_freq, image_log_freq=50, start_step=0, start_epoch=0): # Keep track of how many gradient steps we've taken step = start_step # Multiple training epochs for epoch in range(start_epoch, n_epochs): # Iterate over the dataset for batch_x, batch_y in train_data_generator: # Convert to tensors batch_x, batch_y = tf.convert_to_tensor(batch_x), tf.convert_to_tensor(batch_y) # Train using this batch of data gen_losses, gen_predictions, gen_gradients = train_step_generator(generator_g, generator_f, discriminator_x, discriminator_y, gan_loss_fn, batch_x, batch_y, generator_optimizer, discriminator_x_replay, discriminator_y_replay, cycle_loss_scale_x, cycle_loss_scale_y, identity_loss_scale) disc_losses, disc_predictions, disc_gradients = train_step_discriminator(discriminator_x, discriminator_y, gan_loss_fn, batch_x, batch_y, discriminator_optimizer, discriminator_x_replay, discriminator_y_replay, grad_penalty, grad_penalty_scale) # Update the step counter step += 1 # Unpack and log to weights and biases (gen_g_loss, gen_f_loss, cycle_loss_x, cycle_loss_y, identity_loss_x, identity_loss_y) = gen_losses ((same_x, fake_x, cycled_x, disc_fake_x), (same_y, fake_y, cycled_y, disc_fake_y)) = gen_predictions (disc_x_loss, disc_y_loss, disc_x_gp, disc_y_gp) = disc_losses ((disc_real_x, disc_sampled_fake_x), (disc_real_y, disc_sampled_fake_y)) = disc_predictions wandb.log({'training_metrics/gen_g_loss': gen_g_loss.numpy(), 'training_metrics/gen_f_loss': gen_f_loss.numpy(), 'training_metrics/cycle_loss_x': cycle_loss_x.numpy(), 'training_metrics/cycle_loss_y': cycle_loss_y.numpy(), 'training_metrics/identity_loss_x': identity_loss_x.numpy(), 'training_metrics/identity_loss_y': identity_loss_y.numpy(), 'training_metrics/disc_x_loss': disc_x_loss.numpy(), 'training_metrics/disc_y_loss': disc_y_loss.numpy(), 'training_metrics/disc_x_gp': disc_x_gp.numpy(), 'training_metrics/disc_y_gp': disc_y_gp.numpy(), 'predictions/disc_real_x': wandb.Histogram(disc_real_x.numpy()), 'predictions/disc_real_y': wandb.Histogram(disc_real_y.numpy()), 'predictions/disc_fake_x': wandb.Histogram(disc_fake_x.numpy()), 'predictions/disc_fake_y': wandb.Histogram(disc_fake_y.numpy()), 'predictions/disc_sampled_fake_x': wandb.Histogram(disc_sampled_fake_x.numpy()), 'predictions/disc_sampled_fake_y': wandb.Histogram(disc_sampled_fake_y.numpy()), 'gradient_norms/generators': tf.linalg.global_norm(gen_gradients).numpy(), 'gradient_norms/discriminators': tf.linalg.global_norm(disc_gradients).numpy(), 'learning_rates/generators': generator_optimizer._decayed_lr(tf.float32).numpy(), 'learning_rates/discriminators': discriminator_optimizer._decayed_lr(tf.float32).numpy(), 'steps': step}, step=step) # Log images frequently to admire if step % image_log_freq == 0: # Use a (* 0.5 + 0.5) offset before visualizing since the data lies in [-1, 1] wandb.log({'real_x': wandb.Image(gallery(batch_x.numpy() * 0.5 + 0.5)), 'fake_x': wandb.Image(gallery(fake_x.numpy() * 0.5 + 0.5)), 'cycled_x': wandb.Image(gallery(cycled_x.numpy() * 0.5 + 0.5)), 'same_x': wandb.Image(gallery(same_x.numpy() * 0.5 + 0.5)), 'real_y': wandb.Image(gallery(batch_y.numpy() * 0.5 + 0.5)), 'fake_y': wandb.Image(gallery(fake_y.numpy() * 0.5 + 0.5)), 'cycled_y': wandb.Image(gallery(cycled_y.numpy() * 0.5 + 0.5)), 'same_y': wandb.Image(gallery(same_y.numpy() * 0.5 + 0.5))}, step=step) # Visualize a batch of validation data every epoch generate_and_log_one_image_batch(val_data_generator, generator_g, generator_f, step) del gen_losses, disc_losses, gen_predictions, disc_predictions, gen_gradients, disc_gradients # End of epoch, log to weights and biases wandb.log({'epochs': epoch + 1}, step=step) # Checkpoint every few epochs if (epoch + 1) % checkpoint_freq == 0: # Store the models generator_g.save_weights(f'{wandb.run.dir}/{checkpoint_path}/ckpt_{epoch + 1}_generator_g.h5') generator_f.save_weights(f'{wandb.run.dir}/{checkpoint_path}/ckpt_{epoch + 1}_generator_f.h5') discriminator_x.save_weights(f'{wandb.run.dir}/{checkpoint_path}/ckpt_{epoch + 1}_discriminator_x.h5') discriminator_y.save_weights(f'{wandb.run.dir}/{checkpoint_path}/ckpt_{epoch + 1}_discriminator_y.h5') # Store the optimizers save_tf_optimizer_state(generator_optimizer, f'{wandb.run.dir}/{checkpoint_path}/generator_optimizer_{epoch + 1}.pkl') save_tf_optimizer_state(discriminator_optimizer, f'{wandb.run.dir}/{checkpoint_path}/discriminator_optimizer_{epoch + 1}.pkl') # Save to Weights and Biases wandb.save(f'{wandb.run.dir}/{checkpoint_path}/ckpt_{epoch + 1}_generator_g.h5') wandb.save(f'{wandb.run.dir}/{checkpoint_path}/ckpt_{epoch + 1}_generator_f.h5') wandb.save(f'{wandb.run.dir}/{checkpoint_path}/ckpt_{epoch + 1}_discriminator_x.h5') wandb.save(f'{wandb.run.dir}/{checkpoint_path}/ckpt_{epoch + 1}_discriminator_y.h5') wandb.save(f'{wandb.run.dir}/{checkpoint_path}/generator_optimizer_{epoch + 1}.pkl') wandb.save(f'{wandb.run.dir}/{checkpoint_path}/discriminator_optimizer_{epoch + 1}.pkl') return generator_g, generator_f, discriminator_x, discriminator_y def train_step_generator(generator_g, generator_f, discriminator_x, discriminator_y, loss_fn, batch_x, batch_y, generator_optimizer, discriminator_x_replay, discriminator_y_replay, cycle_loss_scale_x, cycle_loss_scale_y, identity_loss_scale): def _train_step_generator(real_x, real_y): with tf.GradientTape() as tape: # Generator G translates X -> Y # Generator F translates Y -> X. fake_y = generator_g(real_x, training=True) cycled_x = generator_f(fake_y, training=True) fake_x = generator_f(real_y, training=True) cycled_y = generator_g(fake_x, training=True) # same_x and same_y are used for identity loss. same_x = generator_f(real_x, training=True) same_y = generator_g(real_y, training=True) disc_fake_x = discriminator_x(fake_x, training=True) disc_fake_y = discriminator_y(fake_y, training=True) # Calculate all the losses gen_g_loss = generator_loss(disc_fake_y, loss_fn) gen_f_loss = generator_loss(disc_fake_x, loss_fn) cycle_loss_x = cycle_loss(real_x, cycled_x, cycle_loss_scale_x) cycle_loss_y = cycle_loss(real_y, cycled_y, cycle_loss_scale_y) identity_loss_x = identity_loss(real_x, same_x, identity_loss_scale) identity_loss_y = identity_loss(real_y, same_y, identity_loss_scale) # Total generator loss = adversarial loss + cycle loss total_gen_loss = gen_g_loss + gen_f_loss + cycle_loss_x + cycle_loss_y + identity_loss_x + identity_loss_y # Update the discriminator replay buffers discriminator_x_replay.add(fake_x) discriminator_y_replay.add(fake_y) # Calculate the gradients for generator and discriminator generator_gradients = tape.gradient(total_gen_loss, generator_g.trainable_variables + generator_f.trainable_variables) # Apply the gradients to the optimizer generator_optimizer.apply_gradients(zip(generator_gradients, generator_g.trainable_variables + generator_f.trainable_variables)) del tape return (gen_g_loss, gen_f_loss, cycle_loss_x, cycle_loss_y, identity_loss_x, identity_loss_y), \ ((same_x, fake_x, cycled_x, disc_fake_x), (same_y, fake_y, cycled_y, disc_fake_y)), generator_gradients return _train_step_generator(batch_x, batch_y) def train_step_discriminator(discriminator_x, discriminator_y, loss_fn, batch_x, batch_y, discriminator_optimizer, discriminator_x_replay, discriminator_y_replay, grad_penalty, grad_penalty_scale): def _train_step_discriminator(real_x, real_y): # Sample fake_x and fake_y from the replay buffers sampled_fake_x = discriminator_x_replay.get_tf_batch(real_x.shape[0]) sampled_fake_y = discriminator_y_replay.get_tf_batch(real_y.shape[0]) with tf.GradientTape() as tape: disc_real_x = discriminator_x(real_x, training=True) disc_real_y = discriminator_y(real_y, training=True) disc_fake_x = discriminator_x(sampled_fake_x, training=True) disc_fake_y = discriminator_y(sampled_fake_y, training=True) disc_x_loss = discriminator_loss(disc_real_x, disc_fake_x, loss_fn) disc_y_loss = discriminator_loss(disc_real_y, disc_fake_y, loss_fn) disc_x_gp = gradient_penalty(functools.partial(discriminator_x, training=True), real_x, sampled_fake_x, mode=grad_penalty, scale=grad_penalty_scale) disc_y_gp = gradient_penalty(functools.partial(discriminator_y, training=True), real_y, sampled_fake_y, mode=grad_penalty, scale=grad_penalty_scale) total_disc_loss = disc_x_loss + disc_y_loss + disc_x_gp + disc_y_gp # Calculate the gradients for generator and discriminator discriminator_gradients = tape.gradient(total_disc_loss, discriminator_x.trainable_variables + discriminator_y.trainable_variables) # Apply the gradients to the optimizer discriminator_optimizer.apply_gradients(zip(discriminator_gradients, discriminator_x.trainable_variables + discriminator_y.trainable_variables)) del tape return (disc_x_loss, disc_y_loss, disc_x_gp, disc_y_gp), \ ((disc_real_x, disc_fake_x), (disc_real_y, disc_fake_y)), discriminator_gradients return _train_step_discriminator(batch_x, batch_y) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, required=True, help='Path to configuration file.') parser.add_argument('--template', type=str, default='augmentation/configs/template_cyclegan_training.yaml') args = parser.parse_args() # Load up the config files config = create_config_simple_namespace(config_path=args.config, template_config_path=args.template) # Train the end model train_cyclegan(config)
""" Compile SMIv2 MIBs ++++++++++++++++++ Invoke user callback function to provide MIB text, compile given text string into pysnmp MIB form and pass results to another user callback function for storing. Here we expect to deal only with SMIv2-valid MIBs. We use noDeps flag to prevent MIB compiler from attemping to compile IMPORT'ed MIBs as well. """# import sys from pysmi.reader import CallbackReader from pysmi.searcher import StubSearcher from pysmi.writer import CallbackWriter from pysmi.parser import SmiV2Parser from pysmi.codegen import PySnmpCodeGen from pysmi.compiler import MibCompiler inputMibs = ['IF-MIB', 'IP-MIB'] srcDir = '/usr/share/snmp/mibs/' # we will read MIBs from here # Initialize compiler infrastructure mibCompiler = MibCompiler( SmiV2Parser(), PySnmpCodeGen(), # out own callback function stores results in its own way CallbackWriter(lambda m, d, c: sys.stdout.write(d)) ) # our own callback function serves as a MIB source here mibCompiler.addSources( CallbackReader(lambda m, c: open(srcDir+m+'.txt').read()) ) # never recompile MIBs with MACROs mibCompiler.addSearchers(StubSearcher(*PySnmpCodeGen.baseMibs)) # run non-recursive MIB compilation results = mibCompiler.compile(*inputMibs, **dict(noDeps=True)) print('Results: %s' % ', '.join(['%s:%s' % (x, results[x]) for x in results]))
import os import queue import cv2 import numpy as np from PIL import Image, ImageDraw import csv import sys try: input_video_path = sys.argv[1] input_csv_path = sys.argv[2] #output_video_path = sys.argv[3] if (not input_video_path) or (not input_csv_path): raise '' except: print('usage: python3 show_trajectory.py <input_video_path> <input_csv_path>') exit(1) with open(input_csv_path) as csvfile: readCSV = csv.reader(csvfile, delimiter=',') frames = [] x, y = [], [] list1 = [] for row in readCSV: list1.append(row) for i in range(1 , len(list1)): frames += [int(list1[i][0])] x += [int(float(list1[i][2]))] y += [int(float(list1[i][3]))] output_video_path = input_video_path.split('.')[0] + "_trajectory.mp4" q = queue.deque() for i in range(0,8): q.appendleft(None) #get video fps&video size currentFrame= 0 video = cv2.VideoCapture(input_video_path) fps = int(video.get(cv2.CAP_PROP_FPS)) output_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) output_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) fourcc = cv2.VideoWriter_fourcc(*'mp4v') output_video = cv2.VideoWriter(output_video_path,fourcc, fps, (output_width,output_height)) video.set(1,currentFrame); ret, img1 = video.read() #write image to video output_video.write(img1) currentFrame +=1 #input must be float type img1 = img1.astype(np.float32) #capture frame-by-frame video.set(1,currentFrame); ret, img = video.read() #write image to video output_video.write(img) currentFrame +=1 #input must be float type img = img.astype(np.float32) while(True): #capture frame-by-frame video.set(1,currentFrame); ret, img = video.read() #if there dont have any frame in video, break if not ret: break PIL_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) PIL_image = Image.fromarray(PIL_image) if x[currentFrame] != 0 and y[currentFrame] != 0: q.appendleft([x[currentFrame],y[currentFrame]]) q.pop() else: q.appendleft(None) q.pop() for i in range(0,8): if q[i] is not None: draw_x = q[i][0] draw_y = q[i][1] bbox = (draw_x - 2, draw_y - 2, draw_x + 2, draw_y + 2) draw = ImageDraw.Draw(PIL_image) draw.ellipse(bbox, outline ='yellow') del draw opencvImage = cv2.cvtColor(np.array(PIL_image), cv2.COLOR_RGB2BGR) #write image to output_video output_video.write(opencvImage) #next frame currentFrame += 1 video.release() output_video.release() print("finish")
"""tests/test_dataframe.py module.""" from pathlib import Path import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal from talus_utils import dataframe from talus_utils.fasta import parse_fasta_header_uniprot_protein DATA_DIR = Path(__file__).resolve().parent.joinpath("data") def assert_frame_not_equal(*args: str, **kwargs: str) -> None: """Check that left and right DataFrame are unequal. Raises ------ AssertionError When the two frames are not equal. """ try: assert_frame_equal(*args, **kwargs) except AssertionError: # frames are not equal pass else: # frames are equal raise AssertionError def dummy_function_change_df_column(df: pd.DataFrame) -> None: """Change the input df's column. Parameters ---------- df : pd.DataFrame The input DataFrame. """ df["test"] = "dummy_value" def dummy_function(df: pd.DataFrame) -> pd.DataFrame: """Return the input DataFrame. Parameters ---------- df : pd.DataFrame The input DataFrame. """ return df def test_copy_df_in_args() -> None: """Test the copy decorator with the df in the args.""" df_input = pd.DataFrame([{"test": "a", "test2": "b"}, {"test": "c", "test2": "d"}]) df_expected_to_change = df_input.copy(deep=True) df_expected_not_to_change = df_input.copy(deep=True) dummy_function_change_df_column(df_expected_to_change) assert_frame_not_equal(df_expected_to_change, df_input) dataframe.copy(dummy_function_change_df_column)(df_expected_not_to_change) assert_frame_equal(df_expected_not_to_change, df_input) def test_copy_df_in_kwargs() -> None: """Test the copy decorator with the df in the kwargs.""" df_input = pd.DataFrame([{"test": "a", "test2": "b"}, {"test": "c", "test2": "d"}]) df_expected_to_change = df_input.copy(deep=True) df_expected_not_to_change = df_input.copy(deep=True) dummy_function_change_df_column(df=df_expected_to_change) assert_frame_not_equal(df_expected_to_change, df_input) dataframe.copy(dummy_function_change_df_column)(df=df_expected_not_to_change) assert_frame_equal(df_expected_not_to_change, df_input) def test_dropna() -> None: """Test the dropna decorator.""" df_input = pd.DataFrame( [{"test": "a", "test2": np.nan}, {"test": "c", "test2": "d"}] ) df_expected = df_input.dropna() df_actual = dataframe.dropna()(dummy_function)(df_input) assert_frame_equal(df_actual, df_expected) def test_dropna_column() -> None: """Test the dropna decorator by dropping a column.""" df_input = pd.DataFrame( [{"test": "a", "test2": np.nan}, {"test": "c", "test2": "d"}] ) df_expected = pd.DataFrame([{"test": "a"}, {"test": "c"}]) df_actual = dataframe.dropna(axis=1)(dummy_function)(df_input) assert_frame_equal(df_actual, df_expected) def test_log_scaling() -> None: """Test the log_scaling decorator.""" df_input = pd.DataFrame(np.random.rand(5, 5) * 500) df_expected = np.log10(df_input) df_actual = dataframe.log_scaling()(dummy_function)(df_input) assert_frame_equal(df_actual, df_expected) def test_log_scaling_custom_log() -> None: """Test the log_scaling decorator with a custom log function (np.log2).""" df_input = pd.DataFrame(np.random.rand(5, 5) * 100) df_expected = np.log2(df_input.where(df_input >= 1)) df_actual = dataframe.log_scaling(log_function=np.log2)(dummy_function)(df_input) assert_frame_equal(df_actual, df_expected) def test_log_scaling_with_zeros() -> None: """Test the log_scaling decorator with zeros (should be filtered out and set to NaN).""" df_input = pd.DataFrame([{"test": 25, "test2": 0}, {"test": 26, "test2": 42}]) df_expected = np.log10(df_input.where(df_input >= 1)) df_actual = dataframe.log_scaling()(dummy_function)(df_input) assert_frame_equal(df_actual, df_expected) def test_log_scaling_with_zeros_no_filter_outliers() -> None: """Test the log_scaling decorator with zeros and without filtering outliers.""" df_input = pd.DataFrame([{"test": 25, "test2": 0}, {"test": 26, "test2": 42}]) df_expected = np.log10(df_input.mask(df_input < 1, 1)) df_actual = dataframe.log_scaling(filter_outliers=False)(dummy_function)(df_input) assert_frame_equal(df_actual, df_expected) def test_pivot_table() -> None: """Test the test_pivot_table decorator.""" df_input = pd.DataFrame( [ {"index": "a", "column": "b", "value": 1}, {"index": "c", "column": "d", "value": 2}, ] ) df_expected = df_input.pivot_table(index="index", columns="column", values="value") df_actual = dataframe.pivot_table(index="index", columns="column", values="value")( dummy_function )(df_input) assert_frame_equal(df_actual, df_expected) def test_normalize_value_error() -> None: """Test the normalize decorator with a value error.""" df_input = pd.DataFrame([{"test": "a", "test2": "b"}, {"test": "c", "test2": "d"}]) with pytest.raises(ValueError): _ = dataframe.normalize(how="nonexisting")(dummy_function)(df_input) def test_normalize_minmax() -> None: """Test the normalize decorator with how='minmax'.""" df_input = pd.DataFrame(np.random.rand(5, 5) * 100) df_expected = (df_input - df_input.min()) / (df_input.max() - df_input.min()) df_actual = dataframe.normalize(how="minmax")(dummy_function)(df_input) assert_frame_equal(df_actual, df_expected) def test_normalize_row() -> None: """Test the normalize decorator with how='row'.""" df_input = pd.DataFrame(np.random.rand(5, 5) * 100) df_expected = df_input.apply(lambda x: x / x.sum(), axis=1) df_actual = dataframe.normalize(how="row")(dummy_function)(df_input) assert_frame_equal(df_actual, df_expected) def test_normalize_column() -> None: """Test the normalize decorator with how='column'.""" df_input = pd.DataFrame(np.random.rand(5, 5) * 100) df_expected = df_input.apply(lambda x: x / x.sum(), axis=0) df_actual = dataframe.normalize(how="column")(dummy_function)(df_input) assert_frame_equal(df_actual, df_expected) def test_normalize_median_column() -> None: """Test the normalize decorator with how='median_column'.""" df_input = pd.DataFrame(np.random.rand(5, 5) * 100) df_expected = df_input / df_input.median(axis=0) df_actual = dataframe.normalize(how="median_column")(dummy_function)(df_input) assert_frame_equal(df_actual, df_expected) def test_normalize_quantile_column() -> None: """Test the normalize decorator with how='quantile_column'.""" df_input = pd.DataFrame(np.random.rand(5, 5) * 100) rank_mean = ( df_input.stack() .groupby(df_input.rank(method="first").stack().astype(int)) .mean() ) df_expected = ( df_input.rank(method="min").stack().astype(int).map(rank_mean).unstack() ) df_actual = dataframe.normalize(how="quantile_column")(dummy_function)(df_input) assert_frame_equal(df_actual, df_expected) def test_sort_row_values_value_error() -> None: """Test the sort_by decorator with a value error.""" df_input = pd.DataFrame([{"test": "a", "test2": "b"}, {"test": "c", "test2": "d"}]) with pytest.raises(ValueError): _ = dataframe.sort_row_values(how="nonexisting")(dummy_function)(df_input) def test_sort_row_values_max() -> None: """Test the sort_row_values decorator with 'max'.""" df_input = pd.DataFrame(np.random.rand(5, 5) * 100) df_abs_expected = df_input.reindex( index=df_input.abs().max(axis=1).sort_values(ascending=True).index ) df_actual = dataframe.sort_row_values( how="max", use_absolute_values=True, sort_ascending=True )(dummy_function)(df_input) assert_frame_equal(df_actual, df_abs_expected) df_expected = df_input.reindex( index=df_input.max(axis=1).sort_values(ascending=True).index ) df_actual = dataframe.sort_row_values(how="max", sort_ascending=True)( dummy_function )(df_input) assert_frame_equal(df_actual, df_expected) df_desc_expected = df_input.reindex( index=df_input.max(axis=1).sort_values(ascending=False).index ) df_actual = dataframe.sort_row_values(how="max")(dummy_function)(df_input) assert_frame_equal(df_actual, df_desc_expected) def test_sort_row_values_min() -> None: """Test the sort_row_values decorator with 'min'.""" df_input = pd.DataFrame(np.random.rand(5, 5) * 100) df_abs_expected = df_input.reindex( index=df_input.abs().min(axis=1).sort_values(ascending=True).index ) df_actual = dataframe.sort_row_values( how="min", use_absolute_values=True, sort_ascending=True )(dummy_function)(df_input) assert_frame_equal(df_actual, df_abs_expected) df_expected = df_input.reindex( index=df_input.min(axis=1).sort_values(ascending=True).index ) df_actual = dataframe.sort_row_values(how="min", sort_ascending=True)( dummy_function )(df_input) assert_frame_equal(df_actual, df_expected) df_desc_expected = df_input.reindex( index=df_input.min(axis=1).sort_values(ascending=False).index ) df_actual = dataframe.sort_row_values(how="min")(dummy_function)(df_input) assert_frame_equal(df_actual, df_desc_expected) def test_sort_row_values_median() -> None: """Test the sort_row_values decorator with 'median'.""" df_input = pd.DataFrame(np.random.rand(5, 5) * 100) df_abs_expected = df_input.reindex( index=df_input.abs().median(axis=1).sort_values(ascending=True).index ) df_actual = dataframe.sort_row_values( how="median", use_absolute_values=True, sort_ascending=True )(dummy_function)(df_input) assert_frame_equal(df_actual, df_abs_expected) df_expected = df_input.reindex( index=df_input.median(axis=1).sort_values(ascending=True).index ) df_actual = dataframe.sort_row_values(how="median", sort_ascending=True)( dummy_function )(df_input) assert_frame_equal(df_actual, df_expected) df_desc_expected = df_input.reindex( index=df_input.median(axis=1).sort_values(ascending=False).index ) df_actual = dataframe.sort_row_values(how="median")(dummy_function)(df_input) assert_frame_equal(df_actual, df_desc_expected) def test_sort_row_values_mean() -> None: """Test the sort_row_values decorator with 'mean'.""" df_input = pd.DataFrame(np.random.rand(5, 5) * 100) df_abs_expected = df_input.reindex( index=df_input.abs().mean(axis=1).sort_values(ascending=True).index ) df_actual = dataframe.sort_row_values( how="mean", use_absolute_values=True, sort_ascending=True )(dummy_function)(df_input) assert_frame_equal(df_actual, df_abs_expected) df_expected = df_input.reindex( index=df_input.mean(axis=1).sort_values(ascending=True).index ) df_actual = dataframe.sort_row_values(how="mean", sort_ascending=True)( dummy_function )(df_input) assert_frame_equal(df_actual, df_expected) df_desc_expected = df_input.reindex( index=df_input.mean(axis=1).sort_values(ascending=False).index ) df_actual = dataframe.sort_row_values(how="mean")(dummy_function)(df_input) assert_frame_equal(df_actual, df_desc_expected) def test_sort_row_values_sum() -> None: """Test the sort_row_values decorator with 'sum'.""" df_input = pd.DataFrame(np.random.rand(5, 5) * 100) df_abs_expected = df_input.reindex( index=df_input.abs().sum(axis=1).sort_values(ascending=True).index ) df_actual = dataframe.sort_row_values( how="sum", use_absolute_values=True, sort_ascending=True )(dummy_function)(df_input) assert_frame_equal(df_actual, df_abs_expected) df_expected = df_input.reindex( index=df_input.sum(axis=1).sort_values(ascending=True).index ) df_actual = dataframe.sort_row_values(how="sum", sort_ascending=True)( dummy_function )(df_input) assert_frame_equal(df_actual, df_expected) df_desc_expected = df_input.reindex( index=df_input.sum(axis=1).sort_values(ascending=False).index ) df_actual = dataframe.sort_row_values(how="sum")(dummy_function)(df_input) assert_frame_equal(df_actual, df_desc_expected) def test_explode() -> None: """Test the explode_column decorator.""" df_input = pd.DataFrame( { "A": [[0, 1, 2], "foo", [], [3, 4]], "B": 1, "C": 2, } ) df_expected = df_input.explode(column="A") df_actual = dataframe.explode(column="A")(dummy_function)(df_input) assert_frame_equal(df_actual, df_expected) def test_update_column() -> None: """Test the update_column decorator.""" df_input = pd.read_csv(DATA_DIR.joinpath("select_peptidetoprotein.csv")) df_expected = df_input.copy(deep=True) df_expected["ProteinAccession"] = df_expected["ProteinAccession"].apply( parse_fasta_header_uniprot_protein ) df_actual = dataframe.update_column( column="ProteinAccession", update_func=parse_fasta_header_uniprot_protein )(dummy_function)(df_input) assert_frame_equal(df_actual, df_expected) def test_update_and_explode() -> None: """Test the update_column and explode decorators.""" df_input = pd.read_csv(DATA_DIR.joinpath("peptide_proteins_to_explode.csv")) df_expected = df_input.copy(deep=True) df_expected["Protein"] = df_expected["Protein"].apply(lambda x: x.split(";")) df_expected = df_expected.explode(column="Protein") df_actual = dataframe.explode(column="Protein", sep=";")(dummy_function)(df_input) assert_frame_equal(df_actual, df_expected)
## # movie_reccomendation.py # Created: 29.08.19 # Last edit: 06.09.19 # A program that reccommends movies based on an algorithm and other users from tkinter import * import tkinter as tk class GUI: def __init__(self, parent): self.parent = parent # Frames self.search_frame = Frame(root, width=250).grid(row=0, column=0) self.suggestions_frame = Frame(root, width=250).grid(row=0, column=1) # Main buttons self.button_search = Button(self.search_frame, text="Search for a movie\nRapua he kiriata", command=self.movie_search, width=35).grid(row=0, column=0) self.button_suggestions = Button(self.suggestions_frame, text="View your suggestions\nTirohia o whakaaro", command=self.view_suggestions, width=35).grid(row=0, column=1) def movie_search(self): """ Search the name of a movie """ self.movie_entrybox = Entry(self.search_frame, width=32) self.movie_entrybox.grid(row=1, column=0, pady=5, padx=5, ipady=10, sticky=W) self.search_submit_button = Button(self.search_frame, text="Submit\nTuku", command=self.submit_search) self.search_submit_button.grid(row=1, column=0, sticky=E) self.selected = None def submit_search(self): """ Display Listbox with all relevant movies """ self.results = Listbox(self.search_frame, width=41, height=20) self.results.grid(row=2, column=0) for movie in movies: if self.movie_entrybox.get().lower() in movie.title.lower(): self.results.insert(END, movie.title) self.results.bind('<<ListboxSelect>>',self.CurSelect) def CurSelect(self, evt): """ Display rating buttons if a movie is selected """ self.selected = self.results.get(self.results.curselection()) self.movie_label = Label(self.search_frame, text="Now rating {0}:\nNa te whakatauranga {0}:".format(self.selected)).grid(row=4, column=0) self.rate_buttons() def rate_buttons(self): """ Display five buttons with 1-5 as labels""" self.star_frame = Frame(self.search_frame) self.star_frame.grid(row=3, column=0) self.rating_var = IntVar() self.one_star = Radiobutton(self.star_frame, variable=self.rating_var, value=1, text="1", command=self.rate_movie).grid(row=0, column=0) self.two_star = Radiobutton(self.star_frame, variable=self.rating_var, value=2, text="2", command=self.rate_movie).grid(row=0, column=1) self.three_star = Radiobutton(self.star_frame, variable=self.rating_var, value=3, text="3", command=self.rate_movie).grid(row=0, column=2) self.four_star = Radiobutton(self.star_frame, variable=self.rating_var, value=4, text="4", command=self.rate_movie).grid(row=0, column=3) self.five_star = Radiobutton(self.star_frame, variable=self.rating_var, value=5, text="5", command=self.rate_movie).grid(row=0, column=4) def rate_movie(self): """ Add movie to user's liked or disliked set depending on what they rated the movie """ for movie in movies: if movie.title == self.selected: rated_movie_id = movie.id if self.rating_var.get() >= int(LIKED_RATING): current_user.add_liked(rated_movie_id) Label(self.search_frame, text="Liked\nPēnei").grid() elif self.rating_var.get() <= int(LIKED_RATING): current_user.add_disliked(rated_movie_id) Label(self.search_frame, text="Disiked\nMea koretake").grid() def view_suggestions(self): """ Create listbox that displays the users suggested movies """ recommended_movies_dict = generate_recommendations(current_user, 5) # Recommend the top five recommended movies using a dictionary sorted on values highest_possibility = -1 for movie in recommended_movies_dict: if possibility_index(current_user, movie.id) > highest_possibility: highest_possibility = possibility_index(current_user, movie.id) self.suggested_movies_frame = LabelFrame(root, text="Recommended Movies\nKiriata E taunakitia ana") self.suggested_movies_frame.grid(row=2, column=1) for movie in recommended_movies_dict: Label(self.suggested_movies_frame, text= (movie.title, movie.year, "{}%".format(round(possibility_index(current_user, movie.id) / highest_possibility * 100, 1))), width=35).grid(column=1) class Movies: """ Movie class, genres is stored as a list """ def __init__(self, id, year, title, genres): self.id = id self.title = title self.year = year self.genres = genres movies.append(self) class Ratings: """ Ratings class joining the user and movie classes with a rating """ def __init__(self, user_id, movie_id, rating): self.user_id = user_id self.movie_id = movie_id self.rating = rating ratings.append(self) class User: """ User class holds the id and a list of all movies liked and disliked The liked and disliked lists are initialised on creation of a new user Methods to add to liked and disliked lists Methods to return the liked and disliked lists as sets """ def __init__(self, id): self.id = id self.liked = set() self.disliked = set() users.append(self) def add_liked(self, movie_id): self.liked.add(movie_id) def return_liked(self): return self.liked def add_disliked(self, movie_id): self.disliked.add(movie_id) def return_disliked(self): return self.disliked def set_current_user(user_id): """ Assign the current user to an instance """ # Set the current user to do recommendations for current_user = "" # Var to store instance of current user for user in users: if user.id == user_id: # Change for current user current_user = user return current_user def import_movies(): """ Load movie csv files movies class """ import csv with open('lessMovies.csv', encoding='utf-8') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 for row in csv_reader: if line_count == 0: # Header row line_count += 1 else: line_count += 1 """*** Add the imported data to the Movie class ***""" # Seperating the year and title year = (row[1])[-5:-1] title = (row[1])[0:-6] id = (row[0]) # ***Do some string processing to import into the Movie class *** Movies(row[0], year, title, row[2]) def import_ratings(LIKED_RATING): """ Load ratings csv files to ratings and user classes """ id_list = [] import csv with open('lessRatings.csv', encoding='utf-8') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 # Count the rows and discount the header for row in csv_reader: if line_count == 0: # Header row line_count += 1 else: line_count += 1 """*** Add the imported data to the Rating class ***""" # Add the imported data to the Rating class Ratings(row[0], row[1], row[2]) """*** Add the imported data to the User class ***""" if row[0] in id_list: # Add liked and disliked movies to the user instance if row[2] >= LIKED_RATING: # If the rating is above the liked rating add it to the user's liked movies set users[int(row[0])-1].add_liked(row[1]) else: # Otherwise add it to the disliked movies set users[int(row[0])-1].add_disliked(row[1]) # If the user ID changes, create new user else: User(row[0]) id_list.append(row[0]) if row[2] >= LIKED_RATING: users[int(row[0])-1].add_liked(row[1]) else: users[int(row[0])-1].add_disliked(row[1]) def similarity_index(current_user, user): """ Return the similarity index of two users Between —1.0 and 1.0. Originally known as "coefficient de communaute" By Paul Jaccard """ U1 = current_user U2 = user L1 = U1.return_liked() D1 = U1.return_disliked() L2 = U2.return_liked() D2 = U2.return_disliked() similarity = (len(L1&L2) + len(D1&D2) - len(L1&D2) - len(L2&D1)) / len(L1|L2|D1|D2) return similarity def user_movies(user): """ Return the liked and disliked movie SETS for the given user """ # Return movies rated by a given user movies_rated = (user.return_liked())|(user.return_disliked()) return movies_rated def return_user_liked(movie): """ Return the set of all users who liked a movie """ # Create an empty set users_liked = set() # For each user for user in users: # If the movie is in the users set of liked movies if movie in user.return_liked(): # Add the user to the set users_liked.add(user) # Return the set return users_liked def return_user_disliked(movie): """ Return the set of all users who liked a movie """ users_disliked = set() for user in users: if movie in user.return_disliked(): users_disliked.add(user) return users_disliked def find_similar_users(current_user): """ Given a user, compute a list of other users who are similar Store the list in a database (in this case a dictionary), along with their similarity indicies Return the list of similar user in order of most to least similar """ similar_users_set = set() similar_user_instances = [] similar_users_ratio = {} rated_movies = user_movies(current_user) for movie in rated_movies: similar_users_set.update(return_user_liked(movie)|return_user_disliked(movie)) for similar_user in similar_users_set: if similar_user.id != current_user.id: similarity = similarity_index(current_user, similar_user) similar_users_ratio[similar_user] = similarity # Order users in terms of most similar for user, similarity in sorted(similar_users_ratio.items(), key=lambda x:x[1], reverse=True): similar_user_instances.append(user) return similar_user_instances def possibility_index(current_user, movie): """ Given a user and a movie (obviously the user should not have rated this movie yet) Find all users who have rated the movie Compute the similarity index of each user and use if to Generate the possibility of a user liking a given movie """ ## Finding the sum of the similarity indicies of all users who have LIKED a movie liked_sum = 0 # Variable to store the sum of all the similarity indicies of all users who have liked a given movie for user in return_user_liked(movie): if user != current_user: liked_sum += similarity_index(current_user, user) ## Finding the sum of the similarity indicies of all users who have DISLIKED a movie disliked_sum = 0 for user in return_user_disliked(movie): if user != current_user: disliked_sum += similarity_index(current_user, user) try: possibility_index = (liked_sum - disliked_sum) / (len(return_user_liked(movie)) + len(return_user_disliked(movie))) except ZeroDivisionError: possibility_index = 0 return possibility_index def return_unrated(current_user): """ Return a list of all unrated movie ids a given user has not rated """ # Create a list to store all movie ids of unrated movies unrated_movie_ids = [] for user in find_similar_users(current_user): unrated_movies = user_movies(user).difference(user_movies(current_user)) for movie in unrated_movies: if movie not in unrated_movie_ids: unrated_movie_ids.append(movie) return unrated_movie_ids def unrated_movie_possibilities(current_user): """ Store all items the given user has not rated with the possibility index and return the dictionary """ # Create an empty dictionary to store all reccommended movies with their id and their possibility index recommended_movies = {} unrated_movie_ids = return_unrated(current_user) for unrated_movie in unrated_movie_ids: recommended_movies[unrated_movie] = possibility_index(current_user, unrated_movie) # Return the dictionary of reccommended movies return recommended_movies def generate_recommendations(current_user, num_recommendations): """ Generating movie recommendations """ recommended_movies_dictionary = {} recommended_movies = unrated_movie_possibilities(current_user) # Rate all recommended counter = 0 for i, j in sorted(recommended_movies.items(), key=lambda x:x[1], reverse=True): if counter < num_recommendations: for movie in movies: if movie.id == i: recommended_movies_dictionary[movie] = movie.year, possibility_index(current_user, movie.id) counter += 1 return recommended_movies_dictionary if __name__ == "__main__": LIKED_RATING = "4" # Movies rated this score and above are considered liked movies = [] # Stores all instances of movies ratings = [] # Stores all instances of ratings users = [] # Stores all instances of users # Import csv as objects import_movies() import_ratings(LIKED_RATING) # Store current user instance current_user_id = '2' CURRENT_USER = set_current_user(current_user_id) # new_user = int(ratings[-1].user_id) + 1 User(new_user) current_user = set_current_user(new_user) #GUI root = tk.Tk() root.title("Movie Ratings") root.geometry("510x530+705+150") gui_1 = GUI(root) root.mainloop()
''' Descripttion: version: Author: Jinlong Li CSU PhD Date: 2022-01-04 10:58:11 LastEditors: Jinlong Li CSU PhD LastEditTime: 2022-01-04 17:06:05 ''' # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # from ._utils import _C # from maskrcnn_benchmark import _C from ._utils import _C from apex import amp # Only valid with fp32 inputs - give AMP the hint nms = amp.float_function(_C.nms) # nms.__doc__ = """ # This function performs Non-maximum suppresion"""
