content
stringlengths
5
1.05M
#scrap temptalia brands and check if mongodb has it already, if not insert from html_scraping import Temptalia_Scrapping from mongodb import Makeup_MongoDB from color_analyse import Color_Class from color_analyse import Color_Analysis from write_results import Write_Results_Class from os import system, name from subprocess import call import os import io from PIL import Image from array import array import sys import math import time from bs4 import BeautifulSoup import requests import re #~/.bashrc or ~/.bash_aliases #alias python=python3 #run source ~/.bashrc or source ~/.bash_aliases def Insert_New_Brands(): print("Get all brands from Temptalia") AllBrands = Temptalia_Scrapping.Get_Brands() #print(AllBrands) #print(Makeup_MongoDB.Contain_Brand(AllBrands[0])) print("Check if brand is already in db and insert") for brand in AllBrands: print(brand.name) brand_exist = Makeup_MongoDB.Contain_Brand(brand.name, brand.id) if not brand_exist: insertid = Makeup_MongoDB.Insert_Brand(brand.name, brand.id) print(insertid) else: print("exists") def clear(): _ = call('clear' if os.name == 'posix' else 'cls') def Insert_New_Eyeshadows(): branddata = Makeup_MongoDB.Get_All_Brands() for brand in branddata: print(brand) totalpages = Temptalia_Scrapping.Get_Nav_Pages(brand["temptalia_id"]) alleyeshadows = [] #for pageindex in range(1, totalpages + 1): for pageindex in range(1,2): alleyeshadows = alleyeshadows + Temptalia_Scrapping.Get_Eyeshadow(brand["name"], brand["temptalia_id"], pageindex) for eyeshadow in alleyeshadows: exist = Makeup_MongoDB.Contain_Eyeshadow(eyeshadow.brand, eyeshadow.name) if not exist: insertid = Makeup_MongoDB.Insert_Eyeshadow(eyeshadow) print(insertid) else: print("Added") def Calculate_RGB(filename, filenamejs, filenamejson): Brands = Makeup_MongoDB.Get_All_Brands() fieldnames = ["Brand", "FoundIn", "Name", "MiddleRGB", "AvgRGB","ModeCount", "ModeRGB","BorderDistance","Finish", "ColorRGB", "ColorAvgRGB", "ColorModeRGB" ] Write_Results_Class.Write_To_XSLX_Title(fieldnames, filename) Write_Results_Class.Initialize_JS_File(filenamejs) Write_Results_Class.Initialize_JSON_File(filenamejson) for brand in Brands: print(brand) Eyeshadows = Makeup_MongoDB.Get_All_Eyeshadows_By_Brand(brand["name"]) #check four corners and middle count = 0 errorcolors = [] error = 0 colorRows = [] for eyeshadow in Eyeshadows: print(eyeshadow["name"]) try: image = Image.open(io.BytesIO(eyeshadow["byte"])) except: count+= 1 errorcolors.append(eyeshadow["name"]) continue width, height = image.size middle = middlex, middley = height/2, width/2 middlergb = image.getpixel(middle) #borderdistance = Calculate_Image_Box(image, middle, middlehsv) borderdistance = Color_Analysis.Calculate_Image_Box(image, middle); if borderdistance == 0: count += 1 errorcolors.append(eyeshadow["name"]) else: results = Color_Analysis.AVG_Image_RGB(image, middle, borderdistance) MIN, MAX = Color_Analysis.Min_Max_RGB(image, middle, borderdistance) ModeCount, ModeRGB = Color_Analysis.Calculate_Mode_RGB(image,middle, borderdistance) RowDict = {} RowDict["Brand"] = eyeshadow["brand"] RowDict["FoundIn"] = eyeshadow["foundin"] RowDict["Name"] = eyeshadow["name"] RowDict["MiddleRGB"] = middlergb RowDict["AvgRGB"] = results RowDict["ModeCount"] = ModeCount RowDict["ModeRGB"] = ModeRGB RowDict["BorderDistance"] = borderdistance RowDict["Finish"] = eyeshadow["finish"] colorRows.append(RowDict) print('writing brand to excel') Write_Results_Class.Write_To_XSLX_RGB(colorRows, filename) print('writing brand to js file') Write_Results_Class.Write_To_JS(brand, colorRows, filenamejs) print('writing eyeshadow detail to json objects') Write_Results_Class.Write_To_JSon_Objects(colorRows, filenamejson) print("Total " + str(count)) print(errorcolors) print("Error " + str(error)) Write_Results_Class.Write_To_CSV(fieldnames, colorRows) Write_Results_Class.Close_JSON_File(filenamejson) #workbook.close() def Find_Finishes(): Brands = Makeup_MongoDB.Get_All_Brands() #for brandindex in range(0,1): # brand = Brands[brandindex] for brand in Brands: Eyeshadows = Makeup_MongoDB.Get_All_Eyeshadows_By_Brand(brand["name"]) #for eyeshadowindex in range(0,3): #eyeshadow = Eyeshadows[eyeshadowindex] for eyeshadow in Eyeshadows: print(eyeshadow["src"]) print(eyeshadow["name"]) finish = Temptalia_Scrapping.Get_Eyeshadow_Finish(eyeshadow["src"]) Makeup_MongoDB.Update_Eyeshadow_Finish(brand["name"], eyeshadow["name"], finish) def Welcome_Screen(): print('###########################################') print('## Welcome to Temptalia Eyeshadow DB ##') print('###########################################') def Print_Menu(): print('Menu') print('1. Exit') print('2. Delete Brands Collection') print('3. Screen Scrap Brands') print('4. Delete Eyeshadows Collection') print('5. Screen Scrap Eyeshadows') print('6. Print All Eyeshadows') print('7. Convert Eyeshadow Byte To Img') print('8. Anaylze Eyeshadows and Save to File') print('9. Copy Collection') print('10. Save Brands to JS File') print('11. Find Finishes and save to MongoDB') if __name__ == "__main__": clear() Welcome_Screen() Print_Menu() while True: user_input = input('What would you like to do? ') if user_input == "Menu" or user_input=="menu": Print_Menu() elif user_input == "1" or user_input == "Exit" or user_input == "exit" or user_input == "quit": print('Goodbye!') break elif user_input == "2": Makeup_MongoDB.Delete_Brands_Collection() print('Deleted all brands from MongoDB') elif user_input == "3": print('Inserting Brands') Insert_New_Brands() elif user_input == "4": Makeup_MongoDB.Delete_Eyeshadow_Collection() elif user_input == "5": Insert_New_Eyeshadows() elif user_input == "6": Eyeshadows = Makeup_MongoDB.Get_All_Eyeshadows() for es in Eyeshadows: print(es) elif user_input == "7": Eyeshadows = Makeup_MongoDB.Get_All_Eyeshadows() #put everything in brands folder first if not os.path.isdir("Brands"): os.mkdir("Brands") for eyeshadow in Eyeshadows: brand = eyeshadow["brand"] filepath = "Brands/{0}".format(brand) if not os.path.isdir(filepath): os.mkdir(filepath) try: image = Image.open(io.BytesIO(eyeshadow["byte"])) image.save(filepath + "/" + eyeshadow["name"] + ".jpg") print("Saved " + eyeshadow["name"] + ".jpg") except: print("Could not save " + eyeshadow["name"] + ".jpg") elif user_input == "8": filename = input("Enter Results File Name (Default is Results):") if len(filename) == 0: filename = "Results" filenamejs = "{0}.js".format(filename) filenamejson = "{0}_EyeshadowDetail.js".format(filename) filename = "{0}.xlsx".format(filename) Calculate_RGB(filename, filenamejs, filenamejson) elif user_input == "9": from_collection = input('From Collection: ') to_collection = input('To Collection: ') Makeup_MongoDB.Copy_Collection(from_collection, to_collection) print('Complete Copying Collection') elif user_input == "10": Brands = Makeup_MongoDB.Get_All_Brands() Write_Results_Class.Write_Brands_To_JS(Brands) print("Complete") elif user_input == "11": Find_Finishes() elif user_input == "reset": python = sys.executable os.execl(python, python, * sys.argv)
from abc import ABC, abstractmethod from typing import NoReturn class DistributionInterface(ABC): @abstractmethod def __init__(self, mean: float, stdev: float, *args, **kwargs): raise NotImplementedError @abstractmethod def __add__(self, other): raise NotImplementedError @abstractmethod def __repr__(self): raise NotImplementedError @abstractmethod def read(self, file: str) -> NoReturn: raise NotImplementedError @abstractmethod def calculate_mean(self, *args, **kwargs): raise NotImplementedError @abstractmethod def calculate_stdev(self, *args, **kwargs): raise NotImplementedError @abstractmethod def pdf(self, *args, **kwargs) -> float: raise NotImplementedError @abstractmethod def plot(self, *args, **kwargs): raise NotImplementedError @abstractmethod def plot_pdf(self, *args, **kwargs): raise NotImplementedError class Distribution(DistributionInterface, ABC): def __init__(self, mean=0., stdev=1., *args, **kwargs): """General distribution parent class. Args: mean (float): The mean value of the distribution. stdev (float): The standard deviation of the distribution. """ self.mean = None self.set_mean(mean) self.stdev = None self.set_stdev(stdev) self.data = [] def set_mean(self, new_value: float) -> NoReturn: """Mutator method realizes encapsulation of mean attribute. Args: new_value (float): New value of mean attribute. Returns: NoReturn """ self.mean = new_value def get_mean(self) -> float: """Accessor method realizes encapsulation of mean attribute. Returns: float: The mean value of the distribution. """ return self.mean def set_stdev(self, new_value: float) -> NoReturn: """Mutator method realizes encapsulation of stdev attribute. Args: new_value (float): New value of stdev attribute. Returns: NoReturn """ self.stdev = new_value def get_stdev(self) -> float: """Accessor method realizes encapsulation of stdev attribute. Returns: float: The stdev value of the distribution. """ return self.stdev def get_data(self) -> list: """Accessor method realizes encapsulation of data attribute. Returns: list: Data sample. """ return self.data def read(self, file_name: str) -> NoReturn: """Method to read data from a text file. Args: file_name (str): Name of a file to read. Returns: NoReturn """ data = [] with open(file_name) as file: while line := file.readline(): line = int(line.rstrip()) data.append(line) self.data = data
from .business_delegate import ServiceDelegate class Client(object): def __init__(self, business_delegate: ServiceDelegate): self.business_delegate = business_delegate def to_call(self): return self.business_delegate.to_call()
import unittest from nymms import utils class TestBase(unittest.TestCase): def test_load_class_from_string(self): from logging import Logger cls = utils.load_object_from_string('logging.Logger') self.assertIs(cls, Logger) def test_parse_time(self): base_time = 1415311935 self.assertEqual(utils.parse_time('+60s', base_time).timestamp, base_time + 60) self.assertEqual(utils.parse_time('+10m', base_time).timestamp, base_time + (60 * 10)) self.assertEqual(utils.parse_time('+10h', base_time).timestamp, base_time + (60 * 60 * 10)) self.assertEqual(utils.parse_time('-10d', base_time).timestamp, base_time - (10 * 60 * 60 * 24)) with self.assertRaises(ValueError): utils.parse_time('+2000xxx')
import csv import logging import secrets import string from camps.mixins import CampViewMixin from django.contrib import messages from django.contrib.auth.mixins import LoginRequiredMixin from django.core.exceptions import ValidationError from django.http import HttpResponse from django.shortcuts import redirect from django.urls import reverse from django.utils import timezone from django.views.generic import CreateView, DeleteView, ListView, UpdateView from oauth2_provider.views.generic import ProtectedResourceView from utils.mixins import RaisePermissionRequiredMixin, UserIsObjectOwnerMixin from .mixins import DectRegistrationViewMixin from .models import DectRegistration logger = logging.getLogger("bornhack.%s" % __name__) class DectExportView( CampViewMixin, RaisePermissionRequiredMixin, ProtectedResourceView ): """ CSV export for the POC team / DECT system """ permission_required = "camps.pocteam_permission" def get(self, request, *args, **kwargs): response = HttpResponse(content_type="text/csv") response[ "Content-Disposition" ] = f'attachment; filename="{self.camp.slug}-dect-export-{timezone.now()}.csv"' writer = csv.writer(response) writer.writerow( [ "number", "letters", "description", "activation_code", "publish_in_phonebook", ] ) for dect in DectRegistration.objects.filter(camp=self.camp): writer.writerow( [ dect.number, dect.letters, dect.description, dect.activation_code, dect.publish_in_phonebook, ] ) return response class PhonebookListView(CampViewMixin, ListView): """ Our phonebook view currently only shows DectRegistration entries, but could later be extended to show maybe GSM or other kinds of phone numbers. """ model = DectRegistration template_name = "phonebook.html" def get_queryset(self, *args, **kwargs): qs = super().get_queryset(*args, **kwargs) return qs.filter(publish_in_phonebook=True) class DectRegistrationListView(LoginRequiredMixin, CampViewMixin, ListView): model = DectRegistration template_name = "dectregistration_list.html" def get_queryset(self, *args, **kwargs): """ Show only DectRegistration entries belonging to the current user """ qs = super().get_queryset(*args, **kwargs) return qs.filter(user=self.request.user) class DectRegistrationCreateView(LoginRequiredMixin, CampViewMixin, CreateView): model = DectRegistration fields = ["number", "letters", "description", "publish_in_phonebook"] template_name = "dectregistration_form.html" def form_valid(self, form): dect = form.save(commit=False) dect.camp = self.camp dect.user = self.request.user try: dect.clean_number() except ValidationError as E: form.add_error("number", E) return super().form_invalid(form) try: dect.clean_letters() except ValidationError as E: form.add_error("letters", E) return super().form_invalid(form) # this check needs to be in this form, but not in model.save(), because then we cant save service numbers from the admin if len(dect.number) < 4: form.add_error( "number", ValidationError( "Numbers with fewer than 4 digits are reserved for special use" ), ) return super().form_invalid(form) # generate a 10 digit activation code for this dect registration? if not dect.activation_code: dect.activation_code = "".join( secrets.choice(string.digits) for i in range(10) ) # all good, save and return to list dect.save() messages.success( self.request, "New DECT registration created successfully. Call the activation number from your handset to activate it!", ) return redirect( reverse( "phonebook:dectregistration_list", kwargs={"camp_slug": self.camp.slug} ) ) class DectRegistrationUpdateView( LoginRequiredMixin, DectRegistrationViewMixin, UserIsObjectOwnerMixin, UpdateView ): model = DectRegistration fields = ["letters", "description", "publish_in_phonebook"] template_name = "dectregistration_form.html" def form_valid(self, form): dect = form.save(commit=False) # check if the letters match the DECT number try: dect.clean_letters() except ValidationError as E: form.add_error("letters", E) return super().form_invalid(form) # save and return dect.save() messages.success( self.request, "Your DECT registration has been updated successfully" ) return redirect( reverse( "phonebook:dectregistration_list", kwargs={"camp_slug": self.camp.slug} ) ) class DectRegistrationDeleteView( LoginRequiredMixin, DectRegistrationViewMixin, UserIsObjectOwnerMixin, DeleteView ): model = DectRegistration template_name = "dectregistration_delete.html" def get_success_url(self): messages.success( self.request, f"Your DECT registration for number {self.get_object().number} has been deleted successfully", ) return reverse( "phonebook:dectregistration_list", kwargs={"camp_slug": self.camp.slug} )
import csv import copy import sys from Aries.table import TableCSVFile class VCFVariant: def __init__(self, chrom, pos, ref, alt, info=None, annotation=None, raw_data=None): self.chrom = chrom self.pos = pos self.ref = ref self.alt = alt self.raw_data = raw_data self.rs_id = None if annotation is None: self.annotation = dict() self.annotation = annotation if info is None: self.info = dict() self.info = info @property def key(self): return "%s:g.%s%s>%s" % (self.chrom, self.pos, self.ref, self.alt) def __str__(self): return self.key class VariantsFile: def __init__(self, uri): self.uri = uri self.file_obj = None # header_line should NOT contain the ending line break self.header_line = None self.read_headers() def variant_key(self, line): """Returns a unique identifier for a variant represented by a line or an object containing all information of a variant in the file. The format of the identifier must be: "[Chromosome]:p.[Position][Ref]>[Alt]" Chromosome should be a number, X or Y, without the "chr" This unique identifier should be consistent for all sub-classes. The same variant should have the same identifier regardless of the file format. Args: line: A text line or an object containing all information of a variant """ raise NotImplementedError def build_index(self): return dict() def read_headers(self): raise NotImplementedError def write_headers(self, *args, **kwargs): raise NotImplementedError @property def lines(self): with open(self.uri, 'r') as f: for line in f: yield line # Handles the open and close of the file def __enter__(self): self.file_obj = open(self.uri, 'r') return self.file_obj def __exit__(self, exc_type, exc_val, exc_tb): self.file_obj.close() class VCFVariants(VariantsFile): FILTER_COLUMN = 6 def __init__(self, uri): self.meta = dict() self.headers = [] # Caches the number of total variants self.__count = None super().__init__(uri) def variants(self): for line in self.lines: if line.startswith("#"): continue key = self.variant_key(line) val = line yield key, val @staticmethod def parse_meta(meta_line): arr = meta_line.split("=", 1) key = arr[0] val = arr[1] if val.startswith("<") and val.startswith(">"): pairs = val[1:-1].split(",") val = dict() for pair in pairs: arr = pair.split("=", 1) k = arr[0] v = arr[1] val[k] = v return key, val def read_headers(self): for line in self.lines: if not line.startswith("#"): break if line.startswith("##"): key, val = self.parse_meta(line) val_list = self.meta.get(key, []) val_list.append(val) self.meta[key] = val_list continue if line.startswith("#"): self.header_line = line def write_headers(self, to_file, meta=None): """ Args: to_file: meta: Returns: """ # Write meta data if meta is None: meta = self.meta for key, val_list in meta.items(): for val in val_list: if isinstance(val, dict): value = "<" + ",".join(["%s=%s" % (k, v) for k, v in val.items()]) + ">" else: value = val to_file.write("%s=%s" % (key, value)) # Write header line to_file.write(self.header_line) def variant_key(self, line): arr = line.split() if len(arr) < 5: return None chromosome = arr[0].replace("chr", "") position = arr[1] ref = arr[3] alt = arr[4] return "%s:g.%s%s>%s" % (chromosome, position, ref, alt) def build_index(self): whitelist_dict = {} for line in self.lines: if line.startswith("#"): continue key = self.variant_key(line) whitelist_dict[key] = line.strip() return whitelist_dict def apply_filter(self, output_vcf_path, filter_id, filter_description, filter_func, passed_only=False): meta = copy.deepcopy(self.meta) filter_list = meta.get("FILTER", []) filter_list.append({ "ID": filter_id, "Description": filter_description }) with open(output_vcf_path, 'w') as output_vcf: self.write_headers(output_vcf, meta) counter = 0 for key, variant in self.variants(): counter += 1 columns = variant.split("\t") passed = filter_func(key, variant) if not passed: if passed_only: continue # Filter not passed if columns[self.FILTER_COLUMN].strip() in ["PASS", ".", ""]: columns[self.FILTER_COLUMN] = filter_id else: columns[self.FILTER_COLUMN] = columns[self.FILTER_COLUMN] + "," + filter_id output_vcf.write("\t".join(columns)) self.__count = counter print("%d total variants in VCF." % counter) return VCFVariants(output_vcf_path) def count(self): if self.__count is None: self.__count = sum(1 for _ in self.variants()) return self.__count class CSVVariants(VariantsFile): header_keys = ["chr", "start", "end", "ref", "alt"] def __init__(self, uri, **kwargs): self.table = TableCSVFile(uri, **kwargs) self.delimiter = self.table.kwargs.get("delimiter") if not self.delimiter: self.delimiter = self.table.kwargs.get("dialect").delimiter self.columns = dict() super().__init__(uri) self.headers = self.table.headers self.header_line = self.delimiter.join(["\"%s\"" % h for h in self.table.headers]) def variant_key(self, row): columns = self.columns return "%s:g.%s%s>%s" % ( str(row[columns.get("chr")]).replace("chr", ""), row[columns.get("start")], row[columns.get("ref")], row[columns.get("alt")], ) def read_headers(self): headers = [str(h).lower() for h in self.table.headers] self.columns = {headers[i]: i for i in range(len(headers))} for key in self.header_keys: if key not in self.columns: raise AttributeError("Column %s not found in %s." % (key, self.table.headers)) def write_headers(self, to_file): to_file.write(self.header_line + "\n") def build_index(self): whitelist_dict = { "header": self.header_line } for i, row in enumerate(self.table.rows): if i <= self.table.header_row: continue if row[self.columns.get("start")] != row[self.columns.get("end")]: print("Variant has different start and end") key = self.variant_key(row) whitelist_dict[key] = self.delimiter.join(["\"%s\"" % r for r in row]).strip() return whitelist_dict class WhitelistFilter: # This file contains a subset of the whitelist whitelist_output_filename = "whitelist_subset.csv" # This file contains a subset of the VCF vcf_output_filename = "variants_subset.vcf" def __init__(self, variant_calls): """ Args: variant_calls (VariantsFile): """ self.variant_calls = variant_calls self.index = variant_calls.build_index() self.in_whitelist = set() def filter_variant(self, key, variant): if key in self.index: self.in_whitelist.add(key) return True return False def print_passed(self): print(self.variant_calls.header_line) counter = 0 for key in self.in_whitelist: print(self.index[key]) counter += 1 if counter >= 100: print("... and %s more..." % (len(self.in_whitelist) - counter)) def save_passed(self, to_file_path): with open(to_file_path, "w") as f: self.variant_calls.write_headers(f) for key in self.in_whitelist: f.write(self.index[key] + "\n")
#!/usr/bin/python #By Sun Jinyuan and Cui Yinglu, 2021 import pandas as pd import argparse parser = argparse.ArgumentParser(description= 'Process files from previous foldx scan') parser.add_argument("-sn", '--subdirnum', help="Total number of subdirectories") parser.add_argument("-fn", '--fxoutname', help="Average_BuildModel_<pdbfilename>.fxout") parser.add_argument("-c", '--cutoff',help="Cutoff of ddg") args = parser.parse_args() fxoutname = args.fxoutname subnum = int(args.subdirnum) cutoff = int(args.cutoff) df_average_lst = [] for num in range(subnum): num += 1 fxout_name = "Subdirectory"+str(num)+"/"+fxoutname df_average = pd.read_table(fxout_name, sep='\t',skiprows=8) df_average_lst.append(df_average) df_list_lst = [] for num in range(subnum): num += 1 list_name = "test/Subdirectory"+str(num)+"/List_Mutations_readable.txt" df_list = pd.read_table(list_name, sep=" ",header=None) df_list_lst.append(df_list) df_average_all = pd.concat(df_average_lst, axis=0, ignore_index=True) #df_average.head() df_list_all = pd.concat(df_list_lst, axis=0, ignore_index=True) df_o = df_average_all.iloc[:, 0:3].join(df_list_all) odict = {'mutation':[],'energy':[],'SD':[],'position':[]} for i in range(df_o.shape[0]): odict['mutation'].append(str(df_o[1][i])+str(df_o[2][i])+str(df_o[3][i])) odict['position'].append(str(df_o[2][i])) odict['energy'].append(df_o['total energy'][i]) odict['SD'].append(df_o['SD'][i]) CompleteList_df = pd.DataFrame(odict) CompleteList_SortedByEnergy_df = CompleteList_df.sort_values('energy').reset_index(drop=True) def BetsPerPosition(df): position_list = [] length = df.shape[0] for i in range(length): if df['position'][i] in position_list: df = df.drop(index=i) else: position_list.append(df['position'][i]) return df.reset_index(drop=True) def BelowCutOff(df,cutoff): #position_list = [] length = df.shape[0] for i in range(length): if float(df['energy'][i]) > float(cutoff): df = df.drop(index=i) else: continue return df.reset_index(drop=True) BestPerPosition_SortedByEnergy_df = BetsPerPosition(CompleteList_SortedByEnergy_df) BestPerPosition_df = BetsPerPosition(CompleteList_SortedByEnergy_df) BelowCutOff_df = BelowCutOff(CompleteList_df,-1) BelowCutOff_SortedByEnergy_df = BelowCutOff(CompleteList_SortedByEnergy_df,-1) BestPerPositionBelowCutOff_SortedByEnergy_df = BelowCutOff(BestPerPosition_SortedByEnergy_df,-1) BestPerPositionBelowCutOff_df = BelowCutOff(BestPerPosition_df,-1) def variablename(var): import itertools return [tpl[0] for tpl in filter(lambda x: var is x[1], globals().items())] def out_tab_file(df): df_name = variablename(df)[0] filename = "MutationsEnergies_"+df_name[:-3]+".tab" with open(filename,"w+") as of: of.write(BestPerPositionBelowCutOff_df.to_csv(columns=['mutation', 'energy', 'SD'], sep='\t', index=False)) of.close() out_tab_file(CompleteList_df) out_tab_file(CompleteList_SortedByEnergy_df) out_tab_file(BestPerPosition_SortedByEnergy_df) out_tab_file(BestPerPosition_df) out_tab_file(BelowCutOff_df) out_tab_file(BelowCutOff_SortedByEnergy_df) out_tab_file(BestPerPositionBelowCutOff_SortedByEnergy_df) out_tab_file(BestPerPositionBelowCutOff_df)
# Copyright The IETF Trust 2007, 2009, All Rights Reserved from django.conf import settings from django.conf.urls import patterns, include, handler500, handler404 from django.contrib import admin from django.views.generic import TemplateView from ietf.liaisons.sitemaps import LiaisonMap from ietf.ipr.sitemaps import IPRMap from ietf import api # import debug_toolbar admin.autodiscover() api.autodiscover() # sometimes, this code gets called more than once, which is an # that seems impossible to work around. try: admin.site.disable_action('delete_selected') except KeyError: pass sitemaps = { 'liaison': LiaisonMap, 'ipr': IPRMap, } if hasattr(settings, 'IS_CODESTAND_APP'): handler500 = 'ietf.codestand.views.handler500' handler404 = 'ietf.codestand.views.handler404' urlpatterns = patterns('', (r'^$', 'ietf.doc.views_search.frontpage'), (r'^accounts/', include('ietf.ietfauth.urls')), (r'^admin/', include(admin.site.urls)), (r'^admin/doc/', include('django.contrib.admindocs.urls')), (r'^ann/', include('ietf.nomcom.redirect_ann_urls')), (r'^community/', include('ietf.community.urls')), (r'^accounts/settings/', include('ietf.cookies.urls')), (r'^doc/', include('ietf.doc.urls')), (r'^drafts/', include('ietf.doc.redirect_drafts_urls')), (r'^mailtrigger/',include('ietf.mailtrigger.urls')), (r'^feed/', include('ietf.feed_urls')), (r'^group/', include('ietf.group.urls')), (r'^help/', include('ietf.help.urls')), (r'^idtracker/', include('ietf.doc.redirect_idtracker_urls')), (r'^iesg/', include('ietf.iesg.urls')), (r'^ipr/', include('ietf.ipr.urls')), (r'^liaison/', include('ietf.liaisons.urls')), (r'^list/', include('ietf.mailinglists.urls')), (r'^meeting/', include('ietf.meeting.urls')), (r'^nomcom/', include('ietf.nomcom.urls')), (r'^person/', include('ietf.person.urls')), (r'^release/', include('ietf.release.urls')), (r'^secr/', include('ietf.secr.urls')), (r'^sitemap-(?P<section>.+).xml$', 'django.contrib.sitemaps.views.sitemap', {'sitemaps': sitemaps}), (r'^sitemap.xml$', 'django.contrib.sitemaps.views.index', { 'sitemaps': sitemaps}), (r'^submit/', include('ietf.submit.urls')), (r'^sync/', include('ietf.sync.urls')), (r'^stream/', include('ietf.group.urls_stream')), (r'^templates/', include('ietf.dbtemplate.urls')), (r'^(?P<group_type>(wg|rg|ag|team|dir|area))/', include('ietf.group.urls_info')), # Redirects (r'^(?P<path>public)/', include('ietf.redirects.urls')), # Google webmaster tools verification url (r'^googlea30ad1dacffb5e5b.html', TemplateView.as_view(template_name='googlea30ad1dacffb5e5b.html')), ) if settings.IS_CODESTAND_APP: urlpatterns += patterns('', (r'^codestand/', include('ietf.codestand.urls')), (r'^codestand/matches/', include('ietf.codestand.matches.urls')), (r'^codestand/requests/', include('ietf.codestand.requests.urls')), (r'^codestand/accounts/', include('ietf.codestand.accounts.urls')), ) # if settings.DEBUG: # urlpatterns += patterns('', # (r'^codestand/__debug__/', include(debug_toolbar.urls)), # ) # Endpoints for Tastypie's REST API urlpatterns += patterns('', (r'^api/v1/?$', api.top_level), ) for n,a in api._api_list: urlpatterns += patterns('', (r'^api/v1/', include(a.urls)), ) # This is needed to serve files during testing #if settings.SERVER_MODE in ('development', 'test'): # urlpatterns += ( staticfiles_urlpatterns() # + patterns('', # (r'^_test500/$', lambda x: None), # (r'^environment/$', 'ietf.help.views.environment'), # ## maybe preserve some static legacy URLs ? # (r'^(?P<path>(?:images|css|js)/.*)$', 'django.views.static.serve', {'document_root': settings.STATIC_ROOT+'ietf/'}), # ) # ) # This is needed to serve files which are not handled by collectstatic : if settings.SERVER_MODE in ('development', 'test'): urlpatterns += patterns('', (r'^(?P<path>(?:images|css|js|test|static|fonts|other)/.*)$', 'django.views.static.serve', {'document_root': settings.STATIC_ROOT}), # (r'^(?P<path>autocomplete/(?:img|css|js)/.*)$', 'django.views.static.serve', {'document_root': settings.STATIC_ROOT}), (r'^(?P<path>admin/(?:img|css|js)/.*)$', 'django.views.static.serve', {'document_root': settings.STATIC_ROOT}), (r'^(?P<path>secretariat/(img|css|js)/.*)$', 'django.views.static.serve', {'document_root': settings.STATIC_ROOT}), (r'^(?P<path>robots\.txt)$', 'django.views.static.serve', {'document_root': settings.STATIC_ROOT+"dev/"}), (r'^_test500/$', lambda x: None), (r'^environment/$', 'ietf.help.views.environment'), )
"""Home Assistant Switcher Component.""" from asyncio import QueueEmpty, TimeoutError as Asyncio_TimeoutError, wait_for from datetime import datetime, timedelta from logging import getLogger from typing import Dict, Optional import voluptuous as vol from homeassistant.components.switch import DOMAIN as SWITCH_DOMAIN from homeassistant.const import EVENT_HOMEASSISTANT_STOP from homeassistant.core import callback from homeassistant.helpers import config_validation as cv from homeassistant.helpers.discovery import async_load_platform from homeassistant.helpers.dispatcher import async_dispatcher_send from homeassistant.helpers.event import async_track_time_interval from homeassistant.helpers.typing import EventType, HomeAssistantType _LOGGER = getLogger(__name__) DOMAIN = 'switcher_kis' CONF_DEVICE_ID = 'device_id' CONF_DEVICE_PASSWORD = 'device_password' CONF_PHONE_ID = 'phone_id' DATA_DEVICE = 'device' SIGNAL_SWITCHER_DEVICE_UPDATE = 'switcher_device_update' ATTR_AUTO_OFF_SET = 'auto_off_set' ATTR_ELECTRIC_CURRENT = 'electric_current' ATTR_REMAINING_TIME = 'remaining_time' CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Required(CONF_PHONE_ID): cv.string, vol.Required(CONF_DEVICE_ID): cv.string, vol.Required(CONF_DEVICE_PASSWORD): cv.string }) }, extra=vol.ALLOW_EXTRA) async def async_setup(hass: HomeAssistantType, config: Dict) -> bool: """Set up the switcher component.""" from aioswitcher.bridge import SwitcherV2Bridge phone_id = config[DOMAIN][CONF_PHONE_ID] device_id = config[DOMAIN][CONF_DEVICE_ID] device_password = config[DOMAIN][CONF_DEVICE_PASSWORD] v2bridge = SwitcherV2Bridge( hass.loop, phone_id, device_id, device_password) await v2bridge.start() async def async_stop_bridge(event: EventType) -> None: """On homeassistant stop, gracefully stop the bridge if running.""" await v2bridge.stop() hass.async_add_job(hass.bus.async_listen_once( EVENT_HOMEASSISTANT_STOP, async_stop_bridge)) try: device_data = await wait_for( v2bridge.queue.get(), timeout=5.0, loop=hass.loop) except (Asyncio_TimeoutError, RuntimeError): _LOGGER.exception("failed to get response from device") await v2bridge.stop() return False hass.data[DOMAIN] = { DATA_DEVICE: device_data } hass.async_create_task(async_load_platform( hass, SWITCH_DOMAIN, DOMAIN, None, config)) @callback def device_updates(timestamp: Optional[datetime]) -> None: """Use for updating the device data from the queue.""" if v2bridge.running: try: device_new_data = v2bridge.queue.get_nowait() if device_new_data: async_dispatcher_send( hass, SIGNAL_SWITCHER_DEVICE_UPDATE, device_new_data) except QueueEmpty: pass async_track_time_interval(hass, device_updates, timedelta(seconds=4)) return True
import tempfile import numpy as np import du from du.numpy_utils import (expand_dim, memmap_concatenate, constant_value_array) from du._test_utils import equal def test_expand_dim(): z = np.zeros((2, 2)) x = np.arange(4).reshape(2, 2) assert np.alltrue(np.vstack([x, z]) == expand_dim(x, 4, axis=0)) assert np.alltrue(np.hstack([x, z]) == expand_dim(x, 4, axis=1)) def test_memmap_concatenate(): x = np.random.randn(3, 3) l = [x, x, x] with tempfile.TemporaryFile() as f: assert np.alltrue(memmap_concatenate(f, l, 0) == np.concatenate(l, 0)) assert np.alltrue(memmap_concatenate(f, l, 1) == np.concatenate(l, 1)) def test_constant_value_array(): equal(7.5, constant_value_array(1.5, 5).sum()) equal(5, constant_value_array(1.5, 5, int).sum()) def test_generator_std(): x1 = np.random.rand(100, 12) x2 = 0.32 * np.random.rand(100, 34) + 2.0 x3 = 1.5 * np.random.rand(100, 100) - 1.0 xs = [x1, x2, x3] np.testing.assert_allclose(du.numpy_utils.generator_std(xs, axis=1), np.concatenate(xs, axis=1).std(axis=1))
"""cubelab_notebook - Jupyter Notebook-based web frontend for CubeViz operations""" __version__ = '0.1.0' __author__ = 'Nicholas Earl <nearl@stsci.edu>' __all__ = []
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2018-04-12 18:03 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mathswizard', '0030_auto_20180330_1159'), ] operations = [ migrations.AddField( model_name='studentprofile', name='completed', field=models.IntegerField(default='1'), ), migrations.AddField( model_name='studentprofile', name='levelprog', field=models.IntegerField(default='0'), ), migrations.AddField( model_name='studentprofile', name='skipped', field=models.IntegerField(default='0'), ), migrations.AlterField( model_name='studentprofile', name='cof', field=models.IntegerField(default='0'), ), migrations.AlterField( model_name='studentprofile', name='focus', field=models.CharField(choices=[('Addition', 'Addition'), ('Multiplication', 'Multiplication'), ('Subtraction', 'Subtraction')], default='Addition', max_length=100), ), migrations.AlterField( model_name='studentprofile', name='level', field=models.IntegerField(default='1'), ), ]
import copy import threading import queue class SingleTaskListener(): def __init__(self): self.ev = threading.Event() def wait(self): self.ev.wait() def notify(self, _id, _data): self.ev.set() class MultipleTaskListener(): def __init__(self, count): self.count = 0 self.expected = count self.ev = threading.Event() def wait(self): self.ev.wait() def notify(self, _id, _data): self.count += 1 if self.count == self.expected: self.ev.set() class TaskFuture(): def __init__(self): self.data = None def notify(self, _id, _data): if(_data != None): self.data = copy.deepcopy(_data) class ThreadedWorkQueue(object): def __init__(self): self.queue = queue.Queue() self.thread_handle = None self.work_lock = threading.Lock() self.tasks = {} self.payload = {} self.context_id = None self.context_copy = None self.listeners = None def start(self): self.work_lock.acquire() self.thread_handle = threading.Thread(target=lambda e: e.thread_run_loop(), args=(self,), daemon=True) self.thread_handle.start() self.work_lock.release() def _stop_active_task(self, _id): pass def stop(self): self.work_lock.acquire() if self.thread_handle == None: self.work_lock.release() return #flush queue _tasks = self.tasks _payload = self.payload self.tasks = {} self.payload = {} self.queue.put(None) if self.context_id != None: self.tasks[self.context_id] = _tasks[self.context_id] self.payload[self.context_id] = _payload[self.context_id] del _tasks[self.context_id] del _payload[self.context_id] self._stop_active_task(self.context_id) for i,v in _tasks.items(): self._task_removed(i, copy.deepcopy(v), _payload[i]) self.work_lock.release() self.thread_handle.join() self.thread_handle = None #discard a queued item, item must not be started, if it's started then discard will fail def remove(self, _id): self.work_lock.acquire() if _id != self.context_id: self._try_remove_task(_id) self.work_lock.release() def _task_removed(self, _id, _data, _payload): pass def _try_remove_task(self, _id): data = self.tasks.get(_id,None) if data != None: _p = self.payload[_id] del self.tasks[_id] del self.payload[_id] self._task_removed(_id, copy.deepcopy(data), _p) #add item to queue def add(self, _id, _item_dict, _payload): self.work_lock.acquire() if self.tasks == None or _id in self.tasks: self.work_lock.release() return False self.tasks[_id] = _item_dict self.payload[_id] = _payload self.work_lock.release() self.queue.put(_id) return True def query_items(self): self.work_lock.acquire() result = copy.deepcopy(self.tasks) if self.context_copy != None: result[self.context_id] = copy.deepcopy(self.context_copy) self.work_lock.release() return result def query_status(self): status = None tasks = None active = None self.work_lock.acquire() if (self.thread_handle != None): status = "active" else: status = "inactive" tasks = copy.deepcopy(self.tasks) if self.context_copy != None: active = copy.deepcopy(self.context_copy) self.work_lock.release() return { "status" : status, "queue" : tasks, "active" : active } def is_active(self): self.work_lock.acquire() if self.thread_handle == None: self.work_lock.release() return False result = len(self.tasks) self.work_lock.release() if result > 0: return True return False def wait(self): self.work_lock.acquire() sz = len(self.tasks) if sz > 0: ev = threading.Event() func = lambda: ev.set() if self.listeners == None: self.listeners = [func] else: self.listeners.append(func) self.work_lock.release() ev.wait() return; self.work_lock.release() def prepare_task(self, _id, _itm): return copy.deepcopy(_itm), self.payload.get(_id, None) def execute_active_task(self, _id, _payload): pass def task_finished(self, _id, _task_copy, _payload): del self.tasks[_id] del self.payload[_id] if len(self.tasks) == 0 and self.listeners != None: l = self.listeners self.listeners = None for func in l: func() def acquire_active_context(self): self.work_lock.acquire() return self.context_copy def release_active_context(self, _ctx): self.work_lock.release() def thread_run_loop(self): while True: _id = self.queue.get() if _id == None: break self.work_lock.acquire() _item = self.tasks.get(_id,None) if _item != None: _work_item_copy, _exec_payload = self.prepare_task(_id, _item) self.context_id = _id self.context_copy = _work_item_copy self.work_lock.release() self.execute_active_task(_id, _exec_payload) self.work_lock.acquire() self.context_id = None self.context_copy = None self.task_finished(_id, _work_item_copy, _exec_payload) #else: item could be removed before it was processed self.work_lock.release()
from spock.plugins import DefaultPlugins class PluginLoader: def __init__(self, client, settings): self.plugins = settings['plugins'] del settings['plugins'] self.plugin_settings = settings['plugin_settings'] del settings['plugin_settings'] self.announce = {} self.extensions = { 'Client': client, 'Settings': settings } for plugin in self.plugins: if hasattr(plugin, 'pl_announce'): for ident in plugin.pl_announce: self.announce[ident] = plugin # Make an attempt at providing the reg_event_handler API # But we can't guarantee it will be there (Ha!) event = self.requires('Event') self.reg_event_handler = event.reg_event_handler if event else None while self.plugins: plugin = self.plugins.pop() plugin(self, self.plugin_settings.get(plugin, None)) def requires(self, ident): if ident not in self.extensions: if ident in self.announce: plugin = self.announce[ident] self.plugins.remove(plugin) plugin(self, self.plugin_settings.get(plugin, None)) else: return None return self.extensions[ident] def provides(self, ident, obj): self.extensions[ident] = obj #2 values = Attribute&Setting name, default value #3 values = Attribute name, setting name, default value default_settings = [ ('plugins', DefaultPlugins), ('plugin_settings', {}), ('mc_username', 'username', 'Bot'), ('mc_password', 'password', ''), ('authenticated', True), ('thread_workers', 5), ('bufsize', 4096), ('sock_quit', True), ('sess_quit', True), ] for index, setting in enumerate(default_settings): if len(setting) == 2: default_settings[index] = (setting[0], setting[0], setting[1]) class Client: def __init__(self, **kwargs): #Grab some settings settings = kwargs.get('settings', {}) final_settings = {} for setting in default_settings: val = kwargs.get(setting[1], settings.get(setting[1], setting[2])) final_settings[setting[0]] = val PluginLoader(self, final_settings)
import json import os import confuse import boto3 from botocore.exceptions import ClientError from cachetools import Cache class MissingCredentials(Exception): """ Credentials are missing, see the error output to find possible causes """ pass class CredentialProvider: credentials = None cache = Cache(maxsize=10) def __init__(self, account='default', credentials=None): self.account = account self.read_credentials = [ self.from_env, self.from_secrets, self.read_config ] if credentials: self.credentials = self.Config(**credentials) missing = self.credentials.check_config() if len(missing): raise MissingCredentials('The following configuration parameters are missing: {}'.format(missing)) else: self.load_credentials() def load_credentials(self): for read_method in self.read_credentials: if read_method(): return True def from_secrets(self): if not os.environ.get('SP_API_AWS_SECRET_ID', None): return try: client = boto3.client('secretsmanager') response = client.get_secret_value( SecretId=os.environ.get('SP_API_AWS_SECRET_ID') ) secret = json.loads(response.get('SecretString')) account_data = dict( refresh_token=secret.get('SP_API_REFRESH_TOKEN'), lwa_app_id=secret.get('LWA_APP_ID'), lwa_client_secret=secret.get('LWA_CLIENT_SECRET'), aws_secret_key=secret.get('SP_API_SECRET_KEY'), aws_access_key=secret.get('SP_API_ACCESS_KEY'), role_arn=secret.get('SP_API_ROLE_ARN') ) self.cache['account_data'] = json.dumps(account_data) except ClientError as client_error: return else: self.credentials = self.Config(**account_data) return len(self.credentials.check_config()) == 0 def from_env(self): try: account_data = json.loads(self.cache['account_data']) except KeyError: account_data = dict( refresh_token=self._get_env('SP_API_REFRESH_TOKEN'), lwa_app_id=self._get_env('LWA_APP_ID'), lwa_client_secret=self._get_env('LWA_CLIENT_SECRET'), aws_secret_key=self._get_env('SP_API_SECRET_KEY'), aws_access_key=self._get_env('SP_API_ACCESS_KEY'), role_arn=self._get_env('SP_API_ROLE_ARN') ) self.credentials = self.Config(**account_data) return len(self.credentials.check_config()) == 0 def _get_env(self, key): return os.environ.get('{}_{}'.format(key, self.account), os.environ.get(key)) def read_config(self): try: config = confuse.Configuration('python-sp-api') config_filename = os.path.join(config.config_dir(), 'credentials.yml') config.set_file(config_filename) account_data = config[self.account].get() self.credentials = self.Config(**account_data) missing = self.credentials.check_config() if len(missing): raise MissingCredentials('The following configuration parameters are missing: {}'.format(missing)) except confuse.exceptions.NotFoundError: raise MissingCredentials('The account {} was not setup in your configuration file.'.format(self.account)) except confuse.exceptions.ConfigReadError: raise MissingCredentials( 'Neither environment variables nor a config file were found. ' 'Please set the correct variables, or use a config file (credentials.yml). ' 'See https://confuse.readthedocs.io/en/latest/usage.html#search-paths for search paths.' ) else: return True class Config: def __init__(self, refresh_token, lwa_app_id, lwa_client_secret, aws_access_key, aws_secret_key, role_arn ): self.refresh_token = refresh_token self.lwa_app_id = lwa_app_id self.lwa_client_secret = lwa_client_secret self.aws_access_key = aws_access_key self.aws_secret_key = aws_secret_key self.role_arn = role_arn def check_config(self): errors = [] for k, v in self.__dict__.items(): if not v and k != 'refresh_token': errors.append(k) return errors
'''Implements the `java_compiler_toolchain` rule. Java compiler toolchain instances are created with `java_compiler_toolchain` rule instances. A separate `toolchain` rule instance is used to declare a `java_compiler_toolchain` instance has the type `@dwtj_rules_java//java/toolchains/java_compiler_toolchain:toolchain_type`. See [the Bazel Toolchain documentation][1] for more information. An example might look something like this: ```build java_compiler_toolchain( name = "_my_javac", javac_executable = ":my_javac_executable", ) toolchain( name = "my_javac", exec_compatible_with = [ ... ], target_compatible_with = [ ... ], toolchain = ":_my_javac", toolchain_type = "@dwtj_rules_java//java/toolchains/java_compiler_toolchain:toolchain_type", ) ``` [1]: https://docs.bazel.build/versions/3.4.0/toolchains.html ''' JavaCompilerToolchainInfo = provider( doc = "Specifies the tools, scripts, and configuration needed to compile and JAR Java targets.", fields = { "javac_executable": "A `javac` executable file (in the host configuration).", "jar_executable": "A `jar` executable file (in the host configuration).", "compile_java_jar_script_template": "A template for a script which is used to compile Java sources to a JAR file.", "class_path_separator": "The class path separator to use when invoking this `javac` executable." }, ) def _java_compiler_toolchain_impl(ctx): java_compiler_toolchain_info = JavaCompilerToolchainInfo( javac_executable = ctx.file.javac_executable, jar_executable = ctx.file.jar_executable, compile_java_jar_script_template = ctx.file._compile_java_jar_script_template, class_path_separator = ctx.attr.class_path_separator, ) toolchain_info = platform_common.ToolchainInfo( java_compiler_toolchain_info = java_compiler_toolchain_info, ) return [ toolchain_info, java_compiler_toolchain_info, ] java_compiler_toolchain = rule( implementation = _java_compiler_toolchain_impl, attrs = { "javac_executable": attr.label( allow_single_file = True, mandatory = True, executable = True, cfg = "host", ), "jar_executable": attr.label( allow_single_file = True, mandatory = True, executable = True, cfg = "host", ), # NOTE(dwtj): This seems like a somewhat roundabout way to make this # template available for instantiation in the `compile_java_jar()` # helper function, but I haven't yet figured out another way to do it # which resolves the label to a `File`. # TODO(dwtj): Try the `Label()` constructor. "_compile_java_jar_script_template": attr.label( default = "//java:common/actions/TEMPLATE.compile_java_jar.sh", allow_single_file = True, ), "class_path_separator": attr.string( default = ":", # Defaults to the Unix-like class-path separator. ) }, provides = [JavaCompilerToolchainInfo] )
