content
stringlengths
5
1.05M
from unittest import mock from transiter import parse from transiter.parse import utils def test_clean_all_good(): trip_cleaners = [mock.MagicMock() for __ in range(3)] for cleaner in trip_cleaners: cleaner.return_value = True stop_event_cleaners = [mock.MagicMock() for __ in range(3)] gtfs_cleaner = utils.TripDataCleaner(trip_cleaners, stop_event_cleaners) trip = parse.Trip( id="trip", route_id="L", direction_id=True, stop_times=[parse.TripStopTime(stop_id="L03")], ) clean_trips = gtfs_cleaner.clean([trip]) assert [trip] == clean_trips for cleaner in trip_cleaners: cleaner.assert_called_once_with(trip) for cleaner in stop_event_cleaners: cleaner.assert_called_once_with(trip, trip.stop_times[0]) def test_clean_buggy_trip(): trip_cleaners = [mock.MagicMock() for __ in range(3)] for cleaner in trip_cleaners: cleaner.return_value = True trip_cleaners[1].return_value = False stop_event_cleaners = [mock.MagicMock() for __ in range(3)] gtfs_cleaner = utils.TripDataCleaner(trip_cleaners, stop_event_cleaners) trip = parse.Trip( id="trip", route_id="L", direction_id=True, stop_times=[parse.TripStopTime(stop_id="L03")], ) clean_trips = gtfs_cleaner.clean([trip]) assert [] == clean_trips trip_cleaners[0].assert_called_once_with(trip) trip_cleaners[1].assert_called_once_with(trip) trip_cleaners[2].assert_not_called() for cleaner in stop_event_cleaners: cleaner.assert_not_called()
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu Oct 31 09:43:24 2019 Script for merging TNO and NAEI emission files ; ; This is based on Doug Lowes NCL script to do the same thing ; but with TNO/NAEI whereas we will use EDGAR/NAEI ; - treatment of the emission variables will be hardcoded, ; so that we can check for existence of NAEI emissions. ; ; Rules for merging: ; 1) EDGAR emissions will only be taken where there are no ; NAEI emissions (this will be based on a total summation of ; NAEI emissions, rather than done on a species by species basis). ; 2) A multiplying factor of 1.6 is applied to OC_DOM, OC_TRA, and OC_25_10 ; emissions (to roughly account for the Carbon to "everything" mass ratio for OM) ; 4) OIN 2.5 PM species will be either the difference between ; E_PM25 and the sum of BC_1 + EC_1_25 + OC_DOM + OC_TRA ; or 10% of the E_PM25 mass (whichever is smaller) ; (we'll make sure that all emissions are >0) ; 5) OIN 10 PM species will be the difference between ; E_PM_10 and the sum of OC_25_10 + EC_25_10 ; (we'll make sure that all emissions are >0) @author: ee15amg """ import numpy as np from netCDF4 import Dataset from netCDF4 import num2date, date2num #import time #from scipy.io.netcdf import netcdf_file #import matplotlib.pyplot as plt # define input and output files filename_edgar = ('wrfchemi_edgar_00z_d01') filename_naei = ('wrfchemi_naei_00z_d01') filename_combined = ('wrfchemi_00z_d01') # open the files for processing F_NAEI = Dataset(filename_naei,"r") F_EDGAR = Dataset(filename_edgar,"r") F_OUT = Dataset(filename_combined, "w") #F_OUT = netcdf_file(filename_combined, "w") # full list of variables (for calculating the total NAEI emissions) var_full = (['E_CH4','E_ECI','E_ECJ','E_CO','E_C2H2','E_NH3','E_NO', 'E_NO2','E_ORGI','E_ORGJ','E_PM_10','E_PM25I','E_PM25J', 'E_SO2','E_BIGALK','E_BIGENE','E_C2H4','E_C2H5OH','E_C2H6', 'E_CH2O','E_CH3CHO','E_CH3COCH3','E_CH3OH','E_MEK','E_TOLUENE', 'E_C3H6','E_C3H8','E_BENZENE','E_XYLENE']) # list of variables for which we filter TNO emissions to avoid clashs with # NAEI emissions var_filter = (['E_CH4','E_ECI','E_ECJ','E_CO','E_C2H2','E_NH3','E_NO', 'E_NO2','E_ORGI','E_ORGJ','E_PM_10','E_PM25I','E_PM25J', 'E_SO2','E_BIGALK','E_BIGENE','E_C2H4','E_C2H5OH','E_C2H6', 'E_CH2O','E_CH3CHO','E_CH3COCH3','E_CH3OH','E_MEK','E_TOLUENE', 'E_C3H6','E_C3H8','E_BENZENE','E_XYLENE']) #create output netcdf following same layout as input files #;;;;;;;;;;;;;; operational section of script ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; # loop through variables to pull out for making full NAEI summation # (units don't matter here - it's a purely binary check) var_tot = np.zeros([12,1,139,139]) for i_var in range(len(var_full)): var_temp = np.asarray(F_NAEI[var_full[i_var]]) var_tot[:,:,:,:]=(var_tot[:,:,:,:] + var_temp[:,:,:,:]) # create data mask to apply to TNO data # initialise mask to correct dimensions naei_empty = var_tot[:,:,:,:]*0.0 # set mask to zero where there's NAEI data - and 1.0 where there isn't mask= np.where(var_tot==0) naei_empty[mask] = naei_empty[mask]+1.0 #check mask works #print np.max(var_tot[mask]) ## create NETCDF file to put data into ##create Dimensions # #get number of hours from netcdf data lenDateStr = len(np.asarray(F_NAEI['Times'])[0,:]) n_lons = np.size(np.asarray(F_NAEI['XLONG'])[0,:]) n_lats = np.size(np.asarray(F_NAEI['XLAT'])[0,:]) n_emis = np.size(np.asarray(F_NAEI['E_CO'])[0,:,0,0]) n_times = np.size(np.asarray(F_NAEI['Times'])[:,0]) # copy all global attributes from old file to new one # also copy old dimensions from old to new netcdf F_OUT.setncatts(F_EDGAR.__dict__) for name, dimension in F_EDGAR.dimensions.items(): F_OUT.createDimension( name, (len(dimension) if not dimension.isunlimited() else None)) # add dimensions into netcdf #Time = F_OUT.createDimension("Time",n_times) #emissions_zdim_stag = F_OUT.createDimension("emissions_zdim_stag",n_emis) #south_north = F_OUT.createDimension("south_north",n_lats) #west_east = F_OUT.createDimension("west_east",n_lons) #DateStrLen = F_OUT.createDimension("DateStrLen",lenDateStr) #create Variables Times = F_OUT.createVariable("Times","S1",("Time","DateStrLen")), XLONG = F_OUT.createVariable("XLONG","f4",("south_north","west_east")), XLAT = F_OUT.createVariable("XLAT","f4",("south_north","west_east")) for i_var in range(np.size(var_full)): var_filter[i_var] = F_OUT.createVariable((var_filter[i_var]),"f4", ("Time","emissions_zdim_stag","south_north","west_east")) # fill basic variables manually lat = np.asarray(F_NAEI['XLAT']) lon = np.asarray(F_NAEI['XLONG']) datetime = np.asarray(F_NAEI['Times']) XLAT = lat XLONG = lon Times = datetime # then loop through chem species to add them into file #loop through the variables to be combined (in a straightforward manner) for i_var in range(len(var_filter)): # load data var_edgar = np.asarray(F_EDGAR[var_full[i_var]]) var_naei= np.asarray(F_NAEI[var_full[i_var]]) # merge data files - applying the filter # where naei data exists we wont input edgar vars #(multiplying them by zero takes care of this) var_naei_new = var_naei + naei_empty*var_edgar # save data #print var_full[i_var] var_filter[i_var][:,:,:,:] = var_naei_new[:,:,:,:] F_OUT.close()
''' Created on Jun 21, 2018 @author: moffat ''' from django import forms from edc_form_validators import FormValidator class IneligibleSubjectFormValidator(FormValidator): def clean(self): self.screening_identifier = self.cleaned_data.get('screening_identifier') self.reasons_ineligible = self.cleaned_data.get('reasons_ineligible') self.required_if_true( True, field_required='screening_identifier') self.required_if_true( True, field_required='reasons_ineligible')
from discharge_data import * from gumbel_reduce import gumbel_reduce_data from plot_discharge import PlotDischarge from log import * time_list = [50, 100, 150, 200, 500, 1000] def verify_gumbel(func): """ A wrapper function, Wrapper decorator @ should be placed right on top of function that is to be wrapped :param func: function to be wrapped :return: the wrapped function's return value """ def wrapper(args): try: result = func(args) return result except KeyError: logging.error('ERROR: To extract reduce value numeric value is ' 'to be passed') return np.nan return wrapper @verify_gumbel def get_reduce_mean(index_): """ Indexing the Gumbel reduce data and determining reduce mean :param index_: no. of discharge data in the DataFrame :return: indexed reduced mean value """ if index_ in range(100, 150): index_ = 150 elif index_ in range(150, 200): index_ = 200 value = gumbel_reduce_data(csv_file=gumbel_reduce_path) return value['Reduced mean'][index_] @verify_gumbel def get_reduce_std(index_): """ Indexing the Gumbel reduce data and determining reduce std :param index_: no. of discharge data in the DataFrame :return: indexed reduced standard deviation value """ if index_ in range(100, 150): index_ = 150 elif index_ in range(150, 200): index_ = 200 value = gumbel_reduce_data(csv_file=gumbel_reduce_path) return value['Reduced std'][index_] def gumbel_distribution(discharge_data): """ Function determines the Gumbel Distribution statistical parameters by calling 2 functions and performs mathematical operations to return the Extrapolated discharges :param discharge_data: pandas DataFrame of Annual maxima :return: a list of extrapolated discharges """ number_of_years = discharge_data.shape[0] logging.info( 'Annual Max is calculated for {} years'.format(number_of_years)) mean_discharge = discharge_data['Discharge [CMS]'].mean() std_dev = discharge_data['Discharge [CMS]'].std() reduce_mean = get_reduce_mean(number_of_years) reduce_std = get_reduce_std(number_of_years) main_discharge = [] for year in time_list: reduced_variate = -math.log(math.log(year / (year - 1))) try: frequency_factor = (reduced_variate - reduce_mean) / reduce_std except ZeroDivisionError: logging.error("ERROR: Could not divide by zero") discharge_value = mean_discharge + frequency_factor * std_dev main_discharge.append(discharge_value) return main_discharge def main(d_data, scatter_size=0.0): """ :param d_data: raw discharge data file :param scatter_size: Specifying the scatter size for Magic Methods :return: results as a Dictionary """ # instantiation of the DischargeDataHandler Class raw_discharge_data = DischargeDataHandler(data_csv_file=d_data) # calling method to get discharge data data = raw_discharge_data.get_discharge_data() logging.info("\nThe Annual Maximum Discharge Data is: \n{}".format(data)) # function call to estimate extrapolated discharges output_list = gumbel_distribution(data) # instantiation of the PlotDischarge Class plotter = PlotDischarge() # Flexibilizing the Scatter size using Magic Methods plotter * scatter_size plotter > 150 plotter < 5 # changing the extrapolated discharge plotting arguments to numpy t_series = np.array(time_list) q_series = np.array(output_list) # appending extrapolated discharges to a dict flood_discharge_dict = {} for index, time in enumerate(time_list): flood_discharge_dict[time] = output_list[index] # returning all the values as a dictionary results = {"return_periods": flood_discharge_dict, "t_series": t_series, "q_series": q_series, "d_data": data, "obj": plotter} return results
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Import # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Import Standard libraries from abc import ABC, abstractmethod import streamlit as st # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Classes # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class CBaseComponent(ABC): def __init__(self , compOpts ): self.opts = compOpts @abstractmethod def getOptDflt(self, optName): raise NotImplementedError('This method is not implemented in the Base Class: it must be implemented in the child class.') @abstractmethod def render(self): pass def getOpt(self, optName): if optName in self.opts.keys(): return self.opts.get(optName) return self.getOptDflt(optName) def showTitle(self, title): # Display the component title if title: st.subheader(title)
import cv2 import os import pickle import imutils import numpy as np import time # IU - Concert Live Clip 2018 Tour.mp4 image_path = "D:/Github/FR-AttSys/test_imgs/IU-2.png" detector_path = "./face_detection_model" # OpenCV深度学习面部嵌入模型的路径 embedding_model = "./face_detection_model/openface_nn4.small2.v1.t7" # 训练模型以识别面部的路径 recognizer_path = "./saved_weights/recognizer.pickle" # 标签编码器的路径 le_path = "./saved_weights/le.pickle" faces = ["iu", "pch", "chopin"] COLORS = np.random.uniform(0, 255, size=(len(faces), 3)) def face_recognition(image_path): try: image = cv2.imread(image_path) except FileExistsError as e: print(e) # 置信度 confidence_default = 0.5 # 从磁盘加载序列化面部检测器 proto_path = os.path.sep.join([detector_path, "deploy.prototxt"]) model_path = os.path.sep.join([detector_path, "res10_300x300_ssd_iter_140000.caffemodel"]) detector = cv2.dnn.readNetFromCaffe(proto_path, model_path) # 从磁盘加载序列化面嵌入模型 try: embedded = cv2.dnn.readNetFromTorch(embedding_model) except IOError: print("面部嵌入模型的路径不正确!") # 加载实际的人脸识别模型和标签 try: recognizer = pickle.loads(open(recognizer_path, "rb").read()) le = pickle.loads(open(le_path, "rb").read()) except IOError: print("人脸识别模型保存路径不正确!") image = imutils.resize(image, width=600) (h, w) = image.shape[:2] # construct a blob from the image image_blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0), swapRB=False, crop=False) detector.setInput(image_blob) detections = detector.forward() # 循环检测 for i in range(0, detections.shape[2]): # 提取与预测相关的置信度(即概率) confidence = detections[0, 0, i, 2] # 过滤弱检测 if confidence > confidence_default: # 计算面部边界框的(x,y)坐标 box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # 提取面部ROI face = image[startY:endY, startX:endX] (fH, fW) = face.shape[:2] # 确保面部宽度和高度足够大 if fW < 20 or fH < 20: continue # 为面部ROI构造一个blob,然后通过我们的面部嵌入模型传递blob以获得面部的128-d量化 face_blob = cv2.dnn.blobFromImage(face, 1.0 / 255, (96, 96), (0, 0, 0), swapRB=True, crop=False) embedded.setInput(face_blob) vec = embedded.forward() # 执行分类识别面部 predicts = recognizer.predict_proba(vec)[0] j = np.argmax(predicts) probability = predicts[j] name = le.classes_[j] # 绘制面部的边界框以及相关的概率 text = "{}: {:.2f}%".format(name, probability * 100) y = startY - 10 if startY - 10 > 10 else startY + 10 cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[j], 1) image = cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.60, COLORS[j], 1) cv2.imshow("Face Recognition on Image", image) cv2.waitKey(0) if __name__ == "__main__": face_recognition(image_path)
from mmfutils import optimize import numpy as np from uncertainties import ufloat class Test(object): def test_usolve(self): n = ufloat(2.0, 0.1, 'n') c = ufloat(1.0, 0.1, 'c') a = ufloat(3.0, 0.1, 'a') def f(x): return x**n - a*c ans = optimize.ubrentq(f, 0, max(1, a)) exact = (a*c)**(1./n) res = ans - exact assert np.allclose(0, [res.nominal_value, res.std_dev]) def test_usolve_1(self): """Should also work with regular numbers (which is faster).""" n = 2.0 c = 1.0 a = 3.0 def f(x): return x**n - a*c ans = optimize.ubrentq(f, 0, max(1, a)) exact = (a*c)**(1./n) assert np.allclose(ans, exact)
from JumpScale import j from .Code import Code j.code = Code()
############################################################################### # Imports import sys ############################################################################### # General utility # Exit the program def terminate_app(code, message=None): if message: print("Exiting program with code {}: {}".format(code, message)) else: print("Exiting program with code {}.".format(code)) sys.exit(code) # Print section def print_section(title): print("\n\n###############################################################################") print(title) print("###############################################################################") ###############################################################################
# -*- coding: utf-8 -*- # @Time : 2021/8/17 21:41 # @Author : lovemefan # @Email : lovemefan@outlook.com # @File : client.py import logging import grpc from tzrpc.proto.py.Server_pb2_grpc import toObjectStub logging.basicConfig(level=logging.INFO, format='[%(asctime)s] - %(levelname)s - %(threadName)s - %(module)s.%(funcName)s - %(message)s') logger = logging.getLogger(__name__) class TZPRC_Client: __type = ["String", "Integer", "Float", "Double", "Boolean", "Numpy", "Tensor"] def __init__(self, server_address: str): self.server_address = server_address self.channel = grpc.insecure_channel(server_address) def register(self, func): """ :param return_type: type of return [String, ] :return: """ # if return_type not in self.__type: # raise ValueError(f"TZRPC return type only support {self.__type}") def wrapper(*args, **kwargs): stub = toObjectStub(self.channel) func(stub=stub, *args, **kwargs) return wrapper class Listener: def __init__(self): pass
from django.contrib import admin from .models import RedirectUrl, RedirectUrlsEntry # Register your models here. admin.site.register(RedirectUrl) admin.site.register(RedirectUrlsEntry)
#! /usr/bin/env python # -*- coding: utf-8 -*- # Create by Albert_Chen # CopyRight (py) 2020年 陈超. All rights reserved by Chao.Chen. # Create on 2020-03-22 from __future__ import absolute_import import json import logging import tornado import tornado.httpserver import tornado.ioloop import tornado.options import tornado.web from gamecenter.api import game_handler from gamecenter.api import room_handler from gamecenter.api import user_handler from gamecenter.api import error_handler from gamecenter.api import main_handler LOG = logging.getLogger(__name__) # pattern part URL_PREFIX = r"/v1/gamecenter" main_pattern = [ (r"/v1", main_handler.MainHandler), ] user_patterns = [ (URL_PREFIX + r"/user_info", user_handler.UserHandler), (URL_PREFIX + r"/user_logout", user_handler.UserLogoutHandler), ] game_patters = [ (URL_PREFIX + r"/game_logs", game_handler.GameLogsHandler), (URL_PREFIX + r"/game_current_logs", game_handler.GameCurrentLogsHandler), (URL_PREFIX + r"/game_list", game_handler.GameListHandler) ] room_patterns = [ (URL_PREFIX + r"/room_list", room_handler.RoomListHandler), (URL_PREFIX + r"/room", room_handler.RoomHandler), (URL_PREFIX + r"/room/(\d+)", room_handler.RoomHandler), (URL_PREFIX + r"/join_room", room_handler.RoomJoinHandler), (URL_PREFIX + r"/quit_room", room_handler.RoomQuitHandler), (URL_PREFIX + r"/room/(\d+)", room_handler.RoomHandler), (URL_PREFIX + r"/game_over", room_handler.GameOverHandler), (URL_PREFIX + r"/game_start", room_handler.GameStartHandler), ] url_patterns = user_patterns +\ game_patters + \ main_pattern +\ room_patterns class WebApp(tornado.web.Application): def __init__(self, debug=False): handlers = url_patterns setting = dict(debug=debug, default_handler_class=error_handler.NotFoundHandler) tornado.web.Application.__init__( self, handlers, autoreload=True, **setting ) def run_api(mode, port=8000, address="127.0.0.1"): LOG.info(mode) http_server = tornado.httpserver.HTTPServer(WebApp(debug=mode)) http_server.listen(port, address) LOG.info('start run at %s:%s ' % (address, port)) tornado.ioloop.IOLoop.current().start()
import mimetypes from typing import List, Union from pathlib import Path import magic from haystack.nodes.base import BaseComponent DEFAULT_TYPES = ["txt", "pdf", "md", "docx", "html"] class FileTypeClassifier(BaseComponent): """ Route files in an Indexing Pipeline to corresponding file converters. """ outgoing_edges = 10 def __init__(self, supported_types: List[str] = DEFAULT_TYPES): """ Node that sends out files on a different output edge depending on their extension. :param supported_types: the file types that this node can distinguish. Note that it's limited to a maximum of 10 outgoing edges, which correspond each to a file extension. Such extension are, by default `txt`, `pdf`, `md`, `docx`, `html`. Lists containing more than 10 elements will not be allowed. Lists with duplicate elements will also be rejected. """ if len(supported_types) > 10: raise ValueError("supported_types can't have more than 10 values.") if len(set(supported_types)) != len(supported_types): duplicates = supported_types for item in set(supported_types): duplicates.remove(item) raise ValueError(f"supported_types can't contain duplicate values ({duplicates}).") super().__init__() self.supported_types = supported_types def _estimate_extension(self, file_path: Path) -> str: """ Return the extension found based on the contents of the given file :param file_path: the path to extract the extension from """ extension = magic.from_file(str(file_path), mime=True) return mimetypes.guess_extension(extension) or "" def _get_extension(self, file_paths: List[Path]) -> str: """ Return the extension found in the given list of files. Also makes sure that all files have the same extension. If this is not true, it throws an exception. :param file_paths: the paths to extract the extension from :return: a set of strings with all the extensions (without duplicates), the extension will be guessed if the file has none """ extension = file_paths[0].suffix.lower() if extension == "": extension = self._estimate_extension(file_paths[0]) for path in file_paths: path_suffix = path.suffix.lower() if path_suffix == "": path_suffix = self._estimate_extension(path) if path_suffix != extension: raise ValueError(f"Multiple file types are not allowed at once.") return extension.lstrip(".") def run(self, file_paths: Union[Path, List[Path], str, List[str], List[Union[Path, str]]]): # type: ignore """ Sends out files on a different output edge depending on their extension. :param file_paths: paths to route on different edges. """ if not isinstance(file_paths, list): file_paths = [file_paths] paths = [Path(path) for path in file_paths] output = {"file_paths": paths} extension = self._get_extension(paths) try: index = self.supported_types.index(extension) + 1 except ValueError: raise ValueError( f"Files of type '{extension}' ({paths[0]}) are not supported. " f"The supported types are: {self.supported_types}. " "Consider using the 'supported_types' parameter to " "change the types accepted by this node." ) return output, f"output_{index}"
import numpy as np import pandas as pd import math import random import re simulationDuration = 100 minFeatureDuration = 1 maxFeatureDuration = 20 minFeatureValue = 0 maxFeatureValue = 10000 maxDuration = 5 numRuns = 1000 class QDisc: def sort(self, anArray): return anArray def name(self): return "NoOp" class QDiscRandom(QDisc): def sort(self, anArray): random.shuffle(anArray) return anArray def name(self): return "Random" class QDiscCD3(QDisc): def sort(self, anArray): anArray.sort(key=lambda feature: feature['cd3value'], reverse=True) return anArray def name(self): return "CD3" class QDiscShortestJobFirst(QDisc): def sort(self, anArray): anArray.sort(key=lambda feature: feature['estimatedDuration'], reverse=False) return anArray def name(self): return "Shortest First" def generateRandomFeatureDuration(): return np.random.randint(minFeatureDuration, maxFeatureDuration+1) def generateRandomFeatureValue(): return np.random.randint(minFeatureValue, maxFeatureValue+1) def createFeature(estimatedDuration=None, estimatedValue=None): if not estimatedDuration: estimatedDuration = generateRandomFeatureDuration() if not estimatedValue: estimatedValue = generateRandomFeatureValue() cd3value = estimatedValue / estimatedDuration return {'estimatedDuration': estimatedDuration, 'estimatedValue': estimatedValue, 'cd3value': cd3value } def calcPercentage(base, candidate): result = { "Queueing Discipline": "", "Value Reassessed": "", "Duration Reassessed": "", "Resized": "" } for k,v in candidate.items(): if re.search("percentile", k): result[k] = '{:.0f}%'.format((v / base[k] - 1) * 100) return result def decompose(number, numParts): if number < numParts: while number > 0: n = random.randint(1, number) yield n number -= n numParts -= 1 for i in range(numParts): yield 0 else: while number > 0 and numParts > 1: n = random.randint(1, number-numParts+1) yield n number -= n numParts -= 1 yield number def performSimulation(qdisc, reassessDuration=False, reassessValue=True, resize=False): results = [] i = 0 while i < numRuns: features = [] for x in range(10): features.append(createFeature()) elapsedWeeks = 0 accruedValue = 0 numDeliveredFeatures = 0 while elapsedWeeks < simulationDuration: features = qdisc.sort(features) currentFeature = features.pop(0) if resize and currentFeature['estimatedDuration'] > maxDuration: splittedDurations = list(decompose(currentFeature['estimatedDuration'], 4)) random.shuffle(splittedDurations) splittedValues = list(decompose(currentFeature['estimatedValue'], 4)) random.shuffle(splittedValues) for x in range(3): features.append(createFeature(splittedDurations.pop(0), splittedValues.pop(0))) continue if reassessDuration: currentFeatureDuration = generateRandomFeatureDuration() else: currentFeatureDuration = currentFeature['estimatedDuration'] if reassessValue: currentFeatureValue = generateRandomFeatureValue() else: currentFeatureValue = currentFeature['estimatedValue'] if (elapsedWeeks+currentFeatureDuration) > simulationDuration: break numberNewFeatures = math.floor((elapsedWeeks+currentFeatureDuration)/2) - math.floor(elapsedWeeks/2) for x in range(numberNewFeatures): features.append(createFeature()) elapsedWeeks += currentFeatureDuration accruedValue += currentFeatureValue results.append(accruedValue) i += 1 result = { "Queueing Discipline": qdisc.name(), "Value Reassessed": reassessValue, "Duration Reassessed": reassessDuration, "Resized": resize } i = 1 for percentile in np.percentile(results,[10,20,30,40,50,60,70,80,90]): key = "%i0th percentile" % i result[key] = percentile i += 1 return result def runSimulationSet(title, set, out): simulationResults = [] columns = ["Queueing Discipline", "Value Reassessed", "Duration Reassessed", "Resized", "10th percentile", "20th percentile", "30th percentile", "40th percentile", "50th percentile", "60th percentile", "70th percentile", "80th percentile", "90th percentile"] print(title) baseSim = set.pop(0); base = performSimulation(baseSim[0], reassessDuration=baseSim[1], reassessValue=baseSim[2], resize=baseSim[3]) simulationResults.append(base) for sim in set: result = performSimulation(sim[0], reassessDuration=sim[1], reassessValue=sim[2], resize=sim[3]) simulationResults.append(result) simulationResults.append(calcPercentage(base, result)) df = pd.DataFrame(simulationResults, columns=columns) df.T.to_csv("out", sep="\t", header=False) print(df.T, "\n") set = [ # Array format: qdisc, reassessDuration, reassessValue, resize # see performSimulation [QDiscCD3(), False, False, False], [QDiscShortestJobFirst(), False, False, False], [QDiscRandom(), False, False, False] ] runSimulationSet("Case I: CD3 Assumptions Are Met", set, "report-case-i.csv") set = [ [QDiscCD3(), False, True, False], [QDiscShortestJobFirst(), False, True, False], [QDiscRandom(), False, True, False] ] runSimulationSet("Case II: CD3 Assumptions Not Met", set, "report-case-ii.csv") set = [ [QDiscCD3(), True, True, False], [QDiscShortestJobFirst(), True, True, False], [QDiscRandom(), True, True, False] ] runSimulationSet("Case II: CD3 Assumptions Not Met (Version 2)", set, "report-case-ii_1.csv") set = [ [QDiscCD3(), False, True, True], [QDiscShortestJobFirst(), False, True, True], [QDiscRandom(), False, True, True] ] runSimulationSet("Case III: Right Sizing of Items", set, "report-case-iii.csv")
#!/usr/bin/python import yaml from pprint import pprint from netmiko import ConnectHandler from ciscoconfparse import CiscoConfParse with open('netmiko.yml', 'r') as file: devices=yaml.load(file) cisco4 = devices.get('cisco4') ssh = ConnectHandler(host=cisco4.get('host'), username=cisco4.get('username'), password=cisco4.get('password'), device_type='cisco_ios', session_log='ex6_cisco4_log.txt') with open('ex6_cisco4_conf.txt', 'w') as file: file.write(ssh.send_command('show run')) config = CiscoConfParse('ex6_cisco4_conf.txt') intf = config.find_objects_w_child(parentspec = r'^interface', childspec = r'^[\s]+ip address') ipadd = config.find_objects_w_parents(parentspec = r'^interface', childspec = r'^[\s]+ip address') table = list(zip([i.text for i in intf], [j.text for j in ipadd])) for i in table: pprint('Interface Line: {0}'.format(i[0])) pprint('IP Address Line: {0}'.format(i[1]))
import pandas as pd from comvest.utilities.io import files, read_from_db, write_result from comvest.utilities.logging import progresslog, resultlog def cleandata(df,date,keepcolumns=['ano_vest','cod_curso','desc_curso','he','mod_isencao']): df.insert(loc=0, column='ano_vest', value=date) df.drop(columns=['area'], errors='ignore', inplace=True) df.rename(columns={df.columns[1]:'cod_curso', df.columns[2]:'desc_curso'}, inplace=True) df['desc_curso'] = df['desc_curso'].map( lambda desc: desc.replace('\r','').replace('\n','').replace('_x000D_','') ) return df.reindex(columns=keepcolumns) def extraction(): courses_frames = [] for path, date in files.items(): courses = read_from_db(path, sheet_name='cursos') progresslog('cursos', date) courses = cleandata(courses, date) courses_frames.append(courses) # Export CSV all_courses = pd.concat(courses_frames) all_courses.sort_values(by='ano_vest', ascending=False, inplace=True) FILE_NAME = 'cursos_comvest.csv' write_result(all_courses, FILE_NAME) resultlog(FILE_NAME)
# %% ####################################### def registryget_regkey_summary(key_object: RegistryKey): from Registry.Registry import RegistryKey # if isinstance(key_object, RegistryKey): results = {} results['values_num'] = key_object.values_number() results['subkeys_num'] = key_object.subkeys_number() return results
from typing import Dict from typing import List from treasury.session import FederalTreasurySession class RevenueAndPayments(): """ ## Overview: ---- Revenue: Daily overview of federal revenue collections such as income tax deposits, customs duties, fees for government service, fines, and loan repayments. Payments: Listing of payments made through the Judgment Fund including the amount paid out, judgment type, legal representatives, agency, and associated costs. """ def __init__(self, session: FederalTreasurySession) -> None: """Initializes the `RevenueAndPayments` object. ### Parameters ---- session : `TreasurySession` An initialized session of the `TreasurySession`. ### Usage ---- >>> treasury_client = FederalTreasuryClient() >>> revenue_and_payments_service = treasury_client.revenue_and_payments() """ # Set the session. self.treasury_session: FederalTreasurySession = session def __repr__(self) -> str: """String representation of the `FederalTreasuryClient.RevenueAndPayments` object.""" # define the string representation str_representation = '<FederalTreasuryClient.RevenueAndPayments (active=True, connected=True)>' return str_representation def judgement_fund_congress( self, fields: List[str] = None, sort: List[str] = None, filters: List[str] = None, page_number: int = 1, page_size: int = 100 ) -> Dict: """Judgment Fund: Annual Report to Congress. ### Overview ---- This table provides a listing of payments made through the Judgment Fund including the amount paid out, judgment type, legal representatives, agencies involved, and associated costs. ### Parameters ---- fields : List[str] (optional, Default=None) The fields parameter allows you to select which field(s) should be included in the response. If desired fields are not specified, all fields will be returned. sort : List[str] (optional, Default=None) The sort parameter allows a user to sort a field in ascending (least to greatest) or descending (greatest to least) order. When no sort parameter is specified, the default is to sort by the first column listed. Most API endpoints are thus sorted by date in ascending order (historical to most current). filters : List[str] (optional, Default=None) Filters are used to view a subset of the data based on specific criteria. For example, you may want to find data that falls within a certain date range, or only show records which contain a value larger than a certain threshold. When no filters are provided, the default response will return all fields and all data. page_number : int (optional, Default=1) The page number will set the index for the pagination, starting at 1. This allows the user to paginate through the records returned from an API request page_size : int (optional, Default=100) The page size will set the number of rows that are returned on a request. ### Returns ---- Dict A collection of `Records` resources. ### Usage ---- >>> treasury_client = FederalTreasuryClient() >>> revenue_and_payments_service = treasury_client.revenue_and_payments() >>> revenue_and_payments_service.judgement_fund_congress() """ if fields: fields = ','.join(fields) if filters: filters = ','.join(filters) if sort: sort = ','.join(sort) content = self.treasury_session.make_request( method='get', endpoint='/v2/payments/jfics/jfics_congress_report', params={ 'format': 'json', 'page[number]': page_number, 'page[size]': page_size, 'fields': fields, 'sort': sort, 'filters': filters } ) return content def revenue_collection( self, fields: List[str] = None, sort: List[str] = None, filters: List[str] = None, page_number: int = 1, page_size: int = 100 ) -> Dict: """U.S. Government Revenue Collections. ### Overview ---- A daily overview of federal revenue collections such as individual and corporate income tax deposits, customs duties, fees for government service, fines, and loan repayments. These collections can be made through either electronic or non-electronic transactions by mail, internet, bank, or over-the-counter (OTC) channels. ### Parameters ---- fields : List[str] (optional, Default=None) The fields parameter allows you to select which field(s) should be included in the response. If desired fields are not specified, all fields will be returned. sort : List[str] (optional, Default=None) The sort parameter allows a user to sort a field in ascending (least to greatest) or descending (greatest to least) order. When no sort parameter is specified, the default is to sort by the first column listed. Most API endpoints are thus sorted by date in ascending order (historical to most current). filters : List[str] (optional, Default=None) Filters are used to view a subset of the data based on specific criteria. For example, you may want to find data that falls within a certain date range, or only show records which contain a value larger than a certain threshold. When no filters are provided, the default response will return all fields and all data. page_number : int (optional, Default=1) The page number will set the index for the pagination, starting at 1. This allows the user to paginate through the records returned from an API request page_size : int (optional, Default=100) The page size will set the number of rows that are returned on a request. ### Returns ---- Dict A collection of `Records` resources. ### Usage ---- >>> treasury_client = FederalTreasuryClient() >>> revenue_and_payments_service = treasury_client.revenue_and_payments() >>> revenue_and_payments_service.revenue_collection() """ if fields: fields = ','.join(fields) if filters: filters = ','.join(filters) if sort: sort = ','.join(sort) content = self.treasury_session.make_request( method='get', endpoint='/v2/revenue/rcm', params={ 'format': 'json', 'page[number]': page_number, 'page[size]': page_size, 'fields': fields, 'sort': sort, 'filters': filters } ) return content
