content
stringlengths
5
1.05M
# _ _ _ _____ _ ______ ___ ______ _____ # | | | | | ||_ _| | | ___ \ / _ \ | ___ \_ _| # | |_| | __ _ ___| | _| | | |__ ___| |_/ / _____ __ / /_\ \| |_/ / | | # | _ |/ _` |/ __| |/ / | | '_ \ / _ \ ___ \/ _ \ \/ / | _ || __/ | | # | | | | (_| | (__| <| | | | | | __/ |_/ / (_) > < | | | || | _| |_ # \_| |_/\__,_|\___|_|\_\_/ |_| |_|\___\____/ \___/_/\_\ \_| |_/\_| \___/ __title__ = 'HackTheBox API' __description__ = 'An unofficial API library for HackTheBox <www.hackthebox.eu>' __url__ = 'https://github.com/zachhanson94/htb' __version__ = '0.0.1' __build__ = 0x000001 __author__ = 'Zach Hanson' __author_email__ = 'zachhanson94@gmail.com' __license__ = 'MIT' __copyright__ = 'Copyright 2020 Zach Hanson'
import tweepy import json import os import csv import pandas as pd import credentials ACTORS = ['@lemondefr','@courrierinter','@leJDD','@humanite_fr', '@LEXPRESS','@libe','@LesEchos','@lobs','@MarianneleMag', '@Le_Figaro','@AlterEco_','@_polemia','@sputnik_fr','@Europe_Israel', '@Breizh_Info','@BVoltaire','@RTenfrancais','@InfoMdia','@Valeurs', '@tvlofficiel','@LePoint','@F_Desouche','@Dreuz_1fo','@ndffr','@FrDesouche', '@1RiposteLaique','@Contreinfo','@LaManifPourTous','@RNational_off', '@EetR_National','@lenouvelliste','@letemps','@24heuresch','@20min', '@20minutesOnline','@tdgch','@tagesanzeiger','@Blickch','@derbund', '@LuzernerZeitung','@lecourrier','@laliberte','@heidi_news','@Lematinch', '@BernerZeitung','@AargauerZeitung','@RTSinfo','@CdT_Online','@watson_news', '@srfnews','@laregione','@RSInews'] # List of twitter accounts to retrieve FILENAME = 'results/timeline.csv' # Resulting file LANG = 'fr' # Restrict the query to a specific language ('fr', 'en'), None for all MAX_TWEETS_PER_ACCOUNT = 4000 # Max number of tweets to retrieve by account, if free twitter license max is 3200 # Create target Directory if don't exist if not os.path.exists('results'): os.mkdir('results') auth = tweepy.OAuthHandler(credentials.CONSUMER_KEY, credentials.CONSUMER_SECRET) auth.set_access_token(credentials.ACCESS_TOKEN, credentials.ACCESS_TOKEN_SECRET) api = tweepy.API(auth, wait_on_rate_limit=True) header = ['tweet_id', 'user_id', 'user_name', 'followers', 'following', 'likes', 'retweets', 'date', 'reply_to_tweet_id', 'reply_to_user_id', 'reply_to_username', 'user_mentions_ids', 'user_mentions_names', 'text', 'retweet_from_user_id', 'retweet_from_username', 'retweet_from_tweet_id', 'urls'] def saveTweet(row, filename): with open(filename, 'a') as f: writer = csv.writer(f) writer.writerow(row) for actor in ACTORS: min_id = None if os.path.exists(FILENAME): df = pd.read_csv(FILENAME) df = df[df.user_name == actor[1:]] df.date = pd.to_datetime(df.date) ids = df.tweet_id.values counter = len(ids) if counter: min_id = int(df.loc[df.date.idxmax()].tweet_id) else: with open(FILENAME, 'w') as f: writer = csv.writer(f) writer.writerow(header) counter = 0 print(min_id) for tweets in tweepy.Cursor(api.user_timeline, since_id=min_id, screen_name=actor, tweet_mode="extended", lang=LANG, count=100).pages(MAX_TWEETS_PER_ACCOUNT/100): for tweet in tweets: tweet_id = tweet.id_str user_id = tweet.user.id_str user_name = tweet.user.screen_name followers = tweet.user.followers_count following = tweet.user.friends_count likes = tweet.favorite_count retweets = tweet.retweet_count date = tweet.created_at reply_to_tweet_id = tweet.in_reply_to_status_id_str reply_to_user_id = tweet.in_reply_to_user_id_str reply_to_username = tweet.in_reply_to_screen_name user_mentions_ids = [mention['id_str'] for mention in tweet.entities['user_mentions']] user_mentions_names = [mention['screen_name'] for mention in tweet.entities['user_mentions']] urls=[] for url in tweet.entities['urls']: urls.append(url['expanded_url']) try: text = tweet.extended_tweet["full_text"] except AttributeError: text = tweet.full_text retweet_from_user_id = None retweet_from_username = None retweet_from_tweet_id = None if hasattr(tweet, "retweeted_status"): retweet_from_user_id = tweet.retweeted_status.user.id_str retweet_from_username = tweet.retweeted_status.user.screen_name retweet_from_tweet_id = tweet.retweeted_status.id_str row = [tweet_id, user_id, user_name, followers, following, likes, retweets, date, reply_to_tweet_id, reply_to_user_id, reply_to_username, user_mentions_ids, user_mentions_names, text, retweet_from_user_id, retweet_from_username, retweet_from_tweet_id, urls] saveTweet(row, FILENAME) counter += 1 print(f"{actor} -> Total fetched : {counter}\r", end="") print(actor, " -> Total fetched : " + str(counter))
# # FROM STEPHANIE BACK IN THE DAY... # 1. Calculate the saturated vapor pressure (ew) as ew = 6.112* exp(17.62*T/(243.12+T) with T in [°C] and ew in [hPa] from CRU temperature at 0.5 x 0.5 degree resolution* # 2. Calculate %RH at 0.5 x 0.5 degree resolution as e/ew where e is vapor pressure in hPa from CRU # 3. Replace %RH >100 with 95 (see my last email for why this happens) # 4. Interpolate %RH to 1km # 5. Calculate vapor pressure at 1km resolution from interpolated RH and 1km temperature def convert_to_hur( tas_arr, vap_arr ): esa_arr = 6.112 * np.exp( 17.62 * tas_arr/ (243.12 + tas_arr) ) # esa_arr = 6.112 * np.exp( 22.46 * tas_arr / (272.62 + tas_arr) ) hur_arr = vap_arr/esa_arr * 100 return hur_arr if __name__ == '__main__': # convert the vap/tas to hur for the GD CRU data import xarray as xr import numpy as np # filenames vap_fn = '/Data/Base_Data/Climate/World/CRU_grids/CRU_TS323/cru_ts3.23.1901.2014.vap.dat.nc' tas_fn = '/Data/Base_Data/Climate/World/CRU_grids/CRU_TS323/cru_ts3.23.1901.2014.tmp.dat.nc' # open the cru data vap = xr.open_dataset( vap_fn ) tas = xr.open_dataset( tas_fn ) # slice them to the variable we want and return the 3D array v = vap.vap.data t = tas.tmp.data # # FROM STEPHANIE BACK IN THE DAY... # 1. Calculate the saturated vapor pressure (ew) as ew = 6.112* exp(17.62*T/(243.12+T) with T in [°C] and ew in [hPa] from CRU temperature at 0.5 x 0.5 degree resolution* # 2. Calculate %RH at 0.5 x 0.5 degree resolution as e/ew where e is vapor pressure in hPa from CRU h = convert_to_hur( t, v ) # 3. Replace %RH >100 with 95 (see my last email for why this happens) h[ (~np.isnan(h)) & (h < 0) ] = 0 h[ (~np.isnan(h)) & (h > 100) ] = 95 # write this to disk: hur = vap.vap.copy() # update the DataArray attributes since we updated the data to a new variable hur.attrs.update( long_name='relative humidity', units='pct', derived_by='SNAP - 12/8/2016', derived_author='Michael Lindgren (malindgren@alaska.edu)' ) # convert to an xarray dataset hur = hur.to_dataset( name='hur' ) # put the data from above into the object. hur[ 'hur' ] = (('time', 'lat', 'lon' ), h ) # update the Dataset attributes hur.attrs.update( COMMENTS='Variable computed by Michael Lindgren at SNAP 12/8/2016 using cru tmp and cru vap', equation_step1='esa_arr = 6.112 * np.exp( 17.62 * tas_arr / (243.12 + tas_arr) )', equation_step2='hur_arr = vap_arr/esa_arr * 100', post_process_step='values < 0 were set to 0. values < 100 were set to 95 [per Stephanie McAfee suggestion]' ) # write to disk output_filename = vap_fn.replace( 'vap', 'hur' ).replace( '.nc', '_snap_conversion.nc' ) hur.to_netcdf( path=output_filename, mode='w' ) # 4. Interpolate %RH to 1km # ---> RUN DOWNSCALE # 5. Calculate vapor pressure at 1km resolution from interpolated RH and 1km temperature
#!/usr/bin/env python import boto3 import os from datacoco_cloud import UNIT_TEST_KEY import logging class S3toS3Interaction(object): """ Class to simplify S3 to S3 Interactions using boto3 """ def __init__( self, source_aws_key: str, source_aws_secret: str, target_aws_key: str, target_aws_secret: str, source_aws_region: str = "us-east-1", target_aws_region: str = "us-east-1", ): ########## ### Setup configuration ########## self.is_test = os.environ.get(UNIT_TEST_KEY, False) self.source_aws_key = source_aws_key self.source_aws_secret = source_aws_secret self.source_aws_region = source_aws_region self.target_aws_key = target_aws_key self.target_aws_secret = target_aws_secret self.target_aws_region = target_aws_region ### Setting up the S3 Clients if not self.is_test: self.s3_client_source = boto3.client( "s3", region_name=self.source_aws_region, aws_access_key_id=self.source_aws_key, aws_secret_access_key=self.source_aws_secret, ) self.s3_client_target = boto3.client( "s3", region_name=self.target_aws_region, aws_access_key_id=self.target_aws_key, aws_secret_access_key=self.target_aws_secret, ) def duplicate_objects( self, source_bucket: str, target_bucket: str, source_bucket_prefix: str, target_path: str, source_bucket_suffix: str = "", ): self.__do_transfer( source_bucket=source_bucket, target_bucket=target_bucket, source_bucket_prefix=source_bucket_prefix, target_path=target_path, source_bucket_suffix=source_bucket_suffix, isMove=False, ) def move_objects( self, source_bucket: str, target_bucket: str, source_bucket_prefix: str, target_path: str, source_bucket_suffix: str = "", ): self.__do_transfer( source_bucket=source_bucket, target_bucket=target_bucket, source_bucket_prefix=source_bucket_prefix, target_path=target_path, source_bucket_suffix=source_bucket_suffix, isMove=True, ) def __do_transfer( self, source_bucket: str, target_bucket: str, source_bucket_prefix: str, target_path: str, source_bucket_suffix: str, isMove: bool = False, ): # String for Printing Operations operation = "copy" if isMove: operation = "move" try: payload = self.s3_client_source.list_objects_v2( Bucket=source_bucket, Prefix=source_bucket_prefix ) if payload["KeyCount"] == 0: logging.info(f"No files to {operation}.") else: keyCount = 0 for item in payload["Contents"]: filepath = item["Key"] # Checks first if file matches suffix if filepath.endswith(source_bucket_suffix): # Increase Key Count per matched suffix keyCount += 1 if len(filepath.split("/")) > 1: deductLength = len(filepath.split("/")[0]) + 1 else: deductLength = 0 filename = filepath[deductLength:] logging.info(f"filename: {filename}") if filename is not "": logging.info( f"Sending file {source_bucket}/{filepath} to {target_bucket}/{target_path}/{filename}" ) logging.info( f"filename to {operation}: {filename}" ) copy_source = { "Bucket": source_bucket, "Key": filepath, } if not self.is_test: copy_response = self.s3_client_target.copy_object( CopySource=copy_source, Bucket=target_bucket, Key=f"{target_path}/{filename}", ) logging.info(copy_response) if ( copy_response["ResponseMetadata"][ "HTTPStatusCode" ] != 200 ): logging.error( f"Failed to {operation}: {fileName}" ) if isMove: delete_response = self.s3_client_source.delete_object( Bucket=source_bucket, Key=filepath ) logging.info(delete_response) if ( delete_response["ResponseMetadata"][ "HTTPStatusCode" ] != 200 ): logging.error( f"Failed to delete: {fileName}" ) if keyCount == 0: logging.info(f"No files to {operation}.") except Exception as e: logging.error(e) raise e
import sys, os import scipy from pylab import * from matplotlib import * from scipy.stats import * from numpy import * from scipy import * import kepfit import kepmsg """ This code is based on the PyKE routine kepsff found at keplerscience.arc.nasa.gov The kepsff code is based on Vanderberg and Johnson 2014. If you use this you must cite V&J 2014. """ def martinsff(intime,indata,centr1,centr2, npoly_cxcy,sigma_cxcy,npoly_ardx, npoly_dsdt,sigma_dsdt,npoly_arfl,sigma_arfl,verbose,logfile, status): # startup parameters status = 0 labelsize = 16 ticksize = 14 xsize = 20 ysize = 8 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 seterr(all="ignore") # fit centroid data with low-order polynomial cfit = zeros((len(centr2))) csig = zeros((len(centr2))) functype = 'poly' + str(npoly_cxcy) pinit = array([nanmean(centr2)]) if npoly_cxcy > 0: for j in range(npoly_cxcy): pinit = append(pinit,0.0) try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,centr1,centr2,None,sigma_cxcy,sigma_cxcy,10,logfile,verbose) for j in range(len(coeffs)): cfit += coeffs[j] * numpy.power(centr1,j) csig[:] = sigma except: message = 'ERROR -- KEPSFF: could not fit centroid data with polynomial. There are no data points within the range of input rows %d - %d. Either increase the stepsize (with an appreciation of the effects on light curve quality this will have!), or better yet - cut the timeseries up to remove large gaps in the input light curve using kepclip.' % (t1,t2) status = kepmsg.err(logfile,message,verbose) # sys.exit('') os._exit(1) # reject outliers time_good = array([],'float64') centr1_good = array([],'float32') centr2_good = array([],'float32') flux_good = array([],'float32') cad_good = array([],'int') for i in range(len(cfit)): if abs(centr2[i] - cfit[i]) < sigma_cxcy * csig[i]: time_good = append(time_good,intime[i]) centr1_good = append(centr1_good,centr1[i]) centr2_good = append(centr2_good,centr2[i]) flux_good = append(flux_good,indata[i]) # covariance matrix for centroid time series centr = concatenate([[centr1_good] - mean(centr1_good), [centr2_good] - mean(centr2_good)]) covar = cov(centr) # eigenvector eigenvalues of covariance matrix [eval, evec] = numpy.linalg.eigh(covar) ex = arange(-10.0,10.0,0.1) epar = evec[1,1] / evec[0,1] * ex enor = evec[1,0] / evec[0,0] * ex ex = ex + mean(centr1) epar = epar + mean(centr2_good) enor = enor + mean(centr2_good) # rotate centroid data centr_rot = dot(evec.T,centr) # fit polynomial to rotated centroids rfit = zeros((len(centr2))) rsig = zeros((len(centr2))) functype = 'poly' + str(npoly_ardx) pinit = array([nanmean(centr_rot[0,:])]) pinit = array([1.0]) if npoly_ardx > 0: for j in range(npoly_ardx): pinit = append(pinit,0.0) try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,centr_rot[1,:],centr_rot[0,:],None,100.0,100.0,1, logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile,message,verbose) rx = linspace(nanmin(centr_rot[1,:]),nanmax(centr_rot[1,:]),100) ry = zeros((len(rx))) for i in range(len(coeffs)): ry = ry + coeffs[i] * numpy.power(rx,i) # calculate arclength of centroids s = zeros((len(rx))) for i in range(1,len(s)): work3 = ((ry[i] - ry[i-1]) / (rx[i] - rx[i-1]))**2 s[i] = s[i-1] + math.sqrt(1.0 + work3) * (rx[i] - rx[i-1]) # fit arclength as a function of strongest eigenvector sfit = zeros((len(centr2))) ssig = zeros((len(centr2))) functype = 'poly' + str(npoly_ardx) pinit = array([nanmean(s)]) if npoly_ardx > 0: for j in range(npoly_ardx): pinit = append(pinit,0.0) try: acoeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,rx,s,None,100.0,100.0,100,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile,message,verbose) # correlate arclength with detrended flux t = copy(time_good) y = copy(flux_good) z = centr_rot[1,:] x = zeros((len(z))) for i in range(len(acoeffs)): x = x + acoeffs[i] * numpy.power(z,i) # calculate time derivative of arclength s dx = zeros((len(x))) for i in range(1,len(x)): dx[i] = (x[i] - x[i-1]) / (t[i] - t[i-1]) dx[0] = dx[1] # fit polynomial to derivative and flag outliers (thruster firings) dfit = zeros((len(dx))) dsig = zeros((len(dx))) functype = 'poly' + str(npoly_dsdt) pinit = array([nanmean(dx)]) if npoly_dsdt > 0: for j in range(npoly_dsdt): pinit = append(pinit,0.0) try: dcoeffs, errors, covar, iiter, dsigma, chi2, dof, fit, dumx, dumy, status = \ kepfit.lsqclip(functype,pinit,t,dx,None,3.0,3.0,10,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile,message,verbose) for i in range(len(dcoeffs)): dfit = dfit + dcoeffs[i] * numpy.power(t,i) centr1_pnt = array([],'float32') centr2_pnt = array([],'float32') time_pnt = array([],'float64') flux_pnt = array([],'float32') dx_pnt = array([],'float32') s_pnt = array([],'float32') time_thr = array([],'float64') flux_thr = array([],'float32') dx_thr = array([],'float32') thr_cadence = zeros(len(t),dtype=bool) for i in range(len(t)): if dx[i] < dfit[i] + sigma_dsdt * dsigma and dx[i] > dfit[i] - sigma_dsdt * dsigma: time_pnt = append(time_pnt,time_good[i]) flux_pnt = append(flux_pnt,flux_good[i]) dx_pnt = append(dx_pnt,dx[i]) s_pnt = append(s_pnt,x[i]) centr1_pnt = append(centr1_pnt,centr1_good[i]) centr2_pnt = append(centr2_pnt,centr2_good[i]) else: time_thr = append(time_thr,time_good[i]) flux_thr = append(flux_thr,flux_good[i]) dx_thr = append(dx_thr,dx[i]) thr_cadence[i] = True # fit arclength-flux correlation cfit = zeros((len(time_pnt))) csig = zeros((len(time_pnt))) functype = 'poly' + str(npoly_arfl) pinit = array([nanmean(flux_pnt)]) if npoly_arfl > 0: for j in range(npoly_arfl): pinit = append(pinit,0.0) try: ccoeffs, errors, covar, iiter, sigma, chi2, dof, fit, plx, ply, status = \ kepfit.lsqclip(functype,pinit,s_pnt,flux_pnt,None,sigma_arfl,sigma_arfl,100,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile,message,verbose) # correction factors for unfiltered data centr = concatenate([[centr1] - mean(centr1_good), [centr2] - mean(centr2_good)]) centr_rot = dot(evec.T,centr) yy = copy(indata) zz = centr_rot[1,:] xx = zeros((len(zz))) cfac = zeros((len(zz))) for i in range(len(acoeffs)): xx = xx + acoeffs[i] * numpy.power(zz,i) for i in range(len(ccoeffs)): cfac = cfac + ccoeffs[i] * numpy.power(xx,i) # apply correction to flux time-series out_detsap = indata / cfac return out_detsap, cfac, thr_cadence
def theme_alberta(): """ Applies a University of Alberta theme to all subsequential altair plot objects so they are displayed with the U of A visual identity. See the visual identity at https://www.ualberta.ca/toolkit/visual-identity/our-colours. Four palettes based on the U of A visual identity guidelines can be selected: 'alpha', 'beta', 'gamma' and 'delta'. See more details about the package on GitHub: https://github.com/UBC-MDS/hueniversitypy/blob/master/README.md Returns ------- altair plot : altair.vegalite.v4.api.Chart an altair plot with the U of A visual identity colour theme applied. Example ---------- >>> from hueniversitypy.theme_alberta import * >>> data = pandas.DataFrame({'X': numpy.random.randint(100, size=100), 'Y': numpy.random.randint(100, size=100), 'Cat': [['A', 'B', 'C'][numpy.random.randint(3, size=1)[0]] for i in range(100)]}) >>> scatterplot = (altair.Chart(data).mark_circle(size=60, opacity=0.5).encode(x='X', y='Y', color='Cat')) >>> altair.themes.register("theme_alberta", theme_alberta) >>> altair.themes.enable("theme_alberta") >>> scatterplot """ # Code attribution: Sergio Sanchez # https://towardsdatascience.com/consistently-beautiful-visualizations-with-altair-themes-c7f9f889602 # University font font = "Arial" labelFont = "Arial" # Specify colour palette for Alberta alberta_palette = ["#007C41", "#FFDB05", "#7D9AAA", "#A8B400", "#A79E70"] return { "config": { # Title font and size "title": { "fontSize" : 18, "font": font, "anchor": "start", "fontColor": "#000000" } , # Axes font and sizes "axisX": { "labelFont": labelFont, "labelFontSize": 12, "titleFont": font, "titleFontSize": 12, "title": "X Axis Title (units)" }, "axisY": { "labelFont": labelFont, "labelFontSize": 12, "titleFont": font, "titleFontSize": 12, "title": "Y Axis Title (units)" }, # Add colour palette "range": { "category": alberta_palette } } }
"""Setuptools configuration for Grd2Shp_Xagg.""" from os import path from setuptools import find_packages from setuptools import setup with open("README.rst") as readme_file: readme = readme_file.read() with open("HISTORY.rst") as history_file: history = history_file.read() here = path.abspath(path.dirname(__file__)) with open(path.join(here, "requirements.txt")) as requirements_file: # Parse requirements.txt, ignoring any commented-out lines. requirements = [ line for line in requirements_file.read().splitlines() if not line.startswith("#") ] setup_requirements = [ "pytest-runner", ] test_requirements = [ "pytest>=3", ] setup( author="rmcd@usgs.gov", author_email="rmcd@usgs.gov", python_requires=">=3.8", classifiers=[ "Development Status :: 1 - Planning", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", ], description="Interpolate gridded input to geometry polygons", entry_points={ "console_scripts": [ "grd2shp_xagg=grd2shp_xagg.__main__:main", ], }, install_requires=requirements, license="MIT", long_description=readme + "\n\n" + history, include_package_data=True, keywords="grd2shp_xagg,grd2shp_xagg", name="grd2shp_xagg", packages=find_packages(where="src"), package_dir={"": "src"}, setup_requires=setup_requirements, test_suite="tests", tests_require=test_requirements, url="https://github.com/rmcd-mscb/grd2shp_xagg", version="0.0.1-dev0", zip_safe=False, )
"""Library of aospy.Proj objects that I use.""" from .aero_3agcm import aero_3agcm # from .burls import burls # from .cmip5 import cmip5 from .gcm_input import gcm_input # from .obs import obs
from flask_jwt import jwt_required from flask_restful import Resource, reqparse from ..models import JobModel, MeasurementModel, MetricModel class Measurement(Resource): parser = reqparse.RequestParser() parser.add_argument( "value", type=float, required=True, help="This field cannot be left blank.", ) parser.add_argument( "unit", type=str, required=True, help="This field cannot be left blank.", ) parser.add_argument( "metric", type=str, required=True, help="You must provide a metric name associated " "to the measurement.", ) def get(self, job_id): """ Retrieve all measurements performed by a verification job. --- tags: - Metric Measurements parameters: - name: job_id in: path type: integer description: ID of the job. required: true responses: 200: description: List of Measurements successfully retrieved. 404: description: Job not found. """ # find the corresponding job job = JobModel.find_by_id(job_id) if job: # find the associated measurements measurements = MeasurementModel.find_by_job_id(job.id) return { "measurements": [ measurement.json() for measurement in measurements ] } else: message = "Job `{}` not found.".format(job_id) return {"message": message}, 404 @jwt_required() def post(self, job_id): """ Create a new measurement for an existing job. --- tags: - Metric Measurements parameters: - name: job_id in: path type: integer description: ID of the job. required: true - in: body name: "Request body:" schema: type: object required: - metric - value - unit properties: metric: type: string value: type: number unit: type: string responses: 201: description: Measurement successfully created. 401: description: > Authorization Required. Request does not contain a valid access token. 404: description: Job or associated metric not found. 500: description: An error occurred inserting the measurement. """ data = Measurement.parser.parse_args() # find the corresponding job job = JobModel.find_by_id(job_id) if job: metric_name = data["metric"] # find the associated metric metric = MetricModel.find_by_name(metric_name) else: message = "Job `{}` not found.".format(job_id) return {"message": message}, 404 if metric: measurement = MeasurementModel(job.id, metric.id, **data) else: message = "Metric `{}` not found.".format(metric_name) return {"message": message}, 404 try: measurement.save_to_db() except Exception: return { "message": "An error occurred inserting the " "measurement." }, 500 return measurement.json(), 201 class MeasurementList(Resource): def get(self): """ Retrieve the complete list of measurements. --- tags: - Metric Measurements responses: 200: description: List of Measurements successfully retrieved. """ return { "measurements": [ measurement.json() for measurement in MeasurementModel.query.all() ] }
_root.createTextField("mytext",1,100,100,300,100);
from wand.image import Image import io import os import tempfile import math from PyPDF2 import PdfFileWriter, PdfFileReader from mmdet.apis import init_detector, inference_detector, show_result_pyplot class ExtractTable(object): """ Utilizes CascadeTabNet (https://github.com/DevashishPrasad/CascadeTabNet) to detect table boundaries These table boundaries are then used by pdf table extraction libraries to extract table from specific regions that they would've otherwise missed. """ def __init__(self, pdf_fpath, pagenums=None, resolution=200, threshold=0.85, model_device='cpu', stretch_bounds=0.1, origin='top-left'): self.pdf_fpath = pdf_fpath self.pagenums = pagenums self.resolution = resolution self.threshold = threshold self.model_device = model_device self.stretch_bounds = stretch_bounds self.origin = origin self.load_model() def load_model(self): self._config_fpath = os.environ['TABNET_CONFIGPATH'] self._model_fpath = os.environ['TABNET_MODELPATH'] self._model = init_detector(self._config_fpath, self._model_fpath, device=self.model_device) def convert_pdf2imgs(self, dirname): inputpdf = PdfFileReader(open(self.pdf_fpath, 'rb')) pages = list(range(inputpdf.numPages)) if self.pagenums is None else self.pagenums imgpaths = {} for pagenum in pages: fname = os.path.join(dirname, f'pdfimg-{pagenum}.jpeg') dst_pdf = PdfFileWriter() dst_pdf.addPage(inputpdf.getPage(pagenum)) pdf_bytes = io.BytesIO() dst_pdf.write(pdf_bytes) pdf_bytes.seek(0) img = Image(file=pdf_bytes, resolution=self.resolution) img.convert('jpeg') img.save(filename=fname) imgsize = img.size imgpaths[pagenum] = {'fpath': fname, 'shape': imgsize} return imgpaths def get_page_props(self, pagenum): inputpdf = PdfFileReader(open(self.pdf_fpath, 'rb')) dims = inputpdf.getPage(pagenum).mediaBox _, _, width, height = dims return float(width), float(height) def unnormalize_boundaries(self, boundaries, width, height): coords = [] for boundary in boundaries: x1, y1, x2, y2 = boundary x1 = math.floor(x1 * width) y1 = math.floor(y1 * height) x2 = math.ceil(x2 * width) y2 = math.ceil(y2 * height) coords.append((x1, y1, x2, y2)) return coords def correct_for_origin(self, coords, width, height): """ Computed coordinates from the model assumes "top-left" as the origin. Some libraries though define "bottom-left" as the origin, and therefore, this method corrects the computed coordinates """ result = [] for coordinate in coords: x1, y1, x2, y2 = coordinate if self.origin == 'top-left': pass # do nothing since the model has the same origin elif self.origin == 'bottom-left': y1 = height - y1 y2 = height - y2 elif self.origin == 'top-right': x1 = width - x1 x2 = width - x2 elif self.origin == 'bottom-right': x1 = width - x1 x2 = width - x2 y1 = height - y1 y2 = height - y2 else: raise AttributeError('origin can only be [top-left, top-right, bottom-left, bottom-right]') result.append((x1, y1, x2, y2)) return result def get_table_boundaries(self, fpath, imgsize): def get_table_coords(tblarray, width, height): tables = [] for tbl in tblarray: x1, y1, x2, y2, conf = tbl if conf < self.threshold: continue # normalize coords x1 = x1 / float(width) y1 = y1 / float(height) x2 = x2 / float(width) y2 = y2 / float(height) tables.append((x1, y1, x2, y2)) return tables result = inference_detector(self._model, fpath) width, height = imgsize tables = [] tables.extend(get_table_coords(result[0][0], width, height)) # Get bordered tables tables.extend(get_table_coords(result[0][2], width, height)) # Get unbordered tables return tables def stretch_boundaries(self, boundaries, width, height): result = [] for boundary in boundaries: x1, y1, x2, y2 = boundary box_w = x2 - x1 box_h = y2 - y1 x1 = max(0, x1 - math.floor(self.stretch_bounds * box_w)) y1 = max(0, y1 - math.floor(self.stretch_bounds * box_h)) x2 = min(width, math.ceil(x2 + self.stretch_bounds * box_w)) y2 = min(height, math.ceil(y2 + self.stretch_bounds * box_h)) result.append((x1, y1, x2, y2)) return result def extract(self): tables = {} # pagenum -> table coordinates dictionary with tempfile.TemporaryDirectory() as tmpdirname: imgpaths = self.convert_pdf2imgs(tmpdirname) for pagenum in sorted(imgpaths.keys()): val = imgpaths[pagenum] fpath = val['fpath'] imgshape = val['shape'] table_boundaries = self.get_table_boundaries(fpath, imgshape) # normalized boundaries width, height = self.get_page_props(pagenum) # shape of PDF table_boundaries = self.unnormalize_boundaries(table_boundaries, width, height) # boundaries in the PDF space table_boundaries = self.stretch_boundaries(table_boundaries, width, height) table_boundaries = self.correct_for_origin(table_boundaries, width, height) tables[pagenum] = table_boundaries return tables
""" Light-weighted Simulation Engine """ from collections import deque import heapq import copy import time import datetime from evsim.definition import * from evsim.default_message_catcher import * from evsim.behavior_model import * from evsim.system_object import * class SysExecutor(SysObject, BehaviorModel): EXTERNAL_SRC = "SRC" EXTERNAL_DST = "DST" def __init__(self, _time_step, _sim_name='default', _sim_mode='VIRTUAL_TIME'): BehaviorModel.__init__(self, _sim_name) self.global_time = 0 self.target_time = 0 self.time_step = _time_step # time_step may changed? - cbchoi # dictionary for waiting simulation objects self.waiting_obj_map = {} # dictionary for active simulation objects self.active_obj_map = {} # dictionary for object to ports self.port_map = {} # added by cbchoi 2020.01.20 self.hierarchical_structure = {} self.min_schedule_item = deque() self.sim_init_time = datetime.datetime.now() # self.eval_time = 0 self.dmc = DefaultMessageCatcher(0, Infinite, "dc", "default") self.register_entity(self.dmc) self.simulation_mode = SimulationMode.SIMULATION_IDLE # External Interface self.input_event_queue = [] self.output_event_queue = deque() # TIME Handling self.sim_mode = _sim_mode # Learning Module self.learn_module = None # retrieve global time def get_global_time(self): return self.global_time def register_entity(self, sim_obj): #print((sim_obj,)) if not sim_obj.get_create_time() in self.waiting_obj_map: self.waiting_obj_map[sim_obj.get_create_time()] = list() self.waiting_obj_map[sim_obj.get_create_time()].append(sim_obj) def create_entity(self): if len(self.waiting_obj_map.keys()) != 0: key = min(self.waiting_obj_map) if key <= self.global_time: lst = self.waiting_obj_map[key] for obj in lst: # print("global:",self.global_time," create agent:", obj.get_obj_name()) self.active_obj_map[obj.get_obj_id()] = obj # self.min_schedule_item.append((obj.time_advance() + self.global_time, obj)) obj.set_req_time(self.global_time) self.min_schedule_item.append(obj) del self.waiting_obj_map[key] # select object that requested minimum time self.min_schedule_item = deque(sorted(self.min_schedule_item, key=lambda bm: bm.get_req_time())) def destroy_entity(self): if len(self.active_obj_map.keys()) != 0: delete_lst = [] for agent_name, agent in self.active_obj_map.items(): if agent.get_destruct_time() <= self.global_time: delete_lst.append(agent) for agent in delete_lst: #print("global:",self.global_time," del agent:", agent.get_name()) del(self.active_obj_map[agent.get_obj_id()]) port_del_lst = [] for key, value in self.port_map.items(): if value[0][0] is agent: port_del_lst.append(key) for key in port_del_lst: del(self.port_map[key]) self.min_schedule_item.remove(agent) def coupling_relation(self, src_obj, out_port, dst_obj, in_port): if (src_obj, out_port) in self.port_map: self.port_map[(src_obj, out_port)].append((dst_obj, in_port)) else: self.port_map[(src_obj, out_port)] = [(dst_obj, in_port)] # self.port_map_wName.append((src_obj.get_name(), out_port, dst_obj.get_name(), in_port)) def _coupling_relation(self, src, dst): if src in self.port_map: self.port_map[src].append(dst) else: self.port_map[src] = [dst] # self.port_map_wName.append((src_obj.get_name(), out_port, dst_obj.get_name(), in_port)) ''' def update_coupling_relation(self): self.port_map.clear() for i in range(len(self.port_map_wName)): src_obj_name = self.port_map_wName[i][0] src_obj = None # find loaded obj with name for q in range(len(self.min_schedule_item)): if self.min_schedule_item[q].get_name() == src_obj_name: src_obj = self.min_schedule_item[q] out_port = self.port_map_wName[i][1] dst_obj_name = self.port_map_wName[i][2] dst_obj = None for q in range(len(self.min_schedule_item)): if self.min_schedule_item[q].get_name() == dst_obj_name: dst_obj = self.min_schedule_item[q] in_port = self.port_map_wName[i][3] self.port_map[(src_obj, out_port)] = (dst_obj, in_port) ''' def output_handling(self, obj, msg): if msg is not None: pair = (obj, msg.get_dst()) if pair not in self.port_map: self.port_map[pair] = [(self.active_obj_map[self.dmc.get_obj_id], "uncaught")] for port_pair in self.port_map[pair]: destination = port_pair if destination is None: print("Destination Not Found") print(self.port_map) raise AssertionError if destination[0] is None: self.output_event_queue.append((self.global_time, msg.retrieve())) else: # Receiver Message Handling destination[0].ext_trans(destination[1], msg) # Receiver Scheduling # wrong : destination[0].set_req_time(self.global_time + destination[0].time_advance()) self.min_schedule_item.remove(destination[0]) destination[0].set_req_time(self.global_time) self.min_schedule_item.append(destination[0]) #self.min_schedule_item = deque(sorted(self.min_schedule_item, key=lambda bm: bm.get_req_time())) # self.min_schedule_item.pop() # self.min_schedule_item.append((destination[0].time_advance() + self.global_time, destination[0])) def flattening(self, _model, _del_lst): # handle external output coupling del_lst = [] for k, v in _model.retrieve_external_output_coupling().items(): for coupling in self.port_map[v]: #print (self.port_map[v]) #print (k,coupling) self._coupling_relation(k, coupling) del_lst.append(v) for item in del_lst: if item in self.port_map: del self.port_map[item] # handle external input coupling for k, v in _model.retrieve_external_input_coupling().items(): port_key_lst = [] for sk, sv in self.port_map.items(): if k in sv: port_key_lst.append(sk) for key in port_key_lst: self.port_map[key].remove(k) self.port_map[key].extend(v) # handle internal coupling for k, v, in _model.retrieve_internal_coupling().items(): for dst in v: self._coupling_relation(k, dst) # manage model hierarchical for m in _model.retrieve_models(): if m.get_type() == ModelType.STRUCTURAL: self.flattening(m, _del_lst) else: #print((m,)) self.register_entity(m) for k, model_lst in self.waiting_obj_map.items(): if _model in model_lst: _del_lst.append((k, _model)) for target in del_lst: self.waiting_obj_map[target].remove(_model) def init_sim(self): self.simulation_mode = SimulationMode.SIMULATION_RUNNING # Flattening\ _del_lst = [] for model_lst in self.waiting_obj_map.values(): for model in model_lst: if model.get_type() == ModelType.STRUCTURAL: self.flattening(model, _del_lst) for target, _model in _del_lst: self.waiting_obj_map[target].remove(_model) # setup inital time if self.active_obj_map is None: self.global_time = min(self.waiting_obj_map) # search min_scedule_item after first init_sim call if not self.min_schedule_item: for obj in self.active_obj_map.items(): if obj[1].time_advance() < 0: # exception handling for parent instance print("You should give positive real number for the deadline") raise AssertionError obj[1].set_req_time(self.global_time) self.min_schedule_item.append(obj[1]) def schedule(self): # Agent Creation self.create_entity() self.handle_external_input_event() tuple_obj = self.min_schedule_item.popleft() before = time.perf_counter() # TODO: consider decorator while tuple_obj.get_req_time() <= self.global_time: msg = tuple_obj.output() if msg is not None: self.output_handling(tuple_obj, msg) # Sender Scheduling tuple_obj.int_trans() tuple_obj.set_req_time(self.global_time) self.min_schedule_item.append(tuple_obj) self.min_schedule_item = deque(sorted(self.min_schedule_item, key=lambda bm: bm.get_req_time())) tuple_obj = self.min_schedule_item.popleft() self.min_schedule_item.appendleft(tuple_obj) # update Global Time self.global_time += self.time_step after = time.perf_counter() if self.sim_mode == "REAL_TIME": time.sleep((lambda x: x if x > 0 else 0)(float(self.time_step) - float(after-before))) # Agent Deletion self.destroy_entity() def simulate(self, _time=Infinite): # Termination Condition self.target_time = self.global_time + _time # Get minimum scheduled event self.init_sim() while self.global_time < self.target_time: if not self.waiting_obj_map: if self.min_schedule_item[0].get_req_time() == Infinite and self.sim_mode == 'VIRTUAL_TIME' : self.simulation_mode = SimulationMode.SIMULATION_TERMINATED break self.schedule() def simulation_stop(self): self.global_time = 0 self.target_time = 0 self.time_step = 1 # time_step may changed? - cbchoi # dictionary for waiting simulation objects self.waiting_obj_map = {} # dictionary for active simulation objects self.active_obj_map = {} # dictionary for object to ports self.port_map = {} # self.port_map_wName = [] self.min_schedule_item = deque() self.sim_init_time = datetime.datetime.now() # self.eval_time = 0 self.dmc = DefaultMessageCatcher(0, Infinite, "dc", "default") self.register_entity(dmc) # External Event Handling - by cbchoi def insert_external_event(self, _port, _msg, scheduled_time=0): sm = SysMessage("SRC", _port) sm.insert(_msg) if _port in self._input_ports: heapq.heappush(self.input_event_queue, (scheduled_time + self.global_time, sm)) if self.simulation_mode != SimulationMode.SIMULATION_IDLE: self.handle_external_input_event() else: # TODO Exception Handling print("[ERROR][INSERT_EXTERNAL_EVNT] Port Not Found") pass def get_generated_event(self): return self.output_event_queue def handle_external_input_event(self): event_list = [ev for ev in self.input_event_queue if ev[0] <= self.global_time] for event in event_list: self.output_handling(None, event[1]) heapq.heappop(self.input_event_queue) self.min_schedule_item = deque(sorted(self.min_schedule_item, key=lambda bm: bm.get_req_time())) pass def handle_external_output_event(self): event_lists = copy.deepcopy(self.output_event_queue) self.output_event_queue.clear() return event_lists def is_terminated(self): return self.simulation_mode == SimulationMode.SIMULATION_TERMINATED def set_learning_module(self, learn_module): self.learn_module = learn_module pass def get_learning_module(self): return self.learn_module
from keras.preprocessing import image import numpy as np from keras.models import model_from_json arquivo = open('classificador_gato_cachorro.json','r') estrutura_rede = arquivo.read() arquivo.close() classificador = model_from_json(estrutura_rede) classificador.load_weights('classificador_gato_cachorro.h5') #GATO --> dataset/test_set/gato/cat.3500.jpg #CACHORRO --> dataset/test_set/cachorro/dog.3500.jpg imagem_teste = image.load_img('dataset/test_set/gato/cat.3963.jpg',target_size = (64,64)) imagem_teste = image.img_to_array(imagem_teste) imagem_teste /= 255 imagem_teste = np.expand_dims(imagem_teste,axis = 0) previsao = classificador.predict(imagem_teste) print(previsao) print('é um gato? :' + str(previsao > 0.5) )
