content
stringlengths
5
1.05M
# %% import pandas as pd import numpy as np import matplotlib.pyplot as plt import logging import math import matplotlib as mpl from pylab import cm avenirfont = {'fontname': 'Avenir', 'size': 18} units = {'perf': 'paket/sn', 'cost': 'USD/saat'} names = {'perf': 'performans', 'cost': 'maliyet'} plt.rcParams['text.usetex'] = False mpl.rcParams['font.family'] = 'Avenir' plt.rcParams['font.size'] = 18 plt.rcParams['axes.linewidth'] = 2 csv_file = 'data.log' df = pd.read_csv(csv_file, delim_whitespace=True) varnames = ['re','cpu','heap'] var_idx_map = [0,1,2] variables = dict() for var in varnames: variables[var] = sorted(df[var].unique()) gridsize = [len(x) for x in variables.values()] n = len(variables.keys()) # dimension N = len(df) # number of records state_visit_counts = dict() # s = {'re': 1, 'heap': 100, 'cpu': 100} --> return 0 # s = {'re': 1, 'heap': 100, 'cpu': 200} --> return 1 def state_to_idx(s): idx = 0 for i in range(n): varname = varnames[i] idx += variables[varname].index(s[varname]) * np.prod([len(variables[varnames[j]]) for j in range(i+1,n) ]) return int(idx) # Inverse of state_to_idx def idx_to_state(idx): s = dict() for i in range(n): varname = varnames[i] block = int(np.prod([len(variables[varnames[j]]) for j in range(i+1,n) ])) s[varname] = variables[varname][idx // block] idx = idx - block * (idx // block) return s def filter_data(state): filter_idx = True for var in varnames: filter_idx = (filter_idx) & (df[var] == state[var]) return filter_idx def filter_data_state_idx(state_idx): return filter_data(idx_to_state(state_idx)) def neighborlist(state): yield state for var in variables: state_value = state[var] loc = variables[var].index(state_value) if loc - 1 >= 0: s = state.copy() s[var] = variables[var][loc-1] yield s if loc + 1 < len(variables[var]): s = state.copy() s[var] = variables[var][loc+1] yield s def probmatrix(): m = np.prod(gridsize) A = np.zeros((m,m)) for j in range(m): home_state = idx_to_state(j) neighbors = [n for n in iter(neighborlist(home_state))] for i in [state_to_idx(x) for x in neighbors]: A[i,j] = 1/len(neighbors) return A def probat(n): m = np.prod(gridsize) # Starting probability p = np.ones((m,1))/m #p[state_to_idx({'re': 5, 'cpu': 500, 'heap': 500})] = 1 #p[0] = 1 A = probmatrix() for i in range(n): p = np.dot(A,p) return p probs = probat(N) # %% for index, row in df.iterrows(): state = dict(row[varnames]) state_idx = state_to_idx(state) if state_idx in state_visit_counts.keys(): state_visit_counts[state_idx] += 1 else: state_visit_counts[state_idx] = 1 # %% # number of all possible states expected_state_count = np.prod(gridsize) observed_state_count = len(state_visit_counts.keys()) if expected_state_count != observed_state_count: print("The number of observed states (%d) does not match to expected (%d)" %(observed_state_count, expected_state_count)) # %% Checking if state visit frequency matches to the expected # Calculate the all possible connections tot_connections = np.prod(gridsize) for variable, values in variables.items(): tot_connections += 2 * (len(values)-1) * np.prod([len(variables[k]) for k in variables.keys() if k != variable]) visit_frequency_avg_rel_err = 0 observed_state_visit_count = np.zeros((np.prod(gridsize))) expected_state_visit_count = np.zeros((np.prod(gridsize))) for state_idx, visit_count in state_visit_counts.items(): state = idx_to_state(state_idx) # interior states has 2n+1 connections (maximum) conn_count = 2 * n + 1 for var, val in state.items(): # If there is no more state in the left/right # decrease the connections if val == min(variables[var]): conn_count -= 1 if val == max(variables[var]): conn_count -= 1 expected_state_visit_prob_infinity = conn_count / tot_connections expected_state_visit_count[state_idx] = int(probs[state_idx,0] * N) if abs(expected_state_visit_prob_infinity-probs[state_idx,0])/expected_state_visit_prob_infinity > 0.00001: print("Matrix exponential and theory don't match") observed_state_visit_count[state_idx] = state_visit_counts[state_idx] rel_error = abs(expected_state_visit_count[state_idx]-observed_state_visit_count[state_idx]) \ /expected_state_visit_count[state_idx] visit_frequency_avg_rel_err += rel_error plt.figure(figsize=(8,8)) plt.plot(observed_state_visit_count,'o',label='Observed') plt.plot(expected_state_visit_count,'.',label='expected') plt.legend() plt.xlabel('states orderd by state index') plt.ylabel('state visit counts') plt.title('Total number of state visits:%d' % N) plt.show() visit_frequency_avg_rel_err /= len(state_visit_counts) # Close to zero means that the states are visited enough times # to make meaningful statistics # If it is large i.e. > .20, better collect more data print('Average Relative Error in state visit frequency %f'%visit_frequency_avg_rel_err) # %% for metric in ['inc_tps','out_tps','cost']: missing_indices = df[(np.isnan(df[metric])) | (df[metric] == 0)].index missing_values = [] for missing_index in missing_indices: missing_state = dict(df.loc[missing_index][varnames]) missing_state_idx = state_to_idx(missing_state) hist_df_idx = (df.index < missing_index) & \ (np.isnan(df[metric]) == False) & \ (df[metric] != 0) search_idx = hist_df_idx & filter_data_state_idx(missing_state_idx) if len(df[search_idx][metric]) == 0: try_count = 0 while len(df[search_idx][metric]) == 0: if try_count > 7: print("giving up...") break # try, index+1,index-1,index+2,index-2,... try_state_idx = missing_state_idx + (try_count//2 + 1) * \ (1 if try_count % 2 == 0 else -1) search_idx = hist_df_idx & filter_data_state_idx(try_state_idx) try_count += 1 if try_count > 7: logging.error('There is no historical data for %s' % missing_state) else: logging.info('Instead of %s, %s is used' % (missing_state, idx_to_state(try_state_idx))) estimation = np.mean(df[search_idx][metric]) missing_values.append(estimation) df.loc[missing_indices,metric] = missing_values # %% df['perf'] = df['out_tps'] * df['re'] df['1st'] = 0 df_aggr = df.groupby(varnames).mean() # %% f = dict() for output in ['perf', 'cost']: f[output] = dict() # Constant f[output]['0th'] = np.mean(df_aggr[output]) f[output]['D'] = np.mean(df_aggr[output] ** 2) - f[output]['0th']**2 f[output]['1st'] = dict() f[output]['Di'] = dict() f[output]['Si'] = dict() f[output]['2nd'] = dict() f[output]['Dij'] = dict() f[output]['Sij'] = dict() # First order terms (Performance) for feature in varnames: f[output]['1st'][feature] = df_aggr.groupby(feature).mean()[output].values - f[output]['0th'] f[output]['Di'][feature] = np.mean(f[output]['1st'][feature] ** 2) f[output]['Si'][feature] = f[output]['Di'][feature] / f[output]['D'] for i in range(N): df.loc[i,'1st'] = f[output]['0th'] for feature in varnames: df.loc[i,'1st'] += f[output]['1st'][feature][variables[feature].index(df.loc[i,feature])] for i in range(0,n): varidx = var_idx_map[i] feature = varnames[varidx] plt.figure() plt.rcParams['text.usetex'] = True plt.plot(variables[feature], f[output]['1st'][feature],'*-',label='f1 (%s)'%feature) plt.title(r'$f_%d(x_%d)$ (\textbf{%s})'%(i+1,i+1,output)) plt.xlabel(r'$x_%d$ (\textbf{%s})'%(i+1,feature) ) plt.ylabel(r'$f_%d$ (\textbf{pps})'%(i+1)) plt.grid(True) ax = plt.gca() ax.set_xticks(variables[feature]) plt.savefig('hdmr_1st_n9_%s_%s.pdf' % (output, feature)) plt.show() # 2nd order HDMR terms vmin = math.inf vmax = -math.inf for i in range(0,n-1): varidx1 = var_idx_map[i] feature1 = varnames[varidx1] n1 = len(variables[feature1]) for j in range(i+1,n): varidx2 = var_idx_map[j] feature2 = varnames[varidx2] n2 = len(variables[feature2]) fij = np.reshape(df_aggr.groupby([feature1,feature2]).mean()[output].values,(n1,n2)) \ - np.reshape(f[output]['1st'][feature1],(n1,1)) \ - np.reshape(f[output]['1st'][feature2],(1,n2)) \ - f[output]['0th'] f[output]['2nd'][feature1+','+feature2] = fij f[output]['Dij'][feature1+','+feature2] = np.mean(fij**2) f[output]['Sij'][feature1+','+feature2] = f[output]['Dij'][feature1+','+feature2] / f[output]['D'] if fij.min() < vmin: vmin = fij.min() if fij.max() > vmax: vmax = fij.max() # 3rd order HDMR terms xvalues3d, yvalues3d, zvalues3d = [] , [] , [] for i in range(0,n-1): varidx1 = var_idx_map[i] feature1 = varnames[varidx1] n1 = len(variables[feature1]) for j in range(i+1,n): varidx2 = var_idx_map[j] feature2 = varnames[varidx2] n2 = len(variables[feature2]) for k in range(j+1,n): varidx3 = var_idx_map[k] feature3 = varnames[varidx3] n3 = len(variables[feature3]) xvalues3d.append(feature1) yvalues3d.append(feature2) zvalues3d.append(feature3) fijk = np.zeros((n1,n2,n3)) for i1 in range(n1): val1 = variables[feature1][i1] for i2 in range(n2): val2 = variables[feature2][i2] for i3 in range(n3): val3 = variables[feature2][i3] state = {feature1: val1, feature2: val2, feature3: val3} fijk[i1,i2,i3] = df[filter_data(state)][output].mean() fijk = fijk \ - f[output]['0th'] \ - np.reshape(f[output]['1st'][feature1],(n1,1,1)) \ - np.reshape(f[output]['1st'][feature2],(1,n2,1)) \ - np.reshape(f[output]['1st'][feature3],(1,1,n3)) \ - np.reshape(f[output]['2nd'][feature1+','+feature2],(n1,n2,1)) \ - np.reshape(f[output]['2nd'][feature1+','+feature3],(n1,1,n3)) \ - np.reshape(f[output]['2nd'][feature2+','+feature3],(1,n2,n3)) f[output]['3rd'] = fijk for i in range(0,n-1): varidx1 = var_idx_map[i] feature1 = varnames[varidx1] n1 = len(variables[feature1]) for j in range(i+1,n): plt.figure(figsize=(10,10)) plt.rcParams['text.usetex'] = True varidx2 = var_idx_map[j] feature2 = varnames[varidx2] n2 = len(variables[feature2]) ax = plt.gca() fij = f[output]['2nd'][feature1+','+feature2] img = ax.imshow(fij,vmin=vmin,vmax=vmax,cmap='GnBu') plt.ylabel(r'$x_%d$ (\textbf{%s})'%(i+1,feature1)) plt.xlabel(r'$x_%d$ (\textbf{%s})'%(j+1,feature2)) ax.set_xticks(np.arange(n2)) ax.set_yticks(np.arange(n1)) ax.set_xticklabels(list(map(str, variables[feature2]))) ax.set_yticklabels(list(map(str, variables[feature1]))) for k in range(n1): for l in range(n2): ax.text(l,k,'%.4f'%fij[k,l],ha='center',va='center') plt.colorbar(img, ax=ax,fraction=0.046, pad=0.04) plt.title(r'$f_{%d%d}(x_%d,x_%d)$'%(i+1,j+1,i+1,j+1)) plt.tight_layout() plt.savefig('hdmr_2nd_n9_%s_%d_%d.pdf'%(output,i+1,j+1)) plt.show() colors = cm.get_cmap('tab10', 3) fig = plt.figure(figsize=(5,4)) ax = fig.add_axes([0,0,1,1]) # Hide the top and right spines of the axis ax.spines['right'].set_visible(True) ax.spines['top'].set_visible(True) ax.xaxis.set_tick_params(which='major', size=10, width=2, direction='in', top='on') ax.yaxis.set_tick_params(which='major', size=10, width=2, direction='in', right='on') #plt.rcParams['text.usetex'] = True for i in range(0,n): varidx = var_idx_map[i] feature = varnames[varidx] ax.plot(np.arange(1,10),f[output]['1st'][feature],'-', color=colors(i),linewidth=3,label=r'$f_%d(x)$'%(i+1)) ax.set_xticks(np.arange(1,10)) ax.set_xlim(1,9) ax.legend(loc='upper left',frameon=False) #plt.title(r'\textbf{Birli YBMG Terimleri (%s)}'%names[output]) plt.grid(False) ax.set_xlabel('x (sıra sayısı)',labelpad=1) ax.set_ylabel('%s'% units[output],labelpad=1) plt.xticks(**avenirfont) plt.yticks(**avenirfont) plt.rcParams['pdf.fonttype'] = 42 #plt.tight_layout() plt.savefig('hdmr_1st_n9_%s.pdf' % (output), transparent=False, bbox_inches='tight', dpi=300) #plt.show() plt.show()
#!/usr/bin/env python import argparse import os import subprocess import sys import threading from collections import OrderedDict import yaml import yodl debug = False class DockerCompose: def __init__(self, compose, project, compose_base_dir, requested_services): self.project = project self.compose_base_dir = compose_base_dir self.services = self.merge_services(compose.get('services', {})) self.networks = compose.get('networks', {}) self.volumes = compose.get('volumes', {}) self.filtered_services = filter(lambda service: not requested_services or service in requested_services, self.services) def project_prefix(self, value): return '{}_{}'.format(self.project, value) if self.project else value def merge_services(self, services): result = OrderedDict() for service in services: service_config = services[service] result[service] = service_config if 'extends' in service_config: extended_config = service_config['extends'] extended_service = extended_config['service'] del result[service]['extends'] if 'file' in extended_config: extended_service_data = self.merge_services( yaml.load(open(self.compose_base_dir + extended_config['file'], 'r'), yodl.OrderedDictYAMLLoader)['services'] )[extended_service] else: extended_service_data = result[extended_service] merge(result[service], extended_service_data, None, self.mergeEnv) return result @staticmethod def mergeEnv(a, b, key): if key == 'environment': if isinstance(a[key], dict) and isinstance(b[key], list): a[key] = b[key] + list({'{}={}'.format(k, v) for k, v in a[key].items()}) elif isinstance(a[key], list) and isinstance(b[key], dict): a[key][:0] = list({'{}={}'.format(k, v) for k, v in b[key].items()}) else: raise ('Unknown type of "{}" value (should be either list or dictionary)'.format(key)) @staticmethod def call(cmd, ignore_return_code=False): print('Running: \n' + cmd + '\n') if not debug: ps = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) returncode = ps.wait() stdout = ps.communicate()[0] if returncode != 0 and not ignore_return_code: print >> sys.stderr, ('Error: command "{}" failed: {}'.format(cmd, stdout)) sys.exit(returncode) else: return stdout def is_service_exists(self, service): return self.call('/bin/bash -o pipefail -c "docker service ls | awk \'{{print \\$2}}\' | (egrep \'^{}$\' || :)"'.format(self.project_prefix(service))) def is_external_network(self, network): if network not in self.networks: print >> sys.stderr, ('Error: network "{}" is not defined in networks'.format(network)) sys.exit(1) return isinstance(self.networks[network], dict) and 'external' in self.networks[network] def up(self): for network in self.networks: if not self.is_external_network(network): cmd = '[ "`docker network ls | awk \'{{print $2}}\' | egrep \'^{0}$\'`" != "" ] || docker network create --driver overlay --opt encrypted {0}' \ .format(self.project_prefix(network)) self.call(cmd) for volume in self.volumes: cmd = '[ "`docker volume ls | awk \'{{print $2}}\' | egrep \'^{0}$\'`" != "" ] || docker volume create --name {0}' \ .format(self.project_prefix(volume)) if isinstance(self.volumes[volume], dict) and self.volumes[volume]['driver']: cmd = cmd + ' --driver={0}'.format(self.volumes[volume]['driver']) self.call(cmd) services_to_start = [] for service in self.filtered_services: if self.is_service_exists(service): services_to_start.append(service) continue service_config = self.services[service] cmd = ['docker service create --with-registry-auth \\\n --name', self.project_prefix(service), '\\\n'] service_image = [] service_command = [] def add_flag(key, value): cmd.extend([key, shellquote(value), '\\\n']) for parameter in service_config: value = service_config[parameter] def restart(): add_flag('--restart-condition', {'always': 'any'}[value]) def logging(): add_flag('--log-driver', value.get('driver', 'json-file')) log_opts = value['options'] if log_opts: for k, v in log_opts.items(): if v is not None: add_flag('--log-opt', '{}={}'.format(k, v)) def mem_limit(): add_flag('--limit-memory', value) def image(): service_image.append(value) def command(): if isinstance(value, list): service_command.extend(value) else: service_command.extend(value.split(' ')) def expose(): pass # unsupported def container_name(): pass # unsupported def hostname(): pass # unsupported; waiting for https://github.com/docker/docker/issues/24877 def labels(): value = service_config[parameter] # ^ working-around the lack of `nonlocal` statement. if isinstance(value, dict): value = ('%s=%s' % i for i in value.iteritems()) for label in value: add_flag('--label', label) def mode(): add_flag('--mode', value) def extra_hosts(): pass # unsupported def ports(): for port in value: add_flag('--publish', port) def networks(): for network in value: add_flag('--network', network if self.is_external_network(network) else self.project_prefix(network)) def volumes(): for volume in value: splitted_volume = volume.split(':') src = splitted_volume.pop(0) dst = splitted_volume.pop(0) readonly = 0 if splitted_volume and splitted_volume[0] == 'ro': readonly = 1 if src.startswith('.'): src = src.replace('.', self.compose_base_dir, 1) if src.startswith('/'): add_flag('--mount', 'type=bind,src={},dst={},readonly={}'.format(src, dst, readonly)) else: add_flag('--mount', 'src={},dst={},readonly={}'.format(self.project_prefix(src), dst, readonly)) def environment(): if isinstance(value, dict): for k, v in value.items(): add_flag('--env', '{}={}'.format(k, v)) else: for env in value: if env.startswith('constraint') or env.startswith('affinity'): constraint = env.split(':', 2)[1] add_flag('--constraint', constraint) else: add_flag('--env', env) def replicas(): add_flag('--replicas', value) def env_file(): for v in value: with open(v) as env_file: for line in env_file: if not line.startswith('#') and line.strip(): add_flag('--env', line.strip()) def unsupported(): print >> sys.stderr, ('WARNING: unsupported parameter {}'.format(parameter)) locals().get(parameter, unsupported)() if len(service_image) == 0: print('ERROR: no image specified for %s service' % service) sys.exit(1) cmd.extend(service_image) cmd.extend(service_command) self.call(' '.join(cmd)) if services_to_start: self.start(services_to_start) def pull(self): nodes = self.call("docker node ls | grep Ready | awk -F'[[:space:]][[:space:]]+' '{print $2}'").rstrip().split('\n') threads = [] for node in nodes: cmd = '; '.join(['docker -H tcp://{}:2375 pull {}'.format(node, self.services[service]['image']) for service in self.filtered_services]) threads.append((node, threading.Thread(target=self.call, args=(cmd,)))) for node, thread in threads: print('Pulling on node {}'.format(node)) thread.start() for node, thread in threads: thread.join() print('Node {} - DONE'.format(node)) def stop(self): services = filter(self.is_service_exists, self.filtered_services) cmd_args = ['{}={}'.format(self.project_prefix(service), 0) for service in services] if cmd_args: self.call('docker service scale ' + ' '.join(cmd_args)) def rm(self): services = filter(self.is_service_exists, self.filtered_services) cmd_args = [self.project_prefix(service) for service in services] if cmd_args: self.call('docker service rm ' + ' '.join(cmd_args)) def start(self, services=None): if services is None: services = self.filtered_services cmd = 'docker service scale ' + \ ' '.join(['{}={}'.format(self.project_prefix(service), self.services[service].get('replicas', '1')) for service in services]) self.call(cmd) def convert(self): # Based on http://stackoverflow.com/a/8661021 represent_dict_order = lambda _self, data: _self.represent_mapping('tag:yaml.org,2002:map', data.items()) yaml.add_representer(OrderedDict, represent_dict_order) def project_prefix(value): return '{}-{}'.format(self.project, value) if self.project else value if self.networks: print >> sys.stderr, ('WARNING: unsupported parameter "networks"') for volume in self.volumes: print >> sys.stderr, ('WARNING: unsupported parameter "volumes"') for service in self.filtered_services: service_config = self.services[service] service = service.replace('_', '-') service_result = OrderedDict([ ('apiVersion', 'v1'), ('kind', 'Service'), ('metadata', OrderedDict([ ('name', project_prefix(service)), ('labels', OrderedDict()) ])), ('spec', OrderedDict([ ('selector', OrderedDict()) ])) ]) deployment_result = OrderedDict([ ('apiVersion', 'extensions/v1beta1'), ('kind', 'Deployment'), ('metadata', OrderedDict([ ('name', project_prefix(service)) ])), ('spec', OrderedDict([ ('replicas', 1), ('template', OrderedDict([ ('metadata', OrderedDict([ ('labels', OrderedDict()) ])), ('spec', OrderedDict([ ('containers', [OrderedDict([ ('name', project_prefix(service)), ])]) ])) ])) ])) ]) service_labels = service_result['metadata']['labels'] service_selector = service_result['spec']['selector'] deployment_labels = deployment_result['spec']['template']['metadata']['labels'] deployment_spec = deployment_result['spec']['template']['spec'] container = deployment_result['spec']['template']['spec']['containers'][0] service_labels['service'] = self.project service_labels['app'] = service for parameter in service_config: value = service_config[parameter] def restart(): deployment_spec['restartPolicy'] = {'always': 'Always'}[value] def logging(): pass # unsupported def mem_limit(): container['resources'] = {'limits': {'memory': value.replace('m', 'Mi').replace('g', 'Gi')}} def image(): container['image'] = value def command(): if isinstance(value, list): container['args'] = value else: container['args'] = value.split(' ') def expose(): service_result['spec']['ports'] = [] container['ports'] = [] for port in value: port_int = int(port) service_result['spec']['ports'].append(OrderedDict([('port', port_int), ('targetPort', port_int), ('name', str(port_int))])) container['ports'].append({'containerPort': port_int}) def container_name(): service_result['metadata']['name'] = value deployment_result['metadata']['name'] = value container['name'] = value service_labels['app'] = value def hostname(): pass # unsupported def labels(): pass # TODO def mode(): pass # TODO def extra_hosts(): pass # unsupported def ports(): for port in value: pass # TODO def networks(): pass # unsupported def volumes(): container['volumeMounts'] = [] deployment_spec['volumes'] = [] for volume in value: splitted_volume = volume.split(':') src = splitted_volume.pop(0) dst = splitted_volume.pop(0) readonly = 0 if splitted_volume and splitted_volume[0] == 'ro': readonly = 1 if src.startswith('.'): src = src.replace('.', self.compose_base_dir, 1) if src.startswith('/'): volume_name = src.split('/')[-1].replace('.', '').replace('_', '-') container['volumeMounts'].append(OrderedDict([('name', volume_name), ('mountPath', dst)])) deployment_spec['volumes'].append(OrderedDict([('name', volume_name), ('hostPath', {'path': src})])) # TODO readonly else: volume_name = src.replace('_', '-') container['volumeMounts'].append(OrderedDict([('name', volume_name), ('mountPath', dst)])) deployment_spec['volumes'].append( OrderedDict([('name', volume_name), ('hostPath', {'path': '/volumes/' + project_prefix(volume_name)})])) # TODO readonly def environment(): if isinstance(value, dict): container['env'] = [] for k, v in value.items(): container['env'].append(OrderedDict([('name', k), ('value', v)])) else: for env in value: if env.startswith('constraint') or env.startswith('affinity'): if 'nodeSelector' not in deployment_spec: deployment_spec['nodeSelector'] = OrderedDict() constraint = env.split(':', 2)[1] selector = 'FIX_ME' if constraint.startswith('node.hostname=='): selector = 'kubernetes.io/hostname' constraint = constraint.split('==')[1] if constraint.startswith('engine.labels.'): [selector, constraint] = constraint.split('==') selector = selector.replace('engine.labels.', '') deployment_spec['nodeSelector'][selector] = constraint else: if 'env' not in container: container['env'] = [] [k, v] = env.split('=') container['env'].append(OrderedDict([('name', k), ('value', v)])) def replicas(): deployment_result['spec']['replicas'] = int(value) def unsupported(): print >> sys.stderr, ('WARNING: unsupported parameter {}'.format(parameter)) locals().get(parameter, unsupported)() service_selector.update(service_labels) deployment_labels.update(service_labels) sys.stdout.write(yaml.dump(service_result, default_flow_style=False)) print('---') sys.stdout.write(yaml.dump(deployment_result, default_flow_style=False)) print('---') def main(): envs = { 'COMPOSE_FILE': 'docker-compose.yml', 'COMPOSE_HTTP_TIMEOUT': '60', 'COMPOSE_TLS_VERSION': 'TLSv1' } env_path = os.path.join(os.getcwd(), '.env') if os.path.isfile(env_path): with open(env_path) as env_file: envs.update(dict(map(lambda line: line.strip().split('=', 1), (line for line in env_file if not line.startswith('#') and line.strip())))) map(lambda e: os.environ.update({e[0]: e[1]}), (e for e in envs.items() if not e[0] in os.environ)) parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=50, width=120)) parser.add_argument('-f', '--file', type=argparse.FileType(), help='Specify an alternate compose file (default: docker-compose.yml)', default=[], action='append') parser.add_argument('-p', '--project-name', help='Specify an alternate project name (default: directory name)', default=os.environ.get('COMPOSE_PROJECT_NAME')) parser.add_argument('--dry-run', action='store_true') subparsers = parser.add_subparsers(title='Command') parser.add_argument('_service', metavar='service', nargs='*', help='List of services to run the command for') services_parser = argparse.ArgumentParser(add_help=False) services_parser.add_argument('service', nargs='*', help='List of services to run the command for') pull_parser = subparsers.add_parser('pull', help='Pull service images', add_help=False, parents=[services_parser]) pull_parser.set_defaults(command='pull') rm_parser = subparsers.add_parser('rm', help='Stop and remove services', add_help=False, parents=[services_parser]) rm_parser.set_defaults(command='rm') rm_parser.add_argument('-f', help='docker-compose compatibility; ignored', action='store_true') start_parser = subparsers.add_parser('start', help='Start services', add_help=False, parents=[services_parser]) start_parser.set_defaults(command='start') stop_parser = subparsers.add_parser('stop', help='Stop services', add_help=False, parents=[services_parser]) stop_parser.set_defaults(command='stop') up_parser = subparsers.add_parser('up', help='Create and start services', add_help=False, parents=[services_parser]) up_parser.set_defaults(command='up') up_parser.add_argument('-d', help='docker-compose compatibility; ignored', action='store_true') convert_parser = subparsers.add_parser('convert', help='Convert services to Kubernetes format', add_help=False, parents=[services_parser]) convert_parser.set_defaults(command='convert') args = parser.parse_args(sys.argv[1:]) if len(args.file) == 0: try: args.file = map(lambda f: open(f), os.environ['COMPOSE_FILE'].split(':')) except IOError as e: print(e) parser.print_help() sys.exit(1) global debug debug = args.dry_run compose_base_dir = os.path.dirname(os.path.abspath(args.file[0].name)) if args.project_name is None: args.project_name = os.path.basename(compose_base_dir) # Decode and merge the compose files compose_dicts = map(lambda f: yaml.load(f, yodl.OrderedDictYAMLLoader), args.file) merged_compose = reduce(merge, compose_dicts) docker_compose = DockerCompose(merged_compose, args.project_name, compose_base_dir + '/', args.service) getattr(docker_compose, args.command)() # Based on http://stackoverflow.com/questions/7204805/dictionaries-of-dictionaries-merge/7205107#7205107 def merge(a, b, path=None, conflict_resolver=None): """merges b into a""" if path is None: path = [] for key in b: if key in a: if isinstance(a[key], dict) and isinstance(b[key], dict): merge(a[key], b[key], path + [str(key)], conflict_resolver) elif isinstance(a[key], list) and isinstance(b[key], list): a[key].extend(b[key]) elif a[key] == b[key]: pass # same leaf value else: if conflict_resolver: conflict_resolver(a, b, key) else: raise Exception('Conflict at %s' % '.'.join(path + [str(key)])) else: a[key] = b[key] return a def shellquote(s): return "'" + s.replace("'", "'\\''") + "'" if __name__ == "__main__": main()
import math import vmath from vmathlib import vcolor, vutil import drawutil from unit_manager import Unit class Testease(Unit): def tick(self, delta_time): self._draw_ease_panel(vmath.Vector3()) def _draw_ease_panel(self, panel_position): exp = 3 ease_funcs = [ vutil.alpha_ease_none, vutil.alpha_ease_in, vutil.alpha_ease_out, vutil.alpha_ease_in_out ] game_time = self.world.game_time time_scale = 0.5 alpha = vutil.fract(game_time * time_scale) for index, ease_func in enumerate(ease_funcs): eased_alpha = ease_func(alpha, exp) circle_position = panel_position + vmath.Vector3(-2.0, 0.0, 0.0) * index self._draw_ease_circle(circle_position, 0.8, eased_alpha) line_position = circle_position + vmath.Vector3(0.0, 0.0, -1.5) self._draw_ease_line(line_position, 1.6, eased_alpha) def _draw_ease_circle(self, position, radius, alpha): transform = vmath.Transform() transform.translation = position drawutil.draw_circle(transform, radius) theta = vutil.lerp(0.0, math.pi * 2.0, alpha) delta_position = vmath.Vector3(math.sin(theta), 0.0, math.cos(theta)) * radius drawutil.draw_cube(position + delta_position, 0.1, color=vcolor.BLUE) def _draw_ease_line(self, position, length, alpha): delta_half = vmath.Vector3(length, 0.0, 0.0) * 0.5 start = position + delta_half end = position - delta_half drawutil.draw_line(start, end) res_position = vutil.lerp(start, end, alpha) drawutil.draw_cube(res_position, 0.1, color=vcolor.BLUE)
import unittest import wd.parallel from selenium import webdriver import copy class Selenium2OnSauce(unittest.TestCase): def setUp(self): desired_capabilities = [ webdriver.DesiredCapabilities.FIREFOX, webdriver.DesiredCapabilities.FIREFOX, webdriver.DesiredCapabilities.CHROME ] self.drivers = wd.parallel.Remote( desired_capabilities=desired_capabilities ) @wd.parallel.multiply def test_sauce(self): self.driver.get('http://saucelabs.com/test/guinea-pig') self.assertTrue("I am a page title - Sauce Labs" in self.driver.title); self.driver.find_element_by_id('comments').send_keys('Hello! I am some example comments. I should appear in the page after you submit the form') self.driver.find_element_by_id('submit').click() comments = self.driver.find_element_by_id('your_comments') self.assertTrue('Your comments: Hello! I am some example comments. I should appear in the page after you submit the form' in comments.text) body = self.driver.find_element_by_xpath('//body') self.assertFalse('I am some other page content' in body.text) self.driver.find_elements_by_link_text('i am a link')[0].click() body = self.driver.find_element_by_xpath('//body') self.assertTrue('I am some other page content' in body.text) @wd.parallel.multiply def tearDown(self): self.driver.quit() if __name__ == '__main__': unittest.main()
# Задача 10. Вариант 49. #Напишите программу "Генератор персонажей" для игры. Пользователю должно быть предоставлено 30 пунктов, которые можно распределить между четырьмя характеристиками: Сила, Здоровье, Мудрость и Ловкость. Надо сделать так, чтобы пользователь мог не только брать эти пункты из общего "пула", но и возвращать их туда из характеристик, которым он решил присвоить другие значения. #Valkovskey M.A. from operator import add, sub character = {'name' : ' ', 'power' : 0, 'health' : 0, 'knowledge' : 0, 'speed' : 0} cons = 30 def info(character, rep=True): print('\nСила:\t\t', character['power'], '\nЗдоровье:\t', character['health'], '\nМудрость:\t', character['knowledge'], '\nЛовкость:\t', character['speed'], '\nОсталось', cons, 'баллов\n') if cons == 0 and rep: print("Введите 'конец' чтобы закончить\n") character['name'] = input('Дайте имя вашему герою: ').capitalize() print( '\nХорошо, теперь опишите героя', character['name'], ''' Героя можно развить в четырех направлениях: Сила, Здоровье, Мудрость и Ловкость У вас есть 30 очков, распределите их Для этого вводите команды типа 'сила + 10' или 'ловкость - 5' ''') while True: user = input('> ').lower().split() if len(user) != 3: if user[0] == 'конец': break print('Неправильная команда') continue what, how, much = None, None, 0 if user[0] == 'сила': what = 'power' elif user[0] == 'здоровье': what = 'health' elif user[0] == 'мудрость': what = 'knowledge' elif user[0] == 'ловкость': what = 'speed' else: print('Неизвестная команда:', user[0]) continue if user[1] == '+': how = add elif user[1] == '-': how = sub else: print('Неизвестный оператор:', user[1]) continue try: much = int(user[2]) except: print('Неизвестное число:', user[2]) continue while True: abil = character[what] value = how(abil, much) diff = abil - value if value < 0 or (cons + diff) < 0: much = much - 1 continue break cons += abil - value character[what] = value info(character) print('\nГерой', character['name'], 'готов у бою!') info(character, rep=False) input('Нажмите ENTER...')
