content
stringlengths
5
1.05M
"""Interface for drivers.""" import abc from collections import namedtuple from typing import Any from mpf.core.platform import DriverConfig PulseSettings = namedtuple("PulseSettings", ["power", "duration"]) HoldSettings = namedtuple("HoldSettings", ["power", "duration"]) # Python 3.7 supports a defaults arg in namedtuple, but 3.6 does not HoldSettings.__new__.__defaults__ = (None, None) class DriverPlatformInterface(metaclass=abc.ABCMeta): """Interface for drivers in hardware platforms. DriverPlatformInterface is an abstract base class that should be overridden for all driver interface classes on supported platforms. This class ensures the proper required methods are implemented to support driver operations in MPF. """ __slots__ = ["number", "config"] def __init__(self, config: DriverConfig, number: "Any") -> None: """Initialise driver.""" self.number = number # type: Any self.config = config # type: DriverConfig @abc.abstractmethod def pulse(self, pulse_settings: PulseSettings): """Pulse a driver. Pulse this driver for a pre-determined amount of time, after which this driver is turned off automatically. Note that on most platforms, pulse times are a max of 255ms. (Beyond that MPF will send separate enable() and disable() commands. """ raise NotImplementedError @abc.abstractmethod def enable(self, pulse_settings: PulseSettings, hold_settings: HoldSettings): """Enable this driver, which means it's held "on" indefinitely until it's explicitly disabled.""" raise NotImplementedError @abc.abstractmethod def disable(self): """Disable the driver.""" raise NotImplementedError @abc.abstractmethod def timed_enable(self, pulse_settings: PulseSettings, hold_settings: HoldSettings): """Enable the driver for a pre-specified duration.""" raise NotImplementedError @abc.abstractmethod def get_board_name(self): """Return the name of the board of this driver.""" raise NotImplementedError def __repr__(self): """Return board + number.""" return "<Driver {} {} (config: {})>".format(self.get_board_name(), self.number, self.config)
import os import numpy as np from functools import reduce import random DATASET_DIR='D:/dataset/cifar-10-batches-py' TARGET_SAVE_DIR='D:/dataset/cifar-10-batches-py/prepDat' TRAIN_TEST_RATIO=[0.8, 0.8, 0.5, 0.8, 0.5, 0.8, 0.8, 0.8, 0.8, 0.5] CIFAR_MEAN=[125.3, 123.0, 113.9] CIFAR_LABEL={0:"airplane", 1:"automobile", 2:"bird",3:"cat",4:"deer", 5:"dog",6:"frog",7:"horse",8:"ship",9:"truck"} def unpickle(file): import pickle with open(file,'rb') as fil: dic=pickle.load(fil,encoding='bytes') return dic def createDataAndLabel(imList,indexList): imL=[np.stack([ imList[f] for f in fLabIn],axis=0) for fLabIn in indexList] LabelL=[[ind]*val.shape[0] for ind,val in enumerate(imL)] LabelL=reduce((lambda x,y:x+y),LabelL) imL=np.concatenate(imL,axis=0) LabelL=np.array(LabelL) return imL,LabelL trainDatasetFileL=['data_batch_1','data_batch_2','data_batch_3','data_batch_4','data_batch_5'] testDatasetFileL=['test_batch'] random.seed(0) #load original data imL,labelL=list(zip(*[[f2[b'data'],f2[b'labels']] for f2 in [unpickle(os.path.join(DATASET_DIR,f)) for f in trainDatasetFileL]])) imL=np.concatenate(imL,axis=0) labelL=reduce((lambda x,y:x+y),labelL) #image pre-processing imMean=np.array(CIFAR_MEAN).reshape(1,3,1,1) imL=imL.reshape(imL.shape[0],3,32,32) imNormL=(imL.astype(np.float32)-imMean)/255 #random train/test dataset splitting labelIndexL=[[ind for ind,val in enumerate(labelL) if val==fLab] for fLab in range(10)] trainTestIndL=[] for fInd,fLabIn in enumerate(labelIndexL): sepPt=int(TRAIN_TEST_RATIO[fInd]*len(fLabIn)) random.shuffle(fLabIn) trainTestIndL.append([fLabIn[:sepPt],fLabIn[sepPt:]]) trainIndL,testIndL=list(zip(*trainTestIndL)) trainIndL=trainIndL #dataset preparation trainImL,trainLabL=createDataAndLabel(imNormL,trainIndL) testImL,testLabL=createDataAndLabel(imNormL,testIndL) #save prepared dataset np.save("%s/trainIm.npy"%(TARGET_SAVE_DIR),trainImL) np.save("%s/trainLab.npy"%(TARGET_SAVE_DIR),trainLabL) np.save("%s/testIm.npy"%(TARGET_SAVE_DIR),testImL) np.save("%s/testLab.npy"%(TARGET_SAVE_DIR),testLabL)
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class EstimatePurgeDataSizeDetails(object): """ This is the input used to estimate the size of data that might be purged """ #: A constant which can be used with the data_type property of a EstimatePurgeDataSizeDetails. #: This constant has a value of "LOG" DATA_TYPE_LOG = "LOG" #: A constant which can be used with the data_type property of a EstimatePurgeDataSizeDetails. #: This constant has a value of "LOOKUP" DATA_TYPE_LOOKUP = "LOOKUP" def __init__(self, **kwargs): """ Initializes a new EstimatePurgeDataSizeDetails object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param compartment_id: The value to assign to the compartment_id property of this EstimatePurgeDataSizeDetails. :type compartment_id: str :param compartment_id_in_subtree: The value to assign to the compartment_id_in_subtree property of this EstimatePurgeDataSizeDetails. :type compartment_id_in_subtree: bool :param time_data_ended: The value to assign to the time_data_ended property of this EstimatePurgeDataSizeDetails. :type time_data_ended: datetime :param purge_query_string: The value to assign to the purge_query_string property of this EstimatePurgeDataSizeDetails. :type purge_query_string: str :param data_type: The value to assign to the data_type property of this EstimatePurgeDataSizeDetails. Allowed values for this property are: "LOG", "LOOKUP" :type data_type: str """ self.swagger_types = { 'compartment_id': 'str', 'compartment_id_in_subtree': 'bool', 'time_data_ended': 'datetime', 'purge_query_string': 'str', 'data_type': 'str' } self.attribute_map = { 'compartment_id': 'compartmentId', 'compartment_id_in_subtree': 'compartmentIdInSubtree', 'time_data_ended': 'timeDataEnded', 'purge_query_string': 'purgeQueryString', 'data_type': 'dataType' } self._compartment_id = None self._compartment_id_in_subtree = None self._time_data_ended = None self._purge_query_string = None self._data_type = None @property def compartment_id(self): """ **[Required]** Gets the compartment_id of this EstimatePurgeDataSizeDetails. This is the compartment OCID under which the data will be purged :return: The compartment_id of this EstimatePurgeDataSizeDetails. :rtype: str """ return self._compartment_id @compartment_id.setter def compartment_id(self, compartment_id): """ Sets the compartment_id of this EstimatePurgeDataSizeDetails. This is the compartment OCID under which the data will be purged :param compartment_id: The compartment_id of this EstimatePurgeDataSizeDetails. :type: str """ self._compartment_id = compartment_id @property def compartment_id_in_subtree(self): """ Gets the compartment_id_in_subtree of this EstimatePurgeDataSizeDetails. If true, purge child compartments data :return: The compartment_id_in_subtree of this EstimatePurgeDataSizeDetails. :rtype: bool """ return self._compartment_id_in_subtree @compartment_id_in_subtree.setter def compartment_id_in_subtree(self, compartment_id_in_subtree): """ Sets the compartment_id_in_subtree of this EstimatePurgeDataSizeDetails. If true, purge child compartments data :param compartment_id_in_subtree: The compartment_id_in_subtree of this EstimatePurgeDataSizeDetails. :type: bool """ self._compartment_id_in_subtree = compartment_id_in_subtree @property def time_data_ended(self): """ **[Required]** Gets the time_data_ended of this EstimatePurgeDataSizeDetails. This is the time before which data will be purged :return: The time_data_ended of this EstimatePurgeDataSizeDetails. :rtype: datetime """ return self._time_data_ended @time_data_ended.setter def time_data_ended(self, time_data_ended): """ Sets the time_data_ended of this EstimatePurgeDataSizeDetails. This is the time before which data will be purged :param time_data_ended: The time_data_ended of this EstimatePurgeDataSizeDetails. :type: datetime """ self._time_data_ended = time_data_ended @property def purge_query_string(self): """ Gets the purge_query_string of this EstimatePurgeDataSizeDetails. This is the solr data filter query, '*' means all :return: The purge_query_string of this EstimatePurgeDataSizeDetails. :rtype: str """ return self._purge_query_string @purge_query_string.setter def purge_query_string(self, purge_query_string): """ Sets the purge_query_string of this EstimatePurgeDataSizeDetails. This is the solr data filter query, '*' means all :param purge_query_string: The purge_query_string of this EstimatePurgeDataSizeDetails. :type: str """ self._purge_query_string = purge_query_string @property def data_type(self): """ Gets the data_type of this EstimatePurgeDataSizeDetails. This is the type of the log data to be purged Allowed values for this property are: "LOG", "LOOKUP" :return: The data_type of this EstimatePurgeDataSizeDetails. :rtype: str """ return self._data_type @data_type.setter def data_type(self, data_type): """ Sets the data_type of this EstimatePurgeDataSizeDetails. This is the type of the log data to be purged :param data_type: The data_type of this EstimatePurgeDataSizeDetails. :type: str """ allowed_values = ["LOG", "LOOKUP"] if not value_allowed_none_or_none_sentinel(data_type, allowed_values): raise ValueError( "Invalid value for `data_type`, must be None or one of {0}" .format(allowed_values) ) self._data_type = data_type def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
"""Unit test module for internationalization logic""" from __future__ import unicode_literals # isort:skip from flask import current_app from flask_login import login_user from portal.models.i18n import get_locale from portal.models.user import User from tests import TEST_USER_ID, TestCase class TestI18n(TestCase): """I18n tests""" def test_get_locale(self): assert get_locale() == current_app.config.get("DEFAULT_LOCALE") language = 'en_AU' language_name = "Australian English" test_user = User.query.get(TEST_USER_ID) test_user.locale = (language, language_name) login_user(test_user) assert get_locale() == language
#!/usr/bin/env python # coding: utf-8 ############################################# # File Name: setup.py # Author: whzcorcd # Mail: whzcorcd@gmail.com # Created Time: 2020-06-08 ############################################# from setuptools import setup, find_packages with open("README.md", "r") as fh: long_description = fh.read() setup( name="sentry-wechat", version='0.0.3', author='whzcorcd', author_email='whzcorcd@gmail.com', url='https://github.com/corcd/sentry-wechat', description='A sentry extension which share information to Wechat Work', long_description=long_description, long_description_content_type="text/markdown", license='MIT', keywords='sentry wechat', include_package_data=True, zip_safe=False, package_dir={'': 'src'}, packages=find_packages('src'), install_requires=[ 'sentry>=9.0.0', 'requests', ], entry_points={ 'sentry.plugins': [ 'sentry_wechat = sentry_wechat.plugin:WechatPlugin' ] }, classifiers=[ 'Programming Language :: Python :: 2.7', "License :: OSI Approved :: MIT License", ] )
# MODE = 'django' # # SOURCE_VOCAB_SIZE = 2490 # 2492 # 5980 # TARGET_VOCAB_SIZE = 2101 # 2110 # 4830 # # RULE_NUM = 222 # 228 # NODE_NUM = 96 # # NODE_EMBED_DIM = 256 # EMBED_DIM = 128 # RULE_EMBED_DIM = 256 # QUERY_DIM = 256 # LSTM_STATE_DIM = 256 # DECODER_ATT_HIDDEN_DIM = 50 # POINTER_NET_HIDDEN_DIM = 50 # # MAX_QUERY_LENGTH = 70 # MAX_EXAMPLE_ACTION_NUM = 100 # # DECODER_DROPOUT = 0.2 # WORD_DROPOUT = 0 # # # encoder # ENCODER_LSTM = 'bilstm' # # # decoder # PARENT_HIDDEN_STATE_FEEDING = True # PARENT_RULE_FEEDING = True # NODE_TYPE_FEEDING = True # TREE_ATTENTION = True # # # training # TRAIN_PATIENCE = 10 # MAX_EPOCH = 50 # BATCH_SIZE = 10 # VALID_PER_MINIBATCH = 4000 # SAVE_PER_MINIBATCH = 4000 # # # decoding # BEAM_SIZE = 15 # DECODE_MAX_TIME_STEP = 100 config_info = None
from lxmert.lxmert.src.tasks import vqa_data from lxmert.lxmert.src.modeling_frcnn import GeneralizedRCNN import lxmert.lxmert.src.vqa_utils as utils from lxmert.lxmert.src.processing_image import Preprocess from transformers import LxmertTokenizer from lxmert.lxmert.src.huggingface_lxmert import LxmertForQuestionAnswering from lxmert.lxmert.src.lxmert_lrp import LxmertForQuestionAnswering as LxmertForQuestionAnsweringLRP from tqdm import tqdm from lxmert.lxmert.src.ExplanationGenerator import HeadPrune, LayerPrune import random from lxmert.lxmert.src.param import args import torch OBJ_URL = "https://raw.githubusercontent.com/airsplay/py-bottom-up-attention/master/demo/data/genome/1600-400-20/objects_vocab.txt" ATTR_URL = "https://raw.githubusercontent.com/airsplay/py-bottom-up-attention/master/demo/data/genome/1600-400-20/attributes_vocab.txt" VQA_URL = "https://raw.githubusercontent.com/airsplay/lxmert/master/data/vqa/trainval_label2ans.json" class ModelPert: def __init__(self, COCO_val_path, use_lrp=False): self.COCO_VAL_PATH = COCO_val_path self.vqa_answers = utils.get_data(VQA_URL) # load models and model components self.frcnn_cfg = utils.Config.from_pretrained("unc-nlp/frcnn-vg-finetuned") self.frcnn_cfg.MODEL.DEVICE = "cuda" self.frcnn = GeneralizedRCNN.from_pretrained("unc-nlp/frcnn-vg-finetuned", config=self.frcnn_cfg) self.image_preprocess = Preprocess(self.frcnn_cfg) self.lxmert_tokenizer = LxmertTokenizer.from_pretrained("unc-nlp/lxmert-base-uncased") self.lxmert_vqa = LxmertForQuestionAnsweringLRP.from_pretrained("unc-nlp/lxmert-vqa-uncased").to("cuda") self.lxmert_vqa_no_lrp = LxmertForQuestionAnswering.from_pretrained("unc-nlp/lxmert-vqa-uncased").to("cuda") self.lxmert_vqa.eval() self.lxmert_vqa_no_lrp.eval() self.model = self.lxmert_vqa self.vqa_dataset = vqa_data.VQADataset(splits="valid") self.pert_steps = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] self.pert_acc = [0] * len(self.pert_steps) def forward(self, item): image_file_path = self.COCO_VAL_PATH + item['img_id'] + '.jpg' self.image_file_path = image_file_path self.image_id = item['img_id'] # run frcnn images, sizes, scales_yx = self.image_preprocess(image_file_path) output_dict = self.frcnn( images, sizes, scales_yx=scales_yx, padding="max_detections", max_detections= self.frcnn_cfg.max_detections, return_tensors="pt" ) inputs = self.lxmert_tokenizer( item['sent'], truncation=True, return_token_type_ids=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt" ) self.question_tokens = self.lxmert_tokenizer.convert_ids_to_tokens(inputs.input_ids.flatten()) self.text_len = len(self.question_tokens) # Very important that the boxes are normalized normalized_boxes = output_dict.get("normalized_boxes") features = output_dict.get("roi_features") self.image_boxes_len = features.shape[1] self.bboxes = output_dict.get("boxes") self.output = self.lxmert_vqa( input_ids=inputs.input_ids.to("cuda"), attention_mask=inputs.attention_mask.to("cuda"), visual_feats=features.to("cuda"), visual_pos=normalized_boxes.to("cuda"), token_type_ids=inputs.token_type_ids.to("cuda"), return_dict=True, output_attentions=False, ) return self.output def perturbation(self, item, scores_text, scores_image, is_positive_pert=False, heads=True): image_file_path = self.COCO_VAL_PATH + item['img_id'] + '.jpg' # run frcnn images, sizes, scales_yx = self.image_preprocess(image_file_path) output_dict = self.frcnn( images, sizes, scales_yx=scales_yx, padding="max_detections", max_detections=self.frcnn_cfg.max_detections, return_tensors="pt" ) inputs = self.lxmert_tokenizer( item['sent'], truncation=True, return_token_type_ids=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt" ) # Very important that the boxes are normalized normalized_boxes = output_dict.get("normalized_boxes") features = output_dict.get("roi_features") num_text_layers = len(scores_text) num_image_layers = len(scores_image) # create a 1D tensor of all scores # the initial shape of the scores differs from heads to layers if heads == True: num_text_heads = scores_text[0].shape[0] num_image_heads = scores_image[0].shape[0] tot_num = num_text_layers * num_text_heads + num_image_layers * num_image_heads scores_text = torch.stack(scores_text) scores_image = torch.stack(scores_image) joint_scores = torch.cat([scores_text, scores_image]).to("cuda") else: tot_num = num_text_layers + num_image_layers joint_scores = torch.tensor(scores_text + scores_image) #In layers-pruning these are two lists so we use '+' if is_positive_pert: # if positive pert then flip scores joint_scores = joint_scores * (-1) with torch.no_grad(): for step_idx, step in enumerate(self.pert_steps): # find top step heads curr_num = int((1 - step) * tot_num) joint_scores = joint_scores.flatten() _, top_heads = joint_scores.topk(k=curr_num, dim=-1) heads_indicator = torch.zeros_like(joint_scores) heads_indicator[top_heads] = 1 # reshape the binary vector, in layers num_image_heads is irrelevant so we use 1 if heads == True: heads_indicator = heads_indicator.reshape(num_text_layers + num_image_layers, num_image_heads) else: heads_indicator = heads_indicator.reshape(num_text_layers + num_image_layers, 1) # split binary vector to text heads and image heads heads_indicator_text = heads_indicator[:num_text_layers, :] heads_indicator_image = heads_indicator[num_text_layers:, :] output = self.lxmert_vqa_no_lrp( input_ids=inputs.input_ids.to("cuda"), attention_mask=inputs.attention_mask.to("cuda"), visual_feats=features.to("cuda"), visual_pos=normalized_boxes.to("cuda"), token_type_ids=inputs.token_type_ids.to("cuda"), return_dict=True, output_attentions=False, text_head_prune=heads_indicator_text, image_head_prune=heads_indicator_image, ) answer = self.vqa_answers[output.question_answering_score.argmax()] accuracy = item["label"].get(answer, 0) self.pert_acc[step_idx] += accuracy return self.pert_acc def main(args): model_pert = ModelPert(args.COCO_path, use_lrp=True) if args.prune_type == "head": # is head pruning or layer pruning gen = HeadPrune(model_pert) else: gen = LayerPrune(model_pert) vqa_dataset = vqa_data.VQADataset(splits="valid") method_name = args.method items = vqa_dataset.data random.seed(args.seed) r = list(range(len(items))) random.shuffle(r) pert_samples_indices = r[:args.num_samples] iterator = tqdm([vqa_dataset.data[i] for i in pert_samples_indices]) test_type = "positive" if args.is_positive_pert is True else "negative" modality = "text" if args.is_text_pert else "image" print("running {0} {1} prune pert test for {2} modality with method {3}".format(test_type, args.prune_type, modality, args.method)) for index, item in enumerate(iterator): grad_scores_text, grad_scores_image, cam_scores_text, cam_scores_image = gen.generate_ours(item) scores_text = grad_scores_text if method_name == "ours" else cam_scores_text scores_image = grad_scores_image if method_name == "ours" else cam_scores_image curr_pert_result = model_pert.perturbation(item, scores_text, scores_image, args.is_positive_pert, heads=(args.prune_type == "head")) curr_pert_result = [round(res / (index + 1) * 100, 2) for res in curr_pert_result] iterator.set_description("Acc: {}".format(curr_pert_result)) if __name__ == "__main__": main(args)
import torch import torchvision import torch.nn as nn import torchvision.transforms as transforms from torch.utils.data import DataLoader, random_split from torch.autograd import Variable import numpy as np class CustomDataset: def __init__(self,args,graph,vec): self.args = args self.data = vec self.to_tensor = transforms.ToTensor() self.num= len(graph.nodes()) # Calculate len self.data_len = len(self.data.index) def __getitem__(self, index): inp_as_np = np.asarray(self.data.iloc[index][0:self.num]).reshape(1,self.num) fin_as_np = np.asarray(self.data.iloc[index][self.num:]).reshape(1,self.num) # Transform to tensor inp_as_tensor = torch.from_numpy(inp_as_np).type('torch.FloatTensor').squeeze() fin_as_tensor = torch.from_numpy(fin_as_np).type('torch.FloatTensor').squeeze() return (inp_as_tensor, fin_as_tensor) def __len__(self): return self.data_len
from django.http import HttpResponse from django.core.mail import send_mail from django.core.context_processors import csrf from django.core.mail import send_mail from django.conf import settings from django.shortcuts import render_to_response, render from django.template import loader,RequestContext import xlab.settings from django.contrib.auth.decorators import login_required from slipstream.user.account import UserAccount import logging from string import letters, digits import random from random import choice from grid_user.models import ChangeEmail, ChangePassword, User log = logging.getLogger("[GRID_USER]: ") @login_required def user(request): context = {} context['SiteName'] = settings.SITE_NAME context['SiteTitle'] = 'Account' context['navbar'] = 'account_nav.html' context['application'] = 'summary' #start with a summary return render(request, "account.html", context) @login_required def change_password(request): account_server = settings.ACCOUNT_SERVER_URL #account_server = "http://127.0.0.1:8000" from_address = settings.ACCOUNT_ADMIN_EMAIL if request.POST: data = request.POST password = data.get('pass', None) key = ''.join(choice(letters + digits) for i in range(64)) cuser_id = request.user.id pwc = ChangePassword.objects.create_confirmation(password, key, cuser_id) email = request.user.email activate_link = '%s:%s' %(request.META['SERVER_NAME'], request.META['SERVER_PORT']) send_mail('Xlab Account: Password change confirmation link', 'Please use the link to confirm the password change on your account: %s/account/change_password?key=%s'%(account_server, key), from_address, [email]) context = {} context['SiteName'] = settings.SITE_NAME context['SiteTitle'] = 'Xlab' context['navbar'] = 'account_nav.html' context['application'] = 'summary' context['notify'] = 'Confirmation link has been sent to your registered email address' return render(request, "account/change-password.html", context) else: errors = [] if not request.GET.get('key', ''): errors.append('Missing "key"') response = HttpResponse("Error: %s"% errors) try: key = request.GET.get('key', '') cuser_id = request.GET.get('') passwd = ChangePassword.objects.get(activation_key=key) user = User.objects.get(id=passwd.user_id) user.set_password(passwd.password) user.save() except: return HttpResponse("No active task for %s. Please try again" % key) return HttpResponse("Hey %s" % key) @login_required def change_email(request): # Create temporary object as in temp user # User will follow the link to get the change on the reqested address pass
import argparse import numpy as np import matplotlib import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from os import listdir from os.path import isfile, join font = {'size' : 12} matplotlib.rc('font', **font) def get_args(): parser = argparse.ArgumentParser('python') parser.add_argument('-mpi_input_dir', required=False, default='/home/nanmiao/Documents/plot_hpx/Jan_2022_data/Jan_06/Jan_06_mpi_others/', help='') parser.add_argument('-hpx_input_dir', required=False, default='/home/nanmiao/Documents/plot_hpx/Jan_2022_data/Jan_06/Jan_06_hpx_distributed_jemalloc_hpx_local_tcmalloc/', help='') parser.add_argument('-mpi_output_dir', required=False, default='/home/nanmiao/Documents/plot_hpx/Jan_2022_data/Jan_06/2022_0107_mpi_others_stencil_1d.csv', help='') parser.add_argument('-hpx_output_dir', required=False, default='/home/nanmiao/Documents/plot_hpx/Jan_2022_data/Jan_06/2022_0107_hpx_stencil_1d.csv', help='') return parser.parse_args() ########################################################################## def parse_result(file_path, df, ncpu, framwork): with open(file_path, 'r') as f: lines = f.readlines() lines = [line.strip() for line in lines] temp = [] for i, line in enumerate(lines): line = line.split(' ') if line[0] == 'Elapsed' and line[1] == 'Time': elapsed = float(line[2]) temp.append(elapsed) elif line[0] == 'FLOP/s': flops = float(line[1]) temp.append(flops) elif line[0] == "using" and line[1] == "iter:": iter = int(lines[i+1].strip(',')) temp.append(iter) if len(temp) == 3: temp = [framwork, ncpu] + temp df.loc[len(df.index)] = temp temp = [] ############################################################################### def plot_err_band_all_1node(charm, mpi_non, mpi_bulk, mpi_openmp, hpx_jemalloc, hpx_local_tcmalloc, openmp): dfs = pd.concat([charm, mpi_non, mpi_bulk, mpi_openmp, hpx_jemalloc, hpx_local_tcmalloc, openmp], ignore_index = True) ax=sns.lineplot(x='iter',y='flops', data=dfs, sort=False, #markers=['d','o','s','X', '<'], markers=True, style='framework',hue='framework',ci=99, dashes=True, linewidth=3, markersize=10) ax.set_xscale('log',base=2) ax.set_xlim(1<<6, 1<<24) ax.set_ylabel('FLOP/s') ax.set_xlabel('Problem Size (Iterations)') plt.title('Stencil Rostam 1 node') ax.legend(fontsize = 12, loc = 'lower right', fancybox = False, framealpha = 1, handlelength = 1.7, ncol = 1) plt.show() ############################################################################### def plot_err_band_all_2_node(charm, mpi_non, mpi_bulk, mpi_openmp, hpx_jemalloc): dfs = pd.concat([charm, mpi_non, mpi_bulk, mpi_openmp, hpx_jemalloc], ignore_index = True) ax=sns.lineplot(x='iter',y='flops', data=dfs, sort=False, #markers=['d','o','s','X', '<'], markers=True, style='framework',hue='framework',ci=99, dashes=True, linewidth=3, markersize=10) ax.set_xscale('log',base=2) ax.set_xlim(1<<6, 1<<24) ax.set_ylabel('FLOP/s') ax.set_xlabel('Problem Size (Iterations)') plt.title('Stencil Rostam 2 nodes') ax.legend(fontsize = 12, loc = 'lower right', fancybox = False, framealpha = 1, handlelength = 1.7, ncol = 1) plt.show() ############################################################################### def plot_err_band_all_4_node(charm, mpi_non, mpi_bulk, mpi_openmp, hpx_jemalloc): dfs = pd.concat([charm, mpi_non, mpi_bulk, mpi_openmp, hpx_jemalloc], ignore_index = True) ax=sns.lineplot(x='iter',y='flops', data=dfs, sort=False, #markers=['d','o','s','X', '<'], markers=True, style='framework',hue='framework',ci=99, dashes=True, linewidth=3, markersize=10) ax.set_xscale('log',base=2) ax.set_xlim(1<<6, 1<<24) ax.set_ylabel('FLOP/s') ax.set_xlabel('Problem Size (Iterations)') plt.title('Stencil Rostam 4 nodes') ax.legend(fontsize = 12, loc = 'lower right', fancybox = False, framealpha = 1, handlelength = 1.7, ncol = 1) plt.show() ############################################################################### def plot_err_band_all_8_node(charm, mpi_non, mpi_bulk, mpi_openmp, hpx_jemalloc): dfs = pd.concat([charm, mpi_non, mpi_bulk, mpi_openmp, hpx_jemalloc], ignore_index = True) ax=sns.lineplot(x='iter',y='flops', data=dfs, sort=False, #markers=['d','o','s','X', '<'], markers=True, style='framework',hue='framework',ci=99, dashes=True, linewidth=3, markersize=10) ax.set_xscale('log',base=2) ax.set_xlim(1<<6, 1<<24) ax.set_ylabel('FLOP/s') ax.set_xlabel('Problem Size (Iterations)') plt.title('Stencil Rostam 8 nodes') ax.legend(fontsize = 12, loc = 'lower right', fancybox = False, framealpha = 1, handlelength = 1.7, ncol = 1) plt.show() ############################################################################### if __name__ == '__main__': args = get_args() mpi_input_dir = args.mpi_input_dir mpi_output_dir = args.mpi_output_dir hpx_input_dir = args.hpx_input_dir hpx_output_dir = args.hpx_output_dir ################################################################################### # get charm++ data df_charm = pd.read_csv('/home/nanmiao/Documents/plot_hpx/2021-10-22_stencil_1d.csv') df_charm=df_charm.sort_values(by='NITER',ascending=False) df_charm['Framework'] = 'Charm++' df_charm.rename(columns={"NCPU": "ncpu", "NITER": "iter", "FLOPS": "flops", "Framework": "framework"}, inplace=True) charm_1node = df_charm[df_charm['ncpu'] == 48] charm_2node = df_charm[df_charm['ncpu'] == 96] charm_4node = df_charm[df_charm['ncpu'] == 192] charm_8node = df_charm[df_charm['ncpu'] == 384] charm_1node['framework'] = 'Charm++ 1 node' charm_2node['framework'] = 'Charm++ 2 node' charm_4node['framework'] = 'Charm++ 4 node' charm_8node['framework'] = 'Charm++ 8 node' ################################################################################### # read all mpi and hpx all_other_files = [f for f in listdir(mpi_input_dir) if isfile(join(mpi_input_dir, f))] all_hpx_files = [f for f in listdir(hpx_input_dir) if isfile(join(hpx_input_dir, f))] ################################################################################### # mpi, openmp, mpi_openmp df = pd.DataFrame(columns=['framework', 'ncpu', 'iter', 'elapsed', 'flops']) for f in sorted(all_other_files): f_split = f.split("-") n = len(f_split) idx = n - 2 framework = f_split[0:idx] framework = "-".join(framework) ncpu = 48 * int(f_split[idx][0]) parse_result(join(mpi_input_dir, f), df, ncpu, framework) df.to_csv(mpi_output_dir, index=False) mpi_nonblock_1node = df[(df['framework']== 'mpi-non') & (df['ncpu'] == 48 * 1) ] mpi_nonblock_2node = df[(df['framework']== 'mpi-non') & (df['ncpu'] == 48 * 2) ] mpi_nonblock_4node = df[(df['framework']== 'mpi-non') & (df['ncpu'] == 48 * 4) ] mpi_nonblock_8node = df[(df['framework']== 'mpi-non') & (df['ncpu'] == 48 * 8) ] mpi_nonblock_1node['framework'] = 'MPI nonblock 1 node' mpi_nonblock_2node['framework'] = 'MPI nonblock 2 nodes' mpi_nonblock_4node['framework'] = 'MPI nonblock 4 nodes' mpi_nonblock_8node['framework'] = 'MPI nonblock 8 nodes' mpi_bulk_1node = df[(df['framework']== 'mpi-bulk') & (df['ncpu'] == 48 * 1) ] mpi_bulk_2node = df[(df['framework']== 'mpi-bulk') & (df['ncpu'] == 48 * 2) ] mpi_bulk_4node = df[(df['framework']== 'mpi-bulk') & (df['ncpu'] == 48 * 4) ] mpi_bulk_8node = df[(df['framework']== 'mpi-bulk') & (df['ncpu'] == 48 * 8) ] mpi_bulk_1node['framework'] = 'MPI bulk sync 1 node' mpi_bulk_2node['framework'] = 'MPI bulk sync 2 nodes' mpi_bulk_4node['framework'] = 'MPI bulk sync 4 nodes' mpi_bulk_8node['framework'] = 'MPI bulk sync 8 nodes' mpi_openmp_1node = df[(df['framework']== 'mpi-openmp') & (df['ncpu'] == 48 * 1) ] mpi_openmp_2node = df[(df['framework']== 'mpi-openmp') & (df['ncpu'] == 48 * 2) ] mpi_openmp_4node = df[(df['framework']== 'mpi-openmp') & (df['ncpu'] == 48 * 4) ] mpi_openmp_8node = df[(df['framework']== 'mpi-openmp') & (df['ncpu'] == 48 * 8) ] mpi_openmp_1node['framework'] = 'MPI-OpenMP 1 node' mpi_openmp_2node['framework'] = 'MPI-OpenMP 2 nodes' mpi_openmp_4node['framework'] = 'MPI-OpenMP 4 nodes' mpi_openmp_8node['framework'] = 'MPI-OpenMP 8 nodes' openmp = df[(df['framework']== 'openmp') & (df['ncpu'] == 48 * 1) ] openmp['framework'] = 'OpenMP 1 node' ################################################################################### # hpx distributed using jemalloc (plain MPI); hpx local using tcmalloc df = pd.DataFrame(columns=['framework', 'ncpu', 'iter', 'elapsed', 'flops']) for f in sorted(all_hpx_files): f_split = f.split("-") n = len(f_split) idx = n - 2 framework = f_split[0:idx] framework = "-".join(framework) ncpu = 48 * int(f_split[idx][0]) parse_result(join(hpx_input_dir, f), df, ncpu, framework) df.to_csv(hpx_output_dir, index=False) hpx_jemalloc_1node = df[(df['framework']== 'hpx-plainmpi-join') & (df['ncpu'] == 48 * 1) ] hpx_jemalloc_2node = df[(df['framework']== 'hpx-plainmpi-join') & (df['ncpu'] == 48 * 2) ] hpx_jemalloc_4node = df[(df['framework']== 'hpx-plainmpi-join') & (df['ncpu'] == 48 * 4) ] hpx_jemalloc_8node = df[(df['framework']== 'hpx-plainmpi-join') & (df['ncpu'] == 48 * 8) ] hpx_jemalloc_1node['framework'] = 'HPX distributed 1 node' hpx_jemalloc_2node['framework'] = 'HPX distributed 2 nodes' hpx_jemalloc_4node['framework'] = 'HPX distributed 4 nodes' hpx_jemalloc_8node['framework'] = 'HPX distributed 8 nodes' hpx_local_tcmalloc_1node = df[(df['framework']== 'hpx-local-join') & (df['ncpu'] == 48 * 1) ] hpx_local_tcmalloc_1node['framework'] = 'HPX local 1 node' plot_err_band_all_1node(charm_1node, mpi_nonblock_1node, mpi_bulk_1node, mpi_openmp_1node, hpx_jemalloc_1node, hpx_local_tcmalloc_1node, openmp) plot_err_band_all_2_node(charm_2node, mpi_nonblock_2node, mpi_bulk_2node, mpi_openmp_2node, hpx_jemalloc_2node) plot_err_band_all_4_node(charm_4node, mpi_nonblock_4node, mpi_bulk_4node, mpi_openmp_4node, hpx_jemalloc_4node) plot_err_band_all_8_node(charm_8node, mpi_nonblock_8node, mpi_bulk_8node, mpi_openmp_8node, hpx_jemalloc_8node)
#<pycode_BC695(py_netnode)> netnode.alt1st = netnode.altfirst netnode.alt1st_idx8 = netnode.altfirst_idx8 netnode.altnxt = netnode.altnext netnode.char1st = netnode.charfirst netnode.char1st_idx8 = netnode.charfirst_idx8 netnode.charnxt = netnode.charnext netnode.hash1st = netnode.hashfirst netnode.hashnxt = netnode.hashnext netnode.sup1st = netnode.supfirst netnode.sup1st_idx8 = netnode.supfirst_idx8 netnode.supnxt = netnode.supnext #</pycode_BC695(py_netnode)>
# -*- coding: utf-8 -*- """ Module for interfacing decomp++ with cmf (Versions of late Oct. 2009) """ from __future__ import division, print_function, absolute_import, unicode_literals import decomp import numpy as np class CmfConnector(object): """Class for creating decomp++ instances for each layer in a cmf cell """ def __init__(self, cmf_cell, T_avg, max_Corg_depth=1e308): """ Creates the interface for a cell from cmf max_Corg_depth [m] can be used to limit the number of layers owning decomp instances. Only layers whose upper boundary is less than max_Corg_depth get decomp models :param cmf_cell: A cmf cell with layers :param T_avg: The yearly average temperature in deg C :param max_Corg_depth: The lower boundary of Corg """ c = cmf_cell self.cmf_cell = cmf_cell self.__decomplayers = [decomp.SOM() for l in c.layers if l.upper_boundary < max_Corg_depth] self.T_profile = np.ones(c.layer_count()) * T_avg self.T_depth = 2.0 self.pH = 7.0 def depose_litter(self, leave_mass, wood_mass): """Deposes leaves and wood at the first layer leave_mass = Fallen leaves in g/m2 wood_mass = Fallen wood in g/m2 """ self.__decomplayers[0] += leave_mass * decomp.leave_litter() self.__decomplayers[0] += wood_mass * decomp.wood_litter() def depose_root(self, root_mass): for i in range(len(self.__decomplayers)): self.__decomplayers[i] += root_mass[i] * decomp.root_litter() def plow(self, plowdepth=0.3): """Homogenizes the Corg content in all layers where the upper boundary is smaller than the plow depth """ plowlayers = [ l for l in self.cmf_cell.layers if l.upper_boundary < plowdepth - 0.01] sumSOM = decomp.SOM() for l in plowlayers: sumSOM += self[l] sumdepth = sum(l.thickness for l in plowlayers) for l in plowlayers: self[l] = sumSOM * (l.thickness / sumdepth) def __getitem__(self, index): if hasattr(index, "Position"): return self.__decomplayers[index.Position] else: return self.__decomplayers[index] def __setitem__(self, index, SOM): if hasattr(index, "Position"): self.__decomplayers[index.Position] = SOM else: self.__decomplayers[index] = SOM def __iter__(self): return iter(self.__decomplayers) def __getCpool(self): """Returns the mass of carbon stored """ return [l.C for l in self.__decomplayers] def __setCpool(self, value): for i, l in enumerate(self.__decomplayers): if (i < len(value)): l[decomp.RC] = value[i] l.N = value[i] / 20. else: l[decomp.RC] = 0.0 Cpool = property(__getCpool, __setCpool, "Mass of carbon per m²") def run(self, T, dt=1 / 24): """Runs the decomp model for time step dt (a float in days) """ N, DOC = self.cmf_cell.project.solutes for i, l in enumerate(self.cmf_cell.layers): if i + 1 > len(self.__decomplayers): break # field capacity fieldcapacity = l.soil.Wetness_pF([1.8])[0] # set wetness of decomp layer wetness = min(1, l.wetness / fieldcapacity) # get T damping factor fT = 365**(-l.upper_boundary / self.T_depth) # set Temperature of layer self.T_profile[i] = fT * T + (1 - fT) * self.T_profile[i] # set DOC input # DOC precipitation currently disabled self.__decomplayers[i][decomp.DOC] = l[DOC].state # Integrate the decomp decomp_rate = self.__decomplayers[i].integrate(dt, self.T_profile[i], wetness, self.pH) # Update cmf l[N].source = decomp_rate.N l[DOC].source = decomp_rate[decomp.DOC]
from kuri_edu import PowerMonitor import threading import mobile_base_driver.msg import fakerospy import maytest class TestPowerMonitor(maytest.TestBase): def setUp(self): super(TestPowerMonitor, self).setUp() self.patch("kuri_edu.power_monitor.rospy", fakerospy) self.power_pub = fakerospy.Publisher( "mobile_base/power", mobile_base_driver.msg.Power ) def test_ctor_event_hookups(self): dock_changed = threading.Event() charging_changed = threading.Event() dut = PowerMonitor( dock_changed_cb=lambda x: dock_changed.set(), charging_changed_cb=lambda x: charging_changed.set() ) self.addCleanup(dut.shutdown) self.power_pub.publish( mobile_base_driver.msg.Power( dock_present=True ) ) self.assertTrue(dock_changed.is_set()) self.assertFalse(charging_changed.is_set()) self.power_pub.publish( mobile_base_driver.msg.Power( dock_present=True, is_charging=True, ) ) self.assertTrue(dock_changed.is_set()) self.assertTrue(charging_changed.is_set())
import copy import sys sys.path.append("../URP") from utils import * from tqdm import tqdm import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from sklearn.svm import SVC def parameter_count(model): count=0 for p in model.parameters(): count+=np.prod(np.array(list(p.shape))) print(f'Total Number of Parameters: {count}') def vectorize_params(model): param = [] for p in model.parameters(): param.append(p.data.view(-1).cpu().numpy()) return np.concatenate(param) def print_param_shape(model): for k,p in model.named_parameters(): print(k,p.shape) def copy_params(model, model0): for p in model.parameters(): p.data0 = p.data.clone() for p in model0.parameters(): p.data0 = p.data.clone() def get_pdf(p, num_classes, is_base_dist=False, alpha=3e-6): var = copy.deepcopy(1./(p.grad2_acc+1e-8)) var = var.clamp(max=1e3) if p.size(0) == num_classes: var = var.clamp(max=1e2) var = alpha * var if p.ndim > 1: var = var.mean(dim=1, keepdim=True).expand_as(p).clone() if not is_base_dist: mu = copy.deepcopy(p.data0.clone()) else: mu = copy.deepcopy(p.data0.clone()) if p.size(0) == num_classes and num_to_forget is None: mu[class_to_forget] = 0 var[class_to_forget] = 0.0001 if p.size(0) == num_classes: # Last layer var *= 10 elif p.ndim == 1: # BatchNorm var *= 10 # var*=1 return mu, var def l2_distance(weights, weights_retrain): l2 = np.sum(weights**2 - weights_retrain**2) l2 = np.sqrt(l2) return l2 def kl_divergence(mu0, var0, mu1, var1): return ((mu1 - mu0).pow(2)/var0 + var1/var0 - torch.log(var1/var0) - 1).sum() ''' def kl_divergence(p, q): return np.sum(p[i] * np.log2(p[i]/q[i]) for i in range(len(p))) ''' def get_variance(model1, model2, alpha): delta_w_s = [] delta_w_m0 = [] for i, (k, p) in enumerate(model1.named_parameters()): mu, var = get_pdf(p, False, alpha=alpha) delta_w_s.append(var.view(-1)) for i, (k, p) in enumerate(model2.named_parameters()): mu, var = get_pdf(p, False, alpha=alpha) delta_w_m0.append(var.view(-1)) return torch.cat(delta_w_s), torch.cat(delta_w_m0) def get_metrics(model,dataloader,criterion, lossfn='ce', dataset='cifar10', samples_correctness=False,use_bn=False,delta_w=None,scrub_act=False, device='cuda'): activations=[] predictions=[] if use_bn: model.train() dataloader = torch.utils.data.DataLoader(retain_loader.dataset, batch_size=128, shuffle=True) for i in range(10): for batch_idx, (data, target) in enumerate(dataloader): data, target = data.to(device), target.to(device) output = model(data) dataloader = torch.utils.data.DataLoader(dataloader.dataset, batch_size=1, shuffle=False) model.eval() metrics = AverageMeter() mult = 0.5 if lossfn=='mse' else 1 for batch_idx, (data, target) in enumerate(dataloader): data, target = data.to(device), target.to(device) if lossfn=='mse': target=(2*target-1) target = target.type(torch.cuda.FloatTensor).unsqueeze(1) if 'mnist' in dataset: data=data.view(data.shape[0],-1) output = model(data) loss = mult*criterion(output, target) if samples_correctness: activations.append(torch.nn.functional.softmax(output,dim=1).cpu().detach().numpy().squeeze()) predictions.append(get_error(output,target)) metrics.update(n=data.size(0), loss=loss.item(), error=get_error(output, target)) if samples_correctness: return metrics.avg, np.stack(activations), np.array(predictions) else: return metrics.avg def get_error(output, target): if output.shape[1]>1: pred = output.argmax(dim=1, keepdim=True) return 1. - pred.eq(target.view_as(pred)).float().mean().item() else: pred = output.clone() pred[pred>0]=1 pred[pred<=0]=-1 return 1 - pred.eq(target.view_as(pred)).float().mean().item() def save_dict(m0_name, log_dict): np.save(f"logs/{m0_name.split('/')[1].split('.')[0]}.npy", log_dict) def hessian(dataset, model, device='cuda'): model.eval() train_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False) loss_fn = nn.CrossEntropyLoss() for p in model.parameters(): p.grad_acc = 0 p.grad2_acc = 0 for data, orig_target in tqdm(train_loader): data, orig_target = data.to(device), orig_target.to(device) output = model(data) prob = F.softmax(output, dim=-1).data for y in range(output.shape[1]): target = torch.empty_like(orig_target).fill_(y) loss = loss_fn(output, target) model.zero_grad() loss.backward(retain_graph=True) for p in model.parameters(): if p.requires_grad: p.grad_acc += (orig_target == target).float() * p.grad.data p.grad2_acc += prob[:, y] * p.grad.data.pow(2) for p in model.parameters(): p.grad_acc /= len(train_loader) p.grad2_acc /= len(train_loader) ''' def delta_w_utils(model_init, dataloader, lossfn, dataset, num_classes, model, name='complete'): model_init.eval() dataloader = torch.utils.data.DataLoader(dataloader.dataset, batch_size=1, shuffle=False) G_list = [] f0_minus_y = [] for idx, batch in enumerate(dataloader):#(tqdm(dataloader,leave=False)): batch = [tensor.to(next(model_init.parameters()).device) for tensor in batch] input, target = batch if 'mnist' in dataset: input = input.view(input.shape[0],-1) target = target.cpu().detach().numpy() output = model_init(input) G_sample=[] for cls in range(num_classes): grads = torch.autograd.grad(output[0,cls],model_init.parameters(),retain_graph=True) grads = np.concatenate([g.view(-1).cpu().numpy() for g in grads]) G_sample.append(grads) G_list.append(grads) if lossfn=='mse': p = output.cpu().detach().numpy().transpose() #loss_hess = np.eye(len(p)) target = 2*target-1 f0_y_update = p-target elif lossfn=='ce': p = torch.nn.functional.softmax(output,dim=1).cpu().detach().numpy().transpose() p[target]-=1 f0_y_update = model.deepcopy(p) f0_minus_y.append(f0_y_update) return np.stack(G_list).transpose(), np.vstack(f0_minus_y) '''
""" Render slices through a volume, by uploading to a 2D texture. Simple and ... slow. """ import imageio from wgpu.gui.auto import WgpuCanvas, run import pygfx as gfx canvas = WgpuCanvas() renderer = gfx.renderers.WgpuRenderer(canvas) scene = gfx.Scene() vol = imageio.volread("imageio:stent.npz").astype("float32") / 2000 nslices = vol.shape[0] index = nslices // 2 im = vol[index].copy() tex = gfx.Texture(im, dim=2) geometry = gfx.plane_geometry(200, 200, 12, 12) material = gfx.MeshBasicMaterial(map=tex.get_view(filter="linear")) plane = gfx.Mesh(geometry, material) scene.add(plane) camera = gfx.OrthographicCamera(200, 200) @renderer.add_event_handler("wheel") def handle_event(event): global index index = index + int(event.dy / 90) index = max(0, min(nslices - 1, index)) im = vol[index] tex.data[:] = im tex.update_range((0, 0, 0), tex.size) canvas.request_draw() if __name__ == "__main__": canvas.request_draw(lambda: renderer.render(scene, camera)) run()
import unittest from test_text_aug import TestTextAug from test_time_parser import TestTimeParser from test_location_parser import TestLocationParser from test_idiom_solitaire import TestIdiomSolitaire from test_money_parser import TestMoneyParser from test_time_extractor import TestTimeExtractor from test_money_extractor import TestMoneyExtractor from test_remove_url import TestRemoveUrl from test_remove_email import TestRemoveEmail from test_remove_phone_number import TestRemovePhoneNumber if __name__ == '__main__': suite = unittest.TestSuite() tests = [ TestTimeParser('test_time_parser'), # 测试 时间解析 TestLocationParser('test_location_parser'), # 测试 地址解析 TestTextAug('test_ReplaceEntity'), # 测试 实体替换增强 TestIdiomSolitaire('test_idiom_solitaire'), # 测试 成语接龙 TestMoneyParser('test_money_parser'), # 测试 金额抽取与规范化 TestTimeExtractor('test_time_extractor'), # 测试 时间实体抽取 TestMoneyExtractor('test_money_extractor'), # 测试 货币金额实体抽取 TestRemoveUrl('test_remove_url'), # 测试 清洗文本中的超链接 TestRemoveEmail('test_remove_email'), # 测试 清洗文本中的 email TestRemovePhoneNumber('test_remove_phone_number') # 测试 清洗文本中的电话号码 ] suite.addTests(tests) runner = unittest.TextTestRunner(verbosity=1) runner.run(suite)
from flask.ext.wtf.recaptcha import fields from flask.ext.wtf.recaptcha import validators from flask.ext.wtf.recaptcha import widgets __all__ = fields.__all__ + validators.__all__ + widgets.__all__
import argparse import torch import torch.nn import torchaudio import numpy import preprocess import utils from test import inference_an_input from pathlib import Path from mir_eval.separation import bss_eval_sources def evaluate(model_paths: list[str], in_dir: str, n_fft: int, win_length: int, hop_length: int, sample_rate: int, n_frame_in_segment: int, batch_size: int, resample: bool) -> None: """Using the same matircs as https://www.music-ir.org/mirex/wiki/2019:Singing_Voice_Separation Args: model_paths: use model_path[i] to separate ith channel """ models = [utils.load_model(model_path) for model_path in model_paths] n_models = len(models) accum_NSDR, accum_SIR, accum_SAR, n_files = numpy.zeros(n_models), numpy.zeros(n_models), numpy.zeros(n_models), 0 in_dir = Path(in_dir) if not in_dir.exists(): raise FileNotFoundError(f'Not a correct directory path') for f in in_dir.iterdir(): if not utils.is_extension_supported(f): continue ground_truth, orig_sample_rate = torchaudio.load(f) if resample: ground_truth = preprocess.resample_wav(ground_truth, orig_sample_rate, sample_rate) n_channels = ground_truth.shape[0] if n_channels != n_models: continue preds = [ inference_an_input(model, f, n_frame_in_segment, n_fft, win_length, hop_length, sample_rate, batch_size, resample, save_file=False).squeeze(0).numpy() for model in models ] mono_ground_truth = preprocess.mix_channels(ground_truth).squeeze(0).numpy() ground_truth = ground_truth.numpy() SDR, SIR, SAR, _ = bss_eval_sources(ground_truth, numpy.array(preds)) NSDR, _, _, _ = bss_eval_sources(ground_truth, numpy.array([mono_ground_truth, mono_ground_truth])) NSDR = SDR - NSDR accum_NSDR += NSDR accum_SIR += SIR accum_SAR += SAR n_files += 1 GNSDR = accum_NSDR / n_files GSIR = accum_SIR / n_files GSAR = accum_SAR / n_files for i in range(n_models): print(f'Channel {i}:') print(f'GNSDR: {GNSDR[i]:.4f}') print(f'GSIR: {GSIR[i]:.4f}') print(f'GSAR: {GSAR[i]:.4f}') if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--model-paths', type=str, required=True, nargs='+', help='paths of models used for the inference for each channel') parser.add_argument('--in-dir', type=str, required=True, help='path of the input dir') parser.add_argument('--n-fft', type=int, default=2048, help='number of fft (argument for stft)') parser.add_argument('--win-length', type=int, default=2048, help='window length (argument for stft)') parser.add_argument('--hop-length', type=int, default=512, help='hop length (argument for stft)') parser.add_argument('--sample-rate', type=int, default=16000, help='sample rate to resample input wav file') parser.add_argument('--n-frame-in-segment', type=int, default=15, help='number of frames of spectrogram of a 2D segment') parser.add_argument('--batch-size', type=int, default=64, help='number of segments in a batch') parser.add_argument('--resample', type=bool, default=True, help='to resample input or not') args = vars(parser.parse_args()) evaluate(**args)
from django.db import connection from django_elasticsearch_dsl import Index class MultiTenantIndex(Index): @property def _name(self): if connection.tenant.schema_name != 'public': return '{}-{}'.format(connection.tenant.schema_name, self.__name) return self.__name @_name.setter def _name(self, value): if value and value.startswith(connection.tenant.schema_name): value = value.replace(connection.tenant.schema_name + '-', '') self.__name = value
import re import pandas as pd import matplotlib.pyplot as plt from .auto_set_dtypes import auto_set_dtypes # from auto_set_dtypes import auto_set_dtypes # local only def load_dataset(name, **kws): ''' maybe cache in the future https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py ''' if name == 'titanic_raw': filename = 'titanic' else: filename = name full_path = f'https://raw.githubusercontent.com/tll549/TEF/master/data/{filename}.csv' df = pd.read_csv(full_path, **kws) if name == 'titanic': df = auto_set_dtypes(df, set_object=['passenger_id'], verbose=0) return df def reorder_col(df, to_move, after=None, before=None): assert after is not None or before is not None, 'need sth' cols = df.columns.tolist() assert to_move in cols, f'{to_move} not in column names' cols = [x for x in cols if x != to_move] # remove to_move # insert back if after: assert after in cols, f'{after} not in column names' cols.insert(cols.index(after)+1, to_move) elif before: assert before in cols, f'{before} not in column names' cols.insert(cols.index(before), to_move) return df[cols] def rename_cols_by_words(df, words=[], mapper={}, verbose=1): '''replace white space as _, make sure words are separated by _, lower case all''' df2 = df.copy() no_change = [] if len(mapper) > 0: df2 = df2.rename(columns=mapper) for c in range(df2.shape[1]): cn_original = df2.columns[c] cn = cn_original.lower() if cn not in list(mapper.keys()): if ' ' in cn: df2.rename(columns={cn_original: cn.replace(' ', '_')}, inplace=True) for w in words: if w in cn: # if abwcd, wabcd, abcdw, becomes ab_w_cd, w_abcd, abcd_w if re.search('^'+w, cn): if not re.search('^'+w+'_', cn): # wabcd, not w_abcd cn = cn.replace(w, w+'_') elif re.search(w+'$', cn): if not re.search('_'+w+'$', cn): # abcdw, not abcd_w cn = cn.replace(w, '_'+w) else: # abwcd or ab_wcd or abw_cd if re.search('_'+w, cn) and not re.search(w+'_', cn): # ab_wcd cn = cn.replace(w, w+'_') elif re.search(w+'_', cn) and not re.search('_'+w, cn): # abw_cd cn = cn.replace(w, '_'+w) elif not re.search(w+'_', cn) and not re.search('_'+w, cn): # abwcd cn = cn.replace(w, '_'+w+'_') df2.rename(columns={cn_original: cn}, inplace=True) if verbose > 0: if df.columns[c] != df2.columns[c]: print(f'{c:<3}, {df.columns[c]:25} -> {df2.columns[c]:25}') else: no_change.append(c) if verbose > 1: if len(no_change) > 0: print("didn't changed:", [df2.columns[c] for c in no_change]) return df2 def ct(s1, s2, style=True, col_name=None, sort=False, head=False): ''' crosstab count and percentage sort should be using the same name as col_name it is always row sums to 1, which is s1 total counts only on row color background by columns ''' # to avoid s1 or s2 is a condition if s1.name is None: s1.name = 's1' if s2.name is None: s2.name = 's2' c1 = pd.crosstab(s1, s2, margins=True) c2 = pd.crosstab(s1, s2, normalize='index')*100 if col_name is not None: c1.columns = col_name + ['All'] c2.columns = col_name o = pd.concat([c1, c2], axis=1, keys=['count', 'proportion'], sort=False) o.index.name = s1.name o = o[o.index != 'All'] # remove the sum from margins for row, in order to style and sort o.columns.names = [None, None] # add a highest column name for s2 o = pd.concat([o], keys=[s2.name], names=[None], axis=1) if sort: if sort == True: sort = (s2.name, 'count', 'All') o = o.sort_values(sort, ascending=False) if head: o = o.head(head) if style: o = o.style.format('{:.0f}').background_gradient(axis=0) return o def set_relation(s1, s2, plot=True): sr = pd.Series() sr['s1 orig len'] = len(s1) sr['s2 orig len'] = len(s2) s1 = s1[s1.notnull()] s2 = s2[s2.notnull()] sr['s1 notnull len'] = len(s1) sr['s2 notnull len'] = len(s2) sr['s1 nunique'] = s1.nunique() sr['s2 nunique'] = s2.nunique() sr['union'] = len(set(s1) | set(s2)) sr['intersection'] = len(set(s1) & set(s2)) sr['in s1 only'] = len(set(s1) - set(s2)) sr['in s2 only'] = len(set(s2) - set(s1)) if plot: sr_color = [] for n in sr.index: if 's1' in n: sr_color.append('darkblue') elif 's2' in n: sr_color.append('crimson') else: sr_color.append('purple') ax = sr.plot.bar(color=sr_color) for label in ax.get_xticklabels(): label.set_rotation(20) label.set_ha('right') totals = sr.value_counts(dropna=False).values for i in ax.patches: ax.text(i.get_x(), i.get_height(), f'{i.get_height()}') ax.set(title=f'set relation between {s1.name} & {s2.name}') plt.show() return sr def correspondence(s1, s2, verbose=1, fillna=True): ''' credit: Chandra Kuma [1,2,3,4,5] [1,2,3,4,5] '1:1': 5 [1,2,3,4,5] [2,3,4,5,6] 'None': 5 [1,2,3,4,5] [6,6,6,6,6] 'm:1': 5 [6,6,6,6,6] [1,2,3,4,5] '1:m': 5 ''' # imput nan, because nan != nan if fillna and isinstance(s1, pd.core.series.Series): s1 = s1.fillna('nan_filled') s2 = s2.fillna('nan_filled') def scan(s1, s2): d = {} for e1, e2 in zip(s1, s2): if e1 not in d: d[e1] = {e2: 1} else: if e2 not in d[e1]: d[e1][e2] = 1 else: d[e1][e2] += 1 return d d1 = scan(s1, s2) d2 = scan(s2, s1) to_one_k1 = [k for k, v in d1.items() if len(v.keys())==1] # one_to_k2 = [k for k, v in d2.items() if len(v.keys())==1] one_to_k1 = [list(v.keys())[0] for k, v in d2.items() if len(v.keys())==1] one_to_one_k1 = set(to_one_k1) & set(one_to_k1) one_to_many_k1 = set(one_to_k1) - set(to_one_k1) many_to_one_k1 = set(to_one_k1) - set(one_to_k1) many_to_many_k1 = d1.keys() - one_to_one_k1 - one_to_many_k1 - many_to_one_k1 if verbose: print(f'1-1 {len(one_to_one_k1)} {len(one_to_one_k1) / len(set(d1.keys())) *100:.0f}%, 1-m {len(one_to_many_k1)} {len(one_to_many_k1) / len(set(d1.keys())) *100:.0f}%, m-1 {len(many_to_one_k1)} {len(many_to_one_k1) / len(set(d1.keys())) *100:.0f}%, m-m {len(many_to_many_k1)} {len(many_to_many_k1) / len(set(d1.keys())) *100:.0f}%, total {len(set(d1.keys()))}') return {'count_k1': {'total': len(set(d1.keys())), # 'total_k2': len(set(d2.keys())), '1-1': len(one_to_one_k1), '1-m': len(one_to_many_k1), 'm-1': len(many_to_one_k1), 'm-m': len(many_to_many_k1)}, 'k1': {'1-1': one_to_one_k1, '1-m': one_to_many_k1, 'm-1': many_to_one_k1, 'm-m': many_to_many_k1}}