# coding=utf-8 from random import randint array = [] cont = 0 while cont <= 7: array.append(randint(0,100)) cont += 1 else: print("Numeros Gerados com sucesso! \n{} \nFim da execução!" .format(array))
# Copyright (c) 2001-2022 Aspose Pty Ltd. All Rights Reserved. # # This file is part of Aspose.Words. The source code in this file # is only intended as a supplement to the documentation, and is provided # "as is", without warranty of any kind, either expressed or implied. import aspose.words as aw import aspose.pydrawing as drawing from api_example_base import ApiExampleBase, MY_DIR, ARTIFACTS_DIR from document_helper import DocumentHelper class ExStyles(ApiExampleBase): def test_styles(self): #ExStart #ExFor:DocumentBase.styles #ExFor:Style.document #ExFor:Style.name #ExFor:Style.is_heading #ExFor:Style.is_quick_style #ExFor:Style.next_paragraph_style_name #ExFor:Style.styles #ExFor:Style.type #ExFor:StyleCollection.document #ExFor:StyleCollection.__iter__ #ExSummary:Shows how to access a document's style collection. doc = aw.Document() self.assertEqual(4, doc.styles.count) # Enumerate and list all the styles that a document created using Aspose.Words contains by default. for cur_style in doc.styles: print(f"Style name:\t\"{cur_style.name}\", of type \"{cur_style.type}\"") print(f"\tSubsequent style:\t{cur_style.next_paragraph_style_name}") print(f"\tIs heading:\t\t\t{cur_style.is_heading}") print(f"\tIs QuickStyle:\t\t{cur_style.is_quick_style}") self.assertEqual(doc, cur_style.document) #ExEnd def test_create_style(self): #ExStart #ExFor:Style.font #ExFor:Style #ExFor:Style.remove #ExSummary:Shows how to create and apply a custom style. doc = aw.Document() style = doc.styles.add(aw.StyleType.PARAGRAPH, "MyStyle") style.font.name = "Times New Roman" style.font.size = 16 style.font.color = drawing.Color.navy builder = aw.DocumentBuilder(doc) # Apply one of the styles from the document to the paragraph that the document builder is creating. builder.paragraph_format.style = doc.styles.get_by_name("MyStyle") builder.writeln("Hello world!") first_paragraph_style = doc.first_section.body.first_paragraph.paragraph_format.style self.assertEqual(style, first_paragraph_style) # Remove our custom style from the document's styles collection. doc.styles.get_by_name("MyStyle").remove() first_paragraph_style = doc.first_section.body.first_paragraph.paragraph_format.style # Any text that used a removed style reverts to the default formatting. self.assertFalse(any(s.name == "MyStyle" for s in doc.styles)) self.assertEqual("Times New Roman", first_paragraph_style.font.name) self.assertEqual(12.0, first_paragraph_style.font.size) self.assertEqual(drawing.Color.empty().to_argb(), first_paragraph_style.font.color.to_argb()) #ExEnd def test_style_collection(self): #ExStart #ExFor:StyleCollection.add(StyleType,str) #ExFor:StyleCollection.count #ExFor:StyleCollection.default_font #ExFor:StyleCollection.default_paragraph_format #ExFor:StyleCollection.__getitem__(StyleIdentifier) #ExFor:StyleCollection.__getitem__(int) #ExSummary:Shows how to add a Style to a document's styles collection. doc = aw.Document() styles = doc.styles # Set default parameters for new styles that we may later add to this collection. styles.default_font.name = "Courier New" # If we add a style of the "StyleType.PARAGRAPH", the collection will apply the values of # its "default_paragraph_format" property to the style's "paragraph_format" property. styles.default_paragraph_format.first_line_indent = 15.0 # Add a style, and then verify that it has the default settings. styles.add(aw.StyleType.PARAGRAPH, "MyStyle") self.assertEqual("Courier New", styles[4].font.name) self.assertEqual(15.0, styles.get_by_name("MyStyle").paragraph_format.first_line_indent) #ExEnd def test_remove_styles_from_style_gallery(self): #ExStart #ExFor:StyleCollection.clear_quick_style_gallery #ExSummary:Shows how to remove styles from Style Gallery panel. doc = aw.Document() # Note that remove styles work only with DOCX format for now. doc.styles.clear_quick_style_gallery() doc.save(ARTIFACTS_DIR + "Styles.remove_styles_from_style_gallery.docx") #ExEnd def test_change_tocs_tab_stops(self): #ExStart #ExFor:TabStop #ExFor:ParagraphFormat.tab_stops #ExFor:Style.style_identifier #ExFor:TabStopCollection.remove_by_position #ExFor:TabStop.alignment #ExFor:TabStop.position #ExFor:TabStop.leader #ExSummary:Shows how to modify the position of the right tab stop in TOC related paragraphs. doc = aw.Document(MY_DIR + "Table of contents.docx") # Iterate through all paragraphs with TOC result-based styles; this is any style between TOC and TOC9. for para in doc.get_child_nodes(aw.NodeType.PARAGRAPH, True): para = para.as_paragraph() if (para.paragraph_format.style.style_identifier >= aw.StyleIdentifier.TOC1 and para.paragraph_format.style.style_identifier <= aw.StyleIdentifier.TOC9): # Get the first tab used in this paragraph, this should be the tab used to align the page numbers. tab = para.paragraph_format.tab_stops[0] # Replace the first default tab, stop with a custom tab stop. para.paragraph_format.tab_stops.remove_by_position(tab.position) para.paragraph_format.tab_stops.add(tab.position - 50, tab.alignment, tab.leader) doc.save(ARTIFACTS_DIR + "Styles.change_tocs_tab_stops.docx") #ExEnd doc = aw.Document(ARTIFACTS_DIR + "Styles.change_tocs_tab_stops.docx") for para in doc.get_child_nodes(aw.NodeType.PARAGRAPH, True): para = para.as_paragraph() if (para.paragraph_format.style.style_identifier >= aw.StyleIdentifier.TOC1 and para.paragraph_format.style.style_identifier <= aw.StyleIdentifier.TOC9): tab_stop = para.get_effective_tab_stops()[0] self.assertEqual(400.8, tab_stop.position) self.assertEqual(aw.TabAlignment.RIGHT, tab_stop.alignment) self.assertEqual(aw.TabLeader.DOTS, tab_stop.leader) def test_copy_style_same_document(self): #ExStart #ExFor:StyleCollection.add_copy #ExFor:Style.name #ExSummary:Shows how to clone a document's style. doc = aw.Document() # The add_copy method creates a copy of the specified style and # automatically generates a new name for the style, such as "Heading 1_0". new_style = doc.styles.add_copy(doc.styles.get_by_name("Heading 1")) # Use the style's "name" property to change the style's identifying name. new_style.name = "My Heading 1" # Our document now has two identical looking styles with different names. # Changing settings of one of the styles do not affect the other. new_style.font.color = drawing.Color.red self.assertEqual("My Heading 1", new_style.name) self.assertEqual("Heading 1", doc.styles.get_by_name("Heading 1").name) self.assertEqual(doc.styles.get_by_name("Heading 1").type, new_style.type) self.assertEqual(doc.styles.get_by_name("Heading 1").font.name, new_style.font.name) self.assertEqual(doc.styles.get_by_name("Heading 1").font.size, new_style.font.size) self.assertNotEqual(doc.styles.get_by_name("Heading 1").font.color, new_style.font.color) #ExEnd def test_copy_style_different_document(self): #ExStart #ExFor:StyleCollection.add_copy #ExSummary:Shows how to import a style from one document into a different document. src_doc = aw.Document() # Create a custom style for the source document. src_style = src_doc.styles.add(aw.StyleType.PARAGRAPH, "MyStyle") src_style.font.color = drawing.Color.red # Import the source document's custom style into the destination document. dst_doc = aw.Document() new_style = dst_doc.styles.add_copy(src_style) # The imported style has an appearance identical to its source style. self.assertEqual("MyStyle", new_style.name) self.assertEqual(drawing.Color.red.to_argb(), new_style.font.color.to_argb()) #ExEnd def test_default_styles(self): doc = aw.Document() doc.styles.default_font.name = "PMingLiU" doc.styles.default_font.bold = True doc.styles.default_paragraph_format.space_after = 20 doc.styles.default_paragraph_format.alignment = aw.ParagraphAlignment.RIGHT doc = DocumentHelper.save_open(doc) self.assertTrue(doc.styles.default_font.bold) self.assertEqual("PMingLiU", doc.styles.default_font.name) self.assertEqual(20, doc.styles.default_paragraph_format.space_after) self.assertEqual(aw.ParagraphAlignment.RIGHT, doc.styles.default_paragraph_format.alignment) def test_paragraph_style_bulleted_list(self): #ExStart #ExFor:StyleCollection #ExFor:DocumentBase.styles #ExFor:Style #ExFor:Font #ExFor:Style.font #ExFor:Style.paragraph_format #ExFor:Style.list_format #ExFor:ParagraphFormat.style #ExSummary:Shows how to create and use a paragraph style with list formatting. doc = aw.Document() builder = aw.DocumentBuilder(doc) # Create a custom paragraph style. style = doc.styles.add(aw.StyleType.PARAGRAPH, "MyStyle1") style.font.size = 24 style.font.name = "Verdana" style.paragraph_format.space_after = 12 # Create a list and make sure the paragraphs that use this style will use this list. style.list_format.list = doc.lists.add(aw.lists.ListTemplate.BULLET_DEFAULT) style.list_format.list_level_number = 0 # Apply the paragraph style to the document builder's current paragraph, and then add some text. builder.paragraph_format.style = style builder.writeln("Hello World: MyStyle1, bulleted list.") # Change the document builder's style to one that has no list formatting and write another paragraph. builder.paragraph_format.style = doc.styles.get_by_name("Normal") builder.writeln("Hello World: Normal.") builder.document.save(ARTIFACTS_DIR + "Styles.paragraph_style_bulleted_list.docx") #ExEnd doc = aw.Document(ARTIFACTS_DIR + "Styles.paragraph_style_bulleted_list.docx") style = doc.styles.get_by_name("MyStyle1") self.assertEqual("MyStyle1", style.name) self.assertEqual(24, style.font.size) self.assertEqual("Verdana", style.font.name) self.assertEqual(12.0, style.paragraph_format.space_after) def test_style_aliases(self): #ExStart #ExFor:Style.aliases #ExFor:Style.base_style_name #ExFor:Style.__eq__(Style) #ExFor:Style.linked_style_name #ExSummary:Shows how to use style aliases. doc = aw.Document(MY_DIR + "Style with alias.docx") # This document contains a style named "MyStyle,MyStyle Alias 1,MyStyle Alias 2". # If a style's name has multiple values separated by commas, each clause is a separate alias. style = doc.styles.get_by_name("MyStyle") self.assertSequenceEqual(["MyStyle Alias 1", "MyStyle Alias 2"], style.aliases) self.assertEqual("Title", style.base_style_name) self.assertEqual("MyStyle Char", style.linked_style_name) # We can reference a style using its alias, as well as its name. self.assertEqual(doc.styles.get_by_name("MyStyle Alias 1"), doc.styles.get_by_name("MyStyle Alias 2")) builder = aw.DocumentBuilder(doc) builder.move_to_document_end() builder.paragraph_format.style = doc.styles.get_by_name("MyStyle Alias 1") builder.writeln("Hello world!") builder.paragraph_format.style = doc.styles.get_by_name("MyStyle Alias 2") builder.write("Hello again!") self.assertEqual( doc.first_section.body.paragraphs[0].paragraph_format.style, doc.first_section.body.paragraphs[1].paragraph_format.style) #ExEnd
from typing import Union, List, Optional from pyspark.sql.types import ( StructType, StructField, StringType, ArrayType, DataType, FloatType, ) # This file is auto-generated by generate_schema so do not edit it manually # noinspection PyPep8Naming class RiskAssessment_PredictionSchema: """ An assessment of the likely outcome(s) for a patient or other subject as well as the likelihood of each outcome. """ # noinspection PyDefaultArgument @staticmethod def get_schema( max_nesting_depth: Optional[int] = 6, nesting_depth: int = 0, nesting_list: List[str] = [], max_recursion_limit: Optional[int] = 2, include_extension: Optional[bool] = False, extension_fields: Optional[List[str]] = None, extension_depth: int = 0, max_extension_depth: Optional[int] = 2, include_modifierExtension: Optional[bool] = False, use_date_for: Optional[List[str]] = None, parent_path: Optional[str] = "", ) -> Union[StructType, DataType]: """ An assessment of the likely outcome(s) for a patient or other subject as well as the likelihood of each outcome. id: Unique id for the element within a resource (for internal references). This may be any string value that does not contain spaces. extension: May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. modifierExtension: May be used to represent additional information that is not part of the basic definition of the element and that modifies the understanding of the element in which it is contained and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions. Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). outcome: One of the potential outcomes for the patient (e.g. remission, death, a particular condition). probabilityDecimal: Indicates how likely the outcome is (in the specified timeframe). probabilityRange: Indicates how likely the outcome is (in the specified timeframe). qualitativeRisk: Indicates how likely the outcome is (in the specified timeframe), expressed as a qualitative value (e.g. low, medium, or high). relativeRisk: Indicates the risk for this particular subject (with their specific characteristics) divided by the risk of the population in general. (Numbers greater than 1 = higher risk than the population, numbers less than 1 = lower risk.). whenPeriod: Indicates the period of time or age range of the subject to which the specified probability applies. whenRange: Indicates the period of time or age range of the subject to which the specified probability applies. rationale: Additional information explaining the basis for the prediction. """ if extension_fields is None: extension_fields = [ "valueBoolean", "valueCode", "valueDate", "valueDateTime", "valueDecimal", "valueId", "valueInteger", "valuePositiveInt", "valueString", "valueTime", "valueUnsignedInt", "valueUri", "valueUrl", "valueReference", "valueCodeableConcept", "valueAddress", ] from spark_fhir_schemas.r4.complex_types.extension import ExtensionSchema from spark_fhir_schemas.r4.complex_types.codeableconcept import ( CodeableConceptSchema, ) from spark_fhir_schemas.r4.complex_types.range import RangeSchema from spark_fhir_schemas.r4.simple_types.decimal import decimalSchema from spark_fhir_schemas.r4.complex_types.period import PeriodSchema if ( max_recursion_limit and nesting_list.count("RiskAssessment_Prediction") >= max_recursion_limit ) or (max_nesting_depth and nesting_depth >= max_nesting_depth): return StructType([StructField("id", StringType(), True)]) # add my name to recursion list for later my_nesting_list: List[str] = nesting_list + ["RiskAssessment_Prediction"] my_parent_path = ( parent_path + ".riskassessment_prediction" if parent_path else "riskassessment_prediction" ) schema = StructType( [ # Unique id for the element within a resource (for internal references). This # may be any string value that does not contain spaces. StructField("id", StringType(), True), # May be used to represent additional information that is not part of the basic # definition of the element. To make the use of extensions safe and manageable, # there is a strict set of governance applied to the definition and use of # extensions. Though any implementer can define an extension, there is a set of # requirements that SHALL be met as part of the definition of the extension. StructField( "extension", ArrayType( ExtensionSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ) ), True, ), # May be used to represent additional information that is not part of the basic # definition of the element and that modifies the understanding of the element # in which it is contained and/or the understanding of the containing element's # descendants. Usually modifier elements provide negation or qualification. To # make the use of extensions safe and manageable, there is a strict set of # governance applied to the definition and use of extensions. Though any # implementer can define an extension, there is a set of requirements that SHALL # be met as part of the definition of the extension. Applications processing a # resource are required to check for modifier extensions. # # Modifier extensions SHALL NOT change the meaning of any elements on Resource # or DomainResource (including cannot change the meaning of modifierExtension # itself). StructField( "modifierExtension", ArrayType( ExtensionSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ) ), True, ), # One of the potential outcomes for the patient (e.g. remission, death, a # particular condition). StructField( "outcome", CodeableConceptSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # Indicates how likely the outcome is (in the specified timeframe). StructField("probabilityDecimal", FloatType(), True), # Indicates how likely the outcome is (in the specified timeframe). StructField( "probabilityRange", RangeSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # Indicates how likely the outcome is (in the specified timeframe), expressed as # a qualitative value (e.g. low, medium, or high). StructField( "qualitativeRisk", CodeableConceptSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # Indicates the risk for this particular subject (with their specific # characteristics) divided by the risk of the population in general. (Numbers # greater than 1 = higher risk than the population, numbers less than 1 = lower # risk.). StructField( "relativeRisk", decimalSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path + ".relativerisk", ), True, ), # Indicates the period of time or age range of the subject to which the # specified probability applies. StructField( "whenPeriod", PeriodSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # Indicates the period of time or age range of the subject to which the # specified probability applies. StructField( "whenRange", RangeSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # Additional information explaining the basis for the prediction. StructField("rationale", StringType(), True), ] ) if not include_extension: schema.fields = [ c if c.name != "extension" else StructField("extension", StringType(), True) for c in schema.fields ] if not include_modifierExtension: schema.fields = [ c if c.name != "modifierExtension" else StructField("modifierExtension", StringType(), True) for c in schema.fields ] return schema
from gwa_framework.resource.base import BaseResource from gwa_framework.utils.decorators import validate_schema from common.models.goal import GoalModel from common.repositories.goal import GoalRepository from common.schemas.goal import GoalInputSchema, GoalOutputSchema class GoalResource(BaseResource): method_decorators = { 'create': [validate_schema(GoalInputSchema)], 'retrieve': [validate_schema(GoalInputSchema)], 'list': [] } def create(self, request_model: 'GoalInputSchema'): goal = GoalRepository.create(GoalModel(request_model)) schema = GoalOutputSchema() schema.goal_id = goal.id schema.description = goal.description return schema.to_primitive() def list(self, args=None, kwargs=None): goals = GoalRepository.get(kwargs) results = [] for goal in goals: schema = GoalOutputSchema() schema.goal_id = goal.id schema.description = goal.description results.append(schema.to_primitive()) return results def retrieve(self, filter, filter2, kwargs=None): return {'filter': filter, 'filter2': filter2, 'args': kwargs, 'kwargs': kwargs}
from schema import Schema, Optional, SchemaError from exceptions import RoutificParamsError """ Defines and validates visits, which are locations that must be visited. """ VISIT_SCHEMA = Schema({ "location": { "lat": float, "lng": float, Optional("name"): str }, Optional("start", default="00:00"): str, Optional("end", default="23:59"): str, Optional("duration"): int, Optional("demand"): str, Optional("priority"): str, Optional("type"): str, Optional("time_windows", default=[]): list }) class Visit(): """ Represents a location that must be visited in the route """ def __init__(self, params): try: valid_params = VISIT_SCHEMA.validate(params) except BaseException: raise RoutificParamsError("Invalid or incomplete parameters") self.lat = valid_params["location"]["lat"] self.lng = valid_params["location"]["lng"] self.name = valid_params["location"].get("name", None) self.start = valid_params["start"] self.end = valid_params["end"] self.duration = valid_params.get("duration", None) self.demand = valid_params.get("demand", None) self.priority = valid_params.get("priority", None) self.type = valid_params.get("type", None) self.time_windows = valid_params.get("time_windows", None) def __repr__(self) -> str: if self.name: return f"<Visit: {self.name}>" else: return f"<Visit: {self.lat}, {self.lng}>" def to_api(self) -> dict: """ Returns a dict that can be sent to the Routific API """ ret = { "location": { "lat": self.lat, "lng": self.lng, "name": self.name }, "start": self.start, "end": self.end, "duration": self.duration, "demand": self.demand, "priority": self.priority, "type": self.type, "time_windows": self.time_windows } # Remove "None" as there is no purpose in sending them to API return {k: v for k, v in ret.items() if v}
""" TorchScript implementation of the low-level push/pull utilities. The idea is to eventually have an alternate implementation that does not require compiling C++/CUDA code. The compiled version could still be installed [optionally] by the setup script, since it is expected to be much faster than the TorchScript version. """ from .pushpull import ( grid_pull, grid_pull_backward, grid_push, grid_push_backward, grid_count, grid_count_backward, grid_grad, grid_grad_backward) from .bounds import BoundType from .splines import InterpolationType from .coeff import spline_coeff, spline_coeff_nd
