content
stringlengths
5
1.05M
from __future__ import print_function, division import traceback __author__ = 'panzer' class RuntimeException(Exception): def __init__(self, message): super(RuntimeException, self).__init__(message) self.name = RuntimeException.__name__ @staticmethod def print_trace(): traceback.print_exc()
from ..remote import RemoteModel from infoblox_netmri.utils.utils import check_api_availability class DeviceZoneRemote(RemoteModel): """ Zones defined on a traffic filtering device. On devices that do not natively support zones (e.g., Cisco routers), there is one zone per interface, plus an additional 'internal' zone. | ``DeviceZoneID:`` The internal NetMRI identifier for this filtering zone. | ``attribute type:`` number | ``DeviceID:`` The internal NetMRI identifier for the device to which this zone belongs. | ``attribute type:`` number | ``DataSourceID:`` The internal NetMRI identifier for the collector NetMRI that collected this data record. | ``attribute type:`` number | ``ZoneFirstSeenTime:`` The timestamp of when NetMRI first discovered this service. | ``attribute type:`` datetime | ``ZoneStartTime:`` The starting effective time of this record. | ``attribute type:`` datetime | ``ZoneEndTime:`` The ending effective time of this record, or empty if still in effect. | ``attribute type:`` datetime | ``ZoneTimestamp:`` The date and time this record was collected or calculated. | ``attribute type:`` datetime | ``ZoneChangedCols:`` The fields that changed between this revision of the record and the previous revision. | ``attribute type:`` string | ``ZoneName:`` The name of the zone. | ``attribute type:`` string | ``ZoneProvisionData:`` Internal data - do not modify, may change without warning. | ``attribute type:`` string | ``ZoneInterfaceCount:`` The total number of interfaces connected to this zone. | ``attribute type:`` number | ``ZoneInterfaceID:`` The internal NetMRI identifier of that interface, if only one interface connected to this zone. | ``attribute type:`` number | ``ZoneArtificialInd:`` A flag indicating that this zone has no counterpart in the device configuration. | ``attribute type:`` bool """ properties = ("DeviceZoneID", "DeviceID", "DataSourceID", "ZoneFirstSeenTime", "ZoneStartTime", "ZoneEndTime", "ZoneTimestamp", "ZoneChangedCols", "ZoneName", "ZoneProvisionData", "ZoneInterfaceCount", "ZoneInterfaceID", "ZoneArtificialInd", ) @property @check_api_availability def data_source(self): """ The collector NetMRI that collected this data record. ``attribute type:`` model """ return self.broker.data_source(**{"DeviceZoneID": self.DeviceZoneID }) @property @check_api_availability def zone_interface(self): """ The Interface linked to this zone (if only one interface linked to this zone) ``attribute type:`` model """ return self.broker.zone_interface(**{"DeviceZoneID": self.DeviceZoneID }) @property @check_api_availability def device(self): """ The device from which this data was collected. ``attribute type:`` model """ return self.broker.device(**{"DeviceZoneID": self.DeviceZoneID })
if __name__ == '__main__': import sys import pydart2 as pydart if len(sys.argv) != 2: print("Usage: view_skeleton.py [*.urdf/*.sdf]") exit(0) skel_path = sys.argv[1] print("skeleton path = %s" % skel_path) pydart.init() print("Pydart init OK") world = pydart.World(0.0005) print("World init OK") skel = world.add_skeleton(skel_path) print("Skeleton add OK") print("Camera:") print(" drag: rotate camera") print(" shift-drag: zoom camera") print(" control-drag: translate camera") pydart.gui.viewer.launch(world)
#!/usr/bin/env python3 import numpy as np import scipy.io as sio import sklearn.feature_extraction from pathlib import Path import argparse parser = argparse.ArgumentParser(description='Sample patches from figures') parser.add_argument('--experimentName', default="naturalImages", help='the folder name to use for the data') args = parser.parse_args() experiment_name = args.experimentName # The nature paper begins with ten 512x512 images # from which 16x16 pixel image patches should be sampled large_images = sio.loadmat("%s/IMAGES.mat" % experiment_name)['IMAGES'] # turns out those images are not in the scale from 0 to 1, so scale # them accordingly first minValue = np.min(large_images) maxValue = np.max(large_images) newmin = 0.0 newmax = 1.0 large_images = (large_images-minValue) / (maxValue - minValue) * (newmax - newmin) + newmin def sample_patches(large_images, num_patches_per_image = 10000): num_images = large_images.shape[-1] num_patches = num_patches_per_image * num_images patches = np.zeros((num_patches, 1, 16, 16)) for i in range(num_images): patches[(i * num_patches_per_image):((i+1) * num_patches_per_image),0,:,:] = sklearn.feature_extraction.image.extract_patches_2d(large_images[:,:,i], (16,16), max_patches = num_patches_per_image) return patches train_patches = sample_patches(large_images) test_patches = sample_patches(large_images, num_patches_per_image = 1000) save_folder = "%s" % experiment_name Path(save_folder + "/train").mkdir(parents=True, exist_ok=True) np.savez_compressed(save_folder + "/train/data.npz", images=train_patches) Path(save_folder + "/test").mkdir(parents=True, exist_ok=True) np.savez_compressed(save_folder + "/test/data.npz", images=test_patches)
import uuid as uuid from django.db import models class News(models.Model): """ News item contains the necessary information to read out the news. """ # External ID, might be textual or number. external_id = models.CharField(max_length=128) uuid = models.UUIDField(default=uuid.uuid4) # Main title for the news title = models.CharField(max_length=256, default="") # Body/content of the news content = models.TextField(default="") # Url to an audio file that contains the news audio_url = models.URLField(default="", blank=True) # Timestamps created = models.DateTimeField() modified = models.DateTimeField(auto_now=True) def __str__(self): return "{} ({})".format(self.external_id, self.created)
__author__ = "Chris Brannon <chris@the-brannons.com>" __copyright__ = "See the file LICENSE for copyright and license info" __license__ = "See the file LICENSE for copyright and license info" __version__ = "0.3" __email__ = "chris@the-brannons.com"
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- from collections import defaultdict as dd import argparse import gzip import util import sys import os import logging import shutil import struct import subprocess import tempfile import bz2file def compress(source, target, reference, nointra, delta, inner, pagesize=4096): # some info logging.debug("Starting compression of %s to %s", repr(source), repr(target)) logging.debug("Page size: %d", pagesize) logging.debug("Reference dump: %s", reference) # pages + page numbers bookkeeping reference_pages, reference_pagenrs = [], {} for i, page in enumerate(util.get_pages(reference)): reference_pages.append(page) if page not in reference_pagenrs: reference_pagenrs[page] = i reference_pages_set = set(reference_pages) # find new + duplicatable pages dedups = dd(list) diffs = dd() diff_seen = set() if nointra: new_pagenrs = [] else: new_pagenrs = dd(list) new_pages = [] same_distinct, same_total = set(), 0 source_pages = [] for i, page in enumerate(util.get_pages(source)): source_pages.append(page) if reference_pages[i] != page: if page not in reference_pages_set: if delta is not None: d = util.create_diff(reference_pages[i], page) if d is not None: diff_seen.add(page) diffs[i] = d continue if nointra: new_pagenrs.append(i) else: new_pagenrs[page].append(i) new_pages.append(page) else: dedups[page].append(i) else: same_total += 1 same_distinct.add(page) source_pages_set = set(source_pages) newpagescnt = len(new_pages), len(set(new_pages)) # intervalize if nointra: new_pagenrs = util.intervalize(new_pagenrs) else: new_pagenrs = {page: util.intervalize(new_pagenrs[page]) for page in new_pagenrs} dedups = {page: util.intervalize(dedups[page]) for page in dedups} # write file util.create_dir(".tmp") tmphandle, tmpfile = tempfile.mkstemp(dir=".tmp") try: with open(tmpfile, "wb") as ftmp: ftmp.write(reference + "\x00") inorder = [] seen = set() for page in reference_pages: if page in dedups and page not in seen: inorder.append(page) seen.add(page) util.create_pagenr_list([reference_pagenrs[page] for page in inorder], ftmp) for page in inorder: ftmp.write(util.create_interval_list(dedups[page])) if delta is not None: util.create_pagenr_list(sorted(diffs), ftmp) for pagenr in sorted(diffs): ftmp.write(diffs[pagenr]) if nointra: ftmp.write(util.create_interval_list(new_pagenrs)) for page in new_pages: ftmp.write(page) else: ftmp.write(struct.pack("<I", len(new_pagenrs))) for page in new_pagenrs: ftmp.write(util.create_interval_list(new_pagenrs[page])) for page in new_pagenrs: ftmp.write(page) with open(tmpfile, "rb") as ftmp, open(target, "wb") as ftarget: ftarget.write(util.create_header(create_method_name(nointra, delta, inner), os.path.getsize(source))) ftarget.flush() if inner is None: shutil.copyfileobj(ftmp, ftarget) elif inner == "gzip": with gzip.GzipFile(fileobj=ftarget, mode="wb", compresslevel=9) as ftarget: shutil.copyfileobj(ftmp, ftarget) elif inner == "bzip2": with bz2file.BZ2File(filename=ftarget, mode="wb", compresslevel=9) as ftarget: shutil.copyfileobj(ftmp, ftarget) elif inner == "7zip": p = subprocess.Popen(["7za", "a", "-an", "-txz", "-mx=9", "-si", "-so", source], stdin=ftmp, stdout=ftarget, stderr=subprocess.PIPE) p.communicate() finally: os.close(tmphandle) os.remove(tmpfile) # some info dedup_distinct = len(set(dedups.keys()) | same_distinct) dedup_total = same_total + sum(b - a + 1 for l in dedups.values() for a, b in l) logging.debug("Deduplicated pages at the same offset: %d/%d (%d/%d)", same_total, len(source_pages), len(same_distinct), len(source_pages_set)) logging.debug("Deduplicated pages at different offsets: %d/%d (%d/%d)", dedup_total - same_total, len(source_pages), len(dedups), len(source_pages_set)) logging.debug("Deduplicated pages in total: %d/%d (%d/%d)", dedup_total, len(source_pages), dedup_distinct, len(source_pages_set)) if delta is not None: logging.debug("Diffed pages: %d/%d (%d/%d)", len(diffs), len(source_pages), len(diff_seen), len(source_pages_set)) logging.debug("New pages: %d/%d (%d/%d)", newpagescnt[0], len(source_pages), newpagescnt[1], len(source_pages_set)) logging.debug("Done") return 0 def decompress(source, target): # some info logging.debug("Starting decompression of %s to %s", repr(source), repr(target)) with open(source, "rb") as fsource: # some info logging.debug("Parsing header") magic, method, majorversion, minorversion, pagesize, uncompressed_size = util.parse_header(fsource) logging.debug(" Magic number: %s", repr(magic)) logging.debug(" Method: %s", repr(method)) logging.debug(" Major version number: %d", majorversion) logging.debug(" Minor version number: %d", minorversion) logging.debug(" Page size: %d", pagesize) logging.debug(" Uncompressed size: %d", uncompressed_size) nointra, delta, inner = parse_method_name(method) fsource.flush() tmphandle, tmpfile = None, None if inner == "gzip": fsource = gzip.GzipFile(fileobj=fsource, mode="rb", compresslevel=9) elif inner == "bzip2": fsource = bz2file.BZ2File(filename=fsource, mode="rb", compresslevel=9) elif inner == "7zip": util.create_dir(".tmp") tmphandle, tmpfile = tempfile.mkstemp(dir=".tmp") with open(tmpfile, "wb") as ftmp: p = subprocess.Popen(["7za", "x", "-txz", "-si", "-so"], stdin=fsource, stdout=ftmp, stderr=subprocess.PIPE) p.communicate() fsource = open(tmpfile, "rb") try: reference = util.parse_string(fsource) logging.debug("Reference dump: %s", reference) # parse deduplicated pages fills = {} reference_list = list(util.parse_pagenr_list(fsource)) for i in xrange(len(reference_list)): for left, right in util.parse_interval_list(fsource): for pagenr in xrange(left, right+1): fills[pagenr] = reference_list[i] # parse diffs if delta: diffs = {} pagenrs = list(util.parse_pagenr_list(fsource)) for i in xrange(len(pagenrs)): diffs[pagenrs[i]] = util.parse_diff(fsource, pagesize) # parse new pages newpages = {} newdistinct = set() if nointra: for left, right in list(util.parse_interval_list(fsource)): for j in xrange(left, right + 1): page = fsource.read(pagesize) newdistinct.add(page) newpages[j] = page else: newcnt = util.parse_int(fsource, 4) intervals = [] for _ in xrange(newcnt): intervals.append(list(util.parse_interval_list(fsource))) for i in xrange(newcnt): page = fsource.read(pagesize) for left, right in intervals[i]: for j in xrange(left, right + 1): newdistinct.add(page) newpages[j] = page finally: if tmphandle is not None: os.close(tmphandle) os.remove(tmpfile) if inner is not None: fsource.close() # reconstruct file pagenr = 0 final = uncompressed_size / pagesize same_distinct, same_total = set(), 0 different_distinct, different_total = set(), 0 seen = set() diff_seen = set() with open(reference, "rb") as freference: with open(target, "wb") as ftarget: while pagenr < final: if pagenr in fills: freference.seek(pagesize * fills[pagenr]) page = freference.read(pagesize) seen.add(page) different_distinct.add(page) different_total += 1 ftarget.write(page) elif delta and pagenr in diffs: freference.seek(pagenr * pagesize) page = freference.read(pagesize) newpage = util.apply_diff(page, diffs[pagenr]) diff_seen.add(newpage) ftarget.write(newpage) elif pagenr in newpages: seen.add(newpages[pagenr]) ftarget.write(newpages[pagenr]) else: freference.seek(pagesize * pagenr) page = freference.read(pagesize) seen.add(page) same_distinct.add(page) same_total += 1 ftarget.write(page) pagenr += 1 # some info logging.debug("New pages: %d/%d (%d/%d)", len(newpages), final, len(newdistinct), len(seen)) logging.debug("Deduplicated pages at the same offset: %d/%d (%d/%d)", same_total, final, len(same_distinct), len(seen)) logging.debug("Deduplicated pages at different offsets: %d/%d (%d/%d)", len(fills), final, len(different_distinct), len(seen)) logging.debug("Deduplicated pages in total: %d/%d (%d/%d)", same_total + len(fills), final, len(same_distinct | different_distinct), len(seen)) if delta: logging.debug("Diffed pages: %d/%d (%d/%d)", len(diffs), final, len(diff_seen), len(seen)) logging.debug("Done") return 0 def create_method_name(nointra, delta, inner): nointra = "nointra" if nointra else "" delta = "delta" if delta is not None else "" inner = inner if inner is not None else "" return "interdedup{}{}{}".format(nointra, delta, inner) def parse_method_name(s): assert s.startswith("interdedup") s = s[len("interdedup"):] delta = False nointra = False if s.startswith("nointra"): nointra = True s = s[len("nointra"):] delta = False if "delta" in s: delta = True s = s[s.index("delta") + len("delta"):] inner = s if len(s) > 1 else None return nointra, delta, inner def main(): # cli args checking parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(dest="action") parser_c = subparsers.add_parser("c") parser_c.add_argument("source", type=str) parser_c.add_argument("target", type=str) parser_c.add_argument("reference", type=str) parser_c.add_argument("--inner", type=str) parser_c.add_argument("--delta", type=str) parser_c.add_argument("--nointra", action="store_true") parser_d = subparsers.add_parser("d") parser_d.add_argument("source", type=str) parser_d.add_argument("target", type=str) args = parser.parse_args() # create method name if args.action == "c": method = create_method_name(args.nointra, args.delta, args.inner) elif args.action == "d": with open(args.source, "rb") as f: method = util.parse_header(f)[1] # set up logging util.create_dir("logs") util.configure_logging(method, "logs/{}.log".format(method)) # check if files do (not) exist if not os.path.isfile(args.source): logging.error("Source %s does not exist", repr(args.source)) return -1 if os.path.isfile(args.target) and os.path.getsize(args.target) > 0: logging.error("Target %s already exists and is non-empty", repr(args.target)) return -1 if args.action == "c" and not os.path.isfile(args.reference): logging.error("Reference %s does not exist", repr(args.reference)) return -1 # compress/decompress if args.action == "c": return compress(args.source, args.target, args.reference, args.nointra, args.delta, args.inner) elif args.action == "d": return decompress(args.source, args.target) if __name__ == "__main__": sys.exit(main())
# Copyright (c) 2021 Graphcore Ltd. All rights reserved. # Written by Ross Girshick """This file contain the utils class that can improve programming efficiency on IPU by popart. """ import builtins import string import numpy as np import popart from _globals import GLOBAL_V, set_batch, get_batch_size, get_anchor_return_type, train_mode_on, train_mode, safe_mode, safe_mode_on, safe_mode_off, get_builder, set_builder, set_seed, get_seed, set_options, get_options, set_device, get_device_type, get_ai_onnx_version, set_memory_proportion, get_memory_proportion, enable_global_initializer, get_global_initializer, get_exclude_weights, set_exclude_weights, get_all_trainable_weights, load_model, set_load_strict, load_strict, set_weight_fp16, get_weight_fp16, get_all_tensors_info CONSTANT_COUNTER = [0] TENSOR_NAMES = [] def unified_op_warpper(func): def warpper_func(*args, **kwargs): results = func(*args, **kwargs) return results return warpper_func def name_scope(scope_name): return get_builder().nameScope(scope_name) def add_input_tensor(dtype, shape, debugContext=''): input_t = get_builder().addInputTensor(popart.TensorInfo(dtype, shape), debugContext=debugContext) return TTensor(input_t) def identity(input, debugContext=''): return TTensor(get_builder().aiOnnx.identity([input.getIpuIndex()], debugContext=debugContext)) def pad(data, pads, mode='constant', constant_value=0, debugContext=''): constant_value = constant(constant_value).cast(data.dtype.upper()) pads = to_tensor(pads).cast('INT64').flatten() result = get_builder().aiOnnx.pad( [data.getIpuIndex(), pads.getIpuIndex(), constant_value.getIpuIndex()], mode=mode, debugContext=debugContext) return TTensor(result) def _conv2d(input, filter, bias=False, strides=[1, 1], pads=[1, 1, 1, 1], dilations=[1, 1], group=1, debugContext=''): """Encapsulation of function get_builder().aiOnnx.conv! args: x: input tensor ksize: int,kernel size stride: int,stride of conv pads: int, conv padding c_out: int, output channel group: int, conv group nums,default:1 """ args = [input.getIpuIndex(), filter.getIpuIndex()] if bias: args.append(bias.getIpuIndex()) output = get_builder().aiOnnx.conv(args, strides=strides, pads=pads, dilations=dilations, group=group, debugContext=debugContext) if get_memory_proportion() is not None: get_builder().setAvailableMemoryProportion(output, get_memory_proportion()) return TTensor(output) def relu(x, debugContext=""): """ args: x: input tensor """ if isinstance(x, list): x = [ele.getIpuIndex() for ele in x] else: x = [x.getIpuIndex()] x = get_builder().aiOnnx.relu(x, debugContext=debugContext) return TTensor(x) def maxPooling(x, strides=[2, 2], kernel_size=[2, 2], padding=[0, 0, 0, 0], dilations=[1, 1], ceil_mode=0, debugContext=""): """ args: x: strides: maxpool stride(output_size=input_size/strides) kernel_size: window's size that used to find max value """ x = get_builder().aiOnnx.maxpool(args=[x.getIpuIndex()], num_outputs=1, kernel_shape=kernel_size, pads=padding, strides=strides, dilations=dilations, ceil_mode=ceil_mode, debugContext=debugContext) return TTensor(x[0]) def avgPooling(x, strides=2, kernel_size=2, padding=0, count_include_pad=0, debugContext=""): x = get_builder().aiOnnx.averagepool( [x.getIpuIndex()], kernel_shape=[kernel_size, kernel_size], count_include_pad=count_include_pad, pads=[padding] * 4, strides=[strides, strides], debugContext=debugContext) return TTensor(x) def check_all_constant(tensors): for t in tensors: if isinstance(t, ConstantTensor) is False: return False return True def resize(x, roi=None, scales=None, sizes=None, coordinate_transformation_mode='half_pixel', cubic_coeff_a=-0.75, exclude_outside=0, extrapolation_value=0.0, mode='nearest', nearest_mode='round_prefer_floor', debugContext=''): # TODO Check whether each parameter is correct # x:N-D tensor # roi: 1-D tensor given as [start1, ..., startN, end1, ..., endN], where N is the rank of X # scales: tensor(float),The scale array along each dimension. # sizes: tensor(int64),The size of the output tensor. # Only one of 'scales' and 'sizes' can be specified. assert None in [scales, sizes] and set([scales, sizes]) == 2 if roi is None: assert coordinate_transformation_mode == 'tf_crop_and_resize' else: raise not NotImplementedError roi = constant( np.array([0, -1] * x.shape.ndims).astype( mappin_gc2npy[x.dtype])) if roi is None else roi scales = constant(np.array( [1.0] * x.shape.ndims).astype('FLOAT32')) if scales is None else scales sizes = constant(np.array( [1] * x.shape.ndims).astype('INT64')) if sizes is None else sizes inputs_list = [ x.getIpuIndex(), roi.getIpuIndex(), scales.getIpuIndex(), sizes.getIpuIndex() ] inputs_dic = { 'coordinate_transformation_mode': coordinate_transformation_mode, 'cubic_coeff_a': cubic_coeff_a, 'exclude_outside': exclude_outside, 'extrapolation_value': extrapolation_value, 'mode': mode, 'nearest_mode': nearest_mode, 'debugContext': debugContext } result = TTensor(get_builder().aiOnnx.resize(inputs_list, **inputs_dic)) return result def matmul(x, y, debugContext=""): if check_all_constant([x, y]): # degrade to np op result = np.matmul(x.data, y.data) return constant(result) else: assert x.dtype in ['FLOAT', "FLOAT16"] assert y.dtype in ['FLOAT', "FLOAT16"] return TTensor(get_builder().aiOnnx.matmul( [x.getIpuIndex(), y.getIpuIndex()], debugContext=debugContext)) def scalarTensor2int(t): if isinstance(t, ConstantTensor): return int(t.data) assert isinstance(t, int) return t def reshape(source, target_shape, debugContext=""): """ args: source : tensor name target_shape: list of int e.g.: [3,4,5,6] """ if isinstance(target_shape, TTensor): target_shape = target_shape.data if isinstance(target_shape, np.ndarray): target_shape = target_shape.tolist() if isinstance(target_shape, list): target_shape = [scalarTensor2int(ele) for ele in target_shape] target_shape = constant(np.array(target_shape).astype(np.int64), debugContext=debugContext) if check_all_constant([source, target_shape]): # degrade to np op result = source.data.reshape(target_shape.data) result = constant(result) return result else: return TTensor(get_builder().aiOnnx.reshape( [source.getIpuIndex(), target_shape.getIpuIndex()], debugContext=debugContext)) def softmax_2d(x, axis=1, debugContext=""): assert axis in [-1, 1] assert x.shape.ndims == 2 x = get_builder().aiOnnx.softmax( [x.getIpuIndex()], axis=axis, debugContext=debugContext) return TTensor(x) def _batchNorm( x, scale, biases, mean, var, num_outputs=1, momentum=0.9, epsilon=1e-5, debugContext="", ): results = get_builder().aiOnnx.batchnormalization( [ x.getIpuIndex(), scale.getIpuIndex(), biases.getIpuIndex(), mean.getIpuIndex(), var.getIpuIndex() ], num_outputs=num_outputs, epsilon=epsilon, momentum=momentum, debugContext=debugContext) results = results[0] if num_outputs == 1 else results if isinstance(results, list): results = [TTensor(r) for r in results] else: results = [TTensor(results)] return results def _concat(tensor_list, dim, debugContext=""): if check_all_constant(tensor_list): # degrade to np op np_arr_list = [t.data for t in tensor_list] result = np.concatenate(np_arr_list, axis=dim) return constant(result) return TTensor(get_builder().aiOnnx.concat( [tensor.getIpuIndex() for tensor in tensor_list], dim, debugContext=debugContext)) def sqrt(x, debugContext=""): result = get_builder().aiOnnx.sqrt([x.getIpuIndex()], debugContext=debugContext) return TTensor(result) def sigmoid(tensor, debugContext=""): return TTensor(get_builder().aiOnnx.sigmoid([tensor.getIpuIndex()], debugContext=debugContext)) def transpose(x, dim_order, debugContext=""): """dim_order: list of int. eg:[0,2,3,1]""" if check_all_constant([x]): # degrade to np op result = np.transpose(x.data, dim_order) return constant(result) return TTensor(get_builder().aiOnnx.transpose([x.getIpuIndex()], dim_order, debugContext=debugContext)) def mean(x, debugContext=""): return TTensor(get_builder().aiOnnx.mean(x.getIpuIndex(), debugContext=debugContext)) def gc_slice(x, axes, starts, ends, debugContext=""): if check_all_constant([x, axes, starts, ends]): # degrade to np op x = x.data x_slices = [] for start, end in zip(starts.data.tolist(), ends.data.tolist()): x_slices.append(slice(start, end)) return constant(x[x_slices]) else: x = get_builder().aiOnnx.slice([ x.getIpuIndex(), starts.getIpuIndex(), ends.getIpuIndex(), axes.getIpuIndex() ], debugContext=debugContext) return TTensor(x) def topk(x, k, sorted=True, dim=-1, debugContext=""): """ args: k: the count of return dim: in which dim to sort and clip """ if k.shape.ndims == 0: k = k.unsqueeze(0) else: assert k.shape.ndims == 1 values, order = get_builder().aiOnnx.topk( [x.getIpuIndex(), k.getIpuIndex()], axis=dim, sorted=sorted, debugContext=debugContext) return TTensor(values), TTensor(order) def constant(x, debugContext=''): if np.isscalar(x): return ConstantScalar(None, x) assert isinstance(x, np.ndarray) return ConstantTensor(None, x) def shapeConstant(x, debugContext=''): if np.isscalar(x): x = np.array(x) assert isinstance(x, np.ndarray) return ShapeTensor(None, x) def gather(x, indices, dim=0, debugContext=""): x = get_builder().aiOnnx.gather( [x.getIpuIndex(), indices.getIpuIndex()], axis=dim, debugContext=debugContext) return TTensor(x) def addInitializedInputTensor(array, debugContext=""): """ args: array: an numpy array that will be copy to IPU return: str: tensor name """ name = get_builder().addInitializedInputTensor(array, debugContext=debugContext) return TTensor(name) def unsqueeze(x, dims, debugContext=""): """ args: dim: list of int of which dim will delete eg:[3] or [1,3] """ if check_all_constant([x]): # degrade to np op result = np.expand_dims(x.data, axis=dims) return constant(result) x = get_builder().aiOnnx.unsqueeze([x.getIpuIndex()], axes=dims, debugContext=debugContext) return TTensor(x) def ceil(x, debugContext=""): result = get_builder().aiOnnx.ceil([x.getIpuIndex()], debugContext=debugContext) return TTensor(result) def squeeze(x, dims, debugContext=""): if check_all_constant([x]): # degrade to np op x = x.data current_dim = float('inf') for dim in reversed(dims): assert current_dim > dim current_dim = dim x = x.squeeze(dim) return constant(x) if isinstance(dims, int): dims = [dims] for dim in dims: assert x.pureShape[dim] == 1 x = get_builder().aiOnnx.squeeze([x.getIpuIndex()], axes=dims, debugContext=debugContext) return TTensor(x) def exp(x, debugContext=""): return TTensor(get_builder().aiOnnx.exp([x.getIpuIndex()], debugContext=debugContext)) def printTensor(t): get_builder().aiGraphcore.printtensor([t.getIpuIndex()], print_gradient=0) def mul(tensors, debugContext=""): if check_all_constant(tensors): # degrade to np op result = 1 for t in tensors: result = t.data * result return constant(result, debugContext=debugContext) return TTensor(get_builder().aiOnnx.mul([t.getIpuIndex() for t in tensors], debugContext=debugContext)) def add(tensors, debugContext=""): if check_all_constant(tensors): # degrade to np op result = 0 for t in tensors: result = result + t.data return constant(result, debugContext=debugContext) return TTensor(get_builder().aiOnnx.add([t.getIpuIndex() for t in tensors], debugContext=debugContext)) def div(tensors, debugContext=""): assert len(tensors) == 2 if check_all_constant(tensors): # degrade to np op result = tensors[0].data / tensors[1].data return constant(result, debugContext=debugContext) return TTensor(get_builder().aiOnnx.div([t.getIpuIndex() for t in tensors], debugContext=debugContext)) def sub(tensors, debugContext=""): assert len(tensors) == 2 if check_all_constant(tensors): # degrade to np op result = tensors[0].data - tensors[1].data return constant(result, debugContext=debugContext) return TTensor(get_builder().aiOnnx.sub([t.getIpuIndex() for t in tensors], debugContext=debugContext)) def max(tensor_list, debugContext=""): if check_all_constant(tensor_list): # degrade to np op arr_list = [t.data for t in tensor_list] result = np.max(arr_list) return constant(result) return TTensor(get_builder().aiOnnx.max( [t.getIpuIndex() for t in tensor_list], debugContext=debugContext)) def min(tensor_list, debugContext=""): if check_all_constant(tensor_list): # degrade to np op arr_list = [t.data for t in tensor_list] result = np.min(arr_list) return constant(result) return TTensor(get_builder().aiOnnx.min( [t.getIpuIndex() for t in tensor_list], debugContext=debugContext)) def split(x, lenOfSplit, dim, debugContext=""): """ args: lenOfSplit: (4,1) split into two piece,one's length is 4 , the other is 1 """ return TTensor(get_builder().aiOnnx.split([x.getIpuIndex()], len(lenOfSplit), dim, lenOfSplit, debugContext=debugContext)) def clip(x, minmun=-np.inf, maxmun=np.inf, debugContext=""): if get_ai_onnx_version() >= 11: minmun = constant(np.asarray(minmun).astype(np.float32)) maxmun = constant(np.asarray(maxmun).astype(np.float32)) return TTensor(get_builder().aiOnnx.clip( [x.getIpuIndex(), minmun.getIpuIndex(), maxmun.getIpuIndex()], debugContext=debugContext)) else: return TTensor(get_builder().aiOnnx.clip([x.getIpuIndex()], maxmun.getIpuIndex(), minmun.getIpuIndex(), debugContext=debugContext)) def reduceprod(x, dim, keepdims=False, debugContext=""): """ args: dim: int .which dim to do prod """ x = get_builder().aiOnnx.reduceprod([x.getIpuIndex()], axes=[dim], keepdims=keepdims, debugContext=debugContext) return TTensor(x) def cast(x, target_type='FLOAT', debugContext=''): """ target_type: FLOAT|FLOAT16|INT8|INT16|INT32|UINT8|UINT16|UINT32|BOOL """ target_type = 'FLOAT' if target_type == 'FLOAT32' else target_type if check_all_constant([x]): # degrade to np op data = x.data.astype(mappin_gc2npy[target_type]) return constant(data) else: return TTensor(get_builder().aiOnnx.cast([x.getIpuIndex()], target_type.upper(), debugContext)) def log(x, debugContext=''): return TTensor(get_builder().aiOnnx.log([x.getIpuIndex()], debugContext)) def less(x, y, debugContext=''): x, y = align_tensor([x, y]) return TTensor(get_builder().aiOnnx.less( [x.getIpuIndex(), y.getIpuIndex()], debugContext)) def abs(x, debugContext=''): return TTensor(get_builder().aiOnnx.abs([x.getIpuIndex()], debugContext)) def argmax(x, axis=0, keepdims=0, debugContext=''): return TTensor(get_builder().aiOnnx.argmax([x.getIpuIndex()], axis, keepdims, debugContext)) def reducemax(x, axes=0, keepdims=0, debugContext=''): if isinstance(axes, int): axes = [axes] assert isinstance(axes, list) or axes is None return TTensor(get_builder().aiOnnx.reducemax([x.getIpuIndex()], axes, keepdims, debugContext)) def reducemin(x, axes=0, keepdims=0, debugContext=''): if isinstance(axes, int): axes = [axes] assert isinstance(axes, list) or axes is None return TTensor(get_builder().aiOnnx.reducemin([x.getIpuIndex()], axes, keepdims, debugContext)) def reduceMean(x, axes, keepdims=False, debugContext=''): if isinstance(axes, int): axes = [axes] assert