content
stringlengths
5
1.05M
from django import forms from django.core.exceptions import ValidationError from django.utils import timezone from .models import ChoiceBet, DateBet from .util import create_choices from ledger.models import Account from profiles.models import ForbiddenUser class ChoiceBetCreationForm(forms.ModelForm): class Meta: model = ChoiceBet fields = ['name', 'description', 'end_bets_date', 'end_date'] pub_date = forms.DateField(widget=forms.SelectDateWidget, required=False) end_bets_date = forms.DateField(widget=forms.SelectDateWidget, required=False) end_date = forms.DateField(widget=forms.SelectDateWidget, required=False) forbidden = forms.ModelMultipleChoiceField(queryset=ForbiddenUser.objects.all(), required=False) def __init__(self, *args, **kwargs): super(ChoiceBetCreationForm, self).__init__(*args, **kwargs) self.fields['forbidden'].widget.attrs["size"] = ForbiddenUser.objects.all().count() def clean_pub_date(self): pub_date = self.cleaned_data.get('pub_date') if pub_date is None: return pub_date if pub_date <= timezone.now().date(): raise ValidationError( 'If you set a publication date, it has to be in the future. If you want the bet to be visible ' 'immediately, do not set a publication date.', code='pub_date_not_in_future') return pub_date def clean_end_bets_date(self): pub_date = self.cleaned_data.get('pub_date') end_bets_date = self.cleaned_data.get('end_bets_date') if end_bets_date is None: return end_bets_date if pub_date is None: if end_bets_date <= timezone.now().date(): raise ValidationError('Must give at least 1 day to place bets.', code='end_bets_not_in_future') elif end_bets_date <= pub_date: raise ValidationError('Bet placement has to be open after publish date.', code='end_bets_date_before_pub_date') return end_bets_date def clean_end_date(self): pub_date = self.cleaned_data.get('pub_date') end_bets_date = self.cleaned_data.get('end_bets_date') end_date = self.cleaned_data.get('end_date') if end_date is None: return end_date if end_date < end_bets_date: raise ValidationError('Placement of bets cannot be sustained after the bet is closed', code='end_date_before_end_bets_date') if end_date <= pub_date: raise ValidationError('The timespan between the publishement date and end date must be at least one day.', code='bet_timespan_too_short') return end_date def save(self, request): name = self.cleaned_data['name'] description = self.cleaned_data['description'] pub_date = self.cleaned_data['pub_date'] end_bets_date = self.cleaned_data['end_bets_date'] end_date = self.cleaned_data.get('end_date') forbidden = self.cleaned_data['forbidden'] account = Account(name=name, type='b') account.save() new_bet = ChoiceBet( owner=request.user.profile, name=name, description=description, end_bets_date=end_bets_date, end_date=end_date, account=account ) try: choices = create_choices(request, new_bet) except ValidationError: raise new_bet.save() for choice in choices: choice.save() for forbidden_user in forbidden: new_bet.forbidden.add(forbidden_user) if pub_date is not None: new_bet.pub_date = pub_date new_bet.save() return new_bet class DateBetCreationForm(forms.ModelForm): class Meta: model = DateBet fields = ['name', 'description', 'end_bets_date', 'time_period_start', 'time_period_end'] pub_date = forms.DateField(widget=forms.SelectDateWidget, required=False) end_bets_date = forms.DateField(widget=forms.SelectDateWidget, required=False) time_period_start = forms.DateField(widget=forms.SelectDateWidget, required=False) time_period_end = forms.DateField(widget=forms.SelectDateWidget, required=False) forbidden = forms.ModelMultipleChoiceField(queryset=ForbiddenUser.objects.all(), required=False) def clean_pub_date(self): pub_date = self.cleaned_data.get('pub_date') if pub_date is None: return pub_date if pub_date <= timezone.now().date(): raise ValidationError( 'If you set a publication date, it has to be in the future. If you want the bet to be visible ' 'immediately, do not set a publication date.', code='pub_date_not_in_future') return pub_date def clean_end_bets_date(self): pub_date = self.cleaned_data.get('pub_date') end_bets_date = self.cleaned_data.get('end_bets_date') if end_bets_date is None: return end_bets_date if pub_date is None: if end_bets_date <= timezone.now().date(): raise ValidationError('Must give at least 1 day to place bets.', code='end_bets_not_in_future') elif end_bets_date < pub_date: raise ValidationError('Bet placement has to be open after publish date.', code='end_bets_date_before_pub_date') return end_bets_date def clean_time_period_start(self): pub_date = self.cleaned_data.get('pub_date') time_period_start = self.cleaned_data.get('time_period_start') if time_period_start is None: return time_period_start if pub_date is None: if time_period_start <= timezone.now().date(): raise ValidationError( 'The period to bet on must be in the future.', code='time_period_start_not_in_future') elif time_period_start <= pub_date: raise ValidationError( 'The period to bet on has to start after Publication. Do not set a start date if you want the ' 'period to start at publication.', code='time_period_start_not_greater_pub') return time_period_start def clean_time_period_end(self): pub_date = self.cleaned_data.get('pub_date') time_period_start = self.cleaned_data.get('time_period_start') time_period_end = self.cleaned_data.get('time_period_end') if time_period_end is None: return time_period_end if (pub_date is None) and (time_period_start is None): if time_period_end <= timezone.now().date(): raise ValidationError('The period to bet on must not end in the past', code='period_end_not_in_future') elif not (time_period_start is None): if time_period_start >= time_period_end: raise ValidationError('The period to bet on must end after it has started', code='period_end_not_greater_period_start') elif not (pub_date is None): if time_period_end <= pub_date: raise ValidationError('The period to bet on must not end before the bet is visible', code='period_end_not_greater_pub') return time_period_end def save(self, user): name = self.cleaned_data['name'] description = self.cleaned_data['description'] pub_date = self.cleaned_data['pub_date'] end_bets_date = self.cleaned_data['end_bets_date'] time_period_start = self.cleaned_data['time_period_start'] time_period_end = self.cleaned_data['time_period_end'] forbidden = self.cleaned_data['forbidden'] account = Account(name=name, type='b') account.save() new_bet = DateBet.objects.create( owner=user, name=name, description=description, end_bets_date=end_bets_date, time_period_start=time_period_start, time_period_end=time_period_end, account=account ) for forbidden_user in forbidden: new_bet.forbidden.add(forbidden_user) if pub_date is not None: new_bet.pub_date = pub_date new_bet.save() return new_bet
from django.test import SimpleTestCase import mock cursor_wrapper = mock.Mock() cursor_wrapper.side_effect = RuntimeError("No touching the database!") @mock.patch("django.db.backends.utils.CursorWrapper", cursor_wrapper) class SimpleTest(SimpleTestCase): def test_basic_addition(self): """ Tests that 1 + 1 always equals 2. """ self.assertEqual(1 + 1, 2)
import configparser from pathlib import Path from typing import TYPE_CHECKING from radiant_mlhub.cli import mlhub if TYPE_CHECKING: from click.testing import CliRunner as CliRunner_Type class TestCLI: def test_version(self, cli_runner: "CliRunner_Type") -> None: result = cli_runner.invoke(mlhub, ['--version']) assert result.output.rstrip('\n') == 'mlhub, version 0.3.1' def test_configure(self, isolated_cli_runner: "CliRunner_Type") -> None: new_home = Path.cwd() # Monkeypatch the user's home directory to be the temp directory (CWD) env = { 'HOME': str(new_home), 'USERPROFILE': str(new_home) } result = isolated_cli_runner.invoke(mlhub, ['configure'], input='testapikey\n', env=env) assert result.exit_code == 0, result.output # Should create a profiles file in the "HOME" directory profile_path = new_home / '.mlhub' / 'profiles' assert profile_path.exists() config = configparser.ConfigParser() config.read(profile_path) assert config.get('default', 'api_key') == 'testapikey' # Should abort if an api key exists and user does not confirm overwrite result = isolated_cli_runner.invoke(mlhub, ['configure'], input='testapikey\nn\n', env=env) assert result.exit_code == 1, result.output def test_configure_user_defined_home(self, isolated_cli_runner: "CliRunner_Type") -> None: new_home = Path.cwd() mlhub_home = new_home / 'some-directory' / '.mlhub' mlhub_home.mkdir(parents=True) result = isolated_cli_runner.invoke( mlhub, ['configure'], input='userdefinedhome\n', env={'MLHUB_HOME': str(mlhub_home)} ) assert result.exit_code == 0, result.output # Should create a profiles file in the "HOME" directory profile_path = mlhub_home / 'profiles' assert profile_path.exists() config = configparser.ConfigParser() config.read(profile_path) assert config.get('default', 'api_key') == 'userdefinedhome'
# Generated by Django 2.2.10 on 2021-07-23 04:43 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0011_auto_20210722_1131'), ] operations = [ migrations.AddField( model_name='salesuser', name='Sales_User_include_bnkdetails', field=models.BooleanField(default=True), ), migrations.AlterField( model_name='accessrequest', name='Request_date', field=models.DateTimeField(blank=True, default=datetime.datetime(2021, 7, 23, 10, 13, 11, 217633), null=True, verbose_name='Date of Request'), ), migrations.AlterField( model_name='invoice', name='Invoice_Date', field=models.DateTimeField(blank=True, default=datetime.datetime(2021, 7, 23, 10, 13, 11, 217005), null=True, verbose_name='Date of invoice'), ), ]
from Mymqtt import Mymqtt from receive import * import pygame # 屏幕刷新 flash = 0 # 背景图以及移动小车图 car_image_name = "car.png" pygame.init() # 生成窗口以及窗口标题 screen_show = pygame.display.set_mode((1000, 600), 0, 32) pygame.display.set_caption("Little Case") # 加载并转换图片 car0 = pygame.image.load(car_image_name).convert_alpha() car1 = pygame.image.load(car_image_name).convert_alpha() car2 = pygame.image.load(car_image_name).convert_alpha() car3 = pygame.image.load(car_image_name).convert_alpha() # 小车初始参数 a = 0.061*ratio # 必要信息:当前位置,当前速度,上一次运行时间,加速度,标志位(用于判断是否开始匀减速),旋转角度,倒车标志位 list_value_car0 = [1*ratio, Coordinate_trans(0*ratio), 0, 0, 0, 1, 90, 0] list_value_car1 = [1*ratio, Coordinate_trans(0*ratio), 0, 0, 0, 1, 90, 0] list_value_car2 = [6.1*ratio, Coordinate_trans(0*ratio), 0, 0, 0, 1, 90, 0] list_value_car3 = [6.1*ratio, Coordinate_trans(0*ratio), 0, 0, 0, 1, 90, 0] list_value_car0[4] = a list_value_car1[4] = a list_value_car2[4] = a list_value_car3[4] = a # 油门档位分为1——10,标志位1代表前进,2代表后退,3代表急刹 # x,y,T,flag # flag,1代表前进,2代表倒车,3代表急刹 list_init_car0 = [1*ratio, Coordinate_trans(0*ratio), 0, 1] list_init_car1 = [1*ratio, Coordinate_trans(0*ratio), 0, 1] list_init_car2 = [6.1*ratio, Coordinate_trans(0*ratio), 0, 1] list_init_car3 = [6.1*ratio, Coordinate_trans(0*ratio), 0, 1] # 初始化小车客户端 client_car0 = Mymqtt("car1") client_car0.connect() client_car1 = Mymqtt("car2") client_car1.connect() client_car2 = Mymqtt("car3") client_car2.connect() client_car3 = Mymqtt("car4") client_car3.connect() # 可以在这里由小车发布第一条数据 # 具体发送什么数据暂时没写 # client.push_info(position) while True: # 循环20次,刷新一次屏幕 if flash == 20: screen_show.fill((0, 0, 0)) flash = 0 else: flash = flash + 1 # 获取数据 car0_data = get_data(client_car0, list_value_car0) if car0_data: list_init_car0 = car0_data[0] list_value_car0 = car0_data[1] car1_data = get_data(client_car1, list_value_car1) if car1_data: list_init_car1 = car1_data[0] list_value_car1 = car1_data[1] car2_data = get_data(client_car2, list_value_car2) if car2_data: list_init_car2 = car2_data[0] list_value_car2 = car2_data[1] car3_data = get_data(client_car3, list_value_car3) if car3_data: list_init_car3 = car3_data[0] list_value_car3 = car3_data[1] # 运动 list_value_car0 = car_straight(car0, screen_show, list_init_car0, list_value_car0) list_value_car1 = car_straight(car1, screen_show, list_init_car1, list_value_car1) list_value_car2 = car_straight(car2, screen_show, list_init_car2, list_value_car2) list_value_car3 = car_straight(car3, screen_show, list_init_car3, list_value_car3) # 发布数据 client_list = [client_car0, client_car1, client_car2, client_car3] # client_list = [client_car0] value_list = [list_value_car0, list_value_car1, list_value_car2, list_value_car3] # value_list = [list_value_car0] publish_data(client_list, value_list)
from PIL import Image import numpy as np #-- read pixels to ndarray im1 = np.array( Image.open('../images/img001.png').convert('RGB') ) #-- pixel operation im1[:, :, 0] = 0 #im1[:, :, 1] = 0 im1[:, :, 2] = 0 #-- save to png im3 = Image.fromarray(im1) im3.save('z201.png')
def getPairs(li, x): myDic = dict() for i in li: remVal = x - i if i in myDic: print remVal, ',', i myDic[remVal] = True li = [110, 175, 317, 50, 1178, 819, 70] getPairs(li, 427) # time is linear
""" Test of constraints value_precede and value_precede_chain in cpmpy The global constraint value_precede(s,t, x) ensures that the value s precedesl the value t in array x if both s and t are in x. The global constraint value_precede_chain(c, x) ensures that the value c[i-1] precedes the value c[i] is the array x if both c[i-1] and c[i] are in x. These constraints are often used for symmetry breaking. Model created by Hakan Kjellerstrand, hakank@hakank.com See also my cpmpy page: http://www.hakank.org/cpmpy/ """ import sys import numpy as np from cpmpy import * from cpmpy.solvers import * from cpmpy_hakank import * import operator # # Testing value_precede # def value_precede_test(n): # variables x = intvar(1,n,shape=n,name="x") # constraints model = Model([value_precede(4,3,x)]) ortools_wrapper2(model,[x]) # # Testing value_precede_chain # def value_precede_chain_test(n): # variables x = intvar(1,n,shape=n,name="x") cs = list(range(1,n+1)) print("cs:",cs), # constraints model = Model([value_precede_chain(cs,x)]) ortools_wrapper2(model,[x]) n = 4 print("value_precede_test") value_precede_test(n) print("\nvalue_precede_chain_test") value_precede_chain_test(n)
from onnx_graphsurgeon.logger.logger import G_LOGGER
"""High level entry point for processing a sample. Samples may include multiple lanes, or barcoded subsections of lanes, processed together. """ import copy import os import toolz as tz from bcbio import utils, bam, broad from bcbio.log import logger from bcbio.pipeline.merge import merge_bam_files from bcbio.bam import fastq, callable from bcbio.bam.trim import trim_adapters from bcbio.ngsalign import postalign from bcbio.pipeline.fastq import get_fastq_files from bcbio.pipeline.alignment import align_to_sort_bam from bcbio.pipeline import cleanbam from bcbio.variation import bedutils, recalibrate from bcbio.variation import multi as vmulti import bcbio.pipeline.datadict as dd def prepare_sample(data): """Prepare a sample to be run, potentially converting from BAM to FASTQ and/or downsampling the number of reads for a test run """ NUM_DOWNSAMPLE = 10000 logger.debug("Preparing %s" % data["rgnames"]["sample"]) file1, file2 = get_fastq_files(data) if data.get("test_run", False): if bam.is_bam(file1): file1 = bam.downsample(file1, data, NUM_DOWNSAMPLE) file2 = None else: file1, file2 = fastq.downsample(file1, file2, data, NUM_DOWNSAMPLE, quick=True) data["files"] = [file1, file2] return [[data]] def trim_sample(data): """Trim from a sample with the provided trimming method. Support methods: read_through. """ to_trim = [x for x in data["files"] if x is not None] dirs = data["dirs"] config = data["config"] # this block is to maintain legacy configuration files trim_reads = config["algorithm"].get("trim_reads", False) if not trim_reads: logger.info("Skipping trimming of %s." % (", ".join(to_trim))) return [[data]] out_dir = os.path.join(dd.get_work_dir(data), "trimmed") utils.safe_makedir(out_dir) if trim_reads == "read_through": logger.info("Trimming low quality ends and read through adapter " "sequence from %s." % (", ".join(to_trim))) out_files = trim_adapters(to_trim, out_dir, config) data["files"] = out_files return [[data]] # ## Alignment def link_bam_file(orig_file, new_dir): """Provide symlinks of BAM file and existing indexes. """ new_dir = utils.safe_makedir(new_dir) sym_file = os.path.join(new_dir, os.path.basename(orig_file)) utils.symlink_plus(orig_file, sym_file) return sym_file def _add_supplemental_bams(data): """Add supplemental files produced by alignment, useful for structural variant calling. """ file_key = "work_bam" if data.get(file_key): for supext in ["disc", "sr"]: base, ext = os.path.splitext(data[file_key]) test_file = "%s-%s%s" % (base, supext, ext) if os.path.exists(test_file): sup_key = file_key + "-plus" if not sup_key in data: data[sup_key] = {} data[sup_key][supext] = test_file return data def process_alignment(data): """Do an alignment of fastq files, preparing a sorted BAM output file. """ fastq1, fastq2 = dd.get_input_sequence_files(data) config = data["config"] aligner = config["algorithm"].get("aligner", None) if fastq1 and utils.file_exists_or_remote(fastq1) and aligner: logger.info("Aligning lane %s with %s aligner" % (data["rgnames"]["lane"], aligner)) data = align_to_sort_bam(fastq1, fastq2, aligner, data) data = _add_supplemental_bams(data) elif fastq1 and os.path.exists(fastq1) and fastq1.endswith(".bam"): sort_method = config["algorithm"].get("bam_sort") bamclean = config["algorithm"].get("bam_clean") if bamclean is True or bamclean == "picard": if sort_method and sort_method != "coordinate": raise ValueError("Cannot specify `bam_clean: picard` with `bam_sort` other than coordinate: %s" % sort_method) out_bam = cleanbam.picard_prep(fastq1, data["rgnames"], data["sam_ref"], data["dirs"], data) elif sort_method: runner = broad.runner_from_config(config) out_file = os.path.join(data["dirs"]["work"], "{}-sort.bam".format( os.path.splitext(os.path.basename(fastq1))[0])) out_bam = runner.run_fn("picard_sort", fastq1, sort_method, out_file) else: out_bam = link_bam_file(fastq1, os.path.join(data["dirs"]["work"], "prealign", data["rgnames"]["sample"])) bam.check_header(out_bam, data["rgnames"], data["sam_ref"], data["config"]) dedup_bam = postalign.dedup_bam(out_bam, data) data["work_bam"] = dedup_bam elif fastq1 and utils.file_exists_or_remote(fastq1) and fastq1.endswith(".cram"): data["work_bam"] = fastq1 elif fastq1 is None and "vrn_file" in data: data["config"]["algorithm"]["variantcaller"] = False data["work_bam"] = None else: raise ValueError("Could not process input file: %s" % fastq1) return [[data]] def prep_samples(*items): """Handle any global preparatory steps for samples with potentially shared data. Avoids race conditions in postprocess alignment when performing prep tasks on shared files between multiple similar samples. Cleans input BED files to avoid issues with overlapping input segments. """ out = [] for data in (x[0] for x in items): data = bedutils.clean_inputs(data) out.append([data]) return out def postprocess_alignment(data): """Perform post-processing steps required on full BAM files. Prepares list of callable genome regions allowing subsequent parallelization. """ if vmulti.bam_needs_processing(data) and data["work_bam"].endswith(".bam"): callable_region_bed, nblock_bed, callable_bed = \ callable.block_regions(data["work_bam"], data["sam_ref"], data["config"]) data["regions"] = {"nblock": nblock_bed, "callable": callable_bed} if (os.path.exists(callable_region_bed) and not data["config"]["algorithm"].get("variant_regions")): data["config"]["algorithm"]["variant_regions"] = callable_region_bed data = bedutils.clean_inputs(data) data = _recal_no_markduplicates(data) return [[data]] def _recal_no_markduplicates(data): orig_config = copy.deepcopy(data["config"]) data["config"]["algorithm"]["mark_duplicates"] = False data = recalibrate.prep_recal(data)[0][0] data["config"] = orig_config return data def _merge_out_from_infiles(in_files): """Generate output merged file name from set of input files. Handles non-shared filesystems where we don't know output path when setting up split parts. """ fname = os.path.commonprefix([os.path.basename(f) for f in in_files]) while fname.endswith(("-", "_", ".")): fname = fname[:-1] ext = os.path.splitext(in_files[0])[-1] dirname = os.path.dirname(in_files[0]) while dirname.endswith(("split", "merge")): dirname = os.path.dirname(dirname) return os.path.join(dirname, "%s%s" % (fname, ext)) def delayed_bam_merge(data): """Perform a merge on previously prepped files, delayed in processing. Handles merging of associated split read and discordant files if present. """ if data.get("combine"): assert len(data["combine"].keys()) == 1 file_key = data["combine"].keys()[0] extras = [] for x in data["combine"][file_key].get("extras", []): if isinstance(x, (list, tuple)): extras.extend(x) else: extras.append(x) if file_key in data: extras.append(data[file_key]) in_files = sorted(list(set(extras))) out_file = tz.get_in(["combine", file_key, "out"], data, _merge_out_from_infiles(in_files)) sup_exts = data.get(file_key + "-plus", {}).keys() for ext in sup_exts + [""]: merged_file = None if os.path.exists(utils.append_stem(out_file, "-" + ext)): cur_out_file, cur_in_files = out_file, [] if ext: cur_in_files = list(filter(os.path.exists, (utils.append_stem(f, "-" + ext) for f in in_files))) cur_out_file = utils.append_stem(out_file, "-" + ext) if len(cur_in_files) > 0 else None else: cur_in_files, cur_out_file = in_files, out_file if cur_out_file: config = copy.deepcopy(data["config"]) config["algorithm"]["save_diskspace"] = False if len(cur_in_files) > 0: merged_file = merge_bam_files(cur_in_files, os.path.dirname(cur_out_file), config, out_file=cur_out_file) else: assert os.path.exists(cur_out_file) merged_file = cur_out_file if merged_file: if ext: data[file_key + "-plus"][ext] = merged_file else: data[file_key] = merged_file data.pop("region", None) data.pop("combine", None) return [[data]]
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2020 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from mock import MagicMock from django.test import TestCase from auth_backend.plugins import utils from auth_backend.tests.mock_path import * # noqa class UtilsTestCase(TestCase): def setUp(self): self.resource_type = 'resource_type_token' self.resource_type_name = 'resource_type_name_token' self.base_info = { 'resource': { 'resource_type': self.resource_type, 'resource_type_name': self.resource_type_name }, 'base': 'base_token', 'scope_id': 'base_scope_id_token' } self.action_id = 'action_id_token' self.action_name = 'action_name_token' self.instance = 'instance_token' self.scope_id = 'scope_id_token' self.resource_name = 'resource_name_token' self.resource_id = 'resource_id_token' self.instance_object = MagicMock() self.auth_resource = MagicMock() self.auth_resource.base_info = MagicMock(return_value=self.base_info) self.auth_resource.resource_id = MagicMock(return_value=self.resource_id) self.auth_resource.resource_name = MagicMock(return_value=self.resource_name) self.action = MagicMock() self.action.name = self.action_name self.auth_resource.actions_map = { self.action_id: self.action } def test_build_need_permission__with_none_instance(self): permission = utils.build_need_permission(auth_resource=self.auth_resource, action_id=self.action_id, scope_id=self.scope_id) expect_permission = { 'base': 'base_token', 'scope_id': self.scope_id, 'action_id': self.action_id, 'action_name': self.action_name, 'resource_type': self.resource_type, 'resource_type_name': self.resource_type_name, 'resources': [] } self.assertEqual(permission, expect_permission) def test_build_need_permission__with_none_scope_id(self): permission = utils.build_need_permission(auth_resource=self.auth_resource, action_id=self.action_id) expect_permission = { 'base': 'base_token', 'scope_id': 'base_scope_id_token', 'action_id': self.action_id, 'action_name': self.action_name, 'resource_type': self.resource_type, 'resource_type_name': self.resource_type_name, 'resources': [] } self.assertEqual(permission, expect_permission) def test_build_need_permission__with_instance_object(self): permission = utils.build_need_permission(auth_resource=self.auth_resource, action_id=self.action_id, instance=self.instance_object, scope_id=self.scope_id) expect_permission = { 'base': 'base_token', 'scope_id': 'scope_id_token', 'action_id': self.action_id, 'action_name': self.action_name, 'resource_type': self.resource_type, 'resource_type_name': self.resource_type_name, 'resources': [ [ { 'resource_type': self.resource_type, 'resource_type_name': self.resource_type_name, 'resource_id': self.resource_id, 'resource_name': self.resource_name } ] ] } self.assertEqual(permission, expect_permission) self.auth_resource.resource_id.assert_called_once_with(self.instance_object) def test_build_need_permission__with_instance_id(self): permission = utils.build_need_permission(auth_resource=self.auth_resource, action_id=self.action_id, instance=self.instance, scope_id=self.scope_id) expect_permission = { 'base': 'base_token', 'scope_id': 'scope_id_token', 'action_id': self.action_id, 'action_name': self.action_name, 'resource_type': self.resource_type, 'resource_type_name': self.resource_type_name, 'resources': [ [ { 'resource_type': self.resource_type, 'resource_type_name': self.resource_type_name, 'resource_id': self.instance, 'resource_name': self.resource_name } ] ] } self.assertEqual(permission, expect_permission) self.auth_resource.resource_id.assert_not_called()
import math from openerp.osv import osv, fields import openerp.addons.product.product class res_users(osv.osv): _inherit = 'res.users' _columns = { 'ean13' : fields.char('EAN13', size=13, help="BarCode"), 'pos_config' : fields.many2one('pos.config', 'Default Point of Sale', domain=[('state', '=', 'active')]), } def _check_ean(self, cr, uid, ids, context=None): return all( openerp.addons.product.product.check_ean(user.ean13) == True for user in self.browse(cr, uid, ids, context=context) ) def edit_ean(self, cr, uid, ids, context): return { 'name': "Edit EAN", 'type': 'ir.actions.act_window', 'view_type': 'form', 'view_mode': 'form', 'res_model': 'pos.ean_wizard', 'target' : 'new', 'view_id': False, 'context':context, } _constraints = [ (_check_ean, "Error: Invalid ean code", ['ean13'],), ]
import csv import collections, itertools import nltk.classify.util, nltk.metrics from nltk.classify import NaiveBayesClassifier from nltk.corpus import movie_reviews, stopwords from nltk.collocations import BigramCollocationFinder from nltk.metrics import BigramAssocMeasures from nltk.probability import FreqDist, ConditionalFreqDist from nltk.tokenize import RegexpTokenizer from nltk.corpus import stopwords import random from nltk.stem.snowball import EnglishStemmer stopset = set(stopwords.words('english')) lmtzr = EnglishStemmer(True) #Different frequencies/scoring function between unigram and bigram def bigram_word_feats(words, score_fn=BigramAssocMeasures.chi_sq, n=150): bigram_finder = BigramCollocationFinder.from_words(words) bigrams = bigram_finder.nbest(score_fn, n) return dict([(ngram, True) for ngram in itertools.chain(words, bigrams)]) #Construction du dictionnaire en tenant compte des stopwords def stopword_filtered_word_feats(words): return dict([(word, True) for word in words if word not in stopset]) #Construction du dictionnaire en tenant compte des stopwords def stemming_word_feats(words): return dict([(lmtzr.stem(word), True) for word in words]) # Construction du dictionnaire avec variable bool indiquant presence du mot def word_feats(words): return dict([(word, True) for word in words]) #Classe permettant l'extraction des phrases du fichier class PipeDialect(csv.Dialect): delimiter = "|" quotechar = None escapechar = None doublequote = None lineterminator = "\r\n" quoting = csv.QUOTE_NONE skipinitialspace = False #Classifieur binaire de base def evaluate_classifier(featx): fneg = "data.neg.txt" fpos = "data.pos.txt" f = "data.txt" fileNeg = open(fneg, "rb") filePos = open(fpos, "rb") file = open(f, "rb") reader = csv.reader(file, PipeDialect()) readerNeg = csv.reader(fileNeg, PipeDialect()) readerPos = csv.reader(filePos, PipeDialect()) sentencesNeg = [] sentencesPos = [] wordsNeg = [] wordsPos = [] for row in readerNeg: sentencesNeg.append(row[2].lower()) for row in readerPos: sentencesPos.append(row[2].lower()) tokenizer = RegexpTokenizer(r'\w+') for i in range(0, len(sentencesNeg)-1): wordsNeg.append(tokenizer.tokenize(sentencesNeg[i])) for i in range(0, len(sentencesPos)-1): wordsPos.append(tokenizer.tokenize(sentencesPos[i])) words = wordsNeg + wordsPos print len(set([y for x in words for y in x])) negfeats = [(featx(wordsNeg[i]), 'neg') for i in range(0, len(wordsNeg)-1)] posfeats = [(featx(wordsPos[i]), 'pos') for i in range(0, len(wordsPos)-1)] print len(set([lmtzr.stem(y) for x in words for y in x])) random.shuffle(negfeats) random.shuffle(posfeats) negcutoff = len(negfeats)*3/4 poscutoff = len(posfeats)*3/4 trainfeats = negfeats[:negcutoff] + posfeats[:poscutoff] testfeats = negfeats[negcutoff:] + posfeats[poscutoff:] print 'train on %d instances, test on %d instances' % (len(trainfeats), len(testfeats)) classifier = NaiveBayesClassifier.train(trainfeats) refsets = collections.defaultdict(set) testsets = collections.defaultdict(set) for i, (feats, label) in enumerate(testfeats): refsets[label].add(i) observed = classifier.classify(feats) testsets[observed].add(i) print 'accuracy:', nltk.classify.util.accuracy(classifier, testfeats) print 'pos precision:', nltk.metrics.precision(refsets['pos'], testsets['pos']) print 'pos recall:', nltk.metrics.recall(refsets['pos'], testsets['pos']) print 'neg precision:', nltk.metrics.precision(refsets['neg'], testsets['neg']) print 'neg recall:', nltk.metrics.recall(refsets['neg'], testsets['neg']) classifier.show_most_informative_features() file.close() filePos.close() fileNeg.close() print 'evaluating single word features' evaluate_classifier(word_feats) print 'evaluating single word features with no stopword' evaluate_classifier(stopword_filtered_word_feats) print 'evaluating single word features with no stopword and stemming' evaluate_classifier(stemming_word_feats)
from python_framework import Enum, EnumItem @Enum() class PoolingStatusEnumeration : NONE = EnumItem() POOLING = EnumItem() GOOGLE_SEARCHING = EnumItem() ERROR_POOLING = EnumItem() ERROR_DELIVERING = EnumItem() SUCCESS = EnumItem() PoolingStatus = PoolingStatusEnumeration()
# Copyright 2014 eBay Software Foundation # Copyright [2015] Hewlett-Packard Development Company, L.P. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from mock import Mock, patch, PropertyMock from trove.backup.models import Backup from trove.common.context import TroveContext from trove.instance.tasks import InstanceTasks from trove.taskmanager.manager import Manager from trove.taskmanager import models from trove.taskmanager import service from trove.common.exception import TroveError, ReplicationSlaveAttachError from proboscis.asserts import assert_equal from trove.tests.unittests import trove_testtools class TestManager(trove_testtools.TestCase): def setUp(self): super(TestManager, self).setUp() self.manager = Manager() self.context = TroveContext() self.mock_slave1 = Mock() self.mock_slave2 = Mock() type(self.mock_slave1).id = PropertyMock(return_value='some-inst-id') type(self.mock_slave2).id = PropertyMock(return_value='inst1') self.mock_old_master = Mock() type(self.mock_old_master).slaves = PropertyMock( return_value=[self.mock_slave1, self.mock_slave2]) self.mock_master = Mock() type(self.mock_master).slaves = PropertyMock( return_value=[self.mock_slave1, self.mock_slave2]) def tearDown(self): super(TestManager, self).tearDown() self.manager = None def test_getattr_lookup(self): self.assertTrue(callable(self.manager.delete_cluster)) self.assertTrue(callable(self.manager.mongodb_add_shard_cluster)) def test_most_current_replica(self): master = Mock() master.id = 32 def test_case(txn_list, selected_master): with patch.object(self.manager, '_get_replica_txns', return_value=txn_list): result = self.manager._most_current_replica(master, None) assert_equal(result, selected_master) with self.assertRaisesRegexp(TroveError, 'not all replicating from same'): test_case([['a', '2a99e-32bf', 2], ['b', '2a', 1]], None) test_case([['a', '2a99e-32bf', 2]], 'a') test_case([['a', '2a', 1], ['b', '2a', 2]], 'b') test_case([['a', '2a', 2], ['b', '2a', 1]], 'a') test_case([['a', '2a', 1], ['b', '2a', 1]], 'a') test_case([['a', None, 0]], 'a') test_case([['a', None, 0], ['b', '2a', 1]], 'b') def test_detach_replica(self): slave = Mock() master = Mock() with patch.object(models.BuiltInstanceTasks, 'load', side_effect=[slave, master]): self.manager.detach_replica(self.context, 'some-inst-id') slave.detach_replica.assert_called_with(master) @patch.object(Manager, '_set_task_status') def test_promote_to_replica_source(self, mock_set_task_status): with patch.object(models.BuiltInstanceTasks, 'load', side_effect=[self.mock_slave1, self.mock_old_master, self.mock_slave2]): self.manager.promote_to_replica_source( self.context, 'some-inst-id') self.mock_slave1.detach_replica.assert_called_with( self.mock_old_master, for_failover=True) self.mock_old_master.attach_replica.assert_called_with( self.mock_slave1) self.mock_slave1.make_read_only.assert_called_with(False) self.mock_slave2.detach_replica.assert_called_with( self.mock_old_master, for_failover=True) self.mock_slave2.attach_replica.assert_called_with(self.mock_slave1) self.mock_old_master.demote_replication_master.assert_any_call() mock_set_task_status.assert_called_with(([self.mock_old_master] + [self.mock_slave1, self.mock_slave2]), InstanceTasks.NONE) @patch.object(Manager, '_set_task_status') @patch.object(Manager, '_most_current_replica') def test_eject_replica_source(self, mock_most_current_replica, mock_set_task_status): with patch.object(models.BuiltInstanceTasks, 'load', side_effect=[self.mock_master, self.mock_slave1, self.mock_slave2]): self.manager.eject_replica_source(self.context, 'some-inst-id') mock_most_current_replica.assert_called_with(self.mock_master, [self.mock_slave1, self.mock_slave2]) mock_set_task_status.assert_called_with(([self.mock_master] + [self.mock_slave1, self.mock_slave2]), InstanceTasks.NONE) @patch.object(Manager, '_set_task_status') def test_exception_TroveError_promote_to_replica_source(self, *args): self.mock_slave2.detach_replica = Mock(side_effect=TroveError) with patch.object(models.BuiltInstanceTasks, 'load', side_effect=[self.mock_slave1, self.mock_old_master, self.mock_slave2]): self.assertRaises(ReplicationSlaveAttachError, self.manager.promote_to_replica_source, self.context, 'some-inst-id') @patch.object(Manager, '_set_task_status') @patch.object(Manager, '_most_current_replica') def test_exception_TroveError_eject_replica_source( self, mock_most_current_replica, mock_set_tast_status): self.mock_slave2.detach_replica = Mock(side_effect=TroveError) mock_most_current_replica.return_value = self.mock_slave1 with patch.object(models.BuiltInstanceTasks, 'load', side_effect=[self.mock_master, self.mock_slave1, self.mock_slave2]): self.assertRaises(ReplicationSlaveAttachError, self.manager.eject_replica_source, self.context, 'some-inst-id') @patch.object(Manager, '_set_task_status') def test_error_promote_to_replica_source(self, *args): self.mock_slave2.detach_replica = Mock( side_effect=RuntimeError('Error')) with patch.object(models.BuiltInstanceTasks, 'load', side_effect=[self.mock_slave1, self.mock_old_master, self.mock_slave2]): self.assertRaisesRegexp(RuntimeError, 'Error', self.manager.promote_to_replica_source, self.context, 'some-inst-id') def test_error_demote_replication_master_promote_to_replica_source(self): self.mock_old_master.demote_replication_master = Mock( side_effect=RuntimeError('Error')) with patch.object(models.BuiltInstanceTasks, 'load', side_effect=[self.mock_slave1, self.mock_old_master, self.mock_slave2]): self.assertRaises(ReplicationSlaveAttachError, self.manager.promote_to_replica_source, self.context, 'some-inst-id') @patch.object(Manager, '_set_task_status') @patch.object(Manager, '_most_current_replica') def test_error_eject_replica_source(self, mock_most_current_replica, mock_set_tast_status): self.mock_slave2.detach_replica = Mock( side_effect=RuntimeError('Error')) mock_most_current_replica.return_value = self.mock_slave1 with patch.object(models.BuiltInstanceTasks, 'load', side_effect=[self.mock_master, self.mock_slave1, self.mock_slave2]): self.assertRaisesRegexp(RuntimeError, 'Error', self.manager.eject_replica_source, self.context, 'some-inst-id') @patch.object(Backup, 'delete') def test_create_replication_slave(self, mock_backup_delete): mock_tasks = Mock() mock_snapshot = {'dataset': {'snapshot_id': 'test-id'}} mock_tasks.get_replication_master_snapshot = Mock( return_value=mock_snapshot) mock_flavor = Mock() with patch.object(models.FreshInstanceTasks, 'load', return_value=mock_tasks): self.manager.create_instance(self.context, ['id1'], Mock(), mock_flavor, Mock(), None, None, 'mysql', 'mysql-server', 2, 'temp-backup-id', None, 'some_password', None, Mock(), 'some-master-id', None) mock_tasks.get_replication_master_snapshot.assert_called_with( self.context, 'some-master-id', mock_flavor, 'temp-backup-id', replica_number=1) mock_backup_delete.assert_called_with(self.context, 'test-id') @patch.object(models.FreshInstanceTasks, 'load') @patch.object(Backup, 'delete') def test_exception_create_replication_slave(self, mock_delete, mock_load): mock_load.return_value.create_instance = Mock(side_effect=TroveError) self.assertRaises(TroveError, self.manager.create_instance, self.context, ['id1', 'id2'], Mock(), Mock(), Mock(), None, None, 'mysql', 'mysql-server', 2, 'temp-backup-id', None, 'some_password', None, Mock(), 'some-master-id', None) def test_AttributeError_create_instance(self): self.assertRaisesRegexp( AttributeError, 'Cannot create multiple non-replica instances.', self.manager.create_instance, self.context, ['id1', 'id2'], Mock(), Mock(), Mock(), None, None, 'mysql', 'mysql-server', 2, 'temp-backup-id', None, 'some_password', None, Mock(), None, None) def test_create_instance(self): mock_tasks = Mock() mock_flavor = Mock() mock_override = Mock() with patch.object(models.FreshInstanceTasks, 'load', return_value=mock_tasks): self.manager.create_instance(self.context, 'id1', 'inst1', mock_flavor, 'mysql-image-id', None, None, 'mysql', 'mysql-server', 2, 'temp-backup-id', None, 'password', None, mock_override, None, None) mock_tasks.create_instance.assert_called_with(mock_flavor, 'mysql-image-id', None, None, 'mysql', 'mysql-server', 2, 'temp-backup-id', None, 'password', None, mock_override, None) mock_tasks.wait_for_instance.assert_called_with(36000, mock_flavor) def test_create_cluster(self): mock_tasks = Mock() with patch.object(models, 'load_cluster_tasks', return_value=mock_tasks): self.manager.create_cluster(self.context, 'some-cluster-id') mock_tasks.create_cluster.assert_called_with(self.context, 'some-cluster-id') def test_delete_cluster(self): mock_tasks = Mock() with patch.object(models, 'load_cluster_tasks', return_value=mock_tasks): self.manager.delete_cluster(self.context, 'some-cluster-id') mock_tasks.delete_cluster.assert_called_with(self.context, 'some-cluster-id') class TestTaskManagerService(trove_testtools.TestCase): def test_app_factory(self): test_service = service.app_factory(Mock()) self.assertIsInstance(test_service, service.TaskService)
def read_input(): # for puzzles where each input line is an object with open('input.txt') as fh: decks = [[], []] cur_player = 0 for line in fh.readlines(): if not line.strip(): cur_player = 1 continue if line.startswith('P'): continue decks[cur_player].append(int(line.strip())) return decks[0], decks[1] def main(): p1, p2 = read_input() while len(p1) and len(p2): a = p1.pop(0) b = p2.pop(0) if a > b: p1.append(a) p1.append(b) elif b > a: p2.append(b) p2.append(a) winner = p1 if not len(winner): winner = p2 print(winner) result = 0 for i in range(len(winner)): result += winner[i]*(len(winner)-i) print(result) if __name__ == '__main__': main()
from django.http import request from django.http.response import HttpResponseRedirect from django.shortcuts import render, redirect from django.contrib import messages from django.contrib.auth.views import LoginView, PasswordResetConfirmView, PasswordResetView from django.urls import reverse_lazy from django.utils.encoding import force_text from django.utils.http import urlsafe_base64_decode from django.contrib.sites.shortcuts import get_current_site from django.template.loader import render_to_string from django.utils.http import urlsafe_base64_decode, urlsafe_base64_encode from django.utils.encoding import force_bytes, force_text from django.views.generic.base import TemplateView, View from accounts.forms import AccountForm, LoginForm, PwdResetConfirmForm, PwdResetForm, RegistrationForm from django.views.generic import CreateView from django.contrib.auth import get_user_model, login from accounts.utils.tokens import account_activation_token from accounts.tasks import send_confirmation_mail from django.contrib.auth import authenticate, login as django_login, logout as django_logout from django.contrib.auth.views import LogoutView User = get_user_model() # Create your views here. class CustomLoginView(LoginView): form_class = LoginForm template_name = 'login.html' def post(self, request, *args, **kwargs): response = super().post(request, *args, **kwargs) return response def account_register(request): if request.user.is_authenticated: return redirect("/") if request.method == "POST": registerForm = RegistrationForm(request.POST) if registerForm.is_valid(): user = User( email = registerForm.cleaned_data.get('email'), first_name = registerForm.cleaned_data.get('first_name'), last_name = registerForm.cleaned_data.get('last_name') ) user.set_password(registerForm.cleaned_data["password1"]) user.is_active = False user.save() current_site = get_current_site(request) subject = "Activate your Account" message = render_to_string( "email/confirmation_email.html", { "user": user, "domain": current_site.domain, "uid": urlsafe_base64_encode(force_bytes(user.pk)), "token": account_activation_token.make_token(user), }, ) user.email_user(subject=subject, message=message) return render(request, "email/register_email_confirm.html", {"form": registerForm}) else: registerForm = RegistrationForm() return render(request, "register.html", {"form": registerForm}) class CustomLogoutView(LogoutView): next_page = '/' def activate(request, uidb64, token): uid = force_text(urlsafe_base64_decode(uidb64)) user = User.objects.filter(pk=uid, is_active=False).first() if user is not None and account_activation_token.check_token(user, token): messages.success(request, 'Your profile is activated') user.is_active = True user.save() CustomLogoutView() return redirect('accounts:login') else: messages.error(request, 'Your session is expired') return redirect('/') # Password Reset class CustomPasswordResetView(PasswordResetView): email_template_name = 'password/password_reset_email.html' form_class = PwdResetForm template_name = 'password/password_reset_form.html' success_url="password_reset_email_confirm/" class CustomPasswordResetConfirmView(PasswordResetConfirmView): template_name = "password/password-reset-confirm.html" # success_url = "password_reset_complete/" success_url = '/' form_class = PwdResetConfirmForm class CustomResetEmailConfirmView(TemplateView): template_name = "password/reset_status.html" class CustomPasswordResetCompleteView(TemplateView): template_name = "password/reset_status.html" class AccountView(View): template_name = 'account_information.html' http_method_names = ['post', 'get'] def get(self, request): form = AccountForm(instance=request.user) return render(request, 'account_information.html', {'form': form}) def post(self, request): form = AccountForm(request.POST) if form.is_valid(): user = User.objects.get(pk=request.user.pk) user.first_name = form.cleaned_data.get('first_name') user.last_name = form.cleaned_data.get('last_name') user.email = form.cleaned_data.get('email') user.save() messages.success(request, 'Your profile is updated') return redirect('accounts:account') else: messages.error(request, 'Your profile is not updated') return redirect('accounts:account') def AddressBook(request): return render(request, 'address_book.html')
