content
stringlengths
5
1.05M
"""Model Zoo""" from .model_zoo import get_model, get_model_list
import csv import json import traceback from ufdl.json.object_detection import Annotation, Polygon from ufdl.joblauncher.core import load_class from ufdl.joblauncher.core import AbstractJobExecutor from ufdl.pythonclient.functional.object_detection.dataset import get_metadata, set_metadata, set_annotations_for_image def read_rois(csv_file): """ Loads the specified ROIs CSV file and generates a list of Annotation objects and a list of scores from it. :param csvfile: the CSV file to read :type csvfile: str :return: the tuple of annotations list and scores list :rtype: tuple """ annotations = [] scores = [] with open(csv_file, "r") as cf: reader = csv.DictReader(cf) for row in reader: if ('x' in row) and ('y' in row) and ('w' in row) and ('h' in row) and ('label_str' in row) and ('score' in row): polygon = None if ('poly_x' in row) and ('poly_y' in row): xs = row['poly_x'].split(",") ys = row['poly_y'].split(",") p = [] for x, y in zip(xs, ys): p.append([int(float(x)), int(float(y))]) polygon = Polygon(points=p) if polygon is not None: annotation = Annotation( x=int(float(row['x'])), y=int(float(row['y'])), width=int(float(row['w'])), height=int(float(row['h'])), label=row['label_str'], polygon=polygon) else: annotation = Annotation( x=int(float(row['x'])), y=int(float(row['y'])), width=int(float(row['w'])), height=int(float(row['h'])), label=row['label_str']) annotations.append(annotation) scores.append(float(row['score'])) return annotations, scores def store_annotations(executor, job_pk, dataset_pk, img_name, annotations): """ Stores the annotations in the backend. :param executor: the executor class this is done for :type executor: AbstractJobExecutor :param job_pk: the PK of the job being executed :type job_pk: int :param dataset_pk: the PK of the dataset these scores are calculated for :type dataset_pk: int :param img_name: the name of the image the scores were calculated for :type img_name: str :param annotations: the list of Annotation objects :type annotations: list[Annotation] """ # set annotations for image try: set_annotations_for_image(executor.context, dataset_pk, img_name, annotations) except: executor.log_msg("Failed to add annotations generated by job %d to dataset %d!\n%s" % (job_pk, dataset_pk, traceback.format_exc())) def store_scores(executor, job_pk, dataset_pk, img_name, scores): """ Stores the annotations in the backend. :param executor: the executor class this is done for :type executor: AbstractJobExecutor :param job_pk: the PK of the job being executed :type job_pk: int :param dataset_pk: the PK of the dataset these scores are calculated for :type dataset_pk: int :param img_name: the name of the image the scores were calculated for :type img_name: str :param scores: the list of float scores :type scores: list[float] """ try: metadata = get_metadata(executor.context, dataset_pk, img_name) if metadata == "": metadata = dict() else: metadata = json.loads(metadata) metadata['scores'] = scores set_metadata(executor.context, dataset_pk, img_name, json.dumps(metadata)) except: executor.log_msg("Failed to add scores of job %d for image %s in dataset %d!\n%s" % (job_pk, img_name, dataset_pk, traceback.format_exc())) def calculate_confidence_scores(executor, job_pk, dataset_pk, img_name, confidence_score_classes, annotations, scores): """ Calcualtes and stores confidence scores. :param executor: the executor class this is done for :type executor: AbstractJobExecutor :param job_pk: the PK of the job being executed :type job_pk: int :param dataset_pk: the PK of the dataset these scores are calculated for :type dataset_pk: int :param img_name: the name of the image the scores were calculated for :type img_name: str :param confidence_score_classes: the list of class names :type confidence_score_classes: list :param annotations: the list of annotations to use for the score confidence calculation :type annotations: list[Annotation] :param scores: the list of scores to use for the confidence score calculation :type scores: list """ # instantiate calculators conf_score_obj = [] try: for c in confidence_score_classes: conf_score_obj.append(load_class(c)()) except: executor.log_msg("Failed to instantiate confidence score classes: %s\n%s" % (str(confidence_score_classes), traceback.format_exc())) # calculate the scores if len(conf_score_obj) > 0: try: conf_scores = dict() for c in conf_score_obj: current = c.calculate(annotations, scores) for k in current: conf_scores[k] = current[k] metadata = get_metadata(executor.context, dataset_pk, img_name) if metadata == "": metadata = dict() else: metadata = json.loads(metadata) metadata['confidence'] = conf_scores set_metadata(executor.context, dataset_pk, img_name, json.dumps(metadata)) except: executor.log_msg("Failed to add confidence scores of job %d for image %s in dataset %d!\n%s" % (job_pk, img_name, dataset_pk, traceback.format_exc()))
import pyaudio import wave import numpy as np RESPEAKER_RATE = 16000 RESPEAKER_CHANNELS = 2 RESPEAKER_WIDTH = 2 # run getDeviceInfo.py to get index RESPEAKER_INDEX = 1 # refer to input device id CHUNK = 1024 RECORD_SECONDS = 3 WAVE_OUTPUT_FILENAME = "output_one_channel.wav" p = pyaudio.PyAudio() stream = p.open( rate=RESPEAKER_RATE, format=p.get_format_from_width(RESPEAKER_WIDTH), channels=RESPEAKER_CHANNELS, input=True, input_device_index=RESPEAKER_INDEX,) print("* recording") frames = [] for i in range(0, int(RESPEAKER_RATE / CHUNK * RECORD_SECONDS)): data = stream.read(CHUNK) # extract channel 0 data from 2 channels, if you want to extract channel 1, please change to [1::2] a = np.fromstring(data,dtype=np.int16)[0::2] frames.append(a.tostring()) print("* done recording") stream.stop_stream() stream.close() p.terminate() wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb') wf.setnchannels(1) wf.setsampwidth(p.get_sample_size(p.get_format_from_width(RESPEAKER_WIDTH))) wf.setframerate(RESPEAKER_RATE) wf.writeframes(b''.join(frames)) wf.close()
import re import json import logging import ptf.testutils as testutils import pytest import time from ipaddress import ip_network, IPv4Network from tests.common.helpers.assertions import pytest_assert from tests.common.utilities import wait, wait_until from tests.common.dualtor.mux_simulator_control import * from tests.common.dualtor.dual_tor_utils import * logger = logging.getLogger(__name__) SYSTEM_STABILIZE_MAX_TIME = 300 MONIT_STABILIZE_MAX_TIME = 420 OMEM_THRESHOLD_BYTES=10485760 # 10MB __all__ = [ 'check_services', 'check_interfaces', 'check_bgp', 'check_dbmemory', 'check_monit', 'check_processes', 'check_mux_simulator'] @pytest.fixture(scope="module") def check_services(duthosts): def _check(*args, **kwargs): check_results = [] for dut in duthosts: logger.info("Checking services status on %s..." % dut.hostname) networking_uptime = dut.get_networking_uptime().seconds timeout = max((SYSTEM_STABILIZE_MAX_TIME - networking_uptime), 0) interval = 20 logger.info("networking_uptime=%d seconds, timeout=%d seconds, interval=%d seconds" % \ (networking_uptime, timeout, interval)) check_result = {"failed": True, "check_item": "services", "host": dut.hostname} if timeout == 0: # Check services status, do not retry. services_status = dut.critical_services_status() check_result["failed"] = False if all(services_status.values()) else True check_result["services_status"] = services_status else: # Retry checking service status start = time.time() elapsed = 0 while elapsed < timeout: services_status = dut.critical_services_status() check_result["failed"] = False if all(services_status.values()) else True check_result["services_status"] = services_status if check_result["failed"]: wait(interval, msg="Not all services are started, wait %d seconds to retry. Remaining time: %d %s" % \ (interval, int(timeout - elapsed), str(check_result["services_status"]))) elapsed = time.time() - start else: break logger.info("Done checking services status on %s" % dut.hostname) check_results.append(check_result) return check_results return _check def _find_down_phy_ports(dut, phy_interfaces): down_phy_ports = [] intf_facts = dut.show_interface(command='status', include_internal_intfs=('201811' not in dut.os_version))['ansible_facts']['int_status'] for intf in phy_interfaces: try: if intf_facts[intf]['oper_state'] == 'down': down_phy_ports.append(intf) except KeyError: down_phy_ports.append(intf) return down_phy_ports def _find_down_ip_ports(dut, ip_interfaces): down_ip_ports = [] ip_intf_facts = dut.show_ip_interface()['ansible_facts']['ip_interfaces'] for intf in ip_interfaces: try: if ip_intf_facts[intf]['oper_state'] == 'down': down_ip_ports.append(intf) except KeyError: down_ip_ports.append(intf) return down_ip_ports def _find_down_ports(dut, phy_interfaces, ip_interfaces): """Finds the ports which are operationally down Args: dut (object): The sonichost/sonicasic object phy_interfaces (list): List of all phyiscal operation in 'admin_up' ip_interfaces (list): List of the L3 interfaces Returns: [list]: list of the down ports """ down_ports = [] down_ports = _find_down_ip_ports(dut, ip_interfaces) + \ _find_down_phy_ports(dut, phy_interfaces) return down_ports @pytest.fixture(scope="module") def check_interfaces(duthosts): def _check(*args, **kwargs): check_results = [] for dut in duthosts.frontend_nodes: logger.info("Checking interfaces status on %s..." % dut.hostname) networking_uptime = dut.get_networking_uptime().seconds timeout = max((SYSTEM_STABILIZE_MAX_TIME - networking_uptime), 0) interval = 20 logger.info("networking_uptime=%d seconds, timeout=%d seconds, interval=%d seconds" % \ (networking_uptime, timeout, interval)) down_ports = [] check_result = {"failed": True, "check_item": "interfaces", "host": dut.hostname} for asic in dut.asics: ip_interfaces = [] cfg_facts = asic.config_facts(host=dut.hostname, source="persistent", verbose=False)['ansible_facts'] phy_interfaces = [k for k, v in cfg_facts["PORT"].items() if "admin_status" in v and v["admin_status"] == "up"] if "PORTCHANNEL_INTERFACE" in cfg_facts: ip_interfaces = cfg_facts["PORTCHANNEL_INTERFACE"].keys() if "VLAN_INTERFACE" in cfg_facts: ip_interfaces += cfg_facts["VLAN_INTERFACE"].keys() logger.info(json.dumps(phy_interfaces, indent=4)) logger.info(json.dumps(ip_interfaces, indent=4)) if timeout == 0: # Check interfaces status, do not retry. down_ports += _find_down_ports(asic, phy_interfaces, ip_interfaces) check_result["failed"] = True if len(down_ports) > 0 else False check_result["down_ports"] = down_ports else: # Retry checking interface status start = time.time() elapsed = 0 while elapsed < timeout: down_ports = _find_down_ports(asic, phy_interfaces, ip_interfaces) check_result["failed"] = True if len(down_ports) > 0 else False check_result["down_ports"] = down_ports if check_result["failed"]: wait(interval, msg="Found down ports, wait %d seconds to retry. Remaining time: %d, down_ports=%s" % \ (interval, int(timeout - elapsed), str(check_result["down_ports"]))) elapsed = time.time() - start else: break logger.info("Done checking interfaces status on %s" % dut.hostname) check_result["failed"] = True if len(down_ports) > 0 else False check_result["down_ports"] = down_ports check_results.append(check_result) return check_results return _check @pytest.fixture(scope="module") def check_bgp(duthosts): def _check(*args, **kwargs): check_results = [] for dut in duthosts.frontend_nodes: def _check_bgp_status_helper(): asic_check_results = [] bgp_facts = dut.bgp_facts(asic_index='all') for asic_index, a_asic_facts in enumerate(bgp_facts): a_asic_result = False a_asic_neighbors = a_asic_facts['ansible_facts']['bgp_neighbors'] if a_asic_neighbors: down_neighbors = [k for k, v in a_asic_neighbors.items() if v['state'] != 'established'] if down_neighbors: if dut.facts['num_asic'] == 1: check_result['bgp'] = {'down_neighbors' : down_neighbors } else: check_result['bgp' + str(asic_index)] = {'down_neighbors' : down_neighbors } a_asic_result = True else: a_asic_result = False if dut.facts['num_asic'] == 1: if 'bgp' in check_result: check_result['bgp'].pop('down_neighbors', None) else: if 'bgp' + str(asic_index) in check_result: check_result['bgp' + str(asic_index)].pop('down_neighbors', None) else: a_asic_result = True asic_check_results.append(a_asic_result) if any(asic_check_results): check_result['failed'] = True return not check_result['failed'] logger.info("Checking bgp status on host %s ..." % dut.hostname) check_result = {"failed": False, "check_item": "bgp", "host": dut.hostname} networking_uptime = dut.get_networking_uptime().seconds timeout = max(SYSTEM_STABILIZE_MAX_TIME - networking_uptime, 1) interval = 20 wait_until(timeout, interval, _check_bgp_status_helper) if (check_result['failed']): for a_result in check_result.keys(): if a_result != 'failed': # Dealing with asic result if 'down_neighbors' in check_result[a_result]: logger.info('BGP neighbors down: %s on bgp instance %s on dut %s' % (check_result[a_result]['down_neighbors'], a_result, dut.hostname)) else: logger.info('No BGP neighbors are down on %s' % dut.hostname) logger.info("Done checking bgp status on %s" % dut.hostname) check_results.append(check_result) return check_results return _check def _is_db_omem_over_threshold(command_output): total_omem = 0 re_omem = re.compile("omem=(\d+)") result = False for line in command_output: m = re_omem.search(line) if m: omem = int(m.group(1)) total_omem += omem logger.debug(json.dumps(command_output, indent=4)) if total_omem > OMEM_THRESHOLD_BYTES: result = True return result, total_omem @pytest.fixture(scope="module") def check_dbmemory(duthosts): def _check(*args, **kwargs): check_results = [] for dut in duthosts: logger.info("Checking database memory on %s..." % dut.hostname) redis_cmd = "client list" check_result = {"failed": False, "check_item": "dbmemory", "host": dut.hostname} # check the db memory on the redis instance running on each instance for asic in dut.asics: res = asic.run_redis_cli_cmd(redis_cmd)['stdout_lines'] result, total_omem = _is_db_omem_over_threshold(res) if result: check_result["failed"] = True check_result["total_omem"] = total_omem logging.info("{} db memory over the threshold ".format(str(asic.namespace or ''))) break logger.info("Done checking database memory on %s" % dut.hostname) check_results.append(check_result) return check_results return _check def _check_monit_services_status(check_result, monit_services_status): """ @summary: Check whether each type of service which was monitored by Monit was in correct status or not. If a service was in "Not monitored" status, sanity check will skip it since this service was temporarily set to not be monitored by Monit. @return: A dictionary contains the testing result (failed or not failed) and the status of each service. """ check_result["services_status"] = {} for service_name, service_info in monit_services_status.items(): check_result["services_status"].update({service_name: service_info["service_status"]}) if service_info["service_status"] == "Not monitored": continue if ((service_info["service_type"] == "Filesystem" and service_info["service_status"] != "Accessible") or (service_info["service_type"] == "Process" and service_info["service_status"] != "Running") or (service_info["service_type"] == "Program" and service_info["service_status"] != "Status ok")): check_result["failed"] = True return check_result def get_arp_pkt_info(dut): intf_mac = dut.facts['router_mac'] mgmt_ipv4 = None mgmt_intf_facts = dut.get_running_config_facts()['MGMT_INTERFACE'] for mgmt_intf in mgmt_intf_facts: for mgmt_ip in mgmt_intf_facts[mgmt_intf]: if type(ip_network(mgmt_ip, strict=False)) is IPv4Network: mgmt_ipv4 = mgmt_ip.split('/')[0] return intf_mac, mgmt_ipv4 return intf_mac, mgmt_ipv4 @pytest.fixture(scope='module') def check_mux_simulator(ptf_server_intf, tor_mux_intf, ptfadapter, upper_tor_host, lower_tor_host, \ recover_all_directions, toggle_simulator_port_to_upper_tor, toggle_simulator_port_to_lower_tor, check_simulator_read_side): def _check(*args, **kwargs): """ @summary: Checks if the OVS bridge mux simulator is functioning correctly @return: A dictionary containing the testing result of the PTF interface tested: { 'failed': <True/False>, 'failed_reason': <reason string>, 'intf': '<PTF interface name> mux simulator' } """ results = { 'failed': False, 'failed_reason': '', 'check_item': '{} mux simulator'.format(ptf_server_intf) } logger.info("Checking mux simulator status for PTF interface {}".format(ptf_server_intf)) ptf_port_index = int(ptf_server_intf.replace('eth', '')) recover_all_directions(tor_mux_intf) upper_tor_intf_mac, upper_tor_mgmt_ip = get_arp_pkt_info(upper_tor_host) lower_tor_intf_mac, lower_tor_mgmt_ip = get_arp_pkt_info(lower_tor_host) upper_tor_ping_tgt_ip = '10.10.10.1' lower_tor_ping_tgt_ip = '10.10.10.2' ptf_arp_tgt_ip = '10.10.10.3' ping_cmd = 'ping -I {} {} -c 1 -W 1; true' upper_tor_exp_pkt = testutils.simple_arp_packet(eth_dst='ff:ff:ff:ff:ff:ff', eth_src=upper_tor_intf_mac, ip_snd=upper_tor_mgmt_ip, ip_tgt=upper_tor_ping_tgt_ip, hw_snd=upper_tor_intf_mac) lower_tor_exp_pkt = testutils.simple_arp_packet(eth_dst='ff:ff:ff:ff:ff:ff', eth_src=lower_tor_intf_mac, ip_snd=lower_tor_mgmt_ip, ip_tgt=lower_tor_ping_tgt_ip, hw_snd=lower_tor_intf_mac) ptf_arp_pkt = testutils.simple_arp_packet(ip_tgt=ptf_arp_tgt_ip, ip_snd=ptf_arp_tgt_ip, arp_op=2) # Clear ARP tables to start in consistent state upper_tor_host.shell("ip neigh flush all") lower_tor_host.shell("ip neigh flush all") # Run tests with upper ToR active toggle_simulator_port_to_upper_tor(tor_mux_intf) try: pytest_assert(check_simulator_read_side(tor_mux_intf) == 1) except AssertionError: results['failed'] = True results['failed_reason'] = 'Unable to switch active link to upper ToR' return results # Ping from both ToRs, expect only message from upper ToR to reach PTF upper_tor_host.shell(ping_cmd.format(tor_mux_intf, upper_tor_ping_tgt_ip)) try: testutils.verify_packet(ptfadapter, upper_tor_exp_pkt, ptf_port_index) except AssertionError: results['failed'] = True results['failed_reason'] = 'Packet from active upper ToR not received' return results lower_tor_host.shell(ping_cmd.format(tor_mux_intf, lower_tor_ping_tgt_ip)) try: testutils.verify_no_packet(ptfadapter, lower_tor_exp_pkt, ptf_port_index) except AssertionError: results['failed'] = True results['failed_reason'] = 'Packet from standby lower ToR received' return results # Send dummy ARP packets from PTF to ToR. Ensure that ARP is learned on both ToRs upper_tor_host.shell("ip neigh flush all") lower_tor_host.shell("ip neigh flush all") testutils.send_packet(ptfadapter, ptf_port_index, ptf_arp_pkt) upper_tor_arp_table = upper_tor_host.switch_arptable()['ansible_facts']['arptable']['v4'] lower_tor_arp_table = lower_tor_host.switch_arptable()['ansible_facts']['arptable']['v4'] try: pytest_assert(ptf_arp_tgt_ip in upper_tor_arp_table) except AssertionError: results['failed'] = True results['failed_reason'] = 'Packet from PTF not received on active upper ToR' return results try: pytest_assert(ptf_arp_tgt_ip in lower_tor_arp_table) except AssertionError: results['failed'] = True results['failed_reason'] = 'Packet from PTF not received on standby lower ToR' return results # Repeat all tests with lower ToR active toggle_simulator_port_to_lower_tor(tor_mux_intf) try: pytest_assert(check_simulator_read_side(tor_mux_intf) == 2) except AssertionError: results['failed'] = True results['failed_reason'] = 'Unable to switch active link to lower ToR' return results lower_tor_host.shell(ping_cmd.format(tor_mux_intf, lower_tor_ping_tgt_ip)) try: testutils.verify_packet(ptfadapter, lower_tor_exp_pkt, ptf_port_index) except AssertionError: results['failed'] = True results['failed_reason'] = 'Packet from active lower ToR not received' return results upper_tor_host.shell(ping_cmd.format(tor_mux_intf, upper_tor_ping_tgt_ip)) try: testutils.verify_no_packet(ptfadapter, upper_tor_exp_pkt, ptf_port_index) except AssertionError: results['failed'] = True results['failed_reason'] = 'Packet from standby upper ToR received' return results upper_tor_host.shell("ip neigh flush all") lower_tor_host.shell("ip neigh flush all") testutils.send_packet(ptfadapter, ptf_port_index, ptf_arp_pkt) upper_tor_arp_table = upper_tor_host.switch_arptable()['ansible_facts']['arptable']['v4'] lower_tor_arp_table = lower_tor_host.switch_arptable()['ansible_facts']['arptable']['v4'] try: pytest_assert(ptf_arp_tgt_ip in upper_tor_arp_table) except AssertionError: results['failed'] = True results['failed_reason'] = 'Packet from PTF not received on standby upper ToR' return results try: pytest_assert(ptf_arp_tgt_ip in lower_tor_arp_table) except AssertionError: results['failed'] = True results['failed_reason'] = 'Packet from PTF not received on active lower ToR' return results logger.info('Finished mux simulator check') return results return _check @pytest.fixture(scope="module") def check_monit(duthosts): """ @summary: Check whether the Monit is running and whether the services which were monitored by Monit are in the correct status or not. @return: A dictionary contains the testing result (failed or not failed) and the status of each service. """ def _check(*args, **kwargs): check_results = [] for dut in duthosts: logger.info("Checking status of each Monit service...") networking_uptime = dut.get_networking_uptime().seconds timeout = max((MONIT_STABILIZE_MAX_TIME - networking_uptime), 0) interval = 20 logger.info("networking_uptime = {} seconds, timeout = {} seconds, interval = {} seconds" \ .format(networking_uptime, timeout, interval)) check_result = {"failed": False, "check_item": "monit", "host": dut.hostname} if timeout == 0: monit_services_status = dut.get_monit_services_status() if not monit_services_status: logger.info("Monit was not running.") check_result["failed"] = True check_result["failed_reason"] = "Monit was not running" logger.info("Checking status of each Monit service was done!") return check_result check_result = _check_monit_services_status(check_result, monit_services_status) else: start = time.time() elapsed = 0 is_monit_running = False while elapsed < timeout: check_result["failed"] = False monit_services_status = dut.get_monit_services_status() if not monit_services_status: wait(interval, msg="Monit was not started and wait {} seconds to retry. Remaining time: {}." \ .format(interval, timeout - elapsed)) elapsed = time.time() - start continue is_monit_running = True check_result = _check_monit_services_status(check_result, monit_services_status) if check_result["failed"]: wait(interval, msg="Services were not monitored and wait {} seconds to retry. Remaining time: {}. Services status: {}" \ .format(interval, timeout - elapsed, str(check_result["services_status"]))) elapsed = time.time() - start else: break if not is_monit_running: logger.info("Monit was not running.") check_result["failed"] = True check_result["failed_reason"] = "Monit was not running" logger.info("Checking status of each Monit service was done on %s" % dut.hostname) check_results.append(check_result) return check_results return _check @pytest.fixture(scope="module") def check_processes(duthosts): def _check(*args, **kwargs): check_results = [] for dut in duthosts: logger.info("Checking process status on %s..." % dut.hostname) networking_uptime = dut.get_networking_uptime().seconds timeout = max((SYSTEM_STABILIZE_MAX_TIME - networking_uptime), 0) interval = 20 logger.info("networking_uptime=%d seconds, timeout=%d seconds, interval=%d seconds" % \ (networking_uptime, timeout, interval)) check_result = {"failed": False, "check_item": "processes", "host": dut.hostname} if timeout == 0: # Check processes status, do not retry. processes_status = dut.all_critical_process_status() check_result["processes_status"] = processes_status check_result["services_status"] = {} for k, v in processes_status.items(): if v['status'] == False or len(v['exited_critical_process']) > 0: check_result['failed'] = True check_result["services_status"].update({k: v['status']}) else: # Retry checking processes status start = time.time() elapsed = 0 while elapsed < timeout: check_result["failed"] = False processes_status = dut.all_critical_process_status() check_result["processes_status"] = processes_status check_result["services_status"] = {} for k, v in processes_status.items(): if v['status'] == False or len(v['exited_critical_process']) > 0: check_result['failed'] = True check_result["services_status"].update({k: v['status']}) if check_result["failed"]: wait(interval, msg="Not all processes are started, wait %d seconds to retry. Remaining time: %d %s" % \ (interval, int(timeout - elapsed), str(check_result["processes_status"]))) elapsed = time.time() - start else: break logger.info("Done checking processes status on %s" % dut.hostname) check_results.append(check_result) return check_results return _check
#!/usr/bin/env python import wget import tarfile import os import sys try: import hostphot except: pass def download_dustmaps(mapsdir='.'): """ Downloads dust maps of Schlegel, Fikbeiner & Davis (1998). mapsdir : str, default '.' Directory where the directory with dust maps of Schlegel, Fikbeiner & Davis (1998) is going to be downloaded with the name 'sfddata-master/'. Default uses current directory. """ sfdmaps_url = 'https://github.com/kbarbary/sfddata/archive/master.tar.gz' master_tar = wget.download(sfdmaps_url) # extract tar file under mapsdir directory tar = tarfile.open(master_tar) tar.extractall(mapsdir) tar.close() os.remove(master_tar) if __name__ == '__main__': if len(sys.argv)==1: download_dustmaps() elif str(sys.argv[1])=='hostphot': mapsdir = hostphot.__path__[0] download_dustmaps(mapsdir) else: download_dustmaps(str(sys.argv[1]))
# Copyright (c) 2018-2021, Texas Instruments # All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import time import sys from colorama import Fore def timer(func, *args, repeats=1, **kwargs): start_time = time.time() for i in range(repeats): results = func(*args, **kwargs) # elapsed_time = (time.time() - start_time)/repeats return results, elapsed_time # measures time spent on the current process. # this is more accurate, but this will not measure time spent in os.system() calls # so use timer() if you have os.system() calls. def process_timer(func, *args, repeats=1, **kwargs): start_time = time.clock() for i in range(repeats): results = func(*args, **kwargs) # elapsed_process_time = (time.clock() - start_time)/repeats return results, elapsed_process_time def delta_time(seconds): days, seconds = divmod(seconds,(60*60*24)) hours, seconds = divmod(seconds,(60*60)) minutes, seconds = divmod(seconds,60) return days, hours, minutes, seconds def delta_time_string(seconds): days, hours, minutes, seconds = delta_time(seconds) time_str = f'{minutes:02.0f}:{seconds:02.0f}' time_str = f'{hours:02.0f}:{time_str}' if hours > 0 else time_str time_str = f'{days:1.0f}d,{time_str}' if days > 0 else time_str return time_str def display_time_bar(desc, num_completed, total, start_time, end_time, file=None, colors=None): file = file if file is not None else sys.stdout time_taken_str = eta_str = it_per_sec = '' time_delta = end_time - start_time if num_completed > 0 and time_delta > 0 and total is not None: time_taken_str = delta_time_string(time_delta) eta_str = delta_time_string(time_delta*(total-num_completed)/num_completed) it_per_sec = f'{(time_delta/num_completed):5.2f}s/it' if (time_delta > num_completed) \ else f'{(num_completed/time_delta):5.2f}it/s' # num_bars = int(num_completed*10.0/total) if total is not None else 0 percentage = f'{num_completed*100.0/total:5.0f}%' if total is not None else ' ' bar_string = f"{'#'*num_bars + ' '*(10-num_bars)}" if colors is not None: assert len(colors) == 4, f'colors must have length 4' file.write(f'\r{colors[0]}{desc}|' f'{colors[1]}{bar_string}| ' f'{colors[2]}{percentage} {num_completed}/{total}| ' f'{colors[3]}[{time_taken_str}<{eta_str} {it_per_sec}]{Fore.RESET}') else: file.write(f'\r{desc}|' f'{bar_string}| ' f'{percentage} {num_completed}/{total}| ' f'[{time_taken_str}<{eta_str} {it_per_sec}]') # file.flush()
# Copyright Red Hat, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from ansiblelint import AnsibleLintRule def incorrect_task(task, cmd): if 'shell' not in task: return False if 'register' in task: return False if task.get('ignore_errors'): return False if isinstance(task['shell'], dict): args = task['shell']['cmd'].split() else: args = task['shell'].split() if not set(args).isdisjoint(cmd) and 'pipefail' not in args: return True return False class ShellPipefail(AnsibleLintRule): id = 'OOOQ0001' shortdesc = 'Shell should have a pipefail' description = 'Shell commands should have "set -o pipefail" if using PIPE' tags = ['shell'] cmd = ["|", "timestamper_cmd"] def matchplay(self, file, play): ret = [] if play.get('block') and not play.get('ignore_errors'): block = play['block'] for task in block: if incorrect_task(task, self.cmd): ret.append((file, self.shortdesc)) else: if incorrect_task(play, self.cmd): ret.append((file, self.shortdesc)) return ret
from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from database_setup import Restaurant, Base, MenuItem engine = create_engine('sqlite:///restaurantmenu.db') # Bind the engine to the metadata of the Base class so that the # declaratives can be accessed through a DBSession instance Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) # A DBSession() instance establishes all conversations with the database # and represents a "staging zone" for all the objects loaded into the # database session object. Any change made against the objects in the # session won't be persisted into the database until you call # session.commit(). If you're not happy about the changes, you can # revert all of them back to the last commit by calling # session.rollback() session = DBSession() # Menu for UrbanBurger restaurant1 = Restaurant(name="Urban Burger") session.add(restaurant1) session.commit() menuItem2 = MenuItem(name="Veggie Burger", description="Juicy grilled veggie patty with tomato " "mayo and lettuce", price="$7.50", course="Entree", restaurant=restaurant1) session.add(menuItem2) session.commit() menuItem1 = MenuItem(name="French Fries", description="with garlic and parmesan", price="$2.99", course="Appetizer", restaurant=restaurant1) session.add(menuItem1) session.commit() menuItem2 = MenuItem(name="Chicken Burger", description="Juicy grilled chicken patty with tomato " "mayo and lettuce", price="$5.50", course="Entree", restaurant=restaurant1) session.add(menuItem2) session.commit() menuItem3 = MenuItem(name="Chocolate Cake", description="fresh baked and served with ice cream", price="$3.99", course="Dessert", restaurant=restaurant1) session.add(menuItem3) session.commit() menuItem4 = MenuItem(name="Sirloin Burger", description="Made with grade A beef", price="$7.99", course="Entree", restaurant=restaurant1) session.add(menuItem4) session.commit() menuItem5 = MenuItem(name="Root Beer", description="16oz of refreshing goodness", price="$1.99", course="Beverage", restaurant=restaurant1) session.add(menuItem5) session.commit() menuItem6 = MenuItem(name="Iced Tea", description="with Lemon", price="$.99", course="Beverage", restaurant=restaurant1) session.add(menuItem6) session.commit() menuItem7 = MenuItem(name="Grilled Cheese Sandwich", description="On texas toast with American Cheese", price="$3.49", course="Entree", restaurant=restaurant1) session.add(menuItem7) session.commit() menuItem8 = MenuItem(name="Veggie Burger", description="Made with freshest of ingredients and home " "grown spices", price="$5.99", course="Entree", restaurant=restaurant1) session.add(menuItem8) session.commit() # Menu for Super Stir Fry restaurant2 = Restaurant(name="Super Stir Fry") session.add(restaurant2) session.commit() menuItem1 = MenuItem(name="Chicken Stir Fry", description="With your choice of noodles vegetables and" " sauces", price="$7.99", course="Entree", restaurant=restaurant2) session.add(menuItem1) session.commit() menuItem2 = MenuItem( name="Peking Duck", description=" A famous duck dish from Beijing[1] that has been prepared " "since the imperial era. The meat is prized for its thin, " "crisp skin, with authentic versions of the dish serving " "mostly the skin and little meat, sliced in front of the " "diners by the cook", price="$25", course="Entree", restaurant=restaurant2) session.add(menuItem2) session.commit() menuItem3 = MenuItem(name="Spicy Tuna Roll", description="Seared rare ahi, avocado, edamame, " "cucumber with wasabi soy sauce ", price="15", course="Entree", restaurant=restaurant2) session.add(menuItem3) session.commit() menuItem4 = MenuItem(name="Nepali Momo ", description="Steamed dumplings made with vegetables, " "spices and meat. ", price="12", course="Entree", restaurant=restaurant2) session.add(menuItem4) session.commit() menuItem5 = MenuItem(name="Beef Noodle Soup", description="A Chinese noodle soup made of stewed or " "red braised beef, beef broth, vegetables " "and Chinese noodles.", price="14", course="Entree", restaurant=restaurant2) session.add(menuItem5) session.commit() menuItem6 = MenuItem(name="Ramen", description="a Japanese noodle soup dish. It consists " "of Chinese-style wheat noodles served in a " "meat- or (occasionally) fish-based broth, " "often flavored with soy sauce or miso, " "and uses toppings such as sliced pork, " "dried seaweed, kamaboko, and green onions.", price="12", course="Entree", restaurant=restaurant2) session.add(menuItem6) session.commit() # Menu for Panda Garden restaurant1 = Restaurant(name="Panda Garden") session.add(restaurant1) session.commit() menuItem1 = MenuItem(name="Pho", description="a Vietnamese noodle soup consisting of " "broth, linguine-shaped rice noodles called " "banh pho, a few herbs, and meat.", price="$8.99", course="Entree", restaurant=restaurant1) session.add(menuItem1) session.commit() menuItem2 = MenuItem(name="Chinese Dumplings", description="a common Chinese dumpling which generally " "consists of minced meat and finely chopped " "vegetables wrapped into a piece of dough " "skin. The skin can be either thin and " "elastic or thicker.", price="$6.99", course="Appetizer", restaurant=restaurant1) session.add(menuItem2) session.commit() menuItem3 = MenuItem(name="Gyoza", description="The most prominent differences between " "Japanese-style gyoza and Chinese-style " "jiaozi are the rich garlic flavor, " "which is less noticeable in the Chinese " "version, the light seasoning of Japanese " "gyoza with salt and soy sauce, and the " "fact that gyoza wrappers are much thinner", price="$9.95", course="Entree", restaurant=restaurant1) session.add(menuItem3) session.commit() menuItem4 = MenuItem(name="Stinky Tofu", description="Taiwanese dish, deep fried fermented tofu " "served with pickled cabbage.", price="$6.99", course="Entree", restaurant=restaurant1) session.add(menuItem4) session.commit() menuItem2 = MenuItem(name="Veggie Burger", description="Juicy grilled veggie patty with tomato " "mayo and lettuce", price="$9.50", course="Entree", restaurant=restaurant1) session.add(menuItem2) session.commit() # Menu for Thyme for that restaurant1 = Restaurant(name="Thyme for That Vegetarian Cuisine ") session.add(restaurant1) session.commit() menuItem1 = MenuItem(name="Tres Leches Cake", description="Rich, luscious sponge cake soaked in sweet " "milk and topped with vanilla bean whipped " "cream and strawberries.", price="$2.99", course="Dessert", restaurant=restaurant1) session.add(menuItem1) session.commit() menuItem2 = MenuItem(name="Mushroom risotto", description="Portabello mushrooms in a creamy risotto", price="$5.99", course="Entree", restaurant=restaurant1) session.add(menuItem2) session.commit() menuItem3 = MenuItem(name="Honey Boba Shaved Snow", description="Milk snow layered with honey boba, jasmine " "tea jelly, grass jelly, caramel, cream, " "and freshly made mochi", price="$4.50", course="Dessert", restaurant=restaurant1) session.add(menuItem3) session.commit() menuItem4 = MenuItem(name="Cauliflower Manchurian", description="Golden fried cauliflower florets in a " "midly spiced soya,garlic sauce cooked with " "fresh cilantro, celery, chilies,ginger & " "green onions", price="$6.95", course="Appetizer", restaurant=restaurant1) session.add(menuItem4) session.commit() menuItem5 = MenuItem(name="Aloo Gobi Burrito", description="Vegan goodness. Burrito filled with rice, " "garbanzo beans, curry sauce, potatoes (" "aloo), fried cauliflower (gobi) and " "chutney. Nom Nom", price="$7.95", course="Entree", restaurant=restaurant1) session.add(menuItem5) session.commit() menuItem2 = MenuItem(name="Veggie Burger", description="Juicy grilled veggie patty with tomato " "mayo and lettuce", price="$6.80", course="Entree", restaurant=restaurant1) session.add(menuItem2) session.commit() # Menu for Tony's Bistro restaurant1 = Restaurant(name="Tony\'s Bistro ") session.add(restaurant1) session.commit() menuItem1 = MenuItem(name="Shellfish Tower", description="Lobster, shrimp, sea snails, crawfish, " "stacked into a delicious tower", price="$13.95", course="Entree", restaurant=restaurant1) session.add(menuItem1) session.commit() menuItem2 = MenuItem(name="Chicken and Rice", description="Chicken... and rice", price="$4.95", course="Entree", restaurant=restaurant1) session.add(menuItem2) session.commit() menuItem3 = MenuItem(name="Mom's Spaghetti", description="Spaghetti with some incredible tomato " "sauce made by mom", price="$6.95", course="Entree", restaurant=restaurant1) session.add(menuItem3) session.commit() menuItem4 = MenuItem( name="Choc Full O\' Mint (Smitten\'s Fresh Mint Chip ice cream)", description="Milk, cream, salt, ..., Liquid nitrogen magic", price="$3.95", course="Dessert", restaurant=restaurant1) session.add(menuItem4) session.commit() menuItem5 = MenuItem(name="Tonkatsu Ramen", description="Noodles in a delicious pork-based broth " "with a soft-boiled egg", price="$7.95", course="Entree", restaurant=restaurant1) session.add(menuItem5) session.commit() # Menu for Andala's restaurant1 = Restaurant(name="Andala\'s") session.add(restaurant1) session.commit() menuItem1 = MenuItem(name="Lamb Curry", description="Slow cook that thang in a pool of " "tomatoes, onions and alllll those tasty " "Indian spices. Mmmm.", price="$9.95", course="Entree", restaurant=restaurant1) session.add(menuItem1) session.commit() menuItem2 = MenuItem(name="Chicken Marsala", description="Chicken cooked in Marsala wine sauce with " "mushrooms", price="$7.95", course="Entree", restaurant=restaurant1) session.add(menuItem2) session.commit() menuItem3 = MenuItem(name="Potstickers", description="Delicious chicken and veggies encapsulated " "in fried dough.", price="$6.50", course="Appetizer", restaurant=restaurant1) session.add(menuItem3) session.commit() menuItem4 = MenuItem(name="Nigiri Sampler", description="Maguro, Sake, Hamachi, Unagi, Uni, TORO!", price="$6.75", course="Appetizer", restaurant=restaurant1) session.add(menuItem4) session.commit() menuItem2 = MenuItem(name="Veggie Burger", description="Juicy grilled veggie patty with tomato " "mayo and lettuce", price="$7.00", course="Entree", restaurant=restaurant1) session.add(menuItem2) session.commit() # Menu for Auntie Ann's restaurant1 = Restaurant(name="Auntie Ann\'s Diner ") session.add(restaurant1) session.commit() menuItem9 = MenuItem(name="Chicken Fried Steak", description="Fresh battered sirloin steak fried and " "smothered with cream gravy", price="$8.99", course="Entree", restaurant=restaurant1) session.add(menuItem9) session.commit() menuItem1 = MenuItem(name="Boysenberry Sorbet", description="An unsettlingly huge amount of ripe " "berries turned into frozen (and seedless) " "awesomeness", price="$2.99", course="Dessert", restaurant=restaurant1) session.add(menuItem1) session.commit() menuItem2 = MenuItem(name="Broiled salmon", description="Salmon fillet marinated with fresh herbs " "and broiled hot & fast", price="$10.95", course="Entree", restaurant=restaurant1) session.add(menuItem2) session.commit() menuItem3 = MenuItem(name="Morels on toast (seasonal)", description="Wild morel mushrooms fried in butter, " "served on herbed toast slices", price="$7.50", course="Appetizer", restaurant=restaurant1) session.add(menuItem3) session.commit() menuItem4 = MenuItem(name="Tandoori Chicken", description="Chicken marinated in yoghurt and seasoned " "with a spicy mix(chilli, tamarind among " "others) and slow cooked in a cylindrical " "clay or metal oven which gets its heat " "from burning charcoal.", price="$8.95", course="Entree", restaurant=restaurant1) session.add(menuItem4) session.commit() menuItem2 = MenuItem(name="Veggie Burger", description="Juicy grilled veggie patty with tomato " "mayo and lettuce", price="$9.50", course="Entree", restaurant=restaurant1) session.add(menuItem2) session.commit() menuItem10 = MenuItem(name="Spinach Ice Cream", description="vanilla ice cream made with organic " "spinach leaves", price="$1.99", course="Dessert", restaurant=restaurant1) session.add(menuItem10) session.commit() # Menu for Cocina Y Amor restaurant1 = Restaurant(name="Cocina Y Amor ") session.add(restaurant1) session.commit() menuItem1 = MenuItem(name="Super Burrito Al Pastor", description="Marinated Pork, Rice, Beans, Avocado, " "Cilantro, Salsa, Tortilla", price="$5.95", course="Entree", restaurant=restaurant1) session.add(menuItem1) session.commit() menuItem2 = MenuItem(name="Cachapa", description="Golden brown, corn-based Venezuelan " "pancake; usually stuffed with queso telita " "or queso de mano, and possibly lechon. ", price="$7.99", course="Entree", restaurant=restaurant1) session.add(menuItem2) session.commit() restaurant1 = Restaurant(name="State Bird Provisions") session.add(restaurant1) session.commit() menuItem1 = MenuItem(name="Chantrelle Toast", description="Crispy Toast with Sesame Seeds slathered with buttery chantrelle mushrooms", price="$5.95", course="Appetizer", restaurant=restaurant1) session.add(menuItem1) session.commit() menuItem1 = MenuItem(name="Guanciale Chawanmushi", description="Japanese egg custard served hot with spicey Italian Pork Jowl (guanciale)", price="$6.95", course="Dessert", restaurant=restaurant1) session.add(menuItem1) session.commit() menuItem1 = MenuItem(name="Lemon Curd Ice Cream Sandwich", description="Lemon Curd Ice Cream Sandwich on a chocolate macaron with cardamom meringue and cashews", price="$4.25", course="Dessert", restaurant=restaurant1) session.add(menuItem1) session.commit() print "added menu items!"