# Creating a system of authenticating users based on EEG data collected from the Physionet EEGBCI Dataset import os import keras import mne from mne.preprocessing import ICA, create_ecg_epochs from mne import pick_types from mne.channels import make_standard_montage from mne.io import concatenate_raws, read_raw_edf from mne.datasets import eegbci import pandas as pd from sklearn.preprocessing import normalize from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout import tensorflow.keras.metrics import numpy as np from collections import Counter import math from sklearn.utils import resample from keras import metrics from imblearn.over_sampling import SMOTE from sklearn.metrics import precision_recall_curve #Create the task lists each corresponding to a motor movement runs_set = [] task1 = [3,7,11] task2 = [4,8,12] task3 = [5,9,13] task4 = [6,10,14] # ICA function that converts raw data to processed data def getIca(subject, runs): raw_fnames = eegbci.load_data(subject, runs) raw = concatenate_raws([read_raw_edf(f, preload=True) for f in raw_fnames]) eegbci.standardize(raw) montage = make_standard_montage('standard_1005') raw.set_montage(montage) raw.rename_channels(lambda x: x.strip('.')) raw.filter(14., 30.) picks = pick_types(raw.info, eeg=True) ica = ICA(n_components=15, random_state=97) ica.fit(raw) raw.load_data() icaArray = ica.get_components() return icaArray # Create the motor movement passkeys from the processed data for i in range(1,108): hand_set = [] feet_set = [] for r in range(3): runA = getIca(i, task1[r]) #ica for run in task1 runB = getIca(i, task3[r]) #ica for run in task3 hand = np.concatenate((runA,runB),axis=1) # person's task 1 then 3 runC = getIca(i, task2[r]) runD = getIca(i, task4[r]) feet = np.concatenate((runC,runD),axis=1) hand_set.append(hand) feet_set.append(feet) for i in range(15): hand = hand_set[np.random.randint(0,3)] feet = feet_set[np.random.randint(0,3)] hand2 = hand_set[np.random.randint(0,3)] runs_set.append(np.concatenate((hand,feet,hand2),axis=1)) # 2. SMOTE resample to increase the amount of training data data = runs_set # the smote function def smote_resample(x,y): smote = SMOTE(random_state=42, sampling_strategy='minority') sx, sy = smote.fit_resample(x, y) return sx, sy # Get x and y for the classifier x,y = [],[] for i in range(len(data)): features = np.array([feature for feature in data[i][0]]).flatten() x.append(features) if i<15: y.append(1) else: y.append(0) print(y) # Use smote sx, sy = smote_resample(x,y) # Classification print(Counter(sy)) x_train, x_test, y_train, y_test = train_test_split(sx, sy, test_size=0.3) x_train = normalize(np.asarray(x_train)) x_test = normalize(np.asarray(x_test)) print(x_train) y_train = np.asarray(y_train).astype('int32').reshape((-1, 1)) y_test = np.asarray(y_test).astype('int32').reshape((-1, 1)) from tensorflow.keras.models import Sequential model = Sequential([ Dense(30, activation='relu'), Dropout(0.75), Dense(15, activation='relu'), Dropout(0.375), Dense(10, activation='relu'), Dense(1, activation='sigmoid')]) model.compile(optimizer='Adam',loss='binary_crossentropy', metrics=['accuracy','TruePositives','TrueNegatives','FalsePositives','FalseNegatives']) model.fit(x_train, y_train, epochs=30, validation_data=(x_test, y_test), verbose=2) y_pred = model.predict_classes(x_test)
import plotly import plotly.graph_objects as go import dash from dash.dependencies import Input, Output, State import numpy as np import pandas as pd import ipdb from igraph import Graph import networkx as nx import colorlover as cl from itertools import chain, combinations from collections import Counter, OrderedDict from functools import reduce import json import dash_bootstrap_components as dbc from dash.exceptions import PreventUpdate import app_layout graph = Graph.Read_Ncol("data/gov_to_gov/edges.txt") start_vertex = "cdc.gov" start_sensitivity = 0.75 def labeled_pagerank(graph): result = zip(graph.vs["name"], graph.pagerank()) return Counter(dict(result)) original_pagerank = labeled_pagerank(graph) rankings = { page: rank + 1 for rank, (page, score) in enumerate(original_pagerank.most_common()) } def base_normalize(sub, orig, sensitivity=0.75): return sub / (orig ** sensitivity) def relative_pagerank(subgraph, normalize=base_normalize, sensitivity=0.75): subgraph_pagerank = labeled_pagerank(subgraph) # for each vertex v, normalize it's subgraph pagerank by its original pagerank # according to the normalization function return Counter( { v: normalize(subgraph_pagerank[v], original_pagerank[v], sensitivity) for v in subgraph_pagerank.keys() } ) def get_adjacent_subgraph(vertex, mode="ALL", include_self=False): vertex_id = graph.vs.find(name=vertex).index adjacent_vertices = graph.neighbors(vertex, mode=mode) if not include_self: proper_adjacents = [v for v in adjacent_vertices if v != vertex_id] return graph.subgraph(proper_adjacents) else: adjacent_vertices.append(vertex_id) return graph.subgraph(adjacent_vertices) def adjacent_pagerank(vertex, mode="ALL", normalize=base_normalize, sensitivity=0.75): subgraph = get_adjacent_subgraph(vertex, mode=mode) return relative_pagerank(subgraph, normalize=normalize, sensitivity=sensitivity) def processed_pagerank( vertex, mode="ALL", n=10, normalize=base_normalize, sensitivity=0.75 ): vertex_ranks = adjacent_pagerank( vertex, mode=mode, normalize=normalize, sensitivity=sensitivity ).most_common(n) vertices, scores = zip(*vertex_ranks) scores = divide_by_max(scores) return list(vertices), list(scores) def cocitation(g, vertices): A = np.array(g.get_adjacency().data) v_ids = [g.vs.find(name=v).index for v in vertices] return { (g.vs[i]["name"], g.vs[j]["name"]): A[i] @ A[j] for i, j in combinations(v_ids, 2) } def biblio(g, vertices): A = np.array(g.get_adjacency().data) v_ids = [g.vs.find(name=v).index for v in vertices] return { (g.vs[i]["name"], g.vs[j]["name"]): A[:, i] @ A[:, j] for i, j in combinations(v_ids, 2) } def get_hyperlink(website): return f"<a href='https://{website}'> {website}</a>" def divide_by_max(X): A = np.array(list(X)) m = np.max(A) A = 1 / m * A return A def list_concat(lists): return reduce(lambda a, b: a + b, lists, []) def get_starting_positions(vertices): if not vertices: raise ValueError("There are no vertices") y_coords = np.linspace(0.5, -0.5, len(vertices)) return { vertex: (np.random.uniform(-0.01, 0.01), y) for vertex, y in zip(vertices, y_coords) } def top_edges_for_vertex(v, edge_weights): vertex_edge_weights = Counter( {edge: weight for edge, weight in edge_weights.items() if v in edge} ) top_edges_for_vertex = [edge for edge, weight in vertex_edge_weights.most_common(2)] return top_edges_for_vertex def get_positions(edge_weights, subgraph_vertices, mode): starting_positions = get_starting_positions(subgraph_vertices) if len(subgraph_vertices) > 1: weighted_edgelist = [(u, v, w) for (u, v), w in edge_weights.items()] g = nx.Graph() g.add_weighted_edges_from(weighted_edgelist) positions = nx.spring_layout( g, weight="weight", scale=1 / 2, pos=starting_positions ).values() else: positions = starting_positions.values() if mode == "OUT": positions = [p + np.array([2.5, 0]) for p in positions] return positions def get_subgraph_edge_weights(vertex, adjacent_subgraph, subgraph_vertices, mode): all_edge_weights = biblio(adjacent_subgraph, subgraph_vertices + [vertex]) adjacent_edge_weights = { edge: max(weight, 0.1) for edge, weight in all_edge_weights.items() if vertex in edge } local_edge_weights = { edge: weight for edge, weight in all_edge_weights.items() if vertex not in edge } top_local_edges = list_concat( top_edges_for_vertex(v, local_edge_weights) for v in subgraph_vertices ) top_local_edge_weights = { edge: max(weight, 0.1) for edge, weight in local_edge_weights.items() if edge in top_local_edges } return top_local_edge_weights, adjacent_edge_weights def get_node_data(vertex, subgraph_vertices, positions, sizes, mode): subgraph_node_data = { v: {"x": x, "y": y, "size": size, "type": mode.lower()} for v, (x, y), size in zip(subgraph_vertices, positions, sizes) } center_node_data = {vertex: {"x": 1.25, "y": 0, "size": 1.1, "type": "center"}} node_data = {**subgraph_node_data, **center_node_data} return node_data def get_normalized_edge_weights(local_edge_weights, adjacent_edge_weights): edge_weights = {**local_edge_weights, **adjacent_edge_weights} m = max(edge_weights.values()) normalized_edge_weights = { edge: weight / m for edge, weight in edge_weights.items() } return normalized_edge_weights def get_edge_data(normalized_edge_weights, node_data): edge_data = [ {"source": source, "target": target, "weight": weight} for (source, target), weight in normalized_edge_weights.items() ] for edge in edge_data: edge["u_x"] = node_data[edge["source"]]["x"] edge["u_y"] = node_data[edge["source"]]["y"] edge["v_x"] = node_data[edge["target"]]["x"] edge["v_y"] = node_data[edge["target"]]["y"] return edge_data def get_graph_info(subgraph, mode): mode_text = "incoming" if mode == "IN" else "outgoing" n_vertices = subgraph.vcount() - 1 return f"Number of {mode_text} edges: {n_vertices}" def get_subgraph_data(vertex, mode="IN", sensitivity=0.75, n=6): # ipdb.set_trace(context=10) subgraph_vertices, sizes = processed_pagerank( vertex, mode=mode, sensitivity=sensitivity, n=n ) adjacent_subgraph = get_adjacent_subgraph(vertex, mode=mode, include_self=True) local_edge_weights, adjacent_edge_weights = get_subgraph_edge_weights( vertex, adjacent_subgraph, subgraph_vertices, mode ) positions = get_positions(local_edge_weights, subgraph_vertices, mode) node_data = get_node_data(vertex, subgraph_vertices, positions, sizes, mode) normalized_edge_weights = get_normalized_edge_weights( local_edge_weights, adjacent_edge_weights ) edge_data = get_edge_data(normalized_edge_weights, node_data) info = get_graph_info(adjacent_subgraph, mode) return node_data, edge_data, info def make_edge_trace(edge): return go.Scatter( x=(edge["u_x"], edge["v_x"], None), y=(edge["u_y"], edge["v_y"], None), line=dict(width=5 * edge["weight"], color="#999"), showlegend=False, text=f"{edge['source']} -> {edge['target']}", hoverinfo="none", mode="lines", ) def get_node_df(node_data): df = pd.DataFrame(node_data).T.reset_index() n_colors = len(node_data.keys()) n_colors = str(max(3, n_colors)) colors = cl.scales[n_colors]["qual"]["Paired"] df["color"] = colors[: len(df)] df["label_y"] = [0.5 - 0.2 * i for i in range(len(df))] np.linspace(-0.5, 0.5, len(df)) df = df.rename(columns={"index": "name"}) df["link"] = df.name.apply(get_hyperlink) return df def get_half_of_graph(node_df, edge_data): node_traces = [ go.Scatter( x=node_df.x, y=node_df.y, mode="markers", hoverinfo="text", customdata=node_df.name, text=node_df.name, legendgroup="nodes", marker=dict(size=0.25 * node_df.size, color=node_df.color), line_width=2, showlegend=False, ) ] edge_traces = [make_edge_trace(edge) for edge in edge_data] return node_traces, edge_traces def get_legend(df, info): legend_trace = go.Scatter( x=[0] * len(df[:-1]), y=df.label_y, text=df[:-1].link, marker=(dict(size=20, color=df[:-1].color)), showlegend=False, mode="markers+text", textposition="middle right", hoverinfo="none", ) invis_trace = go.Scatter( x=[8] * len(df[:-1]), y=df.label_y, name="incoming", text=df[:-1].link, marker=(dict(size=0, color=df[:-1].color)), showlegend=False, mode="none", hoverinfo="none", ) return { "data": [legend_trace, invis_trace], "layout": go.Layout( title=info, hovermode="closest", xaxis={"showgrid": False, "zeroline": False, "showticklabels": False}, yaxis={"showgrid": False, "zeroline": False, "showticklabels": False}, ), } def get_state(vertex, sensitivity, cache): if (f"{vertex}, {sensitivity}") in cache: ( in_node_data, in_edge_data, left_info, out_node_data, out_edge_data, right_info, ) = cache[f"{vertex}, {sensitivity}"] else: in_node_data, in_edge_data, left_info = get_subgraph_data( vertex, mode="IN", sensitivity=sensitivity ) out_node_data, out_edge_data, right_info = get_subgraph_data( vertex, mode="OUT", sensitivity=sensitivity ) cache[f"{vertex}, {sensitivity}"] = ( in_node_data, in_edge_data, left_info, out_node_data, out_edge_data, right_info, ) in_node_df = get_node_df(in_node_data) left_node_traces, left_edge_traces = get_half_of_graph(in_node_df, in_edge_data) out_node_df = get_node_df(out_node_data) right_node_traces, right_edge_traces = get_half_of_graph(out_node_df, out_edge_data) left_legend = get_legend(in_node_df, left_info) right_legend = get_legend(out_node_df, right_info) graph = { "data": left_edge_traces + right_edge_traces + left_node_traces + right_node_traces, "layout": go.Layout( hovermode="closest", xaxis={"showgrid": False, "zeroline": False, "showticklabels": False}, yaxis={"showgrid": False, "zeroline": False, "showticklabels": False}, ), } title = f"#### [{vertex}](http://vertex): pagerank {rankings[vertex]} of {len(rankings)}" return (title, left_info, left_legend, graph, right_info, right_legend, cache) external_stylesheets = [ dbc.themes.BOOTSTRAP, "https://codepen.io/chriddyp/pen/bWLwgP.css", ] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server app.layout = app_layout.layout app.title = 'Web Flyover' @app.callback( [ Output("title-text", "children"), Output("left-info-panel", "children"), Output("left-legend-panel", "figure"), Output("graph", "figure"), Output("right-info-panel", "children"), Output("right-legend-panel", "figure"), Output("cache", "children"), ], [ Input("graph", "clickData"), Input("back-button", "n_clicks"), Input("sensitivity-slider", "value"), Input("node-search", "value"), ], [ State("left-legend-panel", "figure"), State("graph", "figure"), State("right-legend-panel", "figure"), State("cache", "children"), State("history", "children"), ], ) def update_view( clickData, n_clicks, sensitivity, searched_node, left_legend, graph, right_legend, cache, history, ): history = json.loads(history) if history else [] cache = json.loads(cache) if cache else {} inputs = dash.callback_context.inputs if app_start(inputs): state = get_state(start_vertex, start_sensitivity, cache) else: trigger = dash.callback_context.triggered[0]["prop_id"].split(".")[0] if trigger == "graph" and clickData["points"][0].get("customdata"): new_vertex = clickData["points"][0]["customdata"].split()[0] state = get_state(new_vertex, sensitivity, cache) elif trigger == "back-button" and len(history) > 1: previous_vertex = history[-2] state = get_state(previous_vertex, sensitivity, cache) elif trigger == "sensitivity-slider": current_vertex = history[-1] state = get_state(current_vertex, sensitivity, cache) elif trigger == "node-search" and searched_node: new_vertex = searched_node state = get_state(new_vertex, sensitivity, cache) else: raise PreventUpdate (title, left_info, left_legend, graph, right_info, right_legend, cache) = state return ( title, "", # left_info left_legend, graph, "", # right_info right_legend, json.dumps(cache), ) @app.callback( Output("sensitivity-display", "children"), [Input("sensitivity-slider", "value")] ) def update_sensitivity_display(value): return f"Sensitivity: {value:.2f}" @app.callback( Output("history", "children"), [ Input("graph", "clickData"), Input("back-button", "n_clicks"), Input("node-search", "value"), ], [State("history", "children")], ) def update_history(clickData, n_clicks, searched_node, history): if history: history = json.loads(history) else: history = [] inputs = dash.callback_context.inputs if app_start(inputs): history.append(start_vertex) else: trigger = dash.callback_context.triggered[0]["prop_id"].split(".")[0] if trigger == "graph" and clickData["points"][0].get("customdata"): new_point = clickData["points"][0]["customdata"].split()[0] history.append(new_point) elif trigger == "back-button": if len(history) > 1: history.pop() elif trigger == "node-search" and searched_node: history.append(searched_node) return json.dumps(history) @app.callback( Output("input-data", "children"), [ Input("graph", "clickData"), Input("back-button", "n_clicks"), Input("sensitivity-slider", "value"), Input("node-search", "value"), ], [State("input-data", "children")], ) def dump_input_data(clickData, n_clicks, sensitivity, searched_node, data): data = json.loads(data) if data else [] inputs = dash.callback_context.inputs inputs["app_start"] = app_start(inputs) data.append(inputs) return json.dumps(data, indent=2) @app.callback( Output("trigger-data", "children"), [ Input("graph", "clickData"), Input("back-button", "n_clicks"), Input("sensitivity-slider", "value"), Input("node-search", "value"), ], [State("trigger-data", "children")], ) def dump_trigger_data(clickData, n_clicks, sensitivity, searched_node, data): data = json.loads(data) if data else [] trigger = dash.callback_context.triggered data.append(trigger) return json.dumps(data, indent=2) # dash.callback_context.triggered[0]["prop_id"].split(".")[0] @app.callback(Output("click-data", "children"), [Input("graph", "clickData")]) def dump_click_data(clickData): return json.dumps(clickData, indent=2) def app_start(inputs): graph_clicked = bool(inputs.get("graph.clickData")) sensitivity_adj = bool( inputs.get("sensitivity-slider.value") and inputs.get("sensitivity-slider.value") != 0.75 ) back_pressed = bool(inputs.get("back-button.n_clicks")) node_been_searched = inputs.get("node-search.value") != start_vertex if not any([graph_clicked, sensitivity_adj, back_pressed, node_been_searched]): return True return False if __name__ == "__main__": app.run_server(debug=False)
# Copyright 2019-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """Tests for batch execution of jobs on AWS""" import pennylane as qml import pytest from braket.aws import AwsDevice from pennylane import numpy as np from braket.pennylane_plugin import BraketAwsQubitDevice, BraketLocalQubitDevice @pytest.mark.parametrize("shots", [None]) def test_batch_execution_of_gradient(device, shots, mocker): """Test that the output of a parallelized execution of batch circuits to evaluate the gradient is correct in comparison to default.qubit.""" qubits = 2 layers = 2 dev_aws = device(qubits) if isinstance(dev_aws, BraketLocalQubitDevice): pytest.skip("Parallelized batch execution is only supported on the remote AWS device") dev_aws._parallel = True dev_default = qml.device("default.qubit", wires=qubits) def func(weights): qml.templates.StronglyEntanglingLayers(weights, wires=range(qubits)) return qml.expval(qml.PauliZ(0)) qnode_aws = qml.QNode(func, dev_aws) qnode_default = qml.QNode(func, dev_default) weights = qml.init.strong_ent_layers_uniform(layers, qubits) dfunc_aws = qml.grad(qnode_aws) dfunc_default = qml.grad(qnode_default) spy1 = mocker.spy(BraketAwsQubitDevice, "execute") spy2 = mocker.spy(BraketAwsQubitDevice, "batch_execute") spy3 = mocker.spy(AwsDevice, "run_batch") res_aws = dfunc_aws(weights) res_default = dfunc_default(weights) assert np.allclose(res_aws, res_default) spy1.assert_called_once() # For a forward pass spy2.assert_called_once() spy3.assert_called_once() expected_circuits = qubits * layers * 3 * 2 assert len(spy2.call_args_list[0][0][1]) == expected_circuits @pytest.mark.parametrize("shots", [None]) def test_batch_execution_of_gradient_torch(device, shots, mocker): """Test that the output of a parallelized execution of batch circuits to evaluate the gradient is correct in comparison to default.qubit when using the torch interface.""" try: import torch except ImportError: pytest.skip("This test requires installation of torch") qubits = 2 layers = 2 dev_aws = device(qubits) if isinstance(dev_aws, BraketLocalQubitDevice): pytest.skip("Parallelized batch execution is only supported on the remote AWS device") dev_aws._parallel = True dev_default = qml.device("default.qubit", wires=qubits) def func(weights): qml.templates.StronglyEntanglingLayers(weights, wires=range(qubits)) return qml.expval(qml.PauliZ(0)) qnode_aws = qml.QNode(func, dev_aws, interface="torch") qnode_default = qml.QNode(func, dev_default, interface="torch") weights_aws = torch.tensor( qml.init.strong_ent_layers_uniform(layers, qubits, seed=1967), requires_grad=True ) weights_default = torch.tensor( qml.init.strong_ent_layers_uniform(layers, qubits, seed=1967), requires_grad=True ) spy1 = mocker.spy(BraketAwsQubitDevice, "execute") spy2 = mocker.spy(BraketAwsQubitDevice, "batch_execute") spy3 = mocker.spy(AwsDevice, "run_batch") out_aws = qnode_aws(weights_aws) out_default = qnode_default(weights_default) out_aws.backward() out_default.backward() res_aws = weights_aws.grad res_default = weights_default.grad assert np.allclose(res_aws, res_default) spy1.assert_called_once() # For a forward pass spy2.assert_called_once() spy3.assert_called_once() expected_circuits = qubits * layers * 3 * 2 assert len(spy2.call_args_list[0][0][1]) == expected_circuits @pytest.mark.parametrize("shots", [None]) def test_batch_execution_of_gradient_tf(device, shots, mocker): """Test that the output of a parallelized execution of batch circuits to evaluate the gradient is correct in comparison to default.qubit when using the tf interface.""" tf = pytest.importorskip("tensorflow", minversion="2.4") qubits = 2 layers = 2 dev_aws = device(qubits) if isinstance(dev_aws, BraketLocalQubitDevice): pytest.skip("Parallelized batch execution is only supported on the remote AWS device") dev_aws._parallel = True dev_default = qml.device("default.qubit", wires=qubits) def func(weights): qml.templates.StronglyEntanglingLayers(weights, wires=range(qubits)) return qml.expval(qml.PauliZ(0)) qnode_aws = qml.QNode(func, dev_aws, interface="tf") qnode_default = qml.QNode(func, dev_default, interface="tf") weights_aws = tf.Variable(qml.init.strong_ent_layers_uniform(layers, qubits, seed=1967)) weights_default = tf.Variable(qml.init.strong_ent_layers_uniform(layers, qubits, seed=1967)) spy1 = mocker.spy(BraketAwsQubitDevice, "execute") spy2 = mocker.spy(BraketAwsQubitDevice, "batch_execute") spy3 = mocker.spy(AwsDevice, "run_batch") with tf.GradientTape() as tape: out_aws = qnode_aws(weights_aws) res_aws = tape.gradient(out_aws, weights_aws) with tf.GradientTape() as tape: out_default = qnode_default(weights_default) res_default = tape.gradient(out_default, weights_default) assert np.allclose(res_aws, res_default) spy1.assert_called_once() # For a forward pass spy2.assert_called_once() spy3.assert_called_once() expected_circuits = qubits * layers * 3 * 2 assert len(spy2.call_args_list[0][0][1]) == expected_circuits
# Generated by Django 2.0.9 on 2018-12-18 13:38 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0004_auto_20181218_0846'), ] operations = [ migrations.AddField( model_name='user', name='address', field=models.TextField(blank=True, default='', verbose_name='address'), ), migrations.AlterField( model_name='user', name='birthday', field=models.DateField(blank=True, default=datetime.date(2018, 12, 18), verbose_name='birthday'), ), ]
#!/bin/env python import unittest from unittest.mock import Mock from pyats.topology import Device from genie.metaparser.util.exceptions import SchemaEmptyParserError,\ SchemaMissingKeyError from genie.libs.parser.iosxe.show_run import ShowRunPolicyMap, ShowRunInterface class TestShowRunPolicyMap(unittest.TestCase): device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = { "policy_map": { "L3VPN-0_in": { "class": { "HEY_in": { "police": { "cir_bps": "365", "pir_bps": "235", "conformed": "transmit", "exceeded": "drop" } }, "OSPF": { "police": { "cir_bps": "543", "pir_bps": "876", "conformed": "transmit", "exceeded": "drop" } }, "class-default": { "police": { "cir_bps": "2565", "cir_bc_bytes": "4234", "conformed": "transmit", "exceeded": "drop" }, "service_policy": "child" } } } } } golden_output = {'execute.return_value': '''\ show run policy-map L3VPN-0_in Building configuration... Current configuration : 56 bytes ! policy-map L3VPN-0_in class HEY_in police cir 365 pir 235 conform-action transmit exceed-action drop class OSPF police cir 543 pir 876 conform-action transmit exceed-action drop class class-default police cir 2565 bc 4234 conform-action transmit exceed-action drop service-policy child ! end '''} def test_empty(self): self.device1 = Mock(**self.empty_output) obj = ShowRunPolicyMap(device=self.device1) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse(name= 'L3VPN-0_in') def test_golden(self): self.device1 = Mock(**self.golden_output) obj = ShowRunPolicyMap(device=self.device1) parsed_output = obj.parse(name= 'L3VPN-0_in') self.assertEqual(parsed_output,self.golden_parsed_output) class TestShowRunInterface(unittest.TestCase): maxDiff = None device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = { 'interfaces': { 'GigabitEthernet1/0/13': { 'authentication_control_direction': 'in', 'authentication_event_fail_action': 'next-method', 'authentication_fallback': 'dot1x', 'authentication_host_mode': 'multi-auth', 'authentication_order': 'dot1x mab', 'authentication_periodic': True, 'authentication_port_control': 'auto', 'authentication_priority': 'dot1x mab', 'authentication_timer_inactivity': '65535', 'authentication_timer_reauthenticate_server': True, 'authentication_violation': 'restrict', 'description': 'ISE Controlled Port', 'dot1x_pae_authenticator': True, 'dot1x_timeout_quiet_period': '5', 'dot1x_timeout_server_timeout': '10', 'dot1x_timeout_tx_period': '5', 'ip_arp_inspection_limit_rate': '1024', 'ip_dhcp_snooping_limit_rate': '100', 'load_interval': '30', 'mab': True, 'snmp_trap_link_status': False, 'snmp_trap_mac_notification_change_added': True, 'snmp_trap_mac_notification_change_removed': True, 'spanning_tree_bpduguard': 'enable', 'spanning_tree_portfast': True, 'switchport_access_vlan': '70', 'switchport_mode': 'access', 'switchport_nonegotiate': 'nonegotiate', }, }, } golden_output = {'execute.return_value': '''\ #show running-config interface Gi1/0/13 Building configuration... Current configuration : 914 bytes ! interface GigabitEthernet1/0/13 description ISE Controlled Port switchport access vlan 70 switchport mode access switchport nonegotiate ip arp inspection limit rate 1024 load-interval 30 authentication control-direction in authentication event fail action next-method authentication host-mode multi-auth authentication order dot1x mab authentication priority dot1x mab authentication port-control auto authentication periodic authentication timer reauthenticate server authentication timer inactivity 65535 authentication violation restrict authentication fallback dot1x mab snmp trap mac-notification change added snmp trap mac-notification change removed no snmp trap link-status dot1x pae authenticator dot1x timeout quiet-period 5 dot1x timeout server-timeout 10 dot1x timeout tx-period 5 spanning-tree portfast spanning-tree bpduguard enable ip dhcp snooping limit rate 100 end '''} golden_parsed_output1 = { 'interfaces': { 'GigabitEthernet0': { 'description': '"Boot lan interface"', 'ipv4': { 'ip': '10.1.21.249', 'netmask': '255.255.255.0', }, 'negotiation_auto': True, 'vrf': 'Mgmt-intf', }, }, } golden_output1 = {'execute.return_value': '''\ #show running-config interface GigabitEthernet0 Building configuration... Current configuration : 150 bytes ! interface GigabitEthernet0 description "Boot lan interface" vrf forwarding Mgmt-intf ip address 10.1.21.249 255.255.255.0 negotiation auto end '''} golden_parsed_output2 = { 'interfaces': { 'Port-channel1.100': { 'encapsulation_dot1q': '201', 'ipv4': { 'ip': '202.0.0.1', 'netmask': '255.255.255.0', }, 'ipv6': ['2002::1/112'], 'ipv6_ospf': { '1': { 'area': '0', }, }, }, }, } golden_output2 = {'execute.return_value': '''\ interface Port-channel1.100 encapsulation dot1Q 201 ip address 202.0.0.1 255.255.255.0 ipv6 address 2002::1/112 ipv6 ospf 1 area 0 end '''} golden_parsed_output3 = { 'interfaces': { 'GigabitEthernet0/0/3': { 'ip_ospf': { '2': { 'area': '0', }, }, 'ipv4': { 'ip': '99.99.110.1', 'netmask': '255.255.255.0', }, 'ipv6': ['2003::1/112'], 'ipv6_ospf': { '1': { 'area': '0', }, }, 'negotiation_auto': True, }, }, } golden_output3 = {'execute.return_value': '''\ interface GigabitEthernet0/0/3 ip address 99.99.110.1 255.255.255.0 ip ospf 2 area 0 negotiation auto ipv6 address 2003::1/112 ipv6 ospf 1 area 0 end '''} golden_parsed_output4 = { 'interfaces': { 'GigabitEthernet0/0/0.101': { 'encapsulation_dot1q': '101', 'ipv4': { 'ip': '201.0.0.1', 'netmask': '255.255.255.0', }, 'ipv6': ['2001::1/112'], 'ipv6_enable': True, 'ipv6_ospfv3': { '1': { 'area': '0', }, }, 'vrf': 'VRF1', }, }, } golden_output4 = {'execute.return_value': '''\ interface GigabitEthernet0/0/0.101 encapsulation dot1Q 101 vrf forwarding VRF1 ip address 201.0.0.1 255.255.255.0 ipv6 address 2001::1/112 ipv6 enable ospfv3 1 ipv6 area 0 end '''} golden_parsed_output5 = { 'interfaces': { 'Loopback1': { 'ipv4': { 'ip': '200.1.0.2', 'netmask': '255.255.255.0', }, 'ipv6': ['1:1:1::1/64', '2000:1::2/112'], 'vrf': 'VRF1', }, }, } golden_output5 = {'execute.return_value': '''\ interface Loopback1 vrf forwarding VRF1 ip address 200.1.0.2 255.255.255.0 ipv6 address 1:1:1::1/64 ipv6 address 2000:1::2/112 end '''} golden_parsed_output6 = { 'interfaces': { 'GigabitEthernet0/0/0': { 'carrier_delay': ['up 60', 'down 60'], 'ipv6': ['1::1/112'], 'negotiation_auto': True, }, }, } golden_output6 = {'execute.return_value': '''\ interface GigabitEthernet0/0/0 no ip address carrier-delay up 60 carrier-delay down 60 negotiation auto ipv6 address 1::1/112 end '''} def test_empty(self): self.device1 = Mock(**self.empty_output) obj = ShowRunInterface(device=self.device1) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse(interface='GigabitEthernet0/0/0') def test_golden(self): self.device1 = Mock(**self.golden_output) obj = ShowRunInterface(device=self.device1) parsed_output = obj.parse(interface='Gi1/0/13') self.assertEqual(parsed_output,self.golden_parsed_output) def test_golden1(self): self.device1 = Mock(**self.golden_output1) obj = ShowRunInterface(device=self.device1) parsed_output = obj.parse(interface='GigabitEthernet0') self.assertEqual(parsed_output,self.golden_parsed_output1) def test_golden2(self): self.device1 = Mock(**self.golden_output2) obj = ShowRunInterface(device=self.device1) parsed_output = obj.parse(interface='Port-channel1.100') self.assertEqual(parsed_output,self.golden_parsed_output2) def test_golden3(self): self.device1 = Mock(**self.golden_output3) obj = ShowRunInterface(device=self.device1) parsed_output = obj.parse(interface='GigabitEthernet0/0/3') self.assertEqual(parsed_output,self.golden_parsed_output3) def test_golden4(self): self.device1 = Mock(**self.golden_output4) obj = ShowRunInterface(device=self.device1) parsed_output = obj.parse(interface='GigabitEthernet0/0/0.101') self.assertEqual(parsed_output,self.golden_parsed_output4) def test_golden5(self): self.device1 = Mock(**self.golden_output5) obj = ShowRunInterface(device=self.device1) parsed_output = obj.parse(interface='Loopback1') self.assertEqual(parsed_output,self.golden_parsed_output5) def test_golden6(self): self.device1 = Mock(**self.golden_output6) obj = ShowRunInterface(device=self.device1) parsed_output = obj.parse(interface='GigabitEthernet0/0/0') self.assertEqual(parsed_output,self.golden_parsed_output6) if __name__ == '__main__': unittest.main()
import pigpio import time import cwiid import os import sys from timeout import timeout, TimeoutError pi = pigpio.pi() is_debug = "debug" in sys.argv class Skateboard(object): motor = 18 led = 17 button = 27 min_speed = 2000 max_speed = 1000 servo_smooth = 1.8 smooth_sleep = 0.005 accel_sleep = 0.08 def __init__(self): pi.set_PWM_frequency(Skateboard.motor, 50) pi.set_mode(Skateboard.led, pigpio.OUTPUT) pi.set_mode(Skateboard.button, pigpio.INPUT) pi.set_pull_up_down(Skateboard.button, pigpio.PUD_UP) self.__speed = 1500 self.speed=1500 @property def speed(self): return self.__speed @speed.setter def speed(self, value): value = max(min(value, Skateboard.min_speed), Skateboard.max_speed) while abs(value-self.__speed) > Skateboard.servo_smooth: direction = cmp(value, self.__speed) self.__speed += direction * Skateboard.servo_smooth pi.set_servo_pulsewidth(Skateboard.motor, self.__speed) time.sleep(Skateboard.smooth_sleep) pi.set_servo_pulsewidth(Skateboard.motor, value) self.__speed = value time.sleep(Skateboard.accel_sleep) def blinky(self,times,period): for i in range (1,times): pi.write(self.led,1) time.sleep(period) pi.write(self.led,0) time.sleep(period) def connection_process(self): connected = False while not connected: self.blinky(5,0.4) try: self.wii = cwiid.Wiimote(bdaddr="bluetooth adress here") 00:1F:C5:86:3E:85 connected = True self.blinky(40,0.03) self.wii.rpt_mode = cwiid.RPT_BTN self.wii.rumble = 1 time.sleep(1) self.wii.rumble = 0 except RuntimeError: pass def run_process(self): pi.write(self.led, 1) self.get_status() if self.status_button: self.wii.rumble=1 time.sleep(2) self.wii.rumble=0 raise RuntimeError("Status Button") if (self.buttons & cwiid.BTN_B): self.speed = 1500 time.sleep(0.5) if (self.buttons & cwiid.BTN_DOWN): self.speed += 1 if (self.buttons & cwiid.BTN_UP): self.speed -= 1 if (self.buttons & cwiid.BTN_A): self.speed = 1000 if (self.buttons & cwiid.BTN_PLUS): Skateboard.accel_sleep += 0.025 time.sleep(0.5) if Skateboard.accel_sleep >= 0.1: Skateboard.accel_sleep = 0.1 print(Skateboard.accel_sleep) if (self.buttons & cwiid.BTN_MINUS): Skateboard.accel_sleep -= 0.025 time.sleep(0.5) if Skateboard.accel_sleep <= 0: Skateboard.accel_sleep = 0 print(Skateboard.accel_sleep) @timeout(0.4) def get_status(self): self.buttons = self.wii.state['buttons'] self.status_button = not pi.read(Skateboard.button) ### Main Program ### skate = Skateboard() skate.blinky(20,0.05) skate.connection_process() while True: try: skate.run_process() # print(skate.speed) except KeyboardInterrupt: raise except: skate.speed = 1500 if is_debug: raise else: os.system("poweroff")
""" Motion Decoder model for OmniDet. # author: Varun Ravi Kumar <rvarun7777@gmail.com> This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; Authors provide no warranty with the software and are not liable for anything. """ import numpy as np import torch import torch.nn as nn from models.normnet_decoder import PixelShuffleICNR, conv3x3 from models.semantic_decoder import convblock class MotionDecoder(nn.Module): def __init__(self, num_ch_enc, n_classes=2, siamese_net=False): super().__init__() self.n_classes = n_classes self.num_ch_enc = num_ch_enc # [64, 64, 128, 256, 512] # [64, 64, 128, 256, 512] for motion_decoder and [128, 128, 256, 512, 1024] for siamese net self.num_ch_enc = num_ch_enc if not siamese_net else self.num_ch_enc * 2 self.num_ch_dec = np.array([16, 32, 64, 128, 256]) if not siamese_net else np.array([16, 32, 64, 128, 256]) * 2 # decoder self.upconv_4_0 = convblock(self.num_ch_enc[-1], self.num_ch_dec[4]) self.upconv_4_1 = convblock(self.num_ch_dec[4] + self.num_ch_enc[3], self.num_ch_dec[4]) self.upconv_3_0 = convblock(self.num_ch_dec[4], self.num_ch_dec[3]) self.upconv_3_1 = convblock(self.num_ch_dec[3] + self.num_ch_enc[2], self.num_ch_dec[3]) self.upconv_2_0 = convblock(self.num_ch_dec[3], self.num_ch_dec[2]) self.upconv_2_1 = convblock(self.num_ch_dec[2] + self.num_ch_enc[1], self.num_ch_dec[2]) self.upconv_1_0 = convblock(self.num_ch_dec[2], self.num_ch_dec[1]) self.upconv_1_1 = convblock(self.num_ch_dec[1] + self.num_ch_enc[0], self.num_ch_dec[1]) self.upconv_0_0 = convblock(self.num_ch_dec[1], self.num_ch_dec[0]) self.upconv_0_1 = convblock(self.num_ch_dec[0], self.num_ch_dec[0]) self.motion_conv_0 = conv3x3(self.num_ch_dec[0], self.n_classes) self.shuffle_conv_4_0 = PixelShuffleICNR(self.num_ch_dec[4], self.num_ch_dec[4] * 4) self.shuffle_conv_3_0 = PixelShuffleICNR(self.num_ch_dec[3], self.num_ch_dec[3] * 4) self.shuffle_conv_2_0 = PixelShuffleICNR(self.num_ch_dec[2], self.num_ch_dec[2] * 4) self.shuffle_conv_1_0 = PixelShuffleICNR(self.num_ch_dec[1], self.num_ch_dec[1] * 4) self.shuffle_conv_0_0 = PixelShuffleICNR(self.num_ch_dec[0], self.num_ch_dec[0] * 4) def forward(self, input_features): outputs = dict() x = input_features[-1] x = self.upconv_4_0(x) x = self.shuffle_conv_4_0(x) x = torch.cat((x, input_features[3]), dim=1) x = self.upconv_4_1(x) x = self.upconv_3_0(x) x = self.shuffle_conv_3_0(x) x = torch.cat((x, input_features[2]), dim=1) x = self.upconv_3_1(x) x = self.upconv_2_0(x) x = self.shuffle_conv_2_0(x) x = torch.cat((x, input_features[1]), dim=1) x = self.upconv_2_1(x) x = self.upconv_1_0(x) x = self.shuffle_conv_1_0(x) x = torch.cat((x, input_features[0]), dim=1) x = self.upconv_1_1(x) x = self.upconv_0_0(x) x = self.shuffle_conv_0_0(x) if torch.onnx.is_in_onnx_export(): return self.motion_conv_0(x) else: outputs[("motion", 0)] = self.motion_conv_0(x) return outputs
from argparse import ArgumentParser from threading import Lock from queue import Queue from smartmirror.messages_handler import MessagesHandler from smartmirror.ui_thread import UiThread from smartmirror.uc_thread import UcThread from smartmirror.Logger import Logger, init_logger """ Init program properties - set args parameters - init Logger buffer into file and std output """ def init_properties(): parser = ArgumentParser( prog='smartmirror', description='Smart Mirror program', epilog='more detailed information in README.md file https://github.com/not4juu/SmartMirror' ) parser.add_argument('-v', '--verbose', action='count', help='show verbose logs on console') parser.add_argument('--version', action='version', version='%(prog)s 1.0.0') args = parser.parse_args() init_logger(logs_to_file=True, verbose=args.verbose) Logger.debug('Initialization of properties finish successfully') """ Init program threads: - user interface thread - user command thread """ def init_program_threads(): message_queue = Queue() message_locker = Lock() message_handler = MessagesHandler(messages_queue=message_queue, messages_locker=message_locker) main_ui_thread = UiThread(messages_handler=message_handler) main_ui_thread.start() main_uc_thread = UcThread(messages_handler=message_handler) main_uc_thread.start() message_queue.join() Logger.debug('Threads starts successfully') """ Main function calls by program """ def main(): init_properties() init_program_threads() if __name__ == "__main__": main() Logger.info(__name__ + " ends")
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2019 RedLotus <ssfdust@gmail.com> # Author: RedLotus <ssfdust@gmail.com> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ app.modules.auth.permissions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 权限定义以及映射模块,此模块用以建立默认的 角色权限关系,修改后通过 `inv app.db.update-app-permissions` 进行更新权限关系 """ class ROLES: """角色字段定义""" SuperUser = "SuperUser" User = "User" UserManager = "UserManager" EmailTemplateManager = "EmailTemplateManager" # End Of ROLES class PERMISSIONS: """权限字段定义""" SuperUser = "SuperPrivilege" User = "UserPrivilege" # UserManager GroupAdd = "GroupAddPrivilege" GroupDelete = "GroupDeletePrivilege" GroupEdit = "GroupEditPrivilege" GroupQuery = "GroupQueryPrivilege" UserEdit = "UserEditPrivilege" # EmailTemplateManager EmailTemplateAdd = "EmailTemplateAddPrivilege" EmailTemplateEdit = "EmailTemplateEditPrivilege" EmailTemplateDelete = "EmailTemplateDeletePrivilege" EmailTemplateQuery = "EmailTemplateQueryPrivilege" # End Of PERMISSIONS # 默认的角色权限映射 DEFAULT_ROLES_PERMISSIONS_MAPPING = { ROLES.SuperUser: [ PERMISSIONS.SuperUser, PERMISSIONS.User, # 用户管理 PERMISSIONS.GroupAdd, PERMISSIONS.GroupDelete, PERMISSIONS.GroupEdit, PERMISSIONS.GroupQuery, PERMISSIONS.UserEdit, # 电子邮件模板管理 PERMISSIONS.EmailTemplateAdd, PERMISSIONS.EmailTemplateDelete, PERMISSIONS.EmailTemplateEdit, PERMISSIONS.EmailTemplateQuery, # End Of SuperUser ], ROLES.UserManager: [ PERMISSIONS.GroupAdd, PERMISSIONS.GroupDelete, PERMISSIONS.GroupEdit, PERMISSIONS.GroupQuery, PERMISSIONS.UserEdit, ], ROLES.EmailTemplateManager: [ PERMISSIONS.EmailTemplateAdd, PERMISSIONS.EmailTemplateDelete, PERMISSIONS.EmailTemplateEdit, PERMISSIONS.EmailTemplateQuery, ], # End Of Permissions Mapping }
from time import sleep from time import time import threading import pygame import random import subprocess import hashlib import datetime from Security.SerialReader import SerialReader from Security.PhoneDetect import PhoneDetect from Security.Camera import Camera from Messenger.Messenger import Messenger class Security: armed = False alert = False key1 = False key2 = False statusModify = 0 camera = "" firstMotion = 0 lastAlert = 0 armedTime = 0 lastMessageSent = 0 def __init__(self): self.camera = Camera() self.key1 = PhoneDetect.key1 self.key2 = PhoneDetect.key2 if self.key1==False and self.key2==False: self.armed = True self.camera.open() else: self.camera.close() while True: timestamp = int(time()) if PhoneDetect.key1!=self.key1: self.statusModify = timestamp self.key1 = PhoneDetect.key1 if PhoneDetect.key2!=self.key2: self.statusModify = timestamp self.key2 = PhoneDetect.key2 if self.statusModify == timestamp: if self.key1==False and self.key2==False: self.armed = True self.armedTime = timestamp self.camera.open() else: if self.armed: if self.armedTime < timestamp - 600: Messenger.sendMessage("", "Riasztó kikapcsolva") self.armed = False self.armedTime = 0 self.camera.close() if self.armed and SerialReader.motion: if self.armedTime == timestamp-600: Messenger.sendMessage("","Riasztó aktív!") if self.armedTime < timestamp-600: if self.lastAlert < timestamp-10: self.lastAlert = timestamp self.mp3(["mp3/alert.mp3"]) delta = datetime.datetime.now() + datetime.timedelta(0, 1) img = "webc_" + delta.strftime("%Y-%m-%d_%H-%M-%S") + ".png" md5text = "showDreyaImage" + img md5 = hashlib.md5(md5text.encode()).hexdigest() Messenger.sendMessage("", "Mozgás a lakásban! http://remote.host.com/watchtheimage.php?id=" + md5) self.upload() sleep(1) def mp3(self, mp3s): mp3 = random.choice(mp3s) # pygame.init() # pygame.mixer.init() # pygame.mixer.music.load(mp3) # pygame.mixer.music.play() def upload(self): threading.Thread(target = upload).start() def upload(): bashCommand = "/Dreya/upload.sh" process = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE) output, error = process.communicate()
import numpy as np import matplotlib.pyplot as plt plt.figure() data = np.loadtxt("temperaturas.dat") plt.show(data) plt.savefig("calor.png")