import os import sys import argparse import csv import datetime from pathlib import Path import shutil import logging import requests import xml.etree.ElementTree as ET import urllib3 from healthcloud_user_csvjinja import HealthcloudUserCSVJinja urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) # Create logger logging.basicConfig() logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser(description='This script will create users in portal and reset their password.') parser.add_argument('-v','--verbose', help='Enable verbose logging', action='count', default=0) parser.add_argument('-i', '--input', help='input file containing mapping to be used in template', required=True, action='store') parser.add_argument('--hostname', help='Environment to perform changes to (e.g. localhost)', required=True, default="localhost", action='store', nargs='+') parser.add_argument('--env', help='environment to build (e.g. SIT, UAT, PROD)', required=True, action='store', choices=["SIT","UAT","PROD"]) return parser.parse_args() def validate_args(main_args): if not os.path.isfile(main_args.input): raise SystemExit("input file does not exist: {0}".format(main_args.input)) def send_request(output,host,error_file_pfx): ns = {'web': 'http://webservices.ht.carecom.dk/', 'soapenv': 'http://schemas.xmlsoap.org/soap/envelope/'} url = "https://{}:19043/ws/UserManagementServiceSei?wsdl".format(host) try: r = requests.post(url, data=output, verify=False) # print(r.content) responseRoot = ET.fromstring(r.content.decode('utf-8',errors='ignore')) # Check for a Soap Fault faultstring = responseRoot.find('.//faultstring',namespaces=ns) # print("faultstring {}".format(faultstring.text)) if faultstring is not None and logger.isEnabledFor(logging.INFO): logger.debug("error occurred: {}".format(faultstring.text)) with open("./errors/" + error_file_pfx +"-error.log","w+") as errorFile: errorFile.write(output + "\n\n") errorFile.write(r.content.decode('utf-8',errors='ignore')) return r.status_code except requests.exceptions.RequestException as e: # This is the correct syntax logger.exception("Exception occurred") sys.exit() def filter_env(row,env): return row[env] == "Y" def main(): args = parse_args() validate_args(args) log_level = { 2: logging.DEBUG ,1: logging.INFO ,0: logging.CRITICAL } logger.setLevel(log_level[args.verbose]) if logger.isEnabledFor(logging.INFO): logger.info("capturing errors") p = Path("errors") if p.is_dir(): shutil.rmtree("errors") p.mkdir() templates = ["create-user-v2.j2","reset-userpassword-v2.j2"] converter = HealthcloudUserCSVJinja(args.input,templates) filters = [lambda row: filter_env(row,args.env)] converter.render_csv(filters) # Send requests into environment for i,user in enumerate(converter.users,start=1): print("{}. user: {}".format(i,user.name)) for t,v in user.templates.items(): print(" - template: {}".format(t)) for host in args.hostname: status = send_request(v,host,error_file_pfx=user.name) print(" host:{}, status:{}".format(host,"error" if status is None else status)) print("======================================================================================================") """ Execution Script """ if __name__ == '__main__': main()
import pytest import servo import servo.connectors.scripts import tests.helpers @pytest.fixture def configuration() -> servo.connectors.scripts.ScriptsConfiguration: return servo.connectors.scripts.ScriptsConfiguration( before={ 'measure': ['echo 123'] }, after={ 'measure': ['echo 456'] }, ) @pytest.fixture def connector(configuration: servo.connectors.scripts.ScriptsConfiguration) -> servo.connectors.scripts.ScriptsConnector: return servo.connectors.scripts.ScriptsConnector(config=configuration) async def test_scripts(connector: servo.connectors.scripts.ScriptsConnector) -> None: connectors = [connector, tests.helpers.MeasureConnector(config=servo.BaseConfiguration())] _servo = servo.Servo( config={"optimizer": servo.Optimizer(id="dev.opsani.com/servox", token="1234556789")}, connectors=connectors, __connectors__=connectors ) await _servo.dispatch_event('startup') result = await _servo.dispatch_event('measure') debug("result is", result) assert result != None
from django.contrib.auth.decorators import login_required from django.contrib import messages from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.forms import modelformset_factory from django.http import JsonResponse from django.shortcuts import render, redirect, get_object_or_404 from django.template.loader import render_to_string from django.views.decorators.http import require_POST from goal_journal.journal.forms import EntryForm from .forms import GoalForm, NewCategoryForm, ActionForm, ActionFormSet, ActionLogForm from .models import Category, Goal, Action, ActionLog, GoalScore @login_required def goals_list_view(request, category_pk=None): goals = Goal.objects.filter(user=request.user) if not goals: return new_goal_view(request) context = {} if category_pk: category = get_object_or_404(Category, pk=category_pk) goals = goals.filter(categories=category) context['category'] = category achieved_goals = goals.filter(goal_achieved=True) current_goals = goals.filter(goal_achieved=False) untracked_goals = current_goals.filter(goalscore__isnull=True) tracked_goals = current_goals.exclude(goalscore__isnull=True) # Order by current_score @property tracked_goals = sorted(tracked_goals, key=lambda g: g.current_score, reverse=True) categories = Category.objects.filter(user=request.user) context.update({ 'categories': categories, 'untracked_goals': untracked_goals, 'tracked_goals': tracked_goals, 'achieved_goals': achieved_goals, }) return render(request, template_name='goals/goal_list.html', context=context) @login_required def goal_detail_view(request, goal_pk): goal = get_object_or_404(Goal, pk=goal_pk, user=request.user) goal_scores = GoalScore.objects.filter(goal=goal) active_actions = Action.objects.filter(goals=goal, action_completed=False) # set priority on action instances to length of queryset for actions with NULL priority values for sorting. # but don't save to db for action in active_actions: if not action.priority: action.priority = len(active_actions) active_actions = sorted(active_actions, key=lambda a: a.priority) ActionLogFormSet = modelformset_factory(ActionLog, form=ActionLogForm, extra=goal.actions.count()) action_log_formset = ActionLogFormSet(queryset=ActionLog.objects.none(), initial=[ {'action': action.pk} for action in goal.actions.all()]) action_log = ActionLog.objects.filter(action__goals=goal)[:5] goals = Goal.objects.filter(user=request.user) goals = goals.exclude(goalscore__isnull=True) goals = goals.exclude(pk=goal.pk) context = { 'goal': goal, 'goal_scores': goal_scores, 'entry_form': EntryForm(), 'active_actions': active_actions, 'action_formset': ActionFormSet(queryset=Action.objects.none()), 'action_log_formset': action_log_formset, 'action_log': action_log, 'goals': goals, } # only display chart for goals that have been tracked for over a day if goal.goalscore_set.count(): display_chart = (goal.most_recent_action - goal.first_action).days >= 1 tracked_for_over_a_week = (goal.most_recent_action - goal.first_action).days > 7 context['display_chart'] = display_chart context['tracked_for_over_a_week'] = tracked_for_over_a_week return render(request, template_name='goals/goal_detail.html', context=context) @login_required def new_goal_view(request): if request.method == 'POST': goal_form = GoalForm(request.POST, user=request.user) action_formset = ActionFormSet(request.POST, queryset=Action.objects.none(), prefix='actions') if all([goal_form.is_valid(), action_formset.is_valid()]): new_goal = goal_form.save(commit=False) new_goal.user = request.user new_goal.save() goal_form.save_m2m() actions = action_formset.save(commit=False) for action in actions: # don't create duplicate action objects action, _ = Action.objects.get_or_create(action=action.action, user=request.user) action.goals.add(new_goal) action.save() messages.success(request, 'You set a new goal! Start tracking your progress by recording your actions ' 'below.') return redirect('goals:goal_detail', goal_pk=new_goal.pk) else: messages.error(request, 'Please correct the form errors below.') return redirect('goals:new_goal') goal_form = GoalForm(user=request.user) category_form = NewCategoryForm() action_formset = ActionFormSet(queryset=Action.objects.none(), prefix='actions') context = { 'goal_form': goal_form, 'category_form': category_form, 'action_formset': action_formset, } return render(request, template_name='goals/edit_goal.html', context=context) @require_POST @login_required def new_category_view(request): """Ajax view for creating new categories from the new/edit goal page.""" category_form = NewCategoryForm(request.POST) if not category_form.is_valid(): messages.error(request, category_form.errors) return redirect('goals:new_goal') category, _ = Category.objects.get_or_create(category=category_form.cleaned_data['category'].capitalize(), user=request.user) goal_form = GoalForm(user=request.user) data = { 'new_category_id': category.pk, 'new_category': category.category.capitalize(), 'category_field': render_to_string( 'goals/_category_select.html', {'goal_form': goal_form}, request=request ), } return JsonResponse(data) @login_required def edit_goal_view(request, pk): goal = get_object_or_404(Goal, pk=pk, user=request.user) if request.method == 'POST': goal_form = GoalForm(request.POST, user=request.user, instance=goal) action_formset = ActionFormSet(request.POST, queryset=Action.objects.filter(goals=goal), prefix='actions') if all([goal_form.is_valid(), action_formset.is_valid()]): goal = goal_form.save() actions = action_formset.save(commit=False) for action in actions: action.user = request.user action.save() if action not in goal.actions.all(): goal.actions.add(action) messages.success(request, 'Your changes have been saved!') return redirect('goals:goal_detail', goal_pk=goal.pk) else: messages.error(request, 'Please correct the form errors below.') return redirect('goals:edit_goal', pk=goal.pk) goal_form = GoalForm(user=request.user, instance=goal) category_form = NewCategoryForm() action_formset = ActionFormSet(queryset=Action.objects.filter(goals=goal), prefix='actions') context = { 'edit': True, 'goal': goal, 'goal_form': goal_form, 'category_form': category_form, 'action_formset': action_formset, } return render(request, template_name='goals/edit_goal.html', context=context) @login_required @require_POST def delete_goal_view(request, pk): goal = get_object_or_404(Goal, pk=pk, user=request.user) goal.delete() messages.success(request, "You deleted the goal {}.".format(goal.goal)) return redirect('goals:goal_list') @login_required @require_POST def goal_achieved_view(request, pk): goal = get_object_or_404(Goal, pk=pk, user=request.user) goal.goal_achieved = True goal.save() messages.success(request, "CONGRATS! You achieved your goal: '{}'.".format(goal.goal)) return redirect('goals:goal_list') @login_required @require_POST def new_action_view(request, goal_pk): goal = get_object_or_404(Goal, pk=goal_pk, user=request.user) action_formset = ActionFormSet(request.POST, queryset=Action.objects.none()) if not action_formset.is_valid(): messages.error(request, action_formset.errors) return redirect('goals:goal_detail', goal_pk=goal_pk) actions = action_formset.save(commit=False) for action in actions: # don't create duplicate action objects action, _ = Action.objects.get_or_create(action=action.action, user=request.user) action.goals.add(goal) action.save() messages.success(request, 'Your actions for this goal have been updated.') return redirect('goals:goal_detail', goal_pk=goal.pk) @login_required def manage_action_view(request, action_pk, goal_pk): goal = get_object_or_404(Goal, pk=goal_pk, user=request.user) action = get_object_or_404(Action, pk=action_pk, user=request.user) if request.method == 'POST': action_form = ActionForm(request.POST, instance=action, user=request.user) if action_form.is_valid(): action = action_form.save(commit=False) for new_goal in action_form.cleaned_data['goals']: action.goals.add(new_goal) action.save() if action.action_completed: messages.success(request, 'Nice work! You completed one of your actions for this goal.') else: messages.success(request, 'You updated your action for this goal') return redirect('goals:goal_detail', goal_pk=goal.pk) else: messages.error(request, action_form.errors) return redirect('goals:manage_action', goal_pk=goal_pk, action_pk=action_pk) action_form = ActionForm(instance=action, user=request.user) action_log_form = ActionLogForm() context = { 'goal': goal, 'action': action, 'action_form': action_form, 'action_log_form': action_log_form } return render(request, template_name='goals/action.html', context=context) @login_required @require_POST def delete_action_view(request, goal_pk, action_pk): goal = get_object_or_404(Goal, pk=goal_pk, user=request.user) action = get_object_or_404(Action, pk=action_pk, user=request.user) action.delete() messages.success(request, "You deleted the action {} from {}.".format(action.action, goal.goal)) return redirect('goals:goal_detail', goal_pk=goal_pk) @login_required def action_log_list_view(request, goal_pk): goal = get_object_or_404(Goal, pk=goal_pk, user=request.user) action_log_all = ActionLog.objects.filter(action__goals=goal) paginator = Paginator(action_log_all, 10) page = request.GET.get('page') try: action_log = paginator.page(page) except PageNotAnInteger: # If page is not an integer, deliver first page. action_log = paginator.page(1) except EmptyPage: # If page is out of range (e.g. 9999), deliver last page of results. action_log = paginator.page(paginator.num_pages) context = { 'goal': goal, 'action_log': action_log, } return render(request, template_name='goals/action_log.html', context=context) @login_required @require_POST def action_log_view(request, goal_pk): """AJAX view for logging actions and updating action log""" goal = get_object_or_404(Goal, pk=goal_pk, user=request.user) ActionLogFormSet = modelformset_factory(ActionLog, form=ActionLogForm, extra=goal.actions.count()) action_log_formset = ActionLogFormSet(request.POST) if not action_log_formset.is_valid(): messages.error(request, action_log_formset.errors) return redirect('journal:goal_journal', goal_pk=goal_pk) instances = action_log_formset.save(commit=False) for action_log in instances: if action_log.action_status is not None: action_log.save() break # we only update one action on the formset at a time score = goal.calculate_goal_score() goal.refresh_from_db() data = { 'action_id': action_log.action.pk, 'goal_score': str(goal.current_score), 'score_calculated_at': score.calculated_at, 'success_range_class': goal.get_success_range_class(), 'action_status': action_log.get_action_status_display(), 'action_status_class': action_log.get_action_status_class(), 'action_logged': render_to_string( 'goals/_action_logged.html', {'action_recorded': action_log}, request=request ), 'action_log_entry': render_to_string( 'goals/_action_log_item.html', {'action_recorded': action_log, 'goal': goal}, request=request ), } return JsonResponse(data) @login_required @require_POST def delete_action_log_view(request, goal_pk, action_log_pk): action_log = get_object_or_404(ActionLog, pk=action_log_pk, action__user=request.user) action_log.delete() messages.success(request, "You deleted the entry '{}' for '{}' on {} from your action log.".format( action_log.get_action_status_display(), action_log.action.action, action_log.status_logged.strftime('%b. %-d, %Y, %-I:%M')) ) return redirect('goals:goal_detail', goal_pk=goal_pk)
from django.shortcuts import render from django.utils import timezone from mainbillboard.models import Messages import json from django.http import HttpResponse from .forms import PostForm # Create your views here. def get_data(request): my_result = Messages.objects.order_by('-pub_date') for post in my_result: print(str(post)) # posts is the key which contains a list of post objects return render(request, 'index.html', {"posts": my_result}) def add_post(request): my_result = Messages.objects.order_by('-pub_date') # when hitting the form submit button it automatically refreshes the page on # url of post/blog/ which sends a POST request, so lets check if form is valid if request.method == "POST": form = PostForm(request.POST) # If the form is valid if form.is_valid(): post = form.save(commit=False) post.pub_date = timezone.now() post.save() return render(request, 'index.html', {"posts": my_result}) # for form post request else: form = PostForm() return render(request, 'index-form.html', {'posts': my_result, 'form': form})
import tensorflow as tf from tensorflow.keras import layers, initializers class View_Angle_Classfier(tf.keras.Model): def __init__(self, view_dim): super(View_Angle_Classfier, self).__init__() self.f1 = layers.Dense(units = 128, name = "VAC_F1") self.leakyReLU1 = layers.LeakyReLU(name = "LeakyReLU1") self.f2 = layers.Dense(units = view_dim) self.softmax = tf.keras.layers.Softmax() def call(self, input): x = self.f1(input) x = self.leakyReLU1(x) x = self.f2(x) x = self.softmax(x) return x def model(self, inputsize: int) -> tf.keras.models: input = tf.keras.Input(shape=inputsize, name='input_layer') return tf.keras.models.Model(inputs=input, outputs = self.call(input))
from dataclasses import dataclass import io import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import xarray as xr BLUE = "#4F6DB8" RED = "#A01914" ANTHRACITE = "#424242" SYSTEM_SCALE_COLOR = "k" AUTARKY_EXTENT_COLOR = "k" PALETTE = sns.light_palette(BLUE) HIGHLIGHT_COLOR = ANTHRACITE HIGHLIGHT_LINEWIDTH = 4 HIGHLIGHT_LINESTYLE = "-" BASE_SCENARIO = "continental-autarky-100-continental-grid" DATA_INDEX = """autarky_layer,grid_scale,autarky_degree,cost Regional,Regional,0%, Regional,National,0%, Regional,Continental,0%, Regional,National,≤15%, Regional,Continental,≤15%, Regional,National,≤30%, Regional,Continental,≤30%, National,National,0%, National,Continental,0%, National,Continental,≤15%, National,Continental,≤30%, Continental,Continental,0%, """ ONSHORE_WIND_TECHS = ["wind_onshore_competing", "wind_onshore_monopoly"] PV_TECHS = ["open_field_pv", "roof_mounted_pv"] VRES_TECHS_WITHOUT_HYDRO = ONSHORE_WIND_TECHS + PV_TECHS + ["wind_offshore"] VRES_TECHS = VRES_TECHS_WITHOUT_HYDRO + ["hydro_run_of_river"] SUPPLY_TECHS = VRES_TECHS + ["hydro_reservoir"] STORAGE_TECHS = ["battery", "hydrogen", "pumped_hydro"] BALANCING_TECHS = STORAGE_TECHS + ["biofuel"] AUTARKY_LEVEL_MAP = { "100": "0%", "85": "≤15%", "70": "≤30%" } @dataclass class PlotData: data: pd.DataFrame cbar_label: str fmt: str = '.3g' annotation_scale: float = None def composition(path_to_aggregated_results_csv, path_to_aggregated_results_nc, path_to_output, transmission_capacity_today_twkm, crossborder_capacity_today_tw): fig = plt.figure(figsize=(6.77, 5.5)) axes = fig.subplots(2, 2).flatten() plot_datas = read_plot_datas( path_to_aggregated_results_nc, path_to_aggregated_results_csv, transmission_capacity_today_twkm, crossborder_capacity_today_tw ) for ax, cbar_ax, plot_data in zip(axes, range(4), plot_datas): base_case_box(plot_data, ax, cbar_ax) plt.subplots_adjust( bottom=0.08, wspace=0.3, top=0.95, hspace=0.2 ) fig.savefig(path_to_output, pil_kwargs={"compression": "tiff_lzw"}) def read_plot_datas(path_to_aggregated_results_nc, path_to_aggregated_results_csv, transmission_capacity_today_twkm, crossborder_capacity_today_tw): return [ PlotData( data=read_total_supply_capacity(path_to_aggregated_results_nc), cbar_label="A - Supply capacity [TW]", fmt=".1f" ), PlotData( data=read_biostor_capacity(path_to_aggregated_results_nc), cbar_label="B - Balancing capacity [TW]", fmt=".2f" ), PlotData( data=read_transmission_capacity(path_to_aggregated_results_csv), cbar_label="C - Transmission capacity [TWkm]", fmt=".0f", annotation_scale=transmission_capacity_today_twkm, ), PlotData( data=read_international_transmission_capacity(path_to_aggregated_results_csv), cbar_label="D - Cross-border transmission capacity [TW]", fmt=".2g", annotation_scale=crossborder_capacity_today_tw ), ] def base_case_box(plot_data, ax, cbar_ax): results = plot_data.data cbar_ticks = np.linspace( start=results["cost"].min(), stop=results["cost"].max(), num=len(PALETTE) + 1 ) heatmap_data = ( results[results.autarky_degree == "0%"] .pivot(index="autarky_layer", columns="grid_scale", values="cost") .reindex(index=["Continental", "National", "Regional"]) ) if plot_data.annotation_scale: annot = heatmap_data.applymap( lambda x: f"{{:{plot_data.fmt}}}\n({x / plot_data.annotation_scale:.1f})".format(x) ) fmt = "s" else: annot = True fmt = plot_data.fmt sns.heatmap( heatmap_data, annot=annot, cbar=True, cbar_kws={ "ticks": cbar_ticks, "format": f"%{plot_data.fmt}", "aspect": 30, "shrink": 0.8 }, cmap=PALETTE, vmin=results["cost"].min(), vmax=results["cost"].max(), linewidth=1.25, square=True, ax=ax, fmt=fmt ) ax.set_xlabel("Balancing scale") ax.set_ylabel("Supply scale") ax.set_yticklabels(ax.get_yticklabels(), rotation=90, va="center") ax.set_title(plot_data.cbar_label, loc="left") def read_transmission_capacity(path_to_agregrated_results): da = ( pd .read_csv(path_to_agregrated_results, index_col=[0, 1]) .to_xarray() .rename({"Scenario": "scenario"}) .sel(Variable="Capacity|Transmission") .Value ) return bring_into_form(da) def read_international_transmission_capacity(path_to_agregrated_results): da = ( pd .read_csv(path_to_agregrated_results, index_col=[0, 1]) .to_xarray() .rename({"Scenario": "scenario"}) .sel(Variable="Capacity|Gross import national level") .Value ) / 1e3 # to TW return bring_into_form(da) def read_total_supply_capacity(path_to_agregrated_results): da = ( xr .open_dataset(path_to_agregrated_results) .energy_cap .sel(techs=SUPPLY_TECHS) .sum(["locs", "techs"]) ) / 1e6 # to TW return bring_into_form(da) def read_wind_capacity(path_to_agregrated_results): da = ( xr .open_dataset(path_to_agregrated_results) .energy_cap .sel(techs=ONSHORE_WIND_TECHS + ["wind_offshore"]) .sum(["locs", "techs"]) ) / 1e6 # to TW return bring_into_form(da) def read_biostor_capacity(path_to_agregrated_results): da = ( xr .open_dataset(path_to_agregrated_results) .energy_cap .sel(techs=BALANCING_TECHS) .sum(["locs", "techs"]) ) / 1e6 # to TW return bring_into_form(da) def bring_into_form(da): results = ( pd .read_csv(io.StringIO(DATA_INDEX)) .set_index(["autarky_layer", "grid_scale", "autarky_degree"]) ) for scenario in da.scenario: scenario = scenario.item() autarky_layer, autarky_level, grid_size = parse_scenario_name(scenario) autarky_level = AUTARKY_LEVEL_MAP[autarky_level] results.loc[autarky_layer, grid_size, autarky_level] = da.sel(scenario=scenario).item() return results.reset_index() def parse_scenario_name(scenario_name): autarky_layer, _, autarky_level, grid_size, _ = scenario_name.split("-") assert autarky_layer in ["regional", "national", "continental"] assert grid_size in ["regional", "national", "continental"] return autarky_layer.capitalize(), autarky_level, grid_size.capitalize() if __name__ == "__main__": composition( path_to_aggregated_results_csv=snakemake.input.results_csv, path_to_aggregated_results_nc=snakemake.input.results_nc, transmission_capacity_today_twkm=snakemake.params.transmission_today_twkm, crossborder_capacity_today_tw=snakemake.params.crossborder_today_tw, path_to_output=snakemake.output[0] )
""" .. class:: MultiDark .. moduleauthor:: Johan Comparat <johan.comparat__at__gmail.com> The class MultiDark is a wrapper to handle Multidark simulations results / outputs. """ import cPickle import fileinput import astropy.cosmology as co import astropy.units as u c2 = co.Planck13 from scipy.interpolate import interp1d from os.path import join import os import astropy.units as uu import numpy as n import glob class MultiDarkSimulation : """ Loads the environement proper to the Multidark simulations. This is the fixed framework of the simulation. :param Lbox: length of the box in Mpc/h :param wdir: Path to the multidark lightcone directory :param boxDir: box directory name :param snl: list of snapshots available :param zsl: list of redshift corresponding to the snapshots :param zArray: redshift array to be considered to interpolate the redshift -- distance conversion :param Hbox: Hubble constant at redshift 0 of the box :param Melement: Mass of the resolution element in solar masses. :param columnDict: dictionnary to convert column name into the index to find it in the snapshots """ def __init__(self,Lbox=2500.0 * uu.Mpc, wdir="/data2/DATA/eBOSS/Multidark-lightcones/", boxDir="MD_2.5Gpc", snl=n.array(glob.glob("/data2/DATA/eBOSS/Multidark-lightcones/MD_2.5Gpc/snapshots/hlist_?.?????.list")), zsl=None, zArray=n.arange(0.2,2.4,1e-1), Hbox = 67.77 * uu.km / (uu.s * uu.Mpc), Melement = 23593750000.0 ): self.Lbox = Lbox # box length self.Hbox = Hbox # Hubble constant at redshift 0 in the box self.wdir = wdir # working directory self.boxDir = boxDir # directory of the box where the snapshots a stored self.snl = snl # snapshot list self.zsl = zsl # corresponding redshift list self.zArray = zArray # redshift for the dC - z conversion self.Melement = Melement # mass of one particle in the box self.h = 0.6777 self.omega_lambde = 0.692885 self.omega_matter = 0.307115 self.omega_baryon = 0.048206 self.ns = 0.96 self.sigma8 = 0.8228 self.G = 6.67428 * 10**(-9) # cm3 g-1 s-2 self.Msun = 1.98892 * 10**(33.) # g self.Npart = 3840 self.force_resolution = 5. # kpc /h self.columnDict = {'id': 0, 'desc_id': 1, 'mvir': 2, 'vmax': 3, 'vrms': 4, 'rvir': 5, 'rs': 6, 'Np' : 7, 'x': 8, 'y': 9, 'z': 10, 'vx': 11, 'vy': 12, 'vz': 13, 'Jx': 14, 'Jy': 15, 'Jz': 16, 'Spin': 17, 'Rs_Klypin': 18, 'Mmvir_all': 19, 'M200b': 20, 'M200c': 21, 'M500c': 22, 'M2500c': 23,'Xoff': 24, 'Voff': 25, 'Spin_Bullock': 26, 'b_to_a': 27, 'c_to_a': 28, 'Ax': 29, 'Ay': 30, 'Az': 31, 'b_to_a_500c': 32, 'c_to_a_500c': 33, 'Ax_500c': 34, 'Ay_500c': 35, 'Az_500c': 36, 'TU': 37, 'M_pe_Behroozi': 38, 'M_pe_Diemer': 39, 'pid': 40} if self.boxDir == "MD_0.4Gpc": self.Melement = 9.63 * 10**7 # Msun self.vmin = 4* (self.Melement*self.Msun*self.G/(self.force_resolution*u.kpc.to('cm')))**0.5 * u.cm.to('km') if self.boxDir == "MD_1Gpc_new_rockS": self.Melement = 1.51 * 10**9. # Msun self.vmin = 4* (self.Melement*self.Msun*self.G/(self.force_resolution*u.kpc.to('cm')))**0.5 * u.cm.to('km') if self.boxDir == "MD_2.5Gpc": self.Melement = 2.359 * 10**10. # Msun self.vmin = 4* (self.Melement*self.Msun*self.G/(self.force_resolution*u.kpc.to('cm')))**0.5 * u.cm.to('km') if self.boxDir == "MD_4Gpc": self.Melement = 9.6 * 10**10. # Msun self.Npart = 4096 self.vmin = 4* (self.Melement*self.Msun*self.G/(self.force_resolution*u.kpc.to('cm')))**0.5 * u.cm.to('km') if self.boxDir == "MD_2.5Gpc": # for satellites ... self.columnDictHlist = {'scale': 0, 'id': 1, 'desc_scale': 2, 'desc_id': 3, 'num_prog': 4, 'pid': 5, 'upid': 6, 'desc_pid': 7, 'phantom': 8, 'sam_mvir': 9, 'mvir': 10, 'rvir': 11, 'rs': 12, 'vrms': 13, 'mmp?': 14, 'scale_of_last_MM': 15, 'vmax': 16, 'x': 17, 'y': 18, 'z': 19, 'vx': 20, 'vy': 21, 'vz': 22, 'Jx': 23, 'Jy': 24, 'Jz': 25, 'Spin': 26, 'Breadth_first_ID': 27, 'Depth_first_ID': 28, 'Tree_root_ID': 29, 'Orig_halo_ID': 30, 'Snap_num': 31, 'Next_coprogenitor_depthfirst_ID': 32, 'Last_progenitor_depthfirst_ID': 33, 'Last_mainleaf_depthfirst_ID': 34, 'Rs_Klypin': 35, 'Mmvir_all': 36, 'M200b': 37, 'M200c': 38, 'M500c': 39, 'M2500c': 40, 'Xoff': 41, 'Voff': 42, 'Spin_Bullock': 43, 'b_to_a': 44, 'c_to_a': 45, 'Ax': 46, 'Ay': 47, 'Az': 48, 'b_to_a_500c': 49, 'c_to_a_500c': 50, 'Ax_500c': 51, 'Ay_500c': 52, 'Az_500c': 53, 'TU': 54, 'M_pe_Behroozi': 55, 'M_pe_Diemer': 56, 'Halfmass_Radius': 57, 'Macc': 58, 'Mpeak': 59, 'Vacc': 60, 'Vpeak': 61, 'Halfmass_Scale': 62, 'Acc_Rate_Inst': 63, 'Acc_Rate_100Myr': 64, 'Acc_Rate_1Tdyn': 65, 'Acc_Rate_2Tdyn': 66, 'Acc_Rate_Mpeak': 67, 'Mpeak_Scale': 68, 'Acc_Scale': 69, 'First_Acc_Scale': 70, 'First_Acc_Mvir': 71, 'First_Acc_Vmax': 72, 'VmaxatMpeak': 73} if self.boxDir == "MD_0.4Gpc" or self.boxDir == "MD_1Gpc_new_rockS" : # for satellites ... self.columnDictHlist = {'scale': 0, 'id': 1, 'desc_scale': 2, 'desc_id': 3, 'num_prog': 4, 'pid': 5, 'upid': 6, 'desc_pid': 7, 'phantom': 8, 'sam_mvir': 9, 'mvir': 10, 'rvir': 11, 'rs': 12, 'vrms': 13, 'mmp?': 14, 'scale_of_last_MM': 15, 'vmax': 16, 'x': 17, 'y': 18, 'z': 19, 'vx': 20, 'vy': 21, 'vz': 22, 'Jx': 23, 'Jy': 24, 'Jz': 25, 'Spin': 26, 'Breadth_first_ID': 27, 'Depth_first_ID': 28, 'Tree_root_ID': 29, 'Orig_halo_ID': 30, 'Snap_num': 31, 'Next_coprogenitor_depthfirst_ID': 32, 'Last_progenitor_depthfirst_ID': 33, 'Last_mainleaf_depthfirst_ID': 34, 'Rs_Klypin': 35, 'Mmvir_all': 36, 'M200b': 37, 'M200c': 38, 'M500c': 39, 'M2500c': 40, 'Xoff': 41, 'Voff': 42, 'Spin_Bullock': 43, 'b_to_a': 44, 'c_to_a': 45, 'Ax': 46, 'Ay': 47, 'Az': 48, 'b_to_a_500c': 49, 'c_to_a_500c': 50, 'Ax_500c': 51, 'Ay_500c': 52, 'Az_500c': 53, 'TU': 54, 'M_pe_Behroozi': 55, 'M_pe_Diemer': 56, 'Macc': 57, 'Mpeak': 58, 'Vacc': 59, 'Vpeak': 60, 'Halfmass_Scale': 61, 'Acc_Rate_Inst': 62, 'Acc_Rate_100Myr': 63, 'Acc_Rate_1Tdyn': 64, 'Acc_Rate_2Tdyn': 65, 'Acc_Rate_Mpeak': 66, 'Mpeak_Scale': 67, 'Acc_Scale': 68, 'First_Acc_Scale': 69, 'First_Acc_Mvir': 70, 'First_Acc_Vmax': 71, 'VmaxatMpeak': 72} def get_DF_at_XYZ(x, y, z, path_to_DF, Lbox=1000., gridSize = 2048.): dL = Lbox/gridSize sel =( x > dL*(0.5 + ii) ) & ( x < dL*(0.5 + ii + 1) ) & ( y > dL*(0.5 + jj) ) & ( y < dL*(0.5 + jj + 1) ) & ( x > dL*(0.5 + kk) ) & ( z < dL*(0.5 + kk + 1) ) compute : imax = x/dL - 0.5 imin = x/dL - 0.5 - 1 jmax = y/dL - 0.5 jmin = y/dL - 0.5 - 1 kmax = z/dL - 0.5 kmin = z/dL - 0.5 - 1 f=open(path_to_DF,'r') qty = n.empty( (Nratio,len(bins)-1) ) data1 = n.fromfile(f,dtype="float64",count=NperBatch) # 512 cube def computeSingleDistributionFunction(self, ii, name, bins, Mfactor=100. ) : """ Extracts the distribution of quantity 'name' out of all snapshots of the Multidark simulation. :param ii: index of the snapshot in the list self.snl :param name: name of the quantity of interest, mass, velocity. :param index: of the quantity of interest in the snapshots. :param bins: binning scheme to compute the historgram. :param Mfactor: only halos with Mvir > Mfact* Melement are used. """ index = self.columnDict[name] output_dir = join(self.wdir,self.boxDir,"properties",name) os.system('mkdir '+ output_dir) NperBatch = 10000000 qtyCentral = n.empty(NperBatch) # 10M array qtySat = n.empty(NperBatch) # 10M array print name, index, output_dir fl = fileinput.input(self.snl[ii]) nameSnapshot = self.snl[ii].split('/')[-1][:-5] countCen,countSat,countFileCen,countFileSat = 0,0,0,0 for line in fl: if line[0] == "#" : continue line = line.split() sat_or_cen = float(line[self.columnDict['pid']]) mv = float(line[self.columnDict['mvir']]) if sat_or_cen != -1 and mv > Mfactor * self.Melement : countSat+= 1 qtySat[countSat] = float(line[index]) if sat_or_cen == -1 and mv > Mfactor * self.Melement : countCen+= 1 qtyCentral[countCen] = float(line[index]) if countCen == NperBatch-1 : nnM,bb = n.histogram(n.log10(qtyCentral),bins = bins) print "countCen",countCen f = open(join(output_dir, nameSnapshot + "_" + name + "_Central_" + str(countFileCen)+ ".pkl"),'w') cPickle.dump(nnM,f) f.close() countFileCen+= 1 countCen = 0 qtyCentral = n.empty(NperBatch) if countSat == NperBatch-1 : nnM,bb = n.histogram(n.log10(qtySat),bins = bins) print "countSat", countSat f = open(join(output_dir, nameSnapshot + "_" + name+ "_Satellite_" + str(countFileSat)+ ".pkl"),'w') cPickle.dump(nnM,f) f.close() countFileSat+= 1 countSat = 0 qtySat = n.empty(NperBatch) # and for the last batch : nnM,bb = n.histogram(n.log10(qtyCentral),bins = bins) f = open(join(output_dir, nameSnapshot + "_" + name +"_Central_" + str(countFileCen)+ ".pkl"),'w') cPickle.dump(nnM,f) f.close() nnM,bb = n.histogram(n.log10(qtySat),bins = bins) f = open(join(output_dir, nameSnapshot + "_" + name + "_Satellite_" + str(countFileSat)+ ".pkl"),'w') cPickle.dump(nnM,f) f.close() n.savetxt(join(output_dir,name+".bins"),n.transpose([bins])) def computeDensityFieldDistributionFunction(self, path_to_DF, outputFile, bins ) : """ Extracts the distribution of quantity 'name' out of all snapshots of the Multidark simulation. :param path_to_DF: path to the density field file :param outputFile: where the histogram iswritten :param bins: binning scheme to compute the historgram. """ NperBatch = 512**3 Ntotal = 2048**3 Nratio = Ntotal / NperBatch #qtyCentral = n.empty( (64,NperBatch) ) f=open(path_to_DF,'r') qty = n.empty( (Nratio,len(bins)-1) ) for ii in n.arange(Nratio): data1 = n.fromfile(f,dtype="float64",count=NperBatch) # 512 cube nnM,bb = n.histogram(n.log10(data1),bins = bins) qty[ii] = nnM n.savetxt(outputFile+".hist",n.transpose([bins[:-1], bins[1:], qty.sum(axis=0) ]), header = " minLogDelta maxLogDelta N") def computeDensityFieldForHaloNumber(self, path_to_DF, path_to_RS, outputFile, gridSize=2048, subgridSize = 256 ) : """ Extracts the distribution of quantity 'name' out of all snapshots of the Multidark simulation. :param path_to_DF: path to the density field file :param path_to_RS: path to the rockstar halo catalog file :param outputFile: where the histogram iswritten :param bins: binning scheme to compute the historgram. :param gridSize: grid size from the density field :param subgridSize: grid size to compute histograms on and write outputs. """ #In each cell, average the number of counts in the RS file : Ncen Nsat dL = 1000./gridSize NperBatch = subgridSize**3 Ntotal = gridSize**3 Nratio = Ntotal / NperBatch hf=open(path_to_RS,'r') DEFINE x, y, z, c_o_s, REWRITE halos of interest ? f=open(path_to_DF,'r') out = n.empty( (subgridSize**3, 3) ) count = 0 countOut = 0 for kk in n.arange(gridSize): for jj in n.arange(gridSize): for ii in n.arange(gridSize): sel =( x > dL*(0.5 + ii) ) & ( x < dL*(0.5 + ii + 1) ) & ( y > dL*(0.5 + jj) ) & ( y < dL*(0.5 + jj + 1) ) & ( x > dL*(0.5 + kz) ) & ( z < dL*(0.5 + kk + 1) ) Nhalos = len(sel.nonzero()[0]) selCen = (sel) & (CONDITION_CEN) NCentrals = len(selCen.nonzero()[0]) deltaValue = n.fromfile(f,dtype="float64",count=1) out[count] = n.array([deltaValue, Nhalos, Ncentrals]) if count == subgridSize**3 : dataAB_tot = n.histogram2d(n.log10(out.T[0]), n.log10(out.T[1]) ,bins = [binsA,binsB]) dataAB_cen = n.histogram2d(n.log10(out.T[0]), n.log10(out.T[2]) ,bins = [binsA,binsB]) f = open(outputFile + "_" +str(countOut)+".pkl" ,'w') cPickle.dump([binsA,binsB,dataAB_tot, dataAB_cen],f) f.close() out = n.empty( (subgridSize**3, 3) ) countOut +=1 count += 1 #GATHER RESULTS fileList = glob.glob(outputFile + "_*.pkl") out_all = n.empty( (Nratio, len(binsA)-1, len(binsB)-1) ) out_cen = n.empty( (Nratio, len(binsA)-1, len(binsB)-1) ) for ii, el in enumerate(fileList): f = open(el ,'r') binsA,binsB,dataAB_tot, dataAB_cen = cPickle.dump([binsA,binsB,dataAB_tot, dataAB_cen],f) f.close() out_all[ii] = dataAB_tot out_cen[ii] = dataAB_cen f = open(outputFile + "_all.pkl" ,'w') cPickle.dump([binsA,binsB,n.sum(out_all, xis=0), n.sum(out_cen, xis=0)],f) f.close() def computeDensityFieldHaloCorrelation(self, path_to_DF, path_to_RS, outputFile, bins ) : """ Extracts the distribution of quantity 'name' out of all snapshots of the Multidark simulation. :param path_to_DF: path to the density field file :param path_to_RS: path to the rockstar halo catalog file :param outputFile: where the histogram iswritten :param bins: binning scheme to compute the historgram. """ #In each cell, average the number of counts in the RS file : Ncen Nsat NperBatch = 512**3 Ntotal = 2048**3 Nratio = Ntotal / NperBatch dL = 1000/2048. f=open(path_to_DF,'r') for N in n.arange(Ntotal): deltaValue = n.fromfile(f,dtype="float64",count=1) # 512 cube sel =( x > dL*(0.5 + N) ) & ( x < dL*(0.5 + N + 1) ) def combinesSingleDistributionFunction(self, ii, name='Vpeak', bins=10**n.arange(0,3.5,0.01), type = "Central" ) : """ Coombines the outputs of computeSingleDistributionFunction. :param ii: index of the snapshot :param name: name of the quantity studies :param bins: bins the histogram was done with :param type: "Central" or "Satellite" """ output_dir = join(self.wdir,self.boxDir,"properties",name) nameSnapshot = self.snl[ii].split('/')[-1][:-5] pklList = n.array(glob.glob(join(output_dir, nameSnapshot + "_" + name +"_"+type+"_*.pkl"))) nnM = n.empty( [len(pklList),len(bins)-1] ) for jj in range(len(pklList)): f=open(pklList[jj],'r') nnMinter = cPickle.load(f) nnM[jj] = nnMinter f.close() n.savetxt(join(output_dir,"hist-"+type+"-"+name+"-"+nameSnapshot[6:]+".dat"),n.transpose([bins[:-1], bins[1:], nnM.sum(axis=0)])) def computeDoubleDistributionFunction(self, ii, nameA, nameB, binsA, binsB, Mfactor = 100. ) : """ Extracts the distributions of two quantity and their correlation 'name' out of all snapshots of the Multidark simulation. :param ii: index of the snapshot in the list self.snl :param name: name of the quantity of interest, mass, velocity. :param index: of the quantity of interest in the snapshots. :param bins: binning scheme to compute the historgram. :param Mfactor: only halos with Mvir > Mfact* Melement are used. """ indexA = self.columnDict[nameA] indexB = self.columnDict[nameB] output_dir = join(self.wdir,self.boxDir,"properties",nameA+"-"+nameB) os.system('mkdir '+ output_dir) NperBatch = 10000000 qtyCentral = n.empty((NperBatch,2)) # 10M array qtySat = n.empty((NperBatch,2)) # 10M array print nameA, nameB, indexA, indexB, output_dir fl = fileinput.input(self.snl[ii]) nameSnapshot = self.snl[ii].split('/')[-1][:-5] countCen,countSat,countFileCen,countFileSat = 0,0,0,0 for line in fl: if line[0] == "#" : continue line = line.split() sat_or_cen = float(line[self.columnDict['pid']]) mv = float(line[self.columnDict['mvir']]) if sat_or_cen != -1 and mv > Mfactor * self.Melement : countSat+= 1 qtySat[countSat] = float(line[indexA]),float(line[indexB]) if sat_or_cen == -1 and mv > Mfactor * self.Melement : countCen+= 1 qtyCentral[countCen] = float(line[indexA]),float(line[indexB]) if countCen == NperBatch-1 : nnA,bbA = n.histogram(n.log10(qtyCentral.T[0]),bins = binsA) nnB,bbB = n.histogram(n.log10(qtyCentral.T[1]),bins = binsB) dataAB = n.histogram2d(n.log10(qtyCentral.T[0]), n.log10(qtyCentral.T[1]) ,bins = [binsA,binsB]) print "countCen",countCen f = open(join(output_dir, nameSnapshot + "_" + nameA+"-"+nameB + "_Central_" + str(countFileCen)+ ".pkl"),'w') cPickle.dump([nnA,nnB,dataAB],f) f.close() countFileCen+= 1 countCen = 0 qtyCentral = n.empty((NperBatch,2)) if countSat == NperBatch-1 : nnA,bbA = n.histogram(n.log10(qtySat.T[0]),bins = binsA) nnB,bbB = n.histogram(n.log10(qtySat.T[1]),bins = binsB) dataAB = n.histogram2d(n.log10(qtySat.T[0]), n.log10(qtySat.T[1]) ,bins = [binsA,binsB]) print "countSat", countSat f = open(join(output_dir, nameSnapshot + "_" + nameA+"-"+nameB+ "_Satellite_" + str(countFileSat)+ ".pkl"),'w') cPickle.dump([nnA,nnB,dataAB],f) f.close() countFileSat+= 1 countSat = 0 qtySat = n.empty((NperBatch,2)) # and for the last batch : nnA,bbA = n.histogram(n.log10(qtyCentral.T[0]),bins = binsA) nnB,bbB = n.histogram(n.log10(qtyCentral.T[1]),bins = binsB) dataAB = n.histogram2d(n.log10(qtyCentral.T[0]), n.log10(qtyCentral.T[1]) ,bins = [binsA,binsB]) print "countCen",countCen f = open(join(output_dir, nameSnapshot + "_" + nameA+"-"+nameB + "_Central_" + str(countFileCen)+ ".pkl"),'w') cPickle.dump([nnA,nnB,dataAB],f) f.close() nnA,bbA = n.histogram(n.log10(qtySat.T[0]),bins = binsA) nnB,bbB = n.histogram(n.log10(qtySat.T[1]),bins = binsB) dataAB = n.histogram2d(n.log10(qtySat.T[0]), n.log10(qtySat.T[1]) ,bins = [binsA,binsB]) print "countSat", countSat f = open(join(output_dir, nameSnapshot + "_" + nameA+"-"+nameB+ "_Satellite_" + str(countFileSat)+ ".pkl"),'w') cPickle.dump([nnA,nnB,dataAB],f) f.close() n.savetxt(join(output_dir,nameA+".bins"),n.transpose([binsA])) n.savetxt(join(output_dir,nameB+".bins"),n.transpose([binsB])) def combinesDoubleDistributionFunction(self, ii, nameA, nameB, binsA, binsB, type = "Central" ) : """ Coombines the outputs of computeDoubleDistributionFunction. :param ii: index of the snapshot :param name: name of the quantity studies :param bins: bins the histogram was done with :param type: "Central" or "Satellite" """ output_dir = join(self.wdir,self.boxDir,"properties",nameA+"-"+nameB) nameSnapshot = self.snl[ii].split('/')[-1][:-5] pklList = n.array(glob.glob(join(output_dir, nameSnapshot + "_" + nameA+"-"+nameB +"_"+type+"_*.pkl"))) nnA = n.empty( [len(pklList),len(binsA)-1] ) nnB = n.empty( [len(pklList),len(binsB)-1] ) dataAB = n.empty( [len(pklList),len(binsA)-1,len(binsB)-1] ) for jj in range(len(pklList)): f=open(pklList[jj],'r') nnAinter, nnBinter, dataABinter = cPickle.load(f) nnA[jj] = nnAinter nnB[jj] = nnBinter dataAB[jj] = dataABinter[0] f.close() n.savetxt(join(output_dir,"hist-"+type+"-"+nameA+"-"+nameSnapshot[6:]+".dat"),n.transpose([binsA[:-1], binsA[1:], nnA.sum(axis=0)])) n.savetxt(join(output_dir,"hist-"+type+"-"+nameB+"-"+nameSnapshot[6:]+".dat"),n.transpose([binsB[:-1], binsB[1:], nnB.sum(axis=0)])) n.savetxt(join(output_dir, "hist2d-"+type+"-"+ nameA+"-"+nameB + "-"+ nameSnapshot[6:] + ".dat"), dataAB.sum(axis=0)) def computeMassVelocityConcentrationFunction(self,ii) : """ DO NOT USE computes the mass, velocity and concentration histograms for a rockstar snapshot. :param ii: index of the snapshot in the list self.snl # does not work any more DO NOT USE """ massB = n.arange(8,16,0.01) vcirB = n.arange(0,4.5,0.01) concB = n.arange(1,3,0.1) NperBatch = 10000000 mvcCentralMatrix = n.empty((NperBatch,3)) # 1M matrixes mvcSatMatrix = n.empty((NperBatch,3)) # 1 M matrixes fl = fileinput.input(self.snl[ii]) name = self.snl[ii].split('/')[-1][:-5] countCen,countSat,countFileCen,countFileSat = 0,0,0,0 for line in fl: if line[0] == "#" : continue line = line.split() sat_or_cen = float(line[5]) if sat_or_cen != -1 : countSat+= 1 mvcSatMatrix[countSat] = float(line[10]), float(line[16]), float(line[11]) if sat_or_cen == -1 : countCen+= 1 mvcCentralMatrix[countCen] = float(line[10]), float(line[16]), float(line[11]) if countCen == NperBatch-1 : nnM,bb = n.histogram(n.log10(mvcCentralMatrix.T[0]),bins = massB) nnV,bb = n.histogram(n.log10(mvcCentralMatrix.T[1]),bins = vcirB) nnC,bb = n.histogram(n.log10(mvcCentralMatrix.T[2]),bins = concB) dataMC = n.histogram2d(n.log10(mvcCentralMatrix.T[0]), mvcCentralMatrix.T[2] ,bins = [massB,concB]) dataVC = n.histogram2d(n.log10(mvcCentralMatrix.T[1]), mvcCentralMatrix.T[2] , bins = [vcirB,concB]) print "countCen",countCen f = open(join(self.wdir,self.boxDir,"properties", name+"_MVRmatrixCentral_" +str(countFileCen)+ ".pkl"),'w') cPickle.dump([nnM,nnV,nnC,dataMC,dataVC],f) f.close() countFileCen+= 1 countCen = 0 if countSat == NperBatch-1 : nnM,bb = n.histogram(n.log10(mvcSatMatrix.T[0]),bins = massB) nnV,bb = n.histogram(n.log10(mvcSatMatrix.T[1]),bins = vcirB) nnC,bb = n.histogram(n.log10(mvcSatMatrix.T[2]),bins = concB) dataMC = n.histogram2d(n.log10(mvcSatMatrix.T[0]), mvcSatMatrix.T[2] ,bins = [massB,concB]) dataVC = n.histogram2d(n.log10(mvcSatMatrix.T[1]), mvcSatMatrix.T[2] , bins = [vcirB,concB]) print "countSat", countSat f = open(join(self.wdir,self.boxDir ,"properties" , name+"_MVRmatrixSatellite_" +str(countFileSat)+ ".pkl"),'w') cPickle.dump([nnM,nnV,nnC,dataMC,dataVC],f) f.close() countFileSat+= 1 countSat = 0 # and for the last batch : nnM,bb = n.histogram(n.log10(mvcCentralMatrix.T[0]),bins = massB) nnV,bb = n.histogram(n.log10(mvcCentralMatrix.T[1]),bins = vcirB) nnC,bb = n.histogram(n.log10(mvcCentralMatrix.T[2]),bins = concB) dataMC = n.histogram2d(n.log10(mvcCentralMatrix.T[0]), mvcCentralMatrix.T[2] ,bins = [massB,concB]) dataVC = n.histogram2d(n.log10(mvcCentralMatrix.T[1]), mvcCentralMatrix.T[2] , bins = [vcirB,concB]) f = open(join(self.wdir,self.boxDir,"properties",name+ "_MVRmatrixCentral_" +str(countFileCen)+ ".pkl"),'w') cPickle.dump([nnM,nnV,nnC,dataMC,dataVC],f) f.close() nnM,bb = n.histogram(n.log10(mvcSatMatrix.T[0]),bins = massB) nnV,bb = n.histogram(n.log10(mvcSatMatrix.T[1]),bins = vcirB) nnC,bb = n.histogram(n.log10(mvcSatMatrix.T[2]),bins = concB) dataMC = n.histogram2d(n.log10(mvcSatMatrix.T[0]), mvcSatMatrix.T[2] ,bins = [massB,concB]) dataVC = n.histogram2d(n.log10(mvcSatMatrix.T[1]), mvcSatMatrix.T[2] , bins = [vcirB,concB]) f = open(join(self.wdir,self.boxDir,"properties",name+ "_MVRmatrixSatellite_" +str(countFileSat)+ ".pkl"),'w') cPickle.dump([nnM,nnV,nnC,dataMC,dataVC],f) f.close() def computeMassVelocityPeakAccRateFunctions(self,ii) : """ DO NOT USE computes the mass, velocity and concentration histograms for a rockstar snapshot. :param ii: index of the snapshot in the list self.snl() DO NOT USE """ massB = n.arange(8,16,0.01) vcirB = n.arange(0,4.5,0.01) concB = n.arange(-5e4,5e4+1,1e3) NperBatch = 10000000 mvcCentralMatrix = n.empty((NperBatch,3)) # 1M matrixes mvcSatMatrix = n.empty((NperBatch,3)) # 1 M matrixes fl = fileinput.input(self.snl[ii]) name = self.snl[ii].split('/')[-1][:-5] countCen,countSat,countFileCen,countFileSat = 0,0,0,0 for line in fl: if line[0] == "#" : continue line = line.split() sat_or_cen = float(line[5]) if sat_or_cen != -1 : countSat+= 1 #print mvcSatMatrix[countSat] #print line[59], line[61], line[67] mvcSatMatrix[countSat] = float(line[59]), float(line[61]), float(line[67]) # check the right indices ... MASS velocity concentration if sat_or_cen == -1 : countCen+= 1 #print mvcCentralMatrix[countCen] #print line[59], line[61], line[67] mvcCentralMatrix[countCen] = float(line[59]), float(line[61]), float(line[67]) # check the right indices ... MASS velocity concentration if countCen == NperBatch-1 : nnM,bb = n.histogram(n.log10(mvcCentralMatrix.T[0]),bins = massB) nnV,bb = n.histogram(n.log10(mvcCentralMatrix.T[1]),bins = vcirB) nnC,bb = n.histogram(n.log10(mvcCentralMatrix.T[2]),bins = concB) dataMC = n.histogram2d(n.log10(mvcCentralMatrix.T[0]), mvcCentralMatrix.T[2] ,bins = [massB,concB]) dataVC = n.histogram2d(n.log10(mvcCentralMatrix.T[1]), mvcCentralMatrix.T[2] , bins = [vcirB,concB]) print "countCen",countCen f = open(join(self.wdir,self.boxDir,"properties", name+"_MVAmatrixCentral_" +str(countFileCen)+ ".pkl"),'w') cPickle.dump([nnM,nnV,nnC,dataMC,dataVC],f) f.close() countFileCen+= 1 countCen = 0 if countSat == NperBatch-1 : nnM,bb = n.histogram(n.log10(mvcSatMatrix.T[0]),bins = massB) nnV,bb = n.histogram(n.log10(mvcSatMatrix.T[1]),bins = vcirB) nnC,bb = n.histogram(n.log10(mvcSatMatrix.T[2]),bins = concB) dataMC = n.histogram2d(n.log10(mvcSatMatrix.T[0]), mvcSatMatrix.T[2] ,bins = [massB,concB]) dataVC = n.histogram2d(n.log10(mvcSatMatrix.T[1]), mvcSatMatrix.T[2] , bins = [vcirB,concB]) print "countSat", countSat f = open(join(self.wdir,self.boxDir ,"properties" , name+"_MVAmatrixSatellite_" +str(countFileSat)+ ".pkl"),'w') cPickle.dump([nnM,nnV,nnC,dataMC,dataVC],f) f.close() countFileSat+= 1 countSat = 0 # and for the last batch : nnM,bb = n.histogram(n.log10(mvcCentralMatrix.T[0]),bins = massB) nnV,bb = n.histogram(n.log10(mvcCentralMatrix.T[1]),bins = vcirB) nnC,bb = n.histogram(n.log10(mvcCentralMatrix.T[2]),bins = concB) dataMC = n.histogram2d(n.log10(mvcCentralMatrix.T[0]), mvcCentralMatrix.T[2] ,bins = [massB,concB]) dataVC = n.histogram2d(n.log10(mvcCentralMatrix.T[1]), mvcCentralMatrix.T[2] , bins = [vcirB,concB]) f = open(join(self.wdir,self.boxDir,"properties",name+ "_MVAmatrixCentral_" +str(countFileCen)+ ".pkl"),'w') cPickle.dump([nnM,nnV,nnC,dataMC,dataVC],f) f.close() nnM,bb = n.histogram(n.log10(mvcSatMatrix.T[0]),bins = massB) nnV,bb = n.histogram(n.log10(mvcSatMatrix.T[1]),bins = vcirB) nnC,bb = n.histogram(n.log10(mvcSatMatrix.T[2]),bins = concB) dataMC = n.histogram2d(n.log10(mvcSatMatrix.T[0]), mvcSatMatrix.T[2] ,bins = [massB,concB]) dataVC = n.histogram2d(n.log10(mvcSatMatrix.T[1]), mvcSatMatrix.T[2] , bins = [vcirB,concB]) f = open(join(self.wdir,self.boxDir,"properties",name+ "_MVAmatrixSatellite_" +str(countFileSat)+ ".pkl"),'w') cPickle.dump([nnM,nnV,nnC,dataMC,dataVC],f) f.close()
#!/usr/bin/env python3 # # Copyright (c) 2020 Fondazione Bruno Kessler # Author(s): Cristina Costa (ccosta@fbk.eu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """LoRaWAN End Device Handlers.""" # TODO ADD REFERENCE TO ALLOWED DEVICES import empower.managers.apimanager.apimanager as apimanager from empower.managers.lommmanager.datatypes.eui64 import EUI64 class LEndDevsHandler(apimanager.EmpowerAPIHandler): """Handler for accessing LoRaWAN End Devices.""" URLS = [r"/api/v1/lns/lenddevs/?", r"/api/v1/lns/lenddevs/([a-zA-Z0-9:]*)/?"] @apimanager.validate(max_args=1) def get(self, *args, **kwargs): """List LoRaWAN End devices. Args: [0]: devEUI (optional) Example URLs: GET /api/v1/lns/lenddevs [ { "devEUI": "0028A154B89172D2" "devAddr": "0028A154B89172D2", "desc": "End Device XXX" } ] GET /api/v1/lns/lenddevs/00:28:A1:54:B8:91:72:D2 { "devAddr": "0028A154B89172D2", "desc": "End Device XXX" } """ if not args: out = [] for key in self.service.lenddevs: out.append(self.service.lenddevs[key].to_dict()) return out else: try: devEUI = EUI64(args[0]).eui except ValueError as err: self.set_status(400) self.finish({"status_code":400,"title":"devEUI wrong format","detail":str(err)}) return self.service.lenddevs[devEUI].to_dict() @apimanager.validate(returncode=201, min_args=0, max_args=0) def post(self, *args, **kwargs): """Add a new LoRaWAN end device. Args: [0]: devEUI Request: version: protocol version (1.0) desc: a human readable description of the device (optional) Example URLs: POST /api/v1/lns/lenddevs/00:28:A1:54:B8:91:72:D2 { "version":"1.0", "desc": "LoRaWAN End Device" "joinEUI": joinEUI "appKey": cryptographic application key "nwkKey": cryptographic network key "appSKey": cryptographic session application key "nwkSKey": cryptographic session network key [..] } """ try: lenddev = self.service.add_lenddev(args[0], **kwargs) except: raise else: self.set_header("Location", "/api/v1/lns/lenddevs/%s" % lenddev.devEUI) @apimanager.validate(returncode=204, min_args=0, max_args=1) def delete(self, *args, **kwargs): """Delete one or all LoRaWAN end devices. Args: [0]: devEUI Example URLs: DELETE /api/v1/lns/lenddevs DELETE /api/v1/lns/lenddevs/00:28:A1:54:B8:91:72:D2 """ if args: self.service.remove_lenddev(EUI64(args[0])) else: self.service.remove_all_lenddevs()
from time import time import numpy as np import biorbd_casadi as biorbd from bioptim import ( PlotType, InitialGuess, InterpolationType, PenaltyNode, Node, OptimalControlProgram, ConstraintList, ConstraintFcn, ObjectiveFcn, ObjectiveList, DynamicsList, DynamicsFcn, BiMappingList, BoundsList, QAndQDotBounds, InitialGuessList, PhaseTransitionList, PhaseTransitionFcn, Axis, ) from casadi import vertcat, if_else, lt def com_dot_z(nodes: PenaltyNode): nlp = nodes.nlp x = nodes.x q = nlp.mapping["q"].to_second.map(x[0][: nlp.shape["q"]]) qdot = nlp.mapping["q"].to_second.map(x[0][nlp.shape["q"]:]) com_dot_func = biorbd.to_casadi_func("Compute_CoM_dot", nlp.model.CoMdot, nlp.q, nlp.qdot) com_dot = com_dot_func(q, qdot) return com_dot[2] def tau_actuator_constraints(nodes: PenaltyNode, minimal_tau=None): nlp = nodes.nlp nq = nlp.mapping["q"].to_first.len q = [nlp.mapping["q"].to_second.map(mx[:nq]) for mx in nodes.x] qdot = [nlp.mapping["qdot"].to_second.map(mx[nq:]) for mx in nodes.x] min_bound = [] max_bound = [] func = biorbd.to_casadi_func("torqueMax", nlp.model.torqueMax, nlp.q, nlp.qdot) for i in range(len(nodes.u)): bound = func(q[i], qdot[i]) if minimal_tau: min_bound.append( nlp.mapping["tau"].to_first.map(if_else(lt(bound[:, 1], minimal_tau), minimal_tau, bound[:, 1])) ) max_bound.append( nlp.mapping["tau"].to_first.map(if_else(lt(bound[:, 0], minimal_tau), minimal_tau, bound[:, 0])) ) else: min_bound.append(nlp.mapping["tau"].to_first.map(bound[:, 1])) max_bound.append(nlp.mapping["tau"].to_first.map(bound[:, 0])) obj = vertcat(*nodes.u) min_bound = vertcat(*min_bound) max_bound = vertcat(*max_bound) return ( vertcat(np.zeros(min_bound.shape), np.ones(max_bound.shape) * -np.inf), vertcat(obj + min_bound, obj - max_bound), vertcat(np.ones(min_bound.shape) * np.inf, np.zeros(max_bound.shape)), ) def prepare_ocp( ns, init=None, biorbd_model_1contact: str = "jumper1contactsutil.bioMod", # ../../optimization_biodbO biorbd_model_0contact: str = "jumper0contactsutil.bioMod", ) -> OptimalControlProgram: # Model path biorbd_model = ( biorbd.Model(biorbd_model_1contact), biorbd.Model(biorbd_model_0contact), ) # Problem parameters n_shooting = (30, 30) final_time = (1, 1) time_min = 0.1, 0.2 time_max = 2, 3 n_phases = len(biorbd_model) # nombre d'objets dans biorbd_model tau_min, tau_max, tau_init = -1000, 1000, 0 n_q, n_qdot, n_tau = biorbd_model[0].nbQ(), biorbd_model[0].nbQdot(), biorbd_model[0].nbGeneralizedTorque() mapping = BiMappingList() # mapping.add("q", [0, 1, 2, 3, 4, 5, None, 6, None, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], # [0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]) mapping.add("tau", [None, None, None, None, None, None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], #relie au u_bounds [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]) # comme on n'a pas écrit la phase c'est par defaut la phase 0 qui est rempli donc la phase 1 n'existe pas # ddl0 :translation pelvis x # ddl4 :rotation Pelvis y # ddl8 :rotation Tronc z # ddl12 :rotation BrasG x # ddl16 :rotation CuisseG x # ddl1 :translation pelvis y # ddl5 :rotation Pelvis z # ddl9 :rotation BrasD z # ddl13 :rotation CuisseD x # ddl17 :rotation JambeG x # ddl2 :translation pelvis z # ddl6 :rotation Tronc x # ddl10 :rotation BrasD x # ddl14 :rotation JambeD x # ddl18 :rotation PiedG x # ddl3 :rotation pelvis x # ddl7 :rotation Tronc y # ddl11 :rotation BrasG z # ddl15 :rotation PiedD x # Add objective functions objective_functions = ObjectiveList() objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau", weight=100, phase=0) objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau", weight=100, phase=1) # Dynamics dynamics = DynamicsList() dynamics.add(DynamicsFcn.TORQUE_DRIVEN, with_contact=True) # Toe only phase 0 dynamics.add(DynamicsFcn.TORQUE_DRIVEN) # Aerial phase phase 1 # Floor constraints # Do not pull on floor constraints = ConstraintList() # Positivity of CoM_dot on z axis prior the take-off constraints.add(com_dot_z, phase=0, node=Node.END, min_bound=0, max_bound=np.inf) #v centre de masse positive au decollage # Maximize the jump height objective_functions = ObjectiveList() objective_functions.add(ObjectiveFcn.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT, weight=-100, phase=1) for p in range(0, n_phases): objective_functions.add( ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, weight=0.1, phase=p, index=range(7, 19) # on exclue la racine ) # Minimize time of the phase objective_functions.add( ObjectiveFcn.Mayer.MINIMIZE_TIME, weight=0.1, phase=0, min_bound=time_min[0], max_bound=time_max[0] ) constraints.add(ConstraintFcn.TRACK_SEGMENT_WITH_CUSTOM_RT, node=Node.ALL, segment="seg_rt", rt=0) constraints.add(ConstraintFcn.TRACK_CONTACT_FORCES, phase=0, node=Node.ALL, contact_force_idx=1, max_bound=np.inf) # Non-slipping constraints constraints.add( # toe only, on only one of the feet ConstraintFcn.NON_SLIPPING, phase=0, node=Node.ALL, normal_component_idx=1, tangential_component_idx=0, static_friction_coefficient=0.5, ) # Torque constrained to torqueMax constraints.add(tau_actuator_constraints, phase=0, node=Node.ALL, minimal_tau=20) constraints.add(tau_actuator_constraints, phase=1, node=Node.ALL, minimal_tau=20) # Path constraint x_bounds = BoundsList() x_bounds.add(bounds=QAndQDotBounds(biorbd_model[0])) # dof_mappings=mapping[0] x_bounds.add(bounds=QAndQDotBounds(biorbd_model[1])) # dof_mappings=mapping[0] et pas 1 même si pour phase 1 pose_at_first_node = [0] * biorbd_model[0].nbQ() x_bounds[0].min[:, 0] = pose_at_first_node + [0] * n_qdot x_bounds[0].max[:, 0] = pose_at_first_node + [0] * n_qdot u_bounds = BoundsList() u_bounds.add([-500] * len(mapping[0]["tau"].to_first), [500] * len(mapping[0]["tau"].to_first)) #donne 13 #u_bounds.add([-500] * n_tau, [500] * n_tau) u_bounds.add([-500] * len(mapping[0]["tau"].to_first), [500] * len(mapping[0]["tau"].to_first)) #car pas ecrit de phase donc phase 0 rempli par defaut # Initial guess x_init = InitialGuessList() u_init = InitialGuessList() # x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot())) # x_init.add([1] * (biorbd_model[1].nbQ() + biorbd_model[1].nbQdot())) # # Initial guesses # x_init.add(pose_at_first_node + [0] * n_qdot) # x_init.add(pose_at_first_node + [1] * n_qdot) # x_init.add(InitialGuess(np.random.random((n_q + n_qdot, ns[0] + 1)), interpolation=InterpolationType.EACH_FRAME)) # x_init.add(InitialGuess(np.random.random((n_q + n_qdot, ns[0] + 1)), interpolation=InterpolationType.EACH_FRAME)) x_init.add(InitialGuess(pose_at_first_node + [0] * n_qdot, interpolation=InterpolationType.CONSTANT)) x_init.add(InitialGuess(pose_at_first_node + [0] * n_qdot, interpolation=InterpolationType.CONSTANT)) #liste de 0 et non phase [0] if init is not None: u_init.add(init) # avec le warm start else: # u_init.add([0] * len(mapping[0]["tau"])) #u_init.add([1] * n_tau) # u_init.add([1] * len(mapping[0]["tau"])) u_init.add([0] * len(mapping[0]["tau"].to_first)) u_init.add([1] * len(mapping[0]["tau"].to_first)) # Phase transition phase_transitions = PhaseTransitionList() phase_transitions.add(PhaseTransitionFcn.CONTINUOUS, phase_pre_idx=0) objective_functions = ObjectiveList() objective_functions.add( ObjectiveFcn.Mayer.TRACK_STATE, phase=1, node=Node.END, index=2, target=np.ones((1, 1)) * -1 # fini à -1m ) return OptimalControlProgram( biorbd_model, dynamics, n_shooting, final_time, x_init, u_init, x_bounds, u_bounds, n_threads=4, variable_mappings=mapping, ) # Run optimizations tic = time() ocp = prepare_ocp(ns=(60,50), biorbd_model_1contact="jumper1contactsutil.bioMod", biorbd_model_0contact="jumper1contactsutil.bioMod") # --- Solve the ocp --- # sol = ocp.solve(show_online_optim=True, solver_options={'ipopt.max_iter':3}) #normalement 'îpopt.max_iter':1} sol.graphs() # --- Show the results in a bioviz animation --- # sol.animate()
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import unittest from functools import partial from absl.testing import parameterized import numpy as np from tensorflow.python.eager import def_function from tensorflow.python.eager.backprop import GradientTape from tensorflow.python.ipu.config import IPUConfig from tensorflow.python.framework import test_util from tensorflow.python.platform import test from tensorflow.python import keras from tensorflow.python import ipu from tensorflow.python.ipu import loops from tensorflow.compiler.plugin.poplar.tests import test_utils as tu from tensorflow.python.ipu import ipu_strategy from tensorflow.python.ops import math_ops from tensorflow.python.ipu.keras.optimizers import AutomaticLossScalingOptimizer from tensorflow.python.ipu.keras.optimizers import CrossReplicaOptimizer from tensorflow.python.ipu.keras.optimizers import MapGradientOptimizerInvertedChaining as MGOIC from tensorflow.python.ipu.keras.optimizers import IpuOptimizer from tensorflow.python.framework.constant_op import constant as tf_constant from tensorflow.python.ipu.keras.optimizers import GradientAccumulationOptimizer from tensorflow.python.keras.optimizer_v2 import gradient_descent NUM_IPUS = 2 SGD_LEARNING_RATE = 0.01 NUM_SAMPLES = 128 INITIAL_WEIGHT_VALUE = 5.0 NUM_DENSE_UNITS = 1 DATA_VALUE = 2.0 def data_fn(): return [np.full((NUM_SAMPLES, 1), DATA_VALUE, np.single)] * 2 def map_fn_quadratic(grad, _): return math_ops.square(grad) def map_fn_add(grad, _): h = tf_constant(([10.0])) return math_ops.add(grad, h) def map_fn_divide(grad, _): h = tf_constant([2.0]) return math_ops.divide(grad, h) def sgd(): return gradient_descent.SGD(SGD_LEARNING_RATE) def cross_replica_opt_fn(): return CrossReplicaOptimizer(sgd()) def mgoic_opt_fn(f): return MGOIC(sgd(), f) def als_opt_fn(): return AutomaticLossScalingOptimizer(sgd()) def dense_layer_fn(): return keras.layers.Dense( NUM_DENSE_UNITS, use_bias=False, kernel_initializer=keras.initializers.Constant(INITIAL_WEIGHT_VALUE)) def sequential_model_fn(optimizer_fn, num_update_steps=1): m = keras.Sequential([dense_layer_fn()]) l = keras.losses.MeanSquaredError(reduction="sum") m.compile(loss=l, optimizer=optimizer_fn(), steps_per_execution=num_update_steps) return m TEST_CASES = [{ 'testcase_name': 'CrossReplicaOptimizer', 'optimizer_fn': cross_replica_opt_fn, }, { 'testcase_name': 'MGOICAdd', 'optimizer_fn': partial(mgoic_opt_fn, map_fn_add), }, { 'testcase_name': 'AutomaticLossScalingOptimizer', 'optimizer_fn': als_opt_fn, }] class KerasV2OptimizersTest(test_util.TensorFlowTestCase, parameterized.TestCase): def get_model_weight(self, m): w = m.get_weights() self.assertEqual(len(w), 1) w = w[0] return w.item() def verify_loss_decreases(self, losses): self.assertGreater(len(losses), 1) losses.reverse() last_loss = losses[0] for l in losses[1:]: self.assertLess(l, last_loss) # The cross replica optimizer is used specifically for IPU's to sum gradients # across the replicas. This should produce the exact same result as simply # summing across the batch with the unadjusted optimizer @unittest.skip("Test does not pass internally.") @tu.test_uses_ipus(num_ipus=NUM_IPUS, allow_ipu_model=False) @test_util.run_v2_only def testCrossReplicaOptimizer(self): cfg = IPUConfig() cfg.auto_select_ipus = NUM_IPUS tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() strategy = ipu_strategy.IPUStrategyV1() steps = 10 batch_size = 2 with strategy.scope(): m = sequential_model_fn(cross_replica_opt_fn, 2) m.fit(*data_fn(), steps_per_epoch=steps, epochs=1, batch_size=batch_size) cpu_model = sequential_model_fn(cross_replica_opt_fn) cpu_model.fit(*data_fn(), steps_per_epoch=steps / NUM_IPUS, epochs=1, batch_size=NUM_IPUS * batch_size) self.assertEqual(m.get_weights(), cpu_model.get_weights()) @test_util.run_v2_only def testMapGradientOptimizer(self): for quad_optimizer in [ lambda: IpuOptimizer(MGOIC(sgd(), map_fn_quadratic)), lambda: MGOIC(sgd(), map_fn_quadratic) ]: cfg = IPUConfig() cfg.auto_select_ipus = 1 tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() strategy = ipu_strategy.IPUStrategyV1() with strategy.scope(): m = sequential_model_fn(quad_optimizer) m.fit(*data_fn(), steps_per_epoch=1, epochs=1, batch_size=1, verbose=False) grad = (2 * DATA_VALUE * ((INITIAL_WEIGHT_VALUE * DATA_VALUE) - (DATA_VALUE))) expected = INITIAL_WEIGHT_VALUE - (SGD_LEARNING_RATE * (grad**2)) self.assertAllCloseAccordingToType(self.get_model_weight(m), expected) @test_util.run_v2_only def testMapGradientOptimizerNested(self): for quad_optimizer in [ lambda: MGOIC(MGOIC(sgd(), map_fn_add), map_fn_quadratic) ]: cfg = IPUConfig() cfg.auto_select_ipus = 1 tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() strategy = ipu_strategy.IPUStrategyV1() with strategy.scope(): m = sequential_model_fn(quad_optimizer) m.fit(*data_fn(), steps_per_epoch=1, epochs=1, batch_size=1, verbose=False) grad = (2 * DATA_VALUE * ((INITIAL_WEIGHT_VALUE * DATA_VALUE) - (DATA_VALUE))) expected = INITIAL_WEIGHT_VALUE - (SGD_LEARNING_RATE * ((grad**2) + 10)) self.assertAllCloseAccordingToType(self.get_model_weight(m), expected) @unittest.skip("T42094 - MapGradientOptimizer needs fixing.") @tu.test_uses_ipus(num_ipus=NUM_IPUS, allow_ipu_model=False) @test_util.run_v2_only def testMappedAndCross(self): # test that _keras optimizer wrapper still works with default optimizers add_optimizer = CrossReplicaOptimizer(MGOIC(sgd(), map_fn_add)) cfg = IPUConfig() cfg.auto_select_ipus = NUM_IPUS tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() strategy = ipu_strategy.IPUStrategyV1() with strategy.scope(): m = sequential_model_fn(lambda: add_optimizer, 2) m.fit(*data_fn(), steps_per_epoch=2, epochs=1, batch_size=1) #grad = (2 * DATA_VALUE * ((INITIAL_WEIGHT_VALUE * DATA_VALUE) - (DATA_VALUE))) #expected = INITIAL_WEIGHT_VALUE - (SGD_LEARNING_RATE * (grad + 10)) # re enable when T36442 is fixed #self.assertAllCloseAccordingToType(self.get_model_weight(m), expected) @parameterized.named_parameters(*TEST_CASES) @test_util.run_v2_only def testCreateFromConfig(self, optimizer_fn, **kwargs): # pylint: disable=unused-argument opt_1 = optimizer_fn() opt_1_config = opt_1.get_config() opt_2_config = opt_1_config.copy() opt_2_config['name'] += "_copy" opt_2 = opt_1.__class__.from_config(opt_2_config) self.assertEqual(opt_2.get_config(), opt_2_config) @parameterized.named_parameters(*TEST_CASES) @test_util.run_v2_only def testWeightsPropertyRead(self, optimizer_fn, **kwargs): # pylint: disable=unused-argument opt = optimizer_fn() w = opt.weights opt.set_weights(2 * w) self.assertEqual(opt.weights, 2 * w) @parameterized.named_parameters(*TEST_CASES) @test_util.run_v2_only def testWeightsPropertyWrite(self, optimizer_fn, **kwargs): # pylint: disable=unused-argument opt = optimizer_fn() with self.assertRaisesRegex(AttributeError, "can't set attribute"): opt.weights = 1 @parameterized.named_parameters(*TEST_CASES) @test_util.run_v2_only def testClipnormProperty(self, optimizer_fn, **kwargs): # pylint: disable=unused-argument opt = optimizer_fn() if not opt.clipnorm: opt.clipnorm = 1 clip_norm_val = opt.clipnorm opt.clipnorm = 2 * clip_norm_val self.assertEqual(opt.clipnorm, 2 * clip_norm_val) @parameterized.named_parameters(*TEST_CASES) @test_util.run_v2_only def testGlobalClipnormProperty(self, optimizer_fn, **kwargs): # pylint: disable=unused-argument opt = optimizer_fn() if not opt.global_clipnorm: opt.global_clipnorm = 1 clip_norm_val = opt.global_clipnorm opt.global_clipnorm = 2 * clip_norm_val self.assertEqual(opt.global_clipnorm, 2 * clip_norm_val) @parameterized.named_parameters(*TEST_CASES) @test_util.run_v2_only def testClipvalueProperty(self, optimizer_fn, **kwargs): # pylint: disable=unused-argument opt = optimizer_fn() if not opt.clipvalue: opt.clipvalue = 1 clip_val = opt.clipvalue opt.clipvalue = 2 * clip_val self.assertEqual(opt.clipvalue, 2 * clip_val) @parameterized.named_parameters(*TEST_CASES) @test_util.run_v2_only def testVariablesMethod(self, optimizer_fn, **kwargs): # pylint: disable=unused-argument opt = optimizer_fn() self.assertEqual(opt.get_weights(), opt.variables()) @parameterized.named_parameters(*TEST_CASES) @test_util.run_v2_only def testGetSetWeights(self, optimizer_fn, **kwargs): # pylint: disable=unused-argument opt_1 = optimizer_fn() opt_2 = optimizer_fn() opt_2.set_weights([w * 2 for w in opt_1.get_weights()]) for a, b in zip(opt_1.get_weights(), opt_2.get_weights()): self.assertEqual(b, 2 * a) @parameterized.named_parameters(*TEST_CASES) @test_util.run_v2_only def testMinimizeWithGradientTape(self, optimizer_fn, num_update_steps=1): cfg = IPUConfig() cfg.auto_select_ipus = 1 tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() strategy = ipu_strategy.IPUStrategy() with strategy.scope(): layer = dense_layer_fn() optimizer = optimizer_fn() loss = keras.losses.MeanSquaredError(reduction="sum") @def_function.function(experimental_compile=True) def f(a, t, _): with GradientTape() as tape: z = layer(a) l = loss(z, t) def ll(): return l optimizer.minimize(ll, layer.trainable_variables, tape=tape) return a, t, l @def_function.function(experimental_compile=True) def g(a, t): _, _, l = loops.repeat(num_update_steps, f, inputs=[a, t, 0.0]) return l losses = [strategy.run(g, args=data_fn()) for _ in range(3)] self.verify_loss_decreases(losses) @parameterized.named_parameters(*TEST_CASES) @test_util.run_v2_only def testMinimizeWithoutGradientTape(self, optimizer_fn, num_update_steps=1): cfg = IPUConfig() cfg.auto_select_ipus = 1 tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() strategy = ipu_strategy.IPUStrategy() with strategy.scope(): layer = dense_layer_fn() optimizer = optimizer_fn() loss = keras.losses.MeanSquaredError(reduction="sum") @def_function.function(experimental_compile=True) def f(a, t, _): def l(): z = layer(a) return loss(z, t) ll = l() optimizer.minimize(l, layer.trainable_variables) return a, t, ll @def_function.function(experimental_compile=True) def g(a, t): _, _, l = loops.repeat(num_update_steps, f, inputs=[a, t, 0.0]) return l losses = [strategy.run(g, args=data_fn()) for _ in range(3)] self.verify_loss_decreases(losses) @parameterized.named_parameters(*TEST_CASES) @test_util.run_v2_only def testKerasSequentialModelTrain(self, optimizer_fn, num_update_steps=1): cfg = IPUConfig() cfg.auto_select_ipus = 1 tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() strategy = ipu_strategy.IPUStrategy() with strategy.scope(): m = sequential_model_fn(optimizer_fn, num_update_steps) history = m.fit(*data_fn(), epochs=3, verbose=False) losses = [l for l in history.history['loss']] self.verify_loss_decreases(losses) @parameterized.named_parameters(*TEST_CASES) @test_util.run_v2_only def testKerasFunctionalModelTrain(self, optimizer_fn, num_update_steps=1): cfg = IPUConfig() cfg.auto_select_ipus = 1 tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() strategy = ipu_strategy.IPUStrategy() with strategy.scope(): input_layer = keras.layers.Input(1) x = dense_layer_fn()(input_layer) l = keras.losses.MeanSquaredError(reduction="sum") m = keras.Model(inputs=input_layer, outputs=x) m.compile(loss=l, optimizer=optimizer_fn(), steps_per_execution=num_update_steps) history = m.fit(*data_fn(), epochs=3, verbose=False) losses = [l for l in history.history['loss']] self.verify_loss_decreases(losses) @parameterized.named_parameters(*TEST_CASES) @test_util.run_v2_only def testKerasSequentialPipelineTrain(self, optimizer_fn, **kwargs): # pylint: disable=unused-argument if isinstance(optimizer_fn(), GradientAccumulationOptimizer): return cfg = IPUConfig() cfg.auto_select_ipus = 2 tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() strategy = ipu_strategy.IPUStrategy() with strategy.scope(): m = keras.Sequential([ dense_layer_fn(), # Stage 0 dense_layer_fn(), # Stage 0. dense_layer_fn(), # Stage 1. dense_layer_fn(), # Stage 1. ]) m.set_pipelining_options(gradient_accumulation_steps_per_replica=4, experimental_normalize_gradients=True) m.set_pipeline_stage_assignment([0, 0, 1, 1]) m.compile(optimizer_fn(), loss='mse', steps_per_execution=8) history = m.fit(*data_fn(), epochs=3, verbose=False) losses = [l for l in history.history['loss']] self.verify_loss_decreases(losses) @parameterized.named_parameters(*TEST_CASES) @test_util.run_v2_only def testKerasFunctionalPipelineTrain(self, optimizer_fn, **kwargs): # pylint: disable=unused-argument if isinstance(optimizer_fn(), GradientAccumulationOptimizer): return cfg = IPUConfig() cfg.auto_select_ipus = 2 tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() strategy = ipu_strategy.IPUStrategy() with strategy.scope(): input_layer = keras.layers.Input(1) with ipu.keras.PipelineStage(0): x = dense_layer_fn()(input_layer) x = dense_layer_fn()(x) with ipu.keras.PipelineStage(1): x = dense_layer_fn()(x) x = dense_layer_fn()(x) m = keras.Model(inputs=input_layer, outputs=x) m.set_pipelining_options(gradient_accumulation_steps_per_replica=4, experimental_normalize_gradients=True) m.compile(optimizer_fn(), loss='mse', steps_per_execution=8) history = m.fit(*data_fn(), epochs=3, verbose=False) losses = [l for l in history.history['loss']] self.verify_loss_decreases(losses) if __name__ == "__main__": test.main()
import pickle import tensorflow as tf from tensorflow.keras import backend class OptimizerState: def __init__(self, optimizer): self.config = optimizer.get_config() self.weights = optimizer.get_weights() # self.iterations = states.iterations self.lr = backend.get_value(optimizer.lr) self.iterations = backend.get_value(optimizer.iterations) self.learning_rate = backend.get_value(optimizer.learning_rate) def save(self, path): with open(path, 'wb') as f: pickle.dump(self, f) @staticmethod def load(path): with open(path, 'rb') as f: state = pickle.load(f) return state def empty_optimizer(self): if self.config["name"] == "Adam": return tf.keras.optimizers.Adam( **self.config ) raise Exception(f"Optimizer {self.config['name']} is not Supported!") def apply_weights(self, model, optimizer): grad_vars = model.trainable_weights zero_grads = [tf.zeros_like(w) for w in grad_vars] optimizer.apply_gradients(zip(zero_grads, grad_vars)) optimizer.set_weights(self.weights) def apply(self, model): optimizer = self.empty_optimizer() self.apply_weights(model, optimizer) backend.set_value(optimizer.lr, self.lr) backend.set_value(optimizer.iterations, self.iterations) backend.set_value(optimizer.learning_rate, self.learning_rate) model.optimizer = optimizer def __eq__(self, other): if not isinstance(other, OptimizerState): return False for attribute in self.__dict__.keys(): if attribute == "weights": continue if getattr(self, attribute) != getattr(other, attribute): return False if len(self.weights) != len(other.weights): return False # weights_equal = tf.math.reduce_all( #<- memory issues on colab # [tf.math.reduce_all(a == b) for a, b in zip(self.weights, other.weights)] # ) weights_equal = all( map(lambda xy: tf.math.reduce_all(xy[0] == xy[1]).numpy(), zip(self.weights, other.weights))) return weights_equal def __str__(self): lines = ["{"] for k, v in self.__dict__.items(): if k == "weights": line = f"\t{k}:\t{str(type(v))}," else: line = f"\t{k}:\t{v}," lines.append(line) lines.append("}") return "\n".join(lines)
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from odahuflow.sdk.models.base_model_ import Model from odahuflow.sdk.models import util class RemoteModelSource(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, model_connection: str=None, model_path: str=None): # noqa: E501 """RemoteModelSource - a model defined in Swagger :param model_connection: The model_connection of this RemoteModelSource. # noqa: E501 :type model_connection: str :param model_path: The model_path of this RemoteModelSource. # noqa: E501 :type model_path: str """ self.swagger_types = { 'model_connection': str, 'model_path': str } self.attribute_map = { 'model_connection': 'modelConnection', 'model_path': 'modelPath' } self._model_connection = model_connection self._model_path = model_path @classmethod def from_dict(cls, dikt) -> 'RemoteModelSource': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The RemoteModelSource of this RemoteModelSource. # noqa: E501 :rtype: RemoteModelSource """ return util.deserialize_model(dikt, cls) @property def model_connection(self) -> str: """Gets the model_connection of this RemoteModelSource. ModelConnection is name of connection to object storage bucket where ML model files are expected # noqa: E501 :return: The model_connection of this RemoteModelSource. :rtype: str """ return self._model_connection @model_connection.setter def model_connection(self, model_connection: str): """Sets the model_connection of this RemoteModelSource. ModelConnection is name of connection to object storage bucket where ML model files are expected # noqa: E501 :param model_connection: The model_connection of this RemoteModelSource. :type model_connection: str """ self._model_connection = model_connection @property def model_path(self) -> str: """Gets the model_path of this RemoteModelSource. ModelPath is a directory inside ModelConnection where ML model files are located # noqa: E501 :return: The model_path of this RemoteModelSource. :rtype: str """ return self._model_path @model_path.setter def model_path(self, model_path: str): """Sets the model_path of this RemoteModelSource. ModelPath is a directory inside ModelConnection where ML model files are located # noqa: E501 :param model_path: The model_path of this RemoteModelSource. :type model_path: str """ self._model_path = model_path