# Copyright 2012 Matt Chaput. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO # EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # The views and conclusions contained in the software and documentation are # those of the authors and should not be interpreted as representing official # policies, either expressed or implied, of Matt Chaput. """ This module contains "collector" objects. Collectors provide a way to gather "raw" results from a :class:`whoosh.matching.Matcher` object, implement sorting, filtering, collation, etc., and produce a :class:`whoosh.searching.Results` object. The basic collectors are: TopCollector Returns the top N matching results sorted by score, using block-quality optimizations to skip blocks of documents that can't contribute to the top N. The :meth:`whoosh.searching.Searcher.search` method uses this type of collector by default or when you specify a ``limit``. UnlimitedCollector Returns all matching results sorted by score. The :meth:`whoosh.searching.Searcher.search` method uses this type of collector when you specify ``limit=None`` or you specify a limit equal to or greater than the number of documents in the searcher. SortingCollector Returns all matching results sorted by a :class:`whoosh.sorting.Facet` object. The :meth:`whoosh.searching.Searcher.search` method uses this type of collector when you use the ``sortedby`` parameter. Here's an example of a simple collector that instead of remembering the matched documents just counts up the number of matches:: class CountingCollector(Collector): def prepare(self, top_searcher, q, context): # Always call super method in prepare Collector.prepare(self, top_searcher, q, context) self.count = 0 def collect(self, sub_docnum): self.count += 1 c = CountingCollector() mysearcher.search_with_collector(myquery, c) print(c.count) There are also several wrapping collectors that extend or modify the functionality of other collectors. The meth:`whoosh.searching.Searcher.search` method uses many of these when you specify various parameters. NOTE: collectors are not designed to be reentrant or thread-safe. It is generally a good idea to create a new collector for each search. """ import os import threading from array import array from bisect import insort from collections import defaultdict from heapq import heapify, heappush, heapreplace from whoosh import sorting from whoosh.compat import abstractmethod, iteritems, itervalues, xrange from whoosh.searching import Results, TimeLimit from whoosh.util import now # Functions def ilen(iterator): total = 0 for _ in iterator: total += 1 return total # Base class class Collector(object): """Base class for collectors. """ def prepare(self, top_searcher, q, context): """This method is called before a search. Subclasses can override this to perform set-up work, but they should still call the superclass's method because it sets several necessary attributes on the collector object: self.top_searcher The top-level searcher. self.q The query object self.context ``context.needs_current`` controls whether a wrapping collector requires that this collector's matcher be in a valid state at every call to ``collect()``. If this is ``False``, the collector is free to use faster methods that don't necessarily keep the matcher updated, such as ``matcher.all_ids()``. :param top_searcher: the top-level :class:`whoosh.searching.Searcher` object. :param q: the :class:`whoosh.query.Query` object being searched for. :param context: a :class:`whoosh.searching.SearchContext` object containing information about the search. """ self.top_searcher = top_searcher self.q = q self.context = context self.starttime = now() self.runtime = None self.docset = set() def run(self): # Collect matches for each sub-searcher try: for subsearcher, offset in self.top_searcher.leaf_searchers(): self.set_subsearcher(subsearcher, offset) self.collect_matches() finally: self.finish() def set_subsearcher(self, subsearcher, offset): """This method is called each time the collector starts on a new sub-searcher. Subclasses can override this to perform set-up work, but they should still call the superclass's method because it sets several necessary attributes on the collector object: self.subsearcher The current sub-searcher. If the top-level searcher is atomic, this is the same as the top-level searcher. self.offset The document number offset of the current searcher. You must add this number to the document number passed to :meth:`Collector.collect` to get the top-level document number for use in results. self.matcher A :class:`whoosh.matching.Matcher` object representing the matches for the query in the current sub-searcher. """ self.subsearcher = subsearcher self.offset = offset self.matcher = self.q.matcher(subsearcher, self.context) def computes_count(self): """Returns True if the collector naturally computes the exact number of matching documents. Collectors that use block optimizations will return False since they might skip blocks containing matching documents. Note that if this method returns False you can still call :meth:`count`, but it means that method might have to do more work to calculate the number of matching documents. """ return True def all_ids(self): """Returns a sequence of docnums matched in this collector. (Only valid after the collector is run.) The default implementation is based on the docset. If a collector does not maintain the docset, it will need to override this method. """ return self.docset def count(self): """Returns the total number of documents matched in this collector. (Only valid after the collector is run.) The default implementation is based on the docset. If a collector does not maintain the docset, it will need to override this method. """ return len(self.docset) def collect_matches(self): """This method calls :meth:`Collector.matches` and then for each matched document calls :meth:`Collector.collect`. Sub-classes that want to intervene between finding matches and adding them to the collection (for example, to filter out certain documents) can override this method. """ collect = self.collect for sub_docnum in self.matches(): collect(sub_docnum) @abstractmethod def collect(self, sub_docnum): """This method is called for every matched document. It should do the work of adding a matched document to the results, and it should return an object to use as a "sorting key" for the given document (such as the document's score, a key generated by a facet, or just None). Subclasses must implement this method. If you want the score for the current document, use ``self.matcher.score()``. Overriding methods should add the current document offset (``self.offset``) to the ``sub_docnum`` to get the top-level document number for the matching document to add to results. :param sub_docnum: the document number of the current match within the current sub-searcher. You must add ``self.offset`` to this number to get the document's top-level document number. """ raise NotImplementedError @abstractmethod def sort_key(self, sub_docnum): """Returns a sorting key for the current match. This should return the same value returned by :meth:`Collector.collect`, but without the side effect of adding the current document to the results. If the collector has been prepared with ``context.needs_current=True``, this method can use ``self.matcher`` to get information, for example the score. Otherwise, it should only use the provided ``sub_docnum``, since the matcher may be in an inconsistent state. Subclasses must implement this method. """ raise NotImplementedError def remove(self, global_docnum): """Removes a document from the collector. Not that this method uses the global document number as opposed to :meth:`Collector.collect` which takes a segment-relative docnum. """ items = self.items for i in xrange(len(items)): if items[i][1] == global_docnum: items.pop(i) return raise KeyError(global_docnum) def _step_through_matches(self): matcher = self.matcher while matcher.is_active(): yield matcher.id() matcher.next() def matches(self): """Yields a series of relative document numbers for matches in the current subsearcher. """ # We jump through a lot of hoops to avoid stepping through the matcher # "manually" if we can because all_ids() is MUCH faster if self.context.needs_current: return self._step_through_matches() else: return self.matcher.all_ids() def finish(self): """This method is called after a search. Subclasses can override this to perform set-up work, but they should still call the superclass's method because it sets several necessary attributes on the collector object: self.runtime The time (in seconds) the search took. """ self.runtime = now() - self.starttime def _results(self, items, **kwargs): # Fills in a Results object with the invariant information and the # given "items" (a list of (score, docnum) tuples) r = Results(self.top_searcher, self.q, items, **kwargs) r.runtime = self.runtime r.collector = self return r @abstractmethod def results(self): """Returns a :class:`~whoosh.searching.Results` object containing the results of the search. Subclasses must implement this method """ raise NotImplementedError # Scored collectors class ScoredCollector(Collector): """Base class for collectors that sort the results based on document score. """ def __init__(self, replace=10): """ :param replace: Number of matches between attempts to replace the matcher with a more efficient version. """ Collector.__init__(self) self.replace = replace def prepare(self, top_searcher, q, context): # This collector requires a valid matcher at each step Collector.prepare(self, top_searcher, q, context) if top_searcher.weighting.use_final: self.final_fn = top_searcher.weighting.final else: self.final_fn = None # Heap containing top N (score, 0-docnum) pairs self.items = [] # Minimum score a document must have to make it into the top N. This is # used by the block-quality optimizations self.minscore = 0 # Number of times the matcher was replaced (for debugging) self.replaced_times = 0 # Number of blocks skipped by quality optimizations (for debugging) self.skipped_times = 0 def sort_key(self, sub_docnum): return 0 - self.matcher.score() def _collect(self, global_docnum, score): # Concrete subclasses should override this method to collect matching # documents raise NotImplementedError def _use_block_quality(self): # Concrete subclasses should override this method to return True if the # collector should use block quality optimizations return False def collect(self, sub_docnum): # Do common work to calculate score and top-level document number global_docnum = self.offset + sub_docnum score = self.matcher.score() if self.final_fn: score = self.final_fn(self.top_searcher, global_docnum, score) # Call specialized method on subclass return self._collect(global_docnum, score) def matches(self): minscore = self.minscore matcher = self.matcher usequality = self._use_block_quality() replace = self.replace replacecounter = 0 # A flag to indicate whether we should check block quality at the start # of the next loop checkquality = True while matcher.is_active(): # If the replacement counter has reached 0, try replacing the # matcher with a more efficient version if replace: if replacecounter == 0 or self.minscore != minscore: self.matcher = matcher = matcher.replace(minscore or 0) self.replaced_times += 1 if not matcher.is_active(): break usequality = self._use_block_quality() replacecounter = self.replace if self.minscore != minscore: checkquality = True minscore = self.minscore replacecounter -= 1 # If we're using block quality optimizations, and the checkquality # flag is true, try to skip ahead to the next block with the # minimum required quality if usequality and checkquality and minscore is not None: self.skipped_times += matcher.skip_to_quality(minscore) # Skipping ahead might have moved the matcher to the end of the # posting list if not matcher.is_active(): break yield matcher.id() # Move to the next document. This method returns True if the # matcher has entered a new block, so we should check block quality # again. checkquality = matcher.next() class TopCollector(ScoredCollector): """A collector that only returns the top "N" scored results. """ def __init__(self, limit=10, usequality=True, **kwargs): """ :param limit: the maximum number of results to return. :param usequality: whether to use block-quality optimizations. This may be useful for debugging. """ ScoredCollector.__init__(self, **kwargs) self.limit = limit self.usequality = usequality self.total = 0 def _use_block_quality(self): return (self.usequality and not self.top_searcher.weighting.use_final and self.matcher.supports_block_quality()) def computes_count(self): return not self._use_block_quality() def all_ids(self): # Since this collector can skip blocks, it doesn't track the total # number of matching documents, so if the user asks for all matched # docs we need to re-run the search using docs_for_query return self.top_searcher.docs_for_query(self.q) def count(self): if self.computes_count(): return self.total else: return ilen(self.all_ids()) # ScoredCollector.collect calls this def _collect(self, global_docnum, score): items = self.items self.total += 1 # Document numbers are negated before putting them in the heap so that # higher document numbers have lower "priority" in the queue. Lower # document numbers should always come before higher document numbers # with the same score to keep the order stable. if len(items) < self.limit: # The heap isn't full, so add this document heappush(items, (score, 0 - global_docnum)) # Negate score to act as sort key so higher scores appear first return 0 - score elif score > items[0][0]: # The heap is full, but if this document has a high enough # score to make the top N, add it to the heap heapreplace(items, (score, 0 - global_docnum)) self.minscore = items[0][0] # Negate score to act as sort key so higher scores appear first return 0 - score else: return 0 def remove(self, global_docnum): negated = 0 - global_docnum items = self.items # Remove the document if it's on the list (it may not be since # TopCollector forgets documents that don't make the top N list) for i in xrange(len(items)): if items[i][1] == negated: items.pop(i) # Restore the heap invariant heapify(items) self.minscore = items[0][0] if items else 0 return def results(self): # The items are stored (postive score, negative docnum) so the heap # keeps the highest scores and lowest docnums, in order from lowest to # highest. Since for the results we want the highest scores first, # sort the heap in reverse order items = self.items items.sort(reverse=True) # De-negate the docnums for presentation to the user items = [(score, 0 - docnum) for score, docnum in items] return self._results(items) class UnlimitedCollector(ScoredCollector): """A collector that returns **all** scored results. """ def __init__(self, reverse=False): ScoredCollector.__init__(self) self.reverse = reverse # ScoredCollector.collect calls this def _collect(self, global_docnum, score): self.items.append((score, global_docnum)) self.docset.add(global_docnum) # Negate score to act as sort key so higher scores appear first return 0 - score def results(self): # Sort by negated scores so that higher scores go first, then by # document number to keep the order stable when documents have the # same score self.items.sort(key=lambda x: (0 - x[0], x[1]), reverse=self.reverse) return self._results(self.items, docset=self.docset) # Sorting collector class SortingCollector(Collector): """A collector that returns results sorted by a given :class:`whoosh.sorting.Facet` object. See :doc:`/facets` for more information. """ def __init__(self, sortedby, limit=10, reverse=False): """ :param sortedby: see :doc:`/facets`. :param reverse: If True, reverse the overall results. Note that you can reverse individual facets in a multi-facet sort key as well. """ Collector.__init__(self) self.sortfacet = sorting.MultiFacet.from_sortedby(sortedby) self.limit = limit self.reverse = reverse def prepare(self, top_searcher, q, context): self.categorizer = self.sortfacet.categorizer(top_searcher) # If the categorizer requires a valid matcher, then tell the child # collector that we need it rm = context.needs_current or self.categorizer.needs_current Collector.prepare(self, top_searcher, q, context.set(needs_current=rm)) # List of (sortkey, docnum) pairs self.items = [] def set_subsearcher(self, subsearcher, offset): Collector.set_subsearcher(self, subsearcher, offset) self.categorizer.set_searcher(subsearcher, offset) def sort_key(self, sub_docnum): return self.categorizer.key_for(self.matcher, sub_docnum) def collect(self, sub_docnum): global_docnum = self.offset + sub_docnum sortkey = self.sort_key(sub_docnum) self.items.append((sortkey, global_docnum)) self.docset.add(global_docnum) return sortkey def results(self): items = self.items items.sort(reverse=self.reverse) if self.limit: items = items[:self.limit] return self._results(items, docset=self.docset) class UnsortedCollector(Collector): def prepare(self, top_searcher, q, context): Collector.prepare(self, top_searcher, q, context.set(weighting=None)) self.items = [] def collect(self, sub_docnum): global_docnum = self.offset + sub_docnum self.items.append((None, global_docnum)) self.docset.add(global_docnum) def results(self): items = self.items return self._results(items, docset=self.docset) # Wrapping collectors class WrappingCollector(Collector): """Base class for collectors that wrap other collectors. """ def __init__(self, child): self.child = child @property def top_searcher(self): return self.child.top_searcher @property def context(self): return self.child.context def prepare(self, top_searcher, q, context): self.child.prepare(top_searcher, q, context) def set_subsearcher(self, subsearcher, offset): self.child.set_subsearcher(subsearcher, offset) self.subsearcher = subsearcher self.matcher = self.child.matcher self.offset = self.child.offset def all_ids(self): return self.child.all_ids() def count(self): return self.child.count() def collect_matches(self): for sub_docnum in self.matches(): self.collect(sub_docnum) def sort_key(self, sub_docnum): return self.child.sort_key(sub_docnum) def collect(self, sub_docnum): return self.child.collect(sub_docnum) def remove(self, global_docnum): return self.child.remove(global_docnum) def matches(self): return self.child.matches() def finish(self): self.child.finish() def results(self): return self.child.results() # Allow and disallow collector class FilterCollector(WrappingCollector): """A collector that lets you allow and/or restrict certain document numbers in the results:: uc = collectors.UnlimitedCollector() ins = query.Term("chapter", "rendering") outs = query.Term("status", "restricted") fc = FilterCollector(uc, allow=ins, restrict=outs) mysearcher.search_with_collector(myquery, fc) print(fc.results()) This collector discards a document if: * The allowed set is not None and a document number is not in the set, or * The restrict set is not None and a document number is in the set. (So, if the same document number is in both sets, that document will be discarded.) If you have a reference to the collector, you can use ``FilterCollector.filtered_count`` to get the number of matching documents filtered out of the results by the collector. """ def __init__(self, child, allow=None, restrict=None): """ :param child: the collector to wrap. :param allow: a query, Results object, or set-like object containing docnument numbers that are allowed in the results, or None (meaning everything is allowed). :param restrict: a query, Results object, or set-like object containing document numbers to disallow from the results, or None (meaning nothing is disallowed). """ self.child = child self.allow = allow self.restrict = restrict def prepare(self, top_searcher, q, context): self.child.prepare(top_searcher, q, context) allow = self.allow restrict = self.restrict ftc = top_searcher._filter_to_comb self._allow = ftc(allow) if allow else None self._restrict = ftc(restrict) if restrict else None self.filtered_count = 0 def all_ids(self): child = self.child _allow = self._allow _restrict = self._restrict for global_docnum in child.all_ids(): if ((_allow and global_docnum not in _allow) or (_restrict and global_docnum in _restrict)): continue yield global_docnum def count(self): child = self.child if child.computes_count(): return child.count() - self.filtered_count else: return ilen(self.all_ids()) def collect_matches(self): child = self.child _allow = self._allow _restrict = self._restrict if _allow is not None or _restrict is not None: filtered_count = self.filtered_count for sub_docnum in child.matches(): global_docnum = self.offset + sub_docnum if ((_allow is not None and global_docnum not in _allow) or (_restrict is not None and global_docnum in _restrict)): filtered_count += 1 continue child.collect(sub_docnum) self.filtered_count = filtered_count else: # If there was no allow or restrict set, don't do anything special, # just forward the call to the child collector child.collect_matches() def results(self): r = self.child.results() r.filtered_count = self.filtered_count r.allowed = self.allow r.restricted = self.restrict return r # Facet grouping collector class FacetCollector(WrappingCollector): """A collector that creates groups of documents based on :class:`whoosh.sorting.Facet` objects. See :doc:`/facets` for more information. This collector is used if you specify a ``groupedby`` parameter in the :meth:`whoosh.searching.Searcher.search` method. You can use the :meth:`whoosh.searching.Results.groups` method to access the facet groups. If you have a reference to the collector can also use ``FacetedCollector.facetmaps`` to access the groups directly:: uc = collectors.UnlimitedCollector() fc = FacetedCollector(uc, sorting.FieldFacet("category")) mysearcher.search_with_collector(myquery, fc) print(fc.facetmaps) """ def __init__(self, child, groupedby, maptype=None): """ :param groupedby: see :doc:`/facets`. :param maptype: a :class:`whoosh.sorting.FacetMap` type to use for any facets that don't specify their own. """ self.child = child self.facets = sorting.Facets.from_groupedby(groupedby) self.maptype = maptype def prepare(self, top_searcher, q, context): facets = self.facets # For each facet we're grouping by: # - Create a facetmap (to hold the groups) # - Create a categorizer (to generate document keys) self.facetmaps = {} self.categorizers = {} # Set needs_current to True if any of the categorizers require the # current document to work needs_current = context.needs_current for facetname, facet in facets.items(): self.facetmaps[facetname] = facet.map(self.maptype) ctr = facet.categorizer(top_searcher) self.categorizers[facetname] = ctr needs_current = needs_current or ctr.needs_current context = context.set(needs_current=needs_current) self.child.prepare(top_searcher, q, context) def set_subsearcher(self, subsearcher, offset): WrappingCollector.set_subsearcher(self, subsearcher, offset) # Tell each categorizer about the new subsearcher and offset for categorizer in itervalues(self.categorizers): categorizer.set_searcher(self.child.subsearcher, self.child.offset) def collect(self, sub_docnum): matcher = self.child.matcher global_docnum = sub_docnum + self.child.offset # We want the sort key for the document so we can (by default) sort # the facet groups sortkey = self.child.collect(sub_docnum) # For each facet we're grouping by for name, categorizer in iteritems(self.categorizers): add = self.facetmaps[name].add # We have to do more work if the facet allows overlapping groups if categorizer.allow_overlap: for key in categorizer.keys_for(matcher, sub_docnum): add(categorizer.key_to_name(key), global_docnum, sortkey) else: key = categorizer.key_for(matcher, sub_docnum) key = categorizer.key_to_name(key) add(key, global_docnum, sortkey) return sortkey def results(self): r = self.child.results() r._facetmaps = self.facetmaps return r # Collapsing collector class CollapseCollector(WrappingCollector): """A collector that collapses results based on a facet. That is, it eliminates all but the top N results that share the same facet key. Documents with an empty key for the facet are never eliminated. The "top" results within each group is determined by the result ordering (e.g. highest score in a scored search) or an optional second "ordering" facet. If you have a reference to the collector you can use ``CollapseCollector.collapsed_counts`` to access the number of documents eliminated based on each key:: tc = TopCollector(limit=20) cc = CollapseCollector(tc, "group", limit=3) mysearcher.search_with_collector(myquery, cc) print(cc.collapsed_counts) See :ref:`collapsing` for more information. """ def __init__(self, child, keyfacet, limit=1, order=None): """ :param child: the collector to wrap. :param keyfacet: a :class:`whoosh.sorting.Facet` to use for collapsing. All but the top N documents that share a key will be eliminated from the results. :param limit: the maximum number of documents to keep for each key. :param order: an optional :class:`whoosh.sorting.Facet` to use to determine the "top" document(s) to keep when collapsing. The default (``orderfaceet=None``) uses the results order (e.g. the highest score in a scored search). """ self.child = child self.keyfacet = sorting.MultiFacet.from_sortedby(keyfacet) self.limit = limit if order: self.orderfacet = sorting.MultiFacet.from_sortedby(order) else: self.orderfacet = None def prepare(self, top_searcher, q, context): # Categorizer for getting the collapse key of a document self.keyer = self.keyfacet.categorizer(top_searcher) # Categorizer for getting the collapse order of a document self.orderer = None if self.orderfacet: self.orderer = self.orderfacet.categorizer(top_searcher) # Dictionary mapping keys to lists of (sortkey, global_docnum) pairs # representing the best docs for that key self.lists = defaultdict(list) # Dictionary mapping keys to the number of documents that have been # filtered out with that key self.collapsed_counts = defaultdict(int) # Total number of documents filtered out by collapsing self.collapsed_total = 0 # If the keyer or orderer require a valid matcher, tell the child # collector we need it needs_current = (context.needs_current or self.keyer.needs_current or (self.orderer and self.orderer.needs_current)) self.child.prepare(top_searcher, q, context.set(needs_current=needs_current)) def set_subsearcher(self, subsearcher, offset): WrappingCollector.set_subsearcher(self, subsearcher, offset) # Tell the keyer and (optional) orderer about the new subsearcher self.keyer.set_searcher(subsearcher, offset) if self.orderer: self.orderer.set_searcher(subsearcher, offset) def all_ids(self): child = self.child limit = self.limit counters = defaultdict(int) for subsearcher, offset in child.subsearchers(): self.set_subsearcher(subsearcher, offset) matcher = child.matcher keyer = self.keyer for sub_docnum in child.matches(): ckey = keyer.key_for(matcher, sub_docnum) if ckey is not None: if ckey in counters and counters[ckey] >= limit: continue else: counters[ckey] += 1 yield offset + sub_docnum def count(self): if self.child.computes_count(): return self.child.count() - self.collapsed_total else: return ilen(self.all_ids()) def collect_matches(self): lists = self.lists limit = self.limit keyer = self.keyer orderer = self.orderer collapsed_counts = self.collapsed_counts child = self.child matcher = child.matcher offset = child.offset for sub_docnum in child.matches(): # Collapsing category key ckey = keyer.key_to_name(keyer.key_for(matcher, sub_docnum)) if not ckey: # If the document isn't in a collapsing category, just add it child.collect(sub_docnum) else: global_docnum = offset + sub_docnum if orderer: # If user specified a collapse order, use it sortkey = orderer.key_for(child.matcher, sub_docnum) else: # Otherwise, use the results order sortkey = child.sort_key(sub_docnum) # Current list of best docs for this collapse key best = lists[ckey] add = False if len(best) < limit: # If the heap is not full yet, just add this document add = True elif sortkey < best[-1][0]: # If the heap is full but this document has a lower sort # key than the highest key currently on the heap, replace # the "least-best" document # Tell the child collector to remove the document child.remove(best.pop()[1]) add = True if add: insort(best, (sortkey, global_docnum)) child.collect(sub_docnum) else: # Remember that a document was filtered collapsed_counts[ckey] += 1 self.collapsed_total += 1 def results(self): r = self.child.results() r.collapsed_counts = self.collapsed_counts return r # Time limit collector class TimeLimitCollector(WrappingCollector): """A collector that raises a :class:`TimeLimit` exception if the search does not complete within a certain number of seconds:: uc = collectors.UnlimitedCollector() tlc = TimeLimitedCollector(uc, timelimit=5.8) try: mysearcher.search_with_collector(myquery, tlc) except collectors.TimeLimit: print("The search ran out of time!") # We can still get partial results from the collector print(tlc.results()) IMPORTANT: On Unix systems (systems where signal.SIGALRM is defined), the code uses signals to stop searching immediately when the time limit is reached. On Windows, the OS does not support this functionality, so the search only checks the time between each found document, so if a matcher is slow the search could exceed the time limit. """ def __init__(self, child, timelimit, greedy=False, use_alarm=True): """ :param child: the collector to wrap. :param timelimit: the maximum amount of time (in seconds) to allow for searching. If the search takes longer than this, it will raise a ``TimeLimit`` exception. :param greedy: if ``True``, the collector will finish adding the most recent hit before raising the ``TimeLimit`` exception. :param use_alarm: if ``True`` (the default), the collector will try to use signal.SIGALRM (on UNIX). """ self.child = child self.timelimit = timelimit self.greedy = greedy if use_alarm: import signal self.use_alarm = use_alarm and hasattr(signal, "SIGALRM") else: self.use_alarm = False self.timer = None self.timedout = False def prepare(self, top_searcher, q, context): self.child.prepare(top_searcher, q, context) self.timedout = False if self.use_alarm: import signal signal.signal(signal.SIGALRM, self._was_signaled) # Start a timer thread. If the timer fires, it will call this object's # _timestop() method self.timer = threading.Timer(self.timelimit, self._timestop) self.timer.start() def _timestop(self): # Called when the timer expires self.timer = None # Set an attribute that will be noticed in the collect_matches() loop self.timedout = True if self.use_alarm: import signal os.kill(os.getpid(), signal.SIGALRM) def _was_signaled(self, signum, frame): raise TimeLimit def collect_matches(self): child = self.child greedy = self.greedy for sub_docnum in child.matches(): # If the timer fired since the last loop and we're not greedy, # raise the exception if self.timedout and not greedy: raise TimeLimit child.collect(sub_docnum) # If the timer fired since we entered the loop or it fired earlier # but we were greedy, raise now if self.timedout: raise TimeLimit def finish(self): if self.timer: self.timer.cancel() self.timer = None self.child.finish() # Matched terms collector class TermsCollector(WrappingCollector): """A collector that remembers which terms appeared in which terms appeared in each matched document. This collector is used if you specify ``terms=True`` in the :meth:`whoosh.searching.Searcher.search` method. If you have a reference to the collector can also use ``TermsCollector.termslist`` to access the term lists directly:: uc = collectors.UnlimitedCollector() tc = TermsCollector(uc) mysearcher.search_with_collector(myquery, tc) # tc.termdocs is a dictionary mapping (fieldname, text) tuples to # sets of document numbers print(tc.termdocs) # tc.docterms is a dictionary mapping docnums to lists of # (fieldname, text) tuples print(tc.docterms) """ def __init__(self, child, settype=set): self.child = child self.settype = settype def prepare(self, top_searcher, q, context): # This collector requires a valid matcher at each step self.child.prepare(top_searcher, q, context.set(needs_current=True)) # A dictionary mapping (fieldname, text) pairs to arrays of docnums self.termdocs = defaultdict(lambda: array("I")) # A dictionary mapping docnums to lists of (fieldname, text) pairs self.docterms = defaultdict(list) def set_subsearcher(self, subsearcher, offset): WrappingCollector.set_subsearcher(self, subsearcher, offset) # Store a list of all the term matchers in the matcher tree self.termmatchers = list(self.child.matcher.term_matchers()) def collect(self, sub_docnum): child = self.child termdocs = self.termdocs docterms = self.docterms child.collect(sub_docnum) global_docnum = child.offset + sub_docnum # For each term matcher... for tm in self.termmatchers: # If the term matcher is matching the current document... if tm.is_active() and tm.id() == sub_docnum: # Add it to the list of matching documents for the term term = tm.term() termdocs[term].append(global_docnum) docterms[global_docnum].append(term) def results(self): r = self.child.results() r.termdocs = dict(self.termdocs) r.docterms = dict(self.docterms) return r
from django.apps import AppConfig from django.utils.module_loading import autodiscover_modules from django.utils.translation import gettext_lazy as _ from .settings import MODULE_INIT_DEFAULT class UwsgifyConfig(AppConfig): name = 'uwsgiconf.contrib.django.uwsgify' verbose_name = _('uWSGI Integration') def ready(self): try: import uwsgi # This will handle init modules discovery for non-embedded. # Part for embedding is done in toolbox.SectionMutator.mutate # via in master process import. autodiscover_modules(MODULE_INIT_DEFAULT) except ImportError: pass
"""Appication sub-layer for list synchronization.""" import collections import itertools import logging from typing import Deque, Generic, List, Optional, Type, TypeVar import attr from typing_extensions import Protocol from ventserver.protocols import events from ventserver.protocols import exceptions from ventserver.sansio import channels from ventserver.sansio import protocols # Structural Subtypes class Indexed(Protocol): """Structural subtype for protobuf messages with an id field.""" id: int # pylint: disable=invalid-name _ListElement = TypeVar('_ListElement', bound=Indexed) class ListSegment(Protocol[_ListElement]): """Structural subtype for protobuf messages containing a list segment.""" next_expected: int total: int remaining: int elements: List[_ListElement] # List Sending @attr.s class UpdateEvent(events.Event, Generic[_ListElement]): """State update event.""" next_expected: Optional[int] = attr.ib(default=None) new_element: Optional[_ListElement] = attr.ib(default=None) def has_data(self) -> bool: """Return whether the event has data.""" return self.next_expected is not None or self.new_element is not None @attr.s class SendSynchronizer( protocols.Filter[UpdateEvent[_ListElement], ListSegment[_ListElement]] ): """List synchronization filter for sending lists. Inputs are descriptions received from the peer about the id of the next list element it expects as well as any new element to add to the list. The id of the next expected list element should never decrease, and the id of the next element to add to the list should never decrease (and it should preferably increment by 1). Outputs are the next elements to send to the peer. """ ID_TYPE_SIZE = 32 MAX_ID = 2 ** ID_TYPE_SIZE - 1 # max for uint32 _logger = logging.getLogger('.'.join((__name__, 'Synchronizer'))) segment_type: Type[ListSegment[_ListElement]] = attr.ib() max_len: int = attr.ib(default=MAX_ID + 1) max_segment_len: int = attr.ib(default=256) _elements: Deque[_ListElement] = attr.ib(factory=collections.deque) _next_expected: int = attr.ib(default=0) _next_expected_index: int = attr.ib(default=0) _buffer: channels.DequeChannel[UpdateEvent[_ListElement]] = attr.ib( factory=channels.DequeChannel ) @max_len.validator def _validate_max_len(self, _: 'attr.Attribute[int]', value: int) -> None: """Ensure that the max len field has an allowed value.""" if value < 0 or value > self.MAX_ID + 1: raise ValueError( 'max_len must be between 0 and {}'.format(self.MAX_ID + 1) ) def input(self, event: Optional[UpdateEvent[_ListElement]]) -> None: """Handle input events.""" if event is None or not event.has_data(): return if event.new_element is not None: self._add_element(event.new_element) if event.next_expected is None: return self._buffer.input(event) def output(self) -> Optional[ListSegment[_ListElement]]: """Emit the next output event.""" event = self._buffer.output() if event is None: return None if event.next_expected is None: return None if event.next_expected < self._next_expected: raise exceptions.ProtocolDataError( 'Next expected event id cannot decrease from {} to {}!' .format(self._next_expected, event.next_expected) ) self._next_expected = event.next_expected self._advance_next_expected_index() output_event = self.segment_type() output_event.next_expected = self._next_expected output_event.total = len(self._elements) output_event.elements = list(itertools.islice( self._elements, self._next_expected_index, self._next_expected_index + self.max_segment_len )) output_event.remaining = len(self._elements) - self._next_expected_index self._logger.debug('Sending: %s', output_event) return output_event def _advance_next_expected_index(self) -> None: """Advance the next_expected index to the next expected id.""" self._next_expected_index = next( ( i for (i, elem) in enumerate(self._elements) if elem.id >= self._next_expected ), len(self._elements) ) def _add_element(self, element: _ListElement) -> None: """Attempt to add the element to the end of the list.""" while len(self._elements) >= self.max_len: oldest_element = self._elements.popleft() if self._next_expected_index > 0: self._next_expected_index -= 1 else: self._logger.warning( 'Discarding without sending: %s', oldest_element ) self._elements.append(element) self._logger.debug('Added: %s', element)
from scfmsp.controlflowanalysis.AbstractInstruction import AbstractInstruction from scfmsp.controlflowanalysis.StatusRegister import StatusRegister class InstructionRra(AbstractInstruction): name = 'rra' def get_execution_time(self): oplist = self.oplist.split() if(self.register_mode): return 1 if(self.indexed_mode): if(oplist[0][1] == '3'): # constant generator ----------------- return 1 else: return 4 if(self.indirect_mode or self.immediate_mode): if(oplist[0][1] == '2' or oplist[0][1] == '3'): return 1 else: return 3 def execute_judgment(self, ac): if(self.register_mode): domain = ac.ra.get(self.arguments[0]) & ac.secenv.get(self.get_execution_point()) & ac.sra.get(StatusRegister.CARRY) ac.ra.set(self.arguments[0], domain) else: domain = ac.mem & ac.secenv.get(self.get_execution_point()) & ac.sra.get(StatusRegister.CARRY) ac.mem = domain ac.sra.set(StatusRegister.CARRY, domain) ac.sra.set(StatusRegister.ZERO, domain) ac.sra.set(StatusRegister.Negative, domain) ac.sra.set(StatusRegister.Overflow, domain)
"""Helpful constants, functions, and classes for use of the Publican.""" from calendar import isleap, mdays from datetime import date, timedelta from decimal import Decimal # Conveniences when working with decimals. zero = Decimal('0.00') zero_places = Decimal('1') two_places = Decimal('1.00') def dollars(n): return (n or zero).quantize(zero_places) def cents(n): return (n or zero).quantize(two_places) # Supercharged versions of the date and timedelta, that have the # additional advantage that they are capitalized and so stop getting # confused with my variables. (I use "date" a lot.) class Date(date): def next_business_day(self): w = self.weekday() if w < 6: return self return self + Interval(days=7 - w) class Interval(timedelta): pass # Periods of time have both a beginning and an end. class Period(object): name = None def __init__(self, start=None, end=None): self.start = start self.end = end class Year(Period): def __init__(self, number): self.number = number self.start = Date(number, 1, 1) self.end = Date(number, 12, 31) self.name = unicode(number) def __unicode__(self): return self.name def next(self): return Year(self.number + 1) class Month(Period): def __init__(self, year, number): self.year = year self.number = number self.start = Date(year, number, 1) bump = (number == 2) and isleap(year) self.end = Date(year, number, mdays[number] + bump) self.name = u'{}-{:02}'.format(year, number) def next(self): if self.number == 12: return Month(self.year + 1, 1) return Month(self.year, self.number + 1) class Quarter(Period): def __init__(self, year, number): self.year = year self.number = number month = number * 3 self.start = Date(year, month - 2, 1) self.end = Date(year, month, mdays[month]) # works: month != Feb self.name = u'{}-Q{}'.format(self.year, self.number) def next(self): if self.number == 4: return Quarter(self.year + 1, 1) return Quarter(self.year, self.number + 1) # Routines for working with Periods. _die = object() def get_period(name, default=_die): """Return the period with the given name.""" a = str(name).split('-') if len(a) == 2: year = int(a[0]) if a[1].startswith('Q'): number = int(a[1][1:]) return Quarter(year, number) else: return Month(year, int(a[1])) elif len(a) == 1: year = int(a[0]) return Year(year) if default is not _die: return default raise ValueError('there is no Period named {!r}'.format(name)) def years_range(start, end): """Return the years from date `start` to `end` inclusive.""" number = start.year year = Year(number) yield year while year.end < end: year = year.next() yield year def quarters_range(start, end): """Return the quarters from date `start` to `end` inclusive.""" year = start.year number = (start.month + 2) // 3 quarter = Quarter(year, number) yield quarter while quarter.end < end: quarter = quarter.next() yield quarter def months_range(start, end): """Return the months from date `start` to `end` inclusive.""" month = Month(start.year, start.month) yield month while month.end < end: month = month.next() yield month
import os from flask_restful import Resource, request from jsonschema import ValidationError from server.database import db from server.database.queries.executions import get_execution from server.resources.decorators import login_required, marshal_response from server.database.models.execution import Execution, ExecutionStatus from server.common.error_codes_and_messages import ( ErrorCodeAndMessageFormatter, ErrorCodeAndMessageAdditionalDetails, EXECUTION_NOT_FOUND, UNAUTHORIZED, CORRUPTED_EXECUTION, UNEXPECTED_ERROR, CANNOT_REPLAY_EXECUTION, UNSUPPORTED_DESCRIPTOR_TYPE) from server.resources.helpers.executions import ( get_execution_as_model, get_descriptor_path, get_absolute_path_inputs_path) from server.resources.helpers.execution_play import start_execution from server.resources.models.descriptor.descriptor_abstract import Descriptor class ExecutionPlay(Resource): @login_required @marshal_response() def put(self, user, execution_identifier): execution_db = get_execution(execution_identifier, db.session) if not execution_db: return ErrorCodeAndMessageFormatter(EXECUTION_NOT_FOUND, execution_identifier) if execution_db.creator_username != user.username: return UNAUTHORIZED if execution_db.status != ExecutionStatus.Initializing: return ErrorCodeAndMessageFormatter(CANNOT_REPLAY_EXECUTION, execution_db.status.name) execution, error = get_execution_as_model(user.username, execution_db) if error: return CORRUPTED_EXECUTION # Get the descriptor path descriptor_path = get_descriptor_path(user.username, execution.identifier) # Get appriopriate descriptor object descriptor = Descriptor.descriptor_factory_from_type( execution_db.descriptor) if not descriptor: # We don't have any descriptor defined for this pipeline type logger = logging.getLogger('server-error') logger.error( "Unsupported descriptor type extracted from file at {}".format( descriptor_path)) return ErrorCodeAndMessageFormatter(UNSUPPORTED_DESCRIPTOR_TYPE, execution_db.descriptor) modified_inputs_path = get_absolute_path_inputs_path( user.username, execution.identifier) if not os.path.isfile(modified_inputs_path): logger = logging.getLogger('server-error') logger.error("Absolute path inputs file not found at {}".format( descriptor_path)) return UNEXPECTED_ERROR # The execution is valid and we are now ready to start it start_execution(user, execution, descriptor, modified_inputs_path)
def is_match(text, pattern): """Basic Regex Parser that only includes '.' and '*'. Case sensitive.""" def match(t_char, p_char): """Defines the comparision between characters in the text and pattern.""" if t_char == p_char or p_char == ".": return True return False # Scratch Work # . - wildcard, anything you want # * - multiple of the preceding charactering # Ab*, "Abbb" # true # only letters # case sensitive # text = "aa", pattern = "a" # False => t != p # Simple Str Matching # ite # p "a" # ^ # t = "aa" # ^ # letters # length # can also havwe 0 or more instance of * chars # Example # text = "aa", pattern = "aa" --> T # "abc", pattern = "a.c" --> T # text = "acd", pattern = "ab*c." - # t = "acd" # ^ # p = "ab*c." # ^ # ac, abc, abbc, abbbc, abbbbc # t =; # ^ # p = ; # . ^ # t = abcdf; # s = a.*; # # Use Recursion? # Base Cases # . ---> T # a --> p_char == t_char # Recursive Cases # . b* # .* # text = "acd", pattern = "ab*c." # ^ ^ # Pseudocode - 2 pointers # init 2 pointers at start of p and t p_idx, t_idx = 0, 0 # iterate over p while p_idx < len(pattern): p_char = pattern[p_idx] # check for an * after the pointer in p if p_idx < len(pattern) - 1 and pattern[p_idx + 1] == "*": # do a while loop in t to find how many of the pchar we have num_p_char_in_text = 0 while t_idx < len(text) and match(text[t_idx], p_char): num_p_char_in_text += 1 t_idx += 1 # if that num >= 0, then T, move ahead the p ointer by 2 if num_p_char_in_text >= 0: p_idx += 2 # if the p_char = ., or P_char == t_char --> True elif match(text[t_idx], p_char): # move ahead both poiters p_idx += 1 t_idx += 1 # if both letters != --> False elif t_idx >= len(text) or ( t_idx <= len(text) and pattern[p_idx] != text[t_idx] ): return False # at the end, we should reach the end of both strings return t_idx == len(text) # Time: O(max(t, p)) - where t = length of text, and p = length of the pattern # Space: O(1) if __name__ == "__main__": # Test Cases assert is_match("", "") == True assert is_match("aa", "") == False assert is_match("bb", "bb") == True assert is_match("", "a*") == True assert is_match("abbdbb", "ab*d") == False assert is_match("aba", "a.a") == True assert is_match("acd", "ab*c.") == True assert is_match("abaa", "a.*a*") == True
# Ordering def cascade(n): """Print a cascade of prefixes of n. >>> cascade(1234) 1234 123 12 1 12 123 1234 """ if n < 10: print(n) else: print(n) cascade(n//10) print(n) def cascade2(n): """Print a cascade of prefixes of n.""" print(n) if n >= 10: cascade(n//10) print(n) def inverse_cascade(n): """Print an inverse cascade of prefixes of n. >>> inverse_cascade(1234) 1 12 123 1234 123 12 1 """ grow(n) print(n) shrink(n) def f_then_g(f, g, n): if n: f(n) g(n) grow = lambda n: f_then_g(grow, print, n//10) shrink = lambda n: f_then_g(print, shrink, n//10) # Tree recursion def fib(n): """Compute the nth Fibonacci number. >>> fib(8) 21 """ if n == 0: return 0 elif n == 1: return 1 else: return fib(n-2) + fib(n-1) def count_partitions(n, m): """Count the partitions of n using parts up to size m. >>> count_partitions(6, 4) 9 >>> count_partitions(10, 10) 42 """ if n == 0: return 1 elif n < 0: return 0 elif m == 0: return 0 else: with_m = count_partitions(n-m, m) without_m = count_partitions(n, m-1) return with_m + without_m
#!/usr/bin/python3 # -*- coding: utf-8 -*- """ https://github.com/cgloeckner/pyvtt/ Copyright (c) 2020-2021 Christian Glöckner License: MIT (see LICENSE for details) """ import unittest, tempfile, pathlib import utils class FancyUrlApiTest(unittest.TestCase): def setUp(self): # create temporary directory self.tmpdir = tempfile.TemporaryDirectory() root = pathlib.Path(self.tmpdir.name) self.paths = utils.PathApi(appname='unittest', root=root) self.urls = utils.FancyUrlApi(self.paths) def tearDown(self): del self.urls del self.paths del self.tmpdir def test___call__(self): urls = list() for i in range(100): url = self.urls() parts = url.split('-') self.assertEqual(len(parts), 3) urls.append(url) # expect multiple URLs (assumed to many of them but extreme collisions may happen, so at least 2) self.assertGreaterEqual(len(urls), 2)
import re import sys import os import unicodecsv as csv import pandas as pd import itertools import numpy as np from collections import Counter import science.roles as r roles = r.Roles() empl_path = sys.argv[1] #directory of csv files to process #target = sys.argv[2] #csv file name to write ## Iterate. empl_file_lst = os.listdir(empl_path) for empl_file_name in empl_file_lst: empl_file = empl_path + '/' +empl_file_name updated = [] with open(empl_file,"rb") as f: reader = csv.reader(f,encoding='utf-8',escapechar='',delimiter='\t') current_id = '' entries_per_person = [] max_edu = 0 edu_dpmt = set() for idx, entry in enumerate(itertools.chain(reader,[[None]*33])): if idx == np.inf: # End point break # Some datasets have extra column of employee names # Drop entry[1] if it contains employee name instead of birth year if len(entry) > 33: del entry[1] if entry[0] != current_id: # append and reset e_dpmt = ',' e_dpmt = e_dpmt.join(edu_dpmt) for e in entries_per_person: e[8] = max_edu e[29] = e_dpmt # I think 29th column had no use previously? updated.append(e) current_id = entry[0] del entries_per_person[:] max_edu = 0 edu_dpmt.clear() if entry[26] == 'False': # employment data match = re.search(r",\s?([\s\w,]*)",entry[17]) if (match is not None): normalized_title = match.group(1) else: normalized_title = entry[17] try: entry[18] = roles.parse_work(normalized_title).departments.pop() #is this appropriate? except: pass entries_per_person.append(entry) elif entry[26] == 'True': #education data query = roles.parse_edu(entry[20], entry[17]) max_edu = max(max_edu, query.level) # add department for f in query.faculties: edu_dpmt.add(f) entries_per_person.append(entry) with open(empl_file + "_updated.csv", "w", newline="") as f: writer = csv.writer(f, dialect = csv.excel_tab) writer.writerows(updated)