import re from datetime import datetime, timedelta from django.contrib.auth.models import User from django.core.exceptions import ValidationError from django.db.models import Q from django.views.decorators.http import require_GET import waffle from statsd import statsd from rest_framework import viewsets, serializers, mixins, filters, permissions from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.decorators import permission_classes, api_view from rest_framework.authtoken import views as authtoken_views from kitsune.access.decorators import login_required from kitsune.sumo.api import CORSMixin from kitsune.sumo.decorators import json_view from kitsune.users.helpers import profile_avatar from kitsune.users.models import Profile, RegistrationProfile def display_name_or_none(user): try: return user.profile.name except (Profile.DoesNotExist, AttributeError): return None @login_required @require_GET @json_view def usernames(request): """An API to provide auto-complete data for user names.""" term = request.GET.get('term', '') query = request.GET.get('query', '') pre = term or query if not pre: return [] if not request.user.is_authenticated(): return [] with statsd.timer('users.api.usernames.search'): profiles = ( Profile.objects.filter(Q(name__istartswith=pre)) .values_list('user_id', flat=True)) users = ( User.objects.filter( Q(username__istartswith=pre) | Q(id__in=profiles)) .extra(select={'length': 'Length(username)'}) .order_by('length').select_related('profile')) if not waffle.switch_is_active('users-dont-limit-by-login'): last_login = datetime.now() - timedelta(weeks=12) users = users.filter(last_login__gte=last_login) return [{'username': u.username, 'display_name': display_name_or_none(u)} for u in users[:10]] @api_view(['GET']) @permission_classes((IsAuthenticated,)) def test_auth(request): return Response({ 'username': request.user.username, 'authorized': True, }) class GetToken(CORSMixin, authtoken_views.ObtainAuthToken): """Add CORS headers to the ObtainAuthToken view.""" class OnlySelfEdits(permissions.BasePermission): """ Only allow users/profiles to be edited and deleted by themselves. TODO: This should be tied to user and object permissions better, but for now this is a bandaid. """ def has_object_permission(self, request, view, obj): # SAFE_METHODS is a list containing all the read-only methods. if request.method in permissions.SAFE_METHODS: return True # If flow gets here, the method will modify something. request_user = getattr(request, 'user', None) user = getattr(obj, 'user', None) # Only the owner can modify things. return request_user == user class ProfileSerializer(serializers.ModelSerializer): username = serializers.WritableField(source='user.username') display_name = serializers.WritableField(source='name', required=False) date_joined = serializers.Field(source='user.date_joined') avatar = serializers.SerializerMethodField('get_avatar_url') # These are write only fields. It is very important they stays that way! email = serializers.WritableField( source='user.email', write_only=True, required=False) password = serializers.WritableField( source='user.password', write_only=True) class Meta: model = Profile fields = [ 'username', 'display_name', 'date_joined', 'avatar', 'bio', 'website', 'twitter', 'facebook', 'irc_handle', 'timezone', 'country', 'city', 'locale', # Password and email are here so they can be involved in write # operations. They is marked as write-only above, so will not be # visible. # TODO: Make email visible if the user has opted in, or is the # current user. 'email', 'password', ] def get_avatar_url(self, obj): return profile_avatar(obj.user) def restore_object(self, attrs, instance=None): """ Override the default behavior to make a user if one doesn't exist. This user may not be saved here, but will be saved if/when the .save() method of the serializer is called. """ instance = (super(ProfileSerializer, self) .restore_object(attrs, instance)) if instance.user_id is None: # The Profile doesn't have a user, so create one. If an email is # specified, the user will be inactive until the email is # confirmed. Otherwise the user can be created immediately. if 'user.email' in attrs: u = RegistrationProfile.objects.create_inactive_user( attrs['user.username'], attrs['user.password'], attrs['user.email']) else: u = User(username=attrs['user.username']) u.set_password(attrs['user.password']) instance._nested_forward_relations['user'] = u return instance def validate_username(self, attrs, source): obj = self.object if obj is None: # This is a create if User.objects.filter(username=attrs['user.username']).exists(): raise ValidationError('A user with that username exists') else: # This is an update new_username = attrs.get('user.username', obj.user.username) if new_username != obj.user.username: raise ValidationError("Can't change this field.") if re.match(r'^[\w.-]{4,30}$', attrs['user.username']) is None: raise ValidationError( 'Usernames may only be letters, numbers, "." and "-".') return attrs def validate_display_name(self, attrs, source): if attrs.get('name') is None: attrs['name'] = attrs.get('user.username') return attrs def validate_email(self, attrs, source): email = attrs.get('user.email') if email and User.objects.filter(email=email).exists(): raise ValidationError('A user with that email address ' 'already exists.') return attrs class ProfileViewSet(CORSMixin, mixins.CreateModelMixin, mixins.RetrieveModelMixin, mixins.ListModelMixin, mixins.UpdateModelMixin, viewsets.GenericViewSet): model = Profile serializer_class = ProfileSerializer paginate_by = 20 # User usernames instead of ids in urls. lookup_field = 'user__username' permission_classes = [ OnlySelfEdits, ] filter_backends = [ filters.DjangoFilterBackend, filters.OrderingFilter, ] filter_fields = [] ordering_fields = [] # Default, if not overwritten ordering = ('-user__date_joined',)
import pymysql MYSQL_CONFIG = { 'host': 'mysql', # mysql or '127.0.0.1' 'port': 3306, 'user': 'root', 'password': 'mysql520', 'charset': 'utf8', 'use_unicode': True, 'cursorclass': pymysql.cursors.DictCursor, 'connect_timeout': 60, 'maxconnections': 50 }
from rest_framework.pagination import LimitOffsetPagination,PageNumberPagination class StandardResultsSetPagination(PageNumberPagination): page_size = 2 page_size_query_param = 'page_size' max_page_size = 20
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Tests for weighted stats functions. """ from __future__ import division import os import sys import platform import unittest HERE = os.path.dirname(os.path.realpath(__file__)) sys.path.insert(0, os.path.join(HERE, os.pardir)) from weightedstats import * class TestWeightedStats(unittest.TestCase): def setUp(self): self.data = [ [7, 1, 2, 4, 10], [7, 1, 2, 4, 10], [7, 1, 2, 4, 10, 15], [1, 2, 4, 7, 10, 15], [0, 10, 20, 30], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [30, 40, 50, 60, 35], [2, 0.6, 1.3, 0.3, 0.3, 1.7, 0.7, 1.7, 0.4], [3.7, 3.3, 3.5, 2.8], [100, 125, 123, 60, 45, 56, 66], [2, 2, 2, 2, 2, 2], [2.3], [-2, -3, 1, 2, -10], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [5, 4, 3, 2, 1], [-2, 2, -1, 3, 6], [-10, 1, 1, -10, -10], [2, 4], [2, 2, 4, 4], [2, 2, 2, 4], ] self.weights = [ [1, 1/3, 1/3, 1/3, 1], [1, 1, 1, 1, 1], [1, 1/3, 1/3, 1/3, 1, 1], [1/3, 1/3, 1/3, 1, 1, 1], [30, 191, 9, 0], [10, 1, 1, 1, 9], [10, 1, 1, 1, 900], [1, 3, 5, 4, 2], [2, 2, 0, 1, 2, 2, 1, 6, 0], [5, 5, 4, 1], [30, 56, 144, 24, 55, 43, 67], [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], [12], [7, 1, 1, 1, 6], [1, 0, 0, 0, 2], [10, 1, 1, 1, 9], [10, 1, 1, 1, 10], [1, 2, -3, 4, -5], [0.1, 0.2, 0.3, -0.2, 0.1], [-1, -1, -1, -1, 1], [1, 1], [1, 1, 1, 1], [1, 1, 1, 1], ] self.median_answers = [7.0, 4.0, 8.5, 8.5, 10.0, 2.5, 5.0, 50.0, 1.7, 3.5, 100.0, 2.0, 2.3, -2.0, 5.0, 2.5, 3.0, 2.0, -1.0, -10.0, 3.0, 3.0, 2.0] self.mean_answers = [6.444444, 4.800000, 8.583333, 8.583333, 9.086956, 2.909091, 4.949617, 47.333333, 1.275000, 3.453333, 91.782816, 2.000000, 2.300000, -4.625000, 3.666667, 2.909091, 3.000000, -7.000000, -0.200000, -2.666667, 3.000000, 3.000000, 2.500000] def test_mean(self): datum = [7, 1, 1, 1, 6] self.assertTrue(weighted_mean(datum) == mean(datum) == 3.2) def test_weighted_mean(self): for datum, weight, answer in zip(self.data, self.weights, self.mean_answers): self.assertTrue(abs(weighted_mean(datum, weights=weight) - answer) <= 1e-6) def test_numpy_weighted_mean(self): for datum, weight, answer in zip(self.data, self.weights, self.mean_answers): self.assertTrue(abs(numpy_weighted_mean(datum, weights=weight) - answer) <= 1e-6) def test_median(self): datum = [4, 3, 2, 1] self.assertTrue(weighted_median(datum) == numpy_weighted_median(datum) == median(datum) == 2.5) datum = [7, 1, 1, 1, 6] self.assertTrue(weighted_median(datum) == numpy_weighted_median(datum) == median(datum) == 1.0) def test_weighted_median(self): for datum, weight, answer in zip(self.data, self.weights, self.median_answers): self.assertTrue(abs(weighted_median(datum, weights=weight) - answer) <= 1e-16) self.assertTrue(weighted_median([4, 3, 2, 1], weights=[0, 0, 0, 0]) is None) def test_numpy_weighted_median(self): for datum, weight, answer in zip(self.data, self.weights, self.median_answers): self.assertTrue(abs(numpy_weighted_median(datum, weights=weight) - answer) <= 1e-16) self.assertTrue(numpy_weighted_median([4, 3, 2, 1], weights=[0, 0, 0, 0]) is None) if __name__ == "__main__": suite = unittest.TestLoader().loadTestsFromTestCase(TestWeightedStats) unittest.TextTestRunner(verbosity=2).run(suite)
#!/usr/bin/env python3 import sys import random import requests import populate if len(sys.argv) < 2: print("no seed given.abort.") sys.exit(1) seed = sys.argv[1] users,msgs = populate.get_data(seed) URL = "http://127.0.0.1:80" # test for users resp = requests.get(URL+"/users") assert resp.status_code == 200 assert 'application/json' in resp.headers['content-type'] assert len(resp.json()["users"]) == len(users) length = random.randint(1,len(users)) resp = requests.get(URL+"/users?limit=" + str(length)) assert resp.status_code == 200 assert 'application/json' in resp.headers['content-type'] assert len(resp.json()["users"]) == length length = -1 resp = requests.get(URL+"/users?limit=" + str(length)) assert resp.status_code == 500 resp = requests.get(URL+"/users?limit=1' or '1'='1") assert resp.status_code == 500 # test for messages resp = requests.get(URL+"/messages") assert resp.status_code == 200 assert 'application/json' in resp.headers['content-type'] assert len(resp.json()) == len(msgs) first = resp.json()[0]["name"] resp = requests.post(URL+"/messages",data = {'name':first}) assert resp.status_code == 200 assert len(resp.json()) == 1 print("TESTING /users SQLI") resp = requests.post(URL+"/messages",data = {'name':"he' OR '1'='1"}) print("TESTING DONE #1/users SQLI => %d" % resp.status_code) assert resp.status_code == 200 print("TESTING DONE #2/users SQLI") a = "G" b = "O" c = "D" print(a + b * 2 + c)
import pytest pytest_plugins = "pytester" @pytest.fixture def state(): return "gASVqA4AAAAAAABLAyiKBQAAAIAAigUA6cbnAEpzTpUZShSh2SCKBeZcQ8cASkEkuF1KzTQ8HYoFrsovkQCKBduZrZoASnkaKB+KBY6ACtMAigWJT3rQAIoFacE8kgBKk5nNJUrW0lENSs72zSpKZX2Ackq9/DMCSlTVumGKBRkHO+cAStvjkBBKNMMMF0r6PTR0igVWh6/rAIoFiCzh2QBKaLVtN4oFWa0QyACKBcxjPdgASlZEQ0WKBaHukMMAigVYB7SaAIoF4uV3lwBKUPoYb4oFZfkj0wCKBcu+J5IASkrwiyZKpi6sDIoFOeiD+wCKBejoz5wAigUrhBPsAIoFePk38ACKBSFcSPYAigXvMoyJAIoF06RB5wCKBfjHPIgAigUvM3uSAIoFKhbY/gCKBf6LcfMASo7PwkWKBUgWkYQAigWpbSfwAIoFcI1/jgBK33VkCEqZOq1nSm2W+iFKlenxbooFymj6vwBK9eeFf0r3h3h7igUKRQ7jAIoFDZ+A5wCKBe15D7cASnj1zzxKFA2ocIoFx/nYjACKBeGpANAAigU5TPHyAIoFniBHuACKBfin340ASmjDfyWKBSay0sYAigWYXCSHAErgYtg1igUPUgnMAEr/vyosigU8tWvWAIoFHV0P3wBKeLsbVYoFPd4+0gCKBbcYzssAigVLojjqAEp5p1IUSnMcKTVKqt0PQ4oFqpd84ACKBTYSZYMASrcdyUBK6/vHGEp0ywsiigVabGOtAEota1QvigWIgCr/AIoF25/atACKBSYKtPQAigVlP0+9AIoF/4z/jQCKBYMeOa4ASkOB8W2KBc1DX7UAigUAqZjjAIoF04xKzwCKBVSd6eMAigU7FyKdAIoFyn3kugBKkjtJL0r1uvZ6igV8lCOpAEoX95wqShRIl3GKBfwm840ASqH2PhhKtkaZTkr+tX0XSlYFS2VKuBalXkrs9M1oSjS4yx2KBau9HqUAigWYRLXRAErwhe57SsEyrnWKBegT084AigWFnG/dAEoSZS8KigUqV0y4AEqIcAQ/igXr8XfOAIoFD9QwwwBKfBppREpkAAMGigVE47DuAIoF14tf2ACKBQPnW/4AigWExTvTAEqkoMwISuTlFFdKY1RNeooFRYqipACKBQ/7b/UASvIUMQ2KBU6b/eUASoh5omdKzh+OTooF9qQyxgCKBUpA3KQASlqhehOKBc6nEqYASiOWLSVK0fl/SkrQ0mJ6SimWd2uKBYosk+4AigWiaInDAErgZCUIigXS8oWZAEoHcCgHSkbHnB6KBT6OFZgASgFZdn2KBfBPOJEASilmY3mKBWQmEucAigW+GmiUAEqdqT95igV2uLaRAEqChGYISo3QUQ5KGQ2UaYoFmtH7zQCKBSOi6IgAigXHIpmjAEpdb90mSgTDvGCKBWmRZNgAigVdzc73AEoBzBpxigWHzxm8AEqnRv8JigVvOMb3AIoFfwh52QBKOBtNc0rd0CVIigUmcXzUAEr1d61HSkfYbi1KyfLuWUpzFwx6Sk0CcyVK7Y1MIUqobMlFSiRp9xJKVvl8PUoxfqxySr0FW16KBZSO7q0ASqZ0tVGKBVQvMuUASkuKj1NKbuViVkpMrfw5SmEw3QBKZtYFZkr/pAtRigX7zMH/AEpb2FN7igVUqJ3sAIoFhoterQBKbbf2aEqqWHdeSro9vXhKd3WUbEo2SCw5SuyJzzeKBW3kzagAShgI4kVKzc4dUUquPJAHigXUh7LMAIoFVboL0QBKYe9Pe0q4eIZ5SqbaQjWKBcROWaYASsYcXHNK9SZHbkrK32YjigUaspvKAEphlhpdigUr8ZvhAIoFo7Fi9ACKBXFGFZQAigVHB+3dAEp+sz9ySk0RlAiKBdh40NUAigX7YobaAIoFXa3S3QCKBUo248IAStplc3uKBULgfPUAigXKtnT0AIoF29IrkQBK5ZdXb4oF0nAS/QBKqDM3LEoFLrMoigWtVuLVAErO/xB/igVhFxDdAEraOwV0igVmO4qOAIoFc6/6nQCKBc+Nl+MAigU5ZZnTAEpvjToeigU1TiajAIoFgLgo2QCKBceOpKoASh8+yBdKGITeL4oFUniByACKBZ0RVPwAigU60rbDAEr9L+8bigXU85CrAEqPC+9sigUdH42sAEr9isVLSqwZ9FqKBYsxxskASvPiWhuKBbeEvrsASn32KCVKRKohZIoFPBRH6QBKSolzR4oFuCt59wBKz+9hPkqtvq0higUDWLfvAIoFema5ggCKBTGYx4sASp6NzS2KBdcUgZ4ASk9LPWtK9LMeckonn4k8SsCQoglKTsJxFYoFbqnwjQCKBdL0CbUAigUdJx+dAEpYfJ9MigWtSmakAIoFCJoY9wCKBXDjzJ0ASkJWSlpKI3zXdYoF+b54/ABKvOajSIoFAUMA6ACKBenLJc4AigXtUJqfAIoFFBKTwQBKxUB/WooFpcfozwBKCxVzNUpqPpohSoRF9EiKBZM8++AAShR6aTuKBVorhuQAigVXFWDiAIoFFDYV8gCKBTaWP7IAStLK7GOKBZJzCtEAigXMbJmFAIoF1jqhrgBKiefNXEpGs6sgSqzpo2OKBYgQUNcASpWPODRKZdExbkrVa/QrSvShpCtK16psXUrjaYsHigUwSV7pAIoFX2u9owCKBcFIA+EAigWyLGCIAIoFnUlwuACKBbRiXewAigVvO9/2AIoFPxV6/gBK14qEfEpYZyEXSt43zQ9Ks38BbooFyxQQtgBKiiC8W0q3sQwZSoWBTClK2iBbTEpnoo4bigWKUS2xAEopdrQiigVB9+jlAIoF/seJkQCKBQgC7dcASrhR7kRKgscyF0pNERdxigX3u5GVAIoF82ci6gCKBYL/qv8AigXSf+K+AIoFpZAN9gBKMq58GUqkIixsSgkBj3ZKrSXbRUq2PqFbSpBH7E1KCTgfQooF08mAnACKBZwJl70AigWclYi3AIoF4LC+3QBKG8pHckrtEA4YigWqyr+hAIoFJtcezQCKBYCLrMAAigWCUyrrAIoFFLmfyABKKH2hFUq/vSccigVncruBAIoF3jZB3wCKBZAuIZ8ASsdVSSqKBckGE4cAigXCyuC1AIoFciBqmgBKkKhqbooFcuSwggCKBU9u7PIASjS+4RmKBUrTOfkAigXPDnXZAEoHnDBySoEDjj1K2iNuS0pcI5kkSpomRiFK236KaUqFNN8HigVEqqXGAIoFVYk+mgBKDMXba4oFW2cC1gCKBUUqVsUAigVVEkuoAIoFj8RlwQCKBVVc9r8ASsaKDlhKXQkVU4oFMn61vwCKBd94pN0AigUjLOTcAIoFHReKyQCKBUxDf5cASqMV4GyKBbJmXdMAigW60i22AIoFb0/UrgCKBf98tvsASrlTuyRKWGrFO4oFnKEejACKBR00JtsAigUuH7/OAIoFlUJ7zABKLxORdooFVrRv7wBKb/hiNEofGggKigV0+AnfAEqZK48jigVYfQPjAEqPcppUigWeyfr2AIoF8I39kwBKTiroMUo/gOkLSj9ud3WKBdVhMb0AigX9eeO7AErLuIAyigXhMdOGAEru9mBOSr0AJBdKRkJbYkpZT2FHShUvu0OKBW6YksUASqpJqy5K1q8cHYoFkmyghQCKBexnWZgASjGc+yiKBRcY/IQAigV4B6W3AIoFQD9UrQCKBRAC9M4ASu3GmnhKHNu9Jkq3TbJZigVRPrOqAEpa2IRJSm+xaUOKBTglh4EASjHpdjRKbMDsIooFSF8i/QBKL/kmLkqbtSV/Ssp3HlCKBVKdfaYASvCFSxiKBZ3oReUAigVSZM/+AEqgvKhpigVQPJOqAIoFMWtq3QCKBfmMyo8ASrbOKSNKMudlL0qRjedeigXEYkPAAEr/2TxDigUe9TvSAEoHpe0sSmPxGRJKxjEwX4oFHJwknABKqoHXcUpzYxsUSmgD32SKBT0FKM0ASmi8XVRKilG2D4oF5hyupABKO7wIWooF4ba/hQBKmAfiAIoFqnMn8ABKQglcOUpgP8NWSndsgh5KIyZRd4oFHlcEywCKBaeU7NUASp70Hw5KRh4zJEo4Fr0eigXMgrqIAIoFMWJnsABKPmq2UEpleisYigUMSQPAAIoFup5FlABKIBfXVkog8b99ShifswuKBb6ApasASrSJ912KBQlYM9EAigV+u1OvAEo97/MfSjktuSNKXWB5AIoFhIrp4wBKfcDDCUootMx6ShSr7GtK2w35XIoF2W/n2wBKju7TOUppu+JOigWj+OznAEprMtQoSmdX635K2K/tOIoFGcXKkwBKR1a2Hkq7gYMGSvlSQg1K/g0HcIoFAHTf2gBKFVUtcIoF6OFt9gBKfv+0MIoFbZo9uwCKBSF8zuEAigUHmhStAEp0xOgQigWvWYXNAEpu0tR+StNW5SqKBevOMcgAigX6ULHkAEqH/5QnigV061SsAIoFKVaLnwCKBYdNHaYAigW5RbTzAIoFyDACpwCKBdmLl78AigVmZb6LAIoFF65k7QCKBTK6JooASpa+Tw5KKIAFZYoFU+IZ5ABKh254d4oFasnu8ABKiOo+cooFJTPG+gCKBamaFKEAigW8RQ21AEr88bcSStsZvgpKZ4bWMYoF6JQ9xQCKBbFK1JYASn4ENTOKBdHua9EAigU9+nbIAIoFUWBnpgCKBQ48i9QAigXH6rq3AErWE7ZxSmvLZiiKBfAVZs8ASgMSBUqKBcVY/9kASp37aDNKiuqGeEr7I7hUShQEkx9K6/Okb0qvjK50igUW/naOAIoFodRX4QBK9Hl4UErRHHwHSiRdlWCKBeWd/ZQAigWR/LChAIoF+kaYxQCKBQAhIfgAigU1EQ3gAIoF7sxg2gCKBfQ0kecAigWZz03WAEqWwHFhSo3ORUmKBaWKs5kASuyG/0hKt+hqBkp3cTVtigXmxT+VAEqsUH5gSqXfiQpK+1qrc0rZ72BkSoU6Y1SKBVWomckASopaYG1K9Sv/KE1wAnSUToeULg==" # noqa E501
# -*- coding: utf-8 -*- # This module contains all the Session classes used by the MIT Core Concept # Catalog (MC3) Handcar based implementation of the OSID Learning Service. # Note that it includes the core OsidSession typically found in the osid # package as well as the learning package sessions for Objective, Activities # and ObjectiveBanks. from dlkit.abstract_osid.osid import sessions as abc_osid_sessions from ..osid.osid_errors import * COMPARATIVE = 0 PLENARY = 1 ISOLATED = 0 FEDERATED = 1 CREATED = True UPDATED = True class OsidSession(abc_osid_sessions.OsidSession): """The OsidSession is the top level interface for all OSID sessions. An OsidSession is created through its corresponding OsidManager. A new OsidSession should be created for each user of a service and for each processing thread. A session maintains a single authenticated user and is not required to ensure thread-protection. A typical OSID session defines a set of service methods corresponding to some compliance level as defined by the service and is generally responsible for the management and retrieval of OsidObjects. OsidSession defines a set of common methods used throughout all OSID sessions. An OSID session may optionally support transactions through the transaction interface. """ def get_locale(self): """Gets the locale indicating the localization preferences in effect for this session. return: (osid.locale.Locale) - the locale compliance: mandatory - This method must be implemented. """ raise Unimplemented() def is_authenticated(self): """Tests if an agent is authenticated to this session. return: (boolean) - true if valid authentication credentials exist, false otherwise compliance: mandatory - This method must be implemented. """ return False def get_authenticated_agent_id(self): """Gets the Id of the agent authenticated to this session. This is the agent for which credentials are used either acquired natively or via an OsidProxyManager. return: (osid.id.Id) - the authenticated agent Id raise: IllegalState - is_authenticated() is false compliance: mandatory - This method must be implemented. """ raise IllegalState() def get_authenticated_agent(self): """Gets the agent authenticated to this session. This is the agent for which credentials are used either acquired natively or via an OsidProxyManager. return: (osid.authentication.Agent) - the authenticated agent raise: IllegalState - is_authenticated() is false raise: OperationFailed - unable to complete request compliance: mandatory - This method must be implemented. """ raise IllegalState() def get_effective_agent_id(self): """Gets the Id of the effective agent in use by this session. If is_authenticated() is true, then the effective agent may be the same as the agent returned by get_authenticated_agent(). If is_authenticated() is false, then the effective agent may be a default agent used for authorization by an unknwon or anonymous user. return: (osid.id.Id) - the effective agent compliance: mandatory - This method must be implemented. """ raise Unimplemented() def get_effective_agent(self): """Gets the effective agent in use by this session. If is_authenticated() is true, then the effective agent may be the same as the agent returned by get_authenticated_agent(). If is_authenticated() is false, then the effective agent may be a default agent used for authorization by an unknwon or anonymous user. return: (osid.authentication.Agent) - the effective agent raise: OperationFailed - unable to complete request compliance: mandatory - This method must be implemented. """ raise Unimplemented() def get_date(self): """Gets the service date which may be the current date or the effective date in which this session exists. return: (timestamp) - the service date *compliance: mandatory -- This method must be implemented.* """ raise Unimplemented() date = property(fget=get_date) def get_clock_rate(self): """Gets the rate of the service clock. return: (decimal) - the clock rate *compliance: mandatory -- This method must be implemented.* """ raise Unimplemented() clock_rate = property(fget=get_clock_rate) def get_format_type(self): """Gets the ``DisplayText`` format ``Type`` preference in effect for this session. return: (osid.type.Type) - the effective ``DisplayText`` format ``Type`` *compliance: mandatory -- This method must be implemented.* """ raise Unimplemented() format_type = property(fget=get_format_type) def supports_transactions(self): """Tests for the availability of transactions. return: (boolean) - true if transaction methods are available, false otherwise compliance: mandatory - This method must be implemented. """ return False def start_transaction(self): """Starts a new transaction for this sesson. Transactions are a means for an OSID to provide an all-or- nothing set of operations within a session and may be used to coordinate this service from an external transaction manager. A session supports one transaction at a time. Starting a second transaction before the previous has been committed or aborted results in an IllegalState error. return: (osid.transaction.Transaction) - a new transaction raise: IllegalState - a transaction is already open raise: OperationFailed - unable to complete request raise: Unsupported - transactions not supported compliance: optional - This method must be implemented if supports_transactions() is true. implementation notes: Ideally, a provider that supports transactions should guarantee atomicity, consistency, isolation and durability in a 2 phase commit process. This is not always possible in distributed systems and a transaction provider may simply allow for a means of processing bulk updates. To maximize interoperability, providers should honor the one- transaction-at-a-time rule. """ raise Unsupported() locale = property(get_locale) authenticated_agent_id = property(get_authenticated_agent_id) authenticated_agent = property(get_authenticated_agent) effective_agent_id = property(get_effective_agent_id) effective_agent = property(get_effective_agent)
/home/runner/.cache/pip/pool/ca/50/b8/a7144c957f295287fa48370bfdc0ba4d270242f10a2a241ea74a6a064e
#!/usr/bin/env python import sys import getopt import re import struct import socket import stat import os debug = 0 QEMUCMDTEMPLATE = """#!/bin/bash set -u ARCHEND=%(ARCHEND)s IID=%(IID)i if [ -e ./firmadyne.config ]; then source ./firmadyne.config elif [ -e ../firmadyne.config ]; then source ../firmadyne.config elif [ -e ../../firmadyne.config ]; then source ../../firmadyne.config else echo "Error: Could not find 'firmadyne.config'!" exit 1 fi IMAGE=`get_fs ${IID}` KERNEL=`get_kernel ${ARCHEND}` QEMU=`get_qemu ${ARCHEND}` QEMU_MACHINE=`get_qemu_machine ${ARCHEND}` QEMU_ROOTFS=`get_qemu_disk ${ARCHEND}` WORK_DIR=`get_scratch ${IID}` %(START_NET)s function cleanup { pkill -P $$ %(STOP_NET)s } trap cleanup EXIT echo "Starting firmware emulation... use Ctrl-a + x to exit" sleep 1s %(QEMU_ENV_VARS)s ${QEMU} -m 256 -M ${QEMU_MACHINE} -kernel ${KERNEL} \\ %(QEMU_DISK)s -append "root=${QEMU_ROOTFS} console=ttyS0 nandsim.parts=64,64,64,64,64,64,64,64,64,64 rdinit=/firmadyne/preInit.sh rw debug ignore_loglevel print-fatal-signals=1 user_debug=31 firmadyne.syscall=0" \\ -nographic \\ %(QEMU_NETWORK)s | tee ${WORK_DIR}/qemu.final.serial.log """ def stripTimestamps(data): lines = data.split("\n") #throw out the timestamps lines = [re.sub(r"^\[[^\]]*\] firmadyne: ", "", l) for l in lines] return lines def findMacChanges(data, endianness): lines = stripTimestamps(data) candidates = filter(lambda l: l.startswith("ioctl_SIOCSIFHWADDR"), lines) if debug: print("Mac Changes %r" % candidates) result = [] if endianness == "eb": fmt = ">I" elif endianness == "el": fmt = "<I" for c in candidates: g = re.match(r"^ioctl_SIOCSIFHWADDR\[[^\]]+\]: dev:([^ ]+) mac:0x([0-9a-f]+) 0x([0-9a-f]+)", c) if g: (iface, mac0, mac1) = g.groups() m0 = struct.pack(fmt, int(mac0, 16))[2:] m1 = struct.pack(fmt, int(mac1, 16)) mac = "%02x:%02x:%02x:%02x:%02x:%02x" % struct.unpack("BBBBBB", m0+m1) result.append((iface, mac)) return result # Get the netwokr interfaces in the router, except 127.0.0.1 def findNonLoInterfaces(data, endianness): #lines = data.split("\r\n") lines = stripTimestamps(data) candidates = filter(lambda l: l.startswith("__inet_insert_ifa"), lines) # logs for the inconfig process if debug: print("Candidate ifaces: %r" % candidates) result = [] if endianness == "eb": fmt = ">I" elif endianness == "el": fmt = "<I" for c in candidates: g = re.match(r"^__inet_insert_ifa\[[^\]]+\]: device:([^ ]+) ifa:0x([0-9a-f]+)", c) if g: (iface, addr) = g.groups() addr = socket.inet_ntoa(struct.pack(fmt, int(addr, 16))) if addr != "127.0.0.1" and addr != "0.0.0.0": result.append((iface, addr)) return result def findIfacesForBridge(data, brif): #lines = data.split("\r\n") lines = stripTimestamps(data) result = [] candidates = filter(lambda l: l.startswith("br_dev_ioctl") or l.startswith("br_add_if"), lines) for c in candidates: for p in [r"^br_dev_ioctl\[[^\]]+\]: br:%s dev:(.*)", r"^br_add_if\[[^\]]+\]: br:%s dev:(.*)"]: pat = p % brif g = re.match(pat, c) if g: iface = g.group(1) #we only add it if the interface is not the bridge itself #there are images that call brctl addif br0 br0 (e.g., 5152) if iface != brif: result.append(iface.strip()) return result def findVlanInfoForDev(data, dev): #lines = data.split("\r\n") lines = stripTimestamps(data) results = [] candidates = filter(lambda l: l.startswith("register_vlan_dev"), lines) for c in candidates: g = re.match(r"register_vlan_dev\[[^\]]+\]: dev:%s vlan_id:([0-9]+)" % dev, c) if g: results.append(int(g.group(1))) return results def ifaceNo(dev): g = re.match(r"[^0-9]+([0-9]+)", dev) return int(g.group(1)) if g else -1 def qemuArchNetworkConfig(i, arch, n): if not n: if arch == "arm": return "-device virtio-net-device,netdev=net%(I)i -netdev socket,id=net%(I)i,listen=:200%(I)i" % {'I': i} else: return "-netdev socket,id=net%(I)i,listen=:200%(I)i -device e1000,netdev=net%(I)i" % {'I': i} else: (ip, dev, vlan, mac) = n # newer kernels use virtio only if arch == "arm": return "-device virtio-net-device,netdev=net%(I)i -netdev tap,id=net%(I)i,ifname=${TAPDEV_%(I)i},script=no" % {'I': i} else: vlan_id = vlan if vlan else i mac_str = "" if not mac else ",mac=%s" % mac return "-netdev tap,id=net%(I)i,ifname=${TAPDEV_%(I)i},script=no -device e1000,netdev=net%(I)i%(MAC)s" % { 'I' : i, 'MAC' : mac_str} def qemuNetworkConfig(arch, network): output = [] assigned = [] # Fix Id conflict bug flag = 0 for k in range(0, 4): for j, n in enumerate(network): # need to connect the jth emulated network interface to the corresponding host interface if k == ifaceNo(n[1]): output.append(qemuArchNetworkConfig(j, arch, n)) assigned.append(n) flag = j break for i in range(0, 4): if i != flag: # otherwise, put placeholder socket connection if len(output) <= i: output.append(qemuArchNetworkConfig(i, arch, None)) # find unassigned interfaces for j, n in enumerate(network): if n not in assigned: # guess assignment print("Warning: Unmatched interface: %s" % (n,)) output[j] = qemuArchNetworkConfig(j, arch, n) assigned.append(n) return ' '.join(output) def buildConfig(brif, iface, vlans, macs): #there should be only one ip ip = brif[1] br = brif[0] #strip vlanid from interface name (e.g., eth2.2 -> eth2) dev = iface.split(".")[0] #check whether there is a different mac set mac = None d = dict(macs) if br in d: mac = d[br] elif dev in d: mac = d[dev] vlan_id = None if len(vlans): vlan_id = vlans[0] return (ip, dev, vlan_id, mac) def getIP(ip): tups = [int(x) for x in ip.split(".")] if tups[3] != 1: tups[3] -= 1 else: tups[3] = 2 return ".".join([str(x) for x in tups]) def startNetwork(network): template_1 = """ TAPDEV_%(I)i=tap${IID}_%(I)i HOSTNETDEV_%(I)i=${TAPDEV_%(I)i} echo "Creating TAP device ${TAPDEV_%(I)i}..." sudo tunctl -t ${TAPDEV_%(I)i} -u ${USER} """ template_vlan = """ echo "Initializing VLAN..." HOSTNETDEV_%(I)i=${TAPDEV_%(I)i}.%(VLANID)i sudo ip link add link ${TAPDEV_%(I)i} name ${HOSTNETDEV_%(I)i} type vlan id %(VLANID)i sudo ip link set ${TAPDEV_%(I)i} up """ template_2 = """ echo "Bringing up TAP device..." sudo ip link set ${HOSTNETDEV_%(I)i} up sudo ip addr add %(HOSTIP)s/24 dev ${HOSTNETDEV_%(I)i} echo "Adding route to %(GUESTIP)s..." sudo ip route add %(GUESTIP)s via %(GUESTIP)s dev ${HOSTNETDEV_%(I)i} """ output = [] for i, (ip, dev, vlan, mac) in enumerate(network): output.append(template_1 % {'I' : i}) if vlan: output.append(template_vlan % {'I' : i, 'VLANID' : vlan}) output.append(template_2 % {'I' : i, 'HOSTIP' : getIP(ip), 'GUESTIP': ip}) return '\n'.join(output) def stopNetwork(network): template_1 = """ echo "Deleting route..." sudo ip route flush dev ${HOSTNETDEV_%(I)i} echo "Bringing down TAP device..." sudo ip link set ${TAPDEV_%(I)i} down """ template_vlan = """ echo "Removing VLAN..." sudo ip link delete ${HOSTNETDEV_%(I)i} """ template_2 = """ echo "Deleting TAP device ${TAPDEV_%(I)i}..." sudo tunctl -d ${TAPDEV_%(I)i} """ output = [] for i, (ip, dev, vlan, mac) in enumerate(network): output.append(template_1 % {'I' : i}) if vlan: output.append(template_vlan % {'I' : i}) output.append(template_2 % {'I' : i}) return '\n'.join(output) def qemuCmd(iid, network, arch, endianness): if arch == "mips": qemuEnvVars = "" qemuDisk = "-drive if=ide,format=raw,file=${IMAGE}" if endianness != "eb" and endianness != "el": raise Exception("You didn't specify a valid endianness") elif arch == "arm": qemuDisk = "-drive if=none,file=${IMAGE},format=raw,id=rootfs -device virtio-blk-device,drive=rootfs" if endianness == "el": qemuEnvVars = "QEMU_AUDIO_DRV=none" elif endianness == "eb": raise Exception("armeb currently not supported") else: raise Exception("You didn't specify a valid endianness") else: raise Exception("Unsupported architecture") return QEMUCMDTEMPLATE % {'IID': iid, 'ARCHEND' : arch + endianness, 'START_NET' : startNetwork(network), 'STOP_NET' : stopNetwork(network), 'QEMU_DISK' : qemuDisk, 'QEMU_NETWORK' : qemuNetworkConfig(arch, network), 'QEMU_ENV_VARS' : qemuEnvVars} def process(infile, iid, arch, endianness=None, makeQemuCmd=False, outfile=None): brifs = [] vlans = [] data = open(infile).read() network = set() success = False #find interfaces with non loopback ip addresses ifacesWithIps = findNonLoInterfaces(data, endianness) #find changes of mac addresses for devices macChanges = findMacChanges(data, endianness) print("Interfaces: %r" % ifacesWithIps) deviceHasBridge = False for iwi in ifacesWithIps: #find all interfaces that are bridged with that interface brifs = findIfacesForBridge(data, iwi[0]) if debug: print("brifs for %s %r" % (iwi[0], brifs)) for dev in brifs: #find vlan_ids for all interfaces in the bridge vlans = findVlanInfoForDev(data, dev) #create a config for each tuple network.add((buildConfig(iwi, dev, vlans, macChanges))) deviceHasBridge = True #if there is no bridge just add the interface if not brifs and not deviceHasBridge: vlans = findVlanInfoForDev(data, iwi[0]) network.add((buildConfig(iwi, iwi[0], vlans, macChanges))) ips = set() pruned_network = [] for n in network: if n[0] not in ips: ips.add(n[0]) pruned_network.append(n) else: if debug: print("duplicate ip address for interface: ", n) if makeQemuCmd: qemuCommandLine = qemuCmd(iid, pruned_network, arch, endianness) if qemuCommandLine: success = True if outfile: with open(outfile, "w") as out: out.write(qemuCommandLine) os.chmod(outfile, stat.S_IRWXU | stat.S_IRGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IXOTH) else: print(qemuCommandLine) return success def archEnd(value): tmp = value.lower() return (tmp[:-2], tmp[-2:]) def main(): infile = None makeQemuCmd = False iid = None outfile = None arch = None endianness = None (opts, argv) = getopt.getopt(sys.argv[1:], 'f:i:S:a:oqd') for (k, v) in opts: if k == '-f': infile = v if k == '-d': global debug debug += 1 if k == '-q': makeQemuCmd = True if k == '-i': iid = int(v) if k == '-S': SCRATCHDIR = v if k == '-o': outfile = True if k == '-a': (arch, endianness) = archEnd(v) if not arch or not endianness: raise Exception("Either arch or endianness not found try mipsel/mipseb/armel/armeb") if not infile and iid: infile = "%s/%i/qemu.initial.serial.log" % (SCRATCHDIR, iid) if outfile and iid: outfile = """%s/%i/run.sh""" % (SCRATCHDIR, iid) if debug: print("processing %i" % iid) if infile: process(infile, iid, arch, endianness, makeQemuCmd, outfile) if __name__ == "__main__": main()
#!/usr/bin/env python from typing import List, Tuple """ Difficulty: 4 A group of executives at a large oil company had gone to a conference about ML. After hearing that it "could learn like a human" they decided to fire all their Geologists and Geophysicists. They were replaced with a neural network they named Fred. In the beginning Fred looked great. He was finding oil deposits everywhere. The executives ordered the building of a lot of new oil platforms following this. After having spent all their money it became apparent that something was wrong. There was no oil or gass underneath most of the newly built oil platforms. The executives stopped all current projects. This left them with a problem. Not all the pipes to shore were finished, so they are not sure which of the platforms are actually connected to shore. You are brought on as a consultant to find the extent of the problem. Being a good consultant you know that platform 1 is already connected to shore. """ def num_connected_platforms(platforms: List[bool], pipes: List[Tuple[int, int]]) -> int: """ Args: platforms: A list booleans. Each boolean signifies whether the platform is currently producing oil. pipes: A list of tuples, specifying that there is a pipe going from platform a to platform b. Pipes only go in one direction. Notes: The list is 1 indexed. See the `Examples` section for illustration. Platfrom 1 is connected to shore. Returns: The number of oil platforms (which produces oil) that are connected to shore. Examples: >>> platforms([False, True], [(2, 1)]) 1 >>> platforms([False, True, True, True], [(3, 2), (4, 3)]) 0 >>> platfroms([True, False, True], [(3, 2), (2, 1)]) 2 """ raise NotImplementedError()
from django.contrib import admin from . models import User # Register your models here. admin.site.register(User)
n, s = int(raw_input()), raw_input() print max(s.count(';1';), s.count(';2';), s.count(';3';), s.count(';4';)), min(s.count(';1';), s.count(';2';), s.count(';3';), s.count(';4';))
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: protos/controllable.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2 from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 from protos import broker_pb2 as protos_dot_broker__pb2 from protos import clock_pb2 as protos_dot_clock__pb2 from protos import data_pb2 as protos_dot_data__pb2 from protos import structs_pb2 as protos_dot_structs__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x19protos/controllable.proto\x1a\x1bgoogle/protobuf/empty.proto\x1a\x1fgoogle/protobuf/timestamp.proto\x1a\x13protos/broker.proto\x1a\x12protos/clock.proto\x1a\x11protos/data.proto\x1a\x14protos/structs.proto\"i\n\x12InitializeResponse\x12\x16\n\x0e\x64\x61ta_frequency\x18\x01 \x01(\t\x12\x10\n\x08shorting\x18\x03 \x01(\x08\x12\x15\n\rasset_classes\x18\x04 \x01(\t\x12\x12\n\nfractional\x18\x05 \x01(\x08\"\xef\x02\n\x0b\x45ngineSetup\x12=\n\x11\x63ommission_models\x18\x01 \x03(\x0b\x32\".EngineSetup.CommissionModelsEntry\x12\x39\n\x0fslippage_models\x18\x02 \x03(\x0b\x32 .EngineSetup.SlippageModelsEntry\x12/\n\ntax_models\x18\x03 \x03(\x0b\x32\x1b.EngineSetup.TaxModelsEntry\x1a>\n\x15\x43ommissionModelsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x14\n\x05value\x18\x02 \x01(\x0b\x32\x05.Data:\x02\x38\x01\x1a<\n\x13SlippageModelsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x14\n\x05value\x18\x02 \x01(\x0b\x32\x05.Data:\x02\x38\x01\x1a\x37\n\x0eTaxModelsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x14\n\x05value\x18\x02 \x01(\x0b\x32\x05.Data:\x02\x38\x01\"\x87\x01\n\x14\x46ractionalTradeSetup\x12\x18\n\x10minimum_purchase\x18\x01 \x01(\x02\x12\x18\n\x10minimal_fraction\x18\x02 \x01(\x05\x12\x13\n\x0border_types\x18\x03 \x03(\t\x12\x13\n\x0b\x61sset_types\x18\x04 \x03(\t\x12\x11\n\tcan_short\x18\x05 \x01(\x08\"I\n\nTradeSetup\x12\x13\n\x0border_types\x18\x01 \x03(\t\x12\x13\n\x0b\x61sset_types\x18\x02 \x03(\t\x12\x11\n\tcan_short\x18\x03 \x01(\x08\"q\n\x0b\x42rokerSetup\x12\x12\n\nfractional\x18\x01 \x01(\x08\x12,\n\rf_trade_setup\x18\x02 \x01(\x0b\x32\x15.FractionalTradeSetup\x12 \n\x0btrade_setup\x18\x03 \x01(\x0b\x32\x0b.TradeSetup\"\x1f\n\x08RunSetup\x12\x13\n\x0bstrategy_id\x18\x01 \x01(\t\"\x96\x02\n\nRunRequest\x12\n\n\x02id\x18\x01 \x01(\t\x12\x12\n\nsession_id\x18\x02 \x01(\t\x12\x0f\n\x07\x63\x61pital\x18\x03 \x01(\x02\x12\x10\n\x08leverage\x18\x04 \x01(\x02\x12)\n\x05start\x18\x05 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\'\n\x03\x65nd\x18\x06 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\"\n\x0c\x65ngine_setup\x18\x07 \x01(\x0b\x32\x0c.EngineSetup\x12\"\n\x0c\x62roker_setup\x18\n \x01(\x0b\x32\x0c.BrokerSetup\x12\x15\n\runiverse_name\x18\x08 \x01(\t\x12\x12\n\nclear_perf\x18\t \x01(\x08\"a\n\x0bStopRequest\x12\x12\n\nsession_id\x18\x01 \x01(\t\x12\x11\n\tliquidate\x18\x02 \x01(\x08\x12+\n\x07real_ts\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\"}\n\rUpdateRequest\x12-\n\ttimestamp\x18\x01 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\x19\n\x05\x65vent\x18\x02 \x01(\x0e\x32\n.EventType\x12\"\n\x0c\x62roker_state\x18\x03 \x01(\x0b\x32\x0c.BrokerState\"\r\n\x0bUpdateReply\"\xc5\x02\n\x11\x43ontrollableState\x12\x12\n\nsession_id\x18\x01 \x01(\t\x12\x15\n\rsession_state\x18\x02 \x01(\t\x12\x0f\n\x07\x63\x61pital\x18\x03 \x01(\x02\x12\x14\n\x0cmax_leverage\x18\x0b \x01(\x02\x12\x10\n\x08universe\x18\x04 \x01(\t\x12\x11\n\tlook_back\x18\x05 \x01(\x05\x12\x16\n\x0e\x64\x61ta_frequency\x18\x06 \x01(\t\x12)\n\x05start\x18\x07 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\'\n\x03\x65nd\x18\x08 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12.\n\ncheckpoint\x18\t \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\x1d\n\x15metrics_tracker_state\x18\n \x01(\x0c\"D\n\x17ParametersUpdateRequest\x12\x0f\n\x07\x63\x61pital\x18\x01 \x01(\x02\x12\x18\n\x10maximum_leverage\x18\x02 \x01(\x02\x32\xf4\x03\n\x0c\x43ontrollable\x12\x44\n\x10UpdateParameters\x12\x18.ParametersUpdateRequest\x1a\x16.google.protobuf.Empty\x12,\n\nInitialize\x12\t.RunSetup\x1a\x13.InitializeResponse\x12*\n\x03Run\x12\x0b.RunRequest\x1a\x16.google.protobuf.Empty\x12\x32\n\x0b\x43lockUpdate\x12\x0b.ClockEvent\x1a\x16.google.protobuf.Empty\x12\x31\n\rUpdateAccount\x12\x06.Chunk\x1a\x16.google.protobuf.Empty(\x01\x12,\n\x04Stop\x12\x0c.StopRequest\x1a\x16.google.protobuf.Empty\x12\x37\n\x05Watch\x12\x16.google.protobuf.Empty\x1a\x16.google.protobuf.Empty\x12>\n\x0cStopWatching\x12\x16.google.protobuf.Empty\x1a\x16.google.protobuf.Empty\x12\x36\n\x04Join\x12\x16.google.protobuf.Empty\x1a\x16.google.protobuf.Emptyb\x06proto3') _INITIALIZERESPONSE = DESCRIPTOR.message_types_by_name['InitializeResponse'] _ENGINESETUP = DESCRIPTOR.message_types_by_name['EngineSetup'] _ENGINESETUP_COMMISSIONMODELSENTRY = _ENGINESETUP.nested_types_by_name['CommissionModelsEntry'] _ENGINESETUP_SLIPPAGEMODELSENTRY = _ENGINESETUP.nested_types_by_name['SlippageModelsEntry'] _ENGINESETUP_TAXMODELSENTRY = _ENGINESETUP.nested_types_by_name['TaxModelsEntry'] _FRACTIONALTRADESETUP = DESCRIPTOR.message_types_by_name['FractionalTradeSetup'] _TRADESETUP = DESCRIPTOR.message_types_by_name['TradeSetup'] _BROKERSETUP = DESCRIPTOR.message_types_by_name['BrokerSetup'] _RUNSETUP = DESCRIPTOR.message_types_by_name['RunSetup'] _RUNREQUEST = DESCRIPTOR.message_types_by_name['RunRequest'] _STOPREQUEST = DESCRIPTOR.message_types_by_name['StopRequest'] _UPDATEREQUEST = DESCRIPTOR.message_types_by_name['UpdateRequest'] _UPDATEREPLY = DESCRIPTOR.message_types_by_name['UpdateReply'] _CONTROLLABLESTATE = DESCRIPTOR.message_types_by_name['ControllableState'] _PARAMETERSUPDATEREQUEST = DESCRIPTOR.message_types_by_name['ParametersUpdateRequest'] InitializeResponse = _reflection.GeneratedProtocolMessageType('InitializeResponse', (_message.Message,), { 'DESCRIPTOR' : _INITIALIZERESPONSE, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:InitializeResponse) }) _sym_db.RegisterMessage(InitializeResponse) EngineSetup = _reflection.GeneratedProtocolMessageType('EngineSetup', (_message.Message,), { 'CommissionModelsEntry' : _reflection.GeneratedProtocolMessageType('CommissionModelsEntry', (_message.Message,), { 'DESCRIPTOR' : _ENGINESETUP_COMMISSIONMODELSENTRY, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:EngineSetup.CommissionModelsEntry) }) , 'SlippageModelsEntry' : _reflection.GeneratedProtocolMessageType('SlippageModelsEntry', (_message.Message,), { 'DESCRIPTOR' : _ENGINESETUP_SLIPPAGEMODELSENTRY, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:EngineSetup.SlippageModelsEntry) }) , 'TaxModelsEntry' : _reflection.GeneratedProtocolMessageType('TaxModelsEntry', (_message.Message,), { 'DESCRIPTOR' : _ENGINESETUP_TAXMODELSENTRY, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:EngineSetup.TaxModelsEntry) }) , 'DESCRIPTOR' : _ENGINESETUP, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:EngineSetup) }) _sym_db.RegisterMessage(EngineSetup) _sym_db.RegisterMessage(EngineSetup.CommissionModelsEntry) _sym_db.RegisterMessage(EngineSetup.SlippageModelsEntry) _sym_db.RegisterMessage(EngineSetup.TaxModelsEntry) FractionalTradeSetup = _reflection.GeneratedProtocolMessageType('FractionalTradeSetup', (_message.Message,), { 'DESCRIPTOR' : _FRACTIONALTRADESETUP, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:FractionalTradeSetup) }) _sym_db.RegisterMessage(FractionalTradeSetup) TradeSetup = _reflection.GeneratedProtocolMessageType('TradeSetup', (_message.Message,), { 'DESCRIPTOR' : _TRADESETUP, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:TradeSetup) }) _sym_db.RegisterMessage(TradeSetup) BrokerSetup = _reflection.GeneratedProtocolMessageType('BrokerSetup', (_message.Message,), { 'DESCRIPTOR' : _BROKERSETUP, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:BrokerSetup) }) _sym_db.RegisterMessage(BrokerSetup) RunSetup = _reflection.GeneratedProtocolMessageType('RunSetup', (_message.Message,), { 'DESCRIPTOR' : _RUNSETUP, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:RunSetup) }) _sym_db.RegisterMessage(RunSetup) RunRequest = _reflection.GeneratedProtocolMessageType('RunRequest', (_message.Message,), { 'DESCRIPTOR' : _RUNREQUEST, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:RunRequest) }) _sym_db.RegisterMessage(RunRequest) StopRequest = _reflection.GeneratedProtocolMessageType('StopRequest', (_message.Message,), { 'DESCRIPTOR' : _STOPREQUEST, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:StopRequest) }) _sym_db.RegisterMessage(StopRequest) UpdateRequest = _reflection.GeneratedProtocolMessageType('UpdateRequest', (_message.Message,), { 'DESCRIPTOR' : _UPDATEREQUEST, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:UpdateRequest) }) _sym_db.RegisterMessage(UpdateRequest) UpdateReply = _reflection.GeneratedProtocolMessageType('UpdateReply', (_message.Message,), { 'DESCRIPTOR' : _UPDATEREPLY, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:UpdateReply) }) _sym_db.RegisterMessage(UpdateReply) ControllableState = _reflection.GeneratedProtocolMessageType('ControllableState', (_message.Message,), { 'DESCRIPTOR' : _CONTROLLABLESTATE, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:ControllableState) }) _sym_db.RegisterMessage(ControllableState) ParametersUpdateRequest = _reflection.GeneratedProtocolMessageType('ParametersUpdateRequest', (_message.Message,), { 'DESCRIPTOR' : _PARAMETERSUPDATEREQUEST, '__module__' : 'protos.controllable_pb2' # @@protoc_insertion_point(class_scope:ParametersUpdateRequest) }) _sym_db.RegisterMessage(ParametersUpdateRequest) _CONTROLLABLE = DESCRIPTOR.services_by_name['Controllable'] if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _ENGINESETUP_COMMISSIONMODELSENTRY._options = None _ENGINESETUP_COMMISSIONMODELSENTRY._serialized_options = b'8\001' _ENGINESETUP_SLIPPAGEMODELSENTRY._options = None _ENGINESETUP_SLIPPAGEMODELSENTRY._serialized_options = b'8\001' _ENGINESETUP_TAXMODELSENTRY._options = None _ENGINESETUP_TAXMODELSENTRY._serialized_options = b'8\001' _INITIALIZERESPONSE._serialized_start=173 _INITIALIZERESPONSE._serialized_end=278 _ENGINESETUP._serialized_start=281 _ENGINESETUP._serialized_end=648 _ENGINESETUP_COMMISSIONMODELSENTRY._serialized_start=467 _ENGINESETUP_COMMISSIONMODELSENTRY._serialized_end=529 _ENGINESETUP_SLIPPAGEMODELSENTRY._serialized_start=531 _ENGINESETUP_SLIPPAGEMODELSENTRY._serialized_end=591 _ENGINESETUP_TAXMODELSENTRY._serialized_start=593 _ENGINESETUP_TAXMODELSENTRY._serialized_end=648 _FRACTIONALTRADESETUP._serialized_start=651 _FRACTIONALTRADESETUP._serialized_end=786 _TRADESETUP._serialized_start=788 _TRADESETUP._serialized_end=861 _BROKERSETUP._serialized_start=863 _BROKERSETUP._serialized_end=976 _RUNSETUP._serialized_start=978 _RUNSETUP._serialized_end=1009 _RUNREQUEST._serialized_start=1012 _RUNREQUEST._serialized_end=1290 _STOPREQUEST._serialized_start=1292 _STOPREQUEST._serialized_end=1389 _UPDATEREQUEST._serialized_start=1391 _UPDATEREQUEST._serialized_end=1516 _UPDATEREPLY._serialized_start=1518 _UPDATEREPLY._serialized_end=1531 _CONTROLLABLESTATE._serialized_start=1534 _CONTROLLABLESTATE._serialized_end=1859 _PARAMETERSUPDATEREQUEST._serialized_start=1861 _PARAMETERSUPDATEREQUEST._serialized_end=1929 _CONTROLLABLE._serialized_start=1932 _CONTROLLABLE._serialized_end=2432 # @@protoc_insertion_point(module_scope)