import django.forms as forms from django.http import HttpResponseRedirect from django.shortcuts import render_to_response, RequestContext from django.contrib import admin from django.template import Template, Context from polymorphic.admin import ( PolymorphicParentModelAdmin, PolymorphicChildModelAdmin, PolymorphicChildModelFilter, ) from reversion.admin import VersionAdmin from website.apps.core.admin import TrackedModelAdmin from website.apps.survey.models import Question, OptionQuestion, Section from website.apps.survey.models import ( Response, OptionResponse, FloatResponse, IntegerResponse, TextResponse, ) class QuestionChildAdmin(TrackedModelAdmin, VersionAdmin, PolymorphicChildModelAdmin): base_model = Question class CategoryForm(forms.Form): _selected_action = forms.CharField(widget=forms.MultipleHiddenInput) section = forms.ModelChoiceField(Section.objects) subsection = forms.ModelChoiceField(Section.objects) def change_category(request, queryset, message_user): form = None if 'cancel' in request.POST: message_user(request, 'Canceled change section(s)') return elif 'change' in request.POST: # do the categorization form = CategoryForm(request.POST) if form.is_valid(): section = form.cleaned_data['section'] subsection = form.cleaned_data['subsection'] for link in queryset: link.subsection = section link.section = subsection link.save() message_user( request, Template('Successfully changed section(s) and subsection(s)').render( Context({'count': queryset.count(), 'category': section}))) return HttpResponseRedirect(request.get_full_path()) if not form: form = CategoryForm( initial={ '_selected_action': request.POST.getlist(admin.ACTION_CHECKBOX_NAME)}) return render_to_response( 'admin/change.html', RequestContext( request, {'links': queryset, 'form': form, 'path': request.get_full_path()})) class NumberForm(forms.Form): _selected_action = forms.CharField(widget=forms.MultipleHiddenInput) offset = forms.IntegerField() def question_number(request, queryset, message_user): form = None if 'cancel' in request.POST: message_user(request, 'Canceled changing question number') return elif 'change' in request.POST: form = NumberForm(request.POST) if form.is_valid(): offset = form.cleaned_data['offset'] for link in queryset: link.number += offset link.save() message_user( request, Template('Successfully changed question numbers').render( Context({'count': queryset.count()}))) return HttpResponseRedirect(request.get_full_path()) if not form: form = NumberForm( initial={ '_selected_action': request.POST.getlist(admin.ACTION_CHECKBOX_NAME)}) return render_to_response( 'admin/categorize.html', RequestContext( request, {'links': queryset, 'form': form, 'path': request.get_full_path()})) class QuestionAdmin(TrackedModelAdmin, VersionAdmin, PolymorphicParentModelAdmin): actions = ['changeCategory', 'questionNumber'] base_model = Question list_filter = (PolymorphicChildModelFilter,) ordering = ('number',) child_models = [ (Question, QuestionChildAdmin), (OptionQuestion, QuestionChildAdmin), ] def questionNumber(self, request, queryset): # pragma: no cover return question_number(request, queryset, self.message_user) questionNumber.short_description = 'Change question number(s)' def changeCategory(self, request, queryset): # pragma: no cover return change_category(request, queryset, self.message_user) changeCategory.short_description = 'Change section' class ResponseAdmin(TrackedModelAdmin, VersionAdmin): date_hierarchy = 'added' list_filter = ('author', 'question', 'culture') ordering = ('id',) search_fields = ('codersnotes',) list_display = ('question', 'culture', 'author') class FloatResponseAdmin(TrackedModelAdmin, VersionAdmin): date_hierarchy = 'added' list_filter = ('author', 'question', 'culture') ordering = ('id',) search_fields = ('codersnotes',) list_display = ('question', 'culture', 'author', 'response') class IntegerResponseAdmin(TrackedModelAdmin, VersionAdmin): date_hierarchy = 'added' list_filter = ('author', 'question', 'culture') ordering = ('id',) search_fields = ('codersnotes',) list_display = ('question', 'culture', 'author', 'response') class TextResponseAdmin(TrackedModelAdmin, VersionAdmin): date_hierarchy = 'added' list_filter = ('author', 'question', 'culture') ordering = ('id',) search_fields = ('codersnotes',) list_display = ('question', 'culture', 'author', 'response') class OptionResponseAdmin(TrackedModelAdmin, VersionAdmin): date_hierarchy = 'added' list_filter = ('author', 'question', 'culture') ordering = ('id',) search_fields = ('codersnotes',) list_display = ('question', 'culture', 'author', 'response') admin.site.register(Response, ResponseAdmin) admin.site.register(Question, QuestionAdmin) admin.site.register(FloatResponse, FloatResponseAdmin) admin.site.register(IntegerResponse, IntegerResponseAdmin) admin.site.register(TextResponse, TextResponseAdmin) admin.site.register(OptionResponse, OptionResponseAdmin)
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** # Export this package's modules as members: from .dedicated_cloud_node import * from .dedicated_cloud_service import * from .get_dedicated_cloud_node import * from .get_dedicated_cloud_service import * from .get_virtual_machine import * from .virtual_machine import * from ._inputs import * from . import outputs
"""Parser for loading config file """ import configparser import os.path from utils.consts import * def load_configs(config_file, config_section, config_keys): """Loads configurations from config file based on given config section and values Arguments: config_file {string} -- configuration section to read config_keys {string[]} -- list of keys to read from the section Returns: dict<string, string> -- map containing configuration for given section """ if not os.path.isfile(config_file): return None config = configparser.ConfigParser() config.read(config_file) if config_section not in config: return None for key in config_keys: if key not in config[config_section]: print(key) return None return config[config_section]
# -*- coding: utf-8 -*- """ Created on Wed Dec 22 19:28:35 2021 @author: Arya """ # imports import cv2 import glob import skimage.transform as trans import numpy as np import model from tensorflow.keras.models import save_model # loading data x_train = [] y_train = [] x_test = [] y_test = [] path = "D:/BTproject/Dataset/no/" images = glob.glob(path + "*.jpg") images.sort() for x in images: image = cv2.imread(x, cv2.IMREAD_GRAYSCALE) image = image / 255 image = trans.resize(image,(256,256)) y_train.append(0) x_train.append(image) path = "D:/BTproject/Dataset/yes/" images = glob.glob(path + "*.jpg") images.sort() for x in images: image = cv2.imread(x, cv2.IMREAD_GRAYSCALE) image = image / 255 image = trans.resize(image,(256,256)) y_train.append(1) x_train.append(image) path = "D:/BTproject/Dataset/test/no/" images = glob.glob(path + "*.jpg") images.sort() for x in images: image = cv2.imread(x, cv2.IMREAD_GRAYSCALE) image = image / 255 image = trans.resize(image,(256,256)) y_test.append(0) x_test.append(image) path = "D:/BTproject/Dataset/test/yes/" images = glob.glob(path + "*.jpg") images.sort() for x in images: image = cv2.imread(x, cv2.IMREAD_GRAYSCALE) image = image / 255 image = trans.resize(image,(256,256)) y_test.append(1) x_test.append(image) del(x, image, images, path) # preparing data x_train = np.array(x_train) y_train = np.array(y_train) x_test = np.array(x_test) y_test = np.array(y_test) x_train = np.reshape(x_train, (len(x_train), 256, 256, 1)) x_test = np.reshape(x_test, (len(x_test), 256, 256, 1)) # train model BTcnn = model.cnn_bt() BTcnn.summary() BTcnn.fit(x_train, y_train, epochs=15, batch_size=4, verbose=1) save_model(BTcnn, 'BTcnnModel.h5') # Evaluate the model on test set score = BTcnn.evaluate(x_test, y_test, verbose=0) # Print test accuracy print('\n', 'Test accuracy:', score[1])
from .xpath_condition import XPathCondition from .xpath_condition_equals import XPathConditionEquals from .xpath_condition_contains import XPathConditionContains from .xpath_condition_starts_with import XPathConditionStartsWith from .xpath_attribute_value import XpathAttributeValue from .xpath_attribute_value_equals import XpathAttributeValueEquals from .xpath_attribute_value_contains import XpathAttributeValueContains from .xpath_attribute_value_starts_with import XpathAttributeValueStartsWith from .enums import *
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import fixtures from keystoneauth1 import session as ksa_session import mock import os_client_config from openstack import connection from openstack import exceptions from openstack import profile from openstack import session from openstack.tests.unit import base CONFIG_AUTH_URL = "http://127.0.0.1:5000/v2.0" CONFIG_USERNAME = "BozoTheClown" CONFIG_PASSWORD = "TopSecret" CONFIG_PROJECT = "TheGrandPrizeGame" CONFIG_CACERT = "TrustMe" CLOUD_CONFIG = """ clouds: sample: region_name: RegionOne auth: auth_url: {auth_url} username: {username} password: {password} project_name: {project} insecure: auth: auth_url: {auth_url} username: {username} password: {password} project_name: {project} cacert: {cacert} insecure: True cacert: auth: auth_url: {auth_url} username: {username} password: {password} project_name: {project} cacert: {cacert} insecure: False """.format(auth_url=CONFIG_AUTH_URL, username=CONFIG_USERNAME, password=CONFIG_PASSWORD, project=CONFIG_PROJECT, cacert=CONFIG_CACERT) class TestConnection(base.TestCase): @mock.patch("openstack.session.Session") def test_other_parameters(self, mock_session_init): mock_session_init.return_value = mock_session_init mock_profile = mock.Mock() mock_profile.get_services = mock.Mock(return_value=[]) conn = connection.Connection(profile=mock_profile, authenticator='2', verify=True, cert='cert', user_agent='1') args = {'auth': '2', 'user_agent': '1', 'verify': True, 'cert': 'cert'} mock_session_init.assert_called_with(mock_profile, **args) self.assertEqual(mock_session_init, conn.session) def test_session_provided(self): mock_session = mock.Mock(spec=session.Session) mock_profile = mock.Mock() mock_profile.get_services = mock.Mock(return_value=[]) conn = connection.Connection(session=mock_session, profile=mock_profile, user_agent='1') self.assertEqual(mock_session, conn.session) def test_ksa_session_provided(self): mock_session = mock.Mock(spec=ksa_session.Session) mock_profile = mock.Mock() mock_profile.get_services = mock.Mock(return_value=[]) self.assertRaises(exceptions.SDKException, connection.Connection, session=mock_session, profile=mock_profile, user_agent='1') @mock.patch("keystoneauth1.loading.base.get_plugin_loader") def test_create_authenticator(self, mock_get_plugin): mock_plugin = mock.Mock() mock_loader = mock.Mock() mock_options = [ mock.Mock(dest="auth_url"), mock.Mock(dest="password"), mock.Mock(dest="username"), ] mock_loader.get_options = mock.Mock(return_value=mock_options) mock_loader.load_from_options = mock.Mock(return_value=mock_plugin) mock_get_plugin.return_value = mock_loader auth_args = { 'auth_url': '0', 'username': '1', 'password': '2', } conn = connection.Connection(auth_plugin='v2password', **auth_args) mock_get_plugin.assert_called_with('v2password') mock_loader.load_from_options.assert_called_with(**auth_args) self.assertEqual(mock_plugin, conn.authenticator) @mock.patch("keystoneauth1.loading.base.get_plugin_loader") def test_default_plugin(self, mock_get_plugin): connection.Connection() self.assertTrue(mock_get_plugin.called) self.assertEqual(mock_get_plugin.call_args, mock.call("password")) @mock.patch("keystoneauth1.loading.base.get_plugin_loader") def test_pass_authenticator(self, mock_get_plugin): mock_plugin = mock.Mock() mock_get_plugin.return_value = None conn = connection.Connection(authenticator=mock_plugin) self.assertFalse(mock_get_plugin.called) self.assertEqual(mock_plugin, conn.authenticator) def test_create_session(self): auth = mock.Mock() prof = profile.Profile() conn = connection.Connection(authenticator=auth, profile=prof) self.assertEqual(auth, conn.authenticator) self.assertEqual(prof, conn.profile) self.assertEqual('openstack.telemetry.alarm.v2._proxy', conn.alarm.__class__.__module__) self.assertEqual('openstack.cluster.v1._proxy', conn.cluster.__class__.__module__) self.assertEqual('openstack.compute.v2._proxy', conn.compute.__class__.__module__) self.assertEqual('openstack.database.v1._proxy', conn.database.__class__.__module__) self.assertEqual('openstack.identity.v3._proxy', conn.identity.__class__.__module__) self.assertEqual('openstack.image.v2._proxy', conn.image.__class__.__module__) self.assertEqual('openstack.network.v2._proxy', conn.network.__class__.__module__) self.assertEqual('openstack.object_store.v1._proxy', conn.object_store.__class__.__module__) self.assertEqual('openstack.load_balancer.v2._proxy', conn.load_balancer.__class__.__module__) self.assertEqual('openstack.orchestration.v1._proxy', conn.orchestration.__class__.__module__) self.assertEqual('openstack.telemetry.v2._proxy', conn.telemetry.__class__.__module__) self.assertEqual('openstack.workflow.v2._proxy', conn.workflow.__class__.__module__) def _prepare_test_config(self): # Create a temporary directory where our test config will live # and insert it into the search path via OS_CLIENT_CONFIG_FILE. config_dir = self.useFixture(fixtures.TempDir()).path config_path = os.path.join(config_dir, "clouds.yaml") with open(config_path, "w") as conf: conf.write(CLOUD_CONFIG) self.useFixture(fixtures.EnvironmentVariable( "OS_CLIENT_CONFIG_FILE", config_path)) def test_from_config_given_data(self): self._prepare_test_config() data = os_client_config.OpenStackConfig().get_one_cloud("sample") sot = connection.from_config(cloud_config=data) self.assertEqual(CONFIG_USERNAME, sot.authenticator._username) self.assertEqual(CONFIG_PASSWORD, sot.authenticator._password) self.assertEqual(CONFIG_AUTH_URL, sot.authenticator.auth_url) self.assertEqual(CONFIG_PROJECT, sot.authenticator._project_name) def test_from_config_given_name(self): self._prepare_test_config() sot = connection.from_config(cloud_name="sample") self.assertEqual(CONFIG_USERNAME, sot.authenticator._username) self.assertEqual(CONFIG_PASSWORD, sot.authenticator._password) self.assertEqual(CONFIG_AUTH_URL, sot.authenticator.auth_url) self.assertEqual(CONFIG_PROJECT, sot.authenticator._project_name) def test_from_config_given_options(self): self._prepare_test_config() version = "100" class Opts(object): compute_api_version = version sot = connection.from_config(cloud_name="sample", options=Opts) pref = sot.session.profile.get_filter("compute") # NOTE: Along the way, the `v` prefix gets added so we can build # up URLs with it. self.assertEqual("v" + version, pref.version) def test_from_config_verify(self): self._prepare_test_config() sot = connection.from_config(cloud_name="insecure") self.assertFalse(sot.session.verify) sot = connection.from_config(cloud_name="cacert") self.assertEqual(CONFIG_CACERT, sot.session.verify) def test_authorize_works(self): fake_session = mock.Mock(spec=session.Session) fake_headers = {'X-Auth-Token': 'FAKE_TOKEN'} fake_session.get_auth_headers.return_value = fake_headers sot = connection.Connection(session=fake_session, authenticator=mock.Mock()) res = sot.authorize() self.assertEqual('FAKE_TOKEN', res) def test_authorize_silent_failure(self): fake_session = mock.Mock(spec=session.Session) fake_session.get_auth_headers.return_value = None fake_session.__module__ = 'openstack.session' sot = connection.Connection(session=fake_session, authenticator=mock.Mock()) res = sot.authorize() self.assertIsNone(res)
#!/usr/bin/env python3 import unittest from text_to_image.utilities import convert_char_to_int class ConvertCharToIntTestCase(unittest.TestCase): def test_letters_to_8bit_value(self): letters = sorted(("a", "b", "c", "i", "h", "o", "v", "x", "y", "q", "A", "B", "C", "D", "I", "P", "Q", "R", "X", "Z", "T", "E", "F")) for letter in letters: self.assertEqual(ord(letter), convert_char_to_int(letter, limit=256)) def test_numbers_to_8bit_value(self): for no in range(0, 10): self.assertEqual(ord(str(no)), convert_char_to_int(str(no), limit=256)) def test_last_char_value_for_7_8_16bit_numbers(self): self.assertEqual(1, convert_char_to_int(chr(128), limit=128)) self.assertEqual(1, convert_char_to_int(chr(256), limit=256)) self.assertEqual(1, convert_char_to_int(chr(65536), limit=65536)) def test_raises_error_when_char_lenght_not_1(self): self.assertRaises(TypeError, convert_char_to_int, "abc") if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import random random.seed(1) # comment-out this line to change sequence each time # Write a program that stores random DNA sequence in a string # The sequence should be 30 nt long # On average, the sequence should be 60% AT # Calculate the actual AT fraction while generating the sequence # Report the length, AT fraction, and sequence #create a variable for DNA # everytime the loop occus,I need to add an AT or GC """ for i in range(30): r = random.random() if r >0.6: print(i,'G') elif r<0.6: print(i,'A') else: print(i,'?') #Not good because that if r=0.6 code will not work but because right now r has no 0.6 so it works. Another workable code for this problem import random random.seed(1) dna="" for i in range(30): r = random.random() if r < 0.3: dna += 'A' #A is 30% while T is 30% so AT is 60% elif r < 0.6: dna += 'T' elif r < 0.8: dna += 'C' else : dna += 'G' print(dna) """ dna ="" for i in range(30): if random.random()>0.6: #this is to satisfy line 8 if random.random()>0.5:#this is to see if its going to be G or C dna += 'G' else: dna += 'C' else: if random.random()>0.5: #this is to see if its going to be A or T dna += 'A' #this is more clear than the above code lines 15 - 22 else: dna += 'T' at = 0 for i in range(len(dna)): if dna[i] == 'A': at += 1 elif dna[i] == 'T': at += 1 print(len(dna),at/len(dna)) print(dna) """ python3 22atseq.py 30 0.6666666666666666 ATTACCGTAATCTACTATTAAGTCACAACC """
# -*- coding: utf-8 -*- """ Copyright () 2019 All rights reserved FILE: duration_calculate.py AUTHOR: tianyuningmou DATE CREATED: @Time : 2019-06-23 15:49 DESCRIPTION: . VERSION: : #1 CHANGED By: : tianyuningmou CHANGE: : MODIFIED: : @Time : 2019-06-23 15:49 """ import datetime from math import * class DurationCalculate(object): """ 包含计算多个时间段的算法,采用双指针,时间复杂度O(n),空间复杂度O(1) """ @classmethod def duration_calculate_to_seconds(cls, durations, date_time): """ 计算多个时间段之和,重叠部分不计算,并转换成秒 :param durations: example: [[t1, t2], [t3, t4], ...] :param date_time: 截止时间,可不填 :return: """ return cls.duration_calculate(durations, date_time).seconds @classmethod def duration_calculate_to_minutes(cls, durations, date_time, *args): """ 计算多个时间段之和,重叠部分不计算,并转换成分钟 :param durations: example: [[t1, t2], [t3, t4], ...] :param date_time: 截止时间,可不填 :param args: 填写精确类型--> floor, round, ceil :return: """ if args or args[0] == 'ceil': return ceil(cls.duration_calculate(durations, date_time).seconds / 60.0) elif args[0] == 'round': return round(cls.duration_calculate(durations, date_time).seconds / 60.0) elif args[0] == 'floor': return floor(cls.duration_calculate(durations, date_time).seconds / 60.0) else: return "请输入['ceil'] or ['round'] or ['floor'], 或者不填" @classmethod def duration_calculate_to_hours(cls, durations, date_time, *args): """ 计算多个时间段之和,重叠部分不计算,并转换成小时 :param durations: example: [[t1, t2], [t3, t4], ...] :param date_time: 截止时间,可不填 :param args: 填写精确类型--> floor, round, ceil :return: """ if args or args[0] == 'ceil': return ceil(cls.duration_calculate(durations, date_time).seconds / 3600.0) elif args[0] == 'round': return round(cls.duration_calculate(durations, date_time).seconds / 3600.0) elif args[0] == 'floor': return floor(cls.duration_calculate(durations, date_time).seconds / 3600.0) else: return "请输入['ceil'] or ['round'] or ['floor'], 或者不填" @classmethod def duration_calculate_to_days(cls, durations, date_time): """ 计算多个时间段之和,重叠部分不计算,并转换成天 :param durations: example: [[t1, t2], [t3, t4], ...] :param date_time: 截止时间,可不填 :return: """ return cls.duration_calculate(durations, date_time).days @classmethod def duration_calculate_to_months(cls, durations, date_time, *args): """ 计算多个时间段之和,重叠部分不计算,并转换成月 :param durations: example: [[t1, t2], [t3, t4], ...] :param date_time: 截止时间,可不填 :param args: 填写精确类型--> floor, round, ceil :return: """ if args or args[0] == 'ceil': return ceil(cls.duration_calculate_to_days(durations, date_time) / 30.0) elif args[0] == 'round': return round(cls.duration_calculate_to_days(durations, date_time) / 30.0) elif args[0] == 'floor': return floor(cls.duration_calculate_to_days(durations, date_time) / 30.0) else: return "请输入['ceil'] or ['round'] or ['floor'], 或者不填" @classmethod def duration_calculate(cls, durations, date_time=None): """ 计算时间段差值的基础算法 :param durations: example: [[t1, t2], [t3, t4], ...] :param date_time: 截止时间,可不填 :return: """ if len(durations) == 1: return durations[0][1] - durations[0][0] start = 0 end = 1 duration = 0 if not date_time: if isinstance(durations[0][0], datetime.datetime): date_time = datetime.datetime.now() else: raise IOError('请输入截止值date_time') while end < len(durations): if durations[start][0] > date_time: break if durations[start][1] > date_time: duration += date_time - durations[start][0] break else: if durations[start][1] > durations[end][1]: end += 1 elif durations[end][0] < durations[start][1] < durations[end][1]: duration += durations[end][0] - durations[start][0] if end == len(durations) - 1: duration += durations[end][1] - durations[end][0] start = end end += 1 else: duration += durations[start][1] - durations[start][0] if end == len(durations) - 1: duration += durations[end][1] - durations[end][0] start = end end += 1 return duration if __name__ == '__main__': print(DurationCalculate.duration_calculate([[1, 5], [2, 3], [6, 9]], date_time=10))
from django.contrib.auth.tokens import default_token_generator from django.contrib.sites.shortcuts import get_current_site from django.core.mail import EmailMessage from django.template.loader import render_to_string def send_email(user, request, mail_subject, message_template): current_site = get_current_site(request) message = render_to_string(message_template, { 'user': user, 'domain': current_site.domain, 'pk': user.id, 'token': default_token_generator.make_token(user), }) EmailMessage( mail_subject, message, to=(user.email,) ).send()
from __future__ import absolute_import try: import tensorflow as tf except ImportError: # The lack of tensorflow will be caught by the low-level routines. pass class Pyramid(object): """A tensorflow representation of a transform domain signal. An interface-compatible version of :py:class:`dtcwt.Pyramid` where the initialiser arguments are assumed to be :py:class:`tf.Variable` instances. The attributes defined in :py:class:`dtcwt.Pyramid` are implemented via properties. The original tf arrays may be accessed via the ``..._op(s)`` attributes. .. py:attribute:: lowpass_op A tensorflow tensor that can be evaluated in a session to return the coarsest scale lowpass signal for the input, X. .. py:attribute:: highpasses_op A tuple of tensorflow tensors, where each element is the complex subband coefficients for corresponding scales finest to coarsest. .. py:attribute:: scales_ops *(optional)* A tuple where each element is a tensorflow tensor containing the lowpass signal for corresponding scales finest to coarsest. This is not required for the inverse and may be *None*. """ def __init__(self, lowpass, highpasses, scales=None, numpy=False): self.lowpass_op = lowpass self.highpasses_ops = highpasses self.scales_ops = scales self.numpy = numpy @property def lowpass(self): if not hasattr(self, '_lowpass'): if self.lowpass_op is None: self._lowpass = None else: with tf.Session() as sess: sess.run(tf.global_variables_initializer()) self._lowpass = sess.run(self.lowpass_op) return self._lowpass @property def highpasses(self): if not hasattr(self, '_highpasses'): if self.highpasses_ops is None: self._highpasses = None else: with tf.Session() as sess: sess.run(tf.global_variables_initializer()) self._highpasses = \ tuple(sess.run(x) for x in self.highpasses_ops) return self._highpasses @property def scales(self): if not hasattr(self, '_scales'): if self.scales_ops is None: self._scales = None else: with tf.Session() as sess: sess.run(tf.global_variables_initializer()) self._scales = tuple(sess.run(x) for x in self.scales_ops) return self._scales
#--------------------------- # Title: File orthogrid_op.py #--------------------------- ############################ # IMPORT MODULES ############################ import bpy from bpy.types import ( Panel, Operator, ) from bpy.props import IntProperty, BoolProperty, StringProperty, PointerProperty from . orthogrid_props import * ############################## # OPERATORS ############################## def add_orthogrid(self, context): context = bpy.context scn = context.scene pos = scn.cursor.location #gsx = scn.orthogrid_props.gridsize_x mesh = bpy.ops.mesh.primitive_grid_add( size= 10, x_subdivisions=scn.orthogrid_props.gridsubdiv_x, y_subdivisions=scn.orthogrid_props.gridsubdiv_y, #view_align=False, enter_editmode=False, location=pos) class SCENE_OT_add_orthogrid(Operator): """Create a new Mesh Object""" bl_idname = "scene.add_orthogrid" bl_label = "Add Grid Object" bl_options = {'REGISTER', 'UNDO'} def execute(self, context): add_orthogrid(self, context) context = bpy.context scn = context.scene # move en edit mode than the center is the corner LeftBottom bpy.ops.object.editmode_toggle() bpy.ops.transform.translate(value=(0.5, 0, 0), proportional_size=1) bpy.ops.transform.translate(value=(0, 0.5, 0), proportional_size=1) bpy.ops.mesh.delete(type='ONLY_FACE') bpy.ops.object.editmode_toggle() # Add object options obj = context.active_object obj.show_axis = scn.orthogrid_props.show_axis obj.show_texture_space = scn.orthogrid_props.show_space obj.show_name = scn.orthogrid_props.show_name obj.name = scn.orthogrid_props.grid_name # array duplicate over x bpy.ops.object.modifier_add(type='ARRAY') obj.modifiers["Array"].name = "multi4x" obj.modifiers["multi4x"].count = scn.orthogrid_props.gridsize_x obj.modifiers["multi4x"].use_merge_vertices = True obj.modifiers["multi4x"].show_on_cage = True obj.modifiers["multi4x"].show_expanded = False # array duplicate over y bpy.ops.object.modifier_add(type='ARRAY') obj.modifiers["Array"].name = "multi4y" obj.modifiers["multi4y"].relative_offset_displace[0] = 0 obj.modifiers["multi4y"].relative_offset_displace[1] = 1 obj.modifiers["multi4y"].count = scn.orthogrid_props.gridsize_y obj.modifiers["multi4y"].use_merge_vertices = True obj.modifiers["multi4y"].show_on_cage = True obj.modifiers["multi4y"].show_expanded = False # apply modifiers bpy.ops.object.modifier_apply(apply_as='DATA', modifier="multi4x") bpy.ops.object.modifier_apply(apply_as='DATA', modifier="multi4y") return {'FINISHED'}
from __future__ import annotations from spark_auto_mapper_fhir.fhir_types.uri import FhirUri from spark_auto_mapper_fhir.value_sets.generic_type import GenericTypeCode from spark_auto_mapper.type_definitions.defined_types import AutoMapperTextInputType # This file is auto-generated by generate_classes so do not edit manually # noinspection PyPep8Naming class ContractResourceAssetAvailiabilityCodesCode(GenericTypeCode): """ ContractResourceAssetAvailiabilityCodes From: http://hl7.org/fhir/asset-availability in valuesets.xml This value set has asset availability codes. """ def __init__(self, value: AutoMapperTextInputType): super().__init__(value=value) """ http://hl7.org/fhir/asset-availability """ codeset: FhirUri = "http://hl7.org/fhir/asset-availability" class ContractResourceAssetAvailiabilityCodesCodeValues: """ To be completed From: http://hl7.org/fhir/asset-availability in valuesets.xml """ Lease = ContractResourceAssetAvailiabilityCodesCode("lease")
# -*- coding: utf-8 -*- """ Created on Thu Jan 18 12:59:20 2018 @author: gamer """ from ale_python_interface import ALEInterface import utils.env as utils import numpy as np import collections OPTIONS = {"IMAGES_SIZE":(80,80)} CROP = {"breakout":(32,10,8,8)} class ALE(ALEInterface): def __init__(self,game_name, render=True): super(ALE, self).__init__() self.crop = CROP[game_name] self.num_frames = num_frames self.load_rom(game_name,render) self.load_params() self._actions_raw = self.getMinimalActionSet().tolist() self.action_space = Discrete(len(self._actions_raw)) self.observation_space = Box(0,255,OPTIONS["IMAGES_SIZE"]+(self.num_frames,)) def load_params(self): self._start_lives = self.lives() self._current_state = np.zeros(self.observation_space.shape) def load_rom(self,rom_file,render): self.setInt(str.encode('random_seed'), 123) self.setFloat(str.encode('repeat_action_probability'), 0.0) self.setBool(str.encode('sound'), False) self.setBool(str.encode('display_screen'), render) self.loadROM(str.encode("./roms/"+utils.game_name(rom_file))) def get_current_state(self): up,down,left,right = self.crop return utils.process_frame(self.getScreenRGB()[up:-down,left:-right], OPTIONS["IMAGES_SIZE"])) def step(self,action): reward = 0 assert action in range(self.actions_n), "Action not available" reward = self.act(action) state = self.get_current_state() return state, reward, self.lives() != self._start_lives, None def reset(self): self.reset_game() self.load_params() return self.get_current_state() def clone(self): env = self.cloneSystemState() env.params() return env
import collections import csv import os import re import subprocess import sys import tempfile def rename_benchmark(bm): if "hd-d0" in bm: return "%02d-d0" % int(re.match("\(.+ ([0-9]+)\)", bm).group(1)) elif "hd-d5" in bm: return "%02d-d5" % int(re.match("\(.+ ([0-9]+)\)", bm).group(1)) elif "array-search" in bm: return "arraysearch-%02d" % int(re.match("\(.+ ([0-9]+)\)", bm).group(1)) elif "inversek2j-theta1" in bm: return "inversek2j-1" elif "inversek2j-theta2" in bm: return "inversek2j-2" elif "qm" in bm: return "%s" % re.match("\(qm (.+)\)", bm).group(1) else: return bm[1:-1] # s-expr f = open("%s.out.csv" % sys.argv[1]) rdr = csv.DictReader(f) f2 = open("%s.csv" % sys.argv[1], "w") f2.write("\"benchmark\",\"group\",\"time\",\"timeout\"\n") for row in rdr: f2.write("%s,%s,%s,%s\n" % (rename_benchmark(row["benchmark"]), row["group"], row["time"], row["timeout"])) f2.close() f.close() fR = tempfile.NamedTemporaryFile() fR.write(''' library(ggplot2) library(grid) library(reshape2) library(gridExtra) library(scales) df <- read.csv("%s") df$timeout_label = sapply(df$timeout, function(x) if (x=="True") return("*") else return("")) df$group <- factor(df$group, c("arraysearch", "qm", "hd-d0", "hd-d5", "parrot")) levels(df$group)[levels(df$group)=="hd-d0"] <- "Hacker's Delight d0" levels(df$group)[levels(df$group)=="hd-d5"] <- "Hacker's Delight d5" levels(df$group)[levels(df$group)=="parrot"] <- "Parrot" levels(df$group)[levels(df$group)=="arraysearch"] <- "Array Search" levels(df$group)[levels(df$group)=="qm"] <- "CIA" clean_names <- gsub("arraysearch-0(.)", "arraysearch-\\\\1", df$benchmark) labels <- setNames(clean_names, df$benchmark) print(labels) p <- ggplot(df, aes(x=benchmark, y=time)) p <- p + geom_bar(stat="identity", fill="#356384", width=0.85) p <- p + facet_grid(. ~ group, scales="free_x", space="free_x") p <- p + geom_text(aes(label=timeout_label, x=benchmark, y=time+1), size=3) p <- p + theme_bw(9) p <- p + theme(plot.margin=unit(c(0.2, 0.2, 0, 0), "cm")) p <- p + scale_y_log10(expand=c(0,0), breaks=c(10, 100, 1000, 10000), limits=c(1, 20000)) p <- p + scale_x_discrete(labels=labels) p <- p + labs(x="Benchmark", y="Solving time (secs)") p <- p + theme(legend.position="none") p <- p + theme(axis.text.x=element_text(angle=90, vjust=0.5, hjust=1.0, size=5,margin=margin(0))) p <- p + theme(strip.background=element_rect(fill="#eeeeee", size=0.4, colour="#aaaaaa")) p <- p + theme(panel.border=element_rect(fill=NA, size=0.4, colour="#aaaaaa")) p <- p + theme(axis.ticks.x=element_blank()) ggsave("./%s.pdf", p, width=7, height=2.16) ''' % (f2.name, sys.argv[1])) fR.flush() subprocess.check_call(["Rscript", fR.name]) fR.close()
import os import os.path import errno ################################################################ def create_dir(path): try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise ################################################################ def file_exists(path): return os.path.isfile(path)
import os, logging, json, threading, pygame, random, math, sys from random import randint import punchykickgravityflipwarz.colours from punchykickgravityflipwarz.sprite_sheet import SpriteSheet from punchykickgravityflipwarz.entity import Entity from punchykickgravityflipwarz.vector import Vector from punchykickgravityflipwarz.item import * logger = logging.getLogger(__name__) TILE_SIZE = 32 PLAYER_JUMP_SPEED = 10 PLAYER_SPEED = 5 PLAYER_RADIUS = 15 PLAYER_DIAMETER = 2 * PLAYER_RADIUS RESET_GAME = False class Player(Entity): def __init__(self, name, controls, sprite_sheet_file_name, game, location = (0,0)): super().__init__(location[0], location[1], TILE_SIZE, TILE_SIZE) logger.debug(f"Creating player [{name}].") self.name = name self.lives = 3 self.controls = controls self.vel_x = 0 self.vel_y = 0 self.acc_x = 0 self.direction = 0 self.game = game self.item_type = Gun(self, self.game) self.game.item_types.add(self.item_type) self.item_type.rect = self.rect # Setup the sprites/animation. sheet = SpriteSheet(os.path.join('punchykickgravityflipwarz', 'resources', sprite_sheet_file_name)) super().add_sprite("stood_right", sheet, (0, 0, TILE_SIZE, TILE_SIZE)) super().add_sprite("stood_left", sheet, (3*TILE_SIZE, TILE_SIZE, TILE_SIZE, TILE_SIZE)) super().add_sprites("walking_right", sheet, (TILE_SIZE, 0, TILE_SIZE, TILE_SIZE), 3, (TILE_SIZE, 0)) super().add_sprites("walking_left", sheet, (2*TILE_SIZE, TILE_SIZE, TILE_SIZE, TILE_SIZE), 3, (-TILE_SIZE, 0)) super().set_sprite("stood_right") super().update_animation() def capture_inputs(self): keys = pygame.key.get_pressed() if self.controls.joystick is not None: joystick = self.controls.joystick hats = joystick.get_hat(0) self.key_up = hats[1]==1 self.key_down = hats[1]==-1 self.key_left = hats[0]==-1 self.key_right = hats[0]==1 if (joystick.get_numbuttons()>2): self.key_space = joystick.get_button( 1 )==1 else: self.key_space = keys[self.controls.getKeys()["space"]] elif self.controls.network is not None: self.key_up = self.controls.network["state"]["up"] self.key_down = self.controls.network["state"]["down"] self.key_left = self.controls.network["state"]["left"] self.key_right = self.controls.network["state"]["right"] self.key_space = self.controls.network["state"]["a"] else: self.key_up = keys[self.controls.keys["up"]] self.key_down = keys[self.controls.keys["down"]] self.key_left = keys[self.controls.keys["left"]] self.key_right = keys[self.controls.keys["right"]] self.key_space = keys[self.controls.keys["space"]] def update(self): self.capture_inputs() # items if self.item_type is not None: self.item_type.update() if self.key_space: item_finished, items = self.item_type.action() if item_finished: self.item_type = None for item in items: self.game.items.add(item) self.death() # Left/right movement if self.key_left: self.vel_x = -PLAYER_SPEED super().set_sprite("walking_left") self.direction = 0 elif self.key_right: super().set_sprite("walking_right") self.direction = 1 self.vel_x = PLAYER_SPEED else: self.vel_x = 0 if self.direction == 0: super().set_sprite("stood_left") elif self.direction == 1: super().set_sprite("stood_right") self.vel_x += self.acc_x self.acc_x = 0 self.rect.x += self.vel_x tile_hit_list = pygame.sprite.spritecollide(self, self.game.world.tiles, False) for tile in tile_hit_list: if self.vel_x > 0: self.rect.right = tile.rect.left elif self.vel_x < 0: self.rect.left = tile.rect.right # up/down movement if self.game.world.gravity < 0: sign = -1 else: sign = 1 if self.vel_y == 0: self.vel_y = 1 * sign else: self.vel_y += self.game.world.gravity if self.key_up: self.rect.y += sign*2 tile_hit_list = pygame.sprite.spritecollide(self, self.game.world.tiles, False) self.rect.y -= sign*2 if len(tile_hit_list) > 0: self.vel_y = -1 * sign * PLAYER_JUMP_SPEED self.rect.y += self.vel_y tile_hit_list = pygame.sprite.spritecollide(self, self.game.world.tiles, False) for tile in tile_hit_list: if self.vel_y > 0: self.rect.bottom = tile.rect.top elif self.vel_y < 0: self.rect.top = tile.rect.bottom self.vel_y = 0 super().update_animation() def death(self): if (self.rect.x < 0): self.lives -= 1 print(f"{self.name} died, {self.lives} lives remaining") RESET_GAME = True; elif (self.rect.x > 1920): self.lives -= 1 print(f"{self.name} died, {self.lives} lives remaining") RESET_GAME = True; elif (self.rect.y > 1200): self.lives -= 1 print(f"{self.name} died, {self.lives} lives remaining") RESET_GAME = True; def show(self, screen): super().show()
import os import sys import logging from typing import Iterable, Type from types import TracebackType import discord def catch_all(type_: Type[BaseException], value: BaseException, traceback: TracebackType) -> None: # Log an error for Discord logging.error("Uncaught exception:", exc_info=(type_, value, traceback)) # Pass to default handler (prints, exits, etc.) sys.__excepthook__(type_, value, traceback) class DiscordLogHandler(logging.Handler): def __init__(self, webhook_id: str, webhook_token: str) -> None: super().__init__() self.webhook = discord.Webhook.partial(webhook_id, webhook_token, adapter=discord.RequestsWebhookAdapter()) def emit(self, record: logging.LogRecord) -> None: fmt = self.format(record) as_code = "\n" in fmt for part in self._message_parts(fmt, as_code): self.webhook.send(part) @staticmethod def _message_parts(msg: str, as_code: bool, max_len: int = 2000) -> Iterable[str]: if as_code: return (f'```{msg[start:start+max_len-6]}```' for start in range(0, len(msg), max_len - 6)) return (msg[start:start + max_len] for start in range(0, len(msg), max_len)) def setup_log_handler(debug: bool = False) -> bool: if not sys.argv[0].endswith('gunicorn'): level = logging.DEBUG if debug else logging.INFO logging.basicConfig( format='[%(asctime)s] [%(levelname)-8s] %(message)s', level=level ) logging.info('Logging started for \'%s\' at log level %s', sys.argv[1], level) # Set up Discord logger so we can see errors discord_webhook_id = os.environ.get('DISCORD_WEBHOOK_ID') discord_webhook_token = os.environ.get('DISCORD_WEBHOOK_TOKEN') if discord_webhook_id and discord_webhook_token: handler = DiscordLogHandler(discord_webhook_id, discord_webhook_token) handler.setLevel(logging.ERROR) logging.getLogger('').addHandler(handler) return True return False
"""Step definitions for behavioural tests.""" from behave import given, then # pylint:disable=no-name-in-module @given(u"the user visits {path}") def visit(context, path): """Code for the user visiting a path on the web site.""" url = "http://localhost:8000{}".format(path) context.response = context.client.get(url, follow_redirects=True) @then(u"the user sees {some_string}") def sees(context, some_string): """Code to assert that the user sees some string in the response.""" response_string = context.response.get_data(as_text=True) fail_msg = "{} not in {}".format(some_string, response_string) assert some_string in response_string, fail_msg
import datetime from bs4 import BeautifulSoup import utils import requests URL = 'https://www.sports-reference.com/cbb/boxscores/index.cgi?month=MONTH&day=DAY&year=YEAR' DATA_FOLDER = utils.DATA_FOLDER def scrape_scores(date_obj): ''' scrape and return stats in the form of a list of lists where each sublist is information from a single game played on the specified day ''' day, month, year = str(date_obj.day), str(date_obj.month), str(date_obj.year) day_stats = [] url = URL.replace("DAY", day).replace("MONTH", month).replace("YEAR", year) data = requests.get(url).content table_divs = BeautifulSoup(data,'html.parser').find_all("div", {'class': 'game_summary'}) this_day_string = date_obj.strftime('%Y%m%d') print(this_day_string) for div in table_divs: tables = div.find('tbody') rows = tables.find_all('tr') stats = [1 if len(rows) == 3 else 0] for row in rows[:2]: datapts = row.find_all('td')[:2] stats.append(datapts[0].find('a').text) stats.append(datapts[1].text) day_stats.append(stats + [this_day_string]) return day_stats def scrape_by_day(file_start, scrape_start, scrape_end, all_data): ''' scrape data from scrape_start to end, append it to all_data, and save this new file as a csv file_start: specifies a string to use for save name purposes. This is the date ('YYYYMMDD') on which the data file begins scrape_start: different from the file start, this is the date object of the day on which to start scraping new data scrape_end: this is the date object specifying what the last day to scrape should be all_data: this is a list of all the existing data that the new data will be appended to ''' new_data = [] i = scrape_start this_month = scrape_start.month while i <= scrape_end: if i.month in [5, 6, 7, 8, 9, 10]: i += datetime.timedelta(days = 1) continue new_data.extend(scrape_scores(i)) i += datetime.timedelta(days = 1) if i.month != this_month: this_month = i.month print(len(new_data), "games recorded") all_data.extend(new_data) new_data = [] utils.save_data(DATA_FOLDER + file_start + "-" + (i - datetime.timedelta(days = 1)).strftime('%Y%m%d') + ".csv", all_data) print(len(new_data), "games recorded") all_data.extend(new_data) utils.save_data(DATA_FOLDER + file_start + "-" + (i - datetime.timedelta(days = 1)).strftime('%Y%m%d') + ".csv", all_data) return all_data def main(file_start, scrape_start, scrape_end, data_filepath = False): ''' performs some preliminary setup work and calls functions to scrape data in the specified date ranges and add it to an already exisiting file of data (if specified) file_start: specifies a string to use for save name purposes. This is the date ('YYYYMMDD') on which the data file begins scrape_start: different from the file start, this is the date string ('YYYYMMDD') of the day on which to start scraping new data scrape_end: this is a string date ('YYYYMMDD') specifying what the last day to scrape should be data_filepath: specifies where to find the existing data we want to append new data to. If not specified, the scraped data is saved as a standalone ''' start = datetime.datetime.strptime(scrape_start, "%Y%m%d") end = datetime.datetime.strptime(scrape_end, "%Y%m%d") if data_filepath != False: all_data = utils.read_csv(data_filepath) if all_data[-1][-1] >= scrape_end: print('data already updated') return else: all_data = [] scrape_by_day(file_start, start, end, all_data)