import sys from hmac import new as sign from hashlib import sha256 from .validators import * PY2 = True if sys.version_info.major == 2 else False if PY2: from urlparse import urlparse, urlunparse, parse_qs from base64 import encodestring as encode else: from urllib.parse import urlparse, urlunparse, parse_qs from base64 import encodebytes as encode def string_format(value): if isinstance(value, bytes): return ''.join(chr(x) for x in bytearray(value)) if isinstance(value, (int, float, bool)): return str(value) if isinstance(value, list): return [string_format(x) for x in value] if PY2 == True and isinstance(value, unicode): return value.decode('utf-8') return value def get_map_from_query(query): res_map = dict() for key, value in parse_qs(query, keep_blank_values=True).items(): res_map[string_format(key)] = string_format(value) return res_map def get_sorted_query_string(params): keys = sorted(params.keys()) res_params = [] for key in keys: value = params[key] if isinstance(value, list): res_params.append( '&'.join(['{}={}'.format(string_format(key), val) for val in sorted(string_format(value))])) else: res_params.append('{}={}'.format(string_format(key), string_format(value))) return '&'.join(res_params) def get_sorted_params_string(params): keys = sorted(params.keys()) res_params = [] for key in keys: value = params[key] if isinstance(value, list): res_params.append( ''.join(['{}{}'.format(string_format(key), val) for val in sorted(string_format(value))])) elif isinstance(value, dict): res_params.append('{}{}'.format(string_format(key), get_sorted_params_string(value))) else: res_params.append('{}{}'.format(string_format(key), string_format(value))) return ''.join(res_params) def construct_get_url(uri, params, empty_post_params=True): parsed_uri = urlparse(uri.encode('utf-8')) base_url = urlunparse((parsed_uri.scheme.decode('utf-8'), parsed_uri.netloc.decode('utf-8'), parsed_uri.path.decode('utf-8'), '', '', '')).encode('utf-8') params.update(get_map_from_query(parsed_uri.query)) query_params = get_sorted_query_string(params) if len(query_params) > 0 or not empty_post_params: base_url = base_url + bytearray('?' + query_params, 'utf-8') if len(query_params) > 0 and not empty_post_params: base_url = base_url + bytearray('.', 'utf-8') return base_url def construct_post_url(uri, params): base_url = construct_get_url(uri, dict(), True if len(params) == 0 else False) return base_url + bytearray(get_sorted_params_string(params), 'utf-8') def get_signature_v3(auth_token, base_url, nonce): base_url = bytearray('{}.{}'.format(string_format(base_url), string_format(nonce)), 'utf-8') try: return encode(sign(auth_token, base_url, sha256).digest()).strip() except TypeError: return encode(sign(bytearray(auth_token, 'utf-8'), base_url, sha256).digest()).strip() @validate_args( method=[all_of(of_type(six.text_type), is_in(('POST', 'GET'), case_sensitive=False))], uri=[is_url()], params=[optional(of_type(dict))], nonce=[of_type(six.text_type)], auth_token=[of_type(six.text_type)], v3_signature=[of_type(six.text_type)], ) def validate_v3_signature(method, uri, nonce, auth_token, v3_signature, params=None): """ Validates V3 Signature received from Plivo to your server :param method: Your callback method :param uri: Your callback URL :param params: Params received in callback from Plivo :param nonce: X-Plivo-Signature-V3-Nonce header :param v3_signature: X-Plivo-Signature-V3 header :param auth_token: (Sub)Account auth token :return: True if the request matches signature, False otherwise """ if params is None: params = dict() auth_token = bytes(auth_token.encode('utf-8')) nonce = bytes(nonce.encode('utf-8')) v3_signature = bytes(v3_signature.encode('utf-8')) base_url = construct_get_url(uri, params) if method == 'GET' else construct_post_url(uri, params) signature = get_signature_v3(auth_token, base_url, nonce) return signature in v3_signature.split(b',')
# Moeda # 111 # Crie um pacote chamado utilidadesCeV que tenha dois módulos internos chamados moeda e dado. Transfira todas as funções utilizadas nos desafios 107, 108 e 109 para o primeiro pacote e mantenha tudo funcionando. def aumentar(preco = 0, taxa = 0, formato = False): ''' -> Funcao para calcular o aumento do preco. :param preco: valor a ser calculado :param taxa: valor (percentual) do aumento :param formato: Caso a opcao seje 'True' ele ira formatar o resultado, por padrao esta false, ou seja, o resoltado nao ser formatado. :return: resultado da operacao ''' res = preco + (preco * taxa / 100) return res if formato is False else moedaFormat(res) # return res if not formato else moedaFormat(res) def diminuir(preco = 0, taxa = 0, formato = False): ''' -> Funcao para calcular o desconto/dimunuicao do preco. :param preco: valor a ser calculado :param taxa: valor (percentual) do desconto/dimunuicao :param formato: Caso a opcao seje 'True' ele ira formatar o resultado, por padrao esta false, ou seja, o resoltado nao ser formatado. :return: resultado da operacao ''' res = preco - (preco * taxa / 100) return res if formato is False else moedaFormat(res) def dobro(preco = 0, formato = False): ''' -> Funcao para calcular o dobro preco. :param preco: valor a ser calculado :param formato: Caso a opcao seje 'True' ele ira formatar o resultado, por padrao esta false, ou seja, o resoltado nao ser formatado. :return: resultado da operacao ''' res = preco * 2 return res if formato is False else moedaFormat(res) def metade(preco = 0, formato = False): ''' -> Funcao para calcular a metade preco. :param preco: valor a ser calculado :param formato: Caso a opcao seje 'True' ele ira formatar o resultado, por padrao esta false, ou seja, o resoltado nao ser formatado. :return: resultado da operacao ''' res = preco / 2 return res if formato is False else moedaFormat(res) def moedaFormat(preco = 0, moeda = 'R$'): return f'\33[32m{moeda} {preco:.2f}\33[m'.replace('.' ,',') def taxaFormat(taxa = 0, porcentagem = '%'): return f'\33[32m{taxa:.2f} {porcentagem}\33[m'.replace('.' ,',') def resumo(preco = 0, taxaAumento = 10, taxaReducao = 5): print('-' * 35) print('RESUMO DO VALOR'.center(35)) print('-' * 35) print(f'Preço analisado: \t{moedaFormat(preco)}') print(f'Dobro do preço: \t{dobro(preco, True)}') print(f'Metade do preço: \t{metade(preco, True)}') print(f'{taxaFormat(taxaAumento)} de aumento: \t{aumentar(preco, taxaAumento, True)}') print(f'{taxaFormat(taxaReducao)} de redução: \t{diminuir(preco, taxaReducao, True)}') print('-' * 35)
import matplotlib.pyplot as plt import seaborn as sns import matplotlib import numpy as np from pathlib import Path plt.style.use('seaborn-white') # sns.set() font = {'family' : 'sans-serif', 'size' : 16} matplotlib.rc('font', **font) sns.set_palette('mako') def coverage(y, yL, yH): return (100 / y.shape[0] * ((y>yL)&(y<yH)).sum()) def plot_pcc_history(history, plot_path): n_data = [len(history[k]['train_index']) for k in history] pcc = [history[k]['PCC_test'] for k in history] with plt.style.context('seaborn-white'): plt.figure(figsize=(8, 8)) plt.plot(n_data, pcc, c='r', label='PCC') plt.title('PCC over the number of data points') plt.legend() plt.xlabel("Number of data points") plt.ylabel("PCC") plt.savefig(plot_path, bbox_inches='tight') plt.close() def plot_r2_history(history, plot_path): n_data = [len(history[k]['train_index']) for k in history] r2 = [history[k]['R2_test'] for k in history] with plt.style.context('seaborn-white'): plt.figure(figsize=(8, 8)) plt.plot(n_data, r2, c='r', label='R2') plt.title('R2 over the number of data points') plt.legend() plt.xlabel("Number of data points") plt.ylabel("R2") plt.savefig(plot_path, bbox_inches='tight') plt.close() if __name__ == '__main__': random = Path(__file__).resolve().parent / 'random' for f in random.glob("*.npy"): history = np.load(f, allow_pickle=True).item() i = str(f).split('.')[0].split('_')[-1] plot_pcc_history(history, f.parent / f'pcc_{i}.png') plot_r2_history(history, f.parent / f'r2_{i}.png') var_red = Path(__file__).resolve().parent / 'variance_reduction' for f in var_red.glob("*.npy"): history = np.load(f, allow_pickle=True).item() i = str(f).split('.')[0].split('_')[-1] plot_pcc_history(history, f.parent / f'pcc_{i}.png') plot_r2_history(history, f.parent / f'r2_{i}.png') clus_var_red = Path(__file__).resolve().parent / 'cluster_variance_reduction' for f in clus_var_red.glob("*.npy"): history = np.load(f, allow_pickle=True).item() i = str(f).split('.')[0].split('_')[-1] plot_pcc_history(history, f.parent / f'pcc_{i}.png') plot_r2_history(history, f.parent / f'r2_{i}.png')
# -*- coding: utf-8 -*- # encoding: utf-8 import json import os from time import time import re import requests from base64 import b64encode from kitty.data.report import Report from kitty.targets.server import ServerTarget from requests.exceptions import RequestException from utils import set_class_logger @set_class_logger class FuzzerTarget(ServerTarget): def not_implemented(self, func_name): pass def __init__(self, name, base_url, report_dir): super(FuzzerTarget, self).__init__(name) self.base_url = base_url self._last_sent_request = None self.accepted_status_codes = list(range(200, 300)) + list(range(400, 500)) self.report_dir = report_dir self.logger.info('Logger initialized') def error_report(self, msg, req): if hasattr(req, 'request'): self.report.add('request method', req.request.method) self.report.add('request body', req.request.body) self.report.add('response', req.text) else: for k, v in req.items(): if isinstance(v, dict): for subkey, subvalue in v.items(): self.report.add(subkey, b64encode(subvalue)) else: self.report.add(k, b64encode(v)) self.report.set_status(Report.ERROR) self.report.error(msg) def save_report_to_disc(self): try: if not os.path.exists(os.path.dirname(self.report_dir)): try: os.makedirs(os.path.dirname(self.report_dir)) except OSError: pass with open('{}/{}_{}.json'.format(self.report_dir, self.test_number, time()), 'wb') as report_dump_file: report_dump_file.write(json.dumps(self.report.to_dict(), ensure_ascii=False, encoding='utf-8')) except Exception as e: self.logger.error( 'Failed to save report "{}" to {} because: {}' .format(self.report.to_dict(), self.report_dir, e) ) def transmit(self, **kwargs): try: _req_url = list() for url_part in self.base_url, kwargs['url']: self.logger.info('URL part: {}'.format(url_part)) _req_url.append(url_part.strip('/')) request_url = '/'.join(_req_url) request_url = self.expand_path_variables(request_url, kwargs.get('path_variables')) request_url = self.expand_query_parameters(request_url, kwargs.get('params')) if kwargs.get('path_variables'): kwargs.pop('path_variables') kwargs.pop('url') self.logger.warn('>>> Formatted URL: {} <<<'.format(request_url)) if "API_FUZZER_API_KEY" in os.environ: headers = {'Authorization': 'api-key {}'.format(os.getenv("API_FUZZER_API_KEY", ""))} headers_sanitized = {'Authorization': 'api-key THIS_IS_THE_API_KEY_FROM_ENVIRONMENT'} if 'headers' in kwargs: combinedHeaders = {key: value for (key, value) in (headers.items() + kwargs['headers'].items())} combinedHeadersSanitized = {key: value for (key, value) in (headers_sanitized.items() + kwargs['headers'].items())} del kwargs['headers'] headers = combinedHeaders headers_sanitized = combinedHeadersSanitized self.logger.warn('Request Headers:{}, KWARGS:{}, url: {}'.format(headers_sanitized, kwargs, _req_url)) _return = requests.request(url=request_url, headers=headers, verify=False, **kwargs) else: self.logger.warn('Request KWARGS:{}, url: {}'.format(kwargs, _req_url)) _return = requests.request(url=request_url, verify=False, **kwargs) status_code = _return.status_code self.logger.warn('request returned with status code: {}'.format(status_code)) if status_code: if status_code not in self.accepted_status_codes: self.report.add('parsed status_code', status_code) self.report.add('request method', _return.request.method) self.report.add('request body', _return.request.body) self.report.add('response', _return.text) self.report.set_status(Report.FAILED) self.report.failed('return code {} is not in the expected list'.format(status_code)) else: self.error_report('Failed to parse http response code', _return.headers) return _return except (RequestException, UnicodeDecodeError) as e: # request failure such as InvalidHeader self.error_report('Failed to parse http response code, exception: {}'.format(e), kwargs) def post_test(self, test_num): """Called after a test is completed, perform cleanup etc.""" super(FuzzerTarget, self).post_test(test_num) if self.report.get('status') != Report.PASSED: self.save_report_to_disc() def expand_path_variables(self, url, path_parameters): if not isinstance(path_parameters, dict): self.logger.error('path_parameters: {}'.format(path_parameters)) return url for path_key, path_value in path_parameters.items(): try: _temporally_url_list = list() path_parameter = path_key.split('|')[-1] splitter = '({' + path_parameter + '})' url_list = re.split(splitter, url) self.logger.info('Processing: {} key: {} splitter: {} '.format(url_list, path_parameter, splitter)) for url_part in url_list: if url_part == '{' + path_parameter + '}': _temporally_url_list.append(path_value.decode('unicode-escape').encode('utf8')) else: _temporally_url_list.append(url_part.encode()) url = "".join(_temporally_url_list) self.logger.warn('url 1: {} | {}->{}'.format(url, path_parameter, path_value)) except Exception as e: self.logger.warn('Failed to replace string in url: {} param: {}, exception: {}'.format(url, path_value, e)) url = url.replace("{", "").replace("}", "") return url def expand_query_parameters(self, url, query_parameters): if not isinstance(query_parameters, dict): self.logger.error('query_parameters: {}'.format(query_parameters)) return url url = url + '?' for param_key, param_value in query_parameters.items(): try: pkey = param_key.split('|')[-1] url=url + pkey + '=' + param_value.decode('unicode-escape').encode('utf8') + '&' except Exception as e: self.logger.warn('Failed to replace string in url: {} param: {}, exception: {}'.format(url, path_value, e)) return url
from foundations_events.consumers.jobs.mixins.job_event_notifier import JobEventNotifier class JobNotifier(JobEventNotifier): """Sends a notification message when a job is queued Arguments: job_notifier {JobNofitier} -- A JobNotifier for sending out the messages """ @staticmethod def _state(): return 'Queued'
from . import plot_target_dist from . import plot_tfidf from . import plot_words_cdf from . import plot_roc_curve from . import plot_comment_length_hist
# Objective: visualize X and E, the input graph to the model import matplotlib.pyplot as plt import numpy as np # take in X and E # draw a large point for X(i,1:4) # for every E(i,j) = 1, draw a line between X(i,1:4) and X(j,1:4) def plotGraph(X, E): fig = plt.figure() ax = plt.axes(projection="3d") ax.scatter3D(X[:,1], X[:,2], X[:,3], c=X[:,3], cmap="Greens") for i in range(E.size[0]): # get indices of nonzero elements idx = np.nonzero(E[i,:]) for j in range(len(idx)): ax.plot3D([X[i,1], X[idx[j],1]], [X[i,2], X[idx[j],2]], [X[i,3], X[idx[j],3]], "b") plt.show()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2019. Mike Herbert # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ Provides a place lookup gazeteer based on files from geonames.org. Provides the location lookup methods for the geodata package. + Creates a local sqlite3 place database of geonames.org data + Parses lookup text and returns multiple matches ranked by closeness to lookup term + Provides latitude/longitude + Supports Wildcard search, Phonetic/Soundex search, and Word search of place database names + Search by feature type (e.g. mountain, cemetery, palace, etc) + Database can be filtered to only include specified countries, languages, and feature types Main routines for Geodata package: example.py - a sample demonstrating place lookups using geodata geodata.open - open database. create DB if missing geodata.find_best_match - parse location and provide the best match geodata.find_matches - parse location and provide a ranked list of matches geodata.find_feature - lookup location by feature type and provide a ranked list of matches normalize.py - Normalize text for lookup """ import collections import copy import logging from operator import itemgetter from geodata import GeoUtil, GeodataBuild, Loc, MatchScore, GeoSearch class Geodata: """ Provide a place lookup gazeteer based on files from geonames.org """ def __init__(self, directory_name: str, display_progress, show_message: bool, exit_on_error: bool, languages_list_dct, feature_code_list_dct, supported_countries_dct, volume=''): """ Init #Args: directory_name: directory where geoname.org files are. DB will be in 'cache' folder under this display_progress: None or function to display progress(percent_done:int, msg:str) show_message: If True - show TKInter message dialog on error exit_on_error: If True - exit on significant error languages_list_dct: Dictionary of ISO-2 languages to import from AlternateNamesV2.txt feature_code_list_dct: Dictionary of Geoname Feature codes to import into DB supported_countries_dct: Dictionary of ISO-2 Country codes to import into DB """ self.logger = logging.getLogger(__name__) self.display_progress = display_progress self.save_place: Loc = Loc.Loc() self.miss_diag_file = None self.distance_cutoff = 0.6 # Value to determine if two lat/longs are similar based on Rectilinear Distance self.geo_build = GeodataBuild.GeodataBuild(str(directory_name), display_progress=self.display_progress, show_message=show_message, exit_on_error=exit_on_error, languages_list_dct=languages_list_dct, feature_code_list_dct=feature_code_list_dct, supported_countries_dct=supported_countries_dct, volume=volume) def find_matches(self, location: str, place: Loc) : """ Find a location in the geoname database. On successful match, place.georow_list will contain a list of georows that matched the name. Each georow can be copied to a Loc structure by calling process_result #Args: location: comma separated name of location to find, e.g. 'Los Angeles, California, USA' place: Loc structure plain_search: If True then don't do wildcard searches #Returns: GeoUtil.Result code """ place.parse_place(place_name=location, geo_db=self.geo_build.geodb) best_score = 9999 self.is_country_valid(place) if place.result_type == GeoUtil.Result.NOT_SUPPORTED: place.georow_list.clear() return best_score # Create full entry text place.update_names(self.geo_build.output_replace_dct) flags = ResultFlags(limited=False, filtered=False) result_list = [] # We will do different search types and append all results into result_list # self.logger.debug(f'== FIND LOCATION City=[{place.city}] Adm2=[{place.admin2_name}]\ # Adm1=[{place.admin1_name}] Pref=[{place.prefix}] Cntry=[{place.country_name}] iso=[{place.country_iso}] Type={place.place_type} ') # Save a shallow copy of place so we can restore fields self.save_place = copy.copy(place) # After parsing, last token is either country or underscore. # Second to last is either Admin1 or underscore # If >2 tokens: token[0] is placed in City and in Prefix # If >3 tokens: token[1] is placed in Admin2 and appended to Prefix # 1) Try lookup based on standard parsing: lookup city, county, state/province, or country as parsed self.logger.debug(f' 1) Standard, based on parsing. pref [{place.prefix}] city [{place.city}]' f' sdx={GeoSearch.get_soundex(place.city)} ' f'feat={place.feature} typ=[{place.place_type}]') if place.place_type != Loc.PlaceType.COUNTRY and place.place_type != Loc.PlaceType.ADMIN1 \ and place.place_type != Loc.PlaceType.ADMIN1: self.logger.debug('find std place - not ADM* ') best_score = self.geo_build.geodb.s.lookup_place(place=place) self.logger.debug(f'std: best={best_score}') if place.georow_list: result_list.extend(place.georow_list) # self.logger.debug(result_list) if best_score >= MatchScore.Score.POOR_CUTOFF: # No good matches found. Try a deep search on soundex of combinations of terms self.logger.debug('--- DEEP SEARCH city ---') best_score = self.geo_build.geodb.s.deep_lookup(place=place) # self.logger.debug(place.georow_list) if place.georow_list: result_list.extend(place.georow_list) # Restore fields self._restore_fields(place, self.save_place) # 2) Try second token (Admin2) as a city if place.admin2_name != '': self.logger.debug(f'try 2nd token as city') place.georow_list.clear() best_score = self._find_type_as_city(place, Loc.PlaceType.ADMIN2) self.logger.debug(f'2nd token best={best_score}') if place.georow_list: result_list.extend(place.georow_list) # self.logger.debug(result_list) # See if we found any good scoring matches if best_score >= MatchScore.Score.POOR_CUTOFF: # No good matches found. Try a deep search on soundex of combinations of terms self.logger.debug('--- DEEP SEARCH city ---') best_score = self.geo_build.geodb.s.deep_lookup(place=place) # self.logger.debug(place.georow_list) if place.georow_list: result_list.extend(place.georow_list) self._restore_fields(place, self.save_place) # Move result_list into place georow list place.georow_list.clear() place.georow_list.extend(result_list) # self.logger.debug(place.georow_list) else: self.logger.debug('not country, adm1, adm2') return place.result_type if len(place.georow_list) > 0: best_score = self.geo_build.geodb._assign_scores(place.georow_list, place, '', fast=False, quiet=True) # self.logger.debug('process results') self.process_results(place=place, flags=flags) flags = self.filter_results(place) # self.logger.debug(place.georow_list) if len(place.georow_list) == 0: # NO MATCH if place.result_type != GeoUtil.Result.NO_COUNTRY and place.result_type != GeoUtil.Result.NOT_SUPPORTED: place.result_type = GeoUtil.Result.NO_MATCH self.logger.debug(f'Not found.') #place.result_type = GeoUtil.Result.STRONG_MATCH else: self.logger.debug('Found country') elif len(place.georow_list) > 1: self.logger.debug(f'Success! {len(place.georow_list)} matches') place.result_type = GeoUtil.Result.MULTIPLE_MATCHES # Process the results self.process_results(place=place, flags=flags) # self.logger.debug(f'Status={place.status}') return place.result_type def find_best_match(self, location: str, place: Loc) -> bool: """ Find the best scoring match for this location in the geoname dictionary. #Args: location: location name, e.g. Los Angeles, California, USA place: Loc instance #Returns: True if a match was found place is updated with -- lat, lon, district, city, country_iso, result code """ # First parse the location into <prefix>, city, <district2>, district1, country. # Then look it up in the place db res = self.find_matches(location, place) # Clear to just best entry flags = self.filter_results(place) # If multiple matches, truncate to first match if len(place.georow_list) > 0: place.georow_list = place.georow_list[:1] self.process_results(place=place, flags=flags) place.set_place_type() nm = f'{place.get_long_name(self.geo_build.output_replace_dct)}' place.prefix = place.prefix_cleanup(place.prefix, nm) return True else: if res in GeoUtil.successful_match: nm = f'{place.get_long_name(self.geo_build.output_replace_dct)}' place.prefix = place.prefix_cleanup(place.prefix, nm) #print(f'Found pre=[{place.prefix}{place.prefix_commas}] Nam=[{nm}]') return True return False def find_geoid(self, geoid: str, place: Loc)->None: """ Lookup by geoid #Args: geoid: Geonames.org geoid place: Location fields in place are updated #Returns: None. Location fields in place are updated """ flags = ResultFlags(limited=False, filtered=False) place.geoid = geoid place.georow_list.clear() self.geo_build.geodb.s.lookup_geoid(georow_list=place.georow_list, geoid=place.geoid, place=place) if len(place.georow_list) == 0: self.geo_build.geodb.s.lookup_geoid(georow_list=place.georow_list, geoid=place.geoid, place=place, admin=True) if len(place.georow_list) > 0: place.result_type = GeoUtil.Result.STRONG_MATCH self.process_results(place=place, flags=flags) # self.logger.debug(f'found geoid {place.georow_list[0]}') else: place.result_type = GeoUtil.Result.NO_MATCH # self.logger.debug(f'NOT FOUND geoid {geoid}') def _find_type_as_city(self, place: Loc, typ)-> int: """ Do a lookup using the field specifed by typ as a city name. E.g. if typ is PlaceType.ADMIN1 then use the place.admin1_name field to do the city lookup #Args: place: Loc instance typ: Loc.PlaceType - Specifies which field to use as target for lookup #Returns: None place.georow_list is updated with matches """ # place.standard_parse = False typ_name = '' best = 999 if typ == Loc.PlaceType.CITY: # Try City as city (do as-is) typ_name = 'City' pass elif typ == Loc.PlaceType.ADMIN2: # Try ADMIN2 as city if place.admin2_name != '': # if '*' not in place.city: # place.prefix += ' ' + place.city place.city = place.admin2_name place.admin2_name = '' typ_name = 'Admin2' elif typ == Loc.PlaceType.PREFIX: # Try Prefix as City if place.prefix != '': place.city = place.prefix # if '*' not in tmp: # place.prefix = tmp typ_name = 'Prefix' elif typ == Loc.PlaceType.ADVANCED_SEARCH: # Advanced Search best = self.geo_build.geodb.lookup_place(place=place) return best else: self.logger.warning(f'Unknown TYPE {typ}') if typ_name != '': result_list = [] self.logger.debug(f'2) Try {typ_name} as City. Target={place.city} pref [{place.prefix}] ') place.place_type = Loc.PlaceType.CITY best = self.geo_build.geodb.s.lookup_place(place=place) #best_score = self.geo_build.geodb.assign_scores(result_list, place, '', fast=True, quiet=False) self.logger.debug(f'best={best}') if best >= MatchScore.Score.POOR_CUTOFF: self.logger.debug('--- DEEP SEARCH ADM2 ---') best = self.geo_build.geodb.s.deep_lookup(place=place) return best def _lookup_city_as_admin2(self, place: Loc, result_list)->int: """ Lookup place.city as admin2 name #Args: place: result_list: #Returns: """ # Try City as ADMIN2 # place.standard_parse = False place.admin2_name = place.city place.city = '' place.place_type = Loc.PlaceType.ADMIN2 self.logger.debug(f' Try admin2 [{place.admin2_name}] as city [{place.get_five_part_title()}]') best = self.geo_build.geodb.lookup_place(place=place) result_list.extend(place.georow_list) return best def find_feature(self, place)->int: """ Lookup location with - name, country, and feature #Args: place: place.name, place.country, and place.feature are used for lookup #Returns: None. place.georow_list contains matches """ self.logger.debug('Feature Search') best = self._find_type_as_city(place, place.place_type) return best # if len(place.georow_list) > 0: # Build list - sort and remove duplicates # self.logger.debug(f'Match {place.georow_list}') # flags = ResultFlags(limited=False, filtered=False) # self.process_results(place=place, flags=flags) # self.filter_results(place) def process_results(self, place: Loc, flags) -> None: """ Update fields in place record using first entry in place.georow_list Updates fields with available data: city, admin1, admin2, country, lat/long, feature, etc. #Args: place: Loc instance flags: Flags tuple as returned by sort_results #Returns: None. place instance fields are updated """ # self.logger.debug(f'**PROCESS RESULT: Res={place.result_type} Georow_list={place.georow_list}') if place.result_type == GeoUtil.Result.NOT_SUPPORTED: place.place_type = Loc.PlaceType.COUNTRY if place.result_type in GeoUtil.successful_match and len(place.georow_list) > 0: self.geo_build.geodb.copy_georow_to_place(row=place.georow_list[0], place=place, fast=False) elif len(place.georow_list) > 0 and place.result_type != GeoUtil.Result.NOT_SUPPORTED: # self.logger.debug(f'***RESULT={place.result_type} Setting to Partial') place.result_type = GeoUtil.Result.PARTIAL_MATCH place.set_place_type_text() @staticmethod def distance(lat_a: float, lon_a: float, lat_b: float, lon_b: float): """ Returns rectilinear distance in degrees between two lat/longs Args: lat_a: latitude of point A lon_a: longitude of point A lat_b: latitude of point B lon_b: longitude of point B Returns: Rectilinear distance between two points """ return abs(lat_a - lat_b) + abs(lon_a - lon_b) def remove_duplicates(self, place): # sort list by LON/LAT and score so we can remove dups # for row in place.georow_list: # self.logger.debug(row) if len(place.georow_list) == 0: self.logger.debug('empty') return try: rows_sorted_by_latlon = sorted(place.georow_list, key=itemgetter(GeoUtil.Entry.LON, GeoUtil.Entry.LAT, GeoUtil.Entry.SCORE)) except IndexError as e: rows_sorted_by_latlon = place.georow_list place.georow_list.clear() # Create a dummy 'previous' row so the comparison to previous entry works on the first item prev_geo_row = self.geo_build.make_georow(name='q', iso='q', adm1='q', adm2='q', lat=900, lon=900, feat='q', geoid='q', sdx='q') georow_idx = 0 # Keep track of list by GEOID to ensure no duplicates in GEOID geoid_dict = {} # Key is GEOID. Value is List index # Find and remove if two entries are duplicates - defined as two items with: # 1) same GEOID or 2) same name and lat/lon is within Box Distance of 0.6 degrees for geo_row in rows_sorted_by_latlon: # self.logger.debug(f'{geo_row[GeoUtil.Entry.NAME]},{geo_row[GeoUtil.Entry.FEAT]} ' # f'{geo_row[GeoUtil.Entry.SCORE]:.1f} {geo_row[GeoUtil.Entry.ADM2]}, ' # f'{geo_row[GeoUtil.Entry.ADM1]} {geo_row[GeoUtil.Entry.ISO]}') if self._valid_year_for_location(place.event_year, geo_row[GeoUtil.Entry.ISO], geo_row[GeoUtil.Entry.ADM1], 60) is False: # Skip location if location name didnt exist at the time of event WITH 60 years padding continue if self._valid_year_for_location(place.event_year, geo_row[GeoUtil.Entry.ISO], geo_row[GeoUtil.Entry.ADM1], 0) is False: # Flag if location name didnt exist at the time of event date_filtered = True old_row = list(geo_row) geo_row = tuple(old_row) if geo_row[GeoUtil.Entry.NAME] != prev_geo_row[GeoUtil.Entry.NAME]: # Add this item to georow list since it has a different name. Also add its idx to geoid dict place.georow_list.append(geo_row) geoid_dict[geo_row[GeoUtil.Entry.ID]] = georow_idx georow_idx += 1 elif geoid_dict.get(geo_row[GeoUtil.Entry.ID]): # We already have an entry for this geoid. Replace it if this one has better score row_idx = geoid_dict.get(geo_row[GeoUtil.Entry.ID]) old_row = place.georow_list[row_idx] if geo_row[GeoUtil.Entry.SCORE] < old_row[GeoUtil.Entry.SCORE]: # Same GEOID but this has better score so replace other entry. place.georow_list[row_idx] = geo_row self.logger.debug(f'Better score {geo_row[GeoUtil.Entry.SCORE]} < ' f'{old_row[GeoUtil.Entry.SCORE]} {geo_row[GeoUtil.Entry.NAME]}') elif self.distance(float(prev_geo_row[GeoUtil.Entry.LAT]), float(prev_geo_row[GeoUtil.Entry.LON]), float(geo_row[GeoUtil.Entry.LAT]), float(geo_row[GeoUtil.Entry.LON])) > self.distance_cutoff: # Add this item to georow list since Lat/lon is different from previous item. Also add its idx to geoid dict place.georow_list.append(geo_row) geoid_dict[geo_row[GeoUtil.Entry.ID]] = georow_idx georow_idx += 1 elif geo_row[GeoUtil.Entry.SCORE] < prev_geo_row[GeoUtil.Entry.SCORE]: # Same Lat/lon but this has better score so replace previous entry. place.georow_list[georow_idx - 1] = geo_row geoid_dict[geo_row[GeoUtil.Entry.ID]] = georow_idx - 1 # self.logger.debug(f'Use. {geo_row[GeoUtil.Entry.SCORE]} < {prev_geo_row[GeoUtil.Entry.SCORE]} {geo_row[GeoUtil.Entry.NAME]}') prev_geo_row = geo_row def filter_results(self, place: Loc): """ Sort place.georow_list by match score and eliminate duplicates In case of duplicate, keep the one with best match score. See MatchScore.match_score() for details on score calculation Discard names that didnt exist at time of event (update result flag if this occurs) Duplicates are defined as two items with: 1) same GEOID or 2) same name and similar lat/lon (within Rectilinear Distance of distance_cutoff degrees) Add flag if we hit the lookup limit #Args: place: #Returns: ResultFlags(limited=limited_flag, filtered=date_filtered) """ date_filtered = False # Flag to indicate whether we dropped locations due to event date # event_year = place.event_year if len(place.georow_list) > 100: limited_flag = True else: limited_flag = False if len(place.georow_list) == 0: self.logger.debug('EMPTY') return ResultFlags(limited=limited_flag, filtered=date_filtered) # Remove duplicate locations in list (have same name and lat/lon) self.remove_duplicates(place) if len(place.georow_list) == 0: self.logger.error(f'georow_list = 0') return ResultFlags(limited=limited_flag, filtered=date_filtered) gap_threshold = 0 score = 0 # Sort places in match_score order new_list = sorted(place.georow_list, key=itemgetter(GeoUtil.Entry.SCORE, GeoUtil.Entry.ADM1)) if len(new_list) == 0: self.logger.error(f'new_list = 0') return ResultFlags(limited=limited_flag, filtered=date_filtered) if len(new_list[0]) < GeoUtil.Entry.SCORE + 1: self.logger.debug(f'len = {len(new_list[0])}') self.logger.debug(f'[{new_list[0]}]') return ResultFlags(limited=limited_flag, filtered=date_filtered) min_score = new_list[0][GeoUtil.Entry.SCORE] place.georow_list.clear() # Go through sorted list and only add items to georow_list that are close to the best score for rw, geo_row in enumerate(new_list): score = geo_row[GeoUtil.Entry.SCORE] # admin1_name = self.geo_build.geodb.get_admin1_name_direct(geo_row[GeoUtil.Entry.ADM1], geo_row[GeoUtil.Entry.ISO]) # admin2_name = self.geo_build.geodb.get_admin2_name_direct(geo_row[GeoUtil.Entry.ADM1], # geo_row[GeoUtil.Entry.ADM2], geo_row[GeoUtil.Entry.ISO]) base = MatchScore.Score.VERY_GOOD + (MatchScore.Score.GOOD / 3) gap_threshold = base + abs(min_score) * .6 # Range to display when there is a strong match # if (min_score <= base and score > min_score + gap_threshold) or score > MatchScore.Score.VERY_POOR * 1.5: if score > min_score + gap_threshold: self.logger.debug(f'SKIP Score={score:.1f} Min={min_score:.1f} Gap={gap_threshold:.1f} [{geo_row[GeoUtil.Entry.PREFIX]}]' f' {geo_row[GeoUtil.Entry.NAME]},' f' {geo_row[GeoUtil.Entry.ADM2]},' f' {geo_row[GeoUtil.Entry.ADM1]} ') else: place.georow_list.append(geo_row) self.logger.debug(f'Score {score:.1f} [{geo_row[GeoUtil.Entry.PREFIX]}] {geo_row[GeoUtil.Entry.NAME]}, ' f'AD2={geo_row[GeoUtil.Entry.ADM2]},' f' AD1={geo_row[GeoUtil.Entry.ADM1]} {geo_row[GeoUtil.Entry.ISO]}') # self.logger.debug(f'min={min_score:.1f}, gap2={gap_threshold:.1f} strong cutoff={min_score + gap_threshold:.1f}') if min_score <= MatchScore.Score.VERY_GOOD and len(place.georow_list) == 1 and place.result_type != GeoUtil.Result.NOT_SUPPORTED: place.result_type = GeoUtil.Result.STRONG_MATCH else: # Log item that we couldnt match if self.miss_diag_file: self.miss_diag_file.write( f'Lookup {place.original_entry} thresh={gap_threshold} gap={score - min_score}\n\n') return ResultFlags(limited=limited_flag, filtered=date_filtered) def open(self, repair_database: bool, query_limit: int): """ Open geodb. Create DB if needed #Args: repair_database: If True, create DB if missing or damaged. query_limit: SQL query limit #Returns: True if error """ self._progress("Reading Geoname files...", 70) return self.geo_build.open_geodb(repair_database=repair_database, query_limit=query_limit) def _progress(self, msg: str, percent: int): if self.display_progress is not None: self.display_progress(percent, msg) else: self.logger.debug(msg) def is_country_valid(self, place: Loc) -> bool: """ See if COUNTRY is present and is in the supported country list #Args: place: #Returns: True if country is valid """ if place.country_iso == '': place.result_type = GeoUtil.Result.NO_COUNTRY is_valid = False elif place.country_iso not in self.geo_build.supported_countries_dct: self.logger.debug(f'Country [{place.country_iso}] not supported') place.result_type = GeoUtil.Result.NOT_SUPPORTED place.place_type = Loc.PlaceType.COUNTRY is_valid = False else: is_valid = True return is_valid @staticmethod def _valid_year_for_location(event_year: int, country_iso: str, admin1: str, pad_years: int) -> bool: """ See if this state/province had modern names at the time of the event. Only US and Canada currently supported. For example, looking up New York for year 1410 would be invalid since it did not have an English name at that time. Data is based on https://en.wikipedia.org/wiki/List_of_North_American_settlements_by_year_of_foundation Geonames has support for date ranges on names but that data is sparsely populated and not used here yet. #Args: event_year: Year to check country_iso: ISO-2 country code admin1: State/Province name pad_years: Number of years to pad for inaccuracy #Returns: True if valid """ if not event_year: return True # Try looking up start year by state/province place_year = admin1_name_start_year.get(f'{country_iso}.{admin1.lower()}') if place_year is None: # Try looking up start year by country place_year = country_name_start_year.get(country_iso) if place_year is None: place_year = -1 if event_year + pad_years < place_year: # self.logger.debug(f'Invalid year: incorporation={place_year} event={event_year} loc={admin1},{iso} pad={padding}') return False else: return True @staticmethod def _feature_priority(feature: str): """ Returns 0-100 for feature priority. PP1M - city with 1 million people is zero #Args: feature: #Returns: 0-100 for feature priority """ res = feature_priority.get(feature) if res: return 100.0 - res else: return 100.0 - feature_priority.get('DEFAULT') def open_diag_file(self, miss_diag_fname: str): """ Open diagnostic file #Args: miss_diag_fname: #Returns: """ self.miss_diag_file = open(miss_diag_fname, 'wt') def close_diag_file(self): """ Close diagnostic file Returns: """ if self.miss_diag_file: self.miss_diag_file.close() @staticmethod def _restore_fields(place, save_place): # Restore fields that were overwritten place.city = save_place.city place.admin2_name = save_place.admin2_name place.prefix = save_place.prefix def close(self): """ Close files and database Returns: None """ if self.geo_build: self.geo_build.geodb.close() def log_results(self, geo_row_list): for geo_row in geo_row_list: self.logger.debug(f' {geo_row[GeoUtil.Entry.NAME]}') # Entries are only loaded from geonames.org files if their feature is in this list # Highest value is for large city or capital # Also, If there are 2 identical entries, we only add the one with higher feature priority. # These scores are also used for match ranking score # Note: PP1M, P1HK, P10K do not exist in Geonames and are created by geodata.geodataBuild feature_priority = { 'PP1M': 100, 'ADM1': 96, 'PPLA': 96, 'PPLC': 96, 'PPLH': 71, 'ADM0': 93, 'PPLA2': 93, 'P1HK': 93, 'P10K': 89, 'PPLX': 82, 'PP1K': 82, 'PRN': 71, 'PRSH': 71, 'RLG': 71, 'RUIN': 71, 'STG': 71, 'PPLG': 75, 'RGN': 71, 'AREA': 71, 'NVB': 71, 'PPLA3': 71, 'ADMF': 71, 'PPLA4': 69, 'PPLF': 69, 'ADMX': 66, 'PPLQ': 60, 'PPLR': 60, 'PPLS': 55, 'PPLL': 55, 'PPLW': 55, 'PPL': 55, 'SQR': 50, 'ISL': 50, 'ADM2': 45, 'CH': 44, 'MSQE': 44, 'MSTY': 44, 'SYG': 44, 'MUS': 44, 'CMTY': 44, 'CSTL': 44, 'EST': 44, 'MILB': 44, 'MNMT': 44, 'PAL': 44, 'HSTS': 42, 'PRK': 42, 'ADM3': 32, 'BTL' : 22, 'HSP': 0, 'VAL': 0, 'MT': 0, 'ADM4': 0, 'DEFAULT': 0, } ResultFlags = collections.namedtuple('ResultFlags', 'limited filtered') # Starting year this country name was valid country_name_start_year = { 'cu': -1, } # Starting year when modern names were valid for this state/province # https://en.wikipedia.org/wiki/List_of_North_American_settlements_by_year_of_foundation admin1_name_start_year = { 'us.al': 1711, 'us.ak': 1774, 'us.az': 1775, 'us.ar': 1686, 'us.ca': 1769, 'us.co': 1871, 'us.ct': 1633, 'us.de': 1638, 'us.dc': 1650, 'us.fl': 1565, 'us.ga': 1566, 'us.hi': -1, 'us.id': 1862, 'us.il': 1703, 'us.in': 1715, 'us.ia': 1785, 'us.ks': 1870, 'us.ky': 1775, 'us.la': 1699, 'us.me': 1604, 'us.md': 1633, 'us.ma': 1620, 'us.mi': 1784, 'us.mn': 1820, 'us.ms': 1699, 'us.mo': 1765, 'us.mt': 1877, 'us.ne': 1854, 'us.nv': 1905, 'us.nh': 1638, 'us.nj': 1624, 'us.nm': 1598, 'us.ny': 1614, 'us.nc': 1653, 'us.nd': 1871, 'us.oh': 1785, 'us.ok': 1889, 'us.or': 1811, 'us.pa': 1682, 'us.ri': 1636, 'us.sc': 1663, 'us.sd': 1865, 'us.tn': 1739, 'us.tx': 1685, 'us.ut': 1847, 'us.vt': 1650, 'us.va': 1607, 'us.wa': 1825, 'us.wv': 1788, 'us.wi': 1685, 'us.wy': 1867, 'ca.01': 1795, 'ca.02': 1789, 'ca.03': 1733, 'ca.04': 1766, 'ca.05': 1583, 'ca.07': 1604, 'ca.08': 1673, 'ca.09': 1764, 'ca.10': 1541, 'ca.11': 1862, 'ca.12': 1700, 'ca.13': 1700, 'ca.14': 1700 }
def string_hash(s: str) -> int: a = sum( ord(c) for c in s ) n = s.count(' ') b = ord(s[-1])-ord(s[0]) if s else 0 c = (a | b) & (~a << 2) d = c ^ ( (n+1) << 5 ) return d
# Напишите функцию (F): на вход список имен и целое число N; на выходе список длины N случайных # имен из первого списка (могут повторяться, можно взять значения: количество имен 20, N = 100, # рекомендуется использовать функцию random) from random import choices def choices_name(list_names,N=15): '''Задается список имен - list_names и целое число - N. Возвращает список длины N случайных имен.''' return choices(list_names,k=N) new_list_names = ['Ваня','Дима','Лена','Ира','Игорь','Ян','Маша','Даша','Наташа','Вася'] b=choices_name(new_list_names) print(b) # 2 Напишите функцию вывода самого частого имени из списка на выходе функции F def often_word(listik): '''Задается список listik. Возвращает самый частый элемент списка''' c_dict={} for i in range (len(b)): c_dict[b[i]]=0 for sym in b: c_dict[sym]+=1 print(c_dict) # выводит словарь d=list(c_dict.items()) #print(d) #print(list(c_dict.values())) # выводит список значений e=max(list(c_dict.values())) #print(max(list(c_dict.values()))) # выводит максим значение из списка #print(c_dict[2]) most_often=[] for key,values in d: if values == e: # return(key,':',values) #print(key,':',values) most_often.append((key,values)) return most_often print(often_word(b)) # 3 Напишите функцию вывода самой редкой буквы, с которого начинаются имена в списке на def redkaiy_bukva(names): ''' :param names: Задаем список имен :return: Самую редкую букву, с которой начинаются имена ''' #print(b) new = [] for word in b: new+= word[0] print(new) new_dict = {} for r in new: new_dict[r]=0 for sym in new: new_dict[sym]+=1 print(new_dict) dd=list(new_dict.items()) ee=min(list(new_dict.values())) # мин значение most_min=[] for key,values in dd: if values == ee: most_min.append((key)[0]) ccc_dict={} for i in range (len(most_min)): ccc_dict[most_min[i]]=0 for sym in most_min: ccc_dict[sym]+=1 #print(ccc_dict.keys()) return list(ccc_dict.keys()) # ТАК ВЫВОДИТ ВСЕ РЕДКИЕ БУКВЫ!!!!!!!!!!!! print(redkaiy_bukva(b)) #PRO: LIGHT + #4. В файле с логами найти дату самого позднего лога (по метке времени) text=''' 2011-08-01 18:03:34,338 - exampleApp - INFO - Program started 2012-09-02 19:13:53,338 - exampleApp - INFO - added 7 and 8 to get15 2012-10-02 20:23:31,338 - exampleApp - INFO - Done! 2013-08-01 01:43:33,338 - exampleApp - INFO - Program started 2011-09-19 12:53:33,338 - exampleApp - INFO - added 10 and 11 to get15 2012-10-12 22:03:33,338 - exampleApp - INFO - Done! 2017-08-01 01:13:51,338 - exampleApp - INFO - Program started 2019-09-19 12:21:34,338 - exampleApp - INFO - added 7 and 8 to get15 2018-10-12 23:31:01,338 - exampleApp - INFO - Done! ''' #https://andreyex.ru/yazyk-programmirovaniya-python/uchebnik-po-python-3/python-3-vremya-metod-strptime/ from datetime import datetime #помещаем файл в папку с проектом!!!!! with open('log.csv','r') as file: last_date =() for line in file: if not last_date: last_date = datetime.strptime(line[:23], '%Y-%m-%d %H:%M:%S,%f') continue date = datetime.strptime(line[:23], '%Y-%m-%d %H:%M:%S,%f') if date > last_date: last_date = date print(last_date)
# -*- coding: utf-8 -*- """ 1637. Widest Vertical Area Between Two Points Containing No Points Given n points on a 2D plane where points[i] = [xi, yi], Return the widest vertical area between two points such that no points are inside the area. A vertical area is an area of fixed-width extending infinitely along the y-axis (i.e., infinite height). The widest vertical area is the one with the maximum width. Note that points on the edge of a vertical area are not considered included in the area. Constraints: n == points.length 2 <= n <= 105 points[i].length == 2 0 <= xi, yi <= 109 """ class Solution: def maxWidthOfVerticalArea(self, points): x_axis = sorted(set(point[0] for point in points)) return max(x_axis[ind] - x_axis[ind - 1] for ind in range(1, len(x_axis)))
import os import unittest from smartexcel.smart_excel import SmartExcel from smartexcel.tests.data.definitions.dummy import DUMMY_DEFINITION from smartexcel.tests.data.data_models.dummy import DummyData class TestParse(unittest.TestCase): def setUp(self): self.definition = DUMMY_DEFINITION self.data = DummyData() self.filepath = '/tmp/dummy_test.xlsx' if os.path.exists(self.filepath): os.remove(self.filepath) SmartExcel( definition=self.definition, data=self.data, output=self.filepath ).dump() def test_parse(self): excel = SmartExcel( definition=self.definition, data=self.data, path=self.filepath ) data = excel.parse() self.assertEqual(data, [ {'name': 'PA', 'age': 29, 'city': 'Paris'}, {'name': 'Cairo', 'age': 0, 'city': 'Muizenberg'}, {'name': 'Carina', 'age': 26, 'city': 'Windhoek'}]) if __name__ == "__main__": unittest.main()
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """ .. py:module::contextualdefault :synopsis: Tools for options which allow for a default callable that needs also the context ctx """ import click class ContextualDefaultOption(click.Option): """A class that extends click.Option allowing to define a default callable that also get the context ctx as a parameter. """ def __init__(self, *args, contextual_default=None, **kwargs): self._contextual_default = contextual_default super().__init__(*args, **kwargs) def get_default(self, ctx): """If a contextual default is defined, use it, otherwise behave normally.""" if self._contextual_default is None: return super().get_default(ctx) return self._contextual_default(ctx)
import datetime from tests import factories from tests.common import ApiBaseTest from webservices.rest import api from webservices.resources.filings import FilingsView, FilingsList class TestFilings(ApiBaseTest): def test_committee_filings(self): """ Check filing returns with a specified committee id""" committee_id = 'C8675309' factories.FilingsFactory(committee_id=committee_id) results = self._results(api.url_for(FilingsView, committee_id=committee_id)) self.assertEqual(results[0]['committee_id'], committee_id) def test_candidate_filings(self): candidate_id = 'P12345' factories.FilingsFactory(candidate_id=candidate_id) results = self._results(api.url_for(FilingsView, candidate_id=candidate_id)) self.assertEqual(len(results), 1) self.assertEqual(results[0]['candidate_id'], candidate_id) def test_filings(self): """ Check filings returns in general endpoint""" factories.FilingsFactory(committee_id='C001') factories.FilingsFactory(committee_id='C002') results = self._results(api.url_for(FilingsList)) self.assertEqual(len(results), 2) def test_filter_date(self): [ factories.FilingsFactory(receipt_date=datetime.date(2012, 1, 1)), factories.FilingsFactory(receipt_date=datetime.date(2013, 1, 1)), factories.FilingsFactory(receipt_date=datetime.date(2014, 1, 1)), factories.FilingsFactory(receipt_date=datetime.date(2015, 1, 1)), ] min_date = datetime.date(2013, 1, 1) results = self._results(api.url_for(FilingsList, min_receipt_date=min_date)) self.assertTrue(all(each for each in results if each['receipt_date'] >= min_date.isoformat())) max_date = datetime.date(2014, 1, 1) results = self._results(api.url_for(FilingsList, max_receipt_date=max_date)) self.assertTrue(all(each for each in results if each['receipt_date'] <= max_date.isoformat())) results = self._results(api.url_for(FilingsList, min_receipt_date=min_date, max_receipt_date=max_date)) self.assertTrue( all( each for each in results if min_date.isoformat() <= each['receipt_date'] <= max_date.isoformat() ) ) def test_filings_filters(self): [ factories.FilingsFactory(committee_id='C0004'), factories.FilingsFactory(committee_id='C0005'), factories.FilingsFactory(candidate_id='H0001'), factories.FilingsFactory(beginning_image_number=123456789021234567), factories.FilingsFactory(form_type='3'), factories.FilingsFactory(primary_general_indicator='G'), factories.FilingsFactory(amendment_indicator='A'), factories.FilingsFactory(report_type='POST GENERAL'), factories.FilingsFactory(report_year=1999), factories.FilingsFactory(document_type='X'), factories.FilingsFactory(cycle=2000), ] filter_fields = ( ('beginning_image_number', 123456789021234567), ('form_type', '3'), ('primary_general_indicator', 'G'), ('amendment_indicator', 'A'), ('report_type', 'Post General'), ('report_year', 1999), ('candidate_id', 'H0001'), ('document_type', 'X'), ('cycle', 2000), ) # checking one example from each field orig_response = self._response(api.url_for(FilingsList)) original_count = orig_response['pagination']['count'] for field, example in filter_fields: page = api.url_for(FilingsList, **{field: example}) # returns at least one result results = self._results(page) self.assertGreater(len(results), 0) # doesn't return all results response = self._response(page) self.assertGreater(original_count, response['pagination']['count']) def test_sort(self): [ factories.FilingsFactory(beginning_image_number=2), factories.FilingsFactory(beginning_image_number=1), ] results = self._results(api.url_for(FilingsList, sort='beginning_image_number')) self.assertTrue( [each['beginning_image_number'] for each in results], [1, 2] ) def test_sort_bad_column(self): response = self.app.get(api.url_for(FilingsList, sort='request_type')) self.assertEqual(response.status_code, 422) def test_regex(self): """ Getting rid of extra text that comes in the tables.""" factories.FilingsFactory( report_type_full='report {more information than we want}', committee_id='C007', form_type='RFAI', report_year=2004, ) results = self._results(api.url_for(FilingsView, committee_id='C007')) self.assertEqual(results[0]['document_description'], 'RFAI: report 2004')
###Titulo: Contagem de cédulas e modedas ###Função: Este programa modifica a listagem 5.14 para trabalhar também com moedas de R$ 0,50 R$ 0,10 R$ 0,05 R$ 0,02 e R$ 0,01 ###Autor: Valmor Mantelli Jr. ###Data: 26/12/2018 ###Versão: 0.0.1 # Declaração de variáve e atribuição de valor valor = float(input("Digite o valor a pagar: ")) cedulas = 0 atual = 100 apagar = valor # Processamento e Saída while True: if atual <= apagar: apagar -= atual cedulas += 1 else: if atual >= 1: print ("%d cédula(s) de R$%d" % (cedulas, atual)) else: print ("%d moeda(s) de R$%.2f" % (cedulas, atual)) if apagar < 0.01: break elif atual == 100: atual = 50 elif atual == 50: atual = 20 elif atual == 20: atual = 10 elif atual == 10: atual = 5 elif atual == 5: atual = 1 elif atual == 1: atual = 0.5 elif atual == 0.5: atual = 0.10 elif atual == 0.10: atual = 0.05 elif atual == 0.05: atual = 0.02 elif atual == 0.02: atual = 0.01 cedulas = 0
vowels=['a','e','i','o','u'] word=input("enter the words to search for vowels:") found=[] for letter in word: if letter in vowels: if letter not in found: found.append(letter) print(found) print("the no. of different vowels present in",word,"is",len(found))
