content
stringlengths
5
1.05M
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Created by Kelly Hwong on 2018年09月18日16:16:19 # Part A: House Hunting import math annual_salary = int(input("Enter your annual salary: ")) portion_saved = float(input("Enter the percent of your salary to save, as a decimal: ")) total_cost = int(input("Enter the cost of your dream home: ")) # salary, saving, current_savings*r/12, annual_salary/12 # initinalize some examples for tests # annual_salary = 120000 # portion_saved = .10 # eg: 0.10 # total_cost = 1000000 # annual_salary = 80000 # portion_saved = .15 # eg: 0.10 # total_cost = 500000 # constants r = 0.04 portion_down_payment = 0.25 monthly_salary = annual_salary/12 down_payment = total_cost * portion_down_payment current_savings = 0 mouth_count = 0 while current_savings < down_payment: # calc interests first additional_interest = current_savings*r/12 current_savings += additional_interest # then added by saving current_savings += monthly_salary * portion_saved mouth_count += 1 print("Number of months: " + str(mouth_count)) # or current_savings *= 1 + r/12 after added by saving
''' A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, a^2 + b^2 = c^2 For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2. There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc. Para n > m > 0: a = n^2 - m^2 b = 2nm c = n^2 + m^2 a, b, c son terna ''' import time def triplete_base(num): for n in range(25): for m in range(n): a = n**2 - m**2 b = 2 * n * m c = n**2 + m**2 if a + b + c == num: return "{} * {} * {} = {}".format(a, b, c, a*b*c) start = time.time() # for i in range(100): print(triplete_base(1000)) print("Tiempo total {} seg".format(time.time() - start)) # 375 * 200 * 425 = 31875000 # Tiempo total 0.0008294582366943359 seg # Muy pitonico, mas lento (el doble aprox) import time def triplete(num): return [[(n**2 - m**2, 2*m*n, n**2 + m**2) for m in range(1, n) if (n**2 - m**2 + 2*m*n + n**2 + m**2) == 1000] for n in range(1, 25)] start = time.time() # for i in range(100): triplete(1000) print("Tiempo total {} seg".format(time.time() - start)) # Tiempo total 0.001071929931640625 seg for i in range(10): t1 = time.clock() triplete_base(1000) print(time.clock() - t1) print("------") for i in range(10): t1 = time.clock() triplete(1000) print(time.clock() - t1) # 0.0002599999999972624 # 0.0004559999999997899 # 0.0004930000000058499 # 0.0004729999999995016 # 0.0004930000000058499 # 0.00047399999999697684 # 0.00047399999999697684 # 0.0004540000000048394 # 0.00048300000000267573 # 0.0004989999999907013 # ------ # 0.0007220000000103255 # 0.0006529999999997926 # 0.0007109999999954653 # 0.0007580000000046994 # 0.00041899999999372994 # 0.00039799999998990643 # 0.0003889999999984184 # 0.0003930000000025302 # 0.0003659999999996444 # 0.0004729999999995016
from logging import Handler from queue import Queue from threading import Thread import logging.config import logging import asyncio import datetime import yaml import sys import os from git import Repo from functools import partial, wraps from pythonjsonlogger import jsonlogger RED = '\033[91m' BLUE = '\033[94m' BOLD = '\033[1m' END = '\033[0m' _BRANCH_NAME = None http_pings_logs_disabled = True def get_current_working_repo(): branch_name = None current_tag = None try: repo = Repo(os.getcwd()) branch = repo.active_branch branch_name = branch.name tags = repo.tags if tags and isinstance(tags, list): current_tag = tags[-1].name except: pass return (branch_name, current_tag) def http_ping_filter(record): if "GET /ping/" in record.getMessage(): return 0 return 1 class LogFormatHelper: LogFormat = '%a %l %u %t "%r" %s %b %D "%{Referrer}i" "%{User-Agent}i" %{X-Request-ID}o' class CustomTimeLoggingFormatter(logging.Formatter): def formatTime(self, record, datefmt=None): # noqa """ Overrides formatTime method to use datetime module instead of time module to display time in microseconds. Time module by default does not resolve time to microseconds. """ record.branchname = _BRANCH_NAME if datefmt: s = datetime.datetime.now().strftime(datefmt) else: t = datetime.datetime.now().strftime(self.default_time_format) s = self.default_msec_format % (t, record.msecs) return s class CustomJsonFormatter(jsonlogger.JsonFormatter): def __init__(self, *args, **kwargs): self.extrad = kwargs.pop('extrad', {}) super().__init__(*args, **kwargs) def add_fields(self, log_record, record, message_dict): message_dict.update(self.extrad) record.branchname = _BRANCH_NAME super().add_fields(log_record, record, message_dict) def patch_async_emit(handler: Handler): base_emit = handler.emit queue = Queue() def loop(): while True: record = queue.get() try: base_emit(record) except: print(sys.exc_info()) def async_emit(record): queue.put(record) thread = Thread(target=loop) thread.daemon = True thread.start() handler.emit = async_emit return handler def patch_add_handler(logger): base_add_handler = logger.addHandler def async_add_handler(handler): async_handler = patch_async_emit(handler) base_add_handler(async_handler) return async_add_handler DEFAULT_CONFIG_YAML = """ # logging config version: 1 disable_existing_loggers: False handlers: stream: class: logging.StreamHandler level: INFO formatter: ctf stream: ext://sys.stdout stats: class: logging.FileHandler level: INFO formatter: cjf filename: logs/vyked_stats.log exceptions: class: logging.FileHandler level: INFO formatter: cjf filename: logs/vyked_exceptions.log service: class: logging.FileHandler level: INFO formatter: ctf filename: logs/vyked_service.log formatters: ctf: (): vyked.utils.log.CustomTimeLoggingFormatter format: '%(asctime)s - %(name)s - %(levelname)s - %(message)s' datefmt: '%Y-%m-%d %H:%M:%S,%f' cjf: (): vyked.utils.log.CustomJsonFormatter format: '{ "timestamp":"%(asctime)s", "message":"%(message)s"}' datefmt: '%Y-%m-%d %H:%M:%S,%f' root: handlers: [stream, service] level: INFO loggers: registry: handlers: [service,] level: INFO stats: handlers: [stats] level: INFO exceptions: handlers: [exceptions] level: INFO """ def setup_logging(_): try: with open('config_log.json', 'r') as f: config_dict = yaml.load(f.read()) except: config_dict = yaml.load(DEFAULT_CONFIG_YAML) logging.getLogger('asyncio').setLevel(logging.WARNING) logger = logging.getLogger() logger.handlers = [] logger.addHandler = patch_add_handler(logger) global _BRANCH_NAME (branch_name, current_tag) = get_current_working_repo() _BRANCH_NAME = branch_name if 'handlers' in config_dict: for handler in config_dict['handlers']: if 'branch_name' in config_dict['handlers'][handler] and config_dict['handlers'][handler]['branch_name'] == True: config_dict['handlers'][handler]['release'] = current_tag if current_tag else None if 'tags' in config_dict['handlers'][handler] and isinstance(config_dict['handlers'][handler]['tags'], dict): config_dict['handlers'][handler]['tags']['branch'] = branch_name if branch_name else None logging.config.dictConfig(config_dict) if http_pings_logs_disabled: for handler in logging.root.handlers: handler.addFilter(http_ping_filter) def log(fn=None, logger=logging.getLogger(), debug_level=logging.DEBUG): """ logs parameters and result - takes no arguments """ if fn is None: return partial(log, logger=logger, debug_level=debug_level) @wraps(fn) def func(*args, **kwargs): arg_string = "" for i in range(0, len(args)): var_name = fn.__code__.co_varnames[i] if var_name not in ['self', 'cls']: arg_string += var_name + ":" + str(args[i]) + "," arg_string = arg_string[0:len(arg_string) - 1] string = (RED + BOLD + '>> ' + END + 'Calling {0}({1})'.format(fn.__name__, arg_string)) if len(kwargs): string = ( RED + BOLD + '>> ' + END + 'Calling {0} with args {1} and kwargs {2}'.format(fn.__name__, arg_string, kwargs)) logger.log(debug_level, string) wrapped_fn = fn if not asyncio.iscoroutine(fn): wrapped_fn = asyncio.coroutine(fn) try: result = yield from wrapped_fn(*args, **kwargs) string = BLUE + BOLD + '<< ' + END + 'Return {0} with result :{1}'.format(fn.__name__, result) logger.log(debug_level, string) return result except Exception as e: string = (RED + BOLD + '>> ' + END + '{0} raised exception :{1}'.format(fn.__name__, str(e))) logger.log(debug_level, string) raise e return func def logx(supress_args=[], supress_all_args=False, supress_result=False, logger=logging.getLogger(), debug_level=logging.DEBUG): """ logs parameters and result takes arguments supress_args - list of parameter names to supress supress_all_args - boolean to supress all arguments supress_result - boolean to supress result receiver - custom logging function which takes a string as input; defaults to logging on stdout """ def decorator(fn): def func(*args, **kwargs): if not supress_all_args: arg_string = "" for i in range(0, len(args)): var_name = fn.__code__.co_varnames[i] if var_name != "self" and var_name not in supress_args: arg_string += var_name + ":" + str(args[i]) + "," arg_string = arg_string[0:len(arg_string) - 1] string = (RED + BOLD + '>> ' + END + 'Calling {0}({1})'.format(fn.__name__, arg_string)) if len(kwargs): string = ( RED + BOLD + '>> ' + END + 'Calling {0} with args {1} and kwargs {2}'.format( fn.__name__, arg_string, kwargs)) logger.log(debug_level, string) wrapped_fn = fn if not asyncio.iscoroutine(fn): wrapped_fn = asyncio.coroutine(fn) result = yield from wrapped_fn(*args, **kwargs) if not supress_result: string = BLUE + BOLD + '<< ' + END + 'Return {0} with result : {1}'.format(fn.__name__, result) logger.log(debug_level, string) return result return func return decorator
""" Tools to put CP2K orbitals on a real space grid """ import os import numpy as np import scipy import scipy.io import scipy.interpolate import scipy.ndimage import time import copy import sys import re import io import ase import ase.io from .cube import Cube from .cp2k_wfn_file import Cp2kWfnFile from mpi4py import MPI ang_2_bohr = 1.0/0.52917721067 hart_2_ev = 27.21138602 class Cp2kGridOrbitals: """ Class to load and put CP2K orbitals on a discrete real-space grid. The orbitals will be equally divided between the mpi processes. """ def __init__(self, mpi_rank=0, mpi_size=1, mpi_comm=None, single_precision=True): self.mpi_rank = mpi_rank self.mpi_size = mpi_size self.mpi_comm = mpi_comm if single_precision: self.dtype = np.float32 else: self.dtype = np.float64 # geometry self.cell = None # Bohr radii / [au] self.ase_atoms = None self.atom_kinds = None # saves the kind for each atom # Basis set self.kind_elem_basis = None # element [1] and basis set name [2] for each kind self.basis_sets = None # The global energy limits when loading the orbitals self.emin = None self.emax = None # Object to deal with loading molecular orbitals from .wfn file self.cwf = Cp2kWfnFile(self.mpi_rank, self.mpi_size, self.mpi_comm) # Set by cwf: self.morb_composition = None self.morb_energies = None self.i_homo_loc = None self.i_homo_glob = None self.nspin = None self.ref_energy = None self.global_morb_energies = None # Orbitals on discrete grid self.morb_grids = None self.dv = None # [dx, dy, dz] in [au] self.origin = None self.eval_cell = None self.eval_cell_n = None self.last_calc_iz = None # last directly calculated z plane (others extrapolated) ### ----------------------------------------- ### General cp2k routines ### ----------------------------------------- def read_cp2k_input(self, cp2k_input_file): """ Reads from the cp2k input file: * Basis set names for all kinds * Cell size """ self.kind_elem_basis = {} self.cell = np.zeros(3) with open(cp2k_input_file) as f: lines = f.readlines() for i in range(len(lines)): parts = lines[i].split() if len(parts) == 0: continue # Have we found the basis set info? if parts[0] == "&KIND": kind = parts[1] elem = None basis_name = None subsec_count = 0 ## --------------------------------------------------------------------- ## Loop over the proceeding lines to find the BASIS_SET and ELEMENT for j in range(1, 100): line = lines[i+j] if line.strip()[0] == '&' and not line.strip().startswith("&END"): # We entered into a subsection of kind subsec_count += 1 if line.strip().startswith("&END"): # We are either leaving &KIND or a subsection if subsec_count == 0: break else: subsec_count -= 1 parts = line.split() if parts[0] == "ELEMENT": elem = parts[1] if parts[0] == "BASIS_SET": basis_name = parts[1] ## --------------------------------------------------------------------- if elem is None: # if ELEMENT was not explicitly stated if kind in ase.data.chemical_symbols: # kind itself is the element elem = kind else: # remove numbers kind_no_nr = ''.join([i for i in kind if not i.isdigit()]) # remove anything appended by '_' or '-' kind_processed = kind_no_nr.replace("_", ' ').replace("-", ' ').split()[0] if kind_processed in ase.data.chemical_symbols: elem = kind_processed else: print("Error: couldn't determine element for kind '%s'" % kind) exit(1) self.kind_elem_basis[kind] = (elem, basis_name) # Have we found the CELL info? if parts[0] == "ABC": if parts[1] == "[angstrom]": self.cell[0] = float(parts[2]) self.cell[1] = float(parts[3]) self.cell[2] = float(parts[4]) else: self.cell[0] = float(parts[1]) self.cell[1] = float(parts[2]) self.cell[2] = float(parts[3]) if parts[0] == "A" or parts[0] == "B" or parts[0] == "C": prim_vec = np.array([float(x) for x in parts[1:]]) if np.sum(prim_vec > 0.0) > 1: raise ValueError("Cell is not rectangular") ind = np.argmax(prim_vec > 0.0) self.cell[ind] = prim_vec[ind] self.cell *= ang_2_bohr if any(self.cell < 1e-3): raise ValueError("Cell " + str(self.cell) + " is invalid") if self.ase_atoms is not None: self.ase_atoms.cell = self.cell / ang_2_bohr def read_xyz(self, file_xyz): """ Read atomic positions from .xyz file (in Bohr radiuses) """ with open(file_xyz) as f: fxyz_contents = f.readlines() self.atom_kinds = [] for i_line, line in enumerate(fxyz_contents): if i_line >= 2: kind = line.split()[0] self.atom_kinds.append(kind) # Replace custom kinds with their corresponding element (e.g. for spin-pol calcs) fxyz_contents[i_line] = self.kind_elem_basis[kind][0] + " " + " ".join(line.split()[1:]) + "\n" self.ase_atoms = ase.io.read(io.StringIO("".join(fxyz_contents)), format="xyz") if self.cell is not None: self.ase_atoms.cell = self.cell / ang_2_bohr def center_atoms_to_cell(self): self.ase_atoms.center() ### ----------------------------------------- ### Basis set routines ### ----------------------------------------- def _magic_basis_normalization(self, basis_sets_): """ Normalizes basis sets to be compatible with cp2k """ basis_sets = copy.deepcopy(basis_sets_) for kind, bsets in basis_sets.items(): for bset in bsets: for shell in bset: l = shell[0] exps = shell[1] coefs = shell[2] nexps = len(exps) norm_factor = 0 for i in range(nexps-1): for j in range(i+1, nexps): norm_factor += 2*coefs[i]*coefs[j]*(2*np.sqrt(exps[i]*exps[j])/(exps[i]+exps[j]))**((2*l+3)/2) for i in range(nexps): norm_factor += coefs[i]**2 for i in range(nexps): coefs[i] = coefs[i]*exps[i]**((2*l+3)/4)/np.sqrt(norm_factor) return basis_sets def read_basis_functions(self, basis_set_file): """ Reads the basis sets from basis_set_file specified in kind_elem_basis returns: basis_sets["kind"] = """ self.basis_sets = {} used_elems_bases = list(self.kind_elem_basis.values()) corresp_kinds = list(self.kind_elem_basis.keys()) with open(basis_set_file) as f: lines = f.readlines() for i in range(len(lines)): parts = lines[i].split() if len(parts) <= 1: continue elem = parts[0] trial_1 = (elem, parts[1]) trial_2 = None if len(parts) > 2: trial_2 = (elem, parts[2]) if trial_1 in used_elems_bases or trial_2 in used_elems_bases: # We have a basis set we're using # find all kinds using this basis set: kinds = [corresp_kinds[i] for i, e_b in enumerate(used_elems_bases) if e_b == trial_1 or e_b == trial_2] basis_functions = [] nsets = int(lines[i+1]) cursor = 2 for j in range(nsets): basis_functions.append([]) comp = [int(x) for x in lines[i+cursor].split()] n_princ, l_min, l_max, n_exp = comp[:4] l_arr = np.arange(l_min, l_max+1, 1) n_basisf_for_l = comp[4:] assert len(l_arr) == len(n_basisf_for_l) exps = [] coeffs = [] for k in range(n_exp): exp_c = [float(x) for x in lines[i+cursor+k+1].split()] exps.append(exp_c[0]) coeffs.append(exp_c[1:]) exps = np.array(exps) coeffs = np.array(coeffs) indx = 0 for l, nl in zip(l_arr, n_basisf_for_l): for il in range(nl): basis_functions[-1].append([l, exps, coeffs[:, indx]]) indx += 1 cursor += n_exp + 1 for kind in kinds: self.basis_sets[kind] = basis_functions self.basis_sets = self._magic_basis_normalization(self.basis_sets) ### ----------------------------------------- ### WFN file routines ### ----------------------------------------- def load_restart_wfn_file(self, restart_file, emin=None, emax=None, n_occ=None, n_virt=None): """ Reads the specified molecular orbitals from cp2k restart wavefunction file If both, energy limits and counts are given, then the extreme is used Note that the energy range is in eV and with respect to HOMO energy. """ self.cwf.load_restart_wfn_file(restart_file, emin=emin, emax=emax, n_occ=n_occ, n_virt=n_virt) self.cwf.convert_readable() self.morb_composition = self.cwf.morb_composition self.morb_energies = self.cwf.morb_energies self.i_homo_loc = self.cwf.i_homo_loc self.i_homo_glob = self.cwf.i_homo_glob self.nspin = self.cwf.nspin self.ref_energy = self.cwf.ref_energy self.global_morb_energies = self.cwf.glob_morb_energies ### --------------------------------------------------------------------------- ### Methods directly related to putting stuff on grids ### --------------------------------------------------------------------------- def _spherical_harmonic_grid(self, l, m, x_grid, y_grid, z_grid): """ Evaluates the spherical harmonics (times r^l) with some unknown normalization (source: Carlo's Fortran code) """ c = (2.0/np.pi)**(3.0/4.0) # s orbitals if (l, m) == (0, 0): return c # p orbitals elif (l, m) == (1, -1): return c*2.0*y_grid elif (l, m) == (1, 0): return c*2.0*z_grid elif (l, m) == (1, 1): return c*2.0*x_grid # d orbitals elif (l, m) == (2, -2): return c*4.0*x_grid*y_grid elif (l, m) == (2, -1): return c*4.0*y_grid*z_grid elif (l, m) == (2, 0): return c*2.0/np.sqrt(3)*(2*z_grid**2-x_grid**2-y_grid**2) elif (l, m) == (2, 1): return c*4.0*z_grid*x_grid elif (l, m) == (2, 2): return c*2.0*(x_grid**2-y_grid**2) # f orbitals elif (l, m) == (3, -3): return c*np.sqrt(8/3)*y_grid*(3*x_grid**2-y_grid**2) elif (l, m) == (3, -2): return c*8.0*x_grid*y_grid*z_grid elif (l, m) == (3, -1): return c*np.sqrt(8/5)*y_grid*(4*z_grid**2-x_grid**2-y_grid**2) elif (l, m) == (3, 0): return c*4.0/np.sqrt(15.0)*z_grid*(2.0*z_grid**2-3.0*x_grid**2-3.0*y_grid**2) elif (l, m) == (3, 1): return c*np.sqrt(8/5)*x_grid*(4*z_grid**2-x_grid**2-y_grid**2) elif (l, m) == (3, 2): return c*4.0*z_grid*(x_grid**2-y_grid**2) elif (l, m) == (3, 3): return c*np.sqrt(8/3)*x_grid*(x_grid**2-3.0*y_grid**2) print("No spherical harmonic found for l=%d, m=%d" % (l, m)) return 0 def _add_local_to_global_grid(self, loc_grid, glob_grid, origin_diff, wrap=(True, True, True)): """ Method to add a grid to another one Arguments: loc_grid -- grid that will be added to the glob_grid glob_grid -- defines "wrapping" boundaries origin_diff -- difference of origins between the grids; ignored for directions without wrapping wrap -- specifies in which directions to wrap and take PBC into account """ loc_n = np.shape(loc_grid) glob_n = np.shape(glob_grid) od = origin_diff inds = [] l_inds = [] for i in range(len(glob_n)): if wrap[i]: # Move the origin_diff vector to the main global cell if wrapping is enabled od[i] = od[i] % glob_n[i] ixs = [[od[i], od[i] + loc_n[i]]] l_ixs = [0] while ixs[-1][1] > glob_n[i]: overshoot = ixs[-1][1]-glob_n[i] ixs[-1][1] = glob_n[i] l_ixs.append(l_ixs[-1]+glob_n[i]-ixs[-1][0]) ixs.append([0, overshoot]) l_ixs.append(loc_n[i]) inds.append(ixs) l_inds.append(l_ixs) else: inds.append([-1]) l_inds.append([-1]) l_ixs = l_inds[0] l_iys = l_inds[1] l_izs = l_inds[2] for i, ix in enumerate(inds[0]): for j, iy in enumerate(inds[1]): for k, iz in enumerate(inds[2]): if wrap[0]: i_gl_x = slice(ix[0], ix[1]) i_lc_x = slice(l_ixs[i], l_ixs[i+1]) else: i_gl_x = slice(None) i_lc_x = slice(None) if wrap[1]: i_gl_y = slice(iy[0], iy[1]) i_lc_y = slice(l_iys[j], l_iys[j+1]) else: i_gl_y = slice(None) i_lc_y = slice(None) if wrap[2]: i_gl_z = slice(iz[0], iz[1]) i_lc_z = slice(l_izs[k], l_izs[k+1]) else: i_gl_z = slice(None) i_lc_z = slice(None) glob_grid[i_gl_x, i_gl_y, i_gl_z] += loc_grid[i_lc_x, i_lc_y, i_lc_z] def calc_morbs_in_region(self, dr_guess, x_eval_region = None, y_eval_region = None, z_eval_region = None, eval_cutoff = 14.0, reserve_extrap = 0.0, print_info = True): """ Puts the molecular orbitals onto a specified grid Arguments: dr_guess -- spatial discretization step [ang], real value will change for every axis due to rounding x_eval_region -- x evaluation (min, max) in [au]. If min == max, then evaluation only works on a plane. If set, no PBC applied in direction and also no eval_cutoff. If left at None, the whole range of the cell is taken and PBCs are applied. eval_cutoff -- cutoff in [ang] for orbital evaluation if eval_region is None """ time1 = time.time() dr_guess *= ang_2_bohr eval_cutoff *= ang_2_bohr reserve_extrap *= ang_2_bohr global_cell_n = (np.round(self.cell/dr_guess)).astype(int) self.dv = self.cell / global_cell_n # Define local grid for orbital evaluation # and convenient PBC implementation eval_regions = [x_eval_region, y_eval_region, z_eval_region] loc_cell_arrays = [] mid_ixs = np.zeros(3, dtype=int) loc_cell_n = np.zeros(3, dtype=int) eval_cell_n = np.zeros(3, dtype=int) self.origin = np.zeros(3) for i in range(3): if eval_regions[i] is None: # Define range in i direction with 0.0 at index mid_ixs[i] loc_arr = np.arange(0, eval_cutoff, self.dv[i]) mid_ixs[i] = int(len(loc_arr)/2) loc_arr -= loc_arr[mid_ixs[i]] loc_cell_arrays.append(loc_arr) eval_cell_n[i] = global_cell_n[i] self.origin[i] = 0.0 else: # Define the specified range in direction i v_min, v_max = eval_regions[i] ### TODO: Probably should use np.arange to have exactly matching dv in the local grid... ### loc_cell_arrays.append(np.linspace(v_min, v_max, int(np.round((v_max-v_min)/self.dv[i]))+1)) mid_ixs[i] = -1 eval_cell_n[i] = len(loc_cell_arrays[i]) self.origin[i] = v_min loc_cell_n[i] = len(loc_cell_arrays[i]) loc_cell_grids = np.meshgrid(loc_cell_arrays[0], loc_cell_arrays[1], loc_cell_arrays[2], indexing='ij') # Some info if print_info: print("Global cell: ", global_cell_n) print("Eval cell: ", eval_cell_n) print("local cell: ", loc_cell_n) print("---- Setup: %.4f" % (time.time() - time1)) time_radial_calc = 0.0 time_spherical = 0.0 time_loc_glob_add = 0.0 time_loc_lmorb_add = 0.0 nspin = len(self.morb_composition) num_morbs = [] morb_grids_local = [] self.morb_grids = [] ext_z_n = int(np.round(reserve_extrap/self.dv[2])) for ispin in range(nspin): num_morbs.append(len(self.morb_composition[ispin][0][0][0][0])) self.morb_grids.append(np.zeros((num_morbs[ispin], eval_cell_n[0], eval_cell_n[1], eval_cell_n[2] + ext_z_n), dtype=self.dtype)) morb_grids_local.append(np.zeros((num_morbs[ispin], loc_cell_n[0], loc_cell_n[1], loc_cell_n[2]), dtype=self.dtype)) self.eval_cell_n = np.array([eval_cell_n[0], eval_cell_n[1], eval_cell_n[2] + ext_z_n]) self.eval_cell = self.eval_cell_n * self.dv self.last_calc_iz = eval_cell_n[2] - 1 for i_at in range(len(self.ase_atoms)): #elem = self.ase_atoms[i_at].symbol kind = self.atom_kinds[i_at] pos = self.ase_atoms[i_at].position * ang_2_bohr # how does the position match with the grid? int_shift = (pos/self.dv).astype(int) frac_shift = pos/self.dv - int_shift origin_diff = int_shift - mid_ixs # Shift the local grid such that origin is on the atom rel_loc_cell_grids = [] for i, loc_grid in enumerate(loc_cell_grids): if eval_regions[i] is None: rel_loc_cell_grids.append(loc_grid - frac_shift[i]*self.dv[i]) else: rel_loc_cell_grids.append(loc_grid - pos[i]) r_vec_2 = rel_loc_cell_grids[0]**2 + \ rel_loc_cell_grids[1]**2 + \ rel_loc_cell_grids[2]**2 for ispin in range(nspin): morb_grids_local[ispin].fill(0.0) for i_set, bset in enumerate(self.basis_sets[kind]): for i_shell, shell in enumerate(bset): l = shell[0] es = shell[1] cs = shell[2] # Calculate the radial part of the atomic orbital time2 = time.time() radial_part = np.zeros(loc_cell_n) for e, c in zip(es, cs): radial_part += c*np.exp(-1.0*e*r_vec_2) time_radial_calc += time.time() - time2 for i_orb, m in enumerate(range(-l, l+1, 1)): time2 = time.time() atomic_orb = radial_part*self._spherical_harmonic_grid(l, m, rel_loc_cell_grids[0], rel_loc_cell_grids[1], rel_loc_cell_grids[2]) time_spherical += time.time() - time2 time2 = time.time() for i_spin in range(nspin): #print("---------------") #print(i_spin, len(self.morb_composition)) #print(i_at, len(self.morb_composition[i_spin])) #print(i_set, len(self.morb_composition[i_spin][i_at])) #print(i_shell, len(self.morb_composition[i_spin][i_at][i_set])) #print(i_orb, len(self.morb_composition[i_spin][i_at][i_set][i_shell])) #print("---------------") coef_arr = self.morb_composition[i_spin][i_at][i_set][i_shell][i_orb] for i_mo in range(num_morbs[i_spin]): morb_grids_local[i_spin][i_mo] += coef_arr[i_mo]*atomic_orb # slow: #morb_grids_local += np.outer(coef_arr, atomic_orb).reshape( # num_morbs, loc_cell_n[0], loc_cell_n[1], loc_cell_n[2]) time_loc_lmorb_add += time.time() - time2 time2 = time.time() for i_spin in range(nspin): for i_mo in range(num_morbs[i_spin]): if ext_z_n == 0: self._add_local_to_global_grid( morb_grids_local[i_spin][i_mo], self.morb_grids[i_spin][i_mo], origin_diff, wrap=(mid_ixs != -1)) else: self._add_local_to_global_grid( morb_grids_local[i_spin][i_mo], self.morb_grids[i_spin][i_mo][:, :, :-ext_z_n], origin_diff, wrap=(mid_ixs != -1)) time_loc_glob_add += time.time() - time2 if print_info: print("---- Radial calc time : %4f" % time_radial_calc) print("---- Spherical calc time : %4f" % time_spherical) print("---- Loc -> loc_morb time : %4f" % time_loc_lmorb_add) print("---- loc_morb -> glob time : %4f" % time_loc_glob_add) print("---- Total time: %.4f"%(time.time() - time1)) ### ----------------------------------------- ### Extrapolate wavefunctions ### ----------------------------------------- def _resize_2d_arr_with_interpolation(self, array, new_shape): x_arr = np.linspace(0, 1, array.shape[0]) y_arr = np.linspace(0, 1, array.shape[1]) rgi = scipy.interpolate.RegularGridInterpolator(points=[x_arr, y_arr], values=array) x_arr_new = np.linspace(0, 1, new_shape[0]) y_arr_new = np.linspace(0, 1, new_shape[1]) x_coords = np.repeat(x_arr_new, len(y_arr_new)) y_coords = np.tile(y_arr_new, len(x_arr_new)) return rgi(np.array([x_coords, y_coords]).T).reshape(new_shape) def extrapolate_morbs(self, vacuum_pot=None, hart_plane=None, use_weighted_avg=True): for ispin in range(self.nspin): self.extrapolate_morbs_spin(ispin, vacuum_pot=vacuum_pot, hart_plane=hart_plane, use_weighted_avg=use_weighted_avg) def extrapolate_morbs_spin(self, ispin, vacuum_pot=None, hart_plane=None, use_weighted_avg=True): """ Extrapolate molecular orbitals from a specified plane to a box or another plane in case of "single_plane = True", the orbitals will be only extrapolated on a plane "extent" distance away Extent in bohr !!! Either the vacuum potential or the hartree plane is needed! Both are assumed to be in hartree units wrt to Fermi/Homo. NB: everything in hartree units! """ time1 = time.time() if vacuum_pot is None and hart_plane is None: print("You must specify either the vac pot or the hartree plane.") return None morb_planes = self.morb_grids[ispin][:, :, :, self.last_calc_iz] morb_energies = self.morb_energies[ispin] num_morbs = np.shape(morb_planes)[0] for morb_index in range(num_morbs): morb_plane = morb_planes[morb_index] if vacuum_pot != None: hartree_avg = vacuum_pot else: if use_weighted_avg: # weigh the hartree potential by the molecular orbital density_plane = morb_plane**2 density_plane /= np.sum(density_plane) weighted_hartree = density_plane * self._resize_2d_arr_with_interpolation(hart_plane, density_plane.shape) hartree_avg = np.sum(weighted_hartree) else: hartree_avg = np.mean(hart_plane) energy = morb_energies[morb_index]/hart_2_ev if energy > hartree_avg: print("Warning: unbound state, can't extrapolate! index: %d. Constant extrapolation." % morb_index) energy = hartree_avg fourier = np.fft.rfft2(morb_plane) # NB: rfft2 takes REAL fourier transform over last (y) axis and COMPLEX over other (x) axes # dv in BOHR, so k is in 1/bohr kx_arr = 2*np.pi*np.fft.fftfreq(morb_plane.shape[0], self.dv[0]) ky_arr = 2*np.pi*np.fft.rfftfreq(morb_plane.shape[1], self.dv[1]) kx_grid, ky_grid = np.meshgrid(kx_arr, ky_arr, indexing='ij') prefactors = np.exp(-np.sqrt(kx_grid**2 + ky_grid**2 - 2*(energy - hartree_avg))*self.dv[2]) for iz in range(self.last_calc_iz + 1, self.eval_cell_n[2]): fourier *= prefactors self.morb_grids[ispin][morb_index, :, :, iz] = np.fft.irfft2(fourier, morb_plane.shape) print("Extrapolation time: %.3f s"%(time.time()-time1)) ### ----------------------------------------- ### Export data ### ----------------------------------------- def write_cube(self, filename, orbital_nr, spin=0, square=False): local_ind = self.i_homo_loc[spin] + orbital_nr if local_ind >= 0 and local_ind < self.morb_grids[spin].shape[0]: print("R%d/%d is writing HOMO%+d cube" %(self.mpi_rank, self.mpi_size, orbital_nr)) energy = self.morb_energies[spin][local_ind] comment = "E=%.8f eV (wrt HOMO)" % energy if not square: c = Cube(title="HOMO%+d"%orbital_nr, comment=comment, ase_atoms=self.ase_atoms, origin=self.origin, cell=self.eval_cell*np.eye(3), data=self.morb_grids[spin][local_ind]) else: c = Cube(title="HOMO%+d square"%orbital_nr, comment=comment, ase_atoms=self.ase_atoms, origin=self.origin, cell=self.eval_cell*np.eye(3), data=self.morb_grids[spin][local_ind]**2) c.write_cube_file(filename) def calculate_and_save_charge_density(self, filename="./charge_density.cube"): charge_dens = np.zeros(self.eval_cell_n) for i_spin in range(self.nspin): for i_mo, grid in enumerate(self.morb_grids[i_spin]): if i_mo > self.i_homo_loc[i_spin]: break charge_dens += grid**2 if self.nspin == 1: charge_dens *= 2 total_charge_dens = np.zeros(self.eval_cell_n) self.mpi_comm.Reduce(charge_dens, total_charge_dens, op=MPI.SUM) if self.mpi_rank == 0: vol_elem = np.prod(self.dv) integrated_charge = np.sum(total_charge_dens)*vol_elem comment = "Integrated charge: %.6f" % integrated_charge c = Cube(title="charge density", comment=comment, ase_atoms=self.ase_atoms, origin=self.origin, cell=self.eval_cell*np.eye(3), data=total_charge_dens) c.write_cube_file(filename) def calculate_and_save_spin_density(self, filename="./spin_density.cube"): if self.nspin == 1: return spin_dens = np.zeros(self.eval_cell_n) for i_spin in range(self.nspin): for i_mo, grid in enumerate(self.morb_grids[i_spin]): if i_mo > self.i_homo_loc[i_spin]: break if i_spin == 0: spin_dens += grid**2 else: spin_dens -= grid**2 total_spin_dens = np.zeros(self.eval_cell_n) self.mpi_comm.Reduce(spin_dens, total_spin_dens, op=MPI.SUM) if self.mpi_rank == 0: vol_elem = np.prod(self.dv) integrated = np.sum(np.abs(total_spin_dens))*vol_elem comment = "Integrated abs spin: %.6f" % integrated c = Cube(title="spin density", comment=comment, ase_atoms=self.ase_atoms, origin=self.origin, cell=self.eval_cell*np.eye(3), data=total_spin_dens) c.write_cube_file(filename) def calculate_and_save_charge_density_artif_core(self, filename="./charge_density_artif.cube"): charge_dens = np.zeros(self.eval_cell_n) for i_spin in range(self.nspin): for i_mo, grid in enumerate(self.morb_grids[i_spin]): if i_mo > self.i_homo_loc[i_spin]: break charge_dens += grid**2 if self.nspin == 1: charge_dens *= 2 total_charge_dens = np.zeros(self.eval_cell_n) self.mpi_comm.Reduce(charge_dens, total_charge_dens, op=MPI.SUM) # free memory charge_dens = None if self.mpi_rank == 0: def gaussian3d(r_arr, sigma): #sigma = fwhm/2.355 return 1/(sigma**3*(2*np.pi)**(3/2))*np.exp(-(r_arr**2/(2*sigma**2))) x = np.linspace(0.0, self.eval_cell[0], self.eval_cell_n[0]) + self.origin[0] y = np.linspace(0.0, self.eval_cell[1], self.eval_cell_n[1]) + self.origin[1] z = np.linspace(0.0, self.eval_cell[2], self.eval_cell_n[2]) + self.origin[2] for at in self.ase_atoms: if at.number == 1: # No core density for H continue p = at.position * ang_2_bohr if (p[0] < np.min(x) - 0.5 or p[0] > np.max(x) + 0.5 or p[1] < np.min(y) - 0.5 or p[1] > np.max(y) + 0.5 or p[2] < np.min(z) - 0.5 or p[2] > np.max(z) + 0.5): continue # Distance of the **Center** of each voxel to the atom x_grid, y_grid, z_grid = np.meshgrid(x - p[0] - self.dv[0]/2, y - p[1] - self.dv[1]/2, z - p[2] - self.dv[2]/2, indexing='ij') r_grid = np.sqrt(x_grid**2 + y_grid**2 + z_grid**2) x_grid = None y_grid = None z_grid = None core_charge = at.number - at.number % 8 # not exact... #r_cut = 0.5 #hat_func = (1.0-r_grid/r_cut) #hat_func[r_grid > r_cut] = 0.0 #total_charge_dens = hat_func*core_charge*gaussian3d(r_grid, 1.0*r_cut) + (1.0-hat_func)*total_charge_dens # EMPIRICAL PARAMETER 1 #fwhm = 0.5 # ang #total_charge_dens = core_charge*gaussian3d(r_grid, fwhm) + total_charge_dens r_hat = 0.7 h_hat = 20.0 hat_func = (h_hat-h_hat*r_grid/r_hat) hat_func[r_grid > r_hat] = 0.0 total_charge_dens = np.maximum(hat_func, total_charge_dens) # EMPIRICAL PARAMETER 2 #total_charge_dens = scipy.ndimage.gaussian_filter(total_charge_dens, sigma = 0.4, mode='nearest') c = Cube(title="charge density", comment="modif. cube", ase_atoms=self.ase_atoms, origin=self.origin, cell=self.eval_cell*np.eye(3), data=total_charge_dens) c.write_cube_file(filename) # def _orb_plane_above_atoms(self, grid, height): # """ # Returns the 2d plane above topmost atom in z direction # height in [angstrom] # """ # topmost_atom_z = np.max(self.ase_atoms.positions[:, 2]) # Angstrom # plane_z = (height + topmost_atom_z) * ang_2_bohr # plane_z_wrt_orig = plane_z - self.origin[2] # # plane_index = int(np.round(plane_z_wrt_orig/self.eval_cell[2]*self.eval_cell_n[2])) # return grid[:, :, plane_index] # # def collect_and_save_ch_orbitals(self, orbital_list, height_list, path = "./orb.npz"): # """ # Save constant-height planes of selected orbitals at selected heights # orbital list wrt to HOMO # """ # slice_list = [] # # for i_spin in range(self.nspin): # slice_list.append([]) # for h in height_list: # slice_list[i_spin].append([]) # # for i_mo in range(len(self.morb_energies[i_spin])): # i_mo_wrt_homo = i_mo - self.i_homo_loc[i_spin] # # if i_mo_wrt_homo in orbital_list: # for i_h, h in enumerate(height_list): # orb_plane = self._orb_plane_above_atoms(self.morb_grids[i_spin][i_mo], h) # slice_list[i_spin][i_h].append(orb_plane) # # # indexes of the slice_list: [i_spin], [i_h], [i_mo], [nx x ny] # # gather to rank_0 # final_list = [] # # for i_spin in range(self.nspin): # final_list.append([]) # i_spin # for i_h in range(len(height_list)): # plane_gather = self.mpi_comm.gather(slice_list[i_spin][i_h], root = 0) # # if self.mpi_rank == 0: # # flatten the list of lists to numpy # flat_array = np.array([item for sublist in plane_gather for item in sublist]) # final_list[i_spin].append(flat_array) # # # select energy ranges # #self.gather_global_energies() # # if self.mpi_rank == 0: # # energy array # # for rank 0, the homo index is given by loc_homo_ind # save_energy_arr = [] # for i_spin in range(self.nspin): # global_orb_list = [ind + self.i_homo_loc[i_spin] for ind in orbital_list] # save_energy_arr.append(self.global_morb_energies[i_spin][global_orb_list]) # # # turn the spin and height dimensions to numpy as well # final_numpy = np.array([np.array(list_h) for list_h in final_list]) # save_data = {} # save_data['orbitals'] = final_numpy # save_data['heights'] = np.array(height_list) # save_data['orb_list'] = np.array(orbital_list) # save_data['x_arr'] = np.arange(0.0, self.eval_cell_n[0]*self.dv[0] + self.dv[0]/2, self.dv[0]) + self.origin[0] # save_data['y_arr'] = np.arange(0.0, self.eval_cell_n[1]*self.dv[1] + self.dv[1]/2, self.dv[1]) + self.origin[1] # save_data['energies'] = np.array(save_energy_arr) # np.savez_compressed(path, **save_data) ### ----------------------------------------- ### mpi communication ### ----------------------------------------- #def gather_global_energies(self): # self.global_morb_energies = [] # for ispin in range(self.nspin): # morb_en_gather = self.mpi_comm.allgather(self.morb_energies[ispin]) # self.global_morb_energies.append(np.hstack(morb_en_gather))
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging from google.appengine.ext import deferred from dashboard import update_test_suites from dashboard.common import datastore_hooks from dashboard.common import descriptor from dashboard.common import namespaced_stored_object from dashboard.common import request_handler from dashboard.common import stored_object from dashboard.common import utils from dashboard.models import graph_data def CacheKey(test_suite): return 'test_suite_descriptor_' + test_suite def FetchCachedTestSuiteDescriptor(test_suite): return namespaced_stored_object.Get(CacheKey(test_suite)) class UpdateTestSuiteDescriptorsHandler(request_handler.RequestHandler): def get(self): self.post() def post(self): namespace = datastore_hooks.EXTERNAL if self.request.get('internal_only') == 'true': namespace = datastore_hooks.INTERNAL UpdateTestSuiteDescriptors(namespace) def UpdateTestSuiteDescriptors(namespace): key = namespaced_stored_object.NamespaceKey( update_test_suites.TEST_SUITES_2_CACHE_KEY, namespace) for test_suite in stored_object.Get(key): ScheduleUpdateDescriptor(test_suite, namespace) def ScheduleUpdateDescriptor(test_suite, namespace): deferred.defer(_UpdateDescriptor, test_suite, namespace) def _UpdateDescriptor(test_suite, namespace): logging.info('%s %s', test_suite, namespace) # This function always runs in the taskqueue as an anonymous user. if namespace == datastore_hooks.INTERNAL: datastore_hooks.SetPrivilegedRequest() desc = descriptor.Descriptor(test_suite=test_suite, bot='place:holder') test_path = list(desc.ToTestPathsSync())[0].split('/') measurements = set() bots = set() cases = set() # TODO(4549) Tagmaps. query = graph_data.TestMetadata.query() query = query.filter(graph_data.TestMetadata.suite_name == test_path[2]) if len(test_path) > 3: # test_suite is composite. query = query.filter( graph_data.TestMetadata.test_part1_name == test_path[3]) query = query.filter(graph_data.TestMetadata.deprecated == False) query = query.filter(graph_data.TestMetadata.has_rows == True) # Use an iterator because some test suites have more keys than can fit in # memory. for key in query.iter(keys_only=True): desc = descriptor.Descriptor.FromTestPathSync(utils.TestPath(key)) bots.add(desc.bot) if desc.measurement: measurements.add(desc.measurement) if desc.test_case: cases.add(desc.test_case) logging.info('%d measurements, %d bots, %d cases', len(measurements), len(bots), len(cases)) desc = { 'measurements': list(sorted(measurements)), 'bots': list(sorted(bots)), 'cases': list(sorted(cases)), } key = namespaced_stored_object.NamespaceKey( CacheKey(test_suite), namespace) stored_object.Set(key, desc)