#!/usr/bin/python # -*- coding: utf-8 -*- import io, os, re, shutil, sys import chardet import codecs import datetime #注意需要安装chardet模块 today = datetime.datetime.now().strftime("%Y-%m-%d"); #检测文件编码,如果不是的话,统一改为utf-8 #将table转换为space def recode(path): raw = open(path, 'rb').read(); if raw.startswith(codecs.BOM_UTF8): encoding = 'utf-8-sig' else: result = chardet.detect(raw) encoding = result['encoding'] lines = io.open(path, "r", encoding=encoding).readlines(); for i in range(0, len(lines)): lines[i] = lines[i].rstrip().expandtabs(4) + "\n"; io.open(path, "w", encoding="utf-8-sig").writelines(lines); def find_git_config(): pwd = os.getcwd(); while os.path.isdir(pwd): path = os.path.join(pwd, ".git", "config"); if os.path.isfile(path): return path; pwd = pwd + os.path.sep + ".."; return None; def load_git_config(): git_config = find_git_config(); if git_config == None: return None; lines = open(git_config).readlines(); find_section = False; for line in lines: line = line.strip(" \t\r\n"); if line == "[remote \"origin\"]": find_section = True; elif find_section: tokens = line.split("="); return tokens[1].strip(); return None; rep_name = load_git_config(); if rep_name == None: sys.exit("没找到.git配置"); sign = list(); sign.append(u"/*"); sign.append(u"** repository: %s" % rep_name); sign.append(u"** trumanzhao, %s, trumanzhao@foxmail.com" % today); sign.append(u"*/"); sign.append(u""); def sign_file(path): recode(path); lines = io.open(path, "r", encoding="utf-8-sig").readlines(); if len(lines) > 2 and re.match(".+repository.+github.+", lines[1]): print("%s 已签名!" % path); return; for i in range(0, len(sign)): lines.insert(i, sign[i] + u"\n"); print("加签名: %s" % path); io.open(path, "w", encoding="utf-8").writelines(lines); root = "."; items = os.listdir(root); for item in items: path = os.path.join(root, item); ext = os.path.splitext(path)[1].lower(); if ext == ".cpp" or ext == ".h": sign_file(path);
from functools import reduce import sys def find_sum_to(numbers, amount=1, total=0): ''' Return an amount of numbers from the given list that add up to the desired total :param numbers: list of numbers to select from :param amount: how many numbers to choose :param total: what is the desired sum :returns: list with all individual numbers that add up to total ''' if not amount: return [] for ii in range(len(numbers)): result = [] num = numbers[ii] remainder = total - num if amount == 1: if remainder == 0: return [num] else: others = find_sum_to(numbers[ii + 1:], amount - 1, remainder) if others: return [num] + others return [] if __name__ == '__main__': numbers = [] for line in sys.stdin: numbers.append(int(line)) AMOUNT = 3 TOTAL = 2020 result = find_sum_to(numbers, AMOUNT, TOTAL) if not result: raise ValueError(f'could not find {AMOUNT} numbers that add up to {TOTAL}') print(result) print(reduce(lambda a, b: a*b, result, 1))
import logging import sys import numpy as np import optuna import src.models.train_model as train import yaml from keras.layers import BatchNormalization, Dense, Dropout from keras.models import Sequential from optuna.integration.keras import KerasPruningCallback from sklearn.metrics import roc_auc_score from sklearn.utils import class_weight from src.features.build_features import (load_preprocessed_data, scale_event_data) from tensorflow import keras config = yaml.safe_load(open("src/config.yaml")) data = load_preprocessed_data() data["event_X_train"], data["event_X_test"] = scale_event_data( data["event_X_train"], data["event_X_test"] ) METRICS = [ keras.metrics.AUC(name="AUC"), train.f1_score, ] # stops training early if score doesn't improve early_stopping = keras.callbacks.EarlyStopping( monitor=config["RNN_params"]["monitor"], verbose=1, patience=5, mode=config["RNN_params"]["mode"], restore_best_weights=True, ) class_weights = class_weight.compute_class_weight( class_weight="balanced", classes=np.unique(data["y_train"]), y=data["y_train"] ) class_weights = { _class: weight for _class, weight in zip(np.unique(data["y_train"]), class_weights) } MONITOR = config["RNN_params"]["monitor"] MODE = config["RNN_params"]["mode"] def create_model(params: dict): """Generates a FNN model for hyperparameter training using Optuna Args: params (dict): contains Optuna-defined hyperparameter ranges Returns: keras model: a compiled model """ ACTIVATION = config["RNN_params"]["activation"] model = Sequential() model.add(Dense(units=data["event_X_train"].shape[1], activation=ACTIVATION)) for i in range(params["num_hidden_layers"]): model.add(BatchNormalization(epsilon=0.01)) model.add(Dropout(params["dropout"])) model.add(Dense(units=params[f"n_units_1{i}"], activation=ACTIVATION)) model.add( Dense( units=1, activation="sigmoid", ) ) OPTIMIZER = keras.optimizers.Adam( learning_rate=params["lr"], clipnorm=config["RNN_params"]["clipnorm"], ) model.compile(optimizer=OPTIMIZER, loss="binary_crossentropy", metrics=METRICS) return model def objective(trial): params = { "dropout": trial.suggest_uniform("dropout", 0.0, 0.5), "num_hidden_layers": trial.suggest_int("num_hidden_layers", 1, 6), "lr": trial.suggest_loguniform("lr", 1e-4, 1e-1), "batch_size": trial.suggest_categorical("batch_size", [16, 32, 64, 128, 256]), } for i in range(params["num_hidden_layers"]): params[f"n_units_1{i}"] = trial.suggest_int(f"n_units_l{i}", 20, 400) model = create_model(params) model.fit( data["event_X_train"], data["y_train"], batch_size=params["batch_size"], class_weight=class_weights, epochs=200, callbacks=[early_stopping, KerasPruningCallback(trial, "val_AUC")], validation_data=(data["event_X_test"], data["y_test"]), shuffle=True, verbose=1, ) preds = model.predict(data["event_X_test"]) auc_score = roc_auc_score(data["y_test"], preds) return auc_score def main(): # Add stream handler of stdout to show the messages optuna.logging.get_logger("optuna").addHandler(logging.StreamHandler(sys.stdout)) study_name = "bayesian_opt_FNN" # Unique identifier of the study. storage_name = f"sqlite:///models/hyperparam_dbs/{study_name}.db" study = optuna.create_study( direction="maximize", sampler=optuna.samplers.TPESampler(), pruner=optuna.pruners.MedianPruner(n_warmup_steps=1, n_min_trials=5), study_name=study_name, storage=storage_name, load_if_exists=True, ) study.optimize(objective, n_trials=200, n_jobs=1) if __name__ == "__main__": main()
import asyncio import itertools def normalise_environment(key_values): ''' Converts denormalised dict of (string -> string) pairs, where the first string is treated as a path into a nested list/dictionary structure { "FOO__1__BAR": "setting-1", "FOO__1__BAZ": "setting-2", "FOO__2__FOO": "setting-3", "FOO__2__BAR": "setting-4", "FIZZ": "setting-5", } to the nested structure that this represents { "FOO": [{ "BAR": "setting-1", "BAZ": "setting-2", }, { "BAR": "setting-3", "BAZ": "setting-4", }], "FIZZ": "setting-5", } If all the keys for that level parse as integers, then it's treated as a list with the actual keys only used for sorting This function is recursive, but it would be extremely difficult to hit a stack limit, and this function would typically by called once at the start of a program, so efficiency isn't too much of a concern. ''' # Separator is chosen to # - show the structure of variables fairly easily; # - avoid problems, since underscores are usual in environment variables separator = '__' def get_first_component(key): return key.split(separator)[0] def get_later_components(key): return separator.join(key.split(separator)[1:]) without_more_components = { key: value for key, value in key_values.items() if not get_later_components(key) } with_more_components = { key: value for key, value in key_values.items() if get_later_components(key) } def grouped_by_first_component(items): def by_first_component(item): return get_first_component(item[0]) # groupby requires the items to be sorted by the grouping key return itertools.groupby( sorted(items, key=by_first_component), by_first_component, ) def items_with_first_component(items, first_component): return { get_later_components(key): value for key, value in items if get_first_component(key) == first_component } nested_structured_dict = { **without_more_components, **{ first_component: normalise_environment( items_with_first_component(items, first_component)) for first_component, items in grouped_by_first_component(with_more_components.items()) }} def all_keys_are_ints(): def is_int(string_to_test): try: int(string_to_test) return True except ValueError: return False return all([is_int(key) for key, value in nested_structured_dict.items()]) def list_sorted_by_int_key(): return [ value for key, value in sorted( nested_structured_dict.items(), key=lambda key_value: int(key_value[0]) ) ] return \ list_sorted_by_int_key() if all_keys_are_ints() else \ nested_structured_dict def round_robin(items): i = 0 while True: yield items[i % len(items)] i += 1 async def loop_forever(func): while True: try: await func() except Exception as exception: # For Python 3.8 onwards, asyncio.CancelledError is _not_ caught and bubbles up, which # is desired so we do cancel the task, e.g. on graceful shutdown print("Error", exception) await asyncio.sleep(60)
def cli() -> None: print("Hello, recv!")
# coding: utf-8 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import print_function import itertools import os import pytest import gluonnlp as nlp def test_corpus_stream(stream_identity_wrappers): EOS = nlp._constants.EOS_TOKEN path = os.path.join('tests', 'data', 'wikitext-2') token_path = os.path.join('tests', 'data', 'wikitext-2/*.tokens') # Make sure train, val and test files exist at given path train = nlp.data.WikiText2(segment='train', root=path) val = nlp.data.WikiText2(segment='val', root=path) test = nlp.data.WikiText2(segment='test', root=path) stream = nlp.data.SimpleDatasetStream( nlp.data.CorpusDataset, token_path, flatten=True, skip_empty=True, eos=EOS) stream = stream_identity_wrappers(stream) counter = nlp.data.Counter(itertools.chain.from_iterable(stream)) assert len(counter) == 33278, len(counter) # examine aggregated vocab vocab = nlp.vocab.Vocab(counter, bos_token=None, padding_token=None) assert len(vocab) == 33278, len(vocab) # examine aggregated stats assert sum(counter.values()) == 2075677 + 216347 + 244102 counter = nlp.data.Counter(itertools.chain.from_iterable(stream)) assert len(counter) == 33278, len(counter) def test_lazy_stream(stream_identity_wrappers): EOS = nlp._constants.EOS_TOKEN path = os.path.join('tests', 'data', 'wikitext-2') token_path = os.path.join('tests', 'data', 'wikitext-2/*test*.tokens') corpus = nlp.data.WikiText2(segment='test', root=path) stream = nlp.data.SimpleDatasetStream( nlp.data.CorpusDataset, token_path, flatten=True, skip_empty=True, eos=EOS) wrapped_stream = stream_identity_wrappers(stream) transformed_stream = wrapped_stream.transform(lambda d: [s.lower() for s in d]) wrapped_stream_iter = iter(wrapped_stream) transformed_stream_iter = iter(transformed_stream) for dataset in stream: prefetched_dataset = next(wrapped_stream_iter) transformed_dataset = next(transformed_stream_iter) assert all([ w1.lower() == w2.lower() == w3 == w4.lower() for w1, w2, w3, w4 in zip(dataset, prefetched_dataset, transformed_dataset, corpus) ]) @pytest.mark.parametrize('num_prefetch', [0, 1, 10]) @pytest.mark.parametrize('worker_type', ['thread', 'process']) def test_prefetch_stream(num_prefetch, worker_type): EOS = nlp._constants.EOS_TOKEN path = os.path.join('tests', 'data', 'wikitext-2') token_path = os.path.join('tests', 'data', 'wikitext-2/*test*.tokens') test = nlp.data.WikiText2(segment='test', root=path) corpus = nlp.data.SimpleDatasetStream( nlp.data.CorpusDataset, token_path, flatten=True, skip_empty=True) if num_prefetch < 1: with pytest.raises(ValueError): prefetch_corpus = nlp.data.PrefetchingStream( corpus, num_prefetch=num_prefetch, worker_type=worker_type) else: prefetch_corpus = nlp.data.PrefetchingStream( corpus, num_prefetch=num_prefetch, worker_type=worker_type) prefetch_corpus_iter = iter(prefetch_corpus) for x in corpus: y = next(prefetch_corpus_iter) assert all([sx == sy for sx, sy in zip(x, y)])
import numpy as np from IPython import embed def make_change(coins, n): m = np.zeros((len(coins)+1, n+1)) m[0,1:n+1] = np.inf for c in range(1, len(coins)+1): for r in range(1, n+1): if coins[c-1] == r: m[c,r] = 1 elif coins[c-1] > r: m[c,r] = m[c-1, r] else: m[c,r] = min(m[c-1,r], 1+m[c,r-coins[c-1]]) return m[-1,-1] def knapsack_problem(values, weights, W): m = np.zeros((len(values)+1, W+1)) k = np.zeros((len(values)+1, W+1)) for i in range(1,len(values)+1): for w in range(1,W+1): wi = weights[i-1] # weight of this item vi = values[i-1] # value of this item if (wi <= w ) and (vi + m[i-1,w-wi] > m[i-1,w]): k[i,w] = 1 else: m[i,w] = m[i-1,w] picks = [] C = W for i in range(len(values), 0, -1): if k[i,C] == 1: picks.append(i) C -= weights[i-1] picks.sort() picks = [x-1 for x in picks] print(picks) print(make_change([1,2,10], 33)) print(knapsack_dp([2,3,4],[1,2,3],3,3))
from CreateTimeGraphs import * def create_diag(dc): """Commands per day""" if not botStats: return botUsers = [] for u in dc.vip: if len(u.botPlays) == 0 and len(u.botCommands) == 0: continue u.commands = [0] * dc.dayCountBot botUsers.append(u) for c in u.botPlays: if type(c[0]) is datetime: u.commands[(c[0].date() - dc.startDayBot).days] += 1 for c in u.botCommands: if type(c[0]) is datetime: u.commands[(c[0].date() - dc.startDayBot).days] += 1 with openTempfile("vipcommandstime") as f: for u in botUsers: dc.write_days(f, u.commands, u.name, start = dc.startDayBot) # Create the diagram diag = Diagram("vipcommandstime", "Commands per day (vip)", 1500, 600) diag.xlabel = "Date" diag.ylabel = "Commands" diag.appendText = """\ set timefmt "%d.%m.%Y" set format x "%d.%m.%Y" set xdata time set xrange ["{0:%d.%m.%Y}":"{1:%d.%m.%Y}"] set style data lines set key autotitle columnhead set samples 100 """.format(dc.startDayBot, dc.endDayBot) diag.plots = ["index '{0}' using 1:2 title '{0}'" .format(u.name) for u in botUsers] diag.render(dc.diagramTemplate) dc.botTab.addDiagram(diag) with openTempfile("vipcommandstimeCumulative") as f: for u in botUsers: dc.write_days(f, u.commands, u.name, True, start = dc.startDayBot) # Create the cumulative diagram diag = Diagram("vipcommandstimeCumulative", "Cumulative commands per day (vip)", 1500, 600) diag.xlabel = "Date" diag.ylabel = "Commands" diag.appendText = """\ set timefmt "%d.%m.%Y" set format x "%d.%m.%Y" set xdata time set xrange ["{0:%d.%m.%Y}":"{1:%d.%m.%Y}"] set style data lines set key autotitle columnhead set samples 100 """.format(dc.startDayBot, dc.endDayBot) diag.plots = ["index '{0}' using 1:2 title '{0}'" .format(u.name) for u in botUsers] diag.render(dc.diagramTemplate) dc.botTab.addDiagram(diag)
# -*- coding: utf-8 -*- # # Copyright 2015 Yeolar # from datetime import datetime from django.core.paginator import Paginator, InvalidPage, EmptyPage from django.utils.decorators import method_decorator from django.shortcuts import render_to_response, redirect, get_object_or_404 from django.template import RequestContext from django.views.generic.list import ListView from django.views.generic.detail import DetailView from django.views.generic.dates import YearArchiveView, MonthArchiveView, DayArchiveView, DateDetailView from django.db.models import Q from django.conf import settings from .models import * from .forms import * from ..util.search.constants import STOP_WORDS_RE from ..util.decorators import superuser_required @superuser_required def topic_set(request, id=None, **kwargs): if id: topic = Topic.objects.get(id=id) else: topic = Topic() if request.method == 'POST': form = TopicForm(request.POST, instance=topic) if form.is_valid(): topic = form.save() return redirect(topic.get_absolute_url()) else: form = TopicForm(instance=topic) return render_to_response( 'note/topic_set.html', {'form': form, 'id': id}, RequestContext(request)) # use for csrf @superuser_required def post_set(request, id=None, **kwargs): if id: post = Post.objects.get(id=id) else: post = Post() if request.method == 'POST': form = PostForm(request.POST, instance=post, author=request.user) if form.is_valid(): post = form.save() return redirect(post.get_absolute_url()) else: form = PostForm(instance=post, author=request.user) form.fields['topic'].queryset = Topic.objects.all() return render_to_response( 'note/post_set.html', {'form': form, 'id': id}, RequestContext(request)) # use for csrf class TopicListView(ListView): def get_queryset(self): if self.request.user.is_superuser: self.topics = Topic.objects.all() else: self.topics = Topic.objects.public() return self.topics def get_context_data(self, **kwargs): context = super(TopicListView, self).get_context_data(**kwargs) context.update({ 'topic_list': self.topics[:5], }) return context class TopicDetailView(ListView): paginate_by = getattr(settings, 'NOTE_PAGESIZE', 20) template_name = 'note/topic_detail.html' def get_queryset(self): self.topic = get_object_or_404(Topic, id=self.kwargs['id']) if self.request.user.is_superuser: return self.topic.post_set.published() else: return self.topic.post_set.public() def get_context_data(self, **kwargs): if self.request.user.is_superuser: topics = Topic.objects.all() else: topics = Topic.objects.public() context = super(TopicDetailView, self).get_context_data(**kwargs) context.update({ 'topic_list': topics[:5], 'topic': self.topic }) return context class PostListView(ListView): paginate_by = getattr(settings, 'NOTE_PAGESIZE', 20) def get_queryset(self): if self.request.user.is_superuser: return Post.objects.all() else: return Post.objects.public() def get_context_data(self, **kwargs): if self.request.user.is_superuser: topics = Topic.objects.all() else: topics = Topic.objects.public() context = super(PostListView, self).get_context_data(**kwargs) context.update({ 'topic_list': topics[:5], }) return context class PrivateListView(ListView): paginate_by = getattr(settings, 'NOTE_PAGESIZE', 20) template_name = 'note/private_list.html' @method_decorator(superuser_required) def dispatch(self, *args, **kwargs): return super(PrivateListView, self).dispatch(*args, **kwargs) def get_queryset(self): return Post.objects.private() def get_context_data(self, **kwargs): context = super(PrivateListView, self).get_context_data(**kwargs) context.update({ 'topic_list': Topic.objects.all()[:5], }) return context class DraftListView(ListView): paginate_by = getattr(settings, 'NOTE_PAGESIZE', 20) template_name = 'note/draft_list.html' @method_decorator(superuser_required) def dispatch(self, *args, **kwargs): return super(DraftListView, self).dispatch(*args, **kwargs) def get_queryset(self): return Post.objects.draft() def get_context_data(self, **kwargs): context = super(DraftListView, self).get_context_data(**kwargs) context.update({ 'topic_list': Topic.objects.all()[:5], }) return context class PostYearArchiveView(YearArchiveView): date_field = 'publish' make_object_list = True def get_queryset(self): if self.request.user.is_superuser: return Post.objects.published() else: return Post.objects.public() def get_context_data(self, **kwargs): if self.request.user.is_superuser: topics = Topic.objects.all() else: topics = Topic.objects.public() context = super(PostYearArchiveView, self).get_context_data(**kwargs) context.update({ 'topic_list': topics[:5], }) return context class PostMonthArchiveView(MonthArchiveView): date_field = 'publish' month_format = '%m' def get_queryset(self): if self.request.user.is_superuser: return Post.objects.published() else: return Post.objects.public() def get_context_data(self, **kwargs): if self.request.user.is_superuser: topics = Topic.objects.all() else: topics = Topic.objects.public() context = super(PostMonthArchiveView, self).get_context_data(**kwargs) context.update({ 'topic_list': topics[:5], }) return context class PostDayArchiveView(DayArchiveView): date_field = 'publish' month_format = '%m' def get_queryset(self): if self.request.user.is_superuser: return Post.objects.published() else: return Post.objects.public() def get_context_data(self, **kwargs): if self.request.user.is_superuser: topics = Topic.objects.all() else: topics = Topic.objects.public() context = super(PostDayArchiveView, self).get_context_data(**kwargs) context.update({ 'topic_list': topics[:5], }) return context class PostDetailView(DateDetailView): month_format = '%m' date_field = 'publish' def get_queryset(self): if self.request.user.is_superuser: return Post.objects.all() # show draft for preview else: return Post.objects.public() def get_context_data(self, **kwargs): if self.request.user.is_superuser: topics = Topic.objects.all() else: topics = Topic.objects.public() context = super(PostDetailView, self).get_context_data(**kwargs) context.update({ 'topic_list': topics[:5], }) return context def search(request, paginate_by=10, template_name='note/post_search.html', **kwargs): page_size = getattr(settings,'SEARCH_PAGESIZE', paginate_by) if request.GET: if request.user.is_superuser: posts = Post.objects.published() topics = Topic.objects.all() else: posts = Post.objects.public() topics = Topic.objects.public() context = { 'topic_list': topics[:5], } vague_terms = True stop_word_list = STOP_WORDS_RE search_terms = '%s' % request.GET['q'] search_term_list = search_terms.split() cleaned_search_term_list = [] for search_term in search_term_list: cleaned_search_term = stop_word_list.sub('', search_term) cleaned_search_term = cleaned_search_term.strip() if len(cleaned_search_term) != 0: cleaned_search_term_list.append(cleaned_search_term) posts = posts.filter( Q(title__icontains=cleaned_search_term) | Q(author__username__icontains=cleaned_search_term) | Q(text__icontains=cleaned_search_term)) vague_terms = False if not vague_terms: if len(posts) != 0: paginator = Paginator(posts, page_size) try: page = int(request.GET.get('page', '1')) except ValueError: page = 1 try: objects = paginator.page(page) except EmptyPage, InvalidPage: objects = paginator.page(paginator.num_pages) context.update({ 'paged_objects': objects, 'search_terms': search_terms, 'cleaned_search_terms': ' '.join(cleaned_search_term_list) }) else: message = u'结果未找到。' context.update({'message': message}) else: message = u'搜索条件太简单,请调整。' context.update({'message': message}) return render_to_response(template_name, context, RequestContext(request))
import numpy as np import scipy.special as ss import surface_integration as surf class VesicleHydro: def __init__(self, _lattice_parameter, _level_of_tess, _temperature, _viscosity, _alpha_over_a, _n_quadrature_points=4): """ :type _quadrature_area: str :type _n_quadrature_points: int """ self.d = _lattice_parameter self.n_angle_div = 100000 self.level_of_tess = _level_of_tess self.alpha = _alpha_over_a * self.d self.alpha2 = self.alpha * self.alpha self.alpha3 = self.alpha2 * self.alpha self.eta = _viscosity self.T = _temperature self.kT = 1.38064852e-2 * self.T self.R = 0 self.n_particles = 0 self.pos = None self.normal = None self.__build_sphere() self.R2 = self.R * self.R self.R3 = self.R2 * self.R self.area_per_particle = 4.0 * np.pi * self.R ** 2 / float(self.n_particles) self.r_c = np.sqrt(self.area_per_particle / np.pi) print("Number of particles = ", self.n_particles) print("Vesicle radius = ", self.R) print("Area per particle = ", self.area_per_particle) print("Effective radius of each particle = ", self.r_c) self.quad_point_x, self.quad_point_y, self.quad_weight =\ surf.build_local_integration_grid_circle(_n_quadrature_points, self.r_c) self.v_r = None self.sig_r = None self.__calc_surface_stress() self.zeta = None self.D = None self.A = None def __build_sphere(self): def push_point(v): v /= np.sqrt(np.sum(v * v)) def tess_tri(p_old, _i, _j, _k, level): p = np.zeros([3, 3]) p[0, :] = 0.5 * (p_old[_i, :] + p_old[_j, :]) p[1, :] = 0.5 * (p_old[_j, :] + p_old[_k, :]) p[2, :] = 0.5 * (p_old[_k, :] + p_old[_i, :]) push_point(p[0, :]) push_point(p[1, :]) push_point(p[2, :]) n_points = p_old.shape[0] p_old = np.append(p_old, p, axis=0) m = n_points n = n_points + 1 q = n_points + 2 if level > 1: p_old = tess_tri(p_old, _i, m, q, level - 1) p_old = tess_tri(p_old, m, _j, n, level - 1) p_old = tess_tri(p_old, q, n, _k, level - 1) p_old = tess_tri(p_old, n, m, q, level - 1) return p_old self.pos = np.zeros([12, 3]) a = np.arctan(0.5) b = 2.0 * np.pi / 5.0 c = np.pi / 5.0 th = np.array([0.5 * np.pi, a, a, a, a, a, -a, -a, -a, -a, -a, -0.5 * np.pi]) phi = np.array( [0.0, 0.0, b, 2.0 * b, 3.0 * b, 4.0 * b, c, c + b, c + 2.0 * b, c + 3.0 * b, c + 4.0 * b, 0.0]) self.pos[:, 0] = np.cos(th[:]) * np.cos(phi[:]) self.pos[:, 1] = np.cos(th[:]) * np.sin(phi[:]) self.pos[:, 2] = np.sin(th[:]) if self.level_of_tess > 1: self.pos = tess_tri(self.pos, 0, 1, 2, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 0, 2, 3, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 0, 3, 4, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 0, 4, 5, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 0, 5, 1, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 1, 6, 2, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 2, 6, 7, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 2, 7, 3, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 3, 7, 8, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 3, 8, 4, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 4, 8, 9, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 4, 9, 5, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 5, 9, 10, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 5, 10, 1, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 1, 10, 6, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 11, 6, 7, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 11, 7, 8, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 11, 8, 9, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 11, 9, 10, self.level_of_tess - 1) self.pos = tess_tri(self.pos, 11, 10, 6, self.level_of_tess - 1) d_min2 = 1.0e5 dup_ind = np.array([]) for i in range(self.pos.shape[0] - 1): for j in range(i + 1, self.pos.shape[0]): dr = self.pos[j, :] - self.pos[i, :] d2 = np.sum(dr * dr) if d2 < 1.0e-6: dup_ind = np.append(dup_ind, j) elif d2 < d_min2: d_min2 = d2 d_min = np.sqrt(d_min2) self.pos = np.delete(self.pos, dup_ind, axis=0) self.n_particles = self.pos.shape[0] """ d_mean = 0.0 n_bonds = 0.0 for i in range(self.pos.shape[0] - 1): for j in range(i + 1, self.pos.shape[0]): dr = self.pos[j, :] - self.pos[i, :] dij = np.sqrt(np.sum(dr * dr)) if dij < 1.5 * d_min: d_mean += np.sqrt(d2) n_bonds += 1.0 d_mean /= n_bonds """ #self.R = self.d / d_min #self.R = self.d / d_mean aa = 0.5 * np.sqrt(3.0) * (self.d * self.d) self.R = np.sqrt(aa * float(self.n_particles) / (4.0 * np.pi)) self.normal = self.pos.copy() self.pos *= self.R def __calc_surface_stress(self): v_factor = 1.0 / (4.0 * np.pi) # in units of W / alpha2 = area_per_particle * v_p / alpha2 s_factor = 1.0 / (4.0 * np.pi) # in units of F_m / alpha2 n_legendre = 87 th = np.linspace(0.0, np.pi, self.n_angle_div) th2 = th * th cos_th = np.cos(th) sin_th = np.sin(th) beta = self.R2 / (4.0 * self.alpha2) v0_r = v_factor * np.exp(-beta * th2) #v0_r = v_factor * np.cos (th / 2) ** (8.0 * beta) sig0_r = -s_factor * np.exp(-beta * th2) leg = [] leg_poly = [] for i in range(n_legendre): leg_poly.append(ss.legendre(i)) leg.append(leg_poly[i](cos_th)) c_v = np.zeros(n_legendre) c_sig = np.zeros(n_legendre) for i in range(n_legendre): c_v[i] = (2.0 * float(i) + 1.0) / 2.0 * np.trapz(v0_r * leg[i] * sin_th, th) c_sig[i] = (2.0 * float(i) + 1.0) / 2.0 * np.trapz(sig0_r * leg[i] * sin_th, th) k_acc = np.load("../hydrodynamics/k_acc.npy") fc1_v = np.zeros(n_legendre) fc2_v = np.zeros(n_legendre) fc1_sig = np.zeros(n_legendre) fc2_sig = np.zeros(n_legendre) for m in range(1, n_legendre): k1 = k_acc[m, 0] k2 = k_acc[m, 1] fm = float(m) fm2 = fm * fm fac = c_v[m] / ((fm * (fm + 1.0)) * (k1 - k2)) fc1_v[m] = fac * k2 * self.R ** (2.0 - k1) fc2_v[m] = -fac * k1 * self.R ** (2.0 - k2) fac = c_sig[m] / ((k1 * k2 * (k1 + k2) - 3.0 * k1 * k2 - 6.0 * fm2 - 6.0 * fm) * (k1 - k2)) fc1_sig[m] = fac * k2 * self.R ** (3.0 - k1) fc2_sig[m] = -fac * k1 * self.R ** (3.0 - k2) self.v_r = np.zeros_like(th) self.sig_r = np.zeros_like(th) for m in range(n_legendre): k1 = k_acc[m, 0] k2 = k_acc[m, 1] mmp = float(m) * float(m + 1) r_to_k1 = self.R ** k1 r_to_k2 = self.R ** k2 f_v = fc1_v[m] * r_to_k1 + fc2_v[m] * r_to_k2 rfp_v = fc1_v[m] * k1 * r_to_k1 + fc2_v[m] * k2 * r_to_k2 r3fppp_v = fc1_v[m] * k1 * (k1 - 1.0) * (k1 - 2.0) * r_to_k1 +\ fc2_v[m] * k2 * (k2 - 1.0) * (k2 - 2.0) * r_to_k2 f_sig = fc1_sig[m] * r_to_k1 + fc2_sig[m] * r_to_k2 pm_cos_th = leg_poly[m](cos_th) self.sig_r += (r3fppp_v - 3.0 * mmp * rfp_v + 6.0 * mmp * f_v) / self.R3 * pm_cos_th self.v_r -= f_sig * mmp / self.R2 * pm_cos_th self.sig_r *= self.area_per_particle * self.eta / self.alpha2 self.v_r *= 1.0 / (self.area_per_particle * self.eta * self.alpha2) def __integrate_over_sphere(self, integrand): result = np.zeros([self.n_particles, self.n_particles]) for i in range(self.n_particles): for j in range(i, self.n_particles): cos_th0 = np.dot(self.normal[i], self.normal[j]) sin_th0 = np.linalg.norm(np.cross(self.normal[i], self.normal[j])) th0 = np.arctan2(sin_th0, cos_th0) integral = 0.0 for k in range(self.quad_weight.shape[0]): if i == j: d_th = np.sqrt(self.quad_point_x[k] ** 2 + self.quad_point_y[k] ** 2) / self.R else: d_th = self.quad_point_x[k] / self.R #d_phi = (self.quad_point_y[k] / self.R) / sin_th0 th = th0 + d_th if th > np.pi: th = 2.0 * np.pi - th f_ind = th / np.pi * float(self.n_angle_div) ind = np.floor(f_ind) frac = f_ind - ind if ind < self.n_angle_div: value = integrand[int(ind)] * (1.0 - frac) + integrand[int(ind) + 1] * frac else: value = 0.0 #det_Jac = 1.0 / (self.R2 * np.sin(th)) integral += value * self.quad_weight[k] result[i, j] = integral result[j, i] = result[i, j] return result def calc_friction_tensor(self): # Friction coefficient tensor # this corresponds to a normalized Gaussian used for point velocities # it is necessary in the sense that the "momentum" of the distributed velocity be equal # to the actual momentum of the particle self.zeta = self.__integrate_over_sphere(-self.sig_r) def calc_diffusion_tensor_direct(self): # Diffusion coefficient tensor # this corresponds to a normalized Gaussian used for point velocities # it is necessary in the sense that the "momentum" of the distributed velocity be equal # to the actual momentum of the particle self.D = self.__integrate_over_sphere(self.kT * self.v_r) def calc_diffusion_tensor_from_friction(self): if self.zeta.any() is None: self.calc_friction_tensor() self.D = self.kT * np.linalg.inv(self.zeta) def get_histogram(self, q, _n_bins): # Histogram of a matrix q based on inter-particle distances r = np.linspace(0.0, np.pi * self.R, _n_bins) dr = r[1] - r[0] n_hist = np.zeros(_n_bins) q_hist = np.zeros(_n_bins) q_min_hist = np.ones(_n_bins) * 1.0e10 q_max_hist = np.ones(_n_bins) * -1.0e10 for i in range(self.n_particles): for j in range(i, self.n_particles): cos_th = np.dot(self.normal[i], self.normal[j]) sin_th = np.linalg.norm(np.cross(self.normal[i], self.normal[j])) th0 = np.arctan2(sin_th, cos_th) r_ij = self.R * th0 ind = np.floor(r_ij / dr).astype('int') q_hist[ind] += q[i, j] if q[i, j] < q_min_hist[ind]: q_min_hist[ind] = q[i, j] if q[i, j] > q_max_hist[ind]: q_max_hist[ind] = q[i, j] n_hist[ind] += 1.0 nz_ind = np.nonzero(n_hist) q_mean_hist = q_hist[nz_ind] / n_hist[nz_ind] return r[nz_ind], q_mean_hist, q_min_hist[nz_ind], q_max_hist[nz_ind]
# coding: utf-8 """ Harbor API These APIs provide services for manipulating Harbor project. OpenAPI spec version: 0.3.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class LdapConf(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'ldap_url': 'str', 'ldap_search_dn': 'str', 'ldap_search_password': 'str', 'ldap_base_dn': 'str', 'ldap_filter': 'str', 'ldap_uid': 'str', 'ldap_scope': 'int', 'ldap_connection_timeout': 'int' } attribute_map = { 'ldap_url': 'ldap_url', 'ldap_search_dn': 'ldap_search_dn', 'ldap_search_password': 'ldap_search_password', 'ldap_base_dn': 'ldap_base_dn', 'ldap_filter': 'ldap_filter', 'ldap_uid': 'ldap_uid', 'ldap_scope': 'ldap_scope', 'ldap_connection_timeout': 'ldap_connection_timeout' } def __init__(self, ldap_url=None, ldap_search_dn=None, ldap_search_password=None, ldap_base_dn=None, ldap_filter=None, ldap_uid=None, ldap_scope=None, ldap_connection_timeout=None): """ LdapConf - a model defined in Swagger """ self._ldap_url = None self._ldap_search_dn = None self._ldap_search_password = None self._ldap_base_dn = None self._ldap_filter = None self._ldap_uid = None self._ldap_scope = None self._ldap_connection_timeout = None if ldap_url is not None: self.ldap_url = ldap_url if ldap_search_dn is not None: self.ldap_search_dn = ldap_search_dn if ldap_search_password is not None: self.ldap_search_password = ldap_search_password if ldap_base_dn is not None: self.ldap_base_dn = ldap_base_dn if ldap_filter is not None: self.ldap_filter = ldap_filter if ldap_uid is not None: self.ldap_uid = ldap_uid if ldap_scope is not None: self.ldap_scope = ldap_scope if ldap_connection_timeout is not None: self.ldap_connection_timeout = ldap_connection_timeout @property def ldap_url(self): """ Gets the ldap_url of this LdapConf. The url of ldap service. :return: The ldap_url of this LdapConf. :rtype: str """ return self._ldap_url @ldap_url.setter def ldap_url(self, ldap_url): """ Sets the ldap_url of this LdapConf. The url of ldap service. :param ldap_url: The ldap_url of this LdapConf. :type: str """ self._ldap_url = ldap_url @property def ldap_search_dn(self): """ Gets the ldap_search_dn of this LdapConf. The search dn of ldap service. :return: The ldap_search_dn of this LdapConf. :rtype: str """ return self._ldap_search_dn @ldap_search_dn.setter def ldap_search_dn(self, ldap_search_dn): """ Sets the ldap_search_dn of this LdapConf. The search dn of ldap service. :param ldap_search_dn: The ldap_search_dn of this LdapConf. :type: str """ self._ldap_search_dn = ldap_search_dn @property def ldap_search_password(self): """ Gets the ldap_search_password of this LdapConf. The search password of ldap service. :return: The ldap_search_password of this LdapConf. :rtype: str """ return self._ldap_search_password @ldap_search_password.setter def ldap_search_password(self, ldap_search_password): """ Sets the ldap_search_password of this LdapConf. The search password of ldap service. :param ldap_search_password: The ldap_search_password of this LdapConf. :type: str """ self._ldap_search_password = ldap_search_password @property def ldap_base_dn(self): """ Gets the ldap_base_dn of this LdapConf. The base dn of ldap service. :return: The ldap_base_dn of this LdapConf. :rtype: str """ return self._ldap_base_dn @ldap_base_dn.setter def ldap_base_dn(self, ldap_base_dn): """ Sets the ldap_base_dn of this LdapConf. The base dn of ldap service. :param ldap_base_dn: The ldap_base_dn of this LdapConf. :type: str """ self._ldap_base_dn = ldap_base_dn @property def ldap_filter(self): """ Gets the ldap_filter of this LdapConf. The serach filter of ldap service. :return: The ldap_filter of this LdapConf. :rtype: str """ return self._ldap_filter @ldap_filter.setter def ldap_filter(self, ldap_filter): """ Sets the ldap_filter of this LdapConf. The serach filter of ldap service. :param ldap_filter: The ldap_filter of this LdapConf. :type: str """ self._ldap_filter = ldap_filter @property def ldap_uid(self): """ Gets the ldap_uid of this LdapConf. The serach uid from ldap service attributes. :return: The ldap_uid of this LdapConf. :rtype: str """ return self._ldap_uid @ldap_uid.setter def ldap_uid(self, ldap_uid): """ Sets the ldap_uid of this LdapConf. The serach uid from ldap service attributes. :param ldap_uid: The ldap_uid of this LdapConf. :type: str """ self._ldap_uid = ldap_uid @property def ldap_scope(self): """ Gets the ldap_scope of this LdapConf. The serach scope of ldap service. :return: The ldap_scope of this LdapConf. :rtype: int """ return self._ldap_scope @ldap_scope.setter def ldap_scope(self, ldap_scope): """ Sets the ldap_scope of this LdapConf. The serach scope of ldap service. :param ldap_scope: The ldap_scope of this LdapConf. :type: int """ self._ldap_scope = ldap_scope @property def ldap_connection_timeout(self): """ Gets the ldap_connection_timeout of this LdapConf. The connect timeout of ldap service(second). :return: The ldap_connection_timeout of this LdapConf. :rtype: int """ return self._ldap_connection_timeout @ldap_connection_timeout.setter def ldap_connection_timeout(self, ldap_connection_timeout): """ Sets the ldap_connection_timeout of this LdapConf. The connect timeout of ldap service(second). :param ldap_connection_timeout: The ldap_connection_timeout of this LdapConf. :type: int """ self._ldap_connection_timeout = ldap_connection_timeout def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, LdapConf): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
"""Spatial Proximity Index.""" __author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>" import numpy as np from ..util import generate_distance_matrix from .._base import SingleGroupIndex, SpatialExplicitIndex def _spatial_proximity(data, group_pop_var, total_pop_var, alpha=0.6, beta=0.5): """Calculate Spatial Proximity index. Parameters ---------- data : a geopandas DataFrame with a geometry column. group_pop_var : string The name of variable in data that contains the population size of the group of interest total_pop_var : string The name of variable in data that contains the total population of the unit alpha : float A parameter that estimates the extent of the proximity within the same unit. Default value is 0.6 beta : float A parameter that estimates the extent of the proximity within the same unit. Default value is 0.5 metric : string. Can be 'euclidean' or 'haversine'. Default is 'euclidean'. The metric used for the distance between spatial units. If the projection of the CRS of the geopandas DataFrame field is in degrees, this should be set to 'haversine'. Returns ---------- statistic : float Spatial Proximity Index core_data : a geopandas DataFrame A geopandas DataFrame that contains the columns used to perform the estimate. Notes ----- Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. The pairwise distance between unit i and itself is (alpha * area_of_unit_i) ^ beta. Reference: :cite:`massey1988dimensions`. """ if alpha < 0: raise ValueError("alpha must be greater than zero.") if beta < 0: raise ValueError("beta must be greater than zero.") T = data[total_pop_var].sum() data = data.assign( xi=data[group_pop_var], yi=data[total_pop_var] - data[group_pop_var], ti=data[total_pop_var], ) X = data.xi.sum() Y = data.yi.sum() dist = generate_distance_matrix(data) np.fill_diagonal(dist, val=np.exp(-((alpha * data.area.values) ** (beta)))) c = 1 - dist.copy() # proximity matrix Pxx = ((np.array(data.xi) * c).T * np.array(data.xi)).sum() / X ** 2 Pyy = ((np.array(data.yi) * c).T * np.array(data.yi)).sum() / Y ** 2 Ptt = ((np.array(data.ti) * c).T * np.array(data.ti)).sum() / T ** 2 SP = (X * Pxx + Y * Pyy) / (T * Ptt) core_data = data[[group_pop_var, total_pop_var, data.geometry.name]] return SP, core_data class SpatialProximity(SingleGroupIndex, SpatialExplicitIndex): """Spatial Proximity Index. Parameters ---------- data : pandas.DataFrame or geopandas.GeoDataFrame, required dataframe or geodataframe if spatial index holding data for location of interest group_pop_var : str, required name of column on dataframe holding population totals for focal group total_pop_var : str, required name of column on dataframe holding total overall population alpha : float A parameter that estimates the extent of the proximity within the same unit. Default value is 0.6 beta : float A parameter that estimates the extent of the proximity within the same unit. Default value is 0.5 metric : string. Can be 'euclidean' or 'haversine'. Default is 'euclidean'. The metric used for the distance between spatial units. If the projection of the CRS of the geopandas DataFrame field is in degrees, this should be set to 'haversine'. Attributes ---------- statistic : float Spatial Proximity Index core_data : a pandas DataFrame A pandas DataFrame that contains the columns used to perform the estimate. Notes ----- Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. The pairwise distance between unit i and itself is (alpha * area_of_unit_i) ^ beta. Reference: :cite:`massey1988dimensions`. """ def __init__( self, data, group_pop_var, total_pop_var, alpha=0.6, beta=0.5, **kwargs, ): """Init.""" SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) SpatialExplicitIndex.__init__(self,) self.alpha = alpha self.beta = beta aux = _spatial_proximity( self.data, self.group_pop_var, self.total_pop_var, self.alpha, self.beta, ) self.statistic = aux[0] self.core_data = aux[1] self._function = _spatial_proximity