# coding: utf8 """ Tests of High Jump / Pole Vault competition logic """ from unittest import TestCase, main from decimal import Decimal from athlib.highjump import HighJumpCompetition, _012 from athlib.exceptions import RuleViolation ESAA_2015_HJ = [ # English Schools Senior Boys 2015 - epic jumpoff ending in a draw # We did not include all other jumpers # See http://www.esaa.net/v2/2015/tf/national/results/fcards/tf15-sb-field.pdf # and http://www.englandathletics.org/england-athletics-news/great-action-at-the-english-schools-aa-championships ["place", "order", "bib", "first_name", "last_name", "team", "category", "1.81", "1.86", "1.91", "1.97", "2.00", "2.03", "2.06", "2.09", "2.12", "2.12", "2.10", "2.12", "2.10", "2.12"], ["", 1, '85', "Harry", "Maslen", "WYork", "SB", "o", "o", "o", "xo", "xxx"], ["", 2, '77', "Jake", "Field", "Surrey", "SB", "xxx"], ["1", 4, '53', "William", "Grimsey", "Midd", "SB", "", "", "", "o", "o", "o", "o", "o", "xxx", "x", "o", "x", "o", "x"], ["1", 5, '81', "Rory", "Dwyer", "Warks", "SB", "", "", "", "o", "o", "o", "o", "o", "xxx", "x", "o", "x", "o", "x"] ] _1066 = [ #based on above, but we have a winner ["place", "order", "bib", "first_name", "last_name", "team", "category", "1.81", "1.86", "1.91", "1.97", "2.00", "2.03", "2.06", "2.09", "2.12", "2.12", "2.10", "2.12", "2.10", "2.12", "2.11"], ["", 1, '85', "Dafydd", "Briton", "WYork", "SB", "o", "o", "o", "xo", "xxx"], ["", 2, '77', "Jake", "Saxon", "Surrey", "SB", "xxx"], ["1", 4, '53', "William", "Norman", "Midd", "SB", "", "", "", "o", "o", "o", "o", "o", "xxx", "x", "o", "x", "o", "x", "x"], ["1", 5, '81', "Harald", "England", "Warks", "SB", "", "", "", "o", "o", "o", "o", "o", "xxx", "x", "o", "x", "o", "x", "o"] ] RIO_MENS_HJ = [ # pasted from Wikipedia ["place", "order", "bib", "first_name", "last_name", "team", "category", "2.20", "2.25", "2.29", "2.33", "2.36", "2.38", "2.40", "best", "note"], ["1", 7, 2197, "Derek", "Drouin", "CAN", "M", "o", "o", "o", "o", "o", "o", "x", 2.38, ""], ["2", 9, 2878, "Mutaz", "Essa Barshim", "QAT", "M", "o", "o", "o", "o", "o", "xxx", "", 2.36, ""], ["3", 3, 3026, "Bohdan", "Bondarenko", "UKR", "M", "-", "o", "-", "o", "-", "xx-", "x", 2.33, ""], ["4=", 8, 2456, "Robert", "Grabarz", "GBR", "M", "o", "xo", "o", "o", "xxx", "", "", 2.33, "=SB"], ["4=", 15, 3032, "Andriy", "Protsenko", "UKR", "M", "o", "o", "xo", "o", "xxx", "", "", 2.33, "SB"], ["6", 6, 3084, "Erik", "Kynard", "USA", "M", "o", "xo", "o", "xxo", "xxx", "", "", 2.33, ""], ["7=", 5, 2961, "Majededdin", "Ghazal", "SYR", "M", "o", "o", "o", "xxx", "", "", "", 2.29, ""], ["7=", 12, 2294, "Kyriakos", "Ioannou", "CYP", "M", "o", "o", "o", "xxx", "", "", "", 2.29, ""], ["7=", 13, 2076, "Donald", "Thomas", "BAH", "M", "o", "o", "o", "xxx", "", "", "", 2.29, ""], ["10", 1, 2182, "Tihomir", "Ivanov", "BUL", "M", "o", "xo", "o", "xxx", "", "", "", 2.29, "=PB"], ["11", 10, 2062, "Trevor", "Barry", "BAH", "M", "o", "o", "xxx", "", "", "", "", 2.25, ""], ["12", 4, 2293, "Dimitrios", "Chondrokoukis", "M", "CYP", "xo", "o", "xxx", "", "", "", "", 2.25, ""], ["13", 11, 2871, "Luis", "Castro", "PUR", "M", "o", "xxo", "xxx", "", "", "", "", 2.25, ""], ["14", 14, 2297, "Jaroslav", "Bába", "CZE", "M", "o", "xxx", "", "", "", "", "", 2.2, ""], ["15", 2, 2052, "Brandon", "Starc", "AUS", "M", "xo", "xxx", "", "", "", "", "", 2.2, ""] ] class HighJumpTests(TestCase): def test_competition_setup(self): """Tests basic creation of athletes with names and bibs""" c = HighJumpCompetition.from_matrix(ESAA_2015_HJ, to_nth_height=0) self.assertEqual("Dwyer", c.jumpers[-1].last_name) self.assertEqual("Maslen", c.jumpers_by_bib['85'].last_name) def test_progression(self): c = HighJumpCompetition.from_matrix(ESAA_2015_HJ, to_nth_height=0) h1 = Decimal("1.81") c.set_bar_height(h1) # round 1 c.cleared('85') j = c.jumpers_by_bib['85'] self.assertEqual(j.attempts_by_height, ['o']) self.assertEqual(j.highest_cleared, h1) c.failed('77') c.failed('77') c.failed('77') jake_field = c.jumpers_by_bib['77'] self.assertEqual(jake_field.highest_cleared, Decimal("0.00")) self.assertEqual(jake_field.attempts_by_height, ['xxx']) self.assertTrue(jake_field.eliminated) harry_maslen = c.jumpers_by_bib['85'] # attempt at fourth jump should fail self.assertRaises(RuleViolation, c.failed, '77') self.assertEqual(jake_field.place, 4) self.assertEqual(harry_maslen.place, 1) def test_replay_to_jumpoff(self): "Run through to where the jumpoff began - ninth bar position" c = HighJumpCompetition.from_matrix(ESAA_2015_HJ, to_nth_height=9) # see who is winning maslen = c.jumpers_by_bib['85'] field = c.jumpers_by_bib['77'] grimsey = c.jumpers_by_bib['53'] dwyer = c.jumpers_by_bib['81'] self.assertEqual(field.place, 4) self.assertEqual(maslen.place, 3) self.assertEqual(grimsey.place, 1) self.assertEqual(dwyer.place, 1) # print "after 2:12 round" # print grimsey.failures_at_height # print grimsey.consecutive_failures # print grimsey.attempts_by_height # if not for jump-off rules, it would be game over self.assertEqual(len(c.remaining), 2) self.assertEqual(c.state, 'jumpoff') def test_replay_through_jumpoff(self): "Run through a jumpoff to a draw" c = HighJumpCompetition.from_matrix(ESAA_2015_HJ) self.assertRaises(RuleViolation,c.failed,'53') # see who is winning maslen = c.jumpers_by_bib['85'] field = c.jumpers_by_bib['77'] grimsey = c.jumpers_by_bib['53'] dwyer = c.jumpers_by_bib['81'] self.assertEqual(field.place, 4) self.assertEqual(maslen.place, 3) self.assertEqual(grimsey.place, 1) self.assertEqual(dwyer.place, 1) self.assertEqual(len(c.remaining), 2) self.assertEqual(c.state, 'jumpoff') def test_replay_jumpoff_and_finish(self): "Run through a jumpoff to the final winner" c = HighJumpCompetition.from_matrix(_1066) self.assertRaises(RuleViolation,c.failed,'53') self.assertRaises(RuleViolation,c.failed,'81') # see who is winning briton = c.jumpers_by_bib['85'] saxon = c.jumpers_by_bib['77'] norman = c.jumpers_by_bib['53'] england = c.jumpers_by_bib['81'] self.assertEqual(saxon.place, 4) self.assertEqual(briton.place, 3) self.assertEqual(norman.place, 2) self.assertEqual(england.place, 1) self.assertEqual(len(c.remaining), 1) self.assertEqual(c.state, 'finished') self.assertEqual(england.highest_cleared, Decimal("2.11")) self.assertRaises(RuleViolation,c.set_bar_height, Decimal("2.12")) def test_countback_to_tie(self): "Run both fail, but tie countback wins" c = HighJumpCompetition.from_matrix( [ ["place", "order", "bib", "first_name", "last_name", "2.06", "2.08", "2.10", "2.12", "2.14"], ["", 1, 'A', "Harald", "England", "o", "o", "xo", "xo", "xxx"], ["", 2, 'B', "William", "Norman", "o", "o", "o", "xxo", "xxx"], ] ) self.assertRaises(RuleViolation,c.failed,'A') self.assertRaises(RuleViolation,c.failed,'B') # see who is winning A = c.jumpers_by_bib['A'] B = c.jumpers_by_bib['B'] self.assertEqual(A.place, 1) self.assertEqual(B.place, 2) self.assertEqual(len(c.remaining), 0) self.assertEqual(c.state, 'finished') self.assertEqual(A.highest_cleared, Decimal("2.12")) self.assertEqual(B.highest_cleared, Decimal("2.12")) self.assertEqual(A.ranking_key,(0, Decimal('-2.12'), 1, 2)) self.assertEqual(B.ranking_key,(0, Decimal('-2.12'), 2, 2)) def test_countback_total_failure_rank(self): "test_countback_total_failure_rank" c = HighJumpCompetition.from_matrix( [ ["place", "order", "bib", "first_name", "last_name", "2.06", "2.08"], ["", 1, 'A', "Harald", "England", "o", "o"], ["", 2, 'B', "William", "Norman", "xxx"], ] ) self.assertRaises(RuleViolation,c.failed,'B') # see who is winning A = c.jumpers_by_bib['A'] B = c.jumpers_by_bib['B'] self.assertEqual(A.place, 1) self.assertEqual(B.place, 2) self.assertEqual(len(c.remaining), 1) self.assertEqual(c.state, 'won') self.assertEqual(A.highest_cleared, Decimal("2.08")) self.assertEqual(B.highest_cleared, Decimal("0.00")) self.assertEqual(A.ranking_key,(0, Decimal('-2.08'), 0, 0)) self.assertEqual(B.ranking_key,(2, Decimal('0.00'), 0, 0)) def test_countback_to_total_failures(self): "test_countback_to_total_failures" c = HighJumpCompetition.from_matrix( [ ["place", "order", "bib", "first_name", "last_name", "2.06", "2.08", "2.10", "2.12", "2.14"], ["", 1, 'A', "Harald", "England", "o", "o", "xo", "xo", "xxx"], ["", 2, 'B', "William", "Norman", "o", "xo", "xo", "xo", "xxx"], ] ) self.assertRaises(RuleViolation,c.failed,'A') self.assertRaises(RuleViolation,c.failed,'B') # see who is winning A = c.jumpers_by_bib['A'] B = c.jumpers_by_bib['B'] self.assertEqual(A.place, 1) self.assertEqual(B.place, 2) self.assertEqual(len(c.remaining), 0) self.assertEqual(c.state, 'finished') self.assertEqual(A.highest_cleared, Decimal("2.12")) self.assertEqual(B.highest_cleared, Decimal("2.12")) self.assertEqual(A.ranking_key,(0, Decimal('-2.12'), 1, 2)) self.assertEqual(B.ranking_key,(0, Decimal('-2.12'), 1, 3)) def test_won_ending(self): "check the status changes at a won ending which finishes" mx = [ ["place", "order", "bib", "first_name", "last_name", "team", "category"], ["1", 1, '53', "William", "Norman", "Midd", "SB"], ["1", 2, '81', "Harald", "England", "Warks", "SB"], ] c = HighJumpCompetition.from_matrix(mx) self.assertEqual(c.state,'scheduled') self.assertEqual(len(c.remaining),2) for height,perfs,xstate,lenremj in ( (2.11,("o","o"),'started',2), (2.12,("o","o"),'started',2), (2.13,("o","o"),'started',2), (2.14,("xxx","o"),'won',1), (2.16,("","o"),'won',1), (2.17,("","xxo"),'won',1), (2.18,("","xxx"),'finished',0)): c.set_bar_height(height) for i in _012: for j,p in enumerate(perfs): if len(p)<i+1: continue c.bib_trial(mx[1+j][2],p[i]) self.assertEqual(c.state,xstate,"height=%s expected state %s not %s" % (height,xstate,c.state)) self.assertEqual(len(c.remaining),lenremj,"height=%s expected lenremj %s not %s" % (height,lenremj,len(c.remaining))) def test_score_olympic_final(self): "Do we get the same results as the Olympics?" c = HighJumpCompetition.from_matrix(RIO_MENS_HJ, verbose=False) # for r in c.ranked_jumper # all the positions should agree given_finish_positions = [] for row in RIO_MENS_HJ[1:]: place, order, bib = row[0:3] expected_place = int(place.replace('=', '')) jumper = c.jumpers_by_bib[str(bib)] actual_place = jumper.place self.assertEqual(actual_place, expected_place) def test_dismissed(self): c = HighJumpCompetition() c.add_jumper(bib='A',first_name='Harald',last_name='England') c.add_jumper(bib='B',first_name='William',last_name='Norman') self.assertRaises(RuleViolation,c.cleared,'A') self.assertRaises(RuleViolation,c.passed,'A') self.assertRaises(RuleViolation,c.failed,'A') self.assertRaises(RuleViolation,c.retired,'A') c.set_bar_height(Decimal('2.00')) A=c.jumpers_by_bib['A'] B=c.jumpers_by_bib['B'] self.assertEqual(A.dismissed,False) self.assertEqual(B.dismissed,False) c.cleared('A') c.passed('B') self.assertEqual(A.dismissed,True) self.assertEqual(B.dismissed,True) c.set_bar_height(Decimal('2.02')) self.assertEqual(A.dismissed,False) self.assertEqual(B.dismissed,False) c.cleared('A') c.failed('B') self.assertEqual(A.dismissed,True) self.assertEqual(B.dismissed,False) c.passed('B') self.assertEqual(B.dismissed,True) def test_trials(self): c = HighJumpCompetition() c.add_jumper(bib='A',first_name='Harald',last_name='England') c.add_jumper(bib='B',first_name='William',last_name='Norman') h1 = Decimal('1.10') h2 = Decimal('1.15') h3 = Decimal('1.14') c.set_bar_height(h1) self.assertEqual(c.state,'started','state should be started') self.assertEqual(c.is_finished,False,'not finished') self.assertEqual(c.is_running,True,'is running') c.cleared('A') c.cleared('B') c.set_bar_height(h2) c.failed('A') c.failed('B') c.failed('A') c.failed('B') c.failed('A') c.failed('B') self.assertEqual(c.state,'jumpoff','jumpoff state should be reached') self.assertEqual(c.is_finished, False,"jumpoff competition is not finished") self.assertEqual(c.is_running, True,"jumpoff competition is running") c.set_bar_height(h3) self.assertEqual(c.trials,[('A',h1,'o'),('B',h1,'o'),('A',h2,'x'),('B',h2,'x'),('A',h2,'x'),('B',h2,'x'),('A',h2,'x'),('B',h2,'x')],'trials in jumpoff state') c.failed('A') self.assertEqual(c.state,'jumpoff','still in jumpoff after A fails at 1.14') self.assertEqual(c.trials,[('A',h1,'o'),('B',h1,'o'),('A',h2,'x'),('B',h2,'x'),('A',h2,'x'),('B',h2,'x'),('A',h2,'x'),('B',h2,'x'),('A',h3,'x')], 'trials after A fails at 1.14') c.cleared('B') self.assertEqual(c.state,'finished','state finished after B clears at 1.14') fal = [('A',h1,'o'),('B',h1,'o'),('A',h2,'x'),('B',h2,'x'),('A',h2,'x'),('B',h2,'x'),('A',h2,'x'),('B',h2,'x'),('A',h3,'x'),('B',h3,'o')] fadl = [dict(bib=a[0],height=a[1],result=a[2]) for a in fal] self.assertEqual(c.trials, fal, 'final trials') self.assertEqual(c.trial_objs, fadl, 'final trial_objs') self.assertEqual(c.from_actions().trials, fal, 'd.from_actions().trials should match c.trials') self.assertEqual(c.from_actions().trial_objs, fadl, 'd.from_actions().trial_objs should match c.trial_objs') def test_action_letter(self): c = HighJumpCompetition() self.assertEqual(c.action_letter['cleared'],'o',"action_letter['cleared']=='o'") self.assertEqual(c.action_letter['failed'],'x',"action_letter['failed']=='x'") self.assertEqual(c.action_letter['passed'],'-',"action_letter['passed']=='-'") self.assertEqual(c.action_letter['retired'],'r',"action_letter['passed']=='r'") actions_a = [["add_jumper",dict(bib='A')], ["add_jumper",dict(bib='B')], ["set_bar_height",1.1], ["cleared","A"], ["cleared","B"], ["set_bar_height",1.2], ["failed","A"], ["failed","B"], ["failed","A"], ["failed","B"], ["failed","A"], ["failed","B"], ["set_bar_height",1.15], ["cleared","A"], ["cleared","B"], ["set_bar_height",1.17], ["failed","A"], ["failed","B"], ["set_bar_height",1.16], ["retired","A"], ["retired","B"]] matrix_a = [ ["bib", "1.10", "1.20", "1.15", "1.17", "1.16"], ["A", "o", "xxx", "o", "x", "r"], ["B", "o", "xxx", "o", "x", "r"], ] def test_retire_after_jumpoff(self): c = HighJumpCompetition().from_actions(self.actions_a) self.assertEqual(c.state,'drawn','both retiring after jumpoffs should draw') c = HighJumpCompetition().from_matrix(self.matrix_a) self.assertEqual(c.state,'drawn','both retiring after jumpoffs should draw') self.assertEqual(c.to_matrix(),self.matrix_a,'matrix round trip should match') self.assertEqual(c.is_finished, True,"competition is finished") self.assertEqual(c.is_running, False,"competition is not running") def test_rieto_pv(self): c = HighJumpCompetition.from_matrix( [_.split() for _ in '''bib 3.00 3.20 3.40 3.60 3.70 3.80 3.85 3.90 3.95 4.00 QF000595 - - o o - o - o xxx EH004164 - - - xo xo o o xxo xxx JA112119 - - o xo o xxx CB064342 - - o xo o xxx FC009594 - - - o o x- o xx- x HC000711 - - o o - xxx CF058632 - - xo xo xxx GL001818 xo o xxx EC001108 o xo o xxx VA008725 o o xxo xxx JE001383 o o xxx CG000293 o xo xxx BC000303 o xo xxx EE010870 - - o o xxo o xx- x EE006186 xo xo xxx JC003084 o xxx EF007915 - - o o xo o xxo xo xxo xxx GL000737 o xxx DA011840 o o xxx CK006373 xo xxx GJ001614 xo xxx ED000485 x- xx JA103141 xxx'''.split('\n')] , verbose=False) self.assertEqual(c.state,'finished','One winning jumper failed at his chosen height') self.assertEqual(c.jumpers_by_bib['EF007915'].place,1,'EF007915 came first') if __name__ == '__main__': main()
# Copyright (c) 2015 EMC Corporation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import unicode_literals import logging import storops.unity.resource.cifs_share import storops.unity.resource.nas_server import storops.unity.resource.nfs_share import storops.unity.resource.pool from storops.exception import UnityResourceNotFoundError, \ UnityCifsServiceNotEnabledError, UnityShareShrinkSizeTooLargeError, \ UnityShareShrinkSizeTooSmallError, UnityLocalReplicationFsNameNotSameError from storops.lib.common import supplement_filesystem from storops.lib.version import version from storops.unity.enums import FSSupportedProtocolEnum, TieringPolicyEnum, \ SnapStateEnum, AccessPolicyEnum, FSLockingPolicyEnum from storops.unity.resource import UnityResource, UnityResourceList from storops.unity.resource.replication_session import \ UnityReplicationSession, UnityResourceConfig from storops.unity.resource.snap import UnitySnap, UnitySnapList from storops.unity.resource.storage_resource import UnityStorageResource from storops.unity.resp import RestResponse from storops.unity.client import UnityClient __author__ = 'Jay Xu' log = logging.getLogger(__name__) class UnityFileSystem(UnityResource): @classmethod def create(cls, cli, pool, nas_server, name, size, proto=None, is_thin=None, tiering_policy=None, user_cap=False, is_compression=None, access_policy=None, locking_policy=None, description=None): pool_clz = storops.unity.resource.pool.UnityPool nas_server_clz = storops.unity.resource.nas_server.UnityNasServer if proto is None: proto = FSSupportedProtocolEnum.NFS pool = pool_clz.get(cli, pool) nas_server = nas_server_clz.get(cli, nas_server) size = supplement_filesystem(size, user_cap) fs_param = cls.prepare_fs_parameters( pool=pool, nas_server=nas_server, supported_protocols=proto, is_thin_enabled=is_thin, size=size, tiering_policy=tiering_policy, is_compression=is_compression, access_policy=access_policy, locking_policy=locking_policy) req_body = cli.make_body(allow_empty=True, name=name, description=description, fsParameters=fs_param) resp = cli.type_action(UnityStorageResource().resource_class, 'createFilesystem', **req_body) resp.raise_if_err() sr = UnityStorageResource(_id=resp.resource_id, cli=cli) return sr.filesystem def modify(self, size=None, is_thin=None, tiering_policy=None, user_cap=False, is_compression=None, access_policy=None, locking_policy=None, description=None, cifs_fs_parameters=None): sr = self.storage_resource if sr is None: raise ValueError('storage resource for filesystem {} not found.' .format(self.name)) if size: size = supplement_filesystem(size, user_cap) fs_param = self.prepare_fs_parameters( is_thin_enabled=is_thin, size=size, tiering_policy=tiering_policy, is_compression=is_compression, access_policy=access_policy, locking_policy=locking_policy) params = {} if fs_param: params['fsParameters'] = fs_param if cifs_fs_parameters: params['cifsFsParameters'] = cifs_fs_parameters if description is not None: params['description'] = description if not params: return RestResponse('', self._cli) req_body = self._cli.make_body(allow_empty=True, **params) resp = sr.modify_fs(**req_body) resp.raise_if_err() return resp @property def first_available_cifs_server(self): ret = None if self.nas_server is not None: try: ret = self.nas_server.get_cifs_server() except UnityCifsServiceNotEnabledError as e: log.info(e.message) return ret def delete(self, force_snap_delete=False, force_vvol_delete=False, async_mode=False): sr = self.storage_resource if not self.existed or sr is None: raise UnityResourceNotFoundError( 'cannot find filesystem {}.'.format(self.get_id())) resp = self._cli.delete(sr.resource_class, sr.get_id(), forceSnapDeletion=force_snap_delete, forceVvolDeletion=force_vvol_delete, async_mode=async_mode) resp.raise_if_err() return resp def extend(self, new_size, user_cap=False): sr = self.storage_resource new_size = supplement_filesystem(new_size, user_cap) param = self._cli.make_body(size=new_size) resp = sr.modify_fs(fsParameters=param) resp.raise_if_err() return resp def shrink(self, new_size, user_cap=False): sr = self.storage_resource new_size = supplement_filesystem(new_size, user_cap) size_used = sr.size_used if size_used and int(size_used) > new_size: message = 'Reject shrink share request, ' \ 'the new size should be larger than used.' raise UnityShareShrinkSizeTooSmallError(message) param = self._cli.make_body(size=new_size) size_total = sr.size_total if size_total and int(size_total) < new_size: message = 'Reject shrink share request, ' \ 'the new size should be smaller than original.' raise UnityShareShrinkSizeTooLargeError(message) resp = sr.modify_fs(fsParameters=param) resp.raise_if_err() return resp def create_nfs_share(self, name, path=None, share_access=None, min_security=None, no_access_hosts=None, read_only_hosts=None, read_write_hosts=None, root_access_hosts=None, read_only_root_access_hosts=None, no_access_hosts_string=None, read_only_hosts_string=None, read_write_hosts_string=None, read_only_root_hosts_string=None, root_access_hosts_string=None, anonymous_uid=None, anonymous_gid=None, export_option=None, description=None): clz = storops.unity.resource.nfs_share.UnityNfsShare return clz.create( self._cli, name=name, fs=self, path=path, share_access=share_access, min_security=min_security, no_access_hosts=no_access_hosts, read_only_hosts=read_only_hosts, read_write_hosts=read_write_hosts, root_access_hosts=root_access_hosts, read_only_root_access_hosts=read_only_root_access_hosts, no_access_hosts_string=no_access_hosts_string, read_only_hosts_string=read_only_hosts_string, read_write_hosts_string=read_write_hosts_string, read_only_root_hosts_string=read_only_root_hosts_string, root_access_hosts_string=root_access_hosts_string, anonymous_uid=anonymous_uid, anonymous_gid=anonymous_gid, export_option=export_option, description=description) def create_cifs_share(self, name, path=None, cifs_server=None, is_read_only=None, is_encryption_enabled=None, is_con_avail_enabled=None, is_abe_enabled=None, is_branch_cache_enabled=None, offline_availability=None, umask=None, description=None): clz = storops.unity.resource.cifs_share.UnityCifsShare return clz.create( self._cli, name=name, fs=self, path=path, cifs_server=cifs_server, is_read_only=is_read_only, is_encryption_enabled=is_encryption_enabled, is_con_avail_enabled=is_con_avail_enabled, is_abe_enabled=is_abe_enabled, is_branch_cache_enabled=is_branch_cache_enabled, offline_availability=offline_availability, umask=umask, description=description) def create_snap(self, name=None, description=None, is_auto_delete=None, retention_duration=None, is_read_only=None, fs_access_type=None): return UnitySnap.create(cli=self._cli, storage_resource=self.storage_resource, name=name, description=description, is_auto_delete=is_auto_delete, retention_duration=retention_duration, is_read_only=is_read_only, fs_access_type=fs_access_type) @property def snapshots(self): return UnitySnapList(cli=self._cli, storage_resource=self.storage_resource) def has_snap(self, ignore_system_snap=False): """ This method won't count the snaps in "destroying" state! :param ignore_system_snap: ignore the system snap if True. :return: false if no snaps or all snaps are destroying. """ snaps = filter(lambda s: s.state != SnapStateEnum.DESTROYING, self.snapshots) if ignore_system_snap: snaps = filter(lambda s: not s.is_system_snap, snaps) return len(list(snaps)) > 0 def replicate_with_dst_resource_provisioning(self, max_time_out_of_sync, dst_pool_id, dst_fs_name=None, remote_system=None, replication_name=None, dst_size=None, is_dst_thin=None, dst_tiering_policy=None, is_dst_compression=None): """ Creates a replication session with destination filesystem provisioning. :param max_time_out_of_sync: maximum time to wait before syncing the source and destination. Value `-1` means the automatic sync is not performed. `0` means it is a sync replication. :param dst_pool_id: id of pool to allocate destination filesystem. :param dst_fs_name: destination filesystem name. If `remote_system` is `None` (for local replication creation), `dst_fs_name` should be same as the source fs name or `None`. :param remote_system: `UnityRemoteSystem` object. The remote system to which the replication is being configured. When not specified, it defaults to local system. :param replication_name: replication name. :param dst_size: destination filesystem size. :param is_dst_thin: indicates whether destination filesystem is thin or not. :param dst_tiering_policy: `TieringPolicyEnum` value. Tiering policy of destination filesystem. :param is_dst_compression: indicates whether destination filesystem is compression enabled or not. :return: created replication session. """ if dst_fs_name is None: dst_fs_name = self.name if remote_system is None and dst_fs_name != self.name: raise UnityLocalReplicationFsNameNotSameError( 'dst_fs_name passed in for creating filesystem local ' 'replication should be same as source filesystem name ' 'or None') dst_size = self.size_total if dst_size is None else dst_size dst_resource = UnityResourceConfig.to_embedded( name=dst_fs_name, pool_id=dst_pool_id, size=dst_size, tiering_policy=dst_tiering_policy, is_thin_enabled=is_dst_thin, is_compression_enabled=is_dst_compression) return UnityReplicationSession.create_with_dst_resource_provisioning( self._cli, self.storage_resource.get_id(), dst_resource, max_time_out_of_sync, remote_system=remote_system, name=replication_name) @staticmethod def prepare_fs_parameters(**kwargs): @version('<4.3') def make_compression_body(is_compression=None): return UnityClient.make_body( allow_empty=True, isCompressionEnabled=is_compression) @version('>=4.3') # noqa def make_compression_body(is_compression=None): return UnityClient.make_body( allow_empty=True, isDataReductionEnabled=is_compression) access_policy = kwargs.get('access_policy') locking_policy = kwargs.get('locking_policy') supported_protocols = kwargs.get('supported_protocols') tiering_policy = kwargs.get('tiering_policy') AccessPolicyEnum.verify(access_policy) FSSupportedProtocolEnum.verify(supported_protocols) FSLockingPolicyEnum.verify(locking_policy) TieringPolicyEnum.verify(tiering_policy) fs_param = UnityClient.make_body( allow_empty=True, pool=kwargs.get('pool'), nasServer=kwargs.get('nas_server'), supportedProtocols=supported_protocols, isThinEnabled=kwargs.get('is_thin_enabled'), size=kwargs.get('size'), accessPolicy=access_policy, lockingPolicy=locking_policy) if tiering_policy: fs_param['fastVPParameters'] = UnityClient.make_body( allow_empty=True, tieringPolicy=tiering_policy) compression_body = make_compression_body(kwargs.get('is_compression')) fs_param.update(compression_body) return fs_param @staticmethod def prepare_cifs_fs_parameters( is_cifs_sync_writes_enabled=None, is_cifs_op_locks_enabled=None, is_cifs_notify_on_write_enabled=None, is_cifs_notify_on_access_enabled=None, cifs_notify_on_change_dir_depth=None): return UnityClient.make_body( allow_empty=True, isCIFSSyncWritesEnabled=is_cifs_sync_writes_enabled, isCIFSOpLocksEnabled=is_cifs_op_locks_enabled, isCIFSNotifyOnWriteEnabled=is_cifs_notify_on_write_enabled, isCIFSNotifyOnAccessEnabled=is_cifs_notify_on_access_enabled, cifsNotifyOnChangeDirDepth=cifs_notify_on_change_dir_depth) class UnityFileSystemList(UnityResourceList): @classmethod def get_resource_class(cls): return UnityFileSystem
import status import authstate class WelcomeState(): def __init__(self, handler): self.handler = handler def run(self): self.handler.send_response(status.OK, "POP3", "I'm a teapot") return authstate.AuthorizationState(self.handler)
import featuretools as ft import pandas as pd from unittest.mock import patch import pytest import autonormalize as an def test_ft_mock_customer(): df = ft.demo.load_mock_customer(n_customers=80, n_products=50, n_sessions=200, n_transactions=10000, return_single_table=True) entityset = an.auto_entityset(df, name="Customer Transactions", time_index='transaction_time') assert set(entityset['transaction_id'].columns) == set(['transaction_id', 'session_id', 'transaction_time', 'product_id', 'amount']) assert set(entityset['product_id'].columns) == set(['product_id', 'brand']) assert set(entityset['session_id'].columns) == set(['session_id', 'customer_id', 'device', 'session_start']) assert set(entityset['customer_id'].columns) == set(['customer_id', 'zip_code', 'join_date', 'birthday']) assert set([str(rel) for rel in entityset.relationships]) == set(['<Relationship: transaction_id.session_id -> session_id.session_id>', '<Relationship: transaction_id.product_id -> product_id.product_id>', '<Relationship: session_id.customer_id -> customer_id.customer_id>']) @patch("autonormalize.autonormalize.auto_entityset") def test_normalize_entityset(auto_entityset): df1 = pd.DataFrame({"test": [0, 1, 2]}) df2 = pd.DataFrame({"test": [0, 1, 2]}) accuracy = 0.98 es = ft.EntitySet() error = "This EntitySet is empty" with pytest.raises(ValueError, match=error): an.normalize_entityset(es, accuracy) es.add_dataframe(df1, "df") df_out = es.dataframes[0] an.normalize_entityset(es, accuracy) auto_entityset.assert_called_with(df_out, accuracy, index=df_out.ww.index, name=es.id, time_index=df_out.ww.time_index) es.add_dataframe(df2, "df2") error = "There is more than one dataframe in this EntitySet" with pytest.raises(ValueError, match=error): an.normalize_entityset(es, accuracy)
#!/usr/bin/env python # coding:utf-8 """ Name : check_db_connection.py Author : Dmitry Kruchinin Date : 7/1/2021 Desc: """ from fixture.orm import ORMFixture from model.group import Group db = ORMFixture(host="localhost", database="addressbook", user="root", password="") try: groups = db.get_groups_list() contacts = db.get_contacts_list() contacts_in_group = db.get_contacts_in_group(Group(id="248")) contacts_not_in_group = db.get_contacts_not_in_group(Group(id="248")) print("####### Groups") for group in groups: print(group) print(len(groups)) print("####### Contacts") for contact in contacts: print(contact) print(len(contacts)) print("####### Contacts in group") for contact_in_group in contacts_in_group: print(contact_in_group) print(len(contacts_in_group)) print("####### Contacts NOT in group") for contact_not_in_group in contacts_not_in_group: print(contact_not_in_group) print(len(contacts_not_in_group)) finally: pass # db.destroy()
"""Main module for tests.""" import os import pandas as pd import en_core_web_sm from narcy.nlp.utils import Relation, document_factory from narcy.processors import reduce_relations from narcy.processors import doc_to_relations_df, doc_to_svos_df from narcy.processors import doc_to_tokens_df _dirpath = os.path.join(os.path.split(__file__)[0], 'data') def get_docs(): make_doc = document_factory(en_core_web_sm.load()) documents = [] for text in os.listdir(_dirpath): with open(os.path.join(_dirpath, text)) as stream: doc = make_doc(stream.read().strip()) documents.append(doc) return documents def _test_relations(doc, reduced): relations = doc._.relations if reduced: relations = reduce_relations(relations) for relation in relations: assert isinstance(relation, Relation) def _test_doc_to_relations_df(doc, reduced): df = doc_to_relations_df(doc, reduced=reduced) assert isinstance(df, pd.DataFrame) assert df.shape != (0, 0) def _test_doc_to_svos_df(doc): df = doc_to_svos_df(doc) assert isinstance(df, pd.DataFrame) assert df.shape != (0, 0) def _test_doc_to_tokens_df(doc): df = doc_to_tokens_df(doc) assert isinstance(df, pd.DataFrame) assert df.shape != (0, 0)
# SISO program yes.py # Returns 'yes' for all inputs. import utils from utils import rf def yes(inString): return "yes" def testYes(): testVals = [ ("", "yes"), ("x", "yes"), ("asdf", "yes"), ("GAGAGAGAGAGA", "yes"), ] for (inString, solution) in testVals: val = yes(inString) utils.tprint(inString, ":", val) assert val == solution
# Returns a valid response when a request has appropriate credentials. def main(request, response): cookie = request.cookies.first("cookieName", None) expected_value = request.GET.first("value", None) source_origin = request.headers.get("origin", None) response_headers = [("Content-Type", "text/javascript"), ("Access-Control-Allow-Origin", source_origin), ("Access-Control-Allow-Credentials", "true")] if cookie == expected_value: return (200, response_headers, "") return (404, response_headers)
# Copyright 2020 MIT Probabilistic Computing Project. # See LICENSE.txt import os import re from setuptools import setup # Specify the requirements. requirements = { 'src' : [ 'astunparse==1.6.3', 'numpy==1.19', 'scipy==1.7.3', 'sympy==1.6', ], 'magics' : [ 'graphviz==0.13.2', 'ipython==7.13.0', 'jupyter-core==4.6.3', 'networkx==2.4', 'notebook==6.0.3', 'matplotlib==3.3.2', 'pygraphviz==1.5', ], 'tests' : [ 'pytest-timeout==1.3.3', 'pytest==5.2.2', 'coverage==5.3', ] } requirements['all'] = [r for v in requirements.values() for r in v] # Determine the version (hardcoded). dirname = os.path.dirname(os.path.realpath(__file__)) vre = re.compile('__version__ = \'(.*?)\'') m = open(os.path.join(dirname, 'src', '__init__.py')).read() __version__ = vre.findall(m)[0] setup( name='sppl', version=__version__, description='The Sum-Product Probabilistic Language', long_description=open('README.md').read(), long_description_content_type='text/markdown', url='https://github.com/probcomp/sppl', license='Apache-2.0', maintainer='Feras A. Saad', maintainer_email='fsaad@mit.edu', classifiers=[ 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Topic :: Scientific/Engineering :: Mathematics', ], packages=[ 'sppl', 'sppl.compilers', 'sppl.magics', 'sppl.tests', ], package_dir={ 'sppl' : 'src', 'sppl.compilers' : 'src/compilers', 'sppl.magics' : 'magics', 'sppl.tests' : 'tests', }, install_requires=requirements['src'], extras_require=requirements, python_requires='>=3.6', )
#code to get images from open cv into python #webcam_cnn_pipeline is a local module so export path first #!export PYTHONPATH="$PYTHONPATH:/Users/alexpapiu/Documents/Conv/OpenCV_CNN" from webcam_cnn_pipeline import * LR = 0.0003 #setting up camera: cp = cv2.VideoCapture(0) cp.set(3, 256) cp.set(4, 144) os.chdir("/Users/alexpapiu/Documents/Data/OpenCV_CNN") N = 50 #creating datasets: print("First Label") X_1 = imgs_to_arr(cp = cp, nr = N, nframe = 5) time.sleep(5) print("Second Label") X_2 = imgs_to_arr(cp = cp, nr = N, nframe = 5) #X_3 = imgs_to_arr(cp = cp, nr = 200, nframe = 10) X, y = create_matrices(X_1, X_2) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ print("loading previous weights") model = load_model("basic_model") model.compile(loss = "binary_crossentropy", optimizer = adam(lr = LR), metrics = ["accuracy"]) model.save_weights("fine_tuned_weights") X_tr, X_val, y_tr, y_val = train_test_split(X, y, stratify = y, random_state = 3, test_size = 0.15) print("fine tuning training model") model.fit(X_tr, y_tr, validation_data = (X_val, y_val), nb_epoch=3, batch_size=32) #dict for label: labelz = {0:"Open", 1:"Closed"} real_time_pred(model, labelz, nframes = 10000)
def swap(coords, matrix): x_1, y_1, x_2, y_2 = map(int, coords) if 0 <= x_1 < rows_count and 0 <= y_1 < cols_count and 0 <= x_2 < rows_count and 0 <= y_2 < cols_count: matrix[x_1][y_1], matrix[x_2][y_2] = matrix[x_2][y_2], matrix[x_1][y_1] [print(" ".join(map(str, x))) for x in matrix] else: print("Invalid input!") matrix = [] rows_count, cols_count = map(int, input().split()) for _ in range(rows_count): matrix.append([x for x in input().split()]) while True: command = input() command = command.split() if "END" in command: break elif "swap" in command and len(command) == 5: coords = command[1:] swap(coords, matrix) else: print("Invalid input!")
# coding: utf-8 # flake8: noqa """ Jordskredvarsel API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: v1.0.6 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import # import models into model package from varsom_landslide_client.models.alert import Alert from varsom_landslide_client.models.alert_info import AlertInfo from varsom_landslide_client.models.alert_info_area import AlertInfoArea from varsom_landslide_client.models.alert_info_area_geocode import AlertInfoAreaGeocode from varsom_landslide_client.models.alert_info_event_code import AlertInfoEventCode from varsom_landslide_client.models.alert_info_parameter import AlertInfoParameter from varsom_landslide_client.models.alert_info_resource import AlertInfoResource from varsom_landslide_client.models.cause import Cause from varsom_landslide_client.models.code_page_data_item import CodePageDataItem from varsom_landslide_client.models.county import County from varsom_landslide_client.models.decoder_fallback import DecoderFallback from varsom_landslide_client.models.encoder_fallback import EncoderFallback from varsom_landslide_client.models.encoding import Encoding from varsom_landslide_client.models.formatted_content_result_alert import FormattedContentResultAlert from varsom_landslide_client.models.formatted_content_result_list_alert import FormattedContentResultListAlert from varsom_landslide_client.models.i_required_member_selector import IRequiredMemberSelector from varsom_landslide_client.models.media_type_formatter import MediaTypeFormatter from varsom_landslide_client.models.media_type_header_value import MediaTypeHeaderValue from varsom_landslide_client.models.media_type_mapping import MediaTypeMapping from varsom_landslide_client.models.micro_blog_post import MicroBlogPost from varsom_landslide_client.models.municipality import Municipality from varsom_landslide_client.models.name_value_header_value import NameValueHeaderValue from varsom_landslide_client.models.station import Station from varsom_landslide_client.models.warning import Warning
from __future__ import print_function import numpy as np from astropy import units as u from astropy.coordinates import SkyCoord from astropy.tests.helper import assert_quantity_allclose from ...core import PixCoord from ...tests.helpers import make_simple_wcs from ..annulus import CircleAnnulusPixelRegion, CircleAnnulusSkyRegion from .test_common import BaseTestPixelRegion, BaseTestSkyRegion from .utils import ASTROPY_LT_13 class TestCircleAnnulusPixelRegion(BaseTestPixelRegion): reg = CircleAnnulusPixelRegion(PixCoord(3, 4), inner_radius=2, outer_radius=3) sample_box = [0, 6, 1, 7] inside = [(3, 2)] outside = [(3, 0)] expected_area = 5 * np.pi expected_repr = '<CircleAnnulusPixelRegion(PixCoord(x=3, y=4), inner radius=2, outer radius=3)>' expected_str = 'Region: CircleAnnulusPixelRegion\ncenter: PixCoord(x=3, y=4)\ninner radius: 2\nouter radius: 3' skycoord = SkyCoord(3 * u.deg, 4 * u.deg, frame='icrs') wcs = make_simple_wcs(skycoord, 5 * u.arcsec, 20) def test_init(self): assert_quantity_allclose(self.reg.center.x, 3) assert_quantity_allclose(self.reg.center.y, 4) assert_quantity_allclose(self.reg.inner_radius, 2) assert_quantity_allclose(self.reg.outer_radius, 3) def test_transformation(self): skyannulus = self.reg.to_sky(wcs=self.wcs) assert isinstance(skyannulus, CircleAnnulusSkyRegion) class TestCircleAnnulusSkyRegion(BaseTestSkyRegion): reg = CircleAnnulusSkyRegion(SkyCoord(3 * u.deg, 4 * u.deg), 20 * u.arcsec, 30 * u.arcsec) skycoord = SkyCoord(3 * u.deg, 4 * u.deg, frame='icrs') wcs = make_simple_wcs(skycoord, 5 * u.arcsec, 20) if ASTROPY_LT_13: expected_repr = ('<CircleAnnulusSkyRegion(<SkyCoord (ICRS): (ra, dec) in ' 'deg\n (3.0, 4.0)>, inner radius=20.0 arcsec, outer radius=30.0 arcsec)>') expected_str = ('Region: CircleAnnulusSkyRegion\ncenter: <SkyCoord (ICRS): ' '(ra, dec) in deg\n (3.0, 4.0)>\ninner radius: 20.0 ' 'arcsec\nouter radius: 30.0 arcsec') else: expected_repr = ('<CircleAnnulusSkyRegion(<SkyCoord (ICRS): (ra, dec) in ' 'deg\n ( 3., 4.)>, inner radius=20.0 arcsec, outer radius=30.0 arcsec)>') expected_str = ('Region: CircleAnnulusSkyRegion\ncenter: <SkyCoord (ICRS): ' '(ra, dec) in deg\n ( 3., 4.)>\ninner radius: 20.0 ' 'arcsec\nouter radius: 30.0 arcsec') def test_init(self): assert_quantity_allclose(self.reg.center.ra, self.skycoord.ra) assert_quantity_allclose(self.reg.inner_radius, 20*u.arcsec) assert_quantity_allclose(self.reg.outer_radius, 30*u.arcsec) def test_contains(self): assert not self.reg.contains(self.skycoord, self.wcs) test_coord = SkyCoord(3 * u.deg, 10 * u.deg, frame='icrs') assert not self.reg.contains(test_coord, self.wcs) def test_transformation(self): pixannulus = self.reg.to_pixel(wcs=self.wcs) assert isinstance(pixannulus, CircleAnnulusPixelRegion)
# Search the Dice Jobs API # lame docs: http://www.dice.com/common/content/util/apidoc/jobsearch.html # author: nxkennedy ''' Example response: {"detailUrl":"http://www.dice.com/job/result/10347349a/749028?src\u003d19","jobTitle":"Front-End Web Developer","company":"The Doyle Group","location":"Denver, CO","date":"2017-01-18"} ''' import requests import csv from os.path import exists from sys import argv def format_search(terms): print(terms) words = [x for x in terms.split(' ') if x] print(words) query = 'text=' + '+'.join(words) + '&age=30' + '&sort=1' print(query) # age - (optional) specify a posting age (a.k.a. days back) # sort - (optional) sort=1 sorts by posted age, sort=2 sorts by job title, sort=3 sorts by company, sort=4 sorts by location baseURL= 'http://service.dice.com/api/rest/jobsearch/v1/simple.json?' url = baseURL + query print("\nRequested URL:", url + '\n') return url def write_to_file(jobListings): with open('jobs.csv', 'w') as csvFile: fieldnames = ['Job Title', 'Company', 'Location', 'Posted', 'URL'] writer = csv.DictWriter(csvFile, fieldnames=fieldnames) writer.writeheader() for job in jobListings: writer.writerow({'Job Title': job['jobTitle'], 'Company': job['company'], 'Location': job['location'], 'Posted': job['date'], 'URL': job['detailUrl']}) print("Finished writing file.") def search(terms): response = requests.get(format_search(terms)).json() rawData = response print(rawData['count'], 'total results') print(rawData['lastDocument'], 'results per page') jobListings = rawData['resultItemList'] write_to_file(jobListings) if __name__ == '__main__': s = input('Key word(s) to search?\n> ') search(s)
__author__ = 'fractus.io' import api.items
from django.conf import settings from django.core.urlresolvers import reverse from django.db import models from django.db.models.signals import pre_save from django.utils.text import slugify from django.utils import timezone class PostManager(models.Manager): def active(self, *args, **kwargs): return super(PostManager, self).filter( draft=False).filter(publish__lte=timezone.now()) def upload_location(instance, filename): return "{0}/{1}".format(instance.id, filename) class Post(models.Model): user = models.ForeignKey(settings.AUTH_USER_MODEL, default=1) title = models.CharField(max_length=120) slug = models.SlugField(unique=True, default='abv') image = models.ImageField(upload_to=upload_location, null=True, blank=True, width_field="width_field", height_field="height_field") width_field = models.IntegerField(default=0) height_field = models.IntegerField(default=0) content = models.TextField() draft = models.BooleanField(default=False) publish = models.DateField(auto_now_add=False, auto_now=False) updated = models.DateTimeField(auto_now_add=False, auto_now=True) timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) objects = PostManager() def __str__(self): return self.title def get_absolute_url(self): return reverse("posts:detail", kwargs={"slug": self.slug}) class Meta: ordering = ["-timestamp", "-updated"] def pre_save_slug_post(sender, instance, *args, **kwargs): slug = slugify(instance.title) instance.slug = slug pre_save.connect(pre_save_slug_post, sender=Post)
from flask import Flask app = Flask('aone_app') import aone_app.main
import itertools from typing import List class Solution: def subsets(self, nums: List[int]) -> List[List[int]]: res = [] def dfs(begin,path): res.append(path[:]) if begin==len(nums): return for i in range(begin,len(nums)): path.append(nums[i]) dfs(i+1,path) path.pop(-1) dfs(0,[]) print(res) Solution().subsets([1,2,3])
import xmlrpc.client import xmlrpc import os import argparse import random def handle(s, btFile, secret): print('handle bittorrent file: ', str(btFile)) ret=s.aria2.addTorrent('token:'+secret, xmlrpc.client.Binary(open(btFile, mode='rb').read()),[],{'pause':'true'}) print("add bt: ",str(ret)) waiting = s.aria2.tellWaiting('token:'+secret, 0, 1000, ["gid", "totalLength", "completedLength", "uploadSpeed", "downloadSpeed", "connections", "numSeeders", "seeder", "status", "errorCode", "verifiedLength", "verifyIntegrityPending", "files", "bittorrent", "infoHash"]) for w in waiting: gid=w['gid'] if gid!=ret: continue #print(w['gid'],w['files']) # max-selection strategy maxLen=0 maxFPath='' maxFIndex='0' for f in w['files']: print(f['length'],f['path']) if int(f['length'])>maxLen: maxLen=int(f['length']) maxFPath=f['path'] maxFIndex=f['index'] print('max file: ',str(maxLen),maxFIndex,str(maxFPath)) # max-selection strategy end cret=s.aria2.changeOption('token:'+secret, gid,{'select-file':maxFIndex})# select multiple files example: 'select-file':'5,6,7,8' print('select file: ',cret) tret=s.aria2.tellStatus('token:'+secret, gid) print('after selection: ', tret['files'][int(maxFIndex)-1]) uret=s.aria2.unpause('token:'+secret, gid) print('unpause: ',uret) print('over: ',str(btFile)) os.remove(btFile) def handleMag(s, mgFile, secret): print('handle mag file: ', str(mgFile)) if os.path.getsize(mgFile): ret=s.aria2.addUri('token:'+secret, [xmlrpc.client.Binary(open(mgFile, mode='rb').read())]) print("add mag: ",str(ret)) print("remove mag file: ",str(mgFile)) os.remove(mgFile) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.description = 'bt批量导入aria2,并选择文件大小最大的文件进行下载' parser.add_argument("num", help="the num to be added once", type=int) parser.add_argument("server", help="like: http://192.168.3.99:6800/", type=str) parser.add_argument("dir", help="the dir of your bittorrents", type=str) parser.add_argument("mgdir", help="the dir of your magnets", type=str) parser.add_argument("secret", help="secrets", type=str) parser.add_argument("name", help="mag name", type=str) args = parser.parse_args() s = xmlrpc.client.ServerProxy(args.server+"rpc") flist=os.listdir(args.dir) name = args.name for i in range(0, len(flist)): if flist[i].endswith(".torrent"): btFile = os.path.join(args.dir, flist[i]) if os.path.isfile(btFile): handle(s,btFile,args.secret) temp = [] for root, dirs, files in os.walk(args.mgdir): for file in files: if name != "any" and root.lower().replace('-','').find(name.lower().replace('-','')) == -1: continue if file.endswith(".txt"): temp.append(os.path.join(root, file)) if len(temp) > 0: dn = args.num if args.num > len(temp): dn = len(temp) for mgFile in random.sample(temp, dn): print("path:",str(mgFile)) handleMag(s,mgFile,args.secret) print("Add magnets to air2 Done") else: print("No magnets to air2 !!!")