from api.models import Api, Profile, ConnectLog from api.serializers import ApiSerializer, ProfileSerializer, \ UserSerializer, ConnectLogSerializer from django.http import Http404 from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status, generics from django_filters.rest_framework import DjangoFilterBackend from django.contrib.auth.models import User from rest_framework import renderers from rest_framework.decorators import api_view from rest_framework.reverse import reverse @api_view(['GET']) def api_root(request, format=None): return Response({ 'users': reverse('user-list', request=request, format=format), 'api': reverse('api-list', request=request, format=format), 'profile': reverse('profile-list', request=request, format=format), 'connectlog': reverse('connectlog-list', request=request, format=format), }) class ApiHighlight(generics.GenericAPIView): queryset = Api.objects.all() renderer_classes = (renderers.StaticHTMLRenderer,) def get(self, request, *args, **kwargs): api = self.get_object() return Response(api.highlighted) class UserList(generics.ListAPIView): queryset = User.objects.all() serializer_class = UserSerializer class UserDetail(generics.RetrieveAPIView): queryset = User.objects.all() serializer_class = UserSerializer class ApiList(generics.ListCreateAPIView): queryset = Api.objects.all() serializer_class = ApiSerializer def perform_create(self, serializer): serializer.save(owner=self.request.user) class ApiDetail(generics.RetrieveUpdateDestroyAPIView): queryset = Api.objects.all() serializer_class = ApiSerializer class ProfileList(generics.ListCreateAPIView): queryset = Profile.objects.all() serializer_class = ProfileSerializer def get_queryset(self): """ Optionally restricts the returned purchases to a given user, by filtering against a `username` query parameter in the URL. """ queryset = Profile.objects.all() badgenum = self.request.query_params.get('badge', None) username = self.request.query_params.get('user', None) if badgenum is not None: queryset = queryset.filter(badge=badgenum) elif username is not None: queryset = queryset.filter(user__username=username) return queryset class ProfileDetail(generics.RetrieveUpdateDestroyAPIView): queryset = Profile.objects.all() serializer_class = ProfileSerializer # filter_backends = (DjangoFilterBackend,) # filter_fields = ('badge') class ConnectLogList(generics.ListCreateAPIView): queryset = ConnectLog.objects.all() serializer_class = ConnectLogSerializer class ConnectLogDetail(generics.RetrieveUpdateDestroyAPIView): queryset = ConnectLog.objects.all() serializer_class = ConnectLogSerializer
from flask import Blueprint from flask_restful import Resource from atp.utils.common import get_request_json, make_response, username_to_nickname from atp.api.mysql_manager import UITestCaseInfoManage, UICasePageInfoManager, UICasePageInfo, BaseSystemInfoManager from atp.engine.exceptions import LoadCaseError from atp.utils.tools import json_dumps, json_loads ui_testcase = Blueprint('ui_testcase_interface', __name__) class UiTestCase(Resource): def __init__(self): self.utcim = UITestCaseInfoManage() self.data = get_request_json() def post(self, action): if action == 'add': try: self.handle_ui_testcase(action, **self.data) except LoadCaseError: return make_response({"code": "200", "desc": "新增用例时出错"}) return make_response({"code": "000", "desc": "用例新增成功"}) elif action == "edit": try: self.handle_ui_testcase(action, **self.data) except LoadCaseError: return make_response({"code": "200", "desc": "编辑用例时出错"}) return make_response({"code": "000", "desc": "编辑用例成功"}) elif action == "delete": try: id_ = self.data.pop("id") except KeyError: return make_response({"code": "100", "desc": "入参校验失败"}) self.utcim.delete_ui_testcase(id_) return make_response({"code": "000", "desc": "测试用例{}删除成功".format(id_)}) def handle_ui_testcase(self, action, **kwargs): ''' :param kwargs: :return: ''' base = kwargs.pop("base") module_id = base.pop("moduleId") system_id = base.pop("systemId") testcase_name = base.pop("testcaseName") simple_desc = base.pop("testcaseDesc") setup_info = kwargs.pop("setupInfo") variable_info = kwargs.pop("variableInfo") validate_Info = kwargs.pop("validateInfo") include = kwargs.pop("include") steps = kwargs.pop("steps") setup_case_list = [] # 配置URL # system_obj =BaseSystemInfoManager.query_system(id=system_id) # system_url = system_obj.base_host # setup_info for setup in setup_info: if setup["setup_type"] == 'setupcase': setup_case_list.append(setup["setup_args"]) elif setup["setup_type"] == 'setup_db_operation': # sql = setup["args"]["sql"] pass # steps操作步骤 for step in steps: '''根据页面id返回page名称''' if step["page_id"]: page_id = step["page_id"] obj = UICasePageInfoManager.query_ui_page(id=page_id) page_name = obj.page_name step["page_name"] = page_name # ui_request = { # "systemId":system_id, # "testcases": [ # { # "name": testcase_name, # "teststeps": steps, # "variables": variable_info, # "validates": validate_Info, # } # ] # } # 结果验证 if validate_Info: for validate in validate_Info: page_id = validate["page_id"] obj = UICasePageInfoManager.query_ui_page(id=page_id) page_name = obj.page_name validate["page_name"] = page_name ui_request = { "systemId": system_id, "testcases": [ { "name": testcase_name, "teststeps": steps, "variables": variable_info, "validates": validate_Info, } ] } '''公共变量''' if not isinstance(include, list): include = [{"public_variables": []}] include.append({"setup_cases": setup_case_list}) if action == 'add': UITestCaseInfoManage.insert_ui_testcase( testcase_name=testcase_name, simple_desc=simple_desc, request=json_dumps(ui_request), inlude=json_dumps(include), module_id=module_id ) elif action == 'edit': testcase_id = base.pop("id", None) UITestCaseInfoManage.update_ui_testcase( id_=testcase_id, testcase_name=testcase_name, inlude=json_dumps(include), request=json_dumps(ui_request), simple_desc=simple_desc, module_id=module_id )
""" Copyright 2019 Paul T. Grogan, Stevens Institute of Technology Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import division from scipy.linalg import orth import numpy as np class Session(object): """ An experimental session. Includes settings and the list of tasks (training and experimental). """ def __init__(self, name='', num_designers=4, error_tol=0.05, training = [], rounds = []): """ Initializes this session. @param name: the session name @type name: str @param num_designers: the number of designers @type num_designers: int @param error_tol: the error tolerance for solutions @type error_tol: float @param training: the training rounds @type training: array(Round) @param rounds: the experimental rounds @type rounds: array(Round) """ self.name = name self.num_designers = num_designers self.error_tol = error_tol self.training = training self.rounds = rounds @staticmethod def parse(json): return Session( name = json.get('name', ''), num_designers = json.get('num_designers', 4), error_tol = json.get('error_tol', 0.05), training = list(map(lambda r: Round.parse(r), json.get('training', []))), rounds = list(map(lambda r: Round.parse(r), json.get('rounds', []))) ) class Round(object): """ An experimental round with a set of technical tasks. """ def __init__(self, name, assignments, tasks, max_time): """ Initializes this round. @param name: the name @type name: str @param assignments: the task assignments: list of lists of designers @type assignments: list(list(int)) @param tasks: the technical tasks @type array(Task) @param max_time: the maximum allowable time (milliseconds) @type number """ self.name = name self.assignments = assignments self.tasks = tasks self.max_time = max_time def getDesignerTask(self, designer): return next((t for t in self.tasks if designer in t.designers)) @staticmethod def parse(json): return Round( name = json.get('name'), assignments = json.get('assignments'), tasks = list(map(lambda t: Task.parse(t), json.get('tasks'))), max_time = json.get('max_time') ) @staticmethod def generate(name, size, assignments, is_coupled=True, max_time=None, random=np.random): return Round( name = name, assignments = assignments, tasks = [Task.generate(designers, size, is_coupled=is_coupled, random=random) for designers in assignments], max_time = max_time*1000 if max_time is not None else None ) class Task(object): """ An experimental task. """ def __init__(self, designers, num_inputs, num_outputs, coupling, target, inputs, outputs): """ Initializes this task. @param designers: the designers asigned to this task @type designers: list(int) @param num_inputs: the number of inputs per designer @type num_inputs: list(int) @param num_outputs: the number of outputs per designer @type num_outputs: list(int) @param coupling: the coupling matrix (M) @type coupling: list(float) @param target: the target vector (y_star) @type target: list(float) @param inputs: the input assignments @type inputs: list(int) @param outputs: the output assignments @type outputs: list(int) """ self.designers = designers self.num_inputs = num_inputs self.num_outputs = num_outputs self.coupling = coupling self.target = target self.inputs = inputs self.outputs = outputs self.time_start = None # set by post-processor self.time_complete = None # set by post-processor self.actions = None # set by post-processor self.score = None # set by post-processor def getSolution(self): """ Gets the zero-error solution for this task. @returns: the solution vector @rtype numpy.Array(float) """ return np.matmul(np.array(self.coupling).T, self.target) def getDuration(self): """ Gets the duration of this task. @returns: the elapsed time (milliseconds) @rtype: long """ return (self.time_complete - self.time_start) if self.time_complete else -1 def getCountActions(self, designer=None): return np.sum([1 if i > 0 and not np.array_equal(a.getInput(self, designer), self.actions[i-1].getInput(self, designer)) else 0 for i,a in enumerate(self.actions)]) def getCountProductiveActions(self, designer=None): return np.sum([1 if i > 0 and a.getErrorNorm(self, designer) < self.actions[i-1].getErrorNorm(self, designer) else 0 for i,a in enumerate(self.actions)]) def getCumulativeInputDistanceNorm(self, designer=None): return np.sum([np.linalg.norm(a.getInput(self, designer) - self.actions[i-1].getInput(self, designer)) if i > 0 else 0 for i,a in enumerate(self.actions)]) def getCumulativeErrorNorm(self, designer=None): return np.sum([a.getErrorNorm(self, designer) for a in self.actions]) @staticmethod def parse(json): return Task( designers = json.get('designers'), num_inputs = json.get('num_inputs'), num_outputs = json.get('num_outputs'), coupling = json.get('coupling'), target = json.get('target'), inputs = json.get('inputs'), outputs = json.get('outputs') ) @staticmethod def generate(designers, size, inputs=None, outputs=None, is_coupled=True, random=np.random): if inputs is None: # try to assign equally among designers inputs = [designers[int(i//(size/len(designers)))] for i in range(size)] num_inputs = [np.sum(np.array(inputs) == designer).item() for designer in designers]; if outputs is None: # try to assign equally among designers outputs = [designers[int(i//(size/len(designers)))] for i in range(size)] num_outputs = [np.sum(np.array(outputs) == designer).item() for designer in designers]; coupling = np.zeros((size, size)) if is_coupled: # coupling matrix is orthonormal basis of random matrix coupling = orth(random.rand(size, size)) else: # coupling matrix has random 1/-1 along diagonal coupling = np.diag(2*random.randint(0,2,size)-1) # find a target with no solution values "close" to initial condition solution = np.zeros(size) while np.any(np.abs(solution) <= 0.20): target = orth(2*random.rand(size,1)-1) # solve using dot product of coupling transpose and target solution = np.matmul(coupling.T, target) return Task(designers, num_inputs, num_outputs, coupling.tolist(), target[:,0].tolist(), inputs, outputs) class Action(object): """ An experimental action. """ def __init__(self, time, input): """ Initializes this action. @param time: the action time (milliseconds) @type time: long @param input: the resulting input vector @type input: np.Array(float) """ self.time = time self.input = input def getError(self, task, designer = None): """ Gets the error in design after this action for a task. @param task: the task @type task: Task @param designer: the designer (optional, default = None) @type designer: int @returns: the error @rtype: numpy.Array(float) """ # compute error as outputs - targets if designer is None: return self.getOutput(task, designer) - task.target else: return (self.getOutput(task, designer)[np.array(task.outputs) == designer] - np.array(task.target)[np.array(task.outputs) == designer]) def getErrorNorm(self, task, designer = None): """ Gets the error norm in design after this action for a task. @param task: the task @type task: Task @param designer: the designer (optional, default = None) @type designer: int @returns: the error norm @rtype: float """ # compute 2-norm of error return np.linalg.norm(self.getError(task, designer)) def getElapsedTime(self, task): """ Gets the elapsed time of this action. @param task: the task @type task: Task @returns: the elapsed time (milliseconds) @rtype: long """ return self.time - task.time_start def isSolved(self, session, task): """ Checks if the task is solved. @param session: the experimental session @type session: Session @param task: the task @type task: Task @returns: true, if this action solves the task @rtype: bool """ # all errors must be less than tolerance values return all(abs(e) < session.error_tol for e in self.getError(task)) def getInputDesignerIndex(self, task): """ Gets the designer index associated with this action. Returns -1 for the first action (initialization). @param task: the task @type task: Task @returns: the designer index who performed this action @rtype: int """ action_id = task.actions.index(self) if action_id > 0: return task.inputs[self.getInputIndex(task)] else: return -1 def getInputDeltaDesignerIndex(self, task): """ Gets the change in designer index associated with this action. Returns 0 for the first and second actions (initialization). @param task: the task @type task: Task @returns: the index of the changed input @rtype: int """ action_id = task.actions.index(self) if action_id > 1: return self.getInputDesignerIndex(task) - task.actions[action_id-1].getInputDesignerIndex(task) else: return 0 def getInputIndex(self, task, designer = None): """ Gets the design variable input index modified with this action. Returns -1 for the first action (initialization). @param task: the task @type task: Task @param designer: the designer (optional, default = None) @type designer: int @returns: the index of the changed input @rtype: int """ changed_id = np.argwhere(self.getInputDelta(task, designer) != 0) if len(changed_id) == 0: return -1 else: return changed_id[0][0] def getInputDeltaIndex(self, task, designer = None): """ Gets the change in design variable input index between this action and the previous action. Returns 0 for the first and second actions (initialization). @param task: the task @type task: Task @param designer: the designer (optional, default = None) @type designer: int @returns: the change in input index relative to the previous action @rtype: int """ action_id = task.actions.index(self) if action_id > 1: return self.getInputIndex(task, designer) - task.actions[action_id-1].getInputIndex(task, designer) else: return 0 def getInputDeltaSize(self, task, designer = None): """ Gets the magnitude (norm) of the change in design input relative to the previous action. @param task: the task @type task: Task @param designer: the designer (optional, default = None) @type designer: int @returns: the size of the input change relative to the previous action @rtype: int """ return np.linalg.norm(self.getInputDelta(task, designer)) def getInputDelta(self, task, designer = None): """ Gets the difference in input vector after versus before this action. @param task: the task @type task: Task @param designer: the designer (optional, default = None) @type designer: int @returns: the difference in input @rtype: int """ action_id = task.actions.index(self) if action_id > 0: return self.getInput(task, designer) - task.actions[action_id-1].getInput(task, designer) else: return np.zeros(np.shape(self.getInput(task, designer))) def getInput(self, task, designer = None): """ Gets the input for a designer. @param task: the task @type task: Task @param designer: the designer (optional, default = None) @type designer: int @returns: the input vector @rtype: numpy.Array(float) """ if designer is None: return np.array(self.input) else: return np.array(self.input)[np.array(task.inputs) == designer] def getOutput(self, task, designer = None): """ Gets the output for a designer. @param task: the task @type task: Task @param designer: the designer (optional, default = None) @type designer: int @returns: the output vector @rtype: numpy.Array(float) """ if designer is None: return np.matmul(task.coupling, self.input) else: return np.matmul(task.coupling, self.input)[np.array(task.outputs) == designer]
from django.contrib.auth.forms import UserCreationForm, UserChangeForm from .models import EmailUser class EmailUserCreationForm(UserCreationForm): class Meta(UserCreationForm): model = EmailUser fields = ('email', 'name') class EmailUserChangeForm(UserChangeForm): class Meta: model = EmailUser fields = ('email', 'name')
# File: S (Python 2.4) from direct.fsm.StatePush import AttrSetter, FunctionCall, StateVar from pirates.pvp import PVPGlobals class ShipRepairSpotMgrBase: def __init__(self): self._state = DestructiveScratchPad(health = StateVar(0), speed = StateVar(0), armor = StateVar(0), modelClass = StateVar(0), pvpTeam = StateVar(0), siegeTeam = StateVar(0), fullHealth = StateVar(False), willBeFullHealth = StateVar(False), validShipClass = StateVar(False), hasTeam = StateVar(False)) self._statePushes = [] def destroy(self): for statePush in self._statePushes: statePush.destroy() del self._statePushes self._state.destroy() def _onShipReady(self): self._statePushes.extend([ FunctionCall(self._evalFullHealth, self._state.health, self._state.speed, self._state.armor, self._state.willBeFullHealth).pushCurrentState(), FunctionCall(self._evalValidShipClass, self._state.modelClass).pushCurrentState(), FunctionCall(self._evalHasTeam, self._state.pvpTeam, self._state.siegeTeam).pushCurrentState()]) def updateHealth(self, health): self._state.health.set(health) def updateSpeed(self, speed): self._state.speed.set(speed) def updateArmor(self, armor): self._state.armor.set(armor) def updateWillBeFullHealth(self, willBeFullHealth): self._state.willBeFullHealth.set(willBeFullHealth) def updateShipClass(self, modelClass): self._state.modelClass.set(modelClass) def updatePVPTeam(self, team): self._state.pvpTeam.set(team) def updateSiegeTeam(self, team): self._state.siegeTeam.set(team) def _evalFullHealth(self, health, speed, armor, willBeFullHealth): if willBeFullHealth and health > 99.900000000000006 and speed > 99.900000000000006: pass self._state.fullHealth.set(armor > 99.900000000000006) def _evalValidShipClass(self, modelClass): self._state.validShipClass.set(modelClass in PVPGlobals.ShipClass2repairLocators) def _evalHasTeam(self, pvpTeam, siegeTeam): if not pvpTeam: pass self._state.hasTeam.set(siegeTeam)
# -*- test-case-name: twisted.application.runner.test.test_pidfile -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ PID file. """ import errno from os import getpid, kill, name as SYSTEM_NAME from types import TracebackType from typing import Optional, Type from zope.interface import Interface, implementer from twisted.logger import Logger from twisted.python.filepath import FilePath class IPIDFile(Interface): """ Manages a file that remembers a process ID. """ def read() -> int: """ Read the process ID stored in this PID file. @return: The contained process ID. @raise NoPIDFound: If this PID file does not exist. @raise EnvironmentError: If this PID file cannot be read. @raise ValueError: If this PID file's content is invalid. """ def writeRunningPID() -> None: """ Store the PID of the current process in this PID file. @raise EnvironmentError: If this PID file cannot be written. """ def remove() -> None: """ Remove this PID file. @raise EnvironmentError: If this PID file cannot be removed. """ def isRunning() -> bool: """ Determine whether there is a running process corresponding to the PID in this PID file. @return: True if this PID file contains a PID and a process with that PID is currently running; false otherwise. @raise EnvironmentError: If this PID file cannot be read. @raise InvalidPIDFileError: If this PID file's content is invalid. @raise StalePIDFileError: If this PID file's content refers to a PID for which there is no corresponding running process. """ def __enter__() -> "IPIDFile": """ Enter a context using this PIDFile. Writes the PID file with the PID of the running process. @raise AlreadyRunningError: A process corresponding to the PID in this PID file is already running. """ def __exit__( excType: Optional[Type[BaseException]], excValue: Optional[BaseException], traceback: Optional[TracebackType], ) -> Optional[bool]: """ Exit a context using this PIDFile. Removes the PID file. """ @implementer(IPIDFile) class PIDFile: """ Concrete implementation of L{IPIDFile}. This implementation is presently not supported on non-POSIX platforms. Specifically, calling L{PIDFile.isRunning} will raise L{NotImplementedError}. """ _log = Logger() @staticmethod def _format(pid: int) -> bytes: """ Format a PID file's content. @param pid: A process ID. @return: Formatted PID file contents. """ return f"{int(pid)}\n".encode() def __init__(self, filePath: FilePath) -> None: """ @param filePath: The path to the PID file on disk. """ self.filePath = filePath def read(self) -> int: pidString = b"" try: with self.filePath.open() as fh: for pidString in fh: break except OSError as e: if e.errno == errno.ENOENT: # No such file raise NoPIDFound("PID file does not exist") raise try: return int(pidString) except ValueError: raise InvalidPIDFileError( f"non-integer PID value in PID file: {pidString!r}" ) def _write(self, pid: int) -> None: """ Store a PID in this PID file. @param pid: A PID to store. @raise EnvironmentError: If this PID file cannot be written. """ self.filePath.setContent(self._format(pid=pid)) def writeRunningPID(self) -> None: self._write(getpid()) def remove(self) -> None: self.filePath.remove() def isRunning(self) -> bool: try: pid = self.read() except NoPIDFound: return False if SYSTEM_NAME == "posix": return self._pidIsRunningPOSIX(pid) else: raise NotImplementedError(f"isRunning is not implemented on {SYSTEM_NAME}") @staticmethod def _pidIsRunningPOSIX(pid: int) -> bool: """ POSIX implementation for running process check. Determine whether there is a running process corresponding to the given PID. @param pid: The PID to check. @return: True if the given PID is currently running; false otherwise. @raise EnvironmentError: If this PID file cannot be read. @raise InvalidPIDFileError: If this PID file's content is invalid. @raise StalePIDFileError: If this PID file's content refers to a PID for which there is no corresponding running process. """ try: kill(pid, 0) except OSError as e: if e.errno == errno.ESRCH: # No such process raise StalePIDFileError("PID file refers to non-existing process") elif e.errno == errno.EPERM: # Not permitted to kill return True else: raise else: return True def __enter__(self) -> "PIDFile": try: if self.isRunning(): raise AlreadyRunningError() except StalePIDFileError: self._log.info("Replacing stale PID file: {log_source}") self.writeRunningPID() return self def __exit__( self, excType: Optional[Type[BaseException]], excValue: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: self.remove() return None @implementer(IPIDFile) class NonePIDFile: """ PID file implementation that does nothing. This is meant to be used as a "active None" object in place of a PID file when no PID file is desired. """ def __init__(self) -> None: pass def read(self) -> int: raise NoPIDFound("PID file does not exist") def _write(self, pid: int) -> None: """ Store a PID in this PID file. @param pid: A PID to store. @raise EnvironmentError: If this PID file cannot be written. @note: This implementation always raises an L{EnvironmentError}. """ raise OSError(errno.EPERM, "Operation not permitted") def writeRunningPID(self) -> None: self._write(0) def remove(self) -> None: raise OSError(errno.ENOENT, "No such file or directory") def isRunning(self) -> bool: return False def __enter__(self) -> "NonePIDFile": return self def __exit__( self, excType: Optional[Type[BaseException]], excValue: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: return None nonePIDFile = NonePIDFile() class AlreadyRunningError(Exception): """ Process is already running. """ class InvalidPIDFileError(Exception): """ PID file contents are invalid. """ class StalePIDFileError(Exception): """ PID file contents are valid, but there is no process with the referenced PID. """ class NoPIDFound(Exception): """ No PID found in PID file. """
from manimlib.imports import * class Dragon(MovingCameraScene): CONFIG = { "iterations":5, "colors":[DARK_RED, YELLOW], } def construct(self): path = VGroup() line = Line(ORIGIN,UP / 10).set_color(DARK_RED) path.add(line) self.camera_frame.set_height(line.get_height() * 1.2) self.camera_frame.move_to(line) self.play(ShowCreation(line)) self.target_path = self.allP(path,self.iterations) for i in range(self.iterations): path.set_color_by_gradient(*self.colors) self.dup(path,i) ##### ## Have to add flipper for twinDragon #### self.wait() def dup(self,path,i): set_paths = self.target_path[:2**(i + 1)] height = set_paths.get_height() * 1.1 new_P = path.copy() self.add(new_P) point = self.getP(path) self.play( Rotating( new_P, radians=PI/2, about_point=path[-1].points[point], rate_func=linear ), self.camera_frame.move_to,set_paths, self.camera_frame.set_height,height, run_time=1, rate_func=smooth ) newP = reversed([*new_P]) path.add(*newP) def allP(self, path, iterations): target_path = path.copy() for _ in range(iterations): new_P = target_path.copy() point = self.getP(new_P) new_P.rotate( PI/2, about_point=target_path[-1].points[point], ) newP = reversed([*new_P]) target_path.add(*newP) return target_path def getP(self, path): return 0 if len(path) > 1 else -1
# -*- coding: utf-8 -*- """Console script for alphashape.""" import os import sys import click import click_log import logging import shapely import geopandas import alphashape # Setup Logging LOGGER = logging.getLogger(__name__) click_log.basic_config(LOGGER) @click.command() @click.argument('source', type=click.Path(exists=True)) @click.argument('target', type=click.Path()) @click.option('--alpha', '-a', type=float, help='Alpha parameter') @click.option('--epsg', '-e', type=int, help='EPSG code to create alpha shape in') @click_log.simple_verbosity_option() def main(source, target, alpha, epsg): """ Example console appication using the alphashape toolbox. Given an input shapefile or GeoJSON INPUT with point geometry, write out a new OUTPUT that contains the geometries resulting from execting the alpha shape toolbox. The alpha parameter is optional. If provided it will return the alpha shape for the given value, if one is not provided, the tightest fitting alpha shape that contains all input points will be solved for. The EPSG code of a coordinate system can also be given to conduct the alpha shape analysis in. If one is not given the coordinate system of the input data will be used. The output file will always have the same coordinate system as the source file. The output file format will be determined by the extension of the provided target filename and can be written out in shapefile format or GeoJSON. """ # Read in source data source_filename = click.format_filename(source) target_filename = click.format_filename(target) LOGGER.info('Reading source file: %s', source_filename) try: gdf = geopandas.read_file(source_filename) except: # noqa: E722 LOGGER.error('Could not read source file') return 10 # Source data type checking if not any([isinstance( p, shapely.geometry.Point) for p in gdf['geometry']]): LOGGER.error('Source file does not contain multipiont features') return 20 # Project data if given an EPSG code if epsg: LOGGER.info('Projecting source data to EPSG=%s', epsg) try: gdf_input = gdf.to_crs({'init': 'epsg:%s' % epsg}) except: # noqa: E722 LOGGER.error('Could not project source data') return 30 else: gdf_input = gdf # Generate the alpha shape LOGGER.info('Createing alpha shape') try: alpha_shape = alphashape.alphashape(gdf_input, alpha) except: # noqa: E722 LOGGER.error('Could not generate alpha shape') return 40 # Project back to the input coordinate system if an EPSG code was given if epsg: LOGGER.info('Projecting alpha shape data to source projection') try: alpha_shape = alpha_shape.to_crs(gdf.crs) except: # noqa: E722 LOGGER.error('Could not project alpha shape') return 50 # Write out the target file LOGGER.info('Writing target file: %s', target_filename) try: if os.path.splitext(target)[1].lower() == '.geojson': alpha_shape.to_file(target, driver='GeoJSON') else: alpha_shape.to_file(target) except: # noqa: E722 LOGGER.error('Could not write target file') return 60 return 0 if __name__ == "__main__": sys.exit(main()) # pragma: no cover
x = int(input()) count = [0,0,1,1] for i in range(4,x+1): count.append(count[i-1]+1) if i%2==0: count[i] = min(count[i],count[i//2]+1) if i%3==0: count[i] = min(count[i],count[i//3]+1) print(count[x])
# coding=utf-8 """ The number, 1406357289, is a 0 to 9 pandigital number because it is made up of each of the digits 0 to 9 in some order, but it also has a rather interesting sub-string divisibility property. Let d1 be the 1st digit, d2 be the 2nd digit, and so on. In this way, we note the following: d2d3d4=406 is divisible by 2 d3d4d5=063 is divisible by 3 d4d5d6=635 is divisible by 5 d5d6d7=357 is divisible by 7 d6d7d8=572 is divisible by 11 d7d8d9=728 is divisible by 13 d8d9d10=289 is divisible by 17 Find the sum of all 0 to 9 pandigital numbers with this property. Solution comment: Iterate over all 0-9 pandigitals. First digit must be one of 1-9, rest can be any of the 9 remaining digits. Then check that each window of 3 digits is divisible by its corresponding prime. """ from itertools import permutations, izip def slidingWindow(sequence, winSize, step=1): """Returns a generator that will iterate through the defined chunks of input sequence. Input sequence must be iterable.""" numOfChunks = ((len(sequence)-winSize)/step)+1 for i in xrange(0, numOfChunks*step, step): yield sequence[i:i+winSize] digits = set(str(d) for d in xrange(10)) primes = [2, 3, 5, 7, 11, 13, 17] results = [] for d1 in xrange(1, 10): for perm in permutations(digits ^ {str(d1)}, 9): n = str(d1) + ''.join(perm) for part, p in izip(slidingWindow(n[1:], 3), primes): if int(part) % p != 0: break else: print n results.append(int(n)) print results, sum(results)
# Generated by Django 2.2 on 2019-04-26 01:35 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Acao', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nome_acao', models.CharField(max_length=500)), ], options={ 'verbose_name_plural': 'Ações', }, ), migrations.CreateModel( name='Alocacao', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('quantidade_referencia', models.IntegerField(blank=True)), ('capacidade_caixa', models.IntegerField(blank=True)), ('quantidade_caixas', models.IntegerField(blank=True)), ('pdf', models.FileField(blank=True, upload_to='pdf/')), ], options={ 'verbose_name_plural': 'Alocacoes', }, ), migrations.CreateModel( name='Cliente', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nome_cliente', models.CharField(max_length=500)), ('cnpj', models.CharField(max_length=14)), ('telefone', models.CharField(max_length=15)), ('email', models.CharField(max_length=500)), ('data_criacao', models.DateTimeField(auto_now_add=True)), ], options={ 'verbose_name_plural': 'Clientes', }, ), migrations.CreateModel( name='Funcionario', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nome_funcionario', models.CharField(max_length=500)), ], options={ 'verbose_name_plural': 'Funcionarios', }, ), migrations.CreateModel( name='Maquina', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nome_maquina', models.CharField(max_length=500)), ], ), migrations.CreateModel( name='Pedido', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('op', models.CharField(blank=True, max_length=5000)), ('data_criacao', models.DateTimeField(auto_now_add=True)), ('cliente', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Cliente')), ], options={ 'verbose_name_plural': 'Pedidos', }, ), migrations.CreateModel( name='Sequencia', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nome_sequencia', models.CharField(max_length=500)), ], options={ 'verbose_name_plural': 'Sequencias', }, ), migrations.CreateModel( name='Pistola', fields=[ ('funcionario', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, primary_key=True, serialize=False, to='core.Funcionario')), ('nome_pistola', models.CharField(max_length=500)), ], options={ 'verbose_name_plural': 'Pistolas', }, ), migrations.CreateModel( name='SequenciaAcao', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ordem_execucao', models.CharField(max_length=500)), ('tempo_meta', models.CharField(max_length=500)), ('acao', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Acao')), ('sequencia', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Sequencia')), ], options={ 'verbose_name_plural': 'Sequencias e Ações', }, ), migrations.CreateModel( name='Referencia', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nome_referencia', models.CharField(max_length=500)), ('cliente', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Cliente')), ], options={ 'verbose_name_plural': 'Referencias', }, ), migrations.CreateModel( name='PedidoSKU', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('quantidade', models.IntegerField()), ('data_criacao', models.DateTimeField(auto_now_add=True)), ('pedido', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Pedido')), ('referencia', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Referencia')), ], options={ 'verbose_name_plural': 'Pedido_SKUs', }, ), migrations.CreateModel( name='Caixa', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('pdf', models.FileField(blank=True, upload_to='pdf/')), ('alocacao', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Alocacao')), ], options={ 'verbose_name_plural': 'Caixas', }, ), migrations.CreateModel( name='BackLog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('pedido_data_criacao', models.DateTimeField(auto_now_add=True)), ('pedido_op', models.TextField(blank=True)), ('nome_cliente', models.TextField(blank=True)), ('nome_referencia', models.TextField(blank=True)), ('nome_acao', models.TextField(blank=True)), ('ordem_execucao', models.IntegerField(null=True)), ('alocacao', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='core.Alocacao')), ('caixa', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Caixa')), ('cliente', models.ForeignKey(null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='core.Cliente')), ('pedido', models.ForeignKey(null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='core.Pedido')), ('referencia', models.ForeignKey(null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='core.Referencia')), ('sequencia_acao', models.ForeignKey(null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='core.SequenciaAcao')), ], options={ 'verbose_name_plural': 'BackLogs', }, ), migrations.AddField( model_name='alocacao', name='pedido', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Pedido'), ), migrations.AddField( model_name='alocacao', name='referencia', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Referencia'), ), migrations.AddField( model_name='alocacao', name='sequencia', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Sequencia'), ), migrations.AddField( model_name='acao', name='maquina', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Maquina'), ), migrations.CreateModel( name='LogTrabalho', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('id_leitura', models.IntegerField()), ('cod_barras', models.CharField(max_length=500)), ('data_criacao', models.DateTimeField(auto_now_add=True)), ('funcionario', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Funcionario')), ('pistola', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Pistola')), ], options={ 'verbose_name_plural': 'Log_Trabalhos', }, ), ]
grafo = {} grafo[1] = [7, 6] grafo[2] = [3, 7] grafo[3] = [2, 4, 6, 7] grafo[4] = [3, 7] grafo[5] = [7] grafo[6] = [1, 3] grafo[7] = [1, 2, 3, 4, 5] c = 0 aux = grafo.copy() tam = sorted(grafo.values(),key = len)[0] lista = [] while c < len(grafo): for i in tam: for e in grafo: if i in grafo[e]: aux[e].remove(i) lista.append(e) del aux[e] c+=1 '''for e in grafo: if len(grafo[e])<=1: lista.append(e)''' print(lista)