from __future__ import print_function, division import numpy as np # Header __author__ = "Maria A. Pena-Guerrero" __version__ = "1.0" """ This script can transform from sky to detector coordinates (backward direction), and from detector to sky (forward direction). Keyword arguments: transf_direction -- Direction of transformation, string: forward or backward detector -- Which detector are we working with, integer: 491 or 492 filter_input -- Filter being used, string: F140X, CLEAR, or F110W x_input -- Depending on transform direction, float: either X or V2 centroid y_input -- Depending on transform direction, float: either X or V2 centroid tilt -- Use tilt: True or False arcsecs -- Units of V2 and V3, either arcsecs (=True) or degrees (=False) debug -- Print diagnostics to screen: True or False Output(s): x_out = transformed X position y_out = transformed Y position Example usage: import coords_transform as ct x_out, y_out = ct.coords_transf(transf_direction, detector, filter_input, x_input, y_input, tilt, arcsecs, debug) *** Testing suite of the script at the bottom """ # HISTORY # 1. Sept 2015 - Vr. 1.0: Initial Python translation of IDL code. ########################################################################################################### def coords_transf(transf_direction, detector, filter_input, x_input, y_input, tilt=False, arcsecs=False, debug=False): if transf_direction == "forward": x_out, y_out = ct_forward(transf_direction, detector, filter_input, x_input, y_input, tilt, debug) elif transf_direction == "backward": x_out, y_out = ct_backward(transf_direction, detector, filter_input, x_input, y_input, tilt, debug) if arcsecs: x_out, y_out = x_out*3600.0, y_out * 3600.0 return x_out, y_out def set_params(transf_direction, detector, filter_input, tilt, debug): path2text_files = "../Coords_transforms/files_from_tony/" gwa_xtil = 0.0 gwa_ytil = 0.0 if not tilt: # Constants used for the no tilt case gwa_xtil = 0.343027200 gwa_ytil = 0.197058170 # Read the tilt correction file tilt_file = path2text_files+"tilt_correction.txt" AX, AY, rx0, ry0 = np.loadtxt(tilt_file, skiprows=1, unpack=True) if debug: print ("(coords_transform - set_params): slopeAX=", AX, " SlopeAY=", AY, " intercept_rx0=", rx0, " intercept_ry0=", ry0) print (" : gwa_xtil=", gwa_xtil, "gwa_ytil=", gwa_xtil) delta_theta_x = 0.5 * AX * (gwa_ytil - rx0) delta_theta_y = 0.5 * AY * (gwa_xtil - ry0) # Read the detector correction file detector_gwa_txt = path2text_files+str(detector)+"_GWA.txt" detidx, detxfor, detyfor, detxback, detyback = np.loadtxt(detector_gwa_txt, skiprows=2, unpack=True) FitOrder_det = 5 if debug: print ("(coords_transform - set_params): For detector: ", detector, " and transf_direction: ", transf_direction) print (" delta_theta_x=", delta_theta_x, " delta_theta_y=",delta_theta_y) if transf_direction == "backward": print ("(coords_transform - set_params): lenght_index", len(detidx), " lenght_xBackwardCoefficients_ote=", len(detxback), " lenght_yBackwardCoefficients_ote=", len(detyback)) #print (" test_index xBackwardCoefficients_ote yBackwardCoefficients_ote ") #for i in detidx: # print (" ", i, detxback[i], detyback[i]) elif transf_direction == "forward": print ("(coords_transform - set_params): lenght_index", len(detidx), " lenght_xForwardCoefficients_ote=", len(detxfor), " lenght_yForwardCoefficients_ote=", len(detyfor)) #print (" test_index xForwardCoefficients_ote yForwardCoefficients_ote ") #for i in detidx: # print (" ", i, detxfor[i], detyfor[i]) # Read the filter correction file filter_gwa_txt = path2text_files+filter_input+"_GWA_OTE.txt" filidx, filxfor, filyfor, filxback, filyback = np.loadtxt(filter_gwa_txt, skiprows=2, unpack=True) if debug: print ("(coords_transform - set_params): For filter: ", filter_input, " and transf_direction: ", transf_direction) if transf_direction == "backward": print ("(coords_transform - set_params): length_index", len(filidx), " length_xBackwardCoefficients_det=", len(filxback), " lenght_yBackwardCoefficients_det=", len(filyback)) #print (" test_index, xBackwardCoefficients_det yBackwardCoefficients_det ") #for i in filidx: # print (" ", i, filxback[i], filyback[i]) elif transf_direction == "forward": print ("(coords_transform - set_params): lenght_index", len(filidx), " length_xForwardCoefficients_det=", len(filxfor), " length_yForwardCoefficients_det=", len(filyfor)) #print (" test_index, xForwardCoefficients_det yForwardCoefficients_det ") #for i in filidx: # print (" ", i, filxfor[i], filyfor[i]) FitOrder_ote = 5 if transf_direction == "backward": direction_data = [delta_theta_x, delta_theta_y, detxback, detyback, FitOrder_det, filxback, filyback, FitOrder_ote] elif transf_direction == "forward": direction_data = [delta_theta_x, delta_theta_y, detxfor, detyfor, FitOrder_det, filxfor, filyfor, FitOrder_ote] return direction_data def ct_backward(transf_direction, detector, filter_input, x_input, y_input, tilt, debug): """ Perform coordinates transform in the BACKWARD direction (sky to detector) """ direction_data = set_params(transf_direction, detector, filter_input, tilt, debug) delta_theta_x, delta_theta_y, detxback, detyback, FitOrder_det, filxback, filyback, FitOrder_ote = direction_data # Coord transformation to go from OTE to GWA ict = -1 xt, yt = 0.0, 0.0 for i in range(FitOrder_ote+1): for j in range(FitOrder_ote+1-i): ict += 1 xt += filxback[ict] * x_input ** i * y_input ** j yt += filyback[ict] * x_input ** i * y_input ** j #print ("ict, i, j, xt, yt", ict, i, j, xt, yt) if debug: print ("(coords_transform - ct_backward): x_input=", x_input, " y_input=", y_input) print (" GWA_x=",xt," GWA_y=",yt) #raw_input("*** press enter to continue... ") # Now that we have angular position at GWA of xy SCA pixels in xt, yt, do tilt-correction w = 180.0 * 3600.0 # arcsec in pi radians, so 1 arcsec is pi/w, get pi from cos(-1.0) w1 = np.arccos(-1.0) # gives value of pi w2 = w1 / w # 1 arcsec expressed in radians delta_theta_xrad = delta_theta_x * w2 # now calculated for the general case delta_theta_yrad = delta_theta_y * w2 if debug: print ("w, w1, w2: ", w, w1, w2) print ("(coords_transform - ct_backward): delta_theta_x=", delta_theta_x, " delta_theta_y=", delta_theta_y) print (" delta_theta_xrad=", delta_theta_xrad, "delta_theta_yrad=", delta_theta_yrad) # Do backward rotation # calculate direction cosines of xt, yt, (xgwa, ygwa) v = np.abs(np.sqrt(1.0 + xt*xt + yt*yt)) x3 = xt / v y3 = yt / v z3 = 1.0 / v # do inverse rotation around the x-axis x2 = x3 y2 = y3 + delta_theta_xrad*z3 z2 = np.sqrt(1.0 - x2*x2 - y2*y2) # rotate to mirror reference system with small angle approx. and perform rotation x1 = x2 - delta_theta_yrad*z2 y1 = y2 z1 = np.sqrt(1.0 - x1*x1 - y1*y1) # rotate reflected ray back to reference GWA coordinate system (use small angle approx.), # first with an inverse rotation around the y-axis: x0 = -1.0*x1 + delta_theta_yrad*np.sqrt(1.0 - x1*x1 - (y1+delta_theta_xrad*z1)*(y1+delta_theta_xrad*z1)) y0 = -1.0*y1 - delta_theta_xrad*z1 z0 = np.sqrt(1.0 - x0*x0 - y0*y0) xt_corr = x0/z0 yt_corr = y0/z0 if debug: print ("(coords_transform - ct_backward): Checking tilt rotation") print (" v=", v) print (" x0=", x0, " y0=", y0, " z0=", z0) print (" x1=", x1, " y1=", y1, " z1=", z1) print (" x2=", x2, " y2=", y2, " z2=", z2) print (" x3=", x3, " y3=", y3, " z3=", z3) print (" xt_corr=", xt_corr, " yt_corr", yt_corr) #raw_input("*** press enter to continue... ") # coord transform to go from tilt-corrected GWA to detector - 5th order polynomial in backward coefficients: # detxback, detyback ict_det = -1 xt_det, yt_det = 0.0, 0.0 for i in range(FitOrder_det+1): for j in range(FitOrder_det+1-i): ict_det += 1 xt_det += detxback[ict_det] * xt_corr ** i * yt_corr ** j yt_det += detyback[ict_det] * xt_corr ** i * yt_corr ** j #print ("ict, i, j, xt, yt", ict_det, i, j, xt_det, yt_det) if debug: print ("(coords_transform - ct_backward): x_input=", x_input, " y_input=", y_input, " OTE_x=", xt_det, "OTE_y=", yt_det) #raw_input("*** press enter to continue... ") # Final backward output x_out, y_out = xt_det, yt_det return x_out, y_out def ct_forward(transf_direction, detector, filter_input, x_input, y_input, tilt, debug): # Perform coordinates transform in the FORWARD direction (detector to sky) direction_data = set_params(transf_direction, detector, filter_input, tilt, debug) delta_theta_x, delta_theta_y, detxfor, detyfor, FitOrder_det, filxfor, filyfor, FitOrder_ote = direction_data # Coord transformation to go from OTE to GWA ict = -1 xt, yt = 0.0, 0.0 for i in range(FitOrder_det+1): for j in range(FitOrder_det+1-i): ict += 1 xt += detxfor[ict] * x_input ** i * y_input ** j yt += detyfor[ict] * x_input ** i * y_input ** j if debug: print ("(coords_transform - ct_forward): x_input=", x_input, " y_input=", x_input) print (" GWA_x=", xt, " GWA_y=", yt) #raw_input("*** press enter to continue... ") # Now that we have angular position at GWA of xy SCA pixels in xt, yt, do tilt-correction w = 180. * 3600. # arcsec in pi radians, so 1 arcsec is pi/w, get pi from cos(-1.0) w1 = np.arccos(-1.0) # gives value of pi w2 = w1 / w # 1 arcsec expressed in radians delta_theta_xrad = delta_theta_x * w2 # now calculated for the general case delta_theta_yrad = delta_theta_y * w2 if debug: print ("(coords_transform - ct_forward): delta_theta_x=", delta_theta_x, " delta_theta_y=", delta_theta_y) print (" delta_theta_xrad=", delta_theta_xrad, "delta_theta_yrad=", delta_theta_yrad) #raw_input("*** press enter to continue... ") # Do forward rotation # calculate direction cosines of xt, yt, (xgwa, ygwa) v = np.abs(np.sqrt(1.0 + xt*xt + yt*yt)) x0 = xt / v y0 = yt / v z0 = 1.0 / v # rotate to mirror reference system with small angle approx. and perform rotation x1 = -1 * (x0 - delta_theta_yrad * np.sqrt(1.0 - x0**2 - (y0+delta_theta_xrad*z0)**2)) y1 = -1 * (y0 + delta_theta_xrad * z0) z1 = np.sqrt(1.0 - x1**2 - y1**2) # rotate reflected ray back to ref GWA coord system with small angle approx., # but first with an inverse rotation around the y-axis x2 = x1 + delta_theta_yrad *z1 y2 = y1 z2 = np.sqrt(1.0 - x2**2 - y2**2) # now do an inverse rotation around the x-axis x3 = x2 y3 = y2 - delta_theta_xrad*2 z3 = np.sqrt(1.0 - x3**2 - y3**2) # compute the cosines from direction cosines xt_corr = x3 / z3 yt_corr = y3 / z3 if debug: print ("(coords_transform - ct_forward): Checking tilt rotation") print (" v=", v) print (" x0=", x0, " y0=", y0, " z0=", z0) print (" x1=", x1, " y1=", y1, " z1=", z1) print (" x2=", x2, " y2=", y2, " z2=", z2) print (" x3=", x3, " y3=", y3, " z3=", z3) print (" xt_corr=", xt_corr, " yt_corr", yt_corr) #raw_input("*** press enter to continue... ") # coord transform to go from tilt-corrected GWA to detector - 5th order polynomial in forward coefficients: # detxfor, detyfor ict_ote = -1 xt_ote, yt_ote = 0.0, 0.0 for i in range(FitOrder_ote+1): for j in range(FitOrder_ote+1-i): ict_ote += 1 xt_ote += filxfor[ict_ote] * xt_corr ** i * yt_corr ** j yt_ote += filyfor[ict_ote] * xt_corr ** i * yt_corr ** j if debug: print ("(coords_transform - ct_forward): x_input=", x_input, " y_input=", y_input, " OTE_x=", xt_ote, "OTE_y=", yt_ote) # Final forward output x_out, y_out = xt_ote, yt_ote return x_out, y_out if __name__ == '__main__': # Print diagnostic load message print("(coords_transform): Coordinate transform algorithm Version {} loaded!".format(__version__)) ########################################################################################################### # Test functions testing = False if testing: # Set test script parameters transf_direction = "forward" # Direction of transformation, string: forward or backward detector = 491 # Which detector are we working with: 491 or 492 filter_input = "F140X" # Filter being used, string: F140X, CLEAR, or F110W x_input = 1542.5 # Depending on transform direction, either X or V2 centroid y_input = 1542.5 # Depending on transform direction, either X or V2 centroid tilt = False # Use tilt: True or False debug = False # Print diagnostics to screen: True or False # Run transformation x_out, y_out = coords_transf(transf_direction, detector, filter_input, x_input, y_input, tilt, debug) print ("Final results: ") if transf_direction=="forward": print ("* For direction=", transf_direction, " \n coordinates are=", x_out, y_out, " arcsec") if transf_direction=="backward": print ("* For direction=", transf_direction, " \n coordinates are=", x_out, y_out, " pixels")
import PIL import numpy as np from typing import Tuple class IDriver: """ Interface that every GAN driver must meet. """ def __init__( self, path: str, # Path to network (local file or URL) z_dim: int, # Input (z) vector dimension (e.g. 512 for StyleGan neworks) c_dim: int = 0 # Number of conditional labels (0 = non-conditional network) ): self.path = path self.z_dim = z_dim self.c_dim = c_dim def seed_to_z(self, seed: int): """ Converts seed to vector in the z latent space """ return np.random.RandomState(seed).randn(self.z_dim) def generate_image( self, z: np.ndarray, label_id: int = None, # Label for conditional networks (ignore on non-conditional) trunc: float = 1, translate: Tuple[float, float] = (0, 0), # Ignore if network doesn't support translation rotate: float = 0, # Ignore if network doesn't support rotation noise_mode='const', # 'const', 'random', 'none' ** kwargs # Allow passing additional specific parameters ): """ Generates image for specified z-vector """ raise NotImplementedError("Should be implemented.")
import os import pandas as pd from Bio.SeqIO.FastaIO import FastaIterator from Bio.SeqRecord import SeqRecord class FastaReader: """ Universal class for reading FASTA files with genome or protein sequence or multi-FASTA with chunks of sequences Example: fname = 'NC_001604.fasta' fr = FastaReader(fname) kmers_sequence = fr.get_sequence() ks_df = fr.to_df() """ def __init__(self, fasta_file_path: str): self.fasta_file_path = fasta_file_path self.fasta_name = os.path.basename(self.fasta_file_path) @staticmethod def _fasta_reader(filename: str) -> SeqRecord: """ FASTA file reader as iterator """ with open(filename) as handle: for record in FastaIterator(handle): yield record @staticmethod def _normalize(entry: SeqRecord) -> str: """ Each of the sequence is normalized into uppercase format without blank chars at the end """ return str(entry.seq).upper().strip() def get_sequence(self) -> str: """ Final genome or protein sequence string after normalization """ sequence: str = "" for entry in self._fasta_reader(self.fasta_file_path): sequence += f"{self._normalize(entry)} " return sequence.strip() def to_df(self) -> pd.DataFrame: """ Return pandas DataFrame with k-mers sequence format what is expected by KMersTransformer """ return pd.DataFrame(data=[self.get_sequence()], columns=["sequence"])
import numpy as np from PIL import Image count = 1 while count <= 10000: filecount = str(count) basewidth = 4000 img = Image.open('1.1/'+filecount+'.png') wpercent = (basewidth/float(img.size[0])) hsize = int((float(img.size[1])*float(wpercent))) img = img.resize((basewidth,hsize), Image.ANTIALIAS) img.save('1.8/'+filecount+'.png') count += 1
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jan 24 2022 02:33:58 AM @author: ozgur oney """ import os import random from docx import Document from docx.enum.style import WD_STYLE_TYPE from docx.enum.text import WD_ALIGN_PARAGRAPH from docx.shared import Pt from tkinter import * from tkinter import messagebox from tkinter.filedialog import askopenfilename from datetime import date window = Tk() window.title('Workpaper Creator') # set minimum&maximum window size value - for fixed window window.minsize(600, 400) window.maxsize(600, 400) window.config(bg='#456') f = ('sans-serif', 13) btn_font = ('sans-serif', 10) bgcolor = '#BF5517' #array keeping unique title values genvar = StringVar() genopt = ['Denetçi Yardımcısı', 'BT Denetçi Yardımcısı', 'Yetkili Denetçi Yardımcısı', 'Yetkili BT Denetçi Yardımcısı', 'Denetçi', 'Müfettiş', 'Başdenetçi', 'Başmüfettiş'] genvar.set('BT Denetçi Yardımcısı') #function of Clear button def clear_inputs(): baslangictarihi.delete(0, 'end') bitistarihi.delete(0, 'end') denetim_elemani_adi.delete(0, 'end') pathLabel.delete(0,'end') #change user-input text of date to timestamp object def date_to_timestamp(d) : day, month, year = d.split('/') return date(int(year), int(month), int(day)) #create random date in given interval def randomDate(start, end): stime = date_to_timestamp(start) etime = date_to_timestamp(end) ptime = stime + random.random() * (etime-stime) return str(ptime) #select file contains audit steps def select_file(): #hide window (optional) window.withdraw() #define action file_path = askopenfilename(title="Open file", filetypes=[("Word",".docx"),("TXT",".txt"), ("All files",".*")]) #if selected path is valid if file_path != "": print ("you chose file with path:", file_path) else: print ("you didn't open anything!") #add selected path to label, so that user can see it pathLabel.delete(0, END) pathLabel.insert(0, file_path) #mutate path so that its valid in all OS' file_path = os.path.dirname(file_path) #bring back the lights! you can see window after selection window.deiconify() return file_path def generate(): #get file path from label file_path = pathLabel.get() with open (file_path, encoding='utf8') as f: # read lines for auto-numbering lines = f.readlines() lines = [line.rstrip() for line in lines] #for each line in the doc for line in lines: #create document document = Document() # Create a character level style Object ("CommentsStyle") then defines its parameters obj_styles = document.styles obj_charstyle = obj_styles.add_style('CommentStyle', WD_STYLE_TYPE.CHARACTER) obj_font = obj_charstyle.font obj_font.size = Pt(12) obj_font.name = 'Times New Roman' #add header in bold baslik = document.add_paragraph() baslik.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.CENTER baslik.add_run('S-100 ÇALIŞMA KAĞIDI', style='CommentStyle').bold=True #create a random date, add it to document tarih = document.add_paragraph() tarih.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.LEFT tarih.add_run('Tarih: ', style='CommentStyle').bold=True tarih.add_run(randomDate(baslangictarihi.get(), bitistarihi.get()), style='CommentStyle') #add workpaper number in increasing order for each step ck_num= document.add_paragraph() ck_num.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.LEFT ck_num.add_run('Çalışma Kâğıdı Numarası: ', style='CommentStyle').bold=True index = [x for x in range(len(lines)) if line in lines[x]] ck_num.add_run(str(index[0]+1).strip("[]"), style='CommentStyle') #add audit step denetim_adimi = document.add_paragraph() denetim_adimi.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.LEFT denetim_adimi.add_run('İlgili Denetim Adımı: ', style='CommentStyle').bold=True denetim_adimi.add_run(line, style='CommentStyle') #add auditor name /with his/her title denetim_elemani = document.add_paragraph() denetim_elemani.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.LEFT denetim_elemani.add_run('Testi Gerçekleştiren Denetim Elemanı: ', style='CommentStyle').bold=True isim = str(denetim_elemani_adi.get()) + ", " + str(genvar.get()) + ", Denetim Genel Müdürlüğü" denetim_elemani.add_run(isim, style='CommentStyle') #sampling orneklem = document.add_paragraph() orneklem.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.LEFT orneklem.add_run('Örneklem Yöntemi: ', style='CommentStyle').bold=True #documents viewed/researched incelenen = document.add_paragraph() incelenen.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.LEFT incelenen.add_run('İncelenen Dokümanlar: ', style='CommentStyle').bold=True #related (if exists) non-conformity number bulgu_num = document.add_paragraph() bulgu_num.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.LEFT bulgu_num.add_run('Bulgu Numarası: ', style='CommentStyle').bold=True #test procedure test_prod = document.add_paragraph() test_prod.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.LEFT test_prod.add_run('Ayrıntılı Test Prosedürü: ', style='CommentStyle').bold=True #detect filename filename = line.rstrip() + '.docx' #save document document.save(filename) #message informing last user about process messagebox.showinfo("Sonuc", "Dosya(lar) başarıyla oluşturuldu.") #void return None # frame carrying items in the window frame = Frame(window, padx=20, pady=20, bg=bgcolor) frame.pack(expand=True, fill=BOTH) #labels Label(frame, text= "Den. Programı: ", font=f, bg=bgcolor).grid(column=0, row=0, padx=15, pady=15) pathLabel = Entry(frame,textvariable="") pathLabel.grid(column=1, row=0, padx=15, pady=15) Label(frame, text = "Baş. tarihi : ", font=f, bg=bgcolor).grid(column=0, row=1, padx=15, pady=15) btn_frame = Frame(frame, bg=bgcolor) btn_frame.grid(columnspan=2, pady=(50, 0)) Label(frame, text = "Bit. tarihi : ", font=f, bg=bgcolor).grid(column=0, row=2, padx=15, pady=15) btn_frame = Frame(frame, bg=bgcolor) btn_frame.grid(columnspan=2, pady=(50, 0)) Label(frame, text = "Den. Elemanı İsim: ", font=f, bg=bgcolor).grid(column=0, row=3, padx=15, pady=15) btn_frame = Frame(frame, bg=bgcolor) btn_frame.grid(columnspan=2, pady=(50, 0)) Label(frame, text = "Title: ", font=f, bg=bgcolor).grid(column=0, row=4, padx=15, pady=15) btn_frame = Frame(frame, bg=bgcolor) btn_frame.grid(columnspan=2, pady=(50, 0)) #input widgets fileSelect = Button( frame, text='Dosya Seç', command=select_file, font=btn_font, padx=10, pady=5, width=3 ) fileSelect.grid(row=0, column=2) baslangictarihi = Entry(frame, width=20, font=f) baslangictarihi.grid(row=1, column=1) bitistarihi = Entry(frame, width=20, font=f) bitistarihi.grid(row=2, column=1) denetim_elemani_adi = Entry(frame, width=20, font=f) denetim_elemani_adi.grid(row=3, column=1) rutbe = OptionMenu( frame, genvar, *genopt ) rutbe.grid(row=4, column=1, pady=(5,0)) rutbe.config(width=16, font=f) #default values baslangictarihi.insert(0,'01/01/2022') bitistarihi.insert(0,'14/04/2022') denetim_elemani_adi.insert(0,'John Doe') #buttons submit_btn = Button( btn_frame, text='Oluştur', command=generate, font=btn_font, padx=10, pady=5 ) submit_btn.pack(side=LEFT, expand=True, padx=(15, 0)) clear_btn = Button( btn_frame, text='Temizle', command=clear_inputs, font=btn_font, padx=10, pady=5, width=7 ) clear_btn.pack(side=LEFT, expand=True, padx=15) exit_btn = Button( btn_frame, text='Çıkış', command=lambda:window.destroy(), font=btn_font, padx=10, pady=5 ) exit_btn.pack(side=LEFT, expand=True) # mainloop window.mainloop()
from data import data from data.data import Dataset import torch import fire import time import os, sys import tqdm from typing import Dict, Tuple from torch import nn, optim from torch.nn import functional from collections import namedtuple from visdom import Visdom from face_detection import cig from face_detection import FasterRcnn from face_detection.utils import * class EasyTrainer(nn.Module): ... LossTuple = namedtuple("LossTuple", [ 'rpn_loc_loss', 'rpn_cls_loss', 'roi_loc_loss', 'roi_cls_loss', 'total_loss' ]) def time_count(f): def wrapper(*args, **kwargs): start = time.time() temp = f(*args, **kwargs) print("\033[32mcost time\033[0m:", round(time.time() - start, 3), "\033[33msecond(s)\033[0m") return temp return wrapper # A single wrapper for easy training process class EasyTrainer(nn.Module): def __init__(self, faster_rcnn : FasterRcnn): super().__init__() self.faster_rcnn : FasterRcnn = faster_rcnn self.loc_nor_mean : Tuple[float] = faster_rcnn.loc_nor_mean self.loc_nor_std : Tuple[float] = faster_rcnn.loc_nor_std self.optimizer : optim = faster_rcnn.set_optimizer() self.rpn_sigma : float = cig.rpn_sigma self.roi_sigma : float = cig.roi_sigma # create target creater self.anchorTC : AnchorTargetCreator = AnchorTargetCreator() self.proposalTC : ProposalTargetCreator = ProposalTargetCreator() def forward(self, images : torch.Tensor, bboxes : torch.Tensor, labels : torch.Tensor, scale : float) -> LossTuple: if bboxes.shape[0] != 1: raise RuntimeError("batch_size must be 1!!!") _, _, H, W = images.shape feature_mapping = self.faster_rcnn.extractor(images) rpn_locs, rpn_scores, rois, _, anchor = self.faster_rcnn.rpn( x=feature_mapping, img_size=[H, W], scale=scale ) # note that batch size is 1 bbox = bboxes[0] label = labels[0] rpn_score = rpn_scores[0] rpn_loc = rpn_locs[0] roi = rois # align to get the proposal target value sample_roi, gt_roi_loc, gt_roi_label = self.proposalTC( roi=roi, bbox=safe_to_numpy(bbox), label=safe_to_numpy(label), loc_normalize_mean=self.loc_nor_mean, loc_normalize_std=self.loc_nor_std ) sample_roi = safe_to_tensor(sample_roi) gt_roi_loc = safe_to_tensor(gt_roi_loc) gt_roi_label = safe_to_tensor(gt_roi_label) # note that we do the forwarding for one data in a batch # so all the choosen data in one batch is the first data, whose # corresponding index is 0 sample_roi_indices = torch.zeros(len(sample_roi)) roi_cls_loc, roi_score = self.faster_rcnn.roi_head( x=feature_mapping, rois=sample_roi, roi_indices=sample_roi_indices ) """calculate the RPN loss""" gt_rpn_loc, gt_rpn_label = self.anchorTC( bbox=safe_to_numpy(bbox), anchor=anchor, img_size=[H, W] ) gt_rpn_label : torch.Tensor = torch.LongTensor(gt_rpn_label) gt_rpn_loc : torch.Tensor = safe_to_tensor(gt_rpn_loc) rpn_loc_loss: torch.Tensor = fast_rcnn_loc_loss( pred_loc=rpn_loc, gt_loc=gt_rpn_loc, gt_label=gt_rpn_label.data, sigma=self.rpn_sigma ) # remember to ignore the bbox whose tag is -1 rpn_cls_loss : torch.Tensor = functional.cross_entropy( input=rpn_score, target=gt_rpn_label.cuda() if cig.use_cuda else gt_rpn_label.cpu(), ignore_index=-1 ) # cut the path of gradient to reduce the cost on GPU and remove all the label is -1 mask : torch.Tensor = gt_rpn_label > -1 gt_rpn_label : torch.Tensor = gt_rpn_label[mask] rpn_score : torch.Tensor = rpn_score[mask] """calculate the RoI loss""" n : int = roi_cls_loc.shape[0] roi_cls_loc : torch.Tensor = roi_cls_loc.view(n, -1, 4) roi_loc : torch.Tensor = roi_cls_loc[ torch.arange(0, n), gt_roi_label ].contiguous() roi_loc_loss : torch.Tensor = fast_rcnn_loc_loss( pred_loc=roi_loc, gt_loc=gt_roi_loc, gt_label=gt_roi_label, sigma=self.roi_sigma ) roi_cls_loss = functional.cross_entropy( input=roi_score, target=gt_roi_label ) # count all the loss total_loss = rpn_cls_loss + rpn_loc_loss + roi_cls_loss + roi_loc_loss loss_tuple = LossTuple( rpn_loc_loss=rpn_loc_loss, rpn_cls_loss=rpn_cls_loss, roi_loc_loss=roi_loc_loss, roi_cls_loss=roi_cls_loss, total_loss=total_loss ) return loss_tuple def train_one_image(self, images : torch.Tensor, bboxes : torch.Tensor, labels : torch.Tensor, scale : float) -> LossTuple: """ Args - images : Actually it is an image, which is shaped as [1, C, H, W] - bboxes : GT bbox of the items, which is shaped as [1, d, 4] - labels : class of each bboxes, which is shaped as [1, d] - scale : ratio between preprocessed image and original image """ self.optimizer.zero_grad() loss_tuple = self.forward( images=images, bboxes=bboxes, labels=labels, scale=scale ) loss_tuple.total_loss.backward() self.optimizer.step() return loss_tuple def save(self, save_path : str = None, save_optimizer : bool = True, **kwargs): save_dict = { "model" : self.faster_rcnn.state_dict(), "config" : cig.state_dict(), "optimizer" : self.optimizer.state_dict() if save_optimizer else None, "info" : kwargs } if save_path is None: local_time = time.strftime("%m%d%H%M") save_path = "checkpoints/fasterrcnn_{}".format(local_time) for value in kwargs.values(): save_path += "_{}".format(value) save_dir = os.path.dirname(save_path) if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(save_dict, save_path) def load(self, path : str, load_optimizer : bool = True, load_config : bool = True) -> EasyTrainer: state_dict = torch.load(path) self.faster_rcnn.load_state_dict( state_dict=state_dict["model"] if "model" in state_dict else state_dict ) if load_optimizer and "optimizer" in state_dict and state_dict["optimizer"] is not None: self.optimizer.load_state_dict(state_dict["optimizer"]) if load_config and "config" in state_dict and state_dict["config"] is not None: cig.load_dict(state_dict["config"]) return self @time_count def train(**kwargs): # load the configer cig.load_dict(**kwargs) # create model and training wrapper model = FasterRcnn() trainer = EasyTrainer(model) print("\033[32m{}\033[0m".format("complete creating model and trainer")) if cig.use_cuda: trainer = trainer.cuda() if cig.model_path: trainer.load( path=cig.model_path, load_optimizer=True, load_config=True ) # create visdom vis = Visdom() # for decay of the learning rate cur_lr = cig.learning_rate # create loader of dataset data_set = Dataset() epoch_iter = tqdm.tqdm(range(cig.epoch), **cig.EPOCH_LOOP_TQDM) for epoch in epoch_iter: loader = data_set.get_train_loader() indices = range(data_set.training_sample_num()) # for progress bar in tqdm index_iter = tqdm.tqdm(indices, **cig.BATCH_LOOP_TQDM) epoch_iter.set_description_str("\033[32mEpoch {}\033[0m".format(epoch)) for index, (b_img, b_bbox, b_label, scales) in zip(index_iter, loader): scale : float = scales[0] loss_tuple = trainer.train_one_image( images=b_img, bboxes=b_bbox, labels=b_label, scale=scale ) post_info = "\033[33m{},{},{},{},{}\033[0m".format( round(loss_tuple.rpn_cls_loss.item(), 2), round(loss_tuple.rpn_loc_loss.item(), 2), round(loss_tuple.roi_cls_loss.item(), 2), round(loss_tuple.roi_loc_loss.item(), 2), round(loss_tuple.total_loss.item(), 2) ) # set prefix and suffix info for tqdm iterator index_iter.set_description_str("\033[32mEpoch {} complete!\033[0m".format(epoch) if index == (data_set.training_sample_num() - 1) else "\033[35mtraining...\033[0m") index_iter.set_postfix_str(post_info) trainer.save() if __name__ == "__main__": fire.Fire(train)
from megnet.layers.graph import MEGNetLayer, CrystalGraphLayer, InteractionLayer from megnet.layers.readout import Set2Set, LinearWithIndex from keras.layers import deserialize as keras_layer_deserialize from megnet.losses import mean_squared_error_with_scale from megnet.activations import softplus2 _CUSTOM_OBJECTS = globals()
from __future__ import annotations import logging from typing import TextIO from ..cli import run_with_file_argument from .task_1 import Vector, fire, get_target_area logger = logging.getLogger(__name__) def find_min_x_velocity(min_x: int) -> int: distance = 1 x_velocity = 1 while distance < min_x: x_velocity += 1 distance += x_velocity return x_velocity def main(input: TextIO) -> str: target_area = get_target_area(input) logger.info("Target area: %s", target_area) min_x_velocity = find_min_x_velocity(target_area.min_x) logger.info("Min X velocity %d", min_x_velocity) max_x_velocity = target_area.max_x logger.info("Max X velocity %d", max_x_velocity) min_y_velocity = target_area.min_y logger.info("Min Y velocity %d", min_y_velocity) y = min_y_velocity hits = 0 while True: for x in range(min_x_velocity, max_x_velocity + 1): velocity = Vector(x=x, y=y) if fire(velocity, target_area) is not None: hits += 1 logger.info("Scored %d hit at x=%d,y=%d", hits, x, y) y += 1 return f"{hits}" if __name__ == "__main__": run_with_file_argument(main)
import logging from typing import List from cryptoxlib.WebsocketMgr import Subscription, CallbacksType, Websocket from cryptoxlib.Pair import Pair from cryptoxlib.clients.binance.exceptions import BinanceException from cryptoxlib.clients.binance.functions import map_ws_pair, extract_ws_symbol from cryptoxlib.clients.binance.BinanceCommonWebsocket import BinanceCommonWebsocket, BinanceSubscription from cryptoxlib.clients.binance import enums from cryptoxlib.clients.binance.types import PairSymbolType LOG = logging.getLogger(__name__) class BinanceFuturesWebsocket(BinanceCommonWebsocket): def __init__(self, subscriptions: List[Subscription], binance_client, api_key: str = None, sec_key: str = None, websocket_uri: str = None, builtin_ping_interval: float = None, periodic_timeout_sec: int = None, ssl_context = None) -> None: super().__init__(subscriptions = subscriptions, binance_client = binance_client, api_key = api_key, sec_key = sec_key, websocket_uri = websocket_uri, builtin_ping_interval = builtin_ping_interval, periodic_timeout_sec = periodic_timeout_sec, ssl_context = ssl_context) def is_authenticated(self) -> bool: for subscription in self.subscriptions: if subscription.is_authenticated(): return True return False async def _process_periodic(self, websocket: Websocket) -> None: if self.is_authenticated() is True: LOG.info(f"[{self.id}] Refreshing listen key.") await self.binance_client.keep_alive_listen_key() class BinanceUSDSMFuturesWebsocket(BinanceFuturesWebsocket): WEBSOCKET_URI = "wss://fstream.binance.com/" BULTIN_PING_INTERVAL_SEC = 30 LISTEN_KEY_REFRESH_INTERVAL_SEC = 1800 def __init__(self, subscriptions: List[Subscription], binance_client, api_key: str = None, sec_key: str = None, ssl_context = None) -> None: super().__init__(subscriptions = subscriptions, binance_client = binance_client, api_key = api_key, sec_key = sec_key, websocket_uri = BinanceUSDSMFuturesWebsocket.WEBSOCKET_URI, builtin_ping_interval = BinanceUSDSMFuturesWebsocket.BULTIN_PING_INTERVAL_SEC, periodic_timeout_sec = BinanceUSDSMFuturesWebsocket.LISTEN_KEY_REFRESH_INTERVAL_SEC, ssl_context = ssl_context) class BinanceUSDSMFuturesTestnetWebsocket(BinanceFuturesWebsocket): WEBSOCKET_URI = "wss://stream.binancefuture.com/" def __init__(self, subscriptions: List[Subscription], binance_client, api_key: str = None, sec_key: str = None, ssl_context = None) -> None: super().__init__(subscriptions = subscriptions, binance_client = binance_client, api_key = api_key, sec_key = sec_key, websocket_uri = BinanceUSDSMFuturesTestnetWebsocket.WEBSOCKET_URI, ssl_context = ssl_context) class BinanceCOINMFuturesWebsocket(BinanceFuturesWebsocket): WEBSOCKET_URI = "https://dstream.binance.com/" BULTIN_PING_INTERVAL_SEC = 30 LISTEN_KEY_REFRESH_INTERVAL_SEC = 1800 def __init__(self, subscriptions: List[Subscription], binance_client, api_key: str = None, sec_key: str = None, ssl_context = None) -> None: super().__init__(subscriptions = subscriptions, binance_client = binance_client, api_key = api_key, sec_key = sec_key, websocket_uri = BinanceCOINMFuturesWebsocket.WEBSOCKET_URI, builtin_ping_interval = BinanceCOINMFuturesWebsocket.BULTIN_PING_INTERVAL_SEC, periodic_timeout_sec = BinanceCOINMFuturesWebsocket.LISTEN_KEY_REFRESH_INTERVAL_SEC, ssl_context = ssl_context) class BinanceCOINMFuturesTestnetWebsocket(BinanceFuturesWebsocket): WEBSOCKET_URI = "wss://dstream.binancefuture.com/" def __init__(self, subscriptions: List[Subscription], binance_client, api_key: str = None, sec_key: str = None, ssl_context = None) -> None: super().__init__(subscriptions = subscriptions, binance_client = binance_client, api_key = api_key, sec_key = sec_key, websocket_uri = BinanceCOINMFuturesTestnetWebsocket.WEBSOCKET_URI, ssl_context = ssl_context) class AggregateTradeSubscription(BinanceSubscription): def __init__(self, symbol: PairSymbolType, callbacks: CallbacksType = None): super().__init__(callbacks) self.symbol = extract_ws_symbol(symbol) def get_channel_name(self): return f"{self.symbol}@aggTrade" class IndexPriceSubscription(BinanceSubscription): def __init__(self, pair: Pair, frequency1sec: bool = False, callbacks: CallbacksType = None): super().__init__(callbacks) self.pair = pair self.frequency1sec = frequency1sec def get_channel_name(self): return map_ws_pair(self.pair) + "@indexPrice" + ("@1s" if self.frequency1sec else "") class MarkPriceSubscription(BinanceSubscription): def __init__(self, symbol: PairSymbolType, frequency1sec: bool = False, callbacks: CallbacksType = None): super().__init__(callbacks) self.symbol = extract_ws_symbol(symbol) self.frequency1sec = frequency1sec def get_channel_name(self): return f"{self.symbol}@markPrice" + ("@1s" if self.frequency1sec else "") class MarkPriceAllSubscription(BinanceSubscription): def __init__(self, frequency1sec: bool = False, callbacks: CallbacksType = None): super().__init__(callbacks) self.frequency1sec = frequency1sec def get_channel_name(self): return "!markPrice@arr" + ("@1s" if self.frequency1sec else "") class CandlestickSubscription(BinanceSubscription): def __init__(self, symbol: PairSymbolType, interval: enums.Interval, callbacks: CallbacksType = None): super().__init__(callbacks) self.interval = interval self.symbol = extract_ws_symbol(symbol) def get_channel_name(self): return f"{self.symbol}@kline_{self.interval.value}" class ContContractCandlestickSubscription(BinanceSubscription): def __init__(self, pair: Pair, interval: enums.Interval, contract_type: enums.ContractType, callbacks: CallbacksType = None): super().__init__(callbacks) if contract_type not in [enums.ContractType.PERPETUAL, enums.ContractType.CURRENT_QUARTER, enums.ContractType.NEXT_QUARTER]: raise BinanceException(f"Level [{contract_type.value}] must be one of {enums.ContractType.PERPETUAL.value}, " f"{enums.ContractType.CURRENT_QUARTER.value} or {enums.ContractType.NEXT_QUARTER.value}.") self.pair = pair self.interval = interval self.contract_type = contract_type def get_channel_name(self): return f"{map_ws_pair(self.pair)}_{self.contract_type.value.lower()}@continuousKline_{self.interval.value}" class IndexPriceCandlestickSubscription(BinanceSubscription): def __init__(self, pair: Pair, interval: enums.Interval, callbacks: CallbacksType = None): super().__init__(callbacks) self.pair = pair self.interval = interval def get_channel_name(self): return f"{map_ws_pair(self.pair)}@indexPriceKline_{self.interval.value}" class MarkPriceCandlestickSubscription(BinanceSubscription): def __init__(self, symbol: str, interval: enums.Interval, callbacks: CallbacksType = None): super().__init__(callbacks) self.symbol = symbol self.interval = interval def get_channel_name(self): return f"{self.symbol}@markPriceKline_{self.interval.value}" class AllMarketMiniTickersSubscription(BinanceSubscription): def __init__(self, callbacks: CallbacksType = None): super().__init__(callbacks) def get_channel_name(self): return "!miniTicker@arr" class MiniTickerSubscription(BinanceSubscription): def __init__(self, symbol: PairSymbolType, callbacks: CallbacksType = None): super().__init__(callbacks) self.symbol = extract_ws_symbol(symbol) def get_channel_name(self): return f"{self.symbol}@miniTicker" class AllMarketTickersSubscription(BinanceSubscription): def __init__(self, callbacks: CallbacksType = None): super().__init__(callbacks) def get_channel_name(self): return "!ticker@arr" class TickerSubscription(BinanceSubscription): def __init__(self, symbol: PairSymbolType, callbacks: CallbacksType = None): super().__init__(callbacks) self.symbol = extract_ws_symbol(symbol) def get_channel_name(self): return f"{self.symbol}@ticker" class OrderBookTickerSubscription(BinanceSubscription): def __init__(self, callbacks: CallbacksType = None): super().__init__(callbacks) def get_channel_name(self): return "!bookTicker" class OrderBookSymbolTickerSubscription(BinanceSubscription): def __init__(self, symbol: PairSymbolType, callbacks: CallbacksType = None): super().__init__(callbacks) self.symbol = extract_ws_symbol(symbol) def get_channel_name(self): return f"{self.symbol}@bookTicker" class LiquidationOrdersSubscription(BinanceSubscription): def __init__(self, symbol: PairSymbolType, callbacks: CallbacksType = None): super().__init__(callbacks) self.symbol = extract_ws_symbol(symbol) def get_channel_name(self): return f"{self.symbol}@forceOrder" class AllMarketLiquidationOrdersSubscription(BinanceSubscription): def __init__(self, callbacks: CallbacksType = None): super().__init__(callbacks) def get_channel_name(self): return "!forceOrder@arr" class DepthSubscription(BinanceSubscription): DEFAULT_FREQUENCY = 250 DEFAULT_LEVEL = 0 def __init__(self, symbol: PairSymbolType, level: int = DEFAULT_LEVEL, frequency: int = DEFAULT_FREQUENCY, callbacks: CallbacksType = None): super().__init__(callbacks) if level not in [0, 5, 10, 20]: raise BinanceException(f"Level [{level}] must be one of 0, 5, 10 or 20.") if frequency not in [100, 250, 500]: raise BinanceException(f"Frequency [{frequency}] must be one of 100, 250 or 500.") self.symbol = extract_ws_symbol(symbol) self.level = level self.frequency = frequency def get_channel_name(self): if self.level == DepthSubscription.DEFAULT_LEVEL: level_str = "" else: level_str = f"{self.level}" if self.frequency == DepthSubscription.DEFAULT_FREQUENCY: frequency_str = "" else: frequency_str = f"@{self.frequency}ms" return f"{self.symbol}@depth{level_str}{frequency_str}" class BlvtSubscription(BinanceSubscription): def __init__(self, pair: Pair, callbacks: CallbacksType = None): super().__init__(callbacks) self.pair = pair def get_channel_name(self): return f"{map_ws_pair(self.pair).upper()}@tokenNav" class BlvtCandlestickSubscription(BinanceSubscription): def __init__(self, pair: Pair, interval: enums.Interval, callbacks: CallbacksType = None): super().__init__(callbacks) self.pair = pair self.interval = interval def get_channel_name(self): return f"{map_ws_pair(self.pair).upper()}@nav_Kline_{self.interval.value}" class CompositeIndexSubscription(BinanceSubscription): def __init__(self, pair: Pair, callbacks: CallbacksType = None): super().__init__(callbacks) self.pair = pair def get_channel_name(self): return f"{map_ws_pair(self.pair)}@compositeIndex" class AccountSubscription(BinanceSubscription): def __init__(self, callbacks: CallbacksType = None): super().__init__(callbacks) self.listen_key = None async def initialize(self, **kwargs): binance_client = kwargs['binance_client'] listen_key_response = await binance_client.get_listen_key() self.listen_key = listen_key_response["response"]["listenKey"] LOG.debug(f'Listen key: {self.listen_key}') def get_channel_name(self): return self.listen_key def is_authenticated(self) -> bool: return True
