content
stringlengths
5
1.05M
from pathlib import Path import geopandas as gp import pygeos as pg from analysis.constants import M2_ACRES from analysis.lib.pygeos_util import intersection ownership_filename = "data/inputs/boundaries/ownership.feather" results_dir = Path("data/results/huc12") ownership_results_filename = results_dir / "ownership.feather" protection_results_filename = results_dir / "protection.feather" def summarize_by_huc12(units_df): print("Calculating overlap with land ownership and protection") ownership = gp.read_feather( ownership_filename, columns=["geometry", "FEE_ORGTYP", "GAP_STATUS"] ) index_name = units_df.index.name df = intersection(units_df, ownership) if not len(df): return df["acres"] = pg.area(df.geometry_right.values.data) * M2_ACRES # drop areas that touch but have no overlap df = df.loc[df.acres > 0].copy() by_owner = ( df[["FEE_ORGTYP", "acres"]] .groupby([index_name, "FEE_ORGTYP"]) .acres.sum() .astype("float32") .round() .reset_index() ) by_protection = ( df[["GAP_STATUS", "acres"]] .groupby([index_name, "GAP_STATUS"]) .acres.sum() .astype("float32") .round() .reset_index() ) by_owner.to_feather(ownership_results_filename) by_protection.to_feather(protection_results_filename)
# proxy module from __future__ import absolute_import from chaco.function_image_data import *
from lcarmq.rmq.abs_rmq import AbstractRmq from lcarmq.rmq.rmq import Rmq from lcarmq.rmq.bfc2000 import Bfc2000
import torch import torch.nn as nn import math import librosa def normalize_batch(x, seq_len, normalize_type: str): if normalize_type == "per_feature": assert not torch.isnan(x).any(), x x_mean = torch.zeros( (seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device) x_std = torch.zeros( (seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device) for i in range(x.shape[0]): x_mean[i, :] = x[i, :, :seq_len[i]].mean(dim=1) x_std[i, :] = x[i, :, :seq_len[i]].std(dim=1) # make sure x_std is not zero x_std += 1e-5 return (x - x_mean.unsqueeze(2)) / x_std.unsqueeze(2) elif normalize_type == "all_features": x_mean = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device) x_std = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device) for i in range(x.shape[0]): x_mean[i] = x[i, :, :int(seq_len[i])].mean() x_std[i] = x[i, :, :int(seq_len[i])].std() # make sure x_std is not zero x_std += 1e-5 return (x - x_mean.view(-1, 1, 1)) / x_std.view(-1, 1, 1) else: return x class FilterbankFeatures(nn.Module): # For JIT. See # https://pytorch.org/docs/stable/jit.html#python-defined-constants __constants__ = ["dither", "preemph", "n_fft", "hop_length", "win_length", "center", "log", "frame_splicing", "window", "normalize", "pad_to", "max_duration", "max_length"] def __init__(self, sample_rate=16000, win_length=320, hop_length=160, n_fft=512, window="hann", normalize="none", log=True, dither=1e-5, pad_to=0, max_duration=16.7, preemph=0.97, n_filt=64, f_min=0, f_max=None): super(FilterbankFeatures, self).__init__() torch_windows = { 'hann': torch.hann_window, 'hamming': torch.hamming_window, 'blackman': torch.blackman_window, 'bartlett': torch.bartlett_window, 'none': None, } self.win_length = win_length # frame size self.hop_length = hop_length self.n_fft = n_fft or 2 ** math.ceil(math.log2(self.win_length)) self.normalize = normalize self.log = log # TORCHSCRIPT: Check whether or not we need this self.dither = dither self.n_filt = n_filt self.preemph = preemph self.pad_to = pad_to f_max = f_max or sample_rate / 2 window_fn = torch_windows.get(window, None) window_tensor = window_fn(self.win_length, periodic=False) if window_fn else None filterbanks = torch.tensor( librosa.filters.mel( sample_rate, self.n_fft, n_mels=n_filt, fmin=f_min, fmax=f_max), dtype=torch.float).unsqueeze(0) # self.fb = filterbanks # self.window = window_tensor self.register_buffer("fb", filterbanks) self.register_buffer("window", window_tensor) # Calculate maximum sequence length (# frames) max_length = 1 + math.ceil( (max_duration * sample_rate - self.win_length) / self.hop_length ) max_pad = 16 - (max_length % 16) self.max_length = max_length + max_pad def get_seq_len(self, seq_len): return torch.ceil(seq_len.float() / self.hop_length).int() # do stft # TORCHSCRIPT: center removed due to bug def stft(self, x): return torch.stft(x, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window.to(dtype=torch.float)) def forward(self, x): # dtype = x.dtype seq_len = self.get_seq_len(torch.tensor([x.shape[1]])) # dither if self.dither > 0: x += self.dither * torch.randn_like(x) # do preemphasis if self.preemph is not None: x = torch.cat( [x[:, 0].unsqueeze(1), x[:, 1:] - self.preemph * x[:, :-1]], dim=1) x = self.stft(x) # get power spectrum x = x.pow(2).sum(-1) # dot with filterbank energies x = torch.matmul(self.fb.to(x.dtype), x) # log features if required if self.log: x = torch.log(x + 1e-20) # normalize if required x = normalize_batch(x, seq_len, normalize_type=self.normalize) # mask to zero any values beyond seq_len in batch, pad to multiple of # `pad_to` (for efficiency) max_len = x.size(-1) mask = torch.arange(max_len, dtype=seq_len.dtype).to(x.device).expand( x.size(0), max_len) >= seq_len.unsqueeze(1) x = x.masked_fill(mask.unsqueeze(1), 0) # TORCHSCRIPT: Is this del important? It breaks scripting # del mask # TORCHSCRIPT: Cant have mixed types. Using pad_to < 0 for "max" if self.pad_to < 0: x = nn.functional.pad(x, (0, self.max_length - x.size(-1))) elif self.pad_to > 0: pad_amt = x.size(-1) % self.pad_to # if pad_amt != 0: x = nn.functional.pad(x, (0, self.pad_to - pad_amt)) return x
# -*- coding: utf-8 -*- """ pyeasyga module """ import random import copy from operator import attrgetter import numpy as np from time import gmtime, strftime import matplotlib.pyplot as plt from libs.get_random import get_rollet_wheel as rollet from six.moves import range class GeneticAlgorithm(object): """Genetic Algorithm class. This is the main class that controls the functionality of the Genetic Algorithm over 2 dim matrics. """ def __init__(self, seed_data, meta_data, population_size=50, generations=100, crossover_probability=0.8, mutation_probability=0.2, elitism=True, by_parent=False, maximise_fitness=True, initial_elit_prob=0.5, initial_random_prob=0.5): self.seed_data = seed_data self.meta_data = meta_data self.population_size = population_size self.generations = generations self.crossover_probability = crossover_probability self.mutation_probability = mutation_probability self.elitism = elitism self.by_parent = by_parent self.maximise_fitness = maximise_fitness self.single_count = 0 self.double_count = 0 self.uniform_count = 0 self.mutate_count = 0 self.initial_elit_prob=initial_elit_prob, self.initial_random_prob = initial_random_prob self.current_generation = [] def single_crossover(parent_1, parent_2): child_1, child_2 = parent_1, parent_2 row, col = parent_1.shape for r in range(row): crossover_index = (random.randrange(1, col - 1)) colt = crossover_index child_1.iloc[r] = np.append(parent_1.iloc[r, :colt], parent_2.iloc[r, colt:]) child_2.iloc[r] = np.append(parent_1.iloc[r , colt:],parent_2.iloc[r, :colt]) return child_1, child_2 def double_crossover(parent_1, parent_2): child_1, child_2 = parent_1, parent_2 row, col = parent_1.shape for r in range(row): colt1 = (random.randrange(1, col - 1)) colt2 = (random.randrange(colt1, col - 1)) s1 = parent_2.iloc[r, :colt1] s1 = np.append(s1, parent_1.iloc[r, colt1:colt2]) s1 = np.append(s1, parent_2.iloc[r, colt2:]) child_1.iloc[r] = s1 s2 = parent_1.iloc[r, :colt1] s2 = np.append(s2, parent_2.iloc[r, colt1:colt2]) s2 = np.append(s2, parent_1.iloc[r, colt2:]) child_2.iloc[r] = s1 return child_1, child_2 def uniform_crossover(parent_1, parent_2): child_1, child_2 = parent_1, parent_2 row, col = parent_1.shape for r in range(row): colt1 = (random.randrange(1, col - 1)) colt2 = (random.randrange(colt1, col - 1)) colt3 = (random.randrange(colt2, col - 1)) colt4 = (random.randrange(colt3, col - 1)) colt5 = (random.randrange(colt4, col - 1)) colt6 = (random.randrange(colt5, col - 1)) colt7 = (random.randrange(colt6, col - 1)) colt8 = (random.randrange(colt7, col - 1)) colt9 = (random.randrange(colt8, col - 1)) s1= parent_2.iloc[r, :colt1] s1 = np.append(s1, parent_1.iloc[r, colt1:colt2]) s1 = np.append(s1, parent_2.iloc[r, colt2:colt3]) s1 = np.append(s1, parent_1.iloc[r, colt3:colt4]) s1 = np.append(s1, parent_2.iloc[r, colt4:colt5]) s1 = np.append(s1, parent_1.iloc[r, colt5:colt6]) s1 = np.append(s1, parent_2.iloc[r, colt6:colt7]) s1 = np.append(s1, parent_1.iloc[r, colt7:colt8]) s1 = np.append(s1, parent_2.iloc[r, colt8:colt9]) s1 = np.append(s1, parent_1.iloc[r, colt9:]) child_1.iloc[r] = s1 s2= parent_1.iloc[r, :colt1] s2 = np.append(s2, parent_2.iloc[r, colt1:colt2]) s2 = np.append(s2, parent_1.iloc[r, colt2:colt3]) s2 = np.append(s2, parent_2.iloc[r, colt3:colt4]) s2 = np.append(s2, parent_1.iloc[r, colt4:colt5]) s2 = np.append(s2, parent_2.iloc[r, colt5:colt6]) s2 = np.append(s2, parent_1.iloc[r, colt6:colt7]) s2 = np.append(s2, parent_2.iloc[r, colt7:colt8]) s2 = np.append(s2, parent_1.iloc[r, colt8:colt9]) s2 = np.append(s2, parent_2.iloc[r, colt9:]) child_2.iloc[r] = s2 return child_1, child_2 def mutate(individual): parent = individual row , col = parent.shape shift_list = np.flip(meta_data.index.values.tolist()) for r in range(row): mutate_index1 = random.randrange(1, col) mutate_index2 = random.randrange(1, col) parent.iloc[r][mutate_index1] = np.random.choice(shift_list, p=[0.0,0.0,0.0, 0.05,0.15,0.35,0.45], size=1) parent.iloc[r][mutate_index2] = np.random.choice(shift_list, p=[0.0,0.0,0.0, 0.05,0.15,0.35,0.45], size=1) def create_individual(data,meta_data): individual = data[:] shift_list = meta_data.index.values.tolist() for col in individual.columns : individual[col] = np.random.choice(shift_list, size=len(individual)) return individual def create_individual_local_search(data,meta_data): individual = data[:] p = random.random() if p < 0.25: individual, _ = single_crossover(individual, individual) elif p < 0.5: individual, _ = double_crossover(individual, individual) elif p < 0.75: individual, _ = uniform_crossover(individual, individual) else: mutate(individual) return individual def random_selection(population): """Select and return a random member of the population.""" return random.choice(population) def weighted_random_choice(population): max = sum(chromosome.fitness for chromosome in population) pick = random.uniform(0, max) current = 0 for chromosome in population: current += chromosome.fitness if current > pick: return chromosome def tournament_selection(population): """Select a random number of individuals from the population and return the fittest member of them all. """ if self.tournament_size == 0: self.tournament_size = 2 members = random.sample(population, self.tournament_size) members.sort( key=attrgetter('fitness'), reverse=self.maximise_fitness) return members[0] self.fitness_function = None self.tournament_selection = tournament_selection self.tournament_size = self.population_size // 10 self.random_selection = random_selection self.create_individual = create_individual self.single_crossover_function = single_crossover self.double_crossover_function = double_crossover self.uniform_crossover_function = uniform_crossover self.mutate_function = mutate self.selection_function = self.tournament_selection def create_initial_population(self): """Create members of the first population randomly. """ initial_population = [] individual = Chromosome(self.seed_data) parent = copy.deepcopy(individual) for i in range(self.population_size): genes = self.create_individual(self.seed_data,self.meta_data) individual = Chromosome(genes) individual.life_cycle = 1 self.single_count += 1 initial_population.append(individual) if self.by_parent: initial_population[0] = parent self.current_generation = initial_population def calculate_population_fitness(self): """Calculate the fitness of every member of the given population using the supplied fitness_function. """ for individual in self.current_generation: individual.set_fitness(self.fitness_function(individual.genes, self.meta_data) ) def rank_population(self): """Sort the population by fitness according to the order defined by maximise_fitness. """ self.current_generation.sort( key=attrgetter('fitness'), reverse=self.maximise_fitness) def create_new_population(self): """Create a new population using the genetic operators (selection, crossover, and mutation) supplied. """ new_population = [] elite = copy.deepcopy(self.current_generation[0]) selection = self.selection_function while len(new_population) < self.population_size: parent_1 = copy.deepcopy(selection(self.current_generation)) parent_2 = copy.deepcopy(selection(self.current_generation)) child_1, child_2 = parent_1, parent_2 child_1.parent_fitness, child_2.parent_fitness = (parent_1.fitness, parent_2.fitness) #-------------------- use tabu search ----------------------------# ''' if parent_1 or parent_2 use any opertator then these operators shoud not play for create child_1 and child_2. << Tabu Search by last state of serach operation >> ''' parent_single_cross_count = max(parent_1.single_cross_count, parent_2.single_cross_count) parent_double_cross_count = max(parent_1.double_cross_count, parent_2.double_cross_count) parent_uniform_cross_count = max(parent_1.uniform_cross_count, parent_2.uniform_cross_count) parent_mutate_count = max(parent_1.mutate_count, parent_2.mutate_count) prob_single_cross = int(parent_single_cross_count == 0) prob_double_cross = int(parent_double_cross_count == 0) prob_uniform_cross = int(parent_uniform_cross_count == 0) prob_mutate = int(parent_mutate_count == 0) sum_all_prob = (prob_single_cross+prob_double_cross+ prob_uniform_cross+prob_mutate) # sum_all_prob = 0.00001 if sum_all_prob==0 else sum_all_prob prob_single_cross = prob_single_cross/sum_all_prob prob_double_cross = prob_double_cross/sum_all_prob prob_uniform_cross = prob_uniform_cross/sum_all_prob prob_mutate = prob_mutate/sum_all_prob #------------- rollet wheel -----------------# p = random.random() cdf_prob_single_cross = prob_single_cross cdf_prob_double_cross = (prob_single_cross + prob_double_cross if prob_double_cross else 0) cdf_prob_uniform_cross = (prob_single_cross + prob_double_cross + prob_uniform_cross if prob_uniform_cross else 0) cdf_prob_mutate = (prob_single_cross + prob_double_cross + prob_uniform_cross+ prob_mutate if prob_mutate else 0) if p < cdf_prob_single_cross: child_1.genes, child_2.genes = self.single_crossover_function( parent_1.genes, parent_2.genes) child_1.set_init_count() child_2.set_init_count() child_1.single_cross_count, child_2.single_cross_count = 1, 1 self.single_count += 1 # print('single_crossover_function') elif p < cdf_prob_double_cross: child_1.genes, child_2.genes = self.double_crossover_function( parent_1.genes, parent_2.genes) child_1.set_init_count() child_2.set_init_count() child_1.double_cross_count, child_2.double_cross_count = 1, 1 self.double_count += 1 # print('double_crossover_function') elif p < cdf_prob_uniform_cross: child_1.genes, child_2.genes = self.uniform_crossover_function( parent_1.genes, parent_2.genes) child_1.set_init_count() child_2.set_init_count() child_1.uniform_cross_count, child_2.uniform_cross_count = 1, 1 self.uniform_count += 1 # print('uniform_crossover_function') else: self.mutate_function(child_1.genes) self.mutate_function(child_2.genes) child_1.set_init_count() child_2.set_init_count() child_1.mutate_count, child_2.mutate_count = 1, 1 self.mutate_count += 1 # print('mutate_function') #------------- ------------- -----------------# new_population.append(child_1) if len(new_population) < self.population_size: new_population.append(child_2) if self.elitism: new_population[0] = elite self.current_generation = new_population def create_first_generation(self): """Create the first population, calculate the population's fitness and rank the population by fitness according to the order specified. """ self.create_initial_population() self.calculate_population_fitness() self.rank_population() def create_next_generation(self): """Create subsequent populations, calculate the population fitness and rank the population by fitness in the order specified. """ self.create_new_population() self.calculate_population_fitness() self.rank_population() def run(self): """Run (solve) the Genetic Algorithm.""" print('start: '+ strftime("%Y-%m-%d %H:%M:%S:%SS", gmtime())) self.create_first_generation() for g in range(1, self.generations): print('---------- Start ---------------') print('generation-' +str(g) + ' -> start: ') self.create_next_generation() print('best cost: ' + str(self.current_generation[0].fitness)) print('single_count:' +str(self.single_count)) print('double_count:' +str(self.double_count)) print('uniform_count:' +str(self.uniform_count)) print('mutate_count:' +str(self.mutate_count)) print('----------- End ----------------') print('end: '+ strftime("%Y-%m-%d %H:%M:%S:%SS", gmtime())) def best_individual(self): """Return the individual with the best fitness in the current generation. """ best = self.current_generation[0] return (best.fitness, best.genes) def last_generation(self): """Return members of the last generation as a generator function.""" return ((member.fitness, member.genes) for member in self.current_generation) class Chromosome(object): """ Chromosome class that encapsulates an individual's fitness and solution representation. """ def __init__(self, genes): """Initialise the Chromosome.""" self.genes = genes self.fitness = 0 self.parent_fitness = 0 self.life_cycle = 0 self.fitness_const_count = 0 self.single_cross_count = 0 self.double_cross_count = 0 self.uniform_cross_count = 0 self.mutate_count = 0 self.elit = 0 def __repr__(self): """Return initialised Chromosome representation in human readable form. """ return repr((self.fitness, self.genes)) def set_fitness(self, fitness): self.life_cycle += 1 #print('life_cycle:' + str(self.life_cycle)) self.fitness = fitness if self.parent_fitness == self.fitness : self.fitness_const_count += 1 #print('fitness_const_count:' + str(self.fitness_const_count)) def set_init_count(self): self.single_cross_count = 0 self.double_cross_count = 0 self.uniform_cross_count = 0 self.mutate_count = 0
from .models import Member from rest_framework import serializers, viewsets class MemberSerializer(serializers.ModelSerializer): class Meta: model = Member fields = '__all__' class MemberViewSet(viewsets.ModelViewSet): queryset = Member.objects.all() serializer_class = MemberSerializer
from baseic import FunDemo FunDemo.message("JJGG", 25)
#!/usr/bin/env python3 import argparse import os import sys import uuid import util import service_app_id as app_id import service_cos as cos import service_cloudant as nosql import service_event_streams as es CREDENTIALS_FILE = './.credentials' COVSAFE_VIEW = 'covsafe-view' ES_TOPICS = 'covsafe' APPID_REGISTERED_APP = 'covsafe' APPID_REGISTERED_USER = 'user@fake.email:JamesSmith:password' UI_COMPONENTS_BUCKET = 'UI_COMPONENTS_BUCKET' CLOUDANT_DB = 'assets,assets_staff,view-config,log_risk_calculation,log_risk_notifier,a_notification_template,ads,shops' SERVICES = { 'app_id': 'app-id', 'cos': 'cos', 'cloudant': 'cloudant', 'event_streams': 'event-streams' } # get arguments def parse_args(args): parser = argparse.ArgumentParser(description=""" deploy covsafe solution to IBM Cloud. This requires an environment variable ${APIKEY} as your IAM API key. """) parser.add_argument('-o', '--operation', default='create', help='create|delete the solution') parser.add_argument('-p', '--project', default='covsafe', help='Project Name') parser.add_argument( '-t', '--tenant', default='c4c', help=''' Tenant ID to select data set. This should be one of dir name under /path/to/project/data/' ''' ) parser.add_argument('-r', '--region', default='jp-tok', help='Region Name') parser.add_argument('-g', '--resource-group', default='c4c-covid-19', help='Resource Group Name') parser.add_argument('-l', '--plan', default='lite', help='service plan. Event Streams is created as standard, and App ID is done as lite regardless of this value' ) return parser.parse_args(args) def create(args): init() args = parse_args(args) util.login(args.region, args.resource_group) # create UI namespace for app ID util.create_functions_namespace(COVSAFE_VIEW) view_ns = util.get_functions_namespace_id(COVSAFE_VIEW) view_api = 'https://{}.functions.appdomain.cloud/api/v1/web/{}/covsafe/view/callback'.format( args.region, view_ns.strip() ) # create IBM Event Streams # notice that we are creating paid plan!! es.create([ '-r', args.region, '-g', args.resource_group, '-p', 'standard', '-n', SERVICES['event_streams'], '-k', 'event-streams-key', '-c', CREDENTIALS_FILE, '-t', ES_TOPICS ]) # create IBM Cloud Cloudant # FIXME: might need to create index to avoid the query error data = [ '../data/common/cloudant/notification-template.json;a_notification_template', '../data/common/cloudant/view-config.json;view-config', '../data/tenants/{}/cloudant/assets.json;assets'.format(args.tenant), '../data/tenants/{}/cloudant/assets_staff.json;assets_staff'.format(args.tenant), '../data/tenants/{}/cloudant/shops.json;shops'.format(args.tenant) ] nosql.create([ '-r', args.region, '-g', args.resource_group, '-p', args.plan, '-n', SERVICES['cloudant'], '-k', 'cloudant-key', '-c', CREDENTIALS_FILE, '-b', CLOUDANT_DB, '-d', ','.join(data) ]) # create IBM Cloud Object Storage bucket = util.get_credentials_value(CREDENTIALS_FILE, UI_COMPONENTS_BUCKET) cosdir = '../data/tenants/{}/cos'.format(args.tenant) files = ['{}/{}'.format(cosdir, f) for f in os.listdir(cosdir) if os.path.isfile(os.path.join(cosdir, f))] data = ','.join(['{};{}'.format(x, bucket) for x in files]) cos.create([ '-r', args.region, '-g', args.resource_group, '-p', args.plan, '-n', SERVICES['cos'], '-k', 'cos-hmac', '-c', CREDENTIALS_FILE, '-b', bucket, '-d', data ]) # create IBM App ID # should be later than deployment of UI, because it requires redirect URL app_id.create([ '-r', args.region, '-g', args.resource_group, '-p', 'lite', '-n', SERVICES['app_id'], '-e', 'OFF', '-u', view_api, '-a', APPID_REGISTERED_APP, '-s', APPID_REGISTERED_USER ]) post_create() def delete(args): args = parse_args(args) app_id.delete(['-n', SERVICES['app_id'], '-g', args.resource_group]) bucket = util.get_credentials_value(CREDENTIALS_FILE, UI_COMPONENTS_BUCKET) cosdir = '../data/tenants/{}/cos'.format(args.tenant) files = [f for f in os.listdir(cosdir) if os.path.isfile(os.path.join(cosdir, f))] data = ','.join(['{};{}'.format(x, bucket) for x in files]) cos.delete([ '-n', SERVICES['cos'], '-g', args.resource_group, '-r', args.region, '-b', bucket, '-d', data ]) nosql.delete(['-n', SERVICES['cloudant'], '-g', args.resource_group]) es.delete(['-n', SERVICES['event_streams'], '-g', args.resource_group]) util.delete_functions_namespace(COVSAFE_VIEW) post_delete() def init(): with open(CREDENTIALS_FILE, 'w') as f: f.write('{}={}\n'.format(UI_COMPONENTS_BUCKET, str(uuid.uuid4()))) def post_create(): print('something new') def post_delete(): os.remove(CREDENTIALS_FILE) if __name__ == '__main__': args = parse_args(sys.argv[1:]) if args.operation == 'create': create(sys.argv[1:]) elif args.operation == 'delete': delete(sys.argv[1:]) else: print(util.bcolors.WARNING + 'no option. please check usage of this script.' + util.bcolors.ENDC)
from _functools import partial def f(a, b, c=0, d=0): return (a, b, c, d) f7 = partial(f, b=7, c=1) them = f7(10) assert them == (10, 7, 1, 0)
import shutil from typing import Any, Dict, Optional, Tuple from faker import Faker from nig.endpoints import INPUT_ROOT from restapi.services.authentication import Role from restapi.tests import API_URI, BaseTests, FlaskClient def create_test_env(client: FlaskClient, faker: Faker, study: bool = False) -> Any: # create a group with one user uuid_group_A, _ = BaseTests.create_group(client) user_A1_uuid, data = BaseTests.create_user( client, data={"group": uuid_group_A}, roles=[Role.USER] ) user_A1_headers, _ = BaseTests.do_login( client, data.get("email"), data.get("password") ) # create a second group with two users uuid_group_B, _ = BaseTests.create_group(client) user_B1_uuid, data = BaseTests.create_user( client, data={"group": uuid_group_B}, roles=[Role.USER] ) user_B1_headers, _ = BaseTests.do_login( client, data.get("email"), data.get("password") ) # create a second user for the group 2 user_B2_uuid, data = BaseTests.create_user( client, data={"group": uuid_group_B}, roles=[Role.USER] ) user_B2_headers, _ = BaseTests.do_login( client, data.get("email"), data.get("password") ) study1_uuid = None study2_uuid = None if study: # create a study in group B study1 = {"name": faker.pystr(), "description": faker.pystr()} r = client.post(f"{API_URI}/study", headers=user_B1_headers, data=study1) assert r.status_code == 200 study1_uuid = BaseTests.get_content(r) # create a study in group A study2 = {"name": faker.pystr(), "description": faker.pystr()} r = client.post(f"{API_URI}/study", headers=user_A1_headers, data=study2) assert r.status_code == 200 study2_uuid = BaseTests.get_content(r) admin_headers, _ = BaseTests.do_login(client, None, None) return ( admin_headers, uuid_group_A, user_A1_uuid, user_A1_headers, uuid_group_B, user_B1_uuid, user_B1_headers, user_B2_uuid, user_B2_headers, study1_uuid, study2_uuid, ) def delete_test_env( client: FlaskClient, user_A1_headers: Tuple[Optional[Dict[str, str]], str], user_B1_headers: Tuple[Optional[Dict[str, str]], str], user_B1_uuid: str, user_B2_uuid: str, user_A1_uuid: str, uuid_group_A: str, uuid_group_B: str, study1_uuid: Optional[str] = None, study2_uuid: Optional[str] = None, ) -> None: admin_headers, _ = BaseTests.do_login(client, None, None) # delete all the elements used by the test if study1_uuid: r = client.delete(f"{API_URI}/study/{study1_uuid}", headers=user_B1_headers) assert r.status_code == 204 if study2_uuid: r = client.delete(f"{API_URI}/study/{study2_uuid}", headers=user_A1_headers) assert r.status_code == 204 # first user r = client.delete(f"{API_URI}/admin/users/{user_B1_uuid}", headers=admin_headers) assert r.status_code == 204 # second user r = client.delete(f"{API_URI}/admin/users/{user_B2_uuid}", headers=admin_headers) assert r.status_code == 204 # other user r = client.delete(f"{API_URI}/admin/users/{user_A1_uuid}", headers=admin_headers) assert r.status_code == 204 # group A directory INPUT_ROOT_path = INPUT_ROOT.joinpath(uuid_group_A) shutil.rmtree(INPUT_ROOT_path) # group A r = client.delete(f"{API_URI}/admin/groups/{uuid_group_A}", headers=admin_headers) assert r.status_code == 204 # group B directory INPUT_ROOT_path = INPUT_ROOT.joinpath(uuid_group_B) shutil.rmtree(INPUT_ROOT_path) # group B r = client.delete(f"{API_URI}/admin/groups/{uuid_group_B}", headers=admin_headers) assert r.status_code == 204
from controller import Robot def calculate_motor(signal): return (signal/100)*6.28 def run_robot(robot): #timestep = int(robot.getBasicTimeStep()) timestep = 64 #define sensor sensor = [] sensor_name =['ps0', 'ps1', 'ps2', 'ps3', 'ps4', 'ps5', 'ps6', 'ps7'] for i in range(8): sensor.append(robot.getDevice(sensor_name[i])) sensor[i].enable(timestep) #define motor wheel = [] wheel_name =['left wheel motor', 'right wheel motor'] for i in range(2): wheel.append(robot.getDevice(wheel_name[i])) wheel[i].setPosition(float('inf')) wheel[i].setVelocity(0.0) #parameter #pid_parameter = [0.55, 0.00004, 2.6] pid_parameter = [0.35, 0.00001, 2.2] #Kp Ki Kd error = [0, 0, 0] set_point = 140 control = [0, 0, 0] pid_control = 0 sensor_val = [0, 0, 0, 0, 0, 0, 0, 0] while robot.step(timestep) != -1: normal_speed = 80 fast_speed = 100 for i in range(8): sensor_val[i] = sensor[i].getValue() #kendali proporsional error[0] = set_point - sensor_val[2] control[0] = error[0]*pid_parameter[0] #kendali integral error[1] = error[1] + error[0] if error[1] > 150: error[1] = 150 if error[1] <= -150: error[1] = -150 control[1] = error[1]*pid_parameter[1] #kendali differensial control[2] = (error[0]-error[2])*pid_parameter[2] error[2] = error[0] pid_control = control[0]+control[1]+control[2] if pid_control >= (fast_speed-normal_speed-1): pid_control = (fast_speed-normal_speed-1) if pid_control <= -(fast_speed-normal_speed-1): pid_control = -(fast_speed-normal_speed-1) max_speed = calculate_motor(fast_speed) #cek dinding depan if sensor_val[0] > 80: #print("Front") left = -max_speed right = max_speed else: #cek error kecil, booster if error[0] >= -5 and error[0] <= 5: left = max_speed right = max_speed else: if sensor_val[2] > 80: #print("Wall") speed = calculate_motor(normal_speed) pid_control = calculate_motor(pid_control) left = speed+pid_control right = speed-pid_control else: #print("No Wall") left = max_speed right = max_speed/6 wheel[0].setVelocity(left) wheel[1].setVelocity(right) #round_error = [f"{num:.2f}" for num in error] #round_control = [f"{num:.2f}" for num in control] #print("Error: {} Control: {}".format(round_error, round_control)) #print("Error: {:.2f} Control: {:.2f}".format(error[0], pid_control)) if __name__ == "__main__": my_robot = Robot() run_robot(my_robot)