import math from models import * from physics import * import pprint from good_geo import LOOKUP_TABLE class Bot: def handle_join_response(self, game_response): if not game_response.is_valid or game_response.game_stage == GAME_STAGE_HAS_FINISHED: print(f"{self} Skipping role detection for {game_response}") return self.role = game_response.static_game_info.role print(f"{self} Detected role as {self.role}") def handle_start_response(self, game_response): if not game_response.is_valid or game_response.game_stage == GAME_STAGE_HAS_FINISHED: print(f"{self} Skipping ship ID detection for {game_response}") return self.ship_id = None for ship in game_response.game_state.ships: if ship.role == self.role: self.ship_id = ship.ship_id print(f"{self} Detected ship ID as {self.ship_id}") if self.ship_id is None: raise ValueError(f"Failed to find initial ship IDs in {game_response} with role {self.role}") def get_start_data(self, game_response: GameResponse): raise RuntimeError("not implemented") def get_commands(self, game_response: GameResponse): raise RuntimeError("not implemented") def get_other_ship_ids(self, game_response): return [ ship.ship_id for ship in game_response.game_state.ships if ship.ship_id != self.ship_id ] class DoNothingBot(Bot): def get_start_data(self, game_response: GameResponse): # default: not sure what it means # return [64, 48, 14, 1] # [446, 0, 0, 1] # return [5, 5, 5, 5] return [1, 1, 1, 1] def get_commands(self, game_response: GameResponse): # default: do nothing return [] class NaiveBot(Bot): def get_start_data(self, game_response: GameResponse): return [1, 1, 1, 1] def get_commands(self, game_response: GameResponse): # default: do nothing return [] class BasicFlyingHelper: def __init__(self, bot): self.bot = bot def get_commands(self, game_response: GameResponse, ship_id: int): """Issues commands to keep the given ship flying.""" x, y = game_response.get_ship(ship_id).position if abs(x) > 47 or abs(y) > 47: # Just cool down return [] else: x = -1 if x > 0 else 1 y = -1 if y > 0 else 1 return [ AccelerateCommand(ship_id=ship_id, vector=(x, y)) ] class FlyingBot(Bot): def __init__(self): self.flying_helper = BasicFlyingHelper(self) def get_start_data(self, game_response: GameResponse): return [200, 10, 10, 1] def get_commands(self, game_response: GameResponse): return self.flying_helper.get_commands(game_response, self.ship_id) class TrajectoryBot(FlyingBot): def get_commands(self, game_response: GameResponse): ship_state = game_response.get_ship(self.ship_id) x, y = ship_state.position vx, vy = ship_state.velocity N_PREDICTION_STEPS = 14 W_CENTER1 = 20 W_CENTER2 = 4 W_CORNER = 2 W_FUEL = 15 W_PLANET_DIRECTION = 10 W_V_DIRECTION = 5 # print(f"params {(N_PREDICTION_STEPS, W_CENTER1, W_CENTER2, W_CORNER, W_FUEL)}") best_dv = (0, 0) best_cost = 1000 for dvx in (-1, 0, 1): for dvy in (-1, 0, 1): # traj = [] # print(f"\n\ndv: {(dvx, dvy)}") ks = KinematicState((x,y), (vx-dvx,vy-dvy)) cost = 0 min_linf_center_dist = min_l2_center_dist = min_l2_corner_dist = 1000 for i in range(N_PREDICTION_STEPS): ks = ks.update() pos = ks.pos # print(f"pos {i}: {pos}") min_linf_center_dist = min(linf_norm(pos), min_linf_center_dist) min_l2_center_dist = min(l2_norm(pos), min_l2_center_dist) min_l2_corner_dist = min(min(l2_norm((pos[0]-cx, pos[1]-cy)) \ for cx in (16, -16) for cy in (16, -16) ), min_l2_corner_dist) # print(f"dists {(min_linf_center_dist, min_l2_center_dist, min_l2_corner_dist)}") cost = W_CENTER1*hinge(16 - min_linf_center_dist)*(1+sign(int(i<=3))) \ + W_CENTER2*hinge(23 - min_l2_center_dist) \ + W_CORNER*hinge(3 - min_l2_corner_dist) \ + W_FUEL*linf_norm((dvx, dvy)) \ + W_PLANET_DIRECTION * (int(sign(x) == sign(dvx) and abs(y)<= 18) \ + int(sign(y) == sign(dvy) and abs(x) <= 18) ) \ + W_V_DIRECTION * (int(sign(vx) == sign(dvx)) \ + int(sign(vy) == sign(dvy) )) \ + (0.8 + int(min(vx, vy)<=2))*hinge(linf_norm(pos)-48) # print(f"cost {cost}") if cost < best_cost: best_dv = (dvx, dvy) best_cost = cost # print(f"new best dv: {best_dv}, cost {best_cost}\n") # print(f"Overall best dv {best_dv}, cost {best_cost} \n \n") return [AccelerateCommand(ship_id=self.ship_id, vector=best_dv)] if best_dv != (0, 0) else [] class ShootAheadHelper: def __init__(self, bot): self.bot = bot def get_commands(self, game_response: GameResponse, shooter_ship_id: int, target_ship_id: int, power: int): target_ship = game_response.get_ship(target_ship_id) p = target_ship.position v = target_ship.velocity g = get_g_force(p[0], p[1]) target = ( p[0] + v[0] + g[0], p[1] + v[1] + g[1], ) return [ ShootCommand(ship_id=shooter_ship_id, target=target, x3=power) ] def get_distance(p1, p2): dx = p2[0] - p1[0] dy = p2[1] - p1[1] return math.sqrt(dx * dx + dy * dy) def can_detonate(p1, p2): return abs(p2[0] - p1[0]) < 8 and abs(p2[1] - p1[1]) < 8 class ShooterBot(Bot): def __init__(self): self.shoot_ahead_helper = ShootAheadHelper(self) self.trajectory_bot = TrajectoryBot() def get_start_data(self, game_response: GameResponse): if self.role == SHIP_ROLE_ATTACKER: return [134, 64, 10, 1] else: return [100, 48, 8, 1] def get_commands(self, game_response: GameResponse): self.trajectory_bot.ship_id = self.ship_id commands = self.trajectory_bot.get_commands(game_response) ship = game_response.get_ship(self.ship_id) target_ship_id = self.get_other_ship_ids(game_response)[0] other_ship = game_response.get_ship(target_ship_id) if self.role == SHIP_ROLE_ATTACKER and can_detonate(ship.position, other_ship.position) and len(self.get_other_ship_ids(game_response)) == 1: print(f"{self} WILL DETONATE") return [DetonateCommand(ship_id=self.ship_id)] max_temp = ship.x6 temp = ship.x5 coolant = ship.x4[2] shot_power = ship.x4[1] new_temp = temp + shot_power - coolant distance = get_distance(ship.position, other_ship.position) print(f"{self} temp={temp} max_temp={max_temp} coolant={coolant} shot_power={shot_power} new_temp={new_temp} distance={distance}") if new_temp < max_temp and distance < 1.3 * shot_power: print(f"{self} WILL SHOOT") commands += self.shoot_ahead_helper.get_commands( game_response, shooter_ship_id=self.ship_id, target_ship_id=target_ship_id, power=shot_power) return commands def get_away_vectors(xy1, xy2): x1, y1 = xy1 x2, y2 = xy2 if abs(x2 - x1) + abs(y2 - y1) <= 5: dx = sign(x2 - x1) dy = sign(y2 - y1) if dx == 0: dx += 1 if dy == 0: dy += 1 return ((dx, dy), (-dx, -dy)) return None def apply_point(pt, delta): return (pt[0] + delta[0], pt[1] + delta[1]) class StationaryBot(Bot): def __init__(self): self.moved = False self.flying_helper = BasicFlyingHelper(self) def get_start_data(self, game_response: GameResponse): return [200, 10, 10, 1] def get_commands(self, game_response: GameResponse): move = None if not self.moved: ship = game_response.get_ship(self.ship_id) move = LOOKUP_TABLE.get((ship.position, ship.velocity)) res = [] if move: print (f"We have acceleration to orbit {move}") res = [AccelerateCommand(ship_id=self.ship_id, vector=(-move[0], -move[1]))] self.moved = True elif not self.moved: res = self.flying_helper.get_commands(game_response, self.ship_id) return res class ForkBot(Bot): def __init__(self): self.flying_helper = BasicFlyingHelper(self) self.starting_stats = [64, 64, 10, 4] self.num_forked = 0 def get_start_data(self, game_response: GameResponse): return self.starting_stats def get_commands(self, game_response: GameResponse): team_ship_ids = [] for ship in game_response.game_state.ships: if ship.role == self.role: team_ship_ids.append(ship.ship_id) if self.num_forked == 0: self.num_forked += 1 return [ ForkCommand( ship_id=self.ship_id, x4=map(lambda x: x // 2, self.starting_stats)) ] commands = [] if len(team_ship_ids) >= 2: ship_id1 = team_ship_ids[0] ship_id2 = team_ship_ids[1] pos1 = game_response.get_ship(ship_id1).position pos2 = game_response.get_ship(ship_id2).position vectors = get_away_vectors(pos1, pos2) if vectors: return [ AccelerateCommand(ship_id=ship_id1, vector=vectors[0]), AccelerateCommand(ship_id=ship_id2, vector=vectors[1]) ] for ship_id in team_ship_ids: commands.extend(self.flying_helper.get_commands(game_response, ship_id)) return commands class RoleSmartBot(Bot): def __init__(self, attacker, defender): self.attacker = attacker self.defender = defender def handle_join_response(self, game_response): self.role = game_response.static_game_info.role if self.role == SHIP_ROLE_ATTACKER: print(f"{self} will use the ATTACKER strategy with bot {self.attacker}.") self.bot = self.attacker else: print(f"{self} will use the DEFENDER strategy with bot {self.defender}.") self.bot = self.defender self.bot.handle_join_response(game_response) def handle_start_response(self, game_response): self.bot.handle_start_response(game_response) def get_start_data(self, game_response: GameResponse): return self.bot.get_start_data(game_response) def get_commands(self, game_response: GameResponse): return self.bot.get_commands(game_response)
import unittest from nodes import * from interpreter import Interpreter from values import Number class TestInterpreter(unittest.TestCase): def test_number(self): value = Interpreter().visit(NumberNode(23.5)) self.assertEqual(value, Number(23.5)) def test_individual_operations(self): value = Interpreter().visit(AddNode(NumberNode(27), NumberNode(12))) self.assertEqual(value, Number(39)) value = Interpreter().visit(SubtractNode(NumberNode(27), NumberNode(12))) self.assertEqual(value, Number(15)) value = Interpreter().visit(MultiplyNode(NumberNode(7), NumberNode(2))) self.assertEqual(value, Number(14)) value = Interpreter().visit(DivideNode(NumberNode(8), NumberNode(2))) self.assertAlmostEqual(value, Number(4), 5) with self.assertRaises(Exception): Interpreter().visit(DivideNode(NumberNode(8), NumberNode(0))) def test_full_expression(self): tree = AddNode( NumberNode(27.0), MultiplyNode( SubtractNode( DivideNode( NumberNode(43.0), NumberNode(36.0) ), NumberNode(48.0) ), NumberNode(51.0) ) ) result = Interpreter().visit(tree) self.assertAlmostEqual(result.value, -2360.08, 2) if __name__ == '__main__': unittest.main()
from .util import (run_shell, cdo) from .nco_cdo import (cdo_sellevel, nc_cal_daily_flux, nc_detrend, nc_monmean, nc_daymean, nc_mean, nc_ydrunmean, nc_ydaysub, nc_ydrunanom, nc_mergetime, nc_rcat, nc_rename, nc_reunit_time, nc_pack, nc_unpack, nc_shifttime, nc_splitmon, nc_splitday, nc_update_units, nco_remove_attr, nc_change_attr, nc_set_record_dimension)
import os from contextlib import contextmanager from django.core.files.temp import NamedTemporaryFile from django.db import transaction from django.db.models.signals import post_delete, post_save from wagtailvideos import ffmpeg, get_video_model @contextmanager def get_local_file(file): """ Get a local version of the file, downloading it from the remote storage if required. The returned value should be used as a context manager to ensure any temporary files are cleaned up afterwards. """ try: with open(file.path): yield file.path except NotImplementedError: _, ext = os.path.splitext(file.name) with NamedTemporaryFile(prefix='wagtailvideo-', suffix=ext) as tmp: try: file.open('rb') for chunk in file.chunks(): tmp.write(chunk) finally: file.close() tmp.flush() yield tmp.name def post_delete_file_cleanup(instance, **kwargs): # Pass false so FileField doesn't save the model. transaction.on_commit(lambda: instance.file.delete(False)) if hasattr(instance, 'thumbnail'): # Delete the thumbnail for videos too transaction.on_commit(lambda: instance.thumbnail.delete(False)) # Fields that need the actual video file to create using ffmpeg def video_post_save(instance, **kwargs): if not ffmpeg.installed(): return if hasattr(instance, '_from_signal'): # Sender was us, don't run post save return has_changed = instance._initial_file is not instance.file filled_out = instance.thumbnail is not None and instance.duration is not None if has_changed or not filled_out: with get_local_file(instance.file) as file_path: if has_changed or instance.thumbnail is None: instance.thumbnail = ffmpeg.get_thumbnail(file_path) if has_changed or instance.duration is None: instance.duration = ffmpeg.get_duration(file_path) instance.file_size = instance.file.size instance._from_signal = True instance.save() del instance._from_signal def register_signal_handlers(): Video = get_video_model() VideoTranscode = Video.get_transcode_model() TrackListing = Video.get_track_listing_model() VideoTrack = TrackListing.get_track_model() post_save.connect(video_post_save, sender=Video) post_delete.connect(post_delete_file_cleanup, sender=Video) post_delete.connect(post_delete_file_cleanup, sender=VideoTranscode) post_delete.connect(post_delete_file_cleanup, sender=VideoTrack)
import tkinter from src.gui_app import * def main(): root = tkinter.Tk() program = Application(root) root.mainloop() if __name__ == "__main__": main()
import tkinter as tk class GUI: def __init__(self): self.fenster = tk.Tk() self.fenster.configure(background = "black") self.fenster.attributes("-fullscreen", True) self.fenster.mainloop() self.main = tk.Frame() def set_time(self,hour,minute): return
import os from copy import deepcopy INPUT_FILE = os.path.join(os.path.dirname(__file__), "input") def part1(): acc = 0 ip = 0 sequence = set() with open(INPUT_FILE, "r") as fp: lines = fp.read().splitlines() while ip not in sequence: sequence.add(ip) if lines[ip].startswith("acc"): acc += int(lines[ip][3:]) ip += 1 elif lines[ip].startswith("jmp"): ip += int(lines[ip][3:]) elif lines[ip].startswith("nop"): ip += 1 return acc def part2(): with open(INPUT_FILE, "r") as fp: lines = fp.read().splitlines() nops = [idx for idx, val in enumerate(lines) if val.startswith("nop")] jmps = [idx for idx, val in enumerate(lines) if val.startswith("jmp")] while True: for instr in nops + jmps: _lines = deepcopy(lines) ip = 0 acc = 0 sequence = set() if _lines[instr].startswith("nop"): _lines[instr] = _lines[instr].replace("nop", "jmp") else: _lines[instr] = _lines[instr].replace("jmp", "nop") while ip not in sequence: if ip >= len(_lines): return acc sequence.add(ip) if _lines[ip].startswith("acc"): acc += int(_lines[ip][3:]) ip += 1 elif _lines[ip].startswith("jmp"): ip += int(_lines[ip][3:]) elif _lines[ip].startswith("nop"): ip += 1 if __name__ == "__main__": part1 = part1() print(part1) part2 = part2() print(part2)
class ParamRequest(object): """ Represents a set of request parameters. """ def to_request_parameters(self): """ :return: list[:class:`ingenico.connect.sdk.RequestParam`] representing the HTTP request parameters """ raise NotImplementedError
# <<BEGIN-copyright>> # Copyright 2019, Lawrence Livermore National Security, LLC. # See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: MIT # <<END-copyright>> from __future__ import print_function import sys import os from argparse import ArgumentParser code = 'deposition_multiGroup' description = """Runs %s on a list of targets for defined options.""" % code parser = ArgumentParser( description = description ) parser.add_argument( '-v', '--verbose', action = 'count', default = 0, help = 'Enable verbose output.' ) parser.add_argument( 'targets', action = 'append', help = 'List of target IDs to check.' ) args = parser.parse_args( ) def checkOptions( target, options ) : if( args.verbose > 0 ) : print() output = '%s.%s' % ( code, target ) for option in options : output += '.%s' % option benchmarks = os.path.join( 'Benchmarks', output + '.out' ).replace( '..', '.' ) output = os.path.join( 'Outputs', output + '.out' ).replace( '..', '.' ) cmd = './%s %s --tid %s > %s' % ( code, ' '.join( options ), target, output ) if( args.verbose > 0 ) : print( cmd ) os.system( cmd ) cmd = '../Utilities/diff.com %s/%s %s %s' % ( code, code, benchmarks, output ) if( args.verbose > 0 ) : print( cmd ) os.system( cmd ) def checkTarget( target ) : for options in [ [ '' ], [ '-p' ] ] : checkOptions( target, options ) if( not( os.path.exists( 'Outputs' ) ) ) : os.mkdir( 'Outputs' ) for target in args.targets : checkTarget( target )
from cbint.utils.detonation import DetonationDaemon, ConfigurationError from cbint.utils.detonation.binary_analysis import (BinaryAnalysisProvider, AnalysisPermanentError, AnalysisTemporaryError, AnalysisResult, AnalysisInProgress) import cbint.utils.feed from cbapi.connection import CbAPISessionAdapter import time import logging import os import sys from api_request import APISession from lxml import etree log = logging.getLogger(__name__) class WildfireProvider(BinaryAnalysisProvider): def __init__(self, name, wildfire_url, wildfire_ssl_verify, api_keys, work_directory): super(WildfireProvider, self).__init__(name) self.api_keys = api_keys self.wildfire_url = wildfire_url self.wildfire_ssl_verify = wildfire_ssl_verify self.current_api_key_index = 0 self.session = APISession(api_keys=self.api_keys, throttle_per_minute=120) tls_adapter = CbAPISessionAdapter(force_tls_1_2=True) self.session.mount("https://", tls_adapter) self.work_directory = work_directory def get_api_key(self): for i in range(len(self.api_keys)): yield self.api_keys[self.current_api_key_index] self.current_api_key_index += 1 self.current_api_key_index %= len(self.api_keys) # if we've gotten here, we have no more keys to give. def _call_wildfire_api(self, method, path, payload=None, files=None): url = self.wildfire_url + path if method == 'GET': try: r = self.session.get(url, verify=self.wildfire_ssl_verify) except Exception as e: log.exception("Exception when sending WildFire API GET request: %s" % e) raise return r.status_code, r.content elif method == 'POST': try: r = self.session.post(url, data=payload, files=files, verify=self.wildfire_ssl_verify) except Exception as e: log.exception("Exception when sending WildFire API query: %s" % e) # bubble this up as necessary raise return r.status_code, r.content def query_wildfire(self, md5sum): """ query the wildfire api to get a report on an md5 """ log.info("Querying wildfire for md5sum %s" % md5sum) status_code, content = self._call_wildfire_api("POST", "/publicapi/get/verdict", {'hash': md5sum.lower()}) if status_code == 404: return None # can't find the binary elif status_code != 200: log.info("Received unknown HTTP status code %d from WildFire" % status_code) log.info("-> response content: %s" % content) raise AnalysisTemporaryError("Received unknown HTTP status code %d from WildFire" % status_code, retry_in=120) response = etree.fromstring(content) # Return 0 Benign verdict # 1 Malware verdict # 2 Grayware verdict # -100 Verdict is pending # -101 Indicates a file error # -102 The file could not be found # -103 The hash submitted is invalid if md5sum.lower() == response.findtext("./get-verdict-info/md5").lower(): verdict = response.findtext("./get-verdict-info/verdict").strip() if verdict == "-100": return None # waiting for WildFire verdict elif verdict == "-102": return None # file not in WildFire yet elif verdict.startswith("-"): raise AnalysisPermanentError("WildFire could not process file: error %s" % verdict) elif verdict == "1": return self.generate_malware_result(md5sum, 100) elif verdict == "2": return self.generate_malware_result(md5sum, 50) else: return AnalysisResult(score=0) def generate_malware_result(self, md5, score): status_code, content = self._call_wildfire_api("POST", "/publicapi/get/report", {'hash': md5.lower(), "format": "pdf"}) if status_code == 200: open(os.path.join(self.work_directory, md5.upper()) + ".pdf", 'wb').write(content) return AnalysisResult(score=score, link="/reports/%s.pdf" % md5.upper()) else: return AnalysisResult(score=score) def submit_wildfire(self, md5sum, file_stream): """ submit a file to the wildfire api returns a wildfire submission status code """ files = {'file': ('CarbonBlack_%s' % md5sum, file_stream)} try: status_code, content = self._call_wildfire_api("POST", "/publicapi/submit/file", files=files) except Exception as e: log.exception("Exception while submitting MD5 %s to WildFire: %s" % (md5sum, e)) raise AnalysisTemporaryError("Exception while submitting to WildFire: %s" % e) else: if status_code == 200: return True else: raise AnalysisTemporaryError("Received HTTP error code %d while submitting to WildFire" % status_code) def check_result_for(self, md5sum): return self.query_wildfire(md5sum) def analyze_binary(self, md5sum, binary_file_stream): self.submit_wildfire(md5sum, binary_file_stream) retries = 20 while retries: time.sleep(30) result = self.check_result_for(md5sum) if result: return result retries -= 1 raise AnalysisTemporaryError(message="Maximum retries (20) exceeded submitting to WildFire", retry_in=120) class WildfireConnector(DetonationDaemon): @property def filter_spec(self): filters = [] max_module_len = 10 * 1024 * 1024 filters.append('(os_type:windows) orig_mod_len:[1 TO %d]' % max_module_len) additional_filter_requirements = self.get_config_string("binary_filter_query", None) if additional_filter_requirements: filters.append(additional_filter_requirements) log.info("Filter spec is %s" % ' '.join(filters)) return ' '.join(filters) @property def integration_name(self): return 'Cb Wildfire Connector 2.5.10' @property def num_quick_scan_threads(self): return 1 @property def num_deep_scan_threads(self): return 4 def get_provider(self): wildfire_provider = WildfireProvider(self.name, self.wildfire_url, self.wildfire_ssl_verify, self.api_keys, self.work_directory) return wildfire_provider def get_metadata(self): return cbint.utils.feed.generate_feed(self.name, summary="PaloAlto Wildfire cloud binary feed", tech_data=("There are no requirements to share any data with Carbon Black to use this feed. " "However, binaries may be shared with Palo Alto."), provider_url="http://wildfire.paloaltonetworks.com/", icon_path='/usr/share/cb/integrations/wildfire/wildfire-logo.png', display_name="Wildfire", category="Connectors") def validate_config(self): super(WildfireConnector, self).validate_config() keys = self.get_config_string("wildfire_api_keys", None) if not keys: raise ConfigurationError("WildFire API keys must be specified in the wildfire_api_keys option") self.api_keys = keys.split(';') wildfire_url = self.get_config_string("wildfire_url", "https://wildfire.paloaltonetworks.com") self.wildfire_url = wildfire_url.rstrip("/") self.wildfire_ssl_verify = self.get_config_boolean("wildfire_verify_ssl", True) log.info("connecting to WildFire server at %s with API keys %s" % (self.wildfire_url, self.api_keys)) return True if __name__ == '__main__': # import yappi import logging logging.basicConfig(level=logging.DEBUG) # yappi.start() my_path = os.path.dirname(os.path.abspath(__file__)) temp_directory = "/tmp/wildfire" config_path = os.path.join(my_path, "testing.conf") daemon = WildfireConnector('wildfiretest', configfile=config_path, work_directory=temp_directory, logfile=os.path.join(temp_directory, 'test.log'), debug=True) daemon.start() # yappi.get_func_stats().print_all() # yappi.get_thread_stats().print_all()
from models import UfsObj, CollectionItem ''' class UfsObjForm(ModelForm): class Meta: model = UfsObj fields = ('ufs_url') widgets = { 'name': Textarea(attrs={'cols': 80, 'rows': 20}), } '''
from django.contrib import admin from .models import * class PartyAdmin(admin.ModelAdmin): pass admin.site.register(Party, PartyAdmin)
import pygame class MediaPlayer(object): """ Play media file """ def __init__(self): self.channel = None pygame.mixer.init() def play(self, media_file): """ Play media file """ self.player = pygame.mixer.Sound(media_file) if self.channel is None or not self.channel.get_busy(): self.channel = self.player.play() def close(self): """ Close player """ if not self.channel is None: self.channel.stop()
n = 4562; rev = 0 while(n > 0): a = n % 10 rev = rev * 10 + a n = n // 10 print(rev)
import numpy as np import math from mgcpy.independence_tests.utils.transform_matrices import \ transform_matrices import scipy.io import os def power(independence_test, sample_generator, num_samples=100, num_dimensions=1, theta=0, noise=0.0, repeats=1000, alpha=.05, simulation_type=''): ''' Estimate power :param independence_test: an object whose class inherits from the Independence_Test abstract class :type: Object(Independence_Test) :param sample_generator: a function used to generate simulation from simulations.py with parameters given by the following arguments - num_samples: default to 100 - num_dimensions: default to 1 - noise: default to 0 :type: function :param num_samples: the number of samples generated by the simulation :type: int :param num_dimensions: the number of dimensions of the samples generated by the simulation :type: int :param noise: the noise used in simulation :type: float :param repeats: the number of times we generate new samples to estimate the null/alternative distribution :type: int :param alpha: the type I error level :type: float :param simulation_type: specify simulation when necessary (default to empty string) :type: string :return empirical_power: the estimated power :type: float ''' # test statistics under the null, used to estimate the cutoff value under the null distribution test_stats_null = np.zeros(repeats) # test statistic under the alternative test_stats_alternative = np.zeros(repeats) theta = math.radians(theta) a = [[0 for x in range(2)] for y in range(2)] a[0][0] = math.cos(theta) a[0][1] = math.sin(theta)*(-1) a[1][0] = math.sin(theta) a[1][1] = math.cos(theta) a = np.asarray(a) for rep in range(repeats): # generate new samples for each iteration # the if-else block below is for simulations that have a different argument list # than the general case if simulation_type == 'sine_16pi': matrix_X, matrix_Y = sample_generator( num_samples, num_dimensions, noise=noise, period=np.pi*16) elif simulation_type == 'multi_noise' or simulation_type == 'multi_indept': matrix_X, matrix_Y = sample_generator(num_samples, num_dimensions) elif simulation_type == 'ellipse': matrix_X, matrix_Y = sample_generator( num_samples, num_dimensions, noise=noise, radius=5) elif simulation_type == 'diamond': matrix_X, matrix_Y = sample_generator( num_samples, num_dimensions, noise=noise, period=-np.pi/8) else: matrix_X, matrix_Y = sample_generator( num_samples, num_dimensions, noise=noise) data_matrix_X = transform_matrices(matrix_X, matrix_Y)[0] data_matrix_Y = transform_matrices(matrix_X, matrix_Y)[1] data_matrix_Y = data_matrix_Y[:, np.newaxis] data_matrix_X = data_matrix_X.T data_matrix_X = np.dot(data_matrix_X, a) # permutation test permuted_y = np.random.permutation(matrix_Y) test_stats_null[rep], _ = independence_test.test_statistic( matrix_X, permuted_y) test_stats_alternative[rep], _ = independence_test.test_statistic( matrix_X, matrix_Y) ''' # if the test is pearson, use absolute value of the test statistic # so the more extreme test statistic is still in a one-sided interval if independence_test.get_name() == 'pearson': test_stats_null[rep] = abs(test_stats_null[rep]) test_stats_alternative[rep] = abs(test_stats_alternative[rep]) ''' # the cutoff is determined so that 1-alpha of the test statistics under the null distribution # is less than the cutoff cutoff = np.sort(test_stats_null)[math.ceil(repeats*(1-alpha))] # the proportion of test statistics under the alternative which is no less than the cutoff (in which case # the null is rejected) is the empirical power empirical_power = np.where(test_stats_alternative >= cutoff)[ 0].shape[0] / repeats return empirical_power def power_given_data(independence_test, simulation_type, data_type='dimension', num_samples=100, num_dimensions=1, repeats=1000, alpha=.05): # test statistics under the null, used to estimate the cutoff value under the null distribution test_stats_null = np.zeros(repeats) # test statistic under the alternative test_stats_alternative = np.zeros(repeats) # absolute path to the benchmark directory dir_name = os.path.dirname(__file__) if data_type == 'dimension': file_name_prefix = dir_name + \ '/sample_data_power_dimensions/type_{}_dim_{}'.format( simulation_type, num_dimensions) else: file_name_prefix = dir_name + \ '/sample_data_power_sample_sizes/type_{}_size_{}'.format( simulation_type, num_samples) all_matrix_X = scipy.io.loadmat(file_name_prefix + '_X.mat')['X'] all_matrix_Y = scipy.io.loadmat(file_name_prefix + '_Y.mat')['Y'] for rep in range(repeats): matrix_X = all_matrix_X[:, :, rep] matrix_Y = all_matrix_Y[:, :, rep] # permutation test permuted_y = np.random.permutation(matrix_Y) test_stats_null[rep], _ = independence_test.test_statistic( matrix_X, permuted_y) test_stats_alternative[rep], _ = independence_test.test_statistic( matrix_X, matrix_Y) ''' # if the test is pearson, use absolute value of the test statistic # so the more extreme test statistic is still in a one-sided interval if independence_test.get_name() == 'pearson': test_stats_null[rep] = abs(test_stats_null[rep]) test_stats_alternative[rep] = abs(test_stats_alternative[rep]) ''' # the cutoff is determined so that 1-alpha of the test statistics under the null distribution # is less than the cutoff cutoff = np.sort(test_stats_null)[math.ceil(repeats*(1-alpha))] # the proportion of test statistics under the alternative which is no less than the cutoff (in which case # the null is rejected) is the empirical power empirical_power = np.where(test_stats_alternative >= cutoff)[ 0].shape[0] / repeats return empirical_power
import pytest from sand import Sand @pytest.fixture def app(): return Sand() @pytest.fixture def client(app): return app.test_session()