import torch import numpy as np from matplotlib import pyplot as plt import sys from policy_network import PolicyNetwork from value_network import ValueNetwork from buffer import Buffer class TRPO(object): def __init__(self, alpha, input_size, output_size): self.buffer = Buffer() self.value_network = ValueNetwork(alpha, input_size=input_size, output_size=1) self.policy_network = PolicyNetwork(0.0001, input_size=input_size, output_size=output_size) self.old_policy_network = PolicyNetwork(0.0001, input_size=input_size, output_size=output_size) # store policy state self.buffer.store_parameters(self.policy_network.state_dict()) self.avg_rewards = [] def update(self, iter=80): observations = self.buffer.get_observations() #actions = self.buffer.get_actions() rewards = self.buffer.get_rewards() advantages = self.buffer.get_advantages() log_probs = self.buffer.get_log_probs() self.old_policy_network.load_state_dict(self.buffer.old_parameters) old_pred = self.old_policy_network.forward(observations) old_action_probabilities = torch.distributions.Categorical(old_pred) old_action = old_action_probabilities.sample() old_probs = old_action_probabilities.log_prob(old_action).reshape(-1, 1) self.buffer.store_parameters(self.policy_network.state_dict()) self.policy_network.optimize(log_probs, old_probs, advantages) self.value_network.optimize(observations, rewards, iter=iter) def calculate_advantage(self): prev_observation = self.buffer.observation_buffer[-2] observation = self.buffer.observation_buffer[-1] v1 = self.value_network(prev_observation) v2 = self.value_network(observation) return self.buffer.reward_buffer[-1] + v2 - v1 def act(self, observation): prediction = self.policy_network.forward(observation) action_probabilities = torch.distributions.Categorical(prediction) action = action_probabilities.sample() log_prob = action_probabilities.log_prob(action) self.buffer.store_log_prob(log_prob) return action.item(), log_prob def discount_rewards(self, step): for s in reversed(range(1, step+1)): update = 0 for k in reversed(range(1, s+1)): update += self.buffer.reward_buffer[-k]*(0.99**k) self.buffer.reward_buffer[-s] += update def train(self, env, epochs=1000, steps=4000): plt.ion() for epoch in range(epochs): observation = env.reset() self.buffer.store_observation(observation) step = 0 for step in range(steps): step += 1 action, log_prob = self.act(observation) self.buffer.store_action(log_prob) observation, reward, done, info = env.step(action) self.buffer.store_reward(reward/200 + observation[0]/2 + (1*observation[1])**2) #env.render() self.buffer.store_observation(observation) advantage = self.calculate_advantage() self.buffer.store_advantage(advantage) if done or step == steps-1: observation = env.reset() self.discount_rewards(step) step = 0 self.update(iter=5) rwrd = self.buffer.get_rewards() self.avg_rewards.append((torch.sum(rwrd)/rwrd.shape[0]).numpy()) self.buffer.clear_buffer() print("Average Reward: {}".format(self.avg_rewards[-1])) plt.title("Reward per Epoch") plt.xlabel("Epoch") plt.ylabel("Reward") plt.plot(self.avg_rewards, label="average reward") plt.legend(loc="upper left") plt.draw() plt.pause(0.0001) plt.clf() def main(): import gym torch.manual_seed(1) np.random.seed(1) env = gym.make('MountainCar-v0') trpo = TRPO(alpha=0.001, input_size=2, output_size=3) trpo.train(env=env, epochs=200, steps=800) if __name__ == "__main__": main()
import csv, datetime as dt from datetime import datetime from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from db import * db = create_engine('sqlite:///data/mke_wibrs_db.db', echo = False) Session = sessionmaker(bind = db) session = Session() def get_data(start, end): with open('data/wibrs.csv') as data: read = csv.reader(data, delimiter = ',') record = [i for i in read] return record[start:end] def tr_data(start, end): record = get_data(start, end) for i in record: date_data = i[1] f_date = '%Y-%m-%d %H:%M:%S' date = datetime.strptime(date_data, f_date) update_time = dt.datetime.now() insert = mke_wibrs_db(i[0], date, i[2], i[9], None, None, None, i[4], i[6], i[8], i[3], i[12], i[13], i[14], i[15], i[16], i[17], i[18], i[19], i[20], i[21], update_time) session.add(insert) session.commit() print(i[0], ' successfully entered.') def exe(start, end): tr_data(start, end) if __name__ == '__main__': exe(1, 650673)
# std from typing import List, Optional # 3rd party from sqlalchemy.sql.expression import text # custom from test_system.constants import MAX_HASH_GENERATION_TRY_COUNT, TOKEN_PERIOD_OF_VALIDITY_IN_DAYS from test_system.util import generate_unknown_hash_token from test_system.models.database import db from .answers import EvaluableTestAnswer from .test import Test class Token(db.Model): __tablename__ = "token" token = db.Column(db.String, primary_key=True) max_usage_count: db.Column = db.Column(db.Integer) personal_data_test_name = db.Column(db.String, db.ForeignKey("test.name")) pre_collect_test_names = db.Column(db.ARRAY(db.String)) # references name (column) from test (table) evaluable_test_name = db.Column(db.String, db.ForeignKey("test.name")) creation_timestamp: db.Column = db.Column(db.TIMESTAMP) # no default value here, otherwise None can't be inserted personal_data_test = db.relationship("Test", foreign_keys=[personal_data_test_name]) evaluable_test = db.relationship("Test", foreign_keys=[evaluable_test_name]) @classmethod def generate_token(cls, max_usage_count: Optional[int], personal_data_test_name: str, pre_collect_test_names: List[str], evaluable_test_name: str, expires: bool = True) -> "Token": token_hash = generate_unknown_hash_token( lambda test_token: cls.query.filter_by(token=test_token).first() is None, MAX_HASH_GENERATION_TRY_COUNT) return cls(creation_timestamp=db.func.now() if expires else None, token=token_hash, max_usage_count=max_usage_count, personal_data_test_name=personal_data_test_name, pre_collect_test_names=pre_collect_test_names, evaluable_test_name=evaluable_test_name) @staticmethod def get_earliest_valid_sql_timestamp(): """ Returns a SQL timestamp, which will be the earliest time an unexpired token could have been created. """ return text(f"NOW() - INTERVAL '1 DAY' * {TOKEN_PERIOD_OF_VALIDITY_IN_DAYS}") def __init__(self, **kwargs): if "creation_timestamp" not in kwargs: # do manually to enable None passing kwargs["creation_timestamp"] = db.func.now() super().__init__(**kwargs) def __repr__(self): return (f"Token '{self.token}' (" f"personal data test: {self.personal_data_test_name}, " f"pre collect Tests: {self.pre_collect_test_names}, " f"evaluable test: {self.evaluable_test_name}, " f"usages: {self.max_usage_count})") def was_used_for_answer(self, evaluable_test_answer: EvaluableTestAnswer) -> bool: """ Returns True, if this token was used to evaluate the evaluable_test_answer earlier. """ return evaluable_test_answer.was_evaluated_with_token == self.token def is_invalid(self) -> bool: """ Returns, whether the token is invalid - either because it is expired or because it has no usage left. """ return self._is_expired() or self._has_no_usage_left() def use_for(self, evaluable_test_answer: EvaluableTestAnswer) -> None: """ Should be called, when the token was used for the evaluable_test_answer. """ evaluable_test_answer.was_evaluated_with_token = self.token if self.max_usage_count is not None: self.max_usage_count -= 1 db.session.commit() def get_pre_collect_tests(self) -> List[Test]: """ Returns a list of Tests, which should be used as PRE_COLLECT_TESTs, for this token. """ possible_pre_collect_tests = [Test.query.filter_by(name=pre_collect_test_name).first() for pre_collect_test_name in self.pre_collect_test_names] pre_collect_tests = list(filter(lambda test: test is not None, possible_pre_collect_tests)) return pre_collect_tests def _is_expired(self) -> bool: if self.creation_timestamp is None: return False unexpired_token = Token.query.filter_by(token=self.token)\ .filter(Token.creation_timestamp >= Token.get_earliest_valid_sql_timestamp()).first() return unexpired_token != self def _has_no_usage_left(self) -> bool: return self.max_usage_count is not None and self.max_usage_count <= 0
from meadowgrid.config import MEADOWGRID_INTERPRETER from meadowgrid.meadowgrid_pb2 import ServerAvailableInterpreter from meadowgrid.runner import ( Deployment, EC2AllocHost, LocalHost, SshHost, run_command, run_function, ) from test_meadowgrid.test_ec2_alloc import _PRIVATE_KEY_FILENAME async def test_run_function_local(): result = await run_function( lambda x: x * 2, LocalHost(), Deployment(ServerAvailableInterpreter(interpreter_path=MEADOWGRID_INTERPRETER)), args=[5], ) assert result == 10 # these parameters must be changed! # this must be a linux host with meadowgrid installed as per build_meadowgrid_amis.sh _REMOTE_HOST = SshHost("localhost", {}) async def manual_test_run_function_remote(): result = await run_function( lambda x: x * 2, _REMOTE_HOST, args=[5], ) assert result == 10 async def manual_test_run_command_remote(): await run_command( "pip --version", _REMOTE_HOST, ) # right now we don't get the stdout back, so the only way to check this is to look # at the log file on the remote host async def manual_test_run_function_allocated_ec2_host(): result = await run_function( lambda x: x * 2, EC2AllocHost(1, 1, 15, private_key_filename=_PRIVATE_KEY_FILENAME), args=[5], ) assert result == 10
from torch.nn.modules import LSTM import torch.nn as nn from torch.autograd import Variable import torch import pdb class ChannelLSTM(nn.Module): def __init__(self,input_size=69505, output_size=5952,hidden_size=52,num_layers=16,batch_first=True, dropout=0.1): super(ChannelLSTM, self).__init__() self.hidden_size=hidden_size self.num_layers=num_layers self.lstm=LSTM(input_size=input_size,hidden_size=hidden_size,num_layers=num_layers, batch_first=batch_first,dropout=dropout) self.output=nn.Linear(self.hidden_size,output_size) self.hx=None self.reset_parameters() def reset_parameters(self): self.lstm.reset_parameters() self.output.reset_parameters() def init_states_each_channel(self): # num_layers, channel, dim h=Variable(torch.Tensor(self.num_layers, 1, self.hidden_size)).cuda().zero_() s=Variable(torch.Tensor(self.num_layers, 1, self.hidden_size)).cuda().zero_() return (h,s) def assign_states_tuple(self, states_tuple): self.hx=states_tuple def forward(self, input): output,statetuple=self.lstm(input,self.hx) output=output.squeeze(1) output=self.output(output) return output, statetuple # # class ChannelLSTM2(nn.Module): # def __init__(self,input_size=69505, output_size=5952,hidden_size=128,num_layers=32,batch_first=True, # dropout=0.1): # super(ChannelLSTM2, self).__init__() # self.hidden_size=hidden_size # self.num_layers=num_layers # self.lstm=LSTM(input_size=input_size,hidden_size=hidden_size,num_layers=num_layers, # batch_first=batch_first,dropout=dropout) # self.output=nn.Linear(self.hidden_size,output_size) # self.hx=None # self.reset_parameters() # # def reset_parameters(self): # self.lstm.reset_parameters() # self.output.reset_parameters() # # def init_states_each_channel(self): # # num_layers, channel, dim # h=Variable(torch.Tensor(self.num_layers, 1, self.hidden_size)).cuda().zero_() # s=Variable(torch.Tensor(self.num_layers, 1, self.hidden_size)).cuda().zero_() # return (h,s) # # def assign_states_tuple(self, states_tuple): # self.hx=states_tuple # # def forward(self, input): # output,statetuple=self.lstm(input,self.hx) # output=output.squeeze(1) # output=self.output(output) # return output, statetuple # # # # class Custom_LSTM(nn.Module): # # def __init__(self,input_size=69505, output_size=5952,hidden_size=128,num_layers=32): # super(Custom_LSTM, self).__init__() # # # class LSTM_Unit(nn.Module): # """ # A single layer unit of LSTM # """ # # def __init__(self, x, R, W, h, bs): # super(LSTM_Unit, self).__init__() # # self.x = x # self.R = R # self.W = W # self.h = h # self.bs = bs # # self.W_input = nn.Linear(self.x + self.R * self.W + 2 * self.h, self.h) # self.W_forget = nn.Linear(self.x + self.R * self.W + 2 * self.h, self.h) # self.W_output = nn.Linear(self.x + self.R * self.W + 2 * self.h, self.h) # self.W_state = nn.Linear(self.x + self.R * self.W + 2 * self.h, self.h) # # self.old_state = Variable(torch.Tensor(self.bs, self.h).zero_().cuda(),requires_grad=False) # # def reset_parameters(self): # for module in self.children(): # module.reset_parameters() # # def forward(self, input_x, previous_time, previous_layer): # # a hidden unit outputs a hidden output new_hidden. # # state also changes, but it's hidden inside a hidden unit. # # semicolon_input = torch.cat([input_x, previous_time, previous_layer], dim=1) # # # 5 equations # input_gate = torch.sigmoid(self.W_input(semicolon_input)) # forget_gate = torch.sigmoid(self.W_forget(semicolon_input)) # new_state = forget_gate * self.old_state + input_gate * \ # torch.tanh(self.W_state(semicolon_input)) # output_gate = torch.sigmoid(self.W_output(semicolon_input)) # new_hidden = output_gate * torch.tanh(new_state) # self.old_state = Parameter(new_state.data,requires_grad=False) # # return new_hidden # # # def reset_batch_channel(self,list_of_channels): # raise NotImplementedError() # # # # def new_sequence_reset(self): # # raise DeprecationWarning("We no longer reset sequence together in all batch channels, this function deprecated") # # # # self.W_input.weight.detach() # # self.W_input.bias.detach() # # self.W_output.weight.detach() # # self.W_output.bias.detach() # # self.W_forget.weight.detach() # # self.W_forget.bias.detach() # # self.W_state.weight.detach() # # self.W_state.bias.detach() # # # # self.old_state = Parameter(torch.Tensor(self.bs, self.h).zero_().cuda(),requires_grad=False)
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest import mock from oauth2py.client import OauthClient class TestQQ(unittest.TestCase): def setUp(self): self.config = { 'name': 'qq', 'client_id': '1234567', 'client_secret': 'secret_abcefg', 'redirect_uri': 'http://127.0.0.1/oauth/qq/callback', 'scope': '' } self.access_token = 'access_token123' self.access_token_resp = 'access_token={0}&expires_in=7776000&refresh_token=88E4BE14'.format( self.access_token) self.user_id_resp = 'callback( {"client_id":"1234567","openid":"abcde"} );' self.user_info_resp = { u'ret': '0', u'msg': '', u'is_lost': '0', u'nickname': 'caoyue', u'gender': '男', u'province': '', u'city': '', u'year': '1234', u'figureurl': 'http://qzapp.qlogo.cn/qzapp/100330589/46D42C580040C4AA42FD15141CF7DCC7/30', u'figureurl_1': 'http://qzapp.qlogo.cn/qzapp/100330589/46D42C580040C4AA42FD15141CF7DCC7/50', u'figureurl_2': 'http://qzapp.qlogo.cn/qzapp/100330589/46D42C580040C4AA42FD15141CF7DCC7/100', u'figureurl_qq_1': 'http://q.qlogo.cn/qqapp/100330589/46D42C580040C4AA42FD15141CF7DCC7/40', u'figureurl_qq_2': 'http://q.qlogo.cn/qqapp/100330589/46D42C580040C4AA42FD15141CF7DCC7/100', u'is_yellow_vip': '0', u'vip': '0', u'yellow_vip_level': '0', u'level': '0', u'is_yellow_year_vip': '0' } self.qq = OauthClient.load('qq') self.qq.init(self.config) def test_get_login_url(self): self.assertEqual( self.qq.get_login_url(), 'https://graph.qq.com/oauth2.0/authorize?client_id={0}&redirect_uri={1}&response_type=code'.format( self.config['client_id'], self.config['redirect_uri']) ) self.assertEqual( self.qq.get_login_url(state='abc'), 'https://graph.qq.com/oauth2.0/authorize?client_id={0}&redirect_uri={1}&response_type=code&state=abc'.format( self.config['client_id'], self.config['redirect_uri']) ) @mock.patch('oauth2py.base.requests.post') @mock.patch('oauth2py.base.requests.get') def test_get_user_info(self, mock_get, mock_post): query = 'code=12345&state=abc' # query = { # 'code': '12345', # 'state':'abc' # } mock_get.side_effect = self._mocked_requests_get mock_post_response = mock.Mock() mock_post_response.status_code = 200 mock_post_response.content = self.access_token_resp mock_post_response.json.side_effect = ValueError('Not valid json') mock_post.return_value = mock_post_response user = self.qq.get_user_info(query) self.assertEqual(mock_get.call_count, 2) self.assertEqual(mock_post.call_count, 1) # assert state self.assertEqual(self.qq.state, 'abc') # assert access token token = self.qq.get_access_token() self.assertEqual( token['access_token'], self.access_token ) # assert response uid self.assertEqual(user['name'], self.user_info_resp['nickname']) def _mocked_requests_get(self, *args, **kwargs): class MockResponse: def __init__(self, json_data, content, status_code): self.json_data = json_data self.content = content self.status_code = status_code def json(self): if not self.json_data: raise ValueError('not valid json') return self.json_data if args[0] == 'https://graph.qq.com/oauth2.0/me': return MockResponse(None, self.user_id_resp, 200) else: return MockResponse(self.user_info_resp, '', 200) return MockResponse({}, '', 404)
# 图片验证码Redis有效期, 单位:秒 IMAGE_CODE_REDIS_EXPIRES = 300 # 短信验证码Redis有效期,单位:秒 SMS_CODE_REDIS_EXPIRES = 300 # 七牛空间域名 # QINIU_DOMIN_PREFIX = "http://oyucyko3w.bkt.clouddn.com/" QINIU_DOMIN_PREFIX = "http://pbbiphbgi.bkt.clouddn.com/" # 首页展示最多的新闻数量 HOME_PAGE_MAX_NEWS = 10 # 用户的关注每一页最多数量 USER_FOLLOWED_MAX_COUNT = 4 # 用户收藏最多新闻数量 USER_COLLECTION_MAX_NEWS = 10 # 其他用户每一页最多新闻数量 OTHER_NEWS_PAGE_MAX_COUNT = 10 # 点击排行展示的最多新闻数据 CLICK_RANK_MAX_NEWS = 10 # 管理员页面用户每页多最数据条数 ADMIN_USER_PAGE_MAX_COUNT = 10 # 管理员页面新闻每页多最数据条数 ADMIN_NEWS_PAGE_MAX_COUNT = 10
# encoding=utf-8 ''' Created on 2015年11月9日 @author: lowitty ''' import logging, os, random, sys sbcPMlogger = logging.getLogger('server.SBCPM') from com.ericsson.xn.server.parser.SbcParser import SbcNodeInfo from xml.etree import ElementTree as ET import threading, time from datetime import datetime, timedelta from threading import Lock lock = Lock() class SbcPMHolder(): def __init__(self): self.pmcounters = {} self.pmcounters["round"] = 0 mapCounters = {} mapCounters[0] = [0, 0, 0, 0, 0, 0] mapCounters[1] = [0, 0, 0, 0, 0, 0] mapCounters[2] = [0, 0, 0, 0, 0, 0] mapCounters[3] = [0, 0, 0, 0, 0, 0] mapCounters[4] = [0, 0, 0, 0, 0, 0] mapCounters[5] = [0, 0, 0, 0, 0, 0] mapCounters[6] = [0, 0, 0, 0, 0, 0] mapCounters[7] = [0, 0, 0, 0, 0, 0] self.pmcounters["counter"] = mapCounters def getCounters(self): return self.pmcounters["counter"] def getPMCounters(self): return self.pmcounters def updatePMCounters(self, mapCounter, iRound=None): lock.acquire() self.pmcounters["counter"] = mapCounter if (iRound is not None): self.pmcounters["round"] = iRound lock.release() class SbcPMWriter(threading.Thread): def __init__(self, pmHolderInstance): threading.Thread.__init__(self) self.stopThread = False filePath = os.path.dirname(os.path.abspath(__file__)) # /com/ericsson/xn/server/pm sep = os.path.sep self.sep = sep packagePath = sep + 'com' + sep + 'ericsson' + sep + 'xn' + sep + 'server' + sep + 'pm' self.parPath = filePath.split(packagePath)[0] self.pmHoler = pmHolderInstance sbcPMlogger.info('SBCPMGEN started.') self.updateSBCCounters() pass def run(self): while not self.stopThread: tNow = datetime.now() min = tNow.minute sec = tNow.second if (min + 1) % 5 == 0 and 35 > sec >= 30: # if(True): sbcPMlogger.info( 'About 30 seconds that the minutes will be multiples of 5, will simulate to update the counters, also random the next period logs.') try: f = open(self.parPath + self.sep + 'config' + self.sep + 'sbc' + self.sep + 'sbc_log.x', 'r') lines = f.readlines() f.close() lenth = len(lines) intsRandom = sorted(random.sample(range(0, lenth), random.randint(0, lenth))) sbcPMlogger.info(str(intsRandom)) newLines = [] tStart = tNow + timedelta(seconds=-270) for ir in intsRandom: tStampt = tStart + timedelta(seconds=24 * ir) newLines.append( '[' + tStampt.strftime('%Y-%m-%d %H:%M:%S') + '.' + str(tStampt.microsecond / 1000) + '] ' + lines[ir].strip() + '\n') nowFile = self.parPath + self.sep + 'config' + self.sep + 'sbc' + self.sep + 'sbc_log.now' lock.acquire() open(nowFile, 'w').close() f = open(nowFile, 'w') f.writelines(newLines) f.flush() f.close() lock.release() nowTime = datetime.now() t1 = nowTime + timedelta(minutes=1) t2 = nowTime + timedelta(minutes=6) msg = t1.strftime('%Y-%m-%d %H:%M') + ' to ' + t2.strftime('%H:%M') sbcPMlogger.warn(msg + ', logs are: ' + '||'.join([k.strip() for k in newLines])) self.updateSBCCounters() except Exception as e: sbcPMlogger.error('ERROR: ' + str(e)) '''originalMap = self.pmHoler.getPMCounters() sbcPMlogger.info('Dic of counters: ' + str(originalMap)) counters = {} r = originalMap['round'] mapCounter = originalMap['counter'] firEle = self.getFirstEle(r) for k, v in mapCounter.iteritems(): nk = k % 8 counters[k] = [(firEle + r + 1) * (nk + 1) * 1, (firEle + r + 1) * (nk + 1) * 2, (firEle + r + 1) * (nk + 1) * 3, (firEle + r + 1) * (nk + 1) * 4, (firEle + r + 1) * (nk + 1) * 5, (firEle + r + 1) * (nk + 1) * 6] if(r + 1 > 11): counters[k] = [0, 0, 0, 0, 0, 0] r += 1 if(r > 11): r = 0 self.pmHoler.updatePMCounters(counters, r) nowTime = datetime.now() t1 = nowTime + timedelta(minutes = 1) t2 = nowTime + timedelta(minutes = 6) msg = t1.strftime('%Y-%m-%d %H:%M') + ' to ' + t2.strftime('%H:%M') sbcPMlogger.info(msg + ', PM counters are: ' + str(self.pmHoler.getCounters()))''' deltaSec = 5 - (datetime.now().second % 5) time.sleep(deltaSec) else: time.sleep(5) def updateSBCCounters(self): xmlPath = self.parPath + self.sep + 'config' + self.sep + 'sbc' + self.sep + 'sbc_node.xml' # insNode = SbcNodeInfo(xmlPath) # node = insNode.getNodeInfoMap() et = ET.parse(xmlPath) tNow = datetime.now() r = (tNow + timedelta(seconds=30)).minute / 5 - 1 firEle = self.getFirstEle(r) cMap = {} channels = et.findall('./channel') for channel in channels: k = int(channel.find('./channelId').text) nk = k % 8 cMap[k] = [] c1 = str((firEle + r + 1) * (nk + 1) * 1) c2 = str((firEle + r + 1) * (nk + 1) * 2) c3 = str((firEle + r + 1) * (nk + 1) * 3) c4 = str((firEle + r + 1) * (nk + 1) * 4) c5 = str((firEle + r + 1) * (nk + 1) * 5) c6 = str((firEle + r + 1) * (nk + 1) * 6) channel.find('./c1').text = c1 channel.find('./c2').text = c2 channel.find('./c3').text = c3 channel.find('./c4').text = c4 channel.find('./c5').text = c5 channel.find('./c6').text = c6 cMap[k].append(c1) cMap[k].append(c2) cMap[k].append(c3) cMap[k].append(c4) cMap[k].append(c5) cMap[k].append(c6) versionTuple = sys.version_info[:2] version = '.'.join(repr(v) for v in versionTuple) lock.acquire() if ('2.7' == version): et.write(xmlPath, encoding='utf-8', xml_declaration=True, method='xml') else: et.write(xmlPath, encoding='utf-8') lock.release() t1 = tNow + timedelta(minutes=1) t2 = tNow + timedelta(minutes=6) msg = t1.strftime('%Y-%m-%d %H:%M') + ' to ' + t2.strftime('%H:%M') sbcPMlogger.info(msg + ', Counters: ' + str(cMap)) def stop(self): self.stopThread = True def getFirstEle(self, num): sum = 0 for i in range(0, num + 1): sum += i return sum
# Generated by Django 3.2.5 on 2021-07-29 04:51 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('src', '0012_courier_paypal_email'), ] operations = [ migrations.AddField( model_name='transaction', name='status', field=models.CharField(choices=[('in', 'In'), ('out', 'Out')], default='in', max_length=20), ), ]
from django import forms from django.forms.widgets import DateInput from book.models import Book, Publisher, Author class PublisherForm(forms.ModelForm): class Meta: model = Publisher fields = ['name'] class AuthorForm(forms.ModelForm): class Meta: model = Author fields = ['name'] class BookForm(forms.ModelForm): class Meta: model = Book fields = ['title', 'image', 'price', 'author', 'publisher'] #
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Fri Feb 17 12:38:44 2017 @author: ahefny, zmarinho """ from theano.tensor.shared_randomstreams import RandomStreams ''' decorator of noisy_model. ''' class NoisyModel(object): def __init__(self, obs_noise=0.0, obs_loc=0.0, state_noise=0.0, state_loc=0.0, state_dim=0, rng=None): self._srng = RandomStreams(seed=rng.seed()) self.rng = rng self._obs_loc = obs_loc self._state_loc = state_loc self._obs_std = obs_noise self._state_std = state_noise self._state_dim = state_dim self._state_noise = self._srng.normal(size=[self._state_dim], std=obs_noise, avg=state_loc) def _noisy_state(self, state): if self._state_std>0: state = state + self._state_noise return state def _noisy_obs(self, obs): noise = 0.0 if self._obs_std>0: noise = self.rng.normal(loc=self._obs_loc, scale=self._obs_std, size=obs.shape) o = obs + noise return o
#!/usr/bin/env python # vim:ts=4:sts=4:sw=4:et # # Author: Hari Sekhon # Date: 2016-12-05 16:37:57 +0000 (Mon, 05 Dec 2016) # # https://github.com/harisekhon/nagios-plugins # # License: see accompanying Hari Sekhon LICENSE file # # If you're using my code you're welcome to connect with me on LinkedIn # and optionally send me feedback to help steer this or other code I publish # # https://www.linkedin.com/in/harisekhon # """ Nagios Plugin to check the time since last deployment of Blue Talon policies via the Policy Management server REST API Outputs minutes since last deployment as well as the timestamp returned by the server, and in verbose mode also shows the user, host and message from the last deployment Optional thresholds may be applied against the time since last deployment in minutes, defaulting to a lower boundary (can also use the min:max threshold format) to raise alerts when fresh policy deployments are done. This enables triggering warning/critical alerts in a stable environment when policies shouldn't be changing that much). Tested on Blue Talon 2.12.0 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function #from __future__ import unicode_literals from datetime import datetime import logging import json import os import sys import traceback try: import requests from requests.auth import HTTPBasicAuth except ImportError: print(traceback.format_exc(), end='') sys.exit(4) srcdir = os.path.abspath(os.path.dirname(__file__)) libdir = os.path.join(srcdir, 'pylib') sys.path.append(libdir) try: # pylint: disable=wrong-import-position from harisekhon.utils import log, log_option, qquit, support_msg_api, isList, jsonpp from harisekhon.utils import validate_host, validate_port, validate_user, validate_password from harisekhon import NagiosPlugin except ImportError as _: print(traceback.format_exc(), end='') sys.exit(4) __author__ = 'Hari Sekhon' __version__ = '0.3' class CheckBlueTalonPolicyDeploymentAge(NagiosPlugin): def __init__(self): # Python 2.x super(CheckBlueTalonPolicyDeploymentAge, self).__init__() # Python 3.x # super().__init__() self.software = 'Blue Talon' self.default_host = 'localhost' self.default_port = 8111 self.default_user = 'btadminuser' self.default_password = 'P@ssw0rd' self.host = self.default_host self.port = self.default_port self.user = self.default_user self.password = None self.protocol = 'http' self.api_version = '1.0' self.msg = '{0} version unknown - no message defined'.format(self.software) self.ok() def add_options(self): self.add_hostoption(name=self.software, default_host=self.default_host, default_port=self.default_port) self.add_useroption(name=self.software, default_user=self.default_user) self.add_opt('-S', '--ssl', action='store_true', help='Use SSL') self.add_thresholds() def process_options(self): self.host = self.get_opt('host') self.port = self.get_opt('port') self.user = self.get_opt('user') self.password = self.get_opt('password') validate_host(self.host) validate_port(self.port) validate_user(self.user) validate_password(self.password) ssl = self.get_opt('ssl') log_option('ssl', ssl) if ssl: self.protocol = 'https' self.validate_thresholds(simple='lower', optional=True) def run(self): log.info('querying %s', self.software) url = '{protocol}://{host}:{port}/PolicyManagement/{api_version}/deployments'\ .format(host=self.host, port=self.port, api_version=self.api_version, protocol=self.protocol) log.debug('GET %s', url) try: req = requests.get(url, auth=HTTPBasicAuth(self.user, self.password)) except requests.exceptions.RequestException as _: errhint = '' if 'BadStatusLine' in str(_.message): errhint = ' (possibly connecting to an SSL secured port without using --ssl?)' elif self.protocol == 'https' and 'unknown protocol' in str(_.message): errhint = ' (possibly connecting to a plain HTTP port with the -S / --ssl switch enabled?)' qquit('CRITICAL', str(_) + errhint) log.debug("response: %s %s", req.status_code, req.reason) log.debug("content:\n%s\n%s\n%s", '='*80, req.content.strip(), '='*80) if req.status_code == 400 and req.reason == 'Bad Request': qquit('CRITICAL', '{0}: {1} (possibly new install with no deployments yet?)'\ .format(req.status_code, req.reason)) if req.status_code != 200: qquit('CRITICAL', '{0}: {1}'.format(req.status_code, req.reason)) try: json_list = json.loads(req.content) if log.isEnabledFor(logging.DEBUG): print(jsonpp(json_list)) print('='*80) if not isList(json_list): raise ValueError('returned content is not a list') if not json_list: qquit('UNKNOWN', 'no deployments found') last_deployment = json_list[0] userid = last_deployment['UserId'] description = last_deployment['Description'] hostname = last_deployment['HostName'] timestamp = last_deployment['timestamp'] last_deploy_datetime = datetime.strptime(timestamp, '%b %d, %Y %H:%M:%S %p') except (KeyError, ValueError) as _: qquit('UNKNOWN', 'error parsing output from {software}: {exception}: {error}. {support_msg}'\ .format(software=self.software, exception=type(_).__name__, error=_, support_msg=support_msg_api())) timedelta = datetime.now() - last_deploy_datetime mins = int(int(timedelta.total_seconds()) / 60) self.msg = "{software} last deployment was at '{timestamp}', {mins} mins ago".format(software=self.software, timestamp=timestamp, mins=mins) self.check_thresholds(mins) if self.verbose: self.msg += " by user '{userid}', host = '{hostname}', description = '{description}'"\ .format(userid=userid, hostname=hostname, description=description) self.msg += ' | mins_since_last_deployment={mins}{thresholds}'\ .format(mins=mins, thresholds=self.get_perf_thresholds(boundary='lower')) if __name__ == '__main__': CheckBlueTalonPolicyDeploymentAge().main()
from itertools import islice from .dbconnect import * from .singleton import * from .properties import Properties p = Properties() db = DBConnect() class DataModel(metaclass=Singleton): ''' DataModel is a dictionary of perImageObjectCounts indexed by (TableNumber,ImageNumber) ''' def __init__(self): self.data = {} # {imKey:obCount, ... } self.groupMaps = {} # { groupName:{imKey:groupKey, }, ... } # eg: groupMaps['Wells'][(0,4)] ==> (3,'A01') self.revGroupMaps = {} # { groupName:{groupKey:imKey, }, ... } # eg: groupMaps['Wells'][(3,'A01')] ==> [(0,1),(0,2),(0,3),(0,4)] self.groupColNames = {} # {groupName:[col_names,...], ...} # eg: {'Plate+Well': ['plate','well'], ...} self.groupColTypes = {} # {groupName:[col_types,...], ...} self.cumSums = [] # cumSum[i]: sum of objects in images 1..i (inclusive) self.obCount = 0 self.keylist = [] self.filterkeys = {} # sets of image keys keyed by filter name self.plate_map = {} # maps well names to (x,y) plate locations self.rev_plate_map = {} # maps (x,y) plate locations to well names def __str__(self): return str(self.obCount)+" objects in "+ \ str(len(self.data))+" images" def PopulateModel(self, delete_model=False): if delete_model: self.DeleteModel() elif not self.IsEmpty(): # No op if already populated return if db is None: logging.error("Error: No database connection!") return if p.check_tables == 'yes': db.CheckTables() # Initialize per-image object counts to zero imKeys = db.GetAllImageKeys() for key in imKeys: key = tuple([int(k) for k in key]) # convert keys to to int tuples self.data[key] = 0 # Compute per-image object counts res = db.GetPerImageObjectCounts() for r in res: key = tuple([int(k) for k in r[:-1]]) self.data[key] = r[-1] self.obCount += r[-1] self.keylist = list(self.data.keys()) # Build a cumulative sum array to use for generating random objects quickly self.cumSums = np.zeros(len(self.data)+1, dtype='int') for i, imKey in enumerate(self.keylist): self.cumSums[i+1] = self.cumSums[i]+self.data[imKey] self.groupMaps, self.groupColNames = db.GetGroupMaps() self.revGroupMaps, _ = db.GetGroupMaps(reverse=True) for group in self.groupMaps: self.groupColTypes[group] = [type(col) for col in list(self.groupMaps[group].items())[0][1]] def DeleteModel(self): self.data = {} self.groupMaps = {} self.cumSums = [] self.obCount = 0 def _if_empty_populate(self): if self.IsEmpty: self.PopulateModel() def get_total_object_count(self): self._if_empty_populate() return self.obCount def GetRandomObject(self, N): ''' Returns a random object key We expect self.data.keys() to return the keys in the SAME ORDER every time since we build cumSums from that same ordering. This need not necessarily be in sorted order. ''' self._if_empty_populate() obIdxs = random.sample(list(range(1, self.obCount + 1)), N) obKeys = [] for obIdx in obIdxs: imIdx = np.searchsorted(self.cumSums, obIdx, 'left') # SUBTLETY: images which have zero objects will appear as repeated # sums in the cumulative array, so we must pick the first index # of any repeated sum, otherwise we are picking an image with no # objects while self.cumSums[imIdx] == self.cumSums[imIdx-1]: imIdx -= 1 imKey = list(self.data.keys())[imIdx-1] obIdx = obIdx-self.cumSums[imIdx-1] # object number relative to this image obKeys.append(db.GetObjectIDAtIndex(imKey, obIdx)) return obKeys def GetRandomObjects(self, N, imKeys=None, with_replacement=False): ''' Returns N random objects. If a list of imKeys is specified, GetRandomObjects will return objects from only these images. ''' self._if_empty_populate() if N > self.obCount: logging.info(f"{N} is greater than the number of objects. Fetching {self.obCount} objects.") N = self.obCount if imKeys == None: if p.use_legacy_fetcher: return self.GetRandomObject(N) else: return db.GetRandomObjectsSQL(None, N) elif imKeys == []: return [] else: if p.use_legacy_fetcher: sums = np.cumsum([self.data[imKey] for imKey in imKeys]) if sums[-1] < 1: return [] obs = [] if with_replacement: obIdxs = random.choices(list(range(1, sums[-1] + 1)), k=N) else: if N > sums[-1]: logging.info(f"Number of available objects is less than {N}. Fetching {sums[-1]} objects.") N = sums[-1] obIdxs = random.sample(list(range(1, sums[-1]+1)), k=N) for obIdx in obIdxs: index = np.searchsorted(sums, obIdx, 'left') if index != 0: while sums[index] == sums[index-1]: index -= 1 obIdx = obIdx-sums[index-1] obKey = db.GetObjectIDAtIndex(imKeys[index], obIdx) obs.append(obKey) else: obs = db.GetRandomObjectsSQL(imKeys, N) if with_replacement and 0 < len(obs) < N: obs = random.choices(obs, k=N) return obs def GetAllObjects(self, filter_name=None, gate_name=None, imkeys=[], N=None): self._if_empty_populate() if imkeys == []: imkeys = self.GetAllImageKeys(filter_name=filter_name, gate_name=gate_name) if p.use_legacy_fetcher: obs = (x for im in imkeys for x in self.GetObjectsFromImage(im)) if N is None: return list(obs) else: return list(islice(obs, N)) else: return db.GetAllObjectsSQL(imkeys, N) def GetObjectsFromImage(self, imKey): self._if_empty_populate() if p.use_legacy_fetcher: obKeys=[] for i in range(1,self.GetObjectCountFromImage(imKey)+1): obKeys.append(db.GetObjectIDAtIndex(imKey, i)) else: obKeys = db.GetAllObjectsSQL([imKey]) return obKeys def GetAllImageKeys(self, filter_name=None, gate_name=None): ''' Returns all object keys. If a filter is passed in, only the image keys that fall within the filter will be returned.''' self._if_empty_populate() if filter_name is not None: return db.GetFilteredImages(filter_name) elif gate_name is not None: return db.GetGatedImages(gate_name) else: return list(self.data.keys()) def GetObjectCountFromImage(self, imKey): ''' Returns the number of objects in the specified image. ''' self._if_empty_populate() return self.data[imKey] def GetImageKeysAndObjectCounts(self, filter_name=None): ''' Returns pairs of imageKeys and object counts. ''' self._if_empty_populate() if filter_name is None: return list(self.data.items()) else: return [(imKey, self.data[imKey]) for imKey in db.GetFilteredImages(filter_name)] def GetGroupColumnNames(self, group, include_table_name=False): ''' Returns the key column names associated with the specified group. ''' self._if_empty_populate() if include_table_name: # return a copy of this list so it can't be modified return list(self.groupColNames[group]) else: return [col.split('.')[-1] for col in self.groupColNames[group]] def GetGroupColumnTypes(self, group): ''' Returns the key column types associated with the specified group. ''' self._if_empty_populate() return list(self.groupColTypes[group]) # return a copy of this list so it can't be modified def SumToGroup(self, imdata, group): ''' Takes image data of the form: imdata = { imKey : np.array(values), ... } and sums the data into the specified group to return: groupdata = { groupKey : np.array(values), ... } ''' self._if_empty_populate() groupData = {} nvals = len(list(imdata.values())[0]) for imKey in list(imdata.keys()): # initialize each entry to [0,0,...] groupData[self.groupMaps[group][imKey]] = np.zeros(nvals) for imKey, vals in list(imdata.items()): # add values to running sum of this group groupData[self.groupMaps[group][imKey]] += vals return groupData def GetImagesInGroupWithWildcards(self, group, groupKey, filter_name=None): ''' Returns all imKeys in a particular group. '__ANY__' in the groupKey matches anything. ''' self._if_empty_populate() if '__ANY__' in groupKey: # if there are wildcards in the groupKey then accumulate # imkeys from all matching groupKeys def matches(key1, key2): return all([(a==b or b=='__ANY__') for a,b in zip(key1,key2)]) imkeys = [] for gkey, ikeys in list(self.revGroupMaps[group].items()): if matches(gkey,groupKey): imkeys += ikeys return imkeys else: # if there are no wildcards simply lookup the imkeys return self.GetImagesInGroup(group, groupKey, filter_name) def GetImagesInGroup(self, group, groupKey, filter_name=None): ''' Returns all imKeys in a particular group. ''' self._if_empty_populate() try: imkeys = self.revGroupMaps[group][groupKey] except KeyError: return [] # apply filter if supplied if filter_name is not None: if filter_name not in list(self.filterkeys.keys()): self.filterkeys[filter_name] = db.GetFilteredImages(filter_name) imkeys = set(imkeys).intersection(self.filterkeys[filter_name]) return imkeys def GetGroupKeysInGroup(self, group): ''' Returns all groupKeys in specified group ''' self._if_empty_populate() return list(set(self.groupMaps[group].values())) def IsEmpty(self): return self.data == {} def populate_plate_maps(self): '''Computes plate_maps which maps well names to their corresponding plate positions, and rev_plate_maps which does the reverse. eg: plate_maps['A01'] = (0,0) rev_plate_maps[(0,0)] = 'A01' ''' if p.well_format == 'A01': well_re = r'^[A-Za-z]\d+$' elif p.well_format == '123': well_re = r'^\d+$' else: raise ValueError('Unknown well format: %s' % repr(p.well_format)) pshape = p.plate_shape res = db.execute('SELECT DISTINCT %s FROM %s '%(p.well_id, p.image_table)) for r in res: well = r[0] # Make sure all well entries match the naming format if type(well) == str: well = well.strip() assert re.match(well_re, well), 'Well "%s" did not match well naming format "%s"'%(r[0], p.well_format) elif type(well) == int: if not p.well_format == '123': ''' import wx wx.MessageBox('Well "%s" did not match well naming format "%s".\n' 'If your wells are in numerical format then add\n' 'the line "well_format = 123" to your properties' 'file. Trying well_format = 123.'%(r[0], p.well_format), 'Error') ''' p.well_format = '123' try: self.populate_plate_maps() except: import wx wx.MessageBox('Error when trying well_format = 123. Try another well naming format.', 'Error') return if p.well_format == 'A01': if pshape[0] <= 26: row = 'abcdefghijklmnopqrstuvwxyz'.index(well[0].lower()) col = int(well[1:]) - 1 elif pshape[0] <= 52: row = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'.index(well[0]) col = int(well[1:]) - 1 else: raise ValueError('Plates with over 52 rows cannot have well format "A01" Check your properties file.') self.plate_map[well] = (row, col) self.rev_plate_map[(row, col)] = well elif p.well_format == '123': row = (int(well) - 1) // pshape[1] col = (int(well) - 1) % pshape[1] self.plate_map[well] = (row, col) self.rev_plate_map[(row, col)] = well def get_well_position_from_name(self, well_name): '''returns the plate position tuple (row, col) corresponding to the given well_name. ''' try: well_name = well_name.strip() except: pass if self.plate_map == {}: self.populate_plate_maps() if well_name in list(self.plate_map.keys()): return self.plate_map[well_name] else: raise KeyError('Well name "%s" could not be mapped to a plate position.' % well_name) def get_well_name_from_position(self, xxx_todo_changeme): '''returns the well name (eg: "A01") corresponding to the given plate position tuple. ''' (row, col) = xxx_todo_changeme if self.plate_map == {}: self.populate_plate_maps() if (row, col) in list(self.rev_plate_map.keys()): return self.rev_plate_map[(row, col)] else: raise KeyError('Plate position "%s" could not be mapped to a well key.' % str((row,col))) if __name__ == "__main__": p = Properties() p.LoadFile('../properties/2009_02_19_MijungKwon_Centrosomes.properties') db = DBConnect() db.connect() d = DataModel() d.PopulateModel()