'''Train function. ''' import logging from os import path import time import lasagne import numpy as np from progressbar import Bar, ProgressBar, Percentage, Timer import theano from theano import tensor as T from utils import update_dict_of_lists from viz import save_images, save_movie logger = logging.getLogger('BGAN.train') floatX_ = lasagne.utils.floatX floatX = theano.config.floatX ETA = None GENERATOR = None DISCRIMINATOR = None OPTIONS = dict() def summarize(summary, gen_fn, dim_z, prefix='', image_dir=None): if len(prefix) > 0: prefix = prefix + '_' logger.info(summary) samples = gen_fn(floatX_(np.random.rand(5000, dim_z)))[0:64] if image_dir is not None: logger.debug('Saving images to {}'.format(image_dir)) out_path = path.join(image_dir, '{}gen.png'.format(prefix)) save_images(samples, 8, 8, out_file=out_path) def make_gif(gen_fn, z=None, samples=[], prefix='', image_dir=None): if len(prefix) > 0: prefix = prefix + '_' samples.append(gen_fn(floatX_(z))[0:64]) out_path = path.join(image_dir, '{}movie.gif'.format(prefix)) save_movie(samples, 8, 8, out_file=out_path) def save(results, prefix='', binary_dir=None): if len(prefix) > 0: prefix = prefix + '_' np.savez(path.join(binary_dir, '{}gen_params.npz'.format(prefix)), *lasagne.layers.get_all_param_values(GENERATOR)) np.savez(path.join(binary_dir, '{}disc_params.npz'.format(prefix)), *lasagne.layers.get_all_param_values(DISCRIMINATOR)) np.savez(path.join(binary_dir, '{}results.npz'.format(prefix)), **results) def setup(input_var, noise_var, log_Z, generator, discriminator, g_results, d_results, discrete=False, log_Z_gamma=None, clip=None, optimizer=None, learning_rate=None, lr_decay=None, min_lr=None, decay_at_epoch=None, optimizer_options=None): global GENERATOR, DISCRIMINATOR, OPTIONS, ETA GENERATOR = generator DISCRIMINATOR = discriminator decay_at_epoch = decay_at_epoch or 0 min_lr = min_lr or 0. OPTIONS.update(lr_decay=lr_decay, min_lr=min_lr, decay_at_epoch=decay_at_epoch) generator_loss = g_results.get('g loss', None) if generator_loss is None: raise ValueError('Generator loss not found in results.') discriminator_loss = d_results.get('d loss', None) if discriminator_loss is None: raise ValueError('Discriminator loss not found in results.') generator_params = lasagne.layers.get_all_params( GENERATOR, trainable=True) discriminator_params = lasagne.layers.get_all_params( DISCRIMINATOR, trainable=True) logger.info('Training with {} and optimizer options {}'.format( optimizer, optimizer_options)) if callable(optimizer): op = optimizer elif optimizer == 'adam': op = lasagne.updates.adam elif optimizer == 'rmsprop': op = lasagne.updates.rmsprop else: raise NotImplementedError('Optimizer not supported `{}`'.format( optimizer)) ETA = theano.shared(floatX_(learning_rate)) generator_updates = op( generator_loss, generator_params, learning_rate=ETA, **optimizer_options) discriminator_updates = op( discriminator_loss, discriminator_params, learning_rate=ETA, **optimizer_options) if clip is not None: logger.info('Clipping weights with clip of {}'.format(clip)) for k in discriminator_updates.keys(): if k.name == 'W': discriminator_updates[k] = T.clip( discriminator_updates[k], -clip, clip) if 'log Z (est)' in g_results.keys(): logger.info('Updating log Z estimate with gamma {}'.format(log_Z_gamma)) generator_updates.update( [(log_Z, log_Z_gamma * log_Z + (1. - log_Z_gamma) * g_results['log Z (est)'])]) # COMPILE logger.info('Compiling functions.') train_discriminator = theano.function([noise_var, input_var], d_results, allow_input_downcast=True, updates=discriminator_updates) train_generator = theano.function([noise_var], g_results, allow_input_downcast=True, updates=generator_updates) gen_out = lasagne.layers.get_output(generator, deterministic=True) if discrete: if generator.output_shape[1] == 1: gen_out = T.nnet.sigmoid(gen_out) gen_fn = theano.function( [noise_var], gen_out) return train_discriminator, train_generator, gen_fn def train(train_d, train_g, gen, stream, summary_updates=None, epochs=None, training_samples=None, num_iter_gen=None, num_iter_disc=None, batch_size=None, dim_z=None, image_dir=None, binary_dir=None, archive_every=None): ''' Main train function. ''' # TRAIN logger.info('Starting training of GAN...') total_results = {} exp_name = binary_dir.split('/')[-2] rep_samples = floatX_(np.random.rand(5000, dim_z)) train_sample = (stream.get_epoch_iterator(as_dict=True) .next()['features'][:64]) logger.debug('Saving images to {}'.format(image_dir)) out_path = path.join(image_dir, 'training_example.png') save_images(train_sample, 8, 8, out_file=out_path, title='generated MNIST') for epoch in range(epochs): u = 0 start_time = time.time() results = {} widgets = ['Epoch {} ({}), '.format(epoch, exp_name), Timer(), Bar()] pbar = ProgressBar( widgets=widgets, maxval=(training_samples // batch_size)).start() for batch in stream.get_epoch_iterator(as_dict=True): inputs = batch['features'] if inputs.shape[0] == batch_size: for i in range(num_iter_disc): random_disc = np.random.rand(len(inputs), dim_z) noise = floatX_(random_disc) d_outs = train_d(noise, inputs) d_outs = dict((k, np.asarray(v)) for k, v in d_outs.items()) update_dict_of_lists(results, **d_outs) for i in range(num_iter_gen): random_gen = np.random.rand(len(inputs), dim_z) noise = floatX_(random_gen) g_outs = train_g(noise) g_outs = dict((k, np.asarray(v)) for k, v in g_outs.items()) update_dict_of_lists(results, **g_outs) u += 1 pbar.update(u) if summary_updates is not None and u % summary_updates == 0: summary = dict((k, np.mean(v)) for k, v in results.items()) summarize(summary, gen, dim_z, prefix=exp_name, image_dir=image_dir) logger.info('Total Epoch {} of {} took {:.3f}s'.format( epoch + 1, epochs, time.time() - start_time)) if archive_every is not None and epoch % archive_every == 0: prefix = '{}({})'.format(exp_name, epoch) else: prefix = exp_name result_summary = dict((k, np.mean(v)) for k, v in results.items()) update_dict_of_lists(total_results, **result_summary) summarize(result_summary, gen, dim_z, prefix=prefix, image_dir=image_dir) make_gif(gen, z=rep_samples, prefix=exp_name, image_dir=image_dir) save(total_results, prefix=prefix, binary_dir=binary_dir) if (OPTIONS['lr_decay'] is not None and epoch >= OPTIONS['decay_at_epoch']): old_eta = ETA.get_value() if old_eta > OPTIONS['min_lr']: new_eta = old_eta * OPTIONS['lr_decay'] new_eta = max(new_eta, OPTIONS['min_lr']) logger.debug('Setting learning rate to {}'.format(new_eta)) ETA.set_value(floatX_(new_eta))
flu_url = 'https://data.cityofchicago.org/api/views/rfdj-hdmf/rows.csv?accessType=DOWNLOAD' flu_path = 'Flu_Shot_Clinic_Locations_-_2013.csv' flu_shot_meta = { 'dataset_name': 'flu_shot_clinics', 'human_name': 'Flu Shot Clinic Locations', 'attribution': 'foo', 'description': 'bar', 'url': flu_url, 'update_freq': 'yearly', 'business_key': 'event', 'observed_date': 'date', 'latitude': 'latitude', 'longitude': 'longitude', 'location': None, 'contributor_name': 'Carlos', 'contributor_organization': 'StrexCorp', 'contributor_email': 'foo@bar.edu', 'contributed_data_types': None, 'approved_status': 'true', 'is_socrata_source': False, 'column_names': {"date": "DATE", "start_time": "VARCHAR", "end_time": "VARCHAR", "facility_name": "VARCHAR", "facility_type": "VARCHAR", "street_1": "VARCHAR", "city": "VARCHAR", "state": "VARCHAR", "zip": "INTEGER", "phone": "VARCHAR", "latitude": "DOUBLE PRECISION", "longitude": "DOUBLE PRECISION", "day": "VARCHAR", "event": "VARCHAR", "event_type": "VARCHAR", "ward": "INTEGER", "location": "VARCHAR"} } landmarks_url = 'https://data.cityofchicago.org/api/views/tdab-kixi/rows.csv?accessType=DOWNLOAD' landmarks_path = 'Individual_Landmarks.csv' landmarks_meta = { 'dataset_name': 'landmarks', 'human_name': 'Chicago Landmark Locations', 'attribution': 'foo', 'description': 'bar', 'url': landmarks_url, 'update_freq': 'yearly', 'business_key': 'id', 'observed_date': 'landmark_designation_date', 'latitude': 'latitude', 'longitude': 'longitude', 'location': 'location', 'contributor_name': 'Cecil Palmer', 'contributor_organization': 'StrexCorp', 'contributor_email': 'foo@bar.edu', 'contributed_data_types': None, 'approved_status': 'true', 'is_socrata_source': False, 'column_names': {"foo": "bar"} } crime_url = 'http://data.cityofchicago.org/api/views/ijzp-q8t2/rows.csv?accessType=DOWNLOAD' crime_path = 'crime_sample.csv' crime_meta = { 'dataset_name': 'crimes', 'human_name': 'Crimes', 'attribution': 'foo', 'description': 'bar', 'url': crime_url, 'update_freq': 'yearly', 'business_key': 'id', 'observed_date': 'date', 'latitude': 'latitude', 'longitude': 'longitude', 'location': 'location', 'contributor_name': 'Dana Cardinal', 'contributor_organization': 'City of Nightvale', 'contributor_email': 'foo@bar.edu', 'contributed_data_types': None, 'approved_status': 'true', 'is_socrata_source': False, 'column_names': {"foo": "bar"} }
"""empty message Revision ID: f636a63c48d6 Revises: 10aadf62ab2a Create Date: 2021-11-16 19:45:56.961730 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'f636a63c48d6' down_revision = '10aadf62ab2a' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('hospitalizace_jip_ockovani_vek', sa.Column('tyden', sa.Unicode(), nullable=False), sa.Column('tyden_od', sa.Date(), nullable=False), sa.Column('tyden_do', sa.Date(), nullable=False), sa.Column('vekova_skupina', sa.Unicode(), nullable=False), sa.Column('hospitalizace_jip_celkem', sa.Integer(), nullable=True), sa.Column('hospitalizace_jip_bez', sa.Integer(), nullable=True), sa.Column('hospitalizace_jip_castecne', sa.Integer(), nullable=True), sa.Column('hospitalizace_jip_plne', sa.Integer(), nullable=True), sa.Column('hospitalizace_jip_posilujici', sa.Integer(), nullable=True), sa.PrimaryKeyConstraint('tyden', 'vekova_skupina') ) op.create_table('hospitalizace_ockovani_vek', sa.Column('tyden', sa.Unicode(), nullable=False), sa.Column('tyden_od', sa.Date(), nullable=False), sa.Column('tyden_do', sa.Date(), nullable=False), sa.Column('vekova_skupina', sa.Unicode(), nullable=False), sa.Column('hospitalizace_celkem', sa.Integer(), nullable=True), sa.Column('hospitalizace_bez', sa.Integer(), nullable=True), sa.Column('hospitalizace_castecne', sa.Integer(), nullable=True), sa.Column('hospitalizace_plne', sa.Integer(), nullable=True), sa.Column('hospitalizace_posilujici', sa.Integer(), nullable=True), sa.PrimaryKeyConstraint('tyden', 'vekova_skupina') ) op.create_table('nakazeni_ockovani_vek', sa.Column('tyden', sa.Unicode(), nullable=False), sa.Column('tyden_od', sa.Date(), nullable=False), sa.Column('tyden_do', sa.Date(), nullable=False), sa.Column('vekova_skupina', sa.Unicode(), nullable=False), sa.Column('nakazeni_celkem', sa.Integer(), nullable=True), sa.Column('nakazeni_bez', sa.Integer(), nullable=True), sa.Column('nakazeni_castecne', sa.Integer(), nullable=True), sa.Column('nakazeni_plne', sa.Integer(), nullable=True), sa.Column('nakazeni_posilujici', sa.Integer(), nullable=True), sa.PrimaryKeyConstraint('tyden', 'vekova_skupina') ) op.drop_table('srovnani_ockovani') connection = op.get_bind() connection.execute("truncate table ockovani_lide") connection.execute("update vakciny set vakcina='SPIKEVAX' where vyrobce='Moderna'") # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('srovnani_ockovani', sa.Column('tyden', sa.VARCHAR(), autoincrement=False, nullable=False), sa.Column('od', sa.DATE(), autoincrement=False, nullable=False), sa.Column('do', sa.DATE(), autoincrement=False, nullable=False), sa.Column('vekova_skupina', sa.VARCHAR(), autoincrement=False, nullable=False), sa.Column('nakazeni_celkem', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('nakazeni_bez', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('nakazeni_castecne', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('nakazeni_plne', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('nakazeni_posilujici', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('hospitalizace_celkem', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('hospitalizace_bez', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('hospitalizace_castecne', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('hospitalizace_plne', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('hospitalizace_posilujici', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('hospitalizace_jip_celkem', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('hospitalizace_jip_bez', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('hospitalizace_jip_castecne', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('hospitalizace_jip_plne', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('hospitalizace_jip_posilujici', sa.INTEGER(), autoincrement=False, nullable=True), sa.PrimaryKeyConstraint('tyden', 'vekova_skupina', name='srovnani_ockovani_pkey') ) op.drop_table('nakazeni_ockovani_vek') op.drop_table('hospitalizace_ockovani_vek') op.drop_table('hospitalizace_jip_ockovani_vek') # ### end Alembic commands ###
from functools import lru_cache, partial from operator import attrgetter from django.conf import settings from MyCapytain.common.constants import RDF_NAMESPACES from MyCapytain.resources.collections.cts import XmlCtsTextInventoryMetadata from MyCapytain.resources.prototypes.cts import inventory as cts from .capitains import default_resolver from .passage import Passage from .reference import URN from .toc import RefTree from .typing import CtsCollectionMetadata @lru_cache(maxsize=1) def load_text_inventory_metadata() -> cts.CtsTextInventoryMetadata: resolver_type = settings.CTS_RESOLVER["type"] resolver = default_resolver() if resolver_type == "api": if getattr(settings, "CTS_LOCAL_TEXT_INVENTORY", None) is not None: with open(settings.CTS_LOCAL_TEXT_INVENTORY, "r") as fp: ti_xml = fp.read() else: ti_xml = resolver.endpoint.getCapabilities() return XmlCtsTextInventoryMetadata.parse(ti_xml) elif resolver_type == "local": return resolver.getMetadata()["default"] class TextInventory: @classmethod def load(cls): return cls(load_text_inventory_metadata()) def __init__(self, metadata: cts.CtsTextInventoryMetadata): self.metadata = metadata def __repr__(self): return f"<cts.TextInventory at {hex(id(self))}>" def text_groups(self): for urn in sorted(self.metadata.textgroups.keys()): text_group = TextGroup(urn, self.metadata.textgroups[urn]) if next(text_group.works(), None) is None: continue yield text_group class Collection: def __init__(self, urn: URN, metadata: CtsCollectionMetadata): self.urn = urn self.metadata = metadata def __repr__(self): return f"<cts.Collection {self.urn} at {hex(id(self))}>" def __eq__(self, other): if type(other) is type(self): return self.urn == other.urn return NotImplemented def __hash__(self): return hash(str(self.urn)) @property def label(self): return self.metadata.get_label(lang="eng") def ancestors(self): for metadata in list(reversed(self.metadata.parents))[1:]: cls = resolve_collection(metadata.TYPE_URI) # the local resolver returns the text inventory from parents # this is isn't a proper ancestor here so we'll ignore it. if issubclass(cls, TextInventory): continue yield cls(metadata.urn, metadata) class TextGroup(Collection): def __repr__(self): return f"<cts.TextGroup {self.urn} at {hex(id(self))}>" def works(self): children = self.metadata.works for urn in sorted(children.keys()): work = Work(urn, children[urn]) if next(work.texts(), None) is None: continue yield work def as_json(self) -> dict: return { "urn": str(self.urn), "label": str(self.label), "works": [ { "urn": str(work.urn), "texts": [ { "urn": str(text.urn), } for text in work.texts() ], } for work in self.works() ], } class Work(Collection): def __repr__(self): return f"<cts.Work {self.urn} at {hex(id(self))}>" def texts(self): children = self.metadata.texts texts = [] for urn in children.keys(): metadata = children[urn] if metadata.citation is None: continue texts.append(resolve_collection(metadata.TYPE_URI)(urn, metadata)) yield from sorted(texts, key=attrgetter("kind", "label")) def as_json(self) -> dict: return { "urn": str(self.urn), "label": str(self.label), "texts": [ dict(urn=str(text.urn)) for text in self.texts() ], } class Text(Collection): def __init__(self, kind, *args, **kwargs): super().__init__(*args, **kwargs) self.kind = kind def __repr__(self): return f"<cts.Text {self.urn} kind={self.kind} at {hex(id(self))}>" @property def description(self): return self.metadata.get_description(lang="eng") @property def lang(self): return self.metadata.lang @property def human_lang(self): lang = self.metadata.lang return { "grc": "Greek", "lat": "Latin", "heb": "Hebrew", "fa": "Farsi", "eng": "English", "ger": "German", "fre": "French", }.get(lang, lang) @property def rtl(self): return self.lang in {"heb", "fa"} def versions(self): for edition in self.metadata.editions(): yield Text("edition", edition.urn, edition) for translation in self.metadata.translations(): yield Text("translation", translation.urn, translation) @lru_cache() def toc(self): citation = self.metadata.citation depth = len(citation) tree = RefTree(self.urn, citation) for reff in default_resolver().getReffs(self.urn, level=depth): tree.add(reff) return tree def first_passage(self): chunk = next(self.toc().chunks(), None) if chunk is not None: return Passage(self, URN(chunk.urn).reference) def as_json(self, with_toc=True) -> dict: payload = { "urn": str(self.urn), "label": str(self.label), "description": str(self.description), "kind": self.kind, "lang": self.lang, "rtl": self.rtl, "human_lang": self.human_lang, } if with_toc: toc = self.toc() payload.update({ "first_passage": dict(urn=str(self.first_passage().urn)), "ancestors": [ { "urn": str(ancestor.urn), "label": ancestor.label, } for ancestor in self.ancestors() ], "toc": [ { "urn": next(toc.chunks(ref_node), None).urn, "label": ref_node.label.title(), "num": ref_node.num, } for ref_node in toc.num_resolver.glob(toc.root, "*") ], }) return payload def resolve_collection(type_uri): return { RDF_NAMESPACES.CTS.term("TextInventory"): TextInventory, RDF_NAMESPACES.CTS.term("textgroup"): TextGroup, RDF_NAMESPACES.CTS.term("work"): Work, RDF_NAMESPACES.CTS.term("edition"): partial(Text, "edition"), RDF_NAMESPACES.CTS.term("translation"): partial(Text, "translation"), RDF_NAMESPACES.CTS.term("commentary"): partial(Text, "commentary"), }[type_uri]
__title__ = "gulpio2" __version__ = "0.0.4" __copyright__ = 'Copyright 2021 Will Price & TwentyBN' __description__ = "Binary storage format for deep learning on videos." __author__ = ", ".join("""\ Eren Golge (eren.golge@twentybn.com) Raghav Goyal (raghav.goyal@twentybn.com) Susanne Westphal (susanne.westphal@twentybn.com) Heuna Kim (heuna.kim@twentybn.com) Guillaume Berger (guillaume.berger@twentybn.com) Joanna Materzyńska (joanna.materzynska@twentybn.com) Florian Letsch (florian.letsch@twentybn.com) Valentin Haenel (valentin.haenel@twentybn.com) Will Price (will.price94+dev@gmail.com) """.split("\n")) __author_email__ = "will.price94+gulpio2@gmail.com" __url__= "https://github.com/willprice/GulpIO2"
# -*- python -*- # -*- coding: utf-8 -*- # # michael a.g. aïvázis <michael.aivazis@para-sim.com> # # (c) 2013-2020 parasim inc # (c) 2010-2020 california institute of technology # all rights reserved # # get the package import altar # get the protocol from . import distribution # and my base class from .Base import Base as base # the declaration class Gaussian(base, family="altar.distributions.gaussian"): """ The Gaussian probability distribution """ # user configurable state mean = altar.properties.float(default=0) mean.doc = "the mean value of the distribution" sigma = altar.properties.float(default=1) sigma.doc = "the standard deviation of the distribution" # protocol obligations @altar.export def initialize(self, rng): """ Initialize with the given random number generator """ # set up my pdf self.pdf = altar.pdf.gaussian(rng=rng.rng, mean=self.mean, sigma=self.sigma) # all done return self @altar.export def verify(self, theta, mask): """ Check whether my portion of the samples in {theta} are consistent with my constraints, and update {mask}, a vector with zeroes for valid samples and non-zero for invalid ones """ # all samples are valid, so there is nothing to do return mask # end of file
from dataclasses import dataclass from .t_artifact import TArtifact __NAMESPACE__ = "http://www.omg.org/spec/BPMN/20100524/MODEL" @dataclass class Artifact(TArtifact): class Meta: name = "artifact" namespace = "http://www.omg.org/spec/BPMN/20100524/MODEL"
import re dic = {"1#": "#", "2#": "##", "3#": "###", "4#": "####", "5#": "#####", "6#": "######", "*": "**", "/": "*", "~": "~~", "_": "__", "--": "----"} # {"Better Markdown": "Markdown"} def replaceText(text, dic): for i, j in dic.items(): text = text.replace(i, j) print(text) fileName = input("Enter name of file to read (include extension: \'.txt\'): ") readFile = open(fileName, "r") string = readFile.read() splitString = string.split("\n") for i in range(string.count("\n") + 1): replaceText(splitString[i], dic) readFile.close() end = input("Press enter to end the program: ")
from django.apps import apps from django.contrib import admin from comment.tests.base import BaseCommentTest from comment.models import FlagInstance, ReactionInstance class TestCommentAdmin(BaseCommentTest): def test_all_models_are_registered(self): app = apps.get_app_config('comment') models = app.get_models() for model in models: try: self.assertIs( True, admin.site.is_registered(model), msg=f'Did you forget to register the "{model.__name__}" in the django-admin?') except AssertionError as exception: # these models have been registred as inlines in the admin. if model in [ReactionInstance, FlagInstance]: continue else: raise exception
#!/usr/bin/env python # -*- coding: utf-8 -*- # Common Python library imports from __future__ import unicode_literals import six import zipfile import zlib # Pip package imports # Internal package imports from flask_mm import files DEFAULT_STORAGE = 'local' class BaseStorage(object): root = None DEFAULT_MIME = 'application/octet-stream' def __init__(self, *args, **kwargs): self.public_view = kwargs.get('public_view', True) @property def has_url(self): return False @property def base_url(self): return None def exists(self, filename): raise NotImplementedError('Existance checking is not implemented') def open(self, filename, *args, **kwargs): raise NotImplementedError('Open operation is not implemented') def read(self, filename): raise NotImplementedError('Read operation is not implemented') def write(self, filename, content): raise NotImplementedError('Write operation is not implemented') def delete(self, filename): raise NotImplementedError('Delete operation is not implemented') def copy(self, filename, target): raise NotImplementedError('Copy operation is not implemented') def move(self, filename, target): self.copy(filename, target) self.delete(filename) def save(self, file_or_wfs, filename, **kwargs): self.write(filename, file_or_wfs.read()) return filename def metadata(self, filename): meta = self.get_metadata(filename) # Fix backend mime misdetection meta['mime'] = meta.get('mime') or files.mime(filename, self.DEFAULT_MIME) return meta def archive_files(self, out_filename, filenames, *args, **kwargs): if not isinstance(filenames, (tuple, list)): filenames = [filenames] with zipfile.ZipFile(self.path(out_filename), 'w', zipfile.ZIP_DEFLATED) as zipper: for filename in filenames: zipper.write(self.path(filename), filename) return out_filename def get_metadata(self, filename): raise NotImplementedError('Copy operation is not implemented') def serve(self, filename): raise NotImplementedError('serve operation is not implemented') def path(self, filename): raise NotImplementedError('path operation is not implemented') def as_binary(self, content, encoding='utf8'): if hasattr(content, 'read'): return content.read() elif isinstance(content, six.text_type): return content.encode(encoding) else: return content def list_file(self): raise NotImplementedError('list_files operation is not implemented') def as_unicode(s): if isinstance(s, bytes): return s.decode('utf-8') return str(s)
import grpc from pygcdm.netcdf_encode import netCDF_Encode from pygcdm.protogen import gcdm_server_pb2_grpc as grpc_server from concurrent import futures class Responder(grpc_server.GcdmServicer): def __init__(self): self.encoder = netCDF_Encode() def GetNetcdfHeader(self, request, context): print('Header Requested') return self.encoder.generate_header_from_request(request) def GetNetcdfData(self, request, context): print('Data Requested') # stream the data response data_response = [self.encoder.generate_data_from_request(request)] for data in data_response: yield(data) def server(): server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) grpc_server.add_GcdmServicer_to_server(Responder(), server) server.add_insecure_port('[::]:1234') print('starting server...') server.start() server.wait_for_termination() if __name__ == '__main__': server()
# DESAFIO CLASSES E METODOS '''Crie uma classe carro que tenha no mínimo 3 propriedades, para a classe carro e no mínomo 3 metodos para ela''' from time import sleep cores = {'limpar': '\033[m', 'verde': '\033[32m', 'vermelho': '\033[31m', 'pretob': '\033[7;30m' } class Carro: def __init__(self, marca, ano, cor, combustivel): self.marca = marca self.ano = ano self.cor = cor self.combustivel = combustivel def Ligar(self): print('{}Ligando carro...{}'.format(cores['pretob'], cores['limpar'])) sleep(2) print('Carro ligado!!') sleep(3) def Andar(self): print('O freio de mão foi puxado') print('O carro começa a andar') sleep(3) def Acelerar(self): print('{}O acelerador é acionado{}'.format(cores['verde'], cores['limpar'])) print('{}O carro começa a acelerar{}'.format(cores['verde'], cores['limpar'])) sleep(3) def Frear(self): print('{}os freios são acionados{}'.format(cores['vermelho'], cores['limpar'])) print('{}O carro começa a frear{}'.format(cores['vermelho'], cores['limpar'])) sleep(3) def Desligar(self): print('{}Desligando o motor{}'.format(cores['pretob'], cores['limpar'])) sleep(2) print('Carro Desligado!') carro1 = Carro('Ford', '2015', 'preto', 'flex') carro1.Ligar() carro1.Andar() carro1.Acelerar() carro1.Frear() carro1.Desligar()
#!/usr/bin/python3 import numpy as np import itertools first = {} def hasVoid(B, gramatica): if B in gramatica.keys(): if 'ε' in gramatica[B]: return True return False def concatDicts(test_dict1, test_dict2): for key in test_dict1: if key in test_dict2: for val in test_dict1[key]: if val not in test_dict2[key]: test_dict2[key].append(val) else: test_dict2[key] = test_dict1[key][:] return test_dict2 def flattenArray(arrayL): flatten = itertools.chain.from_iterable tmp = list(flatten(arrayL)) for rm in tmp: # Para evitar listas dentro de listas geradas com a recursão if type(rm) == list: tmp.remove(rm) return list(set(tmp)) def firstSet(gramatica): global first # Regra 0, 1 e 2 do First for a,b in reversed(gramatica.items()): if not a in first.keys(): first[a] = [] for i in b: if i == 'ε': first[a].append(i) elif i[0].islower(): first[a].append(i[0]) # Regra 3 do First for a,b in reversed(gramatica.items()): for i in b: if i[0].isupper(): if len(i) > 1: if not hasVoid(i[0], gramatica): first[a].append(first[i[0]]) first[a] = flattenArray(first[a]) else: B = first[i[0]].copy() B.remove('ε') first[a].append(B) first[a] = flattenArray(first[a]) alpha = i[1:] tmpfirst = concatDicts(first, firstSet({a: alpha})) first = tmpfirst.copy() elif len(i) == 1: first[a].append(first[i]) first[a] = flattenArray(first[a]) return first def run(arg): gramatica = arg # For duas vezes para garantir que os campos foram preenchidos corretamente, # mesmo que um não-terminal tenha mudado for i in range(2): firstSet(gramatica) for a,b in first.items(): first[a] = flattenArray(b) return dict(reversed(list(first.items())))
# Author: Chengjia Lei import gym from RL_brain import DQNPrioritizedReplay import matplotlib.pyplot as plt import tensorflow as tf import numpy as np gym.envs.register( id='CartPole_long_pole-v0', entry_point='gym.envs.classic_control:CartPoleEnv', tags={'wrapper_config.TimeLimit.max_episode_steps': 500.0}, reward_threshold=475.0, kwargs={'change_len': 1.0}, ) env = gym.make('CartPole_long_pole-v0') gym.envs.register( id='CartPole_evaluate-v0', entry_point='gym.envs.classic_control:CartPoleEnv', tags={'wrapper_config.TimeLimit.max_episode_steps': 10000.0}, reward_threshold=10000.0, kwargs={'change_len': 1.5}, ) env_e = gym.make('CartPole_evaluate-v0') MEMORY_SIZE = 10000 gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) with tf.variable_scope('DQN'): RL_natural = DQNPrioritizedReplay( n_actions=env.action_space.n, n_features=np.shape(env.observation_space)[0], memory_size=MEMORY_SIZE, e_greedy_increment=0.0001, sess=sess, prioritized=False, ) sess.run(tf.global_variables_initializer()) def train(RL, steps_limit): # env.render() steps_num = 0 solved = False sumreward = 1 account = 0 sess.run(tf.global_variables_initializer()) RL.initiate_common_par() observation = env.reset() episodes_reward = [] episodes = [] done = False action = 0 true_end = 0 for _ in range(MEMORY_SIZE): if done: observation = env.reset() # env.render() # if _ % 1 == 0: action = env.action_space.sample() observation_, reward, done, info = env.step(action) if done: reward=0 else: reward=1 RL.store_transition(observation, action, reward, observation_) # if done: # print("fff") # print(account) # for i_episode in range(15): done = True # env._max_episode_steps = 200 while not solved: if done: observation = env.reset() sumreward = 1 done = False true_end = 0 # env.render() action = RL.choose_action(observation, initial = False) observation_, reward, done, info = env.step(action) steps_num += 1 true_end += 1 if done: if true_end == 500: reward = 1 else: reward=0 else: reward=1 if reward == 0: sumreward += 1 else: sumreward+= reward RL.store_transition(observation, action, reward, observation_) RL.learn() observation = observation_ if done: account+=1 # print('episode ', i_episode, ' episode steps', episode_steps, 'total steps', np.sum(steps)) episodes_reward.append(sumreward) print('times:', account, 'sumreward:', sumreward) if steps_num == steps_limit: solved = True print('Model trained completely!') # env_e.close() # env._max_episode_steps = 10000 done = True gather=[] print('Evaluate!') for pole_len in range(100, 1620, 20): pole_len = pole_len / 1000.0 gym.envs.register( id='CartPole_r-v0', entry_point='gym.envs.classic_control:CartPoleEnv', tags={'wrapper_config.TimeLimit.max_episode_steps': 1000}, reward_threshold=975.0, kwargs={'change_len': pole_len}, ) env_r = gym.make('CartPole_r-v0') sumreward = 0 episodes_reward = [] for _ in range(100): while True: if done: observation = env_r.reset() sumreward = 0 # if _ % 1 == 0: # env_r.render() action = RL.choose_action(observation, initial = False) observation_, reward, done, info = env_r.step(action) sumreward += reward if done: # print('episode ', i_episode, ' episode steps', episode_steps, 'total steps', np.sum(steps)) episodes_reward.append(sumreward) print('pole len', pole_len, 'times:', _+1, 'sumreward:', sumreward) break observation = observation_ if pole_len == 0.1: gather = [pole_len, np.mean(episodes_reward)] else: gather = np.vstack((gather, [pole_len, np.mean(episodes_reward)])) # env_r.close() return gather log = [] inx_log = [] for _ in range(0, 20): if _ == 0: log = train(RL_natural, 50000) else: log = np.c_[log, train(RL_natural, 50000)[:, 1]] print(np.shape(log)) # log = train(RL_natural, 100000) x_axis = log[:, 0] index = np.mean(log[:, 1:], 0) # print(np.shape(np.reshape(index, [1, 10]))) # print(np.shape(log[:, 1:])) index = np.reshape(index, [1, 20]) y_data = np.r_[index, log[:, 1:]] y_data = y_data.T[np.lexsort(-y_data[::-1,:])].T y_mean = np.mean(y_data[1:, 0:10], 1) # y_std = log[:, 2] y_std = np.std(y_data[1:, 0:10], 1) y_max = np.max(y_data[1:, 0:10], 1) y_min = np.min(y_data[1:, 0:10], 1) np.save('x_axis.npy', x_axis) np.save('y_mean.npy', y_mean) np.save('y_std.npy', y_std) np.save('y_max.npy', y_max) np.save('y_min.npy', y_min) plt.plot(x_axis, y_mean, c='tomato', label='DQN_baseline') # plt.fill_between(x_axis, y_mean + y_std/2, y_mean - y_std/2, facecolor='tomato', alpha=0.3) plt.fill_between(x_axis, y_max, y_min, facecolor='tomato', alpha=0.3) plt.legend(loc='best') plt.ylabel('Rewards') plt.xlabel('Pole Length') plt.title('CartPole') plt.grid() plt.show()
from .models import * from django.core.exceptions import ObjectDoesNotExist def context(request): if request.user.is_authenticated: try: my_profile = UserProfile.objects.get(user=request.user) my_posts = Post.objects.filter(post_holders=request.user) interviews = Nomination.objects.filter(interview_panel=request.user).exclude(status = "Work done") length = len(my_posts) senate = False for post in my_posts: if post.perms == 'can ratify the post': senate = True return {'my_posts': my_posts, 'my_profile': my_profile, 'senate': senate, 'length': length, 'interviews': interviews} except ObjectDoesNotExist: return {'my_posts': 0, 'my_profile': 0} else: return {'my_posts': 0, 'my_profile': 0}