# -*- coding: utf-8 -*- print '-' * 10 print "List" a = ['0', '1', '2', '3', '4', '5'] print "a = %r" % a print "len(a) = %r" % len(a) print "a[0] = %r, %s" % (a[0], a[0]) print "a[-len(a)] = %r, %s" % (a[-len(a)], a[-len(a)]) print "a[0:3] = %r" % a[0:3] print "a[::2] = %r" % a[::2] a.append('7') print "a = %r" % a a.insert(len(a)-1, '6') print "a = %r" % a a.insert(6, 'x') print "a = %r" % a del(a[6]) print "a = %r" % a a.pop() print "a = %r" % a a.pop(6) print "a = %r" % a print "\n" * 3 print '-' * 10 print "tuple" b = (1, 2, [1,2]) print "b =", b b[2][0] = 2 print "b = ", b try: tuple.append(3) except: print "Error"
#!/usr/bin/env python """ Python interface to MAGMA toolkit. """ from __future__ import absolute_import, division, print_function import sys import ctypes import atexit import numpy as np from . import cuda # Load MAGMA library: if 'linux' in sys.platform: _libmagma_libname_list = ['libmagma.so'] elif sys.platform == 'darwin': _libmagma_libname_list = ['magma.so', 'libmagma.dylib'] elif sys.platform == 'win32': _libmagma_libname_list = ['magma.dll'] else: raise RuntimeError('unsupported platform') _load_err = '' for _lib in _libmagma_libname_list: try: _libmagma = ctypes.cdll.LoadLibrary(_lib) except OSError: _load_err += ('' if _load_err == '' else ', ') + _lib else: _load_err = '' break if _load_err: raise OSError('%s not found' % _load_err) c_int_type = ctypes.c_longlong # Exceptions corresponding to various MAGMA errors: _libmagma.magma_strerror.restype = ctypes.c_char_p _libmagma.magma_strerror.argtypes = [c_int_type] def magma_strerror(error): """ Return string corresponding to specified MAGMA error code. """ return _libmagma.magma_strerror(error) class MagmaError(Exception): def __init__(self, status, info=None): self._status = status self._info = info errstr = "%s (Code: %d)" % (magma_strerror(status), status) super(MagmaError,self).__init__(errstr) def magmaCheckStatus(status): """ Raise an exception corresponding to the specified MAGMA status code. """ if status != 0: raise MagmaError(status) # Utility functions: _libmagma.magma_version.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] def magma_version(): """ Get MAGMA version. """ majv = c_int_type() minv = c_int_type() micv = c_int_type() _libmagma.magma_version(ctypes.byref(majv), ctypes.byref(minv), ctypes.byref(micv)) return (majv.value, minv.value, micv.value) # MAGMA below 1.4.0 uses LAPACK-style char constants, while MAGMA 1.5+ uses # numeric constants. These dicts are filled in magma_init() and can convert # between the two modes accordingly: _bool_conversion = {} _order_conversion = {} _trans_conversion = {} _uplo_conversion = {} _diag_conversion = {} _side_conversion = {} _norm_conversion = {} _dist_conversion = {} _sym_conversion = {} _pack_conversion = {} _vec_conversion = {} _range_conversion = {} _vect_conversion = {} _direct_conversion = {} _storev_conversion = {} _libmagma.magma_bool_const.restype = c_int_type _libmagma.magma_bool_const.argtypes = [ctypes.c_char] _libmagma.magma_order_const.restype = c_int_type _libmagma.magma_order_const.argtypes = [ctypes.c_char] _libmagma.magma_norm_const.restype = c_int_type _libmagma.magma_norm_const.argtypes = [ctypes.c_char] _libmagma.magma_dist_const.restype = c_int_type _libmagma.magma_dist_const.argtypes = [ctypes.c_char] _libmagma.magma_sym_const.restype = c_int_type _libmagma.magma_sym_const.argtypes = [ctypes.c_char] _libmagma.magma_pack_const.restype = c_int_type _libmagma.magma_pack_const.argtypes = [ctypes.c_char] _libmagma.magma_vect_const.restype = c_int_type _libmagma.magma_vect_const.argtypes = [ctypes.c_char] _libmagma.magma_range_const.restype = c_int_type _libmagma.magma_range_const.argtypes = [ctypes.c_char] _libmagma.magma_direct_const.restype = c_int_type _libmagma.magma_direct_const.argtypes = [ctypes.c_char] _libmagma.magma_storev_const.restype = c_int_type _libmagma.magma_storev_const.argtypes = [ctypes.c_char] _libmagma.magma_vec_const.restype = c_int_type _libmagma.magma_vec_const.argtypes = [ctypes.c_char] _libmagma.magma_uplo_const.restype = c_int_type _libmagma.magma_uplo_const.argtypes = [ctypes.c_char] _libmagma.magma_side_const.restype = c_int_type _libmagma.magma_side_const.argtypes = [ctypes.c_char] _libmagma.magma_trans_const.restype = c_int_type _libmagma.magma_trans_const.argtypes = [ctypes.c_char] _libmagma.magma_diag_const.restype = c_int_type _libmagma.magma_diag_const.argtypes = [ctypes.c_char] _libmagma.magma_init.restype = int def magma_init(): """ Initialize MAGMA. """ global _bool_conversion global _order_conversion global _trans_conversion global _uplo_conversion global _diag_conversion global _side_conversion global _norm_conversion global _dist_conversion global _sym_conversion global _pack_conversion global _vec_conversion global _range_conversion global _vect_conversion global _direct_conversion global _storev_conversion status = _libmagma.magma_init() magmaCheckStatus(status) v = magma_version() if v >= (1, 5, 0): for c in [b'n', b'N', b'y', b'Y']: _bool_conversion.update({c: _libmagma.magma_bool_const(c)}) _bool_conversion.update({c.decode(): _libmagma.magma_bool_const(c)}) for c in [b'r', b'R', b'c', b'C']: _order_conversion.update({c: _libmagma.magma_order_const(c)}) _order_conversion.update({c.decode(): _libmagma.magma_order_const(c)}) for c in [b'O', b'o', b'1', b'2', b'F', b'f', b'E', b'e', b'I', b'i',b'M',b'm']: _norm_conversion.update({c: _libmagma.magma_norm_const(c)}) _norm_conversion.update({c.decode(): _libmagma.magma_norm_const(c)}) for c in [b'U', b'u', b'S', b's', b'N', b'n']: _dist_conversion.update({c: _libmagma.magma_dist_const(c)}) _dist_conversion.update({c.decode(): _libmagma.magma_dist_const(c)}) for c in [b'H', b'h', b'S', b's', b'N', b'n', b'P', b'p']: _sym_conversion.update({c: _libmagma.magma_sym_const(c)}) _sym_conversion.update({c.decode(): _libmagma.magma_sym_const(c)}) for c in [b'N', b'n', b'U', b'U', b'L', b'l', b'C', b'c', b'R', b'r',b'B',b'b', b'Q', b'q', b'Z', b'z']: _pack_conversion.update({c: _libmagma.magma_pack_const(c)}) _pack_conversion.update({c.decode(): _libmagma.magma_pack_const(c)}) for c in [b'N', b'n', b'V', b'v', b'I', b'i', b'A', b'a', b'S', b's',b'O',b'o']: _vec_conversion.update({c: _libmagma.magma_vec_const(c)}) _vec_conversion.update({c.decode(): _libmagma.magma_vec_const(c)}) for c in [ b'V', b'v', b'I', b'i', b'A', b'a']: _range_conversion.update({c: _libmagma.magma_range_const(c)}) _range_conversion.update({c.decode(): _libmagma.magma_range_const(c)}) for c in [b'q', b'Q', b'p', b'P']: _vect_conversion.update({c: _libmagma.magma_vect_const(c)}) _vect_conversion.update({c.decode(): _libmagma.magma_vect_const(c)}) for c in [b'f', b'F', b'B', b'b']: _direct_conversion.update({c: _libmagma.magma_direct_const(c)}) _direct_conversion.update({c.decode(): _libmagma.magma_direct_const(c)}) for c in [b'c', b'C', b'r', b'R']: _storev_conversion.update({c: _libmagma.magma_storev_const(c)}) _storev_conversion.update({c.decode(): _libmagma.magma_storev_const(c)}) for c in [b'l', b'L', b'u', b'U']: _uplo_conversion.update({c: _libmagma.magma_uplo_const(c)}) _uplo_conversion.update({c.decode(): _libmagma.magma_uplo_const(c)}) for c in [b'l', b'L', b'r', b'R', b'b', b'B']: _side_conversion.update({c: _libmagma.magma_side_const(c)}) _side_conversion.update({c.decode(): _libmagma.magma_side_const(c)}) for c in [b'n', b'N', b't', b'T', b'c', b'C']: _trans_conversion.update({c: _libmagma.magma_trans_const(c)}) _trans_conversion.update({c.decode(): _libmagma.magma_trans_const(c)}) for c in [b'N', b'n', b'U', b'u']: _diag_conversion.update({c: _libmagma.magma_diag_const(c)}) _diag_conversion.update({c.decode(): _libmagma.magma_diag_const(c)}) else: for c in ['l', 'L', 'u', 'U']: _uplo_conversion.update({c: c}) for c in ['n', 'N', 'a', 'A', 'o', 'O', 's', 'S', 'i', 'I', 'v', 'V']: _vec_conversion.update({c: c}) for c in ['l', 'L', 'r', 'R', 'b', 'B']: _sides_conversion.update({c: c}) for c in ['n', 'N', 't', 'T', 'c', 'C']: _trans_conversion.update({c:c}) for c in ['n', 'N', 'u', 'U']: _diag_conversion.update({c:c}) _libmagma.magma_finalize.restype = int def magma_finalize(): """ Finalize MAGMA. """ status = _libmagma.magma_finalize() magmaCheckStatus(status) _libmagma.magma_getdevice_arch.restype = int def magma_getdevice_arch(): """ Get device architecture. """ return _libmagma.magma_getdevice_arch() _libmagma.magma_getdevice.argtypes = [ctypes.c_void_p] def magma_getdevice(): """ Get current device used by MAGMA. """ dev = c_int_type() _libmagma.magma_getdevice(ctypes.byref(dev)) return dev.value _libmagma.magma_setdevice.argtypes = [c_int_type] def magma_setdevice(dev): """ Get current device used by MAGMA. """ _libmagma.magma_setdevice(dev) def magma_device_sync(): """ Synchronize device used by MAGMA. """ _libmagma.magma_device_sync() # BLAS routines # ISAMAX, IDAMAX, ICAMAX, IZAMAX _libmagma.magma_isamax.restype = int _libmagma.magma_isamax.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_isamax(n, dx, incx, queue): """ Index of maximum magnitude element. """ return _libmagma.magma_isamax(n, int(dx), incx, queue) _libmagma.magma_idamax.restype = int _libmagma.magma_idamax.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_idamax(n, dx, incx, queue): """ Index of maximum magnitude element. """ return _libmagma.magma_idamax(n, int(dx), incx, queue) _libmagma.magma_icamax.restype = int _libmagma.magma_icamax.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_icamax(n, dx, incx, queue): """ Index of maximum magnitude element. """ return _libmagma.magma_icamax(n, int(dx), incx, queue) _libmagma.magma_izamax.restype = int _libmagma.magma_izamax.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_izamax(n, dx, incx, queue): """ Index of maximum magnitude element. """ return _libmagma.magma_izamax(n, int(dx), incx, queue) # ISAMIN, IDAMIN, ICAMIN, IZAMIN _libmagma.magma_isamin.restype = int _libmagma.magma_isamin.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_isamin(n, dx, incx, queue): """ Index of minimum magnitude element. """ return _libmagma.magma_isamin(n, int(dx), incx, queue) _libmagma.magma_idamin.restype = int _libmagma.magma_idamin.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_idamin(n, dx, incx, queue): """ Index of minimum magnitude element. """ return _libmagma.magma_idamin(n, int(dx), incx, queue) _libmagma.magma_icamin.restype = int _libmagma.magma_icamin.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_icamin(n, dx, incx, queue): """ Index of minimum magnitude element. """ return _libmagma.magma_icamin(n, int(dx), incx, queue) _libmagma.magma_izamin.restype = int _libmagma.magma_izamin.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_izamin(n, dx, incx, queue): """ Index of minimum magnitude element. """ return _libmagma.magma_izamin(n, int(dx), incx, queue) # SASUM, DASUM, SCASUM, DZASUM _libmagma.magma_sasum.restype = int _libmagma.magma_sasum.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sasum(n, dx, incx, queue): """ Sum of absolute values of vector. """ return _libmagma.magma_sasum(n, int(dx), incx, queue) _libmagma.magma_dasum.restype = int _libmagma.magma_dasum.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_dasum(n, dx, incx, queue): """ Sum of absolute values of vector. """ return _libmagma.magma_dasum(n, int(dx), incx, queue) _libmagma.magma_scasum.restype = int _libmagma.magma_scasum.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_scasum(n, dx, incx, queue): """ Sum of absolute values of vector. """ return _libmagma.magma_scasum(n, int(dx), incx, queue) _libmagma.magma_dzasum.restype = int _libmagma.magma_dzasum.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_dzasum(n, dx, incx, queue): """ Sum of absolute values of vector. """ return _libmagma.magma_dzasum(n, int(dx), incx, queue) # SAXPY, DAXPY, CAXPY, ZAXPY _libmagma.magma_saxpy.restype = int _libmagma.magma_saxpy.argtypes = [c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_saxpy(n, alpha, dx, incx, dy, incy, queue): """ Vector addition. """ _libmagma.magma_saxpy(n, alpha, int(dx), incx, int(dy), incy, queue) _libmagma.magma_daxpy.restype = int _libmagma.magma_daxpy.argtypes = [c_int_type, ctypes.c_double, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_daxpy(n, alpha, dx, incx, dy, incy, queue): """ Vector addition. """ _libmagma.magma_daxpy(n, alpha, int(dx), incx, int(dy), incy, queue) _libmagma.magma_caxpy.restype = int _libmagma.magma_caxpy.argtypes = [c_int_type, cuda.cuFloatComplex, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_caxpy(n, alpha, dx, incx, dy, incy, queue): """ Vector addition. """ _libmagma.magma_caxpy(n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(dx), incx, int(dy), incy, queue) _libmagma.magma_zaxpy.restype = int _libmagma.magma_zaxpy.argtypes = [c_int_type, cuda.cuDoubleComplex, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_zaxpy(n, alpha, dx, incx, dy, incy, queue): """ Vector addition. """ _libmagma.magma_zaxpy(n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(dx), incx, int(dy), incy, queue) # SCOPY, DCOPY, CCOPY, ZCOPY _libmagma.magma_scopy.restype = int _libmagma.magma_scopy.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_scopy(n, dx, incx, dy, incy, queue): """ Vector copy. """ _libmagma.magma_scopy(n, int(dx), incx, int(dy), incy, queue) _libmagma.magma_dcopy.restype = int _libmagma.magma_dcopy.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_dcopy(n, dx, incx, dy, incy, queue): """ Vector copy. """ _libmagma.magma_dcopy(n, int(dx), incx, int(dy), incy, queue) _libmagma.magma_ccopy.restype = int _libmagma.magma_ccopy.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_ccopy(n, dx, incx, dy, incy, queue): """ Vector copy. """ _libmagma.magma_ccopy(n, int(dx), incx, int(dy), incy, queue) _libmagma.magma_zcopy.restype = int _libmagma.magma_zcopy.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_zcopy(n, dx, incx, dy, incy, queue): """ Vector copy. """ _libmagma.magma_zcopy(n, int(dx), incx, int(dy), incy, queue) # SDOT, DDOT, CDOTU, CDOTC, ZDOTU, ZDOTC _libmagma.magma_sdot.restype = ctypes.c_float _libmagma.magma_sdot.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sdot(n, dx, incx, dy, incy, queue): """ Vector dot product. """ return _libmagma.magma_sdot(n, int(dx), incx, int(dy), incy, queue) _libmagma.magma_ddot.restype = ctypes.c_double _libmagma.magma_ddot.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_ddot(n, dx, incx, dy, incy, queue): """ Vector dot product. """ return _libmagma.magma_ddot(n, int(dx), incx, int(dy), incy, queue) _libmagma.magma_cdotc.restype = cuda.cuFloatComplex _libmagma.magma_cdotc.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_cdotc(n, dx, incx, dy, incy, queue): """ Vector dot product. """ return _libmagma.magma_cdotc(n, int(dx), incx, int(dy), incy, queue) _libmagma.magma_cdotu.restype = cuda.cuFloatComplex _libmagma.magma_cdotu.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_cdotu(n, dx, incx, dy, incy, queue): """ Vector dot product. """ return _libmagma.magma_cdotu(n, int(dx), incx, int(dy), incy, queue) _libmagma.magma_zdotc.restype = cuda.cuDoubleComplex _libmagma.magma_zdotc.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_zdotc(n, dx, incx, dy, incy, queue): """ Vector dot product. """ return _libmagma.magma_zdotc(n, int(dx), incx, int(dy), incy, queue) _libmagma.magma_zdotu.restype = cuda.cuDoubleComplex _libmagma.magma_zdotu.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_zdotu(n, dx, incx, dy, incy, queue): """ Vector dot product. """ return _libmagma.magma_zdotu(n, int(dx), incx, int(dy), incy) # SNRM2, DNRM2, SCNRM2, DZNRM2 _libmagma.magma_snrm2.restype = ctypes.c_float _libmagma.magma_snrm2.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_snrm2(n, dx, incx, queue): """ Euclidean norm (2-norm) of vector. """ return _libmagma.magma_snrm2(n, int(dx), incx, queue) _libmagma.magma_dnrm2.restype = ctypes.c_double _libmagma.magma_dnrm2.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_dnrm2(n, dx, incx, queue): """ Euclidean norm (2-norm) of vector. """ return _libmagma.magma_dnrm2(n, int(dx), incx, queue) _libmagma.magma_scnrm2.restype = ctypes.c_float _libmagma.magma_scnrm2.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_scnrm2(n, dx, incx, queue): """ Euclidean norm (2-norm) of vector. """ return _libmagma.magma_scnrm2(n, int(dx), incx, queue) _libmagma.magma_dznrm2.restype = ctypes.c_double _libmagma.magma_dznrm2.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_dznrm2(n, dx, incx, queue): """ Euclidean norm (2-norm) of vector. """ return _libmagma.magma_dznrm2(n, int(dx), incx, queue) # SROT, DROT, CROT, CSROT, ZROT, ZDROT _libmagma.magma_srot.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_float, ctypes.c_float, ctypes.c_void_p] def magma_srot(n, dx, incx, dy, incy, dc, ds, queue): """ Apply a rotation to vectors. """ _libmagma.magma_srot(n, int(dx), incx, int(dy), incy, dc, ds, queue) # SROTM, DROTM _libmagma.magma_srotm.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_srotm(n, dx, incx, dy, incy, param, queue): """ Apply a real modified Givens rotation. """ _libmagma.magma_srotm(n, int(dx), incx, int(dy), incy, param, queue) # SROTMG, DROTMG _libmagma.magma_srotmg.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] def magma_srotmg(d1, d2, x1, y1, param, queue): """ Construct a real modified Givens rotation matrix. """ _libmagma.magma_srotmg(int(d1), int(d2), int(x1), int(y1), param, queue) # SSCAL, DSCAL, CSCAL, CSSCAL, ZSCAL, ZDSCAL _libmagma.magma_sscal.argtypes = [c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sscal(n, alpha, dx, incx, queue): """ Scale a vector by a scalar. """ _libmagma.magma_sscal(n, alpha, int(dx), incx, queue) _libmagma.magma_cscal.argtypes = [c_int_type, cuda.cuFloatComplex, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_cscal(n, alpha, dx, incx, queue): """ Scale a vector by a scalar. """ _libmagma.magma_cscal(n, alpha, int(dx), incx, queue) _libmagma.magma_csscal.argtypes = [c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_csscal(n, alpha, dx, incx, queue): """ Scale a vector by a scalar. """ _libmagma.magma_csscal(n, alpha, int(dx), incx, queue) _libmagma.magma_sscal.argtypes = [c_int_type, ctypes.c_double, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_dscal(n, alpha, dx, incx, queue): """ Scale a vector by a scalar. """ _libmagma.magma_dscal(n, alpha, int(dx), incx, queue) _libmagma.magma_zscal.argtypes = [c_int_type, cuda.cuDoubleComplex, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_zscal(n, alpha, dx, incx, queue): """ Scale a vector by a scalar. """ _libmagma.magma_zscal(n, alpha, int(dx), incx, queue) _libmagma.magma_zdscal.argtypes = [c_int_type, ctypes.c_double, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_zdscal(n, alpha, dx, incx, queue): """ Scale a vector by a scalar. """ _libmagma.magma_zdscal(n, alpha, int(dx), incx, queue) # SSWAP, DSWAP, CSWAP, ZSWAP _libmagma.magma_sswap.argtypes = [c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sswap(n, dA, ldda, dB, lddb, queue): """ Swap vectors. """ _libmagma.magma_sswap(n, int(dA), ldda, int(dB), lddb, queue) # SGEMV, DGEMV, CGEMV, ZGEMV _libmagma.magma_sgemv.argtypes = [ctypes.c_char, c_int_type, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sgemv(trans, m, n, alpha, dA, ldda, dx, incx, beta, dy, incy, queue): """ Matrix-vector product for general matrix. """ _libmagma.magma_sgemv(trans, m, n, alpha, int(dA), ldda, dx, incx, beta, int(dy), incy, queue) # SGER, DGER, CGERU, CGERC, ZGERU, ZGERC _libmagma.magma_sger.argtypes = [c_int_type, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sger(m, n, alpha, dx, incx, dy, incy, dA, ldda, queue): """ Rank-1 operation on real general matrix. """ _libmagma.magma_sger(m, n, alpha, int(dx), incx, int(dy), incy, int(dA), ldda, queue) # SSYMV, DSYMV, CSYMV, ZSYMV _libmagma.magma_ssymv.argtypes = [ctypes.c_char, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_ssymv(uplo, n, alpha, dA, ldda, dx, incx, beta, dy, incy): _libmagma.magma_ssymv(uplo, n, alpha, int(dA), ldda, int(dx), incx, beta, int(dy), incy, queue) # SSYR, DSYR, CSYR, ZSYR _libmagma.magma_ssyr.argtypes = [ctypes.c_char, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_ssyr(uplo, n, alpha, dx, incx, dA, ldda, queue): _libmagma.magma_ssyr(uplo, n, alpha, int(dx), incx, int(dA), ldda, queue) # SSYR2, DSYR2, CSYR2, ZSYR2 _libmagma.magma_ssyr2.argtypes = [ctypes.c_char, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_ssyr2(uplo, n, alpha, dx, incx, dy, incy, dA, ldda, queue): _libmagma.magma_ssyr2(uplo, n, alpha, int(dx), incx, int(dy), incy, int(dA), ldda, queue) # STRMV, DTRMV, CTRMV, ZTRMV _libmagma.magma_strmv.argtypes = [ctypes.c_char, ctypes.c_char, ctypes.c_char, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_strmv(uplo, trans, diag, n, dA, ldda, dx, incx, queue): _libmagma.magma_strmv(uplo, trans, diag, n, int(dA), ldda, int(dx), incx, queue) # STRSV, DTRSV, CTRSV, ZTRSV _libmagma.magma_strsv.argtypes = [ctypes.c_char, ctypes.c_char, ctypes.c_char, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_strsv(uplo, trans, diag, n, dA, ldda, dx, incx, queue): _libmagma.magma_strsv(uplo, trans, diag, n, int(dA), ldda, int(dx), incx, queue) # SGEMM, DGEMM, CGEMM, ZGEMM _libmagma.magma_sgemm.argtypes = [ctypes.c_char, ctypes.c_char, c_int_type, c_int_type, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sgemm(transA, transB, m, n, k, alpha, dA, ldda, dB, lddb, beta, dC, lddc, queue): _libmagma.magma_sgemm(transA, transB, m, n, k, alpha, int(dA), ldda, int(dB), lddb, beta, int(dC), lddc, queue) _libmagma.magma_zgemm.argtypes = [ctypes.c_char, ctypes.c_char, c_int_type, c_int_type, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_zgemm(transA, transB, m, n, k, alpha, dA, ldda, dB, lddb, beta, dC, lddc, queue): _libmagma.magma_zgemm(transA, transB, m, n, k, alpha, int(dA), ldda, int(dB), lddb, beta, int(dC), lddc, queue) # SSYMM, DSYMM, CSYMM, ZSYMM _libmagma.magma_ssymm.argtypes = [ctypes.c_char, ctypes.c_char, c_int_type, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_ssymm(side, uplo, m, n, alpha, dA, ldda, dB, lddb, beta, dC, lddc, queue): _libmagma.magma_ssymm(side, uplo, m, n, alpha, int(dA), ldda, int(dB), lddb, beta, int(dC), lddc, queue) # SSYRK, DSYRK, CSYRK, ZSYRK _libmagma.magma_ssyrk.argtypes = [ctypes.c_char, ctypes.c_char, c_int_type, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_ssyrk(uplo, trans, n, k, alpha, dA, ldda, beta, dC, lddc, queue): _libmagma.magma_ssyrk(uplo, trans, n, k, alpha, int(dA), ldda, beta, int(dC), lddc, queue) # SSYR2K, DSYR2K, CSYR2K, ZSYR2K _libmagma.magma_ssyr2k.argtypes = [ctypes.c_char, ctypes.c_char, c_int_type, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_ssyr2k(uplo, trans, n, k, alpha, dA, ldda, dB, lddb, beta, dC, lddc, queue): _libmagma.magma_ssyr2k(uplo, trans, n, k, alpha, int(dA), ldda, int(dB), lddb, beta, int(dC), lddc, queue) # STRMM, DTRMM, CTRMM, ZTRMM _libmagma.magma_strmm.argtypes = [ctypes.c_char, ctypes.c_char, ctypes.c_char, ctypes.c_char, c_int_type, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_strmm(side, uplo, trans, diag, m, n, alpha, dA, ldda, dB, lddb, queue): _libmagma.magma_strmm(uplo, trans, diag, m, n, alpha, int(dA), ldda, int(dB), lddb, queue) # STRSM, DTRSM, CTRSM, ZTRSM _libmagma.magma_strsm.argtypes = [ctypes.c_char, ctypes.c_char, ctypes.c_char, ctypes.c_char, c_int_type, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_strsm(side, uplo, trans, diag, m, n, alpha, dA, ldda, dB, lddb, queue): _libmagma.magma_strsm(uplo, trans, diag, m, n, alpha, int(dA), ldda, int(dB), lddb, queue) # Auxiliary routines: _libmagma.magma_vec_const.restype = int _libmagma.magma_vec_const.argtypes = [ctypes.c_char] def magma_vec_const(job): return _libmagma.magma_vec_const(job) _libmagma.magma_get_spotrf_nb.restype = int _libmagma.magma_get_spotrf_nb.argtypes = [c_int_type] def magma_get_spotrf_nb(m): return _libmagma.magma_get_spotrf_nb(m) _libmagma.magma_get_sgetrf_nb.restype = int _libmagma.magma_get_sgetrf_nb.argtypes = [c_int_type] def magma_get_sgetrf_nb(m): return _libmagma.magma_get_sgetrf_nb(m) _libmagma.magma_get_sgetri_nb.restype = int _libmagma.magma_get_sgetri_nb.argtypes = [c_int_type] def magma_get_sgetri_nb(m): return _libmagma.magma_get_sgetri_nb(m) _libmagma.magma_get_sgeqp3_nb.restype = int _libmagma.magma_get_sgeqp3_nb.argtypes = [c_int_type] def magma_get_sgeqp3_nb(m): return _libmagma.magma_get_sgeqp3_nb(m) _libmagma.magma_get_sgeqrf_nb.restype = int _libmagma.magma_get_sgeqrf_nb.argtypes = [c_int_type, c_int_type] def magma_get_sgeqrf_nb(m, n): return _libmagma.magma_get_sgeqrf_nb(m, n) _libmagma.magma_get_dgeqrf_nb.restype = int _libmagma.magma_get_dgeqrf_nb.argtypes = [c_int_type, c_int_type] def magma_get_dgeqrf_nb(m, n): return _libmagma.magma_get_dgeqrf_nb(m, n) _libmagma.magma_get_cgeqrf_nb.restype = int _libmagma.magma_get_cgeqrf_nb.argtypes = [c_int_type, c_int_type] def magma_get_cgeqrf_nb(m, n): return _libmagma.magma_get_cgeqrf_nb(m, n) _libmagma.magma_get_zgeqrf_nb.restype = int _libmagma.magma_get_zgeqrf_nb.argtypes = [c_int_type, c_int_type] def magma_get_zgeqrf_nb(m, n): return _libmagma.magma_get_zgeqrf_nb(m, n) _libmagma.magma_get_sgeqlf_nb.restype = int _libmagma.magma_get_sgeqlf_nb.argtypes = [c_int_type] def magma_get_sgeqlf_nb(m): return _libmagma.magma_get_sgeqlf_nb(m) _libmagma.magma_get_sgehrd_nb.restype = int _libmagma.magma_get_sgehrd_nb.argtypes = [c_int_type] def magma_get_sgehrd_nb(m): return _libmagma.magma_get_sgehrd_nb(m) _libmagma.magma_get_ssytrd_nb.restype = int _libmagma.magma_get_ssytrd_nb.argtypes = [c_int_type] def magma_get_ssytrd_nb(m): return _libmagma.magma_get_ssytrd_nb(m) _libmagma.magma_get_sgelqf_nb.restype = int _libmagma.magma_get_sgelqf_nb.argtypes = [c_int_type] def magma_get_sgelqf_nb(m): return _libmagma.magma_get_sgelqf_nb(m) _libmagma.magma_get_sgebrd_nb.restype = int _libmagma.magma_get_sgebrd_nb.argtypes = [c_int_type] def magma_get_sgebrd_nb(m): return _libmagma.magma_get_sgebrd_nb(m) _libmagma.magma_get_ssygst_nb.restype = int _libmagma.magma_get_ssygst_nb.argtypes = [c_int_type] def magma_get_ssygst_nb(m): return _libmagma.magma_get_ssgyst_nb(m) _libmagma.magma_get_sbulge_nb.restype = int _libmagma.magma_get_sbulge_nb.argtypes = [c_int_type] def magma_get_sbulge_nb(m): return _libmagma.magma_get_sbulge_nb(m) _libmagma.magma_get_dsytrd_nb.restype = int _libmagma.magma_get_dsytrd_nb.argtypes = [c_int_type] def magma_get_dsytrd_nb(m): return _libmagma.magma_get_dsytrd_nb(m) _libmagma.magma_queue_create_internal.restype = int _libmagma.magma_queue_create_internal.argtypes = [c_int_type, ctypes.c_void_p, ctypes.c_char_p, ctypes.c_char_p, c_int_type] def magma_queue_create(device): queue_ptr = ctypes.c_void_p() status = _libmagma.magma_queue_create_internal(device, ctypes.byref(queue_ptr), '', '', 0) magmaCheckStatus(status) return queue_ptr _libmagma.magma_queue_destroy_internal.restype = int _libmagma.magma_queue_destroy_internal.argtypes = [ctypes.c_void_p, ctypes.c_char_p, ctypes.c_char_p, c_int_type] def magma_queue_destroy(queue_ptr): status = _libmagma.magma_queue_destroy_internal(queue_ptr, '', '', 0) magmaCheckStatus(status) _libmagma.magma_queue_sync_internal.restype = int _libmagma.magma_queue_sync_internal.argtypes = [ctypes.c_void_p, ctypes.c_char_p, ctypes.c_char_p, c_int_type] def magma_queue_sync(queue_ptr): status = _libmagma.magma_queue_sync_internal(queue_ptr, '', '', 0) magmaCheckStatus(status) # Buffer size algorithms def _magma_gesvd_buffersize(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, func, dtype): work = np.zeros(1, dtype) func(jobu, jobvt, m, n, int(a), lda, int(s), int(u), ldu, int(vt), ldvt, int(work.ctypes.data), -1) return int(work[0]) def magma_sgesvd_buffersize(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt): return _magma_gesvd_buffersize(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, magma_sgesvd, np.float32) def magma_dgesvd_buffersize(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt): return _magma_gesvd_buffersize(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, magma_dgesvd, np.float64) def magma_cgesvd_buffersize(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt): return _magma_gesvd_buffersize(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, magma_cgesvd, np.float32) def magma_zgesvd_buffersize(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt): return _magma_gesvd_buffersize(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, magma_zgesvd, np.float64) # LAPACK routines # SGEBRD, DGEBRD, CGEBRD, ZGEBRD _libmagma.magma_sgebrd.restype = int _libmagma.magma_sgebrd.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sgebrd(m, n, A, lda, d, e, tauq, taup, work, lwork): """ Reduce matrix to bidiagonal form. """ info = c_int_type() status = _libmagma.magma_sgebrd.argtypes(m, n, int(A), lda, int(d), int(e), int(tauq), int(taup), int(work), int(lwork), ctypes.byref(info)) magmaCheckStatus(status) # SGEHRD2, DGEHRD2, CGEHRD2, ZGEHRD2 _libmagma.magma_sgehrd2.restype = int _libmagma.magma_sgehrd2.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sgehrd2(n, ilo, ihi, A, lda, tau, work, lwork): """ Reduce matrix to upper Hessenberg form. """ info = c_int_type() status = _libmagma.magma_sgehrd2(n, ilo, ihi, int(A), lda, int(tau), int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) # SGEHRD, DGEHRD, CGEHRD, ZGEHRD _libmagma.magma_sgehrd.restype = int _libmagma.magma_sgehrd.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sgehrd(n, ilo, ihi, A, lda, tau, work, lwork, dT): """ Reduce matrix to upper Hessenberg form (fast algorithm). """ info = c_int_type() status = _libmagma.magma_sgehrd(n, ilo, ihi, int(A), lda, int(tau), int(work), lwork, int(dT), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgehrd.restype = int _libmagma.magma_dgehrd.argtypes = _libmagma.magma_sgehrd.argtypes def magma_dgehrd(n, ilo, ihi, A, lda, tau, work, lwork, dT): """ Reduce matrix to upper Hessenberg form (fast algorithm). """ info = c_int_type() status = _libmagma.magma_dgehrd(n, ilo, ihi, int(A), lda, int(tau), int(work), lwork, int(dT), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgehrd.restype = int _libmagma.magma_cgehrd.argtypes = _libmagma.magma_sgehrd.argtypes def magma_cgehrd(n, ilo, ihi, A, lda, tau, work, lwork, dT): """ Reduce matrix to upper Hessenberg form (fast algorithm). """ info = c_int_type() status = _libmagma.magma_cgehrd(n, ilo, ihi, int(A), lda, int(tau), int(work), lwork, int(dT), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgehrd.restype = int _libmagma.magma_zgehrd.argtypes = _libmagma.magma_sgehrd.argtypes def magma_zgehrd(n, ilo, ihi, A, lda, tau, work, lwork, dT): """ Reduce matrix to upper Hessenberg form (fast algorithm). """ info = c_int_type() status = _libmagma.magma_zgehrd(n, ilo, ihi, int(A), lda, int(tau), int(work), lwork, int(dT), ctypes.byref(info)) magmaCheckStatus(status) # SGEHRD_M, DGEHRD_M, CGEHRD_M, ZGEHRD_M _libmagma.magma_sgehrd_m.restype = int _libmagma.magma_sgehrd_m.argtypes = _libmagma.magma_sgehrd.argtypes def magma_sgehrd_m(n, ilo, ihi, A, lda, tau, work, lwork, dT): """ Reduce matrix to upper Hessenberg form (fast algorithm). """ info = c_int_type() status = _libmagma.magma_sgehrd_m(n, ilo, ihi, int(A), lda, int(tau), int(work), lwork, int(dT), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgehrd_m.restype = int _libmagma.magma_dgehrd_m.argtypes = _libmagma.magma_sgehrd.argtypes def magma_dgehrd_m(n, ilo, ihi, A, lda, tau, work, lwork, dT): """ Reduce matrix to upper Hessenberg form (fast algorithm). """ info = c_int_type() status = _libmagma.magma_dgehrd_m(n, ilo, ihi, int(A), lda, int(tau), int(work), lwork, int(dT), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgehrd_m.restype = int _libmagma.magma_cgehrd_m.argtypes = _libmagma.magma_sgehrd.argtypes def magma_cgehrd_m(n, ilo, ihi, A, lda, tau, work, lwork, dT): """ Reduce matrix to upper Hessenberg form (fast algorithm). """ info = c_int_type() status = _libmagma.magma_cgehrd_m(n, ilo, ihi, int(A), lda, int(tau), int(work), lwork, int(dT), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgehrd_m.restype = int _libmagma.magma_zgehrd_m.argtypes = _libmagma.magma_sgehrd.argtypes def magma_zgehrd_m(n, ilo, ihi, A, lda, tau, work, lwork, dT): """ Reduce matrix to upper Hessenberg form (fast algorithm). """ info = c_int_type() status = _libmagma.magma_zgehrd_m(n, ilo, ihi, int(A), lda, int(tau), int(work), lwork, int(dT), ctypes.byref(info)) magmaCheckStatus(status) # SORGHR_M, DORGHR_M, CUNGHR_M, ZUNGHR_M _libmagma.magma_sorghr_m.restype = int _libmagma.magma_sorghr_m.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sorghr_m(n, ilo, ihi, A, lda, tau, T, nb): """ Generates a REAL orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by <t>GEHRD Multi-GPU, data on host """ info = c_int_type() status = _libmagma.magma_sorghr_m(n, ilo, ihi, int(A), lda, int(tau), int(T), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dorghr_m.restype = int _libmagma.magma_dorghr_m.argtypes = _libmagma.magma_sorghr_m.argtypes def magma_dorghr_m(n, ilo, ihi, A, lda, tau, T, nb): """ Generates a REAL orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by <t>GEHRD Multi-GPU, data on host """ info = c_int_type() status = _libmagma.magma_dorghr_m(n, ilo, ihi, int(A), lda, int(tau), int(T), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cunghr_m.restype = int _libmagma.magma_cunghr_m.argtypes = _libmagma.magma_sorghr_m.argtypes def magma_cunghr_m(n, ilo, ihi, A, lda, tau, T, nb): """ Generates a REAL orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by <t>GEHRD Multi-GPU, data on host """ info = c_int_type() status = _libmagma.magma_cunghr_m(n, ilo, ihi, int(A), lda, int(tau), int(T), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zunghr_m.restype = int _libmagma.magma_zunghr_m.argtypes = _libmagma.magma_sorghr_m.argtypes def magma_zunghr_m(n, ilo, ihi, A, lda, tau, T, nb): """ Generates a REAL orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by <t>GEHRD Multi-GPU, data on host """ info = c_int_type() status = _libmagma.magma_zunghr_m(n, ilo, ihi, int(A), lda, int(tau), int(T), nb, ctypes.byref(info)) magmaCheckStatus(status) # SGELQF, DGELQF, CGELQF, ZGELQF _libmagma.magma_sgelqf.restype = int _libmagma.magma_sgelqf.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sgelqf(m, n, A, lda, tau, work, lwork): """ LQ factorization. """ info = c_int_type() status = _libmagma.magma_sgelqf(m, n, int(A), lda, int(tau), int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) # SGEQRF, DGEQRF, CGEQRF, ZGEQRF _libmagma.magma_sgeqrf.restype = int _libmagma.magma_sgeqrf.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sgeqrf(m, n, A, lda, tau, work, lwork): """ QR factorization. """ info = c_int_type() status = _libmagma.magma_sgeqrf(m, n, int(A), lda, int(tau), int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgeqrf.restype = int _libmagma.magma_dgeqrf.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_dgeqrf(m, n, A, lda, tau, work, lwork): """ QR factorization. """ info = c_int_type() status = _libmagma.magma_dgeqrf(m, n, int(A), lda, int(tau), int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgeqrf.restype = int _libmagma.magma_cgeqrf.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_cgeqrf(m, n, A, lda, tau, work, lwork): """ QR factorization. """ info = c_int_type() status = _libmagma.magma_cgeqrf(m, n, int(A), lda, int(tau), int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgeqrf.restype = int _libmagma.magma_zgeqrf.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_zgeqrf(m, n, A, lda, tau, work, lwork): """ QR factorization. """ info = c_int_type() status = _libmagma.magma_zgeqrf(m, n, int(A), lda, int(tau), int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) # SGEQRF, DGEQRF, CGEQRF, ZGEQRF (ooc) _libmagma.magma_sgeqrf_ooc.restype = int _libmagma.magma_sgeqrf_ooc.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sgeqrf_ooc(m, n, A, lda, tau, work, lwork): """ QR factorization (ooc). """ info = c_int_type() status = _libmagma.magma_sgeqrf_ooc(m, n, int(A), lda, int(tau), int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgeqrf_ooc.restype = int _libmagma.magma_dgeqrf_ooc.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_dgeqrf_ooc(m, n, A, lda, tau, work, lwork): """ QR factorization (ooc). """ info = c_int_type() status = _libmagma.magma_dgeqrf_ooc(m, n, int(A), lda, int(tau), int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgeqrf_ooc.restype = int _libmagma.magma_cgeqrf_ooc.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_cgeqrf_ooc(m, n, A, lda, tau, work, lwork): """ QR factorization (ooc). """ info = c_int_type() status = _libmagma.magma_cgeqrf_ooc(m, n, int(A), lda, int(tau), int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgeqrf_ooc.restype = int _libmagma.magma_zgeqrf_ooc.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_zgeqrf_ooc(m, n, A, lda, tau, work, lwork): """ QR factorization (ooc). """ info = c_int_type() status = _libmagma.magma_zgeqrf_ooc(m, n, int(A), lda, int(tau), int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) # SGEQRF_GPU, DGEQRF_GPU, CGEQRF_GPU, ZGEQRF_GPU _libmagma.magma_sgeqrf_gpu.restype = int _libmagma.magma_sgeqrf_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] def magma_sgeqrf_gpu(m, n, A, ldda, tau, dT): """ QR factorization (gpu interface, upper triangular R is inverted). """ info = c_int_type() status = _libmagma.magma_sgeqrf_gpu(m, n, int(A), ldda, int(tau), int(dT), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgeqrf_gpu.restype = int _libmagma.magma_dgeqrf_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] def magma_dgeqrf_gpu(m, n, A, ldda, tau, dT): """ QR factorization (gpu interface, upper triangular R is inverted). """ info = c_int_type() status = _libmagma.magma_dgeqrf_gpu(m, n, int(A), ldda, int(tau), int(dT), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgeqrf_gpu.restype = int _libmagma.magma_cgeqrf_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] def magma_cgeqrf_gpu(m, n, A, ldda, tau, dT): """ QR factorization (gpu interface,upper triangular R is inverted). """ info = c_int_type() status = _libmagma.magma_cgeqrf_gpu(m, n, int(A), ldda, int(tau), int(dT), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgeqrf_gpu.restype = int _libmagma.magma_zgeqrf_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] def magma_zgeqrf_gpu(m, n, A, ldda, tau, dT): """ QR factorization (gpu interface, upper triangular R is inverted). """ info = c_int_type() status = _libmagma.magma_zgeqrf_gpu(m, n, int(A), ldda, int(tau), int(dT), ctypes.byref(info)) magmaCheckStatus(status) # SGEQRF2_GPU, DGEQRF2_GPU, CGEQRF2_GPU, ZGEQRF2_GPU _libmagma.magma_sgeqrf2_gpu.restype = int _libmagma.magma_sgeqrf2_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_sgeqrf2_gpu(m, n, A, ldda, tau): """ QR factorization (gpu interface, LAPACK-complaint arguments). """ info = c_int_type() status = _libmagma.magma_sgeqrf2_gpu(m, n, int(A), ldda, int(tau), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgeqrf2_gpu.restype = int _libmagma.magma_dgeqrf2_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_dgeqrf2_gpu(m, n, A, ldda, tau): """ QR factorization (gpu interface, LAPACK-complaint arguments). """ info = c_int_type() status = _libmagma.magma_dgeqrf2_gpu(m, n, int(A), ldda, int(tau), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgeqrf2_gpu.restype = int _libmagma.magma_cgeqrf2_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_cgeqrf2_gpu(m, n, A, ldda, tau): """ QR factorization (gpu interface, LAPACK-complaint arguments). """ info = c_int_type() status = _libmagma.magma_cgeqrf2_gpu(m, n, int(A), ldda, int(tau), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgeqrf2_gpu.restype = int _libmagma.magma_zgeqrf2_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_zgeqrf2_gpu(m, n, A, ldda, tau): """ QR factorization (gpu, LAPACK-complaint arguments). """ info = c_int_type() status = _libmagma.magma_zgeqrf2_gpu(m, n, int(A), ldda, int(tau), ctypes.byref(info)) magmaCheckStatus(status) # SGEQRF3_GPU, DGEQRF3_GPU, CGEQRF3_GPU, ZGEQRF3_GPU _libmagma.magma_sgeqrf3_gpu.restype = int _libmagma.magma_sgeqrf3_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] def magma_sgeqrf3_gpu(m, n, A, ldda, tau, dT): """ QR factorization (gpu interface). """ info = c_int_type() status = _libmagma.magma_sgeqrf3_gpu(m, n, int(A), ldda, int(tau), int(dT), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgeqrf3_gpu.restype = int _libmagma.magma_dgeqrf3_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] def magma_dgeqrf3_gpu(m, n, A, ldda, tau, dT): """ QR factorization (gpu interface). """ info = c_int_type() status = _libmagma.magma_dgeqrf3_gpu(m, n, int(A), ldda, int(tau), int(dT), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgeqrf3_gpu.restype = int _libmagma.magma_cgeqrf3_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] def magma_cgeqrf3_gpu(m, n, A, ldda, tau, dT): """ QR factorization (gpu interface). """ info = c_int_type() status = _libmagma.magma_cgeqrf3_gpu(m, n, int(A), ldda, int(tau), int(dT), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgeqrf3_gpu.restype = int _libmagma.magma_zgeqrf3_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] def magma_zgeqrf3_gpu(m, n, A, ldda, tau, dT): """ QR factorization (gpu interface). """ info = c_int_type() status = _libmagma.magma_zgeqrf3_gpu(m, n, int(A), ldda, int(tau), int(dT), ctypes.byref(info)) magmaCheckStatus(status) # SGEQRF_M, DGEQRF_M, CGEQRF_M, ZGEQRF_M _libmagma.magma_sgeqrf_m.restype = int _libmagma.magma_sgeqrf_m.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sgeqrf_m(ngpu, m, n, A, lda, tau, work, lwork): """ QR factorization (multiple gpu, GPU memory is allocated in the routine). """ info = c_int_type() status = _libmagma.magma_sgeqrf_m(ngpu, m, n, int(A), lda, int(tau), int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgeqrf_m.restype = int _libmagma.magma_dgeqrf_m.argtypes = _libmagma.magma_sgeqrf_m.argtypes def magma_dgeqrf_m(ngpu, m, n, A, lda, tau, work, lwork): """ QR factorization (multiple gpu, GPU memory is allocated in the routine). """ info = c_int_type() status = _libmagma.magma_dgeqrf_m(ngpu, m, n, int(A), lda, int(tau), int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgeqrf_m.restype = int _libmagma.magma_cgeqrf_m.argtypes = _libmagma.magma_sgeqrf_m.argtypes def magma_cgeqrf_m(ngpu, m, n, A, lda, tau, work, lwork): """ QR factorization (multiple gpu, GPU memory is allocated in the routine). """ info = c_int_type() status = _libmagma.magma_cgeqrf_m(ngpu, m, n, int(A), lda, int(tau), int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgeqrf_m.restype = int _libmagma.magma_zgeqrf_m.argtypes = _libmagma.magma_sgeqrf_m.argtypes def magma_zgeqrf_m(ngpu, m, n, A, lda, tau, work, lwork): """ QR factorization (multiple gpu, GPU memory is allocated in the routine). """ info = c_int_type() status = _libmagma.magma_zgeqrf_m(ngpu, m, n, int(A), lda, int(tau), int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) # SGEQRF2_MGPU, DGEQRF2_MGPU, CGEQRF2_MGPU, ZGEQRF2_MGPU _libmagma.magma_sgeqrf2_mgpu.restype = int _libmagma.magma_sgeqrf2_mgpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_sgeqrf2_mgpu(ngpu, m, n, dlA, ldda, tau): """ QR factorization (multiple gpu, GPU memory is allocated in the routine). """ info = c_int_type() status = _libmagma.magma_sgeqrf2_mgpu(ngpu, m, n, int(dlA), ldda, int(tau), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgeqrf2_mgpu.restype = int _libmagma.magma_dgeqrf2_mgpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_dgeqrf2_mgpu(ngpu, m, n, dlA, ldda, tau): """ QR factorization (multiple gpu, GPU memory is allocated in the routine). """ info = c_int_type() status = _libmagma.magma_dgeqrf2_mgpu(ngpu, m, n, int(dlA), ldda, int(tau), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgeqrf2_mgpu.restype = int _libmagma.magma_cgeqrf2_mgpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_cgeqrf2_mgpu(ngpu, m, n, dlA, ldda, tau): """ QR factorization (multiple gpu, GPU memory is allocated in the routine). """ info = c_int_type() status = _libmagma.magma_cgeqrf2_mgpu(ngpu, m, n, int(dlA), ldda, int(tau), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgeqrf2_mgpu.restype = int _libmagma.magma_zgeqrf2_mgpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_zgeqrf2_mgpu(ngpu, m, n, dlA, ldda, tau): """ QR factorization (multiple gpu, GPU memory is allocated in the routine). """ info = c_int_type() status = _libmagma.magma_zgeqrf2_mgpu(ngpu, m, n, int(dlA), ldda, int(tau), ctypes.byref(info)) magmaCheckStatus(status) # SORMQR_M, DORMQR_M, CUNMQR_M, ZUNMQR_M _libmagma.magma_sormqr_m.restype = int _libmagma.magma_sormqr_m.argtypes = [c_int_type, c_int_type, c_int_type, c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sormqr_m(ngpu, side, trans, m, n, k, A, lda, tau, C, ldc, work, lwork): """ Multiply by Q from QR factorizatioin (multiple gpu, GPU memory is allocated in the routine). """ info = c_int_type() side = _side_conversion[side] trans = _trans_conversion[trans] status = _libmagma.magma_sormqr_m(ngpu, side, trans, m, n, k, int(A), lda, int(tau), int(C), ldc, int(work), lwork, ctypes.byref(info)) _libmagma.magma_dormqr_m.restype = int _libmagma.magma_dormqr_m.argtypes = _libmagma.magma_sormqr_m.argtypes def magma_dormqr_m(ngpu, side, trans, m, n, k, A, lda, tau, C, ldc, work, lwork): """ Multiply by Q from QR factorizatioin (multiple gpu, GPU memory is allocated in the routine). """ info = c_int_type() side = _side_conversion[side] trans = _trans_conversion[trans] status = _libmagma.magma_dormqr_m(ngpu, side, trans, m, n, k, int(A), lda, int(tau), int(C), ldc, int(work), lwork, ctypes.byref(info)) _libmagma.magma_cunmqr_m.restype = int _libmagma.magma_cunmqr_m.argtypes = _libmagma.magma_sormqr_m.argtypes def magma_cunmqr_m(ngpu, side, trans, m, n, k, A, lda, tau, C, ldc, work, lwork): """ Multiply by Q from QR factorizatioin (multiple gpu, GPU memory is allocated in the routine). """ info = c_int_type() side = _side_conversion[side] trans = _trans_conversion[trans] status = _libmagma.magma_cunmqr_m(ngpu, side, trans, m, n, k, int(A), lda, int(tau), int(C), ldc, int(work), lwork, ctypes.byref(info)) _libmagma.magma_zunmqr_m.restype = int _libmagma.magma_zunmqr_m.argtypes = _libmagma.magma_sormqr_m.argtypes def magma_zunmqr_m(ngpu, side, trans, m, n, k, A, lda, tau, C, ldc, work, lwork): """ Multiply by Q from QR factorizatioin (multiple gpu, GPU memory is allocated in the routine). """ info = c_int_type() side = _side_conversion[side] trans = _trans_conversion[trans] status = _libmagma.magma_zurmqr_m(ngpu, side, trans, m, n, k, int(A), lda, int(tau), int(C), ldc, int(work), lwork, ctypes.byref(info)) # STRSM_M, DTRSM_M, CTRSM_M, ZTRSM_M _libmagma.magma_strsm_m.restype = int _libmagma.magma_strsm_m.argtypes = [c_int_type, c_int_type, c_int_type, c_int_type, c_int_type, c_int_type, c_int_type, ctypes.c_float, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_strsm_m(ngpu, side, uplo, trans, diag, m, n, alpha, A, lda, B, ldb): """ Solve triangular Linear equations (multiple gpu, GPU memory is allocated in the routine). """ info = c_int_type() side = _side_conversion[side] trans = _trans_conversion[trans] uplo = _uplo_conversion[uplo] diag = _diag_conversion[diag] status = _libmagma.magma_strsm_m(ngpu, side, uplo, trans, diag, m, n, alpha, int(A), lda, int(B), ldb, ctypes.byref(info)) _libmagma.magma_sormqr.restype = int _libmagma.magma_sormqr.argtypes = [c_int_type, c_int_type, c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sormqr(side, trans, m, n, k, A, lda, tau, C, ldc, work, lwork): """ Multiply by Q from QR factorizatioin (multiple gpu, GPU memory is allocated in the routine). """ info = c_int_type() side = _side_conversion[side] trans = _trans_conversion[trans] status = _libmagma.magma_sormqr(side, trans, m, n, k, int(A), lda, int(tau), int(C), ldc, int(work), lwork, ctypes.byref(info)) # SORGQR, DORGQR, CUNGQR, ZUNGQR _libmagma.magma_sorgqr.restype = int _libmagma.magma_sorgqr.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sorgqr(m, n, k, A, lda, tau, dT, nb): """ Generate Q from QR factorization. """ info = c_int_type() status = _libmagma.magma_sorgqr(m, n, k, int(A), lda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dorgqr.restype = int _libmagma.magma_dorgqr.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_dorgqr(m, n, k, A, lda, tau, dT, nb): """ Generate Q from QR factorization. """ info = c_int_type() status = _libmagma.magma_dorgqr(m, n, k, int(A), lda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cungqr.restype = int _libmagma.magma_cungqr.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_cungqr(m, n, k, A, lda, tau, dT, nb): """ Generate Q from QR factorization. """ info = c_int_type() status = _libmagma.magma_cungqr(m, n, k, int(A), lda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zungqr.restype = int _libmagma.magma_zungqr.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_zungqr(m, n, k, A, lda, tau, dT, nb): """ Generate Q from QR factorization. """ info = c_int_type() status = _libmagma.magma_zungqr(m, n, k, int(A), lda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) # SORGQR2, DORGQR2, CUNGQR2, ZUNGQR2 _libmagma.magma_sorgqr2.restype = int _libmagma.magma_sorgqr2.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_sorgqr2(m, n, k, A, lda, tau): """ Generate Q from QR factorization. (Recompute T matrices on CPU and send them to GPU) """ info = c_int_type() status = _libmagma.magma_sorgqr2(m, n, k, int(A), lda, int(tau), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dorgqr2.restype = int _libmagma.magma_dorgqr2.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_dorgqr2(m, n, k, A, lda, tau): """ Generate Q from QR factorization. (Recompute T matrices on CPU and send them to GPU) """ info = c_int_type() status = _libmagma.magma_dorgqr2(m, n, k, int(A), lda, int(tau), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cungqr2.restype = int _libmagma.magma_cungqr2.