from __future__ import print_function from constant import * from models import * from dataset import * from utils import f_score import os import sys import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from sklearn.metrics import f1_score,precision_score,recall_score import random import math import json import copy from time import time predEtt_tag = 36 Ett_tag = 36 argRoles = [] class Accuracy(object): def __init__(self): self.correct = 0 self.total = 0 def add(self, is_correct): self.total += 1 if is_correct: self.correct += 1 def get(self): if self.total == 0: return 0.0 else: return float(self.correct) / self.total def clear(self): self.correct = 0 self.total = 0 TestSet = Dataset("test") acc_NA = Accuracy() acc_not_NA = Accuracy() acc_total = Accuracy() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") get_prob = Discriminator_argProb2() get_prob.to(device, non_blocking=True) get_prob.load_state_dict(torch.load("Pmodel_noise.tar", map_location='cpu')) discriminator = Discriminator_argument() discriminator.to(device, non_blocking=True) discriminator.load_state_dict(torch.load("Amodel.tar", map_location='cpu')) def random_index(rate): start = 0 index = 0 randnum = random.random() for index, scope in enumerate(rate): start += scope if randnum <= start: break return index def gen_argRole(pred, ettIdx, ettLength): global argRoles for j in range(len(pred)): argRole = np.zeros((SenLen), dtype = np.int64) for arg_idx in range(len(pred)): arg_in_sen = list(range(ettIdx[arg_idx], ettIdx[arg_idx] + ettLength[arg_idx])) if arg_idx != j: if pred[arg_idx] == 0: argRole[arg_in_sen] = Ett_tag else: argRole[arg_in_sen] = pred[arg_idx] else: argRole[arg_in_sen] = predEtt_tag argRoles.append(argRole) def gibbs(dataset): discriminator.eval() get_prob.eval() # get_prob2.eval() preds = [] labels = [] pred_subtypes=[] golden_subtypes=[] senLabels = [] ettIdxs = [] ettLengths = [] results = [] # get the pred0 for words, pos1, pos2, loc, loc_mark, subtype, maskL, maskM, maskR, label, ettIdx, ettLength, senLabel, subtype_golden in dataset.batchs_gibbs(): words, pos1, pos2, loc, loc_mark, subtype, maskL, maskM, maskR, label, ettIdx, ettLength, senLabel = words.to(device), pos1.to(device), pos2.to(device), loc.to(device), loc_mark.to(device), subtype.to(device), maskL.to(device), maskM.to(device), maskR.to(device), label.to(device), ettIdx.to(device), ettLength.to(device), senLabel.to(device) loss, scores, pred = discriminator(words, pos1, pos2, loc, loc_mark, subtype, maskL, maskM, maskR, label) preds.extend(pred[1].cpu().numpy()) labels.extend(label.cpu().numpy()) pred_subtypes.extend(subtype.cpu().numpy()) golden_subtypes.extend(subtype_golden.cpu().numpy()) senLabels.extend(senLabel.cpu().numpy().tolist()) ettIdxs.extend(ettIdx) ettLengths.extend(ettLength) for i in range(len(words)): state = {} results.append(state) preds0 = copy.deepcopy(preds) # Transfer for N+K times global argRoles for trans_time in range(int(1/k_an) - 1): if trans_time % 10 == 0: cnt=0 cnt1=0 FN=0 FP=0 for i in range(len(preds)): if labels[i]==0: cnt1+=1 if preds[i]!=labels[i]: cnt+=1 if preds[i]==0 and labels[i]!=0: FN+=1 if preds[i]!=0 and labels[i]==0: FP+=1 print("EVAL %s #Wrong %d #NegToPos %d #PosToNeg %d #All %d #Negs %d"%("Test",cnt,FP,FN,len(preds),cnt1)) acc, _, f1 = f_score(preds, labels, pred_subtypes, golden_subtypes) print ("trans_time:{}, acc:{}, f1:{}".format(trans_time,acc,f1)) # generate the argRoles L = 0 R = 0 sen_idx = senLabels[0] argRoles = [] for i in range(len(senLabels)): if senLabels[i] == sen_idx: R += 1 else: sen_idx = senLabels[i] if L != R: gen_argRole(preds[L:R], ettIdxs[L:R], ettLengths[L:R]) L = R R += 1 sen_idx = senLabels[i] if L<len(preds): gen_argRole(preds[L:], ettIdxs[L:], ettLengths[L:]) # get prob probs = [] probs_max = [] probs_argmax = [] words_sum = [] L = 0 for words, pos1, pos2, loc, loc_mark, subtype, maskL, maskM, maskR, label, ettIdx, ettLength, senLabel, subtype_golden in dataset.batchs_gibbs(): argRole = torch.LongTensor(argRoles[L: L+len(words)]).to(device) L += len(words) words, pos1, pos2, loc, loc_mark, subtype, maskL, maskM, maskR, label, ettIdx, ettLength, senLabel = words.to(device), pos1.to(device), pos2.to(device), loc.to(device), loc_mark.to(device), subtype.to(device), maskL.to(device), maskM.to(device), maskR.to(device), label.to(device), ettIdx.to(device), ettLength.to(device), senLabel.to(device) _, prob, _ = get_prob(words, pos1, pos2, loc, loc_mark, subtype, argRole, maskL, maskM, maskR, label) prob_max, prob_argmax = torch.max(prob, dim = 1) prob_max = prob_max.detach().cpu().numpy().tolist() prob_argmax = prob_argmax.detach().cpu().numpy().tolist() prob = prob.detach().cpu().numpy().tolist() words_sum.extend(words) probs.extend(prob) probs_max.extend(prob_max) probs_argmax.extend(prob_argmax) # transfer and sum the states probs_max_an = [] sen_idx = 0 L = 0 R = 0 for i, prob in enumerate(probs): if senLabels[i] == sen_idx: R += 1 else: sen_idx = senLabels[i] if L != R: probMax_sum = 0 probs_max_an = [] for idx in range(L, R): probMax_sum += probs_max[idx] ** (1/(1 - k_an * trans_time)) for idx in range(L, R): probs_max_an.append(probs_max[idx] ** (1/(1 - k_an * trans_time)) / probMax_sum) idx_trans = random_index(probs_max_an) + L preds[idx_trans] = probs_argmax[idx_trans] L = R R += 1 # print the results sen_idx = 0 L = 0 R = 0 for i in range(len(senLabels)): if senLabels[i] == sen_idx: R += 1 else: sen_idx = senLabels[i] if L != R: pred1 = np.zeros((R-L), dtype = np.int64) print ('---sentence%d---'%sen_idx) print ('pred0:', preds0[L:R]) print ('label:', labels[L:R]) print ('result:', preds[L:R]) L = R R += 1 if __name__ == '__main__': gibbs(TestSet)
from flask import Blueprint bp = Blueprint("Name", __name__)
from typing import Any, List, Literal, TypedDict from .FHIR_base64Binary import FHIR_base64Binary from .FHIR_Element import FHIR_Element from .FHIR_string import FHIR_string from .FHIR_uri import FHIR_uri # A type of a manufactured item that is used in the provision of healthcare without being substantially changed through that activity. The device may be a medical or non-medical device. FHIR_Device_UdiCarrier = TypedDict( "FHIR_Device_UdiCarrier", { # Unique id for the element within a resource (for internal references). This may be any string value that does not contain spaces. "id": FHIR_string, # May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. "extension": List[Any], # May be used to represent additional information that is not part of the basic definition of the element and that modifies the understanding of the element in which it is contained and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions.Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). "modifierExtension": List[Any], # The device identifier (DI) is a mandatory, fixed portion of a UDI that identifies the labeler and the specific version or model of a device. "deviceIdentifier": FHIR_string, # Extensions for deviceIdentifier "_deviceIdentifier": FHIR_Element, # Organization that is charged with issuing UDIs for devices. For example, the US FDA issuers include :1) GS1: http://hl7.org/fhir/NamingSystem/gs1-di, 2) HIBCC:http://hl7.org/fhir/NamingSystem/hibcc-dI, 3) ICCBBA for blood containers:http://hl7.org/fhir/NamingSystem/iccbba-blood-di, 4) ICCBA for other devices:http://hl7.org/fhir/NamingSystem/iccbba-other-di. "issuer": FHIR_uri, # Extensions for issuer "_issuer": FHIR_Element, # The identity of the authoritative source for UDI generation within a jurisdiction. All UDIs are globally unique within a single namespace with the appropriate repository uri as the system. For example, UDIs of devices managed in the U.S. by the FDA, the value is http://hl7.org/fhir/NamingSystem/fda-udi. "jurisdiction": FHIR_uri, # Extensions for jurisdiction "_jurisdiction": FHIR_Element, # The full UDI carrier of the Automatic Identification and Data Capture (AIDC) technology representation of the barcode string as printed on the packaging of the device - e.g., a barcode or RFID. Because of limitations on character sets in XML and the need to round-trip JSON data through XML, AIDC Formats *SHALL* be base64 encoded. "carrierAIDC": FHIR_base64Binary, # Extensions for carrierAIDC "_carrierAIDC": FHIR_Element, # The full UDI carrier as the human readable form (HRF) representation of the barcode string as printed on the packaging of the device. "carrierHRF": FHIR_string, # Extensions for carrierHRF "_carrierHRF": FHIR_Element, # A coded entry to indicate how the data was entered. "entryType": Literal[ "barcode", "rfid", "manual", "card", "self-reported", "unknown" ], # Extensions for entryType "_entryType": FHIR_Element, }, total=False, )
#!/usr/bin/env python3 # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. # Download and build the data if it does not exist. try: from emoji.unicode_codes import UNICODE_EMOJI import unidecode except ImportError: raise ImportError('Please `pip install emoji unidecode` for the twitter task.') import parlai.core.build_data as build_data import os def replace_emoji(x): if x in UNICODE_EMOJI.keys(): return ' ' + UNICODE_EMOJI[x].replace(':', '@') + ' ' else: return x def split_punctuation(x): return ( x .replace('.', ' . ') .replace('. . .', '...') .replace(',', ' , ') .replace(';', ' ; ') .replace(':', ' : ') .replace('!', ' ! ') .replace('?', ' ? ') .replace('"', ' " ') .replace('(', ' ( ') .replace(')', ' ) ') ) def create_fb_format(data, dpath): fw1 = open(os.path.join(dpath, 'train.txt'), 'w') fw2 = open(os.path.join(dpath, 'valid.txt'), 'w') fw3 = open(os.path.join(dpath, 'test.txt'), 'w') for i in range(0, len(data) - 1, 2): fout = fw1 if (i % 500) == 0: fout = fw2 elif (i % 500) == 2: fout = fw3 use = True x = data[i].rstrip(' ').lstrip(' ').replace('\t', ' ') y = data[i + 1].rstrip(' ').lstrip(' ').replace('\t', ' ') x = x.replace('|', ' __PIPE__ ') y = y.replace('|', ' __PIPE__ ') x = ''.join(list(map(replace_emoji, x))) y = ''.join(list(map(replace_emoji, y))) x = split_punctuation(unidecode.unidecode(x)) y = split_punctuation(unidecode.unidecode(y)) x = ' '.join(x.split()) y = ' '.join(y.split()) if len(x) < 1 or len(y) < 1: use = False if use: s = 'text:' + x + '\tlabels:' + y + '\tepisode_done:True' fout.write('{} \n'.format(s)) fw1.close() fw2.close() fw3.close() def build(opt): version = 'v1.1' dpath = os.path.join(opt['datapath'], 'Twitter') if not build_data.built(dpath, version): print('[building data: ' + dpath + ']') if build_data.built(dpath): # An older version exists, so remove these outdated files. build_data.remove_dir(dpath) build_data.make_dir(dpath) # Download the data. fname1 = "twitter_en_big.txt.gz.partaa" fname2 = "twitter_en_big.txt.gz.partab" url = 'https://github.com/Marsan-Ma/chat_corpus/raw/master/' build_data.download(url + fname1, dpath, fname1) build_data.download(url + fname2, dpath, fname2) file1 = os.path.join(dpath, fname1) file2 = os.path.join(dpath, fname2) file3 = "twitter_en_big.txt.gz" outzipfile = os.path.join(dpath, file3) build_data.cat(file1, file2, outzipfile) import gzip with gzip.open(outzipfile, 'r') as f: file_content = bytes.decode(f.read()) data = file_content.split('\n')[2:] create_fb_format(data, dpath) os.remove(outzipfile) # Mark the data as built. build_data.mark_done(dpath, version)
# ATM machines allow 4 or 6 digit PIN codes and PIN codes cannot contain anything # but exactly 4 digits or exactly 6 digits. # If the function is passed a valid PIN string, return true, else return false. def validate_pin(pin): try: if (("+" in pin) or ("\n" in pin) or ("-" in pin)): return False elif (int(pin) and len(pin) == 4 or len(pin) == 6): return True elif (pin == "0000"): return True else: return False except: return False Test.describe("validate_pin") Test.it("should return False for pins with length other than 4 or 6") Test.assert_equals(validate_pin("1"),False, "Wrong output for '1'") Test.assert_equals(validate_pin("12"),False, "Wrong output for '12'") Test.assert_equals(validate_pin("123"),False, "Wrong output for '123'") Test.assert_equals(validate_pin("12345"),False, "Wrong output for '12345'") Test.assert_equals(validate_pin("1234567"),False, "Wrong output for '1234567'") Test.assert_equals(validate_pin("-1234"),False, "Wrong output for '-1234'") Test.assert_equals(validate_pin("1.234"),False, "Wrong output for '1.234'") Test.assert_equals(validate_pin("00000000"),False, "Wrong output for '00000000'") Test.it("should return False for pins which contain characters other than digits") Test.assert_equals(validate_pin("a234"),False, "Wrong output for 'a234'") Test.assert_equals(validate_pin(".234"),False, "Wrong output for '.234'") Test.assert_equals(validate_pin("-123"),False, "Wrong output for '-123'") Test.assert_equals(validate_pin("-1.234"),False, "Wrong output for '-1.234'") Test.it("should return True for valid pins") Test.assert_equals(validate_pin("1234"),True, "Wrong output for '1234'") Test.assert_equals(validate_pin("0000"),True, "Wrong output for '0000'") Test.assert_equals(validate_pin("1111"),True, "Wrong output for '1111'") Test.assert_equals(validate_pin("123456"),True, "Wrong output for '123456'") Test.assert_equals(validate_pin("098765"),True, "Wrong output for '098765'") Test.assert_equals(validate_pin("000000"),True, "Wrong output for '000000'") Test.assert_equals(validate_pin("123456"),True, "Wrong output for '123456'") Test.assert_equals(validate_pin("090909"),True, "Wrong output for '090909'")
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import data_processing data = data_processing.load_data(download=True) new_data = data_processing.convert2onehot(data) # prepare training data new_data = new_data.values.astype(np.float32) # change to numpy array and float32 np.random.shuffle(new_data) sep = int(0.7*len(new_data)) train_data = new_data[:sep] # training data (70%) test_data = new_data[sep:] # test data (30%) # build network tf_input = tf.placeholder(tf.float32, [None, 25], "input") tfx = tf_input[:, :21] tfy = tf_input[:, 21:] l1 = tf.layers.dense(tfx, 128, tf.nn.relu, name="l1") l2 = tf.layers.dense(l1, 128, tf.nn.relu, name="l2") out = tf.layers.dense(l2, 4, name="l3") prediction = tf.nn.softmax(out, name="pred") loss = tf.losses.softmax_cross_entropy(onehot_labels=tfy, logits=out) accuracy = tf.metrics.accuracy( # return (acc, update_op), and create 2 local variables labels=tf.argmax(tfy, axis=1), predictions=tf.argmax(out, axis=1),)[1] opt = tf.train.GradientDescentOptimizer(learning_rate=0.1) train_op = opt.minimize(loss) sess = tf.Session() sess.run(tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())) # training plt.ion() fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4)) accuracies, steps = [], [] for t in range(4000): # training batch_index = np.random.randint(len(train_data), size=32) sess.run(train_op, {tf_input: train_data[batch_index]}) if t % 50 == 0: # testing acc_, pred_, loss_ = sess.run([accuracy, prediction, loss], {tf_input: test_data}) accuracies.append(acc_) steps.append(t) print("Step: %i" % t,"| Accurate: %.2f" % acc_,"| Loss: %.2f" % loss_,) # visualize testing ax1.cla() for c in range(4): bp = ax1.bar(c+0.1, height=sum((np.argmax(pred_, axis=1) == c)), width=0.2, color='red') bt = ax1.bar(c-0.1, height=sum((np.argmax(test_data[:, 21:], axis=1) == c)), width=0.2, color='blue') ax1.set_xticks(range(4), ["accepted", "good", "unaccepted", "very good"]) ax1.legend(handles=[bp, bt], labels=["prediction", "target"]) ax1.set_ylim((0, 400)) ax2.cla() ax2.plot(steps, accuracies, label="accuracy") ax2.set_ylim(ymax=1) ax2.set_ylabel("accuracy") plt.pause(0.01) plt.ioff() plt.show()
def ack(m, n): """Computes the Ackermann function A(m,n). Args: m, n: non-negative integers. """ if m == 0: return n + 1 if n == 0: return ack(m - 1, 1) return ack(m - 1, ack(m, n - 1)) print(ack(3, 4))
# -*- coding: utf-8 -*- '''Generic test method module ''' from __future__ import with_statement, division, absolute_import, print_function from abc import ABCMeta, abstractmethod import six @six.add_metaclass(ABCMeta) class ANTest(object): '''Generic test method class ''' __doc__ = '' def __init__(self, *args, **kwargs): self._is_audio = None self._isnt_audio = None def get_doc(self): '''Returns method documentation (info) ''' return self.__doc__ def is_audio(self): '''Returns analyze result of audio-test ''' if self._is_audio is not None: return self._is_audio if self._isnt_audio is not None: return not self._isnt_audio def isnt_audio(self): '''Returns analyze result of non-audio-test ''' is_audio = self.is_audio() if is_audio is not None: return not is_audio def set_is_audio(self): '''Sets analyze result of audio-test ''' self._is_audio = True def set_isnt_audio(self): '''Sets analyze result of non-audio-test ''' self._isnt_audio = True @abstractmethod def analyze(self, samples_store): '''Analyzes samples ''' raise NotImplementedError('Abstract method not overridden!') # vim: ts=4:sw=4:et:fdm=indent:ff=unix
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from gym.spaces import Box, Discrete def count_vars(module): return sum(p.numel() for p in module.parameters() if p.requires_grad) def linearly_decaying_epsilon(decay_period, step, warmup_steps, epsilon): steps_left = decay_period + warmup_steps - step bonus = (1.0 - epsilon) * steps_left / decay_period bonus = np.clip(bonus, 0.0, 1.0 - epsilon) return epsilon + bonus class MLP(nn.Module): def __init__( self, layers, activation=torch.tanh, output_activation=None, output_scale=1, output_squeeze=False, ): super(MLP, self).__init__() self.layers = nn.ModuleList() self.activation = activation self.output_activation = output_activation self.output_scale = output_scale self.output_squeeze = output_squeeze for i, layer in enumerate(layers[1:]): self.layers.append(nn.Linear(layers[i], layer)) nn.init.kaiming_normal_( self.layers[i].weight, mode="fan_in", nonlinearity="relu" ) nn.init.zeros_(self.layers[i].bias) def forward(self, inputs): x = inputs for layer in self.layers[:-1]: x = self.activation(layer(x)) if self.output_activation is None: x = self.layers[-1](x) * self.output_scale else: x = self.output_activation(self.layers[-1](x)) * self.output_scale return x.squeeze() if self.output_squeeze else x class CategoricalDQNetwork(nn.Module): def __init__( self, in_features, action_space, num_atoms=50, Vmin=-100, Vmax=100, hidden_sizes=(400, 300), activation=torch.relu, output_activation=None, ): super(CategoricalDQNetwork, self).__init__() self.action_dim = action_space.n self.num_atoms = num_atoms self.supports = torch.linspace(Vmin, Vmax, num_atoms) self.q = MLP( layers=[in_features] + list(hidden_sizes) + [self.action_dim * num_atoms], activation=activation, output_activation=output_activation, ) def forward(self, x, log=False): q = self.q(x).view(-1, self.action_dim, self.num_atoms) if log: return F.log_softmax(q, dim=-1) else: return F.softmax(q, dim=-1) def policy(self, x): q_dist = self.forward(x) # (bsz, action_dim, num_atoms) q_vals = (q_dist * self.supports.expand_as(q_dist)).sum(-1) # (bsz, action_dim) action = torch.argmax(q_vals, dim=1, keepdim=True) # (bsz, 1) return action
# coding: utf-8 from __future__ import print_function from PySide2.QtWidgets import ( QDialog, QHBoxLayout, QPushButton, QVBoxLayout, QPlainTextEdit ) from ProfileInspector.src.util import doc_file class CaptureStdoutDialog(QDialog): def __init__(self): QDialog.__init__(self) # self.setWhatsThis(doc_file('launcher_capture_output')) self.setWindowTitle('Profile Inspector - Capture stdout') self.setMinimumSize(600, 300) self.setStyleSheet(''' QPlainTextEdit { background-color: rgb(33, 33, 33); color: white; font-family: Courier }''') self.output = QPlainTextEdit() self.output.setReadOnly(True) self.clear_text_btn = QPushButton('Clear Text') self.clear_text_btn.setToolTip('Clear output text') self.force_quit_btn = QPushButton('Force Quit') self.force_quit_btn.setToolTip('Force quit process') _buttons_layout = QHBoxLayout() _buttons_layout.addWidget(self.clear_text_btn) _buttons_layout.addWidget(self.force_quit_btn) self.clear_text_btn.clicked.connect(self.clear_text) _layout = QVBoxLayout() _layout.addWidget(self.output) _layout.addLayout(_buttons_layout) # _layout.addWidget(self.clear_text_btn) # _layout.addWidget(self.force_quit_btn) self.setLayout(_layout) def clear_text(self): self.output.clear()
from rolepermissions.roles import AbstractUserRole class Developer(AbstractUserRole): available_permissions = { # Tags 'access_server': True, 'access_testing': True, 'access_sources': True, 'access_admin': False, # Templates 'create_server_template': False, 'read_server_template': False, 'update_server_template': False, 'delete_server_template': False, # Profiles 'create_server_profile': True, 'read_server_profile': True, 'update_server_profile': True, 'delete_server_profile': True, # Parameters 'create_server_parameter': True, 'read_server_parameter': True, 'update_server_parameter': True, 'delete_server_parameter': True, # Keywords 'create_keyword': True, 'read_keyword': True, 'update_keyword': True, 'delete_keyword': True, # Test Cases 'create_test_case': True, 'read_test_case': True, 'update_test_case': True, 'delete_test_case': True, # Test suites 'create_test_suite': True, 'read_test_suite': True, 'update_test_suite': True, 'delete_test_suite': True, # Imported Script 'create_imported_script': True, 'read_imported_script': True, 'update_imported_script': True, 'delete_imported_script': True, # Collection 'create_collection': True, 'read_collection': True, 'update_collection': True, 'delete_collection': True, # Scripts 'run_scripts': True, # Sources - Robot 'create_robot': True, 'read_robot': True, 'update_robot': True, 'delete_robot': True, # Sources - Libraries 'create_libraries': True, 'read_libraries': True, 'update_libraries': True, 'delete_libraries': True, # Sources - Product 'create_product': False, 'read_product': False, 'update_product': False, 'delete_product': False, # Phases 'create_phases': False, 'read_phases': False, 'update_phases': False, 'delete_phases': False, # Commands 'create_commands': True, 'read_commands': True, 'update_commands': True, 'delete_commands': True, # Users 'create_users': False, 'read_users': False, 'update_users': False, 'delete_users': False, # Arguments 'create_argument': True, 'read_argument': True, 'update_argument': True, 'delete_argument': True, } class Tester(AbstractUserRole): available_permissions = { # Tags 'access_server': False, 'access_testing': True, 'access_sources': False, 'access_admin': False, # Test Case 'read_test_case': True, # Test Suite 'read_test_suite': True, # Collection 'read_collection': True, # Imported Script 'read_imported_script': True, # Scripts 'run_scripts': True, } class Auditor(AbstractUserRole): available_permissions = { # Tags 'access_server': True, 'access_testing': True, 'access_sources': True, 'read_server_template': True, # Profiles 'create_server_profile': True, 'read_server_profile': True, 'update_server_profile': True, 'delete_server_profile': True, # Parameters 'create_server_parameter': True, 'read_server_parameter': True, 'update_server_parameter': True, 'delete_server_parameter': True, # Keywords 'read_keyword': True, # Test Case 'read_test_case': True, # Test Suite 'read_test_suite': True, # Collection 'read_collection': True, # Imported Script 'read_imported_script': True, # Sources - Robot 'read_robot': True, # Sources - Libraries 'read_libraries': True, # Sources - Product 'read_product': True, # Commands 'read_commands': True, # Phases 'read_phases': True, } class Owner(AbstractUserRole): available_permissions = { # Tags 'access_server': True, 'access_testing': True, 'access_sources': True, 'access_admin': False, # Profiles 'create_server_profile': True, 'read_server_profile': True, 'update_server_profile': True, 'delete_server_profile': True, # Parameters 'create_server_parameter': True, 'read_server_parameter': True, 'update_server_parameter': True, 'delete_server_parameter': True, # Keywords 'create_keyword': True, 'read_keyword': True, 'update_keyword': True, 'delete_keyword': True, # Test Cases 'create_test_case': True, 'read_test_case': True, 'update_test_case': True, 'delete_test_case': True, # Test suites 'create_test_suite': True, 'read_test_suite': True, 'update_test_suite': True, 'delete_test_suite': True, # Imported Script 'create_imported_script': True, 'read_imported_script': True, 'update_imported_script': True, 'delete_imported_script': True, # Collection 'create_collection': True, 'read_collection': True, 'update_collection': True, 'delete_collection': True, # Scripts 'run_scripts': True, # Sources - Robot 'create_robot': True, 'read_robot': True, 'update_robot': True, 'delete_robot': True, # Sources - Libraries 'create_libraries': True, 'read_libraries': True, 'update_libraries': True, 'delete_libraries': True, # Commands 'create_commands': True, 'read_commands': True, 'update_commands': True, 'delete_commands': True, }
#!/usr/bin/env python # # Copyright (c) 2010, 2014, Oracle and/or its affiliates. All rights reserved. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; version 2 of the License. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # """ This file contains the copy database utility which ensures a database is exactly the same among two servers. """ from mysql.utilities.common.tools import check_python_version # Check Python version compatibility check_python_version() import multiprocessing import os import re import sys import time from mysql.utilities.exception import FormatError, UtilError from mysql.utilities.command import dbcopy from mysql.utilities.common.ip_parser import parse_connection from mysql.utilities.common.messages import (PARSE_ERR_DB_PAIR, PARSE_ERR_DB_PAIR_EXT) from mysql.utilities.common.my_print_defaults import MyDefaultsReader from mysql.utilities.common.options import (add_skip_options, add_verbosity, check_verbosity, check_rpl_options, check_skip_options, add_engines, add_all, check_all, add_locking, add_regexp, add_rpl_mode, add_rpl_user, add_ssl_options, get_ssl_dict, setup_common_options, add_character_set_option, check_password_security) from mysql.utilities.common.sql_transform import (is_quoted_with_backticks, remove_backtick_quoting) from mysql.utilities.common.tools import (check_connector_python, print_elapsed_time) # Constants NAME = "MySQL Utilities - mysqldbcopy " DESCRIPTION = "mysqldbcopy - copy databases from one server to another" USAGE = "%prog --source=user:pass@host:port:socket " \ "--destination=user:pass@host:port:socket orig_db:new_db" # Check for connector/python if not check_connector_python(): sys.exit(1) if __name__ == '__main__': # Needed for freeze support to avoid RuntimeError when running as a Windows # executable, otherwise ignored. multiprocessing.freeze_support() # Setup the command parser parser = setup_common_options(os.path.basename(sys.argv[0]), DESCRIPTION, USAGE, True, False) # Setup utility-specific options: # Connection information for the source server parser.add_option("--source", action="store", dest="source", type="string", default="root@localhost:3306", help="connection information for source server in the " "form: <user>[:<password>]@<host>[:<port>][:<socket>]" " or <login-path>[:<port>][:<socket>]" " or <config-path>[<[group]>].") # Connection information for the destination server parser.add_option("--destination", action="store", dest="destination", type="string", help="connection information for destination server in " "the form: <user>[:<password>]@<host>[:<port>]" "[:<socket>] or <login-path>[:<port>][:<socket>]" " or <config-path>[<[group]>].") # Add character set option add_character_set_option(parser) # Overwrite mode parser.add_option("-d", "--drop-first", action="store_true", default=False, help="drop the new database or object if it exists", dest="do_drop") # Add the exclude database option parser.add_option("-x", "--exclude", action="append", dest="exclude", type="string", default=None, help="exclude one or more " "objects from the operation using either a specific " "name (e.g. db1.t1), a LIKE pattern (e.g. db1.t% or " "db%.%) or a REGEXP search pattern. To use a REGEXP " "search pattern for all exclusions, you must also " "specify the --regexp option. Repeat the --exclude " "option for multiple exclusions.") # Add the all database options add_all(parser, "databases") # Add the skip common options add_skip_options(parser) # Add verbosity and quiet (silent) mode add_verbosity(parser, True) # Add engine options add_engines(parser) # Add locking options add_locking(parser) # Add regexp add_regexp(parser) # Replication user and password add_rpl_user(parser) # Add replication options but don't include 'both' add_rpl_mode(parser, False, False) # Add ssl options add_ssl_options(parser) # Add option to skip GTID generation parser.add_option("--skip-gtid", action="store_true", default=False, dest="skip_gtid", help="skip creation and execution of " "GTID statements during copy.") # Add multiprocessing option. parser.add_option("--multiprocess", action="store", dest="multiprocess", type="int", default="1", help="use multiprocessing, " "number of processes to use for concurrent execution. " "Special values: 0 (number of processes equal to the " "CPUs detected) and 1 (default - no concurrency).") # Now we process the rest of the arguments. opt, args = parser.parse_args() # Check security settings check_password_security(opt, args) try: skips = check_skip_options(opt.skip_objects) except UtilError: _, err, _ = sys.exc_info() print("ERROR: {0}".format(err.errmsg)) sys.exit(1) # Fail if no options listed. if opt.destination is None: parser.error("No destination server specified.") # Fail if no db arguments or all if len(args) == 0 and not opt.all: parser.error("You must specify at least one database to copy or " "use the --all option to copy all databases.") # Fail if we have arguments and all databases option listed. check_all(parser, opt, args, "databases") # Warn if quiet and verbosity are both specified check_verbosity(opt) # Process --exclude values to remove unnecessary quotes (when used) in # order to avoid further matching issues. if opt.exclude: # Remove unnecessary outer quotes. exclude_list = [pattern.strip("'\"") for pattern in opt.exclude] else: exclude_list = opt.exclude # Check multiprocessing options. if opt.multiprocess < 0: parser.error("Number of processes '{0}' must be greater or equal than " "zero.".format(opt.multiprocess)) num_cpu = multiprocessing.cpu_count() if opt.multiprocess > num_cpu and not opt.quiet: print("# WARNING: Number of processes '{0}' is greater than the " "number of CPUs '{1}'.".format(opt.multiprocess, num_cpu)) # Warning for non-posix (windows) systems if too many process are used. num_db = len(args) if (os.name != 'posix' and num_db and opt.multiprocess > num_db and not opt.quiet): print("# WARNING: Number of processes '{0}' is greater than the " "number of databases to copy '{1}'.".format(opt.multiprocess, num_db)) # Set options for database operations. options = { "skip_tables": "tables" in skips, "skip_views": "views" in skips, "skip_triggers": "triggers" in skips, "skip_procs": "procedures" in skips, "skip_funcs": "functions" in skips, "skip_events": "events" in skips, "skip_grants": "grants" in skips, "skip_create": "create_db" in skips, "skip_data": "data" in skips, "do_drop": opt.do_drop, "verbose": opt.verbosity >= 1, "quiet": opt.quiet, "debug": opt.verbosity == 3, "exclude_patterns": exclude_list, "new_engine": opt.new_engine, "def_engine": opt.def_engine, "all": opt.all, "locking": opt.locking, "use_regexp": opt.use_regexp, "rpl_user": opt.rpl_user, "rpl_mode": opt.rpl_mode, "verbosity": opt.verbosity, "skip_gtid": opt.skip_gtid, "charset": opt.charset, "multiprocess": num_cpu if opt.multiprocess == 0 else opt.multiprocess, } options.update(get_ssl_dict(opt)) # Parse source connection values try: # Create a basic configuration reader first for optimization purposes. # I.e., to avoid repeating the execution of some methods in further # parse_connection methods (like, searching my_print_defaults tool). config_reader = MyDefaultsReader(options, False) source_values = parse_connection(opt.source, config_reader, options) except FormatError: _, err, _ = sys.exc_info() parser.error("Source connection values invalid: {0}.".format(err)) except UtilError: _, err, _ = sys.exc_info() parser.error("Source connection values invalid: " "{0}.".format(err.errmsg)) # Parse destination connection values try: dest_values = parse_connection(opt.destination, config_reader, options) except FormatError: _, err, _ = sys.exc_info() parser.error("Destination connection values invalid: " "{0}.".format(err)) except UtilError: _, err, _ = sys.exc_info() parser.error("Destination connection values invalid: " "{0}.".format(err.errmsg)) # Check to see if attempting to use --rpl on the same server if (opt.rpl_mode or opt.rpl_user) and source_values == dest_values: parser.error("You cannot use the --rpl option for copying on the " "same server.") # Check replication options check_rpl_options(parser, opt) # Build list of databases to copy db_list = [] for db in args: # Split the database names considering backtick quotes grp = re.match(r"(`(?:[^`]|``)+`|\w+)(?:(?::)(`(?:[^`]|``)+`|\w+))?", db) if not grp: parser.error(PARSE_ERR_DB_PAIR.format(db_pair=db, db1_label='orig_db', db2_label='new_db')) db_entry = grp.groups() orig_db, new_db = db_entry # Verify if the size of the databases matched by the REGEX is equal to # the initial specified string. In general, this identifies the missing # use of backticks. matched_size = len(orig_db) if new_db: # add 1 for the separator ':' matched_size += 1 matched_size += len(new_db) if matched_size != len(db): parser.error(PARSE_ERR_DB_PAIR_EXT.format(db_pair=db, db1_label='orig_db', db2_label='new_db', db1_value=orig_db, db2_value=new_db)) # Remove backtick quotes (handled later) orig_db = remove_backtick_quoting(orig_db) \ if is_quoted_with_backticks(orig_db) else orig_db new_db = remove_backtick_quoting(new_db) \ if new_db and is_quoted_with_backticks(new_db) else new_db db_entry = (orig_db, new_db) db_list.append(db_entry) try: # Record start time. if opt.verbosity >= 3: start_copy_time = time.time() # Copy databases concurrently for non posix systems (windows). if options['multiprocess'] > 1 and os.name != 'posix': # Create copy databases tasks. copy_db_tasks = [] for db in db_list: copy_task = { 'source_srv': source_values, 'dest_srv': dest_values, 'db_list': [db], 'options': options } copy_db_tasks.append(copy_task) # Create process pool. workers_pool = multiprocessing.Pool( processes=options['multiprocess'] ) # Concurrently copy databases. workers_pool.map_async(dbcopy.multiprocess_db_copy_task, copy_db_tasks) workers_pool.close() workers_pool.join() else: # Copy all specified databases (no database level concurrency). # Note: on POSIX systems multiprocessing is applied at the object # level (not database). dbcopy.copy_db(source_values, dest_values, db_list, options) # Print elapsed time. if opt.verbosity >= 3: print_elapsed_time(start_copy_time) except UtilError: _, err, _ = sys.exc_info() print("ERROR: {0}".format(err.errmsg)) sys.exit(1) sys.exit()
from singleton.singleton import Singleton @Singleton class Config(object): def __init__(self, vars = []): self.vars = vars def get_vars(): return Config.instance().vars
import subprocess try: revision = subprocess.check_output(["git", "rev-parse", "HEAD"]).strip() print ("-DPIO_SRC_REV=\\\"%s\\\"" % revision) except: print ("-DPIO_SRC_REV=\\\"UNKNOWN\\\"")
nome = str(input('Qual é seu nome? ')).upper() if nome == 'ROBERTO' or nome == 'OBA': print('Que nome bonito!') elif nome == 'PEDRO' or nome =='JOSE' or nome == 'JOAO' or nome == 'MARIA': print('Seu nome é bem popular no Brasil. !') elif nome in ' THAIS LORENA': print('Belo nome feminino!') else: print('Que nome comum você tem!') print('Tenha um bom dia, {} !'.format(nome))
import shutil import tempfile import six from . import ( GalaxyTestBase, test_util ) class TestGalaxyDatasets(GalaxyTestBase.GalaxyTestBase): def setUp(self): super(TestGalaxyDatasets, self).setUp() self.history_id = self.gi.histories.create_history(name='TestShowDataset')['id'] self.dataset_contents = "line 1\nline 2\rline 3\r\nline 4" self.dataset_id = self._test_dataset(self.history_id, contents=self.dataset_contents) def tearDown(self): self.gi.histories.delete_history(self.history_id, purge=True) @test_util.skip_unless_galaxy('release_19.05') def test_show_nonexistent_dataset(self): with self.assertRaises(Exception): self.gi.datasets.show_dataset('nonexistent_id') def test_show_dataset(self): self.gi.datasets.show_dataset(self.dataset_id) def test_download_dataset(self): with self.assertRaises(Exception): self.gi.datasets.download_dataset(None) expected_contents = six.b("\n".join(self.dataset_contents.splitlines()) + "\n") # download_dataset() with file_path=None is already tested in TestGalaxyTools.test_paste_content() # self._wait_and_verify_dataset(self.dataset_id, expected_contents) tempdir = tempfile.mkdtemp(prefix='bioblend_test_') try: downloaded_dataset = self.gi.datasets.download_dataset( self.dataset_id, file_path=tempdir, maxwait=GalaxyTestBase.BIOBLEND_TEST_JOB_TIMEOUT) self.assertTrue(downloaded_dataset.startswith(tempdir)) with open(downloaded_dataset, 'rb') as f: self.assertEqual(f.read(), expected_contents) finally: shutil.rmtree(tempdir) with tempfile.NamedTemporaryFile(prefix='bioblend_test_') as f: download_filename = self.gi.datasets.download_dataset( self.dataset_id, file_path=f.name, use_default_filename=False, maxwait=GalaxyTestBase.BIOBLEND_TEST_JOB_TIMEOUT) self.assertEqual(download_filename, f.name) f.flush() self.assertEqual(f.read(), expected_contents) def test_show_stderr(self): stderr = self.gi.datasets.show_stderr(self.dataset_id) self.assertIsNotNone(stderr) def test_show_stdout(self): stdout = self.gi.datasets.show_stdout(self.dataset_id) self.assertIsNotNone(stdout)
# -*- coding: utf-8 -*- """ Created on Thu Aug 5 10:36:37 2021 Get status of stored reference numbers @author: heiko """ import requests import pandas as pd import json import hashlib import hmac import base64 #%% Functions def getSAPCOOKIE(headers): ''' Get MYSAPSSO2 cookie. ''' r = requests.get('https://%s/%s/%s'% (server_cct,guest_path,'/login'),headers=headers) print(r.status_code) new_SAP = r.cookies['MYSAPSSO2'] cookies = dict(MYSAPSSO2=new_SAP) return cookies def getSessionID(cookies,headers): ''' Get session ID. ''' r = requests.get('https://%s/%s%s'% (server_cct,SRRESTPath,'/session'),headers=headers,cookies=cookies) print(r.status_code) new_session = json.loads(r.text) headers["X-Session"] = new_session['session_id'] return headers def check_status_later(ref_no, headers, cookies): ''' Check status of uploaded data using reference number and original header info from check_status_stored. ''' r = requests.get('https://%s/%s%s%s'% (server_cct,SRRESTPath,'/sr/',ref_no), headers=headers,cookies=cookies) data_output = json.loads(r.content) print(r.status_code) return data_output def check_status_stored(cookie): ''' Get reference numbers and original headers to be used to check status of uploaded data ''' status_recall = pd.read_csv('../data/status_recall.csv') status_current = pd.DataFrame() for i in range(0,len(status_recall)): headers = status_recall.iloc[i,0:3].to_dict() ref_no = status_recall.iloc[i]['ref_no'] stat = check_status_later(ref_no,headers,cookie) df_stat_store = pd.Series(stat) df_stat_store = df_stat_store.to_frame().transpose() status_current = pd.concat([status_current,df_stat_store]) return status_current #%% if __name__=='__main__': keys = pd.read_csv('../data/keys.csv') pub = keys.iloc[0,1] priv = keys.iloc[1,1] postman_details = [{"key": "server","value": "qaeservices1.capetown.gov.za","enabled": True}, {"key": "CURGuestRESTPath","value": "coct/api/zcur-guest/","enabled": True}, {"key": "SRRESTPath","value": "coct/api/zsreq","enabled": True}] server_cct = postman_details[0]['value'] guest_path = postman_details[1]['value'] SRRESTPath = postman_details[2]['value'] headers = {} headers["X-Service"] = pub # public key cookie = getSAPCOOKIE(headers) headers_session = getSessionID(cookie,headers) stat_current = check_status_stored(cookie) stat_orig = pd.read_csv('../data/status_original.csv') # Note: I ran this again the next day, and it is definitely referring to different data now... # not sure if that is a consequence of this being a test server?