from train_QNet import * import torch import numpy as np from torch import optim import random import copy import utils import torch from torch import nn import torch.nn.functional as F import numpy as np from torch import optim from tqdm import tqdm as _tqdm import random def repeat_trajectory(trajectory, seed, env_name): # Note that step is from the end env = utils.create_env(env_name) assert seed == int(seed) seed = int(seed) random.seed(seed) torch.manual_seed(seed) np.random.seed(seed) env.seed(seed) env.reset() environment_states = [] states = [] rewards = [] for observation in trajectory: environment_states.append(copy.deepcopy(env)) obs_s, obs_a, obs_r, obs_ns, obs_done = observation states.append(obs_s) rewards.append(obs_r) next_state, r, done, _ = env.step(obs_a) if np.any(obs_ns - next_state > 1e-12) or r != obs_r or done != obs_done: raise ValueError("Trajectory not copied during repeat_trajectory function!") # total_reward = 0 # for i, reward in enumerate(rewards): # total_reward += reward # rewards[i] = total_reward # rewards = [np.abs(total_reward - reward) for reward in rewards] rewards = np.array(rewards) returns = np.cumsum(rewards[::-1])[::-1] # partial_returns = np.cumsum(rewards) return environment_states, states, returns #, partial_returns def backward_train(train, model, memory, trajectory, seed, env_name, stop_coeff, smoothing_num, num_splits, max_num_episodes, batch_size, discount_factor, learn_rate, get_epsilon, use_target_qnet=None, render=False, testing_seed=None, verbose=True): optimizer = optim.Adam(model.parameters(), learn_rate) if use_target_qnet is not None: target_model = copy.deepcopy(model) else: target_model, target_optim = None, None # Count the steps (do not reset at episode start, to compute epsilon) global_steps = 0 episode_durations = [] returns_trends = [] disc_rewards = [] losses = [] trajectories = [] splits = utils.chunks(len(trajectory), num_splits) environment_states, states, real_returns = repeat_trajectory(trajectory, seed, env_name) if testing_seed is not None: seed = testing_seed random.seed(testing_seed) torch.manual_seed(testing_seed) np.random.seed(testing_seed) for s, split in enumerate(splits): if verbose: print("Split", s) victories = [] for i in range(max_num_episodes): starting_state_idx = np.random.choice(split) # print("\t{}".format(starting_state_idx)) env = copy.deepcopy(environment_states[starting_state_idx]) exp_seed = int(seed + 1000 * s + 7 * i) env.seed(exp_seed) state = states[starting_state_idx] starting_return = real_returns[0] - real_returns[starting_state_idx] duration = 0 episode_return = starting_return disc_reward = 0 current_trajectory = trajectory[:starting_state_idx] if use_target_qnet is not None and i % 5 == 0: target_model = copy.deepcopy(model) env.render() if render and i % 1 == 0 else None while True: # if duration < len(split): # epsilon = get_epsilon(i) # else: # epsilon = get_epsilon(10000) epsilon = get_epsilon(i) a = select_action(model, state, epsilon) next_state, r, done, _ = env.step(a) # env.render() if render and i % 1 == 0 else None if (render and i % 1 == 0) or (i > 180 and np.mean(victories[-smoothing_num:]) < 0.001): env.render() duration += 1 episode_return += r disc_reward += (discount_factor ** duration) * r current_trajectory.append((state, a, r, next_state, done)) memory.push((state, a, r, next_state, done)) loss = train(model, memory, optimizer, batch_size, discount_factor, target_model=target_model) global_steps += 1 if done: break state = next_state env.close() # print("\t\teps = {}; return = {}; expected return = {}".format(epsilon, episode_return, real_returns[starting_state_idx])) # print("\t{}: {}; {}/{}".format(i, starting_state_idx, episode_return, real_returns[starting_state_idx])) # print(epsilon) if verbose: print("\t{}: {}; {}/{}".format(i, starting_state_idx, episode_return, real_returns[0])) # TODO: save it in a dictionary (for example, based on reward or duration) or do it in post process # saving the seed(i) is necessary for replaying the episode later trajectories.append((current_trajectory, exp_seed)) losses.append(loss) episode_durations.append(duration) returns_trends.append(episode_return) dr = episode_return - real_returns[0] victory = dr >= - 0.1*abs(real_returns[starting_state_idx]) victories.append(int(victory)) # TODO - multiply it by gamma**len(trajectory till the starting point) disc_rewards.append(disc_reward) num_recent_victories = np.sum(victories[-smoothing_num:]) if verbose: print("\t\tNumber of Recent Victories ", num_recent_victories) # if len(victories) > smoothing_num and num_recent_victories >= stop_coeff: if num_recent_victories >= stop_coeff: break if verbose: print("Split", s, "finished in", i+1, "episodes out of ", max_num_episodes, ";", len(episode_durations), " episodes so far") return model, episode_durations, returns_trends, disc_rewards, losses, trajectories
# Copyright (C) 2011-2012 Andy Balaam and The Pepper Developers # Released under the MIT License. See the file COPYING.txt for details. from itertools import imap from buildstep import BuildStep from parse.pepperstatements import PepperStatements # We would like to do these imports inside _parse_tree_string_to_values, # but Python doesn't like us to do that. from libpepper.functionvalues import * from libpepper.languagevalues import * from libpepper.values import * def _parse_tree_string_to_values( string ): # The parse tree is actually a valid Python file return eval( string ) def _remove_comments( ln ): i = ln.find( "#" ) if i != -1: return ln[:i] else: return ln def _non_empty_line( ln ): return ( ln.strip() != "" ) class ParseBuildStep( BuildStep ): def read_from_file( self, fl ): return ( _parse_tree_string_to_values( ln ) for ln in filter( _non_empty_line, imap( _remove_comments, fl ) ) ) def process( self, val ): return PepperStatements( val ) def write_to_file( self, val, fl ): for v in val: fl.write( repr( v ) ) fl.write( "\n" )
""" Instapush notification service. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/notify.instapush/ """ import json import logging import requests import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.components.notify import ( ATTR_TITLE, ATTR_TITLE_DEFAULT, PLATFORM_SCHEMA, BaseNotificationService) from homeassistant.const import CONF_API_KEY _LOGGER = logging.getLogger(__name__) _RESOURCE = 'https://api.instapush.im/v1/' CONF_APP_SECRET = 'app_secret' CONF_EVENT = 'event' CONF_TRACKER = 'tracker' DEFAULT_TIMEOUT = 10 PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_API_KEY): cv.string, vol.Required(CONF_APP_SECRET): cv.string, vol.Required(CONF_EVENT): cv.string, vol.Required(CONF_TRACKER): cv.string, }) def get_service(hass, config): """Get the Instapush notification service.""" headers = {'x-instapush-appid': config[CONF_API_KEY], 'x-instapush-appsecret': config[CONF_APP_SECRET]} try: response = requests.get( '{}{}'.format(_RESOURCE, 'events/list'), headers=headers, timeout=DEFAULT_TIMEOUT).json() except ValueError: _LOGGER.error('Unexpected answer from Instapush API.') return None if 'error' in response: _LOGGER.error(response['msg']) return None if len([app for app in response if app['title'] == config[CONF_EVENT]]) == 0: _LOGGER.error("No app match your given value. " "Please create an app at https://instapush.im") return None return InstapushNotificationService( config.get(CONF_API_KEY), config.get(CONF_APP_SECRET), config.get(CONF_EVENT), config.get(CONF_TRACKER)) class InstapushNotificationService(BaseNotificationService): """Implementation of the notification service for Instapush.""" def __init__(self, api_key, app_secret, event, tracker): """Initialize the service.""" self._api_key = api_key self._app_secret = app_secret self._event = event self._tracker = tracker self._headers = { 'x-instapush-appid': self._api_key, 'x-instapush-appsecret': self._app_secret, 'Content-Type': 'application/json'} def send_message(self, message="", **kwargs): """Send a message to a user.""" title = kwargs.get(ATTR_TITLE, ATTR_TITLE_DEFAULT) data = { 'event': self._event, 'trackers': {self._tracker: title + ' : ' + message} } response = requests.post( '{}{}'.format(_RESOURCE, 'post'), data=json.dumps(data), headers=self._headers, timeout=DEFAULT_TIMEOUT) if response.json()['status'] == 401: _LOGGER.error(response.json()['msg'], "Please check your Instapush settings")
{ "targets": [ { "target_name": "tree_sitter_markdown_binding", "include_dirs": [ "<!(node -e \"require('nan')\")", "src" ], "sources": [ "src/parser.c", "bindings/node/binding.cc", "src/scanner.cc" ], "cflags_c": [ "-std=c99", "-fexceptions" ], 'cflags!': [ '-fno-exceptions' ], 'cflags_cc!': [ '-fno-exceptions' ], "defines": [ "TREE_SITTER_MARKDOWN_AVOID_CRASH" ], "conditions": [ ["OS=='mac'", { "xcode_settings": { "GCC_ENABLE_CPP_EXCEPTIONS": "YES" } }] ] } ] }
#!/usr/local/bin/python # -*- coding: utf-8 -*- import googlemaps import base64 from cartodb_services.google.exceptions import InvalidGoogleCredentials class GoogleMapsClientFactory(): clients = {} @classmethod def get(cls, client_id, client_secret, channel=None): cache_key = "{}:{}:{}".format(client_id, client_secret, channel) client = cls.clients.get(cache_key) if not client: if client_id: cls.assert_valid_crendentials(client_secret) client = googlemaps.Client( client_id=client_id, client_secret=client_secret, channel=channel) else: client = googlemaps.Client(key=client_secret) cls.clients[cache_key] = client return client @classmethod def assert_valid_crendentials(cls, client_secret): if not cls.valid_credentials(client_secret): raise InvalidGoogleCredentials @staticmethod def valid_credentials(client_secret): try: # Only fails if the string dont have a correct padding for b64 # but this way we could provide a more clear error than # TypeError: Incorrect padding b64_secret = client_secret.replace('-', '+').replace('_', '/') base64.b64decode(b64_secret) return True except TypeError: return False
"""Bosch regular sensor.""" from ..const import SIGNAL_SENSOR_UPDATE_BOSCH from .base import BoschBaseSensor class BoschSensor(BoschBaseSensor): """Representation of a Bosch sensor.""" signal = SIGNAL_SENSOR_UPDATE_BOSCH _domain_name = "Sensors" @property def device_name(self): return "Bosch sensors"
from __future__ import absolute_import import deployer.logger from celery.signals import setup_logging __version__ = '0.5.2' __author__ = 'sukrit' deployer.logger.init_logging() setup_logging.connect(deployer.logger.init_celery_logging)
from . import TestStdoutReader import pyprogress class TestCounter(TestStdoutReader): def tearDown(self): self.c.stop() self.c.join() TestStdoutReader.tearDown(self) def test_counter_no_total(self): output = ['0', '\b1', '\b2', '\b3', '\b4', '\b5'] self.c = pyprogress.Counter() self.c.start() assert self.stdout.getvalue().strip() == output[0] self.stdout.truncate(0) for x in range(1, 6): self.c.inc() self.c.write() # force write output assert self.stdout.getvalue().strip('\x00').strip() == output[x] self.stdout.truncate(0) def test_counter_with_total(self): output = ['0/5', '\b\b\b1/5', '\b\b\b2/5', '\b\b\b3/5', '\b\b\b4/5', '\b\b\b5/5'] self.c = pyprogress.Counter(total=5) self.c.start() assert self.stdout.getvalue().strip() == output[0] self.stdout.truncate(0) for x in range(1, 6): self.c.inc() self.c.write() # force write output assert self.stdout.getvalue().strip('\x00').strip() == output[x] self.stdout.truncate(0) def test_counter_initial(self): output = ['2', '\b3', '\b4', '\b5'] self.c = pyprogress.Counter(initial=2) self.c.start() assert self.stdout.getvalue().strip() == output[0] self.stdout.truncate(0) for x in range(1, 4): self.c.inc() self.c.write() # force write output assert self.stdout.getvalue().strip('\x00').strip() == output[x] self.stdout.truncate(0) def test_counter_inc_2(self): output = ['0/10', '\b\b\b\b2/10', '\b\b\b\b4/10', '\b\b\b\b6/10', '\b\b\b\b8/10', '\b\b\b\b10/10'] self.c = pyprogress.Counter(total=10) self.c.start() assert self.stdout.getvalue().strip() == output[0] self.stdout.truncate(0) for x in range(1, 6): self.c.inc(2) self.c.write() assert self.stdout.getvalue().strip('\x00').strip() == output[x] self.stdout.truncate(0) class TestCounter(TestStdoutReader): def test_counter_no_total(self): output = ['0', '\b1', '\b2', '\b3', '\b4', '\b5'] with pyprogress.Counter() as c: assert self.stdout.getvalue().strip() == output[0] self.stdout.truncate(0) for x in range(1, 6): c.inc() c.write() # force write output assert self.stdout.getvalue().strip('\x00').strip() == output[x] self.stdout.truncate(0) def test_counter_with_total(self): output = ['0/5', '\b\b\b1/5', '\b\b\b2/5', '\b\b\b3/5', '\b\b\b4/5', '\b\b\b5/5'] with pyprogress.Counter(total=5) as c: assert self.stdout.getvalue().strip() == output[0] self.stdout.truncate(0) for x in range(1, 6): c.inc() c.write() # force write output assert self.stdout.getvalue().strip('\x00').strip() == output[x] self.stdout.truncate(0) def test_counter_initial(self): output = ['2', '\b3', '\b4', '\b5'] with pyprogress.Counter(initial=2) as c: assert self.stdout.getvalue().strip() == output[0] self.stdout.truncate(0) for x in range(1, 4): c.inc() c.write() # force write output assert self.stdout.getvalue().strip('\x00').strip() == output[x] self.stdout.truncate(0) def test_counter_inc_2(self): output = ['0/10', '\b\b\b\b2/10', '\b\b\b\b4/10', '\b\b\b\b6/10', '\b\b\b\b8/10', '\b\b\b\b10/10'] with pyprogress.Counter(total=10) as c: assert self.stdout.getvalue().strip() == output[0] self.stdout.truncate(0) for x in range(1, 6): c.inc(2) c.write() assert self.stdout.getvalue().strip('\x00').strip() == output[x] self.stdout.truncate(0)
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/1/17 9:17 AM # @Author : Insomnia # @Desc : 约瑟夫环问题, n个人围成环隔m个击毙, 最后剩下 # @File : LastInCircle.py # @Software: PyCharm class Solution: def lastInCircle(self, n, m): if n < 1 or m < 1: return -1 last = 0 for i in range(2, n + 1): last = (last + m) % i return last if __name__ == '__main__': print("5 people 3 gap") sol = Solution() print(sol.lastInCircle(5, 3)) print(sol.lastInCircle(12, 3))
# Copyright 2017 The UAI-SDK Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from uai.arch_conf.base_conf import ArchJsonConf from uai.arch_conf.base_conf import ArchJsonConfLoader class XGBoostJsonConf(ArchJsonConf): """ XGBoost Json Config class """ def __init__(self, parser): """ XGBoost Json Config Class, Use the super to init """ super(XGBoostJsonConf, self).__init__('xgboost', parser) def _add_args(self): super(XGBoostJsonConf, self)._add_args() def load_params(self): super(XGBoostJsonConf, self).load_params() def _load_conf_params(self): """ Config the conf_params from the CMD """ super(XGBoostJsonConf, self)._load_conf_params() self.conf_params['http_server'] = { 'exec': { 'main_file': self.params['main_file'], 'main_class': self.params['main_class'] }, 'xgboost': { 'model_name': self.params['model_name'] } } def _load_args(self): super(XGBoostJsonConf, self)._load_args() def get_conf_params(self): self._load_args() return self.conf_params def get_arg_params(self): return self.params class XGBoostJsonConfLoader(ArchJsonConfLoader): def __init__(self, conf): super(XGBoostJsonConfLoader, self).__init__(conf) def _load(self): super(XGBoostJsonConfLoader, self)._load() self.model_name = self.server_conf['xgboost']['model_name'] def get_model_name(self): return self.model_name
""" Copyright 2018 Johns Hopkins University (Author: Jesus Villalba) Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) Class to make/read/write k-fold x-validation lists """ from __future__ import absolute_import from __future__ import print_function from __future__ import division from six.moves import xrange from six import string_types import os.path as path import logging from collections import OrderedDict from copy import deepcopy import numpy as np from .list_utils import * class FoldList(object): """Class to contain folds for cross-validation. Attributes: key: String List with the names of the dataset/recording/i-vector folds: Int numpy array with the number of the fold of each key. mask: Boolean numpy array to mask elements in the key """ def __init__(self, fold, key, mask=None): self.fold = fold self.key = key self.mask = mask self.validate() def validate(self): """Validates the class attributes attributes """ self.key = list2ndarray(self.key) self.fold = list2ndarray(self.fold) if self.fold.dtype != int: self.fold = self.fold.astype(int) assert len(self.key) == len(self.fold) assert len(np.unique(self.fold[self.fold>=0])) == np.max(self.fold)+1 if self.mask is not None: assert len(self.mask) == len(self.fold) def copy(self): """Returns a copy of the object. """ return deepcopy(self) def __len__(self): """Returns number of folds. """ return self.num_folds() @property def num_folds(self): """Returns number of folds. """ return np.max(self.fold)+1 def align_with_key(self, key, raise_missing=True): """Aligns the fold list with a given key Args: key: Key to align the fold and key variables of the object. raise_missing: if True, raises exception when an element of key is not found in the object. """ f, idx = ismember(key, self.key) if np.all(f): self.key = self.key[idx] self.fold = self.fold[idx] if self.mask is not None: self.mask = self.mask[idx] else: for i in (f==0).nonzero()[0]: logging.warning('segment %s not found' % key[i]) if raise_missing: raise Exception('some scores were not computed') def get_fold_idx(self, fold): """Returns a fold boolean indices Args: fold: Fold number to return Returns: train_idx: Indices of the elements used for training test_idx: Indices of the elements used for test """ test_idx = self.fold == fold train_idx = np.logical_not(test_idx) if self.mask is not None: train_idx = np.logical_and(train_idx, self.mask) test_idx = np.logical_and(test_idx, self.mask) return train_idx, test_idx def get_fold(self, fold): """Returns a fold keys Args: fold: Fold number to return Returns: train_key: Keys of the elements used for training test_key: Keys of the elements used for test """ train_idx, test_idx = self.get_fold_idx(fold) return self.key[train_idx], self.key[test_idx] def __getitem__(self, fold): """Returns a fold keys Args: fold: Fold number to return Returns: train_key: Keys of the elements used for training test_key: Keys of the elements used for test """ return self.get_fold(fold) def save(self, file_path, sep=' '): """Saves object to txt file Args: file_path: File path sep: Separator between fold field and key field """ with open(file_path, 'w') as f: for f,k in zip(self.fold, self.key): f.write('%s%s%s\n' % (f,sep,k)) @classmethod def load(cls, file_path, sep=' '): """Loads object from txt file Args: file_path: File path sep: Separator between fold field and key field Returns: FoldList object """ with open(file_path, 'r') as f: fields = [line.rstrip().split(sep=sep, maxsplit=1) for line in f] fold = np.asarray([int(f[0]) for f in fields], dtype=int) key = np.asarray([f[1] for f in fields]) return cls(fold, key) @classmethod def create(cls, segment_key, num_folds, balance_by_key=None, group_by_key=None, mask=None, shuffle=False, seed=1024): """Creates a FoldList object. Args: segment_key: String List of recordings/speech segments num_folds: Number of folds that we want to obtain. balance_by_key: String List of keys indicating a property of the segment to make all folds to have the same number of elements of each class. E.g. for language ID this would be the language of the recording. group_by_key: String List of keys indicating a property of the segment to make all the elements of the same class to be in the same fold. E.g. for language ID this would be the speaker ID of the recording. mask: Boolean numpy array to mask elements of segment_key out. shuffle: Shuffles the segment list so that folds are not grouped in alphabetical order. seed : Seed for shuffling Returns: FoldList object. """ if shuffle: rng = np.random.RandomState(seed=seed) if group_by_key is None: group_by_key = segment_key if balance_by_key is None: balance_by_key = np.zeros((len(segment_key),), dtype=int) else: _, balance_by_key = np.unique(balance_by_key, return_inverse=True) if mask is not None: balance_by_key[mask==False] = -1 folds = - np.ones((len(segment_key),), dtype=int) num_classes = np.max(balance_by_key) + 1 for i in xrange(num_classes): idx_i = (balance_by_key == i).nonzero()[0] group_key_i = group_by_key[idx_i] _, group_key_i = np.unique(group_key_i, return_inverse=True) num_groups_i = np.max(group_key_i) + 1 delta = float(num_groups_i)/num_folds if shuffle: shuffle_idx = np.arange(num_groups_i) rng.shuffle(shuffle_idx) group_key_tmp = np.zeros_like(group_key_i) for j in xrange(num_groups_i): group_key_tmp[group_key_i==j] = shuffle_idx[j] group_key_i = group_key_tmp for j in xrange(num_folds): k1 = int(np.round(j*delta)) k2 = int(np.round((j+1)*delta)) idx_ij = np.logical_and(group_key_i>=k1, group_key_i<k2) idx_fold = idx_i[idx_ij] folds[idx_fold] = j if mask is None: assert np.all(folds>=0) else: assert np.all(folds[mask]>=0) return cls(folds, segment_key, mask)
try: import ConfigParser as configparser except Exception: import configparser def getvalues(filepath, section, keys): parser = configparser.ConfigParser() if not parser.read(filepath): raise ValueError('read() failed -- "{}"'.format(filepath)) values = [] for key in keys: values.append(parser.get(section, key)) return values
import re import time import logging import operator import pandas as pd import numpy as np from datetime import datetime from datetime import timedelta from collections import Counter from pycoingecko import CoinGeckoAPI from expiringdict import ExpiringDict start = datetime.now() logger = logging.getLogger() def get_coin_update(): """Input: N/A Returns: List of names and list of tickers of top 50 cryptoccurrencies from Coingecko API ordered by market cap. Removes popular stable coins from DataFrame.""" try: cg = CoinGeckoAPI() coinupdate = cg.get_coins_markets(vs_currency="usd") #get all coins listed (default ordered by Mcap) coinupdate = coinupdate[:50] toptickers = [] topnames = [] counter = 0 for row in coinupdate: #get tickers + names topnames.append(coinupdate[counter]["name"]) toptickers.append(coinupdate[counter]["symbol"]) counter += 1 disregardnames = ["Tether","USD Coin","Binance USD","cDAI","cUSDC","Dai"] disregardtickers = ["usdt","usdc","busd","dai","cusdc","cdai"] toptickers = [x.lower() for x in toptickers if x not in disregardtickers] #remove stable-coins from list and force lowercase mystring = " " toptickers = [mystring + s + mystring for s in toptickers] #add space-string at start of ticker string, to avoid false positives (example: Huobi Coin (HT) is a string present in every link (HTtps://..)) topnames = [x.lower() for x in topnames if x not in disregardnames] #remove stable-coins from list return toptickers, topnames except Exception as e: logger.error(f"Exception in get_coin_update(): {e}", exc_info=True) def init_dicts(): """Initializes ExpiringDict structures for temp storage of message data max_len = Maximum number of keys in Dict, max_age_seconds= Maximum age of keys in Dict If value > max: key is deleted from dict """ try: #Optimal TTL would be 30720*60 (8 days) or 15360*60 (4 days), but that exceeds the hardware limitations #With TTL 60min, we get ~13% attribution rate instead of ~34% redd = ExpiringDict(max_len=100000,max_age_seconds=((60*60))) twitd = ExpiringDict(max_len=100000,max_age_seconds=((120*60))) #Optimal TTL is 120min teled = ExpiringDict(max_len=100000,max_age_seconds=((120*60))) #Optimal TTL is 120min return redd,twitd,teled except Exception as e: logger.error(f"Exception in init_dicts(): {e}", exc_info=True) def coin_to_text_assigner(data,belongs_to,redd,twitd,teled,toptickers,topnames): """Input: "data" - text & metadata (JSON), "belongs_to" - data source identifier, "redd","twitd","teled" - temporary msg storage in form dicts, "toptickers","topnames" - top 50 cryptocurrencies by Mcap Returns: Assigned coin to current message as string or returns NaN.""" try: #Extract relevant information from JSON """ for Twitter API & Reddit API integration if "Twitter" in belongs_to: text = data["text"] msgid = float(data["id"]) #float because parent ID may be imported as a float due to existence of NaNs parent_id = data["reply_to_tweet_id"] timestamp = data["created_at"] if "Reddit" in belongs_to: text = data["text"]#data["text"] try: text = data["title"] + " " + data["text"] #if message is original post, get also the title except KeyError: #continue if not pass msgid = data["id"] try: parent_id = data["submission_id"] except KeyError: parent_id = np.nan #if reddit message is original post, it has no parent_id field timestamp = data["created_at"] """ if "Telegram" in belongs_to: text = data["text"] msgid = data["id"] #float because parent ID may be imported as a float due to existence of NaNs parent_id = data["reply_to_msg_id"] timestamp = data["date"] def assigner(l,text): """Input: list of target items, text Returns: list of items found in text that are part of list of target items (toptickers or topnames). -> Disregards strings /BTC,/btc to exclude irrelevant price updates (price updates in the form of ALT/BTC).""" try: itemlist = [] black_list = ["/BTC","/btc","etc"," ht","amp"," ht "," etc ","tron","dot","algo","link"," link ", " dot ", " maker ", " tron ", " amp "]#cant handle ETC,HT string - too many unrelated occurences for item in l: if item in str(text): if str(item) not in black_list: itemlist.append(item) return itemlist except Exception as e: logger.error(f"Exception in assigner(): {e}", exc_info=True) def to_names(toptickers,topnames, assignedtickers, assignednames): """Input: toptickers,topnames - tickers/names of top 50 cryptoccurrencies, assingedtickers - top50 tickers found in message, assignednames - top50 names found in message Translates top50 tickers into full names. Returns: assignednames """ try: topcryptodict = dict(zip(toptickers,topnames)) namesfromtickers = [] for ticker in assignedtickers: if "$" in ticker: ticker = ticker.replace("$", "") ticker = " "+ticker+" " if "#" in ticker: ticker = ticker.replace("#","") ticker = " "+ticker+" " namesfromtickers.append(topcryptodict[ticker]) #if tickers are present, get full names of tickers as a list assignednames += namesfromtickers #add names from tickers to assignednames list return assignednames except Exception as e: logger.error(f"Exception in assigner(): {e}", exc_info=True) def get_messagecoin_recursive(message_id,d): """Input: message_id - ID of a message, d - temporary storage dictionary Implements get_messagecoin as a recursive function Returns:coin assigned to message or NaN""" #If the message has no parent, we get Exception and return messagecoin = nan #If we find a parent and the parent has a coin, we return messagecoin #If we find a parent and the parent has no coin, we call parent_coin = get_messagecoin_recursive(parent_id,teled) try: try: result = d[message_id] #get message-info for current id as dict messagecoin = result#["assigned_coin"] if type(messagecoin) != float: #if var is not nan return messagecoin #if a coin has been attributed, return else: message_id = result["parent_id"] #get parent id of current message get_messagecoin_recursive(message_id,d) #if no coin found, look up parent message except (KeyError,IndexError,ValueError): #if ID not present, return NaN messagecoin = np.nan return messagecoin except Exception as e: logger.error(f"Exception in get_messagecoin_recursive(): {e}", exc_info=True) def replaceUsernameTwitter(text): """ Replaces "@user" with "username_placeholder" """ text = re.sub('@[^\s]+','username_placeholder',text) return text def replaceUsernameReddit(text): """ Replaces "u/user" with "username_placeholder" """ text = re.sub('u\/[^\s]+','username_placeholder',text) return text ###process flow toptickersallcaps = [x.upper() for x in toptickers] tmp = [] for ticker in toptickersallcaps: ticker = ticker.strip() #remove added whitespaces -> explanation on line 223-224 tmp.append(ticker) toptickersallcaps = tmp assignedtickersallcaps = assigner(toptickersallcaps,text) #Get all target tickers that are in CAPS (we assume that tickers in caps always refer to the target and not something else) if assignedtickersallcaps: #if allcap tickers are found, replace them with placeholders to avoid redundant counts later on for ticker in assignedtickersallcaps: text = text.replace(ticker, "allcaps_ticker_placeholder") assignedtickersallcaps = [" " + s + " " for s in assignedtickersallcaps] if type(text) == str: text = text.lower() #transform capital letters to lowercase letters """ for Twitter API & Reddit API integration if "Twitter" in belongs_to: text = replaceUsernameTwitter(text) #replace twitter @USERNAME with placeholder if "Reddit" in belongs_to: text = replaceUsernameReddit(text) #replace Reddit /U/USERNAME with placeholder #List of strings posted by reddit-bots bot_messages_list = ["i am a bot, and this action was performed automatically","^^i ^^am ^^a ^^bot","i am just a simple bot","remindmebot","crypto_bot","this summary is auto generated by a bot","lntipbot","i'm a bot"] if any(ext in text for ext in bot_messages_list): text = np.nan #if text posted by bot, remove text """ parent_coin = np.nan pmessage = np.nan if "nan" not in str(parent_id): #get coin assigned to parent message if parent_id is not "nan" if "Telegram" in belongs_to: parent_coin = get_messagecoin_recursive(parent_id,teled) if type(parent_coin) != float: pmessage = parent_coin["text"] parent_coin = parent_coin["assigned_coin"] """ for Twitter API & Reddit API integration if "Twitter" in belongs_to: parent_coin = get_messagecoin_recursive(parent_id,twitd) if type(parent_coin) != float: pmessage = parent_coin["text"] parent_coin = parent_coin["assigned_coin"] if "Reddit" in belongs_to: parent_coin = get_messagecoin_recursive(parent_id,redd) if type(parent_coin) != float: pmessage = parent_coin["text"] parent_coin = parent_coin["assigned_coin"] """ assignednames = assigner(topnames, text) #search target names in message if assignednames: #if full names are found, replace them with placeholders to avoid redundant counts (e.g. name="solana", ticker="sol") for name in assignednames: text = text.replace(name, "target_name_placeholder") assignedtickers = assigner(toptickers,text) #search target tickers in message tmp = [] for ticker in toptickers: ticker = ticker.strip() #remove added whitespaces tmp.append(ticker) #the reason for not simply removing $ and # chars in text is that tickers are only attributed if there is #a space before and after (" "BTC" ") to avoid FPs (line 42) - we will miss many cash/hashtags if just remove the $,# chars toptickercashtags = [ "$"+ s for s in tmp] #create ticker cashtags ("$BTC") toptickerhashtags = [ "#"+ s for s in tmp] #create ticker hashtags ("#BTC") toptickerctht = toptickercashtags + toptickerhashtags assignedctht = assigner(toptickerctht,text) #search target ticker cashtags and hashtags assignedtickers = assignedtickers + assignedctht + assignedtickersallcaps assignedtickers = [x.lower() for x in assignedtickers] if assignedtickers: assignednames = to_names(toptickers,topnames, assignedtickers, assignednames) if len(assignednames) == 1: assigned_coin = assignednames[0] #if only 1 target coin mentioned, set it as assigned coin if len(assignednames) > 1: #if multiple target names present in text: occurences = Counter(assignednames) #returns a dict with occurences of items in names list highest = max(occurences.values()) #get highest value in Dict maxoccur = [k for k, v in occurences.items() if v == highest] #Count keys that have highest value if len(maxoccur) == 1: #If exactly one key has the highest value, set key as assigned coin assigned_coin = maxoccur[0] else: if type(parent_coin) != float: assigned_coin = parent_coin #set assigned coin of parent message as current assigned coin (if applicable) else: assigned_coin = np.nan if len(assignednames) < 1: #if no target names present in text if type(parent_coin) != float: assigned_coin = parent_coin #set assigned coin of parent message as current assigned coin (if applicable) else: assigned_coin = np.nan updatelist = [msgid,timestamp,parent_id,assigned_coin,text] updatedict = {"msg_id":updatelist[0],"timestamp":updatelist[1],"parent_id":updatelist[2],"assigned_coin":updatelist[3],"text":updatelist[4]} if type(assigned_coin) == str: assigned_coin = assigned_coin.lower() #set assigned coin to lowercase for uniform representation """ for Twitter API & Reddit API integration if "Twitter" in belongs_to: twitd[msgid] = updatedict if "Reddit" in belongs_to: redd[msgid] = updatedict """ if "Telegram" in belongs_to: teled[msgid] = updatedict if "None" in str(assigned_coin): assigned_coin = np.nan return assigned_coin except Exception as e: logger.error(f"Exception in coin_to_text_assigner(): {e}", exc_info=True)
import os,sys import json import facebook if __name__ == '__main__': token = "EAANXc609TdkBAO3HmSoswBZCTIbmZBMOcdzvLa8c97fdDZBzCjZCL2vAhJYPhyKt5sURY5VlozyHOZABZB6lxrPU5Bb8jM0PLFHh0xCj376nqu6EQZA6PoGbnI1cKyGYiOtrNNyLUebm55GGjNGI5VL6Tj1R9IstsIUSQHBbW7WVP7ZBUbZAn4occ" graph = facebook.GraphAPI(access_token=token, version = 3.0) #profile = graph.get_object('974146599436745_974147879436617',fields='get_connections') likes = graph.get_object(id='974146599436745_974530109398394', fields='shares,likes.summary(true),comments.summary(true)') ##GENERAL INFO## about = graph.get_object(id='974146599436745', fields='about') country_page_likes = graph.get_object(id='974146599436745', fields='country_page_likes') fan_count = graph.get_object(id='974146599436745', fields='fan_count') location = graph.get_object(id='974146599436745', fields='location') new_like_count = graph.get_object(id='974146599436745', fields='new_like_count') page_token = graph.get_object(id='974146599436745', fields='page_token') notifications = graph.get_object(id='974146599436745', fields='notifications') posts = graph.get_object(id='974146599436745', fields='posts') ##PAGE INSIGHTS page_content_activity_by_action_type_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_content_activity_by_action_type_unique).period(week)') page_content_activity_by_age_gender_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_content_activity_by_age_gender_unique).period(week)') page_content_activity_by_country_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_content_activity_by_country_unique).period(week)') page_content_activity_by_locale_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_content_activity_by_locale_unique).period(week)') page_content_activity = graph.get_object(id='974146599436745', fields='insights.metric(page_content_activity).period(week)') post_activity_unique = graph.get_object(id='974146599436745_974147879436617', fields='insights.metric(post_activity_unique)') page_impressions = graph.get_object(id='974146599436745', fields='insights.metric(page_impressions).period(day)') page_impressions_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_impressions_unique).period(week)') page_impressions_by_story_type =graph.get_object(id='974146599436745', fields='insights.metric(page_impressions_by_story_type).period(day)') page_impressions_frequency_distribution = graph.get_object(id='974146599436745', fields='insights.metric(page_impressions_frequency_distribution).period(week)') page_impressions_by_age_gender_unique=graph.get_object(id='974146599436745', fields='insights.metric(page_impressions_by_age_gender_unique).period(week)') page_engaged_users = graph.get_object(id='974146599436745', fields='insights.metric(page_engaged_users).period(week)') page_post_engagements = graph.get_object(id='974146599436745', fields='insights.metric(page_post_engagements).period(week)') page_consumptions = graph.get_object(id='974146599436745', fields='insights.metric(page_post_engagements).period(week)') page_consumptions_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_consumptions_unique).period(week)') ## page_negative_feedback = graph.get_object(id='974146599436745', fields='insights.metric(page_negative_feedback).period(week)') page_positive_feedback_by_type=graph.get_object(id='974146599436745', fields='insights.metric(page_positive_feedback_by_type).period(week)') page_fans_online = graph.get_object(id='974146599436745', fields='insights.metric(page_fans_online)') page_fans_online_per_day = graph.get_object(id='974146599436745', fields='insights.metric(page_fans_online_per_day)') page_fan_adds_by_paid_non_paid_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_fan_adds_by_paid_non_paid_unique)') page_actions_post_reactions_like_total = graph.get_object(id='974146599436745', fields='insights.metric(page_actions_post_reactions_like_total)') page_total_actions = graph.get_object(id='974146599436745', fields='insights.metric(page_total_actions)') ##DEMOGRAPHICS page_fans_locale = graph.get_object(id='974146599436745', fields='insights.metric(page_fans_locale)') page_fans_city = graph.get_object(id='974146599436745', fields='insights.metric(page_fans_city)') page_fans_country = graph.get_object(id='974146599436745', fields='insights.metric(page_fans_country)') page_fans_gender_age = graph.get_object(id='974146599436745', fields='insights.metric(page_fans_gender_age)') page_fan_adds = graph.get_object(id='974146599436745', fields='insights.metric(page_fan_adds)') page_fan_removes = graph.get_object(id='974146599436745', fields='insights.metric(page_fan_removes)') page_fans_by_unlike_source_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_fans_by_unlike_source_unique)') ## page_tab_views_login_top_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_tab_views_login_top_unique)') page_views_total = graph.get_object(id='974146599436745', fields='insights.metric(page_views_total)') page_views_external_referrals = graph.get_object(id='974146599436745', fields='insights.metric(page_views_external_referrals)') page_views_by_profile_tab_logged_in_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_views_by_profile_tab_logged_in_unique)') page_views_by_internal_referer_logged_in_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_views_by_internal_referer_logged_in_unique)') #page_views_by_referers_logged_in_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_views_by_referers_logged_in_unique)') ##PAGE POST page_posts_impressions = graph.get_object(id='974146599436745', fields='insights.metric(page_posts_impressions).period(week)') page_posts_impressions_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_posts_impressions_unique)') page_posts_impressions_frequency_distribution = graph.get_object(id='974146599436745', fields='insights.metric(page_posts_impressions_frequency_distribution)') ##POSTS post_impressions = graph.get_object(id='974146599436745_974147879436617', fields='insights.metric(post_impressions)') post_impressions_fan = graph.get_object(id='974146599436745_974147879436617', fields='insights.metric(post_impressions_fan)') post_reactions_by_type_total = graph.get_object(id='974146599436745_974147879436617', fields='insights.metric(post_reactions_by_type_total)') page_content_activity_by_city_unique =graph.get_object(id='974146599436745', fields='insights.metric(page_content_activity_by_city_unique)') page_impressions_by_country_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_impressions_by_country_unique)') page_impressions_by_city_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_impressions_by_city_unique)') page_fans_by_like_source = graph.get_object(id='974146599436745', fields='insights.metric(page_fans_by_like_source)') page_content_activity_by_city_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_content_activity_by_city_unique)') page_impressions_by_city_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_impressions_by_city_unique)') page_fans_city= graph.get_object(id='974146599436745', fields='insights.metric(page_fans_city)') page_fans = graph.get_object(id='974146599436745', fields='insights.metric(page_fans)') page_content_activity_by_action_type = graph.get_object(id='974146599436745', fields='insights.metric(page_content_activity_by_action_type)') page_impressions_by_country_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_impressions_by_country_unique).date_preset(last_7d)') #ad_campaign = graph.get_object(id='974146599436745', fields='ad_campaign') page_content_activity_by_country_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_content_activity_by_country_unique).date_preset(last_7d)') page_content_activity_by_city_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_content_activity_by_city_unique).date_preset(last_7d)') #content_temp_end_time=page_content_activity_by_city_unique["insights"]["data"][0]['values'][0]['end_time'] #content_temp_value=page_content_activity_by_city_unique["insights"]["data"][0]['values'][0]['value'] page_impressions_by_locale_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_impressions_by_locale_unique).date_preset(last_7d)') page_content_activity_by_locale_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_content_activity_by_locale_unique).date_preset(last_7d)') ##latest page_posts_impressions_viral = graph.get_object(id='974146599436745', fields='insights.metric(page_posts_impressions_viral).period(week)') post_clicks = graph.get_object(id='974146599436745_974147879436617', fields='insights.metric(post_clicks)') post_reactions_by_type_total = graph.get_object(id='974146599436745_974147879436617', fields='insights.metric(post_reactions_by_type_total)') page_fans_by_like_source = graph.get_object(id='974146599436745', fields='insights.metric(page_fans_by_like_source)') page_positive_feedback_by_type = graph.get_object(id='974146599436745', fields='insights.metric(page_positive_feedback_by_type)') page_consumptions = graph.get_object(id='974146599436745', fields='insights.metric(page_consumptions).period(week)') page_actions_post_reactions_total= graph.get_object(id='974146599436745', fields='insights.metric(page_actions_post_reactions_total)') page_fan_adds_by_paid_non_paid_unique = graph.get_object(id='974146599436745', fields='insights.metric(page_fan_adds_by_paid_non_paid_unique)') post_reactions_by_type_total = graph.get_object(id='974146599436745_974147879436617', fields='insights.metric(post_reactions_by_type_total)') print (json.dumps(page_fans, indent=4))