""" Plot training/validation loss and F1-score per category. TODO: generalize the plotter for different situations than 4 models... """ import matplotlib.pyplot as plt from glob import glob import re def plot_training_loss(dirname, model): """ Plot training and validation loss during training :param dirname: name of directory containing the logs (..._training.log) :param model: either onset or note """ f, ax = plt.subplots(2, 2, sharex=True, sharey=True) sets = ['set_1', 'set_2', 'set_3', 'set_4' ] idx = 0 for set in sets: res = {} with open(f'{dirname}/best_{model}_{set}_training.log') as fin: headers = fin.readline().strip().split() for h in headers: res[h] = [] for line in fin: i = 0 for v in line.strip().split(): res[headers[i]].append(float(v)) i += 1 u = idx//2 v = idx%2 ax[u][v].plot(res['epoch'], res['loss'], label='training') ax[u][v].plot(res['epoch'], res['val_loss'], label='validation') handles, labels = ax[u][v].get_legend_handles_labels() ax[u][v].legend(handles, labels) ax[u][v].set_title('model_{}'.format(set[-1])) if u==1: ax[u][v].set_xlabel('epoch') if v==0: ax[u][v].set_ylabel('loss') idx += 1 plt.show() def plot_category_score(dirname): """ Plot F1-score per category :param dirname: directory containing the logs (..._predictions.log) """ data = {} categories = [] for f in sorted(glob(dirname+'/*_predictions.log')): model_set = re.search('set_[0-9]',f).group() with open(f) as fin: res = {} for line in fin: if line[:5]=='TOTAL': set = re.search('set_[0-9]',line).group() res[set] = {} if line[:5]=='carac': l = line.strip().split('\t') category = l[0][6:] if category not in categories: categories.append(category) if category not in res[set]: res[set][category] = {'x': [], 'f1': []} f1 = l[5] if f1 != 'nan': res[set][category]['x'].append(float(l[1])) res[set][category]['f1'].append(float(f1)) data[model_set] = res for cat in categories: f, ax = plt.subplots(2, 2, sharex=True, sharey=True) idx = 0 for model in data: u = idx // 2 v = idx % 2 idx += 1 for set in data[model]: ax[u][v].plot(data[model][set][cat]['x'], data[model][set][cat]['f1'], label=set) if u==1 and v==1: handles, labels = ax[u][v].get_legend_handles_labels() ax[u][v].legend(handles, labels) ax[u][v].set_title('model_{}'.format(model[-1])) if cat=='silence_notes': ax[u][v].set_xlim(0,50) if u==1: ax[u][v].set_xlabel(cat) if v==0: ax[u][v].set_ylabel('F1-score') plt.show() if __name__=='__main__': plot_training_loss('best_models', 'onset') plot_training_loss('best_models', 'note') plot_category_score('best_models/categories_scores_onset') plot_category_score('best_models/categories_scores_note')
from tornado.gen import coroutine from torip.ipapis import api_factory __author__ = 'mendrugory' class Locator: """ Main Class which will be the responsible of locating the IP. """ def __init__(self, api_name=None, **config): self.api_name = api_name self.config = config @coroutine def locate(self, address): """ It locates the IP Address / Server Name :param address: String IP Address / Server Name :return: """ api = api_factory(self.api_name, **self.config) result = yield api.locate(address) return result
from __future__ import absolute_import, division, print_function, unicode_literals import unittest import uuid import requests_mock from canvasapi.canvas import Canvas from canvasapi.upload import Uploader from tests import settings from tests.util import cleanup_file, register_uris @requests_mock.Mocker() class TestUploader(unittest.TestCase): def setUp(self): self.canvas = Canvas(settings.BASE_URL, settings.API_KEY) self.requester = self.canvas._Canvas__requester self.filename = "testfile_uploader_{}".format(uuid.uuid4().hex) self.file = open(self.filename, "w+") def tearDown(self): self.file.close() cleanup_file(self.filename) # start() def test_start(self, m): requires = {"uploader": ["upload_response", "upload_response_upload_url"]} register_uris(requires, m) uploader = Uploader(self.requester, "upload_response", self.file) result = uploader.start() self.assertTrue(result[0]) self.assertIsInstance(result[1], dict) self.assertIn("url", result[1]) def test_start_path(self, m): requires = {"uploader": ["upload_response", "upload_response_upload_url"]} register_uris(requires, m) uploader = Uploader(self.requester, "upload_response", self.filename) result = uploader.start() self.assertTrue(result[0]) self.assertIsInstance(result[1], dict) self.assertIn("url", result[1]) def test_start_file_does_not_exist(self, m): with self.assertRaises(IOError): Uploader(self.requester, "upload_response", "test_file_not_real.xyz") # upload() def test_upload_no_upload_url(self, m): register_uris({"uploader": ["upload_response_no_upload_url"]}, m) with self.assertRaises(ValueError): Uploader( self.requester, "upload_response_no_upload_url", self.filename ).start() def test_upload_no_upload_params(self, m): register_uris({"uploader": ["upload_response_no_upload_params"]}, m) with self.assertRaises(ValueError): Uploader( self.requester, "upload_response_no_upload_params", self.filename ).start() def test_upload_fail(self, m): requires = {"uploader": ["upload_fail", "upload_response_fail"]} register_uris(requires, m) uploader = Uploader(self.requester, "upload_response_fail", self.file) result = uploader.start() self.assertFalse(result[0]) self.assertIsInstance(result[1], dict) self.assertNotIn("url", result[1])
''' backup db from db_production ''' from connect import connect def backup(): ''' backup all document from production to backup ''' clients = {'production': connect('production'), 'backup': connect('backup')} dbs = {'production': clients['production']['test'], 'backup': clients['backup']['test']} for collection in dbs['production'].collection_names(): cursor = dbs['production'][collection].find() dbs['backup'][collection].insert_many([document for document in cursor]) print('finished backup') if __name__ == '__main__': backup()
# Generated by Django 3.2.7 on 2021-09-07 18:23 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('home', '0001_initial'), ] operations = [ migrations.RenameField( model_name='video', old_name='author', new_name='channelTitle', ), migrations.RenameField( model_name='video', old_name='publish_datetime', new_name='publishTime', ), ]
#!/usr/bin/env python r"""Contais Ion class. Class inherets from :py:class:`~solarwindpy.core.base.Base` and contains :py:class:`~solarwindpy.core.vector.Vector` along with :py:class:`~solarwindpy.core.tensor.Tensor` objects. """ import pdb # noqa: F401 # import numpy as np import pandas as pd # We rely on views via DataFrame.xs to reduce memory size and do not # `.copy(deep=True)`, so we want to make sure that this doesn't # accidentally cause a problem. pd.set_option("mode.chained_assignment", "raise") try: from . import base from . import vector from . import tensor except ImportError: import base import vector import tensor class Ion(base.Base): r"""Ion class. Properties ---------- species, velocity, thermal_speed, number_density, mass_density, anisotropy, temperature, pressure Methods ------- set_species, set_data """ def __init__(self, data, species): self.set_species(species) super(Ion, self).__init__(data) # self.set_data(data, species) def __eq__(self, other): # eq = super(Ion, self).__eq__(other) if id(self) == id(other): return True elif type(self) != type(other): return False elif self.species != other.species: return False else: try: pd.testing.assert_frame_equal(self.data, other.data) except AssertionError: return False # try: # # eq_data = self.data == other.data # pd.testing.assert_frame_equal(self.data, other.data) # except ValueError as e: # # print(dir(e), flush=True) # msg = "Can only compare identically-labeled DataFrame objects" # if msg in str(e): # return False # else: # raise e # # while isinstance(eq_data, pd.core.generic.NDFrame): # eq_data = eq_data.all() # if eq_data: # return True # return True def set_species(self, species): assert isinstance(species, str) if "+" in species: raise NotImplementedError self._species = species def set_data(self, data): # assert isinstance(data, pd.DataFrame) super(Ion, self).set_data(data) species = self.species # TODO: Implement the following optional species xs if necessary # based on ways ions are later created in Plasma. if data.columns.names == ["M", "C"]: pass elif data.columns.names == ["M", "C", "S"]: data = data.sort_index(axis=1) data = data.xs(species, axis=1, level="S") else: msg = "Unrecognized data column names: %s" % (data.columns.names) raise ValueError(msg) chk = [ ("n", ""), ("v", "x"), ("v", "y"), ("v", "z"), ("w", "par"), ("w", "per"), ] assert pd.Index(chk).isin(data.columns).all() self._data = data @property def species(self): r"""Ion species. """ return self._species @property def velocity(self): r"""Ion's velocity stored as a :py:class:`~solarwindpy.core.vector.Vector`. """ return vector.Vector(self.data.loc[:, "v"]) @property def v(self): r""" Shortcut to :py:meth:`velocity` property. """ return self.velocity @property def thermal_speed(self): r"""Ion's thermal speed stored as :py:class:`~solarwindpy.core.tensor.Tensor`. """ return tensor.Tensor(self.data.loc[:, "w"]) @property def w(self): r"""Shortcut to :py:meth:`thermal_speed`. """ return self.thermal_speed @property def number_density(self): r"""Number density returned from underlying :py:meth:`~solarwindpy.core.base.Base.data` as a `pd.Series`. """ return self.data.loc[:, "n"] @property def n(self): r"""Shortcut to :py:meth:`number_density`. """ return self.number_density @property def mass_density(self): r"""Ion's mass density. """ out = self.n * self.constants.m_in_mp.loc[self.species] out.name = "rho" return out @property def rho(self): r""" Shortcut to :py:meth:`mass_density`. """ return self.mass_density @property def anisotropy(self): r"""Temperature anisotropy :math:`R_T = p_\perp/p_\parallel`. """ exp = pd.Series({"par": -1, "per": 1}) pth = self.pth.drop("scalar", axis=1) assert pth.shape[1] == 2 assert exp.index.equals(pth.columns) # TODO: test `skipna=False` to ensure NaNs propagate. ani = pth.pow(exp, axis=1, level="C").product(axis=1, skipna=False) ani.name = "RT" return ani @property def temperature(self): r""":math:`T = \frac{m}{2 k_B} w^2`. """ m = self.constants.m.loc[self.species] # TODO: Make math operations work on ThermalSpeed w = self.w.data * self.units.w coeff = 0.5 * m / (self.constants.kb.J * self.units.temperature) temp = coeff * w.pow(2) temp.name = "T" return temp @property def pth(self): r"""Thermal pressure :math:`p_\mathrm{th} = \frac{1}{2}\rho w^2`. """ rho = self.rho * self.units.rho # TODO: Make math operations work on ThermalSpeed w = self.w.multiply(self.units.w) pth = (0.5 / self.units.pth) * w.pow(2).multiply(rho, axis=0) pth.name = "pth" return pth @property def cs(self): r"""Species' sound speed. """ pth = self.pth * self.units.pth rho = self.rho * self.units.rho gamma = self.constants.polytropic_index["scalar"] cs = pth.divide(rho).multiply(gamma).pow(0.5) / self.units.cs cs.name = "cs" return cs @property def specific_entropy(self): r"""Calculate the specific entropy following [1] as :math:`p_\mathrm{th} \rho^{-\gamma}` where :math:`gamma=5/3`, :math:`p_\mathrm{th}` is the thermal presure, and :math:`rho` is the mass density. References ---------- [1] Siscoe, G. L. (1983). Solar System Magnetohydrodynamics (pp. 11–100). https://doi.org/10.1007/978-94-009-7194-3_2 """ comp = "scalar" gamma = self.constants.polytropic_index.loc[comp] pth = self.pth.loc[:, comp] * self.units.pth rho = self.rho * self.units.rho out = pth.multiply(rho.pow(-gamma)) / self.units.specific_entropy out.name = "S" return out @property def S(self): r"""Shortuct to :py:meth:`~specific_entropy`. """ return self.specific_entropy
#!/usr/bin/env python ################################################################################# ## Program: BRAINS (Brain Research: Analysis of Images, Networks, and Systems) ## Language: Python ## ## Author: David Welch ## ## This software is distributed WITHOUT ANY WARRANTY; without even ## the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ## PURPOSE. See the above copyright notices for more information. ## ################################################################################# # """Import necessary modules from nipype.""" # from nipype.utils.config import config # config.set('logging', 'log_to_file', 'false') # config.set_log_dir(os.getcwd()) # --config.set('logging', 'workflow_level', 'DEBUG') # --config.set('logging', 'interface_level', 'DEBUG') # --config.set('execution','remove_unnecessary_outputs','true') """ segmentation.py ============================ Description: The purpose of this is to.. Author: David Welch Usage: """ from builtins import str from nipype.utils.misc import package_check # package_check('nipype', '5.4', 'tutorial1') ## HACK: Check nipype version package_check("numpy", "1.3", "tutorial1") package_check("scipy", "0.7", "tutorial1") package_check("networkx", "1.0", "tutorial1") package_check("IPython", "0.10", "tutorial1") from utilities.misc import common_ants_registration_settings def segmentation( projectid, subjectid, sessionid, master_config, onlyT1=True, pipeline_name="" ): """ This function... :param projectid: :param subjectid: :param sessionid: :param master_config: :param onlyT1: :param pipeline_name: :return: """ import os.path import nipype.pipeline.engine as pe import nipype.interfaces.io as nio from nipype.interfaces import ants from nipype.interfaces.utility import IdentityInterface, Function, Merge # Set universal pipeline options from nipype import config config.update_config(master_config) from PipeLineFunctionHelpers import clip_t1_image_with_brain_mask from .WorkupT1T2BRAINSCut import create_brains_cut_workflow from utilities.distributed import modify_qsub_args from nipype.interfaces.semtools import BRAINSSnapShotWriter # CLUSTER_QUEUE=master_config['queue'] CLUSTER_QUEUE_LONG = master_config["long_q"] baw200 = pe.Workflow(name=pipeline_name) # HACK: print for debugging for key, itme in list(master_config.items()): print(("-" * 30)) print((key, ":", itme)) print(("-" * 30)) # END HACK inputsSpec = pe.Node( interface=IdentityInterface( fields=[ "t1_average", "t2_average", "template_t1", "hncma_atlas", "LMIatlasToSubject_tx", "inputLabels", "inputHeadLabels", "posteriorImages", "UpdatedPosteriorsList", "atlasToSubjectRegistrationState", "rho", "phi", "theta", "l_caudate_ProbabilityMap", "r_caudate_ProbabilityMap", "l_hippocampus_ProbabilityMap", "r_hippocampus_ProbabilityMap", "l_putamen_ProbabilityMap", "r_putamen_ProbabilityMap", "l_thalamus_ProbabilityMap", "r_thalamus_ProbabilityMap", "l_accumben_ProbabilityMap", "r_accumben_ProbabilityMap", "l_globus_ProbabilityMap", "r_globus_ProbabilityMap", "trainModelFile_txtD0060NT0060_gz", ] ), run_without_submitting=True, name="inputspec", ) # outputsSpec = pe.Node(interface=IdentityInterface(fields=[...]), # run_without_submitting=True, name='outputspec') currentClipT1ImageWithBrainMaskName = ( "ClipT1ImageWithBrainMask_" + str(subjectid) + "_" + str(sessionid) ) ClipT1ImageWithBrainMaskNode = pe.Node( interface=Function( function=clip_t1_image_with_brain_mask, input_names=["t1_image", "brain_labels", "clipped_file_name"], output_names=["clipped_file"], ), name=currentClipT1ImageWithBrainMaskName, ) ClipT1ImageWithBrainMaskNode.inputs.clipped_file_name = ( "clipped_from_BABC_labels_t1.nii.gz" ) baw200.connect( [ ( inputsSpec, ClipT1ImageWithBrainMaskNode, [("t1_average", "t1_image"), ("inputLabels", "brain_labels")], ) ] ) currentA2SantsRegistrationPostABCSyN = ( "A2SantsRegistrationPostABCSyN_" + str(subjectid) + "_" + str(sessionid) ) ## INFO: It would be great to update the BRAINSABC atlasToSubjectTransform at this point, but ## That requires more testing, and fixes to ANTS to properly collapse transforms. ## For now we are simply creating a dummy node to pass through A2SantsRegistrationPostABCSyN = pe.Node( interface=ants.Registration(), name=currentA2SantsRegistrationPostABCSyN ) many_cpu_ANTsSyN_options_dictionary = { "qsub_args": modify_qsub_args(CLUSTER_QUEUE_LONG, 8, 8, 16), "overwrite": True, } A2SantsRegistrationPostABCSyN.plugin_args = many_cpu_ANTsSyN_options_dictionary common_ants_registration_settings( antsRegistrationNode=A2SantsRegistrationPostABCSyN, registrationTypeDescription="A2SantsRegistrationPostABCSyN", output_transform_prefix="AtlasToSubjectPostBABC_SyN", output_warped_image="atlas2subjectPostBABC.nii.gz", output_inverse_warped_image="subject2atlasPostBABC.nii.gz", save_state="SavedInternalSyNStatePostBABC.h5", invert_initial_moving_transform=False, initial_moving_transform=None, ) ## INFO: Try multi-modal registration here baw200.connect( [ ( inputsSpec, A2SantsRegistrationPostABCSyN, [ ("atlasToSubjectRegistrationState", "restore_state"), ("t1_average", "fixed_image"), ("template_t1", "moving_image"), ], ) ] ) myLocalSegWF = create_brains_cut_workflow( projectid, subjectid, sessionid, master_config["queue"], master_config["long_q"], "Segmentation", onlyT1, ) MergeStage2AverageImagesName = "99_mergeAvergeStage2Images_" + str(sessionid) MergeStage2AverageImages = pe.Node( interface=Merge(2), run_without_submitting=True, name=MergeStage2AverageImagesName, ) baw200.connect( [ ( inputsSpec, myLocalSegWF, [ ("t1_average", "inputspec.T1Volume"), ("template_t1", "inputspec.template_t1"), ("posteriorImages", "inputspec.posteriorDictionary"), ("inputLabels", "inputspec.RegistrationROI"), ], ), (inputsSpec, MergeStage2AverageImages, [("t1_average", "in1")]), ( A2SantsRegistrationPostABCSyN, myLocalSegWF, [("composite_transform", "inputspec.atlasToSubjectTransform")], ), ] ) baw200.connect( [ ( inputsSpec, myLocalSegWF, [ ("rho", "inputspec.rho"), ("phi", "inputspec.phi"), ("theta", "inputspec.theta"), ("l_caudate_ProbabilityMap", "inputspec.l_caudate_ProbabilityMap"), ("r_caudate_ProbabilityMap", "inputspec.r_caudate_ProbabilityMap"), ( "l_hippocampus_ProbabilityMap", "inputspec.l_hippocampus_ProbabilityMap", ), ( "r_hippocampus_ProbabilityMap", "inputspec.r_hippocampus_ProbabilityMap", ), ("l_putamen_ProbabilityMap", "inputspec.l_putamen_ProbabilityMap"), ("r_putamen_ProbabilityMap", "inputspec.r_putamen_ProbabilityMap"), ( "l_thalamus_ProbabilityMap", "inputspec.l_thalamus_ProbabilityMap", ), ( "r_thalamus_ProbabilityMap", "inputspec.r_thalamus_ProbabilityMap", ), ( "l_accumben_ProbabilityMap", "inputspec.l_accumben_ProbabilityMap", ), ( "r_accumben_ProbabilityMap", "inputspec.r_accumben_ProbabilityMap", ), ("l_globus_ProbabilityMap", "inputspec.l_globus_ProbabilityMap"), ("r_globus_ProbabilityMap", "inputspec.r_globus_ProbabilityMap"), ( "trainModelFile_txtD0060NT0060_gz", "inputspec.trainModelFile_txtD0060NT0060_gz", ), ], ) ] ) if not onlyT1: baw200.connect( [ (inputsSpec, myLocalSegWF, [("t2_average", "inputspec.T2Volume")]), (inputsSpec, MergeStage2AverageImages, [("t2_average", "in2")]), ] ) file_count = 15 # Count of files to merge into MergeSessionSubjectToAtlas else: file_count = 14 # Count of files to merge into MergeSessionSubjectToAtlas ## NOTE: Element 0 of AccumulatePriorsList is the accumulated GM tissue # baw200.connect([(AccumulateLikeTissuePosteriorsNode, myLocalSegWF, # [(('AccumulatePriorsList', get_list_index, 0), "inputspec.TotalGM")]), # ]) ### Now define where the final organized outputs should go. DataSink = pe.Node( nio.DataSink(), name="CleanedDenoisedSegmentation_DS_" + str(subjectid) + "_" + str(sessionid), ) DataSink.overwrite = master_config["ds_overwrite"] DataSink.inputs.base_directory = master_config["resultdir"] # DataSink.inputs.regexp_substitutions = generate_output_patern(projectid, subjectid, sessionid,'BRAINSCut') # DataSink.inputs.regexp_substitutions = GenerateBRAINSCutImagesOutputPattern(projectid, subjectid, sessionid) DataSink.inputs.substitutions = [ ( "Segmentations", os.path.join( projectid, subjectid, sessionid, "CleanedDenoisedRFSegmentations" ), ), ("subjectANNLabel_", ""), ("ANNContinuousPrediction", ""), ("subject.nii.gz", ".nii.gz"), ("_seg.nii.gz", "_seg.nii.gz"), (".nii.gz", "_seg.nii.gz"), ("_seg_seg", "_seg"), ] baw200.connect( [ ( myLocalSegWF, DataSink, [ ( "outputspec.outputBinaryLeftCaudate", "Segmentations.@LeftCaudate", ), ( "outputspec.outputBinaryRightCaudate", "Segmentations.@RightCaudate", ), ( "outputspec.outputBinaryLeftHippocampus", "Segmentations.@LeftHippocampus", ), ( "outputspec.outputBinaryRightHippocampus", "Segmentations.@RightHippocampus", ), ( "outputspec.outputBinaryLeftPutamen", "Segmentations.@LeftPutamen", ), ( "outputspec.outputBinaryRightPutamen", "Segmentations.@RightPutamen", ), ( "outputspec.outputBinaryLeftThalamus", "Segmentations.@LeftThalamus", ), ( "outputspec.outputBinaryRightThalamus", "Segmentations.@RightThalamus", ), ( "outputspec.outputBinaryLeftAccumben", "Segmentations.@LeftAccumben", ), ( "outputspec.outputBinaryRightAccumben", "Segmentations.@RightAccumben", ), ("outputspec.outputBinaryLeftGlobus", "Segmentations.@LeftGlobus"), ( "outputspec.outputBinaryRightGlobus", "Segmentations.@RightGlobus", ), ( "outputspec.outputLabelImageName", "Segmentations.@LabelImageName", ), ("outputspec.outputCSVFileName", "Segmentations.@CSVFileName"), ], ), # (myLocalSegWF, DataSink, [('outputspec.cleaned_labels', 'Segmentations.@cleaned_labels')]) ] ) MergeStage2BinaryVolumesName = "99_MergeStage2BinaryVolumes_" + str(sessionid) MergeStage2BinaryVolumes = pe.Node( interface=Merge(12), run_without_submitting=True, name=MergeStage2BinaryVolumesName, ) baw200.connect( [ ( myLocalSegWF, MergeStage2BinaryVolumes, [ ("outputspec.outputBinaryLeftAccumben", "in1"), ("outputspec.outputBinaryLeftCaudate", "in2"), ("outputspec.outputBinaryLeftPutamen", "in3"), ("outputspec.outputBinaryLeftGlobus", "in4"), ("outputspec.outputBinaryLeftThalamus", "in5"), ("outputspec.outputBinaryLeftHippocampus", "in6"), ("outputspec.outputBinaryRightAccumben", "in7"), ("outputspec.outputBinaryRightCaudate", "in8"), ("outputspec.outputBinaryRightPutamen", "in9"), ("outputspec.outputBinaryRightGlobus", "in10"), ("outputspec.outputBinaryRightThalamus", "in11"), ("outputspec.outputBinaryRightHippocampus", "in12"), ], ) ] ) ## SnapShotWriter for Segmented result checking: SnapShotWriterNodeName = "SnapShotWriter_" + str(sessionid) SnapShotWriter = pe.Node( interface=BRAINSSnapShotWriter(), name=SnapShotWriterNodeName ) SnapShotWriter.inputs.outputFilename = ( "snapShot" + str(sessionid) + ".png" ) # output specification SnapShotWriter.inputs.inputPlaneDirection = [2, 1, 1, 1, 1, 0, 0] SnapShotWriter.inputs.inputSliceToExtractInPhysicalPoint = [ -3, -7, -3, 5, 7, 22, -22, ] baw200.connect( [ (MergeStage2AverageImages, SnapShotWriter, [("out", "inputVolumes")]), (MergeStage2BinaryVolumes, SnapShotWriter, [("out", "inputBinaryVolumes")]), ( SnapShotWriter, DataSink, [("outputFilename", "Segmentations.@outputSnapShot")], ), ] ) # currentAntsLabelWarpToSubject = 'AntsLabelWarpToSubject' + str(subjectid) + "_" + str(sessionid) # AntsLabelWarpToSubject = pe.Node(interface=ants.ApplyTransforms(), name=currentAntsLabelWarpToSubject) # # AntsLabelWarpToSubject.inputs.num_threads = -1 # AntsLabelWarpToSubject.inputs.dimension = 3 # AntsLabelWarpToSubject.inputs.output_image = 'warped_hncma_atlas_seg.nii.gz' # AntsLabelWarpToSubject.inputs.interpolation = "MultiLabel" # # baw200.connect([(A2SantsRegistrationPostABCSyN, AntsLabelWarpToSubject, [('composite_transform', 'transforms')]), # (inputsSpec, AntsLabelWarpToSubject, [('t1_average', 'reference_image'), # ('hncma_atlas', 'input_image')]) # ]) # ##### # ### Now define where the final organized outputs should go. # AntsLabelWarpedToSubject_DSName = "AntsLabelWarpedToSubject_DS_" + str(sessionid) # AntsLabelWarpedToSubject_DS = pe.Node(nio.DataSink(), name=AntsLabelWarpedToSubject_DSName) # AntsLabelWarpedToSubject_DS.overwrite = master_config['ds_overwrite'] # AntsLabelWarpedToSubject_DS.inputs.base_directory = master_config['resultdir'] # AntsLabelWarpedToSubject_DS.inputs.substitutions = [('AntsLabelWarpedToSubject', os.path.join(projectid, subjectid, sessionid, 'AntsLabelWarpedToSubject'))] # # baw200.connect([(AntsLabelWarpToSubject, AntsLabelWarpedToSubject_DS, [('output_image', 'AntsLabelWarpedToSubject')])]) MergeSessionSubjectToAtlasName = "99_MergeSessionSubjectToAtlas_" + str(sessionid) MergeSessionSubjectToAtlas = pe.Node( interface=Merge(file_count), run_without_submitting=True, name=MergeSessionSubjectToAtlasName, ) baw200.connect( [ ( myLocalSegWF, MergeSessionSubjectToAtlas, [ ("outputspec.outputBinaryLeftAccumben", "in1"), ("outputspec.outputBinaryLeftCaudate", "in2"), ("outputspec.outputBinaryLeftPutamen", "in3"), ("outputspec.outputBinaryLeftGlobus", "in4"), ("outputspec.outputBinaryLeftThalamus", "in5"), ("outputspec.outputBinaryLeftHippocampus", "in6"), ("outputspec.outputBinaryRightAccumben", "in7"), ("outputspec.outputBinaryRightCaudate", "in8"), ("outputspec.outputBinaryRightPutamen", "in9"), ("outputspec.outputBinaryRightGlobus", "in10"), ("outputspec.outputBinaryRightThalamus", "in11"), ("outputspec.outputBinaryRightHippocampus", "in12"), ], ), # (FixWMPartitioningNode, MergeSessionSubjectToAtlas, [('UpdatedPosteriorsList', 'in13')]), ( inputsSpec, MergeSessionSubjectToAtlas, [("UpdatedPosteriorsList", "in13")], ), (inputsSpec, MergeSessionSubjectToAtlas, [("t1_average", "in14")]), ] ) if not onlyT1: assert file_count == 15 baw200.connect( [(inputsSpec, MergeSessionSubjectToAtlas, [("t2_average", "in15")])] ) LinearSubjectToAtlasANTsApplyTransformsName = ( "LinearSubjectToAtlasANTsApplyTransforms_" + str(sessionid) ) LinearSubjectToAtlasANTsApplyTransforms = pe.MapNode( interface=ants.ApplyTransforms(), iterfield=["input_image"], name=LinearSubjectToAtlasANTsApplyTransformsName, ) LinearSubjectToAtlasANTsApplyTransforms.inputs.num_threads = -1 LinearSubjectToAtlasANTsApplyTransforms.inputs.interpolation = "Linear" baw200.connect( [ ( A2SantsRegistrationPostABCSyN, LinearSubjectToAtlasANTsApplyTransforms, [("inverse_composite_transform", "transforms")], ), ( inputsSpec, LinearSubjectToAtlasANTsApplyTransforms, [("template_t1", "reference_image")], ), ( MergeSessionSubjectToAtlas, LinearSubjectToAtlasANTsApplyTransforms, [("out", "input_image")], ), ] ) MergeMultiLabelSessionSubjectToAtlasName = ( "99_MergeMultiLabelSessionSubjectToAtlas_" + str(sessionid) ) MergeMultiLabelSessionSubjectToAtlas = pe.Node( interface=Merge(2), run_without_submitting=True, name=MergeMultiLabelSessionSubjectToAtlasName, ) baw200.connect( [ ( inputsSpec, MergeMultiLabelSessionSubjectToAtlas, [("inputLabels", "in1"), ("inputHeadLabels", "in2")], ) ] ) ### This is taking this sessions RF label map back into NAC atlas space. # { MultiLabelSubjectToAtlasANTsApplyTransformsName = ( "MultiLabelSubjectToAtlasANTsApplyTransforms_" + str(sessionid) + "_map" ) MultiLabelSubjectToAtlasANTsApplyTransforms = pe.MapNode( interface=ants.ApplyTransforms(), iterfield=["input_image"], name=MultiLabelSubjectToAtlasANTsApplyTransformsName, ) MultiLabelSubjectToAtlasANTsApplyTransforms.inputs.num_threads = -1 MultiLabelSubjectToAtlasANTsApplyTransforms.inputs.interpolation = "MultiLabel" baw200.connect( [ ( A2SantsRegistrationPostABCSyN, MultiLabelSubjectToAtlasANTsApplyTransforms, [("inverse_composite_transform", "transforms")], ), ( inputsSpec, MultiLabelSubjectToAtlasANTsApplyTransforms, [("template_t1", "reference_image")], ), ( MergeMultiLabelSessionSubjectToAtlas, MultiLabelSubjectToAtlasANTsApplyTransforms, [("out", "input_image")], ), ] ) # } ### Now we must take the sessions to THIS SUBJECTS personalized atlas. # { # } ### Now define where the final organized outputs should go. Subj2Atlas_DSName = "SubjectToAtlas_DS_" + str(sessionid) Subj2Atlas_DS = pe.Node(nio.DataSink(), name=Subj2Atlas_DSName) Subj2Atlas_DS.overwrite = master_config["ds_overwrite"] Subj2Atlas_DS.inputs.base_directory = master_config["resultdir"] Subj2Atlas_DS.inputs.regexp_substitutions = [ (r"_LinearSubjectToAtlasANTsApplyTransforms_[^/]*", r"" + sessionid + "/") ] baw200.connect( [ ( LinearSubjectToAtlasANTsApplyTransforms, Subj2Atlas_DS, [("output_image", "SubjectToAtlasWarped.@linear_output_images")], ) ] ) Subj2AtlasTransforms_DSName = "SubjectToAtlasTransforms_DS_" + str(sessionid) Subj2AtlasTransforms_DS = pe.Node(nio.DataSink(), name=Subj2AtlasTransforms_DSName) Subj2AtlasTransforms_DS.overwrite = master_config["ds_overwrite"] Subj2AtlasTransforms_DS.inputs.base_directory = master_config["resultdir"] Subj2AtlasTransforms_DS.inputs.regexp_substitutions = [ (r"SubjectToAtlasWarped", r"SubjectToAtlasWarped/" + sessionid + "/") ] baw200.connect( [ ( A2SantsRegistrationPostABCSyN, Subj2AtlasTransforms_DS, [ ( "composite_transform", "SubjectToAtlasWarped.@composite_transform", ), ( "inverse_composite_transform", "SubjectToAtlasWarped.@inverse_composite_transform", ), ], ) ] ) # baw200.connect([(MultiLabelSubjectToAtlasANTsApplyTransforms, Subj2Atlas_DS, [('output_image', 'SubjectToAtlasWarped.@multilabel_output_images')])]) if master_config["plugin_name"].startswith( "SGE" ): # for some nodes, the qsub call needs to be modified on the cluster A2SantsRegistrationPostABCSyN.plugin_args = { "template": master_config["plugin_args"]["template"], "overwrite": True, "qsub_args": modify_qsub_args(master_config["queue"], 8, 8, 24), } SnapShotWriter.plugin_args = { "template": master_config["plugin_args"]["template"], "overwrite": True, "qsub_args": modify_qsub_args(master_config["queue"], 1, 1, 1), } LinearSubjectToAtlasANTsApplyTransforms.plugin_args = { "template": master_config["plugin_args"]["template"], "overwrite": True, "qsub_args": modify_qsub_args(master_config["queue"], 1, 1, 1), } MultiLabelSubjectToAtlasANTsApplyTransforms.plugin_args = { "template": master_config["plugin_args"]["template"], "overwrite": True, "qsub_args": modify_qsub_args(master_config["queue"], 1, 1, 1), } return baw200
"""1725. Number Of Rectangles That Can Form The Largest Square https://leetcode.com/problems/number-of-rectangles-that-can-form-the-largest-square/ """ from typing import List def count_good_rectangles(rectangles: List[List[int]]) -> int: k = min(rectangles[0]) for l, w in rectangles: k = max(k, min(l, w)) ans = 0 for l, w in rectangles: if l >= k and w >= k: ans += 1 return ans
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'messenger.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Messenger(object): def setupUi(self, Messenger): Messenger.setObjectName("Messenger") Messenger.resize(369, 481) self.centralwidget = QtWidgets.QWidget(Messenger) self.centralwidget.setObjectName("centralwidget") self.sendButton = QtWidgets.QPushButton(self.centralwidget) self.sendButton.setGeometry(QtCore.QRect(300, 410, 51, 32)) self.sendButton.setObjectName("sendButton") self.textInput = QtWidgets.QTextEdit(self.centralwidget) self.textInput.setGeometry(QtCore.QRect(20, 410, 271, 31)) self.textInput.setObjectName("textInput") self.messagesBrowser = QtWidgets.QTextBrowser(self.centralwidget) self.messagesBrowser.setGeometry(QtCore.QRect(20, 100, 331, 291)) self.messagesBrowser.setObjectName("messagesBrowser") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(100, 17, 171, 31)) font = QtGui.QFont() font.setPointSize(20) self.label.setFont(font) self.label.setObjectName("label") self.nameInput = QtWidgets.QLineEdit(self.centralwidget) self.nameInput.setGeometry(QtCore.QRect(238, 60, 113, 21)) self.nameInput.setObjectName("nameInput") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(203, 63, 31, 16)) self.label_2.setObjectName("label_2") Messenger.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(Messenger) self.statusbar.setObjectName("statusbar") Messenger.setStatusBar(self.statusbar) self.retranslateUi(Messenger) QtCore.QMetaObject.connectSlotsByName(Messenger) def retranslateUi(self, Messenger): _translate = QtCore.QCoreApplication.translate Messenger.setWindowTitle(_translate("Messenger", "Messenger")) self.sendButton.setText(_translate("Messenger", ">")) self.textInput.setPlaceholderText(_translate("Messenger", "Введите текст...")) self.label.setText(_translate("Messenger", "Skillbox Messenger")) self.nameInput.setPlaceholderText(_translate("Messenger", "Введите имя...")) self.label_2.setText(_translate("Messenger", "Имя:"))
"""Implementation of Fowler's Money pattern""" from __future__ import annotations from math import floor from decimal import Decimal, ROUND_HALF_EVEN from re import sub import operator from babel.numbers import format_currency class Money: """ Money class that implements Fowler's Money pattern: https://martinfowler.com/eaaCatalog/money.html """ def __init__(self, amount: int): self.__assert_amount(amount) self.__amount = amount self.__currency = "USD" def instance(self, amount: int) -> Money: """ Return new money object using the given amount """ self.__assert_amount(amount) return self.__class__(amount) def __str__(self): return format_currency( float(self.amount / 100), self.__currency, format=None, locale="en_US", currency_digits=True, format_type="standard") @staticmethod def from_float(amount: float) -> Money: """ Return new money object instantiated from a float value """ if not isinstance(amount, float): raise ValueError("Amount must be a float") return Money(floor(amount * 100)) @staticmethod def from_string(currency_str: str) -> Money: """ Return new money object instantiated from a string currency value """ if not isinstance(currency_str, str): raise ValueError("Amount must be a string") value = Decimal(sub(r'[^\d.]', '', currency_str)) return Money.from_float(float(value)) @staticmethod def __assert_amount(amount): """ Assert that given amount is an integer """ if not isinstance(amount, int): raise ValueError("Amount must be an integer") @staticmethod def __assert_operand(operand): """ Assert that given operand is a numeric type """ if not isinstance(operand, (int, float)): raise ValueError("Operand must be a numeric value") @property def amount(self) -> int: """ Return money amount """ return self.__amount def __add__(self, other) -> Money: """ Return a new money object that amounts to sum of this object and given money object """ if isinstance(other, Money): return self.__class__(self.amount + other.amount) self.__assert_amount(other) return self.__class__(self.amount + other) def __radd__(self, other): """ Return a new money object that amounts to sum of this object and given money object """ return self.__add__(other) def __sub__(self, other) -> Money: """ Return a new money object that amounts to difference of this object and given money object """ if isinstance(other, Money): return self.__class__(self.amount - other.amount) self.__assert_amount(other) return self.__class__(self.amount - other) def __rsub__(self, other): """ Return a new money object that amounts to difference of this object and given money object """ return (-self).__add__(other) def __mul__(self, factor: (int, float)) -> Money: """ Return a new money object that amounts to product of this object and given money object """ self.__assert_operand(factor) return self.__class__(round(self.amount * factor)) def __rmul__(self, factor) -> Money: """ Return a new money object that amounts to product of this object and given money object """ return self.__mul__(factor) def __truediv__(self, other) -> Money: """ Return a new money object that amounts to quotient of this object and given money object """ if isinstance(other, Money): if other.amount == 0: raise ZeroDivisionError() return round(self.amount / other.amount) self.__assert_operand(other) if other == 0: raise ZeroDivisionError() return self.__class__(round(self.amount / other)) def __floordiv__(self, other) -> Money: """ Return a new money object that amounts to quotient of this object and given money object """ if isinstance(other, Money): if other.amount == 0: raise ZeroDivisionError() return self.amount // other.amount self.__assert_operand(other) if other == 0: raise ZeroDivisionError() return self.__class__(self.amount // other) def __eq__(self, other) -> bool: """ Check if given money object value and currency matches this object """ if isinstance(other, Money): return self.amount == other.amount self.__assert_amount(other) return self.amount == other def __gt__(self, other) -> bool: """ Check if object amount is greater than given money amount """ return self.__compare(other, operator.gt) def __ge__(self, other) -> bool: """ Check if object amount is greater or if it equals to given money amount """ return self.__compare(other, operator.ge) def __lt__(self, other) -> bool: """ Check if object amount is less than given money amount """ return self.__compare(other, operator.lt) def __le__(self, other) -> bool: """ Check if object amount is less or if it equals to given money amount """ return self.__compare(other, operator.le) def __compare(self, other, comparison_operator) -> bool: """ Compare object amount to given money amount using the provided comparison operator """ if isinstance(other, Money): return comparison_operator(self.amount, other.amount) self.__assert_amount(other) return comparison_operator(self.amount, other) def __round__(self) -> Money: """ Return a new money object with a rounded amount """ decimal_value = Decimal(self.amount / 100) quantized_value = decimal_value.quantize(exp=Decimal(1.00), rounding=ROUND_HALF_EVEN) rounded = int(quantized_value) return self.__class__(rounded * 100) def __int__(self) -> int: """ Return an int representation of a money object """ return self.amount def __float__(self) -> float: """ Return a float representation of a money object """ return round(self.amount / 100, 2) def __neg__(self): """ Return a new money object with a negative amount """ return self.__class__(-self.amount) def __pos__(self): """ Return a new money object with a positive amount """ return self.__class__(+self.amount) def __abs__(self): """ Return a new money object with an absolute value of the amount """ return self.__class__(abs(self.amount))
# -*- coding: utf-8 -*- """ migrated from TheCannon package """ import numpy as np # from functools import partial # from multiprocessing import Pool # import matplotlib.pyplot as plt import scipy.optimize as opt LARGE = 200. SMALL = 1. / LARGE def _partial_func(func, *args, **kwargs): """ something """ def wrap(x, *p): return func(x, p, **kwargs) return wrap def gaussian_weight_matrix(wl, L): """ Matrix of Gaussian weights Parameters ---------- wl: numpy ndarray pixel wavelength values L: float width of Gaussian Return ------ Weight matrix """ return np.exp(-0.5*(wl[:,None]-wl[None,:])**2/L**2) def _sinusoid(x, p, L, y): """ Return the sinusoid cont func evaluated at input x for the continuum. Parameters ---------- x: float or np.array data, input to function p: ndarray coefficients of fitting function L: float width of x data y: float or np.array output data corresponding to input x Returns ------- func: float function evaluated for the input x """ N = int(len(p)/2) n = np.linspace(0, N, N+1) k = n*np.pi/L func = 0 for n in range(0, N): func += p[2*n]*np.sin(k[n]*x)+p[2*n+1]*np.cos(k[n]*x) return func def _weighted_median(values, weights, quantile): """ Calculate a weighted median for values above a particular quantile cut Used in pseudo continuum normalization Parameters ---------- values: np ndarray of floats the values to take the median of weights: np ndarray of floats the weights associated with the values quantile: float the cut applied to the input data Returns ------ the weighted median """ sindx = np.argsort(values) cvalues = 1. * np.cumsum(weights[sindx]) cvalues = cvalues / cvalues[-1] foo = sindx[cvalues > quantile] if len(foo) == 0: return values[0] indx = foo[0] return values[indx] def _find_cont_gaussian_smooth(wl, fluxes, ivars, w): """ Returns the weighted mean block of spectra Parameters ---------- wl: numpy ndarray wavelength vector flux: numpy ndarray block of flux values ivar: numpy ndarray block of ivar values L: float width of Gaussian used to assign weights Returns ------- smoothed_fluxes: numpy ndarray block of smoothed flux values, mean spectra """ print("Finding the continuum") bot = np.dot(ivars, w.T) top = np.dot(fluxes*ivars, w.T) bad = bot == 0 cont = np.zeros(top.shape) cont[~bad] = top[~bad] / bot[~bad] return cont # why dataset? def _cont_norm_gaussian_smooth(dataset, L): """ Continuum normalize by dividing by a Gaussian-weighted smoothed spectrum Parameters ---------- dataset: Dataset the dataset to continuum normalize L: float the width of the Gaussian used for weighting Returns ------- dataset: Dataset updated dataset """ print("Gaussian smoothing the entire dataset...") w = gaussian_weight_matrix(dataset.wl, L) print("Gaussian smoothing the training set") cont = _find_cont_gaussian_smooth( dataset.wl, dataset.tr_flux, dataset.tr_ivar, w) norm_tr_flux, norm_tr_ivar = _cont_norm( dataset.tr_flux, dataset.tr_ivar, cont) print("Gaussian smoothing the test set") cont = _find_cont_gaussian_smooth( dataset.wl, dataset.test_flux, dataset.test_ivar, w) norm_test_flux, norm_test_ivar = _cont_norm( dataset.test_flux, dataset.test_ivar, cont) return norm_tr_flux, norm_tr_ivar, norm_test_flux, norm_test_ivar def _find_cont_fitfunc(fluxes, ivars, contmask, deg, ffunc): """ Fit a continuum to a continuum pixels in a segment of spectra Functional form can be either sinusoid or chebyshev, with specified degree Parameters ---------- fluxes: numpy ndarray of shape (nstars, npixels) training set or test set pixel intensities ivars: numpy ndarray of shape (nstars, npixels) inverse variances, parallel to fluxes contmask: numpy ndarray of length (npixels) boolean pixel mask, True indicates that pixel is continuum deg: int degree of fitting function ffunc: str type of fitting function, chebyshev or sinusoid Returns ------- cont: numpy ndarray of shape (nstars, npixels) the continuum, parallel to fluxes """ nstars = fluxes.shape[0] npixels = fluxes.shape[1] cont = np.zeros(fluxes.shape) for jj in range(nstars): flux = fluxes[jj,:] ivar = ivars[jj,:] pix = np.arange(0, npixels) y = flux[contmask] x = pix[contmask] yivar = ivar[contmask] yivar[yivar == 0] = SMALL**2 if ffunc=="sinusoid": p0 = np.ones(deg*2) # one for cos, one for sin L = max(x)-min(x) pcont_func = _partial_func(_sinusoid, L=L, y=flux) popt, pcov = opt.curve_fit(pcont_func, x, y, p0=p0, sigma=1./np.sqrt(yivar)) elif ffunc=="chebyshev": fit = np.polynomial.chebyshev.Chebyshev.fit(x=x,y=y,w=yivar,deg=deg) for element in pix: if ffunc=="sinusoid": cont[jj,element] = _sinusoid(element, popt, L=L, y=flux) elif ffunc=="chebyshev": cont[jj,element] = fit(element) return cont def _find_cont_fitfunc_regions(fluxes, ivars, contmask, deg, ranges, ffunc): """ Run fit_cont, dealing with spectrum in regions or chunks This is useful if a spectrum has gaps. Parameters ---------- fluxes: ndarray of shape (nstars, npixels) training set or test set pixel intensities ivars: numpy ndarray of shape (nstars, npixels) inverse variances, parallel to fluxes contmask: numpy ndarray of length (npixels) boolean pixel mask, True indicates that pixel is continuum deg: int degree of fitting function ffunc: str type of fitting function, chebyshev or sinusoid Returns ------- cont: numpy ndarray of shape (nstars, npixels) the continuum, parallel to fluxes """ nstars = fluxes.shape[0] npixels = fluxes.shape[1] cont = np.zeros(fluxes.shape) for chunk in ranges: start = chunk[0] stop = chunk[1] if ffunc=="chebyshev": output = _find_cont_fitfunc(fluxes[:,start:stop], ivars[:,start:stop], contmask[start:stop], deg=deg, ffunc="chebyshev") elif ffunc=="sinusoid": output = _find_cont_fitfunc(fluxes[:,start:stop], ivars[:,start:stop], contmask[start:stop], deg=deg, ffunc="sinusoid") cont[:,start:stop] = output return cont def _find_cont_running_quantile(wl, fluxes, ivars, q, delta_lambda, verbose=False): """ Perform continuum normalization using a running quantile Parameters ---------- wl: numpy ndarray wavelength vector fluxes: numpy ndarray of shape (nstars, npixels) pixel intensities ivars: numpy ndarray of shape (nstars, npixels) inverse variances, parallel to fluxes q: float the desired quantile cut delta_lambda: int the number of pixels over which the median is calculated Output ------ norm_fluxes: numpy ndarray of shape (nstars, npixels) normalized pixel intensities norm_ivars: numpy ndarray of shape (nstars, npixels) rescaled pixel invariances """ if verbose: print("contnorm.py: continuum norm using running quantile") cont = np.zeros(fluxes.shape) nstars = fluxes.shape[0] for jj in range(nstars): if verbose: print("cont_norm_q(): working on star %s" %jj) flux = fluxes[jj,:] ivar = ivars[jj,:] for ll, lam in enumerate(wl): indx = (np.where(abs(wl-lam) < delta_lambda))[0] flux_cut = flux[indx] ivar_cut = ivar[indx] cont[jj,ll] = _weighted_median(flux_cut, ivar_cut, q) return cont def _cont_norm_running_quantile(wl, fluxes, ivars, q, delta_lambda, verbose=False): cont = _find_cont_running_quantile(wl, fluxes, ivars, q, delta_lambda) norm_fluxes = np.ones(fluxes.shape) norm_ivars = np.zeros(ivars.shape) norm_fluxes[cont!=0] = fluxes[cont!=0] / cont[cont!=0] norm_ivars = cont**2 * ivars return norm_fluxes, norm_ivars def _cont_norm_running_quantile_regions(wl, fluxes, ivars, q, delta_lambda, ranges, verbose=False): """ Perform continuum normalization using running quantile, for spectrum that comes in chunks """ # print("contnorm.py: continuum norm using running quantile") if verbose: print("Taking spectra in %s chunks" %len(ranges)) nstars = fluxes.shape[0] norm_fluxes = np.zeros(fluxes.shape) norm_ivars = np.zeros(ivars.shape) for chunk in ranges: start = chunk[0] stop = chunk[1] output = _cont_norm_running_quantile( wl[start:stop], fluxes[:,start:stop], ivars[:,start:stop], q, delta_lambda) norm_fluxes[:,start:stop] = output[0] norm_ivars[:,start:stop] = output[1] return norm_fluxes, norm_ivars def _cont_norm(fluxes, ivars, cont): """ Continuum-normalize a continuous segment of spectra. Parameters ---------- fluxes: numpy ndarray pixel intensities ivars: numpy ndarray inverse variances, parallel to fluxes contmask: boolean mask True indicates that pixel is continuum Returns ------- norm_fluxes: numpy ndarray normalized pixel intensities norm_ivars: numpy ndarray rescaled inverse variances """ nstars = fluxes.shape[0] npixels = fluxes.shape[1] norm_fluxes = np.ones(fluxes.shape) norm_ivars = np.zeros(ivars.shape) bad = cont == 0. norm_fluxes = np.ones(fluxes.shape) norm_fluxes[~bad] = fluxes[~bad] / cont[~bad] norm_ivars = cont**2 * ivars return norm_fluxes, norm_ivars def _cont_norm_regions(fluxes, ivars, cont, ranges): """ Perform continuum normalization for spectra in chunks Useful for spectra that have gaps Parameters --------- fluxes: numpy ndarray pixel intensities ivars: numpy ndarray inverse variances, parallel to fluxes cont: numpy ndarray the continuum ranges: list or np ndarray the chunks that the spectrum should be split into Returns ------- norm_fluxes: numpy ndarray normalized pixel intensities norm_ivars: numpy ndarray rescaled inverse variances """ nstars = fluxes.shape[0] norm_fluxes = np.zeros(fluxes.shape) norm_ivars = np.zeros(ivars.shape) for chunk in ranges: start = chunk[0] stop = chunk[1] output = _cont_norm(fluxes[:,start:stop], ivars[:,start:stop], cont[:,start:stop]) norm_fluxes[:,start:stop] = output[0] norm_ivars[:,start:stop] = output[1] for jj in range(nstars): bad = (norm_ivars[jj,:] == 0.) norm_fluxes[jj,:][bad] = 1. return norm_fluxes, norm_ivars # ############################ # here below goes my functions # ############################ # def _cont_norm_running_quantile(wave, flux)
#from core.classifier import CustomizedClassifier,isbad #classifier class from core import xyz #coorddb class (holds the data) import math #sklearn module - does the classification import core.classifier as classifier from core.classifier import * import traceback from sklearn import semi_supervised class SpectralClassifier(classifier.CustomizedClassifier): ''' Parameters: cltype="LabelSpreading", x=data("RAW_HEIGHTS"), y=exceeds("SCORE", 0.5), unlabelled_files = None, result = "SPECTRAL_PROB", **args where cltype is a classifier in sklearn.semi_supervised (i.e. LabelSpreading or LabelPropagation) ** args are as in sklearn (e.g. kernel='knn', n_neighbors=3) ''' def __init__(self, cltype="LabelSpreading", x=data("RAW_HEIGHTS"), y=exceeds("SCORE", 0.5), unlabelled_files = None, result = "SPECTRAL_PROB", y_is_1d=True, predict_prob = False, preprocess_fun = None, **args): f = getattr(semi_supervised, cltype) clf = f(**args) self.unlabelled_files = unlabelled_files if unlabelled_files is not None else [] #clf.predict = clf.predict_proba #we do not want to get just True or False, but a number in between classifier.CustomizedClassifier.__init__(self, x, y, result, clf, y_is_1d, predict_prob, preprocess_fun) def train_files(self, files): data = self.load_data(files, True) udata = self.load_data(self.unlabelled_files, False) self.train(data, udata) #could create intermediate SemisupervisedClassifier def train(self, db, udb): #print db.data["Y"][:10] y = self.y_to_1d(db.data["Y"]) + [-1] * udb.size positive = len([yy for yy in y if yy > 0]) self.show_info("Train total:"+ str(len(y))+"\n") self.show_info("Train positive:"+ str(positive)+"\n") self.show_info("Train unlabeled:"+ str(udb.size)+"\n") try: self.clf.fit(db.data["X"] + udb.data["X"], y) except MemoryError: self.show_info("Out of memory.") raise except: self.show_info(traceback.format_exc()) print ('''Saving X to X.pickle; python -ic "import pickle; X = pickle.load(open('X.pickle','rb'))" to find problem''') f = open("X.pickle", "wb") pickle.dump(db.data["X"],f) f.close() raise #todo: extract from the signature? @classmethod def default_args(cl): return "" #core.classifier.cl_items.register(KnnClassifier, "k-nearest neighbours")
#!/usr/bin/env python import os import yaml import logging import pymysql from connections import Connections __dir__ = os.path.dirname(__file__) config = yaml.safe_load(open(os.path.join(__dir__, "../default_config.yaml"))) try: config.update(yaml.safe_load(open(os.path.join(__dir__, "../config.yaml")))) except IOError: # is ok if we do not have config.yaml pass logging.basicConfig( filename=config['KILLER_LOG_PATH'], level=logging.INFO, format='%(asctime)s pid:%(process)d %(message)s' ) logging.info("Started killer process, with limit %s", config['QUERY_TIME_LIMIT']) conn = Connections(config) cur = conn.replica.cursor() try: cur.execute('SHOW PROCESSLIST') queries = cur.fetchall() logging.info("Found %s queries running", len(queries)) to_kill = [q for q in queries if q[5] > config['QUERY_TIME_LIMIT'] and q[4] != 'Sleep'] logging.info("Found %s queries to kill", len(to_kill)) for q in to_kill: try: cur.execute('KILL QUERY %s', q[0]) logging.info("Killed query with thread_id:%s" % q[0]) except pymysql.InternalError as e: if e.args[0] == 1094: # Error code for 'no such thread' logging.info('Query with thread_id:%s dead before it could be killed') else: raise finally: logging.info("Finished killer process") cur.close() conn.close_all()