__all__ = ["plainramploader", "steppingramploader", "fullramploader"]
from captcha.fields import CaptchaField from django import forms from django.core.exceptions import ValidationError, NON_FIELD_ERRORS from relais import helpers, constants from relais.constants import RANGE_INDIVIDUAL, RANGE_TEAM from relais.models import ( CATEGORY_CHOICES, CONFIG_CHOICES, GENDER_CHOICES, METHOD_PAYMENT_CHOICES, People, Runner, TSHIRT_CHOICES, ) #------------------------------------------------------------------------------ class RulesForm(forms.Form): """ Validate rules at the beginning of the event. """ checkbox = forms.BooleanField(label="check", widget=forms.CheckboxInput(), error_messages={'required': "Vous devez accepter " \ "la décharge et le règlement"}) #------------------------------------------------------------------------------ class ConfigForm(forms.Form): """ Configuration choice (Individual vs Team) """ choice = forms.ChoiceField(label='Choix', choices=CONFIG_CHOICES) #------------------------------------------------------------------------------ class SubscriptionForm(forms.Form): required_css_class = 'required' email = forms.EmailField(label='Email') category = forms.ChoiceField(label='Catégorie', choices=CATEGORY_CHOICES) school = forms.CharField(label='Ecole', required=False) company = forms.CharField(label='Entreprise', required=False) club = forms.CharField(label='Club', required=False) def __init__(self, *args, **kwargs): self.is_a_team = kwargs.pop('is_a_team', False) self.onsite = kwargs.pop('onsite', True) super(SubscriptionForm, self).__init__(*args, **kwargs) if self.is_a_team: self.nb = 3 self.fields['name'] = forms.CharField(label='Nom') else: self.nb = 1 for i in range(self.nb): self.fields['first_name_%d' % i] = forms.CharField(label='Prénom', max_length=30) self.fields['last_name_%d' % i] = forms.CharField(label='Nom', max_length=30) self.fields['gender_%d' % i] = forms.ChoiceField(label='Sexe', choices=GENDER_CHOICES) self.fields['birthday_%d' % i] = forms.DateField(label='Date de naissance') self.fields['license_%d' % i] = forms.CharField(label='Numéro de licence', max_length=30, required=False) self.fields['federation_%d' % i] = forms.CharField(label='Fédération', required=False) self.fields['club_%d' % i] = forms.CharField(label='Club', required=False) self.fields['tshirt_%d' % i] = forms.ChoiceField(label='Taille t-shirt', choices=TSHIRT_CHOICES, help_text='Les 150 premiers inscrits ont droit à un' 'tshirt technique offert', required=False) if self.onsite: self.fields['num_%d' % i] = forms.IntegerField(label='Numéro de dossard') if not self.onsite: self.fields['captcha'] = CaptchaField() def clean(self): """ Clean incoming data (after POST request for example) and check validation. """ cleaned_data = super(SubscriptionForm, self).clean() # call default method # force initialization r = [None] * 3 # each People must be unique for i in range(self.nb): first_name = self.cleaned_data.get('first_name_%d' % i) last_name = self.cleaned_data.get('last_name_%d' % i) birthday = self.cleaned_data.get('birthday_%d' % i) gender = self.cleaned_data.get('gender_%d' % i) num = self.cleaned_data.get('num_%d' % i, None) if not None in (first_name, last_name, birthday, gender): r[i] = People(first_name=first_name, last_name=last_name, birthday=birthday, gender=gender, num=num) if not num: if self.is_a_team: r[i].update_num(RANGE_TEAM[i]) else: r[i].update_num(RANGE_INDIVIDUAL) self.cleaned_data['num_%d' % i] = r[i].num r[i].clean() try: r[i].validate_unique() except ValidationError as e: if dict(e).get('num'): raise ValidationError( { NON_FIELD_ERRORS: [ 'Numéro de dossard %s déjà pris' % num ], } ) raise ValidationError( { NON_FIELD_ERRORS: [ 'Le coureur %s %s existe déjà' % (first_name, last_name) ], } ) # TODO: improve this (return People object ?) self.cleaned_data['legal_status_%d' % i] = r[i].is_adult() # convert name -> id (ForeignKey) self.cleaned_data['club_%d' % i] = helpers.add_get_club(self.cleaned_data.get('club_%d' % i)) self.cleaned_data['federation_%d' % i] = helpers.add_get_fede(self.cleaned_data.get('federation_%d' % i)) run = Runner(runner_1=r[0], runner_2=r[1], runner_3=r[2], team=self.cleaned_data.get('name', None), email=self.cleaned_data.get('email')) run.clean() run.validate_unique() # convert name -> id (ForeignKey) self.cleaned_data['school'] = helpers.add_get_school(self.cleaned_data.get('school')) self.cleaned_data['company'] = helpers.add_get_company(self.cleaned_data.get('company')) return cleaned_data #------------------------------------------------------------------------------ class PaymentForm(forms.Form): # little bastard no ? :) # just remove unknown payment for user form choices = ((i, name) for i, name in METHOD_PAYMENT_CHOICES if i != constants.UNKNOWN) method = forms.ChoiceField(label='Méthode', choices=choices)
import numpy as np class Operators: weights = -1 def propagate_backward(self, target, gammar, lrate= 0.1, momentum = 0.1): error = target - self.ret return error def reset(self): return 0 def set_init_weight_scale(self,x): return class OpTempo(Operators): def __init__(self): return def propagate_forward(self,*data): # self.ret = [data] # Warning ! It's a tuple # return self.ret s = np.shape(data) self.ret = np.zeros(s[1]) for i in range(s[0]): for j in range(s[1]): self.ret[j] = data[i][j] return self.ret class OpPlus(Operators): def __init__(self): return def propagate_forward(self, *data): s = np.shape(data) self.ret = np.zeros(s[1]) for i in range(s[0]): for j in range(s[1]): self.ret[j] += data[i][j] return self.ret class OpAvg(Operators): def __init__(self): return def propagate_forward(self, *data): s = np.shape(data) self.ret = np.zeros(s[1]) for i in range(s[0]): for j in range(s[1]): self.ret[j] += data[i][j] self.ret /= s[0] return self.ret class OpMinus(Operators): def __init__(self): return def propagate_forward(self, *data): s = np.shape(data) self.ret = np.zeros(s[1]) for j in range(s[1]): self.ret[j] = data[0][j] - data[1][j] return self.ret class OpDivide(Operators): def __init__(self): return def propagate_forward(self, *data): s = np.shape(data) self.ret = np.zeros(s[1]) for j in range(s[1]): if data[1][j] == 0 : print "division par zero\n" sys.exit() self.ret[j] = data[0][j] / data[1][j] #a verifier return self.ret class OpMult(Operators): def __init__(self): return def propagate_forward(self, *data): s = np.shape(data) self.ret = np.zeros(s[1]) self.ret += 1 for i in range(s[0]): for j in range(s[1]): self.ret[j] *= data[i][j] #a verifier return self.ret class OpRecomp(Operators): def __init__(self): return def propagate_forward(self, *data): s = np.shape(data) self.ret = np.zeros(s[1]*s[0]) for i in range(s[0]): for j in range(s[1]): self.ret[i*s[1]+j] = data[i][j] return self.ret class OpDecomp(Operators): def __init__(self,*args): self.sizes = args return def propagate_forward(self, *data): data = data[0] current_deepness = 0 self.ret = [] for i in range(len(self.sizes)): retinter = [] for j in range(self.sizes[i]): retinter.append(data[current_deepness]) current_deepness += 1 self.ret.append(retinter) return self.ret #test # maliste3 = [[1,2,3,4],[3,4,1,2],[0,5,0,5]] # maliste2 = [[1,2,3,4],[1,2,3,4]] # maliste1 = [[1,2,3,4]] # monplus = OpPlus() # print "mon plus " ,monplus.propagate_forward(*maliste3) # monavg = OpAvg() # print "mon Avg " ,monavg.propagate_forward(*maliste3) # monmoins = OpMinus() # print "mon minus " ,monmoins.propagate_forward(*maliste2) # monfois = OpMult() # print "mon fois" ,monfois.propagate_forward(*maliste3) # mondiv = OpDivide() # print "mon div" ,mondiv.propagate_forward(*maliste2) # monrecomp = OpRecomp() # print "mon recomp" ,monrecomp.propagate_forward(*maliste3) # mondecomp = OpDecomp(2,1,1) # print "mon decomp", mondecomp.propagate_forward(*maliste1)
from boa3.builtin import NeoMetadata, metadata def Main() -> int: return 5 @metadata def standards_manifest() -> NeoMetadata: meta = NeoMetadata() meta.supported_standards = ['NEP-17'] # for nep17, boa checks if the standard is implemented return meta
import os import os.path import logging import json from gii.core import * from gii.moai.MOAIRuntime \ import \ MOAIRuntime, MOAILuaDelegate, LuaTableProxy, _G, _LuaTable, _LuaObject signals.register ( 'mock.init' ) ##----------------------------------------------------------------## _MOCK = LuaTableProxy( None ) _MOCK_EDIT = LuaTableProxy( None ) _MOCK_GAME_CONFIG_NAME = 'game_config.json' def isMockInstance( obj, name ): if isinstance( obj, _LuaObject ): clas = _MOCK[name] assert clas return _MOCK.isInstance( obj, clas ) else: return False def getMockClassName( obj ): if isinstance( obj, _LuaTable ): clas = obj.__class if clas: return clas.__name return None ##----------------------------------------------------------------## class MockRuntime( EditorModule ): def getDependency(self): return [ 'moai', 'game_preview', 'script_library' ] def getName(self): return 'mock' def onLoad(self): self.affirmConfigFile() self.runtime = self.getManager().affirmModule( 'moai' ) self.setupLuaModule() signals.connect( 'project.load', self.onProjectLoaded ) signals.connect( 'moai.reset', self.onMoaiReset ) signals.connect( 'moai.ready', self.onMoaiReady ) signals.connect( 'project.post_deploy', self.postDeploy ) signals.connect( 'project.save', self.onProjectSave ) self.initMock() def affirmConfigFile( self ): proj = self.getProject() self.configPath = proj.getConfigPath( _MOCK_GAME_CONFIG_NAME ) asetIndexPath = proj.getRelativePath( self.getAssetLibrary().assetIndexPath ) if os.path.exists( self.configPath ): data = jsonHelper.loadJSON( self.configPath ) #fix invalid field if data.get( 'asset_library', None ) != asetIndexPath: #fix assetlibrary path data['asset_library'] = asetIndexPath jsonHelper.trySaveJSON( data, self.configPath) return #create default config defaultConfigData = { "asset_library": asetIndexPath , "texture_library": "env/config/texture_library.json", "layers" : [ { "name" : "default", "sort" : "priority_ascending", "clear": False }, ] } jsonHelper.trySaveJSON( defaultConfigData, self.configPath ) def onAppReady( self ): self.postInitMock() # self.getModule( 'game_preview' ).updateView() def postDeploy( self, context ): configPath = context.getPath( 'game_config' ) game = _MOCK.game data = json.loads( game.saveConfigToString( game ) ) data[ 'asset_library' ] = 'asset/asset_index' data[ 'texture_library' ] = context.meta.get( 'mock_texture_library', False ) data[ 'script_library' ] = context.meta.get( 'mock_script_library', False ) jsonHelper.trySaveJSON( data, configPath, 'deploy game info' ) def setupLuaModule( self ): self.runtime.requireModule( 'mock_edit' ) _MOCK._setTarget( _G['mock'] ) _MOCK_EDIT._setTarget( _G['mock_edit'] ) _MOCK.setBasePaths( self.getProject().getPath(), self.getProject().getAssetPath() ) def syncAssetLibrary(self): #TODO: pass def initMock( self ): try: self.runtime.changeRenderContext( 'game', 100, 100 ) _MOCK.init( self.configPath, True ) except Exception, e: raise e def postInitMock( self ): try: game = _MOCK.game game.initCommonDataFromEditor( game ) signals.emit( 'mock.init' ) except Exception, e: raise e def onProjectLoaded(self,prj): self.syncAssetLibrary() def onProjectSave( self, prj ): game = _MOCK.game game.saveConfigToFile( game, self.configPath ) def onMoaiReset(self): self.setupLuaModule() def onMoaiReady( self ): self.initMock() def getMockEnv( self ): return _MOCK def getMockEditEnv( self ): return _MOCK_EDIT def getLuaEnv( self ): return _G def getComponentTypeList( self ): pass def getEntityTypeList( self ): pass ##----------------------------------------------------------------## MockRuntime().register()
from django.db import models class Article(models.Model): title = models.CharField(max_length=50) slug = models.SlugField() content = models.TextField() is_published = models.BooleanField(default=False)
import rest_framework.permissions as drf_permissions from rest_framework import generics import data from interfaces import views, permissions from interfaces.api import serializers class PublicationList(views.APIListView, views.APICreateView, generics.GenericAPIView): """ ProTReND database REST API. Open programmatic access for the Publications available at ProTReND. Consult here the current list of all publications in ProTReND. A publication consists of a manuscript published in a scientific jornal, a chapter of a scientific book, among others. Most ublications are associated to regulators, genes, and regulatory interactions, and thus supporting regulatory phenomena with exeperimental evidences. Note that, we only provide the main details of each publication. The publication can then be consulted using the DOI or PMID. """ serializer_class = serializers.PublicationListSerializer permission_classes = [drf_permissions.IsAuthenticatedOrReadOnly, permissions.SuperUserOrReadOnly] model = data.Publication fields = ['protrend_id', 'pmid', 'doi', 'title', 'author', 'year'] class PublicationDetail(views.APIRetrieveView, views.APIUpdateDestroyView, generics.GenericAPIView): """ ProTReND database REST API. Open programmatic access for the Publications available at ProTReND. Consult here all information available over this publication. A publication consists of a manuscript published in a scientific jornal, a chapter of a scientific book, among others. Most ublications are associated to regulators, genes, and regulatory interactions, and thus supporting regulatory phenomena with exeperimental evidences. Note that, we only provide the main details of each publication. The publication can then be consulted using the DOI or PMID. """ serializer_class = serializers.PublicationDetailSerializer permission_classes = [drf_permissions.IsAuthenticatedOrReadOnly, permissions.SuperUserOrReadOnly] model = data.Publication fields = ['protrend_id', 'pmid', 'doi', 'title', 'author', 'year'] targets = {'tfbs': ['protrend_id'], 'regulatory_interaction': ['protrend_id']} relationships = {}
from bleu_score import compute_bleu def remove_tags(s): """ Removes tags that should be ignored when computing similarites :param s: Sentence as a list of words :return: Same sentence without the tags """ # tags = set(['<START>', '<END>', '<UNK>', 0, 1, 2, 3]) tags = set(['<START>', '<END>', '<UNK>']) filtered_words = [] for word in s: if word not in tags: filtered_words.append(word) return filtered_words def unigram_overlap(s, t): """ Computes the unigram overlap between s and t. Note: this is not necessarily symmetric as s and t might have different lengths. Note: ignores multiplicity of words :param s: sentence 1 as a list of words :param t: sentence 2 as a list of words :return: The unigram precision """ s = remove_tags(s) t = remove_tags(t) if len(s) == 0 or len(t) == 0: return 0 # Don't take into account multiplicity unique_words = set(s) t = set(t) overlap = 0 for w in unique_words: overlap += 1 if w in t else 0 return overlap / len(unique_words) def unigram_precision(s, t): """ Computes the unigram precision between s and t. Note: this is not necessarily symmetric as s and t might have different lengths. :param s: sentence 1 as a list of words :param t: sentence 2 as a list of words :return: The unigram precision """ s = remove_tags(s) t = remove_tags(t) if len(s) == 0 or len(t) == 0: return 0 # Don't take into account multiplicity t = set(t) overlap = 0 for w in s: overlap += 1 if w in t else 0 return overlap / len(s) def bigram_overlap(s, t): s = remove_tags(s) t = remove_tags(t) if len(s) == 0 or len(t) == 0: return 0 bigrams_s = list(zip(s[:-1], s[1:])) bigrams_t = list(zip(t[:-1], t[1:])) bigrams_s = set(bigrams_s) if len(bigrams_s) == 0: return 0 bigrams_t = set(bigrams_t) overlap = 0 for bigram in bigrams_s: overlap += 1 if bigram in bigrams_t else 0 return overlap / len(bigrams_s) def bigram_precision(s, t): s = remove_tags(s) t = remove_tags(t) if len(s) == 0 or len(t) == 0: return 0 bigrams_s = list(zip(s[:-1], s[1:])) bigram_t = list(zip(t[:-1], t[1:])) if len(bigrams_s) == 0: return 0 overlap = 0 for bigram in bigrams_s: overlap += 1 if bigram in bigram_t else 0 return overlap / len(bigrams_s) def bleu_similarity(s, t): return compute_bleu([[s]], [t])[0] if __name__ == "__main__": print("Test") s = [1, 4, 140, 36, 6, 4, 31, 28, 4, 163, 2] t = [1, 4, 140, 36, 6, 4, 31, 28, 4, 3, 2] print(bleu_similarity(s, t)) print(compute_bleu([[s]], [t])[0]) print("Bigrams") print(bigram_overlap(s, t))
# This file is a part of Arjuna # Copyright 2015-2021 Rahul Verma # Website: www.RahulVerma.net # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Classes to assist in XML Parsing. ''' import os import re from io import BytesIO, StringIO from lxml import etree, html from typing import List, Dict, Tuple from arjuna.tpi.tracker import track from arjuna.tpi.helper.arjtype import CIStringDict def _process_tags(tagsvalue): tag_list = None if type(tagsvalue) is str: tag_list = tagsvalue.strip().split() else: tag_list = tagsvalue return [t.lower()=='any' and '*' or t for t in tag_list] @track("trace") class NodeLocator: ''' Locator for finding an XML Node in an **XmlNode**. Keyword Arguments: tags: (Optional) Descendant tags for the node. Can be a string of single or multiple tags or a list/tuple of tags. text: Partial text content. attrs: Arbitrary attributes as a dictionary. Use this when the attr names are not valid Python names. **attr_kwargs: Arbitrary number of key value pairs representing attribute name and value. The values here will override those in attr_dict if there is an overlap of name(s). Raises: Exception: If neither tag nor an attribute is provided. Note: You can use tag and attributes in combination. Supports nested node finding. ''' def __init__(self, *, tags: 'strOrSequence'=None, text=None, attrs={}, **attr_kwargs): if tags is None and text is None and not attrs and not attr_kwargs: raise Exception("You must provided tags and/or attributes for finding nodes.") attr_conditions = [] if text: attr_conditions.append("contains(text(), '{}')".format(text)) lattrs = {} lattrs.update(attr_kwargs) if lattrs: for attr, value in lattrs.items(): if value is None: attr_conditions.append("@{}".format(attr)) else: attr_conditions.append("contains(@{}, '{}')".format(attr, value)) attr_str = "" if attr_conditions: attr_str = "[{}]".format("and ".join(attr_conditions)) tags = tags and "//".join(_process_tags(tags)) or "*" prefix = ".//" self.__xpath = "{}{}{}".format(prefix, tags, attr_str) def search_node(self, node: 'XmlNode') -> tuple: ''' Search `XmlNode` objects that match this locator in the provided `XmlNode` object. ''' return (XmlNode(n) for n in node.xpath(self.__xpath)) def __str__(self): return "XPath: {}".format(self.__xpath) def _process_child_html(in_str): processed = "\n".join([l for l in in_str.splitlines() if l.strip()]) return "\t" + processed def _remove_empty_lines_from_string(in_str): return '\n'.join( [l.strip() for l in in_str.splitlines() if l.strip()] ) def _empty_or_none(in_str): if type(in_str) is str and not in_str.strip(): return True else: return in_str is None @track("trace") class XmlNode: ''' Represents a single node in a parsed XML. Arguments: node: **lxml** Element object. ''' def __init__(self, node): self.__node = node self.__attrs = CIStringDict(self.node.attrib) @property def node(self): ''' Wrapped **lxml** Element Not supposed to be used directly. ''' return self.__node def get_text(self, normalize: bool=False) -> str: ''' Text of this node. Keyword Arguments: normalize: If True, all extra space is trimmed to a single space. ''' texts = self.texts if normalize: text = "".join([l for l in texts if l !="\n"]).strip() text = " ".join(text.split()) return text else: return "".join(texts).strip() @property def normalized_text(self) -> str: ''' Text of this node with all extra space trimmed to a single space. ''' return self.get_text(normalize=True) @property def text(self) -> str: ''' Unaltered text of the node. ''' text = self.get_text() if text is None: return "" else: return text @property def links(self) -> tuple: ''' All links in the XML. ''' from arjuna.tpi.parser.text import Text return Text(self.as_str()).links @property def unique_links(self) -> tuple: ''' All unique links in the XML. ''' from arjuna.tpi.parser.text import Text return Text(self.as_str()).unique_links def find_links(self, *, unique=True, contain=""): from arjuna.tpi.parser.text import Text return Text(self.as_str()).find_links(unique=unique, contain=contain) @property def texts(self) -> list: ''' List of Texts of the node. Note: Multiple texts are stored separately. ''' return self.node.xpath(".//text()") def get_inner_xml(self, normalize=False) -> str: ''' Inner XML of this node. Keyword Arguments: normalize: If True, empty lines are removed between children nodes. ''' def same(i): return i processor = normalize and _process_child_html or same out = [ processor(etree.tostring(c, encoding='unicode')) for c in list(self.__node.iterchildren()) ] return "\n".join(out).strip() @property def inner_xml(self) -> str: ''' Unaltered inner XML of this node ''' return self.get_inner_xml() @property def normalized_inner_xml(self) -> str: ''' Normalized inner XML of this node, with empty lines removed between children nodes. ''' return self.get_inner_xml(normalize=True) def remove_all_children(self) -> None: ''' Remove all children nodes from this node. ''' for child in list(self.__node): self.__node.remove(child) def as_str(self, normalize=False) -> str: ''' String representation of this node. normalize: If True all new lines are removed and more than one conseuctive space is converted to a single space. ''' true_source = etree.tostring(self.node, encoding='unicode') if not normalize: return true_source else: ret_source = ' '.join(true_source.splitlines()) return re.sub(r"\s+", " ", ret_source) @property def source(self) -> str: ''' Unalereted string representation of this node. ''' return self.as_str() @property def normalized_source(self) -> str: ''' String representation of this node with all new lines removed and more than one conseuctive space converted to a single space. ''' return self.as_str(normalize=True) @property def tag(self) -> str: ''' Tag of the node. ''' return self.node.tag @property def children(self) -> Tuple['XmlNode']: ''' All Children of this node as a Tuple of XmlNodes ''' return (XmlNode(c) for c in list(self.node)) @property def parent(self) -> 'XmlNode': ''' Parent XmlNode ''' return XmlNode(self.node.getparent()) @property def preceding_sibling(self) -> 'XmlNode': ''' The XmlNode before this node at same hierarchial level. ''' return XmlNode(self.node.getprevious()) @property def following_sibling(self) -> 'XmlNode': ''' The XmlNode after this node at same hierarchial level. ''' return XmlNode(self.node.getnext()) @property def attrs(self) -> CIStringDict: ''' All Attributes of this node as a dictionary. ''' return self.__attrs def attr(self, name) -> str: ''' Value of an attribute of this node. ''' return self.__attrs[name] @property def value(self) -> str: ''' Value of an 'value' attribute of this node. ''' return self.attr("value") def has_attr(self, name): ''' Check if an attribute is present. ''' return name in self.__attrs def __xpath(self, xpath): if not xpath.startswith("."): return "." + xpath else: return xpath def findall_with_xpath(self, xpath) -> List['XmlNode']: ''' Find all XmlNodes that match an XPath. ''' return [XmlNode(n) for n in self.node.xpath(self.__xpath(xpath))] def find_with_xpath(self, xpath, position=1): ''' Find nth XmlNode that matches an XPath. Args: xpath: XPath string position: XPath index. Default is 1. ''' try: all = self.findall_with_xpath(xpath) return all[position-1] except IndexError as e: raise Exception(f"No node match at position >>{position}<< for xpath >>{xpath}<< in xml >>{self}<<") def findall(self, *node_locators, stop_when_matched: bool=False) -> List['XmlNode']: ''' Find all XmlNodes that match one of more `NodeLocator` s. Args: *node_locators: One or more `NodeLocator` s Keyword Arguments: stop_when_matched: If True, the call returns nodes found by the first `NodeLocator` that locates one or more nodes. Default is False. Returns: List of `XmlNode` s. In case of no match, empty list is returned. ''' out = [] for locator in node_locators: try: nodes = list(locator.search_node(self.node)) except: continue else: out.extend(nodes) if stop_when_matched: if nodes: break return out def find(self, *node_locators, strict: bool=False) -> 'XmlNode': ''' Find first `XmlNode` that match one of more `NodeLocator` s. Args: *node_locators: One or more `NodeLocator` s Keyword Arguments: strict: If True, the call raises an exception if element is not found, else returns None ''' matches = self.findall(*node_locators, stop_when_matched=True) if matches: return matches[0] else: if strict: raise Exception("Element could not be found with Node Locators: >>{}<<".format([str(n) for n in node_locators])) else: return None def find_keyvalue_texts(self, key_locator, value_locator) -> Tuple[str, str]: ''' Returns texts of first XmlNodes for a pair of `NodeLocator` s Args: key_locator: `NodeLocator` (for key) value_locator: First `NodeLocator` (for value) Returns: 2-element tuple containing the text strings. ''' key = self.find(key_locator).text value = self.find(value_locator).text return key,value def __str__(self): return self.as_str() def clone(self) -> 'XmlNode': ''' Create a clone of this XmlNode object. ''' return Xml.from_str(str(self)) class Xml: ''' Helper class to create XmlNode objects. ''' @classmethod def from_str(cls, xml_str): ''' Create an `XmlNode` from a string. ''' lenient_parser = etree.XMLParser(encoding='utf-8', recover=True) return XmlNode(etree.parse(BytesIO(xml_str.encode('utf-8')), lenient_parser).getroot()) @classmethod def from_file(cls, file_path: str) -> XmlNode: ''' Creates an `XmlNode` from file. Arguments: file_path: Absolute path of the json file. Returns: Arjuna's `XmlNode` object ''' with open(file_path, 'r') as f: return cls.from_str(f.read()) @classmethod def from_lxml_element(cls, element, clone=False) -> XmlNode: ''' Create an `XmlNode` from an `lxml` element. Arguments: element: `lxml` element ''' if clone: return XmlNode(element) else: return XmlNode(element).clone() @classmethod def node_locator(cls, *, tags: 'strOrSequence'=None, text=None, attrs={}, **attr_kwargs): ''' Create a locator for finding an XML Node in an **XmlNode**. Keyword Arguments: tags: (Optional) Descendant tags for the node. Can be a string of single or multiple tags or a list/tuple of tags. text: Partial text content. attrs: Arbitrary attributes as a dictionary. Use this when the attr names are not valid Python names. **attr_kwargs: Arbitrary number of key value pairs representing attribute name and value. The values here will override those in attr_dict if there is an overlap of name(s). Raises: Exception: If neither tag nor an attribute is provided. Note: You can use tag and attributes in combination. Supports nested node finding. ''' return NodeLocator(tags=tags, text=text, attrs=attrs, **attr_kwargs)
import torch import numpy as np from pyannote.audio.features import RawAudio from pyannote.core import SlidingWindowFeature from graphs.models.base import BaseModel class SincNetPyAnnote(BaseModel): def __init__(self, device, weights='emb_voxceleb', sample_rate=16000, **kwargs): super(SincNetPyAnnote, self).__init__(device) self.model = torch.hub.load('pyannote/pyannote-audio', weights) self.model.device = self.device self.sample_rate = sample_rate def forward(self, x): # embeddings = torch.zeros( # x.shape[0], 512).float().to(self.device) for i in range(0, x.shape[0]): # x = x[i].cpu().detach().numpy() x = x.squeeze(0).cpu().detach().numpy() feature_extraction_ = RawAudio(sample_rate=self.sample_rate) features = SlidingWindowFeature( feature_extraction_.get_features(x, self.sample_rate), feature_extraction_.sliding_window, ) x = self.model.model_.slide( features, self.model.chunks_, batch_size=self.model.batch_size, device=self.model.device, return_intermediate=self.model.return_intermediate, progress_hook=self.model.progress_hook, ).data x = np.mean(x, axis=0) x = torch.FloatTensor(x).unsqueeze(0) # embeddings[i] = x embeddings = x return embeddings
import inspect from ...utils import call_main def add_parser(sub_parser, raw): desc = """ Display the current git branch name. $ m git branch master """ sub_parser.add_parser( 'branch', help='display the current git branch', formatter_class=raw, description=inspect.cleandoc(desc), ) def run(_): # pylint: disable=import-outside-toplevel from .... import git return call_main(git.get_branch, [], print_raw=True)
# TestSwiftExpressionObjCContext.py # # This source file is part of the Swift.org open source project # # Copyright (c) 2018 Apple Inc. and the Swift project authors # Licensed under Apache License v2.0 with Runtime Library Exception # # See https://swift.org/LICENSE.txt for license information # See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors # # ------------------------------------------------------------------------------ import lldb from lldbsuite.test.lldbtest import * from lldbsuite.test.decorators import * import lldbsuite.test.lldbutil as lldbutil import os import unittest2 class TestSwiftExpressionObjCContext(TestBase): mydir = TestBase.compute_mydir(__file__) def setUp(self): TestBase.setUp(self) @skipUnlessDarwin @swiftTest def test(self): self.build() target, _, _, _ = lldbutil.run_to_source_breakpoint( self, "break here", lldb.SBFileSpec('main.m'), extra_images=['Foo']) # This is expected to fail because we can't yet import ObjC # modules into a Swift context. self.expect("expr -lang Swift -- Bar()", "failure", substrs=["cannot find 'Bar'"], error=True) self.expect("expr -lang Swift -- (1, 2, 3)", "context-less swift expression works", substrs=["(Int, Int, Int)"])
"""``cubi-tk sea-snap``: tools for supporting the Sea-snap pipeline. Available Commands ------------------ ``check-irods`` Check consistency of sample info, blueprint and files on SODAR. ``itransfer-raw-data`` Transfer raw data from ``work/input_links`` directory of ``ngs_mapping``. ``itransfer-results`` Transfer results and logs from ``output`` directory. ``write-sample-info`` Pull information from SODAR, parse and write sample info. More Information ---------------- - Also see ``cubi-tk sea-snap`` :ref:`cli_main <CLI documentation>` and ``cubi-tk sea-snap --help`` for more information. """ import argparse from ..common import run_nocmd from .itransfer_raw_data import setup_argparse as setup_argparse_itransfer_raw_data from .itransfer_results import setup_argparse as setup_argparse_itransfer_mapping_results # from .pull_isa import setup_argparse as setup_argparse_pull_isa from .working_dir import setup_argparse as setup_argparse_working_dir from .write_sample_info import setup_argparse as setup_argparse_write_sample_info from .check_irods import setup_argparse as setup_argparse_check_irods def setup_argparse(parser: argparse.ArgumentParser) -> None: """Main entry point for isa-tpl command.""" subparsers = parser.add_subparsers(dest="sea_snap_cmd") setup_argparse_itransfer_raw_data( subparsers.add_parser("itransfer-raw-data", help="Transfer FASTQs into iRODS landing zone") ) setup_argparse_itransfer_mapping_results( subparsers.add_parser( "itransfer-results", help="Transfer mapping results into iRODS landing zone" ) ) setup_argparse_working_dir( subparsers.add_parser("working-dir", help="Create working directory") ) setup_argparse_write_sample_info( subparsers.add_parser("write-sample-info", help="Generate sample info file") ) setup_argparse_check_irods( subparsers.add_parser( "check-irods", help="Check consistency of sample info, blueprint and files on SODAR" ) ) def run(args, parser, subparser): """Main entry point for sea-snap command.""" if not args.sea_snap_cmd: # pragma: nocover return run_nocmd(args, parser, subparser) else: return args.sea_snap_cmd(args, parser, subparser)