"""Class implementation for the rotation_around_point interface. """ from typing import Any from typing import Dict from apysc._animation.animation_rotation_around_point_interface import \ AnimationRotationAroundPointInterface from apysc._type.dictionary import Dictionary from apysc._type.int import Int from apysc._type.revert_interface import RevertInterface class RotationAroundPointInterface( AnimationRotationAroundPointInterface, RevertInterface): _rotation_around_point: Dictionary[str, Int] def _initialize_rotation_around_point_if_not_initialized(self) -> None: """ Initialize the `_rotation_around_point` attribute if it hasn't been initialized yet. """ if hasattr(self, '_rotation_around_point'): return self._rotation_around_point = Dictionary({}) def get_rotation_around_point(self, x: Int, y: Int) -> Int: """ Get a rotation value around the given coordinates. Parameters ---------- x : Int X-coordinate. y : Int Y-coordinate. Returns ------- rotation : Int Rotation value around the given coordinates. References ---------- - GraphicsBase rotate_around_point interfaces document - https://bit.ly/37TDwKs """ import apysc as ap with ap.DebugInfo( callable_=self.get_rotation_around_point, locals_=locals(), module_name=__name__, class_=RotationAroundPointInterface): from apysc._display import rotation_interface_helper from apysc._type.expression_string import ExpressionString from apysc._validation import number_validation number_validation.validate_integer(integer=x) number_validation.validate_integer(integer=y) self._initialize_rotation_around_point_if_not_initialized() default_val: ap.Int = ap.Int(0) key_exp_str: ExpressionString = rotation_interface_helper.\ get_coordinates_key_for_expression( x=int(x._value), y=int(y._value)) rotation: ap.Int = self._rotation_around_point.get( key=key_exp_str, default=default_val) return rotation def set_rotation_around_point( self, rotation: Int, x: Int, y: Int) -> None: """ Update a rotation value around the given coordinates. Parameters ---------- rotation : Int Rotation value to set. x : Int X-coordinate. y : Int Y-coordinate. References ---------- - GraphicsBase rotate_around_point interfaces document - https://bit.ly/37TDwKs """ import apysc as ap with ap.DebugInfo( callable_=self.set_rotation_around_point, locals_=locals(), module_name=__name__, class_=RotationAroundPointInterface): from apysc._display import rotation_interface_helper from apysc._type.expression_string import ExpressionString from apysc._validation import number_validation number_validation.validate_integer(integer=rotation) number_validation.validate_integer(integer=x) number_validation.validate_integer(integer=y) self._initialize_rotation_around_point_if_not_initialized() key_exp_str: ExpressionString = rotation_interface_helper.\ get_coordinates_key_for_expression( x=int(x._value), y=int(y._value)) self._rotation_around_point._value[key_exp_str.value] = rotation self._append_rotation_around_point_update_expression( rotation=rotation, x=x, y=y) def _append_rotation_around_point_update_expression( self, *, rotation: Int, x: Int, y: Int) -> None: """ Append a rotation value around the given coordinates updating expression. Parameters ---------- rotation : Int Rotation value to set. x : Int X-coordinate. y : Int Y-coordinate. """ import apysc as ap with ap.DebugInfo( callable_=self._append_rotation_around_point_update_expression, # noqa locals_=locals(), module_name=__name__, class_=RotationAroundPointInterface): expression: str = \ self._get_rotation_around_point_updating_expression( rotation=rotation, x=x, y=y) ap.append_js_expression(expression=expression) def _get_rotation_around_point_updating_expression( self, *, rotation: Int, x: Int, y: Int) -> str: """ Get a rotation value around the given coordinates updating expression string. Parameters ---------- rotation : Int Rotation value to set. x : Int X-coordinate. y : Int Y-coordinate. Returns ------- expression : str A rotation value around the given coordinates updating expression string. """ from apysc._display import rotation_interface_helper from apysc._expression import expression_variables_util from apysc._expression import var_names from apysc._type import value_util from apysc._type.expression_string import ExpressionString self._initialize_rotation_around_point_if_not_initialized() before_value_str: str = expression_variables_util.\ get_next_variable_name(type_name=var_names.INT) key_exp_str: ExpressionString = rotation_interface_helper.\ get_coordinates_key_for_expression(x=x, y=y) after_value_str: str = value_util.get_value_str_for_expression( value=rotation) x_value_str: str = value_util.get_value_str_for_expression( value=x) y_value_str: str = value_util.get_value_str_for_expression( value=y) rotation_around_point_value_str: str = value_util.\ get_value_str_for_expression( value=self._rotation_around_point) expression: str = ( f'if ({key_exp_str.value} in ' f'{rotation_around_point_value_str}) {{' f'\n var {before_value_str} = ' f'{rotation_around_point_value_str}[{key_exp_str.value}];' '\n}else {' f'\n {before_value_str} = 0;' '\n}' f'\n{self.variable_name}.rotate(' f'-{before_value_str}, {x_value_str}, {y_value_str});' f'\n{self.variable_name}.rotate(' f'{after_value_str}, {x_value_str}, {y_value_str});' f'\n{rotation_around_point_value_str}[{key_exp_str.value}] = ' f'{after_value_str};' ) return expression _rotation_around_point_snapshots: Dict[str, Dict[str, Any]] def _make_snapshot(self, *, snapshot_name: str) -> None: """ Make a value's snapshot. Parameters ---------- snapshot_name : str Target snapshot name. """ self._initialize_rotation_around_point_if_not_initialized() self._set_single_snapshot_val_to_dict( dict_name='_rotation_around_point_snapshots', value={**self._rotation_around_point._value}, snapshot_name=snapshot_name) def _revert(self, *, snapshot_name: str) -> None: """ Revert a value if snapshot exists. Parameters ---------- snapshot_name : str Target snapshot name. """ if not self._snapshot_exists(snapshot_name=snapshot_name): return self._rotation_around_point._value = \ self._rotation_around_point_snapshots[snapshot_name]
from copy import deepcopy import numpy as np import operator def find_keys(dictionary, sep="~", k=[]): aux = {} keys = dictionary.keys() for key in keys: k.append(key) if isinstance(dictionary[key], dict): aux.update(find_keys(dictionary[key], "~", k)) else: if sep.join(k) not in aux: aux.update({sep.join(k): deepcopy(k)}) del k[-1] return (aux) def pretty_numeric(x, dec=3): if isinstance(x, list): lst = x elif isinstance(x, float) or isinstance(x, int): lst = [x] else: lst = list(x) if len(lst) > 1: return [round(i, dec) if not np.isnan(i) and not np.isinf(i) else None for i in lst] elif len(lst) == 1: return round(lst[0], dec) if not np.isnan(lst[0]) and not np.isinf(lst[0]) else None else: None def getFromDict(dataDict, mapList): return reduce(operator.getitem, mapList, dataDict) def setInDict(dataDict, mapList, value): if isinstance(value,dict): getFromDict(dataDict, mapList[:-1])[mapList[-1]].update(value) else: getFromDict(dataDict, mapList[:-1])[mapList[-1]] = value def unique(seq, idfun=None): if idfun is None: def idfun(x): return x seen = {} result = [] for item in seq: marker = idfun(item) if str(marker) in seen: continue seen[str(marker)] = 1 result.append(item) return result def ensure_list(obj): if isinstance(obj,list): return obj else: return [obj] def set_dict_from_list(dic, keys, value): for key in keys[:-1]: dic = dic.setdefault(key, {}) dic[keys[-1]] = value
from api.app import create_app, db from api.models import User,user_schema, users_schema from flask import request,redirect,jsonify app = create_app() @app.route("/api/v1/add", methods=['GET','POST']) def create(): name = request.json["name"] email = request.json["email"] password = request.json["password"] try: user = User(name=name,email=email,password=password) db.session.add(user) db.session.commit() created_user = User.query.filter_by(email=email).first() except Exception as e: print(f"Error {e}") return user_schema.dump(created_user) @app.route("/api/v1/<int:id>",methods=['GET','POST']) def RetrieveSingleUser(id): user = User.query.filter_by(id=id).first() return user_schema.dump(user) @app.route("/api/v1/users", methods=['GET','POST']) def RetrieveSingleUsers(): users = User.query.all() all_users = users_schema.dump(users) return jsonify(all_users) @app.route("/api/v1/<int:id>/update", methods=['GET','POST']) def update(id): user=User.query.filter_by(id=id).first() if user: name = request.json["name"] email = request.json["email"] # password = request.json["password"] user.name = name user.email = email db.session.commit() return user_schema.dump(user) @app.route("/api/v1/<int:id>/delete", methods=['GET','POST']) def delete(id): user=User.query.filter_by(id=id).first() if request.method == "POST": if user: db.session.delete(user) db.session.commit() return jsonify("User has been deleted") # if __name__ == "__main__": # app.run(debug=True)
# -*- encoding=utf8 -*- __author__ = "eeorunix" import time import random from airtest.core.api import * from airtest.aircv import * from airtest.core.settings import Settings as ST ST.CVSTRATEGY = ["tpl"] ST.THRESHOLD = 0.8 ST.SAVE_IMAGE = False ST.RESIZE_METHOD = None DEBUG = 0 import logging logger = logging.getLogger("airtest") if not DEBUG: logger.setLevel(logging.ERROR) auto_setup(__file__) # 全局当前图片坐标中心点位置 XY = None screen = None start = time.time() cnt = 0 def g(a, b, c): # (767, 498), (767, 531), (868, 531) res = ( max(0, a[0] - 20), max(0, a[1] - 20), c[0] + 20, b[1] + 20 ) return res def click(pos): x, y = pos a = random.randint(0, 4) - 2 b = random.randint(0, 4) - 2 touch((x + a, y + b)) sleep(0.2) def is_found(template, rect=None): global XY global screen logger.debug(str(template)) if rect is not None: new_screen = aircv.crop_image(screen, rect) XY = template.match_in(new_screen) if XY is not None: XY = (XY[0] + rect[0], XY[1] + rect[1]) else: XY = template.match_in(screen) return XY is not None def wait_to(template, rect=None): global screen while 1: screen = G.DEVICE.snapshot() if is_found(template, rect): return sleep(0.2) assert 0 def detach(): '''检索当前图片,更新全局坐标点,返回图片策略序号''' global XY global screen global cnt global start screen = G.DEVICE.snapshot() if is_found(Template(r"tpl1644856635384.png", record_pos=(0.41, -0.223), resolution=(1024, 576)), g((925, 51), (925, 70), (940, 70))): return 0 elif is_found(Template(r"tpl1644856716623.png", target_pos=4, record_pos=(-0.354, -0.255), resolution=(1024, 576)), g((57, 12), (57, 43), (242, 43))): return 0 elif is_found(Template(r"tpl1647070771440.png", record_pos=(0.029, -0.055), resolution=(1024, 576)), g((430, 204), (430, 261), (655, 261))): return 0 elif is_found(Template(r"tpl1644764815224.png", threshold=0.97, target_pos=5, record_pos=(-0.479, -0.009), resolution=(1024, 665))): return 0 elif is_found(Template(r"tpl1644771271544.png", record_pos=(-0.409, -0.074), resolution=(1024, 576)), g((61, 198), (61, 226), (125, 226))): return 0 elif is_found(Template(r"tpl1644766848271.png", rgb=False, record_pos=(0.081, 0.097), resolution=(1024, 665)), g((537, 377), (537, 416), (653, 416))): return 0 elif is_found(Template(r"tpl1644771347927.png", record_pos=(0.209, 0.047), resolution=(1024, 576)), g((648, 298), (648, 375), (805, 375))): return 0 elif is_found(Template(r"tpl1647025537096.png", record_pos=(-0.307, -0.196), resolution=(1024, 576)), g((141, 68), (141, 107), (255, 107))): return 3 elif is_found(Template(r"tpl1647025901008.png", record_pos=(-0.283, -0.194), resolution=(1024, 576)), g((145, 73), (145, 105), (299, 105))): return 3 elif is_found(Template(r"tpl1644771635172.png", record_pos=(0.297, 0.185), resolution=(1024, 576)), g((771, 466), (771, 489), (862, 489))): return 0 elif is_found(Template(r"tpl1644771405564.png", record_pos=(-0.198, -0.237), resolution=(1024, 576)), g((261, 21), (261, 69), (357, 69))): return 2 elif is_found(Template(r"tpl1644771706558.png", record_pos=(-0.151, -0.247), resolution=(1024, 576)), g((338, 6), (338, 65), (377, 65))) and is_found(Template(r"tpl1644771774441.png", record_pos=(0.386, 0.221), resolution=(1024, 576)), g((842, 500), (842, 529), (972, 529))): return 4 elif is_found(Template(r"tpl1647063538393.png", record_pos=(-0.149, -0.234), resolution=(1024, 576)), g((341, 29), (341, 67), (378, 67))) and is_found(Template(r"tpl1647063577054.png", threshold=0.75, rgb=True, record_pos=(0.311, 0.241), resolution=(1024, 576)), g((797, 518), (797, 552), (863, 552))): return 5 elif is_found(Template(r"tpl1647063538393.png", record_pos=(-0.149, -0.234), resolution=(1024, 576)), g((341, 29), (341, 67), (378, 67))) and is_found(Template(r"tpl1647450033644.png", record_pos=(0.311, 0.242), resolution=(1024, 576)), g((801, 517), (801, 555), (861, 555))) and is_found(Template(r"tpl1647066298630.png", record_pos=(-0.439, 0.179), resolution=(1024, 576)), g((2, 456), (2, 487), (122, 487))): return 6 elif is_found(Template(r"tpl1647063538393.png", record_pos=(-0.149, -0.234), resolution=(1024, 576)), g((341, 29), (341, 67), (378, 67))) and is_found(Template(r"tpl1647144019805.png", record_pos=(0.311, 0.242), resolution=(1024, 576)), g((801, 517), (801, 555), (861, 555))): return 7 elif is_found(Template(r"tpl1644773664247.png", record_pos=(-0.437, -0.248), resolution=(1024, 576)), g((31, 18), (31, 51), (100, 51))): XY = (XY[0] + 100, XY[1]) return 0 elif is_found(Template(r"tpl1644775198955.png", record_pos=(-0.076, 0.223), resolution=(1024, 576)), g((408, 509), (408, 524), (461, 524))): XY = (XY[0] + 100, XY[1]) for _ in range(4): click(XY) sleep(0.5) return 0 elif is_found(Template(r"tpl1647069986280.png", record_pos=(-0.246, -0.121), resolution=(1024, 576)), g((194, 153), (194, 175), (327, 175))) and is_found(Template(r"tpl1647070154857.png", target_pos=8, record_pos=(-0.002, 0.046), resolution=(1024, 576)), g((443, 251), (443, 419), (578, 419))): return 0 elif is_found(Template(r"tpl1647070306739.png", record_pos=(-0.2, -0.237), resolution=(1024, 576)), g((258, 20), (258, 71), (359, 71))) and is_found(Template(r"tpl1647070328462.png", record_pos=(-0.064, -0.126), resolution=(1024, 576)), g((427, 140), (427, 179), (465, 179))): return 0 elif is_found(Template(r"tpl1647070542885.png", record_pos=(0.393, 0.199), resolution=(1024, 576)), g((884, 474), (884, 510), (944, 510))): click(XY) sleep(1.0) click(XY) sleep(1.0) return 0 elif is_found(Template(r"tpl1644856432544.png", threshold=0.9500000000000002, record_pos=(-0.281, -0.102), resolution=(1024, 576)), g((193, 153), (193, 216), (256, 216))): XY = (XY[0] - 100, XY[1]) return 0 elif is_found(Template(r"tpl1644779677165.png", record_pos=(-0.415, -0.241), resolution=(1024, 576))): return 0 return -1 def attach(): '''根据当前策略号作相应策略''' global XY global cnt global start index = detach() logger.debug("index============>" + str(index)) if index == 0: click(XY) elif index == 1: logger.debug("============>" + str(XY)) elif index == 2: click((75, 188)) # 作战任务 wait_to(Template(r"tpl1647447498252.png", record_pos=(0.427, -0.185), resolution=(1024, 576)), g((938, 87), (938, 112), (961, 112))) swipe((200, 283), vector=[0.0, -0.4], steps=3, duration=0.2) elif index == 3: click(XY) wait_to(Template(r"tpl1647447972805.png", record_pos=(-0.145, -0.052), resolution=(1024, 576)), g((343, 204), (343, 267), (386, 267))) click((970, 153)) wait_to(Template(r"tpl1647447972805.png", record_pos=(-0.145, -0.052), resolution=(1024, 576)), g((343, 204), (343, 267), (386, 267))) click((540, 237)) elif index == 4: pinch(in_or_out='in', center=None, percent=0.5) # 缩放 sleep(1.0) swipe((200, 283), vector=[1.0, 1.0], steps=50, duration=0.1) # 右下滑动 wait_to(Template(r"tpl1647448741476.png", record_pos=(-0.075, 0.19), resolution=(1024, 576)), g((402, 444), (402, 523), (469, 523))) click((224, 118)) # 左上机场 wait_to(Template(r"tpl1647277864179.png", record_pos=(-0.302, 0.208), resolution=(1024, 576)), g((142, 489), (142, 514), (264, 514))) click((932, 508)) # 第一梯队部署 wait_to(Template(r"tpl1647448741476.png", record_pos=(-0.075, 0.19), resolution=(1024, 576)), g((402, 444), (402, 523), (469, 523))) click((178, 493)) # 左下机场 wait_to(Template(r"tpl1647277864179.png", record_pos=(-0.302, 0.208), resolution=(1024, 576)), g((142, 489), (142, 514), (264, 514))) click((932, 508)) # 第二梯队部署 wait_to(Template(r"tpl1647448741476.png", record_pos=(-0.075, 0.19), resolution=(1024, 576)), g((402, 444), (402, 523), (469, 523))) click((932, 508)) # 开始作战 click((932, 508)) # 开始作战 if time.time() - start > 2: cnt += 1 start = time.time() logger.error("无限脚本开始,当前进行第%d轮" % cnt) sleep(1.5) elif index == 5: wait_to(Template(r"tpl1647449130009.png", record_pos=(-0.429, -0.168), resolution=(1024, 576)), g((56, 99), (56, 133), (90, 133))) click((74, 116)) # 点击说明 wait_to(Template(r"tpl1647449181778.png", record_pos=(-0.428, -0.166), resolution=(1024, 576)), g((61, 102), (61, 135), (87, 135))) click((74, 116)) # 点击说明 sleep(0.2) wait_to(Template(r"tpl1647278147416.png", record_pos=(-0.44, 0.181), resolution=(1024, 576)), g((7, 460), (7, 486), (115, 486))) click((224, 135)) # 左上机场 wait_to(Template(r"tpl1647278748100.png", record_pos=(0.424, -0.172), resolution=(1024, 576)), g((934, 99), (934, 126), (958, 126))) click((60, 472)) # 计划模式 wait_to(Template(r"tpl1647278941881.png", record_pos=(-0.443, 0.181), resolution=(1024, 576)), g((5, 463), (5, 483), (112, 483))) click((155, 243)) # 左上白点 wait_to(Template(r"tpl1647449520081.png", record_pos=(-0.351, -0.044), resolution=(1024, 576)), g((133, 222), (133, 265), (173, 265))) click((178, 493)) # 左下机场 wait_to(Template(r"tpl1647449602282.png", record_pos=(-0.25, 0.198), resolution=(1024, 576)), g((213, 480), (213, 503), (300, 503))) click((168, 493)) # 移动 wait_to(Template(r"tpl1647449673833.png", record_pos=(-0.341, 0.089), resolution=(1024, 576)), g((142, 358), (142, 401), (184, 401))) click((900, 510)) # 执行计划 sleep(10.0) elif index == 6: click((183, 428)) # 左下机场 wait_to(Template(r"tpl1647277864179.png", record_pos=(-0.302, 0.208), resolution=(1024, 576)), g((142, 489), (142, 514), (264, 514))) click((783, 509)) # 撤离 wait_to(Template(r"tpl1647450113336.png", record_pos=(0.081, 0.106), resolution=(1024, 576)), g((540, 379), (540, 415), (651, 415))) click((594, 396)) # 确认撤离 wait_to(Template(r"tpl1647450191589.png", record_pos=(-0.326, 0.141), resolution=(1024, 576)), g((164, 418), (164, 446), (192, 446))) click((183, 428)) # 左下机场 wait_to(Template(r"tpl1647277864179.png", record_pos=(-0.302, 0.208), resolution=(1024, 576)), g((142, 489), (142, 514), (264, 514))) click((201, 502)) # 队伍编成 wait_to(Template(r"tpl1647450267553.png", record_pos=(-0.168, -0.245), resolution=(1024, 576)), g((265, 23), (265, 52), (415, 52))) click((949, 544)) # 阵型编成 wait_to(Template(r"tpl1647450327595.png", record_pos=(0.341, -0.054), resolution=(1024, 576)), g((834, 206), (834, 260), (888, 260))) click((861, 234)) # 梯队预设 wait_to(Template(r"tpl1647450393651.png", record_pos=(0.39, 0.138), resolution=(1024, 576)), g((831, 410), (831, 448), (992, 448))) click((687, 159)) # 预设2 wait_to(Template(r"tpl1647450515144.png", record_pos=(0.008, -0.003), resolution=(1024, 576)), g((512, 240), (512, 329), (552, 329))) click((906, 507)) # 套用预设 wait_to(Template(r"tpl1647450580716.png", record_pos=(-0.061, 0.051), resolution=(1024, 576)), g((432, 323), (432, 357), (468, 357))) click((452, 340)) # 强制替换 wait_to(Template(r"tpl1647450629017.png", record_pos=(-0.06, 0.052), resolution=(1024, 576)), g((432, 323), (432, 357), (468, 357))) click((657, 399)) # 确认 wait_to(Template(r"tpl1647450327595.png", record_pos=(0.341, -0.054), resolution=(1024, 576)), g((834, 206), (834, 260), (888, 260))) click((928, 507)) # 确定 wait_to(Template(r"tpl1647450267553.png", record_pos=(-0.168, -0.245), resolution=(1024, 576)), g((265, 23), (265, 52), (415, 52))) click((87, 42)) # 后退 wait_to(Template(r"tpl1647278147416.png", record_pos=(-0.44, 0.181), resolution=(1024, 576)), g((7, 460), (7, 486), (115, 486))) click((183, 428)) # 左下机场 wait_to(Template(r"tpl1647277864179.png", record_pos=(-0.302, 0.208), resolution=(1024, 576)), g((142, 489), (142, 514), (264, 514))) click((932, 508)) # 确认部署 wait_to(Template(r"tpl1647278147416.png", record_pos=(-0.44, 0.181), resolution=(1024, 576)), g((7, 460), (7, 486), (115, 486))) sleep(0.2) click((183, 428)) # 左下机场 wait_to(Template(r"tpl1647278748100.png", record_pos=(0.424, -0.172), resolution=(1024, 576)), g((934, 99), (934, 126), (958, 126))) click((183, 428)) # 左下机场 wait_to(Template(r"tpl1647277864179.png", record_pos=(-0.302, 0.208), resolution=(1024, 576)), g((142, 489), (142, 514), (264, 514))) click((932, 447)) # 补给 wait_to(Template(r"tpl1647278748100.png", record_pos=(0.424, -0.172), resolution=(1024, 576)), g((934, 99), (934, 126), (958, 126))) click((183, 428)) # 左下机场 wait_to(Template(r"tpl1647277864179.png", record_pos=(-0.302, 0.208), resolution=(1024, 576)), g((142, 489), (142, 514), (264, 514))) click((783, 509)) # 撤离 wait_to(Template(r"tpl1647450113336.png", record_pos=(0.081, 0.106), resolution=(1024, 576)), g((540, 379), (540, 415), (651, 415))) click((594, 396)) # 确认撤离 wait_to(Template(r"tpl1647450191589.png", record_pos=(-0.326, 0.141), resolution=(1024, 576)), g((164, 418), (164, 446), (192, 446))) click((183, 428)) # 左下机场 wait_to(Template(r"tpl1647277864179.png", record_pos=(-0.302, 0.208), resolution=(1024, 576)), g((142, 489), (142, 514), (264, 514))) click((201, 502)) # 队伍编成 wait_to(Template(r"tpl1647450267553.png", record_pos=(-0.168, -0.245), resolution=(1024, 576)), g((265, 23), (265, 52), (415, 52))) click((949, 544)) # 阵型编成 wait_to(Template(r"tpl1647450327595.png", record_pos=(0.341, -0.054), resolution=(1024, 576)), g((834, 206), (834, 260), (888, 260))) click((861, 234)) # 梯队预设 wait_to(Template(r"tpl1647450393651.png", record_pos=(0.39, 0.138), resolution=(1024, 576)), g((831, 410), (831, 448), (992, 448))) click((687, 89)) # 预设1 wait_to(Template(r"tpl1647450515144.png", record_pos=(0.008, -0.003), resolution=(1024, 576)), g((512, 240), (512, 329), (552, 329))) click((906, 507)) # 套用预设 wait_to(Template(r"tpl1647450327595.png", record_pos=(0.341, -0.054), resolution=(1024, 576)), g((834, 206), (834, 260), (888, 260))) click((928, 507)) # 确定 wait_to(Template(r"tpl1647450267553.png", record_pos=(-0.168, -0.245), resolution=(1024, 576)), g((265, 23), (265, 52), (415, 52))) click((87, 42)) # 后退 elif index == 7: click((253, 35)) # 终止作战 wait_to(Template(r"tpl1647451075150.png", record_pos=(-0.118, 0.1), resolution=(1024, 576)), g((324, 366), (324, 415), (458, 415))) click((393, 394)) # 重新作战 if time.time() - start > 2: logger.error("第%d轮结束,耗时%.2lfs" % (cnt, time.time() - start)) start = time.time() sleep(1.0) else: logger.debug("============>" + str(XY)) sleep(1.0) return if DEBUG: attach() else: while True: attach()
# -*- coding: utf-8 -*- """ CALFEM Editor Example Written by Karl Eriksson """ import calfem.editor as cfe import calfem.geometry as cfg import calfem.mesh as cfm import calfem.vis_mpl as cfv import calfem.utils as cfu import calfem.core as cfc import numpy as np # --- Creating a square geometry with two markers g = cfg.Geometry() g.point([0.0, 0.0]) # point 0 g.point([100.0, 0.0]) # point 1 g.point([100, 100]) # point 2 g.point([0, 100]) # point 3 g.spline([0, 1]) # line 0 g.spline([1, 2]) # line 1 g.spline([2, 3]) # line 2 g.spline([3, 0]) # line 3 g.surface([0, 1, 2, 3]) # Connect lines to form surface g.setCurveMarker(0, 10) g.setCurveMarker(2, 20) # --- Open the geometry to allow changes in the CALFEM Geometry Editor new_geometry, marker_dict = cfe.edit_geometry(g) print(marker_dict) t = 0.2 v = 0.35 E = 2.1e9 ptype = 1 ep = [ptype,t] D = cfc.hooke(ptype, E, v) # --- Every border or point marked with 10 will recieve boundary # --- condition value of 0 bcs_new = [[marker_dict[10], 0]] # --- Every border or point marked with 20 will recieve load # --- value of 10e5 loads_new = [[marker_dict[20], 10e5]] # --- Every border or point marked with A will recieve boundary # --- condition value of 0 bcs_old = [[10, 0]] # --- Every border or point marked with B will recieve load # --- value of 10e5 loads_old = [[20, 10e5]] el_size_factor = 5 el_type = 3 dofs_per_node = 2 def calc(geometry, bcs, loads, text): mesh = cfm.GmshMeshGenerator(geometry) mesh.el_size_factor = el_size_factor # Factor that changes element sizes. mesh.el_type = el_type mesh.dofs_per_node = dofs_per_node coords, edof, dofs, bdofs, elementmarkers = mesh.create() # --- Calculate element coordinates ex, ey = cfc.coordxtr(edof, coords, dofs) # --- Assemble system matrix nDofs = edof.max() K = np.zeros([nDofs, nDofs]) for eltopo, elx, ely in zip(edof, ex, ey): Ke = cfc.planqe(elx, ely, ep, D) cfc.assem(eltopo, K, Ke) # --- Solve equation system f = np.zeros([nDofs, 1]) bcPrescr = np.array([], int) bcVal = np.array([], float) for bc in bcs: bcPrescr, bcVal = cfu.applybc(bdofs, bcPrescr, bcVal, bc[0], bc[1]) for load in loads: cfu.applyforcetotal(bdofs, f, load[0], load[1]) a, r = cfc.solveq(K, f, bcPrescr, bcVal) # --- Calculate element forces ed = cfc.extractEldisp(edof, a) vonMises = [] # --- For each element: for i in range(edof.shape[0]): # --- Determine element stresses and strains in the element. es, et = cfc.planqs(ex[i,:], ey[i,:], ep, D, ed[i,:]) # --- Calc and append effective stress to list. vonMises.append(np.sqrt(np.power(es[0],2) - es[0]*es[1] + np.power(es[1],2) + 3*es[2] ) ) title = "Effective stress" + text cfv.draw_element_values(vonMises, coords, edof, mesh.dofs_per_node, mesh.el_type, None, draw_elements=False, draw_undisplaced_mesh=False, title=title) # --- Display results cfv.clf() calc(g, bcs_old, loads_old, " original") cfv.figure() calc(new_geometry, bcs_new, loads_new, " modified") cfv.show_and_wait()
import sys import os import numpy as np import matplotlib.pyplot as plt from scipy.stats import linregress if __name__ == '__main__': if __package__ is None: sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from scripts.data_handler import get_system else: from scripts.data_handler import get_system if __name__ == '__main__': try: i = int(sys.argv[1]) system = get_system(number=i, ms=False) # make_correlation_plot(system) except IndexError, e: print __file__, 'system_number' sys.exit(1) # system = get_system(number=1, ms=False) t = system.time res = linregress(t-t[0], system.vrad) m, b = res.slope, res.intercept print 'slope:', m, 'intercept (at t[0]):', b max_rv = system.vrad.max() time_max_rv = system.time[system.vrad.argmax()] min_rv = system.vrad.min() time_min_rv = system.time[system.vrad.argmin()] max_slope = (max_rv - min_rv) / (time_max_rv - time_min_rv) print 'max_slope', max_slope min_slope = -max_slope # (min_rv - max_rv) / (time_max_rv - time_min_rv) print 'min_slope', min_slope system.do_plot_obs() plt.plot(system.time, m*(t-t[0]) + b, '-r', lw=3) # for _ in range(500): # # mm = np.random.normal(loc=0, scale=m) # mm = np.random.uniform(low=min_slope, high=max_slope) # plt.plot(system.time, mm*(t-t[0]) + b, '-k', lw=1, alpha=0.3) plt.show() old_file = system.provenance.keys()[0] old_path = os.path.dirname(old_file) new_file = os.path.basename(old_file)[:-3] + 'noslope.rdb' print 'Remove this linear trend from the data', print 'and save it as %s ?' % new_file, print '(y/n)', yn = raw_input() if yn == 'y': line = m*(t-t[0]) + b system.vrad -= line system.do_plot_obs() plt.show() X = [system.time, system.vrad, system.error] header = 'jdb\tvrad\tsvrad\n---\t----\t-----' np.savetxt(os.path.join(old_path, new_file), zip(*X), fmt=['%12.6f', '%8.5f', '%7.5f'], delimiter='\t', header=header, comments='') else: print 'Doing nothing. Bye!'
''' @说明 :草动用户接口。 @时间 :2020/2/13 下午4:28:26 @作者 :任秋锴 @版本 :1.0 ''' from typing import List from .base import base class user(base): def __init__(self, token): super().__init__(token) def list(self, storeIdKey=None, companyId=None, mobile=None, pageNum=1, pageSize=10,): api_name = "manager/user/listemp" data = { "pageNum": pageNum, "pageSize": pageSize, "storeIdKey": storeIdKey, "companyId": companyId, "mobile": mobile, } return self.request(api_name, data) def batch_update(self, data): api_name = "manager/user/batch_update" return self.request(api_name, data) def batch_delete(self, idList: List, status=0): """ 批量离职 """ api_name = "manager/user/batch_update" data = { "idList": idList, "status": status, } return self.request(api_name, data, method="POST")
from synapse.tests.common import * import synapse.lib.scope as s_scope class ScopeTest(SynTest): def test_lib_scope(self): syms = {'foo': 'woot', 'bar': 30, 'baz': [1, 2]} scope = s_scope.Scope(**syms) self.eq(scope.get('bar'), 30) self.eq(scope.get('foo'), 'woot') self.eq(tuple(scope.iter('baz')), (1, 2)) scope.update((('hehe', 1), ('haha', 'wow'))) self.eq(scope.get('hehe'), 1) self.eq(scope.get('haha'), 'wow') with scope: scope.set('bar', 20) scope.add('baz', 3, 4) scope.update((('hehe', 2), ('haha', 'oh my'))) self.eq(scope.get('bar'), 20) self.eq(scope.get('foo'), 'woot') self.eq(tuple(scope.iter('baz')), (1, 2, 3, 4)) self.eq(scope.get('hehe'), 2) self.eq(scope.get('haha'), 'oh my') self.eq(scope.get('hehe'), 1) self.eq(scope.get('haha'), 'wow') self.eq(scope.get('bar'), 30) self.eq(scope.get('foo'), 'woot') self.eq(tuple(scope.iter('baz')), (1, 2)) self.eq(scope.pop('bar'), 30) self.none(scope.get('bar')) def test_lib_scope_thread(self): s_scope.set('test:foo', 10) self.eq(s_scope.get('test:foo'), 10) self.eq(s_scope.pop('test:foo'), 10) self.none(s_scope.get('test:foo')) s_scope.update([('test:hehe', 1), ('test:haha', 'wow')]) self.eq(s_scope.get('test:hehe'), 1) self.eq(s_scope.get('test:haha'), 'wow') def test_lib_scope_enter(self): with s_scope.enter({'woot': 10}): self.eq(s_scope.get('woot'), 10) self.none(s_scope.get('newp')) self.none(s_scope.get('woot')) self.none(s_scope.get('newp')) def test_lib_scope_get_defval(self): syms = {'foo': None, 'bar': 123} scope = s_scope.Scope(**syms) self.eq(scope.get('foo'), None) self.eq(scope.get('foo', defval=None), None) self.eq(scope.get('bar'), 123) self.eq(scope.get('bar', defval=123), 123) self.eq(scope.get('boo'), None) self.eq(scope.get('boo', defval=None), None) scope.enter({'bar': 321}) self.eq(scope.get('bar'), 321) self.eq(scope.get('bar', defval=321), 321) scope.leave()
# Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2010 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Test WSGI basics and provide some helper functions for other WSGI tests. """ from cinder import test import routes import webob from cinder import wsgi class Test(test.TestCase): def test_debug(self): class Application(wsgi.Application): """Dummy application to test debug.""" def __call__(self, environ, start_response): start_response("200", [("X-Test", "checking")]) return ['Test result'] application = wsgi.Debug(Application()) result = webob.Request.blank('/').get_response(application) self.assertEqual(result.body, "Test result") def test_router(self): class Application(wsgi.Application): """Test application to call from router.""" def __call__(self, environ, start_response): start_response("200", []) return ['Router result'] class Router(wsgi.Router): """Test router.""" def __init__(self): mapper = routes.Mapper() mapper.connect("/test", controller=Application()) super(Router, self).__init__(mapper) result = webob.Request.blank('/test').get_response(Router()) self.assertEqual(result.body, "Router result") result = webob.Request.blank('/bad').get_response(Router()) self.assertNotEqual(result.body, "Router result")
# coding=utf-8 """ wecube_plugins_itsdangerous.common ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 本模块提供系统通用包 """
from django.conf import settings from django.conf.urls import url from django.conf.urls.static import static from . import views urlpatterns = [ url(r'^$', views.page, name='index'), url(r'^unlinked-pages/$', views.unlinked_pages, name='unlinked_pages'), url(r'^schedule/$', views.schedule_view, name='schedule'), url(r'^sessions/$', views.sessions_view, name='sessions'), url(r'^sessions/(?P<session_type>talk|workshop|keynote|panel)s/(?P<slug>[\w-]+)/$', views.session_view, name='session'), url(r'^speakers/$', views.speakers_view, name='speakers'), url(r'^speakers/(?P<key>[\w-]+)/$', views.speaker_view, name='speaker'), url(r'^sponsors/(?P<key>[\w-]+)/$', views.sponsor_view, name='sponsor'), url(r'^(?P<key>.*?)/$', views.page, name='page'), url(r'^static/(?P<path>.*)$', views.serve_static), ]
"""Slow-running tests for nightly continuous integration.""" from functools import partial # noqa: F401 import os import ixmp import message_ix from message_ix.testing.nightly import ( download, iter_scenarios, ) import numpy as np # noqa: F401 import pytest pytestmark = pytest.mark.skipif( os.environ.get('TRAVIS_EVENT_TYPE', '') != 'cron' or os.environ.get('TRAVIS_OS_NAME', '') == 'osx', reason="Nightly scenario tests only run on Travis 'cron' events.") # # For development/debugging, uncomment the following # pytestmark = pytest.mark.skipif( # 'TRAVIS_EVENT_TYPE' not in os.environ or # os.environ.get('TRAVIS_OS_NAME', '') == 'osx', # reason='Run on all Travis jobs, for debugging.') # Information about nightly scenarios to run ids, args = zip(*iter_scenarios()) @pytest.fixture(scope='module') def downloaded_scenarios(tmp_path_factory): path = tmp_path_factory.mktemp('nightly') # Download scenarios database into the temporary path; install GAMS license download(path) # NB could `yield ixmp.Platform(...)` here, but Travis/macOS jobs fail due # to excessive memory use in Java/ixmp_source. Instead, create multiple # Platforms so that memory is released after each is destroyed. yield dict( # TODO repack the archive without a 'db' directory, and remove from the # path here backend='jdbc', driver='hsqldb', path=path / 'db' / 'scenarios', ) @pytest.mark.parametrize('model,scenario,solve,solve_opts,cases', args, ids=ids) def test_scenario(downloaded_scenarios, model, scenario, solve, solve_opts, cases): mp = ixmp.Platform(**downloaded_scenarios) scen = message_ix.Scenario(mp, model, scenario) scen.solve(model=solve, solve_options=solve_opts) for case in cases: exp = eval(case['exp']) obs = eval(case['obs']) assert eval(case['test'])(exp, obs)
from django.contrib.auth import get_user_model from django.contrib.auth.models import Group from go_and_do_people_info.models import (Country, Event, Ministry, News, Prayer, Ticket, UserProfile, Volunteer) from go_and_do_people_info.serializers import (MinistrySerializer, UserProfileSerializer, UserSerializer, VolunteerSerializer, CountrySerializer, PrayerSerializer, NewsSerializer, EventSerializer, TicketSerializer) from rest_auth.registration.views import RegisterView from rest_framework import viewsets from rest_framework_swagger.views import get_swagger_view User = get_user_model() class CustomRegisterView(RegisterView): queryset = User.objects.all() class UserViewSet(viewsets.ModelViewSet): """ retrieve: Return a user instance. list: Return all users, ordered by most recently joined. create: Create a new user. delete: Remove an existing user. partial_update: Update one or more fields on an existing user. update: Update a user. """ queryset = User.objects.all() serializer_class = UserSerializer class MinistryViewSet(viewsets.ModelViewSet): """ General API documentation (not wisible in the swagger view) get: GET-specific documentation! Lorem ipsum post: POST-specific documentation! Dolor **sit amet** """ queryset = Ministry.objects.all() serializer_class = MinistrySerializer class VolunteerViewSet(viewsets.ModelViewSet): """ General API documentation (not wisible in the swagger view) get: GET-specific documentation! Lorem ipsum post: POST-specific documentation! Dolor **sit amet** """ queryset = Volunteer.objects.all() serializer_class = VolunteerSerializer class UserProfileViewSet(viewsets.ModelViewSet): """ General API documentation (not wisible in the swagger view) get: GET-specific documentation! Lorem ipsum post: POST-specific documentation! Dolor **sit amet** """ queryset = UserProfile.objects.all() serializer_class = UserProfileSerializer class CountryViewSet(viewsets.ModelViewSet): """ General API documentation (not wisible in the swagger view) get: GET-specific documentation! Lorem ipsum post: POST-specific documentation! Dolor **sit amet** """ queryset = Country.objects.all() serializer_class = CountrySerializer class PrayerViewSet(viewsets.ModelViewSet): """ General API documentation (not wisible in the swagger view) get: GET-specific documentation! Lorem ipsum post: POST-specific documentation! Dolor **sit amet** """ queryset = Prayer.objects.all() serializer_class = PrayerSerializer class NewsViewSet(viewsets.ModelViewSet): """ General API documentation (not wisible in the swagger view) get: GET-specific documentation! Lorem ipsum post: POST-specific documentation! Dolor **sit amet** """ queryset = News.objects.all() serializer_class = NewsSerializer class EventViewSet(viewsets.ModelViewSet): """ General API documentation (not wisible in the swagger view) get: GET-specific documentation! Lorem ipsum post: POST-specific documentation! Dolor **sit amet** """ queryset = Event.objects.all() serializer_class = EventSerializer class TicketViewSet(viewsets.ModelViewSet): """ General API documentation (not wisible in the swagger view) get: GET-specific documentation! Lorem ipsum post: POST-specific documentation! Dolor **sit amet** """ queryset = Ticket.objects.all() serializer_class = TicketSerializer
# Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import collections import os from packaging import version as pkg_version import sys from openstack_requirements import requirement PROJECT_REQUIREMENTS_FILES = ['requirements.txt'] QUALIFIER_CHARS = ['<', '>', '!', '='] def _grab_args(): """Grab and return arguments""" parser = argparse.ArgumentParser( description='Check if project requirements have changed') parser.add_argument('env_dir', help='tox environment directory') return parser.parse_args() def _extract_reqs(file_name, blacklist=None): blacklist = blacklist or {} content = open(file_name, 'rt').read() reqs = collections.defaultdict(tuple) parsed = requirement.parse(content) for name, entries in ((name, entries) for (name, entries) in parsed.items() if (name and name not in blacklist)): list_reqs = [r for (r, line) in entries] # Strip the comments out before checking if there are duplicates list_reqs_stripped = [r._replace(comment='') for r in list_reqs] if len(list_reqs_stripped) != len(set(list_reqs_stripped)): print('Requirements file %s has duplicate entries for package ' '"%s: %r' % (file_name, name, list_reqs)) reqs[name] = list_reqs return reqs def _extract_qualifier_version(specifier): index = 1 # Find qualifier (one or two chars). if specifier[0] in QUALIFIER_CHARS and specifier[1] in QUALIFIER_CHARS: index = 2 qualifier = specifier[:index] version = pkg_version.Version(specifier[index:]) return qualifier, version def main(): args = _grab_args() # Build a list of requirements from the global list in the # openstack/requirements project so we can match them to the changes env_dir = args.env_dir req_dir = env_dir + '/src/os-requirements/' global_reqs = _extract_reqs(req_dir + '/global-requirements.txt') blacklist = _extract_reqs(req_dir + '/blacklist.txt') # Build a list of project requirements. failed = False local_dir = os.getcwd() for file_name in PROJECT_REQUIREMENTS_FILES: print('Validating requirements file "%s"' % file_name) proj_reqs = _extract_reqs(local_dir + '/' + file_name, blacklist=blacklist) for name, req in proj_reqs.items(): global_req = global_reqs.get(name) if not global_req: continue global_req = global_req[0] req = req[0] if not global_req.specifiers: continue specifiers = global_req.specifiers.split(',') for spec in specifiers: _, req_version = _extract_qualifier_version(req.specifiers) g_qualifier, g_version = _extract_qualifier_version(spec) if g_qualifier == '!=' and g_version == req_version: print('Package "%s" version %s is not compatible' % (name, req_version)) failed = True if g_qualifier == '>=' and g_version > req_version: print('Package "%s" version %s outdated, minimum version ' '%s' % (name, req_version, g_version)) failed = True if failed: print('Incompatible requirement found!') sys.exit(1) print('Updated requirements match openstack/requirements') if __name__ == '__main__': main()
from mylib import RelationData from pathlib import Path from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument("input", type=Path) parser.add_argument("--tex", action="store_true") parser.add_argument("--all", action="store_true") args = parser.parse_args() def get_stat(data): stat_ent = {} stat_rel = {} for dat in data.values(): for ent in dat["entity"].values(): label = ent["label"] if not label in stat_ent: stat_ent[label] = 0 stat_ent[label] += 1 for rel in dat["relation"].values(): label = rel["label"] if not label in stat_rel: stat_rel[label] = 0 stat_rel[label] += 1 std_ent = dict(sorted(stat_ent.items(), key=lambda x: x[1], reverse=True)) std_rel = dict(sorted(stat_rel.items(), key=lambda x: x[1], reverse=True)) return std_ent,std_rel if args.all: edics = {} rdics = {} modes= ['train','devel','test'] for m in modes: d = args.input/m if d.is_dir(): data = RelationData(d, pattern="*.ann") e,r = get_stat(data) e['all'] = sum(e.values()) edics[m]=e r['all'] = sum(r.values()) rdics[m] = r std_ent = [] std_rel = [] for k in edics['train'].keys(): lst = [k] lst.extend([edics[m][k] if k in edics[m] else 0 for m in modes]) std_ent.append(lst) for k in rdics['train'].keys(): lst = [k] lst.extend([rdics[m][k] if k in rdics[m] else 0 for m in modes]) std_rel.append(lst) else: data = RelationData(args.input, pattern="*.ann") std_ent,std_rel = get_stat(data) if args.tex: txt_ent = " \\\\ \n".join(map(lambda x: " & ".join(map(str, x)), std_ent)) txt_rel = "\\\\ \n".join(map(lambda x: " & ".join(map(str, x)), std_rel)) else: txt_ent = "\n".join(map(lambda x: "\t".join(map(str, x)), std_ent)) txt_rel = "\n".join(map(lambda x: "\t".join(map(str, x)), std_rel)) print("Entity:") print(txt_ent) print() print("Relation:") print(txt_rel)
from pymongo import MongoClient from pymongo.database import Database import requests import json import schedule import datetime import os from tweet import Tweet from threading import Thread now = datetime.datetime.now() CUR_TIMESTAMP = int(datetime.datetime(year=now.year, month=now.month, day=now.day, hour=now.hour).timestamp()) TOTAL_TAGS = 0 TOTAL_HASHTAGS = 0 TOTAL_TWEETS = 0 TOTAL_RETWEETS = 0 DATA_TAGS = {} DATA_HASHTAGS = {} DB = 0 # Twitter API stuff def create_url(): return "https://api.twitter.com/2/tweets/sample/stream" def create_headers(bearer_token): headers = {"Authorization": "Bearer {}".format(bearer_token)} return headers def connect_to_endpoint(): url = create_url() headers = create_headers(os.environ['TWITTER_KEY']) schedule.every(25).minutes.do(save) schedule.every().second.do(updateTimestamp) response = requests.request("GET", url, headers=headers, stream=True) for response_line in response.iter_lines(): if response_line: if b"data" in response_line: json_response = json.loads(response_line) handleTweet(json_response["data"]["text"]) schedule.run_pending() if response.status_code != 200: print(response.status_code) raise Exception( "Request returned an error: {} {}".format( response.status_code, response.text ) ) # Tweet handling def clean(text, forbidden): for x in forbidden: text = text.replace(x, " ") return text def handleTweet(text: str): global TOTAL_TWEETS, TOTAL_RETWEETS, TOTAL_HASHTAGS, TOTAL_TAGS, DATA_HASHTAGS, DATA_TAGS try: t = Tweet( clean(text, ["\n", "\t", ".", ",", "(", ")", "{", "}", "-", "+", ":", "/", "\\", "'", "\"", "!", "?", "=","…", "*", "&", "€", "$", ";", "・", "。", "...", "、", "⋮", " ", " ", "[", "]"])) TOTAL_TWEETS += 1 if text.startswith("RT"): TOTAL_RETWEETS += 1 TOTAL_TAGS += len(t.tags) TOTAL_HASHTAGS += len(t.hashtags) for tag in t.tags: if tag in DATA_TAGS.keys(): DATA_TAGS[tag] += 1 else: DATA_TAGS[tag] = 1 for hashtag in t.hashtags: if hashtag in DATA_HASHTAGS.keys(): DATA_HASHTAGS[hashtag] += 1 else: DATA_HASHTAGS[hashtag] = 1 except: print("ERROR") pass def updateTimestamp(): global CUR_TIMESTAMP old_timestamp = CUR_TIMESTAMP now = datetime.datetime.now() _CUR_TIMESTAMP = int(datetime.datetime(year=now.year, month=now.month, day=now.day, hour=now.hour).timestamp()) if old_timestamp != _CUR_TIMESTAMP and old_timestamp != 0: save(True) CUR_TIMESTAMP = _CUR_TIMESTAMP calcTop(old_timestamp) # Database handling def save(join: bool = False): global DATA_TAGS, DATA_HASHTAGS, DB # To Avoid Random Thread Issues _DATA_TAGS = DATA_TAGS _DATA_HASHTAGS = DATA_HASHTAGS DATA_TAGS = {} DATA_HASHTAGS = {} t = Thread(name="save", target=_save, args=(_DATA_TAGS, _DATA_HASHTAGS)) t.start() if join: t.join() print("Save finished sync") def _save(tags: dict, hashtags: dict): start = datetime.datetime.now().timestamp() print("Saving.") col = DB["tags"] uniqueTags = col.count() print("Saving " + str(len(tags)) + " tags.") for tag in tags.keys(): count = tags[tag] if count >= 2: _doc = col.find({"name": tag}).limit(1) doc = {} if _doc.count() == 0: doc = { "name": tag, "timeline": [] } else: doc = _doc[0] if len(doc["timeline"]) != 0 and doc["timeline"][0]["timestamp"] == CUR_TIMESTAMP: doc["timeline"][0]["count"] += count else: doc["timeline"].insert(0, { "timestamp": CUR_TIMESTAMP, "count": count }) col.update_one({"name": tag}, {"$set": doc}, upsert=True) col = DB["hashtags"] uniqueHashTags = col.count() print("Saving " + str(len(hashtags)) + " hashtags.") for hashtag in hashtags.keys(): count = hashtags[hashtag] if count >= 2: _doc = col.find({"name": hashtag}).limit(1) doc = {} if _doc.count() == 0: doc = { "name": hashtag, "timeline": [] } else: doc = _doc[0] if len(doc["timeline"]) != 0 and doc["timeline"][0]["timestamp"] == CUR_TIMESTAMP: doc["timeline"][0]["count"] += count else: doc["timeline"].insert(0, { "timestamp": CUR_TIMESTAMP, "count": count }) col.update_one({"name": hashtag}, {"$set": doc}, upsert=True) col = DB["totals"] col.update_one({"timestamp": CUR_TIMESTAMP}, {"$set": { "timestamp": CUR_TIMESTAMP, "count_retweets": TOTAL_RETWEETS, "count_tweets": TOTAL_TWEETS, "count_tags": TOTAL_TAGS, "count_hashtags": TOTAL_HASHTAGS, "unique_tags": uniqueTags, "unique_hashtags": uniqueHashTags }}, upsert=True) print("Done. Took " + str(datetime.datetime.now().timestamp() - start) + " seconds.") def loadTotals(db: Database): global TOTAL_TWEETS, TOTAL_RETWEETS, TOTAL_HASHTAGS, TOTAL_TAGS col = db["totals"] raw = col.find().sort("timestamp", -1).limit(1) raw = raw[0] TOTAL_TWEETS = raw["count_tweets"] TOTAL_RETWEETS = raw["count_retweets"] TOTAL_TAGS = raw["count_tags"] TOTAL_HASHTAGS = raw["count_hashtags"] def calcTop(t: int): print("Calculating tops") col = DB["tags"] top_tags = col.find({"timeline.0.timestamp": t}).sort("timeline.0.count", -1).limit(100) _top_tags = [] for x in top_tags: _top_tags.append( { "name": x["name"], "count": x["timeline"][0]["count"] } ) col = DB["hashtags"] top_hashtags = col.find({"timeline.0.timestamp": t}).sort("timeline.0.count", -1).limit(100) _top_hashtags = [] for x in top_hashtags: _top_hashtags.append( { "name": x["name"], "count": x["timeline"][0]["count"] } ) col = DB["top"] col.insert_one({ "timestamp": t, "tags": _top_tags, "hashtags": _top_hashtags }) if __name__ == "__main__": mongoClient = MongoClient( os.environ["MONGODB_URI"]) DB = mongoClient["TwitterDB"] loadTotals(DB) save(True) connect_to_endpoint()
import math import sys import xy def load_paths(filename): paths = [] with open(filename) as fp: for line in fp: points = filter(None, line.strip().split(';')) if not points: continue path = [tuple(map(float, x.split(','))) for x in points] paths.append(path) return paths def create_drawing(filename, x, y, w, h, p): paths = load_paths(filename) paths = xy.remove_duplicates(paths) drawing = xy.Drawing(paths) drawing = drawing.rotate_and_scale_to_fit(w - p, h - p, step=5) drawing = drawing.move(x + w / 2, y + h / 2, 0.5, 0.5) return drawing def main(filenames, nx): paths = [] w = h = 100 p = 10 for index, filename in enumerate(filenames): i = index % nx j = index / nx x = i * w y = j * h drawing = create_drawing(filename, x, y, w, h, p) paths.extend(drawing.paths) drawing = xy.Drawing(paths) drawing = xy.Drawing(paths).rotate_and_scale_to_fit(315, 380, step=90) drawing = drawing.move(315 / 2.0, 380 / 2.0, 0.5, 0.5) # drawing.paths = [x for x in drawing.paths if len(x) > 1] # drawing = drawing.simplify_paths() drawing = drawing.sort_paths_greedy() drawing = drawing.join_paths() # drawing = drawing.simplify_paths() im = drawing.render() im.write_to_png('grid.png') # xy.draw(drawing) if __name__ == '__main__': main(sys.argv[1:], 4)