# Copyright 2012 the V8 project authors. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import test import os from os.path import join, exists import urllib import hashlib import sys import tarfile TEST_262_ARCHIVE_REVISION = 'fb327c439e20' # This is the r334 revision. TEST_262_ARCHIVE_MD5 = '307acd166ec34629592f240dc12d57ed' TEST_262_URL = 'http://hg.ecmascript.org/tests/test262/archive/%s.tar.bz2' TEST_262_HARNESS = ['sta.js'] class Test262TestCase(test.TestCase): def __init__(self, filename, path, context, root, mode, framework): super(Test262TestCase, self).__init__(context, path, mode) self.filename = filename self.framework = framework self.root = root def IsNegative(self): return '@negative' in self.GetSource() def GetLabel(self): return "%s test262 %s" % (self.mode, self.GetName()) def IsFailureOutput(self, output): if output.exit_code != 0: return True return 'FAILED!' in output.stdout def GetCommand(self): result = self.context.GetVmCommand(self, self.mode) result += self.framework result.append(self.filename) return result def GetName(self): return self.path[-1] def GetSource(self): return open(self.filename).read() class Test262TestConfiguration(test.TestConfiguration): def __init__(self, context, root): super(Test262TestConfiguration, self).__init__(context, root) def ListTests(self, current_path, path, mode, variant_flags): testroot = join(self.root, 'data', 'test', 'suite') harness = [join(self.root, 'data', 'test', 'harness', f) for f in TEST_262_HARNESS] harness += [join(self.root, 'harness-adapt.js')] tests = [] for root, dirs, files in os.walk(testroot): for dotted in [x for x in dirs if x.startswith('.')]: dirs.remove(dotted) dirs.sort() root_path = root[len(self.root):].split(os.path.sep) root_path = current_path + [x for x in root_path if x] files.sort() for file in files: if file.endswith('.js'): test_path = ['test262', file[:-3]] if self.Contains(path, test_path): test = Test262TestCase(join(root, file), test_path, self.context, self.root, mode, harness) tests.append(test) return tests def DownloadData(self): revision = TEST_262_ARCHIVE_REVISION archive_url = TEST_262_URL % revision archive_name = join(self.root, 'test262-%s.tar.bz2' % revision) directory_name = join(self.root, 'data') directory_old_name = join(self.root, 'data.old') if not exists(archive_name): print "Downloading test data from %s ..." % archive_url urllib.urlretrieve(archive_url, archive_name) if exists(directory_name): os.rename(directory_name, directory_old_name) if not exists(directory_name): print "Extracting test262-%s.tar.bz2 ..." % revision md5 = hashlib.md5() with open(archive_name,'rb') as f: for chunk in iter(lambda: f.read(8192), ''): md5.update(chunk) if md5.hexdigest() != TEST_262_ARCHIVE_MD5: os.remove(archive_name) raise Exception("Hash mismatch of test data file") archive = tarfile.open(archive_name, 'r:bz2') if sys.platform in ('win32', 'cygwin'): # Magic incantation to allow longer path names on Windows. archive.extractall(u'\\\\?\\%s' % self.root) else: archive.extractall(self.root) os.rename(join(self.root, 'test262-%s' % revision), directory_name) def GetBuildRequirements(self): return ['d8'] def GetTestStatus(self, sections, defs): status_file = join(self.root, 'test262.status') if exists(status_file): test.ReadConfigurationInto(status_file, sections, defs) def GetConfiguration(context, root): return Test262TestConfiguration(context, root)
import numpy as np import pandas as pd import os from pylab import plt, mpl plt.style.use('seaborn') mpl.rcParams['font.family'] = 'serif' fig_path = 'H:/py4fi/images/ch08/' if not os.path.exists(fig_path): os.makedirs(fig_path) raw = pd.read_csv('tr_eikon_eod_data.csv', index_col=0, parse_dates=True) data = raw[['.SPX', '.VIX']].dropna() print(data.tail()) # data.plot(subplots=True, figsize=(10, 6)) # plt.savefig(fig_path+'fts_08.png') # data.loc[:'2012-12-31'].plot(secondary_y='.VIX', figsize=(10, 6)) # plt.savefig(fig_path+'fts_09.png') # plt.show() print(data.loc[:'2012-12-31'].tail()) rets = np.log(data/data.shift(1)) print(rets.head()) rets.dropna(inplace=True) rets.plot(subplots=True, figsize=(10, 6)) # plt.savefig(fig_path+'fts_10.png') # pd.plotting.scatter_matrix(rets, alpha=0.2, diagonal='hist', hist_kwds={'bins':35}, figsize=(10, 6)) # alpha=0.2透明度 # plt.savefig(fig_path+'fts_11.png') # pd.plotting.scatter_matrix(rets, alpha=0.2, diagonal='kde', figsize=(10, 6)) # plt.show() reg = np.polyfit(rets['.SPX'], rets['.VIX'], deg=1) # b1 b0 x, y y=b1x+b0 线性回归,最小平方法 ax = rets.plot(kind='scatter', x='.SPX', y='.VIX', figsize=(10, 6)) ax.plot(rets['.SPX'], np.polyval(reg, rets['.SPX']), 'r', lw=2) plt.savefig(fig_path+'fts_12.png') # plt.show() print(rets.corr().iloc[0, 1]) # ax = rets['.SPX'].rolling(window=252).corr(rets['.VIX']).plot(figsize=(10, 6)) # ax.axhline(rets.corr().iloc[0, 1], c='r') ax = pd.DataFrame(rets['.SPX'].rolling(window=252).corr( rets['.VIX'])).plot(figsize=(10, 6)) # 要把Series Class转变为Data Frame Class,否则plot会报错 print(type(ax)) ax.axhline(rets.corr().iloc[0, 1], c='r') plt.savefig(fig_path+'fts_13.png') plt.show()
__author__ = "Rodrigo Yamamoto" __date__ = "2021.Mar" __credits__ = ["Rodrigo Yamamoto"] __maintainer__ = "Rodrigo Yamamoto" __email__ = "codes@rodrigoyamamoto.com" __version__ = "version 0.1.8.9" __license__ = "MIT" __status__ = "development" __description__ = "A simple and concise gridded data IO library for read multiples grib and netcdf files" import copy import logging import multiprocessing import os import warnings from datetime import datetime, timedelta from functools import partial import numpy as np import numpy.ma as ma from gdio.commons import near_yx, objectify from gdio.grib import grib as gblib from gdio.netcdf import netcdf as nclib warnings.filterwarnings("ignore") class gdio(object): def __init__(self, verbose=False, remap_n_processes=2): self.verbose = verbose self.remap_n_processes = remap_n_processes self.dataset = list() self.coordinates = list() self.variables = list() self.__fields_latitude = ['latitude', 'lat', 'xlat', 'LATITUDE'] self.__fields_longitude = ['longitude', 'lon', 'xlon', 'LONGITUDE'] self.__fields_time = ['time', 'TIME'] self.__fields_level = ['level', 'lev', 'LEVEL', 'levels', 'LEVELS'] self.fields_ensemble = 'perturbationNumber' self.fields_ensemble_exception = [0] self.lon = None self.lat = None self.time = None self.time_units = None self.history = None logging.basicConfig(datefmt='%Y%-m-%dT%H:%M:%S', level=logging.DEBUG, format='[%(levelname)s @ %(asctime)s] %(message)s') def thread(self, ifile, vars=None, cut_time=None, cut_domain=None, level_type=None, filter_by={}, sort_before=False): ''' Load and cutting function :param ifile: string filename :param vars: list lista de variaveis :param cut_time: tuple range of time to cut ex.: (0,10)/(0,None)/(None,10) :param cut_domain: tuple range of latitudes and longitudes to cut: (lat1, lon1, lat2, lon2) ex.: (-45,-90,20,-30)/(-45,None,20,-30)/(None,-90,None,-20) :level_type: list type of level (hybrid, isobaricInhPa, surface) :param filter_by: dictonary dict with grib parameters at form of pair key:values (list or single values) eg: filter_by={'perturbationNumber': [0,10],'level': [1000,500,250]} or filter_by={'gridType': 'regular_ll'} :param sort_before: bool Sort fields before process validityDate, validityTime, paramId, typeOfLevel, perturbationNumber and level. Warning high consumption of memory, just use when the grib data structure is not standard :return: dictionary ''' if os.path.isfile(ifile): logging.info('''[PID:{0}] io.thread > opening file: {1}'''.format(os.getpid(), ifile)) _data = None gb = gblib(verbose=self.verbose) gb.fields_ensemble = self.fields_ensemble gb.fields_ensemble_exception = self.fields_ensemble_exception nc = nclib(verbose=self.verbose) if gb.is_grib(ifile): return gb.gb_load(ifile, vars=vars, cut_time=cut_time, cut_domain=cut_domain, level_type=level_type, filter_by=filter_by, sort_before=sort_before) else: return nc.nc_load(ifile, vars=vars, cut_time=cut_time, cut_domain=cut_domain, level_type=level_type) else: logging.warning('''[PID:{0}] io.thread > missing file: {1}'''.format(os.getpid(),ifile)) return None def mload(self, files, vars=None, merge_files=True, cut_time=None, cut_domain=None, level_type=None, filter_by={}, uniformize_grid=True, sort_before=False, inplace=False): ''' Load multiple grib/netcdf files :param files: list files names :param uniformize_grid: boolean interpolate all ncs to first nc grid specification :param vars: list variables names :param merge_files: boolean merge files :param cut_time: tuple range of time to cut ex.: (0,10)/(0,None)/(None,10) :param cut_domain: tuple range of latitudes and longitudes to cut: (lat1, lon1, lat2, lon2) ex.: (-45,-90,20,-30)/(-45,None,20,-30)/(None,-90,None,-20) :param level_type: list type of level (hybrid, isobaricInhPa, surface) :param filter_by: dictonary dict with grib parameters at form of pair key:values (list or single values) eg: filter_by={'perturbationNumber': [0,10],'level': [1000,500,250]} or filter_by={'gridType': 'regular_ll'} :param rename_vars: dictonary rename variables names (key) for a new name (value). Eg. {'tmpmdl': 't', 'tmpprs': 't'} :param sort_before: bool Sort fields before process validityDate, validityTime, paramId, typeOfLevel, perturbationNumber and level. Warning high consumption of memory, just use when the grib data structure is not standard :return: list of dictionaries ''' data = objectify() griddes = () ref_time = None t_units = 1 # convert timestep index to timeserie ...... def dtp(t, unity=1): return timedelta(days=float(t * unity)) vf = np.vectorize(dtp) # .......................................... pool = multiprocessing.Pool(processes=self.remap_n_processes) if isinstance(files, str): files = [files] for _dat in pool.map( partial(self.thread, vars=vars, cut_time=cut_time, cut_domain=cut_domain, level_type=level_type, filter_by=filter_by, sort_before=sort_before), files): if _dat: ref_time = _dat.get('ref_time') # setting the standard projection/dimensions if not griddes: lons_n, lats_n = self.__get_dims(_dat, vars) griddes = lats_n.shape + lons_n.shape for key, val in _dat.items(): # convert to day unity if _dat.get('time_units').lower() in ['hour', 'hours', 'hrs']: t_units = 1 / 24 else: t_units = 1 if (vars is None or key in vars) \ and not key in ['latitude', 'longitude', 'ref_time', 'time', 'time_units']: for typLev in val.level_type: # uniformize all grids ........... if uniformize_grid: # grid resample, if spatial dimensions are different of first grid(z,lat,lon) if not val[typLev].value.shape[3:] == griddes: logging.info('''gdio.mload > auto remapping grid @ {0}'''.format(key)) # interpolate through z dimension ......... _tmp = np.ones(val[typLev].value.shape[:3]+griddes) * np.nan # WARNING: If the z dimension of the source data is different # from that of the ref data, the interpolated level data may not # represent the same z as the ref data for m in range(_tmp.shape[0]): for z in range(_tmp.shape[2]): try: _tmp[m,:,z,:,:] = self.remapbil(val[typLev].value[m,:,z,:,:], val.longitude, val.latitude, lons_n, lats_n, order=1, masked=True) except Exception as e: logging.error('''gdio.mload > auto remapping grid error {0}'''.format(e)) val[typLev].value = _tmp del val.longitude, val.latitude del _tmp # update the lat/lon dimensions data['longitude'], data['latitude'] = lons_n, lats_n # merge files ........................ if merge_files: if key in data.keys() and typLev in data[key].keys(): if not (key in self.__fields_latitude or key in self.__fields_longitude or key in self.__fields_time or key in self.__fields_level or key in ['ref_time', 'time_units']): # merge variable field try: data[key][typLev].value = np.concatenate((data[key][typLev].value, val[typLev].value), axis=1) except Exception as e: logging.error('''gdio.mload > error @ {0} - {1}'''.format(key, e)) else: if key in data.keys(): # in case of multiples level per variable data[key].update(val) else: data[key] = val else: # all parameters except variables # set datetime field if key in self.__fields_time: if key in data.keys(): # merge datetime field try: _time = ref_time + vf(_dat.get('time'), t_units) data[key] = np.concatenate((data[key], _time)) except Exception as e: logging.error('''gdio.mload > error @ {0} - {1}'''.format(key, e)) else: data['time'] = ref_time + vf(_dat.get('time'), t_units) data['ref_time'] = _dat.get('ref_time') else: if key not in data.keys(): data[key] = val # do not merge files option .............. if not merge_files: data.update({'time': ref_time + vf(_dat.get('time'), t_units)}) data.update({'ref_time': [_dat.get('ref_time')]}) self.dataset.append(data) data = objectify() else: # in case of missing file ................ for key in data.keys(): if not (key in self.__fields_latitude or key in self.__fields_longitude or key in self.__fields_time or key in self.__fields_level or key in ['ref_time', 'time_units']): for typLev in val.level_type: data[key][typLev].value = np.concatenate((data[key][typLev].value, np.ones((1,1)+data[key][typLev].value.shape[2:]) * np.nan), axis=1) elif key in self.__fields_time: data[key] = np.concatenate((data[key], [data[key][-1] + timedelta(days=t_units)])) elif key in ['ref_time']: ref_time += timedelta(days=t_units) data[key] = np.concatenate((data[key], [ref_time])) logging.warning('''io.load_nc > missing file applying null grid''') self.variables = list(data.keys()) self.coordinates.append('latitude') self.coordinates.append('longitude') self.coordinates.append('level') self.coordinates.append('members') if inplace: if data: self.dataset.append(data) else: return data def sel(self, __data=None, latitude=None, longitude=None, dates=None, level=None, member=None, date_format='%Y-%m-%d %H:%M'): ''' Select data by coordinates (date, latitude, longitude, levels and members) :param __data: list of dictionaries raw dataset :param latitude: list of floats latitudes range of latitudes to select: [lat1, lat2] especific latitudes (1 or >2) [lat1, lat2, lat3, ...] :param longitude: list of floats range of longitudes to select: [lon1, lon2] especific longitudes (1 or >2) [lon1, lon2, lon3, ...] :param dates: list of datetime/string datetime/string date range of dates to select: [date1, date2] especific dates (1 or >2) [date1, date2, date3, ...] :param level: list of int range of levels to select: [level1, level2] especific levels (1 or >2) [level1, level2, level3, ...] :param member: list of int range of levels to select: [member, member] especific levels (1 or >2) [level1, level2, level3, ...] return dict ''' if __data is None: __data = copy.deepcopy(self.dataset) for _dat in __data: t = dates x = None y = None z = level # select time if dates: for i, dt in enumerate(dates): if isinstance(dt, str): dates[i] = datetime.strptime(dt, date_format) if len(dates) == 2: t = (_dat.get('time') >= dates[0]) & (_dat.get('time') <= dates[1]) elif len(dates) > 0: t = np.isin(_dat.get('time'), dates) # select spatial subdomain if longitude or latitude: y, x = near_yx(_dat, lats=latitude, lons=longitude) for k, v in _dat.items(): # cutting data array if isinstance(v, dict): for typLev in v.level_type: # cut data in longitude dimension if x: if len(x) == 2: _dat[k][typLev].value = _dat[k][typLev].value[:, :, :, :, x[0]:x[1]] elif len(x) == 1: _dat[k][typLev].value = _dat[k][typLev].value[:, :, :, :, x[0]] else: _dat[k][typLev].value = _dat[k][typLev].value[:, :, :, :, x] # cut data in latitude dimension if y: if len(y) == 2: _dat[k][typLev].value = _dat[k][typLev].value[:, :, :, y[0]:y[1]] elif len(y) == 1: _dat[k][typLev].value = _dat[k][typLev].value[:, :, :, y[0]] else: _dat[k][typLev].value = _dat[k][typLev].value[:, :, :, y] # cut data in levels dimension if z: if len(z) == 2: _dat[k][typLev].value = _dat[k][typLev].value[:, :, z[0]:z[1]] _dat[k][typLev].level = _dat[k][typLev].level[z[0]:z[1]] else: try: _dat[k][typLev].value = _dat[k][typLev].value[:, :, z] _dat[k][typLev].level = list(map(_dat[k][typLev].level.__getitem__, z)) except: _dat[k][typLev].value = _dat[k][typLev].value[:, :, -1] _dat[k][typLev].level = _dat[k][typLev].level[-1] # cut data in time dimension if dates: _dat[k][typLev].value = _dat[k][typLev].value[:, t] # cut data in member dimension if member: _dat[k][typLev].value = _dat[k][typLev].value[member] # select cordinates attributes else: if k in ['latitude']: # latitude coordinate if y: if len(y) == 2: _dat[k] = _dat[k][y[0]:y[1]] else: _dat[k] = _dat[k][y] elif k in ['longitude']: # longitude coordinate if x: if len(x) == 2: _dat[k] = _dat[k][x[0]:x[1]] else: _dat[k] = _dat[k][x] elif k in ['time']: # time coordinate if dates: _dat[k] = _dat[k][t] else: _dat.update({k: v}) return __data def remapbil(self, data, lon, lat, lon_new, lat_new, order=1, masked=False): ''' Interpolate data to new domain resolution :param data: array 3D data (time,lon,lat) :param lon: array :param lat: array :param lon_new: array new grid logitudes :param lat_new: array new grid latitudes :param order: int 0- nearest-neighbor, 1 - bilinear, 2 - cubic spline :param masked: boolean If True, points outside the range of xin and yin are masked (in a masked array). If masked is set to a number :return: 3D array ''' _lon_new, _lat_new = np.meshgrid(lon_new, lat_new) cpu_num = multiprocessing.cpu_count() n_processes = cpu_num if self.remap_n_processes > cpu_num else self.remap_n_processes pool = multiprocessing.Pool(processes=n_processes) # here we parallelise in each step of time, a kind of magic return np.array(pool.map( partial(self.interp, xin=lon[np.argsort(lon)], yin=lat[np.argsort(lat)], xout=_lon_new, yout=_lat_new, order=order, masked=masked), data) ) def interp(self, datain, xin, yin, xout, yout, checkbounds=False, masked=False, order=1): """ From basemap lib Interpolate data (``datain``) on a rectilinear grid (with x = ``xin`` y = ``yin``) to a grid with x = ``xout``, y= ``yout``. .. tabularcolumns:: |l|L| ============== ==================================================== Arguments Description ============== ==================================================== datain a rank-2 array with 1st dimension corresponding to y, 2nd dimension x. xin, yin rank-1 arrays containing x and y of datain grid in increasing order. xout, yout rank-2 arrays containing x and y of desired output grid. ============== ==================================================== Keywords Description ============== ==================================================== checkbounds If True, values of xout and yout are checked to see that they lie within the range specified by xin and xin. If False, and xout,yout are outside xin,yin, interpolated values will be clipped to values on boundary of input grid (xin,yin) Default is False. masked If True, points outside the range of xin and yin are masked (in a masked array). If masked is set to a number, then points outside the range of xin and yin will be set to that number. Default False. order 0 for nearest-neighbor interpolation, 1 for bilinear interpolation, 3 for cublic spline (default 1). order=3 requires scipy.ndimage. ============== ==================================================== .. note:: If datain is a masked array and order=1 (bilinear interpolation) is used, elements of dataout will be masked if any of the four surrounding points in datain are masked. To avoid this, do the interpolation in two passes, first with order=1 (producing dataout1), then with order=0 (producing dataout2). Then replace all the masked values in dataout1 with the corresponding elements in dataout2 (using numpy.where). This effectively uses nearest neighbor interpolation if any of the four surrounding points in datain are masked, and bilinear interpolation otherwise. Returns ``dataout``, the interpolated data on the grid ``xout, yout``. """ # xin and yin must be monotonically increasing. if xin[-1] - xin[0] < 0 or yin[-1] - yin[0] < 0: raise ValueError('xin and yin must be increasing!') if xout.shape != yout.shape: raise ValueError('xout and yout must have same shape!') # check that xout,yout are # within region defined by xin,yin. if checkbounds: if xout.min() < xin.min() or \ xout.max() > xin.max() or \ yout.min() < yin.min() or \ yout.max() > yin.max(): raise ValueError('yout or xout outside range of yin or xin') # compute grid coordinates of output grid. delx = xin[1:] - xin[0:-1] dely = yin[1:] - yin[0:-1] if max(delx) - min(delx) < 1.e-4 and max(dely) - min(dely) < 1.e-4: # regular input grid. xcoords = (len(xin) - 1) * (xout - xin[0]) / (xin[-1] - xin[0]) ycoords = (len(yin) - 1) * (yout - yin[0]) / (yin[-1] - yin[0]) else: # irregular (but still rectilinear) input grid. xoutflat = xout.flatten() youtflat = yout.flatten() ix = (np.searchsorted(xin, xoutflat) - 1).tolist() iy = (np.searchsorted(yin, youtflat) - 1).tolist() xoutflat = xoutflat.tolist() xin = xin.tolist() youtflat = youtflat.tolist() yin = yin.tolist() xcoords = [] ycoords = [] for n, i in enumerate(ix): if i < 0: xcoords.append(-1) # outside of range on xin (lower end) elif i >= len(xin) - 1: xcoords.append(len(xin)) # outside range on upper end. else: xcoords.append( float(i) + (xoutflat[n] - xin[i]) / (xin[i + 1] - xin[i])) for m, j in enumerate(iy): if j < 0: # outside of range of yin (on lower end) ycoords.append(-1) elif j >= len(yin) - 1: ycoords.append(len(yin)) # outside range on upper end else: ycoords.append( float(j) + (youtflat[m] - yin[j]) / (yin[j + 1] - yin[j])) xcoords = np.reshape(xcoords, xout.shape) ycoords = np.reshape(ycoords, yout.shape) # data outside range xin,yin will be clipped to # values on boundary. if masked: xmask = np.logical_or(np.less(xcoords, 0), np.greater(xcoords, len(xin) - 1)) ymask = np.logical_or(np.less(ycoords, 0), np.greater(ycoords, len(yin) - 1)) xymask = np.logical_or(xmask, ymask) xcoords = np.clip(xcoords, 0, len(xin) - 1) ycoords = np.clip(ycoords, 0, len(yin) - 1) # interpolate to output grid using bilinear interpolation. if order == 1: xi = xcoords.astype(np.int32) yi = ycoords.astype(np.int32) xip1 = xi + 1 yip1 = yi + 1 xip1 = np.clip(xip1, 0, len(xin) - 1) yip1 = np.clip(yip1, 0, len(yin) - 1) delx = xcoords - xi.astype(np.float32) dely = ycoords - yi.astype(np.float32) dataout = (1. - delx) * (1. - dely) * datain[yi, xi] + \ delx * dely * datain[yip1, xip1] + \ (1. - delx) * dely * datain[yip1, xi] + \ delx * (1. - dely) * datain[yi, xip1] elif order == 0: xcoordsi = np.around(xcoords).astype(np.int32) ycoordsi = np.around(ycoords).astype(np.int32) dataout = datain[ycoordsi, xcoordsi] elif order == 3: try: from scipy.ndimage import map_coordinates except ImportError: raise ValueError('scipy.ndimage must be installed if order=3') coords = [ycoords, xcoords] dataout = map_coordinates(datain, coords, order=3, mode='nearest') else: raise ValueError('order keyword must be 0, 1 or 3') if masked: newmask = ma.mask_or(ma.getmask(dataout), xymask) dataout = ma.masked_array(dataout, mask=newmask) if not isinstance(masked, bool): dataout = dataout.filled(masked) return dataout def __get_dims(self, data, var=None): ''' Get grid data dimension :param data: dictionary data :param var: string grid reference variable name :return: tuple grid dimension, lat/lon of grid reference ''' for key, val in data.items(): if (var is None or key == var[0]) \ and not key in ['latitude', 'longitude', 'ref_time', 'time', 'time_units']: return val.longitude, val.latitude
def jdt(i,alln): ii=alln//10 if ii>0: iii=i iiii=alln i=i//ii alln=10 print("[%s>%s] %u/%u"%("="*i," "*(alln-1-i),iii,iiii-1) , end = '\r') print("="*50) print("made in china?") print("="*50) forcs = int(input("please tape the cishu")) a = 0 b = 1 list = [] for i in range (forcs): jdt(i,forcs) a,b=b,a+b list.append(a) if int(input('what do you want?\n1:print list '))==1: print(list)