from .. import math import numpy as np def TM(t, C_a, K_trans, k_ep=None, v_e=None, v_p=None): if k_ep is None: k_ep = Conversion.k_ep(K_trans=K_trans, v_e=v_e) tofts = K_trans*np.exp(-t*k_ep) return math.NP.convolve(tofts, C_a, t) def ETM(t, C_a, K_trans, k_ep=None, v_p=None, v_e=None): if k_ep is None: k_ep = Conversion.k_ep(K_trans=K_trans, v_e=v_e) return TM(t, C_a, K_trans, k_ep) + C_a*v_p def twoCXM(t, C_a, PS=None, F_p=None, v_e=None, v_p=None, K_trans=None, k_ep=None): if 0 in [K_trans, PS] and not 0 in [F_p, v_e, v_p]: two_compartment_model = F_p*np.exp(-t*F_p/v_p) else: if PS is None: PS = Conversion.PS(F_p=F_p, K_trans=K_trans) E = PS/float(PS + F_p) e = v_e/float(v_e + v_p) Ee = E*e tau_pluss = (E - Ee + e)/(2.*E)*(1 + np.sqrt(1 - 4*(Ee*(1-E)*(1-e))/(E - Ee + e)**2 ) ) tau_minus = (E - Ee + e)/(2.*E)*(1 - np.sqrt(1 - 4*(Ee*(1-E)*(1-e))/(E - Ee + e)**2 ) ) F_pluss = F_p*(tau_pluss - 1.)/(tau_pluss - tau_minus) F_minus = -F_p*(tau_minus - 1.)/(tau_pluss - tau_minus) K_pluss = F_p/((v_p + v_e) * tau_minus) K_minus = F_p/((v_p + v_e) * tau_pluss) two_compartment_model = F_pluss*np.exp(-t*K_pluss) + F_minus*np.exp(-t*K_minus) return math.NP.convolve(two_compartment_model, C_a, t) class Conversion: def __init__(self): pass def raiseError(self): raise TypeError('Invalid argument') @staticmethod def k_ep(K_trans=None, v_e=None, PS=None, F_p=None): ''' Needs one of the following combinations of paramaters: [K_trans, v_e] [PS, F_p, v_e] ''' try: return K_trans/v_e except TypeError: pass try: return PS*F_p/(PS + F_p)/v_e except TypeError: pass # if not None in [K_trans, v_e]: # return K_trans/v_e # if not None in [v_e, PS, F_p]: # return self.K_trans(PS=PS, F_p=F_p)/v_e @staticmethod def K_trans(PS=None, F_p=None, k_ep=None, v_e=None): ''' Needs one of the following combinations of paramaters: [PS, F_p] [k_ep, v_e] ''' try: return PS*F_p/(PS + F_p) except TypeError: raise TypeError('Invalid argument') try: return k_ep*v_e except TypeError: raise TypeError('Invalid argument') # if not None in [PS, F_p]: # return PS*F_p/(PS + F_p) # if not None in [k_ep, v_e]: # return k_ep*v_e @staticmethod def v_e(K_trans=None, k_ep=None): return K_trans/k_ep @staticmethod def PS(F_p, K_trans): return F_p*K_trans/(F_p - K_trans) @staticmethod def F_p(K_trans, PS): return K_trans*PS/(PS - K_trans)
from sqlalchemy_continuum_vendored import make_versioned # make_versioned(user_cls=None, options={'strategy' : 'subquery'}) # Import the DB things. from common.main_archive_db import WebPages from common.main_archive_db import WebFiles from common.main_archive_db import PluginStatus from common.main_archive_db import NuReleaseItem from common.main_archive_db import NuResolvedOutbound from common.raw_archive_db import RawWebPages from common.rss_func_db import Tags from common.rss_func_db import Author from common.rss_func_db import RssFeedPost from common.rss_func_db import RssFeedUrlMapper from common.rss_func_db import RssFeedEntry from common.rss_func_db import QidianFeedPostMeta from common.misc_db import KeyValueStore from common.misc_db import get_from_db_key_value_store from common.misc_db import set_in_db_key_value_store from common.misc_db import get_from_version_check_table from common.misc_db import set_in_version_check_table from common.cookie_db import WebCookieDb from common.db_engine import get_engine from common.db_engine import get_db_session from common.db_engine import delete_db_session from common.db_engine import session_context from common.db_constants import DB_REALTIME_PRIORITY from common.db_constants import DB_HIGH_PRIORITY from common.db_constants import DB_MED_PRIORITY from common.db_constants import DB_LOW_PRIORITY from common.db_constants import DB_IDLE_PRIORITY from common.db_constants import DB_DEFAULT_DIST from common.db_constants import MAX_DISTANCE from common.db_base import Base from common.redis import redis_session_context import sqlalchemy as sa sa.orm.configure_mappers() # from sqlalchemy_searchable import make_searchable # make_searchable()
from ...primitives import Int from .. import List, range as wf_range def test_range(): assert isinstance(wf_range(10), List[Int]) assert isinstance(wf_range(0, 10), List[Int]) assert isinstance(wf_range(0, 10, 2), List[Int])
#!/usr/bin/env python """ Pyomo Solver Performance Benchmarking Library """ import sys from setuptools import setup, find_packages def warn(s): sys.stderr.write('*** WARNING *** {}\n'.format(s)) kwargs = dict( name='pysperf', packages=find_packages(), install_requires=[], extras_require={}, package_data={ # If any package contains *.template or *.json files, include them: '': ['*.template', '*.json'] }, scripts=[], author='Qi Chen', author_email='qichen@andrew.cmu.edu', maintainer='Qi Chen', url="https://github.com/grossmann-group/pysperf", license='BSD 2-clause', description="Pyomo Solver Performance Benchmarking Library", long_description=__doc__, data_files=[], keywords=["pyomo", "generalized disjunctive programming"], classifiers=[ "Programming Language :: Python :: 3.6", "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Topic :: Software Development :: Libraries :: Python Modules" ], entry_points="""\ [console_scripts] pysperf=pysperf.__main__:main """ ) try: setup(setup_requires=['setuptools_scm'], use_scm_version=True, **kwargs) except (ImportError, LookupError): default_version = '1.0.0' warn('Cannot use .git version: package setuptools_scm not installed ' 'or .git directory not present.') print('Defaulting to version: {}'.format(default_version)) setup(**kwargs)
from pyecg.annotations import ECGAnnotationSample def test_equality(): annotation1 = ECGAnnotationSample("N", 1) annotation2 = ECGAnnotationSample("N", 1) assert annotation1 == annotation2 def test_inequality_0(): annotation1 = ECGAnnotationSample("A", 1) annotation2 = ECGAnnotationSample("N", 1) assert annotation1 != annotation2 def test_inequality_1(): annotation1 = ECGAnnotationSample("N", 1) annotation2 = ECGAnnotationSample("N", 2) assert annotation1 != annotation2 def test_inequality_2(): annotation1 = ECGAnnotationSample("A", 1) annotation2 = ECGAnnotationSample("N", 2) assert annotation1 != annotation2
import smtplib # bring in the by fault email module from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email import encoders # turned into a function to import into scrape.py # put your own values in the from & to email fields def send(filename): from_add = "from_email@gmail.com" to_add = "to_email@gmail.com" subject = "Finance Stock Report" msg = MIMEMultipart() msg["From"] = from_add msg["To"] = to_add msg["Subject"] = subject body = "<b>Today's Report Attached</b>" msg.attach(MIMEText(body, "html")) my_file = open(filename, "rb") part = MIMEBase("application", "octet-stream") part.set_payload((my_file).read()) encoders.encode_base64(part) part.add_header("Content-Disposition", "attachment; filename= " + filename) msg.attach(part) message = msg.as_string() # start a mail server server = smtplib.SMTP("smtp.gmail.com", 587) # make the server secure server.starttls() # login info & from , could use a .env file but trying to keep lines of code at minimum # instead used gmail to simply generate a custom password for this app # add your own server login password server.login(from_add, "server_password_here") server.sendmail(from_add, to_add, message) # quit the server once sent server.quit()
from django.db.models.signals import pre_save from django.dispatch import receiver from periodic_tasks.models import PeriodicTask @receiver(pre_save, sender=PeriodicTask) def set_next_run_timestamp(sender, instance=None, **kwargs): """ Signal to set next run before PeriodicTask instance saving """ instance.set_next_run_timestamp()
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys import logging import tensorflow as tf from invoke import run, exceptions log = logging.getLogger('biomedbert') log.setLevel(logging.INFO) def fine_tune_squad(v1: bool, model_type: str, bucket_name: str, model_dir: str, train_file: str, predict_file: str, tpu_name: str, tpu_zone: str, gcp_project: str, tpu_cores: str): """fine tune squad""" use_tpu = True sub_folder = 'v2.0' output_dir = 'squad_v2/' config = 'large_bert_config.json' version_2_with_negative = True num_tpu_cores = 8 if tpu_cores is not None: num_tpu_cores = int(tpu_cores) if tpu_name is None: tpu_name = 'false' use_tpu = False if model_type == 'base': # bert base config = 'base_bert_config.json' elif model_type == 'large': # bert large config = 'large_bert_config.json' else: log.info('No config file') sys.exit(1) if v1: version_2_with_negative = False output_dir = 'squad_v1/' sub_folder = 'v1.1' init_checkpoint = tf.train.latest_checkpoint('gs://{}/{}'.format(bucket_name, model_dir)) vocab_file = 'gs://{}/{}/vocab.txt'.format(bucket_name, model_dir) bert_config_file = 'gs://{}/{}/{}'.format(bucket_name, model_dir, config) output_dirs = 'gs://{}/{}/{}'.format(bucket_name, model_dir, output_dir) train_file_path = 'gs://{}/squad_data/{}/{}'.format(bucket_name, sub_folder, train_file) predict_file_path = 'gs://{}/squad_data/{}/{}'.format(bucket_name, sub_folder, predict_file) try: run('python3 bert/run_squad.py --vocab_file={} ' '--bert_config_file={} ' '--init_checkpoint={} --do_train=true --train_file={} ' '--do_predict=True --predict_file={} --train_batch_size=16 ' '--predict_batch_size=16 --learning_rate=3e-5 --num_train_epochs=2.0 ' '--max_seq_length=384 --doc_stride=128 --output_dir={} ' '--num_tpu_cores=128 --use_tpu={} --tpu_name={} --tpu_zone={} ' '--gcp_project={} --version_2_with_negative={}'.format( vocab_file, bert_config_file, init_checkpoint, train_file_path, predict_file_path, output_dirs, use_tpu, tpu_name, tpu_zone, gcp_project, version_2_with_negative)) except exceptions.UnexpectedExit: print('Cannot fine tune SQuAD') def evaluate_squad(v1: bool, bucket_name: str, model_dir: str, evaluate_file: str, predict_file: str): """evaluate squad""" sub_folder = 'v2.0' output_dir = 'squad_v2' if v1: output_dir = 'squad_v1' sub_folder = 'v1.1' try: if not os.path.exists('squad_evaluate'): run('mkdir squad_evaluate') run('gsutil cp gs://{}/squad_data/{} ./squad_evaluate/'.format(bucket_name, evaluate_file)) run('gsutil cp gs://{}/squad_data/{}/{} ./squad_evaluate/'.format(bucket_name, sub_folder, predict_file)) run('gsutil cp gs://{}/{}/{}/predictions.json ./squad_evaluate/'.format(bucket_name, model_dir, output_dir)) if v1: run('python3 ./squad_evaluate/{} ./squad_evaluate/{} ./squad_evaluate/predictions.json'.format( evaluate_file, predict_file)) else: run('gsutil cp gs://{}/{}/{}/null_odds.json ./squad_evaluate/'.format(bucket_name, model_dir, output_dir)) run('python3 ./squad_evaluate/{} ./squad_evaluate/{} ./squad_evaluate/predictions.json --na-prob-file ' './squad_evaluate/null_odds.json'.format(evaluate_file, predict_file)) except exceptions.UnexpectedExit: print('Cannot evaluate SQuAD')
from __future__ import absolute_import import blinker from collections import deque from functools import wraps, partial from threading import local import sys from .compat import reraise, iteritems, is_nextable def noop(*_, **dummy): pass class StopIterationWithValue(StopIteration): value = None def __init__(self, value): super(StopIterationWithValue, self).__init__() self.value = value class _PendingRunnable(object): def __init__(self, it, parent=None, key=None, callback=None, callback_exc=None): self.iterable = it self.iteration = 0 self.parent = parent self.key = key self.callback = callback self.callback_exc = callback_exc self.dependency_results = None self.dependencies_remaining = 0 self.exception_to_raise = None self.result = None self.result_exception = None def step(self): assert self.iteration >= 0 self.iteration += 1 if self.iteration == 1: assert self.dependency_results is None and self.exception_to_raise is None run_fn = partial(next, self.iterable) elif self.exception_to_raise is not None: exc, self.exception_to_raise = self.exception_to_raise, None run_fn = partial(self.iterable.throw, *exc) else: run_fn = partial(self.iterable.send, self.dependency_results) try: requirements = run_fn() except StopIteration as e: self.result = getattr(e, 'value', None) self.iteration = -1 return None except Exception: self.result_exception = sys.exc_info() self.iteration = -1 return None if requirements is None: requirements = [] dependencies = None if isinstance(requirements, dict): dependencies = requirements self.dependency_results = {} self.dependency_completed = partial(self._depencency_completed_list_or_dict, self.iteration) elif isinstance(requirements, (list, set, frozenset, tuple)): dependencies = dict(enumerate(requirements)) self.dependency_results = [None] * len(dependencies) self.dependency_completed = partial(self._depencency_completed_list_or_dict, self.iteration) else: dependencies = {'': requirements} self.dependency_results = None self.dependency_completed = partial(self._dependency_completed_single, self.iteration) self.dependency_threw = partial(self._dependency_threw, self.iteration) self.dependencies_remaining = len(dependencies) return dependencies def _depencency_completed_list_or_dict(self, iteration, loop, k, v): if self.iteration != iteration: return self.dependency_results[k] = v self.dependencies_remaining -= 1 if self.ready: loop.runnable(self) def _dependency_completed_single(self, iteration, loop, _, v): if self.iteration != iteration: return self.dependency_results = v self.dependencies_remaining -= 1 if self.ready: loop.runnable(self) def _dependency_threw(self, iteration, loop, _, type_, value, traceback): if self.iteration != iteration: return self.exception_to_raise = (type_, value, traceback) self.iteration += 1 self.dependencies_remaining = 0 if self.ready: loop.runnable(self) dependency_completed = None # dynamically changed. dependency_threw = None @property def ready(self): return self.dependencies_remaining == 0 and getattr(self.iterable, 'ready', True) LOCAL_ID = 0 def new_local_id(): global LOCAL_ID LOCAL_ID += 1 return LOCAL_ID class RunLoop(object): def __init__(self): self.locals = dict() self.run_queue = deque() self.total_pending = 0 self.main_runnable = None self.on_queue_exhausted = blinker.Signal() self.on_runnable_added = blinker.Signal() self.on_iteration = blinker.Signal() def run(self, iterable): self.main_runnable = self.add(iterable) while self.total_pending: assert self.run_queue self.on_iteration.send() self._run_all_runnables() if self.total_pending: self.on_queue_exhausted.send() if self.main_runnable.result_exception: reraise(*self.main_runnable.result_exception) return self.main_runnable.result def add(self, iterable, callback_ok=None, callback_exc=None): callback_ok = callback_ok or noop callback_exc = callback_exc or noop obj = _PendingRunnable(iterable, callback=callback_ok, callback_exc=callback_exc) self.total_pending += 1 if obj.ready: self.run_queue.append(obj) if hasattr(iterable, 'on_add_to_loop'): iterable.on_add_to_loop(self, obj) self.on_runnable_added.send(runnable=obj) return obj def runnable(self, runnable): """Notify the context that routine is runnable. This assumes that .add() was already called with this iterable.""" assert isinstance(runnable, _PendingRunnable) self.run_queue.append(runnable) def _run_all_runnables(self): while self.run_queue: runnable = self.run_queue.popleft() deps = runnable.step() if deps is None: if runnable.result_exception: runnable.callback_exc(*runnable.result_exception) elif runnable.callback is not None: runnable.callback(runnable.result) self.total_pending -= 1 continue for k, v in iteritems(deps): self.add(v, partial(runnable.dependency_completed, self, k), partial(runnable.dependency_threw, self, k)) if runnable.ready: self.run_queue.append(runnable) class _ThreadingLocalRunLoop(local): loop = None _CURRENT_RUN_LOOP = _ThreadingLocalRunLoop() def current_run_loop(): return _CURRENT_RUN_LOOP.loop def use_threading_local(): assert current_run_loop() is None global _CURRENT_RUN_LOOP _CURRENT_RUN_LOOP = _ThreadingLocalRunLoop() try: from gevent.local import local as gevent_local except ImportError as ex: def use_gevent_local(): raise ImportError("Gevent not present") else: class _GeventLocalRunLoop(gevent_local): loop = None def use_gevent_local(): assert current_run_loop() is None global _CURRENT_RUN_LOOP _CURRENT_RUN_LOOP = _GeventLocalRunLoop() def runloop_coroutine(): """Creates a coroutine that gets run in a run loop. The run loop will be created if necessary.""" def wrap(fn): @wraps(fn) def wrapper(*args, **kwargs): if _CURRENT_RUN_LOOP.loop: it = fn(*args, **kwargs) assert is_nextable(it), '%s did not return an iterator' % (fn) return it else: _CURRENT_RUN_LOOP.loop = loop = RunLoop() try: it = fn(*args, **kwargs) assert is_nextable(it), '%s did not return an iterator' % (fn) return loop.run(it) finally: _CURRENT_RUN_LOOP.loop = None return wrapper return wrap def requires_runloop(): """Same as @runloop_coroutine, but refuses to create a loop if one is not present.""" def wrap(fn): @wraps(fn) def wrapper(*args, **kwargs): assert current_run_loop() return fn(*args, **kwargs) return wrapper return wrap def coro_return(value): raise StopIterationWithValue(value) class _DeferredIterable(object): def __init__(self): self.value = None self.exception = None self.ready = False self.batch_context = None self.runnable = None self.on_ready = blinker.Signal() def on_add_to_loop(self, context, runnable): assert self.batch_context is None self.batch_context = context self.runnable = runnable def set_value(self, value): assert not self.ready self.ready = True self.value = value if self.batch_context: self.batch_context.runnable(self.runnable) self.on_ready.send() def set_exception(self, type_, value=None, traceback=None): assert not self.ready self.ready = True self.exception = (type_, value, traceback) if self.batch_context: self.batch_context.runnable(self.runnable) self.on_ready.send() def __next__(self): coro_return(self.get()) next = __next__ def get(self): if __debug__: if not self.ready: raise ValueError(".get() on non-ready deferred.") if self.exception is not None: reraise(*self.exception) return self.value @requires_runloop() def deferred(): assert current_run_loop() coro_return(_DeferredIterable()) yield # pragma: no cover @requires_runloop() def future(iterable): """Given an iterable, this returns an object that can be yielded again once you want to use it's value. This is useful to "front-load" some expensive calls that you don't need the results of immediately. Usage: thing_later = yield future(thing_resolver()) ... Do things ... thing = yield thing_later In addition, this may be used to catch exceptions when doing several actions in parallel: a, b, c = yield future(get_a()), future(get_b()), future(get_c()) try: a_thing = yield a except ValueError: a_thing = None # it's ok we don't need it anyway b_thing, c_thing = yield b, c """ result = yield deferred() current_run_loop().add(iterable, result.set_value, result.set_exception) coro_return(result) @requires_runloop() def wait(deferreds, count=None): """iwait(deferreds_or_futures, count=None). Waits until up to `count` (or all, if count is None) deferreds to complete. Returns the objects that completed. Example: a, b, c = yield future(get_a()), future(get_b()), future(get_c()) first, second = yield wait([a, b, c], count=2) # At this point 2/3 of the above futures are complete.""" if count is None: count = len(deferreds) assert count <= len(deferreds), 'Waiting on too many deferreds: %s' % (count) ready_list = [d for d in deferreds if d.ready] # Check if any of the deferreds are ready. if len(ready_list) < count: wait_deferred = yield deferred() for d in deferreds: def on_ready(_): if wait_deferred.ready: return # This is mostly necessary for PyPy because weak refs # aren't immediately removed there. ready_list.append(d) if len(ready_list) >= count: wait_deferred.set_value(True) d.on_ready.connect(on_ready, weak=True) yield wait_deferred assert len(ready_list) == count coro_return(ready_list)
from setuptools import find_packages, setup setup( name='museum_app', version='1.0.0', packages=find_packages(), include_package_data=False, zip_safe=False, install_requires=[ 'flask', 'graphene', 'mongoengine', 'werkzeug' ], )
import augeas from jadi import interface class AugeasError(Exception): def __init__(self, aug): self.message = None self.data = {} aug.dump('/') for ep in aug.match('/augeas//error'): self.message = aug.get(ep + '/message') for p in aug.match(ep + '/*'): self.data[p.split('/')[-1]] = aug.get(p) def __str__(self): return self.message class Augeas(augeas.Augeas): """ A smarter and faster wrapper around :class:`augeas.Augeas`.augeas For faster startup, no modules and lenses are preloaded:: aug = Augeas(modules=[{ 'name': 'Interfaces', # module name 'lens': 'Interfaces.lns', # lens name 'incl': [ # included files list self.path, self.path + '.d/*', ] }]) Don't forget to call :func:`.load()` afterwards. """ def __init__(self, modules=[], loadpath=None): augeas.Augeas.__init__(self, loadpath=loadpath, flags=augeas.Augeas.NO_MODL_AUTOLOAD | augeas.Augeas.NO_LOAD) for module in modules: path = '/augeas/load/%s' % module['name'] self.set(path + '/lens', module['lens']) for index, incl in enumerate(module['incl']): self.set(path + '/incl[%i]' % (index + 1), incl) def __enc(self, v): if v: return v.encode('utf8') def match(self, path): return augeas.Augeas.match(self, self.__enc(path)) def get(self, path): return augeas.Augeas.get(self, self.__enc(path)) def set(self, path, value): augeas.Augeas.set(self, self.__enc(path), self.__enc(value)) def setd(self, path, value, default=None): """ Sets `path` to `value`, or removes `path` if `value == default` """ if value is not None: self.set(path, value) if value == default: self.remove(path) def raise_error(self): """ Extracts error information from Augeas tree and raises :exc:`AugeasError` """ raise AugeasError(self) def save(self): try: augeas.Augeas.save(self) except IOError: self.raise_error() def dump(self, path): """ Dumps contents under `path` to stdout. """ for sp in self.match(path + '/*'): print(sp, '=', self.get(sp)) @interface class AugeasEndpoint(object): """ Implement this to provide Augeas trees to the frontend. """ id = None def __init__(self, context): self.context = context def get_augeas(self): """ Should return a ready-to-use :class:`Augeas` """ raise NotImplementedError def get_root_path(self): """ Should return an Augeas path of the root node to be provided to the frontend. """ raise NotImplementedError
import tensorflow as tf from metrics.chamfer.nearest_neighbour_cuda import nn_distance as nn_distance_cpu def bidirectionalchamfer(pointCloud1, pointCloud2): with tf.name_scope('bidirectionalchamfer'): shape1 = pointCloud1.shape.as_list() shape2 = pointCloud2.shape.as_list() pointCloud1 = tf.reshape(pointCloud1, [-1] + shape1[-2:]) pointCloud2 = tf.reshape(pointCloud2, [-1] + shape2[-2:]) dist1, _, dist2, __ = nn_distance_cpu(pointCloud1, pointCloud2) loss1 = tf.reduce_sum(dist1, axis=-1) loss2 = tf.reduce_sum(dist2, axis=-1) if len(shape1) > 3: loss1 = tf.reshape(loss1, shape1[:-2]) if len(shape2) > 3: loss2 = tf.reshape(loss2, shape2[:-2]) return loss1 + loss2
# -*- coding: utf-8 -*- from __future__ import unicode_literals import collections import sys from .exc import SpaceTrackEntityNotSupported if sys.version_info >= (3, 0, 0): basestring = str unicode = str SUPPORTABLE_ENTITIES = ( 'tle_latest', 'tle_publish', 'omm', 'boxscore', 'satcat', 'launch_site', 'satcat_change', 'satcat_debut', 'decay', 'tip', 'tle', ) class SpaceTrackQueryBuilder(object): __slots__ = ( '_filters', '_entity', '_order_by', '_limit', '_format', '_metadata', '_distinct', '_predicate', ) def __init__(self, entity=None, order_by=None, limit=None, fmt=None, metadata=False, distinct=True, predicate=None, *args, **filters): self.entity = entity self.filters = filters self.predicate = predicate self.order_by = order_by self.limit = limit self.format = fmt self.metadata = metadata self.distinct = distinct @property def entity(self): return self._entity @entity.setter def entity(self, value): if isinstance(value, collections.Iterable) and not isinstance(value, basestring): value = tuple(value) value = value and value[0] if value is None: value = 'tle' if not isinstance(value, basestring): raise TypeError('Attribute `entity` must be basestring') elif value not in SUPPORTABLE_ENTITIES: raise SpaceTrackEntityNotSupported(self.entity) self._entity = value @property def order_by(self): return self._order_by @order_by.setter def order_by(self, value): if value is None: value = tuple() if isinstance(value, collections.Iterable) and not isinstance(value, basestring): value = tuple(value) if not isinstance(value, (basestring, collections.Iterable)): raise TypeError('Attribute `order_by` must be basestring or collections.Iterable') self._order_by = value @property def predicate(self): return self._predicate @predicate.setter def predicate(self, value): if value is None: value = tuple() if isinstance(value, collections.Iterable) and not isinstance(value, basestring): value = tuple(value) if not isinstance(value, (basestring, collections.Iterable)): raise TypeError('Attribute `predicate` must be basestring or collections.Iterable') self._predicate = value @property def limit(self): return self._limit @limit.setter def limit(self, value): if isinstance(value, collections.Iterable) and not isinstance(value, basestring): value = tuple(value) value = value and value[0] if value is not None: value = int(value) self._limit = value @property def format(self): return self._format @format.setter def format(self, value): if isinstance(value, collections.Iterable) and not isinstance(value, basestring): value = tuple(value) value = value and value[0] if value is None: value = 'json' if not isinstance(value, basestring): raise TypeError('Attribute `format` must be basestring') self._format = value @property def metadata(self): return self._metadata @metadata.setter def metadata(self, value): if isinstance(value, collections.Iterable) and not isinstance(value, basestring): value = tuple(value) value = value and value[0] self._metadata = bool(value) @property def distinct(self): return self._distinct @distinct.setter def distinct(self, value): if isinstance(value, collections.Iterable) and not isinstance(value, basestring): value = tuple(value) value = value and value[0] self._distinct = bool(value) @property def filters(self): return self._filters @filters.setter def filters(self, dictionary): _filters = collections.defaultdict(list) if isinstance(dictionary, dict): for key, value in dictionary.items(): if isinstance(value, collections.Iterable) and not isinstance(value, (basestring, bytes)): _filters[key].extend(value) else: _filters[key].append(value) self._filters = _filters @property def query_params(self): return dict(entity=self.entity, filters=self.serialize_multivalue(self.filters), format=self.format, limit=self.limit, metadata="true" if self.metadata else "false", order_by=self.serialize_multivalue(self.order_by), predicates=self.serialize_multivalue(self.predicate)) def query(self): q = ('basicspacedata/query/' 'class/{entity}/' '{filters}/' 'format/{format}/' 'metadata/{metadata}/') if self.order_by: q += 'orderby/{order_by}/' if self.predicate: q += 'predicates/{predicates}/' if self.limit: q += 'limit/{limit}/' return q.format(**self.query_params) @staticmethod def serialize_multivalue(multivalue): if isinstance(multivalue, dict): return "/".join('{}/{}'.format(key, ",".join(unicode(value) for value in values)) for key, values in multivalue.items()) elif isinstance(multivalue, collections.Iterable) and not isinstance(multivalue, basestring): return ",".join(unicode(value) for value in multivalue) return multivalue def __repr__(self): return '<{}("{}")>'.format(self.__class__.__name__, unicode(self)) def __str__(self): return self() def __call__(self): return self.query()
import json from typing import Optional import zipcodes from great_expectations.core.expectation_configuration import ExpectationConfiguration from great_expectations.exceptions import InvalidExpectationConfigurationError from great_expectations.execution_engine import ( PandasExecutionEngine, SparkDFExecutionEngine, SqlAlchemyExecutionEngine, ) from great_expectations.expectations.expectation import ColumnMapExpectation from great_expectations.expectations.metrics import ( ColumnMapMetricProvider, column_condition_partial, ) def is_validarizonazip(zip: str): list_of_dicts_ofarizonazips = zipcodes.filter_by(state="AZ") list_ofarizonazips = [d["zip_code"] for d in list_of_dicts_ofarizonazips] if len(zip) > 10: return False elif type(zip) != str: return False elif zip in list_ofarizonazips: return True else: return False # This class defines a Metric to support your Expectation. # For most ColumnMapExpectations, the main business logic for calculation will live in this class. class ColumnValuesToBeValidArizonaZip(ColumnMapMetricProvider): # This is the id string that will be used to reference your metric. condition_metric_name = "column_values.validarizonazip" # This method implements the core logic for the PandasExecutionEngine @column_condition_partial(engine=PandasExecutionEngine) def _pandas(cls, column, **kwargs): return column.apply(lambda x: is_validarizonazip(x)) # This method defines the business logic for evaluating your metric when using a SqlAlchemyExecutionEngine # @column_condition_partial(engine=SqlAlchemyExecutionEngine) # def _sqlalchemy(cls, column, _dialect, **kwargs): # raise NotImplementedError # This method defines the business logic for evaluating your metric when using a SparkDFExecutionEngine # @column_condition_partial(engine=SparkDFExecutionEngine) # def _spark(cls, column, **kwargs): # raise NotImplementedError # This class defines the Expectation itself class ExpectColumnValuesToBeValidArizonaZip(ColumnMapExpectation): """Expect values in this column to be valid Arizona zipcodes. See https://pypi.org/project/zipcodes/ for more information. """ # These examples will be shown in the public gallery. # They will also be executed as unit tests for your Expectation. examples = [ { "data": { "validarizonazip": ["86511", "85920", "85308", "85001"], "invalidarizonazip": ["-10000", "1234", "99999", "25487"], }, "tests": [ { "title": "basic_positive_test", "exact_match_out": False, "include_in_gallery": True, "in": {"column": "validarizonazip"}, "out": {"success": True}, }, { "title": "basic_negative_test", "exact_match_out": False, "include_in_gallery": True, "in": {"column": "invalidarizonazip"}, "out": {"success": False}, }, ], } ] # This is the id string of the Metric used by this Expectation. # For most Expectations, it will be the same as the `condition_metric_name` defined in your Metric class above. map_metric = "column_values.validarizonazip" # This is a list of parameter names that can affect whether the Expectation evaluates to True or False success_keys = ("mostly",) # This dictionary contains default values for any parameters that should have default values default_kwarg_values = {} def validate_configuration( self, configuration: Optional[ExpectationConfiguration] ) -> None: """ Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that necessary configuration arguments have been provided for the validation of the expectation. Args: configuration (OPTIONAL[ExpectationConfiguration]): \ An optional Expectation Configuration entry that will be used to configure the expectation Returns: None. Raises InvalidExpectationConfigurationError if the config is not validated successfully """ super().validate_configuration(configuration) if configuration is None: configuration = self.configuration # # Check other things in configuration.kwargs and raise Exceptions if needed # try: # assert ( # ... # ), "message" # assert ( # ... # ), "message" # except AssertionError as e: # raise InvalidExpectationConfigurationError(str(e)) # This object contains metadata for display in the public Gallery library_metadata = { "maturity": "experimental", # "experimental", "beta", or "production" "tags": [ "hackathon", "typed-entities", ], # Tags for this Expectation in the Gallery "contributors": [ # Github handles for all contributors to this Expectation. "@luismdiaz01", "@derekma73", # Don't forget to add your github handle here! ], "requirements": ["zipcodes"], } if __name__ == "__main__": ExpectColumnValuesToBeValidArizonaZip().print_diagnostic_checklist()