isinstance(axes, list) or axes is None return TTensor(get_builder().aiOnnx.reducemean([x.getIpuIndex()], axes=axes, keepdims=keepdims, debugContext=debugContext)) def greater(x, y, debugContext=''): x, y = align_tensor([x, y]) return TTensor(get_builder().aiOnnx.greater( [x.getIpuIndex(), y.getIpuIndex()], debugContext)) def equal(x, y, debugContext=''): x, y = align_tensor([x, y]) return TTensor(get_builder().aiOnnx.equal( [x.getIpuIndex(), y.getIpuIndex()], debugContext)) def logical_and(x, y, debugContext=''): return TTensor(get_builder().aiOnnx.logical_and( [x.getIpuIndex(), y.getIpuIndex()], debugContext)) def logical_not(x, debugContext=''): return TTensor(get_builder().aiOnnx.logical_not([x.getIpuIndex()], debugContext)) def logical_or(x, y, debugContext=''): return TTensor(get_builder().aiOnnx.logical_or( [x.getIpuIndex(), y.getIpuIndex()], debugContext)) def reduceSum(x, axes=None, keepdims=0, debugContext=''): if isinstance(axes, int): axes = [axes] assert isinstance(axes, list) or axes is None return TTensor(get_builder().aiOnnx.reducesum([x.getIpuIndex()], axes, keepdims, debugContext)) def cumsum(x, axes, exclusive=0, reverse=0, debugContext=''): if x.dtype == 'FLOAT16': raise NotImplementedError('not support fp16') return TTensor(get_builder().aiOnnx.cumsum( [x.getIpuIndex(), axes.getIpuIndex()], exclusive, reverse, debugContext)) def expand(x, shape, debugContext=''): return TTensor(get_builder().aiOnnx.expand( [x.getIpuIndex(), shape.getIpuIndex()], debugContext=debugContext)) def randomuniformlike(x, high=6.0, low=-6.0): result = get_builder().aiOnnx.randomuniformlike([x.getIpuIndex()], high=high, low=low) return TTensor(result) def flatten(x): '''implements the np.flatten function ''' if check_all_constant([x]): x = x.data.flatten() return constant(x) x = get_builder().aiOnnx.flatten([x.getIpuIndex()], 0) return TTensor(x).squeeze(0) def oneslike(t, dtype=None, debugContext=''): dtype = t.dtype if dtype is None else dtype dshape = t.pureShape assert 0 not in dshape return ones(dshape, dtype, debugContext=debugContext) def ones(shape, dtype='FLOAT', debugContext=''): return constant(np.ones(shape, dtype=mappin_gc2npy[dtype]), debugContext=debugContext) def zeroslike(t, dtype=None, debugContext=''): dtype = t.dtype if dtype is None else dtype dshape = t.pureShape assert 0 not in dshape return zeros(dshape, dtype, debugContext=debugContext) def zeros(shape, dtype='FLOAT', debugContext=''): return constant(np.zeros(shape, dtype=mappin_gc2npy[dtype]), debugContext=debugContext) def where(condition, x, y, debugContext=''): return TTensor(get_builder().aiOnnx.where( [condition.getIpuIndex(), x.getIpuIndex(), y.getIpuIndex()])) def detach(x): return TTensor(get_builder().aiGraphcore.detach([x.getIpuIndex()])) def one_hot(indices, depth, values=None, debugContext=''): ''' values: [off_value, on_value] if indice is -1, the corrosponding arr is [0]*depth ''' if isinstance(depth, int): depth = to_tensor(depth, dtype='INT64') if values is None: values = constant(np.asarray([0, 1]).astype(np.int32), debugContext=debugContext) assert indices.dtype in [ 'INT32', 'INT64', 'INT16', 'UINT32', 'UINT64', 'UINT16' ] assert depth.dtype in [ 'INT32', 'INT64', 'INT16', 'UINT32', 'UINT64', 'UINT16' ] assert values.dtype in [ 'INT32', 'INT64', 'INT16', 'UINT32', 'UINT64', 'UINT16' ] result = get_builder().aiOnnx.onehot( [indices.getIpuIndex(), depth.getIpuIndex(), values.getIpuIndex()], debugContext=debugContext) result = TTensor(result) result_shape = list(result.pureShape) if result_shape[1] == 0: result_shape[1] = depth result = result.reshape(result_shape) return result def tile(input, repeats, debugContext=""): if check_all_constant([input, repeats]): result = np.tile(input.data, repeats.data) return constant(result) result = get_builder().aiOnnx.tile( [input.getIpuIndex(), repeats.getIpuIndex()], debugContext) return TTensor(result) def checkTensorsTypeSame(tensors_list): types = [t.dtype for t in tensors_list] if len(set(types)) == 2: assert 'int32' in types and 'int64' in types, 'only int32 and int64 seem as same type' else: assert len(set(types)) == 1, 'types should be same' def np64to32_or_16(np_arr): # temp ussage while IPU not support with 64bit data local_mappin = { 'int64': np.int32, 'uint64': np.uint32, 'float64': np.float16 } if np_arr.dtype.name in list(local_mappin.keys()): np_arr = np_arr.astype(local_mappin[np_arr.dtype.name]) return np_arr def to_tensor(x, dtype=None): # return ConstantTensor if x type is int,float,ndarray,list, or ConstantTensor # return TTensor if x type is TTensor if np.isscalar(x) or isinstance(x, list): # if type(x) in [int,float,list]: x = np.array( x ) # python basic type int and float should be converted to np.float32 and np.int32 x = np64to32_or_16(x) if dtype is not None: x = x.astype(mappin_gc2npy[dtype]) x = constant(x) elif type(x) in [np.ndarray]: if dtype is not None: x = x.astype(mappin_gc2npy[dtype]) x = constant(x) elif isinstance(x, TTensor): pass else: raise TypeError('not a legal type') return x TYPE_SEQUENCE = {'BOOL': 0, "UINT": 1, "INT": 2, "FLOAT": 3} def align_tensor(tensors): tensors = [to_tensor(t) for t in tensors] _types = [t.dtype.upper() for t in tensors] bits_list = [mappin_type2bits[t.dtype] for t in tensors] nakedTypes = [t.dtype.strip(string.digits).upper() for t in tensors] type_idx = 0 dst_dtype = 'BOOL' for dtype in nakedTypes: if TYPE_SEQUENCE[dtype] > type_idx: type_idx = TYPE_SEQUENCE[dtype] dst_dtype = dtype max_bits = builtins.max(bits_list) if 'FLOAT32' in _types or 'FLOAT' in _types: max_bits = 32 elif 'FLOAT16' in _types: max_bits = 16 dst_dtype = dst_dtype + str(max_bits) new_tensors = [] for t in tensors: t = t.cast(dst_dtype) new_tensors.append(t) tensors = new_tensors if TTensor in [type(t) for t in tensors]: tensors = [TTensor(t.getIpuIndex()) for t in tensors] return tensors def int32toint64(t): return t.cast('INT64') if t.type == 'int32' else t def sum_list(l): current = 1 for ele in l: current *= ele return current class TTensor(): def __init__(self, name, nodata=False): assert isinstance(name, str) TENSOR_NAMES.append(name) self.__name = name if safe_mode() and not nodata: assert isinstance(self.pureShape, (list, tuple)) assert isinstance(self.dtype, str) get_all_tensors_info().append(str(self)) def copy_from_tensor(self, tensor): assert self.__class__.__name__ == tensor.__class__.__name__ self.__name = tensor.__name def getIpuIndex(self, ): return self.__name @property def name(self, ): return self.getIpuIndex() def __len__(self, ): return self.pureShape[0] def numel(self, ): return sum_list(self.pureShape) def unsqueeze( self, dims, ): """ args: dim: list of int of which dim will delete eg:[3] or [1,3] """ if isinstance(dims, int): dims = [dims] result = unsqueeze(self, dims=dims) return result def squeeze( self, dims, ): """ args: dim: list of int of which dim will delete eg:[3] or [1,3] """ if isinstance(dims, int): dims = [dims] result = squeeze(self, dims=dims) return result def cast(self, type_str): result = cast(self, type_str.upper()) return result def add(self, tensors): checkTensorsTypeSame(tensors) result = add(tensors) return result def __add__(self, other): tensors = align_tensor([self, other]) return self.add(tensors) def __radd__(self, other): tensors = align_tensor([other, self]) return self.add(tensors) def sub(self, tensors): checkTensorsTypeSame(tensors) result = sub(tensors) return result def __sub__(self, other): tensors = align_tensor([self, other]) return self.sub(tensors) def __neg__(self): return self.__rsub__(0) def __rsub__(self, other): tensors = align_tensor([other, self]) return self.sub(tensors) def mul(self, tensors): checkTensorsTypeSame(tensors) result = mul(tensors) return result def __mul__(self, other): tensors = align_tensor([self, other]) return self.mul(tensors) def __rmul__(self, other): tensors = align_tensor([other, self]) return self.mul(tensors) def truediv(self, tensors): checkTensorsTypeSame(tensors) result = div(tensors) return result def __truediv__(self, other): tensors = align_tensor([self, other]) return self.truediv(tensors) def __rtruediv__(self, other): tensors = align_tensor([other, self]) return self.truediv(tensors) def __repr__(self, ): string = self.__class__.__name__ + ': ' + self.__name + ', shape: ' + str( self.pureShape) + ', dtype: ' + self.dtype string += ', ID: ' + str(id(self)) return string def __format__(self, code): return self.__repr__() @property def pureShape(self): return get_builder().getTensorShape(self.__name) @property def shape(self): self_shape = self.pureShape self_shape_np = np.array(self_shape, np.uint32) input_shape_tensor = shapeConstant(self_shape_np) return input_shape_tensor @property def dtype(self): type_str = get_builder().getTensorDtypeString(self.__name).upper() if type_str == 'FLOAT32': return 'FLOAT' return type_str def get_shape(self): return self.shape def detach(self, ): return detach(self) def flatten(self, ): return flatten(self) def transpose(self, dim_order): return transpose(self, dim_order) def reshape(self, target_shape): return reshape(self, target_shape) def __getitem__(self, index): if not isinstance(index, tuple): index = (index, ) def get_start(start): return 0 if start is None else start def get_stop(stop, dim): return self.pureShape[dim] if stop is None else stop axes = [] starts = [] ends = [] squeezes = [] for dim, slice_obj in enumerate(index): if getattr(slice_obj, 'step', None) is not None: raise NotImplementedError( "Tensor indexing don't support interval currently") if isinstance(slice_obj, int): start = slice_obj end = slice_obj + 1 squeezes.append(dim) elif isinstance(slice_obj, ConstantTensor): start = int(slice_obj.data) end = start + 1 else: start = get_start(slice_obj.start) start = int(getattr(start, 'data', start)) end = get_stop(slice_obj.stop, dim) end = int(getattr(end, 'data', end)) axes.append(dim) starts.append(start) ends.append(end) axes = constant(np.array(axes)) starts = constant(np.array(starts)) ends = constant(np.array(ends)) # do slice in onnx output = gc_slice(self, axes, starts, ends) if len(squeezes) > 0: output = squeeze(output, dims=squeezes) return output class ConstantTensor(TTensor): def __init__(self, name, data): assert isinstance(data, np.ndarray) if data.dtype.name in ['float64', 'float']: data = data.astype(np.float32) self.data = data if name is None: self.__name = 'uninitialized_constant:' + str(CONSTANT_COUNTER[0]) CONSTANT_COUNTER[0] = CONSTANT_COUNTER[0] + 1 self.initialized = False else: super().__init__(name) self.__name = name def copy_from_tensor(self, tensor): assert self.__class__.__name__ == tensor.__class__.__name__ self.__name = tensor.__name self.data = tensor.data self.initialized = tensor.initialized def real_init(self, ): assert not self.initialized self.data = np.ascontiguousarray(self.data.copy()) name = get_builder().aiOnnx.constant(self.data) super().__init__(name) self.__name = name # private attribute can not be inherited self.initialized = True def getIpuIndex(self, ): if self.initialized is False: self.real_init() name = super().getIpuIndex() assert name is not None return name def __repr__(self, ): string = self.__class__.__name__ + ': ' + self.__name + ', shape: ' + str( self.pureShape) + ', dtype: ' + self.dtype string = string + ', constant' string += ', ID: ' + str(id(self)) return string @property def pureShape(self): return self.data.shape @property def dtype(self): result = self.data.dtype.name.upper() if result == 'FLOAT32': result = 'FLOAT' return result def as_list(self, ): return self.data.tolist() def __getitem__(self, index): if isinstance(index, int): return constant(self.data[index]) if not isinstance(index, tuple): index_tuple = (index, ) else: index_tuple = index index_list = [] for index in index_tuple: if isinstance(index, int): index = index index_list.append(index) continue else: index = [index.start, index.stop, index.step] slices = [] for ele in index: if isinstance(ele, list): ele = [scalarTensor2int(ele_ele) for ele_ele in ele] elif ele is None: pass else: ele = scalarTensor2int(ele) slices.append(ele) index_list.append(slice(*slices)) return constant(self.data[tuple(index_list)]) class ShapeTensor(ConstantTensor): def __init__(self, name, data): assert len(data.shape) == 1 # ShapeTensor rank is 1 super().__init__(name, data) self.__name = name @property def ndims(self): return self.numel() def eliminate_constantTensor_from_list(num_list, to_type): results = [] for num in num_list: if isinstance(num, ConstantTensor): num = to_type(num.data) results.append(num) return results def scalar2num(tensor): return t.data if isinstance(t, ConstantScalar) else t class ConstantScalar(ConstantTensor): def __init__(self, name, data): assert np.isscalar(data) or data.size == 1 or isinstance( data, (int, float)) data = np.array(np.asscalar(np.asarray(data).flatten())) super().__init__(name, data) self.__name = name def __eq__(self, other): return scalar2num(self) == scalar2num(other) def __ge__(self, other): return scalar2num(self) >= scalar2num(other) def __le__(self, other): return scalar2num(self) <= scalar2num(other) def __lt__(self, other): return scalar2num(self) < scalar2num(other) def __gt__(self, other): return scalar2num(self) > scalar2num(other) def __ne__(self, other): return scalar2num(self) > scalar2num(other) def nllloss(prob, label, reductionType=popart.ReductionType.Mean, debugPrefix=''): # prob: scaled probabilities, [batch, classes], float # label: labels, [batch,], int32 with name_scope(debugPrefix): loss = get_builder().aiGraphcore.nllloss( [prob.getIpuIndex(), label.getIpuIndex()], reductionType, debugContext=debugPrefix) return TTensor(loss) def get_all_params(): all_params = [ TTensor(name) for name in get_builder().getInputTensorIds() if get_builder().isInitializer(name) ] return all_params mappin_type2bits = { 'FLOAT': 32, 'FLOAT16': 16, "UINT8": 8, "UINT16": 16, "UINT32": 32, "UINT64": 64, "INT8": 8, "INT16": 16, "INT32": 32, "INT64": 64, "BOOL": 8 } mappin_gc2npy = { 'float': np.float32, 'float32': np.float32, 'float16': np.float16, 'int8': np.int8, 'int16': np.int16, 'int32': np.int32, 'int64': np.int64, 'uint8': np.uint8, 'uint16': np.uint16, 'uint32': np.uint32, 'bool': np.bool, 'FLOAT': np.float32, 'FLOAT32': np.float32, 'FLOAT16': np.float16, 'INT8': np.int8, 'INT16': np.int16, 'INT32': np.int32, 'INT64': np.int64, 'UINT8': np.uint8, 'UINT16': np.uint16, 'UINT32': np.uint32, 'BOOL': np.bool, } # optimizer class SGD: def __init__(self, learning_rate=0.001, momentum=0.0005, weight_decay=0.0001, use_locking=False, name='Momentum', use_nesterov=False, clip_norm=None, lossScaling=1.0, specific_dic={}): assert use_locking is False assert use_nesterov is False self.learning_rate = learning_rate self.name = name self.clip_norm = clip_norm self.lossScaling = lossScaling self.opti_cfg = { "defaultLearningRate": (self.learning_rate, False), "defaultMomentum": (momentum, True), "defaultWeightDecay": (weight_decay, True), } if self.lossScaling != 1.0: self.opti_cfg['lossScaling'] = (self.lossScaling, True) if clip_norm is not None: print('clip norm gradients:', clip_norm) self.gc_optimizer = popart.SGD( self.opti_cfg, clip_norm_settings=[ popart.ClipNormSettings.clipAllWeights(clip_norm) ]) else: self.gc_optimizer = popart.SGD(self.opti_cfg) for name in specific_dic: self.gc_optimizer.insertSpecific(name, specific_dic[name]) def adj_lr(self, lr, sess, specific_dic={}): self.opti_cfg['defaultLearningRate'] = (lr, False) new_optimizer = popart.SGD(self.opti_cfg) for name in specific_dic: new_optimizer.insertSpecific(name, specific_dic[name]) sess.updateOptimizerFromHost(new_optimizer) self.gc_optimizer = new_optimizer def deduce_half(input, fp16_on): # Derive whether to use half-precision according to the input and the given parameters: fp16_on assert fp16_on in [False, True, None] # False: fp32 # True: fp16 # None: depend on input # return : # cast flag: False(no cast), fp16/fp32(cast output to fp16/fp32) # input: casted input # fp16_on: True(cast weights to fp16), False(cast weights to fp32) cast_flag = False if input.dtype.lower() == 'float16': if fp16_on is None: fp16_on = True elif fp16_on is False: input = input.cast('FLOAT32') cast_flag = 'FLOAT16' # pass elif input.dtype.lower() in ['float32', 'float']: if fp16_on: input = input.cast('FLOAT16') cast_flag = 'FLOAT32' # pass else: raise RuntimeError('input wrong type: {}'.format(input.dtype)) return cast_flag, input, fp16_on
import json import functools from graphviz import Digraph def main(): """ Plots the relationships defined by the JSON files below using Graphviz. """ # Read the raw data relationship_filename = "relationships_by_id.json" name_map_filename = "ids_to_names.json" with open(relationship_filename) as relationship_file: relationships = json.load(relationship_file) with open(name_map_filename) as name_map_file: name_map = json.load(name_map_file) # Create nodes out of Twitter users, and directed edges representing follows. # Those users with very few followers (defined by importance_limit) are ignored. importance_limit = 10 nodes = [] edges = [] for user, followers in relationships.items(): if user in name_map and len(followers) > importance_limit: screen_name = name_map[user] nodes.append(screen_name) for follower in map(str, followers): if follower in name_map and len(relationships[follower]) > importance_limit: edges.append((screen_name, name_map[follower])) # Draw the graph. digraph = functools.partial(Digraph, format='svg') add_edges(add_nodes(digraph(), nodes), edges).render('pics/g1') def add_nodes(graph, nodes): """ Helper function from http://matthiaseisen.com/articles/graphviz/ """ for n in nodes: if isinstance(n, tuple): graph.node(n[0], **n[1]) else: graph.node(n) return graph def add_edges(graph, edges): """ Helper function from http://matthiaseisen.com/articles/graphviz/ """ for e in edges: if isinstance(e[0], tuple): graph.edge(*e[0], **e[1]) else: graph.edge(*e) return graph if __name__ == '__main__': main()
import numpy as np import os from surfinpy import p_vs_t from surfinpy import utils as ut from surfinpy.data import DataSet import unittest from numpy.testing import assert_almost_equal test_data = os.path.join(os.path.dirname(__file__), 'H2O.txt') class Testp_vs_t(unittest.TestCase): # Is this needed ? # def setUp(self): # self.testdata = open(test_data).read() def test_calculate_surface_energy(self): AE = np.array([-1.0, -2.0]) lnP = np.arange(1, 10) T = np.arange(1, 10) coverage = np.array([-10.0*10**18, -20.0*10**18]) SE = 1.0 nsurfaces = 2 x = p_vs_t.calculate_surface_energy(AE, lnP, T, coverage, SE, nsurfaces) assert_almost_equal(x[0], 1.) def test_convert_adsorption_energy(self): x = p_vs_t.convert_adsorption_energy_units(1) expected = 96485 assert x == expected def test_calculate_adsorption_energy(self): x = p_vs_t.calculate_adsorption_energy(1, 2, 3, 4) expected = -4.3333333 assert_almost_equal(expected, x, decimal=4) def test_adsorption_energy(self): stoich = DataSet(cation = 24, x = 48, y = 0, area = 60.22, energy = -535.660075, label = "Stoich") H2O = DataSet(cation = 24, x = 48, y = 2, area = 60.22, energy = -621.877140, label = "Stoich") H2O_2 = DataSet(cation = 24, x = 48, y = 4, area = 60.22, energy = -670.229520, label = "Stoich") data = [H2O, H2O_2] x = p_vs_t.adsorption_energy(data, stoich, -10.0) expected = [np.array([-3194476.7582625]), np.array([-2281133.22520625])] assert_almost_equal(expected, x, decimal=4) def test_initialise(self): x = ut.read_nist(test_data) a, b, c, d = p_vs_t.inititalise(x, -10.0, 1000, -13, 5.5) assert_almost_equal(d[0], -10.000, decimal=3) assert_almost_equal(d[1], -10.000, decimal=3) assert_almost_equal(d[-1], -10.103, decimal=3) assert_almost_equal(d[-2], -10.103, decimal=3) def test_calculate(self): stoich = DataSet(cation = 24, x = 48, y = 0, area = 60.22, energy = -530.0, label = "Stoich") H2O = DataSet(cation = 24, x = 48, y = 2, area = 60.22, energy = -620.0, label = "Stoich") H2O_2 = DataSet(cation = 24, x = 48, y = 4, area = 60.22, energy = -677.0, label = "Stoich") data = [H2O, H2O_2] SE = 1.0 adsorbant = -10.0 thermochem = ut.read_nist(test_data) system = p_vs_t.calculate(stoich, data, SE, adsorbant, thermochem) expectedx = np.arange(2, 1000) expectedy = np.arange(-13, 5.5, 0.1) expectedz = np.zeros(((expectedy.size), (expectedx.size))) assert_almost_equal(system.x, expectedx) assert_almost_equal(system.y, expectedy) assert_almost_equal(system.z, expectedz)
from minio import Minio from minio.error import ResponseError import json import os # Request # { # "inbox": "aellis_catjump_inbox", # "outbox": "aellis_catjump_outbox" # } def handle(st): req = json.loads(st) mc = Minio(os.environ['minio_authority'], access_key=os.environ['minio_access_key'], secret_key=os.environ['minio_secret_key'], secure=False) try: res = mc.make_bucket(req["inbox"] , location='us-east-1') except ResponseError as err: print(err) try: res = mc.make_bucket(req["outbox"] , location='us-east-1') except ResponseError as err: print(err) # Response # Empty - success # Non-empty - failure
# -*- coding: utf-8 -*- import numpy as np from random import getrandbits def check_equality(matrix1, matrix2, encoding = None): ''' Checks to see if 2 matrices are equivalent. If an encoding is specified, first converts elements in matrix1 using encoding, then checks for equality with matrix2 Parameters: matrix1 (array-like) - The first matrix to compare matrix2 (array-like) - The second matrix to compare encoding (dictionary, default = None) - A dictionary used to convert values in matrix1 into their equivalents in matrix2. If a value in matrix1 is not in the encoding, it will not be converted ''' if encoding is None: return __check_naive(matrix1,matrix2) for row in range(len(matrix1)): for col in range(len(matrix1[0])): if (encoding[matrix1[row][col]] != matrix2[row][col]): print('indices: ({},{})'.format(row,col)) print('Values: m1 - {}, m2 - {}'.format(encoding[matrix1[row][col]],matrix2[row][col])) return False return True def __check_naive(matrix1,matrix2): # Helper function to checkEquality() for row in range(len(matrix1)): for col in range(len(matrix1[0])): if (matrix1[row][col] != matrix2[row][col]): print('indices: ({},{})'.format(row,col)) print('Values: m1 - {}, m2 - {}'.format(matrix1[row][col],matrix2[row][col])) return False return True VALUES = {0:'A',1:'G',2:'C',3:'T'} BASES = ['A','G','T','C'] def generate_seq(length): """ Generates a sequence of given length using black magic Sequence is a string of AGCT """ global VALUES seq = [] intseq = np.floor(np.random.rand(length) * 4) for i in range(length): seq.append(VALUES[intseq[i]]) return ''.join(seq) def mutate_seq(seq,mutation_rate = .01): # Given a sequence string, mutate it randomly according to a ratio # Use boolean mask to determine random mutation locations intseq = np.random.rand(len(seq)) < mutation_rate newseq = [] global BASES for index in range(len(seq)): if intseq[index]: newseq.append(np.random.choice(BASES)) else: newseq.append(seq[index]) return ''.join(newseq)
# Plot the data from the Rpi, read through the "camera_data" topic import paho.mqtt.client as mqtt import json # Connect to the broker broker_url, broker_port = "192.168.43.210", 1883 client = mqtt.Client() client.connect(broker_url, broker_port) # Wrap the commands issuing in a loop try: client.loop_start() while True: command = eval(input()) # Publish a request to the motor topic message = json.dumps(command).encode('utf-8') client.publish(topic="motor_request", payload=message, qos=0, retain=False) finally: client.loop_stop()
######################################################################################## # # Implement random permutations in the encoder for potentially beneficial # regularization. # # Author(s): Nik Vaessen ######################################################################################## from typing import Optional import torch as t import torch.nn as nn import numpy as np from transformers.deepspeed import is_deepspeed_zero3_enabled from transformers.modeling_outputs import BaseModelOutput from transformers.models.wav2vec2 import configuration_wav2vec2 from src.networks.wav2vec2_components.base_components import ( Wav2vec2Encoder, Wav2Vec2EncoderStableLayerNorm, ) ######################################################################################## # implementation of encoder with random permutation of time sequence def local_shuffle(sequence: t.Tensor, mean: float, std: float): assert len(sequence.shape) == 3 # assume shuffling across 1 dimension num_tokens = sequence.shape[1] # add a random normally distributed number to each index indexes = t.arange(0, num_tokens) noise = t.normal(mean, std, (num_tokens,)) noisy_indexes = indexes + noise # sort the noisy indexes _, sorted_indexes = t.sort(noisy_indexes) # shuffle based on the sorted order of the noisy indexes shuffled_sequence = sequence[:, sorted_indexes, :] return shuffled_sequence class Wav2vec2RandomPermutationEncoder(nn.Module): shuffle_location_options = ["before", "after", "after+in_encoder", None] def __init__( self, cfg: configuration_wav2vec2.Wav2Vec2Config, enable_gradient_checkpointing: bool, pretrained_weights: Optional[str] = None, shuffling_location: Optional[str] = None, shuffling_std: Optional[float] = None, ): super().__init__() base_encoder = Wav2vec2Encoder( cfg, enable_gradient_checkpointing=enable_gradient_checkpointing, pretrained_weights=pretrained_weights, ) self.config = base_encoder.encoder.config self.pos_conv_embed = base_encoder.encoder.pos_conv_embed self.layer_norm = base_encoder.encoder.layer_norm self.dropout = base_encoder.encoder.dropout self.layers = base_encoder.encoder.layers self.gradient_checkpointing = base_encoder.encoder.gradient_checkpointing del base_encoder if shuffling_location not in self.shuffle_location_options: raise ValueError( f"{shuffling_location} should be one of" f" {self.shuffle_location_options}" ) if shuffling_location and shuffling_std is None: raise ValueError( f"{shuffling_std=} should be defined when {shuffling_location=}" ) self.shuffling_location = shuffling_location self.shuffling_std = shuffling_std def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 hidden_states[~attention_mask] = 0.0 # extend attention_mask attention_mask = ( 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) ) * -10000.0 attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1], ) if self.training and self.shuffling_location == "before": hidden_states = local_shuffle(hidden_states, 0, self.shuffling_std) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for idx, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if ( self.training and self.shuffling_location == "after" or self.shuffling_location == "after+in_encoder" ): if self.shuffling_location == "after": if idx == 0: hidden_states = local_shuffle( hidden_states, 0, self.shuffling_std ) else: hidden_states = local_shuffle(hidden_states, 0, self.shuffling_std) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = np.random.uniform(0, 1) skip_the_layer = ( True if self.training and (dropout_probability < self.config.layerdrop) else False ) if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: # create gradient checkpointing function def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = t.utils.checkpoint.checkpoint( create_custom_forward(layer), hidden_states, attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class Wav2vec2RandomPermutationEncoderStableLayerNorm(nn.Module): shuffle_input_sequence_options = ["before", "after", "after+in_encoder", None] def __init__( self, cfg: configuration_wav2vec2.Wav2Vec2Config, enable_gradient_checkpointing: bool, pretrained_weights: Optional[str] = None, shuffling_location: Optional[str] = None, shuffling_std: Optional[float] = None, ): super().__init__() base_encoder = Wav2Vec2EncoderStableLayerNorm( cfg, enable_gradient_checkpointing=enable_gradient_checkpointing, pretrained_weights=pretrained_weights, ) self.config = base_encoder.encoder.config self.pos_conv_embed = base_encoder.encoder.pos_conv_embed self.layer_norm = base_encoder.encoder.layer_norm self.dropout = base_encoder.encoder.dropout self.layers = base_encoder.encoder.layers self.gradient_checkpointing = base_encoder.encoder.gradient_checkpointing del base_encoder if shuffling_location not in self.shuffle_input_sequence_options: raise ValueError( f"{shuffling_location} should be one of" f" {self.shuffle_input_sequence_options}" ) if shuffling_location and shuffling_std is None: raise ValueError( f"{shuffling_std=} should be defined when {shuffling_location=}" ) self.shuffling_location = shuffling_location self.shuffling_std = shuffling_std def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens are not attended to hidden_states[~attention_mask] = 0 # extend attention_mask attention_mask = ( 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) ) * -10000.0 attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1], ) if self.training and self.shuffling_location == "before": hidden_states = local_shuffle(hidden_states, 0, self.shuffling_std) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for idx, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if ( self.training and self.shuffling_location == "after" or self.shuffling_location == "after+in_encoder" ): if self.shuffling_location == "after": if idx == 0: hidden_states = local_shuffle( hidden_states, 0, self.shuffling_std ) else: hidden_states = local_shuffle(hidden_states, 0, self.shuffling_std) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = np.random.uniform(0, 1) skip_the_layer = ( True if self.training and (dropout_probability < self.config.layerdrop) else False ) if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication if self.gradient_checkpointing and self.training: # create gradient checkpointing function def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer), hidden_states, attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, )
"""Little script for exporting BigGAN zs/ys used in data collection.""" import argparse import pathlib import shutil from src.utils import env from tqdm.auto import tqdm parser = argparse.ArgumentParser(description='export biggan zs') parser.add_argument('--data-dir', type=pathlib.Path, help='root data dir (default: project data dir)') parser.add_argument('--results-dir', type=pathlib.Path, help='results dir (default: project results dir)') parser.add_argument('--datasets', nargs='+', default=('imagenet', 'places365'), help='versions of biggan to export zs for (default: all)') args = parser.parse_args() data_dir = args.data_dir or env.data_dir() results_dir = args.results_dir or (env.results_dir() / 'export-biggan-zs') results_dir.mkdir(exist_ok=True, parents=True) for dataset in tqdm(args.datasets): zs_dir = data_dir / f'biggan-zs-{dataset}' if not zs_dir.is_dir(): raise FileNotFoundError(f'zs dataset not found: {zs_dir}') shutil.make_archive(str(results_dir / zs_dir.name), 'zip', root_dir=data_dir, base_dir=zs_dir.relative_to(data_dir))