#!/usr/bin/env python # -*- coding: utf-8 -*- # # tiapp parser # import os, types, uuid , fnmatch import codecs, time, sys from xml.dom.minidom import parseString from StringIO import StringIO def getText(nodelist): rc = "" for node in nodelist: if node.nodeType == node.TEXT_NODE: rc = rc + node.data return rc class TiWindow(object): def __init__(self,properties): self.properties = properties def __repr__(self): i = None if self.properties.has_key('id'): i = self.properties['id'] return '<TiWindow:%s>' % self.properties def get(self, key, defvalue=None): if self.properties.has_key(key): return self.properties[key] return defvalue def get_window_properties(node): wp = None for w in node.childNodes: if w.nodeType == 1: if wp == None: wp = {} wp[w.nodeName]=getText(w.childNodes) return wp def touch_tiapp_xml(tiapp_xml): print "[DEBUG] touching tiapp.xml to force rebuild next time: " + tiapp_xml os.utime(tiapp_xml, None) class TiAppXML(object): def __init__(self, file, parse_only=False): self.file = file if isinstance(self.file, StringIO): data = self.file else: data = codecs.open(self.file,'r','utf-8','replace') self.dom = parseString(data.read().encode('utf-8')) self.properties = { 'id':None, 'name':None, 'version':'1.0', 'copyright':'not specified', 'publisher':'not specified', 'description':'not specified', 'url':'not specified', 'icon':None, 'analytics':'true', 'fullscreen':'true', 'navbar-hidden':'false', 'statusbar-hidden':'false', 'modules' : [], 'plugins' : [] } self.explicit_properties = [] self.app_properties = {} self.android = {} self.android_manifest = {} self.iphone = {} root = self.dom.documentElement children = root.childNodes self.windows = [] for child in children: if child.nodeType == 1: # single window at the root <window> if child.nodeName == 'window': print "[WARN] window in tiapp.xml no longer supported. this will be ignored" # multiple windows rooted by <windows> elif child.nodeName == 'windows': print "[WARN] windows in tiapp.xml no longer supported. this will be ignored" # handle modules elif child.nodeName == 'modules': for module in child.childNodes: if module.nodeType == 1: version = module.getAttribute('version') platform = module.getAttribute('platform') module_id = getText(module.childNodes) self.properties['modules'].append({ 'id': module_id, 'version': version, 'platform': platform }) # handle plugins elif child.nodeName == 'plugins': for plugin in child.childNodes: if plugin.nodeType == 1: ver = plugin.getAttribute('version') name = getText(plugin.childNodes) self.properties['plugins'].append({'name':name,'version':ver}) elif child.nodeName == 'android': self.parse_android(child) elif child.nodeName == 'iphone': self.parse_iphone(child) elif child.nodeName == 'property': name = child.getAttribute('name') value = getText(child.childNodes) print "[TRACE] app property, %s : %s" % (name, value) self.app_properties[name] = value # properties of the app else: self.properties[child.nodeName]=getText(child.childNodes) self.explicit_properties.append(child.nodeName) # ensure we create a guid if the project doesn't already have one if not parse_only and not self.properties.has_key('guid'): guid = uuid.uuid4().hex self.properties['guid'] = guid n = self.dom.createElement("guid") n.appendChild(self.dom.createTextNode(guid)) root.appendChild(n) root.appendChild(self.dom.createTextNode("\n")) self.dom.writexml(codecs.open(self.file, 'w+','utf-8','replace'), encoding="UTF-8") def parse_android(self, node): def get_text(node): return getText(node.childNodes) def lazy_init(name, value, map=self.android, set_name=False): if not name in map: map[name] = value if set_name: map[name]['name'] = name return map[name] def add_attrs(map, element, fn=None): for attr in element.attributes.keys(): value = element.getAttribute(attr) if fn != None: value = fn(value) map[attr] = value def parse_manifest(node): # android:manifest XML gets copied to the AndroidManifest.xml under the top level <manifest> # anything under <application> will also get copied into the manifest's <application> for child in node.childNodes: if child.nodeType != child.ELEMENT_NODE: continue if child.nodeName == 'application': if 'application' not in self.android_manifest: self.android_manifest['application'] = [] application = self.android_manifest['application'] application.extend([n for n in child.childNodes if n.nodeType == n.ELEMENT_NODE]) self.android_manifest['application-attributes'] = child.attributes continue if 'manifest' not in self.android_manifest: self.android_manifest['manifest'] = [] manifest = self.android_manifest['manifest'] manifest.append(child) if node.attributes.length > 0: self.android_manifest['manifest-attributes'] = node.attributes def get_url_based_classname(url, appendage): parts = url.split('/') if len(parts) == 0: return None start = 0 if parts[0] == "app:" and len(parts) >= 3: start = 2 classname = '_'.join(parts[start:]) if classname.endswith('.js'): classname = classname[:-3] if len(classname) > 1: classname = classname[0:1].upper() + classname[1:] else: classname = classname.upper() escape_chars = ['\\', '/', ' ', '.', '$', '&', '@'] for escape_char in escape_chars: classname = classname.replace(escape_char, '_') return classname+appendage def get_activity_classname(url): return get_url_based_classname(url, 'Activity') def get_service_classname(url): return get_url_based_classname(url, 'Service') def parse_activities(node): activities = lazy_init('activities', {}) for activity_el in node.getElementsByTagName('activity'): if activity_el.hasAttribute('url'): url = activity_el.getAttribute('url') else: url = get_text(activity_el) activity = lazy_init(url, {}, activities) activity['url'] = url add_attrs(activity, activity_el) activity['classname'] = get_activity_classname(url) for child in activity_el.childNodes: if child.nodeType != child.ELEMENT_NODE: continue if 'nodes' not in activity: activity['nodes'] = [] nodes = activity['nodes'] nodes.append(child) def parse_services(node): services = lazy_init('services', {}) for service_el in node.getElementsByTagName('service'): if service_el.hasAttribute('url'): url = service_el.getAttribute('url') else: url = get_text(service_el) service_type = 'standard' if service_el.hasAttribute('type'): service_type = service_el.getAttribute('type') service = lazy_init(url, {}, services) service['url'] = url service['service_type'] = service_type add_attrs(service, service_el) service['classname'] = get_service_classname(url) for child in service_el.childNodes: if child.nodeType != child.ELEMENT_NODE: continue if 'nodes' not in service: service['nodes'] = [] nodes = service['nodes'] nodes.append(child) def parse_tool_api_level(node): lazy_init('tool-api-level', get_text(node)) local_objects = locals() parse_tags = ['services', 'activities', 'manifest', 'tool-api-level'] for child in node.childNodes: if child.nodeName in parse_tags: local_objects['parse_'+child.nodeName.replace('-', '_')](child) def parse_iphone(self, node): def translate_orientation(orientation): info = orientation.split('.') tokenMap = {'PORTRAIT':'UIInterfaceOrientationPortrait', 'UPSIDE_PORTRAIT':'UIInterfaceOrientationPortraitUpsideDown', 'LANDSCAPE_LEFT':'UIInterfaceOrientationLandscapeLeft', 'LANDSCAPE_RIGHT':'UIInterfaceOrientationLandscapeRight'} for token in tokenMap: if token in info: return tokenMap[token] return None def parse_orientations(node): device = node.getAttribute('device').lower() orientations = [] if (device == None): print "[WARN] Orientations for unspecified device; assuming iphone" device = 'iphone' if device != 'iphone' and device != 'ipad': print "[WARN] Unrecognized device %s for iphone, ignoring" % device return for child in node.childNodes: if (child.nodeName == 'orientation'): orientation = translate_orientation(getText(child.childNodes)) if orientation == None: print "[WARN] Unrecognized orientation %s: Ignoring" % getText(node.childNodes) else: orientations.append(orientation) self.iphone['orientations_'+device] = orientations def parse_backgroundModes(node): valid_modes = ['audio', 'location', 'voip'] self.iphone['background'] = [] for child in node.childNodes: if child.nodeName == 'mode': mode = getText(child.childNodes) if mode not in valid_modes: print "[WARN] Invalid background mode %s: ignoring" % mode continue self.iphone['background'].append(mode) def parse_requires(node): # Note that some of these are meaningless right now, but are # included for The Future. valid_reqs = ['telephony', 'wifi', 'sms', 'still-camera', 'auto-focus-camera', 'front-facing-camera', 'camera-flash', 'video-camera', 'accelerometer', 'gyroscope', 'location-services', 'gps', 'magnetometer', 'gamekit', 'microphone', 'opengles-1', 'opengles-2', 'armv6', 'armv7', 'peer-peer'] self.iphone['requires'] = [] for child in node.childNodes: if child.nodeName == 'feature': feature = getText(child.childNodes) if feature not in valid_reqs: print "[WARN] Invalid feature %s: ignoring" % feature continue self.iphone['requires'].append(feature) def parse_type(node): valid_tags = ['name', 'icon', 'uti', 'owner'] type_info = { 'name':'', 'icon':'', 'uti':[], 'owner':False } for child in node.childNodes: if child.nodeName in valid_tags: value = getText(child.childNodes) if child.nodeName == 'uti': value = value.split(',') elif child.nodeName == 'owner': value = self.to_bool(value) type_info[child.nodeName] = value self.iphone['types'].append(type_info) def parse_fileTypes(node): self.iphone['types'] = [] for child in node.childNodes: if child.nodeName == 'type': parse_type(child) local_objects = locals() parse_tags = ['orientations', 'backgroundModes', 'requires', 'fileTypes'] for child in node.childNodes: if child.nodeName in parse_tags: local_objects['parse_'+child.nodeName](child) def has_app_property(self, property): return property in self.app_properties def get_app_property(self, property): return self.app_properties[property] def to_bool(self, value): return value in ['true', 'True', 'TRUE', 'yes', 'Yes', 'YES', 'y', 't', '1'] def setDeployType(self, deploy_type): found = False children = self.dom.documentElement.childNodes for child in children: if child.nodeType == 1 and child.nodeName == 'property' : if child.getAttributeNode('name').nodeValue == 'ti.deploytype' : child.firstChild.nodeValue = deploy_type found = True break if not found : root = self.dom.documentElement n = self.dom.createElement("property") n.setAttribute('name','ti.deploytype') n.appendChild(self.dom.createTextNode(deploy_type)) root.appendChild(n) self.app_properties['ti.deploytype'] = deploy_type self.dom.writexml(codecs.open(self.file, 'w+','utf-8','replace'), encoding="UTF-8") def generate_infoplist(self,file,appid,family,project_dir,iphone_version): icon = 'appicon.png' if self.properties.has_key('icon'): icon = self.properties['icon'] # we want the icon without the extension for the plist iconname = os.path.splitext(icon)[0] self.infoplist_properties = {} for p in self.properties: value = self.properties[p] if p=='persistent-wifi' and value=='true': self.infoplist_properties['UIRequiresPersistentWiFi']='<true/>' if p=='prerendered-icon' and value=='true': self.infoplist_properties['UIPrerenderedIcon']='<true/>' if p=='statusbar-hidden' and value=='true': self.infoplist_properties['UIStatusBarHidden']='<true/>' if p=='statusbar-style': if value == 'default' or value=='grey': status_bar_style = '<string>UIStatusBarStyleDefault</string>' elif value == 'opaque_black' or value == 'opaque' or value == 'black': status_bar_style = '<string>UIStatusBarStyleBlackOpaque</string>' elif value == 'translucent_black' or value == 'transparent' or value == 'translucent': status_bar_style = '<string>UIStatusBarStyleBlackTranslucent</string>' else: status_bar_style = '<string>UIStatusBarStyleDefault</string>' self.infoplist_properties['UIStatusBarStyle']=status_bar_style for prop in self.iphone: if prop == 'orientations_iphone' or prop == 'orientations_ipad': propertyName = 'UISupportedInterfaceOrientations' if prop == 'orientations_ipad': propertyName += '~ipad' propertyValue = '<array>\n' for orientation in self.iphone[prop]: propertyValue += " <string>%s</string>\n" % orientation propertyValue += ' </array>' self.infoplist_properties[propertyName]=propertyValue if prop == 'background': propertyName = 'UIBackgroundModes' propertyValue = '<array>\n' for mode in self.iphone[prop]: propertyValue += " <string>%s</string>\n" % mode propertyValue += ' </array>' self.infoplist_properties[propertyName]=propertyValue if prop == 'requires': propertyName = 'UIRequiredDeviceCapabilities' propertyValue = '<array>\n' for feature in self.iphone[prop]: propertyValue += " <string>%s</string>\n" % feature propertyValue += ' </array>' self.infoplist_properties[propertyName]=propertyValue if prop == 'types': propertyName = 'CFBundleDocumentTypes' propertyValue = '<array>\n' for type in self.iphone[prop]: propertyValue += '<dict>\n' propertyValue += "<key>CFBundleTypeName</key><string>%s</string>\n" % type['name'] propertyValue += "<key>CFBundleTypeIconFiles</key><array><string>%s</string></array>\n" % type['icon'] propertyValue += '<key>LSItemContentTypes</key><array>' for uti in type['uti']: propertyValue += "<string>%s</string>" % uti propertyValue += '</array>\n' owner = 'Owner' if type['owner'] else 'Alternate' propertyValue += "<key>LSHandlerRank</key><string>%s</string>\n" % owner propertyValue += '</dict>\n' propertyValue += '</array>' self.infoplist_properties[propertyName]=propertyValue plist = codecs.open(file,'r','utf-8','replace').read() plist = plist.replace('__APPICON__',iconname) #Creating proper CFBundleIconFiles rather than hard coding the values in there propertyName = 'CFBundleIconFiles' propertyValue = '<array>\n' iconsdir1 = os.path.join(project_dir,'Resources','iphone') iconsdir2 = os.path.join(project_dir,'Resources') tempiconslist = sorted(os.listdir(iconsdir1)) tempiconslist += sorted(os.listdir(iconsdir2)) iconslist = list(set(sorted(tempiconslist))) iconorder = list([iconname+".png",iconname+"@2x.png",iconname+"-72.png",iconname+"-Small-50.png",iconname+"-Small.png",iconname+"-Small@2x.png"]) for type in iconorder: for nexticon in iconslist: if type == nexticon: propertyValue += "\t<string>%s</string>\n" % nexticon propertyValue += '</array>\n' self.infoplist_properties[propertyName]=propertyValue # replace the bundle id with the app id # in case it's changed i = plist.index('CFBundleIdentifier') if i: i = plist.index('<string>',i+1) e = plist.index('</string>',i+1) st = plist[0:i+8] fn = plist[e:] plist = st + appid + fn # replace the version in case it's changed i = plist.index('CFBundleVersion') if i: i = plist.index('<string>',i+1) e = plist.index('</string>',i+1) st = plist[0:i+8] fn = plist[e:] version = self.properties['version'] plist = st + version + fn i = plist.rindex('</dict>') if i: before = plist[0:i] after = plist[i:] newcontent = '' for p in self.infoplist_properties: v = self.infoplist_properties[p] newcontent += ' <key>%s</key>\n %s\n' %(p,v) plist = before + newcontent + after f = codecs.open(file,'w+','utf-8','replace') f.write(plist) f.close() return icon
#!/usr/bin/env python3 # step 1: import the redis-py client package import redis # step 2: define our connection information for Redis # Replaces with your configuration information redis_host = "0.0.0.0" redis_port = 6379 redis_password = "" def hello_redis(): """Example Hello Redis Program""" # step 3: create the Redis Connection object try: # The decode_repsonses flag here directs the client to convert the responses from Redis into Python strings # using the default encoding utf-8. This is client specific. r = redis.StrictRedis(host=redis_host, port=redis_port, password=redis_password, decode_responses=True) # step 4: Set the hello message in Redis # Add code here to set the hello message # step 5: Retrieve the hello message from Redis # Change this code to get the hello message from Redis msg = "Add code to get the message from Redis" print(msg) # step 6: increment our run counter # Add code to track the number of times the program has been run in # cnt = # print("Hello Redis has run {} times".format(cnt)) except Exception as e: print(e) if __name__ == '__main__': hello_redis()
import sys import math with open(sys.argv[1]) as file: lines = [] for line in file: lines.append(line) cordinates = [] for x in range(0, 3): nums = lines[x].split() cordinates.append(nums[0]) cordinates.append(nums[1]) cord1X = int(cordinates[0]) cord1Y = int(cordinates[1]) cord2X = int(cordinates[2]) cord2Y = int(cordinates[3]) cord3X = int(cordinates[4]) cord3Y = int(cordinates[5]) if cord1X <= 1000000 and cord1X >= -1000000 and cord2X <= 1000000 and cord2X >= -1000000 and cord1Y <= 1000000 and cord1Y >= -1000000 and cord2Y <= 1000000 and cord2Y >= -1000000 and cord3Y <= 1000000 and cord3Y >= -1000000 and cord3X <= 1000000 and cord3X >= -1000000: rise1 = (cord1Y * cord1Y) - (cord3Y * cord3Y) rise2 = (cord2Y * cord2Y) - (cord3Y * cord3Y) run1 = (cord1X * cord1X) - (cord3X * cord3X) run2 = (cord2X * cord2X) - (cord3X * cord3X) slope1 = math.sqrt(rise1 + run1) slope2 = math.sqrt(rise2 + run2) if slope1 > slope2: print ("Callie") elif slope1 <= slope2: print ("Hailey")
""" This is an Azure Function that responds at GET /api/greeting. Using the built-in authentication and authorization capabilities (sometimes referred to as "Easy Auth") of Azure Functions, offloads part of the authentication and authorization process by ensuring that every request to this Azure Function has an access token. That access token has had its signature, issuer (iss), expiry dates (exp, nbf), and audience (aud) validated. This means all that is left to perform is any per-function authorization related to your application. """ import jwt import azure.functions as func def main(req: func.HttpRequest) -> func.HttpResponse: """ GET /api/greeting Scope Required: Greeting.Read """ # Extract the access token from the Authorization header # Authorization: Bearer <access_token> access_token: str = req.headers["authorization"].split(" ")[1] # Because Easy Auth has already validated the signature, the validation is not # performed again, but instead the token is is being decoded only to get access # to its contained scopes claim. try: scopes: str = jwt.decode( access_token, options={"verify_signature": False, "require": ["scp"]} )["scp"] except jwt.PyJWTError: return func.HttpResponse("Bearer token not valid.", status_code=403) # This API endpoint requires the "Greeting.Read" scope to be present, if it is # not, then reject the request with a 403. if "Greeting.Read" not in scopes.split(" "): return func.HttpResponse("Missing required scope.", status_code=403) # Authentication is complete, process request. return func.HttpResponse( "Hello, world. You were able to access this because you provided a valid " "access token with the Greeting.Read scope as a claim.", status_code=200, )
TOKEN = open("token.txt", "r").read()
from top2vec import Top2Vec import re from bs4 import BeautifulSoup from nltk.stem.wordnet import WordNetLemmatizer import nltk from wordcloud import WordCloud nltk.download('wordnet') global wnl wnl = WordNetLemmatizer() # list of custom stopwords stopwords= set(['br', 'the', 'i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've",\ "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', \ 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their',\ 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', \ 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', \ 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', \ 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after',\ 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further',\ 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more',\ 'most', 'other', 'some', 'such', 'only', 'own', 'same', 'so', 'than', 'too', 'very', \ 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', \ 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn',\ "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn',\ "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", \ 'won', "won't", 'wouldn', "wouldn't", 'hi', 'okay', 'ok', 'ohkay', 'bro', 'bye', 'thanks', 'thank', 'yeah', 'ya', \ 'u', 'ur', ]) # https://stackoverflow.com/a/47091490/4084039 def decontracted(phrase): # specific phrase = re.sub(r"won't", "will not", phrase) phrase = re.sub(r"can\'t", "can not", phrase) # general phrase = re.sub(r"n\'t", " not", phrase) phrase = re.sub(r"\'re", " are", phrase) phrase = re.sub(r"\'s", " is", phrase) phrase = re.sub(r"\'d", " would", phrase) phrase = re.sub(r"\'ll", " will", phrase) phrase = re.sub(r"\'t", " not", phrase) phrase = re.sub(r"\'ve", " have", phrase) phrase = re.sub(r"\'m", " am", phrase) return phrase def preprocess_text(sentence:str): #a. remove html and url tags from text sentence = re.sub(r"http\S+", "", sentence) sentence = BeautifulSoup(sentence, 'lxml').get_text() #b.expand contracted terms sentence = decontracted(sentence) #c.remove non aplhabet characters sentence = re.sub("\S*\d\S*", "", sentence).strip() sentence = re.sub('[^A-Za-z]+', ' ', sentence) #d. lemmatize each word in sentence #e. and turn them into lower case #list of stop words: https://gist.github.com/sebleier/554280 sentence = ' '.join(wnl.lemmatize(word.lower()) for word in sentence. split() if word.lower() not in stopwords) return sentence def get_topics(df): """ Preprocesses conversations to prepare it for Topic modelling Returns list of wordclouds of top two topics """ df = df[df.message != '<Media omitted>'] df = df[df.message != 'This message was deleted'] documents = df['message'].apply(preprocess_text) model = Top2Vec(documents=documents.tolist(), speed="learn", workers=-1) num_topics = model.get_num_topics() if num_topics >= 2: topic_words, word_scores, topic_nums = model.get_topics(2) elif num_topics == 1: topic_words, word_scores, topic_nums = model.get_topics(1) else: return [] clouds = [] for topic in topic_words[:2]: wc = WordCloud(width=700, height=300, min_font_size=12, background_color='white') wc = wc.generate(' '.join(topic)) clouds.append(wc) del model del documents return clouds
"""Test cases for base order's interface.""" import pytest from quantfinpy.instrument.instrument import Instrument from quantfinpy.order.limit import LimitOrder from quantfinpy.order.order import Order, OrderSide from quantfinpy.order.stop_limit import StopLimitOrder @pytest.mark.parametrize( ["quantity", "expected_order_side"], [(1.0, OrderSide.BUY), (-1.0, OrderSide.SELL)] ) def test_stop_limit_order_ctor( default_instrument: Instrument, quantity: float, expected_order_side: OrderSide ): # Creating a stop limit order. stop_price: float = 1.0 limit_price: float = stop_price + 1 stop_limit_order = StopLimitOrder( default_instrument, quantity, stop_price, limit_price ) # Checking built stop limit order. assert isinstance(stop_limit_order, Order) assert isinstance(stop_limit_order, StopLimitOrder) assert stop_limit_order.instrument == default_instrument assert stop_limit_order.quantity == quantity assert stop_limit_order.side == expected_order_side assert stop_limit_order.stop_price == stop_price assert stop_limit_order.limit == limit_price assert stop_limit_order.limit_order == LimitOrder( default_instrument, quantity, limit_price ) @pytest.mark.parametrize( ["market_price", "stop_price"], [(0.0, 0.0), (1.0, 0.0), (0.0, 1.0)] ) @pytest.mark.parametrize("quantity", [-1.0, 1.0]) def test_stop_order_stop_reached( default_instrument: Instrument, market_price: float, stop_price: float, quantity: float, ): # Creating the stop limit order whose limit_reached function is to be checked. limit_price: float = stop_price + 1 stop_limit_order = StopLimitOrder( default_instrument, quantity, stop_price, limit_price ) # Check that StopLimitOrder.limit_reached works in the same way as OrderSide.limit_reached (already tested) assert stop_limit_order.stop_price_reached( market_price ) == stop_limit_order.side.limit_reached(market_price, stop_price)
# # ovirt-engine-setup -- ovirt engine setup # Copyright (C) 2015 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Advertise DWH and Reports plugin.""" import gettext from otopi import plugin from otopi import util from ovirt_engine_setup.engine import constants as oenginecons from ovirt_engine_setup.engine_common import constants as oengcommcons from ovirt_engine_setup.engine_common import database from ovirt_engine_setup.engine_common import dwh_history_timekeeping def _(m): return gettext.dgettext(message=m, domain='ovirt-engine-setup') @util.export class Plugin(plugin.PluginBase): """Advertise DWH and Reports plugin.""" def __init__(self, context): super(Plugin, self).__init__(context=context) self._dwhHost = None self._statement = None @plugin.event( stage=plugin.Stages.STAGE_MISC, before=( oengcommcons.Stages.DB_SCHEMA, ), condition=lambda self: ( self.environment[oenginecons.CoreEnv.ENABLE] and not self.environment[oenginecons.EngineDBEnv.NEW_DATABASE] ), ) def _get_dwh_host(self): self._statement = database.Statement( dbenvkeys=oenginecons.Const.ENGINE_DB_ENV_KEYS, environment=self.environment, ) self._dwhHost = dwh_history_timekeeping.getValueFromTimekeeping( statement=self._statement, name=dwh_history_timekeeping.DB_KEY_HOSTNAME ) self.logger.debug( _( 'DWH host is {dwhHost}.' ).format( dwhHost=self._dwhHost, ) ) # vim: expandtab tabstop=4 shiftwidth=4
from optparse import OptionParser class InputError(Exception): """Exception raised for errors in the input. Attributes: expression -- input expression in which the error occurred message -- explanation of the error """ def __init__(self, message): self.message = message def add_args_to_dict(option, opt, value, parser): my_dict = getattr(parser.values, option.dest) split = value.split(':') if len(split) != 2: raise InputError(f'Got "-f {value}" as input value but expect -f filter_key:filter_value1,filter_value2') my_dict[split[0]] = split[1].split(',') def get_comma_separated_args(option, opt, value, parser): setattr(parser.values, option.dest, value.split(',')) class Parser(): def __init__(self): self.parser = OptionParser() self.add_option = self.parser.add_option def add_option_list(self, *args, **kwargs): self.add_option(*args, type='string', action='callback', callback=get_comma_separated_args, dest=kwargs['dest'], default=list()) def add_filter(self): self.add_option('-f', '--filter', type='string', action='callback', callback=add_args_to_dict, dest="filter_dict", default=dict()) def add_not_show(self): self.add_option('-s', '--not_show', type='string', action='callback', callback=get_comma_separated_args, dest = 'not_show', default=list()) def add_dark_background(self): self.add_option('--dark_background', action='store_true', dest = 'dark_background', default = False) def get_options(self): (options, args) = self.parser.parse_args() return options
# Credit to: # A. Hindle, N. Ernst, M. W. Godfrey, R. C. Holt, and J. Mylopoulos. # Whats in a name? on the automated topic naming of software maintenance # activities. # https://github.com/ishepard/pydriller # This program takes the names of repo directories as command line arguments # and searches for commits related to NFRs # Output for each repo is stored in a csv file # Author: Aida Radu # Last updated: August 26, 2019 by Sarah Nadi from pydriller import GitRepository from pydriller import RepositoryMining import sys import datetime import pytz def main(): # mine for non-functional fixes in commit messages -- stem words to catch more commits # removed generic fix and # search_terms = ["bug","error","secur","maint", \ "stab","portab","efficien","usab", "perf" \ "reliab", "testab", "changeab", "replac"\ "memory","resource", "runtime", "crash", "leak" \ "attack" , "authenticat", "authoriz", "cipher","crack", \ "decrypt","encrypt","vulnerab","minimize","optimize",\ "slow", "fast"] # the program is run with command line arguments representing # github repos for repo in range(1,len(sys.argv)): # NB: using the with keyword will close the file automatically with open(sys.argv[repo].replace('../', '').replace('/','')+".csv","w") as new_file: new_file.write('{:^40},{:^40}\n'.format('Commit ID:','Commit Message:')) #doing a 15 day range to make it quick for the demo for commit in RepositoryMining(sys.argv[repo],only_modifications_with_file_types=['.java','.py'], since=datetime.datetime(2019, 8, 14, tzinfo=pytz.UTC), to=datetime.datetime(2019, 8, 29, tzinfo=pytz.UTC)).traverse_commits(): # bool written avoids duplication if more than one word matches written = False msg = commit.msg.lower() for term in search_terms: if term.lower() in msg.lower() and filter(msg) and not written: written = True # print the commit ID and committer message new_file.write('{:^40},"{:^40}"\n'.format(commit.hash,msg)) def filter(message): # message is a string # returns a boolean filters = ["typo","npe","spelling"] safe = True for word in filters: if word in message: safe = False break return safe main()
#!/usr/bin/python # Base imports for all integrations, only remove these at your own risk! import json import sys import os import time import pandas as pd from collections import OrderedDict import requests from integration_core import Integration from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic, line_cell_magic) from IPython.core.display import HTML #import IPython.display from IPython.display import display_html, display, Javascript, FileLink, FileLinks, Image import ipywidgets as widgets import jupyter_integrations_utility as jiu # Put any additional imports specific to your integration here: import pyodbc as po @magics_class # Not sure about this, should pyodbc work by itself? Or should we class Pyodbc(Integration): # Static Variables # The name of the integration # The class name (Start) should be changed to match the name_str, but with the first letter upper cased. name_str = "pyodbc" instances = {} # These are the ENV variables the integration will check when starting up. The integration_base prefix will be prepended in checking (that defaults to JUPYTER_) # So the following two items will look for: # JUPYTER_START_BASE_URL and put it into the opts dict as start_base_url # JUPYTER_START_USER as put it in the opts dict as start_user custom_evars = ["pyodbc_conn_default"] # These are the variables in the opts dict that allowed to be set by the user. These are specific to this custom integration and are joined # with the base_allowed_set_opts from the integration base # The three examples here would be "start_base_url, start_ignore_ssl_warn, and start_verbose_errors # Make sure these are defined in myopts! custom_allowed_set_opts = ["pyodbc_conn_default"] # These are the custom options for your integration myopts = {} myopts['pyodbc_max_rows'] = [1000, 'Max number of rows to return, will potentially add this to queries'] myopts['pyodbc_conn_default'] = ["default", 'Default instance name for connections'] # Class Init function - Obtain a reference to the get_ipython() def __init__(self, shell, debug=False, *args, **kwargs): super(Pyodbc, self).__init__(shell, debug=debug) self.debug = debug #Add local variables to opts dict for k in self.myopts.keys(): self.opts[k] = self.myopts[k] self.load_env(self.custom_evars) self.parse_instances() # We use a custom disconnect in pyodbc so we try to close the connection before nuking it def customDisconnect(self, instance): try: self.instances[instance]['connection'].close() except: pass self.instances[instance]['connection'] = None self.instances[instance]['session'] = None self.instances[instance]['connected'] = False #self.instances[instance]['connect_pass'] = None # Should we clear the password when we disconnect? I am going to change this to no for now def req_password(self, instance): opts = None retval = True try: opts = self.instances[instance]['options'] except: print("Instance %s options not found" % instance) try: if opts['use_integrated_security'] == 1: retval = False except: pass return retval def customAuth(self, instance): result = -1 inst = None int_sec = False if instance not in self.instances.keys(): print("Instance %s not found in instances - Connection Failed" % instance) result = -3 else: inst = self.instances[instance] if inst is not None: try: if inst['options']['use_integrated_security'] == 1: int_sec = True except: pass kar = [ ["dsn", "DSN"], ["dbcname", "DBCNAME"], ["host", "Host"], ["port", "Port"], ["default_db", "Database"], ["authmech", "AuthMech"], ["usesasl", "UserSASL"], ["user", "UID"], ["enc_pass", "PWD"], ["usessl", "SSL"], ["allowselfsignedcert", "AllowSelfSignedServerCert"] ] top_level = ["user", "host", "port", "enc_pass"] var = [] conn_vars = [] for x in kar: if x[0] in top_level: if int_sec == True and x[0] in ["user", "enc_pass"]: # No need to put UID and PWD in connect string pass else: try: tval = inst[x[0]] except: tval = None tkey = x[1] if x[0] == "enc_pass": tval = self.ret_dec_pass(tval) inst['connect_pass'] = "" else: tval = self.checkvar(instance, x[0]) tkey = x[1] if tval is not None: conn_vars.append([tkey, tval]) conn_string = "" for c in conn_vars: conn_string += "%s=%s; " % (c[0], c[1]) conn_string = conn_string[0:-2] #conn_string = "DSN=%s; Host=%s; Port=%s; Database=%s; AuthMech=%s; UseSASL=%s; UID=%s; PWD=%s; SSL=%s; AllowSelfSignedServerCert=%s" % (var[0], var[1], var[2], var[3], var[4], var[5], var[6], var[7], var[8], var[9]) try: self.instances[instance]['connection'] = po.connect(conn_string, autocommit=True) self.session = self.instances[instance]['connection'].cursor() result = 0 except Exception as e: str_err = str(e) print("Unable to connect Error:\n%s" % str_err) result = -2 # Here you can check if the authentication on connect is successful. If it's good, return 0, otherwise return something else and show an error return result def validateQuery(self, query, instance): bRun = True bReRun = False if self.instances[instance]['last_query'] == query: # If the validation allows rerun, that we are here: bReRun = True # Ok, we know if we are rerun or not, so let's now set the last_query (and last use if needed) self.instances[instance]['last_query'] = query if query.strip().find("use ") == 0: self.instances[instance]['last_use'] = query # Example Validation # Warn only - Don't change bRun # This one is looking for a ; in the query. We let it run, but we warn the user # Basically, we print a warning but don't change the bRun variable and the bReRun doesn't matter if query.find(";") >= 0: print("WARNING - Do not type a trailing semi colon on queries, your query will fail (like it probably did here)") # Warn and don't submit after first attempt - Second attempt go ahead and run # If the query doesn't have a day query, then maybe we want to WARN the user and not run the query. # However, if this is the second time in a row that the user has submitted the query, then they must want to run without day # So if bReRun is True, we allow bRun to stay true. This ensures the user to submit after warnings if query.lower().find("limit ") < 0: print("WARNING - Queries shoud have a limit so you don't bonkers your DOM") # Warn and do not allow submission # There is no way for a user to submit this query # if query.lower().find('limit ") < 0: # print("ERROR - All queries must have a limit clause - Query will not submit without out") # bRun = False return bRun def customQuery(self, query, instance): mydf = None status = "" try: self.session.execute(query) mydf = self.as_pandas_DataFrame() if mydf is not None: status = "Success" else: status = "Success - No Results" except Exception as e: mydf = None str_err = str(e) if self.debug: print("Error: %s" % str(e)) status = "Failure - query_error: " + str_err return mydf, status # Display Help can be customized def customOldHelp(self): self.displayIntegrationHelp() self.displayQueryHelp("select * from mydatabase.mytable") def retCustomDesc(self): return "Jupyter integration for working with the PyODBC based data sources" def customHelp(self, curout): n = self.name_str mn = self.magic_name m = "%" + mn mq = "%" + m table_header = "| Magic | Description |\n" table_header += "| -------- | ----- |\n" out = curout qexamples = [] qexamples.append(["myinstance", "select * from mydatabase.mytable", "Run a sql query against myinstance"]) qexamples.append(["", "select * from mydatabase.mytable", "Run a sql query against the default instance"]) out += self.retQueryHelp(qexamples) return out def as_pandas_DataFrame(self): cursor = self.session try: names = [metadata[0] for metadata in cursor.description] ret = pd.DataFrame([dict(zip(names, row)) for row in cursor], columns=names) except: ret = None return ret # This is the magic name. @line_cell_magic def pyodbc(self, line, cell=None): if cell is None: line = line.replace("\r", "") line_handled = self.handleLine(line) if self.debug: print("line: %s" % line) print("cell: %s" % cell) if not line_handled: # We based on this we can do custom things for integrations. if line.lower() == "testintwin": print("You've found the custom testint winning line magic!") else: print("I am sorry, I don't know what you want to do with your line magic, try just %" + self.name_str + " for help options") else: # This is run is the cell is not none, thus it's a cell to process - For us, that means a query self.handleCell(cell, line)
import battlecode as bc import random import sys import traceback class IStructure: """This is the IStructure interface""" def __init__(self, gameControl, unitControl, unit, missionControl): self.gameControl = gameControl self.unitControl = unitControl self.missionControl = missionControl self.unit = unit self.mission = None def UpdateMission(self): """Updates the Mission""" if(self.unit.structure_is_built() and self.mission == None): self.mission = self.missionControl.get_mission(self.unit.unitType) self.mission_start_round = self.gameControl.round() self.target_location = None print("Structure with id {} obtaining new mission {}".format(\ self.unit.id, self.mission.action))
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from libcloud.common.google import GoogleOAuth2Credential from libcloud.container.providers import Provider from libcloud.container.drivers.kubernetes import KubernetesContainerDriver from libcloud.common.google import GoogleResponse from libcloud.common.google import GoogleBaseConnection API_VERSION = 'v1' class GKEResponse(GoogleResponse): pass class GKEConnection(GoogleBaseConnection): """ Connection class for the GKE driver. GKEConnection extends :class:`google.GoogleBaseConnection` for 3 reasons: 1. modify request_path for GKE URI. 2. Implement gce_params functionality described below. 3. Add request_aggregated_items method for making aggregated API calls. """ host = 'container.googleapis.com' responseCls = GKEResponse def __init__(self, user_id, key, secure, auth_type=None, credential_file=None, project=None, **kwargs): super(GKEConnection, self).__init__( user_id, key, secure=secure, auth_type=auth_type, credential_file=credential_file, **kwargs) self.request_path = '/%s/projects/%s' % (API_VERSION, project) self.gke_params = None def pre_connect_hook(self, params, headers): """ Update URL parameters with values from self.gke_params. @inherits: :class:`GoogleBaseConnection.pre_connect_hook` """ params, headers = super(GKEConnection, self).pre_connect_hook(params, headers) if self.gke_params: params.update(self.gke_params) return params, headers def request(self, *args, **kwargs): """ Perform request then do GKE-specific processing of URL params. @inherits: :class:`GoogleBaseConnection.request` """ response = super(GKEConnection, self).request(*args, **kwargs) # If gce_params has been set, then update the pageToken with the # nextPageToken so it can be used in the next request. if self.gke_params: if 'nextPageToken' in response.object: self.gke_params['pageToken'] = response.object['nextPageToken'] elif 'pageToken' in self.gke_params: del self.gke_params['pageToken'] self.gke_params = None return response class GKEContainerDriver(KubernetesContainerDriver): """ GKE Container Driver class. This is the primary driver for interacting with Google Container Engine. It contains all of the standard libcloud methods, plus additional ex_* methods for more features. Note that many methods allow either objects or strings (or lists of objects/strings). In most cases, passing strings instead of objects will result in additional GKE API calls. """ connectionCls = GKEConnection api_name = 'google' name = "Google Container Engine" type = Provider.GKE website = 'https://container.googleapis.com' supports_clusters = True AUTH_URL = "https://container.googleapis.com/auth/" def __init__(self, user_id, key=None, datacenter=None, project=None, auth_type=None, scopes=None, credential_file=None, host=None, port=443, **kwargs): """ :param user_id: The email address (for service accounts) or Client ID (for installed apps) to be used for authentication. :type user_id: ``str`` :param key: The RSA Key (for service accounts) or file path containing key or Client Secret (for installed apps) to be used for authentication. :type key: ``str`` :keyword datacenter: The name of the datacenter (zone) used for operations. :type datacenter: ``str`` :keyword project: Your GKE project name. (required) :type project: ``str`` :keyword auth_type: Accepted values are "SA" or "IA" or "GKE" ("Service Account" or "Installed Application" or "GKE" if libcloud is being used on a GKE instance with service account enabled). If not supplied, auth_type will be guessed based on value of user_id or if the code is being executed in a GKE instance. :type auth_type: ``str`` :keyword scopes: List of authorization URLs. Default is empty and grants read/write to Compute, Storage, DNS. :type scopes: ``list`` :keyword credential_file: Path to file for caching authentication information used by GKEConnection. :type credential_file: ``str`` """ if not project: raise ValueError('Project name must be specified using ' '"project" keyword.') if host is None: host = GKEContainerDriver.website self.auth_type = auth_type self.project = project self.scopes = scopes self.zone = None if datacenter is not None: self.zone = datacenter self.credential_file = credential_file or \ GoogleOAuth2Credential.default_credential_file + '.' + self.project super(GKEContainerDriver, self).__init__(user_id, key, secure=True, host=None, port=None, **kwargs) self.base_path = '/%s/projects/%s' % (API_VERSION, self.project) self.website = GKEContainerDriver.website def _ex_connection_class_kwargs(self): return {'auth_type': self.auth_type, 'project': self.project, 'scopes': self.scopes, 'credential_file': self.credential_file} def list_clusters(self, ex_zone=None): """ Return a list of cluster information in the current zone or all zones. :keyword ex_zone: Optional zone name or None :type ex_zone: ``str`` or :class:`GCEZone` or :class:`NodeLocation` or ``None`` """ request = "/zones/%s/clusters" % (ex_zone) if ex_zone is None: request = "/zones/clusters" response = self.connection.request(request, method='GET').object return response def get_server_config(self, ex_zone=None): """ Return configuration info about the Container Engine service. :keyword ex_zone: Optional zone name or None :type ex_zone: ``str`` or :class:`GCEZone` or :class:`NodeLocation` or ``None`` """ if ex_zone is None: ex_zone = self.zone request = "/zones/%s/serverconfig" % (ex_zone) response = self.connection.request(request, method='GET').object return response
def super_root(number): maximum = 10 minimum = 1 temp = (maximum+minimum)/2 while abs(temp**temp-number) > 0.001: if temp**temp > number: maximum = temp else: minimum = temp temp = (maximum+minimum)/2 print(temp) return temp if __name__ == '__main__': #These "asserts" using only for self-checking and not necessary for auto-testing def check_result(function, number): result = function(number) if not isinstance(result, (int, float)): print("The result should be a float or an integer.") return False p = result ** result if number - 0.001 < p < number + 0.001: return True return False assert check_result(super_root, 4), "Square" assert check_result(super_root, 9), "Cube" assert check_result(super_root, 10**10), "Eighty one"
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: modules/drivers/canbus/proto/can_card_parameter.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='modules/drivers/canbus/proto/can_card_parameter.proto', package='apollo.drivers.canbus', syntax='proto2', serialized_pb=_b('\n5modules/drivers/canbus/proto/can_card_parameter.proto\x12\x15\x61pollo.drivers.canbus\"\xbe\x04\n\x10\x43\x41NCardParameter\x12\x43\n\x05\x62rand\x18\x01 \x01(\x0e\x32\x34.apollo.drivers.canbus.CANCardParameter.CANCardBrand\x12\x41\n\x04type\x18\x02 \x01(\x0e\x32\x33.apollo.drivers.canbus.CANCardParameter.CANCardType\x12H\n\nchannel_id\x18\x03 \x01(\x0e\x32\x34.apollo.drivers.canbus.CANCardParameter.CANChannelId\x12G\n\tinterface\x18\x04 \x01(\x0e\x32\x34.apollo.drivers.canbus.CANCardParameter.CANInterface\"M\n\x0c\x43\x41NCardBrand\x12\x0c\n\x08\x46\x41KE_CAN\x10\x00\x12\x0b\n\x07\x45SD_CAN\x10\x01\x12\x12\n\x0eSOCKET_CAN_RAW\x10\x02\x12\x0e\n\nHERMES_CAN\x10\x03\")\n\x0b\x43\x41NCardType\x12\x0c\n\x08PCI_CARD\x10\x00\x12\x0c\n\x08USB_CARD\x10\x01\"a\n\x0c\x43\x41NChannelId\x12\x13\n\x0f\x43HANNEL_ID_ZERO\x10\x00\x12\x12\n\x0e\x43HANNEL_ID_ONE\x10\x01\x12\x12\n\x0e\x43HANNEL_ID_TWO\x10\x02\x12\x14\n\x10\x43HANNEL_ID_THREE\x10\x03\"2\n\x0c\x43\x41NInterface\x12\n\n\x06NATIVE\x10\x00\x12\x0b\n\x07VIRTUAL\x10\x01\x12\t\n\x05SLCAN\x10\x02') ) _CANCARDPARAMETER_CANCARDBRAND = _descriptor.EnumDescriptor( name='CANCardBrand', full_name='apollo.drivers.canbus.CANCardParameter.CANCardBrand', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='FAKE_CAN', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='ESD_CAN', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='SOCKET_CAN_RAW', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='HERMES_CAN', index=3, number=3, options=None, type=None), ], containing_type=None, options=None, serialized_start=384, serialized_end=461, ) _sym_db.RegisterEnumDescriptor(_CANCARDPARAMETER_CANCARDBRAND) _CANCARDPARAMETER_CANCARDTYPE = _descriptor.EnumDescriptor( name='CANCardType', full_name='apollo.drivers.canbus.CANCardParameter.CANCardType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='PCI_CARD', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='USB_CARD', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=463, serialized_end=504, ) _sym_db.RegisterEnumDescriptor(_CANCARDPARAMETER_CANCARDTYPE) _CANCARDPARAMETER_CANCHANNELID = _descriptor.EnumDescriptor( name='CANChannelId', full_name='apollo.drivers.canbus.CANCardParameter.CANChannelId', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='CHANNEL_ID_ZERO', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='CHANNEL_ID_ONE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='CHANNEL_ID_TWO', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='CHANNEL_ID_THREE', index=3, number=3, options=None, type=None), ], containing_type=None, options=None, serialized_start=506, serialized_end=603, ) _sym_db.RegisterEnumDescriptor(_CANCARDPARAMETER_CANCHANNELID) _CANCARDPARAMETER_CANINTERFACE = _descriptor.EnumDescriptor( name='CANInterface', full_name='apollo.drivers.canbus.CANCardParameter.CANInterface', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='NATIVE', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='VIRTUAL', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='SLCAN', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=605, serialized_end=655, ) _sym_db.RegisterEnumDescriptor(_CANCARDPARAMETER_CANINTERFACE) _CANCARDPARAMETER = _descriptor.Descriptor( name='CANCardParameter', full_name='apollo.drivers.canbus.CANCardParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='brand', full_name='apollo.drivers.canbus.CANCardParameter.brand', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='type', full_name='apollo.drivers.canbus.CANCardParameter.type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='channel_id', full_name='apollo.drivers.canbus.CANCardParameter.channel_id', index=2, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='interface', full_name='apollo.drivers.canbus.CANCardParameter.interface', index=3, number=4, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _CANCARDPARAMETER_CANCARDBRAND, _CANCARDPARAMETER_CANCARDTYPE, _CANCARDPARAMETER_CANCHANNELID, _CANCARDPARAMETER_CANINTERFACE, ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=81, serialized_end=655, ) _CANCARDPARAMETER.fields_by_name['brand'].enum_type = _CANCARDPARAMETER_CANCARDBRAND _CANCARDPARAMETER.fields_by_name['type'].enum_type = _CANCARDPARAMETER_CANCARDTYPE _CANCARDPARAMETER.fields_by_name['channel_id'].enum_type = _CANCARDPARAMETER_CANCHANNELID _CANCARDPARAMETER.fields_by_name['interface'].enum_type = _CANCARDPARAMETER_CANINTERFACE _CANCARDPARAMETER_CANCARDBRAND.containing_type = _CANCARDPARAMETER _CANCARDPARAMETER_CANCARDTYPE.containing_type = _CANCARDPARAMETER _CANCARDPARAMETER_CANCHANNELID.containing_type = _CANCARDPARAMETER _CANCARDPARAMETER_CANINTERFACE.containing_type = _CANCARDPARAMETER DESCRIPTOR.message_types_by_name['CANCardParameter'] = _CANCARDPARAMETER _sym_db.RegisterFileDescriptor(DESCRIPTOR) CANCardParameter = _reflection.GeneratedProtocolMessageType('CANCardParameter', (_message.Message,), dict( DESCRIPTOR = _CANCARDPARAMETER, __module__ = 'modules.drivers.canbus.proto.can_card_parameter_pb2' # @@protoc_insertion_point(class_scope:apollo.drivers.canbus.CANCardParameter) )) _sym_db.RegisterMessage(CANCardParameter) # @@protoc_insertion_point(module_scope)
import pandas import json def process_entries(args, entries): df = pandas.DataFrame(entries) for groupby in args.groupby: print(df.groupby(groupby)[args.metrics].mean()) print() def main(args): fname = args.subgoal_result_file with open(fname, 'r') as f: data = json.load(f) if 'successes' not in data: raise ValueError("json file {} does not contain a field successes".format(fname)) if not isinstance(data['successes'], dict): raise ValueError("json file {}'s success field is not a dict; make sure it was produced by eval_subtasks (not eval_tasks)".format(fname)) for partitions in [['successes'], ['failures'], ['successes', 'failures']]: partition_name = '+'.join(partitions) entries = [ log_entry for partition in partitions for entries in data[partition].values() for log_entry in entries ] print("-" * 40) print("stats for {}".format(partition_name)) process_entries(args, entries) print() print("-" * 40) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("subgoal_result_file") parser.add_argument("--metrics", nargs="+", default=['subgoal_success_spl']) parser.add_argument("--groupby", nargs="+", default=['subgoal_idx', 'subgoal_type']) args = parser.parse_args() main(args)
# ******************************************************************************* # Copyright 2017 Dell Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. # # @microservice: py-core-domain library # @author: Tyler Cox, Dell # @version: 1.0.0 # ******************************************************************************* from enum import Enum class ActionType(Enum): PROFILE = 1 DEVICE = 2 SERVICE = 3 MANAGER = 4 SCHEDULE = 5 SCHEDULEEVENT = 6 ADDRESSABLE = 7 VALUEDESCRIPTOR = 8 PROVISIONWATCHER = 9
checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), dict(type='TensorboardLoggerHook') ]) # yapf:enable dist_params = dict(backend='nccl') log_level = 'INFO' load_from = 'pretrain/cascade_rcnn_x101_32x4d_fpn_1x_coco_20200316.pth' resume_from = 'work_dirs/cascade_rcnn_x101_32x4d_fpn_1x_coco/epoch_9.pth' workflow = [('train', 1)]
import os import time from datetime import datetime from os.path import join from pathlib import Path from shutil import copy import yaml class LogManager: def __init__( self, filename=None, prefix=None, base_folder=None, base_filename=None, archive_folder=None ): # if prefix == None use default # if prefix == "" -> no preifx # if prefix == anything else -> use that with open("../conf.yaml", "r") as stream: t = yaml.safe_load(stream)[filename] prefix = prefix or t["prefix"] if prefix == "None": print("no prefix") # for joining prefix = "" else: print("prefix exist", prefix) if not os.path.exists(prefix): os.makedirs(prefix) self.prefix = prefix nme = filename.split("_")[0] self.default_base_filename = base_filename or t[ f"default_{nme}_filename"] self.default_base_folder = base_folder or join(prefix, t[ f"default_{nme}_folder"]) self.default_archive_folder = archive_folder or join(prefix, t[ f"default_archive_folder"]) Path(self.default_base_folder).mkdir(parents=True, exist_ok=True) Path(self.default_archive_folder).mkdir(parents=True, exist_ok=True) self.base_full_path = join(self.default_base_folder, self.default_base_filename) def _create_archive(self, num_of_rows): if num_of_rows >= self.log_buffer: print("archiving") current_time = str( datetime.fromtimestamp(time.time())).replace(" ", "_") full_path = join(self.default_archive_folder, current_time + ".db") open(full_path, "w+") copy(self.base_full_path, full_path) return True return False def __enter__(self): return self def _close(self): raise NotImplementedError def __exit__(self, exc_type, exc_value, exc_traceback): self._close()
"""API documentation""" from pathlib import Path from typing import Dict from yaml import load, SafeLoader with open(Path(__file__).parent / 'resources' / 'openapi.yml', 'r') as apd_file: api_docs = load(apd_file, Loader=SafeLoader) def get_app_info() -> Dict[str, str]: return { k : v for k,v in api_docs['info'].items() if k in [ 'title', 'version', 'description', 'contact', 'license', 'termsOfService', ] } # TODO use examples from openapi.yml to drive examples
postagliste_en= { "CC":"coordinating conjunction", "CD":"cardinal digit", "DT":"determiner", "EX":"existential there (like: 'there is' ... think of it like 'there exists')", "FW":"foreign word", "IN":"preposition/subordinating conjunction", "JJ":"adjective 'big'", "JJR":"adjective, comparative 'bigger'", "JJS":"adjective, superlative 'biggest'", "LS":"list marker 1)", "MD":"modal could, will", "NN":"noun, singular 'desk'", "NNS":"noun plural 'desks'", "NNP":"proper noun, singular 'Harrison'", "NNPS":"proper noun, plural 'Americans'", "PDT":"predeterminer 'all the kids'", "POS":"possessive ending parent\'s", "PRP":"personal pronoun I, he, she", "PRP$":"possessive pronoun my, his, hers", "RB":"adverb very, silently,", "RBR":"adverb, comparative better", "RBS":"adverb, superlative best", "RP":"particle give up", "SYM":"symbol", "TO":"to go 'to' the store.", "UH":"interjection errrrrrrrm", "VB":"verb, base form take", "VBD":"verb, past tense took", "VBG":"verb, gerund/present participle taking", "VBN":"verb, past participle taken", "VBP":"verb, sing. present, non-3d take", "VBZ":"verb, 3rd person sing. present takes", "WDT":"wh-determiner which", "WP":"wh-pronoun who, what", "WP$":"possessive wh-pronoun whose", "WRB":"wh-abverb where, when" } postagliste_fr={ "ADJ":"adjectif", "ADJWH":"adjectif interrogatif", "ADV":"adverbe", "ADVWH":"adverbe interrogatif", "CC":"conjonction de coordination", "CL":"pronom clitique", "CLO":"pronom clitique objet", "CLR":"pronom clitique réfléchi", "CLS":"pronom clitique sujet", "CS":"conjonction de subordination", "DET":"déterminant", "DETWH":"déterminant interrogatif", "ET":"mot tiré d'une langue étrangère", "I":"interjection", "N":"nom", "NC":"nom commun", "NPP":"nom propre", "P":"préposition", "P+D":"forme contractée préposition et déterminant", "P+PRO":"forme contractée préposition et pronom", "PUNC":"ponctuation", "PREF":"préfixe", "PRO":"pronom", "PROREL":"pronom relatif", "PROWH":"pronom interrogatif", "V":"verbe", "VIMP":"forme verbale à l'impératif", "VINF":"forme verbale à l'infinitif", "VPP":"participe passé", "VPR":"participe présent", "VS":"forme verbale au subjonctif" }
#!/usr/bin/env python COPY_GOOGLE_DOC_KEY = '1RdyJt-k8cDntAuyBUwYa_MhwL9m4fwaoGcQ8nQPUPTc'