def method(method_class): """Decorator to use to mark an API method. When invoking L{Registry.scan} the classes marked with this decorator will be added to the registry. @param method_class: The L{Method} class to register. """ def callback(scanner, name, method_class): if method_class.actions is not None: actions = method_class.actions else: actions = [name] if method_class.versions is not None: versions = method_class.versions else: versions = [None] for action in actions: for version in versions: scanner.registry.add(method_class, action=action, version=version) from venusian import attach attach(method_class, callback, category="method") return method_class class Method(object): """Handle a single HTTP request to an API resource. @cvar actions: List of actions that the Method can handle, if C{None} the class name will be used as only supported action. @cvar versions: List of versions that the Method can handle, if C{None} all versions will be supported. """ actions = None versions = None def invoke(self, call): """Invoke this method for executing the given C{call}.""" raise NotImplemented("Sub-classes have to implement the invoke method") def is_available(self): """Return a boolean indicating wether this method is available. Override this to dynamically decide at run-time whether specific methods are available or not. """ return True
""" Modeling Relational Data with Graph Convolutional Networks Paper: https://arxiv.org/abs/1703.06103 Code: https://github.com/tkipf/relational-gcn Difference compared to tkipf/relation-gcn * l2norm applied to all weights * remove nodes that won't be touched """ import argparse import numpy as np import time import tensorflow as tf from tensorflow.keras import layers from dgl import DGLGraph from dgl.nn.tensorflow import RelGraphConv from dgl.contrib.data import load_data from functools import partial from model import BaseRGCN class EntityClassify(BaseRGCN): def create_features(self): features = tf.range(self.num_nodes) return features def build_input_layer(self): return RelGraphConv(self.num_nodes, self.h_dim, self.num_rels, "basis", self.num_bases, activation=tf.nn.relu, self_loop=self.use_self_loop, dropout=self.dropout) def build_hidden_layer(self, idx): return RelGraphConv(self.h_dim, self.h_dim, self.num_rels, "basis", self.num_bases, activation=tf.nn.relu, self_loop=self.use_self_loop, dropout=self.dropout) def build_output_layer(self): return RelGraphConv(self.h_dim, self.out_dim, self.num_rels, "basis", self.num_bases, activation=partial(tf.nn.softmax, axis=1), self_loop=self.use_self_loop) def acc(logits, labels, mask): logits = tf.gather(logits, mask) labels = tf.gather(labels, mask) indices = tf.math.argmax(logits, axis=1) acc = tf.reduce_mean(tf.cast(indices == labels, dtype=tf.float32)) return acc def main(args): # load graph data data = load_data(args.dataset, bfs_level=args.bfs_level, relabel=args.relabel) num_nodes = data.num_nodes num_rels = data.num_rels num_classes = data.num_classes labels = data.labels train_idx = data.train_idx test_idx = data.test_idx # split dataset into train, validate, test if args.validation: val_idx = train_idx[:len(train_idx) // 5] train_idx = train_idx[len(train_idx) // 5:] else: val_idx = train_idx # since the nodes are featureless, the input feature is then the node id. feats = tf.range(num_nodes, dtype=tf.int64) # edge type and normalization factor edge_type = tf.convert_to_tensor(data.edge_type) edge_norm = tf.expand_dims(tf.convert_to_tensor(data.edge_norm), 1) labels = tf.reshape(tf.convert_to_tensor(labels), (-1, )) # check cuda if args.gpu < 0: device = "/cpu:0" use_cuda = False else: device = "/gpu:{}".format(args.gpu) use_cuda = True with tf.device(device): # create graph g = DGLGraph() g.add_nodes(num_nodes) g.add_edges(data.edge_src, data.edge_dst) # create model model = EntityClassify(len(g), args.n_hidden, num_classes, num_rels, num_bases=args.n_bases, num_hidden_layers=args.n_layers - 2, dropout=args.dropout, use_self_loop=args.use_self_loop, use_cuda=use_cuda) # optimizer optimizer = tf.keras.optimizers.Adam( learning_rate=args.lr) # training loop print("start training...") forward_time = [] backward_time = [] loss_fcn = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=False) for epoch in range(args.n_epochs): t0 = time.time() with tf.GradientTape() as tape: logits = model(g, feats, edge_type, edge_norm) loss = loss_fcn(tf.gather(labels, train_idx), tf.gather(logits, train_idx)) # Manually Weight Decay # We found Tensorflow has a different implementation on weight decay # of Adam(W) optimizer with PyTorch. And this results in worse results. # Manually adding weights to the loss to do weight decay solves this problem. for weight in model.trainable_weights: loss = loss + \ args.l2norm * tf.nn.l2_loss(weight) t1 = time.time() grads = tape.gradient(loss, model.trainable_weights) optimizer.apply_gradients(zip(grads, model.trainable_weights)) t2 = time.time() forward_time.append(t1 - t0) backward_time.append(t2 - t1) print("Epoch {:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}". format(epoch, forward_time[-1], backward_time[-1])) train_acc = acc(logits, labels, train_idx) val_loss = loss_fcn(tf.gather(labels, val_idx), tf.gather(logits, val_idx)) val_acc = acc(logits, labels, val_idx) print("Train Accuracy: {:.4f} | Train Loss: {:.4f} | Validation Accuracy: {:.4f} | Validation loss: {:.4f}". format(train_acc, loss.numpy().item(), val_acc, val_loss.numpy().item())) print() logits = model(g, feats, edge_type, edge_norm) test_loss = loss_fcn(tf.gather(labels, test_idx), tf.gather(logits, test_idx)) test_acc = acc(logits, labels, test_idx) print("Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss.numpy().item())) print() print("Mean forward time: {:4f}".format(np.mean(forward_time[len(forward_time) // 4:]))) print("Mean backward time: {:4f}".format(np.mean(backward_time[len(backward_time) // 4:]))) if __name__ == '__main__': parser = argparse.ArgumentParser(description='RGCN') parser.add_argument("--dropout", type=float, default=0, help="dropout probability") parser.add_argument("--n-hidden", type=int, default=16, help="number of hidden units") parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--lr", type=float, default=1e-2, help="learning rate") parser.add_argument("--n-bases", type=int, default=-1, help="number of filter weight matrices, default: -1 [use all]") parser.add_argument("--n-layers", type=int, default=2, help="number of propagation rounds") parser.add_argument("-e", "--n-epochs", type=int, default=50, help="number of training epochs") parser.add_argument("-d", "--dataset", type=str, required=True, help="dataset to use") parser.add_argument("--l2norm", type=float, default=0, help="l2 norm coef") parser.add_argument("--relabel", default=False, action='store_true', help="remove untouched nodes and relabel") parser.add_argument("--use-self-loop", default=False, action='store_true', help="include self feature as a special relation") fp = parser.add_mutually_exclusive_group(required=False) fp.add_argument('--validation', dest='validation', action='store_true') fp.add_argument('--testing', dest='validation', action='store_false') parser.set_defaults(validation=True) args = parser.parse_args() print(args) args.bfs_level = args.n_layers + 1 # pruning used nodes for memory main(args)
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Suite.cc_version' db.add_column('library_suite', 'cc_version', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) # Adding field 'SuiteCase.cc_version' db.add_column('library_suitecase', 'cc_version', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) # Adding field 'CaseVersion.cc_version' db.add_column('library_caseversion', 'cc_version', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) # Adding field 'CaseAttachment.cc_version' db.add_column('library_caseattachment', 'cc_version', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) # Adding field 'Case.cc_version' db.add_column('library_case', 'cc_version', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) # Adding field 'CaseStep.cc_version' db.add_column('library_casestep', 'cc_version', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) def backwards(self, orm): # Deleting field 'Suite.cc_version' db.delete_column('library_suite', 'cc_version') # Deleting field 'SuiteCase.cc_version' db.delete_column('library_suitecase', 'cc_version') # Deleting field 'CaseVersion.cc_version' db.delete_column('library_caseversion', 'cc_version') # Deleting field 'CaseAttachment.cc_version' db.delete_column('library_caseattachment', 'cc_version') # Deleting field 'Case.cc_version' db.delete_column('library_case', 'cc_version') # Deleting field 'CaseStep.cc_version' db.delete_column('library_casestep', 'cc_version') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'core.product': { 'Meta': {'ordering': "['name']", 'object_name': 'Product'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 190426)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'has_team': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 190624)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'own_team': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.User']", 'symmetrical': 'False', 'blank': 'True'}) }, 'core.productversion': { 'Meta': {'ordering': "['product', 'order']", 'object_name': 'ProductVersion'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 185878)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'environments': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'productversion'", 'symmetrical': 'False', 'to': "orm['environments.Environment']"}), 'has_team': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'latest': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 186074)'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'own_team': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.User']", 'symmetrical': 'False', 'blank': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'versions'", 'to': "orm['core.Product']"}), 'version': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'core.user': { 'Meta': {'object_name': 'User', 'db_table': "'auth_user'", '_ormbases': ['auth.User'], 'proxy': 'True'} }, 'environments.category': { 'Meta': {'ordering': "['name']", 'object_name': 'Category'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 196774)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 196972)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'environments.element': { 'Meta': {'ordering': "['name']", 'object_name': 'Element'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'elements'", 'to': "orm['environments.Category']"}), 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 189436)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 189627)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'environments.environment': { 'Meta': {'object_name': 'Environment'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 200292)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'elements': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'environments'", 'symmetrical': 'False', 'to': "orm['environments.Element']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 200493)'}), 'profile': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'environments'", 'null': 'True', 'to': "orm['environments.Profile']"}) }, 'environments.profile': { 'Meta': {'object_name': 'Profile'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 197684)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 197880)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'library.case': { 'Meta': {'object_name': 'Case'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 192679)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 192871)'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'cases'", 'to': "orm['core.Product']"}) }, 'library.caseattachment': { 'Meta': {'object_name': 'CaseAttachment'}, 'attachment': ('django.db.models.fields.files.FileField', [], {'max_length': '100'}), 'caseversion': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'attachments'", 'to': "orm['library.CaseVersion']"}), 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 187537)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 187745)'}) }, 'library.casestep': { 'Meta': {'ordering': "['caseversion', 'number']", 'object_name': 'CaseStep'}, 'caseversion': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'steps'", 'to': "orm['library.CaseVersion']"}), 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 191525)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'expected': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'instruction': ('django.db.models.fields.TextField', [], {}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 191712)'}), 'number': ('django.db.models.fields.IntegerField', [], {}) }, 'library.caseversion': { 'Meta': {'ordering': "['case', 'productversion__order']", 'object_name': 'CaseVersion'}, 'case': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'versions'", 'to': "orm['library.Case']"}), 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 198592)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'environments': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'caseversion'", 'symmetrical': 'False', 'to': "orm['environments.Environment']"}), 'envs_narrowed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'latest': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 198795)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'productversion': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'caseversions'", 'to': "orm['core.ProductVersion']"}), 'status': ('django.db.models.fields.CharField', [], {'default': "'draft'", 'max_length': '30', 'db_index': 'True'}), 'tags': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'caseversions'", 'blank': 'True', 'to': "orm['tags.Tag']"}) }, 'library.suite': { 'Meta': {'object_name': 'Suite'}, 'cases': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'suites'", 'symmetrical': 'False', 'through': "orm['library.SuiteCase']", 'to': "orm['library.Case']"}), 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 194131)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 194340)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'suites'", 'to': "orm['core.Product']"}), 'status': ('django.db.models.fields.CharField', [], {'default': "'draft'", 'max_length': '30', 'db_index': 'True'}) }, 'library.suitecase': { 'Meta': {'ordering': "['order']", 'object_name': 'SuiteCase'}, 'case': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'suitecases'", 'to': "orm['library.Case']"}), 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 195643)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 195852)'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'suite': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'suitecases'", 'to': "orm['library.Suite']"}) }, 'tags.tag': { 'Meta': {'object_name': 'Tag'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 188495)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 1, 12, 188686)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.Product']", 'null': 'True', 'blank': 'True'}) } } complete_apps = ['library']
import snap import os filename = "facebook_combined.txt" G = snap.LoadEdgeList(snap.PUNGraph,filename,0,1) #3rd and 4th parameters are column indices of source and destination nodes #G is now the required undirected graph n = G.GetNodes() cls = snap.TIntFltH() # closeness centrality dict containing (node id, closeness centrality) as a (key,value) pair for itr1 in G.Nodes(): cc = 0 s = 0 sp = snap.TIntH() # A hash table containing shortest paths from itr1.node to all other nodes a = snap.GetShortPath(G,itr1.GetId(),sp) for j in sp: s += sp[j] cc = (n-1)/s cc = round(cc,6) cls[itr1.GetId()] = cc cls.SortByDat(False) #sorting in descending order by value. parameter Asc == False # now have to output cls in a text file os.mkdir("centralities") os.chdir("centralities") filename = "closeness.txt" f = open(filename,"w") for key in cls: f.write(str(key) + " " + str(cls[key]) + "\n") f.close() pr = snap.TIntFltH() # pagerank dict containing (node id, closeness centrality) as a (key,value) pair n_pr = 0 #no of nodes with Id divisible by 4 for it in G.Nodes(): if( (it.GetId() %4) == 0): n_pr += 1 #n_pr number of slots in the non uniform(biased) vector will have non zero input. others will have zero a = 0.8 # damping factor for itr in G.Nodes(): #initializing pageranks for all nodes pr[itr.GetId()] = 1 iteration_MAX = 128 # total number of iterations to be done. a number more than 100 and a power of 2 has been chosen. for i in range(iteration_MAX): sum = 0 for itr in G.Nodes(): t = 0 for Id in itr.GetOutEdges(): itr2 = G.GetNI(Id) t += ( pr[Id]/itr2.GetOutDeg() ) pr[itr.GetId()] = a * t if( (itr.GetId() % 4) == 0 ): pr[itr.GetId()] += (1-a) * (1/n_pr) sum += pr[itr.GetId()] for key in pr: #normalization pr[key] = pr[key]/sum for key in pr: #normalization pr[key] = round(pr[key],6) pr.SortByDat(False) filename = "pagerank.txt" f = open(filename,"w") for key in pr: f.write(str(key) + " " + str(pr[key]) + "\n") f.close()
import os from distutils.core import setup from pathlib import Path def read_requirements(): "Read requirements file and returns those lines corresponding to library dependencies" pwd = Path(os.path.dirname(os.path.abspath(__file__))) lines = [] with open(pwd / 'requirements.txt', 'rt') as fh: for line in fh: line = line.strip() pos = line.find('#') if pos >= 0: line = line[:pos].strip() if not line: continue lines.append(line) return lines requirements = read_requirements() setup( name='pywde', version='0.1', packages=['pywde'], url='', license='', author='Carlos Aya', author_email='', description='Wavelet density estimation in Python', py_modules=['pywde'], install_requires=requirements, setup_requires=[] )
"""Provides formatted logging handler for distributey.""" import logging import sys from flask import has_request_context, session import config from splunk_handler import SplunkHandler log_level = config.get_config_by_keypath('LOG_LEVEL') splunk_enabled = config.get_config_by_keypath('SPLUNK_ENABLED') if log_level == 'debug': __LOGLVL = logging.DEBUG else: __LOGLVL = logging.INFO class __RequestFormatter(logging.Formatter): def format(self, record): if has_request_context(): try: record.user_agent = session['header_args']['user-agent'] record.tenant = session['view_args']['tenant'] record.x_real_ip = session['header_args']['x-real-ip'] except KeyError: # input validation failed record.user_agent = 'N/A' record.tenant = 'N/A' record.x_real_ip = 'N/A' else: record.tenant = 'system' record.x_real_ip = 'localhost' record.user_agent = 'n/a' return super().format(record) __stream_handler = logging.StreamHandler(stream=sys.stderr) __stream_handler.setFormatter( __RequestFormatter( '[%(asctime)s] distributey {%(pathname)s:%(lineno)d} %(levelname)s - ' 'tenant: %(tenant)s, origin: %(x_real_ip)s, ' 'ua: %(user_agent)s - %(message)s')) logger = logging.getLogger() logger.setLevel(__LOGLVL) logger.addHandler(__stream_handler) if splunk_enabled: __splunk = SplunkHandler( host=config.get_config_by_keypath('SPLUNK_HOST'), port=config.get_config_by_keypath('SPLUNK_PORT'), protocol=config.get_config_by_keypath('SPLUNK_PROTOCOL'), verify=config.get_config_by_keypath('SPLUNK_VERIFY'), token=config.get_config_by_keypath('SPLUNK_TOKEN'), index=config.get_config_by_keypath('SPLUNK_INDEX')) logger.addHandler(__splunk)
import logging import smtplib from email.message import EmailMessage class EmailConfig(): def __init__(self, account, passwd, server_addr, server_port): self.account = account self.passwd = passwd self.server_addr = server_addr self.server_port = server_port def send_code(config, email_addr, code): server = smtplib.SMTP_SSL(config.server_addr, config.server_port) server.ehlo() server.login(config.account, config.passwd) msg = EmailMessage() msg.set_content(code) msg['Subject'] = "UBC Discord Access Code" msg['From'] = config.account msg['To'] = email_addr server.send_message(msg, config.account, email_addr) server.close() logging.info(f"sent access code to {email_addr}")
from http import HTTPStatus from flask_restplus import Resource, abort from app.api.models import AttachmentModel from app.api.namespaces import attachments from app.authorization.permissions import EditThesisPermission, UserNeedPermission from database import db from database.models import Attachment @attachments.route('/<int:{}>'.format('attachment_id')) @attachments.param('attachment_id', description='Attachment identifier') class AttachmentItem(Resource): @attachments.marshal_with(AttachmentModel) def get(self, attachment_id): """ Get attachment info """ attachment = Attachment.query.get(attachment_id) if attachment is None: return abort(HTTPStatus.NOT_FOUND, message='Attachment is not found') return attachment @attachments.response(HTTPStatus.FORBIDDEN, description="User is not authorized to delete the attachment") @attachments.response(HTTPStatus.OK, description="Attachment successfully deleted") def delete(self, attachment_id): """ Delete attachment * User can delete **their attachment** if discussion is not frozen * User with permission to **"edit theses"** can delete the attachment """ attachment = Attachment.query.get(attachment_id) if attachment is None: return abort(HTTPStatus.NOT_FOUND, message='Attachment is not found') if not UserNeedPermission(attachment.thesis.author_id): if not EditThesisPermission.can(): return abort(HTTPStatus.FORBIDDEN, message="User is not authorized to delete the attachment") elif attachment.thesis.argument_thesis.argument.discussion.is_frozen: return abort(HTTPStatus.FORBIDDEN, message="Discussion is frozen") db.session.delete(attachment) db.session.commit() return "Attachment successfully deleted"
import json import logging import os import torch import requests from typing import Dict, Optional from torch import nn from torch import Tensor logger = logging.getLogger(__name__) from huggingface_hub.constants import CONFIG_NAME, PYTORCH_WEIGHTS_NAME from huggingface_hub.file_download import ( cached_download, hf_hub_url, is_torch_available, ) from huggingface_hub.hf_api import HfApi, HfFolder from huggingface_hub.repository import Repository StateDict = Dict[str, Tensor] class HFModelHub: @staticmethod def save_pretrained( model: nn.Module, save_directory: str, config: Optional[dict] = None, push_to_hub: bool = False, **kwargs, ): """ Saving weights in local directory. Parameters: save_directory (:obj:`str`): Specify directory in which you want to save weights. config (:obj:`dict`, `optional`): specify config (must be dict) incase you want to save it. push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`): Set it to `True` in case you want to push your weights to huggingface_hub model_id (:obj:`str`, `optional`, defaults to :obj:`save_directory`): Repo name in huggingface_hub. If not specified, repo name will be same as `save_directory` kwargs (:obj:`Dict`, `optional`): kwargs will be passed to `push_to_hub` """ os.makedirs(save_directory, exist_ok=True) # saving config if isinstance(config, dict): path = os.path.join(save_directory, CONFIG_NAME) with open(path, "w") as f: json.dump(config, f) # saving model weights path = os.path.join(save_directory, PYTORCH_WEIGHTS_NAME) torch.save(model.state_dict(), path) if push_to_hub: return HFModelHub.push_to_hub(save_directory, **kwargs) @staticmethod def from_pretrained( pretrained_model_name_or_path: Optional[str], strict: bool = True, map_location: Optional[str] = "cpu", force_download: bool = False, resume_download: bool = False, proxies: Dict = None, use_auth_token: Optional[str] = None, cache_dir: Optional[str] = None, local_files_only: bool = False, ) -> StateDict: r""" Instantiate a pretrained pytorch model from a pre-trained model configuration from huggingface-hub. The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated). To train the model, you should first set it back in training mode with ``model.train()``. Parameters: pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`, `optional`): Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``. - You can add `revision` by appending `@` at the end of model_id simply like this: ``dbmdz/bert-base-german-cased@main`` Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any identifier allowed by git. - A path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - :obj:`None` if you are both providing the configuration and state dictionary (resp. with keyword arguments ``config`` and ``state_dict``). cache_dir (:obj:`Union[str, os.PathLike]`, `optional`): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (:obj:`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to only look at local files (i.e., do not try to download the model). use_auth_token (:obj:`str` or `bool`, `optional`): The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`). model_kwargs (:obj:`Dict`, `optional`):: model_kwargs will be passed to the model during initialization .. note:: Passing :obj:`use_auth_token=True` is required when you want to use a private model. """ model_id = pretrained_model_name_or_path map_location = torch.device(map_location) revision = None if len(model_id.split("@")) == 2: model_id, revision = model_id.split("@") if model_id in os.listdir() and CONFIG_NAME in os.listdir(model_id): config_file = os.path.join(model_id, CONFIG_NAME) else: try: config_url = hf_hub_url( model_id, filename=CONFIG_NAME, revision=revision ) config_file = cached_download( config_url, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, ) except requests.exceptions.RequestException: logger.warning("config.json NOT FOUND in HuggingFace Hub") config_file = None if model_id in os.listdir(): print("LOADING weights from local directory") model_file = os.path.join(model_id, PYTORCH_WEIGHTS_NAME) else: model_url = hf_hub_url( model_id, filename=PYTORCH_WEIGHTS_NAME, revision=revision ) model_file = cached_download( model_url, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, ) logger.debug(model_file) if config_file is not None: with open(config_file, "r", encoding="utf-8") as f: config = json.load(f) # we are not using config state_dict = torch.load(model_file, map_location=map_location) return state_dict @staticmethod def push_to_hub( save_directory: Optional[str], model_id: Optional[str] = None, repo_url: Optional[str] = None, commit_message: Optional[str] = "add model", organization: Optional[str] = None, private: bool = None, ) -> str: """ Parameters: save_directory (:obj:`Union[str, os.PathLike]`): Directory having model weights & config. model_id (:obj:`str`, `optional`, defaults to :obj:`save_directory`): Repo name in huggingface_hub. If not specified, repo name will be same as `save_directory` repo_url (:obj:`str`, `optional`): Specify this in case you want to push to existing repo in hub. organization (:obj:`str`, `optional`): Organization in which you want to push your model. private (:obj:`bool`, `optional`): private: Whether the model repo should be private (requires a paid huggingface.co account) commit_message (:obj:`str`, `optional`, defaults to :obj:`add model`): Message to commit while pushing Returns: url to commit on remote repo. """ if model_id is None: model_id = save_directory token = HfFolder.get_token() if repo_url is None: repo_url = HfApi().create_repo( token, model_id, organization=organization, private=private, repo_type=None, exist_ok=True, ) repo = Repository(save_directory, clone_from=repo_url, use_auth_token=token) return repo.push_to_hub(commit_message=commit_message)
"""Resource for SecurityGroups""" import ipaddress from typing import Type from botocore.client import BaseClient from altimeter.aws.resource.resource_spec import ListFromAWSResult from altimeter.aws.resource.ec2 import EC2ResourceSpec from altimeter.core.graph.field.dict_field import EmbeddedDictField from altimeter.core.graph.field.list_field import ListField from altimeter.core.graph.field.resource_link_field import ResourceLinkField from altimeter.core.graph.field.scalar_field import ScalarField from altimeter.core.graph.field.tags_field import TagsField from altimeter.core.graph.schema import Schema class SecurityGroupResourceSpec(EC2ResourceSpec): """Resource for SecurityGroups""" type_name = "security-group" schema = Schema( ScalarField("GroupName", "name"), ListField( "IpPermissions", EmbeddedDictField( ScalarField("IpProtocol"), ScalarField("FromPort", default_value=0), ScalarField("ToPort", default_value=65535), ListField( "IpRanges", EmbeddedDictField( ScalarField("CidrIp"), ScalarField("FirstIp"), ScalarField("LastIp") ), alti_key="ip_range", optional=True, ), ListField( "Ipv6Ranges", EmbeddedDictField( ScalarField("CidrIpv6"), ScalarField("FirstIp"), ScalarField("LastIp") ), alti_key="ipv6_range", optional=True, ), ListField( "PrefixListIds", EmbeddedDictField(ScalarField("PrefixListId")), optional=True ), ListField( "UserIdGroupPairs", EmbeddedDictField( ResourceLinkField("GroupId", "SecurityGroupResourceSpec"), ScalarField("UserId", alti_key="account_id"), ScalarField("PeeringStatus", optional=True), ScalarField("VpcId", optional=True), ScalarField("VpcPeeringConnectionId", optional=True), ), alti_key="user_id_group_pairs", ), ), alti_key="ingress_rule", ), ListField( "IpPermissionsEgress", EmbeddedDictField( ScalarField("IpProtocol"), ScalarField("FromPort", default_value=0), ScalarField("ToPort", default_value=65535), ListField( "IpRanges", EmbeddedDictField( ScalarField("CidrIp"), ScalarField("FirstIp"), ScalarField("LastIp") ), alti_key="ip_range", optional=True, ), ListField( "Ipv6Ranges", EmbeddedDictField( ScalarField("CidrIpv6"), ScalarField("FirstIp"), ScalarField("LastIp") ), alti_key="ipv6_range", optional=True, ), ListField( "PrefixListIds", EmbeddedDictField(ScalarField("PrefixListId")), optional=True ), ListField( "UserIdGroupPairs", EmbeddedDictField( ResourceLinkField("GroupId", "SecurityGroupResourceSpec"), ScalarField("UserId", alti_key="account_id"), ScalarField("PeeringStatus", optional=True), ScalarField("VpcId", optional=True), ScalarField("VpcPeeringConnectionId", optional=True), ), alti_key="user_id_group_pairs", ), ), alti_key="egress_rule", ), TagsField(), ) @classmethod def list_from_aws( cls: Type["SecurityGroupResourceSpec"], client: BaseClient, account_id: str, region: str ) -> ListFromAWSResult: """Return a dict of dicts of the format: {'security_group_1_arn': {security_group_1_dict}, 'security_group_2_arn': {security_group_2_dict}, ...} Where the dicts represent results from describe_subnets.""" security_groups = {} paginator = client.get_paginator("describe_security_groups") for resp in paginator.paginate(): for security_group in resp.get("SecurityGroups", []): resource_arn = cls.generate_arn(account_id, region, security_group["GroupId"]) for ingress_rule in security_group.get("IpPermissions", []): for ip_range in ingress_rule.get("IpRanges", []): cidr = ip_range["CidrIp"] ipv4_network = ipaddress.IPv4Network(cidr, strict=False) first_ip, last_ip = int(ipv4_network[0]), int(ipv4_network[-1]) ip_range["FirstIp"] = first_ip ip_range["LastIp"] = last_ip for ip_range in ingress_rule.get("Ipv6Ranges", []): cidr = ip_range["CidrIpv6"] ipv6_network = ipaddress.IPv6Network(cidr, strict=False) first_ip, last_ip = int(ipv6_network[0]), int(ipv6_network[-1]) ip_range["FirstIp"] = first_ip ip_range["LastIp"] = last_ip for egress_rule in security_group.get("IpPermissionsEgress", []): for ip_range in egress_rule.get("IpRanges", []): cidr = ip_range["CidrIp"] ipv4_network = ipaddress.IPv4Network(cidr, strict=False) first_ip, last_ip = int(ipv4_network[0]), int(ipv4_network[-1]) ip_range["FirstIp"] = first_ip ip_range["LastIp"] = last_ip for ip_range in egress_rule.get("Ipv6Ranges", []): cidr = ip_range["CidrIpv6"] ipv6_network = ipaddress.IPv6Network(cidr, strict=False) first_ip, last_ip = int(ipv6_network[0]), int(ipv6_network[-1]) ip_range["FirstIp"] = first_ip ip_range["LastIp"] = last_ip security_groups[resource_arn] = security_group return ListFromAWSResult(resources=security_groups)
from cmndr import Middleware import logging class LoggingMiddleware(Middleware): def execute(self, command, next_callable): cmd_dict = command.__dict__ splitted_module = command.__module__.split('.') domain = splitted_module[1] log_string = '{} {}'.format(' '.join(splitted_module[-2:]), cmd_dict if cmd_dict else '') logging.getLogger(domain).info(log_string) ret = next_callable(command) return ret
from sfc_models import register_standard_logs from sfc_models.objects import * from sfc_models.sector import Sector from sfc_gui.chart_plotter import ChartPlotterWindow2 from sfc_models.sector import Sector from sfc_models.utils import Logger class BusinessWithInvestment(FixedMarginBusiness): def __init__(self, country, code, long_name=''): if long_name == '': long_name = 'Business with Investment {0} in Country {1}'.format(code, country.Code) labour_input_name = 'LAB' output_name = 'GOOD' profit_margin=0.0 FixedMarginBusiness.__init__(self, country, code, long_name, profit_margin, labour_input_name, output_name) self.AddVariable('INV', 'Inventory', 'LAG_INV + PROD - SUP_GOOD - INVEST') self.AddVariable('LAG_INV', 'Lagged Inventory', 'INV(k-1)') # Target inventory = 1*market demand # Production = (expected demand) + (desired change in inventory) # expected demand = investment + previous market demand # desired change in inventory = .5*(previous market demand - existing inventory). self.AddVariable('PROD', 'Production Level', 'max(0,INVEST + LAG_SUP_GOOD + .1*(LAG_SUP_GOOD - LAG_INV))') self.AddVariable('INVSALES', 'Inventory/Sales Ratio', 'INV/SUP_GOOD') self.AddVariable('CAPITAL', 'Stock of Capital', '0.95*LAG_CAP + INVEST') # Production function: Y = K(t-1)^.5 N^.5 # N = Number of hours = P^2 / (K(t-1) self.AddVariable('NUMHOURS', 'Number of Hours Demanded', '(PROD*PROD)/LAG_CAP') self.AddVariable('WAGERATE', 'Wage rate', 'DEM_LAB/NUMHOURS') self.AddVariable('LAG_HOURS', 'Lagged Number of Hours', 'NUMHOURS(k-1)') self.AddVariable('LAG_CAP', 'Lagged Capital', 'CAPITAL(k-1)') self.AddVariable('LAG_PROD', 'Lagged Production', 'PROD(k-1)') self.AddVariable('LAG_SUP_GOOD', 'Lagged Supply to market', 'SUP_GOOD(k-1)') # Target capital = (alpha_capital)*(previous # of hours worked) self.AddVariable('ALPHA_CAPITAL', 'Multiplier for target capital', '1.') self.AddVariable('CAPITAL_TARGET', 'Target Level for capital', 'ALPHA_CAPITAL*LAG_HOURS') self.AddVariable('INVEST', 'Gross Investment', 'max(0., .05*LAG_CAP + .1*(CAPITAL_TARGET-LAG_CAP))') self.AddVariable('CAPITAL_RATIO', 'Ratio of Capital to target', 'CAPITAL/CAPITAL_TARGET') # Pro-Forma Profits: 20% of sales - depreciation. self.AddVariable('PROFORMA', 'Pro-Forma Profits (Lagged)', '0.20*LAG_SUP_GOOD - .05*LAG_CAP') self.AddVariable('DIVPAID', 'Dividends Paid', '.055* LAG_F + 0.8*PROFORMA') self.AddVariable('DEM_LAB', 'Demand For Labour', '0.8*PROD') def _GenerateEquations(self): # self.AddVariable('SUP_GOOD', 'Supply of goods', '<TO BE DETERMINED>') wage_share = 1.0 - self.ProfitMargin Logger('Searching for Market Sector with Code {0} in parent country', priority=4, data_to_format=(self.OutputName,)) # Since we have inventories, profits are volume of sales * profit margin self.SetEquationRightHandSide('PROF', '.1 * SUP_GOOD') for s in self.Parent.SectorList: if s.Code == 'HH': Logger('Adding dividend flow', priority=5) self.AddCashFlow('-DIV', 'DIVPAID', 'Dividends paid', is_income=False) s.AddCashFlow('DIV', self.GetVariableName('DIVPAID'), 'Dividends received', is_income=True) break def get_description(): return "ModelInvestment" def build_model(): # Create model, which holds all entities mod = Model() mod.EquationSolver.TraceStep = 10 mod.EquationSolver.MaxTime = 100 # Create first country - Canada. (This model only has one country.) can = Country(mod, 'CA', 'Canada') # Create sectors gov = ConsolidatedGovernment(can, 'GOV', 'Government') hh = Household(can, 'HH', 'Household') # A literally non-profit business sector bus = BusinessWithInvestment(can, 'BUS', 'Business Sector') # Create the linkages between sectors - tax flow, markets - labour ('LAB'), goods ('GOOD') tax = TaxFlow(can, 'TF', 'TaxFlow', .2) labour = Market(can, 'LAB', 'Labour market') goods = Market(can, 'GOOD', 'Goods market') # Initial conditions bus.AddInitialCondition('CAPITAL', 100.) bus.AddInitialCondition('PROD', 100.) bus.AddInitialCondition('INV', 95.) # bus.AddInitialCondition('LAG_INV', 100.) # bus.AddInitialCondition('LAG_SUP_GOOD', 95.) bus.AddInitialCondition('SUP_GOOD', 95.) bus.AddInitialCondition('NUMHOURS', 100.) # Initialise money holdings bizcash = 69 hhcash = 76. gov.AddInitialCondition('F', -(bizcash+hhcash)) hh.AddInitialCondition('F', hhcash) bus.AddInitialCondition('F', bizcash) # Need to set the exogenous variable - Government demand for Goods ("G" in economist symbology) #mod.AddExogenous('GOV', 'DEM_GOOD', '[19.,] * 20 + [25.]*100') mod.AddExogenous('GOV', 'DEM_GOOD', '[19.,] * 105') mod.AddExogenous('BUS', 'ALPHA_CAPITAL', '[1.,] * 20 + [1.1] * 100') return mod if __name__ == '__main__': # register_standard_logs('output', __file__) mod2 = build_model() mod2.main() window = ChartPlotterWindow2(None, mod2) window.mainloop()