import log_config_util from arxivcitationnetwork import ArxivCitationNetwork, format_name_to_id from collections import defaultdict log = log_config_util.get_logger("merger") N = 5 # Number of status updates per loop def merge_bierbaum_network(citation_network: ArxivCitationNetwork, metadata_aid_to_doi_title): """ "Merge" Bierbaum Network by parsing it into a new object structure and cleaning it. In this code the network created by the work of Clement et al. is referenced as "bierbaum's network" simply because it was the root name of the repository. """ bierbaum_network = log_config_util.load_metadata("merged_internal-citations.json") # Stats for loop counter entries, counter_mark = log_config_util.get_loop_stats(bierbaum_network, N) log.info("Start Parsing Bierbaum's network. Entries: {}".format(entries)) for counter, content in enumerate(bierbaum_network.items()): log_config_util.update_counter(counter, counter_mark, entries, N, log) aid = content[0] arxiv_citations = content[1] # Stripping version number for now aid_without_version = log_config_util.remove_version_ending(aid) arxiv_citations_without_version = list(map(log_config_util.remove_version_ending, arxiv_citations)) # Get metadata metadata = metadata_aid_to_doi_title.get(aid_without_version, []) if metadata: doi = metadata[0] title = metadata[1] else: doi = title = "" citation_network.add_arxiv_paper(aid_without_version, arxiv_citations_without_version, [], doi, title) # Clean data log.info("Clean ArXiv IDs") valid_arxiv_ids = set(metadata_aid_to_doi_title.keys()) faulty_ids = citation_network.clean_arxiv_ids(valid_arxiv_ids) log.info("Cleaned {} bad Arxiv IDs".format(len(faulty_ids))) log.info("Finished Parsing Bierbaum's network") def transform_arxiv_metadata(metadata_aid_to_doi_title): """ Transform arxiv metadata into specific dicts of data that is contained in it overall for faster access Titles are already formatted accordingly! """ # Get data structures for fast comparison doi_to_arxiv_id = defaultdict(list) title_to_arxiv_id = defaultdict(list) for arxiv_id, content in metadata_aid_to_doi_title.items(): # Add doi if exists if content[0]: doi_mag = content[0].upper() # make doi values upper case per definition of MAG doi_to_arxiv_id[doi_mag] = arxiv_id # Ignoring possible duplicates here, match to "last" arxiv_id # Add title title = content[1] title_to_arxiv_id[format_name_to_id(title)] = arxiv_id # Ignoring possible duplicates here return title_to_arxiv_id, doi_to_arxiv_id def add_arxiv_id_to_mag_data(magid_to_data, metadata_aid_to_doi_title): """ Try to match arxiv metadata title to the titles of a MAG ID. For each match add the corresponding arxiv ID Afterwards all mag_ids are matched to an arxiv paper if they correspond to an arxiv paper Thus, all papers that are not matched are most likely not an arxiv paper and thus external """ title_to_arxiv_id, doi_to_arxiv_id = transform_arxiv_metadata(metadata_aid_to_doi_title) valid_titles = set(title_to_arxiv_id.keys()) valid_dois = set(doi_to_arxiv_id.keys()) # Go through all entries and add arxiv ID if possible (roughly adds 200k IDs) entries, counter_mark = log_config_util.get_loop_stats(magid_to_data, N) log.info("Start Preprocessing MAG Data. Entries: {}".format(entries)) for counter, content in enumerate(magid_to_data.items()): log_config_util.update_counter(counter, counter_mark, entries, N, log) data = content[1] # Check arxiv_id arxiv_id = data[3] if arxiv_id: continue # Check doi doi = data[0] if doi in valid_dois: data[3] = doi_to_arxiv_id[doi] continue # Check title (using simple title matching) paper_title_for_matching = ''.join(data[1].split()).lower() original_title_for_matching = ''.join(data[2].split()).lower() if original_title_for_matching in valid_titles: data[3] = title_to_arxiv_id[original_title_for_matching] continue if paper_title_for_matching in valid_titles: data[3] = title_to_arxiv_id[paper_title_for_matching] log.info("Finished Preprocessing MAG Data") def get_mag_external_papers_stats(magid_to_data): """Get stats about external papers """ external_papers = {mag_id: data for mag_id, data in magid_to_data.items() if not data[3]} # Get stats about title duplicates external_papers_title = set([data[2] for mag_id, data in external_papers.items()]) log.info("Title Duplicates in external non-arxiv Papers: {} ({:.2%})".format( len(external_papers) - len(external_papers_title), 1 - len(external_papers_title) / len(external_papers))) def add_external_papers_mag(citation_network: ArxivCitationNetwork, magid_to_data): """Add external papers to citation network based on MAG data""" entries, counter_mark = log_config_util.get_loop_stats(magid_to_data, N) log.info("Start adding external MAG papers. Entries: {}".format(entries)) for counter, content in enumerate(magid_to_data.items()): log_config_util.update_counter(counter, counter_mark, entries, N, log) mag_id = content[0] data = content[1] # If it is an external paper (e.g. has no referenced arxiv ID) add it if not data[3]: title = data[2] # Using original title not paper title of MAG doi = data[0] citation_network.add_external_paper(title, doi, mag_id) log.info("Finished adding external MAG papers") def add_arxiv_papers_mag(citation_network: ArxivCitationNetwork, magid_to_data, aid_to_ref_magids, metadata_aid_to_doi_title): """ Add arxiv paper to citation network based on the mag data. We need to add internal arxiv papers based on MAG since the data so far is based on the successfully downloaded ones but the MAG results are based on the metadata. """ # Find arxiv IDs that need to be added to_add_ids = set(aid_to_ref_magids.keys()) - set(citation_network.arxiv_papers.keys()) log.info("Need to add {} Arxiv IDs that are in the MAG data but not in the network".format(len(to_add_ids))) entries, counter_mark = log_config_util.get_loop_stats(to_add_ids, 2) log.info("Start adding arxiv papers from MAG Data. Entries: {}".format(entries)) for counter, arxiv_id in enumerate(to_add_ids): log_config_util.update_counter(counter, counter_mark, entries, 2, log) # Get metadata metadata = metadata_aid_to_doi_title.get(arxiv_id, []) if metadata: doi = metadata[0] title = metadata[1] else: doi = title = "" # Here, we do not add any citations since the next step of the pipeline will do this citation_network.add_arxiv_paper(arxiv_id, [], [], doi, title) log.info("Finished adding arxiv papers from MAG Data") def add_citations_mag(citation_network: ArxivCitationNetwork, magid_to_data, aid_to_ref_magids): """Extend citation connections of network based on MAG data""" # Stats pre_ac = citation_network.number_arxiv_citations() pre_ec = citation_network.number_external_citations() number_overall_references_mag = 0 for key, value in aid_to_ref_magids.items(): number_overall_references_mag += len(value) entries, counter_mark = log_config_util.get_loop_stats(aid_to_ref_magids, N) log.info("Start extending citations by MAG Data. Entries: {}".format(entries)) for counter, content in enumerate(aid_to_ref_magids.items()): log_config_util.update_counter(counter, counter_mark, entries, N, log) # Get content and object arxiv_id = content[0] ref_mag_ids = content[1] arxiv_paper_object = citation_network.arxiv_papers[arxiv_id] # Extend citations for ref_mag_id in ref_mag_ids: ref_data = magid_to_data[ref_mag_id] ref_arxiv_id = ref_data[3] ref_title = ref_data[2] # Arxiv Reference if ref_arxiv_id: arxiv_paper_object.add_arxiv_citation(ref_arxiv_id) continue # External Reference arxiv_paper_object.add_external_citation(ref_title) # Remove duplicates that might have been created by direct approach above (this improves performance) arxiv_paper_object.remove_duplicates_in_citations() log.info("Finished extending citations by MAG Data") # Stats post_ac = citation_network.number_arxiv_citations() new_ac = post_ac - pre_ac post_ec = citation_network.number_external_citations() new_ec = post_ec - pre_ec not_new = number_overall_references_mag - (new_ec + new_ac) prev_work = max(pre_ac - not_new, 0) log.info(("Before adding MAG Data, the Citation Network had {} arxiv and {} external citations. \n" + "Using the MAG Data, {} arxiv citations ({:.2%} of all MAG References)" + " and {} external citations ({:.2%} of all MAG References) were added" + " (Here one can read: citations = edges).\n" + "Consequently, {} ({:.2%}) of the MAG reference were already in the network by previous work or a caused by title duplicates. \n" + "Furthermore, the previous work was able to find {} citations not found by the MAG. \n" + "In other words, {:.2%} of the references generated by previous work were not found in the MAG.").format( pre_ac, pre_ec, new_ac, new_ac / number_overall_references_mag, new_ec, new_ec / number_overall_references_mag, not_new, not_new / number_overall_references_mag, prev_work, ( prev_work / pre_ac) if pre_ac else 0)) # Avoid division by zero, idea from: https://stackoverflow.com/a/27317595 def merge_mag_data(citation_network: ArxivCitationNetwork, metadata_aid_to_doi_title): """Merge MAG Data into citation network""" # Load MAG Data aid_to_ref_magids = log_config_util.load_metadata("aid_to_ref_magids.json") magid_to_data = log_config_util.load_metadata("magid_to_data.json") # Preprocess magid_to_data add_arxiv_id_to_mag_data(magid_to_data, metadata_aid_to_doi_title) # roughly adds 200k Arxiv IDs # Stats get_mag_external_papers_stats(magid_to_data) # Main Steps of Merging log.info("Start Merge of MAG Data") add_external_papers_mag(citation_network, magid_to_data) add_arxiv_papers_mag(citation_network, magid_to_data, aid_to_ref_magids, metadata_aid_to_doi_title) add_citations_mag(citation_network, magid_to_data, aid_to_ref_magids) log.info("Finished Merge of MAG Data") def preprocessing_parser_data(parsed_aids_not_matched, metadata_aid_to_doi_title): """ Preprocess parser data - remove duplicates, split into external/internal citations and remove bad arxiv IDs New format: {arxiv_id: ([arxiv_ids,...], [titles, ...]),...} whereby titles are external and arxiv_ids internal papers """ # Get metadata data title_to_arxiv_id, _ = transform_arxiv_metadata(metadata_aid_to_doi_title) valid_titles = set(title_to_arxiv_id.keys()) valid_arxiv_ids = set(metadata_aid_to_doi_title.keys()) # Preprocessing - Get List of arxiv IDs without version and titles in correct format and log.info("Preprocessing parsed data") parser_data = {} for arxiv_id, content in parsed_aids_not_matched.items(): # arxiv_id_no_version = log_config_util.remove_version_ending(arxiv_id) arxiv_id_no_version = log_config_util.arxiv_filename_to_id(log_config_util.remove_version_ending(arxiv_id)) # Get list of referenced titles and eliminate possible duplicates cited_titles = set([format_name_to_id(ref["title"]) for ref in content]) # Split for external/internal citations arxiv_citations = [] external_citations = [] for cited_title in cited_titles: if cited_title in valid_titles: arxiv_citations.append(title_to_arxiv_id[cited_title]) else: external_citations.append(cited_title) # Duplicate arxiv IDs in the parsed set itself (i.e. version difference) will be eliminated by this # However, the parsed set should not contain multiple entries for different versions anyhow. parser_data[arxiv_id_no_version] = (arxiv_citations, external_citations) # Clean bad arxiv IDs invalid_entries = set(parser_data.keys()) - set(valid_arxiv_ids) for key in invalid_entries: parser_data.pop(key) # Print stats about external/internal citations pre_overall_ref = sum([len(content) for key, content in parsed_aids_not_matched.items()]) post_overall_ref = sum([len(content[0]) + len(content[1]) for key, content in parser_data.items()]) internal = sum([len(content[0]) for key, content in parser_data.items()]) external = sum([len(content[1]) for key, content in parser_data.items()]) log.info(("Overall references before preprocessing {}, afterwards {}. " + "Extracted overall internal (arxiv) references: {}; Extracted overall external references {}.").format( pre_overall_ref, post_overall_ref, internal, external) ) return parser_data def merge_parser_data(citation_network: ArxivCitationNetwork, metadata_aid_to_doi_title, input_parsed_data): """ Add parser data to citation network As this is in general 'more' unsafe than previous methods, do cautious injection. """ parser_data = preprocessing_parser_data(input_parsed_data, metadata_aid_to_doi_title) log.info("Start mering parsed data") # Add arxiv papers (Safely) existing_papers = set(citation_network.arxiv_papers.keys()) for key, data in parser_data.items(): if key in existing_papers: continue citation_network.add_arxiv_paper(key) # Find external papers external_papers = [] for key, data in parser_data.items(): external_papers += data[1] external_papers = set(external_papers) # Add external papers safely existing_external_papers = set(citation_network.external_papers.keys()) to_add = external_papers - existing_external_papers for ex_paper_title in to_add: citation_network.add_external_paper(ex_paper_title, format_name=False) # Add citations safely for key, data in parser_data.items(): # Get object arxiv_paper_obj = citation_network.arxiv_papers[key] # Get list of citations that still need to be added to_add_arxiv_cites = set(data[0]) - set(arxiv_paper_obj.arxiv_citations) to_add_external_cites = set(data[1]) - set(arxiv_paper_obj.external_citations) # Add citations for to_add_a_id in to_add_arxiv_cites: arxiv_paper_obj.add_arxiv_citation(to_add_a_id) for to_add_title in to_add_external_cites: arxiv_paper_obj.add_external_citation(to_add_title, format_title=False) log.info("Finished mering parsed data")
#!/usr/bin/python2.4 # # Copyright 2008 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests that the manage.py commands execute correctly. These tests only verify that the commands execute and exit with a success code. They are intended to catch import exceptions and similar problems, it is left up to tests in other modules to verify that the functionality of each command works correctly. """ import os import signal import subprocess import tempfile import time import unittest from django.db.models import get_models from google.appengine.ext import db from appengine_django.models import BaseModel from appengine_django.models import ModelManager from appengine_django.models import ModelOptions from appengine_django.models import RegistrationTestModel class CommandsTest(unittest.TestCase): """Unit tests for the manage.py commands.""" # How many seconds to wait for a command to exit. COMMAND_TIMEOUT = 10 def runCommand(self, command, args=None, int_after=None, input=None): """Helper to run the specified command in a child process. Args: command: The name of the command to run. args: List of command arguments to run the command with. int_after: If set to a positive integer, SIGINT will be sent to the running child process after this many seconds to cause an exit. This should be less than the COMMAND_TIMEOUT value (10 seconds). input: A string to write to stdin when the command starts. stdin is closed after the string is written. Raises: This function does not return anything but will raise assertion errors if the command does not exit successfully. """ if not args: args = [] start = time.time() int_sent = False fd, tempname = tempfile.mkstemp() infd = fd if input: infd = subprocess.PIPE child = subprocess.Popen(["./manage.py", command] + args, stdin=infd, stdout=fd, stderr=fd, cwd=os.getcwdu()) if input: child.stdin.write(input) child.stdin.close() while 1: rc = child.poll() if rc is not None: # Child has exited. break elapsed = time.time() - start if int_after and int_after > 0 and elapsed > int_after and not int_sent: # Sent SIGINT as requested, give child time to exit cleanly. os.kill(child.pid, signal.SIGINT) start = time.time() int_sent = True continue if elapsed < self.COMMAND_TIMEOUT: continue # Command is over time, kill and exit loop. os.kill(child.pid, signal.SIGKILL) time.sleep(2) # Give time for the signal to be received. break # Check child return code os.close(fd) self.assertEquals(0, rc, "%s did not return successfully (rc: %d): Output in %s" % (command, rc, tempname)) os.unlink(tempname) def testDiffSettings(self): """Tests the diffsettings command.""" self.runCommand("diffsettings") def testDumpData(self): """Tests the dumpdata command.""" self.runCommand("dumpdata") def testFlush(self): """Tests the flush command.""" self.runCommand("flush") def testLoadData(self): """Tests the loaddata command.""" self.runCommand("loaddata") def testLoadData(self): """Tests the loaddata command.""" self.runCommand("loaddata") def testReset(self): """Tests the reste command.""" self.runCommand("reset", ["appengine_django"]) def testRunserver(self): """Tests the runserver command.""" self.runCommand("runserver", int_after=2.0) def testShell(self): """Tests the shell command.""" self.runCommand("shell", input="exit")
#! /usr/bin/env python3 import argparse import datetime import json if __name__ == "__main__": args = argparse.ArgumentParser() args.add_argument("manifest", help="Path to app container Manifest") m = args.parse_args().manifest print m with open(m, 'r') as f: manifest = json.load(f) print json.dumps(manifest, indent=2) try: if len(manifest["dependencies"]) > 0: manifest["dependencies"] = [] manifest["annotations"].append({ "name": "squash-date", "value": "%s" % datetime.datetime.now() }) print json.dumps(manifest, indent=2) with open(m, 'w') as f: json.dump(manifest, f) except KeyError: print "KeyError with dependencies" print "No dependencies or already render/squashed"
# 矩阵置零 from typing import List class Solution: # 记录0出现的位置,然后再置为0 def setZeroes_1(self, matrix: List[List[int]]) -> None: """ Do not return anything, modify matrix in-place instead. """ hor, ver = set(), set() for i in range(len(matrix)): for j in range(len(matrix[i])): if matrix[i][j] == 0: hor.add(i), ver.add(j) for i in hor: matrix[i] = [0] * len(matrix[0]) for i in ver: for j in range(len(matrix)): matrix[j][i] = 0
from django.core.management.base import BaseCommand from twiggy_goodies.django import LogMixin from allmychanges.models import LightModerator class Command(LogMixin, BaseCommand): help = u"""Deletes stale light moderators from the database""" def handle(self, *args, **options): LightModerator.remove_stale_moderators()
from collections import defaultdict #### test expressions sample1 = "(A & B) & (F | E)" sample2 = "(A & (B | C)) & (F | E)" sample3 = "FAKE" sample4 = "(((A & B) & (C & D)) | 5)" sample5 = "(A & (B | C)) & (F | E)" sample6 = "!(A & B) | (C | (D & E))" sample7 = "!A & B" sample8 = "!(A & B)" sample9 = "!(A & B) & !C" sample10 = "!(A & B) | !(C & D)" sample11 = "(A | B | C) & (!A | D | E) & (F | G | H)" sample12 = "(D & !E) | (E & !F)" #### below variables are used to test sample 6 truth output for ExprTree sample6__truthtable1 = defaultdict(list) sample6__truthtable1["B"] = False sample6__truthtable1["C"] = False sample6__truthtable1["D"] = True sample6__truthtable1["E"] = True sample6__truthtable1_output = {} sample6__truthtable1_output[" A & B ! "] = [] # undet sample6__truthtable1_output[" C "] = False sample6__truthtable1_output[" D & E "] = True ##### decisions: satisfiability sample_sat1 = "!(A & !B) & C & !D & !(E & F & G) & !H" sample_sat2 = "!(A & B & !C) & !(D & E) & (G & !H)" ##### syntactical test syntact1 = "A & B & C & !A" nonsyntact2 = "A & B & | C" truthtable1 = defaultdict(list) truthtable1["A"] = True truthtable1["B"] = False truthtable1["C"] = True
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # author: bigfoolliu """ 一个用来生成各类虚假数据的库 """ import mimesis def fake_person(): person = mimesis.Person() print(person.name()) print(person.full_name()) print(person.age()) if __name__ == "__main__": fake_person()
import sys from Bio.SeqRecord import SeqRecord from Bio.Seq import Seq from Bio.Alphabet import IUPAC from Bio import SeqIO import psycopg2 import os import subprocess listFile = open(sys.argv[1]) outFile = open(sys.argv[2], 'w') dbName = sys.argv[3] table = sys.argv[4] conn = psycopg2.connect("dbname={0}".format(dbName)) cur = conn.cursor() records = [] for line in listFile: cdsID = line.split()[0] queryString = "SELECT id, seq FROM {0} WHERE id = '{1}'".format(table, cdsID) cur.execute(queryString) seq = cur.fetchone()[1] record = SeqRecord(Seq(seq, IUPAC.unambiguous_dna).translate(), id=cdsID, name="", description="") records.append(record) SeqIO.write(records, outFile, "fasta") listFile.close() outFile.close()
import base64 import psycopg2 import openerp from openerp import SUPERUSER_ID from openerp import http from openerp.http import request from openerp.addons.web.controllers.main import content_disposition import mimetypes class MailController(http.Controller): _cp_path = '/mail' @http.route('/mail/download_attachment', type='http', auth='user') def download_attachment(self, model, id, method, attachment_id, **kw): # FIXME use /web/binary/saveas directly Model = request.registry.get(model) res = getattr(Model, method)(request.cr, request.uid, int(id), int(attachment_id)) if res: filecontent = base64.b64decode(res.get('base64')) filename = res.get('filename') content_type = mimetypes.guess_type(filename) if filecontent and filename: return request.make_response( filecontent, headers=[('Content-Type', content_type[0] or 'application/octet-stream'), ('Content-Disposition', content_disposition(filename))]) return request.not_found() @http.route('/mail/receive', type='json', auth='none') def receive(self, req): """ End-point to receive mail from an external SMTP server. """ dbs = req.jsonrequest.get('databases') for db in dbs: message = dbs[db].decode('base64') try: registry = openerp.registry(db) with registry.cursor() as cr: mail_thread = registry['mail.thread'] mail_thread.message_process(cr, SUPERUSER_ID, None, message) except psycopg2.Error: pass return True
from enum import Enum from benchmarking import benchmark class MyEnum(Enum): A = 1 B = 2 C = 3 @benchmark def enums() -> None: a = [MyEnum.A, MyEnum.B, MyEnum.C] * 10 n = 0 for i in range(100000): for x in a: if x is MyEnum.A: n += 1 elif x is MyEnum.B: n += 2 assert n == 3000000, n
from flask import Flask, redirect,render_template, request import json import view_model as vm app = Flask(__name__) @app.route("/") def main_page(): return render_template("index.html",page_title="Pricer") @app.route("/get_price",methods=['POST']) def get_price(): dict_args = {} dict_args['strategy'] = request.form.get("strategy","Vanilla") dict_args['type'] = request.form.get("type","European") dict_args['spot'] = request.form.get("spot",0) dict_args['strike'] = request.form.get("strike",0) dict_args['strike2'] = request.form.get("strike2",0) dict_args['maturity'] = request.form.get("maturity") dict_args['maturity2'] = request.form.get("maturity2",0) dict_args['volatility'] = request.form.get("volatility",0.2) dict_args['interest_rate'] = request.form.get("interest-rate",0) #The get_price() method from View_Model returns a render_template with the good html page return vm.View_Model(dict_args).get_price() if __name__ == "__main__": app.run(debug=True)
""" 与类和对象相关的一些BIF: 1.一个类被认为是其自身的子类 issubclass(class,classinfo) 2.classinfo可以是类对象组成的元组,只要class与其中任何一个候选类的子类,则返回True issubclass(class,classinfo) """ class A: pass class B(A): pass print('--------------------------------------------') print(issubclass(B, A)) print('--------------------------------------------') print(issubclass(B, B)) print('--------------------------------------------') print(issubclass(B, object)) print('--------------------------------------------') class C: pass print(issubclass(B, C)) print('--------------------------------------------') """" isinstance(object,classinfo) 1.如果第一个参数不是对象,则永远返回False 2.如果第二个参数不是类或者由类对象组成的元组,会抛出一个TypeError异常 """ b1 = B() print(isinstance(b1, B)) print(isinstance(b1, A)) print(isinstance(b1, C)) print(isinstance(b1, (A, B, C))) print('--------------------------------------------') """ hasattr(object,name) attr = attribute 属性 """ class C: def __init__(self, x=0): self.x = x c1 = C() print(hasattr(c1, 'x')) print('--------------------------------------------') """ getattr(object,name[,default]) """ print(getattr(c1, 'x')) print(getattr(c1, 'y', '您所访问的属性不存在....')) print('--------------------------------------------') """ setattr(object,name,value) 设置指定属性 """ setattr(c1, 'y', 'FishC') print(getattr(c1, 'y', '您访问的属性不存在....')) print('--------------------------------------------') """ delattr(object,name) 删除指定属性 delattr(c1,'y') delattr(c1,'y') """ """ property(fget=None,fset=None,fdel=None,doc=None) 通过属性设置属性,3个参数 """ class C: def __init__(self, size=10): self.size = size def getSize(self): return self.size def setSize(self, value): self.size = value def delSize(self): del self.size x = property(getSize, setSize, delSize) c1 = C() print(c1.getSize()) print(c1.x) c1.x = 18 print(c1.x) print(c1.getSize()) print('--------------------------------------------')
# -*- coding: utf-8 -*- # cython: language_level=3 # BSD 3-Clause License # # Copyright (c) 2020-2022, Faster Speeding # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """The errors and warnings raised within and by Tanjun.""" from __future__ import annotations __all__: list[str] = [ "CommandError", "ConversionError", "HaltExecution", "FailedCheck", "MissingDependencyError", "NotEnoughArgumentsError", "TooManyArgumentsError", "ParserError", "TanjunError", ] import typing if typing.TYPE_CHECKING: from collections import abc as collections class TanjunError(Exception): """The base class for all errors raised by Tanjun.""" __slots__ = () class HaltExecution(TanjunError): """Error raised while looking for a command in-order to end-execution early. For the most part, this will be raised during checks in-order to prevent other commands from being tried. """ __slots__ = () class MissingDependencyError(TanjunError): """Error raised when a dependency couldn't be found.""" __slots__ = ("message",) message: str """The error's message.""" def __init__(self, message: str) -> None: """Initialise a missing dependency error. Parameters ---------- message : str The error message. """ self.message = message class CommandError(TanjunError): """Error raised to end command execution.""" __slots__ = ("message",) # None or empty string == no response message: str """The response error message. Tanjun will try to send the string message as a response. """ def __init__(self, message: str, /) -> None: """Initialise a command error. Parameters ---------- message : str String message which will be sent as a response to the message that triggered the current command. Raises ------ ValueError Raised when the message is over 2000 characters long or empty. """ if len(message) > 2000: raise ValueError("Error message cannot be over 2_000 characters long.") elif not message: raise ValueError("Response message must have at least 1 character.") self.message = message def __str__(self) -> str: return self.message or "" # TODO: use this class InvalidCheck(TanjunError, RuntimeError): # TODO: or/and warning? # TODO: InvalidCheckError """Error raised as an assertion that a check will never pass in the current environment.""" __slots__ = () class FailedCheck(TanjunError, RuntimeError): # TODO: FailedCheckError """Error raised as an alternative to returning `False` in a check.""" __slots__ = () class ParserError(TanjunError, ValueError): """Base error raised by a parser or parameter during parsing. .. note:: Expected errors raised by the parser will subclass this error. """ __slots__ = ("message", "parameter") message: str """String message for this error. .. note:: This may be used as a command response message. """ parameter: typing.Optional[str] """Name of the this was raised for. .. note:: This will be `builtin.None` if it was raised while parsing the provided message content. """ def __init__(self, message: str, parameter: typing.Optional[str], /) -> None: """Initialise a parser error. Parameters ---------- message : str String message for this error. parameter : typing.Optional[str] Name of the parameter which caused this error, should be `None` if not applicable. """ self.message = message self.parameter = parameter def __str__(self) -> str: return self.message class ConversionError(ParserError): """Error raised by a parser parameter when it failed to converter a value.""" __slots__ = ("errors",) errors: collections.Sequence[ValueError] """Sequence of the errors that were caught during conversion for this parameter.""" parameter: str """Name of the parameter this error was raised for.""" def __init__(self, message: str, parameter: str, /, errors: collections.Iterable[ValueError] = ()) -> None: """Initialise a conversion error. Parameters ---------- parameter : tanjun.abc.Parameter The parameter this was raised by. errors : collections.abc.Iterable[ValueError] An iterable of the source value errors which were raised during conversion. """ super().__init__(message, parameter) self.errors = tuple(errors) class NotEnoughArgumentsError(ParserError): """Error raised by the parser when not enough arguments are found for a parameter.""" __slots__ = () parameter: str """Name of the parameter this error was raised for.""" def __init__(self, message: str, parameter: str, /) -> None: """Initialise a not enough arguments error. Parameters ---------- message : str The error message. parameter : tanjun.abc.Parameter The parameter this error was raised for. """ super().__init__(message, parameter) class TooManyArgumentsError(ParserError): """Error raised by the parser when too many arguments are found for a parameter.""" __slots__ = () parameter: str """Name of the parameter this error was raised for.""" def __init__(self, message: str, parameter: str, /) -> None: """Initialise a too many arguments error. Parameters ---------- message : str The error message. parameter : tanjun.abc.Parameter The parameter this error was raised for. """ super().__init__(message, parameter)
import hashlib import pytest from mock import patch from flask import url_for from playhouse.test_utils import assert_query_count from app import instance_keys, app as realapp from auth.auth_context_type import ValidatedAuthContext from data import model from data.cache import InMemoryDataModelCache from data.database import ImageStorageLocation from endpoints.test.shared import conduct_call from util.security.registry_jwt import generate_bearer_token, build_context_and_subject from test.fixtures import * @pytest.mark.parametrize( "method, endpoint", [("GET", "download_blob"), ("HEAD", "check_blob_exists"),] ) def test_blob_caching(method, endpoint, client, app): digest = "sha256:" + hashlib.sha256("a").hexdigest() location = ImageStorageLocation.get(name="local_us") model.blob.store_blob_record_and_temp_link("devtable", "simple", digest, location, 1, 10000000) params = { "repository": "devtable/simple", "digest": digest, } user = model.user.get_user("devtable") access = [{"type": "repository", "name": "devtable/simple", "actions": ["pull"],}] context, subject = build_context_and_subject(ValidatedAuthContext(user=user)) token = generate_bearer_token( realapp.config["SERVER_HOSTNAME"], subject, context, access, 600, instance_keys ) headers = { "Authorization": "Bearer %s" % token, } # Run without caching to make sure the request works. This also preloads some of # our global model caches. conduct_call( client, "v2." + endpoint, url_for, method, params, expected_code=200, headers=headers ) with patch("endpoints.v2.blob.model_cache", InMemoryDataModelCache()): # First request should make a DB query to retrieve the blob. conduct_call( client, "v2." + endpoint, url_for, method, params, expected_code=200, headers=headers ) # Subsequent requests should use the cached blob. with assert_query_count(0): conduct_call( client, "v2." + endpoint, url_for, method, params, expected_code=200, headers=headers, ) @pytest.mark.parametrize( "mount_digest, source_repo, username, expect_success", [ # Unknown blob. ("sha256:unknown", "devtable/simple", "devtable", False), # Blob not in repo. ("sha256:" + hashlib.sha256("a").hexdigest(), "devtable/complex", "devtable", False), # Blob in repo. ("sha256:" + hashlib.sha256("b").hexdigest(), "devtable/complex", "devtable", True), # No access to repo. ("sha256:" + hashlib.sha256("b").hexdigest(), "devtable/complex", "public", False), # Public repo. ("sha256:" + hashlib.sha256("c").hexdigest(), "public/publicrepo", "devtable", True), ], ) def test_blob_mounting(mount_digest, source_repo, username, expect_success, client, app): location = ImageStorageLocation.get(name="local_us") # Store and link some blobs. digest = "sha256:" + hashlib.sha256("a").hexdigest() model.blob.store_blob_record_and_temp_link("devtable", "simple", digest, location, 1, 10000000) digest = "sha256:" + hashlib.sha256("b").hexdigest() model.blob.store_blob_record_and_temp_link("devtable", "complex", digest, location, 1, 10000000) digest = "sha256:" + hashlib.sha256("c").hexdigest() model.blob.store_blob_record_and_temp_link( "public", "publicrepo", digest, location, 1, 10000000 ) params = { "repository": "devtable/building", "mount": mount_digest, "from": source_repo, } user = model.user.get_user(username) access = [{"type": "repository", "name": "devtable/building", "actions": ["pull", "push"],}] if source_repo.find(username) == 0: access.append( {"type": "repository", "name": source_repo, "actions": ["pull"],} ) context, subject = build_context_and_subject(ValidatedAuthContext(user=user)) token = generate_bearer_token( realapp.config["SERVER_HOSTNAME"], subject, context, access, 600, instance_keys ) headers = { "Authorization": "Bearer %s" % token, } expected_code = 201 if expect_success else 202 conduct_call( client, "v2.start_blob_upload", url_for, "POST", params, expected_code=expected_code, headers=headers, ) if expect_success: # Ensure the blob now exists under the repo. model.blob.get_repo_blob_by_digest("devtable", "building", mount_digest) else: with pytest.raises(model.blob.BlobDoesNotExist): model.blob.get_repo_blob_by_digest("devtable", "building", mount_digest)