import cv2 import sys # from PIL import Image import numpy as np import os import base64 # import sys import io from PIL import Image cascade_file = "haarcascade_frontalface_default.xml" #만약 dataset이라는 폴더 못찾으면 만들도록 설정 path_data = 'dataset' if path_data not in os.listdir(): os.mkdir(path_data) def cropImage(path, cnt): num = 1 files = os.listdir(path) # path에 있는 파일들에 대해서 얼굴 인식해서 크롭 후 dataset폴더에 저장하는 과정 수행 for file in files: img = cv2.imread(os.path.join(path, file)) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) face_cascade = cv2.CascadeClassifier(cascade_file) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: cropped = img[y - int(h / 4):y + h + int(h / 4), x - int(w / 4):x + w + int(w / 4)] cv2.imwrite("dataset/User." + str(cnt) + '.' + str(num) + ".jpg", cropped) num += 1 def decode_img(msg): msg = msg[msg.find(b"<plain_txt_msg:img>")+len(b"<plain_txt_msg:img>"): msg.find(b"<!plain_txt_msg>")] msg = base64.b64decode(msg) buf = io.BytesIO(msg) img = Image.open(buf) return img #path ='../nCube-Thyme-Nodejs-master/note.txt' path = '/home/pi/Desktop/Documents/nCube-Thyme-Nodejs-master/note2.txt' f = open(path,'rb') #fileread = f.read()+b"<!plain_txt_msg>" fileread = f.read() print(fileread) decoding_img = decode_img(fileread) print(decode_img) resize=decoding_img.resize((720,720)) resize.save('./decodinpi g2.jpg') f.close() cnt=1 #dataset 폴더에 있는 이미지들로 학습 수행 recognizer = cv2.face.LBPHFaceRecognizer_create() detector = cv2.CascadeClassifier(cascade_file) # 이미지랑 label 데이터 얻기 def getImagesAndLabels(path): imagePaths = [os.path.join(path,f) for f in os.listdir(path)] faceSamples=[] ids = [] for imagePath in imagePaths: PIL_img = Image.open(imagePath).convert('L') # convert it to grayscale img_numpy = np.array(PIL_img,'uint8') id = int(os.path.split(imagePath)[-1].split(".")[1]) faces = detector.detectMultiScale(img_numpy) for (x,y,w,h) in faces: faceSamples.append(img_numpy[y:y+h,x:x+w]) ids.append(id) return faceSamples,ids #print ("\n [INFO] Training faces. It will take a few seconds. Wait ...") faces,ids = getImagesAndLabels(path_data) recognizer.train(faces, np.array(ids)) # Save the model into trainer/trainer.yml recognizer.write('trainer/trainer.yml') # recognizer.save() worked on Mac, but not on Pi # Print the numer of faces trained and end program #print("\n [INFO] {0} faces trained. Exiting Program".format(len(np.unique(ids)))) cv2.waitKey(0) cv2.destroyAllWindows()
""" Module cart3d -- Cartesian coordinates, 3 axes, double-precision. Includes class Cart3d. """ import array as ar class Cart3d(): "A 3-element tuple of double-precision values." prefix = "Cart3d." enumx = (0, 1, 2) # enumeration of indices zeros = [ 0.0, 0.0, 0.0 ] def __init__(self, *args) -> None: acnt = len(args) # argument count if acnt == 0: # no args, fill with zeros self.elems = ar.array('d', Cart3d.zeros) elif acnt == 1: if isinstance(args[0], list) and len(args[0]) == 3: # list comprised of 3 floats self.elems = ar.array('d', args[0]) elif isinstance(args[0], Cart3d): # Cart3d self.elems = args[0].elems else: raise TypeError('Cart3d __init__ unknown argument') elif acnt == 3 and isinstance(args[0], float): # 3 floats self.elems = ar.array('d', args) else: raise TypeError('Cart3d __init__ unrecognized args count') def __repr__(self): return Cart3d.prefix+self.elems.__repr__() def __add__(self, other): # Cart3d + Cart3d c = Cart3d() for i in Cart3d.enumx: c.elems[i] = self.elems[i] + other.elems[i] return c def __sub__(self, other) : # Cart3d - Cart3d c = Cart3d() for i in Cart3d.enumx: c.elems[i] = self.elems[i] - other.elems[i] return c def __mul__(self, other): c = Cart3d() if isinstance(other, float): # Cart3d * float for i in Cart3d.enumx: c.elems[i] = self.elems[i] * other return c elif isinstance(other, Cart3d): # Cart3d * Cart3d (dot product) s = 0.0 for i in Cart3d.enumx: s += self.elems[i] * other.elems[i] return s def __truediv__(self, other): # Cart3d / float c = Cart3d() for i in Cart3d.enumx: c.elems[i] = self.elems[i] / other return c def __iadd__(self, other): # Cart3d += Cart3d for i in Cart3d.enumx: self.elems[i] += other.elems[i] return self def __isub__(self, other): # Cart3d -= Cart3d for i in Cart3d.enumx: self.elems[i] -= other.elems[i] return self def __imul__(self, other): # Cart3d *= float c = Cart3d() for i in Cart3d.enumx: c.elems[i] = self.elems[i] * other return c def __itruediv__(self, other): # Cart3d /= float c = Cart3d() for i in Cart3d.enumx: c.elems[i] = self.elems[i] / other return c def fromlist(self, ll): assert len(ll) == 3 self.elems = ar.array('d', ll)
def configuration(parent_package='',top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('skinematics', parent_package, top_path) ''' # An example Fortran extension config.add_extension( 'fortran_stuff', sources=['fortran_stuff.f90'] ) ''' config.add_subpackage('tests') return config
import radical.utils as _ru import os from prof_utils import * _pwd = os.path.dirname (__file__) _root = "%s/.." % _pwd version_short, version_detail, version_base, version_branch, \ sdist_name, sdist_path = _ru.get_version([_root, _pwd]) version = version_short
''' --------------------------------------------- MyDict - My version of the class Dictionary Author: Kethan Vegunta --------------------------------------------- Description: My version of the python dictionary. It's syntax is very similar to a regular python dict. ''' import pickle class MyDict: ''' Create MyDict object: myDict1 = MyDict() ''' def __init__(self): pass ''' Get Item: myDict1["hi"] ''' def __getitem__(self, key): return getattr(self, self.__convert_item_to_str(key)) ''' Set Item: myDict1["hi"] = 1 ''' def __setitem__(self, key, value): setattr(self, self.__convert_item_to_str(key), value) ''' Delete Item: del myDict1["hi"] or myDict1.pop("hi") ''' def __delitem__(self, key): delattr(self, self.__convert_item_to_str(key)) ''' Iterate Through MyDict: for key in myDict1: print(key) ''' def __iter__(self): for key in list(vars(self)): yield self.__convert_str_to_item(key) ''' keys() returns a set containing all the keys Iterate Through MyDict Keys: for key in myDict1.keys(): print(key) ''' def keys(self): return {self.__convert_str_to_item(key) for key in vars(self)} ''' values() returns a set containing the value of all the keys Iterate Through MyDict Values: for key in myDict1.values(): print(key) ''' def values(self): return { self[self.__convert_str_to_item(key)] for key in list(vars(self)) } ''' items() returns a set of tuples, with each tuple containing a key, value pair. Iterate Through MyDict Keys and Values: for key, value in myDict1.items(): print(key, value) ''' def items(self): return { ( self.__convert_str_to_item(key), self[self.__convert_str_to_item(key)] ) for key in list(vars(self)) } ''' Update MyDict: Goes throught values and updates or adds key, value pairs myDict1.update() ''' def update(self, to_update_dict): for key, value in to_update_dict.items(): self[key] = value ''' Pop Item out of MyDict: pops key out of MyDict instance myDict1.pop("key") You can also use the `del` keyword: del myDict1["key"] ''' def pop(self, key): del self[key] ''' Clearing MyDict: Removes all key, value pairs from dictionary myDict1.clear() ''' def clear(self): for key in self.keys(): del self[key] ''' Copying MyDict: Returns a copy of MyDict myDict1_copy = myDict1.copy() ''' def copy(self): newMyDict = MyDict() for key, value in self.items(): newMyDict[key] = value return newMyDict def __convert_item_to_str(self, item): return pickle.dumps(item).decode('unicode_escape') def __convert_str_to_item(self, item): return pickle.loads( item.encode('utf-8', 'unicode_escape').replace(b'\xc2', b'') )
from dino_utils import ( get_model_slug_for_dino, get_model_for_dino, get_model_resolution_for_dino, label_image_for_dino, count_num_features_for_dino, get_preprocessing_for_dino, ) from keras_utils import ( get_model_slug_for_keras, get_model_for_keras, get_model_resolution_for_keras, label_image_for_keras, count_num_features_for_keras, get_dummy_preprocessing_for_keras, ) from openai_utils import ( get_model_slug_for_clip, get_model_for_clip, get_model_resolution_for_clip, label_image_for_clip, count_num_features_for_clip, get_preprocessing_for_clip, ) def get_my_model_of_choice(choice_index=0): available_models = [ get_model_slug_for_keras(), get_model_slug_for_clip(), get_model_slug_for_dino(), ] # The following line is where you can switch between Keras' MobileNet and OpenAI's CLIP: chosen_model = available_models[choice_index] return chosen_model def get_num_features(model=None, args=None): if get_model_slug_for_clip() == get_my_model_of_choice(): num_features = count_num_features_for_clip(model) elif get_model_slug_for_dino() == get_my_model_of_choice(): num_features = count_num_features_for_dino(model, args) else: num_features = count_num_features_for_keras(model) return num_features def get_preprocessing_tool(): if get_model_slug_for_clip() == get_my_model_of_choice(): preprocessing_tool = get_preprocessing_for_clip() elif get_model_slug_for_dino() == get_my_model_of_choice(): preprocessing_tool = get_preprocessing_for_dino() else: preprocessing_tool = get_dummy_preprocessing_for_keras() return preprocessing_tool def get_target_model_size(resolution=None): if resolution is None: if get_model_slug_for_clip() == get_my_model_of_choice(): resolution = get_model_resolution_for_clip() elif get_model_slug_for_dino() == get_my_model_of_choice(): resolution = get_model_resolution_for_dino() else: resolution = get_model_resolution_for_keras() target_model_size = (resolution, resolution) return target_model_size def get_input_shape(target_model_size, num_channels=3): # Image data format: channels last input_shape = tuple(list(target_model_size) + [num_channels]) return input_shape def load_model(target_model_size=None, include_top=False, pooling="avg", args=None): if target_model_size is None: target_model_size = get_target_model_size() input_shape = get_input_shape(target_model_size) if get_model_slug_for_clip() == get_my_model_of_choice(): model = get_model_for_clip( input_shape=input_shape, include_top=include_top, pooling=pooling ) elif get_model_slug_for_dino() == get_my_model_of_choice(): model = get_model_for_dino(args) else: model = get_model_for_keras( input_shape=input_shape, include_top=include_top, pooling=pooling ) return model def convert_image_to_features(image, model, preprocess=None): if get_model_slug_for_clip() == get_my_model_of_choice(): yhat = label_image_for_clip(image, model, preprocess=preprocess) elif get_model_slug_for_dino() == get_my_model_of_choice(): yhat = label_image_for_dino(image, model, preprocess=preprocess) else: yhat = label_image_for_keras(image, model, preprocess=preprocess) features = yhat.flatten() return features if __name__ == "__main__": chosen_model = get_my_model_of_choice() print("Slug of the chosen model: {}".format(chosen_model))
import os from solaris.eval.base import Evaluator import solaris import geopandas as gpd import pandas as pd class TestEvaluator(object): def test_init_from_file(self): """Test instantiation of an Evaluator instance from a file.""" base_instance = Evaluator(os.path.join(solaris.data.data_dir, 'gt.geojson')) gdf = solaris.data.gt_gdf() assert base_instance.ground_truth_sindex.bounds == gdf.sindex.bounds assert base_instance.proposal_GDF.equals(gpd.GeoDataFrame([])) assert base_instance.ground_truth_GDF.equals( base_instance.ground_truth_GDF_Edit) def test_init_from_gdf(self): """Test instantiation of an Evaluator from a pre-loaded GeoDataFrame.""" gdf = solaris.data.gt_gdf() base_instance = Evaluator(gdf) assert base_instance.ground_truth_sindex.bounds == gdf.sindex.bounds assert base_instance.proposal_GDF.equals(gpd.GeoDataFrame([])) assert base_instance.ground_truth_GDF.equals( base_instance.ground_truth_GDF_Edit) def test_init_empty_geojson(self): """Test instantiation of Evaluator with an empty geojson file.""" base_instance = Evaluator(os.path.join(solaris.data.data_dir, 'empty.geojson')) expected_gdf = gpd.GeoDataFrame({'sindex': [], 'condition': [], 'geometry': []}) assert base_instance.ground_truth_GDF.equals(expected_gdf) def test_score_proposals(self): """Test reading in a proposal GDF from a geojson and scoring it.""" eb = Evaluator(os.path.join(solaris.data.data_dir, 'gt.geojson')) eb.load_proposal(os.path.join(solaris.data.data_dir, 'pred.geojson')) pred_gdf = solaris.data.pred_gdf() assert eb.proposal_GDF.iloc[:, 0:3].sort_index().equals(pred_gdf) expected_score = [{'class_id': 'all', 'iou_field': 'iou_score_all', 'TruePos': 8, 'FalsePos': 20, 'FalseNeg': 20, 'Precision': 0.2857142857142857, 'Recall': 0.2857142857142857, 'F1Score': 0.2857142857142857}] scores = eb.eval_iou(calculate_class_scores=False) assert scores == expected_score def test_iou_by_building(self): """Test output of ground truth table with per-building IoU scores""" data_folder = solaris.data.data_dir path_truth = os.path.join(data_folder, 'SN2_sample_truth.csv') path_pred = os.path.join(data_folder, 'SN2_sample_preds.csv') path_ious = os.path.join(data_folder, 'SN2_sample_iou_by_building.csv') path_temp = './temp.pd' eb = Evaluator(path_truth) eb.load_proposal(path_pred, conf_field_list=['Confidence'], proposalCSV=True) eb.eval_iou_spacenet_csv(miniou=0.5, imageIDField='ImageId', min_area=20) output = eb.get_iou_by_building() result_actual = pd.DataFrame(output) result_actual.sort_values(by=['ImageId', 'BuildingId'], inplace=True) ious_actual = list(result_actual['iou_score']) result_expected = pd.read_csv(path_ious, index_col=0) result_expected.sort_values(by=['ImageId', 'BuildingId'], inplace=True) ious_expected = list(result_expected['iou_score']) maxdifference = max([abs(x-y) for x, y in zip(ious_actual, ious_expected)]) epsilon = 1E-9 assert maxdifference < epsilon
""" Exceptions raised by geopy. """ class GeopyError(Exception): """ Geopy-specific exceptions are all inherited from GeopyError. """ class ConfigurationError(GeopyError): """ When instantiating a geocoder, the arguments given were invalid. See the documentation of each geocoder's `__init__` for more details. """ class GeocoderServiceError(GeopyError): """ There was an exception caused when calling the remote geocoding service, and no more specific exception could be raised by geopy. When calling geocoders' `geocode` or `reverse` methods, this is the most general exception that can be raised, and any non-geopy exception will be caught and turned into this. The exception's message will be that of the original exception. """ class GeocoderQueryError(GeocoderServiceError): """ The remote geocoding service raised a bad request over the user's input. """ class GeocoderQuotaExceeded(GeocoderServiceError): """ The remote geocoding service refused to fulfill the request because the client has used its quota. """ class GeocoderAuthenticationFailure(GeocoderServiceError): """ The remote geocoding service rejects the API key or account credentials this geocoder was instantiated with. """ class GeocoderInsufficientPrivileges(GeocoderServiceError): """ The remote geocoding service refused to fulfill a request using the account credentials given. """ class GeocoderTimedOut(GeocoderServiceError): """ The call to the geocoding service was aborted because no response was receiving within the `timeout` argument of either the geocoding class or, if specified, the method call. Some services are just consistently slow, and a higher timeout may be needed to use them. """ class GeocoderParseError(GeocoderServiceError): """ Geopy could not parse the service's response. This is a bug in geopy. """
from django import template register = template.Library() @register.filter(name='get_notetype_notes_count') def get_notetype_notes_count(notes): notes_without_type = notes.filter(note_type=None).count() notes_count = notes.count() notes_with_type = notes_count - notes_without_type return notes_with_type
from django.urls import path from . import views urlpatterns = [ path('translate', views.TranslateApiView.as_view()), ]
"""Tests for hedging_value function.""" import unittest from numpy import kron, cos, sin, pi, sqrt, isclose from toqito.states import basis from toqito.nonlocal_games.quantum_hedging import QuantumHedging class TestQuantumHedging(unittest.TestCase): """Unit test for hedging_value.""" e_0, e_1 = basis(2, 0), basis(2, 1) e_00, e_01 = kron(e_0, e_0), kron(e_0, e_1) e_10, e_11 = kron(e_1, e_0), kron(e_1, e_1) alpha = 1 / sqrt(2) theta = pi / 8 w_var = alpha * cos(theta) * e_00 + sqrt(1 - alpha ** 2) * sin(theta) * e_11 l_1 = -alpha * sin(theta) * e_00 + sqrt(1 - alpha ** 2) * cos(theta) * e_11 l_2 = alpha * sin(theta) * e_10 l_3 = sqrt(1 - alpha ** 2) * cos(theta) * e_01 q_1 = w_var * w_var.conj().T q_0 = l_1 * l_1.conj().T + l_2 * l_2.conj().T + l_3 * l_3.conj().T def test_max_prob_outcome_a_primal_1_dim(self): """ Maximal probability of outcome "a" when dim == 1. The primal problem of the hedging semidefinite program. """ q_0 = TestQuantumHedging.q_0 hedging_value = QuantumHedging(q_0, 1) self.assertEqual(isclose(hedging_value.max_prob_outcome_a_primal(), cos(pi / 8) ** 2), True) def test_max_prob_outcome_a_primal_2_dim(self): """ Test maximal probability of outcome "a" when dim == 2. The primal problem of the hedging semidefinite program. """ q_00 = kron(TestQuantumHedging.q_0, TestQuantumHedging.q_0) hedging_value = QuantumHedging(q_00, 2) self.assertEqual(isclose(hedging_value.max_prob_outcome_a_primal(), cos(pi / 8) ** 4), True) def test_max_prob_outcome_a_dual_1_dim(self): """ Test maximal probability of outcome "a" when dim == 1. The dual problem of the hedging semidefinite program. """ q_0 = TestQuantumHedging.q_0 hedging_value = QuantumHedging(q_0, 1) self.assertEqual(isclose(hedging_value.max_prob_outcome_a_dual(), cos(pi / 8) ** 2), True) def test_max_prob_outcome_a_dual_2_dim(self): """ Test maximal probability of outcome "a" when dim == 2. The dual problem of the hedging semidefinite program. """ q_00 = kron(TestQuantumHedging.q_0, TestQuantumHedging.q_0) hedging_value = QuantumHedging(q_00, 2) self.assertEqual(isclose(hedging_value.max_prob_outcome_a_dual(), cos(pi / 8) ** 4), True) def test_min_prob_outcome_a_primal_1_dim(self): """ Test minimal probability of outcome "a" when dim == 1. The primal problem of the hedging semidefinite program. """ q_1 = TestQuantumHedging.q_1 hedging_value = QuantumHedging(q_1, 1) self.assertEqual(isclose(hedging_value.min_prob_outcome_a_primal(), 0, atol=0.01), True) def test_min_prob_outcome_a_primal_2_dim(self): """ Test minimal probability of outcome "a" when dim == 2. The primal problem of the hedging semidefinite program. """ q_11 = kron(TestQuantumHedging.q_1, TestQuantumHedging.q_1) hedging_value = QuantumHedging(q_11, 2) self.assertEqual(isclose(hedging_value.min_prob_outcome_a_primal(), 0, atol=0.01), True) def test_min_prob_outcome_a_dual_1_dim(self): """ Test minimal probability of outcome "a" when dim == 1. The dual problem of the hedging semidefinite program. """ q_1 = TestQuantumHedging.q_1 hedging_value = QuantumHedging(q_1, 1) self.assertEqual(isclose(hedging_value.min_prob_outcome_a_dual(), 0, atol=0.01), True) def test_min_prob_outcome_a_dual_2_dim(self): """ Test minimal probability of outcome "a" when dim == 2. The dual problem of the hedging semidefinite program. """ q_11 = kron(TestQuantumHedging.q_1, TestQuantumHedging.q_1) hedging_value = QuantumHedging(q_11, 2) self.assertEqual(isclose(hedging_value.min_prob_outcome_a_dual(), 0, atol=0.01), True) if __name__ == "__main__": unittest.main()
import unittest from . import test_shapes loader = unittest.TestLoader() suite = unittest.TestSuite() suite.addTests( loader.loadTestsFromModule(test_shapes) ) runner = unittest.TextTestRunner(verbosity = 3) result = runner.run(suite)
import numpy as np import torch import torch.optim as optim from datasets.kitti import FrustumKitti from datasets.kitti.attributes import kitti_attributes as kitti from meters.kitti import MeterFrustumKitti from modules.frustum import FrustumPointNetLoss from evaluate.kitti.frustum.eval import evaluate from utils.config import Config, configs # data configs configs.data.num_points_per_object = 512 configs.data.num_heading_angle_bins = 12 configs.data.size_template_names = kitti.class_names configs.data.num_size_templates = len(configs.data.size_template_names) configs.data.class_name_to_size_template_id = { cat: cls for cls, cat in enumerate(configs.data.size_template_names) } configs.data.size_template_id_to_class_name = { v: k for k, v in configs.data.class_name_to_size_template_id.items() } configs.data.size_templates = np.zeros((configs.data.num_size_templates, 3)) for i in range(configs.data.num_size_templates): configs.data.size_templates[i, :] = kitti.class_name_to_size_template[ configs.data.size_template_id_to_class_name[i]] configs.data.size_templates = torch.from_numpy(configs.data.size_templates.astype(np.float32)) # dataset configs configs.dataset = Config(FrustumKitti) configs.dataset.root = 'data/kitti/frustum/frustum_data' configs.dataset.num_points = 1024 configs.dataset.classes = configs.data.classes configs.dataset.num_heading_angle_bins = configs.data.num_heading_angle_bins configs.dataset.class_name_to_size_template_id = configs.data.class_name_to_size_template_id configs.dataset.random_flip = True configs.dataset.random_shift = True configs.dataset.frustum_rotate = True configs.dataset.from_rgb_detection = False # evaluate configs configs.evaluate.fn = evaluate configs.evaluate.batch_size = 32 configs.evaluate.dataset = Config(split='val', from_rgb_detection=True) # train configs configs.train = Config() configs.train.num_epochs = 209 configs.train.batch_size = 32 # train: meters configs.train.meters = Config() for name, metric in [ ('acc/iou_3d_{}', 'iou_3d'), ('acc/acc_{}', 'accuracy'), ('acc/iou_3d_acc_{}', 'iou_3d_accuracy'), ('acc/iou_3d_class_acc_{}', 'iou_3d_class_accuracy') ]: configs.train.meters[name] = Config( MeterFrustumKitti, metric=metric, num_heading_angle_bins=configs.data.num_heading_angle_bins, num_size_templates=configs.data.num_size_templates, size_templates=configs.data.size_templates, class_name_to_class_id={cat: cls for cls, cat in enumerate(configs.data.classes)} ) # train: metric for save best checkpoint configs.train.metrics = ('acc/iou_3d_class_acc_val', 'acc/iou_3d_acc_val') # train: criterion configs.train.criterion = Config(FrustumPointNetLoss) configs.train.criterion.num_heading_angle_bins = configs.data.num_heading_angle_bins configs.train.criterion.num_size_templates = configs.data.num_size_templates configs.train.criterion.size_templates = configs.data.size_templates configs.train.criterion.box_loss_weight = 1.0 configs.train.criterion.corners_loss_weight = 10.0 configs.train.criterion.heading_residual_loss_weight = 20.0 configs.train.criterion.size_residual_loss_weight = 20.0 # train: optimizer configs.train.optimizer = Config(optim.Adam) configs.train.optimizer.lr = 1e-3
import numpy as np import os import ntpath import time from . import util from . import html from pdb import set_trace as st import math # save image to the disk def save_images(webpage, images_list, names_list, image_path, title=None, width=256): image_dir = webpage.get_image_dir() short_path = ntpath.basename(image_path) # name = os.path.splitext(short_path)[0] name = short_path if not title: title = name webpage.add_header(title) ims = [] txts = [] links = [] for names, images in zip(names_list, images_list): for label, image_numpy in zip(names, images): image_name = '%s_%s.jpg' % (name, label) save_path = os.path.join(image_dir, image_name) util.save_image(image_numpy, save_path) ims.append(image_name) txts.append(label) links.append(image_name) webpage.add_images(ims, txts, links, width=width) class Visualizer(): def __init__(self, opt): # self.opt = opt self.display_id = opt.display_id self.use_html = opt.isTrain and not opt.no_html self.win_size = opt.display_winsize self.name = opt.name self.log_path = os.path.join(opt.expr_dir, 'train_log.txt') if self.display_id > 0: import visdom self.vis = visdom.Visdom(port=opt.display_port) if self.use_html: self.web_dir = os.path.join(opt.expr_dir,'web') self.img_dir = os.path.join(self.web_dir, 'images') print('create web directory %s...' % self.web_dir) util.mkdirs([self.web_dir, self.img_dir]) # |visuals|: dictionary of images to display or save def display_current_results(self, visuals, epoch, ncols=2, save_result=False, image_format='jpg'): if self.display_id > 0: # show images in the browser title = self.name nrows = int(math.ceil(len(visuals.items()) / float(ncols))) images = [] idx = 0 for label, image_numpy in visuals.items(): title += " | " if idx % nrows == 0 else ", " title += label images.append(image_numpy.transpose([2, 0, 1])) idx += 1 if len(visuals.items()) % ncols != 0: white_image = np.ones_like(image_numpy.transpose([2, 0, 1]))*255 images.append(white_image) self.vis.images(images, nrow=nrows, win=self.display_id + 1, opts=dict(title=title)) if self.use_html and save_result: # save images to a html file for label, image_numpy in visuals.items(): img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.%s' % (epoch, label, image_format)) util.save_image(image_numpy, img_path) # update website webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, reflesh=1) for n in range(epoch, 0, -1): webpage.add_header('epoch [%d]' % n) ims = [] txts = [] links = [] for label, image_numpy in visuals.items(): img_path = 'epoch%.3d_%s.%s' % (n, label, image_format) ims.append(img_path) txts.append(label) links.append(img_path) webpage.add_images(ims, txts, links, width=self.win_size) webpage.save() # errors: dictionary of error labels and values def plot_current_errors(self, epoch, counter_ratio, opt, errors): if not hasattr(self, 'plot_data'): self.plot_data = {'X': [], 'Y': [], 'legend': list(errors.keys())} self.plot_data['X'].append(epoch + counter_ratio) self.plot_data['Y'].append([errors[k] for k in self.plot_data['legend']]) self.vis.line( X=np.stack([np.array(self.plot_data['X'])]*len(self.plot_data['legend']), 1), Y=np.array(self.plot_data['Y']), opts={ 'title': self.name + ' loss over time', 'legend': self.plot_data['legend'], 'xlabel': 'epoch', 'ylabel': 'loss'}, win=self.display_id) # errors: same format as |errors| of plotCurrentErrors def print_current_errors(self, epoch, i, errors, t): message = '(epoch: %d, iters: %d, time: %.3f) ' % (epoch, i, t) for k, v in errors.items(): message += ', %s: %.3f' % (k, v) print(message) # write losses to text file as well with open(self.log_path, "a") as log_file: log_file.write(message+'\n') # save image to the disk def save_images_old(self, webpage, visuals, image_path, short=False): image_dir = webpage.get_image_dir() if short: short_path = ntpath.basename(image_path) name = os.path.splitext(short_path)[0] else: name = image_path webpage.add_header(name) ims = [] txts = [] links = [] for label, image_numpy in visuals.items(): image_name = '%s_%s.jpg' % (name, label) save_path = os.path.join(image_dir, image_name) util.save_image(image_numpy, save_path) ims.append(image_name) txts.append(label) links.append(image_name) webpage.add_images(ims, txts, links, width=self.win_size)
import datetime from enum import Enum from django.utils import timezone from apps.db_data.models import Event class AnnouncementType(Enum): WEEK = "week" TOMORROW = "tomorrow" TODAY = "today" HOUR = "hour" B_TIME = "now" # Berkeley Time def get_events_in_time_delta(requested_atype: AnnouncementType): """ Retrieves a list of Event objects within the requested time delta. requested_atype will take in enum constants in AnnouncementType """ now = timezone.now().astimezone(timezone.get_current_timezone()) events = get_events_in_time_range(*timeify(requested_atype)) return events def get_events_in_time_range(start_time, end_time): """ Takes in a two datetime objects, start_time and end_time Returns events within the datetime range """ events = Event.objects.filter(start_time__gte=start_time).filter( start_time__lte=end_time ) return events def timeify(requested_atype: AnnouncementType): """ Converts requested_tdelta string into a corresponding datetime object """ now = timezone.now() time_ranges = { AnnouncementType.WEEK: (now, now + datetime.timedelta(weeks=1)), AnnouncementType.TOMORROW: ( now + datetime.timedelta(days=1), now + datetime.timedelta(days=1, hours=23, minutes=59, seconds=59), ), AnnouncementType.TODAY: ( now, now + datetime.timedelta(hours=23, minutes=59, seconds=59), ), AnnouncementType.HOUR: ( now + datetime.timedelta(hours=1), now + datetime.timedelta(hours=1, minutes=59, seconds=59), ), AnnouncementType.B_TIME: (now, now + datetime.timedelta(minutes=10)), } return time_ranges[requested_atype]
import re def is_alpha(string): charRe = re.compile(r"[^a-zA-Z.]") string = charRe.search(string) return not bool(string) def location_handler(loc): if len(loc) and loc != " " and loc.isalpha(): return True return False
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: fds/protobuf/stach/table/RowDefinition.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from fds.protobuf.stach.table import DataFormat_pb2 as fds_dot_protobuf_dot_stach_dot_table_dot_DataFormat__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='fds/protobuf/stach/table/RowDefinition.proto', package='factset.protobuf.stach.table', syntax='proto3', serialized_options=b'\n com.factset.protobuf.stach.tableB\022RowDefinitionProtoZ=github.com/factset/stachschema/go/v2/fds/protobuf/stach/table\252\002\034FactSet.Protobuf.Stach.Table', serialized_pb=b'\n,fds/protobuf/stach/table/RowDefinition.proto\x12\x1c\x66\x61\x63tset.protobuf.stach.table\x1a)fds/protobuf/stach/table/DataFormat.proto\"U\n\rRowDefinition\x12\n\n\x02id\x18\x01 \x01(\t\x12\x38\n\x06\x66ormat\x18\x02 \x01(\x0b\x32(.factset.protobuf.stach.table.DataFormatB\x94\x01\n com.factset.protobuf.stach.tableB\x12RowDefinitionProtoZ=github.com/factset/stachschema/go/v2/fds/protobuf/stach/table\xaa\x02\x1c\x46\x61\x63tSet.Protobuf.Stach.Tableb\x06proto3' , dependencies=[fds_dot_protobuf_dot_stach_dot_table_dot_DataFormat__pb2.DESCRIPTOR,]) _ROWDEFINITION = _descriptor.Descriptor( name='RowDefinition', full_name='factset.protobuf.stach.table.RowDefinition', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='factset.protobuf.stach.table.RowDefinition.id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='format', full_name='factset.protobuf.stach.table.RowDefinition.format', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=121, serialized_end=206, ) _ROWDEFINITION.fields_by_name['format'].message_type = fds_dot_protobuf_dot_stach_dot_table_dot_DataFormat__pb2._DATAFORMAT DESCRIPTOR.message_types_by_name['RowDefinition'] = _ROWDEFINITION _sym_db.RegisterFileDescriptor(DESCRIPTOR) RowDefinition = _reflection.GeneratedProtocolMessageType('RowDefinition', (_message.Message,), { 'DESCRIPTOR' : _ROWDEFINITION, '__module__' : 'fds.protobuf.stach.table.RowDefinition_pb2' # @@protoc_insertion_point(class_scope:factset.protobuf.stach.table.RowDefinition) }) _sym_db.RegisterMessage(RowDefinition) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
#!/usr/bin/env python """ This script will handle running SMILESMerge in a docker container. It handles generating the docker image and container, handling the user variables, executing SMILESMerge, and copying the files from the container to the desired directory. This script requires a JSON file that contains all the parameters that would be required to run SMILESMerge on a host system (ie paths on your computer). Necessary files, such as the source compound file, will be copied into the docker. To run SMILESMerge from within docker. Launches docker image. Accepts the exact same parameters as SMILESMerge, with the following exceptions: 1) User variables must be supplied in JSON format. - Please see documentation within the tutorial manual and an example can be found: - ./examples/sample_SMILESMerge_docker_json.json Required variables within the JSON file: - `-root_output_folder`: folder path on host system that results will be copied to. - `-source_compound_file`: Path on host system to the tab-delineate .smi file that will seed generation 1. The resulting SMILESMerge output to the desired root_output_folder. An example JSON is provided in: ./sample_SMILESMerge_docker_json.json To run SMILESMerge in a docker, please run the `smilesmerge_in_docker.py` script: Example on Linux/MacOS: # cd to this directory in a bash terminal 1) cd SMILESMerge/docker/ # Run smilesmerge_in_docker.py with sudo and supply a json file using the # normal pathing of your system. 2) `sudo python smilesmerge_in_docker.py -j ./examples/sample_SMILESMerge_docker_json.json` # Results will be output to the directory specified by the root_output_folder variable Example on Windows OS: 1) open a docker enabled and bash enabled terminal with administrative privileges # cd to this directory in a bash terminal 3) cd SMILESMerge/docker/ 4) `python smilesmerge_in_docker.py -j ./examples/sample_SMILESMerge_docker_json.json` # Results will be output to the directory specified by the root_output_folder variable """ import __future__ import os import shutil import json import argparse import sys def change_permissions(file_path): """ This will open the permissions for a given file. Inputs: :param str file_path: Path to a file to open permissions to. """ os.chmod(file_path, 0o777) def change_permissions_recursively(file_or_folder_path): """ This will open the permissions for a given file/folder. Skip permissions change if Windows. Inputs: :param str file_or_folder_path: Path to a file/folder to open permissions to. """ if os.name == "nt" or os.name == "ce": # chmod and os.chmod do not apply to Windows OS so lets skip this. pass elif sys.platform.lower() in ["linux", "linux2"]: # chmod -R recursively open the permissions os.system("chmod -R a+rwx {}".format(file_or_folder_path)) elif sys.platform.lower() == "darwin": # chmod -R recursively open the permissions os.system("chmod -R a+rwx {}".format(file_or_folder_path)) else: # chmod may not be a valid command on other OS systems. # So let's do this the manual way. if os.path.isdir(file_or_folder_path): directory_path_list = [] file_list = [] for top_dir, dir_list, list_of_files in os.walk( file_or_folder_path, topdown=False ): for directory in [os.path.join(top_dir, d) for d in dir_list]: directory_path_list.append(directory) for file_path in [os.path.join(top_dir, fil) for fil in list_of_files]: file_list.append(file_path) # Convert mods on all files within a directory file_list = list(set(file_list)) directory_path_list = list(set(directory_path_list)) for file_path in file_list: change_permissions(file_path) for dir_path in directory_path_list: change_permissions(dir_path) else: change_permissions(file_or_folder_path) def adjust_dockerfile(): """ This will open Dockerfile and check if the entrypoint has been switched to the windows version (run_smilesmerge_in_container.bash) if not it will modify the Dockerfile to use the windows version of the script. This only should run on Windows OS. Change: ENTRYPOINT ["bash", "/smilesmerge/run_smilesmerge_in_container.bash"] To: # ENTRYPOINT ["bash", "/smilesmerge/run_smilesmerge_in_container.bash"] ENTRYPOINT ["bash", "/smilesmerge/run_smilesmerge_in_container_windows.bash"] """ printout = "" normal_entry = "/smilesmerge/run_smilesmerge_in_container.bash" windows_entry = "/smilesmerge/run_smilesmerge_in_container_windows.bash" replacement_line = ( 'ENTRYPOINT ["bash", "/smilesmerge/run_smilesmerge_in_container_windows.bash"]\n' ) print("Modifying the Dockerfile to run for Windows. Changing Entrypoint.") with open(os.path.abspath("Dockerfile"), "r") as f: for line in f.readlines(): if "ENTRYPOINT" in line and normal_entry in line: if "#" not in line: line = "# " + line + "\n" printout = printout + line printout = printout + replacement_line continue if "ENTRYPOINT" in line and windows_entry in line: continue printout = printout + line with open(os.path.abspath("Dockerfile"), "w") as f: f.write(printout) def make_docker(): """ This will create the docker to run SMILESMerge. This is also where all of the files are copied into the image. If docker image can not be created it will raise an exception. """ if os.name == "nt" or os.name == "ce": # so it's running under windows. multiprocessing disabled adjust_dockerfile() print("Creating new docker image for SMILESMerge") output_and_log_dir = os.path.abspath("output_and_log_dir") + os.sep log_file = "{}log.txt".format(output_and_log_dir) printout = ( "\nAttempting to create the docker container. If 1st time running " + "this script it may take a few minutes. Output details are piped to: " + "{}\n".format(log_file) ) print(printout) try: os.system("docker build -t smilesmerge . > {}".format(log_file)) except: printout = ( "\nCan not create a docker file. Please make sure to run the " + "script with sudo/administrative privileges.\nIf Linux/MacOS:\n" + "\t'sudo python smilesmerge_in_docker.py -j PATH/JSON.json'\n" + "If Windows:\n\tRun from bash and " + "docker enabled terminal with administrative privileges.\n" + "Please also make sure docker is installed on the system." ) print(printout) raise Exception(printout) # Remove the temporary SMILESMerge directory shutil.rmtree("SMILESMerge") def check_for_required_inputs(json_vars): """ Confirm all the required inputs were provided. Required Variables go here. Inputs: :param dict json_vars: The parameters. A dictionary of {parameter name: value}. Returns: :returns: dict json_vars: The updated json_vars with input-file paths changed to the output dir/inputs/ subdirectory. """ keys_from_input = list(json_vars.keys()) list_of_required_inputs = [ "root_output_folder", "source_compound_file", ] missing_variables = [] for variable in list_of_required_inputs: if variable in keys_from_input: continue missing_variables.append(variable) if len(missing_variables) != 0: printout = "\nRequired variables are missing from the input. A description \ of each of these can be found by running python ./RunSMILESMerge -h" printout = printout + "\nThe following required variables are missing: " for variable in missing_variables: printout = printout + "\n\t" + variable print("") print(printout) print("") raise NotImplementedError("\n" + printout + "\n") ####################################### # Check that all required files exist # ####################################### # convert paths to abspath, in case necessary json_vars["root_output_folder"] = os.path.abspath(json_vars["root_output_folder"]) json_vars["source_compound_file"] = os.path.abspath( json_vars["source_compound_file"] ) # Check root_output_folder exists if os.path.exists(json_vars["root_output_folder"]) is False: # If the output directory doesn't exist, then make ithe output # directory doesn't exist, then make it try: os.makedirs(json_vars["root_output_folder"]) os.makedirs(json_vars["root_output_folder"] + os.sep + "inputs") change_permissions_recursively(json_vars["root_output_folder"]) except: raise NotImplementedError( "root_output_folder could not be found and could not be created. \ Please manual create desired directory or check input parameters" ) if os.path.exists(json_vars["root_output_folder"]) is False: raise NotImplementedError( "root_output_folder could not be found and could not be created. \ Please manual create desired directory or check input parameters" ) if os.path.isdir(json_vars["root_output_folder"]) is False: raise NotImplementedError( "root_output_folder is not a directory. \ Check your input parameters." ) # Check source_compound_file exists if os.path.isfile(json_vars["source_compound_file"]) is False: raise NotImplementedError( "source_compound_file must be a tab delineated .smi file. \ source_compound_file can not be found: \ {}.".format( json_vars["source_compound_file"] ) ) if ".smi" not in json_vars["source_compound_file"]: raise NotImplementedError( "source_compound_file must be a \ tab delineated .smi file." ) # You need to copy the input files to the output directory, so it can be # easily access from the docker container. (JDD addition.) shutil.copy2( json_vars["source_compound_file"], json_vars["root_output_folder"] + os.sep + "inputs" + os.sep + os.path.basename(json_vars["source_compound_file"]), ) json_vars["source_compound_file"] = "/Outputfolder/inputs/" + \ os.path.basename(json_vars["source_compound_file"]) return json_vars def find_previous_runs(folder_name_path): """ This will check if there are any previous runs in the output directory. - If there are it will return the interger of the number label of the last Run folder path. - ie if there are folders Run_0, Run_1, Run_2 the function will return int(2) - If there are no previous Run folders it returns None. Inputs: :param str folder_name_path: is the path of the root output folder. We will make a directory within this folder to store our output files Returns: :returns: int last_run_number: the int of the last run number or None if no previous runs. """ path_exists = True i = 0 while path_exists is True: folder_path = "{}{}{}".format(folder_name_path, i, os.sep) if os.path.exists(folder_path): i = i + 1 else: path_exists = False if i == 0: # There are no previous runs in this directory last_run_number = None return None # A previous run exists. The number of the last run. last_run_number = i - 1 return last_run_number def get_run_number(root_folder_path): """ Determine run number for the new directory. Always Start a fresh new run. -If no previous runs exist in the root_folder_path -If there are previous runs in the root_folder_path incremental increasing the name by 1 from the last run in the same output directory. Inputs: :param str root_folder_path: is the path of the root output folder. We will make a directory within this folder to store our output files Returns: :returns: str run_num: the string of the run number "Run_*" """ folder_name_path = root_folder_path + "Run_" print(folder_name_path) last_run_number = find_previous_runs(folder_name_path) if last_run_number is None: # There are no previous simulation runs in this directory print("There are no previous runs in this directory.") print("Starting a new run named Run_0.") # make a folder for the new generation run_number = 0 else: # Start a new fresh simulation # Make a directory for the new run by increasing run number by +1 # from last_run_number run_number = last_run_number + 1 folder_name_path = root_folder_path + "Run_" + str(run_number) + os.sep print("The Run number is: ", run_number) print("The Run folder path is: ", folder_name_path) print("") return "Run_{}".format(run_number) def get_output_folder(json_vars): """ Find the folder for where to place output runs on host system. Inputs: :param dict json_vars: The parameters. A dictionary of {parameter name: value}. Returns: :returns: str root_output_folder: the string of the directory for puting output folders :returns: str run_num: the string of the run number "Run_*" """ root_output_folder = os.path.abspath(json_vars["root_output_folder"]) + os.sep change_permissions_recursively(root_output_folder) run_num = get_run_number(root_output_folder) return root_output_folder, run_num def move_files_to_temp_dir(json_vars): """ This will move all files needed to a temp_user_files directory and will created a modified json_vars dict called docker_json_vars which will be used for pathing within the docker. Inputs: :param dict json_vars: The parameters. A dictionary of {parameter name: value}. """ docker_json_vars = {} # make or remove and make the temp_user_files dir temp_dir_path = os.path.abspath("temp_user_files") + os.sep if os.path.exists(temp_dir_path): shutil.rmtree(temp_dir_path) os.mkdir(temp_dir_path) change_permissions_recursively(temp_dir_path) # make or remove and make an output_and_log_dir output_and_log_dir = os.path.abspath("output_and_log_dir") + os.sep if os.path.exists(output_and_log_dir): shutil.rmtree(output_and_log_dir) os.mkdir(output_and_log_dir) change_permissions_recursively(output_and_log_dir) print("copying files into temp directory: temp_user_files") # get files from json_vars for var_name in json_vars.keys(): var_item = json_vars[var_name] if str(type(var_item)) not in ["<type 'unicode'>", "<type 'unicode'>"]: continue var_item = str(var_item) # This could be a different variable that is not a path if os.path.exists(var_item) is False: continue if var_name == "root_output_folder": continue basename = os.path.basename(var_item) temp_path = temp_dir_path + basename if os.path.isdir(var_item): shutil.copytree(var_item, temp_path) docker_json_vars[var_name] = "/UserFiles/" + basename + "/" continue if os.path.isfile(var_item): shutil.copyfile(var_item, temp_path) docker_json_vars[var_name] = "/UserFiles/" + basename for var_name in json_vars.keys(): if var_name not in docker_json_vars.keys(): docker_json_vars[var_name] = json_vars[var_name] # Set output folder docker_json_vars["root_output_folder"] = "/Outputfolder/" with open(temp_dir_path + "docker_json_vars.json", "w") as file_item: json.dump(docker_json_vars, file_item, indent=4) # update permissions so files can be manipulated without sudo/admin change_permissions_recursively(temp_dir_path) change_permissions_recursively(output_and_log_dir) # Copy over SMILESMerge files into a temp directory temp_smilesmerge_path = os.path.abspath("SMILESMerge") + os.sep script_dir = str(os.path.dirname(os.path.realpath(__file__))) smilesmerge_top_dir = str(os.path.dirname(script_dir)) if os.path.exists(temp_smilesmerge_path): shutil.rmtree(temp_smilesmerge_path) os.mkdir(temp_smilesmerge_path) smilesmerge_top_dir = smilesmerge_top_dir + os.sep change_permissions_recursively(temp_smilesmerge_path) # Copy all files in SMILESMerge directory into a temp except the Docker folder for fol_to_copy in [ "smilesmerge", "source_compounds", "accessory_scripts", "tutorial", ]: shutil.copytree( smilesmerge_top_dir + fol_to_copy, temp_smilesmerge_path + fol_to_copy ) shutil.copyfile( smilesmerge_top_dir + "RunSMILESMerge.py", temp_smilesmerge_path + "RunSMILESMerge.py" ) # Open permissions change_permissions_recursively(temp_smilesmerge_path) def handle_json_info(vars): """ This will open the json file. 1) check that JSON file has basic info - source compound file. 2) copy files to a temp directory -source compound file. 3) make a JSON file with modified information for within docker Inputs: :param dict vars: Dictionary of User specified variables Returns: :param dict json_vars: Dictionary of User specified variables :returns: str root_output_folder: the string of the directory for puting output folders :returns: str run_num: the string of the run number "Run_*" """ print("Handling files") json_file = vars["json_file"] if os.path.exists(json_file) is False: printout = "\njson_file is required. Can not find json_file: {}.\n".format( json_file ) print(printout) raise Exception(printout) json_vars = json.load(open(json_file)) json_vars = check_for_required_inputs(json_vars) move_files_to_temp_dir(json_vars) # get output folder outfolder_path, run_num = get_output_folder(json_vars) return json_vars, outfolder_path, run_num def run_SMILESMerge_docker_main(vars): """ This function runs the processing to: 1) check that JSON file has basic info -source compound file. 2) copy files to a temp directory -source compound file. 3) make a JSON file with modified information for within docker 4) Build docker image and link files to output folder -This includes an adjustment to the Dockerfile if running it on a Windows OS 5) execute RunSMILESMerge.py from within the docker container 6) export the files back to the final end dir Inputs: :param dict vars: Dictionary of User specified variables """ printout = ( "\n\nThis script builds a docker for SMILESMerge and runs SMILESMerge " + "within the docker. The setup may take a few minutes the first time being run " + "and SMILESMerge may take a long time depending on the settings.\n\n" ) print(printout) # Check that we are in the correct directory if not raise exception script_dir = str(os.path.dirname(os.path.realpath(__file__))) + os.sep if os.path.abspath(os.getcwd()) != os.path.abspath(script_dir): printout = "\nMust execute this script from this directory: {}\n".format( script_dir ) printout = printout + "Before running please 'cd {}'\n".format(script_dir) print(printout) raise Exception(printout) # Run parts 1-3 # 1) check that JSON file has basic info # -source compound file. # 2) copy files to a temp directory # -source compound file. # 3) make a JSON file with modified information for within docker json_vars, outfolder_path, run_num = handle_json_info(vars) # Run build docker image make_docker() # Run part 5) run SMILESMerge in the container print("\nRunning SMILESMerge in Docker") command = "docker run --rm -it -v {}:/Outputfolder/".format(outfolder_path) command = command + " smilesmerge --name smilesmerge --{}".format(run_num) # Execute SMILESMerge print(command) os.system(command) change_permissions_recursively(outfolder_path) print("SMILESMerge Results placed in: {}".format(outfolder_path)) PARSER = argparse.ArgumentParser() # Allows the run commands to be submitted via a .json file. PARSER.add_argument( "--json_file", "-j", metavar="param.json_file", required=True, help="Name of a json file containing all parameters. \ Overrides other arguments. This takes all the parameters described in \ RunSMILESMerge.py.", ) PARSER.add_argument( "--override_sudo_admin_privileges", metavar="param.override_sudo_admin_privileges", default=False, help="Docker normally requires `sudo` (linux/macos) or `Administrator` \ privileges (windows/cygwin). If an system does not have such privileges, \ or does not require such privileges, setting this to True, will skip the \ check for privileges. This variable is provided via commandline, and \ IS NOT RECOMMENDED for most OS. ", ) ARGS_DICT = vars(PARSER.parse_args()) print("") print("BE SURE TO RUN THIS SCRIPT WITH SUDO (LINUX/MACOS) OR ADMINISTRATOR") print("(WINDOWS) PRIVILEGES!") print("") # Check that this is running with appropriate privileges. # i.e., sudo (linux/macos) or Administrator privileges (Windows/cygwin) if ARGS_DICT["override_sudo_admin_privileges"] == False: if sys.platform.lower() in ["darwin", "linux", "linux2"]: if os.getuid() != 0: printout = "\n\nMust run this script with `sudo` privileges.\n\t" printout = printout + "Please retry running with `sudo` privileges.\n\n" print(printout) raise Exception(printout) elif sys.platform.lower() == "win32" or sys.platform.lower() == "cygwin": import ctypes if ctypes.windll.shell32.IsUserAnAdmin() != 1: printout = "\n\nMust run this script from a terminal with `Administrator` privileges.\n\t" printout = printout + "Please retry running with `Administrator` privileges.\n\n" print(printout) raise Exception(printout) else: print("") print("BE SURE TO RUN THIS SCRIPT WITH SUDO (LINUX/MACOS) OR ADMINISTRATOR") print("(WINDOWS) PRIVILEGES!") print("") else: print("\n##############################################################") print("WARNING: Skipping check for privileges.") print("\tBE SURE TO RUN THIS SCRIPT WITH APPROPRIATE PRIVILEGES:") print("\tSUDO (LINUX/MACOS) OR ADMINISTRATOR (WINDOWS) PRIVILEGES!") print("\tFailure to do so may result in Docker failures.") print("##############################################################\n") run_SMILESMerge_docker_main(ARGS_DICT)
import logging import threading from ftplib import FTP class FtpUploader(threading.Thread): TMP_DIR = '/tmp/' def __init__(self, files, host, user, passwd, ftp_dir=None, logger=None): super().__init__() self.daemon = True self.files = files self.host = host self.user = user self.passwd = passwd self.ftp_dir = ftp_dir self.logger = logger or logging.getLogger() def run(self): try: ftp = FTP(self.host, user=self.user, passwd=self.passwd) if self.ftp_dir: ftp.cwd(self.ftp_dir) for filename in self.files: rsp_code = ftp.storbinary("STOR " + filename, open(FtpUploader.TMP_DIR + filename, 'rb')) self.logger.info('FTP upload %s: %s' % (filename, rsp_code)) except: self.logger.error('Unexpected error', exc_info=True) finally: if ftp: ftp.close()