from app.content.models.badge import Badge from app.content.models.category import Category from app.content.models.cheatsheet import Cheatsheet from app.content.models.event import Event from app.content.models.news import News from app.content.models.user import User, UserManager from app.content.models.user_badge import UserBadge from app.content.models.registration import Registration from app.content.models.warning import Warning from app.content.models.page import Page from app.content.models.prioritiy import Priority from app.content.models.short_link import ShortLink from app.content.models.notification import Notification from app.content.models.strike import ( Strike, get_strike_description, get_strike_strike_size, )
from flask import Flask, request, Response from flask_cors import CORS import drone_awe import json import copy import traceback import utilities ''' Notes: - Need to disable plotting in the library - if possible remove matplotlib entirely from the library - if possible remove gekko object from a.output in order to make it JSONSerializable ''' app = Flask(__name__) CORS(app) @app.route('/') def root(): return json.dumps({ 'msg': 'Drones and weather API 0.0.2. See DroneEcon.com for details.' }) @app.route('/getValidationCases') def getValidationCases(): try: data = drone_awe.validationdatabase data = [d for d in data if 'xvalid' in d] resp = Response(json.dumps(data)) return resp except Exception as err: return utilities.handleError(err) @app.route('/getDrones') def getDrones(): try: drones = copy.deepcopy(drone_awe.drones) resp = [] for drone in drones: el = {} if 'battery' in drone: for prop in drone['battery']: l = list(filter(lambda el: el['param'] == prop, utilities.ParamMap)) if len(l) > 0: el[l[0]['display']] = drone['battery'][prop] del drone['battery'] for prop in drone: l = list(filter(lambda el: el['param'] == prop, utilities.ParamMap)) if len(l) > 0: el[l[0]['display']] = drone[prop] resp.append(el) return Response(json.dumps(resp)) except Exception as err: utilities.handleError(err) a.simulate() @app.route('/simulate', methods=['POST']) def simulate(): try: # Track Z-variable zParam = None params = {} if request.data: params = json.loads(request.data) # zParam = params['zParam'] for arg in utilities.DefaultArgs: if arg['name'] not in params: print(f'Missing', {arg['name']}, 'Using default value:', {arg['default']}) params[arg['name']] = arg['default'] a = drone_awe.model(params) try: a.simulate() data = a.output resp = { 'error': False, 'errorType': None, 'log': 'Successful simulation', 'plottables': [], 'zAxis': { 'id': zParam, 'displayName': '', 'values': [] } } if zParam: resp['zAxis']['displayName'] = data['zvals'] for key in list(data.keys()): if key != 'zvals' and type(data[key][0][0]) != str: l = list(filter(lambda el: el['param'] == key, utilities.ParamMap)) if len(l) >= 1: displayName = l[0]['display'] plottable = { 'id': key, 'displayName': displayName, 'values': data[key] } if key == 'missionspeed': print(plottable) resp['plottables'].append(plottable) else: print(f'Missing ParamMep entry for {key}') resp = Response(json.dumps(resp)) return resp except Exception as err: resp = { 'error': True, 'errorType': None, 'log': 'Simulation failed: ' + err.__repr__(), 'plottables': [], 'zAxis': { 'id': zParam, 'displayName': '', 'values': [] } } resp = Response(json.dumps(resp)) return resp except Exception as err: return utilities.handleError(err) if __name__ == '__main__': app.run()
# # Copyright (C) 2020 Arm Mbed. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # import unittest from mbed_tools_lib.python_helpers import minimum_python_version, named_tuple_with_defaults class TestPythonHelpers(unittest.TestCase): def test_python_version(self): # Tools only support Python>= 3.6 self.assertTrue(minimum_python_version(3, 6)) # With a bit of luck, python 100.100 is not coming tomorrow self.assertFalse(minimum_python_version(100, 100)) def test_named_tuple_with_defaults(self): named_tuple = named_tuple_with_defaults("TestNamedTuple", field_names=["field1", "field2"], defaults=[1, 2]) a_tuple = named_tuple() self.assertIsNotNone(a_tuple) self.assertEqual(a_tuple.field1, 1) self.assertEqual(a_tuple.field2, 2) a_tuple = named_tuple(field1=15) self.assertEqual(a_tuple.field1, 15) self.assertEqual(a_tuple.field2, 2)
import random Column = [] for x in range(ord('A'),ord('I')+1): Column.append(chr(x)) print(Column) Rows = [None]*9 Game = [[0 for i in range(len(Column))] for j in range(len(Rows))] print(Game,'\n') mX = len(Game[0]) mY = len(Game) print(mX) print(mY,'\n') Bombs = [] mB = _mB = 10 while mB>0: ran = (random.randint(0,mX-1),random.randint(0,mY-1)) if not ran in Bombs: Bombs.append(ran) mB-=1 for x in Bombs: cI = x[0] rI = x[1] for r in range(3): if r+rI-1>=0 and r+rI-1<mY: T = Game[r+rI-1] for c in range(3): if c+cI-1>=0 and c+cI-1<mY: if T[c+cI-1] == 0: T[c+cI-1] = 1 else: T[c+cI-1] += 1 Game[r+rI-1] = T def game(game): temp = ' '*5 t=0 for x in range(0, len(game)): temp+=str(x)+' '*2 temp+='\n\n' for x in game: temp+=str(t)+' '*4 t+=1 for y in x: temp+=str(y)+' '*2 temp+='\n' return temp print(game(Game)) for x in Bombs: Game[x[1]][x[0]]='X' print(game(Game)) showcase = [[0 for i in range(len(Column))] for j in range(len(Rows))] print(game(showcase)) gg=0 def check(arr, ind): for x in arr: count = x.count(0) ind-=count if ind==0: return True else: False var = ' ' def yikes(inp): #print(game(showcase)) global gg gg+=1 #print(gg) if gg>100: exit() I = inp[0] J = inp[1] #print(inp) if I>=0 and J>=0 and I<mX and J<mY: if str(Game[I][J]) == str(0): showcase[I][J] = var if J+1<mY: if str(showcase[I][J+1]) != str(var): yikes((I,J+1)) if J-1>=0: if str(showcase[I][J-1]) != str(var): yikes((I,J-1)) if I+1<mX: if str(showcase[I+1][J]) != str(var): yikes((I+1,J)) if I-1>=0: if str(showcase[I-1][J]) != str(var): yikes((I-1,J)) else: temp = Game[I][J] if temp != 'X': showcase[I][J] = Game[I][J] else: exit("You Lost") else: return False while(True): yikes((int(input("A: ")), int(input("B: ")))) if(check(showcase, _mB)): exit('Won!') print(game(Game)) print(game(showcase))
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-08-02 17:06 from __future__ import unicode_literals from django.conf import settings import django.contrib.postgres.fields from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import model_utils.fields import picklefield.fields class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Estimator', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', model_utils.fields.AutoCreatedField(default=django.utils.timezone.now, editable=False, verbose_name='created')), ('modified', model_utils.fields.AutoLastModifiedField(default=django.utils.timezone.now, editable=False, verbose_name='modified')), ('model_type', models.CharField(choices=[('classifier', 'classifier'), ('regression', 'regression'), ('clusters', 'clusters'), ('decomposition', 'decomposition')], max_length=32)), ('model_class', models.CharField(blank=True, default=None, max_length=255, null=True)), ('model_form', models.CharField(blank=True, default=None, max_length=512, null=True)), ('estimator', picklefield.fields.PickledObjectField(blank=True, default=None, editable=False, null=True)), ('build_time', models.DurationField(blank=True, default=None, null=True)), ('owner', models.ForeignKey(blank=True, default=None, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'get_latest_by': 'created', 'db_table': 'estimators', }, ), migrations.CreateModel( name='Score', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', model_utils.fields.AutoCreatedField(default=django.utils.timezone.now, editable=False, verbose_name='created')), ('modified', model_utils.fields.AutoLastModifiedField(default=django.utils.timezone.now, editable=False, verbose_name='modified')), ('metric', models.CharField(choices=[('accuracy', 'accuracy'), ('auc', 'auc'), ('brier', 'brier'), ('f1', 'f1'), ('fbeta', 'fbeta'), ('hamming', 'hamming'), ('hinge', 'hinge'), ('jaccard', 'jaccard'), ('logloss', 'logloss'), ('mcc', 'mcc'), ('precision', 'precision'), ('recall', 'recall'), ('roc', 'roc'), ('support', 'support'), ('mae', 'mae'), ('mse', 'mse'), ('mdae', 'mdae'), ('r2', 'r2'), ('rand', 'rand'), ('completeness', 'completeness'), ('homogeneity', 'homogeneity'), ('mutual', 'mutual'), ('silhouette', 'silhouette'), ('v', 'v'), ('time', 'time')], max_length=32)), ('score', models.FloatField(blank=True, default=None, null=True)), ('label', models.CharField(blank=True, default=None, max_length=32, null=True)), ('folds', django.contrib.postgres.fields.ArrayField(base_field=models.FloatField(), blank=True, default=None, null=True, size=None)), ('estimator', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='scores', to='arbiter.Estimator')), ], options={ 'get_latest_by': 'created', 'db_table': 'evaluations', }, ), ]
# https://www.shadertoy.com/view/stdGzH import taichi as ti ti.init() res_x = 1024 res_y = 576 pixels = ti.Vector.field(3, ti.f32) ti.root.dense(ti.i, res_x).dense(ti.j, res_y).place(pixels) @ti.kernel def render(t :ti.f32): for i, j in pixels: color = ti.Vector([0.0, 0.0, 0.0]) uv = ti.Vector([float(i) / res_x, float(j) / res_y]) mag = 100.0 uv*=10.0 uv[1]-=5.0 uv[1]+=ti.cos(uv[1] + t) * ti.sin(uv[0] + t) * ti.sin(uv[0] + t) mag = ti.abs(4.0/(20.0 * uv[1])) color = ti.Vector([mag, mag, mag]) pixels[i, j] = color gui = ti.GUI("Glow", res=(res_x, res_y)) for i in range(50000): t = i*0.03 render(t) gui.set_image(pixels) gui.show()
from collections import deque from .tst import TernarySearchTree from .corpustools import extract_fields, ContainsEverything class LanguageModel(): """N-gram (Markov) model that uses a ternary search tree. Tracks frequencies and calculates probabilities. Attributes ---------- n : int Size of n-grams to be tracked. vocabulary : set If provided, n-grams containing words not in vocabulary are skipped. Can be other container than set, if it has add method. targets : container If provided, n-grams not ending in target are counted as ending in "OOV" (OutOfVocabulary) instead, so probabilities can still be calculated. must_contain : container If provided, only n-grams containing at least one word in must_contain are counted boundary : str N-grams crossing boundary will not be counted, e.g. sentence </s> or document </doc> meta tags splitchar : str String that separates tokens in n-grams """ def __init__(self, n, boundary="</s>", splitchar="#", vocabulary=None, targets=None, must_contain=None): """ Parameters ---------- n : int Size of n-grams to be tracked. boundary : str N-grams crossing boundary will not be counted, e.g. sentence </s> or document </doc> meta tags splitchar : str String that separates tokens in n-grams vocabulary : set If provided, n-grams with words not in vocabulary are skipped. Can be other container than set, if it has add method. targets : container If provided, n-grams not ending in target are counted as ending in "OOV" (OutOfVocabulary) instead, so probabilities can still be calculated. must_contain : container If provided, only n-grams containing at least one word in must_contain are counted Notes ----- If must_contain is provided, probabilities will be inaccurate. Only use for counting target n-gram frequencies. """ if not targets: targets = ContainsEverything() if not vocabulary: vocabulary = ContainsEverything() self._n = n self._counts = TernarySearchTree(splitchar) self._vocabulary = vocabulary self._targets = targets self._boundary = boundary self._splitchar = splitchar self._must_contain = must_contain def train(self, sequence): """Train model on all n-grams in sequence. Parameters ---------- sequence : iterable of str Sequence of tokens to train on. Notes ----- A sequence [A, B, C, D, E] with n==3 will result in these n-grams: [A, B, C] [B, C, D] [C, D, E] [D, E] [E] """ n_gram = deque(maxlen=self.n) for element in sequence: if element == self.boundary: # train on smaller n-grams at end of sentence # but exclude full n_gram if it was already trained # on in last iteration not_trained = len(n_gram) < self.n for length in range(1, len(n_gram) + not_trained): self._train(list(n_gram)[-length:]) n_gram.clear() continue n_gram.append(element) if len(n_gram) == self.n: if element not in self.targets: self._train(list(n_gram)[:-1]) continue self._train(n_gram) # train on last n-grams in sequence # ignore full n-gram if it has already been trained on if len(n_gram) == self.n: n_gram = list(n_gram)[1:] for length in range(1, len(n_gram) + 1): self._train(list(n_gram)[-length:]) def insert_sequence(self, counts, is_string=True, subsequences=False): """Increase counts of sequence of ngrams by their frequencies. Parameters ---------- counts : sequence of (str, int) tuples Tuples of ngrams and their frequencies is_string : bool If True, ngrams are assumed to be strings. Otherwise they are assumed to be tuples of strings, which will be joined by self.splitchar. subsequences : bool If True, counts for subsequences of n-gram will also be increased by frequency. A subsequence is everything that ends in self.splitchar, e.g. for "my#shiny#trigram", subsequences are "my#shiny" and "my" """ for ngram, frequency in counts: self.insert(ngram, frequency, is_string, subsequences) def insert(self, ngram, frequency, is_string=True, subsequences=False): """Increases count of n-gram by frequency. Parameters ---------- ngram : str or sequence of str n-gram as string or sequence of strings (words) frequency : int Frequency of n-gram is_string : bool If True, n-gram must be a string, with self.splitchar (default '#') separating words. subsequences : bool If True, counts for subsequences of n-gram will also be increased by frequency. A subsequence is everything that ends in self.splitchar, e.g. for "my#shiny#trigram", subsequences are "my#shiny" and "my" """ if not is_string: ngram = self.splitchar.join(ngram) self._counts.insert(ngram, frequency, subsequences) def probability(self, sequence, predict_all=False): """Returns probability of the sequence. Parameters ---------- sequence : iterable of str Sequence of tokens to get the probability for predict_all : bool Return probability for each word in the sequence (True) or only for the last word (False). Returns ------- float or list of float Probability of last element or probabilities of all elements """ n_gram = deque(maxlen=self.n) if predict_all: probabilities = [] for element in sequence: n_gram.append(element) probability = self._probability(n_gram) probabilities.append(probability) return probabilities else: try: n_gram.extend(sequence[-self.n:]) # if sequence is generator (cannot slice - TypeError), # run through it and return probability for final element except TypeError: for element in sequence: n_gram.append(element) probability = self._probability(n_gram) return probability def all_target_probabilities(self, return_n_gram=False, sizes=None): """Generator yielding probabilities and frequencies of all encountered targets. Parameters ---------- return_n_gram : bool Return full n-gram rather than just target with results sizes: list of int Sizes of n-grams to be returned, defaults to target size Returns ------- generator Generator yielding (n-gram, frequency, probability)-tuples or (target, frequency, probability) tuples (if return_n_gram=True) """ if not sizes: sizes = [self.n] for n_gram_string, frequency in self.completions(): n_gram = n_gram_string.split(self.splitchar) if len(n_gram) not in sizes: continue target = n_gram[-1] if target in self.targets: probability = self._probability(n_gram) if return_n_gram: yield n_gram, frequency, probability else: yield target, frequency, probability def frequency(self, n_gram): """Return frequency of n_gram. Parameters ---------- n_gram : str or list/tuple of str Returns ------- int Frequency """ if isinstance(n_gram, str): n_gram = n_gram.split(self.splitchar) if self.must_contain: if not any(word in self.must_contain for word in n_gram): return 0 n_gram_string = self.splitchar.join(n_gram) frequency = self._counts.frequency(n_gram_string) return frequency def completions(self, prefix=""): """Generator that returns all completions for a given prefix. Parameters ---------- prefix : str Prefix that all results returned begin with. Yields ------- Tuple Each complete n-gram with frequency as a (str, int)-tuple """ if not self.must_contain: return self._counts.completions(prefix) for completion, frequency in self._counts.completions(prefix): completion_ = completion.split("#") if not any(word in self.must_contain for word in completion_): continue yield completion, frequency def _train(self, n_gram): # test for OOV words for idx, word in enumerate(n_gram): if word not in self.vocabulary: n_gram = list(n_gram)[:idx] break # ensure n-gram contains target word if provided if self.must_contain: if not any([word in self.must_contain for word in n_gram]): return n_gram_string = self.splitchar.join(n_gram) self._counts.insert(n_gram_string) def _probability(self, n_gram): frequency = self.frequency(n_gram) if frequency == 0: return 0 *preceding, target = n_gram preceding = self.splitchar.join(preceding) total = self._counts.frequency(preceding) probability = frequency / total return probability def __contains__(self, n_gram): return self.frequency(n_gram) def __iter__(self): return self.completions() @property def n(self): return self._n @property def vocabulary(self): return self._vocabulary @property def targets(self): return self._targets @property def must_contain(self): return self._must_contain @property def boundary(self): return self._boundary @property def splitchar(self): return self._splitchar def train_lm(corpus, n, vocabulary=None, targets=None, must_contain=None, **kwargs): """Convenience function to train n-gram model on tagged corpus. """ corpus = extract_fields(corpus, **kwargs) lm = LanguageModel(n, vocabulary=vocabulary, targets=targets, must_contain=must_contain) lm.train(corpus) return lm