#!/usr/bin/env python3 """ Generate performance graphs. """ import collections import contextlib import errno import os import platform import subprocess import sys import tempfile import timeit FILE_SIZES_MB = tuple(2 ** x for x in range(12)) def generate_file(parent_dir, size_mb): """ Generate a file, write random data to it, and return its filepath. """ fd, filepath = tempfile.mkstemp(dir=parent_dir) os.close(fd) print("Generating %u MB file to '%s'..." % (size_mb, filepath)) cmd = ("dd", "if=/dev/frandom", "of=%s" % (filepath), "bs=1M", "count=%u" % (size_mb)) subprocess.check_call(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) return filepath def read_file(filepath): """ Read a file to fill OS filesystem cache. """ cmd = ("dd", "if=%s" % (filepath), "of=/dev/null", "bs=1M") subprocess.check_call(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) if __name__ == "__main__": with tempfile.TemporaryDirectory() as tmp_dir: # measure data = collections.OrderedDict() for file_size_mb in FILE_SIZES_MB: data_point = [] try: filepath_src = generate_file(tmp_dir, file_size_mb) read_file(filepath_src) # warm up filesystem cache filepath_dst = "%s.dst" % (filepath_src) for use_fast_copy in (False, True): print("Measuring with%s pyfastcopy..." % ("" if use_fast_copy else "out")) v = timeit.repeat(setup="import shutil; import pyfastcopy; p1 = %s; p2 = %s" % (repr(filepath_src), repr(filepath_dst)), stmt="shutil.%s(p1, p2)" % ("copyfile" if use_fast_copy else "_orig_copyfile"), number=10 if file_size_mb >= 64 else 100, repeat=5) v = min(v) data_point.append(str(v / (10 if file_size_mb >= 64 else 100))) os.remove(filepath_dst) os.remove(filepath_src) data[file_size_mb] = tuple(data_point) except OSError as e: if e.errno == errno.ENOSPC: print("Not enough free space") break else: raise with tempfile.TemporaryDirectory() as tmp_dir: # write data files data_filepaths = [] data_fds = [] for graph in range(3): fd, data_filepath = tempfile.mkstemp(suffix=".csv", dir=tmp_dir) data_filepaths.append(data_filepath) data_fds.append(fd) with contextlib.ExitStack() as cm: files = [cm.enter_context(os.fdopen(fd, "wt")) for fd in data_fds] for file_size_mb, data_point in data.items(): f = files[0 if file_size_mb < 64 else 1] line = "%u,%s\n" % (file_size_mb, ",".join(data_point)) f.write(line) files[-1].write(line) # plot sysinfo_line = "(%s %s, on %s %s %s)\"" % (sys.implementation.name.capitalize(), ".".join(map(str, sys.implementation.version[0:3])), platform.system(), platform.release(), platform.processor()) for graph, data_filepath in enumerate(data_filepaths[:2], 1): gnuplot_code = ["set terminal png size 1024,600 font 'M+ 1c bold,12'", "set title \"Time to copy file using shutil.copyfile: standard Python vs pyfastcopy\\n" + sysinfo_line, "set output '%u.png'" % (graph), "set key left samplen 3 spacing 1.75", "set xlabel 'File size (MB)'", "set xtics rotate out", "set ylabel 'Time to copy (ms)'", "set format y '%.0f'", "set style data histogram", "set style histogram clustered", "set style fill solid", "set boxwidth 0.95 relative", "set datafile separator ','", "plot '%s' using ($2*1000):xtic(1) title 'standard', " "'%s' using ($3*1000):xtic(1) title 'pyfastcopy'" % (data_filepath, data_filepath)] gnuplot_code = ";\n".join(gnuplot_code) + ";" subprocess.check_output(("gnuplot",), input=gnuplot_code, stderr=None, universal_newlines=True) gnuplot_code = ["set terminal png size 1024,600 font 'M+ 1c bold,12'", "set title \"shutil.copyfile performance gain of pyfastcopy vs stock Python\\n" + sysinfo_line, "set output '3.png'", "set xlabel 'File size (MB)'", "set xtics rotate out", "set ylabel 'Performance gain (%)'", "set yrange[20:50]", "set format y '%.0f'", "set mytics 5", "set datafile separator ','", "plot '%s' using (100-100*$3/$2):xtic(1) with lines title '' lw 2" % (data_filepaths[2])] gnuplot_code = ";\n".join(gnuplot_code) + ";" subprocess.check_output(("gnuplot",), input=gnuplot_code, stderr=None, universal_newlines=True)
#!/usr/bin/env python3 from collections import OrderedDict ud = dict([('a', 1), ('b', 1), ('c', 1)]) print(ud) od = OrderedDict([('a', 1), ('b', 1), ('c', 1)]) print(od)
from os import path, mkdir from data import DATA_PATH # DATA_PATH = "." class SolverBase(object): def __init__(self, name): self.name = name class_name = self.__class__.__name__ ind = class_name.find("Solver") self.data_dir = path.join(DATA_PATH, class_name[:ind].lower()) if not path.exists(self.data_dir): mkdir(self.data_dir) if self.name == "sample": open(self.get_filename("in"), "w").close() open(self.get_filename("out"), "w").close() open(self.get_filename("out.ref"), "w").close() self.n_sample_ = 0 def _get_file_handler(self, ext): op = 'w' if ext == 'out' else 'r' return open(self.get_filename(ext), op) def get_filename(self, ext): return path.join(self.data_dir, self.name + "." + ext) def _get_input_file(self): f = self._get_file_handler('in') self.n_sample_ = int(f.readline()) return f def _iter_input(self): with self._get_input_file() as f: return iter(f.readlines()) @staticmethod def _split_line_to_list(line, fmt=int): return [fmt(s) for s in line.split(" ")] def _write_result(self, result, sep=" "): assert len(result) == self.n_sample_, \ "length of result '{}' should be equal to the number of samples " \ "{} for {}.".format(len(result), self.n_sample_, self.__class__) f = self._get_file_handler('out') for i, line in enumerate(result, 1): f.write("Case #{}:{}{}\n".format(i, sep, line)) f.close() def _mod(x, mod): """mod is useful for large numbers""" return x if mod is None else x % mod def sum_of_int(n, mod=None): x = int(n * (n + 1) / 2) return _mod(x, mod) def sum_of_int_square(n, mod=None): x = int(n * (n + 1) * (n * 2 + 1) / 6) return _mod(x, mod) def sum_of_int_cube(n, mod=None): x = int(n * (n + 1) / 2) x = _mod(x, mod) return _mod(x * x, mod) def reflex(cond): def reflex_cond(p1, p2): return cond(p1, p2) or cond(p2, p1) return reflex_cond
import importlib from logging import getLogger from imblearn.ensemble import BalancedBaggingClassifier, RUSBoostClassifier from imblearn.over_sampling import RandomOverSampler, SMOTE from imblearn.pipeline import Pipeline from imblearn.under_sampling import RandomUnderSampler from keras.callbacks import EarlyStopping, ReduceLROnPlateau import numpy as np import scipy.sparse as sp from sklearn.cluster import KMeans from sklearn.decomposition import NMF, PCA, TruncatedSVD from sklearn.impute import SimpleImputer from sklearn.metrics import get_scorer from sklearn.model_selection import KFold from sklearn.multiclass import OneVsOneClassifier, OneVsRestClassifier from sklearn.preprocessing import MaxAbsScaler, StandardScaler logger = getLogger('predict').getChild('SingleTrainer') if 'Flattener' not in globals(): from ..commons.Flattener import Flattener if 'Reshaper' not in globals(): from ..commons.Reshaper import Reshaper if 'BaseTrainer' not in globals(): from .BaseTrainer import BaseTrainer if 'EnsembleTrainer' not in globals(): from .EnsembleTrainer import EnsembleTrainer if 'Augmentor' not in globals(): from .Augmentor import Augmentor if 'Outputer' not in globals(): from ..Outputer import Outputer class SingleTrainer(BaseTrainer): def __init__( self, X_train, Y_train, X_test, feature_columns, configs, kernel=False ): self.X_train = X_train self.Y_train = Y_train self.X_test = X_test self.feature_columns = feature_columns self.configs = configs self.kernel = kernel # keras, torchのスコープ対策として、インスタンス作成時に読み込み # keras, torch使う時しか使わないので、evalで定義してエラー回避 if self.kernel: self.create_nn_model = eval('create_nn_model') def _to_pipeline_params(self, pre, params): return {f'{pre}__{k}': v for k, v in params.items()} def _get_model_params(self, model_config): # model model = model_config['model'] logger.info('model: %s' % model) self.model = model modelname = model_config.get('modelname') if modelname: logger.info('modelname: %s' % modelname) # params params = model_config.get('params', {}) self.params = self._to_pipeline_params(self.model, params) # fit_params fit_params = model_config.get('fit_params', {}) if self.model in ['keras_clf', 'keras_reg']: fit_params['callbacks'] = [] if fit_params.get('reduce_lr'): fit_params['callbacks'].append( ReduceLROnPlateau(**fit_params['reduce_lr'])) del fit_params['reduce_lr'] if fit_params.get('early_stopping'): fit_params['callbacks'].append( EarlyStopping(**fit_params['early_stopping'])) del fit_params['early_stopping'] self.fit_params = self._to_pipeline_params(self.model, fit_params) # cv self.cv_select = model_config.get('cv_select', 'min') self.n_trials = model_config.get('n_trials') # multiclass # final estimatorに学習後追加 multiclass = model_config.get('multiclass') if multiclass: logger.info('multiclass: %s' % multiclass) if multiclass == 'onevsone': multiclass = OneVsOneClassifier elif multiclass == 'onevsrest': multiclass = OneVsRestClassifier else: logger.error( f'NOT IMPLEMENTED MULTICLASS: {multiclass}') raise Exception('NOT IMPLEMENTED') self.multiclass = multiclass return def _add_sampling_to_pipeline(self, pipeline, model_config, X_train): undersampling = model_config.get('undersampling') oversampling = model_config.get('oversampling') # 形式エラー対策 pre if (undersampling and undersampling == 'random') or oversampling: pipeline.append(('flattener', Flattener())) # pipeline undersampling_clf = None if undersampling: logger.info(f'undersampling: {undersampling}') if undersampling == 'random': pipeline.append( ('undersampling', RandomUnderSampler(random_state=42))) # final estimatorに学習後追加 elif undersampling == 'bagging': undersampling_clf = BalancedBaggingClassifier elif undersampling == 'adaboost': undersampling_clf = RUSBoostClassifier else: logger.error( f'NOT IMPLEMENTED UNDERSAMPLING: {undersampling}') raise Exception('NOT IMPLEMENTED') if oversampling: logger.info(f'oversampling: {oversampling}') if oversampling == 'random': pipeline.append( ('oversampling', RandomOverSampler(random_state=42))) elif oversampling == 'smote': pipeline.append( ('oversampling', SMOTE(random_state=42))) else: logger.error( f'NOT IMPLEMENTED OVERSAMPLING: {oversampling}') raise Exception('NOT IMPLEMENTED') # 形式エラー対策 post if (undersampling and undersampling == 'random') or oversampling: _is_categorical = (self.model == 'keras_clf') pipeline.append( ('reshaper', Reshaper(X_train.shape[1:], _is_categorical))) return pipeline, undersampling_clf def _get_base_pipeline(self, model_config, nn_func, X_train): _pipeline = [] # imputation imputation = model_config.get('missing_imputation') if imputation: logger.info(f'missing_imputation: {imputation}') _pipeline.append(( 'missing_imputation', SimpleImputer(missing_values=np.nan, strategy=imputation) )) # x_scaler x_scaler = model_config.get('x_scaler') if x_scaler: logger.info(f'x_scaler: {x_scaler}') if x_scaler == 'standard': # to-do: 外れ値対策として、1-99%に限定検討 # winsorize(X_train, limits=[0.01, 0.01]).tolist() _x_scaler = StandardScaler(with_mean=False) elif x_scaler == 'maxabs': _x_scaler = MaxAbsScaler() _pipeline.append(('x_scaler', _x_scaler)) # dimension_reduction di_reduction = model_config.get('dimension_reduction') if di_reduction: n = di_reduction['n'] model = di_reduction['model'] if n == 'all': n = X_train.shape[1] logger.info( 'dimension_reduction: %s to %s with %s' % (X_train.shape[1], n, model)) if model == 'pca': # pca ratioがuniqueでないと、再現性ない場合あり _pipeline.append(( 'dimension_reduction', PCA(n_components=n, random_state=42) )) elif model == 'svd': _pipeline.append(( 'dimension_reduction', TruncatedSVD(n_components=n, random_state=42) )) elif model == 'kmeans': _pipeline.append(( 'dimension_reduction', KMeans(n_clusters=n, random_state=42, n_jobs=-1) )) elif model == 'nmf': _pipeline.append(( 'dimension_reduction', NMF(n_components=n, random_state=42) )) else: logger.error( 'NOT IMPLEMENTED DIMENSION REDUCTION MODEL: %s' % model) raise Exception('NOT IMPLEMENTED') self.feature_columns = list(map( lambda x: '%s_%d' % (model, x), range(n))) # sampling _pipeline, self.undersampling = \ self._add_sampling_to_pipeline(_pipeline, model_config, X_train) # augmentation augmentation = model_config.get('augmentation') if augmentation: logger.info(f'augmentation: {augmentation}') _pipeline.append( ('augmentation', Augmentor(**augmentation))) # model create_nn_model = None if self.model in ['keras_clf', 'keras_reg', 'torch_clf', 'torch_reg']: if self.kernel: create_nn_model = self.create_nn_model else: myfunc = importlib.import_module( 'modules.myfuncs.%s' % nn_func) create_nn_model = myfunc.create_nn_model _pipeline.append(( self.model, self.get_base_estimator( self.model, create_nn_model=create_nn_model) )) return Pipeline(_pipeline) def _fit(self, scorer, train_cv, val_cv, X_train, Y_train): # for param tuning, use train_cv best_params = self.calc_best_params( self.base_pipeline, X_train, Y_train, self.params, scorer, train_cv, self.fit_params, self.n_trials, self.multiclass, self.undersampling) logger.info('best params: %s' % best_params) pipeline = self.base_pipeline pipeline.set_params(**best_params) pipeline.steps[-1] = (pipeline.steps[-1][0], self.to_second_estimator( pipeline.steps[-1][1], self.multiclass, self.undersampling)) # to create model, use val_cv logger.info(f'get estimator with cv_select: {self.cv_select}') if self.cv_select == 'train_all': scores, pipelines = self.calc_cv_scores_pipelines( pipeline, X_train, Y_train, scorer, cv=1, fit_params=self.fit_params, with_importances=True) score = scores[0] pipeline = pipelines[0] estimator = pipeline elif self.cv_select in ['min', 'all_folds']: scores, pipelines = self.calc_cv_scores_pipelines( pipeline, X_train, Y_train, scorer, cv=val_cv, fit_params=self.fit_params, with_importances=True) if self.cv_select == 'min': _min_index = np.array(scores).argmin() score = scores[_min_index] pipeline = pipelines[_min_index] estimator = pipeline elif self.cv_select == 'all_folds': _single_pipelines = [] for i, _pipeline in enumerate(pipelines): _single_pipelines.append( (f'{i}_fold', _pipeline)) weights = EnsembleTrainer.get_weights(scores) score = np.average(scores, weights=weights) ensemble_trainer_obj = EnsembleTrainer( X_train, Y_train, self.X_test, self.configs) estimator = ensemble_trainer_obj.calc_ensemble_estimator( _single_pipelines, ensemble_config={'mode': 'average'}, weights=weights, scorer=scorer) else: logger.error(f'NOT IMPLEMENTED CV SELECT: {self.cv_select}') raise Exception('NOT IMPLEMENTED') return score, estimator def _calc_pseudo_label_data( self, X_train, Y_train, estimator, classes, threshold ): _, Y_pred_proba = Outputer.predict_like( train_mode=self.configs['fit']['train_mode'], estimator=estimator, X_train=X_train, Y_train=Y_train, X_target=self.X_test) data_index, label_index = np.where(Y_pred_proba > threshold) pseudo_X_train = self.X_test[data_index] pseudo_Y_train = classes[label_index].reshape(-1, 1) return pseudo_X_train, pseudo_Y_train def _fit_with_pseudo_labeling( self, scorer, train_cv, val_cv, estimator, X_train, Y_train, classes, threshold ): logger.info('fit with pseudo labeling') pseudo_X_train, pseudo_Y_train = self._calc_pseudo_label_data( X_train, Y_train, estimator, classes, threshold) new_X_train = sp.vstack((X_train, pseudo_X_train), format='csr') new_Y_train = np.concatenate([Y_train, pseudo_Y_train]) logger.info( 'with threshold %s, train data added %s => %s' % (threshold, len(Y_train), len(new_Y_train))) return self._fit(scorer, train_cv, val_cv, new_X_train, new_Y_train) def _sample_with_error(self, X_train, Y_train, estimator): Y_pred, _ = Outputer.predict_like( train_mode=self.configs['fit']['train_mode'], estimator=estimator, X_train=X_train, Y_train=Y_train, X_target=X_train) data_index = np.where(Y_pred != self.ravel_like(Y_train)) error_X_train = X_train[data_index] error_Y_train = Y_train[data_index] return error_X_train, error_Y_train def _fit_with_error_sampling( self, scorer, train_cv, val_cv, estimator, X_train, Y_train, score ): logger.info('fit with error_sampling') new_X_train, new_Y_train = self._sample_with_error( X_train, Y_train, estimator) logger.info( 'with error_sampling, error train data is %s' % len(new_Y_train)) _score, _estimator = \ self._fit(scorer, train_cv, val_cv, new_X_train, new_Y_train) _single_estimators = [ ('base', estimator), ('error', _estimator), ] weights = EnsembleTrainer.get_weights( np.array([len(Y_train), len(new_Y_train)])) score = np.average(np.array([score, _score]), weights=weights) ensemble_trainer_obj = EnsembleTrainer( X_train, Y_train, self.X_test, configs=self.configs) estimator = ensemble_trainer_obj.calc_ensemble_estimator( _single_estimators, ensemble_config={'mode': 'average'}, weights=weights, scorer=scorer) return score, estimator def calc_single_estimator( self, model_config, scorer=get_scorer('accuracy'), train_cv=KFold(n_splits=3, shuffle=True, random_state=42), val_cv=KFold(n_splits=3, shuffle=True, random_state=43), nn_func=None, X_train=None, Y_train=None ): if X_train is None: X_train = self.X_train if Y_train is None: Y_train = self.Y_train self._get_model_params(model_config) self.base_pipeline = \ self._get_base_pipeline(model_config, nn_func, X_train) logger.info(f'base_pipeline: {self.base_pipeline}') logger.info(f'fit_params: {self.fit_params}') # fit logger.info('fit') score, estimator = \ self._fit(scorer, train_cv, val_cv, X_train, Y_train) logger.info(f'score: {score}') logger.info(f'estimator: {estimator}') # pseudo labeling pseudo_config = model_config.get('pseudo_labeling') if pseudo_config: if self.configs['fit']['train_mode'] == 'reg': logger.error('NOT IMPLEMENTED PSEUDO LABELING WITH REGRESSION') raise Exception('NOT IMPLEMENTED') threshold = pseudo_config.get('threshold') if not threshold and int(threshold) != 0: threshold = 0.8 if hasattr(estimator, 'classes_'): classes = estimator.classes_ else: classes = np.sort(np.unique(Y_train)) score, estimator = self._fit_with_pseudo_labeling( scorer, train_cv, val_cv, estimator, X_train, Y_train, classes, threshold) logger.info(f'score: {score}') logger.info(f'estimator: {estimator}') # error sampling if model_config.get('error_sampling'): if self.configs['fit']['train_mode'] == 'reg': logger.error('NOT IMPLEMENTED ERROR SAMPLING WITH REGRESSION') raise Exception('NOT IMPLEMENTED') score, estimator = self._fit_with_error_sampling( scorer, train_cv, val_cv, estimator, X_train, Y_train, score) logger.info(f'score: {score}') logger.info(f'estimator: {estimator}') return score, estimator
import cv2 import glob '''Cut images into 256*256 将目标图片裁剪为256*256 像素''' i = 0 def crop(img, outdir): img = cv2.imread(img) # 读入图片 #Row1 cropped = img[0:256, 0:256] # 裁剪坐标为[y0:y1, x0:x1] cv2.imwrite("../corpped_PNG/{}.png".format(i+11000), cropped) # 裁剪并存储在指定文件夹中 # 图片名110xx,第xx张照片的第1行第1列 # 例如11035,文件夹中第35张照片的剪裁出的第1行第1列 cropped = img[0:256, 256:512] cv2.imwrite("../corpped_PNG/{}.png".format(i+12000), cropped) cropped = img[0:256, 512:768] cv2.imwrite("../corpped_PNG/{}.png".format(i + 13000), cropped) cropped = img[0:256, 768:1024] cv2.imwrite("../corpped_PNG/{}.png".format(i + 14000), cropped) cropped = img[0:256, 1024:1280] # 是否有这一行要看照片尺寸是否够大 cv2.imwrite("../corpped_PNG/{}.png".format(i + 15000), cropped) # Row2 cropped = img[256:512, 0:256] cv2.imwrite("../corpped_PNG/{}.png".format(i+21000), cropped) cropped = img[256:512, 256:512] cv2.imwrite("../corpped_PNG/{}.png".format(i+22000), cropped) cropped = img[256:512, 512:768] cv2.imwrite("../corpped_PNG/{}.png".format(i + 23000), cropped) cropped = img[256:512, 768:1024] cv2.imwrite("../corpped_PNG/{}.png".format(i + 24000), cropped) cropped = img[256:512, 1024:1280]# 是否有这一行要看照片尺寸是否够大 cv2.imwrite("../corpped_PNG/{}.png".format(i + 25000), cropped) # Row3 cropped = img[512:768, 0:256] cv2.imwrite("../corpped_PNG/{}.png".format(i+31000), cropped) cropped = img[512:768, 256:512] cv2.imwrite("../corpped_PNG/{}.png".format(i+32000), cropped) cropped = img[512:768, 512:768] cv2.imwrite("../corpped_PNG/{}.png".format(i + 33000), cropped) cropped = img[512:768, 768:1024] cv2.imwrite("../corpped_PNG/{}.png".format(i + 34000), cropped) cropped = img[512:768, 1024:1280]# 是否有这一行要看照片尺寸是否够大 cv2.imwrite("../corpped_PNG/{}.png".format(i + 35000), cropped) # Row4 是否有这一行要看照片尺寸是否够大 cropped = img[768:1024, 0:256] cv2.imwrite("../corpped_PNG/{}.png".format(i+41000), cropped) cropped = img[768:1024, 256:512] cv2.imwrite("../corpped_PNG/{}.png".format(i+42000), cropped) cropped = img[768:1024, 512:768] cv2.imwrite("../corpped_PNG/{}.png".format(i + 43000), cropped) cropped = img[768:1024, 768:1024] cv2.imwrite("../corpped_PNG/{}.png".format(i + 44000), cropped) cropped = img[768:1024, 1024:1280] cv2.imwrite("../corpped_PNG/{}.png".format(i + 45000), cropped) for img in glob.glob("Your Folder address/*.png"): # 对需要裁剪的图片的文件夹循环读取 crop(img, "Your Folder address/") i = i + 1
#!/usr/bin/env python # Copyright 2001 by Brad Chapman. All rights reserved. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """Test for graphics things that don't really deserve there own test module.""" import os import random import unittest from Bio import MissingExternalDependencyError try: # Skip the test if reportlab is not installed import reportlab as r del r except ImportError: raise MissingExternalDependencyError( "Install reportlab if you want to use Bio.Graphics." ) from None # the stuff we're testing from Bio.Graphics.Comparative import ComparativeScatterPlot class ComparativeTest(unittest.TestCase): """Do tests for modules involved with comparing data.""" def setUp(self): self.min_num_points = 1 self.max_num_points = 500 self.min_point_num = 0 self.max_point_num = 200 def _make_random_points(self, num_two_d_lists): """Make a bunch of random points for testing plots.""" plot_info = [] random.seed(num_two_d_lists) # for reproducibility for two_d_list in range(num_two_d_lists): cur_list = [] num_points = random.randrange(self.min_num_points, self.max_num_points) for point in range(num_points): x_point = random.randrange(self.min_point_num, self.max_point_num) y_point = random.randrange(self.min_point_num, self.max_point_num) cur_list.append((x_point, y_point)) plot_info.append(cur_list) return plot_info def test_simple_scatter_plot_1(self): """Test creation of a simple ScatterPlot with one list.""" compare_plot = ComparativeScatterPlot() compare_plot.display_info = self._make_random_points(1) output_file = os.path.join(os.getcwd(), "Graphics", "scatter_test_1.pdf") compare_plot.draw_to_file(output_file, "Testing Scatter Plots") def test_simple_scatter_plot_7(self): """Test creation of a simple ScatterPlot with more lists.""" compare_plot = ComparativeScatterPlot() # There are 6 pre-defined colors and symbols, doing more: compare_plot.display_info = self._make_random_points(7) output_file = os.path.join(os.getcwd(), "Graphics", "scatter_test_7.pdf") compare_plot.draw_to_file(output_file, "Testing Scatter Plots") if __name__ == "__main__": runner = unittest.TextTestRunner(verbosity=2) unittest.main(testRunner=runner)
import scrapy class PokemonSpider(scrapy.Spider): name = "poke_spider" start_urls = ['https://serebii.net/pokedex-sm/001.shtml'] def parse(self, response): once_standard = True once_alola = True once_pre = True file = open("pre_moves.json", "a+", encoding="utf-8") for table in response.xpath('//*[@class="dextable"]'): if (table.xpath('tr[1]/td/text()').get() == "Ultra Sun/Ultra Moon Level Up" or table.xpath('tr[1]/td/text()').get() == "Generation VII Level Up" or table.xpath('tr[1]/td/font/text()').get() == "Standard Level Up") and once_standard: once_standard = False file.write(response.xpath('//*[@class="dextab"]//b/text()').get() + " [") for row in table.xpath('tr'): if row.xpath('td[2]//text()').get() is not None and \ "Other" not in row.xpath('td[4]/img/@alt').get(): file.write("'" + row.xpath('td[2]/a/text()').get() + "' ") file.write("]\n") elif table.xpath('tr[1]/td/font/text()').get() == "Alola Form Level Up" and once_alola: once_alola = False file.write(response.xpath('//*[@class="dextab"]//b/text()').get() + " Alola [") for row in table.xpath('tr'): if row.xpath('td[2]//text()').get() is not None and \ "Other" not in row.xpath('td[4]/img/@alt').get(): file.write("'" + row.xpath('td[2]/a/text()').get() + "' ") file.write("]\n") elif table.xpath('tr[1]/td/text()').get() == "Pre-Evolution Only Moves" and once_pre: once_pre = False file.write(response.xpath('//*[@class="dextab"]//b/text()').get() + " Pre [") for row in table.xpath('tr'): if row.xpath('td[1]//text()').get() is not None and \ row.xpath('td[1]//@colspan').get() is None and \ "Other" not in row.xpath('td[3]/img/@alt').get(): file.write("'" + row.xpath('td[1]/a/text()').get() + "' ") file.write("]\n") navi_table = '//*[@align="right"]/table[@border="0"]//tr' next_page = response.xpath(navi_table + '/td[2]/a/@href').get() if "--->" in response.xpath(navi_table + '/td[3]/text()').get(): return scrapy.Request( response.urljoin('https://serebii.net'+next_page), callback=self.parse ) file.close()
#!/usr/bin/env python """ Run this from the project root directory to perform tests. There should be some music files in the music directory (source_dir) before testing. TODO: Everything. """ import os import unittest import shutil import sys import numpy as np # I literally cannot believe this is how Python handles relative imports sys.path.insert(0, './') from lib.config import config as cf # Set appropriate testing directories test_target_dir = 'tests/data' test_model_dir = 'tests/models' test_output_dir = 'tests/output' cf.data.target_dir = test_target_dir cf.state.model_dir = test_model_dir cf.output.output_dir = test_output_dir # Now load other project modules - this is because we are setting config vars # locally in, particularly, utils.py --- this should be fixed. from lib.net import Net import lib.utils as utils # This all needs to be fleshed out a lot more; is a placeholder for now. class ScBasicTest(unittest.TestCase): @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): test_dirs = [test_target_dir, test_model_dir, test_output_dir] for test_dir in test_dirs: test_files = os.listdir(test_dir) for file in test_files: if file[0] == '.': continue filepath = os.path.join(test_dir, file) os.remove(filepath) def test_01_convert_files(self): # Convert source to wavs utils.convert_source_dir() # Convert wavs to freq timesteps utils.convert_wavs_to_freqs() def test__02_data_load(self): z = utils.load_blocks() w = utils.load_wavs() testslice = max(len(z), 10) t = z[:testslice] u = utils.dechannel(t) u = utils.com2pol(u) # Test polar forms self.assertGreaterEqual(u.T[0].min(), 0) self.assertLessEqual(u.T[1].max(), 3.15) self.assertGreaterEqual(u.T[1].min(), -3.15) v = utils.pol2com(u) v = utils.enchannel(v) # Should be close to original diff = t - v self.assertLess(diff.max(), 1e-4) def test_03_model(self): n = Net( Net.ALL, training_epochs=25, epochs_per_save=5, epochs_per_archve=10, save_m=True, gen_steps=60, kwargs={'hidden_size':32}) # Should not load - no files self.assertFalse(n.load()) # Should train and gen output n.train() y = n.gen() filepath = os.path.join(test_output_dir, 'test1.wav') utils.write_output(filepath, y) # Build new model and load weights m = Net( Net.ALL, build=False, gen_steps=60, kwargs={'hidden_size':32}) self.assertTrue(m.load()) y = m.gen() filepath = os.path.join(test_output_dir, 'test2.wav') utils.write_output(filepath, y) # Let us confirm our files were saved files = filter(lambda e: e[0] != '.', os.listdir(test_output_dir)) self.assertEqual(len(files), 2) if __name__ == '__main__': unittest.main()
# Time complexity: O(n^2) where n is length of string # Approach: Recursion with memoizing boolean values. class Solution: def __init__(self): self.mp = {} def isScramble(self, s1: str, s2: str) -> bool: if len(s1)!=len(s2): return False n = len(s1) if not n or s1==s2: return True if sorted(s1)!=sorted(s2): return False if s1+' '+s2 in self.mp: return self.mp[s1+' '+s2] fl = False for i in range(1, n): if self.isScramble(s1[:i], s2[:i]) and self.isScramble(s1[i:], s2[i:]): fl = True return True if self.isScramble(s1[:i], s2[-i:]) and self.isScramble(s1[i:], s2[:-i]): fl = True return True self.mp[s1+' '+s2] = fl return self.mp[s1+' '+s2]
import torch import torch.nn as nn import torch.nn.functional as F class Correlation(nn.Module): def __init__(self, max_displacement=4, *args, **kwargs): super(Correlation, self).__init__() self.max_displacement = max_displacement self.output_dim = 2 * self.max_displacement + 1 self.pad_size = self.max_displacement def forward(self, x1, x2): B, C, H, W = x1.size() x2 = F.pad(x2, [self.pad_size] * 4) cv = [] for i in range(self.output_dim): for j in range(self.output_dim): cost = x1 * x2[:, :, i:(i + H), j:(j + W)] cost = torch.mean(cost, 1, keepdim=True) cv.append(cost) return torch.cat(cv, 1) if __name__ == '__main__': import time import random from correlation_package.correlation import Correlation as Correlation_cuda device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") corr1 = Correlation(max_displacement=4, kernel_size=1, stride1=1, stride2=1, corr_multiply=1).to(device) corr2 = Correlation_cuda(pad_size=4, kernel_size=1, max_displacement=4, stride1=1, stride2=1, corr_multiply=1) t1_sum = 0 t2_sum = 0 for i in range(50): C = random.choice([128, 256]) H = random.choice([128, 256]) # , 512 W = random.choice([64, 128]) # , 256 x1 = torch.randn(4, C, H, W, requires_grad=True).to(device) x2 = torch.randn(4, C, H, W).to(device) end = time.time() y2 = corr2(x1, x2) t2_f = time.time() - end end = time.time() y2.sum().backward() t2_b = time.time() - end end = time.time() y1 = corr1(x1, x2) t1_f = time.time() - end end = time.time() y1.sum().backward() t1_b = time.time() - end assert torch.allclose(y1, y2, atol=1e-7) print('Forward: cuda: {:.3f}ms, pytorch: {:.3f}ms'.format(t1_f * 100, t2_f * 100)) print( 'Backward: cuda: {:.3f}ms, pytorch: {:.3f}ms'.format(t1_b * 100, t2_b * 100)) if i < 3: continue t1_sum += t1_b + t1_f t2_sum += t2_b + t2_f print('cuda: {:.3f}s, pytorch: {:.3f}s'.format(t1_sum, t2_sum)) ...
from launch import LaunchDescription from launch_ros.actions import Node from launch.actions import DeclareLaunchArgument, SetEnvironmentVariable from launch.substitutions import LaunchConfiguration, ThisLaunchFileDir def generate_launch_description(): return LaunchDescription([ Node( package='roomba_600_driver', node_executable='tf_broadcast', output='screen', parameters=[config]), ])
# Generated by Django 3.0.8 on 2020-09-06 10:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0014_auto_20200906_0956'), ] operations = [ migrations.AlterField( model_name='userprofile', name='image', field=models.FileField(blank=True, default='/home/zedway/zedway/media/dummy.png', upload_to='profile_pictures'), ), ]
import numpy as np import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg class Thresholds(): def __init__(self,img): self._img = img def _abs_sobel_thresh(self, img, orient='x', sobel_kernel=3, thresh=(0, 255)): # Calculate directional gradient # Apply the following steps to img # 1) Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # 2) Take the derivative in x or y given orient = 'x' or 'y' if orient == 'x': sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0) else: sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1) # 3) Take the absolute value of the derivative or gradient abs_sobel = np.absolute(sobel) # 4) Scale to 8-bit (0 - 255) then convert to type = np.uint8 scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel)) # 5) Create a mask of 1's where the scaled gradient magnitude # is > thresh_min and < thresh_max sxbinary = np.zeros_like(scaled_sobel) sxbinary[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1 # 6) Return this mask as your binary_output image #binary_output = np.copy(img) # Remove this line grad_binary = sxbinary return grad_binary def _mag_thresh(self, img, sobel_kernel=3, mag_thresh=(0, 255)): # Calculate gradient magnitude # Apply the following steps to img # 1) Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # 2) Take the gradient in x and y separately sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # 3) Calculate the magnitude gradmag = np.sqrt(sobelx**2 + sobely**2) # 4) Scale to 8-bit (0 - 255) and convert to type = np.uint8 scaled_sobel = np.uint8(255*gradmag/np.max(gradmag)) # 5) Create a binary mask where mag thresholds are met mag_binary = np.zeros_like(scaled_sobel) mag_binary[(scaled_sobel >= mag_thresh[0]) & (scaled_sobel <= mag_thresh[1])] = 1 return mag_binary def _dir_threshold(self, img, sobel_kernel=3, thresh=(0, np.pi/2)): # Calculate gradient direction # Apply the following steps to img # 1) Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # 2) Take the gradient in x and y separately sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # 3) Take the absolute value of the x and y gradients abs_sobelx = np.absolute(sobelx) abs_sobely= np.absolute(sobely) # 4) Use np.arctan2(abs_sobely, abs_sobelx) to calculate the direction of the gradient absgraddir = np.arctan2(abs_sobely, abs_sobelx) # 5) Create a binary mask where direction thresholds are met dir_binary = np.zeros_like(absgraddir) dir_binary[(absgraddir >= thresh[0]) & (absgraddir <= thresh[1])] = 1 # 6) Return this mask as your binary_output image #binary_output = np.copy(img) # Remove this line return dir_binary # This function thresholds the S-channel of HLS # Use exclusive lower bound (>) and inclusive upper (<=) def _hls_select(self,img, thresh=(0, 255)): # 1) Convert to HLS color space hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) # 2) Apply a threshold to the S channel S = hls[:,:,2] binary_output = np.zeros_like(S) binary_output[(S > thresh[0]) & (S <= thresh[1])] = 1 # 3) Return a binary image of threshold result #binary_output = np.copy(img) # placeholder line return binary_output # Edit this function to create your own pipeline. def pipeline(self, s_thresh=(170, 255), sx_thresh=(20, 100)): # Sobel x sxbinary = self._abs_sobel_thresh(self._img, 'x', 3, sx_thresh) # Threshold color channel s_binary = self._hls_select(self._img, s_thresh) # Stack each channel color_binary = np.dstack(( np.zeros_like(sxbinary), sxbinary, s_binary)) * 255 # Combine thresholds combined = np.zeros_like(sxbinary) combined[((s_binary == 1) | (sxbinary == 1))] = 1 #combined[((s_binary == 1) & (sxbinary == 1)) | ((mag_binary == 1) & (dir_binary == 1))] = 1 return combined if __name__ == '__main__': test = 5 image = mpimg.imread('..\\test_images\\test' +str(test)+'.jpg') threshold = Thresholds(image) result = threshold.pipeline() # Plot the result f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9)) f.tight_layout() ax1.imshow(image) ax1.set_title('Original Image', fontsize=40) ax2.imshow(result) ax2.set_title('Pipeline Result', fontsize=40) plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.) plt.savefig('..\\output_images\\P2output_test' +str(test)+'.png')
#!/usr/bin/env python """ Models for info if needed """ class Product: """ A class for  ProductId – an integer uniquely identifying the Product  Name – a string name for the Product  Price – a floating point price at which the Product is sold (per unit, not per lot)  LotSize – an integer representing how many of the product are sold in a single lot The numerical fields may be assumed to be positive. The string fields are not quoted and may be assumed not to contain commas or non-ASCII characters. The file does not contain a header. An example file is as follows: """ def __init__(self, product_id, name, price, lot_size): self.product_id = product_id self.name = name self.price = price self.lot_size = lot_size class Sales: """ The Sales file is a comma-separated text file where each line contains information about a unique sale. The fields of the file are as follows:  SaleId – an integer uniquely identifying the sale  ProductId – an integer identifying the Product (matches the ProductId from the Product Master)  TeamId – an integer identifying the Sales Team (matches the TeamId from the Team Map)  Quantity – an integer representing how many lots of the product were sold All of the numerical fields may be assumed to be positive. The file does not contain a header with the field names. An example file is as follows: """ def __init__(self, sale_id, product_id, team_id, quantity): self.sale_id = sale_id self.product_id = product_id self.team_id = team_id self.quantity = quantity class Report: """ Product Report The Product Report file is a comma-separated text file where each line summarizes the sales of a single Product and contains four values as follows:  Name – name of the Product  GrossRevenue – gross revenue of sales of the Product  TotalUnits – total number of units sold in the Product The file should contain a header with the field names, and the products should be provided in descending order of their gross revenue. """ def __init__(self, name, gross_revenue, total_units): self.name = name self.gross_revenue = gross_revenue self.total_units = total_units
''' Copyright (c) 2015, Salesforce.com, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Salesforce.com nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' from sqlalchemy.engine import create_engine import config configuration = config.Configuration() def get_engine(): credentials_id = configuration.get(('postgresql','credential-identifier')) server_name = configuration.get(('postgresql','server')) database_name = configuration.get(('postgresql','database')) cred_url_part = "" if credentials_id is not None: creds = config.credential_manager.get_or_create_credentials_for(credentials_id, "password") cred_url_part = "%s:%s@" % (creds.username, creds.password) connectionurl = 'postgresql://%s%s/%s' % (cred_url_part, server_name, database_name) return create_engine(connectionurl) engine = get_engine() from sqlalchemy.orm import sessionmaker from sqlalchemy.orm.exc import NoResultFound from sqlalchemy.exc import IntegrityError Session = sessionmaker(bind=engine) Session.configure(bind=engine) import copy def get_one_or_create(session, model, create_method='', create_method_kwargs=None, **kwargs): try: return session.query(model).filter_by(**kwargs).one(), False except NoResultFound: kwargs.update(create_method_kwargs or {}) created = getattr(model, create_method, model)(**kwargs) try: session.add(created) session.flush() return created, True except IntegrityError: session.rollback() return session.query(model).filter_by(**kwargs).one(), False
# empty init file
''' Several testcases around <Transformer> and it's arguments. ''' import unittest import utils def suite(): suite = unittest.TestSuite() suite.addTest(TransformerEncodeTestCase()) suite.addTest(TransformerEncode2TestCase()) suite.addTest(TransformerEncode3TestCase()) return suite class TransformerEncodeTestCase(utils.PeachTcpTestCase): def runTest(self): # Test self.peachUtils.RunPeachXml("transformersEncode.xml") ret = self.peachUtils.GetListenerData() assert ret == 'MTIzNDU=', 'transformersEncode.xml failed, instead [%s]' % repr(ret) class TransformerEncode2TestCase(utils.PeachTcpTestCase): def runTest(self): # Test self.peachUtils.RunPeachXml("transformersEncode2.xml") ret = self.peachUtils.GetListenerData() assert ret == 'gnzLDuqKcGxMNKFokfhOew==', 'transformersEncode2.xml failed, instead [%s]' % repr(ret) class TransformerEncode3TestCase(utils.PeachTcpTestCase): def runTest(self): # Test self.peachUtils.RunPeachXml("transformersEncode3.xml") ret = self.peachUtils.GetListenerData() assert ret == '827ccb0eea8a706c4c34a16891f84e7b', 'transformersEncode3.xml failed, instead [%s]' % repr(ret) if __name__ == "__main__": unittest.main() # end