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_cungqr2(m, n, k, A, lda, tau): """ Generate Q from QR factorization. (Recompute T matrices on CPU and send them to GPU) """ info = c_int_type() status = _libmagma.magma_cungqr2(m, n, k, int(A), lda, int(tau), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zungqr2.restype = int _libmagma.magma_zungqr2.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_zungqr2(m, n, k, A, lda, tau): """ Generate Q from QR factorization. (Recompute T matrices on CPU and send them to GPU) """ info = c_int_type() status = _libmagma.magma_zungqr2(m, n, k, int(A), lda, int(tau), ctypes.byref(info)) magmaCheckStatus(status) # SORGQR_GPU, DORGQR_GPU, CUNGQR_GPU, ZUNGQR_GPU _libmagma.magma_sorgqr_gpu.restype = int _libmagma.magma_sorgqr_gpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sorgqr_gpu(m, n, k, A, ldda, tau, dT, nb): """ Generate Q from QR factorization. (GPU interface) """ info = c_int_type() status = _libmagma.magma_sorgqr_gpu(m, n, k, int(A), ldda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dorgqr_gpu.restype = int _libmagma.magma_dorgqr_gpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_dorgqr_gpu(m, n, k, A, ldda, tau, dT, nb): """ Generate Q from QR factorization. (GPU interface) """ info = c_int_type() status = _libmagma.magma_dorgqr_gpu(m, n, k, int(A), ldda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cungqr_gpu.restype = int _libmagma.magma_cungqr_gpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_cungqr_gpu(m, n, k, A, ldda, tau, dT, nb): """ Generate Q from QR factorization. (GPU interface) """ info = c_int_type() status = _libmagma.magma_cungqr_gpu(m, n, k, int(A), ldda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zungqr_gpu.restype = int _libmagma.magma_zungqr_gpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_zungqr_gpu(m, n, k, A, ldda, tau, dT, nb): """ Generate Q from QR factorization. (GPU interface) """ info = c_int_type() status = _libmagma.magma_zungqr_gpu(m, n, k, int(A), ldda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) # SORGQR_2STAGE_GPU, DORGQR_2STAGE_GPU # CUNGQR_2STAGE_GPU, ZUNGQR_2STAGE_GPU _libmagma.magma_sorgqr_2stage_gpu.restype = int _libmagma.magma_sorgqr_2stage_gpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sorgqr_2stage_gpu(m, n, k, A, ldda, tau, dT, nb): """ Generate Q from QR factorization. (GPU interface) """ info = c_int_type() status = _libmagma.magma_sorgqr_2stage_gpu(m, n, k, int(A), ldda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dorgqr_2stage_gpu.restype = int _libmagma.magma_dorgqr_2stage_gpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_dorgqr_2stage_gpu(m, n, k, A, ldda, tau, dT, nb): """ Generate Q from QR factorization. (GPU interface) """ info = c_int_type() status = _libmagma.magma_dorgqr_2stage_gpu(m, n, k, int(A), ldda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cungqr_2stage_gpu.restype = int _libmagma.magma_cungqr_2stage_gpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_cungqr_2stage_gpu(m, n, k, A, ldda, tau, dT, nb): """ Generate Q from QR factorization. (GPU interface) """ info = c_int_type() status = _libmagma.magma_cungqr_2stage_gpu(m, n, k, int(A), ldda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zungqr_2stage_gpu.restype = int _libmagma.magma_zungqr_2stage_gpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_zungqr_2stage_gpu(m, n, k, A, ldda, tau, dT, nb): """ Generate Q from QR factorization. (GPU interface) """ info = c_int_type() status = _libmagma.magma_zungqr_2stage_gpu(m, n, k, int(A), ldda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) # SORGQR_M, DORGQR_M, CUNGQR_M, ZUNGQR_M _libmagma.magma_sorgqr_m.restype = int _libmagma.magma_sorgqr_m.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sorgqr_m(m, n, k, A, lda, tau, dT, nb): """ Generate Q from QR factorization. (multi-GPU) """ info = c_int_type() status = _libmagma.magma_sorgqr_m(m, n, k, int(A), lda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dorgqr_m.restype = int _libmagma.magma_dorgqr_m.argtypes = _libmagma.magma_sorgqr_m.argtypes def magma_dorgqr_m(m, n, k, A, lda, tau, dT, nb): """ Generate Q from QR factorization. (multi-GPU) """ info = c_int_type() status = _libmagma.magma_dorgqr_m(m, n, k, int(A), lda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cungqr_m.restype = int _libmagma.magma_cungqr_m.argtypes = _libmagma.magma_sorgqr_m.argtypes def magma_cungqr_m(m, n, k, A, lda, tau, dT, nb): """ Generate Q from QR factorization. """ info = c_int_type() status = _libmagma.magma_cungqr_m(m, n, k, int(A), lda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zungqr_m.restype = int _libmagma.magma_zungqr_m.argtypes = _libmagma.magma_sorgqr_m.argtypes def magma_zungqr_m(m, n, k, A, lda, tau, dT, nb): """ Generate Q from QR factorization. """ info = c_int_type() status = _libmagma.magma_zungqr_m(m, n, k, int(A), lda, int(tau), int(dT), nb, ctypes.byref(info)) magmaCheckStatus(status) # SGESV, DGESV, CGESV, ZGESV _libmagma.magma_sgesv.restype = int _libmagma.magma_sgesv.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sgesv(n, nhrs, A, lda, ipiv, B, ldb): """ Solve system of linear equations. """ info = c_int_type() status = _libmagma.magma_sgesv(n, nhrs, int(A), lda, int(ipiv), int(B), ldb, ctypes.byref(info)) magmaCheckStatus(status) # SGETRF, DGETRF, CGETRF, ZGETRF _libmagma.magma_sgetrf.restype = int _libmagma.magma_sgetrf.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_sgetrf(m, n, A, lda, ipiv): """ LU factorization. """ info = c_int_type() status = _libmagma.magma_sgetrf(m, n, int(A), lda, int(ipiv), ctypes.byref(info)) magmaCheckStatus(status) # SGETRF_M, DGETRF_M, CGETRF_M, ZGETRF_M _libmagma.magma_sgetrf_m.restype = int _libmagma.magma_sgetrf_m.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_sgetrf_m(ngpu,m, n, A, lda, ipiv): """ LU factorization. Multi-gpu, data on host. """ info = c_int_type() status = _libmagma.magma_sgetrf_m(ngpu,m, n, int(A), lda, int(ipiv), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgetrf_m.restype = int _libmagma.magma_dgetrf_m.argtypes = _libmagma.magma_sgetrf_m.argtypes def magma_dgetrf_m(ngpu,m, n, A, lda, ipiv): """ LU factorization. Multi-gpu, data on host. """ info = c_int_type() status = _libmagma.magma_dgetrf_m(ngpu,m, n, int(A), lda, int(ipiv), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgetrf_m.restype = int _libmagma.magma_cgetrf_m.argtypes = _libmagma.magma_sgetrf_m.argtypes def magma_cgetrf_m(ngpu,m, n, A, lda, ipiv): """ LU factorization. Multi-gpu, data on host. """ info = c_int_type() status = _libmagma.magma_cgetrf_m(ngpu,m, n, int(A), lda, int(ipiv), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgetrf_m.restype = int _libmagma.magma_zgetrf_m.argtypes = _libmagma.magma_sgetrf_m.argtypes def magma_zgetrf_m(ngpu,m, n, A, lda, ipiv): """ LU factorization. Multi-gpu, data on host. """ info = c_int_type() status = _libmagma.magma_zgetrf_m(ngpu,m, n, int(A), lda, int(ipiv), ctypes.byref(info)) magmaCheckStatus(status) ## SGETRF2, DGETRF2, CGETRF2, ZGETRF2 #_libmagma.magma_sgetrf2.restype = int #_libmagma.magma_sgetrf2.argtypes = [c_int_type, # c_int_type, # ctypes.c_void_p, # c_int_type, # ctypes.c_void_p, # ctypes.c_void_p] #def magma_sgetrf2(m, n, A, lda, ipiv): # # """ # LU factorization (multi-GPU). # """ # # info = c_int_type() # status = _libmagma.magma_sgetrf2(m, n, int(A), lda, # int(ipiv), ctypes.byref(info)) # magmaCheckStatus(status) # SGEEV, DGEEV, CGEEV, ZGEEV _libmagma.magma_sgeev.restype = int _libmagma.magma_sgeev.argtypes = [ctypes.c_char, ctypes.c_char, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_sgeev(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork): """ Compute eigenvalues and eigenvectors. """ c_int_type() status = _libmagma.magma_sgeev(jobvl, jobvr, n, int(a), lda, int(w), int(vl), ldvl, int(vr), ldvr, int(work), lwork, int(rwork), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgeev.restype = int _libmagma.magma_dgeev.argtypes = _libmagma.magma_sgeev.argtypes def magma_dgeev(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork): """ Compute eigenvalues and eigenvectors. """ c_int_type() status = _libmagma.magma_dgeev(jobvl, jobvr, n, int(a), lda, int(w), int(vl), ldvl, int(vr), ldvr, int(work), lwork, int(rwork), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgeev.restype = int _libmagma.magma_cgeev.argtypes = _libmagma.magma_sgeev.argtypes def magma_cgeev(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork): """ Compute eigenvalues and eigenvectors. """ c_int_type() status = _libmagma.magma_cgeev(jobvl, jobvr, n, int(a), lda, int(w), int(vl), ldvl, int(vr), ldvr, int(work), lwork, int(rwork), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgeev.restype = int _libmagma.magma_zgeev.argtypes = _libmagma.magma_sgeev.argtypes def magma_zgeev(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork): """ Compute eigenvalues and eigenvectors. """ c_int_type() status = _libmagma.magma_zgeev(jobvl, jobvr, n, int(a), lda, int(w), int(vl), ldvl, int(vr), ldvr, int(work), lwork, int(rwork), ctypes.byref(info)) magmaCheckStatus(status) # SGEEV_M, DGEEV_M, CGEEV_M, ZGEEV_M _libmagma.magma_sgeev_m.restype = int _libmagma.magma_sgeev_m.argtypes = _libmagma.magma_sgeev.argtypes def magma_sgeev_m(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork): """ Compute eigenvalues and eigenvectors. Multi-GPU, data on host """ c_int_type() status = _libmagma.magma_sgeev_m(jobvl, jobvr, n, int(a), lda, int(w), int(vl), ldvl, int(vr), ldvr, int(work), lwork, int(rwork), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgeev_m.restype = int _libmagma.magma_dgeev_m.argtypes = _libmagma.magma_sgeev.argtypes def magma_dgeev_m(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork): """ Compute eigenvalues and eigenvectors. """ c_int_type() status = _libmagma.magma_dgeev_m(jobvl, jobvr, n, int(a), lda, int(w), int(vl), ldvl, int(vr), ldvr, int(work), lwork, int(rwork), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgeev_m.restype = int _libmagma.magma_cgeev_m.argtypes = _libmagma.magma_sgeev.argtypes def magma_cgeev_m(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork): """ Compute eigenvalues and eigenvectors. """ c_int_type() status = _libmagma.magma_cgeev_m(jobvl, jobvr, n, int(a), lda, int(w), int(vl), ldvl, int(vr), ldvr, int(work), lwork, int(rwork), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgeev_m.restype = int _libmagma.magma_zgeev_m.argtypes = _libmagma.magma_sgeev.argtypes def magma_zgeev_m(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork): """ Compute eigenvalues and eigenvectors. """ c_int_type() status = _libmagma.magma_zgeev_m(jobvl, jobvr, n, int(a), lda, int(w), int(vl), ldvl, int(vr), ldvr, int(work), lwork, int(rwork), ctypes.byref(info)) magmaCheckStatus(status) # SGESVD, DGESVD, CGESVD, ZGESVD _libmagma.magma_sgesvd.restype = int _libmagma.magma_sgesvd.argtypes = [c_int_type, c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork): """ SVD decomposition. """ jobu = _vec_conversion[jobu] jobvt = _vec_conversion[jobvt] info = c_int_type() status = _libmagma.magma_sgesvd(jobu, jobvt, m, n, int(a), lda, int(s), int(u), ldu, int(vt), ldvt, int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgesvd.restype = int _libmagma.magma_dgesvd.argtypes = [c_int_type, c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_dgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork): """ SVD decomposition. """ jobu = _vec_conversion[jobu] jobvt = _vec_conversion[jobvt] info = c_int_type() status = _libmagma.magma_dgesvd(jobu, jobvt, m, n, int(a), lda, int(s), int(u), ldu, int(vt), ldvt, int(work), lwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgesvd.restype = int _libmagma.magma_cgesvd.argtypes = [c_int_type, c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_cgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork): """ SVD decomposition. """ jobu = _vec_conversion[jobu] jobvt = _vec_conversion[jobvt] info = c_int_type() status = _libmagma.magma_cgesvd(jobu, jobvt, m, n, int(a), lda, int(s), int(u), ldu, int(vt), ldvt, int(work), lwork, int(rwork), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgesvd.restype = int _libmagma.magma_zgesvd.argtypes = [c_int_type, c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_zgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork): """ SVD decomposition. """ jobu = _vec_conversion[jobu] jobvt = _vec_conversion[jobvt] c_int_type() status = _libmagma.magma_zgesvd(jobu, jobvt, m, n, int(a), lda, int(s), int(u), ldu, int(vt), ldvt, int(work), lwork, int(rwork), ctypes.byref(info)) magmaCheckStatus(status) # SGESDD, DGESDD, CGESDD, ZGESDD _libmagma.magma_sgesdd.restype = int _libmagma.magma_sgesdd.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_sgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, iwork): """ SDD decomposition. """ jobz = _vec_conversion[jobz] info = c_int_type() status = _libmagma.magma_sgesdd(jobz, m, n, int(a), lda, int(s), int(u), ldu, int(vt), ldvt, int(work), lwork, int(iwork), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgesdd.restype = int _libmagma.magma_dgesdd.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_dgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, iwork): """ SDD decomposition. """ jobz = _vec_conversion[jobz] info = c_int_type() status = _libmagma.magma_dgesdd(jobz, m, n, int(a), lda, int(s), int(u), ldu, int(vt), ldvt, int(work), lwork, int(iwork), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgesdd.restype = int _libmagma.magma_cgesdd.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] def magma_cgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, iwork): """ SDD decomposition. """ jobz = _vec_conversion[jobz] info = c_int_type() status = _libmagma.magma_cgesdd(jobz, m, n, int(a), lda, int(s), int(u), ldu, int(vt), ldvt, int(work), lwork, int(rwork), int(iwork), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgesdd.restype = int _libmagma.magma_zgesdd.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] def magma_zgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, iwork): """ SDD decomposition. """ jobz = _vec_conversion[jobz] info = c_int_type() status = _libmagma.magma_zgesdd(jobz, m, n, int(a), lda, int(s), int(u), ldu, int(vt), ldvt, int(work), lwork, int(rwork), int(iwork), ctypes.byref(info)) magmaCheckStatus(status) # SPOSV, DPOSV, CPOSV, ZPOSV _libmagma.magma_sposv_gpu.restype = int _libmagma.magma_sposv_gpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sposv_gpu(uplo, n, nhrs, a_gpu, lda, b_gpu, ldb): """ Solve linear system with positive semidefinite coefficient matrix. """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_sposv_gpu(uplo, n, nhrs, int(a_gpu), lda, int(b_gpu), ldb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dposv_gpu.restype = int _libmagma.magma_dposv_gpu.argtypes = _libmagma.magma_sposv_gpu.argtypes def magma_dposv_gpu(uplo, n, nhrs, a_gpu, lda, b_gpu, ldb): """ Solve linear system with positive semidefinite coefficient matrix. """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_dposv_gpu(uplo, n, nhrs, int(a_gpu), lda, int(b_gpu), ldb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cposv_gpu.restype = int _libmagma.magma_cposv_gpu.argtypes = _libmagma.magma_sposv_gpu.argtypes def magma_cposv_gpu(uplo, n, nhrs, a_gpu, lda, b_gpu, ldb): """ Solve linear system with positive semidefinite coefficient matrix. """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_cposv_gpu(uplo, n, nhrs, int(a_gpu), lda, int(b_gpu), ldb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zposv_gpu.restype = int _libmagma.magma_zposv_gpu.argtypes = _libmagma.magma_sposv_gpu.argtypes def magma_zposv_gpu(uplo, n, nhrs, a_gpu, lda, b_gpu, ldb): """ Solve linear system with positive semidefinite coefficient matrix. """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_zposv_gpu(uplo, n, nhrs, int(a_gpu), lda, int(b_gpu), ldb, ctypes.byref(info)) magmaCheckStatus(status) # SGESV, DGESV, CGESV, ZGESV _libmagma.magma_sgesv_gpu.restype = int _libmagma.magma_sgesv_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sgesv_gpu(n, nhrs, A, lda, ipiv, B, ldb): """ Solve system of linear equations. """ info = c_int_type() status = _libmagma.magma_sgesv_gpu(n, nhrs, int(A), lda, int(ipiv), int(B), ldb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgesv_gpu.restype = int _libmagma.magma_dgesv_gpu.argtypes = _libmagma.magma_sgesv_gpu.argtypes def magma_dgesv_gpu(n, nhrs, A, lda, ipiv, B, ldb): """ Solve system of linear equations. """ info = c_int_type() status = _libmagma.magma_dgesv_gpu(n, nhrs, int(A), lda, int(ipiv), int(B), ldb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgesv_gpu.restype = int _libmagma.magma_cgesv_gpu.argtypes = _libmagma.magma_sgesv_gpu.argtypes def magma_cgesv_gpu(n, nhrs, A, lda, ipiv, B, ldb): """ Solve system of linear equations. """ info = c_int_type() status = _libmagma.magma_cgesv_gpu(n, nhrs, int(A), lda, int(ipiv), int(B), ldb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgesv_gpu.restype = int _libmagma.magma_zgesv_gpu.argtypes = _libmagma.magma_sgesv_gpu.argtypes def magma_zgesv_gpu(n, nhrs, A, lda, ipiv, B, ldb): """ Solve system of linear equations. """ info = c_int_type() status = _libmagma.magma_zgesv_gpu(n, nhrs, int(A), lda, int(ipiv), int(B), ldb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_sgesv_nopiv_gpu.restype = int _libmagma.magma_sgesv_nopiv_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_sgesv_nopiv_gpu(n, nhrs, A, lda, B, ldb): """ Solve system of linear equations. """ info = c_int_type() status = _libmagma.magma_sgesv_nopiv_gpu(n, nhrs, int(A), lda, int(B), ldb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgesv_nopiv_gpu.restype = int _libmagma.magma_dgesv_nopiv_gpu.argtypes = _libmagma.magma_sgesv_nopiv_gpu.argtypes def magma_dgesv_nopiv_gpu(n, nhrs, A, lda, B, ldb): """ Solve system of linear equations. """ info = c_int_type() status = _libmagma.magma_dgesv_nopiv_gpu(n, nhrs, int(A), lda, int(B), ldb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgesv_nopiv_gpu.restype = int _libmagma.magma_cgesv_nopiv_gpu.argtypes = _libmagma.magma_sgesv_nopiv_gpu.argtypes def magma_cgesv_nopiv_gpu(n, nhrs, A, lda, B, ldb): """ Solve system of linear equations. """ info = c_int_type() status = _libmagma.magma_cgesv_nopiv_gpu(n, nhrs, int(A), lda, int(B), ldb, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgesv_nopiv_gpu.restype = int _libmagma.magma_zgesv_nopiv_gpu.argtypes = _libmagma.magma_sgesv_nopiv_gpu.argtypes def magma_zgesv_nopiv_gpu(n, nhrs, A, lda, B, ldb): """ Solve system of linear equations. """ info = c_int_type() status = _libmagma.magma_zgesv_nopiv_gpu(n, nhrs, int(A), lda, int(B), ldb, ctypes.byref(info)) magmaCheckStatus(status) # SPOTRF, DPOTRF, CPOTRF, ZPOTRF _libmagma.magma_spotrf_gpu.restype = int _libmagma.magma_spotrf_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_spotrf_gpu(uplo, n, A, lda): """ Cholesky factorization of positive symmetric matrix. """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_spotrf_gpu(uplo, n, int(A), lda, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dpotrf_gpu.restype = int _libmagma.magma_dpotrf_gpu.argtypes = _libmagma.magma_spotrf_gpu.argtypes def magma_dpotrf_gpu(uplo, n, A, lda): """ Cholesky factorization of positive symmetric matrix. """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_dpotrf_gpu(uplo, n, int(A), lda, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cpotrf_gpu.restype = int _libmagma.magma_cpotrf_gpu.argtypes = _libmagma.magma_spotrf_gpu.argtypes def magma_cpotrf_gpu(uplo, n, A, lda): """ Cholesky factorization of positive symmetric matrix. """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_cpotrf_gpu(uplo, n, int(A), lda, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zpotrf_gpu.restype = int _libmagma.magma_zpotrf_gpu.argtypes = _libmagma.magma_zpotrf_gpu.argtypes def magma_zpotrf_gpu(uplo, n, A, lda): """ Cholesky factorization of positive symmetric matrix. """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_zpotrf_gpu(uplo, n, int(A), lda, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_spotrf_m.restype = int _libmagma.magma_spotrf_m.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_spotrf_m(ngpu, uplo, n, A, lda): """ Cholesky factorization of positive symmetric matrix. Multi-gpu, data on host """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_spotrf_m(ngu, uplo, n, int(A), lda, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dpotrf_m.restype = int _libmagma.magma_dpotrf_m.argtypes = _libmagma.magma_spotrf_m.argtypes def magma_dpotrf_m(ngpu, uplo, n, A, lda): """ Cholesky factorization of positive symmetric matrix. Multi-gpu, data on host """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_dpotrf_m(ngpu, uplo, n, int(A), lda, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cpotrf_m.restype = int _libmagma.magma_cpotrf_m.argtypes = _libmagma.magma_spotrf_m.argtypes def magma_cpotrf_gpu(ngpu, uplo, n, A, lda): """ Cholesky factorization of positive symmetric matrix. Multi-gpu, data on host """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_cpotrf_m(ngpu, uplo, n, int(A), lda, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zpotrf_gpu.restype = int _libmagma.magma_zpotrf_gpu.argtypes = _libmagma.magma_zpotrf_m.argtypes def magma_zpotrf_m(ngpu, uplo, n, A, lda): """ Cholesky factorization of positive symmetric matrix. Multi-gpu, data on host """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_zpotrf_m(ngpu, uplo, n, int(A), lda, ctypes.byref(info)) magmaCheckStatus(status) # SPOTRI, DPOTRI, CPOTRI, ZPOTRI _libmagma.magma_spotri_gpu.restype = int _libmagma.magma_spotri_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_spotri_gpu(uplo, n, A, lda): """ Inverse using the Cholesky factorization of positive symmetric matrix. """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_spotri_gpu(uplo, n, int(A), lda, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dpotri_gpu.restype = int _libmagma.magma_dpotri_gpu.argtypes = _libmagma.magma_spotri_gpu.argtypes def magma_dpotri_gpu(uplo, n, A, lda): """ Inverse using the Cholesky factorization of positive symmetric matrix. """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_dpotri_gpu(uplo, n, int(A), lda, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cpotri_gpu.restype = int _libmagma.magma_cpotri_gpu.argtypes = _libmagma.magma_spotri_gpu.argtypes def magma_cpotri_gpu(uplo, n, A, lda): """ Inverse using the Cholesky factorization of positive symmetric matrix. """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_cpotri_gpu(uplo, n, int(A), lda, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zpotri_gpu.restype = int _libmagma.magma_zpotri_gpu.argtypes = _libmagma.magma_spotri_gpu.argtypes def magma_zpotri_gpu(uplo, n, A, lda): """ Inverse using the Cholesky factorization of positive symmetric matrix. """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_zpotri_gpu(uplo, n, int(A), lda, ctypes.byref(info)) magmaCheckStatus(status) # SGETRF, DGETRF, CGETRF, ZGETRF _libmagma.magma_sgetrf_gpu.restype = int _libmagma.magma_sgetrf_gpu.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p] def magma_sgetrf_gpu(n, m, A, lda, ipiv): """ LU factorization. """ info = c_int_type() status = _libmagma.magma_sgetrf_gpu(n, m, int(A), lda, int(ipiv), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dgetrf_gpu.restype = int _libmagma.magma_dgetrf_gpu.argtypes = _libmagma.magma_sgetrf_gpu.argtypes def magma_dgetrf_gpu(n, m, A, lda, ipiv): """ LU factorization. """ info = c_int_type() status = _libmagma.magma_dgetrf_gpu(n, m, int(A), lda, int(ipiv), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cgetrf_gpu.restype = int _libmagma.magma_cgetrf_gpu.argtypes = _libmagma.magma_sgetrf_gpu.argtypes def magma_cgetrf_gpu(n, m, A, lda, ipiv): """ LU factorization. """ info = c_int_type() status = _libmagma.magma_cgetrf_gpu(n, m, int(A), lda, int(ipiv), ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zgetrf_gpu.restype = int _libmagma.magma_zgetrf_gpu.argtypes = _libmagma.magma_sgetrf_gpu.argtypes def magma_zgetrf_gpu(n, m, A, lda, ipiv): """ LU factorization. """ info = c_int_type() status = _libmagma.magma_zgetrf_gpu(n, m, int(A), lda, int(ipiv), ctypes.byref(info)) magmaCheckStatus(status) # SSYEVD, DSYEVD _libmagma.magma_ssyevd_gpu.restype = int _libmagma.magma_ssyevd_gpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_ssyevd_gpu(jobz, uplo, n, dA, ldda, w, wA, ldwa, work, lwork, iwork, liwork): """ Compute eigenvalues of real symmetric matrix. """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_ssyevd_gpu(jobz, uplo, n, int(dA), ldda, int(w), int(wA), ldwa, int(work), lwork, int(iwork), liwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dsyevd_gpu.restype = int _libmagma.magma_dsyevd_gpu.argtypes = [c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_dsyevd_gpu(jobz, uplo, n, dA, ldda, w, wA, ldwa, work, lwork, iwork, liwork): """ Compute eigenvalues of real symmetric matrix. """ jobz = _vec_conversion[jobz] uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_dsyevd_gpu(jobz, uplo, n, int(dA), ldda, int(w), int(wA), ldwa, int(work), lwork, int(iwork), liwork, ctypes.byref(info)) magmaCheckStatus(status) # SSYEVD_M, DSYEVD_M, CHEEVD_M, ZHEEVD_M _libmagma.magma_ssyevd_m.restype = int _libmagma.magma_ssyevd_m.argtypes = [c_int_type, c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_ssyevd_m(ngpu, jobz, uplo, n, A, lda, w, work, lwork, iwork, liwork): """ Compute eigenvalues of real symmetric matrix. Multi-GPU, data on host """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_ssyevd_m(ngpu, jobz, uplo, n, int(A), lda, int(w), int(work), lwork, int(iwork), liwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_dsyevd_m.restype = int _libmagma.magma_dsyevd_m.argtypes = _libmagma.magma_dsyevd_m.argtypes def magma_dsyevd_m(ngpu, jobz, uplo, n, A, lda, w, work, lwork, iwork, liwork): """ Compute eigenvalues of real symmetric matrix. Multi-GPU, data on host """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_dsyevd_m(ngpu, jobz, uplo, n, int(A), lda, int(w), int(work), lwork, int(iwork), liwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_cheevd_m.restype = int _libmagma.magma_cheevd_m.argtypes = [c_int_type, c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_cheevd_m(ngpu, jobz, uplo, n, A, lda, w, work, lwork, rwork, lrwork, iwork, liwork): """ Compute eigenvalues of complex hermitian matrix. Multi-GPU, data on host """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_cheevd_m(ngpu, jobz, uplo, n, int(A), lda, int(w), int(work), lwork, int(rwork), lrwork, int(iwork), liwork, ctypes.byref(info)) magmaCheckStatus(status) _libmagma.magma_zheevd_m.restype = int _libmagma.magma_zheevd_m.argtypes = _libmagma.magma_cheevd_m.argtypes def magma_zheevd_m(ngpu, jobz, uplo, n, A, lda, w, work, lwork, rwork, lrwork, iwork, liwork): """ Compute eigenvalues of complex hermitian matrix. Multi-GPU, data on host """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_zheevd_m(ngpu, jobz, uplo, n, int(A), lda, int(w), int(work), lwork, int(rwork), lrwork, int(iwork), liwork, ctypes.byref(info)) magmaCheckStatus(status) # SSYEVDX_M, DSYEVDX_M, CHEEVDX_M, ZHEEVDX_M _libmagma.magma_ssyevd_m.restype = int _libmagma.magma_ssyevd_m.argtypes = [c_int_type, c_int_type, c_int_type, c_int_type, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_float, ctypes.c_float, c_int_type, c_int_type, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, c_int_type, ctypes.c_void_p, c_int_type, ctypes.c_void_p] def magma_ssyevdx_m(ngpu, jobz, rnge, uplo, n, A, lda, vl, vu, il, iu, m, w, work, lwork, iwork, liwork): """ Compute eigenvalues of real symmetric matrix. Multi-GPU, data on host """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_ssyevdx_m(ngpu, jobz, uplo, n, int(A), lda, int(w), int(work), lwork, int(iwork), liwork, ctypes.byref(info)) magmaCheckStatus(status) # SYMMETRIZE _libmagma.magmablas_ssymmetrize.restype = int _libmagma.magmablas_ssymmetrize.argtypes = [c_int_type, c_int_type, ctypes.c_void_p, c_int_type] def magmablas_ssymmetrize(uplo, n, A, lda): """ Symmetrize a triangular matrix. """ uplo = _uplo_conversion[uplo] status = _libmagma.magmablas_ssymmetrize(uplo, n, int(A), lda) magmaCheckStatus(status) _libmagma.magmablas_dsymmetrize.restype = int _libmagma.magmablas_dsymmetrize.argtypes = _libmagma.magmablas_ssymmetrize.argtypes def magmablas_dsymmetrize(uplo, n, A, lda): """ Symmetrize a triangular matrix. """ uplo = _uplo_conversion[uplo] status = _libmagma.magmablas_dsymmetrize(uplo, n, int(A), lda) magmaCheckStatus(status) _libmagma.magmablas_csymmetrize.restype = int _libmagma.magmablas_csymmetrize.argtypes = _libmagma.magmablas_ssymmetrize.argtypes def magmablas_csymmetrize(uplo, n, A, lda): """ Symmetrize a triangular matrix. """ uplo = _uplo_conversion[uplo] status = _libmagma.magmablas_csymmetrize(uplo, n, int(A), lda) magmaCheckStatus(status) _libmagma.magmablas_zsymmetrize.restype = int _libmagma.magmablas_zsymmetrize.argtypes = _libmagma.magmablas_ssymmetrize.argtypes def magmablas_zsymmetrize(uplo, n, A, lda): """ Symmetrize a triangular matrix. """ uplo = _uplo_conversion[uplo] status = _libmagma.magmablas_zsymmetrize(uplo, n, int(A), lda) magmaCheckStatus(status)
# Generated by Django 3.2.5 on 2021-08-20 18:54 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='tGuild_Bank', fields=[ ('id_bank_guild', models.CharField(max_length=100, primary_key=True, serialize=False, unique=True)), ('bank_money', models.IntegerField(null=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='tGuild_Discord', fields=[ ('id_guild', models.CharField(max_length=100, primary_key=True, serialize=False, unique=True)), ('name', models.CharField(max_length=100)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('bank_id', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='kacang.tguild_bank')), ], ), migrations.CreateModel( name='tMember_Bank', fields=[ ('id_bank', models.CharField(max_length=100, primary_key=True, serialize=False, unique=True)), ('cash_money', models.IntegerField(null=True)), ('bank_money', models.IntegerField(null=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='tMember_Condition', fields=[ ('id_condition', models.CharField(max_length=100, primary_key=True, serialize=False, unique=True)), ('condition_value', models.IntegerField(null=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='tMember_Discord', fields=[ ('id_discord', models.CharField(max_length=100, primary_key=True, serialize=False, unique=True)), ('name', models.CharField(max_length=100)), ('avatar', models.CharField(max_length=255)), ('user_join', models.CharField(max_length=100)), ('user_create', models.CharField(max_length=100)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('bank_id', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='kacang.tmember_bank')), ('condition_id', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='kacang.tmember_condition')), ('guild_id', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='kacang.tguild_discord')), ], ), migrations.CreateModel( name='tShop_Discord', fields=[ ('id_shop', models.CharField(max_length=100, primary_key=True, serialize=False, unique=True)), ('name', models.CharField(max_length=100)), ('category', models.CharField(max_length=100)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='tShop_Item', fields=[ ('id_item', models.CharField(max_length=100, primary_key=True, serialize=False, unique=True)), ('name', models.CharField(max_length=100)), ('desc', models.CharField(max_length=255)), ('category', models.CharField(choices=[('food', 'Food'), ('drink', 'Drink'), ('weapon', 'Weapon'), ('armor', 'Armor'), ('item', 'Item'), ('other', 'Other')], max_length=50)), ('price', models.IntegerField(null=True)), ('value_misc', models.IntegerField(null=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='tMember_Inventory', fields=[ ('id_inventory', models.AutoField(primary_key=True, serialize=False, unique=True)), ('item_count', models.IntegerField(null=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('item_id', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='kacang.tshop_item')), ('member_id', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='kacang.tmember_discord')), ], ), migrations.CreateModel( name='tGuild_Shop_Item', fields=[ ('id_shop_item', models.AutoField(primary_key=True, serialize=False, unique=True)), ('stock', models.IntegerField(null=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('item_id', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='kacang.tshop_item')), ('shop_id', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='kacang.tshop_discord')), ], ), migrations.AddField( model_name='tguild_discord', name='shop_id', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='kacang.tshop_discord'), ), migrations.CreateModel( name='tGuild_Channel', fields=[ ('id_channel', models.CharField(max_length=100, primary_key=True, serialize=False, unique=True)), ('status', models.IntegerField(null=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('guild_id', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='kacang.tguild_discord')), ], ), ]
from django.shortcuts import get_object_or_404, render, redirect from django.http import HttpResponseRedirect, HttpResponse from django.urls import reverse from .models import Question, Essay from .forms import AnswerForm import joblib from .utils.helpers import * import os current_path = os.path.abspath(os.path.dirname(__file__)) # Create your views here. def index(request): questions_list = Question.objects.order_by('set') context = { 'questions_list': questions_list, } return render(request, 'grader/index.html', context) def essay(request, question_id, essay_id): essay = get_object_or_404(Essay, pk=essay_id) context = { "essay": essay, } return render(request, 'grader/essay.html', context) def question(request, question_id): question = get_object_or_404(Question, pk=question_id) if request.method == 'POST': # create a form instance and populate it with data from the request: form = AnswerForm(request.POST) if form.is_valid(): content = form.cleaned_data.get('answer') if len(content.split()) > 50: essay_set = question.set model_path = 'models/model_set' + str(essay_set) + '.pkl' model = joblib.load(os.path.join(current_path, model_path)) essay_prompt_df = pd.read_pickle(os.path.join(current_path, 'prompt_source_files/essay_prompt_df')) essay_source_df = pd.read_pickle(os.path.join(current_path, 'prompt_source_files/essay_source_df')) vectorizer_path = 'vectorizer/tfidf_set' + str(essay_set) + '.pkl' vectorizer = joblib.load(os.path.join(current_path, vectorizer_path)) content_feature_df = create_data(content,essay_set,essay_prompt_df,essay_source_df,vectorizer) preds = model.predict(content_feature_df) preds = np.rint(preds) if preds < 0: preds = 0 if preds > question.max_score: preds = question.max_score else: preds = 0 essay = Essay.objects.create( content=content, question=question, score=preds ) return redirect('essay', question_id=question.set, essay_id=essay.id) else: form = AnswerForm() context = { "question": question, "form": form, } return render(request, 'grader/question.html', context)
from django.contrib import admin from .models import * admin.site.register(Board) admin.site.register(Player) admin.site.register(State) admin.site.register(Piece) admin.site.register(Message)
"""Validation of Yaml configuration files against json schema files. Typical usage example: validator = Validator(json_schema_file_object) validator.validate(yaml_file_object) """ import io import json import jsonschema import ruamel.yaml from ostorlab import exceptions class Error(exceptions.OstorlabError): """Base Exception """ class ValidationError(Error): """Wrapper Exception for the ValidationError produced by jsonschema's validate method.""" class SchemaError(Error): """Wrapper Exception for the SchemaError produced by jsonschema's validate method.""" class Validator: """Creates validator that checks yaml files with a json schema.""" def __init__(self, json_schema_file_object: io.FileIO): """Inits Validator class. Args: json_schema_file_object: A file object of the Json schema file. Raises: SchemaError: When the Json schema file in itself is not valid. """ self._json_schema = json.load(json_schema_file_object) try: jsonschema.Draft202012Validator.check_schema(self._json_schema) except jsonschema.exceptions.SchemaError as e: raise SchemaError('Schema is invalid.') from e def validate(self, yaml_file_object): """ Validates a yaml file against a json schema . Args: yaml_file_object: A file object of the yaml configuration file we want to validate. Raises: ValidationError if the validation did not pass well. SchemaError if the Schema is not valid. """ yaml = ruamel.yaml.YAML(typ='safe') yaml_data = yaml.load(yaml_file_object) try: jsonschema.validate(instance=yaml_data, schema=self._json_schema) except jsonschema.exceptions.ValidationError as e: raise ValidationError('Validation did not pass well.') from e except jsonschema.exceptions.SchemaError as e: raise SchemaError('Schema is invalid.') from e
import fun import numpy #-*- coding: utf-8 -*- """ 算法描述:ISODATA算法: """ ###预定义数据 #------------------------------------------------ #定义数据集 X = {'X1':(0,0),'X2':(1,1),'X3':(2,2),'X4':(4,3),'X5':(5,3),'X6':(4,4),'X7':(5,4),'X8':(6,5)} #预期的聚类中心数目 K = 2 #每一聚类域中最少的样本数目 Qn = 1 #一个聚类中样本距离分布的标准差 Qs = 4 #两个聚类中心间的最小距离,若小于,则需要合并 Qc = 4 #一次迭代预算中可以合并的聚类中心的最多对数 L = 1 #迭代的最多次数 I =4 #初始聚类中心Nc = {Nc1,Nc2} Nc1,Nc2 = (1,1),(5,4) Nc = 2 if __name__ == "__main__": Z = fun.getCluster(X,Nc1,Nc2) if [(1 if len(n) >= Qn else 0) for n in Z].count(5): Nc = Nc -1
#!/usr/bin/env python3 # Copyright 2020 John Alamina # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED # WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, # MERCHANTABLITY OR NON-INFRINGEMENT. # See the Apache 2 License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import numpy as np from kaldiio import WriteHelper from scipy.fftpack import fft import sys import torch import json import kaldiio from kymatio.numpy import Scattering1D import pickle J = 6 Q = 16 if len(sys.argv) != 3: print("Usage: python json2json.py [target] [outfile]") sys.exit(1) in_target = sys.argv[1] outfile = sys.argv[2] infile = 'dump/%s/deltafalse/data.json' % in_target ark = 'data/wavs/%s.ark' % in_target d = {} with open("data/%s/wav.scp" % in_target, "r") as f: for l in f: ar = l.split(' ') d[ar[0]] = ' '.join(ar[1:len(ar) - 1]) truncated = {} with open(infile, "r") as f: jso = json.load(f) js_items = list(jso['utts'].items()) for i, utt in enumerate(js_items): if i % 10 == 0: print(".", end='', flush=True) if i % 100 == 0: print("total processed = %d of %d " % (i, len(js_items))) key, info = utt wav = "/home/john/src/python/espnet/egs/an4/asr1s/data" \ "/wavs/%s.wav" % key sz, mat = kaldiio.load_mat(wav) wav = wav.replace('.wav', '.mat') T = mat.shape[-1] sx = Scattering1D(J, T, Q) meta = sx.meta() order1 = np.where(meta['order'] == 1) Sx = sx(mat) mat = Sx[order1].transpose() jso['utts'][key]["input"][0]["shape"] = mat.shape jso['utts'][key]["input"][0]["feat"] = wav truncated[key]=jso['utts'][key] pickle.dump(mat, open(wav, "wb")) jso['utts'] = truncated with open(outfile, "w") as f: json.dump(jso, f) # key, info = list(jso.items())[10] # # # plot the speech feature # fbank = kaldiio.load_mat(info["input"][0]["feat"]) # plt.matshow(fbank.T[::-1]) # plt.title(key + ": " + info["output"][0]["text"]) # # # print the key-value pair # key, info def pad(a, reference, offset): """ array: Array to be padded reference: Reference array with the desired shape offsets: list of offsets (number of elements must be equal to the dimension of the array) """ # Create an array of zeros with the reference shape result = np.zeros(reference.shape) # Create a list of slices from offset to offset + shape in each dimension insertHere = [slice(offset[dim], offset[dim] + a.shape[dim]) for dim in range(a.ndim)] # Insert the array in the result at the specified offsets result[insertHere] = a return result
import scrapy class TmoocSpider(scrapy.Spider): name = 'tmooc' allowed_domains = ['tts.tmooc.cn','c.it211.com.cn'] start_urls = ['https://c.it211.com.cn/aid20101106am/aid20101106am.m3u8?_time=1618722481205&sign=87BFA989C7B3E007811E80B4C35C62E4'] def parse(self, response): pass
#coding:utf-8 ''' UDP服务端创建和运行 #coding:utf-8 import socket #创建Socket,绑定指定的ip和端口 #SOCK_DGRAM指定了这个Socket的类型是UDP。绑定端口和TCP一样。 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.bind(('127.0.0.1', 9999)) print('Bind UDP on 9999...') while True: # 直接发送数据和接收数据 data, addr = s.recvfrom(1024) print('Received from %s:%s.' % addr) s.sendto(b'Hello, %s!' % data, addr) ''' ''' UDP 客户端的创建和运行 #coding:utf-8 import socket s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) for data in [b'Hello', b'World']: # 发送数据: s.sendto(data, ('127.0.0.1', 9999)) # 接收数据: print(s.recv(1024).decode('utf-8')) s.close() '''