import turtle # fill_box(x, y, dx, dy, [color=None]) # box((x1,y1), (x2,y2), [color=None], [width=None]) # box(x1,y1,x2,y2, [color=None], [width=None]) # fill_box_array(x, y, dx, dy, cnt, [add_x=0], [add_y=0], [color=None]) # line(x1, y1, x2, y2, [color=None], [width=None]) # multiline((x1,y1), (x2,y2), ...., (xn,yn) , params) # set_color([color='black']) # circle(x, y, r, [color=None], [width=None], [fill_color=None], [fill=False]) # circle_array(x, y, r, cnt, [dx=0], [dy=0], [color=None], [width=None], [fill_color=None], [fill=False]): def fill_box(x, y, dx, dy, color=None): turtle.up() turtle.goto(x,y) if color: turtle.color(color, color) turtle.down() turtle.begin_fill() turtle.setx(x + dx) turtle.sety(y + dy) turtle.setx(x) turtle.sety(y) turtle.end_fill() def box1(x1, y1, x2, y2, color=None, width=None): turtle.up() turtle.goto(x1, y1) if width is not None: turtle.pen(pensize=width) if color: turtle.color(color, color) turtle.down() turtle.setx(x2) turtle.sety(y2) turtle.setx(x1) turtle.sety(y1) def box(start, end, color=None, width=None): turtle.up() turtle.goto(start) if width is not None: turtle.pen(pensize=width) if color: turtle.color(color, color) x1, y1 = start x2, y2 = end turtle.down() turtle.setx(x2) turtle.sety(y2) turtle.setx(x1) turtle.sety(y1) def fill_box_array(x, y, dx, dy, cnt, add_x=0, add_y=0, color=None): for i in range(cnt): fill_box(x, y, dx, dy, color=color) x += add_x y += add_y def line(x1, y1, x2, y2, color=None, width=None): turtle.up() turtle.goto(x1, y1) if color: turtle.color(color, color) if width is not None: turtle.pen(pensize=width) turtle.down() turtle.goto(x2, y2) def multiline(*points, **params): if 'color' in params: turtle.color(params['color']) if 'width' in params: turtle.pen(pensize=params['width']) turtle.up() turtle.goto(points[0]) turtle.down() for x in points[1:]: turtle.goto(x) def set_color(color='black'): turtle.color(color) def circle(x, y, r, color=None, width=None, fill_color=None, fill=False): turtle.up() turtle.goto(x, y-r) turtle.setheading(0) if color: turtle.pen(pencolor=color) if fill_color: turtle.pen(fillcolor=fill_color) if width is not None: turtle.pen(pensize=width) if fill: turtle.begin_fill() turtle.down() turtle.circle(r) if fill: turtle.end_fill() def circle_array(x, y, r, cnt, dx=0, dy=0, color=None, width=None, fill_color=None, fill=False): for i in range(cnt): circle(x, y, r, color=color, width=width, fill_color=fill_color, fill=fill) x += dx y += dy
import mechanize import cookielib import urllib import os,time,datetime,re from dateutil.relativedelta import relativedelta from BeautifulSoup import BeautifulSoup svc_domain = r'http://jps-amiprod2.jps.net:9090/' user_name = os.environ.get('SVC_USER') user_pass = os.environ.get('SVC_PASS') start_date = datetime.datetime(2011, 1, 1) stop_date = datetime.datetime(2012,1,1) incr_date = relativedelta(months=1) # Parameters MAX_METER_IX = 8871 METER_IX_INCR = 60 OUTFILE_NAME = 'meter_list.csv' DUMP_SLEEP_TIME = 5.0 svc_home = svc_domain + 'serview.jsp' svc_login = svc_domain + 'home_D.jsp' meter_names = svc_domain + 'secure/selectDevice/selectResult_DT.jsp?deviceIdPattern=%25&execute=search+all+devices&cachedRequestId=_cachedDataSetRequestID_0&currentPosition=60' # Browser br = mechanize.Browser() # Cookie Jar cj = cookielib.LWPCookieJar() br.set_cookiejar(cj) # Browser options br.set_handle_equiv(True) br.set_handle_gzip(True) br.set_handle_redirect(True) br.set_handle_referer(True) br.set_handle_robots(False) br.set_handle_refresh(mechanize._http.HTTPRefreshProcessor(), max_time=1) br.addheaders = [('User-agent', r'Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; AS; rv:11.0) like Gecko')] # THe site doesn't seem to like it when we try to login directly, if we do it gives # "Invalid direct reference to form login page" # So we request the home page first, then try to log in. resp = br.open(svc_home) time.sleep(10) # Now open the login page resp = br.open(svc_login) # Select the first form on the login page br.select_form(nr=0) # User credentials br.form['j_username'] = user_name br.form['j_password'] = user_pass # Login resp = br.submit() time.sleep(10) current_meter_ix = 0 meter_list = [] while current_meter_ix + METER_IX_INCR < MAX_METER_IX: meter_names = svc_domain + 'secure/selectDevice/selectResult_DT.jsp?deviceIdPattern=%25&execute=search+all+devices&cachedRequestId=_cachedDataSetRequestID_0&currentPosition=' \ + str(current_meter_ix) ''' post_fields = {'deviceid': '%' } #Encode the parameters post_data = urllib.urlencode(post_fields) #Submit the form (POST request). You get the post_url and the request type(POST/GET) the same way with the parameters. resp = br.open(search_button_url,post_data) time.sleep(0.2) ''' try: resp = br.open(meter_names) time.sleep(10) except: time.sleep(30) resp = br.open(meter_names) time.sleep(10) meter_list = meter_list + re.findall(r'\?deviceId=(.*?)&',resp.read(),re.DOTALL) current_meter_ix = current_meter_ix + METER_IX_INCR with open(OUTFILE_NAME, 'wb') as outfile: outfile.write(','.join(meter_list) + '\n') a=2
import datetime import os.path import re import string import sys from rust import RustHelperBackend from stone import ir from stone.backends.python_helpers import fmt_class as fmt_py_class class Permissions(object): @property def permissions(self): # For generating tests, make sure we include any internal # fields/structs if we're using internal specs. If we're not using # internal specs, this is a no-op, so just do it all the time. Note # that this only needs to be done for json serialization, the struct # definitions will include all fields, all the time. return ['internal'] class TestBackend(RustHelperBackend): def __init__(self, target_folder_path, args): super(TestBackend, self).__init__(target_folder_path, args) # Don't import other generators until here, otherwise stone.cli will # call them with its own arguments, in addition to the TestBackend. from stone.backends.python_types import PythonTypesBackend self.target_path = target_folder_path self.ref_path = os.path.join(target_folder_path, 'reference') self.reference = PythonTypesBackend(self.ref_path, args) self.reference_impls = {} def generate(self, api): print(u'Generating Python reference code') self.reference.generate(api) with self.output_to_relative_path('reference/__init__.py'): self.emit(u'# this is the Stone-generated reference Python SDK') print(u'Loading reference code:') sys.path.insert(0, self.target_path) from reference.stone_serializers import json_encode for ns in api.namespaces: print('\t' + ns) python_ns = ns if ns == 'async': # hack to work around 'async' being a Python3 keyword python_ns = 'async_' self.reference_impls[ns] = __import__('reference.'+python_ns).__dict__[python_ns] print(u'Generating test code') for ns in api.namespaces.values(): ns_name = self.namespace_name(ns) with self.output_to_relative_path(ns_name + '.rs'): self._emit_header() for typ in ns.data_types: type_name = self.struct_name(typ) # the general idea here is to instantiate each type using # the reference Python code, put some random data in the # fields, serialize it to JSON, emit the JSON into the Rust # test, have Rust deserialize it, and emit assertions that # the fields match. Then have Rust re-serialize to JSON and # desereialize it again, then check the fields of the # newly-deserialized struct. This verifies Rust's # serializer. is_serializable = True test_value = None if ir.is_struct_type(typ): if typ.has_enumerated_subtypes(): # TODO: generate tests for all variants # for now, just pick the first variant variant = typ.get_enumerated_subtypes()[0] test_value = TestPolymorphicStruct( self, typ, self.reference_impls, variant) else: test_value = TestStruct(self, typ, self.reference_impls) elif ir.is_union_type(typ): # TODO: generate tests for all variants # for now, just pick the first variant # prefer choosing from this type and not the parent if we can variants = [field for field in typ.fields if not field.catch_all] if len(variants) == 0: # fall back to parent type's variants variants = [field for field in typ.all_fields if not field.catch_all] if not variants: # Rust code will refuse to serialize a type with no variants (or only # the catch-all variant), so don't bother testing that is_serializable = False variant = typ.all_fields[0] # this assumes there's at least one else: variant = variants[0] test_value = TestUnion(self, typ, self.reference_impls, variant) else: raise RuntimeError(u'ERROR: type {} is neither struct nor union' .format(typ)) pyname = fmt_py_class(typ.name) json = json_encode( self.reference_impls[ns.name].__dict__[pyname + '_validator'], test_value.value, Permissions()) with self._test_fn(type_name): self.emit(u'let json = r#"{}"#;'.format(json)) self.emit(u'let x = ::serde_json::from_str::<::dropbox_sdk::{}::{}>(json).unwrap();' .format(ns_name, self.struct_name(typ))) test_value.emit_asserts(self, 'x') if is_serializable: # now serialize it back to JSON, deserialize it again, and test # it again. self.emit() self.emit(u'let json2 = ::serde_json::to_string(&x).unwrap();') de = u'::serde_json::from_str::<::dropbox_sdk::{}::{}>(&json2).unwrap()' \ .format(ns_name, self.struct_name(typ)) if typ.all_fields: self.emit(u'let x2 = {};'.format(de)) test_value.emit_asserts(self, 'x2') else: self.emit(u'{};'.format(de)) else: # assert that serializing it returns an error self.emit(u'assert!(::serde_json::to_string(&x).is_err());') self.emit() # for typ # .rs test file # for ns with self.output_to_relative_path('mod.rs'): self._emit_header() for ns in api.namespaces: self.emit(u'#[cfg(feature = "dbx_{}")]'.format(ns)) self.emit(u'mod {};'.format(self.namespace_name_raw(ns))) self.emit() def _emit_header(self): self.emit(u'// DO NOT EDIT') self.emit(u'// This file was generated by Stone') self.emit() self.emit(u'#![allow(bad_style)]') self.emit() self.emit(u'#![allow(') self.emit(u' clippy::float_cmp,') self.emit(u' clippy::unreadable_literal,') self.emit(u' clippy::cyclomatic_complexity,') self.emit(u')]') self.emit() def _test_fn(self, name): self.emit(u'#[test]') return self.emit_rust_function_def(u'test_' + name) class TestField(object): def __init__(self, name, python_value, test_value, stone_type, option): self.name = name self.value = python_value self.test_value = test_value self.typ = stone_type self.option = option def emit_assert(self, codegen, expression_path): extra = ('.' + self.name) if self.name else '' if self.option: expression = '(*' + expression_path + extra + '.as_ref().unwrap())' else: expression = expression_path + extra if isinstance(self.test_value, TestValue): self.test_value.emit_asserts(codegen, expression) elif ir.is_string_type(self.typ): codegen.emit(u'assert_eq!({}.as_str(), r#"{}"#);'.format( expression, self.value)) elif ir.is_numeric_type(self.typ): codegen.emit(u'assert_eq!({}, {});'.format( expression, self.value)) elif ir.is_boolean_type(self.typ): codegen.emit(u'assert_eq!({}, {});'.format( expression, 'true' if self.value else 'false')) elif ir.is_timestamp_type(self.typ): codegen.emit(u'assert_eq!({}.as_str(), "{}");'.format( expression, self.value.strftime(self.typ.format))) elif ir.is_bytes_type(self.typ): codegen.emit(u'assert_eq!(&{}, &[{}]);'.format( expression, ",".join(str(x) for x in self.value))) else: raise RuntimeError(u'Error: assetion unhandled for type {} of field {} with value {}' .format(self.typ, self.name, self.value)) class TestValue(object): def __init__(self, rust_generator): self.rust_generator = rust_generator self.fields = [] self.value = None def emit_asserts(self, codegen, expression_path): raise NotImplementedError('you\'re supposed to implement TestValue.emit_asserts') class TestStruct(TestValue): def __init__(self, rust_generator, stone_type, reference_impls): super(TestStruct, self).__init__(rust_generator) if stone_type.has_enumerated_subtypes(): stone_type = stone_type.get_enumerated_subtypes()[0].data_type self._stone_type = stone_type self._reference_impls = reference_impls py_name = fmt_py_class(stone_type.name) try: self.value = reference_impls[stone_type.namespace.name].__dict__[py_name]() except Exception as e: raise RuntimeError(u'Error instantiating value for {}: {}'.format(stone_type.name, e)) for field in stone_type.all_fields: field_value = make_test_field( field.name, field.data_type, rust_generator, reference_impls) if field_value is None: raise RuntimeError(u'Error: incomplete type generated: {}'.format(stone_type.name)) self.fields.append(field_value) try: setattr(self.value, field.name, field_value.value) except Exception as e: raise RuntimeError(u'Error generating value for {}.{}: {}' .format(stone_type.name, field.name, e)) def emit_asserts(self, codegen, expression_path): for field in self.fields: field.emit_assert(codegen, expression_path) class TestUnion(TestValue): def __init__(self, rust_generator, stone_type, reference_impls, variant): super(TestUnion, self).__init__(rust_generator) self._stone_type = stone_type self._reference_impls = reference_impls self._rust_name = rust_generator.enum_name(stone_type) self._rust_variant_name = rust_generator.enum_variant_name_raw(variant.name) self._rust_namespace_name = rust_generator.namespace_name(stone_type.namespace) self._variant_type = variant.data_type self._inner_value = make_test_field( None, self._variant_type, rust_generator, reference_impls) if self._inner_value is None: raise RuntimeError(u'Error generating union variant value for {}.{}' .format(stone_type.name, variant.name)) self.value = self.get_from_inner_value(variant.name, self._inner_value) def get_from_inner_value(self, variant_name, generated_field): pyname = fmt_py_class(self._stone_type.name) try: return self._reference_impls[self._stone_type.namespace.name] \ .__dict__[pyname](variant_name, generated_field.value) except Exception as e: raise RuntimeError(u'Error generating value for {}.{}: {}' .format(self._stone_type.name, variant_name, e)) def is_open(self): return len(self._stone_type.all_fields) > 1 def emit_asserts(self, codegen, expression_path): if expression_path[0] == '(' and expression_path[-1] == ')': expression_path = expression_path[1:-1] # strip off superfluous parens with codegen.block(u'match {}'.format(expression_path)): if ir.is_void_type(self._variant_type): codegen.emit(u'::dropbox_sdk::{}::{}::{} => (),'.format( self._rust_namespace_name, self._rust_name, self._rust_variant_name)) else: with codegen.block(u'::dropbox_sdk::{}::{}::{}(ref v) =>'.format( self._rust_namespace_name, self._rust_name, self._rust_variant_name)): self._inner_value.emit_assert(codegen, '(*v)') if self.is_open(): codegen.emit(u'_ => panic!("wrong variant")') class TestPolymorphicStruct(TestUnion): def get_from_inner_value(self, variant_name, generated_field): return generated_field.value def is_open(self): return len(self._stone_type.get_enumerated_subtypes()) > 1 class TestList(TestValue): def __init__(self, rust_generator, stone_type, reference_impls): super(TestList, self).__init__(rust_generator) self._stone_type = stone_type self._reference_impls = reference_impls self._inner_value = make_test_field(None, stone_type, rust_generator, reference_impls) if self._inner_value is None: raise RuntimeError(u'Error generating value for list of {}'.format(stone_type.name)) self.value = self._inner_value.value def emit_asserts(self, codegen, expression_path): self._inner_value.emit_assert(codegen, expression_path + '[0]') class TestMap(TestValue): def __init__(self, rust_generator, stone_type, reference_impls): super(TestMap, self).__init__(rust_generator) self._stone_type = stone_type self._reference_impls = reference_impls self._key_value = make_test_field(None, stone_type.key_data_type, rust_generator, reference_impls) self._val_value = make_test_field(None, stone_type.value_data_type, rust_generator, reference_impls) self.value = {self._key_value.value: self._val_value.value} def emit_asserts(self, codegen, expression_path): key_str = u'["{}"]'.format(self._key_value.value) self._val_value.emit_assert(codegen, expression_path + key_str) def make_test_field(field_name, stone_type, rust_generator, reference_impls): rust_name = rust_generator.field_name_raw(field_name) if field_name is not None else None typ, option = ir.unwrap_nullable(stone_type) inner = None value = None if ir.is_struct_type(typ): if typ.has_enumerated_subtypes(): variant = typ.get_enumerated_subtypes()[0] inner = TestPolymorphicStruct(rust_generator, typ, reference_impls, variant) else: inner = TestStruct(rust_generator, typ, reference_impls) value = inner.value elif ir.is_union_type(typ): # pick the first tag # TODO(wfraser) generate tests for them ALL! if len(typ.fields) == 0: # there must be a parent type; go for it variant = typ.all_fields[0] else: variant = typ.fields[0] inner = TestUnion(rust_generator, typ, reference_impls, variant) value = inner.value elif ir.is_list_type(typ): inner = TestList(rust_generator, typ.data_type, reference_impls) value = [inner.value] elif ir.is_map_type(typ): inner = TestMap(rust_generator, typ, reference_impls) value = inner.value elif ir.is_string_type(typ): if typ.pattern: value = Unregex(typ.pattern, typ.min_length).generate() elif typ.min_length: value = 'a' * typ.min_length else: value = 'something' elif ir.is_numeric_type(typ): value = typ.max_value or typ.maximum or 1e307 elif ir.is_boolean_type(typ): value = True elif ir.is_timestamp_type(typ): value = datetime.datetime.utcfromtimestamp(2**33 - 1) elif ir.is_bytes_type(typ): value = bytes([0,1,2,3,4,5]) elif not ir.is_void_type(typ): raise RuntimeError(u'Error: unhandled field type of {}: {}'.format(field_name, typ)) return TestField(rust_name, value, inner, typ, option) class Unregex(object): """ Generate a minimal string that passes a regex and optionally is of a given minimum length. """ def __init__(self, regex_string, min_len=None): self._min_len = min_len self._group_refs = {} self._tokens = re.sre_parse.parse(regex_string) def generate(self): return self._generate(self._tokens) def _generate(self, tokens): result = '' for (opcode, argument) in tokens: opcode = str(opcode).lower() if opcode == 'literal': result += chr(argument) elif opcode == 'at': pass # start or end anchor; nothing to add elif opcode == 'in': if argument[0][0] == 'negate': rejects = [] for opcode, reject in argument[1:]: if opcode == 'literal': rejects.append(chr(reject)) elif opcode == 'range': for i in range(reject[0], reject[1]): rejects.append(chr(i)) choices = list(set(string.printable) .difference(string.whitespace) .difference(rejects)) result += choices[0] else: result += self._generate([argument[0]]) elif opcode == 'any': result += '*' elif opcode == 'range': result += chr(argument[0]) elif opcode == 'branch': result += self._generate(argument[1][0]) elif opcode == 'subpattern': group_number, add_flags, del_flags, sub_tokens = argument sub_result = self._generate(sub_tokens) self._group_refs[group_number] = sub_result result += sub_result elif opcode == 'groupref': result += self._group_refs[argument] elif opcode == 'min_repeat' or opcode == 'max_repeat': min_repeat, max_repeat, sub_tokens = argument if self._min_len: n = max(min_repeat, min(self._min_len, max_repeat)) else: n = min_repeat sub_result = self._generate(sub_tokens) if n != 0 else '' result += str(sub_result) * n elif opcode == 'category': if argument == 'category_digit': result += '0' elif argument == 'category_not_space': result += '!' else: raise NotImplementedError('category {}'.format(argument)) elif opcode == 'assert_not': # let's just hope for the best... pass elif opcode == 'assert' or opcode == 'negate': # note: 'negate' is handled in the 'in' opcode raise NotImplementedError('regex opcode {} not implemented'.format(opcode)) else: raise NotImplementedError('unknown regex opcode: {}'.format(opcode)) return result
############################################################################### ## ## Copyright (C) 2014-2016, New York University. ## Copyright (C) 2013-2014, NYU-Poly. ## All rights reserved. ## Contact: contact@vistrails.org ## ## This file is part of VisTrails. ## ## "Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions are met: ## ## - Redistributions of source code must retain the above copyright notice, ## this list of conditions and the following disclaimer. ## - Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in the ## documentation and/or other materials provided with the distribution. ## - Neither the name of the New York University nor the names of its ## contributors may be used to endorse or promote products derived from ## this software without specific prior written permission. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ## THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ## PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ## EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ## PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ## OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, ## WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR ## OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ## ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ## ############################################################################### from __future__ import division try: import simplejson as json except ImportError: import json from .convert import DictToTable, ListToTable class JSONTable(object): def compute(self): json_file = self.get_input('file').name with open(json_file, 'rb') as fp: obj = json.load(fp) self.convert_to_table(obj) class JSONObject(JSONTable, DictToTable): """Loads a JSON file and build a table from an object. In JSON, an object is written with `{}`. It is essentially an associative array. A column will contain the keys in this array. Example:: { "John": {"lastname": "Smith", "age": 25, "city": "New York"}, "Ashley": {"lastname": "Crofts", "age": 21, "city": "Fort Worth"}, "Michael": {"lastname": "Buck", "age": 78, "city": "Goodman"} } key | lastname | age | city -------+----------+-----+----------- John | Smith | 25 | New York Ashley | Crofts | 21 | Fort Worth Michal | Buck | 78 | Goodman Rows can also be lists (but they still all have to be in the same format). In this case, columns will not be named. To read a list of rows, use the JSONList module instead. """ _input_ports = [('file', '(org.vistrails.vistrails.basic:File)')] class JSONList(JSONTable, ListToTable): """Loads a JSON file and build a table from a list. In JSON, a list is written with `[]`. Example:: [[ 4, 14, 15, 1], [ 9, 7, 6, 12], [ 5, 11, 10, 8], [16, 2, 3, 13]] gives a 4x4 unnamed table. """ _input_ports = [('file', '(org.vistrails.vistrails.basic:File)')] _modules = [JSONObject, JSONList] ############################################################################### import unittest from vistrails.tests.utils import execute, intercept_results from ..identifiers import identifier class TestJSON(unittest.TestCase): def test_object(self): """Reads an object with object or list rows. """ json_files = [ (""" { "John": {"lastname": "Smith", "age": 25, "city": "New York"}, "Lara": {"lastname": "Croft", "age": 21, "city": "Nashville"}, "Michael": {"lastname": "Buck", "age": 78, "city": "Goodman"} } """, True), (""" { "John": ["Smith", 25, "New York"], "Lara": ["Croft", 21, "Nashville"], "Michael": ["Buck", 78, "Goodman"] } """, False), ] for json_file, has_names in json_files: with intercept_results(JSONObject, 'value', 'column_count', 'column_names') as results: self.assertFalse(execute([ ('WriteFile', 'org.vistrails.vistrails.basic', [ ('in_value', [('String', json_file)]), ]), ('read|JSONObject', identifier, []), ], [ (0, 'out_value', 1, 'file'), ])) self.assertTrue(all((len(r) == 1) for r in results[:2])) (table,), (count,), names = results self.assertEqual(count, 4) import numpy if has_names: self.assertEqual(names, [table.names]) self.assertEqual(table.names[0], 'key') self.assertEqual(set(table.names[1:]), set(['lastname', 'age', 'city'])) f_city = table.names.index('city') f_age = table.names.index('age') else: self.assertEqual(names, []) self.assertIsNone(table.names) f_city = 3 f_age = 2 self.assertEqual(set(table.get_column(f_city)), set(["New York", "Nashville", "Goodman"])) l = table.get_column(f_age, True) self.assertIsInstance(l, numpy.ndarray) self.assertEqual(set(l), set([21, 25, 78])) def test_list(self): """Reads a list of object or list rows. """ json_files = [ """ [ {"firstname": "John", "lastname": "Smith", "age": 25}, {"firstname": "Lara", "lastname": "Croft", "age": 21}, {"firstname": "Michael", "lastname": "Buck", "age": 78} ] """, """ [[2, 7, 6], [9, 5, 1], [4, 3, 8]] """, ] for nb, json_file in enumerate(json_files): with intercept_results(JSONList, 'value', 'column_count', 'column_names') as results: self.assertFalse(execute([ ('WriteFile', 'org.vistrails.vistrails.basic', [ ('in_value', [('String', json_file)]), ]), ('read|JSONList', identifier, []), ], [ (0, 'out_value', 1, 'file'), ])) self.assertTrue(all((len(r) == 1) for r in results[:2])) (table,), (count,), names = results self.assertEqual(count, 3) import numpy if nb == 0: self.assertEqual(names, [table.names]) self.assertEqual(set(table.names), set(['firstname', 'lastname', 'age'])) self.assertEqual(set(table.get_column_by_name('firstname')), set(["John", "Lara", "Michael"])) l = table.get_column_by_name('age', True) self.assertIsInstance(l, numpy.ndarray) self.assertEqual(set(l), set([21, 25, 78])) else: self.assertEqual(names, []) self.assertIsNone(table.names) self.assertEqual([table.get_column(col) for col in xrange(3)], [[2, 9, 4], [7, 5, 3], [6, 1, 8]])
""" This process performs a backup of all the application entities for the given app ID to the local filesystem. """ import argparse import cPickle import errno import logging import multiprocessing import os import random import re import shutil import sys import time sys.path.append(os.path.join(os.path.dirname(__file__), "../../")) import appscale_datastore_batch import dbconstants import datastore_server import entity_utils from zkappscale import zktransaction as zk sys.path.append(os.path.join(os.path.dirname(__file__), "../../../lib/")) import appscale_info # The location to look at in order to verify that an app is deployed. _SOURCE_LOCATION = '/opt/appscale/apps/' class DatastoreBackup(multiprocessing.Process): """ Backs up all the entities for a set application ID. """ # The amount of seconds between polling to get the backup lock. LOCK_POLL_PERIOD = 60 # The location where the backup files will be stored. BACKUP_FILE_LOCATION = "/opt/appscale/backups/" # The backup filename suffix. BACKUP_FILE_SUFFIX = ".backup" # The number of entities retrieved in a datastore request. BATCH_SIZE = 100 # Blob entity regular expressions. BLOB_CHUNK_REGEX = '(.*)__BlobChunk__(.*)' BLOB_INFO_REGEX = '(.*)__BlobInfo__(.*)' # Retry sleep on datastore error in seconds. DB_ERROR_PERIOD = 30 # Max backup file size in bytes. MAX_FILE_SIZE = 100000000 # <- 100 MB # Any kind that is of __*__ is private. PRIVATE_KINDS = '(.*)__(.*)__(.*)' # Any kind that is of _*_ is protected. PROTECTED_KINDS = '(.*)_(.*)_(.*)' def __init__(self, app_id, zoo_keeper, table_name, source_code=False, skip_list=[]): """ Constructor. Args: app_id: The application ID. zk: ZooKeeper client. table_name: The database used (e.g. cassandra). source_code: True when a backup of the source code is requested, False otherwise. skip_list: A list of Kinds to be skipped during backup; empty list if none. """ multiprocessing.Process.__init__(self) self.app_id = app_id self.zoo_keeper = zoo_keeper self.table = table_name self.source_code = source_code self.skip_kinds = skip_list self.last_key = self.app_id + '\0' + dbconstants.TERMINATING_STRING self.backup_timestamp = time.strftime("%Y%m%d-%H%M%S") self.backup_dir = None self.current_fileno = 0 self.current_file_size = 0 self.entities_backed_up = 0 self.db_access = None def stop(self): """ Stops the backup thread. """ pass def set_filename(self): """ Creates a new backup filename. Also creates the backup folder if it doesn't exist. Returns: True on success, False otherwise. """ if not self.backup_dir: self.backup_dir = '{0}{1}-{2}/'.format(self.BACKUP_FILE_LOCATION, self.app_id, self.backup_timestamp) try: os.makedirs(self.backup_dir) logging.info("Backup dir created: {0}".format(self.backup_dir)) except OSError, os_error: if os_error.errno == errno.EEXIST: logging.warn("OSError: Backup directory already exists.") logging.error(os_error.message) elif os_error.errno == errno.ENOSPC: logging.error("OSError: No space left to create backup directory.") logging.error(os_error.message) return False elif os_error.errno == errno.EROFS: logging.error("OSError: READ-ONLY filesystem detected.") logging.error(os_error.message) return False except IOError, io_error: logging.error("IOError while creating backup dir.") logging.error(io_error.message) return False file_name = '{0}-{1}-{2}{3}'.format(self.app_id, self.backup_timestamp, self.current_fileno, self.BACKUP_FILE_SUFFIX) self.filename = '{0}{1}'.format(self.backup_dir, file_name) logging.info("Backup file: {0}".format(self.filename)) return True def backup_source_code(self): """ Copies the source code of the app into the backup directory. Skips this step if the file is not found. """ sourcefile = '{0}{1}.tar.gz'.format(_SOURCE_LOCATION, self.app_id) if os.path.isfile(sourcefile): try: shutil.copy(sourcefile, self.backup_dir) logging.info("Source code has been successfully backed up.") except shutil.Error, error: logging.error("Error: {0} while backing up source code. Skipping...".\ format(error)) else: logging.error("Couldn't find the source code for this app. Skipping...") def run(self): """ Starts the main loop of the backup thread. """ while True: logging.debug("Trying to get backup lock.") if self.get_backup_lock(): logging.info("Got the backup lock.") self.db_access = appscale_datastore_batch.DatastoreFactory.\ getDatastore(self.table) self.set_filename() if self.source_code: self.backup_source_code() self.run_backup() try: self.zoo_keeper.release_lock_with_path(zk.DS_BACKUP_LOCK_PATH) except zk.ZKTransactionException, zk_exception: logging.error("Unable to release zk lock {0}.".\ format(str(zk_exception))) break else: logging.info("Did not get the backup lock. Another instance may be " "running.") time.sleep(random.randint(1, self.LOCK_POLL_PERIOD)) def get_backup_lock(self): """ Tries to acquire the lock for a datastore backup. Returns: True on success, False otherwise. """ return self.zoo_keeper.get_lock_with_path(zk.DS_BACKUP_LOCK_PATH) def get_entity_batch(self, first_key, batch_size, start_inclusive): """ Gets a batch of entities to operate on. Args: first_key: The last key from a previous query. batch_size: The number of entities to fetch. start_inclusive: True if first row should be included, False otherwise. Returns: A list of entities. """ batch = self.db_access.range_query(dbconstants.APP_ENTITY_TABLE, dbconstants.APP_ENTITY_SCHEMA, first_key, self.last_key, batch_size, start_inclusive=start_inclusive) if batch: logging.debug("Retrieved entities from {0} to {1}". format(batch[0].keys()[0], batch[-1].keys()[0])) return batch def verify_entity(self, key, txn_id): """ Verify that the entity is not blacklisted. Args: key: The key to the entity table. txn_id: An int, a transaction ID. Returns: True on success, False otherwise. """ app_prefix = entity_utils.get_prefix_from_entity_key(key) try: if self.zoo_keeper.is_blacklisted(app_prefix, txn_id): logging.warn("Found a blacklisted item for version {0} on key {1}".\ format(txn_id, key)) return False except zk.ZKTransactionException, zk_exception: logging.error("Caught exception {0}, backing off!".format(zk_exception)) time.sleep(self.DB_ERROR_PERIOD) except zk.ZKInternalException, zk_exception: logging.error("Caught exception: {0}, backing off!".format( zk_exception)) time.sleep(self.DB_ERROR_PERIOD) return True def dump_entity(self, entity): """ Dumps the entity content into a backup file. Args: entity: The entity to be backed up. Returns: True on success, False otherwise. """ # Open file and write pickled batch. if self.current_file_size + len(entity) > self.MAX_FILE_SIZE: self.current_fileno += 1 self.set_filename() self.current_file_size = 0 try: with open(self.filename, 'ab+') as file_object: cPickle.dump(entity, file_object, cPickle.HIGHEST_PROTOCOL) self.entities_backed_up += 1 self.current_file_size += len(entity) except IOError as io_error: logging.error( "Encountered IOError while accessing backup file {0}". format(self.filename)) logging.error(io_error.message) return False except OSError as os_error: logging.error( "Encountered OSError while accessing backup file {0}". format(self.filename)) logging.error(os_error.message) return False except Exception as exception: logging.error( "Encountered an unexpected error while accessing backup file {0}". format(self.filename)) logging.error(exception.message) return False return True def process_entity(self, entity): """ Verifies entity, fetches from journal if necessary and calls dump_entity. Args: entity: The entity to be backed up. Returns: True on success, False otherwise. """ key = entity.keys()[0] kind = entity_utils.get_kind_from_entity_key(key) # Skip protected and private entities. if re.match(self.PROTECTED_KINDS, kind) or\ re.match(self.PRIVATE_KINDS, kind): # Do not skip blob entities. if not re.match(self.BLOB_CHUNK_REGEX, kind) and\ not re.match(self.BLOB_INFO_REGEX, kind): logging.debug("Skipping key: {0}".format(key)) return False one_entity = entity[key][dbconstants.APP_ENTITY_SCHEMA[0]] if one_entity == datastore_server.TOMBSTONE: return False app_prefix = entity_utils.get_prefix_from_entity_key(key) root_key = entity_utils.get_root_key_from_entity_key(key) success = True while True: # Acquire lock. txn_id = self.zoo_keeper.get_transaction_id(app_prefix) try: if self.zoo_keeper.acquire_lock(app_prefix, txn_id, root_key): version = entity[key][dbconstants.APP_ENTITY_SCHEMA[1]] if not self.verify_entity(key, version): # Fetch from the journal. entity = entity_utils.fetch_journal_entry(self.db_access, key) if not entity: logging.error("Bad journal entry for key: {0} and result: {1}". format(key, entity)) success = False else: one_entity = entity[key][dbconstants.APP_ENTITY_SCHEMA[0]] if self.dump_entity(one_entity): logging.debug("Backed up key: {0}".format(key)) success = True else: success = False else: logging.warn("Entity with key: {0} not found".format(key)) success = False except zk.ZKTransactionException, zk_exception: logging.error("Zookeeper exception {0} while requesting entity lock". format(zk_exception)) success = False except zk.ZKInternalException, zk_exception: logging.error("Zookeeper exception {0} while requesting entity lock". format(zk_exception)) success = False except dbconstants.AppScaleDBConnectionError, db_exception: logging.error("Database exception {0} while requesting entity lock". format(db_exception)) success = False finally: if not success: if not self.zoo_keeper.notify_failed_transaction(app_prefix, txn_id): logging.error("Unable to invalidate txn for {0} with txnid: {1}"\ .format(app_prefix, txn_id)) logging.error("Failed to backup entity. Retrying shortly...") try: self.zoo_keeper.release_lock(app_prefix, txn_id) except zk.ZKTransactionException, zk_exception: logging.error( "Zookeeper exception {0} while releasing entity lock.". format(zk_exception)) except zk.ZKInternalException, zk_exception: logging.error( "Zookeeper exception {0} while releasing entity lock.". format(zk_exception)) if success: break else: time.sleep(self.DB_ERROR_PERIOD) return success def run_backup(self): """ Runs the backup process. Loops on the entire dataset and dumps it into a file. """ logging.info("Backup started") start = time.time() first_key = '{0}\x00'.format(self.app_id) start_inclusive = True entities_remaining = [] while True: try: # Fetch batch. entities = entities_remaining + self.get_entity_batch(first_key, self.BATCH_SIZE, start_inclusive) logging.info("Processing {0} entities".format(self.BATCH_SIZE)) if not entities: break # Loop through entities retrieved and if not to be skipped, process. skip = False for entity in entities: first_key = entity.keys()[0] kind = entity_utils.get_kind_from_entity_key(first_key) logging.debug("Processing key: {0}".format(first_key)) index = 1 for skip_kind in self.skip_kinds: if re.match(skip_kind, kind): logging.warn("Skipping entities of kind: {0}".format(skip_kind)) skip = True first_key = first_key[:first_key.find(skip_kind)+ len(skip_kind)+1] + dbconstants.TERMINATING_STRING self.skip_kinds = self.skip_kinds[index:] break index += 1 if skip: break self.process_entity(entity) if not skip: first_key = entities[-1].keys()[0] start_inclusive = False except dbconstants.AppScaleDBConnectionError, connection_error: logging.error("Error getting a batch: {0}".format(connection_error)) time.sleep(self.DB_ERROR_PERIOD) del self.db_access time_taken = time.time() - start logging.info("Backed up {0} entities".format(self.entities_backed_up)) logging.info("Backup took {0} seconds".format(str(time_taken))) def init_parser(): """ Initializes the command line argument parser. Returns: A parser object. """ parser = argparse.ArgumentParser( description='Backup application code and data.') parser.add_argument('-a', '--app-id', required=True, help='the application ID to run the backup for') parser.add_argument('--source-code', action='store_true', default=False, help='backup the source code too. Disabled by default.') parser.add_argument('-d', '--debug', required=False, action="store_true", default=False, help='display debug messages') parser.add_argument('--skip', required=False, nargs="+", help='skip the following kinds, separated by spaces') return parser def main(): """ This main function allows you to run the backup manually. """ parser = init_parser() args = parser.parse_args() # Set up logging. level = logging.INFO if args.debug: level = logging.DEBUG logging.basicConfig(format='%(asctime)s %(levelname)s %(filename)s:' \ '%(lineno)s %(message)s ', level=level) logging.info("Logging started") message = "Backing up " if args.source_code: message += "source and " message += "data for: {0}".format(args.app_id) logging.info(message) zk_connection_locations = appscale_info.get_zk_locations_string() zookeeper = zk.ZKTransaction(host=zk_connection_locations) db_info = appscale_info.get_db_info() table = db_info[':table'] skip_list = args.skip if not skip_list: skip_list = [] logging.info("Will skip the following kinds: {0}".format(sorted(skip_list))) ds_backup = DatastoreBackup(args.app_id, zookeeper, table, source_code=args.source_code, skip_list=sorted(skip_list)) try: ds_backup.run() finally: zookeeper.close() if __name__ == "__main__": main()