"""Configures a Docker container to run API Gateway Analytics.""" from __future__ import with_statement import calendar import datetime import distutils.dir_util import optparse import os import re import shlex import sys import zipfile import shutil import analytics import configutil import vutil from esapi import EntityStoreAPI from java.lang import Throwable from com.vordel.version import ProductVersion from com.vordel.archive.fed import DeploymentArchive ES_PASSPHRASE = "ES_PASSPHRASE" ANALYTICS_PASSPHRASE = "ANALYTICS_PASSPHRASE" METRICS_DB_PASSPHRASE = "METRICS_DB_PASSPHRASE" SMTP_PASSPHRASE = "SMTP_PASSPHRASE" DISTDIR = vutil.getVDISTDIR() fedDir = os.path.join(DISTDIR, "conf", "fed") def _parseArgs(): parser = optparse.OptionParser() parser.add_option("--props", dest="propsFile", help="Properties file containing name=value pairs.") parser.add_option("--fed", dest="fedFile", help="The FED to use for this image.") parser.add_option("--merge-dir", dest="mergeDir", help="Config directory to merge into analytics directory.") parser.add_option("--docker-image-id", dest="dockerImageId", help="Name and version of the Docker image.") parser.add_option("--analytics-port", dest="analyticsPort", help="Port number that exposes the API Gateway Analytics API.") parser.add_option("--analytics-username", dest="analyticsUsername", help="Username for logging into API Gateway Analytics UI.") parser.add_option("--metrics-db-url", dest="metricsDbUrl", help="Metrics database URL.") parser.add_option("--metrics-db-username", dest="metricsDbUsername", help="Metrics database username.") parser.add_option("--reports-dir", dest="reportsDir", help="Directory for Analytics reports.") parser.add_option("--email-reports", dest="emailReports", help="Enable report emails.", ) parser.add_option("--email-to", dest="emailTo", help="List of destination email addresses, separated by ';'.") parser.add_option("--email-from", dest="emailFrom", help="Originating email address.") parser.add_option("--smtp-conn-type", dest="smtpConnType", choices=["NONE", "TLS/SSL", "SSL"], default="NONE", help="SMTP connection type.") parser.add_option("--smtp-host", dest="smtpHost", help="Hostname of SMTP server.") parser.add_option("--smtp-port", dest="smtpPort", type="int", help="Port number of SMTP server.") parser.add_option("--smtp-username", dest="smtpUsername", help="SMTP server username.") parser.add_option("--cleanup-report", dest="cleanupReport", help="Delete report file after emailing.") opts = parser.parse_args()[0] opts.emailReports = True if opts.emailReports.lower() in ("1", "true", "yes") else False opts.cleanupReport = True if opts.cleanupReport.lower() in ("1", "true", "yes") else False return opts def _loadPassphrases(): with open(options.propsFile) as f: lines = f.readlines() passDict = dict(line.strip().split('=', 1) for line in lines if '=' in line) if set(passDict.keys()) != set((ES_PASSPHRASE, ANALYTICS_PASSPHRASE, METRICS_DB_PASSPHRASE, SMTP_PASSPHRASE)): _fail("Configuration file is missing required properties: %s" % options.propsFile) return passDict def _setup(): _checkLicense() _updateEsPassphrase() _extractCustomFedFile() _configureMetrics() _setAdminUser() _setEnvVariables() if options.mergeDir is not None and os.path.exists(options.mergeDir): print("Merging provided config directory into analytics directory") distutils.dir_util.copy_tree(options.mergeDir, DISTDIR) open(os.path.join(DISTDIR, "conf", ".IAgreeToTheTermsAndConditionsOfTheEULA"), 'a').close() def _checkLicense(): print("Checking license") with open(os.path.join(DISTDIR, "conf", "licenses", "lic.lic")) as f: s = f.read() if not re.search("analytics *= *1", s): _fail("Supplied license file is not valid for API Gateway Analytics.") matcher = re.search(r"expires *=.*, ([\d]{2}) ([A-Za-z]{3}) ([\d]{4})", s) if matcher is not None: day, monthStr, year = matcher.group(1), matcher.group(2), matcher.group(3) month = list(calendar.month_abbr).index(monthStr) expiryDate = datetime.date(int(year), int(month), int(day)) if expiryDate < datetime.date.today(): _fail("Supplied license file has expired.") def _updateEsPassphrase(): if len(passphrases[ES_PASSPHRASE]) > 0: print("Using a custom entity store passphrase") confFile = os.path.join(DISTDIR, "system", "conf", "analytics.xml") configutil.updateSystemSettings("file:////%s" % confFile, confFile, None, None, None, None, secret=passphrases[ES_PASSPHRASE]) def _extractCustomFedFile(): if not os.path.exists(options.fedFile): print("Using factory FED for API Gateway Analytics") return print("Using custom FED file") product, fedVersion = _getProductAndFedVersion() productLabel = ProductVersion.getLabel() print(" FED Product: %s, FED Version: %s, Product: %s" % (product, fedVersion, productLabel)) fedPrefix, productPrefix = fedVersion[0:3], productLabel[0:3] if "Reporter" not in product: _fail("Provided FED is not an API Gateway Analytics FED.") if fedPrefix != productPrefix: _fail("FED version %s does not match the product version %s" % (fedPrefix, productPrefix)) print("Deleting factory configuration") shutil.rmtree(fedDir) os.mkdir(fedDir) print("Extracting FED file") try: zipFile = zipfile.ZipFile(options.fedFile) for member in zipFile.namelist(): fname = os.path.basename(member) if fname and fname.endswith(".xml"): print(" - %s" % fname) with open(os.path.join(DISTDIR, "conf", "fed", fname), 'w') as f: f.write(zipFile.read(member)) zipFile.close() except (Exception, Throwable), e: _fail("Error extracting FED content: %s" % e) def _getProductAndFedVersion(): try: if os.path.exists(options.fedFile): newArchive = DeploymentArchive(options.fedFile) es = EntityStoreAPI.wrap(newArchive.getEntityStore(), passphrases[ES_PASSPHRASE]) else: es = _getEntityStore("PrimaryStore") productKey = es.getProductKey() fedVersion = es.getVersion() es.close() return productKey, fedVersion except (Exception, Throwable), e: _fail("Error reading the FED: %s" % e) def _getEntityStore(storeType): fedDir = os.path.join(DISTDIR, "conf", "fed") try: for fname in os.listdir(fedDir): if re.match(storeType + r".*\.xml", fname) is not None: es = EntityStoreAPI.create("file:///%s/%s" % (fedDir, fname), passphrases[ES_PASSPHRASE], {"strictImportSchema": "false"}) return es _fail("Failed to locate %s in directory '%s'" % (storeType, fedDir)) except (Exception, Throwable), e: _fail("Error opening entity store of type %s: %s" % (storeType, e)) def _configureMetrics(): print("Adding analytics settings to entity store") params = [("passphrase", passphrases[ES_PASSPHRASE]), ("port", options.analyticsPort), ("dburl", options.metricsDbUrl), ("dbuser", options.metricsDbUsername), ("dbpass", passphrases[METRICS_DB_PASSPHRASE]), ("no-dbcheck", None), ("generate", None), ("guser", options.analyticsUsername), ("gpass", passphrases[ANALYTICS_PASSPHRASE]), ("gtemp", options.reportsDir), ("email" if options.emailReports else "no-email", None), ("emailfrom", options.emailFrom), ("emailto", options.emailTo), ("smtptype", options.smtpConnType), ("smtphost", options.smtpHost), ("smtpport", options.smtpPort), ("smtpuser", options.smtpUsername), ("smtppass", passphrases[SMTP_PASSPHRASE]), ("cleanup" if options.cleanupReport else "no-cleanup", None)] cmd = os.path.join(DISTDIR, "posix", "bin", "configureserver") for name, value in params: if value is None: cmd += ' --%s' % name elif value != "": cmd += ' --%s="%s"' % (name, value) savedArgv = sys.argv sys.argv = shlex.split(cmd) analytics.main() sys.argv = savedArgv def _setAdminUser(): print("Updating admin user details") try: es = _getEntityStore("UserStore") entity = es.get("/[UserStore]**/[User]name=admin") entity.setStringField("name", options.analyticsUsername) entity.setStringField("password", es.encrypt(passphrases[ANALYTICS_PASSPHRASE])) es.updateEntity(entity) es.close() except (Exception, Throwable), e: _fail("Error updating admin user details: %s" % e) def _setEnvVariables(): venvPath = os.path.join(DISTDIR, "posix", "lib", "venv") print("Setting env variables:") with open(venvPath, 'a') as f: print(" EMT_ENABLED=true") f.write("\nexport EMT_ENABLED=true") print(" EMT_IMAGE_ID=%s" % options.dockerImageId) f.write("\nexport EMT_IMAGE_ID=%s" % options.dockerImageId) def _fail(msg, errorCode=1): """Prints an error message in red.""" print("""\033[91m =====================================ERROR===================================== %s ===============================================================================\n\033[0m""" % msg) sys.exit(errorCode) if __name__ == "__main__": print("\nSetting up API Gateway Analytics...\n") options = _parseArgs() passphrases = _loadPassphrases() _setup() print("\nAPI Gateway Analytics setup complete.\n")
#!/usr/bin/python3 from setuptools import setup with open('README.rst') as f: long_description = f.read() setup( name='py-iir-filter', version='1.0.5', description="Fast realtime IIR filter", long_description=long_description, author='Bernd Porr', author_email='mail@berndporr.me.uk', py_modules=['iir_filter'], install_requires=['numpy'], zip_safe=False, url='https://github.com/berndporr/py-iir-filter', license='GPL 3.0', classifiers=[ 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3', ], )
import FWCore.ParameterSet.Config as cms from SimG4Core.Application.g4SimHits_cfi import * g4SimHits.Generator.MinEtaCut = cms.double(-13.0) g4SimHits.Generator.MaxEtaCut = cms.double( 13.0) g4SimHits.Generator.HepMCProductLabel = 'LHCTransport' g4SimHits.SteppingAction.MaxTrackTime = cms.double(2000.0) g4SimHits.StackingAction.MaxTrackTime = cms.double(2000.0) from IOMC.RandomEngine.IOMC_cff import * RandomNumberGeneratorService.LHCTransport.engineName = cms.untracked.string('TRandom3') # # to avoid higher level moodules to import uneeded objects, import module as _module # from SimTransport.PPSProtonTransport.CommonParameters_cfi import commonParameters as _commonParameters from SimTransport.PPSProtonTransport.HectorTransport_cfi import hector_2016 as _hector_2016 from SimTransport.PPSProtonTransport.TotemTransport_cfi import totemTransportSetup_2016 as _totemTransportSetup_2016 from SimTransport.PPSProtonTransport.OpticalFunctionsConfig_cfi import opticalfunctionsTransportSetup_2016 as _opticalfunctionsTransportSetup_2016 from SimTransport.PPSProtonTransport.OpticalFunctionsConfig_cfi import opticalfunctionsTransportSetup_2017 as _opticalfunctionsTransportSetup_2017 from SimTransport.PPSProtonTransport.OpticalFunctionsConfig_cfi import opticalfunctionsTransportSetup_2018 as _opticalfunctionsTransportSetup_2018 from SimTransport.PPSProtonTransport.OpticalFunctionsConfig_cfi import opticalfunctionsTransportSetup_2021 as _opticalfunctionsTransportSetup_2021 _LHCTransportPSet = cms.PSet() # so far, it is not yet defined the optic for 2017 and 2018, if needed, change the config for these year to the 2016 one from Configuration.Eras.Modifier_ctpps_2016_cff import ctpps_2016 #ctpps_2016.toReplaceWith(LHCTransportPSet, _totemTransportSetup_2016) ctpps_2016.toReplaceWith(_LHCTransportPSet, _opticalfunctionsTransportSetup_2016.optics_parameters) from Configuration.Eras.Modifier_ctpps_2017_cff import ctpps_2017 ctpps_2017.toReplaceWith(_LHCTransportPSet, _opticalfunctionsTransportSetup_2017.optics_parameters) from Configuration.Eras.Modifier_ctpps_2018_cff import ctpps_2018 ctpps_2018.toReplaceWith(_LHCTransportPSet, _opticalfunctionsTransportSetup_2018.optics_parameters) from Configuration.Eras.Modifier_ctpps_2021_cff import ctpps_2021 ctpps_2021.toReplaceWith(_LHCTransportPSet, _opticalfunctionsTransportSetup_2021.optics_parameters) LHCTransport = cms.EDProducer("PPSSimTrackProducer",_commonParameters,_LHCTransportPSet)
import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') # TODO: disabling for now as there is no dummy mode that works without # phenotype DB, cf. https://github.com/exomiser/Exomiser/issues/347 # def test_local_socket(host): # assert host.socket("tcp://127.0.0.1:8085").is_listening def test_external_socket(host): assert not host.socket("tcp://0.0.0.0:8085").is_listening assert host.socket("tcp://0.0.0.0:80").is_listening assert host.socket("tcp://0.0.0.0:443").is_listening
import json from collections import namedtuple from datetime import datetime from hashlib import md5 from itertools import groupby from operator import itemgetter import sqlalchemy as sa from flask_bcrypt import Bcrypt from geoalchemy2 import Geometry from shapely.geometry import shape from sqlalchemy import Boolean, Column, Date, DateTime, String, Table, Text, func, select from sqlalchemy.dialects.postgresql import ARRAY, JSONB from sqlalchemy.exc import ProgrammingError from plenario.database import postgres_base, postgres_session from plenario.utils.helpers import get_size_in_degrees, slugify bcrypt = Bcrypt() class MetaTable(postgres_base): __tablename__ = 'meta_master' # limited to 50 chars elsewhere dataset_name = Column(String(100), nullable=False) human_name = Column(String(255), nullable=False) description = Column(Text) source_url = Column(String(255)) source_url_hash = Column(String(32), primary_key=True) view_url = Column(String(255)) attribution = Column(String(255)) # Spatial and temporal boundaries of observations in this dataset obs_from = Column(Date) obs_to = Column(Date) bbox = Column(Geometry('POLYGON', srid=4326)) # TODO: Add restriction list ['daily' etc.] update_freq = Column(String(100), nullable=False) last_update = Column(DateTime) date_added = Column(DateTime) # The names of our "special" fields observed_date = Column(String, nullable=False) latitude = Column(String) longitude = Column(String) location = Column(String) # if False, then do not display without first getting administrator approval approved_status = Column(Boolean) contributor_name = Column(String) contributor_organization = Column(String) contributor_email = Column(String) result_ids = Column(ARRAY(String)) column_names = Column(JSONB) # {'<COLUMN_NAME>': '<COLUMN_TYPE>'} def __init__(self, url, human_name, observed_date, approved_status=False, update_freq='yearly', latitude=None, longitude=None, location=None, attribution=None, description=None, column_names=None, contributor_name=None, contributor_email=None, contributor_organization=None, **kwargs): """ :param url: url where CSV or Socrata dataset with this dataset resides :param human_name: Nicely formatted name to display to people :param business_key: Name of column with the dataset's unique ID :param observed_date: Name of column with the datset's timestamp :param approved_status: Has an admin signed off on this dataset? :param update_freq: one of ['daily', 'weekly', 'monthly', 'yearly'] :param latitude: Name of col with latitude :param longitude: Name of col with longitude :param location: Name of col with location formatted as (lat, lon) :param attribution: Text describing who maintains the dataset :param description: Text describing the dataset. """ def curried_slug(name): if name is None: return None else: return slugify(str(name), delimiter='_') # Some combination of columns from which we can derive a point in space. assert (location or (latitude and longitude)) # Frontend validation should have slugified column names already, # but enforcing it here is nice for testing. self.latitude = curried_slug(latitude) self.longitude = curried_slug(longitude) self.location = curried_slug(location) assert human_name self.human_name = human_name # Known issue: slugify fails hard on Non-ASCII self.dataset_name = kwargs.get('dataset_name', curried_slug(human_name)[:50]) assert observed_date self.observed_date = curried_slug(observed_date) assert url # Assume a URL has already been slugified, # and can only contain ASCII characters self.source_url, self.source_url_hash = url, md5(url.encode('ascii')).hexdigest() self.view_url = self._get_view_url_val(url) assert update_freq self.update_freq = update_freq # Can be None. In practice, # frontend validation makes sure these are always passed along. self.description, self.attribution = description, attribution # Expect a list of strings self.column_names = column_names # Boolean self.approved_status = approved_status self.contributor_name = contributor_name self.contributor_organization = contributor_organization self.contributor_email = contributor_email @staticmethod def _get_view_url_val(url): trunc_index = url.find('.csv?accessType=DOWNLOAD') if trunc_index == -1: return None else: return url[:trunc_index] def __repr__(self): return '<MetaTable %r (%r)>' % (self.human_name, self.dataset_name) def meta_tuple(self): PointDataset = namedtuple('PointDataset', 'name date lat lon loc') basic_info = PointDataset(name=self.dataset_name, date=self.observed_date, lat=self.latitude, lon=self.longitude, loc=self.location) return basic_info def as_dict(self): return {c.name: getattr(self, c.name) for c in self.__table__.columns} def column_info(self): return self.point_table.c @property def point_table(self): try: return self._point_table except AttributeError: self._point_table = Table(self.dataset_name, postgres_base.metadata, autoload=True, extend_existing=True) return self._point_table @classmethod def attach_metadata(cls, rows): """Given a list of dicts that include a dataset_name, add metadata about the datasets to each dict. :param rows: List of dict-likes with a dataset_name attribute """ dataset_names = [row['dataset_name'] for row in rows] # All the metadata attributes that we can pull in unaltered as_is_attr_names = ['dataset_name', 'human_name', 'date_added', 'obs_from', 'obs_to', 'last_update', 'attribution', 'description', 'update_freq', 'view_url', 'source_url', 'contributor_name', 'contributor_email', 'contributor_organization'] as_is_attrs = [getattr(cls, name) for name in as_is_attr_names] # Bounding box is the exception. We need to process it a bit. bbox = func.ST_AsGeoJSON(cls.bbox) # Put our as-is and processed attributes together attr_names = as_is_attr_names + ['bbox'] attrs = as_is_attrs + [bbox] # Make the DB call result = postgres_session.query(*attrs). \ filter(cls.dataset_name.in_(dataset_names)) meta_list = [dict(list(zip(attr_names, row))) for row in result] # We need to coerce datetimes to strings date_attrs = ['date_added', 'obs_from', 'obs_to'] for row in meta_list: row['bbox'] = json.loads(row['bbox']) for attr in date_attrs: row[attr] = str(row[attr]) # Align the original list and metadata list... meta_list = sorted(meta_list, key=itemgetter('dataset_name')) to_coalesce = sorted(rows, key=itemgetter('dataset_name')) # and coalesce them. for original, meta in zip(to_coalesce, meta_list): original.update(meta) return to_coalesce @classmethod def timeseries_all(cls, table_names, agg_unit, start, end, geom=None, ctrees=None): """Return a list of [ { 'dataset_name': 'Foo', 'items': [{'datetime': dt, 'count': int}, ...] } ] """ # For each table in table_names, generate a query to be unioned selects = [] for name in table_names: # If we have condition trees specified, apply them. # .get will return None for those datasets who don't have filters ctree = ctrees.get(name) if ctrees else None table = cls.get_by_dataset_name(name) ts_select = table.timeseries(agg_unit, start, end, geom, ctree) selects.append(ts_select) # Union the time series selects to get a panel panel_query = sa.union(*selects) \ .order_by('dataset_name') \ .order_by('time_bucket') panel_vals = postgres_session.execute(panel_query) panel = [] for dataset_name, ts in groupby(panel_vals, lambda row: row.dataset_name): # ts gets closed after it's been iterated over once, # so we need to store the rows somewhere to iterate over them twice. rows = [row for row in ts] # If no records were found, don't include this dataset if all([row.count == 0 for row in rows]): continue ts_dict = {'dataset_name': dataset_name, 'items': []} for row in rows: ts_dict['items'].append({ 'datetime': row.time_bucket.date().isoformat(), 'count': row.count }) # Aggregate top-level count across all time slices. ts_dict['count'] = sum([i['count'] for i in ts_dict['items']]) panel.append(ts_dict) return panel # Information about all point datasets @classmethod def index(cls): try: q = postgres_session.query(cls.dataset_name) q = q.filter(cls.approved_status == True) names = [result.dataset_name for result in q.all()] except ProgrammingError: # Handles a case that causes init_db to crash. # Validator calls index when initializing, prevents this call # from raising an error when the database is empty. names = [] return names @classmethod def narrow_candidates(cls, dataset_names, start, end, geom=None): """ :param dataset_names: Names of point datasets to be considered :return names: Names of point datasets whose bounding box and date range interesects with the given bounds. """ # Filter out datsets that don't intersect the time boundary q = postgres_session.query(cls.dataset_name) \ .filter(cls.dataset_name.in_(dataset_names), cls.date_added != None, cls.obs_from < end, cls.obs_to > start) # or the geometry boundary if geom: intersecting = cls.bbox.ST_Intersects(func.ST_GeomFromGeoJSON(geom)) q = q.filter(intersecting) return [row.dataset_name for row in q.all()] @classmethod def get_by_dataset_name(cls, name): foo = postgres_session.query(cls).filter(cls.dataset_name == name).first() return foo def get_bbox_center(self): sel = select([func.ST_AsGeoJSON(func.ST_centroid(self.bbox))]) result = postgres_session.execute(sel) # returns [lon, lat] return json.loads(result.first()[0])['coordinates'] def update_date_added(self): now = datetime.now() if self.date_added is None: self.date_added = now self.last_update = now def make_grid(self, resolution, geom=None, conditions=None, obs_dates={}): """ :param resolution: length of side of grid square in meters :type resolution: int :param geom: string representation of geojson fragment :type geom: str :param conditions: conditions on columns to filter on :type conditions: list of SQLAlchemy binary operations (e.g. col > value) :return: grid: result proxy with all result rows size_x, size_y: the horizontal and vertical size of the grid squares in degrees """ if conditions is None: conditions = [] # We need to convert resolution (given in meters) to degrees # - which is the unit of measure for EPSG 4326 - # - in order to generate our grid. center = self.get_bbox_center() # center[1] is longitude size_x, size_y = get_size_in_degrees(resolution, center[1]) t = self.point_table q = postgres_session.query( func.count(t.c.hash), func.ST_SnapToGrid( t.c.geom, 0, 0, size_x, size_y ).label('squares') ).filter(*conditions).group_by('squares') if geom: q = q.filter(t.c.geom.ST_Within(func.ST_GeomFromGeoJSON(geom))) if obs_dates: q = q.filter(t.c.point_date >= obs_dates['lower']) q = q.filter(t.c.point_date <= obs_dates['upper']) return postgres_session.execute(q), size_x, size_y # Return select statement to execute or union def timeseries(self, agg_unit, start, end, geom=None, column_filters=None): # Reading this blog post # http://no0p.github.io/postgresql/2014/05/08/timeseries-tips-pg.html # inspired this implementation. t = self.point_table # Special case for the 'quarter' unit of aggregation. step = '3 months' if agg_unit == 'quarter' else '1 ' + agg_unit # Create a CTE to represent every time bucket in the timeseries # with a default count of 0 day_generator = func.generate_series(func.date_trunc(agg_unit, start), func.date_trunc(agg_unit, end), step) defaults = select([sa.literal_column("0").label('count'), day_generator.label('time_bucket')]) \ .alias('defaults') where_filters = [t.c.point_date >= start, t.c.point_date <= end] if column_filters is not None: # Column filters has to be iterable here, because the '+' operator # behaves differently for SQLAlchemy conditions. Instead of # combining the conditions together, it would try to build # something like :param1 + <column_filters> as a new condition. where_filters += [column_filters] # Create a CTE that grabs the number of records contained in each time # bucket. Will only have rows for buckets with records. actuals = select([func.count(t.c.hash).label('count'), func.date_trunc(agg_unit, t.c.point_date). label('time_bucket')]) \ .where(sa.and_(*where_filters)) \ .group_by('time_bucket') # Also filter by geometry if requested if geom: contains = func.ST_Within(t.c.geom, func.ST_GeomFromGeoJSON(geom)) actuals = actuals.where(contains) # Need to alias to make it usable in a subexpression actuals = actuals.alias('actuals') # Outer join the default and observed values # to create the timeseries select statement. # If no observed value in a bucket, use the default. name = sa.literal_column("'{}'".format(self.dataset_name)) \ .label('dataset_name') bucket = defaults.c.time_bucket.label('time_bucket') count = func.coalesce(actuals.c.count, defaults.c.count).label('count') ts = select([name, bucket, count]). \ select_from(defaults.outerjoin(actuals, actuals.c.time_bucket == defaults.c.time_bucket)) return ts def timeseries_one(self, agg_unit, start, end, geom=None, column_filters=None): ts_select = self.timeseries(agg_unit, start, end, geom, column_filters) rows = postgres_session.execute(ts_select.order_by('time_bucket')) header = [['count', 'datetime']] # Discard the name attribute. rows = [[count, time_bucket.date()] for _, time_bucket, count in rows] return header + rows @classmethod def get_all_with_etl_status(cls): """ :return: Every row of meta_shape joined with celery task status. """ query = """ SELECT m.*, c.* FROM meta_master AS m LEFT JOIN celery_taskmeta AS c ON c.id = ( SELECT id FROM celery_taskmeta WHERE task_id = ANY(m.result_ids) ORDER BY date_done DESC LIMIT 1 ) WHERE m.approved_status = 'true' """ return list(postgres_session.execute(query))
import bleach from yaa_settings import AppSettings class Settings(AppSettings): prefix = "YARR" # # To manage the web interface # # Use webpack dev server instead of static files DEV_MODE = False # Page to open at Yarr root url (resolved using reverse) INDEX_URL = "yarr:list_unread" # Pagination limits PAGE_LENGTH = 25 API_PAGE_LENGTH = 5 # If true, fix the layout elements at the top of the screen when scrolling down # Disable if using a custom layout LAYOUT_FIXED = True # Template string for document title (shown on the browser window and tabs). # If set, used to update the title when changing feeds in list view. # Use ``%(feed)s`` as a placeholder for the feed title (case sensitive) TITLE_TEMPLATE = "%(feed)s" # jQuery Selector for page title (an element in your page template) # If set, this element's content will be replaced with the feed title when # changing feeds in list view. TITLE_SELECTOR = "" # # To control feed updates # # Socket timeout, in seconds # Highly recommended that this is **not** set to ``None``, which would block # Note: this sets the global socket timeout, which is not thread-safe; it is # therefore set explicitly when checking feeds, and reset after feeds have been # updated (see ``yarr.decorators.with_socket_timeout`` for more details). SOCKET_TIMEOUT = 15 # Minimum and maximum interval for checking a feed, in minutes # The minimum interval must match the interval that the cron job runs at, # otherwise some feeds may not get checked on time MINIMUM_INTERVAL = 60 MAXIMUM_INTERVAL = 24 * 60 # Default frequency to check a feed, in minutes # Defaults to just under 24 hours (23:45) to avoid issues with slow responses # Note: this will be removed in a future version FREQUENCY = 24 * 60 # Number of days to keep a read item which is no longer in the feed # Set this to 0 to expire immediately, -1 to never expire ITEM_EXPIRY = 1 # # Bleach settings for Yarr # # HTML whitelist for bleach # This default list is roughly the same as the WHATWG sanitization rules # <http://wiki.whatwg.org/wiki/Sanitization_rules>, but without form elements. # A few common HTML 5 elements have been added as well. ALLOWED_TAGS = [ "a", "abbr", "acronym", "aside", "b", "bdi", "bdo", "blockquote", "br", "code", "data", "dd", "del", "dfn", "div", # Why not? "dl", "dt", "em", "h1", "h2", "h3", "h4", "h5", "h6", "hr", "i", "img", "ins", "kbd", "li", "ol", "p", "pre", "q", "s", "samp", "small", "span", "strike", "strong", "sub", "sup", "table", "tbody", "td", "tfoot", "th", "thead", "tr", "time", "tt", # Obsolete, but docutils likes to generate these. "u", "var", "wbr", "ul", ] ALLOWED_ATTRIBUTES = { "*": ["lang", "dir"], # lang is necessary for hyphentation. "a": ["href", "title"], "abbr": ["title"], "acronym": ["title"], "data": ["value"], "dfn": ["title"], "img": ["src", "alt", "width", "height", "title"], "li": ["value"], "ol": ["reversed", "start", "type"], "td": ["align", "valign", "width", "colspan", "rowspan"], "th": ["align", "valign", "width", "colspan", "rowspan"], "time": ["datetime"], } ALLOWED_STYLES = bleach.ALLOWED_STYLES
# -*- coding: utf-8 -*- """ Huffman code """ from data_structures import MinHeap def huffmancode(weight): heap = MinHeap() depth = [] for i,w in enumerate(weight): heap.insert(key=w, node=[i]) depth.append(0) while len(heap.key) >= 2: w1,symbols1 = heap.extract_min() heap.delete_min() w2,symbols2 = heap.extract_min() heap.delete_min() w = w1 + w2 symbols1.extend(symbols2) for s in symbols1: depth[s] += 1 heap.insert(key=w, node=symbols1) return min(depth), max(depth)
import responses import status import uuid @responses.activate def test_list_equipes(equipe_client, crm_base_url): responses.add( method=responses.GET, url=f"{crm_base_url}/backend/equipes/", status=status.HTTP_200_OK, json={} ) response = equipe_client.equipes().get() assert response().status_code == status.HTTP_200_OK @responses.activate def test_retrieve_equipe(equipe_client, crm_base_url): codigo = str(uuid.uuid4()) responses.add( method=responses.GET, url=f"{crm_base_url}/backend/equipes/{codigo}/", status=status.HTTP_200_OK, json={} ) response = equipe_client.equipe(codigo=codigo).get() assert response().status_code == status.HTTP_200_OK
# -*- coding: utf-8 -*- responsablereseau = "responsablereseau" admin = "admin" membreca = "membreca" tresorier = "tresorier" respsalleinfo = "respsalleinfo" exemptdecoglobale = "exemptdecoglobale"
from typing import List, Tuple from pynars.NAL import Inference from pynars.NARS.DataStructures._py.Concept import Concept from pynars.NARS.DataStructures._py.Link import Link, TaskLink, TermLink from pynars.NARS.InferenceEngine.GeneralEngine.GeneralEngine import GeneralEngine from pynars.Narsese import Task from pynars import Narsese from pynars.NARS.RuleMap import RuleMap, RuleCallable from pynars.NARS import Reasoner as Reasoner from pynars.Narsese._py.Statement import Statement from pynars.Narsese._py.Task import Belief from pynars.Narsese._py.Term import Term from pynars.NAL.MentalOperation import execute nars = Reasoner(100, 100) engine: GeneralEngine = nars.inference def rule_map_two_premises(premise1: str, premise2: str, term_common: str, inverse: bool=False, is_belief_term: bool=False, index_task=None, index_belief=None) -> Tuple[List[RuleCallable], Task, Belief, Concept, TaskLink, TermLink, Tuple[Task, Task, Task, Task]]: '''''' nars.reset() premise1: Task = Narsese.parse(premise1) result1 = nars.memory.accept(premise1) premise2: Task = Narsese.parse(premise2) result2 = nars.memory.accept(premise2) task, belief = (premise1, premise2) if not inverse else( premise2, premise1) term_common: Term = Narsese.parse(term_common).term concept = nars.memory.take_by_key(term_common) if index_task is None: if task.term == concept.term: index_task = () else: if task.term.complexity > concept.term.complexity: indices_task = Link.get_index(task.term, concept.term) else: indices_task = Link.get_index(concept.term, task.term) if indices_task is not None: index_task = indices_task[0] if index_belief is None: if belief.term == concept.term: index_task = () else: if belief.term.complexity > concept.term.complexity: indices_belief = Link.get_index(belief.term, concept.term) else: indices_belief = Link.get_index(concept.term, belief.term) if indices_belief is not None: index_belief = indices_belief[0] task_link = concept.task_links.take_by_key(TaskLink(concept, task, None, index=index_task)) term_link = concept.term_links.take_by_key(TermLink(concept, belief, None, index=index_belief)) belief: Belief _, _, rules = engine.match(task, (belief if not is_belief_term else None), belief.term, task_link, term_link) return rules, task, belief, concept, task_link, term_link, result1, result2 def rule_map_task_only(premise1: str, conecept_term: str, index_concept_task: tuple): '''''' task = Narsese.parse(premise1) result1 = nars.memory.accept(task) concept_term = Narsese.parse(conecept_term+".").term concept = nars.memory.take_by_key(concept_term) task_link = concept.task_links.take_by_key(TaskLink(concept, task, None, index=index_concept_task)) rules = engine.match(task, None, None, task_link, None) return rules, task, concept, task_link, result1 def memory_accept_revision(judgement1: str, judgement2: str): task1 = Narsese.parse(judgement1) nars.memory.accept(task1) task2 = Narsese.parse(judgement2) task_derived, *_ = nars.memory.accept(task2) return [task_derived] def execute_one_premise(premise: Task): '''''' stat: Statement = premise.term if stat.is_executable: op = stat.predicate args = stat.subject.terms return execute(op, *args) else: raise "Invalide case." def output_contains(outputs: List[Task], target: str): target: Task = Narsese.parse(target) for output in outputs: flag_contain = output.term == target.term if output.truth is None: flag_contain &= target.truth is None else: flag_contain &= round(output.truth.f, 2) == round(target.truth.f, 2) flag_contain &= round(output.truth.c, 2) == round(target.truth.c, 2) flag_contain &= target.sentence.is_eternal == output.sentence.is_eternal # compare the time stamp if not target.sentence.is_eternal: flag_contain &= target.stamp.t_occurrence == output.stamp.t_occurrence if flag_contain: return True return False
# -*- coding: utf-8 -*- """ IPSec VPN登录 """ import os import time from selenium import webdriver from selenium.webdriver.support.wait import WebDriverWait from BasePages.getVerifyCode import get_pictures class IPSecLogin: def __init__(self): chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('--ignore-certificate-errors') self.driver = webdriver.Chrome(options=chrome_options) self.driver.maximize_window() time.sleep(2) def setDriver(self, testAPI): # noinspection PyBroadException self.driver.get(testAPI) self.driver.implicitly_wait(5) self.driver.find_element_by_xpath("//input[@placeholder='请输入管理员名']").send_keys('anquan') self.driver.find_element_by_xpath("//input[@placeholder='请输入登录密码']").send_keys('test2020+') self.inputcode() return self.driver def inputcode(self): try: code = get_pictures(self.driver, 'xpath', "//img[@id='imgVerify']") times = str(time.time()).replace(".", '') self.driver.find_element('xpath', "//input[@placeholder='请输入验证码']") \ .send_keys(code) time.sleep(0.5) self.driver.find_element_by_id('login').click() exit = WebDriverWait(self.driver.find_element('link text', '退出'), 5, 0.5) # 保存识别正确的图片,用于训练模型 os.rename('./BasePages/verifyCodePic/poo3.png', f'./BasePages/verifyCodePic2/{code}_{times}.png') except Exception as e: # print(e) os.rename('./BasePages/verifyCodePic/poo3.png', f'./BasePages/verifyCodePic2/{code}_{times}_需修改.png') self.inputcode()
import time from threading import Thread import rxbp from rxbp.acknowledgement.acksubject import AckSubject from rxbp.acknowledgement.continueack import continue_ack from rxbp.overflowstrategy import DropOld, ClearBuffer, Drop from rxbp.schedulers.asyncioscheduler import AsyncIOScheduler from rxbp.schedulers.threadpoolscheduler import ThreadPoolScheduler from rxbp.schedulers.timeoutscheduler import TimeoutScheduler from rxbp.testing.tobserver import TObserver def demo1(): def counter(sink): while True: time.sleep(5) print(f"[**client**] received: ", sink.received) publisher = rxbp.interval(0.5).pipe( # rxbp.op.strategy(DropOld(buffer_size=15)) rxbp.op.strategy(ClearBuffer(buffer_size=15)) ) sink = TObserver(immediate_continue=5) publisher.subscribe(observer=sink, subscribe_scheduler=TimeoutScheduler()) t1 = Thread(target=counter, args=(sink,)) t1.start() t1.join() def demo2(): def counter(sink): while True: time.sleep(5) print(f"[**client**] received: ", sink.received) def work(o, skd): for i in range(1_000): o.on_next([i]) o.on_completed() source = rxbp.create(work) source = source.pipe( rxbp.op.strategy(DropOld(buffer_size=100)), # rxbp.op.strategy(ClearBuffer(buffer_size=15)), # rxbp.op.strategy(Drop(buffer_size=15)), ) sink = TObserver(immediate_continue=5) source.subscribe(observer=sink, subscribe_scheduler=ThreadPoolScheduler("publisher")) t1 = Thread(target=counter, args=(sink,)) t1.start() t1.join() if __name__ == '__main__': # demo1() demo2()
import os import pytest from leapp.snactor.fixture import current_actor_context from leapp.models import SELinuxModule, SELinuxModules, SELinuxCustom, SELinuxFacts, SELinuxRequestRPMs from leapp.libraries.stdlib import api, run, CalledProcessError from leapp.reporting import Report TEST_MODULES = [ ["400", "mock1"], ["99", "mock1"], ["200", "mock1"], ["400", "mock2"], ["999", "mock3"], ["400", "permissive_abrt_t"] ] SEMANAGE_COMMANDS = [ ['fcontext', '-t', 'ganesha_var_run_t', "'/ganesha(/.*)?'"], ['fcontext', '-t', 'httpd_sys_content_t', "'/web(/.*)?'"], ['port', '-t', 'http_port_t', '-p', 'udp', '81'] ] def _run_cmd(cmd, logmsg="", split=True): try: return run(cmd, split=split).get("stdout", "") except CalledProcessError as e: if logmsg: api.current_logger().warning("%s: %s", logmsg, str(e.stderr)) return None def find_module_semodule(semodule_lfull, name, priority): return next((line for line in semodule_lfull if (name in line and priority in line)), None) def find_semanage_rule(rules, rule): return next((r for r in rules if all(word in r for word in rule)), None) @pytest.fixture(scope="function") def destructive_selinux_teardown(): # actor introduces changes to the system, therefore only teardown is needed yield for priority, module in TEST_MODULES: _run_cmd(["semodule", "-X", priority, "-r", module], "Error removing module {} after testing".format(module)) for command in SEMANAGE_COMMANDS[1:]: _run_cmd(["semanage", command[0], "-d"] + [x.strip('"\'') for x in command[1:]], "Failed to remove SELinux customizations after testing") _run_cmd(["semanage", SEMANAGE_COMMANDS[0][0], "-d"] + SEMANAGE_COMMANDS[0][1:], "Failed to remove SELinux customizations after testing") @pytest.mark.skipif(os.getenv("DESTRUCTIVE_TESTING", False) in [False, "0"], reason='Test disabled by default because it would modify the system') def test_SELinuxApplyCustom(current_actor_context, destructive_selinux_teardown): semodule_list = [SELinuxModule(name=module, priority=int(prio), content="(allow domain proc_type (file (getattr open read)))", removed=[]) for (prio, module) in TEST_MODULES] commands = [" ".join([c[0], "-a"] + c[1:]) for c in SEMANAGE_COMMANDS[1:]] semanage_removed = [" ".join([SEMANAGE_COMMANDS[0][0], "-a"] + SEMANAGE_COMMANDS[0][1:])] current_actor_context.feed(SELinuxModules(modules=semodule_list)) current_actor_context.feed(SELinuxCustom(commands=commands, removed=semanage_removed)) current_actor_context.run() semodule_lfull = _run_cmd(["semodule", "-lfull"], "Error listing selinux modules") semanage_export = _run_cmd(["semanage", "export"], "Error listing selinux customizations") # check that all reported modules where introduced to the system for priority, name in TEST_MODULES: if priority not in ('100', '200'): assert find_module_semodule(semodule_lfull, name, priority) # check that all valid commands where introduced to the system for command in SEMANAGE_COMMANDS[1:-1]: assert find_semanage_rule(semanage_export, command)
# -*- coding: utf-8 -*- # pylint: disable=no-name-in-module,broad-except,relative-import from __future__ import unicode_literals try: import urllib.request as urllib2 except ImportError: import urllib2 try: import xml.etree.cElementTree as ET except ImportError: # pragma: no cover import xml.etree.ElementTree as ET from models.search import SearchResult from models.series import Series from . import settings class TVDB(object): @staticmethod def _get(url): try: result = urllib2.urlopen(url) data = result.read() result.close() except Exception: data = '' return data @classmethod def search(cls, query): query = urllib2.quote(query) url = '{}/GetSeries.php?seriesname={}'.format(settings.BASE_URL, query) data = cls._get(url) root_node = ET.fromstring(data) return SearchResult(cls, query, root_node) @classmethod def series(cls, series_id): url = settings.SERIES_URL.format( api_key=settings.API_KEY, series_id=series_id ) data = cls._get(url) root_node = ET.fromstring(data) return Series(root_node)
import copy import getopt import math import networkx as nx import matplotlib.pyplot as plt import operator import os import random import sys from scipy import stats import time import random def randomize_weights(weights): number = random.random() * sum(weights.values()) for k, v in weights.items(): if number <= v: break number -= v return k def pad_string(integer, n): string = str(integer) while len(string) < n: string = "0" + string return string