import os import csv import threading from .classes import AccessNetwork from .path import single_source_shortest_path from .consts import MAX_LABEL_COST, MIN_TIME_BUDGET, \ BUDGET_TIME_INTVL, MAX_TIME_BUDGET __all__ = ['evaluate_accessibility'] def _get_interval_id(t): """ return interval id in predefined time budget intervals [0, MIN_TIME_BUDGET], (MIN_TIME_BUDGET + (i-1)*BUDGET_TIME_INTVL, MIN_TIME_BUDGET + i*BUDGET_TIME_INTVL] where, i is integer and i>=1 """ if t < MIN_TIME_BUDGET: return 0 if ((t-MIN_TIME_BUDGET) % BUDGET_TIME_INTVL) == 0: return int((t-MIN_TIME_BUDGET) % BUDGET_TIME_INTVL) return int((t-MIN_TIME_BUDGET) % BUDGET_TIME_INTVL) + 1 def _update_min_travel_time(an, at, min_travel_times, time_dependent, demand_period_id): an.update_generalized_link_cost(at, time_dependent, demand_period_id) at_str = at.get_type_str() max_min = 0 for c in an.get_centroids(): node_id = c.get_node_id() zone_id = c.get_zone_id() single_source_shortest_path(an, node_id) for c_ in an.get_centroids(): if c_ == c: continue node_no = c_.get_node_no() to_zone_id = c_.get_zone_id() min_tt = an.get_node_label_cost(node_no) # this function will dramatically slow down the whole process min_dist = an.get_sp_distance(node_no) min_travel_times[(zone_id, to_zone_id, at_str)] = min_tt, min_dist if min_tt < MAX_LABEL_COST and max_min < min_tt: max_min = min_tt return max_min def _output_accessibility(min_travel_times, zones, mode='p', output_dir='.'): """ output accessibility for each OD pair (i.e., travel time) """ with open(output_dir+'/accessibility.csv', 'w', newline='') as f: headers = ['o_zone_id', 'o_zone_name', 'd_zone_id', 'd_zone_name', 'accessibility', 'distance', 'geometry'] writer = csv.writer(f) writer.writerow(headers) # for multimodal case, find the minimum travel time # under mode 'p' (i.e., auto) for k, v in min_travel_times.items(): # k = (from_zone_id, to_zone_id, at_type_str) if k[2] != mode: continue # output assessiblity # no exception handlings here as min_travel_times is constructed # directly using an.get_centroids() coord_oz = zones[k[0]] coord_dz = zones[k[1]] geo = 'LINESTRING (' + coord_oz + ', ' + coord_dz + ')' line = [k[0], '', k[1], '', v[0], v[1], geo] writer.writerow(line) if output_dir == '.': print('\ncheck accessibility.csv in ' +os.getcwd()+' for accessibility matrix') else: print('\ncheck accessibility.csv in ' +os.path.join(os.getcwd(), output_dir) +' for accessibility matrix') def _output_accessibility_aggregated(min_travel_times, interval_num, zones, ats, output_dir='.'): """ output aggregated accessibility matrix for each agent type """ with open(output_dir+'/accessibility_aggregated.csv', 'w', newline='') as f: time_budgets = [ 'TT_'+str(MIN_TIME_BUDGET+BUDGET_TIME_INTVL*i) for i in range(interval_num) ] headers = ['zone_id', 'geometry', 'mode'] headers.extend(time_budgets) writer = csv.writer(f) writer.writerow(headers) # calculate accessibility for oz, coord in zones.items(): if oz == -1: continue for atype in ats: at_str = atype.get_type_str() # number of accessible zones from oz for each agent type counts = [0] * interval_num for dz in zones.keys(): if (oz, dz, at_str) not in min_travel_times.keys(): continue min_tt = min_travel_times[(oz, dz, at_str)][0] if min_tt >= MAX_LABEL_COST: continue id = _get_interval_id(min_tt) while id < interval_num: counts[id] += 1 id += 1 # output assessiblity geo = 'POINT (' + coord + ')' line = [oz, geo, atype.get_type_str()] line.extend(counts) writer.writerow(line) if output_dir == '.': print('\ncheck accessibility_aggregated.csv in ' +os.getcwd()+' for aggregated accessibility matrix') else: print('\ncheck accessibility_aggregated.csv in ' +os.path.join(os.getcwd(), output_dir) +' for aggregated accessibility matrix') def evaluate_accessibility(ui, multimodal=True, mode='p', time_dependent=False, demand_period_id=0, output_dir='.'): """ perform accessibility evaluation for a target mode or more Parameters ---------- ui network object generated by pg.read_network() multimodal True or False. Its default value is True. It will only affect the output to accessibility_aggregated.csv. If True, the accessiblity evalution will be conducted for all the modes defined in settings.yml. The number of accessible zones from each zone under each defined mode given a budget time (up to 240 minutes) will be outputted to accessibility_aggregated.csv. If False, the accessiblity evalution will be only conducted against the target mode. The number of accessible zones from each zone under the target mode given a budget time (up to 240 minutes) will be outputted to accessibility_aggregated.csv. mode target mode with its default value as 'p' (i.e., mode auto). It can be either agent type or its name. For example, 'w' and 'walk' are equivalent inputs. time_dependent True or False. Its default value is False. If True, the accessibility will be evaluated using the period link free-flow travel time (i.e., VDF_fftt). In other words, the accessibility is time-dependent. If False, the accessibility will be evaluated using the link length and the free flow travel speed of each mode. demand_period_id The sequence number of demand period listed in demand_periods in settings.yml. demand_period_id of the first demand_period is 0. Use it with time_dependent when there are multiple demand periods. Its default value is 0. output_dir The directory path where accessibility_aggregated.csv and accessibility.csv are outputed. The default is the current working directory (CDW). Outputs ------- accessibility_aggregated.csv aggregated accessibility as the number of accessible zones from each zone for a target mode or any mode defined in settings.yml given a budget time (up to 240 minutes). accessibility.csv: accessibility between each OD pair in terms of free flow travel time. """ base = ui._base_assignment an = AccessNetwork(base.network) ats = None # map zone id to zone centroid coordinate zones = {} for c in an.get_centroids(): zones[c.get_zone_id()] = c.get_coordinate() max_min = 0 min_travel_times = {} if multimodal: ats = base.get_agent_types() for at in ats: an.set_target_mode(at.get_name()) max_min_ = _update_min_travel_time(an, at, min_travel_times, time_dependent, demand_period_id) if max_min_ > max_min: max_min = max_min_ else: at_name, at_str = base._convert_mode(mode) an.set_target_mode(at_name) at = base.get_agent_type(at_str) max_min = _update_min_travel_time(an, at, min_travel_times, time_dependent, demand_period_id) ats = [at] interval_num = _get_interval_id(min(max_min, MAX_TIME_BUDGET)) + 1 t = threading.Thread( target=_output_accessibility, args=(min_travel_times, zones, mode, output_dir)) t.start() t = threading.Thread( target=_output_accessibility_aggregated, args=(min_travel_times, interval_num, zones, ats, output_dir) ) t.start()
""" Modern, PEP 517 compliant build backend for building Python packages with extensions built using CMake. """ __version__ = '0.0.11a0'
from __future__ import absolute_import, division, print_function, unicode_literals import logging import numpy as np import torch from torch import tensor from madminer.utils.ml.models.ratio import DenseSingleParameterizedRatioModel, DenseDoublyParameterizedRatioModel logger = logging.getLogger(__name__) def evaluate_flow_model(model, thetas=None, xs=None, evaluate_score=False, run_on_gpu=True, double_precision=False): # CPU or GPU? run_on_gpu = run_on_gpu and torch.cuda.is_available() device = torch.device("cuda" if run_on_gpu else "cpu") dtype = torch.double if double_precision else torch.float # Balance theta0 and theta1 n_thetas = len(thetas) # Prepare data n_xs = len(xs) thetas = torch.stack([tensor(thetas[i % n_thetas], requires_grad=True) for i in range(n_xs)]) xs = torch.stack([tensor(i) for i in xs]) model = model.to(device, dtype) thetas = thetas.to(device, dtype) xs = xs.to(device, dtype) # Evaluate estimator with score: if evaluate_score: model.eval() _, log_p_hat, t_hat = model.log_likelihood_and_score(thetas, xs) # Copy back tensors to CPU if run_on_gpu: log_p_hat = log_p_hat.cpu() t_hat = t_hat.cpu() log_p_hat = log_p_hat.detach().numpy().flatten() t_hat = t_hat.detach().numpy().flatten() # Evaluate estimator without score: else: with torch.no_grad(): model.eval() _, log_p_hat = model.log_likelihood(thetas, xs) # Copy back tensors to CPU if run_on_gpu: log_p_hat = log_p_hat.cpu() log_p_hat = log_p_hat.detach().numpy().flatten() t_hat = None return log_p_hat, t_hat def evaluate_ratio_model( model, method_type=None, theta0s=None, theta1s=None, xs=None, evaluate_score=False, run_on_gpu=True, double_precision=False, return_grad_x=False, ): # CPU or GPU? run_on_gpu = run_on_gpu and torch.cuda.is_available() device = torch.device("cuda" if run_on_gpu else "cpu") dtype = torch.double if double_precision else torch.float # Figure out method type if method_type is None: if isinstance(model, DenseSingleParameterizedRatioModel): method_type = "parameterized" elif isinstance(model, DenseDoublyParameterizedRatioModel): method_type = "doubly_parameterized" else: raise RuntimeError("Cannot infer method type automatically") # Balance theta0 and theta1 if theta1s is None: n_thetas = len(theta0s) else: n_thetas = max(len(theta0s), len(theta1s)) if len(theta0s) > len(theta1s): theta1s = np.array([theta1s[i % len(theta1s)] for i in range(len(theta0s))]) elif len(theta0s) < len(theta1s): theta0s = np.array([theta0s[i % len(theta0s)] for i in range(len(theta1s))]) # Prepare data n_xs = len(xs) theta0s = torch.stack([tensor(theta0s[i % n_thetas], requires_grad=evaluate_score) for i in range(n_xs)]) if theta1s is not None: theta1s = torch.stack([tensor(theta1s[i % n_thetas], requires_grad=evaluate_score) for i in range(n_xs)]) xs = torch.stack([tensor(i) for i in xs]) model = model.to(device, dtype) theta0s = theta0s.to(device, dtype) if theta1s is not None: theta1s = theta1s.to(device, dtype) xs = xs.to(device, dtype) # Evaluate ratio estimator with score or x gradients: if evaluate_score or return_grad_x: model.eval() if method_type == "parameterized_ratio": if return_grad_x: s_hat, log_r_hat, t_hat0, x_gradients = model( theta0s, xs, return_grad_x=True, track_score=evaluate_score, create_gradient_graph=False ) else: s_hat, log_r_hat, t_hat0 = model(theta0s, xs, track_score=evaluate_score, create_gradient_graph=False) x_gradients = None t_hat1 = None elif method_type == "double_parameterized_ratio": if return_grad_x: s_hat, log_r_hat, t_hat0, t_hat1, x_gradients = model( theta0s, theta1s, xs, return_grad_x=True, track_score=evaluate_score, create_gradient_graph=False ) else: s_hat, log_r_hat, t_hat0, t_hat1 = model( theta0s, theta1s, xs, track_score=evaluate_score, create_gradient_graph=False ) x_gradients = None else: raise ValueError("Unknown method type %s", method_type) # Copy back tensors to CPU if run_on_gpu: s_hat = s_hat.cpu() log_r_hat = log_r_hat.cpu() if t_hat0 is not None: t_hat0 = t_hat0.cpu() if t_hat1 is not None: t_hat1 = t_hat1.cpu() # Get data and return s_hat = s_hat.detach().numpy().flatten() log_r_hat = log_r_hat.detach().numpy().flatten() if t_hat0 is not None: t_hat0 = t_hat0.detach().numpy() if t_hat1 is not None: t_hat1 = t_hat1.detach().numpy() # Evaluate ratio estimator without score: else: with torch.no_grad(): model.eval() if method_type == "parameterized_ratio": s_hat, log_r_hat, _ = model(theta0s, xs, track_score=False, create_gradient_graph=False) elif method_type == "double_parameterized_ratio": s_hat, log_r_hat, _, _ = model(theta0s, theta1s, xs, track_score=False, create_gradient_graph=False) else: raise ValueError("Unknown method type %s", method_type) # Copy back tensors to CPU if run_on_gpu: s_hat = s_hat.cpu() log_r_hat = log_r_hat.cpu() # Get data and return s_hat = s_hat.detach().numpy().flatten() log_r_hat = log_r_hat.detach().numpy().flatten() t_hat0, t_hat1 = None, None if return_grad_x: return s_hat, log_r_hat, t_hat0, t_hat1, x_gradients return s_hat, log_r_hat, t_hat0, t_hat1 def evaluate_local_score_model(model, xs=None, run_on_gpu=True, double_precision=False, return_grad_x=False): # CPU or GPU? run_on_gpu = run_on_gpu and torch.cuda.is_available() device = torch.device("cuda" if run_on_gpu else "cpu") dtype = torch.double if double_precision else torch.float # Prepare data xs = torch.stack([tensor(i) for i in xs]) model = model.to(device, dtype) xs = xs.to(device, dtype) # Evaluate networks if return_grad_x: model.eval() t_hat, x_gradients = model(xs, return_grad_x=True) else: with torch.no_grad(): model.eval() t_hat = model(xs) x_gradients = None # Copy back tensors to CPU if run_on_gpu: t_hat = t_hat.cpu() if x_gradients is not None: x_gradients = x_gradients.cpu() # Get data and return t_hat = t_hat.detach().numpy() if return_grad_x: x_gradients = x_gradients.detach().numpy() return t_hat, x_gradients return t_hat
# Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import pasta import pytest from sagemaker.cli.compatibility.v2.modifiers import training_input from tests.unit.sagemaker.cli.compatibility.v2.modifiers.ast_converter import ast_call, ast_import @pytest.fixture def constructors(): return ( "sagemaker.session.s3_input(s3_data='s3://a')", "sagemaker.inputs.s3_input(s3_data='s3://a')", "sagemaker.s3_input(s3_data='s3://a')", "session.s3_input(s3_data='s3://a')", "inputs.s3_input(s3_data='s3://a')", "s3_input(s3_data='s3://a')", ) @pytest.fixture def import_statements(): return ( "from sagemaker.session import s3_input", "from sagemaker.inputs import s3_input", "from sagemaker import s3_input", ) def test_constructor_node_should_be_modified(constructors): modifier = training_input.TrainingInputConstructorRefactor() for constructor in constructors: node = ast_call(constructor) assert modifier.node_should_be_modified(node) def test_constructor_node_should_be_modified_random_call(): modifier = training_input.TrainingInputConstructorRefactor() node = ast_call("FileSystemInput()") assert not modifier.node_should_be_modified(node) def test_constructor_modify_node(): modifier = training_input.TrainingInputConstructorRefactor() node = ast_call("s3_input(s3_data='s3://a')") modifier.modify_node(node) assert "TrainingInput(s3_data='s3://a')" == pasta.dump(node) node = ast_call("sagemaker.s3_input(s3_data='s3://a')") modifier.modify_node(node) assert "sagemaker.TrainingInput(s3_data='s3://a')" == pasta.dump(node) node = ast_call("session.s3_input(s3_data='s3://a')") modifier.modify_node(node) assert "inputs.TrainingInput(s3_data='s3://a')" == pasta.dump(node) node = ast_call("inputs.s3_input(s3_data='s3://a')") modifier.modify_node(node) assert "inputs.TrainingInput(s3_data='s3://a')" == pasta.dump(node) node = ast_call("sagemaker.inputs.s3_input(s3_data='s3://a')") modifier.modify_node(node) assert "sagemaker.inputs.TrainingInput(s3_data='s3://a')" == pasta.dump(node) node = ast_call("sagemaker.session.s3_input(s3_data='s3://a')") modifier.modify_node(node) assert "sagemaker.inputs.TrainingInput(s3_data='s3://a')" == pasta.dump(node) def test_import_from_node_should_be_modified_training_input(import_statements): modifier = training_input.TrainingInputImportFromRenamer() for statement in import_statements: node = ast_import(statement) assert modifier.node_should_be_modified(node) def test_import_from_node_should_be_modified_random_import(): modifier = training_input.TrainingInputImportFromRenamer() node = ast_import("from sagemaker.session import Session") assert not modifier.node_should_be_modified(node) def test_import_from_modify_node(): modifier = training_input.TrainingInputImportFromRenamer() node = ast_import("from sagemaker import s3_input") modifier.modify_node(node) expected_result = "from sagemaker import TrainingInput" assert expected_result == pasta.dump(node) node = ast_import("from sagemaker.inputs import s3_input as training_input") modifier.modify_node(node) expected_result = "from sagemaker.inputs import TrainingInput as training_input" assert expected_result == pasta.dump(node) node = ast_import("from sagemaker.session import s3_input as training_input") modifier.modify_node(node) expected_result = "from sagemaker.inputs import TrainingInput as training_input" assert expected_result == pasta.dump(node)
def read_to_string(filename): chars = ['"'] with open(filename, "rb") as file: while True: data = file.read(7) if not data: break if len(data) < 7: data = data + b"\0" * (7 - len(data)) i = int.from_bytes(data, "big") # print("i:", *("{:08b}".format(d) for d in data)) sevens = [] for _ in range(8): sevens.append(i & 127) i >>= 7 sevens.reverse() # print("s:", *("{:07b}".format(s) for s in sevens)) char_chunk = ("".join(chr(s) for s in sevens) .replace("\\", "\\\\") .replace("\n", "\\n") .replace("\r", "\\r") .replace('"', '\\"')) chars.append(char_chunk) chars.append('"') return "".join(chars) if __name__ == '__main__': import sys with open(sys.argv[2], "w") as file: print(sys.argv[3], "=", read_to_string(sys.argv[1]), ";", file=file, sep="", end="")
from pywatson.question.evidence_request import EvidenceRequest from pywatson.question.filter import Filter from pywatson.question.watson_question import WatsonQuestion class TestQuestion(object): """Unit tests for the WatsonQuestion class""" def test___init___basic(self, questions): """Question is constructed properly with just question_text""" question = WatsonQuestion(questions[0]['questionText']) assert question.question_text == questions[0]['questionText'] def test___init___complete(self, questions): """Question is constructed properly with all parameters provided""" q = questions[1] er = q['evidenceRequest'] evidence_request = EvidenceRequest(er['items'], er['profile']) filters = tuple(Filter(f['filterType'], f['filterName'], f['values']) for f in q['filters']) question = WatsonQuestion( question_text=q['questionText'], answer_assertion=q['answerAssertion'], category=q['category'], context=q['context'], evidence_request=evidence_request, filters=filters, formatted_answer=q['formattedAnswer'], items=q['items'], lat=q['lat'], passthru=q['passthru'], synonym_list=q['synonyms']) assert question.question_text == q['questionText'] assert question.answer_assertion == q['answerAssertion'] assert question.category == q['category'] assert question.context == q['context'] assert question.evidence_request == evidence_request assert question.filters == filters
from KratosMultiphysics import * from KratosMultiphysics.sympy_fe_utilities import * from sympy import * import pprint def computeTau(params): print("\nCompute Stabilization Matrix\n") dim = params["dim"] # Spatial dimensions Tau = zeros(dim+2,dim+2) # Stabilization Matrix tau1 = Symbol('tau1') tau2 = Symbol('tau2') tau3 = Symbol('tau3') Tau[0,0] = tau1 for i in range (0,dim): Tau[i+1,i+1] = tau2 Tau[dim+1,dim+1] = tau3 return(Tau) def computeTauOnGaussPoint(params, U_gauss): print("\t- Compute Stabilization Matrix on Gauss pt.") # Calculate auxiliary values rho_g = U_gauss[0] e_t_g = U_gauss[params["dim"] + 1] norm_v_squared = 0.0 for d in range(params["dim"]): norm_v_squared += (U_gauss[d + 1] * U_gauss[d + 1]) / (rho_g * rho_g) norm_v = sqrt(norm_v_squared) nu = params["mu"] / rho_g alpha = params["lambda"] / (rho_g * params["gamma"] * params["c_v"]) # Calculate sound speed c = sqrt(params["gamma"] * (params["gamma"] -1) * ((e_t_g / rho_g) - ((1.0 / 2.0) * norm_v_squared))) # Calculate stabilization constants tau1_inv = (params["stab_c2"] * (norm_v + c)) / params["h"] tau2_inv = ((params["stab_c1"] / (params["h"] * params["h"])) * (4.0 * nu / 3.0)) + tau1_inv tau3_inv = (params["stab_c1"] * alpha / (params["h"] * params["h"])) + tau1_inv # Save the obtained values in the stabilization matrix Tau = zeros(params["dim"] + 2, params["dim"] + 2) Tau[0,0] = 1.0 / tau1_inv for i in range (params["dim"]): Tau[i + 1, i + 1] = 1.0 / tau2_inv Tau[params["dim"] + 1, params["dim"] + 1] = 1.0 / tau3_inv return(Tau) def printTau(Tau, params): print("The Stabilization term matrix is:\n") dim = params["dim"] for i in range (0,dim+2): for j in range (0,dim+2): print("Tau[",i,",",j,"]=",Tau[i,j],"\n") return 0
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys if __name__ == '__main__': m = int(input("Enter the number of the season ")) if m < 1 or m > 4: print("Illegal value of m", file=sys.stderr) exit(1) if m == 1: print("The winter months are: December, January and February") elif m == 2: print("The spring months are: March, April and May") elif m == 3: print("The summer months are: June, July and August") else: print("The autumn months are: September, October and November")
#!/usr/bin/env python from EPPs.common import StepEPP from pyclarity_lims.entities import Protocol class CheckStepUDF(StepEPP): """ Checks if steps specified in arguments have their default value or not """ def __init__(self, argv=None): super().__init__(argv) self.check_udfs = self.cmd_args.check_udfs self.default_values = self.cmd_args.default_values @staticmethod def add_args(argparser): argparser.add_argument('-c', '--check_udfs', nargs='*',help='Select the step udf for checking') argparser.add_argument('-d', '--default_values', nargs='*',help='Default value for each step udf') def _run(self): for check_udf, default_value in \ zip(self.check_udfs, self.default_values): print(check_udf,default_value) if self.process.udf[check_udf]==default_value: raise ValueError('Please complete '+check_udf) if __name__ == '__main__': CheckStepUDF().run()
# LICENSED UNDER BSD-3-CLAUSE-CLEAR LICENSE # SEE PROVIDED LICENSE FILE IN ROOT DIRECTORY # Import Modules import logging import click from src.bgp import bgp from src.peeringdb import pdb from src.ip import ip from src.shodan import shodan from src.whois import whois from src.api import api class Throne: def __init__(self): self.verbose = False pass_throne = click.make_pass_decorator(Throne) @click.group() @click.option("--verbose", "-v", is_flag=True, help="Enables verbose mode.") @click.pass_context def cli(ctx, verbose): """ Throne is a command line tool to query various things on the internet. """ if verbose: LOG_FORMAT = ('[%(asctime)s] [%(levelname)s] [%(filename)s:%(lineno)s] ' '[%(funcName)s()] %(message)s') logging.basicConfig(level=logging.DEBUG, format=LOG_FORMAT) cli.add_command(bgp) cli.add_command(pdb) cli.add_command(ip) cli.add_command(shodan) cli.add_command(whois) cli.add_command(api)
import pytest from src.app import app as APIAppRoot from fastapi.testclient import TestClient @pytest.fixture(scope="package") def client(): with TestClient( APIAppRoot, base_url="http://testserver/api/bilibili/v3/" ) as client: yield client def test_video_info(client: TestClient): response = client.get("video_info", params={"aid": 2}) assert response.status_code == 200 assert response.json()["code"] == 0 def test_video_address(client: TestClient): response = client.get( "video_address", params={"aid": 2, "cid": 62131}, ) assert response.status_code == 200 assert response.json()["code"] == 0 def test_video_recommend(client: TestClient): response = client.get("video_recommend") assert response.status_code == 200 assert response.json()["list"] def test_video_dynamic(client: TestClient): response = client.get("video_dynamic") assert response.status_code == 200 assert response.json()["code"] == 0 def test_video_ranking(client: TestClient): response = client.get("video_ranking") assert response.status_code == 200 assert response.json()["rank"] def test_user_info(client: TestClient): response = client.get("user_info", params={"uid": 2}) assert response.status_code == 200 assert response.json()["code"] == 0 def test_user_uploaded(client: TestClient): response = client.get("user_uploaded", params={"uid": 2}) assert response.status_code == 200 assert response.json()["code"] == 0 def test_user_favorite(client: TestClient): # TODO:add test case pass def test_season_info(client: TestClient): response = client.get("season_info", params={"season_id": 425}) assert response.status_code == 200 assert response.json()["code"] == 0 def test_season_recommend(client: TestClient): response = client.get("season_recommend", params={"season_id": 425}) assert response.status_code == 200 assert response.json()["code"] == 0 def test_season_episode(client: TestClient): response = client.get("season_episode", params={"episode_id": 84340}) assert response.status_code == 200 assert response.json()["code"] == 0 def test_season_timeline(client: TestClient): response = client.get("season_timeline") assert response.status_code == 200 assert response.json()["code"] == 0 def test_season_ranking(client: TestClient): response = client.get("season_ranking") assert response.status_code == 200 assert response.json()["code"] == 0 def test_search(client: TestClient): response = client.get("search", params={"keyword": "railgun"}) assert response.status_code == 200 assert response.json()["code"] == 0 def test_search_recommend(client: TestClient): response = client.get("search_recommend") assert response.status_code == 200 assert response.json()["code"] == 0 def test_search_suggestion(client: TestClient): response = client.get("search_suggestion", params={"keyword": "paperclip"}) assert response.status_code == 200 assert response.json()["code"] == 0 def test_comments(client: TestClient): response = client.get("comments", params={"id": 2}) assert response.status_code == 200 assert response.json()["code"] == 0
# clear the list elements = [1, 2, 3, 4, 5] del elements[:] print(elements) # replace all elements elements = [1, 2, 3, 4, 5] elements[:] = [5, 4, 3, 2, 1] print(elements) # copy the list elements = [1, 2, 3, 4, 5] copy_of_elements = elements[:] print(copy_of_elements is elements)
from django import forms from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User class LoginForm(forms.Form): username = forms.CharField(max_length = 100) password = forms.CharField(widget = forms.PasswordInput())
#!/usr/bin/python3 OPENVSWITCH_SERVICES_EXPRS = [r"ovsdb-\S+", r"ovs-vswitch\S+", r"ovn\S+"] OVS_PKGS = [r"libc-bin", r"openvswitch-switch", r"ovn", ] OVS_DAEMONS = {"ovs-vswitchd": {"logs": "var/log/openvswitch/ovs-vswitchd.log"}, "ovsdb-server": {"logs": "var/log/openvswitch/ovsdb-server.log"}}
from apptweak.plateform import * class Ios(Plateform): plateform_name = 'ios' def __init__(self): super().__init__(self.plateform_name) @classmethod def ratings(self, application_id, params = {}): return self.applications(application_id, API_END_PATH['ratings'], params) @classmethod def backlinks(self, application_id): raise Exception('Not implemented for this plateform')
# Based on gearUtils-03.js by Dr A.R.Collins # Latest version: <www.arc.id.au/gearDrawing.html> # Calculation of Bezier coefficients for # Higuchi et al. approximation to an involute. # ref: YNU Digital Eng Lab Memorandum 05-1 from math import * from svg import * def genInvolutePolar(Rb, R): # Rb = base circle radius # returns the involute angle as function of radius R. return (sqrt(R*R - Rb*Rb) / Rb) - acos(Rb / R) def rotate(pt, rads): # rotate pt by rads radians about origin sinA = sin(rads) cosA = cos(rads) return [pt[0] * cosA - pt[1] * sinA, pt[0] * sinA + pt[1] * cosA] def toCartesian(radius, angle): # convert polar coords to cartesian return [radius * cos(angle), radius * sin(angle)] def CreateExternalGear(m, Z, phi): # ****** external gear specifications addendum = m # distance from pitch circle to tip circle dedendum = 1.25 * m # pitch circle to root, sets clearance clearance = dedendum - addendum # Calculate radii Rpitch = Z * m / 2 # pitch circle radius Rb = Rpitch*cos(phi * pi / 180) # base circle radius Ra = Rpitch + addendum # tip (addendum) circle radius Rroot = Rpitch - dedendum # root circle radius fRad = 1.5 * clearance # fillet radius, max 1.5*clearance Rf = sqrt((Rroot + fRad) * (Rroot + fRad) - (fRad * fRad)) # radius at top of fillet if (Rb < Rf): Rf = Rroot + clearance # ****** calculate angles (all in radians) pitchAngle = 2 * pi / Z # angle subtended by whole tooth (rads) baseToPitchAngle = genInvolutePolar(Rb, Rpitch) pitchToFilletAngle = baseToPitchAngle # profile starts at base circle if (Rf > Rb): # start profile at top of fillet (if its greater) pitchToFilletAngle -= genInvolutePolar(Rb, Rf) filletAngle = atan(fRad / (fRad + Rroot)) # radians # ****** generate Higuchi involute approximation fe = 1 # fraction of profile length at end of approx fs = 0.01 # fraction of length offset from base to avoid singularity if (Rf > Rb): fs = (Rf * Rf - Rb * Rb) / (Ra * Ra - Rb * Rb) # offset start to top of fillet # approximate in 2 sections, split 25% along the involute fm = fs + (fe - fs) / 4 # fraction of length at junction (25% along profile) dedBez = BezCoeffs(m, Z, phi, 3, fs, fm) addBez = BezCoeffs(m, Z, phi, 3, fm, fe) dedInv = dedBez.involuteBezCoeffs() addInv = addBez.involuteBezCoeffs() # join the 2 sets of coeffs (skip duplicate mid point) inv = dedInv + addInv[1:] # create the back profile of tooth (mirror image) invR = [0 for i in range(0, len(inv))] # involute profile along back of tooth for i in range(0, len(inv)): # rotate all points to put pitch point at y = 0 pt = rotate(inv[i], -baseToPitchAngle - pitchAngle / 4) inv[i] = pt # generate the back of tooth profile nodes, mirror coords in X axis invR[i] = [pt[0], -pt[1]] # ****** calculate section junction points R=back of tooth, Next=front of next tooth) fillet = toCartesian(Rf, -pitchAngle / 4 - pitchToFilletAngle) # top of fillet filletR = [fillet[0], -fillet[1]] # flip to make same point on back of tooth rootR = toCartesian(Rroot, pitchAngle / 4 + pitchToFilletAngle + filletAngle) rootNext = toCartesian(Rroot, 3 * pitchAngle / 4 - pitchToFilletAngle - filletAngle) filletNext = rotate(fillet, pitchAngle) # top of fillet, front of next tooth # Draw the shapes in SVG t_inc = 2.0 * pi / float(Z) thetas = [(x * t_inc) for x in range(Z)] svg = SVG_move(fillet, 0) # start at top of fillet for theta in thetas: if (Rf < Rb): svg += SVG_line(inv[0], theta) # line from fillet up to base circle svg += SVG_curve2(inv[1], inv[2], inv[3], inv[4], inv[5], inv[6], theta) svg += SVG_circle(invR[6], Ra, 1, theta) # arc across addendum circle # svg = SVG_move(invR[6]) # TEMP svg += SVG_curve2(invR[5], invR[4], invR[3], invR[2], invR[1], invR[0], theta) if (Rf < Rb): svg += SVG_line(filletR, theta) # line down to topof fillet if (rootNext[1] > rootR[1]): # is there a section of root circle between fillets? svg += SVG_circle(rootR, fRad, 0, theta) # back fillet svg += SVG_circle(rootNext, Rroot, 1, theta) # root circle arc svg += SVG_circle(filletNext, fRad, 0, theta) svg += SVG_close() return svg def CreateInternalGear(m, Z, phi): addendum = 0.6 * m # pitch circle to tip circle (ref G.M.Maitra) dedendum = 1.25 * m # pitch circle to root radius, sets clearance # Calculate radii Rpitch = Z * m / 2 # pitch radius Rb = Rpitch * cos(phi * pi / 180) # base radius Ra = Rpitch - addendum # addendum radius Rroot = Rpitch + dedendum# root radius clearance = 0.25 * m # gear dedendum - pinion addendum Rf = Rroot - clearance # radius of top of fillet (end of profile) fRad = 1.5 * clearance # fillet radius, 1 .. 1.5*clearance # ****** calculate subtended angles pitchAngle = 2 * pi / Z # angle between teeth (rads) baseToPitchAngle = genInvolutePolar(Rb, Rpitch) tipToPitchAngle = baseToPitchAngle # profile starts from base circle if (Ra > Rb): tipToPitchAngle -= genInvolutePolar(Rb, Ra) # start profile from addendum pitchToFilletAngle = genInvolutePolar(Rb, Rf) - baseToPitchAngle filletAngle = 1.414 * clearance / Rf # to make fillet tangential to root # ****** generate Higuchi involute approximation fe = 1 # fraction of involute length at end of approx (fillet circle) fs = 0.01 # fraction of length offset from base to avoid singularity if (Ra > Rb): fs = (Ra*Ra - Rb*Rb) / (Rf*Rf - Rb*Rb) # start profile from addendum (tip circle) # approximate in 2 sections, split 25% along the profile fm = fs + (fe - fs) / 4 addBez = BezCoeffs(m, Z, phi, 3, fs, fm) dedBez = BezCoeffs(m, Z, phi, 3, fm, fe) addInv = addBez.involuteBezCoeffs() dedInv = dedBez.involuteBezCoeffs() # join the 2 sets of coeffs (skip duplicate mid point) invR = addInv + dedInv[1:] # create the front profile of tooth (mirror image) inv = [0 for i in range(0, len(invR))] # back involute profile for i in range(0, len(inv)): # rotate involute to put center of tooth at y = 0 pt = rotate(invR[i], pitchAngle / 4 - baseToPitchAngle) invR[i] = pt # generate the back of tooth profile, flip Y coords inv[i] = [pt[0], -pt[1]] # ****** calculate coords of section junctions fillet = [inv[6][0], inv[6][1]] # top of fillet, front of tooth tip = toCartesian(Ra, -pitchAngle / 4 + tipToPitchAngle) # tip, front of tooth tipR = [tip[0], -tip[1]] # addendum, back of tooth rootR = toCartesian(Rroot, pitchAngle / 4 + pitchToFilletAngle + filletAngle) rootNext = toCartesian(Rroot, 3 * pitchAngle / 4 - pitchToFilletAngle - filletAngle) filletNext = rotate(fillet, pitchAngle) # top of fillet, front of next tooth # Draw the shapes in SVG t_inc = 2.0 * pi / float(Z) thetas = [(x * t_inc) for x in range(Z)] svg = SVG_move(fillet, 0) # start at top of fillet for theta in thetas: svg += SVG_curve2(inv[5], inv[4], inv[3], inv[2], inv[1], inv[0], theta) if (Ra < Rb): svg += SVG_line(tip, theta) # line from end of involute to addendum (tip) svg += SVG_circle(tipR, Ra, 1, theta) # arc across tip circle if (Ra < Rb): svg += SVG_line(invR[0], theta) # line from addendum to start of involute svg += SVG_curve2(invR[1], invR[2], invR[3], invR[4], invR[5], invR[6], theta) if (rootR[1] < rootNext[1]): # there is a section of root circle between fillets svg += SVG_circle(rootR, fRad, 1, theta) # fillet on back of tooth svg += SVG_circle(rootNext, Rroot, 1, theta) # root circle arc svg += SVG_circle(filletNext, fRad, 1, theta) # fillet on next return svg class BezCoeffs: def chebyExpnCoeffs(self, j, func): N = 50 # a suitably large number N>>p c = 0 for k in range(1, N + 1): c += func(cos(pi * (k - 0.5) / N)) * cos(pi * j * (k - 0.5) / N) return 2 *c / N def chebyPolyCoeffs(self, p, func): coeffs = [0, 0, 0, 0] fnCoeff = [0, 0, 0, 0] T = [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0] ] # now generate the Chebyshev polynomial coefficient using # formula T(k+1) = 2xT(k) - T(k-1) which yields # T = [ [ 1, 0, 0, 0, 0, 0], # T0(x) = +1 # [ 0, 1, 0, 0, 0, 0], # T1(x) = 0 +x # [-1, 0, 2, 0, 0, 0], # T2(x) = -1 0 +2xx # [ 0, -3, 0, 4, 0, 0], # T3(x) = 0 -3x 0 +4xxx # [ 1, 0, -8, 0, 8, 0], # T4(x) = +1 0 -8xx 0 +8xxxx # [ 0, 5, 0,-20, 0, 16], # T5(x) = 0 5x 0 -20xxx 0 +16xxxxx # ... ] for k in range(1, p + 1): for j in range(0, len(T[k]) - 1): T[k + 1][j + 1] = 2 * T[k][j] for j in range(0, len(T[k - 1])): T[k + 1][j] -= T[k - 1][j] # convert the chebyshev function series into a simple polynomial # and collect like terms, out T polynomial coefficients for k in range(0, p + 1): fnCoeff[k] = self.chebyExpnCoeffs(k, func) coeffs[k] = 0 for k in range(0, p + 1): for pwr in range(0, p + 1): coeffs[pwr] += fnCoeff[k] * T[k][pwr] coeffs[0] -= self.chebyExpnCoeffs(0, func) / 2 # fix the 0th coeff return coeffs # Equation of involute using the Bezier parameter t as variable def involuteXbez(self, t): # map t (0 <= t <= 1) onto x (where -1 <= x <= 1) x = t * 2 - 1 # map theta (where ts <= theta <= te) from x (-1 <=x <= 1) theta = x * (self.te - self.ts) / 2 + (self.ts + self.te) / 2 return self.Rb * (cos(theta) + theta * sin(theta)) def involuteYbez(self, t): # map t (0 <= t <= 1) onto x (where -1 <= x <= 1) x = t * 2 - 1 # map theta (where ts <= theta <= te) from x (-1 <=x <= 1) theta = x * (self.te - self.ts) / 2 + (self.ts + self.te) / 2 return self.Rb * (sin(theta) - theta * cos(theta)) def binom(self, n, k): coeff = 1 for i in range(n - k + 1, n + 1): coeff *= i for i in range(1, k + 1): coeff /= i return coeff def bezCoeff(self, i, func): # generate the polynomial coeffs in one go polyCoeffs = self.chebyPolyCoeffs(self.p, func) bc = 0 for j in range(0, i + 1): bc += self.binom(i, j) * polyCoeffs[j] / self.binom(self.p, j) return bc def involuteBezCoeffs(self): # calc Bezier coeffs bzCoeffs = [] for i in range(0, self.p + 1): bcoeff = [0, 0] bcoeff[0] = self.bezCoeff(i, self.involuteXbez) bcoeff[1] = self.bezCoeff(i, self.involuteYbez) bzCoeffs.append(bcoeff) return bzCoeffs # Parameters: # module - sets the size of teeth (see gear design texts) # numTeeth - number of teeth on the gear # pressure angle - angle in degrees, usually 14.5 or 20 # order - the order of the Bezier curve to be fitted [3, 4, 5, ..] # fstart - fraction of distance along tooth profile to start # fstop - fraction of distance along profile to stop def __init__(self, module, numTeeth, pressureAngle, order, fstart, fstop): self.Rpitch = module * numTeeth / 2 # pitch circle radius self.phi = pressureAngle # pressure angle self.Rb = self.Rpitch * cos(self.phi * pi / 180) # base circle radius self.Ra = self.Rpitch + module # addendum radius (outer radius) self.ta = sqrt(self.Ra * self.Ra - self.Rb * self.Rb) / self.Rb # involute angle at addendum self.stop = fstop if (fstart < self.stop): self.start = fstart self.te = sqrt(self.stop) * self.ta # involute angle, theta, at end of approx self.ts = sqrt(self.start) * self.ta # involute angle, theta, at start of approx self.p = order # order of Bezier approximation
Cnt = 5 T = [0] * Cnt k1 = 0 Rez = 0 for k1 in range(0, Cnt): if (T[k1] < 186): Rez = Rez + 1 print("Rez=", Rez)