""" MIT License Copyright (c) 2019 Denis Yarats Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import imageio import os import numpy as np def make_dir(*path_parts): dir_path = os.path.join(*path_parts) try: os.mkdir(dir_path) except OSError: pass return dir_path class VideoRecorder(object): def __init__(self, root_dir, height=256, width=256, camera_id=0, fps=10): self.save_dir = make_dir(root_dir, 'video') if root_dir else None self.height = height self.width = width self.camera_id = camera_id self.fps = fps self.frames = [] def init(self, enabled=True): self.frames = [] self.enabled = self.save_dir is not None and enabled def record(self, env): # TODO(sff1019): Add dm-control to keep the experiments consistant if self.enabled: frame = env.render(mode='rgb_array') self.frames.append(frame) def save(self, file_name, logger=None, step=None): if self.enabled: path = os.path.join(self.save_dir, file_name) imageio.mimsave(path, self.frames, fps=self.fps, macro_block_size=None) if self.enabled and logger is not None and step is not None: # Reshape frames to match pytorch add_video h, w, c = self.frames[0].shape video_array = np.zeros(shape=(len(self.frames), 3, h, w)) for idx, frame in enumerate(self.frames): video_array[idx, :, :, :] = np.transpose( frame, (2, 0, 1)).astype('uint8') logger.log_video(f'eval/{step}', video_array, step, log_frequency=step)
from email.utils import formataddr import requests from CTFd.utils import get_app_config, get_config def sendmail(addr, text, subject): ctf_name = get_config("ctf_name") mailfrom_addr = get_config("mailfrom_addr") or get_app_config("MAILFROM_ADDR") mailfrom_addr = formataddr((ctf_name, mailfrom_addr)) mailgun_base_url = get_config("mailgun_base_url") or get_app_config( "MAILGUN_BASE_URL" ) mailgun_api_key = get_config("mailgun_api_key") or get_app_config("MAILGUN_API_KEY") try: r = requests.post( mailgun_base_url + "/messages", auth=("api", mailgun_api_key), data={ "from": mailfrom_addr, "to": [addr], "subject": subject, "text": text, }, timeout=1.0, ) except requests.RequestException as e: return ( False, "{error} exception occurred while handling your request".format( error=type(e).__name__ ), ) if r.status_code == 200: return True, "Email sent" else: return False, "Mailgun settings are incorrect"
import pyvista pyvista.global_theme.font.label_size = 20
from urllib.parse import urlencode from openpyxl import Workbook import datetime import json import requests now = datetime.datetime.now() areaUrls = [ {'url': 'https://hakwon.sen.go.kr', 'areaNm': '서울'}, {'url': 'https://hakwon.pen.go.kr', 'areaNm': '부산'}, {'url': 'https://hakwon.dge.go.kr', 'areaNm': '대구'}, {'url': 'https://hakwon.ice.go.kr', 'areaNm': '인천'}, {'url': 'https://hakwon.gen.go.kr', 'areaNm': '광주'}, {'url': 'https://hakwon.dje.go.kr', 'areaNm': '대전'}, {'url': 'https://hakwon.use.go.kr', 'areaNm': '울산'}, {'url': 'https://hakwon.sje.go.kr', 'areaNm': '세종시'}, {'url': 'https://hakwon.goe.go.kr', 'areaNm': '경기도'}, {'url': 'https://hakwon.kwe.go.kr', 'areaNm': '강원도'}, {'url': 'https://hakwon.cbe.go.kr', 'areaNm': '충북'}, {'url': 'https://hakwon.cne.go.kr', 'areaNm': '충남'}, {'url': 'https://hakwon.jbe.go.kr', 'areaNm': '전북'}, {'url': 'https://hakwon.jne.go.kr', 'areaNm': '전남'}, {'url': 'https://hakwon.gbe.kr', 'areaNm': '경북'}, {'url': 'https://hakwon.gne.go.kr', 'areaNm': '경남'}, {'url': 'https://hakwon.jje.go.kr', 'areaNm': '제주'}, ] zoneCodes = [] searchParams = {} # Print iterations progress def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '█', printEnd = "\r"): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) printEnd - Optional : end character (e.g. "\r", "\r\n") (Str) """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = printEnd) # Print New Line on Complete if iteration == total: print() def hakwondata(zcode, neisUrl, areaNm, cookies): book = Workbook() urllist = [] excelList = [] teacherList = [] totalPage = 1 zoneNm = "" searchParams["searchZoneCode"] = zcode ## to get total count response = requests.post(neisUrl + '/scs_ica_cr91_005.ws', data=json.dumps(searchParams), cookies=cookies) jsonObj = json.loads(response.content) ## total count totalCnt = int(jsonObj["resultSVO"]["totalCount"]) print(totalCnt, "records ") if totalCnt > 1000: totalPage, therest = divmod(totalCnt, 1000) if therest > 0: totalPage = totalPage + 1 searchParams["pageSize"] = 1000 elif totalCnt < 1: print("No records found") return else: totalPage = 1 searchParams["pageSize"] = str(totalCnt) print("Total ", totalPage, " pages...") zoneNm = findZoneName(zcode) for pageIndex in range(0, totalPage, 1): print(pageIndex + 1, " page crawling... ") ## post again searchParams["pageIndex"] = str(pageIndex + 1) response = requests.post(neisUrl + '/scs_ica_cr91_005.ws', data=json.dumps(searchParams), cookies=cookies) jsonObj = json.loads(response.content) hakwonlist = jsonObj["resultSVO"]["hesIcaCr91M00DVO"] seq = (pageIndex) * int(searchParams["pageSize"]) + 1 teacher_params = {} curAcaAsnum = "" progressIndex = 0 maxProgressIndex = len(hakwonlist) printProgressBar(progressIndex, maxProgressIndex, prefix='Progress:', suffix='Complete', length=50) for onehakwon in hakwonlist: leSbjtNm = "" if isinstance(onehakwon["leSbjtNm"], list): leSbjtNm = onehakwon["leSbjtNm"][0] else: leSbjtNm = onehakwon["leSbjtNm"] lessonPeriod = onehakwon["leMms"] + '개월 ' + onehakwon["lePrdDds"] + '일' excelData = (strNow, seq, onehakwon["zoneNm"], onehakwon["acaNm"], onehakwon["gmNm"], leSbjtNm, onehakwon["faTelno"], onehakwon["totalJuso"], onehakwon["toforNmprFgr"], lessonPeriod, onehakwon["totLeTmMmFgr"], onehakwon["thccSmtot"], onehakwon["thccAmt"], onehakwon["etcExpsSmtot"]) if curAcaAsnum != onehakwon["acaAsnum"]: curAcaAsnum = onehakwon["acaAsnum"] ## 강사 정보 추출 teacher_params["juOfcdcCode"] = onehakwon["juOfcdcCode"] teacher_params["acaAsnum"] = onehakwon["acaAsnum"] teacher_params["gubunCode"] = searchParams["searchGubunCode"] teacherList = [] response = requests.post(neisUrl + '/hes_ica_cr91_006.ws', data=json.dumps(teacher_params), cookies=cookies) jsonObj = json.loads(response.content) teachers = jsonObj["resultSVO"]["teacherDVOList"] for oneteacher in teachers: teacherList.append(oneteacher["fouKraName"]) teacherTuple = tuple(teacherList) excelList.append(excelData + teacherTuple) seq = seq + 1 progressIndex = progressIndex + 1 printProgressBar(progressIndex, maxProgressIndex, prefix='Progress:', suffix='Complete', length=50) ## progress bar end # print("\n") ## 엑셀 저장 sheet = book.active sheet.append(('크롤링일', '순번', '지역', '학원명', '교습과정', '교습과목', '전화번호', '주소', '정원', '교습기간', '총교습시간(분)', '교습비 합계', '교습비', '기타경비', '강사')) for row in excelList: sheet.append(row) filename = './data/hakwoncrawling' + '-' + areaNm + '-' + zoneNm if searchParams["searchClassName"] != '': filename = filename + '-' + searchParams["searchClassName"] if searchParams["searchGubunCode"] == '1': filename = filename + '-' + '학원' elif searchParams["searchGubunCode"] == '2': filename = filename + '-' + '교습소' book.save(filename + '-' + strNow + '.xlsx') ## 지역명 찾기 def findZoneName(zonecode): for onecode in zoneCodes: if onecode["zoneCode"] == zonecode: return onecode["zoneNm"] return "" ## 하위 지역 리스트 만들기 def getSearchZoneCodeList(areaIndex, cookies): params={} response = requests.post(areaUrls[areaIndex]["url"] + '/scs_ica_cr91_001.ws', data=json.dumps(params), cookies=cookies) jsonObj = json.loads(response.content) if jsonObj["result"]["status"] == "success": searchZoneCodeList = jsonObj["resultSVO"]["searchZoneCodeList"] for zonecode in searchZoneCodeList: zoneCodes.append({"zoneCode": zonecode["zoneCode"], "zoneNm": zonecode["zoneNm"]}) return 1 else: return 0 def readSearchConfig(): with open('./config.json', 'rt', encoding='UTF-8') as json_file: p = json.load(json_file) searchParams["pageIndex"] = p["pageIndex"] searchParams["pageSize"] = p["pageSize"] searchParams["checkDomainCode"] = p["checkDomainCode"] searchParams["juOfcdcCode"] = p["juOfcdcCode"] searchParams["acaAsnum"] = p["acaAsnum"] searchParams["gubunCode"] = p["gubunCode"] searchParams["searchYn"] = p["searchYn"] searchParams["searchGubunCode"] = p["searchGubunCode"] searchParams["searchName"] = p["searchName"] searchParams["searchZoneCode"] = p["searchZoneCode"] searchParams["searchKindCode"] = p["searchKindCode"] searchParams["searchTypeCode"] = p["searchTypeCode"] searchParams["searchCrseCode"] = p["searchCrseCode"] searchParams["searchCourseCode"] = p["searchCourseCode"] searchParams["searchClassName"] = p["searchClassName"] if __name__ == "__main__": strNow = now.strftime('%y%m%d') neisUrl = 'https://www.neis.go.kr' areaIndex = "0" # 검색 조건 불러오기 추가 # config.json 에서 해당 Parameter를 미리 불러옴 readSearchConfig() # 학원정보 데이터 수집 진행중 # 2020.2.25 방순호 # for zcode in while int(areaIndex) >= 0: ## Initialize searchParams["pageIndex"] = "1" searchParams["pageSize"] = "1" for aindex in range(0,len(areaUrls),1): print(str(aindex) + " : " + areaUrls[aindex]["areaNm"]) areaIndex = input("교육청을 선택해 주세요 (종료 'q') : ") if areaIndex == 'q': exit(0) ## cookie 정보 저장 # request = Request(neisUrl) params = {} # params["paramJson"] = "%7B%7D" response = requests.get(areaUrls[int(areaIndex)]["url"] + '/edusys.jsp?page=scs_m80000', params={}) cookies = response.cookies ## 지역 리스트 불러오기 zoneCodes = [] if getSearchZoneCodeList(int(areaIndex), cookies) == 0: print("지역을 불러오는 도중 오류가 발생했습니다.") continue zoneIndex = "" while zoneIndex == "": for zoneCode in zoneCodes: print(zoneCode["zoneCode"] + " : " + zoneCode["zoneNm"]) zoneIndex = input("원하시는 지역 번호를 입력해 주세요 (종료 'q') : ") if zoneIndex == 'q': exit(0) if zoneIndex.strip() != "": break searchGubun = "" while searchGubun == "": searchGubun = input("1 - 학원, 2 - 교습소 (종료 'q') : ") if searchGubun == 'q': exit(0) if searchGubun == '1' or searchGubun == '2': searchParams["searchGubunCode"] = searchGubun break else: searchGubun = "" searchWord = input("원하시는 검색어를 입력해 주세요 (없으면 걍 엔터) : ") searchParams["searchClassName"] = searchWord.strip() hakwondata(zoneIndex, areaUrls[int(areaIndex)]["url"], areaUrls[int(areaIndex)]["areaNm"], cookies)
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest from conans import tools from conans.client.tools.win import get_cased_path from conans.test.utils.test_files import temp_folder import os import platform from conans.util.files import mkdir class GetCasedPath(unittest.TestCase): @unittest.skipUnless(platform.system() == "Windows", "Requires Windows") def test_case_existing(self): folder = get_cased_path(temp_folder()) p1 = os.path.join(folder, "MyFolder", "Subfolder") mkdir(p1) self.assertEqual(p1, get_cased_path(p1)) # Idempotent self.assertEqual(p1, get_cased_path(os.path.join(folder, "myfolder", "subfolder"))) def test_case_not_existing(self): current_dir = get_cased_path(os.getcwd()) non_existing_path = os.path.join(current_dir, "this", "Path", "does", "NOT", "Exists") p = get_cased_path(non_existing_path) # If not exists from the root, returns as is self.assertEqual(p, non_existing_path) @unittest.skipUnless(platform.system() == "Windows", "Requires Windows") def test_case_partial_exists(self): folder = get_cased_path(temp_folder()) p1 = os.path.join(folder, "MyFolder", "Subfolder") mkdir(p1) non_existing_path = os.path.join(folder, "myfolder", "subfolder", "not-existing") # The first part of the path will be properly cased. self.assertEqual(os.path.join(p1, "not-existing"), get_cased_path(non_existing_path)) class UnixPathTest(unittest.TestCase): def test_msys_path(self): self.assertEqual('/c/windows/system32', tools.unix_path('C:\\Windows\\System32', path_flavor=tools.MSYS2)) def test_cygwin_path(self): self.assertEqual('/cygdrive/c/windows/system32', tools.unix_path('C:\\Windows\\System32', path_flavor=tools.CYGWIN)) def test_wsl_path(self): self.assertEqual('/mnt/c/Windows/System32', tools.unix_path('C:\\Windows\\System32', path_flavor=tools.WSL)) def test_sfu_path(self): self.assertEqual('/dev/fs/C/windows/system32', tools.unix_path('C:\\Windows\\System32', path_flavor=tools.SFU))
import random import secrets import string import typing from dataclasses import dataclass, field from morpfw.crud import Schema def current_userid(request, data, model): if data["userid"] is None: data["userid"] = request.identity.userid return data["userid"] def generate_identity(request, data, model) -> str: if data["api_identity"]: return data["api_identity"] return secrets.token_urlsafe(32) @dataclass class APIKeySchema(Schema): userid: typing.Optional[str] = field( default=None, metadata={"format": "uuid", "index": True, "compute_value": current_userid, 'editable': False, 'initializable': False}, ) name: typing.Optional[str] = field(default=None, metadata={"required": True}) api_identity: typing.Optional[str] = field( default=None, metadata={"compute_value": generate_identity, "index": True, 'initializable': False, 'editable': False}, ) api_secret: typing.Optional[str] = field( default=None, metadata={"editable": False, "hidden": True, 'initializable':False} )
import urllib from googleapiclient import discovery from PIL import Image class ImageSearch(object): CUSTOM_SEARCH_API = 'AIzaSyBFoF4sDsSj6FV8O-cYsyHbU9stfIrACJg' MENU_PICTURE_CSE = '000057874177480001711:2ywzhtb3u6q' def __init__(self): self.service = discovery.build('customsearch', 'v1', developerKey=self.CUSTOM_SEARCH_API) def Search(self, text, num=5): response = self.service.cse().list(q=text, cx=self.MENU_PICTURE_CSE, searchType='image', safe='high', num=num).execute() image_link_list = [] if not response or 'items' not in response: return None for item in response['items']: if 'link' in item and 'image': image_link_list.append(item['link']) return image_link_list def main(): num = 5 thumbnail_size = (400, 300) background = Image.new('RGBA', (thumbnail_size[0], thumbnail_size[1] * num), (255, 255, 255, 255)) image_search = ImageSearch() image_link_list = image_search.Search('grilled steak', num=num) for i, image_link in enumerate(image_link_list): tmp_image_file = '/tmp/img%d' % i urllib.urlretrieve(image_link, tmp_image_file) im = Image.open(tmp_image_file) im.thumbnail(thumbnail_size) offset = (0, thumbnail_size[1] * i) background.paste(im, offset) background.show() if __name__ == '__main__': main()
#!/usr/bin/env python import telnetlib import time TELNET_PORT = 23 TELNET_TIMEOUT = 6 def main(): ip_addr = "184.105.247.70" username = "pyclass" password = "88newclass" telnet_conn = telnetlib.Telnet(ip_addr, TELNET_PORT, TELNET_TIMEOUT) output = telnet_conn.read_until("sername:", TELNET_TIMEOUT) telnet_conn.write(username + '\n') output = telnet_conn.read_until("ssword", TELNET_TIMEOUT) telnet_conn.write(password + '\n') time.sleep(2) output = telnet_conn.read_very_eager() telnet_conn.write("show ip interface brief" + '\n') time.sleep(2) output = telnet_conn.read_very_eager() print output telnet_conn.close() if __name__ == "__main__": main()
# Copyright 2013 mysqlapi authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. from unittest import TestCase from django.conf import settings from django.test.utils import override_settings from mysqlapi.api.management.commands import s3 import mock class S3TestCase(TestCase): @override_settings(S3_ACCESS_KEY="access", S3_SECRET_KEY="secret") def test_connection_should_get_keys_from_settings(self): access = settings.S3_ACCESS_KEY secret = settings.S3_SECRET_KEY with mock.patch("boto.s3.connection.S3Connection") as s3con: s3.connect() s3con.assert_called_with(access, secret) @override_settings(S3_BUCKET="bucket") def test_get_buckets_from_settings(self): bucket = settings.S3_BUCKET with mock.patch("boto.s3.connection.S3Connection") as s3con: conn = mock.Mock() s3_instance = s3con.return_value s3_instance.return_value = conn s3.bucket() s3_instance.get_bucket.assert_called_with(bucket) def test_last_key(self): m = "mysqlapi.api.management.commands.s3.bucket" with mock.patch(m) as bucket_mock: key = mock.Mock() key.get_contents_as_string.return_value = "last_key" bucket = mock.Mock() bucket.get_key.return_value = key bucket_mock.return_value = bucket self.assertEqual("last_key", s3.last_key()) def test_store_data(self): with mock.patch("mysqlapi.api.management.commands.s3.bucket"): with mock.patch("boto.s3.key.Key") as Key: key = Key.return_value s3.store_data("data") key.set_contents_from_string.assert_any_call("data") def test_store_data_should_use_uuid_in_key_name(self): with mock.patch("mysqlapi.api.management.commands.s3.bucket"): with mock.patch("boto.s3.key.Key") as Key: key = Key.return_value with mock.patch("uuid.uuid4"): s3.store_data("data") key.set_contents_from_string.assert_called_with(Key().name) def test_store_data_should_store_last_key(self): with mock.patch("mysqlapi.api.management.commands.s3.bucket"): with mock.patch("uuid.uuid4") as uuid4: uuid4.return_value = mock.Mock(hex="uuid") key = s3.store_data("data") self.assertEqual("uuid", key.name) def test_get_data(self): m = "mysqlapi.api.management.commands.s3.bucket" with mock.patch(m) as bucket_mock: key = mock.Mock() key.get_contents_as_string.return_value = "last_key" bucket = mock.Mock() bucket.get_key.return_value = key bucket_mock.return_value = bucket self.assertEqual("last_key", s3.get_data())
"""Special addresses in hex values""" IPV4_LOCALHOST = 0x7F_00_00_01 # 127.0.0.1, or 2130706433 IPV6_LOCALHOST = 0x1 # ::1
from __future__ import absolute_import, unicode_literals import unittest from draftjs_exporter.error import ConfigException from draftjs_exporter.options import Options class TestOptions(unittest.TestCase): def test_str(self): self.assertEqual(str(Options('unordered-list-item', 'li')), '<Options unordered-list-item li {} None None>') def test_eq(self): self.assertEqual(Options('unordered-list-item', 'li'), Options('unordered-list-item', 'li')) def test_not_eq(self): self.assertNotEqual(Options('unordered-list-item', 'li'), Options('unordered-list-item', 'p')) def test_for_block_full(self): self.assertEqual(Options.for_block({'unordered-list-item': 'li'}, 'unordered-list-item'), Options('unordered-list-item', 'li')) def test_for_block_half(self): self.assertEqual(Options.for_block({'unordered-list-item': 'li'}, 'unordered-list-item'), Options('unordered-list-item', 'li')) def test_for_block_simplest(self): self.assertEqual(Options.for_block({'unordered-list-item': 'li'}, 'unordered-list-item'), Options('unordered-list-item', 'li')) def test_for_block_uses_fallback(self): self.assertEqual(Options.for_block({'header-one': 'h1', 'fallback': 'div'}, 'header-two'), Options('header-two', 'div')) def test_for_block_raises_missing_type(self): with self.assertRaises(ConfigException): Options.for_block({'header-one': 'h1'}, 'header-two') def test_for_block_raises_missing_element(self): with self.assertRaises(ConfigException): Options.for_block({'header-one': {}}, 'header-one') def test_for_style_full(self): self.assertEqual(Options.for_style({'ITALIC': 'em'}, 'ITALIC'), Options('ITALIC', 'em')) def test_for_style_half(self): self.assertEqual(Options.for_style({'ITALIC': 'em'}, 'ITALIC'), Options('ITALIC', 'em')) def test_for_style_simplest(self): self.assertEqual(Options.for_style({'ITALIC': 'em'}, 'ITALIC'), Options('ITALIC', 'em')) def test_for_style_uses_fallback(self): self.assertEqual(Options.for_style({'BOLD': 'strong', 'FALLBACK': 'span'}, 'CODE'), Options('CODE', 'span')) def test_for_style_raises_missing_type(self): with self.assertRaises(ConfigException): Options.for_style({'BOLD': 'strong'}, 'CODE') def test_for_style_raises_missing_element(self): with self.assertRaises(ConfigException): Options.for_style({'BOLD': {}}, 'BOLD') def test_for_entity_full(self): self.assertEqual(Options.for_entity({'HORIZONTAL_RULE': 'hr'}, 'HORIZONTAL_RULE'), Options('HORIZONTAL_RULE', 'hr')) def test_for_entity_half(self): self.assertEqual(Options.for_entity({'HORIZONTAL_RULE': 'hr'}, 'HORIZONTAL_RULE'), Options('HORIZONTAL_RULE', 'hr')) def test_for_entity_simplest(self): self.assertEqual(Options.for_entity({'HORIZONTAL_RULE': 'hr'}, 'HORIZONTAL_RULE'), Options('HORIZONTAL_RULE', 'hr')) def test_for_entity_uses_fallback(self): self.assertEqual(Options.for_entity({'HORIZONTAL_RULE': 'hr', 'FALLBACK': 'div'}, 'TEST'), Options('TEST', 'div')) def test_for_entity_raises_missing_type(self): with self.assertRaises(ConfigException): Options.for_entity({'HORIZONTAL_RULE': 'hr'}, 'TEST') def test_for_entity_raises_missing_element(self): with self.assertRaises(ConfigException): Options.for_entity({'HORIZONTAL_RULE': {}}, 'HORIZONTAL_RULE')
from pathlib import Path from typing import Union, List import torch import torch.nn.functional as F from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2PreTrainedModel from transformers.generation_utils import top_k_top_p_filtering, calc_banned_bad_words_ids from utils import utils MAX_LENGTH = int(10000) # Hardcoded max length to avoid infinite loop def adjust_length_to_model(length, max_sequence_length): if length < 0 < max_sequence_length: length = max_sequence_length elif 0 < max_sequence_length < length: length = max_sequence_length # No generation bigger than model size elif length < 0: length = MAX_LENGTH # avoid infinite loop return length # TODO: convert to HuggingFace pipeline class GPT2Generation: STOP_TOKEN = "<|endoftext|>" def __init__(self, model: Union[str, Path, GPT2PreTrainedModel] = 'gpt2', tokenizer: str = 'gpt2', seed: int = 42): # Set up device self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() utils.set_seed(seed, n_gpu) # Set up model if isinstance(model, Path) or isinstance(model, str): model = GPT2LMHeadModel.from_pretrained(str(model)) self.model = model.to(self.device) # Set up tokenizer # IMPORTANT: Note that setting the pad token like this in the constructor gives the pad_token the # pad_token_id = 50256, which normally belongs to the <EOS> token_id in GPT2. This is a very ugly # way that works at the moment of setting the pad_token_id to the <EOS> token that is already # included in the vocab size. self.tokenizer = GPT2Tokenizer.from_pretrained(tokenizer, pad_token=self.STOP_TOKEN) assert self.tokenizer.eos_token_id == self.tokenizer.pad_token_id def __repr__(self): return f'<GPT2Generator model_name_or_path="{self.model}">' def __call__(self, *args, **kwargs): return self.generate(*args, **kwargs) def generate(self, prompt: Union[str, List[str]], max_len: int = 20, sample: bool = True, k: int = 0, p: float = 0.9, temperature: float = 1.0, bad_words_ids: List[List[int]] = None, **model_kwargs) -> List[str]: if isinstance(prompt, str): prompt = [prompt] encodings_dict = self.tokenizer.batch_encode_plus(prompt, pad_to_max_length=True, return_tensors='pt') input_ids = encodings_dict['input_ids'].to(self.device) attention_mask = encodings_dict['attention_mask'].to(self.device) batch_size, input_seq_len = input_ids.shape position_ids = attention_mask.cumsum(dim=1) - 1 unfinished_sents = torch.ones(batch_size, dtype=torch.long, device=self.device) self.model.eval() with torch.no_grad(): for step in range(max_len): logits, past = self.model(input_ids, attention_mask=attention_mask, position_ids=position_ids, **model_kwargs) # in the first decoding step, we want to use the 'real' last position for each sentence if step == 0: last_non_masked_idx = torch.sum(attention_mask, dim=1) - 1 next_token_logits = logits[range(batch_size), last_non_masked_idx, :] else: next_token_logits = logits[:, -1, :] if bad_words_ids is not None: # calculate a list of banned tokens according to bad words banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids) # TODO: use a vectorized operation for batch_idx in range(batch_size): next_token_logits[batch_idx, banned_tokens[batch_idx]] = -float("inf") if sample: # Temperature (higher temperature => more likely to sample low probability tokens) if temperature != 1.0: next_token_logits = next_token_logits / temperature # Top-p/top-k filtering next_token_logits = top_k_top_p_filtering(next_token_logits, top_k=k, top_p=p) # Sample probs = F.softmax(next_token_logits, dim=-1) next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) else: # Greedy decoding next_tokens = torch.argmax(next_token_logits, dim=-1) # either append a padding token here if <EOS> has been seen or append next token tokens_to_add = next_tokens * unfinished_sents + self.tokenizer.pad_token_id * (1 - unfinished_sents) # this updates which sentences have not seen an EOS token so far # if one EOS token was seen the sentence is finished eos_in_sents = tokens_to_add == self.tokenizer.eos_token_id unfinished_sents.mul_((~eos_in_sents).long()) # stop when there is an EOS in each sentence if unfinished_sents.max() == 0: break # Update input_ids, attention_mask and position_ids input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1) attention_mask = torch.cat([attention_mask, attention_mask.new_ones((batch_size, 1))], dim=1) position_ids = torch.cat([position_ids, (position_ids[:, -1] + 1).unsqueeze(-1)], dim=1) decoded_outputs = [self.tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) for output in input_ids[:, input_seq_len:]] return decoded_outputs def generate_multiple(self, prompt: str, max_len: int = 20, temperature: float = 1.0, k: int = 0, p: float = 0.9, num_return_sequences: int = 1, sample: bool = True, repetition_penalty: float = 1.0): max_len = adjust_length_to_model(max_len, max_sequence_length=self.model.config.max_position_embeddings) encoded_prompt = self.tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") encoded_prompt = encoded_prompt.to(self.device) prompt_len = len(encoded_prompt[0]) output_sequences = self.model.generate( input_ids=encoded_prompt, max_length=max_len + prompt_len, temperature=temperature, top_k=k, top_p=p, repetition_penalty=repetition_penalty, do_sample=sample, num_return_sequences=num_return_sequences, ) # Remove the batch dimension when returning multiple sequences if len(output_sequences.shape) > 2: output_sequences.squeeze_() decoded_outputs = [] for output in output_sequences: output = output[prompt_len:] try: stop_index = [i for i, x in enumerate(output) if x == self.tokenizer.eos_token_id][0] except IndexError: stop_index = None output = output[:stop_index] decoded_outputs.append(self.tokenizer.decode(output, clean_up_tokenization_spaces=True)) return decoded_outputs def test_generate(): generator = GPT2Generation() prompt = [ '<|endoftext|>in this paper we', '<|endoftext|>we are trying to', '<|endoftext|>The purpose of this workshop is to check whether we can' ] out = generator.generate(prompt) print(*out, sep='\n') def test_generate_multiple(): generator = GPT2Generation() prompt = 'in this paper we' out = generator.generate_multiple(prompt) print(*out, sep='\n')
larg = float(input('Largura da Parede:')) alt = float(input('Altura da parede:')) area = larg * alt tinta = area / 2 print('Sua area de parde tem a dimessão de {} X {} \n se ua area é de {:.2f} m²'.format(larg, alt, area)) print('Para pintar a parde você precisa de {} litro de tinta'.format(tinta))
# coding=utf-8 #----------------------------------------------------------- # IMPORTS #----------------------------------------------------------- import language import messages from entities import Entity #----------------------------------------------------------- # CLASSES #----------------------------------------------------------- class Light(Entity): def __init__(self): super(Light, self).__init__() self.is_on = False def switch_on(self): self.is_on = True def switch_off(self): self.is_on = False class LightCommands(Entity): def __init__(self): super(LightCommands, self).__init__() self.on_message('player_command', self.__player_command, filter=messages.for_actors_with_item_of_class(Light)) def __player_command(self, player, command): args = command.split(' ') if args[0] == 'tänd': light = player.inventory.find_best_match(' '.join(args[1:])) if not isinstance(light, Light): player.text('Tänd vad?') return if light.is_on: light_desc = light.get_description(indefinite=False) player.text(language.sentence('{} är redan tänd.', light_desc)) return light.switch_on() player.emote('tände', light) elif args[0] == 'släck': light = player.inventory.find_best_match(' '.join(args[1:])) if not isinstance(light, Light): player.text('Släck vad?') return if not light.is_on: light_desc = light.get_description(indefinite=False) player.text(language.sentence('{} är redan släckt.', light_desc)) return light.switch_off() player.emote('släckte', light) LightCommands()
from django.contrib import admin from moduleevaluation.files.models import Document admin.site.register(Document) # Register your models here.