# Solution of; # Project Euler Problem 430: Range flips # https://projecteuler.net/problem=430 # # N disks are placed in a row, indexed 1 to N from left to right. Each disk # has a black side and white side. Initially all disks show their white side. # At each turn, two, not necessarily distinct, integers A and B between 1 and # N (inclusive) are chosen uniformly at random. All disks with an index from A # to B (inclusive) are flipped. The following example shows the case N = 8. At # the first turn A = 5 and B = 2, and at the second turn A = 4 and B = 6. Let # E(N, M) be the expected number of disks that show their white side after M # turns. We can verify that E(3, 1) = 10/9, E(3, 2) = 5/3, E(10, 4) ≈ 5. 157 # and E(100, 10) ≈ 51. 893. Find E(1010, 4000). Give your answer rounded to 2 # decimal places behind the decimal point. # # by lcsm29 http://github.com/lcsm29/project-euler import timed def dummy(n): pass if __name__ == '__main__': n = 1000 i = 10000 prob_id = 430 timed.caller(dummy, n, i, prob_id)
# -*- coding: utf-8 -*- from io import open from os.path import dirname, join from shutil import rmtree from unittest import TestCase from nose.tools import eq_, assert_in, assert_not_in from sphinx.cmdline import main as sphinx_main from sphinx.util.osutil import cd class Tests(TestCase): """Tests which require our one big Sphinx tree to be built. Yes, it's too coupled. """ @classmethod def setup_class(cls): cls.docs_dir = join(dirname(__file__), 'source', 'docs') with cd(cls.docs_dir): if sphinx_main(['dummy', '-b', 'text', '-E', '.', '_build']): raise RuntimeError('Sphinx build exploded.') def _file_contents(self, filename): with open(join(self.docs_dir, '_build', '%s.txt' % filename), encoding='utf8') as file: return file.read() def _file_contents_eq(self, filename, contents): eq_(self._file_contents(filename), contents) def test_autofunction_minimal(self): """Make sure we render correctly and pull the params out of the JS code when only the function name is provided.""" self._file_contents_eq( 'autofunction_minimal', 'linkDensity(node)' + DESCRIPTION + FIELDS) def test_autofunction_explicit(self): """Make sure any explicitly provided params override the ones from the code, and make sure any explicit arbitrary RST content gets preserved.""" self._file_contents_eq( 'autofunction_explicit', 'linkDensity(snorko, borko[, forko])' + DESCRIPTION + FIELDS + CONTENT) def test_autofunction_short(self): """Make sure the ``:short-name:`` option works.""" self._file_contents_eq( 'autofunction_short', 'someMethod(hi)\n\n Here.\n') def test_autofunction_long(self): """Make sure instance methods get converted to dotted notation which indexes better in Sphinx.""" self._file_contents_eq( 'autofunction_long', 'ContainingClass.someMethod(hi)\n\n Here.\n') def test_autofunction_typedef(self): """Make sure @typedef uses can be documented with autofunction.""" self._file_contents_eq( 'autofunction_typedef', u'TypeDefinition()\n\n Arguments:\n * **width** (*Number*) – width in pixels\n') def test_autofunction_callback(self): """Make sure @callback uses can be documented with autofunction.""" self._file_contents_eq( 'autofunction_callback', u'requestCallback()\n\n Some global callback\n\n Arguments:\n * **responseCode** (*number*) –\n') def test_autofunction_example(self): """Make sure @example tags can be documented with autofunction.""" self._file_contents_eq( 'autofunction_example', u'exampleTag()\n\n' ' JSDoc example tag\n\n' ' **Examples:**\n\n' ' // This is the example.\n' ' exampleTag();\n') def test_autoclass(self): """Make sure classes show their class comment and constructor comment.""" contents = self._file_contents('autoclass') assert_in('Class doc.', contents) assert_in('Constructor doc.', contents) def test_autoclass_members(self): """Make sure classes list their members if ``:members:`` is specified. Make sure it shows both functions and attributes and shows getters and setters as if they are attributes. Make sure it doesn't show private members. """ self._file_contents_eq( 'autoclass_members', u'class ContainingClass(ho)\n\n Class doc.\n\n Constructor doc.\n\n Arguments:\n * **ho** – A thing\n\n ContainingClass.anotherMethod()\n\n Another.\n\n ContainingClass.bar\n\n Setting this also frobs the frobnicator.\n\n ContainingClass.someMethod(hi)\n\n Here.\n\n ContainingClass.someVar\n\n A var\n\n ContainingClass.yetAnotherMethod()\n\n More.\n') def test_autoclass_members_list(self): """Make sure including a list of names after ``members`` limits it to those names and follows the order you specify.""" self._file_contents_eq( 'autoclass_members_list', 'class ClosedClass()\n\n Closed class.\n\n ClosedClass.publical3()\n\n Public thing 3.\n\n ClosedClass.publical()\n\n Public thing.\n') def test_autoclass_members_list_star(self): """Make sure including ``*`` in a list of names after ``members`` includes the rest of the names in the normal order at that point.""" self._file_contents_eq( 'autoclass_members_list_star', u'class ContainingClass(ho)\n\n Class doc.\n\n Constructor doc.\n\n Arguments:\n * **ho** – A thing\n\n ContainingClass.bar\n\n Setting this also frobs the frobnicator.\n\n ContainingClass.anotherMethod()\n\n Another.\n\n ContainingClass.someVar\n\n A var\n\n ContainingClass.yetAnotherMethod()\n\n More.\n\n ContainingClass.someMethod(hi)\n\n Here.\n') def test_autoclass_alphabetical(self): """Make sure members sort alphabetically when not otherwise specified.""" self._file_contents_eq( 'autoclass_alphabetical', 'class NonAlphabetical()\n\n Non-alphabetical class.\n\n NonAlphabetical.a()\n\n Fun a.\n\n NonAlphabetical.z()\n\n Fun z.\n') def test_autoclass_private_members(self): """Make sure classes list their private members if ``:private-members:`` is specified.""" contents = self._file_contents('autoclass_private_members') assert_in('secret()', contents) def test_autoclass_exclude_members(self): """Make sure ``exclude-members`` option actually excludes listed members.""" contents = self._file_contents('autoclass_exclude_members') assert_in('publical()', contents) assert_not_in('publical2', contents) assert_not_in('publical3', contents) def test_autoclass_example(self): """Make sure @example tags can be documented with autoclass.""" self._file_contents_eq( 'autoclass_example', u'class ExampleClass()\n\n' ' JSDoc example tag for class\n\n' ' **Examples:**\n\n' ' // This is the example.\n' ' new ExampleClass();\n') def test_autoattribute(self): """Make sure ``autoattribute`` works.""" self._file_contents_eq( 'autoattribute', 'ContainingClass.someVar\n\n A var\n') def test_autoattribute_example(self): """Make sure @example tags can be documented with autoattribute.""" self._file_contents_eq( 'autoattribute_example', u'ExampleAttribute\n\n' ' JSDoc example tag for attribute\n\n' ' **Examples:**\n\n' ' // This is the example.\n' ' console.log(ExampleAttribute);\n') def test_getter_setter(self): """Make sure ES6-style getters and setters can be documented.""" self._file_contents_eq( 'getter_setter', 'ContainingClass.bar\n\n Setting this also frobs the frobnicator.\n') def test_no_shadowing(self): """Make sure we can disambiguate objects of the same name.""" self._file_contents_eq( 'avoid_shadowing', 'more_code.shadow()\n\n Another thing named shadow, to threaten to shadow the one in\n code.js\n') @classmethod def teardown_class(cls): rmtree(join(cls.docs_dir, '_build')) DESCRIPTION = """ Return the ratio of the inline text length of the links in an element to the inline text length of the entire element.""" FIELDS = u""" Arguments: * **node** (*Node*) – Something of a single type Throws: **PartyError|FartyError** – Something with multiple types and a line that wraps Returns: **Number** – What a thing """ # Oddly enough, the text renderer renders these bullets with a blank line # between, but the HTML renderer does make them a single list. CONTENT = """ Things are "neat". Off the beat. * Sweet * Fleet """
#!/usr/bin/python # -*- coding: utf-8 -*- #Python的线程池实现 # https://blog.51cto.com/1238306/1742627 import queue import threading import sys import time import urllib import subprocess import os #替我们工作的线程池中的线程 class MyThread(threading.Thread): def __init__(self, workQueue, resultQueue, timeout=5, **kwargs): threading.Thread.__init__(self, kwargs=kwargs) #线程在结束前等待任务队列多长时间 self.timeout = timeout self.setDaemon(True) self.workQueue = workQueue self.resultQueue = resultQueue self.start() def run(self): while True: try: #从工作队列中获取一个任务 callable, args, kwargs = self.workQueue.get(timeout=self.timeout) #我们要执行的任务 arg1 = self.workQueue.qsize() res = callable(arg1, kwargs) #报任务返回的结果放在结果队列中 self.resultQueue.put(self.getName() + " | " + str(self.ident) + " | " + str(res)) arg2 = self.resultQueue.qsize() except queue.Empty: #任务队列空的时候结束此线程 break except : print(sys.exc_info()) raise class ThreadPool: def __init__(self, num_of_threads=10): self.workQueue = queue.Queue() self.resultQueue = queue.Queue() self.threads = [] self.__createThreadPool(num_of_threads) def __createThreadPool(self, num_of_threads): for i in range( num_of_threads ): thread = MyThread(self.workQueue, self.resultQueue) print('*****************') print(thread.workQueue) print(thread.workQueue.qsize()) print('*****************') self.threads.append(thread) print(self.threads) def wait_for_complete(self): #等待所有线程完成。 while len(self.threads): thread = self.threads.pop() # print(threading.active_count()) # print(threading.enumerate()) #等待线程结束 if thread.isAlive():#判断线程是否还存活来决定是否调用join thread.join() def add_job(self, callable, *args, **kwargs): self.workQueue.put((callable, args, kwargs)) def workerfun(arg1, arg2): html = "" try: time.sleep(1) # conn = urllib.urlopen('http://www.baidu.com/') # html = conn.read(20) html = arg1 processes = subprocess.Popen( 'echo ${PPID} "|" $$', shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, stdin=subprocess.PIPE, universal_newlines=True, cwd='/tmp' ) line = processes.stdout.readline() line = line.rstrip() except: print(sys.exc_info()) return line def main(): print('start testing') tp = ThreadPool(5) for i in range(20): time.sleep(0.2) tp.add_job(workerfun, i) print(tp) tp.wait_for_complete() #处理结果 print('result Queue\'s length == %d '% tp.resultQueue.qsize()) while tp.resultQueue.qsize(): print(tp.resultQueue.get()) print('end testing') if __name__ == '__main__': main()
import logging import sigopt from distilbert_run_and_hpo_configurations.distilbert_squad_run_parameters import OptimizationRunParameters from squad_fine_tuning.optimize_squad_distillation import OptimizeSquadDistillation class RunsOptimizeSquadDistillation(OptimizeSquadDistillation): def __init__(self, args_dict): super().__init__(args_dict) def main(args_dict, config_dict, sigopt_experiment_id, suggestion_id): logging.info("arguments passed to distillation training: {}".format(args_dict)) logging.info("configuration passed to distillation training: {}".format(config_dict)) runs_optimize_squad_distillation = RunsOptimizeSquadDistillation(args_dict=args_dict) parameter_values, args_dict, run_training_squad_distillation, model = runs_optimize_squad_distillation.setup_run( suggestion_id, args_dict, config_dict) all_parameters = dict() all_parameters.update(args_dict) all_parameters.update(parameter_values) with sigopt.create_run(name="Distillation Run_experiment_{}_suggestion_{}".format(sigopt_experiment_id, suggestion_id), project=args_dict[OptimizationRunParameters.PROJECT_NAME.value]) as run: run.log_dataset("SQUAD 2.0") run.log_model("DistilBert for question answering") run.log_metadata("suggestion_id", suggestion_id) run.log_metadata("experiment_id", sigopt_experiment_id) failed, error_str, evaluated_values, results, model = runs_optimize_squad_distillation.try_distillation_tuning( run_training_squad_distillation, all_parameters, model, run) if failed is True: run.log_failure() run.log_metadata(key="error_str", value=error_str) else: run.log_checkpoint(results) for evaluated_metric in evaluated_values: run.log_metric(evaluated_metric["name"], evaluated_metric["value"]) return model, evaluated_values, failed, error_str
from pbhhg_py.abstract_syntax import * from pbhhg_py.utils import * def build_tbl(proc_functional): def _split(argv): check_arity(argv, [1, 2]) argv = yield from map_strict(argv) check_type(argv, String) src, delimiter = (argv + [String('')])[:2] if delimiter.value: pieces = src.value.split(delimiter.value) else: pieces = src.value return List(tuple(String(piece) for piece in pieces)) def _join(argv): check_arity(argv, [1, 2]) argv = yield from map_strict(argv) seq, delimiter = (argv + [String('')])[:2] check_type(seq, List) check_type(delimiter, String) pieces = yield from map_strict(seq.value) check_type(pieces, String) return String(delimiter.value.join(piece.value for piece in pieces)) return { 'ㅂㄹ': _split, # 분리 'ㄱㅁ': _join, # 꿰매다 }
import re import pytest from mimesis import Science from mimesis.data.int.scientific import SI_PREFIXES, SI_PREFIXES_SYM from mimesis.enums import MeasureUnit, MetricPrefixSign from mimesis.exceptions import NonEnumerableError from . import patterns class TestScience: @pytest.fixture def science(self): return Science() def test_str(self, science): assert re.match(patterns.PROVIDER_STR_REGEX, str(science)) def test_rna_sequence(self, science): result = science.rna_sequence(length=10) assert isinstance(result, str) assert len(result) == 10 def test_dna_sequence(self, science): result = science.dna_sequence(length=10) assert isinstance(result, str) assert len(result) == 10 @pytest.mark.parametrize( "name", [ MeasureUnit.MASS, MeasureUnit.INFORMATION, MeasureUnit.THERMODYNAMIC_TEMPERATURE, MeasureUnit.AMOUNT_OF_SUBSTANCE, MeasureUnit.ANGLE, MeasureUnit.SOLID_ANGLE, MeasureUnit.FREQUENCY, MeasureUnit.FORCE, MeasureUnit.PRESSURE, MeasureUnit.ENERGY, MeasureUnit.POWER, MeasureUnit.ELECTRIC_CHARGE, MeasureUnit.VOLTAGE, MeasureUnit.ELECTRIC_CAPACITANCE, MeasureUnit.ELECTRIC_RESISTANCE, MeasureUnit.ELECTRICAL_CONDUCTANCE, MeasureUnit.MAGNETIC_FLUX, MeasureUnit.MAGNETIC_FLUX_DENSITY, MeasureUnit.INDUCTANCE, MeasureUnit.TEMPERATURE, MeasureUnit.RADIOACTIVITY, ], ) def test_measure_unit(self, science, name): result = science.measure_unit(name) assert result in name.value symbol = science.measure_unit(name, symbol=True) assert symbol in name.value @pytest.mark.parametrize( "sign, symbol", [ (MetricPrefixSign.POSITIVE, True), (MetricPrefixSign.POSITIVE, False), (MetricPrefixSign.NEGATIVE, True), (MetricPrefixSign.NEGATIVE, False), ], ) def test_prefix(self, science, sign, symbol): prefix = science.metric_prefix(sign=sign, symbol=symbol) prefixes = SI_PREFIXES_SYM if symbol else SI_PREFIXES assert prefix in prefixes[sign.value] with pytest.raises(NonEnumerableError): science.metric_prefix(sign="nil") class TestSeededScience: @pytest.fixture def s1(self, seed): return Science(seed=seed) @pytest.fixture def s2(self, seed): return Science(seed=seed) def test_rna_sequence(self, s1, s2): assert s1.rna_sequence() == s2.rna_sequence() assert s1.rna_sequence(length=22) == s2.rna_sequence(length=22) def test_dna_sequence(self, s1, s2): assert s1.dna_sequence() == s2.dna_sequence() assert s1.dna_sequence(length=10) == s2.dna_sequence(length=10)
# Generated by Django 2.2.16 on 2020-09-28 19:48 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('tracker', '0010_merge_20200926_1759'), ('tracker', '0012_merge_20200928_1510'), ] operations = [ ]
import unittest from server import FlaskTestServerList class FlaskTestServerListTestCase(unittest.TestCase): def test_initialization(self): server_list = FlaskTestServerList() self.assertEqual(server_list.len(), 2) d = { "AWS": "95.69.98.253", "GCP": "43.56.87.99", "Azure": "123.123.33.44", } server_list1 = FlaskTestServerList.specify_server_list(d) self.assertEqual(len(d), server_list1.len()) def test_update_server_from_list(self): server_list = FlaskTestServerList() new_servers = ["127.0.0.1", "127.0.0.1", "147.120.147.120"] server_list.update_server_list_using_list(new_servers) server_list.print_all_servers() def test_init_server_from_url(self): server_list = FlaskTestServerList().init_server_list_from_url("http://127.0.0.1:5000/getserverlists") self.assertEqual(server_list.len(), 3) server_list.print_all_servers() if __name__ == '__main__': unittest.main()
# import threading # from core.tools.DBTool import * # from core.tools.RedisTool import * # from core.const.Do import * # from core.const.Protocol import * # from runfunc.runGlobalVars import isCluster # from runfunc.initial import * # from allmodels.DubboInterface import DubboInterface # from allmodels.DubboTestcase import DubboTestcase # # # # def typeRunServiceDataReport(dataDict,serviceList,taskQueueList): # serviceFlag = False # for serviceIndex in range(0, len(serviceList)): # tmpServiceIndex = serviceList[serviceIndex] # if dataDict[Do.KEY_RUN_SERVICE_IP] == tmpServiceIndex[Do.KEY_RUN_SERVICE_IP] and dataDict[ # Do.KEY_RUN_SERVICE_PORT] == tmpServiceIndex[Do.KEY_RUN_SERVICE_PORT]: # serviceFlag = True # if dataDict[Do.KEY_RUN_SERVICE_MAX_TASK_PROGRESS_NUM] != tmpServiceIndex[ # Do.KEY_RUN_SERVICE_MAX_TASK_PROGRESS_NUM] or dataDict[Do.KEY_RUN_SERVICE_MAX_CASE_PROGRESS_NUM] != \ # tmpServiceIndex[Do.KEY_RUN_SERVICE_MAX_CASE_PROGRESS_NUM]: # # 执行机上的最大进程数与master不符,更新执行机数量 # tcpStr = '{"do":%s,"%s":%s,"%s":%s}' % ( # Do.TYPE_MASTER_SET_SERVICE_DATA, Do.KEY_RUN_SERVICE_MAX_TASK_PROGRESS_NUM, # tmpServiceIndex[Do.KEY_RUN_SERVICE_MAX_TASK_PROGRESS_NUM], Do.KEY_RUN_SERVICE_MAX_CASE_PROGRESS_NUM, # tmpServiceIndex[Do.KEY_RUN_SERVICE_MAX_CASE_PROGRESS_NUM]) # if sendTcp(dataDict[Do.KEY_RUN_SERVICE_IP], dataDict[Do.KEY_RUN_SERVICE_PORT], tcpStr): # logging.info("执行机上的任务最大进程数与master不符,更新执行机数量成功") # else: # logging.error("执行机上的任务最大进程数与master不符,更新执行机数量失败") # if dataDict[Do.KEY_RUN_SERVICE_PROTOCOL] != tmpServiceIndex[Do.KEY_RUN_SERVICE_PROTOCOL]: # tmpServiceIndex[Do.KEY_RUN_SERVICE_PROTOCOL] = dataDict[Do.KEY_RUN_SERVICE_PROTOCOL] # serviceList[serviceIndex] = tmpServiceIndex # # db = DBTool() # db.initGlobalDBConf() # # # servicelist中没有这个服务器,判断表中是否有,如果表中没有,加入到servicelist表中记录 # # sqlRes = db.execute_sql("select * from tb_run_server_conf where serviceIp = '%s' and servicePort = %s" % ( # dataDict[Do.KEY_RUN_SERVICE_IP], dataDict[Do.KEY_RUN_SERVICE_PORT])) # # if len(sqlRes) > 0: # if not serviceFlag: # tcpStr = '{"do":%s,"%s":%s,"%s":%s}' % ( # Do.TYPE_MASTER_SET_SERVICE_DATA, # Do.KEY_RUN_SERVICE_MAX_TASK_PROGRESS_NUM, # sqlRes[0]["maxTaskProgressNum"], # Do.KEY_RUN_SERVICE_MAX_CASE_PROGRESS_NUM, # sqlRes[0]["maxCaseProgressNum"]) # if sendTcp(dataDict[Do.KEY_RUN_SERVICE_IP], dataDict[Do.KEY_RUN_SERVICE_PORT], # tcpStr): # logging.info("执行机上的任务最大进程数与master不符,更新执行机数量成功") # else: # logging.error("执行机上的任务最大进程数与master不符,更新执行机数量失败") # serviceData = {} # serviceData[Do.KEY_RUN_SERVICE_IP] = sqlRes[0]["serviceIp"] # serviceData[Do.KEY_RUN_SERVICE_PORT] = sqlRes[0]["servicePort"] # serviceData[Do.KEY_RUN_SERVICE_MAX_TASK_PROGRESS_NUM] = sqlRes[0]["maxTaskProgressNum"] # serviceData[Do.KEY_RUN_SERVICE_CURRENT_TASK_PROGRESS_NUM] = dataDict[ # Do.KEY_RUN_SERVICE_CURRENT_TASK_PROGRESS_NUM] # serviceData[Do.KEY_RUN_SERVICE_CURRENT_TASK_LIST] = dataDict[Do.KEY_RUN_SERVICE_CURRENT_TASK_LIST] # serviceData[Do.KEY_RUN_SERVICE_MAX_CASE_PROGRESS_NUM] = sqlRes[0]["maxCaseProgressNum"] # serviceData[Do.KEY_RUN_SERVICE_CURRENT_CASE_PROGRESS_NUM] = dataDict[ # Do.KEY_RUN_SERVICE_CURRENT_CASE_PROGRESS_NUM] # serviceData[Do.KEY_RUN_SERVICE_CURRENT_CASE_LIST] = dataDict[Do.KEY_RUN_SERVICE_CURRENT_CASE_LIST] # serviceData[Do.KEY_RUN_SERVICE_PROTOCOL] = dataDict[Do.KEY_RUN_SERVICE_PROTOCOL] # # serviceData[Do.KEY_RUN_SERVICE_LAST_UPDATE_TIME] = datetime.datetime.now() # serviceList.append(serviceData) # res = db.execute_sql("UPDATE tb_run_server_conf SET STATUS = 1 WHERE serviceIp = '%s' AND servicePort = %s" % ( # dataDict[Do.KEY_RUN_SERVICE_IP], dataDict[Do.KEY_RUN_SERVICE_PORT])) # # if res == False: # logging.error( # "%s:%s 状态设为在线失败! %s" % (dataDict[Do.KEY_RUN_SERVICE_IP], dataDict[Do.KEY_RUN_SERVICE_PORT], res)) # # else: # logging.info( # "%s:%s 状态设为在线! %s" % (dataDict[Do.KEY_RUN_SERVICE_IP], dataDict[Do.KEY_RUN_SERVICE_PORT], dataDict)) # db.release() # else: # currentTime = get_current_time() # res = db.execute_sql( # "insert into tb_run_server_conf (serviceName,serviceIp,servicePort,maxTaskProgressNum,maxCaseProgressNum,status,state,addBy,addTime,modTime) VALUES ('%s','%s',%s,%s,%s,1,1,'master','%s','%s');" # % (dataDict[Do.KEY_RUN_SERVICE_IP], dataDict[Do.KEY_RUN_SERVICE_IP], dataDict[Do.KEY_RUN_SERVICE_PORT], # dataDict[Do.KEY_RUN_SERVICE_MAX_TASK_PROGRESS_NUM], dataDict[Do.KEY_RUN_SERVICE_MAX_CASE_PROGRESS_NUM], # currentTime, currentTime)) # db.release() # if res == False: # logging.error("数据插入失败!") # else: # logging.info("数据插入成功") # service = {} # service[Do.KEY_RUN_SERVICE_IP] = dataDict[Do.KEY_RUN_SERVICE_IP] # service[Do.KEY_RUN_SERVICE_PORT] = dataDict[Do.KEY_RUN_SERVICE_PORT] # service[Do.KEY_RUN_SERVICE_MAX_TASK_PROGRESS_NUM] = dataDict[Do.KEY_RUN_SERVICE_MAX_TASK_PROGRESS_NUM] # service[Do.KEY_RUN_SERVICE_CURRENT_TASK_PROGRESS_NUM] = dataDict[ # Do.KEY_RUN_SERVICE_CURRENT_TASK_PROGRESS_NUM] # service[Do.KEY_RUN_SERVICE_CURRENT_TASK_LIST] = dataDict[Do.KEY_RUN_SERVICE_CURRENT_TASK_LIST] # service[Do.KEY_RUN_SERVICE_MAX_CASE_PROGRESS_NUM] = dataDict[Do.KEY_RUN_SERVICE_MAX_CASE_PROGRESS_NUM] # service[Do.KEY_RUN_SERVICE_CURRENT_CASE_PROGRESS_NUM] = dataDict[ # Do.KEY_RUN_SERVICE_CURRENT_CASE_PROGRESS_NUM] # service[Do.KEY_RUN_SERVICE_CURRENT_CASE_LIST] = dataDict[Do.KEY_RUN_SERVICE_CURRENT_CASE_LIST] # service[Do.KEY_RUN_SERVICE_PROTOCOL] = dataDict[Do.KEY_RUN_SERVICE_PROTOCOL] # service[Do.KEY_RUN_SERVICE_LAST_UPDATE_TIME] = datetime.datetime.now() # serviceList.append(service) # taskQueueIndex = 0 # while taskQueueIndex < len(taskQueueList): # # for taskQueueIndex in range(0,len(taskQueueList)): # # try: # tmpTaskQueue = taskQueueList[taskQueueIndex] # # except Exception: # # break # if "%s_%s" % (tmpTaskQueue[Do.TYPE_PROTOCOL], tmpTaskQueue[Do.KEY_TASK_EXECUTE_ID]) in dataDict.keys(): # tmpTaskQueue[isCluster] = int( # dataDict["%s_%s" % (tmpTaskQueue[Do.TYPE_PROTOCOL], tmpTaskQueue[Do.KEY_TASK_EXECUTE_ID])]) # taskQueueList[taskQueueIndex] = tmpTaskQueue # break # taskQueueIndex += 1 # # def typeTaskCancelDone(dataDict,serviceList,taskQueueList): # taskQueueIndex = 0 # while taskQueueIndex < len(taskQueueList): # # for taskQueueIndex in range(0,len(taskQueueList)): # # try: # taskQueueIndexDict = taskQueueList[taskQueueIndex] # # except Exception: # # break # if taskQueueIndexDict[Do.KEY_TASK_EXECUTE_ID] == dataDict[Do.KEY_TASK_EXECUTE_ID]: # taskQueueIndexDict[isCluster] = isClusterConf.cancelTaskDone # taskQueueList[taskQueueIndex] = taskQueueIndexDict # taskQueueIndex += 1 # for serviceIndex in range(0, len(serviceList)): # tmpServiceIndex = serviceList[serviceIndex] # if "%s_%s" % (dataDict[Do.TYPE_PROTOCOL], dataDict[Do.KEY_TASK_EXECUTE_ID]) in tmpServiceIndex[ # Do.KEY_RUN_SERVICE_CURRENT_TASK_LIST]: # tmpServiceIndex[Do.KEY_RUN_SERVICE_CURRENT_TASK_LIST].remove( # "%s_%s" % (dataDict[Do.TYPE_PROTOCOL], dataDict[Do.KEY_TASK_EXECUTE_ID])) # tmpServiceIndex[Do.KEY_RUN_SERVICE_CURRENT_TASK_PROGRESS_NUM] -= 1 # serviceList[serviceIndex] = tmpServiceIndex # if Do.KEY_TASK_SUITE_EXECUTE_ID in dataDict.keys() and int(dataDict[Do.KEY_TASK_SUITE_EXECUTE_ID]) != 0: # try: # redisCache = RedisTool() # redisCache.initRedisConf() # # taskSuiteExecuteData = json.loads( # # redisCache.get_data("%s_taskSuiteExecuteId_%s" % (dataDict[Do.TYPE_PROTOCOL],dataDict[Do.KEY_TASK_SUITE_EXECUTE_ID]))) # # taskSuiteExecuteData["execStatus"] = ExecStatus.CANCELED # # redisCache.set_data("%s_taskSuiteExecuteId_%s" % (dataDict[Do.TYPE_PROTOCOL],dataDict[Do.KEY_TASK_SUITE_EXECUTE_ID]), # # json.dumps(taskSuiteExecuteData)) # redisCache.del_data("%s_taskSuiteExecuteId_%s" % (dataDict[Do.TYPE_PROTOCOL],dataDict[Do.KEY_TASK_SUITE_EXECUTE_ID])) # cancelTaskSuite(dataDict) # # except Exception: # print(traceback.format_exc()) # logging.error("任务取消时设置任务集状态失败") # logging.info("taskExecuteDone: 任务取消完毕 %s " % dataDict) # # def typeTaskExecuteDone(dataDict,serviceList,taskQueueList): # dataDict[isCluster] = isClusterConf.runTaskDone # # print(1111111111111111) # taskQueueIndex = 0 # while taskQueueIndex < len(taskQueueList): # # for taskQueueIndex in range(0,len(taskQueueList)): # # try: # taskQueueIndexDict = taskQueueList[taskQueueIndex] # # except Exception: # # break # if dataDict[Do.KEY_TASK_EXECUTE_ID] == taskQueueIndexDict[Do.KEY_TASK_EXECUTE_ID]: # taskQueueIndexDict[isCluster] = isClusterConf.runTaskDone # taskQueueList[taskQueueIndex] = taskQueueIndexDict # break # taskQueueIndex += 1 # # print(22222222222222) # for serviceIndex in range(0, len(serviceList)): # tmpServiceIndex = serviceList[serviceIndex] # if "%s_%s" % (dataDict[Do.TYPE_PROTOCOL], dataDict[Do.KEY_TASK_EXECUTE_ID]) in tmpServiceIndex[ # Do.KEY_RUN_SERVICE_CURRENT_TASK_LIST]: # tmpServiceIndex[Do.KEY_RUN_SERVICE_CURRENT_TASK_LIST].remove( # "%s_%s" % (dataDict[Do.TYPE_PROTOCOL], dataDict[Do.KEY_TASK_EXECUTE_ID])) # tmpServiceIndex[Do.KEY_RUN_SERVICE_CURRENT_TASK_PROGRESS_NUM] -= 1 # serviceList[serviceIndex] = tmpServiceIndex # break # # print(333333333333) # if Do.KEY_TASK_SUITE_EXECUTE_ID in dataDict.keys() and int(dataDict[Do.KEY_TASK_SUITE_EXECUTE_ID]) != 0: # taskSuiteExecuteId = dataDict[Do.KEY_TASK_SUITE_EXECUTE_ID] # lastTaskExecuteId = dataDict[Do.KEY_TASK_EXECUTE_ID] # redisCache = RedisTool() # redisCache.initRedisConf() # if dataDict[Do.TYPE_PROTOCOL] == Protocol.HTTP_PROTOCOL: # # print(777777777777777) # taskExecuteTableName = "tb_task_execute" # taskSuiteExecuteTableName = "tb_task_suite_execute" # elif dataDict[Do.TYPE_PROTOCOL] == Protocol.DUBBO_PROTOCOL: # taskExecuteTableName = "tb2_dubbo_task_execute" # taskSuiteExecuteTableName = "tb2_dubbo_task_suite_execute" # else: # return # try: # taskSuiteExecuteData = json.loads(redisCache.get_data("%s_taskSuiteExecuteId_%s" % (dataDict[Do.TYPE_PROTOCOL],taskSuiteExecuteId))) # except: # db = DBTool() # db.initGlobalDBConf() # try: # taskSuiteExecuteData = {"taskExecuteIdList":db.execute_sql("select taskExecuteIdList from %s where id = %s" % (taskSuiteExecuteTableName, taskSuiteExecuteId))[0]["taskExecuteIdList"].split(",")} # except: # taskSuiteExecuteData = {"taskExecuteIdList":[]} # finally: # db.release() # lastTask = True # progressList = [] # testResultList = [] # # print(4444444444444) # for taskIndex in taskSuiteExecuteData["taskExecuteIdList"]: # try: # taskExecStatus = json.loads( # redisCache.get_data("%s_taskSuite_%s_task_%s" % (dataDict[Do.TYPE_PROTOCOL],taskSuiteExecuteId, taskIndex))) # testResultList.append(taskExecStatus["testResult"]) # except: # testResultList.append(db.execute_sql("select execStatus from %s where id=%s" % (taskExecuteTableName, taskIndex))[0]["execStatus"]) # # if taskExecStatus["execStatus"] != ExecStatus.DONE and taskExecStatus[ # "execStatus"] != ExecStatus.EXCEPTION and \ # taskExecStatus["execStatus"] != ExecStatus.CANCELED: # lastTask = False # progressList.append(int(taskExecStatus["progress"])) # # print(5555555555555555) # if lastTask: # # print(6666666666666666666666) # try: # db = DBTool() # db.initGlobalDBConf() # # taskListTestResult = {} # taskListTestResult["testResult"] = "" # taskListTestResult["task"] = {} # taskListTestResult["task"]["total"] = 0 # taskListTestResult["task"][ResultConst.PASS] = 0 # taskListTestResult["task"][ResultConst.FAIL] = 0 # taskListTestResult["task"][ResultConst.ERROR] = 0 # taskListTestResult["task"][ResultConst.EXCEPTION] = 0 # taskListTestResult["task"][ResultConst.CANCELED] = 0 # taskListTestResult["caseTotal"] = 0 # taskListTestResult["casePass"] = 0 # taskListTestResult["caseFail"] = 0 # taskListTestResult["caseError"] = 0 # taskListTestResult["caseNnotrun"] = 0 # taskListTestResult["casePerformanceTotal"] = 0 # taskListTestResult["casePerformancePass"] = 0 # taskListTestResult["casePerformanceFail"] = 0 # taskListTestResult["taskList"] = [] # # print(taskSuiteExecuteData) # # for taskIndex in taskSuiteExecuteData["taskExecuteIdList"]: # redisCache.del_data("%s_taskSuite_%s_task_%s" % (dataDict[Do.TYPE_PROTOCOL],taskSuiteExecuteId, taskIndex)) # # thisTask = db.execute_sql( # "select id,title,taskId,testResult,testResultMsg,testReportUrl,httpConfKey from %s where id=%s" % (taskExecuteTableName,taskIndex)) # # if thisTask[0]["testResult"] not in taskListTestResult["task"].keys(): # taskListTestResult["task"][thisTask[0]["testResult"]] = 0 # # try: # thisTaskResultMsg = json.loads(thisTask[0]["testResultMsg"]) # taskListTestResult["caseTotal"] += thisTaskResultMsg["totalExecuteSummary"]['total'] # taskListTestResult["casePass"] += thisTaskResultMsg["totalExecuteSummary"]['pass'] # taskListTestResult["caseFail"] += thisTaskResultMsg["totalExecuteSummary"]['fail'] # taskListTestResult["caseError"] += thisTaskResultMsg["totalExecuteSummary"]['error'] # taskListTestResult["caseNnotrun"] += thisTaskResultMsg["totalExecuteSummary"]['notrun'] # if dataDict[Do.TYPE_PROTOCOL] == Protocol.HTTP_PROTOCOL: # taskListTestResult["casePerformanceTotal"] += thisTaskResultMsg["actualTotalPerformanceDict"][ # 'total'] # taskListTestResult["casePerformancePass"] += thisTaskResultMsg["actualTotalPerformanceDict"][ # 'pass'] # taskListTestResult["casePerformanceFail"] += thisTaskResultMsg["actualTotalPerformanceDict"][ # 'fail'] # actualTotalPerformanceDict = thisTaskResultMsg["actualTotalPerformanceDict"] # else: # actualTotalPerformanceDict = {} # # taskListTestResult["taskList"].append({"id": thisTask[0]["id"], "taskId": thisTask[0]["taskId"], # "testResult": thisTask[0]["testResult"], # "executeSummary": thisTaskResultMsg[ # "totalExecuteSummary"], # "testReportUrl": thisTask[0]["testReportUrl"], # "taskName": thisTask[0]["title"], # "httpConfKey": thisTask[0]["httpConfKey"], # "actualTotalPerformanceDict": actualTotalPerformanceDict}) # except Exception: # print(traceback.format_exc()) # taskListTestResult["taskList"].append({"taskId": thisTask[0]["taskId"], "testResult": "CANCEL"}) # taskListTestResult["task"][thisTask[0]["testResult"]] += 1 # taskListTestResult["task"]["total"] += 1 # redisCache.del_data("%s_taskSuiteExecuteId_%s" % (dataDict[Do.TYPE_PROTOCOL],taskSuiteExecuteId)) # # print(testResultList) # # print(taskSuiteExecuteTableName) # # print(taskExecuteTableName) # # taskSuiteResult = db.execute_sql( # # "select * from tb_task_suite_execute where id = %s" % taskSuiteExecuteId) # # # # if taskSuiteResult: # if ResultConst.CANCELED in testResultList: # testResult = ResultConst.CANCELED # elif ResultConst.ERROR in testResultList: # testResult = ResultConst.ERROR # elif ResultConst.EXCEPTION in testResultList: # testResult = ResultConst.EXCEPTION # elif ResultConst.FAIL in testResultList: # testResult = ResultConst.FAIL # elif ResultConst.WARNING in testResultList: # testResult = ResultConst.WARNING # else: # testResult = ResultConst.PASS # taskListTestResult["testResult"] = testResult # taskSuiteResult = \ # db.execute_sql("select execTime from %s where id = %s" % (taskSuiteExecuteTableName,taskSuiteExecuteId))[0] # # print(11111111111111111111111111111) # lastTaskData = \ # db.execute_sql("select execFinishTime from %s where id=%s" % (taskExecuteTableName,lastTaskExecuteId))[0] # execTakeTime = (lastTaskData["execFinishTime"] - taskSuiteResult["execTime"]).seconds # # print(2222222222222222222222222222) # db.execute_sql( # "update %s set testResult = '%s',testResultMsg = '%s',execTakeTime = '%s',execFinishTime = '%s' where id = %s" % ( # taskSuiteExecuteTableName,testResult, json.dumps(taskListTestResult, ensure_ascii=False), execTakeTime, # lastTaskData["execFinishTime"], taskSuiteExecuteId)) # # print(3333333333333333333333333333333) # taskSuiteResult = \ # db.execute_sql("select * from %s where id = %s" % (taskSuiteExecuteTableName,taskSuiteExecuteId))[0] # taskSuiteResult['testResultMsg'] = json.dumps(taskListTestResult, ensure_ascii=False) # # 生成报告 # result, url = generateHttpReport(taskSuiteResult) # # print(result) # # print(url) # # print(44444444444444444444) # # print(url) # if result: # db.execute_sql( # "update %s set execStatus = %s,testReportUrl = '%s' where id = %s" % ( # taskSuiteExecuteTableName,ExecStatus.DONE, url, taskSuiteExecuteId)) # else: # db.execute_sql( # "update %s set execStatus = %s,testReportUrl = '%s' where id = %s" % ( # taskSuiteExecuteTableName,url, ExecStatus.EXCEPTION, "")) # # print(5555555555555555555555555555555) # # 发送邮件 # if int(taskSuiteResult["isSendEmail"]) > 0 and taskSuiteResult["emailList"] != "" and len(taskListTestResult["taskList"]) > 0 : # sendEmailToExecutor(taskSuiteResult) # # except Exception: # print("任务集报告生成失败%s" % traceback.format_exc()) # db.execute_sql( # "update %s set testResult = '%s',execStatus = %s where id = %s" % ( # taskSuiteExecuteTableName,ResultConst.ERROR, ExecStatus.EXCEPTION, taskSuiteExecuteId)) # finally: # db.release() # # else: # progressList.sort(reverse=True) # taskSuiteExecuteData["progress"] = progressList[0] # redisCache.set_data("%s_taskSuiteExecuteId_%s" % (dataDict[Do.TYPE_PROTOCOL],taskSuiteExecuteId), json.dumps(taskSuiteExecuteData)) # # def typeTaskCancel(dataDict,taskQueueList,taskCancelQueueList): # if dataDict not in taskCancelQueueList: # taskQueueIndex = 0 # while taskQueueIndex < len(taskQueueList): # # for taskQueueIndex in range(0,len(taskQueueList)): # # try: # taskQueueIndexDict = taskQueueList[taskQueueIndex] # # except Exception: # # break # # taskQueueIndexDict = taskQueueList[taskQueueIndex] # if taskQueueIndexDict[Do.KEY_TASK_EXECUTE_ID] == dataDict[Do.KEY_TASK_EXECUTE_ID]: # if taskQueueIndexDict[isCluster] == isClusterConf.notRun: # taskQueueIndexDict[isCluster] = isClusterConf.toCancel # taskQueueList[taskQueueIndex] = taskQueueIndexDict # break # taskQueueIndex += 1 # taskCancelQueueList.append(dataDict) # if Do.KEY_TASK_SUITE_EXECUTE_ID in dataDict.keys() and int(dataDict[Do.KEY_TASK_SUITE_EXECUTE_ID]) != 0: # redisCache = RedisTool() # redisCache.initRedisConf() # try: # taskSuiteExecuteData = json.loads( # redisCache.get_data("%s_taskSuiteExecuteId_%s" % (dataDict[Do.TYPE_PROTOCOL],dataDict[Do.KEY_TASK_SUITE_EXECUTE_ID]))) # except: # taskSuiteExecuteData = {"taskExecuteIdList": [], "execStatus": 1, "progress": 0} # taskSuiteExecuteData["execStatus"] = ExecStatus.CANCELED # redisCache.set_data("%s_taskSuiteExecuteId_%s" % (dataDict[Do.TYPE_PROTOCOL],dataDict[Do.KEY_TASK_SUITE_EXECUTE_ID]), # json.dumps(taskSuiteExecuteData)) # cancelTaskSuite(dataDict) # logging.debug("startServer: 任务取消加入taskCancelQueue!") # # def typeTaskInitDone(dataDict,taskQueueList): # dataDict[isCluster] = isClusterConf.runTaskInitDone # taskQueueIndex = 0 # while taskQueueIndex < len(taskQueueList): # # for taskQueueIndex in range(0,len(taskQueueList)): # # try: # taskQueueIndexDict = taskQueueList[taskQueueIndex] # # except Exception: # # break # if taskQueueIndexDict[Do.KEY_TASK_EXECUTE_ID] == dataDict[Do.KEY_TASK_EXECUTE_ID] and taskQueueIndexDict[ # Do.TYPE_PROTOCOL] == dataDict[Do.TYPE_PROTOCOL]: # if taskQueueIndexDict[isCluster] == isClusterConf.runTcpSend: # taskQueueIndexDict[isCluster] = isClusterConf.runTaskInitDone # taskQueueList[taskQueueIndex] = taskQueueIndexDict # logging.info("任务%s 初始化完成" % dataDict[Do.KEY_TASK_EXECUTE_ID]) # break # taskQueueIndex += 1 # # def typeDebugInterface(dataDict,debugQueueList): # if dataDict[Do.TYPE_PROTOCOL] == Protocol.HTTP_PROTOCOL: # httpInterface = HttpInterface(interfaceDebugId=dataDict[Do.KEY_INTERFACE_DEBUG_ID]) # httpInterface.generateByInterfaceDebugId() # if httpInterface.execStatus != 1: # logging.info("没有查到接口调试信息interfaceDebugId[%s]" % dataDict[Do.KEY_INTERFACE_DEBUG_ID]) # else: # dataDict[isCluster] = isClusterConf.notRun # debugQueueList.append(dataDict) # elif dataDict[Do.TYPE_PROTOCOL] == Protocol.DUBBO_PROTOCOL: # dubboInterface = DubboInterface(interfaceDebugId=dataDict[Do.KEY_INTERFACE_DEBUG_ID]) # dubboInterface.generateByInterfaceDebugId() # if dubboInterface.execStatus != 1: # logging.info("没有查到接口调试信息interfaceDebugId[%s]" % dataDict[Do.KEY_INTERFACE_DEBUG_ID]) # else: # dataDict[isCluster] = isClusterConf.notRun # debugQueueList.append(dataDict) # # def typeDebugInterfaceDone(dataDict,serviceList,debugQueueList): # for debugIndex in range(0, len(debugQueueList)): # tmpDebugIndex = debugQueueList[debugIndex] # if Do.KEY_INTERFACE_DEBUG_ID in tmpDebugIndex.keys() and tmpDebugIndex[Do.KEY_INTERFACE_DEBUG_ID] == dataDict[ # Do.KEY_INTERFACE_DEBUG_ID] and tmpDebugIndex[Do.TYPE_PROTOCOL] == dataDict[Do.TYPE_PROTOCOL]: # tmpDebugIndex[isCluster] = isClusterConf.runDebugDone # debugQueueList[debugIndex] = tmpDebugIndex # break # # for serviceIndex in range(0, len(serviceList)): # tmpServiceIndex = serviceList[serviceIndex] # if "%s_%s" % (dataDict[Do.TYPE_PROTOCOL], dataDict[Do.KEY_INTERFACE_DEBUG_ID]) in tmpServiceIndex[ # Do.KEY_RUN_SERVICE_CURRENT_CASE_LIST]: # tmpServiceIndex[Do.KEY_RUN_SERVICE_CURRENT_CASE_LIST].remove( # "%s_%s" % (dataDict[Do.TYPE_PROTOCOL], dataDict[Do.KEY_INTERFACE_DEBUG_ID])) # tmpServiceIndex[Do.KEY_RUN_SERVICE_CURRENT_CASE_PROGRESS_NUM] -= 1 # serviceList[serviceIndex] = tmpServiceIndex # break # # def typeDebugCase(dataDict,debugQueueList): # if dataDict[Do.TYPE_PROTOCOL] == Protocol.HTTP_PROTOCOL: # httpTestCase = HttpTestcase() # httpTestCase.generateByCaseDebugIdAndCaseStepDebugIdList(dataDict[Do.KEY_CASE_DEBUG_ID], # dataDict[Do.KEY_CASE_STEP_DEBUG_ID_LIST]) # if httpTestCase.execStatus != 1: # logging.error("没有查到用例调试信息caseDebugId[%s]" % dataDict[Do.KEY_CASE_DEBUG_ID]) # # conn.send(bytes("没有查到用例调试信息caseDebugId[%s]" % dataDict[Do.KEY_CASE_DEBUG_ID], 'utf8')) # elif len(httpTestCase.stepTestcaseList) == 0: # logging.error("用例步骤数量为0 caseDebugId[%s]" % dataDict[Do.KEY_CASE_DEBUG_ID]) # # conn.send(bytes("用例步骤数量为0 caseDebugId[%s]" % dataDict[Do.KEY_CASE_DEBUG_ID], 'utf8')) # else: # dataDict[isCluster] = isClusterConf.notRun # debugQueueList.append(dataDict) # elif dataDict[Do.TYPE_PROTOCOL] == Protocol.DUBBO_PROTOCOL: # dubboTestCase = DubboTestcase() # dubboTestCase.generateByCaseDebugIdAndCaseStepDebugIdList(dataDict[Do.KEY_CASE_DEBUG_ID], # dataDict[Do.KEY_CASE_STEP_DEBUG_ID_LIST]) # if dubboTestCase.execStatus != 1: # logging.error("没有查到用例调试信息caseDebugId[%s]" % dataDict[Do.KEY_CASE_DEBUG_ID]) # # conn.send(bytes("没有查到用例调试信息caseDebugId[%s]" % dataDict[Do.KEY_CASE_DEBUG_ID], 'utf8')) # elif len(dubboTestCase.stepTestcaseList) == 0: # logging.error("用例步骤数量为0 caseDebugId[%s]" % dataDict[Do.KEY_CASE_DEBUG_ID]) # # conn.send(bytes("用例步骤数量为0 caseDebugId[%s]" % dataDict[Do.KEY_CASE_DEBUG_ID], 'utf8')) # else: # dataDict[isCluster] = isClusterConf.notRun # debugQueueList.append(dataDict) # # # def typeDebugCaseDone(dataDict,serviceList,debugQueueList): # for debugIndex in range(0, len(debugQueueList)): # tmpDebugIndex = debugQueueList[debugIndex] # if Do.KEY_CASE_DEBUG_ID in tmpDebugIndex.keys() and tmpDebugIndex[Do.KEY_CASE_DEBUG_ID] == dataDict[ # Do.KEY_CASE_DEBUG_ID] and tmpDebugIndex[Do.TYPE_PROTOCOL] == dataDict[Do.TYPE_PROTOCOL]: # tmpDebugIndex[isCluster] = isClusterConf.runDebugDone # debugQueueList[debugIndex] = tmpDebugIndex # break # # for serviceIndex in range(0, len(serviceList)): # tmpServiceIndex = serviceList[serviceIndex] # if "%s_%s" % (dataDict[Do.TYPE_PROTOCOL], dataDict[Do.KEY_CASE_DEBUG_ID]) in tmpServiceIndex[ # Do.KEY_RUN_SERVICE_CURRENT_CASE_LIST]: # tmpServiceIndex[Do.KEY_RUN_SERVICE_CURRENT_CASE_LIST].remove( # "%s_%s" % (dataDict[Do.TYPE_PROTOCOL], dataDict[Do.KEY_CASE_DEBUG_ID])) # tmpServiceIndex[Do.KEY_RUN_SERVICE_CURRENT_CASE_PROGRESS_NUM] -= 1 # serviceList[serviceIndex] = tmpServiceIndex # break
from datetime import datetime from datetime import date from django.db import models from django.db.models import Avg from django.db.models.fields.files import FileField from itertools import chain class User(models.Model): username = models.CharField(max_length=255, unique=True, verbose_name="账号") password = models.CharField(max_length=255, verbose_name="密码") email = models.EmailField(verbose_name="邮箱") created_time = models.DateTimeField(auto_now_add=True) class Meta: verbose_name_plural = "用户" verbose_name = "用户" def __str__(self): return self.username class Tags(models.Model): name = models.CharField(max_length=255, verbose_name="标签", unique=True) class Meta: verbose_name = "标签" verbose_name_plural = "标签" def __str__(self): return self.name class UserTagPrefer(models.Model): user = models.ForeignKey( User, on_delete=models.CASCADE, blank=True, verbose_name="用户id", ) tag = models.ForeignKey(Tags, on_delete=models.CASCADE, verbose_name='标签名') score = models.FloatField(default=0) class Meta: verbose_name = "用户偏好" verbose_name_plural = "偏好" def __str__(self): return self.user.username + str(self.score) class Movie(models.Model): tags = models.ManyToManyField(Tags, verbose_name='标签', blank=True) collect = models.ManyToManyField(User, verbose_name="收藏者", blank=True) name = models.CharField(verbose_name="电影名称", max_length=255, unique=True) director = models.CharField(verbose_name="导演名称", max_length=255) country = models.CharField(verbose_name="国家", max_length=255) years = models.DateField(verbose_name='上映日期') leader = models.CharField(verbose_name="主演", max_length=1024) d_rate_nums = models.IntegerField(verbose_name="豆瓣评价数") d_rate = models.CharField(verbose_name="豆瓣评分", max_length=255) intro = models.TextField(verbose_name="描述") num = models.IntegerField(verbose_name="浏览量", default=0) origin_image_link = models.URLField(verbose_name='豆瓣图片地址', max_length=255, null=True) image_link = models.FileField(verbose_name="封面图片", max_length=255, upload_to='movie_cover') imdb_link = models.URLField(null=True) @property def movie_rate(self): movie_rate = Rate.objects.filter(movie_id=self.id).aggregate(Avg('mark'))['mark__avg'] return movie_rate or '无' class Meta: verbose_name = "电影" verbose_name_plural = "电影" def __str__(self): return self.name def to_dict(self, fields=None, exclude=None): opts = self._meta data = {} for f in chain(opts.concrete_fields, opts.private_fields, opts.many_to_many): if exclude and f.name in exclude: continue if fields and f.name not in fields: continue value = f.value_from_object(self) if isinstance(value, date): value = value.strftime('%Y-%m-%d') elif isinstance(f, FileField): value = value.url if value else None data[f.name] = value return data class Rate(models.Model): movie = models.ForeignKey( Movie, on_delete=models.CASCADE, blank=True, null=True, verbose_name="电影id" ) user = models.ForeignKey( User, on_delete=models.CASCADE, blank=True, null=True, verbose_name="用户id", ) mark = models.FloatField(verbose_name="评分") create_time = models.DateTimeField(verbose_name="发布时间", auto_now_add=True) @property def avg_mark(self): average = Rate.objects.all().aggregate(Avg('mark'))['mark__avg'] return average class Meta: verbose_name = "评分信息" verbose_name_plural = verbose_name class Comment(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE, verbose_name="用户") content = models.CharField(max_length=255, verbose_name="内容") create_time = models.DateTimeField(auto_now_add=True) movie = models.ForeignKey(Movie, on_delete=models.CASCADE, verbose_name="电影") class Meta: verbose_name = "评论" verbose_name_plural = verbose_name class LikeComment(models.Model): comment = models.ForeignKey(Comment, on_delete=models.CASCADE, verbose_name='评论') user = models.ForeignKey(User, on_delete=models.CASCADE, verbose_name='用户') class Meta: verbose_name = "评论点赞" verbose_name_plural = verbose_name
import json from typing import Optional, Type, Tuple import pygments.formatters import pygments.lexer import pygments.lexers import pygments.style import pygments.styles import pygments.token from pygments.formatters.terminal import TerminalFormatter from pygments.formatters.terminal256 import Terminal256Formatter from pygments.lexer import Lexer from pygments.lexers.data import JsonLexer from pygments.lexers.special import TextLexer from pygments.lexers.text import HttpLexer as PygmentsHttpLexer from pygments.util import ClassNotFound from ..lexers.json import EnhancedJsonLexer from ..lexers.metadata import MetadataLexer from ..ui.palette import SHADE_NAMES, get_color from ...context import Environment from ...plugins import FormatterPlugin AUTO_STYLE = 'auto' # Follows terminal ANSI color styles DEFAULT_STYLE = AUTO_STYLE SOLARIZED_STYLE = 'solarized' # Bundled here BUNDLED_STYLES = { SOLARIZED_STYLE, AUTO_STYLE } def get_available_styles(): return BUNDLED_STYLES | set(pygments.styles.get_all_styles()) class ColorFormatter(FormatterPlugin): """ Colorize using Pygments This processor that applies syntax highlighting to the headers, and also to the body if its content type is recognized. """ group_name = 'colors' metadata_lexer = MetadataLexer() def __init__( self, env: Environment, explicit_json=False, color_scheme=DEFAULT_STYLE, **kwargs ): super().__init__(**kwargs) if not env.colors: self.enabled = False return use_auto_style = color_scheme == AUTO_STYLE has_256_colors = env.colors == 256 if use_auto_style or not has_256_colors: http_lexer = PygmentsHttpLexer() body_formatter = header_formatter = TerminalFormatter() precise = False else: from ..lexers.http import SimplifiedHTTPLexer header_formatter, body_formatter, precise = self.get_formatters(color_scheme) http_lexer = SimplifiedHTTPLexer(precise=precise) self.explicit_json = explicit_json # --json self.header_formatter = header_formatter self.body_formatter = body_formatter self.http_lexer = http_lexer self.metadata_lexer = MetadataLexer(precise=precise) def format_headers(self, headers: str) -> str: return pygments.highlight( code=headers, lexer=self.http_lexer, formatter=self.header_formatter, ).strip() def format_body(self, body: str, mime: str) -> str: lexer = self.get_lexer_for_body(mime, body) if lexer: body = pygments.highlight( code=body, lexer=lexer, formatter=self.body_formatter, ) return body def format_metadata(self, metadata: str) -> str: return pygments.highlight( code=metadata, lexer=self.metadata_lexer, formatter=self.header_formatter, ).strip() def get_lexer_for_body( self, mime: str, body: str ) -> Optional[Type[Lexer]]: return get_lexer( mime=mime, explicit_json=self.explicit_json, body=body, ) def get_formatters(self, color_scheme: str) -> Tuple[ pygments.formatter.Formatter, pygments.formatter.Formatter, bool ]: if color_scheme in PIE_STYLES: header_style, body_style = PIE_STYLES[color_scheme] precise = True else: header_style = self.get_style_class(color_scheme) body_style = header_style precise = False return ( Terminal256Formatter(style=header_style), Terminal256Formatter(style=body_style), precise ) @staticmethod def get_style_class(color_scheme: str) -> Type[pygments.style.Style]: try: return pygments.styles.get_style_by_name(color_scheme) except ClassNotFound: return Solarized256Style def get_lexer( mime: str, explicit_json=False, body='' ) -> Optional[Type[Lexer]]: # Build candidate mime type and lexer names. mime_types, lexer_names = [mime], [] type_, subtype = mime.split('/', 1) if '+' not in subtype: lexer_names.append(subtype) else: subtype_name, subtype_suffix = subtype.split('+', 1) lexer_names.extend([subtype_name, subtype_suffix]) mime_types.extend([ f'{type_}/{subtype_name}', f'{type_}/{subtype_suffix}', ]) # As a last resort, if no lexer feels responsible, and # the subtype contains 'json', take the JSON lexer if 'json' in subtype: lexer_names.append('json') # Try to resolve the right lexer. lexer = None for mime_type in mime_types: try: lexer = pygments.lexers.get_lexer_for_mimetype(mime_type) break except ClassNotFound: pass else: for name in lexer_names: try: lexer = pygments.lexers.get_lexer_by_name(name) except ClassNotFound: pass if explicit_json and body and (not lexer or isinstance(lexer, TextLexer)): # JSON response with an incorrect Content-Type? try: json.loads(body) # FIXME: the body also gets parsed in json.py except ValueError: pass # Nope else: lexer = pygments.lexers.get_lexer_by_name('json') # Use our own JSON lexer: it supports JSON bodies preceded by non-JSON data # as well as legit JSON bodies. if isinstance(lexer, JsonLexer): lexer = EnhancedJsonLexer() return lexer class Solarized256Style(pygments.style.Style): """ solarized256 ------------ A Pygments style inspired by Solarized's 256 color mode. :copyright: (c) 2011 by Hank Gay, (c) 2012 by John Mastro. :license: BSD, see LICENSE for more details. """ BASE03 = "#1c1c1c" BASE02 = "#262626" BASE01 = "#4e4e4e" BASE00 = "#585858" BASE0 = "#808080" BASE1 = "#8a8a8a" BASE2 = "#d7d7af" BASE3 = "#ffffd7" YELLOW = "#af8700" ORANGE = "#d75f00" RED = "#af0000" MAGENTA = "#af005f" VIOLET = "#5f5faf" BLUE = "#0087ff" CYAN = "#00afaf" GREEN = "#5f8700" background_color = BASE03 styles = { pygments.token.Keyword: GREEN, pygments.token.Keyword.Constant: ORANGE, pygments.token.Keyword.Declaration: BLUE, pygments.token.Keyword.Namespace: ORANGE, pygments.token.Keyword.Reserved: BLUE, pygments.token.Keyword.Type: RED, pygments.token.Name.Attribute: BASE1, pygments.token.Name.Builtin: BLUE, pygments.token.Name.Builtin.Pseudo: BLUE, pygments.token.Name.Class: BLUE, pygments.token.Name.Constant: ORANGE, pygments.token.Name.Decorator: BLUE, pygments.token.Name.Entity: ORANGE, pygments.token.Name.Exception: YELLOW, pygments.token.Name.Function: BLUE, pygments.token.Name.Tag: BLUE, pygments.token.Name.Variable: BLUE, pygments.token.String: CYAN, pygments.token.String.Backtick: BASE01, pygments.token.String.Char: CYAN, pygments.token.String.Doc: CYAN, pygments.token.String.Escape: RED, pygments.token.String.Heredoc: CYAN, pygments.token.String.Regex: RED, pygments.token.Number: CYAN, pygments.token.Operator: BASE1, pygments.token.Operator.Word: GREEN, pygments.token.Comment: BASE01, pygments.token.Comment.Preproc: GREEN, pygments.token.Comment.Special: GREEN, pygments.token.Generic.Deleted: CYAN, pygments.token.Generic.Emph: 'italic', pygments.token.Generic.Error: RED, pygments.token.Generic.Heading: ORANGE, pygments.token.Generic.Inserted: GREEN, pygments.token.Generic.Strong: 'bold', pygments.token.Generic.Subheading: ORANGE, pygments.token.Token: BASE1, pygments.token.Token.Other: ORANGE, } PIE_HEADER_STYLE = { # HTTP line / Headers / Etc. pygments.token.Name.Namespace: 'bold primary', pygments.token.Keyword.Reserved: 'bold grey', pygments.token.Operator: 'bold grey', pygments.token.Number: 'bold grey', pygments.token.Name.Function.Magic: 'bold green', pygments.token.Name.Exception: 'bold green', pygments.token.Name.Attribute: 'blue', pygments.token.String: 'primary', # HTTP Methods pygments.token.Name.Function: 'bold grey', pygments.token.Name.Function.HTTP.GET: 'bold green', pygments.token.Name.Function.HTTP.HEAD: 'bold green', pygments.token.Name.Function.HTTP.POST: 'bold yellow', pygments.token.Name.Function.HTTP.PUT: 'bold orange', pygments.token.Name.Function.HTTP.PATCH: 'bold orange', pygments.token.Name.Function.HTTP.DELETE: 'bold red', # HTTP status codes pygments.token.Number.HTTP.INFO: 'bold aqua', pygments.token.Number.HTTP.OK: 'bold green', pygments.token.Number.HTTP.REDIRECT: 'bold yellow', pygments.token.Number.HTTP.CLIENT_ERR: 'bold orange', pygments.token.Number.HTTP.SERVER_ERR: 'bold red', # Metadata pygments.token.Name.Decorator: 'grey', pygments.token.Number.SPEED.FAST: 'bold green', pygments.token.Number.SPEED.AVG: 'bold yellow', pygments.token.Number.SPEED.SLOW: 'bold orange', pygments.token.Number.SPEED.VERY_SLOW: 'bold red', } PIE_BODY_STYLE = { # {}[]: pygments.token.Punctuation: 'grey', # Keys pygments.token.Name.Tag: 'pink', # Values pygments.token.Literal.String: 'green', pygments.token.Literal.String.Double: 'green', pygments.token.Literal.Number: 'aqua', pygments.token.Keyword: 'orange', # Other stuff pygments.token.Text: 'primary', pygments.token.Name.Attribute: 'primary', pygments.token.Name.Builtin: 'blue', pygments.token.Name.Builtin.Pseudo: 'blue', pygments.token.Name.Class: 'blue', pygments.token.Name.Constant: 'orange', pygments.token.Name.Decorator: 'blue', pygments.token.Name.Entity: 'orange', pygments.token.Name.Exception: 'yellow', pygments.token.Name.Function: 'blue', pygments.token.Name.Variable: 'blue', pygments.token.String: 'aqua', pygments.token.String.Backtick: 'secondary', pygments.token.String.Char: 'aqua', pygments.token.String.Doc: 'aqua', pygments.token.String.Escape: 'red', pygments.token.String.Heredoc: 'aqua', pygments.token.String.Regex: 'red', pygments.token.Number: 'aqua', pygments.token.Operator: 'primary', pygments.token.Operator.Word: 'green', pygments.token.Comment: 'secondary', pygments.token.Comment.Preproc: 'green', pygments.token.Comment.Special: 'green', pygments.token.Generic.Deleted: 'aqua', pygments.token.Generic.Emph: 'italic', pygments.token.Generic.Error: 'red', pygments.token.Generic.Heading: 'orange', pygments.token.Generic.Inserted: 'green', pygments.token.Generic.Strong: 'bold', pygments.token.Generic.Subheading: 'orange', pygments.token.Token: 'primary', pygments.token.Token.Other: 'orange', } def make_style(name, raw_styles, shade): def format_value(value): return ' '.join( get_color(part, shade) or part for part in value.split() ) bases = (pygments.style.Style,) data = { 'styles': { key: format_value(value) for key, value in raw_styles.items() } } return type(name, bases, data) def make_styles(): styles = {} for shade, name in SHADE_NAMES.items(): styles[name] = [ make_style(name, style_map, shade) for style_name, style_map in [ (f'Pie{name}HeaderStyle', PIE_HEADER_STYLE), (f'Pie{name}BodyStyle', PIE_BODY_STYLE), ] ] return styles PIE_STYLES = make_styles() BUNDLED_STYLES |= PIE_STYLES.keys()
# class : AI for Remote Sensing # prof. : Dr. Jungho Im (ersgis@unist.ac.kr) # date : 7, March, 2018 # TA : Daehyeon Han (dhan@unist.ac.kr) # objectives: # 1. To load Tensorflow and learn how to use it. # 2. To run Random Forest with your own retely sensed data in Python. # Import libraries import tensorflow as tf from tensorflow.contrib.tensor_forest.python import tensor_forest # Random forest in TF from tensorflow.python.ops import resources import numpy as np import pandas as pd # Ignore all GPUs, tf random forest does not benefit from it. # It is possible to select which GPU will be used, which is much faster in neural nets. import os os.environ["CUDA_VISIBLE_DEVICES"] = "" # Load wildfire data work_path = '/Users/dhan/Dropbox/Archive/_coursework/2018_1st/AI_RS/week2/lab/Lab1' # Define your work path cali_path = work_path + '/' + 'cali.csv' vali_path = work_path + '/' + 'vali.csv' cali = np.array(pd.read_csv(cali_path, dtype='float32')) vali = np.array(pd.read_csv(vali_path, dtype='float32')) cali.shape # You can check the shape of calibration dataset. [15707 samples, 19 variables, 1 label] vali.shape # You can check the shape of validataion dataset. [4266 samples, 19 variables, 1 label] # Split your data into X and Y. Here, the last column is the true value. X_cali = cali[:,:-1] Y_cali = cali[:,-1] X_vali = vali[:,:-1] Y_vali = vali[:,-1] # Parameters num_steps = 100 # Total steps to train num_classes = 2 # The binary wildfire detection num_features = 19 # Total 19 variables num_trees = 100 max_nodes = 1000 # Input and Target data X = tf.placeholder(tf.float32, shape=[None, num_features]) # For random forest, labels must be integers (the class id) Y = tf.placeholder(tf.int32, shape=[None]) # Random Forest Parameters hparams = tensor_forest.ForestHParams(num_classes=num_classes, num_features=num_features, num_trees=num_trees, max_nodes=max_nodes).fill() # Build the Random Forest forest_graph = tensor_forest.RandomForestGraphs(hparams) # Get training graph and loss train_op = forest_graph.training_graph(X, Y) loss_op = forest_graph.training_loss(X, Y) # The the prediction. infer_op= forest_graph.inference_graph(X) # Compare prediction and true value correct_prediction = tf.equal(tf.argmax(infer_op, 1), tf.cast(Y, tf.int64)) accuracy_op = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Initialize the variables (i.e. assign their default value) and forest resources init_vars = tf.group(tf.global_variables_initializer(), resources.initialize_resources(resources.shared_resources())) # Start TensorFlow session sess = tf.Session() # Run the initializer sess.run(init_vars) # Training for i in range(1, num_steps + 1): # Prepare Data _, l = sess.run([train_op, loss_op], feed_dict={X: X_cali, Y: Y_cali}) if i % 10 == 0 or i == 1: acc = sess.run(accuracy_op, feed_dict={X: X_cali, Y: Y_cali}) print('Step %i, Loss: %f, Acc: %f' % (i, l, acc)) # Test Model print("Test Accuracy:", sess.run(accuracy_op, feed_dict={X: X_vali, Y: Y_vali})) # vali accuracy pred = sess.run(tf.argmax(infer_op,1), feed_dict={X: X_vali, Y: Y_vali}) # binary prediction results Step 1, Loss: -0.000000, Acc: 0.886986 Step 10, Loss: -28.320000, Acc: 0.958551 Step 20, Loss: -217.600006, Acc: 0.980262 Step 30, Loss: -540.280029, Acc: 0.988985 Step 40, Loss: -928.460022, Acc: 0.992996 Step 50, Loss: -998.000000, Acc: 0.993506 Step 60, Loss: -998.000000, Acc: 0.993506 Step 70, Loss: -998.000000, Acc: 0.993506 Step 80, Loss: -998.000000, Acc: 0.993506 Step 90, Loss: -998.000000, Acc: 0.993506 Step 100, Loss: -998.000000, Acc: 0.993506 Validation Accuracy: 0.977726