from qqbot import QQBotSlot as qqbotslot, QQBot from qqbot.qcontactdb import QContact from tenhoubot import main as starttenhou import threading import re import random import time is_playing = False qq_group = None class BotConnector(object): def __init__(self, qqbot): self.qbot = qqbot self.stop_wait = False self.first_time = True def on_receive_message(self, message): if 'WAIT_READY' in message: self.qbot.SendTo(qq_group, '我排好了,你们赶紧的') if 'WAIT_TO_END' in message: self.qbot.SendTo(qq_group, '操你们妈啊,喊3缺1叫我,然后又没人来') if 'FINAL_RESULT' in message: result_list = re.search(r'FINAL_RESULT\s*(.*)', message).group(1) self.qbot.SendTo(qq_group, '刚刚跟你们这群菜鸡打了一局,结果感人') result = re.search(r'\[(.*)\((.*)\) (.*), (.*)\((.*)\) (.*), (.*)\((.*)\) (.*), (.*)\((.*)\) (.*)\]',result_list) for i in [1, 4, 7, 10]: name = result.group(i) point = result.group(i+1) score = result.group(i+2) if name == 'Lattish': name = '老子我' formatted_result = '%s: %s (%s)' % (name, score, point) time.sleep(0.3) self.qbot.SendTo(qq_group, formatted_result) if result.group(10) == 'Lattish' and float(result.group(12).replace(' ', '')) < 0: time.sleep(1) self.qbot.SendTo(qq_group, '你们竟然敢打飞我???烟了,全都烟了!!!') members = [x for x in self.qbot.List(qq_group) if x.role == '成员'] self.qbot.GroupShut(qq_group, members, t=60) class TenhouThread (threading.Thread): def __init__(self, connector): threading.Thread.__init__(self) self.connector = connector def run(self): global is_playing starttenhou(self.connector) is_playing = False botConnector.stop_wait = False my_names = ["@ME", "Lattish", "yunini", "lattish"] @qqbotslot def onQQMessage(bot, contact, member, content): global qq_group global botConnector global is_playing if contact.qq == '625219436': qq_group = contact if '烟' in content or '🚬' in content: if member.role == '普通成员': if '烟呢' in content: shut_seconds = random.randint(1, 10) * 60 bot.GroupShut(contact, [member], t=shut_seconds) bot.SendTo(contact, '这呢,成全你这个抖 M') else: num = random.random() if num < 0.2: bot.GroupShut(contact, [member], t=60) bot.SendTo(contact, '还真当我不懂啊,智障') elif num < 0.22: bot.GroupShut(contact, [member], t=3600) bot.SendTo(contact, '今天试试这电子烟怎么样?') else: bot.SendTo(contact, "烟?什么意思?完全不懂啊") else: bot.SendTo(contact, '渣渣管理员别跟我提烟') if '麻吗' in content or "麻?" in content or "棍吗" in content or "棍?" in content: num = random.random() if num < 0.5: bot.SendTo(contact, '搞事搞事搞事') else: bot.SendTo(contact, '来啊,来屁胡啊') elif '机器人' in content or 'AI' in content or 'bot' in content: bot.SendTo(contact, '操你妈别以为我不知道你在说我') elif 'latish' in content or 'Latish' in content: bot.SendTo(contact, '智障能把我名字打对吗???') elif any([x in content for x in my_names]): # being mentioned if "在吗" in content or "zaima" in content: if not is_playing: num = random.random() if num < 0.5: bot.SendTo(contact, '摸了') else: bot.SendTo(contact, 'buzai cmn') else: bot.SendTo(contact, '我正堇业着呢,叫也没用') elif "缺人" in content: if not is_playing: bot.SendTo(contact, '3缺1再叫我,谢谢,你说缺人谁他妈知道你缺几个') else: bot.SendTo(contact, '我正在跟别人干着呢,叫也没用') elif "3缺1" in content or "三缺一" in content: if not is_playing: is_playing = True bot.SendTo(contact, '你群打个麻将都贵阳,知道了,这就上线') tenhou_thread = TenhouThread(botConnector) tenhou_thread.start() else: bot.SendTo(contact, '我正在跟别人干着呢,叫也没用') elif "别排" in content: if is_playing: bot.SendTo(contact, '你他妈遛我玩呢?下回缺人别JB找我') botConnector.stop_wait = True else: bot.SendTo(contact, '你他妈是不是傻,老子本来也没排啊') elif "地址" in content or "链接" in content: bot.SendTo(contact, '不会自己看群公告啊,傻逼') bot.SendTo(contact, '网页版:http://tenhou.net/3/?L2587') bot.SendTo(contact, 'Flash 版:http://tenhou.net/0/?L2587') elif "傻逼" in content or "真蠢" in content: bot.SendTo(contact, '信不信我烟你') elif "疯了" in content or "可爱" in content: bot.SendTo(contact, '嘻嘻') elif "闭嘴" in content or "好吵" in content: bot.SendTo(contact, '哦,那你可以烟我啊') elif "吃" in content: bot.SendTo(contact, '不吃') elif "飞了" in content: bot.SendTo(contact, '丢人,你退群吧') else: num = random.random() if num < 0.3: bot.SendTo(contact, '操你妈要求真多') elif num < 0.66: bot.SendTo(contact, '人家不懂,不然先抽烟?') else: bot.SendTo(contact, '哎呀人家不懂了啦') elif random.random() > 0.98: bot.SendTo(contact, content) if __name__ == '__main__': bot = QQBot() botConnector = BotConnector(bot) bot.Login(user='Lattish') bot.Run()
#!/usr/bin/env python # -*- coding: utf-8 -*- import datetime import socket import logging import dateutil.parser from constants import MSG_DATE_SEP, END_MSG from moves import initialize_keyboard, press_keys logging.basicConfig(filename='jagger_server.log', level=logging.DEBUG) logger = logging.getLogger("jagger_server") class JaggerServer(object): def __init__(self, host, port=8765): super(JaggerServer, self).__init__() self.host = host self.port = port self.total_msgs = 0 self.total_delay = 0 self.avg_delay = 0 self.max_delay = 0 self.min_delay = 1000000000 self.max_msg_count = 1000 def get_msg(self, client_msg): if MSG_DATE_SEP in client_msg: client_time, msg = client_msg.split(MSG_DATE_SEP) client_time = dateutil.parser.parse(client_time) return client_time, msg else: pass def proccess_msg(self, client_msg): now = datetime.datetime.utcnow() client_time, msg = self.get_msg(client_msg) time_delay = now - client_time # time delay in miliseconds time_delay = time_delay.total_seconds() * 1000 keys = [key for key in msg] press_keys(keys) return time_delay def calculate_stats_on_delay(self, time_delay): self.min_delay = min(self.min_delay, time_delay) self.max_delay = max(self.max_delay, time_delay) self.total_delay += time_delay self.total_msgs += 1 # calculate the avg once the max msg count is archived if self.total_msgs >= self.max_msg_count: new_avg = self.total_delay / self.total_msgs self.avg_delay = (self.avg_delay + new_avg) / 2 self.total_delay = 0 self.total_msgs = 0 logger.debug("Delay: current: {} min: {} max: {} avg: {}".format( time_delay, self.min_delay, self.max_delay, self.avg_delay )) def main_loop_controller(self, udp): while True: client_msg_binary, client = udp.recvfrom(1024) client_msg = client_msg_binary.decode('UTF-8') if END_MSG in client_msg: break time_delay = self.proccess_msg(client_msg) self.calculate_stats_on_delay(time_delay) def run(self): udp = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) orig = (self.host, self.port) udp.bind(orig) initialize_keyboard() try: self.main_loop_controller(udp) except Exception as e: logger.exception(e) finally: logger.debug("close") udp.close() if __name__ == '__main__': server = JaggerServer(host='', port=8865) server.run()
""" 69. Sqrt(x) Implement int sqrt(int x). Compute and return the square root of x, where x is guaranteed to be a non-negative integer. Since the return type is an integer, the decimal digits are truncated and only the integer part of the result is returned. Example 1: Input: 4 Output: 2 Example 2: Input: 8 Output: 2 Explanation: The square root of 8 is 2.82842..., and since the decimal part is truncated, 2 is returned. """ def mySqrt(x): if x == 0: return 0 left = 1 right = x while True: mid = left + (right - left) // 2 if mid > x / mid: right = mid - 1 else: if mid + 1 > x / (mid + 1): return mid else: left = mid + 1
import requests def fetchFromAPI(query): '''Fetches response data from API''' URL = f"https://the-words.herokuapp.com/api/v2/definitions/en-US/entries/{query}" HEADERS={'Accept': 'application/json'} response = requests.get(URL, headers=HEADERS) print(response.status_code) #print(response.headers) print(response.text) def fetchAudioFromAPI(query): '''Fetches pronunciation data from API''' URL = f"https://the-words.herokuapp.com/api/v2/audio/en-US/entries/{query}" HEADERS={'Accept': 'application/json'} response = requests.get(URL, headers=HEADERS) print(response.status_code) #print(response.headers) print(response.text) fetchFromAPI("hello") fetchAudioFromAPI("hello")
from __future__ import unicode_literals import frappe, sys import erpnext import frappe.utils from erpnext.demo.user import hr, sales, purchase, manufacturing, stock, accounts, projects, fixed_asset, education from erpnext.demo.setup import education, manufacture, setup_data, healthcare """ Make a demo 1. Start with a fresh account bench --site demo.erpnext.dev reinstall 2. Install Demo bench --site demo.erpnext.dev execute erpnext.demo.demo.make 3. If Demo breaks, to continue bench --site demo.erpnext.dev execute erpnext.demo.demo.simulate """ def make(domain='Manufacturing', days=100): frappe.flags.domain = domain frappe.flags.mute_emails = True setup_data.setup(domain) if domain== 'Manufacturing': manufacture.setup_data() elif domain== 'Education': education.setup_data() elif domain== 'Healthcare': healthcare.setup_data() site = frappe.local.site frappe.destroy() frappe.init(site) frappe.connect() simulate(domain, days) def simulate(domain='Manufacturing', days=100): runs_for = frappe.flags.runs_for or days frappe.flags.company = erpnext.get_default_company() frappe.flags.mute_emails = True if not frappe.flags.start_date: # start date = 100 days back frappe.flags.start_date = frappe.utils.add_days(frappe.utils.nowdate(), -1 * runs_for) current_date = frappe.utils.getdate(frappe.flags.start_date) # continue? demo_last_date = frappe.db.get_global('demo_last_date') if demo_last_date: current_date = frappe.utils.add_days(frappe.utils.getdate(demo_last_date), 1) # run till today if not runs_for: runs_for = frappe.utils.date_diff(frappe.utils.nowdate(), current_date) # runs_for = 100 fixed_asset.work() for i in range(runs_for): sys.stdout.write("\rSimulating {0}: Day {1}".format( current_date.strftime("%Y-%m-%d"), i)) sys.stdout.flush() frappe.flags.current_date = current_date if current_date.weekday() in (5, 6): current_date = frappe.utils.add_days(current_date, 1) continue try: hr.work() purchase.work() stock.work() accounts.work() projects.run_projects(current_date) # run_messages() if domain=='Manufacturing': sales.work() manufacturing.work() elif domain=='Education': education.work() except: frappe.db.set_global('demo_last_date', current_date) raise finally: current_date = frappe.utils.add_days(current_date, 1) frappe.db.commit()
#!/usr/bin/env python3 def show_banner(value: str, times: int): print(value * times) def show_strings_demo1(): first_name = "Mohd" last_name = 'Azim' person_description = """ My Name is Mohd Azim """ show_banner('=', 50) print("Strings Demo 1") show_banner('=', 50) print(first_name) print(last_name) print(person_description) show_banner('-', 50) def show_strings_demo2(): first_name = "Mohd" last_name = 'Azim' person_description = """ My Name is Mohd Azim """ show_banner('=', 50) print("Strings Demo 2") show_banner('=', 50) print(first_name, last_name, person_description, sep='\n') show_banner('-', 50) def show_strings_demo3(): first = "First's" last = 'Last"s' show_banner('=', 50) print("Strings Demo 3") show_banner('=', 50) print(first, last) print(first + " " + last) print(f"Contains both Single and Double Quotes {first} {last}") show_banner('-', 50) def main(): show_strings_demo1() show_strings_demo2() show_strings_demo3() # Program Execution Starts here main()
import TestHelperSuperClass import unittest import json import pytz import datetime import copy serverInfo = { 'Server': { 'Version': TestHelperSuperClass.env['APIAPP_VERSION'], "APIAPP_APIDOCSURL": TestHelperSuperClass.env['APIAPP_APIDOCSURL'], "APIAPP_FRONTENDURL": TestHelperSuperClass.env['APIAPP_FRONTENDURL'] }, 'Derived': None } #@TestHelperSuperClass.wipd class test_api(TestHelperSuperClass.testHelperAPIClient): def test_getServerInfo(self): result = self.testClient.get('/api/info/serverinfo') self.assertEqual(result.status_code, 200, msg="Wrong response when calling /api/info/serverinfo") resultJSON = json.loads(result.get_data(as_text=True)) self.assertJSONStringsEqual(resultJSON, serverInfo) def test_getServerInfoSpecialData(self): expected = copy.deepcopy(serverInfo) expected["Derived"] = { "test": "123" } TestHelperSuperClass.serverInfoExtra["ret"] = { "test": "123" } result = self.testClient.get('/api/info/serverinfo') self.assertEqual(result.status_code, 200, msg="Wrong response when calling /api/info/serverinfo") resultJSON = json.loads(result.get_data(as_text=True)) self.assertJSONStringsEqual(resultJSON, expected)
import numpy as np import cv2 as cv import argparse from deep_text_detect import text_detect, text_spotter from read_license import read parser = argparse.ArgumentParser() parser.add_argument("image", help="Path to car image") args = parser.parse_args() image_path = args.image image = cv.imread(image_path) original = image.copy() cur, coords = text_detect(image, text_spotter) ##SSD text spotter, works for wide shots max_plate = None max_dims = None if cur is not None: cur = cv.resize(cur, (600, 200), None, interpolation = cv.INTER_LINEAR) plate, pic = read(cur) if len(plate) > 4: left, top, width, height = coords cv.rectangle(image, (left, top), (left + width, top + height), (0, 128, 0), 2) cv.imshow("plate", image) cv.waitKey(0) print(plate) quit() else: max_plate = plate max_dims = coords image = cv.cvtColor(image, cv.COLOR_BGR2GRAY) kernel = cv.getStructuringElement(cv.MORPH_RECT, (20, 4)) # larger than license plate opening = cv.morphologyEx(image, cv.MORPH_OPEN, kernel) #remove salt and increase dark spots image_sub = cv.subtract(image, opening) #with open - same as Tophat retval, thresh1 = cv.threshold(image_sub, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU) output = cv.connectedComponentsWithStats(thresh1, 4, cv.CV_32S) stats = output[2] stats = sorted(stats, key = lambda x : x[4], reverse = True)[1:16] #largest components stats = sorted(stats, key = lambda x : x[1], reverse = True) # sort from bottom to the top for i in range(len(stats)): left, top, width, height, area = stats[i] if area > 50 and width / height > 1.5 and width/height < 6: box = original[top : top + height, left :left + width] box = cv.resize(box, (600, 200), None, interpolation = cv.INTER_LINEAR) cv.imshow("plate", box) cv.waitKey(0) plate, pic = read(box) if len(plate) == 7: cv.rectangle(original, (left, top), (left + width, top + height), (0, 128, 0), 2) cv.imshow("plate", original) cv.waitKey(0) print(plate) quit() elif len(plate) > 0 and (max_plate is None or len(plate) > len(max_plate)): max_plate = plate max_dims = (left, top, width, height) if max_plate: left, top, width, height = max_dims cv.rectangle(original, (left, top), (left + width, top + height), (0, 128, 0), 2) cv.imshow("plate", original) cv.waitKey(0) print(max_plate) else: print("Nothing found")
import torch.nn as nn from typing import Dict from yolact_edge.yolact import Yolact class YolactWrapper(nn.Module): def __init__(self, yolact_module: Yolact, extras: Dict): super().__init__() self.yolact_module = yolact_module self.extras = extras def forward(self, x): out_dict = self.yolact_module(x, extras=self.extras)['pred_outs'][0] # return order class, score, box, mask, proto return (out_dict['class'], out_dict['score'], out_dict['box'], out_dict['mask'], out_dict['proto'])
from violas_client.canoser.int_type import Uint8 from violas_client.canoser.tuple_t import TupleT from violas_client.canoser.map_t import MapT from violas_client.canoser.str_t import StrT from violas_client.canoser.bytes_t import BytesT, ByteArrayT from violas_client.canoser.bool_t import BoolT from violas_client.canoser.array_t import ArrayT def my_import(name): components = name.split('.') mod = __import__(components[0]) for comp in components[1:]: mod = getattr(mod, comp) return mod def type_mapping(field_type): """ Mapping python types to canoser types """ if field_type == str: return StrT elif field_type == bytes: return BytesT() elif field_type == bytearray: return ByteArrayT() elif field_type == bool: return BoolT elif type(field_type) == list: if len(field_type) == 0: return ArrayT(Uint8) elif len(field_type) == 1: item = field_type[0] return ArrayT(type_mapping(item)) elif len(field_type) == 2: item = field_type[0] size = field_type[1] return ArrayT(type_mapping(item), size) elif len(field_type) == 3: item = field_type[0] size = field_type[1] encode_len = field_type[2] return ArrayT(type_mapping(item), size, encode_len) else: raise TypeError("Array has one item type, no more.") raise AssertionError("unreacheable") elif type(field_type) == dict: if len(field_type) == 0: ktype = BytesT() vtype = [Uint8] elif len(field_type) == 1: ktype = next(iter(field_type.keys())) vtype = next(iter(field_type.values())) else: raise TypeError("Map type has one item mapping key type to value type.") return MapT(type_mapping(ktype), type_mapping(vtype)) elif type(field_type) == tuple: arr = [] for item in field_type: arr.append(type_mapping(item)) return TupleT(*arr) elif type(field_type) == str: return my_import(field_type) else: return field_type
# V1.43 messages # PID advanced # does not include feedforward data or vbat sag comp or thrust linearization # pid_advanced = b"$M>2^\x00\x00\x00\x00x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x007\x00\xfa\x00\xd8\x0e\x00\x00\x00\x00\x01\x01\x00\n\x14H\x00H\x00H\x00\x00\x15\x1a\x00(\x14\x00\xc8\x0fd\x04\x00\xb1" pid_advanced = b'$M>2^\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x007\x00\xfa\x00\xd8\x0e\x00\x00\x00\x00\x01\x01\x00\n\x14H\x00H\x00H\x00\x00\x15\x1a\x00(\x14\x00\xc8\x0fd\x04\x00\xb1' # PID coefficient pid = b"$M>\x0fp\x16D\x1f\x1aD\x1f\x1dL\x0457K(\x00\x00G" fc_version = b"$M>\x03\x03\x01\x0c\x15\x18" fc_version_2 = b"$M>\x03\x01\x00\x01\x15\x16" api_version = b"$M>\x03\x01\x00\x01\x15\x16" status_response = b"$M>\x16e}\x00\x00\x00!\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x1a\x04\x01\x01\x00\x004" status_ex_response = ( b"$M>\x16\x96}\x00\x00\x00!\x00\x00\x00\x00\x00\x00\x05\x00\x03\x00\x00\x1a\x04\x01\x01\x00\x00\xc4" ) sensor_alignment = b"$M>\x07~\x01\x01\x00\x01\x00\x01\x01x" # status_ex_response = ( # b'$M>\x16\x96}\x00\x00\x00!\x00\x00\x00\x00\x00\x00\x05\x00\x03\x04\x00\x1a\x04\x00\x00\x00\x00\xc0' # ) rc_tuning = b"$M>\x17od\x00FFFA2\x00F\x05\x00dd\x00\x00d\xce\x07\xce\x07\xce\x07\x00\xc7" rx_tuning2 = ( b"$M>\x02l\x07\xdc\x05\x1a\x04\x00u\x03C\x08\x02\x13\xe2\x04\x00\x00\x00\x00\x00\x00(\x02\x01\x00\x00\x01\x03\x00" ) board_info = b"$M>J\x04S405\x00\x00\x027\tSTM32F405\nCLRACINGF4\x04CLRA\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x02@\x1f\x00\x00\x00\x00\r" # MSP.ATTITUDE attitude_response = b"$M>\x06l`\x02\xaa\xff\x0e\x00S" # MSP.BOXNAMES box_names_response = ( b"$M>\xfft\x0b\x01ARM;ANGLE;HORIZON;HEADFREE;FAILSAFE;HEADADJ;BEEPER;" b"OSD DISABLE SW;BLACKBOX;FPV ANGLE MIX;BLACKBOX ERASE (>30s);CAMERA CONTROL 1;" b"CAMERA CONTROL 2;CAMERA CONTROL 3;FLIP OVER AFTER CRASH;PREARM;VTX PIT MODE;" b"PARALYZE;USER1;ACRO TRAINER;DISABLE VTX CONTROL;LA" ) # MSP.BOXIDS box_names_response = b'$M>\x16w\x00\x01\x02\x06\x1b\x07\r\x13\x1a\x1e\x1f !"#$\'-(/01U' # MSP.FEATURE_CONFIG feature_config_response = b'$M>\x04$\x00 D0t'
import os import re class Interpreter: def __init__(self, file_path): self._data_path = file_path self._file_list = [] for root, dirs, files in os.walk(self._data_path): # 存储了文件夹下所有的文件 all_files = files # 抽取出.txt文件 for i in range(0, len(all_files)): if '.txt' in all_files[i]: self._file_list.append(all_files[i]) print(self._file_list) # 文件数量 self._file_num = len(self._file_list) # 方法名 self._method_name = '' # 用于存储将要返回的路径 self._ret_vec = [] # 用于存储hash code self._hash_code = [] # dict,用于存储树的索引 self._hash_tree = {} # 文件迭代索引,用于迭代 self._file_index = 0 def file_iterator(self): # 清空数据 self._ret_vec = [] self._hash_code = [] self._hash_tree = {} # 处理 self.data_handler() self._file_index += 1 def data_handler(self): is_tree = False filename = os.path.join(self._data_path, self._file_list[self._file_index]) f = open(filename) self._method_name = f.readline() line = f.readline() while line: if len(line.strip()) == 0: is_tree = True line = f.readline() continue if is_tree: self.tree_interpreter(line) else: self.path_interpreter(line) line = f.readline() # 这里需要对已经解析出来的数据进行存储 f.close() def path_interpreter(self, path): path = path.strip() # 提取字符串中的hash code hash_pattern = re.compile(r'(?<=[,\|])\d+(?=[\|\(])') it = hash_pattern.finditer(path) tmp_hash_unit = [] for math_unit in it: tmp_hash_unit.append(math_unit.group()) self._hash_code.append(tmp_hash_unit) repl_pattern = re.compile(r'(?<=,)[\d\|]+(?=\()') res_path = repl_pattern.sub('', path) self._ret_vec.append(res_path) def tree_interpreter(self, tree_seg): tree_seg = tree_seg.strip() split_list = tree_seg.split(', ') parent_node = split_list[0] child_node = split_list[1] if len(child_node.split(':')[1]): self._hash_tree[parent_node.split(': ')[1]] = child_node.split(': ')[1].strip('|').split('|') else: self._hash_tree[parent_node.split(': ')[1]] = [] @property def ret_vec(self): return self._ret_vec @property def hash_code(self): return self._hash_code @property def hash_tree(self): return self._hash_tree
import pickle import bz2 import io import torch from torch import nn from torch.utils import data from torch.nn import functional as F # model class Attention(nn.Module): def __init__(self, feature_dim, max_seq_len=70): super().__init__() self.attention_fc = nn.Linear(feature_dim, 1) self.bias = nn.Parameter(torch.zeros(1, max_seq_len, 1, requires_grad=True)) def forward(self, rnn_output): """ forward attention scores and attended vectors :param rnn_output: (#batch,#seq_len,#feature) :return: attended_outputs (#batch,#feature) """ attention_weights = self.attention_fc(rnn_output) seq_len = rnn_output.size(1) attention_weights = self.bias[:, :seq_len, :] + attention_weights attention_weights = torch.tanh(attention_weights) attention_weights = torch.exp(attention_weights) attention_weights_sum = torch.sum(attention_weights, dim=1, keepdim=True) + 1e-7 attention_weights = attention_weights / attention_weights_sum attended = torch.sum(attention_weights * rnn_output, dim=1) return attended class GaussianNoise(nn.Module): def __init__(self, stddev): super(GaussianNoise, self).__init__() self.stddev = stddev def forward(self, x): if self.training: noise = torch.empty_like(x) noise.normal_(0, self.stddev) return x + noise else: return x class SpatialDropout(nn.Dropout2d): def forward(self, x): x = x.unsqueeze(2) # (N, T, 1, K) x = x.permute(0, 3, 2, 1) # (N, K, 1, T) x = super(SpatialDropout, self).forward(x) # (N, K, 1, T), some features are masked x = x.permute(0, 3, 2, 1) # (N, T, 1, K) x = x.squeeze(2) # (N, T, K) return x class NeuralNet(nn.Module): def __init__(self, model_factor, num_units1, num_units2, embedding_matrix, max_features, num_aux_targets, max_seq_len, num_feats): super(NeuralNet, self).__init__() self.model_factor = model_factor if model_factor is not None else [0,3,1,0,1,1] self.num_feats = num_feats embed_size = embedding_matrix.shape[1] self.embedding = nn.Embedding(max_features, embed_size) self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32)) self.embedding.weight.requires_grad = False self.embedding_dropout = SpatialDropout(self.model_factor[4]/10.0) if self.model_factor[2] == 0: self.layer1 = nn.LSTM(embed_size, num_units1, bidirectional=True, batch_first=True) self.layer2 = nn.LSTM(num_units1 * 2, num_units2, bidirectional=True, batch_first=True) elif self.model_factor[2] == 1: self.layer1 = nn.LSTM(embed_size, num_units1, bidirectional=True, batch_first=True) self.layer2 = nn.GRU(num_units1 * 2, num_units2, bidirectional=True, batch_first=True) elif self.model_factor[2] == 2: self.layer1 = nn.LSTM(embed_size, num_units1, bidirectional=True, batch_first=True) self.layer2 = nn.Conv1d(num_units1 * 2, num_units2 * 2, kernel_size=3, stride=1, padding=2) elif self.model_factor[2] == 3: self.layer1 = nn.Conv1d(embed_size, num_units1 * 2, kernel_size=3, stride=1, padding=2) self.layer2 = nn.LSTM(num_units1 * 2, num_units2, bidirectional=True, batch_first=True) if self.model_factor[1] == 0: num_dense_units = num_units2 * 4 elif self.model_factor[1] == 1: self.attention1 = Attention(num_units1*2, max_seq_len) num_dense_units = num_units1 * 2 + num_units2 * 4 elif self.model_factor[1] == 2: self.attention2 = Attention(num_units2*2, max_seq_len) num_dense_units = num_units2 * 6 elif self.model_factor[1] == 3: self.attention1 = Attention(num_units1*2, max_seq_len) self.attention2 = Attention(num_units2*2, max_seq_len) num_dense_units = num_units1 * 2 + num_units2 * 6 if self.model_factor[0] == 0: self.dropout = nn.Dropout(self.model_factor[5]/10.0) elif self.model_factor[0] == 1: self.noise = GaussianNoise(self.model_factor[5]/10.0) elif self.model_factor[0] == 2: self.dropout = nn.Dropout(self.model_factor[5]/10.0) self.bn = nn.BatchNorm1d(num_dense_units, momentum=0.5) elif self.model_factor[0] == 3: self.noise = GaussianNoise(self.model_factor[5]/10.0) self.bn = nn.BatchNorm1d(num_dense_units, momentum=0.5) num_dense_units = num_dense_units + self.num_feats if self.model_factor[3] == 1: self.hidden1 = nn.Linear(num_dense_units, num_dense_units) elif self.model_factor[3] == 2: self.hidden1 = nn.Linear(num_dense_units, num_dense_units) self.hidden2 = nn.Linear(num_dense_units, num_dense_units) elif self.model_factor[3] == 3: self.hidden1 = nn.Linear(num_dense_units, num_dense_units) self.hidden2 = nn.Linear(num_dense_units, num_dense_units) self.hidden3 = nn.Linear(num_dense_units, num_dense_units) self.linear_out = nn.Linear(num_dense_units, 1) self.linear_aux_out = nn.Linear(num_dense_units, num_aux_targets) def forward(self, x): if self.num_feats > 0: sent = x[:,self.num_feats:] feat = x[:,:self.num_feats].to(torch.float) else: sent = x h_embedding = self.embedding(sent) h_embedding = self.embedding_dropout(h_embedding) if self.model_factor[2] == 0 or self.model_factor[2] == 1: h_layer_1, _ = self.layer1(h_embedding) h_layer_2, _ = self.layer2(h_layer_1) elif self.model_factor[2] == 2: h_layer_1, _ = self.layer1(h_embedding) h_layer_2 = F.relu(torch.transpose(self.layer2(torch.transpose(h_layer_1,1,2)),2,1)) elif self.model_factor[2] == 3: h_layer_1 = F.relu(torch.transpose(self.layer1(torch.transpose(h_embedding,1,2)),2,1)) h_layer_2, _ = self.layer2(h_layer_1) avg_pool = torch.mean(h_layer_2, 1) max_pool, _ = torch.max(h_layer_2, 1) if self.model_factor[1] == 0: h_conc = torch.cat((avg_pool, max_pool), 1) elif self.model_factor[1] == 1: h_atten_1 = self.attention1(h_layer_1) h_conc = torch.cat((h_atten_1, avg_pool, max_pool), 1) elif self.model_factor[1] == 2: h_atten_2 = self.attention2(h_layer_2) h_conc = torch.cat((h_atten_2, avg_pool, max_pool), 1) elif self.model_factor[1] == 3: h_atten_1 = self.attention1(h_layer_1) h_atten_2 = self.attention2(h_layer_2) h_conc = torch.cat((h_atten_1, h_atten_2, avg_pool, max_pool), 1) if self.model_factor[0] == 0: h_conc = self.dropout(h_conc) elif self.model_factor[0] == 1: h_conc = self.noise(h_conc) elif self.model_factor[0] == 2: h_conc = self.dropout(h_conc) h_conc = self.bn(h_conc) elif self.model_factor[0] == 3: h_conc = self.noise(h_conc) h_conc = self.bn(h_conc) if self.num_feats > 0: h_conc = torch.cat((h_conc, feat), 1) if self.model_factor[3] == 0: hidden = h_conc elif self.model_factor[3] == 1: h_conc_linear1 = F.relu(self.hidden1(h_conc)) hidden = h_conc + h_conc_linear1 elif self.model_factor[3] == 2: h_conc_linear1 = F.relu(self.hidden1(h_conc)) h_conc_linear2 = F.relu(self.hidden2(h_conc)) hidden = h_conc + h_conc_linear1 + h_conc_linear2 elif self.model_factor[3] == 3: h_conc_linear1 = F.relu(self.hidden1(h_conc)) h_conc_linear2 = F.relu(self.hidden2(h_conc)) h_conc_linear3 = F.relu(self.hidden3(h_conc)) hidden = h_conc + h_conc_linear1 + h_conc_linear2 + h_conc_linear3 result = self.linear_out(hidden) aux_result = self.linear_aux_out(hidden) out = torch.cat([result, aux_result], 1) return out def save_model(self, filename): model = self params = [ model.layer1.state_dict(), model.layer2.state_dict(), model.linear_out.state_dict(), model.linear_aux_out.state_dict() ] if model.model_factor[1] == 1: params.append(model.attention1.state_dict()) elif model.model_factor[1] == 2: params.append(model.attention2.state_dict()) elif model.model_factor[1] == 2: params.append(model.attention1.state_dict()) params.append(model.attention2.state_dict()) if model.model_factor[0] >= 2: params.append(model.bn.state_dict()) if model.model_factor[3] == 1: params.append(model.hidden1.state_dict()) elif model.model_factor[3] == 2: params.append(model.hidden1.state_dict()) params.append(model.hidden2.state_dict()) elif model.model_factor[3] == 3: params.append(model.hidden1.state_dict()) params.append(model.hidden2.state_dict()) params.append(model.hidden3.state_dict()) with bz2.open(filename, 'wb') as fout: buffer = io.BytesIO() torch.save(params, buffer) fout.write(buffer.getbuffer()) def load_model(self, filename, device=torch.device('cuda')): with bz2.open(filename, 'rb') as fin: buffer = io.BytesIO(fin.read()) params = torch.load(buffer, map_location=device) self.layer1.load_state_dict(params.pop(0)) self.layer1.to(device) self.layer2.load_state_dict(params.pop(0)) self.layer2.to(device) self.linear_out.load_state_dict(params.pop(0)) self.linear_out.to(device) self.linear_aux_out.load_state_dict(params.pop(0)) self.linear_aux_out.to(device) if self.model_factor[1] == 1: self.attention1.load_state_dict(params.pop(0)) self.attention1.to(device) elif self.model_factor[1] == 2: self.attention2.load_state_dict(params.pop(0)) self.attention2.to(device) elif self.model_factor[1] == 2: self.attention1.load_state_dict(params.pop(0)) self.attention1.to(device) self.attention2.load_state_dict(params.pop(0)) self.attention2.to(device) if self.model_factor[0] >= 2: self.bn.load_state_dict(params.pop(0)) self.bn.to(device) if self.model_factor[3] == 1: self.hidden1.load_state_dict(params.pop(0)) self.hidden1.to(device) elif self.model_factor[3] == 2: self.hidden1.load_state_dict(params.pop(0)) self.hidden1.to(device) self.hidden2.load_state_dict(params.pop(0)) self.hidden2.to(device) elif self.model_factor[3] == 3: self.hidden1.load_state_dict(params.pop(0)) self.hidden1.to(device) self.hidden2.load_state_dict(params.pop(0)) self.hidden2.to(device) self.hidden3.load_state_dict(params.pop(0)) self.hidden3.to(device) def get_model(model_factor, num_units1, num_units2, embedding_matrix, max_features, num_aux_targets, max_seq_len, num_feats): return NeuralNet(model_factor, num_units1, num_units2, embedding_matrix, max_features, num_aux_targets, max_seq_len, num_feats)
# (c) 2012-2014, Michael DeHaan <michael.dehaan@gmail.com> # (c) 2017 Ansible Project # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type import pytest from ansible.cli.arguments import option_helpers as opt_help from ansible.utils import context_objects as co @pytest.fixture def parser(): parser = opt_help.create_base_parser('testparser') opt_help.add_runas_options(parser) opt_help.add_meta_options(parser) opt_help.add_runtask_options(parser) opt_help.add_vault_options(parser) opt_help.add_async_options(parser) opt_help.add_connect_options(parser) opt_help.add_subset_options(parser) opt_help.add_check_options(parser) opt_help.add_inventory_options(parser) return parser @pytest.fixture def reset_cli_args(): co.GlobalCLIArgs._Singleton__instance = None yield co.GlobalCLIArgs._Singleton__instance = None
# Generated by Django 2.1.4 on 2018-12-16 18:11 import datetime from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Extractor', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('file_path', models.FilePathField(match='.*\\.htm(l)?', path='/code/fileBucket', unique=True)), ('pagination', models.IntegerField(default=1, verbose_name='Paginations')), ('is_parsed', models.BooleanField(default=False, verbose_name='Is Parsed')), ('created_at', models.DateTimeField(verbose_name='created at')), ('modified_at', models.DateTimeField(verbose_name='modified at')), ], ), migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('subject', models.CharField(max_length=255, unique=True)), ('post_age', models.DurationField(default=datetime.timedelta, verbose_name='post age')), ('created_at', models.DateTimeField(verbose_name='created at')), ('modified_at', models.DateTimeField(verbose_name='modified at')), ('hacker_news_url', models.URLField(verbose_name='hacker news url')), ('upvotes', models.IntegerField(verbose_name='number of upvotes')), ('comments', models.IntegerField(verbose_name='number of comments')), ('is_read', models.BooleanField(default=False, verbose_name='is read')), ('is_deleted', models.BooleanField(default=False, verbose_name='is deleted')), ], ), ]
from settings import * import pygame import math class Player: def __init__(self): self.x, self.y = player_pos self.angle = player_angle self.sensitivity = 0.004 @property def pos(self): return (self.x, self.y) def movement(self): self.keys_control() self.mouse_control() self.angle %= DOUBLE_PI def keys_control(self): sin_a = math.sin(self.angle) cos_a = math.cos(self.angle) keys = pygame.key.get_pressed() if keys[pygame.K_ESCAPE]: exit() if keys[pygame.K_w]: self.x += player_speed * cos_a self.y += player_speed * sin_a if keys[pygame.K_s]: self.x += -player_speed * cos_a self.y += -player_speed * sin_a if keys[pygame.K_a]: self.x += player_speed * sin_a self.y += -player_speed * cos_a if keys[pygame.K_d]: self.x += -player_speed * sin_a self.y += player_speed * cos_a if keys[pygame.K_LEFT]: self.angle -= 0.02 if keys[pygame.K_RIGHT]: self.angle += 0.02 def mouse_control(self): if pygame.mouse.get_focused(): difference = pygame.mouse.get_pos()[0] - HALF_WIDTH pygame.mouse.set_pos((HALF_WIDTH, HALF_HEIGHT)) self.angle += difference * self.sensitivity
import os from flask_script import Manager from flask_migrate import Migrate, MigrateCommand from app import app,db #app.config.from_object(os.environ['APP_SETTINGS']) app.config['SQLALCHEMY_DATABASE_URI'] = 'postgresql://genrichez:Kandra5moneR@localhost/Recommendations' migrate = Migrate(app, db) manager = Manager(app) manager.add_command('db', MigrateCommand) if __name__ == '__main__': manager.run()
from machine import I2C, Pin,RTC,WDT,reset from ssd1306 import SSD1306_I2C from font import Font import time i2c = I2C(scl=Pin(0), sda=Pin(2)) display= SSD1306_I2C(128, 32, i2c) f=Font(display) f.text("sdada",0,0,24) f.show()
try: from ._version import version as __version__ # type: ignore[import] except ImportError: __version__ = "UNKNOWN" from .core import * from . import loss, enc, demo, data, image, pyramid, optim import os os.makedirs(home(), exist_ok=True)
import numpy as np from ...sgmcmc_sampler import SGMCMCSampler, SeqSGMCMCSampler from .parameters import SVMPrior, SVMParameters from .helper import SVMHelper class SVMSampler(SGMCMCSampler): def __init__(self, n, m, observations=None, prior=None, parameters=None, forward_message=None, name="SVMSampler", **kwargs): self.options = kwargs self.n = n self.m = m self.name = name self.setup( observations=observations, prior=prior, parameters=parameters, forward_message=forward_message, ) return def setup(self, observations=None, prior=None, parameters=None, forward_message=None): """ Initialize the sampler Args: observations (ndarray): T by m ndarray of time series values prior (SVMPrior): prior forward_message (ndarray): prior probability for latent state parameters (SVMParameters): initial parameters (optional, will sample from prior by default) """ self.observations = observations if prior is None: prior = SVMPrior.generate_default_prior(n=self.n, m=self.m) self.prior = prior if parameters is None: self.parameters = self.prior.sample_prior().project_parameters() else: if not isinstance(parameters, SVMParameters): raise ValueError("parameters is not a SVMParameter") self.parameters = parameters if forward_message is None: forward_message = { 'log_constant': 0.0, 'mean_precision': np.zeros(self.n), 'precision': np.eye(self.n)/10, } self.forward_message = forward_message self.backward_message = { 'log_constant': 0.0, 'mean_precision': np.zeros(self.n), 'precision': np.zeros((self.n, self.n)), } self.message_helper=SVMHelper( n=self.n, m=self.m, forward_message=forward_message, backward_message=self.backward_message, ) return def sample_x(self, parameters=None, observations=None, tqdm=None, num_samples=None, **kwargs): """ Sample X """ raise NotImplementedError() def sample_gibbs(self, tqdm=None): """ One Step of Blocked Gibbs Sampler Returns: parameters (SVMParameters): sampled parameters after one step """ raise NotImplementedError() class SeqSVMSampler(SeqSGMCMCSampler, SVMSampler): pass