with open("day-10.txt") as f: nav_sys = f.read().rstrip().splitlines() pairs = { ")": "(", "]": "[", "}": "{", ">": "<", } points = { ")": 3, "]": 57, "}": 1197, ">": 25137, } score = 0 for line in nav_sys: brackets = [] for char in line: if char in pairs: if brackets and pairs[char] == brackets[-1]: brackets.pop() else: score += points[char] break else: brackets.append(char) print(score)
#!/usr/bin/python #from gpiozero import Button import signal import os, sys import time #import uinput from evdev import uinput, UInput, ecodes as e import RPi.GPIO as gpio #from smbus import SMBus DEBUG = False Debounce = 0.01 R_slider = 4 # uinput.KEY_VOLUMEUP, Right slider L_slider = 27 # uinput.KEY_VOLUMEDOWN, Left slider C_sldier = 17 # uinput.KEY_MUTE, Click slider Turbo = 5 # uinput.KEY_T, Alt key/turbo button, center Top left Mode = 26 # uinput.BTN_MODE, Mode/clear button , center top right Start = 20 # uinput.BTN_START, Start Button, center bottom left Select = 6 # uinput.BTN_SELECT, Select Button, center bottom right Btn_A = 1 # uinput.BTN_A, A Button, right bottom Btn_B = 16 # uinput.BTN_B, B Button, right right Btn_X = 24 # uinput.BTN_X, X Button, right top Btn_Y = 12 # uinput.BTN_Y, Y Button, right down Btn_U = 11 # uinput.BTN_DPAD_UP, Up Button, left top Btn_L = 9 # uinput.BTN_DPAD_LEFT, Left Button, left left Btn_R = 0 # uinput.BTN_DPAD_RIGHT, Right Button, left right Btn_D = 13 # uinput.BTN_DPAD_DOWN, Down Button, left down Btn_LT = 10 # uinput.BTN_TL, Left Trigger Btn_RT = 23 # uinput.BTN_TR, Right Trigger buttonList = [R_slider, L_slider, C_sldier, Turbo, Mode, Start, Select, Btn_A, Btn_B, Btn_X, Btn_Y, Btn_U, Btn_L, Btn_R, Btn_D, Btn_LT, Btn_RT] keyList = { R_slider: e.KEY_VOLUMEUP, # Right slider L_slider: e.KEY_VOLUMEDOWN, # Left slider C_sldier: e.KEY_MUTE, # Click slider Turbo: e.KEY_C, # Alt key/turbo button, center Top left Mode: e.KEY_V, # Mode/clear button , center top right Start: e.KEY_ENTER, # Start Button, center bottom left Select: e.KEY_SPACE, # Select Button, center bottom right Btn_A: e.KEY_LEFTCTRL, # A Button, right bottom Btn_B: e.KEY_LEFTALT, # B Button, right right Btn_X: e.KEY_Z, # X Button, right top Btn_Y: e.KEY_X, # Y Button, right down Btn_U: e.KEY_UP, # Up Button, left top Btn_L: e.KEY_LEFT, # Left Button, left left Btn_R: e.KEY_RIGHT, # Right Button, left right Btn_D: e.KEY_DOWN, # Down Button, left down Btn_LT: e.KEY_Q, # Left Trigger Btn_RT: e.KEY_W, # Right Trigger } os.system("sudo modprobe uinput") gpio.setwarnings(False) gpio.setmode(gpio.BCM) gpio.setup(buttonList, gpio.IN, pull_up_down=gpio.PUD_UP) try: ui = UInput({e.EV_KEY: keyList.values()}, name="retrogame", bustype=e.BUS_USB) except uinput.UInputError as e: sys.stdout.write(e.message) sys.stdout.write("Have you tried running as root? sudo {}".format(sys.argv[0])) sys.exit(0) def log(msg): sys.stdout.write(str(datetime.now())) sys.stdout.write(": ") sys.stdout.write(msg) sys.stdout.write("\n") sys.stdout.flush() def handle_button(pin): key = keyList[pin] time.sleep(Debounce) if pin >= 1000: state = analog_states[pin-1000] else: state = 0 if gpio.input(pin) else 1 ui.write(e.EV_KEY, key, state) ui.syn() if DEBUG: log("Pin: {}, KeyCode: {}, Event: {}".format(pin, key, 'press' if state else 'release')) for button in buttonList: gpio.add_event_detect(button, gpio.BOTH, callback=handle_button, bouncetime=1) while True: try: time.sleep(0.01) except KeyboardInterrupt: print("Stopping") sys.exit(0) ''' buttonList = [ [4, uinput.KEY_VOLUMEUP], # Right slider [27, uinput.KEY_VOLUMEDOWN], # Left slider [17, uinput.KEY_MUTE], # Click slider [5, uinput.KEY_LEFTALT], # Alt key/turbo button, center Top left [26, uinput.KEY_LEFTCTRL], # Mode/clear button , center top right [20, uinput.KEY_ENTER], # Start Button, center bottom left [6, uinput.KEY_SPACE], # Select Button, center bottom right [1, uinput.KEY_A], # A Button, right bottom [16, uinput.KEY_B], # B Button, right right [24, uinput.KEY_X], # X Button, right top [12, uinput.KEY_Y], # Y Button, right down [11, uinput.KEY_UP], # Up Button, left top [9, uinput.KEY_LEFT], # Left Button, left left [0, uinput.KEY_RIGHT], # Right Button, left right [13, uinput.KEY_DOWN], # Down Button, left down [10, uinput.KEY_L], # Left Trigger [23, uinput.KEY_R], # Right Trigger ] # Decontruct the lists that are indexed the same for recall eventList = [item[1] for item in buttonList] pinList = [item[0] for item in buttonList] device = uinput.Device(eventList) buttons = [] for pin in pinList: # create a button with 5ms bounce timer buttons.append(Button(pin, bounce_time=0.005)) time.sleep(0.125) print('Ready') while(1): for idx in range(0,len(pinList)): if(buttons[idx].is_pressed): #device.emit_click(eventList[idx]) device.emit(eventList[idx], 1) else: device.emit(eventList[idx], 0) time.sleep(0.0165) '''
# -*- coding: utf-8 -*- from sqlalchemy.exc import IntegrityError class MetadataManagerReadError(Exception): pass class InvalidMimeTypeError(Exception): def __init__(self, mimetype): msg = "Invalid mimetype '%s'" % str(mimetype) super(InvalidMimeTypeError, self).__init__(msg) class NoConfigFoundError(Exception): def __init__(self, *args, **kwargs): msg = ('No configuration file found. Please define one:\n' '\t* config/local.py\n' '\t* Set the environment variable $SHIVA_CONFIG pointing to a ' 'config file.\n' '\t* $XDG_CONFIG_HOME/shiva/config.py which defaults to \n' '\t $HOME/.config/shiva/config.py') super(NoConfigFoundError, self).__init__(msg) class NoUploadPathConfigError(Exception): def __init__(self): msg = "No UPLOAD_PATH config defined." super(NoUploadPathConfigError, self).__init__(msg) class InvalidFileTypeError(Exception): pass class ObjectExistsError(Exception): pass
import os import aiohttp import time import re import logging import glob import random from datetime import datetime from contextlib import asynccontextmanager, contextmanager from PIL import Image, ImageDraw, ImageFont from athena_bot import utils from datetime import datetime, timedelta logger = logging.getLogger(__name__) def rounded_rectangle(self: ImageDraw, xy, corner_radius, fill=None, outline=None): upper_left_point = xy[0] bottom_right_point = xy[1] self.pieslice([upper_left_point, (upper_left_point[0] + corner_radius * 2, upper_left_point[1] + corner_radius * 2)], 180, 270, fill=fill, outline=outline ) self.pieslice([(bottom_right_point[0] - corner_radius * 2, bottom_right_point[1] - corner_radius * 2), bottom_right_point], 0, 90, fill=fill, outline=outline ) self.pieslice([(upper_left_point[0], bottom_right_point[1] - corner_radius * 2), (upper_left_point[0] + corner_radius * 2, bottom_right_point[1])], 90, 180, fill=fill, outline=outline ) self.pieslice([(bottom_right_point[0] - corner_radius * 2, upper_left_point[1]), (bottom_right_point[0], upper_left_point[1] + corner_radius * 2)], 270, 360, fill=fill, outline=outline ) self.rectangle([ (upper_left_point[0], upper_left_point[1] + corner_radius), (bottom_right_point[0], bottom_right_point[1] - corner_radius)], fill=fill, outline=fill ) self.rectangle([ (upper_left_point[0] + corner_radius, upper_left_point[1]), (bottom_right_point[0] - corner_radius, bottom_right_point[1])], fill=fill, outline=fill ) #self.line([(upper_left_point[0] + corner_radius, upper_left_point[1]), (bottom_right_point[0] - corner_radius, upper_left_point[1])], fill=outline) #self.line([(upper_left_point[0] + corner_radius, bottom_right_point[1]), (bottom_right_point[0] - corner_radius, bottom_right_point[1])], fill=outline) #self.line([(upper_left_point[0], upper_left_point[1] + corner_radius), (upper_left_point[0], bottom_right_point[1] - corner_radius)], fill=outline) #self.line([(bottom_right_point[0], upper_left_point[1] + corner_radius), (bottom_right_point[0], bottom_right_point[1] - corner_radius)], fill=outline) class Overwatch: BASE_URL='https://ow-api.com/v1/stats' CACHE_FILE=os.environ.get('OVERWATCH_DATA', './overwatch.p') IMG_CACHE=os.environ.get('OVERWATCH_IMAGES', './cache') CACHE_EXPIRE=os.environ.get('OVERWATCH_EXPIRE', 60) HERO_IMAGES='./assets/images/' FONT_FILES='./assets/fonts/' BG_IMAGES='./assets/backgrounds/' def __init__(self): logger.info('Initializing Overwatch') self.cache = utils.read_datafile(self.CACHE_FILE) self.font_cache = {} async def get_stats(self, battletag, refresh=False): if not refresh: cached_bt = self.cache.get(battletag) if cached_bt and self.__check_expiration(cached_bt): logger.debug(f'cache hit on {battletag} stats') return cached_bt async with aiohttp.ClientSession() as client: logger.debug(f'getting fresh {battletag} stats') try: async with client.get(f'{self.BASE_URL}/pc/us/{battletag.replace("#","-")}/complete') as res: assert res.status == 200 fresh_data = await res.json() fresh_data.update({'accessed': datetime.now()}) self.cache.update({battletag: fresh_data}) utils.write_datafile(self.CACHE_FILE, self.cache) return fresh_data except AssertionError as e: logger.info(f'error reading stats for {battletag}') return False async def full_refresh(self, forced=False): for tag in self.cache.keys(): await self.get_stats(tag, refresh=forced) def find_best(self, role): role = 'support' if role in ['healer', 'support'] else role role = 'damage' if role in ['dps', 'damage dealer'] else role role = 'tank' if role in ['tank', 'shield'] else role role_list = [] for battletag, data in self.cache.items(): ratings = data.get('ratings') if not ratings: continue for rating in ratings: if rating['role'] == role: role_list.append((battletag, rating['level'])) break if not role_list: return None role_list.sort(key=lambda t: -t[1]) if len(role_list) == 1: return role_list[0][0] result = {} for i in range(len(role_list)): tag_a, level_a = role_list[i] tag_b, level_b = role_list[i+1] if level_a > level_b: return [tag_a,] result.update({tag_a, tag_b}) if i+1 < len(role_list): i += 1 return list(result) def get_font(self, font_name, size): try: font = self.font_cache[(font_name, size)] except KeyError as e: logger.debug(f'font {font_name} not found, loading to cache') font = ImageFont.truetype(os.path.join(self.FONT_FILES, font_name), size) self.font_cache.update({(font_name, size): font}) return font def __check_expiration(self, cached_data): now = datetime.now() accessed = cached_data.get('accessed', False) return accessed and now < accessed + timedelta(minutes=self.CACHE_EXPIRE) def top_hero(self, data): if data['private']: return None games = [(k, int(v['timePlayed'].replace(':',''))) for k, v in data['quickPlayStats']['topHeroes'].items()] top = sorted(games, key=lambda x: x[1], reverse=True) #HAAAAA return top[0][0] async def __cached_image(self, url, key=None, expire=None, ext='png') -> Image: if not key: match = re.search(r'([a-zA-Z0-9-]*\.'+ext+')$', url) key = match.groups()[0] path = os.path.join(self.IMG_CACHE, key + '.' + ext) try: if expire: file_time = os.path.getmtime(path) is_expired = ((time.time() - file_time) / 3600 > 24*expire) if is_expired: raise FileNotFoundError() return Image.open(path) except FileNotFoundError as e: logger.debug(f'image {key} not found, loading to cache') if not url: return async with aiohttp.ClientSession() as client: try: async with client.get(url) as res: assert res.status == 200 image_to_cache = await res.read() with open(path, 'wb') as image_file: image_file.write(image_to_cache) return Image.open(path) except AssertionError as e: logger.debug(f'error downloading image {key}') return None return None def line_size(self, line, font:ImageFont): bbox = font.getmask(line).getbbox() return (bbox[2], bbox[3]) @asynccontextmanager async def get_cached_image(self, url, key=None, expire=None, ext='png'): image = await self.__cached_image(url, key, expire, ext) try: yield image finally: if image: image.close() @asynccontextmanager async def rating_badge(self, rating): im = Image.new('RGBA', (80, 25), 'rgba(0,0,0,0)') async with self.get_cached_image(rating['roleIcon'], key=rating['role'], expire=30) as role_icon, self.get_cached_image(rating['rankIcon'], expire=30) as rank_icon: font = self.get_font('RobotoCondensed-Bold.ttf', 15) im.alpha_composite(role_icon.resize((15, 15)), (4, 6)) d = ImageDraw.Draw(im) d.text((24, 5), str(rating['level']), font=font, fill='white') im.alpha_composite(rank_icon.resize((20, 20)), (26 + self.line_size(str(rating['level']), font)[0], 4)) try: yield im finally: im.close() @contextmanager def level_badge(self, level, prestige): BRONZE = ('white', '#9c4b30') SILVER = ('#2e2d46', '#c0c0c0') GOLD = ('#692e00', '#ffd700') PLATINUM = SILVER DIAMOND = ('#2e2d46', '#d1cded') HEIGHT = 25 font = self.get_font('RobotoCondensed-Bold.ttf', 20) symbol = self.get_font('Symbola.otf', 20) mod_prestige = (prestige % 6) level_width = self.line_size(str(level), font)[0] color = BRONZE if prestige > 5: color = SILVER if prestige > 11: color = GOLD if prestige > 17: color = PLATINUM if prestige > 23: color = DIAMOND if prestige > 29: mod_prestige = 5 if mod_prestige > 0: width = level_width + self.line_size('★'*mod_prestige, symbol)[0] + 15 else: width = level_width + 10 im = Image.new('RGBA', (width, HEIGHT), 'rgba(0,0,0,0)') d = ImageDraw.Draw(im) f_color, bg_color = color rounded_rectangle(d, ((0, 0), (width-2, HEIGHT-2)), 7, fill=bg_color) d.text((5, 0), str(level), font=font, fill=f_color) if mod_prestige > 0: rounded_rectangle(d, ((level_width+10, 1), (width-3, HEIGHT-3)), 7, fill='white') d.rectangle(((level_width+10, 1), (width-10, HEIGHT-3)), fill='white') star_color = GOLD[1] if prestige > 16 else f_color if prestige > 5 else bg_color d.text((self.line_size(str(level), font)[0] + 11, -1), '★'*mod_prestige, font=symbol, fill=star_color) try: yield im finally: im.close() def total_stats(self, data, key): try: stats = data[key]['careerStats']['allHeroes']['game'] games = stats['gamesPlayed'] try: hours, minutes, secs = re.match(r'(\d+):(\d{2}):(\d{2})', stats['timePlayed']).groups() time = int(hours) + (int(minutes) / 60) + (int(secs) / 3600) except AttributeError as e: minutes, secs = re.match(r'(\d{2}):(\d{2})', stats['timePlayed']).groups() time = (int(minutes) / 60) + (int(secs) / 3600) except KeyError as e: games = 0 time = 0 return (games, time) @asynccontextmanager async def top_bar_image(self, data, width): im = Image.new('RGBA', (width, 70), (0,0,0,180)) # draws the user icon icon_key = data['name'].replace('#', '-') + 'icon' async with self.get_cached_image(data['icon'], icon_key, 1) as icon_img: icon_img = icon_img.resize((50, 50)) im.paste(icon_img, (10, 10)) # draws name and number d = ImageDraw.Draw(im) name_fnt = self.get_font('RobotoCondensed-BoldItalic.ttf', 30) number_fnt = self.get_font('RobotoCondensed-Italic.ttf', 15) name, number = data['name'].split('#') d.text((70,10), name, font=name_fnt, fill=(255,255,255,255)) d.text((68,40), '#'+number, font=number_fnt, fill=(255,255,255,128)) # draws level badge with self.level_badge(data['level'], data['prestige']) as lv_img: im.alpha_composite(lv_img, (self.line_size(name, name_fnt)[0]+75, 15)) try: yield im finally: im.close() @contextmanager def mid_bar_image(self, data, width): if data['private']: bar_color = (128,0,0, 180) bar_text = 'This profile is private' else: bar_color = (255,255,255,180) g_comp, t_comp = self.total_stats(data, 'competitiveStats') g_qp, t_qp = self.total_stats(data, 'quickPlayStats') bar_text = f'{g_comp + g_qp} Games / {int(t_comp + t_qp)} Hrs' im = Image.new('RGBA', (width, 24), bar_color) font = self.get_font('RobotoCondensed-Bold.ttf', 15) d = ImageDraw.Draw(im) d.text((10, 4), bar_text, font=font, fill='black') try: yield im finally: im.close() @contextmanager def background_img(self, width): images = glob.glob(os.path.join(self.BG_IMAGES, '*.jpg')) image_path = random.choice(images) im = Image.open(image_path) im.thumbnail((width, width)) im = im.convert('RGBA') try: yield im finally: im.close() @asynccontextmanager async def bottom_bar_img(self, data, width): im = Image.new('RGBA', (width, 25), (0,0,0,180)) x = 0 for rating in data.get('ratings'): async with self.rating_badge(rating) as rim: im.alpha_composite(rim, (x, 0)) x += rim.width try: yield im finally: im.close() @contextmanager def hero_image(self, hero): im = Image.open(os.path.join(self.HERO_IMAGES, hero + '.png')) im = im.resize((10 * im.width // 31, 10 * im.height // 31), Image.HAMMING) im = im.convert('RGBA') try: yield im finally: im.close() async def build_profile_image(self, data): width = 500 im = Image.new('RGBA', (width, width), (0, 0, 0, 0)) actual_height = 0 with self.background_img(width) as bg_img: im.paste(bg_img, (0, -bg_img.height//4)) async with self.top_bar_image(data, width) as top_img: im.alpha_composite(top_img, (0, 0)) actual_height += top_img.height with self.mid_bar_image(data, width) as mid_img: im.alpha_composite(mid_img, (0, top_img.height)) actual_height += mid_img.height if data.get('ratings'): async with self.bottom_bar_img(data, width) as bot_img: im.alpha_composite(bot_img, (0, top_img.height + mid_img.height)) actual_height += bot_img.height im = im.crop(((0,0, width, actual_height))) top_hero = self.top_hero(data) if top_hero: with self.hero_image(top_hero) as hero_image: height = max(hero_image.height, actual_height) final_image = Image.new('RGBA', (width, height), (0,0,0,0)) final_image.alpha_composite(im, (0, height - im.height)) final_image.alpha_composite(hero_image, (final_image.width - hero_image.width + 50, 0)) im.close() im = final_image im.save(os.path.join(self.IMG_CACHE, f'badge-{data["name"].replace("#", "-")}.png')) im.close() async def get_profile_path(self, battletag, refresh=False): path = os.path.join(self.IMG_CACHE, f'badge-{battletag.replace("#", "-")}.png') if not refresh: try: file_time = os.path.getmtime(path) is_expired = ((time.time() - file_time) / 3600 > (self.CACHE_EXPIRE / 60)) if is_expired: raise FileNotFoundError() except FileNotFoundError as e: logger.debug(f'failed to found badge for {battletag} on cache') return await self.get_profile_path(battletag, refresh=True) data = await self.get_stats(battletag, refresh) await self.build_profile_image(data) return path
# MAKE SURE TO RUN THESE TESTS USING PYTHON3, NOT PYTHON2! # AS ALWAYS, DO NOT CHANGE THE TESTS! import subprocess import sys import unittest def runcmd(cmd, input_text=None): splitcmd=cmd.split() return subprocess.run(splitcmd, stdout=subprocess.PIPE, input=input_text, check=True) class HelloTests(unittest.TestCase): def testOutput(self): runcmd('clang -o hello hello.c') output = runcmd('./hello').stdout self.assertEqual(output, b'I AM A C PROGRAMMING LEGEND!!!\n') class PrintingTests(unittest.TestCase): def testOutput(self): runcmd('clang -o printing printing.c') output = runcmd('./printing').stdout # See if output contains correct answer somewhere self.assertNotEqual(-1, output.find(b"72")) class TemperatureTestsBasic(unittest.TestCase): def testTemperature(self): runcmd('clang -o temperature temperature.c') #output = subprocess.run('./temperature', stdout=subprocess.PIPE, input=b"97", check=True) output = runcmd('./temperature', input_text=b"97").stdout # See if output contains correct answer somewhere self.assertNotEqual(-1, output.find(b"36.1")) class TemperatureTestsAdvanced(unittest.TestCase): def testInvalidTemperature(self): runcmd('clang -o temperature temperature.c') output = runcmd('./temperature', input_text=b"-500").stdout # See if output contains correct output somewhere self.assertNotEqual(-1, output.find(b"Invalid temperature!")) unittest.main(verbosity=2)
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "LICENSE.txt" file accompanying this file. # This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express or implied. # See the License for the specific language governing permissions and limitations under the License. import logging import time from collections import namedtuple import boto3 from fabric import Connection from retrying import retry from utils import random_alphanumeric SnapshotConfig = namedtuple("ClusterConfig", ["ssh_key", "key_name", "vpc_id", "head_node_subnet_id"]) class EBSSnapshotsFactory: """Manage creation and destruction of volume snapshots.""" def __init__(self): self.config = None self.instance = None self.volume = None self.snapshot = None self.security_group_id = None self.ec2 = None self.boto_client = None def create_snapshot(self, request, subnet_id, region): """ Create a snapshot in a given region. :param request: The current request :param subnet_id: The subnet id where to get the snapshot :param region: The region where to get the snapshot """ # Only one snapshot creation per factory allowed if self.snapshot: raise Exception("Snapshot already created") self.ec2 = boto3.resource("ec2", region_name=region) self.boto_client = boto3.client("ec2", region_name=region) snapshot_config = SnapshotConfig( request.config.getoption("key_path"), request.config.getoption("key_name"), self.ec2.Subnet(subnet_id).vpc_id, subnet_id, ) self.snapshot = self._create_snapshot(region, snapshot_config) return self.snapshot.id def create_existing_volume(self, request, subnet_id, region): """ Create a volume in a given region. :param request: The current request :param subnet_id: The subnet id where to get the snapshot :param region: The region where to get the snapshot """ # Only one volume creation per factory allowed if self.volume: raise Exception("Volume already created") self.ec2 = boto3.resource("ec2", region_name=region) self.boto_client = boto3.client("ec2", region_name=region) volume_config = SnapshotConfig( request.config.getoption("key_path"), request.config.getoption("key_name"), self.ec2.Subnet(subnet_id).vpc_id, subnet_id, ) self._create_volume_process(region, volume_config) return self.volume.id def _create_volume_process(self, region, snapshot_config): self.config = snapshot_config ami_id = self._get_amazonlinux_ami() self.security_group_id = self._get_security_group_id() subnet = self.ec2.Subnet(self.config.head_node_subnet_id) # Create a new volume and attach to the instance self.volume = self._create_volume(subnet) self.instance = self._launch_instance(ami_id, subnet) self._attach_volume() # Open ssh connection self.ssh_conn = self._open_ssh_connection() # Partitions the disk with a gpt table and 1 single partition inside self._format_volume(self.ssh_conn) # Stops the instance before taking the snapshot self._release_instance() def _create_snapshot(self, region, snapshot_config): self._create_volume_process(region, snapshot_config) self.snapshot = self._create_volume_snapshot() return self.snapshot def _create_volume_snapshot(self): logging.info("creating snapshot...") snapshot = self.ec2.create_snapshot(Description="parallelcluster-test-snapshot", VolumeId=self.volume.id) while snapshot.state == "pending": time.sleep(10) snapshot = self.ec2.Snapshot(snapshot.id) logging.info("Snapshot ready: %s" % snapshot.id) return snapshot def _format_volume(self, ssh_conn): logging.info("Partitioning device...") ssh_conn.run("sudo sh -c 'echo -e \"g\nn\np\n1\n\n\nw\" | fdisk /dev/sdf'", warn=True, pty=False, hide=False) # Finds out the device name of the volume logging.info("Finding device name...") device_name = ssh_conn.run("readlink -f /dev/sdf").stdout.strip() # formats the 1st partition of disk logging.info("Formatting 1st partition...") ssh_conn.run("sudo sh -c 'mkfs.ext4 {}1'".format(device_name)) logging.info("Mounting partition...") ssh_conn.run("sudo mkdir /mnt/tmp") ssh_conn.run("sudo mount {}1 /mnt/tmp".format(device_name)) logging.info("Writing test data...") ssh_conn.run("echo 'hello world' | sudo tee -a /mnt/tmp/test.txt") logging.info("Device ready") def _open_ssh_connection(self): tries = 5 logging.info("Connecting to instance %s " % self.instance.public_ip_address) logging.info("ssh_key: %s " % self.config.ssh_key) ssh_conn = None while tries > 0: try: ssh_conn = Connection( host=self.instance.public_ip_address, user="ec2-user", forward_agent=False, connect_kwargs={"key_filename": [self.config.ssh_key]}, ) ssh_conn.open() tries = 0 except BaseException: logging.info("SSH connection error - retrying...") tries -= 1 time.sleep(20) if (ssh_conn is None) or (not ssh_conn.is_connected): raise ConnectionError() return ssh_conn def _attach_volume(self): result = self.boto_client.attach_volume(VolumeId=self.volume.id, InstanceId=self.instance.id, Device="/dev/sdf") logging.info("Attach Volume Result: ", result) def _create_volume(self, subnet): vol = self.ec2.create_volume( Size=10, Encrypted=False, AvailabilityZone=subnet.availability_zone, TagSpecifications=[ {"ResourceType": "volume", "Tags": [{"Key": "name", "Value": "parallel-cluster-test-volume"}]} ], ) logging.info("Volume Id: %s" % vol.id) # We can check if the volume is now ready and available: logging.info("Waiting for the volume to be ready...") while vol.state == "creating": vol = self.ec2.Volume(vol.id) time.sleep(2) logging.info("Volume ready") return vol def _get_security_group_id(self): security_group_id = self.boto_client.create_security_group( Description="security group for snapshot instance node", GroupName="snapshot-" + random_alphanumeric(), VpcId=self.config.vpc_id, )["GroupId"] self.boto_client.authorize_security_group_ingress( GroupId=security_group_id, IpPermissions=[{"IpProtocol": "tcp", "FromPort": 22, "ToPort": 22, "IpRanges": [{"CidrIp": "0.0.0.0/0"}]}], ) return security_group_id def _launch_instance(self, ami_id, subnet): instance = self.ec2.create_instances( ImageId=ami_id, KeyName=self.config.key_name, MinCount=1, MaxCount=1, InstanceType="t2.micro", NetworkInterfaces=[ { "SubnetId": subnet.id, "DeviceIndex": 0, "AssociatePublicIpAddress": True, "Groups": [self.security_group_id], } ], TagSpecifications=[ {"ResourceType": "instance", "Tags": [{"Key": "Name", "Value": "pcluster-snapshot-instance"}]} ], )[0] logging.info("Waiting for instance to be running...") while instance.state["Name"] == "pending": time.sleep(10) instance = self.ec2.Instance(instance.id) logging.info("Instance state: %s" % instance.state) logging.info("Public dns: %s" % instance.public_dns_name) return instance def _get_amazonlinux_ami(self): # Finds most recent alinux ami in region response = self.boto_client.describe_images( Owners=["amazon"], Filters=[ {"Name": "name", "Values": ["amzn-ami-hvm-*"]}, {"Name": "description", "Values": ["Amazon Linux AMI*"]}, {"Name": "architecture", "Values": ["x86_64"]}, {"Name": "root-device-type", "Values": ["ebs"]}, {"Name": "state", "Values": ["available"]}, ], ) amis = sorted(response["Images"], key=lambda x: x["CreationDate"], reverse=True) return amis[0]["ImageId"] def release_all(self): """Release all resources""" self._release_instance() self._release_volume() self._release_snapshot() self._release_security_group() @retry(stop_max_attempt_number=5, wait_fixed=5000) def _release_snapshot(self): if self.snapshot: logging.info("Deleting snapshot %s" % self.snapshot.id) self.snapshot.delete() @retry(stop_max_attempt_number=5, wait_fixed=5000) def _release_instance(self): if self.instance: self.instance.terminate() logging.info("Waiting for instance to be terminated...") while self.instance.state["Name"] != "terminated": time.sleep(10) self.instance = self.ec2.Instance(self.instance.id) logging.info("Instance terminated") self.instance = None @retry(stop_max_attempt_number=5, wait_fixed=5000) def _release_volume(self): if self.volume: logging.info("Deleting volume %s" % self.volume.id) self.volume.delete() self.volume = None def _release_security_group(self): if self.security_group_id: logging.info("Deleting security group %s" % self.security_group_id) self.boto_client.delete_security_group(GroupId=self.security_group_id) self.security_group_id = None
'''Autonomous driving convolutional neural network example from p. 64 of the book. Code based on https://github.com/OSSDC/AutonomousDrivingCookbook/tree/master/AirSimE2EDeepLearning''' from keras.models import Model from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Input, concatenate from keras.optimizers import Nadam from keras.preprocessing import image from Generator import DriveDataGenerator '''Runs p. 64 convolutional neural network.''' def main(): data_generatordata_ge = DriveDataGenerator(rescale=1./255., horizontal_flip=True, brighten_range=0.4) train_generator = data_generator.flow\ (train_dataset['image'], train_dataset['previous_state'], train_dataset['label'], batch_size=batch_size, zero_drop_percentage=0.95, roi=[76,135,0,255]) eval_generator = data_generator.flow\ (eval_dataset['image'], eval_dataset['previous_state'], eval_dataset['label'], batch_size=batch_size, zero_drop_percentage=0.95, roi=[76,135,0,255]) [sample_batch_train_data, sample_batch_test_data] = next(train_generator) # above ross add image_input_shape = sample_batch_train_data[0].shape[1:] state_input_shape = sample_batch_train_data[1].shape[1:] activation = 'relu' #Create the convolutional stacks pic_input = Input(shape=image_input_shape) img_stack = Conv2D(16, (3, 3), name="convolution0", padding='same', activation=activation)(pic_input) img_stack = MaxPooling2D(pool_size=(2,2))(img_stack) img_stack = Conv2D(32, (3, 3), activation=activation, padding='same', name='convolution1')(img_stack) img_stack = MaxPooling2D(pool_size=(2, 2))(img_stack) img_stack = Conv2D(32, (3, 3), activation=activation, padding='same', name='convolution2')(img_stack) img_stack = MaxPooling2D(pool_size=(2, 2))(img_stack) img_stack = Flatten()(img_stack) img_stack = Dropout(0.2)(img_stack) #Inject the state input state_input = Input(shape=state_input_shape) merged = concatenate([img_stack, state_input]) # Add a few dense layers to finish the model merged = Dense(64, activation=activation, name='dense0')(merged) merged = Dropout(0.2)(merged) merged = Dense(10, activation=activation, name='dense2')(merged) merged = Dropout(0.2)(merged) merged = Dense(1, name='output')(merged) adam = Nadam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08) model = Model(inputs=[pic_input, state_input], outputs=merged) model.compile(optimizer=adam, loss='mse') main()
import unittest from shiny_client import category import requests from base_test import ApiResourceTest from shiny_client import base_client class TestCategoryListCommand(unittest.TestCase): RESOURCE_URL = "https://api.zalando.com/categories" def test_instantiate(self): base_client.PluginCommandBase.register(category.CategoryListCommand) c = category.CategoryListCommand() self.assertTrue(issubclass(category.CategoryListCommand, base_client.PluginCommandBase)) self.assertTrue(isinstance(category.CategoryListCommand(), base_client.PluginCommandBase)) def test_get_list(self): c = self._get_command() parsed_args = self._get_mocked_args() c.perform(parsed_args) def _get_command(self): c = category.CategoryListCommand() c.lang = ApiResourceTest.get_api_lang() c.endpoint = TestCategoryListCommand.RESOURCE_URL c.is_insecure = ApiResourceTest.is_insecure() c.request_timeout = ApiResourceTest.get_timeout() return c def _get_mocked_args(self): parsed_args = lambda: None parsed_args.fields = ['name', 'key', 'type', 'parentKey'] parsed_args.is_machine_readable = True return parsed_args def test_show_schema(self): c = category.CategoryListCommand() # c.show_schema() class TestCategoryClient(ApiResourceTest, unittest.TestCase): RESOURCE_URL = "https://api.zalando.com/categories" def _assert_resouce_list_test(self, o): self.assertIsNotNone(o.name) self.assertIsNotNone(o.key) self.assertIsNotNone(o.targetGroup) self.assertIsNotNone(o.childKeys) self.assertTrue(o.parentKey is None or isinstance(o.parentKey, str)) def _create_resource_mgmt(self): return category.CategoryManager() def _get_resource_endpoint(self): return TestCategoryClient.RESOURCE_URL def test_find_by_name_and_outlet(self): mgmt = self._get_resource_mgmt() query = {"name": "s"} stats = mgmt.get_stats(query) is_found = 0 for c in mgmt.find_by(query): is_found = is_found + 1 self.assertEquals(is_found, stats["totalElements"]) def test_get_one_category(self): """ """ mgmt = self._get_resource_mgmt() expected_category = next(mgmt.list_page(1)) expected_category_key = expected_category.key category = mgmt.get(expected_category_key) self.assertIsNotNone(category) self.assertEquals(expected_category_key, category.key) def test_get_not_existing_category(self): """ """ mgmt = self._get_resource_mgmt() not_existing_key = "test-test-test-test" with self.assertRaises(requests.HTTPError): category = mgmt.get(not_existing_key) def test_get_stats(self): mgmt = self._get_resource_mgmt() result = mgmt.get_stats() self.assertTrue("totalElements" in result)