#!/usr/bin/env python import time start = time.time() # START OMIT import numpy as np counter = {'yes': 0, 'no': 0} big_list = set(np.random.randint(0, 10000, 10000000)) check_list = set(np.random.randint(0, 99999, 1000)) for number in check_list: if number in big_list: counter['yes'] += 1 else: counter['no'] += 1 # END OMIT print(counter) print(f"Script executed in {time.time() - start:.2f} seconds")
# # $Id: sphinxapi.py 1216 2008-03-14 23:25:39Z shodan $ # # Python version of Sphinx searchd client (Python API) # # Copyright (c) 2006-2008, Andrew Aksyonoff # Copyright (c) 2006, Mike Osadnik # All rights reserved # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License. You should have # received a copy of the GPL license along with this program; if you # did not, you can find it at http://www.gnu.org/ # import sys import select import socket from struct import * # known searchd commands SEARCHD_COMMAND_SEARCH = 0 SEARCHD_COMMAND_EXCERPT = 1 SEARCHD_COMMAND_UPDATE = 2 SEARCHD_COMMAND_KEYWORDS= 3 # current client-side command implementation versions VER_COMMAND_SEARCH = 0x113 VER_COMMAND_EXCERPT = 0x100 VER_COMMAND_UPDATE = 0x101 VER_COMMAND_KEYWORDS = 0x100 # known searchd status codes SEARCHD_OK = 0 SEARCHD_ERROR = 1 SEARCHD_RETRY = 2 SEARCHD_WARNING = 3 # known match modes SPH_MATCH_ALL = 0 SPH_MATCH_ANY = 1 SPH_MATCH_PHRASE = 2 SPH_MATCH_BOOLEAN = 3 SPH_MATCH_EXTENDED = 4 SPH_MATCH_FULLSCAN = 5 SPH_MATCH_EXTENDED2 = 6 # known ranking modes (extended2 mode only) SPH_RANK_PROXIMITY_BM25 = 0 # default mode, phrase proximity major factor and BM25 minor one SPH_RANK_BM25 = 1 # statistical mode, BM25 ranking only (faster but worse quality) SPH_RANK_NONE = 2 # no ranking, all matches get a weight of 1 SPH_RANK_WORDCOUNT = 3 # simple word-count weighting, rank is a weighted sum of per-field keyword occurence counts # known sort modes SPH_SORT_RELEVANCE = 0 SPH_SORT_ATTR_DESC = 1 SPH_SORT_ATTR_ASC = 2 SPH_SORT_TIME_SEGMENTS = 3 SPH_SORT_EXTENDED = 4 SPH_SORT_EXPR = 5 # known filter types SPH_FILTER_VALUES = 0 SPH_FILTER_RANGE = 1 SPH_FILTER_FLOATRANGE = 2 # known attribute types SPH_ATTR_NONE = 0 SPH_ATTR_INTEGER = 1 SPH_ATTR_TIMESTAMP = 2 SPH_ATTR_ORDINAL = 3 SPH_ATTR_BOOL = 4 SPH_ATTR_FLOAT = 5 SPH_ATTR_MULTI = 0X40000000 # known grouping functions SPH_GROUPBY_DAY = 0 SPH_GROUPBY_WEEK = 1 SPH_GROUPBY_MONTH = 2 SPH_GROUPBY_YEAR = 3 SPH_GROUPBY_ATTR = 4 class SphinxClient: def __init__ (self): """ Create a new client object, and fill defaults. """ self._host = 'localhost' # searchd host (default is "localhost") self._port = 3312 # searchd port (default is 3312) self._offset = 0 # how much records to seek from result-set start (default is 0) self._limit = 20 # how much records to return from result-set starting at offset (default is 20) self._mode = SPH_MATCH_ALL # query matching mode (default is SPH_MATCH_ALL) self._weights = [] # per-field weights (default is 1 for all fields) self._sort = SPH_SORT_RELEVANCE # match sorting mode (default is SPH_SORT_RELEVANCE) self._sortby = '' # attribute to sort by (defualt is "") self._min_id = 0 # min ID to match (default is 0) self._max_id = 0xFFFFFFFF # max ID to match (default is UINT_MAX) self._filters = [] # search filters self._groupby = '' # group-by attribute name self._groupfunc = SPH_GROUPBY_DAY # group-by function (to pre-process group-by attribute value with) self._groupsort = '@group desc' # group-by sorting clause (to sort groups in result set with) self._groupdistinct = '' # group-by count-distinct attribute self._maxmatches = 1000 # max matches to retrieve self._cutoff = 0 # cutoff to stop searching at self._retrycount = 0 # distributed retry count self._retrydelay = 0 # distributed retry delay self._anchor = {} # geographical anchor point self._indexweights = {} # per-index weights self._ranker = SPH_RANK_PROXIMITY_BM25 # ranking mode self._maxquerytime = 0 # max query time, milliseconds (default is 0, do not limit) self._fieldweights = {} # per-field-name weights self._error = '' # last error message self._warning = '' # last warning message self._reqs = [] # requests array for multi-query return def GetLastError (self): """ Get last error message (string). """ return self._error def GetLastWarning (self): """ Get last warning message (string). """ return self._warning def SetServer (self, host, port): """ Set searchd server host and port. """ assert(isinstance(host, str)) assert(isinstance(port, int)) self._host = host self._port = port def _Connect (self): """ INTERNAL METHOD, DO NOT CALL. Connects to searchd server. """ try: sock = socket.socket ( socket.AF_INET, socket.SOCK_STREAM ) sock.connect ( ( self._host, self._port ) ) except socket.error as msg: if sock: sock.close() self._error = 'connection to %s:%s failed (%s)' % ( self._host, self._port, msg ) return 0 v = unpack('>L', sock.recv(4)) if v<1: sock.close() self._error = 'expected searchd protocol version, got %s' % v return 0 # all ok, send my version sock.send(pack('>L', 1)) return sock def _GetResponse (self, sock, client_ver): """ INTERNAL METHOD, DO NOT CALL. Gets and checks response packet from searchd server. """ (status, ver, length) = unpack('>2HL', sock.recv(8)) response = '' left = length while left>0: chunk = sock.recv(left) if chunk: response += chunk left -= len(chunk) else: break sock.close() # check response read = len(response) if not response or read!=length: if length: self._error = 'failed to read searchd response (status=%s, ver=%s, len=%s, read=%s)' \ % (status, ver, length, read) else: self._error = 'received zero-sized searchd response' return None # check status if status==SEARCHD_WARNING: wend = 4 + unpack ( '>L', response[0:4] )[0] self._warning = response[4:wend] return response[wend:] if status==SEARCHD_ERROR: self._error = 'searchd error: '+response[4:] return None if status==SEARCHD_RETRY: self._error = 'temporary searchd error: '+response[4:] return None if status!=SEARCHD_OK: self._error = 'unknown status code %d' % status return None # check version if ver<client_ver: self._warning = 'searchd command v.%d.%d older than client\'s v.%d.%d, some options might not work' \ % (ver>>8, ver&0xff, client_ver>>8, client_ver&0xff) return response def SetLimits (self, offset, limit, maxmatches=0, cutoff=0): """ Set offset and count into result set, and optionally set max-matches and cutoff limits. """ assert(isinstance(offset, int) and offset>=0) assert(isinstance(limit, int) and limit>0) assert(maxmatches>=0) self._offset = offset self._limit = limit if maxmatches>0: self._maxmatches = maxmatches if cutoff>=0: self._cutoff = cutoff def SetMaxQueryTime (self, maxquerytime): """ Set maximum query time, in milliseconds, per-index. 0 means 'do not limit'. """ assert(isinstance(maxquerytime,int) and maxquerytime>0) self._maxquerytime = maxquerytime def SetMatchMode (self, mode): """ Set matching mode. """ assert(mode in [SPH_MATCH_ALL, SPH_MATCH_ANY, SPH_MATCH_PHRASE, SPH_MATCH_BOOLEAN, SPH_MATCH_EXTENDED, SPH_MATCH_FULLSCAN, SPH_MATCH_EXTENDED2]) self._mode = mode def SetRankingMode (self, ranker): """ Set ranking mode. """ assert(ranker in [SPH_RANK_PROXIMITY_BM25, SPH_RANK_BM25, SPH_RANK_NONE, SPH_RANK_WORDCOUNT]) self._ranker = ranker def SetSortMode ( self, mode, clause='' ): """ Set sorting mode. """ assert ( mode in [SPH_SORT_RELEVANCE, SPH_SORT_ATTR_DESC, SPH_SORT_ATTR_ASC, SPH_SORT_TIME_SEGMENTS, SPH_SORT_EXTENDED, SPH_SORT_EXPR] ) assert ( isinstance ( clause, str ) ) self._sort = mode self._sortby = clause def SetWeights (self, weights): """ Set per-field weights. WARNING, DEPRECATED; do not use it! use SetFieldWeights() instead """ assert(isinstance(weights, list)) for w in weights: assert(isinstance(w, int)) self._weights = weights def SetFieldWeights (self, weights): """ Bind per-field weights by name; expects (name,field_weight) dictionary as argument. """ assert(isinstance(weights,dict)) for key,val in list(weights.items()): assert(isinstance(key,str)) assert(isinstance(val,int)) self._fieldweights = weights def SetIndexWeights (self, weights): """ Bind per-index weights by name; expects (name,index_weight) dictionary as argument. """ assert(isinstance(weights,dict)) for key,val in list(weights.items()): assert(isinstance(key,str)) assert(isinstance(val,int)) self._indexweights = weights def SetIDRange (self, minid, maxid): """ Set IDs range to match. Only match records if document ID is beetwen $min and $max (inclusive). """ assert(isinstance(minid, int)) assert(isinstance(maxid, int)) assert(minid<=maxid) self._min_id = minid self._max_id = maxid def SetFilter ( self, attribute, values, exclude=0 ): """ Set values set filter. Only match records where 'attribute' value is in given 'values' set. """ assert(isinstance(attribute, str)) assert(isinstance(values, list)) assert(values) for value in values: assert(isinstance(value, int)) self._filters.append ( { 'type':SPH_FILTER_VALUES, 'attr':attribute, 'exclude':exclude, 'values':values } ) def SetFilterRange (self, attribute, min_, max_, exclude=0 ): """ Set range filter. Only match records if 'attribute' value is beetwen 'min_' and 'max_' (inclusive). """ assert(isinstance(attribute, str)) assert(isinstance(min_, int)) assert(isinstance(max_, int)) assert(min_<=max_) self._filters.append ( { 'type':SPH_FILTER_RANGE, 'attr':attribute, 'exclude':exclude, 'min':min_, 'max':max_ } ) def SetFilterFloatRange (self, attribute, min_, max_, exclude=0 ): assert(isinstance(attribute,str)) assert(isinstance(min_,float)) assert(isinstance(max_,float)) assert(min_ <= max_) self._filters.append ( {'type':SPH_FILTER_FLOATRANGE, 'attr':attribute, 'exclude':exclude, 'min':min_, 'max':max_} ) def SetGeoAnchor (self, attrlat, attrlong, latitude, longitude): assert(isinstance(attrlat,str)) assert(isinstance(attrlong,str)) assert(isinstance(latitude,float)) assert(isinstance(longitude,float)) self._anchor['attrlat'] = attrlat self._anchor['attrlong'] = attrlong self._anchor['lat'] = latitude self._anchor['long'] = longitude def SetGroupBy ( self, attribute, func, groupsort='@group desc' ): """ Set grouping attribute and function. """ assert(isinstance(attribute, str)) assert(func in [SPH_GROUPBY_DAY, SPH_GROUPBY_WEEK, SPH_GROUPBY_MONTH, SPH_GROUPBY_YEAR, SPH_GROUPBY_ATTR] ) assert(isinstance(groupsort, str)) self._groupby = attribute self._groupfunc = func self._groupsort = groupsort def SetGroupDistinct (self, attribute): assert(isinstance(attribute,str)) self._groupdistinct = attribute def SetRetries (self, count, delay=0): assert(isinstance(count,int) and count>=0) assert(isinstance(delay,int) and delay>=0) self._retrycount = count self._retrydelay = delay def ResetFilters (self): """ Clear all filters (for multi-queries). """ self._filters = [] self._anchor = {} def ResetGroupBy (self): """ Clear groupby settings (for multi-queries). """ self._groupby = '' self._groupfunc = SPH_GROUPBY_DAY self._groupsort = '@group desc' self._groupdistinct = '' def Query (self, query, index='*', comment=''): """ Connect to searchd server and run given search query. Returns None on failure; result set hash on success (see documentation for details). """ assert(len(self._reqs)==0) self.AddQuery(query,index,comment) results = self.RunQueries() if not results or len(results)==0: return None self._error = results[0]['error'] self._warning = results[0]['warning'] if results[0]['status'] == SEARCHD_ERROR: return None return results[0] def AddQuery (self, query, index='*', comment=''): """ Add query to batch. """ # build request req = [pack('>5L', self._offset, self._limit, self._mode, self._ranker, self._sort)] req.append(pack('>L', len(self._sortby))) req.append(self._sortby) if isinstance(query,str): query = query.encode('utf-8') assert(isinstance(query,bytes)) req.append(pack('>L', len(query))) req.append(query) req.append(pack('>L', len(self._weights))) for w in self._weights: req.append(pack('>L', w)) req.append(pack('>L', len(index))) req.append(index) req.append(pack('>L',0)) # id64 range marker FIXME! IMPLEMENT! req.append(pack('>L', self._min_id)) req.append(pack('>L', self._max_id)) # filters req.append ( pack ( '>L', len(self._filters) ) ) for f in self._filters: req.append ( pack ( '>L', len(f['attr'])) + f['attr']) filtertype = f['type'] req.append ( pack ( '>L', filtertype)) if filtertype == SPH_FILTER_VALUES: req.append ( pack ('>L', len(f['values']))) for val in f['values']: req.append ( pack ('>L', val)) elif filtertype == SPH_FILTER_RANGE: req.append ( pack ('>2L', f['min'], f['max'])) elif filtertype == SPH_FILTER_FLOATRANGE: req.append ( pack ('>2f', f['min'], f['max'])) req.append ( pack ( '>L', f['exclude'] ) ) # group-by, max-matches, group-sort req.append ( pack ( '>2L', self._groupfunc, len(self._groupby) ) ) req.append ( self._groupby ) req.append ( pack ( '>2L', self._maxmatches, len(self._groupsort) ) ) req.append ( self._groupsort ) req.append ( pack ( '>LLL', self._cutoff, self._retrycount, self._retrydelay)) req.append ( pack ( '>L', len(self._groupdistinct))) req.append ( self._groupdistinct) # anchor point if len(self._anchor) == 0: req.append ( pack ('>L', 0)) else: attrlat, attrlong = self._anchor['attrlat'], self._anchor['attrlong'] latitude, longitude = self._anchor['lat'], self._anchor['long'] req.append ( pack ('>L', 1)) req.append ( pack ('>L', len(attrlat)) + attrlat) req.append ( pack ('>L', len(attrlong)) + attrlong) req.append ( pack ('>f', latitude) + pack ('>f', longitude)) # per-index weights req.append ( pack ('>L',len(self._indexweights))) for indx,weight in list(self._indexweights.items()): req.append ( pack ('>L',len(indx)) + indx + pack ('>L',weight)) # max query time req.append ( pack ('>L', self._maxquerytime) ) # per-field weights req.append ( pack ('>L',len(self._fieldweights) ) ) for field,weight in list(self._fieldweights.items()): req.append ( pack ('>L',len(field)) + field + pack ('>L',weight) ) # comment req.append ( pack('>L',len(comment)) + comment ) # send query, get response req = ''.join(req) self._reqs.append(req) return def RunQueries (self): """ Run queries batch. Returns None on network IO failure; or an array of result set hashes on success. """ if len(self._reqs)==0: self._error = 'no queries defined, issue AddQuery() first' return None sock = self._Connect() if not sock: return None req = ''.join(self._reqs) length = len(req)+4 req = pack('>HHLL', SEARCHD_COMMAND_SEARCH, VER_COMMAND_SEARCH, length, len(self._reqs))+req sock.send(req) response = self._GetResponse(sock, VER_COMMAND_SEARCH) if not response: return None nreqs = len(self._reqs) # parse response max_ = len(response) p = 0 results = [] for i in range(0,nreqs,1): result = {} result['error'] = '' result['warning'] = '' status = unpack('>L', response[p:p+4])[0] p += 4 result['status'] = status if status != SEARCHD_OK: length = unpack('>L', response[p:p+4])[0] p += 4 message = response[p:p+length] p += length if status == SEARCHD_WARNING: result['warning'] = message else: result['error'] = message continue # read schema fields = [] attrs = [] nfields = unpack('>L', response[p:p+4])[0] p += 4 while nfields>0 and p<max_: nfields -= 1 length = unpack('>L', response[p:p+4])[0] p += 4 fields.append(response[p:p+length]) p += length result['fields'] = fields nattrs = unpack('>L', response[p:p+4])[0] p += 4 while nattrs>0 and p<max_: nattrs -= 1 length = unpack('>L', response[p:p+4])[0] p += 4 attr = response[p:p+length] p += length type_ = unpack('>L', response[p:p+4])[0] p += 4 attrs.append([attr,type_]) result['attrs'] = attrs # read match count count = unpack('>L', response[p:p+4])[0] p += 4 id64 = unpack('>L', response[p:p+4])[0] p += 4 # read matches result['matches'] = [] while count>0 and p<max_: count -= 1 if id64: dochi, doc, weight = unpack('>3L', response[p:p+12]) doc += (dochi<<32) p += 12 else: doc, weight = unpack('>2L', response[p:p+8]) p += 8 match = { 'id':doc, 'weight':weight, 'attrs':{} } for i in range(len(attrs)): if attrs[i][1] == SPH_ATTR_FLOAT: match['attrs'][attrs[i][0]] = unpack('>f', response[p:p+4])[0] elif attrs[i][1] == (SPH_ATTR_MULTI | SPH_ATTR_INTEGER): match['attrs'][attrs[i][0]] = [] nvals = unpack('>L', response[p:p+4])[0] p += 4 for n in range(0,nvals,1): match['attrs'][attrs[i][0]].append(unpack('>L', response[p:p+4])[0]) p += 4 p -= 4 else: match['attrs'][attrs[i][0]] = unpack('>L', response[p:p+4])[0] p += 4 result['matches'].append ( match ) result['total'], result['total_found'], result['time'], words = unpack('>4L', response[p:p+16]) result['time'] = '%.3f' % (result['time']/1000.0) p += 16 result['words'] = [] while words>0: words -= 1 length = unpack('>L', response[p:p+4])[0] p += 4 word = response[p:p+length] p += length docs, hits = unpack('>2L', response[p:p+8]) p += 8 result['words'].append({'word':word, 'docs':docs, 'hits':hits}) results.append(result) self._reqs = [] sock.close() return results def BuildExcerpts (self, docs, index, words, opts=None): """ Connect to searchd server and generate exceprts from given documents. """ if not opts: opts = {} if isinstance(words,str): words = words.encode('utf-8') assert(isinstance(docs, list)) assert(isinstance(index, bytes)) assert(isinstance(words, bytes)) assert(isinstance(opts, dict)) sock = self._Connect() if not sock: return None # fixup options opts.setdefault('before_match', '<b>') opts.setdefault('after_match', '</b>') opts.setdefault('chunk_separator', ' ... ') opts.setdefault('limit', 256) opts.setdefault('around', 5) # build request # v.1.0 req # mode=0, flags=1 (remove spaces) req = [pack('>2L', 0, 1)] # req index req.append(pack('>L', len(index))) req.append(index) # req words req.append(pack('>L', len(words))) req.append(words) # options req.append(pack('>L', len(opts['before_match']))) req.append(opts['before_match']) req.append(pack('>L', len(opts['after_match']))) req.append(opts['after_match']) req.append(pack('>L', len(opts['chunk_separator']))) req.append(opts['chunk_separator']) req.append(pack('>L', int(opts['limit']))) req.append(pack('>L', int(opts['around']))) # documents req.append(pack('>L', len(docs))) for doc in docs: if isinstance(doc,str): doc = doc.encode('utf-8') assert(isinstance(doc, bytes)) req.append(pack('>L', len(doc))) req.append(doc) req = ''.join(req) # send query, get response length = len(req) # add header req = pack('>2HL', SEARCHD_COMMAND_EXCERPT, VER_COMMAND_EXCERPT, length)+req wrote = sock.send(req) response = self._GetResponse(sock, VER_COMMAND_EXCERPT ) if not response: return [] # parse response pos = 0 res = [] rlen = len(response) for i in range(len(docs)): length = unpack('>L', response[pos:pos+4])[0] pos += 4 if pos+length > rlen: self._error = 'incomplete reply' return [] res.append(response[pos:pos+length]) pos += length return res def UpdateAttributes ( self, index, attrs, values ): """ Update given attribute values on given documents in given indexes. Returns amount of updated documents (0 or more) on success, or -1 on failure. 'attrs' must be a list of strings. 'values' must be a dict with int key (document ID) and list of int values (new attribute values). Example: res = cl.UpdateAttributes ( 'test1', [ 'group_id', 'date_added' ], { 2:[123,1000000000], 4:[456,1234567890] } ) """ assert ( isinstance ( index, str ) ) assert ( isinstance ( attrs, list ) ) assert ( isinstance ( values, dict ) ) for attr in attrs: assert ( isinstance ( attr, str ) ) for docid, entry in list(values.items()): assert ( isinstance ( docid, int ) ) assert ( isinstance ( entry, list ) ) assert ( len(attrs)==len(entry) ) for val in entry: assert ( isinstance ( val, int ) ) # build request req = [ pack('>L',len(index)), index ] req.append ( pack('>L',len(attrs)) ) for attr in attrs: req.append ( pack('>L',len(attr)) + attr ) req.append ( pack('>L',len(values)) ) for docid, entry in list(values.items()): req.append ( pack('>q',docid) ) for val in entry: req.append ( pack('>L',val) ) # connect, send query, get response sock = self._Connect() if not sock: return None req = ''.join(req) length = len(req) req = pack ( '>2HL', SEARCHD_COMMAND_UPDATE, VER_COMMAND_UPDATE, length ) + req wrote = sock.send ( req ) response = self._GetResponse ( sock, VER_COMMAND_UPDATE ) if not response: return -1 # parse response updated = unpack ( '>L', response[0:4] )[0] return updated def BuildKeywords ( self, query, index, hits ): """ Connect to searchd server, and generate keywords list for a given query. Returns None on failure, or a list of keywords on success. """ assert ( isinstance ( query, str ) ) assert ( isinstance ( index, str ) ) assert ( isinstance ( hits, int ) ) # build request req = [ pack ( '>L', len(query) ) + query ] req.append ( pack ( '>L', len(index) ) + index ) req.append ( pack ( '>L', hits ) ) # connect, send query, get response sock = self._Connect() if not sock: return None req = ''.join(req) length = len(req) req = pack ( '>2HL', SEARCHD_COMMAND_KEYWORDS, VER_COMMAND_KEYWORDS, length ) + req wrote = sock.send ( req ) response = self._GetResponse ( sock, VER_COMMAND_KEYWORDS ) if not response: return None # parse response res = [] nwords = unpack ( '>L', response[0:4] )[0] p = 4 max_ = len(response) while nwords>0 and p<max_: nwords -= 1 length = unpack ( '>L', response[p:p+4] )[0] p += 4 tokenized = response[p:p+length] p += length length = unpack ( '>L', response[p:p+4] )[0] p += 4 normalized = response[p:p+length] p += length entry = { 'tokenized':tokenized, 'normalized':normalized } if hits: entry['docs'], entry['hits'] = unpack ( '>2L', response[p:p+8] ) p += 8 res.append ( entry ) if nwords>0 or p>max_: self._error = 'incomplete reply' return None return res # # $Id: sphinxapi.py 1216 2008-03-14 23:25:39Z shodan $ #
#!/usr/bin/env python3 from src import nswairquality if __name__ == "__main__": x = nswairquality.NSWAirQuality() print(x.toJSON(True))
import tensorflow as tf from tensorflow.contrib import rnn import numpy as np import time import string import matplotlib.pyplot as plt from random import randint, choice ### to train on different data, just insert a path to a text file here: corpus_path = '../corpora/CNCR_2017-18_corpus.txt' ### # restore saved parameters and resume training? restore=False # if False then we just train from scratch ## call it whatever you want: model_name = 'char_lstm' model_path = 'model/' summary_path = 'summary/' print('Loading corpus...') with open(corpus_path, encoding='latin1') as file: corpus = file.read() #remove blank lines: lines = corpus.split('\n') # define legal characters: legal_chars = string.ascii_lowercase + string.punctuation + string.whitespace + string.digits def text_to_onehot(corpus, char_indices): """Takes a string and returns a ndarray of dimensions [len(string), num_chars], given a dict that maps characters to integer indices.""" onehot = np.zeros((len(corpus), len(char_indices))) for x in range(len(corpus)): char = corpus[x] idx = char_indices[char] onehot[x,idx] = 1 return onehot def onehot_to_text(onehot, indices_char): """Takes an ndarray of softmax or onehot encoded text, and a dict that maps array indices to string characters, and returns the translated string.""" text = [] assert len(indices_char) == onehot.shape[1] for x in range(onehot.shape[0]): row = onehot[x,:] idx = np.argmax(row) char = indices_char[idx] text.append(char) return ''.join(text) chars = sorted(legal_chars) char_indices = dict((c, i) for i, c in enumerate(chars)) indices_char = dict((i, c) for i, c in enumerate(chars)) num_chars = len(chars) print('Processing corpus...') newlines = [] for x in lines: if x != '' and x[0] != '!' and x[0] != '.': # remove empty lines and bot responses if '<@' not in x: # remove mentions legalx = ''.join([i for i in x.lower() if i in legal_chars]) newlines.append(legalx.replace('&&newline', '\n')) raw_corpus = '\n'.join(newlines) corpus = text_to_onehot(raw_corpus, char_indices) ### corpus loaded, now we construct the batch generator: def get_batch(corpus, batch_size, str_len, char_pred = True): # if char_pred = False, returns an array of random strings taken from the corpus # if char_pred = True, instead returns two arrays, one x and one y (shifted right by one) for character prediction corpus_size, num_chars = corpus.shape if not char_pred: batch = np.zeros((batch_size, str_len, num_chars)) for b in range(batch_size): start_idx = randint(0, corpus_size - str_len - 1) # randint is end-inclusive end_idx = start_idx + str_len batch[b,:,:] = corpus[start_idx:end_idx,:] return batch else: xbatch = np.zeros((batch_size, str_len, num_chars)) ybatch = np.zeros((batch_size, str_len, num_chars)) for b in range(batch_size): start_x = randint(0, corpus_size - str_len - 2) # randint is end-inclusive end_x = start_x + str_len start_y, end_y = start_x + 1, end_x + 1 xbatch[b,:,:] = corpus[start_x:end_x,:] ybatch[b,:,:] = corpus[start_y:end_y,:] return xbatch, ybatch ## build the network: print('Constructing network...') sess = tf.InteractiveSession() lstm_size = 300 str_len = 50 batch_size = 200 learning_rate = 0.001 x = tf.placeholder(tf.float32, [None, None, num_chars], name='x') y = tf.placeholder(tf.float32, [None, None, num_chars], name='y') num_cells = 2 ## lstm: cells = [rnn.BasicLSTMCell(lstm_size) for _ in range(num_cells)] multicell = rnn.MultiRNNCell(cells) projection = rnn.OutputProjectionWrapper(multicell, num_chars) # outputs for training: rnn_outputs, final_state = tf.nn.dynamic_rnn(projection, x, dtype=tf.float32) xe = tf.nn.softmax_cross_entropy_with_logits(logits=rnn_outputs, labels=y) total_loss = tf.reduce_mean(xe) train_step = tf.train.AdamOptimizer(learning_rate).minimize(total_loss) # outputs for sequential text generation: seq_init = projection.zero_state(1, dtype=tf.float32) seq_len = tf.placeholder(dtype=tf.int32, name='seq_len') seq_output, seq_state = tf.nn.dynamic_rnn(projection, x, initial_state=seq_init, sequence_length=seq_len) print('Initialising variables...') saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) if restore: saver.restore(sess, model_path) def softmax(k): """Compute softmax values for each sets of scores in x.""" e_k = np.exp(k - np.max(k)) return e_k / e_k.sum(axis=0) def generate_sequence(seed='\n', max_len=100, stop_at_newline=True, complete_sentence=False): """recursively generate a sequence by generating a prediction and feeding it to next time step. args: seed:: initial data to feed to network. has to be non-empty, but newline \n is a safe bet. max_len:: stop generating when we reach this many characters. stop_at_newline:: if True, stop generating when a newline \n is generated. complete_sentence:: if True, return the seed as well as the generated sequence. this function might need cleaning up, but it works ok""" seed_onehot = text_to_onehot(seed, char_indices) pred_chars = [] states = [] state = None for i in range(len(seed)): seed_in = seed_onehot[i,:].reshape(1, 1, -1) feed = {x: seed_in, seq_len: 1} if i > 0: feed[seq_init] = state out, state = sess.run([seq_output, seq_state], feed_dict=feed) # print seed # char_onehot = out[0,0,:] # char = onehot_to_text(char_onehot.reshape(1,-1), indices_char) if complete_sentence: pred_chars.append(seed[i]) states.append(state) # process last state before generating sequence: char_logits = out[0, 0, :] char_softmax = softmax(char_logits) char_range = np.arange(num_chars) char_choice = np.random.choice(char_range, p=char_softmax) char_onehot = np.eye(num_chars)[char_choice, :] # neat trick char = onehot_to_text(char_onehot.reshape(1, -1), indices_char) pred_chars.append(char) done = False i = 0 while not done: feed = {x: char_onehot.reshape(1, 1, -1), seq_init: state, seq_len: 1} out, state = sess.run([seq_output, seq_state], feed_dict=feed) # print prediction char_logits = out[0, 0, :] char_softmax = softmax(char_logits) char_range = np.arange(num_chars) char_choice = np.random.choice(char_range, p=char_softmax) char_onehot = np.eye(num_chars)[char_choice,:] # neat trick char = onehot_to_text(char_onehot.reshape(1,-1), indices_char) pred_chars.append(char) states.append(state) i += 1 if i > max_len or ((stop_at_newline) and char == '\n'): done = True pred_chars = pred_chars[:-1] sequence = ''.join(pred_chars) if len(sequence) > 0 and sequence[0] == '\n': sequence = sequence[1:] return sequence # generate a test sequence: generate_sequence(seed='\n', max_len=100, complete_sentence=True) ### now train the network: num_epochs = 1000 update_interval = 100 ytexts = [] predtexts = [] gentexts = [] losses = [] print('Training network...') batch_times = [] feed_times = [] e = 0 training_time = 1*60*60 # in seconds done = False start_time = time.time() # train for an amount of time: while not done: time_elapsed = time.time() - start_time batch_start = time.time() xbatch,ybatch = get_batch(corpus, batch_size, str_len, char_pred=True) batch_end = time.time() feed = {x: xbatch, y: ybatch} _, loss, pred = sess.run([train_step, total_loss, rnn_outputs], feed_dict=feed) feed_end = time.time() batch_times.append(batch_end - batch_start) feed_times.append(feed_end - batch_end) losses.append(loss) # see what we're producing: if e % update_interval == 0: print(' Time elapsed: %d secs. Epoch %d: Training loss %.6f' % (time_elapsed, e, loss)) ytext = onehot_to_text(ybatch[0], indices_char) predtext = onehot_to_text(np.array(pred)[0,:,:], indices_char) gentext = generate_sequence() print(' desired sentence:') print(' %s' % ytext.replace('\n', '\\n')) print(' output sentence:') print(' %s' % predtext.replace('\n', '\\n')) ytexts.append(ytext) predtexts.append(predtext) print(' generated sentence:') print(' %s' % gentext) gentexts.append(gentext) print('Time spent generating batches: %.6f' % np.sum(batch_times)) print('Time spent training network: %.6f' % np.sum(feed_times)) batch_times = [] feed_times = [] e += 1 if time_elapsed > training_time: print('Training complete.') done = True plt.plot(losses) # generate a series of test sequences, each seeded by the last: sequences=['\n'] for i in range(10): sequences.append(generate_sequence(seed=sequences[-1], max_len=100)) print('\n'.join(sequences)) # save weights: save_path = saver.save(sess, model_path) print("TF model variables for %s saved in path: %s" % (model_name, save_path))