import itertools import json import logging import string from collections import defaultdict from typing import Dict, List, Union, Tuple, Any from overrides import overrides from word2number.w2n import word_to_num from allennlp.common.file_utils import cached_path from allennlp.data.fields import ( Field, TextField, MetadataField, LabelField, ListField, SequenceLabelField, SpanField, IndexField, ) from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.dataset_readers.reading_comprehension.util import ( IGNORED_TOKENS, STRIPPED_CHARACTERS, make_reading_comprehension_instance, split_tokens_by_hyphen, ) from allennlp.data.instance import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.tokenizers import Token, Tokenizer, SpacyTokenizer logger = logging.getLogger(__name__) WORD_NUMBER_MAP = { "zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9, "ten": 10, "eleven": 11, "twelve": 12, "thirteen": 13, "fourteen": 14, "fifteen": 15, "sixteen": 16, "seventeen": 17, "eighteen": 18, "nineteen": 19, } @DatasetReader.register("drop") class DropReader(DatasetReader): """ Reads a JSON-formatted DROP dataset file and returns instances in a few different possible formats. The input format is complicated; see the test fixture for an example of what it looks like. The output formats all contain a question ``TextField``, a passage ``TextField``, and some kind of answer representation. Because DROP has instances with several different kinds of answers, this dataset reader allows you to filter out questions that do not have answers of a particular type (e.g., remove questions that have numbers as answers, if you model can only give passage spans as answers). We typically return all possible ways of arriving at a given answer string, and expect models to marginalize over these possibilities. Parameters ---------- tokenizer : ``Tokenizer``, optional (default=``SpacyTokenizer()``) We use this ``Tokenizer`` for both the question and the passage. See :class:`Tokenizer`. Default is ```SpacyTokenizer()``. token_indexers : ``Dict[str, TokenIndexer]``, optional We similarly use this for both the question and the passage. See :class:`TokenIndexer`. Default is ``{"tokens": SingleIdTokenIndexer()}``. lazy : ``bool``, optional (default=False) If this is true, ``instances()`` will return an object whose ``__iter__`` method reloads the dataset each time it's called. Otherwise, ``instances()`` returns a list. passage_length_limit : ``int``, optional (default=None) If specified, we will cut the passage if the length of passage exceeds this limit. question_length_limit : ``int``, optional (default=None) If specified, we will cut the question if the length of passage exceeds this limit. skip_when_all_empty: ``List[str]``, optional (default=None) In some cases such as preparing for training examples, you may want to skip some examples when there are no gold labels. You can specify on what condition should the examples be skipped. Currently, you can put "passage_span", "question_span", "addition_subtraction", or "counting" in this list, to tell the reader skip when there are no such label found. If not specified, we will keep all the examples. instance_format: ``str``, optional (default="drop") We try to be generous in providing a few different formats for the instances in DROP, in terms of the ``Fields`` that we return for each ``Instance``, to allow for several different kinds of models. "drop" format will do processing to detect numbers and various ways those numbers can be arrived at from the passage, and return ``Fields`` related to that. "bert" format only allows passage spans as answers, and provides a "question_and_passage" field with the two pieces of text joined as BERT expects. "squad" format provides the same fields that our BiDAF and other SQuAD models expect. relaxed_span_match_for_finding_labels : ``bool``, optional (default=True) DROP dataset contains multi-span answers, and the date-type answers are usually hard to find exact span matches for, also. In order to use as many examples as possible to train the model, we may not want a strict match for such cases when finding the gold span labels. If this argument is true, we will treat every span in the multi-span answers as correct, and every token in the date answer as correct, too. Because models trained on DROP typically marginalize over all possible answer positions, this is just being a little more generous in what is being marginalized. Note that this will not affect evaluation. """ def __init__( self, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, lazy: bool = False, passage_length_limit: int = None, question_length_limit: int = None, skip_when_all_empty: List[str] = None, instance_format: str = "drop", relaxed_span_match_for_finding_labels: bool = True, ) -> None: super().__init__(lazy) self._tokenizer = tokenizer or SpacyTokenizer() self._token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self.passage_length_limit = passage_length_limit self.question_length_limit = question_length_limit self.skip_when_all_empty = skip_when_all_empty if skip_when_all_empty is not None else [] for item in self.skip_when_all_empty: assert item in [ "passage_span", "question_span", "addition_subtraction", "counting", ], f"Unsupported skip type: {item}" self.instance_format = instance_format self.relaxed_span_match_for_finding_labels = relaxed_span_match_for_finding_labels @overrides def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) logger.info("Reading file at %s", file_path) with open(file_path) as dataset_file: dataset = json.load(dataset_file) logger.info("Reading the dataset") kept_count, skip_count = 0, 0 for passage_id, passage_info in dataset.items(): passage_text = passage_info["passage"] passage_tokens = self._tokenizer.tokenize(passage_text) passage_tokens = split_tokens_by_hyphen(passage_tokens) for question_answer in passage_info["qa_pairs"]: question_id = question_answer["query_id"] question_text = question_answer["question"].strip() answer_annotations = [] if "answer" in question_answer: answer_annotations.append(question_answer["answer"]) if "validated_answers" in question_answer: answer_annotations += question_answer["validated_answers"] instance = self.text_to_instance( question_text, passage_text, question_id, passage_id, answer_annotations, passage_tokens, ) if instance is not None: kept_count += 1 yield instance else: skip_count += 1 logger.info(f"Skipped {skip_count} questions, kept {kept_count} questions.") @overrides def text_to_instance( self, # type: ignore question_text: str, passage_text: str, question_id: str = None, passage_id: str = None, answer_annotations: List[Dict] = None, passage_tokens: List[Token] = None, ) -> Union[Instance, None]: if not passage_tokens: passage_tokens = self._tokenizer.tokenize(passage_text) passage_tokens = split_tokens_by_hyphen(passage_tokens) question_tokens = self._tokenizer.tokenize(question_text) question_tokens = split_tokens_by_hyphen(question_tokens) if self.passage_length_limit is not None: passage_tokens = passage_tokens[: self.passage_length_limit] if self.question_length_limit is not None: question_tokens = question_tokens[: self.question_length_limit] answer_type: str = None answer_texts: List[str] = [] if answer_annotations: # Currently we only use the first annotated answer here, but actually this doesn't affect # the training, because we only have one annotation for the train set. answer_type, answer_texts = self.extract_answer_info_from_annotation( answer_annotations[0] ) # Tokenize the answer text in order to find the matched span based on token tokenized_answer_texts = [] for answer_text in answer_texts: answer_tokens = self._tokenizer.tokenize(answer_text) answer_tokens = split_tokens_by_hyphen(answer_tokens) tokenized_answer_texts.append(" ".join(token.text for token in answer_tokens)) if self.instance_format == "squad": valid_passage_spans = ( self.find_valid_spans(passage_tokens, tokenized_answer_texts) if tokenized_answer_texts else [] ) if not valid_passage_spans: if "passage_span" in self.skip_when_all_empty: return None else: valid_passage_spans.append((len(passage_tokens) - 1, len(passage_tokens) - 1)) return make_reading_comprehension_instance( question_tokens, passage_tokens, self._token_indexers, passage_text, valid_passage_spans, # this `answer_texts` will not be used for evaluation answer_texts, additional_metadata={ "original_passage": passage_text, "original_question": question_text, "passage_id": passage_id, "question_id": question_id, "valid_passage_spans": valid_passage_spans, "answer_annotations": answer_annotations, }, ) elif self.instance_format == "bert": question_concat_passage_tokens = question_tokens + [Token("[SEP]")] + passage_tokens valid_passage_spans = [] for span in self.find_valid_spans(passage_tokens, tokenized_answer_texts): # This span is for `question + [SEP] + passage`. valid_passage_spans.append( (span[0] + len(question_tokens) + 1, span[1] + len(question_tokens) + 1) ) if not valid_passage_spans: if "passage_span" in self.skip_when_all_empty: return None else: valid_passage_spans.append( ( len(question_concat_passage_tokens) - 1, len(question_concat_passage_tokens) - 1, ) ) answer_info = { "answer_texts": answer_texts, # this `answer_texts` will not be used for evaluation "answer_passage_spans": valid_passage_spans, } return self.make_bert_drop_instance( question_tokens, passage_tokens, question_concat_passage_tokens, self._token_indexers, passage_text, answer_info, additional_metadata={ "original_passage": passage_text, "original_question": question_text, "passage_id": passage_id, "question_id": question_id, "answer_annotations": answer_annotations, }, ) elif self.instance_format == "drop": numbers_in_passage = [] number_indices = [] for token_index, token in enumerate(passage_tokens): number = self.convert_word_to_number(token.text) if number is not None: numbers_in_passage.append(number) number_indices.append(token_index) # hack to guarantee minimal length of padded number numbers_in_passage.append(0) number_indices.append(-1) numbers_as_tokens = [Token(str(number)) for number in numbers_in_passage] valid_passage_spans = ( self.find_valid_spans(passage_tokens, tokenized_answer_texts) if tokenized_answer_texts else [] ) valid_question_spans = ( self.find_valid_spans(question_tokens, tokenized_answer_texts) if tokenized_answer_texts else [] ) target_numbers = [] # `answer_texts` is a list of valid answers. for answer_text in answer_texts: number = self.convert_word_to_number(answer_text) if number is not None: target_numbers.append(number) valid_signs_for_add_sub_expressions: List[List[int]] = [] valid_counts: List[int] = [] if answer_type in ["number", "date"]: valid_signs_for_add_sub_expressions = self.find_valid_add_sub_expressions( numbers_in_passage, target_numbers ) if answer_type in ["number"]: # Currently we only support count number 0 ~ 9 numbers_for_count = list(range(10)) valid_counts = self.find_valid_counts(numbers_for_count, target_numbers) type_to_answer_map = { "passage_span": valid_passage_spans, "question_span": valid_question_spans, "addition_subtraction": valid_signs_for_add_sub_expressions, "counting": valid_counts, } if self.skip_when_all_empty and not any( type_to_answer_map[skip_type] for skip_type in self.skip_when_all_empty ): return None answer_info = { "answer_texts": answer_texts, # this `answer_texts` will not be used for evaluation "answer_passage_spans": valid_passage_spans, "answer_question_spans": valid_question_spans, "signs_for_add_sub_expressions": valid_signs_for_add_sub_expressions, "counts": valid_counts, } return self.make_marginal_drop_instance( question_tokens, passage_tokens, numbers_as_tokens, number_indices, self._token_indexers, passage_text, answer_info, additional_metadata={ "original_passage": passage_text, "original_question": question_text, "original_numbers": numbers_in_passage, "passage_id": passage_id, "question_id": question_id, "answer_info": answer_info, "answer_annotations": answer_annotations, }, ) else: raise ValueError( f'Expect the instance format to be "drop", "squad" or "bert", ' f"but got {self.instance_format}" ) @staticmethod def make_marginal_drop_instance( question_tokens: List[Token], passage_tokens: List[Token], number_tokens: List[Token], number_indices: List[int], token_indexers: Dict[str, TokenIndexer], passage_text: str, answer_info: Dict[str, Any] = None, additional_metadata: Dict[str, Any] = None, ) -> Instance: additional_metadata = additional_metadata or {} fields: Dict[str, Field] = {} passage_offsets = [(token.idx, token.idx + len(token.text)) for token in passage_tokens] question_offsets = [(token.idx, token.idx + len(token.text)) for token in question_tokens] # This is separate so we can reference it later with a known type. passage_field = TextField(passage_tokens, token_indexers) question_field = TextField(question_tokens, token_indexers) fields["passage"] = passage_field fields["question"] = question_field number_index_fields: List[Field] = [ IndexField(index, passage_field) for index in number_indices ] fields["number_indices"] = ListField(number_index_fields) # This field is actually not required in the model, # it is used to create the `answer_as_plus_minus_combinations` field, which is a `SequenceLabelField`. # We cannot use `number_indices` field for creating that, because the `ListField` will not be empty # when we want to create a new empty field. That will lead to error. numbers_in_passage_field = TextField(number_tokens, token_indexers) metadata = { "original_passage": passage_text, "passage_token_offsets": passage_offsets, "question_token_offsets": question_offsets, "question_tokens": [token.text for token in question_tokens], "passage_tokens": [token.text for token in passage_tokens], "number_tokens": [token.text for token in number_tokens], "number_indices": number_indices, } if answer_info: metadata["answer_texts"] = answer_info["answer_texts"] passage_span_fields: List[Field] = [ SpanField(span[0], span[1], passage_field) for span in answer_info["answer_passage_spans"] ] if not passage_span_fields: passage_span_fields.append(SpanField(-1, -1, passage_field)) fields["answer_as_passage_spans"] = ListField(passage_span_fields) question_span_fields: List[Field] = [ SpanField(span[0], span[1], question_field) for span in answer_info["answer_question_spans"] ] if not question_span_fields: question_span_fields.append(SpanField(-1, -1, question_field)) fields["answer_as_question_spans"] = ListField(question_span_fields) add_sub_signs_field: List[Field] = [] for signs_for_one_add_sub_expression in answer_info["signs_for_add_sub_expressions"]: add_sub_signs_field.append( SequenceLabelField(signs_for_one_add_sub_expression, numbers_in_passage_field) ) if not add_sub_signs_field: add_sub_signs_field.append( SequenceLabelField([0] * len(number_tokens), numbers_in_passage_field) ) fields["answer_as_add_sub_expressions"] = ListField(add_sub_signs_field) count_fields: List[Field] = [ LabelField(count_label, skip_indexing=True) for count_label in answer_info["counts"] ] if not count_fields: count_fields.append(LabelField(-1, skip_indexing=True)) fields["answer_as_counts"] = ListField(count_fields) metadata.update(additional_metadata) fields["metadata"] = MetadataField(metadata) return Instance(fields) @staticmethod def make_bert_drop_instance( question_tokens: List[Token], passage_tokens: List[Token], question_concat_passage_tokens: List[Token], token_indexers: Dict[str, TokenIndexer], passage_text: str, answer_info: Dict[str, Any] = None, additional_metadata: Dict[str, Any] = None, ) -> Instance: additional_metadata = additional_metadata or {} fields: Dict[str, Field] = {} passage_offsets = [(token.idx, token.idx + len(token.text)) for token in passage_tokens] # This is separate so we can reference it later with a known type. passage_field = TextField(passage_tokens, token_indexers) question_field = TextField(question_tokens, token_indexers) fields["passage"] = passage_field fields["question"] = question_field question_and_passage_field = TextField(question_concat_passage_tokens, token_indexers) fields["question_and_passage"] = question_and_passage_field metadata = { "original_passage": passage_text, "passage_token_offsets": passage_offsets, "question_tokens": [token.text for token in question_tokens], "passage_tokens": [token.text for token in passage_tokens], } if answer_info: metadata["answer_texts"] = answer_info["answer_texts"] passage_span_fields: List[Field] = [ SpanField(span[0], span[1], question_and_passage_field) for span in answer_info["answer_passage_spans"] ] if not passage_span_fields: passage_span_fields.append(SpanField(-1, -1, question_and_passage_field)) fields["answer_as_passage_spans"] = ListField(passage_span_fields) metadata.update(additional_metadata) fields["metadata"] = MetadataField(metadata) return Instance(fields) @staticmethod def extract_answer_info_from_annotation( answer_annotation: Dict[str, Any] ) -> Tuple[str, List[str]]: answer_type = None if answer_annotation["spans"]: answer_type = "spans" elif answer_annotation["number"]: answer_type = "number" elif any(answer_annotation["date"].values()): answer_type = "date" answer_content = answer_annotation[answer_type] if answer_type is not None else None answer_texts: List[str] = [] if answer_type is None: # No answer pass elif answer_type == "spans": # answer_content is a list of string in this case answer_texts = answer_content elif answer_type == "date": # answer_content is a dict with "month", "day", "year" as the keys date_tokens = [ answer_content[key] for key in ["month", "day", "year"] if key in answer_content and answer_content[key] ] answer_texts = date_tokens elif answer_type == "number": # answer_content is a string of number answer_texts = [answer_content] return answer_type, answer_texts @staticmethod def convert_word_to_number(word: str, try_to_include_more_numbers=False): """ Currently we only support limited types of conversion. """ if try_to_include_more_numbers: # strip all punctuations from the sides of the word, except for the negative sign punctruations = string.punctuation.replace("-", "") word = word.strip(punctruations) # some words may contain the comma as deliminator word = word.replace(",", "") # word2num will convert hundred, thousand ... to number, but we skip it. if word in ["hundred", "thousand", "million", "billion", "trillion"]: return None try: number = word_to_num(word) except ValueError: try: number = int(word) except ValueError: try: number = float(word) except ValueError: number = None return number else: no_comma_word = word.replace(",", "") if no_comma_word in WORD_NUMBER_MAP: number = WORD_NUMBER_MAP[no_comma_word] else: try: number = int(no_comma_word) except ValueError: number = None return number @staticmethod def find_valid_spans( passage_tokens: List[Token], answer_texts: List[str] ) -> List[Tuple[int, int]]: normalized_tokens = [ token.text.lower().strip(STRIPPED_CHARACTERS) for token in passage_tokens ] word_positions: Dict[str, List[int]] = defaultdict(list) for i, token in enumerate(normalized_tokens): word_positions[token].append(i) spans = [] for answer_text in answer_texts: answer_tokens = answer_text.lower().strip(STRIPPED_CHARACTERS).split() num_answer_tokens = len(answer_tokens) if answer_tokens[0] not in word_positions: continue for span_start in word_positions[answer_tokens[0]]: span_end = span_start # span_end is _inclusive_ answer_index = 1 while answer_index < num_answer_tokens and span_end + 1 < len(normalized_tokens): token = normalized_tokens[span_end + 1] if answer_tokens[answer_index].strip(STRIPPED_CHARACTERS) == token: answer_index += 1 span_end += 1 elif token in IGNORED_TOKENS: span_end += 1 else: break if num_answer_tokens == answer_index: spans.append((span_start, span_end)) return spans @staticmethod def find_valid_add_sub_expressions( numbers: List[int], targets: List[int], max_number_of_numbers_to_consider: int = 2 ) -> List[List[int]]: valid_signs_for_add_sub_expressions = [] # TODO: Try smaller numbers? for number_of_numbers_to_consider in range(2, max_number_of_numbers_to_consider + 1): possible_signs = list(itertools.product((-1, 1), repeat=number_of_numbers_to_consider)) for number_combination in itertools.combinations( enumerate(numbers), number_of_numbers_to_consider ): indices = [it[0] for it in number_combination] values = [it[1] for it in number_combination] for signs in possible_signs: eval_value = sum(sign * value for sign, value in zip(signs, values)) if eval_value in targets: labels_for_numbers = [0] * len(numbers) # 0 represents ``not included''. for index, sign in zip(indices, signs): labels_for_numbers[index] = ( 1 if sign == 1 else 2 ) # 1 for positive, 2 for negative valid_signs_for_add_sub_expressions.append(labels_for_numbers) return valid_signs_for_add_sub_expressions @staticmethod def find_valid_counts(count_numbers: List[int], targets: List[int]) -> List[int]: valid_indices = [] for index, number in enumerate(count_numbers): if number in targets: valid_indices.append(index) return valid_indices
# coding: utf-8 import argparse import time from itertools import product from functools import partial import gc import json import torch import torch.nn as nn from apex import amp from data_utils import get_time_series from mem_transformer import MemTransformerLM from utils.initialization import weights_init from train_ts import parallelize_model, build_optimizer, build_scheduler from utils.torch_utils import non_emb_param_count, openai_compute class DotDict(dict): """dot.notation access to dictionary attributes""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def head_repartition_rule(d_model): if d_model > 256: d_head = 64 n_head = d_model // d_head elif d_model > 128: n_head = 8 d_head = d_model // n_head elif d_model > 64: n_head = 4 d_head = d_model // n_head elif d_model > 16: n_head = 2 d_head = d_model // n_head else: n_head = 1 d_head = d_model return n_head, d_head def benchmark(model, optimizers, schedulers): # Turn on training mode which enables dropout. if isinstance(model, nn.DataParallel): parent_model = model.module else: parent_model = model optimizer, optimizer_sparse = optimizers scheduler, scheduler_sparse = schedulers train_step = 0 train_losses = [] model.train() if default_args.batch_chunk > 1: mems = [tuple() for _ in range(default_args.batch_chunk)] else: mems = tuple() train_iter = tr_iter.get_varlen_iter() if default_args.varlen else tr_iter start_time = time.time() for batch, (data, target, seq_len) in enumerate(train_iter): model.zero_grad() if default_args.batch_chunk > 1: data_chunks = torch.chunk(data, default_args.batch_chunk, 1) target_chunks = torch.chunk(target, default_args.batch_chunk, 1) for i in range(default_args.batch_chunk): data_i = data_chunks[i].contiguous() target_i = target_chunks[i].contiguous() ret = model(data_i, target_i, *mems[i]) loss, mems[i] = ret[0], ret[1:] loss = loss.float().mean().type_as(loss) / default_args.batch_chunk if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() train_losses.append(loss.float().item()) else: ret = model(data, target, *mems) loss, mems = ret[0], ret[1:] loss = loss.float().mean().type_as(loss) if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() train_losses.append(loss.float().item()) if args.fp16: torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), default_args.clip ) else: torch.nn.utils.clip_grad_norm_(model.parameters(), default_args.clip) optimizer.step() parent_model.compute += openai_compute( non_emb_param_count(parent_model, nseries), data.numel(), 1 ) # step-wise learning rate annealing train_step += 1 parent_model.training_steps += 1 if default_args.scheduler in ["cosine", "constant", "dev_perf"]: # linear warmup stage if train_step < default_args.warmup_step: curr_lr = default_args.lr * train_step / default_args.warmup_step optimizer.param_groups = curr_lr else: if default_args.scheduler == "cosine": scheduler.step(train_step) elif default_args.scheduler == "inv_sqrt": scheduler.step(train_step) if train_step == default_args.max_step: return ( parent_model.compute * 24 * 3600, time.time() - start_time, train_step * data.numel(), ) if __name__ == "__main__": parser = argparse.ArgumentParser(description="benchmarking script") parser.add_argument( "-l", "--n_layers", nargs="+", help="n_layers to test", required=True ) parser.add_argument( "-d", "--d_models", nargs="+", help="d_models to test", required=True ) parser.add_argument( "-b", "--batch_sizes", nargs="+", help="batch sizes to test", required=True ) parser.add_argument("--fp16", type=str, default=None, choices=["O1", "O2", "O0"]) parser.add_argument("-t", "--tracking", action="store_true") parser.add_argument("--reload", action="store_true") args = parser.parse_args() start_time = time.time() if args.reload: try: results = json.load(open(f"compute_grid_results_{args.fp16}.json")) print(f"reloaded from compute_grid_results_{args.fp16}.json") except FileNotFoundError: results = {} else: results = {} default_args = DotDict( { "data" : "../data/etf", "dataset" : "allData.pickle", "batch_chunk" : 1, "not_tied" : False, "div_val" : 1, "pre_lnorm" : False, "dropout" : 0.0, "dropatt" : 0.0, "init" : "normal", "emb_init" : "normal", "init_range" : 0.1, "emb_init_range": 0.01, "init_std" : 0.02, "proj_init_std" : 0.01, "optim" : "adam", "lr" : 5e-05, "mom" : 0.0, "scheduler" : "cosine", "warmup_step" : 0, "decay_rate" : 0.5, "lr_min" : 0.0, "clip": 0.25, "clip_nonemb": False, "eta_min": 0.0, "tgt_len": 150, "eval_tgt_len": 150, "ext_len": 0, "mem_len": 150, "varlen": False, "same_length": False, "clamp_len": -1, "seed": 1111, "max_step": 100, "cuda": True, "multi_gpu": False, "gpu0_bsz": -1, "debug": False, "knockknock": True, "tied": True, } ) device = torch.device("cuda" if default_args.cuda else "cpu") if args.fp16 == "O1": amp.register_half_function(torch, "einsum") cutoffs, tie_projs = [], [False] for n_layer, d_model, batch_size in product( args.n_layers, args.d_models, args.batch_sizes ): n_layer, d_model, batch_size = int(n_layer), int(d_model), int( batch_size) if args.reload: if results.get(str((n_layer, d_model, batch_size))) is not None: print(f"{(n_layer, d_model, batch_size)} already in results") continue corpus = get_time_series(default_args.data, default_args.dataset) nseries = len(corpus.vocab) default_args.n_token = nseries if args.tracking: from experiment_impact_tracker.compute_tracker import ImpactTracker tracker = ImpactTracker(f"impact/{n_layer}_{d_model}_{batch_size}") tracker.launch_impact_monitor() n_head, d_head = head_repartition_rule(d_model) d_inner = d_model model = MemTransformerLM( nseries, n_layer, n_head, d_model, d_head, d_inner, default_args.dropout, default_args.dropatt, tie_weight=default_args.tied, d_embed=d_model, div_val=default_args.div_val, tie_projs=tie_projs, pre_lnorm=default_args.pre_lnorm, tgt_len=default_args.tgt_len, ext_len=default_args.ext_len, mem_len=default_args.mem_len, cutoffs=cutoffs, same_length=default_args.same_length, clamp_len=default_args.clamp_len, ) initialization_func = partial( weights_init, init="normal", init_range=0.1, init_std=0.02, proj_init_std=0.01, ) model.apply(initialization_func) try: tr_iter = corpus.get_iterator( "train", batch_size, default_args.tgt_len, device=device, ext_len=default_args.ext_len, ) para_model = parallelize_model(model, default_args) optimizers = build_optimizer(para_model, default_args, reload=False) optimizer, optimizer_sparse = optimizers schedulers = build_scheduler(optimizers, default_args) scheduler, scheduler_sparse = schedulers if default_args.cuda and args.fp16: para_model, optimizer = amp.initialize( para_model, optimizer, opt_level=args.fp16, verbosity=0 ) compute, run_time, processed_tokens = benchmark( para_model, optimizers, schedulers ) total_time = time.time() - start_time print("-" * 130) print( f"n_layer {n_layer} d_model {d_model} batch_size {batch_size} fp16 {args.fp16}: " + "{:.4e} FLOs in {:.4e}s for ".format(compute, run_time) + f"{processed_tokens} tokens, " f"total time {total_time}" ) results[str((n_layer, d_model, batch_size))] = ( compute, run_time, processed_tokens, compute / run_time, ) except RuntimeError as e: print("-" * 100) total_time = time.time() - start_time print( f"n_layer {n_layer} d_model {d_model} batch_size {batch_size} fp16 {args.fp16}: OOM error, " f"total time {total_time}" ) results[str((n_layer, d_model, batch_size))] = None finally: # Handle CUDA OOM Error Safely try: del model del para_model del optimizer del scheduler gc.collect() torch.cuda.empty_cache() except NameError: pass with open(f"compute_grid_results_{args.fp16}.json", "w") as f: json.dump(results, f, indent=2)
from tests.test_helper import * from braintree.test.credit_card_numbers import CreditCardNumbers class TestDisputeSearch(unittest.TestCase): def create_sample_disputed_transaction(self): customer = Customer.create({ "first_name": "Jen", "last_name": "Smith", "company": "Braintree", "email": "jen@example.com", "phone": "312.555.1234", "fax": "614.555.5678", "website": "www.example.com", }).customer return Transaction.sale({ "amount": "100.00", "credit_card": { "number": CreditCardNumbers.Disputes.Chargeback, "expiration_date": "12/2019", }, "customer_id": customer.id, "merchant_account_id": "14LaddersLLC_instant", "options": { "submit_for_settlement": True, }, }).transaction def test_advanced_search_no_results(self): collection = Dispute.search([ DisputeSearch.id == "non_existent_dispute" ]) disputes = [dispute for dispute in collection.disputes.items] self.assertEquals(0, len(disputes)) def test_advanced_search_returns_single_dispute_by_customer_id(self): transaction = self.create_sample_disputed_transaction() collection = Dispute.search([ DisputeSearch.customer_id == transaction.customer_details.id ]) disputes = [dispute for dispute in collection.disputes.items] self.assertEquals(1, len(disputes)) dispute = disputes[0] self.assertEquals(dispute.id, transaction.disputes[0].id) self.assertEquals(dispute.status, Dispute.Status.Open) def test_advanced_search_returns_single_dispute_by_id(self): collection = Dispute.search([ DisputeSearch.id == "open_dispute" ]) disputes = [dispute for dispute in collection.disputes.items] self.assertEquals(1, len(disputes)) dispute = disputes[0] self.assertEquals(dispute.id, "open_dispute") self.assertEquals(dispute.status, Dispute.Status.Open) def test_advanced_search_returns_disputes_by_multiple_reasons(self): collection = Dispute.search([ DisputeSearch.reason.in_list([ braintree.Dispute.Reason.ProductUnsatisfactory, braintree.Dispute.Reason.Retrieval ]) ]) disputes = [dispute for dispute in collection.disputes.items] self.assertGreaterEqual(len(disputes), 2) def test_advanced_search_returns_disputes_by_chargeback_protection_level(self): collection = Dispute.search([ DisputeSearch.chargeback_protection_level.in_list([ braintree.Dispute.ChargebackProtectionLevel.Effortless, ]) ]) disputes = [dispute for dispute in collection.disputes.items] self.assertEqual(len(disputes), 1) self.assertEqual(disputes[0].case_number, "CASE-CHARGEBACK-PROTECTED") self.assertEqual(disputes[0].reason, braintree.Dispute.Reason.Fraud) self.assertEqual(disputes[0].chargeback_protection_level, braintree.Dispute.ChargebackProtectionLevel.Effortless) def test_advanced_search_returns_disputes_by_date_range(self): collection = Dispute.search([ DisputeSearch.received_date.between("03/03/2014", "03/05/2014") ]) disputes = [dispute for dispute in collection.disputes.items] self.assertGreaterEqual(len(disputes), 1) self.assertEquals(disputes[0].received_date, date(2014, 3, 4)) def test_advanced_search_returns_disputes_by_disbursement_date_range(self): transaction = self.create_sample_disputed_transaction() disbursement_date = transaction.disputes[0].status_history[0].disbursement_date collection = Dispute.search([ DisputeSearch.disbursement_date.between(disbursement_date, disbursement_date) ]) disputes = [dispute for dispute in collection.disputes.items] self.assertGreaterEqual(len(disputes), 1) self.assertEquals(disputes[0].status_history[0].disbursement_date, disbursement_date) def test_advanced_search_returns_disputes_by_effective_date_range(self): transaction = self.create_sample_disputed_transaction() effective_date = transaction.disputes[0].status_history[0].effective_date collection = Dispute.search([ DisputeSearch.effective_date.between(effective_date, effective_date) ]) disputes = [dispute for dispute in collection.disputes.items] self.assertGreaterEqual(len(disputes), 1) self.assertEquals(disputes[0].status_history[0].effective_date, effective_date) def test_advanced_search_returns_disputes_by_amount_and_status(self): collection = Dispute.search([ DisputeSearch.amount_disputed.between("1.00", "100.00"), DisputeSearch.id == "open_dispute" ]) disputes = [dispute for dispute in collection.disputes.items] self.assertEquals(1, len(disputes)) def test_advanced_search_can_take_one_criteria(self): collection = Dispute.search( DisputeSearch.id == "non_existent_dispute" ) disputes = [dispute for dispute in collection.disputes.items] self.assertEquals(0, len(disputes))
"""Root resources.""" import flask from dnstwister import app from dnstwister import cache @cache.memoize(86400) @app.route(r'/favicon.ico') def favicon(): """Favicon (because some clients don't read the link tag).""" return flask.send_from_directory(app.static_folder, flask.request.path[1:])
import json import logging import os import subprocess import boto3 import json from botocore.exceptions import ClientError logger = logging.getLogger() logger.setLevel(logging.INFO) repo = os.environ.get('REPOSITORY_URI') mount_target = os.environ.get('MOUNT_TARGET', '/mnt/efsmount') sync_path = os.environ.get('SYNC_PATH') github_secret_id = os.environ.get('GITHUB_SECRET_ID') github_secret_key = os.environ.get('GITHUB_SECRET_KEY') def get_secret_value(id, key): session = boto3.session.Session() client = session.client( service_name='secretsmanager' ) try: json_secret_value = json.loads(client.get_secret_value(SecretId=id).get('SecretString')) except ClientError as e: print(e.response['Error']['Code']) return None return json_secret_value.get(key) if github_secret_id and github_secret_key and repo.startswith('https://'): github_oauth_token = get_secret_value(github_secret_id, github_secret_key) repo = 'https://{}@{}'.format(github_oauth_token, repo[8:]) def on_event(event, context): print(event) request_type = event['RequestType'] if request_type == 'Create': return on_create(event) if request_type == 'Update': return on_update(event) if request_type == 'Delete': return on_delete(event) raise Exception("Invalid request type: %s" % request_type) def on_create(event): props = event["ResourceProperties"] print("create new resource with props %s" % props) # add your create code here... # physical_id = ... sync(repo, mount_target) ok_result = {'status': 'ok'} return { 'Data': ok_result } # return { 'PhysicalResourceId': physical_id } def on_update(event): physical_id = event["PhysicalResourceId"] props = event["ResourceProperties"] print("update resource %s with props %s" % (physical_id, props)) # ... def on_delete(event): physical_id = event["PhysicalResourceId"] print("delete resource %s" % physical_id) # ... def sync(repo, target_path): full_path = '{}{}'.format(mount_target, sync_path) if sync_path == '/': # delete all contents from root directory, but not root directory itself os.chdir(full_path) subprocess.check_call('rm -rf {}*'.format(full_path), shell=True) else: subprocess.check_call([ 'rm', '-rf', full_path ]) subprocess.check_call([ 'git', 'clone', repo, full_path ])