import unittest from visuanalytics.tests.analytics.transform.transform_test_helper import prepare_test class TestTransformCalculate(unittest.TestCase): def setUp(self): self.data = { "testvalue1": 5, "testvalue2": 3.7, "testarray1": [5, 4, 7, 1, 3, 6], "testarray2": [9, 4, 12, 7.6, 1.75, 500], "icon": ["und", "und", "wie", "viel", "wie", "wie", "wir"], "array": [{"left": 4.5, "right": 2.7}, {"left": 2.7, "right": 8.5}, {"left": 1.8, "right": 3}, {"left": 3.3, "right": 3}] } def test_transform_calculate_multiply_value_right(self): values = [ { "type": "calculate", "keys": [ "_req|testvalue1" ], "action": "multiply", "value_right": 3.6, "new_keys": [ "_req|result" ] } ] expected_data = { "_req": { "testvalue1": 5, "result": 18, "testvalue2": 3.7, "testarray1": [5, 4, 7, 1, 3, 6], "testarray2": [9, 4, 12, 7.6, 1.75, 500], "icon": ["und", "und", "wie", "viel", "wie", "wie", "wir"], "array": [{"left": 4.5, "right": 2.7}, {"left": 2.7, "right": 8.5}, {"left": 1.8, "right": 3}, {"left": 3.3, "right": 3}] } } exp, out = prepare_test(values, self.data, expected_data) self.assertDictEqual(exp, out, "calculate multiply value right Failed") def test_transform_calculate_multiply_data_value_right(self): values = [ { "type": "calculate", "keys": [ "_req|testvalue1" ], "action": "multiply", "value_right": "_req|testvalue2", "new_keys": [ "_req|result" ] } ] expected_data = { "_req": { "testvalue1": 5, "result": 18.5, "testvalue2": 3.7, "testarray1": [5, 4, 7, 1, 3, 6], "testarray2": [9, 4, 12, 7.6, 1.75, 500], "icon": ["und", "und", "wie", "viel", "wie", "wie", "wir"], "array": [{"left": 4.5, "right": 2.7}, {"left": 2.7, "right": 8.5}, {"left": 1.8, "right": 3}, {"left": 3.3, "right": 3}] } } exp, out = prepare_test(values, self.data, expected_data) self.assertDictEqual(exp, out, "calculate multiply data value right Failed") def test_transform_calculate_multiply_value_left(self): values = [ { "type": "calculate", "keys": [ "_req|testvalue1" ], "action": "multiply", "value_left": 3.6, "new_keys": [ "_req|result" ] } ] expected_data = { "_req": { "testvalue1": 5, "result": 18, "testvalue2": 3.7, "testarray1": [5, 4, 7, 1, 3, 6], "testarray2": [9, 4, 12, 7.6, 1.75, 500], "icon": ["und", "und", "wie", "viel", "wie", "wie", "wir"], "array": [{"left": 4.5, "right": 2.7}, {"left": 2.7, "right": 8.5}, {"left": 1.8, "right": 3}, {"left": 3.3, "right": 3}] } } exp, out = prepare_test(values, self.data, expected_data) self.assertDictEqual(exp, out, "calculate multiply value Failed") def test_transform_calculate_multiply_data_value_left(self): values = [ { "type": "calculate", "keys": [ "_req|testvalue1" ], "action": "multiply", "value_left": "_req|testvalue2", "new_keys": [ "_req|result" ] } ] expected_data = { "_req": { "testvalue1": 5, "result": 18.5, "testvalue2": 3.7, "testarray1": [5, 4, 7, 1, 3, 6], "testarray2": [9, 4, 12, 7.6, 1.75, 500], "icon": ["und", "und", "wie", "viel", "wie", "wie", "wir"], "array": [{"left": 4.5, "right": 2.7}, {"left": 2.7, "right": 8.5}, {"left": 1.8, "right": 3}, {"left": 3.3, "right": 3}] } } exp, out = prepare_test(values, self.data, expected_data) self.assertDictEqual(exp, out, "calculate multiply data value Failed") def test_transform_calculate_multiply_array_value_right(self): values = [ { "type": "transform_array", "array_key": "_req|array", "transform": [ { "type": "calculate", "keys": [ "_loop|left" ], "action": "multiply", "value_right": "_loop|right", "new_keys": [ "_req|result|{_idx}|result" ], "decimal": 2 } ] } ] expected_data = { "_req": { "testvalue1": 5, "testvalue2": 3.7, "testarray1": [5, 4, 7, 1, 3, 6], "testarray2": [9, 4, 12, 7.6, 1.75, 500], "icon": ["und", "und", "wie", "viel", "wie", "wie", "wir"], "array": [{"left": 4.5, "right": 2.7}, {"left": 2.7, "right": 8.5}, {"left": 1.8, "right": 3}, {"left": 3.3, "right": 3}], "result": {0: {"result": 12.15}, 1: {"result": 22.95}, 2: {"result": 5.4}, 3: {"result": 9.9}} } } def test_transform_calculate_multiply_array_keys_right(self): values = [ { "type": "transform_array", "array_key": "_req|array", "transform": [ { "type": "calculate", "keys": [ "_loop|left" ], "action": "multiply", "keys_right": ["_loop|right"], "new_keys": [ "_req|result|{_idx}|result" ], "decimal": 2 } ] } ] expected_data = { "_req": { "testvalue1": 5, "testvalue2": 3.7, "testarray1": [5, 4, 7, 1, 3, 6], "testarray2": [9, 4, 12, 7.6, 1.75, 500], "icon": ["und", "und", "wie", "viel", "wie", "wie", "wir"], "array": [{"left": 4.5, "right": 2.7}, {"left": 2.7, "right": 8.5}, {"left": 1.8, "right": 3}, {"left": 3.3, "right": 3}], "result": {0: {"result": 12.15}, 1: {"result": 22.95}, 2: {"result": 5.4}, 3: {"result": 9.9}} } } exp, out = prepare_test(values, self.data, expected_data) self.assertDictEqual(exp, out, "calculate multiply array keys right Failed") def test_transform_calculate_multiply_array_value_left(self): values = [ { "type": "transform_array", "array_key": "_req|array", "transform": [ { "type": "calculate", "keys": [ "_loop|left" ], "action": "multiply", "value_left": "_loop|right", "new_keys": [ "_req|result|{_idx}|result" ], "decimal": 2 } ] } ] expected_data = { "_req": { "testvalue1": 5, "testvalue2": 3.7, "testarray1": [5, 4, 7, 1, 3, 6], "testarray2": [9, 4, 12, 7.6, 1.75, 500], "icon": ["und", "und", "wie", "viel", "wie", "wie", "wir"], "array": [{"left": 4.5, "right": 2.7}, {"left": 2.7, "right": 8.5}, {"left": 1.8, "right": 3}, {"left": 3.3, "right": 3}], "result": {0: {"result": 12.15}, 1: {"result": 22.95}, 2: {"result": 5.4}, 3: {"result": 9.9}} } } exp, out = prepare_test(values, self.data, expected_data) self.assertDictEqual(exp, out, "calculate multiply array value left Failed")
### # Copyright 2008-2011 Diamond Light Source Ltd. # This file is part of Diffcalc. # # Diffcalc is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Diffcalc is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Diffcalc. If not, see <http://www.gnu.org/licenses/>. ### import math from math import degrees from unittest.mock import Mock from diffcalc.hkl.calc import HklCalculation from diffcalc.hkl.geometry import Position from diffcalc.ub.calc import UBCalculation from diffcalc.util import I from numpy import array from tests.tools import assert_almost_equal, assert_matrix_almost_equal x = array([[1], [0], [0]]) y = array([[0], [1], [0]]) z = array([[0], [0], [1]]) def isnan(n): # math.isnan was introduced only in python 2.6 and is not in Jython (2.5.2) try: return math.isnan(n) except AttributeError: return n != n # for Jython class Test_position_to_virtual_angles: def setup_method(self): constraints = Mock() constraints.is_fully_constrained.return_value = True self.ubcalc = UBCalculation() self.ubcalc.set_lattice("xtal", 1) self.ubcalc.set_u(I) self.ubcalc.n_phi = (0, 0, 1) self.calc = HklCalculation(self.ubcalc, constraints) def check_angle( self, name, expected, mu=-99, delta=99, nu=99, eta=99, chi=99, phi=99 ): """All in degrees""" pos = Position(mu=mu, delta=delta, nu=nu, eta=eta, chi=chi, phi=phi) calculated = self.calc.get_virtual_angles(pos, False)[name] assert_almost_equal(degrees(calculated), expected) # theta def test_theta0(self): self.check_angle("theta", 0, delta=0, nu=0) def test_theta1(self): self.check_angle("theta", 1, delta=2, nu=0) def test_theta2(self): self.check_angle("theta", 1, delta=0, nu=2) def test_theta3(self): self.check_angle("theta", 1, delta=-2, nu=0) def test_theta4(self): self.check_angle("theta", 1, delta=0, nu=-2) # qaz def test_qaz0_degenerate_case(self): self.check_angle("qaz", 0, delta=0, nu=0) def test_qaz1(self): self.check_angle("qaz", 90, delta=2, nu=0) def test_qaz2(self): self.check_angle("qaz", 90, delta=90, nu=0) def test_qaz3(self): self.check_angle( "qaz", 0, delta=0, nu=1, ) # Can't see one by eye # def test_qaz4(self): # pos = Pos(delta=20*TORAD, nu=20*TORAD)#.inRadians() # assert_almost_equal( # self.calc._anglesToVirtualAngles(pos, None)['qaz']*TODEG, 45) # alpha def test_defaultReferenceValue(self): # The following tests depemd on this assert_matrix_almost_equal(self.calc.ubcalc.n_phi, array([[0], [0], [1]])) def test_alpha0(self): self.check_angle("alpha", 0, mu=0, eta=0, chi=0, phi=0) def test_alpha1(self): self.check_angle("alpha", 0, mu=0, eta=0, chi=0, phi=10) def test_alpha2(self): self.check_angle("alpha", 0, mu=0, eta=0, chi=0, phi=-10) def test_alpha3(self): self.check_angle("alpha", 2, mu=2, eta=0, chi=0, phi=0) def test_alpha4(self): self.check_angle("alpha", -2, mu=-2, eta=0, chi=0, phi=0) def test_alpha5(self): self.check_angle("alpha", 2, mu=0, eta=90, chi=2, phi=0) # beta def test_beta0(self): self.check_angle("beta", 0, delta=0, nu=0, mu=0, eta=0, chi=0, phi=0) def test_beta1(self): self.check_angle("beta", 0, delta=10, nu=0, mu=0, eta=6, chi=0, phi=5) def test_beta2(self): self.check_angle("beta", 10, delta=0, nu=10, mu=0, eta=0, chi=0, phi=0) def test_beta3(self): self.check_angle("beta", -10, delta=0, nu=-10, mu=0, eta=0, chi=0, phi=0) def test_beta4(self): self.check_angle("beta", 5, delta=0, nu=10, mu=5, eta=0, chi=0, phi=0) # azimuth def test_naz0(self): self.check_angle("naz", 0, mu=0, eta=0, chi=0, phi=0) def test_naz1(self): self.check_angle("naz", 0, mu=0, eta=0, chi=0, phi=10) def test_naz3(self): self.check_angle("naz", 0, mu=10, eta=0, chi=0, phi=10) def test_naz4(self): self.check_angle("naz", 2, mu=0, eta=0, chi=2, phi=0) def test_naz5(self): self.check_angle("naz", -2, mu=0, eta=0, chi=-2, phi=0) # tau def test_tau0(self): self.check_angle("tau", 0, mu=0, delta=0, nu=0, eta=0, chi=0, phi=0) # self.check_angle('tau_from_dot_product', 90, mu=0, delta=0, # nu=0, eta=0, chi=0, phi=0) def test_tau1(self): self.check_angle("tau", 90, mu=0, delta=20, nu=0, eta=10, chi=0, phi=0) # self.check_angle('tau_from_dot_product', 90, mu=0, delta=20, # nu=0, eta=10, chi=0, phi=0) def test_tau2(self): self.check_angle("tau", 90, mu=0, delta=20, nu=0, eta=10, chi=0, phi=3) # self.check_angle('tau_from_dot_product', 90, mu=0, delta=20, # nu=0, eta=10, chi=0, phi=3) def test_tau3(self): self.check_angle("tau", 88, mu=0, delta=20, nu=0, eta=10, chi=2, phi=0) # self.check_angle('tau_from_dot_product', 88, mu=0, delta=20, # nu=0, eta=10, chi=2, phi=0) def test_tau4(self): self.check_angle("tau", 92, mu=0, delta=20, nu=0, eta=10, chi=-2, phi=0) # self.check_angle('tau_from_dot_product', 92, mu=0, delta=20, # nu=0, eta=10, chi=-2, phi=0) def test_tau5(self): self.check_angle("tau", 10, mu=0, delta=0, nu=20, eta=0, chi=0, phi=0) # self.check_angle('tau_from_dot_product', 10, mu=0, delta=0, # nu=20, eta=0, chi=0, phi=0) # psi def test_psi0(self): pos = Position() assert isnan(self.calc.get_virtual_angles(pos)["psi"]) def test_psi1(self): self.check_angle("psi", 90, mu=0, delta=11, nu=0, eta=0, chi=0, phi=0) def test_psi2(self): self.check_angle("psi", 100, mu=10, delta=0.001, nu=0, eta=0, chi=0, phi=0) def test_psi3(self): self.check_angle("psi", 80, mu=-10, delta=0.001, nu=0, eta=0, chi=0, phi=0) def test_psi4(self): self.check_angle("psi", 90, mu=0, delta=11, nu=0, eta=0, chi=0, phi=12.3) def test_psi5(self): # self.check_angle('psi', 0, mu=10, delta=.00000001, # nu=0, eta=0, chi=90, phi=0) pos = Position(mu=0, delta=0, nu=0, eta=0, chi=90, phi=0) assert isnan(self.calc.get_virtual_angles(pos)["psi"]) def test_psi6(self): self.check_angle("psi", 90, mu=0, delta=0.001, nu=0, eta=90, chi=0, phi=0) def test_psi7(self): self.check_angle("psi", 92, mu=0, delta=0.001, nu=0, eta=90, chi=2, phi=0) def test_psi8(self): self.check_angle("psi", 88, mu=0, delta=0.001, nu=0, eta=90, chi=-2, phi=0)
import sys, os from faster.fastlist import fastlist import cProfile from pstats import SortKey l = fastlist.from_sequence(list(range(10))) l.insert(0, 4) print(l) print(l.count(5)) print(l) del l # mult = 2 ** 24 # length = 15 # print('mult:', mult) # print('size:', mult * length) # print('\nfastlist:') # cProfile.runctx('l *= m', {'l': fastlist.from_sequence(list(range(length))), 'm': mult}, {}) # print('\nlist:') # cProfile.runctx('l *= m', {'l': list(range(15)), 'm': mult}, {}) print('no segfault')
from CTFe.views.auth_view import router as auth_router from CTFe.views.user_view import router as user_router from CTFe.views.team_view import router as team_router from CTFe.views.challenge_view import router as challenge_router from CTFe.views.attempt_view import router as attempt_router from CTFe.views.player_view import router as player_router from CTFe.views.contributor_view import router as contributor_router
""" Unit tests for the User Controller. """ from datetime import datetime from unittest.mock import patch from app.controllers.user_controller import UserController from app.models import User, Role from app.models.user_role import UserRole from app.repositories import UserRepo, RoleRepo, UserRoleRepo from tests.base_test_case import BaseTestCase from factories.user_factory import UserFactory from factories import RoleFactory, UserRoleFactory, PermissionFactory from factories.location_factory import LocationFactory from app.utils.auth import Auth class TestUserController(BaseTestCase): """ UserController test class. """ def setUp(self): self.BaseSetUp() self.mock_role = Role( id=1, name="Pass", help="help", ) self.mock_user_role = UserRole( id=1, created_at=datetime.now(), updated_at=datetime.now(), role_id=1, role=self.mock_role, user_id=1, is_active=True, is_deleted=False, ) self.mock_user = User( id=1, first_name="test", last_name="test", gender="male", password="test", email="user1@user.com", is_active=True, is_deleted=False, created_at=datetime.now(), updated_at=datetime.now(), ) self.mock_user2 = User( id=1, first_name="test", last_name="test", gender="male", password="test", email="user2@user.com", is_active=True, is_deleted=False, created_at=datetime.now(), updated_at=datetime.now(), ) def tearDown(self): self.BaseTearDown() @patch.object(UserController, "pagination_meta") @patch("app.repositories.user_role_repo.UserRoleRepo.filter_by") @patch.object(UserRepo, "find_first") def test_list_admin_users_ok_response( self, mock_user_repo_find_first, mock_filter_by, mock_pagination_meta ): """ Test list_admin_users OK response. """ # Arrange with self.app.app_context(): mock_filter_by.return_value.items = [ self.mock_user_role, ] mock_user_repo_find_first.return_value = self.mock_user mock_pagination_meta.return_value = { "total_rows": 1, "total_pages": 1, "current_page": 1, "next_page": None, "prev_page": None, } user_controller = UserController(self.request_context) # Act result = user_controller.list_admin_users() # Assert assert result.status_code == 200 assert result.get_json()["msg"] == "OK" assert result.get_json()["payload"]["meta"]["current_page"] == 1 assert result.get_json()["payload"]["meta"]["next_page"] is None @patch.object(Auth, "get_location") @patch.object(UserController, "request_params") @patch.object(RoleRepo, "find_first") @patch.object(UserRepo, "exists") @patch.object(UserRepo, "new_user") @patch.object(UserRoleRepo, "new_user_role") def test_create_user_succeeds( self, mock_user_role_repo_new_user_role, mock_user_repo_new_user, mock_user_repo_exists, mock_role_repo_find_first, mock_request_params, mock_get_location, ): location = LocationFactory() role = RoleFactory(name="test_role") with self.app.app_context(): mock_get_location.return_value = location.id mock_role_repo_find_first.return_value = self.mock_role mock_user_repo_exists.return_value = None mock_user_repo_new_user.return_value = self.mock_user2 mock_user_role_repo_new_user_role.return_value = self.mock_user_role mock_request_params.return_value = [ "Joseph", "Serunjogi", "tst@tst.com", role.id, "male", str(datetime.now()), 1, "password", ] user_controller = UserController(self.request_context) # Act result = user_controller.create_user() # Assert assert result.status_code == 201 assert result.get_json()["msg"] == "OK" @patch.object(UserController, "request_params") def test_create_user_method_handles_user_creation_with_non_existent_role_id( self, mock_request_params ): with self.app.app_context(): user = UserFactory() role = RoleFactory(name="test_role") UserRoleFactory(role_id=role.id, user_id=user.id) non_existent_role_id = 100 mock_request_params.return_value = [ "Joseph", "Serunjogi", "tst@tst.com", non_existent_role_id, "male", str(datetime.now()), 1, "password", ] user_controller = UserController(self.request_context) response = user_controller.create_user() self.assertEqual(response.status_code, 400) self.assertEqual( response.get_json()["msg"], "Role with userTypeId(roleId) {} does not exist".format( non_existent_role_id ), ) @patch.object(UserRepo, "find_first") def test_list_user_succeeds( self, mock_user_repo_find_first, ): with self.app.app_context(): role = RoleFactory() UserRoleFactory(user_id=self.mock_user.id, role_id=role.id) PermissionFactory.create(keyword="view_users", role=role) mock_user_repo_find_first.return_value = self.mock_user user_controller = UserController(self.request_context) response = user_controller.list_user(id=self.mock_user.id) self.assertEqual(response.status_code, 200) self.assertEqual(response.get_json()["msg"], "OK") self.assertEqual( response.get_json()["payload"]["user"]["first_name"], self.mock_user.first_name, ) self.assertEqual( response.get_json()["payload"]["user"]["last_name"], self.mock_user.last_name, ) @patch.object(UserRepo, "find_first") def test_list_user_when_user_found_succeeds( self, mock_user_repo_find_first, ): with self.app.app_context(): user_controller = UserController(self.request_context) mock_user_repo_find_first.return_value = self.mock_user response = user_controller.list_user(id=1) self.assertEqual(response.status_code, 200) @patch.object(Auth, "get_location") @patch.object(UserController, "request_params") @patch.object(RoleRepo, "find_first") @patch.object(UserRepo, "exists") # @patch.object(UserRepo, "new_user") @patch.object(UserRoleRepo, "new_user_role") def test_create_user_fails_for_existing_user( self, mock_user_role_repo_new_user_role, # mock_user_repo_new_user, mock_user_repo_exists, mock_role_repo_find_first, mock_request_params, mock_get_location, ): location = LocationFactory() role = RoleFactory(name="test_role") with self.app.app_context(): mock_get_location.return_value = location.id mock_role_repo_find_first.return_value = self.mock_role mock_user_repo_exists.return_value = self.mock_user2 # mock_user_repo_new_user.return_value = None mock_user_role_repo_new_user_role.return_value = self.mock_user_role mock_request_params.return_value = [ "Joseph", "Serunjogi", self.mock_user2.email, role.id, "male", str(datetime.now()), 1, "password", ] user_controller = UserController(self.request_context) # Act result = user_controller.create_user() print(result) print(result.get_json()) # Assert assert result.status_code == 400 assert ( result.get_json()["msg"] == f"User with email '{self.mock_user2.email}' already exists" )
from django import forms class ContactForm(forms.Form): """ Create form for contact page """ email = forms.EmailField( required=True, label='', widget=forms.EmailInput(attrs={ 'class': 'form-control border-black rounded-0 mb-3', 'placeholder': 'Email', }) ) message = forms.CharField( required=True, label='', widget=forms.Textarea(attrs={ 'rows': 5, 'class': 'form-control border-black rounded-0 mb-3', 'placeholder': 'Type your message here...', }) )
def select_rows(df, where): """Performs a series of rows selection in a DataFrame Pandas provides several methods to select rows. Using lambdas allows to select rows in a uniform and more flexible way. Parameters ---------- df: DataFrame DataFrame whose rows should be selected where: dict Dictionary with DataFrame columns name as keys and predicates (as lambdas) as values. For instance: {'a': lambda d: d == 1, 'b': lambda d: d == 3} Returns ------- Pandas DataFrame New DataFrame with selected rows """ df = df.copy() for col, f in where.items(): df = df[df[col].apply(f)] return df def chunk(len_array, nb_chunks=3): """Chunks an array in a list of several equal (when odd) length chunks Parameters ---------- len_array: int Length of the array to be chunked nb_chunks: int Number of chunks Returns ------- Iterator e.g list(chunk(10, 3)) would return [(0, 3), (3, 6), (6, 10)] """ assert nb_chunks <= len_array, "nb_chunks should be lower or equal than len_array" step = len_array // nb_chunks bounds = [x*step for x in range(nb_chunks)] + [len_array] return zip(bounds, bounds[1:])
def fibonacci(n): if n <= 1: return 1 else: return fibonacci(n-2) + fibonacci(n-1) def factorial(n): if n== 0: return 1 else: return n*factorial(n-1)
import sys import math import scipy as sp import scipy.stats from scipy.stats import norm from scipy.stats import poisson, binom, hypergeom from permute.utils import binom_conf_interval, hypergeom_conf_interval from numpy.random import choice import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import sprt from joblib import Parallel, delayed import multiprocessing import csv num_cores = multiprocessing.cpu_count() if len(sys.argv) != 2: print('usage: python plot_data.py [data_file].csv') sys.exit() def main(): data = {} for line in csv.DictReader(open(sys.argv[1])): alpha = float(line['alpha']) prop_w = float(line['prop_w']) total = int(line['total']) to_set = { 'bpa_75': float(line['bpa_75']), 'bpa_90': float(line['bpa_90']), 'bpa_99': float(line['bpa_99']), 'bbp_75': float(line['bbp_75']), 'bbp_90': float(line['bbp_90']), 'bbp_99': float(line['bbp_99']), 'bbp_seq_75': float(line['bbp_seq_75']), 'bbp_seq_90': float(line['bbp_seq_90']), 'bbp_seq_99': float(line['bbp_seq_99']), } if alpha in data: if prop_w in data[alpha]: data[alpha][prop_w][total] = to_set else: data[alpha][prop_w] = {total: to_set} else: data[alpha] = {prop_w: {total: to_set}} if data[alpha][prop_w][total]['bbp_90'] == None: data[alpha][prop_w][total]['bbp_90'] = .01 prop_ws = [] for i in range(1, 50): prop_ws.append((100-i)/100.0) prop_ws.reverse() cols = ['Alpha {}'.format(col) for col in sorted(data.keys(), reverse=True)] rows = ['Quant {}'.format(row) for row in ['75', '90', '99']] fig, axes = plt.subplots(nrows=3, ncols=3) i = 1 tots = [10000, 1000000] for quant in ['75', '90', '99']: #ax1 = plt.subplot(5, 3, 0) for alpha in data: bpa = [] bbp = [] bbp_seq = [] bpa_1m = [] bbp_1m = [] bbp_seq_1m = [] for prop_w in prop_ws: bpa.append(data[alpha][prop_w][10000]['bpa_' + quant]) bbp.append(data[alpha][prop_w][10000]['bbp_' + quant]) bbp_seq.append(data[alpha][prop_w][10000]['bbp_seq_' + quant]) bpa_1m.append(data[alpha][prop_w][1000000]['bpa_' + quant]) bbp_1m.append(data[alpha][prop_w][1000000]['bbp_' + quant]) bbp_seq_1m.append(data[alpha][prop_w][1000000]['bbp_seq_' + quant]) ax1 = plt.subplot(3, 3, i) ax1.invert_xaxis() #plt.title('Quant: ' + str(quant) + ' Alpha: ' + str(alpha), fontsize=12) l1 = ax1.semilogy(prop_ws, bpa, label='BPA10k') l2 = ax1.semilogy(prop_ws, bbp, label='BBP10k') l3 = ax1.semilogy(prop_ws, bbp_seq, label='BBPSEQ10k') l3 = ax1.semilogy(prop_ws, bpa_1m, label='BPA1M') l4 = ax1.semilogy(prop_ws, bbp_1m, label='BBP1M') l4 = ax1.semilogy(prop_ws, bbp_seq_1m, label='BBPSEQ1M') if i%3 != 0: ax1.set_yticklabels([]) else: ax1.yaxis.tick_right() if i%3 == 1: ax1.set_ylabel(rows[i/3], rotation=90) if i < 7: ax1.set_xticklabels([]) if i < 4: ax1.set_title(cols[i-1]) if i == 8: ax1.set_xlabel('Margin', size='large') i += 1 fig.text(0.04, 0.5, '% ballots', va='center', rotation='vertical', size='large') handles, labels = ax1.get_legend_handles_labels() art = [] lgd = ax1.legend(handles, labels, loc=9, ncol=6, fontsize=10, bbox_to_anchor=(-.75, -.35)) art.append(lgd) plt.savefig('quant_plot.png', additional_artists=art, bbox_inches="tight") if __name__== "__main__": main()
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyMpi4py(PythonPackage): """This package provides Python bindings for the Message Passing Interface (MPI) standard. It is implemented on top of the MPI-1/MPI-2 specification and exposes an API which grounds on the standard MPI-2 C++ bindings. """ homepage = "https://pypi.python.org/pypi/mpi4py" url = "https://pypi.io/packages/source/m/mpi4py/mpi4py-3.0.0.tar.gz" git = "https://github.com/mpi4py/mpi4py.git" version('develop', branch='master') version('3.0.1', sha256='6549a5b81931303baf6600fa2e3bc04d8bd1d5c82f3c21379d0d64a9abcca851') version('3.0.0', sha256='b457b02d85bdd9a4775a097fac5234a20397b43e073f14d9e29b6cd78c68efd7') version('2.0.0', sha256='6543a05851a7aa1e6d165e673d422ba24e45c41e4221f0993fe1e5924a00cb81') version('1.3.1', sha256='e7bd2044aaac5a6ea87a87b2ecc73b310bb6efe5026031e33067ea3c2efc3507') depends_on('python@2.7:2.8,3.3:') depends_on('py-setuptools', type='build') depends_on('mpi') depends_on('py-cython', when='@develop', type='build') def build_args(self, spec, prefix): return ['--mpicc=%s -shared' % spec['mpi'].mpicc]
from core.advbase import * import adv.g_cleo def module(): return Gala_Cleo class Gala_Cleo(adv.g_cleo.Gala_Cleo): def prerun(self): super().prerun() self.a1_zones = [] self.gleo_count = 4 self.wide = 'self' self.comment = '{} GCleo'.format(self.gleo_count) def fs_proc_alt(self, e): if self.a1_buffed: while len(self.a1_zones) > 0 and not self.a1_zones[0].get(): self.a1_zones.pop(0) for _ in range(self.gleo_count): if self.wide == 'team': buff = Teambuff('a1_str',0.25,10) else: buff = Selfbuff('a1_str',0.25,10) buff.bufftime = buff.nobufftime self.a1_zones.append(buff) if len(self.a1_zones) > 4: self.a1_zones.pop(0).off() buff.on() def s2_proc(self, e): for _ in range(self.gleo_count): if self.wide == 'team': Debuff('s2', 0.10, 20).on() else: Selfbuff('s2', -0.10, 20, mtype='def').on() if __name__ == '__main__': from core.simulate import test_with_argv test_with_argv(Gala_Cleo, *sys.argv)
#!/usr/bin/python3 # This program is the basic form of the sumobot program # 1. Connect sensors and initialise motors # 2. Wait 3 seconds before starting from time import sleep import sys, os from ev3dev.ev3 import * #Connect motors rightMotor = LargeMotor(OUTPUT_B) leftMotor = LargeMotor(OUTPUT_C) # Connect touch sensors. ts1 = TouchSensor(INPUT_1); assert ts1.connected ts4 = TouchSensor(INPUT_4); assert ts4.connected us = UltrasonicSensor(); assert us.connected gs = GyroSensor(); assert gs.connected gs.mode = 'GYRO-RATE' # Changing the mode resets the gyro gs.mode = 'GYRO-ANG' # Set gyro mode to return compass angle # We will need to check EV3 buttons state. btn = Button() def start() #delay sleep(3); #scan for the robot by spinning CLOCKWISE for 90 DEGREES direction = gs.value(); while (direction < 90): rightMotor.run_direct(duty_cycle_sp = -75) leftMotor.run_direct(duty_cycle_sp = 75) direction = gs.value(); start() while not btn.any(): # Keep the robot going in the same direction direction = gs.value(); # print direction if direction > 5: # print('right') rightMotor.duty_cycle_sp = 5 elif direction < -5: # print('left') leftMotor.duty_cycle_sp = 5 else: leftMotor.duty_cycle_sp = 75 rightMotor.duty_cycle_sp = 75 rightMotor.stop() leftMotor.stop()
""" MIT License Copyright (c) 2021 Visperi Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from discord.ext import commands class HelpCog(commands.Cog): def __init__(self, bot: commands.Bot): self.bot = bot @staticmethod async def send_help(ctx: commands.Context, invoked_with: str, help_dict: dict): description = help_dict["description"] additional = help_dict["additional"] or "-" example = help_dict["example"] or "-" command_help = f"**{invoked_with}**\n" \ f"{description}\n\n" \ f"**Additional:** {additional}\n" \ f"**Example:** {example}" await ctx.send(command_help) @commands.group(name="help") async def command_help(self, ctx: commands.Context): message_content = ctx.message.content if ctx.invoked_subcommand is None and message_content != "!help": await ctx.send("No help found for such command.") return elif message_content == "!help": await ctx.send("`!info`: Basic info about the bot and latest updates\n" "`!commands`: Get a list of all available commands\n" "`!scommands`: Get a list of all custom commands for this server\n" "`!help <command name>`: Get instructions for one command") @command_help.command(name="me") async def get_user_info(self, ctx: commands.Context): help_dict = {"description": "Fetch some data related to the command invoker and represent it in a nice " "embed.", "additional": None, "example": "`!me`"} await self.send_help(ctx, ctx.invoked_with, help_dict) @command_help.command(name="info") async def get_bot_info(self, ctx: commands.Context): help_dict = {"description": "Get some basic information and latest updates related to this bot.", "additional": None, "example": "`!info`"} await self.send_help(ctx, ctx.invoked_with, help_dict) def setup(bot: commands.Bot): bot.add_cog(HelpCog(bot))
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/cloud/proto/spanner/v1/query_plan.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/cloud/proto/spanner/v1/query_plan.proto', package='google.spanner.v1', syntax='proto3', serialized_pb=_b('\n.google/cloud/proto/spanner/v1/query_plan.proto\x12\x11google.spanner.v1\x1a\x1cgoogle/api/annotations.proto\x1a\x1cgoogle/protobuf/struct.proto\"\xf8\x04\n\x08PlanNode\x12\r\n\x05index\x18\x01 \x01(\x05\x12.\n\x04kind\x18\x02 \x01(\x0e\x32 .google.spanner.v1.PlanNode.Kind\x12\x14\n\x0c\x64isplay_name\x18\x03 \x01(\t\x12:\n\x0b\x63hild_links\x18\x04 \x03(\x0b\x32%.google.spanner.v1.PlanNode.ChildLink\x12M\n\x14short_representation\x18\x05 \x01(\x0b\x32/.google.spanner.v1.PlanNode.ShortRepresentation\x12)\n\x08metadata\x18\x06 \x01(\x0b\x32\x17.google.protobuf.Struct\x12\x30\n\x0f\x65xecution_stats\x18\x07 \x01(\x0b\x32\x17.google.protobuf.Struct\x1a@\n\tChildLink\x12\x13\n\x0b\x63hild_index\x18\x01 \x01(\x05\x12\x0c\n\x04type\x18\x02 \x01(\t\x12\x10\n\x08variable\x18\x03 \x01(\t\x1a\xb2\x01\n\x13ShortRepresentation\x12\x13\n\x0b\x64\x65scription\x18\x01 \x01(\t\x12S\n\nsubqueries\x18\x02 \x03(\x0b\x32?.google.spanner.v1.PlanNode.ShortRepresentation.SubqueriesEntry\x1a\x31\n\x0fSubqueriesEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x05:\x02\x38\x01\"8\n\x04Kind\x12\x14\n\x10KIND_UNSPECIFIED\x10\x00\x12\x0e\n\nRELATIONAL\x10\x01\x12\n\n\x06SCALAR\x10\x02\"<\n\tQueryPlan\x12/\n\nplan_nodes\x18\x01 \x03(\x0b\x32\x1b.google.spanner.v1.PlanNodeB}\n\x15\x63om.google.spanner.v1B\x0eQueryPlanProtoP\x01Z8google.golang.org/genproto/googleapis/spanner/v1;spanner\xaa\x02\x17Google.Cloud.Spanner.V1b\x06proto3') , dependencies=[google_dot_api_dot_annotations__pb2.DESCRIPTOR,google_dot_protobuf_dot_struct__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _PLANNODE_KIND = _descriptor.EnumDescriptor( name='Kind', full_name='google.spanner.v1.PlanNode.Kind', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='KIND_UNSPECIFIED', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='RELATIONAL', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='SCALAR', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=706, serialized_end=762, ) _sym_db.RegisterEnumDescriptor(_PLANNODE_KIND) _PLANNODE_CHILDLINK = _descriptor.Descriptor( name='ChildLink', full_name='google.spanner.v1.PlanNode.ChildLink', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='child_index', full_name='google.spanner.v1.PlanNode.ChildLink.child_index', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='type', full_name='google.spanner.v1.PlanNode.ChildLink.type', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='variable', full_name='google.spanner.v1.PlanNode.ChildLink.variable', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=459, serialized_end=523, ) _PLANNODE_SHORTREPRESENTATION_SUBQUERIESENTRY = _descriptor.Descriptor( name='SubqueriesEntry', full_name='google.spanner.v1.PlanNode.ShortRepresentation.SubqueriesEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='google.spanner.v1.PlanNode.ShortRepresentation.SubqueriesEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='google.spanner.v1.PlanNode.ShortRepresentation.SubqueriesEntry.value', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=655, serialized_end=704, ) _PLANNODE_SHORTREPRESENTATION = _descriptor.Descriptor( name='ShortRepresentation', full_name='google.spanner.v1.PlanNode.ShortRepresentation', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='description', full_name='google.spanner.v1.PlanNode.ShortRepresentation.description', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='subqueries', full_name='google.spanner.v1.PlanNode.ShortRepresentation.subqueries', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_PLANNODE_SHORTREPRESENTATION_SUBQUERIESENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=526, serialized_end=704, ) _PLANNODE = _descriptor.Descriptor( name='PlanNode', full_name='google.spanner.v1.PlanNode', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='index', full_name='google.spanner.v1.PlanNode.index', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='kind', full_name='google.spanner.v1.PlanNode.kind', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='display_name', full_name='google.spanner.v1.PlanNode.display_name', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='child_links', full_name='google.spanner.v1.PlanNode.child_links', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='short_representation', full_name='google.spanner.v1.PlanNode.short_representation', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='metadata', full_name='google.spanner.v1.PlanNode.metadata', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='execution_stats', full_name='google.spanner.v1.PlanNode.execution_stats', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_PLANNODE_CHILDLINK, _PLANNODE_SHORTREPRESENTATION, ], enum_types=[ _PLANNODE_KIND, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=130, serialized_end=762, ) _QUERYPLAN = _descriptor.Descriptor( name='QueryPlan', full_name='google.spanner.v1.QueryPlan', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='plan_nodes', full_name='google.spanner.v1.QueryPlan.plan_nodes', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=764, serialized_end=824, ) _PLANNODE_CHILDLINK.containing_type = _PLANNODE _PLANNODE_SHORTREPRESENTATION_SUBQUERIESENTRY.containing_type = _PLANNODE_SHORTREPRESENTATION _PLANNODE_SHORTREPRESENTATION.fields_by_name['subqueries'].message_type = _PLANNODE_SHORTREPRESENTATION_SUBQUERIESENTRY _PLANNODE_SHORTREPRESENTATION.containing_type = _PLANNODE _PLANNODE.fields_by_name['kind'].enum_type = _PLANNODE_KIND _PLANNODE.fields_by_name['child_links'].message_type = _PLANNODE_CHILDLINK _PLANNODE.fields_by_name['short_representation'].message_type = _PLANNODE_SHORTREPRESENTATION _PLANNODE.fields_by_name['metadata'].message_type = google_dot_protobuf_dot_struct__pb2._STRUCT _PLANNODE.fields_by_name['execution_stats'].message_type = google_dot_protobuf_dot_struct__pb2._STRUCT _PLANNODE_KIND.containing_type = _PLANNODE _QUERYPLAN.fields_by_name['plan_nodes'].message_type = _PLANNODE DESCRIPTOR.message_types_by_name['PlanNode'] = _PLANNODE DESCRIPTOR.message_types_by_name['QueryPlan'] = _QUERYPLAN PlanNode = _reflection.GeneratedProtocolMessageType('PlanNode', (_message.Message,), dict( ChildLink = _reflection.GeneratedProtocolMessageType('ChildLink', (_message.Message,), dict( DESCRIPTOR = _PLANNODE_CHILDLINK, __module__ = 'google.cloud.proto.spanner.v1.query_plan_pb2' # @@protoc_insertion_point(class_scope:google.spanner.v1.PlanNode.ChildLink) )) , ShortRepresentation = _reflection.GeneratedProtocolMessageType('ShortRepresentation', (_message.Message,), dict( SubqueriesEntry = _reflection.GeneratedProtocolMessageType('SubqueriesEntry', (_message.Message,), dict( DESCRIPTOR = _PLANNODE_SHORTREPRESENTATION_SUBQUERIESENTRY, __module__ = 'google.cloud.proto.spanner.v1.query_plan_pb2' # @@protoc_insertion_point(class_scope:google.spanner.v1.PlanNode.ShortRepresentation.SubqueriesEntry) )) , DESCRIPTOR = _PLANNODE_SHORTREPRESENTATION, __module__ = 'google.cloud.proto.spanner.v1.query_plan_pb2' # @@protoc_insertion_point(class_scope:google.spanner.v1.PlanNode.ShortRepresentation) )) , DESCRIPTOR = _PLANNODE, __module__ = 'google.cloud.proto.spanner.v1.query_plan_pb2' # @@protoc_insertion_point(class_scope:google.spanner.v1.PlanNode) )) _sym_db.RegisterMessage(PlanNode) _sym_db.RegisterMessage(PlanNode.ChildLink) _sym_db.RegisterMessage(PlanNode.ShortRepresentation) _sym_db.RegisterMessage(PlanNode.ShortRepresentation.SubqueriesEntry) QueryPlan = _reflection.GeneratedProtocolMessageType('QueryPlan', (_message.Message,), dict( DESCRIPTOR = _QUERYPLAN, __module__ = 'google.cloud.proto.spanner.v1.query_plan_pb2' # @@protoc_insertion_point(class_scope:google.spanner.v1.QueryPlan) )) _sym_db.RegisterMessage(QueryPlan) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\025com.google.spanner.v1B\016QueryPlanProtoP\001Z8google.golang.org/genproto/googleapis/spanner/v1;spanner\252\002\027Google.Cloud.Spanner.V1')) _PLANNODE_SHORTREPRESENTATION_SUBQUERIESENTRY.has_options = True _PLANNODE_SHORTREPRESENTATION_SUBQUERIESENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) try: # THESE ELEMENTS WILL BE DEPRECATED. # Please use the generated *_pb2_grpc.py files instead. import grpc from grpc.framework.common import cardinality from grpc.framework.interfaces.face import utilities as face_utilities from grpc.beta import implementations as beta_implementations from grpc.beta import interfaces as beta_interfaces except ImportError: pass # @@protoc_insertion_point(module_scope)
# Copyright 2017 University of Maryland. # # This file is part of Sesame. It is subject to the license terms in the file # LICENSE.rst found in the top-level directory of this distribution.