""" API facade that allows interaction with the library with strings and vanilla Python objects. Copyright 2021 InferStat Ltd Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Created by: Thomas Oliver Created date: 18th March 2021 """ # Python standard library from typing import List, Union from copy import deepcopy import pandas as pd from infertrade.algos import algorithm_functions from infertrade.utilities.operations import ReturnsFromPositions from infertrade.PandasEnum import PandasEnum class Api: """All public methods should input/output json-serialisable dictionaries.""" @staticmethod def get_allocation_information() -> dict: """Provides information on algorithms that calculate positions.""" combined_data = {} for ii_package in algorithm_functions: combined_data.update(algorithm_functions[ii_package][PandasEnum.ALLOCATION.value]) return combined_data @staticmethod def get_signal_information() -> dict: """Provides information on algorithms that calculate signals.""" combined_data = {} for ii_package in algorithm_functions: combined_data.update(algorithm_functions[ii_package][PandasEnum.SIGNAL.value]) return combined_data @staticmethod def get_algorithm_information() -> dict: """Provides information on algorithms (signals and positions) as flat list (not nested by category).""" combined_allocation_data = Api.get_allocation_information() combined_signal_data = Api.get_signal_information() combined_data = {} combined_data.update(combined_allocation_data) combined_data.update(combined_signal_data) return combined_data @staticmethod def available_packages() -> List[str]: """Returns the list of supported packages.""" return list(algorithm_functions.keys()) @staticmethod def return_algorithm_category(algorithm_name: str) -> str: """Returns the category of algorithm as a string.""" if algorithm_name in Api.get_signal_information(): algo_type = PandasEnum.SIGNAL.value elif algorithm_name in Api.get_allocation_information(): algo_type = PandasEnum.ALLOCATION.value else: raise NameError("Algorithm is not supported: ", algorithm_name) return algo_type @staticmethod def algorithm_categories() -> List[str]: """Returns the list of supported packages.""" return [PandasEnum.ALLOCATION.value, "signal"] @staticmethod def available_algorithms( filter_by_package: Union[str, List[str]] = None, filter_by_category: Union[str, List[str]] = None ) -> List[str]: """Returns a list of strings that are available strategies.""" if not filter_by_package: filter_by_package = Api.available_packages() elif isinstance(filter_by_package, str): filter_by_package = [filter_by_package] if not filter_by_category: filter_by_category = Api.algorithm_categories() elif isinstance(filter_by_category, str): filter_by_category = [filter_by_category] names = [] for ii_package in filter_by_package: for jj_type in filter_by_category: algorithms = list(algorithm_functions[ii_package][jj_type].keys()) names += algorithms return names @staticmethod def determine_package_of_algorithm(name_of_algorithm: str) -> str: """Determines the original package of a strategy.""" category = Api.return_algorithm_category(name_of_algorithm) package_name = "Unknown" for ii_package in Api.available_packages(): algo_list = Api.available_algorithms(filter_by_package=ii_package, filter_by_category=category) if name_of_algorithm in algo_list: package_name = ii_package return package_name @staticmethod def required_inputs_for_algorithm(name_of_strategy: str) -> List[str]: """Describes the input columns needed for the strategy.""" full_info = Api.get_algorithm_information() required_inputs = full_info[name_of_strategy]["series"] return required_inputs @staticmethod def required_parameters_for_algorithm(name_of_strategy: str) -> List[str]: """Describes the input columns needed for the strategy.""" full_info = Api.get_algorithm_information() required_inputs = full_info[name_of_strategy]["parameters"] return required_inputs @staticmethod def _get_raw_class(name_of_strategy_or_signal: str) -> callable: """Private method to return the raw class - should not be used externally.""" info = Api.get_allocation_information() raw_class = info[name_of_strategy_or_signal]["function"] return raw_class @staticmethod def calculate_allocations( df: pd.DataFrame, name_of_strategy: str, name_of_price_series: str = "price" ) -> pd.DataFrame: """Calculates the allocations using the supplied strategy.""" if name_of_price_series is not "price": df[PandasEnum.MID.value] = df[name_of_price_series] class_of_rule = Api._get_raw_class(name_of_strategy) df_with_positions = class_of_rule(df) return df_with_positions @staticmethod def calculate_returns(df: pd.DataFrame) -> pd.DataFrame: """Calculates the returns from supplied positions.""" df_with_returns = ReturnsFromPositions().transform(df) return df_with_returns @staticmethod def calculate_allocations_and_returns( df: pd.DataFrame, name_of_strategy: str, name_of_price_series: str = "price" ) -> pd.DataFrame: """Calculates the returns using the supplied strategy.""" df_with_positions = Api.calculate_allocations(df, name_of_strategy, name_of_price_series) df_with_returns = ReturnsFromPositions().transform(df_with_positions) return df_with_returns @staticmethod def calculate_signal( df: pd.DataFrame, name_of_signal: str ) -> pd.DataFrame: """Calculates the allocations using the supplied strategy.""" class_of_signal_generator = Api._get_raw_class(name_of_signal) df_with_signal = class_of_signal_generator(df) return df_with_signal
from typing import Any, Dict, Type, TypeVar from injector import Injector, Provider, Scope, ScopeDecorator from appunit import context __all__ = ["RequestScope", "request"] T = TypeVar("T") class CachedProviderWrapper(Provider): def __init__(self, old_provider: Provider) -> None: self._old_provider = old_provider self._cache: Dict[int, Any] = {} def get(self, injector: Injector) -> Any: key = id(injector) try: return self._cache[key] except KeyError: instance = self._cache[key] = self._old_provider.get(injector) return instance class RequestScope(Scope): def get(self, key: Type[T], old_provider: Provider[T]) -> Provider[T]: scope: dict = context.get_request_scope() try: return scope[key] except KeyError: new_provider = scope[key] = CachedProviderWrapper(old_provider) context.set_request_scope(scope) return new_provider request = ScopeDecorator(RequestScope)
import math import datetime import Config import Math import TargetNone class TargetAvoid(TargetNone.TargetNone): def __init__(self): if 'avoid' not in Config.save_json: Config.save_json['avoid'] = [] self.avoid_coordinate = Config.save_json['avoid'] self.vehicle_width = 1.3 if 'vehicle_width' in Config.config_json: self.vehicle_width = Config.config_json[ 'vehicle_width'] print("[Target avoid] " + str(len(self.avoid_coordinate)) + " avoidance coordinates") print("[Target avoid] vehicle width:", self.vehicle_width) self.rot_diff = 0.0 self.go_up = False self.timestamp = datetime.datetime.now() self.obstacle_ahead = False self.travel_duration_min_s = 2.0 if 'travel_time_min' in Config.config_json: self.travel_duration_min_s = Config.config_json['travel_time_min'] self.travel_duration_max_s = 3.0 if 'travel_time_max' in Config.config_json: self.travel_duration_max_s = Config.config_json['travel_time_max'] self.init_travel_duration_s = self.travel_duration_min_s self.travel_duration_s = self.init_travel_duration_s print("[Target avoid] travel_duration =", self.travel_duration_s) self.is_give_up = False self.previous_angle_sign = 1 def reset(self): self.avoid_coordinate = Config.save_json['avoid'] print("[Target avoid] " + str(len(self.avoid_coordinate)) + " avoidance coordinates") print("[Target avoid] vehicle width:", self.vehicle_width) self.rot_diff = 0.0 self.go_up = False self.timestamp = datetime.datetime.now() self.obstacle_ahead = False self.init_travel_duration_s = self.init_travel_duration_s + ( (self.travel_duration_max_s - self.travel_duration_min_s) / 10.0) if self.init_travel_duration_s > self.travel_duration_max_s: self.init_travel_duration_s = self.travel_duration_min_s self.travel_duration_s = self.init_travel_duration_s print("[Target avoid] travel_duration = ", self.travel_duration_s, "s") self.is_give_up = False self.previous_angle_sign = 1 def run(self, position, rotation, speed_ms, rot_diff, target_speed_ms, go_up): current_timestamp = datetime.datetime.now() if current_timestamp - self.timestamp > datetime.timedelta(seconds=0.0): # FIXME: hard coded value # Not sure why I have to make this but, RoRBot and trucks have not the same orientation rotation[1] = rotation[1] + 90 # rotation[1] = rotation[1] + rot_diff # rotation with regards results of previous "target" configuration self.find_avoidance_parameters(speed_ms, position, rotation) self.timestamp = current_timestamp # print("rot_diff",rot_diff) # print("self.rot_diff", self.rot_diff) # print("rot_diff + self.rot_diff", rot_diff + self.rot_diff) # print("") if self.rot_diff != 0: return self.rot_diff, target_speed_ms, go_up else: return rot_diff, target_speed_ms, go_up def find_avoidance_parameters(self, speed_ms, position, rotation): # speed_ms = 2.8 # FIXME hard coded value travel_distance_m = speed_ms * self.travel_duration_s current_rotation = rotation[1] if self.is_no_obstacle_ahead(position, current_rotation, travel_distance_m) is True: if self.obstacle_ahead is True: print("[TargetAvoid] No more obstacle ahead within", travel_distance_m, "m,", self.travel_duration_s, "s") self.obstacle_ahead = False self.rot_diff = 0 self.is_give_up = False return current_detection_width_m = self.vehicle_width while current_detection_width_m >= self.vehicle_width / 2.0: current_travel_duration_s = self.travel_duration_s while current_travel_duration_s >= self.travel_duration_min_s - 0.1: for try_rot_diff in range(5, 175, 5): # print("trying rotation", current_rotation + try_rot_diff) if self.is_no_obstacle_ahead(position, current_rotation + try_rot_diff, travel_distance_m) is True: # print("rotation", -try_rot_diff, "OK") self.rot_diff = -try_rot_diff self.is_give_up = False self.previous_angle_sign = -1 return # print("trying rotation", current_rotation - rot_diff) if self.is_no_obstacle_ahead(position, current_rotation - try_rot_diff, travel_distance_m) is True: # print("rotation", try_rot_diff, "OK") self.rot_diff = try_rot_diff self.is_give_up = False self.previous_angle_sign = 1 return print("[TargetAvoid] dead end within", travel_distance_m, "m,", self.travel_duration_s, "s") current_travel_duration_s = current_travel_duration_s / 2.0 travel_distance_m = speed_ms * current_travel_duration_s print("[TargetAvoid] Lower travel distance to", travel_distance_m, "m,", current_travel_duration_s, "s") print("[TargetAvoid] dead end for detection width = ", current_detection_width_m, "m") current_detection_width_m = current_detection_width_m / 2.0 print("[TargetAvoid] Lower detection width to ", current_detection_width_m, "m") # self.rot_diff = self.previous_angle_sign * 180 self.rot_diff = 0 if self.is_give_up is False: print("[TargetAvoid] give-up, trying", self.rot_diff) self.is_give_up = True def is_no_obstacle_ahead(self, position, rotation, distance_m): # print("Checking rotation", rotation) # Build rectangle and check it avoids everything rect = [ [ 0, - self.vehicle_width / 2.0 ], [ 0, self.vehicle_width / 2.0 ], [ -distance_m, self.vehicle_width / 2.0 ], [ -distance_m, - self.vehicle_width / 2.0 ] ] # print("rect", rect) angle_rad = math.radians(rotation) s = math.sin(angle_rad) c = math.cos(angle_rad) rotated_rect = [ [ c * rect[0][0] - s * rect[0][1], s * rect[0][0] + c * rect[0][1], ], [ c * rect[1][0] - s * rect[1][1], s * rect[1][0] + c * rect[1][1], ], [ c * rect[2][0] - s * rect[2][1], s * rect[2][0] + c * rect[2][1], ], [ c * rect[3][0] - s * rect[3][1], s * rect[3][0] + c * rect[3][1], ] ] # print("rotated_rect", rotated_rect) final_rect = [ [ rotated_rect[0][0] + position[0], rotated_rect[0][1] + position[2] ], [ rotated_rect[1][0] + position[0], rotated_rect[1][1] + position[2] ], [ rotated_rect[2][0] + position[0], rotated_rect[2][1] + position[2] ], [ rotated_rect[3][0] + position[0], rotated_rect[3][1] + position[2] ] ] # print("final rect", final_rect) for coord in self.avoid_coordinate: test_point = [coord[0], coord[2]] if Math.point_in_rectangle(test_point, final_rect) is True: if self.obstacle_ahead is False: print("[TargetAvoid] Obstacle within", distance_m, "m") self.obstacle_ahead = True return False # print("distance=", distance_m, "angle=", angle, "free") return True
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 import sys import datetime message = "Hello, %s! Current time: %s." % (sys.argv[1], datetime.datetime.now()) # Print the message to stdout. print(message) # Append the message to the log file. with open("/tmp/Greengrass_HelloWorld.log", "a") as f: print(message, file=f)
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Advent of Code, Day 12 ====================== Author: hbldh <henrik.blidh@nedomkull.com> """ from __future__ import division from __future__ import print_function from __future__ import absolute_import import re with open('input_12.txt', 'r') as f: instructions = f.read().strip().splitlines() def solve(registers): n = 0 while n < len(instructions): parts = instructions[n].split(' ') if parts[0] == 'cpy': registers[parts[2]] = int(parts[1]) if parts[1].isdigit() else registers[parts[1]] elif parts[0] == 'inc': registers[parts[1]] += 1 elif parts[0] == 'dec': registers[parts[1]] -= 1 elif parts[0] == 'jnz': parts[1] = int(parts[1]) if parts[1].isdigit() else registers[parts[1]] if parts[1] != 0: n += int(parts[2]) continue else: raise ValueError(str(parts)) n += 1 return registers print("[Part 1]: Register 'a': {a}".format(**solve({'a': 0, 'b': 0, 'c': 0, 'd': 0}))) print("[Part 2]: Register 'a': {a}".format(**solve({'a': 0, 'b': 0, 'c': 1, 'd': 0})))
"""Module that manages the testing states of the access ports""" import threading from forch.utils import get_logger from forch.proto.shared_constants_pb2 import PortBehavior from forch.proto.devices_state_pb2 import DeviceBehavior, DevicePlacement from forch.proto.shared_constants_pb2 import DVAState INVALID_VLAN = 0 STATE_HANDLERS = {} def _register_state_handler(state_name): def register(func): STATE_HANDLERS[state_name] = func return func return register class PortStateMachine: """State machine class that manages testing states of an access port""" UNAUTHENTICATED = 'unauthenticated' AUTHENTICATED = 'authenticated' SEQUESTERED = 'sequestered' OPERATIONAL = 'operational' INFRACTED = 'infracted' TRANSITIONS = { UNAUTHENTICATED: { PortBehavior.cleared: OPERATIONAL, PortBehavior.sequestered: SEQUESTERED, }, SEQUESTERED: { PortBehavior.passed: OPERATIONAL, PortBehavior.failed: INFRACTED, PortBehavior.deauthenticated: UNAUTHENTICATED, }, OPERATIONAL: { PortBehavior.cleared: OPERATIONAL, PortBehavior.deauthenticated: UNAUTHENTICATED, }, } # pylint: disable=too-many-arguments def __init__(self, mac, initial_state, unauthenticated_state_callback, sequester_state_callback, operational_state_callback, infracted_state_callback): self._mac = mac self._current_state = initial_state self._unauthenticated_state_callback = unauthenticated_state_callback self._sequester_state_callback = sequester_state_callback self._operational_state_callback = operational_state_callback self._infracted_state_callback = infracted_state_callback self._logger = get_logger('portsm') self._handle_current_state() def handle_port_behavior(self, port_behavior): """Handle port behavior""" next_state = self.TRANSITIONS.get(self._current_state, {}).get(port_behavior, {}) if not next_state: self._logger.warning( 'Cannot find next state for device %s in state %s for port behavior %s', self._mac, self._current_state, port_behavior) return self._logger.info( 'Device %s is entering %s state from %s state', self._mac, next_state, self._current_state) self._current_state = next_state self._handle_current_state() def get_current_state(self): """Get current state of the port""" return self._current_state def _handle_current_state(self): if self._current_state in STATE_HANDLERS: STATE_HANDLERS[self._current_state](self) @_register_state_handler(state_name=UNAUTHENTICATED) def _handle_unauthenticated_state(self): self._logger.info('Handling unauthenticated state for device %s', self._mac) self._unauthenticated_state_callback(self._mac) @_register_state_handler(state_name=SEQUESTERED) def _handle_sequestered_state(self): self._logger.info('Handling sequestered state for device %s', self._mac) self._sequester_state_callback(self._mac) @_register_state_handler(state_name=OPERATIONAL) def _handle_operational_state(self): self._logger.info('Handling operational state for device %s', self._mac) self._operational_state_callback(self._mac) @_register_state_handler(state_name=INFRACTED) def _handle_infracted_state(self): self._logger.info('Handling infracted state for device %s', self._mac) self._infracted_state_callback(self._mac) class PortStateManager: """Manages the states of the access ports for orchestrated testing""" # pylint: disable=too-many-arguments def __init__(self, device_state_manager=None, varz_updater=None, testing_segment=None): self._state_machines = {} self._static_port_behaviors = {} self._static_device_behaviors = {} self._dynamic_device_behaviors = {} self._device_state_manager = device_state_manager self._varz_updater = varz_updater self._placement_to_mac = {} self._testing_segment = testing_segment self._lock = threading.RLock() self._logger = get_logger('portmgr') def handle_static_device_behavior(self, mac, device_behavior): """Add static testing state for a device""" with self._lock: static_port_behavior = device_behavior.port_behavior if static_port_behavior: self._static_port_behaviors[mac] = static_port_behavior if device_behavior.segment: self.handle_device_behavior(mac, device_behavior, static=True) def handle_device_behavior(self, mac, device_behavior, static=False): """Handle authentication result""" if device_behavior.segment: self._handle_authenticated_device(mac, device_behavior, static) if static: self._update_static_vlan_varz( mac, vlan=self._get_vlan_from_segment(device_behavior.segment)) else: self._handle_deauthenticated_device(mac, static) def handle_device_placement(self, mac, device_placement, static=False): """Handle a learning or expired VLAN for a device""" if device_placement.connected: return self._handle_learned_device(mac, device_placement, static) return self._handle_disconnected_device(device_placement) def _handle_learned_device(self, mac, device_placement, static=False): # if device is learned old_mac = self._placement_to_mac.get((device_placement.switch, device_placement.port)) stale_mac = old_mac if old_mac and old_mac != mac else None if stale_mac: switch = device_placement.switch port = device_placement.port self._logger.warning( 'Cleaning stale device placement: %s, %s, %s', old_mac, switch, port) stale_placement = DevicePlacement(switch=switch, port=port, connected=False) self._handle_disconnected_device(stale_placement) self._placement_to_mac[(device_placement.switch, device_placement.port)] = mac self._process_device_placement(mac, device_placement, static=static) if mac not in self._state_machines: self._state_machines[mac] = PortStateMachine( mac, PortStateMachine.UNAUTHENTICATED, self._handle_unauthenticated_state, self._set_port_sequestered, self._set_port_operational, self._handle_infracted_state) device_behavior = (self._static_device_behaviors.get(mac) or self._dynamic_device_behaviors.get(mac)) if device_behavior: static = mac in self._static_device_behaviors self.handle_device_behavior(mac, device_behavior, static=static) return True, None, stale_mac def _handle_disconnected_device(self, device_placement): eth_src = self._placement_to_mac.pop((device_placement.switch, device_placement.port), None) # Dont propagate removal of placement if not in cache if not eth_src: return False, None, None self._process_device_placement(eth_src, device_placement, static=False) if eth_src in self._state_machines: self._state_machines.pop(eth_src) self._update_device_state_varz(eth_src, DVAState.initial) return True, eth_src, None def _handle_authenticated_device(self, mac, device_behavior, static): """Initialize or update the state machine for an authenticated device""" if not self._process_device_behavior: return with self._lock: device_behaviors = ( self._static_device_behaviors if static else self._dynamic_device_behaviors) device_behaviors.setdefault(mac, DeviceBehavior()).CopyFrom(device_behavior) static_port_behavior = self._static_port_behaviors.get(mac) if not self._testing_segment or static_port_behavior == PortBehavior.cleared: port_behavior = PortBehavior.cleared else: port_behavior = PortBehavior.sequestered if mac in self._state_machines: self._state_machines[mac].handle_port_behavior(port_behavior) def _handle_deauthenticated_device(self, mac, static): """Handle an deauthenticated device""" if not self._process_device_behavior: return with self._lock: device_behaviors = ( self._static_device_behaviors if static else self._dynamic_device_behaviors) if mac in device_behaviors: device_behaviors.pop(mac) else: self._logger.warning( '%s behavior does not exist for %s', 'static' if static else 'dynamic', mac) # ignore dynamic behavior for device that has static behavior defined if not static and mac in self._static_device_behaviors: return if mac in self._state_machines: port_behavior = PortBehavior.deauthenticated self._state_machines[mac].handle_port_behavior(port_behavior) self._process_device_behavior(mac, DeviceBehavior(), static=static) def handle_testing_result(self, testing_result): """Update the state machine for a device according to the testing result""" for mac, device_behavior in testing_result.device_mac_behaviors.items(): self._handle_port_behavior(mac, device_behavior.port_behavior) def _handle_port_behavior(self, mac, port_behavior): with self._lock: state_machine = self._state_machines.get(mac) if not state_machine: self._logger.error( 'No state machine defined for device %s before receiving testing result', mac) return state_machine.handle_port_behavior(port_behavior) def _handle_unauthenticated_state(self, mac): self._update_device_state_varz(mac, DVAState.unauthenticated) def _set_port_sequestered(self, mac): """Set port to sequester vlan""" if not self._process_device_behavior: return device_behavior = DeviceBehavior(segment=self._testing_segment) self._process_device_behavior(mac, device_behavior, static=False) self._update_device_state_varz(mac, DVAState.sequestered) def _set_port_operational(self, mac): """Set port to operation vlan""" if not self._process_device_behavior: return static = mac in self._static_device_behaviors device_behavior = ( self._static_device_behaviors.get(mac) or self._dynamic_device_behaviors.get(mac)) assert device_behavior self._process_device_behavior(mac, device_behavior, static=static) self._update_device_state_varz(mac, DVAState.static if static else DVAState.operational) def _handle_infracted_state(self, mac): static = mac in self._static_device_behaviors self._process_device_behavior(mac, DeviceBehavior(), static=static) self._update_device_state_varz(mac, DVAState.infracted) def clear_static_device_behaviors(self): """Remove all static device behaviors""" with self._lock: macs = list(self._static_device_behaviors.keys()) for mac in macs: self._update_static_vlan_varz(mac, INVALID_VLAN) self._handle_deauthenticated_device(mac, static=True) def _process_device_placement(self, mac, device_placement, static=False): if self._device_state_manager: self._device_state_manager.process_device_placement(mac, device_placement, static) def _process_device_behavior(self, mac, device_behavior, static=False): if self._device_state_manager: self._device_state_manager.process_device_behavior(mac, device_behavior, static) def _get_vlan_from_segment(self, segment): if self._device_state_manager: return self._device_state_manager.get_vlan_from_segment(segment) return None def _update_device_state_varz(self, mac, device_state): if self._varz_updater: self._varz_updater.update_device_state_varz(mac, device_state) def _update_static_vlan_varz(self, mac, vlan): if self._varz_updater: self._varz_updater.update_static_vlan_varz(mac, vlan)
#!/usr/bin/env python # # Copyright (c), 2021, SISSA (International School for Advanced Studies). # All rights reserved. # This file is distributed under the terms of the MIT License. # See the file 'LICENSE' in the root directory of the present # distribution, or http://opensource.org/licenses/MIT. # # @author Davide Brunato <brunato@sissa.it> # from timeit import timeit from memory_profiler import profile from elementpath import XPath1Parser, XPath2Parser from elementpath.xpath30 import XPath30Parser def run_timeit(stmt='pass', setup='pass', number=1000): seconds = timeit(stmt, setup=setup, number=number) print("{}: {}s".format(stmt, seconds)) @profile def xpath1_parser_objects(): return [XPath1Parser() for _ in range(10000)] @profile def xpath2_parser_objects(): return [XPath2Parser() for _ in range(10000)] @profile def xpath30_parser_objects(): return [XPath30Parser() for _ in range(10000)] if __name__ == '__main__': print('*' * 62) print("*** Memory and timing profile of XPathParser1/2/3 classes ***") print("***" + ' ' * 56 + "***") print('*' * 62) print() xpath1_parser_objects() xpath2_parser_objects() xpath30_parser_objects() NUMBER = 10000 SETUP = 'from __main__ import XPath1Parser' run_timeit("XPath1Parser().parse('18 - 9 + 10')", SETUP, NUMBER) run_timeit("XPath1Parser().parse('true()')", SETUP, NUMBER) run_timeit("XPath1Parser().parse('contains(\"foobar\", \"bar\")')", SETUP, NUMBER) run_timeit("XPath1Parser().parse('/A/B/C/D')", SETUP, NUMBER) print() SETUP = 'from __main__ import XPath2Parser' run_timeit("XPath2Parser().parse('18 - 9 + 10')", SETUP, NUMBER) run_timeit("XPath2Parser().parse('true()')", SETUP, NUMBER) run_timeit("XPath2Parser().parse('contains(\"foobar\", \"bar\")')", SETUP, NUMBER) run_timeit("XPath2Parser().parse('/A/B/C/D')", SETUP, NUMBER) print() SETUP = 'from __main__ import XPath30Parser' run_timeit("XPath30Parser().parse('18 - 9 + 10')", SETUP, NUMBER) run_timeit("XPath30Parser().parse('true()')", SETUP, NUMBER) run_timeit("XPath30Parser().parse('contains(\"foobar\", \"bar\")')", SETUP, NUMBER) run_timeit("XPath30Parser().parse('/A/B/C/D')", SETUP, NUMBER) print()
import yaml CONFIG_PATH = "./config.yml" config = {} with open(CONFIG_PATH, 'r') as f: config = yaml.load(f)
from __future__ import print_function, division, absolute_import import time import multiprocessing import pickle from collections import defaultdict import warnings import sys # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import numpy as np import six.moves as sm import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import imgaug as ia import imgaug.multicore as multicore from imgaug import augmenters as iaa from imgaug.testutils import reseed def main(): time_start = time.time() test_BatchLoader() # test_BackgroundAugmenter.get_batch() test_BackgroundAugmenter__augment_images_worker() # test_BackgroundAugmenter.terminate() time_end = time.time() print("<%s> Finished without errors in %.4fs." % (__file__, time_end - time_start,)) class TestPool(unittest.TestCase): def setUp(self): reseed() def test_property_pool(self): mock_Pool = mock.MagicMock() mock_Pool.return_value = mock_Pool mock_Pool.close.return_value = None mock_Pool.join.return_value = None with mock.patch("multiprocessing.Pool", mock_Pool): augseq = iaa.Noop() with multicore.Pool(augseq, processes=1, maxtasksperchild=4, seed=123) as pool: assert pool.processes == 1 assert pool._pool is None assert mock_Pool.call_count == 1 assert mock_Pool.close.call_count == 1 assert mock_Pool.join.call_count == 1 assert mock_Pool.call_args[0][0] == 1 # processes assert mock_Pool.call_args[1]["initargs"] == (augseq, 123) assert mock_Pool.call_args[1]["maxtasksperchild"] == 4 def test_processes(self): augseq = iaa.Noop() mock_Pool = mock.MagicMock() mock_cpu_count = mock.Mock() with mock.patch("multiprocessing.Pool", mock_Pool), mock.patch("multiprocessing.cpu_count", mock_cpu_count): combos = [ (1, 1, 1), (2, 1, 1), (3, 1, 1), (1, 2, 2), (3, 2, 2), (1, None, None), (2, None, None), (3, None, None), (1, -1, 1), (2, -1, 1), (3, -1, 2), (4, -2, 2) ] for ret_val, inputs, expected in combos: mock_cpu_count.return_value = ret_val with multicore.Pool(augseq, processes=inputs) as _pool: pass if expected is None: assert mock_Pool.call_args[0][0] is None else: assert mock_Pool.call_args[0][0] == expected def _test_map_batches_both(self, call_async): augseq = iaa.Noop() mock_Pool = mock.MagicMock() mock_Pool.return_value = mock_Pool mock_Pool.map.return_value = "X" mock_Pool.map_async.return_value = "X" with mock.patch("multiprocessing.Pool", mock_Pool): batches = [ia.Batch(images=[ia.quokka()]), ia.Batch(images=[ia.quokka()+1])] with multicore.Pool(augseq, processes=1) as pool: if call_async: _ = pool.map_batches_async(batches) else: _ = pool.map_batches(batches) if call_async: to_check = mock_Pool.map_async else: to_check = mock_Pool.map assert to_check.call_count == 1 # args, arg 0 assert to_check.call_args[0][0] == multicore._Pool_starworker # args, arg 1 (batches with ids), tuple 0, entry 0 in tuple (=> batch id) assert to_check.call_args[0][1][0][0] == 0 # args, arg 1 (batches with ids), tuple 0, entry 1 in tuple (=> batch) assert np.array_equal(to_check.call_args[0][1][0][1].images_unaug, batches[0].images_unaug) # args, arg 1 (batches with ids), tuple 1, entry 0 in tuple (=> batch id) assert to_check.call_args[0][1][1][0] == 1 # args, arg 1 (batches with ids), tuple 1, entry 1 in tuple (=> batch) assert np.array_equal(to_check.call_args[0][1][1][1].images_unaug, batches[1].images_unaug) def test_map_batches(self): self._test_map_batches_both(call_async=False) def test_map_batches_async(self): self._test_map_batches_both(call_async=True) def _test_imap_batches_both(self, call_unordered): batches = [ia.Batch(images=[ia.quokka()]), ia.Batch(images=[ia.quokka()+1])] def _generate_batches(): for batch in batches: yield batch augseq = iaa.Noop() mock_Pool = mock.MagicMock() mock_Pool.return_value = mock_Pool mock_Pool.imap.return_value = batches mock_Pool.imap_unordered.return_value = batches with mock.patch("multiprocessing.Pool", mock_Pool): with multicore.Pool(augseq, processes=1) as pool: gen = _generate_batches() if call_unordered: _ = list(pool.imap_batches_unordered(gen)) else: _ = list(pool.imap_batches(gen)) if call_unordered: to_check = mock_Pool.imap_unordered else: to_check = mock_Pool.imap assert to_check.call_count == 1 assert to_check.call_args[0][0] == multicore._Pool_starworker arg_batches = list(to_check.call_args[0][1]) # convert generator to list, make it subscriptable # args, arg 1 (batches with ids), tuple 0, entry 0 in tuple (=> batch id) assert arg_batches[0][0] == 0 # tuple 0, entry 1 in tuple (=> batch) assert np.array_equal(arg_batches[0][1].images_unaug, batches[0].images_unaug) # tuple 1, entry 0 in tuple (=> batch id) assert arg_batches[1][0] == 1 # tuple 1, entry 1 in tuple (=> batch) assert np.array_equal(arg_batches[1][1].images_unaug, batches[1].images_unaug) def test_imap_batches(self): self._test_imap_batches_both(call_unordered=False) def test_imap_batches_unordered(self): self._test_imap_batches_both(call_unordered=True) def _assert_each_augmentation_not_more_than_once(self, batches_aug): sum_to_vecs = defaultdict(list) for batch in batches_aug: assert not np.array_equal(batch.images_aug[0], batch.images_aug[1]) vec = batch.images_aug.flatten() vecsum = int(np.sum(vec)) if vecsum in sum_to_vecs: for other_vec in sum_to_vecs[vecsum]: assert not np.array_equal(vec, other_vec) else: sum_to_vecs[vecsum].append(vec) def test_augmentations_with_seed_match(self): augseq = iaa.AddElementwise((0, 255)) image = np.zeros((10, 10, 1), dtype=np.uint8) batch = ia.Batch(images=np.uint8([image, image])) batches = [batch.deepcopy() for _ in sm.xrange(60)] # seed=1 with multicore.Pool(augseq, processes=2, maxtasksperchild=30, seed=1) as pool: batches_aug1 = pool.map_batches(batches, chunksize=2) # seed=1 with multicore.Pool(augseq, processes=2, seed=1) as pool: batches_aug2 = pool.map_batches(batches, chunksize=1) # seed=2 with multicore.Pool(augseq, processes=2, seed=2) as pool: batches_aug3 = pool.map_batches(batches, chunksize=1) assert len(batches_aug1) == 60 assert len(batches_aug2) == 60 assert len(batches_aug3) == 60 for b1, b2, b3 in zip(batches_aug1, batches_aug2, batches_aug3): # images were augmented assert not np.array_equal(b1.images_unaug, b1.images_aug) assert not np.array_equal(b2.images_unaug, b2.images_aug) assert not np.array_equal(b3.images_unaug, b3.images_aug) # original images still the same assert np.array_equal(b1.images_unaug, batch.images_unaug) assert np.array_equal(b2.images_unaug, batch.images_unaug) assert np.array_equal(b3.images_unaug, batch.images_unaug) # augmentations for same seed are the same assert np.array_equal(b1.images_aug, b2.images_aug) # augmentations for different seeds are different assert not np.array_equal(b1.images_aug, b3.images_aug) # make sure that batches for the two pools with same seed did not repeat within results (only between the # results of the two pools) for batches_aug in [batches_aug1, batches_aug2, batches_aug3]: self._assert_each_augmentation_not_more_than_once(batches_aug) def test_augmentations_with_seed_match_for_images_and_keypoints(self): augseq = iaa.AddElementwise((0, 255)) image = np.zeros((10, 10, 1), dtype=np.uint8) # keypoints here will not be changed by augseq, but they will induce deterministic mode to start in # augment_batches() as each batch contains images AND keypoints kps = ia.KeypointsOnImage([ia.Keypoint(x=2, y=0)], shape=(10, 10, 1)) batch = ia.Batch(images=np.uint8([image, image]), keypoints=[kps, kps]) batches = [batch.deepcopy() for _ in sm.xrange(60)] # seed=1 with multicore.Pool(augseq, processes=2, maxtasksperchild=30, seed=1) as pool: batches_aug1 = pool.map_batches(batches, chunksize=2) # seed=1 with multicore.Pool(augseq, processes=2, seed=1) as pool: batches_aug2 = pool.map_batches(batches, chunksize=1) # seed=2 with multicore.Pool(augseq, processes=2, seed=2) as pool: batches_aug3 = pool.map_batches(batches, chunksize=1) assert len(batches_aug1) == 60 assert len(batches_aug2) == 60 assert len(batches_aug3) == 60 for batches_aug in [batches_aug1, batches_aug2, batches_aug3]: for batch in batches_aug: for keypoints_aug in batch.keypoints_aug: assert keypoints_aug.keypoints[0].x == 2 assert keypoints_aug.keypoints[0].y == 0 for b1, b2, b3 in zip(batches_aug1, batches_aug2, batches_aug3): # images were augmented assert not np.array_equal(b1.images_unaug, b1.images_aug) assert not np.array_equal(b2.images_unaug, b2.images_aug) assert not np.array_equal(b3.images_unaug, b3.images_aug) # original images still the same assert np.array_equal(b1.images_unaug, batch.images_unaug) assert np.array_equal(b2.images_unaug, batch.images_unaug) assert np.array_equal(b3.images_unaug, batch.images_unaug) # augmentations for same seed are the same assert np.array_equal(b1.images_aug, b2.images_aug) # augmentations for different seeds are different assert not np.array_equal(b1.images_aug, b3.images_aug) # make sure that batches for the two pools with same seed did not repeat within results (only between the # results of the two pools) for batches_aug in [batches_aug1, batches_aug2, batches_aug3]: self._assert_each_augmentation_not_more_than_once(batches_aug) def test_augmentations_without_seed_differ(self): augseq = iaa.AddElementwise((0, 255)) image = np.zeros((10, 10, 1), dtype=np.uint8) batch = ia.Batch(images=np.uint8([image, image])) batches = [batch.deepcopy() for _ in sm.xrange(20)] with multicore.Pool(augseq, processes=2, maxtasksperchild=5) as pool: batches_aug = pool.map_batches(batches, chunksize=2) with multicore.Pool(augseq, processes=2) as pool: batches_aug.extend(pool.map_batches(batches, chunksize=1)) assert len(batches_aug) == 2*20 self._assert_each_augmentation_not_more_than_once(batches_aug) def test_augmentations_without_seed_differ_for_images_and_keypoints(self): augseq = iaa.AddElementwise((0, 255)) image = np.zeros((10, 10, 1), dtype=np.uint8) # keypoints here will not be changed by augseq, but they will induce deterministic mode to start in # augment_batches() as each batch contains images AND keypoints kps = ia.KeypointsOnImage([ia.Keypoint(x=2, y=0)], shape=(10, 10, 1)) batch = ia.Batch(images=np.uint8([image, image]), keypoints=[kps, kps]) batches = [batch.deepcopy() for _ in sm.xrange(20)] with multicore.Pool(augseq, processes=2, maxtasksperchild=5) as pool: batches_aug = pool.map_batches(batches, chunksize=2) with