import panflute as pf from panflute import ( # pylint: disable=unused-import Null, HorizontalRule, Space, SoftBreak, LineBreak, Str, Code, BlockQuote, Note, Div, Plain, Para, Emph, Strong, Strikeout, Superscript, Subscript, SmallCaps, Span, RawBlock, RawInline, Math, CodeBlock, Link, Image, BulletList, OrderedList, DefinitionList, LineBlock, Header, Quoted, Cite, Table, ListContainer, TableCell, Block, convert_text, Element, run_filter) from .constants import (HTML, LATEX, EPUB, MD_PANDOC_STYLES_MD, FIL_ALL, FIL_OTHER, FIL_CHECK, LATEX_FORMATS) from .utils import make_list, yaml_load, yaml_dump class PandocStylesFilter(): ''' Base class for filters. Defines methods to help writing filters and to run them. ''' def __init__(self, func, filter_types=None, tags=None): self._add_method(func, "func") self.filter_types = make_list(filter_types or []) self.tags = make_list(tags or []) self._text = None def run(self): run_filter(self._pandoc_filter) def _pandoc_filter(self, elem, doc): self._init_filter(elem, doc) if not self.check(): return self.new_text = self.func() # pylint: disable=assignment-from-none return self._return_filter() @property def text(self): if self._text: return self._text return self.get_text() @text.setter def text(self, value): self._text = value def _init_filter(self, elem, doc): self.elem = elem self.doc = doc self.cfg = dict() self._get_format() self.classes = elem.classes if hasattr(elem, "classes") else None self.attributes = elem.attributes if hasattr(elem, "attributes") else None self.identifier = elem.identifier if hasattr(elem, "identifier") else None self._text = elem.text if hasattr(elem, "text") else None self.content = elem.content if hasattr(elem, "content") else None def _return_filter(self): if self.new_text is None: return elif self.new_text == []: return [] elif isinstance(self.new_text, list): new = [] for x in self.new_text: # pylint: disable=not-an-iterable if isinstance(x, str): x = convert_text(x) if isinstance(x, ListContainer): new.extend(x) elif isinstance(x, list): new.extend(x) else: new.append(x) return new return convert_text(self.new_text) def _get_format(self): self.fmt = self.doc.format self.real_fmt = self.fmt if self.fmt in LATEX_FORMATS: self.fmt = LATEX elif self.fmt == EPUB: self.fmt = HTML def check(self): return (not self.filter_types or any(isinstance(self.elem, x) for x in self.filter_types))\ and (not self.tags or any(x in self.tags for x in self.classes)) def func(self): return def _add_method(self, var, name): if var is not None: if callable(var): setattr(self, name, var.__get__(self)) else: raise TypeError("Only functions are allowed in filter generation!") def get_metadata(self, key, default=None): '''Gets metadata''' return self.doc.get_metadata(key, default) def get_pandoc_styles_metadata(self): '''Return the pandoc_styles cfg as a dictionary''' try: self.cfg = yaml_load(self.get_metadata(MD_PANDOC_STYLES_MD)) except FileNotFoundError: self.cfg = {} return self.cfg def save_pandoc_styles_metadata(self): '''Save the given cfg in the cfg-file''' yaml_dump(self.cfg, self.get_metadata(MD_PANDOC_STYLES_MD)) def stringify(self, elem=None): '''Stringify an element''' return stringify(elem or self.elem) def transform(self, elem_type): '''Transforms content of this element to elem_type. Return the new Element''' if isinstance(self.content, ListContainer): return elem_type(*self.content) return elem_type(self.content) def raw_block(self, text): '''Return a RawBlock pandoc element in self.fmt. Accepts strings, tuples and lists as arguments. ''' return raw(self.fmt, text) def raw_inline(self, text): '''Return a RawInline pandoc element in self.fmt. Accepts strings, tuples and lists as arguments. ''' return raw(self.fmt, text, element_type=RawInline) def convert_text(self, text=None, input_fmt='markdown', output_fmt='panflute', extra_args=None): '''Wrapper for panflutes convert_text''' text = text or self.text return convert_text(text, input_fmt, output_fmt, False, extra_args) def get_text(self, elem=None, output_fmt='markdown', extra_args=None): """ Converts the content of the given Element to the output format. Use instead of stringify to retain inline formatting. """ elem = self if elem is None else elem if isinstance(elem, ListContainer): elem = Plain(*elem) else: elem = getattr(elem, 'content') return convert_text(elem, 'panflute', output_fmt, False, extra_args) def run_pandoc_styles_filter(func, filter_types=None, tags=None): """ Run a filter with the given func. The function is now a method to a filter object and you can access its contents through self. Your filter can return: > None: do nothing > string: convert the string from markdown to panflute elements > list: The list can contain Panflute Elements or strings. Strings are converted like above. """ PandocStylesFilter(func, filter_types, tags).run() class TransformFilter(PandocStylesFilter): ''' Base class for filters. Defines methods to help writing filters and to run them. ''' # pylint: disable=super-init-not-called def __init__(self, tags=None, all_formats=None, other=None, filter_types=None, check=None, **kwargs): self.tags = make_list(tags or []) self.filter_types = filter_types if filter_types is not None else [Div] self.filter_types = make_list(self.filter_types) self._add_method(all_formats, FIL_ALL) self._add_method(other, FIL_OTHER) self._add_method(check, FIL_CHECK) self.funcs = kwargs def _pandoc_filter(self, elem, doc): self._init_filter(elem, doc) if not self.check(): return for key, func in self.funcs.items(): self._add_method(func, key) self.all_formats() self._call_filter() return self._return_filter() def _call_filter(self): try: self.new_text = getattr(self, self.fmt)() except AttributeError: # pylint: disable=assignment-from-none self.new_text = self.other() def _return_filter(self): if self.new_text is None: return elif self.new_text == []: return [] elif isinstance(self.new_text, list): new = [] for x in self.new_text: if isinstance(x, str): x = raw(self.fmt, x) if isinstance(x, ListContainer): new.extend(x) elif isinstance(x, list): new.extend(x) else: new.append(x) return new return self.raw_block(self.new_text) def all_formats(self): return def other(self): return def _add_method(self, var, name): if var is not None: if isinstance(var, str): setattr(self, name, lambda: var.format(text=self.convert_to_fmt())) elif isinstance(var, list): setattr(self, name, lambda: [self.content if x == "text" else x for x in var]) elif callable(var): setattr(self, name, var.__get__(self)) else: raise TypeError("Only strings and functions are allowed in filter generation!") def convert_to_fmt(self, text=None, input_fmt='markdown', extra_args=None): '''Converts text in input_fmt to self.fmt''' text = text or self.text return convert_text(text, input_fmt, self.fmt, False, extra_args) def get_text(self, elem=None, output_fmt=None, extra_args=None): """ Converts the content of the given Element to the format. Use instead of stringify to retain inline formatting. """ elem = self if elem is None else elem if isinstance(elem, ListContainer): elem = Plain(*elem) else: elem = getattr(elem, 'content') return convert_text(elem, 'panflute', output_fmt or self.fmt, False, extra_args) def run_transform_filter(tags=None, all_formats=None, other=None, filter_types=None, check=None, **kwargs): ''' Creates and runs a pandoc filter. tags: The default check method checks, if these tags are in the classes of the element the filter searches for. If it is [], check only checks for the element type kwargs: The name of the format and a value of: a function, string or a list. Frequently used formats: latex (for latex and pdf), html (for html and epubs), markdown. > Function: These functions are registered as a method and are executed, if the format of the output matches the name. These methods have to either return a string/list of strings or an pandoc element/list of elements. > String: The string is returned as the output. The string can contain the formating {text], which gets replaced by the converted text of the element. > List: The list is returned as below. You can insert the string "text" inside the list. It is replaced with the content of the element. all_formats: This method is executed before the format specific methods and is used to execute shared code. filter_types: If the filter searches for an element other than a div. Can be a list of types check: Replace the default check method with your own. Your filter can return: > None: do nothing > string: convert the string to a rawblock in the current format or from markdown to panflute elements if the format doesn't support rawblocks > list: The list can contain Panflute Elements or strings. Strings are converted like above. ''' pandoc_filter = TransformFilter(tags, all_formats, other, filter_types, check, **kwargs) pandoc_filter.run() def is_pandoc_element(ele): if isinstance(ele, Element): return True elif isinstance(ele, (list, tuple)): return is_pandoc_element(ele[0]) return False def raw(fmt, text, element_type=RawBlock): '''Return a Raw pandoc element in the given format.''' if fmt not in ['tex', 'latex', 'html', 'context']: return convert_text(text) return element_type(text, fmt) def stringify(elem, newlines=True): """ Return the raw text version of an element (and its children elements). Example: >>> e1 = Emph(Str('Hello'), Space, Str('world!')) >>> e2 = Strong(Str('Bye!')) >>> para = Para(e1, Space, e2) >>> stringify(para) 'Hello world! Bye!\n\n' :param newlines: add a new line after a paragraph (default True) """ if isinstance(elem, ListContainer): elem = Plain(*elem) return pf.stringify(elem, newlines) def strip_html_tag(text, tag="p"): text = text.replace(f"<{tag}>", "") return text.replace(f"</{tag}>", "")
from lxml import etree from jinja2 import Environment, FileSystemLoader import requests from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry import time def fetch_object(url): """ Fetch single BrAPI object by path """ print(' GET ' + url) session = requests.Session() retry = Retry(connect=3, backoff_factor=15) adapter = HTTPAdapter(max_retries=retry) session.mount('http://', adapter) session.mount('https://', adapter) r = session.get(url) # Covering internal server errors by retrying one more time if r.status_code == 500: time.sleep(5) r = requests.get(url, allow_redirects=True) elif r.status_code != 200: print(f"Problem with request: {str(r)}") raise RuntimeError("Non-200 status code") return r def fetching_checklists(): # Gathering all checklist ID's session = requests.Session() session.trust_env = False response = fetch_object('https://www.ebi.ac.uk/ena/browser/api/summary/ERC000001-ERC999999') return response.json()['summaries'] def main(): for response_object in fetching_checklists(): checklist = response_object['accession'] print(f"Parsing {checklist}") # Getting the xml checklist from ENA url = f"https://www.ebi.ac.uk/ena/browser/api/xml/{checklist}?download=true" response = fetch_object(url) # Dictionary that will contain all attributes needed xml_tree = {} # Loading templates directory file_loader = FileSystemLoader('ena_upload/templates/jinja_templates') env = Environment(loader=file_loader) # Parsing XML root = etree.fromstring(response.content) # Looping over all fields and storing their name and cardinality for attribute in root.iter('FIELD'): name = '' cardinality = '' for sub_attr in attribute: if sub_attr.tag == 'NAME': name = sub_attr.text elif sub_attr.tag == 'MANDATORY': cardinality = sub_attr.text xml_tree[name] = cardinality # Loading the xml jinja2 template for samples t = env.get_template('ENA_template_samples.xml') # Render template with values from the ENA xml output_from_parsed_template = t.render(attributes=xml_tree) # Saving new xml template file with open(f"ena_upload/templates/ENA_template_samples_{checklist}.xml", "w") as fh: fh.write(output_from_parsed_template) if __name__ == "__main__": main()
# ------------------------------------------- # import # ------------------------------------------- import os import sys import re import codecs import random from PIL import Image import numpy as np from keras.applications.vgg16 import VGG16, preprocess_input from keras.preprocessing import image import matplotlib.pyplot as plt from sklearn.utils import shuffle from list_util import * import transforms from transforms import label_to_img # ------------------------------------------- # defines # ------------------------------------------- CUR_PATH = os.path.join(os.path.dirname(__file__)) # ------------------------------------------- # private functions # ------------------------------------------- # ------------------------------------------- # public functions # ------------------------------------------- class Dataset: def __init__(self, classes, input_size, img_dir, label_dir=None, trans=False): self.classes = classes self.input_size = input_size # WH self.img_paths = list_from_dir(img_dir, ('.jpg', '.png')) if label_dir: self.label_paths = list_from_dir(label_dir, ('.jpg', '.png')) else: self.label_paths = None if trans: self.transforms = transforms.Compose([ transforms.RandomHorizontalFlip(p=0.5), transforms.RandomCrop(self.input_size) ]) else: self.transforms = transforms.Compose([ transforms.CenterCrop(self.input_size) ]) def __len__(self): return len(self.img_paths) def __getitem__(self, idx): img_pil = Image.open(self.img_paths[idx]) seed = random.randint(0, 2**32) img_pil = self.transforms(img_pil, seed=seed) img = self.format_img(img_pil) if self.label_paths: label_pil = Image.open(self.label_paths[idx]) label_pil = self.transforms(label_pil, seed=seed) label = self.to_label(label_pil) else: label = None return img, label def format_img(self, img_pil): img_array = np.asarray(img_pil, dtype='float32') # img_array = img_array / 255 # for vgg16 img_array = img_array / 127.5 - 1 # for vgg16 img_array = np.expand_dims(img_array, axis=0) # img_array = preprocess_input(img_array, mode='tf') # for vgg16 return img_array def to_one_hot(self, label_array): w, h = self.input_size x = np.zeros((h, w, self.classes)) for i in range(h): for j in range(w): x[i, j, label_array[i][j]] = 1 return x def to_label(self, label_pil): label_array = np.asarray(label_pil, dtype=np.int32) label_array[label_array == 255] = 0 # 境界部分をbackgroundクラスにする label_array = self.to_one_hot(label_array) label_array = np.expand_dims(label_array, axis=0) return label_array class DataLoader: def __init__(self, dataset, batch_size=1, shuffle=False): self.dataset = dataset self.batch_size = batch_size self.shuffle = shuffle self.x_data_list = [] self.y_data_list = [] def __len__(self): return len(self.dataset) def flow(self): while True: data_num = len(self.dataset) indices = np.arange(data_num) if self.shuffle: np.random.shuffle(indices) for i in indices: img, label = self.dataset[i] self.x_data_list.append(img[0]) self.y_data_list.append(label[0]) if self.batch_size <= len(self.x_data_list): x_data_list = np.asarray( self.x_data_list, dtype='float32') y_data_list = np.asarray( self.y_data_list, dtype='float32') self.x_data_list = [] self.y_data_list = [] yield x_data_list, y_data_list # ------------------------------------------- # main # ------------------------------------------- if __name__ == '__main__': print("start") train_img_dir = os.path.join(CUR_PATH, "data", "train", "img") train_gt_dir = os.path.join(CUR_PATH, "data", "train", "gt") #train_img_paths = list_from_dir(train_img_dir, ('.jpg', '.png')) #train_gt_paths = list_from_dir(train_gt_dir, ('.jpg', '.png')) dataset = Dataset(classes=21, input_size=(224, 224), img_dir=train_img_dir, label_dir=train_gt_dir, trans=True) cnt = 0 loader = DataLoader(dataset, batch_size=4, shuffle=True) for train, target in loader.flow(): print(train.shape, train[0].dtype) print(target.shape, target[0].dtype) imgs = train labels = target img = (imgs[0] + 1) * 127.5 img = img.astype(np.uint8) plt.figure() plt.imshow(img) # label = labels[0, :, :, 0] # background class label = label_to_img(labels[0]) plt.figure() plt.imshow(label) plt.show() cnt += 1 if cnt >= 4: break print("end")
import os import unittest from unittest import mock from core.e2e.validators import masterfile_validator from core.e2e.handlers.exceptions import MasterFileError class TestMasterFileValidator(unittest.TestCase): @mock.patch('os.path') def test_check_master_file_path(self, mock_os): mock_os.exists.return_value = False with self.assertRaises(Exception) as context: masterfile_validator._validate_check_master_file_path() self.assertEqual( context.exception.args[0], 'Master File YML not found (src/views/master.yml)' ) @mock.patch('yaml.safe_load') def test_validate_master_file_format(self, safe_load): safe_load.side_effect = Exception with self.assertRaises(Exception) as context: masterfile_validator._validate_master_file_format() self.assertEqual( context.exception.args[0], 'Invalid master file format.' ) @mock.patch('yaml.safe_load') def test_validate_master_file_config(self, safe_load): safe_load.return_value = {} with self.assertRaises(Exception) as context: masterfile_validator._validate_master_file_config_values() self.assertEqual( context.exception.args[0], 'Invalid master file format. Missing key botname' ) @mock.patch('yaml.safe_load') def test_validate_master_file_states(self, safe_load): safe_load.return_value = { 'botname' : 'testBotName', 'description' : 'testDescription', 'init_state' : 'main', 'states' : { 'welcome' : {} } } with self.assertRaises(Exception) as context: masterfile_validator._validate_master_file_config_values() self.assertEqual( context.exception.args[0], "Invalid master file format. Invalid main in init_state." ) safe_load.return_value = { 'botname' : 'testBotName', 'description' : 'testDescription', 'init_state' : 'welcome', 'states' : { 'welcome' : {} } } with self.assertRaises(Exception) as context: masterfile_validator._validate_master_file_config_values() self.assertEqual( context.exception.args[0], "Invalid master file format. Next state missing in 'welcome' state." ) safe_load.return_value = { 'botname' : 'testBotName', 'description' : 'testDescription', 'init_state' : 'welcome', 'states' : { 'welcome' : { 'next' : 'main' } } } with self.assertRaises(Exception) as context: masterfile_validator._validate_master_file_config_values() self.assertEqual( context.exception.args[0], "Invalid master file format. Value 'main' in state welcome." )
# -*- encoding:utf-8 -*- from commands import SelectorMixin, Commands from ui import component_ui, component_commands
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import ipaddress import random import re import socket import time import requests from kuryr.lib._i18n import _ from openstack import exceptions as os_exc from os_vif import objects from oslo_cache import core as cache from oslo_config import cfg from oslo_log import log from oslo_serialization import jsonutils from kuryr_kubernetes import clients from kuryr_kubernetes import constants from kuryr_kubernetes import exceptions from kuryr_kubernetes.objects import lbaas as obj_lbaas from kuryr_kubernetes.objects import vif from kuryr_kubernetes import os_vif_util CONF = cfg.CONF LOG = log.getLogger(__name__) VALID_MULTI_POD_POOLS_OPTS = {'noop': ['neutron-vif', 'nested-vlan', 'nested-macvlan', 'sriov', 'nested-dpdk'], 'neutron': ['neutron-vif'], 'nested': ['nested-vlan'], } DEFAULT_TIMEOUT = 500 DEFAULT_INTERVAL = 1 DEFAULT_JITTER = 3 MAX_BACKOFF = 60 MAX_ATTEMPTS = 10 subnet_caching_opts = [ cfg.BoolOpt('caching', default=True, help=_('Enable caching of subnets.')), cfg.IntOpt('cache_time', default=3600, help=_('TTL, in seconds, for cached subnets')), ] nodes_caching_opts = [ cfg.BoolOpt('caching', default=True, help=_('Enable caching of nodes.')), cfg.IntOpt('cache_time', default=3600, help=_('TTL, in seconds, for cached nodes')), ] CONF.register_opts(subnet_caching_opts, "subnet_caching") CONF.register_opts(nodes_caching_opts, "nodes_caching") cache.configure(CONF) subnet_cache_region = cache.create_region() MEMOIZE = cache.get_memoization_decorator( CONF, subnet_cache_region, "subnet_caching") cache.configure_cache_region(CONF, subnet_cache_region) nodes_cache_region = cache.create_region() MEMOIZE_NODE = cache.get_memoization_decorator( CONF, nodes_cache_region, "nodes_caching") cache.configure_cache_region(CONF, nodes_cache_region) RESOURCE_MAP = {'Endpoints': 'endpoints', 'KuryrLoadBalancer': 'kuryrloadbalancers', 'KuryrNet': 'kuryrnets', 'KuryrNetPolicy': 'kuryrnetpolicies', 'KuryrNetwork': 'kuryrnetworks', 'KuryrNetworkPolicy': 'kuryrnetworkpolicies', 'KuryrPort': 'kuryrports', 'Namespace': 'namespaces', 'NetworkPolicy': 'networkpolicies', 'Node': 'nodes', 'Pod': 'pods', 'Service': 'services', 'Machine': 'machines'} API_RE = re.compile(r'v\d+') def get_klb_crd_path(obj): """Return klb crd path from provided resource""" namespace = obj['metadata']['namespace'] lb_name = obj['metadata']['name'] return (f"{constants.K8S_API_CRD_NAMESPACES}/" f"{namespace}/" f"kuryrloadbalancers/" f"{lb_name}") def get_res_link(obj): """Return selfLink equivalent for provided resource""" # First try, if we still have it try: return obj['metadata']['selfLink'] except KeyError: pass # If not, let's proceed with the path assembling. try: res_type = RESOURCE_MAP[obj['kind']] except KeyError: LOG.error('Unknown resource kind: %s', obj.get('kind')) raise namespace = '' if obj['metadata'].get('namespace'): namespace = f"/namespaces/{obj['metadata']['namespace']}" try: api = f"/apis/{obj['apiVersion']}" if API_RE.match(obj['apiVersion']): api = f"/api/{obj['apiVersion']}" except KeyError: LOG.error("Object doesn't have an apiVersion available: %s", obj) raise return f"{api}{namespace}/{res_type}/{obj['metadata']['name']}" def get_api_ver(path): """Get apiVersion out of resource path. Path usually is something simillar to: /api/v1/namespaces/default/pods/pod-5bb648d658-55n76 in case of core resources, and: /apis/openstack.org/v1/namespaces/default/kuryrloadbalancers/lb-324 in case of custom resoures. """ if path.startswith('/api/'): return path.split('/')[2] if path.startswith('/apis/'): return '/'.join(path.split('/')[2:4]) raise ValueError('Provided path is not Kubernetes api path: %s', path) def utf8_json_decoder(byte_data): """Deserializes the bytes into UTF-8 encoded JSON. :param byte_data: The bytes to be converted into the UTF-8 encoded JSON. :returns: The UTF-8 encoded JSON represented by Python dictionary format. """ return jsonutils.loads(byte_data.decode('utf8')) def convert_netns(netns): """Convert /proc based netns path to Docker-friendly path. When CONF.docker_mode is set this method will change /proc to /CONF.netns_proc_dir. This allows netns manipulations to work when running in Docker container on Kubernetes host. :param netns: netns path to convert. :return: Converted netns path. """ if CONF.cni_daemon.docker_mode: return netns.replace('/proc', CONF.cni_daemon.netns_proc_dir) else: return netns def get_res_unique_name(resource): """Returns a unique name for the resource like pod or CRD. It returns a unique name for the resource composed of its name and the namespace it is created in or just name for cluster-scoped resources. :returns: String with <namespace/>name of the resource """ try: return "%(namespace)s/%(name)s" % resource['metadata'] except KeyError: return "%(name)s" % resource['metadata'] def check_suitable_multi_pool_driver_opt(pool_driver, pod_driver): return pod_driver in VALID_MULTI_POD_POOLS_OPTS.get(pool_driver, []) def exponential_sleep(deadline, attempt, interval=DEFAULT_INTERVAL, max_backoff=MAX_BACKOFF, jitter=DEFAULT_JITTER): """Sleep for exponential duration. :param deadline: sleep timeout duration in seconds. :param attempt: attempt count of sleep function. :param interval: minimal time interval to sleep :param max_backoff: maximum time to sleep :param jitter: max value of jitter added to the sleep time :return: the actual time that we've slept """ now = time.time() seconds_left = deadline - now if seconds_left <= 0: return 0 to_sleep = exponential_backoff(attempt, interval, max_backoff=max_backoff, jitter=jitter) if to_sleep > seconds_left: to_sleep = seconds_left if to_sleep < interval: to_sleep = interval time.sleep(to_sleep) return to_sleep def exponential_backoff(attempt, interval=DEFAULT_INTERVAL, max_backoff=MAX_BACKOFF, jitter=DEFAULT_JITTER): """Return exponential backoff duration with jitter. This implements a variation of exponential backoff algorithm [1] (expected backoff E(c) = interval * 2 ** attempt / 2). [1] https://en.wikipedia.org/wiki/Exponential_backoff """ if attempt >= MAX_ATTEMPTS: # No need to calculate very long intervals attempt = MAX_ATTEMPTS backoff = 2 ** attempt * interval if max_backoff is not None and backoff > max_backoff: backoff = max_backoff if jitter: backoff += random.randint(0, jitter) return backoff def get_node_name(): # leader-elector container based on K8s way of doing leader election is # assuming that hostname it sees is the node id. Containers within a pod # are sharing the hostname, so this will match what leader-elector returns. return socket.gethostname() def get_leader_name(): url = 'http://localhost:%d' % CONF.kubernetes.controller_ha_elector_port try: return requests.get(url).json()['name'] except Exception: LOG.exception('Error when fetching current leader pod name.') # NOTE(dulek): Assuming there's no leader when we can't contact leader # elector container. return None @MEMOIZE_NODE def get_nodes_ips(node_subnets): """Get the IPs of the trunk ports associated to the deployment.""" trunk_ips = [] os_net = clients.get_network_client() tags = CONF.neutron_defaults.resource_tags if tags: ports = os_net.ports(status='ACTIVE', tags=tags) else: # NOTE(ltomasbo: if tags are not used, assume all the trunk ports are # part of the kuryr deployment ports = os_net.ports(status='ACTIVE') for port in ports: if (port.trunk_details and port.fixed_ips and port.fixed_ips[0]['subnet_id'] in node_subnets): trunk_ips.append(port.fixed_ips[0]['ip_address']) return trunk_ips @MEMOIZE def get_subnet(subnet_id): os_net = clients.get_network_client() n_subnet = os_net.get_subnet(subnet_id) n_network = os_net.get_network(n_subnet.network_id) subnet = os_vif_util.neutron_to_osvif_subnet(n_subnet) network = os_vif_util.neutron_to_osvif_network(n_network) network.subnets.objects.append(subnet) return network @MEMOIZE def get_subnet_cidr(subnet_id): os_net = clients.get_network_client() try: subnet_obj = os_net.get_subnet(subnet_id) except os_exc.ResourceNotFound: LOG.exception("Subnet %s CIDR not found!", subnet_id) raise return subnet_obj.cidr def get_subnet_id(**filters): os_net = clients.get_network_client() subnets = os_net.subnets(**filters) try: return next(subnets).id except StopIteration: return None @MEMOIZE def get_subnets_id_cidrs(subnet_ids): os_net = clients.get_network_client() subnets = os_net.subnets() cidrs = [(subnet.id, subnet.cidr) for subnet in subnets if subnet.id in subnet_ids] if len(cidrs) != len(subnet_ids): existing = {subnet.id for subnet in subnets} missing = set(subnet_ids) - existing LOG.exception("CIDRs of subnets %s not found!", missing) raise os_exc.ResourceNotFound() return cidrs def get_subnets_cidrs(subnet_ids): return [x[1] for x in get_subnets_id_cidrs(subnet_ids)] @MEMOIZE def _get_subnetpool(subnetpool_id): os_net = clients.get_network_client() try: subnetpool_obj = os_net.get_subnet_pool(subnetpool_id) except os_exc.ResourceNotFound: LOG.exception("Subnetpool %s not found!", subnetpool_id) raise return subnetpool_obj def get_subnetpool_version(subnetpool_id): subnetpool_obj = _get_subnetpool(subnetpool_id) return subnetpool_obj.ip_version def get_subnetpool_cidrs(subnetpool_id): subnetpool_obj = _get_subnetpool(subnetpool_id) return subnetpool_obj.prefixes def extract_pod_annotation(annotation): obj = objects.base.VersionedObject.obj_from_primitive(annotation) # FIXME(dulek): This is code to maintain compatibility with Queens. We can # remove it once we stop supporting upgrading from Queens, # most likely in Stein. Note that this requires being sure # that *all* the pod annotations are in new format. if obj.obj_name() != vif.PodState.obj_name(): # This is old format of annotations - single VIF object. We need to # pack it in PodState object. obj = vif.PodState(default_vif=obj) return obj def has_limit(quota): NO_LIMIT = -1 return quota['limit'] != NO_LIMIT def is_available(resource, resource_quota): availability = resource_quota['limit'] - resource_quota['used'] if availability <= 0: LOG.error("Neutron quota exceeded for %s. Used %d out of %d limit.", resource, resource_quota['used'], resource_quota['limit']) return False elif availability <= 3: LOG.warning("Neutron quota low for %s. Used %d out of %d limit.", resource, resource_quota['used'], resource_quota['limit']) return True def has_kuryr_crd(crd_url): k8s = clients.get_kubernetes_client() try: k8s.get(crd_url, json=False, headers={'Connection': 'close'}) except exceptions.K8sResourceNotFound: LOG.error('CRD %s does not exists.', crd_url) except exceptions.K8sClientException: LOG.exception('Error fetching CRD %s, assuming it does not exist.', crd_url) return False return True def get_lbaas_spec(k8s_object): # k8s_object can be service or endpoint try: annotations = k8s_object['metadata']['annotations'] annotation = annotations[constants.K8S_ANNOTATION_LBAAS_SPEC] except KeyError: return None obj_dict = jsonutils.loads(annotation) obj = obj_lbaas.LBaaSServiceSpec.obj_from_primitive(obj_dict) LOG.debug("Got LBaaSServiceSpec from annotation: %r", obj) return obj def set_lbaas_spec(service, lbaas_spec): # TODO(ivc): extract annotation interactions if lbaas_spec is None: LOG.debug("Removing LBaaSServiceSpec annotation: %r", lbaas_spec) annotation = None else: lbaas_spec.obj_reset_changes(recursive=True) LOG.debug("Setting LBaaSServiceSpec annotation: %r", lbaas_spec) annotation = jsonutils.dumps(lbaas_spec.obj_to_primitive(), sort_keys=True) svc_link = get_res_link(service) ep_link = get_endpoints_link(service) k8s = clients.get_kubernetes_client() try: k8s.annotate(ep_link, {constants.K8S_ANNOTATION_LBAAS_SPEC: annotation}) except exceptions.K8sResourceNotFound as ex: LOG.debug("Failed to annotate svc: %s", ex) raise exceptions.ResourceNotReady(ep_link) except exceptions.K8sClientException: LOG.debug("Failed to annotate endpoint %r", ep_link) raise try: k8s.annotate(svc_link, {constants.K8S_ANNOTATION_LBAAS_SPEC: annotation}, resource_version=service['metadata']['resourceVersion']) except exceptions.K8sResourceNotFound as ex: LOG.debug("Failed to annotate svc: %s", ex) raise exceptions.ResourceNotReady(svc_link) except exceptions.K8sClientException: LOG.exception("Failed to annotate svc: %r", svc_link) raise def get_lbaas_state(endpoint): try: annotations = endpoint['metadata']['annotations'] annotation = annotations[constants.K8S_ANNOTATION_LBAAS_STATE] except KeyError: return None obj_dict = jsonutils.loads(annotation) obj = obj_lbaas.LBaaSState.obj_from_primitive(obj_dict) LOG.debug("Got LBaaSState from annotation: %r", obj) return obj def set_lbaas_state(endpoints, lbaas_state): # TODO(ivc): extract annotation interactions if lbaas_state is None: LOG.debug("Removing LBaaSState annotation: %r", lbaas_state) annotation = None else: lbaas_state.obj_reset_changes(recursive=True) LOG.debug("Setting LBaaSState annotation: %r", lbaas_state) annotation = jsonutils.dumps(lbaas_state.obj_to_primitive(), sort_keys=True) k8s = clients.get_kubernetes_client() k8s.annotate(get_res_link(endpoints), {constants.K8S_ANNOTATION_LBAAS_STATE: annotation}, resource_version=endpoints['metadata']['resourceVersion']) def get_endpoints_link(service): svc_link = get_res_link(service) link_parts = svc_link.split('/') if link_parts[-2] != 'services': raise exceptions.IntegrityError( f"Unsupported service link: {svc_link}") link_parts[-2] = 'endpoints' return "/".join(link_parts) def get_service_link(endpoints): endpoints_link = get_res_link(endpoints) link_parts = endpoints_link.split('/') if link_parts[-2] != 'endpoints': raise exceptions.IntegrityError( f"Unsupported endpoints link: {endpoints_link}") link_parts[-2] = 'services' return "/".join(link_parts) def has_port_changes(service, loadbalancer_crd): if not loadbalancer_crd: return False link = get_res_link(service) svc_port_set = service['spec'].get('ports') for port in svc_port_set: port['targetPort'] = str(port['targetPort']) spec_port_set = loadbalancer_crd['spec'].get('ports', []) if spec_port_set: if len(svc_port_set) != len(spec_port_set): return True pairs = zip(svc_port_set, spec_port_set) diff = any(x != y for x, y in pairs) if diff: LOG.debug("LBaaS spec ports %(spec_ports)s != %(svc_ports)s " "for %(link)s" % {'spec_ports': spec_port_set, 'svc_ports': svc_port_set, 'link': link}) return diff return False def get_service_ports(service): return [{'name': port.get('name'), 'protocol': port.get('protocol', 'TCP'), 'port': port['port'], 'targetPort': str(port['targetPort'])} for port in service['spec']['ports']] @MEMOIZE def get_service_subnet_version(): os_net = clients.get_network_client() svc_subnet_id = CONF.neutron_defaults.service_subnet try: svc_subnet = os_net.get_subnet(svc_subnet_id) except os_exc.ResourceNotFound: LOG.exception("Service subnet %s not found", svc_subnet_id) raise return svc_subnet.ip_version def clean_lb_crd_status(loadbalancer_name): namespace, name = loadbalancer_name.split('/') k8s = clients.get_kubernetes_client() try: k8s.patch_crd('status', f'{constants.K8S_API_CRD_NAMESPACES}' f'/{namespace}/kuryrloadbalancers/{name}', {}) except exceptions.K8sResourceNotFound: LOG.debug('KuryrLoadbalancer CRD not found %s', name) except exceptions.K8sClientException: LOG.exception('Error updating KuryrLoadbalancer CRD %s', name) raise def get_pod_by_ip(pod_ip, namespace=None): k8s = clients.get_kubernetes_client() pod = {} try: if namespace: pods = k8s.get(f'{constants.K8S_API_BASE}/namespaces/{namespace}/' f'pods?fieldSelector=status.phase=Running,' f'status.podIP={pod_ip}') else: pods = k8s.get(f'{constants.K8S_API_BASE}/' f'pods?fieldSelector=status.phase=Running,' f'status.podIP={pod_ip}') except exceptions.K8sClientException: LOG.exception('Error retrieving Pod with IP %s', pod_ip) raise if pods.get('items'): # Only one Pod should have the IP return pods['items'][0] return pod def get_current_endpoints_target(ep, port, spec_ports, ep_name): """Retrieve details about one specific Endpoint target Defines the details about the Endpoint target, such as the target address, name, port value and the Pool ID. In case, the Endpoints has no targetRef defined, the name of the target will be the same as the Endpoint. :param ep: Endpoint on the Endpoints object :param port: Endpoint port :param spec_ports: dict of port name associated to pool ID :param ep_name: Name of the Endpoints object :returns: Tuple with target address, target name, port number and pool ID. """ target_ref = ep.get('targetRef', {}) pod_name = ep_name # NOTE(maysams): As we don't support dual-stack, we assume # only one address is possible on the addresses field. address = ep['addresses'][0] if target_ref: pod_name = target_ref.get('name', '') return (address, pod_name, port['port'], spec_ports.get(port.get('name'))) def get_subnet_by_ip(nodes_subnets, target_ip): ip = ipaddress.ip_address(target_ip) for nodes_subnet in nodes_subnets: if ip in ipaddress.ip_network(nodes_subnet[1]): return nodes_subnet return None def get_kuryrloadbalancer(name, namespace): k8s = clients.get_kubernetes_client() try: return k8s.get(f'{constants.K8S_API_CRD_NAMESPACES}/' f'{namespace}/kuryrloadbalancers/' f'{name}') except exceptions.K8sResourceNotFound: return {} def is_pod_completed(pod): try: return (pod['status']['phase'] in (constants.K8S_POD_STATUS_SUCCEEDED, constants.K8S_POD_STATUS_FAILED)) except KeyError: return False def is_host_network(pod): return pod['spec'].get('hostNetwork', False)
# -*- coding: utf-8 -*- """ @author: Zheng Fang This is a unit test. If you would like to further develop pahmc_ode_gpu, you should visit here frequently. """ import os from pathlib import Path from numba import cuda, jit import numpy as np import torch as th os.chdir(Path.cwd().parent) from pahmc_ode_gpu import cuda_lib_dynamics os.chdir(Path.cwd()/'unit_tests') """Prepare data, as well as variables to be compared to.""" name = 'nakl' D = 4 M = 100000 X = np.concatenate((np.random.uniform(-100.0, 50.0, (1,M)), np.random.uniform(0.0, 1.0, (D-1,M)))) par = np.array([120.0, 50.0, 20.0, -77.0, 0.3, -54.4, -40.0, 15, 0.1, 0.4, -60.0, -15, 1.0, 7.0, -55.0, 30, 1.0, 5.0]) stimulus \ = np.concatenate((np.random.uniform(-30, 30, (1,M)), np.zeros((D-1,M)))) # this function has been tested in pahmc_ode_cpu @jit(nopython=True) def cpu_field(X, par, stimulus): (D, M) = np.shape(X) vecfield = np.zeros((D,M)) vecfield[0, :] \ = stimulus[0, :] \ + par[0] * (X[1, :] ** 3) * X[2, :] * (par[1] - X[0, :]) \ + par[2] * (X[3, :] ** 4) * (par[3] - X[0, :]) \ + par[4] * (par[5] - X[0, :]) tanh_m = np.tanh((X[0, :]-par[6])/par[7]) eta_m = 1 / 2 * (1 + tanh_m) tau_m = par[8] + par[9] * (1 - tanh_m * tanh_m) vecfield[1, :] = (eta_m - X[1, :]) / tau_m tanh_h = np.tanh((X[0, :]-par[10])/par[11]) eta_h = 1 / 2 * (1 + tanh_h) tau_h = par[12] + par[13] * (1 - tanh_h * tanh_h) vecfield[2, :] = (eta_h - X[2, :]) / tau_h tanh_n = np.tanh((X[0, :]-par[14])/par[15]) eta_n = 1 / 2 * (1 + tanh_n) tau_n = par[16] + par[17] * (1 - tanh_n * tanh_n) vecfield[3, :] = (eta_n - X[3, :]) / tau_n return vecfield print('\nTesting... ', end='') field_compared = cpu_field(X, par, stimulus) # let's tell PyTorch about our model in order to test jacobian and dfield_dpar X = th.from_numpy(X) par = th.from_numpy(par) stimulus = th.from_numpy(stimulus) X.requires_grad = True par.requires_grad = True vecfield = th.zeros(D, M) vecfield[0, :] \ = stimulus[0, :] \ + par[0] * (X[1, :] ** 3) * X[2, :] * (par[1] - X[0, :]) \ + par[2] * (X[3, :] ** 4) * (par[3] - X[0, :]) \ + par[4] * (par[5] - X[0, :]) tanh_m = th.tanh((X[0, :]-par[6])/par[7]) eta_m = 1 / 2 * (1 + tanh_m) tau_m = par[8] + par[9] * (1 - tanh_m * tanh_m) vecfield[1, :] = (eta_m - X[1, :]) / tau_m tanh_h = th.tanh((X[0, :]-par[10])/par[11]) eta_h = 1 / 2 * (1 + tanh_h) tau_h = par[12] + par[13] * (1 - tanh_h * tanh_h) vecfield[2, :] = (eta_h - X[2, :]) / tau_h tanh_n = th.tanh((X[0, :]-par[14])/par[15]) eta_n = 1 / 2 * (1 + tanh_n) tau_n = par[16] + par[17] * (1 - tanh_n * tanh_n) vecfield[3, :] = (eta_n - X[3, :]) / tau_n # fetch the variables to be compared to scalarfield = th.sum(vecfield) scalarfield.backward() jacobian_compared = X.grad.numpy() dfield_dpar_compared = par.grad.numpy() X = X.detach().numpy() par = par.detach().numpy() stimulus = stimulus.numpy() """Fetch the kernels, transfer data, and specify grid dimensions.""" k__field = getattr(cuda_lib_dynamics, f'k__{name}_field') k__jacobian = getattr(cuda_lib_dynamics, f'k__{name}_jacobian') k__dfield_dpar = getattr(cuda_lib_dynamics, f'k__{name}_dfield_dpar') d_X = cuda.to_device(X) d_par = cuda.to_device(par) d_stimulus = cuda.to_device(stimulus) d_field = cuda.to_device(np.zeros((D,M))) d_jacobian = cuda.to_device(np.zeros((D,D,M))) d_dfield_dpar = cuda.to_device(np.zeros((D,len(par),M))) """Define convenience functions.""" def gtimer1(): k__field[(16,32), (2,128)](d_X, d_par, d_stimulus, d_field) cuda.synchronize() def gtimer2(): k__jacobian[(4,4,32), (2,2,64)](d_X, d_par, d_jacobian) cuda.synchronize() def gtimer3(): k__dfield_dpar[(4,4,32), (2,2,64)](d_X, d_par, d_dfield_dpar) cuda.synchronize() def gtimer4(): gtimer1(); gtimer2(); gtimer3() def gtimer5(): k__field[(16,32), (2,128)](d_X, d_par, d_stimulus, d_field) k__jacobian[(4,4,32), (2,2,64)](d_X, d_par, d_jacobian) k__dfield_dpar[(4,4,32), (2,2,64)](d_X, d_par, d_dfield_dpar) cuda.synchronize() """Make sure everything is correct.""" gtimer5() field = d_field.copy_to_host() jacobian = np.sum(d_jacobian.copy_to_host(), axis=0) dfield_dpar = np.sum(d_dfield_dpar.copy_to_host(), axis=(0,2)) np.testing.assert_almost_equal(field, field_compared, decimal=6) np.testing.assert_almost_equal(jacobian, jacobian_compared, decimal=6) np.testing.assert_almost_equal(dfield_dpar, dfield_dpar_compared, decimal=6) print('ok.') #====================================================================== # for profiling only @jit(nopython=True) def cpu_jacobian(X, par): (D, M) = np.shape(X) jacob = np.zeros((D,D,M)) jacob[0, 0, :] = - par[0] * (X[1, :] ** 3) * X[2, :] \ - par[2] * (X[3, :] ** 4) - par[4] jacob[0, 1, :] \ = 3 * par[0] * (X[1, :] ** 2) * X[2, :] * (par[1] - X[0, :]) jacob[0, 2, :] = par[0] * (X[1, :] ** 3) * (par[1] - X[0, :]) jacob[0, 3, :] = 4 * par[2] * (X[3, :] ** 3) * (par[3] - X[0, :]) tanh_m = np.tanh((X[0, :]-par[6])/par[7]) kernel_m = (1 - tanh_m * tanh_m) eta_m = 1 / 2 * (1 + tanh_m) tau_m = par[8] + par[9] * kernel_m eta_der_m = 1 / (2 * par[7]) * kernel_m tau_der_m = - 2 * par[9] / par[7] * tanh_m * kernel_m jacob[1, 0, :] \ = eta_der_m / tau_m + tau_der_m * (X[1, :] - eta_m) / (tau_m * tau_m) tanh_h = np.tanh((X[0, :]-par[10])/par[11]) kernel_h = (1 - tanh_h * tanh_h) eta_h = 1 / 2 * (1 + tanh_h) tau_h = par[12] + par[13] * kernel_h eta_der_h = 1 / (2 * par[11]) * kernel_h tau_der_h = - 2 * par[13] / par[11] * tanh_h * kernel_h jacob[2, 0, :] \ = eta_der_h / tau_h + tau_der_h * (X[2, :] - eta_h) / (tau_h * tau_h) tanh_n = np.tanh((X[0, :]-par[14])/par[15]) kernel_n = (1 - tanh_n * tanh_n) eta_n = 1 / 2 * (1 + tanh_n) tau_n = par[16] + par[17] * kernel_n eta_der_n = 1 / (2 * par[15]) * kernel_n tau_der_n = - 2 * par[17] / par[15] * tanh_n * kernel_n jacob[3, 0, :] \ = eta_der_n / tau_n + tau_der_n * (X[3, :] - eta_n) / (tau_n * tau_n) jacob[1, 1, :] = - 1 / tau_m jacob[2, 2, :] = - 1 / tau_h jacob[3, 3, :] = - 1 / tau_n return jacob @jit(nopython=True) def cpu_dfield_dpar(X, par): (D, M) = np.shape(X) deriv_par = np.zeros((D,M,len(par))) deriv_par[0, :, 0] = (X[1, :] ** 3) * X[2, :] * (par[1] - X[0, :]) deriv_par[0, :, 1] = par[0] * (X[1, :] ** 3) * X[2, :] deriv_par[0, :, 2] = (X[3, :] ** 4) * (par[3] - X[0, :]) deriv_par[0, :, 3] = par[2] * (X[3, :] ** 4) deriv_par[0, :, 4] = par[5] - X[0, :] deriv_par[0, :, 5] = par[4] tanh_m = np.tanh((X[0, :]-par[6])/par[7]) kernel_m = (1 - tanh_m * tanh_m) eta_m = 1 / 2 * (1 + tanh_m) tau_m = par[8] + par[9] * kernel_m common_m = (X[1, :] - eta_m) / (tau_m * tau_m) eta_der_m = - 1 / (2 * par[7]) * kernel_m tau_der_m = 2 * par[9] / par[7] * tanh_m * kernel_m deriv_par[1, :, 6] = eta_der_m / tau_m + tau_der_m * common_m eta_der_m = - (X[0, :] - par[6]) / (2 * (par[7] ** 2)) * kernel_m tau_der_m = 2 * par[9] * (X[0, :] - par[6]) / (par[7] ** 2) \ * tanh_m * kernel_m deriv_par[1, :, 7] = eta_der_m / tau_m + tau_der_m * common_m deriv_par[1, :, 8] = common_m deriv_par[1, :, 9] = kernel_m * common_m tanh_h = np.tanh((X[0, :]-par[10])/par[11]) kernel_h = (1 - tanh_h * tanh_h) eta_h = 1 / 2 * (1 + tanh_h) tau_h = par[12] + par[13] * kernel_h common_h = (X[2, :] - eta_h) / (tau_h * tau_h) eta_der_h = - 1 / (2 * par[11]) * kernel_h tau_der_h = 2 * par[13] / par[11] * tanh_h * kernel_h deriv_par[2, :, 10] = eta_der_h / tau_h + tau_der_h * common_h eta_der_h = - (X[0, :] - par[10]) / (2 * (par[11] ** 2)) * kernel_h tau_der_h = 2 * par[13] * (X[0, :] - par[10]) / (par[11] ** 2) \ * tanh_h * kernel_h deriv_par[2, :, 11] = eta_der_h / tau_h + tau_der_h * common_h deriv_par[2, :, 12] = common_h deriv_par[2, :, 13] = kernel_h * common_h tanh_n = np.tanh((X[0, :]-par[14])/par[15]) kernel_n = (1 - tanh_n * tanh_n) eta_n = 1 / 2 * (1 + tanh_n) tau_n = par[16] + par[17] * kernel_n common_n = (X[3, :] - eta_n) / (tau_n * tau_n) eta_der_n = - 1 / (2 * par[15]) * kernel_n tau_der_n = 2 * par[17] / par[15] * tanh_n * kernel_n deriv_par[3, :, 14] = eta_der_n / tau_n + tau_der_n * common_n eta_der_n = - (X[0, :] - par[14]) / (2 * (par[15] ** 2)) * kernel_n tau_der_n = 2 * par[17] * (X[0, :] - par[14]) / (par[15] ** 2) \ * tanh_n * kernel_n deriv_par[3, :, 15] = eta_der_n / tau_n + tau_der_n * common_n deriv_par[3, :, 16] = common_n deriv_par[3, :, 17] = kernel_n * common_n return deriv_par for _ in range(5): gtimer5() temp = cpu_field(X, par, stimulus) temp = cpu_jacobian(X, par) temp = cpu_dfield_dpar(X, par) """ %timeit -r 50 -n 10 temp = cpu_field(X, par, stimulus) %timeit -r 50 -n 10 gtimer1() %timeit -r 50 -n 10 temp = cpu_jacobian(X, par) %timeit -r 50 -n 10 gtimer2() %timeit -r 50 -n 10 temp = cpu_dfield_dpar(X, par) %timeit -r 50 -n 10 gtimer3() %timeit -r 50 -n 10 gtimer4() %timeit -r 50 -n 10 gtimer5() """
from django import forms from database.models import Configuration from mysite.forms import * class EmailsForm(forms.ModelForm): sender_email = forms.CharField(required=False, label="Email para pedidos") password = forms.CharField(widget=forms.PasswordInput(), required=False, label="Password del email para pedidos") quotations_email = forms.CharField(required=False, label="Email para cotizaciones") quotations_password = forms.CharField(widget=forms.PasswordInput(), required=False, label="Password del email para cotizaciones") receiver_email = forms.CharField(required=False, label="Email para notificaciones") action = HiddenField(initial="emails") class Meta: model = Configuration fields = ( 'sender_email', 'password', 'quotations_email', 'quotations_password', 'receiver_email' ) class ReportsForm(forms.ModelForm): week_cut = forms.ChoiceField(label="Corte Semanal", choices=Configuration.WEEK_DAYS) action = HiddenField(initial="reports") class Meta: model = Configuration fields = ( 'week_cut', )
from pyzabbix import ZabbixMetric, ZabbixSender from pyzabbix.api import ZabbixAPI import os import json # --- config acesso def config(): configfile_name = "conf/config.json" # Verifique se já existe um arquivo de configuração if not os.path.isfile(configfile_name): print("Arquivo config.json não encontrado, modelo em README.") exit() else: with open('conf/config.json') as json_data_file: data = json.load(json_data_file) # print(data['zabbix']['host']) return data # --- Hostname def hostname(zapi): # Get todos host monitorados result1 = zapi.host.get(monitored_hosts=1, output='extend') # Get todos host desativados result2 = zapi.do_request('host.get', { 'filter': {'status': 1}, 'output': 'extend' }) # Filtra resultado hostnames1 = [host['host'] for host in result1] hostnames2 = [host['host'] for host in result2['result']] # Logout do Zabbix zapi.user.logout() return hostnames1, hostnames2 # --- sendMetrica def sendMetrica(): # Send metrics to zabbix trapper packet = [ ZabbixMetric('hostname1', 'test[cpu_usage]', 2), ZabbixMetric('hostname1', 'test[system_status]', "OK"), ZabbixMetric('hostname1', 'test[disk_io]', '0.1'), ZabbixMetric('hostname1', 'test[cpu_usage]', 20, 1411598020), ] result = ZabbixSender(use_config=True).send(packet) return result # --- main def main(): # config acesso data = config() # Cria ZabbixAPI class instance zabiixAPI = ZabbixAPI(url=data['zabbix']['host'], user=data['zabbix']['user'], password=data['zabbix']['pwd']) host1, host2 = hostname(zabiixAPI) print(host1) print("\n") print(host2) # --- inicio if __name__ == "__main__": main()
# Generated by Django 3.2.2 on 2021-05-14 04:30 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0022_urlaction'), ] operations = [ migrations.AddField( model_name='coresettings', name='clear_faults_days', field=models.IntegerField(default=0), ), ]
from django import forms from django.utils.translation import pgettext_lazy from ....widget.models import Benefit from ...product.widgets import ImagePreviewWidget from ....widget.thumbnails import create_benefit_thumbnails class BenefitForm(forms.ModelForm): class Meta: model = Benefit fields = [ 'name', 'text', 'image', 'is_active', ] labels = { 'name': pgettext_lazy( 'Benefit field name', 'Nombre', ), 'text': pgettext_lazy( 'Benefit field name', 'Texto', ), 'image': pgettext_lazy( 'Benefit field name', 'Imagen', ), 'is_active': pgettext_lazy( 'Slider active state', 'Activo', ), } def save(self, commit=True): print("*** *** ***") print("save benefit from form") print("*** *** ***") benefit = super().save(commit=commit) create_benefit_thumbnails.delay(benefit.pk) return benefit
from django.contrib.auth.models import User from django.db import models from products.models import Product class CartManager(models.Manager): def new_or_get(self, request): cart_id = request.session.get("cart_id", None) qs = Cart.objects.filter(id=cart_id) if qs.count()==1: new_obj = False cart_obj = qs.first() if request.user is authenticated and cart_obj.user is None: cart_obj.user = request.user cart_obj.save() else: cart_obj = Cart.objects.new(user=request.user) request.session["cart_id"] = cart_obj.id return cart_obj, new_obj def new(self, user=None): user_obj = None if user is not None: try: if user.is_authenticated(): user_obj = user except Exception as Error: pass return self.model.objects.create(user=user_obj) class Cart(models.Model): user = models.ForeignKey(User, null=True, blank=True, on_delete=models.CASCADE) products = models.ManyToManyField(Product, blank=True) total = models.DecimalField(default=0.00, max_digits=100, decimal_places=2) updated = models.DateTimeField(auto_now=True) timestamp = models.DateTimeField(auto_now_add=True) objects = CartManager() def __str__(self): return f"{self.id}"
from filter_tokens import filter_tokens def test_filter_tokens(): filtd = filter_tokens(['\\int', '\\text', '{', 'x', '}', '\\text', '{', 'h', 'i', 't', 'h', 'e', 'r', 'e', '}', 'x', '+', 'y']) assert filtd == ['\\int', '\\text', '{', 'x', '}', 'x', '+', 'y'] s = "b_1(u) = \\frac{1 - u q^{1/2} }{1 - u q^{-1/2}} \mbox{ and }b_2(u) = \\frac{ -uq^{-1/2}+ q^{-1}}{ 1 - uq^{-1/2}}."