# Copyright (c) 2019 AT&T Intellectual Property. All rights reserved.
#!/usr/bin/env python3 ################################################################ # Setup Kestrel Jupyter Kernel # # This module setups the Kestrel Jupyter kernel: # 1. install the kernel to Jupyter environment (local env) # 2. generate codemirror mode for Kestrel based on the # installed kestrel Python package for syntax highlighting # 3. install the codemirror mode into Jupyter # # Usage: `python3 -m kestrel_jupyter_kernel.setup` # ################################################################ import os import tempfile import json from jupyter_client.kernelspec import KernelSpecManager from kestrel_jupyter_kernel.codemirror.setup import update_codemirror_mode _KERNEL_SPEC = { "argv": ["python3", "-m", "kestrel_jupyter_kernel", "-f", "{connection_file}"], "display_name": "Kestrel", "language": "kestrel", } def install_kernelspec(): with tempfile.TemporaryDirectory() as tmp_dirname: kernel_dirname = os.path.join(tmp_dirname, "kestrel_kernel") os.mkdir(kernel_dirname) kernel_filename = os.path.join(kernel_dirname, "kernel.json") with open(kernel_filename, "w") as kf: json.dump(_KERNEL_SPEC, kf) m = KernelSpecManager() m.install_kernel_spec(kernel_dirname, "kestrel", user=True) if __name__ == "__main__": print("Setup Kestrel Jupyter Kernel") print(" Install new Jupyter kernel ...", end=" ") install_kernelspec() print("done") # generate and install kestrel codemirrmor mode print(" Compute and install syntax highlighting ...", end=" ") update_codemirror_mode() print("done")
from loadmodels import loaddiffi, loadlogit, arraydif, arraylogit, loadtheta, arraytheta from data.dataManipulation import transpose from data.ReadFile import openfiletest, openfile from data.CreateCsvFile import create_csv class main: data = openfiletest() # traspose data for diff diff_data = transpose(data) # load diff model loaddiffi(diff_data) # load data to save to file difficulty = arraydif(diff_data) # load logits loadlogit(data) # load data to save to file logs = arraylogit(data) # create scv file for difficulty print("Creating csv file for difficulties") create_csv(difficulty) # create csv file for logits print("Creating csv file for logits") create_csv(logs) # predict theta print("Path to file") data_theta = openfile() # load data loadtheta(data_theta) # load data to save to file theta = arraytheta(data_theta) # create scv file for theta print("Creating csv file for theta") create_csv(theta)
# MusicPlayer, https://github.com/albertz/music-player # Copyright (c) 2012, Albert Zeyer, www.az2000.de # All rights reserved. # This code is under the 2-clause BSD license, see License.txt in the root directory of this project. import sys, os if sys.platform != "darwin": print "GUI: your platform is probably not supported yet" from guiCocoaCommon import * from utils import * import Traits try: app except NameError: # only declare if not yet declared app = None def setupAppleMenu(): # http://www.cocoabuilder.com/archive/cocoa/192181-initializing-the-menubar-without-interface-builder.html # By Robert Nikander mainMenu = NSMenu.alloc().initWithTitle_("MainMenu") mi = mainMenu.addItemWithTitle_action_keyEquivalent_("Apple", None, "") m = NSMenu.alloc().initWithTitle_("Apple") # strange hack app.setAppleMenu_(m) mainMenu.setSubmenu_forItem_(m, mi) m.addItemWithTitle_action_keyEquivalent_('About MusicPlayer', 'about:', '') m.addItemWithTitle_action_keyEquivalent_('Main window', 'openMainWindow:', '1') m.addItemWithTitle_action_keyEquivalent_('Search window', 'openSearchWindow:', '2') m.addItemWithTitle_action_keyEquivalent_('Minimize window', 'miniaturize:', 'm') m.addItemWithTitle_action_keyEquivalent_('Close window', 'performClose:', 'w') m.addItemWithTitle_action_keyEquivalent_('Quit', 'terminate:', 'q') app.setMainMenu_(mainMenu) return m def setupAfterAppFinishedLaunching(delegate): setupAppleMenu() setupMainWindow() app.updateWindows() print "setupAfterAppFinishedLaunching ready" class PyAppDelegate(NSObject): __metaclass__ = ObjCClassAutorenamer # Doc for AppDelegate protocol: # https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/NSApplicationDelegate_Protocol/Reference/Reference.html def applicationDidFinishLaunching_(self, notification): print "AppDelegate didFinishLaunching" try: from State import modules for m in modules: m.start() setupAfterAppFinishedLaunching(self) except: sys.excepthook(*sys.exc_info()) def applicationShouldTerminate_(self, app): print "AppDelegate quit" from State import modules # first set/send signals to all modules for m in modules: m.stop(join=False) try: # in case there are any subprocesses, interrupt them # maybe some modules are hanging and waiting for such import sys, os, signal os.kill(0, signal.SIGINT) except: pass # now join all for m in modules: m.stop() return NSTerminateNow def applicationOpenUntitledFile_(self, app): if not getWindow("mainWindow"): setupMainWindow() else: app.activateIgnoringOtherApps_(True) return True def userNotificationCenter_shouldPresentNotification_(self, notifCenter, notif): return True def openMainWindow_(self, app): setupMainWindow() def openSearchWindow_(self, app): setupSearchWindow() def about_(self, app): import webbrowser webbrowser.open("http://albertz.github.com/music-player/") def getWindow(name): global windows if windows.get(name, None): return windows[name].nativeGuiObject.window() return None def quit(): app.terminate_(None) def setup(): # Note: not needed when bundled... mydir = os.path.dirname(__file__) icon = NSImage.alloc().initWithContentsOfFile_(mydir + "/icon.icns") if not icon: print "icon.icns not found" else: app.setApplicationIconImage_(icon) appDelegate = PyAppDelegate.alloc().init() app.setDelegate_(appDelegate) appDelegate.retain() app.finishLaunching() def buildControlAction(control): button = NSButton.alloc().initWithFrame_(((0,0), (50.0, 25.0))) button.setBezelStyle_(NSRoundedBezelStyle) actionTarget = ButtonActionHandler.alloc().initWithArgs(control.attr, control.parent.subjectObject) control.buttonActionHandler = actionTarget # keep ref here. button.target() is only a weakref button.setTarget_(actionTarget) button.setAction_("click") def do_update(): button.setTitle_(control.attr.name.decode("utf-8")) do_update() button.sizeToFit() # to get height #button.setFrameSize_((50, button.frame().size.height)) def update(ev, args, kwargs): do_in_mainthread(do_update, wait=False) control.nativeGuiObject = button control.updateContent = update return control def backgroundColor(control): if any([(c.attr and c.attr.highlight) for c in control.allParents()]): return NSColor.blueColor() return None def foregroundColor(control): if any([(c.attr and c.attr.lowlight) for c in control.allParents()]): return NSColor.disabledControlTextColor() return NSColor.blackColor() def buildControlOneLineText(control): label = NSExtendedTextField.alloc().initWithFrame_(((0, 0), (30.0, 22.0))) label.setBordered_(False) if control.attr.withBorder: label.setBezeled_(True) label.setBezelStyle_(NSTextFieldRoundedBezel) label.setDrawsBackground_(False) label.setEditable_(False) label.cell().setUsesSingleLineMode_(True) label.cell().setLineBreakMode_(NSLineBreakByTruncatingTail) control.nativeGuiObject = label control.getTextObj = lambda: control.subjectObject def getTextColor(): if any([(c.attr and c.attr.lowlight) for c in control.allParents()]): return NSColor.disabledControlTextColor() return NSColor.blackColor() control.getTextColor = getTextColor def update(ev, args, kwargs): control.subjectObject = control.attr.__get__(control.parent.subjectObject) s = "???" try: labelContent = control.getTextObj() s = convertToUnicode(labelContent) except Exception: sys.excepthook(*sys.exc_info()) def do_update(): label.setStringValue_(s) if backgroundColor(control): label.setDrawsBackground_(True) label.setBackgroundColor_(backgroundColor(control)) label.setTextColor_(foregroundColor(control)) if control.attr.autosizeWidth: label.sizeToFit() control.layoutLine() if label.onMouseEntered or label.onMouseExited: if getattr(label, "trackingRect", None): label.removeTrackingRect_(label.trackingRect) label.trackingRect = label.addTrackingRect_owner_userData_assumeInside_(label.bounds(), label, None, False) do_in_mainthread(do_update, wait=False) control.updateContent = update return control def buildControlClickableLabel(control): buildControlOneLineText(control) control.getTextObj = lambda: control.subjectObject(handleClick=False) label = control.nativeGuiObject def onMouseEntered(ev): if label.backgroundColor() == NSColor.blueColor(): label.setTextColor_(NSColor.grayColor()) else: label.setTextColor_(NSColor.blueColor()) label.onMouseEntered = onMouseEntered label.onMouseExited = lambda ev: label.setTextColor_(foregroundColor(control)) def onMouseDown(ev): try: control.subjectObject(handleClick=True) except Exception: sys.excepthook(*sys.exc_info()) control.parent.updateContent(None,None,None) label.onMouseDown = onMouseDown return control def buildControlEditableText(control): label = NSExtendedTextField.alloc().initWithFrame_(((0, 0), (30.0, 22.0))) if control.attr.searchLook: label.setCell_(NSSearchFieldCell.alloc().init()) label.setBordered_(False) label.setBezeled_(True) label.setBezelStyle_(NSTextFieldRoundedBezel) label.setDrawsBackground_(True) label.setEditable_(True) label.cell().setUsesSingleLineMode_(True) #label.cell().setLineBreakMode_(NSLineBreakByTruncatingTail) control.nativeGuiObject = label control.getTextObj = lambda: control.subjectObject() def update(ev, args, kwargs): control.subjectObject = control.attr.__get__(control.parent.subjectObject) s = "???" try: labelContent = control.getTextObj() s = convertToUnicode(labelContent) except Exception: sys.excepthook(*sys.exc_info()) def do_update(): label.setStringValue_(s) do_in_mainthread(do_update, wait=False) control.updateContent = update def onTextChange(): try: control.subjectObject = control.attr.__get__(control.parent.subjectObject) newText = unicode(label.stringValue()) control.subjectObject(updateText = newText) except Exception: sys.excepthook(*sys.exc_info()) label.onTextChange = onTextChange return control def buildControlList(control): list = control.subjectObject scrollview = NSScrollView.alloc().initWithFrame_(((0.0, 0.0), (80.0, 80.0))) scrollview.setAutoresizingMask_(NSViewWidthSizable|NSViewHeightSizable) scrollview.contentView().setAutoresizingMask_(NSViewWidthSizable|NSViewHeightSizable) scrollview.setDocumentView_(NSFlippedView.alloc().initWithFrame_(((0,0),scrollview.contentSize()))) scrollview.documentView().setAutoresizingMask_(NSViewWidthSizable) scrollview.setHasVerticalScroller_(True) scrollview.setDrawsBackground_(False) scrollview.setBorderType_(NSBezelBorder) #scrollview.setBorderType_(NSGrooveBorder) view = NSFlippedView.alloc().initWithFrame_(scrollview.frame()) view.setAutoresizingMask_(NSViewWidthSizable|NSViewHeightSizable) view.addSubview_(scrollview) view.control = control control.nativeGuiObject = view control.guiObjectList = [] # all access on this list is done in the main thread control.OuterSpace = (0,0) # Hm, why did i needed this again? This makes everything slow and because of # the generic GuiControl.layout(), it also makes it wrong. #control.childIter = lambda: control.guiObjectList #control.childGuiObjectsInColumn = lambda: control.guiObjectList class Updater: def __init__(self): from threading import Lock self.lock = Lock() self.outstandingUpdate = False def doUpdate(self): with self.lock: if not self.outstandingUpdate: return x,y = 0,0 for subCtr in control.guiObjectList: w = scrollview.contentSize().width h = subCtr.size[1] subCtr.pos = (x,y) subCtr.size = (w,h) y += subCtr.size[1] scrollview.documentView().setFrameSize_((scrollview.contentSize().width, y)) if control.attr.autoScrolldown: scrollview.verticalScroller().setFloatValue_(1) scrollview.contentView().scrollToPoint_( (0, scrollview.documentView().frame().size.height - scrollview.contentSize().height)) with self.lock: self.outstandingUpdate = False def update(self): with self.lock: if self.outstandingUpdate: return self.outstandingUpdate = True do_in_mainthread(self.doUpdate, wait=False) updater = Updater() class AttrWrapper(UserAttrib): def __init__(self, index, value, parent): UserAttrib.__init__(self) self.index = index self.value = value def __get__(self, inst): return self.value def buildControlForIndex(index, value): subCtr = CocoaGuiObject() subCtr.subjectObject = value subCtr.parent = control subCtr.attr = AttrWrapper(index, value, control) buildControlObject(subCtr) scrollview.documentView().addSubview_(subCtr.nativeGuiObject) subCtr.updateContent(None,None,None) subCtr.autoresize = (False,False,True,False) subCtr.size = (0,subCtr.size[1]) # so that there isn't any flickering subCtr.nativeGuiObject.setDrawsBackground_(True) return subCtr control.select = None if control.attr.canHaveFocus: class SelectionHandling: # for now, a single index. later maybe a range index = None def onInsert(self, index, value): if index <= self.index: self.index += 1 def onRemove(self, index): if index < self.index: self.index -= 1 elif index == self.index: self.deselect() def onClear(self): self.index = None def deselect(self): if self.index is not None: control.guiObjectList[self.index].nativeGuiObject.setBackgroundColor_(NSColor.textBackgroundColor()) self.index = None def select(self, index=None): self.deselect() if index is None: if len(control.guiObjectList) == 0: return index = 0 self.index = index guiObj = control.guiObjectList[index].nativeGuiObject guiObj.setBackgroundColor_(NSColor.selectedTextBackgroundColor()) def doScrollUpdate(): if not guiObj.window(): return # window closed or removed from window in the meantime objFrame = guiObj.frame() visibleFrame = scrollview.contentView().documentVisibleRect() if objFrame.origin.y < visibleFrame.origin.y: scrollview.contentView().scrollToPoint_((0, objFrame.origin.y)) elif objFrame.origin.y + objFrame.size.height > visibleFrame.origin.y + visibleFrame.size.height: scrollview.contentView().scrollToPoint_((0, objFrame.origin.y + objFrame.size.height - scrollview.contentSize().height)) scrollview.reflectScrolledClipView_(scrollview.contentView()) do_in_mainthread(doScrollUpdate, wait=False) def onFocus(self): if self.index is None: self.select() view.setDrawsFocusRing(True) def onLostFocus(self): view.setDrawsFocusRing(False) def onKeyDown(self, ev): # see HIToolbox/Events.h for keycodes if ev.keyCode() == 125: # down if self.index is None: self.select() elif self.index < len(control.guiObjectList) - 1: self.select(self.index + 1) return True elif ev.keyCode() == 126: # up if self.index is None: self.select() elif self.index > 0: self.select(self.index - 1) return True elif ev.keyCode() == 0x33: # delete if self.index is not None: index = self.index if self.index > 0: self.select(self.index - 1) list.remove(index) return True elif ev.keyCode() == 0x75: # forward delete if self.index is not None: index = self.index if self.index < len(control.guiObjectList) - 1: self.select(self.index + 1) list.remove(index) return True def onMouseDown(self, ev): view.window().makeFirstResponder_(view) mouseLoc = scrollview.documentView().convertPoint_toView_(ev.locationInWindow(), None) for index,obj in enumerate(control.guiObjectList): if NSPointInRect(mouseLoc, obj.nativeGuiObject.frame()): self.select(index) return True def onInternalDrag(self, sourceControl, index, filenames): if sourceControl.parent is control: # internal drag to myself oldIndex = self.index # check if the index is still correct if control.guiObjectList[oldIndex] is sourceControl: self.select(index) list.remove(oldIndex) control.select = SelectionHandling() view.onBecomeFirstResponder = control.select.onFocus view.onResignFirstResponder = control.select.onLostFocus view.onKeyDown = control.select.onKeyDown view.onMouseDown = control.select.onMouseDown control.dragHandler = None if control.attr.dragHandler: view.registerForDraggedTypes_([NSFilenamesPboardType]) class DragHandler: index = None def __init__(self): view = NSFlippedView.alloc().initWithFrame_(((0,0),(scrollview.contentSize().width,2))) view.setAutoresizingMask_(NSViewWidthSizable) view.setBackgroundColor_(NSColor.blackColor()) self.guiCursor = view scrollview.documentView().addSubview_(view) def onDraggingUpdated(self, sender): self.guiCursor.setDrawsBackground_(True) scrollview.documentView().addSubview_positioned_relativeTo_(self.guiCursor, NSWindowAbove, None) dragLoc = scrollview.documentView().convertPoint_toView_(sender.draggingLocation(), None) self.index = 0 y = 0 for index,obj in enumerate(control.guiObjectList): frame = obj.nativeGuiObject.frame() if dragLoc.y > frame.origin.y + frame.size.height / 2: self.index = index + 1 y = frame.origin.y + frame.size.height else: break self.guiCursor.setFrameOrigin_((0,y - 1)) visibleFrame = scrollview.contentView().documentVisibleRect() mouseLoc = NSPoint(dragLoc.x - visibleFrame.origin.x, dragLoc.y - visibleFrame.origin.y) ScrollLimit = 30 Limit = 15 y = None if mouseLoc.y < Limit: scrollBy = Limit - mouseLoc.y y = visibleFrame.origin.y - scrollBy y = max(y, -ScrollLimit) elif mouseLoc.y > visibleFrame.size.height - Limit: scrollBy = mouseLoc.y - visibleFrame.size.height + Limit y = visibleFrame.origin.y + scrollBy y = min(y, scrollview.documentView().frame().size.height - visibleFrame.size.height + ScrollLimit) if y is not None: scrollview.contentView().scrollToPoint_((0, y)) scrollview.reflectScrolledClipView_(scrollview.contentView()) def onDraggingExited(self, sender): self.guiCursor.setDrawsBackground_(False) self.index = None def onPerformDragOperation(self, sender): self.guiCursor.setDrawsBackground_(False) import __builtin__ try: filenames = __builtin__.list(sender.draggingPasteboard().propertyListForType_(NSFilenamesPboardType)) filenames = map(convertToUnicode, filenames) index = self.index internalDragCallback = getattr(sender.draggingSource(), "onInternalDrag", None) def doDragHandler(): control.attr.dragHandler( control.parent.subjectObject, control.subjectObject, index, filenames) if internalDragCallback: do_in_mainthread(lambda: internalDragCallback( control, index, filenames), wait=False) from threading import Thread t = Thread(target=doDragHandler, name="DragHandler") t.daemon = True t.start() return True except: sys.excepthook(*sys.exc_info()) return False def onInternalDrag(self, *args): # Note: This doesn't work if we don't have attr.canHaveFocus. Should be fixed later... control.select.onInternalDrag(*args) control.dragHandler = DragHandler() view.onDraggingUpdated = control.dragHandler.onDraggingUpdated view.onDraggingExited = control.dragHandler.onDraggingExited view.onPerformDragOperation = control.dragHandler.onPerformDragOperation def doInitialFill(): with list.lock: import __builtin__ listCopy = __builtin__.list(list) control.guiObjectList = [] Step = 5 def doInitialAddSome(iStart): for i in range(iStart, min(len(listCopy), iStart+Step)): control.guiObjectList += [buildControlForIndex(i, listCopy[i])] updater.update() for i in xrange(0, len(listCopy), Step): do_in_mainthread(lambda: doInitialAddSome(i), wait=True) def list_onInsert(index, value): control.guiObjectList.insert(index, buildControlForIndex(index, value)) updater.update() def list_onRemove(index): control.guiObjectList[index].nativeGuiObject.removeFromSuperview() del control.guiObjectList[index] updater.update() def list_onClear(): for subCtr in control.guiObjectList: subCtr.nativeGuiObject.removeFromSuperview() del control.guiObjectList[:] updater.update() for ev in ["onInsert","onRemove","onClear"]: f = locals()["list_" + ev] def wrap(f=f, ev=ev): def handler(*args): if control.select: getattr(control.select, ev)(*args) f(*args) return lambda *args: do_in_mainthread(lambda: handler(*args), wait=False) setattr(list, ev, wrap()) from threading import Thread t = Thread(target=doInitialFill, name="List initial fill") t.daemon = True t.start() return control def buildControlTable(control): scrollview = NSScrollView.alloc().initWithFrame_(((0.0, 0.0), (80.0, 80.0))) scrollview.setAutoresizingMask_(NSViewWidthSizable|NSViewHeightSizable) scrollview.contentView().setAutoresizingMask_(NSViewWidthSizable|NSViewHeightSizable) scrollview.setHasVerticalScroller_(True) scrollview.setDrawsBackground_(False) scrollview.setBorderType_(NSBezelBorder) view = NSFlippedView.alloc().initWithFrame_(scrollview.frame()) view.setAutoresizingMask_(NSViewWidthSizable|NSViewHeightSizable) view.addSubview_(scrollview) view.control = control control.nativeGuiObject = view table = NSTableView.alloc().initWithFrame_(((0,0),(80,80))) scrollview.setDocumentView_(table) scrollview.documentView().setAutoresizingMask_(NSViewWidthSizable) #array = NSArrayController.alloc().init() dataSource = TableViewDataSource.alloc().init() dataSource.data = [] dataSource.formaters = control.attr.type.formaters control.tableDataSource = dataSource # save ref here because table.dataSource() is only a weakref table.setDataSource_(dataSource) table.setColumnAutoresizingStyle_(NSTableViewUniformColumnAutoresizingStyle) for key in control.attr.type.keys: column = NSTableColumn.alloc().initWithIdentifier_(key) column.headerCell().setStringValue_(convertToUnicode(key.capitalize())) # title column.setEditable_(False) column.setMinWidth_(30) column.setSortDescriptorPrototype_(NSSortDescriptor.sortDescriptorWithKey_ascending_(key, True)) table.addTableColumn_(column) table.setAllowsMultipleSelection_(True) table.setAutosaveName_(control.name) table.setAutosaveTableColumns_(True) def update(): control.subjectObject = control.attr.__get__(control.parent.subjectObject) value = control.subjectObject dataSource.data = value dataSource.resort(table) # initial sort table.reloadData() control.updateContent = lambda ev, args, kwargs: update update() # initial fill if control.attr.hasUpdateEvent(): control.attr.updateEvent(control.parent.subjectObject).register(update) return control def buildControlReal(control): w,h = control.attr.width, control.attr.height if not w: w = 70 if not h: h = 20 slider = NSExtendedSlider.alloc().initWithFrame_(((0.0, 0.0), (w, h))) slider.setMinValue_(control.attr.type.min) slider.setMaxValue_(control.attr.type.max) slider.setNumberOfTickMarks_(3) control.nativeGuiObject = slider def update(ev, args, kwargs): control.subjectObject = control.attr.__get__(control.parent.subjectObject) value = control.subjectObject do_in_mainthread(lambda: slider.setDoubleValue_(value), wait=False) control.updateContent = update def onValueChange(newValue): control.attr.__set__(control.parent.subjectObject, newValue) slider.onValueChange = onValueChange return control def buildControlObject(control): subview = NSFlippedView.alloc().initWithFrame_(((10.0, 10.0), (80.0, 80.0))) subview.control = control control.nativeGuiObject = subview control.OuterSpace = (0,0) w,h = control.setupChilds() control.size = (w,h) if control.attr.canHaveFocus: subview.setDrawsBackground_(True) subview.onResignFirstResponder = lambda: subview.setBackgroundColor_(NSColor.textBackgroundColor()) subview.onBecomeFirstResponder = lambda: subview.setBackgroundColor_(NSColor.selectedTextBackgroundColor()) if backgroundColor(control): subview.setDrawsBackground_(True) subview.setBackgroundColor_(backgroundColor(control)) def onInternalDrag(target, listindex, filenames): attrChain(target, "dragHandler", "onInternalDrag")(control, listindex, filenames) def onMouseDragged(ev): guiObj = control subjectObj = guiObj.subjectObject filename = getattr(subjectObj, "url", None) if not filename: return False filename = convertToUnicode(filename) pboard = NSPasteboard.pasteboardWithName_(NSDragPboard) pboard.declareTypes_owner_([NSFilenamesPboardType], None) pboard.setPropertyList_forType_([filename], NSFilenamesPboardType) dragImage = NSWorkspace.sharedWorkspace().iconForFile_(filename) dragPosition = subview.convertPoint_toView_(ev.locationInWindow(), None) dragPosition.x -= 16 dragPosition.y += 32 dragSource = DragSource.alloc().init() dragSource.onInternalDrag = onInternalDrag subview.dragImage_at_offset_event_pasteboard_source_slideBack_( dragImage, dragPosition, NSZeroSize, ev, pboard, dragSource, False ) return True subview.onMouseDragged = onMouseDragged return control def SongDisplayView_MouseClickCallback(x): from State import state song = state.player.curSong if not song: return if not song.duration: return if song.duration < 0: return state.player.seekAbs(x * song.duration) def buildControlSongDisplay(control): userAttr = control.attr inst = control.parent.subjectObject try: class SongDisplayView(NSBox): def mouseDown_(self, event): location = self.convertPoint_fromView_(event.locationInWindow(), None) if NSPointInRect(location, self.bounds()): x = float(location.x) / self.bounds().size.width if x < 0 or x > 1: return SongDisplayView_MouseClickCallback(x) except: SongDisplayView = objc.lookUpClass("SongDisplayView") # already defined earlier subview = SongDisplayView.alloc().initWithFrame_(((10.0, 10.0), (80.0, 80.0))) subview.setTitlePosition_(NSNoTitle) #subview.setContentViewMargins_((0,0)) imgview = NSImageView.alloc().initWithFrame_(subview.contentView().bounds()) imgview.setImageScaling_(NSScaleToFit) imgview2 = NSImageView.alloc().initWithFrame_(((0,0), (10, subview.contentView().bounds().size.height))) imgview2.setImageScaling_(NSScaleToFit) subview.contentView().addSubview_(imgview) subview.contentView().addSubview_(imgview2) imgview.setAutoresizingMask_(NSViewWidthSizable|NSViewHeightSizable) imgview2.setAutoresizingMask_(NSViewHeightSizable|NSViewMinXMargin|NSViewMaxXMargin) from threading import Lock from State import state class SongDisplay: def __init__(self): self.lock = Lock() self.curSong = None def initSongCursorImg(self): img2 = NSImage.alloc().initWithSize_((5,1)) img2.lockFocus() for i in range(5): a = 100 - abs(i - 2) * 50 NSColor.colorWithDeviceRed_green_blue_alpha_(0.0,0.0,0.0,a).setFill() NSBezierPath.fillRect_(((i,0),(1,1))) img2.unlockFocus() do_in_mainthread(lambda: imgview2.setImage_(img2)) def setSongBitmap(self, bmpData, wait=True): with self.lock: if state.player.curSong is not self.curSong: return None data = NSData.alloc().initWithBytes_length_(bmpData, len(bmpData)) img = NSImage.alloc().initWithData_(data) do_in_mainthread(lambda: imgview.setImage_(img), wait=wait) def getBmpData(self): better_exchook.install() pool = NSAutoreleasePool.alloc().init() # for setSongBitmap bmpData = None with self.lock: if state.player.curSong is not self.curSong: return None if getattr(self.curSong, "bmpThumbnail", None): bmpData = self.curSong.bmpThumbnail else: # create song copy for calcBitmapThumbnail from Song import Song song = Song(url=self.curSong.url) if bmpData: self.setSongBitmap(bmpData) del pool return do_in_mainthread(lambda: imgview.setImage_(None), wait=False) def doBmpCalc(queue): try: def calcBmpCallback(song, completion, duration, bmpData): if subview.window() is None: return False # window was closed with self.lock: if song != self.curSong: return False queue.put((duration, bmpData)) return True song.openFile() import ffmpeg bmpThumbRet = ffmpeg.calcBitmapThumbnail(song, 600, 81, procCallback = calcBmpCallback) if bmpThumbRet: queue.put(bmpThumbRet) except: print "doBmpCalc raised exception" sys.excepthook(*sys.exc_info()) queue.put(None) queue = AsyncTask(func=doBmpCalc, name="doBmpCalc for Cocoa") while True: bmpThumbRet = queue.get() if bmpThumbRet is None: break duration, bmpData = bmpThumbRet with self.lock: self.curSong.duration = duration self.curSong.bmpThumbnail = bmpData self.setSongBitmap(bmpData, wait=False) del pool def playCursorUpdater(self): better_exchook.install() pool = NSAutoreleasePool.alloc().init() def updateCursor(): with self.lock: if self.curSong is None: return if state.player.curSong is not self.curSong: return w = imgview2.frame().size.width h = imgview2.frame().size.height x = subview.contentView().bounds().size.width * state.player.curSongPos / self.curSong.duration - w / 2 y = imgview2.frame().origin.y imgview2.setFrame_(((x,y),(w,h))) import time i = 0 while True: i += 1 time.sleep(0.1) if subview.window() is None: return # window was closed with self.lock: if self.curSong is None: continue if self.curSong is not state.player.curSong: continue do_in_mainthread(updateCursor, wait=False) # another hack: update time control.parent.childs["curSongPos"].updateContent(None,None,None) del pool def update(self, ev, args, kwargs): #if ev is PlayerEventCallbacks.onSongChange: with self.lock: if self.curSong is state.player.curSong: return # song not changed self.curSong = state.player.curSong if not self.curSong: do_in_mainthread(lambda: imgview.setImage_(None), wait=False) return from threading import Thread Thread(target=self.getBmpData, name="GUI song bitmap loader").start() songDisplay = SongDisplay() songDisplay.initSongCursorImg() Thread(target=songDisplay.playCursorUpdater, name="GUI play cursor updater").start() control.nativeGuiObject = subview control.updateContent = songDisplay.update return control def buildControl(userAttr, parent): control = CocoaGuiObject() control.parent = parent control.attr = userAttr control.subjectObject = userAttr.__get__(parent.subjectObject) typeName = userAttr.getTypeClass().__name__ assert userAttr.getTypeClass() is getattr(Traits, typeName) buildFuncName = "buildControl" + typeName buildFunc = globals().get(buildFuncName, None) if buildFunc: return buildFunc(control) else: raise NotImplementedError, "%r not handled yet" % userAttr.type try: windows except NameError: windows = {} class CocoaGuiObject(object): def __init__(self): # Do that late because we cannot import gui globally here. (circular dep) import gui self.__class__.__bases__ = (gui.GuiObject, object) nativeGuiObject = None @property def pos(self): return (self.nativeGuiObject.frame().origin.x, self.nativeGuiObject.frame().origin.y) @pos.setter def pos(self, value): self.nativeGuiObject.setFrameOrigin_(value) @property def size(self): return (self.nativeGuiObject.frame().size.width, self.nativeGuiObject.frame().size.height) @size.setter def size(self, value): self.nativeGuiObject.setFrameSize_(value) @property def innerSize(self): return (self.nativeGuiObject.bounds().size.width, self.nativeGuiObject.bounds().size.height) @property def autoresize(self): flags = self.nativeGuiObject.autoresizingMask() return (flags & NSViewMinXMargin, flags & NSViewMinYMargin, flags & NSViewWidthSizable, flags & NSViewHeightSizable) @autoresize.setter def autoresize(self, value): flags = 0 if value[0]: flags |= NSViewMinXMargin if value[1]: flags |= NSViewMinYMargin if value[2]: flags |= NSViewWidthSizable if value[3]: flags |= NSViewHeightSizable self.nativeGuiObject.setAutoresizingMask_(flags) def addChild(self, child): self.nativeGuiObject.addSubview_(child.nativeGuiObject) def setupWindow(subjectObject, windowName, title, isMainWindow=False): # some example code: http://lists.apple.com/archives/cocoa-dev/2004/Jan/msg01389.html # also, these might be helpful: # https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ControlCell/ControlCell.html#//apple_ref/doc/uid/10000015i # http://cocoadev.com/wiki/FlowLayoutView assert NSThread.isMainThread() if getWindow(windowName): getWindow(windowName).makeKeyAndOrderFront_(None) return win = NSWindow.alloc() win.initWithContentRect_styleMask_backing_defer_( ((200.0, 500.0), (400.0, 600.0)), NSTitledWindowMask | NSClosableWindowMask | NSMiniaturizableWindowMask | NSResizableWindowMask, NSBackingStoreBuffered, False) win.setContentView_(NSFlippedView.alloc().init()) win.contentView().setAutoresizingMask_(NSViewWidthSizable|NSViewHeightSizable) win.setTitle_(title) window = CocoaGuiObject() window.subjectObject = subjectObject window.nativeGuiObject = win.contentView() w,h = window.setupChilds() win.setContentMinSize_((w,h)) win.display() win.orderFrontRegardless() win.makeMainWindow() win.makeKeyWindow() win.setFrameUsingName_(windowName) win.setFrameAutosaveName_(windowName) app.activateIgnoringOtherApps_(True) # see http://stackoverflow.com/questions/12292151/crash-in-class-getname-in-applicationopenuntitledfile win.retain() global windows windows[windowName] = window def setupMainWindow(): from State import state import appinfo setupWindow(state, windowName="mainWindow", title=appinfo.progname, isMainWindow=True) def setupSearchWindow(): from Search import search setupWindow(search, windowName="searchWindow", title="Search") def locateFile(filename): ws = NSWorkspace.sharedWorkspace() ws.selectFile_inFileViewerRootedAtPath_(filename, None) try: isReload except NameError: isReload = False else: isReload = True def reloadModuleHandling(): print "GUI module reload handler ..." for w in app.windows(): w.close() global windows windows.clear() appDelegate = PyAppDelegate.alloc().init() app.setDelegate_(appDelegate) appDelegate.retain() try: setupAfterAppFinishedLaunching(appDelegate) except: sys.excepthook(*sys.exc_info()) def guiMain(): pool = NSAutoreleasePool.alloc().init() from State import state for ev,args,kwargs in state.updates.read(): try: global windows for w in windows.values(): w.updateContent(ev,args,kwargs) except: sys.excepthook(*sys.exc_info()) del pool def main(): """ This is called from main.py and will enter the NSApp main loop """ assert NSThread.isMainThread() global app app = NSApplication.sharedApplication() setup() print "entering GUI main loop" app.run() sys.exit() if isReload: do_in_mainthread(reloadModuleHandling)
from unittest import TestCase class ActionModelTests(TestCase): pass
#!/usr/bin/env python # # Public Domain 2014-2016 MongoDB, Inc. # Public Domain 2008-2014 WiredTiger, Inc. # # This is free and unencumbered software released into the public domain. # # Anyone is free to copy, modify, publish, use, compile, sell, or # distribute this software, either in source code form or as a compiled # binary, for any purpose, commercial or non-commercial, and by any # means. # # In jurisdictions that recognize copyright laws, the author or authors # of this software dedicate any and all copyright interest in the # software to the public domain. We make this dedication for the benefit # of the public at large and to the detriment of our heirs and # successors. We intend this dedication to be an overt act of # relinquishment in perpetuity of all present and future rights to this # software under copyright law. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. import os, struct from suite_subprocess import suite_subprocess from wtscenario import make_scenarios import wiredtiger, wttest from wiredtiger import stat # test_stat04.py # Statistics key/value pair count class test_stat04(wttest.WiredTigerTestCase, suite_subprocess): uripfx = 'table:test_stat04.' # Note: stats for fixed length bit fields (valuefmt='8t') # do not include accurate counts for kv pairs. keyfmt = [ ('col', dict(keyfmt='r', valuefmt='S', storekind='col')), ('row', dict(keyfmt='S', valuefmt='S', storekind='row')), ] nentries = [ ('small', dict(nentries=100, valuesize=50)), ('medium', dict(nentries=10000, valuesize=20)), ('large', dict(nentries=100000, valuesize=1)), ('jumboval', dict(nentries=100, valuesize=4200000)), ] scenarios = make_scenarios(keyfmt, nentries) conn_config = 'statistics=(all)' def init_test(self): self.valuepfx = self.valuesize * 'X' def genkey(self, n): if self.keyfmt == 'S': return 'SOMEKEY' + str(n) else: return n + 1 def genvalue(self, n): if self.valuefmt == 'S': return self.valuepfx + str(n) else: return n & 0xff def checkcount(self, uri, expectpairs): statcursor = self.session.open_cursor( 'statistics:' + uri, None, 'statistics=(all,clear)') self.assertEqual(statcursor[stat.dsrc.btree_entries][2], expectpairs) statcursor.close() def test_stat_nentries(self): """ Test to make sure the number of key/value pairs is accurate. """ self.init_test() uri = self.uripfx + self.storekind + '.' + str(self.nentries) self.session.create(uri, 'key_format=' + self.keyfmt + ',value_format=' + self.valuefmt) cursor = self.session.open_cursor(uri, None, None) count = 0 # Insert entries, periodically checking that stats match. for i in range(0, self.nentries): if count % 50 == 0: self.checkcount(uri, count) cursor[self.genkey(i)] = self.genvalue(i) count += 1 # Remove a number of entries, at each step checking that stats match. for i in range(0, self.nentries / 37): cursor.set_key(self.genkey(i*11 % self.nentries)) if cursor.remove() == 0: count -= 1 self.checkcount(uri, count) cursor.close() # Confirm the count is correct after writing to the backing file, # that tests the on-disk format as well as the in-memory format. self.reopen_conn() self.checkcount(uri, count) if __name__ == '__main__': wttest.run()
from Test import Test, Test as test ''' Complete the solution so that it returns true if the first argument(string) passed in ends with the 2nd argument (also a string). Examples: solution('abc', 'bc') # returns true solution('abc', 'd') # returns false ''' def solution(string, ending): return True if string[-len(ending):] == ending or len(ending) == 0 else False # Top solution def solution(string, ending): return string.endswith(ending) test.assert_equals(solution('abcde', 'cde'), True) test.assert_equals(solution('abcde', 'abc'), False) test.assert_equals(solution('abcde', ''), True)
#!/usr/bin/env python from thrift_version import add_sys_path add_sys_path(__file__) import re from interfaces import InterfacesService from interfaces.ttypes import * from interfaces.constants import * from thrift import Thrift from thrift.transport import TSocket from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol from thrift.server import TServer class InterfaceServiceHandler: def __init__(self): self.interfaces = {} # Interface Services def V4InterfaceAdd(self, if_name, unit, v4_prefix, v4_prefix_len): print ('V4InterfaceAdd', if_name, unit, v4_prefix, v4_prefix_len) if not re.match(r'\w{2}-\d/\d/\d',if_name): return RetStatus(-1, 'invalid interface', 'dummy') if if_name in self.interfaces: self.interfaces[if_name].append((unit, v4_prefix, v4_prefix_len)) else: self.interfaces[if_name]=[(unit, v4_prefix, v4_prefix_len)] return RetStatus(100, 'added', 'dummy') def V4InterfaceDelete(self, if_name, unit, v4_prefix, v4_prefix_len): print ('V4InterfaceDelete', if_name, unit, v4_prefix, v4_prefix_len) if if_name in self.interfaces: del self.interfaces[if_name] return RetStatus(101, 'deleted', 'dummy') else: print 'Interface %s does not exists'%if_name return RetStatus(-1, 'Interface does not exists', 'dummy') def V4InterfaceEdit(self, if_name, unit, v4_prefix, v4_prefix_len): print ('V4InterfaceEdit', if_name, unit, v4_prefix, v4_prefix_len) if if_name in self.interfaces: if (unit, v4_prefix, v4_prefix_len) in self.interfaces[if_name]: print 'Same Interface already %s exists'%if_name return True else: for i in self.interfaces[if_name]: if i[0]==unit: self.interfaces[if_name][self.interfaces[if_name].index(i)]=(unit, v4_prefix, v4_prefix_len) print self.interfaces return True else: print 'Interface %s does not exists'%if_name raise InvalidInterfaceException('Interface %s does not exists'%if_name) def InterfaceExists(self, if_name, data): # to show case what happen when structure name is changed print data, data.err_code, data.err_str, data.traceback if if_name in self.interfaces: print 'Interface %s exists'%if_name else: print 'Interface %s does not exists'%if_name raise InvalidInterfaceException('Interface %s does not exists'%if_name) handler = InterfaceServiceHandler() processor = InterfacesService.Processor(handler) transport = TSocket.TServerSocket(port=9090) tfactory = TTransport.TBufferedTransportFactory() pfactory = TBinaryProtocol.TBinaryProtocolFactory() server = TServer.TSimpleServer(processor, transport, tfactory, pfactory) print "Starting python server version 1.0.1..." server.serve() print "done!"
import logging import azure.functions as func from backlogapiprocessmodule import * def main(req: func.HttpRequest) -> func.HttpResponse: logging.info('-------Python HTTP trigger function processed a request.') configFilePath = '/home/site/wwwroot/BacklogApiTimerTrigger/config.yml' loggingConfigFilePath = '/home/site/wwwroot/BacklogApiTimerTrigger/logging_debug.conf' backlogapiprocess.run(configFilePath, loggingConfigFilePath) name = req.params.get('name') if not name: try: req_body = req.get_json() except ValueError: pass else: name = req_body.get('name') if name: return func.HttpResponse(f"Hello {name}!") else: return func.HttpResponse( "Please pass a name on the query string or in the request body", status_code=400 )
'''jpredDataset.py This class downloads the dataset used to train the secondary structure predictor. It can be used as a reference dataset for machine learning applications. This dataset includes the ScopID, sequence, DSSP secondary structure assignment, and a flag that indicates if data point was part of the training set. References ---------- - `JPred4 <http://www.compbio.dundee.ac.uk/jpred/about_RETR_JNetv231_details.shtml>`_ ''' __author__ = "Mars (Shih-Cheng) Huang" __maintainer__ = "Mars (Shih-Cheng) Huang" __email__ = "marshuang80@gmail.com" __version__ = "0.2.0" __status__ = "Done" import urllib.request import tarfile from pyspark.sql import Row from pyspark import SparkContext from mmtfPyspark.ml import pythonRDDToDataset def get_dataset(): '''Gets JPred 4/JNet (v.2.3.1) secondary structure dataset. Returns ------- dataset secondaryStructure dataset ''' URL = "http://www.compbio.dundee.ac.uk/jpred/downloads/retr231.tar.gz" instream = urllib.request.urlopen(URL) secondaryStructures, sequences, trained = {}, {}, {} scopIds = set() res = [] with tarfile.open(fileobj=instream, mode="r:gz") as tf: for entry in tf: if entry.isdir(): continue br = tf.extractfile(entry) if ".dssp" in entry.name: scopID = str(br.readline())[3:-3] # Remove newline and byte secondaryStructure = str(br.readline())[2:-3] # Remove newline and byte secondaryStructure = secondaryStructure.replace('-', 'C') secondaryStructures[scopID] = secondaryStructure if ".fasta" in entry.name: scopID = str(br.readline())[3:-3] # Remove newline and byte sequence = str(br.readline())[2:-3] # Remove newline and byte scopIds.add(scopID) sequences[scopID] = sequence if "training/" in entry.name: trained[scopID] = "true" elif "blind/" in entry.name: trained[scopID] = "false" for scopId in scopIds: row = Row(scopId, sequences[scopId], secondaryStructures[scopId], trained[scopId]) res.append(row) sc = SparkContext.getOrCreate() data = sc.parallelize(res) colNames = ["scopID", "sequence", "secondaryStructure", "trained"] return pythonRDDToDataset.get_dataset(data, colNames)
#!/usr/bin/env python # -*- coding: utf-8 -*- ### BEGIN LICENSE # Copyright (C) 2010 Mads Chr. Olesen <mchro@cs.aau.dk> #This program is free software: you can redistribute it and/or modify it #under the terms of the GNU General Public License version 3, as published #by the Free Software Foundation. # #This program is distributed in the hope that it will be useful, but #WITHOUT ANY WARRANTY; without even the implied warranties of #MERCHANTABILITY, SATISFACTORY QUALITY, or FITNESS FOR A PARTICULAR #PURPOSE. See the GNU General Public License for more details. # #You should have received a copy of the GNU General Public License along #with this program. If not, see <http://www.gnu.org/licenses/>. ### END LICENSE ###################### DO NOT TOUCH THIS (HEAD TO THE SECOND PART) ###################### try: import DistUtilsExtra.auto except ImportError: import sys print >> sys.stderr, 'To build opaal you need https://launchpad.net/python-distutils-extra' sys.exit(1) assert DistUtilsExtra.auto.__version__ >= '2.10', 'needs DistUtilsExtra.auto >= 2.10' import os def update_data_path(prefix, oldvalue=None): try: fin = file('opaal/opaalconfig.py', 'r') fout = file(fin.name + '.new', 'w') for line in fin: fields = line.split(' = ') # Separate variable from value if fields[0] == '__opaal_data_directory__': # update to prefix, store oldvalue if not oldvalue: oldvalue = fields[1] line = "%s = '%s'\n" % (fields[0], prefix) else: # restore oldvalue line = "%s = %s" % (fields[0], oldvalue) fout.write(line) fout.flush() fout.close() fin.close() os.rename(fout.name, fin.name) except (OSError, IOError), e: print ("ERROR: Can't find opaal/opaalconfig.py") sys.exit(1) return oldvalue def update_desktop_file(datadir): try: fin = file('opaal.desktop.in', 'r') fout = file(fin.name + '.new', 'w') for line in fin: if 'Icon=' in line: line = "Icon=%s\n" % (datadir + 'media/icon.png') fout.write(line) fout.flush() fout.close() fin.close() os.rename(fout.name, fin.name) except (OSError, IOError), e: print ("ERROR: Can't find opaal.desktop.in") sys.exit(1) class InstallAndUpdateDataDirectory(DistUtilsExtra.auto.install_auto): def run(self): if self.root or self.home: print "WARNING: You don't use a standard --prefix installation, take care that you eventually " \ "need to update quickly/quicklyconfig.py file to adjust __quickly_data_directory__. You can " \ "ignore this warning if you are packaging and uses --prefix." previous_value = update_data_path(self.prefix + '/share/opaal/') update_desktop_file(self.prefix + '/share/opaal/') DistUtilsExtra.auto.install_auto.run(self) update_data_path(self.prefix, previous_value) ################################################################################## ###################### YOU SHOULD MODIFY ONLY WHAT IS BELOW ###################### ################################################################################## DistUtilsExtra.auto.setup( name='opaal', version='0.1', license='GPL-3', author='Mads Chr. Olesen', author_email='mchro@cs.aau.dk', description='distributed and parallel model checker', #long_description='Here a longer description', url='https://launchpad.net/opaal', cmdclass={'install': InstallAndUpdateDataDirectory} )
""" Contains public website logic and assets. """