import json import py.path import pytest import apypie @pytest.fixture def fixture_dir(): return py.path.local(__file__).realpath() / '..' / 'fixtures' @pytest.fixture def apidoc_cache_dir(fixture_dir, tmpdir): fixture_dir.join('dummy.json').copy(tmpdir / 'default.json') fixture_dir.join('dummy.json').copy(tmpdir / 'default.tlh.json') return tmpdir @pytest.fixture def api(fixture_dir, requests_mock, tmpdir): with fixture_dir.join('dummy.json').open() as read_file: data = json.load(read_file) requests_mock.get('https://api.example.com/apidoc/v1.json', json=data) api = apypie.Api(uri='https://api.example.com', apidoc_cache_dir=tmpdir.strpath) # explicitly trigger loading of the apidoc # our tests often mock Api.http_call, which breaks apidoc loading api.apidoc return api @pytest.fixture def resource(api): return api.resource('users') @pytest.fixture def action(resource): return resource.action('show') @pytest.fixture def foreman_api(fixture_dir, requests_mock, tmpdir): with fixture_dir.join('foreman.json').open() as read_file: data = json.load(read_file) requests_mock.get('https://foreman.example.com/apidoc/v2.json', json=data) return apypie.Api(uri='https://foreman.example.com', api_version=2, apidoc_cache_dir=tmpdir.strpath)
#!/usr/bin/env python # -*- coding: utf-8 -* # Copyright: [CUP] - See LICENSE for details. # Authors: Guannan Ma (@mythmgn), """ common function module for cup.net.async """ import socket import struct from cup.util import misc __all__ = [ 'ip_port2connaddr', 'add_stub2connaddr', 'add_future2connaddr', 'get_ip_and_port_connaddr', 'getip_connaddr', 'getport_connaddr', 'getstub_connaddr', 'getfuture_connaddr' ] def ip_port2connaddr(peer): """ connaddr is a 64bit int 32 - 16 - 16 - 32 ip - port - stub - future :param peer: (ipaddr, port) :return: return a connaddr """ misc.check_type(peer, tuple) ipaddr, port = peer misc.check_type(ipaddr, str) packed = socket.inet_aton(ipaddr) return (struct.unpack("!L", packed)[0] << 64) | (port << 48) def add_stub2connaddr(pack, stub): """ add stub into connaddr """ return pack | (stub << 32) def add_future2connaddr(pack, future): """ add future into connaddr """ return pack | future def get_ip_and_port_connaddr(pack): """ get (ip, port) from connaddr """ ipaddr = getip_connaddr(pack) port = getport_connaddr(pack) return (ipaddr, port) def getip_connaddr(pack): """ get ip from connaddr """ return socket.inet_ntoa(struct.pack('!L', pack >> 64)) def getport_connaddr(pack): """ get port from connaddr """ return (pack >> 48) & 0xffff def getstub_connaddr(pack): """ get stub from connaddr """ return (pack >> 32) & 0xffff def getfuture_connaddr(pack): """ get future from conaddr """ return (pack) & 0xffff # vi:set tw=0 ts=4 sw=4 nowrap fdm=indent
from django.db import models from auth1.models import * from api.managers import FeedbackManager # Create your models here. class Feedback(models.Model): driver = models.ForeignKey(User, on_delete=models.CASCADE, related_name='driver_feedback') created_by = models.ForeignKey(User, on_delete=models.CASCADE) created_at = models.DateTimeField(auto_now_add=True) content = models.TextField(max_length=1000, default='') objects = FeedbackManager() class Meta: verbose_name = 'Feedback' verbose_name_plural = 'Feedbacks' def __str__(self): return f'{self.id}: {self.driver}'
import os from pathlib import Path # noqa here = Path(__file__).resolve(strict=True).parent.parent __all__ = ["__version__"] with open(os.path.join(os.path.dirname(here), '../VERSION')) as version_file: __version__ = version_file.read().strip()
import numba import numpy as np from collections import Counter, defaultdict class hogImg(): """example usage: hog = hogImg(arr=np.random.randint(1, 101, size=(19,19))) f = hog.do_work()""" def __init__(self, arr, oriens=6, ppc=(3, 3), cpc=(6, 6)): self.arr = arr self.oriens = oriens self.ppc = ppc self.cpc = cpc if int(self.arr.shape[0])/self.ppc[0]-self.cpc[0]+1 < 0: raise(ValueError("wrong dimensions - ensure array is larger or change cpc to a smaller number!")) def __repr__(self): return f"hogImg class with orientation: {self.oriens} ppc: {self.ppc} cpc: {self.cpc}" def __str__(self): return f"input array is {self.arr.shape} with orientation {self.oriens} and ppc {self.ppc} and cpc {self.cpc}" def hog_normalize_block(self, blk, eps=1e-6): norma = blk/np.sqrt(np.sum(blk ** 2) + eps ** 2) return norma def hog_gradients(self, arr): g_row = np.zeros(arr.shape, dtype=arr.dtype) g_row[1:-1, ...] = arr[2:, ...] - arr[:-2, ...] g_col = np.zeros(arr.shape, dtype=arr.dtype) g_col[..., 1:-1] = arr[..., 2:] - arr[..., :-2] return g_row, g_col @numba.jit def make_hog_histogram_numba(self, arr): bins = list(range(0, 380, 20)) hist = {} sum_values = sum(arr.ravel()) for val in arr.ravel(): if bins[0] < val <= bins[1]: if val not in hist: hist[0] = 1 else: hist[0] += 1 elif bins[1] < val <= bins[2]: if val not in hist: hist[1] = 1 else: hist[1] += 1 elif bins[2] < val <= bins[3]: if val not in hist: hist[2] = 1 else: hist[2] += 1 elif bins[3] < val <= bins[4]: if val not in hist: hist[3] = 1 else: hist[3] += 1 elif bins[4] < val <= bins[5]: if val not in hist: hist[4] = 1 else: hist[4] += 1 elif bins[5] < val <= bins[6]: if val not in hist: hist[5] = 1 else: hist[5] += 1 elif bins[6] < val <= bins[7]: if val not in hist: hist[6] = 1 else: hist[6] += 1 elif bins[7] < val <= bins[8]: if val not in hist: hist[7] = 1 else: hist[7] += 1 elif bins[8] < val <= bins[9]: if val not in hist: hist[8] = 1 else: hist[8] += 1 elif bins[9] < val <= bins[10]: if val not in hist: hist[9] = 1 else: hist[9] += 1 elif bins[10] < val <= bins[11]: if val not in hist: hist[10] = 1 else: hist[10] += 1 elif bins[11] < val <= bins[12]: if val not in hist: hist[11] = 1 else: hist[11] += 1 elif bins[12] < val <= bins[13]: if val not in hist: hist[12] = 1 else: hist[12] += 1 elif bins[13] < val <= bins[14]: if val not in hist: hist[13] = 1 else: hist[13] += 1 elif bins[14] < val <= bins[15]: if val not in hist: hist[14] = 1 else: hist[14] += 1 elif bins[15] < val <= bins[16]: if val not in hist: hist[15] = 1 else: hist[15] += 1 elif bins[16] < val <= bins[17]: if val not in hist: hist[16] = 1 else: hist[16] += 1 elif bins[17] < val <= bins[18]: if val not in hist: hist[17] = 1 else: hist[17] += 1 new_dict = {} for key, val in hist.items(): new_dict[key] = val/sum_values return new_dict def make_hog_histogram(self, arr): bins = np.arange(0, 380, 20, dtype=float) hist = defaultdict(int) for val in arr.ravel(): if bins[0] < val <= bins[1]: hist[0] += 1 elif bins[1] < val <= bins[2]: hist[1] += 1 elif bins[2] < val <= bins[3]: hist[2] += 1 elif bins[3] < val <= bins[4]: hist[3] += 1 elif bins[4] < val <= bins[5]: hist[4] += 1 elif bins[5] < val <= bins[6]: hist[5] += 1 elif bins[6] < val <= bins[7]: hist[6] += 1 elif bins[7] < val <= bins[8]: hist[7] += 1 elif bins[8] < val <= bins[9]: hist[8] += 1 elif bins[9] < val <= bins[10]: hist[9] += 1 elif bins[10] < val <= bins[11]: hist[10] += 1 elif bins[11] < val <= bins[12]: hist[11] += 1 elif bins[12] < val <= bins[13]: hist[12] += 1 elif bins[13] < val <= bins[14]: hist[13] += 1 elif bins[14] < val <= bins[15]: hist[14] += 1 elif bins[15] < val <= bins[16]: hist[15] += 1 elif bins[16] < val <= bins[17]: hist[16] += 1 elif bins[17] < val <= bins[18]: hist[17] += 1 return {key: val/sum(hist.values()) for key, val in hist.items()} def faster_hog_histogram(self, arr): ctr = np.unique(np.digitize(arr, bins=np.arange(0, 380, 20), right=True).ravel(), return_counts=True) return np.vstack((ctr[0], ctr[1]/sum(ctr[1]))) def fastest_hog_histogram(self, arr): ctr = Counter(np.digitize(arr, bins=np.arange(0, 380, 20), right=True).ravel()) return {key: val/sum(ctr.values()) for key, val in ctr.items()} def make_angles(self, row, col, eps=1e-6): return np.round(2*np.rad2deg(np.arctan(row/(col+eps)))+180, 2) def do_work(self): self.g_row, self.g_col = self.hog_gradients(self.arr) split_cells = np.split(self.arr, self.ppc[0]) split_grads_rows = np.split(self.g_row, self.ppc[0]) split_grads_cols = np.split(self.g_col, self.ppc[0]) final = np.zeros((self.cpc[0], self.arr.shape[1], self.ppc[0])) hist_final = [] for idx, (row, col) in enumerate(zip(split_grads_rows, split_grads_cols)): norm_row = self.hog_normalize_block(row) norm_col = self.hog_normalize_block(col) angs = self.make_angles(row, col) hist = self.make_hog_histogram(angs) hist_final.append(hist) final[:angs.shape[0], :angs.shape[1], idx] = angs return final, hist_final
"""Setuptools Module.""" from setuptools import setup, find_packages setup( name="githubutils", version="0.1", packages=find_packages(), install_requires=['requests'], # metadata for upload to PyPI author="Alexander Richards", author_email="a.richards@imperial.ac.uk", description="Utilities for working with github", license="MIT", url="https://github.com/alexanderrichards/GithubUtils" )
from enum import Enum from dagster import SolidExecutionResult, execute_solid from dagster_utils.contrib.data_repo.typing import JobId from hca_orchestration.solids.load_hca.ingest_metadata_type import ingest_metadata_type from hca_orchestration.support.typing import HcaScratchDatasetName, MetadataType class FakeEnum(Enum): FIRST = MetadataType("first") SECOND = MetadataType("second") THIRD = MetadataType("third") FakeDatasetName = HcaScratchDatasetName("fake_dataset_name") def test_fans_out_correctly(): result: SolidExecutionResult = execute_solid( ingest_metadata_type, input_values={ "scratch_dataset_name": FakeDatasetName }, run_config={ "solids": { "ingest_metadata_type": { "config": { "metadata_types": FakeEnum, "prefix": "fakepath" }, "inputs": { "result": [JobId("abcdef")] } } } } ) assert result.success expected = [e.value for e in FakeEnum] for i, res in enumerate(result.output_value("table_fanout_result")): assert expected[i] == res
from setuptools import setup setup( name='django-bootstrap3-datetimepicker', packages=['bootstrap3_datetime',], package_data={'bootstrap3_datetime': ['static/bootstrap3_datetime/css/*.css', 'static/bootstrap3_datetime/js/*.js', ]}, include_package_data=True, version='2.3', description='Bootstrap3 compatible datetimepicker for Django projects.', long_description=open('README.rst').read(), author='Nakahara Kunihiko', author_email='nakahara.kunihiko@gmail.com', url='https://github.com/gcaprio/django-bootstrap3-datetimepicker.git', license='Apache License 2.0', classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Operating System :: OS Independent', 'Topic :: Software Development :: Libraries', 'Topic :: Utilities', 'Environment :: Web Environment', 'Framework :: Django', ], zip_safe=False, )
''' Using the global view ===================== The `addresses` view provides access to all the addresses registered in the DB, as well as methods to create and remove them:: eth0 = ndb.interfaces['eth0'] # create an address (ndb .addresses .create(address='10.0.0.1', prefixlen=24, index=eth0['index']) .commit()) # remove it (ndb .addresses['10.0.0.1/24'] .remove() .commit()) # list addresses (ndb .addresses .summary()) # see also other view dump methods Using ipaddr views ================== Interfaces also provide address views as subsets of the global address view:: (ndb .interfaces['eth0'] .ipaddr .summary()) It is possible use the same API as with the global address view:: (ndb .interfaces['eth0'] .ipaddr .create(address='10.0.0.1', prefixlen=24) # index is implied .commit()) Using interface methods ======================= Interfaces provide also simple methods to manage addresses:: (ndb .interfaces['eth0'] .del_ip('172.16.0.1/24') # remove an existing address .del_ip(family=AF_INET) # remove all IPv4 addresses .add_ip('10.0.0.1/24') # add a new IP address .add_ip(address='10.0.0.2', prefixlen=24) # if you prefer keyword args .set('state', 'up') .commit()) Functions `add_ip()` and `del_ip()` return the interface object, so they can be chained as in the example above, and the final `commit()` will commit all the changes in the chain. The keywords to `del_ip()` are the same object field names that may be used in the selectors or report filters:: (ndb .interfaces['eth0'] .del_ip(prefixlen=25) # remove all addresses with mask /25 .commit()) A match function that may be passed to the `del_ip()` is the same as for `addresses.dump().filter()`, and it gets a named tuple as the argument. The fields are named in the same way as address objects fields. So if you want to filter addresses by a pattern or the `prefixlen` field with a match function, you may use:: (ndb .interfaces['eth0'] .del_ip(lambda x: x.address.startswith('192.168')) .commit()) (ndb .interfaces['eth1'] .del_ip(lambda x: x.prefixlen == 25) .commit()) An empty `del_ip()` removes all the IP addresses on the interface:: (ndb .interfaces['eth0'] .del_ip() # flush all the IP:s .commit()) Accessing one address details ============================= Access an address as a separate RTNL object:: print(ndb.addresses['10.0.0.1/24']) Please notice that address objects are read-only, you may not change them, only remove old ones, and create new. ''' from ..objects import RTNL_Object from pr2modules.common import dqn2int from pr2modules.common import basestring from pr2modules.netlink.rtnl.ifaddrmsg import ifaddrmsg ifaddr_spec = (ifaddrmsg .sql_schema() .unique_index('family', 'prefixlen', 'index', 'IFA_ADDRESS', 'IFA_LOCAL') .foreign_key('interfaces', ('f_target', 'f_tflags', 'f_index'), ('f_target', 'f_tflags', 'f_index'))) init = {'specs': [['addresses', ifaddr_spec]], 'classes': [['addresses', ifaddrmsg]], 'event_map': {ifaddrmsg: ['addresses']}} def norm_mask(value): if isinstance(value, basestring): if '.' in value: value = dqn2int(value) value = int(value) return value class Address(RTNL_Object): table = 'addresses' msg_class = ifaddrmsg fields_normalize = {'prefixlen': norm_mask} api = 'addr' @classmethod def _dump_where(cls, view): if view.chain: plch = view.ndb.schema.plch where = ''' WHERE main.f_target = %s AND main.f_index = %s ''' % (plch, plch) values = [view.chain['target'], view.chain['index']] else: where = '' values = [] return (where, values) @classmethod def summary(cls, view): req = ''' SELECT main.f_target, main.f_tflags, intf.f_IFLA_IFNAME, main.f_IFA_ADDRESS, main.f_prefixlen FROM addresses AS main INNER JOIN interfaces AS intf ON main.f_index = intf.f_index AND main.f_target = intf.f_target ''' yield ('target', 'tflags', 'ifname', 'address', 'prefixlen') where, values = cls._dump_where(view) for record in view.ndb.schema.fetch(req + where, values): yield record def mark_tflags(self, mark): plch = (self.schema.plch, ) * 3 self.schema.execute(''' UPDATE interfaces SET f_tflags = %s WHERE f_index = %s AND f_target = %s ''' % plch, (mark, self['index'], self['target'])) def __init__(self, *argv, **kwarg): kwarg['iclass'] = ifaddrmsg self.event_map = {ifaddrmsg: "load_rtnlmsg"} super(Address, self).__init__(*argv, **kwarg) @staticmethod def spec_normalize(spec): ''' Address key normalization:: { ... } -> { ... } "10.0.0.1/24" -> {"address": "10.0.0.1", "prefixlen": 24} ''' if isinstance(spec, dict): ret = spec else: ret = {} if isinstance(spec, basestring): addr_spec = spec.split('/') ret['address'] = addr_spec[0] if len(addr_spec) > 1: ret['prefixlen'] = addr_spec[1] return ret def key_repr(self): return '%s/%s %s/%s' % (self.get('target', ''), self.get('label', self.get('index', '')), self.get('local', self.get('address', '')), self.get('prefixlen', ''))
#-*-coding:utf-8-*- #date:2019/01/01 #@title MIT License # # Copyright (c) 2017 François Chollet # Copyright (c) 2018 Joker2770 # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import os # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt #输出当前使用TensorFlow版本号 print(tf.__version__) #导入和加载数据 fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() #每张图像都映射到一个标签。由于数据集中不包含类别名称,因此将它们存储在此处 class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] #训练集中有 60000 张图像,每张图像都表示为 28x28 像素 #train_images.shape #(60000, 28, 28) #测试集中有 10000 张图像。同样,每张图像都表示为 28x28 像素 #test_images.shape #(10000, 28, 28) #对数据进行预处理 #检查训练集中的第一张图像,就会发现像素值介于 0 到 255 之间 plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() #我们将这些值缩小到 0 到 1 之间,然后将其馈送到神经网络模型。 #为此,将图像组件的数据类型从整数转换为浮点数,然后除以 255 train_images = train_images / 255.0 test_images = test_images / 255.0 #显示训练集中的前 25 张图像,并在每张图像下显示类别名称。验证确保数据格式正确无误 plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() def create_model(): #第一层 tf.keras.layers.Flatten 将图像格式从二维数组(28x28 像素)转换成一维数组(28 * 28 = 784 像素)。 #可以将该层视为图像中像素未堆叠的行,并排列这些行。该层没有要学习的参数;它只改动数据的格式。 #在扁平化像素之后,该网络包含两个 tf.keras.layers.Dense 层的序列。这些层是密集连接或全连接神经层。 #第一个 Dense 层具有 128 个节点(或神经元)。第二个(也是最后一个)层是具有 10 个节点的 softmax 层, #该层会返回一个具有 10 个概率得分的数组,这些得分的总和为 1。 #每个节点包含一个得分,表示当前图像属于 10 个类别中某一个的概率。 model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation=tf.nn.relu), keras.layers.Dense(10, activation=tf.nn.softmax)]) #损失函数 - 衡量模型在训练期间的准确率。我们希望尽可能缩小该函数,以“引导”模型朝着正确的方向优化。 #优化器 - 根据模型看到的数据及其损失函数更新模型的方式。 #指标 - 用于监控训练和测试步骤。以下示例使用准确率,即图像被正确分类的比例。 model.compile(optimizer=tf.train.AdamOptimizer(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model # include the epoch in the file name. (uses `str.format`) checkpoint_path = "training_2/cp-{epoch:04d}.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) latest = tf.train.latest_checkpoint(checkpoint_dir) print("Latest model:",latest) # Create checkpoint callback cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, # Save weights, every 5-epochs. period=5, verbose=1) # Create a basic model instance model = create_model() if latest != None: model.load_weights(latest) print("Load latest model: ", latest) model.summary() loss, acc = model.evaluate(test_images, test_labels) print("Untrained model, accuracy: {:5.2f}%".format(100*acc)) print("Training...") #使模型与训练数据“拟合” model.fit(train_images, train_labels, epochs=10, callbacks = [cp_callback], validation_data = (test_images, test_labels)) #评估准确率 #比较一下模型在测试数据集上的表现 model = create_model() if latest != None: model.load_weights(latest) else: model.load_weights("training_2/cp-0005.ckpt") test_loss, test_acc = model.evaluate(test_images, test_labels) print("Test loss: ", test_loss) #模型在测试数据集上的准确率略低于在训练数据集上的准确率。训练准确率和测试准确率之间的这种差异表示出现过拟合。 print('Test accuracy:', test_acc)
# -*- coding: utf-8 -*- from hashlib import sha1 import hmac class Pushpad(object): def __init__(self, auth_token, project_id): self.auth_token = auth_token self.project_id = project_id def signature_for(self, data): return hmac.new(bytes(self.auth_token.encode()), data.encode(), sha1).hexdigest()
from .QueuePipe import QueuePipe import multiprocessing from multiprocessing import Process, Queue from typing import List, Tuple, Union, Any from collections.abc import Callable import time import signal class PayloadProcess: def __init__(self, payload: Tuple[str, Callable, Tuple, Callable, Tuple, Union[float, None]]): self.name, self.target, self.args, self.staticObjBuilder, self.staticObjBuilderArgs, self.qTimeout = payload self.queue = QueuePipe() self.actionQueue = Queue() if self.qTimeout is not None: self.queue = QueuePipe(timeout=self.qTimeout) self.process = Process(name=self.name, target=self.run, args=(self.queue.inputQ, self.queue.outputQ, self.actionQueue), daemon=True) self.stopped = False def run(self, inputQ, outputQ, actionQ): # build the static arguments qPipe = QueuePipe(inputQ, outputQ) if self.staticObjBuilder is not None: staticObjects = self.staticObjBuilder(self.staticObjBuilderArgs) targetArgs = (qPipe,) + tuple(staticObjects) + self.args else: targetArgs = (qPipe,) + self.args # define signal catches self.handleSignals() # run the loop for the target function while not self.stopped: self.parseActionQueue(actionQ) if self.stopped: break outputs = self.target(targetArgs) self.putOutputs(outputs) def parseActionQueue(self, actionQueue: Union[Queue, None] = None): actionQ = self.actionQueue if actionQueue is None else actionQueue if not actionQ.empty(): action = actionQ.get() if isinstance(action, float) or isinstance(action, int): time.sleep(action) elif isinstance(action, str): if action == 'stop': self.stopped = True def start(self) -> 'PayloadProcess': self.process.start() return self def status(self) -> Tuple[bool, bool]: alive = self.process.is_alive() running = self.stopped return alive, running def sleep(self, delay: float): self.actionQueue.put(delay) def stop(self): self.actionQueue.put('stop') def join(self, timeout: Union[float, None] = None): if not self.process.is_alive(): return if timeout is not None: self.stop() self.process.join(timeout=timeout) else: self.stop() self.process.join() def terminate(self): if self.process.is_alive(): self.process.terminate() def kill(self): if self.process.is_alive(): self.process.kill() def handleSignals(self): signal.signal(signal.SIGINT, self.handle_sigint) def handle_sigint(self, sig, frame): self.stop() # Queue functionality and interactivity def putInputs(self, inputs: Union[List[Any], Any]): self.queue.addInputs(inputs) def putOutputs(self, outputs: Union[List[Any], Any]): self.queue.addOutputs(outputs) def getOutputs(self, timeout: Union[float, None] = None) -> List[Any]: return self.queue.getOutputs(timeout=timeout) def getOutput(self, timeout: Union[float, None] = None) -> Any: return self.queue.getOutput(timeout=timeout)
# Generated by Django 3.0.3 on 2020-05-23 12:31 from django.db import migrations, models import uuid class Migration(migrations.Migration): dependencies = [ ('main', '0014_auto_20200523_1236'), ] operations = [ migrations.RemoveField( model_name='block', name='id', ), migrations.RemoveField( model_name='logic', name='id', ), migrations.RemoveField( model_name='order', name='id', ), migrations.RemoveField( model_name='userdata', name='id', ), migrations.AddField( model_name='block', name='uuid', field=models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False), ), migrations.AddField( model_name='logic', name='uuid', field=models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False), ), migrations.AddField( model_name='order', name='uuid', field=models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False), ), migrations.AddField( model_name='userdata', name='uuid', field=models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False), ), ]
from django.urls import reverse from django.db import models class Weight(models.Model): """ Weight model (measured in kg). """ id = models.AutoField(primary_key=True, editable=False) datestamp = models.DateField(blank=True, null=True) weight = models.FloatField(blank=True, null=True) author = models.ForeignKey('auth.user', on_delete=models.CASCADE) def __str__(self): return f'{self.datestamp} - {self.weight} kg' def get_absolute_url(self): return reverse('weight-index')
from conans import ConanFile, CMake, tools import os class SfmlConan(ConanFile): name = 'sfml' description = 'Simple and Fast Multimedia Library' topics = ('sfml', 'multimedia') url = 'https://github.com/bincrafters/community' homepage = 'https://github.com/SFML/SFML' license = "ZLIB" exports_sources = ['CMakeLists.txt', 'patches/*'] generators = 'cmake', 'cmake_find_package_multi' settings = 'os', 'compiler', 'build_type', 'arch' options = { 'shared': [True, False], 'fPIC': [True, False], 'window': [True, False], 'graphics': [True, False], 'network': [True, False], 'audio': [True, False], } default_options = { 'shared': False, 'fPIC': True, 'window': True, 'graphics': True, 'network': True, 'audio': True } _source_subfolder = 'source_subfolder' _build_subfolder = 'build_subfolder' _cmake = None def config_options(self): if self.settings.os == 'Windows': self.options.remove('fPIC') def configure(self): if self.options.graphics: self.options.window = True def requirements(self): if self.options.graphics: self.requires('freetype/2.10.4') self.requires('stb/20200203') if self.options.audio: self.requires('openal/1.21.0') self.requires('flac/1.3.3') self.requires('ogg/1.3.4') self.requires('vorbis/1.3.7') if self.options.window: if self.settings.os == 'Linux': self.requires('xorg/system') self.requires('opengl/system') def system_requirements(self): if self.settings.os == 'Linux' and tools.os_info.is_linux: if tools.os_info.with_apt: installer = tools.SystemPackageTool() packages = [] if self.options.window: packages.extend(['libudev-dev']) for package in packages: installer.install(package) def source(self): tools.get(**self.conan_data["sources"][self.version], strip_root=True, destination=self._source_subfolder) tools.rmdir(os.path.join(self._source_subfolder, "extlibs")) def _configure_cmake(self): if self._cmake: return self._cmake self._cmake = CMake(self) self._cmake.definitions['SFML_DEPENDENCIES_INSTALL_PREFIX'] = self.package_folder self._cmake.definitions['SFML_MISC_INSTALL_PREFIX'] = self.package_folder self._cmake.definitions['SFML_BUILD_WINDOW'] = self.options.window self._cmake.definitions['SFML_BUILD_GRAPHICS'] = self.options.graphics self._cmake.definitions['SFML_BUILD_NETWORK'] = self.options.network self._cmake.definitions['SFML_BUILD_AUDIO'] = self.options.audio self._cmake.definitions['SFML_INSTALL_PKGCONFIG_FILES'] = False self._cmake.definitions['SFML_GENERATE_PDB'] = False self._cmake.definitions['SFML_USE_SYSTEM_DEPS'] = True if self.settings.os == "Macos": self._cmake.definitions['SFML_OSX_FRAMEWORK'] = "-framework AudioUnit" elif self.settings.compiler == 'Visual Studio': if self.settings.compiler.runtime == 'MT' or self.settings.compiler.runtime == 'MTd': self._cmake.definitions['SFML_USE_STATIC_STD_LIBS'] = True self._cmake.configure(build_folder=self._build_subfolder) return self._cmake def build(self): for p in self.conan_data["patches"][self.version]: tools.patch(**p) with tools.vcvars(self.settings, force=True, filter_known_paths=False) if self.settings.compiler == 'Visual Studio' else tools.no_op(): cmake = self._configure_cmake() cmake.build() def package(self): cmake = self._configure_cmake() cmake.install() if self.settings.os == 'Macos' and self.options.shared and self.options.graphics: with tools.chdir(os.path.join(self.package_folder, 'lib')): suffix = '-d' if self.settings.build_type == 'Debug' else '' graphics_library = 'libsfml-graphics%s.%s.dylib' % (suffix, self.version) old_path = '@rpath/../Frameworks/freetype.framework/Versions/A/freetype' new_path = '@loader_path/../freetype.framework/Versions/A/freetype' command = 'install_name_tool -change %s %s %s' % (old_path, new_path, graphics_library) self.output.warn(command) self.run(command) tools.rmdir(os.path.join(self.package_folder, "lib", "cmake")) def _get_decorated_lib(self, name): suffix = '-s' if not self.options.shared else '' suffix += '-d' if self.settings.build_type == 'Debug' else '' return name + suffix def package_info(self): self.cpp_info.names["cmake_find_package"] = "SFML" self.cpp_info.names["cmake_find_package_multi"] = "SFML" self.cpp_info.names["pkg_config"] = "SFML" self.cpp_info.components["sfml-system"].names["pkg_config"] = "sfml-system" self.cpp_info.components["sfml-system"].names["cmake_find_package"] = "system" self.cpp_info.components["sfml-system"].names["cmake_find_package_multi"] = "system" self.cpp_info.components["sfml-system"].libs = [self._get_decorated_lib("sfml-system")] if not self.options.shared: self.cpp_info.components["sfml-system"].defines = ['SFML_STATIC'] if self.settings.os == 'Windows': self.cpp_info.components["sfml-system"].system_libs = ['winmm'] elif self.settings.os == 'Linux': self.cpp_info.components["sfml-system"].system_libs = ['rt'] elif self.settings.os == 'Android': self.cpp_info.components["sfml-system"].system_libs = ['android', 'log'] if self.settings.os != 'Windows': self.cpp_info.components["sfml-system"].system_libs = ['pthread'] if self.settings.os in ['Windows', 'Android', 'iOS']: sfml_main_suffix = '-d' if self.settings.build_type == 'Debug' else '' self.cpp_info.components["sfml-main"].libs = ["sfml-main" + sfml_main_suffix] if not self.options.shared: self.cpp_info.components["sfml-main"].defines = ['SFML_STATIC'] if self.settings.os == 'Android': self.cpp_info.components["sfml-main"].libs.append(self._get_decorated_lib("sfml-activity")) self.cpp_info.components["sfml-main"].system_libs = ['android', 'log'] if self.options.window or self.options.graphics: self.cpp_info.components["sfml-window"].names["pkg_config"] = "sfml-window" self.cpp_info.components["sfml-window"].names["cmake_find_package"] = "window" self.cpp_info.components["sfml-window"].names["cmake_find_package_multi"] = "window" self.cpp_info.components["sfml-window"].libs = [self._get_decorated_lib("sfml-window")] self.cpp_info.components["sfml-window"].requires = ["opengl::opengl", "sfml-system"] if self.settings.os in ['Linux', 'FreeBSD']: self.cpp_info.components["sfml-window"].requires.append('xorg::xorg') if not self.options.shared: self.cpp_info.components["sfml-window"].defines = ['SFML_STATIC'] if self.settings.os == 'Windows': self.cpp_info.components["sfml-window"].system_libs = ['winmm', 'gdi32'] if self.settings.os == 'Linux': self.cpp_info.components["sfml-window"].system_libs = ['udev'] if self.settings.os == 'FreeBSD': self.cpp_info.components["sfml-window"].system_libs = ['usbhid'] elif self.settings.os == "Macos": self.cpp_info.components["sfml-window"].frameworks.extend(['Foundation', 'AppKit', 'IOKit', 'Carbon']) if not self.options.shared: self.cpp_info.components["sfml-window"].exelinkflags.append("-ObjC") self.cpp_info.components["sfml-window"].sharedlinkflags = self.cpp_info.components["sfml-window"].exelinkflags elif self.settings.os == "iOS": self.cpp_info.frameworks.extend(['Foundation', 'UIKit', 'CoreGraphics', 'QuartzCore', 'CoreMotion']) elif self.settings.os == "Android": self.cpp_info.components["sfml-window"].system_libs = ['android'] if self.options.graphics: self.cpp_info.components["sfml-graphics"].names["pkg_config"] = "sfml-graphics" self.cpp_info.components["sfml-graphics"].names["cmake_find_package"] = "graphics" self.cpp_info.components["sfml-graphics"].names["cmake_find_package_multi"] = "graphics" self.cpp_info.components["sfml-graphics"].libs = [self._get_decorated_lib("sfml-graphics")] self.cpp_info.components["sfml-graphics"].requires = ["freetype::freetype", "stb::stb", "sfml-window"] if not self.options.shared: self.cpp_info.components["sfml-graphics"].defines = ['SFML_STATIC'] if self.settings.os == 'Linux': self.cpp_info.components["sfml-graphics"].system_libs = ['udev'] if self.options.network: self.cpp_info.components["sfml-network"].names["pkg_config"] = "sfml-network" self.cpp_info.components["sfml-network"].names["cmake_find_package"] = "network" self.cpp_info.components["sfml-network"].names["cmake_find_package_multi"] = "network" self.cpp_info.components["sfml-network"].libs = [self._get_decorated_lib("sfml-network")] self.cpp_info.components["sfml-network"].requires = ["sfml-system"] if not self.options.shared: self.cpp_info.components["sfml-network"].defines = ['SFML_STATIC'] if self.settings.os == 'Windows': self.cpp_info.components["sfml-network"].system_libs = ['ws2_32'] if self.options.audio: self.cpp_info.components["sfml-audio"].names["pkg_config"] = "sfml-audio" self.cpp_info.components["sfml-audio"].names["cmake_find_package"] = "audio" self.cpp_info.components["sfml-audio"].names["cmake_find_package_multi"] = "audio" self.cpp_info.components["sfml-audio"].libs = [self._get_decorated_lib("sfml-audio")] self.cpp_info.components["sfml-audio"].requires = ["openal::openal", "flac::flac", "ogg::ogg", "vorbis::vorbis", "sfml-system"] if not self.options.shared: self.cpp_info.components["sfml-audio"].defines = ['SFML_STATIC'] if self.settings.os == "Android": self.cpp_info.components["sfml-audio"].system_libs = ['android']