#!/usr/bin/env python3 # coding: utf8 # Author: Lenz Furrer, 2018--2019 ''' Postfilters for removing nested annotations. ''' from collections import defaultdict from typing import Sequence, Iterator from ..doc import document def remove_overlaps(content: document.Exporter) -> None: ''' Remove annotations that partially overlap with another one. Of any cluster of overlapping spans, only the longest one(s) are kept. Ties are not broken. Ignores entity type. ''' _rm_any_overlaps(content, sametype=False, sub=False) def remove_sametype_overlaps(content: document.Exporter) -> None: ''' Remove same-type annotations that partially overlap with another one. Overlapping entities of different type are kept. ''' _rm_any_overlaps(content, sametype=True, sub=False) def remove_submatches(content: document.Exporter) -> None: ''' Remove annotations that are contained in another one. Unlike `remove_overlaps()`, only true subsequences are removed. Consider the following annotation spans: |--------------| (1) |--------| (2) |-----| (3) This function removes only annotation (2), whereas `remove_overlaps` removes (2) and (3). ''' _rm_any_overlaps(content, sametype=False, sub=True) def remove_sametype_submatches(content: document.Exporter) -> None: ''' Remove same-type annotations that are contained in another one. ''' _rm_any_overlaps(content, sametype=True, sub=True) def _rm_any_overlaps(content: document.Exporter, sametype: bool, sub: bool): if sametype: filter_ = _rm_sametype_overlaps else: filter_ = lambda e, s: list(_rm_overlapping(e, s)) for sentence in content.get_subelements(document.Sentence): sentence.entities = filter_(sentence.entities, sub) def _rm_sametype_overlaps(entities, sub): # Divide the entities into subsets by entity type. entity_types = defaultdict(list) for e in entities: entity_types[e.type].append(e) # Remove the submatches from each subset. filtered = [] for e in entity_types.values(): filtered.extend(_rm_overlapping(e, sub)) filtered.sort(key=document.Entity.sort_key) return filtered def _rm_overlapping(entities: Sequence[document.Entity], sub: bool) -> Iterator[document.Entity]: ''' Filter out annotations that overlap with others. ''' # Get the indices of all removables. filter_ = _submatches if sub else _crossmatches removables = set(filter_(entities)) # Create a new, filtered list. return (e for i, e in enumerate(entities) if i not in removables) def _submatches(entities): ''' Identify all entities that are found within another entity. ''' # Since the entities are sorted by offsets, only one reference is # needed for comparison. # However, runs of equal offsets might need to be excluded together -- # when followed by a later entity which contains them all. ref_is, ref_entity = [], None for i, entity in enumerate(entities): if i: # skip comparison in the first iteration (no reference yet) if _contains(ref_entity, entity): yield i continue # keep the previous reference elif _contains(entity, ref_entity): yield from ref_is elif _equals(entity, ref_entity): # If the next entity will contain this one, then the previous # needs to be excluded as well. ref_is.append(i) continue # keep the previous reference # If the current entity was not contained in the reference, then its # end offset is greater or equal to that of the reference. # Since the start offset of any future entity will not be lower than # the current one, we can safely update the reference. ref_is, ref_entity = [i], entity def _contains(a, b): ''' Return True if a contains b, False otherwise. ''' return ((a.start <= b.start and a.end > b.end) or (a.start < b.start and a.end >= b.end)) def _equals(a, b): ''' Return True if a's and b's offsets are the same. ''' return a.start == b.start and a.end == b.end def _crossmatches(entities): ''' Identify partially overlapping entities to be excluded. ''' for cluster in _clusters(entities): longest = max(l for _, l in cluster) for i, l in cluster: if l != longest: yield i def _clusters(entities): cluster = [] current_end = 0 for i, e in enumerate(entities): if e.start >= current_end: if len(cluster) > 1: yield cluster cluster.clear() current_end = max(current_end, e.end) cluster.append((i, e.end-e.start)) if len(cluster) > 1: yield cluster
import logging import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, game, args): # game params self.board_x, self.board_y = game.getBoardSize() self.action_size = game.getActionSize() self.args = args # nnet params layers = args.layers self.layers = layers assert layers > 2 self.shrink = 2 * (self.layers - 2) logging.info(f"Creating NN with {layers} layers 🧮") self.conv = [] self.batchnorm = [] self.fc = [] self.fcbn = [] super(Model, self).__init__() self._setup() def _setup(self): # Create Conv layers in_channels = 1 kernel_size = int(float(min(self.board_x, self.board_y)) / self.layers) # if kernel_size < 3: kernel_size = 3 paddings = [0] * self.layers paddings[0] = 1 paddings[1] = 1 for i in range(self.layers): conv = nn.Conv2d(in_channels, self.args.num_channels, kernel_size, stride=1, padding=paddings[i]) self.add_module(f'conv{i}', conv) self.conv.append(conv) in_channels = self.args.num_channels # Prepare Batch Normalization for i in range(self.layers): bn = nn.BatchNorm2d(self.args.num_channels) self.batchnorm.append(bn) self.add_module(f'batchnorm{i}', bn) # Prepare features in_features = self.args.num_channels * (self.board_x - self.shrink) * (self.board_y - self.shrink) if in_features <= 0: logging.error("Too many layers considering the board size.") raise ValueError out_features = 256 * 2 ** (self.layers - 2) for i in range(self.layers - 2): out_features = int(out_features / 2.0) # needs to be unchanged same outside of the loop max_features = min(out_features, 256) logging.warning(f"Creating a feature with out_features: {out_features}") linear = nn.Linear(in_features, max_features) self.fc.append(linear) self.add_module(f'fc{i}', linear) bn = nn.BatchNorm1d(max_features) self.fcbn.append(bn) self.add_module(f'batchnorm1d{i}', bn) in_features = max_features self.fc_pi = nn.Linear(out_features, self.action_size) self.fc_v = nn.Linear(out_features, 1) def forward(self, s: torch.Tensor): s = s.view(-1, 1, self.board_x, self.board_y) for i in range(self.layers): s = F.relu(self.batchnorm[i](self.conv[i](s))) size = self.args.num_channels * (self.board_x - self.shrink) * (self.board_y - self.shrink) s = s.view(-1, size) for i in range(self.layers - 2): s = F.dropout(F.relu(self.fcbn[i](self.fc[i](s))), p=self.args.dropout, training=self.training) pi = self.fc_pi(s) v = self.fc_v(s) return F.log_softmax(pi, dim=1), torch.tanh(v)
class MemberDescriptor(object): """ Represents a class member,such as a property or event. This is an abstract base class. """ def CreateAttributeCollection(self,*args): """ CreateAttributeCollection(self: MemberDescriptor) -> AttributeCollection Creates a collection of attributes using the array of attributes passed to the constructor. Returns: A new System.ComponentModel.AttributeCollection that contains the System.ComponentModel.MemberDescriptor.AttributeArray attributes. """ pass def Equals(self,obj): """ Equals(self: MemberDescriptor,obj: object) -> bool Compares this instance to the given object to see if they are equivalent. obj: The object to compare to the current instance. Returns: true if equivalent; otherwise,false. """ pass def FillAttributes(self,*args): """ FillAttributes(self: MemberDescriptor,attributeList: IList) When overridden in a derived class,adds the attributes of the inheriting class to the specified list of attributes in the parent class. attributeList: An System.Collections.IList that lists the attributes in the parent class. Initially,this is empty. """ pass def FindMethod(self,*args): """ FindMethod(componentClass: Type,name: str,args: Array[Type],returnType: Type,publicOnly: bool) -> MethodInfo Finds the given method through reflection,with an option to search only public methods. componentClass: The component that contains the method. name: The name of the method to find. args: An array of parameters for the method,used to choose between overloaded methods. returnType: The type to return for the method. publicOnly: Whether to restrict search to public methods. Returns: A System.Reflection.MethodInfo that represents the method,or null if the method is not found. FindMethod(componentClass: Type,name: str,args: Array[Type],returnType: Type) -> MethodInfo Finds the given method through reflection,searching only for public methods. componentClass: The component that contains the method. name: The name of the method to find. args: An array of parameters for the method,used to choose between overloaded methods. returnType: The type to return for the method. Returns: A System.Reflection.MethodInfo that represents the method,or null if the method is not found. """ pass def GetHashCode(self): """ GetHashCode(self: MemberDescriptor) -> int Returns the hash code for this instance. Returns: A hash code for the current System.ComponentModel.MemberDescriptor. """ pass def GetInvocationTarget(self,*args): """ GetInvocationTarget(self: MemberDescriptor,type: Type,instance: object) -> object Retrieves the object that should be used during invocation of members. type: The System.Type of the invocation target. instance: The potential invocation target. Returns: The object to be used during member invocations. """ pass def GetInvokee(self,*args): """ GetInvokee(componentClass: Type,component: object) -> object Gets the component on which to invoke a method. componentClass: A System.Type representing the type of component this System.ComponentModel.MemberDescriptor is bound to. For example,if this System.ComponentModel.MemberDescriptor describes a property,this parameter should be the class that the property is declared on. component: An instance of the object to call. Returns: An instance of the component to invoke. This method returns a visual designer when the property is attached to a visual designer. """ pass def GetSite(self,*args): """ GetSite(component: object) -> ISite Gets a component site for the given component. component: The component for which you want to find a site. Returns: The site of the component,or null if a site does not exist. """ pass def __eq__(self,*args): """ x.__eq__(y) <==> x==y """ pass @staticmethod def __new__(self,*args): #cannot find CLR constructor """ __new__(cls: type,name: str) __new__(cls: type,name: str,attributes: Array[Attribute]) __new__(cls: type,descr: MemberDescriptor) __new__(cls: type,oldMemberDescriptor: MemberDescriptor,newAttributes: Array[Attribute]) """ pass def __ne__(self,*args): pass AttributeArray=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets or sets an array of attributes. """ Attributes=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the collection of attributes for this member. Get: Attributes(self: MemberDescriptor) -> AttributeCollection """ Category=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the name of the category to which the member belongs,as specified in the System.ComponentModel.CategoryAttribute. Get: Category(self: MemberDescriptor) -> str """ Description=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the description of the member,as specified in the System.ComponentModel.DescriptionAttribute. Get: Description(self: MemberDescriptor) -> str """ DesignTimeOnly=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets whether this member should be set only at design time,as specified in the System.ComponentModel.DesignOnlyAttribute. Get: DesignTimeOnly(self: MemberDescriptor) -> bool """ DisplayName=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the name that can be displayed in a window,such as a Properties window. Get: DisplayName(self: MemberDescriptor) -> str """ IsBrowsable=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets a value indicating whether the member is browsable,as specified in the System.ComponentModel.BrowsableAttribute. Get: IsBrowsable(self: MemberDescriptor) -> bool """ Name=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the name of the member. Get: Name(self: MemberDescriptor) -> str """ NameHashCode=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the hash code for the name of the member,as specified in System.String.GetHashCode. """
"""Retrieving current Top news stories This module gets up to date current Top news stories through an API supplied by "newsapi.org". It formats the information as an news story to be use as a notification and an announcement in the alarm and its interface """ import json import logging import requests from flask import Markup from CA3_code_package import global_vars logging.basicConfig(filename='sys.log', format='%(asctime)s - %(levelname)s - %(message)s', datefmt='%d-%b-%y %H:%M:%S', level=logging.INFO) def get_news() -> list or None: """Retrieves parameters defined in config.json, filters and formats weather data for the alarm. It retrieves a user-defined JSON file through a URL containing the newsapi link, the specific country/region for the news data, as well as an API key given by newsapi.org. This data is applied accordingly to a dictionary type with the keys: title, content and announcement to notify users clearly of top news stories in the country. This dictionary is added to a list of current notifications to be displayed and/or voiced. """ news_list = [] base_url = "https://newsapi.org/v2/top-headlines?" # Validating and Retrieving a country and an API key from config.json for the news json file with open('config.json', 'r') as config_file: api_config = json.load(config_file) news_config = api_config['news_api'] api_key = news_config['api_key'] country = news_config['country'] # forming complete URL containing a news json file from user-defined components complete_url = base_url + "country=" + country + "&apiKey=" + api_key # Retrieve and validates news JSON file response = requests.get(complete_url) if response.status_code == 200: try: articles = response.json()["articles"] except KeyError as excep: logging.error("JSON file cannot be retrieved as invalid URL or API key %s", excep) return None for article in articles: # filters articles that contain covid or coronavirus in the title if "covid" in article["title"].lower() or "coronavirus" in article["title"].lower(): check_news_list = [{"title": article["title"], "content": Markup("<a href=" + article["url"] + ">" + article["url"] + "<a>")}] # Checks if article has not already been a notification if check_news_list not in global_vars.old_notifs: # Creates dictionary to be added to notif list with article title and its link news_list.append({"title": article["title"], "content": Markup("<a href=" + article["url"] + ">" + article["url"] + "<a>")}) break return news_list
import time import requests from multiprocessing import Process, Queue from datetime import timedelta import mailSender # Types of indicators indicatorsTypes = {'MAX': 'maxTime', 'AVG': 'avgTime', 'AVA': 'availability', 'STA' : 'status'} def startMonitor(user, queueTwoMin, queueTenMin, queueHour, queueAlerts, queueTermination, testDic = None): """ Simple init of the class, for intelligibility. Starting all sub processes :param user: :param queueTwoMin: :param queueTenMin: :param queueHour: :param queueAlerts: :param queueTermination: :param testDic: :return: """ Monitor(user, queueTwoMin, queueTenMin, queueHour, queueAlerts, queueTermination, testDic = testDic) class Monitor(object): """ Class that handles all the monitoring Subprocess are created for each monitored website, to handle different check intervals """ def __init__(self, user, queueTwoMin, queueTenMin, queueHour, queueAlerts, queueTermination, testDic = None): """ Init, calls at the end the monitor all functin that starts the processes :param user: :param queueTwoMin: :param queueTenMin: :param queueHour: :param queueAlerts: :param queueTermination: :param testDic: """ # Start Time, keep track of the elapsed time self.originalTime = time.time() # User that uses the monitoring app, must exist ! self.user = user # Queue to transmit all data self.queueTwoMin = queueTwoMin self.queueTenMin = queueTenMin self.queueHour = queueHour self.queueAlerts = queueAlerts # Queue for termination self.queueTermination = queueTermination # Alert Storage, to check whether raised alert are to be sent self.alertsDic = {} if testDic: self.alertsDic = testDic self.mailer = mailSender.MailSender(mailSender.mailrecipient) # Start monitoring self.monitorAll() def monitorAll(self): """ Starts all subprocesses for each website :return: """ websites = self.user.mySites.values() # subprocesses to get the requests logs self.processes = [Process(target=self.monitorOne, args=(website,)) for website in websites] for process in self.processes: process.daemon = True for process in self.processes: process.start() for process in self.processes: process.join() return def _terminateAll(self): """ Terminate all processes. Need exception handling as it can be called several times :return: """ # Termination of all processes try : for process in self.processes: process.terminate() except AttributeError: pass return def monitorOne(self,website): """ Monitoring for each website :param website: :return: """ checkInterval = website.checkInterval time.sleep(checkInterval) while self\ .queueTermination.empty(): startSubProcess = time.time() # todo define timeout for requests try : req = requests.get(website.url, timeout=checkInterval) reqCode = req.status_code reqTime = req.elapsed # Generic to handle all kind of http exceptions # Possible enhancement except Exception: continue # unix epoch time good for comparison currentTime = time.time() website.log[currentTime] = {'code': reqCode, 'responseTime': reqTime} # 2 mins twoMinsDic = self.getTimeframedData(website, 120, currentTime=currentTime) self.queueTwoMin.put(twoMinsDic) # 10 mins tenMinsDic = self.getTimeframedData(website, 600, currentTime=currentTime) self.queueTenMin.put(tenMinsDic) # 1 hour hourDic = self.getTimeframedData(website, 3600, currentTime=currentTime) self.queueHour.put(hourDic) endSubProcess = time.time() # Wait for the next check try: time.sleep(checkInterval-(endSubProcess-startSubProcess)) except ValueError: pass # Terminate all processes self._terminateAll() return # todo suppress old logs def getTimeframedData(self, website, timeframe, currentTime=time.time()): """ Get all data for a given timeframe, If the timeframe is 2min checks for alerts :param website: :param timeframe: :param currentTime: :return: """ timeList = list(website.log.keys()) # inside the dic from most recent to most ancient # reverse order # list of time of requests inFrame = [] # getting the times within the timeframe for listind in range(len(timeList)): if (currentTime-timeList[len(timeList)-1-listind] <= timeframe): inFrame.append(timeList[len(timeList)-1-listind]) # Indicators # Max maxTime = self.computeMaxResponseTime(website, inFrame) # Avg avgTime = self.computeAvgResponsetime(website, inFrame) # Availability availability = self.computeAvailability(website, inFrame) # Status status = self.computeStatus(website, currentTime) # Alert checking with 120 timeframe if (timeframe == 120): self.checkForIsDownAlert(website= website, availability= availability) self.checkForIsUpAlert(website=website, availability=availability) return {'website': website, 'frame': timeframe,'time': currentTime, 'indicators': {'maxTime': maxTime, 'avgTime': avgTime, 'availability': availability, 'status': status}} def computeMaxResponseTime(self, website, inFrame): """ Indicator n1 :param website: :param inFrame: :return: """ maxTime = 0 for timeOfReq in inFrame: if website.log[timeOfReq]['responseTime'] > timedelta(seconds=maxTime): maxTime = self.timedeltaToFloat(website.log[timeOfReq]['responseTime']) return maxTime def computeAvgResponsetime(self,website, inFrame): """ Indicator n2 :param website: :param inFrame: :return: """ avgTime = 0 for timeOfReq in inFrame: avgTime += self.timedeltaToFloat(website.log[timeOfReq]['responseTime']) avgTime = avgTime / len(inFrame) return avgTime def computeAvailability(self, website, inFrame): """ Indicator n3 :param website: :param inFrame: :return: """ availability = 0 for timeReq in inFrame: # All 2XX response codes if website.log[timeReq]['code'] // 100 == 2: availability += 1 availability = availability / len(inFrame) return availability def computeStatus(self, website, time): """ Indicator n4, last response status :param website: :param time: :return: """ return website.log[time]['code'] def checkForIsDownAlert(self, website, availability): """ Check for a isDown Alert. :param website: :param availability: :return: """ checkTime = time.time() # Verify that the system has been running for longer than 2 minutes if (checkTime-self.originalTime >= 120): if availability < 0.8: # website already alerted, check if the alert is gone -> value : None if website.name in self.alertsDic: if not self.alertsDic[website.name]: alert = {'website': website.name, 'time': time.time(), 'availability': availability, 'status': 'DOWN'} self.alertsDic[website.name] = alert self.mailer.sendAlert(alert) self.queueAlerts.put(alert) # no alert for this website before, no check else : alert = {'website': website.name, 'time': time.time(), 'availability': availability, 'status': 'DOWN'} self.alertsDic[website.name] = alert self.mailer.sendAlert(alert) self.queueAlerts.put(alert) return def checkForIsUpAlert(self, website, availability): """ Check for is up Alert :param website: :param availability: :return: """ checkTime = time.time() # Verify that the system has been running for longer than 2 minutes if (checkTime - self.originalTime >= 120): # Verify that the system has been alerted by the site if website.name in self.alertsDic: # Verify that the UP alert wasn't already sent if self.alertsDic[website.name]: if availability > 0.8 : alert = {'website': website.name, 'time': time.time(), 'availability': availability, 'status': 'UP'} self.alertsDic[website.name] = None self.mailer.sendAlert(alert) self.queueAlerts.put(alert) return def timedeltaToFloat(self,time_d): """ Transforms a time delta type to a float, for readability on the display Note that only minutes are considered, because I assume that response times won't exceed an hour :param time_d: :return: """ time_d_min = time_d / timedelta(minutes=1) time_d_s = time_d / timedelta(seconds=1) time_d_ms = time_d / timedelta(milliseconds=1) return (time_d_min * 60 + time_d_s + time_d_ms * 0.001)
import datetime from urllib.parse import urljoin from pathlib import Path import requests from twstock import stock # example fetch url # https://www.twse.com.tw/exchangeReport/MI_INDEX?response=html&date=20200327&type=ALL class MyFetcher(stock.BaseFetcher): REPORT_URL = urljoin(stock.TWSE_BASE_URL, 'exchangeReport/MI_INDEX') def fetch_daily(self, response_type: str='html', type: str='ALL'): current_date = datetime.date.today() params = {'response': response_type, 'date': current_date.strftime('%Y%m%d'), 'type': type} for _ in range(5): try: r = requests.get(self.REPORT_URL, params=params) except requests.exceptions.RequestException as e: print("Get {url} failed: {error}".format(self.REPORT_URL, e)) continue else: data = r.content break if data != '': try: save_path = current_date.strftime('%Y%m') print(save_path) if not Path(save_path).exists(): Path(save_path).mkdir(parents=True,exist_ok=True) with open('{}/DailyReport_{}.html'.format(save_path, current_date.strftime('%Y%m%d')), 'wb') as f: f.write(data) except EnvironmentError as e: print(e) if __name__ == "__main__": fetcher = MyFetcher() fetcher.fetch_daily()
#!/usr/bin/env python # -*- encoding: utf-8 -*- from . import Request from pygithub3.resources.users import User class List(Request): uri = 'repos/{user}/{repo}/collaborators' resource = User class Is_collaborator(Request): uri = 'repos/{user}/{repo}/collaborators/{collaborator}' class Add(Request): uri = 'repos/{user}/{repo}/collaborators/{collaborator}' class Delete(Request): uri = 'repos/{user}/{repo}/collaborators/{collaborator}'
''' Author: ZHAO Zinan Created: 26. April 2019 357. Count Numbers with Unique Digits ''' class Solution: def countNumbersWithUniqueDigits(self, n: int) -> int: if n > 10: return 0 digit = [9, 9, 8, 7, 6, 5, 4, 3, 2, 1] answer = 1 product = 1 for i in range(n): product *= digit[i] answer += product return answer
from datetime import datetime, timedelta import pandas as pd from specusticc.configs_init.model.preprocessor_config import ( PreprocessorConfig, DateRange, ) from specusticc.data_loading.loaded_data import LoadedData from specusticc.data_preprocessing.data_set import DataSet from specusticc.data_preprocessing.input_data_preprocessor import InputDataPreprocessor from specusticc.data_preprocessing.output_data_preprocessor import ( OutputDataPreprocessor, ) from specusticc.data_preprocessing.preprocessed_data import PreprocessedData class DataPreprocessor: def __init__(self, config: PreprocessorConfig): self.config = config self.input: {} self.output: {} self.context: {} self.input_df: pd.DataFrame self.output_df: pd.DataFrame self.context_df: pd.DataFrame self.preprocessed_data: PreprocessedData = PreprocessedData() def get_data(self) -> PreprocessedData: return self.preprocessed_data def preprocess_data(self, data: LoadedData): self.input = data.input self.output = data.output self.context = data.context self._limit_columns() self._merge_data_dicts() self._filter_by_dates() self._limit_context_dates_by_input_dates() self._reshape_data_to_neural_network() def _limit_columns(self): for ticker, df in self.input.items(): self.input[ticker] = df[self.config.input_columns] for ticker, df in self.output.items(): self.output[ticker] = df[self.config.output_columns] for ticker, df in self.context.items(): self.context[ticker] = df[self.config.context_columns] def _merge_data_dicts(self): self.input_df = self._dict_to_merged_dataframe(self.input) self.output_df = self._dict_to_merged_dataframe(self.output) self.context_df = self._dict_to_merged_dataframe(self.context) @staticmethod def _dict_to_merged_dataframe(data: dict) -> pd.DataFrame: unified_df = pd.DataFrame(columns=["date"]) for ticker, df in data.items(): df.columns = [ ticker + "_" + str(col) for col in df.columns if col != "date" ] + ["date"] unified_df = unified_df.merge( df, left_on="date", right_on="date", how="outer" ) unified_df = ( unified_df.sort_values(by=["date"]) .interpolate() .fillna(1.0) .reset_index(drop=True) ) return unified_df def _filter_by_dates(self): self.train_ioc = { "input": _filter_history_by_dates(self.input_df, self.config.train_date), "output": _filter_history_by_dates(self.output_df, self.config.train_date), "context": _filter_history_by_dates( self.context_df, self.config.train_date ), } self.test_iocs = [] for date_range in self.config.test_dates: test_ioc = { "input": _filter_history_by_dates(self.input_df, date_range), "output": _filter_history_by_dates(self.output_df, date_range), "context": _filter_history_by_dates(self.context_df, date_range), } self.test_iocs.append(test_ioc) def _limit_context_dates_by_input_dates(self): self.train_ioc["context"] = self.train_ioc["context"][ self.train_ioc["context"]["date"].isin(self.train_ioc["input"]["date"]) ] for test_ioc in self.test_iocs: test_ioc["context"] = test_ioc["context"][ test_ioc["context"]["date"].isin(test_ioc["input"]["date"]) ] def _reshape_data_to_neural_network(self): ph = self.preprocessed_data data2i = InputDataPreprocessor(self.config) data2o = OutputDataPreprocessor(self.config) data_set = DataSet() data_set.input = data2i.transform_input(self.train_ioc["input"]) data_set.context = data2i.transform_input(self.train_ioc["context"]) ( data_set.output, data_set.output_scaler, data_set.output_columns, data_set.output_dates, ) = data2o.transform_output(self.train_ioc["output"]) ph.train_set = data_set for test_ioc in self.test_iocs: data_set = DataSet() data_set.input = data2i.transform_input(test_ioc["input"]) data_set.context = data2i.transform_input(test_ioc["context"]) ( data_set.output, data_set.output_scaler, data_set.output_columns, data_set.output_dates, ) = data2o.transform_output(test_ioc["output"]) ph.test_sets.append(data_set) self.preprocessed_data = ph def _filter_history_by_dates(df: pd.DataFrame, dates: DateRange) -> pd.DataFrame: if dates is None: return df from_date = dates.from_date to_date = dates.to_date first_available_date = df.iloc[0].date last_available_date = df.iloc[-1].date if from_date < first_available_date: from_index = 0 else: from_index = _get_closest_date_index(df, from_date) if to_date > last_available_date: to_index = -1 else: to_index = _get_closest_date_index(df, to_date) filtered = df.iloc[from_index:to_index] return filtered def _get_closest_date_index(df: pd.DataFrame, date: datetime) -> int: closest_index = None while closest_index is None: try: closest_index = df.index[df["date"] == date][0] except Exception: pass date = date - timedelta(days=1) return closest_index
""" A jade extension that embed jade markup in the .html file {% jade %} {% endjade %} """ import re import pyjade from jinja2.ext import Extension from pyjade.utils import process from pyjade.ext.jinja import Compiler from jinja2 import (TemplateSyntaxError, nodes) begin_tag_rx = r'\{%\-?\s*jade.*?%\}' end_tag_rx = r'\{%\-?\s*endjade\s*\-?%\}' begin_tag_m = re.compile(begin_tag_rx) end_tag_m = re.compile(end_tag_rx) def convert(text, filename=None): return process(text, filename=filename, compiler=Compiler) class TemplateIndentationError(TemplateSyntaxError): pass class JadeTagExtension(Extension): tags = set(['jade']) def _get_lineno(self, source): matches = re.finditer(r"\n", source) if matches: return len(tuple(matches)) return 0 def preprocess(self, source, name, filename=None): ret_source = '' start_pos = 0 while True: tag_match = begin_tag_m.search(source, start_pos) if tag_match: end_tag = end_tag_m.search(source, tag_match.end()) if not end_tag: raise TemplateSyntaxError('Expecting "endjade" tag', self._get_lineno(source[:start_pos])) jade_source = source[tag_match.end(): end_tag.start()] jade_source = convert(jade_source) try: ret_source += source[start_pos: tag_match.start()] + jade_source except TemplateIndentationError as e: raise TemplateSyntaxError(e.message, e.lineno, name=name, filename=filename) except TemplateSyntaxError as e: raise TemplateSyntaxError(e.message, e.lineno, name=name, filename=filename) start_pos = end_tag.end() else: ret_source += source[start_pos:] break return ret_source
""" Initial migration """ from django.db import migrations, models class Migration(migrations.Migration): """ Initial migration for CCXCon model """ dependencies = [ ] operations = [ migrations.CreateModel( name='CCXCon', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('url', models.URLField(unique=True, db_index=True)), ('oauth_client_id', models.CharField(max_length=255)), ('oauth_client_secret', models.CharField(max_length=255)), ('title', models.CharField(max_length=255)), ], ), ]
# author: kagemeka # created: 2019-11-07 11:52:43(JST) # import collections # import math # import string import bisect import sys # import re # import itertools # import statistics # import functools # import operator def main(): n, m, x, *a = (int(i) for i in sys.stdin.read().split()) th_x = bisect.bisect_left(a, x) cost = min(th_x, m - th_x) print(cost) if __name__ == "__main__": # execute only if run as a script main()
from pylab import * xvalues, yvalues = meshgrid(arange(-5, 5.5, 0.05), arange(-5, 5.5, 0.05)) zvalues = sin(sqrt(xvalues**2 + yvalues**2)) imshow(zvalues) show()
"""Here we got commands with custom callback""" from pathlib import Path from typing import Tuple import bcrypt import typer from passman import config, db from passman.utils import TabulateData def callback() -> None: typer.secho("⚠️ This command requires logging in first.", fg="yellow") name = typer.prompt("Name") password = typer.prompt("Password", hide_input=True) check = bcrypt.checkpw(password.encode("utf-8"), config["password"].encode("utf-8")) if name == config["name"] and check: return True typer.secho("❌ Wrong owner credits were entered, exiting...", fg="red") raise typer.Exit() # All commmands below should require logging in first. # we achieve this by overriding the default callback app = typer.Typer( name="log", callback=callback, no_args_is_help=True, help="A set of commands that require logging in before work" ) @app.command(name="save") def save_password(network: str, email: str, content: str) -> None: """saves user data (network, email, password)""" db.add(network, email, content) typer.secho("✅ Inserted the data successfully.", fg="green") @app.command(name="update") def update_password( user_id: str, credentials: Tuple[str, str, str] = typer.Argument( ..., help="New network name, email and password" ) ): """update any user profile with the given ID credentials argument is used to replace the old data. """ db.update(user_id, *credentials) typer.secho(f"✅ Updated password #{user_id} successfully.", fg="green") @app.command(name="delete") def delete_password( user_id: str = typer.Argument(..., help="ID of the user you want to delete") ) -> None: """delete a row of user data depending on what ID you provide""" db.remove(user_id) typer.secho(f"✅ Deleted password #{user_id} successfully.", fg="green") def return_data() -> None: table = TabulateData() table.set_columns(["id", "network", "email", "content", "saved_at"]) results = db.push("SELECT * FROM passwords;").fetchall() table.set_rows(results) return table.render() @app.command() def show() -> None: """shows user data in a pretty-formatted table""" typer.echo(return_data()) @app.command(name="export") def export_data(path: str) -> None: """extracts all the user data into `passwords.txt` file""" try: with open(f"{Path.home()}/{path}/passwords.txt", "w") as f: f.write(return_data()) typer.secho("✅ Exported all of your passwords successfully.", fg="green") except FileNotFoundError as e: typer.secho(f"❌ Something went wrong: {e}", fg="red")
import os import itertools import io class Utils(): def output_file_path(self, srctotarget_file, targettosrc_file): source_set = set() source_trans = [] for filename in itertools.chain.from_iterable( (srctotarget_file, ['..'], targettosrc_file)): filename_set, filename_trans = os.path.basename(filename).split('.')[:2] source_set.add(filename_set) source_trans.append(filename_trans) source_set.discard('') if len(source_set) > 1: raise RuntimeError output_filename = '.'.join( itertools.chain.from_iterable(([source_set.pop()], source_trans))) return output_filename def cmp_files(self, result, refer, output_object): refer_file = io.open(refer) refer_data = refer_file.read() refer_file.close() try: result_data = output_object.getvalue() except: result_file = io.open(result) result_data = result_file.read() result_file.close() self.assertEqual(result_data, refer_data, result)