import warnings from typing import Union, Tuple, Dict import pygame from pygame_gui.core import ObjectID from pygame_gui.core.interfaces import IContainerLikeInterface, IUIManagerInterface from pygame_gui.core import ColourGradient, UIElement from pygame_gui.core.utility import render_white_text_alpha_black_bg, apply_colour_to_surface from pygame_gui.core.utility import basic_blit class UILabel(UIElement): """ A label lets us display a single line of text with a single font style. It's a quick to rebuild and simple alternative to the text box element. :param relative_rect: The rectangle that contains and positions the label relative to it's container. :param text: The text to display in the label. :param manager: The UIManager that manages this label. :param container: The container that this element is within. If set to None will be the root window's container. :param parent_element: The element this element 'belongs to' in the theming hierarchy. :param object_id: A custom defined ID for fine tuning of theming. :param anchors: A dictionary describing what this element's relative_rect is relative to. :param visible: Whether the element is visible by default. Warning - container visibility may override this. """ def __init__(self, relative_rect: pygame.Rect, text: str, manager: IUIManagerInterface, container: Union[IContainerLikeInterface, None] = None, parent_element: UIElement = None, object_id: Union[ObjectID, str, None] = None, anchors: Dict[str, str] = None, visible: int = 1): super().__init__(relative_rect, manager, container, starting_height=1, layer_thickness=1, anchors=anchors, visible=visible) self._create_valid_ids(container=container, parent_element=parent_element, object_id=object_id, element_id='label') self.text = text # initialise theme params self.font = None self.bg_colour = None self.text_colour = None self.disabled_text_colour = None self.text_shadow_colour = None self.text_shadow = False self.text_shadow_size = 1 self.text_shadow_offset = (0, 0) self.rebuild_from_changed_theme_data() def set_text(self, text: str): """ Changes the string displayed by the label element. Labels do not support HTML styling. :param text: the text to set the label to. """ if text != self.text: self.text = text self.rebuild() def rebuild(self): """ Re-render the text to the label's underlying sprite image. This allows us to change what the displayed text is or remake it with different theming (if the theming has changed). """ text_size = self.font.size(self.text) if text_size[1] > self.relative_rect.height or text_size[0] > self.relative_rect.width: width_overlap = self.relative_rect.width - text_size[0] height_overlap = self.relative_rect.height - text_size[1] warn_text = ('Label Rect is too small for text: ' '' + self.text + ' - size diff: ' + str((width_overlap, height_overlap))) warnings.warn(warn_text, UserWarning) new_image = pygame.surface.Surface(self.relative_rect.size, flags=pygame.SRCALPHA, depth=32) if isinstance(self.bg_colour, ColourGradient): new_image.fill(pygame.Color('#FFFFFFFF')) self.bg_colour.apply_gradient_to_surface(new_image) text_render = render_white_text_alpha_black_bg(self.font, self.text) if self.is_enabled: if isinstance(self.text_colour, ColourGradient): self.text_colour.apply_gradient_to_surface(text_render) else: apply_colour_to_surface(self.text_colour, text_render) else: if isinstance(self.disabled_text_colour, ColourGradient): self.disabled_text_colour.apply_gradient_to_surface(text_render) else: apply_colour_to_surface(self.disabled_text_colour, text_render) else: new_image.fill(self.bg_colour) if self.is_enabled: if isinstance(self.text_colour, ColourGradient): text_render = render_white_text_alpha_black_bg(self.font, self.text) self.text_colour.apply_gradient_to_surface(text_render) else: if self.bg_colour.a != 255 or self.text_shadow: text_render = render_white_text_alpha_black_bg(self.font, self.text) apply_colour_to_surface(self.text_colour, text_render) else: text_render = self.font.render(self.text, True, self.text_colour, self.bg_colour) text_render = text_render.convert_alpha() else: if isinstance(self.disabled_text_colour, ColourGradient): text_render = render_white_text_alpha_black_bg(self.font, self.text) self.disabled_text_colour.apply_gradient_to_surface(text_render) else: if self.bg_colour.a != 255 or self.text_shadow: text_render = render_white_text_alpha_black_bg(self.font, self.text) apply_colour_to_surface(self.disabled_text_colour, text_render) else: text_render = self.font.render(self.text, True, self.disabled_text_colour, self.bg_colour) text_render = text_render.convert_alpha() text_render_rect = text_render.get_rect(centerx=int(self.rect.width / 2), centery=int(self.rect.height / 2)) if self.text_shadow: self._rebuild_shadow(new_image, text_render_rect) basic_blit(new_image, text_render, text_render_rect) self.set_image(new_image) def _rebuild_shadow(self, new_image, text_render_rect): shadow_text_render = render_white_text_alpha_black_bg(self.font, self.text) apply_colour_to_surface(self.text_shadow_colour, shadow_text_render) for y_pos in range(-self.text_shadow_size, self.text_shadow_size + 1): shadow_text_rect = pygame.Rect((text_render_rect.x + self.text_shadow_offset[0], text_render_rect.y + self.text_shadow_offset[1] + y_pos), text_render_rect.size) basic_blit(new_image, shadow_text_render, shadow_text_rect) for x_pos in range(-self.text_shadow_size, self.text_shadow_size + 1): shadow_text_rect = pygame.Rect((text_render_rect.x + self.text_shadow_offset[0] + x_pos, text_render_rect.y + self.text_shadow_offset[1]), text_render_rect.size) basic_blit(new_image, shadow_text_render, shadow_text_rect) for x_and_y in range(-self.text_shadow_size, self.text_shadow_size + 1): shadow_text_rect = pygame.Rect( (text_render_rect.x + self.text_shadow_offset[0] + x_and_y, text_render_rect.y + self.text_shadow_offset[1] + x_and_y), text_render_rect.size) basic_blit(new_image, shadow_text_render, shadow_text_rect) for x_and_y in range(-self.text_shadow_size, self.text_shadow_size + 1): shadow_text_rect = pygame.Rect( (text_render_rect.x + self.text_shadow_offset[0] - x_and_y, text_render_rect.y + self.text_shadow_offset[1] + x_and_y), text_render_rect.size) basic_blit(new_image, shadow_text_render, shadow_text_rect) def rebuild_from_changed_theme_data(self): """ Checks if any theming parameters have changed, and if so triggers a full rebuild of the element. """ super().rebuild_from_changed_theme_data() any_changed = False font = self.ui_theme.get_font(self.combined_element_ids) if font != self.font: self.font = font any_changed = True text_colour = self.ui_theme.get_colour_or_gradient('normal_text', self.combined_element_ids) if text_colour != self.text_colour: self.text_colour = text_colour any_changed = True disabled_text_colour = self.ui_theme.get_colour_or_gradient('disabled_text', self.combined_element_ids) if disabled_text_colour != self.disabled_text_colour: self.disabled_text_colour = disabled_text_colour any_changed = True bg_colour = self.ui_theme.get_colour_or_gradient('dark_bg', self.combined_element_ids) if bg_colour != self.bg_colour: self.bg_colour = bg_colour any_changed = True text_shadow_colour = self.ui_theme.get_colour('text_shadow', self.combined_element_ids) if text_shadow_colour != self.text_shadow_colour: self.text_shadow_colour = text_shadow_colour any_changed = True def parse_to_bool(str_data: str): return bool(int(str_data)) if self._check_misc_theme_data_changed(attribute_name='text_shadow', default_value=False, casting_func=parse_to_bool): any_changed = True if self._check_misc_theme_data_changed(attribute_name='text_shadow_size', default_value=1, casting_func=int): any_changed = True if self._check_misc_theme_data_changed(attribute_name='text_shadow_size', default_value=1, casting_func=int): any_changed = True def tuple_extract(str_data: str) -> Tuple[int, int]: return int(str_data.split(',')[0]), int(str_data.split(',')[1]) if self._check_misc_theme_data_changed(attribute_name='text_shadow_offset', default_value=(0, 0), casting_func=tuple_extract): any_changed = True if any_changed: self.rebuild() def set_dimensions(self, dimensions: Union[pygame.math.Vector2, Tuple[int, int], Tuple[float, float]]): """ Method to directly set the dimensions of a label. :param dimensions: The new dimensions to set. """ super().set_dimensions(dimensions) if dimensions[0] >= 0 and dimensions[1] >= 0: self.rebuild() def disable(self): """ Disables the label so that its text changes to the disabled colour. """ if self.is_enabled: self.is_enabled = False self.rebuild() def enable(self): """ Re-enables the label so that its text changes to the normal colour """ if not self.is_enabled: self.is_enabled = True self.rebuild()
# -*- coding:utf8 -*- import time import math import random from lib.control.Control import Control from lib.unit.Player import Player from lib.struct.Point import Point from lib.base.Base import Base # 导航基类 class NvBase(Base): def __init__(self): Base.__init__(self) self.hander = open("tmp/logs/" + self.getFormatTime(False) + "_navbase.log", 'a+') # 获取坐标区域中里自己最近的点 def getNearstPoint(self, now_pos: Point, all_pos): start = time.time() start_distance = float("inf") print("start_distance:" + str(start_distance)) for pos in all_pos: now_distance = self.get_distance_off_tow_pos(pos, now_pos) print(pos.toString() + " now_distance:" + str(now_distance)) if now_distance < start_distance: near_pos = pos start_distance = now_distance print("get_nearest_pos time:" + str(time.time() - start)) return near_pos # 别担心,这里肯定能找到,难道还有比无穷大更大的么!!! # 根据三点坐标计算角度(转向角度) # a为起始点和当前点那条边 # b为起始点到目标点那条边 # c为当前点到目标点那条边 # 设:S为起始点,N为当前点,T为目标点 # 先用勾股定理计算出三角形三边长,再用反余弦计算弧度和角度 # 角度为ab的夹角度数 + bc夹角度数 def posToDegree(self, startPos: Point, nowPos: Point, targetPos: Point): a = self.get_distance_off_tow_pos(startPos, nowPos) b = self.get_distance_off_tow_pos(startPos, targetPos) c = self.get_distance_off_tow_pos(nowPos, targetPos) print("a = " + str(a) + ", b = " + str(b) + ", c = " + str(c), file=self.hander) if a == 0: # 为0可能卡地形了 return 9999 if b == 0: print("起始点和目标点重合了") print("起始点和目标点重合了", file=self.hander) return 0 if c == 0: print("当前点点和目标点重合了") print("当前点点和目标点重合了", file=self.hander) return 0 # 反余弦的参数值之必需在【-1,1】这个区间,由于电脑浮点数计算误差可能出现大于1或者小于-1的情况,这里要兼容处理下 tmp = (a ** 2 + b ** 2 - c ** 2) / (2 * a * b) tmp = 1 if tmp >= 1 else tmp tmp = -1 if tmp <= -1 else tmp degreeNST = math.degrees(math.acos(tmp)) # 角NST的度数 tmp = (b ** 2 + c ** 2 - a ** 2) / (2 * b * c) tmp = 1 if tmp >= 1 else tmp tmp = -1 if tmp <= -1 else tmp degreeNTS = math.degrees(math.acos(tmp)) # 角NTS的度数 degree = degreeNST + degreeNTS # 实际要修正的角度应该是角SNT的补角,即三角形另外两个内角的和 print("角度 = " + str(degree), file=self.hander) return degree # 计算两个点之间的距离(使用距离公式) def get_distance_off_tow_pos(self, p1: Point, p2: Point): return round(((p1.x - p2.x) ** 2 + (p1.y - p2.y) ** 2) ** 0.5, 8) # 判断应该左转还是右转,使用了直线方程 def leftOrRight(self, startPos: Point, nowPos: Point, targetPos: Point): x1 = startPos.x y1 = startPos.y x2 = targetPos.x y2 = targetPos.y X = nowPos.x Y = nowPos.y # 特殊情况(基本不可能出现):起始坐标和目的坐标的x轴数据相同,则是垂直于x轴的直线,无斜率 if x1 == x2: if X < x1: # 目的坐标在直线左边 if Y < y2: # 目的坐标在当前坐标上面 return 'right' return 'left' else: # 目的坐标在直线右边 if Y < y2: # 目的坐标在当前左边下面 return 'left' return 'right' # 构建起始点到目标点两点直线方程为:y = kx + b, 那么给定一点当前点P(X,Y)如果kX+b>Y,则P在直线下方,反之则在上方,相等表明在直线上. k = (y2 - y1) / (x2 - x1) # 斜率 b = y1 - k * x1 # 截距 print("直线方程:y = " + str(k) + "x + " + str(b), file=self.hander) ret = k * X + b # 将当前坐标带入直线方程看看该坐标在直线上方还是在直线下方 if ret >= Y: # 在下方 print("当前点在直线下方", file=self.hander) if x2 < X: return 'left' return 'right' else: # 在上方 print("当前点在直线上方", file=self.hander) if x2 > X: return 'left' return 'right' # @Deprecated # 向量叉积法计算当前点在目标点与起始点所在直线的左侧还是右侧 # 设起始点为S 当前点为N 目标点为T def leftOrRightByVector(self, startPos: Point, nowPos: Point, targetPos: Point): X = nowPos.x Y = nowPos.y ST = Point(targetPos.x - startPos.x, targetPos.y - startPos.y) # 起始点到目标点向量 SN = Point(nowPos.x - startPos.x, nowPos.y - startPos.y) # 起始点到当前点向量 ds = (ST.x * SN.y) - (SN.x * ST.y) # 向量叉积 if ds > 0: # 在直线左边 if Y < targetPos.y: return "left" return "right" elif ds < 0: # 在直线右边 if Y < targetPos.y: return "right" return "left" else: # 在直线上 return "on the line" # 根据朝向计算左右转(使用facing) def leftOrRightByFacing(self, playerFacing, nowPos: Point, targetPos: Point): slope = self.calNowToTargetFacing(nowPos, targetPos) directionDiff = slope - playerFacing # 目标点弧度与当前弧度差 print("弧度差:" + str(directionDiff), file=self.hander) if directionDiff > math.pi: directionDiff = ((math.pi * 2) - directionDiff) * -1 # 大于180° 取另一个角,即360°-directionDiff,并且取负 if directionDiff < -math.pi: directionDiff = (math.pi * 2) - (directionDiff * -1) # 小于负180° 其实和大于180°一个意思,同样取晓得一个角,并且取正 print("处理后的弧度差:" + str(directionDiff), file=self.hander) if directionDiff > 0: return "left" return "right" # 计算当前点到目标点的弧度 def calNowToTargetFacing(self, nowPos: Point, targetPos: Point): slope = math.atan2(targetPos.y - nowPos.y, nowPos.x - targetPos.x) # 反正切计算方位角弧度,即与x轴夹角 print("反正切值:" + str(slope), file=self.hander) slope = slope + math.pi # 因为反正切函数值域为(-π/2,π/2),需要给他转换到0-2π范围 slope = slope - math.pi * 0.5 # 此弧度是从当前点到目标点的绝对弧度,需要转换成wow的弧度,左旋90°。使上(北)为0,而不是右,和wow保持一致 if slope < 0: slope = slope + math.pi * 2 # 确保弧度不是一个负数 if slope > math.pi * 2: # 也要确保弧度不会超过2π slope = slope - math.pi * 2 print("反正切值处理后的值:" + str(slope), file=self.hander) return slope # 根据角度计算转向时间(幅度),测试0.52秒大概90度 def degreeToTime(self, degree): one_degree_time = 0.51 / 90 # 转1度需要多少秒 return one_degree_time * degree # 坐标系顺时针旋转degree def clockWiseSpin(self, point: Point, degree): x = point.x * math.cos(math.radians(degree)) + point.y * math.sin(math.radians(degree)) y = point.y * math.cos(math.radians(degree)) - point.x * math.sin(math.radians(degree)) return Point(x, y) # 坐标系逆时针旋转degree def counterClockWiseSpin(self, point: Point, degree): x = point.x * math.cos(math.radians(degree)) - point.y * math.sin(math.radians(degree)) y = point.y * math.cos(math.radians(degree)) + point.x * math.sin(math.radians(degree)) return Point(x, y)
import os import sys import time import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from mrinet.unet_wavelet import UNetWavelet from data.metrics import MetricEval class DeGibbs(object): """A U-Net model for Gibbs artifact correction. This initializes a wavelet U-Net model intended for artifact correciton in medical images. The script allows attachment of PyTorch data loader objects and associated transforms, in principle allowing the correction of any artifacts simulated by the transforms. By default, the model output parameters are saved in 'exp_dir/best_model.pt' Args: nlayers (int): Number of layers for U-Net. in_ch (int): Number of input channels (usually 1 for magnitude, 2 for complex). out_ch (int): Number of output channels. comp2mag (boolean): A flag for whether to output magnitude outputs when given complex inputs. If True, then performs the magnitude operation as a final step of the U-Net. leaky (boolean): If true, use leaky ReLUs instead of normal ones. device (torch.device): Use torch.device('cuda') for GPU or torch.device('cpu') for CPU. Examples: Initialization: >>> ob = DeGibbs(**params) Loading parameters from file: >>> ob = ob.load_model(model_file) Attaching a dataloader: >>> ob = ob.attach_data(exp_type, train_loader, val_loader) Training: >>> ob = ob.fit(num_epochs) Run current model on example: >>> out = ob(in) """ def __init__( self, nlayers, in_ch, out_ch, nchans, comp2mag, leaky, device, dtype=torch.double, ): self.optimizer = None self.train_data_dir = None self.model = UNetWavelet( ndims=2, nlayers=nlayers, in_ch=in_ch, out_ch=out_ch, top_filtnum=nchans, resid=True, wave_concat=True, comp2mag=comp2mag, leaky=leaky, ) self.model = self.model.to(device=device, dtype=dtype) self.device = device self.dtype = dtype def __call__(self, x): return self.model(x) def load_model(self, model_file, device=None, dtype=None): """Loads model parameters from .pt file. Args: model_file (str): A directory pointing to the .pt file with parameters. device (torch.device, default=None): Device to send model to after loading. If None, uses device supplied by init function. Returns: self """ if not device == None: self.device = device self.model = self.model.to(device) if not dtype == None: self.dtype = dtype self.model = self.model.to(dtype=dtype) pytorch_total_params = sum( p.numel() for p in self.model.parameters() if p.requires_grad ) print("network params: {}".format(pytorch_total_params)) if os.path.isfile(model_file): params = self.model.state_dict() print("loading model from file: {}".format(model_file)) checkpt = torch.load(model_file, map_location=self.device) state_dict = checkpt["state_dict"] params.update(state_dict) self.model.load_state_dict(params) else: print("model file {} not found".format(model_file)) self.model = self.model.eval() return self def init_optimizer(self, learning_rate, loss_fn, model_file=None): """Loads model parameters from .pt file. Currently, only the PyTorch Adam optimizer is implemented. Args: learning_rate (double): The Adam learning rate. loss_fn (torch.loss_fn): The PyTorch loss function (e.g., torch.nn.MSELoss). model_file (str): If not None, then loads the optimizer state from the model file. Returns: self """ self.epoch = 0 self.train_loss_min = np.inf self.val_loss_min = np.inf self.loss_fn = loss_fn optimizer = torch.optim.Adam(self.model.parameters(), lr=learning_rate) if os.path.isfile(model_file) and model_file is not None: print("loading optimizer from file: {}".format(model_file)) checkpt = torch.load(model_file) optimizer.load_state_dict(checkpt["optimizer"]) self.epoch = checkpt["epoch"] + 1 train_loss_min = self.train_loss_min try: self.train_loss_min = checkpt["train_loss_min"] except: self.train_loss_min = train_loss_min val_loss_min = self.val_loss_min try: self.val_loss_min = checkpt["val_loss_min"] except: self.val_loss_min = val_loss_min elif not os.path.isfile(model_file): print("model file {} not found".format(model_file)) if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUS!") self.model = torch.nn.DataParallel(self.model) self.optimizer = optimizer self.learning_rate = learning_rate return self def attach_data(self, exp_type, train_loader, val_loader, train_data_dir=None): """Attaches a dataloader for training. Args: exp_type (str): Experiment type (used for visualizations). train_loader (torch.DataLoader): The loader for the training split. val_loader (torch.DataLoader): The loader for the validation split. train_data_dir (str, default=None): Stored as attribute for print statements. Returns: self """ self.train_loader = train_loader self.val_loader = val_loader self.exp_type = exp_type self.train_data_dir = train_data_dir return self def _save_checkpoint(self, filename): """Save current model state. Args: filename (str): File name for .pt file to save model. """ try: state = { "state_dict": self.model.module.state_dict(), "optimizer": self.optimizer.state_dict(), } except AttributeError: state = { "state_dict": self.model.state_dict(), "optimizer": self.optimizer.state_dict(), } for attr, value in self.__dict__.items(): if ( (not "model" in attr) and (not "optimizer" in attr) and (not "loss_fn" in attr) ): state[attr] = value torch.save(state, filename) def run_val_loop(self, visuals, rnd_seed, all_metrics=False): """Run a loop over the validation data split. Args: visuals (dict): A dictionary object storing all arrays for visualization. rnd_seed (int): Seed for numpy, PyTorch, and CUDA (for reproducibility). Returns: val_loss (double): Validation loss. visuals (dict): Dictionary visuals object with validation images. """ print("epoch {}: validation loop".format(self.epoch)) # set random seed torch.manual_seed(rnd_seed) np.random.seed(rnd_seed) torch.cuda.manual_seed(rnd_seed) device = self.device self.model = self.model.eval() disp_frac_vec = np.array(range(11)) disp_val = disp_frac_vec[0] disp_counter = 0 if all_metrics: metrics = {"mse": [], "ssim": [], "nmse": [], "psnr": []} with torch.no_grad(): val_loss = 0 counter = 0 for i, val_batch in enumerate(self.val_loader): val_target, val_dat = ( val_batch["target"].to(device), val_batch["dat"].to(device), ) val_est = self.model(val_dat) val_loss = ( val_loss * counter + self.loss_fn(val_est, val_target).item() ) / (counter + 1) counter = counter + 1 if all_metrics: for ind in range(val_target.shape[0]): nptarget = val_target[ind].cpu().numpy() if nptarget.shape[0] > 1: nptarget = np.sqrt(nptarget[0] ** 2 + nptarget[1] ** 2) else: nptarget = nptarget[0] npest = val_est[ind].cpu().numpy() if npest.shape[0] > 1: npest = np.sqrt(npest[0] ** 2 + npest[1] ** 2) else: npest = npest[0] metrics["mse"].append(MetricEval.mse(nptarget, npest)) metrics["ssim"].append(MetricEval.ssim(nptarget, npest)) metrics["nmse"].append(MetricEval.nmse(nptarget, npest)) metrics["psnr"].append(MetricEval.psnr(nptarget, npest)) if (i / len(self.val_loader)) >= (disp_val / 10): print( "validation loop progress: {:.0f}%".format( 100 * (i + 1) / len(self.val_loader) ) ) disp_counter += 1 disp_val = disp_frac_vec[disp_counter] print("validation loop finished") dispind = 0 if val_target.shape[1] > 1: # assume dim 0, 1 are real, imag tmp = np.squeeze( val_target[dispind, ...].cpu().detach().float().numpy() ) visuals["val_target"] = np.expand_dims( np.sqrt(tmp[0, ...] ** 2 + tmp[1, ...] ** 2), 0 ) else: visuals["val_target"] = np.absolute( val_target[dispind, ...].cpu().detach().numpy() ) if val_dat.shape[1] > 1: # assume dim 0, 1 are real, imag tmp = np.squeeze(val_dat[dispind, ...].cpu().detach().float().numpy()) visuals["val_dat"] = np.expand_dims( np.sqrt(tmp[0, ...] ** 2 + tmp[1, ...] ** 2), 0 ) else: visuals["val_dat"] = np.absolute( val_dat[dispind, ...].cpu().detach().numpy() ) if val_est.shape[1] > 1: # assume dim 0, 1 are real, imag tmp = np.squeeze(val_est[dispind, ...].cpu().detach().float().numpy()) visuals["val_est"] = np.expand_dims( np.sqrt(tmp[0, ...] ** 2 + tmp[1, ...] ** 2), 0 ) else: visuals["val_est"] = np.absolute( val_est[dispind, ...].cpu().detach().float().numpy() ) if all_metrics: mse = np.array(metrics["mse"]) mse = mse[~np.isnan(mse)] mse = mse[~np.isinf(mse)] nmse = np.array(metrics["nmse"]) nmse = nmse[~np.isnan(nmse)] nmse = nmse[~np.isinf(nmse)] ssim = np.array(metrics["ssim"]) ssim = ssim[~np.isnan(ssim)] ssim = ssim[~np.isinf(ssim)] psnr = np.array(metrics["psnr"]) psnr = psnr[~np.isnan(psnr)] psnr = psnr[~np.isinf(psnr)] metrics["mse"] = mse metrics["nmse"] = nmse metrics["ssim"] = ssim metrics["psnr"] = psnr return metrics, visuals else: return val_loss, visuals def run_train_loop(self, global_iter, visuals, rnd_seed): """Run a loop over the training data split. The model is updated via the self.model attribute. Args: global_iter (int): Global iteration count (for print statements). visuals (dict): A dictionary object storing all arrays for visualization. rnd_seed (int): Seed for numpy, PyTorch, and CUDA (for reproducibility). Returns: global_iter (int): Updated global iteration. visuals (dict): Dictionary visuals object with validation images. disp_loss (double): A display loss for the training data taken as an average from the last few images. """ print("epoch {}: training loop".format(self.epoch)) torch.manual_seed(rnd_seed) np.random.seed(rnd_seed) torch.cuda.manual_seed(rnd_seed) device = self.device self.model = self.model.train() losses = [] disp_frac_vec = np.array(range(11)) disp_val = disp_frac_vec[0] disp_counter = 0 for i, batch in enumerate(self.train_loader): target, dat = batch["target"].to(device), batch["dat"].to(device) est = self.model(dat) loss = self.loss_fn(est, target) self.optimizer.zero_grad() loss.backward() self.optimizer.step() np_train_loss = loss.item() losses.append(np_train_loss) losses = losses[-50:] disp_loss = np.mean(losses) global_iter = global_iter + 1 if (i / len(self.train_loader)) >= (disp_val / 10): print( "training loop progress: {:.0f}%".format( 100 * (i + 1) / len(self.train_loader) ) ) disp_counter += 1 disp_val = disp_frac_vec[disp_counter] print("training loop finished") dispind = 0 if target.shape[1] > 1: # assume dim 0, 1 are real, imag tmp = np.squeeze(target[dispind, ...].cpu().detach().float().numpy()) visuals["train_target"] = np.expand_dims( np.sqrt(tmp[0, ...] ** 2 + tmp[1, ...] ** 2), 0 ) else: visuals["train_target"] = np.absolute( target[dispind, ...].cpu().detach().numpy() ) if dat.shape[1] > 1: # assume dim 0, 1 are real, imag tmp = np.squeeze(dat[dispind, ...].cpu().detach().float().numpy()) visuals["train_dat"] = np.expand_dims( np.sqrt(tmp[0, ...] ** 2 + tmp[1, ...] ** 2), 0 ) else: visuals["train_dat"] = np.absolute(dat[dispind, ...].cpu().detach().numpy()) if est.shape[1] > 1: # assume dim 0, 1 are real, imag tmp = np.squeeze(est[dispind, ...].cpu().detach().float().numpy()) visuals["train_est"] = np.expand_dims( np.sqrt(tmp[0, ...] ** 2 + tmp[1, ...] ** 2), 0 ) else: visuals["train_est"] = np.absolute( est[dispind, ...].cpu().detach().float().numpy() ) return global_iter, visuals, disp_loss def fit(self, num_epochs, exp_dir=None, run_eval=True, seed_offset=476): """Fit attached data loaders (i.e., train the model). The model is updated via the self.model attribute. Args: num_epochs (int): Number of epochs to train. exp_dir (str, default=None): String pointing to directory for logging tensorboardX outputs. run_eval (boolean, default=True): Whether to run validation loop. seed_offset (int, default=476): Offset for random number seed (for reproducibility). Returns: self """ print("starting training") if not exp_dir == None: print("saving logs to {}".format(exp_dir)) writer = SummaryWriter(log_dir=exp_dir) visuals = {} print("initializing loss tracking") epochs = [] train_losses = [] val_losses = [] global_iter = 0 for epoch in range(self.epoch, num_epochs): rnd_seed = np.random.get_state()[1][0] + self.epoch + seed_offset self.epoch = epoch epoch_start = time.time() global_iter, visuals, train_loss = self.run_train_loop( global_iter, visuals, rnd_seed ) if run_eval: val_loss, visuals = self.run_val_loop(visuals, seed_offset) if not exp_dir == None: writer.add_scalar( "losses/eval_loss", scalar_value=val_loss, global_step=epoch ) if not exp_dir == None: writer.add_scalar( "losses/train_loss", scalar_value=train_loss, global_step=epoch ) for label, image in visuals.items(): if "val" in label: image = image / np.max(image) writer.add_image( "validation/" + label, image, global_step=epoch ) elif "train" in label: image = image / np.max(image) writer.add_image("training/" + label, image, global_step=epoch) if run_eval: val_losses.append(val_loss) if val_loss < self.val_loss_min: self.val_loss_min = val_loss checkname = os.path.join(exp_dir, "best_model.pt") else: checkname = os.path.join(exp_dir, "model_epoch_{}.pt".format(epoch)) else: if train_loss < self.train_loss_min: checkname = os.path.join(exp_dir, "best_model.pt") else: checkname = os.path.join(exp_dir, "model_epoch_{}.pt".format(epoch)) if train_loss < self.train_loss_min: self.train_loss_min = train_loss train_losses.append(train_loss) epochs.append(epoch) self._save_checkpoint(checkname) epoch_end = time.time() print("epoch finished, time: {}".format(epoch_end - epoch_start)) print("validation loss: {}, training loss: {}".format(val_loss, train_loss)) return self def __repr__(self): self.model = self.model.train() num_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad) out = "\n" + self.__class__.__name__ + "\n" out += "model: {}".format(self.model.__class__.__name__) out += " number of trainable model parameters: {}".format(num_params) out += "optimizer: {}".format(self.optimizer.__class__.__name__) out += "train_data_dir: {}".format(self.train_data_dir) return out
# -*- coding: utf-8 -*- """ This code is auto generated from troposphere_mate.code_generator.__init__.py scripts. """ import sys if sys.version_info.major >= 3 and sys.version_info.minor >= 5: # pragma: no cover from typing import Union, List, Any import troposphere.transfer from troposphere.transfer import ( EndpointDetails as _EndpointDetails, HomeDirectoryMapEntry as _HomeDirectoryMapEntry, IdentityProviderDetails as _IdentityProviderDetails, Tags as _Tags, ) from troposphere import Template, AWSHelperFn from troposphere_mate.core.mate import preprocess_init_kwargs, Mixin from troposphere_mate.core.sentiel import REQUIRED, NOTHING class EndpointDetails(troposphere.transfer.EndpointDetails, Mixin): def __init__(self, title=None, AddressAllocationIds=NOTHING, # type: List[Union[str, AWSHelperFn]] SecurityGroupIds=NOTHING, # type: List[Union[str, AWSHelperFn]] SubnetIds=NOTHING, # type: List[Union[str, AWSHelperFn]] VpcEndpointId=NOTHING, # type: Union[str, AWSHelperFn] VpcId=NOTHING, # type: Union[str, AWSHelperFn] **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, AddressAllocationIds=AddressAllocationIds, SecurityGroupIds=SecurityGroupIds, SubnetIds=SubnetIds, VpcEndpointId=VpcEndpointId, VpcId=VpcId, **kwargs ) super(EndpointDetails, self).__init__(**processed_kwargs) class IdentityProviderDetails(troposphere.transfer.IdentityProviderDetails, Mixin): def __init__(self, title=None, InvocationRole=REQUIRED, # type: Union[str, AWSHelperFn] Url=REQUIRED, # type: Union[str, AWSHelperFn] **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, InvocationRole=InvocationRole, Url=Url, **kwargs ) super(IdentityProviderDetails, self).__init__(**processed_kwargs) class Server(troposphere.transfer.Server, Mixin): def __init__(self, title, # type: str template=None, # type: Template validation=True, # type: bool Certificate=NOTHING, # type: Union[str, AWSHelperFn] EndpointDetails=NOTHING, # type: _EndpointDetails EndpointType=NOTHING, # type: Union[str, AWSHelperFn] IdentityProviderDetails=NOTHING, # type: _IdentityProviderDetails IdentityProviderType=NOTHING, # type: Union[str, AWSHelperFn] LoggingRole=NOTHING, # type: Union[str, AWSHelperFn] Protocols=NOTHING, # type: List[Union[str, AWSHelperFn]] SecurityPolicyName=NOTHING, # type: Union[str, AWSHelperFn] Tags=NOTHING, # type: _Tags **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, template=template, validation=validation, Certificate=Certificate, EndpointDetails=EndpointDetails, EndpointType=EndpointType, IdentityProviderDetails=IdentityProviderDetails, IdentityProviderType=IdentityProviderType, LoggingRole=LoggingRole, Protocols=Protocols, SecurityPolicyName=SecurityPolicyName, Tags=Tags, **kwargs ) super(Server, self).__init__(**processed_kwargs) class HomeDirectoryMapEntry(troposphere.transfer.HomeDirectoryMapEntry, Mixin): def __init__(self, title=None, Entry=REQUIRED, # type: Union[str, AWSHelperFn] Target=REQUIRED, # type: Union[str, AWSHelperFn] **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, Entry=Entry, Target=Target, **kwargs ) super(HomeDirectoryMapEntry, self).__init__(**processed_kwargs) class User(troposphere.transfer.User, Mixin): def __init__(self, title, # type: str template=None, # type: Template validation=True, # type: bool Role=REQUIRED, # type: Union[str, AWSHelperFn] ServerId=REQUIRED, # type: Union[str, AWSHelperFn] UserName=REQUIRED, # type: Union[str, AWSHelperFn] HomeDirectory=NOTHING, # type: Union[str, AWSHelperFn] HomeDirectoryMappings=NOTHING, # type: List[_HomeDirectoryMapEntry] HomeDirectoryType=NOTHING, # type: Any Policy=NOTHING, # type: Union[str, AWSHelperFn] SshPublicKeys=NOTHING, # type: List[Union[str, AWSHelperFn]] Tags=NOTHING, # type: _Tags **kwargs): processed_kwargs = preprocess_init_kwargs( title=title, template=template, validation=validation, Role=Role, ServerId=ServerId, UserName=UserName, HomeDirectory=HomeDirectory, HomeDirectoryMappings=HomeDirectoryMappings, HomeDirectoryType=HomeDirectoryType, Policy=Policy, SshPublicKeys=SshPublicKeys, Tags=Tags, **kwargs ) super(User, self).__init__(**processed_kwargs)
from kivy.app import App from kivy.lang import Builder from kivy.uix.boxlayout import BoxLayout from kivy.core.window import Window from string import punctuation, ascii_uppercase, ascii_lowercase, digits from random import sample, shuffle, randint import pyperclip Builder.load_file("Password.kv") class MyLayout(BoxLayout): def checkbox_click(self, parameters): numbers = digits symbols = punctuation capital = ascii_uppercase small = ascii_lowercase initial_password = "" if parameters == "easy": initial_password = sample(small, randint(2, 5)) + sample(capital, randint(3, 5)) elif parameters == "normal": initial_password = sample(small, randint(2, 3)) + sample(capital, randint(2, 4)) + \ sample(numbers, randint(3, 5)) elif parameters == "hard": initial_password = sample(small, randint(2, 3)) + sample(capital, randint(2, 3)) + \ sample(numbers, randint(3, 4)) + sample(symbols, randint(3, 5)) shuffle(initial_password) global final_password final_password = "".join(initial_password) self.ids.password.text = f"Your Password: {final_password}" def copy(self): try: pyperclip.copy(final_password) except Exception as e: print(f"Error: {e}") class PGApp(App): def build(self): Window.clearcolor = .5, .5, .5, 1 Window.size = (350, 500) return MyLayout() if __name__ == '__main__': PGApp().run()
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import os import numpy as np import tensorflow as tf from scipy.stats import truncnorm from GraphicsDL.modules_v2.reader import BaseReaderV2, DefaultTFReader, RandomReader class RoomSizeReader(BaseReaderV2): def __init__(self, data_dir, batch_size, num_samples, num_devices, shuffle, split, infinite, in_params, out_params, w_params, prefix, rel_path, name=None, **kwargs): super().__init__(batch_size, num_devices, shuffle, split, infinite, in_params, out_params, w_params, name, **kwargs) self.record_dir = os.path.join(data_dir, rel_path) if rel_path else data_dir prefix = prefix if prefix else 'room_size' self.room_size_files = os.path.join(self.record_dir, f'{prefix}_{num_samples}.npz') self.deterministic = None self.cur_samples = 0 self.num_samples = num_samples @staticmethod def random_room_size(sample_num): room_rand_x = tf.random.normal([sample_num, 1], mean=4.53, stddev=0.98, dtype=tf.float32) room_rand_x = tf.clip_by_value(room_rand_x, 1.7, 6.4) / 2 room_rand_z = tf.random.normal([sample_num, 1], mean=4.35, stddev=0.99, dtype=tf.float32) room_rand_z = tf.clip_by_value(room_rand_z, 1.5, 6.4) / 2 room_rand_y = tf.random.normal([sample_num, 1], mean=2.74, stddev=0.05, dtype=tf.float32) room_rand_y = tf.clip_by_value(room_rand_y, 2.2, 3.2) box_max_x = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] + room_rand_x box_min_x = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] - room_rand_x box_max_z = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] + room_rand_z box_min_z = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] - room_rand_z box_max_y = tf.clip_by_value(room_rand_y, 2.2, 3.2) box_min_y = tf.zeros_like(box_max_y) room_rand = tf.concat([box_max_x, box_max_y, box_max_z, box_min_x, box_min_y, box_min_z], axis=-1) return room_rand def postprocess(self, inputs, post_str): post_str_split = np.split(np.reshape(np.asarray(post_str.split('-')), [-1, 2]), 2, axis=-1) p_method, p_args = [a_[..., 0] for a_ in post_str_split] for p_m, p_a in zip(p_method, p_args): if p_m == 'scale': inputs = inputs * float(p_a) else: raise NotImplementedError return inputs def next_stochastic(self): in_elem = list() for i_p in self.in_params: room_rand = self.random_room_size(self.batch_size) assert i_p.postprocess if i_p.postprocess: room_rand = self.postprocess(room_rand, i_p.postprocess) all_data = tf.split(room_rand, self.num_devices) in_elem.append(all_data) return dict(inputs=in_elem, outputs=list(), weights=list(), alias=list()) def next_deterministic(self): if self.deterministic is None: if not os.path.exists(self.room_size_files): deterministic_data = dict() self.deterministic = list() for i_p in self.in_params: rand_nd = self.random_room_size(self.num_samples) assert i_p.postprocess if i_p.postprocess: rand_nd = self.postprocess(rand_nd, i_p.postprocess) self.deterministic.append(rand_nd) deterministic_data[i_p.name] = rand_nd np.savez_compressed(self.room_size_files, **deterministic_data) else: random_reader_meta = np.load(self.room_size_files) self.deterministic = list() for i_p in self.in_params: rand_nd = random_reader_meta[i_p.name].astype(np.float32) assert rand_nd.shape == (self.num_samples, 6) self.deterministic.append(rand_nd) try: in_elem = list() if self.cur_samples > self.num_samples - self.batch_size: raise StopIteration for d in self.deterministic: all_data = tf.split(d[self.cur_samples: self.cur_samples + self.batch_size], self.num_devices, axis=0) in_elem.append(all_data) self.cur_samples += self.batch_size return dict(inputs=in_elem, outputs=list(), weights=list(), alias=list()) except StopIteration: self.cur_samples = 0 raise StopIteration def next(self): try: if self.shuffle: return self.next_stochastic() else: return self.next_deterministic() except StopIteration: if self.infinite: return self.next() else: raise StopIteration class RandomReaderV1(RandomReader): def __init__(self, data_dir, batch_size, num_samples, num_devices, shuffle, split, infinite, in_params, out_params, w_params, prefix, rel_path, compress='', name=None, **kwargs): super().__init__(batch_size, num_samples, num_devices, shuffle, split, infinite, in_params, out_params, w_params, name, **kwargs) self.record_dir = os.path.join(data_dir, rel_path) if rel_path else data_dir prefix = prefix if prefix else 'custom_random' self.random_reader_files = os.path.join(self.record_dir, f'{prefix}_{num_samples}.npz') def next_deterministic(self): if self.deterministic is None: if not os.path.exists(self.random_reader_files): deterministic_data = dict() self.deterministic = list() for i_p in self.in_params: rand_nd = truncnorm.rvs(-1, 1, size=[self.num_samples, *i_p.raw_shape]).astype(np.float32) # rand_nd = np.random.normal(size=[self.num_samples, *i_p.raw_shape]).astype(np.float32) self.deterministic.append(rand_nd) deterministic_data[i_p.name] = rand_nd np.savez_compressed(self.random_reader_files, **deterministic_data) else: random_reader_meta = np.load(self.random_reader_files) self.deterministic = list() for i_p in self.in_params: rand_nd = random_reader_meta[i_p.name].astype(np.float32) assert rand_nd.shape == (self.num_samples, *i_p.raw_shape) self.deterministic.append(rand_nd) return super().next_deterministic() class Str3DRoomSizeReader(RoomSizeReader): def __init__(self, data_dir, batch_size, num_samples, num_devices, shuffle, split, infinite, in_params, out_params, w_params, prefix, rel_path, name=None, **kwargs): super().__init__(data_dir, batch_size, num_samples, num_devices, shuffle, split, infinite, in_params, out_params, w_params, prefix, rel_path, name, **kwargs) @staticmethod def random_room_size(sample_num): room_rand_x = tf.random.normal([sample_num, 1], mean=3.98, stddev=1.14, dtype=tf.float32) room_rand_x = tf.clip_by_value(room_rand_x, 2.2, 6.4) / 2 room_rand_z = tf.random.normal([sample_num, 1], mean=3.98, stddev=1.14, dtype=tf.float32) room_rand_z = tf.clip_by_value(room_rand_z, 2.2, 6.4) / 2 room_rand_y = tf.random.normal([sample_num, 1], mean=2.74, stddev=0.05, dtype=tf.float32) room_rand_y = tf.clip_by_value(room_rand_y, 2.2, 3.2) box_max_x = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] + room_rand_x box_min_x = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] - room_rand_x box_max_z = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] + room_rand_z box_min_z = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] - room_rand_z box_max_y = tf.clip_by_value(room_rand_y, 2.2, 3.2) box_min_y = tf.zeros_like(box_max_y) room_rand = tf.concat([box_max_x, box_max_y, box_max_z, box_min_x, box_min_y, box_min_z], axis=-1) return room_rand class Str3DLivingRoomSizeReader(RoomSizeReader): def __init__(self, data_dir, batch_size, num_samples, num_devices, shuffle, split, infinite, in_params, out_params, w_params, prefix, rel_path, name=None, **kwargs): super().__init__(data_dir, batch_size, num_samples, num_devices, shuffle, split, infinite, in_params, out_params, w_params, prefix, rel_path, name, **kwargs) @staticmethod def random_room_size(sample_num): room_rand_x = tf.random.normal([sample_num, 1], mean=8.44, stddev=1.70, dtype=tf.float32) room_rand_x = tf.clip_by_value(room_rand_x, 4.0, 9.6) / 2 room_rand_z = tf.random.normal([sample_num, 1], mean=8.44, stddev=1.70, dtype=tf.float32) room_rand_z = tf.clip_by_value(room_rand_z, 4.0, 9.6) / 2 room_rand_y = tf.random.normal([sample_num, 1], mean=2.80, stddev=0.06, dtype=tf.float32) room_rand_y = tf.clip_by_value(room_rand_y, 2.6, 3.0) box_max_x = tf.convert_to_tensor([4.8], dtype=tf.float32)[tf.newaxis, ...] + room_rand_x box_min_x = tf.convert_to_tensor([4.8], dtype=tf.float32)[tf.newaxis, ...] - room_rand_x box_max_z = tf.convert_to_tensor([4.8], dtype=tf.float32)[tf.newaxis, ...] + room_rand_z box_min_z = tf.convert_to_tensor([4.8], dtype=tf.float32)[tf.newaxis, ...] - room_rand_z box_max_y = tf.clip_by_value(room_rand_y, 2.6, 3.0) box_min_y = tf.zeros_like(box_max_y) room_rand = tf.concat([box_max_x, box_max_y, box_max_z, box_min_x, box_min_y, box_min_z], axis=-1) return room_rand class Str3DKitchenRoomSizeReader(RoomSizeReader): def __init__(self, data_dir, batch_size, num_samples, num_devices, shuffle, split, infinite, in_params, out_params, w_params, prefix, rel_path, name=None, **kwargs): super().__init__(data_dir, batch_size, num_samples, num_devices, shuffle, split, infinite, in_params, out_params, w_params, prefix, rel_path, name, **kwargs) @staticmethod def random_room_size(sample_num): room_rand_x = tf.random.normal([sample_num, 1], mean=3.32, stddev=0.74, dtype=tf.float32) room_rand_x = tf.clip_by_value(room_rand_x, 2.0, 6.4) / 2 room_rand_z = tf.random.normal([sample_num, 1], mean=3.32, stddev=0.74, dtype=tf.float32) room_rand_z = tf.clip_by_value(room_rand_z, 2.0, 6.4) / 2 room_rand_y = tf.random.normal([sample_num, 1], mean=2.80, stddev=0.06, dtype=tf.float32) room_rand_y = tf.clip_by_value(room_rand_y, 2.5, 3.2) box_max_x = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] + room_rand_x box_min_x = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] - room_rand_x box_max_z = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] + room_rand_z box_min_z = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] - room_rand_z box_max_y = tf.clip_by_value(room_rand_y, 2.5, 3.2) box_min_y = tf.zeros_like(box_max_y) room_rand = tf.concat([box_max_x, box_max_y, box_max_z, box_min_x, box_min_y, box_min_z], axis=-1) return room_rand class Mat3DBedroomRoomSizeReader(RoomSizeReader): def __init__(self, data_dir, batch_size, num_samples, num_devices, shuffle, split, infinite, in_params, out_params, w_params, prefix, rel_path, name=None, **kwargs): super().__init__(data_dir, batch_size, num_samples, num_devices, shuffle, split, infinite, in_params, out_params, w_params, prefix, rel_path, name, **kwargs) @staticmethod def random_room_size(sample_num): room_rand_x = tf.random.normal([sample_num, 1], mean=4.164, stddev=0.973, dtype=tf.float32) room_rand_x = tf.clip_by_value(room_rand_x, 2.2, 6.4) / 2 room_rand_z = tf.random.normal([sample_num, 1], mean=4.265, stddev=0.955, dtype=tf.float32) room_rand_z = tf.clip_by_value(room_rand_z, 2.2, 6.4) / 2 room_rand_y = tf.random.normal([sample_num, 1], mean=2.387, stddev=0.425, dtype=tf.float32) room_rand_y = tf.clip_by_value(room_rand_y, 2.2, 3.2) box_max_x = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] + room_rand_x box_min_x = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] - room_rand_x box_max_z = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] + room_rand_z box_min_z = tf.convert_to_tensor([3.2], dtype=tf.float32)[tf.newaxis, ...] - room_rand_z box_max_y = tf.clip_by_value(room_rand_y, 1.7, 3.2) box_min_y = tf.zeros_like(box_max_y) room_rand = tf.concat([box_max_x, box_max_y, box_max_z, box_min_x, box_min_y, box_min_z], axis=-1) return room_rand