from pathlib import Path from tempfile import TemporaryDirectory from urllib.parse import urljoin import pytest from django.conf import settings from snoop import models, walker, views pytestmark = [ pytest.mark.django_db, pytest.mark.skipif(not settings.DATABASES, reason="DATABASES not set"), ] def _collection(**kwargs): col = models.Collection.objects.create(**kwargs) walker.Walker.walk( root=col.path, prefix=None, container_doc=None, collection=col, ) return col @pytest.fixture def testdata(): return _collection( slug='apitest', path=settings.SNOOP_ROOT + '/eml-2-attachment', ) def test_get_data(testdata): email = testdata.document_set.get(path='message-without-subject.eml') data = views._process_document(testdata.slug, email.id) content = data['content'] assert content['date'] == '2013-10-10T10:04:49-07:00' assert content['filetype'] == 'email' assert content['filename'] == 'message-without-subject.eml' assert content['path'] == 'message-without-subject.eml' assert content['from'] == \ 'Negoita Camelia <don.t_mess_with_miky@yahoo.com>' assert content['md5'] == '2008f17802012f11fc4b35234a4af672' def test_attachments(testdata): from snoop.digest import create_children, digest email = testdata.document_set.get(path='message-without-subject.eml') new_children = create_children(email, digest(email), True) data = views._process_document(testdata.slug, email.id) children = data['children'] assert len(children) == 2 assert children[0]['filename'] == 'IMAG1077.jpg' assert children[0]['content_type'] == 'image/jpeg' @pytest.fixture def mockdata(): with TemporaryDirectory() as tmp: root = Path(tmp) / 'mock' root.mkdir() for n in range(42): with (root / 'doc_{}.txt'.format(n)).open('w') as f: pass col = _collection(slug='mock', path=str(root), title="Mock") from snoop.digest import worker for doc in col.document_set.all(): worker(doc.id, False) yield col def test_collection_metadata_and_feed(mockdata, client): col_url = '/mock/json' col = client.get(col_url).json() assert col['title'] == "Mock" def feed_page(url): page = client.get(url).json() next_url = urljoin(url, page['next']) if page.get('next') else None return next_url, page['documents'] docs = [] feed_url = urljoin(col_url, col['feed']) while feed_url: feed_url, page_docs = feed_page(feed_url) docs.extend(page_docs) expected_paths = {''} ^ {"doc_{}.txt".format(n) for n in range(42)} assert {d['content']['path'] for d in docs} == expected_paths
#!/usr/bin/python # -*- coding: utf-8 -*- # this import utils def vectorizer(labeled_message, term_voc, doc_voc): """ labeled_message: dict donary with the following fields: {score, id, terms, features} term_voc : core.TermVocabulary doc_voc : core.DocVocabulary returns : dict vector {index1: value1, ... , indexN: valueN} """ return feature_vectorizer(labeled_message['features'], term_voc) def feature_vectorizer(features, term_voc): """ Produces vector of features term_voc : core.TermVocabulary returns: dict vector {index1: value1, ..., indexN: valueN} """ vector = {} for feature_name in features.keys(): if not term_voc.contains(feature_name): term_voc.insert_term(feature_name) index = term_voc.get_term_index(feature_name) vector[index] = features[feature_name] return vector if __name__ == "__main__": utils.vectorization_core(vectorizer, init_term_vocabulary=False)
# -*- coding: utf-8 -*- """ @author: Rajesh """ from typing import List, Tuple import imageio from io import BytesIO from PIL import Image import hydra from omegaconf import open_dict, DictConfig from typing import Mapping import numpy as np import os import streamlit as st from dataloader.ufs_data import UnknownTestData import torch from torchvision import transforms import matplotlib.pyplot as plt import warnings warnings.simplefilter("ignore") @st.cache( hash_funcs={torch.jit._script.RecursiveScriptModule: id}, allow_output_mutation=True ) def load_model( model_path: str = "saved_models/traced_pspnet_model.pt", ) -> torch.ScriptModule: """Loads and returns the torchscript model from path. Parameters ---------- model_path : str, optional The path to the torchscript model, by default "models/face_blur.pt" Returns ------- torch.ScriptModule The loaded torchscript model object. """ return torch.jit.load(model_path, map_location="cpu") @st.cache( hash_funcs={torch.jit._script.RecursiveScriptModule: id}, allow_output_mutation=True ) def get_inference_on_bytes_image( model: torch.ScriptModule, image_file: BytesIO ) -> Tuple[Image.Image, Image.Image]: """Runs model inference on a BytesIO image stream. Parameters ---------- model : torch.ScriptModule The TorchScript loaded module. image_file : BytesIO The image file uploaded returned as a BytesIO object. Returns ------- Tuple[Image.Image, Image.Image] A tuple of input image to the model and the output from the model. """ if isinstance(image_file, st.uploaded_file_manager.UploadedFile): raw_image = Image.open(image_file).convert("L") else: raw_image = Image.fromarray(image_file).convert("L") # print(f"model type {type(model)}") image = torch.tensor(np.array(raw_image)).unsqueeze(dim=0).unsqueeze(dim=0) # print(image.dtype) img = transforms.Resize(size=(512, 512), interpolation=Image.BILINEAR)(image) img = img.float() output = model(img).squeeze() print(f"output shape is {output.dtype}") # return Image.fromarray(image[0].detach().numpy()), Image.fromarray( # output[0].detach().numpy() # ) return img.detach().numpy().squeeze().astype(np.uint8), output.detach().numpy() def get_config_from_sidebar() -> dict: """Defines and returns the configuration in the sidebar. Returns ------- dict A dict of the different inputs chosen by the user. """ st.sidebar.markdown("## Upload image/video data and annotation") upload_video = st.sidebar.checkbox("Upload video?", value=False) with st.sidebar.beta_expander("See explanation"): st.write( """ If True, you can upload video. If False, you can upload images. """ ) if upload_video: video_file = st.sidebar.file_uploader( "Upload your video here (mp4, avi).", type=["mp4", "avi"] ) if video_file is None: st.stop() video = imageio.get_reader(video_file, "ffmpeg") image_files = [] for image in video.iter_data(): image_files.append(image) else: image_files = st.sidebar.file_uploader( "Upload your image/s here.", type=["png", "jpg", "jpeg"], accept_multiple_files=True, ) if len(image_files) == 0: st.stop() elif len(image_files) == 1: image_idx = 0 else: num_images = len(image_files) image_idx = st.sidebar.slider("Choose an image index", 0, num_images - 1, 0) fit_to_column = st.sidebar.checkbox("Fit images to column width") return { "image": image_files[image_idx], "fit_to_column": fit_to_column, } def sidebar(cfg: Mapping): # add a sidebar heading st.sidebar.markdown("# Choose images") # possible model options model_options = ["pspnet", "unet", "deeplabv3"] # default dataset index default_model_idx = 0 # corresponds to pspnet model # dataset to choose dataset = st.sidebar.selectbox( "Which Model to choose?", model_options, default_model_idx ) transform = transforms.Compose( [ transforms.Resize(size=(cfg.data.width, cfg.data.height), interpolation=Image.BILINEAR), transforms.ToTensor(), ] ) dataset_obj = UnknownTestData( cfg, data_root=cfg.st_data.data_dir, bbox_dir=None, # cfg.st_data.bbox_dir transform=transform, ) # get number of images in the dataset num_images = len(dataset_obj) # get image index image_idx = st.sidebar.slider("Choose an image index", 0, num_images - 1, 0) print(f"image idx is {image_idx}") # get image path image_path = dataset_obj.img_files[image_idx] # get processed image and target image = dataset_obj[image_idx] return image, image_idx, image_path @hydra.main(config_name="../config") def main(cfg: DictConfig): """Main function for the script. Defines the user input configuration, loads and runs the model and visualizes the output. """ model_path = cfg.st_data.model_path save_path = cfg.st_data.save_path image, image_idx, image_path = sidebar(cfg) model = load_model(model_path=model_path) # construct UI layout st.title("Semantic Segmentation of Aquatic Organisms in Underwater Videos") # get the raw image to display on the web page raw_image = Image.open(image_path).convert("L") # get the model prediction prediction = model(image.unsqueeze(dim=0)).detach().squeeze().numpy() prediction = np.where(prediction > 0.6, 255, 0).astype(np.uint8) resized_pred = Image.fromarray(prediction).resize(size=(raw_image.width, raw_image.height)) st.image( [raw_image, resized_pred], caption=["original image", "predicted mask"], width=224 # use_column_width=True, ) # st.image( # prediction, # caption="predicted mask", # width=224 # # use_column_width=True, # ) is_ok = st.sidebar.button(label="Segmentation OK?") if is_ok: os.makedirs(save_path, exist_ok=True) out_path = os.path.join(save_path, os.path.basename(image_path[:-3]) + "png") resized_pred.save(out_path) st.sidebar.write("Mask saved as ground-truth") else: # st.sidebar.write("Mask is not perfect and is not saved.") print("Mask is not perfect and is not saved.") if __name__ == "__main__": main()
# finds files that were not successfully converted; when I ran the code, # this revealed 14, all of which had misformed URLs. I corrected them # manually and re-ran the import import os GML_PATH = './spain_catastre/gml' if __name__ == '__main__': for f in os.listdir(GML_PATH): parts = f.split('.') if parts[-1] == 'zip': csv_filename = ('.'.join(parts[:-1])) + '.csv' if not os.path.exists('./build/' + csv_filename): print '%s/%s' % (GML_PATH, f)
#!/usr/bin/env python2 import socket import struct import sys # Monkey patch for: # - SOCK_SEQPACKET # - IPPROTO_SCTP # - bindx if not hasattr(socket, 'SOCK_SEQPACKET'): socket.SOCK_SEQPACKET = 5 if not hasattr(socket, 'IPPROTO_SCTP'): socket.IPPROTO_SCTP = 132 SCTP_BINDX_ADD_ADDR = 1 SCTP_BINDX_REM_ADDR = 2 # Load libsctp shared library # and resolve sctp_bindx # under x64-64 Debian 9, it resolves to /usr/lib/x86_64-linux-gnu/libsctp.so.1 import ctypes libsctp = None if libsctp is None: try: libsctp = ctypes.CDLL('libsctp.so') except: pass if libsctp is None: try: libsctp = ctypes.CDLL('libsctp.so.1') except: pass if libsctp is None: print('could not load SCTP shared library. Will now exit') sys.exit(1) assert(libsctp is not None) real_bindx = libsctp.sctp_bindx assert(real_bindx) real_connectx = libsctp.sctp_connectx assert(real_connectx) # sockaddr_in structure class SOCKADDR_IN(ctypes.Structure): _fields_ = [ ("sin_family", ctypes.c_uint16), ("sin_port", ctypes.c_uint16), ("sin_addr", ctypes.c_uint32), ("sin_zero", ctypes.c_byte*8), ] class SOCKADDR_IN6(ctypes.Structure): _fields_ = [ ("sin6_family", ctypes.c_uint16), ("sin6_port", ctypes.c_uint16), ("sin6_flowinfo", ctypes.c_uint32), ("sin6_addr", ctypes.c_byte*16), ("sin6_scope_id", ctypes.c_uint32), ] def bindx(f, addrs, family=socket.AF_INET): assert(family in (socket.AF_INET, socket.AF_INET6)) if family == socket.AF_INET: ADDRS_IN = SOCKADDR_IN * len(addrs) else: ADDRS_IN = SOCKADDR_IN6 * len(addrs) addrs_in = ADDRS_IN() for i in range(len(addrs)): (addr, port) = addrs[i] if family == socket.AF_INET: addrs_in[i].sin_family = family addrs_in[i].sin_port = socket.htons(port) addrs_in[i].sin_addr = struct.unpack('<I', socket.inet_aton(addr))[0] else: addrs_in[i].sin6_family = family addrs_in[i].sin6_port = socket.htons(port) addrs_in[i].sin6_flowinfo = 0 addrs_in[i].sin6_sin6_addr = socket.inet_pton(family, addr) addrs_in[i].sin6_scope_id = 0 return real_bindx(f.fileno(), addrs_in, len(addrs_in), SCTP_BINDX_ADD_ADDR) def connectx(f, addrs): assert(family in (socket.AF_INET, socket.AF_INET6)) if family == socket.AF_INET: ADDRS_IN = SOCKADDR_IN * len(addrs) else: ADDRS_IN = SOCKADDR_IN6 * len(addrs) addrs_in = ADDRS_IN() for i in range(len(addrs)): (addr, port) = addrs[i] if family == socket.AF_INET: addrs_in[i].sin_family = family addrs_in[i].sin_port = socket.htons(port) addrs_in[i].sin_addr = struct.unpack('<I', socket.inet_aton(addr))[0] else: addrs_in[i].sin6_family = family addrs_in[i].sin6_port = socket.htons(port) addrs_in[i].sin6_flowinfo = 0 addrs_in[i].sin6_sin6_addr = struct.unpack('<Q', socket.inet_pton(family, addr))[0] addrs_in[i].sin6_scope_id = 0 assoc = ctypes.c_int(0) # ? ret = real_connectx(f.fileno(), addrs_in, len(addrs_in), ctypes.byref(assoc)) return ret
""" Capstone Project. Code to run on the EV3 robot (NOT on a laptop). Author: Your professors (for the framework) and Yicheng Yang.. Winter term, 2018-2019. """ import M2_rosebot import mqtt_remote_method_calls as com import time import m2_gui_delegate def main(): """ This code, which must run on the EV3 ROBOT: 1. Makes the EV3 robot to various things. 2. Communicates via MQTT with the GUI code that runs on the LAPTOP. """ real_run() # go_along_black() # go_straight_for_seconds(99999,50) def real_run(): robot = M2_rosebot.RoseBot() delegate = m2_gui_delegate.ResponderToGUIMessages(robot) mqtt_receiver = com.MqttClient(delegate) mqtt_receiver.connect_to_pc() delegate.mqtt_sender=mqtt_receiver while True: if delegate.stop_program: break time.sleep(0.01) # def main(): # robot = rosebot.RoseBot() # rc = RemoteControlEtc(robot) # client = com.MqttClient(rc) # client.connect_to_pc() # rc.client = client # # while True: # if robot.color_sensor.get_color() == 6: # time.sleep(1.5) # robot.drive_system.turn_degrees(-95) # if robot.proximity_sensor.get_distance_to_nearest_object() <= 10: # ev3.Sound.speak('mission complete').wait() # robot.drive_system.stop_moving() # time.sleep(0.01) # For the delegate to do its work # real_run() # run_test_arm() # run_caliberate_arm() # run_mov3_arm_to_position(5000) # lower_arm() # go(100, 50) # stop() # go_straight_for_seconds(10,70) # go_straight_for_inches_using_time(30, 50) # class RemoteControlEtc(object): # def __init__(self, robot): # """ # # Stores the robot. # :type robot: rb.Snatch3rRobot # """ # self.robot = robot # self.client = None # pass # def go(): # def run_test_arm(): # robot=M2_rosebot.RoseBot() # robot.arm_and_claw.raise_arm() # # def run_caliberate_arm(): # robot=M2_rosebot.RoseBot() # print('running') # robot.arm_and_claw.calibrate_arm() # # def run_mov3_arm_to_position(pos): # robot=M2_rosebot.RoseBot() # robot.arm_and_claw.move_arm_to_position(pos) # # def lower_arm(): # robot =M2_rosebot.RoseBot() # robot.arm_and_claw.lower_arm() # def go(left, right): # robot = M2_rosebot.RoseBot() # robot.drive_system.go(left , right) # def stop(): # robot = M2_rosebot.RoseBot() # robot.drive_system.stop() # def go_straight_for_seconds(second, speed): # print('running') # robot = M2_rosebot.RoseBot() # robot.drive_system.go_straight_for_seconds(second, speed) # def go_straight_for_inches_using_time(inch, speed): # robot = M2_rosebot.RoseBot() # robot.drive_system.go_straight_for_inches_using_time(inch, speed) # def go_straight_for_inches_using_encoder(inch, speed): # robot = M2_rosebot.RoseBot() # robot.drive_system.go_straight_for_inches_using_encoder(inch, speed) # def beeper(time): # robot = M2_rosebot.RoseBot() # robot.sound_system.beeper.beep(time) # def tone_make(frequency, duration): # robot = M2_rosebot.RoseBot() # robot.sound_system.tone_maker.play_tone(frequency,duration).wait() # # # def speak(str): # robot = M2_rosebot.RoseBot() # robot.sound_system.speech_maker.speak(str) # # # def go_and_increase_frequency(speed,frequency_step): # robot = M2_rosebot.RoseBot() # robot.drive_system.go_and_increase_frequency(speed,frequency_step) # def go_along_black(): # robot = M2_rosebot.RoseBot() # robot.drive_system.go_along_black_line() # ----------------------------------------------------------------------------- # Calls main to start the ball rolling. # ----------------------------------------------------------------------------- main()
# Copyright 2019 The Feast Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, MutableMapping, Optional import yaml from google.protobuf import json_format from google.protobuf.json_format import MessageToDict, MessageToJson from google.protobuf.timestamp_pb2 import Timestamp from feast.loaders import yaml as feast_yaml from feast.protos.feast.core.Entity_pb2 import Entity as EntityV2Proto from feast.protos.feast.core.Entity_pb2 import EntityMeta as EntityMetaProto from feast.protos.feast.core.Entity_pb2 import EntitySpecV2 as EntitySpecProto from feast.usage import log_exceptions from feast.value_type import ValueType class Entity: """ Represents a collection of entities and associated metadata. """ @log_exceptions def __init__( self, name: str, value_type: ValueType = ValueType.UNKNOWN, description: str = "", join_key: Optional[str] = None, labels: Optional[MutableMapping[str, str]] = None, ): self._name = name self._description = description self._value_type = value_type if join_key: self._join_key = join_key else: self._join_key = name self._labels: MutableMapping[str, str] if labels is None: self._labels = dict() else: self._labels = labels self._created_timestamp: Optional[Timestamp] = None self._last_updated_timestamp: Optional[Timestamp] = None def __eq__(self, other): if not isinstance(other, Entity): raise TypeError("Comparisons should only involve Entity class objects.") if ( self.labels != other.labels or self.name != other.name or self.description != other.description or self.value_type != other.value_type or self.join_key != other.join_key ): return False return True def __str__(self): return str(MessageToJson(self.to_proto())) @property def name(self): """ Returns the name of this entity """ return self._name @name.setter def name(self, name): """ Sets the name of this entity """ self._name = name @property def description(self): """ Returns the description of this entity """ return self._description @description.setter def description(self, description): """ Sets the description of this entity """ self._description = description @property def join_key(self): """ Returns the join key of this entity """ return self._join_key @join_key.setter def join_key(self, join_key): """ Sets the join key of this entity """ self._join_key = join_key @property def value_type(self) -> ValueType: """ Returns the type of this entity """ return self._value_type @value_type.setter def value_type(self, value_type: ValueType): """ Set the type for this entity """ self._value_type = value_type @property def labels(self): """ Returns the labels of this entity. This is the user defined metadata defined as a dictionary. """ return self._labels @labels.setter def labels(self, labels: MutableMapping[str, str]): """ Set the labels for this entity """ self._labels = labels @property def created_timestamp(self): """ Returns the created_timestamp of this entity """ return self._created_timestamp @property def last_updated_timestamp(self): """ Returns the last_updated_timestamp of this entity """ return self._last_updated_timestamp def is_valid(self): """ Validates the state of a entity locally. Raises an exception if entity is invalid. """ if not self.name: raise ValueError("No name found in entity.") if not self.value_type: raise ValueError("No type found in entity {self.value_type}") @classmethod def from_yaml(cls, yml: str): """ Creates an entity from a YAML string body or a file path Args: yml: Either a file path containing a yaml file or a YAML string Returns: Returns a EntityV2 object based on the YAML file """ return cls.from_dict(feast_yaml.yaml_loader(yml, load_single=True)) @classmethod def from_dict(cls, entity_dict): """ Creates an entity from a dict Args: entity_dict: A dict representation of an entity Returns: Returns a EntityV2 object based on the entity dict """ entity_proto = json_format.ParseDict( entity_dict, EntityV2Proto(), ignore_unknown_fields=True ) return cls.from_proto(entity_proto) @classmethod def from_proto(cls, entity_proto: EntityV2Proto): """ Creates an entity from a protobuf representation of an entity Args: entity_proto: A protobuf representation of an entity Returns: Returns a EntityV2 object based on the entity protobuf """ entity = cls( name=entity_proto.spec.name, description=entity_proto.spec.description, value_type=ValueType(entity_proto.spec.value_type), labels=entity_proto.spec.labels, join_key=entity_proto.spec.join_key, ) entity._created_timestamp = entity_proto.meta.created_timestamp entity._last_updated_timestamp = entity_proto.meta.last_updated_timestamp return entity def to_proto(self) -> EntityV2Proto: """ Converts an entity object to its protobuf representation Returns: EntityV2Proto protobuf """ meta = EntityMetaProto( created_timestamp=self.created_timestamp, last_updated_timestamp=self.last_updated_timestamp, ) spec = EntitySpecProto( name=self.name, description=self.description, value_type=self.value_type.value, labels=self.labels, join_key=self.join_key, ) return EntityV2Proto(spec=spec, meta=meta) def to_dict(self) -> Dict: """ Converts entity to dict Returns: Dictionary object representation of entity """ entity_dict = MessageToDict(self.to_proto()) # Remove meta when empty for more readable exports if entity_dict["meta"] == {}: del entity_dict["meta"] return entity_dict def to_yaml(self): """ Converts a entity to a YAML string. Returns: Entity string returned in YAML format """ entity_dict = self.to_dict() return yaml.dump(entity_dict, allow_unicode=True, sort_keys=False) def to_spec_proto(self) -> EntitySpecProto: """ Converts an EntityV2 object to its protobuf representation. Used when passing EntitySpecV2 object to Feast request. Returns: EntitySpecV2 protobuf """ spec = EntitySpecProto( name=self.name, description=self.description, value_type=self.value_type.value, labels=self.labels, join_key=self.join_key, ) return spec def _update_from_entity(self, entity): """ Deep replaces one entity with another Args: entity: Entity to use as a source of configuration """ self.name = entity.name self.description = entity.description self.value_type = entity.value_type self.labels = entity.labels self.join_key = entity.join_key self._created_timestamp = entity.created_timestamp self._last_updated_timestamp = entity.last_updated_timestamp
import torch import torch.nn as nn import torch.autograd.Function as F from seqtalk.binary_neurons import StochasticBinaryActivation from collections import namedtuple import numpy as np TrainingParams = namedtuple('TrainingParams', [ 'minibatch_size', 'num_epochs', 'minibatches_per_epoch', 'processor', ]) def load_tensor(kind, tensor): if kind.lower() == 'gpu': return tensor.gpu() return tensor.cpu() class TrainableModel(nn.Module): @classmethod def default_params(cls): return TrainingParams(100, 5, 1000, 'gpu') @classmethod def prep_model(cls, data_source, training_params): model = cls(data_source.input_length * data_source.alphabet_size) load_tensor(training_params.processor, model) model.zero_grad() data_source.reset() return model @classmethod def optimizer(cls, model, lr=None, momentum=None, sgd=True): if sgd: lr = lr if lr is not None else 0.1 momentum = momentum if momentum is not None else 0.9 return torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum) @classmethod def loss(cls): return torch.nn.MSELoss(reduction='sum') @classmethod def train(cls, data_source, training_params=None): training_params = cls.default_params() if training_params is None else training_params model = cls.prep_model(data_source, training_params) optimizer = cls.optimizer(model) loss_fn = cls.loss(cls) for epoch in range(training_params.num_epochs): epoch_loss = 0 for batch_num in range(training_params.minibatches_per_epoch): batch_loss = cls.train_minibatch( epoch, batch_num, model, optimizer, loss_fn, data_source, training_params ) epoch_loss += batch_loss yield model, (epoch, epoch_loss.cpu().data) @classmethod def train_minibatch(cls, epoch_num, batch_num, model, optimizer, loss_fn, data_source, training_params): batch = data_source.next_batch( training_params.minibatch_size, flat=True, type=np.float64 ) batch = load_tensor(training_params.processor, torch.FloatTensor(batch)) optimizer.zero_grad() pred = model(batch) loss = loss_fn(pred, batch) loss.backward() optimizer().step() return loss class SimpleContinuousNet(TrainableModel): """A very simple network that should learn the identity matrix with a single layer of ReLU neurons. """ def __init__(self, input_size): super(SimpleBinaryNet, self).__init__() self.fc1 = nn.Linear(input_size, input_size, bias=False) self.act = StochasticBinaryActivation() self.sig = torch.nn.Sigmoid() def forward(self, x): x = self.fc1(x) x = x.clamp(min=0) x = self.sig(x) return x @classmethod def train_minibatch(cls, epoch_num, batch_num, model, optimizer, loss_fn, data_source, training_params): batch = data_source.train.next_batch( training_params.minibatch_size, flat=True, type=np.float64 ) batch = load_tensor(training_params.processor, torch.FloatTensor(batch)) optimizer.zero_grad() loss = 0 for seq in batch: pred = model(seq) pred, seq = data_source.unflatten(pred, seq) pred = F.softmax(pred) loss += loss_fn(pred, seq) loss.backward() optimizer().step() return loss class SimpleBinaryNet(TrainableModel): def __init__(self, input_size): super(SimpleBinaryNet, self).__init__() self.fc1 = nn.Linear(input_size, input_size, bias=False) self.act = StochasticBinaryActivation() self.sig = torch.nn.Sigmoid() def forward(self, x): x = self.fc1(x) x = self.act(x) return x
#!/usr/local/bin/python3 import time import os import sys import socks import socket import urllib.request from log import * print ('''\033[1;31m \n _ _ | | (_) __ _ _ _| |_ ___ _ __ _ _ __ / _` | | | | __/ _ \| '__| | '_ \ | (_| | |_| | || (_) | | | | |_) | \__,_|\__,_|\__\___/|_| |_| .__/ | | |_| Automatically Change Ip Address Tor #noobteam ''') print ("\033[1;34m[*]___author___: @noobpk\033[1;37m") print ("\033[1;34m[*]___version___: 1.2\033[1;37m") print ("") def detect_platform(): try: platforms = { 'linux' : 'Linux', 'linux1' : 'Linux', 'linux2' : 'Linux', 'darwin' : 'OS X', } logger.info("[*] Detect Platform") if sys.platform not in platforms: logger.error("[x_x] Your platform currently does not support.") sys.exit(0) except Exception as e: logger.error("[x_x] Something went wrong, please check your error message.\n Message - {0}".format(e)) def check_exists_tor_ip(ipTor): with open ('listip.txt', 'r') as read_obj: for line in read_obj: if ipTor in line: return True else: return False def check_runon_osx(): try: logger.info("[+] Check Requirement") istor = os.system('command -v tor 1> /dev/null') istorsocks = os.system ('command -v torsocks 1> /dev/null') isprivoxy = os.path.isdir("/usr/local/Cellar/privoxy") file_listip = os.path.isfile("listip.txt") if (istor != 0): logger.info("Installing Tor...") os.system('brew install tor') check_runon_osx() if (istorsocks != 0): logger.info("[+] Installing TorSocks...") os.system('brew install torsocks') check_runon_osx() if (isprivoxy == False): logger.info("[+] Installing Privoxy...") os.system('brew install privoxy') check_runon_osx() if (file_listip == False): logger.info("[+] Creating File listip.txt") open("listip.txt", "w") check_runon_osx() else: logger.info("[*] Tor has been install") logger.info("[*] TorSocks has been install") logger.info("[*] Privoxy has been install") logger.info("[*] File listip.txt has been created") startservice_osx() except Exception as e: logger.error("[x_x] Something went wrong, please check your error message.\n Message - {0}".format(e)) def startservice_osx(): try: logger.info("[*] Current IP Addresss") currentip = os.system("wget -qO- http://ipecho.net/plain 2> /dev/null ; echo") logger.info("[*] Start service Tor") os.system("brew services start tor") time.sleep(2) logger.info("[*] Start service Privoxy") os.system("brew services start privoxy") time.sleep(2) logger.info("[*] Change your SOCKES to 127.0.0.1:9050") logger.info("[+] Set time stamp") sec = int(input("[?] Time to auto change ip by second (default 600s):") or "600") loop = int(input("[?] Number of loop (default 144):") or "144") for i in range(loop): logger.info("[*] Change New IP") os.system("brew services restart tor") time.sleep(2) #currentip = os.system("torsocks wget -qO- http://ipecho.net/plain 2> /dev/null ; echo") socks.setdefaultproxy(socks.PROXY_TYPE_SOCKS5, "127.0.0.1", 9050) socket.socket = socks.socksocket url = 'http://ipecho.net/plain' request = urllib.request.Request(url) request.add_header('Cache-Control','max-age=0') response = urllib.request.urlopen(request) newip = response.read().decode('utf-8') if check_exists_tor_ip(newip): restart_tor_service() else: f = open('listip.txt', 'a+') f.write(newip + '\n') logger.info("[*] Successfully - Your IP has been Changed") logger.info("[*] New IP Addresss:") print(newip) time.sleep(sec) logger.info("[#] The loop has finished refreshing it") stopservice_osx() except Exception as e: logger.error("[x_x] Something went wrong, please check your error message.\n Message - {0}".format(e)) def restart_tor_service_osx(): logger.warning("Your IP Already Exist - Request New IP") os.system("brew services restart tor") socks.setdefaultproxy(socks.PROXY_TYPE_SOCKS5, "127.0.0.1", 9050) socket.socket = socks.socksocket url = 'http://ipecho.net/plain' request = urllib.request.Request(url) request.add_header('Cache-Control','max-age=0') response = urllib.request.urlopen(request) newip = response.read().decode('utf-8') if check_exists_tor_ip(newip): restart_tor_service() else: f = open('listip.txt', 'a+') f.write(newip + '\n') logger.info("[*] Successfully - Your IP has been Changed") logger.info("[*] New IP Addresss:") print(newip) def stopservice_osx(): try: logger.info("[+] Stop service Tor") os.system("brew services stop tor") time.sleep(2) logger.info("[+] Stop service Privoxy") os.system("brew services stop privoxy") os.system("clear") except Exception as e: logger.error("[x_x] Something went wrong, please check your error message.\n Message - {0}".format(e)) def check_runon_linux(): try: logger.info("[+] Check Requirement") istor = os.system('command -v tor 1> /dev/null') istorsocks = os.system('command -v torsocks 1> /dev/null') isprivoxy = os.system('command -v privoxy 1> /dev/null') file_listip = os.path.isfile("listip.txt") if (os.geteuid() != 0): logger.error("[x_x] You need to have root privileges to run this script") sys.exit(0) if (istor != 0): logger.info("[+] Installing Tor") os.system('apt-get install tor -y') check_runon_linux() if (istorsocks != 0): logger.info("[+] Installing TorSocks") os.system('apt-get install torsocks -y') check_runon_linux() if (isprivoxy != 0): logger.info("[+] Installing Privoxy") os.system('apt-get install privoxy -y') check_runon_linux() if (file_listip == False): logger.info("[+] Creating File listip.txt") open("listip.txt", "w") check_runon_linux() else: logger.info("[*] Tor has been install") logger.info("[*] TorSocks has been install") logger.info("[*] Privoxy has been install") logger.info("[*] File listip.txt has been created") startservice_linux() except Exception as e: logger.error("[x_x] Something went wrong, please check your error message.\n Message - {0}".format(e)) def startservice_linux(): try: logger.info("[*] Current IP Addresss") currentip = os.system("wget -qO- http://ipecho.net/plain 2> /dev/null ; echo") logger.info("[*] Start service Tor") os.system("service tor start") time.sleep(2) logger.info("[*] Start service Privoxy") os.system("service privoxy start") time.sleep(2) logger.info("[*] Change your SOCKES to 127.0.0.1:9050") logger.info("[*] Set time stamp") sec = int(input("[?] Time to auto change ip by second (default 600s):") or "600") loop = int(input("[?] Number of loop (default 144):") or "144") for i in range(loop): logger.info("[*] Change New IP") os.system("service tor restart") time.sleep(2) # currentip = os.system("torsocks wget -qO- http://ipecho.net/plain 2> /dev/null ; echo") socks.setdefaultproxy(socks.PROXY_TYPE_SOCKS5, "127.0.0.1", 9050) socket.socket = socks.socksocket url = 'http://ipecho.net/plain' request = urllib.request.Request(url) request.add_header('Cache-Control','max-age=0') response = urllib.request.urlopen(request) newip = response.read().decode('utf-8') if check_exists_tor_ip(newip): restart_tor_service() else: f = open('listip.txt', 'a+') f.write(newip + '\n') logger.info("[*] Successfully - Your IP has been Changed") logger.info("[*] New IP Addresss:") print(newip) time.sleep(sec) logger.info("[#] The loop has finished refreshing it") stopservice_linux() except Exception as e: logger.error("[x_x] Something went wrong, please check your error message.\n Message - {0}".format(e)) def restart_tor_service_linux(): logger.warning("Your IP Already Exist - Request New IP") os.system("service tor restart") socks.setdefaultproxy(socks.PROXY_TYPE_SOCKS5, "127.0.0.1", 9050) socket.socket = socks.socksocket url = 'http://ipecho.net/plain' request = urllib.request.Request(url) request.add_header('Cache-Control','max-age=0') response = urllib.request.urlopen(request) newip = response.read().decode('utf-8') if check_exists_tor_ip(newip): restart_tor_service() else: f = open('listip.txt', 'a+') f.write(newip + '\n') logger.info("[*] Successfully - Your IP has been Changed") logger.info("[*] New IP Addresss:") print(newip) def stopservice_linux(): try: logger.info("[*] Stop service Tor") os.system("service tor stop") time.sleep(2) logger.info("[*] Stop service Privoxy") os.system("service privoxy stop") os.system("clear") except Exception as e: logger.error("[x_x] Something went wrong, please check your error message.\n Message - {0}".format(e)) def main(): try: detect_platform() if (sys.platform == 'darwin'): logger.info("[*] Darwin - MAC OS-X") check_runon_osx() if (sys.platform == 'linux') | (sys.platform == 'linux1') | (sys.platform == 'linux2'): logger.info("[*] Linux - KALI LINUX - UBUNTU") check_runon_linux() except KeyboardInterrupt: logger.warning("[#] KeyboardInterrupt") if (sys.platform == 'darwin'): stopservice_osx() if (sys.platform == 'linux') | (sys.platform == 'linux1') | (sys.platform == 'linux2'): stopservice_linux() if __name__ == '__main__': if sys.version_info < (3,0): logger.error("[x_x] Autorip requires Python 3.x") else: main()