""" PASSENGERS """ numPassengers = 22956 passenger_arriving = ( (4, 4, 4, 5, 5, 1, 2, 3, 0, 2, 1, 1, 0, 6, 10, 3, 7, 3, 8, 0, 4, 3, 2, 0, 0, 0), # 0 (6, 7, 9, 7, 5, 0, 2, 1, 2, 3, 1, 1, 0, 5, 8, 4, 2, 3, 4, 1, 3, 3, 2, 1, 1, 0), # 1 (10, 6, 11, 6, 6, 4, 5, 1, 3, 1, 2, 1, 0, 12, 3, 8, 2, 5, 3, 4, 3, 0, 2, 1, 0, 0), # 2 (5, 10, 9, 8, 4, 1, 1, 2, 2, 1, 2, 0, 0, 14, 7, 6, 4, 10, 3, 4, 1, 0, 2, 0, 1, 0), # 3 (12, 11, 4, 10, 8, 3, 3, 2, 5, 1, 1, 1, 0, 7, 6, 6, 4, 5, 8, 3, 2, 3, 3, 0, 2, 0), # 4 (7, 5, 1, 5, 6, 2, 2, 5, 1, 3, 1, 2, 0, 10, 5, 7, 6, 6, 3, 3, 2, 3, 1, 0, 0, 0), # 5 (9, 5, 8, 8, 4, 1, 11, 2, 6, 1, 1, 0, 0, 11, 8, 4, 5, 7, 6, 5, 4, 8, 1, 3, 0, 0), # 6 (3, 5, 6, 10, 5, 4, 2, 6, 4, 2, 2, 0, 0, 9, 9, 4, 3, 5, 2, 3, 2, 0, 2, 2, 1, 0), # 7 (8, 10, 7, 9, 10, 5, 4, 3, 4, 2, 1, 0, 0, 12, 10, 8, 4, 11, 2, 3, 1, 4, 2, 3, 3, 0), # 8 (5, 12, 8, 6, 9, 2, 6, 3, 4, 4, 2, 0, 0, 5, 4, 7, 5, 4, 5, 4, 1, 3, 5, 1, 4, 0), # 9 (10, 9, 13, 5, 7, 0, 5, 2, 3, 2, 3, 1, 0, 5, 11, 3, 8, 7, 5, 3, 3, 4, 2, 5, 2, 0), # 10 (9, 9, 8, 11, 7, 5, 2, 2, 3, 1, 0, 1, 0, 9, 5, 6, 7, 12, 6, 2, 2, 3, 5, 1, 0, 0), # 11 (13, 11, 13, 13, 9, 6, 4, 2, 2, 1, 2, 1, 0, 7, 7, 8, 4, 8, 4, 1, 3, 3, 2, 1, 1, 0), # 12 (12, 13, 6, 12, 10, 6, 6, 3, 1, 2, 0, 0, 0, 15, 11, 4, 8, 7, 6, 2, 3, 1, 2, 1, 1, 0), # 13 (11, 9, 15, 17, 7, 3, 4, 5, 1, 1, 5, 1, 0, 11, 8, 12, 4, 11, 6, 4, 2, 5, 2, 3, 1, 0), # 14 (11, 14, 15, 9, 8, 6, 9, 2, 6, 3, 1, 1, 0, 19, 15, 2, 5, 8, 4, 4, 2, 0, 7, 4, 0, 0), # 15 (12, 12, 10, 12, 9, 1, 8, 3, 6, 3, 0, 1, 0, 15, 9, 10, 6, 6, 6, 2, 1, 3, 3, 1, 0, 0), # 16 (11, 12, 9, 10, 10, 4, 3, 4, 6, 4, 0, 2, 0, 13, 11, 9, 4, 9, 7, 5, 7, 3, 3, 2, 2, 0), # 17 (10, 12, 9, 9, 5, 5, 4, 3, 4, 2, 4, 2, 0, 11, 12, 9, 6, 14, 7, 2, 6, 7, 1, 1, 1, 0), # 18 (9, 11, 10, 13, 11, 4, 5, 4, 7, 1, 0, 0, 0, 10, 12, 7, 10, 7, 6, 4, 2, 5, 1, 1, 1, 0), # 19 (20, 10, 11, 13, 8, 11, 3, 7, 5, 3, 1, 0, 0, 14, 7, 6, 8, 6, 8, 6, 3, 4, 4, 1, 2, 0), # 20 (12, 12, 4, 8, 10, 3, 5, 3, 2, 0, 0, 1, 0, 10, 8, 9, 10, 13, 3, 7, 4, 4, 6, 6, 2, 0), # 21 (14, 17, 9, 11, 8, 4, 8, 4, 3, 1, 2, 3, 0, 14, 12, 9, 10, 9, 8, 4, 2, 2, 3, 2, 1, 0), # 22 (11, 18, 9, 10, 4, 4, 6, 6, 6, 3, 1, 4, 0, 19, 9, 9, 10, 10, 5, 5, 0, 4, 9, 4, 1, 0), # 23 (10, 12, 9, 17, 7, 4, 6, 5, 1, 2, 0, 1, 0, 11, 14, 9, 5, 11, 7, 6, 3, 5, 2, 4, 2, 0), # 24 (10, 13, 14, 8, 7, 4, 5, 9, 8, 3, 0, 2, 0, 15, 16, 11, 5, 8, 5, 3, 3, 4, 5, 1, 0, 0), # 25 (13, 14, 9, 11, 10, 2, 2, 5, 7, 2, 4, 0, 0, 11, 13, 8, 7, 6, 5, 7, 3, 4, 2, 2, 2, 0), # 26 (18, 10, 10, 14, 8, 1, 11, 1, 6, 1, 3, 1, 0, 13, 20, 8, 8, 8, 7, 4, 1, 4, 5, 0, 3, 0), # 27 (12, 7, 8, 9, 13, 4, 8, 4, 7, 3, 2, 1, 0, 12, 10, 11, 8, 12, 8, 4, 2, 5, 2, 1, 1, 0), # 28 (12, 16, 9, 10, 9, 3, 8, 1, 3, 3, 2, 1, 0, 15, 9, 10, 9, 11, 5, 2, 3, 4, 5, 0, 3, 0), # 29 (11, 15, 8, 14, 10, 5, 7, 6, 6, 1, 3, 0, 0, 14, 8, 9, 6, 4, 8, 6, 3, 7, 7, 0, 0, 0), # 30 (20, 15, 10, 6, 5, 3, 4, 9, 5, 2, 6, 0, 0, 11, 16, 5, 6, 16, 8, 3, 2, 2, 4, 1, 1, 0), # 31 (14, 9, 14, 14, 4, 6, 5, 2, 10, 2, 1, 0, 0, 13, 12, 9, 10, 13, 4, 10, 2, 3, 6, 1, 0, 0), # 32 (15, 15, 13, 8, 7, 8, 9, 8, 1, 4, 2, 0, 0, 14, 13, 6, 6, 11, 5, 4, 3, 4, 3, 4, 2, 0), # 33 (14, 5, 9, 9, 7, 6, 5, 5, 3, 1, 2, 0, 0, 12, 12, 6, 8, 9, 2, 3, 4, 4, 5, 2, 0, 0), # 34 (10, 15, 9, 12, 12, 4, 7, 6, 5, 3, 4, 2, 0, 18, 9, 5, 6, 8, 5, 4, 2, 7, 3, 2, 0, 0), # 35 (15, 7, 13, 15, 6, 4, 3, 4, 4, 2, 4, 1, 0, 16, 11, 7, 2, 11, 11, 7, 1, 2, 1, 1, 1, 0), # 36 (17, 11, 18, 16, 3, 4, 5, 2, 2, 2, 2, 1, 0, 9, 8, 7, 8, 15, 4, 2, 1, 0, 9, 4, 1, 0), # 37 (18, 15, 10, 13, 9, 4, 4, 5, 7, 1, 2, 1, 0, 10, 7, 5, 6, 10, 9, 6, 4, 5, 7, 2, 1, 0), # 38 (12, 11, 15, 5, 6, 1, 4, 5, 2, 2, 3, 1, 0, 11, 10, 6, 7, 9, 10, 6, 5, 5, 3, 4, 3, 0), # 39 (18, 9, 10, 11, 10, 7, 3, 4, 6, 2, 2, 2, 0, 9, 11, 8, 6, 10, 5, 4, 8, 2, 3, 2, 0, 0), # 40 (14, 13, 5, 12, 8, 2, 2, 4, 4, 5, 1, 0, 0, 10, 12, 8, 2, 7, 6, 5, 3, 4, 2, 0, 2, 0), # 41 (7, 7, 7, 11, 10, 3, 4, 1, 6, 2, 3, 0, 0, 12, 9, 7, 5, 8, 2, 9, 4, 4, 2, 1, 1, 0), # 42 (16, 10, 10, 7, 9, 2, 6, 3, 4, 2, 0, 1, 0, 14, 9, 13, 6, 11, 12, 2, 1, 6, 3, 0, 1, 0), # 43 (10, 16, 10, 11, 8, 2, 3, 7, 7, 2, 3, 1, 0, 9, 15, 4, 10, 12, 8, 5, 3, 5, 4, 1, 2, 0), # 44 (14, 11, 12, 9, 10, 2, 3, 5, 4, 2, 3, 0, 0, 10, 11, 7, 5, 11, 9, 1, 4, 4, 4, 5, 1, 0), # 45 (13, 10, 7, 14, 3, 0, 7, 4, 2, 3, 2, 0, 0, 11, 16, 11, 7, 7, 5, 2, 8, 1, 4, 1, 4, 0), # 46 (8, 14, 6, 9, 7, 5, 3, 2, 3, 3, 1, 1, 0, 13, 11, 5, 10, 8, 7, 4, 7, 3, 1, 4, 2, 0), # 47 (13, 13, 9, 8, 15, 4, 6, 4, 4, 2, 1, 1, 0, 7, 9, 10, 8, 11, 8, 5, 5, 4, 4, 1, 0, 0), # 48 (20, 6, 14, 13, 8, 11, 4, 5, 6, 2, 3, 0, 0, 6, 11, 10, 7, 11, 8, 9, 3, 1, 2, 1, 1, 0), # 49 (18, 15, 14, 7, 10, 5, 4, 4, 5, 2, 0, 0, 0, 7, 10, 10, 8, 8, 8, 6, 4, 4, 5, 3, 0, 0), # 50 (16, 9, 11, 15, 5, 3, 7, 5, 6, 4, 1, 1, 0, 18, 12, 8, 5, 8, 4, 8, 4, 8, 3, 2, 1, 0), # 51 (14, 8, 12, 8, 8, 7, 3, 6, 4, 0, 2, 2, 0, 12, 10, 6, 4, 7, 9, 4, 6, 4, 1, 2, 0, 0), # 52 (13, 12, 7, 13, 10, 6, 7, 2, 3, 3, 1, 1, 0, 8, 13, 4, 9, 12, 3, 1, 4, 2, 3, 5, 1, 0), # 53 (11, 10, 13, 6, 9, 5, 3, 6, 4, 4, 2, 1, 0, 13, 12, 8, 4, 11, 4, 6, 4, 4, 7, 4, 0, 0), # 54 (9, 12, 8, 14, 8, 5, 1, 2, 9, 2, 0, 0, 0, 11, 16, 8, 7, 10, 10, 6, 4, 6, 7, 3, 0, 0), # 55 (11, 15, 16, 10, 9, 7, 3, 4, 5, 2, 1, 1, 0, 19, 10, 12, 7, 9, 2, 4, 9, 6, 3, 1, 0, 0), # 56 (10, 15, 14, 7, 9, 4, 2, 8, 2, 4, 1, 1, 0, 11, 15, 9, 8, 6, 5, 9, 3, 4, 5, 2, 1, 0), # 57 (8, 6, 11, 15, 9, 3, 5, 5, 8, 3, 1, 0, 0, 13, 15, 6, 4, 11, 0, 3, 4, 5, 4, 4, 1, 0), # 58 (8, 16, 12, 7, 5, 4, 3, 3, 5, 2, 2, 1, 0, 17, 7, 9, 9, 9, 5, 7, 1, 3, 5, 2, 0, 0), # 59 (12, 6, 14, 5, 8, 8, 6, 6, 4, 2, 2, 1, 0, 11, 9, 15, 11, 7, 8, 3, 4, 5, 5, 6, 1, 0), # 60 (10, 8, 11, 7, 12, 4, 3, 4, 4, 2, 3, 1, 0, 12, 6, 7, 6, 3, 2, 4, 1, 5, 4, 1, 0, 0), # 61 (13, 10, 8, 12, 10, 5, 6, 4, 3, 1, 1, 1, 0, 16, 7, 2, 12, 16, 4, 5, 2, 6, 7, 0, 0, 0), # 62 (12, 12, 11, 10, 5, 6, 2, 7, 1, 1, 3, 0, 0, 16, 7, 10, 7, 14, 8, 4, 6, 4, 5, 2, 1, 0), # 63 (16, 13, 8, 8, 10, 0, 4, 3, 6, 3, 1, 2, 0, 10, 9, 3, 9, 13, 8, 4, 1, 7, 3, 2, 0, 0), # 64 (12, 6, 9, 13, 6, 2, 1, 5, 2, 2, 3, 0, 0, 8, 4, 7, 6, 4, 3, 4, 2, 4, 1, 2, 0, 0), # 65 (4, 19, 10, 11, 14, 7, 1, 5, 5, 1, 2, 1, 0, 15, 8, 8, 8, 7, 4, 9, 1, 3, 4, 1, 1, 0), # 66 (13, 7, 11, 16, 5, 4, 5, 3, 6, 2, 0, 1, 0, 11, 14, 6, 4, 6, 7, 2, 2, 3, 3, 0, 1, 0), # 67 (10, 11, 8, 10, 4, 6, 1, 3, 3, 2, 0, 0, 0, 13, 10, 8, 6, 9, 7, 9, 2, 4, 3, 2, 0, 0), # 68 (15, 8, 14, 5, 14, 5, 5, 2, 6, 2, 3, 1, 0, 8, 14, 7, 7, 11, 7, 3, 0, 3, 4, 2, 0, 0), # 69 (14, 11, 11, 10, 5, 7, 4, 6, 3, 0, 4, 4, 0, 11, 6, 6, 7, 10, 4, 5, 2, 4, 5, 3, 1, 0), # 70 (9, 7, 7, 17, 13, 7, 6, 5, 4, 0, 1, 1, 0, 18, 14, 10, 8, 7, 5, 4, 1, 1, 2, 2, 0, 0), # 71 (10, 10, 14, 11, 14, 2, 6, 7, 5, 3, 3, 0, 0, 11, 5, 8, 2, 11, 4, 8, 1, 4, 7, 1, 0, 0), # 72 (7, 12, 7, 11, 7, 3, 3, 2, 8, 3, 3, 2, 0, 7, 10, 12, 5, 6, 7, 3, 5, 3, 8, 6, 0, 0), # 73 (12, 18, 8, 7, 8, 4, 3, 2, 8, 3, 0, 0, 0, 8, 8, 9, 6, 8, 9, 2, 3, 5, 9, 1, 1, 0), # 74 (10, 6, 8, 9, 13, 2, 4, 8, 2, 0, 1, 1, 0, 13, 7, 7, 3, 10, 6, 5, 3, 7, 4, 3, 0, 0), # 75 (17, 8, 11, 7, 8, 5, 5, 7, 5, 5, 1, 3, 0, 8, 11, 12, 3, 12, 1, 3, 4, 2, 5, 1, 1, 0), # 76 (5, 14, 11, 3, 4, 5, 7, 2, 6, 1, 2, 1, 0, 11, 6, 8, 1, 8, 2, 4, 3, 4, 4, 3, 0, 0), # 77 (15, 9, 7, 11, 9, 5, 3, 4, 4, 2, 0, 0, 0, 7, 8, 10, 8, 12, 4, 5, 2, 5, 2, 3, 0, 0), # 78 (13, 11, 3, 12, 7, 2, 5, 2, 6, 1, 2, 2, 0, 16, 9, 8, 5, 10, 7, 1, 1, 3, 3, 2, 0, 0), # 79 (14, 9, 10, 14, 12, 2, 4, 4, 4, 3, 1, 1, 0, 16, 8, 7, 3, 8, 3, 0, 1, 3, 1, 2, 2, 0), # 80 (8, 6, 12, 10, 3, 5, 2, 3, 4, 4, 0, 0, 0, 11, 12, 3, 3, 14, 1, 4, 2, 3, 4, 1, 3, 0), # 81 (10, 6, 11, 7, 6, 7, 6, 2, 2, 3, 1, 1, 0, 9, 13, 7, 7, 9, 5, 1, 4, 4, 1, 4, 1, 0), # 82 (13, 11, 9, 12, 10, 2, 3, 6, 6, 3, 1, 2, 0, 7, 9, 6, 11, 11, 5, 3, 2, 4, 4, 1, 0, 0), # 83 (13, 7, 13, 14, 5, 5, 5, 2, 2, 2, 3, 0, 0, 11, 10, 8, 4, 7, 7, 8, 3, 5, 2, 2, 2, 0), # 84 (9, 7, 12, 6, 4, 4, 5, 7, 3, 3, 3, 2, 0, 9, 5, 6, 4, 12, 5, 2, 2, 5, 5, 4, 1, 0), # 85 (11, 13, 5, 9, 4, 7, 5, 1, 6, 1, 1, 0, 0, 13, 8, 8, 4, 9, 7, 1, 7, 2, 4, 1, 1, 0), # 86 (11, 9, 10, 11, 9, 1, 2, 2, 11, 1, 3, 2, 0, 8, 12, 13, 2, 6, 4, 4, 2, 1, 3, 3, 1, 0), # 87 (12, 12, 14, 12, 12, 4, 2, 5, 6, 2, 4, 0, 0, 17, 6, 3, 6, 9, 3, 1, 6, 6, 4, 2, 0, 0), # 88 (9, 10, 11, 10, 12, 11, 2, 9, 5, 0, 2, 1, 0, 11, 10, 7, 3, 10, 6, 5, 3, 7, 5, 1, 1, 0), # 89 (10, 12, 8, 13, 6, 3, 4, 2, 6, 2, 1, 3, 0, 8, 6, 8, 6, 10, 8, 4, 5, 5, 4, 3, 1, 0), # 90 (6, 5, 8, 10, 4, 2, 6, 5, 6, 1, 4, 0, 0, 17, 14, 9, 5, 8, 4, 5, 4, 3, 4, 5, 1, 0), # 91 (11, 4, 9, 11, 6, 5, 4, 4, 3, 1, 0, 1, 0, 12, 7, 3, 6, 15, 7, 4, 5, 6, 5, 3, 0, 0), # 92 (7, 9, 9, 8, 9, 6, 3, 5, 1, 1, 0, 2, 0, 13, 13, 2, 8, 13, 1, 6, 4, 5, 2, 2, 1, 0), # 93 (14, 7, 9, 12, 7, 4, 3, 2, 8, 3, 2, 0, 0, 11, 6, 10, 5, 5, 4, 6, 5, 0, 4, 2, 3, 0), # 94 (21, 8, 8, 13, 9, 3, 5, 3, 1, 0, 0, 0, 0, 14, 7, 3, 3, 10, 4, 1, 0, 6, 3, 2, 0, 0), # 95 (17, 6, 8, 11, 5, 8, 2, 1, 6, 2, 3, 0, 0, 13, 9, 13, 4, 10, 4, 2, 0, 2, 2, 4, 1, 0), # 96 (12, 11, 11, 9, 10, 1, 2, 3, 10, 2, 1, 2, 0, 11, 11, 10, 10, 8, 5, 4, 3, 2, 5, 2, 0, 0), # 97 (11, 17, 13, 10, 5, 6, 6, 3, 4, 1, 3, 0, 0, 16, 11, 4, 7, 8, 11, 4, 4, 5, 3, 2, 1, 0), # 98 (10, 6, 7, 6, 11, 6, 7, 4, 6, 1, 0, 0, 0, 14, 11, 7, 8, 14, 8, 7, 6, 4, 3, 1, 0, 0), # 99 (12, 10, 9, 11, 11, 4, 3, 5, 2, 1, 1, 0, 0, 9, 8, 3, 4, 5, 4, 4, 3, 5, 6, 4, 0, 0), # 100 (12, 5, 6, 3, 12, 3, 6, 6, 2, 2, 0, 0, 0, 13, 12, 6, 11, 10, 6, 6, 4, 1, 1, 1, 2, 0), # 101 (9, 8, 12, 11, 8, 3, 6, 4, 7, 0, 1, 0, 0, 11, 8, 6, 5, 10, 4, 2, 4, 4, 3, 1, 0, 0), # 102 (9, 8, 6, 11, 5, 10, 5, 1, 5, 2, 1, 0, 0, 10, 11, 8, 9, 12, 3, 4, 3, 8, 1, 2, 1, 0), # 103 (12, 8, 9, 14, 6, 3, 7, 0, 7, 3, 0, 0, 0, 18, 13, 9, 7, 8, 5, 1, 4, 4, 5, 0, 0, 0), # 104 (14, 8, 9, 10, 11, 5, 4, 3, 2, 2, 2, 1, 0, 10, 7, 1, 5, 6, 4, 7, 3, 4, 4, 3, 0, 0), # 105 (10, 14, 9, 13, 7, 2, 4, 5, 3, 3, 1, 0, 0, 9, 9, 8, 6, 6, 2, 4, 0, 3, 3, 2, 0, 0), # 106 (9, 6, 9, 10, 12, 2, 4, 1, 8, 2, 1, 0, 0, 12, 5, 6, 10, 5, 4, 1, 3, 4, 2, 1, 2, 0), # 107 (12, 10, 9, 12, 9, 4, 6, 4, 2, 3, 0, 0, 0, 9, 12, 4, 5, 8, 8, 3, 0, 4, 2, 4, 1, 0), # 108 (15, 5, 6, 10, 7, 3, 4, 5, 5, 1, 1, 2, 0, 18, 11, 6, 6, 8, 1, 6, 2, 2, 2, 2, 1, 0), # 109 (4, 8, 11, 11, 13, 4, 5, 2, 5, 0, 0, 0, 0, 13, 8, 6, 4, 6, 7, 4, 2, 6, 4, 4, 0, 0), # 110 (11, 8, 11, 12, 11, 3, 2, 6, 5, 2, 2, 1, 0, 15, 9, 5, 6, 7, 5, 4, 1, 10, 3, 4, 2, 0), # 111 (9, 13, 6, 18, 8, 2, 2, 1, 4, 1, 0, 2, 0, 11, 6, 9, 3, 9, 3, 5, 1, 6, 3, 5, 0, 0), # 112 (13, 9, 8, 11, 4, 8, 3, 4, 5, 1, 1, 0, 0, 10, 10, 7, 2, 9, 5, 5, 0, 2, 8, 1, 0, 0), # 113 (17, 10, 10, 7, 8, 4, 4, 2, 4, 4, 2, 1, 0, 9, 13, 5, 2, 15, 1, 0, 5, 3, 1, 1, 2, 0), # 114 (13, 7, 7, 12, 9, 4, 4, 0, 3, 1, 0, 2, 0, 19, 6, 9, 5, 9, 2, 6, 1, 2, 2, 0, 1, 0), # 115 (5, 7, 17, 11, 7, 1, 2, 3, 6, 0, 0, 0, 0, 12, 8, 12, 4, 10, 4, 1, 0, 8, 4, 0, 1, 0), # 116 (9, 8, 12, 11, 12, 4, 2, 1, 6, 2, 1, 0, 0, 11, 7, 6, 5, 9, 7, 5, 3, 2, 3, 1, 0, 0), # 117 (9, 9, 14, 10, 8, 3, 7, 4, 2, 4, 1, 1, 0, 12, 5, 8, 5, 10, 4, 5, 5, 4, 2, 3, 0, 0), # 118 (11, 14, 8, 6, 11, 5, 4, 2, 4, 0, 0, 0, 0, 14, 5, 6, 2, 6, 2, 5, 3, 5, 2, 3, 2, 0), # 119 (12, 10, 4, 13, 9, 4, 3, 3, 5, 1, 1, 0, 0, 12, 12, 4, 2, 4, 3, 8, 1, 6, 3, 3, 1, 0), # 120 (11, 9, 9, 4, 10, 4, 6, 1, 8, 5, 2, 0, 0, 9, 7, 3, 7, 5, 6, 2, 2, 4, 1, 1, 0, 0), # 121 (17, 11, 6, 7, 4, 3, 6, 1, 3, 3, 0, 1, 0, 11, 8, 7, 5, 10, 3, 7, 1, 4, 2, 2, 1, 0), # 122 (10, 5, 6, 11, 7, 4, 6, 4, 3, 3, 2, 0, 0, 12, 8, 7, 5, 7, 4, 1, 2, 4, 7, 0, 2, 0), # 123 (9, 10, 6, 13, 9, 5, 4, 6, 10, 2, 0, 1, 0, 11, 4, 6, 5, 18, 2, 2, 6, 3, 1, 1, 1, 0), # 124 (8, 7, 7, 11, 11, 2, 3, 1, 6, 2, 1, 3, 0, 10, 10, 8, 2, 6, 3, 3, 3, 4, 2, 1, 0, 0), # 125 (11, 5, 8, 7, 12, 5, 4, 3, 3, 1, 1, 1, 0, 11, 8, 3, 6, 9, 5, 1, 4, 4, 12, 3, 0, 0), # 126 (10, 12, 6, 10, 12, 6, 1, 3, 4, 0, 2, 0, 0, 13, 6, 6, 3, 6, 3, 4, 2, 5, 3, 1, 2, 0), # 127 (8, 14, 8, 12, 10, 6, 2, 1, 8, 4, 2, 0, 0, 12, 8, 9, 3, 5, 6, 2, 4, 0, 2, 1, 1, 0), # 128 (13, 6, 9, 10, 8, 4, 4, 3, 2, 0, 1, 1, 0, 11, 8, 6, 6, 8, 5, 4, 4, 4, 1, 5, 0, 0), # 129 (10, 11, 7, 9, 11, 4, 2, 2, 2, 3, 1, 0, 0, 4, 9, 12, 5, 12, 3, 2, 0, 3, 6, 0, 0, 0), # 130 (14, 9, 11, 16, 8, 3, 2, 4, 4, 0, 0, 1, 0, 15, 8, 11, 6, 7, 5, 3, 2, 4, 2, 1, 1, 0), # 131 (8, 7, 8, 7, 7, 3, 2, 1, 8, 1, 0, 0, 0, 10, 13, 7, 6, 8, 9, 3, 2, 4, 0, 3, 0, 0), # 132 (9, 6, 6, 5, 10, 6, 3, 3, 2, 2, 1, 0, 0, 15, 11, 4, 8, 5, 4, 3, 1, 3, 4, 1, 1, 0), # 133 (10, 6, 15, 5, 3, 4, 5, 1, 10, 2, 2, 0, 0, 9, 10, 4, 6, 12, 4, 4, 3, 4, 3, 1, 3, 0), # 134 (10, 15, 11, 7, 11, 3, 4, 4, 2, 3, 1, 1, 0, 11, 12, 3, 9, 13, 5, 2, 2, 3, 0, 2, 0, 0), # 135 (15, 9, 13, 12, 6, 4, 1, 5, 9, 1, 0, 0, 0, 12, 11, 3, 10, 10, 3, 1, 3, 8, 3, 2, 1, 0), # 136 (18, 8, 12, 10, 7, 4, 2, 3, 4, 0, 2, 0, 0, 17, 10, 6, 6, 9, 4, 5, 2, 1, 3, 5, 0, 0), # 137 (8, 7, 10, 8, 14, 5, 1, 2, 5, 4, 1, 0, 0, 10, 10, 5, 7, 11, 1, 4, 3, 4, 2, 2, 0, 0), # 138 (8, 7, 12, 13, 7, 0, 1, 1, 5, 1, 1, 3, 0, 14, 11, 4, 6, 10, 5, 4, 2, 4, 4, 2, 2, 0), # 139 (8, 7, 8, 8, 7, 2, 3, 1, 1, 0, 1, 3, 0, 11, 13, 10, 1, 8, 2, 6, 3, 2, 3, 1, 0, 0), # 140 (16, 5, 9, 6, 5, 2, 4, 4, 3, 2, 1, 0, 0, 11, 7, 2, 4, 6, 2, 4, 7, 4, 3, 1, 1, 0), # 141 (10, 4, 4, 8, 10, 4, 4, 4, 4, 0, 1, 0, 0, 13, 7, 4, 5, 10, 7, 2, 5, 3, 2, 1, 0, 0), # 142 (5, 9, 7, 9, 9, 8, 3, 2, 3, 0, 0, 1, 0, 20, 9, 4, 5, 5, 10, 4, 3, 2, 3, 1, 0, 0), # 143 (14, 5, 6, 14, 5, 2, 6, 3, 3, 3, 0, 2, 0, 9, 7, 3, 3, 4, 3, 1, 4, 0, 6, 1, 0, 0), # 144 (15, 8, 11, 8, 8, 2, 2, 4, 3, 1, 1, 1, 0, 11, 11, 3, 3, 8, 4, 1, 3, 5, 1, 1, 0, 0), # 145 (13, 7, 10, 10, 10, 6, 3, 6, 1, 1, 2, 1, 0, 13, 11, 5, 2, 5, 6, 3, 3, 5, 2, 2, 1, 0), # 146 (6, 4, 9, 8, 9, 1, 3, 3, 4, 1, 0, 1, 0, 10, 14, 6, 1, 7, 5, 3, 3, 3, 5, 0, 0, 0), # 147 (9, 9, 11, 14, 12, 3, 3, 4, 3, 1, 1, 0, 0, 10, 12, 9, 3, 10, 1, 4, 4, 9, 5, 0, 1, 0), # 148 (10, 7, 13, 6, 9, 1, 7, 1, 4, 2, 1, 0, 0, 11, 10, 8, 3, 5, 3, 2, 0, 2, 1, 1, 0, 0), # 149 (9, 7, 7, 10, 5, 4, 4, 2, 1, 0, 0, 1, 0, 7, 7, 5, 4, 7, 5, 1, 4, 4, 4, 0, 0, 0), # 150 (3, 5, 7, 9, 10, 5, 1, 4, 6, 0, 2, 2, 0, 9, 8, 8, 7, 11, 5, 1, 3, 4, 1, 1, 0, 0), # 151 (14, 5, 16, 10, 6, 0, 3, 5, 2, 0, 1, 0, 0, 9, 6, 5, 4, 14, 1, 1, 5, 4, 3, 2, 0, 0), # 152 (10, 6, 9, 7, 7, 4, 2, 1, 3, 0, 0, 0, 0, 12, 8, 3, 6, 10, 3, 4, 3, 2, 3, 1, 0, 0), # 153 (8, 5, 6, 6, 8, 3, 2, 6, 4, 3, 2, 0, 0, 15, 9, 4, 3, 6, 2, 2, 7, 7, 4, 2, 0, 0), # 154 (15, 6, 8, 4, 5, 2, 4, 2, 9, 0, 2, 2, 0, 8, 9, 7, 2, 8, 4, 3, 3, 7, 4, 4, 1, 0), # 155 (7, 3, 16, 8, 3, 2, 3, 2, 3, 0, 0, 1, 0, 14, 6, 4, 3, 4, 4, 5, 4, 6, 4, 2, 1, 0), # 156 (13, 7, 8, 12, 7, 5, 0, 3, 2, 2, 2, 0, 0, 15, 6, 5, 2, 10, 3, 1, 1, 3, 6, 2, 2, 0), # 157 (8, 4, 8, 7, 7, 3, 1, 3, 3, 0, 1, 2, 0, 9, 9, 8, 3, 8, 4, 5, 1, 5, 4, 2, 2, 0), # 158 (7, 9, 8, 3, 9, 3, 0, 3, 2, 0, 0, 1, 0, 10, 8, 2, 5, 11, 3, 1, 0, 5, 4, 4, 2, 0), # 159 (9, 5, 8, 6, 9, 5, 1, 3, 5, 0, 2, 0, 0, 9, 14, 10, 3, 6, 4, 1, 3, 3, 3, 0, 0, 0), # 160 (7, 12, 13, 10, 7, 2, 5, 8, 4, 2, 5, 1, 0, 9, 8, 9, 4, 11, 2, 2, 1, 3, 3, 3, 1, 0), # 161 (10, 8, 4, 12, 5, 2, 3, 4, 1, 0, 1, 0, 0, 9, 9, 2, 4, 12, 3, 2, 2, 1, 4, 0, 0, 0), # 162 (8, 6, 9, 12, 7, 1, 2, 6, 1, 2, 3, 1, 0, 8, 4, 4, 3, 8, 3, 1, 3, 7, 0, 1, 0, 0), # 163 (8, 9, 14, 12, 4, 2, 2, 2, 3, 4, 4, 1, 0, 10, 7, 7, 4, 5, 2, 3, 2, 3, 2, 1, 0, 0), # 164 (6, 4, 9, 4, 6, 1, 4, 1, 4, 2, 3, 2, 0, 8, 5, 8, 6, 9, 3, 3, 3, 2, 3, 0, 1, 0), # 165 (6, 9, 3, 1, 12, 6, 2, 2, 2, 5, 1, 0, 0, 6, 5, 6, 5, 4, 4, 2, 4, 2, 4, 1, 0, 0), # 166 (5, 7, 4, 5, 9, 1, 1, 2, 7, 1, 1, 0, 0, 10, 8, 7, 10, 6, 4, 3, 1, 1, 1, 2, 0, 0), # 167 (8, 5, 6, 8, 6, 2, 4, 4, 2, 1, 2, 0, 0, 7, 6, 3, 9, 8, 3, 4, 1, 1, 3, 1, 1, 0), # 168 (6, 4, 11, 10, 6, 3, 2, 4, 4, 1, 1, 1, 0, 9, 9, 4, 1, 7, 3, 2, 3, 4, 4, 1, 0, 0), # 169 (6, 6, 6, 10, 6, 5, 3, 2, 3, 2, 0, 0, 0, 6, 11, 5, 6, 5, 2, 1, 2, 6, 3, 1, 1, 0), # 170 (5, 5, 4, 12, 10, 4, 4, 3, 1, 0, 2, 0, 0, 7, 10, 3, 3, 12, 1, 2, 4, 6, 3, 1, 0, 0), # 171 (4, 4, 7, 6, 5, 1, 2, 4, 2, 0, 1, 0, 0, 12, 2, 3, 5, 6, 5, 1, 1, 4, 1, 1, 0, 0), # 172 (8, 1, 3, 4, 10, 2, 2, 3, 4, 0, 1, 3, 0, 8, 3, 2, 2, 2, 3, 0, 1, 2, 2, 2, 0, 0), # 173 (10, 3, 3, 6, 7, 1, 1, 1, 2, 3, 0, 0, 0, 10, 7, 5, 2, 4, 1, 2, 3, 3, 2, 2, 0, 0), # 174 (8, 6, 3, 8, 7, 1, 0, 2, 2, 1, 2, 0, 0, 8, 4, 4, 2, 4, 1, 1, 3, 2, 4, 1, 0, 0), # 175 (3, 3, 7, 7, 1, 0, 3, 0, 2, 1, 1, 1, 0, 4, 5, 3, 2, 7, 1, 2, 1, 4, 3, 0, 0, 0), # 176 (6, 4, 7, 4, 5, 0, 2, 4, 2, 1, 2, 1, 0, 5, 3, 5, 4, 3, 4, 1, 4, 2, 2, 1, 1, 0), # 177 (3, 6, 1, 5, 1, 3, 2, 1, 2, 0, 1, 0, 0, 6, 2, 4, 1, 3, 2, 1, 0, 1, 0, 0, 2, 0), # 178 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), # 179 ) station_arriving_intensity = ( (6.025038694046121, 6.630346271631799, 6.253539875535008, 7.457601328636119, 6.665622729131534, 3.766385918444806, 4.9752427384486975, 5.583811407575308, 7.308118874601608, 4.749618018626843, 5.046318196662723, 5.877498093967408, 6.100656255094035), # 0 (6.425192582423969, 7.06807283297371, 6.666415909596182, 7.950173103931939, 7.106988404969084, 4.015180300851067, 5.303362729516432, 5.951416467486849, 7.79069439159949, 5.062776830732579, 5.3797153631473575, 6.265459992977225, 6.503749976927826), # 1 (6.8240676107756775, 7.504062205069175, 7.077650742656896, 8.440785245597752, 7.546755568499692, 4.262982137414934, 5.630182209552845, 6.317550297485303, 8.271344168253059, 5.3746965300246545, 5.711787778531575, 6.651879182463666, 6.905237793851628), # 2 (7.220109351775874, 7.936584602323736, 7.485613043183825, 8.927491689038488, 7.983194011202282, 4.508808747102135, 5.954404369977547, 6.680761388993408, 8.74816219310531, 5.684139238111417, 6.041218094192859, 7.035222821916553, 7.30352736750507), # 3 (7.611763378099177, 8.363910239142928, 7.8886714796436435, 9.408346369659084, 8.41457352455579, 4.751677448878401, 6.27473240221015, 7.039598233433898, 9.219242454699248, 5.9898670766012145, 6.36668896150869, 7.413958070825716, 7.69702635952778), # 4 (7.9974752624202115, 8.784309329932306, 8.285194720503021, 9.881403222864472, 8.839163900039136, 4.990605561709457, 6.589869497670269, 7.392609322229511, 9.682678941577871, 6.290642167102395, 6.686883031856559, 7.786552088680978, 8.084142431559393), # 5 (8.375690577413598, 9.196052089097401, 8.673551434228639, 10.344716184059582, 9.255234929131252, 5.224610404561036, 6.898518847777515, 7.738343146802986, 10.136565642284177, 6.58522663122331, 7.000482956613939, 8.15147203497217, 8.463283245239527), # 6 (8.744854895753962, 9.597408731043757, 9.052110289287162, 10.796339188649354, 9.661056403311065, 5.452709296398865, 7.199383643951502, 8.075348198577062, 10.578996545361173, 6.872382590572303, 7.306171387158321, 8.507185069189115, 8.832856462207822), # 7 (9.103413790115921, 9.986649470176918, 9.419239954145274, 11.234326172038713, 10.054898114057503, 5.673919556188667, 7.491167077611837, 8.402172968974469, 11.008065639351846, 7.150872166757728, 7.602630974867185, 8.852158350821643, 9.1912697441039), # 8 (9.449812833174102, 10.362044520902426, 9.773309097269644, 11.656731069632603, 10.43502985284949, 5.88725850289618, 7.772572340178144, 8.717365949417955, 11.421866912799208, 7.419457481387929, 7.888544371118013, 9.184859039359576, 9.536930752567395), # 9 (9.782497597603118, 10.721864097625819, 10.11268638712695, 12.061607816835945, 10.79972141116596, 6.091743455487129, 8.042302623070025, 9.019475631330252, 11.818494354246257, 7.676900656071257, 8.162594227288288, 9.503754294292742, 9.868247149237932), # 10 (10.099913656077605, 11.064378414752648, 10.435740492183857, 12.447010349053675, 11.14724258048584, 6.286391732927242, 8.2990611177071, 9.307050506134097, 12.196041952235992, 7.921963812416062, 8.423463194755499, 9.807311275110973, 10.183626595755133), # 11 (10.400506581272174, 11.387857686688436, 10.740840080907047, 12.810992601690733, 11.475863152288053, 6.470220654182243, 8.541551015508974, 9.578639065252224, 12.552603695311413, 8.153409072030685, 8.669833924897121, 10.093997141304081, 10.48147675375864), # 12 (10.68272194586145, 11.690572127838744, 11.026353821763193, 13.151608510152052, 11.78385291805152, 6.642247538217868, 8.768475507895266, 9.832789800107378, 12.886273572015517, 8.369998556523484, 8.900389069090641, 10.362279052361904, 10.760205284888082), # 13 (10.945005322520059, 11.970791952609106, 11.290650383218976, 13.46691200984255, 12.069481669255188, 6.801489703999841, 8.978537786285592, 10.068051202122295, 13.195145570891304, 8.5704943875028, 9.113811278713541, 10.610624167774272, 11.018219850783076), # 14 (11.185802283922625, 12.22678737540506, 11.53209843374105, 13.754957036167182, 12.33101919737797, 6.946964470493895, 9.17044104209955, 10.282971762719706, 13.477313680481783, 8.753658686576989, 9.308783205143303, 10.837499647031004, 11.253928113083257), # 15 (11.40355840274376, 12.456828610632158, 11.749066641796109, 14.01379752453086, 12.5667352938988, 7.077689156665751, 9.34288846675677, 10.476099973322352, 13.730871889329944, 8.918253575354395, 9.483987499757415, 11.041372649621927, 11.465737733428254), # 16 (11.59671925165809, 12.659185872695934, 11.939923675850823, 14.241487410338534, 12.774899750296605, 7.192681081481142, 9.494583251676852, 10.64598432535298, 13.95391418597878, 9.06304117544336, 9.638106813933359, 11.220710335036866, 11.652056373457699), # 17 (11.763730403340244, 12.832129376001928, 12.103038204371856, 14.436080628995134, 12.953782358050306, 7.290957563905803, 9.62422858827942, 10.791173310234312, 14.144534558971316, 9.186783608452243, 9.76982379904861, 11.373979862765658, 11.811291694811214), # 18 (11.903037430464838, 12.973929334955693, 12.236778895825895, 14.595631115905576, 13.101652908638838, 7.37153592290545, 9.730527667984072, 10.910215419389093, 14.300826996850533, 9.288242995989393, 9.877821106480653, 11.499648392298115, 11.941851359128435), # 19 (12.013085905706498, 13.082855963962754, 12.339514418679602, 14.718192806474825, 13.216781193541133, 7.4334334774458215, 9.812183682210435, 11.00165914424006, 14.420885488159437, 9.36618145966315, 9.96078138760698, 11.59618308312407, 12.042143028048988), # 20 (12.09232140173984, 13.15717947742867, 12.409613441399662, 14.801819636107782, 13.297437004236105, 7.475667546492642, 9.86789982237811, 11.064052976209947, 14.502804021441024, 9.419361121081865, 10.01738729380507, 11.662051094733352, 12.110574363212494), # 21 (12.139189491239494, 13.195170089758973, 12.445444632452743, 14.844565540209402, 13.341890132202689, 7.497255449011639, 9.89637927990672, 11.095945406721498, 14.544676585238298, 9.44654410185389, 10.046321476452407, 11.695719586615787, 12.145553026258591), # 22 (12.156472036011166, 13.199668312757202, 12.449907818930042, 14.849916975308643, 13.353278467239116, 7.5, 9.899764802711205, 11.099392592592592, 14.54991148148148, 9.44975072702332, 10.049949644594088, 11.69987709190672, 12.15), # 23 (12.169214895640982, 13.197044444444446, 12.449177777777777, 14.849258333333335, 13.359729136337823, 7.5, 9.8979045751634, 11.0946, 14.549209999999999, 9.44778074074074, 10.049549494949495, 11.698903703703703, 12.15), # 24 (12.181688676253897, 13.191872427983538, 12.447736625514404, 14.84795524691358, 13.366037934713404, 7.5, 9.894238683127572, 11.085185185185185, 14.547824074074073, 9.443902606310013, 10.048756079311634, 11.696982167352537, 12.15), # 25 (12.19389242285764, 13.184231275720165, 12.445604115226338, 14.846022530864197, 13.372204642105325, 7.5, 9.888824061970466, 11.071325925925926, 14.54577148148148, 9.438180850480109, 10.047576580621024, 11.694138820301784, 12.15), # 26 (12.205825180459962, 13.174199999999997, 12.4428, 14.843474999999998, 13.378229038253057, 7.5, 9.881717647058824, 11.0532, 14.54307, 9.430679999999999, 10.046018181818182, 11.6904, 12.15), # 27 (12.217485994068602, 13.161857613168722, 12.439344032921811, 14.8403274691358, 13.384110902896081, 7.5, 9.87297637375938, 11.030985185185186, 14.539737407407406, 9.421464581618656, 10.04408806584362, 11.685792043895749, 12.15), # 28 (12.2288739086913, 13.147283127572017, 12.43525596707819, 14.83659475308642, 13.389850015773865, 7.5, 9.862657177438878, 11.004859259259257, 14.535791481481482, 9.410599122085047, 10.041793415637859, 11.680341289437584, 12.15), # 29 (12.239987969335797, 13.130555555555555, 12.430555555555555, 14.832291666666666, 13.395446156625884, 7.5, 9.850816993464052, 10.974999999999998, 14.53125, 9.398148148148149, 10.039141414141413, 11.674074074074072, 12.15), # 30 (12.25082722100983, 13.11175390946502, 12.42526255144033, 14.827433024691356, 13.400899105191609, 7.5, 9.837512757201647, 10.941585185185184, 14.52613074074074, 9.384176186556926, 10.0361392442948, 11.667016735253773, 12.15), # 31 (12.261390708721144, 13.09095720164609, 12.419396707818928, 14.822033641975308, 13.406208641210513, 7.5, 9.822801404018398, 10.904792592592594, 14.520451481481482, 9.368747764060357, 10.032794089038532, 11.659195610425241, 12.15), # 32 (12.271677477477477, 13.068244444444444, 12.412977777777778, 14.816108333333332, 13.411374544422076, 7.5, 9.806739869281046, 10.8648, 14.51423, 9.351927407407407, 10.02911313131313, 11.650637037037034, 12.15), # 33 (12.28168657228657, 13.04369465020576, 12.406025514403291, 14.809671913580246, 13.416396594565759, 7.5, 9.789385088356331, 10.821785185185183, 14.507484074074075, 9.33377964334705, 10.025103554059108, 11.641367352537722, 12.15), # 34 (12.291417038156167, 13.01738683127572, 12.398559670781895, 14.802739197530862, 13.421274571381044, 7.5, 9.77079399661099, 10.775925925925925, 14.500231481481482, 9.314368998628257, 10.020772540216983, 11.631412894375858, 12.15), # 35 (12.300867920094007, 12.989399999999998, 12.3906, 14.795324999999998, 13.426008254607403, 7.5, 9.751023529411764, 10.727400000000001, 14.492489999999998, 9.293759999999999, 10.016127272727273, 11.620800000000001, 12.15), # 36 (12.310038263107828, 12.95981316872428, 12.382166255144032, 14.787444135802469, 13.430597423984304, 7.5, 9.730130622125392, 10.676385185185184, 14.484277407407406, 9.272017174211248, 10.01117493453049, 11.609555006858711, 12.15), # 37 (12.31892711220537, 12.928705349794239, 12.37327818930041, 14.779111419753086, 13.435041859251228, 7.5, 9.708172210118615, 10.62305925925926, 14.475611481481481, 9.249205048010975, 10.005922708567153, 11.597704252400549, 12.15), # 38 (12.327533512394384, 12.896155555555554, 12.363955555555556, 14.770341666666667, 13.439341340147644, 7.5, 9.68520522875817, 10.567599999999999, 14.466510000000001, 9.225388148148149, 10.000377777777777, 11.585274074074073, 12.15), # 39 (12.335856508682596, 12.86224279835391, 12.354218106995884, 14.761149691358025, 13.443495646413021, 7.5, 9.661286613410796, 10.510185185185186, 14.456990740740741, 9.200631001371743, 9.99454732510288, 11.572290809327848, 12.15), # 40 (12.343895146077754, 12.82704609053498, 12.344085596707819, 14.751550308641974, 13.447504557786841, 7.5, 9.636473299443233, 10.450992592592593, 14.44707148148148, 9.174998134430727, 9.988438533482979, 11.558780795610424, 12.15), # 41 (12.3516484695876, 12.790644444444444, 12.333577777777778, 14.741558333333334, 13.45136785400857, 7.5, 9.610822222222222, 10.3902, 14.436770000000001, 9.148554074074074, 9.982058585858585, 11.54477037037037, 12.15), # 42 (12.35911552421987, 12.753116872427984, 12.322714403292181, 14.731188580246913, 13.455085314817683, 7.5, 9.584390317114499, 10.327985185185186, 14.426104074074072, 9.121363347050755, 9.97541466517022, 11.530285871056241, 12.15), # 43 (12.366295354982311, 12.714542386831276, 12.31151522633745, 14.72045586419753, 13.458656719953654, 7.5, 9.557234519486807, 10.264525925925927, 14.415091481481479, 9.09349048010974, 9.968513954358398, 11.515353635116599, 12.15), # 44 (12.37318700688266, 12.674999999999999, 12.299999999999999, 14.709375, 13.462081849155954, 7.5, 9.529411764705882, 10.2, 14.403749999999999, 9.065, 9.961363636363636, 11.499999999999998, 12.15), # 45 (12.379789524928656, 12.634568724279836, 12.288188477366253, 14.697960802469135, 13.465360482164058, 7.5, 9.500978988138465, 10.134585185185186, 14.392097407407405, 9.035956433470506, 9.953970894126448, 11.484251303155007, 12.15), # 46 (12.386101954128042, 12.59332757201646, 12.276100411522634, 14.686228086419751, 13.46849239871744, 7.5, 9.471993125151295, 10.068459259259258, 14.380151481481482, 9.006424307270233, 9.946342910587354, 11.468133882030179, 12.15), # 47 (12.392123339488554, 12.551355555555554, 12.263755555555555, 14.674191666666667, 13.471477378555573, 7.5, 9.442511111111111, 10.001800000000001, 14.367930000000001, 8.976468148148147, 9.938486868686867, 11.451674074074074, 12.15), # 48 (12.397852726017943, 12.508731687242797, 12.251173662551441, 14.661866358024692, 13.474315201417928, 7.5, 9.412589881384651, 9.934785185185184, 14.355450740740741, 8.946152482853224, 9.930409951365506, 11.434898216735254, 12.15), # 49 (12.403289158723938, 12.46553497942387, 12.23837448559671, 14.649266975308642, 13.477005647043978, 7.5, 9.38228637133866, 9.867592592592592, 14.342731481481481, 8.91554183813443, 9.922119341563786, 11.417832647462278, 12.15), # 50 (12.408431682614292, 12.421844444444444, 12.225377777777776, 14.636408333333332, 13.479548495173196, 7.5, 9.351657516339868, 9.8004, 14.329790000000001, 8.88470074074074, 9.913622222222223, 11.400503703703704, 12.15), # 51 (12.413279342696734, 12.377739094650208, 12.21220329218107, 14.62330524691358, 13.481943525545056, 7.5, 9.320760251755022, 9.733385185185183, 14.316644074074073, 8.853693717421125, 9.904925776281331, 11.382937722908094, 12.15), # 52 (12.417831183979011, 12.333297942386832, 12.198870781893005, 14.609972530864196, 13.484190517899036, 7.5, 9.28965151295086, 9.666725925925926, 14.303311481481483, 8.822585294924554, 9.89603718668163, 11.365161042524004, 12.15), # 53 (12.42208625146886, 12.2886, 12.185399999999998, 14.596425, 13.486289251974602, 7.5, 9.258388235294117, 9.600599999999998, 14.28981, 8.79144, 9.886963636363634, 11.347199999999999, 12.15), # 54 (12.426043590174027, 12.24372427983539, 12.171810699588478, 14.5826774691358, 13.488239507511228, 7.5, 9.227027354151536, 9.535185185185185, 14.276157407407407, 8.760322359396433, 9.877712308267864, 11.329080932784636, 12.15), # 55 (12.429702245102245, 12.198749794238683, 12.158122633744856, 14.568744753086419, 13.49004106424839, 7.5, 9.195625804889858, 9.470659259259259, 14.262371481481482, 8.729296899862826, 9.868290385334829, 11.310830178326475, 12.15), # 56 (12.433061261261258, 12.153755555555556, 12.144355555555556, 14.554641666666665, 13.49169370192556, 7.5, 9.164240522875817, 9.407200000000001, 14.24847, 8.698428148148148, 9.85870505050505, 11.292474074074073, 12.15), # 57 (12.436119683658815, 12.108820576131688, 12.130529218106995, 14.540383024691355, 13.493197200282209, 7.5, 9.132928443476155, 9.344985185185184, 14.23447074074074, 8.667780631001373, 9.848963486719043, 11.274038957475994, 12.15), # 58 (12.438876557302644, 12.064023868312757, 12.116663374485597, 14.525983641975307, 13.494551339057814, 7.5, 9.101746502057614, 9.284192592592593, 14.220391481481482, 8.637418875171468, 9.839072876917319, 11.255551165980796, 12.15), # 59 (12.441330927200491, 12.019444444444444, 12.102777777777776, 14.511458333333334, 13.495755897991843, 7.5, 9.070751633986927, 9.225, 14.20625, 8.607407407407408, 9.829040404040404, 11.237037037037037, 12.15), # 60 (12.443481838360098, 11.975161316872429, 12.08889218106996, 14.496821913580245, 13.496810656823774, 7.5, 9.040000774630839, 9.167585185185185, 14.192064074074073, 8.577810754458161, 9.818873251028807, 11.218522908093279, 12.15), # 61 (12.445328335789204, 11.931253497942386, 12.075026337448561, 14.482089197530865, 13.497715395293081, 7.5, 9.009550859356088, 9.112125925925925, 14.177851481481481, 8.548693443072702, 9.808578600823045, 11.20003511659808, 12.15), # 62 (12.44686946449555, 11.887799999999999, 12.0612, 14.467275, 13.498469893139227, 7.5, 8.979458823529411, 9.0588, 14.16363, 8.520119999999999, 9.798163636363636, 11.1816, 12.15), # 63 (12.448104269486876, 11.844879835390946, 12.047432921810698, 14.452394135802468, 13.499073930101698, 7.5, 8.94978160251755, 9.007785185185186, 14.149417407407407, 8.492154951989026, 9.787635540591094, 11.1632438957476, 12.15), # 64 (12.449031795770926, 11.802572016460903, 12.033744855967079, 14.437461419753085, 13.49952728591996, 7.5, 8.920576131687243, 8.959259259259259, 14.135231481481481, 8.464862825788751, 9.777001496445942, 11.144993141289435, 12.15), # 65 (12.449651088355436, 11.760955555555556, 12.020155555555556, 14.422491666666666, 13.499829740333487, 7.5, 8.891899346405228, 8.913400000000001, 14.12109, 8.438308148148147, 9.766268686868687, 11.126874074074076, 12.15), # 66 (12.44996119224815, 11.720109465020576, 12.00668477366255, 14.407499691358023, 13.499981073081754, 7.5, 8.863808182038246, 8.870385185185187, 14.10701074074074, 8.412555445816187, 9.755444294799851, 11.108913031550067, 12.15), # 67 (12.44974993737699, 11.679898367184387, 11.993287139917694, 14.392370088566828, 13.499853546356814, 7.49986081390032, 8.836218233795575, 8.830012620027434, 14.092905418381346, 8.3875445299766, 9.74434318624845, 11.09103602627969, 12.149850180041152), # 68 (12.447770048309177, 11.639094623655915, 11.979586111111109, 14.376340217391302, 13.498692810457515, 7.49876049382716, 8.808321817615935, 8.790118518518518, 14.078157407407408, 8.362567668845314, 9.731835406698563, 11.072662768031188, 12.148663194444444), # 69 (12.443862945070673, 11.597510951812026, 11.965522119341562, 14.35930454911433, 13.49639917695473, 7.496593507087334, 8.779992161473643, 8.75034293552812, 14.062683470507546, 8.33750342935528, 9.717778663831295, 11.05370731355137, 12.14631880144033), # 70 (12.438083592771514, 11.555172202309835, 11.951100102880657, 14.341288204508858, 13.493001694504963, 7.49339497027892, 8.751241991446784, 8.710699039780522, 14.046506652949246, 8.312352431211167, 9.702224844940634, 11.034183524655257, 12.142847865226338), # 71 (12.430486956521738, 11.51210322580645, 11.936324999999998, 14.322316304347826, 13.488529411764706, 7.4892, 8.722084033613445, 8.671199999999999, 14.02965, 8.287115294117646, 9.685225837320575, 11.014105263157894, 12.13828125), # 72 (12.421128001431383, 11.46832887295898, 11.921201748971193, 14.302413969404187, 13.48301137739046, 7.48404371284865, 8.69253101405171, 8.631858984910837, 14.012136556927299, 8.261792637779392, 9.666833528265105, 10.993486390874303, 12.132649819958848), # 73 (12.410061692610485, 11.423873994424532, 11.905735288065841, 14.281606320450885, 13.47647664003873, 7.477961225422954, 8.662595658839667, 8.59268916323731, 13.993989368998628, 8.236385081901073, 9.647099805068226, 10.972340769619521, 12.125984439300412), # 74 (12.397342995169081, 11.378763440860213, 11.889930555555553, 14.25991847826087, 13.468954248366014, 7.470987654320988, 8.6322906940554, 8.553703703703704, 13.97523148148148, 8.210893246187362, 9.626076555023921, 10.950682261208575, 12.118315972222222), # 75 (12.383026874217212, 11.33302206292314, 11.873792489711933, 14.237375563607086, 13.460473251028805, 7.463158116140832, 8.601628845776993, 8.514915775034293, 13.955885939643347, 8.185317750342934, 9.60381566542619, 10.928524727456498, 12.10967528292181), # 76 (12.367168294864912, 11.286674711270411, 11.857326028806582, 14.214002697262478, 13.451062696683609, 7.454507727480566, 8.570622840082535, 8.476338545953361, 13.935975788751714, 8.15965921407246, 9.580369023569023, 10.905882030178327, 12.10009323559671), # 77 (12.349822222222222, 11.23974623655914, 11.84053611111111, 14.189824999999999, 13.440751633986928, 7.445071604938271, 8.53928540305011, 8.437985185185186, 13.915524074074073, 8.133918257080609, 9.55578851674641, 10.882768031189086, 12.089600694444444), # 78 (12.331043621399177, 11.192261489446436, 11.823427674897118, 14.164867592592591, 13.429569111595256, 7.434884865112025, 8.5076292607578, 8.399868861454047, 13.894553840877913, 8.108095499072055, 9.530126032252346, 10.859196592303805, 12.07822852366255), # 79 (12.310887457505816, 11.144245320589407, 11.806005658436213, 14.139155595813206, 13.417544178165095, 7.423982624599908, 8.475667139283697, 8.362002743484226, 13.873088134430727, 8.082191559751472, 9.503433457380826, 10.835181575337522, 12.066007587448558), # 80 (12.289408695652174, 11.09572258064516, 11.788274999999999, 14.112714130434783, 13.40470588235294, 7.412399999999999, 8.443411764705882, 8.3244, 13.851149999999999, 8.05620705882353, 9.475762679425838, 10.810736842105262, 12.052968749999998), # 81 (12.26666230094829, 11.046718120270809, 11.770240637860082, 14.085568317230273, 13.391083272815298, 7.40017210791038, 8.410875863102444, 8.28707379972565, 13.828762482853223, 8.030142615992899, 9.447165585681375, 10.785876254422064, 12.039142875514404), # 82 (12.242703238504205, 10.997256790123457, 11.751907510288065, 14.057743276972623, 13.376705398208665, 7.387334064929126, 8.378072160551463, 8.250037311385459, 13.805948628257887, 8.003998850964253, 9.417694063441433, 10.760613674102954, 12.0245608281893), # 83 (12.21758647342995, 10.947363440860215, 11.733280555555554, 14.029264130434782, 13.361601307189543, 7.373920987654321, 8.345013383131029, 8.213303703703703, 13.78273148148148, 7.977776383442266, 9.3874, 10.734962962962962, 12.009253472222222), # 84 (12.191366970835569, 10.897062923138192, 11.714364711934154, 14.000155998389696, 13.345800048414427, 7.359967992684042, 8.311712256919229, 8.176886145404664, 13.759134087791493, 7.951475833131606, 9.356335282651072, 10.708937982817124, 11.9932516718107), # 85 (12.164099695831096, 10.846380087614497, 11.695164917695474, 13.970444001610307, 13.32933067053982, 7.34551019661637, 8.278181507994145, 8.14079780521262, 13.73517949245542, 7.925097819736949, 9.32455179868864, 10.682552595480471, 11.976586291152262), # 86 (12.135839613526569, 10.795339784946236, 11.67568611111111, 13.940153260869563, 13.312222222222223, 7.330582716049382, 8.244433862433862, 8.10505185185185, 13.710890740740743, 7.8986429629629615, 9.292101435406698, 10.655820662768031, 11.959288194444444), # 87 (12.106641689032028, 10.74396686579052, 11.655933230452675, 13.90930889694042, 13.29450375211813, 7.315220667581161, 8.210482046316468, 8.069661454046638, 13.686290877914953, 7.8721118825143215, 9.259036080099238, 10.628756046494837, 11.941388245884776), # 88 (12.076560887457505, 10.69228618080446, 11.63591121399177, 13.877936030595812, 13.276204308884047, 7.299459167809785, 8.176338785720048, 8.034639780521262, 13.661402949245542, 7.845505198095699, 9.225407620060253, 10.601372608475922, 11.922917309670781), # 89 (12.045652173913043, 10.640322580645162, 11.615625, 13.846059782608696, 13.257352941176471, 7.283333333333333, 8.142016806722689, 7.999999999999999, 13.636250000000002, 7.818823529411764, 9.191267942583732, 10.573684210526315, 11.90390625), # 90 (12.013970513508676, 10.588100915969731, 11.59507952674897, 13.813705273752015, 13.237978697651899, 7.266878280749885, 8.107528835402473, 7.965755281207133, 13.610855075445818, 7.79206749616719, 9.15666893496367, 10.54570471446105, 11.884385931069957), # 91 (11.981570871354446, 10.535646037435285, 11.574279732510288, 13.78089762479871, 13.218110626966835, 7.250129126657521, 8.07288759783749, 7.9319187928669415, 13.585241220850481, 7.7652377180666505, 9.121662484494063, 10.517447982095156, 11.864387217078187), # 92 (11.948508212560386, 10.482982795698925, 11.553230555555555, 13.74766195652174, 13.197777777777778, 7.2331209876543205, 8.03810582010582, 7.898503703703704, 13.55943148148148, 7.738334814814813, 9.0863004784689, 10.488927875243665, 11.84394097222222), # 93 (11.914837502236535, 10.43013604141776, 11.531936934156379, 13.714023389694042, 13.177009198741224, 7.215888980338362, 8.003196228285553, 7.865523182441701, 13.53344890260631, 7.7113594061163555, 9.050634804182172, 10.460158255721609, 11.823078060699588), # 94 (11.880613705492932, 10.377130625248904, 11.510403806584362, 13.680007045088566, 13.155833938513677, 7.198468221307727, 7.968171548454772, 7.832990397805213, 13.507316529492455, 7.684312111675945, 9.014717348927874, 10.431152985344015, 11.801829346707818), # 95 (11.845891787439614, 10.323991397849465, 11.488636111111111, 13.645638043478261, 13.134281045751633, 7.180893827160493, 7.933044506691564, 7.800918518518519, 13.481057407407405, 7.657193551198256, 8.9786, 10.401925925925926, 11.780225694444445), # 96 (11.810726713186616, 10.270743209876544, 11.466638786008229, 13.610941505636069, 13.112379569111596, 7.163200914494741, 7.897827829074016, 7.769320713305898, 13.454694581618655, 7.63000434438796, 8.942334644692538, 10.372490939282363, 11.758297968106996), # 97 (11.775173447843981, 10.217410911987256, 11.444416769547324, 13.575942552334944, 13.090158557250062, 7.145424599908551, 7.86253424168021, 7.738210150891632, 13.428251097393689, 7.602745110949729, 8.905973170299486, 10.342861887228358, 11.736077031893004), # 98 (11.739286956521738, 10.16401935483871, 11.421975, 13.540666304347825, 13.06764705882353, 7.1276, 7.827176470588236, 7.707599999999999, 13.40175, 7.575416470588234, 8.869567464114832, 10.313052631578946, 11.71359375), # 99 (11.703122204329933, 10.110593389088011, 11.39931841563786, 13.505137882447665, 13.044874122488501, 7.109762231367169, 7.791767241876174, 7.677503429355281, 13.375214334705076, 7.548019043008149, 8.833169413432572, 10.28307703414916, 11.690878986625515), # 100 (11.6667341563786, 10.057157865392274, 11.376451954732511, 13.469382407407409, 13.021868796901476, 7.091946410608139, 7.756319281622114, 7.647933607681755, 13.348667146776405, 7.5205534479141445, 8.796830905546694, 10.252948956754024, 11.667963605967076), # 101 (11.630177777777778, 10.003737634408603, 11.353380555555555, 13.433425, 12.998660130718955, 7.074187654320988, 7.720845315904139, 7.618903703703703, 13.32213148148148, 7.4930203050108934, 8.760603827751195, 10.222682261208577, 11.644878472222222), # 102 (11.593508033637502, 9.950357546794105, 11.3301091563786, 13.39729078099839, 12.975277172597435, 7.056521079103795, 7.685358070800336, 7.590426886145404, 13.295630384087792, 7.465420234003066, 8.724540067340067, 10.192290809327847, 11.621654449588474), # 103 (11.556779889067812, 9.897042453205893, 11.30664269547325, 13.361004871175522, 12.951748971193416, 7.03898180155464, 7.649870272388791, 7.562516323731138, 13.269186899862826, 7.437753854595336, 8.6886915116073, 10.161788462926864, 11.598322402263374), # 104 (11.520048309178742, 9.843817204301073, 11.28298611111111, 13.324592391304348, 12.928104575163397, 7.021604938271605, 7.614394646747589, 7.535185185185185, 13.242824074074074, 7.410021786492375, 8.653110047846889, 10.131189083820663, 11.574913194444443), # 105 (11.483368259080336, 9.790706650736759, 11.259144341563784, 13.288078462157811, 12.904373033163884, 7.004425605852766, 7.578943919954813, 7.508446639231824, 13.216564951989024, 7.382224649398854, 8.617847563352825, 10.100506533824273, 11.551457690329217), # 106 (11.446794703882626, 9.737735643170053, 11.235122325102882, 13.251488204508856, 12.880583393851365, 6.987478920896206, 7.543530818088553, 7.482313854595337, 13.190432578875171, 7.354363063019446, 8.582955945419101, 10.069754674752724, 11.527986754115226), # 107 (11.410382608695652, 9.684929032258065, 11.210925000000001, 13.214846739130435, 12.856764705882352, 6.9708, 7.508168067226889, 7.4568, 13.16445, 7.326437647058824, 8.548487081339712, 10.038947368421054, 11.504531250000001), # 108 (11.374186938629451, 9.632311668657906, 11.18655730452675, 13.178179186795488, 12.832946017913338, 6.954423959762231, 7.472868393447913, 7.431918244170096, 13.138640260631002, 7.298449021221656, 8.514492858408648, 10.008098476644285, 11.48112204218107), # 109 (11.338262658794058, 9.579908403026684, 11.162024176954734, 13.141510668276974, 12.809156378600823, 6.938385916780978, 7.437644522829707, 7.407681755829903, 13.113026406035663, 7.270397805212619, 8.4810251639199, 9.977221861237457, 11.457789994855966), # 110 (11.302664734299517, 9.527744086021507, 11.137330555555558, 13.104866304347826, 12.785424836601306, 6.922720987654322, 7.402509181450357, 7.384103703703703, 13.087631481481482, 7.242284618736383, 8.448135885167463, 9.946331384015595, 11.434565972222222), # 111 (11.26744813025586, 9.47584356829948, 11.112481378600824, 13.068271215780998, 12.76178044057129, 6.907464288980339, 7.367475095387949, 7.361197256515775, 13.062478532235938, 7.214110081497618, 8.41587690944533, 9.915440906793732, 11.411480838477365), # 112 (11.232605068443652, 9.424318342543142, 11.087541393902482, 13.031800658990448, 12.738210816208445, 6.892643723057416, 7.332631156388123, 7.339023082536727, 13.037655373510344, 7.185965683935275, 8.38430868738344, 9.884631523805313, 11.388532681011865), # 113 (11.197777077480078, 9.373676620230642, 11.062854810025941, 12.995747305532804, 12.71447202547959, 6.8782255302358815, 7.298421850092694, 7.317853511406144, 13.013542842855673, 7.158378201495339, 8.353493204535836, 9.85429460653557, 11.365530496992042), # 114 (11.162861883604794, 9.323936638419655, 11.038436319248781, 12.960101406218135, 12.69048921346632, 6.864172214998518, 7.264871580229873, 7.297683185134451, 12.990149974402547, 7.131390393585692, 8.323385413712511, 9.824445099070621, 11.342407957992451), # 115 (11.127815847885161, 9.275025937550042, 11.014238627980648, 12.924799380319685, 12.666226231660534, 6.8504506527445175, 7.231925781033471, 7.278456375478791, 12.967417607073395, 7.104952030139456, 8.293927117525778, 9.795027836984815, 11.319128711707068), # 116 (11.092595331388527, 9.226872058061664, 10.990214442631183, 12.889777647110693, 12.641646931554133, 6.837027718873069, 7.199529886737303, 7.260117354196302, 12.945286579790643, 7.079012881089755, 8.26506011858794, 9.7659876558525, 11.295656405829869), # 117 (11.057156695182252, 9.179402540394388, 10.96631646961004, 12.8549726258644, 12.61671516463901, 6.8238702887833655, 7.167629331575178, 7.2426103930441155, 12.923697731476722, 7.053522716369711, 8.236726219511308, 9.737269391248018, 11.271954688054828), # 118 (11.02145630033369, 9.132544924988075, 10.942497415326867, 12.820320735854047, 12.591394782407065, 6.810945237874599, 7.136169549780907, 7.225879763779374, 12.902591901054052, 7.028431305912446, 8.208867222908193, 9.708817878745721, 11.247987206075917), # 119 (10.985450507910194, 9.08622675228259, 10.918709986191313, 12.785758396352874, 12.565649636350196, 6.7982194415459585, 7.105095975588303, 7.209869738159211, 12.88190992744507, 7.003688419651087, 8.181424931390898, 9.680577953919956, 11.223717607587115), # 120 (10.949095678979122, 9.040375562717795, 10.894906888613024, 12.75122202663412, 12.539443577960302, 6.7856597751966365, 7.0743540432311764, 7.1945245879407675, 12.861592649572199, 6.979243827518755, 8.154341147571738, 9.652494452345065, 11.199109540282393), # 121 (10.912348174607825, 8.994918896733553, 10.871040829001652, 12.716648045971025, 12.512740458729281, 6.773233114225823, 7.043889186943341, 7.179788584881178, 12.841580906357867, 6.955047299448572, 8.127557674063022, 9.6245122095954, 11.174126651855724), # 122 (10.875164355863662, 8.949784294769728, 10.847064513766842, 12.681972873636832, 12.485504130149028, 6.76090633403271, 7.013646840958606, 7.16560600073758, 12.821815536724504, 6.931048605373665, 8.101016313477052, 9.596576061245305, 11.148732590001085), # 123 (10.837500583813984, 8.904899297266184, 10.822930649318243, 12.647132928904783, 12.457698443711445, 6.748646310016486, 6.983572439510783, 7.151921107267111, 12.802237379594539, 6.9071975152271525, 8.074658868426143, 9.56863084286913, 11.122891002412453), # 124 (10.79931321952615, 8.860191444662783, 