#!/usr/bin/env python from __future__ import print_function, division import argparse import rospy from tf import transformations import tf2_ros import numpy from StringIO import StringIO from std_msgs.msg import String from visualization_msgs.msg import Marker, MarkerArray from ihmc_msgs.msg import FootstepDataListRosMessage from ihmc_msgs.msg import FootstepDataRosMessage LEFT = 0 RIGHT = 1 """ REGEX: You can use this hasty regex to do most of the work of reformatting a message from /ihmc_ros/valkyrie/control/footstep_list to this format FIND: \s*-\s*origin: \d+\s*robot_side: (\d)\s*location:\s*x: ([\d.e+-]+)\s*y: ([\d.e+-]+)\s*z: ([\d.e+-]+)\s*orientation: \s*x: ([\d.e+-]+)\s*y: ([\d.e+-]+)\s*z: ([\d.e+-]+)\s*w: ([\d.e+-]+)[^-]*unique_id: \d+ REPLACE: ($1, ($2, $3, $4), ($5, $6, $7, $8)), \n """ footstep_sets = { -90: ( # pelvis-to-world tf (rosrun tf tf_echo /pelvis /world) ([0.103, -0.146, -0.994], [0.000, -0.000, 1.000, 0.002]), # footsteps (from rostopic echo /ihmc_ros/valkyrie/control/footstep_list, then reformatted using the regex) [ # (foot, position (xyz), quaternion (xyzw) (0, (0.125, -0.275, 0.0982290995701), (0.0, 0.0, 1.0, 6.12323399574e-17)), (1, (0.025, 0.025, 0.0982304462606), (0.0, 0.0, -0.995184726672, 0.0980171403296)), (0, (0.075, -0.325, 0.0982290995701), (0.0, 0.0, -0.903989293123, 0.42755509343)), (1, (-0.075, -0.075, 0.0982304462606), (0.0, 0.0, -0.831469612303, 0.55557023302)), (0, (0.275, -0.025, 0.0982290995701), (0.0, 0.0, -0.707106781187, 0.707106781187)), (1, (0.0190632732585, -0.0171800019412, 0.0982304462606), (0.0, 0.0, -0.705664962114, 0.708545666309)) ] ), 90: ( ([-0.060, 0.049, -0.985], [0.000, 0.000, 0.010, 1.000]), [ (0, (0.025, 0.075, 0.0900992894832), (0.0, 0.0, 0.0, 1.0)), (1, (-0.075, -0.225, 0.0901028669253), (0.0, 0.0, 0.0980171403296, 0.995184726672)), (0, (-0.125, 0.125, 0.0900992894832), (0.0, 0.0, 0.42755509343, 0.903989293123)), (1, (0.225, -0.025, 0.0901028669253), (0.0, 0.0, 0.595699304492, 0.803207531481)), (0, (-0.125, -0.125, 0.0900992894832), (0.0, 0.0, 0.671558954847, 0.740951125355)), (1, (0.147420042966, -0.153386633716, 0.0901028669253), (0.0, 0.0, 0.683880261288, 0.729594262738)) ] ) } class ArgumentParserError(Exception): pass class ThrowingArgumentParser(argparse.ArgumentParser): def error(self, message): raise ArgumentParserError(message) def footstep_marker(i, step): """ :param int i: :param FootstepDataRosMessage step: :return Marker: """ m = Marker() m.header.stamp = rospy.Time.now() m.header.frame_id = '/world' m.id = i m.type = Marker.CUBE m.action = Marker.ADD m.pose.position.x = step.location.x m.pose.position.y = step.location.y m.pose.position.z = step.location.z m.pose.orientation.x = step.orientation.x m.pose.orientation.y = step.orientation.y m.pose.orientation.z = step.orientation.z m.pose.orientation.w = step.orientation.w m.scale.x = 0.27 m.scale.y = 0.18 m.scale.z = 0.015 if step.robot_side == RIGHT: m.color.r = 0 m.color.g = 1 else: m.color.r = 1 m.color.g = 0 m.color.a = 0.6 return m def empty_marker(i): """ :param int i: :param FootstepDataRosMessage step: :return Marker: """ m = Marker() m.header.stamp = rospy.Time.now() m.header.frame_id = '/world' m.id = i m.action = Marker.DELETE return m def make_steps(step_set): msg = FootstepDataListRosMessage() msg.default_transfer_time = 1.0 msg.default_swing_time = 1.0 reference_pose, steps = step_set msg.footstep_data_list = [make_footstep(reference_pose, *step) for step in steps] msg.unique_id = 1 return msg # Creates footstep offset from the current foot position. The offset is in foot frame. def make_footstep(reference_pose, side, offset_posn, offset_quat): step = FootstepDataRosMessage() step.robot_side = side old_world_to_point = numpy.dot(transformations.translation_matrix(offset_posn), transformations.quaternion_matrix(offset_quat)) pelvis_to_old_world = numpy.dot(transformations.translation_matrix(reference_pose[0]), transformations.quaternion_matrix(reference_pose[1])) pelvis_tf_msg = tfBuffer.lookup_transform('world', 'pelvis', rospy.Time()) q = pelvis_tf_msg.transform.rotation t = pelvis_tf_msg.transform.translation new_world_to_pelvis = numpy.dot(transformations.translation_matrix((t.x, t.y, t.z)), transformations.quaternion_matrix((q.x, q.y, q.z, q.w))) new_world_to_point = new_world_to_pelvis.dot(pelvis_to_old_world).dot(old_world_to_point) step.location.x, step.location.y, step.location.z = transformations.translation_from_matrix(new_world_to_point) step.orientation.x, step.orientation.y, step.orientation.z, step.orientation.w = \ transformations.quaternion_from_matrix(new_world_to_point) foot_COP_tf_msg = tfBuffer.lookup_transform('world', 'leftCOP_Frame', rospy.Time()) # Ensure z is always at foot height step.location.z = foot_COP_tf_msg.transform.translation.z return step if __name__ == '__main__': try: parser = ThrowingArgumentParser(description='Rotate valkyrie using predefined footsteps that are known collision-free.') parser.add_argument('angle', type=int, choices=footstep_sets.keys(), help="The angle to rotate relative to pelvis") rospy.init_node('walk_rotate_safe') log_pub = rospy.Publisher('/field/log', String, queue_size=10) def log_msg(val): val = rospy.get_name() + ": " + val msg = String(val) log_pub.publish(msg) rospy.loginfo(val) # Wait a reasonable amount of time for log_pub to connect wait_until = rospy.Time.now() + rospy.Duration(0.5) while log_pub.get_num_connections() == 0 and rospy.Time.now() < wait_until: rospy.sleep(0.1) try: args = parser.parse_args() except ArgumentParserError as e: f = StringIO() parser.print_usage(f) log_msg(f.getvalue() + e.message) argparse.ArgumentParser.error(parser, e.message) footStepListPublisher = rospy.Publisher('/ihmc_ros/valkyrie/control/footstep_list', FootstepDataListRosMessage, queue_size=1) # Set up TF so we can place footsteps relative to the world frame # these go into the global scope tfBuffer = tf2_ros.Buffer() tfListener = tf2_ros.TransformListener(tfBuffer) vis_pub = rospy.Publisher('/footstep_planner/footsteps_array', MarkerArray, queue_size=10) rospy.sleep(1) msg = make_steps(footstep_sets[args.angle]) ma = MarkerArray() ma.markers = [footstep_marker(i, step) for i, step in enumerate(msg.footstep_data_list)] ma.markers.extend([empty_marker(i) for i in range(len(ma.markers), 100)]) vis_pub.publish(ma) log_msg("Rotating " + str(args.angle) + " using hard coded step list") footStepListPublisher.publish(msg) log_msg("Node finished, footsteps may still be executing") except rospy.ROSInterruptException: pass
# -*- mode: python; coding: utf-8 -*- # Copyright 2021 the AAS WorldWide Telescope project # Licensed under the MIT License. from __future__ import absolute_import, division, print_function import pytest from . import test_path from .. import collection try: from astropy.io import fits HAS_ASTRO = True except ImportError: HAS_ASTRO = False class TestCollection(object): @pytest.mark.skipif('not HAS_ASTRO') def test_is_multi_tan(self): coll = collection.SimpleFitsCollection([test_path('wcs512.fits.gz')]) assert coll._is_multi_tan() coll = collection.SimpleFitsCollection([test_path('herschel_spire.fits.gz'), test_path('herschel_spire.fits.gz')]) assert coll._is_multi_tan() coll = collection.SimpleFitsCollection([test_path('wcs512.fits.gz'), test_path('herschel_spire.fits.gz')]) assert not coll._is_multi_tan()
import numpy as np import time from copy import deepcopy from functools import partial, reduce from itertools import product from collections.abc import Mapping, Sequence, Iterable import operator from simulation.model.epidemic import Epidemic class ParameterSearch: """Gradient-based search to estimate network characteristics and disease dynamics of a pandemic, based on the SIRV model""" def __init__(self, graph_generator, graph_generator_check, n_nodes, steps, n_infected_init, vacc, ni_target): """Set the vaccination vector, the steps of the simulation and the newly infected individuals target. Args: graph_generator: function to generate a nx graph, used to run simulations graph_generator_check: function to check validity of parameters for the graph n_nodes: total number of individuals in the population steps: number of steps (e.g., weeks) of the simulation n_infected_init: number of infected nodes in the initial configuration, chosen randomly among all nodes of the graph according to a uniform probability distribution vacc: total fraction of population that has received vaccination by each week ni_target: newly infected nodes target """ self.vacc = vacc self.steps = steps self.ni_target = np.array(ni_target) self.n_infected_init = n_infected_init self.generator = graph_generator self.generator_check = graph_generator_check self.n_nodes = n_nodes self.best_params = None def search(self, graph_initial_params, epidemic_initial_params, graph_delta_params, epidemic_delta_params, graph_delta_fine_params, epidemic_delta_fine_params, simulations_per_grid): """Estimate the best parameters for the simulation according to the newly infected individuals target `ni_target`. Args: graph_initial_params (dict): initial parameters for the graph epidemic_initial_params (dict): initial parameters for the epidemic, namely beta and rho graph_delta_params (dict): deltas for searching the parameter space of the graph in the first phase epidemic_delta_params (dict): deltas for searching the parameter space of the epidemic model in the first phase graph_delta_fine_params (dict): deltas for searching the parameter space of the graph in the second phase epidemic_delta_fine_params (dict): deltas for searching the parameter space of the epidemic model in the second phase simulations_per_grid (int): number of simulations to run for each parameter set """ graph_param_names = set(graph_initial_params.keys()) epidemic_param_names = set(epidemic_initial_params.keys()) # Merge dicts for constructing parameter space current_params = {**graph_initial_params, **epidemic_initial_params} delta_params = {**graph_delta_params, **epidemic_delta_params} delta_fine_params = {**graph_delta_fine_params, **epidemic_delta_fine_params} iteration_i = 0 fine = False # If False, we are in the first phase. If True, we are in the second phase. end = False start = time.time() # Keep descending the gradient until we reach a local optimum, # i.e., the previous set of best parameters is equal to the # current set of best parameters. while not end: iteration_i += 1 print(f"Iteration {iteration_i} params={current_params}") # Construct the search space with the following format. # {"a": [current_params["a"]-delta_params["a"], current_params["a"], current_params["a"]+delta_params["a"], # ..., # "z": [current_params["z"]-delta_params["z"], current_params["z"], current_params["z"]+delta_params["z"]} search_space_params = {} if not fine: for k, v in current_params.items(): search_space_params[k] = [v - delta_params[k], v, v + delta_params[k]] else: for k, v in current_params.items(): search_space_params[k] = [v - delta_fine_params[k], v, v + delta_fine_params[k]] # Generate the a list of parameters, based on the search space, over # which simulations will be run. Our goal is to find the best set of # parameters among these. grid_params = list(ParameterGrid(search_space_params)) # Initialize the loss array (RMSE) loss = np.full(len(grid_params), np.inf) for i, grid_i in enumerate(grid_params): # Split grid into epidemic parameters and graph parameters graph_grid_i = {**{k: grid_i[k] for k in graph_param_names}, 'n': self.n_nodes} epidemic_grid_i = {k: grid_i[k] for k in epidemic_param_names} # Skip invalid grids if not self.generator_check(**graph_grid_i) \ or not Epidemic.parameter_check(n_infected_init=self.n_infected_init, **epidemic_grid_i): continue # Perform a step and compute the loss loss[i] = self.search_step(graph_grid_i, epidemic_grid_i, simulations_per_grid, seed=42) prev_params = deepcopy(current_params) current_params = grid_params[int(np.argmin(loss))] print(f"Lowest loss {np.min(loss)} for grid set {current_params}") if self.isclose(current_params, prev_params): if not fine: print("Switching to finer delta grid") fine = True else: end = True print(f"Best parameter set {current_params} after {iteration_i} iteration(s)") print(f"Time elapsed: {time.time() - start}") self.best_params = current_params def basic_search(self, graph_initial_params, epidemic_initial_params, graph_delta_params, epidemic_delta_params, simulations_per_grid): """Estimate the best parameters for the simulation according to the newly infected individuals target `ni_target`. This is a basic version of the search algorithm upon which `search` is based on. Args: graph_initial_params (dict): initial parameters for the graph epidemic_initial_params (dict): initial parameters for the epidemic, namely beta and rho graph_delta_params (dict): deltas for searching the parameter space of the graph epidemic_delta_params (dict): deltas for searching the parameter space of the epidemic model simulations_per_grid (int): number of simulations to run for each parameter set """ graph_param_names = set(graph_initial_params.keys()) epidemic_param_names = set(epidemic_initial_params.keys()) # Merge dicts for constructing parameter space current_params = {**graph_initial_params, **epidemic_initial_params} delta_params = {**graph_delta_params, **epidemic_delta_params} iteration_i = 0 end = False start = time.time() # Keep descending the gradient until we reach a local optimum, # i.e., the previous set of best parameters is equal to the # current set of best parameters. while not end: iteration_i += 1 print(f"Iteration {iteration_i} params={current_params}") # Construct the search space with the following format. # {"a": [current_params["a"]-delta_params["a"], current_params["a"], current_params["a"]+delta_params["a"], # ..., # "z": [current_params["z"]-delta_params["z"], current_params["z"], current_params["z"]+delta_params["z"]} search_space_params = {} for k, v in current_params.items(): search_space_params[k] = [v - delta_params[k], v, v + delta_params[k]] # Generate the a list of parameters, based on the search space, over # which simulations will be run. Our goal is to find the best set of # parameters among these. grid_params = list(ParameterGrid(search_space_params)) # Initialize the loss array (RMSE) loss = np.full(len(grid_params), np.inf) for i, grid_i in enumerate(grid_params): # Split grid into epidemic parameters and graph parameters graph_grid_i = {**{k: grid_i[k] for k in graph_param_names}, 'n': self.n_nodes} epidemic_grid_i = {k: grid_i[k] for k in epidemic_param_names} # Skip invalid grids if not self.generator_check(**graph_grid_i) \ or not Epidemic.parameter_check(n_infected_init=self.n_infected_init, **epidemic_grid_i): continue loss[i] = self.search_step(graph_grid_i, epidemic_grid_i, simulations_per_grid) prev_params = deepcopy(current_params) current_params = grid_params[int(np.argmin(loss))] if self.isclose(current_params, prev_params): end = True print(f"Lowest loss {np.min(loss)} for grid set {current_params}") print(f"Best parameter set {current_params} after {iteration_i} iteration(s)") print(f"Time elapsed: {time.time() - start}") self.best_params = current_params def search_step(self, graph_params, epidemic_params, simulations, seed=None): """Perform a search step consisting in simulating a specific parameter grid for #simulations iterations. Returns the loss function computed against the newly infected target vector. Args: graph_params (dict): parameters for the graph epidemic_params (dict): parameters for the epidemic, namely beta and rho simulations (int): number of simulations to run for the current grid seed (int): if not None, graph structure is predictable according to the chosen seed Returns: loss: loss function computed on the current grid """ if seed is not None: np.random.seed(seed) # Set the seed (predictable graph for same parameters) graph = self.generator(**graph_params) np.random.seed() # Release seed else: graph = self.generator(**graph_params) epidemic = Epidemic('sirv', graph, self.steps, n_infected_init=self.n_infected_init, vacc=self.vacc, **epidemic_params) # Perform simulations_per_grid in order to find a significant # result for newly infected nodes per week (variability is too # high if we perform a single simulation) ni = np.zeros((simulations, self.steps + 1)) for sim_id in range(simulations): sim = epidemic.simulate() ni[sim_id] = np.array( [self.n_infected_init] + [((sim[t - 1] == 0) & (sim[t] == 1)).sum() for t in range(1, self.steps + 1)], dtype=int ) ni = ni.mean(axis=0) return self.rmse(ni, self.ni_target) @staticmethod def rmse(ni, ni_target): n_steps = len(ni) - 1 return np.sqrt((1 / n_steps) * ((ni - ni_target) ** 2).sum()) @staticmethod def isclose(dict1, dict2): for k in dict1.keys(): if not np.isclose(dict1[k], dict2[k]): return False return True class ParameterGrid: """scikit-learn (0.24.1) -- sklearn.model_selection._search.ParameterGrid""" def __init__(self, param_grid): if not isinstance(param_grid, (Mapping, Iterable)): raise TypeError('Parameter grid is not a dict or ' 'a list ({!r})'.format(param_grid)) if isinstance(param_grid, Mapping): # wrap dictionary in a singleton list to support either dict # or list of dicts param_grid = [param_grid] # check if all entries are dictionaries of lists for grid in param_grid: if not isinstance(grid, dict): raise TypeError('Parameter grid is not a ' 'dict ({!r})'.format(grid)) for key in grid: if not isinstance(grid[key], Iterable): raise TypeError('Parameter grid value is not iterable ' '(key={!r}, value={!r})' .format(key, grid[key])) self.param_grid = param_grid def __iter__(self): """Iterate over the points in the grid.""" for p in self.param_grid: # Always sort the keys of a dictionary, for reproducibility items = sorted(p.items()) if not items: yield {} else: keys, values = zip(*items) for v in product(*values): params = dict(zip(keys, v)) yield params def __len__(self): """Number of points on the grid.""" # Product function that can handle iterables (np.product can't). prod = partial(reduce, operator.mul) return sum(prod(len(v) for v in p.values()) if p else 1 for p in self.param_grid) def __getitem__(self, ind): """Get the parameters that would be ``ind``th in iteration""" # This is used to make discrete sampling without replacement memory # efficient. for sub_grid in self.param_grid: # XXX: could memoize information used here if not sub_grid: if ind == 0: return {} else: ind -= 1 continue # Reverse so most frequent cycling parameter comes first keys, values_lists = zip(*sorted(sub_grid.items())[::-1]) sizes = [len(v_list) for v_list in values_lists] total = np.product(sizes) if ind >= total: # Try the next grid ind -= total else: out = {} for key, v_list, n in zip(keys, values_lists, sizes): ind, offset = divmod(ind, n) out[key] = v_list[offset] return out raise IndexError('ParameterGrid index out of range')