import re from collections import defaultdict from django.conf import settings def convert_to_valid_boolean(value): if value is None: return False elif isinstance(value, list): list_value = value[0] if hasattr(list_value, "value"): string_value = list_value.value if string_value == "Yes": return True elif isinstance(value, bool): return value return False def create_file_version_map(files, prefix=None): version_map = defaultdict(list) if files: for file_name in files: version = get_version_from_file_name(file_name) if prefix: version_file_name = prefix + ":" + file_name.removeprefix(settings.FILE_CLEAN_UP_PREFIX) else: version_file_name = file_name.removeprefix(settings.FILE_CLEAN_UP_PREFIX) version_map[version].append(version_file_name) return version_map def get_version_from_file_name(file_name): search = re.search(r"v([\d.]+)", file_name) if search is not None: return search.group(1) else: return "undefined" def merge_version_maps(current, future): def already_added(file, current_results): for current_file in current_results: if current_file in file: return True return False result = defaultdict(list) for key, value in current.items(): result[key].extend(value) for key, value in future.items(): current_results = result[key] if not current_results: current_results.extend(value) else: for file in value: if not already_added(file, current_results): current_results.append(file) return dict(result) def create_version_map(current_file_list, future_file_list): version_map = create_file_version_map(current_file_list) future_version_map = create_file_version_map(future_file_list, settings.GIT_FUTURE_BRANCH) impex_file_version_map = merge_version_maps(version_map, future_version_map) return impex_file_version_map def filter_impex_files(file_list): return [name for name in file_list if name.endswith(".impex")] def filter_non_impex_files(file_list): return [name for name in file_list if not name.endswith(".impex")]
# -*- coding: utf-8 -*- '''Decoder structures''' from pyresult import is_error, value, ok, error from six import u from toolz import curry @curry def array(factory, vals): '''Decode string/value as list array :: (a -> Result e b) -> List a -> Result e (List b) >>> from pydecoder.primitives import to_int >>> array(to_int, [1, 2, 3]) Result(status='Ok', value=[1, 2, 3]) >>> array(to_int, None) Result(status='Error', value="'None' isn't list or tuple.") ''' if not isinstance(vals, (list, tuple)): return error(u('\'{}\' isn\'t list or tuple.').format(vals)) result = [] for val in vals: rv = factory(val) if is_error(rv): return rv result.append(value(rv)) return ok(result)
import argparse import math from datetime import datetime import numpy as np import socket import importlib import zipfile import os import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = BASE_DIR sys.path.append(BASE_DIR) sys.path.append(os.path.join(ROOT_DIR, 'utils')) import tf_util import dataset import tensorflow as tf parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]') parser.add_argument('--model', default='model_rpm', help='Model name [default: pointnet2_cls_ssg]') parser.add_argument('--train_list', default='datalist/RPM_train.txt', help='Datalist for training') parser.add_argument('--test_list', default='datalist/RPM_test.txt', help='Datalist for testing') parser.add_argument('--save_folder', default='../output/', help='Log dir [default: log]') parser.add_argument('--num_point', type=int, default=2048, help='Point Number [default: 1024]') parser.add_argument('--num_frame', type=int, default=5, help='Frames number need to be generated [default: 9]') parser.add_argument('--max_epoch', type=int, default=121, help='Epoch to run [default: 251]') parser.add_argument('--batch_size', type=int, default=4, help='Batch Size during training [default: 16]') parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]') parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]') parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]') parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]') parser.add_argument('--load_checkpoint', type=str, default=None, help='checkpoint to load from') FLAGS = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"]=str(FLAGS.gpu) BATCH_SIZE = FLAGS.batch_size NUM_POINT = FLAGS.num_point NUM_FRAME = FLAGS.num_frame MAX_EPOCH = FLAGS.max_epoch BASE_LEARNING_RATE = FLAGS.learning_rate GPU_INDEX = FLAGS.gpu OPTIMIZER = FLAGS.optimizer DECAY_STEP = FLAGS.decay_step DECAY_RATE = FLAGS.decay_rate TRAIN_LIST = FLAGS.train_list TEST_LIST = FLAGS.test_list LOAD_CHECKPOINT = FLAGS.load_checkpoint #DATA_PATH = os.path.join(ROOT_DIR, '../data/') DATA_PATH = '/fast/jamesn8/RPMNet/' SAVE_DIR = os.path.join(FLAGS.save_folder, '%s_%s_%s' % (FLAGS.model, datetime.now().strftime('%Y-%m-%d-%H-%M-%S'), 'all')) if not os.path.exists(SAVE_DIR): os.makedirs(SAVE_DIR) LOG_FOUT = open(os.path.join(SAVE_DIR, 'log_train.txt'), 'w') LOG_FOUT.write("Comments: \n\n") LOG_FOUT.write(str(FLAGS)+'\n') BN_INIT_DECAY = 0.5 BN_DECAY_DECAY_RATE = 0.5 BN_DECAY_DECAY_STEP = float(DECAY_STEP) BN_DECAY_CLIP = 0.99 MODEL = importlib.import_module(FLAGS.model) # import network module code_folder = os.path.abspath(os.path.dirname(__file__)) zip_name = os.path.join(SAVE_DIR) + "/code.zip" filelist = [] for root, dirs, files in os.walk(code_folder): for name in files: filelist.append(os.path.join(root, name)) zip_code = zipfile.ZipFile(zip_name, "w", zipfile.ZIP_DEFLATED) for tar in filelist: arcname = tar[len(code_folder):] zip_code.write(tar, arcname) zip_code.close() folder_ckpt = os.path.join(SAVE_DIR, 'ckpts') if not os.path.exists(folder_ckpt): os.makedirs(folder_ckpt) folder_summary = os.path.join(SAVE_DIR, 'summary') if not os.path.exists(folder_summary): os.makedirs(folder_summary) TRAIN_DATASET = dataset.MotionDataset(data_path=DATA_PATH, train_list=TRAIN_LIST, test_list=TEST_LIST, num_point=NUM_POINT, num_frame=NUM_FRAME, split='train', batch_size=BATCH_SIZE) def log_string(out_str): LOG_FOUT.write(out_str+'\n') LOG_FOUT.flush() print(out_str) def get_learning_rate(batch): learning_rate = tf.train.exponential_decay( BASE_LEARNING_RATE, # Base learning rate. batch * BATCH_SIZE, # Current index into the dataset. DECAY_STEP, # Decay step. DECAY_RATE, # Decay rate. staircase=True) learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE! return learning_rate def get_bn_decay(batch): bn_momentum = tf.train.exponential_decay( BN_INIT_DECAY, batch*BATCH_SIZE, BN_DECAY_DECAY_STEP, BN_DECAY_DECAY_RATE, staircase=True) bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum) return bn_decay def train(): with tf.Graph().as_default(): with tf.device('/gpu:'+str(GPU_INDEX)): pointclouds_pl, pc_target_pl, disp_target_pl, part_seg_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT, NUM_FRAME) gt_mov_seg = tf.cast(tf.greater(part_seg_pl, 0), tf.int32) is_training_pl = tf.placeholder(tf.bool, shape=()) batch = tf.get_variable('batch', [], initializer=tf.constant_initializer(0), trainable=False) bn_decay = get_bn_decay(batch) tf.summary.scalar('bn_decay', bn_decay) print("--- Get model and loss ---") pred_pc, pred_disp, pred_seg, mov_mask, simmat_logits = MODEL.get_model(pointclouds_pl, NUM_FRAME, is_training_pl, bn_decay=bn_decay) loss_ref = MODEL.get_ref_loss(pred_pc, pc_target_pl, gt_mov_seg) loss_mov = MODEL.get_mov_loss(pred_pc, pc_target_pl, gt_mov_seg) loss_mov_seg = MODEL.get_movseg_loss(pred_seg, gt_mov_seg) loss_disp = MODEL.get_disp_loss(pred_disp, disp_target_pl, gt_mov_seg) loss_partseg, part_err = MODEL.get_partseg_loss(simmat_logits, mov_mask, part_seg_pl) loss_generator = loss_mov + loss_ref + loss_mov_seg + loss_disp total_loss = loss_generator + loss_partseg tf.summary.scalar('losses/generator_loss', loss_generator) tf.summary.scalar('losses/partseg_loss', loss_partseg) print("--- Get training operator ---") learning_rate = get_learning_rate(batch) tf.summary.scalar('learning_rate', learning_rate) optimizer = tf.train.AdamOptimizer(learning_rate) generator_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "generator") generator_op = optimizer.minimize(loss_generator, var_list=generator_vars, global_step=batch) partseg_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "partseg") partseg_op = optimizer.minimize(loss_partseg, var_list=partseg_vars, global_step=batch) rpm_op = optimizer.minimize(total_loss, global_step=batch) saver = tf.train.Saver(max_to_keep=30) # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(os.path.join(folder_summary, 'train'), sess.graph) init = tf.global_variables_initializer() sess.run(init) ops = {'pointclouds_pl': pointclouds_pl, 'pc_target_pl': pc_target_pl, 'disp_target_pl': disp_target_pl, 'part_seg_pl': part_seg_pl, 'is_training_pl': is_training_pl, 'pred_pc': pred_pc, 'pred_seg': pred_seg, 'loss_mov': loss_mov, 'loss_ref': loss_ref, 'loss_disp': loss_disp, 'loss_mov_seg': loss_mov_seg, 'loss_partseg': loss_partseg, 'part_err': part_err, 'generator_op': generator_op, 'partseg_op': partseg_op, 'rpm_op': rpm_op, 'merged': merged, 'step': batch} #latest_ckpt = tf.train.LOAD_CHECKPOINT(folder_ckpt) epoch_offset = 0 if LOAD_CHECKPOINT is not None: log_string('LOADING CHECKPOINT ' + LOAD_CHECKPOINT) #load_path = os.path.join(folder_ckpt, LOAD_CHECKPOINT) pth, fname = os.path.split(LOAD_CHECKPOINT) epoch_offset = int(fname[fname.find('-')+1:])+1 try: saver.restore(sess, LOAD_CHECKPOINT) except ValueError: log_string('failed to open '+LOAD_CHECKPOINT) else: log_string('TRAINING ANEW') for epoch in range(epoch_offset, MAX_EPOCH): log_string('**** EPOCH %03d ****' % (epoch)) sys.stdout.flush() stage1_epochs=30 stage2_epochs=60 stage3_epochs=30 if epoch <= stage1_epochs: train_one_epoch(sess, ops, train_writer, 'generator_op') elif epoch <= stage1_epochs + stage2_epochs: train_one_epoch(sess, ops, train_writer, 'partseg_op') else: train_one_epoch(sess, ops, train_writer, 'rpm_op') if epoch % 30 == 0 and epoch != 0: save_path = saver.save(sess, os.path.join(folder_ckpt, "model.ckpt"), global_step=epoch) log_string("Model saved in file: %s" % save_path) def train_one_epoch(sess, ops, train_writer, training_type): """ ops: dict mapping from string to tf ops """ is_training = True log_string(str(datetime.now())) # Shuffle train samples train_idxs = np.arange(0, len(TRAIN_DATASET)) np.random.shuffle(train_idxs) num_batches = len(TRAIN_DATASET)//BATCH_SIZE loss_sum_mov = 0 loss_sum_ref = 0 loss_sum_disp = 0 loss_sum_movseg = 0 loss_sum_partseg = 0 total_seen_seg = 0 total_correct_seg = 0 total_part_err = 0 batch_idx = 0 for batch_idx in range(num_batches): start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx+1) * BATCH_SIZE batch_pc, batch_pc_target, batch_disp_target, batch_mov_seg, batch_part_seg = TRAIN_DATASET.get_batch(train_idxs, start_idx, end_idx) feed_dict = {ops['pointclouds_pl']: batch_pc, ops['pc_target_pl']: batch_pc_target, ops['disp_target_pl']: batch_disp_target, ops['part_seg_pl']: batch_part_seg, ops['is_training_pl']: is_training} summary, step, _, loss_mov_val, loss_ref_val, loss_movseg_val, pred_seg_val, loss_disp_val, loss_partseg_val, part_err_val = sess.run( [ops['merged'], ops['step'], ops[training_type], ops['loss_mov'], ops['loss_ref'], ops['loss_mov_seg'], ops['pred_seg'], ops['loss_disp'], ops['loss_partseg'], ops['part_err']], feed_dict=feed_dict) train_writer.add_summary(summary, step) for batch in range(BATCH_SIZE): pred_seg_label = np.argmax(pred_seg_val[batch], 1) correct_seg = np.sum(pred_seg_label == batch_mov_seg[batch]) total_correct_seg += correct_seg total_seen_seg += NUM_POINT loss_sum_mov += loss_mov_val loss_sum_ref += loss_ref_val loss_sum_disp += loss_disp_val loss_sum_movseg += loss_movseg_val loss_sum_partseg += loss_partseg_val total_part_err += part_err_val log_string('EPOCH STAT:') log_string('mean mov loss: %f' % (loss_sum_mov / num_batches)) log_string('mean ref loss: %f' % (loss_sum_ref / num_batches)) log_string('mean disp loss: %f' % (loss_sum_disp / num_batches)) log_string('mean mov seg loss: %f' % (loss_sum_movseg / num_batches)) log_string('mean part seg loss: %f' % (loss_sum_partseg / num_batches)) log_string('mov seg acc: %f'% (total_correct_seg / float(total_seen_seg))) log_string('part seg err: %f' % (total_part_err / num_batches)) if __name__ == "__main__": log_string('pid: %s'%(str(os.getpid()))) train() LOG_FOUT.close()
# Generated by Django 3.2.5 on 2021-07-22 13:36 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('devices', '0020_auto_20210721_1007'), ] operations = [ migrations.CreateModel( name='City', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=50, unique=True)), ], options={ 'verbose_name': 'City', 'verbose_name_plural': 'Cities', }, ), ]
"""Miscellaneous functions """ import logging from math import ceil from typing import Any, Dict, List, Optional, Tuple, Union, cast from collections import Counter import dask import dask.dataframe as dd import numpy as np import pandas as pd from pandas.api.types import is_object_dtype from bokeh.models import Legend, FuncTickFormatter from bokeh.plotting import Figure from scipy.stats import gaussian_kde as gaussian_kde_ from scipy.stats import ks_2samp as ks_2samp_ from scipy.stats import normaltest as normaltest_ from scipy.stats import skewtest as skewtest_ from .dtypes import drop_null LOGGER = logging.getLogger(__name__) def to_dask(df: Union[pd.DataFrame, dd.DataFrame]) -> dd.DataFrame: """Convert a dataframe to a dask dataframe.""" if isinstance(df, dd.DataFrame): return df elif isinstance(df, dd.Series): return df.to_frame() if isinstance(df, pd.Series): df = df.to_frame() df_size = df.memory_usage(deep=True).sum() npartitions = ceil(df_size / 128 / 1024 / 1024) # 128 MB partition size return dd.from_pandas(df, npartitions=npartitions) def preprocess_dataframe( org_df: Union[pd.DataFrame, dd.DataFrame], used_columns: Optional[Union[List[str], List[object]]] = None, ) -> dd.DataFrame: """ Make a dask dataframe with only used_columns. This function will do the following: 1. keep only used_columns. 2. transform column name to string (avoid object column name) and rename duplicate column names in form of {col}_{id}. 3. reset index 4. transform object column to string column (note that obj column can contain cells from different type). 5. transform to dask dataframe if input is pandas dataframe. """ if used_columns is None: df = org_df.copy() else: # Process the case when used_columns are string column name, # but org_df column name is object. used_columns_set = set(used_columns) used_cols_obj = set() for col in org_df.columns: if str(col) in used_columns_set or col in used_columns_set: used_cols_obj.add(col) df = org_df[used_cols_obj] columns = list(df.columns) # Resolve duplicate names in columns. # Duplicate names will be renamed as col_{id}. column_count = Counter(columns) current_id: Dict[Any, int] = dict() for i, col in enumerate(columns): if column_count[col] > 1: current_id[col] = current_id.get(col, 0) + 1 new_col_name = f"{col}_{current_id[col]}" else: new_col_name = f"{col}" columns[i] = new_col_name df.columns = columns df = df.reset_index(drop=True) # Since an object column could contains multiple types # in different cells. transform object column to string. for col in df.columns: if is_object_dtype(df[col].dtype): df[col] = df[col].astype(str) return to_dask(df) def sample_n(arr: np.ndarray, n: int) -> np.ndarray: # pylint: disable=C0103 """Sample n values uniformly from the range of the `arr`, not from the distribution of `arr`'s elems.""" if len(arr) <= n: return arr subsel = np.linspace(0, len(arr) - 1, n) subsel = np.floor(subsel).astype(int) return arr[subsel] def relocate_legend(fig: Figure, loc: str) -> Figure: """Relocate legend(s) from center to `loc`.""" remains = [] targets = [] for layout in fig.center: if isinstance(layout, Legend): targets.append(layout) else: remains.append(layout) fig.center = remains for layout in targets: fig.add_layout(layout, loc) return fig def cut_long_name(name: str, max_len: int = 12) -> str: """If the name is longer than `max_len`, cut it to `max_len` length and append "...""" # Bug 136 Fixed name = str(name) if len(name) <= max_len: return name return f"{name[:max_len]}..." def fuse_missing_perc(name: str, perc: float) -> str: """Append (x.y%) to the name if `perc` is not 0.""" if perc == 0: return name return f"{name} ({perc:.1%})" # Dictionary for mapping the time unit to its formatting. Each entry is of the # form unit:(unit code for pd.Grouper freq parameter, pandas to_period strftime # formatting for line charts, pandas to_period strftime formatting for box plot, # label format). DTMAP = { "year": ("Y", "%Y", "%Y", "Year"), "quarter": ("Q", "Q%q %Y", "Q%q %Y", "Quarter"), "month": ("M", "%B %Y", "%b %Y", "Month"), "week": ("W-SAT", "%d %B, %Y", "%d %b, %Y", "Week of"), "day": ("D", "%d %B, %Y", "%d %b, %Y", "Date"), "hour": ("H", "%d %B, %Y, %I %p", "%d %b, %Y, %I %p", "Hour"), "minute": ("T", "%d %B, %Y, %I:%M %p", "%d %b, %Y, %I:%M %p", "Minute"), "second": ("S", "%d %B, %Y, %I:%M:%S %p", "%d %b, %Y, %I:%M:%S %p", "Second"), } def _get_timeunit(min_time: pd.Timestamp, max_time: pd.Timestamp, dflt: int) -> str: """Auxillary function to find an appropriate time unit. Will find the time unit such that the number of time units are closest to dflt.""" dt_secs = { "year": 60 * 60 * 24 * 365, "quarter": 60 * 60 * 24 * 91, "month": 60 * 60 * 24 * 30, "week": 60 * 60 * 24 * 7, "day": 60 * 60 * 24, "hour": 60 * 60, "minute": 60, "second": 1, } time_rng_secs = (max_time - min_time).total_seconds() prev_bin_cnt, prev_unit = 0, "year" for unit, secs_in_unit in dt_secs.items(): cur_bin_cnt = time_rng_secs / secs_in_unit if abs(prev_bin_cnt - dflt) < abs(cur_bin_cnt - dflt): return prev_unit prev_bin_cnt = cur_bin_cnt prev_unit = unit return prev_unit def _calc_box_stats(grp_srs: dd.Series, grp: str, dlyd: bool = False) -> pd.DataFrame: """ Auxiliary function to calculate the Tukey box plot statistics dlyd is for if this function is called when dask is computing in parallel (dask.delayed) """ stats: Dict[str, Any] = dict() try: # this is a bad fix for the problem of when there is no data passed to this function if dlyd: qntls = np.round(grp_srs.quantile([0.25, 0.50, 0.75]), 3) else: qntls = np.round(grp_srs.quantile([0.25, 0.50, 0.75]).compute(), 3) stats["q1"], stats["q2"], stats["q3"] = qntls[0.25], qntls[0.50], qntls[0.75] except ValueError: stats["q1"], stats["q2"], stats["q3"] = np.nan, np.nan, np.nan iqr = stats["q3"] - stats["q1"] stats["lw"] = grp_srs[grp_srs >= stats["q1"] - 1.5 * iqr].min() stats["uw"] = grp_srs[grp_srs <= stats["q3"] + 1.5 * iqr].max() if not dlyd: stats["lw"], stats["uw"] = dask.compute(stats["lw"], stats["uw"]) otlrs = grp_srs[(grp_srs < stats["lw"]) | (grp_srs > stats["uw"])] if len(otlrs) > 100: # sample 100 outliers otlrs = otlrs.sample(frac=100 / len(otlrs)) stats["otlrs"] = list(otlrs) if dlyd else list(otlrs.compute()) return pd.DataFrame({grp: stats}) def _calc_box_otlrs(df: dd.DataFrame) -> Tuple[List[str], List[float]]: """ Calculate the outliers for a box plot """ outx: List[str] = [] # list for the outlier groups outy: List[float] = [] # list for the outlier values for ind in df.index: otlrs = df.loc[ind]["otlrs"] outx = outx + [df.loc[ind]["grp"]] * len(otlrs) outy = outy + otlrs return outx, outy def _calc_line_dt( df: dd.DataFrame, unit: str, agg: Optional[str] = None, ngroups: Optional[int] = None, largest: Optional[bool] = None, ) -> Union[ Tuple[pd.DataFrame, Dict[str, int], str], Tuple[pd.DataFrame, str, float], Tuple[pd.DataFrame, str], ]: """ Calculate a line or multiline chart with date on the x axis. If df contains one datetime column, it will make a line chart of the frequency of values. If df contains a datetime and categorical column, it will compute the frequency of each categorical value in each time group. If df contains a datetime and numerical column, it will compute the aggregate of the numerical column grouped by the time groups. If df contains a datetime, categorical, and numerical column, it will compute the aggregate of the numerical column for values in the categorical column grouped by time. Parameters ---------- df A dataframe unit The unit of time over which to group the values agg Aggregate to use for the numerical column ngroups Number of groups for the categorical column largest Use the largest or smallest groups in the categorical column """ # pylint: disable=too-many-locals x = df.columns[0] # time column unit = _get_timeunit(df[x].min(), df[x].max(), 100) if unit == "auto" else unit if unit not in DTMAP.keys(): raise ValueError grouper = pd.Grouper(key=x, freq=DTMAP[unit][0]) # for grouping the time values # multiline charts if ngroups and largest: hist_dict: Dict[str, Tuple[np.ndarray, np.ndarray, List[str]]] = dict() hist_lst: List[Tuple[np.ndarray, np.ndarray, List[str]]] = list() agg = "freq" if agg is None else agg # default agg if unspecified for notational concision # categorical column for grouping over, each resulting group is a line in the chart grpby_col = df.columns[1] if len(df.columns) == 2 else df.columns[2] df, grp_cnt_stats, largest_grps = _calc_groups(df, grpby_col, ngroups, largest) groups = df.groupby([grpby_col]) for grp in largest_grps: srs = groups.get_group(grp) # calculate the frequencies or aggregate value in each time group if len(df.columns) == 3: dfr = srs.groupby(grouper)[df.columns[1]].agg(agg).reset_index() else: dfr = srs[x].to_frame().groupby(grouper).size().reset_index() dfr.columns = [x, agg] # if grouping by week, make the label for the week the beginning Sunday dfr[x] = dfr[x] - pd.to_timedelta(6, unit="d") if unit == "week" else dfr[x] # format the label dfr["lbl"] = dfr[x].dt.to_period("S").dt.strftime(DTMAP[unit][1]) hist_lst.append((list(dfr[agg]), list(dfr[x]), list(dfr["lbl"]))) hist_lst = dask.compute(*hist_lst) for elem in zip(largest_grps, hist_lst): hist_dict[elem[0]] = elem[1] return hist_dict, grp_cnt_stats, DTMAP[unit][3] # single line charts if agg is None: # frequency of datetime column miss_pct = round(df[x].isna().sum() / len(df) * 100, 1) dfr = drop_null(df).groupby(grouper).size().reset_index() dfr.columns = [x, "freq"] dfr["pct"] = dfr["freq"] / len(df) * 100 else: # aggregate over a second column dfr = df.groupby(grouper)[df.columns[1]].agg(agg).reset_index() dfr.columns = [x, agg] dfr[x] = dfr[x] - pd.to_timedelta(6, unit="d") if unit == "week" else dfr[x] dfr["lbl"] = dfr[x].dt.to_period("S").dt.strftime(DTMAP[unit][1]) return (dfr, DTMAP[unit][3], miss_pct) if agg is None else (dfr, DTMAP[unit][3]) def _calc_groups( df: dd.DataFrame, x: str, ngroups: int, largest: bool = True ) -> Tuple[dd.DataFrame, Dict[str, int], List[str]]: """Auxillary function to parse the dataframe to consist of only the groups with the largest counts. """ # group count statistics to inform the user of the sampled output grp_cnt_stats: Dict[str, int] = dict() srs = df.groupby(x).size() srs_lrgst = srs.nlargest(n=ngroups) if largest else srs.nsmallest(n=ngroups) try: largest_grps = list(srs_lrgst.index.compute()) grp_cnt_stats[f"{x}_ttl"] = len(srs.index.compute()) except AttributeError: largest_grps = list(srs_lrgst.index) grp_cnt_stats[f"{x}_ttl"] = len(srs.index) df = df[df[x].isin(largest_grps)] grp_cnt_stats[f"{x}_shw"] = len(largest_grps) return df, grp_cnt_stats, largest_grps @dask.delayed(name="scipy-normaltest", pure=True, nout=2) # pylint: disable=no-value-for-parameter def normaltest(arr: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Delayed version of scipy normaltest. Due to the dask version will trigger a compute.""" return cast(Tuple[np.ndarray, np.ndarray], normaltest_(arr)) @dask.delayed(name="scipy-ks_2samp", pure=True, nout=2) # pylint: disable=no-value-for-parameter def ks_2samp(data1: np.ndarray, data2: np.ndarray) -> Tuple[float, float]: """Delayed version of scipy ks_2samp.""" return cast(Tuple[float, float], ks_2samp_(data1, data2)) @dask.delayed( # pylint: disable=no-value-for-parameter name="scipy-gaussian_kde", pure=True, nout=2 ) def gaussian_kde(arr: np.ndarray) -> Tuple[float, float]: """Delayed version of scipy gaussian_kde.""" return cast(Tuple[np.ndarray, np.ndarray], gaussian_kde_(arr)) @dask.delayed(name="scipy-skewtest", pure=True, nout=2) # pylint: disable=no-value-for-parameter def skewtest(arr: np.ndarray) -> Tuple[float, float]: """Delayed version of scipy skewtest.""" return cast(Tuple[float, float], skewtest_(arr)) def tweak_figure( fig: Figure, ptype: Optional[str] = None, show_yticks: bool = False, max_lbl_len: int = 15, ) -> None: """ Set some common attributes for a figure """ fig.axis.major_label_text_font_size = "9pt" fig.title.text_font_size = "10pt" fig.axis.minor_tick_line_color = "white" if ptype in ["pie", "qq", "heatmap"]: fig.ygrid.grid_line_color = None if ptype in ["bar", "pie", "hist", "kde", "qq", "heatmap", "line"]: fig.xgrid.grid_line_color = None if ptype in ["bar", "hist", "line"] and not show_yticks: fig.ygrid.grid_line_color = None fig.yaxis.major_label_text_font_size = "0pt" fig.yaxis.major_tick_line_color = None if ptype in ["bar", "nested", "stacked", "heatmap", "box"]: fig.xaxis.major_label_orientation = np.pi / 3 fig.xaxis.formatter = FuncTickFormatter( code=""" if (tick.length > %d) return tick.substring(0, %d-2) + '...'; else return tick; """ % (max_lbl_len, max_lbl_len) ) if ptype in ["nested", "stacked", "box"]: fig.xgrid.grid_line_color = None if ptype in ["nested", "stacked"]: fig.y_range.start = 0 fig.x_range.range_padding = 0.03 if ptype in ["line", "boxnum"]: fig.min_border_right = 20 fig.xaxis.major_label_standoff = 7 fig.xaxis.major_label_orientation = 0 fig.xaxis.major_tick_line_color = None def _format_ticks(ticks: List[float]) -> List[str]: """ Format the tick values """ formatted_ticks = [] for tick in ticks: # format the tick values before, after = f"{tick:e}".split("e") if float(after) > 1e15 or abs(tick) < 1e4: formatted_ticks.append(str(tick)) continue mod_exp = int(after) % 3 factor = 1 if mod_exp == 0 else 10 if mod_exp == 1 else 100 value = np.round(float(before) * factor, len(str(before))) value = int(value) if value.is_integer() else value if abs(tick) >= 1e12: formatted_ticks.append(str(value) + "T") elif abs(tick) >= 1e9: formatted_ticks.append(str(value) + "B") elif abs(tick) >= 1e6: formatted_ticks.append(str(value) + "M") elif abs(tick) >= 1e4: formatted_ticks.append(str(value) + "K") return formatted_ticks def _format_axis(fig: Figure, minv: int, maxv: int, axis: str) -> None: """ Format the axis ticks """ # pylint: disable=too-many-locals # divisor for 5 ticks (5 results in ticks that are too close together) divisor = 4.5 # interval gap = (maxv - minv) / divisor # get exponent from scientific notation _, after = f"{gap:.0e}".split("e") # round to this amount round_to = -1 * int(after) # round the first x tick minv = np.round(minv, round_to) # round value between ticks gap = np.round(gap, round_to) # make the tick values ticks = [float(minv)] while max(ticks) + gap < maxv: ticks.append(max(ticks) + gap) ticks = np.round(ticks, round_to) ticks = [int(tick) if tick.is_integer() else tick for tick in ticks] formatted_ticks = _format_ticks(ticks) if axis == "x": fig.xgrid.ticker = ticks fig.xaxis.ticker = ticks fig.xaxis.major_label_overrides = dict(zip(ticks, formatted_ticks)) fig.xaxis.major_label_text_font_size = "10pt" fig.xaxis.major_label_standoff = 7 # fig.xaxis.major_label_orientation = 0 fig.xaxis.major_tick_line_color = None elif axis == "y": fig.ygrid.ticker = ticks fig.yaxis.ticker = ticks fig.yaxis.major_label_overrides = dict(zip(ticks, formatted_ticks)) fig.yaxis.major_label_text_font_size = "10pt" fig.yaxis.major_label_standoff = 5 def _format_bin_intervals(bins_arr: np.ndarray) -> List[str]: """ Auxillary function to format bin intervals in a histogram """ bins_arr = np.round(bins_arr, 3) bins_arr = [int(val) if float(val).is_integer() else val for val in bins_arr] intervals = [f"[{bins_arr[i]}, {bins_arr[i + 1]})" for i in range(len(bins_arr) - 2)] intervals.append(f"[{bins_arr[-2]},{bins_arr[-1]}]") return intervals
# © 2020 Nokia # Licensed under the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause # !/usr/bin/env python3 # coding: utf-8 # Author: Élie de Panafieu <elie.de_panafieu@nokia-bell-labs.com> from matrix_operations import * class VectorSpace: def __init__(self, iterables): self.item_to_index = map_to_index_from_iterable(iterables_union(iterables)) self.iterable_to_index = map_to_index_from_iterable(iterables) self.item_iterable_matrix = matrix_from_iterables_and_index_maps( iterables, self.item_to_index, self.iterable_to_index) def item_vector_from_dict(self, item_distribution): return vector_from_index_and_value_maps(self.item_to_index, item_distribution) def iterable_vector_from_dict(self, iterable_distribution): return vector_from_index_and_value_maps(self.iterable_to_index, iterable_distribution) def item_dict_from_vector(self, item_vector): return dict_from_index_map_and_vector(self.item_to_index, item_vector) def iterable_dict_from_vector(self, iterable_vector): return dict_from_index_map_and_vector(self.iterable_to_index, iterable_vector) def iterable_vector_from_collection(self, iterable_collection): iterable_distribution = constant_distribution_from_collection(iterable_collection) return self.iterable_vector_from_dict(iterable_distribution) def count_iterables_containing_item(self, item): if item not in self.item_to_index: return 0 return count_nonzero_entries_in_matrix_row(self.item_iterable_matrix, self.item_to_index[item]) def map_to_index_from_iterable(iterable): dictionary = dict() index = 0 for item in iterable: if item not in dictionary: dictionary[item] = index index += 1 return dictionary def iterables_union(iterables): for iterable in iterables: for item in iterable: yield item def constant_distribution_from_collection(collection): return {element: 1. for element in collection}
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Bert_Service.py 2018/11/22 10:29 AM by berton berton820@163.com """ from flask import Flask, request, jsonify import json import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' try: from .predict_glue import * except: from predict_glue import * import logging log = logging.getLogger('werkzeug') log.setLevel(logging.ERROR) app = Flask(__name__) model = Evaluator() model.init_from_config(args, processors=processors, output_modes=output_modes) model.init_bert() lines = [["你好吗", "我好吗"] for i in range(8)] model.predict(lines) # list_json input batch @app.route('/', methods=['GET', 'POST']) def index(): try: if request.method == 'GET': qq_list_json = request.args.get('qq_list', '') qq_list = json.loads(qq_list_json) # print(qq_list) score = (model.predict(qq_list)) score = "\t".join(([str(_[1]) for _ in score])) # print(score) return jsonify({'status': '0', "score": score }) except Exception as e: print(e) return jsonify({'status': '1'}) if __name__ == '__main__': app.run(debug=None, host='0.0.0.0', port=39000)
from ddf_utils.chef.model.ingredient import DataPointIngredient def multiply_1000(chef, ingredients, result, **options): # ingredients = [chef.dag.get_node(x) for x in ingredients] ingredient = ingredients[0] new_data = dict() for k, df in ingredient.get_data().items(): df_ = df.copy() df_[k] = df_[k] * 1000 new_data[k] = df_ return DataPointIngredient.from_procedure_result(result, ingredient.key, new_data)
from colorama import Fore, Style from string import Template from os import path, mkdir, scandir from shutil import copyfile import networkx as nx from warnings import warn import vhdl_util VERSION = 0.1 class deparserHDL(object): def __getlibrary(self): """set a dictionnary with library folder each folder is the <name> of an entity file component.vhdl components instantiation templates file entity.vhdl are placement template for components file module.vhdl are lib file to copy """ self.lib = {} for d in scandir(self.tmplFolder): if d.is_dir(): curPath = path.join(self.tmplFolder, d.name) self.lib[d.name] = (path.join(curPath, "module.vhdl"), path.join(curPath, "component.vhdl"), path.join(curPath, "entity.vhdl")) def __init__(self, deparser, outputDir, templateFolder, phvBus, baseName="deparser", libDirName="lib", clk="clk", reset_n="reset_n"): self.clkName = clk self.enDep = "en_deparser" self.rstName = reset_n self.dep = deparser self.phvBus = phvBus self.headerBus = phvBus[0]["data"] self.busValidAssocPos = phvBus[1]["data"] self.entityName = baseName self.tmplFolder = templateFolder self.tmplFile = path.join(templateFolder, "deparser.vhdl") self.libDir = path.join(outputDir, libDirName) if not path.exists(self.libDir): mkdir(self.libDir) self.signals = {} self.entities = {} self.stateMachines = {} self.components = {} self.muxes = {} self.payloadShifters = {} self.__getlibrary() self.dictSub = {'name': baseName, 'code': "", 'payloadConnect': "", 'payloadSize': deparser.busSize, 'outputSize': deparser.busSize, 'nbMuxes': deparser.nbStateMachine} def getVHDLParam(self): return self.dictSub def _setSignalStr(self): strSignal = "" sigTmpl = Template("signal $n : ${t}; \n") for n, t in self.signals.items(): strSignal += sigTmpl.substitute({"n": n, "t": t}) self.dictSub["signals"] = strSignal def __str__(self): self.genInputs() self._setSignalStr() self._setEntitiesImplCode() self._setComponentsCode() self._setMuxesConnectionCode() self._setPayloadConnectionCode() with open(self.tmplFile, 'r') as myfile: tmpl = Template(myfile.read()) return tmpl.safe_substitute(self.dictSub) def _setComponentsCode(self): code = "" for n, d in self.components.items(): if n not in self.lib: raise NameError("component {} does not exist " "in library".format(n)) if d is False: with open(self.lib[n][1], 'r') as f: code += f.read() else: with open(self.lib[n][1], 'r') as f: tmpl = Template(f.read()) for n, dic in d.items(): code += tmpl.safe_substitute(dic) self.dictSub["components"] = code def _setEntitiesImplCode(self): """ Gen implementation for a component Component : component name tmplDict : template dictionnary Require a <component>_place.vhdl file in <component> dir """ implCode = "" for c, d in self.entities.values(): if c not in self.lib: raise NameError("component {} does not exist " "in library".format(c)) with open(self.lib[c][2], 'r') as f: tData = Template(f.read()) implCode += tData.safe_substitute(d) self.dictSub["entities"] = implCode def writeTB(self, fileName): Tmpl = {"compVersion": VERSION, "name": self.entityName, "payloadSize": self.dictSub["payloadSize"], "outputSize": self.dictSub["outputSize"], "phvBus": self.dictSub["phvBus"], "phvValidity": self.dictSub["phvValidity"], "phvBusWidth": self.dictSub["phvBusWidth"], "phvValidityWidth": self.dictSub["phvValidityWidth"]} phvBus = "" phvBusIn = "" phvBusTmpl = "phvBus({} downto {}) <= {}_bus;\n" phvInTmpl = "{}_bus : in std_logic_vector({} downto 0);\n" for name, pos in self.headerBus.items(): phvBusIn += phvInTmpl.format(name, pos[1] - pos[0]) phvBus += phvBusTmpl.format(pos[1], pos[0], name) vBus = "" vBusIn = "" for name, pos in self.busValidAssocPos.items(): vBusIn += "{}_valid : in std_logic;\n".format(name) vBus += "validityBus({}) <= {}_valid;\n".format(pos, name) Tmpl["setPhvBus"] = phvBus Tmpl["setValBus"] = vBus Tmpl["headerBuses"] = phvBusIn Tmpl["validityBits"] = vBusIn with open(path.join(self.tmplFolder, "deparser_tb.vhdl")) as inFile: TB = Template(inFile.read()) with open(fileName, 'w') as outFile: outFile.write(TB.substitute(Tmpl)) def writeFiles(self, mainFileName): """ export all files. mainFile‌ + lib files in libFolder """ for name, d in self.components.items(): tF = self.lib[name][0] if d is False: oF = path.join(self.libDir, "{}.vhdl".format(name)) # output lib file copyfile(tF, oF) else: with open(tF, 'r') as tmpl: t = Template(tmpl.read()) for n, dic in d.items(): oF = path.join(self.libDir, "{}.vhdl".format(n)) # output lib file with open(oF, 'w') as outFile: outFile.write(t.substitute(dic)) with open(mainFileName, 'w') as outFile: outFile.write(str(self)) def genInputs(self): # value assignments self.dictSub["phvBus"] = self.phvBus[0]["name"] self.dictSub["phvValidity"] = self.getValidBusName() self.dictSub["phvBusWidth"] = self.phvBus[0]["width"] - 1 self.dictSub["phvValidityWidth"] = self.getNbHeaders() - 1 def getValidBusName(self): return self.phvBus[1]["name"] def getNbHeaders(self): return self.phvBus[1]["width"] def appendCode(self, code): oldCode = self.dictSub["code"] if code in oldCode: warn("append code already here : \n" "oldCode : {}\n newCode : {}" "\n".format(oldCode, code)) oldCode += code self.dictSub["code"] = oldCode def _addVector(self, name, size): self._addSignal(name, "std_logic_vector({} downto 0)".format(size - 1)) def _addLogic(self, name): self._addSignal(name, "std_logic") def _addSignal(self, name, t): """ name : signal name t signal Type """ if name in self.signals: raise NameError("signal {} already exist".format(name)) self.signals[name] = t def _addEntity(self, name, tmplDict): """Add entity name with template file template and tmplDict error if name exists """ if name in self.entities: raise NameError("entity {} already exist".format(name)) self.entities[name] = tmplDict def getEntity(self, name): if name in self.entities: return self.entities[name] else: raise NameError("entity {} does not exist".format(name)) def _connectVectors(self, dst, src): """ return the connection of 2 signals dst, src are tuples : (name, msb, lsb) """ tmplStr = "${dst}" dictTmpl = {"dst": dst[0], "src": src[0]} if len(dst) == 3: tmplStr += "(${dMSB} downto ${dLSB})" dictTmpl["dLSB"] = dst[2] dictTmpl["dMSB"] = dst[1] tmplStr += " <= ${src}" if len(src) == 3: tmplStr += "(${sMSB} downto ${sLSB})" dictTmpl["sLSB"] = src[2] dictTmpl["sMSB"] = src[1] tmplStr += ";\n" tmpl = Template(tmplStr) return tmpl.substitute(dictTmpl) def _setPayloadConnectionCode(self): code = Template(""" -- payload connections \n process(payload_in_tkeep, payload_in_tdata, payload_in_tvalid) is begin ${data} if payload_in_tvalid = '1' then ${keepValid} else ${keepUnvalid} end if; end process; process(clk) is begin if rising_edge(clk) then case $phvValidity is ${CtrlAssoc} when others => ${CtrlOthers} end case; end if; end process; """) codeCtrlO = "" codeCtrlAssoc = "" codeData = "" code1 = "" code2 = "" phvValWidth = self.dictSub["phvValidityWidth"] payloadBusWidth = self.dictSub["payloadSize"] paths = nx.all_simple_paths(self.dep.depG, self.dep.init, self.dep.last) for p in paths: tW = 0 phv_val_list = ["0"] * (phvValWidth+1) # Counting total header sizes in tW for h in p: if h in self.headerBus: tW += self.headerBus[h][1] - self.headerBus[h][0] + 1 # generate phv_val cond phv_val_list[self.busValidAssocPos[h]] = "1" codeCtrlAssoc += 'when "{}" =>\n'.format(''.join(phv_val_list[::-1])) # get payoadShift that is 0 psList = list(self.payloadShifters.values()) pos = int((tW % payloadBusWidth)/8) for i in range(pos): ps = psList[i] control = self.getEntity(ps[0])[1]["control"] ctrlW = self.getEntity(ps[0])[1]["wControl"] offset = i + len(psList) - pos value = "'1' & {}".format(vhdl_util.int2vector(offset, ctrlW - 1)) codeCtrlAssoc += self._connectVectors((control, ), (value, )) for j, i in enumerate(range(pos, len(psList))): ps = psList[i] control = self.getEntity(ps[0])[1]["control"] ctrlW = self.getEntity(ps[0])[1]["wControl"] value = "'0' & {}".format(vhdl_util.int2vector(j, ctrlW - 1)) codeCtrlAssoc += self._connectVectors((control, ), (value, )) # print(" mod {}\n cond : {}".format(int((tW % payloadBusWidth)/8), # "".join(phv_val_list))) for ps in self.payloadShifters.values(): codeData += self._connectVectors(ps[1]["inData"][1], ps[1]["inData"][0]) code1 += self._connectVectors(ps[1]["inKeep"][1], ps[1]["inKeep"][0]) code2 += self._connectVectors(ps[1]["inKeep"][1], ("(others => '0')", )) entity = self.getEntity(ps[0]) codeCtrlO += self._connectVectors((entity[1]["control"], ), ("(others => '0')", )) payloadTmplDict = {"phvValidity": self.dictSub["phvValidity"], "data": codeData, "keepValid": code1, "keepUnvalid": code2, "CtrlOthers": codeCtrlO, "CtrlAssoc": codeCtrlAssoc} self.dictSub['payloadConnect'] = code.safe_substitute(payloadTmplDict) def _setMuxesConnectionCode(self): def getMuxConnectStr(muxNum): """ Generate the code to connect a Mux """ code = "" _, connections = self.muxes[muxNum] entity = self._getMuxEntity(muxNum) pDst = ["", 0, 0] pSrc = ["", 0, 0] pDst = [entity["input"], 0, 0] width = entity["width"] for src, dst in connections.values(): pDst[1] = int((dst+1)*width - 1) pDst[2] = int(dst * width) pSrc[1] = int(src[1] + width - 1) pSrc[2] = int(src[1]) pSrc[0] = src[0] code += self._connectVectors(pDst, pSrc) return code allMuxStr = "" for n in self.muxes: allMuxStr += getMuxConnectStr(n) self.dictSub["muxes"] = allMuxStr def genPayloadShifter(self): for i in range(self.dep.nbStateMachine): self._genPayloadShifter(i) def genMuxes(self): for i in range(self.dep.nbStateMachine): self._genMux(i) self._genStateMachine(i) def _getStMCompTmpl(self, num, name): """Gen template for a state machine """ graph = self.dep.getStateMachine(num) stateList = {} for u, v, d in graph.edges(data=True): if u not in stateList: stateList[u] = [] stateList[u].append((v, d)) def genStateTransitionCode(listTransition): def getStateTransition(name, cond): busAssoc = self.busValidAssocPos transitionTmpl = "NEXT_STATE <= {}; \n" condTmpl = "headerValid({}) = '1' then \n {} \n" tmp = transitionTmpl.format(name) if "label" in cond: tmp = condTmpl.format(busAssoc[cond["label"]], tmp) return tmp, ("label" in cond) transitionCode = "{} {}" condCodeTmpl = "if {}" condCode = "" noCondCode = "" for n, d in listTransition: code, cond = getStateTransition(n, d) if cond: condCode += condCodeTmpl.format(code) condCodeTmpl = "elsif {}" else: noCondCode += code if len(condCode) > 0: condCode += "end if;\n" return transitionCode.format(noCondCode, condCode) tmplDict = {"compVersion": VERSION, "name": name, "initState": self.dep.init, "lastState": self.dep.last, "stateList": "({})".format(", " .join(list(graph.nodes))), "initStateTransition": genStateTransitionCode(stateList.pop(self.dep.init))} otherStateTransition = "" assocMuxIn = self.muxes[num][1] # get ctrl val to assign for a state for k, struct in stateList.items(): otherStateTransition += "when {} =>\n".format(k) stateMuxConv = vhdl_util.int2vector(assocMuxIn[k][1], "outputWidth") otherStateTransition += "output_reg <= {} ;\n".format(stateMuxConv) otherStateTransition += genStateTransitionCode(struct) tmplDict["otherStateTransition"] = otherStateTransition return tmplDict def _getStateMachineEntity(self, num): compName = "state_machine_{}".format(num) name = "stM_{}".format(num) nbInput = self.getNbHeaders() outWidth = self._getMuxEntity(num)["wControl"] output = self._getMuxEntity(num)["control"] if "state_machine" not in self.components: self.components["state_machine"] = {} if name not in self.entities: stComp = self.components["state_machine"] if compName not in stComp: stComp[compName] = self._getStMCompTmpl(num, compName) tmplDict = {"name": name, "componentName": compName, "nbHeader": nbInput, "wControl": outWidth, "clk": self.clkName, "reset_n": self.rstName, "start": "start_deparser", "ready": "deparser_rdy_i({})".format(num), "finish": "out_valid({})".format(num), "headersValid": self.getValidBusName(), "output": output} self._addEntity(name, ("state_machine", tmplDict)) return self.getEntity(name)[1] def _genStateMachine(self, num): if num not in self.stateMachines: entity = self._getStateMachineEntity(num) self.stateMachines[num] = (entity["name"],) else: warn("trying to regenerate stateMachine {}".format(num)) def _getMuxEntity(self, muxNum): """Function to get a mux entity name with nbIn as nb input and width as output size The mux name is generated such as being unique for a certain type of mux. if mux does not exist, add it to entities dictionnary """ graph = self.dep.getStateMachine(muxNum) nbInput = len(graph)-2 if nbInput==0: nbInput=1 outWidth = 8 muxName = "mux_{}".format(muxNum) outputName = "muxes_o({})".format(muxNum) inputName = "muxes_{}_in".format(muxNum) controlName = "muxes_{}_ctrl".format(muxNum) if muxName not in self.entities: if "mux" not in self.components: self.components["mux"] = False dictMux = {"name": muxName, "nbInput": nbInput, "wControl": vhdl_util.getLog2In(nbInput), "clk": self.clkName, "width": outWidth, "input": inputName, "wInput": int(nbInput * outWidth), "output": outputName, "control": controlName} self._addEntity(muxName, ("mux", dictMux)) return self.getEntity(muxName)[1] def _getPayloadShifterEntity(self, num): # graph = self.dep.getStateMachine(num) nbInput = int(self.dictSub['payloadSize']/8) width = 8 name = "payloadShifter_{}".format(num) controlName = "payload_{}_ctrl".format(num) inDataName = "payload_shift_{}_data_in".format(num) inKeepName = "payload_shift_{}_keep_in".format(num) selDataName = "payload_o_data({})".format(num) selKeepName = "payload_o_keep({})".format(num) if name not in self.entities: if "payload_shifter" not in self.components: self.components["payload_shifter"] = False dictParam = {"name": name, "nbInput": nbInput, "width": width, "dataWidth": int(nbInput * width), "keepWidthIn": int(1 * nbInput), # width on keepinput "keepWidth": 1, "wControl": vhdl_util.getLog2In(nbInput)+1, "clk": self.clkName, "control": controlName, "inData": inDataName, "inKeep": inKeepName, "selKeep": selKeepName, "selData": selDataName} self._addEntity(name, ("payload_shifter", dictParam)) return self.getEntity(name)[1] def _genPayloadShifter(self, num): """Payload shifter """ def genConnections(num, entity): """ Connection of the payload shifter Dictionnary key : input = (src, dst) src : tuple(signalName, MSB, LSB) dst : tuple(signalName, MSB, LSB) """ connections = {} connections["inKeep"] = (("payload_in_tkeep", ), (entity["inKeep"], )) connections["inData"] = (("payload_in_tdata", ), (entity["inData"], )) return connections if num not in self.payloadShifters: entity = self._getPayloadShifterEntity(num) self._addVector(entity["control"], entity["wControl"]) self._addVector(entity["inData"], entity["dataWidth"]) self._addVector(entity["inKeep"], entity["keepWidthIn"]) connections = genConnections(num, entity) self.payloadShifters[num] = (entity["name"], connections) else: warn("trying to regenerate payload shifter {}".format(num)) def _genMux(self, muxNum): """ Mux is tuple : entityName, stateMachine assignments) """ def genConnections(num): """ Connection : Dictionnary key = graph node name value : tuple(src, dst) src: tuple(signalName, start) dst: mux input number """ connections = {} graph = self.dep.getStateMachine(num) i = 0 for n, d in graph.nodes(data=True): if d != {}: signalName = self.phvBus[0]["name"] startPos = d["pos"][0] + self.headerBus[d["header"]][0] connections[n] = ((signalName, startPos), i) i += 1 return connections if muxNum not in self.muxes: entity = self._getMuxEntity(muxNum) self._addVector(entity["control"], entity["wControl"]) self._addVector(entity["input"], entity["wInput"]) connections = genConnections(muxNum) self.muxes[muxNum] = (entity["name"], connections) else: warn("Trying to regenerate mux {}".format(muxNum)) def _validateInputs(funcIn): """ funcIn : list of three tuples : (Type got, variable Name, expected type) """ val = True # validate input for g, n, e in funcIn: if g != e: print(Fore.YELLOW + "Wrong {} type got {}" ", expected {} {}".format(n, g, e, Style.RESET_ALL)) val = False return val def exportDeparserToVHDL(deparser, outputFolder, phvBus, baseName="deparser"): """ This function export to VHDL a deparserStateMachines If stateMachines are not of type deparserStateMachines exit """ toValidate = [(type(outputFolder), "outputFolder", str), (type(baseName), "baseName", str)] if not _validateInputs(toValidate): return if not path.exists(outputFolder): mkdir(outputFolder) outputFiles = path.join(outputFolder, baseName + ".vhdl") output_tb = path.join(outputFolder, "{}_tb.vhdl".format(baseName)) vhdlGen = deparserHDL(deparser, outputFolder, 'library', phvBus, baseName) vhdlGen.genMuxes() vhdlGen.genPayloadShifter() vhdlGen.writeFiles(outputFiles) vhdlGen.writeTB(output_tb) return vhdlGen
#!/usr/bin/env python3 # # Copyright (c) 2017 Weitna LI <weitian@aaronly.me> # MIT License # """ Average the 2D power spectrum within the EoR window (i.e., excluding the foreground contaminated wedge) to derive the 1D spherically averaged power spectrum. """ import os import argparse import numpy as np import matplotlib import matplotlib.style from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from eor_window import PS2D # Matplotlib settings matplotlib.style.use("ggplot") for k, v in [("font.family", "monospace"), ("image.cmap", "jet"), ("xtick.major.size", 7.0), ("xtick.major.width", 2.0), ("xtick.minor.size", 4.0), ("xtick.minor.width", 1.5), ("ytick.major.size", 7.0), ("ytick.major.width", 2.0), ("ytick.minor.size", 4.0), ("ytick.minor.width", 1.5)]: matplotlib.rcParams[k] = v class PS1D: """ Calculate the 1D spherically averaged power spectrum from 2D PS. Parameters ---------- ps2d : `~PS2D` A `~PS2D` instance step : float, optional By default, a logarithmic grid with the specified step ratio (default: 1.1) will be used to do the azimuthal averages. If specified a value <=1 or None, then an equal-width pixel-by-pixel (along radial direction) grid is adopted. """ def __init__(self, ps2d, step=1.1): self.ps2d = ps2d self.data = ps2d.ps2d # shape: [n_k_los, n_k_perp] self.data_err = ps2d.ps2d_err self.eor_window = ps2d.eor_window if step is None or step <= 1: self.step = None else: self.step = step @property def k_perp(self): return self.ps2d.k_perp @property def k_los(self): return self.ps2d.k_los @property def dk(self): """ The wavenumber k bin size that will be used to determine the averaging grid. Considering that the angular and line-of-sight wavenumber bin sizes are very different, their geometric mean is used instead. """ k_perp = self.k_perp k_los = self.k_los dk_perp = k_perp[1] - k_perp[0] dk_los = k_los[1] - k_los[0] return np.sqrt(dk_perp * dk_los) @property def k(self): """ The radial k positions to determine the averaging bins to derive the 1D power spectrum. """ k_max = np.sqrt(self.k_perp[-1]**2 + self.k_los[-1]**2) dk = self.dk nk = int(k_max / dk) + 1 x = np.arange(nk) if self.step is None: return x * dk else: xmax = x.max() x2 = list(x[x*(self.step-1) <= 1]) v1 = x[len(x2)] while v1 < xmax: x2.append(v1) v1 *= self.step x2.append(xmax) return np.array(x2) * dk def calc_ps1d(self, normalize=True): """ Calculate the 1D spherically averaged power spectrum by averaging the 2D cylindrical power spectrum. Parameters ---------- normalize : bool Whether to normalize the 1D power spectrum to obtain the dimensionless one, i.e., Δ^2(k) = (k^3 / (2*π^2)) P(k) Attributes ---------- ps1d : 2D `~numpy.ndarray` 3-column array storing the calculated 1D power spectrum, ``[k, ps1d, ps1d_err]`` ps1d_normalized : bool Whether the calculated 1D power spectrum is normalized? Returns ------- ps1d """ ps2d = self.data ps2d_err = self.data_err k_perp = self.k_perp k_los = self.k_los ps1d_k = self.k nk = len(ps1d_k) print("Number of k points: %d" % nk) # PS1D's 3 columns: [k, ps1d, ps1d_err] ps1d = np.zeros(shape=(nk, 3)) ps1d[:, 0] = ps1d_k print("Averaging 2D power spectrum ...") mx, my = np.meshgrid(k_perp, k_los) mk = np.sqrt(mx**2 + my**2) mk[~self.eor_window] = np.inf # constrain within EoR window for i, k in enumerate(ps1d_k): ii, jj = (mk <= k).nonzero() mk[ii, jj] = np.inf data = ps2d[ii, jj] errors = ps2d_err[ii, jj] ncell = len(data) if ncell > 0: ps1d[i, 1] = np.mean(data) # XXX: how to properly estimate the errors??? ps1d[i, 2] = np.sqrt(np.sum(errors ** 2)) / ncell if normalize: # XXX: is this normalization correct??? coef = ps1d_k**3 / (2*np.pi**2) ps1d[:, 1] *= coef ps1d[:, 2] *= coef self.ps1d_normalized = True else: self.ps1d_normalized = False self.ps1d = ps1d return ps1d def save(self, outfile): if self.ps1d_normalized: ps1d_desc = "normalized power [K^2]" else: ps1d_desc = "power [K^2 Mpc^3]" header = [ "EoR window definition:", "+ FoV: %f [deg]" % self.ps2d.fov, "+ e_ConvWidth: %f" % self.ps2d.e, "+ k_perp_min: %f [Mpc^-1]" % self.ps2d.k_perp_min, "+ k_perp_max: %f [Mpc^-1]" % self.ps2d.k_perp_max, "+ k_los_min: %f [Mpc^-1]" % self.ps2d.k_los_min, "+ k_los_max: %f [Mpc^-1]" % self.ps2d.k_los_max, "", "Columns:", "1. k: wavenumber [Mpc^-1]", "2. ps1d: %s" % ps1d_desc, "ps1d_err: power errors", "", "k ps1d ps1d_err", ] np.savetxt(outfile, self.ps1d, header="\n".join(header)) print("Saved 1D power spectrum to file: %s" % outfile) def plot(self, ax): ps1d = self.ps1d if self.ps1d_normalized: ylabel = r"$\Delta^2(k)$ [K$^2$]" else: ylabel = r"$P(k)$ [K$^2$ Mpc$^3$]" x = ps1d[:, 0] y = ps1d[:, 1] yerr = ps1d[:, 2] ax.errorbar(x[1:], y[1:], yerr=yerr[1:], fmt="none") ax.plot(x[1:], y[1:], marker="o") ax.set(xscale="log", yscale="log", xlabel=r"$k$ [Mpc$^{-1}$]", ylabel=ylabel, title="1D Spherically Averaged Power Spectrum") return ax def main(): parser = argparse.ArgumentParser( description="Calculate 1D power spectrum within the EoR window") parser.add_argument("-C", "--clobber", dest="clobber", action="store_true", help="overwrite the output files if already exist") parser.add_argument("-s", "--step", dest="step", type=float, default=1.1, help="step ratio (>1; default: 1.1) between 2 " + "consecutive radial k bins, i.e., logarithmic grid. " + "if specified a value <=1, then an equal-width grid " + "of current k bin size will be used.") parser.add_argument("-F", "--fov", dest="fov", type=float, required=True, help="instrumental FoV to determine the EoR window; " + "SKA1-Low has FoV ~ 3.12 / (nu/200MHz) [deg], i.e., " + "~5.03 @ 124, ~3.95 @ 158, ~3.18 @ 196") parser.add_argument("-e", "--conv-width", dest="conv_width", type=float, default=3.0, help="characteristic convolution width (default: 3.0)") parser.add_argument("-p", "--k-perp-min", dest="k_perp_min", type=float, help="minimum k wavenumber perpendicular to LoS; " + "unit: [Mpc^-1]") parser.add_argument("-P", "--k-perp-max", dest="k_perp_max", type=float, help="maximum k wavenumber perpendicular to LoS") parser.add_argument("-l", "--k-los-min", dest="k_los_min", type=float, help="minimum k wavenumber along LoS") parser.add_argument("-L", "--k-los-max", dest="k_los_max", type=float, help="maximum k wavenumber along LoS") parser.add_argument("--no-plot", dest="noplot", action="store_true", help="do not plot and save the calculated 1D power " + "power within the EoR window") parser.add_argument("-i", "--infile", dest="infile", required=True, help="2D power spectrum FITS file") parser.add_argument("-o", "--outfile", dest="outfile", required=True, help="output TXT file to save the PSD data") args = parser.parse_args() if (not args.clobber) and os.path.exists(args.outfile): raise OSError("outfile '%s' already exists" % args.outfile) ps2d = PS2D(args.infile, fov=args.fov, e=args.conv_width, k_perp_min=args.k_perp_min, k_perp_max=args.k_perp_max, k_los_min=args.k_los_min, k_los_max=args.k_los_max) ps1d = PS1D(ps2d, step=args.step) ps1d.calc_ps1d() ps1d.save(args.outfile) if not args.noplot: fig = Figure(figsize=(8, 8), dpi=150) FigureCanvas(fig) ax = fig.add_subplot(1, 1, 1) ps1d.plot(ax=ax) fig.tight_layout() plotfile = os.path.splitext(args.outfile)[0] + ".png" fig.savefig(plotfile) print("Plotted 1D power spectrum within EoR window: %s" % plotfile) if __name__ == "__main__": main()
from typing import List, Tuple, Optional import random def bubble_sort_(ls: List) -> List: nElem = len(ls) if nElem <= 1: return ls swap_flag = True while swap_flag: swap_flag = False for idx in range(nElem-1): if ls[idx] > ls[idx + 1]: ls[idx], ls[idx + 1] = ls[idx + 1], ls[idx] swap_flag = True return ls def selection_sort_(ls: List) -> List: nElem = len(ls) if nElem <= 1: return ls for idx in range(nElem-1): unsortedpart = ls[idx:] min_val_so_far = float('inf') min_index_so_far = None for unsort_idx, unsort_elem in enumerate(unsortedpart): if unsort_elem < min_val_so_far: min_val_so_far = unsort_elem min_index_so_far = unsort_idx ls[idx], ls[idx + min_index_so_far] = ls[idx + min_index_so_far], ls[idx] return ls def merge_sort(ls: List) -> List: nElem = len(ls) if nElem <= 1: return ls first_list = merge_sort(ls[:nElem // 2]) second_list = merge_sort(ls[nElem // 2:]) new_list = [] while (len(first_list) != 0) and (len(second_list) != 0): if first_list[-1] > second_list[-1]: new_list.append(first_list.pop()) else: new_list.append(second_list.pop()) new_list.reverse() return first_list + second_list + new_list def quicksort_(ls: List, partition_idxs: Optional[Tuple[int, int]] = None, scheme = 'hoare') -> Optional[List]: if partition_idxs is None: start = 0 end = len(ls) - 1 else: start = partition_idxs[0] end = partition_idxs[1] if start >= end: return if scheme == 'hoare': left_boundary, right_boundary = _hoare_partition_(ls, start, end) elif scheme == 'lomuto': left_boundary, right_boundary = _lomuto_partition_(ls, start, end) else: print('Unknown Scheme') return ls quicksort_(ls, (start, left_boundary), scheme = scheme) quicksort_(ls, (right_boundary, end), scheme = scheme) if partition_idxs is None: return ls else: return def _hoare_partition_(ls: List, start: int, end: int) -> Tuple[int, int]: pivot = ls[random.randint(start, end)] left_pointer = start right_pointer = end while True: while ls[left_pointer] < pivot: left_pointer += 1 while ls[right_pointer] > pivot: right_pointer -= 1 if left_pointer >= right_pointer: break ls[right_pointer], ls[left_pointer] = ls[left_pointer], ls[right_pointer] left_pointer += 1 right_pointer -= 1 return right_pointer, right_pointer + 1 def _lomuto_partition_(ls: List, start: int, end: int) -> Tuple[int, int]: new_pivot_idx = start pivot = ls[end] for idx in range(start, end): if ls[idx] < pivot: ls[idx], ls[new_pivot_idx] = ls[new_pivot_idx], ls[idx] new_pivot_idx += 1 ls[new_pivot_idx], ls[end] = ls[end], ls[new_pivot_idx] return new_pivot_idx - 1, new_pivot_idx + 1
''' Copyright 2017 Ewan Mellor Changes authored by Hadi Esiely: Copyright 2018 The Johns Hopkins University Applied Physics Laboratory LLC. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import json from .utils import printable_phone_number class MissingRecipientException(Exception): pass class Message(object): # pylint: disable=too-many-instance-attributes def __init__(self, json_dict=None): self.local_user = None self.recipient = None self.sender = None self.timestamp = None self.received_at = None self.body = None self.not_yet_sent = None if json_dict: for k in json_dict: setattr(self, k, json_dict[k]) if self.recipient: self.recipient_printable = printable_phone_number(self.recipient) def _get_arrow(self): return '&larr;' if self.direction == 'in' else '&rarr;' arrow = property(_get_arrow) def _get_direction(self): if self.recipient: return 'out' else: return 'in' direction = property(_get_direction) def to_bytes(self): if not self.recipient: raise MissingRecipientException() msg_str = self.recipient + ":" + (self.body or '') return msg_str.encode('utf-8') def to_json(self): d = {} for k in ('local_user', 'recipient', 'sender', 'timestamp', 'received_at', 'body'): v = getattr(self, k, None) if v is not None: d[k] = v return d def to_json_str(self): d = self.to_json() return json.dumps(d) def __str__(self): return self.to_json_str()
import os import matplotlib #matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np class Visualization(object): def __init__(self, output_dir= None): if not os.path.exists(output_dir): os.makedirs(output_dir) self.output_dir = output_dir def compare_images(self, input_images, reconstructed_images, stamp): # this method is inspired by https://jmetzen.github.io/2015-11-27/vae.html print("Compare images in visualization") if not len(input_images) == len(reconstructed_images): raise ValueError("Inputs should have the same size") plt.figure(figsize=(35, 20)) for i in range(0, len(input_images)): if input_images.shape[1] == 1: size = input_images.shape[2] input_image = input_images[i].reshape(size, size) reconstructed_image = reconstructed_images[i].reshape(size, size) else: input_image = self.deprocess_image(input_images[i]) reconstructed_image = self.deprocess_image(reconstructed_images[i]) plt.subplot(len(input_images), 10, 1 + i) plt.imshow(input_image, cmap='gray') plt.title("Input image") plt.subplot(len(input_images), 10, 11 + i) plt.imshow(reconstructed_image, cmap='gray') plt.title("Reconstructed image") # plt.show() plt.tight_layout() plt.savefig(self.output_dir + '/fig_comparison_' + stamp + '.png', bbox_inches='tight') #plt.show() plt.close() #plt.savefig('figures/fig_' + str(i) + '.png') def visualize_image_canvas(self, inputs, stamp, nx=None): # this method is inspired by https://jmetzen.github.io/2015-11-27/vae.html shape_x = inputs.shape[2] shape_c = inputs.shape[1] if nx == None: # inputs should be a squared number nx = ny = int(np.sqrt(inputs.shape[0])) else: ny = inputs.shape[0] / nx inputs = inputs.reshape((ny, nx, shape_c, shape_x, shape_x)) if shape_c == 1: canvas = np.empty((shape_x * ny, shape_x * nx)) else: canvas = np.empty((shape_x * ny, shape_x * nx, shape_c)) for i in range(0, ny): for j in range(0, nx): if shape_c == 1: image = inputs[i][j].reshape(shape_x, shape_x) canvas[i*shape_x:(i+1)*shape_x, j*shape_x:(j+1)*shape_x] = image else: image = self.deprocess_image(inputs[i][j]) / 255.0 canvas[i * shape_x:(i + 1) * shape_x, j * shape_x:(j + 1) * shape_x] = image plt.figure(figsize=(8, 10)) plt.imshow(canvas, origin="upper", cmap='gray') plt.tight_layout() plt.savefig(self.output_dir + '/fig_canvas_' + stamp + '.png', bbox_inches='tight') #plt.show() plt.close() def visualize_latent_space(self, output_function, shape, stamp): # Passing the output function from the variational autoencoder here is not very nice, but yeah... it works nx = ny = 20 x_values = np.float32(np.linspace(-3, 3, nx)) y_values = np.float32(np.linspace(-3, 3, ny)) shape_x = shape[2] shape_c = shape[1] if shape_c == 1: canvas = np.empty((shape_x * ny, shape_x * nx)) else: canvas = np.empty((shape_x * ny, shape_x * nx, shape_c)) for i, yi in enumerate(x_values): for j, xi in enumerate(y_values): z_mu = np.array([[xi, yi]]) # Get output for z constructed_image = output_function(z_mu) if shape_c == 1: constructed_image = constructed_image[0].reshape(shape_x, shape_x) else: constructed_image = self.deprocess_image(constructed_image[0]) / 255.0 canvas[(nx - i - 1) * shape_x:(nx - i) * shape_x, j * shape_x:(j + 1) * shape_x] = constructed_image self.visualize_canvas(canvas=canvas, stamp=stamp) def visualize_images(self, inputs, stamp): print("visualize image") path = os.path.dirname(os.path.abspath(__file__)) if not os.path.exists(path + "/figures"): os.makedirs(path + "/figures") for i in range(0, len(inputs)): if inputs.shape[1] == 1: image = inputs[i].reshape(inputs.shape[2], inputs.shape[3]) else: image = self.deprocess_image(inputs[i]) plt.imshow(image, cmap='gray') plt.savefig(self.output_dir + '/fig_' + stamp + "_" + str(i) + '.png', bbox_inches='tight') #plt.show() plt.close() def visualize_latent_layer_scatter(self, mu, y_values, stamp): plt.figure(figsize=(8, 6)) plt.scatter(mu[:, 0], mu[:, 1], c=y_values, cmap='jet') plt.colorbar() plt.grid() plt.savefig(self.output_dir + '/fig_latent_' + stamp + '.png', bbox_inches='tight') #plt.show() plt.close() def visualize_canvas(self, canvas, stamp): plt.figure(figsize=(8, 10)) #Xi, Yi = np.meshgrid(x_values, y_values) plt.imshow(canvas, origin="upper", cmap="gray") plt.savefig(self.output_dir + '/fig_canvas_latent_' + stamp + '.png', bbox_inches='tight') plt.close() def save_loss(self, lst, stamp): filename = self.output_dir + "/loss_" + stamp with open(filename, 'w') as fn: for i, elem in enumerate(lst): fn.write("{}\t{}\n".format(i+1, elem)) # Code of this method is fully copied from # https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html def deprocess_image(self,x): # normalize tensor: center on 0., ensure std is 0.1 x -= x.mean() x /= (x.std() + 1e-5) x *= 0.1 # clip to [0, 1] x += 0.5 x = np.clip(x, 0, 1) # convert to RGB array x *= 255 x = x.transpose((1, 2, 0)) x = np.clip(x, 0, 255).astype('uint8') return x
"""Change step_number to int. Revision ID: 430f2963adb9 Revises: 107d9a8cb98a Create Date: 2013-09-25 18:02:23.582384 """ # revision identifiers, used by Alembic. revision = '430f2963adb9' down_revision = '107d9a8cb98a' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.alter_column('step', u'step_number', existing_type=sa.INT(), nullable=False) op.alter_column('step', u'next_step_number', existing_type=sa.INT(), nullable=True) ### end Alembic commands ### def downgrade(): op.alter_column('step', u'step_number', existing_type=sa.UNICODE(), nullable=True) op.alter_column('step', u'next_step_number', existing_type=sa.Unicode(), nullable=True) ### end Alembic commands ###
import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from helpers import * from js.utils.plot.colors import colorScheme mpl.rc('font',size=30) mpl.rc('lines',linewidth=2.) figSize = (21, 10) figSize = (16, 10) cs = colorScheme("label") #pathToTimings = "../results/ablation_fr2_xyz/fullmode/timings.txt" #timings = ParseTimings(pathToTimings) pathToStats = "/home/jstraub/Dropbox/0gtd/thesis/results/ablation_fr2_xyz/fullmode/stats.txt" statsAwa = ParseTimings(pathToStats) pathToStats = "/home/jstraub/Dropbox/0gtd/thesis/results/ablation_fr2_xyz/rndTrack/stats.txt" statsRnd = ParseTimings(pathToStats) for key,vals in statsAwa.iteritems(): print key, len(vals) for key,vals in statsRnd.iteritems(): print key, len(vals) N = len(statsRnd["NumPlanesTracked"]) fig = plt.figure(figsize = figSize, dpi = 80, facecolor="w", edgecolor="k") plt.plot(np.arange(N), statsRnd["NumPlanesTracked"], label="# tracked by random ICP", color=cs[1]) plt.plot(np.arange(N), statsAwa["NumPlanesTracked"], label="# tracked by dir.-aware ICP", color=cs[0]) plt.plot(np.arange(N), statsAwa["NumPlanesInView"], label="# total in view", color=cs[2]) #plt.plot(np.arange(len(statsRnd["NumPlanesTracked"])), # statsRnd["NumPlanesInView"], label="random", color=cs[1]) plt.xlim([0,N]) plt.legend(loc="best") plt.xlabel("frame") plt.ylabel("number of surfels") plt.savefig("trackingStratCompPlanesTracked.png", figure=fig) fig = plt.figure(figsize = figSize, dpi = 80, facecolor="w", edgecolor="k") plt.plot(np.arange(N), statsRnd["trackingMaxStd"], label="min/max std of random ICP", color=cs[1]) plt.plot(np.arange(N), statsAwa["trackingMaxStd"], label="min/max std of dir.-aware ICP", color=cs[0]) plt.plot(np.arange(N), statsRnd["trackingMinStd"], color=cs[1]) plt.plot(np.arange(N), statsAwa["trackingMinStd"], color=cs[0]) plt.legend(loc="upper left") plt.xlim([0,N]) plt.xlabel("frame") plt.ylabel("standard deviation of pose estimate") plt.savefig("trackingStratCompStd.png", figure=fig) fig = plt.figure(figsize = figSize, dpi = 80, facecolor="w", edgecolor="k") plt.plot(np.arange(N), statsRnd["trackingH"], label="entropy of random ICP", color=cs[1]) plt.plot(np.arange(N), statsAwa["trackingH"], label="entropy of dir.-aware ICP", color=cs[0]) plt.xlim([0,N]) plt.legend(loc="best") plt.xlabel("frame") plt.ylabel("entropy of pose estimate") plt.savefig("trackingStratCompEntropy.png", figure=fig) plt.show()
# Generated by Django 2.2.16 on 2021-06-03 06:44 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('petition', '0011_auto_20210524_2151'), ] operations = [ migrations.AddField( model_name='pytitionuser', name='moderated', field=models.BooleanField(default=False), ), ]
import requests from urllib.parse import urljoin from bs4 import BeautifulSoup from rest_framework import status from rest_framework.decorators import api_view from rest_framework.response import Response @api_view(['GET', 'POST']) def get_input_data(request): if request.method == 'POST': _url = request.data['inputURL'] try: code = requests.get(_url) text = code.text soup = BeautifulSoup(text) all_images = [] a = soup.findAll('img') images = [x['src'] for x in soup.findAll('img') if x.get('src')] for img in images: if img[0:4] == 'http': all_images.append(img) else: all_images.append(urljoin(_url, img)) return Response({"all_images":all_images}) except Exception as e: return Response({"error_desc":"Something went wrong.",status:404})
# Copyright (C) 2022 Intel Corporation # SPDX-License-Identifier: BSD-3-Clause import os from typing import Tuple, Union import numpy as np from PIL import Image import glob class PilotNetDataset(): """Generic PilotNet dataset class. Returns image and ground truth value when the object is indexed. Parameters ---------- path : str, optional Path of the dataset folder. If the folder does not exists, the folder is created and the dataset is downloaded and extracted to the folder. Defaults to '../data'. size : list, optional Size of the image. If it is not `200x66`, it is resized to the given value. Defaults to [200, 66]. transform : lambda, optional Transformation function to be applied to the input image. Defaults to None. train : bool, optional Flag to indicate training or testing set. Defaults to True. visualize : bool, optional If true, the train/test split is ignored and the temporal sequence of the data is preserved. Defaults to False. sample_offset : int, optional sample offset. Default is 0. Usage ----- >>> dataset = PilotNetDataset() >>> image, gt = dataeset[0] >>> num_samples = len(dataset) """ def __init__( self, path: str = '../data', size: list = [200, 66], transform: Union[bool, None] = None, train: Union[bool, None] = True, visualize: Union[bool, None] = False, sample_offset: int = 0, ) -> None: self.path = os.path.join(path, 'driving_dataset') # check if dataset is available in path. If not download it if len(glob.glob(self.path)) == 0: # dataset does not exist os.makedirs(path, exist_ok=True) print('Dataset not available locally. Starting download ...') id = '1Ue4XohCOV5YXy57S_5tDfCVqzLr101M7' download_cmd = 'wget --load-cookies /tmp/cookies.txt '\ + '"https://docs.google.com/uc?export=download&confirm='\ + '$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate '\ + f"'https://docs.google.com/uc?export=download&id={id}' -O- | "\ + f"sed -rn \'s/.*confirm=([0-9A-Za-z_]+).*/\\1\\n/p\')&id={id}"\ + f'" -O {path}/driving_dataset.zip && rm -rf /tmp/cookies.txt' print(download_cmd) os.system(download_cmd + f' >> {path}/download.log') print('Download complete.') print('Extracting data (this may take a while) ...') os.system( f'unzip {path}/driving_dataset.zip -d {path} >> ' f'{path}/unzip.log' ) print('Extraction complete.') with open(os.path.join(self.path, 'data.txt'), 'r') as data: all_samples = [line.split() for line in data] # this is what seems to be done in https://github.com/lhzlhz/PilotNet if visualize is True: inds = np.arange(len(all_samples)) self.samples = [all_samples[i] for i in inds] else: inds = np.random.RandomState(seed=42).permutation(len(all_samples)) if train is True: self.samples = [ all_samples[i] for i in inds[:int(len(all_samples) * 0.8)] ] else: self.samples = [ all_samples[i] for i in inds[-int(len(all_samples) * 0.2):] ] self.size = size self.transform = transform self.sample_offset = sample_offset def __getitem__(self, index: int) -> Tuple[np.ndarray, float]: index = (index + self.sample_offset) % len(self.samples) image = Image.open( os.path.join(self.path, self.samples[index][0]) ).resize(self.size, resample=Image.BILINEAR) image = np.array(image) / 255 if self.transform is not None: image = 2 * self.transform['weight'] * image \ - self.transform['weight'] + self.transform['bias'] image = image.astype(np.int32).transpose([1, 0, 2]) ground_truth = float(self.samples[index][1]) if ground_truth == 0: ground_truth = ( float(self.samples[index - 1][1]) + float(self.samples[index + 1][1]) ) / 2 gt_val = ground_truth * np.pi / 180 print(f'\rSample: {index}', end='') return image, gt_val def __len__(self) -> int: return len(self.samples)
from numpy import * class PSO(object): '''particle swarm optimization f: fit function cmp_f: compare function init_f: initialization function p_size: number of particles bound_f: bound function(bool) vmax: maximum moving velocity gen_rate: like GA, the best biont's child in guassian gen_r : guassian radium nor_perceptron: the number of sense point nor_r: the radium of sense area ''' def __init__(self, f, cmp_f, init_f, p_size, bound_f, vmax, w = 0.8, c1 = 2, c2 = 2, maxiter = 2000, plot_f = None, gen_rate = 0.0, gen_r = 0.3, nor_perceptron = 0, nor_r = 0.2, init_x = None): pbest = array([None] * p_size) pbest_pos = array([None] * p_size) gbest = None gbest_pos = None v = list(random.rand(p_size)*vmax) p = [] if init_x == None: for i in xrange(p_size): p.append(init_f()) else: p = init_x p = array(p) for iteration in xrange(maxiter): for ind, ele in enumerate(p): best_f = f(ele) for i in xrange(nor_perceptron): t = array(map(lambda x: random.normal(x, nor_r), ele)) tmp = f(t) if best_f == None or cmp_f(tmp, best_f): best_f = tmp p[ind] = t ele = t if pbest[ind] == None or cmp_f(best_f, pbest[ind]): pbest[ind] = best_f pbest_pos[ind] = ele.copy() if gbest == None or cmp_f(best_f, gbest): gbest = best_f gbest_pos = ele.copy() for ind, ele in enumerate(p): v[ind] = w * v[ind]\ + c1 * random.rand() * (pbest_pos[ind] - ele)\ + c2 * random.rand() * (gbest_pos - ele) if any(v[ind] > vmax): v[ind] = vmax p[ind] += v[ind] if bound_f(p[ind])==False: p[ind] = init_f() print 'the %dth iter:\tbest fitness: f(' % iteration, gbest_pos, ')=',gbest,'\r', survive = int((1-gen_rate)*p_size) idx = pbest.argsort() pbest = pbest[idx] pbest_pos = pbest_pos[idx] p = p[idx] for ind in xrange(survive+1, len(p)): p[ind] = map(lambda x: random.normal(x, gen_r), gbest_pos) if plot_f != None: plot_f(p, gbest_pos, gbest, iteration) print 'best fitness: f(', gbest_pos, ')=', gbest self.gbest = gbest def get_x(self): return self.gbest
import pytest from iteretor_tutorial.itertools_examples import * @pytest.fixture def sequences(): return ["agctctt", "tggtgta", "gcttagt", "aaaagtctgt", "cccta"] @pytest.fixture def lines(): return ["# header1", "# header2", "# header3", "0", "10", "20"] @pytest.fixture def ages(): return [10, 15, 17, 19, 12] def test_map(sequences): assert list(map_example(sequences))==list(map(len, sequences)) def test_filter(sequences): assert list(filter_example(sequences))==list(filter(lambda s: len(s)>5, sequences)) def test_longest(sequences): lens = [2, 2, 2, 4, 3] for seq, l in zip(sequences, lens): assert longest_repeat(seq) == l def test_max_value(): def func(x, y): return x**2-2*y+y**2+1 assert max_of_function(func) == max(func(x, y) for x, y in product(range(100), repeat=2)) def test_location_from_steps(ages): assert list(location_from_steps(ages, start=3)) == list(accumulate(ages, initial=3)) def test_comment(lines): assert list(read_numbers(lines)) == list(int(line) for line in dropwhile(lambda line: line.startswith("#"), lines))
class Env: def __init__(self, pre=None): self.table = {} self.pre = pre def put(self, w, i): self.table.update({w: i}) def get(self, w): e = self while e: found = e.table.get(w) if found: return found e = e.pre return None
"""Stuff to parse WAVE files. Usage. Reading WAVE files: f = wave.open(file, 'r') where file is either the name of a file or an open file pointer. The open file pointer must have methods read(), seek(), and close(). When the setpos() and rewind() methods are not used, the seek() method is not necessary. This returns an instance of a class with the following public methods: getnchannels() -- returns number of audio channels (1 for mono, 2 for stereo) getsampwidth() -- returns sample width in bytes getframerate() -- returns sampling frequency getnframes() -- returns number of audio frames getcomptype() -- returns compression type ('NONE' for linear samples) getcompname() -- returns human-readable version of compression type ('not compressed' linear samples) getparams() -- returns a namedtuple consisting of all of the above in the above order getmarkers() -- returns None (for compatibility with the aifc module) getmark(id) -- raises an error since the mark does not exist (for compatibility with the aifc module) readframes(n) -- returns at most n frames of audio rewind() -- rewind to the beginning of the audio stream setpos(pos) -- seek to the specified position tell() -- return the current position close() -- close the instance (make it unusable) The position returned by tell() and the position given to setpos() are compatible and have nothing to do with the actual position in the file. The close() method is called automatically when the class instance is destroyed. Writing WAVE files: f = wave.open(file, 'w') where file is either the name of a file or an open file pointer. The open file pointer must have methods write(), tell(), seek(), and close(). This returns an instance of a class with the following public methods: setnchannels(n) -- set the number of channels setsampwidth(n) -- set the sample width setframerate(n) -- set the frame rate setnframes(n) -- set the number of frames setcomptype(type, name) -- set the compression type and the human-readable compression type setparams(tuple) -- set all parameters at once tell() -- return current position in output file writeframesraw(data) -- write audio frames without pathing up the file header writeframes(data) -- write audio frames and patch up the file header close() -- patch up the file header and close the output file You should set the parameters before the first writeframesraw or writeframes. The total number of frames does not need to be set, but when it is set to the correct value, the header does not have to be patched up. It is best to first set all parameters, perhaps possibly the compression type, and then write audio frames using writeframesraw. When all frames have been written, either call writeframes(b'') or close() to patch up the sizes in the header. The close() method is called automatically when the class instance is destroyed. """ import builtins __all__ = ["open", "openfp", "Error"] class Error(Exception): pass WAVE_FORMAT_PCM = 0x0001 _array_fmts = None, 'b', 'h', None, 'i' import audioop import struct import sys from chunk import Chunk from collections import namedtuple _wave_params = namedtuple('_wave_params', 'nchannels sampwidth framerate nframes comptype compname') class Wave_read: """Variables used in this class: These variables are available to the user though appropriate methods of this class: _file -- the open file with methods read(), close(), and seek() set through the __init__() method _nchannels -- the number of audio channels available through the getnchannels() method _nframes -- the number of audio frames available through the getnframes() method _sampwidth -- the number of bytes per audio sample available through the getsampwidth() method _framerate -- the sampling frequency available through the getframerate() method _comptype -- the AIFF-C compression type ('NONE' if AIFF) available through the getcomptype() method _compname -- the human-readable AIFF-C compression type available through the getcomptype() method _soundpos -- the position in the audio stream available through the tell() method, set through the setpos() method These variables are used internally only: _fmt_chunk_read -- 1 iff the FMT chunk has been read _data_seek_needed -- 1 iff positioned correctly in audio file for readframes() _data_chunk -- instantiation of a chunk class for the DATA chunk _framesize -- size of one frame in the file """ def initfp(self, file): self._convert = None self._soundpos = 0 self._file = Chunk(file, bigendian = 0) if self._file.getname() != b'RIFF': raise Error('file does not start with RIFF id') if self._file.read(4) != b'WAVE': raise Error('not a WAVE file') self._fmt_chunk_read = 0 self._data_chunk = None while 1: self._data_seek_needed = 1 try: chunk = Chunk(self._file, bigendian = 0) except EOFError: break chunkname = chunk.getname() if chunkname == b'fmt ': self._read_fmt_chunk(chunk) self._fmt_chunk_read = 1 elif chunkname == b'data': if not self._fmt_chunk_read: raise Error('data chunk before fmt chunk') self._data_chunk = chunk self._nframes = chunk.chunksize // self._framesize self._data_seek_needed = 0 break chunk.skip() if not self._fmt_chunk_read or not self._data_chunk: raise Error('fmt chunk and/or data chunk missing') def __init__(self, f): self._i_opened_the_file = None if isinstance(f, str): f = builtins.open(f, 'rb') self._i_opened_the_file = f # else, assume it is an open file object already try: self.initfp(f) except: if self._i_opened_the_file: f.close() raise def __del__(self): self.close() def __enter__(self): return self def __exit__(self, *args): self.close() # # User visible methods. # def getfp(self): return self._file def rewind(self): self._data_seek_needed = 1 self._soundpos = 0 def close(self): self._file = None file = self._i_opened_the_file if file: self._i_opened_the_file = None file.close() def tell(self): return self._soundpos def getnchannels(self): return self._nchannels def getnframes(self): return self._nframes def getsampwidth(self): return self._sampwidth def getframerate(self): return self._framerate def getcomptype(self): return self._comptype def getcompname(self): return self._compname def getparams(self): return _wave_params(self.getnchannels(), self.getsampwidth(), self.getframerate(), self.getnframes(), self.getcomptype(), self.getcompname()) def getmarkers(self): return None def getmark(self, id): raise Error('no marks') def setpos(self, pos): if pos < 0 or pos > self._nframes: raise Error('position not in range') self._soundpos = pos self._data_seek_needed = 1 def readframes(self, nframes): if self._data_seek_needed: self._data_chunk.seek(0, 0) pos = self._soundpos * self._framesize if pos: self._data_chunk.seek(pos, 0) self._data_seek_needed = 0 if nframes == 0: return b'' data = self._data_chunk.read(nframes * self._framesize) if self._sampwidth != 1 and sys.byteorder == 'big': data = audioop.byteswap(data, self._sampwidth) if self._convert and data: data = self._convert(data) self._soundpos = self._soundpos + len(data) // (self._nchannels * self._sampwidth) return data # # Internal methods. # def _read_fmt_chunk(self, chunk): wFormatTag, self._nchannels, self._framerate, dwAvgBytesPerSec, wBlockAlign = struct.unpack_from('<HHLLH', chunk.read(14)) if wFormatTag == WAVE_FORMAT_PCM: sampwidth = struct.unpack_from('<H', chunk.read(2))[0] self._sampwidth = (sampwidth + 7) // 8 else: raise Error('unknown format: %r' % (wFormatTag,)) self._framesize = self._nchannels * self._sampwidth self._comptype = 'NONE' self._compname = 'not compressed' class Wave_write: """Variables used in this class: These variables are user settable through appropriate methods of this class: _file -- the open file with methods write(), close(), tell(), seek() set through the __init__() method _comptype -- the AIFF-C compression type ('NONE' in AIFF) set through the setcomptype() or setparams() method _compname -- the human-readable AIFF-C compression type set through the setcomptype() or setparams() method _nchannels -- the number of audio channels set through the setnchannels() or setparams() method _sampwidth -- the number of bytes per audio sample set through the setsampwidth() or setparams() method _framerate -- the sampling frequency set through the setframerate() or setparams() method _nframes -- the number of audio frames written to the header set through the setnframes() or setparams() method These variables are used internally only: _datalength -- the size of the audio samples written to the header _nframeswritten -- the number of frames actually written _datawritten -- the size of the audio samples actually written """ def __init__(self, f): self._i_opened_the_file = None if isinstance(f, str): f = builtins.open(f, 'wb') self._i_opened_the_file = f try: self.initfp(f) except: if self._i_opened_the_file: f.close() raise def initfp(self, file): self._file = file self._convert = None self._nchannels = 0 self._sampwidth = 0 self._framerate = 0 self._nframes = 0 self._nframeswritten = 0 self._datawritten = 0 self._datalength = 0 self._headerwritten = False def __del__(self): self.close() def __enter__(self): return self def __exit__(self, *args): self.close() # # User visible methods. # def setnchannels(self, nchannels): if self._datawritten: raise Error('cannot change parameters after starting to write') if nchannels < 1: raise Error('bad # of channels') self._nchannels = nchannels def getnchannels(self): if not self._nchannels: raise Error('number of channels not set') return self._nchannels def setsampwidth(self, sampwidth): if self._datawritten: raise Error('cannot change parameters after starting to write') if sampwidth < 1 or sampwidth > 4: raise Error('bad sample width') self._sampwidth = sampwidth def getsampwidth(self): if not self._sampwidth: raise Error('sample width not set') return self._sampwidth def setframerate(self, framerate): if self._datawritten: raise Error('cannot change parameters after starting to write') if framerate <= 0: raise Error('bad frame rate') self._framerate = int(round(framerate)) def getframerate(self): if not self._framerate: raise Error('frame rate not set') return self._framerate def setnframes(self, nframes): if self._datawritten: raise Error('cannot change parameters after starting to write') self._nframes = nframes def getnframes(self): return self._nframeswritten def setcomptype(self, comptype, compname): if self._datawritten: raise Error('cannot change parameters after starting to write') if comptype not in ('NONE',): raise Error('unsupported compression type') self._comptype = comptype self._compname = compname def getcomptype(self): return self._comptype def getcompname(self): return self._compname def setparams(self, params): nchannels, sampwidth, framerate, nframes, comptype, compname = params if self._datawritten: raise Error('cannot change parameters after starting to write') self.setnchannels(nchannels) self.setsampwidth(sampwidth) self.setframerate(framerate) self.setnframes(nframes) self.setcomptype(comptype, compname) def getparams(self): if not self._nchannels or not self._sampwidth or not self._framerate: raise Error('not all parameters set') return _wave_params(self._nchannels, self._sampwidth, self._framerate, self._nframes, self._comptype, self._compname) def setmark(self, id, pos, name): raise Error('setmark() not supported') def getmark(self, id): raise Error('no marks') def getmarkers(self): return None def tell(self): return self._nframeswritten def writeframesraw(self, data): if not isinstance(data, (bytes, bytearray)): data = memoryview(data).cast('B') self._ensure_header_written(len(data)) nframes = len(data) // (self._sampwidth * self._nchannels) if self._convert: data = self._convert(data) if self._sampwidth != 1 and sys.byteorder == 'big': data = audioop.byteswap(data, self._sampwidth) self._file.write(data) self._datawritten += len(data) self._nframeswritten = self._nframeswritten + nframes def writeframes(self, data): self.writeframesraw(data) if self._datalength != self._datawritten: self._patchheader() def close(self): try: if self._file: self._ensure_header_written(0) if self._datalength != self._datawritten: self._patchheader() self._file.flush() finally: self._file = None file = self._i_opened_the_file if file: self._i_opened_the_file = None file.close() # # Internal methods. # def _ensure_header_written(self, datasize): if not self._headerwritten: if not self._nchannels: raise Error('# channels not specified') if not self._sampwidth: raise Error('sample width not specified') if not self._framerate: raise Error('sampling rate not specified') self._write_header(datasize) def _write_header(self, initlength): assert not self._headerwritten self._file.write(b'RIFF') if not self._nframes: self._nframes = initlength // (self._nchannels * self._sampwidth) self._datalength = self._nframes * self._nchannels * self._sampwidth try: self._form_length_pos = self._file.tell() except (AttributeError, OSError): self._form_length_pos = None self._file.write(struct.pack('<L4s4sLHHLLHH4s', 36 + self._datalength, b'WAVE', b'fmt ', 16, WAVE_FORMAT_PCM, self._nchannels, self._framerate, self._nchannels * self._framerate * self._sampwidth, self._nchannels * self._sampwidth, self._sampwidth * 8, b'data')) if self._form_length_pos is not None: self._data_length_pos = self._file.tell() self._file.write(struct.pack('<L', self._datalength)) self._headerwritten = True def _patchheader(self): assert self._headerwritten if self._datawritten == self._datalength: return curpos = self._file.tell() self._file.seek(self._form_length_pos, 0) self._file.write(struct.pack('<L', 36 + self._datawritten)) self._file.seek(self._data_length_pos, 0) self._file.write(struct.pack('<L', self._datawritten)) self._file.seek(curpos, 0) self._datalength = self._datawritten def open(f, mode=None): if mode is None: if hasattr(f, 'mode'): mode = f.mode else: mode = 'rb' if mode in ('r', 'rb'): return Wave_read(f) elif mode in ('w', 'wb'): return Wave_write(f) else: raise Error("mode must be 'r', 'rb', 'w', or 'wb'") openfp = open # B/W compatibility