import os from setuptools import setup, find_packages with open(os.path.join(os.path.dirname(__file__), 'README.md')) as readme: README = readme.read() if os.path.exists('README.txt'): README = open('README.txt').read() # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='wagtail-simple-math-captcha', version='0.1.2', packages=find_packages(exclude=[]), install_requires=['wagtail', 'django-simple-math-captcha'], include_package_data=True, license='BSD License', description='A simple math captcha field for Wagtail Form Pages based on Django Simple Math Captcha.', long_description=README, url='https://bitbucket.org/jordanmarkov/wagtail-simple-math-captcha', download_url='https://bitbucket.org/jordanmarkov/wagtail-simple-math-captcha/get/0.1.2.tar.gz', keywords=['django', 'wagtail', 'cms', 'captcha'], author='Jordan Markov', author_email='jmarkov@gmail.com', classifiers=[ 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ], )
# Generated by Django 4.0.3 on 2022-03-09 03:16 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import uuid class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='User', fields=[ ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('username', models.CharField(default='user0001', max_length=30, unique=True)), ('email', models.CharField(max_length=30, unique=True)), ('password', models.CharField(max_length=30)), ('is_active', models.BooleanField(default=True)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Post', fields=[ ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('context', models.CharField(blank=True, max_length=256, null=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='posts', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Comment', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('content', models.CharField(max_length=255)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to='posts.post')), ], ), ]
import logging import random import time import requests from stem import Signal from stem.control import Controller from stem.util.log import get_logger logger = get_logger() logger.propagate = False # site to get ip IP_CHECK_SERVICE = 'http://icanhazip.com/' class TorController: def __init__(self, allow_reuse_ip_after: int = 10): """Creates a new instance of TorController. Keywords arguments: allow_reuse_ip_after -- When an already used IP can be used again. If 0, there will be no IP reuse control. (default 10). """ self.allow_reuse_ip_after = allow_reuse_ip_after self.used_ips = list() self.proxies = {'http': 'socks5://127.0.0.1:9050', 'https': 'socks5://127.0.0.1:9050'} self.renew_ip() def get_ip(self) -> str: """Returns the current IP used by Tor.""" with requests.Session() as session: r = session.get(IP_CHECK_SERVICE, proxies = self.proxies) if r.ok: session.close() return r.text.replace('\n', '') return r.text.replace('\n', '') return '' def change_ip(self) -> None: """Send IP change signal to Tor.""" with Controller.from_port(port=9051) as controller: controller.authenticate() controller.signal(Signal.NEWNYM) def renew_ip(self) -> None: """Change Tor's IP             Returns the new IP or '', if is not possible to change the IP. """ new_ip = None # Try to change the IP 10 times for _ in range(10): self.change_ip() new_ip = self.get_ip() # Waits for possible IP change waiting = 0 while waiting <= 30: if new_ip in self.used_ips: waiting += 2.5 time.sleep(2.5) new_ip = self.get_ip() if not new_ip: break else: break # If we can recover the IP, check if it has already been used if new_ip: # Controls IP reuse if self.allow_reuse_ip_after > 0: if len(self.used_ips) == self.allow_reuse_ip_after: del self.used_ips[0] self.used_ips.append(new_ip) return new_ip # Wait a random time to try again time.sleep(random.randint(5,30)) # Could not change IP return ''
#!/usr/bin/env python # -*- coding: utf-8 -*- """ input params """ __author__ = "Saeed Moghimi" __copyright__ = "Copyright 2017, UCAR/NOAA" __license__ = "GPL" __version__ = "1.0" __email__ = "moghimis@gmail.com" from pynmd.plotting.vars_param import * from collections import defaultdict import datetime cases = defaultdict(dict) #### INPUTS #### #storm_name = 'SAN' storm_name = 'SANDY' storm_year = '2012' # map_plot_options plot_adc_fort = True plot_adc_maxele = False plot_nems_fields = False plot_forcing_files = False plot_nwm_files = False plot_mesh = False local_bias_cor = True #HWM proximity limit prox_max = 0.004 base_dir_sm = '/scratch2/COASTAL/coastal/save/Saeed.Moghimi/noscrub/01_stmp_ca/stmp10_sandy_re/' hwm_fname = '/scratch2/COASTAL/coastal/save/Saeed.Moghimi/models/NEMS/NEMS_inps/01_data/hwm/events/hwm_san.csv' base_dir_coops_piks = '/scratch2/COASTAL/coastal/save/Saeed.Moghimi/models/NEMS/NEMS_inps/01_data/ccxxxxxxxx/' base_dir_obs = '/scratch2/COASTAL/coastal/save/Saeed.Moghimi/models/NEMS/NEMS_inps/01_data/coops_ndbc_data/' nwm_channel_pnts = '/scratch2/COASTAL/coastal/save/Saeed.Moghimi/models/NEMS/NEMS_inps/01_data/nwm_base_info/channel_points/NWM_v1.1_nc_tools_v1/spatialMetadataFiles/nwm_v1.1_geospatial_data_template_channel_point.nc' nwm_channel_geom = '/scratch2/COASTAL/coastal/save/Saeed.Moghimi/models/NEMS/NEMS_inps/01_data/nwm_base_info/channel_geom/nwm_v1.1/nwm_fcst_points_comid_lat_lon-v1-1_ALL.csv' nwm_results_dir = '/scratch2/COASTAL/coastal/save/Saeed.Moghimi/models/wrfhydro/test_data/nwm.20180226/' #ftypes = ['png','pdf'] ftypes = ['png'] san_before_update = False san_hwrf_update = True if True: #Base run only tide key = 'atm:n-tid:y-wav:n' cases[key]['dir'] = base_dir_sm + '/a21_SAN_TIDE_v1.1/rt_20180420_h17_m53_s52r550/' cases[key]['label'] = 'Only tide' cases[key]['hsig_file'] = None cases[key]['wdir_file'] = None key0 = key if san_before_update: #ATM2OCN key = '01-atm:y-tid:y-wav:n' cases[key]['dir'] = base_dir_sm + '/a52_SAN_ATM2OCN_v1.1/rt_20180423_h14_m04_s14r624/' cases[key]['label'] = 'ATM2OCN Pre HWRF' cases[key]['hsig_file'] = None cases[key]['wdir_file'] = None #ATM&WAV2OCN wav_inp_dir = '/scratch4/COASTAL/coastal/save/NAMED_STORMS/SANDY/WW3/' key = '02-atm:y-tid:y-wav:y-try01' cases[key]['dir'] = base_dir_sm + '/a53_SAN_ATM_WAV2OCN_v1.0/rt_20180423_h14_m09_s08r130/' cases[key]['label'] = 'ATM&WAV2OCN Pre HWRF' cases[key]['hsig_file'] = wav_inp_dir + 'ww3.HWRF.3DVar.2012_hs.nc' cases[key]['wdir_file'] = wav_inp_dir + 'ww3.HWRF.3DVar.2012_dir.nc' key1 = key if san_hwrf_update: #ATM2OCN key = '03-atm:y-tid:y-wav:n' cases[key]['dir'] = base_dir_sm + '/a50_SAN_ATM2OCN_v2.1_new_hwrf_land_mask/rt_20190710_h21_m15_s48r723/' cases[key]['label'] = 'ATM2OCN Upd HWRF' cases[key]['hsig_file'] = None cases[key]['wdir_file'] = None #key0 = key #ATM&WAV2OCN wav_inp_dir = '/scratch4/COASTAL/coastal/save/NAMED_STORMS/SANDY/WW3/' key = '04-atm:y-tid:y-wav:y-try01' cases[key]['dir'] = base_dir_sm + '/a70_SAN_ATM_WAV2OCN_v2.1_new_hwrf_land_mask/rt_20190710_h21_m17_s23r169/' cases[key]['label'] = 'ATM&WAV2OCN Upd HWRF' cases[key]['hsig_file'] = wav_inp_dir + 'ww3.HWRF.3DVar.2012_hs.nc' cases[key]['wdir_file'] = wav_inp_dir + 'ww3.HWRF.3DVar.2012_dir.nc' key1 = key #out_dir = cases[key1]['dir']+'/../01_post_atm2ocn_wav_nwm/' out_dir = cases[key1]['dir']+'/../02_post_2019_shachak3/' ####### defs['elev']['label'] = 'Elev [m]' dif = False vec = True if dif: if True: defs['elev']['cmap'] = maps.jetMinWi defs['elev']['label'] = 'Surge [m]' defs['elev']['vmin'] = 0 defs['elev']['vmax'] = 5 else: defs['elev']['label'] = 'Wave set-up [m]' defs['elev']['cmap'] = maps.jetWoGn() defs['elev']['vmin'] = -0.5 defs['elev']['vmax'] = 0.5 else: defs['elev']['cmap'] = maps.jetWoGn() defs['elev']['label'] = 'Elev [m]' defs['elev']['vmin'] = -2 defs['elev']['vmax'] = 2 defs['rad']['vmin'] = 0.0 defs['rad']['vmax'] = 0.01 defs['rad']['cmap'] = maps.jetMinWi if False: #wind-stress defs['wind']['vmin'] = 0.0 defs['wind']['vmax'] = 0.01 defs['wind']['label'] = 'Wind force [m$^ \\mathrm{-2}$ s$^ \\mathrm{-2}$] ' else: #wind vel defs['wind']['vmin'] = 10 defs['wind']['vmax'] = 30 defs['wind']['label'] = 'Wind Speed [m$^ \\mathrm{}$ s$^ \\mathrm{-1}$] ' defs['wind']['cmap'] = maps.jetMinWi #added defs defs['rad' ]['fname'] = 'rads.64.nc' defs['elev']['fname'] = 'fort.63.nc' defs['wind']['fname'] = 'fort.74.nc' varname = 'pmsl' defs[varname]['vmin'] = 9.2000 defs[varname]['vmax'] = 10.5000 defs[varname]['fname'] = 'fort.73.nc' defs[varname]['label'] = 'Pressure [mH2O] ' defs[varname]['var'] = 'pressure' varname = 'hs' defs[varname]['vmin'] = 1 defs[varname]['vmax'] = 12 track_fname = '/scratch4/COASTAL/coastal/save/Saeed.Moghimi/models/NEMS/NEMS_inps/01_data/tracks/sandy_bal182012.dat' #For liverpool and andre report #key = 'atm:y-tid:y-wav:n-main-sm24' #key1 = key #cases[key]['dir'] = base_dir_sm + '/a52_IKE_ATM2OCN_v1.1/rt_20170801_h20_m24_s42r389/' #cases[key]['label'] = 'IKE_HWRF_GFS05d_OC_DA_HSOFS' #out_dir0 = base_dir_sm + '/a52_IKE_ATM2OCN_v1.1/'+'01_post/maps/' #with Gustav #key = 'atm:y-tid:y-wav:n-main-sm60' #cases[key]['dir'] = base_dir_sm + '/a61_IKE_ATM2OCN_v2.0/rt_20170815_h17_m46_s10r529/' #cases[key]['label'] = 'IKE_HWRF_GFS05d_OC_HSOFS_Gustav' #key1 = key #out_dir0 = base_dir_sm + '/a61_IKE_ATM2OCN_v2.0/'+'01_post/'+cases[key1]['label'] +'/maps/' #without gustav #key = 'atm:y-tid:y-wav:n-main-sm20' #cases[key]['dir'] = base_dir_sm + '/a52_IKE_ATM2OCN_v1.1/rt_20170801_h20_m15_s00r670//' #cases[key]['label'] = 'IKE_HWRF_GFS05d_OC_HSOFS' #key1 = key ############################# #defs['maxele'] = {} #defs['maxele'] = defs['elev'] #defs['maxele']['fname'] = 'maxele.63.nc' # tim_lim = {} tim_lim['xmin'] = datetime.datetime(2012, 10, 9, 18, 0) + datetime.timedelta(12.5) tim_lim['xmax'] = datetime.datetime(2012, 10, 9, 18, 0) + datetime.timedelta(25.125) if False: #plot maps track tim_lim['xmin'] = datetime.datetime(2012, 10, 23,1) #plot map area2 tim_lim['xmin'] = datetime.datetime(2012, 10, 26,23) tim_lim['xmax'] = datetime.datetime(2012, 10, 31,0) varnames = ['elev']#,'rad'] #,'maxele']# #varnames = ['rad'] #,'maxele'] #varnames = ['rad','wind']#,'elev'] #,'maxele'] #varnames = ['elev'] #,'maxele'] #varnames = ['wind']#,'elev'] #,'maxele'] #varnames = ['hs']#,'elev'] #,'maxele'] #varnames = ['elev'] #,'maxele'] # regions = ['san_area2','san_area','san_newyork','san_track','san_delaware','san_jamaica_bay'] #regions = ['hsofs_region','san_track','san_area2','san_delaware','san_area'] #regions = ['san_jamaica_bay'] #regions = ['san_delaware']#,'san_area2'] #regions = ['san_area'] #anim #regions = ['san_area'] # HWM regions = ['san_newyork'] #################### #tim_lim['xmin'] = datetime.datetime(2017, 9, 5,23) #tim_lim['xmax'] = datetime.datetime(2017, 9, 7,12) #regions = ['burbuda_zoom' ,'puertorico_shore'] #,'carib_irma'] ##################### #tim_lim['xmin'] = datetime.datetime(2017, 9, 7,11) #tim_lim['xmax'] = datetime.datetime(2017, 9, 9,12) #tim_lim['xmin'] = datetime.datetime(2017, 9, 9,10) #tim_lim['xmax'] = datetime.datetime(2017, 9, 12,12) #regions = ['cuba_zoom','key_west_zoom'] ##################### #regions = ['ike_region'] # #tim_lim['xmin'] = datetime.datetime(2017, 9, 6 ) #tim_lim['xmax'] = datetime.datetime(2017, 9, 12 ) # #latp = 29.2038 #lonp = -92.2285 #i,prox = find_nearest1d(xvec = lon,yvec = lat,xp = lonp,yp = latp) # for COOPS time series plot station_selected_list = None """ if False: #ATM2OCN key = '01-atm:y-tid:y-wav:n' cases[key]['dir'] = base_dir_sm + '/a52_SAN_ATM2OCN_v2.0/rt_20180510_h12_m53_s33r830/' cases[key]['label'] = '3DVar' #key0 = key key = '03-atm:y-tid:y-wav:n' cases[key]['dir'] = base_dir_sm + '/a52_SAN_ATM2OCN_v2.0/rt_20180510_h13_m02_s21r175/' cases[key]['label'] = 'Hybrid' key = '05-atm:y-tid:y-wav:n' cases[key]['dir'] = base_dir_sm + '/a52_SAN_ATM2OCN_v2.0/rt_20180510_h13_m06_s43r786/' cases[key]['label'] = 'Operational' #key1 = key key = '07-atm:y-tid:y-wav:n' cases[key]['dir'] = base_dir_sm + '/a52_SAN_ATM2OCN_v2.0/rt_20180510_h12_m57_s57r209/' cases[key]['label'] = 'ENS_ch75' #key1 = key #ATM&WAV2OCN wav_inp_dir = '/scratch4/COASTAL/coastal/save/NAMED_STORMS/SANDY/WW3/' key = '02-atm:y-tid:y-wav:y' cases[key]['dir'] = base_dir_sm + '/a53_SAN_ATM_WAV2OCN_v2.0/rt_20180510_h13_m15_s13r719/' cases[key]['label'] = '3DVar WAV' cases[key]['hsig_file'] = wav_inp_dir + 'ww3.HWRF.3DVar.2012_hs.nc' cases[key]['wdir_file'] = wav_inp_dir + 'ww3.HWRF.3DVar.2012_dir.nc' key1 = key key = '04-atm:y-tid:y-wav:y' cases[key]['dir'] = base_dir_sm + '/a53_SAN_ATM_WAV2OCN_v2.0/rt_20180510_h13_m23_s44r792/' cases[key]['label'] = 'Hybrid WAV' cases[key]['hsig_file'] = wav_inp_dir + 'ww3.HWRF.Hybrid.2012_hs.nc' cases[key]['wdir_file'] = wav_inp_dir + 'ww3.HWRF.Hybrid.2012_dir.nc' key = '06-atm:y-tid:y-wav:y' cases[key]['dir'] = base_dir_sm + '/a53_SAN_ATM_WAV2OCN_v2.0/rt_20180510_h13_m28_s11r309/' cases[key]['label'] = 'Operational WAV' cases[key]['hsig_file'] = wav_inp_dir + 'ww3.HWRF.Operational.2012_hs.nc' cases[key]['wdir_file'] = wav_inp_dir + 'ww3.HWRF.Operational.2012_dir.nc' key = '08-atm:y-tid:y-wav:y' cases[key]['dir'] = base_dir_sm + '/a53_SAN_ATM_WAV2OCN_v2.0/rt_20180510_h13_m19_s27r209/' cases[key]['label'] = 'ENS_ch75 WAV' cases[key]['hsig_file'] = wav_inp_dir + 'ww3.HWRF.ENS_CH75.2012_hs.nc' cases[key]['wdir_file'] = wav_inp_dir + 'ww3.HWRF.ENS_CH75.2012_dir.nc' if False: #ATM&WAV2OCN wav_inp_dir = '/scratch4/COASTAL/coastal/save/NAMED_STORMS/SANDY/WW3/' key = '02-atm:y-tid:y-wav:y' cases[key]['dir'] = base_dir_sm + '/a53_SAN_ATM_WAV2OCN_v2.0/rt_20180510_h13_m15_s13r719/' cases[key]['label'] = '3DVar WAV' cases[key]['hsig_file'] = wav_inp_dir + 'ww3.HWRF.3DVar.2012_hs.nc' cases[key]['wdir_file'] = wav_inp_dir + 'ww3.HWRF.3DVar.2012_dir.nc' key1 = key """
import numpy as np from sklearn import svm from sklearn.externals import joblib from dynamic_programming import neural_classif_usage as nn class DynamicProgramming: def __init__(self, model_path, model_file, offline_file): self.model_path = model_path self.model_file = model_file self.offline_file = offline_file self.nControls = None self.activationCost = None self.nn = None self.nStages = 24 self.regr = joblib.load(model_path+'regr_model.pkl') # if os.path.isfile(offline_file+'.p'): # offline_phase = pickle.load(open(offline_file+'.p', "rb")) # self.controlSpace = offline_phase['controlSpace'] # self.nControls = offline_phase['nControls'] # self.J = offline_phase['J'] # self.activationCost = offline_phase['activationCost'] # else: # self.offline_phase() self.offline_phase() def offline_phase(self): print('Executing offline phase.') UEgenerationFactor = 10000 UEgenerationbias = 150 averageTrafficPerHour = - UEgenerationbias + UEgenerationFactor * np.array([0.025, 0.07, 0.085, 0.0964, 0.1, 0.105, 0.11, 0.115, 0.12, 0.1225, 0.125, 0.13, 0.14, 0.16, 0.155, 0.15, 0.125, 0.1, 0.075, 0.05, 0.03, 0.024, 0.024, 0.027]) nPicos = 6 nActivePicosVal = np.arange(0, (nPicos+1)) nABSvals = 8 ABSval = np.linspace(0, 7/8, nABSvals) CREval = np.array([0, 6, 9, 12, 18]) controlSpace = np.array(np.meshgrid(nActivePicosVal, ABSval, CREval)).T.reshape(-1,3) nControls = len(controlSpace[:, 0]) ABS_CRE_bench = np.array([0, 0]) nControls_bench = nPicos + 1 controlSpace_bench = np.append(np.expand_dims(nActivePicosVal, axis=0).transpose(), np.tile(ABS_CRE_bench, (nControls_bench, 1)), axis=1) C = np.zeros((nControls, self.nStages)) P = np.zeros((nControls, self.nStages)) self.nn = nn.Classification(self.model_path, self.model_file) print('Creating matrices C and P...') for k in range(self.nStages): for s in range(nControls): state = np.concatenate([np.array([averageTrafficPerHour[k]]), controlSpace[s, :]]) C[s, k] = self.nn.getConsumption(np.expand_dims(state, axis=0))[0] P[s, k] = self.nn.getQoS(np.expand_dims(state, axis=0))[0] J = np.zeros((nControls, self.nStages)) p0Pico = 56 beta = .1 self.activationCost = beta * p0Pico print('Computing matrix J...') stageLoop = np.arange(0, self.nStages)[::-1] for k in stageLoop: if k == stageLoop[0]: # if last stage costToGo = 0 validActions = P[:, 0] > 0 if sum(validActions) == 0: validActions[np.argmax(P[:, 0])] = True else: costToGo = J[:, k+1] validActions = P[:, k+1] > 0 if sum(validActions) == 0: validActions[np.argmax(P[:, 0])] = True for s in range(nControls): currentActivePicos = controlSpace[s, 0] activationMatrix = np.maximum(controlSpace[:, 0] - currentActivePicos, 0) activationCostMatrix = activationMatrix * self.activationCost cost_in_k = C[:, k] + activationCostMatrix + costToGo J[s, k] = np.min(cost_in_k[validActions]) self.J = J self.controlSpace = controlSpace self.nControls = nControls #offline phase for benchmark algorithm C = np.zeros((nControls_bench, self.nStages)) P = np.zeros((nControls_bench, self.nStages)) print('Creating matrices C and P for benchmark algorithm...') for k in range(self.nStages): for s in range(nControls_bench): state = np.concatenate([np.array([averageTrafficPerHour[k]]), controlSpace_bench[s, :]]) C[s, k] = self.nn.getConsumption(np.expand_dims(state, axis=0))[0] P[s, k] = self.nn.getQoS(np.expand_dims(state, axis=0))[0] J_bench = np.zeros((nControls_bench, self.nStages)) p0Pico = 56 beta = .1 self.activationCost = beta * p0Pico print('Computing matrix J for benchmark algorithm...') stageLoop = np.arange(0, self.nStages)[::-1] for k in stageLoop: if k == stageLoop[0]: # if last stage costToGo = 0 validActions = P[:, 0] > 0 if sum(validActions) == 0: validActions[np.argmax(P[:, 0])] = True else: costToGo = J_bench[:, k+1] validActions = P[:, k+1] > 0 if sum(validActions) == 0: validActions[np.argmax(P[:, 0])] = True for s in range(nControls_bench): currentActivePicos = controlSpace_bench[s, 0] activationMatrix = np.maximum(controlSpace_bench[:, 0] - currentActivePicos, 0) activationCostMatrix = activationMatrix * self.activationCost cost_in_k = C[:, k] + activationCostMatrix + costToGo J_bench[s, k] = np.min(cost_in_k[validActions]) self.controlSpace_bench = controlSpace_bench self.nControls_bench = nControls_bench self.J_bench = J_bench # offline_phase = dict(controlSpace=controlSpace, nControls=nControls, J=J, activationCost=self.activationCost) # pickle.dump(offline_phase, open(self.offline_file+'.p', "wb")) print('Offline phase finished.') def online_getNextControl(self, traffic, currentControl, k): #regresion and NN if self.nn is None: self.nn = nn.Classification(self.model_path, self.model_file) states = np.append(np.tile(traffic, (self.nControls, 1)), self.controlSpace.copy(), axis=1) states[:, 2] = states[:, 2] * 8 consumption_next_stage = self.regr.predict(states) QoS_class = self.nn.getQoS(states).transpose()[0] validActions = QoS_class > 0 if not validActions.any(): validActions[np.argmax(QoS_class)] = True print('There is no action satisfying the threshold!') currentActivePicos = currentControl[0] activationMatrix = np.maximum(self.controlSpace[:, 0] - currentActivePicos, 0) activationCostMatrix = activationMatrix * self.activationCost totalConsumption = consumption_next_stage + activationCostMatrix + self.J[:, np.mod(k+1, self.nStages)] totalConsumption[np.logical_not(validActions)] = np.inf control = self.controlSpace[np.argmin(totalConsumption), :] if control[0] == 0: #if 0 active picos, ABS and CRE deactivated control[2] = 0 return control def online_getNextControl_noeICIC(self, traffic, currentControl, k): #no eICIC regr and NN if self.nn is None: self.nn = nn.Classification(self.model_path, self.model_file) states = np.append(np.tile(traffic, (self.nControls_bench, 1)), self.controlSpace_bench.copy(), axis=1) consumption_next_stage = self.regr.predict(states) QoS_class = self.nn.getQoS(states).transpose()[0] validActions = QoS_class > 0 if not validActions.any(): validActions[np.argmax(QoS_class)] = True print('There is no action satisfying the threshold!') currentActivePicos = currentControl[0] activationMatrix = np.maximum(self.controlSpace_bench[:, 0] - currentActivePicos, 0) activationCostMatrix = activationMatrix * self.activationCost totalConsumption = consumption_next_stage + activationCostMatrix + self.J_bench[:, np.mod(k+1, self.nStages)] totalConsumption[np.logical_not(validActions)] = np.inf control = self.controlSpace_bench[np.argmin(totalConsumption), :] return control def closeAlgorithm(self): self.nn.closeModel()
"""Entry point""" from domination.process import app def main(): """Run faust main""" app.main() if __name__ == '__main__': main()
__author__ = 'Owais Lone' __version__ = '0.7.0' default_app_config = 'webpack_loader.apps.WebpackLoaderConfig'
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from onnx import numpy_helper def get_parameter_name(name): """ Gets parameter name from parameter key. """ return name[name.rfind(".") + 1 :] def get_attribute_value(attr): """ Retrieves value from attribute in ONNX graph. """ if attr.HasField("f"): # floating-point attribute return attr.f elif attr.HasField("i"): # integer attribute return attr.i elif attr.HasField("s"): # string attribute return attr.s # TODO: Sanitize string. elif attr.HasField("t"): # tensor attribute return torch.from_numpy(numpy_helper.to_array(attr.t)) elif len(attr.ints) > 0: return list(attr.ints) elif len(attr.floats) > 0: return list(attr.floats) else: raise ValueError("Unknown attribute type for attribute %s." % attr.name)
# -*- coding: utf-8 -*- # This code shows an example of text translation from English to Simplified-Chinese. # This code runs on Python 2.7.x and Python 3.x. # You may install `requests` to run this code: pip install requests # Please refer to `https://api.fanyi.baidu.com/doc/21` for complete api document import requests import random import json from hashlib import md5 # Set your own appid/appkey. appid = '20210704000879756' appkey = 'WeD6UT8byhVe2p2WEilH' # For list of language codes, please refer to `https://api.fanyi.baidu.com/doc/21` from_lang = 'jp' to_lang = 'zh' endpoint = 'http://api.fanyi.baidu.com' path = '/api/trans/vip/translate' url = endpoint + path query = 'トイレがいっぱいです' # Generate salt and sign def make_md5(s, encoding='utf-8'): return md5(s.encode(encoding)).hexdigest() salt = random.randint(32768, 65536) sign = make_md5(appid + query + str(salt) + appkey) # Build request headers = {'Content-Type': 'application/x-www-form-urlencoded'} payload = {'appid': appid, 'q': query, 'from': from_lang, 'to': to_lang, 'salt': salt, 'sign': sign} # Send request r = requests.post(url, params=payload, headers=headers) result = r.json() # Show response print(json.dumps(result, indent=4, ensure_ascii=False))
import json from compare import expect from django.test import TransactionTestCase from django.test.client import Client from django.core.urlresolvers import reverse from lxml import etree from tardis.tardis_portal.models import Experiment, License, ObjectACL, User def _create_user_and_login(username='testuser', password='testpass'): user = User.objects.create_user(username, '', password) user.save() client = Client() client.login(username=username, password=password) return user, client class RifCSTestCase(TransactionTestCase): def setUp(self): self.ns = {'r': 'http://ands.org.au/standards/rif-cs/registryObjects', 'o': 'http://www.openarchives.org/OAI/2.0/'} user, client = _create_user_and_login() license_ = License(name='Creative Commons Attribution-NoDerivs ' '2.5 Australia', url='http://creativecommons.org/licenses/by-nd/' '2.5/au/', internal_description='CC BY 2.5 AU', allows_distribution=True) license_.save() experiment = Experiment(title='Norwegian Blue', description='Parrot + 40kV', created_by=user) experiment.public_access = Experiment.PUBLIC_ACCESS_FULL experiment.license = license_ experiment.save() acl = ObjectACL(content_object=experiment, pluginId='django_user', entityId=str(user.id), isOwner=False, canRead=True, canWrite=True, canDelete=False, aclOwnershipType=ObjectACL.OWNER_OWNED) acl.save() params = {'type': 'website', 'identifier': 'https://www.google.com/', 'title': 'Google', 'notes': 'This is a note.'} response = client.post(\ reverse('tardis.apps.related_info.views.' + 'list_or_create_related_info', args=[experiment.id]), data=json.dumps(params), content_type='application/json') # Check related info was created expect(response.status_code).to_equal(201) self.acl = acl self.client = client self.experiment = experiment self.params = params def testExistsInOaipmh(self): ns = self.ns args = { 'verb': 'GetRecord', 'metadataPrefix': 'rif', 'identifier': 'experiment/%d' % self.experiment.id } response = self.client.get('/apps/oaipmh/?%s' % '&'.join(['%s=%s' % (k, v) for k, v in args.items()])) self.assertEqual(response.status_code, 200) # Check the response content is good xml = etree.fromstring(response.content) print response.content assert xml.xpath('/o:OAI-PMH', namespaces=ns) assert not xml.xpath('o:error', namespaces=ns) assert xml.xpath('/o:OAI-PMH/o:GetRecord/o:record', namespaces=ns) header, metadata = xml.xpath('/o:OAI-PMH/o:GetRecord/o:record/o:*', namespaces=ns)[0:2] exp_id = Experiment.objects.first().id expect(header.xpath('o:identifier/text()',namespaces=ns)[0]) \ .to_equal('experiment/%d' % exp_id) # <registryObject group="MyTARDIS Default Group"> registryObject = metadata.xpath('r:registryObjects/r:registryObject', namespaces=ns)[0] # <collection type="dataset"> expect(registryObject.xpath('r:collection/@type', namespaces=ns)[0]).to_equal('dataset') collection = registryObject.xpath('r:collection', namespaces=ns)[0] expect(collection.xpath('r:relatedInfo/@type', namespaces=ns)) \ .to_equal([self.params['type']]) relatedInfo = collection.xpath('r:relatedInfo', namespaces=ns)[0] for k, v in self.params.items(): if k == 'type': continue expect(relatedInfo.xpath('r:'+k+'/text()', namespaces=ns)) \ .to_equal([v]) expect(relatedInfo.xpath('r:identifier/@type', namespaces=ns)) \ .to_equal(['uri'])
import os from flask import ( Blueprint, flash, g, redirect, render_template, request, url_for, current_app ) from .db import Database bp = Blueprint('portal', __name__) @bp.route('/admin', methods=['GET']) def admin(): return render_template("admin/admin_home.html") @bp.route('/admin/table/<string:table_type>', methods=['GET']) def render_table(table_type): database_server = Database(host=current_app.config["MYSQL_HOST"], port=current_app.config["MYSQL_PORT"], user=current_app.config["MYSQL_USER"], password=current_app.config["MYSQL_PASSWORD"], database=current_app.config["MYSQL_DATABASE"]) data_tuple = None if table_type == 'professor': data_tuple = database_server.get_professor_table_all() return render_template("admin/table_render.html", table_type=data_tuple[0], table_columns=data_tuple[1], table_dict=data_tuple[2]) elif table_type == 'gender': data_tuple = database_server.get_gender_table_all() return render_template("admin/table_render.html", table_type=data_tuple[0], table_columns=data_tuple[1], table_dict=data_tuple[2]) elif table_type == 'concentration': data_tuple = database_server.get_concentration_table_all() return render_template("admin/table_render.html", table_type=data_tuple[0], table_columns=data_tuple[1], table_dict=data_tuple[2]) elif table_type == 'job-merged-table': data_tuple = database_server.get_job_merged_table_all() return render_template("admin/table_render.html", table_type=data_tuple[0], table_columns=data_tuple[1], table_dict=data_tuple[2]) elif table_type == 'company': data_tuple = database_server.get_company_table_all() return render_template("admin/table_render.html", table_type=data_tuple[0], table_columns=data_tuple[1], table_dict=data_tuple[2]) elif table_type == 'alumni': data_tuple = database_server.get_alumni_table_all() return render_template("admin/table_render.html", table_type=data_tuple[0], table_columns=data_tuple[1], table_dict=data_tuple[2]) @bp.route('/admin/table/insert/<string:table_type>', methods=["GET"]) def insert_new_record(table_type): database_server = Database(host=current_app.config["MYSQL_HOST"], port=current_app.config["MYSQL_PORT"], user=current_app.config["MYSQL_USER"], password=current_app.config["MYSQL_PASSWORD"], database=current_app.config["MYSQL_DATABASE"]) if table_type == 'professor': return render_template("admin/table_insert.html", table_type=table_type) @bp.route('/admin/table/insert/ajax/<string:table_type>', methods=["POST"]) def ajax_insert_new_record(table_type): database_server = Database(host=current_app.config["MYSQL_HOST"], port=current_app.config["MYSQL_PORT"], user=current_app.config["MYSQL_USER"], password=current_app.config["MYSQL_PASSWORD"], database=current_app.config["MYSQL_DATABASE"]) if table_type == 'professor': request.get_data() json_data = request.json flat_list = [json_data["firstName"], json_data["lastName"]] inserted_id = database_server.insert_into_professor_table(flat_list) return { "database_status": "Success", "inserted_id": inserted_id }
from cx_Freeze import setup, Executable base = None executables = [Executable("lzss3.py", base=base)] packages = ["idna"] options = { 'build_exe': { 'packages':packages, }, } setup( name = "Decompress", options = options, version = "1.0.0.0", description = "Decompress a file that uses Nintendo's lz11 compression.", executables = executables )
from collections import defaultdict from datetime import timedelta import re from typing import Dict, List from django.core.exceptions import SuspiciousOperation from django.db.models import Q, query, Sum from django.http import Http404 from django.urls import reverse_lazy from django.utils import timezone from django.views import generic as generic_views from djangoql.exceptions import DjangoQLError from djangoql.queryset import apply_search import structlog from . import forms, models from ..auditing.models import Issue from ..checklists.steps import STEPS log = structlog.get_logger() class ServiceMixin: def get_object(self, queryset=None): """Return the service based on owner and name from the URL.""" if queryset is None: queryset = self.get_queryset() try: return queryset.get( owner_slug=self.kwargs["owner_slug"], name_slug=self.kwargs["name_slug"] ) except queryset.model.DoesNotExist: raise Http404("Service.DoesNotExist") class ServiceCreate(generic_views.CreateView): form_class = forms.ServiceForm model = form_class.Meta.model class ServiceDelete(generic_views.DeleteView): model = models.Service success_url = reverse_lazy("service_list") def get_object(self, queryset=None): owner_slug = self.kwargs.get("owner_slug") name_slug = self.kwargs.get("name_slug") if queryset is None: queryset = self.get_queryset() if owner_slug is None or name_slug is None: raise SuspiciousOperation( f"ServiceDelete view must be called with owner_slug and name_slug" ) try: return queryset.get(owner_slug=owner_slug, name_slug=name_slug) except self.model.DoesNotExist: raise Http404(f"Service {owner_slug}/{name_slug} does not exist") class ServiceDetail(ServiceMixin, generic_views.DetailView): model = models.Service def get_queryset(self): return ( super() .get_queryset() .select_related("repository") .prefetch_related("checkmarks") ) def generate_sentry_histogram( self, sentry_issues: query.QuerySet ) -> Dict[int, List[int]]: result = defaultdict(list) for issue in sentry_issues: last_two_weeks = sorted(issue.stats.all(), key=lambda x: x.timestamp)[:14] max_events_count = max([day.count for day in last_two_weeks]) for day in last_two_weeks: bar_height = ( max(day.count / max_events_count, 0.175) if day.count else 0 ) result[issue.id].append( { "value": bar_height, "tooltip": f""" <h4>{day.timestamp.strftime('%d/%m/%Y')}</h4> <strong>{day.count}</strong> events """, } ) return dict(result) def calculate_weekly_sentry_stats( self, sentry_issues: query.QuerySet ) -> Dict[str, int]: one_week_ago = timezone.now().date() - timedelta(days=7) last_week_issues = sentry_issues.filter(last_seen__gte=one_week_ago).annotate( freq=Sum("stats__count", filter=Q(stats__timestamp__gte=one_week_ago)) ) weekly_events = last_week_issues.aggregate(Sum("freq"))["freq__sum"] or 0 weekly_users = last_week_issues.aggregate(Sum("users"))["users__sum"] or 0 return {"events": weekly_events, "users": weekly_users} def get_sentry_context(self): ISSUE_ORDER = { models.SentryIssueCategory.STALE.value: 0, models.SentryIssueCategory.DECAYING.value: 1, models.SentryIssueCategory.SPOILED.value: 2, } sentry_issues_queryset = self.object.sentry_issues.prefetch_related( "stats" ).all() if not sentry_issues_queryset.exists(): return None all_sentry_issues = sentry_issues_queryset.order_by("-last_seen") problematic_sentry_issues = sorted( sentry_issues_queryset.exclude( category=models.SentryIssueCategory.FRESH.value ).all(), key=lambda k: (ISSUE_ORDER[k.category], k.last_seen), ) issue_histogram = self.generate_sentry_histogram(all_sentry_issues) weekly_stats = self.calculate_weekly_sentry_stats(all_sentry_issues) return { "weekly_events": weekly_stats["events"], "weekly_users": weekly_stats["users"], "issues": [ { "id": issue.id, "instance": issue, "histogram": issue_histogram[issue.id], } for issue in problematic_sentry_issues ], } def get_checklists_context(self): if self.object.status != models.Status.BETA.value: return None return { "total": sum( [len(steps) for tag, steps in STEPS.items() if tag in self.object.tags] ), "completed": self.object.checkmarks.count(), } def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) if self.object.repository: context["issue_count"] = self.object.repository.issues.filter( status=Issue.Status.NEW.value ).count() context["sentry_data"] = self.get_sentry_context() context["checklist"] = self.get_checklists_context() return context class ServiceList(generic_views.ListView): model = models.Service paginate_by = 50 def get_queryset(self): queryset = self.model.objects.select_related("repository") queryterm = self.request.GET.get("q", None) SIMPLE_QUERY_PATTERN = r"^[\w-]+$" URL_QUERY_PATTERN = r"^https?[:][/][/]\S+$" if queryterm: if re.match(SIMPLE_QUERY_PATTERN, queryterm): queryset = queryset.filter( Q(name__icontains=queryterm) | Q(owner__icontains=queryterm) | Q(status__icontains=queryterm) | Q(impact__icontains=queryterm) ) elif re.match(URL_QUERY_PATTERN, queryterm): queryset = queryset.filter( Q(docs_url__icontains=queryterm) | Q(service_url__icontains=queryterm) | Q(health_check_url__icontains=queryterm) ) else: try: queryset = apply_search(queryset, queryterm, models.ServiceQLSchema) except DjangoQLError: log.exception("services.query_error", queryterm=queryterm) return self.model.objects.none() return queryset.order_by("name") class ServiceUpdate(ServiceMixin, generic_views.UpdateView): form_class = forms.ServiceForm model = form_class.Meta.model
""" AWGs """ from atom.api import Atom, List, Int, Float, Range, Enum, Bool, Constant, Str from .Instrument import Instrument import enaml from enaml.qt.qt_application import QtApplication import glob import copy class AWGDriver: naming_convention = [] def get_naming_convention(self): # return copy of empty_channel_set so different AWGs will not share memory return copy.copy(self.naming_convention) class AWGChannel(Atom): label = Str() amplitude = Float(default=1.0).tag(desc="Scaling applied to channel amplitude") offset = Float(default=0.0).tag(desc='D.C. offset applied to channel') enabled = Bool(True).tag(desc='Whether the channel output is enabled.') class AWG(Instrument, AWGDriver): isMaster = Bool(False).tag(desc='Whether this AWG is master') triggerSource = Enum('Internal', 'External').tag(desc='Source of trigger') triggerInterval = Float(1e-4).tag(desc='Internal trigger interval') samplingRate = Float(1200000000).tag(desc='Sampling rate in Hz') numChannels = Int() channels = List(AWGChannel) seqFile = Str().tag(desc='Path to sequence file.') seqFileExt = Constant('') seqForce = Bool(True).tag(desc='Whether to reload the sequence') delay = Float(0.0).tag(desc='time shift to align multiple AWGs') translator = Constant('') def __init__(self, **traits): super(AWG, self).__init__(**traits) if not self.channels: for ct in range(self.numChannels): self.channels.append(AWGChannel()) def json_encode(self, matlabCompatible=False): jsonDict = super(AWG, self).json_encode(matlabCompatible) # Skip encoding of constants del jsonDict["seqFileExt"] del jsonDict["translator"] if matlabCompatible: channels = jsonDict.pop('channels', None) for ct,chan in enumerate(channels): jsonDict['chan_{}'.format(ct+1)] = chan return jsonDict def update_from_jsondict(self, params): for ct in range(self.numChannels): channelParams = params['channels'][ct] # if this is still a raw dictionary convert to object if isinstance(channelParams, dict): channelParams.pop('x__class__', None) channelParams.pop('x__module__', None) channelParams = AWGChannel(**channelParams) self.channels[ct].label = channelParams.label self.channels[ct].amplitude = channelParams.amplitude self.channels[ct].offset = channelParams.offset self.channels[ct].enabled = channelParams.enabled for p in ['label', 'enabled', 'address', 'isMaster', 'triggerSource', 'triggerInterval', 'samplingRate', 'seqFile', 'seqForce', 'delay']: setattr(self, p, params[p])
from numpy import * from matplotlib.pyplot import * x=loadtxt('cluster_test.txt') N=x.shape[0] M=zeros((N,N)) # critical distance dc=7 for i in range(N): for j in range(i+1, N): M[j, i] = M[i, j] = (sum((x[i, :]-x[j, :])**2))**0.5 print('matrix of distances is ready') l1=[] l2=[] l3=[] res=[] Q=range(N) # we need change 0 in diagonal matrix then we can found min value of matrix maxi=M.max() for i in range(N): M[i,i]=maxi # NNS algorithm fv=True while fv: minim = M[Q[0], Q[1]] iz = Q[0] jz = Q[1] for i in Q: for j in Q: if M[i, j] < minim: iz = i jz = j minim = M[i, j] l1 = [] l2 = [iz, jz] l3 = [] f = True while f: for el in l2: for i in Q: if M[el, i] < dc: if (i not in l1) and (i not in l2) and (i not in l3): l3.append(i) if not l3: f = False l1.extend(l2) l2 = l3 l3 = [] res.append(l1) Q = [el for el in Q if el not in l1] if not Q: fv = False x2 = x.take(l1,0) plot(x2[:,0], x2[:,1], '.') grid() show() # savefig('NNS_cluster.png')
""" Purpose: Summarizes the alternatives of the bluebooks Status: Final -- 06/27/2019 @author: olivergiesecke """ ############################################################################### ### Set packages ### import pandas as pd import re import os import matplotlib.pyplot as plt import numpy as np ############################################################################### def main(): dataffr=construct_dataset(1988,2008) plot_target(dataffr) data=load_bluebook_data(1988,2008) create_totstat(data,'tab_sumstats_menu') #create_sumstat_byyear(data,'tab_sumstats_menu_byyear') #turning_points=['1989-06-01','1993-06-01','1995-04-01','2000-11-01','2004-01-01','2007-02-01'] #create_sumstat_byperiod(data,turning_points,'tab_sumstats_menu_byperiod') def create_totstat(data,name): sum_menu=pd.pivot_table(data,values='end_date',index='treatment_options',aggfunc=np.count_nonzero,fill_value=0) sum_menu=sum_menu.reset_index() sum_menu.rename(columns={"end_date":"count"},inplace=True) sum_menu.loc[:,'len_count']=sum_menu["treatment_options"].apply(lambda x:len(x)) sum_menu=sum_menu.sort_values(by='len_count') sum_menu=sum_menu.append({'treatment_options':'Total','count':sum_menu['count'].sum()},ignore_index=True) ### Export the dataframe to latex # Dictionary for column headers headers={"treatment_options":"Policy Options","count":"Number of Meetings"} sum_menu.rename(columns=headers,inplace=True) sum_menu.drop(columns="len_count",inplace=True) create_table_df(sum_menu,name) #print("Table",name,"is written." ) def create_table_df(data,name): columnheaders=list(data.columns) numbercolumns=len(columnheaders) with open("../output/overleaf_files/"+name+".tex", "w") as f: f.write(r"\begin{tabular}{"+"l" + "".join("c" * (numbercolumns-1)) + "}\n") f.write("\\hline\\hline \n") f.write("\\addlinespace"+" \n") f.write(" & ".join([str(x) for x in columnheaders]) + " \\\ \n") f.write("\\hline \n") # write data for idx,row in data.iterrows(): # Do formatting for specific tables if row.iloc[0]=="Total": f.write("\\addlinespace"+" \n") f.write(" & ".join([str(x) for x in row.values]) + " \\\\\n") f.write("\\hline \n") f.write(r"\end{tabular}") def construct_dataset(startyear,endyear): ffr=pd.read_excel("../../../collection/python/data/FRED_DFEDTAR.xls",skiprows=10) ffr.rename(columns={"observation_date":"date","DFEDTAR":"ffrtarget"},inplace=True) ffr['year']=ffr['date'].apply(lambda x: x.year) ffr=ffr[(ffr['year']>=startyear) & (ffr['year']<=endyear)] return ffr def plot_target(dataffr): dataffr[dataffr['year']==1990] ### Get turning points dataffr.reset_index(inplace=True) t_point=dataffr[dataffr['ffrtarget'].diff(1)!=0] t_point[t_point['year']==2007] plt.rc('text', usetex=True) fig = plt.figure(figsize=(10, 3)) ax = fig.add_subplot(1, 1, 1) ax.plot(dataffr['date'],dataffr['ffrtarget'], color='blue', ls='solid') turning_points=['1989-06-01','1993-06-01','1995-04-01','2000-11-01','2004-01-01','2007-02-01'] for datestring in turning_points: ax.axvline(x=pd.to_datetime(datestring), color='gray', linestyle='--') plt.legend(['Federal Funds Target'],frameon=False) plt.savefig('../output/fig_fed_target.png', dpi=300,bbox_inches='tight') #print('fig_fed_target.png is written') def load_bluebook_data(startyear,endyear): data=pd.read_excel("../data/bluebook_manual_data_online_WORKING.xlsx") data['year']=data['start_date'].apply(lambda x : x.year) data=data[(data['year']>=startyear) & (data['year']<=endyear)] data=data.reset_index() treatments=[] for alt in ['a','b','c','d','e']: try: treatments+=data['C_TREATMENT_alt_'+alt].unique().tolist() except: pass #print('No option found') treatments=list(set(treatments)) data.loc[:,'treatment_options']=np.nan for idx,row in data.iterrows(): treatments=[] for alt in ['a','b','c','d','e']: try: treatments+=row['C_TREATMENT_alt_'+alt] except: pass #print('No option found') notvalid_treatments=['N'] treatments=[x for x in treatments if not x in notvalid_treatments] treatment_tuple=tuple(set(treatments)) treatments=",".join(list(set(treatments))) #print(treatments) #print(idx) if not len(treatment_tuple)==0: data['treatment_options'].iloc[idx]=treatments else: pass return data def create_sumstat_byyear(data,name): sum_menu_byyear=pd.pivot_table(data,values='end_date',index='treatment_options',columns='year',aggfunc=np.count_nonzero,fill_value=0) sum_menu_byyear=sum_menu_byyear.reset_index() addline={'treatment_options':'Total'} for item in list(sum_menu_byyear.columns)[1:]: addline.update({item:sum_menu_byyear[item].sum() }) sum_menu_byyear=sum_menu_byyear.append(addline,ignore_index=True) ### Export the dataframe to latex # Dictionary for column headers headers={"treatment_options":"Policy Options"} sum_menu_byyear.rename(columns=headers,inplace=True) create_table_df(sum_menu_byyear,name) #print("Table",name,"is written." ) def create_sumstat_byperiod(data,turning_points,name): data.loc[:,'period']="" data.loc[data['start_date']<=pd.to_datetime(turning_points[0]),'period']='pre '+turning_points[0] for i in range(len(turning_points)-1): data.loc[(data['start_date']>pd.to_datetime(turning_points[i])) & (data['start_date']<=pd.to_datetime(turning_points[i+1])),'period']='\\shortstack{'+turning_points[i]+'- \\\ '+turning_points[i+1]+'}' data.loc[data['start_date']>=pd.to_datetime(turning_points[-1]),'period']='post '+turning_points[-1] sum_menu_period=pd.pivot_table(data,values='end_date',index='treatment_options',columns='period',aggfunc=np.count_nonzero,fill_value=0) sum_menu_period=sum_menu_period.reset_index() addline={'treatment_options':'Total'} for item in list(sum_menu_period.columns)[1:]: addline.update({item:sum_menu_period[item].sum() }) cols = list(sum_menu_period) # move the column to head of list using index, pop and insert cols.insert(1, cols.pop(cols.index(cols[-1]))) sum_menu_period=sum_menu_period[cols] sum_menu_period=sum_menu_period.append(addline,ignore_index=True) ### Export the dataframe to latex # Dictionary for column headers headers={"treatment_options":"Policy Options"} sum_menu_period.rename(columns=headers,inplace=True) create_table_df(sum_menu_period,name) #print("Table",name,"is written." ) if __name__ == "__main__": main()