from pathlib import Path from datetime import datetime import json import tensorflow as tf import gen VAL2017_FOLDER_PATH = Path("/home/mbernardi/extra/async/ipcv/sem_3/deep_learning/labs/5/val2017") class Case: def __init__(self, model, batch_size, num_batches, num_epochs, optimizer, loss, metrics, gen_params, notes): """ Represents a training trial. Contains a model, all hyperparameters, a description, etc. """ # ID of case self.id = datetime.now().isoformat(timespec="seconds") # Samples per batch self.batch_size = batch_size # Number of batches per epoch self.num_batches = num_batches # Number of epochs self.num_epochs = num_epochs # Optimizer and loss, use Keras objects and not strings self.optimizer = optimizer self.loss = loss # Metrics, list of Keras objects self.metrics = metrics # History of the training, empty for now self.history = [] # Results of each metric evaluation, empty for now self.eval = [] # Parameters of the data generator. Can only contain serializable things self.gen_params = gen_params # Model self.model = model self.model.compile(optimizer=self.optimizer, loss=self.loss, metrics=self.metrics) # Notes self.notes = notes def set_history(self, history): """ Save in this object the result of the history of the fit() of the model. Takes the History object returned by fit() """ self.history = history.history def set_eval(self, evaluation): """ Save in this object the result of the evaluation of the the model. Takes the object returned by evaluate() """ self.eval = dict(zip(self.model.metrics_names, evaluation)) def save_description(self, json_path): """ Saves a JSON with a description of the case. """ # Dictionaries with configuration of layers layers_config = [l.get_config() for l in self.model.layers] # Save summary as string summary = [] self.model.summary(print_fn=lambda x: summary.append(x)) summary = "\n".join(summary) data = { "id": self.id, "batch_size": self.batch_size, "num_batches": self.num_batches, "num_epochs": self.num_epochs, "optimizer": str(self.optimizer.get_config()), "loss": str(self.loss.get_config()), "metrics": [str(m.get_config()) for m in self.metrics], "history": self.history, "eval": self.eval, "gen_params": self.gen_params, "notes": self.notes, "layers_config": layers_config, "model_summary": summary, } with open(json_path, "w") as f: json.dump(data, f) def train_case(case, cases_path): case_path = cases_path / case.id case_path.mkdir(parents=True) checkpoint_path = case_path / "cp.ckpt" # Create a callback that saves the model's weights cp_callback = tf.keras.callbacks.ModelCheckpoint( filepath=checkpoint_path, save_weights_only=True, verbose=1 ) train_dataset = tf.data.Dataset.from_generator( lambda: gen.image_generator( batch_size=case.batch_size, num_batches=case.num_batches, shuffle=True, params=case.gen_params, evaluation=False, ), output_signature=( tf.TensorSpec(shape=(None, None, None, 3), dtype=tf.float32), tf.TensorSpec(shape=(None, None, None, 1), dtype=tf.float32), ) ) val_dataset = tf.data.Dataset.from_generator( lambda: gen.image_generator( batch_size=case.batch_size, num_batches=case.num_batches, shuffle=False, params=case.gen_params, evaluation=False, ), output_signature=( tf.TensorSpec(shape=(None, None, None, 3), dtype=tf.float32), tf.TensorSpec(shape=(None, None, None, 1), dtype=tf.float32), ) ) history = case.model.fit( train_dataset, validation_data=val_dataset, epochs=case.num_epochs, verbose=1, callbacks=[cp_callback], ) case.set_history(history) eval_dataset = tf.data.Dataset.from_generator( lambda: gen.image_generator( batch_size=16, num_batches=10, shuffle=False, params=case.gen_params, evaluation=True, ), output_signature=( tf.TensorSpec(shape=(None, None, None, 3), dtype=tf.float32), tf.TensorSpec(shape=(None, None, None, 1), dtype=tf.float32), ) ) case.set_eval(case.model.evaluate(eval_dataset)) case.model.save(case_path) case.save_description(case_path / "case.json") def simple_fcn(): """ Define a simple FCN model """ # Define model model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D( 8, (3, 3), # dilation_rate=2, activation='relu', padding='same', )) model.add(tf.keras.layers.MaxPooling2D((2, 2), padding="same")) model.add(tf.keras.layers.Conv2D( 8, (3, 3), # dilation_rate=2, activation='relu', padding='same', )) model.add(tf.keras.layers.MaxPooling2D((2, 2), padding="same")) model.add(tf.keras.layers.Conv2D( 8, (3, 3), # dilation_rate=2, activation='relu', padding='same', )) model.add(tf.keras.layers.MaxPooling2D((2, 2), padding="same")) model.add(tf.keras.layers.Conv2D( 8, (3, 3), # dilation_rate=2, activation='relu', padding='same', )) model.add(tf.keras.layers.MaxPooling2D((2, 2), padding="same")) model.add(tf.keras.layers.Conv2DTranspose( 8, (3, 3), strides=2, # dilation_rate=2, activation='sigmoid', padding='same', )) model.add(tf.keras.layers.Conv2DTranspose( 8, (3, 3), strides=2, # dilation_rate=2, activation='sigmoid', padding='same', )) model.add(tf.keras.layers.Conv2DTranspose( 8, (3, 3), strides=2, # dilation_rate=2, activation='sigmoid', padding='same', )) model.add(tf.keras.layers.Conv2DTranspose( 1, (3, 3), strides=2, # dilation_rate=2, activation='sigmoid', padding='same', )) return model def u_net(input_size=(128, 128, 3), n_filters=32, n_classes=3): """ Combine both encoder and decoder blocks according to the U-Net research paper Return the model as output Code taken from https://github.com/VidushiBhatia/U-Net-Implementation """ def encoder_block(inputs, n_filters=32, dropout_prob=0.3, max_pooling=True): """ This block uses multiple convolution layers, max pool, relu activation to create an architecture for learning. Dropout can be added for regularization to prevent overfitting. The block returns the activation values for next layer along with a skip connection which will be used in the decoder """ # Add 2 Conv Layers with relu activation and HeNormal initialization using TensorFlow # Proper initialization prevents from the problem of exploding and vanishing gradients # 'Same' padding will pad the input to conv layer such that the output has the same height and width (hence, is not reduced in size) conv = tf.keras.layers.Conv2D(n_filters, 3, # Kernel size activation='relu', padding='same', kernel_initializer='HeNormal')(inputs) conv = tf.keras.layers.Conv2D(n_filters, 3, # Kernel size activation='relu', padding='same', kernel_initializer='HeNormal')(conv) # Batch Normalization will normalize the output of the last layer based on the batch's mean and standard deviation conv = tf.keras.layers.BatchNormalization()(conv, training=False) # In case of overfitting, dropout will regularize the loss and gradient computation to shrink the influence of weights on output if dropout_prob > 0: conv = tf.keras.layers.Dropout(dropout_prob)(conv) # Pooling reduces the size of the image while keeping the number of channels same # Pooling has been kept as optional as the last encoder layer does not use pooling (hence, makes the encoder block flexible to use) # Below, Max pooling considers the maximum of the input slice for output computation and uses stride of 2 to traverse across input image if max_pooling: next_layer = tf.keras.layers.MaxPooling2D(pool_size = (2,2))(conv) else: next_layer = conv # skip connection (without max pooling) will be input to the decoder layer to prevent information loss during transpose convolutions skip_connection = conv return next_layer, skip_connection def decoder_block(prev_layer_input, skip_layer_input, n_filters=32): """ Decoder Block first uses transpose convolution to upscale the image to a bigger size and then, merges the result with skip layer results from encoder block Adding 2 convolutions with 'same' padding helps further increase the depth of the network for better predictions The function returns the decoded layer output """ # Start with a transpose convolution layer to first increase the size of the image up = tf.keras.layers.Conv2DTranspose( n_filters, (3,3), # Kernel size strides=(2,2), padding='same')(prev_layer_input) # Merge the skip connection from previous block to prevent information loss merge = tf.keras.layers.concatenate([up, skip_layer_input], axis=3) # Add 2 Conv Layers with relu activation and HeNormal initialization for further processing # The parameters for the function are similar to encoder conv = tf.keras.layers.Conv2D(n_filters, 3, # Kernel size activation='relu', padding='same', kernel_initializer='HeNormal')(merge) conv = tf.keras.layers.Conv2D(n_filters, 3, # Kernel size activation='relu', padding='same', kernel_initializer='HeNormal')(conv) return conv # Input size represent the size of 1 image (the size used for pre-processing) inputs = tf.keras.layers.Input(input_size) # Encoder includes multiple convolutional mini blocks with different maxpooling, dropout and filter parameters # Observe that the filters are increasing as we go deeper into the network which will increasse the # channels of the image cblock1 = encoder_block(inputs, n_filters,dropout_prob=0, max_pooling=True) cblock2 = encoder_block(cblock1[0],n_filters*2,dropout_prob=0, max_pooling=True) cblock3 = encoder_block(cblock2[0], n_filters*4,dropout_prob=0, max_pooling=True) cblock4 = encoder_block(cblock3[0], n_filters*8,dropout_prob=0.3, max_pooling=True) cblock5 = encoder_block(cblock4[0], n_filters*16, dropout_prob=0.3, max_pooling=False) # Decoder includes multiple mini blocks with decreasing number of filters # Observe the skip connections from the encoder are given as input to the decoder # Recall the 2nd output of encoder block was skip connection, hence cblockn[1] is used ublock6 = decoder_block(cblock5[0], cblock4[1], n_filters * 8) ublock7 = decoder_block(ublock6, cblock3[1], n_filters * 4) ublock8 = decoder_block(ublock7, cblock2[1], n_filters * 2) ublock9 = decoder_block(ublock8, cblock1[1], n_filters) # Complete the model with 1 3x3 convolution layer (Same as the prev Conv Layers) # Followed by a 1x1 Conv layer to get the image to the desired size. # Observe the number of channels will be equal to number of output classes conv9 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(ublock9) conv10 = tf.keras.layers.Conv2D(n_classes, 1, activation='sigmoid', padding='same')(conv9) # Define the model model = tf.keras.Model(inputs=inputs, outputs=conv10) return model def train(cases_path): import tensorflow as tf metrics = [ tf.keras.metrics.BinaryCrossentropy(from_logits=False), tf.keras.metrics.BinaryAccuracy(threshold=0.5), tf.keras.metrics.Precision(thresholds=0.5), tf.keras.metrics.Recall(thresholds=0.5), tf.keras.metrics.MeanAbsoluteError(), tf.keras.metrics.MeanSquaredError(), ] for size in [128, 256]: # model = u_net(input_size=(None,None,3), n_filters=16, n_classes=1) model = simple_fcn() case = Case( model=model, batch_size=16, num_batches=100, num_epochs=300, optimizer=tf.keras.optimizers.Adam(lr=1e-3), loss=tf.keras.losses.BinaryCrossentropy(from_logits=False), metrics=metrics, gen_params={ # Dataset: Background and ball images "folder_path": str(VAL2017_FOLDER_PATH), "obj_path": str(Path("./res/ball_2_transparent.png")), # Shape of object in ground truth, "rect" or "ellipse" "ground_truth_shape": "ellipse", # Needed divisibility of the width and height of images. Depends # in amount of downsampling "divisibility": 32, # Size of images, make divisible by previous parameter or # otherwise padding will be added. # Used in training dataset but also in validation dataset during # training, but not during evaluation. "train_val_img_size": (size, size), # Modifications to object "ball_rotate": True, "ball_size_range": (20, 70), "ball_brightness": (0.4, 1), }, notes="", ) train_case(case, cases_path)
"""Scraper for Connecticut Appellate Court CourtID: connctapp Court Short Name: Connappct. Author: Asadullah Baig<asadullahbeg@outlook.com> Date created: 2014-07-11 """ from datetime import date from juriscraper.opinions.united_states.state import conn class Site(conn.Site): def __init__(self): super(Site, self).__init__() self.crawl_date = date.today() self.url = 'http://www.jud.ct.gov/external/supapp/archiveAROap{year}.htm'.format( year=self.crawl_date.strftime("%y")) self.court_id = self.__module__
from django.contrib import admin from .models import ( ConsumptionForm, ConsumptionProduct, UnitEntry, WeightConsumptionProduct, WeightEntry, ) class WeightConsumptionProductInline(admin.StackedInline): model = WeightConsumptionProduct extra = 0 class UnitEntryInline(admin.TabularInline): model = UnitEntry class WeightEntryInline(admin.TabularInline): model = WeightEntry @admin.register(ConsumptionProduct) class ConsumptionProductAdmin(admin.ModelAdmin): inlines = [ WeightConsumptionProductInline, ] @admin.register(ConsumptionForm) class ConsumptionFormAdmin(admin.ModelAdmin): date_hierarchy = 'completed_at' list_display = ('__str__', 'completed_at') raw_id_fields = ('event', 'completed_by') inlines = [ UnitEntryInline, WeightEntryInline, ]
"""This module defines a HooksManager class for handling (de)installation of decorators.""" import sys from typing import Optional from functools import partial from metapandas.util import vprint, friendly_symbol_name, snake_case, mangle class HooksManager: """A hooks class.""" @classmethod def _generate_hook_flag_varname(cls): """Generate a variable name for keeping track of the installation of the hook decorators.""" return "_{}_INSTALLED".format(snake_case(cls.__name__).upper()) @classmethod def apply_hooks( cls, obj, decorator_function, hooks_dict, flag_var: Optional[str] = None, mangled_prefix: str = "", mangled_suffix: str = "_original", ) -> bool: """Apply hooks to obj using decorator_function. Parameters ---------- obj: Any A mutable python module, class or function to decorate. decorator_function: Callable The decorator function to apply. hooks_dict: Dict[str, Dict[str, Any]] A dictionary of obj properties to modify with each entry defining a set of kwargs to use for the decorator_function. flag_var: str or None A handle to journal the hook installation/deinstallation. managed_prefix: str The prefix to use for a new handle to the original decorated property. mangled_suffix: str The suffix to use for a new handle to the original decorated property. Returns ------- bool Indicator of whether hooks were successfully installed. """ flag_var = flag_var or cls._generate_hook_flag_varname() # only apply decorators if not already done so # this prevents clobbering the original methods when called multiple times applied = False def not_found(obj_name, method_name, decorator_function, *args, **kwargs): raise AttributeError( "Unable to decorate {obj_name}.{method_name} with {decorator_function}" "".format(**locals()) ) if not getattr(obj, flag_var, None): for method_name, decorator_kwargs in hooks_dict.items(): obj_name = friendly_symbol_name(obj) mangled_name = mangle( prefix=mangled_prefix, name=method_name, suffix=mangled_suffix ) if not hasattr(obj, method_name): vprint( "Unable to decorate {obj_name}.{method_name} with {decorator_function}" "".format(**locals()), file=sys.stderr, ) original_func = getattr( obj, method_name, partial(not_found, obj_name, method_name, decorator_function), ) setattr( obj, method_name, decorator_function(original_func, **decorator_kwargs), ) setattr(obj, mangled_name, original_func) vprint("Applied hook for {obj_name}.{method_name}".format(**locals())) # mark as installed setattr(obj, flag_var, True) applied = True return applied @classmethod def remove_hooks( cls, obj, hooks_dict, flag_var: Optional[str] = None, mangled_prefix: str = "", mangled_suffix: str = "_original", ): """Remove hooks from obj. Parameters ---------- obj: Any A mutable python module, class or function to decorate. hooks_dict: Dict[str, Dict[str, Any]] A dictionary of obj modified properties. flag_var: str or None A handle to journal the hook installation/deinstallation. managed_prefix: str The prefix used for the original decorated property. mangled_suffix: str The suffix used for the original decorated property. Returns ------- bool Indicator of whether hooks were successfully uninstalled. """ flag_var = flag_var or cls._generate_hook_flag_varname() # only remove decorators if needed applied = False if getattr(obj, flag_var, None): for method_name in hooks_dict.keys(): mangled_name = mangle( prefix=mangled_prefix, name=method_name, suffix=mangled_suffix ) setattr(obj, method_name, getattr(obj, mangled_name)) try: delattr(obj, method_name + "_original") except AttributeError: setattr(obj, method_name + "_original", None) # mark as uninstalled try: delattr(obj, flag_var) except AttributeError: # can't delete as a class-level variable, so set to False instead setattr(obj, flag_var, False) applied = True return applied
# Standard library imports import os from tempfile import NamedTemporaryFile from uuid import uuid4 from itertools import islice # Third party imports import pandas as pd def df_to_table(df, table, write_disposition='WRITE_EMPTY', blocking=True): """Upload a Pandas DataFrame to Google BigQuery Args: df (DataFrame): The Pandas DataFrame to be uploaded. table (google.cloud.bigquery.Table): BigQuery table object. write_disposition (str): Either 'WRITE_EMPTY', 'WRITE_TRUNCATE', or 'WRITE_APPEND'; the default is 'WRITE_EMPTY'. blocking (bool): Set to False if you don't want to block until the job is complete. Returns: google.cloud.bigquery.Job: The file upload job object. If you have set blocking=False, this can be used to check for job completion. """ # Two annoyances here: # 1) df.to_csv() requires a non binary mode file handle, whereas # table.upload_from_file() requires a binary mode file handle, so # we can't reuse the same file handle in read/write mode. # 2) Windows won't allow reading from a temporary file whilst it's # still open (see robfraz/gbq-pandas issue #2), so we can't use # context handlers to auto-close (and therefore delete) the temporary # file that we write to. writebuf = NamedTemporaryFile(mode='w', encoding='UTF-8', prefix="df_to_table_", suffix=".csv", delete=False) # robfraz/gbq-pandas issue #2 try: df.to_csv(writebuf, index=False, encoding='UTF-8') writebuf.flush() writebuf.close() with open(writebuf.name, mode='rb') as readbuf: job = table.upload_from_file(readbuf, encoding='UTF-8', source_format='CSV', skip_leading_rows=1, create_disposition='CREATE_IF_NEEDED', write_disposition=write_disposition) finally: os.remove(writebuf.name) if blocking: job.result() return job def query_to_df(sql, client): """Run a Google BigQuery query, and return the result in a Pandas Dataframe The query must be a single SQL statement Args: sql (str): A string containing a single SQL statement. client (google.cloud.bigquery.Client): BigQuery client object. Returns DataFrame: A Pandas DataFrame containing the result of the query. """ job = client.run_async_query(str(uuid4()), sql) job.use_legacy_sql = False result = job.result() return table_to_df(result.destination) def table_to_df(table, limit=None): """Download a table from Google BigQuery into a dataframe, with optional row limit Args: table (google.cloud.bigquery.Table): BigQuery table object. limit (None|int): The default is limit=None (i.e. all rows in table); set to zero to get an empty DataFrame with the column names set, or a positive number to limit the maximum number of rows fetched into the DataFrame. Returns: DataFrame: A Pandas DataFrame containing the table data. """ if limit and limit < 0: limit = None table.reload() return pd.DataFrame(data=list(islice(table.fetch_data(), 0, limit)), columns=[column.name for column in table.schema])
# -*- coding: utf-8 -*- import requests import os def download(url, fulllfile, overwrite=True): # open in binary mode if(not overwrite and os.path.isfile(fulllfile)): return 1 with open(fulllfile, "wb") as file: # get request response = requests.get(url) # write to file file.write(response.content) return 0
from rest_framework import viewsets, status from rest_framework.permissions import IsAuthenticatedOrReadOnly from rest_framework.response import Response class NewsViewSetMixin(viewsets.ModelViewSet): """Manage objects in the database""" serializer_class = None queryset = None permission_classes = (IsAuthenticatedOrReadOnly,) def perform_create(self, serializer): serializer.save(author=self.request.user) def destroy(self, request, *args, **kwargs): instance = self.get_object() if self.request.user == instance.author: self.perform_destroy(instance) return Response(status=status.HTTP_204_NO_CONTENT) return Response(status=status.HTTP_304_NOT_MODIFIED)
import dask import datetime import itertools import logging import os import time import pandas as pd from collections import OrderedDict from dscribe.descriptors import CoulombMatrix as CoulombMatrixDscribe from ml4chem.data.preprocessing import Preprocessing from ml4chem.data.serialization import dump, load from ml4chem.atomistic.features.base import AtomisticFeatures from ml4chem.utils import get_chunks, convert_elapsed_time logger = logging.getLogger() class CoulombMatrix(AtomisticFeatures, CoulombMatrixDscribe): """Coulomb Matrix features Parameters ---------- filename : str Path to save database. Note that if the filename exists, the features will be loaded without being recomputed. preprocessor : str Use some scaling method to preprocess the data. Default None. batch_size : int Number of data points per batch to use for training. Default is None. scheduler : str The scheduler to be used with the dask backend. overwrite : bool If overwrite is set to True, ml4chem will not try to load existing databases. Default is True. save_preprocessor : str Save preprocessor to file. Notes ----- This class computes Coulomb matrix features using the dscribe module. As mentioned in ML4Chem's paper, we avoid duplication of efforts and this module serves as a demonstration. """ NAME = "CoulombMatrix" @classmethod def name(cls): """Returns name of class""" return cls.NAME def __init__( self, preprocessor=None, batch_size=None, filename="features.db", scheduler="distributed", save_preprocessor="ml4chem", overwrite=True, **kwargs ): super(CoulombMatrix, self).__init__() CoulombMatrixDscribe.__init__(self, permutation="none", flatten=False, **kwargs) self.batch_size = batch_size self.filename = filename self.preprocessor = preprocessor self.scheduler = scheduler self.overwrite = overwrite self.save_preprocessor = save_preprocessor # Let's add parameters that are going to be stored in the .params json # file. self.params = OrderedDict() self.params["name"] = self.name() # This is a very general way of not forgetting to save variables _params = vars() # Delete useless variables delete = [ "self", "scheduler", "overwrite", "k", "v", "value", "keys", "batch_size", "__class__", ] for param in delete: try: del _params[param] except KeyError: # In case the variable does not exist we just pass. pass for k, v in _params.items(): if v is not None: self.params[k] = v def calculate(self, images=None, purpose="training", data=None, svm=False): """Calculate the features per atom in an atoms objects Parameters ---------- image : dict Hashed images using the Data class. purpose : str The supported purposes are: 'training', 'inference'. data : obj data object svm : bool Whether or not these features are going to be used for kernel methods. Returns ------- feature_space : dict A dictionary with key hash and value as a list with the following structure: {'hash': [('H', [vector]]} reference_space : dict A reference space useful for SVM models. """ client = dask.distributed.get_client() logger.info(" ") logger.info("Featurization") logger.info("=============") now = datetime.datetime.now() logger.info("Module accessed on {}.".format(now.strftime("%Y-%m-%d %H:%M:%S"))) # FIXME the block below should become a function. if os.path.isfile(self.filename) and self.overwrite is False: logger.warning("Loading features from {}.".format(self.filename)) logger.info(" ") svm_keys = [b"feature_space", b"reference_space"] data = load(self.filename) data_hashes = list(data.keys()) image_hashes = list(images.keys()) if image_hashes == data_hashes: # Check if both lists are the same. return data elif any(i in image_hashes for i in data_hashes): # Check if any of the elem _data = {} for hash in image_hashes: _data[hash] = data[hash] return _data if svm_keys == list(data.keys()): feature_space = data[svm_keys[0]] reference_space = data[svm_keys[1]] return feature_space, reference_space initial_time = time.time() # Verify that we know the unique element symbols if data.unique_element_symbols is None: logger.info("Getting unique element symbols for {}".format(purpose)) unique_element_symbols = data.get_unique_element_symbols( images, purpose=purpose ) unique_element_symbols = unique_element_symbols[purpose] logger.info("Unique chemical elements: {}".format(unique_element_symbols)) elif isinstance(data.unique_element_symbols, dict): unique_element_symbols = data.unique_element_symbols[purpose] logger.info("Unique chemical elements: {}".format(unique_element_symbols)) # we make the features preprocessor = Preprocessing(self.preprocessor, purpose=purpose) preprocessor.set(purpose=purpose) # We start populating computations to get atomic features. logger.info("") logger.info("Embarrassingly parallel computation of atomic features...") stacked_features = [] atoms_symbols_map = [] # This list is used to reconstruct images from atoms. if self.batch_size is None: self.batch_size = data.get_total_number_atoms() chunks = get_chunks(images, self.batch_size, svm=svm) for chunk in chunks: images_ = OrderedDict(chunk) intermediate = [] for image in images_.items(): key, image = image atoms_symbols_map.append(image.get_chemical_symbols()) # Use .create() class method from dscribe. _features = dask.delayed(self.create)(image) intermediate.append(_features) intermediate = client.compute(intermediate, scheduler=self.scheduler) stacked_features += intermediate del intermediate # scheduler_time = time.time() - initial_time # dask.distributed.wait(stacked_features) logger.info("") if self.preprocessor is not None: raise NotImplementedError else: scaled_feature_space = [] atoms_symbols_map = [client.scatter(chunk) for chunk in atoms_symbols_map] stacked_features = client.scatter(stacked_features, broadcast=True) for image_index, symbols in enumerate(atoms_symbols_map): features = client.submit( self.stack_features, *(symbols, image_index, stacked_features) ) scaled_feature_space.append(features) scaled_feature_space = client.gather(scaled_feature_space) # Clean del stacked_features # Restack images feature_space = [] if svm and purpose == "training": for i, image in enumerate(images.items()): restacked = client.submit( self.restack_image, *(i, image, scaled_feature_space, svm) ) feature_space.append(restacked) elif svm is False and purpose == "training": for i, image in enumerate(images.items()): restacked = client.submit( self.restack_image, *(i, image, scaled_feature_space, svm) ) feature_space.append(restacked) else: try: for i, image in enumerate(images.items()): restacked = client.submit( self.restack_image, *(i, image, scaled_feature_space, svm) ) feature_space.append(restacked) except UnboundLocalError: # scaled_feature_space does not exist. for i, image in enumerate(images.items()): restacked = client.submit( self.restack_image, *(i, image, feature_space, svm) ) feature_space.append(restacked) feature_space = client.gather(feature_space) if svm and purpose == "training": # FIXME This might need to be improved logger.info("Building array with reference space.") hashes, reference_space = list(zip(*feature_space)) del hashes reference_space = list(itertools.chain.from_iterable(reference_space)) logger.info("Finished reference space.") feature_space = OrderedDict(feature_space) fp_time = time.time() - initial_time h, m, s = convert_elapsed_time(fp_time) logger.info( "Featurization finished in {} hours {} minutes {:.2f}" " seconds.".format(h, m, s) ) if svm and purpose == "training": client.restart() # Reclaims memory aggressively preprocessor.save_to_file(preprocessor, self.save_preprocessor) if self.filename is not None: logger.info("features saved to {}.".format(self.filename)) data = {"feature_space": feature_space} data.update({"reference_space": reference_space}) dump(data, filename=self.filename) self.feature_space = feature_space self.reference_space = reference_space return self.feature_space, self.reference_space elif svm is False and purpose == "training": client.restart() # Reclaims memory aggressively preprocessor.save_to_file(preprocessor, self.save_preprocessor) if self.filename is not None: logger.info("features saved to {}.".format(self.filename)) dump(feature_space, filename=self.filename) self.feature_space = feature_space return self.feature_space else: self.feature_space = feature_space return self.feature_space def stack_features(self, symbols, image_index, stacked_features): """Stack features """ features = list(zip(symbols, stacked_features[image_index].result())) return features def to_pandas(self): """Convert features to pandas DataFrame""" return pd.DataFrame.from_dict(self.feature_space, orient="index")
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import http.server import cgi import socketserver import rauth import threading import requests import json VERIFIER = None def parse_address(address): """Create a tuple containing a string giving the address, and an integer port number. """ base, port = address.split(':') return (base, int(port)) def create_callback_server(server_address): """Create the callback server that is used to set the oauth verifier after the request token is authorized. """ class CallbackHandler(http.server.SimpleHTTPRequestHandler): def do_GET(self): global VERIFIER params = cgi.parse_qs(self.path.split('?', 1)[1], keep_blank_values=False) VERIFIER = params['oauth_verifier'][0] self.send_response(200) self.end_headers() def log_request(self, code='-', size='-'): pass return socketserver.TCPServer(server_address, CallbackHandler) def get_khan_session(consumer_key, consumer_secret, username, password, server_url='http://www.khanacademy.org', callback_address='127.0.0.1:0'): """Create an authenticated Khan Academy API session using rauth OAuth 1.0 flow. This session give you access to the "Login Required" calls described in the API Explorer. You need a consumer key and consumer secret: http://www.khanacademy.org/api-apps/register You should also provide Khan Academy username and password. Only coachs can access information about other users. """ # Create an OAuth1Service using rauth. service = rauth.OAuth1Service( consumer_key, consumer_secret, name = 'khan', request_token_url = server_url + '/api/auth2/request_token', access_token_url = server_url + '/api/auth2/access_token', authorize_url = server_url + '/api/auth2/authorize', base_url = server_url + '/api/auth2') callback_server = create_callback_server(parse_address(callback_address)) # 1. Get a request token. request_token, secret_request_token = service.get_request_token( params={'oauth_callback': 'http://%s:%d/' % callback_server.server_address}) # 2. Authorize your request token. params = {'oauth_token': request_token, 'identifier': username, 'password': password} handle = threading.Thread(target=callback_server.handle_request) handle.start() requests.post(service.authorize_url, params) handle.join() callback_server.server_close() # 3. Get an access token. session = service.get_auth_session(request_token, secret_request_token, params={'oauth_verifier': VERIFIER}) return session class KhanSession: """Khan Academy API session. Loose wrapper class around Khan Academy rauth.OAuth1Session. If no user credentials given, it is a dummy class around request.Session. """ def __init__(self, server_url='http://www.khanacademy.org', consumer_key=None, consumer_secret=None, username=None, password=None, callback_address='127.0.0.1:0'): self.server_url = server_url if consumer_key and consumer_secret and username and password: self.session = get_khan_session(consumer_key, consumer_secret, username, password, server_url, callback_address) else: self.session = requests.Session() def call_api(self, rel_url, params={}): """Make an API call to a relative URL (e. g., `/api/v1/badges`). Returns a parsed JSON response. """ resp = self.session.get(self.server_url + rel_url, params=params) if resp.text == 'Unauthorized': raise Exception('You are not authorized to retrieve this info.') parsed_resp = json.loads(resp.text) return parsed_resp def get_user(self, userid=None, username=None, email=None): """Retrieve data about a user. If no argument given, retrieves data about logged-in user. If you are a coach, you can get data about your students. userid is preferred over username and email, since it is the only one of these fields that a user can't change. Returns a dict containing information about user. """ params = {'userId': userid, 'username': username, 'email': email} userinfo = self.call_api('/api/v1/user', params) return userinfo
# DO NOT EDIT -- GENERATED BY CMake -- Change the CMakeLists.txt file if needed STORAGE_CLIENT_VERSION_MAJOR = "0" STORAGE_CLIENT_VERSION_MINOR = "2" STORAGE_CLIENT_VERSION_PATCH = "0"
#!/usr/bin/env python """ Simple git pre-commit script for executing some linters. """ import commands import imp import re import pylint.lint def check_cpp_lint(repo_root, staged_files): """Runs Google's cpplint on all C++ files staged for commit,""" cpplint = imp.load_source('cpplint', repo_root + "/devtools/cpplint.py") for changed_file in staged_files: if re.search(r'\.cc$', changed_file): changed_file = repo_root + "/" + changed_file cpplint.ProcessFile(changed_file, 0) elif re.search(r'\.h$', changed_file): # Change global _root variable for desired behaviour of # cpplint's header guard. Without this change the header include # guard would have to look like: INCLUDE_REFILL_SUBPATH_HEADER_H_. # We want it to look like: REFILL_SUBPATH_HEADER_H_ cpplint._root = "include" #pylint: disable=W0212 changed_file = repo_root + "/" + changed_file cpplint.ProcessFile(changed_file, 0) cpplint._root = None #pylint: disable=W0212 if cpplint._cpplint_state.error_count: #pylint: disable=W0212 print 'Aborting commit: cpplint is unhappy.' exit(cpplint._cpplint_state.error_count) #pylint: disable=W0212 def check_modified_after_staging(staged_files): """Checks if one of the staged files was modified after staging.""" _, unstaged_changes = commands.getstatusoutput('git diff --name-only') files_changed = unstaged_changes.split("\n") files_changed = filter(None, files_changed) staged_files_changed = 0 for changed_file in files_changed: if changed_file in staged_files: print changed_file + " modified after staging" staged_files_changed = 1 if staged_files_changed: print "Aborting commit: Staged files modified after staging." exit(1) def check_python_lint(repo_root, staged_files): """Runs pylint on all python scripts staged for commit.""" # Dummy class for pylint related IO. class WritableObject(object): "dummy output stream for pylint" def __init__(self): self.content = [] def write(self, input_str): "dummy write" self.content.append(input_str) def read(self): "dummy read" return self.content # Parse each pylint output line individualy and searches # for errors in the code. pylint_errors = [] for changed_file in staged_files: if re.search(r'\.py$', changed_file): print "Running pylint on " + repo_root + "/" + changed_file pylint_output = WritableObject() pylint_args = ["--rcfile=" + repo_root + "/devtools/pylint.rc", "-rn", repo_root + "/" + changed_file] from pylint.reporters.text import TextReporter pylint.lint.Run(pylint_args, reporter=TextReporter(pylint_output), exit=False) for output_line in pylint_output.read(): if re.search(r'^(E|C|W):', output_line): print changed_file + ": " + output_line pylint_errors.append(output_line) if len(pylint_errors) > 0: print "Pylint found errors. Terminating." exit(len(pylint_errors)) def main(): """ Checks for staged files and executes cpplint on them. """ _, output = commands.getstatusoutput('git diff --staged --name-only') _, repo_root = commands.getstatusoutput('git rev-parse --show-toplevel') staged_files = output.split("\n") # Do not allow commiting files that were modified after staging. This # avoids problems such as forgetting to stage fixes of cpplint complaints. check_modified_after_staging(staged_files) # Use Google's C++ linter to check for compliance with Google style guide. check_cpp_lint(repo_root, staged_files) # Use pylint to check for comimpliance with Tensofrflow python style guide. check_python_lint(repo_root, staged_files) if __name__ == "__main__": main()
import typing from app.util import log as logging from .executor import Executor from .settings import Settings from .request import Request from .response import Response from ..info import Info class Plugin: """Base Plugin Class. This class defines, which Executor, Settings, Request and Response class is used. The Methods defined here should not be overwritten. """ Settings = Settings Executor = Executor Request = Request Response = Response def __init__(self, info: Info, path: str): with logging.LogCall(__file__, "__init__", self.__class__): self.info = info self.path = path self.logger = logging.PluginLogger(self.info.uid) self.logger.debug("%s initialized!", self.__class__.__name__) def execute(self, request: Request) -> Response: with logging.LogCall(__file__, "execute", self.__class__): res = self.Response() try: exec = self.Executor(self, request) exec.execute() res.error = exec.get_error() # pylint: disable=assignment-from-none if res.error: res.error_text = exec.get_error_text() res.text = exec.get_text() res.points = exec.get_points() except Exception as e: res.set_exception(e) return res
# -*- coding: utf-8 -*- """ Petri net simulation ------------------------ An example of petri net simulation of a chemical processes based on code from http://www.azimuthproject.org/azimuth/show/Petri+net+programming. :copyright: (c) 2015 by A. Kassahun. :license: BSD. """ import random import copy # check arcs # check check initial markings #Run simulations def get_enabled_transitions(): enabled_list = [] for t in arcs: enabled = True for p, m in arcs[t]['inputs'].iteritems(): if markings[p] < m: enabled = False; break if enabled: enabled_list += [t] return enabled_list def get_markings_values(markings, places): values = [] for p in places: values += [markings[p]] return tuple(values) #run simulation def run_simulation(places, arcs, markings, steps): results = [] for i in xrange(steps): # find enabled transition fire_list = get_enabled_transitions() if fire_list: # select random to_fire_i = random.randrange(len(fire_list)) to_fire_t = fire_list[to_fire_i] # fire the event for p, m in arcs[to_fire_t]['inputs'].iteritems(): markings[p] -= m for p, m in arcs[to_fire_t]['outputs'].iteritems(): markings[p] += m result = [get_markings_values(markings, places), to_fire_t] results += [result] else: break return results if __name__ == '__main__': # initialization of the petri net # define places, transitions and arcs places = ['H', 'O', 'H2O'] transitions = ['Combine', 'Split'] arcs = { 'Combine': {'inputs' : {'H': 2, 'O': 1}, 'outputs': {'H2O': 1}}, 'Split' : {'inputs': {'H2O': 1}, 'outputs': {'H': 2, 'O': 1}} } # set the markings init_markings = {"H": 5, "O": 3, "H2O": 3} #decide on the number of steps to simulate steps = 10 # run simulation markings = copy.deepcopy(init_markings) results = run_simulation(places, arcs, markings, steps) fmt_str = ' %3s '*len(places) print fmt_str % tuple(places), 'Transitions' print fmt_str % get_markings_values(init_markings, places), '*Init*' for markings, trans in results: print fmt_str % markings, trans
import unittest import transaction from pyramid import testing from dbas.database import DBDiscussionSession from dbas.database.discussion_model import StatementReference, Statement from dbas.tests.utils import construct_dummy_request from dbas.views import set_references, get_reference class AjaxReferencesTest(unittest.TestCase): def setUp(self): self.config = testing.setUp() self.config.include('pyramid_chameleon') self.config.testing_securitypolicy(userid='Tobias', permissive=True) # test every ajax method, which is not used in other classes def test_get_references_empty(self): request = construct_dummy_request(json_body={ 'uids': [14], 'is_argument': False }) response = get_reference(request) self.assertIsNotNone(response) for uid in response['data']: self.assertTrue(len(response['data'][uid]) == 0) self.assertTrue(len(response['text'][uid]) != 0) def test_get_references(self): request = construct_dummy_request(json_body={ 'uids': [15], 'is_argument': False }) response = get_reference(request) self.assertIsNotNone(response) for uid in response['data']: self.assertTrue(len(response['data'][uid]) != 0) self.assertTrue(len(response['text'][uid]) != 0) def test_get_references_failure(self): request = construct_dummy_request(json_body={ 'uids': 'ab', 'is_argument': False }) response = get_reference(request) self.assertIsNotNone(response) self.assertEqual(400, response.status_code) def test_set_references(self): self.config.testing_securitypolicy(userid='Tobias', permissive=True) statement: Statement = DBDiscussionSession.query(Statement).get(17) request = construct_dummy_request(json_body={ 'statement_id': statement.uid, 'issue': statement.issues[0].uid, 'text': 'This is a source', 'ref_source': 'http://www.google.de/some_source', }) self.assertTrue(set_references(request)) request = construct_dummy_request(json_body={ 'uids': [17], 'is_argument': False }) response = get_reference(request) self.assertIsNotNone(response) for uid in response['data']: self.assertTrue(17, uid) self.assertTrue(len(response['data'][uid]) != 0) self.assertTrue(len(response['text'][uid]) != 0) DBDiscussionSession.query(StatementReference).filter_by(statement_uid=17).delete() transaction.commit()