# inclass/elephant.py # Not sure why, but the .env file dissapeared. # I would recreate it, but I don't want to confuse # Python when it goes to run the other files in the # inclass folder. import os import psycopg2 as psycho from dotenv import load_dotenv load_dotenv() DB_NAME = os.getenv("DB_NAME", "Invalid DB_NAME value") DB_USER = os.getenv("DB_USER", "Invalid DB_USER value") DB_PW = os.getenv("DB_PW", "Invalid DB_PW value") DB_HOST = os.getenv("DB_HOST", "Invalid DB_HOST value") connection = psycho.connect(dbname=DB_NAME, user=DB_USER, password=DB_PW, host=DB_HOST) print(type(connection)) #> <class 'psycopg2.extensions.connection'> cursor = connection.cursor() print(type(cursor)) #> <class 'psycopg2.extensions.cursor'> cursor.execute("SELECT * from test_table;") #results = cursor.fetchone() results = cursor.fetchall() for row in results: print(type(row), row)
import uuid from pprint import pformat from typing import Dict from typing import List from typing import Optional from typing import Union import pandas as pd from .utils import add_default_to_data from .utils import create_db_folders from .utils import dump_cached_schema from .utils import dump_db from .utils import generate_hash_id from .utils import get_db_path from .utils import load_cached_schema from .utils import load_db from .utils import validate_data_with_schema from .utils import validate_query_data from .utils import validate_schema from .utils import validate_update_data from onstrodb.errors.common_errors import DataDuplicateError from onstrodb.errors.common_errors import DataError from onstrodb.errors.schema_errors import SchemaError # types DBDataType = Dict[str, object] SchemaDictType = Dict[str, Dict[str, object]] GetType = Union[Dict[str, Union[Dict[str, object], str]], None] class OnstroDb: """The main API for the DB""" def __init__(self, db_name: str, schema: Optional[SchemaDictType] = None, db_path: Optional[str] = None, allow_data_duplication: bool = False, in_memory: bool = False) -> None: self._db_name = db_name self._schema = schema self._data_dupe = allow_data_duplication self._in_memory = in_memory # db variables self._db: pd.DataFrame = None self._db_path: str = get_db_path(db_name) if db_path: self._db_path = f"{db_path}/{self._db_name}" # validate the user defined schema self._validate_schema() # meta data about the db if self._schema: self._columns = list(self._schema.keys()) # start the loading sequence self._load_initial_schema() self._reload_db() def __repr__(self) -> str: return pformat(self._to_dict(self._db), indent=4, width=80, sort_dicts=False) def __len__(self) -> int: return len(self._db.index) def add(self, values: List[Dict[str, object]], get_hash_id: bool = False) -> Union[None, List[str]]: """Adds a list of values to the DB""" new_data: List[Dict[str, object]] = [] new_hashes: List[str] = [] for data in values: if self._schema: if validate_data_with_schema(data, self._schema): data = add_default_to_data(data, self._schema) hash_id = self._get_hash( [str(i) for i in data.values()], list(self._db.index) + new_hashes) new_data.append(data) new_hashes.append(hash_id) else: raise DataError( f"The data {data!r} does not comply with the schema") new_df = pd.DataFrame(new_data, new_hashes) try: self._db = pd.concat([self._db, new_df], verify_integrity=not self._data_dupe) except ValueError: raise DataDuplicateError( "The data provided, contains duplicate values") from None if get_hash_id: return new_hashes return None def get_by_query(self, query: Dict[str, object]) -> GetType: """Get values from the DB. queries must comply with the schema and must be of length 1""" if self._schema: if validate_query_data(query, self._schema): key = list(query)[0] filt = self._db[key] == query[key] return self._to_dict(self._db.loc[filt]) return None def get_by_hash_id(self, hash_id: str) -> GetType: """Get values from the DB based on their hash ID""" if hash_id in self._db.index: return self._to_dict(self._db.loc[hash_id]) return {} def get_hash_id(self, condition: Dict[str, object]) -> List[str]: """Returns a hash id or a list of ids that matches all the conditions""" # the validate_update_method can be used as the same verification style is required here. if self._schema: if validate_update_data(condition, self._schema): return list(self._db.loc[(self._db[list(condition)] == pd.Series(condition)).all(axis=1)].index) return [] def get_all(self) -> GetType: """Return the entire DB in a dict representation""" return self._to_dict(self._db) def update_by_query(self, query: Dict[str, object], update_data: DBDataType) -> Dict[str, str]: """Update the records in the DB with a query""" u_db = self._db.copy(deep=True) if self._schema: if validate_query_data(query, self._schema) and validate_update_data(update_data, self._schema): q_key = list(query)[0] q_val = query[q_key] filt = u_db[q_key] == q_val for key, val in update_data.items(): u_db.loc[filt, key] = val # update the indexes new_vals = u_db.loc[filt].to_dict("index") new_idx = self._verify_and_get_new_idx( new_vals, list(u_db.index)) if new_idx: new_df = self._update_hash_id(new_idx, u_db) self._db = new_df.copy(deep=True) del [u_db, new_df] return new_idx return {} def update_by_hash_id(self, hash_id: str, update_data: DBDataType) -> Dict[str, str]: """Update the records in the DB using their hash id""" u_db = self._db.copy(deep=True) if hash_id in u_db.index: if self._schema: if validate_update_data(update_data, self._schema): for key, val in update_data.items(): u_db.loc[hash_id, key] = val # update the indexes new_vals = pd.DataFrame( u_db.loc[hash_id].to_dict(), index=[hash_id]).to_dict("index") new_idx = self._verify_and_get_new_idx( new_vals, list(u_db.index)) if new_idx: new_df = self._update_hash_id(new_idx, u_db) self._db = new_df.copy(deep=True) del [u_db, new_df] return new_idx return {} def delete_by_query(self, query: Dict[str, object]) -> None: """Delete the records from the db that complies to the query""" if self._schema: if validate_query_data(query, self._schema): key = list(query)[0] filt = self._db[key] != query[key] self._db = self._db.loc[filt] def delete_by_hash_id(self, hash_id: str) -> None: """Delete the a records from thr DB based on their hash_id""" ids = list(self._db.index) if hash_id in ids: self._db = self._db.drop(hash_id) def raw_db(self) -> pd.DataFrame: """Returns the in in memory representation of the DB""" return self._db.copy(deep=True) def purge(self) -> None: """Removes all the data from the runtime instance of the db""" self._db = self._db.iloc[0:0] def commit(self) -> None: """Store the current db in a file""" if isinstance(self._db, pd.DataFrame): if not self._in_memory: dump_db(self._db, self._db_path, self._db_name) def _get_hash(self, values: List[str], hash_list: List[str]) -> str: """returns the hash id based on the dupe value""" def gen_dupe_hash(extra: int = 0) -> str: if extra: hash_ = generate_hash_id(values + [str(extra)]) else: hash_ = generate_hash_id(values) if hash_ in hash_list: return gen_dupe_hash(uuid.uuid4().int) else: hash_list.append(hash_) return hash_ if not self._data_dupe: return generate_hash_id(values) else: return gen_dupe_hash() def _update_hash_id(self, new_hashes: Dict[str, str], _df: pd.DataFrame) -> pd.DataFrame: """Updates the hash to the new hashes """ for idx, hash_ in new_hashes.items(): _df.rename(index={idx: hash_}, inplace=True) return _df def _verify_and_get_new_idx(self, new_vals: Dict[str, Dict[str, object]], hash_list: List[str]) -> Dict[str, str]: """verify whether the updated is not a duplicate of an existing data""" new_hashes: Dict[str, str] = {} idxs = list(new_vals) for k, v in new_vals.items(): hash_ = self._get_hash( list(map(str, v.values())), hash_list) if hash_ in self._db.index or (hash_ in idxs and k != hash_) or hash_ in new_hashes.values(): if not self._data_dupe: new_hashes.clear() raise DataDuplicateError( "The updated data is a duplicate of an existing data in the DB") else: new_hashes[k] = hash_ else: new_hashes[k] = hash_ return new_hashes def _to_dict(self, _df: Union[pd.DataFrame, pd.Series]) -> Dict[str, Union[Dict[str, object], str]]: """Returns the dict representation of the DB based on the allow_data_duplication value """ if isinstance(_df, pd.DataFrame): return _df.to_dict("index") else: return _df.to_dict() def _validate_schema(self) -> None: if self._schema: validate_schema(self._schema) def _reload_db(self) -> None: """Reload the the pandas DF""" if not self._in_memory: data = load_db(self._db_path, self._db_name) if isinstance(data, pd.DataFrame): self._db = data else: self._db = pd.DataFrame(columns=self._columns) else: self._db = pd.DataFrame(columns=self._columns) def _load_initial_schema(self) -> None: """Loads the schema that was provided when the DB was created for the first time""" if not self._in_memory: create_db_folders(self._db_path) if not self._in_memory: schema = load_cached_schema(self._db_path) else: schema = None if schema: if self._schema: if not schema == self._schema: raise SchemaError( "The schema provided does not match with the initial schema") else: self._schema = schema.copy() self._columns = list(self._schema.keys()) else: if not self._schema: raise SchemaError("The schema is not provided") else: if not self._in_memory: dump_cached_schema(self._db_path, self._schema)
#!/usr/bin/python # Import modules for CGI handling import cgi, cgitb # Create instance of FieldStorage form = cgi.FieldStorage() # Get data from fields if form.getvalue('after845'): after845 = "Y" else: after845 = "N" if form.getvalue('noisyCats'): noisyCats = "Y" else: noisyCats = "N" if form.getvalue('foodInBowl'): foodInBowl = "Y" else: foodInBowl = "N" if form.getvalue('catReallyHungry'): catReallyHungry = "Y" else: catReallyHungry = "N" if form.getvalue('catReallyHungry'): sixHoursLate = "Y" else: sixHoursLate = "N" # Original Logic (pretty much) if after845 == "Y" and noisyCats == "Y" and not foodInBowl == "Y" : decision = "Feed the beasts now" elif catReallyHungry == "Y" and sixHoursLate == "Y" : decision = "Feed cats so they will shut up" else : decision = "Nothing to do yet" # Build the html for the response print "Content-type:text/html\r\n\r\n" print "<html>" print "<head>" print "<title>Cat Feeding Dilemma</title>" print "</head>" print "<img src=/satisfied_cats.png >" print "<body>" print "<h1> To feed or not to feed ...</h1>" print "<h2> After 8:45 is : %s</h2>" % after845 print "<h2> Cats Making Noise is : %s</h2>" % noisyCats print "<h2> Food in Bowl is : %s</h2>" % foodInBowl print "<h2> Cat Really Hungry is : %s</h2>" % catReallyHungry print "<h2> Six hours since last feeding is : %s</h2>" % sixHoursLate print ( "<h2> Decision: %s</h2>" % decision ) print "</body>" print "</html>"
# This work was created by participants in the DataONE project, and is # jointly copyrighted by participating institutions in DataONE. For # more information on DataONE, see our web site at http://dataone.org. # # Copyright 2009-2019 DataONE # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test Cross-Origin Resource Sharing (CORS) Headers.""" import freezegun import responses import d1_common import d1_common.const import d1_gmn.tests.gmn_mock import d1_gmn.tests.gmn_test_case import d1_test.d1_test_case @d1_test.d1_test_case.reproducible_random_decorator("TestCors") @freezegun.freeze_time("1981-01-02") class TestCors(d1_gmn.tests.gmn_test_case.GMNTestCase): @responses.activate def test_1000(self, gmn_client_v1_v2): """No CORS headers are included in 404 caused by non-existing endpoint.""" with d1_gmn.tests.gmn_mock.disable_auth(): response = gmn_client_v1_v2.GET(["bogus", "endpoint"]) self.sample.assert_equals(response, "get_bogus_endpoint", gmn_client_v1_v2) @responses.activate def test_1010(self, gmn_client_v1_v2): """Invalid method against endpoint raises 405 Method Not Allowed and returns regular and CORS headers with allowed methods (POST. /object/invalid_pid) """ with d1_gmn.tests.gmn_mock.disable_auth(): response = gmn_client_v1_v2.POST(["object", "invalid_pid"]) self.sample.assert_equals(response, "post_object_pid", gmn_client_v1_v2) @responses.activate def test_1020(self, gmn_client_v1_v2): """listObjects(): The expected CORS headers are included in regular response.""" with d1_gmn.tests.gmn_mock.disable_auth(): response = gmn_client_v1_v2.GET(["object"], params={"count": "10"}) self.sample.assert_equals(response, "get_listobjects", gmn_client_v1_v2) @responses.activate def test_1030(self, gmn_client_v1_v2): """get(): The expected CORS headers are included in regular response.""" pid, sid, sciobj_bytes, sysmeta_pyxb = self.create_obj(gmn_client_v1_v2) with d1_gmn.tests.gmn_mock.disable_auth(): response = gmn_client_v1_v2.GET(["object", pid]) self.sample.assert_equals(response, "get_valid_object", gmn_client_v1_v2) @responses.activate def test_1040(self, gmn_client_v1_v2): """listObjects(): OPTIONS request returns expected headers.""" with d1_gmn.tests.gmn_mock.disable_auth(): response = gmn_client_v1_v2.OPTIONS(["object"]) self.sample.assert_equals(response, "list_objects_options", gmn_client_v1_v2) @responses.activate def test_1050(self, gmn_client_v1_v2): """get(): OPTIONS request returns expected headers.""" pid, sid, sciobj_bytes, sysmeta_pyxb = self.create_obj(gmn_client_v1_v2) with d1_gmn.tests.gmn_mock.disable_auth(): response = gmn_client_v1_v2.OPTIONS(["object", pid]) self.sample.assert_equals(response, "get_options", gmn_client_v1_v2) @responses.activate def test_1060(self, gmn_client_v2): """getPackage(): OPTIONS request returns expected headers.""" pid_list = self.create_multiple_objects(gmn_client_v2, object_count=2) ore_pid = self.create_resource_map(gmn_client_v2, pid_list) response = gmn_client_v2.OPTIONS( ["packages", d1_common.const.DEFAULT_DATA_PACKAGE_FORMAT_ID, ore_pid] ) self.sample.assert_equals(response, "get_package_options", gmn_client_v2) @responses.activate def test_1070(self, gmn_client_v1_v2): """Invalid method against endpoint raises 405 Method Not Allowed and returns regular and CORS headers with allowed methods (PUT /object/)""" with d1_gmn.tests.gmn_mock.disable_auth(): response = gmn_client_v1_v2.PUT(["object"]) self.sample.assert_equals(response, "put_object_list", gmn_client_v1_v2) @responses.activate def test_1080(self, gmn_client_v1_v2): """get(): WITHOUT Origin header sets Access-Control-Allow-Origin to wildcard.""" pid, sid, sciobj_bytes, sysmeta_pyxb = self.create_obj(gmn_client_v1_v2) with d1_gmn.tests.gmn_mock.disable_auth(): response = gmn_client_v1_v2.get(pid) self.sample.assert_equals( response.headers, "get_without_origin", gmn_client_v1_v2 ) assert ( response.headers["Access-Control-Allow-Origin"] == "https://search.dataone.org" ) @responses.activate def test_1090(self, gmn_client_v1_v2): """get(): WITH Origin header sets Access-Control-Allow-Origin to the Origin.""" pid, sid, sciobj_bytes, sysmeta_pyxb = self.create_obj(gmn_client_v1_v2) origin_url = "https://somewhere.com" with d1_gmn.tests.gmn_mock.disable_auth(): response = gmn_client_v1_v2.get(pid, vendorSpecific={"Origin": origin_url}) self.sample.assert_equals(response.headers, "get_with_origin", gmn_client_v1_v2) assert response.headers["Access-Control-Allow-Origin"] == origin_url
from typing import final from weakref import WeakKeyDictionary, WeakValueDictionary _combined_metaclasses = WeakValueDictionary() def combine(*classes: type): # Order of bases matters # (A, B) and (B, A) different base tuples which lead to different MRO # So combined classes of these bases are different if classes in _combined_metaclasses: return _combined_metaclasses[classes] cls = CombineMeta( '@'.join( f'({cls.__qualname__})' if cls.__bases__ in _combined_metaclasses else cls.__qualname__ for cls in classes ), classes, {'__module__': None} ) _combined_metaclasses[classes] = cls return cls @final class CombineMeta(type): """ A metaclass that allows metaclass combination """ # Original idea: https://stackoverflow.com/a/45873191 combine = staticmethod(combine) def __matmul__(self, other, /): return combine(self, other) def __rmatmul__(self, other, /): return combine(other, self) def __init_subclass__(mcs, /): raise TypeError(f'type {CombineMeta.__name__!r} is not an acceptable base type') class Singleton(type, metaclass=CombineMeta): # Use weak keys to automatically clean unused classes __instances__ = WeakKeyDictionary() def __call__(cls, /, *args, **kwargs): instances = cls.__class__.__instances__ if cls not in instances: instances[cls] = super().__call__(*args, **kwargs) return instances[cls] class SingletonWithInit(Singleton): __call_init__ = WeakKeyDictionary() def __new__(mcs, name: str, bases: tuple, namespace: dict, /, *, call_init: bool = False, **kwargs): if not isinstance(call_init, bool): raise TypeError(f'call_init argument must be bool, got {type(call_init)}') cls = super().__new__(mcs, name, bases, namespace, **kwargs) mcs.__call_init__[cls] = call_init return cls def __call__(cls, /, *args, **kwargs): instance = super().__call__(*args, **kwargs) if cls.__class__.__call_init__[cls]: instance.__init__(*args, **kwargs) return instance class EmptySlotsByDefaults(type, metaclass=CombineMeta): def __new__(mcs, name: str, bases: tuple, namespace: dict, /, **kwargs): if '__slots__' not in namespace: namespace['__slots__'] = () return super().__new__(mcs, name, bases, namespace, **kwargs) class AllowInstantiation(type, metaclass=CombineMeta): __allow__ = WeakKeyDictionary() def __new__(mcs, name: str, bases: tuple, namespace: dict, /, *, allow_instances: bool = True, **kwargs): if not isinstance(allow_instances, bool): raise TypeError(f'allow_instances argument must be bool, got {type(allow_instances)}') cls = super().__new__(mcs, name, bases, namespace, **kwargs) mcs.__allow__[cls] = allow_instances return cls def __call__(cls, /, *args, **kwargs): if cls.__class__.__allow__[cls]: return super().__call__(*args, **kwargs) raise TypeError(f'class {cls.__qualname__} cannot be instantiated')
#MenuTitle: Tab with compound glyphs # -*- coding: utf-8 -*- __doc__=""" Based con mekablue's "New Edit tab with compound glyphs". """ import GlyphsApp Doc = Glyphs.currentDocument Font = Glyphs.font FontMaster = Font.selectedFontMaster selectedLayers = Font.selectedLayers editString = "" Output = "" for thisLayer in selectedLayers: thisGlyphName = thisLayer.parent.name compoundList = [ g.name for g in Font.glyphs if thisGlyphName in [ c.componentName for c in g.layers[ FontMaster.id ].components ] ] if len(compoundList) > 1 : Output += "Compounds with %s: " % thisGlyphName + " ".join( compoundList ) + "\n" editString += "\n/" + thisGlyphName + "/colon /" + "/".join( compoundList ) # editString += "\n /%s: /%s" % ( thisGlyphName, "/".join( compoundList ) ) else : Output += "No compound glyphs with %s\n" % thisGlyphName editString = editString.lstrip() print Output thisFont.newTab(editString)