# Copyright (c) 2018-2021, Texas Instruments # All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import numpy as np import mmcv import onnx import torch from mmdet.utils import save_model_proto __all__ = ['pytorch2proto'] def prepare_model_for_layer_outputs(model_name, model_name_new, export_layer_types=None): onnx_model = onnx.load(model_name) intermediate_layer_value_info = onnx.helper.ValueInfoProto() intermediate_layer_value_info.name = '' for i in range(len(onnx_model.graph.node)): for j in range(len(onnx_model.graph.node[i].output)): if export_layer_types is None or onnx_model.graph.node[i].op_type in export_layer_types: intermediate_layer_value_info.name = onnx_model.graph.node[i].output[0] onnx_model.graph.output.append(intermediate_layer_value_info) # # # layer_output_names = [out.name for out in onnx_model.graph.output] onnx.save(onnx_model, model_name_new) return layer_output_names def similar_tensor(t1, t2, rtol=1.e-5, atol=1.e-5): if len(t1.shape) != len(t2.shape): return False if not np.allclose(t1.shape, t2.shape): return False if np.isnan(t1).all() or np.isnan(t2).all(): return False max_t1 = abs(np.nanmax(t1)) atol = max_t1*atol is_close = np.allclose(t1, t2, rtol=rtol, atol=atol, equal_nan=True) if not is_close: eps = max_t1 / rtol diff = np.nanmax(np.abs((t1-t2))) ratio = np.nanmax(np.abs((t1-t2)/(t1+eps))) is_close = diff < atol and ratio < rtol print(f'{t1.shape} - max difference: {diff} vs {atol}, max ratio: {ratio} vs {rtol}') # return is_close def retrieve_onnx_names(input_data, partial_model_path, full_model_path): import onnxruntime full_model_path_tmp = f'{full_model_path}.tmp' full_output_names = prepare_model_for_layer_outputs(full_model_path, full_model_path_tmp, export_layer_types=None) full_infer = onnxruntime.InferenceSession(full_model_path_tmp) full_input_name = full_infer.get_inputs()[0].name partial_infer = onnxruntime.InferenceSession(partial_model_path) partial_input_name = partial_infer.get_inputs()[0].name partial_output_names = [o.name for o in partial_infer.get_outputs()] input_numpy = input_data.detach().numpy() if isinstance(input_data, torch.Tensor) else input_data full_outputs = full_infer.run(full_output_names, {full_input_name:input_numpy}) partial_outputs = partial_infer.run(partial_output_names, {partial_input_name:input_numpy}) matched_names = {} for pname, po in zip(partial_output_names, partial_outputs): matched_name = None for fname, fo in zip(full_output_names, full_outputs): if similar_tensor(po, fo): matched_name = fname # # if matched_name is None: return None # matched_names[pname] = matched_name # os.remove(full_model_path_tmp) return matched_names def pytorch2proto(cfg, model, input_data, output_onnx_file, out_proto_file, output_names, opset_version): input_data = input_data[0] if isinstance(input_data, (list,tuple)) and \ isinstance(input_data[0], (torch.Tensor, np.ndarray)) else input save_model_proto(cfg, model, input_data, output_filename=out_proto_file, output_names=output_names, opset_version=opset_version) matched_names = None if output_onnx_file is not None: matched_names = retrieve_onnx_names(input_data, out_proto_file, output_onnx_file) if matched_names is not None: proto_names = list(matched_names.values()) save_model_proto(cfg, model, input_data, output_filename=output_onnx_file, opset_version=opset_version, proto_names=proto_names, output_names=output_names, save_onnx=False) # # if not matched_names: print('Tensor names could not be located; prototxt file corresponding to full model ' '(model.onnx) wont be written')
from django.db import models from utils.models import BaseModel # Create your models here. class Link(BaseModel): """ 友情链接 """ name = models.CharField(max_length=32, verbose_name="名称") url = models.URLField(max_length=64, verbose_name="URL地址") def __str__(self): return self.name class Meta: db_table = "link" verbose_name = '友情链接' verbose_name_plural = verbose_name
"""Reference implementations of graph algorithms.""" import numpy as np import scipy.sparse as sparse def bellman_ford_reference(A, c): """Reference implementation of Bellman-Ford. Parameters --------- A : coo sparse matrix n x n directed graph with positive weights c : array_like list of cluster centers Return ------ m : ndarray cluster index d : ndarray distance to cluster center See Also -------- amg_core.graph.bellman_ford """ Nnode = A.shape[0] Ncluster = len(c) d = np.full((Nnode,), np.inf) m = np.full((Nnode,), -1.0, dtype=np.int) d[c] = 0 # distance m[c] = c # index done = False while not done: done = True for i, j, Aij in zip(A.row, A.col, A.data): if Aij > 0 and d[i] + Aij < d[j]: d[j] = d[i] + Aij m[j] = m[i] done = False return (d, m) if __name__ == '__main__': Edges = np.array([[1, 4], [3, 1], [1, 3], [0, 1], [0, 2], [3, 2], [1, 2], [4, 3]]) w = np.array([2, 1, 2, 1, 4, 5, 3, 1], dtype=float) A = sparse.coo_matrix((w, (Edges[:, 0], Edges[:, 1]))) c = np.array([0,1,2,3,4]) print('\nreference--') for cc in c: d, m = bellman_ford_reference(A, [cc]) print(d, m) print('\npyamg--') from pyamg.graph import bellman_ford for cc in c: d, m = bellman_ford(A, [cc]) print(d, m) print('\ncsgraph.bellman_ford') from scipy.sparse import csgraph for cc in c: d, p = csgraph.bellman_ford(A, directed=True, indices=[cc], return_predecessors=True) print(d.ravel(), p.ravel())
import psycopg2 import psycopg2.extras from Infrastructure import log logger = log.get_logger("Postgres") class Connector: def __init__(self, config): self.host = config['hostname'] self.database = config['database'] self.user = config['username'] self.password = config['password'] self.connection = None def connect(self): i = 1 while not self.connection: try: self.connection = psycopg2.connect(host=self.host, database=self.database, user=self.user, password=self.password) except Exception as e: i += 1 logger.info("Error postgres connection " + str(e)) logger.info("Connect postgres " + str(i)) if i > 10: break def execute_with_results(self, query, params={}, as_dict=False): query = query.format(**params) self.connect() if as_dict: cursor = self.connection.cursor(cursor_factory=psycopg2.extras.RealDictCursor) else: cursor = self.connection.cursor() cursor.execute(query) data = cursor.fetchall() self.connection.commit() cursor.close() self.close() if as_dict: data = list(map(lambda r: dict(r), data)) return data def execute_with_results_generic(self, query): self.connect() cursor = self.connection.cursor(cursor_factory=psycopg2.extras.RealDictCursor) cursor.execute(query) rowcount = cursor.rowcount try: data = list(cursor.fetchall()) except Exception as ex: data = [] self.connection.commit() cursor.close() return [data, rowcount] def execute_multiple_queries_select_dict_response(self, store_procedure, params={}): procedure = open(store_procedure, 'r').read() sql_command = procedure.format(**params) sqllist = sql_command.split(";")[:-1] selects = [] for sql_c in sqllist: selected = self.execute_with_results_generic(sql_c) selects.append(selected) return selects def close(self): if self.connection: self.connection.close() self.connection = None
#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Jiao Lin # California Institute of Technology # (C) 2005 All Rights Reserved # # {LicenseText} # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # def test(): from .Class import example from .CCMill import CCMill klass = example() from .installationInfo import tmp from .factory import createHHandCC hhfn, ccfn = createHHandCC( klass, tmp ) import os os.system( "cd %s && g++ -c %s" % (tmp, ccfn) ) return if __name__ == "__main__": test() # version __id__ = "$Id$" # End of file
# -*- coding: utf-8 -*- """ Created on Thu Mar 18 20:10:30 2021 @author: Mohamed Salah """ # Import libraries and methods from sklearn.model_selection import train_test_split from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import median_absolute_error from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.impute import SimpleImputer import pandas as pd import numpy as np # Data Preparation ## Data Selection dataset = pd.read_csv("houses.csv") #print(dataset) X = dataset.iloc[ : , :-1] y = dataset.iloc[ : , -1] # print(y) # print(X) ## Data Cleaning # imputed_module = SimpleImputer(missing_values=np.nan, strategy='mean') # imputed_X = imputed_module.fit(X) # X = imputed_X.transform(X) # imputed_module = SimpleImputer(missing_values='nan', strategy='mean') # imputed_y = imputed_module.fit(y) # y = imputed_y.transform(y) ## Data Scaling X = StandardScaler(copy= True, with_mean=True, with_std=True).fit_transform(X) # print(X) ## Data Splitting X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=44, shuffle =True) # Model Building regression_model = LinearRegression() # Fit Model regression_model.fit(X_train, y_train) # Get Attribute Values train_score = regression_model.score(X_train, y_train) test_score = regression_model.score(X_test, y_test) thetas = regression_model.coef_ y_intercept = regression_model.intercept_ # Predict y_pred = regression_model.predict(X_test) # Get Accuracy MAEValue = mean_absolute_error(y_test, y_pred, multioutput='uniform_average') # it can be raw_values MSEValue = mean_squared_error(y_test, y_pred, multioutput='uniform_average') # it can be raw_values MdSEValue = median_absolute_error(y_test, y_pred)
## @ingroupMethods-Noise-Fidelity_One-Propeller # compute_broadband_noise.py # # Created: Mar 2021, M. Clarke # ---------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------- import SUAVE from SUAVE.Core import Units , Data import numpy as np from SUAVE.Methods.Noise.Fidelity_One.Noise_Tools.dbA_noise import A_weighting from SUAVE.Methods.Noise.Fidelity_One.Noise_Tools import SPL_harmonic_to_third_octave # ---------------------------------------------------------------------- # Frequency Domain Broadband Noise Computation # ---------------------------------------------------------------------- ## @ingroupMethods-Noise-Fidelity_One-Propeller def compute_broadband_noise(freestream,angle_of_attack,position_vector, velocity_vector,network,auc_opts,settings,res,source): '''This computes the broadband noise of a propeller or rotor in the frequency domain Assumptions: Coorelations are adjusted from reference altitude of 300 ft Source: Schlegel, Ronald, Robert King, and Harold Mull. Helicopter rotor noise generation and propagation. UNITED TECHNOLOGIES CORP STRATFORD CT SIKORSKY AIRCRAFT DIV, 1966. Inputs: freestream - freestream data structure [m/s] angle_of_attack - aircraft angle of attack [rad] position_vector - position vector of aircraft [m] velocity_vector - velocity vector of aircraft [m/s] network - energy network object [None] auc_opts - data structure of acoustic data [None] settings - accoustic settings [None] res. SPL_prop_bb_spectrum - SPL of Frequency Spectrum [dB] Outputs *acoustic data is stored and passed in data structures* Properties Used: N/A ''' num_cpt = len(angle_of_attack) num_mic = len(position_vector[0,:,0,1]) num_prop = len(position_vector[0,0,:,1]) if source == 'lift_rotors': propellers = network.lift_rotors propeller = network.lift_rotors[list(propellers.keys())[0]] else: propellers = network.propellers propeller = network.propellers[list(propellers.keys())[0]] # ---------------------------------------------------------------------------------- # Broadband (Vortex) Noise # ---------------------------------------------------------------------------------- # [number control points, number of mics, number of props, positions] x = position_vector[:,:,:,0] y = position_vector[:,:,:,1] z = position_vector[:,:,:,2] omega = auc_opts.omega[:,0] # angular velocity R = propeller.radius_distribution # radial location c = propeller.chord_distribution # blade chord R_tip = propeller.tip_radius beta = propeller.twist_distribution # twist distribution t = propeller.max_thickness_distribution # thickness distribution n = len(R) S = np.sqrt(x**2 + y**2 + z**2) # distance between rotor and the observer V_tip = R_tip*omega # blade_tip_speed V_07 = V_tip*0.70/(Units.feet) # blade velocity at r/R_tip = 0.7 St = 0.28 # Strouhal number t_avg = np.mean(t)/(Units.feet) # thickness c_avg = np.mean(c)/(Units.feet) # average chord beta_07 = beta[round(n*0.70)] # blade angle of attack at r/R = 0.7 h_val = t_avg*np.cos(beta_07) + c_avg*np.sin(beta_07) # projected blade thickness f_peak = (V_07*St)/h_val # V - blade velocity at a radial location of 0.7 A_blade = (np.trapz(c, x = R))/(Units.feet**2) # area of blade CL_07 = 2*np.pi*beta_07 S_feet = S/(Units.feet) SPL_300ft = np.atleast_2d(10*np.log10(((6.1E-27)*A_blade*V_07**6)/(10**-16)) + 20*np.log(CL_07/0.4)) SPL_300ft = np.repeat(np.repeat(SPL_300ft.T,num_mic, axis = 1)[:,:,np.newaxis],num_prop, axis = 2) SPL_vals = SPL_300ft - 20*np.log10(S_feet/300) SPL_vals = SPL_300ft - 20*np.log10(S_feet/300) # estimation of A-Weighting for Vortex Noise f_v = np.array([0.5*f_peak,1*f_peak,2*f_peak,4*f_peak,8*f_peak,16*f_peak]).T # spectrum fr = np.array([0.5,1,2,4,8,16]) # frequency ratio weights = np.atleast_2d(np.array([7.92 , 4.17 , 8.33 , 8.75 ,12.92 , 13.33])) SPL_weight = np.repeat(np.repeat(np.repeat(weights, num_prop, axis = 0)[np.newaxis,:,:], num_mic, axis = 0)[np.newaxis,:,:,:], num_cpt, axis = 0) # SPL weight SPL_v = np.repeat(SPL_vals[:,:,:,np.newaxis], 6 , axis = 3) - SPL_weight # SPL correction dim = len(fr) C = np.zeros((num_cpt,num_mic,num_prop,dim)) p_pref_bb_dBA = np.zeros((num_cpt,num_mic,num_prop,dim-1)) SPL_bb_dbAi = np.zeros((num_cpt,num_mic,num_prop,dim)) for i in range(num_cpt): for j in range(dim): SPL_bb_dbAi[i,:,:,j] = A_weighting(SPL_v[i,:,:,j],f_v[i,j]) for j in range(dim-1): C[:,:,:,j] = (SPL_bb_dbAi[:,:,:,j+1] - SPL_bb_dbAi[:,:,:,j])/(np.log10(fr[j+1]) - np.log10(fr[j])) C[:,:,:,j+1] = SPL_bb_dbAi[:,:,:,j+1] - C[:,:,:,j]*np.log10(fr[j+1]) p_pref_bb_dBA[:,:,:,j] = (10**(0.1*C[:,:,:,j+1]))*(((fr[j+1]**(0.1*C[:,:,:,j]+ 1))/(0.1*C[:,:,:,j]+ 1))-((fr[j]**(0.1*C[:,:,:,j]+ 1))/(0.1*C[:,:,:,j]+ 1))) p_pref_bb_dBA[np.isnan(p_pref_bb_dBA)] = 0 res.p_pref_bb_dBA = p_pref_bb_dBA # convert to 1/3 octave spectrum res.SPL_prop_bb_spectrum = SPL_harmonic_to_third_octave(SPL_v,f_v,settings) return
from collections import namedtuple from board import Player, Point def compute_game_result(game_state): num_b, num_w = 0, 0 for r in range(1, 8): for c in range(1, 8): player = game_state.board._grid.get(Point(r, c)) if player is None: if game_state.add_player is None: continue elif game_state.add_player == Player.black: num_b += 1 elif game_state.add_player == Player.white: num_w += 1 elif player == Player.black: num_b += 1 elif player == Player.white: num_w += 1 if num_b > num_w: return Player.black else: return Player.white def get_more_num(game_state): num_my, num_op = 0, 0 for r in range(1, 8): for c in range(1, 8): player = game_state.board._grid.get(Point(r, c)) if player is None: continue elif player == game_state.next_player: num_op += 1 elif player == game_state.next_player: num_my += 1 return num_my - num_op
#! /usr/bin/env python from __future__ import print_function, unicode_literals import sys import pyATP dat_lines = '''BEGIN NEW DATA CASE LINE CONSTANTS $ERASE BRANCH IN___AOUT__AIN___BOUT__BIN___COUT__C ENGLISH 3 0.0 .1357 0 .3959 1.18 5. 42. 30. 1 0.0 .1357 0 .3959 1.18 -5. 49. 37. 2 0.0 .1357 0 .3959 1.18 5. 56. 44. 0 0.0 .6609 0 .4883 .551 -.5 65. 58. BLANK CARD ENDING CONDUCTOR CARDS 50. 60. 000001 001000 0 5.98 0 44 $PUNCH BLANK CARD ENDING FREQUENCY CARDS BLANK CARD ENDING LINE CONSTANT BEGIN NEW DATA CASE BLANK CARD '''.split('\n') ''' conductor_card = pyATP.DataCard('(I3, F5.4, F8.5, I2, F8.5, F8.5, F8.3, F8.3, F8.3)', ['IP', 'SKIN', 'RESIS', 'IX', 'REACT', 'DIAM', 'HORIZ', 'VTOWER', 'VMID']) end_conductors = pyATP.DataCardFixedText('BLANK CARD ENDING CONDUCTOR CARDS') conductor_cards = pyATP.DataCardRepeat(conductor_card, end_record = end_conductors) line_cards = pyATP.DataCardStack([ pyATP.DataCardFixedText('BEGIN NEW DATA CASE'), pyATP.DataCardFixedText('LINE CONSTANTS'), pyATP.DataCardFixedText('$ERASE'), pyATP.DataCard('(A8,6A6)', ['branch_card', 'in1', 'out1', 'in2', 'out2', 'in3', 'out3']), pyATP.DataCard('(A80)', ['units']), conductor_cards, pyATP.DataCard('(F8.2, F10.2, A10, A1, 6I1, A1, 6I1, A1, I1, F8.3, A1, 4I1, I1, A7, I3)', ['RHO', 'FREQ', 'FCAR', '_1', 'inv_C', 'inv_Ce', 'inv_Cs', 'C', 'Ce', 'Cs', '_2', 'Z', 'Ze', 'Zs', 'inv_Z', 'inv_Ze', 'inv_Zg', '_3', 'ICAP', 'DIST', '_4', 'pi_Y', 'pi_Ys', 'pi_Z', 'pi_Zs', 'ISEG', '_5', 'PUN']), pyATP.DataCardFixedText('$PUNCH'), pyATP.DataCardFixedText('BLANK CARD ENDING FREQUENCY CARDS'), pyATP.DataCardFixedText('BLANK CARD ENDING LINE CONSTANT'), pyATP.DataCardFixedText('BEGIN NEW DATA CASE'), pyATP.DataCardFixedText('BLANK CARD') ]) ''' line_cards = pyATP.LineConstCards() print('Match? ', line_cards.match(dat_lines)) line_cards.read(dat_lines) print(line_cards.data) print('-'*80) print(line_cards.write())
from typing import Union, Sequence, Tuple import numpy as np import torch from torch.utils.data import Dataset from torchio import IMAGE, LOCATION from torchio.utils import to_tuple class GridSampler(Dataset): """ Adapted from NiftyNet. See https://niftynet.readthedocs.io/en/dev/window_sizes.html """ def __init__( self, data: Union[np.ndarray, torch.Tensor], patch_size: Union[int, Sequence[int]], patch_overlap: Union[int, Sequence[int]], ): self.array = data patch_size = to_tuple(patch_size) patch_overlap = to_tuple(patch_overlap) self.locations = self._grid_spatial_coordinates( self.array, patch_size, patch_overlap, ) def __len__(self): return len(self.locations) def __getitem__(self, index): # Assume 3D location = self.locations[index] i_ini, j_ini, k_ini, i_fin, j_fin, k_fin = location window = self.array[i_ini:i_fin, j_ini:j_fin, k_ini:k_fin] window = window[np.newaxis, ...] # add channels dimension sample = {IMAGE: window, LOCATION: location} return sample @staticmethod def _enumerate_step_points( starting: int, ending: int, win_size: int, step_size: int, ) -> np.ndarray: starting = max(int(starting), 0) ending = max(int(ending), 0) win_size = max(int(win_size), 1) step_size = max(int(step_size), 1) if starting > ending: starting, ending = ending, starting sampling_point_set = [] while (starting + win_size) <= ending: sampling_point_set.append(starting) starting = starting + step_size additional_last_point = ending - win_size sampling_point_set.append(max(additional_last_point, 0)) sampling_point_set = np.unique(sampling_point_set).flatten() if len(sampling_point_set) == 2: sampling_point_set = np.append( sampling_point_set, np.round(np.mean(sampling_point_set))) _, uniq_idx = np.unique(sampling_point_set, return_index=True) return sampling_point_set[np.sort(uniq_idx)] @staticmethod def _grid_spatial_coordinates( array: np.ndarray, window_shape: Tuple[int], border: Tuple[int], ): shape = array.shape num_dims = len(shape) grid_size = [ max(win_size - 2 * border, 0) for (win_size, border) in zip(window_shape, border) ] steps_along_each_dim = [ GridSampler._enumerate_step_points( starting=0, ending=shape[i], win_size=window_shape[i], step_size=grid_size[i], ) for i in range(num_dims) ] starting_coords = np.asanyarray(np.meshgrid(*steps_along_each_dim)) starting_coords = starting_coords.reshape((num_dims, -1)).T n_locations = starting_coords.shape[0] # prepare the output coordinates matrix spatial_coords = np.zeros((n_locations, num_dims * 2), dtype=np.int32) spatial_coords[:, :num_dims] = starting_coords for idx in range(num_dims): spatial_coords[:, num_dims + idx] = ( starting_coords[:, idx] + window_shape[idx] ) max_coordinates = np.max(spatial_coords, axis=0)[num_dims:] assert np.all(max_coordinates <= shape[:num_dims]), \ "window size greater than the spatial coordinates {} : {}".format( max_coordinates, shape) return spatial_coords
from .quiz import Quiz def setup(bot): bot.add_cog(Quiz(bot))
# palabras.py # imprime palabras que no empiezan con "f" # ni tienen menos que 4 caracteres palabras = ['python', 'academy', 'fundamentals', 'ibm', 'kyndryl'] for p in palabras: if len(p) < 4: # si <p> tiene menos que 4 caracteres continue if p.startswith('f'): # si <p> empieza con "f" continue print(p) # si no entra en ningún if, imprime <p>
import requests import arrow import os import csv from fuzzywuzzy import fuzz SENSITIVITY = 60 def download_data(): '''Downloads and decodes the dataset and passes to org_list function''' dataset = [] timenow = arrow.now('GMT').format('MMYY') filename = "{}paydata.csv".format(timenow) if filename in os.listdir('.'): print("\nOpening {}\n".format(filename)) with open(filename, 'r') as olddata: readdata = olddata.read() csv_read = csv.reader(readdata.splitlines(), delimiter=",") else: print("\nDeleting old files...") for i in os.listdir('.'): if 'sdn' in i: print("\nDeleting: {}\n".format(i)) os.remove(i) print("\nRetrieving {}\n".format(filename)) with open(filename, 'w+') as data_file: data = 'https://www.treasury.gov/ofac/downloads/sdn.csv' with requests.Session() as sesh: download = sesh.get(data) decoded_content = download.content.decode('utf-8') data_file.write(decoded_content) csv_read = csv.reader(decoded_content.splitlines(), delimiter=",") my_list = list(csv_read) for i in (my_list[1::]): dataset.append(i) return dataset datas = download_data() user_input = input("Enter name: ") for i in datas: try: if fuzz.ratio(user_input.upper(), i[1].upper()) > SENSITIVITY: print(i[1]) except IndexError: pass
import os os.environ['CUDA_VISIBLE_DEVICES'] = '2' import torch torch.rand(10) import torch.nn as nn import torch.nn.functional as F import glob from tqdm import tqdm, trange print(torch.cuda.is_available()) print(torch.cuda.get_device_name()) print(torch.cuda.current_device()) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('Using device:', device) print() #Additional Info when using cuda if device.type == 'cuda': print(torch.cuda.get_device_name(0)) print('Memory Usage:') print('Allocated:', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB') print('Cached: ', round(torch.cuda.memory_reserved(0)/1024**3,1), 'GB') import torch.backends.cudnn as cudnn import numpy as np import os, cv2 from tqdm import tqdm, trange import seaborn as sns from models.experimental import attempt_load from utils.datasets import LoadStreams, LoadImages from utils.general import ( check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box, strip_optimizer) from utils.torch_utils import select_device, load_classifier, time_synchronized from my_utils import xyxy_2_xyxyo, draw_boxes # Initialize device = select_device('') half = device.type != 'cpu' # half precision only supported on CUDA def prepare_input(img1, img_size=416, half=True): img2 = cv2.resize(img1, (img_size, img_size)) # W x H img2 = img2.transpose(2,0,1) img2 = img2[np.newaxis, ...] img2 = torch.from_numpy(img2).to(device) # torch image is ch x H x W img2 = img2.half() if not half else img2.float() img2 /= 255.0 return img2 #%% # Directories out = '/home/user01/data_ssd/Talha/yolo/op/' weights = '/home/user01/data_ssd/Talha/yolo/ScaledYOLOv4/runs/exp2_yolov4-csp-results/weights/best_yolov4-csp-results.pt' source = '/home/user01/data_ssd/Talha/yolo/paprika_y5/valid/images/' imgsz = 416 conf_thres = 0.4 iou_thres = 0.5 classes = [0,1,2,3,4,5] class_names = ["blossom_end_rot", "graymold","powdery_mildew","spider_mite", "spotting_disease", "snails_and_slugs"] # deleting files in op_dir filelist = [ f for f in os.listdir(out)]# if f.endswith(".png") ] for f in tqdm(filelist, desc = 'Deleting old files fro directory'): os.remove(os.path.join(out, f)) # Load model model = attempt_load(weights, map_location=device) # load FP32 model imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size if half: model.half() # to FP16 # Load model model = attempt_load(weights, map_location=device) # load FP32 model imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size img_paths = glob.glob('/home/user01/data_ssd/Talha/yolo/paprika_y5/test/images/*.png') + \ glob.glob('/home/user01/data_ssd/Talha/yolo/paprika_y5/test/images/*.jpg') # Run inference if device.type != 'cpu': model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once #%% for i in trange(len(img_paths)): path = img_paths[i] img1 = cv2.imread(path) img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB) img_h, img_w, _ = img1.shape img2 = prepare_input(img1, 416, half) # get file name name = os.path.basename(path)[:-4] # Inference t1 = time_synchronized() pred = model(img2, augment=False)[0] # Apply NMS pred = non_max_suppression(pred, conf_thres, iou_thres, classes=classes, agnostic=True) if pred[0] is not None: boxes = pred[0].cpu().detach().numpy() # <xmin><ymin><xmax><ymax><confd><class_id> else: boxes = np.array([10.0, 20.0, 30.0, 50.0, 0.75, 0]).reshape(1,6) # dummy values coords_minmax = np.zeros((boxes.shape[0], 4)) # droping 5th value confd = np.zeros((boxes.shape[0], 1)) class_ids = np.zeros((boxes.shape[0], 1)) # assign coords_minmax = boxes[:,0:4] # coords confd = boxes[:,4] # confidence class_ids = boxes[:,5] # class id coords_xyminmax = [] det_classes = [] for i in range(boxes.shape[0]): coords_xyminmax.append(xyxy_2_xyxyo(img_w, img_h, coords_minmax[i])) det_classes.append(class_names[int(class_ids[i])]) all_bounding_boxnind = [] for i in range(boxes.shape[0]): bounding_box = [0.0] * 6 bounding_box[0] = det_classes[i] bounding_box[1] = confd[i] bounding_box[2] = coords_xyminmax[i][0] bounding_box[3] = coords_xyminmax[i][1] bounding_box[4] = coords_xyminmax[i][2] bounding_box[5] = coords_xyminmax[i][3] bounding_box = str(bounding_box)[1:-1]# remove square brackets bounding_box = bounding_box.replace("'",'')# removing inverted commas around class name bounding_box = "".join(bounding_box.split())# remove spaces in between **here dont give space inbetween the inverted commas "". all_bounding_boxnind.append(bounding_box) all_bounding_boxnind = ' '.join(map(str, all_bounding_boxnind))# convert list to string all_bounding_boxnind=list(all_bounding_boxnind.split(' ')) # convert strin to list # replacing commas with spaces for i in range(len(all_bounding_boxnind)): all_bounding_boxnind[i] = all_bounding_boxnind[i].replace(',',' ') for i in range(len(all_bounding_boxnind)): # check if file exiscts else make new with open(out +'{}.txt'.format(name), "a+") as file_object: # Move read cursor to the start of file. file_object.seek(0) # If file is not empty then append '\n' data = file_object.read(100) if len(data) > 0 : file_object.write("\n") # Append text at the end of file file_object.write(all_bounding_boxnind[i]) #%% import glob, random import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams['figure.dpi'] = 300 img_paths = glob.glob('/home/user01/data_ssd/Talha/yolo/paprika_y5/test/images/*.png') + \ glob.glob('/home/user01/data_ssd/Talha/yolo/paprika_y5/test/images/*.jpg') img_path = random.choice(img_paths) img1 = cv2.imread(img_path) img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB) img_h, img_w, _ = img1.shape img2 = prepare_input(img1, 416, half) pred = model(img2, augment=False)[0] # Apply NMS pred = non_max_suppression(pred, conf_thres, iou_thres, classes=classes, agnostic=True) boxes = pred[0].cpu().detach().numpy() # <xmin><ymin><xmax><ymax><confd><class_id> coords_minmax = np.zeros((boxes.shape[0], 4)) # droping 5th value confd = np.zeros((boxes.shape[0], 1)) class_ids = np.zeros((boxes.shape[0], 1)) # assign coords_minmax = boxes[:,0:4] # coords confd = boxes[:,4] # confidence class_ids = boxes[:,5] # class id coords_xyminmax = [] det_classes = [] for i in range(boxes.shape[0]): coords_xyminmax.append(xyxy_2_xyxyo(img_w, img_h, coords_minmax[i])) det_classes.append(class_names[int(class_ids[i])]) t = np.asarray(coords_xyminmax) op = draw_boxes(img1, confd, t, det_classes, class_names, order='xy_minmax', analysis=False) plt.imshow(op) print('='*50) print('Image Name: ', os.path.basename(img_path),img1.shape) print('\nClass_name ', '| B_box Coords ', '| Confidence') print('_'*50) for k in range(len(det_classes)): print(det_classes[k], t[k], confd[k]) print('='*50)
from selenium import webdriver from time import sleep from random import randint from secrets import * class GithubBot: def __init__(self, username, pw, copyfollowers): self.username = username self.copyfollowers = copyfollowers # START LOGIN PROCESS self.driver = webdriver.Chrome("/home/hkatwijk/repo/GitHub-Follow-Bot/chromedriver") self.driver.get("https://github.com/login") # wait for the page to load the DOM sleep(2) self.driver.find_element_by_xpath('//*[@id="login_field"]')\ .send_keys(username) self.driver.find_element_by_xpath('//*[@id="password"]')\ .send_keys(pw) self.driver.find_element_by_xpath('//*[@id="login"]/form/div[4]/input[12]')\ .click() # wait for the page to load the DOM sleep(randint(4, 12)) # END LOGIN PROCESS def copy_followers(self): #here we go to our target and make a list of all there followers #go to profile self.driver.get("https://github.com/{}?tab=followers".format(self.copyfollowers)) sleep(randint(3, 10)) #get all the followers from the first page users = self.driver.find_elements_by_xpath("//a[@data-hovercard-type='user']") temp = [] for follower in users: temp.append(follower.get_attribute("href")) list_set = set(temp) self.followers = (list(list_set)) print(self.followers) def followersRatio(self): #number of follers to following , if this user does not follow many users back there is no point in following #here we will determin if this is a good person to follow from the above list temp = [] for follower in self.followers: self.driver.get(follower) sleep(randint(8, 14)) print('--------------------------------------') try: #get the number of followers numFollowers = self.driver.find_elements_by_xpath('//*[@id="js-pjax-container"]/div[2]/div/div[1]/div/div[4]/div[2]/div/div/a[1]/span') numFollowing = self.driver.find_elements_by_xpath('//*[@id="js-pjax-container"]/div[2]/div/div[1]/div/div[4]/div[2]/div/div/a[2]/span') print('Followers : ' + numFollowers[0].text) print('Following : ' + numFollowing[0].text) #convert to number and check if half the follers is less than the following halfFollowers = int(numFollowers[0].text) / 2 if numFollowing > halfFollowers: print(follower) print('follower ratio good') isActive = self.activeOnGithub(follower) print(isActive) if isActive == True: print('User is Active') self.followThisUser(follower) temp.append(follower) except: print("can't get the total amount of followers") list_set = set(temp) self.followersRatio = (list(list_set)) def activeOnGithub(self,follower): #check if the users from the ratio are active on github ifnot then there is really no point in following sleep(randint(4, 14)) try: #get the number of followers numberOfPinned = len(self.driver.find_elements_by_xpath('//*[@id="js-pjax-container"]/div[2]/div/div[2]/div[2]/div/div[1]/div/ol/li[1]')) numberOfActivities = len(self.driver.find_elements_by_class_name('profile-rollup-wrapper')) print(numberOfPinned) print(numberOfActivities) #if number of pinned projects 1 or more if numberOfPinned >= 1: #if activites for the month greater than 1 if numberOfActivities >= 1: return True print('User is not Active') return False except: print("can't get activities and pinned projects") return False def followThisUser(self,follower): #click the follow button if this is a good match sleep(randint(4, 14)) try: print("Following......") follow_button = self.driver.find_element_by_xpath('//input[@value="Follow"]') # follow_button = self.driver.find_elements_by_xpath("//input[@aria-label='Follow this person']") inputParent = follow_button.find_element_by_xpath('..') inputParent.submit() # checking if you already follow does not work # print('Follow button : '+inputParent.get_attribute('hidden') ) # if inputParent.get_attribute('hidden') == None: # print('Submit clicked !') # inputParent.submit() # else: # print('you are already folloing them') return True except: print("can't click follow button") return False my_bot = GithubBot(gituser,gitpw,gitCopyFollowers) my_bot.copy_followers() my_bot.followersRatio()
# -*- coding: utf-8 -*- from flask_oauthlib.contrib.apps import RemoteAppFactory mit = RemoteAppFactory('mit', { 'base_url': 'https://oidc.mit.edu', 'access_token_url': '/token', 'authorize_url': '/authorize', 'request_token_url': None, 'request_token_params': {'scope': 'openid,email,profile'}, })
from scipy.integrate import odeint import numpy as np import matplotlib.pyplot as plt # Let’s run the basic SIR model # describe the model def deriv(y, t, N, beta, k, delta, m ): S, E, I, R, D = y dSdt = -beta * S * I / N dEdt = (beta * S * I / N - k * E) dIdt = delta * E - k * I dRdt = k * I dDdt = m * I return dSdt, dEdt, dIdt, dRdt, dDdt # describe the parameters N = 1000000 # population m = 0.02 #percentage of the contaminated that dies delta = 0.2 P = 0.9 #the effect of restrictions in percent, 1 = no effect 0 = full effect beta = P * 2.5 k=1/6 S0, E0, I0, R0, D0= N-1, 1, 0, 0, 0 # initial conditions: one infected, rest susceptible t = np.linspace(0, 99, 100) # Grid of time points (in days) y0 = S0, E0, I0, R0, D0 # Initial conditions vector # Integrate the SIR equations over the time grid, t. ret = odeint(deriv, y0, t, args=(N, beta, k, delta, m, )) S, E, I, R , D= ret.T def plotsir(t, S, E, I, R, D): f, ax = plt.subplots(1,1,figsize=(10,4)) ax.plot(t, S, 'b', alpha=0.7, linewidth=2, label='Susceptible') ax.plot(t, E, 'y', alpha=0.7, linewidth=2, label='Exposed') ax.plot(t, I, 'r', alpha=0.7, linewidth=2, label='Infected') ax.plot(t, R, 'g', alpha=0.7, linewidth=2, label='Recovered') ax.plot(t, D , 'k', alpha=0.7, linewidth=2, label='Deceased') ax.set_xlabel('Time (days)') ax.yaxis.set_tick_params(length=0) ax.xaxis.set_tick_params(length=0) ax.grid(b=True, which='major', c='w', lw=2, ls='-') legend = ax.legend() legend.get_frame().set_alpha(0.5) for spine in ('top', 'right', 'bottom', 'left'): ax.spines[spine].set_visible(False) #plt.savefig('C:/Users/albin/OneDrive/Dokument/GitHub/SIR_model_SEE070/SIR_model_SEE070/Lecture2dec.png') plt.show() plotsir(t, S, E, I, R, D)
#!/usr/bin/python """ Jamf Pro extension attribute to return a list of authorization rights enabled on a Mac. The returned levels are... - allow - unlocks the associated preference pane without admin rights - authenticate-session-owner-or-admin - requires credentials, but allows standard users to authenticate. - None - default preference where admin credentials are required Authorization rights reference: https://www.dssw.co.uk/reference/authorization-rights/index.html Add more to RIGHTS list as needed. Partially cribbed from https://gist.github.com/haircut/20bc1b3f9ef0cec7d869a87b0db92fd3 """ import subprocess import plistlib # List of authorizations to be checked RIGHTS = [ "system.preferences", "system.preferences.datetime", "system.preferences.printing", ] def get_auth_right(right, format="string"): """Gets the specified authorization right in plist format.""" try: cmd = ["/usr/bin/security", "authorizationdb", "read", right] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, _ = proc.communicate() if stdout: return plistlib.readPlistFromString(stdout) except (IOError, OSError): pass def main(): # Loop through rights and get associated rule. Append to list. results = [] for right in RIGHTS: try: rule = get_auth_right(right)["rule"][0] except KeyError: rule = None a = "%s: %s" % (right, rule) results.append(a) # Format list and print to EA results = "\n".join(results) print("<result>%s</result>" % results) if __name__ == "__main__": main()
import Snake as s import Fruit as f snake = s.Snake() fruit = f.Fruit() start = True #processing option for screen def setup(): size(400,400) frameRate(20) def draw(): global snake, fruit, start #home screen if start == True: background(0) fill(255) textAlign(CENTER) textSize(40) text('SNAKE', width/2, height/2) textSize(14) text('version 1.0', width/2, height/2 + 20) textSize(20) text('CLICK TO START', width/2, height - 50) textSize(10) text('developed by: Matheus de Moncada Assis', width/2, 20) #starting the game if mouse is pressed if mousePressed: if mouseX < width and mouseY < height: start = False #drawing fruit and snake if not start: background(0) snake.draw_snake() snake.coordinates() fruit.draw_fruit() if [fruit.x, fruit.y] in snake.hist: fruit.new_pos #determine if it has eaten a fruit or not if snake.eat(fruit.x, fruit.y): fruit.new_pos() fruit.draw_fruit() #determine if it is dead or not if snake.x < 0 or snake.x > width or snake.y < 0 or snake.y > height or snake.death(): fill(255,255,255,200) rect(0,0,width,height) textSize(40) fill(0) textAlign(CENTER) text('GAME OVER', width/2, height/2) textSize(20) text('LENGTH: {}'.format(snake.total),width/2, height/2 + 50) noLoop() #changing snake directions def keyPressed(): if keyCode == UP and snake.dy != 1: snake.direction(0,-1) elif keyCode == DOWN and snake.dy != -1: snake.direction(0,1) elif keyCode == RIGHT and snake.dx != -1: snake.direction(1,0) elif keyCode == LEFT and snake.dx != 1: snake.direction(-1,0)