10.798591942065508, 12.612064631048112, 12.429287250908427, 6.736419917576347, 6.953611416833687, 7.138678176226909, 12.78278727389039, 6.88344379894216, 8.048427141522602, 9.540621390041217, 11.096565536783794), # 125 (10.760558624067514, 8.815588277399392, 10.774001098418278, 12.576704399340064, 12.400234403231872, 6.724194032111481, 6.923709207161124, 7.12582147937411, 12.763406058534501, 6.859737226451811, 8.022262935378736, 9.51249253833592, 11.069719840809094), # 126 (10.721193158505432, 8.771017335915868, 10.749110824786205, 12.540988653053878, 12.370503752173677, 6.711935529021078, 6.893811244726913, 7.113295288465854, 12.744034572449289, 6.836027567689229, 7.9961080526068535, 9.484189123327578, 11.042317562182317), # 127 (10.681173183907255, 8.72640616065208, 10.72387382757894, 12.504853811462798, 12.340059149225747, 6.699611283704333, 6.863862963764858, 7.101043875259275, 12.72461365455718, 6.8122645925875345, 7.969904295819269, 9.455655980590546, 11.014322348597444), # 128 (10.640455061340337, 8.681682292047888, 10.698242813206127, 12.468236293840057, 12.308864445879973, 6.687188171560433, 6.833809798508775, 7.089011511511512, 12.705084143780608, 6.788398071079854, 7.943593467628284, 9.426837945699162, 10.985697847748446), # 129 (10.598995151872039, 8.63677327054316, 10.672170488077414, 12.431072519458903, 12.276883493628256, 6.6746330679885695, 6.803597183192475, 7.077142468979701, 12.685386879042001, 6.764377773099308, 7.9171173706462135, 9.397679854227782, 10.956407707329298), # 130 (10.556749816569713, 8.591606636577751, 10.645609558602457, 12.39329890759257, 12.244080143962494, 6.661912848387936, 6.773170552049771, 7.06538101942098, 12.665462699263783, 6.740153468579022, 7.890417807485361, 9.36812654175075, 10.926415575033973), # 131 (10.51367541650071, 8.546109930591532, 10.618512731190895, 12.354851877514305, 12.210418248374584, 6.648994388157723, 6.7424753393144705, 7.053671434592488, 12.645252443368385, 6.715674927452118, 7.863436580758037, 9.33812284384241, 10.89568509855645), # 132 (10.469728312732395, 8.500210693024362, 10.59083271225238, 12.315667848497341, 12.175861658356423, 6.63584456269712, 6.711456979220387, 7.041957986251359, 12.624696950278231, 6.690891919651718, 7.8361154930765515, 9.307613596077111, 10.864179925590703), # 133 (10.424864866332113, 8.453836464316106, 10.562522208196564, 12.275683239814922, 12.14037422539991, 6.622430247405318, 6.6800609060013345, 7.0301849461547326, 12.603737058915753, 6.665754215110948, 7.808396347053214, 9.2765436340292, 10.831863703830699), # 134 (10.379041438367224, 8.406914784906629, 10.53353392543309, 12.234834470740294, 12.103919800996945, 6.60871831768151, 6.648232553891121, 7.018296586059743, 12.582313608203375, 6.640211583762931, 7.78022094530033, 9.244857793273022, 10.798700080970423), # 135 (10.332214389905081, 8.35937319523579, 10.50382057037161, 12.193057960546687, 12.066462236639419, 6.594675648924887, 6.615917357123561, 7.0062371777235315, 12.560367437063528, 6.6142137955407865, 7.751531090430213, 9.212500909382928, 10.764652704703844), # 136 (10.28434008201304, 8.311139235743456, 10.473334849421772, 12.150290128507349, 12.027965383819241, 6.580269116534637, 6.583060749932466, 6.993950992903235, 12.537839384418639, 6.587710620377641, 7.722268585055167, 9.179417817933263, 10.729685222724932), # 137 (10.235374875758456, 8.26214044686949, 10.442029468993221, 12.106467393895516, 11.988393094028302, 6.565465595909957, 6.5496081665516455, 6.981382303355987, 12.514670289191137, 6.560651828206615, 7.692375231787501, 9.145553354498373, 10.693761282727667), # 138 (10.185275132208682, 8.212304369053752, 10.409857135495608, 12.06152617598443, 11.947709218758497, 6.550231962450032, 6.515505041214911, 6.968475380838929, 12.490800990303445, 6.532987188960836, 7.661792833239527, 9.110852354652607, 10.656844532406023), # 139 (10.133997212431076, 8.16155854273611, 10.376770555338585, 12.015402894047332, 11.905877609501735, 6.534535091554055, 6.480696808156076, 6.955174497109195, 12.466172326677999, 6.5046664725734225, 7.630463192023552, 9.07525965397031, 10.618898619453978), # 140 (10.081497477492995, 8.109830508356424, 10.342722434931792, 11.968033967357464, 11.862862117749904, 6.518341858621218, 6.445128901608954, 6.9414239239239235, 12.440725137237216, 6.4756394489775015, 7.598328110751885, 9.03872008802583, 10.579887191565495), # 141 (10.027732288461786, 8.057047806354559, 10.307665480684884, 11.919355815188064, 11.818626594994903, 6.501619139050712, 6.408746755807351, 6.927167933040253, 12.41440026090353, 6.445855888106193, 7.565329392036836, 9.001178492393512, 10.539773896434559), # 142 (9.972658006404808, 8.003137977170377, 10.27155239900751, 11.86930485681237, 11.773134892728635, 6.484333808241727, 6.371495804985082, 6.912350796215319, 12.387138536599375, 6.415265559892623, 7.531408838490711, 8.962579702647707, 10.49852238175514), # 143 (9.916230992389421, 7.948028561243743, 10.234335896309313, 11.817817511503627, 11.726350862442994, 6.466452741593456, 6.333321483375959, 6.896916785206259, 12.358880803247171, 6.383818234269912, 7.496508252725821, 8.922868554362758, 10.456096295221217), # 144 (9.858407607482972, 7.891647099014518, 10.195968678999947, 11.764830198535073, 11.67823835562988, 6.4479428145050885, 6.294169225213792, 6.880810171770211, 12.329567899769344, 6.351463681171185, 7.460569437354474, 8.881989883113016, 10.41245928452676), # 145 (9.79914421275282, 7.83392113092257, 10.156403453489059, 11.71027933717995, 11.62876122378119, 6.428770902375816, 6.253984464732396, 6.863975227664311, 12.299140665088327, 6.318151670529565, 7.423534194988978, 8.839888524472823, 10.367574997365741), # 146 (9.73839716926632, 7.774778197407756, 10.115592926186292, 11.654101346711496, 11.577883318388821, 6.4089038806048295, 6.212712636165577, 6.846356224645698, 12.267539938126548, 6.283831972278175, 7.385344328241643, 8.796509314016532, 10.321407081432142), # 147 (9.676122838090825, 7.714145838909944, 10.0734898035013, 11.596232646402955, 11.525568490944673, 6.38830862459132, 6.170299173747152, 6.827897434471509, 12.234706557806435, 6.248454356350137, 7.345941639724779, 8.751797087318483, 10.27391918441993), # 148 (9.612277580293695, 7.651951595868995, 10.030046791843732, 11.536609655527563, 11.471780592940645, 6.366952009734479, 6.126689511710929, 6.80854312889888, 12.200581363050405, 6.211968592678576, 7.3052679320506915, 8.705696679953029, 10.225074954023084), # 149 (9.546817756942277, 7.588123008724775, 9.985216597623232, 11.475168793358565, 11.416483475868631, 6.344800911433499, 6.08182908429072, 6.788237579684948, 12.165105192780901, 6.174324451196612, 7.2632650078316905, 8.658152927494514, 10.174838037935576), # 150 (9.47969972910393, 7.522587617917144, 9.93895192724945, 11.411846479169196, 11.359640991220532, 6.321822205087566, 6.03566332572034, 6.7669250585868514, 12.128218885920345, 6.135471701837373, 7.2198746696800855, 8.609110665517285, 10.123172083851381), # 151 (9.41087985784601, 7.455272963885967, 9.89120548713204, 11.346579132232701, 11.301216990488243, 6.297982766095876, 5.9881376702335976, 6.744549837361729, 12.089863281391164, 6.095360114533979, 7.175038720208185, 8.558514729595691, 10.070040739464476), # 152 (9.340314504235872, 7.386106587071107, 9.841929983680641, 11.279303171822319, 11.241175325163667, 6.273249469857618, 5.939197552064303, 6.721056187766714, 12.049979218115787, 6.053939459219555, 7.128698962028299, 8.506309955304076, 10.015407652468832), # 153 (9.267960029340873, 7.315016027912428, 9.79107812330491, 11.209955017211291, 11.179479846738696, 6.247589191771985, 5.888788405446274, 6.696388381558948, 12.008507535016639, 6.011159505827223, 7.080797197752734, 8.45244117821679, 9.959236470558428), # 154 (9.193772794228362, 7.241928826849794, 9.73860261241449, 11.138471087672853, 11.116094406705235, 6.220968807238165, 5.836855664613313, 6.670490690495563, 11.965389071016153, 5.966970024290105, 7.0312752299938, 8.396853233908178, 9.901490841427231), # 155 (9.117709159965697, 7.166772524323065, 9.684456157419032, 11.06478780248025, 11.050982856555176, 6.193355191655353, 5.7833447637992395, 6.643307386333702, 11.920564665036752, 5.921320784541327, 6.980074861363805, 8.339490957952586, 9.842134412769221), # 156 (9.039725487620235, 7.089474660772107, 9.628591464728181, 10.988841580906724, 10.984109047780422, 6.164715220422736, 5.728201137237862, 6.614782740830498, 11.873975156000865, 5.874161556514009, 6.927137894475059, 8.280299185924363, 9.781130832278372), # 157 (8.957617135686286, 7.008543744926709, 9.568310344682827, 10.907723497981491, 10.912417327045196, 6.133229371580532, 5.6701280651134285, 6.582956342819247, 11.821994509918916, 5.824039099549372, 6.870714903046731, 8.217119477033206, 9.715783031298415), # 158 (8.858744120374082, 6.915678383519373, 9.488085382083584, 10.804772590546143, 10.818229571737954, 6.088427577608523, 5.601855316062859, 6.536656239317259, 11.743712713466573, 5.762737192918494, 6.800900322742793, 8.13763502841973, 9.630513176304232), # 159 (8.741846513885172, 6.810116074248857, 9.386305149547066, 10.67829301249063, 10.699704157616154, 6.0292095552572205, 5.5226924980605405, 6.4747190274328155, 11.636910272674381, 5.689446782235472, 6.716711410331447, 8.040602338665416, 9.523704730672296), # 160 (8.607866465503152, 6.692545041696563, 9.26405636629237, 10.529487004508074, 10.558071749138534, 5.956292689884377, 5.433217735208252, 6.397920639731736, 11.50299572039882, 5.604789831805125, 6.618889985519648, 7.926920962689085, 9.396448853782916), # 161 (8.457746124511628, 6.563653510443886, 9.122425751538595, 10.359556807291591, 10.394563010763845, 5.870394366847746, 5.334009151607771, 6.307037008779842, 11.343377589496363, 5.509388305932277, 6.508177868014344, 7.797490455409552, 9.2498367050164), # 162 (8.292427640194196, 6.424129705072228, 8.962500024504841, 10.16970466153432, 10.210408606950825, 5.772231971505087, 5.22564487136088, 6.20284406714295, 11.159464412823487, 5.40386416892175, 6.38531687752249, 7.653210371745638, 9.084959443753055), # 163 (8.11285316183446, 6.2746618501629845, 8.785365904410211, 9.961132807929381, 10.006839202158226, 5.662522889214155, 5.108703018569359, 6.086117747386882, 10.952664723236667, 5.2888393850783615, 6.251048833751035, 7.494980266616163, 8.902908229373192), # 164 (7.9199648387160195, 6.115938170297558, 8.592110110473802, 9.735043487169902, 9.785085460844789, 5.541984505332703, 4.983761717334986, 5.957633982077455, 10.724387053592375, 5.164935918706936, 6.106115556406933, 7.323699694939943, 8.704774221257123), # 165 (7.714704820122476, 5.948646890057345, 8.383819361914712, 9.492638939949002, 9.546378047469256, 5.41133420521849, 4.851399091759543, 5.818168703780493, 10.476039936747087, 5.0327757341122945, 5.9512588651971345, 7.140268211635801, 8.491648578785155), # 166 (7.498015255337426, 5.773476234023744, 8.161580377952045, 9.235121406959811, 9.291947626490375, 5.27128937422927, 4.712193265944809, 5.668497845061811, 10.209031905557278, 4.892980795599256, 5.787220579828592, 6.94558537162255, 8.264622461337595), # 167 (7.2708382936444735, 5.591114426778154, 7.926479877804897, 8.963693128895455, 9.02302486236689, 5.122567397722799, 4.5667223639925645, 5.509397338487231, 9.924771492879426, 4.746173067472646, 5.614742520008257, 6.740550729819013, 8.024787028294753), # 168 (7.034116084327218, 5.402249692901975, 7.67960458069237, 8.67955634644906, 8.740840419557543, 4.965885661056833, 4.4155645100045895, 5.341643116622574, 9.624667231570005, 4.592974514037284, 5.434566505443081, 6.526063841144007, 7.773233439036942), # 169 (6.78879077666926, 5.207570256976605, 7.422041205833562, 8.383913300313743, 8.44662496252108, 4.8019615495891275, 4.259297828082663, 5.166011112033656, 9.310127654485486, 4.434007099597989, 5.247434355840019, 6.3030242605163505, 7.5110528529444665), # 170 (6.5358045199542, 5.007764343583441, 7.154876472447573, 8.077966231182643, 8.141609155716246, 4.631512448677438, 4.098500442328566, 4.983277257286299, 8.982561294482347, 4.269892788459586, 5.054087890906017, 6.072331542854863, 7.239336429397638), # 171 (6.276099463465638, 4.803520177303883, 6.879197099753504, 7.762917379748876, 7.827023663601784, 4.45525574367952, 3.9337504768440783, 4.794217484946325, 8.643376684417062, 4.101253544926895, 4.855268930348032, 5.834885243078365, 6.959175327776763), # 172 (6.010617756487176, 4.59552598271933, 6.596089806970453, 7.43996898670557, 7.504099150636442, 4.27390881995313, 3.7656260557309795, 4.599607727579548, 8.293982357146106, 3.9287113333047374, 4.651719293873013, 5.59158491610567, 6.671660707462155), # 173 (5.740301548302412, 4.384469984411181, 6.306641313317521, 7.110323292745848, 7.174066281278959, 4.088189062856022, 3.5947053030910503, 4.400223917751792, 7.935786845525956, 3.752888117897936, 4.444180801187913, 5.3433301168556016, 6.37788372783412), # 174 (5.466092988194946, 4.171040406960834, 6.01193833801381, 6.775182538562841, 6.838155719988083, 3.898813857745954, 3.421566343026069, 4.196841988028875, 7.570198682413086, 3.574405863011309, 4.233395271999683, 5.091020400246977, 6.078935548272969), # 175 (5.188934225448382, 3.9559254749496873, 5.713067600278413, 6.43574896484967, 6.497598131222556, 3.7065005899806795, 3.2467872996378175, 3.9902378709766184, 7.1986264006639695, 3.3938865329496806, 4.020104526015276, 4.835555321198615, 5.7759073281590085), # 176 (4.909767409346319, 3.7398134129591414, 5.411115819330436, 6.09322481229946, 6.1536241794411275, 3.511966644917956, 3.0709462970280748, 3.781187499160839, 6.822478533135084, 3.2119520920178695, 3.8050503829416424, 4.5778344346293345, 5.4698902268725496), # 177 (4.629534689172356, 3.5233924455705936, 5.107169714388976, 5.748812321605339, 5.807464529102536, 3.3159294079155393, 2.894621459298621, 3.5704668051473587, 6.443163612682903, 3.0292245045207, 3.588974662485735, 4.318757295457952, 5.161975403793902), # 178 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 179 ) passenger_arriving_acc = ( (4, 4, 4, 5, 5, 1, 2, 3, 0, 2, 1, 1, 0, 6, 10, 3, 7, 3, 8, 0, 4, 3, 2, 0, 0, 0), # 0 (10, 11, 13, 12, 10, 1, 4, 4, 2, 5, 2, 2, 0, 11, 18, 7, 9, 6, 12, 1, 7, 6, 4, 1, 1, 0), # 1 (20, 17, 24, 18, 16, 5, 9, 5, 5, 6, 4, 3, 0, 23, 21, 15, 11, 11, 15, 5, 10, 6, 6, 2, 1, 0), # 2 (25, 27, 33, 26, 20, 6, 10, 7, 7, 7, 6, 3, 0, 37, 28, 21, 15, 21, 18, 9, 11, 6, 8, 2, 2, 0), # 3 (37, 38, 37, 36, 28, 9, 13, 9, 12, 8, 7, 4, 0, 44, 34, 27, 19, 26, 26, 12, 13, 9, 11, 2, 4, 0), # 4 (44, 43, 38, 41, 34, 11, 15, 14, 13, 11, 8, 6, 0, 54, 39, 34, 25, 32, 29, 15, 15, 12, 12, 2, 4, 0), # 5 (53, 48, 46, 49, 38, 12, 26, 16, 19, 12, 9, 6, 0, 65, 47, 38, 30, 39, 35, 20, 19, 20, 13, 5, 4, 0), # 6 (56, 53, 52, 59, 43, 16, 28, 22, 23, 14, 11, 6, 0, 74, 56, 42, 33, 44, 37, 23, 21, 20, 15, 7, 5, 0), # 7 (64, 63, 59, 68, 53, 21, 32, 25, 27, 16, 12, 6, 0, 86, 66, 50, 37, 55, 39, 26, 22, 24, 17, 10, 8, 0), # 8 (69, 75, 67, 74, 62, 23, 38, 28, 31, 20, 14, 6, 0, 91, 70, 57, 42, 59, 44, 30, 23, 27, 22, 11, 12, 0), # 9 (79, 84, 80, 79, 69, 23, 43, 30, 34, 22, 17, 7, 0, 96, 81, 60, 50, 66, 49, 33, 26, 31, 24, 16, 14, 0), # 10 (88, 93, 88, 90, 76, 28, 45, 32, 37, 23, 17, 8, 0, 105, 86, 66, 57, 78, 55, 35, 28, 34, 29, 17, 14, 0), # 11 (101, 104, 101, 103, 85, 34, 49, 34, 39, 24, 19, 9, 0, 112, 93, 74, 61, 86, 59, 36, 31, 37, 31, 18, 15, 0), # 12 (113, 117, 107, 115, 95, 40, 55, 37, 40, 26, 19, 9, 0, 127, 104, 78, 69, 93, 65, 38, 34, 38, 33, 19, 16, 0), # 13 (124, 126, 122, 132, 102, 43, 59, 42, 41, 27, 24, 10, 0, 138, 112, 90, 73, 104, 71, 42, 36, 43, 35, 22, 17, 0), # 14 (135, 140, 137, 141, 110, 49, 68, 44, 47, 30, 25, 11, 0, 157, 127, 92, 78, 112, 75, 46, 38, 43, 42, 26, 17, 0), # 15 (147, 152, 147, 153, 119, 50, 76, 47, 53, 33, 25, 12, 0, 172, 136, 102, 84, 118, 81, 48, 39, 46, 45, 27, 17, 0), # 16 (158, 164, 156, 163, 129, 54, 79, 51, 59, 37, 25, 14, 0, 185, 147, 111, 88, 127, 88, 53, 46, 49, 48, 29, 19, 0), # 17 (168, 176, 165, 172, 134, 59, 83, 54, 63, 39, 29, 16, 0, 196, 159, 120, 94, 141, 95, 55, 52, 56, 49, 30, 20, 0), # 18 (177, 187, 175, 185, 145, 63, 88, 58, 70, 40, 29, 16, 0, 206, 171, 127, 104, 148, 101, 59, 54, 61, 50, 31, 21, 0), # 19 (197, 197, 186, 198, 153, 74, 91, 65, 75, 43, 30, 16, 0, 220, 178, 133, 112, 154, 109, 65, 57, 65, 54, 32, 23, 0), # 20 (209, 209, 190, 206, 163, 77, 96, 68, 77, 43, 30, 17, 0, 230, 186, 142, 122, 167, 112, 72, 61, 69, 60, 38, 25, 0), # 21 (223, 226, 199, 217, 171, 81, 104, 72, 80, 44, 32, 20, 0, 244, 198, 151, 132, 176, 120, 76, 63, 71, 63, 40, 26, 0), # 22 (234, 244, 208, 227, 175, 85, 110, 78, 86, 47, 33, 24, 0, 263, 207, 160, 142, 186, 125, 81, 63, 75, 72, 44, 27, 0), # 23 (244, 256, 217, 244, 182, 89, 116, 83, 87, 49, 33, 25, 0, 274, 221, 169, 147, 197, 132, 87, 66, 80, 74, 48, 29, 0), # 24 (254, 269, 231, 252, 189, 93, 121, 92, 95, 52, 33, 27, 0, 289, 237, 180, 152, 205, 137, 90, 69, 84, 79, 49, 29, 0), # 25 (267, 283, 240, 263, 199, 95, 123, 97, 102, 54, 37, 27, 0, 300, 250, 188, 159, 211, 142, 97, 72, 88, 81, 51, 31, 0), # 26 (285, 293, 250, 277, 207, 96, 134, 98, 108, 55, 40, 28, 0, 313, 270, 196, 167, 219, 149, 101, 73, 92, 86, 51, 34, 0), # 27 (297, 300, 258, 286, 220, 100, 142, 102, 115, 58, 42, 29, 0, 325, 280, 207, 175, 231, 157, 105, 75, 97, 88, 52, 35, 0), # 28 (309, 316, 267, 296, 229, 103, 150, 103, 118, 61, 44, 30, 0, 340, 289, 217, 184, 242, 162, 107, 78, 101, 93, 52, 38, 0), # 29 (320, 331, 275, 310, 239, 108, 157, 109, 124, 62, 47, 30, 0, 354, 297, 226, 190, 246, 170, 113, 81, 108, 100, 52, 38, 0), # 30 (340, 346, 285, 316, 244, 111, 161, 118, 129, 64, 53, 30, 0, 365, 313, 231, 196, 262, 178, 116, 83, 110, 104, 53, 39, 0), # 31 (354, 355, 299, 330, 248, 117, 166, 120, 139, 66, 54, 30, 0, 378, 325, 240, 206, 275, 182, 126, 85, 113, 110, 54, 39, 0), # 32 (369, 370, 312, 338, 255, 125, 175, 128, 140, 70, 56, 30, 0, 392, 338, 246, 212, 286, 187, 130, 88, 117, 113, 58, 41, 0), # 33 (383, 375, 321, 347, 262, 131, 180, 133, 143, 71, 58, 30, 0, 404, 350, 252, 220, 295, 189, 133, 92, 121, 118, 60, 41, 0), # 34 (393, 390, 330, 359, 274, 135, 187, 139, 148, 74, 62, 32, 0, 422, 359, 257, 226, 303, 194, 137, 94, 128, 121, 62, 41, 0), # 35 (408, 397, 343, 374, 280, 139, 190, 143, 152, 76, 66, 33, 0, 438, 370, 264, 228, 314, 205, 144, 95, 130, 122, 63, 42, 0), # 36 (425, 408, 361, 390, 283, 143, 195, 145, 154, 78, 68, 34, 0, 447, 378, 271, 236, 329, 209, 146, 96, 130, 131, 67, 43, 0), # 37 (443, 423, 371, 403, 292, 147, 199, 150, 161, 79, 70, 35, 0, 457, 385, 276, 242, 339, 218, 152, 100, 135, 138, 69, 44, 0), # 38 (455, 434, 386, 408, 298, 148, 203, 155, 163, 81, 73, 36, 0, 468, 395, 282, 249, 348, 228, 158, 105, 140, 141, 73, 47, 0), # 39 (473, 443, 396, 419, 308, 155, 206, 159, 169, 83, 75, 38, 0, 477, 406, 290, 255, 358, 233, 162, 113, 142, 144, 75, 47, 0), # 40 (487, 456, 401, 431, 316, 157, 208, 163, 173, 88, 76, 38, 0, 487, 418, 298, 257, 365, 239, 167, 116, 146, 146, 75, 49, 0), # 41 (494, 463, 408, 442, 326, 160, 212, 164, 179, 90, 79, 38, 0, 499, 427, 305, 262, 373, 241, 176, 120, 150, 148, 76, 50, 0), # 42 (510, 473, 418, 449, 335, 162, 218, 167, 183, 92, 79, 39, 0, 513, 436, 318, 268, 384, 253, 178, 121, 156, 151, 76, 51, 0), # 43 (520, 489, 428, 460, 343, 164, 221, 174, 190, 94, 82, 40, 0, 522, 451, 322, 278, 396, 261, 183, 124, 161, 155, 77, 53, 0), # 44 (534, 500, 440, 469, 353, 166, 224, 179, 194, 96, 85, 40, 0, 532, 462, 329, 283, 407, 270, 184, 128, 165, 159, 82, 54, 0), # 45 (547, 510, 447, 483, 356, 166, 231, 183, 196, 99, 87, 40, 0, 543, 478, 340, 290, 414, 275, 186, 136, 166, 163, 83, 58, 0), # 46 (555, 524, 453, 492, 363, 171, 234, 185, 199, 102, 88, 41, 0, 556, 489, 345, 300, 422, 282, 190, 143, 169, 164, 87, 60, 0), # 47 (568, 537, 462, 500, 378, 175, 240, 189, 203, 104, 89, 42, 0, 563, 498, 355, 308, 433, 290, 195, 148, 173, 168, 88, 60, 0), # 48 (588, 543, 476, 513, 386, 186, 244, 194, 209, 106, 92, 42, 0, 569, 509, 365, 315, 444, 298, 204, 151, 174, 170, 89, 61, 0), # 49 (606, 558, 490, 520, 396, 191, 248, 198, 214, 108, 92, 42, 0, 576, 519, 375, 323, 452, 306, 210, 155, 178, 175, 92, 61, 0), # 50 (622, 567, 501, 535, 401, 194, 255, 203, 220, 112, 93, 43, 0, 594, 531, 383, 328, 460, 310, 218, 159, 186, 178, 94, 62, 0), # 51 (636, 575, 513, 543, 409, 201, 258, 209, 224, 112, 95, 45, 0, 606, 541, 389, 332, 467, 319, 222, 165, 190, 179, 96, 62, 0), # 52 (649, 587, 520, 556, 419, 207, 265, 211, 227, 115, 96, 46, 0, 614, 554, 393, 341, 479, 322, 223, 169, 192, 182, 101, 63, 0), # 53 (660, 597, 533, 562, 428, 212, 268, 217, 231, 119, 98, 47, 0, 627, 566, 401, 345, 490, 326, 229, 173, 196, 189, 105, 63, 0), # 54 (669, 609, 541, 576, 436, 217, 269, 219, 240, 121, 98, 47, 0, 638, 582, 409, 352, 500, 336, 235, 177, 202, 196, 108, 63, 0), # 55 (680, 624, 557, 586, 445, 224, 272, 223, 245, 123, 99, 48, 0, 657, 592, 421, 359, 509, 338, 239, 186, 208, 199, 109, 63, 0), # 56 (690, 639, 571, 593, 454, 228, 274, 231, 247, 127, 100, 49, 0, 668, 607, 430, 367, 515, 343, 248, 189, 212, 204, 111, 64, 0), # 57 (698, 645, 582, 608, 463, 231, 279, 236, 255, 130, 101, 49, 0, 681, 622, 436, 371, 526, 343, 251, 193, 217, 208, 115, 65, 0), # 58 (706, 661, 594, 615, 468, 235, 282, 239, 260, 132, 103, 50, 0, 698, 629, 445, 380, 535, 348, 258, 194, 220, 213, 117, 65, 0), # 59 (718, 667, 608, 620, 476, 243, 288, 245, 264, 134, 105, 51, 0, 709, 638, 460, 391, 542, 356, 261, 198, 225, 218, 123, 66, 0), # 60 (728, 675, 619, 627, 488, 247, 291, 249, 268, 136, 108, 52, 0, 721, 644, 467, 397, 545, 358, 265, 199, 230, 222, 124, 66, 0), # 61 (741, 685, 627, 639, 498, 252, 297, 253, 271, 137, 109, 53, 0, 737, 651, 469, 409, 561, 362, 270, 201, 236, 229, 124, 66, 0), # 62 (753, 697, 638, 649, 503, 258, 299, 260, 272, 138, 112, 53, 0, 753, 658, 479, 416, 575, 370, 274, 207, 240, 234, 126, 67, 0), # 63 (769, 710, 646, 657, 513, 258, 303, 263, 278, 141, 113, 55, 0, 763, 667, 482, 425, 588, 378, 278, 208, 247, 237, 128, 67, 0), # 64 (781, 716, 655, 670, 519, 260, 304, 268, 280, 143, 116, 55, 0, 771, 671, 489, 431, 592, 381, 282, 210, 251, 238, 130, 67, 0), # 65 (785, 735, 665, 681, 533, 267, 305, 273, 285, 144, 118, 56, 0, 786, 679, 497, 439, 599, 385, 291, 211, 254, 242, 131, 68, 0), # 66 (798, 742, 676, 697, 538, 271, 310, 276, 291, 146, 118, 57, 0, 797, 693, 503, 443, 605, 392, 293, 213, 257, 245, 131, 69, 0), # 67 (808, 753, 684, 707, 542, 277, 311, 279, 294, 148, 118, 57, 0, 810, 703, 511, 449, 614, 399, 302, 215, 261, 248, 133, 69, 0), # 68 (823, 761, 698, 712, 556, 282, 316, 281, 300, 150, 121, 58, 0, 818, 717, 518, 456, 625, 406, 305, 215, 264, 252, 135, 69, 0), # 69 (837, 772, 709, 722, 561, 289, 320, 287, 303, 150, 125, 62, 0, 829, 723, 524, 463, 635, 410, 310, 217, 268, 257, 138, 70, 0), # 70 (846, 779, 716, 739, 574, 296, 326, 292, 307, 150, 126, 63, 0, 847, 737, 534, 471, 642, 415, 314, 218, 269, 259, 140, 70, 0), # 71 (856, 789, 730, 750, 588, 298, 332, 299, 312, 153, 129, 63, 0, 858, 742, 542, 473, 653, 419, 322, 219, 273, 266, 141, 70, 0), # 72 (863, 801, 737, 761, 595, 301, 335, 301, 320, 156, 132, 65, 0, 865, 752, 554, 478, 659, 426, 325, 224, 276, 274, 147, 70, 0), # 73 (875, 819, 745, 768, 603, 305, 338, 303, 328, 159, 132, 65, 0, 873, 760, 563, 484, 667, 435, 327, 227, 281, 283, 148, 71, 0), # 74 (885, 825, 753, 777, 616, 307, 342, 311, 330, 159, 133, 66, 0, 886, 767, 570, 487, 677, 441, 332, 230, 288, 287, 151, 71, 0), # 75 (902, 833, 764, 784, 624, 312, 347, 318, 335, 164, 134, 69, 0, 894, 778, 582, 490, 689, 442, 335, 234, 290, 292, 152, 72, 0), # 76 (907, 847, 775, 787, 628, 317, 354, 320, 341, 165, 136, 70, 0, 905, 784, 590, 491, 697, 444, 339, 237, 294, 296, 155, 72, 0), # 77 (922, 856, 782, 798, 637, 322, 357, 324, 345, 167, 136, 70, 0, 912, 792, 600, 499, 709, 448, 344, 239, 299, 298, 158, 72, 0), # 78 (935, 867, 785, 810, 644, 324, 362, 326, 351, 168, 138, 72, 0, 928, 801, 608, 504, 719, 455, 345, 240, 302, 301, 160, 72, 0), # 79 (949, 876, 795, 824, 656, 326, 366, 330, 355, 171, 139, 73, 0, 944, 809, 615, 507, 727, 458, 345, 241, 305, 302, 162, 74, 0), # 80 (957, 882, 807, 834, 659, 331, 368, 333, 359, 175, 139, 73, 0, 955, 821, 618, 510, 741, 459, 349, 243, 308, 306, 163, 77, 0), # 81 (967, 888, 818, 841, 665, 338, 374, 335, 361, 178, 140, 74, 0, 964, 834, 625, 517, 750, 464, 350, 247, 312, 307, 167, 78, 0), # 82 (980, 899, 827, 853, 675, 340, 377, 341, 367, 181, 141, 76, 0, 971, 843, 631, 528, 761, 469, 353, 249, 316, 311, 168, 78, 0), # 83 (993, 906, 840, 867, 680, 345, 382, 343, 369, 183, 144, 76, 0, 982, 853, 639, 532, 768, 476, 361, 252, 321, 313, 170, 80, 0), # 84 (1002, 913, 852, 873, 684, 349, 387, 350, 372, 186, 147, 78, 0, 991, 858, 645, 536, 780, 481, 363, 254, 326, 318, 174, 81, 0), # 85 (1013, 926, 857, 882, 688, 356, 392, 351, 378, 187, 148, 78, 0, 1004, 866, 653, 540, 789, 488, 364, 261, 328, 322, 175, 82, 0), # 86 (1024, 935, 867, 893, 697, 357, 394, 353, 389, 188, 151, 80, 0, 1012, 878, 666, 542, 795, 492, 368, 263, 329, 325, 178, 83, 0), # 87 (1036, 947, 881, 905, 709, 361, 396, 358, 395, 190, 155, 80, 0, 1029, 884, 669, 548, 804, 495, 369, 269, 335, 329, 180, 83, 0), # 88 (1045, 957, 892, 915, 721, 372, 398, 367, 400, 190, 157, 81, 0, 1040, 894, 676, 551, 814, 501, 374, 272, 342, 334, 181, 84, 0), # 89 (1055, 969, 900, 928, 727, 375, 402, 369, 406, 192, 158, 84, 0, 1048, 900, 684, 557, 824, 509, 378, 277, 347, 338, 184, 85, 0), # 90 (1061, 974, 908, 938, 731, 377, 408, 374, 412, 193, 162, 84, 0, 1065, 914, 693, 562, 832, 513, 383, 281, 350, 342, 189, 86, 0), # 91 (1072, 978, 917, 949, 737, 382, 412, 378, 415, 194, 162, 85, 0, 1077, 921, 696, 568, 847, 520, 387, 286, 356, 347, 192, 86, 0), # 92 (1079, 987, 926, 957, 746, 388, 415, 383, 416, 195, 162, 87, 0, 1090, 934, 698, 576, 860, 521, 393, 290, 361, 349, 194, 87, 0), # 93 (1093, 994, 935, 969, 753, 392, 418, 385, 424, 198, 164, 87, 0, 1101, 940, 708, 581, 865, 525, 399, 295, 361, 353, 196, 90, 0), # 94 (1114, 1002, 943, 982, 762, 395, 423, 388, 425, 198, 164, 87, 0, 1115, 947, 711, 584, 875, 529, 400, 295, 367, 356, 198, 90, 0), # 95 (1131, 1008, 951, 993, 767, 403, 425, 389, 431, 200, 167, 87, 0, 1128, 956, 724, 588, 885, 533, 402, 295, 369, 358, 202, 91, 0), # 96 (1143, 1019, 962, 1002, 777, 404, 427, 392, 441, 202, 168, 89, 0, 1139, 967, 734, 598, 893, 538, 406, 298, 371, 363, 204, 91, 0), # 97 (1154, 1036, 975, 1012, 782, 410, 433, 395, 445, 203, 171, 89, 0, 1155, 978, 738, 605, 901, 549, 410, 302, 376, 366, 206, 92, 0), # 98 (1164, 1042, 982, 1018, 793, 416, 440, 399, 451, 204, 171, 89, 0, 1169, 989, 745, 613, 915, 557, 417, 308, 380, 369, 207, 92, 0), # 99 (1176, 1052, 991, 1029, 804, 420, 443, 404, 453, 205, 172, 89, 0, 1178, 997, 748, 617, 920, 561, 421, 311, 385, 375, 211, 92, 0), # 100 (1188, 1057, 997, 1032, 816, 423, 449, 410, 455, 207, 172, 89, 0, 1191, 1009, 754, 628, 930, 567, 427, 315, 386, 376, 212, 94, 0), # 101 (1197, 1065, 1009, 1043, 824, 426, 455, 414, 462, 207, 173, 89, 0, 1202, 1017, 760, 633, 940, 571, 429, 319, 390, 379, 213, 94, 0), # 102 (1206, 1073, 1015, 1054, 829, 436, 460, 415, 467, 209, 174, 89, 0, 1212, 1028, 768, 642, 952, 574, 433, 322, 398, 380, 215, 95, 0), # 103 (1218, 1081, 1024, 1068, 835, 439, 467, 415, 474, 212, 174, 89, 0, 1230, 1041, 777, 649, 960, 579, 434, 326, 402, 385, 215, 95, 0), # 104 (1232, 1089, 1033, 1078, 846, 444, 471, 418, 476, 214, 176, 90, 0, 1240, 1048, 778, 654, 966, 583, 441, 329, 406, 389, 218, 95, 0), # 105 (1242, 1103, 1042, 1091, 853, 446, 475, 423, 479, 217, 177, 90, 0, 1249, 1057, 786, 660, 972, 585, 445, 329, 409, 392, 220, 95, 0), # 106 (1251, 1109, 1051, 1101, 865, 448, 479, 424, 487, 219, 178, 90, 0, 1261, 1062, 792, 670, 977, 589, 446, 332, 413, 394, 221, 97, 0), # 107 (1263, 1119, 1060, 1113, 874, 452, 485, 428, 489, 222, 178, 90, 0, 1270, 1074, 796, 675, 985, 597, 449, 332, 417, 396, 225, 98, 0), # 108 (1278, 1124, 1066, 1123, 881, 455, 489, 433, 494, 223, 179, 92, 0, 1288, 1085, 802, 681, 993, 598, 455, 334, 419, 398, 227, 99, 0), # 109 (1282, 1132, 1077, 1134, 894, 459, 494, 435, 499, 223, 179, 92, 0, 1301, 1093, 808, 685, 999, 605, 459, 336, 425, 402, 231, 99, 0), # 110 (1293, 1140, 1088, 1146, 905, 462, 496, 441, 504, 225, 181, 93, 0, 1316, 1102, 813, 691, 1006, 610, 463, 337, 435, 405, 235, 101, 0), # 111 (1302, 1153, 1094, 1164, 913, 464, 498, 442, 508, 226, 181, 95, 0, 1327, 1108, 822, 694, 1015, 613, 468, 338, 441, 408, 240, 101, 0), # 112 (1315, 1162, 1102, 1175, 917, 472, 501, 446, 513, 227, 182, 95, 0, 1337, 1118, 829, 696, 1024, 618, 473, 338, 443, 416, 241, 101, 0), # 113 (1332, 1172, 1112, 1182, 925, 476, 505, 448, 517, 231, 184, 96, 0, 1346, 1131, 834, 698, 1039, 619, 473, 343, 446, 417, 242, 103, 0), # 114 (1345, 1179, 1119, 1194, 934, 480, 509, 448, 520, 232, 184, 98, 0, 1365, 1137, 843, 703, 1048, 621, 479, 344, 448, 419, 242, 104, 0), # 115 (1350, 1186, 1136, 1205, 941, 481, 511, 451, 526, 232, 184, 98, 0, 1377, 1145, 855, 707, 1058, 625, 480, 344, 456, 423, 242, 105, 0), # 116 (1359, 1194, 1148, 1216, 953, 485, 513, 452, 532, 234, 185, 98, 0, 1388, 1152, 861, 712, 1067, 632, 485, 347, 458, 426, 243, 105, 0), # 117 (1368, 1203, 1162, 1226, 961, 488, 520, 456, 534, 238, 186, 99, 0, 1400, 1157, 869, 717, 1077, 636, 490, 352, 462, 428, 246, 105, 0), # 118 (1379, 1217, 1170, 1232, 972, 493, 524, 458, 538, 238, 186, 99, 0, 1414, 1162, 875, 719, 1083, 638, 495, 355, 467, 430, 249, 107, 0), # 119 (1391, 1227, 1174, 1245, 981, 497, 527, 461, 543, 239, 187, 99, 0, 1426, 1174, 879, 721, 1087, 641, 503, 356, 473, 433, 252, 108, 0), # 120 (1402, 1236, 1183, 1249, 991, 501, 533, 462, 551, 244, 189, 99, 0, 1435, 1181, 882, 728, 1092, 647, 505, 358, 477, 434, 253, 108, 0), # 121 (1419, 1247, 1189, 1256, 995, 504, 539, 463, 554, 247, 189, 100, 0, 1446, 1189, 889, 733, 1102, 650, 512, 359, 481, 436, 255, 109, 0), # 122 (1429, 1252, 1195, 1267, 1002, 508, 545, 467, 557, 250, 191, 100, 0, 1458, 1197, 896, 738, 1109, 654, 513, 361, 485, 443, 255, 111, 0), # 123 (1438, 1262, 1201, 1280, 1011, 513, 549, 473, 567, 252, 191, 101, 0, 1469, 1201, 902, 743, 1127, 656, 515, 367, 488, 444, 256, 112, 0), # 124 (1446, 1269, 1208, 1291, 1022, 515, 552, 474, 573, 254, 192, 104, 0, 1479, 1211, 910, 745, 1133, 659, 518, 370, 492, 446, 257, 112, 0), # 125 (1457, 1274, 1216, 1298, 1034, 520, 556, 477, 576, 255, 193, 105, 0, 1490, 1219, 913, 751, 1142, 664, 519, 374, 496, 458, 260, 112, 0), # 126 (1467, 1286, 1222, 1308, 1046, 526, 557, 480, 580, 255, 195, 105, 0, 1503, 1225, 919, 754, 1148, 667, 523, 376, 501, 461, 261, 114, 0), # 127 (1475, 1300, 1230, 1320, 1056, 532, 559, 481, 588, 259, 197, 105, 0, 1515, 1233, 928, 757, 1153, 673, 525, 380, 501, 463, 262, 115, 0), # 128 (1488, 1306, 1239, 1330, 1064, 536, 563, 484, 590, 259, 198, 106, 0, 1526, 1241, 934, 763, 1161, 678, 529, 384, 505, 464, 267, 115, 0), # 129 (1498, 1317, 1246, 1339, 1075, 540, 565, 486, 592, 262, 199, 106, 0, 1530, 1250, 946, 768, 1173, 681, 531, 384, 508, 470, 267, 115, 0), # 130 (1512, 1326, 1257, 1355, 1083, 543, 567, 490, 596, 262, 199, 107, 0, 1545, 1258, 957, 774, 1180, 686, 534, 386, 512, 472, 268, 116, 0), # 131 (1520, 1333, 1265, 1362, 1090, 546, 569, 491, 604, 263, 199, 107, 0, 1555, 1271, 964, 780, 1188, 695, 537, 388, 516, 472, 271, 116, 0), # 132 (1529, 1339, 1271, 1367, 1100, 552, 572, 494, 606, 265, 200, 107, 0, 1570, 1282, 968, 788, 1193, 699, 540, 389, 519, 476, 272, 117, 0), # 133 (1539, 1345, 1286, 1372, 1103, 556, 577, 495, 616, 267, 202, 107, 0, 1579, 1292, 972, 794, 1205, 703, 544, 392, 523, 479, 273, 120, 0), # 134 (1549, 1360, 1297, 1379, 1114, 559, 581, 499, 618, 270, 203, 108, 0, 1590, 1304, 975, 803, 1218, 708, 546, 394, 526, 479, 275, 120, 0), # 135 (1564, 1369, 1310, 1391, 1120, 563, 582, 504, 627, 271, 203, 108, 0, 1602, 1315, 978, 813, 1228, 711, 547, 397, 534, 482, 277, 121, 0), # 136 (1582, 1377, 1322, 1401, 1127, 567, 584, 507, 631, 271, 205, 108, 0, 1619, 1325, 984, 819, 1237, 715, 552, 399, 535, 485, 282, 121, 0), # 137 (1590, 1384, 1332, 1409, 1141, 572, 585, 509, 636, 275, 206, 108, 0, 1629, 1335, 989, 826, 1248, 716, 556, 402, 539, 487, 284, 121, 0), # 138 (1598, 1391, 1344, 1422, 1148, 572, 586, 510, 641, 276, 207, 111, 0, 1643, 1346, 993, 832, 1258, 721, 560, 404, 543, 491, 286, 123, 0), # 139 (1606, 1398, 1352, 1430, 1155, 574, 589, 511, 642, 276, 208, 114, 0, 1654, 1359, 1003, 833, 1266, 723, 566, 407, 545, 494, 287, 123, 0), # 140 (1622, 1403, 1361, 1436, 1160, 576, 593, 515, 645, 278, 209, 114, 0, 1665, 1366, 1005, 837, 1272, 725, 570, 414, 549, 497, 288, 124, 0), # 141 (1632, 1407, 1365, 1444, 1170, 580, 597, 519, 649, 278, 210, 114, 0, 1678, 1373, 1009, 842, 1282, 732, 572, 419, 552, 499, 289, 124, 0), # 142 (1637, 1416, 1372, 1453, 1179, 588, 600, 521, 652, 278, 210, 115, 0, 1698, 1382, 1013, 847, 1287, 742, 576, 422, 554, 502, 290, 124, 0), # 143 (1651, 1421, 1378, 1467, 1184, 590, 606, 524, 655, 281, 210, 117, 0, 1707, 1389, 1016, 850, 1291, 745, 577, 426, 554, 508, 291, 124, 0), # 144 (1666, 1429, 1389, 1475, 1192, 592, 608, 528, 658, 282, 211, 118, 0, 1718, 1400, 1019, 853, 1299, 749, 578, 429, 559, 509, 292, 124, 0), # 145 (1679, 1436, 1399, 1485, 1202, 598, 611, 534, 659, 283, 213, 119, 0, 1731, 1411, 1024, 855, 1304, 755, 581, 432, 564, 511, 294, 125, 0), # 146 (1685, 1440, 1408, 1493, 1211, 599, 614, 537, 663, 284, 213, 120, 0, 1741, 1425, 1030, 856, 1311, 760, 584, 435, 567, 516, 294, 125, 0), # 147 (1694, 1449, 1419, 1507, 1223, 602, 617, 541, 666, 285, 214, 120, 0, 1751, 1437, 1039, 859, 1321, 761, 588, 439, 576, 521, 294, 126, 0), # 148 (1704, 1456, 1432, 1513, 1232, 603, 624, 542, 670, 287, 215, 120, 0, 1762, 1447, 1047, 862, 1326, 764, 590, 439, 578, 522, 295, 126, 0), # 149 (1713, 1463, 1439, 1523, 1237, 607, 628, 544, 671, 287, 215, 121, 0, 1769, 1454, 1052, 866, 1333, 769, 591, 443, 582, 526, 295, 126, 0), # 150 (1716, 1468, 1446, 1532, 1247, 612, 629, 548, 677, 287, 217, 123, 0, 1778, 1462, 1060, 873, 1344, 774, 592, 446, 586, 527, 296, 126, 0), # 151 (1730, 1473, 1462, 1542, 1253, 612, 632, 553, 679, 287, 218, 123, 0, 1787, 1468, 1065, 877, 1358, 775, 593, 451, 590, 530, 298, 126, 0), # 152 (1740, 1479, 1471, 1549, 1260, 616, 634, 554, 682, 287, 218, 123, 0, 1799, 1476, 1068, 883, 1368, 778, 597, 454, 592, 533, 299, 126, 0), # 153 (1748, 1484, 1477, 1555, 1268, 619, 636, 560, 686, 290, 220, 123, 0, 1814, 1485, 1072, 886, 1374, 780, 599, 461, 599, 537, 301, 126, 0), # 154 (1763, 1490, 1485, 1559, 1273, 621, 640, 562, 695, 290, 222, 125, 0, 1822, 1494, 1079, 888, 1382, 784, 602, 464, 606, 541, 305, 127, 0), # 155 (1770, 1493, 1501, 1567, 1276, 623, 643, 564, 698, 290, 222, 126, 0, 1836, 1500, 1083, 891, 1386, 788, 607, 468, 612, 545, 307, 128, 0), # 156 (1783, 1500, 1509, 1579, 1283, 628, 643, 567, 700, 292, 224, 126, 0, 1851, 1506, 1088, 893, 1396, 791, 608, 469, 615, 551, 309, 130, 0), # 157 (1791, 1504, 1517, 1586, 1290, 631, 644, 570, 703, 292, 225, 128, 0, 1860, 1515, 1096, 896, 1404, 795, 613, 470, 620, 555, 311, 132, 0), # 158 (1798, 1513, 1525, 1589, 1299, 634, 644, 573, 705, 292, 225, 129, 0, 1870, 1523, 1098, 901, 1415, 798, 614, 470, 625, 559, 315, 134, 0), # 159 (1807, 1518, 1533, 1595, 1308, 639, 645, 576, 710, 292, 227, 129, 0, 1879, 1537, 1108, 904, 1421, 802, 615, 473, 628, 562, 315, 134, 0), # 160 (1814, 1530, 1546, 1605, 1315, 641, 650, 584, 714, 294, 232, 130, 0, 1888, 1545, 1117, 908, 1432, 804, 617, 474, 631, 565, 318, 135, 0), # 161 (1824, 1538, 1550, 1617, 1320, 643, 653, 588, 715, 294, 233, 130, 0, 1897, 1554, 1119, 912, 1444, 807, 619, 476, 632, 569, 318, 135, 0), # 162 (1832, 1544, 1559, 1629, 1327, 644, 655, 594, 716, 296, 236, 131, 0, 1905, 1558, 1123, 915, 1452, 810, 620, 479, 639, 569, 319, 135, 0), # 163 (1840, 1553, 1573, 1641, 1331, 646, 657, 596, 719, 300, 240, 132, 0, 1915, 1565, 1130, 919, 1457, 812, 623, 481, 642, 571, 320, 135, 0), # 164 (1846, 1557, 1582, 1645, 1337, 647, 661, 597, 723, 302, 243, 134, 0, 1923, 1570, 1138, 925, 1466, 815, 626, 484, 644, 574, 320, 136, 0), # 165 (1852, 1566, 1585, 1646, 1349, 653, 663, 599, 725, 307, 244, 134, 0, 1929, 1575, 1144, 930, 1470, 819, 628, 488, 646, 578, 321, 136, 0), # 166 (1857, 1573, 1589, 1651, 1358, 654, 664, 601, 732, 308, 245, 134, 0, 1939, 1583, 1151, 940, 1476, 823, 631, 489, 647, 579, 323, 136, 0), # 167 (1865, 1578, 1595, 1659, 1364, 656, 668, 605, 734, 309, 247, 134, 0, 1946, 1589, 1154, 949, 1484, 826, 635, 490, 648, 582, 324, 137, 0), # 168 (1871, 1582, 1606, 1669, 1370, 659, 670, 609, 738, 310, 248, 135, 0, 1955, 1598, 1158, 950, 1491, 829, 637, 493, 652, 586, 325, 137, 0), # 169 (1877, 1588, 1612, 1679, 1376, 664, 673, 611, 741, 312, 248, 135, 0, 1961, 1609, 1163, 956, 1496, 831, 638, 495, 658, 589, 326, 138, 0), # 170 (1882, 1593, 1616, 1691, 1386, 668, 677, 614, 742, 312, 250, 135, 0, 1968, 1619, 1166, 959, 1508, 832, 640, 499, 664, 592, 327, 138, 0), # 171 (1886, 1597, 1623, 1697, 1391, 669, 679, 618, 744, 312, 251, 135, 0, 1980, 1621, 1169, 964, 1514, 837, 641, 500, 668, 593, 328, 138, 0), # 172 (1894, 1598, 1626, 1701, 1401, 671, 681, 621, 748, 312, 252, 138, 0, 1988, 1624, 1171, 966, 1516, 840, 641, 501, 670, 595, 330, 138, 0), # 173 (1904, 1601, 1629, 1707, 1408, 672, 682, 622, 750, 315, 252, 138, 0, 1998, 1631, 1176, 968, 1520, 841, 643, 504, 673, 597, 332, 138, 0), # 174 (1912, 1607, 1632, 1715, 1415, 673, 682, 624, 752, 316, 254, 138, 0, 2006, 1635, 1180, 970, 1524, 842, 644, 507, 675, 601, 333, 138, 0), # 175 (1915, 1610, 1639, 1722, 1416, 673, 685, 624, 754, 317, 255, 139, 0, 2010, 1640, 1183, 972, 1531, 843, 646, 508, 679, 604, 333, 138, 0), # 176 (1921, 1614, 1646, 1726, 1421, 673, 687, 628, 756, 318, 257, 140, 0, 2015, 1643, 1188, 976, 1534, 847, 647, 512, 681, 606, 334, 139, 0), # 177 (1924, 1620, 1647, 1731, 1422, 676, 689, 629, 758, 318, 258, 140, 0, 2021, 1645, 1192, 977, 1537, 849, 648, 512, 682, 606, 334, 141, 0), # 178 (1924, 1620, 1647, 1731, 1422, 676, 689, 629, 758, 318, 258, 140, 0, 2021, 1645, 1192, 977, 1537, 849, 648, 512, 682, 606, 334, 141, 0), # 179 ) passenger_arriving_rate = ( (6.025038694046121, 6.077817415662483, 5.211283229612507, 5.593200996477089, 4.443748486087689, 2.197058452426137, 2.4876213692243487, 2.3265880864897115, 2.4360396248672025, 1.187404504656711, 0.8410530327771206, 0.4897915078306174, 0.0, 6.100656255094035, 5.38770658613679, 4.205265163885603, 3.562213513970132, 4.872079249734405, 3.257223321085596, 2.4876213692243487, 1.5693274660186693, 2.2218742430438443, 1.8644003321590301, 1.0422566459225016, 0.5525288559693167, 0.0), # 0 (6.425192582423969, 6.479066763559234, 5.555346591330152, 5.9626298279489545, 4.737992269979389, 2.342188508829789, 2.651681364758216, 2.479756861452854, 2.5968981305331633, 1.265694207683145, 0.8966192271912263, 0.5221216660814355, 0.0, 6.503749976927826, 5.743338326895789, 4.483096135956131, 3.7970826230494343, 5.193796261066327, 3.4716596060339957, 2.651681364758216, 1.6729917920212778, 2.3689961349896946, 1.9875432759829852, 1.1110693182660305, 0.589006069414476, 0.0), # 1 (6.8240676107756775, 6.878723687980077, 5.8980422855474135, 6.330588934198314, 5.031170378999795, 2.4867395801587113, 2.8150911047764224, 2.6323126239522097, 2.7571147227510195, 1.3436741325061639, 0.9519646297552626, 0.5543232652053055, 0.0, 6.905237793851628, 6.09755591725836, 4.759823148776313, 4.031022397518491, 5.514229445502039, 3.6852376735330936, 2.8150911047764224, 1.7762425572562224, 2.5155851894998973, 2.1101963113994384, 1.179608457109483, 0.625338517089098, 0.0), # 2 (7.220109351775874, 7.275202552130091, 6.238010869319854, 6.695618766778866, 5.322129340801521, 2.6301384358095787, 2.9772021849887733, 2.7836505787472534, 2.9160540643684367, 1.4210348095278544, 1.0068696823654766, 0.5862685684930461, 0.0, 7.30352736750507, 6.448954253423507, 5.0343484118273825, 4.263104428583563, 5.8321081287368735, 3.8971108102461547, 2.9772021849887733, 1.8786703112925562, 2.6610646704007603, 2.2318729222596225, 1.247602173863971, 0.6613820501936447, 0.0), # 3 (7.611763378099177, 7.666917719214351, 6.573892899703036, 7.056259777244312, 5.609715683037193, 2.7718118451790676, 3.137366201105075, 2.9331659305974576, 3.0730808182330827, 1.4974667691503039, 1.0611148269181152, 0.6178298392354764, 0.0, 7.69702635952778, 6.79612823159024, 5.305574134590575, 4.492400307450911, 6.146161636466165, 4.10643230283644, 3.137366201105075, 1.9798656036993338, 2.8048578415185963, 2.3520865924147714, 1.3147785799406073, 0.6969925199285775, 0.0), # 4 (7.9974752624202115, 8.052283552437947, 6.904328933752518, 7.411052417148355, 5.892775933359424, 2.9111865776638504, 3.2949347488351344, 3.080253884262296, 3.2275596471926233, 1.5726605417755992, 1.1144805053094267, 0.6488793407234149, 0.0, 8.084142431559393, 7.137672747957563, 5.572402526547132, 4.7179816253267965, 6.455119294385247, 4.312355437967215, 3.2949347488351344, 2.079418984045607, 2.946387966679712, 2.4703508057161185, 1.3808657867505036, 0.7320257774943589, 0.0), # 5 (8.375690577413598, 8.42971441500595, 7.227959528523866, 7.758537138044686, 6.170156619420834, 3.047689402660605, 3.4492594238887575, 3.2243096445012442, 3.3788552140947257, 1.6463066578058279, 1.1667471594356567, 0.6792893362476808, 0.0, 8.463283245239527, 7.472182698724488, 5.833735797178282, 4.938919973417482, 6.757710428189451, 4.514033502301742, 3.4492594238887575, 2.176921001900432, 3.085078309710417, 2.586179046014896, 1.4455919057047733, 0.7663376740914501, 0.0), # 6 (8.744854895753962, 8.797624670123444, 7.543425241072636, 8.097254391487015, 6.440704268874043, 3.1807470895660046, 3.599691821975751, 3.3647284160737763, 3.5263321817870574, 1.7180956476430762, 1.2176952311930538, 0.708932089099093, 0.0, 8.832856462207822, 7.798252980090021, 6.088476155965268, 5.154286942929227, 7.052664363574115, 4.7106197825032865, 3.599691821975751, 2.2719622068328604, 3.2203521344370216, 2.699084797162339, 1.508685048214527, 0.7997840609203132, 0.0), # 7 (9.103413790115921, 9.154428680995508, 7.849366628454395, 8.425744629029035, 6.703265409371668, 3.309786407776723, 3.7455835388059184, 3.5009054037393623, 3.669355213117282, 1.7877180416894325, 1.2671051624778642, 0.7376798625684703, 0.0, 9.1912697441039, 8.114478488253173, 6.335525812389321, 5.363154125068296, 7.338710426234564, 4.901267565235107, 3.7455835388059184, 2.3641331484119448, 3.351632704685834, 2.8085815430096788, 1.5698733256908792, 0.8322207891814098, 0.0), # 8 (9.449812833174102, 9.498540810827224, 8.144424247724704, 8.742548302224453, 6.956686568566327, 3.4342341266894385, 3.886286170089072, 3.6322358122574814, 3.8072889709330693, 1.8548643703469827, 1.3147573951863356, 0.7654049199466314, 0.0, 9.536930752567395, 8.419454119412945, 6.573786975931678, 5.564593111040947, 7.614577941866139, 5.0851301371604745, 3.886286170089072, 2.453024376206742, 3.4783432842831634, 2.914182767408151, 1.6288848495449408, 0.8635037100752023, 0.0), # 9 (9.782497597603118, 9.828375422823667, 8.427238655939124, 9.046205862626959, 7.19981427411064, 3.5535170157008253, 4.021151311535013, 3.7581148463876053, 3.9394981180820854, 1.9192251640178146, 1.3604323712147148, 0.7919795245243952, 0.0, 9.868247149237932, 8.711774769768347, 6.802161856073574, 5.757675492053442, 7.878996236164171, 5.261360784942648, 4.021151311535013, 2.5382264397863037, 3.59990713705532, 3.015401954208987, 1.685447731187825, 0.8934886748021517, 0.0), # 10 (10.099913656077605, 10.142346880189926, 8.696450410153215, 9.335257761790256, 7.431495053657226, 3.667061844207558, 4.14953055885355, 3.8779377108892072, 4.065347317411997, 1.980490953104016, 1.40391053245925, 0.8172759395925812, 0.0, 10.183626595755133, 8.99003533551839, 7.019552662296249, 5.9414728593120465, 8.130694634823994, 5.42911279524489, 4.14953055885355, 2.619329888719684, 3.715747526828613, 3.1117525872634197, 1.7392900820306432, 0.9220315345627208, 0.0), # 11 (10.400506581272174, 10.438869546131066, 8.95070006742254, 9.60824445126805, 7.650575434858702, 3.7742953816063087, 4.270775507754487, 3.99109961052176, 4.184201231770471, 2.0383522680076718, 1.444972320816187, 0.8411664284420068, 0.0, 10.48147675375864, 9.252830712862075, 7.224861604080934, 6.115056804023014, 8.368402463540942, 5.587539454730464, 4.270775507754487, 2.6959252725759346, 3.825287717429351, 3.2027481504226842, 1.790140013484508, 0.9489881405573698, 0.0), # 12 (10.68272194586145, 10.716357783852182, 9.188628184802662, 9.863706382614039, 7.85590194536768, 3.8746443972937565, 4.384237753947633, 4.096995750044741, 4.295424524005172, 2.0924996391308714, 1.4833981781817738, 0.8635232543634921, 0.0, 10.760205284888082, 9.498755797998411, 7.416990890908868, 6.277498917392613, 8.590849048010345, 5.735794050062637, 4.384237753947633, 2.7676031409241117, 3.92795097268384, 3.287902127538014, 1.8377256369605324, 0.974214343986562, 0.0), # 13 (10.945005322520059, 10.973225956558347, 9.408875319349146, 10.100184007381912, 8.046321112836791, 3.967535660666574, 4.489268893142796, 4.195021334217623, 4.398381856963768, 2.1426235968757004, 1.518968546452257, 0.8842186806478561, 0.0, 11.018219850783076, 9.726405487126415, 7.594842732261284, 6.4278707906271, 8.796763713927536, 5.873029867904672, 4.489268893142796, 2.833954043333267, 4.023160556418396, 3.3667280024606385, 1.8817750638698296, 0.997565996050759, 0.0), # 14 (11.185802283922625, 11.207888427454638, 9.610082028117542, 10.316217777125386, 8.220679464918646, 4.052395941121439, 4.585220521049775, 4.284571567799878, 4.4924378934939275, 2.1884146716442476, 1.551463867523884, 0.9031249705859171, 0.0, 11.253928113083257, 9.934374676445087, 7.757319337619419, 6.565244014932741, 8.984875786987855, 5.998400194919829, 4.585220521049775, 2.894568529372456, 4.110339732459323, 3.4387392590417964, 1.9220164056235085, 1.0188989479504218, 0.0), # 15 (11.40355840274376, 11.418759559746144, 9.790888868163425, 10.510348143398145, 8.377823529265866, 4.128652008055021, 4.671444233378385, 4.36504165555098, 4.5769572964433145, 2.2295633938385993, 1.5806645832929027, 0.920114387468494, 0.0, 11.465737733428254, 10.121258262153432, 7.9033229164645125, 6.688690181515796, 9.153914592886629, 6.111058317771373, 4.671444233378385, 2.9490371486107296, 4.188911764632933, 3.503449381132716, 1.958177773632685, 1.0380690508860133, 0.0), # 16 (11.59671925165809, 11.604253716637938, 9.949936396542352, 10.6811155577539, 8.51659983353107, 4.1957306308639994, 4.747291625838426, 4.435826802230409, 4.651304728659593, 2.2657602938608403, 1.60635113565556, 0.9350591945864056, 0.0, 11.652056373457699, 10.28565114045046, 8.031755678277799, 6.79728088158252, 9.302609457319186, 6.2101575231225725, 4.747291625838426, 2.9969504506171427, 4.258299916765535, 3.5603718525846344, 1.9899872793084707, 1.0549321560579947, 0.0), # 17 (11.763730403340244, 