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------- from typing import List, Any, Optional, TYPE_CHECKING from azure.core import PipelineClient from six import python_2_unicode_compatible if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any from azure.core.credentials import TokenCredential from azure.core.pipeline.transport import HttpRequest, HttpResponse from ._generated import AzureAttestationRestClient from ._generated.models import ( AttestationType, PolicyResult as GeneratedPolicyResult, PolicyCertificatesResult, JSONWebKey, AttestationCertificateManagementBody, StoredAttestationPolicy as GeneratedStoredAttestationPolicy, PolicyCertificatesModificationResult as GeneratedPolicyCertificatesModificationResult ) from ._configuration import AttestationClientConfiguration from ._models import ( AttestationSigner, AttestationToken, AttestationResponse, AttestationSigningKey, PolicyCertificatesModificationResult, PolicyResult, AttestationTokenValidationException ) import base64 from azure.core.tracing.decorator import distributed_trace from threading import Lock, Thread class AttestationAdministrationClient(object): """Provides administrative APIs for managing an instance of the Attestation Service. :param instance_url: base url of the service :type instance_url: str :param credential: Credentials for the caller used to interact with the service. :type credential: :class:`~azure.core.credentials.TokenCredential` :keyword Pipeline pipeline: If omitted, the standard pipeline is used. :keyword HttpTransport transport: If omitted, the standard pipeline is used. :keyword list[HTTPPolicy] policies: If omitted, the standard pipeline is used. """ def __init__( self, credential, # type: "TokenCredential" instance_url, # type: str **kwargs # type: Any ): # type: (...) -> None if not credential: raise ValueError("Missing credential.") self._config = AttestationClientConfiguration(credential, instance_url, **kwargs) self._client = AzureAttestationRestClient(credential, instance_url, **kwargs) self._statelock = Lock() self._signing_certificates = None @distributed_trace def get_policy(self, attestation_type, **kwargs): #type(AttestationType, **Any) -> AttestationResponse[str]: """ Retrieves the attestation policy for a specified attestation type. :param attestation_type: :class:`azure.security.attestation.AttestationType` for which to retrieve the policy. :type attestation_type: azure.security.attestation.AttestationType :return: Attestation service response encapsulating a string attestation policy. :rtype: azure.security.attestation.AttestationResponse[str] :raises azure.security.attestation.AttestationTokenValidationException: Raised when an attestation token is invalid. """ policyResult = self._client.policy.get(attestation_type, **kwargs) token = AttestationToken[GeneratedPolicyResult](token=policyResult.token, body_type=GeneratedPolicyResult) token_body = token.get_body() stored_policy = AttestationToken[GeneratedStoredAttestationPolicy](token=token_body.policy, body_type=GeneratedStoredAttestationPolicy) actual_policy = stored_policy.get_body().attestation_policy #type: bytes if self._config.token_validation_options.validate_token: if not token.validate_token(self._config.token_validation_options, self._get_signers(**kwargs)): raise AttestationTokenValidationException("Token Validation of get_policy API failed.") return AttestationResponse[str](token, actual_policy.decode('utf-8')) @distributed_trace def set_policy(self, attestation_type, attestation_policy, signing_key=None, **kwargs): #type:(AttestationType, str, Optional[AttestationSigningKey], **Any) -> AttestationResponse[PolicyResult] """ Sets the attestation policy for the specified attestation type. :param attestation_type: :class:`azure.security.attestation.AttestationType` for which to set the policy. :type attestation_type: azure.security.attestation.AttestationType :param attestation_policy: Attestation policy to be set. :type attestation_policy: str :param signing_key: Signing key to be used to sign the policy before sending it to the service. :type signing_key: azure.security.attestation.AttestationSigningKey :return: Attestation service response encapsulating a :class:`PolicyResult`. :rtype: azure.security.attestation.AttestationResponse[azure.security.attestation.PolicyResult] :raises azure.security.attestation.AttestationTokenValidationException: Raised when an attestation token is invalid. .. note:: If the attestation instance is in *Isolated* mode, then the `signing_key` parameter MUST be a signing key containing one of the certificates returned by :meth:`get_policy_management_certificates`. If the attestation instance is in *AAD* mode, then the `signing_key` parameter does not need to be provided. """ policy_token = AttestationToken[GeneratedStoredAttestationPolicy]( body=GeneratedStoredAttestationPolicy(attestation_policy = attestation_policy.encode('ascii')), signer=signing_key, body_type=GeneratedStoredAttestationPolicy) policyResult = self._client.policy.set(attestation_type=attestation_type, new_attestation_policy=policy_token.serialize(), **kwargs) token = AttestationToken[GeneratedPolicyResult](token=policyResult.token, body_type=GeneratedPolicyResult) if self._config.token_validation_options.validate_token: if not token.validate_token(self._config.token_validation_options, self._get_signers(**kwargs)): raise AttestationTokenValidationException("Token Validation of set_policy API failed.") return AttestationResponse[PolicyResult](token, PolicyResult._from_generated(token.get_body())) @distributed_trace def reset_policy(self, attestation_type, signing_key=None, **kwargs): #type:(AttestationType, Optional[AttestationSigningKey], **dict[str, Any]) -> AttestationResponse[PolicyResult] """ Resets the attestation policy for the specified attestation type to the default value. :param attestation_type: :class:`azure.security.attestation.AttestationType` for which to set the policy. :type attestation_type: azure.security.attestation.AttestationType :param attestation_policy: Attestation policy to be reset. :type attestation_policy: str :param signing_key: Signing key to be used to sign the policy before sending it to the service. :type signing_key: azure.security.attestation.AttestationSigningKey :return: Attestation service response encapsulating a :class:`PolicyResult`. :rtype: azure.security.attestation.AttestationResponse[azure.security.attestation.PolicyResult] :raises azure.security.attestation.AttestationTokenValidationException: Raised when an attestation token is invalid. .. note:: If the attestation instance is in *Isolated* mode, then the `signing_key` parameter MUST be a signing key containing one of the certificates returned by :meth:`get_policy_management_certificates`. If the attestation instance is in *AAD* mode, then the `signing_key` parameter does not need to be provided. """ policy_token = AttestationToken( body=None, signer=signing_key) policyResult = self._client.policy.reset(attestation_type=attestation_type, policy_jws=policy_token.serialize(), **kwargs) token = AttestationToken[GeneratedPolicyResult](token=policyResult.token, body_type=GeneratedPolicyResult) if self._config.token_validation_options.validate_token: if not token.validate_token(self._config.token_validation_options, self._get_signers(**kwargs)): raise AttestationTokenValidationException("Token Validation of reset_policy API failed.") return AttestationResponse[PolicyResult](token, PolicyResult._from_generated(token.get_body())) @distributed_trace def get_policy_management_certificates(self, **kwargs): #type:(**Any) -> AttestationResponse[list[list[bytes]]] """ Retrieves the set of policy management certificates for the instance. The list of policy management certificates will only be non-empty if the attestation service instance is in Isolated mode. :return: Attestation service response encapsulating a list of DER encoded X.509 certificate chains. :rtype: azure.security.attestation.AttestationResponse[list[list[bytes]]] """ cert_response = self._client.policy_certificates.get(**kwargs) token = AttestationToken[PolicyCertificatesResult]( token=cert_response.token, body_type=PolicyCertificatesResult) if self._config.token_validation_options.validate_token: if not token.validate_token(self._config.token_validation_options, self._get_signers(**kwargs)): raise Exception("Token Validation of PolicyCertificates API failed.") certificates = [] cert_list = token.get_body() for key in cert_list.policy_certificates.keys: key_certs = [base64.b64decode(cert) for cert in key.x5_c] certificates.append(key_certs) return AttestationResponse(token, certificates) @distributed_trace def add_policy_management_certificate(self, certificate_to_add, signing_key, **kwargs): #type:(bytes, AttestationSigningKey, **Any) -> AttestationResponse[PolicyCertificatesModificationResult] """ Adds a new policy management certificate to the set of policy management certificates for the instance. :param bytes certificate_to_add: DER encoded X.509 certificate to add to the list of attestation policy management certificates. :param signing_key: Signing Key representing one of the *existing* attestation signing certificates. :type signing_key: azure.security.attestation.AttestationSigningKey :return: Attestation service response encapsulating the status of the add request. :rtype: azure.security.attestation.AttestationResponse[azure.security.attestation.PolicyCertificatesModificationResult] The :class:`PolicyCertificatesModificationResult` response to the :meth:`add_policy_management_certificate` API contains two attributes of interest. The first is `certificate_resolution`, which indicates whether the certificate in question is present in the set of policy management certificates after the operation has completed, or if it is absent. The second is the `thumbprint` of the certificate added. The `thumbprint` for the certificate is the SHA1 hash of the DER encoding of the certificate. """ key=JSONWebKey(kty='RSA', x5_c = [ base64.b64encode(certificate_to_add).decode('ascii')]) add_body = AttestationCertificateManagementBody(policy_certificate=key) cert_add_token = AttestationToken[AttestationCertificateManagementBody]( body=add_body, signer=signing_key, body_type=AttestationCertificateManagementBody) cert_response = self._client.policy_certificates.add(cert_add_token.serialize(), **kwargs) token = AttestationToken[GeneratedPolicyCertificatesModificationResult](token=cert_response.token, body_type=GeneratedPolicyCertificatesModificationResult) if self._config.token_validation_options.validate_token: if not token.validate_token(self._config.token_validation_options, self._get_signers(**kwargs)): raise Exception("Token Validation of PolicyCertificate Add API failed.") return AttestationResponse[PolicyCertificatesModificationResult](token, PolicyCertificatesModificationResult._from_generated(token.get_body())) @distributed_trace def remove_policy_management_certificate(self, certificate_to_add, signing_key, **kwargs): #type:(bytes, AttestationSigningKey, **Any) -> AttestationResponse[PolicyCertificatesModificationResult] """ Removes a new policy management certificate to the set of policy management certificates for the instance. :param bytes certificate_to_add: DER encoded X.509 certificate to add to the list of attestation policy management certificates. :param signing_key: Signing Key representing one of the *existing* attestation signing certificates. :type signing_key: azure.security.attestation.AttestationSigningKey :return: Attestation service response encapsulating a list of DER encoded X.509 certificate chains. :rtype: azure.security.attestation.AttestationResponse[azure.security.attestation.PolicyCertificatesModificationResult] The :class:`PolicyCertificatesModificationResult` response to the :meth:`remove_policy_management_certificate` API contains two attributes of interest. The first is `certificate_resolution`, which indicates whether the certificate in question is present in the set of policy management certificates after the operation has completed, or if it is absent. The second is the `thumbprint` of the certificate added. The `thumbprint` for the certificate is the SHA1 hash of the DER encoding of the certificate. """ key=JSONWebKey(kty='RSA', x5_c = [ base64.b64encode(certificate_to_add).decode('ascii')]) add_body = AttestationCertificateManagementBody(policy_certificate=key) cert_add_token = AttestationToken[AttestationCertificateManagementBody]( body=add_body, signer=signing_key, body_type=AttestationCertificateManagementBody) cert_response = self._client.policy_certificates.remove(cert_add_token.serialize(), **kwargs) token = AttestationToken[GeneratedPolicyCertificatesModificationResult](token=cert_response.token, body_type=GeneratedPolicyCertificatesModificationResult) if self._config.token_validation_options.validate_token: if not token.validate_token(self._config.token_validation_options, self._get_signers(**kwargs)): raise Exception("Token Validation of PolicyCertificate Remove API failed.") return AttestationResponse[PolicyCertificatesModificationResult](token, PolicyCertificatesModificationResult._from_generated(token.get_body())) def _get_signers(self, **kwargs): #type(**Any) -> List[AttestationSigner] """ Returns the set of signing certificates used to sign attestation tokens. """ with self._statelock: if (self._signing_certificates == None): signing_certificates = self._client.signing_certificates.get(**kwargs) self._signing_certificates = [] for key in signing_certificates.keys: # Convert the returned certificate chain into an array of X.509 Certificates. self._signing_certificates.append(AttestationSigner._from_generated(key)) signers = self._signing_certificates return signers def close(self): # type: () -> None self._client.close() def __enter__(self): # type: () -> AttestationAdministrationClient self._client.__enter__() return self def __exit__(self, *exc_details): # type: (Any) -> None self._client.__exit__(*exc_details)
from O365.contact import Contact from O365.group import Group from O365.connection import Connection import logging import json import requests import time log = logging.getLogger(__name__) class Event( object ): ''' Class for managing the creation and manipluation of events in a calendar. Methods: create -- Creates the event in a calendar. update -- Sends local changes up to the cloud. delete -- Deletes event from the cloud. toJson -- returns the json representation. fullcalendarioJson -- gets a specific json representation used for fullcalendario. getSubject -- gets the subject of the event. getBody -- gets the body of the event. getStart -- gets the starting time of the event. (struct_time) getEnd -- gets the ending time of the event. (struct_time) getAttendees -- gets the attendees of the event. getReminder -- returns True if reminder is enabled, False if not. getCategories -- returns a list of the event's categories. addAttendee -- adds an attendee to the event. update needs to be called for notification. setSubject -- sets the subject line of the event. setBody -- sets the body of the event. setStart -- sets the starting time of the event. (struct_time) setEnd -- sets the starting time of the event. (struct_time) setAttendees -- sets the attendee list. setStartTimeZone -- sets the timezone for the start of the event item. setEndTimeZone -- sets the timezone for the end of the event item. setReminder -- sets the reminder. setCategories -- sets a list of the event's categories. Variables: time_string -- Formated time string for translation to and from json. create_url -- url for creating a new event. update_url -- url for updating an existing event. delete_url -- url for deleting an event. ''' #Formated time string for translation to and from json. time_string = '%Y-%m-%dT%H:%M:%S' #takes a calendar ID create_url = 'https://outlook.office365.com/api/v1.0/me/calendars/{0}/events' #takes current event ID update_url = 'https://outlook.office365.com/api/v1.0/me/events/{0}' #takes current event ID delete_url = 'https://outlook.office365.com/api/v1.0/me/events/{0}' def __init__(self,json=None,auth=None,cal=None,verify=True): ''' Creates a new event wrapper. Keyword Argument: json (default = None) -- json representation of an existing event. mostly just used by this library internally for events that are downloaded by the callendar class. auth (default = None) -- a (email,password) tuple which will be used for authentication to office365. cal (default = None) -- an instance of the calendar for this event to associate with. ''' self.auth = auth self.calendar = cal self.attendees = [] if json: self.json = json self.isNew = False else: self.json = {} self.verify = verify self.startTimeZone = time.strftime("%Z", time.gmtime()) self.endTimeZone = time.strftime("%Z", time.gmtime()) def create(self,calendar=None): ''' This method creates an event on the calender passed. IMPORTANT: It returns that event now created in the calendar, if you wish to make any changes to this event after you make it, use the returned value and not this particular event any further. calendar -- a calendar class onto which you want this event to be created. If this is left empty then the event's default calendar, specified at instancing, will be used. If no default is specified, then the event cannot be created. ''' connection = Connection() # Change URL if we use Oauth if connection.is_valid() and connection.oauth != None: self.create_url = self.create_url.replace("outlook.office365.com/api", "graph.microsoft.com") elif not self.auth: log.debug('failed authentication check when creating event.') return False if calendar: calId = calendar.calendarId self.calendar = calendar log.debug('sent to passed calendar.') elif self.calendar: calId = self.calendar.calendarId log.debug('sent to default calendar.') else: log.debug('no valid calendar to upload to.') return False headers = {'Content-type': 'application/json', 'Accept': 'application/json'} log.debug('creating json for request.') data = json.dumps(self.json) response = None try: log.debug('sending post request now') response = connection.post_data(self.create_url.format(calId),data,headers=headers,auth=self.auth,verify=self.verify) log.debug('sent post request.') if response.status_code > 399: log.error("Invalid response code [{}], response text: \n{}".format(response.status_code, response.text)) return False except Exception as e: if response: log.debug('response to event creation: %s',str(response)) else: log.error('No response, something is very wrong with create: %s',str(e)) return False log.debug('response to event creation: %s',str(response)) return Event(response.json(),self.auth,calendar) def update(self): '''Updates an event that already exists in a calendar.''' connection = Connection() # Change URL if we use Oauth if connection.is_valid() and connection.oauth != None: self.update_url = self.update_url.replace("outlook.office365.com/api", "graph.microsoft.com") elif not self.auth: return False if self.calendar: calId = self.calendar.calendarId else: return False headers = {'Content-type': 'application/json', 'Accept': 'application/json'} data = json.dumps(self.json) response = None print(data) try: response = connection.patch_data(self.update_url.format(self.json['id']),data,headers=headers,auth=self.auth,verify=self.verify) log.debug('sending patch request now') except Exception as e: if response: log.debug('response to event creation: %s',str(response)) else: log.error('No response, something is very wrong with update: %s',str(e)) return False log.debug('response to event creation: %s',str(response)) return Event(json.dumps(response),self.auth) def delete(self): ''' Delete's an event from the calendar it is in. But leaves you this handle. You could then change the calendar and transfer the event to that new calendar. You know, if that's your thing. ''' connection = Connection() # Change URL if we use Oauth if connection.is_valid() and connection.oauth != None: self.delete_url = self.delete_url.replace("outlook.office365.com/api", "graph.microsoft.com") elif not self.auth: return False headers = {'Content-type': 'application/json', 'Accept': 'text/plain'} response = None try: log.debug('sending delete request') response = connection.delete_data(self.delete_url.format(self.json['id']),headers=headers,auth=self.auth,verify=self.verify) except Exception as e: if response: log.debug('response to deletion: %s',str(response)) else: log.error('No response, something is very wrong with delete: %s',str(e)) return False return response def toJson(self): ''' Creates a JSON representation of the calendar event. oh. uh. I mean it simply returns the json representation that has always been in self.json. ''' return self.json def fullcalendarioJson(self): ''' returns a form of the event suitable for the vehicle booking system here. oh the joys of having a library to yourself! ''' ret = {} ret['title'] = self.json['subject'] ret['driver'] = self.json['organizer']['emailAddress']['name'] ret['driverEmail'] = self.json['organizer']['emailAddress']['address'] ret['start'] = self.json['start'] ret['end'] = self.json['end'] ret['isAllDay'] = self.json['isAllDay'] return ret def getSubject(self): '''Gets event subject line.''' return self.json['subject'] def getBody(self): '''Gets event body content.''' return self.json['body']['content'] def getStart(self): '''Gets event start struct_time''' if 'Z' in self.json['start']: return time.strptime(self.json['start'], self.time_string+'Z') else: return time.strptime(self.json['start']["dateTime"].split('.')[0], self.time_string) def getEnd(self): '''Gets event end struct_time''' if 'Z' in self.json['end']: return time.strptime(self.json['end'], self.time_string+'Z') else: return time.strptime(self.json['end']["dateTime"].split('.')[0], self.time_string) def getAttendees(self): '''Gets list of event attendees.''' return self.json['attendees'] def getReminder(self): '''Gets the reminder's state.''' return self.json['isReminderOn'] def getCategories(self): '''Gets the list of categories for this event''' return self.json['categories'] def setSubject(self,val): '''sets event subject line.''' self.json['subject'] = val def setBody(self,val,contentType='Text'): ''' sets event body content: Examples for ContentType could be 'Text' or 'HTML' ''' cont = False while not cont: try: self.json['body']['content'] = val self.json['body']['contentType'] = contentType cont = True except: self.json['body'] = {} def setStart(self,val): ''' sets event start time. Argument: val - this argument can be passed in three different ways. You can pass it in as a int or float, in which case the assumption is that it's seconds since Unix Epoch. You can pass it in as a struct_time. Or you can pass in a string. The string must be formated in the json style, which is %Y-%m-%dT%H:%M:%S. If you stray from that in your string you will break the library. ''' if isinstance(val,time.struct_time): self.json['start'] = {"dateTime":time.strftime(self.time_string,val), "timeZone": self.startTimeZone} elif isinstance(val,int): self.json['start'] = {"dateTime":time.strftime(self.time_string,time.gmtime(val)), "timeZone": self.startTimeZone} elif isinstance(val,float): self.json['start'] = {"dateTime":time.strftime(self.time_string,time.gmtime(val)), "timeZone": self.startTimeZone} else: #this last one assumes you know how to format the time string. if it brakes, check #your time string! self.json['start'] = val def setEnd(self,val): ''' sets event end time. Argument: val - this argument can be passed in three different ways. You can pass it in as a int or float, in which case the assumption is that it's seconds since Unix Epoch. You can pass it in as a struct_time. Or you can pass in a string. The string must be formated in the json style, which is %Y-%m-%dT%H:%M:%SZ. If you stray from that in your string you will break the library. ''' if isinstance(val,time.struct_time): self.json['end'] = {"dateTime":time.strftime(self.time_string,val), "timeZone": self.endTimeZone} elif isinstance(val,int): self.json['end'] = {"dateTime":time.strftime(self.time_string,time.gmtime(val)), "timeZone": self.endTimeZone} elif isinstance(val,float): self.json['end'] = {"dateTime":time.strftime(self.time_string,time.gmtime(val)), "timeZone": self.endTimeZone} else: #this last one assumes you know how to format the time string. if it brakes, check #your time string! self.json['end'] = val def setAttendees(self,val): ''' set the attendee list. val: the one argument this method takes can be very flexible. you can send: a dictionary: this must to be a dictionary formated as such: {"EmailAddress":{"Address":"recipient@example.com"}} with other options such ass "Name" with address. but at minimum it must have this. a list: this must to be a list of libraries formatted the way specified above, or it can be a list of libraries objects of type Contact. The method will sort out the libraries from the contacts. a string: this is if you just want to throw an email address. a contact: type Contact from this library. For each of these argument types the appropriate action will be taken to fit them to the needs of the library. ''' self.json['attendees'] = [] if isinstance(val,list): self.json['attendees'] = val elif isinstance(val,dict): self.json['attendees'] = [val] elif isinstance(val,str): if '@' in val: self.addAttendee(val) elif isinstance(val,Contact): self.addAttendee(val) elif isinstance(val,Group): self.addAttendee(val) else: return False return True def setStartTimeZone(self,val): '''sets event start timezone''' self.startTimeZone = val self.json['start']["startTimeZone"] = val def setEndTimeZone(self,val): '''sets event end timezone''' self.endTimeZone = val self.json['end']["endTimeZone"] = val def addAttendee(self,address,name=None): ''' Adds a recipient to the attendee list. Arguments: address -- the email address of the person you are sending to. <<< Important that. Address can also be of type Contact or type Group. name -- the name of the person you are sending to. mostly just a decorator. If you send an email address for the address arg, this will give you the ability to set the name properly, other wise it uses the email address up to the at sign for the name. But if you send a type Contact or type Group, this argument is completely ignored. ''' if isinstance(address,Contact): self.json['attendees'].append(address.getFirstEmailAddress()) elif isinstance(address,Group): for con in address.contacts: self.json['attendees'].append(address.getFirstEmailAddress()) else: if name is None: name = address[:address.index('@')] self.json['attendees'].append({'emailAddress':{'address':address,'name':name}}) def setLocation(self,loc): ''' Sets the event's location. Arguments: loc -- two options, you can send a dictionary in the format discribed here: https://msdn.microsoft.com/en-us/office/office365/api/complex-types-for-mail-contacts-calendar#LocationBeta this will allow you to set address, coordinates, displayname, location email address, location uri, or any combination of the above. If you don't need that much detail you can simply send a string and it will be set as the locations display name. If you send something not a string or a dict, it will try to cast whatever you send into a string and set that as the display name. ''' if 'Location' not in self.json: self.json['location'] = {"adress":None} if isinstance(loc,dict): self.json['location'] = loc else: self.json['location'] = {'displayName':str(loc)} def getLocation(self): ''' Get the current location, if one is set. ''' if 'location' in self.json: return self.json['location'] return None def setReminder(self,val): ''' Sets the event's reminder. Argument: val -- a boolean ''' if val == True or val == False: self.json['isReminderOn'] = val def setCategories(self,cats): ''' Sets the event's categories. Argument: cats -- a list of categories ''' if isinstance(cats, (list, tuple)): self.json['categories'] = cats #To the King!
import arcpy import os import logging logger = logging.getLogger(__name__) handler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s', '%Y-%m-%d %H:%M:%S') handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) arcpy.env.workspace = os.path.dirname(os.path.dirname(__file__)) arcpy.env.overwriteOutput = True gdb = os.path.join(arcpy.env.workspace, 'NCIClinicalTrialsAPI', 'NCIClinicalTrialsAPI.gdb') def removeTables(): logger.debug('Deleting unnecessary tables...') for table in ['nciSites', 'nciUniqueSites']: arcpy.management.Delete(table)
import os import numpy as np from utils.load_data import load_data from utils.CSV_data_generator import DataGen from models.NormBase import NormBase def evaluate_model(config, save_name, legacy = False): """ This function runs and evaluates the model with given config. The model is saved to models/saved/config['save_name']/save_name. If already calculated the result is loaded instead of calculated. :param config: :param save_name: :param legacy: set to True to use old version :return: """ if not os.path.exists(os.path.join("models/saved", config['save_name'])): os.mkdir(os.path.join("models/saved", config['save_name'])) # folder for save and load save_folder = os.path.join("models/saved", config['save_name'], save_name) if not os.path.exists(save_folder): os.mkdir(save_folder) if not legacy: try: # load results if available accuracy = np.load(os.path.join(save_folder, "accuracy.npy")) it_resp = np.load(os.path.join(save_folder, "it_resp.npy")) labels = np.load(os.path.join(save_folder, "labels.npy")) except IOError: try: norm_base = NormBase(config, input_shape=(224,224,3), save_name=save_name) except IOError: norm_base = NormBase(config, input_shape=(224,224,3)) data_train = load_data(config) norm_base.fit(data_train) norm_base.save_model(config, save_name) data_test = load_data(config, train=False) accuracy, it_resp, labels = norm_base.evaluate(data_test) return accuracy, it_resp, labels else: try: # load results if available accuracy = np.load(os.path.join(save_folder, "accuracy.npy")) it_resp = np.load(os.path.join(save_folder, "it_resp.npy")) labels = np.load(os.path.join(save_folder, "labels.npy")) print("[MODEL] it_resp is available and is loaded from {}".format(save_folder)) # load vectors if available ref_vector = np.load(os.path.join(save_folder, "ref_vector.npy")) tun_vector = np.load(os.path.join(save_folder, "tuning_vector.npy")) except IOError: # calculate results if not available print("[LOOP] start training") # create model norm_base = NormBase(config, input_shape=(224, 224, 3)) try: # load vectors if available ref_vector = np.load(os.path.join(save_folder, "ref_vector.npy")) tun_vector = np.load(os.path.join(save_folder, "tuning_vector.npy")) print("[MODEL] ref_vector and tun_vector are available and loaded from {}" .format(save_folder)) norm_base.set_ref_vector(ref_vector) norm_base.set_tuning_vector(tun_vector) print("[MODEL] Set ref vector", np.shape(ref_vector)) print("[MODEL] Set tuning vector", np.shape(tun_vector)) except IOError: # calculate vectors if not available # load train data data_train = load_data(config) print("[Data] -- Data loaded --") # train model norm_base.fit(data_train, batch_size=config['batch_size']) ref_vector = norm_base.r tun_vector = norm_base.t # save model np.save(os.path.join(save_folder, "ref_vector"), ref_vector) np.save(os.path.join(save_folder, "tuning_vector"), tun_vector) print("[LOOP] start prediction") # load test data data_test = load_data(config, train=False, sort_by=['image']) print("[Data] -- Data loaded --") # evaluate accuracy, it_resp, labels = norm_base.evaluate(data_test) np.save(os.path.join(save_folder, "accuracy"), accuracy) np.save(os.path.join(save_folder, "it_resp"), it_resp) np.save(os.path.join(save_folder, "labels"), labels) return accuracy, it_resp, labels, ref_vector, tun_vector
import cv2 import numpy as np from utils import transform def main(): img = cv2.imread('/home/sandeep/tmp/img01.png', cv2.IMREAD_COLOR).astype(np.float32) img = transform.blur_image(img) cv2.imwrite('/home/sandeep/tmp/img01-blur.png', img) if __name__ == '__main__': main()
from typing import Optional from contracts.story import (GetStoryRequest, GetStoryResponse, DetailStoryRequest, DetailStoryResponse, PostStoryRequest, PostStoryResponse, PutStoryRequest, PutStoryResponse, DeleteStoryRequest, DeleteStoryResponse) from .repository import StoryRespository class StoryServiceAgent(object): @classmethod def get_story(cls, request_obj: GetStoryRequest, path: str) -> GetStoryResponse: story_list, total_count = StoryRespository.get_story(limit=request_obj.limit, offset=request_obj.offset, sort=request_obj.sort, category_id=request_obj.category_id) return GetStoryResponse(request=request_obj, response=story_list, path=path, total_count=total_count) @classmethod def detail_story(cls, request_obj: DetailStoryRequest) -> DetailStoryResponse: story = StoryRespository.detail_story(id=request_obj.id) return DetailStoryResponse(**story.__dict__) @classmethod def post_story(cls, request_obj: PostStoryRequest) -> PostStoryResponse: story = StoryRespository.post_story(category_id=request_obj.category_id, name=request_obj.name, slug=request_obj.slug, description=request_obj.description, content=request_obj.content) return PostStoryResponse(**story.__dict__) @classmethod def put_story(cls, request_obj: PutStoryRequest) -> PutStoryResponse: story = StoryRespository.put_story(id=request_obj.id, category_id=request_obj.category_id, name=request_obj.name, slug=request_obj.slug, description=request_obj.description, content=request_obj.content) return PutStoryResponse(**story.__dict__) @classmethod def delete_story(cls, request_obj: DeleteStoryRequest) -> DeleteStoryResponse: story = StoryRespository.delete_story(id=request_obj.id) return DeleteStoryResponse(story)
import hashlib import pathlib from io import TextIOBase from typing import Optional, List, Tuple, Set from cincan.command_log import CommandLogIndex, CommandLog, quote_args class FileDependency: """File dependency information for command log""" def __init__(self, file: pathlib.Path, digest: str, out:bool): self.file = file self.digest = digest self.out = out self.next: List['CommandDependency'] = [] def __str__(self): file_string = self.file.as_posix() + (' ' + self.digest[:16] if self.digest else '/') next_strings = [str(s).replace('\n', '\n ') for s in self.next] p = '\n|-- ' if self.out else '\n^-- ' return file_string + (p + p.join(next_strings) if next_strings else '') class CommandDependency: """Command dependency information for command log""" def __init__(self, command: CommandLog, out:bool): self.command = command self.out = out self.next: List[FileDependency] = [] def __str__(self): cmd_string = " ".join(quote_args(self.command.command)) next_strings = [str(s).replace('\n', '\n ') for s in self.next] p = '\n|-->' if self.out else '\n^---' return cmd_string + (p + p.join(next_strings) if next_strings else '') class CommandInspector: """Inspector for doing analysis based on command log""" def __init__(self, log: CommandLogIndex, work_dir: pathlib.Path): self.log = log self.work_dir = work_dir def __work_path(self, path: pathlib.Path) -> pathlib.Path: if path.as_posix().startswith('/dev/'): return path try: return path.relative_to(self.work_dir) except ValueError: return path.resolve() def fanin(self, file: pathlib.Path, depth: int, already_covered: Set[str] = None, digest: Optional[str] = None) -> FileDependency: file_digest = digest or self.hash_of(file) file_dep = FileDependency(self.__work_path(file), file_digest, out=False) file_check = file.as_posix() + ':' + file_digest already_covered = already_covered or set([]) if depth < 1 or file_check in already_covered: return file_dep already_covered.add(file_check) for cmd in self.log.list_entries(reverse=True): output_here = any(filter(lambda f: f.digest == file_digest, cmd.out_files)) if output_here: cmd_dep = CommandDependency(cmd, out=False) for file in cmd.in_files: cmd_dep.next.append(self.fanin(file.path, depth - 1, already_covered, file.digest)) file_dep.next.append(cmd_dep) return file_dep def fanout(self, file: pathlib.Path, depth: int, already_covered: Set[str] = None, digest: Optional[str] = None) -> FileDependency: file_digest = digest or self.hash_of(file) file_dep = FileDependency(self.__work_path(file), file_digest, out=True) file_check = file.as_posix() + ':' + file_digest already_covered = already_covered or set([]) if depth < 1 or file_check in already_covered: return file_dep already_covered.add(file_check) for cmd in self.log.list_entries(reverse=True): input_here = any(filter(lambda f: f.digest == file_digest, cmd.in_files)) if input_here: cmd_dep = CommandDependency(cmd, out=True) for file in cmd.out_files: cmd_dep.next.append(self.fanout(file.path, depth -1, already_covered, file.digest)) file_dep.next.append(cmd_dep) return file_dep @classmethod def hash_of(cls, file: pathlib.Path) -> str: if not file.is_file(): return '' md = hashlib.sha256() with file.open("rb") as f: chunk = f.read(2048) while chunk: md.update(chunk) chunk = f.read(2048) return md.hexdigest()
import os os.environ['AWS_REGION'] = 'eu-west-1' from ..index import Item def test_bool_convert(): item = Item() item.item_key = {'key': {'S': 'value'}} item.item_value = { 'string': {'S': 'str'}, 'bool': {'BOOL': 'true'}, 'map': {'M': { 'string': {'S': 'str'}, 'bool': {'BOOL': 'true'}, }}, 'list': {'L': [ {'S': 'str'}, {'BOOL': 'true'}, ]}, } out = item.construct_item() assert out['string']['S'] == 'str' assert isinstance(out['bool']['BOOL'], bool) assert out['bool']['BOOL'] is True assert isinstance(out['map']['M']['bool']['BOOL'], bool) assert out['map']['M']['bool']['BOOL'] is True assert isinstance(out['list']['L'][1]['BOOL'], bool) assert out['list']['L'][1]['BOOL'] is True
import math import random import sqlite3 # CONSTANTS NODE_POS_OFFSET_AT_CREATION = 10 MIN_NODE_FRICTION = 0 MAX_NODE_FRICTION = 1 class Node: def __init__(self, x_pos, y_pos, friction, speed, angle): # position in space self.x_pos = x_pos self.y_pos = y_pos # friction with the ground self.friction = friction # speed vector (better than vX and vY?) self.speed = speed self.angle = angle @classmethod def from_random(cls): # TODO: update generation of random x and y position (?) x_pos = random.randint(-1 * NODE_POS_OFFSET_AT_CREATION, NODE_POS_OFFSET_AT_CREATION) y_pos = random.randint(-1 * NODE_POS_OFFSET_AT_CREATION, NODE_POS_OFFSET_AT_CREATION) friction = random.uniform(MIN_NODE_FRICTION, MAX_NODE_FRICTION) # node doesnt have any speed at creation speed = 0 angle = 0 return cls(x_pos, y_pos, friction, speed, angle) class Muscle: def __init__(self): pass @classmethod def random_init(cls): pass class Creature: def __init__(self): self.nodes = [] self.muscles = [] self.alive = True @classmethod def random_init(cls): pass def insert_into_db(self, db_name): conn = sqlite3.connect(db_name) cur = conn.cursor() insert_creature = """ INSERT INTO creatures (alive) VALUES (1); """ get_creature_id = """ SELECT creature_id FROM creatures ORDER BY creature_id DESC LIMIT 1; """ insert_nodes = """ INSERT INTO nodes (x_position, y_position, friction, creature_id) VALUES (?, ?, ?, ?); """ insert_muscles = """ INSERT INTO nodes (extended_length, contracted_length, extended_time, contracted_time, strength, node_1_id, node_2_id, creature_id) VALUES (?, ?, ?, ?, ?, ?, ?, ?); """ cur.execute(insert_creature) creature_id = cur.execute(get_creature_id) for node in self.nodes: cur.execute(insert_nodes, node.x_pos, node.y_pos, node.friction, creature_id) # TODO: find better way? for muscle in self.muscles: cur.execute(insert_muscles, muscle.extended_length, muscle.contracted_length, \ muscle.extended_time, muscle.contracted_time, muscle.strength, \ node_1_id, node_2_id, creature_id) cur.close() conn.close() def nCr(n, r): f = math.factorial return f(n) // f(r) // f(n-r) def main(): pass if __name__ == '__main__': main()
# SPDX-License-Identifier: Apache-2.0 """ Test scikit-learn's PowerTransform """ import unittest import numpy as np from skl2onnx import convert_sklearn from skl2onnx.common.data_types import FloatTensorType from test_utils import dump_data_and_model, TARGET_OPSET try: from sklearn.preprocessing import PowerTransformer # noga except ImportError: # Not available in scikit-learn < 0.20.0 PowerTransformer = None class TestSklearnPowerTransformer(unittest.TestCase): """Test cases for PowerTransform converter""" @unittest.skipIf(PowerTransformer is None, "Problems with import occurred") def test_powertransformer_yeo_johnson_positive_without_scaler(self): pt = PowerTransformer(standardize=False) data = np.array([[1, 2], [3, 2], [4, 5]], dtype=np.float32) model = pt.fit(data) model_onnx = convert_sklearn(model, "scikit-learn PowerTransformer", [("input_float", FloatTensorType([None, None]))], target_opset=TARGET_OPSET) self.assertIsNotNone(model_onnx) dump_data_and_model(data, model, model_onnx, basename="PowerTransformer") @unittest.skipIf(PowerTransformer is None, "Problems with import occurred") def test_powertransformer_yeo_johnson_negative_without_scaler(self): pt = PowerTransformer(standardize=False) data = np.array([[-1, -2], [-3, -2], [-4, -5]], dtype=np.float32) model = pt.fit(data) model_onnx = convert_sklearn(model, "scikit-learn PowerTransformer", [("input_float", FloatTensorType([None, None]))], target_opset=TARGET_OPSET) self.assertIsNotNone(model_onnx) dump_data_and_model(data, model, model_onnx, basename="PowerTransformer") @unittest.skipIf(PowerTransformer is None, "Problems with import occurred") def test_powertransformer_yeo_johnson_combined_without_scaler(self): pt = PowerTransformer(standardize=False) data = np.array([[1, -2], [0, -2], [-4, 5]], dtype=np.float32) model = pt.fit(data) model_onnx = convert_sklearn(model, "scikit-learn PowerTransformer", [("input_float", FloatTensorType([None, None]))], target_opset=TARGET_OPSET) self.assertIsNotNone(model_onnx) dump_data_and_model(data, model, model_onnx, basename="PowerTransformer") @unittest.skipIf(PowerTransformer is None, "Problems with import occurred") def test_powertransformer_box_cox_without_scaler(self): pt = PowerTransformer(standardize=False, method='box-cox') data = np.array([[1, 2], [3, 2], [4, 5]], dtype=np.float32) model = pt.fit(data) model_onnx = convert_sklearn(model, "scikit-learn PowerTransformer", [("input_float", FloatTensorType([None, None]))], target_opset=TARGET_OPSET) self.assertIsNotNone(model_onnx) dump_data_and_model(data, model, model_onnx, basename="PowerTransformer") @unittest.skipIf(PowerTransformer is None, "Problems with import occurred") def test_powertransformer_yeo_johnson_positive_with_scaler(self): pt = PowerTransformer() data = np.array([[1, 2], [3, 2], [4, 5]], dtype=np.float32) model = pt.fit(data) model_onnx = convert_sklearn(model, "scikit-learn PowerTransformer", [("input_float", FloatTensorType([None, None]))], target_opset=TARGET_OPSET) self.assertIsNotNone(model_onnx) dump_data_and_model(data, model, model_onnx, basename="PowerTransformer") @unittest.skipIf(PowerTransformer is None, "Problems with import occurred") def test_powertransformer_with_scaler_blacklist(self): pt = PowerTransformer() data = np.array([[1, 2], [3, 2], [4, 5]], dtype=np.float32) model = pt.fit(data) model_onnx = convert_sklearn(model, "scikit-learn PowerTransformer", [("input_float", FloatTensorType([None, None]))], target_opset=TARGET_OPSET, black_op={'Scaler'}) self.assertNotIn("Scaler", str(model_onnx)) dump_data_and_model(data, model, model_onnx, basename="PowerTransformerBlackList") @unittest.skipIf(PowerTransformer is None, "Problems with import occurred") def test_powertransformer_yeo_johnson_negative_with_scaler(self): pt = PowerTransformer() data = np.array([[-1, -2], [-3, -2], [-4, -5]], dtype=np.float32) model = pt.fit(data) model_onnx = convert_sklearn(model, "scikit-learn PowerTransformer", [("input_float", FloatTensorType([None, None]))], target_opset=TARGET_OPSET) self.assertIsNotNone(model_onnx) dump_data_and_model(data, model, model_onnx, basename="PowerTransformer") @unittest.skipIf(PowerTransformer is None, "Problems with import occurred") def test_powertransformer_yeo_johnson_combined_with_scaler(self): pt = PowerTransformer() data = np.array([[1, -2], [3, -2], [-4, 5]], dtype=np.float32) model = pt.fit(data) model_onnx = convert_sklearn(model, "scikit-learn PowerTransformer", [("input_float", FloatTensorType([None, None]))], target_opset=TARGET_OPSET) self.assertIsNotNone(model_onnx) dump_data_and_model(data, model, model_onnx, basename="PowerTransformer") @unittest.skipIf(PowerTransformer is None, "Problems with import occurred") def test_powertransformer_box_cox_with_scaler(self): pt = PowerTransformer(method='box-cox') data = np.array([[1, 2], [3, 2], [4, 5]], dtype=np.float32) model = pt.fit(data) model_onnx = convert_sklearn(model, "scikit-learn PowerTransformer", [("input_float", FloatTensorType([None, None]))], target_opset=TARGET_OPSET) self.assertIsNotNone(model_onnx) dump_data_and_model(data, model, model_onnx, basename="PowerTransformer") @unittest.skipIf(PowerTransformer is None, "Problems with import occurred") def test_powertransformer_zeros(self): pt = PowerTransformer() data = np.array([[0, 0], [0, 0]], dtype=np.float32) model = pt.fit(data) model_onnx = convert_sklearn(model, "scikit-learn PowerTransformer", [("input_float", FloatTensorType([None, None]))], target_opset=TARGET_OPSET) self.assertIsNotNone(model_onnx) dump_data_and_model(data, model, model_onnx, basename="PowerTransformer") if __name__ == '__main__': unittest.main()
import fpdf from fpdf import FPDF, HTMLMixin # Create pdf report to show the results in a readable way # The content of the pdf has to be written following the # HTML standard. It will be converted in pdf at the end, # using output_pdf() class MyFPDF(FPDF, HTMLMixin): pass # parameters for the pdf pdf = MyFPDF() font_size = 11 html = '' check = False # initialize the structure of the pdf and append the title of the report in an HTML format def init(): global html global check pdf.add_page() html += '<H1 align="center">MQTTSA Report</H1>' check = True # append a paragraph to the HTML def add_paragraph(title, msg=None): global html global check if check == False: init() if msg != None: html += '<h2 align="left">'+title+"</h2><font size="+str(font_size)+">"+msg+'</p><br>' else: html += '<h2 align="left">'+title+'</h2>' # append a sub-paragraph to the HTML def add_sub_paragraph(title, msg=None): global html if msg != None: html += '<h4 align="left">'+title+"</h4><font size="+str(font_size)+">"+msg+'</p><br>' else: html += '<h4 align="left">'+title+'</h4>' # append to an existing paragraph of the HTML def add_to_existing_paragraph(msg): global html html += "<font size="+str(font_size)+">"+msg+'</font><br>' # generate the pdf using the HTML def output_pdf(): global html pdf.write_html(html.encode('utf-8').decode('latin-1')) pdf.output("../report.pdf")
#!/usr/bin/python3 # -*- coding: UTF-8 -*- # @license : Copyright(C), Your Company # @Author: Zhang Dong # @Contact : 1010396971@qq.com # @Date: 2020-07-19 9:20 # @Description: 模型下载地址:https://github.com/pytorch/vision/issues/616 # 调用本地模型:https://github.com/pytorch/vision/pull/1057 # @Software : PyCharm from __future__ import print_function from __future__ import division import os import torch.nn as nn from torchvision import datasets, models from PIL import Image import torchvision.transforms as transforms from torch.autograd import Variable num_classes = 2 # 数据集中的分类数量 BATCH_SIZE = 128 # batch_size # Flag for feature extracting. When False, we fine-tune the whole model, # when True we only update the reshaped layer params feature_extract = True TARGET_IMG_SIZE = 224 img_to_tensor = transforms.ToTensor() # and then put local models into ./moddels/checkpoints/resnet18-5c106cde.pth os.environ['TORCH_HOME'] = './models' def set_parameter_requires_grad(model, feature_extracting): if feature_extract: for param in model.parameters(): param.requires_grad = False def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True): model_ft = None input_size = 0 if model_name == 'resnet': """ Resnet 18 """ model_ft = models.resnet18(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, num_classes) input_size = 224 elif model_name == "alexnet": """ Alexnet """ model_ft = models.alexnet(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Linear(num_ftrs, num_classes) input_size = 224 elif model_name == "vgg": """ VGG11_bn """ model_ft = models.vgg11_bn(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Linear(num_ftrs, num_classes) input_size = 224 elif model_name == "squeezenet": """ Squeezenet """ model_ft = models.squeezenet1_0(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1, 1), stride=(1, 1)) model_ft.num_classes = num_classes input_size = 224 elif model_name == "densenet": """ Densenet """ model_ft = models.densenet121(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier.in_features model_ft.classifier = nn.Linear(num_ftrs, num_classes) input_size = 224 elif model_name == "inception": """ Inception v3 Be careful, expects (299,299) sized images and has auxiliary output """ model_ft = models.inception_v3(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) # Handle the auxilary net num_ftrs = model_ft.AuxLogits.fc.in_features model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes) # Handle the primary net num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, num_classes) input_size = 299 else: print("Invalid model name, exiting...") exit() return model_ft # Model to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception] model_name = 'resnet' model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True) def extract_feature(model, imgpath): model.eval() img = Image.open(imgpath) img = img.resize((TARGET_IMG_SIZE, TARGET_IMG_SIZE)) tensor = img_to_tensor(img) # 将图片转化成tensor # tensor = tensor.cuda() # 如果只是在cpu上跑的话要将这行去掉 result = model(Variable(tensor)) result_npy = result.data.cpu().numpy() # 保存的时候一定要记得转成cpu形式的,不然可能会出错 return result_npy[0] # 返回的矩阵shape是[1, 512, 14, 14],这么做是为了让shape变回[512, 14,14] if __name__=="__main__": model = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True) imgpath = './t.jpg' tmp = extract_feature(model, imgpath) print(tmp.shape) # 打印出得到的tensor的shape print(tmp) # 打印出tensor的内容,其实可以换成保存tensor的语句,这里的话就留给读者自由发挥了
#!/usr/bin/env python def gcd(m, n): while n: m, n = n, m % n return m def lcm(m, n): return m * n / gcd(m, n) def is_power(n): return ((n & (n - 1)) == 0) and n != 0 if __name__ == '__main__': print lcm(512, 3) print '16:', is_power(16) print '4:', is_power(4) print '2:', is_power(2) print '5:', is_power(5) print '1:', is_power(1)