from __future__ import annotations import os from base64 import b64decode from collections import defaultdict from collections.abc import Mapping, Sequence from dataclasses import dataclass, replace from enum import Enum from ipaddress import IPv4Address, IPv4Network from pathlib import Path from typing import Any import kopf from neuro_config_client import ( ACMEEnvironment, ARecord, Cluster, DNSConfig, DockerRegistryConfig, IdleJobConfig, OrchestratorConfig, ResourcePoolType, ) from yarl import URL @dataclass(frozen=True) class Certificate: private_key: str certificate: str class KubeClientAuthType(str, Enum): NONE = "none" TOKEN = "token" CERTIFICATE = "certificate" @dataclass(frozen=True) class KubeConfig: version: str url: URL cert_authority_path: Path | None = None cert_authority_data_pem: str | None = None auth_type: KubeClientAuthType = KubeClientAuthType.NONE auth_cert_path: Path | None = None auth_cert_key_path: Path | None = None auth_token_path: Path | None = None auth_token: str | None = None conn_timeout_s: int = 300 read_timeout_s: int = 100 conn_pool_size: int = 100 @classmethod def load_from_env(cls, env: Mapping[str, str] | None = None) -> KubeConfig: env = env or os.environ return cls( version=env["NP_KUBE_VERSION"].lstrip("v"), url=URL(env["NP_KUBE_URL"]), cert_authority_path=cls._convert_to_path( env.get("NP_KUBE_CERT_AUTHORITY_PATH") ), cert_authority_data_pem=env.get("NP_KUBE_CERT_AUTHORITY_DATA_PEM"), auth_type=KubeClientAuthType(env["NP_KUBE_AUTH_TYPE"]), auth_cert_path=cls._convert_to_path(env.get("NP_KUBE_AUTH_CERT_PATH")), auth_cert_key_path=cls._convert_to_path( env.get("NP_KUBE_AUTH_CERT_KEY_PATH") ), auth_token_path=cls._convert_to_path(env.get("NP_KUBE_AUTH_TOKEN_PATH")), auth_token=env.get("NP_KUBE_AUTH_TOKEN"), ) @classmethod def _convert_to_path(cls, value: str | None) -> Path | None: return Path(value) if value else None @dataclass(frozen=True) class LabelsConfig: job: str = "platform.neuromation.io/job" node_pool: str = "platform.neuromation.io/nodepool" accelerator: str = "platform.neuromation.io/accelerator" preemptible: str = "platform.neuromation.io/preemptible" @dataclass(frozen=True) class HelmRepo: url: URL name: str = "" username: str = "" password: str = "" @dataclass class HelmReleaseNames: platform: str @dataclass(frozen=True) class HelmChartNames: docker_registry: str = "docker-registry" minio: str = "minio" traefik: str = "traefik" adjust_inotify: str = "adjust-inotify" nvidia_gpu_driver: str = "nvidia-gpu-driver" nvidia_gpu_driver_gcp: str = "nvidia-gpu-driver-gcp" platform: str = "platform" platform_storage: str = "platform-storage" platform_registry: str = "platform-registry" platform_monitoring: str = "platform-monitoring" platform_container_runtime: str = "platform-container-runtime" platform_secrets: str = "platform-secrets" platform_reports: str = "platform-reports" platform_disks: str = "platform-disks" platform_api_poller: str = "platform-api-poller" platform_buckets: str = "platform-buckets" @dataclass(frozen=True) class HelmChartVersions: platform: str @dataclass(frozen=True) class Config: node_name: str log_level: str retries: int backoff: int kube_config: KubeConfig helm_release_names: HelmReleaseNames helm_chart_names: HelmChartNames helm_chart_versions: HelmChartVersions platform_auth_url: URL platform_ingress_auth_url: URL platform_config_url: URL platform_admin_url: URL platform_config_watch_interval_s: float platform_api_url: URL platform_namespace: str platform_lock_secret_name: str acme_ca_staging_path: str is_standalone: bool @classmethod def load_from_env(cls, env: Mapping[str, str] | None = None) -> Config: env = env or os.environ return cls( node_name=env["NP_NODE_NAME"], log_level=(env.get("NP_CONTROLLER_LOG_LEVEL") or "INFO").upper(), retries=int(env.get("NP_CONTROLLER_RETRIES") or "3"), backoff=int(env.get("NP_CONTROLLER_BACKOFF") or "60"), kube_config=KubeConfig.load_from_env(env), helm_release_names=HelmReleaseNames(platform="platform"), helm_chart_names=HelmChartNames(), helm_chart_versions=HelmChartVersions( platform=env["NP_HELM_PLATFORM_CHART_VERSION"], ), platform_auth_url=URL(env["NP_PLATFORM_AUTH_URL"]), platform_ingress_auth_url=URL(env["NP_PLATFORM_INGRESS_AUTH_URL"]), platform_config_url=URL(env["NP_PLATFORM_CONFIG_URL"]), platform_admin_url=URL(env["NP_PLATFORM_ADMIN_URL"]), platform_config_watch_interval_s=float( env.get("NP_PLATFORM_CONFIG_WATCH_INTERVAL_S", "15") ), platform_api_url=URL(env["NP_PLATFORM_API_URL"]), platform_namespace=env["NP_PLATFORM_NAMESPACE"], platform_lock_secret_name=env["NP_PLATFORM_LOCK_SECRET_NAME"], acme_ca_staging_path=env["NP_ACME_CA_STAGING_PATH"], is_standalone=env.get("NP_STANDALONE", "false").lower() == "true", ) def _spec_default_factory() -> dict[str, Any]: return defaultdict(_spec_default_factory) class IamSpec(dict[str, Any]): def __init__(self, spec: dict[str, Any]) -> None: super().__init__(spec) self._spec = defaultdict(_spec_default_factory, spec) @property def aws_region(self) -> str: return self._spec["aws"].get("region", "") @property def aws_role_arn(self) -> str: return self._spec["aws"].get("roleArn", "") @property def aws_s3_role_arn(self) -> str: return self._spec["aws"].get("s3RoleArn", "") @property def gcp_service_account_key_base64(self) -> str: return self._spec["gcp"].get("serviceAccountKeyBase64", "") class KubernetesSpec(dict[str, Any]): def __init__(self, spec: dict[str, Any]) -> None: super().__init__(spec) self._spec = defaultdict(_spec_default_factory, spec) @property def provider(self) -> str: return self["provider"] @property def standard_storage_class_name(self) -> str: return self.get("standardStorageClassName", "") @property def node_label_job(self) -> str: return self._spec["nodeLabels"].get("job", "") @property def node_label_node_pool(self) -> str: return self._spec["nodeLabels"].get("nodePool", "") @property def node_label_accelerator(self) -> str: return self._spec["nodeLabels"].get("accelerator", "") @property def node_label_preemptible(self) -> str: return self._spec["nodeLabels"].get("preemptible", "") @property def kubelet_port(self) -> int | None: return self.get("kubeletPort") @property def docker_config_secret_create(self) -> bool: return self._spec["dockerConfigSecret"].get("create", True) @property def docker_config_secret_name(self) -> str: return self._spec["dockerConfigSecret"].get("name", "") @property def tpu_network(self) -> IPv4Network | None: return IPv4Network(self["tpuIPv4CIDR"]) if self.get("tpuIPv4CIDR") else None class StorageSpec(dict[str, Any]): def __init__(self, spec: dict[str, Any]) -> None: super().__init__(spec) @property def path(self) -> str: return self.get("path", "") @property def storage_size(self) -> str: return self["kubernetes"]["persistence"].get("size", "") @property def storage_class_name(self) -> str: return self["kubernetes"]["persistence"].get("storageClassName", "") @property def nfs_server(self) -> str: return self["nfs"].get("server", "") @property def nfs_export_path(self) -> str: return self["nfs"].get("path", "/") @property def smb_server(self) -> str: return self["smb"].get("server", "") @property def smb_share_name(self) -> str: return self["smb"].get("shareName", "") @property def smb_username(self) -> str: return self["smb"].get("username", "") @property def smb_password(self) -> str: return self["smb"].get("password", "") @property def gcs_bucket_name(self) -> str: return self["gcs"].get("bucket", "") @property def azure_storage_account_name(self) -> str: return self["azureFile"].get("storageAccountName", "") @property def azure_storage_account_key(self) -> str: return self["azureFile"].get("storageAccountKey", "") @property def azure_share_name(self) -> str: return self["azureFile"].get("shareName", "") class BlobStorageSpec(dict[str, Any]): def __init__(self, spec: dict[str, Any]) -> None: super().__init__(spec) @property def aws_region(self) -> str: return self["aws"]["region"] @property def gcp_project(self) -> str: return self["gcp"]["project"] @property def azure_storrage_account_name(self) -> str: return self["azure"]["storageAccountName"] @property def azure_storrage_account_key(self) -> str: return self["azure"]["storageAccountKey"] @property def emc_ecs_access_key_id(self) -> str: return self["emcEcs"]["accessKeyId"] @property def emc_ecs_secret_access_key(self) -> str: return self["emcEcs"]["secretAccessKey"] @property def emc_ecs_s3_role(self) -> str: return self["emcEcs"]["s3Role"] @property def emc_ecs_s3_endpoint(self) -> str: return self["emcEcs"]["s3Endpoint"] @property def emc_ecs_management_endpoint(self) -> str: return self["emcEcs"]["managementEndpoint"] @property def open_stack_region(self) -> str: return self["openStack"]["region"] @property def open_stack_username(self) -> str: return self["openStack"]["username"] @property def open_stack_password(self) -> str: return self["openStack"]["password"] @property def open_stack_endpoint(self) -> str: return self["openStack"]["endpoint"] @property def open_stack_s3_endpoint(self) -> str: return self["openStack"]["s3Endpoint"] @property def minio_url(self) -> str: return self["minio"]["url"] @property def minio_region(self) -> str: return self["minio"]["region"] @property def minio_access_key(self) -> str: return self["minio"]["accessKey"] @property def minio_secret_key(self) -> str: return self["minio"]["secretKey"] @property def kubernetes_storage_class_name(self) -> str: return self["kubernetes"]["persistence"].get("storageClassName", "") @property def kubernetes_storage_size(self) -> str: return self["kubernetes"]["persistence"].get("size", "") class RegistrySpec(dict[str, Any]): def __init__(self, spec: dict[str, Any]) -> None: super().__init__(spec) @property def aws_account_id(self) -> str: return self["aws"]["accountId"] @property def aws_region(self) -> str: return self["aws"]["region"] @property def gcp_project(self) -> str: return self["gcp"]["project"] @property def azure_url(self) -> str: return self["azure"]["url"] @property def azure_username(self) -> str: return self["azure"]["username"] @property def azure_password(self) -> str: return self["azure"]["password"] @property def docker_url(self) -> str: return self["docker"]["url"] @property def docker_username(self) -> str: return self["docker"].get("username", "") @property def docker_password(self) -> str: return self["docker"].get("password", "") @property def kubernetes_storage_class_name(self) -> str: return self["kubernetes"]["persistence"].get("storageClassName", "") @property def kubernetes_storage_size(self) -> str: return self["kubernetes"]["persistence"].get("size", "") class MonitoringSpec(dict[str, Any]): def __init__(self, spec: dict[str, Any]) -> None: super().__init__(spec) @property def logs_region(self) -> str: return self["logs"]["blobStorage"].get("region", "") @property def logs_bucket(self) -> str: return self["logs"]["blobStorage"]["bucket"] @property def metrics(self) -> dict[str, Any]: return self["metrics"] @property def metrics_region(self) -> str: return self["metrics"].get("region", "") @property def metrics_retention_time(self) -> str: return self["metrics"].get("retentionTime", "") @property def metrics_bucket(self) -> str: return self["metrics"]["blobStorage"].get("bucket", "") @property def metrics_storage_size(self) -> str: return self["metrics"]["kubernetes"]["persistence"].get("size", "") @property def metrics_storage_class_name(self) -> str: return self["metrics"]["kubernetes"]["persistence"].get("storageClassName", "") class DisksSpec(dict[str, Any]): def __init__(self, spec: dict[str, Any]) -> None: super().__init__(spec) self._spec = defaultdict(_spec_default_factory, spec) @property def storage_class_name(self) -> str: return self._spec["kubernetes"]["persistence"].get("storageClassName", "") class IngressControllerSpec(dict[str, Any]): def __init__(self, spec: dict[str, Any]) -> None: super().__init__(spec) self._spec = defaultdict(_spec_default_factory, spec) @property def enabled(self) -> bool: return self._spec.get("enabled", True) @property def replicas(self) -> int | None: return self._spec.get("replicas") @property def namespaces(self) -> Sequence[str]: return self._spec.get("namespaces", ()) @property def service_type(self) -> str: return self._spec.get("serviceType", "") @property def public_ips(self) -> Sequence[IPv4Address]: return [IPv4Address(ip) for ip in self._spec.get("publicIPs", [])] @property def node_port_http(self) -> int | None: return self._spec["nodePorts"].get("http") @property def node_port_https(self) -> int | None: return self._spec["nodePorts"].get("https") @property def host_port_http(self) -> int | None: return self._spec["hostPorts"].get("http") @property def host_port_https(self) -> int | None: return self._spec["hostPorts"].get("https") @property def ssl_cert_data(self) -> str: return self._spec["ssl"].get("certificateData", "") @property def ssl_cert_key_data(self) -> str: return self._spec["ssl"].get("certificateKeyData", "") class Spec(dict[str, Any]): def __init__(self, spec: dict[str, Any]) -> None: super().__init__(spec) spec = defaultdict(_spec_default_factory, spec) self._token = spec.get("token", "") self._iam = IamSpec(spec["iam"]) self._kubernetes = KubernetesSpec(spec["kubernetes"]) self._ingress_controller = IngressControllerSpec(spec["ingressController"]) self._registry = RegistrySpec(spec["registry"]) self._storages = [StorageSpec(s) for s in spec["storages"]] self._blob_storage = BlobStorageSpec(spec["blobStorage"]) self._disks = DisksSpec(spec["disks"]) self._monitoring = MonitoringSpec(spec["monitoring"]) @property def token(self) -> str: return self._token @property def iam(self) -> IamSpec: return self._iam @property def kubernetes(self) -> KubernetesSpec: return self._kubernetes @property def ingress_controller(self) -> IngressControllerSpec: return self._ingress_controller @property def registry(self) -> RegistrySpec: return self._registry @property def storages(self) -> Sequence[StorageSpec]: return self._storages @property def blob_storage(self) -> BlobStorageSpec: return self._blob_storage @property def disks(self) -> DisksSpec: return self._disks @property def monitoring(self) -> MonitoringSpec: return self._monitoring class Metadata(dict[str, Any]): def __init__(self, spec: dict[str, Any]) -> None: super().__init__(spec) @property def name(self) -> str: return self["name"] @dataclass(frozen=True) class DockerConfig: url: URL email: str = "" username: str = "" password: str = "" secret_name: str = "" create_secret: bool = False class IngressServiceType(str, Enum): LOAD_BALANCER = "LoadBalancer" NODE_PORT = "NodePort" class StorageType(str, Enum): KUBERNETES = "kubernetes" NFS = "nfs" SMB = "smb" GCS = "gcs" AZURE_fILE = "azureFile" @dataclass(frozen=True) class StorageConfig: type: StorageType path: str = "" storage_size: str = "10Gi" storage_class_name: str = "" nfs_export_path: str = "" nfs_server: str = "" smb_server: str = "" smb_share_name: str = "" smb_username: str = "" smb_password: str = "" azure_storage_account_name: str = "" azure_storage_account_key: str = "" azure_share_name: str = "" gcs_bucket_name: str = "" class RegistryProvider(str, Enum): AWS = "aws" AZURE = "azure" GCP = "gcp" DOCKER = "docker" @dataclass(frozen=True) class RegistryConfig: provider: RegistryProvider aws_account_id: str = "" aws_region: str = "" gcp_project: str = "" azure_url: URL | None = None azure_username: str = "" azure_password: str = "" docker_registry_install: bool = False docker_registry_url: URL | None = None docker_registry_username: str = "" docker_registry_password: str = "" docker_registry_storage_class_name: str = "" docker_registry_storage_size: str = "" class BucketsProvider(str, Enum): AWS = "aws" AZURE = "azure" GCP = "gcp" EMC_ECS = "emcEcs" OPEN_STACK = "openStack" MINIO = "minio" @dataclass(frozen=True) class BucketsConfig: provider: BucketsProvider disable_creation: bool = False aws_region: str = "" gcp_project: str = "" gcp_location: str = "us" # default GCP location azure_storage_account_name: str = "" azure_storage_account_key: str = "" minio_install: bool = False minio_url: URL | None = None minio_public_url: URL | None = None minio_region: str = "" minio_access_key: str = "" minio_secret_key: str = "" minio_storage_class_name: str = "" minio_storage_size: str = "" emc_ecs_access_key_id: str = "" emc_ecs_secret_access_key: str = "" emc_ecs_s3_endpoint: URL | None = None emc_ecs_management_endpoint: URL | None = None emc_ecs_s3_assumable_role: str = "" open_stack_username: str = "" open_stack_password: str = "" open_stack_endpoint: URL | None = None open_stack_s3_endpoint: URL | None = None open_stack_region_name: str = "" class MetricsStorageType(Enum): BUCKETS = 1 KUBERNETES = 2 @dataclass(frozen=True) class MonitoringConfig: logs_bucket_name: str logs_region: str = "" metrics_enabled: bool = True metrics_storage_type: MetricsStorageType = MetricsStorageType.BUCKETS metrics_bucket_name: str = "" metrics_storage_class_name: str = "" metrics_storage_size: str = "" metrics_retention_time: str = "3d" metrics_region: str = "" @dataclass(frozen=True) class PlatformConfig: release_name: str auth_url: URL ingress_auth_url: URL config_url: URL admin_url: URL api_url: URL token: str cluster_name: str service_account_name: str image_pull_secret_names: Sequence[str] pre_pull_images: Sequence[str] standard_storage_class_name: str | None kubernetes_provider: str kubernetes_version: str kubernetes_tpu_network: IPv4Network | None node_labels: LabelsConfig kubelet_port: int nvidia_dcgm_port: int namespace: str ingress_dns_name: str ingress_url: URL ingress_registry_url: URL ingress_metrics_url: URL ingress_acme_enabled: bool ingress_acme_environment: ACMEEnvironment ingress_controller_install: bool ingress_controller_replicas: int ingress_public_ips: Sequence[IPv4Address] ingress_cors_origins: Sequence[str] ingress_node_port_http: int | None ingress_node_port_https: int | None ingress_host_port_http: int | None ingress_host_port_https: int | None ingress_service_type: IngressServiceType ingress_service_name: str ingress_namespaces: Sequence[str] ingress_ssl_cert_data: str ingress_ssl_cert_key_data: str disks_storage_limit_per_user_gb: int disks_storage_class_name: str | None jobs_namespace: str jobs_resource_pool_types: Sequence[ResourcePoolType] jobs_priority_class_name: str jobs_internal_host_template: str jobs_fallback_host: str idle_jobs: Sequence[IdleJobConfig] storages: Sequence[StorageConfig] buckets: BucketsConfig registry: RegistryConfig monitoring: MonitoringConfig helm_repo: HelmRepo docker_config: DockerConfig grafana_username: str | None = None grafana_password: str | None = None sentry_dsn: URL | None = None sentry_sample_rate: float | None = None docker_hub_config: DockerConfig | None = None aws_region: str = "" aws_role_arn: str = "" aws_s3_role_arn: str = "" gcp_service_account_key: str = "" gcp_service_account_key_base64: str = "" def get_storage_claim_name(self, path: str) -> str: name = f"{self.release_name}-storage" if path: name += path.replace("/", "-") return name def get_image(self, name: str) -> str: url = str(self.docker_config.url / name) return url.replace("http://", "").replace("https://", "") def create_dns_config( self, ingress_service: dict[str, Any] | None = None, aws_ingress_lb: dict[str, Any] | None = None, ) -> DNSConfig | None: if not ingress_service and not self.ingress_public_ips: return None a_records: list[ARecord] = [] if self.ingress_public_ips: ips = [str(ip) for ip in self.ingress_public_ips] a_records.extend( ( ARecord(name=f"{self.ingress_dns_name}.", ips=ips), ARecord(name=f"*.jobs.{self.ingress_dns_name}.", ips=ips), ARecord(name=f"registry.{self.ingress_dns_name}.", ips=ips), ARecord(name=f"metrics.{self.ingress_dns_name}.", ips=ips), ) ) if self.buckets.provider == BucketsProvider.MINIO: a_records.append( ARecord(name=f"blob.{self.ingress_dns_name}.", ips=ips) ) elif aws_ingress_lb and ingress_service: ingress_host = ingress_service["status"]["loadBalancer"]["ingress"][0][ "hostname" ] ingress_zone_id = aws_ingress_lb["CanonicalHostedZoneNameID"] a_records.extend( ( ARecord( name=f"{self.ingress_dns_name}.", dns_name=ingress_host, zone_id=ingress_zone_id, ), ARecord( name=f"*.jobs.{self.ingress_dns_name}.", dns_name=ingress_host, zone_id=ingress_zone_id, ), ARecord( name=f"registry.{self.ingress_dns_name}.", dns_name=ingress_host, zone_id=ingress_zone_id, ), ARecord( name=f"metrics.{self.ingress_dns_name}.", dns_name=ingress_host, zone_id=ingress_zone_id, ), ) ) elif ingress_service and ingress_service["spec"]["type"] == "LoadBalancer": ingress_host = ingress_service["status"]["loadBalancer"]["ingress"][0]["ip"] a_records.extend( ( ARecord( name=f"{self.ingress_dns_name}.", ips=[ingress_host], ), ARecord( name=f"*.jobs.{self.ingress_dns_name}.", ips=[ingress_host], ), ARecord( name=f"registry.{self.ingress_dns_name}.", ips=[ingress_host], ), ARecord( name=f"metrics.{self.ingress_dns_name}.", ips=[ingress_host], ), ) ) if self.buckets.provider == BucketsProvider.MINIO: a_records.append( ARecord(name=f"blob.{self.ingress_dns_name}.", ips=[ingress_host]) ) else: return None return DNSConfig(name=self.ingress_dns_name, a_records=a_records) def create_orchestrator_config(self, cluster: Cluster) -> OrchestratorConfig | None: assert cluster.orchestrator orchestrator = replace( cluster.orchestrator, job_internal_hostname_template=self.jobs_internal_host_template, ) if self.kubernetes_tpu_network: orchestrator = replace( orchestrator, resource_pool_types=self._update_tpu_network( orchestrator.resource_pool_types, self.kubernetes_tpu_network, ), ) if cluster.orchestrator == orchestrator: return None return orchestrator @classmethod def _update_tpu_network( cls, resource_pools_types: Sequence[ResourcePoolType], tpu_network: IPv4Network, ) -> Sequence[ResourcePoolType]: result = [] for rpt in resource_pools_types: if rpt.tpu: result.append( replace(rpt, tpu=replace(rpt.tpu, ipv4_cidr_block=str(tpu_network))) ) else: result.append(rpt) return result class PlatformConfigFactory: def __init__(self, config: Config) -> None: self._config = config def create(self, platform_body: kopf.Body, cluster: Cluster) -> PlatformConfig: assert cluster.credentials assert cluster.orchestrator assert cluster.disks assert cluster.dns assert cluster.ingress metadata = Metadata(platform_body["metadata"]) spec = Spec(platform_body["spec"]) release_name = self._config.helm_release_names.platform docker_config = self._create_neuro_docker_config( cluster, ( spec.kubernetes.docker_config_secret_name or f"{release_name}-docker-config" ), spec.kubernetes.docker_config_secret_create, ) docker_hub_config = self._create_docker_hub_config( cluster, f"{release_name}-docker-hub-config" ) jobs_namespace = self._config.platform_namespace + "-jobs" return PlatformConfig( release_name=release_name, auth_url=self._config.platform_auth_url, ingress_auth_url=self._config.platform_ingress_auth_url, config_url=self._config.platform_config_url, admin_url=self._config.platform_admin_url, api_url=self._config.platform_api_url, token=spec.token, cluster_name=metadata.name, namespace=self._config.platform_namespace, service_account_name="default", image_pull_secret_names=self._create_image_pull_secret_names( docker_config, docker_hub_config ), pre_pull_images=cluster.orchestrator.pre_pull_images, standard_storage_class_name=( spec.kubernetes.standard_storage_class_name or None ), kubernetes_provider=spec.kubernetes.provider, kubernetes_version=self._config.kube_config.version, kubernetes_tpu_network=spec.kubernetes.tpu_network, kubelet_port=int(spec.kubernetes.kubelet_port or 10250), nvidia_dcgm_port=9400, node_labels=LabelsConfig( job=spec.kubernetes.node_label_job or LabelsConfig.job, node_pool=( spec.kubernetes.node_label_node_pool or LabelsConfig.node_pool ), accelerator=( spec.kubernetes.node_label_accelerator or LabelsConfig.accelerator ), preemptible=( spec.kubernetes.node_label_preemptible or LabelsConfig.preemptible ), ), ingress_dns_name=cluster.dns.name, ingress_url=URL(f"https://{cluster.dns.name}"), ingress_registry_url=URL(f"https://registry.{cluster.dns.name}"), ingress_metrics_url=URL(f"https://metrics.{cluster.dns.name}"), ingress_acme_enabled=( not spec.ingress_controller.ssl_cert_data or not spec.ingress_controller.ssl_cert_key_data ), ingress_acme_environment=cluster.ingress.acme_environment, ingress_controller_install=spec.ingress_controller.enabled, ingress_controller_replicas=spec.ingress_controller.replicas or 2, ingress_public_ips=spec.ingress_controller.public_ips, ingress_cors_origins=cluster.ingress.cors_origins, ingress_service_type=IngressServiceType( spec.ingress_controller.service_type or IngressServiceType.LOAD_BALANCER ), ingress_service_name="traefik", ingress_namespaces=sorted( { self._config.platform_namespace, jobs_namespace, *spec.ingress_controller.namespaces, } ), ingress_node_port_http=spec.ingress_controller.node_port_http, ingress_node_port_https=spec.ingress_controller.node_port_https, ingress_host_port_http=spec.ingress_controller.host_port_http, ingress_host_port_https=spec.ingress_controller.host_port_https, ingress_ssl_cert_data=spec.ingress_controller.ssl_cert_data, ingress_ssl_cert_key_data=spec.ingress_controller.ssl_cert_key_data, jobs_namespace=jobs_namespace, jobs_resource_pool_types=cluster.orchestrator.resource_pool_types, jobs_priority_class_name=f"{self._config.helm_release_names.platform}-job", jobs_internal_host_template=f"{{job_id}}.{jobs_namespace}", jobs_fallback_host=cluster.orchestrator.job_fallback_hostname, idle_jobs=cluster.orchestrator.idle_jobs, storages=[self._create_storage(s) for s in spec.storages], buckets=self._create_buckets(spec.blob_storage, cluster), registry=self._create_registry(spec.registry), monitoring=self._create_monitoring(spec.monitoring), disks_storage_limit_per_user_gb=cluster.disks.storage_limit_per_user_gb, disks_storage_class_name=spec.disks.storage_class_name or None, helm_repo=self._create_helm_repo(cluster), docker_config=docker_config, docker_hub_config=docker_hub_config, grafana_username=cluster.credentials.grafana.username if cluster.credentials.grafana else None, grafana_password=cluster.credentials.grafana.password if cluster.credentials.grafana else None, sentry_dsn=cluster.credentials.sentry.public_dsn if cluster.credentials.sentry else None, sentry_sample_rate=cluster.credentials.sentry.sample_rate if cluster.credentials.sentry else None, aws_region=spec.iam.aws_region, aws_role_arn=spec.iam.aws_role_arn, aws_s3_role_arn=spec.iam.aws_s3_role_arn, gcp_service_account_key=self._base64_decode( spec.iam.gcp_service_account_key_base64 ), gcp_service_account_key_base64=spec.iam.gcp_service_account_key_base64, ) def _create_helm_repo(self, cluster: Cluster) -> HelmRepo: assert cluster.credentials assert cluster.credentials.neuro_helm return HelmRepo( url=cluster.credentials.neuro_helm.url, username=cluster.credentials.neuro_helm.username or "", password=cluster.credentials.neuro_helm.password or "", ) def _create_neuro_docker_config( self, cluster: Cluster, secret_name: str, create_secret: bool ) -> DockerConfig: assert cluster.credentials assert cluster.credentials.neuro_registry return self._create_docker_config( cluster.credentials.neuro_registry, secret_name, create_secret ) def _create_docker_hub_config( self, cluster: Cluster, secret_name: str ) -> DockerConfig | None: assert cluster.credentials if cluster.credentials.docker_hub is None: return None return self._create_docker_config( cluster.credentials.docker_hub, secret_name, True ) def _create_docker_config( self, registry: DockerRegistryConfig, secret_name: str, create_secret: bool ) -> DockerConfig: if not registry.username or not registry.password: secret_name = "" create_secret = False return DockerConfig( url=registry.url, email=registry.email or "", username=registry.username or "", password=registry.password or "", secret_name=secret_name, create_secret=create_secret, ) def _create_image_pull_secret_names( self, *docker_config: DockerConfig | None ) -> Sequence[str]: result: list[str] = [] for config in docker_config: if config and config.secret_name: result.append(config.secret_name) return result def _create_storage(self, spec: StorageSpec) -> StorageConfig: if not spec: raise ValueError("Storage spec is empty") if StorageType.KUBERNETES in spec: return StorageConfig( type=StorageType.KUBERNETES, path=spec.path, storage_class_name=spec.storage_class_name, storage_size=spec.storage_size, ) elif StorageType.NFS in spec: return StorageConfig( type=StorageType.NFS, path=spec.path, nfs_server=spec.nfs_server, nfs_export_path=spec.nfs_export_path, ) elif StorageType.SMB in spec: return StorageConfig( type=StorageType.SMB, path=spec.path, smb_server=spec.smb_server, smb_share_name=spec.smb_share_name, smb_username=spec.smb_username, smb_password=spec.smb_password, ) elif StorageType.AZURE_fILE in spec: return StorageConfig( type=StorageType.AZURE_fILE, path=spec.path, azure_storage_account_name=spec.azure_storage_account_name, azure_storage_account_key=spec.azure_storage_account_key, azure_share_name=spec.azure_share_name, ) elif StorageType.GCS in spec: return StorageConfig( type=StorageType.GCS, gcs_bucket_name=spec.gcs_bucket_name ) else: raise ValueError("Storage type is not supported") def _create_buckets(self, spec: BlobStorageSpec, cluster: Cluster) -> BucketsConfig: if not spec: raise ValueError("Blob storage spec is empty") assert cluster.credentials assert cluster.buckets assert cluster.dns if BucketsProvider.AWS in spec: return BucketsConfig( provider=BucketsProvider.AWS, disable_creation=cluster.buckets.disable_creation, aws_region=spec.aws_region, ) elif BucketsProvider.GCP in spec: return BucketsConfig( provider=BucketsProvider.GCP, gcp_project=spec.gcp_project, disable_creation=cluster.buckets.disable_creation, ) elif BucketsProvider.AZURE in spec: return BucketsConfig( provider=BucketsProvider.AZURE, disable_creation=cluster.buckets.disable_creation, azure_storage_account_name=spec.azure_storrage_account_name, azure_storage_account_key=spec.azure_storrage_account_key, ) elif BucketsProvider.EMC_ECS in spec: return BucketsConfig( provider=BucketsProvider.EMC_ECS, disable_creation=cluster.buckets.disable_creation, emc_ecs_access_key_id=spec.emc_ecs_access_key_id, emc_ecs_secret_access_key=spec.emc_ecs_secret_access_key, emc_ecs_s3_assumable_role=spec.emc_ecs_s3_role, emc_ecs_s3_endpoint=URL(spec.emc_ecs_s3_endpoint), emc_ecs_management_endpoint=URL(spec.emc_ecs_management_endpoint), ) elif BucketsProvider.OPEN_STACK in spec: return BucketsConfig( provider=BucketsProvider.OPEN_STACK, disable_creation=cluster.buckets.disable_creation, open_stack_region_name=spec.open_stack_region, open_stack_username=spec.open_stack_username, open_stack_password=spec.open_stack_password, open_stack_endpoint=URL(spec.open_stack_endpoint), open_stack_s3_endpoint=URL(spec.open_stack_s3_endpoint), ) elif BucketsProvider.MINIO in spec: return BucketsConfig( provider=BucketsProvider.MINIO, disable_creation=cluster.buckets.disable_creation, minio_url=URL(spec.minio_url), # Ingress should be configured manually in this case minio_public_url=URL(f"https://blob.{cluster.dns.name}"), minio_region=spec.minio_region, minio_access_key=spec.minio_access_key, minio_secret_key=spec.minio_secret_key, ) elif "kubernetes" in spec: assert cluster.credentials.minio return BucketsConfig( provider=BucketsProvider.MINIO, disable_creation=cluster.buckets.disable_creation, minio_install=True, minio_url=URL.build( scheme="http", host=f"{self._config.helm_release_names.platform}-minio", port=9000, ), # Ingress should be configured manually in this case minio_public_url=URL(f"https://blob.{cluster.dns.name}"), minio_region="minio", minio_access_key=cluster.credentials.minio.username, minio_secret_key=cluster.credentials.minio.password, minio_storage_class_name=spec.kubernetes_storage_class_name, minio_storage_size=spec.kubernetes_storage_size or "10Gi", ) else: raise ValueError("Bucket provider is not supported") def _create_registry(self, spec: RegistrySpec) -> RegistryConfig: if not spec: raise ValueError("Registry spec is empty") if RegistryProvider.AWS in spec: return RegistryConfig( provider=RegistryProvider.AWS, aws_account_id=spec.aws_account_id, aws_region=spec.aws_region, ) elif RegistryProvider.GCP in spec: return RegistryConfig( provider=RegistryProvider.GCP, gcp_project=spec.gcp_project, ) elif RegistryProvider.AZURE in spec: url = URL(spec.azure_url) if not url.scheme: url = URL(f"https://{url!s}") return RegistryConfig( provider=RegistryProvider.AZURE, azure_url=url, azure_username=spec.azure_username, azure_password=spec.azure_password, ) elif RegistryProvider.DOCKER in spec: return RegistryConfig( provider=RegistryProvider.DOCKER, docker_registry_url=URL(spec.docker_url), docker_registry_username=spec.docker_username, docker_registry_password=spec.docker_password, ) elif "kubernetes" in spec: return RegistryConfig( provider=RegistryProvider.DOCKER, docker_registry_install=True, docker_registry_url=URL.build( scheme="http", host=f"{self._config.helm_release_names.platform}-docker-registry", port=5000, ), docker_registry_storage_class_name=spec.kubernetes_storage_class_name, docker_registry_storage_size=spec.kubernetes_storage_size or "10Gi", ) else: raise ValueError("Registry provider is not supported") def _create_monitoring(self, spec: MonitoringSpec) -> MonitoringConfig: if not spec: raise ValueError("Monitoring spec is empty") metrics_enabled = not self._config.is_standalone if not metrics_enabled: return MonitoringConfig( logs_region=spec.logs_region, logs_bucket_name=spec.logs_bucket, metrics_enabled=False, ) elif "blobStorage" in spec.metrics: return MonitoringConfig( logs_region=spec.logs_region, logs_bucket_name=spec.logs_bucket, metrics_enabled=True, metrics_storage_type=MetricsStorageType.BUCKETS, metrics_region=spec.metrics_region, metrics_bucket_name=spec.metrics_bucket, metrics_retention_time=( spec.metrics_retention_time or MonitoringConfig.metrics_retention_time ), ) elif "kubernetes" in spec.metrics: return MonitoringConfig( logs_bucket_name=spec.logs_bucket, metrics_enabled=True, metrics_storage_type=MetricsStorageType.KUBERNETES, metrics_storage_class_name=spec.metrics_storage_class_name, metrics_storage_size=spec.metrics_storage_size or "10Gi", metrics_retention_time=( spec.metrics_retention_time or MonitoringConfig.metrics_retention_time ), metrics_region=spec.metrics_region, ) else: raise ValueError("Metrics storage type is not supported") @classmethod def _base64_decode(cls, value: str | None) -> str: if not value: return "" return b64decode(value.encode("utf-8")).decode("utf-8")
import os, pymorphy2, string, math import re # Create pymorphy2 instance for methods that use pymorphy2 morph = pymorphy2.MorphAnalyzer(lang = 'uk') ukrainian_letters = ['й','ц','у','к','е','н','г','ш','щ', 'з','х','ї','ґ','є','ж','д','л','о','р','п','а','в','і','i', #Cyrrilic and latin i 'ф','я','ч','с','м','и','т','ь','б','ю',"'","’","-"] weed_out = ['без', 'у', 'в', 'від', 'для', 'по', 'через', 'при', 'над', 'на', 'під', 'до', 'з', 'із', 'як', 'за', 'задля', 'з-під', 'із-за', 'поза', 'щодо', 'і', 'в', 'та', 'й', 'але', 'а', 'й', 'або', 'чи', 'як', 'коли', 'що', 'як', 'би', 'наскільки', 'хоч', 'мов', 'наче', 'адже', 'аніж', 'втім', 'зате', 'мовби', 'мовбито', 'начеб', 'начебто', 'немов', 'немовби', 'немовбито', 'неначе', 'неначебто', 'ніби', 'нібито', 'ніж', 'отже', 'отож', 'притім', 'притому', 'причім', 'причому', 'проте', 'себто', 'тобто', 'цебто', 'щоб', 'якби', 'якщо', 'отож-то', 'тим-то', 'тільки-но', 'тому-то', 'т', 'д', 'так', 'є', 'це','ще', 'уже', 'не', 'де'] vowels = ['а', 'е', 'є', 'и', 'і', 'ї', 'о', 'у', 'ю', 'я'] class Text(object): """docstring for Text""" def __init__(self, abs_path=None): """At initialization creates list of ukraninian words and list of sentences. Takes absolute path to the file as an argument""" self.path = abs_path #Set current dirrectory os.curdir = self.path def is_ukr_word(word): #Check if the word is ukrainian #Returns Bool value letters = list(word) for letter in letters: if letter.lower() in ukrainian_letters: pass else: return False return True def word_syllab_number(word): vowelsN = 0 for letter in word: if letter.lower() in vowels: vowelsN += 1 return vowelsN # Open file for reading if abs_path: with open(self.path, mode='r', encoding='utf-8') as f: file_content = f.read() #Split file into sentences sentences = re.split('\.\s|\n|\?|\!',file_content) self.sentences = [sentence for sentence in sentences if sentence != ''] #Split file into words self.all_words = [] for sentence in self.sentences: words = sentence.split(' ') self.all_words.extend(words) # Creates a new list of cleaned words self.ukr_words = [] # Num of long words self.num_long_words = 0 for word in self.all_words: word = word.strip(string.punctuation+'«»') if is_ukr_word(word) and len(word) > 2 and word.lower() not in weed_out: self.ukr_words.append(word) if len(word) >= 6: self.num_long_words += 1 # Num of syllables (vowels) self.num_syllab = 0 for word in self.all_words: if is_ukr_word(word): self.num_syllab += word_syllab_number(word) #Num of words self.num_words = len(self.all_words) #Num of sentences self.num_sent = len(self.sentences) #LIX coefficient self.lix_coef = 0 #OLIX coefficient self.ovix_coef = 0 #Flesch readability index self.flesch_ind = 0 else: self.all_words = [] self.ukr_words = [] self.sentences = [] self.num_words = 0 self.num_sent = 0 self.num_long_words = 0 self.num_syllab = 0 self.lix_coef = 0 self.ovix_coef = 0 self.flesch_ind = 0 def analyse(self): """Returns number of words, number of sentences, average word length and average sentence length in tuple """ #Average length of word total_length = 0 for word in self.ukr_words: total_length += len(word) av_word_len = total_length/self.num_words #Average length of sentence total_length = 0 for sentence in self.sentences: total_length += len(sentence) av_sent_len = total_length/self.num_words unique_words = set(self.ukr_words) unique_words_num = len(unique_words) #lix coefficient computing self.lix_coef = self.num_words/self.num_sent + (self.num_long_words * 100) / self.num_words #ovix coefficient computing if unique_words_num: k = math.log(self.num_words) t = math.log(unique_words_num) b = math.log(self.num_words) self.ovix_coef = k / math.log(2 - (t / b)) #flesch coefficient computing self.flesch_ind = 206.835 - 1.015*(self.num_words/self.num_sent) - 84*(self.num_syllab/self.num_words) return self.num_words, self.num_sent, av_word_len, av_sent_len, self.lix_coef, self.ovix_coef, self.flesch_ind def freq_dict(self, list_of_words = None): """Returns key value pair of all ukrainian words and relative frequency if no other list is given {key(str):value(float)} """ if not list_of_words: list_of_words = self.ukr_words unique_words = set(list_of_words) # num_of_un_words = len(unique_words) freq_dict = {} for un_word in unique_words: freq_dict[un_word.lower()] = list_of_words.count(un_word) # Sort by frequency sorted_words = sorted(freq_dict, key=freq_dict.get) sorted_words.reverse() new_freq_dict = {} for word in sorted_words: new_freq_dict[word] = freq_dict[word] return new_freq_dict def get_relative_lemma_freq(self): """Returns key value pair of lemmas and relative frequency {key(str):value(float)} """ lemmas = [] for word in self.ukr_words: p = morph.parse(word)[0] lemmas.append(p.normal_form) lemmas_dict = self.freq_dict(list_of_words = lemmas) return lemmas_dict def get_parts_of_speach_freq(self): """Returns key value pair of parts of speach frequency""" parts_of_speech = {} for word in self.ukr_words: p = morph.parse(word)[0] if p.tag.POS in parts_of_speech: parts_of_speech[p.tag.POS] += 1 else: parts_of_speech[p.tag.POS] = 0 # for keyvalue in parts_of_speech: # parts_of_speech[keyvalue] = (parts_of_speech[keyvalue]/self.num_words)*100 return parts_of_speech if __name__ == '__main__': # Helper functions def dict_to_text(dictionary, add_POS_col = False): """ Transform dictionary to str for readability and add parts of speach """ text = '' if add_POS_col == True: for key in dictionary: p = morph.parse(key)[0] text += f'{key} - {p.tag.POS} - {dictionary[key]} \n' return text else: for key in dictionary: text += f'{key} - {dictionary[key]} \n' return text def create_report(root_path, files): """Creates reports in the folder""" def write_report(num_words, num_sent, av_word_len, av_sent_len, lix_coef, ovix_coef, flesch_coef, text, file, f_path): report = '' report += '='*100+'\n' report += f'{file}\n' report += '='*100+'\n'*2 report += '='*100+'\n' if 'Easy' in f_path: report += 'Text type: Easy\n' elif 'Moderate' in f_path: report += 'Text type: Moderate\n' elif 'Complex' in f_path: report += 'Text type: Complex\n' else: report += 'Text type: Unknown\n' report += '='*100+'\n'*2 report += f"Number of words: {num_words}, number of sentences: {num_sent}, average word length: {av_word_len}, average sentence length: {av_sent_len}, words after cleaning: {len(text.ukr_words)}\n" report += f"LIX coefficient: {lix_coef}, OVIX coefficient: {ovix_coef}, Flesch readability coefficient {flesch_coef} \n " # Uncomment to add frequencies # report += f'============================= Frequencies ================================= \n' # report += dict_to_text(text.freq_dict()) + '\n' report += f'============================= Lemma Frequencies ================================= \n\n' report += dict_to_text(text.get_relative_lemma_freq(), add_POS_col = True) + '\n' report += f'============================= Parts of speach ================================= \n\n' report += dict_to_text(text.get_parts_of_speach_freq()) + '\n' with open(os.path.join(path,'report.txt'), 'a', encoding='utf-8') as f: f.write(report) mega_text = Text() f = open(os.path.join(path,'report.txt'), 'a', encoding='utf-8') for file in files: if file.startswith('readme'): continue print(file) # Path to the file f_path = os.path.join(path, file) text = Text(f_path) # Get main charcteristics of text num_words, num_sent, av_word_len, av_sent_len, lix_coef, ovix_coef, flesch_coef = text.analyse() # Add info from small text to total folder text mega_text.all_words += text.all_words mega_text.ukr_words += text.ukr_words mega_text.num_words += text.num_words mega_text.num_sent += text.num_sent mega_text.sentences += text.sentences #Create report write_report(num_words, num_sent, av_word_len, av_sent_len, lix_coef, ovix_coef, flesch_coef, text, file, f_path) num_words, num_sent, av_word_len, av_sent_len, lix_coef, ovix_coef, flesch_coef = mega_text.analyse() write_report(num_words, num_sent, av_word_len, av_sent_len, lix_coef, ovix_coef, flesch_coef, mega_text, file='Summary', f_path= os.curdir) path = os.getcwd() # Walk through all leaves in the root tree tree = os.walk(path) # Create report for each text for i in tree: path, folders, files = i files_c = files[:] for file in files_c: if not file.endswith('.txt'): files.remove(file) if len(files): create_report(path, files)
import dash import dash_html_components as html import json import dash_leaflet as dl from examples import geojson_csf from dash_extensions.transpile import inject_js, module_to_props # Create geojson. with open("assets/us-states.json", 'r') as f: data = json.load(f) js = module_to_props(geojson_csf) # do transcrypt to enable passing python functions as props geojson = dl.GeoJSON(data=data, id="geojson", options=dict(style=geojson_csf.style), hoverStyle=geojson_csf.hover_style) # Create app. app = dash.Dash(prevent_initial_callbacks=True) app.layout = html.Div([dl.Map(children=[dl.TileLayer(), geojson], center=[39, -98], zoom=4, id="map")], style={'width': '100%', 'height': '50vh', 'margin': "auto", "display": "block"}) # Inject transcrypted javascript. inject_js(app, js) if __name__ == '__main__': app.run_server(port=7777, debug=True)
from .fetcher import ResourceFetcher