multicore.Pool(augseq, processes=2) as pool: batches_aug.extend(pool.map_batches(batches, chunksize=1)) assert len(batches_aug) == 2*20 for batch in batches_aug: for keypoints_aug in batch.keypoints_aug: assert keypoints_aug.keypoints[0].x == 2 assert keypoints_aug.keypoints[0].y == 0 self._assert_each_augmentation_not_more_than_once(batches_aug) def test_inputs_not_lost(self): """Test to make sure that inputs (e.g. images) are never lost.""" def _assert_contains_all_ids(batches_aug): # batch.images_unaug ids = set() for batch_aug in batches_aug: ids.add(int(batch_aug.images_unaug.flat[0])) ids.add(int(batch_aug.images_unaug.flat[1])) for idx in sm.xrange(2*100): assert idx in ids assert len(ids) == 200 # batch.images_aug ids = set() for batch_aug in batches_aug: ids.add(int(batch_aug.images_aug.flat[0])) ids.add(int(batch_aug.images_aug.flat[1])) for idx in sm.xrange(2*100): assert idx in ids assert len(ids) == 200 augseq = iaa.Noop() image = np.zeros((1, 1, 1), dtype=np.uint8) # creates batches containing images with ids from 0 to 199 (one pair of consecutive ids per batch) batches = [ia.Batch(images=np.uint8([image + b_idx*2, image + b_idx*2+1])) for b_idx in sm.xrange(100)] with multicore.Pool(augseq, processes=2, maxtasksperchild=25) as pool: batches_aug = pool.map_batches(batches) _assert_contains_all_ids(batches_aug) with multicore.Pool(augseq, processes=2, maxtasksperchild=25, seed=1) as pool: batches_aug = pool.map_batches(batches) _assert_contains_all_ids(batches_aug) with multicore.Pool(augseq, processes=3, seed=2) as pool: batches_aug = pool.map_batches(batches) _assert_contains_all_ids(batches_aug) with multicore.Pool(augseq, processes=2, seed=None) as pool: batches_aug = pool.map_batches(batches) _assert_contains_all_ids(batches_aug) batches_aug = pool.map_batches(batches) _assert_contains_all_ids(batches_aug) def test_close(self): augseq = iaa.Noop() with multicore.Pool(augseq, processes=2) as pool: pool.close() def test_terminate(self): augseq = iaa.Noop() with multicore.Pool(augseq, processes=2) as pool: pool.terminate() def test_join(self): augseq = iaa.Noop() with multicore.Pool(augseq, processes=2) as pool: pool.close() pool.join() def test_BatchLoader(): reseed() def _load_func(): for _ in sm.xrange(20): yield ia.Batch(images=np.zeros((2, 4, 4, 3), dtype=np.uint8)) warnings.simplefilter("always") with warnings.catch_warnings(record=True) as caught_warnings: for nb_workers in [1, 2]: # repeat these tests many times to catch rarer race conditions for _ in sm.xrange(5): loader = multicore.BatchLoader(_load_func, queue_size=2, nb_workers=nb_workers, threaded=True) loaded = [] counter = 0 while (not loader.all_finished() or not loader.queue.empty()) and counter < 1000: try: batch = loader.queue.get(timeout=0.001) loaded.append(batch) except: pass counter += 1 assert len(loaded) == 20*nb_workers, \ "Expected %d to be loaded by threads, got %d for %d workers at counter %d." % ( 20*nb_workers, len(loaded), nb_workers, counter ) loader = multicore.BatchLoader(_load_func, queue_size=200, nb_workers=nb_workers, threaded=True) loader.terminate() assert loader.all_finished() loader = multicore.BatchLoader(_load_func, queue_size=2, nb_workers=nb_workers, threaded=False) loaded = [] counter = 0 while (not loader.all_finished() or not loader.queue.empty()) and counter < 1000: try: batch = loader.queue.get(timeout=0.001) loaded.append(batch) except: pass counter += 1 assert len(loaded) == 20*nb_workers, \ "Expected %d to be loaded by background processes, got %d for %d workers at counter %d." % ( 20*nb_workers, len(loaded), nb_workers, counter ) loader = multicore.BatchLoader(_load_func, queue_size=200, nb_workers=nb_workers, threaded=False) loader.terminate() assert loader.all_finished() assert len(caught_warnings) > 0 for warning in caught_warnings: assert "is deprecated" in str(warning.message) def test_BackgroundAugmenter__augment_images_worker(): reseed() warnings.simplefilter("always") with warnings.catch_warnings(record=True) as caught_warnings: def gen(): yield ia.Batch(images=np.zeros((1, 4, 4, 3), dtype=np.uint8)) bl = multicore.BatchLoader(gen(), queue_size=2) bgaug = multicore.BackgroundAugmenter(bl, iaa.Noop(), queue_size=1, nb_workers=1) queue_source = multiprocessing.Queue(2) queue_target = multiprocessing.Queue(2) queue_source.put( pickle.dumps( ia.Batch(images=np.zeros((1, 4, 8, 3), dtype=np.uint8)), protocol=-1 ) ) queue_source.put(pickle.dumps(None, protocol=-1)) bgaug._augment_images_worker(iaa.Add(1), queue_source, queue_target, 1) batch_aug = pickle.loads(queue_target.get()) assert isinstance(batch_aug, ia.Batch) assert batch_aug.images_unaug is not None assert batch_aug.images_unaug.dtype == np.uint8 assert batch_aug.images_unaug.shape == (1, 4, 8, 3) assert np.array_equal(batch_aug.images_unaug, np.zeros((1, 4, 8, 3), dtype=np.uint8)) assert batch_aug.images_aug is not None assert batch_aug.images_aug.dtype == np.uint8 assert batch_aug.images_aug.shape == (1, 4, 8, 3) assert np.array_equal(batch_aug.images_aug, np.zeros((1, 4, 8, 3), dtype=np.uint8) + 1) finished_signal = pickle.loads(queue_target.get()) assert finished_signal is None source_finished_signal = pickle.loads(queue_source.get()) assert source_finished_signal is None assert queue_source.empty() assert queue_target.empty() queue_source.close() queue_target.close() queue_source.join_thread() queue_target.join_thread() bl.terminate() bgaug.terminate() assert len(caught_warnings) > 0 for warning in caught_warnings: assert "is deprecated" in str(warning.message) if __name__ == "__main__": main()
from lib.directives import DIRECTIVES class Node: def __init__(self, key=None): self.key = key if key else "" self.keysplit = [] self.raw = None self.inner = None self.directive = None self.incontext = None self.func = None self.escape = None def _finish(self): self.keysplit = self.key.split(".") class RootNode(Node): def __init__(self): super().__init__() self.inner = [] class TextNode(Node): def __init__(self, text): super().__init__() self.text = text class TagNode(Node): def __init__(self, raw, inner): super().__init__() self.raw = raw self.inner = inner.strip() self.directive = 0 self.incontext = False self.func = None self.format = "" self.escape = False # ignore empties (by marking as comment) if not len(self.inner): self.directive = DIRECTIVES.COMMENT else: self.key = self.inner # leading directive if self.inner[0] in DIRECTIVES.TO_VALUE: self.directive = DIRECTIVES.TO_VALUE[self.inner[0]] if not self.directive: self.directive = 0 elif self.directive == DIRECTIVES.LIST and self.inner[1] in DIRECTIVES.TO_VALUE and \ DIRECTIVES.TO_VALUE[self.inner[1]] == DIRECTIVES.SECTION_INC: # special case of list and section self.directive = DIRECTIVES.LIST_SECTION self.key = self.key[2:] elif self.directive in ( DIRECTIVES.IN_CONTEXT, # handled separately as can be doubled-up DIRECTIVES.PASS_CONTEXT, # here and below are not leading directives DIRECTIVES.FORMAT, DIRECTIVES.ESCAPE ): self.directive = 0; # self one doubles as exclusive section so special case elif self.directive == DIRECTIVES.ROOT_PARTIAL: self.directive = DIRECTIVES.SECTION_EXC else: self.key = self.key[1:] # in-context-directive if self.key[0] == DIRECTIVES.TO_SYMBOL[DIRECTIVES.IN_CONTEXT]: self.incontext = True self.key = self.key[1:] if self.directive == DIRECTIVES.PARTIAL and self.incontext: raise Exception("Invalid tag: cannot have partial directive as in-context at {0}".format(self.raw)) # context directive sym = DIRECTIVES.TO_SYMBOL[DIRECTIVES.PASS_CONTEXT] split = self.key.split(sym); # note pure context tag {{.}} can be split with empty first {{.~tofunc}} if len(split) > 1: if len(split) > 2: raise Exception("Invalid tag: multiple function context directives at {0}".format(self.raw)) if (not split[0] and not self.incontext) or not split[1] or split[1][0] == sym[0]: raise Exception("Invalid tag: malformatted function context directive at {0}".format(self.raw)) self.key = split[0] self.func = split[1] # format directive sym = DIRECTIVES.TO_SYMBOL[DIRECTIVES.FORMAT] split = (self.func if self.func else self.key).split(sym); # leading or ending with format directive, assume part of name if len(split) == 2: if not split[0] and not self.incontext: split = [split[1]] elif not split[1]: split = [split[0]] if len(split) > 1: if len(split) > 2: raise Exception("Invalid tag: multiple format directives at {0}".format(self.raw)) if (not split[0] and not self.incontext) or not split[1] or split[1][0] == sym[0]: raise Exception("Invalid tag: malformatted format directive at {0}".format(self.raw)) self.format = split[1] if self.func: self.func = split[0] else: self.key = split[0] # escape directive sym = DIRECTIVES.TO_SYMBOL[DIRECTIVES.ESCAPE] split = self.func if self.func else self.key if split.endswith(sym): self.escape = True split = split[0:-1] if self.func: self.func = split else: self.key = split if self.format.endswith(sym): self.escape = True; self.format = self.format[0:-1] # convert pass-to-function key to node if self.func: self.func = PassToFunctionNode(self.func, self) # final key check self.key = self.key.strip() if not len(self.key) and not self.incontext: # can't be empty except special case for pure context {{.}} raise Exception("Invalid tag: empty evaluation at {0}".format(self.raw)) # this fills keysplit self._finish() class PassToFunctionNode(Node): def __init__(self, key, context_node=None): if isinstance(key, PassToFunctionNode): super().__init__(key.key) self.incontext = key.incontext else: super().__init__(key) self.incontext = False # function can have context directive, but can't be pure context -- e.g. {{data~.}} if self.key[0] == DIRECTIVES.TO_SYMBOL[DIRECTIVES.IN_CONTEXT]: self.key = self.key[1:] self.incontext = True if not len(self.key) and not self.incontext: "Invalid tag: empty evaluation at {0}".format(context_node.raw) self._finish() class PartialNode(Node): def __init__(self, tag): super().__init__() if tag.incontext: raise Exception("Partial tag cannot be paired with in-context directive at {0}".format(tag.raw)) if tag.format: raise Exception("Partial tag cannot be paired with format directive at {0}".format(tag.raw)) if tag.escape: raise Exception("Partial tag cannot be paired with escape directive at {0}".format(tag.raw)) if tag.func: raise Exception("Partial tag cannot be paired with pass-to-function directive at {0}".format(tag.raw)) self.directive = DIRECTIVES.PARTIAL self.raw = tag.raw self.inner = tag.inner self.key = tag.key self.incontext = True # partials default to in-context if self.key.endswith(DIRECTIVES.TO_SYMBOL[DIRECTIVES.ROOT_PARTIAL]): self.key = self.key[0:-1] self.incontext = False if not len(self.key): raise Exception("Empty partial tag at {0}".format(tag.raw)) self._finish() class SectionNode(Node): def __init__(self, tag, parent): super().__init__(tag.key) self.raw = tag.raw self.inner = [] self.incontext = tag.incontext self.parent = parent if isinstance(tag, SectionNode): self.func = PassToFunctionNode(tag.func) if tag.func else None self.inclusive = tag.inclusive self.open = tag.open self.list = tag.list else: self.func = tag.func self.inclusive = tag.directive == DIRECTIVES.SECTION_INC or tag.directive == DIRECTIVES.LIST_SECTION self.open = tag self.list = tag.directive == DIRECTIVES.LIST_SECTION if tag.format: raise Exception("Invalid tag: format passed to section tag {0}".format(tag.raw)) if tag.escape: raise Exception("Invalid tag: escape directive passed to section tag {0}".format(tag.raw)) if tag.directive not in (DIRECTIVES.SECTION_INC, DIRECTIVES.SECTION_EXC, DIRECTIVES.LIST_SECTION): raise Exception("Template error: parsing invalid section tag {0}".format(tag.raw)) self._finish()
from enum import IntEnum; class OgreMeshChunkID(IntEnum): """ Definition of the OGRE .mesh file format .mesh files are binary files (for read efficiency at runtime) and are arranged into chunks of data, very like 3D Studio's format. A chunk always consists of: unsigned short CHUNK_ID : one of the following chunk ids identifying the chunk unsigned long LENGTH : length of the chunk in bytes, including this header void* DATA : the data, which may contain other sub-chunks (various data types) A .mesh file can contain both the definition of the Mesh itself, and optionally the definitions of the materials is uses (although these can be omitted, if so the Mesh assumes that at runtime the Materials referred to by name in the Mesh are loaded/created from another source) A .mesh file only contains a single mesh, which can itself have multiple submeshes. """ M_HEADER = 0x1000; M_MESH = 0x3000; M_SUBMESH = 0x4000; M_SUBMESH_OPERATION = 0x4010; M_SUBMESH_BONE_ASSIGNMENT = 0x4100; M_SUBMESH_TEXTURE_ALIAS = 0x4200; M_GEOMETRY = 0x5000; M_GEOMETRY_VERTEX_DECLARATION = 0x5100; M_GEOMETRY_VERTEX_ELEMENT = 0x5110; M_GEOMETRY_VERTEX_BUFFER = 0x5200; M_GEOMETRY_VERTEX_BUFFER_DATA = 0x5210; M_MESH_SKELETON_LINK = 0x6000; M_MESH_BONE_ASSIGNMENT = 0x7000; M_MESH_LOD_LEVEL = 0x8000; M_MESH_LOD_USAGE = 0x8100; M_MESH_LOD_MANUAL = 0x8110; M_MESH_LOD_GENERATED = 0x8120; M_MESH_BOUNDS = 0x9000; M_SUBMESH_NAME_TABLE = 0xA000; M_SUBMESH_NAME_TABLE_ELEMENT = 0xA100; M_EDGE_LISTS = 0xB000; M_EDGE_LIST_LOD = 0xB100; M_EDGE_GROUP = 0xB110; M_POSES = 0xC000; M_POSE = 0xC100; M_POSE_VERTEX = 0xC111; M_ANIMATIONS = 0xD000; M_ANIMATION = 0xD100; M_ANIMATION_BASEINFO = 0xD105; M_ANIMATION_TRACK = 0xD110; M_ANIMATION_MORPH_KEYFRAME = 0xD111; M_ANIMATION_POSE_KEYFRAME = 0xD112; M_ANIMATION_POSE_REF = 0xD113; M_TABLE_EXTREMES = 0xE000; M_GEOMETRY_NORMALS = 0x5100; M_GEOMETRY_COLOURS = 0x5200; M_GEOMETRY_TEXCOORDS = 0x5300;
# -*- coding: UTF-8 -*- """ A set of tests for the vmware.py module """ import unittest from unittest.mock import patch, MagicMock from vlab_inventory_api.lib.worker import vmware class TestVMware(unittest.TestCase): """A suite of test cases for the vmware.py module""" @patch.object(vmware.virtual_machine, 'get_info') @patch.object(vmware, 'vCenter') def test_show_inventory(self, fake_vCenter, fake_get_info): """``show_inventory`` returns a dictionary when the user has VMs""" fake_get_info.return_value = {} fake_vm = MagicMock() fake_vm.name = 'myVM' fake_folder = MagicMock() fake_folder.childEntity = [fake_vm] fake_vCenter.return_value.__enter__.return_value.get_by_name.return_value = fake_folder result = vmware.show_inventory(username='bob') expected = {'myVM' : {}} self.assertEqual(result, expected) @patch.object(vmware, 'vCenter') def test_create_inventory(self, fake_vCenter): """``create_inventory`` returns None when everything works as expected""" result = vmware.create_inventory(username='bob') expected = None self.assertEqual(result, expected) @patch.object(vmware, 'nuke_folder') @patch.object(vmware, 'vCenter') def test_delete_inventory(self, fake_vCenter, fake_nuke_folder): """``delete_inventory`` returns None when everything works as expected""" fake_logger = MagicMock() fake_folder = MagicMock() fake_vCenter.return_value.__enter__.return_value.get_by_name.return_value = fake_folder result = vmware.delete_inventory(username='alice', logger=fake_logger) expected = None self.assertEqual(result, expected) @patch.object(vmware, 'nuke_folder') @patch.object(vmware, 'vCenter') def test_delete_invalid_power_state(self, fake_vCenter, fake_nuke_folder): """``delete_inventory`` returns an error if a VM is not powered off""" fake_logger = MagicMock() fake_nuke_folder.side_effect = [vmware.vim.fault.InvalidState(msg='testing')] fake_folder = MagicMock() fake_vCenter.return_value.__enter__.return_value.get_by_name.return_value = fake_folder result = vmware.delete_inventory(username='alice', logger=fake_logger) expected = 'testing' self.assertEqual(result, expected) @patch.object(vmware, 'nuke_folder') @patch.object(vmware, 'vCenter') def test_delete_already_gone(self, fake_vCenter, fake_nuke_folder): """``delete_inventory`` returns an error if the user has no inventory records""" fake_logger = MagicMock() fake_nuke_folder.side_effect = [FileNotFoundError()] fake_folder = MagicMock() fake_vCenter.return_value.__enter__.return_value.get_by_name.return_value = fake_folder result = vmware.delete_inventory(username='alice', logger=fake_logger) expected = 'User alice has no folder' self.assertEqual(result, expected) @patch.object(vmware, 'nuke_folder') @patch.object(vmware, 'vCenter') def test_delete_failure(self, fake_vCenter, fake_nuke_folder): """``delete_inventory`` returns an error if there was a system failure""" fake_logger = MagicMock() fake_nuke_folder.side_effect = [RuntimeError('testing')] fake_folder = MagicMock() fake_vCenter.return_value.__enter__.return_value.get_by_name.return_value = fake_folder result = vmware.delete_inventory(username='alice', logger=fake_logger) expected = 'testing' self.assertEqual(result, expected) @patch.object(vmware, 'consume_task') def test_nuke_folder(self, fake_consume_task): """``nuke_folder`` calls Destory on the folder object""" fake_folder = MagicMock() vmware.nuke_folder(fake_folder) self.assertTrue(fake_folder.Destroy.called) if __name__ == '__main__': unittest.main()
import os, json, re import discord, asyncio from bs4 import BeautifulSoup from urllib.request import Request, urlopen from urllib import parse from riot_api import * app = discord.Client() mstatus = 0 botid = "" token = os.getenv("TOKEN") lol_apikey = os.getenv("API_KEY") if not token: json_data = open(os.getcwd() + "/token/.config.json", encoding='utf-8').read() config_json = json.loads(json_data) token = config_json["token"] @app.event async def on_ready(): global botid print('Logged in as') print(app.user.name) print(app.user.id) print('------') game = discord.Game("Game Helper | !helpme") botid = await app.application_info() await app.change_presence(status=discord.Status.online, activity=game) @app.event async def on_message(message): global mstatus, botid if message.author.bot and message.author.id == botid.id: if mstatus == 1: await message.add_reaction("\u2b55") # O await message.add_reaction("\u274c") # X mstatus = mstatus - 1 else: return None if message.content == "!helpme": desc_text = "{0} \n{1} \n{2} \n{3} \n{4}".format("!helpme : 명령어 목록 불러오기", \ "!owsearch : 오버워치 전적 검색하기", \ "!lolsearch : 롤 소환사 검색하기", \ "!muteall : 현재 보이스 채널에 있는 유저들 모두 음소거 시키기", \ "!unmuteall : 모든 사용자 음소거 해제하기") embed = discord.Embed(title="명령어 목록", description=desc_text, color=0x6FA8DC) await message.channel.send(embed=embed) if message.content == "!owsearch": embed = discord.Embed(title="Overwatch 점수 검색", description="'배틀태그#숫자' 형식으로 입력해주세요.", color=0x82CC62) embed.set_image(url="https://bnetcmsus-a.akamaihd.net/cms/blog_header/q4/Q4K237E1EGPI1467079634956.jpg") await message.channel.send(embed=embed) def check(m): return m.author == message.author and m.channel == message.channel try: m = await app.wait_for('message',timeout=25.0, check=check) except asyncio.TimeoutError: await message.channel.send("시간초과!") else: battletag_bool = bool(re.search('.[#][0-9]', m.content)) if battletag_bool: battletag = m.content.replace("#", "-") async with message.channel.typing(): req = Request("https://playoverwatch.com/ko-kr/career/pc/" + parse.quote(battletag)) res = urlopen(req) bs = BeautifulSoup(res, "html.parser") roles = bs.findAll("div", attrs={"class": "competitive-rank-tier"}) scores = bs.findAll("div", attrs={"class": "competitive-rank-level"}) public_status = bs.findAll("p", attrs={"class": "masthead-permission-level-text"}) competitive_roles = [i.get("data-ow-tooltip-text") for i in roles[:len(roles)//2]] competitive_score = [i.text for i in scores[:len(scores)//2]] if not public_status: await message.channel.send("프로필이 존재하지 않습니다. 배틀태그와 뒤에 숫자를 다시 확인해 주세요.") else: if public_status[0].text == "비공개 프로필": await message.channel.send("비공개 프로필입니다. 프로필 공개 설정을 공개로 바꾼 뒤에 사용해 주세요.") else: comp_data = bs.find("div", attrs={"id": "competitive","data-mode": "competitive"}) heroes = comp_data.findAll("div", attrs={"class": "ProgressBar-title"}) play_time = comp_data.findAll("div", attrs={"class": "ProgressBar-description"}) comp_heroes = [] for h in heroes: comp_heroes.append([h]) for i in range(len(play_time)): comp_heroes[i].append(play_time[i]) score_result = "" top_five_result = "" top_five = [[d[0].text, d[1].text] for d in comp_heroes] if len(comp_heroes) <= 5 else [[d[0].text, d[1].text] for d in comp_heroes[:5]] def format_time(s): t = s.split(":") if len(t) == 2: # MM:SS return "{0} 분".format(str(int(t[0]))) elif len(t) == 3: # HH:MM:SS return "{0} 시간".format(str(int(t[0]))) else: return "0 분" if len(competitive_roles) == 0 and len(competitive_score) == 0: score_result = "아직 배치를 덜본것 같군요! 점수가 없습니다." else: for i in range(len(competitive_roles)): score_result = score_result + competitive_roles[i] + " : " + competitive_score[i] + "\n" score_result = score_result + "입니다." for i, h in enumerate(top_five): top_five_result += "{0}. {1}: {2}\n".format(str(i+1), h[0], format_time(h[1])) embed = discord.Embed(title=battletag.split("-")[0] + " 님의 현재 시즌 경쟁전 점수", description=score_result, color=0x82CC62) embed2 = discord.Embed(title="경쟁전 상위 영웅", description=top_five_result, color=0x82CC62) await message.channel.send(embed=embed) await message.channel.send(embed=embed2) else: # Invalid await message.channel.send("배틀태그가 유효하지 않습니다.") if message.content == "!lolsearch": embed = discord.Embed(title="롤 소환사 검색", description="소환사 이름을 입력하세요 \n단, 소환사 이름만 입력하세요!", color=0x82CC62) await message.channel.send(embed=embed) def check(m): return m.author == message.author and m.channel == message.channel try: m = await app.wait_for('message',timeout=25.0, check=check) except asyncio.TimeoutError: await message.channel.send("시간초과!") else: async with message.channel.typing(): summoner = Summoner(m.content) if summoner.account_id == "": # Misinput. Aborting await message.channel.send("소환사 이름을 잘못 입력하셨습니다.") else: info = summoner.summoner_info if info: info = info[0] msg = info.get("message") if not msg: name = info.get("summonerName", "NULL") tier = info.get("tier", "") rank = info.get("rank" "") win_rate = "{} %".format(int(summoner.recent_winning_rate*100)) result_url = "http://www.op.gg/summoner/userName=" + parse.quote(name) desc_text = "소환사 이름 : {0}\n \ 티어 : {1} {2}\n \ 최근 랭크 게임 승률 : {3}\n".format(name, tier, rank, win_rate) embed = discord.Embed(title="소환사 검색 결과", description=desc_text, url=result_url, color=0x82CC62) else: desc_text = "없는 소환사 입니다." embed = discord.Embed(title="소환사 검색 결과", description=desc_text, color=0x82CC62) await message.channel.send(embed=embed) else: name = summoner.account.get("name") if name: # Exists, but no recent comp play desc_text = "소환사 이름 : {0}\n \ 티어 : 플레이 내역이 없습니다.\n \ 최근 랭크 게임 승률 : 플레이 내역이 없습니다.\n".format(name) embed = discord.Embed(title="소환사 검색 결과", description=desc_text, color=0x82CC62) await message.channel.send(embed=embed) else: #??? await message.channel.send("???????") if message.content == "!muteall": if message.author.voice is None: await message.channel.send("이 기능을 사용하려면 보이스 채널에 들어가 있어야 합니다!") else: mstatus = mstatus + 1 embed = discord.Embed(title="Among Us 전용 전체 음소거 기능", description="현재 음성채널에 있는 모든 사용자를 음소거하겠습니까? \n원하시면 :o:, 아니면 :x:를 눌러주세요.", color=0xFFD966) await message.channel.send(embed=embed) def check(reaction, user): return user == message.author and (str(reaction.emoji) == "\u2b55" or str(reaction.emoji) == "\u274c") try: reaction, user = await app.wait_for('reaction_add', timeout=10.0, check=check) except asyncio.TimeoutError: await message.channel.send("시간초과!") else: if str(reaction.emoji) == "\u2b55": # await message.channel.send(administrator_id) member_list = message.author.voice.channel.members async with message.channel.typing(): for member in member_list: await member.edit(mute=True, reason="Among Us Player Mute All") await message.channel.send("음소거 완료!") elif str(reaction.emoji) == "\u274c": await message.channel.send("싫음 소환하지를 마. 귀찮게.") if message.content == "!unmuteall": member_list = message.author.voice.channel.members async with message.channel.typing(): for member in member_list: await member.edit(mute=False) await message.channel.send("음소거 해제 완료!") if "개" in message.content or message.content == "!doge": await message.channel.send("https://i.kym-cdn.com/entries/icons/original/000/013/564/doge.jpg") app.run(token)
from dart_version_manager.commands.build_command import app as build_app from dart_version_manager.commands.major_command import app as major_app from dart_version_manager.commands.minor_command import app as minor_app from dart_version_manager.commands.patch_command import app as patch_app from dart_version_manager.commands.pre_release_command import app as pre_release_app __all__ = [build_app, major_app, minor_app, patch_app, pre_release_app]
# -*- coding: utf-8 -*- from flask_restful import Api import resources def create_api(app): api = Api(app) api.add_resource(resources.OndeRemar, '/api/onde-remar', '/api/onde-remar/<int:item_id>') api.add_resource(resources.Produtos, '/api/produtos', '/api/produtos/<int:item_id>') api.add_resource(resources.Eventos, '/api/eventos', '/api/eventos/<string:item_id>') api.add_resource(resources.Resultados, '/api/eventos/<string:item_id>/resultados') api.add_resource(resources.Newsletter, '/api/newsletters') api.add_resource(resources.Noticia, '/api/noticias', '/api/noticias/<string:item_id>') api.add_resource(resources.LoginAtleta, '/api/login') api.add_resource(resources.Atletas, '/api/atletas', '/api/atletas/<int:item_id>', '/api/atletas/<int:item_id>/<string:evento_slug>') api.add_resource(resources.InscricoesAtletas, '/api/atletas/<int:atleta_id>/inscricoes', '/api/atletas/<int:atleta_id>/inscricoes/<int:inscricao_id>') api.add_resource(resources.LoginAdmin, '/admin/api/login') api.add_resource(resources.AtletasAdmin, '/admin/api/atletas', '/admin/api/atletas', '/admin/api/atletas/<int:item_id>') api.add_resource(resources.EventosAdmin, '/admin/api/eventos', '/admin/api/eventos/<string:item_id>') api.add_resource(resources.ProvasAdmin, '/admin/api/provas', '/admin/api/provas/<int:item_id>') api.add_resource(resources.InscricoesAdmin, '/admin/api/inscricoes', '/admin/api/inscricoes/<int:item_id>') api.add_resource(resources.NewsletterAdmin, '/admin/api/newsletters', '/admin/api/newsletters/<int:item_id>') api.add_resource(resources.NoticiaAdmin, '/admin/api/noticias', '/admin/api/noticias/<int:item_id>') api.add_resource(resources.NoticiaImagemAdmin, '/admin/api/noticias/imagens', '/admin/api/noticias/<int:item_id>/imagens/<path:file_name>')
from .map import MapFactory, Map, Graph __all__ = ['MapFactory', 'Map', 'Graph']
from collections import defaultdict count=0 class Graph: def __init__(self): self.graph = defaultdict(list) def addNode(self, init, connect): self.graph[init].append(connect) def DFStrigger(self, index, visited, stack): visited[index] =True for ele in self.graph[index]: if(visited[ele]==False): self.DFStrigger(ele, visited, stack) stack.append(index) def DFS(self, stack): visited=[False]*(count) for i in range(count): if(visited[i]==False): self.DFStrigger(i, visited, stack) def DFSUtil(self, i, visited): visited[i]=True print(i, end=' ') for k in self.graph[i]: if(visited[k]==False): self.DFSUtil(k, visited) def PrintSCC(self, g, stack): visited=[False]*(count) for i in reversed(stack): if(visited[i]==False): g.DFSUtil(i, visited) print("") def triggerSCC(self, stack): g = Graph() for i in self.graph: for ele in self.graph[i]: g.addNode(ele, i) self.PrintSCC(g, stack) def SCC(self): stack = [] self.DFS(stack) #print(stack) self.triggerSCC(stack) gr = Graph() count=4 gr.addNode(0, 1) gr.addNode(1, 2) gr.addNode(2, 0) gr.addNode(3, 2) gr.SCC()
from __future__ import unicode_literals import frappe import erpnext from frappe import auth import datetime import json, ast from frappe.share import add @frappe.whitelist() def share_lead(doc, method=None): ''' users = frappe.db.sql(""" select owner from `tabToDo` where reference_type = 'Lead' and reference_name = '{name}' """.format(name=doc.reference_name), as_dict=1) read = 1 write = 1 share = 1 everyone = 0 for x in users: add('Lead', doc.reference_name, x.user, read, write, share, everyone) '''
import unittest import unittest.mock import ast import io from margate.parser import (Parser, parse_expression, IfNode, ForNode, ExtendsNode) from margate.code_generation import (Literal, Sequence, IfBlock, ForBlock, ExtendsBlock, ReplaceableBlock, Execution) class ParserTest(unittest.TestCase): def test_simple_sequence(self): parser = Parser() sequence = parser.parse([Literal("Foo"), Literal("Bar")]) self.assertEqual(2, len(sequence.elements)) def test_parse_if_block(self): parser = Parser() sequence = parser.parse([Literal("Foo"), Execution("if True"), Literal("Bar"), Execution("endif"), Literal("Baz")]) self.assertEqual(sequence.elements[0], Literal("Foo")) self.assertIsInstance(sequence.elements[1], IfBlock) # TODO There doesn't seem to be an easy way to verify the # contents of the AST object. self.assertEqual(sequence.elements[1].sequence.elements[0], Literal("Bar")) self.assertEqual(sequence.elements[2], Literal("Baz")) def test_parse_for_loop(self): parser = Parser() sequence = parser.parse([Execution("for x in things"), Literal("bar"), Execution("endfor")]) expected_sequence = Sequence() block = ForBlock(ForNode('x', 'things')) block.sequence.add_element(Literal("bar")) expected_sequence.add_element(block) self.assertEqual(sequence.elements, expected_sequence.elements) def test_parse_nested(self): parser = Parser() sequence = parser.parse([Execution("for x in things"), Execution("if x % 2"), Execution("endif"), Execution("endfor")]) self.assertEqual(1, len(sequence.elements)) self.assertIsInstance(sequence.elements[0], ForBlock) self.assertIsInstance(sequence.elements[0].sequence.elements[0], IfBlock) self.assertEqual(1, len(sequence.elements[0].sequence.elements)) def test_expression_parser(self): """Test the expression parser used within the {% %} node""" node = parse_expression(["if", "True"]) self.assertIsInstance(node, IfNode) self.assertEqual(node.expression.body.value, True) node = parse_expression(["for", "var", "in", "collection"]) self.assertIsInstance(node, ForNode) self.assertEqual(node, ForNode("var", "collection")) node = parse_expression(["if", "x", "<", "y"]) self.assertIsInstance(node, IfNode) self.assertEqual(ast.dump(node.expression), "Expression(body=Compare(" "left=Name(id='x', ctx=Load()), ops=[Lt()]," " comparators=[Name(id='y', ctx=Load())]))") node = parse_expression(["extends", '"other.html"']) self.assertIsInstance(node, ExtendsNode) self.assertEqual(node.template_name, "other.html")
import ast import json import logging import os.path import re from six.moves import urllib from check_mk_web_api.activate_mode import ActivateMode from check_mk_web_api.exception import CheckMkWebApiResponseException, CheckMkWebApiException, \ CheckMkWebApiAuthenticationException from check_mk_web_api.no_none_value_dict import NoNoneValueDict class WebApiBase: """ Abstraction for Check_Mk Web API # Arguments check_mk_url (str): URL to Check_Mk web application, multiple formats are supported username (str): Name of user to connect as. Make sure this is an automation user. secret (str): Secret for automation user. This is different from the password! # Examples ```python WebApi('http://checkmk.company.com/monitor/check_mk/webapi.py', 'automation', 'secret') ``` ```python WebApi('http://checkmk.company.com/monitor/check_mk', 'automation', 'secret') ``` ```python WebApi('http://checkmk.company.com/monitor', 'automation', 'secret') ``` """ __DISCOVERY_REGEX = { 'added': re.compile(r'.*Added (\d+),.*'), 'removed': re.compile(r'.*Removed (\d+),.*'), 'kept': re.compile(r'.*Kept (\d+),.*'), 'new_count': re.compile(r'.*New Count (\d+)$') } def __init__(self, check_mk_url, username, secret): check_mk_url = check_mk_url.rstrip('/') if check_mk_url.endswith('.py'): # ends with /webapi.py self.web_api_base = check_mk_url elif check_mk_url.endswith('check_mk'): # ends with /$SITE_NAME/check_mk self.web_api_base = os.path.join(check_mk_url, 'webapi.py') else: # ends with /$SITE_NAME self.web_api_base = os.path.join(check_mk_url, 'check_mk', 'webapi.py') self.web_view_base = self.web_api_base.replace('webapi', 'view') self.username = username self.secret = secret @staticmethod def __build_request_data(data, request_format): if not data: return None if request_format == 'json': request_string = 'request=' + json.dumps(data) elif request_format == 'python': request_string = 'request=' + str(data) else: return CheckMkWebApiResponseException(data) return request_string.encode() def __build_request_path(self, query_params=None): path = self.web_api_base + '?' query_params = self.__check_query_params(query_params) query_params.update({ '_username': self.username, '_secret': self.secret }) query_string = urllib.parse.urlencode(query_params) path += query_string return path def __build_view_request_path(self, query_params): path = self.web_view_base + '?' query_params = self.__check_query_params(query_params) query_params['output_format'] = query_params.get('output_format', 'json') query_params.update({ '_username': self.username, '_secret': self.secret, }) query_string = urllib.parse.urlencode(query_params) path += query_string return path def __check_query_params(self, query_params): if not query_params: return {} return dict(query_params) def __parse_response_body(self, body, query_params): if 'output_format' in query_params: if query_params['output_format'] == 'python': return ast.literal_eval(body) if query_params['output_format'] == 'json': try: return json.loads(body) except json.decoder.JSONDecodeError as error: return body return body def __decode_response(self, response, query_params={'output_format': 'json'}): if response.code != 200: raise CheckMkWebApiResponseException(response) body = response.read().decode() if body.startswith('Authentication error:'): raise CheckMkWebApiAuthenticationException(body) body_dict = self.__parse_response_body(body, query_params) # Views return json lists and not dicts of information. # Validate the result is a list, return result if isinstance(body_dict, list): return body_dict result = body_dict['result'] if body_dict['result_code'] == 0: return result raise CheckMkWebApiException(result) def __make_call(self, query, data): """ Wrapper for all calls to CheckMK service # Arguments query: unstructured query from internal calls # Raises CheckMkWebApiResponseException: Raised when the HTTP status code != 200 CheckMkWebApiException: Raised when the action's result_code != 0 """ query_params = self.__check_query_params(query) request_format = query_params.get('request_format', 'json') query_params['output_format'] = query_params.get('output_format', 'json') built_request = [ self.__build_request_path(query_params), WebApiBase.__build_request_data(data, request_format) ] logging.debug('Request built url and arguments', built_request) response = urllib.request.urlopen( *built_request ) return self.__decode_response(response, query_params) def make_view_request(self, query, data=None): """ Make calls to services that require view.py url's # Arguments query: block of query params to append to url data: data to post to form in a dict format # Raises CheckMkWebApiResponseException: Raised when the HTTP status code != 200 CheckMkWebApiException: Raised when the action's result_code != 0 """ query_params = self.__check_query_params(query) query_params['output_format'] = query_params.get('output_format', 'json') request_format = query_params.get('request_format', 'json') built_request = [ self.__build_view_request_path(query_params), # call to correct endpoint WebApiBase.__build_request_data(data, request_format) ] print('Request built url and arguments') print(built_request) response = urllib.request.urlopen( *built_request ) return self.__decode_response(response) def make_view_name_request(self, view_name, query=None, data=None): """ Make calls to get View # Arguments viewName: name of view to get e.g. downtimes # Raises CheckMkWebApiResponseException: Raised when the HTTP status code != 200 CheckMkWebApiException: Raised when the action's result_code != 0 """ built_request = [ self.__build_view_request_path({'view_name': view_name}), # call to correct endpoint None ] logging.debug('Request built url and arguments', built_request) response = urllib.request.urlopen( *built_request ) # TODO: investigate query parameters req for code response return self.__decode_response(response) def make_request(self, action, query_params=None, data=None): """ Make arbitrary request to Check_Mk Web API # Arguments action (str): Action request, e.g. add_host query_params (dict): dict of path parameters data (dict): dict that will be sent as request body # Raises CheckMkWebApiResponseException: Raised when the HTTP status code != 200 CheckMkWebApiException: Raised when the action's result_code != 0 """ query_params = self.__check_query_params(query_params) query_params.update({'action': action}) return self.__make_call(query_params, data) def activate_changes(self, mode=ActivateMode.DIRTY, sites=None, allow_foreign_changes=False): """ Activates all changes previously done # Arguments mode (ActivateMode): see #WebApi.ActivateMode sites (list): List of sites to activates changes on allow_foreign_changes (bool): If True changes of other users will be applied as well """ data = NoNoneValueDict({ 'sites': sites }) query_params = { 'mode': mode.value, 'allow_foreign_changes': 1 if allow_foreign_changes else 0 } return self.make_request('activate_changes', query_params=query_params, data=data)