from .cwr_linear import CWRLinear from .cwr_knn import CWRkNN CONTEXTUAL_FUNCTIONS_IMPL = { 'cwr_linear': CWRLinear, 'cwr_knn': CWRkNN, }
from django.db import models from django.utils.timezone import now class Vote(models.Model): unique_together = (('user', 'versus')) user = models.ForeignKey( 'votarkUser.VotarkUser', on_delete=models.SET_NULL, null=True, blank=False ) versus = models.ForeignKey( 'versus.Versus', on_delete=models.SET_NULL, null=True, blank=False ) date = models.DateTimeField(default=now) winner = models.BooleanField(null=False,blank=False) #True for Post1 - False for Post2s
from .ttypes import * from .constants import * from .Hbase import *
import json name = { 'mr': 'Miller-Rabin', 'mt': 'Marsenne Twiste', 'bbs': 'Blum Blum Shub', } keys = json.load(open('test_keys_seed.json')) file_out = 'latex_table.txt' str_out = "" for combination, numbers in keys.items(): test_name, prng_name = combination.split('|') test_name = name[test_name] prng_name = name[prng_name] for b_size, n_time in numbers.items(): str_out += f"{test_name} & {prng_name} & {b_size} & " str_out += "\\begin{tabular}[c]{@{}l@{}}" str_out += "\\\ ".join( [ str(n_time['key'])[s:s+15] for s in range(0,len(str(n_time['key'])),15) ] ) str_out += "\\end{tabular} " str_out += f"& {n_time['time']} & \\\ " str_out += "\hline\n" print(str_out)
import numpy n, m = map(int, input().split()) a = numpy.array([input().split() for _ in range(n)], dtype=int) numpy.set_printoptions(legacy='1.13') print(numpy.mean(a, axis=1)) print(numpy.var(a, axis=0)) print(numpy.std(a, axis=None))
import decimal from dataclasses import asdict, dataclass from math import isclose from typing import List, Optional, Union import numpy as np from lhotse.utils import Seconds @dataclass class Array: """ The Array manifest describes a numpy array that is stored somewhere: it might be in an HDF5 file, a compressed numpy file, on disk, in the cloud, etc. Array helps abstract away from the actual storage mechanism and location by providing a method called :meth:`.Array.load`. We don't assume anything specific about the array itself: it might be a feature matrix, an embedding, network activations, posteriors, alignment, etc. However, if the array has a temporal component, it is better to use the :class:`.TemporalArray` manifest instead. Array manifest can be easily created by calling :meth:`lhotse.features.io.FeaturesWriter.store_array`, for example:: >>> from lhotse import NumpyHdf5Writer >>> ivector = np.random.rand(300) >>> with NumpyHdf5Writer('ivectors.h5') as writer: ... manifest = writer.store_array('ivec-1', ivector) """ # Storage type defines which features reader type should be instantiated # e.g. 'lilcom_files', 'numpy_files', 'lilcom_hdf5' storage_type: str # Storage path is either the path to some kind of archive (like HDF5 file) or a path # to a directory holding files with feature matrices (exact semantics depend on storage_type). storage_path: str # Storage key is either the key used to retrieve an array from an archive like HDF5, # or the name of the file in a directory (exact semantics depend on the storage_type). storage_key: str # Shape of the array once loaded into memory. shape: List[int] @property def ndim(self) -> int: return len(self.shape) def to_dict(self) -> dict: return asdict(self) @classmethod def from_dict(cls, data: dict) -> "Array": return cls(**data) def load(self) -> np.ndarray: """ Load the array from the underlying storage. """ from lhotse.features.io import get_reader # noinspection PyArgumentList storage = get_reader(self.storage_type)(self.storage_path) # Load and return the array from the storage return storage.read(self.storage_key) @dataclass class TemporalArray: """ The :class:`.TemporalArray` manifest describes a numpy array that is stored somewhere: it might be in an HDF5 file, a compressed numpy file, on disk, in the cloud, etc. Like :class:`.Array`, it helps abstract away from the actual storage mechanism and location by providing a method called :meth:`.TemporalArray.load`. Unlike with :class:`.Array`, we assume that the array has a temporal dimension. It allows us to perform partial reads for sub-segments of the data if the underlying ``storage_type`` allows that. :class:`.TemporalArray` manifest can be easily created by calling :meth:`lhotse.features.io.FeaturesWriter.store_array` and specifying arguments related to its temporal nature; for example:: >>> from lhotse import NumpyHdf5Writer >>> alignment = np.random.randint(500, size=131) >>> assert alignment.shape == (131,) >>> with NumpyHdf5Writer('alignments.h5') as writer: ... manifest = writer.store_array( ... key='ali-1', ... value=alignment, ... frame_shift=0.04, # e.g., 10ms frames and subsampling_factor=4 ... temporal_dim=0, ... start=0 ... ) """ # Manifest describing the base array. array: Array # Indicates which dim corresponds to the time dimension: # e.g., PCM audio samples indexes, feature frame indexes, chunks indexes, etc. temporal_dim: int # The time interval (in seconds, or fraction of a second) between the start timestamps # of consecutive frames. frame_shift: Seconds # Information about the time range of the features. # We only need to specify start, as duration can be computed from # the shape, temporal_dim, and frame_shift. start: Seconds @property def shape(self) -> List[int]: return self.array.shape @property def ndim(self) -> int: return len(self.shape) @property def duration(self) -> Seconds: return self.shape[self.temporal_dim] * self.frame_shift @property def end(self) -> Seconds: return self.start + self.duration def to_dict(self) -> dict: return asdict(self) @classmethod def from_dict(cls, data: dict) -> "TemporalArray": array = Array.from_dict(data.pop("array")) return cls(array=array, **data) def load( self, start: Optional[Seconds] = None, duration: Optional[Seconds] = None, ) -> np.ndarray: """ Load the array from the underlying storage. Optionally perform a partial read along the ``temporal_dim``. :param start: when specified, we'll offset the read by ``start`` after converting it to a number of frames based on ``self.frame_shift``. :param duration: when specified, we'll limit the read to a number of frames equivalent to ``duration`` under ``self.frame_shift``. :return: A numpy array or a relevant slice of it. """ from lhotse.features.io import get_reader # noinspection PyArgumentList storage = get_reader(self.array.storage_type)(self.array.storage_path) left_offset_frames, right_offset_frames = 0, None if start is None: start = self.start # In case the caller requested only a sub-span of the features, trim them. # Left trim if start < self.start - 1e-5: raise ValueError( f"Cannot load array starting from {start}s. " f"The available range is ({self.start}, {self.end}) seconds." ) if not isclose(start, self.start): left_offset_frames = seconds_to_frames( start - self.start, frame_shift=self.frame_shift, max_index=self.shape[self.temporal_dim], ) # Right trim if duration is not None: right_offset_frames = left_offset_frames + seconds_to_frames( duration, frame_shift=self.frame_shift, max_index=self.shape[self.temporal_dim], ) # Load and return the features (subset) from the storage return storage.read( self.array.storage_key, left_offset_frames=left_offset_frames, right_offset_frames=right_offset_frames, ) def seconds_to_frames( duration: Seconds, frame_shift: Seconds, max_index: Optional[int] = None ) -> int: """ Convert time quantity in seconds to a frame index. It takes the shape of the array into account and limits the possible indices values to be compatible with the shape. """ assert duration >= 0 index = int( decimal.Decimal( # 8 is a good number because cases like 14.49175 still work correctly, # while problematic cases like 14.49999999998 are typically breaking much later than 8th decimal # with double-precision floats. round(duration / frame_shift, ndigits=8) ).quantize(0, rounding=decimal.ROUND_HALF_UP) ) if max_index is not None: return min(index, max_index) return index def deserialize_array(raw_data: dict) -> Union[Array, TemporalArray]: """ Figures out the right manifest type to use for deserialization. :param raw_data: The result of calling ``.to_dict`` on :class:`.Array` or :class:`.TemporalArray`. :return an :class:`.Array.` or :class:`.TemporalArray` instance. """ if "array" in raw_data: return TemporalArray.from_dict(raw_data) if "shape" in raw_data: return Array.from_dict(raw_data) raise ValueError(f"Cannot deserialize array from: {raw_data}") def pad_array( array: np.ndarray, temporal_dim: int, frame_shift: Seconds, offset: Seconds, padded_duration: Seconds, pad_value: Union[int, float], ) -> np.ndarray: """ Pad a numpy array guided by duration based constraints. Example:: >>> arr = np.array([1, 2, 3]) >>> pad_array(arr, temporal_dim=0, frame_shift=0.1, ... offset=0.1, padded_duration=0.6, pad_value=0) array([0, 1, 2, 3, 0, 0]) :param array: array to be padded. :param temporal_dim: time dimension index. :param frame_shift: time interval (seconds) between the starts of consecutive frames. :param offset: how much padding goes before the array (seconds). :param padded_duration: expected duration of array after padding (seconds). :param pad_value: value used for padding. :return: a padded array. """ array_frames = array.shape[temporal_dim] total_frames = seconds_to_frames(padded_duration, frame_shift=frame_shift) total_padding_frames = total_frames - array_frames assert total_padding_frames >= 0, ( f"Invalid argument values for pad_array: array with shape {array.shape} cannot be " f"padded to padded_duration of {padded_duration} as it results in smaller temporal_dim " f"of {total_frames} frames (under frame_shift={frame_shift})." ) if total_padding_frames == 0: return array left_pad_frames = seconds_to_frames(offset, frame_shift=frame_shift) right_pad_frames = total_padding_frames - left_pad_frames # Automatically fix edge cases where we're off by one padding frame. # This usually happens when duration of padding is a bit more than # padding_num_frames * frame_shift, but the duration of unpadded cut # is a bit less than cut_num_frames * frame_shift. if right_pad_frames == -1: right_pad_frames = 0 left_pad_frames -= 1 assert right_pad_frames >= 0, "Something went wrong..." pad_width = [ (left_pad_frames, right_pad_frames) if dim == temporal_dim else (0, 0) for dim, size in enumerate(array.shape) ] return np.pad( array, pad_width=pad_width, mode="constant", constant_values=pad_value )
""" PyZMQ REQ socket client example module. This is the client script for the zmq_server_rep_pthread program (@ examples/c/zmq_demo). """ import time import zmq import struct def main(): port = 5555; context = zmq.Context() print("Connecting to server...") client = context.socket(zmq.REQ) with client.connect(f"tcp://localhost:{port}"): for i in range(10): # Send request # Assuming little-endian in C side req_type = 2 req_val = 42 + i req = struct.pack('<BI', req_type, req_val) client.send(req) # Receive response rep = client.recv() rep_val_a, rep_val_b = struct.unpack('<QB', rep) print(f"Received response [val_a: {rep_val_a}, val_b: {rep_val_b}]") if __name__ == "__main__": main()
# copy from https://github.com/bitsauce/Carla-ppo/blob/master/CarlaEnv/planner.py import carla import numpy as np import random from numba.typed import List from agents.navigation.local_planner import RoadOption from agents.navigation.global_route_planner import GlobalRoutePlanner from agents.tools.misc import vector # cache waypoint for entire lifecycle of application _route_waypoints = None _transformed_waypoint_routes = None def carla_to_vector(obj): ''' Turn Carla object which have some kind of coordinate attributes to `np.ndarray` ''' if isinstance(obj, carla.Location) or isinstance(obj, carla.Vector3D): return np.array([obj.x, obj.y, obj.z]) elif isinstance(obj, carla.Rotation): return np.array([obj.pitch, obj.yaw, obj.roll]) else: raise TypeError(f'obj must be `Location`, `Vector3D` or `Rotation`, not {type(obj)}') class ManualRoutePlanner: def __init__(self, start_waypoint, end_waypoint, world, resolution=2.0, plan=None, initial_checkpoint=0, use_section=False, enable=True, debug_route_waypoint_len=None): ''' route_waypoint_len is purely for testing purpose ''' global _route_waypoints, _transformed_waypoint_routes self._vehicle = None self._world = world self._map = world.get_map() self.plan = plan self._sampling_radius = resolution self._min_distance = self._sampling_radius - 1 if self._sampling_radius > 1 else 1 self.start_waypoint = start_waypoint self.end_waypoint = end_waypoint self.lap_count = 0 self._repeat_count = 0 self._repeat_count_threshold = 5 self._checkpoint_frequency = 25 self._checkpoint_waypoint_index = initial_checkpoint self._start_waypoint_index = self._checkpoint_waypoint_index self._current_waypoint_index = self._checkpoint_waypoint_index self._intermediate_checkpoint_waypoint_index = self._checkpoint_waypoint_index + self._checkpoint_frequency if enable: _route_waypoints = self._compute_route_waypoints() _transformed_waypoint_routes = List(self._transform_waypoints(_route_waypoints)) self.spawn_transform = _route_waypoints[self._checkpoint_waypoint_index][0].transform self._in_random_spawn_point = False # for section checkpoint if use_section: route_waypoint_len = len(_route_waypoints) if debug_route_waypoint_len is None else debug_route_waypoint_len # (start, end, checkpoint frequency) self.sections_indexes = [(0, 140, 35), (143, 173, 30), (176, route_waypoint_len - 1, 35)] self.sections_start = [s[0] for s in self.sections_indexes] self.sections_end = [s[1] for s in self.sections_indexes] self.sections_frequency = [s[2] for s in self.sections_indexes] self.sections_ends = [140, 141, 142, 173, 174, 175, 591] if initial_checkpoint < self.sections_end[0]: frequency = self.sections_indexes[0][2] elif initial_checkpoint < self.sections_end[1]: frequency = self.sections_indexes[1][2] elif initial_checkpoint < self.sections_end[2]: frequency = self.sections_indexes[2][2] self._intermediate_checkpoint_waypoint_index = self._checkpoint_waypoint_index + frequency if self._intermediate_checkpoint_waypoint_index > route_waypoint_len - 1: self._intermediate_checkpoint_waypoint_index = 0 def set_vehicle(self, vehicle): ''' Set internal state to current vehicle, must be called in `reset` ''' self._vehicle = vehicle if not self._in_random_spawn_point: self._start_waypoint_index = self._checkpoint_waypoint_index self._current_waypoint_index = self._checkpoint_waypoint_index self.lap_count = 0 def run_step(self): waypoint_routes_len = len(_route_waypoints) current_transform = self._vehicle.get_transform() waypoint_index = self._current_waypoint_index for _ in range(waypoint_routes_len): # check if we passed next waypoint along the route next_waypoint_index = waypoint_index + 1 wp, _ = _route_waypoints[next_waypoint_index % waypoint_routes_len] dot = np.dot(carla_to_vector(wp.transform.get_forward_vector())[:2], carla_to_vector(current_transform.location - wp.transform.location)[:2]) # did we pass the waypoint? if dot > 0.0: # if passed, go to next waypoint waypoint_index += 1 else: break self._current_waypoint_index = waypoint_index % waypoint_routes_len # update checkpoint # self._checkpoint_waypoint_index = (self._current_waypoint_index // self._checkpoint_frequency) * self._checkpoint_frequency if not self._in_random_spawn_point: self._update_checkpoint_by_section() # update here because vehicle is spawn before set_vehicle call and spawning requires spawn point self.spawn_transform = _route_waypoints[self._checkpoint_waypoint_index][0].transform self.lap_count = (waypoint_index - self._start_waypoint_index) / len(_route_waypoints) return _transformed_waypoint_routes[self._current_waypoint_index:] def get_route_waypoints(self): ''' Return list of (waypoint, RoadOption) ''' return _route_waypoints def get_transformed_route_waypoints(self): return _transformed_waypoint_routes def _compute_route_waypoints(self): """ Returns a list of (waypoint, RoadOption)-tuples that describes a route starting at start_waypoint, ending at end_waypoint. start_waypoint (carla.Waypoint): Starting waypoint of the route end_waypoint (carla.Waypoint): Destination waypoint of the route resolution (float): Resolution, or lenght, of the steps between waypoints (in meters) plan (list(RoadOption) or None): If plan is not None, generate a route that takes every option as provided in the list for every intersections, in the given order. (E.g. set plan=[RoadOption.STRAIGHT, RoadOption.LEFT, RoadOption.RIGHT] to make the route go straight, then left, then right.) If plan is None, we use the GlobalRoutePlanner to find a path between start_waypoint and end_waypoint. """ if self.plan is None: # Setting up global router grp = GlobalRoutePlanner(self._map, self._sampling_radius) # Obtain route plan route = grp.trace_route( self.start_waypoint.transform.location, self.end_waypoint.transform.location) else: # Compute route waypoints route = [] current_waypoint = self.start_waypoint for i, action in enumerate(self.plan): # Generate waypoints to next junction wp_choice = [current_waypoint] while len(wp_choice) == 1: current_waypoint = wp_choice[0] route.append((current_waypoint, RoadOption.LANEFOLLOW)) wp_choice = current_waypoint.next(self._sampling_radius) # Stop at destination if i > 0 and current_waypoint.transform.location.distance(self.end_waypoint.transform.location) < self._sampling_radius: break if action == RoadOption.VOID: break # Make sure that next intersection waypoints are far enough # from each other so we choose the correct path step = self._sampling_radius while len(wp_choice) > 1: wp_choice = current_waypoint.next(step) wp0, wp1 = wp_choice[:2] if wp0.transform.location.distance(wp1.transform.location) < self._sampling_radius: step += self._sampling_radius else: break # Select appropriate path at the junction if len(wp_choice) > 1: # Current heading vector current_transform = current_waypoint.transform current_location = current_transform.location projected_location = current_location + \ carla.Location( x=np.cos(np.radians(current_transform.rotation.yaw)), y=np.sin(np.radians(current_transform.rotation.yaw))) v_current = vector(current_location, projected_location) direction = 0 if action == RoadOption.LEFT: direction = 1 elif action == RoadOption.RIGHT: direction = -1 elif action == RoadOption.STRAIGHT: direction = 0 select_criteria = float("inf") # Choose correct path for wp_select in wp_choice: v_select = vector( current_location, wp_select.transform.location) cross = float("inf") if direction == 0: cross = abs(np.cross(v_current, v_select)[-1]) else: cross = direction * np.cross(v_current, v_select)[-1] if cross < select_criteria: select_criteria = cross current_waypoint = wp_select # Generate all waypoints within the junction # along selected path route.append((current_waypoint, action)) current_waypoint = current_waypoint.next(self._sampling_radius)[0] while current_waypoint.is_intersection: route.append((current_waypoint, action)) current_waypoint = current_waypoint.next(self._sampling_radius)[0] assert route # Change action 5 wp before intersection num_wp_to_extend_actions_with = 5 action = route[0][1] for i in range(1, len(route)): next_action = route[i][1] if next_action != action: if next_action != RoadOption.LANEFOLLOW: for j in range(num_wp_to_extend_actions_with): route[i-j-1] = (route[i-j-1][0], route[i][1]) action = next_action return route def _transform_waypoints(self, waypoints): ''' Transform a waypoint into list of x, y and yaw ''' return list(map(lambda wp: (wp[0].transform.location.x, wp[0].transform.location.y, wp[0].transform.rotation.yaw), waypoints)) def _update_checkpoint(self): ''' implement checkpoint logic that encourage the agent to remember more past road before trying next portion of the road ''' idx = (self._current_waypoint_index // self._checkpoint_frequency) * self._checkpoint_frequency if idx > self._intermediate_checkpoint_waypoint_index: self._repeat_count += 1 if self._repeat_count >= self._repeat_count_threshold: if self._checkpoint_waypoint_index == 0: self._checkpoint_waypoint_index = self._intermediate_checkpoint_waypoint_index self._intermediate_checkpoint_waypoint_index += self._checkpoint_frequency else: self._checkpoint_waypoint_index = 0 self._repeat_count = 0 def _update_checkpoint_by_section(self): s1, s2, s3 = self.sections_indexes # s[0] is start and s[1] is end of section. s[2] is checkpoint frequency if s1[0] <= self._start_waypoint_index <= s1[1]: start = s1[0] end = s1[1] frequency = s1[2] elif s2[0] <= self._start_waypoint_index <= s2[1]: start = s2[0] end = s2[1] frequency = s2[2] else: # s3 start = s3[0] end = s3[1] frequency = s3[2] idx = (((self._current_waypoint_index - start) // frequency) * frequency) + start if idx >= self._intermediate_checkpoint_waypoint_index: self._repeat_count += 1 if self._repeat_count >= self._repeat_count_threshold: if self._checkpoint_waypoint_index == start: if self._intermediate_checkpoint_waypoint_index >= end: self._checkpoint_waypoint_index, frequency = self._get_next_section_start_and_frequency(end) self._intermediate_checkpoint_waypoint_index = self._checkpoint_waypoint_index + frequency else: self._checkpoint_waypoint_index = self._intermediate_checkpoint_waypoint_index self._intermediate_checkpoint_waypoint_index += frequency else: self._checkpoint_waypoint_index = start self._repeat_count = 0 def _get_next_section_start_and_frequency(self, end_of_section): end_idx = self.sections_end.index(end_of_section) next_start = self.sections_start[(end_idx + 1) % len(self.sections_start)] next_frequency = self.sections_frequency[(end_idx + 1) % len(self.sections_frequency)] return next_start, next_frequency def get_random_spawn_point(self): start_original = random.random() >= 0.4 if start_original: self._in_random_spawn_point = False return self._checkpoint_waypoint_index, self.spawn_transform self._in_random_spawn_point = True if random.random() >= 0.3 or self._checkpoint_waypoint_index in self.sections_start: # random start in the same section random_idx = self._checkpoint_waypoint_index + (random.randint(5, 20) // 2 * 2) else: # random start at any point before current checkpoint lower_bound = 0 for start, end in zip(self.sections_start, self.sections_ends): if start <= self._checkpoint_waypoint_index < end: lower_bound = start break random_idx = random.randint(lower_bound, self._checkpoint_waypoint_index) self._start_waypoint_index = random_idx self._current_waypoint_index = random_idx self.spawn_transform = _route_waypoints[random_idx][0].transform return random_idx, self.spawn_transform @property def next_waypoint(self): return _route_waypoints[(self._current_waypoint_index + 1) % len(_route_waypoints)][0] @property def current_waypoint(self): return _route_waypoints[self._current_waypoint_index % len(_route_waypoints)][0] @property def is_end_of_section(self): return self._current_waypoint_index in self.sections_ends TOWN7_PLAN = [RoadOption.STRAIGHT] + [RoadOption.RIGHT] * 2 + [RoadOption.STRAIGHT] * 5 TOWN7_REVERSE_PLAN = [RoadOption.STRAIGHT] * 4 + [RoadOption.LEFT] * 2 + [RoadOption.STRAIGHT]
import re def range_parser(s): result = [] for a in s.split(','): nums = [int(b) for b in re.split(r'\D', a) if b] if len(nums) == 1: result.extend(nums) else: nums[1] += 1 result.extend(xrange(*nums)) return result
# -*- coding: utf-8 -*- # Copyright (c) 2018-2021 shmilee ''' Contains ipynb UI class. ''' import ipywidgets from IPython.display import display, HTML from ..__about__ import __data_path__ from ..processors import get_processor, Processor_Names from ..processors.lib import Processor_Lib __all__ = ['IpynbUI', 'ScrollTool'] class IpynbUI(object): ''' UI(User Interface) used in Jupyter notebook. ''' __slots__ = ['path', 'parallel', 'processor', 'widgets', 'panel_widgets', 'grouplabels', 'figlabel'] def __init__(self, path, parallel='off'): self.path = path self.parallel = parallel self.processor = None names = ['%s%s' % (Processor_Lib[n][1][0], n) for n in Processor_Names] self.widgets = dict( processor=ipywidgets.Dropdown( options=names, value=names[0], description='Processor:'), pick=ipywidgets.Button( description='', disabled=False, button_style='primary', # 'success', 'info', or '' tooltip='Pick', icon='arrow-circle-right', layout=ipywidgets.Layout(width='5%')), group=ipywidgets.Dropdown( options=[None], value=None, description='Group:'), figlabel=ipywidgets.Dropdown( options=[None], value=None, description='Figure:', layout=ipywidgets.Layout(left='-15px')), plot=ipywidgets.Button( description='', disabled=False, button_style='primary', tooltip='Plot', icon='paint-brush', layout=ipywidgets.Layout(width='5%')), terminal=ipywidgets.Output(), panel=ipywidgets.Output(), canvas=ipywidgets.Output(), ) self.panel_widgets = {} self.grouplabels = {} self.figlabel = None self.widgets['processor'].observe(self.init_group, 'value') self.widgets['pick'].on_click(self.update_group) self.widgets['group'].observe(self.update_figlabel, 'value') self.widgets['figlabel'].observe(self.update_panel, 'value') self.widgets['plot'].on_click(self.update_canvas) def init_group(self, *args): self.widgets['group'].options = [None] self.widgets['group'].value = None self.widgets['pick'].button_style = 'primary' def update_group(self, *args): with self.widgets['terminal']: gdp = get_processor(path=self.path, name=self.widgets['processor'].value[1:], parallel=self.parallel) if gdp.pckloader: self.processor = gdp self.grouplabels = {} for l in gdp.availablelabels: g = l[:l.find('/')] if g in self.grouplabels: self.grouplabels[g].append(l[l.find('/')+1:]) else: self.grouplabels[g] = [l[l.find('/')+1:]] options = sorted(self.grouplabels.keys()) self.widgets['group'].options = options self.widgets['group'].value = options[0] self.widgets['pick'].button_style = 'success' def update_figlabel(self, *args): options = self.grouplabels.get( self.widgets['group'].value, [None]) self.widgets['figlabel'].options = options self.widgets['figlabel'].value = options[0] self.widgets['plot'].button_style = 'primary' def update_panel(self, *args): self.widgets['plot'].button_style = 'primary' if self.widgets['figlabel'].value: self.figlabel = '%s/%s' % ( self.widgets['group'].value, self.widgets['figlabel'].value) with self.widgets['terminal']: result = self.processor.export(self.figlabel, what='options') else: self.figlabel, result = None, None if result: options = dict(**result['digoptions'], **result['visoptions']) self.panel_widgets = self.get_panel_widgets(options) self.widgets['panel'].clear_output(wait=True) with self.widgets['panel']: w = list(self.panel_widgets.values()) def observer(change): self.widgets['plot'].button_style = 'primary' for wi in w: wi.observe(observer, 'value') w = [ipywidgets.HBox(w[i:i+2]) for i in range(0, len(w), 2)] display(ipywidgets.VBox(w)) def get_panel_widgets(self, options): controls = {} common_kw = dict( style={'description_width': 'initial'}, layout=ipywidgets.Layout(width='40%', margin='1% 2% auto 2%'), disabled=False) for k, v in options.items(): if v['widget'] in ( 'IntSlider', 'FloatSlider', 'IntRangeSlider', 'FloatRangeSlider'): controls[k] = getattr(ipywidgets, v['widget'])( value=v['value'], min=v['rangee'][0], max=v['rangee'][1], step=v['rangee'][2], description=v['description'], continuous_update=False, orientation='horizontal', readout=True, **common_kw) elif v['widget'] in ('Dropdown', 'SelectMultiple'): controls[k] = getattr(ipywidgets, v['widget'])( options=v['options'], value=v['value'], description=v['description'], **common_kw) elif v['widget'] in ('Checkbox',): controls[k] = getattr(ipywidgets, v['widget'])( value=v['value'], description=v['description'], **common_kw) else: pass return controls def update_canvas(self, *args): if self.figlabel: figkwargs = {k: v.value for k, v in self.panel_widgets.items()} with self.widgets['terminal']: accfiglabel = self.processor.visplt( self.figlabel, show=False, **figkwargs) if accfiglabel: self.widgets['canvas'].clear_output(wait=True) with self.widgets['canvas']: # print(figkwargs) display(self.processor.visplter.get_figure(accfiglabel)) self.widgets['plot'].button_style = 'success' else: self.widgets['canvas'].clear_output(wait=True) with self.widgets['canvas']: print("No figure to plot!") @property def UI(self): return display(ipywidgets.VBox([ ipywidgets.HBox([ self.widgets['processor'], self.widgets['pick'], self.widgets['group'], self.widgets['figlabel'], self.widgets['plot'], ]), self.widgets['panel'], self.widgets['canvas'], ])) def clear_log(self, wait=False): self.widgets['terminal'].clear_output(wait=wait) @property def log(self): return display(self.widgets['terminal']) class ScrollTool(object): ''' ScrollTool.bar: scroll-head, scroll-hidecode, scroll-bottom ''' __slots__ = ['html'] _replace_keys_ = ['scroll_head_title', 'scroll_bottom_title', 'scroll_showcode_title', 'scroll_hidecode_title'] def __init__(self): import os import locale import configparser lang = locale.getlocale()[0] config = configparser.ConfigParser(default_section='en_US') datapath = os.path.join(__data_path__, 'ipynb_scrollbar') configfile = config.read(os.path.join(datapath, 'locale')) with open(os.path.join(datapath, 'scroll_bar.css')) as fcss, \ open(os.path.join(datapath, 'scroll_bar.html')) as fhtml, \ open(os.path.join(datapath, 'scroll_bar.js')) as fjs: css, html, js = fcss.read(), fhtml.read(), fjs.read() for k in self._replace_keys_: if lang in config and k in config[lang]: v = config[lang][k] else: v = config['en_US'][k] css = css.replace('{{ %s }}' % k, v) html = html.replace('{{ %s }}' % k, v) js = js.replace('{{ %s }}' % k, v) self.html = HTML('%s\n%s\n%s' % (css, html, js)) @property def bar(self): return display(self.html)
version = '2.0.749'
import os from tests import TestClient class TestClientProduct(TestClient): # for testing test_product_group = None the_first_productId = None def __init__(self, *args, **kwargs): super(TestClientProduct, self).__init__(*args, **kwargs) self.__class__.test_product_group = os.getenv('PROCOUNTOR_PRODUCT_PRODUCT_GROUP', None) def test_001_get_products(self): """ get all products from API """ response = self.client.get_products() self.assertEqual(response['status'], 200) self.assertIsInstance(response['content']['products'], list) self.__class__.the_first_productId = response['content']['products'][0]['id'] def test_002_get_product(self): """ get info of one product """ response = self.client.get_product(self.__class__.the_first_productId) self.assertEqual(response['status'], 200) self.assertIsNotNone(response['content']) def test_003_get_product_groups(self): """ get product groups (by product type) """ if self.__class__.test_product_group: response = self.client.get_product_groups(productType=self.__class__.test_product_group) self.assertEqual(response['status'], 200) self.assertIsInstance(response['content'], list) if __name__ == '__main__': unittest.main()
import os import requests import glob import json import http.client from redashAPI import RedashAPIClient from dotenv import load_dotenv http.client._MAXLINE = 655360 * 4 load_dotenv() redashUrl = os.getenv('REDASH_URL', 'http://localhost:5000') setupPayload = { 'name': os.getenv('USER_NAME', 'admin'), 'email': os.getenv('USER_EMAIL', 'admin@example.org'), 'password': os.getenv('USER_PASS', 'supersecret123'), 'security_notifications': 'y', 'org_name': os.getenv('ORG_NAME', 'organization') } setupHeaders = { 'Content-Type': 'application/x-www-form-urlencoded', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,' 'application/signed-exchange;v=b3;q=0.9' } setupResp = requests.post(url=redashUrl + "/setup", data=setupPayload, headers=setupHeaders, allow_redirects=False) print('User created') ctJson = {'Content-Type': 'application/json;charset=UTF-8'} datasourceQuery = { 'options': { 'host': os.getenv('DB_HOST', 'localhost'), 'port': int(os.getenv('DB_PORT', '5432')), 'user': os.getenv('DB_USER', 'postgres'), 'password': os.getenv('DB_PASS'), 'dbname': os.getenv('DB_NAME', 'public') }, 'type': os.getenv('DB_TYPE', 'pg'), 'name': os.getenv('DATASOURCE_NAME', 'default') } if os.getenv('DB_SSL_MODE') is not None: datasourceQuery['options']['sslmode'] = os.getenv('DB_SSL_MODE') datasourceResp = requests.post(url=redashUrl + "/api/data_sources", cookies=setupResp.cookies, json=datasourceQuery, headers=ctJson) datasourceId = datasourceResp.json()['id'] print('Datasource created') usersResp = requests.get(url=redashUrl + "/api/users/1", cookies=setupResp.cookies) apiKey = usersResp.json()['api_key'] print('Api key:', apiKey) redash = RedashAPIClient(apiKey, redashUrl) dashboardName = os.getenv('DASHBOARD_NAME') dashboardResp = redash.create_dashboard(dashboardName) dashboardId = dashboardResp.json()['id'] print('Created dashboard', dashboardName) queriesDir = os.getenv('QRY_DIR', './') if not queriesDir.endswith('/'): queriesDir += '/' for fileName in glob.iglob(queriesDir + '*.json', recursive=True): f = open(fileName, "r") widgetJson = f.read() if len(widgetJson) > 0: widget = json.loads(widgetJson) widget['dashboard_id'] = dashboardId widgetResp = redash.post('widgets', widget) print('Created widget from', fileName) for fileName in glob.iglob(queriesDir + '*.sql', recursive=True): f = open(fileName, "r") queryName = f.readline()[2:].strip() queryDescription = f.readline()[2:].strip() visualization = json.loads(f.readline()[2:].strip()) widgetJson = f.readline()[2:].strip() widget = {} if len(widgetJson) > 3: widget = json.loads(widgetJson) query = f.read() queryResp = redash.create_query( ds_id=datasourceId, name=queryName, qry=query, desc=queryDescription) queryId = queryResp.json()['id'] print('Created query', queryName, 'id:', queryId) if len(visualization) > 3: visualization['query_id'] = queryId visResp = redash.post('visualizations', visualization) visId = visResp.json()['id'] print('Created visualisation for', queryName, 'query. Visualization id:', visId) redash.generate_query_results( ds_id=datasourceId, qry=query, qry_id=queryId) print('Generated query results for', queryName, 'query.') publishResp = requests.post(url="{}{}{}{}".format(redashUrl, "/queries", queryId, "/source"), cookies=setupResp.cookies, headers=ctJson, data={'id': queryId, 'version': queryResp.json()['version'], 'is_draft': False}) if len(widgetJson) > 3: widget['dashboard_id'] = dashboardId widget['visualization_id'] = visId widgetResp = redash.post('widgets', widget) print('Created widget for', queryName, 'query') redash.publish_dashboard(dashboardId) print('Published dashboard', dashboardName)
from .gp_tuner import GPTuner, GPClassArgsValidator
from pylibpd import * import array import pygame import numpy from os import environ BUFFERSIZE = 1024 BLOCKSIZE = 64 SCREENSIZE = (640, 480) environ['SDL_VIDEO_CENTERED'] = '1' pygame.init() screen = pygame.display.set_mode(SCREENSIZE) m = PdManager(1, 2, pygame.mixer.get_init()[0], 1) patch = libpd_open_patch('funtest.pd', '.') print "$0: ", patch # this is basically a dummy since we are not actually going to read from the mic inbuf = array.array('h', range(BLOCKSIZE)) # the pygame channel that we will use to queue up buffers coming from pd ch = pygame.mixer.Channel(0) # python writeable sound buffers sounds = [pygame.mixer.Sound(numpy.zeros((BUFFERSIZE, 2), numpy.int16)) for s in range(2)] samples = [pygame.sndarray.samples(s) for s in sounds] rectangles = [] rectcolor = (255, 0, 0) bg = (255, 255, 255) rectsize = 200 def updatexy(event): libpd_float('x', float(event.pos[1]) / SCREENSIZE[1]) libpd_float('y', float(event.pos[0]) / SCREENSIZE[0]) libpd_bang('trigger') rectangles.append([event.pos, 0]) # we go into an infinite loop selecting alternate buffers and queueing them up # to be played each time we run short of a buffer selector = 0 quit = False while not quit: # we have run out of things to play, so queue up another buffer of data from Pd if not ch.get_queue(): # make sure we fill the whole buffer for x in range(BUFFERSIZE): # let's grab a new block from Pd each time we're out of BLOCKSIZE data if x % BLOCKSIZE == 0: outbuf = m.process(inbuf) # de-interlace the data coming from libpd samples[selector][x][0] = outbuf[(x % BLOCKSIZE) * 2] samples[selector][x][1] = outbuf[(x % BLOCKSIZE) * 2 + 1] # queue up the buffer we just filled to be played by pygame ch.queue(sounds[selector]) # next time we'll do the other buffer selector = int(not selector) for event in pygame.event.get(): if event.type == pygame.QUIT or event.type == pygame.KEYDOWN and event.key == 27: quit = True if event.type == pygame.MOUSEBUTTONDOWN: updatexy(event) screen.fill(bg) delrects = [] for r in rectangles: dr = pygame.Rect(r[0][0], r[0][1], r[1], r[1]) dr.center = r[0] cv = 255 * (rectsize - r[1]) / rectsize pygame.draw.rect(screen, (255, 255 - cv, 255 - cv), dr, 2) r[1] += 1 if r[1] >= rectsize: delrects.append(r) for r in delrects: rectangles.remove(r) pygame.display.flip() libpd_release()