# -*- coding:utf-8 -*- # # Copyright (C) 2020, Maximilian Köhl <koehl@cs.uni-saarland.de> import dataclasses as d import typing as t import fractions import pathlib import subprocess import tempfile import re from .. import model from ..analysis import checkers from ..jani import dump_model from .errors import ToolError, ToolTimeoutError Timeout = t.Optional[t.Union[float, int]] Command = t.Sequence[t.Union[str, pathlib.Path]] # XXX: is there a better way to do this? _result_regex = re.compile( r"Model checking property \"(?P<prop_name>[^\"]+)\"" r".*?" r"Result \(for initial states\): (?P<prop_value>\d+(\.\d+)?)", flags=re.DOTALL, ) @d.dataclass(frozen=True) class Output: stdout: str stderr: str @d.dataclass(eq=False) class Toolset: executable: t.Union[str, pathlib.Path] environment: t.Optional[t.Mapping[str, str]] = None def invoke( self, arguments: t.Iterable[t.Union[str, int, float, pathlib.Path]], *, timeout: Timeout = None, ) -> Output: command: Command = ( self.executable, *map(str, arguments), ) try: process = subprocess.run( command, env=self.environment, timeout=timeout, capture_output=True, ) except subprocess.TimeoutExpired as timeout_error: raise ToolTimeoutError( "timeout expired during invocation of `storm`", command=command, stdout=timeout_error.stdout, stderr=timeout_error.stderr, ) if process.returncode != 0: raise ToolError( f"`storm` terminated with non-zero returncode {process.returncode}", command=command, stdout=process.stdout, stderr=process.stderr, returncode=process.returncode, ) return Output(process.stdout.decode("utf-8"), process.stderr.decode("utf-8")) @d.dataclass(frozen=True, eq=False) class StormChecker(checkers.Checker): toolset: Toolset engine: str = "dd" def check( self, network: model.Network, *, properties: t.Optional[checkers.Properties] = None, property_names: t.Optional[t.Iterable[str]] = None, ) -> checkers.Result: with tempfile.TemporaryDirectory(prefix="modest") as directory_name: input_file = pathlib.Path(directory_name) / "input.jani" named_properties: t.Dict[str, model.Expression] = {} if properties is None and property_names is None: named_properties.update( { definition.name: definition.expression for definition in network.ctx.properties.values() } ) if property_names is not None: for name in property_names: named_properties[ name ] = network.ctx.get_property_definition_by_name(name).expression input_file.write_text( dump_model(network, properties=named_properties), encoding="utf-8" ) output = self.toolset.invoke( ("--jani", input_file, "--janiproperty", "--engine", self.engine) ) return { match.group("prop_name"): fractions.Fraction(match.group("prop_value")) for match in _result_regex.finditer(output.stdout) } toolset = Toolset("storm") checker_sparse = StormChecker(toolset, engine="sparse") checker_dd = StormChecker(toolset, engine="dd") checker = checker_sparse def get_checker(*, accept_license: bool) -> checkers.Checker: try: from . import storm_docker return storm_docker.checker except ImportError: return checker
from . import generic from .generic import * from . import kafka from .kafka import * from . import csv from .csv import * from . import avro_file from .avro_file import * from . import json from .json import *
import locale import sys from os.path import dirname, join, realpath import matplotlib.pyplot as plt import numpy as np import torch from scipy.signal import resample from base.config_loader import ConfigLoader from base.data.dataloader import TuebingenDataloader def alternate_signal_ww(signals, sample_left, sample_right): """ stretching/compressing of the signal + resampling""" # stretch/compress signal to the new window size using the sample to the left and right (for stretching) orig_size = signals.shape[0] new_size = int(ww_factor * orig_size) total_win = np.r_[sample_left, signals, sample_right] win_start = (total_win.shape[0] - new_size) // 2 orig_win = total_win[win_start:win_start + new_size] # resample new signal to the old window size win = resample(orig_win, orig_size, axis=0) return win.astype('float32') config = ConfigLoader('exp001', create_dirs=False) config.DATA_FILE = 'D:/Python/mice_tuebingen/cache/dataset/data_tuebingen.h5' sample = 10 ww_factor = 0.7 mapLoader = TuebingenDataloader(config, 'train', balanced=False, augment_data=False) signal = mapLoader[sample][0].flatten() mapLoader_augmented = TuebingenDataloader(config, 'train', balanced=False) signal_augmented = alternate_signal_ww(signal, mapLoader[sample - 1][0].flatten()[:640], mapLoader[sample + 1][0].flatten()[-640:]) plt.rcParams.update({'font.size': 12}) locale.setlocale(locale.LC_NUMERIC, "de_DE") plt.rcParams['axes.formatter.use_locale'] = True fig, (ax1, ax2) = plt.subplots(2, sharex='all', figsize=(8, 4)) ax1.plot(np.arange(signal.shape[0]), signal, label='originales Signal', c='k') ax1.axvspan((1 - ww_factor) / 2 * 1920, (1 - (1 - ww_factor) / 2) * 1920, alpha=0.3, color='darkgreen', label='neues Fenster') ax1.legend() ax1.set_ylabel('Amplitude') ax2.plot(signal_augmented, label='transf. Signal', c='darkgreen') ax2.legend() ax2.set_ylabel('Amplitude') ax2.set_ylim(ax1.get_ylim()) plt.xlabel('Fenstergröße in Datenpunkten') plt.tight_layout() plt.savefig(join(dirname(__file__), '../../..', 'results', 'plots', 'master', 'ww_example.svg')) plt.show()
import simtk.openmm as mm import simtk.unit as unit import openmmnn as nn import tensorflow as tf import unittest class TestNeuralNetworkForce(unittest.TestCase): def testFreezeGraph(self): graph = tf.Graph() with graph.as_default(): positions = tf.placeholder(tf.float32, [None, 3], 'positions') scale = tf.Variable(5.0) energy = tf.multiply(scale, tf.reduce_sum(positions**2), name='energy') forces = tf.identity(tf.gradients(-energy, positions), name='forces') session = tf.Session() session.run(tf.global_variables_initializer()) force = nn.NeuralNetworkForce(graph, session) system = mm.System() for i in range(3): system.addParticle(1.0) system.addForce(force) integrator = mm.VerletIntegrator(0.001) context = mm.Context(system, integrator) positions = [mm.Vec3(3, 0, 0), mm.Vec3(0, 4, 0), mm.Vec3(3, 4, 0)] context.setPositions(positions) assert context.getState(getEnergy=True).getPotentialEnergy() == 250.0*unit.kilojoules_per_mole if __name__ == '__main__': unittest.main()
import typing import pytest from testsuite import annotations from testsuite.mockserver import server from testsuite.utils import callinfo from testsuite.utils import http TestpointHandler = typing.Callable[ [annotations.JsonAnyOptional], annotations.MaybeAsyncResult[annotations.JsonAnyOptional], ] TestpointDecorator = typing.Callable[ [TestpointHandler], callinfo.AsyncCallQueue, ] class TestpointFixture: """Testpoint control object.""" def __init__(self) -> None: self._handlers: typing.Dict[str, callinfo.AsyncCallQueue] = {} def get_handler( self, name: str, ) -> typing.Optional[callinfo.AsyncCallQueue]: return self._handlers.get(name) def __getitem__(self, name: str) -> callinfo.AsyncCallQueue: return self._handlers[name] def __call__(self, name: str) -> TestpointDecorator: """Returns decorator for registering testpoint called ``name``. After decoration function is wrapped with `AsyncCallQueue`_. """ def decorator(func) -> callinfo.AsyncCallQueue: wrapped = callinfo.acallqueue(func) self._handlers[name] = wrapped return wrapped return decorator @pytest.fixture async def testpoint(mockserver: server.MockserverFixture) -> TestpointFixture: """Testpoint fixture returns testpoint session instance that works as decorator that registers testpoint handler. Original function is wrapped with :ref:`AsyncCallQueue` :param name: testpoint name :returns: decorator .. code-block:: def test_foo(testpoint): @testpoint('foo'): def testpoint_handler(data): pass ... # testpoint_handler is AsyncCallQueue instance, e.g.: assert testpoint_handler.has_calls assert testpoint_handler.next_call == {...} aseert testpoint_handler.wait_call() == {...} """ session = TestpointFixture() @mockserver.json_handler('/testpoint') async def _handler(request: http.Request): body = request.json handler = session.get_handler(body['name']) if handler is not None: data = await handler(body['data']) else: data = None return {'data': data} return session
#!/usr/bin/env python # Copyright 2016 Melomap (www.melomap.com) # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import re ## ## Thanks http://www.itu.int/dms_pub/itu-t/oth/02/02/T02020000920004PDFE.pdf ## https://www.numberingplans.com/?page=plans&sub=phonenr&alpha_2_input=MM&current_page=74 ## class MMPhoneNumber(): def __init__(self): self.OOREDOO = "Ooredoo" self.TELENOR = "Telenor" self.MPT = "MPT" self.UNKNOWN = "Unknown" self.GSM_TYPE = "GSM" self.WCDMA_TYPE = "WCDMA" self.CDMA_450_TYPE = "CDMA 450 MHz" self.CDMA_800_TYPE = "CDMA 800 MHz" self.ooredoo_re = r"^(09|\+?959)9(7|6)\d{7}$" self.telenor_re = r"^(09|\+?959)7(9|8|7)\d{7}$" self.mpt_re = r"^(09|\+?959)(5\d{6}|4\d{7,8}|2\d{6,8}|3\d{7,8}|6\d{6}|8\d{6}|7\d{7}|9(0|1|9)\d{5,6})$" def is_valid_mm_phonenumber(self, phonenumber=None): if phonenumber: phonenumber = self.sanitize_phonenumber(phonenumber=phonenumber) mm_phone_re = r"^(09|\+?950?9|\+?95950?9)\d{7,9}$" if self.__check_regex([mm_phone_re], phonenumber): return True return False def sanitize_phonenumber(self, phonenumber=None): if phonenumber: phonenumber = phonenumber.strip() phonenumber = phonenumber.replace(" ", "") phonenumber = phonenumber.replace("-", "") country_code_re = r"^\+?950?9\d+$" if self.__check_regex([country_code_re], phonenumber): ## try to remove double country code double_country_code_re = r"^\+?95950?9\d{7,9}$" if self.__check_regex([double_country_code_re], phonenumber): ## remove double country code phonenumber = phonenumber.replace("9595", "95", 1) ## remove 0 before area code zero_before_areacode_re = r"^\+?9509\d{7,9}$" if self.__check_regex([zero_before_areacode_re], phonenumber): ## remove double country code phonenumber = phonenumber.replace("9509", "959", 1) return phonenumber def get_telecom_name(self, phonenumber=None): telecom_name = self.UNKNOWN if phonenumber and self.is_valid_mm_phonenumber(phonenumber=phonenumber): ## sanitize the phonenumber first phonenumber = self.sanitize_phonenumber(phonenumber=phonenumber) if self.__check_regex([self.ooredoo_re], phonenumber): telecom_name = self.OOREDOO elif self.__check_regex([self.telenor_re], phonenumber): telecom_name = self.TELENOR elif self.__check_regex([self.mpt_re], phonenumber): telecom_name = self.MPT return telecom_name def get_phone_network_type(self, phonenumber=None): network_type = self.UNKNOWN if phonenumber and self.is_valid_mm_phonenumber(phonenumber=phonenumber): ## sanitize the phonenumber first phonenumber = self.sanitize_phonenumber(phonenumber=phonenumber) if self.__check_regex([self.ooredoo_re, self.telenor_re], phonenumber): network_type = self.GSM_TYPE elif self.__check_regex([self.mpt_re], phonenumber): wcdma_re = r"^(09|\+?959)(55\d{5}|25[2-4]\d{6}|26\d{7}|4(4|5|6)\d{7})$" cdma_450_re = r"^(09|\+?959)(8\d{6}|6\d{6}|49\d{6})$" cdma_800_re = r"^(09|\+?959)(3\d{7}|73\d{6}|91\d{6})$" if self.__check_regex([wcdma_re], phonenumber): network_type = self.WCDMA_TYPE elif self.__check_regex([cdma_450_re], phonenumber): network_type = self.CDMA_450_TYPE elif self.__check_regex([cdma_800_re], phonenumber): network_type = self.CDMA_800_TYPE else: network_type = self.GSM_TYPE return network_type def __check_regex(self, regex_array, input_string): for regex in regex_array: if re.search(regex, input_string): return True return False
from numpy import tan, cos, sin, linspace from scipy.optimize import root def fun(x): return tan(x) + 2*x def jac(x): return 1/cos(x)**2 + 2 sols = set() for x0 in linspace(0, 1000, 1e6): ans = root(fun, [x0], jac=jac, method='hybr') sols.add(ans.x[0]) print(sorted(list(sols)))
# Generated by Django 2.1.4 on 2019-01-12 03:28 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('parser_app', '0008_auto_20181230_0303'), ] operations = [ migrations.AddField( model_name='resume', name='experience', field=models.CharField(blank=True, max_length=1000, null=True, verbose_name='Experience'), ), ]
def list_join(list, conjunction_str, format_func=str, oxford_comma=True): ''' Joins a list in a grammatically-correct fashion. :param list: the list to join. :param conjunction_str: the string to use as conjunction between two items. :param format_func: a function that takes in a string and returns a formatted string (default=str, optional). :param oxford_comma: indicates whether to use oxford comma styling (default=True, optional). :returns: a string representing the grammatically-correct joined list. :usage:: >>> list_join(['apple', 'orange', 'pear'], 'and') apple, orange and pear'` ''' if not list: return '' if len(list) == 1: return format_func(list[0]) first_part = ', '.join([format_func(i) for i in list[:-1]]) comma = ',' if oxford_comma and len(list) > 2 else '' return '{}{} {} {}'.format(first_part, comma, conjunction_str, format_func(list[-1])) def kwargs_to_list(kwargs_dict): ''' Maps a set of keyword arguments in a dictionary to a list of strings in the format "'key' (value='dict[key]')". :param kwargs_dict: a dictionary representing the keyword arguments to map. :returns: A list of strings in the format "'key' (value='dict[key]')". :usage:: >>> kwargs_to_list({'name':'bob', 'id':2}) ["'name' (value='bob')", "'id' (value='2')"] ''' return ['\'{}\' (value=\'{}\')'.format(key, kwargs_dict[key]) for key in kwargs_dict if kwargs_dict[key] != None]
from _initdef import *
import os import shutil import numpy as np import glob import xml.etree.ElementTree as ET import pandas as pd def randCpFiles(src, destn, ratio=0.8, createDir=True, ext='', fileFilter=None): # TODO - can let the user pass in the "ext" filter in the fileFilter too. THis will # make the function more general. ''' src :: string - the directory from which the files are to be copied destn :: string - the directory to which the files are to be copied ratio :: float - the ratio of files to be copied (0.8 is 80%) createDir :: boolean - if true, the destination directory will be created if it doesn't exist ext :: string - only move files with this extension fileFilter :: (string) -> boolean - function to filter files which are to be copied. File is selected if this function returns True returns :: list<string> - names of files copied ''' os.makedirs(destn) if createDir and (not os.path.exists(destn)) else None # TODO - can replace with glob.glob srcFiles = list(filter(lambda f: f.endswith(ext), os.listdir(src))) if fileFilter: # fileFilter is not None srcFiles = list(filter(fileFilter, srcFiles)) toCopy = np.random.choice(srcFiles, round(len(srcFiles) * ratio), replace=False) list(map(lambda f: shutil.copy(os.path.join(src, f), os.path.join(destn, f)), toCopy )) return toCopy def cpFiles(src, destn, files, createDir = True): ''' src :: string - the directory from which the files are to be copied destn :: string - the directory to which the files are to be copied files :: list<string> - list of files in src to be copied to destn createDir :: boolean - if true, the destination directory will be created if it doesn't exist ''' # TODO - os.makedirs(exist_ok=True) instead of (not os.path.exists(destn)) os.makedirs(destn) if createDir and (not os.path.exists(destn)) else None list(map(lambda f: shutil.copy(os.path.join(src, f), os.path.join(destn, f)), files )) def vocTrainTestSplit(src, destn, ratio=0.8, createDir=True, imgFmt = '.jpg', testFolName = 'valid', trainFolName = 'train'): ''' src :: string - the directory from which the files are to be copied destn :: string - the directory to which the files are to be copied. Folders specified in trainFolName testFolName will be created in this directory ratio :: float - the ratio of files to be copied (0.8 is 80%) createDir :: boolean - if true, the destination directory will be created if it doesn't exist imgFmt :: string - the extension of the image files in src testFolName :: string - the name of the test folder trainFolName :: string - the name of the train folder ''' # TODO - can extract the function outside (no need to create it everytime + takes up space inside the function) isImgLabelled = lambda f: os.path.exists( os.path.join(src, f[:-len(imgFmt)] + '.xml' ) ) # TODO - can replace with glob.glob imgFiles = list(filter(lambda f: f.endswith(imgFmt), os.listdir(src))) labelledImgFiles = list(filter(isImgLabelled, imgFiles)) trainFiles = randCpFiles(src, os.path.join(destn, trainFolName), ratio=ratio, createDir=createDir,ext=imgFmt, fileFilter=isImgLabelled) testFiles = list(filter(lambda f: not f in trainFiles, labelledImgFiles )) # TODO - the below two lambdas can be extracted into a function which filters a list of files according to the file format trainXmls = list(map(lambda f: f[:-len(imgFmt)] + '.xml', trainFiles)) testXmls = list(map(lambda f: f[:-len(imgFmt)] + '.xml', testFiles)) # TODO - ideally, all of the below should be refactored into a # "select train, validation images -> add .xml files to the list as well -> copy both images and xmls from src to destn" cpFiles(src, os.path.join(destn, testFolName), testFiles, createDir=createDir) cpFiles(src, os.path.join(destn, trainFolName), trainXmls, createDir=createDir) cpFiles(src, os.path.join(destn, testFolName), testXmls, createDir=createDir) print('Copied {0} training files'.format(len(trainFiles))) print('Copied {0} test files'.format(len(testFiles))) # credits - https://github.com/datitran/raccoon_dataset/blob/master/xml_to_csv.py def xml_to_df(path): ''' path - path containing all the xml files to be converted to csv (combines and converts all the xml data into one DataFrame) ''' xml_list = [] for xml_file in glob.glob(path + '/*.xml'): tree = ET.parse(xml_file) root = tree.getroot() for member in root.findall('object'): value = (root.find('filename').text, int(root.find('size')[0].text), int(root.find('size')[1].text), member[0].text, int(member[4][0].text), int(member[4][1].text), int(member[4][2].text), int(member[4][3].text) ) xml_list.append(value) column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax'] xml_df = pd.DataFrame(xml_list, columns=column_name) return xml_df def xml_to_csv(src, csvFname): ''' src :: string - path containing all the xml files to be converted to csv (combines and converts all the xml data into one DataFrame) csvFname :: string - path to the csv file (folders leading to this path must exist) ''' xml_to_df(src).to_csv(csvFname, index=None)
import os from tabulate import tabulate from transformers import AutoTokenizer, AutoConfig class InputLM(): def __init__(self, lm_path, max_length) -> None: self.max_length = max_length self.tokenizer = AutoTokenizer.from_pretrained( lm_path, model_max_length=max_length) def __call__(self, tokens, entities): tokens = tokens.copy() entities = entities.copy() input_ids, attention_mask, encode_dict = self._tokenizer_input(tokens) shifted_entities = self._shifted_entities_index(input_ids, entities, encode_dict) lm_tokens=[self.tokenizer.decode(w)for w in input_ids] return { 'attention_mask':attention_mask, 'input_ids':input_ids, 'lm_tokens':lm_tokens, 'lm_entities':shifted_entities, 'encode_dict':encode_dict} def _tokenizer_input(self, tokens): max_length = self.max_length start_id = self.tokenizer.bos_token_id end_id = self.tokenizer.eos_token_id pad_id = self.tokenizer.pad_token_id encode_dict = {} input_ids = [start_id] for index in range(len(tokens)): word = tokens[index] shifted = len(input_ids) ids = self.tokenizer.encode(word) ids = ids[1:-1] input_ids.extend(ids) encode_dict[index]=(shifted, shifted+len(ids)) input_ids.append(end_id) # Add end of word num_ids = len(input_ids) # Create mask mask = [1]*num_ids mask+= [0]*(max_length-num_ids) assert len(mask)==max_length, 'Error create mask' input_ids+=[pad_id] * (max_length-num_ids) # Add padding return input_ids, mask, encode_dict def _shifted_entities_index(self, input_ids, entities, encode_dict): shifted_entities = [] for index in range(len(entities)): # Shift labels index entity = entities[index] entity_type = entity['entity_type'] start, end = entity['span'] text = entity['text'] (shifted_start, _) = encode_dict.get(start) # shifting start, end (_, shifted_end) = encode_dict.get(end-1) decode_text = input_ids[shifted_start:shifted_end] decode_text = [self.tokenizer.decode(w) for w in decode_text] decode_text = "".join(decode_text) shifted_entities.append({ 'entity_type':entity_type, 'span':[shifted_start, shifted_end], 'text': decode_text}) return shifted_entities @staticmethod def check_entities(sample): temp = [['original_en', 'orginal_span', 'decode_en', 'decode_span']] for index in range(len(sample['org_entities'])): org_entity = sample['org_entities'][index] original_ne = org_entity['text'] original_span = org_entity['span'] decode_entity = sample['entities'][index] decode_ne =decode_entity['text'] decode_span = decode_entity['span'] temp.append([original_ne, original_span, decode_ne, decode_span]) print(tabulate(temp)) @staticmethod def check_input_ids_and_mask(sample): temp = [['index', 'input_text', 'input_ids', 'mask']] for index in range(len(sample['input_ids'])): original_ids = sample['input_ids'][index] mask = sample['mask'][index] input_text = sample['input_text'][index] temp.append([index, input_text, original_ids, mask]) print(tabulate(temp))
from keras.models import load_model import signal_data import tensorflow as tf train, test = signal_data.load_data() features, labels = train featuresT, labelsT =test featuresarr=featuresT.__array__(dtype=int); model = tf.keras.models.load_model("keras_modelv3.h5") pred = model.predict(featuresarr) print(pred)