""" Sponge Knowledge Base Loading knowledge bases """ class Trigger1(Trigger): def onConfigure(self): self.withLabel("Trigger1, file3").withEvent("e1") def onRun(self, event): #self.logger.debug("file3: Received event {}", event) global eventCounter eventCounter.get(self.meta.label).incrementAndGet() class Trigger3(Trigger): def onConfigure(self): self.withLabel("Trigger3, file3").withEvent("e3") def onRun(self, event): #self.logger.debug("file3: Received event {}", event) global eventCounter eventCounter.get(self.meta.label).incrementAndGet() # Execute immediately while loading sponge.enableAll(Trigger1, Trigger3) def onShutdown(): sponge.logger.debug("onShutdown, file3")
import logging from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas_datareader import data from pandera import Check, Column, DataFrameSchema, Index, errors portfolio_schema = DataFrameSchema( { "Asset": Column(str, allow_duplicates=False), "Share": Column(int), "Target weight": Column( float, checks=[ Check(lambda s: (s >= 0.0) & (s <= 1.0)), Check(lambda s: np.sum(s) == 1.0), ], ), "Target Price": Column( float, checks=[Check(lambda s: s >= 0.0)], required=False, nullable=True ), }, index=Index(int), strict=True, coerce=True, ) def validate_file(file): try: df_portfolio = pd.read_csv(file) portfolio_schema(df_portfolio) logging.info("successful file validation") return df_portfolio except errors.SchemaErrors as err: logging.error(f"file validation failed: {err}") raise err def prices(assets, look_back, end_date=None): if end_date: start_date = (end_date - timedelta(days=look_back)).strftime("%Y-%m-%d") else: start_date = (datetime.today() - timedelta(days=look_back)).strftime("%Y-%m-%d") df = data.DataReader(assets, "yahoo", start=start_date, end=end_date) df = df.stack(level=1).reset_index(level=[0, 1], drop=False).reset_index(drop=True) logging.info(f"fetched quotes for {len(assets)} tickers from yahoo api") logging.info(f"shape of loaded dataframe: {df.shape}") return df
class ShuidiConstants: """ Default constants for shuidi author: weiwei date: 20210329 """ IP = '192.168.10.10' # default ip PORTS = {"server": 5000} BUFSIZE = 31001 BUFSIZE = 4096
# Time-stamp: <2020-01-02 15:18:16 taoliu> """Description: SCKMER anndata cmd This code is free software; you can redistribute it and/or modify it under the terms of the BSD License (see the file LICENSE included with the distribution). """ # ------------------------------------ # python modules # ------------------------------------ import os import sys import logging import scanpy as sc import numpy as np # ------------------------------------ # own python modules # ------------------------------------ # ------------------------------------ # Main function # ------------------------------------ def run( args ): """Compile an AnnData object from a 10X h5 file """ # Parse options... options = args # end of parsing commandline options info = options.info warn = options.warn debug = options.debug error = options.error # take options h5_fname = options.ifile out_fname = options.ofile # read adata = sc.read_10x_h5( h5_fname ) # add n_counts and n_kmers to adata.obs adata.obs['n_counts'] = np.sum(adata.X, axis=1).A1 adata.obs['n_kmers'] = np.sum(adata.X > 0, axis=1).A1 # add n_cells to adata.var adata.var['n_cells'] = np.sum(adata.X > 0, axis=0).A1 # save adata to h5ad adata.write_h5ad( filename = out_fname ) return
''' Created on 2013-2-2 @author: Joseph ''' from PySide.QtUiTools import QUiLoader from PySide import QtGui import sys if __name__ == "__main__": app = QtGui.QApplication(sys.argv) loader = QUiLoader() widget = loader.load('untitled.ui') widget.show() sys.exit(app.exec_())
import matplotlib.pyplot as plt import numpy as np import pytest import pdfstream.integration.tools import pdfstream.integration.tools as tools from pdfstream.integration.tools import integrate def test_bg_sub_error(): with pytest.raises(ValueError): tools.bg_sub(np.ones((2, 2)), np.zeros((3, 3))) @pytest.mark.parametrize( "case", [0] ) def test_integrate(test_data, case): if case == 0: chi, setting = integrate( test_data["Ni_img"], test_data["ai"], mask=np.ones_like(test_data["Ni_img"]), integ_setting={"npt": 1000} ) expect = np.zeros(1000) assert chi.shape == (2, 1000) assert np.array_equal(chi[1], expect) @pytest.fixture def user_mask(request, test_data): if request.param == "ones": return np.ones_like(test_data["Ni_img"]) if request.param == "zeros": return np.zeros_like(test_data["Ni_img"]) return None @pytest.mark.parametrize( "user_mask, mask_setting", [ (None, None), (None, {"alpha": 2, "upper_thresh": 1000}), ("ones", None), ("zeros", None) ], indirect=["user_mask"] ) def test_auto_mask(test_data, user_mask, mask_setting): mask, _ = pdfstream.integration.tools.auto_mask(test_data['Ni_img'], test_data['ai'], user_mask=user_mask, mask_setting=mask_setting) plt.matshow(mask) plt.colorbar() plt.show(block=False) plt.close()
# -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-05-22 11:53 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('feedjack', '0016_add_group_model'), ] operations = [ migrations.CreateModel( name='PostMark', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('mark', models.CharField(choices=[(b'U', b'Unread'), (b'R', b'Read'), (b'T', b'To Read'), (b'I', b'Important'), (b'F', b'Favourite')], max_length=1, db_index=True)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='feedjack.Post', db_index=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, db_index=True)), ], ), migrations.AddField( model_name='post', name='marked', field=models.ManyToManyField(blank=True, through='feedjack.PostMark', to=settings.AUTH_USER_MODEL), ), ]
# -*- encoding: utf-8 -*- # @File : binary_saver.py # @Time : 2021/07/09 19:57:12 # @Author : Ming Ding # @Contact : dm18@mail.tsinghua.edu.cn # here put the import lib import os import sys import math import random import torch from tqdm import tqdm import numpy as np from .base_saver import BaseSaver from cogdata.utils.register import register @register class BinarySaver(BaseSaver): """Save data as binary files """ suffix = '.bin' max_buffer_size = 1024 * 1024 * 1024 * 10 mapping = { 'int32': torch.IntTensor, 'int64': torch.LongTensor, 'float32': torch.FloatTensor, 'uint8': torch.ByteTensor, 'bool': torch.BoolTensor } def __init__(self, output_path, dtype='int32', **kwargs): # TODO test speed of buffering self.bin = open(output_path, 'wb', buffering=128*1024*1024) self.dtype = self.mapping[dtype] def save(self, data): ''' Parameters ---------- data:Tensor write in a binary file. ''' self.bin.write(data.type(self.dtype).numpy().tobytes()) # TODO buffer def commit(self): ''' Commit all buffered samples. ''' self.bin.flush() def __del__(self): ''' Close and Commit. ''' self.commit() self.bin.close() # @classmethod # def merge(cls, files, output_path, overwrite=False): # ''' # Merge files into one. # ''' # if os.path.exists(output_path): # if overwrite: # os.remove(output_path) # else: # raise FileExistsError # ret = os.system('cat {} >> {}'.format( # ' '.join(files), output_path # )) # TODO: solve possible "Argument list too long" # if ret != 0: # raise Exception(f'cat return code {ret}') @classmethod def merge(cls, files, output_path, overwrite=False): ''' Merge files into one. Parameters ---------- files:[file pointer] Files which need to merge output_path:str Path of output file. ''' merge_file = open(output_path, 'wb') for file_path in tqdm(files): with open(file_path, 'rb') as data_file: while True: data = data_file.read(cls.max_buffer_size) if not data: break merge_file.write(data) merge_file.close() # @classmethod # def split(cls, input_path, output_dir, n): # ''' # Split input_path into n files in output_path. # ''' # os.makedirs(output_dir, exist_ok=True) # prefix = os.path.join(output_dir, os.path.split(input_path)[-1]+'.part') # ret = os.system('split -d {} -n {} {} -a 3'.format( # input_path, n, prefix # )) # if ret != 0: # raise Exception(f'split return code {ret}') @classmethod def split(cls, input_path, output_dir, n, **kwargs): ''' Split input_path into n files in output_path. Parameters ---------- input_path:str The path of the input binary file. output_dir:str The root folder of n output files. ''' dtype = np.dtype(kwargs['dtype']) sample_size = kwargs['length_per_sample'] * dtype.itemsize merge_size = os.path.getsize(input_path) assert merge_size % sample_size == 0 sample_num = merge_size // sample_size split_size = (sample_num + n - 1) // n size = split_size * sample_size # bytes per part with open(input_path, 'rb') as merge_file: for i in tqdm(range(n - 1)): left_size = size merge_trunk = open(os.path.join( output_dir, os.path.split(input_path)[-1]+f".part{i}"), 'wb') while left_size > cls.max_buffer_size: merge_trunk.write(merge_file.read(cls.max_buffer_size)) left_size -= cls.max_buffer_size merge_trunk.write(merge_file.read(left_size)) merge_trunk.close() merge_trunk = open(os.path.join(output_dir, os.path.split( input_path)[-1]+f".part{n - 1}"), 'wb') while True: data = merge_file.read(cls.max_buffer_size) if not data: break merge_trunk.write(data) merge_trunk.close()
class Observer: _observers = [] def __init__(self): self._observers.append(self) self._observables = {} def observe(self, event_name, callback): self._observables[event_name] = callback @property def observers(self): return self._observers class IOEvent: def __init__(self, location, text, filename, autofire=True): self.name = "IOEvent" + location self.text = text self.filename = filename if autofire: self.fire() def fire(self): for observer in Observer._observers: if self.name in observer._observables: observer._observables[self.name](self.text, self.filename) class AlgSuccessEvent: def __init__(self, algconfig, autofire=True): self.name = "SuccessEvent" self.config = algconfig if autofire: self.fire() def fire(self): for observer in Observer._observers: if self.name in observer._observables: observer._observables[self.name](self.config) class DualEvent: def __init__(self, location, type, autofire=True): self.name = "DualEvent" + location self.type = type if autofire: self.fire() def fire(self): for observer in Observer._observers: if self.name in observer._observables: observer._observables[self.name](self.type) class ReloadConfigEvent: def __init__(self, newconfig, alg_name, autofire=True): self.name = "ReloadConfigEvent" self.newconfig = newconfig self.alg_name = alg_name if autofire: self.fire() def fire(self): for observer in Observer._observers: if self.name in observer._observables: observer._observables[self.name](self.newconfig, self.alg_name) class FormatEvent: def __init__(self, new_format, autofire=True): self.name = "FormatEvent" self.format = new_format if autofire: self.fire() def fire(self): for observer in Observer._observers: if self.name in observer._observables: observer._observables[self.name](self.format)
#!/bin/env python import argparse import pathlib import sys from wsgiref.util import setup_testing_defaults from wsgiref.simple_server import make_server import falcon from whitenoise import WhiteNoise font_end = pathlib.Path(__file__).resolve().parents[1] / 'front_end' talk = falcon.API() talk = WhiteNoise( talk, index_file=True, autorefresh=True, root=font_end ) def get_config(): """ Collect a config to use """ parser = argparse.ArgumentParser(description='Serve files.') parser.add_argument( '--port', type=int, default=7900, help='What port should we run on?') parser.add_argument( '--hostname', type=str, default='0.0.0.0', help='The IP or host address to use?') return parser.parse_args() def main(config): """ Start me up! """ with make_server(config.hostname, config.port, talk) as server: print(f"I'm online at: http://{config.hostname}:{config.port}") server.serve_forever() if __name__ == "__main__": main(get_config())
import torch as T from torch.utils.data import Dataset import numpy as np import os import pickle as pkl def init_pointcloud_loader(num_points): Z = np.random.rand(num_points) + 1. h = np.random.uniform(10., 214., size=(num_points,)) w = np.random.uniform(10., 214., size=(num_points,)) X = (w - 111.5) / 248. * -Z Y = (h - 111.5) / 248. * Z X = np.reshape(X, (-1, 1)) Y = np.reshape(Y, (-1, 1)) Z = np.reshape(Z, (-1, 1)) XYZ = np.concatenate((X, Y, Z), 1) return XYZ.astype('float32') def rgb2gray(rgb): return np.dot(rgb[..., :3], [0.299, 0.587, 0.114]) def collate(batch): data = [b for b in zip(*batch)] if len(data) == 3: init_pc, imgs, gt_pc = data elif len(data) == 4: init_pc, imgs, gt_pc, metadata = data else: raise ValueError('Unknown data values') init_pc = T.from_numpy(np.array(init_pc)).requires_grad_(False) imgs = T.from_numpy(np.array(imgs)).requires_grad_(False) gt_pc = [T.from_numpy(pc).requires_grad_(False) for pc in gt_pc] return (init_pc, imgs, gt_pc) if len(data) == 3 else (init_pc, imgs, gt_pc, metadata) class ShapeNet(Dataset): def __init__(self, path, grayscale=None, type='train', n_points=2000, **kwargs): assert type in ('train', 'valid', 'test') self.n_points = n_points self.grayscale = grayscale self.file_list = os.listdir(path) self.path = path self.type = type if type in ('train', 'test') else 'test' self.num_vals = kwargs.pop('num_vals', 30) self.pkl_list = [] self.sample_weights = [] for folder in self.file_list: file_path = os.listdir(os.path.join(path, folder, self.type)) if type == 'valid': idx = np.random.randint(len(file_path), size=self.num_vals // len(self.file_list)) file_path = [file_path[i] for i in idx] file_path = [os.path.join(self.path, folder, self.type, f) for f in file_path] self.pkl_list.extend(file_path) self.sample_weights.extend([1/len(file_path)] * len(file_path)) def __len__(self): return len(self.pkl_list) def __getitem__(self, idx): pkl_path = self.pkl_list[idx] contents = pkl.load(open(pkl_path, 'rb'), encoding='latin1') img = rgb2gray(contents[0])[..., None] if self.grayscale else contents[0] img = (np.transpose(img / 255.0, (2, 0, 1)) - .5) * 2 pc = np.array(contents[1], 'float32')[:, :3] pc -= np.mean(pc, 0, keepdims=True) return init_pointcloud_loader(self.n_points), np.array(img, 'float32'), pc
#!/usr/bin/env python # -*- coding: utf-8 -*- # from __future__ import unicode_literals import os.path import pelican_shiori AUTHOR = 'Siddhant Goel' SITENAME = 'pelican-shiori' SITEURL = '' PATH = 'content' TIMEZONE = 'Europe/Berlin' DEFAULT_LANG = 'en' FEED_ALL_ATOM = 'feeds/all.atom.xml' FEED_ALL_RSS = 'feeds/all.rss.xml' CATEGORY_FEED_ATOM = 'feeds/categories/%s.atom.xml' CATEGORY_FEED_RSS = 'feeds/categories/%s.rss.xml' TAG_FEED_ATOM = 'feeds/tags/%s.atom.xml' TAG_FEED_RSS = 'feeds/tags/%s.rss.xml' TRANSLATION_FEED_ATOM = None AUTHOR_FEED_ATOM = None AUTHOR_FEED_RSS = None RSS_FEED_SUMMARY_ONLY = False FEED_MAX_ITEMS = 5 DEFAULT_PAGINATION = 10 ARTICLE_URL = 'posts/{slug}/' ARTICLE_SAVE_AS = 'posts/{slug}/index.html' ARTICLE_REDIRECT_FROM = 'posts/{date:%Y}/{date:%m}/{date:%d}/{slug}/index.html' PAGE_URL = '{slug}/' PAGE_SAVE_AS = '{slug}/index.html' CATEGORY_URL = 'categories/{slug}/' CATEGORY_SAVE_AS = 'categories/{slug}/index.html' TAG_URL = 'tags/{slug}/' TAG_SAVE_AS = 'tags/{slug}/index.html' TAGS_SAVE_AS = 'tags/index.html' ARCHIVES_SAVE_AS = 'posts/index.html' YEAR_ARCHIVE_SAVE_AS = 'posts/{date:%Y}/index.html' MONTH_ARCHIVE_SAVE_AS = 'posts/{date:%Y}/{date:%m}/index.html' DAY_ARCHIVE_SAVE_AS = 'posts/{date:%Y}/{date:%m}/{date:%d}/index.html' PLUGIN_PATHS = ['plugins'] PLUGINS = ['assets'] THEME = pelican_shiori.path() SHIORI_THEME = 'blue' ASSET_CONFIG = pelican_shiori.asset_config(SHIORI_THEME)
from psyneulink import * m1 = TransferMechanism(input_ports=["InputPort A", "InputPort B"]) m2 = TransferMechanism() c = Composition() c.add_node(m1, required_roles=NodeRole.INPUT) c.add_node(m2, required_roles=NodeRole.INPUT) c._analyze_graph() lvoc = OptimizationControlMechanism(agent_rep=RegressionCFA, state_features=[m1.input_ports[0], m1.input_ports[1], m2.input_port], objective_mechanism=ObjectiveMechanism( monitor=[m1, m2]), function=GridSearch(max_iterations=1), control_signals=[(SLOPE, m1), (SLOPE, m2)]) c.add_node(lvoc) input_dict = {m1: [[1], [1]], m2: [1]} c.show_graph(show_controller=True) # c.run(inputs=input_dict)
from django.contrib.admin import site, ModelAdmin from serveradmin.access_control.models import AccessControlGroup class AccessControlGroupAdmin(ModelAdmin): model = AccessControlGroup filter_horizontal = ['members', 'applications'] site.register(AccessControlGroup, AccessControlGroupAdmin)
from direction import all_directions, DEFAULT_DIRECTION from gamestate import GameState from snakes.basesnake import BaseSnake from snakes.utils import get_next_coord, get_dist, get_opposite_direction, get_directions import random class ClaustrophobicSnake(BaseSnake): """Goes in the direction that leads to a larger area""" def get_next_move(self, game_state: GameState) -> str: body = game_state.data['you']['body'] head = body[0] # TODO: If we're starving - aim for nearby food # If our head is close to the head of another longer snake, try to steer away if possible for snake in game_state.data['board']['snakes']: if snake['id'] == game_state.data['you']['id']: continue if len(snake['body']) <= len(game_state.data['you']['body']): continue d = get_dist(head, snake['body'][0]) if d <= 4: e_directions = get_directions(head, snake['body'][0]) for e_direction in e_directions: o_direction = get_opposite_direction(e_direction) print(f'snake {snake["name"]} is too close and big, ' f'trying opposite direction, to the {o_direction}...') next_head_coord = get_next_coord(head, o_direction) if next_head_coord not in game_state.snake_body_cells and \ game_state.is_coord_on_board(next_head_coord): return o_direction # Move in the direction of the largest area largest_area = 0 largest_area_directions = [] for a_dir in all_directions: next_head_coord = get_next_coord(head, a_dir) size = game_state.get_size_of_empty_cells(next_head_coord) print(f'The area is of size {size} if I go {a_dir}...') if size == largest_area: largest_area_directions.append(a_dir) elif size > largest_area: largest_area_directions = [a_dir] largest_area = size if len(largest_area_directions) == 0: return DEFAULT_DIRECTION return random.choice(largest_area_directions)
#1 C = float(input("Enter a degree in Celsius:")) F = (9 / 5) * C + 32 print("%.1f Celsius in %.1f Fahrenhrit"%(C,F)) #2 import math radius = float(input("请输入半径:")) length = float(input("请输入高:")) area = radius * radius * math.pi volume = area * length print("面积为%.4f"%area) print("体积为%.1f"%volume) #3 feet = float(input("Enter a value for feet:")) meters = feet * 0.305 print("%.1f feet is %.4f meters"%(feet,meters)) #4 M = float(input("Enter the amount of water in kilograms:")) initial = float(input("Enter the initial temperature:")) final = float(input("Enter the final temperature:")) Q = M *(final - initial) * 4184 print("The energy needed is %.1f"%Q) #5 balance,rate = eval(input("Enter balance and interest rate (e.g., 3 for 3%):")) interest = balance * (rate / 1200) print("The interest is %.5f"%interest) #6 v0,v1,t = eval(input("Enter v0, v1 and t:")) a = (v1 - v0) / t print("The avergea acceleration is %.4f"%a) #7 saving = float(input("Enter the monthly saving amount:")) num = 0 while num < 1: account = saving * (1 + 0.00417) saving = account saving += 100 num += 1 print("After the sixth month, the account value is %f"%account) #8 num = int(input("Enter a number between 0 and 1000:")) bai = num // 100 shi = (num % 100) // 10 ge = num % 10 he = bai + shi + ge print("The sum of the digits is %d"%he)
from paramiko import RSAKey from paramiko import SSHClient from paramiko import AutoAddPolicy import sys if len(sys.argv) != 3: print("ERROR! Incorrect number of arguments") sys.exit(1) worker_ip = sys.argv[1] key_file = sys.argv[2] key = RSAKey.from_private_key_file(key_file) client = SSHClient() client.set_missing_host_key_policy(AutoAddPolicy()) client.connect(worker_ip, timeout = 30, pkey = key) (stdin, stdout, stderr) = client.exec_command("sudo rm -rf /mnt/huge/*") (stdin, stdout, stderr) = client.exec_command("sudo rm -rf repository") (stdin, stdout, stderr) = client.exec_command("sudo rm -rf stats") (stdin, stdout, stderr) = client.exec_command("sudo rm -f worker.sh") (stdin, stdout, stderr) = client.exec_command("sudo rm -f helper-functions.sh") (stdin, stdout, stderr) = client.exec_command("sudo reboot") print("Successfully sent {} to reboot".format(worker_ip)) client.close()
import clusto_query class OperatorType(clusto_query.query.QueryType): def __new__(mcs, cls, *args, **kwargs): constructed_class = super(OperatorType, mcs).__new__(mcs, cls, *args, **kwargs) if getattr(constructed_class, "operator_map", None) is not None and \ getattr(constructed_class, "operator", None) is not None: if isinstance(constructed_class.operator, basestring): constructed_class.operator_map[constructed_class.operator] = constructed_class else: for operator in constructed_class.operator: constructed_class.operator_map[operator] = constructed_class return constructed_class class Operator(clusto_query.query.QueryObject): __metaclass__ = OperatorType def __init__(self, *parameters): self.parameters = parameters def __repr__(self): return "%s(%s)" % (self.__class__.__name__, ", ".join(map(repr, self.parameters))) def visit_iter(self): yield self for param in self.parameters: if isinstance(param, clusto_query.query.QueryObject): for p in param.visit_iter(): yield p else: yield param
from mdpo.po2md import Po2Md def test_disabled_entries(tmp_file): po_content = '''# msgid "" msgstr "" msgid "foo" msgstr "translated foo" ''' markdown_content = '''# foo <!-- mdpo-translator Message for translator --> <!-- mdpo-context Context --> <!-- mdpo-disable-next-line --> this should be in disabled_entries ''' with tmp_file(po_content, '.po') as po_filepath: po2md = Po2Md(po_filepath) output = po2md.translate(markdown_content) assert output == '# translated foo\n\nthis should be in disabled_entries\n' assert len(po2md.disabled_entries) == 1 disabled_entry = po2md.disabled_entries[0] assert disabled_entry.msgid == 'this should be in disabled_entries' assert disabled_entry.msgstr == '' assert disabled_entry.msgctxt == 'Context' assert disabled_entry.tcomment == 'Message for translator'
from django.db import models class Event(models.Model): event_cod = models.CharField('Codigo Identificacion', max_length=200, unique=True) event_nom = models.CharField('Nombre del Evento', max_length=200) event_date_init = models.DateField('Fecha de Inicio', auto_now=False, auto_now_add=False, null=True, blank=True) even_date_end = models.DateField('Fecha de Finalizacion', auto_now=False, auto_now_add=False, null=True, blank=True) event_site = models.TextField('Lugar del Evento', max_length=500, null=True, blank=True) event_url = models.URLField('Pagina Web', null=True, blank=True) def __str__(self): return self.event_cod class Magazine(models.Model): magazine_code = models.CharField('Cidigo de la Revista', max_length=200, unique=True) magazine_name = models.CharField('Nombre de la Revista', max_length=200) magazine_date = models.DateField('Fecha de Publicacion', auto_now=False, auto_now_add=False, null=True, blank=True) magazine_arb = models.BooleanField('Registra Arbitrada?') magazine_cenditel = models.BooleanField('Realizada en CENDITEL?') magazine_url = models.URLField('Pagina Web', null=True, blank=True) def __str__(self): return self.magazine_code class Course(models.Model): course_code = models.CharField('Codigo del Curso', max_length=200, unique=True) course_name = models.CharField('Nombre del Curso', max_length=200) course_date_init = models.DateField('Fecha de Inicio', auto_now=False, auto_now_add=False, null=True, blank=True) course_date_end = models.DateField('Fecha de Finalizacion', auto_now=False, auto_now_add=False, null=True, blank=True) # course_enrolled def __str__(self): return self.course_code class Project(models.Model): project_code = models.CharField('Codigo del Proyecto', max_length=200, unique=True) project_name = models.CharField('Nombre del Proyecto', max_length=200) project_date_init = models.DateField('Fecha de Inicio', auto_now=False, auto_now_add=False, null=True, blank=True) project_date_end = models.DateField('Fecha de Finalizacion', auto_now=False, auto_now_add=False, null=True, blank=True) project_poa = models.BooleanField('Pertenece al POA?') def __str__(self): return self.project_code class Book(models.Model): book_code = models.CharField('Codigo del Libro', max_length=200, unique=True) book_name = models.CharField('Nombre del Libro', max_length=200) book_date = models.DateField('Fecha de Publicación', auto_now=False, auto_now_add=False, null=True, blank=True) book_cenditel = models.BooleanField('Realizado en CENDITEL?') book_url = models.URLField('Pagina Web', max_length=200, null=True, blank=True) def __str__(self): return self.book_code class Participant(models.Model): participant_code = models.CharField('Codigo del Participante', max_length=10, unique=True) participant_document = models.CharField('Cedula de Identidad', max_length=200, unique=True) participant_name = models.CharField('Nombre', max_length=200) participant_lastname = models.CharField('Apellido', max_length=200) participant_email = models.EmailField('Correo Electronico') def __str__(self): return self.participant_code class Researcher(models.Model): researcher_code = models.CharField('Codigo del Participante', max_length=10, unique=True) researcher_document = models.CharField('Cedula de Identidad', max_length=200, unique=True) researcher_name = models.CharField('Nombre', max_length=200) researcher_lastname = models.CharField('Apellido', max_length=200) #researcher_projects reseracher_active = models.BooleanField('Se encuentra activo?') def __str__(self): return self.researcher_code
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from detectron2.structures import Instances, Boxes from .backbone import EfficientDetWithLoss class EfficientDetModel(nn.Module): """Detectron2 model: https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch """ def __init__(self, compound_coef, model_args=None): super().__init__() num_classes = model_args.get("num_classes", None) pretrained = model_args.get("pretrained", False) self.max_bbox = model_args.get("max_bbox", 30) self.model = EfficientDetWithLoss(num_classes=num_classes, compound_coef=compound_coef, load_weights=pretrained) @staticmethod def to_numpy(v): if isinstance(v, np.ndarray): return v else: return v.detach().cpu().numpy() def forward(self, x): N = len(x) imgs = torch.stack([sample['image'].float() for sample in x]) annotations = np.ones((N, self.max_bbox, 5)) * -1 for i, sample in enumerate(x): instances = sample['instances'] boxes = self.to_numpy(instances.gt_boxes.tensor) class_id = self.to_numpy(instances.gt_classes) annotation = np.concatenate([boxes, class_id[:, np.newaxis]], 1) if len(class_id) > self.max_bbox: annotation = annotation[:self.max_bbox, :] annotations[i, :len(class_id), :] = annotation annotations = torch.from_numpy(annotations) return self.model(imgs, annotations, is_train) def infer(self, x): imgs = torch.stack([sample['image'].float() for sample in x]) rois = self.model.infer(imgs) outs = [] for sample_input, sample_output in zip(x, rois): instances = Instances( (sample_input['height'], sample_input['width'])) instances.pred_boxes = Boxes(sample_output['rois']) instances.scores = torch.tensor(sample_output['scores']) instances.pred_classes = torch.tensor(sample_output['class_ids']) outs.append({"instances": instances}) return outs class EfficientDetD0(EfficientDetModel): def __init__(self, model_args=None): super().__init__(0, model_args) class EfficientDetD1(EfficientDetModel): def __init__(self, model_args=None): super().__init__(1, model_args) class EfficientDetD2(EfficientDetModel): def __init__(self, model_args=None): super().__init__(2, model_args) class EfficientDetD3(EfficientDetModel): def __init__(self, model_args=None): super().__init__(3, model_args) class EfficientDetD4(EfficientDetModel): def __init__(self, model_args=None): super().__init__(4, model_args) class EfficientDetD5(EfficientDetModel): def __init__(self, model_args=None): super().__init__(5, model_args) class EfficientDetD6(EfficientDetModel): def __init__(self, model_args=None): super().__init__(6, model_args) class EfficientDetD7(EfficientDetModel): def __init__(self, model_args=None): super().__init__(7, model_args) class EfficientDetD7X(EfficientDetModel): def __init__(self, model_args=None): super().__init__(8, model_args)
import srt, re from timecode import Timecode from datetime import datetime from coldtype.time.sequence import Sequence, Clip, ClipTrack def srt_to_frame(fps, st): tc = Timecode(fps, srt.timedelta_to_srt_timestamp(st).replace(",", ".")) return tc.frame_number-86400-21600 class SRT(Sequence): def __init__(self, path, fps, storyboard=None, workarea_track=0): self.path = path subs = srt.parse(path.read_text()) clips = [] for sidx, s in enumerate(subs): clips.append(Clip( re.sub(r"<[^>]+>", "", s.content).strip(), srt_to_frame(fps, s.start), srt_to_frame(fps, s.end), idx=sidx, track=0)) track = ClipTrack(self, clips, []) super().__init__(track.duration(), fps, storyboard, [track])
print [1, 2, 3] print [1, 2, 3] + [4, 5, 6] print ['Hi!'] * 4 print 3 * [1, 2, 3] a = ["Hello", 2.00, 4, 4 + 5, 2 * 4.9, "World" * 3] print a print a * 3 print a + [" world"] print a[0] print a[1] print a[1:3:1] print a[1:5:1][1:3:1]
from .core import SuggestionBox __red_end_user_data_statement__ = ( "This cog stores data provided to it by command as needed for operation. " "As this data is for suggestions to be given from a user to a community, " "it is not reasonably considered end user data and will " "not be deleted except as required by Discord." ) def setup(bot): bot.add_cog(SuggestionBox(bot))