import numpy as np from .shader_program import ShaderProgram STATIC_VERTEX_SHADER = """ #version 400 core in vec3 position; out vec3 color; uniform mat4 transformationMatrix; uniform mat4 projectionMatrix; uniform mat4 viewMatrix; uniform vec3 vColor; void main(void) { gl_Position = projectionMatrix * viewMatrix * transformationMatrix * vec4(position, 1.0); color = vColor; } """ STATIC_FRAGMENT_SHADER = """ #version 400 core in vec3 color; out vec4 out_Color; void main(void) { out_Color = vec4(color, 1.0f); } """ class StaticShader(ShaderProgram): def __init__(self) -> None: self.__location_v_color: int = -1 super().__init__(STATIC_VERTEX_SHADER, STATIC_FRAGMENT_SHADER) def load_vertex_color(self, color: np.ndarray) -> None: StaticShader._load_vector(self.__location_v_color, color) def _bind_attributes(self) -> None: self._bind_attribute(0, "position") def _get_uniform_locations(self) -> None: super()._get_uniform_locations() self.__location_v_color = self._get_uniform_location("vColor")
#!/usr/bin/env python # # ___INFO__MARK_BEGIN__ ####################################################################################### # Copyright 2016-2021 Univa Corporation (acquired and owned by Altair Engineering Inc.) # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. # # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. ####################################################################################### # ___INFO__MARK_END__ # import tempfile import types from .utils import needs_uge from .utils import generate_random_string from .utils import create_config_file from .utils import load_values from uge.api.qconf_api import QconfApi from uge.config.config_manager import ConfigManager from uge.log.log_manager import LogManager from uge.exceptions.object_not_found import ObjectNotFound from uge.exceptions.object_already_exists import ObjectAlreadyExists create_config_file() API = QconfApi() PE_NAME = '%s.q' % generate_random_string(6) CONFIG_MANAGER = ConfigManager.get_instance() LOG_MANAGER = LogManager.get_instance() VALUES_DICT = load_values('test_values.json') print(VALUES_DICT) @needs_uge def test_object_not_found(): try: pe = API.get_pe('__non_existent_pe__') assert (False) except ObjectNotFound as ex: # ok pass def test_generate_pe(): pe = API.generate_pe(PE_NAME) assert (pe.data['pe_name'] == PE_NAME) def test_add_pe(): try: pel = API.list_pes() except ObjectNotFound as ex: # no pes defined pel = [] pe = API.add_pe(name=PE_NAME) assert (pe.data['pe_name'] == PE_NAME) pel2 = API.list_pes() assert (len(pel2) == len(pel) + 1) assert (pel2.count(PE_NAME) == 1) def test_list_pes(): pel = API.list_pes() assert (pel is not None) def test_object_already_exists(): try: pe = API.add_pe(name=PE_NAME) assert (False) except ObjectAlreadyExists as ex: # ok pass def test_get_pe(): pe = API.get_pe(PE_NAME) assert (pe.data['pe_name'] == PE_NAME) def test_generate_pe_from_json(): pe = API.get_pe(PE_NAME) json = pe.to_json() pe2 = API.generate_object(json) assert (pe2.__class__.__name__ == pe.__class__.__name__) for key in list(pe.data.keys()): v = pe.data[key] v2 = pe2.data[key] if type(v) == list: assert (len(v) == len(v2)) for s in v: assert (v2.count(s) == 1) elif type(v) == dict: for key in list(v.keys()): assert (str(v[key]) == str(v2[key])) else: assert (str(v) == str(v2)) def test_modify_pe(): pe = API.get_pe(PE_NAME) slots = pe.data['slots'] pe = API.modify_pe(name=PE_NAME, data={'slots': slots + 1}) slots2 = pe.data['slots'] assert (slots2 == slots + 1) def test_get_acls(): pel = API.list_pes() pes = API.get_pes() for pe in pes: print("#############################################") print(pe.to_uge()) assert (pe.data['pe_name'] in pel) def test_write_pes(): try: tdir = tempfile.mkdtemp() print("*************************** " + tdir) pe_names = VALUES_DICT['pe_names'] pes = API.get_pes() for pe in pes: print("Before #############################################") print(pe.to_uge()) new_pes = [] for name in pe_names: npe = API.generate_pe(name=name) new_pes.append(npe) API.mk_pes_dir(tdir) API.write_pes(new_pes, tdir) API.add_pes_from_dir(tdir) API.modify_pes_from_dir(tdir) pes = API.get_pes() for pe in pes: print("After #############################################") print(pe.to_uge()) pes = API.list_pes() for name in pe_names: assert (name in pes) print("pe found: " + name) finally: API.delete_pes_from_dir(tdir) API.rm_pes_dir(tdir) def test_add_pes(): try: new_pes = [] pe_names = VALUES_DICT['pe_names'] for name in pe_names: npe = API.generate_pe(name=name) new_pes.append(npe) # print all pes currently in the cluster pes = API.get_pes() for pe in pes: print("Before #############################################") print(pe.to_uge()) # add pes API.add_pes(new_pes) API.modify_pes(new_pes) # print all pes currently in the cluster pes = API.get_pes() for pe in pes: print("After #############################################") print(pe.to_uge()) # check that cals have been added pes = API.list_pes() for name in pe_names: assert (name in pes) print("pe found: " + name) finally: API.delete_pes(new_pes) def test_delete_pe(): pel = API.list_pes() API.delete_pe(PE_NAME) try: pel2 = API.list_pes() except ObjectNotFound as ex: # no pes defined pel2 = [] assert (len(pel2) == len(pel) - 1) assert (pel2.count(PE_NAME) == 0)
def timemat(n,m): import numpy import time t = time.time() X = numpy.random.rand(m, n+1) Y = numpy.random.rand(m, 1) theta = numpy.linalg.inv(X.T @ X) @ X.T @ Y return time.time() -t if __name__ == '__main__': import sys n = 1000 m = 100 if len(sys.argv) > 2: n = int(sys.argv[1]) m = int(sys.argv[2]) print(timemat(n,m))
#!/usr/bin/env python # -*- coding: utf-8 -*- """ A script for """ import os, sys import zipfile def toBytes(para): return bytes(para, 'utf-8') def getPass(para): import getpass return getpass.getpass(para) def decompress(filename): print("Archive: ", filename) file = zipfile.ZipFile(filename, "r") pwd = getPass("Password: ") for info in file.infolist(): name = info.filename utf8name = name try: utf8name = utf8name.encode('cp437') utf8name = utf8name.decode('gbk') except: pass print(" extracting: " + utf8name) pathname = os.path.dirname(utf8name) if not os.path.exists(pathname) and pathname!= "": print(" creating: ", pathname) os.makedirs(pathname) data = file.read(name, pwd.encode('gbk')) if not os.path.exists(utf8name): fo = open(utf8name, "wb") fo.write(data) fo.close() file.close() print("") if __name__ == "__main__": if len(sys.argv) < 2: exit(1) for i in range(1, len(sys.argv)): decompress(sys.argv[i])
from typing import List, Dict from klgists.common import flatten from klgists.common.exceptions import BadConfigException class BoardLayout: """The pins and ports on an Arduino board. Defines which correspond to input and output stimuli and sensors. Does not know about sensors or stimuli themselves, only about their pins and names. """ def __init__( self, digital_ports: Dict[int, List[int]], analog_ports: Dict[int, List[int]], status_led_pin: int, digital_stimuli: Dict[str, int]=None, analog_stimuli: Dict[str, int]=None, digital_sensors: Dict[str, int]=None, analog_sensors: Dict[str, int]=None, startup_pins: List[int]=None, ): self.digital_ports = digital_ports self.analog_ports = analog_ports self.status_led_pin = status_led_pin self.digital_stimuli = {} if digital_stimuli is None else digital_stimuli # type: Dict[str, int] self.analog_stimuli = {} if analog_stimuli is None else analog_stimuli # type: Dict[str, int] self.stimuli = self.digital_stimuli.copy() self.stimuli.update(self.analog_stimuli) self.digital_sensors = {} if digital_sensors is None else digital_sensors # type: Dict[str, int] self.analog_sensors = {} if analog_sensors is None else analog_sensors # type: Dict[str, int] self.startup_pins = {} if startup_pins is None else startup_pins # type: List[int] # overlap output_overlap = set(digital_stimuli).intersection(analog_stimuli) input_overlap = set(digital_sensors).intersection(analog_sensors) # TODO wrong error type if len(output_overlap) != 0: raise BadConfigException("There is overlap between digital and analog stimulus pins {}".format(output_overlap)) if len(input_overlap) != 0: raise BadConfigException("There is overlap between digital and analog sensor pins {}".format(input_overlap)) # allowed pins self.allowed_digital_pins = flatten([[pin for pin in allowed] for port, allowed in digital_ports.items()]) # type: List[int] self.allowed_analog_pins = flatten([[pin for pin in allowed] for port, allowed in analog_ports.items()]) # type: List[int] def __repr__(self) -> str: return "BoardLayout(digital_ports={}, analog_ports={}, digital_out={}, analog_out={}, digital_in={}, digital_out={}, startup={})"\ .format(self.digital_ports, self.analog_ports, self.digital_stimuli, self.analog_stimuli, self.digital_sensors, self.analog_sensors, self.startup_pins) def __str__(self): return repr(self) __all__ = ['BoardLayout']
# Copyright (C) 2021 Intel Corporation # SPDX-License-Identifier: BSD-3-Clause import sys import unittest import numpy as np import torch import torch.nn.functional as F import lava.lib.dl.slayer as slayer verbose = True if (('-v' in sys.argv) or ('--verbose' in sys.argv)) else False seed = np.random.randint(1000) # seed = 902 np.random.seed(seed) if verbose: print(f'{seed=}') if torch.cuda.is_available(): device = torch.device('cuda') else: if verbose: print( 'CUDA is not available in the system. ' 'Testing for CPU version only.' ) device = torch.device('cpu') # neuron parameters threshold = 1 scale = (1 << 12) decay = np.random.random() * scale decay = torch.FloatTensor([decay]).to(device) state = torch.FloatTensor([0]).to(device) # create input time = torch.FloatTensor(np.arange(200)).to(device) # expand to (batch, neuron, time) tensor spike_input = torch.autograd.Variable( torch.zeros([5, 4, len(time)]), requires_grad=True ).to(device) spike_input.data[..., np.random.randint(spike_input.shape[-1], size=5)] = 1 weight = torch.FloatTensor( 5 * np.random.random(size=spike_input.shape[-1]) - 0.5 ).reshape([1, 1, spike_input.shape[-1]]).to(device) w_input = slayer.utils.quantize(weight) * spike_input if verbose: print(f'{decay=}') # get the dynamics response output0 = slayer.neuron.dynamics.leaky_integrator.dynamics( w_input, decay=decay, state=state, w_scale=scale, ) output = slayer.neuron.dynamics.leaky_integrator.dynamics( w_input, decay=decay, state=state, w_scale=scale, threshold=threshold, debug=True ) spike = (output >= threshold).to(output.dtype) class TestIF(unittest.TestCase): def test_input_output_range(self): if verbose: print(spike_input.sum(), spike_input.flatten()) if verbose: print(spike.sum(), spike.flatten()) self.assertTrue( spike_input.sum().item() > 0, 'There was zero input spike. Check the test setting.' ) self.assertTrue( spike.sum().item() > 0, 'There was zero ouptut spike. Check the test setting.' ) def test_leak(self): leak_num = output0[..., 1:] - w_input[..., 1:] leak_den = output0[..., :-1] valid = torch.abs(leak_den) > 10 / scale est_decay = torch.mean(1 - leak_num[valid] / leak_den[valid]) * scale rel_error = np.abs( (est_decay.item() - decay.item()) / max(decay.item(), 512) ) if verbose: print(f'{rel_error=}') print(f'{est_decay=}') print(f'{decay=}') self.assertTrue( rel_error < 1e-1, # the estimate is crude f'Expected estimated decay to match. ' f'Found {est_decay=} and {decay=}' ) def test_reset(self): spike_inds = (w_input[..., 1:] == output[..., 1:]) spike_template = spike[..., :-1] spike_template[spike_inds] = 0 error = torch.norm(spike_template).item() if verbose: print(f'{error=}') self.assertTrue( error < 1e-3, f'Expect reset points to match. Found {error=}.' ) def test_integer_states(self): # there should be no quantization error # when states are scaled with s_scale output_error = torch.norm(torch.floor(output * scale) - output * scale) self.assertTrue( output_error < 1e-5, f'Voltage calculation has issues with scaling. ' f'De-Scaling must result in integer states. ' f'Error was {output_error}' ) def test_backward(self): spike_target = spike.clone().detach() output_target = output.clone().detach() spike_target[ ..., np.random.randint(spike_input.shape[-1], size=5) ] = 1 output_target[ ..., np.random.randint(spike_input.shape[-1], size=5) ] -= 1 loss = F.mse_loss(spike, spike_target) \ + F.mse_loss(output, output_target) loss.backward() # just looking for errors # self.assertTrue(True, 'Encountered errors.')
from time import sleep from smbus import SMBus import RPi.GPIO as GPIO GPIO.setmode(GPIO.BCM) bus = 0 class PiTouch: def __init__(self): if GPIO.RPI_REVISION == 1: # Although PiTouch doesn't fit, keep for compatibility i2c_bus = 0 elif GPIO.RPI_REVISION == 2: # As well as the rev 2 i2c_bus = 1 elif GPIO.RPI_REVISION == 3: # For model B+ i2c_bus = 1 else: print "Unable to determine Raspberry Pi revision." exit self.bus = SMBus(i2c_bus) self.bus.write_byte_data(0x40, 0x00, 0x10) self.bus.write_byte_data(0x40, 0xFE, 0x00) sleep(0.01) self.bus.write_byte_data(0x40, 0x00, 0x00) self.bus.write_byte_data(0x40, 0x01, 0x04) sleep(0.01) ## Fin init PCA GPIO.setup(11,GPIO.IN, pull_up_down=GPIO.PUD_UP) def brightness(self,input): if input == 0: return 4096 else: return (input - 0) * (4094 - 0) // (100 - 0) + 1 def light(self,chan,light): light = self.brightness(light) self.bus.write_byte_data(0x40, chan, light & 0xFF) self.bus.write_byte_data(0x40, chan+1, light >> 8) self.bus.write_byte_data(0x40, chan+2, 0 & 0xFF) self.bus.write_byte_data(0x40, chan+3, 0 >> 8) def green(self,light,pad=0): #3, 0, 10, 13 if pad == 0: self.light(0x06+(4*3),light) self.light(0x06+(4*0),light) self.light(0x06+(4*10),light) self.light(0x06+(4*13),light) elif pad == 1: self.light(0x06+(4*3),light) elif pad == 2: self.light(0x06+(4*0),light) elif pad == 3: self.light(0x06+(4*10),light) elif pad == 4: self.light(0x06+(4*13),light) def blue(self,light,pad=0): #4, 1, 11, 14 if pad == 0: self.light(0x06+(4*4),light) self.light(0x06+(4*1),light) self.light(0x06+(4*11),light) self.light(0x06+(4*14),light) elif pad == 1: self.light(0x06+(4*4),light) elif pad == 2: self.light(0x06+(4*1),light) elif pad == 3: self.light(0x06+(4*11),light) elif pad == 4: self.light(0x06+(4*14),light) def red(self,light,pad=0): #5, 2, 12, 15 if pad == 0: self.light(0x06+(4*5),light) self.light(0x06+(4*2),light) self.light(0x06+(4*12),light) self.light(0x06+(4*15),light) elif pad == 1: self.light(0x06+(4*5),light) elif pad == 2: self.light(0x06+(4*2),light) elif pad == 3: self.light(0x06+(4*12),light) elif pad == 4: self.light(0x06+(4*15),light) def all(self,light): light = self.brightness(light) self.bus.write_byte_data(0x40, 0xFA, light & 0xFF) self.bus.write_byte_data(0x40, 0xFB, light >> 8) self.bus.write_byte_data(0x40, 0xFC, 0 & 0xFF) self.bus.write_byte_data(0x40, 0xFD, 0 >> 8) def read(self): readpad = self.bus.read_byte_data(0x1b, 0x03) if readpad == 8: return 1 if readpad == 16: return 2 if readpad == 4: return 3 if readpad == 2: return 4 def touch(self): while True: if GPIO.input(11) == 0: read = self.read() if 4 >= read > 0: return self.read()
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from datetime import date from psycopg2 import IntegrityError, ProgrammingError import odoo from odoo.exceptions import UserError, ValidationError, AccessError from odoo.tools import mute_logger from odoo.tests import common class TestServerActionsBase(common.TransactionCase): def setUp(self): super(TestServerActionsBase, self).setUp() # Data on which we will run the server action self.test_country = self.env['res.country'].create({ 'name': 'TestingCountry', 'code': 'TY', 'address_format': 'SuperFormat', }) self.test_partner = self.env['res.partner'].create({ 'name': 'TestingPartner', 'city': 'OrigCity', 'country_id': self.test_country.id, }) self.context = { 'active_model': 'res.partner', 'active_id': self.test_partner.id, } # Model data Model = self.env['ir.model'] Fields = self.env['ir.model.fields'] self.res_partner_model = Model.search([('model', '=', 'res.partner')]) self.res_partner_name_field = Fields.search([('model', '=', 'res.partner'), ('name', '=', 'name')]) self.res_partner_city_field = Fields.search([('model', '=', 'res.partner'), ('name', '=', 'city')]) self.res_partner_country_field = Fields.search([('model', '=', 'res.partner'), ('name', '=', 'country_id')]) self.res_partner_parent_field = Fields.search([('model', '=', 'res.partner'), ('name', '=', 'parent_id')]) self.res_partner_children_field = Fields.search([('model', '=', 'res.partner'), ('name', '=', 'child_ids')]) self.res_partner_category_field = Fields.search([('model', '=', 'res.partner'), ('name', '=', 'category_id')]) self.res_country_model = Model.search([('model', '=', 'res.country')]) self.res_country_name_field = Fields.search([('model', '=', 'res.country'), ('name', '=', 'name')]) self.res_country_code_field = Fields.search([('model', '=', 'res.country'), ('name', '=', 'code')]) self.res_partner_category_model = Model.search([('model', '=', 'res.partner.category')]) self.res_partner_category_name_field = Fields.search([('model', '=', 'res.partner.category'), ('name', '=', 'name')]) # create server action to self.action = self.env['ir.actions.server'].create({ 'name': 'TestAction', 'model_id': self.res_partner_model.id, 'model_name': 'res.partner', 'state': 'code', 'code': 'record.write({"comment": "MyComment"})', }) class TestServerActions(TestServerActionsBase): def test_00_action(self): self.action.with_context(self.context).run() self.assertEqual(self.test_partner.comment, 'MyComment', 'ir_actions_server: invalid condition check') self.test_partner.write({'comment': False}) # Do: create contextual action self.action.create_action() self.assertEqual(self.action.binding_model_id.model, 'res.partner') # Do: remove contextual action self.action.unlink_action() self.assertFalse(self.action.binding_model_id) def test_10_code(self): self.action.write({ 'state': 'code', 'code': ("partner_name = record.name + '_code'\n" "record.env['res.partner'].create({'name': partner_name})"), }) run_res = self.action.with_context(self.context).run() self.assertFalse(run_res, 'ir_actions_server: code server action correctly finished should return False') partners = self.test_partner.search([('name', 'ilike', 'TestingPartner_code')]) self.assertEqual(len(partners), 1, 'ir_actions_server: 1 new partner should have been created') def test_20_crud_create(self): # Do: create a new record in another model self.action.write({ 'state': 'object_create', 'crud_model_id': self.res_country_model.id, 'link_field_id': False, 'fields_lines': [(5,), (0, 0, {'col1': self.res_country_name_field.id, 'value': 'record.name', 'evaluation_type': 'equation'}), (0, 0, {'col1': self.res_country_code_field.id, 'value': 'record.name[0:2]', 'evaluation_type': 'equation'})], }) run_res = self.action.with_context(self.context).run() self.assertFalse(run_res, 'ir_actions_server: create record action correctly finished should return False') # Test: new country created country = self.test_country.search([('name', 'ilike', 'TestingPartner')]) self.assertEqual(len(country), 1, 'ir_actions_server: TODO') self.assertEqual(country.code, 'TE', 'ir_actions_server: TODO') def test_20_crud_create_link_many2one(self): _city = 'TestCity' _name = 'TestNew' # Do: create a new record in the same model and link it with a many2one self.action.write({ 'state': 'object_create', 'crud_model_id': self.action.model_id.id, 'link_field_id': self.res_partner_parent_field.id, 'fields_lines': [(0, 0, {'col1': self.res_partner_name_field.id, 'value': _name}), (0, 0, {'col1': self.res_partner_city_field.id, 'value': _city})], }) run_res = self.action.with_context(self.context).run() self.assertFalse(run_res, 'ir_actions_server: create record action correctly finished should return False') # Test: new partner created partner = self.test_partner.search([('name', 'ilike', _name)]) self.assertEqual(len(partner), 1, 'ir_actions_server: TODO') self.assertEqual(partner.city, _city, 'ir_actions_server: TODO') # Test: new partner linked self.assertEqual(self.test_partner.parent_id, partner, 'ir_actions_server: TODO') def test_20_crud_create_link_one2many(self): _name = 'TestNew' # Do: create a new record in the same model and link it with a one2many self.action.write({ 'state': 'object_create', 'crud_model_id': self.action.model_id.id, 'link_field_id': self.res_partner_children_field.id, 'fields_lines': [(0, 0, {'col1': self.res_partner_name_field.id, 'value': _name})], }) run_res = self.action.with_context(self.context).run() self.assertFalse(run_res, 'ir_actions_server: create record action correctly finished should return False') # Test: new partner created partner = self.test_partner.search([('name', 'ilike', _name)]) self.assertEqual(len(partner), 1, 'ir_actions_server: TODO') self.assertEqual(partner.name, _name, 'ir_actions_server: TODO') # Test: new partner linked self.assertIn(partner, self.test_partner.child_ids, 'ir_actions_server: TODO') def test_20_crud_create_link_many2many(self): # Do: create a new record in another model self.action.write({ 'state': 'object_create', 'crud_model_id': self.res_partner_category_model.id, 'link_field_id': self.res_partner_category_field.id, 'fields_lines': [(0, 0, {'col1': self.res_partner_category_name_field.id, 'value': 'record.name', 'evaluation_type': 'equation'})], }) run_res = self.action.with_context(self.context).run() self.assertFalse(run_res, 'ir_actions_server: create record action correctly finished should return False') # Test: new category created category = self.env['res.partner.category'].search([('name', 'ilike', 'TestingPartner')]) self.assertEqual(len(category), 1, 'ir_actions_server: TODO') self.assertIn(category, self.test_partner.category_id) def test_30_crud_write(self): _name = 'TestNew' # Do: update partner name self.action.write({ 'state': 'object_write', 'fields_lines': [(0, 0, {'col1': self.res_partner_name_field.id, 'value': _name})], }) run_res = self.action.with_context(self.context).run() self.assertFalse(run_res, 'ir_actions_server: create record action correctly finished should return False') # Test: partner updated partner = self.test_partner.search([('name', 'ilike', _name)]) self.assertEqual(len(partner), 1, 'ir_actions_server: TODO') self.assertEqual(partner.city, 'OrigCity', 'ir_actions_server: TODO') @mute_logger('odoo.addons.base.models.ir_model', 'odoo.models') def test_40_multi(self): # Data: 2 server actions that will be nested action1 = self.action.create({ 'name': 'Subaction1', 'sequence': 1, 'model_id': self.res_partner_model.id, 'state': 'code', 'code': 'action = {"type": "ir.actions.act_window"}', }) action2 = self.action.create({ 'name': 'Subaction2', 'sequence': 2, 'model_id': self.res_partner_model.id, 'crud_model_id': self.res_partner_model.id, 'state': 'object_create', 'fields_lines': [(0, 0, {'col1': self.res_partner_name_field.id, 'value': 'RaoulettePoiluchette'}), (0, 0, {'col1': self.res_partner_city_field.id, 'value': 'TestingCity'})], }) action3 = self.action.create({ 'name': 'Subaction3', 'sequence': 3, 'model_id': self.res_partner_model.id, 'state': 'code', 'code': 'action = {"type": "ir.actions.act_url"}', }) self.action.write({ 'state': 'multi', 'child_ids': [(6, 0, [action1.id, action2.id, action3.id])], }) # Do: run the action res = self.action.with_context(self.context).run() # Test: new partner created # currently res_partner overrides default['name'] whatever its value partner = self.test_partner.search([('name', 'ilike', 'RaoulettePoiluchette')]) self.assertEqual(len(partner), 1) # Test: action returned self.assertEqual(res.get('type'), 'ir.actions.act_url') # Test loops with self.assertRaises(ValidationError): self.action.write({ 'child_ids': [(6, 0, [self.action.id])] }) def test_50_groups(self): """ check the action is returned only for groups dedicated to user """ Actions = self.env['ir.actions.actions'] group0 = self.env['res.groups'].create({'name': 'country group'}) self.context = { 'active_model': 'res.country', 'active_id': self.test_country.id, } # Do: update model and group self.action.write({ 'model_id': self.res_country_model.id, 'binding_model_id': self.res_country_model.id, 'groups_id': [(4, group0.id, 0)], 'code': 'record.write({"vat_label": "VatFromTest"})', }) # Test: action is not returned bindings = Actions.get_bindings('res.country') self.assertFalse(bindings) with self.assertRaises(AccessError): self.action.with_context(self.context).run() self.assertFalse(self.test_country.vat_label) # add group to the user, and test again self.env.user.write({'groups_id': [(4, group0.id)]}) bindings = Actions.get_bindings('res.country') self.assertItemsEqual(bindings.get('action'), self.action.read()) self.action.with_context(self.context).run() self.assertEqual(self.test_country.vat_label, 'VatFromTest', 'vat label should be changed to VatFromTest') def test_60_sort(self): """ check the actions sorted by sequence """ Actions = self.env['ir.actions.actions'] # Do: update model self.action.write({ 'model_id': self.res_country_model.id, 'binding_model_id': self.res_country_model.id, }) self.action2 = self.action.copy({'name': 'TestAction2', 'sequence': 1}) # Test: action returned by sequence bindings = Actions.get_bindings('res.country') self.assertEqual([vals.get('name') for vals in bindings['action']], ['TestAction2', 'TestAction']) self.assertEqual([vals.get('sequence') for vals in bindings['action']], [1, 5]) def test_70_copy_action(self): # first check that the base case (reset state) works normally r = self.env['ir.actions.todo'].create({ 'action_id': self.action.id, 'state': 'done', }) self.assertEqual(r.state, 'done') self.assertEqual( r.copy().state, 'open', "by default state should be reset by copy" ) # then check that on server action we've changed that self.assertEqual( self.action.copy().state, 'code', "copying a server action should not reset the state" ) def test_80_permission(self): self.action.write({ 'state': 'code', 'code': """record.write({'date': datetime.date.today()})""", }) user_demo = self.env.ref("base.user_demo") self_demo = self.action.with_user(user_demo.id) # can write on contact partner self.test_partner.type = "contact" self.test_partner.with_user(user_demo.id).check_access_rule("write") self_demo.with_context(self.context).run() self.assertEqual(self.test_partner.date, date.today()) # but can not write on private address self.test_partner.type = "private" with self.assertRaises(AccessError): self.test_partner.with_user(user_demo.id).check_access_rule("write") # nor execute a server action on it with self.assertRaises(AccessError), mute_logger('odoo.addons.base.models.ir_actions'): self_demo.with_context(self.context).run() class TestCustomFields(common.TransactionCase): MODEL = 'res.partner' COMODEL = 'res.users' def setUp(self): # check that the registry is properly reset registry = odoo.registry() fnames = set(registry[self.MODEL]._fields) @self.addCleanup def check_registry(): assert set(registry[self.MODEL]._fields) == fnames super(TestCustomFields, self).setUp() # use a test cursor instead of a real cursor self.registry.enter_test_mode(self.cr) self.addCleanup(self.registry.leave_test_mode) def create_field(self, name, *, field_type='char'): """ create a custom field and return it """ model = self.env['ir.model'].search([('model', '=', self.MODEL)]) field = self.env['ir.model.fields'].create({ 'model_id': model.id, 'name': name, 'field_description': name, 'ttype': field_type, }) self.assertIn(name, self.env[self.MODEL]._fields) return field def create_view(self, name): """ create a view with the given field name """ return self.env['ir.ui.view'].create({ 'name': 'yet another view', 'model': self.MODEL, 'arch': '<tree string="X"><field name="%s"/></tree>' % name, }) def test_create_custom(self): """ custom field names must be start with 'x_' """ with self.assertRaises(ValidationError): self.create_field('foo') def test_rename_custom(self): """ custom field names must be start with 'x_' """ field = self.create_field('x_foo') with self.assertRaises(ValidationError): field.name = 'foo' def test_create_valid(self): """ field names must be valid pg identifiers """ with self.assertRaises(ValidationError): self.create_field('x_foo bar') def test_rename_valid(self): """ field names must be valid pg identifiers """ field = self.create_field('x_foo') with self.assertRaises(ValidationError): field.name = 'x_foo bar' def test_create_unique(self): """ one cannot create two fields with the same name on a given model """ self.create_field('x_foo') with self.assertRaises(IntegrityError), mute_logger('odoo.sql_db'): self.create_field('x_foo') def test_rename_unique(self): """ one cannot create two fields with the same name on a given model """ field1 = self.create_field('x_foo') field2 = self.create_field('x_bar') with self.assertRaises(IntegrityError), mute_logger('odoo.sql_db'): field2.name = field1.name def test_remove_without_view(self): """ try removing a custom field that does not occur in views """ field = self.create_field('x_foo') field.unlink() def test_rename_without_view(self): """ try renaming a custom field that does not occur in views """ field = self.create_field('x_foo') field.name = 'x_bar' @mute_logger('odoo.addons.base.models.ir_ui_view') def test_remove_with_view(self): """ try removing a custom field that occurs in a view """ field = self.create_field('x_foo') self.create_view('x_foo') # try to delete the field, this should fail but not modify the registry with self.assertRaises(UserError): field.unlink() self.assertIn('x_foo', self.env[self.MODEL]._fields) @mute_logger('odoo.addons.base.models.ir_ui_view') def test_rename_with_view(self): """ try renaming a custom field that occurs in a view """ field = self.create_field('x_foo') self.create_view('x_foo') # try to delete the field, this should fail but not modify the registry with self.assertRaises(UserError): field.name = 'x_bar' self.assertIn('x_foo', self.env[self.MODEL]._fields) def test_unlink_with_inverse(self): """ create a custom o2m and then delete its m2o inverse """ model = self.env['ir.model']._get(self.MODEL) comodel = self.env['ir.model']._get(self.COMODEL) m2o_field = self.env['ir.model.fields'].create({ 'model_id': comodel.id, 'name': 'x_my_m2o', 'field_description': 'my_m2o', 'ttype': 'many2one', 'relation': self.MODEL, }) o2m_field = self.env['ir.model.fields'].create({ 'model_id': model.id, 'name': 'x_my_o2m', 'field_description': 'my_o2m', 'ttype': 'one2many', 'relation': self.COMODEL, 'relation_field': m2o_field.name, }) # normal mode: you cannot break dependencies with self.assertRaises(UserError): m2o_field.unlink() # uninstall mode: unlink dependant fields m2o_field.with_context(_force_unlink=True).unlink() self.assertFalse(o2m_field.exists()) def test_unlink_with_dependant(self): """ create a computed field, then delete its dependency """ # Also applies to compute fields comodel = self.env['ir.model'].search([('model', '=', self.COMODEL)]) field = self.create_field('x_my_char') dependant = self.env['ir.model.fields'].create({ 'model_id': comodel.id, 'name': 'x_oh_boy', 'field_description': 'x_oh_boy', 'ttype': 'char', 'related': 'partner_id.x_my_char', }) # normal mode: you cannot break dependencies with self.assertRaises(UserError): field.unlink() # uninstall mode: unlink dependant fields field.with_context(_force_unlink=True).unlink() self.assertFalse(dependant.exists()) def test_create_binary(self): """ binary custom fields should be created as attachment=True to avoid bloating the DB when creating e.g. image fields via studio """ self.create_field('x_image', field_type='binary') custom_binary = self.env[self.MODEL]._fields['x_image'] self.assertTrue(custom_binary.attachment) def test_related_field(self): """ create a custom related field, and check filled values """ # # Add a custom field equivalent to the following definition: # # class Partner(models.Model) # _inherit = 'res.partner' # x_oh_boy = fields.Char(related="country_id.code", store=True) # # pick N=100 records in comodel countries = self.env['res.country'].search([('code', '!=', False)], limit=100) self.assertEqual(len(countries), 100, "Not enough records in comodel 'res.country'") # create records in model, with N distinct values for the related field partners = self.env['res.partner'].create([ {'name': country.code, 'country_id': country.id} for country in countries ]) partners.flush() # determine how many queries it takes to create a non-computed field query_count = self.cr.sql_log_count self.env['ir.model.fields'].create({ 'model_id': self.env['ir.model']._get_id('res.partner'), 'name': 'x_oh_box', 'field_description': 'x_oh_box', 'ttype': 'char', }) query_count = self.cr.sql_log_count - query_count # create the related field, and assert it only takes 1 extra queries with self.assertQueryCount(query_count + 1): self.env['ir.model.fields'].create({ 'model_id': self.env['ir.model']._get_id('res.partner'), 'name': 'x_oh_boy', 'field_description': 'x_oh_boy', 'ttype': 'char', 'related': 'country_id.code', 'store': True, }) # check the computed values for partner in partners: self.assertEqual(partner.x_oh_boy, partner.country_id.code) def test_selection(self): """ custom selection field """ Model = self.env[self.MODEL] model = self.env['ir.model'].search([('model', '=', self.MODEL)]) field = self.env['ir.model.fields'].create({ 'model_id': model.id, 'name': 'x_sel', 'field_description': "Custom Selection", 'ttype': 'selection', 'selection_ids': [ (0, 0, {'value': 'foo', 'name': 'Foo', 'sequence': 0}), (0, 0, {'value': 'bar', 'name': 'Bar', 'sequence': 1}), ], }) x_sel = Model._fields['x_sel'] self.assertEqual(x_sel.type, 'selection') self.assertEqual(x_sel.selection, [('foo', 'Foo'), ('bar', 'Bar')]) # add selection value 'baz' field.selection_ids.create({ 'field_id': field.id, 'value': 'baz', 'name': 'Baz', 'sequence': 2, }) x_sel = Model._fields['x_sel'] self.assertEqual(x_sel.type, 'selection') self.assertEqual(x_sel.selection, [('foo', 'Foo'), ('bar', 'Bar'), ('baz', 'Baz')]) # assign values to records rec1 = Model.create({'name': 'Rec1', 'x_sel': 'foo'}) rec2 = Model.create({'name': 'Rec2', 'x_sel': 'bar'}) rec3 = Model.create({'name': 'Rec3', 'x_sel': 'baz'}) self.assertEqual(rec1.x_sel, 'foo') self.assertEqual(rec2.x_sel, 'bar') self.assertEqual(rec3.x_sel, 'baz') # remove selection value 'foo' field.selection_ids[0].unlink() x_sel = Model._fields['x_sel'] self.assertEqual(x_sel.type, 'selection') self.assertEqual(x_sel.selection, [('bar', 'Bar'), ('baz', 'Baz')]) self.assertEqual(rec1.x_sel, False) self.assertEqual(rec2.x_sel, 'bar') self.assertEqual(rec3.x_sel, 'baz') # update selection value 'bar' field.selection_ids[0].value = 'quux' x_sel = Model._fields['x_sel'] self.assertEqual(x_sel.type, 'selection') self.assertEqual(x_sel.selection, [('quux', 'Bar'), ('baz', 'Baz')]) self.assertEqual(rec1.x_sel, False) self.assertEqual(rec2.x_sel, 'quux') self.assertEqual(rec3.x_sel, 'baz')
import cv2 import time cap = cv2.VideoCapture('C:/Users/Administrator/Documents/GOMCam/parking.mp4') cap.set(3, 800) cap.set(4, 448) if not cap.read(): print("none") if cap.read(): count_2 = 0 while True: time.sleep(0.3) count_2 +=1 ret, img = cap.read() if img is None: print("image is none") else: img5 = cv2.GaussianBlur(img, (5, 5), 0) gray = cv2.cvtColor(img5, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 52, 104, apertureSize=3) image, contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) count = 0 for cnt in contours: (x, y, w, h) = cv2.boundingRect(cnt) le = max(w,h)+10 area = cv2.contourArea(cnt) # Contour Line면적 hull = cv2.convexHull(cnt) # Convex hull line hull_area = cv2.contourArea(hull) # Convex hull 면적 if hull_area > 0: solidity = int (100*(area) / hull_area) if solidity>0 and w>42 and h>42: x_1 = int (x+(w-le)/2) x_2 = int (x+(w+le)/2) y_1 = int (y+(h-le)/2) y_2 = int (y+(h+le)/2) if x_1 >300 and 290 >y_2 and 185> y_1 > 80: cv2.rectangle(img, (x_1, y_1), (x_2, y_2), (255, 0, 0), 4) img_trim = img[y_1: y_2, x_1:x_2] img_trim = cv2.resize(img_trim, (32,32)) name = "./images/" + str(solidity) +"_"+str(y_1)+"_"+str(y_2)+"_"+str(count) + "_" + str(count_2) + "_.png" cv2.imwrite(name,img_trim) count += 1 if cv2.waitKey(0) & 0xFF == ord(' '): continue cv2.imshow('img', img) if cv2.waitKey(25) & 0xFF == ord('q'): break cap.release() cv2.waitKey(0) cv2.destroyAllWindows() else: print("fail")