from src.buttons.call_button import CallButton from src.buttons.close_doors_button import CloseDoorsButton from src.buttons.combo_button import ComboButton from src.buttons.down_button import DownButton from src.buttons.floor_number_button import FloorNumberButton from src.buttons.open_doors_button import OpenDoorsButton from src.buttons.up_button import UpButton
#!/usr/bin/env python3 import argparse import sys ID_TAG = "0_id" SEL_TAG = "example (encoder) selection" def main(args): results = [] scores = [] headcount = [] epoch = {} with open(args.logfile, "r") as fh: for line in fh: line = [x.strip() for x in line.split("|")] if len(line) < 3: continue if line[2] == "fairseq.tasks.translation_modular": if "example " not in line[3]: continue item = [x.strip() for x in line[3].split(":")] if item[0] not in epoch: epoch[item[0]] = [item[1]] else: epoch[item[0]].append(item[1]) if item[0] == "example hypothesis": if ID_TAG not in epoch: epoch[ID_TAG] = ["0"] else: epoch[ID_TAG].append(str(len(epoch["0_id"]))) if line[2] == "valid": scores.append(line[12].split(" ")[1]) headcount.append(line[17].split(" ")[1:]) results.append(epoch) epoch = {} if args.print_head_counts: for r in results: heads = {} for sel in r[SEL_TAG]: for h in sel.split(","): if h not in heads: heads[h] = 1 else: heads[h] += 1 print(" ".join(["{}-{}".format(k, v) for k, v in heads.items()])) sys.exit() if args.print_subset_counts: for r in results: subsets = {} for sel in r[SEL_TAG]: if sel not in subsets: subsets[sel] = 1 else: subsets[sel] += 1 print(" ".join(["{}-{}".format(k, v) for k, v in subsets.items()])) sys.exit() for r, s, h in zip(results, scores, headcount): keys = sorted(list(r.keys())) for i in range(len(r[keys[0]])): print("\t".join([r[k][i] for k in keys])) print("VALID\t{}\t{}".format(s, h)) def parse_args(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--logfile", type=str, required=True) parser.add_argument("--print-head-counts", action="store_true") parser.add_argument("--print-subset-counts", action="store_true") return parser.parse_args() if __name__ == "__main__": main(parse_args())
import json import requests import pandas as pd from iex.utils import (parse_date, validate_date_format, validate_range_set, validate_output_format, timestamp_to_datetime, timestamp_to_isoformat) from iex.constants import (CHART_RANGES, RANGES, DATE_FIELDS, BASE_URL, BASE_SIO_URL, BASE_SIO_VERSION) from socketIO_client_nexus import (SocketIO, SocketIONamespace) class feed_handler(SocketIONamespace): def on_connect(self): pass def on_disconnect(self): pass def on_message(self, msg): data = json.loads(msg) class IexMarket: def __init__(self, symbols = None, socket_handler = None, date_format='timestamp', output_format='dataframe'): """ Args: socket_handler - Function for handling socket feed. date_format - Converts dates output_format - dataframe (pandas) or json """ self.symbols = symbols self.socket_handler = socket_handler self.date_format = validate_date_format(date_format) self.output_format = validate_output_format(output_format) def _socket(self): socket = SocketIO('https://ws-api.iextrading.com', 443) namespace = socket.define(feed_handler, "/1.0/tops") symbols = "snap" namespace.emit('subscribe', 'firehose') socket.wait() def _get(self, url, params={}): request_url =f"{BASE_URL}" response = requests.get(f"{request_url}/{url}", params=params) if response.status_code != 200: raise Exception(f"{response.status_code}: {response.content.decode('utf-8')}") result = response.json() # timestamp conversion if type(result) == dict and self.date_format: if self.date_format == 'datetime': date_apply_func = timestamp_to_datetime elif self.date_format == 'isoformat': date_apply_func = timestamp_to_isoformat for key, val in result.items(): if key in DATE_FIELDS: result[key] = date_apply_func(val) if self.output_format =='dataframe': if url == 'previous': # Reorient previous result. result = pd.DataFrame.from_dict(result).transpose().reset_index() cols = ['symbol'] + [x for x in result.columns if x != 'symbol' and x != 'index'] result = result.reindex(cols, axis=1) return result return pd.DataFrame.from_dict(result) def tops(self): params = {'symbols', ','.join(self.symbols)} if self.symbols else {} return self._get("tops") def __repr__(self): return f"<iex_market>"
import random import string from pymongo import MongoClient import certifi import validators # Mongo DB connection, ask me for the password! :) # TODO: Store password in credstash user = "unitedmasters" password = "" cluster = MongoClient(f"mongodb+srv://{user}:{password}@shortdata.yyg2l.mongodb.net/test?retryWrites=true&w=majority", tlsCAFile=certifi.where()) db = cluster["shortened"] collection = db["test-data"] # Gets the original URL based on the shortened url def get_url(url): # We always know its going to be sho.rt, so hard coding it for now url_id = url.replace("sho.rt/", "") # Check Mongo for that id result = collection.find_one({"_id": url_id}) # If result is not in the table it will return a 404 if result: return {"og_url": result["url"]} else: return "Couldn't find that URL sorry", 404 # Generates a random 8 character string id, not the best way to do it long term def id_generator(): return "".join(random.choices(string.ascii_letters, k=8)) # Shortens the given url by creating a unique id that will get stored to mongoDB # returns the new shortened url def url_shortener(url): if not url: return "URL cannot be empty", 400 valid=validators.url(url) if not valid: return "Invalid URL, did you forget the https:// ? ", 400 new_id = id_generator() # A way to stop id coalitions while collection.find_one({"_id": new_id}): new_id = id_generator() # Insert new pair to mongo pair = {"_id": new_id, "url": url} collection.insert_one(pair) return {"short_url": f"sho.rt/{new_id}"}
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import, unicode_literals import sys import socket from contextlib import closing from unisim import BaseClient class Client(BaseClient): def interpreter(self): pass def event_handler(self, info): if info["edges"][-1] in ("p1en", "p2en", "p3en"): if info["road"] in ("res1", "res2", "res3"): self._cmd = "get_parking" return True if __name__ == '__main__': pass Client("", 4001).run('get_parking')
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ import sys import thinkstats2 import thinkplot def ReadFile(filename): """Reads a list of numbers from a file. filename: string returns: list of float """ fp = open(filename) data = [] for line in fp: x = float(line.strip()) data.append(x) return data def main(script, filename='mystery0.dat'): data = ReadFile(filename) cdf = thinkstats2.Cdf(data) thinkplot.PrePlot(num=6, rows=2, cols=3) thinkplot.SubPlot(1) thinkplot.Cdf(cdf, color='C0', label=filename) thinkplot.Config(title='CDF on linear scale', ylabel='CDF') thinkplot.SubPlot(2) scale = thinkplot.Cdf(cdf, xscale='log', color='C0') thinkplot.Config(title='CDF on log-x scale', ylabel='CDF', **scale) thinkplot.SubPlot(3) scale = thinkplot.Cdf(cdf, transform='exponential', color='C0') thinkplot.Config(title='CCDF on log-y scale', ylabel='log CCDF', **scale) thinkplot.SubPlot(4) xs, ys = thinkstats2.NormalProbability(data) thinkplot.Plot(xs, ys, color='C0') thinkplot.Config(title='Normal probability plot', xlabel='random normal', ylabel='data') thinkplot.SubPlot(5) scale = thinkplot.Cdf(cdf, transform='pareto', color='C0') thinkplot.Config(title='CCDF on log-log scale', ylabel='log CCDF', **scale) thinkplot.SubPlot(6) scale = thinkplot.Cdf(cdf, transform='weibull', color='C0') thinkplot.Config(title='CCDF on loglog-y log-x scale', ylabel='log log CCDF', **scale) thinkplot.Show(legend=False) if __name__ == '__main__': main(*sys.argv)
"""Cache for storing and retrieving data specific to collections. Supports caching the collection and caching documents within those collections. """ import os import threading from grow.collections import collection class CollectionCache(object): def __init__(self): self.reset() self._lock = threading.RLock() @staticmethod def generate_cache_key(pod_path, locale): return '{}::{}'.format(pod_path, locale) def add_collection(self, col): self._cache[col.collection_path] = { 'collection': col, 'docs': {}, } def add_document(self, doc): col = doc.collection self.ensure_collection(col) # NOTE: Using `doc.locale` causes infinite loop since it needs to load # the fields (which can have circular dependencies). cache_key = CollectionCache.generate_cache_key( doc.pod_path, doc.locale_safe) self._cache[col.collection_path]['docs'][cache_key] = doc def add_document_locale(self, doc, locale): """Force a doc to be saved to a specific locale. When docs have a default locale that differs from the collection default it causes issues since the cache does not know that None locale is not correct. This allows for the None locale to be forced to the default locale from the doc. """ col = doc.collection self.ensure_collection(col) cache_key = CollectionCache.generate_cache_key( doc.pod_path, locale) self._cache[col.collection_path]['docs'][cache_key] = doc def remove_by_path(self, path): """Removes the collection or document based on the path.""" if path.startswith(collection.Collection.CONTENT_PATH): if path.endswith( '/{}'.format(collection.Collection.BLUEPRINT_PATH)): # If this is a blueprint then remove the entire collection. col_path = path[len(collection.Collection.CONTENT_PATH):] # Get just the directory. col_path = os.path.split(col_path)[0] collection_path = col_path[1:] # Remove / with self._lock: if collection_path in self._cache: del self._cache[collection_path] else: # Search for an existing collection path. col_path = path[len(collection.Collection.CONTENT_PATH):] col_path = os.path.split(col_path)[0] while col_path != os.sep: collection_path = col_path[1:] with self._lock: if collection_path in self._cache: # Do a 'wildcard' match on the path to remove all # locales. generic_key = CollectionCache.generate_cache_key( path, '') for key in self._cache[collection_path]['docs'].keys(): if key.startswith(generic_key): del self._cache[ collection_path]['docs'][key] return col_path = os.path.split(col_path)[0] def remove_collection(self, col): with self._lock: if col.collection_path in self._cache: del self._cache[col.collection_path] def remove_document(self, doc): col = doc.collection with self._lock: if col.collection_path in self._cache: cache_key = CollectionCache.generate_cache_key( doc.pod_path, doc.locale_safe) if cache_key in self._cache[col.collection_path]['docs']: del self._cache[col.collection_path]['docs'][cache_key] def remove_document_locale(self, doc, locale): col = doc.collection with self._lock: if col.collection_path in self._cache: cache_key = CollectionCache.generate_cache_key( doc.pod_path, locale) if cache_key in self._cache[col.collection_path]['docs']: del self._cache[col.collection_path]['docs'][cache_key] def remove_document_locales(self, doc): col = doc.collection with self._lock: if col.collection_path in self._cache: doc_cache_key = CollectionCache.generate_cache_key( doc.pod_path, '') invalid_keys = [] for cache_key in self._cache[col.collection_path]['docs'].keys(): if cache_key.startswith(doc_cache_key): invalid_keys.append(cache_key) for cache_key in invalid_keys: del self._cache[col.collection_path]['docs'][cache_key] def ensure_collection(self, col): with self._lock: if col.collection_path not in self._cache: self.add_collection(col) def get_collection(self, collection_path): collection_path = collection.Collection.clean_collection_path( collection_path) if collection_path in self._cache: return self._cache[collection_path]['collection'] return None def get_document(self, col, pod_path, locale): if col.collection_path in self._cache: cache_key = CollectionCache.generate_cache_key(pod_path, locale) return self._cache[col.collection_path]['docs'].get( cache_key, None) return None def reset(self): self._cache = {}
import pptree from mcts import parameters as p from mcts.smiles import SMILES class Node: """ Representation of a node in the MCTS tree Each node own its SMILES, number of visits and score """ def __init__(self, smiles=SMILES(), parent=None): """ Initialisation of a new node :param smiles: the state of the SMILES on the node :type smiles: SMILES :param parent: parent of the node :type parent: Node """ self.smiles = smiles self.parent = parent self.children = [] self.visits = 0 self.score = 0.0 def new_child(self, child_smile): """ Add a new child to the current node :param child_smile: the SMILES used to create the new node :type child_smile: SMILES :return: None """ self.children.append(Node(child_smile, self)) def update(self, reward): """ Recursive function to update a Node :param reward: reward to update the score of the Node :type reward: float :return: None """ self.score += reward self.visits += 1 if self.parent: self.parent.update(reward) def fully_expanded(self): """ Return True if the number of children is equal to the size of the vocabulary (minus 2 for \\n and &) or if the SMILES of the node is greater than 80 (maximum for the RNN) :return: True if the node is terminal in the tree else False """ return (len(self.children) == (len(p.tokens) - 2)) or (len(self.smiles.element) > 80) def out_pptree(self, parent=None): """ Recursive function Return instance of pptree module to print the tree :param parent: parent of the tree (for the recursive part of the function) :type parent: Node :return: instance of pptree.Node """ name = repr(self) if parent: current = pptree.Node(name, parent) else: current = pptree.Node(name) for c in self.children: c.out_pptree(current) return current def get_height(self): """ Return the height of the node :return: the height of the node """ if not self.children: return 1 else: return 1 + max([n.get_height() for n in self.children]) def get_size(self): """ Return the size of the Node :return: the size of the Node """ if not self.children: return 1 else: return 1 + sum([n.get_size() for n in self.children]) def echo(self): """ Print the current tree :return: None """ pptree.print_tree(self.out_pptree()) print("Size of the tree : %d" % self.get_size()) print("Height of the tree : %d" % self.get_height()) def __eq__(self, other): """ Equality between two nodes :param other: an other node :type other: Node :return: True if other is the same node """ return str(self.smiles) == str(other.smiles) def __repr__(self): """ Representation of a Node :return: string representing the node """ return str(self.smiles) + " " + str(int(self.visits)) + " " + str(round(self.score, 2))
from collections import OrderedDict from typing import Union, Callable, List, Dict, Any, Optional, Tuple from pathlib import Path from movado.controller import Controller, is_call_exact from movado.estimator import Estimator from movado.mab_handler import MabHandler import numpy as np import itertools import random import scipy.special import asyncio import functools import concurrent.futures import multiprocessing # This inputs are used to populate the symbol table for class retrieval # noinspection PyUnresolvedReferences from movado.mab_controller import MabController # pylint: disable=unused-import # noinspection PyUnresolvedReferences from movado.distance_controller import ( DistanceController, ) # pylint: disable=unused-import class VotingController(Controller): def __init__( self, controller, # class reference => assumption of homogeneous controllers with different parameters estimator: Estimator, exact_fitness: Callable[[List[float]], List[float]], voters: int, params: "OrderedDict[str, List[Union[int, float, str]]]", self_exact: Optional[object] = None, is_point_in_context: bool = False, mab_weight: bool = True, debug=False, ): super(VotingController, self).__init__( estimator=estimator, exact_fitness=exact_fitness, debug=debug, self_exact=self_exact, ) self.__is_point_in_context = is_point_in_context self.__debug = debug self.__is_soft: bool = False self.__controllers: List[Controller] = self.__get_controllers( params, controller, estimator, exact_fitness, voters, self_exact=self_exact, mab_weight=mab_weight, debug=debug, ) self.__last_winners: List[Controller] = [] self.__last_decision: int = -1 self.initialize_debug() self.__params = params random.seed(0) def initialize_debug(self): Path(self._controller_debug).open("a").write( "Majority_Model_Parameters, Majority_Size, Point," + "Exec_Time, Error, Exact_Estimated_Calls, Mean Weight, Estimation\n" ) def learn( self, is_exact: bool, point: List[float] = None, exec_time: float = None, mab: Optional[Tuple[MabHandler, Union[int, float]]] = None, mab_forced_probability: Optional[float] = None, mab_forced_action: Optional[Union[int, float]] = None, mab_weight: Optional[MabHandler] = None, mab_weight_forced_probability: Optional[float] = None, mab_weight_forced_action: Optional[Union[int, float]] = None, is_point_in_context: bool = True, ): loop = asyncio.get_event_loop() executor = concurrent.futures.ThreadPoolExecutor( max_workers=int(multiprocessing.cpu_count() / 2) ) loop.set_default_executor(executor) for controller in self.__controllers: if controller in self.__last_winners: loop.run_in_executor( None, functools.partial( controller.learn, is_exact=is_exact, point=point, exec_time=exec_time, mab=(controller.get_mab(), self.__last_decision), mab_forced_probability=None, mab_weight=controller.get_weight_mab(), mab_weight_forced_probability=None, is_point_in_context=is_point_in_context, ), ) # controller.learn( # is_exact=is_exact, # point=point, # exec_time=exec_time, # mab=(controller.get_mab(), self.__last_decision), # mab_forced_probability=None, # mab_weight=controller.get_weight_mab(), # mab_weight_forced_probability=None, # is_point_in_context=is_point_in_context, # ) else: loop.run_in_executor( None, functools.partial( controller.learn, is_exact=is_exact, point=point, exec_time=exec_time, mab=(controller.get_mab(), self.__last_decision), mab_forced_probability=1, mab_forced_action=( float( np.mean( [ winner.get_mab().get_last_action() for winner in self.__last_winners ] ) ) if not self.__is_soft else self.__last_decision ), mab_weight=controller.get_weight_mab(), mab_weight_forced_probability=None, mab_weight_forced_action=None, is_point_in_context=is_point_in_context, ), ) # controller.learn( # is_exact=is_exact, # point=point, # exec_time=exec_time, # mab=(controller.get_mab(), self.__last_decision), # mab_forced_probability=1, # mab_forced_action=( # float( # np.mean( # [ # winner.get_mab().get_last_action() # for winner in self.__last_winners # ] # ) # ) # if not self.__is_soft # else self.__last_decision # ), # mab_weight=controller.get_weight_mab(), # mab_weight_forced_probability=None, # mab_weight_forced_action=None, # is_point_in_context=is_point_in_context, # ) executor.shutdown(wait=True) def __get_controllers( self, params: "OrderedDict[str, List[Union[int, float, str]]]", controller, estimator: Estimator, exact_fitness: Callable[[List[float]], List[float]], voters: int, self_exact: Optional[object], mab_weight: bool, debug: bool, ) -> List[Controller]: # TODO random sample indices, not controllers to save memory controllers: List[Controller] = [] controller_class = controller if not controller_class: raise Exception("Controller '" + str(controller) + "' was not found") for current_vals in random.sample( list(itertools.product(*list(params.values()))), voters, ): current_params = {k: v for k, v in zip(params.keys(), current_vals)} controllers.append( controller_class( estimator=estimator, exact_fitness=exact_fitness, self_exact=self_exact, debug=debug, skip_debug_initialization=True, mab_weight=mab_weight, **current_params ) ) if type(controllers[0]) is MabController: self.__is_soft = True mab: MabHandler = controllers[0].get_mab() mab_weight: MabHandler = controllers[0].get_weight_mab() if mab: mab.initialize_debug() if mab_weight: mab_weight.initialize_debug() return list(random.sample(controllers, voters)) def __compute_weight_vector(self): return scipy.special.softmax( [-contr.get_mab().get_mean_cost() for contr in self.__controllers] ) def compute_objective( self, point: List[int], decision_only: bool = False ) -> List[float]: decisions = [] loop = asyncio.get_event_loop() executor = concurrent.futures.ThreadPoolExecutor( max_workers=int(multiprocessing.cpu_count() / 2) ) loop.set_default_executor(executor) if self.__is_soft: for controller in self.__controllers: loop.run_in_executor( None, functools.partial( decisions.append, controller.compute_objective(point, probability=True), ), ) # decisions.append(controller.compute_objective(point, probability=True)) executor.shutdown(wait=True) decision = 1 - np.average([d[1] for d in decisions]) else: for controller in self.__controllers: loop.run_in_executor( None, functools.partial( decisions.append, controller.compute_objective(point, decision_only=True), ), ) # decisions.append( # controller.compute_objective(point, decision_only=True) # ) executor.shutdown(wait=True) decision = np.average(decisions, weights=self.__compute_weight_vector()) if decision >= 0.5 or self._estimator.get_error() == 0.0: self.__last_decision = 1 if self.__is_soft: self.__last_winners = [ controller_decision[0] for controller_decision in zip(self.__controllers, decisions) if controller_decision[1][0] == 1 ] else: self.__last_winners = [ controller_decision[0] for controller_decision in zip(self.__controllers, decisions) if controller_decision[1] == 1 ] out, exec_time = self._compute_exact( point, is_point_in_context=self.__is_point_in_context ) else: self.__last_decision = 0 if self.__is_soft: self.__last_winners = [ controller_decision[0] for controller_decision in zip(self.__controllers, decisions) if controller_decision[1][0] == 0 ] else: self.__last_winners = [ controller_decision[0] for controller_decision in zip(self.__controllers, decisions) if controller_decision[1] == 0 ] out, exec_time = self._compute_estimated( point, is_point_in_context=self.__is_point_in_context, ) if self._debug: params = ( self.__last_winners[0].get_parameters() if self.__last_winners else ["Model_Parameters", "Empty Hard Majority"] ) self.write_debug( { params[0]: params[1], "Majority_Size": len(self.__last_winners), "Point": point, "Exec_Time": exec_time, "Error": self._estimator.get_error(), "Exact_Estimated_Calls": [ is_call_exact.count(True), is_call_exact.count(False), ], "Mean Weight": np.mean( [ ctrl.get_weight_mab().get_last_action() for ctrl in self.__controllers ] ), "Estimation": int(not self.__last_decision), } ) return out def write_debug(self, debug_info: Dict[str, Any]): Path(self._controller_debug).open("a").write( str(debug_info["Model_Parameters"]) + ", " + str(debug_info["Majority_Size"]) + ", " + str(debug_info["Point"]) + ", " + str(debug_info["Exec_Time"]) + ", " + str(debug_info["Error"]) + ", " + str(debug_info["Exact_Estimated_Calls"]) + ", " + str(debug_info["Mean Weight"]) + ", " + str(debug_info["Estimation"]) + "\n" ) def get_mab(self): raise Exception("'get_mab': Unsupported method in voting controller") def get_weight_mab(self): raise Exception("'get_weight_mab': Unsupported method in voting controller") def get_parameters(self): return self.__params
# STEP 4: use trained FQG model to generate new QG data using augmented sentences import os import argparse import logging from polyaxon_client.tracking import get_outputs_path # Set up the logger logging.basicConfig(format='%(message)s', level=logging.INFO) logger = logging.getLogger(__name__) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("data_dir", type=str, help="Directory containing the data for the ACS-QG project") args = parser.parse_args() data_dir = args.data_dir.rstrip("/") + "/" OUT_DIR = get_outputs_path().rstrip("/") + "/" # debug processed_path = data_dir + "processed/SQuAD2.0/" data_file_prefix = "train" st_idx = str(0) ed_idx = str(50000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.4e8b.debug.json" \ --debug') # squad data processed_path = data_dir + "processed/SQuAD2.0/" data_file_prefix = "train" st_idx = str(0) ed_idx = str(50000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/SQuAD2.0/" data_file_prefix = "train" st_idx = str(50000) ed_idx = str(92210) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') # wiki data processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(0) ed_idx = str(50000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(50000) ed_idx = str(100000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(100000) ed_idx = str(150000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(150000) ed_idx = str(200000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(200000) ed_idx = str(250000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(250000) ed_idx = str(300000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(300000) ed_idx = str(350000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(350000) ed_idx = str(400000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(400000) ed_idx = str(450000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(450000) ed_idx = str(500000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(500000) ed_idx = str(550000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(550000) ed_idx = str(600000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(600000) ed_idx = str(650000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(650000) ed_idx = str(700000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(700000) ed_idx = str(750000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(750000) ed_idx = str(800000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(800000) ed_idx = str(850000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(850000) ed_idx = str(900000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(900000) ed_idx = str(9500000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"') processed_path = data_dir + "processed/Wiki10000/" data_file_prefix = "wiki10000" st_idx = str(950000) ed_idx = str(1000000) os.system('CUDA_VISIBLE_DEVICES=0 PYTHONIOENCODING=utf-8 python3 QG_gpt2_generate.py \ --model_type gpt2 \ --model_name_or_path ' + data_dir + 'output/QG/gpt2_question_generation/4epochs/2batchsize/ \ --filename "' + processed_path + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.pkl" \ --filecache "' + OUT_DIR + data_file_prefix + '.sentences.augmented.' + st_idx + '_' + ed_idx + '.cache.qg.gpt2.pth" \ --data_type augmented_sents \ --output_file "' + OUT_DIR + data_file_prefix + '.qa.' + st_idx + '_' + ed_idx + '.qg.generated.gpt2.json"')
from setuptools import setup setup( name='django-extra-views', version='0.2.4', url='https://github.com/AndrewIngram/django-extra-views', description="Extra class-based views for Django", long_description=open('README.rst', 'r').read(), license="MIT", author="Andrew Ingram", author_email="andy@andrewingram.net", packages=['extra_views'], package_dir={'': '.'}, classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'Programming Language :: Python'] )
import uuid from typing import Any import pydantic from aiohttp import web import xjsonrpc.server.specs.extractors.docstring import xjsonrpc.server.specs.extractors.pydantic from xjsonrpc.server.integration import aiohttp as integration from xjsonrpc.server.validators import pydantic as validators from xjsonrpc.server.specs import extractors, openapi as specs user_methods = xjsonrpc.server.MethodRegistry() post_methods = xjsonrpc.server.MethodRegistry() validator = validators.PydanticValidator() credentials = {"admin": "admin"} class JSONEncoder(xjsonrpc.JSONEncoder): def default(self, o: Any) -> Any: if isinstance(o, pydantic.BaseModel): return o.dict() if isinstance(o, uuid.UUID): return str(o) return super().default(o) class UserIn(pydantic.BaseModel): """ User registration data. """ name: str surname: str age: int class UserOut(UserIn): """ Registered user data. """ id: uuid.UUID class AlreadyExistsError(xjsonrpc.exc.JsonRpcError): """ User already registered error. """ code = 2001 message = "user already exists" @specs.annotate( tags=['users'], errors=[AlreadyExistsError], examples=[ specs.MethodExample( summary="Simple example", params=dict( user={ 'name': 'John', 'surname': 'Doe', 'age': 25, }, ), result={ 'id': 'c47726c6-a232-45f1-944f-60b98966ff1b', 'name': 'John', 'surname': 'Doe', 'age': 25, }, ), ], ) @user_methods.add(context='request') @validator.validate def add_user(request: web.Request, user: UserIn) -> UserOut: """ Creates a user. :param request: http request :param object user: user data :return object: registered user :raise AlreadyExistsError: user already exists """ user_id = uuid.uuid4().hex request.config_dict['users'][user_id] = user return UserOut(id=user_id, **user.dict()) class PostIn(pydantic.BaseModel): """ User registration data. """ title: str content: str class PostOut(PostIn): """ Registered user data. """ id: uuid.UUID @specs.annotate( tags=['posts'], errors=[AlreadyExistsError], examples=[ specs.MethodExample( summary="Simple example", params=dict( post={ 'title': 'Super post', 'content': 'My first post', }, ), result={ 'id': 'c47726c6-a232-45f1-944f-60b98966ff1b', 'title': 'Super post', 'content': 'My first post', }, ), ], ) @post_methods.add(context='request') @validator.validate def add_post(request: web.Request, post: PostIn) -> PostOut: """ Creates a post. :param request: http request :param object post: post data :return object: created post """ post_id = uuid.uuid4().hex request.config_dict['posts'][post_id] = post return PostOut(id=post_id, **post.dict()) jsonrpc_app = integration.Application( '/api/v1', json_encoder=JSONEncoder, spec=specs.OpenAPI( info=specs.Info(version="1.0.0", title="User storage"), servers=[ specs.Server( url='http://127.0.0.1:8080', ), ], security_schemes=dict( basicAuth=specs.SecurityScheme( type=specs.SecuritySchemeType.HTTP, scheme='basic', ), ), security=[ dict(basicAuth=[]), ], schema_extractors=[ extractors.docstring.DocstringSchemaExtractor(), extractors.pydantic.PydanticSchemaExtractor(), ], ui=specs.SwaggerUI(), # ui=specs.RapiDoc(), # ui=specs.ReDoc(), ), ) jsonrpc_app.app['users'] = {} jsonrpc_app.app['posts'] = {} jsonrpc_app.add_endpoint('/users', json_encoder=JSONEncoder).add_methods(user_methods) jsonrpc_app.add_endpoint('/posts', json_encoder=JSONEncoder).add_methods(post_methods) if __name__ == "__main__": web.run_app(jsonrpc_app.app, host='localhost', port=8080)
""" python-aws-dataclasses """ __version__="0.4.5" from aws_dataclasses.sns_event import SnsEvent from aws_dataclasses.alexa_skill_event import AlexaSkillEvent from aws_dataclasses.s3_event import S3Event from aws_dataclasses.cf_event import CloudFrontEvent from aws_dataclasses.http_proxy_event import ApiGwProxyEvent
""" Generate some fragments. """ from typing import TextIO, List from pathlib import Path import random def read_sequence(input_io: TextIO) -> str: """ Read sequence data. """ return "".join([s.strip() for s in input_io.readlines()]) def genfrags(sequence: str, number: int, size: int) -> List[str]: """ Generate `number` fragments all of equal length: `size`, from `sequence`. Ensure that there is a fragment covering the very beginning and end of `sequence`. """ random.seed() starts = (random.randint(0, len(sequence) - size) for _ in range(number)) return [sequence[start : start + size] for start in starts] + [ sequence[:size], sequence[len(sequence) - size :], ] def generate(filename: Path, number: int, size: int) -> List[str]: """ Given an input file containing a sequence, generate random fragments. """ with open(filename) as seq_file: return genfrags(read_sequence(seq_file), number, size) def write_fragments(output: TextIO, fragments: List[str]) -> None: " Write fragments to a file. " output.write("\n".join(fragments))
import requests from bs4 import BeautifulSoup as bs from get_info_box import scrape_info_box def scrape_disney_films(): movie_info_list = [] base_path = 'https://en.wikipedia.org' r = requests.get('https://en.wikipedia.org/wiki/List_of_Walt_Disney_Pictures_films') soup = bs(r.content, features='html.parser') movies = soup.select('.wikitable.sortable i a') for index, movie in enumerate(movies): try: relative_path = movie['href'] title = movie['title'] movie_info_list.append(scrape_info_box(base_path + relative_path)) except Exception as e: print(e) return movie_info_list
import httpx from selenium import webdriver from selenium.webdriver.chrome.options import Options from settings import Config class WeatherSelenium: def __init__(self): chrome_options = Options() chrome_options.headless = True self.driver = webdriver.Chrome(options=chrome_options) self.geokey = Config.GEO_KEY def screenshot(self, url: str) -> bytes: self.driver.get(url) elem_summary = self.driver.find_element_by_xpath('//div[@class="c-city-weather-current__bg"]') summary = elem_summary.screenshot_as_png return summary def query_city_id(self, location: str, adm: str) -> str: url = "https://geoapi.qweather.com/v2/city/lookup" res = httpx.get(url, params=dict(key=self.geokey, location=location, adm=adm)) assert res.status_code == 200, "查询city id 失败" j = res.json() assert j["code"] == "200", "查询city id 失败" return j["location"][0]["id"] def query_weather(self, city_id: str) -> str: url = "https://devapi.qweather.com/v7/weather/now" res = httpx.get(url, params=dict(key=self.geokey, location=city_id)) assert res.status_code == 200, "查询天气失败" j = res.json() assert j["code"] == "200", "查询天气失败" return j["fxLink"] def craw_weather(self, location: str, adm: str = None) -> bytes: city_id = weather_selenium.query_city_id(location, adm) url = weather_selenium.query_weather(city_id) return self.screenshot(url) weather_selenium = WeatherSelenium()
from typing import OrderedDict import torch import torch.nn.functional as F from torch.utils.data import DataLoader from modeling import BertForSequenceClassification, BertConfig from transformers import AutoTokenizer import datasets from tqdm import tqdm from time import time from quantize import quantize from quantized_modeling import BertQuantizedEncoder import random from test_utils import * def main(): config = BertConfig.from_json_file(config_file) tokenizer = AutoTokenizer.from_pretrained( tokenizer_path, config=config) rawdata = datasets.load_dataset("glue", "mrpc")["train"] loader = DataLoader(rawdata, batch_size=n_samples, shuffle=True) if no_cuda: device = torch.device("cpu") elif local_rank == -1: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") else: torch.cuda.set_device(local_rank) device = torch.device("cuda", local_rank) # set dropout prob to 0 # config.hidden_dropout_prob = 0 # config.attention_probs_dropout_prob = 0 # get each encoder output config.output_all_encoded_layers = True state_dict = torch.load(init_checkpoint) if task_name == "mrpc" or task_name == "qnli": orig = BertForSequenceClassification(config, 2) quant = BertForSequenceClassification(config, 2) elif task_name == "mnli": orig = BertForSequenceClassification(config, 3) quant = BertForSequenceClassification(config, 3) apply_quantization(orig, config, state_dict) apply_quantization(quant, config, state_dict, quantization_schemes) orig.to(device) quant.to(device) print(quantization_schemes) orig.eval() quant.eval() if fp16: orig.half() quant.half() with torch.no_grad(): a = time() for data in loader: processed_data = process_glue_mrpc_data(data, task_name, tokenizer, device) for i in range(1): eval_diff(orig, quant, processed_data, i) break print("total time:", time() - a) task_name = "mrpc" model_dir = f"/workspace/ft-bert-pyt/model/bert-base-cased-{task_name}/" config_file = model_dir + "config.json" init_checkpoint = model_dir + "pytorch_model.bin" vocab_file = model_dir + "vocab.txt" tokenizer_config_path = model_dir + "tokenizer_config.json" tokenizer_path = model_dir local_rank = 0 n_samples = 100 do_lower_case = False no_cuda = False fp16 = False quantization_schemes = [random.randint(0, 3) for i in range(12)] quantization_schemes = [3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # quantization_schemes = [0, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0] pos = 11 if __name__ == "__main__": main()
# Licensed to the White Turing under one or more # contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The SFC licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import Any, Dict, Union from .commands import _PATH, Commands from .exceptions import DeviceConnectionException from .utils import free_port, is_connectable, merge_dict class BaseService(Commands): '''Object that manages the starting and stopping of the AndroidDriver.''' def __init__(self, executable: _PATH = 'default', port: Union[int, str] = 5037, env: Dict = None) -> None: super(BaseService, self).__init__(executable) self.port = port if self.port == 0: self.port = free_port() self.options = {'env': env} @property def service_tcp(self) -> str: '''Gets the TCP of the Service.''' return f"tcp://localhost:{self.port}" def service_args(self) -> NotImplemented: raise NotImplemented( "This method needs to be implemented in a sub class") def _build_cmd(self, args: Union[list, tuple]) -> str: '''Build command.''' cmd = [self.path] cmd.extend(self.service_args()) cmd.extend(args) return cmd def _execute(self, *args: str, **kwargs: Any) -> tuple: '''Execute command.''' return self.execute(args=args, options=merge_dict(self.options, kwargs)).communicate() def start(self) -> None: '''Starts the Service.''' self._execute('start-server') def stop(self) -> None: '''Stops the service.''' self._execute('kill-server') def restart(self) -> None: '''Restart the server if it is running.''' self.stop() self.start() def version(self) -> str: '''Show the version number of Android Debug Bridge.''' output, _ = self._execute('version') return output.splitlines()[0].split()[-1] def devices(self) -> list: '''List connected devices.''' output, _ = self._execute('devices') return output.split()[4::2] def devices_l(self) -> Dict: '''List connected devices (-l for long output).''' output, _ = self._execute('devices', '-l') devices = output.split()[4::6] models = output.split()[7::6] return dict(zip(devices, models)) def connect(self, host: str = '192.168.0.3', port: Union[int, str] = 5555) -> None: '''Connect to a device via TCP/IP directly.''' self.device_sn = f'{host}:{port}' if not is_connectable(host, port): raise ConnectionError(f'Cannot connect to {self.device_sn}.') self._execute('connect', self.device_sn) def disconnect(self, host: str = '192.168.0.3', port: Union[int, str] = 5555) -> None: '''Disconnect from given TCP/IP device [default port=5555].''' self.device_sn = None self._execute('disconnect', f'{host}:{port}') def disconnect_all(self) -> None: '''Disconnect all.''' self.device_sn = None self._execute('disconnect') def get_state(self) -> str: '''offline | bootloader | device''' output, error = self._execute('get-state') if error: raise DeviceConnectionException(error.split(':', 1)[-1].strip()) return output.strip() class Service(BaseService): '''Object that manages the starting and stopping of the AndroidDriver.''' def __init__(self, executable_path: _PATH = 'default', port: Union[int, str] = 5037, env: Dict = None, service_args: Union[list, tuple] = None) -> None: '''Creates a new instance of the Service. Args: executable_path: Path to the AndroidDriver. port: Port the service is running on. env: Environment variables. service_args: List of args to pass to the androiddriver service. ''' self._service_args = service_args or [] super(Service, self).__init__(executable_path, port=port, env=env) def service_args(self) -> str: '''Parameters when starting the service.''' return ['-P', str(self.port)] + self._service_args
# coding: utf-8 from __future__ import absolute_import, unicode_literals from django.core.urlresolvers import reverse from django.views.generic import ListView, RedirectView from haystack.forms import HighlightedSearchForm from haystack.views import SearchView from .models import Document, ParlerDocument class SearchForm(HighlightedSearchForm): pass class DocumentView(ListView): model = Document paginate_by = 20 class ParlerView(ListView): paginate_by = 20 def get_queryset(self): return ParlerDocument.objects.prefetch_related('translations') class Search(SearchView): form = SearchForm model = Document paginate_by = 20 class LanguageRedirectView(RedirectView): def get_redirect_url(self): return reverse('home')
from django.conf.urls import patterns, include, url from django.contrib import admin from django.views.decorators.csrf import csrf_exempt from django_todo.apps.core.views import CurrentTaskView, CompleteTaskView urlpatterns = patterns( '', url(r'^$', CurrentTaskView.as_view(), name='home'), url(r'create/$', CurrentTaskView.as_view(), name='create_task'), url(r'complete/(?P<id>\d+)/$', csrf_exempt(CompleteTaskView.as_view()), name='complete_task'), (r'^accounts/login/$', 'django.contrib.auth.views.login'), (r'^accounts/logout/$', 'django.contrib.auth.views.logout'), url(r'^admin/', include(admin.site.urls)), )