from typing import Tuple import numpy as np from numpy.core.fromnumeric import size def get_dataset() -> Tuple[np.ndarray, np.ndarray]: """OR-Function dataset""" x = np.array([[0, 0], [1, 0], [0, 1], [1, 1]]) # Input in das OR-Gatter y = np.array([[0], [1], [1], [1]]) # Ergebnis eines OR-Gatters return x, y def accuracyScore(y_true: np.ndarray, y_pred: np.ndarray): N = y_true.shape[0] # Anzahl der Datenpunkte accuracy = np.sum(y_true == y_pred) / N # Wie oft richtig return accuracy def step_function(input_sig: np.ndarray) -> np.ndarray: output_signal = (input_sig > 0.0).astype(np.int_) return output_signal class Perceptron: def __init__(self, learning_rate: float, input_dim: int) -> None: """Initialisierung des Perceptron Objekts""" self.learning_rate = learning_rate self.input_dim = input_dim # Erstellen der Gewichtsmatrix, zufällig gewählte Gewichte self.w = np.random.uniform(-1, 1, size=(self.input_dim, 1)) def _update_weights(self, x: np.ndarray, y: np.ndarray, y_pred: np.ndarray) -> None: error = (y - y_pred) delta = error * x for delta_i in delta: self.w = self.w + self.learning_rate * delta_i.reshape(-1, 1) def train(self, x: np.ndarray, y: np.ndarray, epochs: int = 1) -> None: """Trainieren des Models. 1.Vorhersagte, 2.Gewichtung anpassen, 3.Genauigkeit, 4.Ausgabe""" for epoch in range(1, epochs + 1): y_pred = self.predict(x) self._update_weights(x, y, y_pred) accuracy = accuracyScore(y, y_pred) print(f"Epoch: {epoch} Accuracy: {accuracy}") def predict(self, x: np.ndarray) -> np.ndarray: input_sig = np.dot(x, self.w) output_sig = step_function(input_sig) return output_sig def evaluate(self, x: np.ndarray, y: np.ndarray) -> None: y_pred = self.predict(x) return accuracyScore(y, y_pred) if __name__ == "__main__": x, y = get_dataset() input_dim = x.shape[1] # Anzahl der Features learning_rate = 0.5 p = Perceptron(learning_rate, input_dim) p.train(x, y, epochs=10)
from random import randint from sqlalchemy.exc import IntegrityError from faker import Faker from app import db from app.models import User, Post, Comment def post_comments(): fake = Faker() user_count = User.query.count() post_count = Post.query.count() for i in range(1,post_count+1): p = Post.query.get(i) for i in range(randint(10,15)): u = User.query.offset(randint(0, user_count - 1)).first() comment = Comment( body=fake.text(), date_created=fake.past_date(), author=u, post=p) db.session.add(comment) db.session.commit()
""" Given a number of stairs, you can climb at most m stairs at a time. For instance, for m=3, you can climb 1, 2, or 3 stairs at a time. Count the number of different ways that you can reach the top. :param stair_count: No of stairs to climb. :param max_steps: Max no of stairs you can climb at a time. :return: Number of different ways to reach the top. """ def climb_stairs_recursive(stair_count, max_steps): if stair_count <= 2: return stair_count if max_steps <= 1: return max_steps total = 0 for i in range(max_steps): total += climb_stairs_recursive(stair_count - (i + 1), max_steps) return total def climb_stairs_recursive_memoized(stair_count, max_steps): pass def climb_stairs_fibonacci(stair_count, max_steps): if stair_count <= 1: return stair_count if max_steps <= 1: return 1 fib = [0, 1] for _ in range(stair_count): fib.append(sum(fib)) if len(fib) > max_steps: fib.pop(0) return fib[-1] def climb_stairs_with_variable_steps(stair_count, possibleSteps): pass # tests assert climb_stairs_fibonacci(0, 2) == 0 assert climb_stairs_recursive(0, 2) == 0 assert climb_stairs_recursive_memoized(0, 2) == 0 assert climb_stairs_fibonacci(1, 2) == 1 assert climb_stairs_recursive(1, 2) == 1 assert climb_stairs_recursive_memoized(1, 2) == 1 assert climb_stairs_fibonacci(2, 2) == 2 assert climb_stairs_recursive(2, 2) == 2 assert climb_stairs_recursive_memoized(2, 2) == 2 assert climb_stairs_fibonacci(7, 2) == 21 assert climb_stairs_recursive(7, 2) == 21 assert climb_stairs_recursive_memoized(7, 2) == 21 assert climb_stairs_fibonacci(40, 1) == 1 assert climb_stairs_recursive(40, 1) == 1 assert climb_stairs_recursive_memoized(40, 1) == 1 assert climb_stairs_fibonacci(16, 7) == 31489 assert climb_stairs_recursive(16, 7) == 31489 assert climb_stairs_recursive_memoized(16, 7) == 31489 assert climb_stairs_fibonacci(30, 30) == 536870912 assert climb_stairs_recursive(30, 30) == 536870912 assert climb_stairs_recursive_memoized(30, 30) == 536870912 print('done: all tests pass')
from store_vertices import store_vertices from dijkstra_algo import dijkstra def main(): nodes = set() graph = dict() result = [] visited = {} e = int(input('Enter the number of roads: ')) store_vertices(e, nodes, graph) starting = input('Starting point: ') ending = input('ending point point: ') unvisited = {node: None for node in nodes} current = starting current_distance = 0 unvisited[current] = current_distance prev = dijkstra(graph, unvisited, visited, current_distance, current) while ending in prev: result.append(ending) ending = prev[ending] result.append(starting) print('Shortest path will be: ') for i in range(0, len(result)): if i < len(result) - 1: print(result[len(result) - i - 1], end=' -> ') else: print(result[len(result) - i - 1]) if __name__ == '__main__': main()
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import datetime import unittest from unittest.mock import MagicMock, patch from dateutil.tz import tzlocal from airflow import DAG, AirflowException from airflow.contrib.sensors.emr_run_job_flows import EmrRunJobFlows from airflow.utils import timezone DEFAULT_DATE = timezone.datetime(2017, 1, 1) class TestEmrRunJobFlows(unittest.TestCase): def setUp(self): args = { 'owner': 'airflow', 'start_date': DEFAULT_DATE } # Mock out the emr_client (moto has incorrect response) self.emr_client = MagicMock() self.boto3_session = None # This is set in _verify_job_flow_execution self.emr_run_job_flows = EmrRunJobFlows( task_id='test_task', poke_interval=0, job_flows=self._stubbed_job_flows([ ["cluster1"], # first batch is just this cluster ["cluster2a", "cluster2b"], # then these two run in parallel ["cluster3"]]), # and finally, this third batch dag=DAG('test_dag_id', default_args=args) ) self.states = {} self.clusters = [] def _stubbed_job_flows(self, names_queue): job_flows = [] for names_batch in names_queue: job_flows_batch = {} for name in names_batch: job_flows_batch[name] = self._cluster_config(name) job_flows.append(job_flows_batch) return job_flows def _cluster_config(self, name): return { 'Name': name, 'ReleaseLabel': '5.11.0', 'Instances': { 'KeepJobFlowAliveWhenNoSteps': False }, 'Steps': [{ 'Name': 'test_step', 'ActionOnFailure': 'TERMINATE_CLUSTER', 'HadoopJarStep': { 'Jar': 'command-runner.jar', 'Args': [ '/usr/lib/spark/bin/run-example', '{{ macros.ds_add(ds, -1) }}', '{{ ds }}' ] } }] } def test_execute_calls_until_all_clusters_reach_a_terminal_state(self): self.clusters = ["cluster1", "cluster2a", "cluster2b", "cluster3"] self.states["j-cluster1"] = [] self.states["j-cluster1"].append("STARTING") self.states["j-cluster1"].append("BOOTSTRAPPING") self.states["j-cluster1"].append("RUNNING") self.states["j-cluster1"].append("RUNNING") self.states["j-cluster1"].append("TERMINATING") self.states["j-cluster1"].append("TERMINATED") # (End Of Batch) self.states["j-cluster2a"] = [] self.states["j-cluster2b"] = [] self.states["j-cluster2a"].append("STARTING") # a self.states["j-cluster2b"].append("STARTING") # b self.states["j-cluster2a"].append("BOOTSTRAPPING") # a self.states["j-cluster2b"].append("BOOTSTRAPPING") # b self.states["j-cluster2a"].append("RUNNING") # a self.states["j-cluster2b"].append("RUNNING") # b self.states["j-cluster2a"].append("RUNNING") # a self.states["j-cluster2b"].append("RUNNING") # b self.states["j-cluster2a"].append("RUNNING") # a self.states["j-cluster2b"].append("TERMINATING") # b self.states["j-cluster2a"].append("RUNNING") # a self.states["j-cluster2b"].append("TERMINATED") # b: terminal self.states["j-cluster2a"].append("TERMINATING") # a self.states["j-cluster2b"].append("TERMINATED") # b: terminal self.states["j-cluster2a"].append("TERMINATED") # a (End Of Batch) self.states["j-cluster2b"].append("TERMINATED") # b (End Of Batch) self.states["j-cluster3"] = [] self.states["j-cluster3"].append("STARTING") self.states["j-cluster3"].append("BOOTSTRAPPING") self.states["j-cluster3"].append("RUNNING") self.states["j-cluster3"].append("RUNNING") self.states["j-cluster3"].append("TERMINATING") self.states["j-cluster3"].append("TERMINATED") # (all done) self.emr_client.describe_cluster.side_effect = self._describe self.emr_client.run_job_flow.side_effect = self._create self._verify_job_flow_execution() def test_execute_stops_when_cluster_in_batch_fails(self): self.clusters = ["cluster1"] # First, cluster1 is queried until it terminates self.states["j-cluster1"] = [] self.states["j-cluster1"].append("STARTING") self.states["j-cluster1"].append("BOOTSTRAPPING") self.states["j-cluster1"].append("RUNNING") self.states["j-cluster1"].append("RUNNING") self.states["j-cluster1"].append("TERMINATING") self.states["j-cluster1"].append("TERMINATED") # Then, both cluster2a and cluster2b are queried self.states["j-cluster2a"] = [] self.states["j-cluster2b"] = [] self.states["j-cluster2a"].append("STARTING") # a self.states["j-cluster2b"].append("STARTING") # b self.states["j-cluster2a"].append("BOOTSTRAPPING") # a self.states["j-cluster2b"].append("BOOTSTRAPPING") # b self.states["j-cluster2a"].append("RUNNING") # a self.states["j-cluster2b"].append("RUNNING") # b self.states["j-cluster2a"].append("RUNNING") # a self.states["j-cluster2b"].append("RUNNING") # b self.states["j-cluster2a"].append("TERMINATING") # a self.states["j-cluster2b"].append("TERMINATED_WITH_ERRORS") # b # We expect that no more calls are to be made, even though cluster3 # hasn't even started and cluster2a isn't yet terminated. self.emr_client.describe_cluster.side_effect = self._describe self.emr_client.run_job_flow.side_effect = self._create self._verify_job_flow_execution(failure=True) def test_execute_stops_on_cluster_creation_failure(self): self.clusters = ["cluster1"] # Note that self.states is empty since there's nothing to poke. self.emr_client.run_job_flow.side_effect = self._fail_to_create self._verify_job_flow_execution(failure=True) def _verify_job_flow_execution(self, failure=False): # Mock out the emr_client creator emr_session_mock = MagicMock() emr_session_mock.client.return_value = self.emr_client self.boto3_session = MagicMock(return_value=emr_session_mock) with patch('boto3.session.Session', self.boto3_session): try: if failure: with self.assertRaises(AirflowException): self._execute_and_verify_expectations() else: self._execute_and_verify_expectations() except Exception as e: raise e def _execute_and_verify_expectations(self): created = len(self.clusters) poked = sum([len(cs) for cs in self.states.values()]) self.emr_run_job_flows.execute(None) self.assertEqual(self.emr_client.run_job_flow.call_count, created) self.assertEqual(self.emr_client.describe_cluster.call_count, poked) # Convenience methods for describing clusters def _running_cluster(self, name, state="RUNNING"): return { 'Cluster': { 'Applications': [ {'Name': 'Spark', 'Version': '1.6.1'} ], 'AutoTerminate': True, 'Configurations': [], 'Ec2InstanceAttributes': {'IamInstanceProfile': 'EMR_EC2_DefaultRole'}, 'Id': name, 'LogUri': 's3n://some-location/', 'Name': 'PiCalc', 'NormalizedInstanceHours': 0, 'ReleaseLabel': 'emr-4.6.0', 'ServiceRole': 'EMR_DefaultRole', 'Status': { 'State': state, 'StateChangeReason': {}, 'Timeline': { 'CreationDateTime': datetime.datetime( 2016, 6, 27, 21, 5, 2, 348000, tzinfo=tzlocal())} }, 'Tags': [ {'Key': 'app', 'Value': 'analytics'}, {'Key': 'environment', 'Value': 'development'} ], 'TerminationProtected': False, 'VisibleToAllUsers': True }, 'ResponseMetadata': { 'HTTPStatusCode': 200, 'RequestId': 'd5456308-3caa-11e6-9d46-951401f04e0e' } } def _terminated_cluster(self, name): return { 'Cluster': { 'Applications': [ {'Name': 'Spark', 'Version': '1.6.1'} ], 'AutoTerminate': True, 'Configurations': [], 'Ec2InstanceAttributes': {'IamInstanceProfile': 'EMR_EC2_DefaultRole'}, 'Id': name, 'LogUri': 's3n://some-location/', 'Name': 'PiCalc', 'NormalizedInstanceHours': 0, 'ReleaseLabel': 'emr-4.6.0', 'ServiceRole': 'EMR_DefaultRole', 'Status': { 'State': 'TERMINATED', 'StateChangeReason': {}, 'Timeline': { 'CreationDateTime': datetime.datetime( 2016, 6, 27, 21, 5, 2, 348000, tzinfo=tzlocal())} }, 'Tags': [ {'Key': 'app', 'Value': 'analytics'}, {'Key': 'environment', 'Value': 'development'} ], 'TerminationProtected': False, 'VisibleToAllUsers': True }, 'ResponseMetadata': { 'HTTPStatusCode': 200, 'RequestId': 'd5456308-3caa-11e6-9d46-951401f04e0e' } } def _failed_cluster(self, name): return { 'Cluster': { 'Applications': [ {'Name': 'Spark', 'Version': '1.6.1'} ], 'AutoTerminate': True, 'Configurations': [], 'Ec2InstanceAttributes': {'IamInstanceProfile': 'EMR_EC2_DefaultRole'}, 'Id': name, 'LogUri': 's3n://some-location/', 'Name': 'PiCalc', 'NormalizedInstanceHours': 0, 'ReleaseLabel': 'emr-4.6.0', 'ServiceRole': 'EMR_DefaultRole', 'Status': { 'State': 'TERMINATED_WITH_ERRORS', 'StateChangeReason': { 'Code': 'BOOTSTRAP_FAILURE', 'Message': 'Master instance (i-0663047709b12345c) failed attempting to ' 'download bootstrap action 1 file from S3' }, 'Timeline': { 'CreationDateTime': datetime.datetime( 2016, 6, 27, 21, 5, 2, 348000, tzinfo=tzlocal())} }, 'Tags': [ {'Key': 'app', 'Value': 'analytics'}, {'Key': 'environment', 'Value': 'development'} ], 'TerminationProtected': False, 'VisibleToAllUsers': True }, 'ResponseMetadata': { 'HTTPStatusCode': 200, 'RequestId': 'd5456308-3caa-11e6-9d46-951401f04e0e' } } def _describe(self, *args, **kwargs): name = kwargs['ClusterId'] state = self.states[name].pop(0) return { 'TERMINATED': self._terminated_cluster(name), 'TERMINATED_WITH_ERRORS': self._failed_cluster(name), }.get(state, self._running_cluster(name, state)) def _fail_to_create(self, *args, **kwargs): return { 'ResponseMetadata': { 'HTTPStatusCode': 400 } } def _create(self, *args, **kwargs): return { 'ResponseMetadata': { 'HTTPStatusCode': 200 }, 'JobFlowId': 'j-' + kwargs['Name'] } if __name__ == '__main__': unittest.main()
#! /usr/bin/env python2 __author__ = "Jordan Prince Tremblay, Ismael Balafrej, Felix Labelle, Felix Martel-Denis, Eric Matte, Adam Letourneau, Julien Chouinard-Beaupre, Antoine Mercier-Nicol" __copyright__ = "Copyright 2018, DEVINE Project" __credits__ = ["Simon Brodeur", "Francois Ferland", "Jean Rouat"] __license__ = "BSD" __version__ = "1.0.0" __email__ = "devine.gegi-request@listes.usherbrooke.ca" __status__ = "Production" import json import unittest import rospy from devine_common import ros_utils import devine_tests.segmentation.segmentation_helper as helper class TestSegmentationRate(unittest.TestCase): """ Test to validate segmentation rates """ def test_segmentation_rate_on_two_frames(self): """ Loads images and posts the corresponding segmentation rates """ test_images = helper.load_test_images(__file__, ros_utils.get_fullpath(__file__, "test.json")) for image in test_images: self.assertFalse(rospy.is_shutdown()) rospy.loginfo("### Test image %s ###", image[helper.FILENAME]) self.segmentation_should_find_most_of_the_objects(image) def segmentation_should_find_most_of_the_objects(self, test_image): """ Evaluates segmentation rate for a single image """ expected_objects = test_image[helper.EXPECTED_OBJECTS] data = helper.segment_image(test_image) rospy.logwarn("Message timestamp: %s", json.loads(data.data)['timestamp']) objects_found = helper.get_segmented_objets(data) missed_objects = helper.get_missed_objects(expected_objects, objects_found) other_found_objects = helper.get_missed_objects(objects_found, expected_objects) rospy.loginfo("Number of missed detections: %d", len(missed_objects)) rospy.loginfo("Number of other detected objects: %d", len(other_found_objects)) objects_missed_ratio = float(len(missed_objects)) / len(expected_objects) rospy.loginfo("Percentage of objects missed: %.02f", objects_missed_ratio) if objects_missed_ratio >= 0.5: rospy.logwarn("The ratio of objects missed if greater than 50%.") self.assertTrue(objects_missed_ratio < 0.7, "The object missed ratio is too high.") if __name__ == "__main__": rospy.init_node("test") unittest.main()
#!/usr/bin/env python3 import os import sys from subprocess import check_call, check_output, Popen from glob import glob EMAIL_ADDRESS = 'dummy@liamg.com' # if this is true, then the sbatch files won't actually be submitted dryrun = False # if this is true, then existing output files will be overwritten # this has no effect on consistent_trees -- it'll be run regardless overwrite = False def find_run_name(path): possibilities = path.split('/') for pos in possibilities: if 'elvis' in pos: return pos.strip('m12_elvis_') if 'm09' in pos or 'm10' in pos or 'm11' in pos or 'm12' in pos: return pos return path # options for the jobs that we'll actually submit run_name = find_run_name(os.getcwd()) # number of jobs to run at once and number per node for AHF halo finding: ahf_nnodes = 10 ahf_ntasks_per_node = 4 ahf_ompthreads = 8 ahf_jobname = 'ahf-'+run_name ahf_ntasks = ahf_nnodes * ahf_ntasks_per_node # number of jobs to run at once and number for node for building the AHF trees: mtree_ntasks = 96 mtree_ntasks_per_node = 24 mtree_jobname = 'mtree-'+run_name ctrees_jobname = 'ctree-'+run_name # sbatch options that are in common across all setps sbatch_options = { 'mail-user': EMAIL_ADDRESS, # will do begin, end, and fail 'partition': 'cca', 'time': '168:00:00', 'exclusive': '', } # file names and paths: simulation_directory = '../..' snapshot_inbase = simulation_directory+'/output/snapdir_' home = os.path.expanduser('~')+'/code/halo' # input parameter files: # file that defines all the AHF inputs (other than fname, outname, file type) ahf_param_base = home+'/AHF.input' ctree_param_base = home+'/ctree-input.cfg' ahf_jobfile = 'ahf_commands.sh' ahf_sbatchfile = 'run_ahf.slurm' mtree_jobfile = 'mtree_commands.sh' mtree_sbatchfile = 'run_mtree.slurm' ctree_sbatchfile = 'run_ctrees.slurm' # output file paths: # overall output directory catalog_directory = './catalog' # directory for MergerTree outputs mtree_directory = catalog_directory + '/ahf-trees' # directories for consistent_trees outputs hlist_directory = catalog_directory + '/hlists' tree_directory = catalog_directory + '/trees' tree_outputs_directory = catalog_directory + '/outputs' # directory for disBatch log files: disbatch_log_directory = 'disbatch-logs' # paths that hopefully shouldn't need to be changed: python = 'python3' perl = 'perl' # path to execuatables ahf_exec = home + '/ahf-v1.0-094/bin/AHF-v1.0-094' mtree_exec = home + '/ahf-v1.0-094/bin/MergerTree' ctree_directory = home + '/consistent-trees' # or remove the np for periodic boundaries tree_script = "do_merger_tree_np.pl" hlist_script = "halo_trees_to_catalog.pl" # path to scripts to convert hdf5->gadget and AHF_halos + mtree_idx->out_xxx.list temp_gbin_dir = 'temp-gbins' hdf5_to_gbin = home + '/convert_ptype_to_gbin.py' this_script = os.path.realpath(__file__) # directories for AHF ahf_halo_directory = catalog_directory + '/halos' ahf_input_directory = catalog_directory + '/inputs' ahf_log_directory = catalog_directory + '/logs' ahf_parameter_directory = catalog_directory + '/paramters' ahf_particle_directory = catalog_directory + '/particles' ahf_profile_directory = catalog_directory + '/profiles' ahf_substructure_directory = catalog_directory + '/substructure' ahf_std_directory = catalog_directory + '/std-logs' ##################### # define some useful functions def checkdir(d): if not os.path.isdir(d): os.mkdir(d) def write_slurm(f, options, job_name, ntasks, ntasks_per_node, disbatch_command_file=None, disbatch_log_base=None, pre_disbatch_commands=[], post_disbatch_commands=[]): def write_sbatch_line(key, val=''): string = '#SBATCH --'+key if len(val): string += '='+val f.write(string+'\n') f.write('#!/usr/bin/env bash\n') f.write('\n') write_sbatch_line('job-name', job_name) write_sbatch_line('ntasks', str(ntasks)) write_sbatch_line('ntasks-per-node', str(ntasks_per_node)) for key, val in options.items(): write_sbatch_line(key, val) if 'mail-user' in options: write_sbatch_line('mail-type', 'begin') write_sbatch_line('mail-type', 'end') write_sbatch_line('mail-type', 'fail') f.write('\n') # set the umask -- files created should be readable for group and other f.write('umask 0022\n\n') # write any pre disBatch commands (e.g. export OMP_NUM_THREADS) for cmd in pre_disbatch_commands: f.write('{}\n'.format(cmd)) # call disBatch: if disbatch_command_file is not None: # make sure we've loaded the module we need f.write('module load disBatch\n') if disbatch_log_base is not None: f.write( 'disBatch.py -p {} {}\n\n'.format(disbatch_log_base, disbatch_command_file)) else: f.write('disBatch.py {}\n\n'.format( disbatch_log_base, disbatch_command_file)) # write any post disBatch commands (e.g. moving files or calling do_ctrees or ) for cmd in post_disbatch_commands: f.write('{}\n'.format(cmd)) # couple blank lines at the end for safety f.write('\n\n') return # make sure all our definitions are ok # don't want to output in current directory assert catalog_directory != "" # stuff we need for AHF to work assert os.path.isfile(ahf_param_base) assert os.path.isfile(hdf5_to_gbin) assert os.path.isfile(ahf_exec) # stuff we need for MergerTree to work assert os.path.isfile(mtree_exec) # stuff we need for consistent trees to work assert os.path.isdir(ctree_directory) assert os.path.isfile(ctree_directory+'/'+tree_script) assert os.path.isfile(ctree_directory+'/'+hlist_script) assert os.path.isfile(ctree_param_base) all_output_directories = [temp_gbin_dir, catalog_directory, ahf_halo_directory, ahf_input_directory, ahf_log_directory, ahf_parameter_directory, ahf_substructure_directory, disbatch_log_directory, ahf_particle_directory, ahf_profile_directory, ahf_std_directory, mtree_directory, hlist_directory, tree_directory, tree_outputs_directory] # make sure the output directories exist for directory in all_output_directories: checkdir(directory) def run_ahf(): ''' run ahf using the paths defined above creates the .AHF_input files based on an input parameter file then creates a list of commands for disBatch.py to handle then creates a SLURM file to run those commands, and submits it ''' snapshots = glob(snapshot_inbase+"*") if len(snapshots) == 0: raise OSError("No snapshots found! Exiting") snapshots.sort() # now halo find on all the snapshots using disBatch # read in the lines in the paramter file f = open(ahf_param_base, 'r') paramlines = [line for line in f] f.close() print("Setting up halo finding on {} snapshots".format(len(snapshots))) # loop over the snapshots, create the input files, and create the commands to run commands = [] for ii in range(len(snapshots)): snap = snapshots[ii] snapnum = snap.split('_')[-1] if '.' in snapnum: snapnum = snapnum.split('.')[0] snapnum = int(snapnum) if os.path.isdir(snap): conversion_inbase = snap + '/' doing_dir = True sname = glob(conversion_inbase + '/*')[0].split('/')[-1].split('.')[0] ahf_filetype = '61' else: conversion_inbase = snap doing_dir = False sname = snap.split('/')[-1].rsplit('.', 1)[0] ahf_filetype = '60' # build the AHF.input file -- only ic_filename, ic_filetype, and outfile_prefix get edited ahf_inbase = temp_gbin_dir + '/' + sname outfile_exists = len(glob(catalog_directory + '/' + sname + '*AHF_halos') ) or len(glob(ahf_halo_directory + '/' + sname + '*AHF_halos')) # output file exists and we don't want to overwrite if outfile_exists and (overwrite == False): print( "Already have a halo file for {0}; skipping it.".format(sname)) continue if doing_dir and not ahf_inbase.endswith('.'): ahf_inbase += '.' paramf = ahf_input_directory+'/{0}'.format(sname) with open(paramf, 'w') as param: for l in paramlines: if l.startswith('ic_filename'): l = 'ic_filename = '+ahf_inbase+'\n' elif l.startswith('outfile_prefix'): l = 'outfile_prefix = '+catalog_directory + '/' + sname + '\n' elif l.startswith('ic_filetype'): l = 'ic_filetype = '+ahf_filetype+'\n' param.write(l) logfile = ahf_std_directory+'/'+sname+'.stdout' # convert, run, clean up commands.append(r'{} {} {} {} && {} {} &> {} && rm {}*'.format( python, hdf5_to_gbin, conversion_inbase, temp_gbin_dir, ahf_exec, paramf, logfile, ahf_inbase)) # now dump the commands to a file: with open(ahf_jobfile, 'w') as jobf: jobf.write('\n'.join(commands)) # create the sbatch file to do the actual work: if ahf_ompthreads > 0: pre_disbatch_commands = ['export OMP_NUM_THREADS='+str(ahf_ompthreads)] else: pre_disbatch_commands = [] post_disbatch_commands = [ 'mv ' + catalog_directory + '/*.AHF_halos ' + ahf_halo_directory + '/', 'mv ' + catalog_directory + '/*.log ' + ahf_log_directory + '/', 'mv ' + catalog_directory + '/*.parameter ' + ahf_parameter_directory + '/', 'mv ' + catalog_directory + '/*.AHF_profiles ' + ahf_profile_directory + '/', 'mv ' + catalog_directory + '/*.AHF_particles ' + ahf_particle_directory + '/', 'mv ' + catalog_directory + '/*.AHF_substructure ' + ahf_substructure_directory + '/', python+' '+this_script+' 2'] with open(ahf_sbatchfile, 'w') as sbatchf: write_slurm(sbatchf, sbatch_options, ahf_jobname, ahf_ntasks, ahf_ntasks_per_node, disbatch_command_file=ahf_jobfile, disbatch_log_base=disbatch_log_directory+'/ahf', pre_disbatch_commands=pre_disbatch_commands, post_disbatch_commands=post_disbatch_commands) print("Submitting {} to do the halo finding ({} tasks at once with {} per node)".format( ahf_jobfile, ahf_ntasks, ahf_ntasks_per_node)) if dryrun is not True: job_info = check_output(['sbatch', ahf_sbatchfile]) job_id = int(job_info.strip().split()[-1]) print("When job {} finishes, it should resubmit this script ({}) with an argument of 2".format( job_id, this_script)) else: print("Actually, you'll have to do the submission of {} yourself...".format( ahf_jobfile)) return -1 def run_mtree(): ''' run MergerTree using the paths defined above. AHF must have been run first creates a list of commands for disBatch.py to handle that are MergerTree < 2 "input file ii" "input file ii+1" "output file" then creates a SLURM file to run those commands, and submits it ''' # lambda function to get snapshot name from the AHF particle files def snapname(fname): return fname.split('/')[-1].split('.z')[0] particle_files = glob(ahf_particle_directory+'/*particles') particle_files.sort() if not len(particle_files): raise OSError("Didn't find any particle files in {}".format( ahf_particle_directory)) commands = [] for ii in range(len(particle_files)-1): file1 = particle_files[ii] file2 = particle_files[ii+1] outfile = mtree_directory + '/' + \ snapname(file1)+'_to_'+snapname(file2) if os.path.isfile(outfile+'_mtree_idx') and (overwrite == False): print("Already have {}, so skipping {} to {}".format( outfile, snapname(file1), snapname(file2))) continue commands.append(mtree_exec + ' <<< "2 ' + file1+' '+file2+' '+outfile+'"') with open(mtree_jobfile, 'w') as jobf: jobf.write('\n'.join(commands)) # no pre commands necessary here; post is to rerun this script with arg 3 post_disbatch_commands = [python+' '+this_script+' 3'] with open(mtree_sbatchfile, 'w') as sbatchf: write_slurm(sbatchf, sbatch_options, mtree_jobname, mtree_ntasks, mtree_ntasks_per_node, disbatch_command_file=mtree_jobfile, disbatch_log_base=disbatch_log_directory+'/mtree', post_disbatch_commands=post_disbatch_commands) print("Submitting {} to run MergerTree ({} tasks at once with {} per node".format( mtree_jobfile, mtree_ntasks, mtree_ntasks_per_node)) if dryrun is not True: job_info = check_output(['sbatch', mtree_sbatchfile]) job_id = int(job_info.strip().split()[-1]) print("When job {} finishes it should resubmit this script {} with an argument of 3".format( job_id, this_script)) return job_id else: print("Actually, you'll have to do the submission of {} yourself...".format( mtree_sbatchfile)) return -1 def run_ctrees(): ''' creats a job script that will 1. builds the out_xxx.lists (using this file) 2. runs ctrees, 3. runs hlists ''' import gizmo_analysis # call this script to make the out.lists (no need to worry about variables cause they're set internally) commands = ['set -e'] commands.append('export PYTHONPATH=$HOME/stock-wetzel/src') cmd = [python, this_script, 'out'] commands.append(' '.join(cmd)) # need to load a snapshot for the cosomology + box size (though latter probably irrelevant for non-periodic boxes) header = gizmo_analysis.gizmo_io.Read.read_header( simulation_directory=simulation_directory) Om = header['omega_matter'] Ol = header['omega_lambda'] h0 = header['hubble'] boxwidth = header['box.length/h'] cwd = os.getcwd()+'/' # build the input file using absolute paths cfgname = cwd+"ctrees.cfg" with open(cfgname, 'w') as cfg, open(ctree_param_base, 'r') as incfg: # Write the relevant file paths cfg.write('SCALEFILE = '+cwd+catalog_directory+'/DescScale.txt\n') cfg.write('INBASE = '+cwd+catalog_directory+'\n') cfg.write('OUTBASE = '+cwd+tree_outputs_directory+'\n') cfg.write('TREE_OUTBASE = '+cwd+tree_directory+'\n') cfg.write('HLIST_OUTBASE = '+cwd+hlist_directory+'\n') cfg.write('\n') cfg.write('Om={} #Omega_Matter\n'.format(Om)) cfg.write('Ol={} #Omega_Lambda\n'.format(Ol)) cfg.write('h0={} #h0\n'.format(h0)) cfg.write('BOX_WIDTH={} #h0\n'.format(boxwidth)) # write the rest of the lines, making sure to skip the lines I already wrote for line in incfg: l = line.strip() if l.split('=')[0].strip() in ['SCALEFILE', 'INBASE', 'OUTBASE', 'TREE_OUTBASE', 'HLIST_OUTBASE', 'Om', 'Ol', 'h0']: continue cfg.write(line) # now cd to the ctrees directory and call the do_merger_tree.pl: # call is: perl do_merger_tree_np.pl <consistent-trees directory> <consistent-trees config file> commands.append('cd '+ctree_directory) commands.append(' '.join([perl, tree_script, ctree_directory, cfgname])) # now make the hlists: # call is: perl halo_trees_to_catalog.pl <consistent-trees config file> commands.append(' '.join([perl, hlist_script, cfgname])) with open(ctree_sbatchfile, 'w') as sbatchf: write_slurm(sbatchf, sbatch_options, ctrees_jobname, 1, 1, pre_disbatch_commands=commands) print("Submitting {} to build the out_xxx.list files, make the tree_0.0.0.dat file, and create the hlist files".format( ctree_sbatchfile)) if dryrun is not True: job_info = check_output(['sbatch', ctree_sbatchfile]) job_id = int(job_info.strip().split()[-1]) print("When job {} finishes, you should be able to create the HDF5 files with submit_rockstar_hdf5.py".format(job_id)) return job_id else: print("Actually, you'll have to do the submission yourself...") return -1 def build_out_lists(): import gizmo_analysis halofiles = glob(ahf_halo_directory+'/*_halos') halofiles.sort() idxfiles = glob(mtree_directory+'/*_mtree_idx') idxfiles.sort() assert len(halofiles) == len(idxfiles)+1 # load a snapshot to get information for the header: need Om, Ol, h, particle mass, box size part = gizmo_analysis.gizmo_io.Read.read_snapshots( species='dark', simulation_directory=simulation_directory, properties='mass') boxlength_o_h = part.info['box.length/h']/1e3 Om = part.Cosmology['omega_matter'] Ol = part.Cosmology['omega_lambda'] h = part.Cosmology['hubble'] particle_mass = np.median(part['dark']['mass']) * h del part def load_scalefactor(index): return gizmo_analysis.gizmo_io.Read.read_header( snapshot_value=index, simulation_directory=simulation_directory)['scalefactor'] def make_header(colheads, scale): header = '' header += colheads + '\n' header += 'a = {:7.6f}\n'.format(scale) header += 'Om = {:7.6f}; Ol = {:7.6f}; h = {:7.6f}\n'.format(Om, Ol, h) header += 'Particle mass: {:.5e} Msun/h\n'.format(particle_mass) header += 'Box size: {:.6f} Mpc/h\n'.format(boxlength_o_h) header += 'file created from AHF halo catalogs' return header scalelist = [] fnums = [] # want: #ID DescID Mass Vmax Vrms Radius Rs Np X Y Z VX VY VZ JX JY JZ Spin # add on: Rmax, r2, sigV, cNFW # if baryons, also add on Mstar, Mgas # don't have: Jx, Jy, Jz, but use Lx, Ly, Lz; no Vrms, but can be zeros with open(halofiles[-1], 'r') as f: if 'gas' in f.readline(): baryons = True print( "Looks like you included baryons in the halo finding, so I'll carry Mgas etc. through") else: baryons = False print("Don't see evidence of baryons in the halo finding") # output columns (copied from Andrew's rockstar_io): column_heads = "ID DescID M200b(Msun/h) Vmax Vrms R200b Rs Np " column_heads += "X Y Z Vx Vy Vz Lx Ly Lz " column_heads += "Spin rs_klypin M200b_tot Mvir M200c M500c M100m Xoff Voff " column_heads += "Spin_Bullock b_to_a c_to_a A[x] A[y] A[z] " column_heads += "b_to_a(500c) c_to_a(500c) A[x](500c) A[y](500c) A[z](500c) " column_heads += "T/|U| M_pe_Behroozi M_pe_diemer Type " column_heads += "SM Gas BH_mass m200b_highres m200b_lowres" # don't have: # M200b_tot (set = M200b), Mvir, M200c, M500c, M100m, A[x], A[y], A[z], # anything at 500c, M_pe_Behroozi, M_pe_diemer, Voff # Type, but that all seems to be 0 as far as I can tell # calculate: # rs_klypin from Rmax # T/U from T and U # m200b_highres and m200b_lowres from m200b and fMhires iddt = int for ii in range(len(halofiles)): fname = halofiles[ii].split('/')[-1] file_rshift = float(fname.split('z')[-1][:-len('.AHF_halos')]) file_scale = 1./(1+file_rshift) snum = int(fname.split('_')[1].split('.z')[0]) outname = catalog_directory+'/out_{0:03}.list'.format(snum) with open(halofiles[ii], 'r') as f: lc = 0 for line in f: lc += 1 if lc > 2: break if lc < 2 or (lc == 2 and line == ''): print("! no halos in {0}!".format(halofiles[ii])) continue scale = load_scalefactor(snum) rshift = (1./scale) - 1 assert (np.abs(rshift - file_rshift)/(0.5*(rshift+file_rshift)) < 0.01) \ or (np.abs(scale - file_scale)/(0.5*(scale+file_scale)) < 0.01) # only save non-blank files to the DescScales file, so I don't try to run ctrees on them -- i.e. put this after the lc check # but save files that I've already done, so put this before the overwrite/existence check fnums.append(snum) # use the higher precision scale factor from the snapshot file scalelist.append(scale) if path.isfile(outname) and (not overwrite): print("Already have {}; skipping it.".format(outname)) continue # input columns, annoyingly starting at 1 # ID(1) hostHalo(2) numSubStruct(3) Mvir(4) npart(5) # Xc(6) Yc(7) Zc(8) VXc(9) VYc(10) VZc(11) Rvir(12) # Rmax(13) r2(14) mbp_offset(15) com_offset(16) # Vmax(17) v_esc(18) sigV(19) lambda(20) # lambdaE(21) Lx(22) Ly(23) Lz(24) b(25) c(26) # Eax(27) Eay(28) Eaz(29) Ebx(30) Eby(31) Ebz(32) Ecx(33) # Ecy(34) Ecz(35) ovdens(36) nbins(37) fMhires(38) # Ekin(39) Epot(40) SurfP(41) Phi0(42) cNFW(43) # n_gas(44) M_gas(45) lambda_gas(46) lambdaE_gas(47) # Lx_gas(48) Ly_gas(49) Lz_gas(50) b_gas(51) # c_gas(52) Eax_gas(53) Eay_gas(54) Eaz_gas(55) # Ebx_gas(56) Eby_gas(57) Ebz_gas(58) Ecx_gas(59) # Ecy_gas(60) Ecz_gas(61) Ekin_gas(62) Epot_gas(63) # n_star(64) M_star(65) lambda_star(66) lambdaE_star(67) # Lx_star(68) Ly_star(69) Lz_star(70) b_star(71) # c_star(72) Eax_star(73) Eay_star(74) Eaz_star(75) # Ebx_star(76) Eby_star(77) Ebz_star(78) Ecx_star(79) # Ecy_star(80) Ecz_star(81) Ekin_star(82) Epot_star(83) hal_prog_ids = np.loadtxt( halofiles[ii], unpack=True, usecols=0, dtype=iddt) if baryons: mass, vmax, veldisp, radius, rs, numpart, \ x, y, z, vx, vy, vz, lx, ly, lz, \ spin_peebles, rmax, xoff, \ Spin_Bullock, b_to_a, c_to_a, \ kinetic, potential, mstar, mgas, \ fMhires = np.loadtxt(halofiles[ii], unpack=True, usecols=[3, 16, 18, 11, 13, 4, 5, 6, 7, 8, 9, 10, 21, 22, 23, 20, 12, 15, 19, 24, 25, 38, 39, 64, 44, 37]) else: mass, vmax, veldisp, radius, rs, numpart, \ x, y, z, vx, vy, vz, lx, ly, lz, \ spin_peebles, rmax, xoff, \ Spin_Bullock, b_to_a, c_to_a, \ kinetic, potential, \ fMhires = np.loadtxt(halofiles[ii], unpack=True, usecols=[3, 16, 18, 11, 13, 4, 5, 6, 7, 8, 9, 10, 21, 22, 23, 20, 12, 15, 19, 24, 25, 38, 39, 37]) mstar = np.zeros(mass.size, dtype=int) mgas = np.zeros(mass.size, dtype=int) numpart = numpart.astype('int') x /= 1e3 y /= 1e3 z /= 1e3 rs_klypin = rmax/2.1626 T_over_U = kinetic / np.abs(potential) mhighres = fMhires * mass mlowres = (1.0 - fMhires) * mass # lots of columns I don't have in AHF unfortunately fill_array = np.empty(hal_prog_ids.size, dtype=int) fill_array.fill(-1) zero_array = np.zeros(hal_prog_ids.size, dtype=int) hal_desc_ids = np.empty_like(hal_prog_ids) hal_desc_ids.fill(-1) # leave as -1 in the last timestep; no descendants then if halofiles[ii] != halofiles[-1]: tree_prog_ids, tree_desc_ids = np.loadtxt( idxfiles[ii], unpack=True, dtype=iddt) # indices of the halos that have descendants in the tree -- every halo in the tree is in the catalogs, but not vice versa: hal_indices = np.where(np.isin(hal_prog_ids, tree_prog_ids))[0] # check that everything matches up: assert (hal_prog_ids[hal_indices] == tree_prog_ids).all() # now fill in the descendants (where I have them) using the trees hal_desc_ids[hal_indices] = tree_desc_ids header = make_header(column_heads, scale) output_data = np.column_stack(( hal_prog_ids, hal_desc_ids, mass, vmax, veldisp, radius, rs, numpart, x, y, z, vx, vy, vz, lx, ly, lz, # fills are the masses I don't have and voff spin_peebles, rs_klypin, mass, fill_array, fill_array, fill_array, fill_array, xoff, fill_array, # fills are the allgood shape vectors Spin_Bullock, b_to_a, c_to_a, fill_array, fill_array, fill_array, # fills are shape etc at 500c fill_array, fill_array, fill_array, fill_array, fill_array, # fills are smoothed masses, zeros are type T_over_U, fill_array, fill_array, zero_array, mstar, mgas, zero_array, mhighres, mlowres)) # zeros are BH_mass # cast everything to a string before saving it np.savetxt(outname, output_data, header=header, comments='#', fmt='%s') print("Wrote {0}".format(outname)) # and finally save the scale factors of the halo catalogs np.savetxt(outdir+'DescScale.txt', np.column_stack((fnums, scalelist)), fmt="%d %5f") # steps are: if __name__ == '__main__': ''' this is a python script to automate the process of running the amiga halo finder on a GIZMO/FIRE simulation, then running the MergerTree utility in Amiga Halo Finder (which creates links between timesteps based on the particle IDs in the halos), then massage those outputs into a format that Consistent Trees can handle, then call consistent trees on those massaged outputs. everything except ctrees is automatically parallelized, since each timestep (or in the case of ctrees, each timestep1 -> timestep2 link) is independent of everything else. set the options at the top of the script to handle how much parallelization you want, and to point to the appropriate files. you'll need: * AHF, of course, compiled with whatever options you want * MergerTree * consistent-trees * diBatch, which handles the spreading out of the jobs * ahf_param_base -- a AHF.input file with the parameters you want to use set. input name, output name, and file types will be set for each snapshot, but all other parameters will be kep the same throughout. * ctree_param_base -- a cfg file for consistent trees with the options that you want to use. as with ahf_param_base, filenames will be set automatically; cosmology and box size will be as well. all other options will be copied over though. * hdf5_to_gbin -- a script that converts the GIZMO HDF5 snapshots into gadget binary snapshots. I believe this step can be removed, as the latest AHF versions have raw support for HDF5 files. However, take a look in the base repository for an old and ugly script that can do this conversion for a single particle type (e.g. if you want to run AHF on just dark matter, which is a pretty common use case) Once you have all your files in place and all your arguments set appropriately at the top of this script, run it with $ python run_ahf_analysis.py 1 That'll create the AHF.input files and make a list of commands needed to do the halo finding on all of the snapshots. It'll then create and call an sbatch file that uses disBatch to run that list of commands in paralell. Once disBatch is done (i.e. all the halo finding has been run), this script will call itself again with an argument of 2, i.e. the equivalent of doing $ python run_ahf_analysis.py 2 That'll do the same (create a list of commands and an sbatch file to run them via disBatch), but for the MergerTree step. Again, once it'd done, it'll call this script again with an argument of 3: $ python run_ahf_analysis.py 3 That step will create (then submit) an sbatch file that builds the out.lists then runs consistent trees, then you should be done! ''' if len(sys.argv) != 2: raise OSError( "Must call with a step of 1, 2, or 3 (or ahf, mtree, ctrees) to run the appropriate step") step_todo = sys.argv[1] # step 1 / ahf: run AHF if step_todo == '1' or step_todo == 'ahf': run_ahf() # step 2 / mtree: run MergerTree: elif step_todo == '2' or step_todo == 'mtree': run_mtree() # step 3 / ctrees: run consistent_trees elif step_todo == '3' or step_todo == 'ctrees': run_ctrees() # step 3.5 / out: build the out.lists (should be run on a compute node) elif step_todo == '3.5' or step_todo == 'out': build_out_lists() else: raise OSError("Don't know how to do step {}".format(step_todo))
from copy import deepcopy from unittest import TestCase from unittest.mock import patch, MagicMock from libcloud.compute.types import Provider from libcloud.compute.drivers.ec2 import EC2NodeDriver from host_provider.providers.aws import AWSProvider, OfferingNotFoundError from host_provider.credentials.aws import CredentialAddAWS from .fakes.ec2 import LIST_SIZES, FAKE_CREDENTIAL, FAKE_HOST from .fakes.base import FAKE_TAGS ENVIRONMENT = "dev" ENGINE = "redis" class TestCredentialAWS(TestCase): def setUp(self): self.provider = AWSProvider(ENVIRONMENT, ENGINE) self.provider.wait_state = MagicMock() def test_provider_name(self): self.assertEqual(Provider.EC2, self.provider.get_provider()) def test_get_credential_add(self): self.assertEqual( self.provider.get_credential_add(), CredentialAddAWS ) def test_validate_credential(self): invalid_content = deepcopy(FAKE_CREDENTIAL) invalid_content.update({'mimOfSubnets': "3"}) success, error = self.provider.credential_add(invalid_content) self.assertFalse(success) self.assertEqual(error, "Must be 3 active subnets at least") @patch( 'host_provider.providers.aws.CredentialAWS.get_content' ) def test_build_client(self, content): self.build_credential_content(content) self.assertEqual( type(self.provider.build_client()), EC2NodeDriver ) @patch( 'libcloud.compute.drivers.ec2.EC2NodeDriver.list_sizes', new=MagicMock(return_value=LIST_SIZES) ) @patch( 'host_provider.providers.aws.CredentialAWS.get_content' ) @patch( 'libcloud.compute.drivers.ec2.EC2NodeDriver.create_node' ) @patch( 'host_provider.providers.aws.CredentialAWS.zone' ) @patch( 'host_provider.credentials.aws.CredentialAWS.collection_last' ) @patch('dbaas_base_provider.team.TeamClient.make_labels', new=MagicMock(return_value={}) ) def test_create_host_without_environment_of_teams( self, collection_last, zone, create_node, credential_content ): self.create_host_tests( collection_last, create_node, credential_content, zone ) @patch( 'libcloud.compute.drivers.ec2.EC2NodeDriver.list_sizes', new=MagicMock(return_value=LIST_SIZES) ) @patch( 'host_provider.providers.aws.CredentialAWS.get_content' ) @patch( 'libcloud.compute.drivers.ec2.EC2NodeDriver.create_node' ) @patch( 'host_provider.providers.aws.CredentialAWS.zone' ) @patch( 'host_provider.credentials.aws.CredentialAWS.collection_last' ) @patch('dbaas_base_provider.team.TeamClient.make_labels', new=MagicMock(return_value={})) def test_create_host_without_teams(self, collection_last, zone, create_node, credential_content): self.create_host_tests( collection_last, create_node, credential_content, zone ) @patch( 'libcloud.compute.drivers.ec2.EC2NodeDriver.list_sizes', new=MagicMock(return_value=LIST_SIZES) ) @patch( 'host_provider.providers.aws.CredentialAWS.get_content' ) @patch( 'libcloud.compute.drivers.ec2.EC2NodeDriver.create_node' ) @patch( 'host_provider.providers.aws.CredentialAWS.zone' ) @patch( 'host_provider.credentials.aws.CredentialAWS.collection_last' ) @patch('dbaas_base_provider.team.TeamClient.make_labels', new=MagicMock(return_value=FAKE_TAGS) ) def test_create_host_with_teams(self, collection_last, zone, create_node, credential_content): self.create_host_tests( collection_last, create_node, credential_content, zone, has_tags=True ) def build_credential_content(self, content, **kwargs): values = deepcopy(FAKE_CREDENTIAL) values.update(kwargs) content.return_value = values @patch( 'host_provider.providers.aws.CredentialAWS.get_content', ) @patch( 'libcloud.compute.drivers.ec2.EC2NodeDriver.list_sizes', return_value=LIST_SIZES ) def test_offering(self, sizes_mock, content): self.build_credential_content(content) result = self.provider.offering_to(cpu=1, memory=512) self.assertEqual(1, result.id) self.assertEqual(1, result.extra['cpu']) self.assertEqual(512, result.ram) result = self.provider.offering_to(cpu=2, memory=1024) self.assertEqual(3, result.id) self.assertEqual(2, result.extra['cpu']) self.assertEqual(1024, result.ram) @patch( 'host_provider.providers.aws.CredentialAWS.get_content', ) @patch( 'libcloud.compute.drivers.ec2.EC2NodeDriver.list_sizes', return_value=LIST_SIZES ) def test_offering_not_found(self, sizes_mock, content): self.build_credential_content(content) with self.assertRaises(OfferingNotFoundError): self.provider.offering_to(cpu=99, memory=999) def create_host_tests( self, collection_last, create_node, content, zone, **kwargs ): collection_last.find_one.return_value = [] self.build_credential_content(content, **kwargs) zone = "fake_subnet_id_2" name = "infra-01-123456" group = "infra123456" self.provider.create_host(1, 1024, name, group, zone) project = content.return_value.get("projectid", None) if project: project = self.provider.BasicInfo(id=project) expected_tags = FAKE_TAGS if kwargs.get('has_tags') else {} create_node.assert_called_once_with( name=name, image=self.provider.BasicInfo('fake_so_image_id'), ex_keyname='elesbom', size=LIST_SIZES[1], ex_security_group_ids=['fake_security_group_id'], ex_subnet=self.provider.BasicInfo('fake_subnet_id_2'), ex_metadata=expected_tags ) @patch( 'host_provider.providers.aws.CredentialAWS.get_content' ) @patch( 'libcloud.compute.drivers.ec2.EC2NodeDriver', ) def test_start(self, node_driver, content): self.build_credential_content(content) self.provider.start(FAKE_HOST) node_driver().ex_start_node.assert_called_once_with( self.provider.BasicInfo('fake_identifier') ) @patch( 'host_provider.providers.aws.CredentialAWS.get_content' ) @patch( 'libcloud.compute.drivers.ec2.EC2NodeDriver.ex_stop_node', ) def test_stop(self, ex_stop, content): self.build_credential_content(content) identifier = "fake-uuid-ec2-stac" self.provider.stop(identifier) ex_stop.assert_called_once_with(self.provider.BasicInfo(identifier)) @patch( 'host_provider.providers.aws.CredentialAWS.get_content' ) @patch( 'libcloud.compute.drivers.ec2.EC2NodeDriver.destroy_node', ) def test_destroy_aws(self, destroy_node, content): self.build_credential_content(content) identifier = "fake-uuid-cloud-stac" self.provider._destroy(identifier) destroy_node.assert_called_once_with( self.provider.BasicInfo(identifier) ) @patch( 'host_provider.providers.aws.CredentialAWS.get_content' ) @patch( 'host_provider.providers.aws.CredentialAWS.collection_last' ) def test_all_nodes_deleted(self, collection_last, content): self.build_credential_content(content) group = "fake123456" self.provider._all_node_destroyed(group) collection_last.delete_one.assert_called_once_with({ "environment": self.provider.credential.environment, "group": group }) @patch( 'host_provider.providers.aws.CredentialAWS.get_content' ) @patch( 'host_provider.providers.aws.AWSProvider._destroy' ) @patch( 'host_provider.providers.aws.AWSProvider._all_node_destroyed' ) @patch( 'host_provider.providers.base.Host' ) def test_destroy(self, host, all_node_destroyed, destroy, content): self.build_credential_content(content) host.filter.return_value = [1] group = "fake123456" identifier = "fake-uuid-cloud-stac" self.provider.destroy(group, identifier) host.filter.assert_called_once_with(group=group) destroy.assert_called_once_with(identifier) all_node_destroyed.assert_called_once_with(group)
"""file_renamer: module for renaming files""" from pathlib import Path from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: # pragma: no cover from file_renamer.src.main import MainPage class FileRenamer: """A class for renaming files""" def __init__(self, kivy_gui: "MainPage") -> None: """Initialize class""" super().__init__() # Attributes pulled/massaged from kivy GUI self.output_row = kivy_gui.row_5 self.set_progressbar_max = kivy_gui.set_progressbar_max self.update_progress_bar_val = kivy_gui.update_progress_bar_val self.message = kivy_gui.message self.prepend = ( kivy_gui.prepend_filename_input.text.strip() .replace(" ", "_") .replace(".", "") ) self.extensions = self.get_extensions(kivy_gui.extensions_input.text.lower()) self.folder_loc_msg = kivy_gui.folder_loc_msg self.folder_loc = self.get_path(kivy_gui.folder_loc_label.text) # Attributes calculated by `rename_files()` self.relevant_files: list[Path] = [] self.total_relevant_files = 0 self.padding = 0 @staticmethod def get_extensions(extensions_string: Optional[str]) -> list[str]: """Get extensions in list from string""" if not extensions_string: return [] extensions = extensions_string.strip().split(",") return [f".{ext.strip(' .')}" for ext in extensions] def get_path(self, dir_path: str) -> Optional[Path]: """Get path to file""" if dir_path == self.folder_loc_msg: return None return Path(dir_path) def check_inputs(self) -> bool: """Check inputs are input properly, Return True if errors found""" errors = [] if not self.prepend: errors.append("Add filename prepend!") if not self.extensions: errors.append("Add affected extensions!") if not self.folder_loc: errors.append("Select a folder!") if not errors: return False error_msg = " ".join(errors) self.message(error_msg) return True def list_relevant_files(self) -> int: """Create list of all paths with relevant file extensions in folder""" assert isinstance(self.folder_loc, Path) for path in self.folder_loc.iterdir(): if any(str(path).lower().endswith(ext) for ext in self.extensions): self.relevant_files.append(path) self.relevant_files.sort() self.total_relevant_files = len(self.relevant_files) self.set_progressbar_max(self.total_relevant_files) return self.total_relevant_files def get_padding(self) -> None: """Get padding size from total_relevant_files count""" remaining_files = float(self.total_relevant_files) while remaining_files >= 1: self.padding += 1 remaining_files /= 10 def rename_files(self) -> None: """Main function for renaming files""" if self.check_inputs(): return if not self.list_relevant_files(): self.message("No files with provided file extension(s) found in folder!") return self.get_padding() for file_num, path in enumerate(self.relevant_files, start=1): extension = path.suffix directory = path.parent file_num_str = str(file_num).zfill(self.padding) new_name = f"{self.prepend}_{file_num_str}{extension}" new_filepath = Path(directory, new_name) path.rename(new_filepath) self.update_progress_bar_val(file_num) self.message(f"Done! Renamed {self.total_relevant_files:,} files!")