import numpy as np def losses_kron(B0_kron,B1_kron,B2_kron,gen_PG_point,baseMVA): """Compute losses based on Kron's Method.""" gen_PG_point_pu = np.array(gen_PG_point) / baseMVA #convert to p.u. B0_kron = np.array(B0_kron) B1_kron = np.array(B1_kron) B2_kron = np.array(B2_kron) # losses0 = B0_kron * baseMVA # losses1 = B1_kron.dot(gen_PG_point_pu) * baseMVA # losses2 = gen_PG_point_pu.T.dot(B2_kron).dot(gen_PG_point_pu) * baseMVA # losses = losses2 + losses1 + losses0 #total power losses return (B0_kron + B1_kron.dot(gen_PG_point_pu) + gen_PG_point_pu.T.dot(B2_kron).dot(gen_PG_point_pu)) * baseMVA def losses_kron_detailed(B0_kron,B1_kron,B2_kron,gen_PG_point,baseMVA): """Compute losses based on Kron's Method.""" gen_PG_point_pu = np.array(gen_PG_point) / baseMVA #convert to p.u. B0_kron = np.array(B0_kron) B1_kron = np.array(B1_kron) B2_kron = np.array(B2_kron) losses0 = B0_kron * baseMVA losses1 = B1_kron.dot(gen_PG_point_pu) * baseMVA losses2 = gen_PG_point_pu.T.dot(B2_kron).dot(gen_PG_point_pu) * baseMVA # losses = losses2 + losses1 + losses0 #total power losses return losses0, losses1, losses2
#!/usr/bin/env python3 # coding: utf-8 # author: alice12ml from handler import Handler from config import API_TOKEN import requests import logging import subprocess import uuid class VideoHandler(Handler): @classmethod def response(cls, message): if message.get('document') and message['document'].get('mime_type') == 'video/mp4': return VideoHandler(message) def handle(self): logging.info("[%s] send a video." % self.sender) file_id = self.message['document']['file_id'] # 获取 file_path url = 'https://api.telegram.org/bot%s/getFile' % API_TOKEN r = requests.get(url, {'file_id': file_id}) if r.status_code == requests.codes.ok and r.json()['ok']: file_path = r.json()['result']['file_path'] logging.debug("file_path: " + file_path) # 下载 sticker 对应的 mp4 文件并保存 filename = str(uuid.uuid1()) url = 'https://api.telegram.org/file/bot%s/%s' % (API_TOKEN, file_path) r = requests.get(url) with open(filename + ".mp4", "wb") as f: f.write(r.content) # 利用 ffmpeg 转换文件 subprocess.run('ffmpeg -loglevel panic -i %s.mp4 -r 25 -vf "scale=iw/2:ih/2:flags=lanczos" %s.gif' % (filename, filename), shell=True) logging.debug("convert video to gif.") # 上传文件,由于 Telegram 服务器会自动将 gif 转换为 mp4,故上传到图床 logging.debug("upload gif to sm.ms") url = 'https://sm.ms/api/upload' gif = open(filename+'.gif', 'rb') files = {'smfile': gif} r = requests.post(url, files=files) code = r.json()['code'] pic_url = r.json()['data']['url'] if code == 'success': logging.info("gif url: " + pic_url) # 发送图床链接 self.send_message(pic_url) else: logging.error("request.text: " + r.text) # 删除缓存文件 gif.close() subprocess.run('rm -f %s.mp4 %s.gif' % (filename, filename), shell=True) else: logging.error('request.text: ' + r.text)
#!/usr/bin/env python3 ########################################################################## # Script to simulate Modelica models with JModelica. # ########################################################################## # Import the function for compilation of models and the load_fmu method from pymodelica import compile_fmu import traceback import logging from pyfmi import load_fmu import pymodelica import os import shutil import sys import matplotlib.pyplot as plt debug_solver = False model="Buildings.Utilities.Psychrometrics.Examples.DewPointTemperature" generate_plot = False # Overwrite model with command line argument if specified if len(sys.argv) > 1: # If the argument is a file, then parse it to a model name if os.path.isfile(sys.argv[1]): model = sys.argv[1].replace(os.path.sep, '.')[:-3] else: model=sys.argv[1] print("*** Compiling {}".format(model)) # Increase memory pymodelica.environ['JVM_ARGS'] = '-Xmx4096m' sys.stdout.flush() ###################################################################### # Compile fmu fmu_name = compile_fmu(model, version="2.0", compiler_log_level='warning', #'info', 'warning', compiler_options = {"generate_html_diagnostics" : True, "nle_solver_tol_factor": 1e-2}) # 1e-2 is the default ###################################################################### # Load model mod = load_fmu(fmu_name, log_level=4) # default setting is 3 mod.set_max_log_size(2073741824) # = 2*1024^3 (about 2GB) ###################################################################### # Retrieve and set solver options x_nominal = mod.nominal_continuous_states opts = mod.simulate_options() #Retrieve the default options opts['solver'] = 'CVode' #'Radau5ODE' #CVode opts['ncp'] = 500 if opts['solver'].lower() == 'cvode': # Set user-specified tolerance if it is smaller than the tolerance in the .mo file rtol = 1.0e-8 x_nominal = mod.nominal_continuous_states if len(x_nominal) > 0: atol = rtol*x_nominal else: atol = rtol opts['CVode_options']['external_event_detection'] = False opts['CVode_options']['maxh'] = (mod.get_default_experiment_stop_time()-mod.get_default_experiment_start_time())/float(opts['ncp']) opts['CVode_options']['iter'] = 'Newton' opts['CVode_options']['discr'] = 'BDF' opts['CVode_options']['rtol'] = rtol opts['CVode_options']['atol'] = atol opts['CVode_options']['store_event_points'] = True # True is default, set to false if many events if debug_solver: opts['CVode_options']['clock_step'] = True if debug_solver: opts["logging"] = True #<- Turn on solver debug logging mod.set("_log_level", 4) ###################################################################### # Simulate res = mod.simulate(options=opts) # logging.error(traceback.format_exc()) if generate_plot: plt.plot(res['time'], res['TDewPoi.T']-273.15) plt.xlabel('time in [s]') plt.ylabel('Dew point [degC]') plt.grid() plt.show() plt.savefig("plot.pdf") ###################################################################### # Copy style sheets. # This is a hack to get the css and js files to render the html diagnostics. htm_dir = os.path.splitext(os.path.basename(fmu_name))[0] + "_html_diagnostics" if os.path.exists(htm_dir): for fil in ["scripts.js", "style.css", "zepto.min.js"]: src = os.path.join(".jmodelica_html", fil) if os.path.exists(src): des = os.path.join(htm_dir, fil) shutil.copyfile(src, des) ###################################################################### # Get debugging information if debug_solver: #Load the debug information from pyfmi.debug import CVodeDebugInformation debug = CVodeDebugInformation(model.replace(".", "_")+"_debug.txt") ### Below are options to plot the order, error and step-size evolution. ### The error methos also take a threshold and a region if you want to ### limit the plot to a certain interval. if opts['solver'].lower() == 'cvode': #Plot wall-clock time versus model time debug.plot_cumulative_time_elapsed() #Plot only the region 0.8 - 1.0 seconds and only state variables with an error greater than 0.01 (for any point in that region) debug.plot_error(region=[0.8,1.0], threshold=0.01) #Plot order evolution debug.plot_order() #Plot error evolution debug.plot_error() #Note see also the arguments to the method #Plot the used step-size debug.plot_step_size() #See also debug?
import json import luigi from luigi.contrib.postgres import CopyToTable from datetime import datetime from nyc_ccci_etl.commons.configuration import get_database_connection_parameters from nyc_ccci_etl.utils.get_os_user import get_os_user from nyc_ccci_etl.utils.get_current_ip import get_current_ip from nyc_ccci_etl.orchestrator_tasks.update_centers import UpdateCenters class LoadUpdateCentersMetadata(CopyToTable): year = luigi.IntParameter() month = luigi.IntParameter() day = luigi.IntParameter() def requires(self): return UpdateCenters(self.year, self.month, self.day) host, database, user, password = get_database_connection_parameters() table = "transformed.update_centers_metadata" schema = "transformed" columns = [ ("executed_at", "timestamp"), ("task_params", "varchar"), ("record_count", "integer"), ("execution_user", "varchar"), ("source_ip", "varchar"), ("database_name", "varchar"), ("database_schema", "varchar"), ("database_table", "varchar"), ("database_user", "varchar"), ("vars", "varchar"), ("script_tag", "varchar") ] def rows(self): params_string = "year={} month={} day={}".format(str(self.year), str(self.month), str(self.day)) row = ( str(datetime.now(tz=None)), params_string, "0", get_os_user(), get_current_ip(), self.database, self.schema, self.table, self.user, "0", "transormations" ) yield row
import itertools from z3 import z3 from teether.evm.state import SymRead, LazySubstituteState, translate from teether.util.z3_extra_util import get_vars_non_recursive, concrete, ast_eq class SymbolicResult(object): def __init__(self, xid, state, constraints, sha_constraints, target_op): self.xid = xid self.state = state self.constraints = constraints self.sha_constraints = sha_constraints self.target_op = target_op self.calls = 1 self._simplified = False self.storage_info = StorageInfo(self) def simplify(self): if self._simplified: return self.constraints = [z3.simplify(c) for c in self.constraints] self.sha_constraints = {sha: z3.simplify(sha_value) if not isinstance(sha_value, SymRead) else sha_value for sha, sha_value in self.sha_constraints.items()} self._simplified = True def copy(self): new_xid = gen_exec_id() self.simplify() new_constraints = [translate(c, new_xid) for c in self.constraints] new_sha_constraints = {translate(sha, new_xid): translate(sha_value, new_xid) if not isinstance(sha_value, SymRead) else sha_value.translate( new_xid) for sha, sha_value in self.sha_constraints.items()} new_state = self.state.copy(new_xid) return SymbolicResult(new_xid, new_state, new_constraints, new_sha_constraints, self.target_op) def may_read_from(self, other): return self.storage_info.may_read_from(other.storage_info) class CombinedSymbolicResult(object): def __init__(self): self.results = [] self._constraints = None self._sha_constraints = None self._states = None self._idx_dict = None self.calls = 0 def _reset(self): self._constraints = None self._sha_constraints = None self._states = None def combine(self, storage=dict(), initial_balance=None): extra_subst = [] storage_base = z3.K(z3.BitVecSort(256), z3.BitVecVal(0, 256)) for k, v in storage.items(): storage_base = z3.Store(storage_base, k, v) for result in self.results: extra_subst.append((result.state.storage.base, storage_base)) storage_base = z3.substitute(result.state.storage.storage, extra_subst) extra_constraints = [] if initial_balance is not None: balance_base = z3.BitVecVal(initial_balance, 256) else: balance_base = None for result in self.results: if balance_base is not None: extra_subst.append((result.state.start_balance, balance_base)) balance_base = z3.substitute(result.state.balance, extra_subst) else: balance_base = result.state.balance self._states = [LazySubstituteState(r.state, extra_subst) for r in self.results] self._constraints = [z3.substitute(c, extra_subst) for r in self.results for c in r.constraints] + extra_constraints self._sha_constraints = { sha: z3.substitute(sha_value, extra_subst) if not isinstance(sha_value, SymRead) else sha_value for r in self.results for sha, sha_value in r.sha_constraints.items()} self._idx_dict = {r.xid: i for i, r in enumerate(self.results)} def prepend(self, result): self.calls += 1 self.results = [result] + self.results self._reset() @property def idx_dict(self): if self._idx_dict is None: self.combine() return self._idx_dict @property def constraints(self): if self._constraints is None: self.combine() return self._constraints @property def sha_constraints(self): if self._sha_constraints is None: self.combine() return self._sha_constraints @property def states(self): if not self._states: self.combine() return self._states @property def state(self): return self.states[-1] def simplify(self): self._constraints = [z3.simplify(c) for c in self.constraints] self._sha_constraints = {sha: (z3.simplify(sha_value) if not isinstance(sha_value, SymRead) else sha_value) for sha, sha_value in self.sha_constraints.items()} class StorageInfo(object): def __init__(self, result): self.result = result self._vars = dict() self.concrete_reads = set() self.concrete_writes = set() self.symbolic_reads = set() self.symbolic_writes = set() self.symbolic_hash_reads = set() self.symbolic_hash_writes = set() for addr in set(result.state.storage.reads): if concrete(addr): self.concrete_reads.add(addr) else: x_vars = get_vars_non_recursive(addr, True) self._vars[addr] = x_vars if set(x_vars) & set(result.sha_constraints.keys()): self.symbolic_hash_reads.add(addr) else: self.symbolic_reads.add(addr) for addr in set(result.state.storage.writes): if concrete(addr): self.concrete_writes.add(addr) else: x_vars = get_vars_non_recursive(addr, True) self._vars[addr] = x_vars if set(x_vars) & set(result.sha_constraints.keys()): self.symbolic_hash_writes.add(addr) else: self.symbolic_writes.add(addr) def may_read_from(self, other): if not self.symbolic_reads and not other.symbolic_writes: # no side has a non-hash-based symbolic access # no side具有非哈希符号访问权限 # => only concrete accesses can intersect # 只有具体的入口可以相交 # (or hash-based accesses, which we will check later) if self.concrete_reads & other.concrete_writes: return True else: # at least one side has a non-hash-based symbolic access # 至少一方具有非基于散列的符号访问 # => if there is at least one concrete or symbolic access # on the other side, the two could be equal # 如果在另一边至少有一个具体的或象征性的通道,那么这两个通道可能是相等的 # (otherwise we have to look at hash-based accesses, see below) # (否则我们必须考虑基于散列的访问,见下文) if ((self.symbolic_reads or self.concrete_reads or self.symbolic_hash_reads) and (other.symbolic_writes or other.concrete_writes or other.symbolic_hash_writes)): return True if self.symbolic_hash_reads and other.symbolic_hash_writes: for a, b in itertools.product(self.symbolic_hash_reads, other.symbolic_hash_writes): if not ast_eq(a, b): continue hash_a = list(self._vars[a] & set(self.result.sha_constraints.keys())) hash_b = list(other._vars[b] & set(other.result.sha_constraints.keys())) if len(hash_a) != 1 or len(hash_b) != 1: # multiple hashes on either side # => assume they could be equal return True # only one hash on either side # => check whether these two can actually be equal d_a = self.result.sha_constraints[hash_a[0]] d_b = other.result.sha_constraints[hash_b[0]] if isinstance(d_a, SymRead) or isinstance(d_b, SymRead): return True if d_a.size() == d_b.size(): return True # at this point, we have checked every possible combination # 在这一点上,我们已经检查了所有可能的组合 # => no luck this time return False def gen_exec_id(): if "xid" not in gen_exec_id.__dict__: gen_exec_id.xid = 0 else: gen_exec_id.xid += 1 return gen_exec_id.xid
# Paginator.py (vars-localize) from PyQt5 import QtGui from PyQt5.QtCore import pyqtSignal from PyQt5.QtGui import QIcon from PyQt5.QtWidgets import QWidget, QHBoxLayout, QPushButton, QLabel, QInputDialog __author__ = "Kevin Barnard" __copyright__ = "Copyright 2019, Monterey Bay Aquarium Research Institute" __credits__ = ["MBARI"] __license__ = "GPL" __maintainer__ = "Kevin Barnard" __email__ = "kbarnard@mbari.org" __doc__ = ''' Pagination controller widget. @author: __author__ @status: __status__ @license: __license__ ''' class Paginator(QWidget): left_signal = pyqtSignal() right_signal = pyqtSignal() jump_signal = pyqtSignal() def __init__(self, parent=None): super(Paginator, self).__init__(parent) self.setLayout(QHBoxLayout()) self.offset = 0 self.limit = 0 self.count = 0 self.nav_label = QLabel() self.left_button = QPushButton() self.left_button.setIcon(QIcon('images/arrow_left.png')) self.left_button.pressed.connect(self.left_press) self.right_button = QPushButton() self.right_button.setIcon(QIcon('images/arrow_right.png')) self.right_button.pressed.connect(self.right_press) self.layout().addWidget(self.nav_label, stretch=1) self.layout().addWidget(self.left_button) self.layout().addWidget(self.right_button) self.update_nav() def left_press(self): self.offset -= self.limit self.update_nav() self.left_signal.emit() def right_press(self): self.offset += self.limit self.update_nav() self.right_signal.emit() def update_nav(self): self.offset = max(0, self.offset) # If < 0, fixes left_bound = self.offset + 1 right_bound = self.offset + self.limit count_msg = '' if self.count: right_bound = min(right_bound, self.count) # Limit to count count_msg = ' of {}'.format(self.count) self.nav_label.setText('{} - {}'.format(left_bound, right_bound) + count_msg) # Disable buttons if hit boundaries self.left_button.setEnabled(left_bound > 1) if self.count: self.right_button.setEnabled(right_bound < self.count) def set_offset(self, offset): self.offset = offset self.update_nav() def set_limit(self, limit): self.limit = limit self.update_nav() def set_count(self, count): self.count = count self.update_nav() def mouseDoubleClickEvent(self, a0: QtGui.QMouseEvent) -> None: if not self.left_button.isEnabled() and not self.right_button.isEnabled(): return imaged_moment_desired, ok = QInputDialog.getInt(self, 'Jump to imaged moment', 'Jump to imaged moment:') if ok and 0 < imaged_moment_desired <= self.count: self.set_offset(imaged_moment_desired - 1) self.jump_signal.emit()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 10 01:12:40 2020 @author: kwanale1 """ import pandas as pd from ppandas import PDataFrame df1 = pd.read_csv("data/spatial-ref-region-point.csv") df1.rename(columns={"Region":"Location"},inplace=True) #print(df1.columns) df2_point = pd.read_csv("data/spatial-sec-region-point.csv",usecols=["Point","A"]) df2_point.rename(columns={"Point":"Location"},inplace=True) #print(df2_point.columns) df2_x_y = pd.read_csv("data/spatial-sec-region-point.csv",usecols=["X","Y","A"]) #zip together X and Y to make one Location column df2_x_y['Location'] = list(zip(df2_x_y.X, df2_x_y.Y)) df2_x_y.drop(columns=["X","Y"],inplace=True) pd1 = PDataFrame(["Location"],df1) print(pd1.query(["Location"])) print(pd1.query(["A"])) #pd1.visualise(show_tables=True) pd2_point = PDataFrame(["Location"],df2_point) pd2_x_y = PDataFrame(["Location"],df2_x_y) #pd2_point.visualise(show_tables=True) #pd2_x_y.visualise(show_tables=False) #print(pd1.bayes_net.get_cpds(node = "A")) #print(pd2_x_y.bayes_net.get_cpds(node = "A")) print(pd2_point.query(["A"])) print(pd2_x_y.query(["A"])) #pd2_x_y.visualise(show_tables=True) pd_join = pd1.pjoin(pd2_point, mismatches={"Location":"spatial"}) #print(pd_join.query(["Location"])) #pd_join = pd1.pjoin(pd2_x_y, mismatches={"Location":"spatial"}) #print(pd_join.bayes_net.get_cpds(node = "A")) #pd_join.visualise(show_tables = True) #queryResult = pd_join.query(['A'],{"Location":"POINT (0.5 0.5)"}) # ToDo: Rewrite query of Point to Regions? How about brand new points? #queryResult = pd_join.query(['A'],{"Location":"POLYGON ((0 0, 1 0, 1 1, 0 1, 0 0))"}) # queryResult = pd_join.query(['A'],{"Location":"POLYGON ((0 1, 1 1, 1 2, 0 2, 0 1))"}) # print('conditional query') print(queryResult) #ToDo: Future Query by bounds on points: Eg South of this longitude X? #Fails since reference distribution can't use Point data pd_join = pd2_x_y.pjoin(pd1, mismatches={"Location":"spatial"})
"""General configuration for mpl plotting scripts""" from pathlib import Path from astropy import units as u from astropy.units import imperial BASE_PATH = Path(__file__).parent.parent FIGURE_WIDTH_AA = { "single-column": 90 * u.mm, "two-column": 180 * u.mm, "intermediate": 120 * u.mm, } class FigureSizeAA: """Figure size A&A""" def __init__(self, aspect_ratio=1, width_aa="single-column"): self.width = FIGURE_WIDTH_AA[width_aa] self.height = self.width / aspect_ratio @property def inch(self): """Figure size in inch""" return self.width.to_value(imperial.inch), self.height.to_value(imperial.inch) @property def mm(self): """Figure size in mm""" return self.width.value, self.height.value
from flask import render_template,request,redirect,url_for,abort, flash, jsonify from . import main from .forms import BlogForm,UpdateProfile, CommentForm from ..models import User,Blog,Comment from flask_login import login_required, current_user from .. import db,photos from ..request import get_blogs # Views @main.route('/') def index(): ''' View root page function that returns the index page and its data ''' title = 'Home - Welcome to The Blogging Website' blogs = get_blogs() return render_template('index.html',title = title,blogs = blogs) @main.route('/user/<uname>') def profile(uname): user = User.query.filter_by(username = uname).first() if user is None: abort(404) return render_template("profile/profile.html", user = user) @main.route('/user/<uname>/update',methods = ['GET','POST']) @login_required def update_profile(uname): user = User.query.filter_by(username = uname).first() if user is None: abort(404) form = UpdateProfile() if form.validate_on_submit(): user.bio = form.bio.data db.session.add(user) db.session.commit() return redirect(url_for('.profile',uname=user.username)) return render_template('profile/update.html',form =form) @main.route('/user/<uname>/update/pic',methods= ['POST']) @login_required def update_pic(uname): user = User.query.filter_by(username = uname).first() if 'photo' in request.files: filename = photos.save(request.files['photo']) path = f'photos/{filename}' user.profile_pic_path = path db.session.commit() return redirect(url_for('main.profile',uname=uname)) @main.route('/view/<int:id>', methods=['GET', 'POST']) @login_required def view(id): blog = Blog.query.get_or_404(id) blog_comments = Comment.query.filter_by(blog_id=id).all() comment_form = CommentForm() if comment_form.validate_on_submit(): new_comment = Comment(blog_id=id, comment=comment_form.comment.data, user=current_user) new_comment.save_comment() return render_template('view.html', blog=blog, blog_comments=blog_comments, comment_form=comment_form) @main.route('/blog/allblogs', methods=['GET', 'POST']) @login_required def blogger(): blogs = Blog.query.all() return render_template('blogger.html', blogs=blogs) @main.route('/blog/new', methods = ['GET','POST']) @login_required def blogs(): blog_form = BlogForm() if blog_form.validate_on_submit(): title_blog = blog_form.title_blog.data blog_content = blog_form.blog_content.data #Updating the Blog instance new_blog = Blog(title_blog=title_blog,blog_content=blog_content,user=current_user) # Saving the blog method new_blog.save_blog() return redirect(url_for('main.blogger')) title = 'The Blog' return render_template('new_blog.html',title = title,blog_form=blog_form ) @main.route('/Update/<int:id>', methods=['GET', 'POST']) @login_required def update_blog(id): blog = Blog.query.get_or_404(id) if blog.user != current_user: abort(403) form = BlogForm() if form.validate_on_submit(): blog.title_blog = form.title_blog.data blog.blog_content = form.blog_content.data db.session.commit() return redirect(url_for('main.blogger')) elif request.method == 'GET': form.title_blog.data = blog.title_blog form.blog_content.data = blog.blog_content return render_template('update_blog.html', blog_form=form) @main.route('/delete/<int:id>', methods=['GET', 'POST']) @login_required def delete(id): blog = Blog.query.get_or_404(id) if blog.user != current_user: abort(403) db.session.delete(blog) db.session.commit() return redirect(url_for('main.blogger')) @main.route('/delete_comment/<int:comment_id>', methods=['GET', 'POST']) @login_required def delete_comment(comment_id): comment =Comment.query.get_or_404(comment_id) if (comment.user.id) != current_user.id: abort(403) db.session.delete(comment) db.session.commit() flash('Succesfully deleted the Comment!!') return redirect (url_for('main.blogger'))
#!/usr/bin/python import psutil def main(): count = 0 for proc in psutil.process_iter(): count += 1 print "%s proc = %s" % (str(count), str(proc)) main()
"""Initial Migration Revision ID: a3032c881fba Revises: 4a7e813c98de Create Date: 2019-02-11 19:28:22.793189 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'a3032c881fba' down_revision = '4a7e813c98de' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('users', 'pass_secure') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('users', sa.Column('pass_secure', sa.VARCHAR(length=255), autoincrement=False, nullable=True)) # ### end Alembic commands ###
import pandas as pd import numpy as np def load_mie_file(filename): """ Loads the Mie parameters from a file. Parameters ---------- filename: str The name of the file storing the Mie scattering parameters Returns ------- my_df: xarray.Dataset The xarray Dataset storing the Mie parameters, including descriptive metadata. """ my_df = pd.read_csv(filename, delim_whitespace=True, names=["wavelength", "p_diam", "size_parameter", "compre_real", "compre_im", "scat_p", "alpha_p", "beta_p", "scat_eff", "ext_eff", "backscat_eff"]) my_df["alpha_p"] = my_df["alpha_p"] * 1e-12 my_df["beta_p"] = my_df["beta_p"] * 1e-12 / (4 * np.pi) my_df["scat_p"] = my_df["scat_p"] * 1e-12 my_df["p_diam"] = 2e-6 * my_df["p_diam"] my_df["backscat_eff"] = my_df["backscat_eff"] / (4 * np.pi) my_df = my_df.to_xarray() my_df["wavelength"].attrs["units"] = "microns" my_df["wavelength"].attrs["long_name"] = "Wavelength of beam" my_df["wavelength"].attrs["standard_name"] = "wavelength" my_df["p_diam"].attrs["units"] = "meters" my_df["p_diam"].attrs["long_name"] = "Diameter of particle" my_df['p_diam'].attrs["standard_name"] = "Diameter" my_df["size_parameter"].attrs["units"] = "1" my_df["size_parameter"].attrs["long_name"] = "Size parameter (pi*diameter / wavelength)" my_df['size_parameter'].attrs["standard_name"] = "Size parameter" my_df["compre_real"].attrs["units"] = "1" my_df["compre_real"].attrs["long_name"] = ("Complex refractive index of the sphere divided " + "by the real index of the medium (real part)") my_df['compre_real'].attrs["standard_name"] = "Complex_over_real_Re" my_df["compre_im"].attrs["units"] = "1" my_df["compre_im"].attrs["long_name"] = ("Complex refractive index of the sphere divided " + "by the real index of the medium (imaginary part)") my_df['compre_im'].attrs["standard_name"] = "Complex_over_real_Im" my_df["scat_p"].attrs["units"] = "microns^2" my_df["scat_p"].attrs["long_name"] = "scattering cross section" my_df["scat_p"].attrs["standard_name"] = "Scat_cross_section" my_df["beta_p"].attrs["units"] = "meters^2" my_df["beta_p"].attrs["long_name"] = "Back scattering cross section" my_df["beta_p"].attrs["standard_name"] = "Scat_cross_section_back" my_df["alpha_p"].attrs["units"] = "meters^2" my_df["alpha_p"].attrs["long_name"] = "Extinction cross section" my_df["alpha_p"].attrs["standard_name"] = "Ext_cross_section" my_df["scat_eff"].attrs["units"] = "1" my_df["scat_eff"].attrs["long_name"] = "scattering efficiency" my_df["scat_eff"].attrs["standard_name"] = "Scattering_efficiency" my_df["ext_eff"].attrs["units"] = "1" my_df["ext_eff"].attrs["long_name"] = "Extinction efficiency" my_df["ext_eff"].attrs["standard_name"] = "Extinction_efficiency" my_df["backscat_eff"].attrs["units"] = "sr^-1" my_df["backscat_eff"].attrs["long_name"] = "Backscattering efficiency" my_df["backscat_eff"].attrs["standard_name"] = "Backscattering_efficiency" return my_df
from .effector import Effector class DefaultEffector(Effector): """default effector for Casbin.""" def merge_effects(self, expr, effects, results): """merges all matching results collected by the enforcer into a single decision.""" result = False if expr == "some(where (p_eft == allow))": for eft in effects: if eft == self.ALLOW: result = True break elif expr == "!some(where (p_eft == deny))": result = True for eft in effects: if eft == self.DENY: result = False break elif expr == "some(where (p_eft == allow)) && !some(where (p_eft == deny))": for eft in effects: if eft == self.ALLOW: result = True elif eft == self.DENY: result = False break elif expr == "priority(p_eft) || deny": for eft in effects: if eft != self.INDETERMINATE: if eft == self.ALLOW: result = True else: result = False break else: raise RuntimeError("unsupported effect") return result