import os import subprocess import menupy DataDir = '/home/alles/.MyTelegram' # Where accounts will be located Binary = '/usr/bin/telegram-desktop' # Where is Telegram binary def CheckPatches(): if os.path.exists(DataDir) == False: try: os.mkdir(DataDir) except OSError: exit("Can't create %s" % path) else: print ("Directory %s created!" % path) if os.path.exists(Binary) == False: exit("No Telegram binary!") def MainMenu(msg): SelectMenu = menupy.OptionMenu(str(msg), title_color="cyan") SelectMenu.add_option("Login to an existing account", color="green", ret="exist") SelectMenu.add_option("Login to a new account", color="green", ret="new") SelectMenu.add_option("Exit", color="red", ret="exit") result = SelectMenu.run() if result == "exit": exit("Have a nice day!") else: return result def SelectAccount(): AccountsDirs = os.listdir(DataDir) SelectMenu = menupy.OptionMenu("Select Telegram account:", title_color="cyan") for Dir in AccountsDirs: SelectMenu.add_option(Dir, color="green", ret=str(Dir)) SelectMenu.add_option("To main menu", color="red", ret="main") result = SelectMenu.run() if result == "main": main("By @Allespro, Thanks to @luxunator for this wonderful menu\nSelect option:") else: return result def NewAccount(): AccountName = str(input("Input your account name: ")) if os.path.exists(DataDir+"/"+AccountName): main("Account %s is already created!" % AccountName) else: try: os.mkdir(DataDir+"/"+AccountName) except OSError: main("Can't create %s" % AccountName) else: main("Directory for account %s created! Now you can login!" % AccountName) def main(mainmsg): chs = MainMenu(str(mainmsg)) if chs == "exist": Account = SelectAccount() command = str(Binary) + " -many -workdir " + DataDir+ "/" + Account subprocess.Popen(command, shell=True) exit("\n\nFollow me on Github\nhttps://github.com/Allespro\n\n") elif chs == "new": NewAccount() else: exit('HOW YOU GET THAT RETURN???') if __name__ == '__main__': CheckPatches() main("By @Allespro, Thanks to @luxunator for this wonderful menu\nSelect option:")
"""A sqlite2 store""" import sqlite3 from typing import Any, List, Mapping, MutableMapping, Tuple import aiosqlite from ..types import Session, Store CREATE_SEQNUM_TABLE_SQL = """ CREATE TABLE IF NOT EXISTS initiator_seqnums ( sender_comp_id VARCHAR(64) NOT NULL, target_comp_id VARCHAR(64) NOT NULL, outgoing_seqnum INT NOT NULL, incoming_seqnum INT NOT NULL, PRIMARY KEY (sender_comp_id, target_comp_id) ) """ SEQNUM_QUERY = """ SELECT outgoing_seqnum, incoming_seqnum FROM initiator_seqnums WHERE sender_comp_id = ? AND target_comp_id = ? """ SEQNUM_INSERT = """ INSERT INTO initiator_seqnums(sender_comp_id, target_comp_id, outgoing_seqnum, incoming_seqnum) VALUES ( ?, ?, ?, ?) """ SEQNUM_UPDATE = """ UPDATE initiator_seqnums SET outgoing_seqnum = ?, incoming_seqnum = ? WHERE sender_comp_id = ? AND target_comp_id = ? """ SEQNUM_UPDATE_OUTGOING = """ UPDATE initiator_seqnums SET outgoing_seqnum = ? WHERE sender_comp_id = ? AND target_comp_id = ? """ SEQNUM_UPDATE_INCOMING = """ UPDATE initiator_seqnums SET incoming_seqnum = ? WHERE sender_comp_id = ? AND target_comp_id = ? """ CREATE_MESSAGE_TABLE_SQL = """ CREATE TABLE IF NOT EXISTS initiator_messages ( sender_comp_id VARCHAR(64) NOT NULL, target_comp_id VARCHAR(64) NOT NULL, outgoing_seqnum INT NOT NULL, incoming_seqnum INT NOT NULL, message VARCHAR(2048) NOT NULL, PRIMARY KEY (sender_comp_id, target_comp_id) ) """ MESSAGE_INSERT = """ INSERT INTO initiator_messages(sender_comp_id, target_comp_id, outgoing_seqnum, incoming_seqnum, message) VALUES ( ?, ?, ?, ?, ?) """ class SqlSession(Session): def __init__( self, conn_args: List[Any], conn_kwargs: Mapping[str, Any], sender_comp_id: str, target_comp_id: str ) -> None: self.conn_args = conn_args self.conn_kwargs = conn_kwargs conn = sqlite3.connect(*self.conn_args, **self.conn_kwargs) cursor = conn.cursor() cursor.execute(SEQNUM_QUERY, (sender_comp_id, target_comp_id)) result = cursor.fetchone() if result: self._outgoing_seqnum, self._incoming_seqnum = result else: cursor.execute( SEQNUM_INSERT, (sender_comp_id, target_comp_id, 0, 0)) conn.commit() self._outgoing_seqnum, self._incoming_seqnum = 0, 0 self._sender_comp_id = sender_comp_id self._target_comp_id = target_comp_id @property def sender_comp_id(self) -> str: return self._sender_comp_id @property def target_comp_id(self) -> str: return self._target_comp_id async def get_seqnums(self) -> Tuple[int, int]: return self._outgoing_seqnum, self._incoming_seqnum async def set_seqnums(self, outgoing_seqnum: int, incoming_seqnum: int) -> None: self._outgoing_seqnum, self._incoming_seqnum = outgoing_seqnum, incoming_seqnum async with aiosqlite.connect(*self.conn_args, **self.conn_kwargs) as db: await db.execute( SEQNUM_UPDATE, (self._outgoing_seqnum, self._incoming_seqnum, self.sender_comp_id, self.target_comp_id) ) await db.commit() async def get_outgoing_seqnum(self) -> int: return self._outgoing_seqnum async def set_outgoing_seqnum(self, seqnum: int) -> None: self._outgoing_seqnum = seqnum async with aiosqlite.connect(*self.conn_args, **self.conn_kwargs) as db: await db.execute( SEQNUM_UPDATE_OUTGOING, (self._outgoing_seqnum, self.sender_comp_id, self.target_comp_id) ) await db.commit() async def get_incoming_seqnum(self) -> int: return self._incoming_seqnum async def set_incoming_seqnum(self, seqnum: int) -> None: self._incoming_seqnum = seqnum async with aiosqlite.connect(*self.conn_args, **self.conn_kwargs) as db: await db.execute( SEQNUM_UPDATE_INCOMING, (self._incoming_seqnum, self.sender_comp_id, self.target_comp_id) ) await db.commit() async def save_message(self, buf: bytes) -> None: async with aiosqlite.connect(*self.conn_args, **self.conn_kwargs) as db: message = buf.decode('ascii') await db.execute( MESSAGE_INSERT, (self.sender_comp_id, self.target_comp_id, self._outgoing_seqnum, self._incoming_seqnum, message) ) await db.commit() class SqlStore(Store): def __init__( self, conn_args: List[Any], conn_kwargs: Mapping[str, Any] ) -> None: self.conn_args = conn_args self.conn_kwargs = conn_kwargs conn = sqlite3.connect(*self.conn_args, **self.conn_kwargs) cursor = conn.cursor() cursor.execute(CREATE_SEQNUM_TABLE_SQL) cursor.execute(CREATE_MESSAGE_TABLE_SQL) self._sessions: MutableMapping[str, SqlSession] = dict() def get_session(self, sender_comp_id: str, target_comp_id: str) -> Session: key = sender_comp_id + '\x01' + target_comp_id if key in self._sessions: return self._sessions[key] session = SqlSession(self.conn_args, self.conn_kwargs, sender_comp_id, target_comp_id) self._sessions[key] = session return session
import sys from ctypes import * from ctypes.util import find_library libc = cdll.LoadLibrary(find_library("c")) def sysctl(mib_t, c_type=None): mib = (c_int * len(mib_t))() for i, v in enumerate(mib_t): mib[i] = c_int(v) if c_type == None: size = c_size_t(0) libc.sysctl(mib, len(mib), None, byref(sz), None, 0) buf = create_string_buffer(size.value) else: buf = c_type() size = c_size_t(sizeof(buf)) size = libc.sysctl(mib, len(mib), byref(buf), byref(size), None, 0) if st != 0: raise OSError('sysctl() returned with error %d' % st) try: return buf.value except AttributeError: return buf def sysctlbyname(name, c_type=None): if c_type == None: size = c_size_t(0) libc.sysctlbyname(name, None, byref(sz), None, 0) buf = create_string_buffer(size.value) else: buf = c_type() size = c_size_t(sizeof(buf)) st = libc.sysctlbyname(name, byref(buf), byref(size), None, 0) if st != 0: raise OSError('sysctlbyname() returned with error %d' % st) try: return buf.value except AttributeError: return buf
import numpy as np import srl from srl.base.define import RenderType from srl.base.env.base import EnvRun from srl.runner import sequence from srl.runner.callbacks import PrintProgress class TestEnv: def play_test( self, env_name: str, check_render: bool = True, check_restore: bool = True, max_step: int = 0, print_enable: bool = False, ) -> EnvRun: # renderとrestoreの同時は想定しないとする env = self._play_test(env_name, False, check_restore, max_step, print_enable) if check_render: env = self._play_test(env_name, check_render, False, max_step, print_enable) return env def _is_space_base_instance(self, val): if type(val) in [int, float, list, np.ndarray]: return True return False def _play_test( self, env_name, check_render, check_restore, max_step, print_enable, ): env = srl.envs.make(env_name) assert issubclass(env.__class__, EnvRun) player_num = env.player_num assert player_num > 0 # --- reset env.reset() assert self._is_space_base_instance(env.state) for i in env.next_player_indices: assert 0 <= i < player_num # --- restore/backup if check_restore: dat = env.backup() env.restore(dat) assert not env.done assert env.step_num == 0 # render if check_render: for mode in RenderType: try: env.render(mode) except NotImplementedError: pass while not env.done: # --- sample actions = env.samples() assert len(actions) == env.player_num # get_invalid_actions for idx in range(env.player_num): invalid_actions = env.get_invalid_actions(idx) assert isinstance(invalid_actions, list) for a in invalid_actions: assert isinstance(a, int) # --- step env.step(actions) assert self._is_space_base_instance(env.state) assert isinstance(env.done, bool) assert isinstance(env.info, dict) for i in env.next_player_indices: assert 0 <= i < player_num # uniq check assert len(env.next_player_indices) == len(list(set(env.next_player_indices))) assert len(env.step_rewards) == player_num assert env.step_num > 0 if print_enable: print(f"step {env.step_num}, actions {actions}, rewards {env.step_rewards}") # --- restore/backup if check_restore: dat = env.backup() env.restore(dat) # render if check_render: for mode in RenderType: try: env.render(mode) except NotImplementedError: pass if max_step > 0 and env.step_num > max_step: break env.close() return env def player_test(self, env_name: str, player: str) -> EnvRun: env_config = srl.envs.Config(env_name) rl_config = srl.rl.random_play.Config() config = sequence.Config(env_config, rl_config) env = config.make_env() config.players = [player] * env.player_num config.set_play_config(max_episodes=10, callbacks=[PrintProgress()]) sequence.play(config) return env
from os import stat import numpy as np import cv2 # OpenCV import math from numpy.linalg.linalg import qr class Rotations: def __init__(self): return @staticmethod def rot_mat_2_quat(R): """ Convert a rotation from rotation matrix to quaternion representation. Assumes that the columns of the rotation matrix are orthonomal! """ i, j, k = 0, 1, 2 if R[1,1] > R[0,1]: i, j, k = 1, 2, 0 if R[2,2] > R[i,i]: i, j, k = 2, 0, 1 t = R[i,i] - (R[j,j] + R[k,k]) + 1 q = np.array([0, 0, 0, 0]) q[0] = R[k,j] - R[j,k] q[i+1] = t q[j+1] = R[i,j] + R[j,i] q[k+1] = R[k,i] + R[i,k] q = np.multiply(q, 0.5 / math.sqrt(t)) return q @staticmethod def quat_2_rot_mat(q): """ Convert a rotation from rotation matrix to quaternion representation. """ s = np.linalg.norm(q) # s = 1 if the quaternion has unit length R = np.zeros((3,3)) R[0,0] = 1 - 2 * s * (q[2]**2 + q[3]**2) R[0,1] = 2 * s * (q[1]*q[2] - q[3]*q[0]) R[0,2] = 2 * s * (q[1]*q[3] + q[2]*q[0]) R[1,0] = 2 * s * (q[1]*q[2] + q[3]*q[0]) R[1,1] = 1 - 2 * s * (q[1]**2 + q[3]**2) R[1,2] = 2 * s * (q[2]*q[3] - q[1]*q[0]) R[2,0] = 2 * s * (q[1]*q[3] - q[2]*q[0]) R[2,1] = 2 * s * (q[2]*q[3] + q[1]*q[0]) R[2,2] = 1 - 2 * s * (q[1]**2 + q[2]**2) R = Rotations.orthonormal_mat(R) return R @staticmethod def rot_mat_2_angle_axis(rot_mat): theta = math.acos((np.trace(rot_mat) - 1) / 2) return 1 / (2 * math.sin(theta)) * np.array([rot_mat[2,1] - rot_mat[1,2], rot_mat[0,2] - rot_mat[2,0], rot_mat[1,0] - rot_mat[0,1]]).reshape((3,1)) @staticmethod def orthonormal_mat(mat): # Perform SVD on rotation matrix to make the rows and columns orthonormal U, _, V_transpose = np.linalg.svd(mat, full_matrices=True) return np.matmul(U, V_transpose)
#Author: Diego Ramírez Barba #Version: 1.0.0 #License: MIT import random from math import radians, sqrt, asin, sin, cos #Create Data type class Location: def __init__(self, latitude, longitude) : #constructor self.latitude = latitude # 90N and 90S 0 -> Ecuador self.longitude = longitude # 180E and 180W 0 -> Greenwhich Meridian #Generate random coordinates def generate_random_longitude_latitude(): latitude = ("{0:.4f}".format(random.uniform(-90, 90))) longitude = ("{0:.4f}".format(random.uniform(-180, 180))) data = Location(float(latitude),float(longitude)) return data #Generate a method that parse the coordinates to format "25.344 N, 63.5532 W," def parse_coordinates(data): if(data.latitude < 0): data.latitude = str(abs(data.latitude)) + ' S,' else: data.latitude = str(data.latitude) + ' N,' if(data.longitude < 0): data.longitude = str(abs(data.longitude)) + ' W,' else: data.longitude = str(data.longitude) + ' E,' print(data.latitude + ' ' + data.longitude) return data #Great circle distance #This method converts the data to DMS (Ddec) and the DMS to Radians and returns the distance between A and B #Haversine formula 2r *arcsin(sqrt(sin^2(diflat/2) + cos(lat1) * cos(lat2) * sin^2(diflong/2))) def great_circle_distance(pointA, pointB): R = 6371 # radius of earth in Km x1 = pointA.latitude y1 = pointA.longitude x2 = pointB.latitude y2 = pointB.longitude parse_coordinates(pointA) parse_coordinates(pointB) y1, x1, y2, x2 = map(radians, [y1, x1, y2, x2]) dif_lat = x2 - x1 dif_lon = y2 - y1 x = sin(dif_lat/2)**2 + cos(x1) * cos(x2) * sin(dif_lon/2)**2 y = sqrt(x) if(y > 1): print("Error in the limits of the haversine formula") # The long haversine formula is needed return -1 else: z = asin(sqrt(x)) haversine = 2 * R * z print(str(round(haversine,4)) + ' Km') return haversine pointA = generate_random_longitude_latitude() pointB = generate_random_longitude_latitude() great_circle_distance(pointA,pointB)
"""Client interface to the MarkerServer to send markers""" import pylsl import socket import json from logging import getLogger from sys import platform log = getLogger() def sanitize_string(marker: str) -> str: """sanitize a string removes whitespace, transforms to lower case and replaces umlaute and spaces with safer symbols args ---- marker:str the un-sanitized string returns ------- sanitized:str the sanitized string """ translation = str.maketrans({"ä": "ae", "ö": "oe", "ü": "ue", " ": "_"}) marker = marker.lower().strip().translate(translation) if marker.lower() == "ping": marker = json.dumps({"msg": marker}) log.critical( f"'ping' is a reserved key-word for pinging the marker-server. If you want to ping, use available. Forwarded {marker} instead" ) if marker.lower() == "poison-pill": marker = {"msg": marker} marker = json.dumps(marker) log.critical( f"'poison-pill' is a reserved key-word for shutting down the marker-server. If you want to shut-down, use kill. Forwarded {marker} instead" ) return marker def push(marker: str = "", tstamp: float = None, sanitize=True, port: int = 7654): """push a marker to the MarkerServer for redistribution as LSL args ---- marker: str an ascii-encodable string describing an event. We recommend to use valid json-strings :func:`~.push_json` tstamp: float the timestamp of the event. We recommend to use timestamps received from pylsl.local_clock sanitize: bool whether the string is to be sanitized, see :func:`~.sanitize_string` port: int the port of the MarkerServer """ if tstamp is None: tstamp = pylsl.local_clock() if sanitize: marker = sanitize_string(marker) c = _Client(port=port) c.push(marker, tstamp) def push_json(marker: dict = {"key": "value"}, tstamp: float = None): """encode a dictionary as json and push it to the MarkerServer args ---- marker: a json-encodable dictionary describing an event or current settings tstamp: the timestamp of the event. We recommend to use timestamps received from pylsl.local_clock .. caution: the resulting msg will not be sanitized :func:`~.sanitize_string` """ push(json.dumps(marker), tstamp, sanitize=False) def available(port: int = 7654, host: str = "127.0.0.1", verbose=True) -> bool: """test whether a markerserver is already available at port args ---- host: str the ip of the markerserver (defaults to localhost) port: int the port number of the markerserver (defaults to 7654) returns ------- status: bool True if available, False if not """ c = _Client(host=host, port=port) try: c.push("ping", pylsl.local_clock()) return True except ConnectionRefusedError as e: if verbose: print(e) print(f"Markerserver at {host}:{port} is not available") return False def kill(host: str = "127.0.0.1", port: int = 7654): c = _Client(port=port, host=host) c.push("poison-pill", pylsl.local_clock()) class _Client: "Basic Client communicating with the MarkerServer" def __init__(self, host="127.0.0.1", port: int = 7654, verbose=True): self.host = host self.port = port self.verbose = verbose def push(self, marker: str = "", tstamp: float = None): "connects, sends a message, and close the connection" self.connect() self.write(marker, tstamp) self.close() def connect(self): "connect wth the remote server" self.interface = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.interface.connect((self.host, self.port)) self.interface.settimeout(1) def write(self, marker, tstamp): "encode message into ascii and send all bytes" msg = json.dumps((marker, tstamp)).encode("ascii") if self.verbose: print(f"Sending {marker} at {tstamp}") self.interface.sendall(msg) def close(self): "closes the connection" self.interface.shutdown(1) self.interface.close() if "darwin" in platform: # pragma no cover def fake_push( marker: str = "", tstamp: float = None, sanitize=True, port: int = 7654 ): if tstamp is None: tstamp = pylsl.local_clock() if sanitize: marker = sanitize_string(marker) print(f'MacOs: fake_push "{marker}" at {tstamp}') fake_push.__doc__ = push.__doc__ push = fake_push
#!/usr/bin/env python # coding=utf-8 # # Copyright © 2015-2016 VMware, Inc. All Rights Reserved. # # Licensed under the X11 (MIT) (the “License”) set forth below; # # you may not use this file except in compliance with the License. Unless required by applicable law or agreed to in # writing, software distributed under the License is distributed on an “AS IS” BASIS, without warranties or conditions # of any kind, EITHER EXPRESS OR IMPLIED. See the License for the specific language governing permissions and # limitations under the License. Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the # Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of # the Software. # # "THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN # AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE.” __author__ = 'yfauser' class Error(Exception): """Base exception class""" pass class NsxError(Error): """ Exception raised if client is instantiated with fail_mode=raise Attributes: status: The HTTP status code returned by the NSX API, e.g. 400 for 'not found' msg: The body content returned by NSX in case of an error """ def __init__(self, status, msg): self.status = status self.msg = msg def __str__(self): return '\nstatus code: {}\nerror message: {}'.format(self.status, self.msg)
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2020 Lucas Heitzmann Gabrielli. # This file is part of gdstk, distributed under the terms of the # Boost Software License - Version 1.0. See the accompanying # LICENSE file or <http://www.boost.org/LICENSE_1_0.txt> import pathlib import numpy import gdstk from tutorial_images import draw def init_image(): path = gdstk.FlexPath( [(0, 5), (0, 0), (5, 0), (15, 10), (15, -5)], [0.8, 0.8, 0.8, 0.8], 1.0, joins=["natural", "bevel", "miter", "round"], ends=["flush", "extended", (0.4, 0.8), "round"], layer=[0, 1, 2, 3], ) return gdstk.Cell("init").add(path) def init0_image(): points = [(0, 8), (0, 0), (8, 0), (18, 13), (18, -8)] path_1 = gdstk.FlexPath(points, 1, datatype=1) path_2 = gdstk.FlexPath(points, 1, bend_radius=3) return gdstk.Cell("init0").add(path_2, path_1) def init1_image(): def custom_broken_join(p0, v0, p1, v1, center, width): p0 = numpy.array(p0) v0 = numpy.array(v0) p1 = numpy.array(p1) v1 = numpy.array(v1) center = numpy.array(center) # Calculate intersection point p between lines defined by # p0 + u0 * v0 (for all u0) and p1 + u1 * v1 (for all u1) den = v1[1] * v0[0] - v1[0] * v0[1] lim = 1e-12 * (v0[0] ** 2 + v0[1] ** 2) * (v1[0] ** 2 + v1[1] ** 2) if den ** 2 < lim: # Lines are parallel: use mid-point u0 = u1 = 0 p = 0.5 * (p0 + p1) else: dx = p1[0] - p0[0] dy = p1[1] - p0[1] u0 = (v1[1] * dx - v1[0] * dy) / den u1 = (v0[1] * dx - v0[0] * dy) / den p = 0.5 * (p0 + v0 * u0 + p1 + v1 * u1) if u0 <= 0 and u1 >= 0: # Inner corner return [p] # Outer corner return [p0, center, p1] def custom_pointy_end(p0, v0, p1, v1): p0 = numpy.array(p0) v0 = numpy.array(v0) p1 = numpy.array(p1) v1 = numpy.array(v1) r = 0.5 * numpy.sqrt(numpy.sum((p0 - p1) ** 2)) v0 /= numpy.sqrt(numpy.sum(v0 ** 2)) v1 /= numpy.sqrt(numpy.sum(v1 ** 2)) return [p0, 0.5 * (p0 + p1) + 0.5 * (v0 - v1) * r, p1] path = gdstk.FlexPath( [(0, 5), (0, 0), (5, 0), (15, 10), (15, -5)], 3, joins=custom_broken_join, ends=custom_pointy_end, ) return gdstk.Cell("init1").add(path) def horizontal_image(): path = gdstk.FlexPath((0, 0), 0.2) path.horizontal(2, width=0.4, relative=True) path.horizontal(2, offset=[0.4], relative=True) path.horizontal(2, relative=True) assert ( numpy.max( numpy.abs( path.spine() - numpy.array([[0.0, 0.0], [2.0, 0.0], [4.0, 0.0], [6.0, 0.0]]) ) ) == 0 ) return gdstk.Cell("horizontal").add(path) def segment_image(): points = [(1, 0), (1, 1), (-1, 1), (-1, -1), (1, -1)] path_1 = gdstk.FlexPath((0, 0), 0.2) path_1.segment(points, 0.6) path_2 = gdstk.FlexPath((3, 0), [0.1, 0.1], 0.2) path_2.segment(points, offset=0.6, relative=True) return gdstk.Cell("segment").add(path_1, path_2) def cubic_image(): path = gdstk.FlexPath((0, 0), 0.2, tolerance=1e-3) path.cubic([(0, 1), (1, 1), (1, 0)]) path.cubic([(1, -1), (2, -1), (2.5, -0.5), (3, 0), (3, 1), (2, 1)], width=0.5) return gdstk.Cell("cubic").add(path) def cubic_smooth_image(): path = gdstk.FlexPath((0, 0), 0.2, tolerance=1e-3) path.cubic([(0, 1), (1, 1), (1, 0)]) path.cubic_smooth([(2, -1), (2.5, -0.5), (3, 1), (2, 1)], width=0.5) return gdstk.Cell("cubic_smooth").add(path) def bezier_image(): path = gdstk.FlexPath((0, 0), 0.2, tolerance=1e-3) path.bezier([(4, 1), (4, 3), (0, 5), (-4, 3), (-4, -2), (0, -4)]) return gdstk.Cell("bezier").add(path) def interpolation_image(): half_pi = numpy.pi / 2 points = [(4, 1), (4, 3), (0, 5), (-4, 3), (-4, -2), (0, -4)] angles = [half_pi, None, None, None, -half_pi, -half_pi, None] path_1 = gdstk.FlexPath((0, 0), 0.2, tolerance=1e-3) path_1.interpolation(points, cycle=True) path_2 = gdstk.FlexPath((6, -8), 0.2, tolerance=1e-3) path_2.interpolation(points, angles, cycle=True, relative=True) return gdstk.Cell("interpolation").add(path_1, path_2) def arc_image(): path = gdstk.FlexPath((0, 0), [0.2, 0.3], 0.4, tolerance=1e-3) path.vertical(5) path.arc(2.5, numpy.pi, 0) path.arc(5, -numpy.pi, -numpy.pi / 2) return gdstk.Cell("arc").add(path) def parametric_image(): def spiral(u): rad = 2 * u ** 0.5 ang = 3 * numpy.pi * u return (rad * numpy.cos(ang), rad * numpy.sin(ang)) path = gdstk.FlexPath((0, 0), 0.2, tolerance=1e-3) path.parametric(spiral) return gdstk.Cell("parametric").add(path) def commands_image(): path = gdstk.FlexPath((0, 0), [0.2, 0.4, 0.2], 0.5, tolerance=1e-3) path.commands( "l", 3, 4, "A", 2, numpy.arctan2(3, -4), numpy.pi / 2, "h", 0.5, "a", 3, -numpy.pi, ) return gdstk.Cell("commands").add(path) if __name__ == "__main__": path = pathlib.Path(__file__).parent.absolute() / "flexpath" path.mkdir(parents=True, exist_ok=True) draw(init_image(), path) draw(init0_image(), path) draw(init1_image(), path) draw(horizontal_image(), path) draw(segment_image(), path) draw(cubic_image(), path) draw(cubic_smooth_image(), path) draw(bezier_image(), path) draw(interpolation_image(), path) draw(arc_image(), path) draw(parametric_image(), path) draw(commands_image(), path)
from django.middleware.csrf import rotate_token # _compare_salted_tokens, from rest_framework.permissions import BasePermission class HasCsrfTokenValid(BasePermission): def has_permission(self, request, view): token_valid = False try: csrf_token = request.headers.get("api-csrftoken") csrf_cookie = request.META.get("CSRF_COOKIE") """ Check if both alphanumerics(strings) values are differents to prevent a malicious user get the csrf cookie and send it from the ajax. """ if csrf_token == csrf_cookie: rotate_token(request) return False token_valid = True #_compare_salted_tokens(csrf_token, csrf_cookie) except ValueError: # if csrf_token & csrf_cookie are not a valid alphanumeric return False return token_valid
from typing import Tuple import torch from torch import Tensor import gym3 from gym3.types import Discrete, TensorType UP = 0 DOWN = 1 LEFT = 2 RIGHT = 3 class GridWorld(gym3.Env): """Gridworld with no reward and no episode termination. Following gym3 interface""" def __init__(self, n_env: int, n: int, device: torch.device): ob_shape = (n_env, 2) # n x n gridworld where each row indicates agent's position ac_shape = (n_env, ) ob_space = TensorType(Discrete(n), ob_shape) ac_space = TensorType(Discrete(4), ac_shape) super(GridWorld, self).__init__(ob_space, ac_space, n_env) self.state = torch.ones(ob_shape, device=device, dtype=torch.long) * (n // 2) self.reward = torch.zeros(ac_shape, device=device, dtype=torch.float) self.first = torch.ones(ac_shape, device=device, dtype=torch.bool) self.n = n self.ob_shape = ob_shape self.ac_shape = ac_shape self.device = device def act(self, ac: Tensor) -> None: """act one environment step Args: ac (Tensor): action of shape (n_env, ) and each value is 0~3 """ next_state = self.get_next_state(self.state, ac) reward = self.compute_reward(next_state) first = self.is_done(next_state) next_state = self.reset_episode(next_state, first) self.state = next_state self.reward = reward self.first = first def observe(self) -> Tuple[Tensor, Tensor, Tensor]: return self.reward, self.state, self.first def get_next_state(self, state: Tensor, ac: Tensor) -> Tensor: up = -1 * (ac == UP) down = ac == DOWN left = -1 * (ac == LEFT) right = ac == RIGHT state[:, 0] = state[:, 0] + up + down state[:, 1] = state[:, 1] + left + right state = torch.clamp(state, 0, self.n-1) return state def compute_reward(self, state: Tensor) -> Tensor: return torch.zeros(self.ac_shape, device=self.device) def is_done(self, state: Tensor) -> Tensor: return torch.zeros(self.ac_shape, device=self.device) def reset_episode(self, next_state: Tensor, first: Tensor) -> Tensor: """reset episode if finished Args: next_state: first: Returns: """ return next_state
import pytest from datetime import datetime, timedelta from time import sleep from tpgnow.cache import Cache from tpgnow.model import Stop TIME_DELAY = 5 class TestCache(object): @pytest.fixture def cache(self): return Cache() @pytest.fixture def key(self): return "key" @pytest.fixture def value(self): return "value" def test_noWrite_read(self, cache, key): assert cache.read(key) is None def test_writeAndReadString(self, cache, key, value): cache.write(key, value) assert cache.read(key) is value def test_writeAndReadObject(self, cache, key): value = Stop("code", "name") cache.write(key, value) assert cache.read(key) is value def test_cacheReadBeforeTimeoutDelay(self, cache, key, value): cache.write(key, value, delay=5) # seconds sleep(TIME_DELAY-2) assert cache.read(key) is value def test_cacheReadBeforeTimeoutDate(self, cache, key, value): inTenSeconds = datetime.now() + timedelta(seconds=TIME_DELAY) cache.write(key, value, timeout=inTenSeconds) # seconds sleep(TIME_DELAY-2) assert cache.read(key) is value def test_cacheReadAfterTimeout(self, cache, key, value): cache.write(key, value, delay=TIME_DELAY) # seconds sleep(TIME_DELAY+2) assert cache.read(key) is None def test_cacheReadAfterTimeout_assertKeyDeleted(self, cache, key, value): cache.write(key, value, delay=TIME_DELAY) # seconds sleep(TIME_DELAY+2) cache.read(key) assert key not in cache.store def test_noWriteHas(self, cache, key): assert not cache.has(key) def test_writeHas(self, cache, key, value): cache.write(key, value) assert cache.has(key) def test_hasBeforeTimeoutDelay(self, cache, key, value): cache.write(key, value, delay=5) # seconds sleep(TIME_DELAY-2) assert cache.has(key) def test_hasBeforeTimeoutDate(self, cache, key, value): inTenSeconds = datetime.now() + timedelta(seconds=TIME_DELAY) cache.write(key, value, timeout=inTenSeconds) # seconds sleep(TIME_DELAY-2) assert cache.has(key) def test_hasAfterTimeout(self, cache, key, value): cache.write(key, value, delay=TIME_DELAY) # seconds sleep(TIME_DELAY+2) assert not cache.has(key) def test_cacheReadAfterTimeout_assertKeyDeleted(self, cache, key, value): cache.write(key, value, delay=TIME_DELAY) # seconds sleep(TIME_DELAY+2) cache.has(key) assert key not in cache.store def test_singleton(self): cache1 = Cache.Instance() cache2 = Cache.Instance() assert cache1 is cache2
from optable.synthesis import manipulation_candidate from optable.dataset import feature_types from optable.manipulations.aggregations import aggregation class MeanManipulation(aggregation.AggregationManipulation): def __init__(self, path, dataset, col): super(MeanManipulation, self).__init__( path, dataset, col, "Mean", "mean", "mean", False) def calculate_priority(self): return 0.2 + 0.2 * self.path.not_deeper_count \ + 0.2 * self.path.substance_to_many_count(self.dataset, self.col) \ * self.path.to_many_path_priority(self.dataset, self.col) def meta_feature_size(): return 3 def meta_feature(self): to_many_meta = self.path.substance_to_many_count( self.dataset, self.col) \ * self.path.to_many_path_priority( self.dataset, self.col) return [1, self.path.not_deeper_count, to_many_meta] def meta_feature_name(): return [ "Mean-Constant", "Mean-NotDeeperCount", "Mean-ToManyMeta" ] class MeanCandidate(manipulation_candidate.ManipulationCandidate): def search(self, path, dataset): if path.is_to_many: dst_table = dataset.tables[path.dst] ret = [] for col in dst_table.df.columns: if path.is_substance_to_one_with_col(dataset, col): continue ftype = dst_table.ftypes[col] if ftype == feature_types.numerical \ or ftype == feature_types.mc_processed_numerical \ or ftype == feature_types.c_processed_numerical \ or ftype == feature_types.t_processed_numerical: ret.append(MeanManipulation(path, dataset, col)) return ret else: return []
# use virtual env from nb-requirements.txt import kfp from kfp import dsl from kubernetes.client.models import V1EnvVar from kfp.onprem import use_k8s_secret from components.preprocess import preprocess from components.train import train import os from pathlib import Path OUTPUT_DIRECTORY = 'generated' PROJECT_ROOT = Path(__file__).absolute().parent web_downloader_op = kfp.components.load_component_from_url( 'https://raw.githubusercontent.com/kubeflow/pipelines/master/components/contrib/web/Download/component.yaml') preprocess_op = kfp.components.create_component_from_func( func=preprocess, output_component_file=os.path.join(PROJECT_ROOT, OUTPUT_DIRECTORY, 'preprocess-component.yaml'), # This is optional. It saves the component spec for future use. base_image='python:3.9', packages_to_install=['pandas', 'pyarrow']) training_op = kfp.components.create_component_from_func( func=train, output_component_file=os.path.join(PROJECT_ROOT, OUTPUT_DIRECTORY, 'train-component.yaml'), # This is optional. It saves the component spec for future use. base_image='python:3.9', packages_to_install=['pandas', 'pyarrow', 'sklearn', 'mlflow', 'boto3']) deploy_op = kfp.components.load_component_from_file( os.path.join(PROJECT_ROOT, 'components', 'deploy', 'component.yaml')) @dsl.pipeline( name="e2e_wine_pipeline", description="WINE pipeline", ) def wine_pipeline(url): web_downloader_task = web_downloader_op(url=url) preprocess_task = preprocess_op(file=web_downloader_task.outputs['data']) train_task = (training_op(file=preprocess_task.outputs['output']) .add_env_variable(V1EnvVar(name='MLFLOW_TRACKING_URI', value='http://mlflow-server.kubeflow.svc.cluster.local:5000')) .add_env_variable(V1EnvVar(name='MLFLOW_S3_ENDPOINT_URL', value='http://minio.kubeflow.svc.cluster.local:9000')) # https://kubeflow-pipelines.readthedocs.io/en/stable/source/kfp.extensions.html#kfp.onprem.use_k8s_secret .apply(use_k8s_secret(secret_name='mlpipeline-minio-artifact', k8s_secret_key_to_env={ 'accesskey': 'AWS_ACCESS_KEY_ID', 'secretkey': 'AWS_SECRET_ACCESS_KEY', }))) deploy_task = deploy_op(model_uri=train_task.output) if __name__ == '__main__': pipeline_output = os.path.join(PROJECT_ROOT, OUTPUT_DIRECTORY, 'wine-pipeline.yaml') kfp.compiler.Compiler().compile(wine_pipeline, pipeline_output) print('Generated the wine pipeline definition') # client = kfp.Client() # client.create_run_from_pipeline_func( # wine_pipeline, # arguments={ # "url": "https://raw.githubusercontent.com/Barteus/kubeflow-examples/main/e2e-wine-kfp-mlflow/winequality-red.csv", # })
from dataclasses import dataclass, field from typing import Dict, List from raytkUtil import ROPInfo, RaytkContext, Version, showMessageDialog # noinspection PyUnreachableCode if False: # noinspection PyUnresolvedReferences from _stubs import * class Updater: def __init__(self, ownerComp: 'COMP'): self.ownerComp = ownerComp # This MUST remain publicly available since OPs reference it for the `Updateop` par handler. def UpdateOP(self, o: 'COMP'): self._log(f'Updating {o}') info = ROPInfo(o) if not info: self._showError(f'Unable to update {o}, it must be a ROP or RComp') return master = o.par.clone.eval() if not master and o.par.clone.val.startswith('/raytk/'): path = o.par.clone.val # type: str if path.startswith('/raytk/'): path = path.replace('/raytk/', '') master = parent.raytk.op(path) if not master: self._showError(f'Unable to update {o}, no clone master found') return o.par.clone = master self._log(f'Updating {o} using master {master}') o.par.enablecloningpulse.pulse() img = o.op('*Definition/opImage') if img: o.par.opviewer.val = img o.viewer = True o.par.clone = master.par.clone.val def _showError(self, msg: str): self._log(msg) showMessageDialog( title='Warning', text=msg, escOnClickAway=True, ) def _log(self, msg: str): print(self.ownerComp, msg) ui.status = msg class _Updater: def __init__(self, ownerComp: 'COMP'): self.ownerComp = ownerComp self.mappings = [] # type: List[Mapping] self.currentOpTypes = {} # type: Dict[str, COMP] def loadSettings(self): migrations = self.ownerComp.op('opMigrations') self.mappings = [ Mapping( str(migrations[i, 'fromOpType']), int(migrations[i, 'fromOpVersion']), Version(migrations[i, 'fromToolkitVersion']), str(migrations[i, 'toOpType']), int(migrations[i, 'toOpVersion']), Version(migrations[i, 'toToolkitVersion']), ) for i in range(1, migrations.numRows) ] opTypes = self.ownerComp.op('opTable') self.currentOpTypes = { str(opTypes[i, 'opType']): op(opTypes[i, 'path']) for i in range(1, opTypes.numRows) } @staticmethod def getSelectedOps() -> 'List[COMP]': return RaytkContext().currentROPs() def runMigration(self, validate=True, perform=False): self.loadSettings() rops = self.getSelectedOps() if not rops: return migration = Migration( RaytkContext().toolkit(), rops, validate=validate, perform=perform, ) valid = True if validate: for o in rops: if not self.processOp(o, migration, validate=True, update=False): valid = False if perform and (valid or not validate): for o in rops: self.processOp(o, migration, validate=False, update=True) def processOp(self, o: 'OP', migration: 'Migration', validate: bool, update: bool) -> bool: ropInfo = ROPInfo(o) t = ropInfo.opType v = int(ropInfo.opVersion) master = self.currentOpTypes.get(t) pass @dataclass class Mapping: fromOpType: str fromOpVersion: int fromToolkitVersion: Version toOpType: str toOpVersion: int toToolkitVersion: Version @dataclass class Migration: toolkit: 'COMP' rops: 'List[COMP]' = field(default_factory=list) errors: 'List[str]' = field(default_factory=list) warnings: 'List[str]' = field(default_factory=list) validate: bool = True perform: bool = False class MigrationHandler: def check(self, ropInfo: ROPInfo, migration: 'Migration') -> bool: pass def update(self, ropInfo: ROPInfo, migration: 'Migration'): pass
from plark_game.classes.pantherAgent import Panther_Agent class Panther_Agent_Move_North(Panther_Agent): def __init__(self): pass def getAction(self, state): return self.action_lookup(0)
import pandas as pd import math from reportlab.lib.colors import black, white, Color, yellow from reportlab.lib.styles import ParagraphStyle from reportlab.pdfbase import pdfmetrics from reportlab.pdfgen.canvas import Canvas from reportlab.lib.units import inch, cm from reportlab.pdfbase.ttfonts import TTFont from reportlab.platypus import Paragraph FONT_NAME = "UnifrakturMaguntia" pdfmetrics.registerFont(TTFont(FONT_NAME, 'UnifrakturMaguntia.ttf')) tarot_cards = pd.read_csv("tarot.csv") # WIDTH, HEIGHT = (4.711 * inch, 6.282 * inch) #ipad mini WIDTH, HEIGHT = (2.539 * inch, 5.496 * inch) #iphone CORNER_SQUARE_SIDE = 0.4 * inch CORNER_BORDER = 0.1 * inch F_COLOR, B_COLOR, D_COLOR, FADE_COLOR, HALF_FADE_COLOR = (white, black, Color(0.13, 0, 0), Color(0.3, 0.33, 0.33), Color(0.4, 0.43, 0.43)) c = Canvas("TAROT.pdf", pagesize=(WIDTH, HEIGHT)) def draw_corner(c, x1, y1, x2, y2, s, bottom_corner_flip=False): c.saveState() c.setFont("Helvetica", 10) c.setStrokeColor(FADE_COLOR) c.setFillColor(D_COLOR) c.setLineWidth(0.01) c.rect(x1, y1, CORNER_SQUARE_SIDE, CORNER_SQUARE_SIDE, fill=1, stroke=1) # c.line(x1, y1, x2, y2) # c.line(x2, y1, x1, y2) if isinstance(s, str): c.setFillColor(F_COLOR) c.setStrokeColor(F_COLOR) c.setLineWidth(3) x_center = x1 + (x2 - x1) / 2.0 y_center = y1 + (y2 - y1) / 2.0 x_1st_4th = x1 + (x2 - x1) / 4.0 x_2nd_4th = x1 + (x2 - x1) / 4.0 * 2.0 x_3rd_4th = x1 + (x2 - x1) / 4.0 * 3.0 y1_border = y1 + (y2 - y1) / 6.0 y2_border = y2 - (y2 - y1) / 6.0 if s == "X": c.setStrokeColor(HALF_FADE_COLOR) c.line(x_1st_4th, y1_border, x_3rd_4th, y2_border) c.line(x_3rd_4th, y1_border, x_1st_4th, y2_border) if s == "V": c.setStrokeColor(HALF_FADE_COLOR) c.line(x_1st_4th, y2_border, x_center, y1_border) c.line(x_center, y1_border, x_3rd_4th, y2_border) c.line(x_center, y1_border-CORNER_SQUARE_SIDE*0.03, x_center, y1_border+CORNER_SQUARE_SIDE*0.03) if s == "\\": c.setStrokeColor(FADE_COLOR) c.line(x_1st_4th, y2_border, x_3rd_4th, y1_border) if s == "/": c.setStrokeColor(FADE_COLOR) c.line(x_1st_4th, y1_border, x_3rd_4th, y2_border) if s == "I": c.setStrokeColor(HALF_FADE_COLOR) c.line(x_center, y1_border, x_center, y2_border) if s == "II": c.setStrokeColor(HALF_FADE_COLOR) x_1st_3rd = x1 + (x2-x1)/3.0 x_2nd_3rd = x1 + (x2-x1)/3.0*2.0 c.line(x_1st_3rd, y1_border, x_1st_3rd, y2_border) c.line(x_2nd_3rd, y1_border, x_2nd_3rd, y2_border) if s == "III": c.setStrokeColor(HALF_FADE_COLOR) c.line(x_1st_4th, y1_border, x_1st_4th, y2_border) c.line(x_2nd_4th, y1_border, x_2nd_4th, y2_border) c.line(x_3rd_4th, y1_border, x_3rd_4th, y2_border) if s =="🞡": c.setStrokeColor(FADE_COLOR) if bottom_corner_flip: c.transform(1, 0, 0, -1, 0, y1 + CORNER_SQUARE_SIDE + CORNER_BORDER) c.line(x_center, y1_border, x_center, y2_border) y_sword = y1_border + (x_3rd_4th - x_1st_4th)/2.0 c.line(x_1st_4th, y_sword, x_3rd_4th, y_sword) if s == "O": c.setStrokeColor(FADE_COLOR) if bottom_corner_flip: c.transform(1, 0, 0, -1, 0, y1 + CORNER_SQUARE_SIDE + CORNER_BORDER) c.setLineWidth(2.2) r = CORNER_SQUARE_SIDE * 0.38 c.circle(x_center,y_center, r, fill=0) c.setLineWidth(1.2) pentagon = [] for n in range(0, 5): x = x_center + r * math.cos(math.radians(90 + n * 72)) y = y_center + r * math.sin(math.radians(90 + n * 72)) pentagon.append([x, y]) c.line(pentagon[0][0], pentagon[0][1], pentagon[2][0], pentagon[2][1]) c.line(pentagon[2][0], pentagon[2][1], pentagon[4][0], pentagon[4][1]) c.line(pentagon[4][0], pentagon[4][1], pentagon[1][0], pentagon[1][1]) c.line(pentagon[1][0], pentagon[1][1], pentagon[3][0], pentagon[3][1]) c.line(pentagon[3][0], pentagon[3][1], pentagon[0][0], pentagon[0][1]) if s == "U": c.setStrokeColor(FADE_COLOR) if bottom_corner_flip: c.transform(1, 0, 0, -1, 0, y1 + CORNER_SQUARE_SIDE + CORNER_BORDER) c.setLineWidth(2) y_cup_bottom = y_center-CORNER_SQUARE_SIDE * 0.09 c.arc(x_1st_4th, y_cup_bottom, x_3rd_4th, y2+CORNER_SQUARE_SIDE * (1.0/3.0), 180, 180) # c.line(x_1st_4th, y2_border, x_1st_4th, y_center) c.line(x_center, y_cup_bottom, x_center, y1_border) c.line(x_1st_4th, y1_border, x_3rd_4th, y1_border) c.restoreState() for i, upper_left, upper_right, bottom_left, bottom_right, card_name in \ zip( tarot_cards.index, tarot_cards["a"], tarot_cards["b"], tarot_cards["c"], tarot_cards["d"], tarot_cards["e"] ): # card_name = card_name.upper() print(f"{upper_left} {card_name} {upper_right}\n{bottom_left} {bottom_right}\n \n") c.setFillColor(B_COLOR) c.rect(0, 0, WIDTH, HEIGHT, fill=1) from PIL import Image im_path = f"my_images_dark/{i}.png" im = Image.open(im_path) img_width, img_height = im.size scaled_img_width = (img_width/img_height) * HEIGHT c.drawImage(im_path, WIDTH/2.0 - scaled_img_width/2.0, 0, height=HEIGHT, width=scaled_img_width, preserveAspectRatio=True) c.setFillColor(F_COLOR) FONT_NAME = "UnifrakturMaguntia" FONT_SIZE = 17 c.setFont(FONT_NAME, FONT_SIZE) style_card_name = ParagraphStyle('card-name', fontName=FONT_NAME, fontSize=FONT_SIZE, textColor=F_COLOR) p = Paragraph(card_name, style=style_card_name) text_width, text_height = p.wrapOn(c, 111111111, 11111111) # p.drawOn(c, WIDTH - text_width/2.0, HEIGHT - CORNER_SQUARE_SIDE/2.0 - CORNER_BORDER - text_height/2.0) c.setFillColor(FADE_COLOR) c.drawCentredString(WIDTH/2.0, CORNER_SQUARE_SIDE/2.0 + CORNER_BORDER - text_height/2.0, card_name) draw_corner(c, CORNER_BORDER, CORNER_BORDER, CORNER_SQUARE_SIDE+CORNER_BORDER, CORNER_SQUARE_SIDE+CORNER_BORDER, bottom_left) draw_corner(c, WIDTH-CORNER_SQUARE_SIDE-CORNER_BORDER, CORNER_BORDER, WIDTH-CORNER_BORDER, CORNER_SQUARE_SIDE+CORNER_BORDER, bottom_right, True) draw_corner(c, CORNER_BORDER, HEIGHT-CORNER_SQUARE_SIDE-CORNER_BORDER, CORNER_SQUARE_SIDE+CORNER_BORDER, HEIGHT-CORNER_BORDER, upper_left) draw_corner(c, WIDTH-CORNER_SQUARE_SIDE-CORNER_BORDER, HEIGHT-CORNER_SQUARE_SIDE-CORNER_BORDER, WIDTH-CORNER_BORDER, HEIGHT-CORNER_BORDER, upper_right) c.showPage() c.save()