"""Automate the Boring Stuff didn't finish the tic-tac-toe program in its dictionaries section. Someone had to answer the call... ...It shouldn't have been me.""" import sys, time # we'll just leave this here ttt_board = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ', 'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ', 'low-L': ' ', 'low-M': ' ', 'low-R': ' '} def print_board(ttt_board): """ Prints the tic-tac-toe board to the player(s). Updates after player(s) input their move. :param ttt_board: A dictionary where keys are spaces and values are ' ' :return: string_board, the tic-tac-toe board """ string_board = \ f""" {ttt_board['top-L']}|{ttt_board['top-M']}|{ttt_board['top-R']} -+-+- {ttt_board['mid-L']}|{ttt_board['mid-M']}|{ttt_board['mid-R']} -+-+- {ttt_board['low-L']}|{ttt_board['low-M']}|{ttt_board['low-R']} """ return string_board def check_win(print_board, ttt_board): """ Refactor this horrendous function. Also, checks to see if either player X or player O has won (because Automate the Boring Stuff stopped at this point in coding the game). :param print_board: Displays board, X, and O positions to player(s) :param ttt_board: Argument passed into print_board w/ position keys/values :return: None, sys.exit() if is_winner == True """ is_winner = False player = '' def winner(player): winner_print = [ "* * * * * * * * * * *", "* * * * * * * * * * *", f" Player {player} wins!", "* * * * * * * * * * *", "* * * * * * * * * * *" ] for line in winner_print: time.sleep(.5) print(line) sys.exit() # check X if ttt_board['top-L'] == 'X' and ttt_board['top-M'] == 'X' and ttt_board[ 'top-R'] == 'X': player = 'X' is_winner = True if ttt_board['mid-L'] == 'X' and ttt_board['mid-M'] == 'X' and ttt_board[ 'mid-R'] == 'X': player = 'X' is_winner = True if ttt_board['low-L'] == 'X' and ttt_board['low-M'] == 'X' and ttt_board[ 'low-R'] == 'X': player = 'X' is_winner = True if ttt_board['top-L'] == 'X' and ttt_board['mid-L'] == 'X' and ttt_board[ 'low-L'] == 'X': player = 'X' is_winner = True if ttt_board['top-M'] == 'X' and ttt_board['mid-M'] == 'X' and ttt_board[ 'low-M'] == 'X': player = 'X' is_winner = True if ttt_board['top-R'] == 'X' and ttt_board['mid-R'] == 'X' and ttt_board[ 'low-R'] == 'X': player = 'X' is_winner = True if ttt_board['top-L'] == 'X' and ttt_board['mid-M'] == 'X' and ttt_board[ 'low-R'] == 'X': player = 'X' is_winner = True if ttt_board['top-R'] == 'X' and ttt_board['mid-M'] == 'X' and ttt_board[ 'low-L'] == 'X': player = 'X' is_winner = True # check O if ttt_board['top-L'] == 'O' and ttt_board['top-M'] == 'O' and ttt_board[ 'top-R'] == 'O': player = 'O' is_winner = True if ttt_board['mid-L'] == 'O' and ttt_board['mid-M'] == 'O' and ttt_board[ 'mid-R'] == 'O': player = 'O' is_winner = True if ttt_board['low-L'] == 'O' and ttt_board['low-M'] == 'O' and ttt_board[ 'low-R'] == 'O': player = 'O' is_winner = True if ttt_board['top-L'] == 'O' and ttt_board['mid-L'] == 'O' and ttt_board[ 'low-L'] == 'O': player = 'O' is_winner = True if ttt_board['top-M'] == 'O' and ttt_board['mid-M'] == 'O' and ttt_board[ 'low-M'] == 'O': player = 'O' is_winner = True if ttt_board['top-R'] == 'O' and ttt_board['mid-R'] == 'O' and ttt_board[ 'low-R'] == 'O': player = 'O' is_winner = True if ttt_board['top-L'] == 'O' and ttt_board['mid-M'] == 'O' and ttt_board[ 'low-R'] == 'O': player = 'O' is_winner = True if ttt_board['top-R'] == 'O' and ttt_board['mid-M'] == 'O' and ttt_board[ 'low-L'] == 'O': player = 'O' is_winner = True if is_winner: print(print_board(ttt_board)) winner(player) def main(ttt_board, print_board, check_win): """ PleasestopmewhyIamIcreatingthismonster. Also, this function starts the game. :param print_board: Displays board, X, and O positions to player(s) :param ttt_board: Argument passed into print_board w/ position keys/values :param check_win: Function that checks if either player has won. :return: None. sys.exit() if winner. """ print(""" WELCOME... ...to tacode's terribly written tic-tac-toe game! ___________________________________________________ Board positions: top-L | top-M | top-R --------+---------+-------- mid-L | mid-M | mid-R --------+---------+-------- low-L | low-M | low-R Example: To move on the middle space, enter mid-M ___________________________________________________ """) turn = 'X' position_error = 0 move_number = 0 positions_list = ['top-L', 'top-M', 'top-R', 'mid-L', 'mid-M', 'mid-R', 'low-L', 'low-M', 'low-R'] for i in range(9): print(print_board(ttt_board)) while True: while True: move = input(f"Turn for player {turn}. Move on which space? ") # pro error handling if move not in positions_list: position_error += 1 if position_error == 3: print(""" Moves not recognized, key in one of the following: 'top-L' | 'top-M' | 'top-R' --------+---------+-------- 'mid-L' | 'mid-M' | 'mid-R' --------+---------+-------- 'low-L' | 'low-M' | 'low-R' """) position_error = 0 else: break # more pro error handling if ttt_board[move] not in ['X', 'O']: position_error = 0 ttt_board[move] = turn move_number += 1 break else: print("That space is taken. Try again.") # check for winner if move_number >= 5: check_win(print_board, ttt_board) # check for draw if move_number == 9: print(print_board(ttt_board)) print('...Wait, wut?') sys.exit() if turn == 'X': turn = 'O' else: turn = 'X' print(print_board(ttt_board)) if __name__ == "__main__": main(ttt_board, print_board, check_win) # Congratulations, your programming skills have decreased by reading this
# -*- coding: utf-8 -*- from .wiserapi import WiserBaseAPI, _convert_case class HotWater(WiserBaseAPI): def __init__(self, *args, **kwargs): """Represnts the /HotWater object in the Restful API""" # Defining default values self.id = None # 2 self.override_type = None # "None", self.schedule_id = None # 1000, self.mode = None # "Auto", self.water_heating_state = None # "Off", self.hot_water_relay_state = None # "Off" super(HotWater, self).__init__(*args, **kwargs)
from koapy.backend.kiwoom_open_api_w.core.KiwoomOpenApiWEventHandler import ( KiwoomOpenApiWEventHandler, ) from koapy.utils.logging.Logging import Logging class KiwoomOpenApiWLoggingEventHandler(KiwoomOpenApiWEventHandler, Logging): def OnReceiveTrData(self, scrnno, rqname, trcode, recordname, prevnext): self.logger.debug( "OnReceiveTrData(%r, %r, %r, %r, %r)", scrnno, rqname, trcode, recordname, prevnext, ) def OnReceiveRealData(self, code, realtype, realdata): self.logger.debug("OnReceiveRealData(%r, %r, %r)", code, realtype, realdata) def OnReceiveMsg(self, scrnno, rqname, trcode, msg): self.logger.debug("OnReceiveMsg(%r, %r, %r, %r)", scrnno, rqname, trcode, msg) def OnReceiveChejanData(self, gubun, itemcnt, fidlist): self.logger.debug("OnReceiveChejanData(%r, %r, %r)", gubun, itemcnt, fidlist) def OnEventConnect(self, errcode): self.logger.debug("OnEventConnect(%r)", errcode)
from awsio.python.lib.io.s3.s3dataset import S3Dataset from torch.utils.data import DataLoader url_list = ['s3://image-data-bucket/train/n01440764/n01440764_10026.JPEG', 's3://image-data-bucket/train/n01440764/n01440764_10027.JPEG', 's3://image-data-bucket/train/n01440764/n01440764_10029.JPEG'] dataset = S3Dataset(url_list) dataloader = DataLoader(dataset, batch_size=2, num_workers=64) for i, (image, label) in enumerate(dataloader): print(type(image), len(image))
# Generated by Django 2.0.4 on 2018-04-25 18:34 import django.contrib.postgres.fields.jsonb from django.db import migrations class Migration(migrations.Migration): dependencies = [("feeds", "0004_auto_20180425_1530")] operations = [ migrations.RemoveField(model_name="notificationfeed", name="read_at"), migrations.RemoveField(model_name="notificationfeed", name="seen_at"), migrations.AlterField( model_name="notificationfeed", name="activity_store", field=django.contrib.postgres.fields.jsonb.JSONField(default=[]), ), migrations.AlterField( model_name="personalfeed", name="activity_store", field=django.contrib.postgres.fields.jsonb.JSONField(default=[]), ), migrations.AlterField( model_name="userfeed", name="activity_store", field=django.contrib.postgres.fields.jsonb.JSONField(default=[]), ), ]
#!/usr/bin/env python """ Numba sampling routines """ import numpy as np import numba import math from numba import jit, int8, int16, int32, float32, float64, prange import lom._numba.lom_outputs as lom_outputs import lom._numba.lom_outputs_fuzzy as lom_outputs_fuzzy from numba.types import int64 def get_scalar_output_function_2d(model, fuzzy=False): if fuzzy is False: if model == 'OR-AND': return lom_outputs.OR_AND_product if model == 'XOR-AND': return lom_outputs.XOR_AND_product if model == 'XOR-NAND': return lom_outputs.XOR_NAND_product if model == 'OR-XOR': return lom_outputs.OR_XOR_product if model == 'NAND-XOR': return lom_outputs.NAND_XOR_product if model == 'XOR-XOR': return lom_outputs.XOR_XOR_product if model == 'XOR-NXOR': return lom_outputs.XOR_NXOR_product if model == 'OR-NAND': return lom_outputs.OR_NAND_product if model == 'qL-AND': return lom_outputs.qL_AND_product else: if model == 'OR-AND': return lom_outputs_fuzzy.OR_AND_product_fuzzy if model == 'XOR-AND': return lom_outputs_fuzzy.XOR_AND_product_fuzzy if model == 'XOR-NAND': return lom_outputs_fuzzy.XOR_NAND_product_fuzzy if model == 'OR-XOR': return lom_outputs_fuzzy.OR_XOR_product_fuzzy if model == 'NAND-XOR': return lom_outputs_fuzzy.NAND_XOR_product_fuzzy if model == 'XOR-XOR': return lom_outputs_fuzzy.XOR_XOR_product_fuzzy if model == 'XOR-NXOR': return lom_outputs_fuzzy.XOR_NXOR_product_fuzzy if model == 'OR-NAND': return lom_outputs_fuzzy.OR_NAND_product_fuzzy def get_scalar_output_function_3d(model, fuzzy=False): if fuzzy is False: if model == 'OR-AND': return lom_outputs.OR_AND_product_3d if model == 'XOR-AND': return lom_outputs.XOR_AND_product_3d if model == 'XOR-NAND': return lom_outputs.XOR_NAND_product_3d if model == 'OR-XOR': return lom_outputs.OR_XOR_product_3d if model == 'NAND-XOR': return lom_outputs.NAND_XOR_product_3d if model == 'XOR-XOR': return lom_outputs.XOR_XOR_product_3d if model == 'XOR-NXOR': return lom_outputs.XOR_NXOR_product_3d if model == 'OR-NAND': return lom_outputs.OR_NAND_product_3d else: if model == 'OR-AND': return lom_outputs_fuzzy.OR_AND_product_fuzzy_3d if model == 'XOR-AND': return lom_outputs_fuzzy.XOR_AND_product_fuzzy_3d if model == 'XOR-NAND': return lom_outputs_fuzzy.XOR_NAND_product_fuzzy_3d if model == 'OR-XOR': return lom_outputs_fuzzy.OR_XOR_product_fuzzy_3d if model == 'NAND-XOR': return lom_outputs_fuzzy.NAND_XOR_product_fuzzy_3d if model == 'XOR-XOR': return lom_outputs_fuzzy.XOR_XOR_product_fuzzy_3d if model == 'XOR-NXOR': return lom_outputs_fuzzy.XOR_NXOR_product_fuzzy_3d if model == 'OR-NAND': return lom_outputs_fuzzy.OR_NAND_product_fuzzy_3d def make_output_function_2d(model): get_scalar_output_2d = get_scalar_output_function_2d(model, fuzzy=False) @jit('int8[:,:](int8[:,:], int8[:,:])', nogil=True, nopython=False, parallel=True) def output_function_2d(Z, U): N = Z.shape[0] D = U.shape[0] X = np.zeros([N, D], dtype=np.int8) for n in prange(N): for d in prange(D): X[n, d] = get_scalar_output_2d(Z[n, :], U[d, :]) return X return output_function_2d def make_output_function_3d(model): get_scalar_output_3d = get_scalar_output_function_3d(model, fuzzy=False) @jit('int8[:,:,:](int8[:,:], int8[:,:], int8[:,:])', nogil=False, nopython=False, parallel=True) def output_function_3d(Z, U, V): N = Z.shape[0] D = U.shape[0] M = V.shape[0] X = np.zeros([N, D, M], dtype=np.int8) for n in prange(N): for d in prange(D): for m in range(M): X[n, d, m] = get_scalar_output_3d(Z[n, :], U[d, :], V[m, :]) return X return output_function_3d def make_output_function_2d_fuzzy(model): get_scalar_output_2d = get_scalar_output_function_2d(model, fuzzy=True) @jit('float64[:,:](float64[:,:], float64[:,:])', nogil=True, nopython=False, parallel=True) def output_function_2d(Z, U): N = Z.shape[0] D = U.shape[0] X = np.zeros([N, D], dtype=np.float64) for n in prange(N): for d in prange(D): X[n, d] = get_scalar_output_2d(Z[n, :], U[d, :]) return X return output_function_2d def make_output_function_3d_fuzzy(model): get_scalar_output_3d = get_scalar_output_function_3d(model, fuzzy=True) @jit('float64[:,:](float64[:,:], float64[:,:], float64[:,:])', nogil=True, nopython=False, parallel=True) def output_function_3d(Z, U, V): N = Z.shape[0] D = U.shape[0] M = V.shape[0] X = np.zeros([N, D, M], dtype=np.float64) for n in prange(N): for d in prange(D): for m in range(M): X[n, d, m] = get_scalar_output_3d(Z[n, :], U[d, :], V[m, :]) return X return output_function_3d def make_correct_predictions_counter(model, dimensionality): """ Generates function that counts the number of deterministically correct predictions with signature fct(factor0, factor1, ..., data) """ if model == 'OR-AND-IBP': model = 'OR-AND' # ql-AND model requires extra treatment because of additional # argument q. if model == 'qL-AND': output_fct = get_scalar_output_function_2d(model, fuzzy=False) @jit('int64(int8[:,:], int8[:,:], int8[:,:], int8[:])', nogil=True, nopython=True, parallel=True) def correct_predictions_counter(Z, U, X, q): N, D = X.shape count = int64(0) for n in prange(N): for d in prange(D): if output_fct(Z[n, :], U[d, :], q[d]) == X[n, d]: count += 1 return count return correct_predictions_counter if dimensionality == 2: output_fct = get_scalar_output_function_2d(model, fuzzy=False) @jit('int64(int8[:,:], int8[:,:], int8[:,:])', nogil=True, nopython=True, parallel=True) def correct_predictions_counter(Z, U, X): N, D = X.shape count = int64(0) for n in prange(N): for d in prange(D): if output_fct(Z[n, :], U[d, :]) == X[n, d]: count += 1 return count elif dimensionality == 3: output_fct = get_scalar_output_function_3d(model, fuzzy=False) @jit('int64(int8[:,:], int8[:,:], int8[:,:], int8[:,:,:])', nogil=True, nopython=True, parallel=True) def correct_predictions_counter(Z, U, V, X): N, D, M = X.shape count = int64(0) for n in prange(N): for d in prange(D): for m in range(M): if output_fct(Z[n, :], U[d, :], V[m, :]) == X[n, d, m]: count += 1 return count else: raise NotImplementedError( 'Count correct predictions for dimensinalty > 3') return correct_predictions_counter def make_lbda_update_fct(model, dimensionality): """ Set lambda in OR-AND machine to its MLE TODO: make for general arity """ # Next: use OR-AND update instead of qL-AND for testings if model == 'qL-AND': counter = make_correct_predictions_counter(model, dimensionality) def lbda_update_fct(parm): alpha, beta = parm.beta_prior # correct predictions, counting 0 prediction as false P = counter(*[x.val for x in parm.layer.factors], parm.layer.child(), parm.layer.q()[0, :]) # number of data points that are to be predicted ND = np.prod(parm.layer.child().shape) - np.count_nonzero(parm.layer.child() == 0) parm.val = np.max([-np.log(((ND + alpha + beta) / (float(P) + alpha)) - 1), 0]) # print('\n') # print(P, ND) return lbda_update_fct if model == 'MAX-AND': import lom._numba.max_machine_sampler return lom._numba.max_machine_sampler.bda_MAX_AND else: counter = make_correct_predictions_counter(model, dimensionality) def lbda_update_fct(parm): alpha, beta = parm.beta_prior # correct predictions, counting 0 prediction as false P = counter(*[x.val for x in parm.layer.factors], parm.layer.child()) # number of data points that are to be predicted ND = np.prod(parm.layer.child().shape) - np.count_nonzero(parm.layer.child() == 0) parm.val = np.max([-np.log(((ND + alpha + beta) / (float(P) + alpha)) - 1), 0]) return lbda_update_fct
from unittest.mock import patch, call from django.core.management import call_command from django.db.migrations import RunSQL, RunPython from django.test import TestCase from .commands.collect_sql import SqlType, SqlObjectOperation class MockMigration(object): def __init__(self, operations): self.operations = operations def mock_run_python(apps, schema_editor): pass class CollectSqlTest(TestCase): @patch('smartmin.management.commands.collect_sql.Command.load_migrations') @patch('smartmin.management.commands.collect_sql.Command.write_dump') def test_command(self, mock_write_dump, mock_load_migrations): mock_load_migrations.return_value = [ MockMigration(operations=[ RunSQL("CREATE INDEX test_1 ON foo(bar); CREATE INDEX test_2 ON foo(bar);"), RunPython(mock_run_python) ]), MockMigration(operations=[ RunSQL("DROP INDEX test_2;"), ]), MockMigration(operations=[ RunSQL("CREATE TRIGGER test_1 AFTER TRUNCATE ON flows_flowstep EXECUTE PROCEDURE foo();"), RunSQL("CREATE INDEX a_test ON foo(bar);"), RunPython(mock_run_python) ]), ] call_command('collect_sql', output_dir='sql') mock_write_dump.assert_has_calls([ call('indexes', [ SqlObjectOperation("CREATE INDEX a_test ON foo(bar);", SqlType.INDEX, "a_test", True), SqlObjectOperation("CREATE INDEX test_1 ON foo(bar);", SqlType.INDEX, "test_1", True), ], 'sql'), call('triggers', [ SqlObjectOperation("CREATE TRIGGER test_1 AFTER TRUNCATE ON flows_flowstep EXECUTE PROCEDURE foo();", SqlType.TRIGGER, "test_1", True) ], 'sql') ])
import operator import itertools import logging import yapsy import yapsy.PluginFileLocator import yapsy.PluginManager from . import types from . import decorators from . import locator class PluginManager(object): PLUGIN_CATS = {types.ConversationPlugin.CATEGORY: types.ConversationPlugin, types.SpeechHandlerPlugin.CATEGORY: types.SpeechHandlerPlugin, types.TTSPlugin.CATEGORY: types.TTSPlugin, types.STTPlugin.CATEGORY: types.STTPlugin} def __init__(self, config, directories_list): plugin_locator = locator.PluginLocator() pm = yapsy.PluginManager.PluginManager( categories_filter=self.PLUGIN_CATS, directories_list=directories_list, plugin_locator=plugin_locator) pm = decorators.PluginCheckDecorator(config, pm) pm = decorators.PluginConfigDecorator(config, pm) pm = decorators.PluginGettextDecorator(config, pm) self._pm = pm self._pm.collectPlugins() for plugin_info in self.get_plugins_of_category( types.ConversationPlugin.CATEGORY): self.__add_conversation_methods(plugin_info.plugin_object) def __add_conversation_methods(self, plugin_object): PM = self def plugin_delegate_input(phrase): handler = PM.find_handler(phrase) if handler: handler_func, variables = handler handler_func(plugin_object, **variables) else: logging.getLogger(__name__).warning( "No plugin can handle '%s'", phrase) def plugin_get_command_phrases(): return PM.get_command_phrases() plugin_object.delegate_input = plugin_delegate_input plugin_object.get_command_phrases = plugin_get_command_phrases def get_plugin_by_slug(self, slug, category="Default"): """ Get the plugin correspoding to a given category and slug """ for item in self._pm.getPluginsOfCategory(category): if item.slug == slug: return item return None def get_plugins_of_category(self, category_name): available_plugins = self._pm.getPluginsOfCategory(category_name) # sort on secondary key available_plugins.sort(key=operator.attrgetter('slug')) # now sort on primary key, descending available_plugins.sort(key=operator.attrgetter('priority'), reverse=True) return available_plugins def get_all_plugins(self): return self._pm.getAllPlugins() def find_handler(self, phrase): handlers = self.find_handlers(phrase) if len(handlers) > 0: return handlers[0] def find_handlers(self, phrase): return [handler for handler in [plugin.plugin_object.get_handler(phrase) for plugin in self.get_plugins_of_category( types.SpeechHandlerPlugin.CATEGORY)] if handler is not None] def get_command_phrases(self): phrases = [plugin.plugin_object.get_command_phrases() for plugin in self.get_plugins_of_category( types.SpeechHandlerPlugin.CATEGORY)] return sorted(list(set(itertools.chain.from_iterable(phrases))))
import json import os import threading import urllib.request from collections import defaultdict from flask import Flask, abort, jsonify, redirect, request CACHE_PATH = os.getenv("CACHE_PATH", "cache.json") DEFAULT_SOURCE = os.getenv("DEFAULT_SOURCE", "repo.horoscope.dev") USER_AGENT = os.getenv("USER_AGENT", "Dalamud.DivinationPluginRepo.DownloadCounter/1.0 (+https://github.com/horoscope-dev/Dalamud.DivinationPluginRepo.DownloadCounter)") def load_cache(): c = defaultdict(int) if os.path.exists(CACHE_PATH): with open(CACHE_PATH) as f: c.update(json.load(f)) return c def save_cache(cache): with open(CACHE_PATH, "w") as f: json.dump(cache, f, indent=2, sort_keys=True) cache = load_cache() cache_lock = threading.Lock() app = Flask(__name__) def check_if_exists(url): try: req = urllib.request.Request(url, method="HEAD", headers={"User-Agent": USER_AGENT}) with urllib.request.urlopen(req): return True except urllib.error.HTTPError: return False @app.route("/<any(stable, testing):channel>/<plugin>") def download(channel, plugin): source = request.args.get("source", DEFAULT_SOURCE) url = f"https://{source}/dist/{channel}/{plugin}/latest.zip" if not check_if_exists(url): return abort(404) with cache_lock: cache[plugin] += 1 save_cache(cache) return redirect(url) @app.route("/statistics") def statistics(): with cache_lock: return jsonify(cache) @app.route("/") def index(): return redirect(f"https://{DEFAULT_SOURCE}")
from .default_tagger import tag from .base import map_paren, reverse_map_paren __all__ = ['tag', 'map_paren', 'reverse_map_paren']
from typing import Callable, Optional from flask import Blueprint def _factory( partial_module_string: str, url_prefix: str, protected: bool = False, auth_function: Optional[Callable] = None, ) -> Blueprint: # Create the blueprint blueprint = Blueprint( partial_module_string, f"src.views.{partial_module_string}", url_prefix=url_prefix, ) # This endpoint is not to be publicly used if protected: # Protected endpoints must have an authorization method if auth_function is None: raise NotImplementedError( "An authorization method must be given for protected endpoints!" # noqa ) # Protect the endpoint with an authorization routine blueprint.before_request(auth_function) return blueprint root = _factory("root", "/") search = _factory("search", "/search") shortcuts = _factory("shortcuts", "/") all_blueprints = (root, search, shortcuts)
# Copyright 2015 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Methods for interacting with Google Cloud Storage. Allows interacting with Cloud Storage via user-friendly objects rather than via Connection. """ from gcloud.exceptions import NotFound from gcloud._helpers import get_default_project from gcloud.storage._implicit_environ import get_default_connection from gcloud.storage.batch import Batch from gcloud.storage.bucket import Bucket from gcloud.storage.iterator import Iterator def lookup_bucket(bucket_name, connection=None): """Get a bucket by name, returning None if not found. You can use this if you would rather checking for a None value than catching an exception:: >>> from gcloud import storage >>> storage.set_defaults() >>> bucket = storage.lookup_bucket('doesnt-exist') >>> print bucket None >>> bucket = storage.lookup_bucket('my-bucket') >>> print bucket <Bucket: my-bucket> :type bucket_name: string :param bucket_name: The name of the bucket to get. :type connection: :class:`gcloud.storage.connection.Connection` or ``NoneType`` :param connection: Optional. The connection to use when sending requests. If not provided, falls back to default. :rtype: :class:`gcloud.storage.bucket.Bucket` :returns: The bucket matching the name provided or None if not found. """ connection = _require_connection(connection) try: return get_bucket(bucket_name, connection=connection) except NotFound: return None def list_buckets(project=None, max_results=None, page_token=None, prefix=None, projection='noAcl', fields=None, connection=None): """Get all buckets in the project. This will not populate the list of blobs available in each bucket. >>> from gcloud import storage >>> for bucket in storage.list_buckets(): >>> print bucket This implements "storage.buckets.list". :type project: string or ``NoneType`` :param project: Optional. The project to use when listing all buckets. If not provided, falls back to default. :type max_results: integer or ``NoneType`` :param max_results: Optional. Maximum number of buckets to return. :type page_token: string or ``NoneType`` :param page_token: Optional. Opaque marker for the next "page" of buckets. If not passed, will return the first page of buckets. :type prefix: string or ``NoneType`` :param prefix: Optional. Filter results to buckets whose names begin with this prefix. :type projection: string or ``NoneType`` :param projection: If used, must be 'full' or 'noAcl'. Defaults to 'noAcl'. Specifies the set of properties to return. :type fields: string or ``NoneType`` :param fields: Selector specifying which fields to include in a partial response. Must be a list of fields. For example to get a partial response with just the next page token and the language of each bucket returned: 'items/id,nextPageToken' :type connection: :class:`gcloud.storage.connection.Connection` or ``NoneType`` :param connection: Optional. The connection to use when sending requests. If not provided, falls back to default. :rtype: iterable of :class:`gcloud.storage.bucket.Bucket` objects. :returns: All buckets belonging to this project. """ connection = _require_connection(connection) if project is None: project = get_default_project() extra_params = {'project': project} if max_results is not None: extra_params['maxResults'] = max_results if prefix is not None: extra_params['prefix'] = prefix extra_params['projection'] = projection if fields is not None: extra_params['fields'] = fields result = _BucketIterator(connection=connection, extra_params=extra_params) # Page token must be handled specially since the base `Iterator` # class has it as a reserved property. if page_token is not None: result.next_page_token = page_token return iter(result) def get_bucket(bucket_name, connection=None): """Get a bucket by name. If the bucket isn't found, this will raise a :class:`gcloud.storage.exceptions.NotFound`. For example:: >>> from gcloud import storage >>> from gcloud.exceptions import NotFound >>> try: >>> bucket = storage.get_bucket('my-bucket') >>> except NotFound: >>> print 'Sorry, that bucket does not exist!' This implements "storage.buckets.get". :type bucket_name: string :param bucket_name: The name of the bucket to get. :type connection: :class:`gcloud.storage.connection.Connection` or ``NoneType`` :param connection: Optional. The connection to use when sending requests. If not provided, falls back to default. :rtype: :class:`gcloud.storage.bucket.Bucket` :returns: The bucket matching the name provided. :raises: :class:`gcloud.exceptions.NotFound` """ connection = _require_connection(connection) bucket = Bucket(bucket_name, connection=connection) bucket.reload() return bucket def create_bucket(bucket_name, project=None, connection=None): """Create a new bucket. For example:: >>> from gcloud import storage >>> storage.set_defaults() >>> bucket = storage.create_bucket('my-bucket') >>> print bucket <Bucket: my-bucket> This implements "storage.buckets.insert". If the bucket already exists, will raise :class:`gcloud.exceptions.Conflict`. :type project: string :param project: Optional. The project to use when creating bucket. If not provided, falls back to default. :type bucket_name: string :param bucket_name: The bucket name to create. :type connection: :class:`gcloud.storage.connection.Connection` or ``NoneType`` :param connection: Optional. The connection to use when sending requests. If not provided, falls back to default. :rtype: :class:`gcloud.storage.bucket.Bucket` :returns: The newly created bucket. """ connection = _require_connection(connection) bucket = Bucket(bucket_name, connection=connection) bucket.create(project) return bucket class _BucketIterator(Iterator): """An iterator listing all buckets. You shouldn't have to use this directly, but instead should use the helper methods on :class:`gcloud.storage.connection.Connection` objects. :type connection: :class:`gcloud.storage.connection.Connection` :param connection: The connection to use for querying the list of buckets. """ def __init__(self, connection, extra_params=None): super(_BucketIterator, self).__init__(connection=connection, path='/b', extra_params=extra_params) def get_items_from_response(self, response): """Factory method which yields :class:`.Bucket` items from a response. :type response: dict :param response: The JSON API response for a page of buckets. """ for item in response.get('items', []): name = item.get('name') bucket = Bucket(name, connection=self.connection) bucket._properties = item yield bucket def _require_connection(connection=None): """Infer a connection from the environment, if not passed explicitly. :type connection: :class:`gcloud.storage.connection.Connection` :param connection: Optional. :rtype: :class:`gcloud.storage.connection.Connection` :returns: A connection based on the current environment. :raises: :class:`EnvironmentError` if ``connection`` is ``None``, and cannot be inferred from the environment. """ # NOTE: We use current Batch directly since it inherits from Connection. if connection is None: connection = Batch.current() if connection is None: connection = get_default_connection() if connection is None: raise EnvironmentError('Connection could not be inferred.') return connection
ANSI = "\u001b[" CODE = f"{ANSI}38;5;" THEME = { "th_added": f"{CODE}48;1m", "th_conflicted": f"{CODE}209;1m", "th_deleted": f"{CODE}203;1m", "th_dim": f"{ANSI}2m", "th_error": f"{CODE}9;1m", "th_keyword": f"{CODE}171;1m", "th_modified": f"{CODE}221;1m", "th_normal": f"{CODE}15;1m", "th_renamed": f"{CODE}203;1m", "th_reset": f"{ANSI}0m", "th_success": f"{CODE}47;1m", "th_untracked": f"{CODE}69;1m", "th_stash": f"{CODE}69;1m", } ICONS = { "ic_modified": "☢", "ic_untracked": "✱", "ic_renamed": "✦", "ic_deleted": "✝", "ic_conflicted": "■", "ic_resetted": "⧗", "ic_removed": "−", "ic_patch_add": "▲", "ic_patch_remove": "▼", "ic_added": "✚", "ic_error": "✖", "ic_stash": "★", "ic_selection": "❤", "ic_normal": "•", "ic_success": "⚑", "ic_branch": "⚲", "ic_log_selected": "♦", "ic_log": "⋅", } EMPTY = {} INPUT_THEME = { "ADD_SELECTION": {"selection": f"{CODE}48;1m"}, "BRANCH_CREATION_ABOUT": EMPTY, "BRANCH_CREATION_CONFIRM": EMPTY, "BRANCH_CREATION_ID": EMPTY, "BRANCH_CREATION_SWITCH": EMPTY, "BRANCH_CREATION_TYPE": {"selection": f"{CODE}221;1m"}, "BRANCH_SELECTION": {"selection": f"{CODE}171;1m"}, "BRANCH_RENAME": {"font": f"{CODE}221;1m"}, "COMMIT_CREATION_ABOUT": EMPTY, "COMMIT_CREATION_CONFIRM": EMPTY, "COMMIT_CREATION_SCOPE": EMPTY, "COMMIT_CREATION_TYPE": {"selection": f"{CODE}221;1m"}, "LOG_LOG": EMPTY, "PATCH_SELECTION": EMPTY, "REMOVE_SELECTION": {"selection": f"{CODE}9;1m"}, "RESET_SELECTION": {"selection": f"{CODE}48;1m"}, "STASH_CREATION_NAME": EMPTY, "STASH_SELECTION": EMPTY, } INPUT_ICONS = { "+": ICONS["ic_modified"], "-": ICONS["ic_error"], "selection": ICONS["ic_selection"], "normal": ICONS["ic_normal"], "log_selection": ICONS["ic_log_selected"], "log_normal": ICONS["ic_log"], }
#!/usr/bin/python3 # ****************************************************************************** # Copyright (c) Huawei Technologies Co., Ltd. 2021-2021. All rights reserved. # licensed under the Mulan PSL v2. # You can use this software according to the terms and conditions of the Mulan PSL v2. # You may obtain a copy of Mulan PSL v2 at: # http://license.coscl.org.cn/MulanPSL2 # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR # PURPOSE. # See the Mulan PSL v2 for more details. # ******************************************************************************/ """ Author: YangYunYi Date: 2021/9/1 23:04 docs: test_executor.py description: test executor """ import os import sys import json from adoctor_check_scheduler.common.constant import CheckTopic, CheckGroup from adoctor_check_scheduler.common.config import scheduler_check_config from adoctor_check_scheduler.common.check_consumer import RetryTaskConsumer from aops_utils.kafka.producer import BaseProducer from aops_utils.kafka.kafka_exception import ProducerInitError from aops_utils.log.log import LOGGER CONFIG_PATH = "conf" CURRENT_PATH = os.path.dirname(os.path.abspath(__file__)) def publish_check_task(task_msg, topic): """ Publish check task Args: task_msg (dict): task msg """ try: producer = BaseProducer(scheduler_check_config) LOGGER.debug("Send check task msg %s", task_msg) producer.send_msg(topic, task_msg) except ProducerInitError as exp: LOGGER.error("Produce task msg failed. %s" % exp) def test_do_check(): test_msg = {'task_id': 1630421641844, 'user': 'admin', 'host_list': [{'host_id': 'eca3b022070211ecab3ca01c8d75c8f3', 'public_ip': '90.90.64.65'}], 'check_items': ['check_item2'], 'time_range': [1630421611, 1630421641]} publish_check_task(test_msg, CheckTopic.do_check_topic) def test_import_check_rule(): config_path = os.path.join(CURRENT_PATH, CONFIG_PATH, "check_rule.json") with open(config_path, 'r', encoding='utf-8-sig') as cfg_file: check_config = json.load(cfg_file) check_config["username"] = "admin" publish_check_task(check_config, CheckTopic.import_check_rule_topic) def test_delete_check_rule(): delete_check_msg = { "username": "admin", "check_items": ["check_item1", "check_item7"] } publish_check_task(delete_check_msg, CheckTopic.delete_check_rule_topic) def start_retry_consumer(): # Start retry task consumer retry_task_consumer = RetryTaskConsumer(CheckTopic.retry_check_topic, CheckGroup.retry_check_group_id, scheduler_check_config) retry_task_consumer.start() retry_task_consumer.join() test_func = {"import_check_rule": test_import_check_rule, "delete_check_rule": test_delete_check_rule, "do_check": test_do_check, "start_retry_consumer": start_retry_consumer } def main(): """ Entry of commands. """ if len(sys.argv) != 2: LOGGER.error("Invalid parameter. Available options are " "as follows:[diag,check_default,check_user]") return test_mode = sys.argv[1] if test_mode in test_func.keys(): test_func[test_mode]() else: LOGGER.error("Invalid test mode %s. Available options are " "as follows:[diag,check_default,check_user]", sys.argv[1]) if __name__ == '__main__': main()
import scrapy import lxml.html import re import urllib2 from ceCrawler.items import assignment from scrapy.selector import Selector from scrapy.http import HtmlResponse from scrapy.contrib.spiders import CrawlSpider, Rule from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor import json def first(): list=[] with open("/home/babak/Dropbox/semesters/7/tahlil/project/scrapy/ceCrawler/new.json",'r') as f: for line in f: line=line.strip() list.append( json.loads(line)['link']+"/index.php/section/assignments/file/assignments") return list class DmozSpider(scrapy.Spider): name = "assignmentCrawler" allowed_domains = ["http://ce.sharif.ir"] start_urls = first() def parse(self, response): hxs = Selector(response) item=assignment() item['link']=response.url.replace('/index.php/section/assignments/file/assignments','') dateSplitter="||||||||||" #10 ta \ anonsSplitter="**********" #10 ta * name="" date='' HWlink='' for i,x in enumerate(hxs.xpath('//td[@class="titleBar"]')): try: header=hxs.xpath("//td[@class='titleBar']")[i] header=header.xpath('table[@width="100%"]/tr/td/b/text()').extract() namen=header[0] name+=namen+dateSplitter daten=header[1] date+=daten+dateSplitter except: name+=dateSplitter date+=dateSplitter try: HWlinkn=hxs.xpath("//table[@class='table1']")[i] HWlinkn=HWlinkn.xpath('tr[2]/td/table/tr/td/li/a/@href').extract() HWlink+=HWlinkn[0]+dateSplitter except: HWlink+=dateSplitter item['name']=name.replace('\r\n','').replace('\t','') item['Deadline']=date.replace('\r\n','').replace('\t','') item['HWlink']=HWlink.replace('\r\n','').replace('\t','') yield item