# -*- coding: utf-8 -*- # MIT License # # Copyright (c) 2020 PANGAEA (https://www.pangaea.de/) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from fuji_server.evaluators.fair_evaluator import FAIREvaluator from fuji_server.models.semantic_vocabulary import SemanticVocabulary from fuji_server.models.semantic_vocabulary_output import SemanticVocabularyOutput from fuji_server.models.semantic_vocabulary_output_inner import SemanticVocabularyOutputInner class FAIREvaluatorSemanticVocabulary(FAIREvaluator): def evaluate(self): self.result = SemanticVocabulary(id=self.metric_number, metric_identifier=self.metric_identifier, metric_name=self.metric_name) # remove duplicates if self.fuji.namespace_uri: self.fuji.namespace_uri = list(set(self.fuji.namespace_uri)) self.fuji.namespace_uri = [x.strip() for x in self.fuji.namespace_uri] self.logger.info('{0} : Number of vocabulary namespaces extracted from all RDF-based metadata -: {1}'.format( self.metric_identifier, len(self.fuji.namespace_uri))) # exclude white list excluded = [] for n in self.fuji.namespace_uri: for i in self.fuji.DEFAULT_NAMESPACES: if n.startswith(i): excluded.append(n) self.fuji.namespace_uri[:] = [x for x in self.fuji.namespace_uri if x not in excluded] if excluded: self.logger.info( '{0} : Default vocabulary namespace(s) excluded -: {1}'.format(self.metric_identifier, excluded)) outputs = [] score = 0 test_status = 'fail' # test if exists in imported list, and the namespace is assumed to be active as it is tested during the LOD import. if self.fuji.namespace_uri: self.maturity = 1 self.setEvaluationCriteriumScore('FsF-I1-02M-1', 0, 'pass') lod_namespaces = [d['namespace'] for d in self.fuji.VOCAB_NAMESPACES if 'namespace' in d] exists = list(set(lod_namespaces) & set(self.fuji.namespace_uri)) self.logger.info( '{0} : Check the remaining namespace(s) exists in LOD -: {1}'.format(self.metric_identifier, exists)) if exists: score = self.total_score self.setEvaluationCriteriumScore('FsF-I1-02M-2', 1, 'pass') self.maturity = 3 self.logger.log(self.fuji.LOG_SUCCESS, '{0} : Namespace matches found -: {1}'.format(self.metric_identifier, exists)) for e in exists: outputs.append(SemanticVocabularyOutputInner(namespace=e, is_namespace_active=True)) else: self.logger.warning('{0} : NO vocabulary namespace match is found'.format(self.metric_identifier)) not_exists = [x for x in self.fuji.namespace_uri if x not in exists] if not_exists: self.logger.warning('{0} : Vocabulary namespace (s) specified but no match is found in LOD reference list -: {1}'.format( self.metric_identifier, not_exists)) else: self.logger.warning('{0} : NO namespaces of semantic vocabularies found in the metadata'.format(self.metric_identifier)) if score > 0: test_status = 'pass' self.result.test_status = test_status self.score.earned = score self.result.score = self.score self.result.metric_tests = self.metric_tests self.result.maturity = self.maturity self.result.output = outputs
import pyperclip import random import string global users_list class User: ''' allows usto create new users and save their information for future usage ''' users_list = [] def __init__(self,first_name,last_name,password): ''' defining properties ''' # In variables self.first_name = first_name self.last_name = last_name self.password = password def save_user(self): ''' saves new user created ''' User.users_list.append(self) class Credential: ''' account to save passwords info and new info ''' # Class Variables credentials_list =[] user_credentials_list = [] @classmethod def check_user(cls,first_name,password): ''' checks if info entered matches that stored ''' current_user = '' for user in User.users_list: if (user.first_name == first_name and user.password == password): current_user = user.first_name return current_user def __init__(self,user_name,site_name,account_name,password): ''' defines users properties ''' self.user_name = user_name self.site_name = site_name self.account_name = account_name self.password = password def save_credentials(self): ''' Function to save a newly created user instance ''' Credential.credentials_list.append(self) def generate_password(size=8, char=string.ascii_uppercase+string.ascii_lowercase+string.digits): ''' function that shows passwords ''' gen_pass=''.join(random.choice(char) for _ in range(size)) return gen_pass @classmethod def display_credentials(cls,user_name): ''' displayed all listed info ''' user_credentials_list = [] for credential in cls.credentials_list: if credential.user_name == user_name: user_credentials_list.append(credential) return user_credentials_list @classmethod def find_by_site_name(cls, site_name): ''' finds the system name ''' for credential in cls.credentials_list: if credential.site_name == site_name: return credential @classmethod def copy_credential(cls,site_name): ''' copies info entered ''' find_credential = Credential.find_by_site_name(site_name) return pyperclip.copy(find_credential.password)
from statistics import mean import matplotlib.pyplot as plt import numpy as np import pandas as pd from nltk import agreement def multi_kappa(data): ratingtask = agreement.AnnotationTask(data=data) return ratingtask.multi_kappa() def calculate_kappe(data, from_date, to_date, name): print('Calculating annotator agreement from {} to {}'.format(from_date, to_date)) df2 = data df2['created_time'] = df2['created_time'].apply(pd.to_datetime) df2 = df2[(df2['created_time'] >= from_date) & (df2['created_time'] <= to_date)] number_of_annotators = len(df2.groupby('user_id')) annotators = range(1, number_of_annotators+1) print('Number of annotations: {}'.format(len(df2))) print('Posts per Annotator: {}'.format(len(df2) / number_of_annotators)) print('') values = list() values_formatted = list() categories = ["category_1", "category_2", "category_3", "category_4", "category_5", "category_6", "category_7", "category_8", "category_9", "category_10", "category_9999"] category_labels = ['Success', 'All Topics', '1. Product/Service', '2. Event/Fair', '3. Interactions', '4. News', '5. Entertainment', '6. Knowledge', '7. Recruiting/HR', '8. Corporate Social\n Responsibility', '9. Advertising/Campaign', '10. Sponsoring', '11. Other'] for category in categories: category_df = df2.filter(items=['user_id', 'post_id', category]) category_data = category_df.values.tolist() try: rating = multi_kappa(category_data) values.append(rating) values_formatted.append('{}: {}'.format(category, rating)) except ZeroDivisionError as e: values.append(0.0) # Suppress the exception # ZeroDivisionError occurs of no post for that class exists pass print('Kappa values: {}'.format(values)) print('Kappa values: {}'.format(values_formatted)) mean_rating = mean([x for x in values if x > 0]) print('Kappa on category (mean): {}'.format(mean_rating)) success_data = df2.filter(items=['user_id', 'post_id', 'successful']).values.tolist() success_rating = multi_kappa(success_data) print('Kappa on success: {}'.format(success_rating)) print('') val_new = list() val_new.append(success_rating) val_new.append(mean_rating) for x in values: val_new.append(x) df3 = pd.DataFrame([val_new], columns=category_labels, index=['All']) for annotator in annotators: values_wo = list() for category in categories: category_df = df2.filter(items=['user_id', 'post_id', category]) category_df = category_df[category_df['user_id'] != annotator] category_data = category_df.values.tolist() try: rating = multi_kappa(category_data) print('{} {}: '.format(category, rating)) values_wo.append(rating) except ZeroDivisionError as e: values_wo.append(0.0) # Suppress the exception # ZeroDivisionError occurs of no post for that class exists pass print('Kappa values, without {}: {}'.format(annotator, values_wo)) mean_rating_wo = mean([x for x in values_wo if x > 0]) print('Kappa on category (mean), without {}: {}'.format(annotator, mean_rating_wo)) success_df = df2.filter(items=['user_id', 'post_id', 'successful']) success_df = success_df[success_df['user_id'] != annotator] success_data = success_df.values.tolist() success_rating_wo = multi_kappa(success_data) print('Kappa on success, without {}: {}'.format(annotator, success_rating_wo)) print('') val_new2 = list() val_new2.append(success_rating_wo) val_new2.append(mean_rating_wo) for x in values_wo: val_new2.append(x) df3 = df3.append(pd.DataFrame([val_new2], columns=category_labels, index=['Without {}'.format(annotator)])) print(df3) plot_horizontal(df3, name) def plot_horizontal(data, plot_name): plt.rcdefaults() plt.style.use('grayscale') cm = plt.get_cmap('gist_gray') fig, ax = plt.subplots() co = iter(cm(np.linspace(0, 2, len(data.columns)))) cols = [next(co), next(co),next(co),next(co),next(co),next(co)] y_pos = 5*np.arange(len(data.columns)) width = 0.75 rects1 = ax.barh(y_pos - 2.5*width, data.iloc[0], width, align='center', label='All Experts', color=cols[0]) rects2 = ax.barh(y_pos - 1.5*width, data.iloc[1], width, align='center', label='Without 1', color=cols[4]) rects3 = ax.barh(y_pos - 0.5*width, data.iloc[2], width, align='center', label='Without 2', color=cols[2]) rects4 = ax.barh(y_pos + 0.5*width, data.iloc[3], width, align='center', label='Without 3', color=cols[5]) rects5 = ax.barh(y_pos + 1.5*width, data.iloc[4], width, align='center', label='Without 4', color=cols[1]) rects6 = ax.barh(y_pos + 2.5*width, data.iloc[5], width, align='center', label='Without 5', color=cols[3]) ax.set_yticks(y_pos) ax.set_yticklabels(data.columns) ax.invert_yaxis() # labels read top-to-bottom ax.set_xlabel('Fleiss\' Kappa') ax.legend() plt.show() for plot_format in ['eps', 'pdf', 'png']: fig.savefig('plots/annotator_agreement_{}.{}'.format(plot_name, plot_format), dpi=fig.dpi, bbox_inches = "tight") def main(): annotations_path = '../data/annotations.csv' dataset = pd.read_csv(annotations_path) df2 = dataset[dataset['phase'] == 2] calculate_kappe(df2, '2000-01-01', '2019-05-31', 'a') calculate_kappe(df2, '2019-06-03', '2099-12-31', 'b') if __name__ == '__main__': main()
import os from glob import glob import numpy as np import matplotlib.pyplot as plt if __name__ == "__main__": data_path = "./results/???/" # Change here save_folder = "./plots/learning/???/" # Change here meta = {} with open(data_path + "/meta.txt", "r") as param_file: for line in param_file: key, val = line.partition("=")[::2] meta[key.strip()] = val.strip() data = [] for folder in glob(data_path + "/*/"): if os.path.isfile(folder + "performance.dat"): data = np.loadtxt(folder + "performance.dat") else: print("Missing performance data in " + folder) exit(-1) # Epoch, LR, Training Loss, Validation Loss, Validation Error, # Best Epoch, Best Validation Error, Test Loss, Test Error train_loss = data[:, 2] val_loss = data[:, 3] test_loss = data[:, 7] val_error = data[:, 4] test_error = data[:, 8] best_epoch = data[-1, 5] fig, ax_list = plt.subplots(1, 2) plt.tight_layout(pad=2, w_pad=2, h_pad=1) ax_list[0].plot(train_loss, color='blue', label='train loss', lw=2) ax_list[0].plot(val_loss, color='green', label='val loss', lw=2) ax_list[0].plot(test_loss, color='red', label='test loss', lw=2) ax_list[0].legend(loc="upper right") ax_list[1].set_ylim([0, 100]) ax_list[1].plot(val_error, color='green', label='val error', lw=2) ax_list[1].plot(test_error, color='red', label='test error', lw=2) ax_list[1].axvline(x=best_epoch, color='gray', linestyle='--', label='best epoch', lw=2) ax_list[1].legend(loc="upper right") params = {} with open(folder + "params.txt", "r") as param_file: for line in param_file: key, val = line.partition("=")[::2] params[key.strip()] = val.strip() fname = meta["dataset"] + "_" + meta["network"] + meta["layer"] + "_a" + params["nalpha"] if params["binary"] == "True": plt.savefig(save_folder + fname + "_b.png") elif params["binary"] == "False": plt.savefig(save_folder + fname + ".png") else: print("Param file corrupted in " + folder) exit(-1) plt.close(fig)
from requests import * import utils import re match_ids = re.compile("href=\"/note/(.+?)\">") def check(host): s = session() # reg result = s.post(f"http://na2.{host}/", data={ "username": utils.randomString(), "password": "9pFrqCEyagsCbabGamT" }).content if b"Welcome to our super-duper-duper safe note app!" not in result: return 0, "Failed to login" # add note result = s.post(f"http://na2.{host}/add_note", data={ "content": "<script>alert(1)</script>", "xsrf": s.cookies.get("token") }).content if b"Note ID: " not in result: return 0, "Wrong result of add note" # test xss note_id = match_ids.findall(str(result))[0] result = s.get(f"http://na2.{host}/note/{note_id}").content if b"<script>alert(1)</script>" not in result: return 0, "Cannot trigger XSS" # test logout s.post(f"http://na2.{host}/logout") if "token" in s.cookies: return 0, "Logout failed" # test admin result = s.post(f"http://na2.{host}/", data={ "username": "admin", "password": "Lq#QHMnpyk6Y+.]" }).content # admin flag result = s.get(f"http://na2.{host}/note/1").content if b'we{f93486a2-4f82-42b6-8dc8-04cd765501f3@1nsp1reD-bY-cHa1I-1N-BbC7F}' not in result: return 0, "Failed to get flag" return 1, "" FUNCTIONS = [check] if __name__ == "__main__": print(check("w-va.cf"))
if __name__ == '__main__': import os pipe = os.popen('/home/ivan/shortcuts/python hello-out.py') print(pipe.read()) print(pipe.close()) pipe = os.popen('/home/ivan/shortcuts/python hello-in.py', 'w') print(pipe.write('Gumby\n')) pipe.close() print(open('hello-in.txt').read())
n1 = int(input('Digite um número')) s = n1 - 1 a = n1 + 1 print("Seu sucessor é {} e seu antecessor é {} ".format(a,s))
from setuptools import setup setup( name='python-amazon-sp-api', version='0.11.0', install_requires=[ "requests", "six>=1.15,<2", "boto3>=1.16.39,<2", "cachetools~=4.2.0", "pytz", "confuse~=1.4.0" ], packages=['tests', 'tests.api', 'tests.api.orders', 'tests.api.sellers', 'tests.api.finances', 'tests.api.product_fees', 'tests.api.notifications', 'tests.api.reports', 'tests.client', 'sp_api', 'sp_api.api', 'sp_api.api.orders', 'sp_api.api.sellers', 'sp_api.api.finances', 'sp_api.api.product_fees', 'sp_api.api.products', 'sp_api.api.feeds', 'sp_api.api.sales', 'sp_api.api.catalog', 'sp_api.api.notifications', 'sp_api.api.reports', 'sp_api.api.inventories', 'sp_api.api.messaging', 'sp_api.api.upload', 'sp_api.api.merchant_fulfillment', 'sp_api.api.fulfillment_inbound', 'sp_api.auth', 'sp_api.base', 'sp_api.util', ##### DO NOT DELETE ########## INSERT PACKAGE HERE ####### 'sp_api.api.listings_restrictions', 'sp_api.api.catalog_items', 'sp_api.api.product_type_definitions', 'sp_api.api.listings_items', 'sp_api.api.vendor_transaction_status', 'sp_api.api.vendor_shipments', 'sp_api.api.vendor_orders', 'sp_api.api.vendor_invoices', 'sp_api.api.vendor_direct_fulfillment_transactions', 'sp_api.api.vendor_direct_fulfillment_shipping', 'sp_api.api.vendor_direct_fulfillment_payments', 'sp_api.api.vendor_direct_fulfillment_orders', 'sp_api.api.vendor_direct_fulfillment_inventory', 'sp_api.api.tokens', 'sp_api.api.solicitations', 'sp_api.api.shipping', 'sp_api.api.services', 'sp_api.api.fba_small_and_light', 'sp_api.api.fba_inbound_eligibility', 'sp_api.api.authorization', 'sp_api.api.aplus_content', 'sp_api.api.fulfillment_outbound', ], scripts=['make_endpoint/make_endpoint'], url='https://github.com/saleweaver/python-amazon-sp-api', license='MIT', author='Michael', author_email='info@saleweaver.com', description='Python wrapper for the Amazon Selling-Partner API' )
from scapy.layers.inet import IP, UDP from scapy.layers.ntp import NTP from scapy.packet import Packet from scapy.sendrecv import sniff, sr1, send from ntp_utils import ntp_time_now class NTPInterceptor: def intercept_req(self, pck): return pck def intercept_res(self, pck): return pck class NTPServer: """ A scapy MITM NTP server which can respond to client requests and provide access to interceptors in order to implement covert channels. """ def __init__(self, sniff_interface: str = 'wlp4s0', host_ip='localhost', req_interceptor=NTPInterceptor(), res_interceptor=NTPInterceptor()): """ :param sniff_interface: :param req_interceptor: a class which is called whenever an NTP package arrives at the server. :param res_interceptor: a class which is called whenever a NTP response is send to a client request. """ super().__init__() self.sniff_interface = sniff_interface self._req_interceptor = req_interceptor self._res_interceptor = res_interceptor self._host_ip = host_ip self.reference_time = ntp_time_now() self.debug = False def run(self, with_response: bool = True): """ Starts the sniffing for incoming NTP client packages. Note that further packages are not sniffed while one package is processed. """ print('Starting server.... listening on interface ' + self.sniff_interface) while True: pck = self.next_ntp_packet() received_time = ntp_time_now() if pck[IP].dst != self._host_ip: print('This package was not meant for the server...') continue pck_ntp = pck[NTP] if pck_ntp.mode != 3: continue self._req_interceptor.intercept_req(pck_ntp) if not with_response: continue if self.debug: print('Got a NTP client request, creating response.') # ntp_resp = self._send_ntp_client_request(ntp=pck_ntp) response_from_server_ntp = NTP() # ntp_resp[NTP] response_from_server_ntp.recv = received_time response_from_server_ntp.ref = self.reference_time # response_from_server_ntp.id = str(pck[IP].dst) response_from_server_ntp = self._res_interceptor.intercept_res(response_from_server_ntp) response = IP(dst=pck[IP].src, src=pck[IP].dst) / UDP() / response_from_server_ntp if self.debug: response.show() send(response) def next_ntp_packet(self) -> Packet: """ Sniffs for the next incoming ntp package. This method is blocking :return: the sniffed package. """ results = sniff(filter='udp and port 123', count=1, iface=self.sniff_interface) pck = (results[0]) if self.debug: pck.show() return pck def _send_ntp_client_request(self, dst='pool.ntp.org', ntp=NTP()) -> Packet: pck = IP(dst=dst) / UDP() / ntp if self.debug: pck.show() pck = sr1(pck) if self.debug: pck.show() return pck if __name__ == '__main__': class StratumInterceptor(NTPInterceptor): def intercept_res(self, pck): pck.stratum = 2 return pck interceptor = StratumInterceptor() server = NTPServer(res_interceptor=interceptor, host_ip='192.168.0.4') server.run()
# The isBadVersion API is already defined for you. # @param version, an integer # @return a bool # def isBadVersion(version): class Solution: def firstBadVersion(self, n): """ :type n: int :rtype: int """ l, r = 1, n while l<r: m = (l+r)//2 if isBadVersion(m): r = m # Because m can be the first bad version, we keep it in the limits else: l = m+1 # Because m is not a bad version, we do not keep it in the limits return l
#!/usr/bin/python # Copyright (c) 2017 Tim Rightnour <thegarbledone@gmail.com> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: syslogger short_description: Log messages in the syslog description: - "Uses syslog to add log entries to the host." - "Can specify facility and priority." options: msg: description: - This is the message to place in syslog required: true priority: description: - Set the log priority choices: [ "emerg", "alert", "crit", "err", "warning", "notice", "info", "debug" ] required: false default: "info" facility: description: - Set the log facility choices: [ "kern", "user", "mail", "daemon", "auth", "lpr", "news", "uucp", "cron", "syslog", "local0", "local1", "local2", "local3", "local4", "local5", "local6", "local7" ] required: false default: "daemon" log_pid: description: - Log the pid in brackets type: bool required: false default: "no" author: - Tim Rightnour (@garbled1) ''' EXAMPLES = ''' # Full example - name: Test syslog syslogger: msg: "Hello from ansible" priority: "err" facility: "daemon" log_pid: true # Basic usage - name: Simple Usage syslogger: msg: "I will end up as daemon.info" ''' RETURN = ''' ''' from ansible.module_utils.basic import AnsibleModule import syslog def get_facility(x): return { 'kern': syslog.LOG_KERN, 'user': syslog.LOG_USER, 'mail': syslog.LOG_MAIL, 'daemon': syslog.LOG_DAEMON, 'auth': syslog.LOG_AUTH, 'lpr': syslog.LOG_LPR, 'news': syslog.LOG_NEWS, 'uucp': syslog.LOG_UUCP, 'cron': syslog.LOG_CRON, 'syslog': syslog.LOG_SYSLOG, 'local0': syslog.LOG_LOCAL0, 'local1': syslog.LOG_LOCAL1, 'local2': syslog.LOG_LOCAL2, 'local3': syslog.LOG_LOCAL3, 'local4': syslog.LOG_LOCAL4, 'local5': syslog.LOG_LOCAL5, 'local6': syslog.LOG_LOCAL6, 'local7': syslog.LOG_LOCAL7 }.get(x, syslog.LOG_DAEMON) def get_priority(x): return { 'emerg': syslog.LOG_EMERG, 'alert': syslog.LOG_ALERT, 'crit': syslog.LOG_CRIT, 'err': syslog.LOG_ERR, 'warning': syslog.LOG_WARNING, 'notice': syslog.LOG_NOTICE, 'info': syslog.LOG_INFO, 'debug': syslog.LOG_DEBUG }.get(x, syslog.LOG_INFO) def run_module(): # define the available arguments/parameters that a user can pass to # the module module_args = dict( msg=dict(type='str', required=True), priority=dict(type='str', required=False, choices=["emerg", "alert", "crit", "err", "warning", "notice", "info", "debug"], default='info'), facility=dict(type='str', required=False, choices=["kern", "user", "mail", "daemon", "auth", "lpr", "news", "uucp", "cron", "syslog", "local0", "local1", "local2", "local3", "local4", "local5", "local6", "local7"], default='daemon'), log_pid=dict(type='bool', required=False, default=False) ) module = AnsibleModule( argument_spec=module_args, ) result = dict( changed=False, priority=module.params['priority'], facility=module.params['facility'], log_pid=module.params['log_pid'], msg=module.params['msg'] ) # do the logging try: if module.params['log_pid']: syslog.openlog('ansible_syslogger', logoption=syslog.LOG_PID, facility=get_facility(module.params['facility'])) else: syslog.openlog('ansible_syslogger', facility=get_facility(module.params['facility'])) syslog.syslog(get_priority(module.params['priority']), module.params['msg']) syslog.closelog() result['changed'] = True except Exception: module.fail_json(error='Failed to write to syslog', **result) module.exit_json(**result) def main(): run_module() if __name__ == '__main__': main()
# Generated by Django 2.0.6 on 2018-08-20 03:00 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('imagesource', '0003_auto_20180820_1019'), ] operations = [ migrations.AlterField( model_name='imagesource', name='created', field=models.DateTimeField(default=django.utils.timezone.now), ), ]
from __future__ import absolute_import # Copyright (c) 2010-2015 openpyxl from .external import ExternalLink
def findnotrepeat(inplist1): i = 0 while i < len(inplist1): if (i+1) == len(inplist1): return inplist1[i] elif inplist1[i] != inplist1[i+1]: return inplist1[i] else: i += 2 return "Todos tienen un par dentro de la lista" # PRUEBAS DE LA FUNCIÓN testlist1 = [3, 3, 3, 4, 4, 5, 5, 6, 6, 7] unrepited = findnotrepeat(testlist1) print("El número sin repetir es: ",unrepited) testlist2 = [1, 1, 2, 2, 3, 3, 4, 4] unrepited = findnotrepeat(testlist2) print("El número sin repetir es: ",unrepited) testlist3 = [1, 2, 2, 3, 3] unrepited = findnotrepeat(testlist3) print("El número sin repetir es: ",unrepited) #Esto es cun comentario#
import torch def IntTensor(values, device='cuda:0'): """ Returns a Tensor of type torch.int containing the given values Parameters ---------- values : list the values of the tensor device : str the device to store the tensor to Returns ------- Tensor an integer precision tensor """ return torch.tensor(values, dtype=torch.int, device=device)
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- # region header ''' This module provides an easy way to compile, run and clean up a various \ number of scripts. ''' # # python3.5 # # pass from __future__ import absolute_import, division, print_function, \ unicode_literals # # ''' For conventions see "boostnode/__init__.py" on \ https://github.com/thaibault/boostnode ''' __author__ = 'Torben Sickert' __copyright__ = 'see boostnode/__init__.py' __credits__ = 'Torben Sickert', __license__ = 'see boostnode/__init__.py' __maintainer__ = 'Torben Sickert' __maintainer_email__ = 'info["~at~"]torben.website' __status__ = 'stable' __version__ = '1.0' # # python3.5 # # import builtins # # import collections import __builtin__ as builtins # # from copy import copy import inspect import logging import os import sys '''Make boostnode packages and modules importable via relative paths.''' sys.path.append(os.path.abspath(sys.path[0] + 2 * (os.sep + '..'))) from boostnode.extension.file import Handler as FileHandler from boostnode.extension.native import Module, InstancePropertyInitializer from boostnode.extension.output import Logger, Print from boostnode.extension.system import CommandLine, Platform, Runnable # # python3.5 from boostnode.extension.type import Self pass from boostnode.paradigm.aspectOrientation import JointPoint from boostnode.paradigm.objectOrientation import Class from boostnode.runnable.template import Parser as TemplateParser # endregion # region classes class Run(Class, Runnable): ''' This class provides a large number of supported programming languages \ support for compiling, running and cleaning after running. Determines a code file to run and runs them in its own thread by \ piping all outputs through the command line interface. **code_file_path** - A given code file handler or path \ which should be run. **default_command_sequence** - A default command sequence which \ should be executed in given order. ''' # region properties COMMAND_LINE_ARGUMENTS = ( {'arguments': ('-f', '--code-file'), 'specification': { 'action': 'store', 'default': {'execute': '__initializer_default_value__'}, 'type': {'execute': 'type(__initializer_default_value__)'}, 'required': {'execute': '__initializer_default_value__ is None'}, 'help': 'Select a file for running.', 'dest': 'code_file_path', 'metavar': 'FILE_PATH'}}, {'arguments': ('-d', '--default-command-sequence'), 'specification': { 'action': 'store', 'nargs': '*', 'default': {'execute': '__initializer_default_value__'}, 'type': builtins.str, 'required': {'execute': '__initializer_default_value__ is None'}, 'help': { 'execute': "'Select a default sequence of things to do with " '''code files (default: "%s").' % ''' '\'", "\'.join(__initializer_default_value__)'}, 'dest': 'default_command_sequence', 'metavar': 'COMMAND'}}, {'arguments': ('-n', '--runner-meta-help'), 'specification': { 'action': 'store_true', 'default': False, 'help': 'Shows this help message.', 'dest': 'meta_help'}}) '''Holds all command line interface argument informations.''' SUPPORTED_CODES = { 'template': { 'commands': { 'compile': "bash --login -c '" 'template "<% code_file.path %>" 1>' '"<% code_file.directory.path %>' '<% code_file.basename %>.html"\'', 'run': 'bash --login -c \'webbrowser ' '"<% code_file.directory.path %>' '<% code_file.basename %>.html"\'' }, 'extensions': ('tpl',) }, 'c': { 'commands': { 'compile': 'g++ "<% code_file.path %>" -o ' '"<% code_file.directory.path %>' '<% code_file.basename %>"', 'run': '"<% code_file.directory.path %>' '<% code_file.basename %>" <%arguments%>', }, 'code_manager': { 'file_path': 'Makefile', 'commands': { 'compile': 'make compile', 'test': 'make test', 'clean': 'make clean', 'all': 'make all' } }, 'extensions': ('cpp', 'c', 'cc'), 'delete_patterns': ('.*\.o', '.*Main', '.*Test') }, 'bash': { 'commands': {'run': '"<% code_file.path %>" <% arguments %>'}, 'extensions': ('bash',) }, 'shell': { 'commands': {'run': '"<% code_file.path %>" <% arguments %>'}, 'extensions': ('sh', 'shell') }, 'python': { 'commands': {'run': '"<% code_file.path %>" <% arguments %>'}, 'code_manager': { 'file_path': '__init__.<% code_file.extension %>', 'commands': { 'clean': '__init__.<% code_file.extension %> clear', 'test': '__init__.<% code_file.extension %> test', 'all': '__init__.<% code_file.extension %> all' } }, 'extensions': ('py', 'pyc', 'pyw', 'pyo', 'pyd'), 'delete_patterns': ('.*\.py[cod]', '__pycache__', 'temp_.*') }, 'laTeX': { 'commands': { 'compile': 'pdflatex "<% code_file.path %>" && ' 'cd "<% code_file.directory.path %>" && bibtex ' '"<% code_file.basename %>.aux"; ' 'pdflatex "<% code_file.path %>" && ' 'pdflatex "<% code_file.path %>"', 'run': ' || '.join(builtins.map( lambda name: name + ' "<% code_file.basename %>.pdf"', Platform.UNIX_OPEN_APPLICATIONS) ) }, 'code_manager': { 'file_path': 'Makefile', 'commands': { 'compile': 'make compile', 'run': 'make preview', 'clean': 'make clean', 'all': 'make all' } }, 'extensions': ('tex',), 'delete_patterns': ( '.+\.aux', '.+\.log', '.+\.toc', '.+\.out', '.+\.blg', '.+\.bbl', '.+\.lol') }, 'java': { 'commands': { 'compile': 'javac "<% code_file.path %>"', 'run': 'java "<% code_file.basename.capitalize() %>" ' '<% arguments %>' }, 'extensions': ('java',), 'delete_patterns': ('.*\.class',) } } '''Holds all supported code types and there methods to do common stuff.''' # endregion # region dynamic methods # # region public # # # region special @JointPoint # # python3.5 def __repr__(self: Self) -> builtins.str: def __repr__(self): ''' Invokes if this object should describe itself by a string. Examples: >>> file = FileHandler(__test_folder__.path + '__repr__.py') >>> file.content = '#!/usr/bin/env python' >>> repr(Run(code_file_path=file)) # doctest: +ELLIPSIS 'Object of "Run" with detected path "...__repr__.py".' ''' return ( 'Object of "{class_name}" with detected path "{path}".'.format( class_name=self.__class__.__name__, path=self._code_file.path)) # # # endregion # # endregion # # region protected # # # region runnable implementation @JointPoint # # python3.5 def _run(self: Self) -> Self: def _run(self): ''' Entry point for command line call of this program. Determines a \ meaningful file for running. Set the right code dependent \ commands and finally executes them. Examples: >>> sys_argv_backup = sys.argv >>> sys.argv[1:] = ['--runner-meta-help', '--log-level', 'info'] >>> run = Run.run() # doctest: +ELLIPSIS usage:... >>> empty_folder = FileHandler( ... __test_folder__.path + '_run', make_directory=True) >>> sys.argv[1:] = ['-f', empty_folder.path, '--log-level', 'info'] >>> run = Run.run() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... CodeRunnerError: No supported file path found for running. >>> sys.argv = sys_argv_backup ''' command_line_arguments = CommandLine.argument_parser( meta=True, arguments=self.COMMAND_LINE_ARGUMENTS, module_name=__name__, scope={'self': self}) if command_line_arguments.meta_help: CommandLine.current_argument_parser.print_help() return self return self._initialize(**self._command_line_arguments_to_dictionary( namespace=command_line_arguments)) @JointPoint(InstancePropertyInitializer) # # python3.5 # # def _initialize( # # self: Self, code_file_path=None, # # default_command_sequence=('compile', 'run', 'clean'), # # **keywords: builtins.object # # ) -> Self: def _initialize( self, code_file_path=None, default_command_sequence=('compile', 'run', 'clean'), **keywords ): # # '''Sets some instance properties.''' # # # region properties ''' Holds the current code file and there potentially presented code \ manager as file handler. ''' self.code_manager_file = None ''' Saves every properties for current code taken from \ "SUPPORTED_CODES". ''' self._current_code = {} '''Saves currently needed commands taken from "_current_code".''' self._current_commands = () ''' Saves given arguments which should be piped through the run \ command to determined code file. ''' self._command_line_arguments = () '''Saves currently determined runnable code file object.''' self._code_file = self._determine_code_file(self.code_file_path) # # # endregion if not self._code_file: raise __exception__( 'No supported file found for running with given hint "%s".', code_file_path) return self._run_code_file() # # # endregion @JointPoint # # python3.5 def _tidy_up(self: Self) -> Self: def _tidy_up(self): ''' Tidies up the current working directory after running the given \ file. Examples: >>> garbage = FileHandler( ... __test_folder__.path + 'temp_tidy_up', make_directory=True) >>> file = FileHandler( ... __test_folder__.path + '_tidy_up_runnable.py') >>> file.content = '#!/usr/bin/env python' >>> run = Run(file) >>> run # doctest: +ELLIPSIS Object of "Run" with detected path "..._tidy_up_runnable.py". >>> run._tidy_up() # doctest: +ELLIPSIS Object of "Run" with detected path "..._tidy_up_runnable.py". >>> garbage.is_element() False >>> del run._current_code['properties']['delete_patterns'] >>> run._tidy_up() # doctest: +ELLIPSIS Object of "Run" with detected path "..._tidy_up_runnable.py". ''' if 'delete_patterns' in self._current_code['properties']: __logger__.info( 'Delete files which matches one of "%s" pattern.', '", "'.join( self._current_code['properties']['delete_patterns'])) FileHandler( location=self._code_file.directory.path ).delete_file_patterns( *self._current_code['properties']['delete_patterns']) return self @JointPoint # # python3.5 def _run_commands(self: Self) -> Self: def _run_commands(self): ''' Run currently needed commands. Examples: >>> __test_buffer__.clear() # doctest: +ELLIPSIS '...' >>> __test_folder__.clear_directory() True >>> file = FileHandler(__test_folder__.path + '_run_commands.py') >>> file.content = '#!