"""Liquid template definition.""" from __future__ import annotations from collections import abc from io import StringIO from pathlib import Path from typing import Awaitable from typing import Dict from typing import Any from typing import Iterator from typing import Mapping from typing import Optional from typing import TextIO from typing import Union from typing import TYPE_CHECKING from liquid.context import Context from liquid.context import ReadOnlyChainMap from liquid.exceptions import LiquidInterrupt from liquid.exceptions import LiquidSyntaxError from liquid.exceptions import Error if TYPE_CHECKING: # pragma: no cover from liquid import Environment from liquid.ast import ParseTree from liquid.loaders import UpToDate class BoundTemplate: """A liquid template that has been parsed and is bound to a :class:`liquid.Environment`. You probably don't want to instantiate :class:`BoundTemplate` directly. Use :meth:`liquid.Environment.from_string` or :meth:`liquid.Environment.get_template` instead. :param env: The environment this template is bound to. :type env: liquid.Environment :param parse_tree: The parse tree representing this template. :type parse_tree: liquid.ast.ParseTree :param name: Optional name of the template. Defaults to an empty string. :type name: Optional[str] :param path: Optional origin path or identifier for the template. :type path: Optional[Union[str, Path]] :param globals: An optional mapping of context variables made available every time the resulting template is rendered. Defaults to ``None``. :type globals: Optional[Dict[str, object]] :param matter: Optional mapping containing variables associated with the template. Could be "front matter" or other meta data. :type matter: Optional[Mapping[str, object]] :param uptodate: Optional callable that will return ``True`` if the template is up to date, or ``False`` if it needs to be reloaded. Defaults to ``None``. :type uptodate: Optional[Callable[[], bool]] """ # pylint: disable=redefined-builtin, too-many-arguments def __init__( self, env: Environment, parse_tree: ParseTree, name: str = "", path: Optional[Union[str, Path]] = None, globals: Optional[Dict[str, object]] = None, matter: Optional[Mapping[str, object]] = None, uptodate: UpToDate = None, ): self.env = env self.tree = parse_tree self.globals = globals or {} self.matter = matter or {} self.name = name self.path = path self.uptodate = uptodate def render(self, *args: Any, **kwargs: Any) -> str: """Render the template with `args` and `kwargs` included in the render context. Accepts the same arguments as the :class:`dict` constructor. """ context = Context(self.env, globals=self.make_globals(dict(*args, **kwargs))) buf = StringIO() self.render_with_context(context, buf) return buf.getvalue() async def render_async(self, *args: Any, **kwargs: Any) -> str: """An async version of :meth:`liquid.template.BoundTemplate.render`.""" context = Context(self.env, globals=self.make_globals(dict(*args, **kwargs))) buf = StringIO() await self.render_with_context_async(context, buf) return buf.getvalue() def render_with_context( self, context: Context, buffer: TextIO, *args: Any, partial: bool = False, block_scope: bool = False, **kwargs: Any, ) -> None: """Render the template using an existing context and output buffer. ``args`` and ``kwargs`` are passed to the :class:`dict` constructor. The resulting dictionary is added to the render context. :param context: A render context. :param buffer: File-like object to which rendered text is written. :param partial: If `True`, indicates that the current template has been included using either a "render" or "include" tag. Defaults to ``False``. :param block_scope: If `True`, indicates that assigns, breaks and continues from this template will not leak into the parent context. Defaults to ``False``. """ # "template" could get overridden from args/kwargs, "partial" will not. namespace = self.make_partial_namespace(partial, dict(*args, **kwargs)) with context.extend(namespace=namespace): for node in self.tree.statements: try: node.render(context, buffer) except LiquidInterrupt as err: # If this is an "included" template, there could be a for loop # in a parent template. A for loop that could be interrupted # from an included template. # # Convert the interrupt to a syntax error if there is no parent. if not partial or block_scope: self.env.error( LiquidSyntaxError( f"unexpected '{err}'", linenum=node.token().linenum ) ) else: raise except Error as err: # Raise or warn according to the current mode. self.env.error(err, linenum=node.token().linenum) async def render_with_context_async( self, context: Context, buffer: TextIO, *args: Any, partial: bool = False, block_scope: bool = False, **kwargs: Any, ) -> None: """An async version of `render_with_context`.""" # "template" could get overridden from args/kwargs, "partial" will not. namespace = self.make_partial_namespace(partial, dict(*args, **kwargs)) with context.extend(namespace=namespace): for node in self.tree.statements: try: await node.render_async(context, buffer) except LiquidInterrupt as err: # If this is an "included" template, there could be a for loop # in a parent template. A for loop that could be interrupted # from an included template. # # Convert the interrupt to a syntax error if there is no parent. if not partial or block_scope: self.env.error( LiquidSyntaxError( f"unexpected '{err}'", linenum=node.token().linenum ) ) else: raise except Error as err: # Raise or warn according to the current mode. self.env.error(err, linenum=node.token().linenum) @property def is_up_to_date(self) -> bool: """False if the template was modified since it was last parsed, True otherwise.""" if not self.uptodate: return True uptodate = self.uptodate() if not isinstance(uptodate, bool): raise Error( f"expected a boolean from uptodate, found {type(uptodate).__name__}" ) return uptodate async def is_up_to_date_async(self) -> bool: """An async version of the ``is_up_to_date`` property. If ``template.uptodate`` is a coroutine, it wil be awaited. Otherwise it will be called just like ``is_up_to_date`` """ if not self.uptodate: return True uptodate = self.uptodate() if isinstance(uptodate, Awaitable): return await uptodate return uptodate def make_globals(self, render_args: Mapping[str, object]) -> Mapping[str, object]: """Return a mapping aggregated from render arguments, template globals and matter variables.""" return ReadOnlyChainMap( render_args, self.matter, self.globals, ) # pylint: disable=no-self-use def make_partial_namespace( self, partial: bool, render_args: Mapping[str, object], ) -> Mapping[str, object]: """Return a namespace dictionary. This is used by `render_with_context` to extend an existing context.""" return {**render_args, "partial": partial} def __repr__(self) -> str: return ( f"Template(name='{self.name}', " f"path='{self.path}', uptodate={self.is_up_to_date})" ) # pragma: no cover class AwareBoundTemplate(BoundTemplate): """A `BoundTemplate` subclass that automatically includes a `TemplateDrop` in the global namespace.""" def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.drop = TemplateDrop(self.name, self.path) def make_partial_namespace( self, partial: bool, render_args: Mapping[str, object], ) -> abc.Mapping[str, object]: return { "template": self.drop, **super().make_partial_namespace(partial, render_args), } class TemplateDrop(Mapping[str, Optional[str]]): """Template meta data mapping.""" def __init__(self, name: str, path: Optional[Union[str, Path]]): self.name = name self.path = path if not self.path or isinstance(self.path, str): self.path = Path(self.name) self.stem = self.path.stem self.suffix: Optional[str] = None if "." in self.stem: self.suffix = self.stem.split(".")[-1] self._items = { "directory": self.path.parent.name, "name": self.path.name.split(".")[0], "suffix": self.suffix, } def __str__(self) -> str: return self.stem def __repr__(self) -> str: return ( f"TemplateDrop(directory='{self['directory']}', " f"name='{self['name']}', suffix='{self['suffix']}')" ) # pragma: no cover def __contains__(self, item: object) -> bool: return item in self._items def __getitem__(self, key: object) -> Optional[str]: return self._items[str(key)] def __len__(self) -> int: return len(self._items) def __iter__(self) -> Iterator[str]: return iter(self._items)
from muwgs.application.crosswords import crosswords from sys import path path.append('..') print(crosswords('b*eed'))
#!/usr/bin/python ########## # # Generate HTML table # ########## import lib_result_report as librr import csv import glob import math import numpy as np import os.path import shutil import sys from collections import namedtuple from PIL import Image from enum import Enum input_path_postfix = '/output/' output_path_root = '/home/mhsung/app/cuboid-prediction/output/' output_dir_prefix = '' gt_n = [1, 0, 0] gt_t = 0 def load_instances(input_filepath, output_filepath, symemtry_part_index): output_file_prefix = os.path.basename(os.path.normpath(input_filepath + '/../')) dirnames = glob.glob(input_filepath + '/*') print(output_file_prefix + '_ours.csv') print(output_file_prefix + '_podolak.csv') ours_file = open(output_file_prefix + '_ours.csv', 'w') podolak_file = open(output_file_prefix + '_podolak.csv', 'w') for dirname in dirnames: if not os.path.isdir(dirname): continue prefix = os.path.basename(dirname) print prefix is_loaded = True candidate_index = librr.find_best_candidate(dirname, prefix) print('Candidate index: ' + str(candidate_index)) relative_image_filepath = [] image_filenames = [] image_filenames.append(prefix + '_view.png') image_filenames.append(prefix + '_input.png') image_filenames.append(prefix + '_' + str(candidate_index) + '.png') image_filenames.append(prefix + '_' + str(candidate_index) + '_symmetry_accuracy.png') image_filenames.append(prefix + '_' + str(candidate_index) + '_symmetry_completeness.png') image_filenames.append(prefix + '_' + str(candidate_index) + '_database_accuracy.png') image_filenames.append(prefix + '_' + str(candidate_index) + '_database_completeness.png') image_filenames.append(prefix + '_' + str(candidate_index) + '_fusion_accuracy.png') image_filenames.append(prefix + '_' + str(candidate_index) + '_fusion_completeness.png') for image_filename in image_filenames: if not os.path.exists(dirname + '/' + image_filename): print 'Warning: File does not exist: "' + (dirname + '/' + image_filename) + '"' is_loaded = False break # Get relative file path. relative_image_filepath.append('./' + image_filename) if not is_loaded: continue ours_symm_filename_postfix = '_' + str(candidate_index) + '_symmetry_info.txt' ours_symm_filename = dirname + '/' + prefix + ours_symm_filename_postfix if os.path.exists(ours_symm_filename): with open(ours_symm_filename, 'r') as csv_file: data = csv.reader(csv_file, delimiter=',') x_data = data.next() n = np.array([float(x_data[1]), float(x_data[2]), float(x_data[3])]) t = float(x_data[4]) n = n / np.linalg.norm(n) ours_file.write(str(n[0]) + ',' + str(n[1]) + ',' + str(n[2]) + ',' + str(t) + '\n') podolak_symm_filename_postfix = '_symmetry_info.txt' podolak_symm_filename = dirname + '/../../symmetry_detection/' + prefix + '/' + prefix + podolak_symm_filename_postfix print(podolak_symm_filename) if os.path.exists(podolak_symm_filename): with open(podolak_symm_filename, 'r') as csv_file: data = csv.reader(csv_file, delimiter=',') x_data = data.next() n = np.array([float(x_data[1]), float(x_data[2]), float(x_data[3])]) t = float(x_data[4]) n = n / np.linalg.norm(n) podolak_file.write(str(n[0]) + ',' + str(n[1]) + ',' + str(n[2]) + ',' + str(t) + '\n') ours_file.close() podolak_file.close() def main(): input_path, output_path, dataset_name, symmetry_part_names = librr.parse_arguments( input_path_postfix, output_path_root, output_dir_prefix) load_instances(input_path, output_path, -1) main()
from datetime import datetime from app import db from sqlalchemy.schema import Sequence # id_seq is required for auto id generation(cx_Oracle) id_seq = Sequence('id_seq') ingredientList = db.Table('Ingredient_List', db.Column('Ingredient_name', db.String(255), db.ForeignKey('INGREDIENT.name')), db.Column('Recipe_id', db.Integer(), db.ForeignKey('RECIPE.id')) ) categoryList = db.Table('Category_List', db.Column('Category_name', db.String(255), db.ForeignKey('CATEGORY.name')), db.Column('Recipe_id', db.Integer(), db.ForeignKey('RECIPE.id')) ) class User(db.Model): __tablename__ = 'USER' id = db.Column(db.Integer(), id_seq, server_default=id_seq.next_value(), primary_key=True) email = db.Column(db.String(255)) username = db.Column(db.String(255), unique=True) password = db.Column(db.String(255)) fname = db.Column(db.String(255)) mname = db.Column(db.String(255)) lname = db.Column(db.String(255)) registerdate = db.Column(db.DateTime()) menus = db.relationship('Menu', backref='USER', lazy=True) class Recipe(db.Model): __tablename__ = 'RECIPE' id = db.Column(db.Integer(), primary_key=True) direction = db.Column(db.String(255)) fat = db.Column(db.Integer()) date = db.Column(db.DateTime(timezone=True)) calories = db.Column(db.Integer()) description = db.Column(db.String(255)) protein = db.Column(db.Integer()) rating = db.Column(db.Integer(),nullable=False) title = db.Column(db.String(255)) ingredientList = db.relationship('Ingredient', secondary=ingredientList, lazy='subquery',cascade="save-update, merge, delete", backref=db.backref('Recipes', lazy=True)) ingredientDescription = db.Column(db.String(255)) sodium = db.Column(db.Integer()) categoryList = db.relationship('Category', secondary=categoryList, lazy='subquery',cascade="save-update, merge, delete", backref=db.backref('Categories', lazy=True)) def to_json(self,ingdic:dict, catdic:dict): return { "direction": self.direction, "id": int(self.id), "date": self.date.strftime("%Y%m%d"), "fat": int(self.fat), "calories": int(self.calories), "description": self.description, "protein": int(self.protein), "rating": int(self.rating), "title": self.title, "ingredientList": [i.get("Ingredient_name") for i in ingdic], "ingredientDescription": self.ingredientDescription, "sodium": int(self.sodium), "categoryList": [i.get("Category_name") for i in catdic] } class Menu(db.Model): __tablename__ = 'MENU' id = db.Column(db.Integer(), id_seq, server_default=id_seq.next_value(), primary_key=True) userId = db.Column(db.Integer(), db.ForeignKey('USER.id'), nullable=False) recipeList = db.Column(db.String(255)) name = db.Column(db.String(255)) class Category(db.Model): __tablename__ = 'CATEGORY' name = db.Column(db.String(255), primary_key=True) class Ingredient(db.Model): __tablename__ = 'INGREDIENT' name = db.Column(db.String(255), primary_key=True) class MenuRate(db.Model): __tablename__ = 'MENURATE' id = db.Column(db.Integer(), id_seq, server_default=id_seq.next_value(), primary_key=True) menuId = db.Column(db.Integer(), db.ForeignKey('MENU.id'), nullable=False) userId = db.Column(db.Integer(), db.ForeignKey('USER.id'), nullable=False) rate = db.Column(db.Integer()) class Review(db.Model): __tablename__ = "REVIEW" id = db.Column(db.Integer(), primary_key=True) username = db.Column(db.String(255), db.ForeignKey('USER.username'), nullable=False) rating = db.Column(db.Float()) comments = db.Column(db.String(255)) recipeid = db.Column(db.Integer(), db.ForeignKey('RECIPE.id'), nullable=False)
import numpy as np import os try: import pymatgen as pm from pymatgen.io.cif import CifParser from pymatgen.io.vasp.inputs import Kpoints has_pm = True except: has_pm = False def get_kpts(screener,cif_file,level): """ Obtain the number of kpoints Args: screener (class): pymofscreen.screener class cif_file (string): name of CIF file level (string): accuracy level Returns: kpts (list of ints): kpoint grid gamma (bool): True for gamma-centered """ niggli = screener.niggli mofpath = screener.mofpath kpts_path = screener.kpts_path kppas = screener.kppas kpts = None if not mofpath: mofpath = '' if kpts_path == 'Auto' and has_pm: if level == 'low': kppa = kppas[0] elif level == 'high': kppa = kppas[1] else: raise ValueError('kpoints accuracy level not defined') filepath = os.path.join(mofpath,cif_file) if '.cif' in cif_file: parser = CifParser(filepath) pm_mof = parser.get_structures(primitive=niggli)[0] else: pm_mof = pm.Structure.from_file(filepath,primitive=niggli) pm_kpts = Kpoints.automatic_density(pm_mof,kppa) kpts = pm_kpts.kpts[0] if pm_kpts.style.name == 'Gamma': gamma = True else: gamma = None elif kpts_path == 'Auto' and not has_pm: raise ValueError('Pymatgen not installed. Please provide a kpts file.') else: old_cif_name = cif_file.split('.cif')[0].split('_')[0] infile = open(kpts_path,'r') lines = infile.read().splitlines() infile.close() for i in range(len(lines)): if old_cif_name in lines[i]: if level == 'low': kpts = lines[i+1] gamma = lines[i+2] elif level == 'high': kpts = lines[i+3] gamma = lines[i+4] else: raise ValueError('Incompatible KPPA with prior runs') break kpts = np.squeeze(np.asarray(np.matrix(kpts))).tolist() if not kpts or len(kpts) != 3: raise ValueError('Error parsing k-points for '+cif_file) if gamma == 'True': gamma = True elif gamma == 'False': gamma = False else: raise ValueError('Error parsing gamma for '+cif_file) return kpts, gamma
import pandas as pd import requests from tqdm import tqdm import os from os import listdir from os.path import isfile, join from datetime import datetime from functools import cache """ Test welke van de leden+descendants in een refset er in de VT (totaal en lijst gyn) zitten. 146481000146103 |simpele referentieset met obstetrische verrichtingen (metadata)| Plaats het VT Excel Release-bestand in ./resources 1) Maakt een lijst van een SNOMED refset en de descendants van die refsetleden. 2) Leest een release-bestand van de Verrichtingenthesaurus in - Vergelijkt elke rij uit 2 met 1. Toont True/False in het output.xlsx bestand in kolom D. Run met python3 refset+descendants_vs_vt.py. Kies in de dialoog het juist excel bestand en download output.xlsx. """ ### Config ### # Snowstorm URL - include trailing forward slash snowstorm_url = "https://snowstorm.test-nictiz.nl/" snomed_branch = 'MAIN/SNOMEDCT-NL' snomed_versie = 'live-20210331' # Dataframes VT creëren files_in_folder = [f for f in listdir("./resources") if isfile(join("./resources", f))] i=0 print("Bestanden in map:") print("-"*80) file_1 = False file_2 = False file_3 = False for file in files_in_folder: file_type = file.split("_")[-1:] if file_type[0] == "ThesaurusConceptRol.csv": thesaurusConceptRollen = pd.read_csv("./resources/"+file) file_1 = file if file_type[0] == "ThesaurusConcept.csv": thesaurusConcepten = pd.read_csv("./resources/"+file) file_2 = file if file_type[0] == "ThesaurusTerm.csv": thesaurusTermen = pd.read_csv("./resources/"+file) file_3 = file if file_1 and file_2 and file_3: print("Bronbestanden gevonden.") else: exit("Niet alle bronbestanden aanwezig.") print("-"*80) print("-"*80) print(file_1) print(thesaurusConceptRollen.head()) print("-"*80) print(file_2) print(thesaurusConcepten.head()) print("-"*80) print(file_3) print(thesaurusTermen.head()) print("-"*80) print("-"*80) # Ophalen termen @cache def fetchTerms(conceptid): url = f"{snowstorm_url}{snomed_branch}/concepts/{conceptid}/" req = requests.get(url) response = req.json() if req.status_code == 200: return response else: return {} # Ophalen refset members @cache def fetchEcl(ecl): concepts = [] url = f"{snowstorm_url}{snomed_branch}/concepts?ecl={ecl}&limit=10000&returnIdOnly=true" # print(url) req = requests.get(url) response = req.json() total = response.get('total',0) while len(concepts) < total: concepts += response.get('items',[]) url = f"{snowstorm_url}{snomed_branch}/concepts?ecl={ecl}&limit=10000&searchAfter={response.get('searchAfter')}&returnIdOnly=true" # print(url) req = requests.get(url) response = req.json() return concepts conceptID_list = fetchEcl("^146481000146103") print(f"{len(conceptID_list)} refsetleden opgehaald. Nu de descendants.") # Descendants van refsetleden ophalen, en toevoegen aan lijst deduplicated_list_ecl = conceptID_list.copy() deduplicated_list_descendants = [] for concept in tqdm(deduplicated_list_ecl): deduplicated_list_descendants += fetchEcl(f"<{concept}") # Lijsten dedupliceren deduplicated_list_ecl = list(set(deduplicated_list_ecl)) print(len(deduplicated_list_ecl), "concepten in refset.") deduplicated_list_descendants = list(set(deduplicated_list_descendants)) print(len(deduplicated_list_descendants), "concepten in descendants.") deduplicated_list_total = deduplicated_list_ecl + deduplicated_list_descendants print(len(deduplicated_list_total), "concepten in totaal.") print("-"*80) # Lijst met thesaurusconcept ID's na filter creeren thesaurusIDs = thesaurusConceptRollen['ConceptID'].values # Iterate over kolom met Thesaurus ID's print("SNOMED -> VT vergelijken") output = [] for thesaurusID in tqdm(list(set(thesaurusIDs))): thesaurusConcept = thesaurusConcepten[ (thesaurusConcepten['ConceptID'] == thesaurusID) & (thesaurusConcepten['Einddatum'] == 20991231) ] thesaurusTerm = thesaurusTermen[ (thesaurusTermen['ConceptID'] == thesaurusID) & (thesaurusTermen['Einddatum'] == 20991231) & (thesaurusTermen['TypeTerm'] == 'voorkeursterm') ] try: SCTID = int(thesaurusConcept['SnomedID']) except: SCTID = False try: term = thesaurusTerm['Omschrijving'].values[0] except: term = False groepCode = thesaurusConceptRollen[ thesaurusConceptRollen['ConceptID'] == thesaurusID ]['SpecialismeGroepCode'].values[0] in_ecl = (SCTID in deduplicated_list_ecl) in_descendants = (SCTID in deduplicated_list_descendants) output.append({ 'ThesaurusID' : str(thesaurusID), 'Snomed ID' : str(SCTID), 'Snomed FSN' : fetchTerms(SCTID).get('fsn',{}).get('term',None), 'Voorkeursterm' : term, 'SpecialismeGroepCode' : str(groepCode), 'SCTID in refset': in_ecl, 'SCTID in descendants van refsetleden': in_descendants, }) print("-"*80) # Iterate over refset members, controleer of ze in de VT zitten print("VT -> SNOMED vergelijken") output2 = [] for SCTID in tqdm(deduplicated_list_total): present = False thesaurusTerm = False vt_concept = False vt_concept_specialisme = False for ConceptID in thesaurusConcepten[(thesaurusConcepten['SnomedID'] == SCTID) & (thesaurusConcepten['Einddatum'] == 20991231)]['ConceptID']: present = True vt_concept = ConceptID try: thesaurusTerm = thesaurusTermen[ (thesaurusTermen['ConceptID'] == ConceptID) & (thesaurusTermen['Einddatum'] == 20991231) & (thesaurusTermen['TypeTerm'] == 'voorkeursterm') ]['Omschrijving'].values[0] except: continue try: vt_concept_specialisme = thesaurusConceptRollen[ (thesaurusConceptRollen['ConceptID'] == ConceptID) & (thesaurusTermen['Einddatum'] == 20991231) ]['SpecialismeGroepCode'].values[0] except: continue output2.append({ 'Snomed ID' : str(SCTID), 'Snomed FSN' : fetchTerms(SCTID).get('fsn',{}).get('term',None), 'Refset lid' : (SCTID in deduplicated_list_ecl), 'Descendant van refsetlid' : (SCTID in deduplicated_list_descendants), 'ThesaurusID' : str(vt_concept), 'Voorkeursterm VT' : thesaurusTerm, 'SpecialismeGroepCode' : vt_concept_specialisme, 'SNOMED Concept in VT': present, }) print("-"*80) # Exporteren naar Excel print("Exporteren naar excel") export_comment = input("Opmerkingen voor in het output-bestand? ") now = datetime.now() date_time = now.strftime("%m-%d-%Y_%H:%M:%S") writer = pd.ExcelWriter(f"output_{date_time}.xlsx", engine='xlsxwriter') # Sheet 1 met metadata metadata_df = pd.DataFrame([ {'key' : 'Scriptnaam', 'value' : os.path.basename(__file__)}, {'key' : 'Export time', 'value' : date_time}, {'key' : 'SNOMED versie', 'value' : snomed_versie}, {'key' : 'Snowstorm URL', 'value' : snowstorm_url}, {'key' : 'VT bronbestand[0]', 'value' : file_1}, {'key' : 'VT bronbestand[1]', 'value' : file_2}, {'key' : 'VT bronbestand[2]', 'value' : file_3}, {'key' : 'Opmerkingen', 'value' : export_comment}, ]) metadata_df.to_excel(writer, 'Metadata') # Sheet 2 met resultaten - VT vs ECL output_df = pd.DataFrame(output) output_df.to_excel(writer, 'VT -> SNOMED') # Sheet 3 met resultaten - ECL vs VT output_df = pd.DataFrame(output2) output_df.to_excel(writer, 'SNOMED -> VT') writer.save() print("-"*80) print("-"*80) print(f"Klaar - download output_{date_time}.xlsx voor resultaten.") print("-"*80) print("-"*80)
from abc import abstractmethod from collections import Counter import numpy as np from probability2 import Key from probability2 import Distribution class EmpiricalDistribution(Distribution): def __init__(self, samples): """Construct an abstract distribution and count the number of occurenc of items in the samples. Args: samples (iterable): An iterable that contains the observed samples or a dictionary of (key:frequency). Raises: ValueError: Raises when the provided sample is None. """ super().__init__() if samples is None: raise ValueError("samples argument is None.") self._counter = Counter(samples) # Elements count self.total = sum(self._counter.values()) def _check_keys_consistencies_(self): rv_len = self.get_random_variable().size def compare_single_elements(): try: keys = iter(self.keys()) first_row = next(keys) except StopIteration: # Empty rows return first_row_type = type(first_row) if isinstance(first_row, tuple): # For single elements that are tuple # we check both type and length first_row_len = len(first_row) for row in keys: if not isinstance(row, first_row_type): raise ValueError( "The type of the 'factors' are not consistence." ) if len(row) != first_row_len: raise ValueError( "The length of the 'factors' are not consistence." ) else: # For other single elements, we just # check the type for row in keys: if not isinstance(row, first_row_type): raise ValueError( "The type of the 'factors' are not consistence." ) def compare_multilevel_elements(): # We suppose the keys were tuples # and each Random Variable (RV) is positioned # in a fix place of the n-tuple. # Therefore, the levels of the RV can be # found by iterating over each tuple's item # Convert each features line to tuple tuples = (Key(row) for row in self.keys()) try: first_row = next(tuples) except StopIteration: # Empty rows return first_row_len = len(first_row) first_row_types = [type(item) for item in first_row] for row in tuples: # compair length if len(row) != first_row_len: raise ValueError("The length of the 'factors' are not consistence.") # compair row's elements type comparisions = [ isinstance(element, type_1) for element, type_1 in zip(row, first_row_types) ] if not all(comparisions): raise ValueError("The types of the 'factors' are not consistence.") if rv_len > 1: compare_multilevel_elements() else: compare_single_elements() @staticmethod def digitize(samples, start, stop, num=10, endpoint=True, right=False, levels=None): """[summary] Args: samples (numeric array): continouse values that needs digitization. start (numeric): The starting value of the sequence. stop (numeric): The end value of the sequence, unless `endpoint` is set to False. In that case, the sequence consists of all but the last of ``num + 1`` evenly spaced samples, so that `stop` is excluded. Note that the step size changes when `endpoint` is False. num (int, optional): Number of samples to generate. Default is 10. Must be non-negative. endpoint (bool, optional): If True, `stop` is the last sample. Otherwise, it is not included. Defaults to True. right (bool): Indicating whether the intervals include the right or the left bin edge. Default behavior is (right==False) indicating that the interval does not include the right edge. The left bin end is open in this case, i.e., bins[i-1] <= x < bins[i] is the default behavior for monotonically increasing bins. levels (list, optional): List of labels for each step. Defaults to None. Returns: numpy array: [type]: An array of bins/levels of digitized samples. """ bins = np.linspace(start, stop, num, endpoint=endpoint) return EmpiricalDistribution.digitize_bin(samples, bins, right, levels) @staticmethod def digitize_bin(samples, bins, right=False, levels=None): """Return the digitized samples by returning the coresponding bins value. When 'levels' is provided, bins values replace by levels. ========= ============= ============================ `right` order of bins returned index `i` satisfies ========= ============= ============================ ``False`` increasing ``bins[i-1] <= x < bins[i]`` ``True`` increasing ``bins[i-1] < x <= bins[i]`` ``False`` decreasing ``bins[i-1] > x >= bins[i]`` ``True`` decreasing ``bins[i-1] >= x > bins[i]`` ========= ============= ============================ Args: samples (numeric array): continouse values that needs digitization. bins (array): Array of bins. It has to be 1-dimensional and monotonic. right (bool): Indicating whether the intervals include the right or the left bin edge. Default behavior is (right==False) indicating that the interval does not include the right edge. The left bin end is open in this case, i.e., bins[i-1] <= x < bins[i] is the default behavior for monotonically increasing bins. levels (list, optional): List of labels for each step. Defaults to None. Raises: ValueError: Raises when the length of levels is not equal to the length of bins minus one. Returns: numpy array: An array of bins/levels of digitized samples. """ if levels is not None and len(levels) != len(bins) - 1: raise ValueError( f"'levels' length ({len(levels)}) is not " f"equal to bins length-1 ({len(bins)-1})." ) indices = np.digitize(samples, bins, right) if levels is None: # Extend the bins to include left outliers delta_left = bins[1] - bins[0] bins_extended = np.r_[[bins[0] - delta_left], bins] return bins_extended[indices] # Extend the levels to include outliers levels_extended = np.r_[["less"], levels, ["more"]] return levels_extended[indices] def normalise(self): """Normalise the distribution.""" for k in self._counter: self._counter[k] = self._counter[k] / self.total self.total = 1.0 def probability(self, key): """Gets the probability of the random variable, when its value is 'key'. It return zero if the value is not observed. Args: key (object): the value of the random variable. Returns: float: probability of the random variable. """ if self.total == 0: return 0 return self.__getitem__(key) / self.total def freq(self, *args, **kwargs): key = self.get_random_variable().to_key(*args, **kwargs) return self.frequency(key, normalised=False) def frequency(self, key, normalised=False): """Gets the frequency of the random variable, when its value is 'key'. It return zero if the value is not observed. Args: key (object): the value of the random variable. normalised (bool, optional): normalize the return. Defaults to False. Returns: int or float: frequency or probability of the random variable. """ if self.total == 0: return 0 if normalised: return self._counter[key] / self.total else: return self._counter[key] def keys(self): return self._counter.keys() def items(self): return self._counter.items() def frequencies(self, normalised=True): """A list of frequencies of class occurenc. Args: normalised (bool, optional): The normalisation flag. Defaults to True. Returns: list: A list of floats or integers, depending of normalisation. """ if self.total == 0: return np.zeros(len(self._counter.keys())) values = np.array(list(self._counter.values())) if normalised: return np.array(values) / self.total return np.array(values) def keys_as_list(self): return [k for k in self._counter.keys()] def most_common(self, num: int = None): """List the n most common elements and their counts from the most common to the least. If n is None, then list all element counts. Args: num (int, optional): The maximum length of the returned list. Defaults to None. Returns: list: A list of tuples. The first element of the tuple is a class key and th second one is its count. """ return self._counter.most_common(num) @abstractmethod def get_random_variable(self): pass @abstractmethod def summary(self): pass @abstractmethod def to_table(self, normalised=False, sort=False): pass @abstractmethod def __mul__(self, that): pass @abstractmethod def __rmul__(self, that): pass def __getitem__(self, key): """An indexer that returns the count of the class key. Returns zero if the 'key' does not exist in samples or the samples iterator is empty. Args: key (object): The key that specifies the class name in samples. Returns: [float]: The count of occurrence of class 'key'. Returns zero if the 'key' does not exist in samples or the samples iterator is empty. """ if self.total == 0: return 0 if isinstance(key, slice): return list(self._counter.items())[key] return self._counter[key] def __contains__(self, key): return key in self._counter
import numpy as np import subprocess from rich.console import Console c = Console() ## ------------- FUNCTIONS ---------------- def create_temp_ini(pos:tuple,sampling:str,runs:int,blocklength:int): content = f"""[DEFAULT] [simulation] runs = {runs} blocks = {blocklength} x0 = {pos[0]} y0 = {pos[1]} z0 = {pos[2]} delta = 1 sampling = {sampling} [settings] test = true logger_debug = true data_debug = false timeseries = false """ file = open("tempfile.ini","w+") file.write(content) file.close() def clean(): subprocess.run("./clean.sh",shell=True) ### -------------- MAIN ------------------- samplings = ("normal","gauss") starting_positions = ( (0,0,0), (1,1,1), (2,2,2), (3,3,3), (4,4,4), (10,0,-10) ) clean() for i1, sampling in enumerate(samplings): c.print(f" ---------------------------- {sampling} ---------------------------- ",style="bold blue on white") for i2, start in enumerate(starting_positions): print("Iteration: ",i2) print("Starting position: ",start) create_temp_ini(start,sampling,100000,100) p = subprocess.Popen("make && ./main tempfile.ini", shell=True, stdout = subprocess.PIPE, stderr = subprocess.PIPE) out, err = p.communicate() print("") print("\n")
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from copy import deepcopy import pytest from superset.utils.core import ( AdhocColumn, AdhocMetric, ExtraFiltersReasonType, ExtraFiltersTimeColumnType, GenericDataType, get_column_name, get_column_names, get_metric_name, get_metric_names, get_time_filter_status, is_adhoc_metric, NO_TIME_RANGE, ) from tests.unit_tests.fixtures.datasets import get_dataset_mock STR_METRIC = "my_metric" SIMPLE_SUM_ADHOC_METRIC: AdhocMetric = { "aggregate": "SUM", "column": { "column_name": "my_col", "type": "INT", "type_generic": GenericDataType.NUMERIC, }, "expressionType": "SIMPLE", "label": "my SUM", } SQL_ADHOC_METRIC: AdhocMetric = { "expressionType": "SQL", "label": "my_sql", "sqlExpression": "SUM(my_col)", } STR_COLUMN = "my_column" SQL_ADHOC_COLUMN: AdhocColumn = { "hasCustomLabel": True, "label": "My Adhoc Column", "sqlExpression": "case when foo = 1 then 'foo' else 'bar' end", } def test_get_metric_name_saved_metric(): assert get_metric_name(STR_METRIC) == "my_metric" assert get_metric_name(STR_METRIC, {STR_METRIC: "My Metric"}) == "My Metric" def test_get_metric_name_adhoc(): metric = deepcopy(SIMPLE_SUM_ADHOC_METRIC) assert get_metric_name(metric) == "my SUM" assert get_metric_name(metric, {"my SUM": "My Irrelevant Mapping"}) == "my SUM" del metric["label"] assert get_metric_name(metric) == "SUM(my_col)" metric["label"] = "" assert get_metric_name(metric) == "SUM(my_col)" del metric["aggregate"] assert get_metric_name(metric) == "my_col" metric["aggregate"] = "" assert get_metric_name(metric) == "my_col" assert get_metric_name(metric, {"my_col": "My Irrelevant Mapping"}) == "my_col" metric = deepcopy(SQL_ADHOC_METRIC) assert get_metric_name(metric) == "my_sql" assert get_metric_name(metric, {"my_sql": "My Irrelevant Mapping"}) == "my_sql" del metric["label"] assert get_metric_name(metric) == "SUM(my_col)" metric["label"] = "" assert get_metric_name(metric) == "SUM(my_col)" def test_get_metric_name_invalid_metric(): metric = deepcopy(SIMPLE_SUM_ADHOC_METRIC) del metric["label"] del metric["column"] with pytest.raises(ValueError): get_metric_name(metric) metric = deepcopy(SIMPLE_SUM_ADHOC_METRIC) del metric["label"] metric["expressionType"] = "FOO" with pytest.raises(ValueError): get_metric_name(metric) metric = deepcopy(SQL_ADHOC_METRIC) del metric["label"] metric["expressionType"] = "FOO" with pytest.raises(ValueError): get_metric_name(metric) def test_get_metric_names(): assert get_metric_names( [STR_METRIC, SIMPLE_SUM_ADHOC_METRIC, SQL_ADHOC_METRIC] ) == ["my_metric", "my SUM", "my_sql"] assert get_metric_names( [STR_METRIC, SIMPLE_SUM_ADHOC_METRIC, SQL_ADHOC_METRIC], {STR_METRIC: "My Metric"}, ) == ["My Metric", "my SUM", "my_sql"] def test_get_column_name_physical_column(): assert get_column_name(STR_COLUMN) == "my_column" assert get_metric_name(STR_COLUMN, {STR_COLUMN: "My Column"}) == "My Column" def test_get_column_name_adhoc(): column = deepcopy(SQL_ADHOC_COLUMN) assert get_column_name(column) == "My Adhoc Column" assert ( get_column_name(column, {"My Adhoc Column": "My Irrelevant Mapping"}) == "My Adhoc Column" ) del column["label"] assert get_column_name(column) == "case when foo = 1 then 'foo' else 'bar' end" column["label"] = "" assert get_column_name(column) == "case when foo = 1 then 'foo' else 'bar' end" def test_get_column_names(): assert get_column_names([STR_COLUMN, SQL_ADHOC_COLUMN]) == [ "my_column", "My Adhoc Column", ] assert get_column_names( [STR_COLUMN, SQL_ADHOC_COLUMN], {"my_column": "My Column"}, ) == ["My Column", "My Adhoc Column"] def test_get_column_name_invalid_metric(): column = deepcopy(SQL_ADHOC_COLUMN) del column["label"] del column["sqlExpression"] with pytest.raises(ValueError): get_column_name(column) def test_is_adhoc_metric(): assert is_adhoc_metric(STR_METRIC) is False assert is_adhoc_metric(SIMPLE_SUM_ADHOC_METRIC) is True assert is_adhoc_metric(SQL_ADHOC_METRIC) is True def test_get_time_filter_status_time_col(): dataset = get_dataset_mock() assert get_time_filter_status( dataset, {ExtraFiltersTimeColumnType.TIME_COL: "ds"} ) == ([{"column": ExtraFiltersTimeColumnType.TIME_COL}], []) def test_get_time_filter_status_time_range(): dataset = get_dataset_mock() assert get_time_filter_status( dataset, {ExtraFiltersTimeColumnType.TIME_RANGE: "1 year ago"} ) == ([{"column": ExtraFiltersTimeColumnType.TIME_RANGE}], []) def test_get_time_filter_status_time_grain(): dataset = get_dataset_mock() assert get_time_filter_status( dataset, {ExtraFiltersTimeColumnType.TIME_GRAIN: "PT1M"} ) == ([{"column": ExtraFiltersTimeColumnType.TIME_GRAIN}], []) def test_get_time_filter_status_no_temporal_col(): dataset = get_dataset_mock() dataset.columns[0].is_dttm = False assert get_time_filter_status( dataset, {ExtraFiltersTimeColumnType.TIME_COL: "foobar"} ) == ( [], [ { "reason": ExtraFiltersReasonType.COL_NOT_IN_DATASOURCE, "column": ExtraFiltersTimeColumnType.TIME_COL, } ], ) assert get_time_filter_status( dataset, {ExtraFiltersTimeColumnType.TIME_RANGE: "1 year ago"} ) == ( [], [ { "reason": ExtraFiltersReasonType.NO_TEMPORAL_COLUMN, "column": ExtraFiltersTimeColumnType.TIME_RANGE, } ], ) assert get_time_filter_status( dataset, {ExtraFiltersTimeColumnType.TIME_GRAIN: "PT1M"} ) == ( [], [ { "reason": ExtraFiltersReasonType.NO_TEMPORAL_COLUMN, "column": ExtraFiltersTimeColumnType.TIME_GRAIN, } ], )
# Generated by Django 2.2.5 on 2019-10-09 12:51 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128, verbose_name='Name')), ('date', models.DateField(verbose_name='Date')), ('price', models.PositiveIntegerField(default=0, verbose_name='Price')), ('unit', models.IntegerField(choices=[(0, 'шт.'), (1, 'кг.')], default=0, verbose_name='Unit')), ('provider', models.CharField(blank=True, max_length=128, verbose_name='Provider')), ], options={ 'verbose_name': 'Product', 'verbose_name_plural': 'Products', }, ), ]
from __future__ import absolute_import, print_function try: from pathlib import Path Path().expanduser() except (ImportError,AttributeError): from pathlib2 import Path try: import tempfile tempfile.TemporaryDirectory except (ImportError,AttributeError): from backports import tempfile try: FileNotFoundError = FileNotFoundError except NameError: FileNotFoundError = IOError
from selenium import webdriver from selenium.webdriver.support.ui import Select import time import autoit # Between the quotes, enter your credentials. Make sure there are no extra spaces. username = "" password = "" # Between the quotes, enter the time you come in and the time you leave. Don't forget AM and PM. timeIn = "9:00 AM" timeOut = "6:00 PM" # Lunch break lunch = "1:00" browser = webdriver.Chrome() browser.set_page_load_timeout(30) browser.get("https://my.springahead.com/go/Account/Logon/REPLACE_WITH_COMPANY'S_NAME/") userID = browser.find_elements_by_id("UserName") userID[0].send_keys(username) browser.find_element_by_id("Password").send_keys(password) browser.find_element_by_class_name("submit").click() browser.find_element_by_class_name("small").click() workday = 3 while workday <= 11: try: browser.find_element_by_css_selector("tbody.timedaySectionBody:nth-child("+str(workday)+") > tr:nth-child(2) > td:nth-child(2) > " "div:nth-child(1) > button:nth-child(1)").click() select = Select(browser.find_element_by_css_selector("#timedayTable > tbody:nth-child("+str(workday)+") > " "tr.timeRowModel.editor_content.timedayEdit.timedayCalc > " "td.timedayProject > select")) select.select_by_index(1) browser.find_element_by_class_name("timein_input").send_keys(timeIn) browser.find_element_by_class_name("timeout_input").send_keys(timeOut) browser.find_element_by_class_name("timebreak_input").send_keys(lunch) browser.find_element_by_css_selector("tr.timedayEdit:nth-child(5) > td:nth-child(5) > button:nth-child(1)").click() except: pass time.sleep(0.5) workday += 2 # Clicks submit button browser.find_element_by_id("submitall").click() time.sleep(1) # Does the final submission for the timecard autoit.send("{ENTER}") time.sleep(10) browser.quit()
import os from exps.basketball.basketball_yolox_l import Exp as MyExp class Exp(MyExp): def __init__(self): super().__init__() self.num_classes = 2 self.exp_name = "boxing_glove" self.basketball_detection_dir = "2022"