# coding: utf-8 # # This file is part of Sequana software # # Copyright (c) 2016 - Sequana Development Team # # File author(s): # Dimitri Desvillechabrol <dimitri.desvillechabrol@pasteur.fr>, # <d.desvillechabrol@gmail.com> # # Distributed under the terms of the 3-clause BSD license. # The full license is in the LICENSE file, distributed with this software. # # website: https://github.com/sequana/sequana # documentation: http://sequana.readthedocs.io # ############################################################################## """Module to write variant calling report""" import ast from sequana.lazy import pandas as pd from sequana.modules_report.base_module import SequanaBaseModule from sequana.utils.datatables_js import DataTable class VariantCallingModule(SequanaBaseModule): """ Write HTML report of variant calling. This class takes a csv file generated by sequana_variant_filter. """ def __init__(self, data): """.. rubric:: constructor :param data: it can be a csv filename created by sequana.freebayes_vcf_filter or a :class:`freebayes_vcf_filter.Filtered_freebayes` object. """ super().__init__() self.title = "Variant Calling Report" try: with open(data, "r") as fp: self.filename = data line = fp.readline() if line.startswith("# sequana_variant_calling"): string_dict = line.split(";")[-1].strip() try: self.filter_dict = ast.literal_eval(string_dict) except SyntaxError: self.filter_dict = None self.df = pd.read_csv(fp) except FileNotFoundError: msg = ("The csv file is not present. Please, check if your" " file is present.") raise FileNotFoundError(msg) except TypeError: self.df = data.df self.filter_dict = data.vcf.filters_params self.create_report_content() self.create_html("variant_calling.html") def create_report_content(self): self.sections = list() if self.filter_dict: self.filters_information() self.variant_calling() def filters_information(self): """ Add information of filter. """ self.sections.append({ 'name': "Filter Options", 'anchor': 'filters_option', 'content': "<p>All filters parameters used is presented in this list:</p>" "\n<ul><li>freebayes_score: {freebayes_score}</li>\n" "<li>frequency: {frequency}</li>\n" "<li>min_depth: {min_depth}</li>\n" "<li>forward_depth: {forward_depth}</li>\n" "<li>reverse_depth: {reverse_depth}</li>\n" "<li>strand_ratio: {strand_ratio}</li></ul>\n" "Note:<ul><li>frequency: alternate allele / depth</li>\n" "<li>min_depth: minimum alternate allele present</li>\n" "<li>forward_depth: minimum alternate allele present on " "forward strand</li>\n" "<li>reverse_depth: minimum alternate allele present on " "reverse strand</li>\n" "<li>strand_ratio: alternate allele forward / (alternate " "allele forward + alternate allele reverse)</li>" "</ul>".format(**self.filter_dict) }) def variant_calling(self): """ Variants detected section. """ datatable = DataTable(self.df, 'vc') # set options datatable.datatable.datatable_options = { 'scrollX': 'true', 'pageLength': 30, 'scrollCollapse': 'true', 'dom': 'Bfrtip', 'buttons': ['copy', 'csv'] } js = datatable.create_javascript_function() html_tab = datatable.create_datatable(float_format='%.3f') self.sections.append({ 'name': "Variants Detected", 'anchor': 'basic_stats', 'content': "<p>This table present variant detected by freebayes after " "filtering.</p>\n{0}\n{1}\n<p>Note: the freebayes score can be" " understood as 1 - P(locus is homozygous given the data)</p>" .format(js, html_tab) })
#!/bin/python import numpy as np import MDAnalysis import time import math import sys #Timing start = time.time() #Input values topo = "ADI.prmtop" traj=[] for i in range(30): traj.append("belly/ADI.belly{:02d}.xyz.nc".format(i)) rMax=12. binSize=0.1 d0=0.09 #Read in atom type fcrd=open("ADI.crd","r") l=fcrd.readline() l2=l.split() natom=np.int(l2[0]) ntyp=np.int(l2[1]) ityp=np.zeros(natom,dtype=np.int) l=fcrd.readline() i=0 while l: l2=l.split() ityp[i]=np.int(l2[0])-1 l=fcrd.readline() i+=1 fcrd.close() #Read in LJ params rminu=np.zeros(natom) epsu=np.zeros(natom) rminv=np.zeros(5) epsv=np.zeros(5) flj=open("LJparm.dat","r") l=flj.readline() l=flj.readline() for i in range(natom): l=flj.readline() l2=l.split() rminu[i]=np.float(l2[0]) epsu[i]=np.float(l2[1]) l=flj.readline() for i in range(5): l=flj.readline() l2=l.split() rminv[i]=np.float(l2[0]) epsv[i]=np.float(l2[1]) flj.close() A=12.*np.sqrt(epsu[:,None]*epsv[None,:])*((rminu[:,None]+rminv[None,:])/2.)**12 B=12.*np.sqrt(epsu[:,None]*epsv[None,:])*((rminu[:,None]+rminv[None,:])/2.)**6 #Open trajectories coord = MDAnalysis.Universe(topo,traj) H2OCoord = coord.select_atoms("resname CL3") ionsCoord = coord.select_atoms("not resname CL3 and not resname Cl- and not resname Na+") #Iterate rMax2=rMax**2 rMax2p=(rMax+d0)**2 hrMax=0.5*rMax nbins=np.int(rMax/binSize+0.01) nH2O=np.zeros((ntyp,nbins),dtype=np.int) fH2O=np.zeros((ntyp,nbins)) nWat=len(H2OCoord.atoms) ilist=np.array([0,1,2,3,4]) for ts in coord.trajectory: dims = coord.dimensions[:3] hdims = dims/2. # sys.stdout.write("Progress: {0:.2f}% Complete\r".format((float(ts.frame) / float(len(coord.trajectory))) * 100)) # sys.stdout.flush() for ia,a in enumerate(ionsCoord.atoms): it=ityp[ia] rhat=H2OCoord.atoms[np.arange(1,nWat,5)].positions-a.position r2Wat=np.einsum("ij,ij->i",rhat,rhat) ir=np.where(r2Wat<rMax2p)[0] rhat=rhat[ir] phat=H2OCoord.atoms[ir*5+1].positions-H2OCoord.atoms[ir*5].positions phat/=np.sqrt(np.einsum("ij,ij->i",phat,phat))[:,None] rhat+=d0*phat r2Wat=np.einsum("ij,ij->i",rhat,rhat) ir2=np.where(r2Wat<rMax2)[0] ir=ir[ir2] rhat=rhat[ir2] r2Wat=r2Wat[ir2] rWat=np.sqrt(r2Wat) rhat/=rWat[:,None] ix=np.ndarray.astype(rWat[:]/binSize,np.int) fWat=np.zeros_like(r2Wat) for ib in ilist: sWat=H2OCoord.atoms[ir*5+ib].positions-a.position s2Wat=np.einsum("ij,ij->i",sWat,sWat) s6Wat=s2Wat**-3 sWat=np.einsum("ij,ij->i",sWat,rhat) fWat+=sWat*s6Wat*(A[ia,ib]*s6Wat-B[ia,ib])/s2Wat np.add.at(nH2O[it],ix,1) np.add.at(fH2O[it],ix,fWat) fout=open("sample.frc.dat","w") for i in range(ntyp): for j in range(nbins): r0=(j+0.5)*binSize if nH2O[i,j] == 0: fout.write("{:7.3f} {:19.12e} {:9d} {:3d}\n".format(r0,0.,-1,i+1)) else: fout.write("{:7.3f} {:19.12e} {:9d} {:3d}\n".format(r0,fH2O[i,j]/nH2O[i,j],nH2O[i,j],i+1)) fout.close() #Timing end = time.time() t = end - start print("\nTotal running time: {:.2f} sec".format(t))
#!/usr/bin/env python # # wamplite is free software; you can redistribute it and/or modify # it under the terms of the MIT license. See LICENSE for details. # import wamplite import logging import sys import threading import time import websocket # Connection & authentication details. Use ws:// for websocket, or wss:// for # secure websocket. url = "ws://localhost:55555" realm = "default_realm" authid = "peter" password = "secret2" event = threading.Event() rpc_completed_ok=False def wampclient_on_error(wampclient): # Unsophisticated error handling, just close the session logging.info("wampclient_on_error ... calling close") wampclient.close() def wampclient_on_close(wampclient): logging.info("*** session closed ***") event.set() def wampclient_on_open(wampclient): logging.info("*** session open ***") wampclient.call("hello", rpc_response, "listarg1", "listarg2", dictarg1="v1", dictarg2="v2") def rpc_response(wampclient, *args, **kwargs): logging.info("rpc_response, args: {}, kwargs: {}".format(args, kwargs)) global rpc_completed_ok rpc_completed_ok = True event.set() def init_logging(use_debug): websocket.enableTrace(use_debug) logger = logging.getLogger() if use_debug: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.INFO) ch = logging.StreamHandler(sys.stdout) formatter = logging.Formatter('%(asctime)s | %(levelname)s | %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) init_logging(use_debug=False) # attempts to make before giving up attempts = 5 while True: event.clear() # create the wamp client client = wamplite.WampClient(url, realm, authid, password, on_error_cb = wampclient_on_error, on_close_cb = wampclient_on_close, on_open_cb = wampclient_on_open) client.start() # wait for IO thread to response event.wait(timeout=30) if rpc_completed_ok: break else: # if rpc failed, clean up and retry client.close() del client attempts -= 1 if attempts == 0: logging.error("failed to call RPC") exit(1) else: logging.info("remaining attempts: %d" % attempts) time.sleep(3)
import argparse import os import sys import torch from torch import nn, optim from torch.optim import optimizer from torchvision import datasets, models, transforms parser = argparse.ArgumentParser(description="Trains a neural network") parser.add_argument('data_dir', metavar='dir', type=str, help="Directory to the dataset to be trained on") parser.add_argument("--save_dir", dest="save_dir", default=".", type=str, help="Directory to save checkpoints") parser.add_argument("--arg", dest="arch", default="vgg16", type=str, help="Pretrained architecture to use") parser.add_argument("--learning_rate", dest="learning_rate", default=0.001, type=float, help="Learning rate to use") parser.add_argument("--hidden_units", dest="hidden_units", type=int, default=512, help="Number of hidden units to use") parser.add_argument("--epochs", dest="epochs", type=int, default=5, help="Number of epochs to train model") parser.add_argument("--gpu", dest="gpu", action="store_true", help="Use GPU?") args = parser.parse_args() data_dir = args.data_dir save_dir = args.save_dir arch = args.arch learning_rate = args.learning_rate hidden_units = args.hidden_units epochs = args.epochs gpu = args.gpu device = torch.device("cuda" if gpu and torch.cuda.is_available() else "cpu") def build_model(arch, hidden_units): if arch == "alexnet": model = models.alexnet(pretrained=True) in_features = model.classifier[1].in_features classifier_name = "classifier" elif arch == "vgg11": model = models.vgg11(pretrained=True) in_features = model.classifier[0].in_features classifier_name = "classifier" elif arch == "vgg13": model = models.vgg13(pretrained=True) in_features = model.classifier[0].in_features classifier_name = "classifier" elif arch == "vgg16": model = models.vgg16(pretrained=True) in_features = model.classifier[0].in_features classifier_name = "classifier" elif arch == "vgg19": model = models.vgg19(pretrained=True) in_features = model.classifier[0].in_features classifier_name = "classifier" elif arch == "resnet18": model = models.resnet18(pretrained=True) in_features = model.fc.in_features classifier_name = "fc" elif arch == "resnet34": model = models.resnet34(pretrained=True) in_features = model.fc.in_features classifier_name = "fc" elif arch == "resnet50": model = models.resnet50(pretrained=True) in_features = model.fc.in_features classifier_name = "fc" elif arch == "resnet101": model = models.resnet101(pretrained=True) in_features = model.fc.in_features classifier_name = "fc" elif arch == "resnet152": model = models.resnet152(pretrained=True) in_features = model.fc.in_features classifier_name = "fc" elif arch == "densenet121": model = models.densenet121(pretrained=True) in_features = model.classifier.in_features classifier_name = "classifier" elif arch == "densenet169": model = models.densenet169(pretrained=True) in_features = model.classifier.in_features classifier_name = "classifier" elif arch == "densenet201": model = models.densenet201(pretrained=True) in_features = model.classifier.in_features classifier_name = "classifier" elif arch == "densenet161": model = models.densenet161(pretrained=True) in_features = model.classifier.in_features classifier_name = "classifier" else: print(f"Error: Unknown architecture: {arch}") sys.exit() # Freeze parameters for param in model.parameters(): param.requires_grad = False # Define classifier classifier = nn.Sequential( nn.Linear(in_features, hidden_units), nn.ReLU(), nn.Dropout(p=0.2), nn.Linear(hidden_units, hidden_units), nn.ReLU(), nn.Dropout(p=0.2), nn.Linear(hidden_units, 102), nn.LogSoftmax(dim=1) ) if classifier_name == "classifier": model.classifier = classifier optimizer = optim.Adam(model.classifier.parameters(), lr=learning_rate) elif classifier_name == "fc": model.fc = classifier optimizer = optim.Adam(model.fc.parameters(), lr=learning_rate) return model, optimizer def train_model(model, epochs, dataloaders, optimizer, criterion): steps = 0 running_loss = 0 print_every = 20 model.to(device) for epoch in range(epochs): for images, labels in dataloaders["train"]: steps += 1 images, labels = images.to(device), labels.to(device) optimizer.zero_grad() logps = model(images) loss = criterion(logps, labels) loss.backward() optimizer.step() running_loss += loss.item() if steps % print_every == 0: model.eval() test_loss = 0 accuracy = 0 for images, labels in dataloaders["valid"]: images, labels = images.to(device), labels.to(device) logps = model(images) loss = criterion(logps, labels) test_loss += loss.item() ps = torch.exp(logps) _, top_class = ps.topk(1, dim=1) equality = top_class == labels.view(*top_class.shape) accuracy += torch.mean(equality.type(torch.FloatTensor)).item() print(f"Epoch: {epoch+1}/{epochs} ", f"Training Loss: {running_loss/print_every:.3f} ", f"Validation Loss: {test_loss/len(dataloaders['valid']):.3f} ", f"Validation Accuracy: {accuracy/len(dataloaders['valid']):.3f}") running_loss = 0 model.train() def generate_data(dir): train_dir = os.path.join(dir, "train") valid_dir = os.path.join(dir, "valid") test_dir = os.path.join(dir, "test") data_transforms = { "train": transforms.Compose([ transforms.RandomRotation(30), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), "valid": transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), "test": transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) } # Load the datasets with ImageFolder image_datasets = { "train": datasets.ImageFolder(train_dir, transform=data_transforms["train"]), "valid": datasets.ImageFolder(valid_dir, transform=data_transforms["valid"]), "test": datasets.ImageFolder(test_dir, transform=data_transforms["test"]) } # Using the image datasets and the trainforms, define the dataloaders dataloaders = { "train": torch.utils.data.DataLoader(image_datasets["train"], batch_size=64, shuffle=True), "valid": torch.utils.data.DataLoader(image_datasets["valid"], batch_size=64, shuffle=True), "test": torch.utils.data.DataLoader(image_datasets["test"], batch_size=64, shuffle=True) } return data_transforms, image_datasets, dataloaders def save_model(save_dir, model, image_datasets): model.class_to_idx = image_datasets["train"].class_to_idx checkpoint = { "input_size": 25088, "output_size": 102, "classifier": model.classifier, "state_dict": model.state_dict(), "class_to_idx": model.class_to_idx, "arch": arch # "optimizer": optimizer.state_dict(), # "epochs": epochs, } torch.save(checkpoint, os.path.join(save_dir, "checkpoint.pth")) if __name__ == "__main__": print("--------LOADING DATA--------") _, image_datasets, dataloaders = generate_data(data_dir) print("Data loaded successfully") print("--------BUILDIING MODEL--------") model, optimizer = build_model(arch, hidden_units) print("Model successfully built") criterion = nn.NLLLoss() print("--------TRAINING MODEL--------") print(f"Training model with {epochs} epochs") train_model(model, epochs, dataloaders, optimizer, criterion) print("Model successfully trained") print("--------SAVING MODEL--------") save_model(save_dir, model, image_datasets) print(f"Model saved to {os.path.join(save_dir, 'checkpoint.pth')}")
#!/usr/bin/env python # coding=utf-8 from __future__ import division, print_function, unicode_literals from brainstorm.tests.test_layers import ( spec_list, test_deltas_calculation_of_layer, test_layer_add_to_deltas, test_layer_backward_pass_insensitive_to_internal_state_init, test_layer_forward_pass_insensitive_to_internal_state_init, test_gradients_for_layer) def get_test_configurations(): for spec in spec_list: time_steps, batch_size, activation = spec yield { 'time_steps': time_steps, 'batch_size': batch_size, 'activation': activation } def run_layer_tests(layer, spec): spec_str = "time_steps={time_steps}, batch_size={batch_size}," \ " activation={activation}".format(**spec) print('======= Testing {} for {} ====='.format(layer.name, spec_str)) print('Testing Delta Calculations ...') test_deltas_calculation_of_layer((layer, spec)) print('Testing Gradient Calculations ...') test_gradients_for_layer((layer, spec)) print('Verifying that layer ADDS to deltas ...') test_layer_add_to_deltas((layer, spec)) print('Verifying that the forward pass is insensitive to initialization of' ' internals ...') test_layer_forward_pass_insensitive_to_internal_state_init((layer, spec)) print('Verifying that the backward pass is insensitive to initialization' ' of internals ...') test_layer_backward_pass_insensitive_to_internal_state_init((layer, spec)) print("")
def roboVet(modShift): """Run the Model-Shift test Inputs: ------------- modshift The dictionary returned by ModShift.runModshift Returns: ------------- A dictionary containing the following keys: disp The disposition of the DOI --- either "candidate" or "false positive" not_tran_like A 1/0 flag indicating whether or not the DOI is transit-like. 0 means it is transit-like sig_sec A 1/0 flag indicating whether or not the DOI has a significant secondary. comments A string containing comments on individual tests Output: ---------- None """ # By default, it is a candidate unless it fails a test. disp = 'candidate' comments = '' # Run the not transit-like tests out = not_trans_like(modShift) not_trans_like_flag = out['not_trans_like_flag'] comments += out['comments'] # Run the significant secondary tests out = sig_sec(modShift) sig_sec_flag = out['sig_sec_flag'] comments += out['comments'] # Set false positive if any flag is not 0 if not_trans_like_flag > 0 or sig_sec_flag > 0: disp = 'false positive' return {'disp':disp, 'not_trans_like':not_trans_like_flag, 'sig_sec':sig_sec_flag, 'comments':comments} def not_trans_like(modshift): not_trans_like_flag = 0 comments = '' # Check is primary is significant compared to red nosie level if modshift['mod_sig_pri']/modshift['mod_Fred'] < modshift['mod_sig_fa1'] and modshift['mod_sig_pri'] > 0: if comments != '': comments += '---' comments += 'SIG_PRI_OVER_FRED_TOO_LOW' not_trans_like_flag = 1 # Check if primary is significant compared to tertiary if modshift['mod_sig_pri']-modshift['mod_sig_ter'] < modshift['mod_sig_fa2'] and modshift['mod_sig_pri'] > 0 and modshift['mod_sig_ter'] > 0: if comments != '': comments += '---' comments += 'SIG_PRI_MINUS_SIG_TER_TOO_LOW' not_trans_like_flag = 1 # Check if primary is significant compared to positive if modshift['mod_sig_pri']-modshift['mod_sig_pos'] < modshift['mod_sig_fa2'] and modshift['mod_sig_pri'] > 0 and modshift['mod_sig_pos'] > 0: if comments != '': comments += '---' comments += 'SIG_PRI_MINUS_SIG_POS_TOO_LOW' not_trans_like_flag = 1 # Check if a single (or few) events dominates the signal. Likely SPSD if so. Using 1.5 as educated guess threshold for now. if modshift['mod_dmm'] > 1.5: if comments != '': comments += '---' comments += 'INDIV_DEPTHS_NOT_CONSISTENT' not_trans_like_flag = 1 # Check if a the signal fails the modshift shape metric. Likely sinusoidal if shape > 0.3 (Using 0.3 as educated guess threshold for now.) if modshift['mod_shape'] > 0.3: if comments != '': comments += '---' comments += 'SINUSOIDAL_VIA_MODSHIFT' not_trans_like_flag = 1 return {'not_trans_like_flag':not_trans_like_flag,'comments':comments} def sig_sec(modshift): sig_sec_flag = 0 comments = '' # Check if a significant secondary exists in phased light curve from model-shift if modshift['mod_sig_sec'] / modshift['mod_Fred'] > modshift['mod_sig_fa1'] and modshift['mod_sig_sec'] > 0 and \ (modshift['mod_sig_sec'] - modshift['mod_sig_ter'] > modshift['mod_sig_fa2'] or modshift['mod_sig_ter'] > 0) and \ (modshift['mod_sig_sec'] - modshift['mod_sig_pri'] > modshift['mod_sig_fa2'] or modshift['mod_sig_pri'] > 0): if comments != '': comments += '---' comments += 'SIG_SEC_IN_MODEL_SHIFT' sig_sec_flag = 1 # Add something here for eclipse from planet refelection one day # Next line is to check if it could be detected at twice the orbital period and thus should be a PC. # HAVE TO CHECK WITH FERGAL ON VALUES FROM TRAP FIT #if abs(0.5 - modshift['mod_ph_sec'])*clip['trapFit.period_days'] < 0.25*clip['trapFit.duration_hrs']/24.0 and abs(modshift['mod_sig_pri'] - modshift['mod_sig_sec']) < modshift['mod_sig_fa2'] # Check Odd/Even from model-shift if modshift['mod_sig_oe'] > modshift['mod_sig_fa1']: if comments != '': comments += '---' comments += 'ODD_EVEN_DIFF' sig_sec_flag = 1 return {'sig_sec_flag':sig_sec_flag,'comments':comments}
import logging from datetime import datetime, timedelta from typing import Optional from fastapi import APIRouter, Depends, HTTPException, status from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm from passlib.context import CryptContext from pydantic import BaseModel from jose import JWTError, jwt from pydantic import Field logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) SECRET_KEY = "a9646c30a5a8a493c375ff549bbc603660e03c9d057d72f249f264fb4a07c832" ALGORITHM = "HS256" ACCESS_TOKEN_EXPIRE_MINUTES = 60 # Note: In actual production, we will store root user in a database ROOT_USERS_DB = { "root": { "username": "root", "hashed_password": '$2b$12$/eLylqVxNCF0YkuQhAs5eeGJGonPi2FJpSCj.dq4C1zG8IJKSmyCW', } } class Token(BaseModel): access_token: str token_type: str class User(BaseModel): username: str = Field( ..., description="Username", example="Peter" ) class UserInDB(User): hashed_password: str class UserGen(User): expire_days: float = Field( ..., description="Number of days till token expire", example=360.0, ) router = APIRouter( prefix="/token", tags=["token"], responses={401: {"description": "Unauthorized"}}, ) pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto") oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token") def decode_token(token: str) -> dict: payload = jwt.decode(token, SECRET_KEY, algorithms=ALGORITHM) return payload def verify_password(plain_password: str, hashed_password: str) -> bool: return pwd_context.verify(plain_password, hashed_password) def get_password_hash(password: str) -> str: """Generate password hash """ return pwd_context.hash(password) def get_user(db, username: str) -> Optional[UserInDB]: if username in db: user_dict = db[username] return UserInDB(**user_dict) def authenticate_user(user_db, username: str, password: str) -> Optional[UserInDB]: user = get_user(user_db, username) if not user: return None if not verify_password(password, user.hashed_password): return None return user def create_access_token(data: dict, expires_delta: Optional[timedelta] = None): to_encode = data.copy() if expires_delta: expire = datetime.utcnow() + expires_delta to_encode.update({"exp": expire}) encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM) return encoded_jwt @router.post( "/", response_model=Token, description=f"Log in as root user to get root token (valid for {ACCESS_TOKEN_EXPIRE_MINUTES} minutes)" ) async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends()): user = authenticate_user( ROOT_USERS_DB, form_data.username, form_data.password) if not user: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"}, ) access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) access_token = create_access_token( data={"sub": user.username}, expires_delta=access_token_expires ) return {"access_token": access_token, "token_type": "bearer"} async def get_root_user(token: str = Depends(oauth2_scheme)) -> UserInDB: credentials_exception = HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Authenticate": "Bearer"}, ) try: payload = decode_token(token) username: str = payload.get("sub") if username is None: raise credentials_exception except JWTError as e: logger.info(f"JWT error. Error: {e}") raise credentials_exception user = get_user(ROOT_USERS_DB, username) if user is None: raise credentials_exception return user async def get_regular_user(token: str = Depends(oauth2_scheme)) -> User: credentials_exception = HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Authenticate": "Bearer"}, ) try: payload = decode_token(token) username: str = payload.get("sub") if username is None: raise credentials_exception except JWTError as e: logger.info(f"JWT error. Error: {e}") raise credentials_exception return User(username=username) @router.put( "/generate", response_model=Token, description="Generate user token. Require root JWT authorization token." ) async def generate_token( user_gen: UserGen, user: UserInDB = Depends(get_root_user) ): """Generaate user token Note: - In real application, once we generate a token for a user, we should save it in a database. - However, here we just return the token. This is the case where you don't need to perform user management (such as revoke user access). """ logger.info( f"{user.username} creates a {user_gen.expire_days} days token for {user_gen.username}" ) access_token_expires = timedelta(days=user_gen.expire_days) access_token = create_access_token( data={"sub": user_gen.username}, expires_delta=access_token_expires ) return {"access_token": access_token, "token_type": "bearer"} @router.get( "/root-test", response_model=User, description="Test root user access. Require root JWT authorization token." ) async def test_root_api(user: UserInDB = Depends(get_root_user)): return user @router.get( "/reg-test", response_model=User, description="Test regular user access. Require user JWT authorization token." ) async def test_regular_user_api(user: User = Depends(get_regular_user)): return user
try: from . import generic as g except BaseException: import generic as g class RasterTest(g.unittest.TestCase): def test_rasterize(self): p = g.get_mesh('2D/wrench.dxf') origin = p.bounds[0] pitch = p.extents.max() / 600 resolution = g.np.ceil(p.extents / pitch).astype(int) # rasterize with filled filled = p.rasterize(origin=origin, pitch=pitch, resolution=resolution, fill=True, width=None) # rasterize just the outline outline = p.rasterize(origin=origin, pitch=pitch, resolution=resolution, fill=False, width=2.0) # rasterize both both = p.rasterize(origin=origin, pitch=pitch, resolution=resolution, fill=True, width=2.0) # rasterize with two-dimensional pitch pitch = p.extents / 600 filled_2dpitch = p.rasterize(origin=origin, pitch=pitch, resolution=resolution, fill=True, width=None) # count the number of filled pixels fill_cnt = g.np.array(filled).sum() fill_2dpitch_cnt = g.np.array(filled_2dpitch).sum() both_cnt = g.np.array(both).sum() outl_cnt = g.np.array(outline).sum() # filled should have more than an outline assert fill_cnt > outl_cnt # filled+outline should have more than outline assert both_cnt > outl_cnt # filled+outline should have more than filled assert both_cnt > fill_cnt # A different pitch results in a different image assert fill_2dpitch_cnt != fill_cnt def test_nested(self): # make a test path with nested circles theta = g.np.linspace(0, g.np.pi * 2, 100) unit = g.np.column_stack((g.np.cos(theta), g.np.sin(theta))) radii = g.np.linspace(1.0, 10.0, 10) g.np.random.shuffle(radii) paths = [] for R in radii: paths.append(g.trimesh.load_path(R * unit)) path = g.trimesh.path.util.concatenate(paths) # split and extrude should both show 5 regions assert len(path.split()) == 5 assert len(path.extrude(1.0)) == 5 pitch = path.extents.max() / 1000 origin = path.bounds[0] - pitch resolution = (g.np.ceil( path.extents / pitch) + 2).astype(int) # rasterize using the settings r = path.rasterize( pitch=pitch, origin=origin, resolution=resolution) # it's a boolean image so filled cells times # pitch area should be about the same as the area filled = g.np.array(r).sum() * pitch ** 2 assert g.np.isclose(filled, path.area, rtol=0.01) if __name__ == '__main__': g.trimesh.util.attach_to_log() g.unittest.main()
# ----------------------------------------------------------------------------- # Copyright (c) 2009-2016 Nicolas P. Rougier. All rights reserved. # Distributed under the (new) BSD License. # ----------------------------------------------------------------------------- import numpy as np from glumpy import app, gl, gloo, data from glumpy.geometry import primitives from glumpy.transforms import PanZoom vertex = """ attribute vec3 position; attribute vec2 texcoord; varying vec2 v_texcoord; void main() { gl_Position = <transform(vec4(position.xy,0,1.0))>; v_texcoord = texcoord; } """ fragment = """ #include "misc/spatial-filters.frag" #include "colormaps/colormaps.glsl" uniform sampler2D data; uniform vec2 data_shape; varying vec2 v_texcoord; void main() { // Extract data value float value = Bicubic(data, data_shape, v_texcoord).r; // Map value to rgb color vec4 bg_color = vec4(colormap_hot(value),1.0); vec4 fg_color = vec4(0,0,0,1); // Trace contour float levels = 32.0; float antialias = 1.0; float linewidth = 1.0 + antialias; if(length(value-0.5) < 0.5/levels) linewidth = 3.0 + antialias; float v = levels*value - 0.5; float dv = linewidth/2.0 * fwidth(v); float f = abs(fract(v) - 0.5); float d = smoothstep(-dv,+dv,f); float t = linewidth/2.0 - antialias; d = abs(d)*linewidth/2.0 - t; if( d < 0.0 ) { gl_FragColor = bg_color; } else { d /= antialias; gl_FragColor = mix(fg_color,bg_color,d); } } """ window = app.Window(800, 800, color = (1,1,1,1)) @window.event def on_draw(dt): window.clear() program.draw(gl.GL_TRIANGLES, I) @window.event def on_key_press(key, modifiers): if key == app.window.key.SPACE: transform.reset() program = gloo.Program(vertex, fragment) V,I = primitives.plane(2.0, n=64) program.bind(V) lena = data.get("lena.png")/256.0 program['data'] = lena[::-1,:,0] program['data'].interpolation = gl.GL_NEAREST program['data_shape'] = lena.shape[1], lena.shape[0] program['u_kernel'] = data.get("spatial-filters.npy") program['u_kernel'].interpolation = gl.GL_LINEAR transform = PanZoom(aspect=1) program['transform'] = transform window.attach(transform) app.run()
import os import weakref __version__ = "0.0.2" def formatted_value(value, array=True): """Format a given input value to be compliant for USD Args: array (bool): If provided, will treat iterables as an array rather than a tuple """ if isinstance(value, str): value = '"{}"'.format(value.replace('"', '\\"')) elif isinstance(value, (list, tuple)): temp = [] for val in value: if isinstance(val, str): val = formatted_value(val, array=False) temp.append(str(val)) value = '{}{}{}'.format( '[' if array else '(', ', '.join(temp), ']' if array else ')' ) return str(value) def indentation(level): """Return the indentation string for a given level of indentation""" return level * 4 * ' ' class AbstractData(object): """Base class for all our primitives""" as_type = None def __init__(self, *args, **kwargs): super(AbstractData, self).__init__() self.level = 0 self.children = [] self.properties = [] self.attributes = [] self.was_set = False self.name = None self.value = None self.parent = None self.keyframes = {} def indent(self, level=None): """Returns the indentation string""" if level is None: level = self.level return indentation(level) def lines(self, indent=0): """Create the lines required to write out""" self.level = indent return [] def formatted_name(self): name = self.name if self.keyframes: name = '{}.timeSamples'.format(name) return name def formatted_value(self, frame=None): if frame is None: value = self.value elif frame in self.keyframes: value = self.keyframes[frame] else: raise KeyError("No keyframe value for frame: {}".format(frame)) return formatted_value(value, array=self.as_type and '[' in self.as_type) def set_value(self, value): self.was_set = True self.value = value def unset_value(self): self.was_set = False self.value = None def set_parent(self, parent): self.parent = weakref.proxy(parent) def unset_parent(self): self.parent = None def path(self): tokens = [] node = self while node: tokens.append(node.name) node = node.parent if not node: tokens.append('/') tokens = [t for t in tokens[::-1] if t] path = os.path.join(*tokens) return path def set_property(self, prop, value): prop_obj = self.get_property(prop, defaults=True) if not prop_obj: prop_obj = self.add_property(prop) elif prop_obj not in self.properties: prop_obj = self.add_property(prop_obj) prop_obj.set_value(value) return prop_obj def set_attribute(self, attr, value, as_type=None, is_uniform=None): attr_obj = self.get_attribute(attr, defaults=True) if not attr_obj: attr_obj = self.add_attribute(attr, as_type=as_type, is_uniform=is_uniform) elif attr_obj not in self.attributes: attr_obj = self.add_attribute(attr_obj) attr_obj.set_value(value) if as_type is not None: attr_obj.as_type = as_type if is_uniform is not None: attr_obj.is_uniform = is_uniform return attr_obj def get_property(self, name, defaults=False): for prop in self.properties: if name == prop.name: return prop if not defaults: return for cls in self._class_inheritence(): for k, v in cls.__dict__.items(): if not isinstance(v, Property): continue if name == v.name: prop = Property( name=v.name, value=v.value, values=v.values ) return prop def get_attribute(self, name, defaults=False): for attr in self.attributes: if name == attr.name: return attr if not defaults: return for cls in self._class_inheritence(): for k, v in cls.__dict__.items(): if not isinstance(v, Attribute): continue if name == v.name: attr = Attribute( name=v.name, value=v.value, is_uniform=v.is_uniform, as_type=v.as_type, allowedTokens=v.allowed_tokens ) return attr def add_property(self, prop): if not isinstance(prop, Property): prop = Property(prop) for pr in self.properties: if pr.name == prop.name: return pr self.properties.append(prop) prop.set_parent(self) return prop def add_attribute(self, attr, value=None, as_type=None, is_uniform=False): if not isinstance(attr, Attribute): attr = Attribute(name=attr, value=value, as_type=as_type, is_uniform=is_uniform) for at in self.attributes: if at.name == attr.name: return at self.attributes.append(attr) attr.set_parent(self) return attr def remove_property(self, prop): if isinstance(prop, Property): for i, pr in enumerate(self.properties): if pr.name == prop.name: return self.properties.pop(i) else: for i, pr in enumerate(self.properties): if pr.name == prop.name: return self.properties.pop(i) def add_child(self, prim): assert isinstance(prim, Prim), "Child must be a primitive" self.children.append(prim) prim.set_parent(self) return prim def _class_inheritence(self): classes = list(self.__class__.__bases__) classes.append(self.__class__) return classes def set_keyframe(self, frame, value): self.value = None self.keyframes[frame] = value class Stage(AbstractData): """Represents the main USD stage that contains all the elements""" def save(self, location): # Always force a usda extension base, ext = os.path.splitext(location) location = '{}.usda'.format(base) with open(location, 'w') as f: f.writelines(self.lines()) def lines(self, indent=0): lines = super(Stage, self).lines(indent) lines.append('#usda 1.0\n') lines.append('(\n') self.level += 1 lines.append('{}"Written by AUD v{}"\n'.format(self.indent(), __version__)) for property in self.properties: lines.extend(property.lines(self.level)) self.level -= 1 lines.append(')\n\n') for child in self.children: lines.extend(child.lines(self.level)) return lines def set_frame_range(self, start, end): self.set_property('startTimeCode', start) self.set_property('endTimeCode', end) def set_framerate(self, fps): self.set_property('timeCodesPerSecond', fps) def set_up_axis(self, axis="Y"): self.set_property('upAxis', axis.upper()) class Prim(AbstractData): """The basic USD object in the hierarchy""" as_type = None def __init__(self, name, is_class=False, is_over=False, as_type=None): super(Prim, self).__init__() self.name = name self.is_class = is_class self.is_over = is_over self.as_type = as_type or self.as_type self.references = [] self.inherits = [] self.variants = [] def lines(self, indent=0): lines = super(Prim, self).lines(indent=indent) tokens = [] if self.is_class: tokens.append('class') elif self.is_over: tokens.append('over') else: tokens.append('def') if self.as_type: tokens.append(self.as_type) tokens.append('"{}"'.format(self.name)) lines.append('\n{}{} (\n'.format(self.indent(), ' '.join(tokens))) self.level += 1 for prop in (self.variants + self.references + self.inherits + self.properties): lines.extend(prop.lines(indent=self.level)) lines.append("\n") self.level -= 1 lines.append('{0})\n{0}{{\n'.format(self.indent())) self.level += 1 for attr in self.attributes: lines.extend(attr.lines(indent=self.level)) lines.append("\n") for child in self.children: lines.extend(child.lines(indent=self.level)) self.level -= 1 lines.append('\n{}}}\n'.format(self.indent())) return lines def add_reference(self, ref, mode=None): if mode not in Iterable.modes: raise ValueError("{} is not a valid mode".format(mode)) for iterable in self.references: if iterable.mode == mode: break else: iterable = Iterable(name='reference', mode=mode) self.references.append(iterable) if not isinstance(ref, IterObject): ref = IterObject(ref, is_file=True) iterable.append(ref) def add_inherit(self, inherits, mode=None): if mode not in Iterable.modes: raise ValueError("{} is not a valid mode".format(mode)) for iterable in self.inherits: if iterable.mode == mode: break else: iterable = Iterable(name='inherits', mode=mode) self.references.append(iterable) if not isinstance(inherits, IterObject): inherits = IterObject(inherits, is_file=False) iterable.append(inherits) def add_variant(self, variant, mode=None): if mode not in Iterable.modes: raise ValueError("{} is not a valid mode".format(mode)) for iterable in self.inherits: if iterable.mode == mode: break else: iterable = Iterable(name='variantSets', mode=mode) self.variants.append(iterable) if not isinstance(variant, IterObject): variant = IterObject(variant) iterable.append(variant) def set_xform_order(self, order='trs'): ops = [] for o in order: if o == 't': ops.append('xformOp:translate') elif o == 'r': ops.append('xformOp:rotateXYZ') elif o == 's': ops.append('xformOp:scale') else: raise ValueError('Cannot understand xform order: {}'.format(o)) self.set_attribute('xformOpOrder', ops, as_type='token[]', is_uniform=True) class Property(AbstractData): """A property for a USD Prim that appears between the parenthesis""" def __init__(self, name, value=None, values=None): super(Property, self).__init__() self.name = name self.values = values self.value = value def lines(self, indent=0): lines = super(Property, self).lines(indent=indent) if not self.was_set: return lines tokens = [] if self.as_type: tokens.append(self.as_type) tokens.extend([self.formatted_name(), '=']) if self.keyframes: tokens.append('{') else: tokens.append(self.formatted_value()) tokens = [str(t) for t in tokens] tokens = ' '.join([t for t in tokens if t]) lines.append("{}{}\n".format(self.indent(), tokens)) if not self.keyframes: return lines self.level += 1 for frame, value in self.keyframes: lines.append("{}{}:{},\n".format( self.indent(), frame, self.formatted_value(frame=frame) )) self.level -= 1 lines.append("{}}}\n".format(self.indent(), )) class Attribute(AbstractData): """Data attributes that provide actual information about a prim between its {}""" def __init__(self, name, value=None, is_uniform=False, as_type=None, docstring=None, allowedTokens=None, **kwargs): super(Attribute, self).__init__() self.__doc__ = self.docstring = docstring self.is_uniform = is_uniform self.value = value self.name = name self.as_type = as_type self.allowed_tokens = self.allowedTokens = allowedTokens def lines(self, indent=0): lines = super(Attribute, self).lines(indent=indent) if not self.was_set: return lines tokens = [] if self.is_uniform: tokens.append('uniform') if self.as_type: tokens.append(self.as_type) tokens.append(self.formatted_name()) tokens.append('=') if self.keyframes: tokens.append('{\n') else: tokens.append(self.formatted_value()) tokens = [str(t) for t in tokens] lines.append('{}{}'.format(self.indent(), ' '.join(tokens))) if self.keyframes: self.level += 1 for frame in self.keyframes: lines.append('{}{}: {},\n'.format( self.indent(), frame, self.formatted_value(frame=frame) )) self.level -= 1 lines.append('{}}}\n'.format(self.indent())) if not self.properties: return lines lines.append(" (\n") self.level += 1 for prop in self.properties: lines.extend(prop.lines(indent=self.level)) self.level -= 1 lines.append('{})'.format(self.indent())) return lines class Iterable(list): """Represents a USD list""" mode = None modes = (None, 'add', 'prepend', 'del') def __init__(self, name, mode=None): super(Iterable, self).__init__() self.name = name if mode not in self.modes: raise ValueError("{} is not a valid mode for an iterable".format(mode)) self.mode = mode self.level = 0 def indent(self, level=None): """Returns the indentation string""" if level is None: level = self.level return indentation(level) def lines(self, indent=0): self.level = indent lines = [] tokens = [] if self.mode: tokens.append(self.mode) tokens.extend([self.name, '=']) lines.append('{0}{1} [\n{2}{3}\n{0}]'.format( self.indent(), ' '.join(tokens), indentation(self.level + 1), '{},\n'.format(indentation(self.level + 1).join(str(i) for i in self if i)) )) return lines class IterObject(object): """Represents an object inside a USD list and can format to various formats""" reference = False location = None object_name = None is_file = False def __init__(self, value=None, object_name=None, is_file=False): super(IterObject, self).__init__() if isinstance(value, AbstractData): object_name = value.path() value = None is_file = False self.value = value self.object_name = object_name self.is_file = is_file def formatted(self): val = self.value or '' if not val and not self.object_name: return if not self.object_name and not self.is_file: return formatted_value(val) if self.is_file: val = '@{}@'.format(val) if self.object_name: val += '<{}>'.format(self.object_name) return str(val) or None def __str__(self): return self.formatted() class VariantSet(Prim): """Create a Variant Set inside a prim""" def lines(self, indent=0): lines = AbstractData.lines(self, indent=indent) lines.append('{}variantSet "{}" = {{\n'.format(self.indent(), self.name)) self.level += 1 for child in self.children: lines.extend(child.lines(indent=self.level)) lines.append('\n') self.level -= 1 lines.append('{0}}}\n'.format(self.indent())) return lines class Variant(Prim): """Create a Variant inside a Variant Set""" def lines(self, indent=0): lines = AbstractData.lines(self, indent=indent) lines.append('{}"{}" {{\n'.format(self.indent(), self.name)) self.level += 1 for child in self.children: lines.extend(child.lines(indent=self.level)) lines.append('\n') self.level -= 1 lines.append('{0}}}\n'.format(self.indent())) return lines