/usr/bin/env python' >>> file.change_right(700) # doctest: +ELLIPSIS Object of "Handler" with path "..._run_commands.py" and initiall... >>> Run( ... code_file_path=file ... )._run_commands() # doctest: +ELLIPSIS Object of "Run" with detected path "..._run_commands.py...". >>> __test_buffer__.clear() # doctest: +ELLIPSIS '...Detected "python"...No "compile" necessary...' ''' for command_name in self.default_command_sequence: if command_name in self._current_commands: self._run_command( command_name, command=self._current_commands[command_name]) else: __logger__.info('No "%s" necessary.', command_name) return self @JointPoint # # python3.5 def _check_code_manager(self: Self) -> Self: def _check_code_manager(self): ''' Checks if a code manager file exists for the current detected \ code file. For example it can find a makefile for a detected c++ \ source code. Examples: >>> file = FileHandler( ... __test_folder__.path + '_check_code_manager.py') >>> file.content = '#!/usr/bin/env python' >>> FileHandler( ... __test_folder__.path + '__init__.py' ... ).content = '#!/usr/bin/env python' >>> run = Run(code_file_path=file) >>> __test_buffer__.clear() # doctest: +ELLIPSIS '...' >>> run._check_code_manager() # doctest: +ELLIPSIS Object of "Run" with detected path "..._check_code_manager.py". >>> __test_buffer__.clear() # doctest: +ELLIPSIS '...Detected code manager "...__init__.py".\\n' >>> del run._current_code['properties']['code_manager'] >>> run._check_code_manager() # doctest: +ELLIPSIS Object of "Run" ... ''' if 'code_manager' in self._current_code['properties']: file_path = self\ ._current_code['properties']['code_manager']['file_path'] self.code_manager_file = FileHandler( location=self._code_file.directory.path + file_path) if self.code_manager_file: self._current_commands.update( self._current_code['properties']['code_manager'][ 'commands']) __logger__.info( 'Detected code manager "%s".', self.code_manager_file.path) return self @JointPoint # # python3.5 # # def _determine_code_file( # # self: Self, path: (builtins.str, builtins.type(None), FileHandler) # # ) -> (FileHandler, builtins.bool): def _determine_code_file(self, path): # # ''' Determines a code file which could make sense to run. It could \ depend on inputs which where made to this class. Searches in the \ current working directory. Examples: >>> FileHandler('temp_determine_code_file_main.py').content = '' >>> run = Run() >>> run._determine_code_file(path='') # doctest: +ELLIPSIS Object of "Handler" with path "..." (type: file). >>> run._command_line_arguments = ['--help'] >>> run._determine_code_file('not_existing') False >>> run._command_line_arguments = ['--help'] >>> run._determine_code_file('') # doctest: +ELLIPSIS Object of "Handler" with path "..." and initially given path "... ''' if path: if not self._command_line_arguments: self._command_line_arguments = sys.argv[2:] code_file = FileHandler(location=path) if not (code_file.is_file() and self._find_informations_by_extension( extension=code_file.extension, code_file=code_file)): return self._search_supported_file_by_path( path=code_file.path) return code_file if not self._command_line_arguments: self._command_line_arguments = sys.argv[1:] return self._search_supported_file_in_current_working_directory() @JointPoint # # python3.5 # # def _find_informations_by_extension( # # self: Self, extension: builtins.str, code_file: FileHandler # # ) -> (builtins.dict, builtins.bool): def _find_informations_by_extension(self, extension, code_file): # # ''' Tries to find the necessary informations for running code with \ given extension. Examples: >>> code_file = FileHandler( ... __test_folder__.path + ... '_find_informations_by_extension.py') >>> FileHandler( ... 'temp_find_informations_by_extension_main.py' ... ).content = '' >>> run = Run() >>> run._find_informations_by_extension( ... extension='py', code_file=code_file ... ) # doctest: +ELLIPSIS {...'type': 'python'...} >>> run._find_informations_by_extension( ... 'not_existing', code_file) False ''' for name, properties in self.SUPPORTED_CODES.items(): if extension in properties['extensions']: return { 'type': name, 'properties': self._render_properties( properties, code_file)} return False @JointPoint # # python3.5 # # def _search_supported_file_by_path( # # self: Self, path: builtins.str # # ) -> (FileHandler, builtins.bool): def _search_supported_file_by_path(self, path): # # ''' Tries to find a useful file in current working directory by \ trying to match one file with given path name and supported \ extension. Examples: >>> file = FileHandler( ... __test_folder__.path + '_search_supported_file_by_path.py') >>> file.content = '#!/usr/bin/env python' >>> FileHandler( ... 'temp_search_supported_file_by_path_main.py' ... ).content = '' >>> run = Run() >>> run._search_supported_file_by_path( ... path=file.directory.path + file.basename ... ) # doctest: +ELLIPSIS Object of "Handler" with pat..._search_supported_file_by_path.py... >>> run._search_supported_file_by_path( ... path='' ... ) # doctest: +ELLIPSIS Object of "Handler" with path "..." (type: file). >>> run._search_supported_file_by_path('not_exists') False ''' self_file = FileHandler( location=inspect.currentframe().f_code.co_filename, respect_root_path=False) location = FileHandler(location=path) for name, properties in self.SUPPORTED_CODES.items(): for extension in properties['extensions']: for code_file in (FileHandler( location=location.path + '.' + extension), FileHandler(location=location.path + extension) ): # # python3.5 # # if code_file.is_file() and code_file != self_file: if code_file.is_file() and not ( code_file == self_file ): # # return code_file file = self._search_supported_file_by_directory( location, extension) if file: return file return False @JointPoint # # python3.5 # # def _search_supported_file_by_directory( # # self: Self, location: FileHandler, extension: builtins.str, # # ) -> (FileHandler, builtins.bool): def _search_supported_file_by_directory(self, location, extension): # # ''' Searches in a directory for a suitable code file to run. Examples: >>> file = FileHandler( ... __test_folder__.path + ... '_search_supported_file_by_directoryMain.py') >>> file.content = '' >>> FileHandler( ... 'temp_search_supported_file_by_directory_main.py' ... ).content = '' >>> Run()._search_supported_file_by_directory( ... FileHandler(__test_folder__.path), 'py' ... ) # doctest: +ELLIPSIS Object of "Handler" with path "..." and initially given path "... >>> file.name = '_search_supported_file_by_directory.py' >>> Run()._search_supported_file_by_directory( ... FileHandler(__test_folder__.path), 'py' ... ) # doctest: +ELLIPSIS Object of "Handler" with path "..." and initially given path "... ''' if location.is_directory(): found_file = False for file in location: if file.is_file() and file.extension == extension: if file.basename.lower().endswith('main'): return file found_file = file if found_file: return found_file return False @JointPoint # # python3.5 # # def _search_supported_file_in_current_working_directory( # # self: Self # # ) -> (FileHandler, builtins.bool): def _search_supported_file_in_current_working_directory(self): # # ''' Tries to find a useful file in current working directory with a \ supported extension. Examples: >>> FileHandler( ... 'temp_search_supported_file_in_current_working_directory_' ... 'main.py' ... ).content = '' >>> run = Run() >>> supported_codes_backup = copy(run.SUPPORTED_CODES) >>> run._search_supported_file_in_current_working_directory( ... ) # doctest: +ELLIPSIS Object of "Handler" with path "..." (type: file). >>> run.SUPPORTED_CODES = {} >>> run._search_supported_file_in_current_working_directory() False >>> run.SUPPORTED_CODES = supported_codes_backup ''' for name, properties in self.SUPPORTED_CODES.items(): for extension in properties['extensions']: file = self._search_supported_file_by_directory( location=FileHandler(), extension=extension) '''NOTE: We should return positive results only.''' if file: return file return False @JointPoint # # python3.5 # # def _run_command( # # self: Self, command_name: builtins.str, command: builtins.str # # ) -> Self: def _run_command(self, command_name, command): # # ''' Runs the given command by printing out what is running by \ presenting there results. Examples: >>> __test_buffer__.clear() # doctest: +ELLIPSIS '...' >>> FileHandler('temp_run_command_main.py').content = '' >>> run = Run() >>> run._run_command('list', 'ls') # doctest: +SKIP Object of "Run" with detected path "...". >>> __test_buffer__.clear() # doctest: +SKIP 'List with "ls". output [...codeRunner...]' >>> run._run_command( ... 'do nothing', 'not_existing' ... ) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... SystemExit: 127 ''' return_code = self._log_command_run( command_name, command, result=Platform.run( command=command.strip(), shell=True, error=False)) if return_code != 0: sys.exit(return_code) return self @JointPoint # # python3.5 # # def _log_command_run( # # self: Self, command_name: builtins.str, command: builtins.str, # # result: builtins.dict # # ) -> builtins.int: def _log_command_run(self, command_name, command, result): # # ''' Generates logging output for wrapping around generated output by \ running code file. Examples: >>> log_level_backup = Logger.level >>> Logger.change_all(level=('error',)) <class 'boostnode.extension.output.Logger'> >>> FileHandler('temp_log_command_run_main.py').content = '' >>> Run()._log_command_run( ... 'test', 'test', { ... 'error_output': '', 'standard_output': '', ... 'return_code': 0}) 0 >>> Logger.change_all(level=log_level_backup) <class 'boostnode.extension.output.Logger'> ''' terminator_save = Logger.terminator Logger.change_all(terminator=('',)) # # python3.5 # # __logger__.info( # # '%s with "%s".\nstandard output:\n[', # # command_name.capitalize(), command.strip()) # # Logger.flush() if __logger__.isEnabledFor(logging.INFO): Print( '%s with "%s".\nstandard output:\n[' % (command_name.capitalize(), command.strip()), end='', flush=True) # # Print(result['standard_output'], end='', flush=True) # # python3.5 # # __logger__.info(']\nerror output:\n[') # # Logger.flush() if __logger__.isEnabledFor(logging.INFO): Print(']\nerror output:\n[', end='', flush=True) # # Logger.change_all(terminator=terminator_save) Print(result['error_output'], end='') if __logger__.isEnabledFor(logging.INFO): Print(']', flush=True) __logger__.info('Return code: "%d".', result['return_code']) return result['return_code'] @JointPoint # # python3.5 def _run_code_file(self: Self) -> Self: def _run_code_file(self): ''' Runs all commands needed to run the current type of code. Examples: >>> FileHandler('temp_run_code_file_main.py').content = '' >>> __test_globals__['__test_mode__'] = False >>> Run() # doctest: +ELLIPSIS Traceback (most recent call last): ... SystemExit: ... >>> __test_globals__['__test_mode__'] = True >>> run = Run('not_existing') # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... CodeRunnerError: No supported file found for running with given ... ''' self._current_code = self._find_informations_by_extension( extension=self._code_file.extension, code_file=self._code_file) self._current_commands = \ self._current_code['properties']['commands'] __logger__.info('Detected "%s".', self._current_code['type']) self._check_code_manager() if not __test_mode__: try: self._run_commands() finally: self._tidy_up() return self @JointPoint # # python3.5 # # def _render_properties( # # self: Self, properties: builtins.dict, code_file: FileHandler # # ) -> builtins.dict: def _render_properties(self, properties, code_file): # # ''' If a given code property is marked as executable respectively \ dynamic it's value will be determined. Examples: >>> code_file = FileHandler( ... location=__test_folder__.path + '_render_properties.cpp') >>> FileHandler('temp_render_properties_main.py').content = '' >>> run = Run() >>> run._render_properties({ ... 'commands': { ... 'compile': 'g++ "<%code_file.path%>"', ... 'run': '<%code_file.basename%>', ... }, ... 'code_manager': { ... 'file_path': 'Makefile', ... 'commands': {'compile': 'make build'} ... }, ... 'extensions': ('cpp', 'c') ... }, code_file) # doctest: +ELLIPSIS +SKIP {'commands': {'compile': 'g++ "...runner.cpp"', 'run': '...} >>> run._render_properties({'hans': 'peter'}, code_file) {'hans': 'peter'} ''' rendered_properties = copy(properties) for key, value in rendered_properties.items(): if builtins.isinstance(value, builtins.dict): rendered_properties[key] = self._render_properties( properties=value, code_file=code_file) # # python3.5 # # elif builtins.isinstance(value, builtins.str): elif builtins.isinstance(value, builtins.unicode): # # rendered_properties[key] = TemplateParser( template=value, string=True ).render( code_file=code_file, arguments=' '.join(self._command_line_arguments), path_separator=os.sep ).output return rendered_properties # # endregion # endregion # endregion # region footer ''' Preset some variables given by introspection letting the linter know what \ globale variables are available. ''' __logger__ = __exception__ = __module_name__ = __file_path__ = \ __test_mode__ = __test_buffer__ = __test_folder__ = __test_globals__ = None ''' Extends this module with some magic environment variables to provide \ better introspection support. A generic command line interface for some \ code preprocessing tools is provided by default. ''' Module.default(name=__name__, frame=inspect.currentframe()) # endregion # region vim modline # vim: set tabstop=4 shiftwidth=4 expandtab: # vim: foldmethod=marker foldmarker=region,endregion: # endregion
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ class implementations for real-time 3D feature extraction """ from abc import abstractmethod import pandas as pd import os import glob import numpy as np from tensorflow.keras import layers as L from tensorflow import keras from tomo_encoders.neural_nets.Unet3D import build_Unet_3D from tomo_encoders import Patches from tomo_encoders import DataFile import tensorflow as tf from tensorflow.keras.models import load_model from tensorflow.keras.layers import UpSampling3D from multiprocessing import Pool, cpu_count import functools import cupy as cp import h5py import abc import time from tomo_encoders.misc.voxel_processing import _rescale_data, _find_min_max, modified_autocontrast, normalize_volume_gpu, _edge_map from tomo_encoders.neural_nets.keras_processor import Vox2VoxProcessor_fCNN # Parameters for weighted cross-entropy and focal loss - alpha is higher than 0.5 to emphasize loss in "ones" or metal pixels. eps = 1e-12 alpha = 0.75 gamma = 2.0 DEFAULT_INPUT_SIZE = (64,64,64) def _binary_lossmap(y_true, y_pred): # y_true, y_pred are tensors of shape (batch_size, img_h, img_w, n_channels) pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred)) pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred)) return pt_1, pt_0 def focal_loss(y_true, y_pred): """ :return: loss value Focal loss is defined here: https://arxiv.org/abs/1708.02002 Using this provides improved fidelity in unbalanced datasets: Tekawade et al. https://doi.org/10.1117/12.2540442 Parameters ---------- y_true : tensor Ground truth tensor of shape (batch_size, n_rows, n_cols, n_channels) y_pred : tensor Predicted tensor of shape (batch_size, n_rows, n_cols, n_channels) """ pt_1, pt_0 = _binary_lossmap(y_true, y_pred) loss_map = -alpha*tf.math.log(pt_1 + eps)*tf.math.pow(1. - pt_1,gamma) - (1-alpha)*tf.math.log(1. - pt_0 + eps)*tf.math.pow(pt_0,gamma) return tf.reduce_mean(loss_map) class Segmenter_fCNN(Vox2VoxProcessor_fCNN): def __init__(self,**kwargs): # could be "data" or "label" self.input_type = "data" self.output_type = "labels" super().__init__(**kwargs) return def random_data_generator(self, batch_size, input_size = (64,64,64)): while True: x_shape = tuple([batch_size] + list(input_size) + [1]) x = np.random.uniform(0, 1, x_shape)#.astype(np.float32) y = np.random.randint(0, 2, x_shape)#.astype(np.uint8) x[x == 0] = 1.0e-12 yield x, y def _build_models(self, descriptor_tag = "misc", **model_params): ''' Implementation of Segmenter_fCNN that removes blank volumes during training. Parameters ---------- model_keys : list list of strings describing the model, e.g., ["segmenter"], etc. model_params : dict for passing any number of model hyperparameters necessary to define the model(s). ''' if model_params is None: raise ValueError("Need model hyperparameters or instance of model. Neither were provided") else: self.models = {} # insert your model building code here. The models variable must be a dictionary of models with str descriptors as keys self.model_tag = "Unet_%s"%(descriptor_tag) model_key = "segmenter" self.models.update({model_key : None}) # input_size here is redundant if the network is fully convolutional self.models[model_key] = build_Unet_3D(**model_params) self.models[model_key].compile(optimizer=tf.keras.optimizers.Adam(),\ loss= tf.keras.losses.BinaryCrossentropy()) return if __name__ == "__main__": print('just a bunch of functions')
from django.conf import settings from rest_framework.routers import DefaultRouter, SimpleRouter from itez.users.api.views import UserViewSet from itez.beneficiary.api.views import ( ProvinceAPIView, DistrictAPIView, ServiceAreaAPIView, WorkDetailAPIView ) if settings.DEBUG: router = DefaultRouter() else: router = SimpleRouter() router.register("users", UserViewSet) router.register("provinces", ProvinceAPIView) router.register("districts", DistrictAPIView) router.register('service_area', ServiceAreaAPIView) router.register('work_detail', WorkDetailAPIView) app_name = "api" urlpatterns = router.urls
import argparse from collections import defaultdict from pysam import VariantFile import numpy as np import matplotlib.pyplot as plt import seaborn as sns def plot_distributions(vafs, true_vafs, false_vafs): sns.set(rc={"figure.figsize": (20, 10)}) sns.set_style("white") # plt.hist(vafs, bins=100, color='blue', alpha=0.4) plt.hist([true_vafs, false_vafs], bins=100, density=False, histtype='bar', color=['green', 'red'], alpha=0.4, stacked=True, label=['True variants', 'False positives']) # plt.hist(false_vafs, bins=100, color='red', alpha=0.4, stacked=True) plt.xlim((0.00, 1.15)) # plt.ylim((0, 300)) plt.legend(fontsize='x-large') # plt.xticks(np.arange(0, 1, step=0.10), fontsize=18) plt.yticks(fontsize=18) plt.xlabel("Allele frequency", fontsize='24') plt.ylabel("Count", fontsize='24') plt.title("Stacked histogram showing TP and FP distribution at different frequency intervals.", fontsize='20') plt.show() # exit() # output_file_name = "./allele_distribution.png" # plt.savefig(output_file_name, format='png', dpi=300, quality=95) def calculate_stats(vcf): vcf_in1 = VariantFile(vcf) vafs_of_true_alleles = list() vafs_of_false_alleles = list() total_alts = 0 total_true_calls = 0 total_false_calls = 0 all_allele_frequencies = list() total_recs = 0 for rec in vcf_in1.fetch(): total_recs += 1 # ['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setstate__', '__sizeof__', '__str__', '__subclasshook__', # 'alleles', 'alts', 'chrom', 'contig', 'copy', 'filter', 'format', 'header', 'id', 'info', 'pos', 'qual', 'ref', 'rid', 'rlen', 'samples', 'start', 'stop', 'translate'] alts = rec.alts total_alts += len(alts) if rec.filter.keys()[0] != 'PASS': continue for sample in rec.samples: vafs = list(rec.samples[sample]['VAF']) gts = list(rec.samples[sample]['GT']) true_index = [] for gt in gts: if gt != 0: true_index.append(gt-1) for i, (alt, vaf) in enumerate(zip(alts, vafs)): if i in true_index: vafs_of_true_alleles.append(vaf) total_true_calls += 1 else: vafs_of_false_alleles.append(vaf) total_false_calls += 1 for vaf in vafs: all_allele_frequencies.append(round(vaf, 3)) print("Total positions:\t", total_recs) print("Total alt alleles:\t", total_alts) print("Total true alleles:\t", total_true_calls, "(" + str(int(100 * (total_true_calls/total_alts))) + "%)") print("Total false alleles:\t", total_false_calls, "(" + str(int(100 * (total_false_calls/total_alts))) + "%)") plot_distributions(all_allele_frequencies, vafs_of_true_alleles, vafs_of_false_alleles) # plot_distributions(all_allele_frequencies, q_of_true_alleles, q_of_false_alleles) def add_merge_vcf_arguments(parser): parser.add_argument( "-v", "--vcf", type=str, required=True, help="VCF of haplotype 1." ) return parser if __name__ == '__main__': parser = argparse.ArgumentParser(description="PEPPER is a RNN based polisher for polishing ONT-based assemblies. " "It works in three steps:\n" "1) make_images: This module takes alignment file and coverts them" "to HDF5 files containing summary statistics.\n" "2) run_inference: This module takes the summary images and a" "trained neural network and generates predictions per base.\n" "3) find_snps: This module takes the inference files as input and " "finds possible SNP sites.\n", formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( "--version", default=False, action='store_true', help="Show version." ) add_merge_vcf_arguments(parser) FLAGS, unparsed = parser.parse_known_args() calculate_stats(FLAGS.vcf)
import contextlib import os import shutil import tempfile import unittest from pikos.recorders.csv_file_recorder import CSVFileRecorder from pikos.recorders.abstract_recorder import RecorderError from pikos.tests.compat import TestCase from pikos.tests.dummy_record import DummyRecord class TestCSVFileRecorder(TestCase): def setUp(self): self.directory = tempfile.mkdtemp() self.filename = os.path.join(self.directory, 'mylog') def tearDown(self): shutil.rmtree(self.directory) def test_prepare_with_namedtuple(self): header = 'one,two,three\n' recorder = CSVFileRecorder(filename=self.filename) with self.finalizer(recorder): recorder.prepare(DummyRecord) self.assertRecordedLines(header) def test_prepare_with_tuple(self): header = '' recorder = CSVFileRecorder(filename=self.filename) with self.finalizer(recorder): recorder.prepare(tuple) self.assertRecordedLines(header) def test_prepare_multiple_times(self): header = 'one,two,three\n' recorder = CSVFileRecorder(filename=self.filename) with self.finalizer(recorder): recorder.prepare(DummyRecord) # all calls after that do nothing for x in range(10): recorder.prepare(DummyRecord) self.assertRecordedLines(header) def test_finalize(self): header = 'one,two,three\n' recorder = CSVFileRecorder(filename=self.filename) # all calls do nothing with self.finalizer(recorder): recorder.prepare(DummyRecord) for x in range(10): recorder.finalize() self.assertRecordedLines(header) def test_record_with_namedtuple(self): record = DummyRecord(5, 'pikos', 'apikos') output = 'one,two,three\n5,pikos,apikos\n' recorder = CSVFileRecorder(filename=self.filename) with self.finalizer(recorder): recorder.prepare(DummyRecord) recorder.record(record) self.assertRecordedLines(output) def test_record_with_tuple(self): record = (5, 'pikos', 'apikos') output = '5,pikos,apikos\n' recorder = CSVFileRecorder(filename=self.filename) with self.finalizer(recorder): recorder.prepare(tuple) recorder.record(record) self.assertRecordedLines(output) def test_filter(self): records = [ DummyRecord(5, 'pikos', 'apikos'), DummyRecord(12, 'emilios', 'milo')] output = 'one,two,three\n12,emilios,milo\n' def not_pikos(record): return all('pikos' != field for field in record) recorder = CSVFileRecorder(filename=self.filename, filter_=not_pikos) with self.finalizer(recorder): recorder.prepare(DummyRecord) for record in records: recorder.record(record) self.assertRecordedLines(output) def test_dialect(self): records = [ DummyRecord(5, 'pikos', 'apikos'), DummyRecord(12, 'emilios', 'milo')] output = 'one,two,three^5,pikos,apikos^12,emilios,milo^' recorder = CSVFileRecorder( filename=self.filename, lineterminator='^') with self.finalizer(recorder): recorder.prepare(DummyRecord) for record in records: recorder.record(record) self.assertRecordedLines(output) def test_exception_when_no_prepare(self): records = [DummyRecord(5, 'pikos', 'apikos')] recorder = CSVFileRecorder(filename=self.filename) with self.assertRaises(RecorderError): recorder.record(records) with self.assertRaises(RecorderError): recorder.finalize() @contextlib.contextmanager def finalizer(self, recorder): try: yield recorder finally: recorder.finalize() def assertRecordedLines(self, expected): with open(self.filename, 'Ur') as handle: lines = handle.readlines() self.assertMultiLineEqual(''.join(lines), expected) if __name__ == '__main__': unittest.main()
import socket import sys import time import os EMPTY_MESSAGE = "" # Клиентские команды COMMAND_JOIN = "/join" COMMAND_QUIT = "/quit" COMMAND_RENAME = "/rename" COMMAND_SEARCH = "/search" # Общие команды COMMAND_HELP = "/help" COMMAND_SHUTDOWN = "/shutdown" COMMAND_WHO = "/who" # Клиентские команды COMMANDS_CLIENT_SIDE = ( COMMAND_JOIN, COMMAND_QUIT, COMMAND_RENAME, COMMAND_SEARCH, COMMAND_HELP, COMMAND_SHUTDOWN ) COMMANDS_SEND_TO_SERVER = ( COMMAND_WHO, ) # Подсказки клиентским командам COMMANDS_CLIENT_SIDE_DESCRIPTIONS = { COMMAND_HELP : "Выводит эту подсказку", COMMAND_JOIN : "[-ip] -port | Присоединение к серверу", COMMAND_QUIT : "Выход с сервера", COMMAND_RENAME : "-name | Поменять имя", COMMAND_SEARCH : "Найти серверы чат-комнат", COMMAND_WHO : "Список людей на сервере", }
learning_python = __import__('learning_python')
from django.apps import AppConfig class RecipeAppConfig(AppConfig): name = 'recipe_app'
class ArgErrorType(Exception): """Raised when provided argument is of unsupported type.""" pass class UnreadableFileError(Exception): """Raised when pydicom cannot read provided file.""" pass
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Builds the CIFAR-10 network. Summary of available functions: # Compute input images and labels for training. If you would like to run # evaluations, use inputs() instead. inputs, labels = distorted_inputs() # Compute inference on the model inputs to make a prediction. predictions = inference(inputs) # Compute the total loss of the prediction with respect to the labels. loss = loss(predictions, labels) # Create a graph to run one step of training with respect to the loss. train_op = train(loss, global_step) """ # pylint: disable=missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import re import sys import tarfile from six.moves import urllib import tensorflow as tf import cifar10_input FLAGS = tf.app.flags.FLAGS # Basic model parameters. tf.app.flags.DEFINE_integer('batch_size', 128, """Number of images to process in a batch.""") tf.app.flags.DEFINE_string('data_dir', 'D:\ComputeVision\cifar10_data', """Path to the CIFAR-10 data directory.""") tf.app.flags.DEFINE_boolean('use_fp16', False, """Train the model using fp16.""") # Global constants describing the CIFAR-10 data set. IMAGE_SIZE = cifar10_input.IMAGE_SIZE NUM_CLASSES = cifar10_input.NUM_CLASSES NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL # Constants describing the training process. MOVING_AVERAGE_DECAY = 0.99 # The decay to use for the moving average. NUM_EPOCHS_PER_DECAY = 200.0 # Epochs after which learning rate decays. LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor. INITIAL_LEARNING_RATE = 0.1 # Initial learning rate. # Batch Normalization EPSILON = 0.00001 # If a model is trained with multiple GPUs, prefix all Op names with tower_name # to differentiate the operations. Note that this prefix is removed from the # names of the summaries when visualizing a model. TOWER_NAME = 'tower' DATA_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz' def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels def batch_norm(input, training): input = tf.layers.batch_normalization(input, momentum=MOVING_AVERAGE_DECAY, training=training, epsilon=EPSILON, axis=-1, center=True, scale=True) return tf.nn.relu(input) def _bottleneck_block(input, filters, training=False, projection=None, name=None): shortcut = input filters_out = 4 * filters input = batch_norm(input, training) if projection: shortcut = input input = tf.layers.conv2d(input, kernel_size=1, filters=filters, strides=1, padding='SAME', use_bias=False, kernel_initializer=tf.variance_scaling_initializer) input = batch_norm(input, training) input = tf.layers.conv2d(input, kernel_size=3, strides=1, filters=filters, padding='SAME', use_bias=False, kernel_initializer=tf.variance_scaling_initializer) input = batch_norm(input, training) input = tf.layers.conv2d(input, filters=filters_out, kernel_size=1, strides=1, padding='SAME', use_bias=False, kernel_initializer=tf.variance_scaling_initializer) input = input + shortcut return tf.identity(input) def build_layer(input, blocks, training, filters): def projection(input): return tf.layers.conv2d(input, filters * 4, kernel_size=1, strides=1, padding='SAME', use_bias=False, kernel_initializer=tf.variance_scaling_initializer) input = projection(input) for i in range(1, blocks): input = _bottleneck_block(input, filters=filters, training=training) return tf.identity(input) def inference(image, training=False): input = tf.layers.conv2d(image, filters=32, kernel_size=3, strides=1, use_bias=False, kernel_initializer=tf.variance_scaling_initializer) input = batch_norm(input, training) input = tf.layers.conv2d(input, filters=32, kernel_size=3, strides=2, use_bias=False, kernel_initializer=tf.variance_scaling_initializer) input = batch_norm(input, training) input = build_layer(input, blocks=2, training=training, filters=64) input = build_layer(input, blocks=4, training=training, filters=128) input = build_layer(input, blocks=2, training=training, filters=256) input = batch_norm(input, training) shape = input.get_shape().as_list() ave_pool_size = shape[2] input = tf.layers.average_pooling2d(input, pool_size=ave_pool_size, strides=1) input = tf.identity(input) # 很重要的一步 input = tf.reshape(input, [-1, shape[-1]]) input = tf.layers.dense(input, units=NUM_CLASSES) input = tf.identity(input) return input def loss(logits, labels, weight_decay): """Add L2Loss to all the trainable variables. Add summary for "Loss" and "Loss/avg". Args: logits: Logits from inference(). labels: Labels from distorted_inputs or inputs(). 1-D tensor of shape [batch_size] Returns: Loss tensor of type float. """ # Calculate the average cross entropy loss across the batch. labels = tf.cast(labels, tf.int64) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') total_loss = cross_entropy_mean + weight_decay * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables()]) tf.summary.scalar("loss", total_loss) return total_loss def train(loss, global_step): num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY) lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE, global_step, decay_steps, LEARNING_RATE_DECAY_FACTOR, staircase=True) tf.summary.scalar('learning_rate', lr) opt = tf.train.GradientDescentOptimizer(lr) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = opt.minimize(loss, global_step=global_step) # Track the moving averages of all trainable variables. variable_averages = tf.train.ExponentialMovingAverage( MOVING_AVERAGE_DECAY, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) with tf.control_dependencies([train_op, variables_averages_op]): train_op = tf.no_op(name='train') return train_op def maybe_download_and_extract(): """Download and extract the tarball from Alex's website.""" dest_directory = FLAGS.data_dir if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') extracted_dir_path = os.path.join(dest_directory, 'cifar-10-batches-bin') if not os.path.exists(extracted_dir_path): tarfile.open(filepath, 'r:gz').extractall(dest_directory)
import cv2 def get_image_data(filename): # Read file input img = cv2.imread(filename) # Create output list (length, width) image_data = (img.shape[1], img.shape[0]) return image_data
from .LiteralNode import LiteralNode class IntegerLiteralNode(LiteralNode): def __init__(self,loc,ref,value): super().__init__(loc,ref) self._value = value def value(self): return self._value def _dump(self,dumper): dumper.print_member("type_node", self.type_node()) dumper.print_member("value", self._value) def accept(self,visitor): return visitor.visit(self)