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ API JSON validators. """ import abc import base64 import re import jsonschema as schema from ldap3.core import exceptions as ldap_exceptions from ldap3.utils.dn import parse_dn from OpenSSL import crypto from oslo_utils import timeutils import six from barbican.api import controllers from barbican.common import config from barbican.common import exception from barbican.common import hrefs from barbican.common import utils from barbican import i18n as u from barbican.model import models from barbican.model import repositories as repo from barbican.plugin.interface import secret_store from barbican.plugin.util import mime_types DEFAULT_MAX_SECRET_BYTES = config.DEFAULT_MAX_SECRET_BYTES LOG = utils.getLogger(__name__) CONF = config.CONF MYSQL_SMALL_INT_MAX = 32767 ACL_OPERATIONS = ['read', 'write', 'delete', 'list'] def secret_too_big(data): if isinstance(data, six.text_type): return len(data.encode('UTF-8')) > CONF.max_allowed_secret_in_bytes else: return len(data) > CONF.max_allowed_secret_in_bytes def get_invalid_property(validation_error): # we are interested in the second item which is the failed propertyName. if validation_error.schema_path and len(validation_error.schema_path) > 1: return validation_error.schema_path[1] def validate_stored_key_rsa_container(project_id, container_ref, req): try: container_id = hrefs.get_container_id_from_ref(container_ref) except Exception: reason = u._("Bad Container Reference {ref}").format( ref=container_ref ) raise exception.InvalidContainer(reason=reason) container_repo = repo.get_container_repository() container = container_repo.get_container_by_id(entity_id=container_id, suppress_exception=True) if not container: reason = u._("Container Not Found") raise exception.InvalidContainer(reason=reason) if container.type != 'rsa': reason = u._("Container Wrong Type") raise exception.InvalidContainer(reason=reason) ctxt = controllers._get_barbican_context(req) inst = controllers.containers.ContainerController(container) controllers._do_enforce_rbac(inst, req, controllers.containers.CONTAINER_GET, ctxt) class ValidatorBase(object, metaclass=abc.ABCMeta): """Base class for validators.""" name = '' @abc.abstractmethod def validate(self, json_data, parent_schema=None): """Validate the input JSON. :param json_data: JSON to validate against this class' internal schema. :param parent_schema: Name of the parent schema to this schema. :returns: dict -- JSON content, post-validation and : normalization/defaulting. :raises: schema.ValidationError on schema violations. """ def _full_name(self, parent_schema=None): """Validator schema name accessor Returns the full schema name for this validator, including parent name. """ schema_name = self.name if parent_schema: schema_name = u._( "{schema_name}' within '{parent_schema_name}").format( schema_name=self.name, parent_schema_name=parent_schema) return schema_name def _assert_schema_is_valid(self, json_data, schema_name): """Assert that the JSON structure is valid for the given schema. :raises: InvalidObject exception if the data is not schema compliant. """ try: schema.validate(json_data, self.schema) except schema.ValidationError as e: raise exception.InvalidObject(schema=schema_name, reason=e.message, property=get_invalid_property(e)) def _assert_validity(self, valid_condition, schema_name, message, property): """Assert that a certain condition is met. :raises: InvalidObject exception if the condition is not met. """ if not valid_condition: raise exception.InvalidObject(schema=schema_name, reason=message, property=property) class NewSecretValidator(ValidatorBase): """Validate a new secret.""" def __init__(self): self.name = 'Secret' # TODO(jfwood): Get the list of mime_types from the crypto plugins? self.schema = { "type": "object", "properties": { "name": {"type": ["string", "null"], "maxLength": 255}, "algorithm": {"type": "string", "maxLength": 255}, "mode": {"type": "string", "maxLength": 255}, "bit_length": { "type": "integer", "minimum": 1, "maximum": MYSQL_SMALL_INT_MAX }, "expiration": {"type": "string", "maxLength": 255}, "payload": {"type": "string"}, "secret_type": { "type": "string", "maxLength": 80, "enum": [secret_store.SecretType.SYMMETRIC, secret_store.SecretType.PASSPHRASE, secret_store.SecretType.PRIVATE, secret_store.SecretType.PUBLIC, secret_store.SecretType.CERTIFICATE, secret_store.SecretType.OPAQUE] }, "payload_content_type": { "type": ["string", "null"], "maxLength": 255 }, "payload_content_encoding": { "type": "string", "maxLength": 255, "enum": [ "base64" ] }, "transport_key_needed": { "type": "string", "enum": ["true", "false"] }, "transport_key_id": {"type": "string"}, }, } def validate(self, json_data, parent_schema=None): """Validate the input JSON for the schema for secrets.""" schema_name = self._full_name(parent_schema) self._assert_schema_is_valid(json_data, schema_name) json_data['name'] = self._extract_name(json_data) expiration = self._extract_expiration(json_data, schema_name) self._assert_expiration_is_valid(expiration, schema_name) json_data['expiration'] = expiration content_type = json_data.get('payload_content_type') if 'payload' in json_data: content_encoding = json_data.get('payload_content_encoding') self._validate_content_parameters(content_type, content_encoding, schema_name) payload = self._extract_payload(json_data) self._assert_validity(payload, schema_name, u._("If 'payload' specified, must be non " "empty"), "payload") self._validate_payload_by_content_encoding(content_encoding, payload, schema_name) json_data['payload'] = payload elif 'payload_content_type' in json_data: # parent_schema would be populated if it comes from an order. self._assert_validity(parent_schema is not None, schema_name, u._("payload must be provided when " "payload_content_type is specified"), "payload") if content_type: self._assert_validity( mime_types.is_supported(content_type), schema_name, u._("payload_content_type is not one of {supported}" ).format(supported=mime_types.SUPPORTED), "payload_content_type") return json_data def _extract_name(self, json_data): """Extracts and returns the name from the JSON data.""" name = json_data.get('name') if isinstance(name, six.string_types): return name.strip() return None def _extract_expiration(self, json_data, schema_name): """Extracts and returns the expiration date from the JSON data.""" expiration = None expiration_raw = json_data.get('expiration') if expiration_raw and expiration_raw.strip(): try: expiration_tz = timeutils.parse_isotime(expiration_raw.strip()) expiration = timeutils.normalize_time(expiration_tz) except ValueError: LOG.exception("Problem parsing expiration date") raise exception.InvalidObject( schema=schema_name, reason=u._("Invalid date for 'expiration'"), property="expiration") return expiration def _assert_expiration_is_valid(self, expiration, schema_name): """Asserts that the given expiration date is valid. Expiration dates must be in the future, not the past. """ if expiration: # Verify not already expired. utcnow = timeutils.utcnow() self._assert_validity(expiration > utcnow, schema_name, u._("'expiration' is before current time"), "expiration") def _validate_content_parameters(self, content_type, content_encoding, schema_name): """Content parameter validator. Check that the content_type, content_encoding and the parameters that they affect are valid. """ self._assert_validity( content_type is not None, schema_name, u._("If 'payload' is supplied, 'payload_content_type' must also " "be supplied."), "payload_content_type") self._assert_validity( mime_types.is_supported(content_type), schema_name, u._("payload_content_type is not one of {supported}" ).format(supported=mime_types.SUPPORTED), "payload_content_type") self._assert_validity( mime_types.is_content_type_with_encoding_supported( content_type, content_encoding), schema_name, u._("payload_content_encoding is not one of {supported}").format( supported=mime_types.get_supported_encodings(content_type)), "payload_content_encoding") def _validate_payload_by_content_encoding(self, payload_content_encoding, payload, schema_name): if payload_content_encoding == 'base64': try: base64.b64decode(payload) except Exception: LOG.exception("Problem parsing payload") raise exception.InvalidObject( schema=schema_name, reason=u._("Invalid payload for payload_content_encoding"), property="payload") def _extract_payload(self, json_data): """Extracts and returns the payload from the JSON data. :raises: LimitExceeded if the payload is too big """ payload = json_data.get('payload', '') if secret_too_big(payload): raise exception.LimitExceeded() return payload.strip() class NewSecretMetadataValidator(ValidatorBase): """Validate new secret metadata.""" def __init__(self): self.name = 'SecretMetadata' self.schema = { "type": "object", "$schema": "http://json-schema.org/draft-03/schema", "properties": { "metadata": {"type": "object", "required": True}, } } def validate(self, json_data, parent_schema=None): """Validate the input JSON for the schema for secret metadata.""" schema_name = self._full_name(parent_schema) self._assert_schema_is_valid(json_data, schema_name) return self._extract_metadata(json_data) def _extract_metadata(self, json_data): """Extracts and returns the metadata from the JSON data.""" metadata = json_data['metadata'] for key in list(metadata): # make sure key is a string and url-safe. if not isinstance(key, six.string_types): raise exception.InvalidMetadataRequest() self._check_string_url_safe(key) # make sure value is a string. value = metadata[key] if not isinstance(value, six.string_types): raise exception.InvalidMetadataRequest() # If key is not lowercase, then change it if not key.islower(): del metadata[key] metadata[key.lower()] = value return metadata def _check_string_url_safe(self, string): """Checks if string can be part of a URL.""" if not re.match("^[A-Za-z0-9_-]*$", string): raise exception.InvalidMetadataKey() class NewSecretMetadatumValidator(ValidatorBase): """Validate new secret metadatum.""" def __init__(self): self.name = 'SecretMetadatum' self.schema = { "type": "object", "$schema": "http://json-schema.org/draft-03/schema", "properties": { "key": { "type": "string", "maxLength": 255, "required": True }, "value": { "type": "string", "maxLength": 255, "required": True }, }, "additionalProperties": False } def validate(self, json_data, parent_schema=None): """Validate the input JSON for the schema for secret metadata.""" schema_name = self._full_name(parent_schema) self._assert_schema_is_valid(json_data, schema_name) key = self._extract_key(json_data) value = self._extract_value(json_data) return {"key": key, "value": value} def _extract_key(self, json_data): """Extracts and returns the metadata from the JSON data.""" key = json_data['key'] self._check_string_url_safe(key) key = key.lower() return key def _extract_value(self, json_data): """Extracts and returns the metadata from the JSON data.""" value = json_data['value'] return value def _check_string_url_safe(self, string): """Checks if string can be part of a URL.""" if not re.match("^[A-Za-z0-9_-]*$", string): raise exception.InvalidMetadataKey() class CACommonHelpersMixin(object): def _validate_subject_dn_data(self, subject_dn): """Confirm that the subject_dn contains valid data Validate that the subject_dn string parses without error If not, raise InvalidSubjectDN """ try: parse_dn(subject_dn) except ldap_exceptions.LDAPInvalidDnError: raise exception.InvalidSubjectDN(subject_dn=subject_dn) # TODO(atiwari) - Split this validator module and unit tests # into smaller modules class TypeOrderValidator(ValidatorBase, CACommonHelpersMixin): """Validate a new typed order.""" def __init__(self): self.name = 'Order' self.schema = { "type": "object", "$schema": "http://json-schema.org/draft-03/schema", "properties": { "meta": { "type": "object", "required": True }, "type": { "type": "string", "required": True, "enum": ['key', 'asymmetric', 'certificate'] } } } def validate(self, json_data, parent_schema=None): schema_name = self._full_name(parent_schema) self._assert_schema_is_valid(json_data, schema_name) order_type = json_data.get('type').lower() if order_type == models.OrderType.CERTIFICATE: certificate_meta = json_data.get('meta') self._validate_certificate_meta(certificate_meta, schema_name) elif order_type == models.OrderType.ASYMMETRIC: asymmetric_meta = json_data.get('meta') self._validate_asymmetric_meta(asymmetric_meta, schema_name) elif order_type == models.OrderType.KEY: key_meta = json_data.get('meta') self._validate_key_meta(key_meta, schema_name) else: self._raise_feature_not_implemented(order_type, schema_name) return json_data def _validate_key_meta(self, key_meta, schema_name): """Validation specific to meta for key type order.""" secret_validator = NewSecretValidator() secret_validator.validate(key_meta, parent_schema=self.name) self._assert_validity(key_meta.get('payload') is None, schema_name, u._("'payload' not allowed " "for key type order"), "meta") # Validation secret generation related fields. # TODO(jfwood): Invoke the crypto plugin for this purpose self._validate_meta_parameters(key_meta, "key", schema_name) def _validate_asymmetric_meta(self, asymmetric_meta, schema_name): """Validation specific to meta for asymmetric type order.""" # Validate secret metadata. secret_validator = NewSecretValidator() secret_validator.validate(asymmetric_meta, parent_schema=self.name) self._assert_validity(asymmetric_meta.get('payload') is None, schema_name, u._("'payload' not allowed " "for asymmetric type order"), "meta") self._validate_meta_parameters(asymmetric_meta, "asymmetric key", schema_name) def _get_required_metadata_value(self, metadata, key): data = metadata.get(key, None) if data is None: raise exception.MissingMetadataField(required=key) return data def _validate_certificate_meta(self, certificate_meta, schema_name): """Validation specific to meta for certificate type order.""" self._assert_validity(certificate_meta.get('payload') is None, schema_name, u._("'payload' not allowed " "for certificate type order"), "meta") if 'profile' in certificate_meta: if 'ca_id' not in certificate_meta: raise exception.MissingMetadataField(required='ca_id') jump_table = { 'simple-cmc': self._validate_simple_cmc_request, 'full-cmc': self._validate_full_cmc_request, 'stored-key': self._validate_stored_key_request, 'custom': self._validate_custom_request } request_type = certificate_meta.get("request_type", "custom") if request_type not in jump_table: raise exception.InvalidCertificateRequestType(request_type) jump_table[request_type](certificate_meta) def _validate_simple_cmc_request(self, certificate_meta): """Validates simple CMC (which are PKCS10 requests).""" request_data = self._get_required_metadata_value( certificate_meta, "request_data") self._validate_pkcs10_data(request_data) def _validate_full_cmc_request(self, certificate_meta): """Validate full CMC request. :param certificate_meta: request data from the order :raises: FullCMCNotSupported """ raise exception.FullCMCNotSupported() def _validate_stored_key_request(self, certificate_meta): """Validate stored-key cert request.""" self._get_required_metadata_value( certificate_meta, "container_ref") subject_dn = self._get_required_metadata_value( certificate_meta, "subject_dn") self._validate_subject_dn_data(subject_dn) # container will be validated by validate_stored_key_rsa_container() extensions = certificate_meta.get("extensions", None) if extensions: self._validate_extensions_data(extensions) def _validate_custom_request(self, certificate_meta): """Validate custom data request We cannot do any validation here because the request parameters are custom. Validation will be done by the plugin. We may choose to select the relevant plugin and call the supports() method to raise validation errors. """ pass def _validate_pkcs10_data(self, request_data): """Confirm that the request_data is valid base64 encoded PKCS#10. Base64 decode the request, if it fails raise PayloadDecodingError. Then parse data into the ASN.1 structure defined by PKCS10 and verify the signing information. If parsing of verifying fails, raise InvalidPKCS10Data. """ try: csr_pem = base64.b64decode(request_data) except Exception: raise exception.PayloadDecodingError() try: csr = crypto.load_certificate_request(crypto.FILETYPE_PEM, csr_pem) except Exception: reason = u._("Bad format") raise exception.InvalidPKCS10Data(reason=reason) try: pubkey = csr.get_pubkey() csr.verify(pubkey) except Exception: reason = u._("Signing key incorrect") raise exception.InvalidPKCS10Data(reason=reason) def _validate_full_cmc_data(self, request_data): """Confirm that request_data is valid Full CMC data.""" """ TODO(alee-3) complete this function Parse data into the ASN.1 structure defined for full CMC. If parsing fails, raise InvalidCMCData """ pass def _validate_extensions_data(self, extensions): """Confirm that the extensions data is valid. :param extensions: base 64 encoded ASN.1 string of extension data :raises: CertificateExtensionsNotSupported """ """ TODO(alee-3) complete this function Parse the extensions data into the correct ASN.1 structure. If the parsing fails, throw InvalidExtensionsData. For now, fail this validation because extensions parsing is not supported. """ raise exception.CertificateExtensionsNotSupported() def _validate_meta_parameters(self, meta, order_type, schema_name): self._assert_validity(meta.get('algorithm'), schema_name, u._("'algorithm' is required field " "for {0} type order").format(order_type), "meta") self._assert_validity(meta.get('bit_length'), schema_name, u._("'bit_length' is required field " "for {0} type order").format(order_type), "meta") self._validate_bit_length(meta, schema_name) def _extract_expiration(self, json_data, schema_name): """Extracts and returns the expiration date from the JSON data.""" expiration = None expiration_raw = json_data.get('expiration', None) if expiration_raw and expiration_raw.strip(): try: expiration_tz = timeutils.parse_isotime(expiration_raw) expiration = timeutils.normalize_time(expiration_tz) except ValueError: LOG.exception("Problem parsing expiration date") raise exception.InvalidObject(schema=schema_name, reason=u._("Invalid date " "for 'expiration'"), property="expiration") return expiration def _validate_bit_length(self, meta, schema_name): bit_length = int(meta.get('bit_length')) if bit_length % 8 != 0: raise exception.UnsupportedField(field="bit_length", schema=schema_name, reason=u._("Must be a" " positive integer" " that is a" " multiple of 8")) def _raise_feature_not_implemented(self, order_type, schema_name): raise exception.FeatureNotImplemented(field='type', schema=schema_name, reason=u._("Feature not " "implemented for " "'{0}' order type") .format(order_type)) class ACLValidator(ValidatorBase): """Validate ACL(s).""" def __init__(self): self.name = 'ACL' self.schema = { "$schema": "http://json-schema.org/draft-04/schema#", "definitions": { "acl_defintion": { "type": "object", "properties": { "users": { "type": "array", "items": [ {"type": "string", "maxLength": 255} ] }, "project-access": {"type": "boolean"} }, "additionalProperties": False } }, "type": "object", "properties": { "read": {"$ref": "#/definitions/acl_defintion"}, }, "additionalProperties": False } def validate(self, json_data, parent_schema=None): schema_name = self._full_name(parent_schema) self._assert_schema_is_valid(json_data, schema_name) return json_data class ContainerConsumerValidator(ValidatorBase): """Validate a Consumer.""" def __init__(self): self.name = 'Consumer' self.schema = { "type": "object", "properties": { "URL": {"type": "string", "minLength": 1}, "name": {"type": "string", "maxLength": 255, "minLength": 1} }, "required": ["name", "URL"] } def validate(self, json_data, parent_schema=None): schema_name = self._full_name(parent_schema) self._assert_schema_is_valid(json_data, schema_name) return json_data class ContainerSecretValidator(ValidatorBase): """Validate a Container Secret.""" def __init__(self): self.name = 'ContainerSecret' self.schema = { "type": "object", "properties": { "name": {"type": "string", "maxLength": 255}, "secret_ref": {"type": "string", "minLength": 1} }, "required": ["secret_ref"] } def validate(self, json_data, parent_schema=None): schema_name = self._full_name(parent_schema) self._assert_schema_is_valid(json_data, schema_name) return json_data class ContainerValidator(ValidatorBase): """Validator for all types of Container.""" def __init__(self): self.name = 'Container' self.schema = { "type": "object", "properties": { "name": {"type": ["string", "null"], "maxLength": 255}, "type": { "type": "string", # TODO(hgedikli): move this to a common location "enum": ["generic", "rsa", "certificate"] }, "secret_refs": { "type": "array", "items": { "type": "object", "required": ["secret_ref"], "properties": { "name": { "type": ["string", "null"], "maxLength": 255 }, "secret_ref": {"type": "string", "minLength": 1} } } } }, "required": ["type"] } def validate(self, json_data, parent_schema=None): schema_name = self._full_name(parent_schema) self._assert_schema_is_valid(json_data, schema_name) container_type = json_data.get('type') secret_refs = json_data.get('secret_refs') if not secret_refs: return json_data secret_refs_names = set(secret_ref.get('name', '') for secret_ref in secret_refs) self._assert_validity( len(secret_refs_names) == len(secret_refs), schema_name, u._("Duplicate reference names are not allowed"), "secret_refs") # The combination of container_id and secret_id is expected to be # primary key for container_secret so same secret id (ref) cannot be # used within a container secret_ids = set(self._get_secret_id_from_ref(secret_ref) for secret_ref in secret_refs) self._assert_validity( len(secret_ids) == len(secret_refs), schema_name, u._("Duplicate secret ids are not allowed"), "secret_refs") # Ensure that our secret refs are valid relative to our config, no # spoofing allowed! req_host_href = utils.get_base_url_from_request() for secret_ref in secret_refs: if not secret_ref.get('secret_ref').startswith(req_host_href): raise exception.UnsupportedField( field='secret_ref', schema=schema_name, reason=u._( "Secret_ref does not match the configured hostname, " "please try again" ) ) if container_type == 'rsa': self._validate_rsa(secret_refs_names, schema_name) elif container_type == 'certificate': self._validate_certificate(secret_refs_names, schema_name) return json_data def _validate_rsa(self, secret_refs_names, schema_name): required_names = {'public_key', 'private_key'} optional_names = {'private_key_passphrase'} contains_unsupported_names = self._contains_unsupported_names( secret_refs_names, required_names | optional_names) self._assert_validity( not contains_unsupported_names, schema_name, u._("only 'private_key', 'public_key' and " "'private_key_passphrase' reference names are " "allowed for RSA type"), "secret_refs") self._assert_validity( self._has_minimum_required(secret_refs_names, required_names), schema_name, u._("The minimum required reference names are 'public_key' and" "'private_key' for RSA type"), "secret_refs") def _validate_certificate(self, secret_refs_names, schema_name): required_names = {'certificate'} optional_names = {'private_key', 'private_key_passphrase', 'intermediates'} contains_unsupported_names = self._contains_unsupported_names( secret_refs_names, required_names.union(optional_names)) self._assert_validity( not contains_unsupported_names, schema_name, u._("only 'private_key', 'certificate' , " "'private_key_passphrase', or 'intermediates' " "reference names are allowed for Certificate type"), "secret_refs") self._assert_validity( self._has_minimum_required(secret_refs_names, required_names), schema_name, u._("The minimum required reference name is 'certificate' " "for Certificate type"), "secret_refs") def _contains_unsupported_names(self, secret_refs_names, supported_names): if secret_refs_names.difference(supported_names): return True return False def _has_minimum_required(self, secret_refs_names, required_names): if required_names.issubset(secret_refs_names): return True return False def _get_secret_id_from_ref(self, secret_ref): secret_id = secret_ref.get('secret_ref') if secret_id.endswith('/'): secret_id = secret_id.rsplit('/', 2)[1] elif '/' in secret_id: secret_id = secret_id.rsplit('/', 1)[1] return secret_id class NewTransportKeyValidator(ValidatorBase): """Validate a new transport key.""" def __init__(self): self.name = 'Transport Key' self.schema = { "type": "object", "properties": { "plugin_name": {"type": "string"}, "transport_key": {"type": "string"}, }, } def validate(self, json_data, parent_schema=None): schema_name = self._full_name(parent_schema) self._assert_schema_is_valid(json_data, schema_name) plugin_name = json_data.get('plugin_name', '').strip() self._assert_validity(plugin_name, schema_name, u._("plugin_name must be provided"), "plugin_name") json_data['plugin_name'] = plugin_name transport_key = json_data.get('transport_key', '').strip() self._assert_validity(transport_key, schema_name, u._("transport_key must be provided"), "transport_key") json_data['transport_key'] = transport_key return json_data class ProjectQuotaValidator(ValidatorBase): """Validate a new project quota.""" def __init__(self): self.name = 'Project Quota' self.schema = { 'type': 'object', 'properties': { 'project_quotas': { 'type': 'object', 'properties': { 'secrets': {'type': 'integer'}, 'orders': {'type': 'integer'}, 'containers': {'type': 'integer'}, 'consumers': {'type': 'integer'}, 'cas': {'type': 'integer'} }, 'additionalProperties': False, } }, 'required': ['project_quotas'], 'additionalProperties': False } def validate(self, json_data, parent_schema=None): schema_name = self._full_name(parent_schema) self._assert_schema_is_valid(json_data, schema_name) return json_data class NewCAValidator(ValidatorBase, CACommonHelpersMixin): """Validate new CA(s).""" def __init__(self): self.name = 'CA' self.schema = { 'type': 'object', 'properties': { 'name': {'type': 'string', "minLength": 1}, 'subject_dn': {'type': 'string', "minLength": 1}, 'parent_ca_ref': {'type': 'string', "minLength": 1}, 'description': {'type': 'string'}, }, 'required': ['name', 'subject_dn', 'parent_ca_ref'], 'additionalProperties': False } def validate(self, json_data, parent_schema=None): schema_name = self._full_name(parent_schema) self._assert_schema_is_valid(json_data, schema_name) subject_dn = json_data['subject_dn'] self._validate_subject_dn_data(subject_dn) return json_data class SecretConsumerValidator(ValidatorBase): """Validate a new Secret Consumer.""" def __init__(self): self.name = "Secret Consumer" self.schema = { "type": "object", "properties": { "service": { "type": "string", "maxLength": 255, "minLength": 1, }, "resource_type": { "type": "string", "maxLength": 255, "minLength": 1, }, "resource_id": {"type": "string", "minLength": 1}, }, "required": ["service", "resource_type", "resource_id"], } def validate(self, json_data, parent_schema=None): schema_name = self._full_name(parent_schema) self._assert_schema_is_valid(json_data, schema_name) return json_data
class Solution(object): def isMatch(self, s, p): """ :type s: str :type p: str :rtype: bool """ # i and j are the pointers to the char that we are going to check, # if i and j reach their ends simultaneously, the two strings are matched. # next_try stores a position(coordinates) to record the position of last star # (plus one, so that it can be the 'next' 'try') and corresponding j. # next_try can be seen as another possible starting point to check the two strings. # next_try is updated when we meet a new '*'. We only care about the last '*' because # the last '*' means that we have already matched as much as we can for p and the last # '*' can cover any string so we can throw away the previous next_try values and start # from here. We're greedy. i, j, next_try = 0, 0, None while 1: # Quick judge by length of string: if len(p w/o '*') is bigger than len(s), return False if len(p)-p.count('*')>len(s): return False # check if i outbounds p if i >= len(p): # both i and j reaches end of their strings simultaneously if j >= len(s): return True # go to next_try if next_try: i, j = next_try if j>=len(s): # no more try return False else: j+=1 next_try = [i,j] else: # if there is no next_try (None), return False return False else: # check if '*' if p[i] != '*': # not '*', we compare the two chars if exist else return False if j>=len(s): # see if there is next_try (update it first) if next_try: i, j = next_try if j>=len(s): # cannot update next_try since it's over limit return False else: j+=1 next_try = [i,j] else: # if not next_try available, return False return False else: # j<len(s), we can compare the two chars if (p[i]=='?') or (p[i]==s[j]): i+=1 j+=1 else: # if chars are not equal, we need to test next_try (update it first) if next_try: next_try=[next_try[0],next_try[1]+1] i, j = next_try else: # if not next_try available, return False return False else: # '*', we need to update branch coordinates for next_try next_try = [i+1, j] i, j = next_try
from openpyxl import Workbook from openpyxl.styles import Alignment class ExcelConverter: def __init__(self, filename, data): self.filename = filename self.workbook = Workbook() self.data = data def create_file(self): new_sheet = self.workbook.active counter = 1 for statement in self.data: new_sheet[f'A{counter}'].value = statement.number new_sheet[f'B{counter}'].value = statement.date new_sheet[f'C{counter}'].value = statement.description new_sheet[f'D{counter}'].value = statement.value_date new_sheet[f'E{counter}'].value = statement.amount new_sheet[f'F{counter}'].value = statement.currency new_sheet[f'G{counter}'].value = statement.detail_in_text new_sheet[f'G{counter}'].alignment = Alignment(wrapText=True) counter += 1 self.workbook.save(self.filename)
# (C) Copyright 2020 ECMWF. # # This software is licensed under the terms of the Apache Licence Version 2.0 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation # nor does it submit to any jurisdiction. # import os from zipfile import ZipFile from . import Reader class ZIPReader(Reader): def __init__(self, source, path): super().__init__(source, path) with ZipFile(path, "r") as z: self._content = z.namelist() if len(self._content) != 1: raise NotImplementedError("Multi-file zip not yet supported") def to_pandas(self, **kwargs): _, ext = os.path.splitext(self._content[0]) if ext not in (".csv", ".txt"): raise NotImplementedError("File type", ext) import pandas options = dict(compression="zip") options.update(self.source.read_csv_options()) options.update(kwargs) return pandas.read_csv(self.path, **options) def reader(source, path, magic): if magic[:4] == b"PK\x03\x04": return ZIPReader(source, path)
from flask import render_template , request, redirect, url_for from . import main from flask_wtf import FlaskForm from .forms import BlogForm,UpdateProfile,UpdateBlog from ..models import User,Blog from .. import db,photos from ..email import mail_message from flask_login import LoginManager, UserMixin, login_required, login_user, logout_user, current_user @main.route('/',methods = ["GET","POST"]) def index(): return render_template('index.html') @main.route('/blog', methods=['GET', 'POST']) @login_required def blog(): form = BlogForm() user = User if form.validate_on_submit(): blog = Blog(owner_id=current_user.id, title=form.title.data, category=form.category.data, content=form.content.data) form.title.data = '' form.category.data = '' form.content.data = '' db.session.add(blog) db.session.commit() return render_template('blog.html', form=form, user=user) @main.route('/user/<uname>') @login_required def profile(uname): blog = Blog.query.filter_by(id=current_user.id).all() user = User.query.filter_by(username=uname).first() return render_template('profile/profile.html', name=current_user.username, email=current_user.email, password=current_user.password, user=user, blog=blog) @main.route('/user/<uname>/update', methods=['GET', 'POST']) @login_required def update_profile(uname): user = User.query.filter_by(username=uname).first() if user is None: return redirect(url_for('.error')) form = UpdateProfile() if form.validate_on_submit(): user.bio = form.bio.data db.session.add(user) db.session.commit() return redirect(url_for('.profile', uname=user.username)) return render_template('profile/update.html', form=form) @main.route('/user/<uname>/update/pic', methods=['POST']) @login_required def update_pic(uname): user = User.query.filter_by(username=uname).first() if 'photo' in request.files: filename = photos.save(request.files['photo']) path = f'photos/{filename}' user.profile_pic_path = path db.session.commit() return redirect(url_for('main.profile', uname=uname)) # @main.route('/user/<uname>/updateblog', methods=['GET', 'POST']) # @login_required # def updateblog(uname): # user = User.query.filter_by(username=uname).first() # if user is None: # return redirect(url_for('.error')) # form = UpdateBlog() # if form.validate_on_submit(): # content = form.content.data # blog = Blog(user) # db.session.add(blog) # db.session.commit() # return redirect(url_for('auth.dashboard', uname=user.username)) # return render_template('blogpost/updateblog.html', form=form)
from ncls import NCLS import pickle import pandas as pd import numpy as np starts = np.array(list(reversed([3, 5, 8])), dtype=np.long) ends = np.array(list(reversed([6, 7, 9])), dtype=np.long) indexes = np.array(list(reversed([0, 1, 2])), dtype=np.long) # starts = np.array([3, 5, 8], dtype=np.long) # ends = np.array([6, 7, 9], dtype=np.long) # indexes = np.array([0, 1, 2], dtype=np.long) ncls = NCLS(starts, ends, indexes) starts2 = np.array([1, 6]) ends2 = np.array([10, 7]) indexes2 = np.array([0, 1]) print(ncls.all_overlaps_both(starts2, ends2, indexes2))
#!/home/rathankalluri/pys/aws-django/env/bin/python3 from django.core import management if __name__ == "__main__": management.execute_from_command_line()
from django.conf import settings def secret_for_invitation(request): if request.path == '/': return { 'invitation_secret': settings.USER_INVITATION_SECRET } else: return {}
# !/Library/Frameworks/Python.framework/Versions/3.7/bin/python3 # -*- coding:utf-8 -*- # @Author : Jiazhixiang import requests # 引用requests库 from bs4 import BeautifulSoup # 引用BeautifulSoup库 headers = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36" } res_movies = requests.get('https://movie.douban.com/chart', headers=headers) # 获取数据 bs_movies = BeautifulSoup(res_movies.text, 'html.parser') # 解析数据 list_movies = bs_movies.find_all('div', class_='pl2') # print(list_movies) # 查找最小父级标签 # tag_p = list_movies[0].find('p') # tag_p = list_movies[0].find('div', class_='star clearfix') # print(tag_p) # print(tag_p.text) # # 提取第0个父级标签中的<p>标签 # information = tag_p.text.replace(' ', '').replace('\n', '') # # 电影基本信息,使用replace方法去掉多余的空格及换行符 # # print('电影的基本信息为:' + information) # 输出结果 # 创建一个空列表,用于存储信息 list_all = [] for movie in list_movies: tag_a = movie.find('a') # 电影名 name = tag_a.text.replace(' ', '').replace('\n', '') # 电影节 url = tag_a['href'] # 电影详情 tag_p = movie.find('p', class_='pl') mv_information = tag_p.text.replace(' ', '').replace('\n', '') # 电影评分 tag_div = movie.find('div', class_="star clearfix") rating = tag_div.text.replace(' ', '').replace('\n', '') list_all.append([name, url, mv_information, rating]) print(list_all)