from django.urls import path from . import views urlpatterns = [ path('', views.login_index, name='login_index'), path('register', views.register, name='register'), path('logout', views.user_logout, name='user_logout'), ]
import numpy as np from collections import OrderedDict from os import path def load(filename, max_rank=None, vocabulary=None): """Load word vector data. Args: filename: name of file to load. max_rank: maximum number of embeddings to load (None for no limit) vocabulary: words to load embeddings for (None for all) Returns: Tuple (word_to_idx, embedding) where word_to_idx is an OrderedDict mapping words to integer indices and embedding is a numpy array of shape (word-count, vector-size). """ # TODO support for other formats return load_w2v_binary(filename, max_rank, vocabulary) def load_w2v_binary(filename, max_rank=None, vocabulary=None): """Load word2vec binary format. Args: filename: name of file to load. max_rank: maximum number of embeddings to load (None for no limit) vocabulary: words to load embeddings for (None for all) Returns: Tuple (word_to_idx, embedding) where word_to_idx is an OrderedDict mapping words to integer indices and embedding is a numpy array of shape (word-count, vector-size). """ word_to_idx, vectors = OrderedDict(), [] with open(filename, 'rb') as f: # header has vocab and vector sizes as strings word_count, vec_size = map(int, f.readline().split()) for i in range(word_count): if max_rank and i > max_rank: break word_to_idx[read_w2v_word(f)] = len(word_to_idx) vectors.append(np.fromfile(f, np.float32, vec_size)) vectors = np.array(vectors) if vocabulary is not None: word_to_idx, vectors = filter_words(word_to_idx, vectors, vocabulary) return word_to_idx, vectors def read_w2v_word(flo): """Return word from file-like object, break on space.""" # http://docs.python.org/2/library/functions.html#iter word = ''.join(iter(lambda: flo.read(1), ' ')) return word.lstrip('\n') # harmonize w2v format variants def filter_words(word_to_idx, vectors, vocabulary): """Filter word vector data to vocabulary.""" filtered_to_idx, filtered_indices = OrderedDict(), [] for word, idx in word_to_idx.items(): if word in vocabulary: filtered_to_idx[word] = len(filtered_to_idx) filtered_indices.append(idx) return filtered_to_idx, vectors[filtered_indices]
import reversion from django.db import models from django.core.exceptions import ValidationError from .tracked_model import TrackedModel from .derived_sample import DerivedSample from ._utils import add_error as _add_error __all__ = ["DerivedBySample"] @reversion.register() class DerivedBySample(TrackedModel): derived_sample = models.ForeignKey("DerivedSample", on_delete=models.PROTECT, related_name="derived_by_samples") sample = models.ForeignKey("Sample", on_delete=models.PROTECT, related_name="derived_by_samples") volume_ratio = models.DecimalField(max_digits=4, decimal_places=3, help_text="Volume ratio in pools.") def clean(self): super().clean() errors = {} def add_error(field: str, error: str): _add_error(errors, field, ValidationError(error)) # Check concentration fields given sample_kind (moved from sample because information unavailable until relation created) if self.sample.concentration is None and self.derived_sample.sample_kind.name in DerivedSample.BIOSPECIMEN_TYPES_CONC_REQUIRED: add_error("concentration", "Concentration must be specified for a pool or if the sample_kind is DNA") if errors: raise ValidationError(errors) def save(self, *args, **kwargs): self.full_clean() super().save(*args, **kwargs) # Save the object
import os from mai.adsorbate_constructor import adsorbate_constructor from ase.io import read, write starting_mof_path = os.path.join('example_MOFs','Ni-BTP.cif') #path to CIF of MOF #Get all Ni indices in ASE Atoms object of MOF start_mof = read(starting_mof_path) Ni_idx = [atom.index for atom in start_mof if atom.symbol == 'Ni'] #add H2O adsorbate atoms = start_mof for i, site_idx in enumerate(Ni_idx): ads = adsorbate_constructor(ads='HOH',d_MX1=2.0,d_X1X2=0.96,d_X2X3=0.96, ang_MX1X2=120,ang_triads=104.5,connect=2) atoms = ads.get_adsorbate(atoms=atoms,site_idx=site_idx,write_file=False) #Write out final CIF with all H2O molecules added if not os.path.isdir('new_mofs'): os.makedirs('new_mofs') write(os.path.join('new_mofs','Ni-BTP_allH2O.cif'),atoms)
import pandas as pd df_input_food = pd.read_csv("input_food.csv") print(df_input_food.head()) df_food = pd.read_csv("food.csv") print(df_food.describe()) print(df_food.head())
# -*- coding: utf-8 -*- """Wavefront Python SDK. This library provides support for sending metrics, histograms and opentracing spans to Wavefront via proxy or direct ingestion. @author Hao Song (songhao@vmware.com) """ import pkg_resources from .direct import WavefrontDirectClient from .proxy import WavefrontProxyClient __all__ = ['WavefrontDirectClient', 'WavefrontProxyClient'] __version__ = None try: __version__ = pkg_resources.get_distribution( 'wavefront-sdk-python' ).version except pkg_resources.DistributionNotFound: # __version__ is only available when distribution is installed. pass
from functools import wraps def ints_only(func): @wraps(func): def wrapper(*args, **kawrgs): args = [int(x) for x in args] kwargs = {n: int(v) for n, v in kwargs.items()} return func(*args, **kwargs) return wrapper @ints_only def add(left, right): return left + right add('57', 99.5)
from rest_framework import serializers from clientes.models import Cliente from .validators import * class ClienteSerializer(serializers.ModelSerializer): class Meta: model = Cliente fields = '__all__' # primeiro modo de fazer validações def validate(self, data): if not cpf_valido(data['cpf']): raise serializers.ValidationError({'cpf': 'Número de CPF inválido'}) if not celular_valido(data['celular']): raise serializers.ValidationError({'celular': 'Celular deve conter 11 caracteres'}) return data # segundo modo de fazer validações def validate_nome(self, nome): if not nome.isalpha(): raise serializers.ValidationError('Não inclua números no nome') return nome def validate_rg(self, rg): if len(rg) != 9: raise serializers.ValidationError('RG deve conter 9 caracteres') return rg
"""Fetch weather information Usage: weather (-h | --help) weather [--country=COUNTRY] <city> Options: -h, --help Show a brief usage summary. --country=COUNTRY Restrict cities to an ISO 3166 country code. An OpenWeatherMap API key MUST be provided via the OPENWEATHERMAP_KEY environment variable. """ import os import sys import requests from docopt import docopt # environment key containing OpenWeatherMap Key envkey = 'OPENWEATHERMAP_KEY' if __name__ == '__main__': args = docopt(__doc__) # check if key set in environment if envkey not in os.environ: print('Error: missing', envkey, 'environment variable') exit(1) # get key apikey = os.environ[envkey] # get city argument city = args['<city>'] # get country argument country = args['--country'] # append country to city (with comma) if set if (country is not None) and (country != ''): city += ','+country try: r = requests.get('http://api.openweathermap.org/data/2.5/weather?APPID=' + apikey + '&units=metric&q=' + city) r.raise_for_status() data = r.json() except: print('Error: failed to get response from openweathermap for', city, '['+str(r.status_code)+']') exit(r.status_code) print('Temperature for {0}, {1}: {2:.1f}\u2103'.format(data['name'], data['sys']['country'], data['main']['temp']))
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) """Define a common data structure to represent external packages and a function to update packages.yaml given a list of detected packages. Ideally, each detection method should be placed in a specific subpackage and implement at least a function that returns a list of DetectedPackage objects. The update in packages.yaml can then be done using the function provided here. The module also contains other functions that might be useful across different detection mechanisms. """ import collections import itertools import os import os.path import re import sys import six import llnl.util.tty import spack.config import spack.spec import spack.util.spack_yaml is_windows = sys.platform == 'win32' #: Information on a package that has been detected DetectedPackage = collections.namedtuple( 'DetectedPackage', ['spec', 'prefix'] ) def _externals_in_packages_yaml(): """Return all the specs mentioned as externals in packages.yaml""" packages_yaml = spack.config.get('packages') already_defined_specs = set() for pkg_name, package_configuration in packages_yaml.items(): for item in package_configuration.get('externals', []): already_defined_specs.add(spack.spec.Spec(item['spec'])) return already_defined_specs def _pkg_config_dict(external_pkg_entries): """Generate a package specific config dict according to the packages.yaml schema. This does not generate the entire packages.yaml. For example, given some external entries for the CMake package, this could return:: { 'externals': [{ 'spec': 'cmake@3.17.1', 'prefix': '/opt/cmake-3.17.1/' }, { 'spec': 'cmake@3.16.5', 'prefix': '/opt/cmake-3.16.5/' }] } """ pkg_dict = spack.util.spack_yaml.syaml_dict() pkg_dict['externals'] = [] for e in external_pkg_entries: if not _spec_is_valid(e.spec): continue external_items = [('spec', str(e.spec)), ('prefix', e.prefix)] if e.spec.external_modules: external_items.append(('modules', e.spec.external_modules)) if e.spec.extra_attributes: external_items.append( ('extra_attributes', spack.util.spack_yaml.syaml_dict(e.spec.extra_attributes.items())) ) # external_items.extend(e.spec.extra_attributes.items()) pkg_dict['externals'].append( spack.util.spack_yaml.syaml_dict(external_items) ) return pkg_dict def _spec_is_valid(spec): try: str(spec) except spack.error.SpackError: # It is assumed here that we can at least extract the package name from # the spec so we can look up the implementation of # determine_spec_details msg = 'Constructed spec for {0} does not have a string representation' llnl.util.tty.warn(msg.format(spec.name)) return False try: spack.spec.Spec(str(spec)) except spack.error.SpackError: llnl.util.tty.warn( 'Constructed spec has a string representation but the string' ' representation does not evaluate to a valid spec: {0}' .format(str(spec)) ) return False return True def is_executable(file_path): """Return True if the path passed as argument is that of an executable""" return os.path.isfile(file_path) and os.access(file_path, os.X_OK) def _convert_to_iterable(single_val_or_multiple): x = single_val_or_multiple if x is None: return [] elif isinstance(x, six.string_types): return [x] elif isinstance(x, spack.spec.Spec): # Specs are iterable, but a single spec should be converted to a list return [x] try: iter(x) return x except TypeError: return [x] def executable_prefix(executable_dir): """Given a directory where an executable is found, guess the prefix (i.e. the "root" directory of that installation) and return it. Args: executable_dir: directory where an executable is found """ # Given a prefix where an executable is found, assuming that prefix # contains /bin/, strip off the 'bin' directory to get a Spack-compatible # prefix assert os.path.isdir(executable_dir) components = executable_dir.split(os.sep) if 'bin' not in components: return executable_dir idx = components.index('bin') return os.sep.join(components[:idx]) def library_prefix(library_dir): """Given a directory where an library is found, guess the prefix (i.e. the "root" directory of that installation) and return it. Args: library_dir: directory where an library is found """ # Given a prefix where an library is found, assuming that prefix # contains /lib/ or /lib64/, strip off the 'lib' or 'lib64' directory # to get a Spack-compatible prefix assert os.path.isdir(library_dir) components = library_dir.split(os.sep) if 'lib64' in components: idx = components.index('lib64') return os.sep.join(components[:idx]) elif 'lib' in components: idx = components.index('lib') return os.sep.join(components[:idx]) else: return library_dir def update_configuration(detected_packages, scope=None, buildable=True): """Add the packages passed as arguments to packages.yaml Args: detected_packages (list): list of DetectedPackage objects to be added scope (str): configuration scope where to add the detected packages buildable (bool): whether the detected packages are buildable or not """ predefined_external_specs = _externals_in_packages_yaml() pkg_to_cfg, all_new_specs = {}, [] for package_name, entries in detected_packages.items(): new_entries = [ e for e in entries if (e.spec not in predefined_external_specs) ] pkg_config = _pkg_config_dict(new_entries) all_new_specs.extend([ spack.spec.Spec(x['spec']) for x in pkg_config.get('externals', []) ]) if buildable is False: pkg_config['buildable'] = False pkg_to_cfg[package_name] = pkg_config pkgs_cfg = spack.config.get('packages', scope=scope) pkgs_cfg = spack.config.merge_yaml(pkgs_cfg, pkg_to_cfg) spack.config.set('packages', pkgs_cfg, scope=scope) return all_new_specs def find_win32_additional_install_paths(): """Not all programs on Windows live on the PATH Return a list of other potential install locations. """ windows_search_ext = [] cuda_re = r'CUDA_PATH[a-zA-Z1-9_]*' # The list below should be expanded with other # common Windows install locations as neccesary path_ext_keys = ['I_MPI_ONEAPI_ROOT', 'MSMPI_BIN', 'MLAB_ROOT', 'NUGET_PACKAGES'] user = os.environ["USERPROFILE"] add_path = lambda key: re.search(cuda_re, key) or key in path_ext_keys windows_search_ext.extend([os.environ[key] for key in os.environ.keys() if add_path(key)]) # note windows paths are fine here as this method should only ever be invoked # to interact with Windows # Add search path for default Chocolatey (https://github.com/chocolatey/choco) # install directory windows_search_ext.append("C:\\ProgramData\\chocolatey\\bin") # Add search path for NuGet package manager default install location windows_search_ext.append(os.path.join(user, ".nuget", "packages")) windows_search_ext.extend( spack.config.get("config:additional_external_search_paths", default=[]) ) windows_search_ext.extend(spack.util.environment.get_path('PATH')) return windows_search_ext def compute_windows_program_path_for_package(pkg): """Given a package, attempt to compute its Windows program files location, return list of best guesses Args: pkg (spack.package_base.Package): package for which Program Files location is to be computed """ if not is_windows: return [] # note windows paths are fine here as this method should only ever be invoked # to interact with Windows program_files = 'C:\\Program Files{}\\{}' return[program_files.format(arch, name) for arch, name in itertools.product(("", " (x86)"), (pkg.name, pkg.name.capitalize()))]
import os import torch torch.manual_seed(int(os.environ.get('SPLINE_MANUAL_SEED', 7)))
from django.contrib import admin from .models import * # Register your models here. admin.site.register(UserRole) admin.site.register(RoleType) admin.site.register(UserDetail) admin.site.register(Question) admin.site.register(Choice) admin.site.register(School) admin.site.register(School_post) admin.site.register(Car_brand_model) admin.site.register(Car_brand)
import json, datetime, time import jwt import hashlib import time import os, sys, base64 import uuid from .sql import sql from reportlab.pdfgen import canvas from reportlab.pdfbase.ttfonts import TTFont from reportlab.pdfbase import pdfmetrics from reportlab.lib import colors from reportlab.lib.units import mm from reportlab.graphics.barcode import qr from reportlab.graphics.shapes import Drawing from reportlab.graphics import renderPDF from datetime import datetime class pdf_doc: def __init__(self, userId = -1, filename = None): self.userId = str(userId) self.filename = filename def report(self, floteur, id_points, date_start, date_end): data = floteur.pdf_report(id_points, date_start * 1000, date_end * 1000) if id_points[0] not in data[1]["data"]: # return [False, "no data", 400] size_data = 0 else: size_data = len(data[1]["data"][id_points[0]]) total_page = round((size_data - 29) / 40 + 1) total_page = total_page if total_page > 0 else 1 id_doc = str(uuid.uuid4()) documentTitle = 'Wellcheck - Report' image = '/home/api/Source/Base/Report_base.png' pdf = canvas.Canvas(sys.stdout) pdf.setPageSize((210 * mm, 272 * mm)) pdf.setTitle(documentTitle) pdf.drawImage(image, 0, 0, 210 * mm, 272 * mm) pdf.setFillColorRGB(0, 0, 0) page = 1 now = int(round(time.time())) save = True qr_link = 'https://doc.wellcheck.fr/?doc=' + id_doc if int(date_end) > int(now - 200): qr_link = "https://doc.wellcheck.fr/src.php?id=" + str(id_points[0]) + "&from=" + str(int(date_start)) + "&to=" + str(int(date_end)) save = False qr_code = qr.QrCodeWidget(qr_link) bounds = qr_code.getBounds() width = bounds[2] - bounds[0] height = bounds[3] - bounds[1] dr = Drawing(80, 80, transform=[80./width,0,0,80./height,0,0]) dr.add(qr_code) pdf.setFont("Helvetica-Bold", 14) pdf.drawString(90 * mm, (267 - 40) * mm, "Informations:") pdf.setFont("Helvetica-Bold", 12) pdf.drawString(64 * mm, (267 - 46) * mm, "ID: " + id_points[0]) pdf.setFont("Helvetica", 12) pdf.drawString(100 * mm, 13 * mm, str(page) + " / " + str(total_page)) pdf.drawString(64.5 * mm, 5 * mm, " unfinished period | temporary document" if not save else id_doc) renderPDF.draw(dr, pdf, 210 * mm - 82, 2) pdf.drawString(40 * mm, (267 - 54) * mm, "Sigfox_id") pdf.drawString(40 * mm, (267 - 58) * mm, "Name") pdf.drawString(40 * mm, (267 - 62) * mm, "Owned_by") pdf.drawString(111 * mm, (267 - 54) * mm, "Time_start") pdf.drawString(111 * mm, (267 - 58) * mm, "Time_end") pdf.drawString(111 * mm, (267 - 62) * mm, "Time_total") pdf.line(105 * mm, (267 - 50) * mm, 105 * mm, (267 - 63) * mm) pdf.setFont("Helvetica-Oblique", 12) diff = round((int(date_end) - int(date_start)) / 3600 , 1) pdf.drawString(65 * mm, (267 - 54) * mm, str(data[1]["detail"][id_points[0]]["sigfox_id"])) pdf.drawString(65 * mm, (267 - 58) * mm, str(data[1]["detail"][id_points[0]]["name"])) pdf.drawString(65 * mm, (267 - 62) * mm, str(data[1]["detail"][id_points[0]]["user_id"])) pdf.drawString(136 * mm, (267 - 54) * mm, str(datetime.fromtimestamp(int(date_start)))) pdf.drawString(136 * mm, (267 - 58) * mm, str(datetime.fromtimestamp(int(date_end)))) pdf.drawString(136 * mm, (267 - 62) * mm, str(diff) + (" hours" if diff > 0 else " hour")) pdf.setFont("Helvetica-Bold", 12) pdf.drawString(33 * mm, (267 - 80) * mm, "Date") pdf.drawString(69 * mm, (267 - 80) * mm, "Note") pdf.drawString(89 * mm, (267 - 80) * mm, "Ph") pdf.drawString(109 * mm, (267 - 80) * mm, "Temp") pdf.drawString(138 * mm, (267 - 80) * mm, "Redox") pdf.drawString(168 * mm, (267 - 80) * mm, "Turbidity") pdf.setFont("Helvetica", 12) n = 0 t = 0 d = 11 start = 88 while n < size_data: pdf.drawString(18 * mm, (267 - start - t * 5) * mm, str(datetime.fromtimestamp(int(int(data[1]["data"][id_points[0]][n]["date"]) / 1000)))) pdf.drawString(68 * mm, (267 - start - t * 5) * mm, str(data[1]["data"][id_points[0]][n]["data"]["data"]["note"]).rjust(4, '0')) pdf.drawString(88 * mm, (267 - start - t * 5) * mm, str(data[1]["data"][id_points[0]][n]["data"]["data"]["ph"]).rjust(4, '0')) pdf.drawString(110 * mm, (267 - start - t * 5) * mm, str(data[1]["data"][id_points[0]][n]["data"]["data"]["temp"]).rjust(4, '0')) pdf.drawString(138 * mm, (267 - start - t * 5) * mm, str(data[1]["data"][id_points[0]][n]["data"]["data"]["redox"]).rjust(6, '0')) pdf.drawString(172 * mm, (267 - start - t * 5) * mm, str(data[1]["data"][id_points[0]][n]["data"]["data"]["turbidity"]).rjust(4, '0')) n += 1 d += 1 t += 1 if d > 40: pdf.showPage() start = 35 d = 0 t = 0 page += 1 pdf.drawImage(image, 0, 0, 210 * mm, 272 * mm) pdf.setFont("Helvetica-Bold", 12) pdf.drawString(33 * mm, (267 - start + 8) * mm, "Date") pdf.drawString(69 * mm, (267 - start + 8) * mm, "Note") pdf.drawString(89 * mm, (267 - start + 8) * mm, "Ph") pdf.drawString(109 * mm, (267 - start + 8) * mm, "Temp") pdf.drawString(138 * mm, (267 - start + 8) * mm, "Redox") pdf.drawString(168 * mm, (267 - start + 8) * mm, "Turbidity") pdf.setFont("Helvetica", 12) pdf.drawString(100 * mm - ( 0 if page < 10 else 2 * mm if page < 100 else 4 * mm), 13 * mm, str(page) + " / " + str(total_page)) pdf.drawString(64.5 * mm, 5 * mm, " unfinished period | temporary document " if not save else id_doc) renderPDF.draw(dr, pdf, 210 * mm - 82, 2) return [True, {"doc_id": id_doc, "Content": str(base64.b64encode(pdf.getpdfdata().decode('utf8', 'ignore').encode('ascii')))[2:-1], "Type": "pdf", "Save": save}, None] def __getsecret(self): return str(os.getenv('API_SCRT', '!@ws4RT4ws212@#%'))
from decimal import Decimal import pytest from bitcart.utils import bitcoins, convert_amount_type, satoshis @pytest.mark.parametrize("btc,expected", [(0.1, 10000000), (1, 100000000), (0.00000001, 1), (5, 500000000)]) def test_satoshis(btc, expected): result = satoshis(btc) assert isinstance(result, int) assert result == expected @pytest.mark.parametrize("sats,expected", [(10000000, "0.1"), (100000000, "1"), (1, "0.00000001"), (500000000, "5")]) def test_bitcoins(sats, expected): result = bitcoins(sats) assert isinstance(result, Decimal) assert result == Decimal(expected) def test_convertability(): assert bitcoins(satoshis(1)) == 1 def test_convert_amount_type(): assert convert_amount_type("1") == Decimal("1") @pytest.mark.asyncio async def test_decimal_sending(btc_wallet): amount = Decimal("0.5") req = await btc_wallet.add_request(amount) # ensures that it is possible to pass decimal assert req[btc_wallet.amount_field] == amount
import tnetwork as dn import os import subprocess import time ############################### ######For this class, it is necessary to have Matlab installed ######And to set up the matlab for python engine, see how to there ###### https://fr.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html ###### (you can find the value of matlabroot by tapping matlabroot in your matlab console) ################################ def launchCommandWaitAnswer(acommand, printOutput=True): process = subprocess.Popen(acommand, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) if printOutput: while (True): retcode = process.poll() # returns None while subprocess is running line = process.stdout.readline() print(line) # yield line if (retcode is not None): if retcode != 0: print "FAILURE WITH : " + acommand break process.wait() def iLCD(dynNet,par1=None,par2=None,runningTime=False): #initialisation inspired by http://netwiki.amath.unc.edu/GenLouvain/GenLouvain dir = os.path.dirname(__file__) jarLocation = os.path.join(dir, "iLCD2016.jar") sandBox = os.path.join(dir, "sandBox") networkLocation = sandBox+"/network.ctnf" communitiesLocation = sandBox+"/snapshot_affiliations" dn.write_ordered_changes(dynNet, networkLocation, edgeIdentifier="") commandToLaunch = "java -jar "+jarLocation+" -i "+networkLocation+" -o "+communitiesLocation start_time = time.time() launchCommandWaitAnswer(commandToLaunch,printOutput=False) duration = (time.time() - start_time) #print("algorithm Running time: %s seconds ---" % runningTime) dynComs = dn.readListOfModifCOM(communitiesLocation+".ctnf") if runningTime: return duration return dynComs #preprocessMatrixForm(0.5) #muchaOriginal("bla")
# coding=utf-8 # Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ..test_configuration_common import ConfigTester from ..test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class TFLayoutLMModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, range_bbox=1000, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.range_bbox = range_bbox def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # convert bbox to numpy since TF does not support item assignment bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: t = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = t if bbox[i, j, 2] < bbox[i, j, 0]: t = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = t bbox = tf.convert_to_tensor(bbox) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = LayoutLMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_model( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFLayoutLMModel(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, bbox, token_type_ids=token_type_ids) result = model(input_ids, bbox) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFLayoutLMForMaskedLM(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFLayoutLMForSequenceClassification(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFLayoutLMForTokenClassification(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class TFLayoutLMModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = ( (TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification) if is_tf_available() else () ) test_head_masking = False test_onnx = True onnx_min_opset = 10 def setUp(self): self.model_tester = TFLayoutLMModelTester(self) self.config_tester = ConfigTester(self, config_class=LayoutLMConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFLayoutLMModel.from_pretrained(model_name) self.assertIsNotNone(model) def prepare_layoutlm_batch_inputs(): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off input_ids = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]]) # noqa: E231 attention_mask = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],]) # noqa: E231 bbox = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]]) # noqa: E231 token_type_ids = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]) # noqa: E231 # these are sequence labels (i.e. at the token level) labels = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]]) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class TFLayoutLMModelIntegrationTest(unittest.TestCase): @slow def test_forward_pass_no_head(self): model = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased") input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) # test the sequence output on [0, :3, :3] expected_slice = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]], ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-3)) # test the pooled output on [1, :3] expected_slice = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552]) self.assertTrue(np.allclose(outputs.pooler_output[1, :3], expected_slice, atol=1e-3)) @slow def test_forward_pass_sequence_classification(self): # initialize model with randomly initialized sequence classification head model = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=2) input_ids, attention_mask, bbox, token_type_ids, _ = prepare_layoutlm_batch_inputs() # forward pass outputs = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=tf.convert_to_tensor([1, 1]), ) # test whether we get a loss as a scalar loss = outputs.loss expected_shape = (2,) self.assertEqual(loss.shape, expected_shape) # test the shape of the logits logits = outputs.logits expected_shape = (2, 2) self.assertEqual(logits.shape, expected_shape) @slow def test_forward_pass_token_classification(self): # initialize model with randomly initialized token classification head model = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=13) input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels ) # test the shape of the logits logits = outputs.logits expected_shape = tf.convert_to_tensor((2, 25, 13)) self.assertEqual(logits.shape, expected_shape)
#!/usr/bin/env python # -*- coding: utf-8 -*- import random import time import threading class Philosopher(threading.Thread): def __init__(self, name, leftFork, rightFork): print("{} Has Sat Down At the Table".format(name)) threading.Thread.__init__(self, name=name) self.leftFork = leftFork self.rightFork = rightFork def run(self): print("{} has started thinking".format(threading.currentThread().getName())) while True: time.sleep(random.randint(1, 5)) print("{} has finished thinking".format(threading.currentThread().getName())) self.leftFork.acquire() time.sleep(random.randint(1, 5)) try: print("{} has acquired the left fork".format(threading.currentThread().getName())) self.rightFork.acquire() try: print("{} has attained both forks, currently eating".format(threading.currentThread().getName())) finally: self.rightFork.release() print("{} has released the right fork".format(threading.currentThread().getName())) finally: self.leftFork.release() print("{} has released the left fork".format(threading.currentThread().getName())) def main(): fork1 = threading.RLock() fork2 = threading.RLock() fork3 = threading.RLock() fork4 = threading.RLock() fork5 = threading.RLock() philosopher1 = Philosopher("Kant", fork1, fork2) philosopher2 = Philosopher("Aristotle", fork2, fork3) philosopher3 = Philosopher("Spinoza", fork3, fork4) philosopher4 = Philosopher("Marx", fork4, fork5) philosopher5 = Philosopher("Russell", fork5, fork1) philosopher1.start() philosopher2.start() philosopher3.start() philosopher4.start() philosopher5.start() philosopher1.join() philosopher2.join() philosopher3.join() philosopher4.join() philosopher5.join() if __name__ == '__main__': main()
""" Minimum Description Length Principle (MDLP) binning - Original paper: http://sci2s.ugr.es/keel/pdf/algorithm/congreso/fayyad1993.pdf - Implementation inspiration: https://www.ibm.com/support/knowledgecenter/it/SSLVMB_21.0.0/com.ibm.spss.statistics.help/alg_optimal-binning.htm """ import collections import math import numpy as np from scipy import stats from sklearn.utils import check_X_y from .base import BaseSupervisedBinner class MDLPBinner(BaseSupervisedBinner): def fit(self, X, y, **fit_params): """Determine which are the best cut points for each column in X based on y.""" X, y = check_X_y(X, y, y_numeric=True) self.cut_points_ = [mdlp_cut(x, y, []) for x in X.T] return self @property def cut_points(self): return self.cut_points_ def calc_class_entropy(y): class_counts = np.unique(y, return_counts=True)[1] return stats.entropy(class_counts, base=2) def calc_class_information_entropy(x, y, cut_point): partition = x <= cut_point y_1 = y[partition] y_2 = y[~partition] ent_1 = calc_class_entropy(y_1) ent_2 = calc_class_entropy(y_2) return (y_1.size * ent_1 + y_2.size * ent_2) / (y_1.size + y_2.size) def mdlp_cut(x, y, cut_points): # No cut is necessary if there is only one class if len(np.unique(y)) == 1: return # Calculate the current entropy y_ent = calc_class_entropy(y) # Sort x and y according to x sorted_indexes = x.argsort() x = x[sorted_indexes] y = y[sorted_indexes] # Find the potential cut points potential_cut_points = [] for i in range(x.size - 1): potential_cut_points.append((x[i] + x[i+1]) / 2) # Ignore the cut points that appear more than once potential_cut_points = list(set(potential_cut_points)) # Find the cut point with gives the lowest class information entropy cut_point = min( potential_cut_points, key=lambda cut_point: calc_class_information_entropy(x, y, cut_point) ) # Calculate the information gain obtained with the obtained cut point new_ent = calc_class_information_entropy(x, y, cut_point) gain = y_ent - new_ent # Partition the data partition = x <= cut_point x_1 = x[partition] y_1 = y[partition] x_2 = x[~partition] y_2 = y[~partition] # Get the number of unique classes in each group k = len(np.unique(y)) k_1 = len(np.unique(y_1)) k_2 = len(np.unique(y_2)) # Calculate the entropy of each group y_1_ent = calc_class_entropy(y_1) y_2_ent = calc_class_entropy(y_2) # Calculate the acceptance criterion delta = math.log2(3 ** k) - k * y_ent + k_1 * y_1_ent + k_2 * y_2_ent n = y.size acceptance_criterion = (math.log2(n - 1) + delta) / n # Add the cut point if the gain is higher than the acceptance criterion if gain > acceptance_criterion: cut_points.append(cut_point) # Recursively check if further cuts are possible mdlp_cut(x_1, y_1, cut_points) mdlp_cut(x_2, y_2, cut_points) return sorted(cut_points)
import os import numpy as np import random import argparse import json def check_info_all(annotations): print("Element 0: ", annotations[0]) print("Keys of 0 -> end: ", annotations[1].keys()) print("The whole of annotations: ", annotations ) # for annotation in annotations: # print(type(annotation)) # print(json.dumps(annotation, indent=4)) def check_info_element(annotations): random_annotation = random.choice(annotations) print('keys: ', random_annotation.keys()) print("Num key: ", len(random_annotation.keys())) for key in random_annotation.keys(): if key != "ocr_info": print("{}: {}".format(key, random_annotation[key])) else: print("ocr_info") for e in random_annotation[key]: print("\t", e) def check_question_equal_images(annotations): question_id = [] image_id = [] for annotation in annotations[1:]: question_id.append(annotation["question_id"]) image_id.append(annotation['image_id']) question_id = set(question_id) image_id = set(image_id) print("number question id: ", len(question_id)) print("number image id: ", len(image_id)) if len(question_id) == len(image_id): return 1 return 0 def find_question(annotations): questions_id = [] images_id = [] for annotation in annotations[1:]: question_id = annotation["question_id"] image_id = annotation['image_id'] if image_id in images_id: print("image_id: {} question_id: {}".format(image_id, question_id)) questions_id.append(question_id) images_id.append(image_id) def show_question_require(annotations): for annotation in annotations[1:]: if annotation["question_id"] == 2 or annotation["question_id"] == 1: print(annotation) def show_all_questions(annotations): print(len(annotations)) for annotation in annotations[1:]: print(annotation["question_id"]) def show_all_ocr_tokens(annotations): for annotation in annotations[1:]: print(annotation["ocr_tokens"]) def show_all_ocr_tokens(annotations): for annotation in annotations[1:]: print(annotation["ocr_tokens"]) def find_img(annotations, img_name): for annotation in annotations[1:]: if annotation["image_name"]==img_name: print("Yes") return 1 print("NO") def find_num_max_answer(annotations): max_num = 0 for annotation in annotations[1:]: if len(annotation["answers"]) > max_num: max_num = len(annotation["answers"]) return max_num def count_number_answer(annotations): for annotation in annotations[1:]: print(len(annotation["answers"])) def show_all_answers(annotations): for annotation in annotations[1:]: print(annotation["answers"]) def check_number_answer(annotations, number_answer): for annotation in annotations[1:]: if len(annotation["answers"]) != number_answer: print(len(annotation["answers"])) print(annotation["answers"]) def sumarize_number_answer(annotations): sum = [] for annotation in annotations[1:]: sum.append(len(annotation["answers"])) sum = set(sum) return sum def check_question_id(annotations, question_id): for annotation in annotations[1:]: if annotation["question_id"] == question_id: return True return False def count_type_answer(annotations): result = {1: 0} for annotation in annotations[1:]: num_answer = len(annotation["answers"]) if num_answer not in result.keys(): result[num_answer] = 1 else: result[num_answer] += 1 return result def check_ocr_bbox(annotations): size_list = [] for annotation in annotations[1:]: size_list.append(np.array(annotation['ocr_normalized_boxes']).shape) if np.array(annotation['ocr_normalized_boxes']).shape[0] == 0: print(annotation['image_name']) print(annotation['ocr_normalized_boxes']) size_list = set(size_list) print('size list: ', size_list) def main(args): annotations = np.load(args.annot, allow_pickle=True) print('len: ', len(annotations)) if args.option == 0: print('Show all info of anotations') check_info_all(annotations) elif args.option == 1: print("Show info random element") check_info_element(annotations) elif args.option == 2: print("Is number question equal images ?") if check_question_equal_images(annotations) == 1: print("Yes") else: print("No") elif args.option == 3: print("Show image have one more question") find_question(annotations) elif args.option == 4: print("Show required question") show_question_require(annotations) elif args.option == 5: print("Show all question") show_all_questions(annotations) elif args.option == 6: print("Show all ocr tokens") show_all_ocr_tokens(annotations) elif args.option == 7: print("Find image") img_name="20467.jpeg" find_img(annotations, img_name) elif args.option == 8 : max_num_ans = find_num_max_answer(annotations) print("Max number answer: ", max_num_ans) elif args.option == 9: print("Show number answers") count_number_answer(annotations) elif args.option == 10: print("Show all answers") show_all_answers(annotations) elif args.option == 11: print("Check number answer") num_ans = 10 check_number_answer(annotations, num_ans) elif args.option == 12: print("number answer") lst = sumarize_number_answer(annotations) print(lst) elif args.option == 13: print("No type answer") result = count_type_answer(annotations) print(result) elif args.option == 14: question_id = 92270 print("Check question id ", question_id) if check_question_id(annotations, question_id) == True: print("Yes") else: print("No") elif args.option == 15: check_ocr_bbox(annotations) else: print("Please choose suitable option") def get_parser(): parser = argparse.ArgumentParser() parser.add_argument( "--annot", default="env_variable/data/datasets/textvqa/defaults/annotations/imdb_train_ocr_en.npy", type=str, help="The folder obtain annotation of TextVQA" ) parser.add_argument( "--option", default=0, type=int, help="Choose suitable option: " + "0: show all info of annnotation" + "1: show info random element" + "2: check question equals image" + "3: find image have one more question" + "4: Show required question" + "5: show all question" + "6: Show all ocr tokens", ) return parser.parse_args() if __name__ == "__main__": args = get_parser() main(args) ''' python utils/analysis_annotation.py \ --annot="env_variable/data/datasets/textvqa/defaults/annotations/imdb_train_ocr_en.npy" \ --option=1 python utils/analysis_annotation_textvqa.py \ --annot="/mlcv/WorkingSpace/NCKH/tiennv/vqa_thesis/docvqa/libs/mmf/new_annotations/lmdb_val_en.npy" \ --option=1 python utils/analysis_annotation.py \ --annot="env_variable/data/datasets/inforgraphicvqa/defaults/annotations/infoVQA_train_en.npy" \ --option=0 python utils/analysis_annotation.py \ --annot="env_variable/data/datasets/inforgraphicvqa/defaults/annotations/infoVQA_val_en.npy" \ --option=0 python utils/analysis_annotation.py \ --annot="env_variable/data/datasets/vi_infographicvqa/defaults/annotations/infoVQA_train_vi.npy" \ --option=0 python utils/analysis_annotation.py \ --annot="env_variable/data/datasets/vi_infographicvqa/20_object/annotations/infoVQA_val_vi.npy" \ --option=0 '''
from .Adding_Simple import AddSimple from .Criteria import ArgsCriteria