11.7627852613351, 10.08586517030988, 10.82706047174635, 8.63585490536687, 4.253058578945052, 4.81211429413971, 4.49632221259763, 4.7148448529904385, 2.2966959021130613, 1.6283039665081016, 0.9478316552304716, 0.0, 11.811291694811214, 10.426148207535187, 8.141519832540508, 6.890087706339182, 9.429689705980877, 6.294851097636682, 4.81211429413971, 3.0378989849607514, 4.317927452683435, 3.6090201572487843, 2.0171730340619765, 1.0693441146668274, 0.0), # 18 (11.903037430464838, 11.892768557042718, 10.197315746521578, 10.946723336929182, 8.734435272425891, 4.300062621694845, 4.865263833992036, 4.5459230914121225, 4.766942332283511, 2.3220607489973486, 1.6463035177467755, 0.9583040326915097, 0.0, 11.941851359128435, 10.541344359606605, 8.231517588733878, 6.9661822469920445, 9.533884664567022, 6.364292327976972, 4.865263833992036, 3.071473301210604, 4.367217636212946, 3.648907778976395, 2.039463149304316, 1.0811607779129746, 0.0), # 19 (12.013085905706498, 11.992617966965858, 10.282928682233003, 11.038644604856119, 8.811187462360754, 4.336169528510063, 4.9060918411052175, 4.5840246434333585, 4.806961829386479, 2.341545364915788, 1.66013023126783, 0.9663485902603393, 0.0, 12.042143028048988, 10.62983449286373, 8.30065115633915, 7.024636094747362, 9.613923658772958, 6.417634500806702, 4.9060918411052175, 3.097263948935759, 4.405593731180377, 3.679548201618707, 2.0565857364466007, 1.0902379969968963, 0.0), # 20 (12.09232140173984, 12.060747854309614, 10.341344534499719, 11.101364727080837, 8.86495800282407, 4.360806068787375, 4.933949911189055, 4.6100220734208115, 4.834268007147008, 2.3548402802704667, 1.669564548967512, 0.9718375912277795, 0.0, 12.110574363212494, 10.690213503505571, 8.34782274483756, 7.064520840811399, 9.668536014294016, 6.454030902789136, 4.933949911189055, 3.1148614777052677, 4.432479001412035, 3.7004549090269463, 2.068268906899944, 1.096431623119056, 0.0), # 21 (12.139189491239494, 12.095572582279058, 10.371203860377285, 11.133424155157051, 8.894593421468459, 4.373399011923457, 4.94818963995336, 4.623310586133957, 4.848225528412765, 2.361636025463473, 1.674386912742068, 0.9746432988846491, 0.0, 12.145553026258591, 10.721076287731139, 8.37193456371034, 7.084908076390418, 9.69645105682553, 6.47263482058754, 4.94818963995336, 3.1238564370881834, 4.447296710734229, 3.7111413850523514, 2.0742407720754574, 1.0995975074799145, 0.0), # 22 (12.156472036011166, 12.099695953360769, 10.374923182441702, 11.137437731481482, 8.902185644826076, 4.375, 4.949882401355603, 4.624746913580247, 4.8499704938271595, 2.3624376817558304, 1.6749916074323483, 0.9749897576588934, 0.0, 12.15, 10.724887334247827, 8.37495803716174, 7.087313045267489, 9.699940987654319, 6.474645679012346, 4.949882401355603, 3.125, 4.451092822413038, 3.7124792438271617, 2.0749846364883404, 1.0999723593964337, 0.0), # 23 (12.169214895640982, 12.09729074074074, 10.374314814814815, 11.13694375, 8.906486090891882, 4.375, 4.9489522875817, 4.62275, 4.849736666666666, 2.3619451851851854, 1.6749249158249162, 0.9749086419753087, 0.0, 12.15, 10.723995061728393, 8.37462457912458, 7.085835555555555, 9.699473333333332, 6.47185, 4.9489522875817, 3.125, 4.453243045445941, 3.7123145833333346, 2.074862962962963, 1.099753703703704, 0.0), # 24 (12.181688676253897, 12.092549725651576, 10.373113854595337, 11.135966435185185, 8.910691956475603, 4.375, 4.947119341563786, 4.618827160493828, 4.8492746913580245, 2.3609756515775038, 1.6747926798852726, 0.9747485139460449, 0.0, 12.15, 10.722233653406493, 8.373963399426362, 7.08292695473251, 9.698549382716049, 6.466358024691359, 4.947119341563786, 3.125, 4.455345978237801, 3.711988811728396, 2.0746227709190674, 1.0993227023319616, 0.0), # 25 (12.19389242285764, 12.085545336076818, 10.371336762688616, 11.134516898148147, 8.914803094736882, 4.375, 4.944412030985233, 4.613052469135803, 4.84859049382716, 2.3595452126200276, 1.674596096770171, 0.9745115683584822, 0.0, 12.15, 10.719627251943303, 8.372980483850855, 7.078635637860081, 9.69718098765432, 6.458273456790124, 4.944412030985233, 3.125, 4.457401547368441, 3.71150563271605, 2.0742673525377233, 1.0986859396433473, 0.0), # 26 (12.205825180459962, 12.076349999999996, 10.369, 11.132606249999998, 8.918819358835371, 4.375, 4.940858823529412, 4.6055, 4.84769, 2.35767, 1.674336363636364, 0.9742000000000002, 0.0, 12.15, 10.7162, 8.371681818181818, 7.073009999999999, 9.69538, 6.4477, 4.940858823529412, 3.125, 4.459409679417686, 3.7108687500000004, 2.0738000000000003, 1.09785, 0.0), # 27 (12.217485994068602, 12.065036145404662, 10.366120027434842, 11.13024560185185, 8.92274060193072, 4.375, 4.93648818687969, 4.596243827160494, 4.846579135802468, 2.3553661454046644, 1.6740146776406037, 0.9738160036579792, 0.0, 12.15, 10.711976040237769, 8.370073388203018, 7.066098436213991, 9.693158271604936, 6.434741358024692, 4.93648818687969, 3.125, 4.46137030096536, 3.710081867283951, 2.073224005486969, 1.0968214677640604, 0.0), # 28 (12.2288739086913, 12.051676200274349, 10.362713305898492, 11.127446064814816, 8.926566677182576, 4.375, 4.931328588719439, 4.585358024691358, 4.845263827160494, 2.3526497805212623, 1.6736322359396434, 0.9733617741197987, 0.0, 12.15, 10.706979515317785, 8.368161179698216, 7.057949341563786, 9.690527654320988, 6.419501234567901, 4.931328588719439, 3.125, 4.463283338591288, 3.709148688271606, 2.0725426611796984, 1.0956069272976683, 0.0), # 29 (12.239987969335797, 12.036342592592591, 10.358796296296296, 11.12421875, 8.930297437750589, 4.375, 4.925408496732026, 4.572916666666666, 4.84375, 2.3495370370370376, 1.6731902356902357, 0.9728395061728394, 0.0, 12.15, 10.701234567901233, 8.365951178451178, 7.048611111111112, 9.6875, 6.402083333333333, 4.925408496732026, 3.125, 4.4651487188752945, 3.7080729166666675, 2.0717592592592595, 1.094212962962963, 0.0), # 30 (12.25082722100983, 12.019107750342934, 10.354385459533608, 11.120574768518516, 8.933932736794405, 4.375, 4.918756378600824, 4.558993827160494, 4.842043580246913, 2.346044046639232, 1.6726898740491336, 0.9722513946044812, 0.0, 12.15, 10.694765340649292, 8.363449370245666, 7.038132139917694, 9.684087160493826, 6.382591358024691, 4.918756378600824, 3.125, 4.466966368397203, 3.70685825617284, 2.070877091906722, 1.0926461591220853, 0.0), # 31 (12.261390708721144, 12.000044101508914, 10.349497256515773, 11.11652523148148, 8.937472427473676, 4.375, 4.911400702009199, 4.543663580246914, 4.84015049382716, 2.3421869410150897, 1.672132348173089, 0.9715996342021036, 0.0, 12.15, 10.687595976223138, 8.360661740865444, 7.026560823045267, 9.68030098765432, 6.36112901234568, 4.911400702009199, 3.125, 4.468736213736838, 3.705508410493828, 2.069899451303155, 1.0909131001371744, 0.0), # 32 (12.271677477477477, 11.979224074074073, 10.344148148148149, 11.11208125, 8.94091636294805, 4.375, 4.903369934640523, 4.527, 4.838076666666666, 2.3379818518518523, 1.6715188552188551, 0.9708864197530863, 0.0, 12.15, 10.679750617283949, 8.357594276094275, 7.013945555555555, 9.676153333333332, 6.3378000000000005, 4.903369934640523, 3.125, 4.470458181474025, 3.704027083333334, 2.06882962962963, 1.0890203703703705, 0.0), # 33 (12.28168657228657, 11.956720096021947, 10.338354595336076, 11.107253935185184, 8.944264396377172, 4.375, 4.894692544178166, 4.509077160493827, 4.835828024691358, 2.333444910836763, 1.670850592343185, 0.9701139460448103, 0.0, 12.15, 10.671253406492912, 8.354252961715924, 7.000334732510288, 9.671656049382715, 6.312708024691357, 4.894692544178166, 3.125, 4.472132198188586, 3.7024179783950624, 2.0676709190672153, 1.0869745541838134, 0.0), # 34 (12.291417038156167, 11.932604595336077, 10.332133058984912, 11.102054398148146, 8.947516380920696, 4.375, 4.885396998305495, 4.489969135802469, 4.83341049382716, 2.328592249657065, 1.6701287567028307, 0.969284407864655, 0.0, 12.15, 10.662128486511202, 8.350643783514153, 6.985776748971193, 9.66682098765432, 6.285956790123457, 4.885396998305495, 3.125, 4.473758190460348, 3.7006847993827163, 2.0664266117969827, 1.0847822359396435, 0.0), # 35 (12.300867920094007, 11.906949999999998, 10.3255, 11.096493749999999, 8.950672169738269, 4.375, 4.875511764705882, 4.46975, 4.830829999999999, 2.32344, 1.6693545454545458, 0.9684000000000001, 0.0, 12.15, 10.6524, 8.346772727272727, 6.970319999999999, 9.661659999999998, 6.257650000000001, 4.875511764705882, 3.125, 4.475336084869134, 3.6988312500000005, 2.0651, 1.08245, 0.0), # 36 (12.310038263107828, 11.879828737997256, 10.318471879286694, 11.090583101851852, 8.953731615989536, 4.375, 4.865065311062696, 4.448493827160494, 4.828092469135802, 2.3180042935528125, 1.668529155755082, 0.9674629172382261, 0.0, 12.15, 10.642092089620485, 8.34264577877541, 6.954012880658436, 9.656184938271604, 6.227891358024691, 4.865065311062696, 3.125, 4.476865807994768, 3.696861033950618, 2.063694375857339, 1.0799844307270234, 0.0), # 37 (12.31892711220537, 11.851313237311386, 10.311065157750342, 11.084333564814814, 8.956694572834152, 4.375, 4.854086105059308, 4.426274691358025, 4.825203827160493, 2.312301262002744, 1.6676537847611925, 0.9664753543667125, 0.0, 12.15, 10.631228898033836, 8.33826892380596, 6.936903786008231, 9.650407654320986, 6.196784567901235, 4.854086105059308, 3.125, 4.478347286417076, 3.6947778549382724, 2.0622130315500686, 1.0773921124828534, 0.0), # 38 (12.327533512394384, 11.821475925925924, 10.303296296296297, 11.07775625, 8.959560893431762, 4.375, 4.842602614379085, 4.4031666666666665, 4.82217, 2.3063470370370376, 1.6667296296296297, 0.9654395061728396, 0.0, 12.15, 10.619834567901233, 8.333648148148148, 6.919041111111111, 9.64434, 6.164433333333333, 4.842602614379085, 3.125, 4.479780446715881, 3.6925854166666676, 2.0606592592592596, 1.0746796296296297, 0.0), # 39 (12.335856508682596, 11.790389231824417, 10.295181755829903, 11.070862268518518, 8.962330430942014, 4.375, 4.830643306705398, 4.3792438271604945, 4.818996913580246, 2.3001577503429362, 1.6657578875171468, 0.9643575674439875, 0.0, 12.15, 10.60793324188386, 8.328789437585733, 6.900473251028807, 9.637993827160493, 6.1309413580246925, 4.830643306705398, 3.125, 4.481165215471007, 3.690287422839507, 2.059036351165981, 1.0718535665294926, 0.0), # 40 (12.343895146077754, 11.758125582990397, 10.286737997256516, 11.06366273148148, 8.96500303852456, 4.375, 4.818236649721617, 4.354580246913581, 4.81569049382716, 2.293749533607682, 1.6647397555804966, 0.9632317329675355, 0.0, 12.15, 10.595549062642888, 8.323698777902482, 6.881248600823045, 9.63138098765432, 6.096412345679013, 4.818236649721617, 3.125, 4.48250151926228, 3.6878875771604944, 2.0573475994513033, 1.0689205075445818, 0.0), # 41 (12.3516484695876, 11.724757407407406, 10.277981481481483, 11.056168750000001, 8.967578569339047, 4.375, 4.805411111111111, 4.32925, 4.812256666666666, 2.287138518518519, 1.663676430976431, 0.9620641975308644, 0.0, 12.15, 10.582706172839506, 8.318382154882155, 6.861415555555555, 9.624513333333333, 6.06095, 4.805411111111111, 3.125, 4.483789284669523, 3.6853895833333343, 2.055596296296297, 1.0658870370370372, 0.0), # 42 (12.35911552421987, 11.690357133058985, 10.268928669410151, 11.048391435185184, 8.970056876545122, 4.375, 4.7921951585572495, 4.3033271604938275, 4.80870135802469, 2.280340836762689, 1.6625691108617036, 0.9608571559213536, 0.0, 12.15, 10.569428715134888, 8.312845554308517, 6.841022510288067, 9.61740271604938, 6.024658024691359, 4.7921951585572495, 3.125, 4.485028438272561, 3.682797145061729, 2.0537857338820307, 1.062759739368999, 0.0), # 43 (12.366295354982311, 11.65499718792867, 10.259596021947875, 11.040341898148148, 8.972437813302435, 4.375, 4.778617259743403, 4.2768858024691365, 4.805030493827159, 2.2733726200274353, 1.6614189923930665, 0.9596128029263833, 0.0, 12.15, 10.555740832190216, 8.307094961965332, 6.820117860082305, 9.610060987654318, 5.987640123456791, 4.778617259743403, 3.125, 4.486218906651217, 3.6801139660493836, 2.0519192043895753, 1.0595451989026066, 0.0), # 44 (12.37318700688266, 11.618749999999999, 10.25, 11.03203125, 8.974721232770635, 4.375, 4.764705882352941, 4.25, 4.80125, 2.2662500000000003, 1.6602272727272729, 0.9583333333333333, 0.0, 12.15, 10.541666666666664, 8.301136363636363, 6.79875, 9.6025, 5.95, 4.764705882352941, 3.125, 4.487360616385318, 3.677343750000001, 2.0500000000000003, 1.0562500000000001, 0.0), # 45 (12.379789524928656, 11.581687997256516, 10.240157064471878, 11.023470601851852, 8.976906988109372, 4.375, 4.750489494069233, 4.222743827160494, 4.797365802469135, 2.258989108367627, 1.6589951490210748, 0.9570209419295841, 0.0, 12.15, 10.527230361225422, 8.294975745105374, 6.77696732510288, 9.59473160493827, 5.9118413580246925, 4.750489494069233, 3.125, 4.488453494054686, 3.6744902006172846, 2.048031412894376, 1.0528807270233198, 0.0), # 46 (12.386101954128042, 11.543883607681755, 10.230083676268862, 11.014671064814813, 8.978994932478294, 4.375, 4.7359965625756475, 4.195191358024691, 4.793383827160493, 2.2516060768175588, 1.657723818431226, 0.955677823502515, 0.0, 12.15, 10.512456058527663, 8.288619092156129, 6.754818230452675, 9.586767654320987, 5.873267901234568, 4.7359965625756475, 3.125, 4.489497466239147, 3.6715570216049387, 2.046016735253773, 1.049443964334705, 0.0), # 47 (12.392123339488554, 11.505409259259258, 10.219796296296296, 11.00564375, 8.980984919037049, 4.375, 4.7212555555555555, 4.167416666666667, 4.78931, 2.244117037037037, 1.656414478114478, 0.9543061728395063, 0.0, 12.15, 10.497367901234567, 8.28207239057239, 6.73235111111111, 9.57862, 5.834383333333334, 4.7212555555555555, 3.125, 4.490492459518524, 3.6685479166666677, 2.0439592592592595, 1.0459462962962964, 0.0), # 48 (12.397852726017943, 11.466337379972563, 10.209311385459534, 10.996399768518518, 8.982876800945284, 4.375, 4.706294940692326, 4.139493827160494, 4.78515024691358, 2.2365381207133064, 1.6550683252275846, 0.9529081847279379, 0.0, 12.15, 10.481990032007316, 8.275341626137923, 6.709614362139918, 9.57030049382716, 5.795291358024691, 4.706294940692326, 3.125, 4.491438400472642, 3.665466589506174, 2.0418622770919073, 1.0423943072702333, 0.0), # 49 (12.403289158723938, 11.426740397805213, 10.198645404663925, 10.986950231481481, 8.984670431362652, 4.375, 4.69114318566933, 4.111496913580247, 4.78091049382716, 2.228885459533608, 1.6536865569272978, 0.9514860539551899, 0.0, 12.15, 10.466346593507089, 8.268432784636488, 6.686656378600823, 9.56182098765432, 5.756095679012346, 4.69114318566933, 3.125, 4.492335215681326, 3.6623167438271613, 2.0397290809327853, 1.038794581618656, 0.0), # 50 (12.408431682614292, 11.38669074074074, 10.187814814814814, 10.977306249999998, 8.986365663448797, 4.375, 4.675828758169934, 4.0835, 4.776596666666666, 2.2211751851851855, 1.6522703703703707, 0.9500419753086421, 0.0, 12.15, 10.450461728395062, 8.261351851851853, 6.663525555555555, 9.553193333333333, 5.7169, 4.675828758169934, 3.125, 4.493182831724399, 3.659102083333334, 2.037562962962963, 1.0351537037037037, 0.0), # 51 (12.413279342696734, 11.34626083676269, 10.176836076817558, 10.967478935185184, 8.98796235036337, 4.375, 4.660380125877511, 4.055577160493827, 4.772214691358024, 2.2134234293552817, 1.6508209627135553, 0.9485781435756746, 0.0, 12.15, 10.434359579332419, 8.254104813567777, 6.640270288065844, 9.544429382716048, 5.677808024691357, 4.660380125877511, 3.125, 4.493981175181685, 3.655826311728396, 2.035367215363512, 1.0314782578875175, 0.0), # 52 (12.417831183979011, 11.305523113854596, 10.165725651577505, 10.957479398148147, 8.989460345266023, 4.375, 4.64482575647543, 4.0278024691358025, 4.767770493827161, 2.205646323731139, 1.6493395311136052, 0.9470967535436672, 0.0, 12.15, 10.418064288980338, 8.246697655568026, 6.616938971193416, 9.535540987654322, 5.638923456790124, 4.64482575647543, 3.125, 4.4947301726330116, 3.65249313271605, 2.0331451303155013, 1.0277748285322361, 0.0), # 53 (12.42208625146886, 11.26455, 10.154499999999999, 10.94731875, 8.9908595013164, 4.375, 4.629194117647058, 4.000249999999999, 4.7632699999999994, 2.1978600000000004, 1.6478272727272725, 0.9456, 0.0, 12.15, 10.401599999999998, 8.239136363636362, 6.593579999999999, 9.526539999999999, 5.60035, 4.629194117647058, 3.125, 4.4954297506582, 3.649106250000001, 2.0309, 1.0240500000000001, 0.0), # 54 (12.426043590174027, 11.223413923182441, 10.143175582990398, 10.93700810185185, 8.992159671674152, 4.375, 4.613513677075768, 3.9729938271604937, 4.758719135802469, 2.1900805898491087, 1.6462853847113108, 0.9440900777320531, 0.0, 12.15, 10.384990855052584, 8.231426923556553, 6.570241769547325, 9.517438271604938, 5.562191358024691, 4.613513677075768, 3.125, 4.496079835837076, 3.645669367283951, 2.02863511659808, 1.0203103566529494, 0.0), # 55 (12.429702245102245, 11.182187311385459, 10.131768861454047, 10.926558564814814, 8.993360709498926, 4.375, 4.597812902444929, 3.946108024691358, 4.754123827160494, 2.182324224965707, 1.6447150642224717, 0.9425691815272064, 0.0, 12.15, 10.368260996799268, 8.223575321112358, 6.54697267489712, 9.508247654320988, 5.524551234567902, 4.597812902444929, 3.125, 4.496680354749463, 3.6421861882716056, 2.02635377229081, 1.0165624828532238, 0.0), # 56 (12.433061261261258, 11.140942592592593, 10.120296296296297, 10.915981249999998, 8.994462467950372, 4.375, 4.582120261437908, 3.9196666666666675, 4.74949, 2.1746070370370374, 1.6431175084175085, 0.9410395061728396, 0.0, 12.15, 10.351434567901233, 8.215587542087542, 6.523821111111111, 9.49898, 5.487533333333334, 4.582120261437908, 3.125, 4.497231233975186, 3.638660416666667, 2.0240592592592597, 1.0128129629629632, 0.0), # 57 (12.436119683658815, 11.09975219478738, 10.108774348422497, 10.905287268518517, 8.995464800188138, 4.375, 4.5664642217380775, 3.8937438271604936, 4.744823580246913, 2.1669451577503436, 1.641493914453174, 0.939503246456333, 0.0, 12.15, 10.334535711019662, 8.20746957226587, 6.50083547325103, 9.489647160493826, 5.451241358024691, 4.5664642217380775, 3.125, 4.497732400094069, 3.6350957561728396, 2.0217548696844996, 1.0090683813443075, 0.0), # 58 (12.438876557302644, 11.05868854595336, 10.097219478737998, 10.89448773148148, 8.996367559371876, 4.375, 4.550873251028807, 3.868413580246914, 4.74013049382716, 2.1593547187928674, 1.63984547948622, 0.9379625971650665, 0.0, 12.15, 10.31758856881573, 8.1992273974311, 6.478064156378601, 9.48026098765432, 5.41577901234568, 4.550873251028807, 3.125, 4.498183779685938, 3.6314959104938276, 2.0194438957476, 1.0053353223593966, 0.0), # 59 (12.441330927200491, 11.017824074074072, 10.085648148148147, 10.88359375, 8.997170598661228, 4.375, 4.535375816993463, 3.84375, 4.735416666666667, 2.1518518518518523, 1.6381734006734008, 0.9364197530864199, 0.0, 12.15, 10.300617283950617, 8.190867003367003, 6.455555555555556, 9.470833333333333, 5.3812500000000005, 4.535375816993463, 3.125, 4.498585299330614, 3.6278645833333343, 2.0171296296296295, 1.0016203703703705, 0.0), # 60 (12.443481838360098, 10.977231207133059, 10.0740768175583, 10.872616435185183, 8.997873771215849, 4.375, 4.520000387315419, 3.819827160493827, 4.730688024691357, 2.1444526886145407, 1.6364788751714678, 0.9348769090077733, 0.0, 12.15, 10.283645999085506, 8.182394375857339, 6.4333580658436205, 9.461376049382714, 5.347758024691358, 4.520000387315419, 3.125, 4.498936885607924, 3.624205478395062, 2.0148153635116604, 0.9979301097393691, 0.0), # 61 (12.445328335789204, 10.936982373113853, 10.062521947873801, 10.861566898148148, 8.998476930195388, 4.375, 4.504775429678044, 3.796719135802469, 4.72595049382716, 2.137173360768176, 1.6347631001371743, 0.9333362597165068, 0.0, 12.15, 10.266698856881574, 8.17381550068587, 6.411520082304527, 9.45190098765432, 5.315406790123457, 4.504775429678044, 3.125, 4.499238465097694, 3.620522299382717, 2.0125043895747603, 0.9942711248285323, 0.0), # 62 (12.44686946449555, 10.897149999999998, 10.051, 10.85045625, 8.998979928759484, 4.375, 4.4897294117647055, 3.7745, 4.721209999999999, 2.13003, 1.6330272727272728, 0.9318000000000001, 0.0, 12.15, 10.249799999999999, 8.165136363636364, 6.390089999999999, 9.442419999999998, 5.2843, 4.4897294117647055, 3.125, 4.499489964379742, 3.616818750000001, 2.0102, 0.99065, 0.0), # 63 (12.448104269486876, 10.857806515775033, 10.039527434842249, 10.839295601851852, 8.999382620067799, 4.375, 4.474890801258775, 3.7532438271604947, 4.716472469135802, 2.123038737997257, 1.6312725900985157, 0.9302703246456334, 0.0, 12.15, 10.232973571101967, 8.156362950492579, 6.369116213991769, 9.432944938271604, 5.254541358024692, 4.474890801258775, 3.125, 4.499691310033899, 3.613098533950618, 2.00790548696845, 0.9870733196159123, 0.0), # 64 (12.449031795770926, 10.819024348422495, 10.0281207133059, 10.828096064814813, 8.999684857279973, 4.375, 4.4602880658436215, 3.7330246913580245, 4.711743827160493, 2.1162157064471883, 1.6295002494076571, 0.9287494284407863, 0.0, 12.15, 10.216243712848648, 8.147501247038285, 6.348647119341564, 9.423487654320986, 5.226234567901234, 4.4602880658436215, 3.125, 4.499842428639987, 3.609365354938272, 2.0056241426611803, 0.9835476680384088, 0.0), # 65 (12.449651088355436, 10.780875925925926, 10.016796296296297, 10.81686875, 8.999886493555657, 4.375, 4.445949673202614, 3.7139166666666674, 4.70703, 2.1095770370370373, 1.6277114478114478, 0.9272395061728398, 0.0, 12.15, 10.199634567901235, 8.138557239057238, 6.328731111111111, 9.41406, 5.199483333333334, 4.445949673202614, 3.125, 4.499943246777828, 3.6056229166666673, 2.0033592592592595, 0.9800796296296298, 0.0), # 66 (12.44996119224815, 10.743433676268861, 10.005570644718793, 10.805624768518516, 8.999987382054503, 4.375, 4.431904091019123, 3.695993827160495, 4.702336913580247, 2.103138861454047, 1.625907382466642, 0.9257427526291724, 0.0, 12.15, 10.183170278920894, 8.12953691233321, 6.30941658436214, 9.404673827160494, 5.1743913580246925, 4.431904091019123, 3.125, 4.499993691027251, 3.6018749228395066, 2.0011141289437586, 0.9766757887517148, 0.0), # 67 (12.44974993737699, 10.706573503252354, 9.994405949931412, 10.794277566425121, 8.999902364237876, 4.37491880810852, 4.418109116897788, 3.6791719250114308, 4.6976351394604485, 2.0968861324941503, 1.624057197708075, 0.9242530021899743, 0.0, 12.149850180041152, 10.166783024089716, 8.120285988540376, 6.290658397482449, 9.395270278920897, 5.1508406950160035, 4.418109116897788, 3.1249420057918, 4.499951182118938, 3.598092522141708, 1.9988811899862826, 0.9733248639320324, 0.0), # 68 (12.447770048309177, 10.669170071684588, 9.982988425925925, 10.782255163043477, 8.999128540305009, 4.374276954732511, 4.404160908807968, 3.6625493827160494, 4.692719135802469, 2.090641917211329, 1.621972567783094, 0.9227218973359325, 0.0, 12.148663194444444, 10.149940870695255, 8.10986283891547, 6.271925751633985, 9.385438271604938, 5.127569135802469, 4.404160908807968, 3.1244835390946504, 4.499564270152504, 3.5940850543478264, 1.996597685185185, 0.9699245519713263, 0.0), # 69 (12.443862945070673, 10.63105170582769, 9.971268432784635, 10.769478411835749, 8.997599451303152, 4.373012879134278, 4.389996080736822, 3.645976223136717, 4.687561156835848, 2.0843758573388205, 1.619629777305216, 0.921142276129281, 0.0, 12.14631880144033, 10.13256503742209, 8.09814888652608, 6.25312757201646, 9.375122313671696, 5.104366712391404, 4.389996080736822, 3.123580627953056, 4.498799725651576, 3.5898261372785836, 1.9942536865569274, 0.9664592459843356, 0.0), # 70 (12.438083592771514, 10.592241185450682, 9.959250085733881, 10.755966153381644, 8.995334463003308, 4.371147065996037, 4.375620995723392, 3.629457933241884, 4.682168884316415, 2.078088107802792, 1.6170374741567726, 0.9195152937212715, 0.0, 12.142847865226338, 10.114668230933985, 8.085187370783862, 6.234264323408375, 9.36433776863283, 5.081241106538638, 4.375620995723392, 3.1222479042828835, 4.497667231501654, 3.5853220511272155, 1.9918500171467763, 0.962931016859153, 0.0), # 71 (12.430486956521738, 10.552761290322579, 9.946937499999999, 10.74173722826087, 8.99235294117647, 4.3687000000000005, 4.3610420168067225, 3.6129999999999995, 4.67655, 2.071778823529412, 1.614204306220096, 0.917842105263158, 0.0, 12.13828125, 10.096263157894736, 8.07102153110048, 6.215336470588234, 9.3531, 5.058199999999999, 4.3610420168067225, 3.1205000000000003, 4.496176470588235, 3.5805790760869574, 1.9893874999999999, 0.959341935483871, 0.0), # 72 (12.421128001431383, 10.512634800212398, 9.934334790809327, 10.72681047705314, 8.98867425159364, 4.36569216582838, 4.346265507025855, 3.5966079103795154, 4.670712185642433, 2.0654481594448484, 1.6111389213775176, 0.916123865906192, 0.0, 12.132649819958848, 10.07736252496811, 8.055694606887588, 6.196344478334543, 9.341424371284866, 5.035251074531322, 4.346265507025855, 3.118351547020271, 4.49433712579682, 3.5756034923510476, 1.9868669581618656, 0.9556940727465817, 0.0), # 73 (12.410061692610485, 10.471884494889155, 9.921446073388202, 10.711204740338164, 8.984317760025819, 4.3621440481633895, 4.331297829419833, 3.5802871513488794, 4.664663122999542, 2.0590962704752687, 1.607849967511371, 0.9143617308016269, 0.0, 12.125984439300412, 10.057979038817894, 8.039249837556856, 6.177288811425805, 9.329326245999084, 5.012402011888431, 4.331297829419833, 3.115817177259564, 4.4921588800129095, 3.5704015801127222, 1.9842892146776405, 0.9519894995353778, 0.0), # 74 (12.397342995169081, 10.430533154121862, 9.908275462962962, 10.694938858695652, 8.97930283224401, 4.358076131687243, 4.3161453470277, 3.5640432098765435, 4.6584104938271595, 2.052723311546841, 1.604346092503987, 0.9125568551007147, 0.0, 12.118315972222222, 10.038125406107861, 8.021730462519935, 6.158169934640522, 9.316820987654319, 4.989660493827161, 4.3161453470277, 3.112911522633745, 4.489651416122005, 3.5649796195652184, 1.9816550925925924, 0.9482302867383512, 0.0), # 75 (12.383026874217212, 10.388603557679545, 9.894827074759945, 10.678031672705314, 8.973648834019203, 4.353508901082153, 4.300814422888497, 3.5478815729309554, 4.651961979881115, 2.046329437585734, 1.6006359442376985, 0.9107103939547083, 0.0, 12.10967528292181, 10.01781433350179, 8.003179721188491, 6.138988312757201, 9.30392395976223, 4.967034202103338, 4.300814422888497, 3.1096492150586803, 4.486824417009601, 3.5593438909017725, 1.978965414951989, 0.9444185052435952, 0.0), # 76 (12.367168294864912, 10.34611848533121, 9.881105024005485, 10.660502022946858, 8.967375131122406, 4.34846284103033, 4.285311420041268, 3.531807727480567, 4.645325262917238, 2.0399148035181156, 1.5967281705948373, 0.9088235025148608, 0.0, 12.10009323559671, 9.997058527663466, 7.983640852974187, 6.119744410554345, 9.290650525834476, 4.944530818472794, 4.285311420041268, 3.106044886450236, 4.483687565561203, 3.5535006743156203, 1.9762210048010973, 0.9405562259392011, 0.0), # 77 (12.349822222222222, 10.30310071684588, 9.867113425925925, 10.64236875, 8.960501089324618, 4.3429584362139915, 4.269642701525055, 3.5158271604938274, 4.638508024691357, 2.0334795642701526, 1.5926314194577353, 0.9068973359324239, 0.0, 12.089600694444444, 9.975870695256662, 7.963157097288676, 6.100438692810457, 9.277016049382715, 4.922158024691359, 4.269642701525055, 3.1021131687242796, 4.480250544662309, 3.5474562500000006, 1.9734226851851853, 0.9366455197132618, 0.0), # 78 (12.331043621399177, 10.259573031992566, 9.8528563957476, 10.623650694444443, 8.953046074396838, 4.337016171315348, 4.2538146303789, 3.4999453589391867, 4.631517946959304, 2.0270238747680143, 1.5883543387087244, 0.9049330493586505, 0.0, 12.07822852366255, 9.954263542945155, 7.941771693543622, 6.081071624304041, 9.263035893918609, 4.899923502514861, 4.2538146303789, 3.097868693796677, 4.476523037198419, 3.5412168981481487, 1.97057127914952, 0.9326884574538697, 0.0), # 79 (12.310887457505816, 10.215558210540289, 9.838338048696844, 10.604366696859904, 8.945029452110063, 4.330656531016613, 4.2378335696418485, 3.4841678097850943, 4.624362711476909, 2.0205478899378684, 1.5839055762301377, 0.9029317979447936, 0.0, 12.066007587448558, 9.932249777392729, 7.919527881150689, 6.061643669813604, 9.248725422953818, 4.877834933699132, 4.2378335696418485, 3.093326093583295, 4.4725147260550315, 3.5347888989533023, 1.967667609739369, 0.9286871100491174, 0.0), # 80 (12.289408695652174, 10.171079032258064, 9.8235625, 10.584535597826088, 8.936470588235293, 4.3239, 4.221705882352941, 3.4685000000000006, 4.617049999999999, 2.014051764705883, 1.5792937799043065, 0.9008947368421053, 0.0, 12.052968749999998, 9.909842105263158, 7.8964688995215315, 6.042155294117647, 9.234099999999998, 4.855900000000001, 4.221705882352941, 3.0885, 4.468235294117647, 3.5281785326086967, 1.9647125, 0.9246435483870968, 0.0), # 81 (12.26666230094829, 10.126158276914907, 9.808533864883403, 10.564176237922705, 8.927388848543531, 4.316767062947722, 4.205437931551222, 3.4529474165523544, 4.6095874942844075, 2.007535653998225, 1.5745275976135626, 0.8988230212018388, 0.0, 12.039142875514404, 9.887053233220225, 7.8726379880678135, 6.022606961994674, 9.219174988568815, 4.834126383173296, 4.205437931551222, 3.0834050449626584, 4.4636944242717655, 3.521392079307569, 1.9617067729766806, 0.9205598433559008, 0.0), # 82 (12.242703238504205, 10.080818724279835, 9.793256258573388, 10.543307457729467, 8.917803598805776, 4.30927820454199, 4.189036080275732, 3.4375155464106077, 4.6019828760859625, 2.0009997127410637, 1.569615677240239, 0.8967178061752463, 0.0, 12.0245608281893, 9.863895867927708, 7.848078386201194, 6.00299913822319, 9.203965752171925, 4.812521764974851, 4.189036080275732, 3.078055860387136, 4.458901799402888, 3.5144358192431566, 1.9586512517146777, 0.9164380658436215, 0.0), # 83 (12.21758647342995, 10.035083154121864, 9.777733796296296, 10.521948097826087, 8.907734204793028, 4.301453909465021, 4.1725066915655145, 3.4222098765432096, 4.5942438271604935, 1.994444095860567, 1.5645666666666667, 0.8945802469135803, 0.0, 12.009253472222222, 9.840382716049382, 7.8228333333333335, 5.9833322875817, 9.188487654320987, 4.791093827160494, 4.1725066915655145, 3.0724670781893004, 4.453867102396514, 3.5073160326086965, 1.9555467592592592, 0.9122802867383514, 0.0), # 84 (12.191366970835569, 9.988974346210009, 9.761970593278463, 10.500116998792272, 8.897200032276285, 4.293314662399025, 4.1558561284596145, 3.4070358939186103, 4.58637802926383, 1.9878689582829019, 1.5593892137751788, 0.8924114985680938, 0.0, 11.9932516718107, 9.81652648424903, 7.796946068875894, 5.963606874848704, 9.17275605852766, 4.769850251486054, 4.1558561284596145, 3.0666533302850176, 4.448600016138142, 3.500038999597425, 1.9523941186556926, 0.9080885769281828, 0.0), # 85 (12.164099695831096, 9.942515080313289, 9.745970764746229, 10.477833001207731, 8.886220447026545, 4.284880948026216, 4.139090753997072, 3.391999085505258, 4.578393164151806, 1.9812744549342376, 1.5540919664481068, 0.8902127162900394, 0.0, 11.976586291152262, 9.792339879190433, 7.770459832240534, 5.943823364802712, 9.156786328303612, 4.748798719707362, 4.139090753997072, 3.0606292485901543, 4.443110223513273, 3.4926110004025777, 1.9491941529492458, 0.9038650073012082, 0.0), # 86 (12.135839613526569, 9.895728136200717, 9.729738425925925, 10.455114945652172, 8.874814814814815, 4.276173251028807, 4.122216931216931, 3.3771049382716045, 4.570296913580247, 1.9746607407407408, 1.5486835725677832, 0.8879850552306694, 0.0, 11.959288194444444, 9.76783560753736, 7.743417862838915, 5.923982222222222, 9.140593827160494, 4.727946913580246, 4.122216931216931, 3.054409465020576, 4.437407407407408, 3.4850383152173916, 1.9459476851851853, 0.8996116487455198, 0.0), # 87 (12.106641689032028, 9.84863629364131, 9.713277692043896, 10.431981672705316, 8.863002501412087, 4.2672120560890106, 4.105241023158234, 3.3623589391860995, 4.562096959304984, 1.9680279706285808, 1.5431726800165397, 0.8857296705412365, 0.0, 11.941388245884776, 9.743026375953601, 7.715863400082698, 5.904083911885741, 9.124193918609969, 4.707302514860539, 4.105241023158234, 3.0480086114921505, 4.431501250706043, 3.477327224235106, 1.9426555384087794, 0.8953305721492102, 0.0), # 88 (12.076560887457505, 9.801262332404088, 9.696592678326475, 10.40845202294686, 8.850802872589364, 4.258017847889041, 4.088169392860024, 3.3477665752171926, 4.553800983081847, 1.9613762995239252, 1.537567936676709, 0.8834477173729935, 0.0, 11.922917309670781, 9.717924891102928, 7.687839683383544, 5.884128898571774, 9.107601966163694, 4.68687320530407, 4.088169392860024, 3.041441319920744, 4.425401436294682, 3.469484007648954, 1.9393185356652953, 0.8910238484003719, 0.0), # 89 (12.045652173913043, 9.753629032258065, 9.6796875, 10.384544836956522, 8.838235294117647, 4.248611111111111, 4.071008403361344, 3.333333333333333, 4.545416666666667, 1.9547058823529415, 1.5318779904306221, 0.881140350877193, 0.0, 11.90390625, 9.692543859649122, 7.65938995215311, 5.864117647058823, 9.090833333333334, 4.666666666666666, 4.071008403361344, 3.0347222222222223, 4.419117647058823, 3.461514945652175, 1.9359375, 0.8866935483870969, 0.0), # 90 (12.013970513508676, 9.705759172972254, 9.662566272290809, 10.360278955314012, 8.825319131767932, 4.239012330437433, 4.053764417701236, 3.319064700502972, 4.536951691815272, 1.948016874041798, 1.526111489160612, 0.8788087262050875, 0.0, 11.884385931069957, 9.66689598825596, 7.630557445803059, 5.844050622125392, 9.073903383630544, 4.646690580704161, 4.053764417701236, 3.027865950312452, 4.412659565883966, 3.4534263184380047, 1.9325132544581618, 0.8823417429974777, 0.0), # 91 (11.981570871354446, 9.657675534315677, 9.64523311042524, 10.335673218599032, 8.812073751311223, 4.2292419905502205, 4.036443798918745, 3.304966163694559, 4.528413740283494, 1.941309429516663, 1.5202770807490107, 0.8764539985079298, 0.0, 11.864387217078187, 9.640993983587226, 7.601385403745053, 5.823928288549988, 9.056827480566987, 4.626952629172383, 4.036443798918745, 3.0208871361073006, 4.406036875655611, 3.4452244061996784, 1.9290466220850482, 0.8779705031196072, 0.0), # 92 (11.948508212560386, 9.609400896057348, 9.62769212962963, 10.310746467391306, 8.798518518518518, 4.219320576131687, 4.01905291005291, 3.2910432098765434, 4.51981049382716, 1.9345837037037037, 1.5143834130781502, 0.8740773229369722, 0.0, 11.84394097222222, 9.614850552306692, 7.57191706539075, 5.80375111111111, 9.03962098765432, 4.607460493827161, 4.01905291005291, 3.0138004115226336, 4.399259259259259, 3.436915489130436, 1.925538425925926, 0.8735818996415772, 0.0), # 93 (11.914837502236535, 9.56095803796628, 9.609947445130317, 10.285517542270531, 8.784672799160816, 4.209268571864045, 4.0015981141427766, 3.277301326017376, 4.511149634202103, 1.9278398515290893, 1.5084391340303622, 0.8716798546434675, 0.0, 11.823078060699588, 9.588478401078142, 7.54219567015181, 5.783519554587267, 9.022299268404206, 4.588221856424326, 4.0015981141427766, 3.0066204084743178, 4.392336399580408, 3.4285058474235113, 1.9219894890260634, 0.8691780034514802, 0.0), # 94 (11.880613705492932, 9.512369739811495, 9.592003172153635, 10.260005283816424, 8.770555959009117, 4.199106462429508, 3.984085774227386, 3.2637459990855056, 4.5024388431641515, 1.9210780279189867, 1.5024528914879791, 0.869262748778668, 0.0, 11.801829346707818, 9.561890236565347, 7.512264457439896, 5.763234083756959, 9.004877686328303, 4.569244398719708, 3.984085774227386, 2.9993617588782198, 4.385277979504559, 3.4200017612721423, 1.9184006344307272, 0.8647608854374088, 0.0), # 95 (11.845891787439614, 9.463658781362009, 9.573863425925927, 10.234228532608697, 8.756187363834421, 4.188854732510288, 3.966522253345782, 3.250382716049383, 4.493685802469135, 1.9142983877995645, 1.4964333333333335, 0.8668271604938274, 0.0, 11.780225694444445, 9.5350987654321, 7.482166666666667, 5.742895163398693, 8.98737160493827, 4.5505358024691365, 3.966522253345782, 2.9920390946502056, 4.3780936819172105, 3.411409510869566, 1.9147726851851854, 0.8603326164874555, 0.0), # 96 (11.810726713186616, 9.414847942386832, 9.555532321673525, 10.208206129227051, 8.74158637940773, 4.178533866788599, 3.948913914537008, 3.237216963877458, 4.484898193872885, 1.9075010860969905, 1.4903891074487565, 0.864374244940197, 0.0, 11.758297968106996, 9.508116694342165, 7.451945537243782, 5.7225032582909705, 8.96979638774577, 4.532103749428441, 3.948913914537008, 2.984667047706142, 4.370793189703865, 3.402735376409018, 1.911106464334705, 0.8558952674897121, 0.0), # 97 (11.775173447843981, 9.365960002654985, 9.53701397462277, 10.181956914251208, 8.72677237150004, 4.168164349946655, 3.931267120840105, 3.22425422953818, 4.476083699131229, 1.9006862777374327, 1.484328861716581, 0.8619051572690299, 0.0, 11.736077031893004, 9.480956729959328, 7.421644308582906, 5.702058833212297, 8.952167398262459, 4.513955921353452, 3.931267120840105, 2.9772602499618963, 4.36338618575002, 3.3939856380837368, 1.9074027949245542, 0.8514509093322715, 0.0), # 98 (11.739286956521738, 9.317017741935484, 9.5183125, 10.15549972826087, 8.711764705882352, 4.157766666666667, 3.913588235294118, 3.2115, 4.46725, 1.893854117647059, 1.4782612440191387, 0.859421052631579, 0.0, 11.71359375, 9.453631578947368, 7.391306220095694, 5.681562352941175, 8.9345, 4.4961, 3.913588235294118, 2.9698333333333333, 4.355882352941176, 3.385166576086957, 1.9036625000000003, 0.8470016129032258, 0.0), # 99 (11.703122204329933, 9.268043939997343, 9.49943201303155, 10.128853411835749, 8.696582748325667, 4.147361301630848, 3.895883620938087, 3.1989597622313672, 4.458404778235025, 1.8870047607520377, 1.4721949022387621, 0.8569230861790968, 0.0, 11.690878986625515, 9.426153947970063, 7.36097451119381, 5.661014282256112, 8.91680955647005, 4.4785436671239145, 3.895883620938087, 2.9624009297363205, 4.348291374162834, 3.376284470611917, 1.89988640260631, 0.8425494490906678, 0.0), # 100 (11.6667341563786, 9.219061376609584, 9.480376628943759, 10.102036805555556, 8.681245864600983, 4.136968739521414, 3.878159640811057, 3.1866390032007312, 4.449555715592135, 1.8801383619785366, 1.4661384842577825, 0.8544124130628354, 0.0, 11.667963605967076, 9.398536543691188, 7.330692421288911, 5.640415085935608, 8.89911143118427, 4.461294604481024, 3.878159640811057, 2.9549776710867244, 4.340622932300492, 3.367345601851853, 1.8960753257887522, 0.8380964887826896, 0.0), # 101 (11.630177777777778, 9.170092831541218, 9.461150462962962, 10.07506875, 8.665773420479303, 4.126609465020577, 3.8604226579520695, 3.174543209876543, 4.44071049382716, 1.8732550762527238, 1.4601006379585326, 0.8518901884340482, 0.0, 11.644878472222222, 9.37079207277453, 7.300503189792663, 5.61976522875817, 8.88142098765432, 4.44436049382716, 3.8604226579520695, 2.947578189300412, 4.332886710239651, 3.358356250000001, 1.8922300925925928, 0.8336448028673837, 0.0), # 102 (11.593508033637502, 9.121161084561264, 9.4417576303155, 10.047968085748792, 8.650184781731623, 4.116303962810547, 3.842679035400168, 3.162677869227252, 4.43187679469593, 1.8663550585007669, 1.4540900112233446, 0.8493575674439874, 0.0, 11.621654449588474, 9.342933241883859, 7.270450056116723, 5.599065175502299, 8.86375358939186, 4.427749016918153, 3.842679035400168, 2.940217116293248, 4.325092390865811, 3.3493226952495982, 1.8883515260631, 0.8291964622328422, 0.0), # 103 (11.556779889067812, 9.072288915438735, 9.422202246227709, 10.020753653381641, 8.634499314128943, 4.10607271757354, 3.8249351361943953, 3.151048468221308, 4.423062299954275, 1.8594384636488344, 1.44811525193455, 0.8468157052439055, 0.0, 11.598322402263374, 9.314972757682959, 7.24057625967275, 5.578315390946502, 8.84612459990855, 4.411467855509831, 3.8249351361943953, 2.9329090839811003, 4.317249657064472, 3.3402512177938815, 1.884440449245542, 0.8247535377671579, 0.0), # 104 (11.520048309178742, 9.023499103942651, 9.402488425925926, 9.99344429347826, 8.618736383442265, 4.09593621399177, 3.8071973233737944, 3.1396604938271606, 4.414274691358024, 1.8525054466230941, 1.4421850079744816, 0.8442657569850553, 0.0, 11.574913194444443, 9.286923326835607, 7.210925039872408, 5.557516339869281, 8.828549382716048, 4.395524691358025, 3.8071973233737944, 2.9256687242798356, 4.309368191721132, 3.331148097826088, 1.8804976851851853, 0.8203181003584229, 0.0), # 105 (11.483368259080336, 8.974814429842029, 9.382620284636488, 9.966058846618358, 8.602915355442589, 4.0859149367474465, 3.7894719599774067, 3.12851943301326, 4.405521650663008, 1.8455561623497139, 1.436307927225471, 0.8417088778186895, 0.0, 11.551457690329217, 9.258797656005584, 7.181539636127354, 5.53666848704914, 8.811043301326016, 4.379927206218564, 3.7894719599774067, 2.918510669105319, 4.301457677721294, 3.3220196155394537, 1.8765240569272976, 0.81589222089473, 0.0), # 106 (11.446794703882626, 8.926257672905882, 9.362601937585735, 9.938616153381641, 8.58705559590091, 4.076029370522787, 3.7717654090442765, 3.117630772748057, 4.396810859625057, 1.838590765754862, 1.4304926575698504, 0.8391462228960604, 0.0, 11.527986754115226, 9.230608451856664, 7.152463287849251, 5.515772297264585, 8.793621719250114, 4.36468308184728, 3.7717654090442765, 2.911449550373419, 4.293527797950455, 3.312872051127215, 1.8725203875171472, 0.8114779702641711, 0.0), # 107 (11.410382608695652, 8.877851612903227, 9.3424375, 9.911135054347826, 8.571176470588235, 4.0663, 3.7540840336134447, 3.107, 4.3881499999999996, 1.8316094117647064, 1.4247478468899522, 0.8365789473684213, 0.0, 11.504531250000001, 9.202368421052633, 7.12373923444976, 5.494828235294118, 8.776299999999999, 4.3498, 3.7540840336134447, 2.9045, 4.285588235294117, 3.3037116847826096, 1.8684875000000005, 0.8070774193548388, 0.0), # 108 (11.374186938629451, 8.82961902960308, 9.322131087105625, 9.883634390096615, 8.555297345275559, 4.056747309861302, 3.7364341967239567, 3.0966326017375403, 4.379546753543667, 1.8246122553054145, 1.4190821430681082, 0.8340082063870239, 0.0, 11.48112204218107, 9.174090270257262, 7.09541071534054, 5.473836765916242, 8.759093507087334, 4.335285642432557, 3.7364341967239567, 2.8976766499009297, 4.277648672637779, 3.294544796698873, 1.864426217421125, 0.8026926390548256, 0.0), # 109 (11.338262658794058, 8.78158270277446, 9.301686814128946, 9.85613300120773, 8.539437585733882, 4.047391784788904, 3.7188222614148536, 3.0865340649291264, 4.371008802011888, 1.8175994513031553, 1.4135041939866502, 0.8314351551031215, 0.0, 11.457789994855966, 9.145786706134334, 7.067520969933251, 5.452798353909465, 8.742017604023776, 4.321147690900777, 3.7188222614148536, 2.8909941319920742, 4.269718792866941, 3.2853776670692443, 1.8603373628257893, 0.7983257002522237, 0.0), # 110 (11.302664734299517, 8.733765412186381, 9.281108796296298, 9.82864972826087, 8.523616557734204, 4.038253909465022, 3.7012545907251786, 3.0767098765432097, 4.3625438271604935, 1.8105711546840961, 1.4080226475279107, 0.8288609486679663, 0.0, 11.434565972222222, 9.117470435347629, 7.040113237639553, 5.431713464052287, 8.725087654320987, 4.307393827160493, 3.7012545907251786, 2.8844670781893007, 4.261808278867102, 3.2762165760869575, 1.8562217592592598, 0.7939786738351257, 0.0), # 111 (11.26744813025586, 8.686189937607857, 9.26040114883402, 9.801203411835749, 8.507853627047526, 4.029354168571865, 3.6837375476939744, 3.0671655235482396, 4.354159510745312, 1.803527520374405, 1.402646151574222, 0.8262867422328111, 0.0, 11.411480838477365, 9.08915416456092, 7.013230757871109, 5.4105825611232135, 8.708319021490624, 4.294031732967535, 3.6837375476939744, 2.8781101204084747, 4.253926813523763, 3.2670678039452503, 1.8520802297668042, 0.7896536306916234, 0.0), # 112 (11.232605068443652, 8.638958480664547, 9.239617828252069, 9.773850494242836, 8.492140544138962, 4.02070883845016, 3.6663155781940615, 3.057926284390303, 4.3458851245034475, 1.7964914209838192, 1.3973847812305735, 0.8237192936504428, 0.0, 11.388532681011865, 9.06091223015487, 6.9869239061528665, 5.389474262951456, 8.691770249006895, 4.281096798146424, 3.6663155781940615, 2.8719348846072568, 4.246070272069481, 3.257950164747613, 1.8479235656504138, 0.7853598618785952, 0.0), # 113 (11.197777077480078, 8.592536901878088, 9.219045675021619, 9.746810479149604, 8.47631468365306, 4.012298225970931, 3.649210925046347, 3.04910562975256, 4.337847614285224, 1.7895945503738353, 1.3922488674226394, 0.8211912172112975, 0.0, 11.365530496992042, 9.033103389324271, 6.961244337113197, 5.368783651121505, 8.675695228570447, 4.268747881653584, 3.649210925046347, 2.8659273042649507, 4.23815734182653, 3.248936826383202, 1.8438091350043238, 0.7811397183525536, 0.0), # 114 (11.162861883604794, 8.546941918551349, 9.198696932707318, 9.7200760546636, 8.46032614231088, 4.004100458749136, 3.6324357901149367, 3.0407013271393546, 4.330049991467515, 1.7828475983964234, 1.3872309022854188, 0.8187037582558852, 0.0, 11.342407957992451, 9.005741340814735, 6.936154511427093, 5.348542795189269, 8.66009998293503, 4.256981857995097, 3.6324357901149367, 2.8600717562493823, 4.23016307115544, 3.2400253515545345, 1.8397393865414637, 0.7769947198683046, 0.0), # 115 (11.127815847885161, 8.502107109420871, 9.178532189983873, 9.693599535239764, 8.444150821107023, 3.9960962141009686, 3.6159628905167356, 3.0326901564494966, 4.322472535691132, 1.7762380075348645, 1.3823211862542963, 0.8162523197487347, 0.0, 11.319128711707068, 8.97877551723608, 6.911605931271482, 5.328714022604592, 8.644945071382264, 4.245766219029295, 3.6159628905167356, 2.854354438643549, 4.222075410553511, 3.231199845079922, 1.835706437996775, 0.7729188281291702, 0.0), # 116 (11.092595331388527, 8.457966053223192, 9.158512035525986, 9.66733323533302, 8.427764621036088, 3.988266169342624, 3.5997649433686516, 3.0250488975817924, 4.315095526596881, 1.769753220272439, 1.3775100197646568, 0.8138323046543751, 0.0, 11.295656405829869, 8.952155351198124, 6.887550098823283, 5.309259660817316, 8.630191053193762, 4.23506845661451, 3.5997649433686516, 2.8487615495304452, 4.213882310518044, 3.222444411777674, 1.8317024071051975, 0.768906004838472, 0.0), # 117 (11.057156695182252, 8.414452328694855, 9.138597058008367, 9.6412294693983, 8.411143443092673, 3.980591001790297, 3.583814665787589, 3.0177543304350483, 4.307899243825574, 1.7633806790924282, 1.3727877032518847, 0.811439115937335, 0.0, 11.271954688054828, 8.925830275310684, 6.863938516259424, 5.290142037277283, 8.615798487651148, 4.224856062609067, 3.583814665787589, 2.843279286993069, 4.205571721546336, 3.213743156466101, 1.8277194116016737, 0.7649502116995325, 0.0), # 118 (11.02145630033369, 8.3714995145724, 9.118747846105723, 9.615240551890535, 8.394263188271376, 3.973051388760183, 3.5680847748904534, 3.0107832349080725, 4.300863967018017, 1.757107826478112, 1.3681445371513656, 0.8090681565621435, 0.0, 11.247987206075917, 8.899749722183577, 6.840722685756828, 5.271323479434335, 8.601727934036035, 4.215096528871301, 3.5680847748904534, 2.8378938491144163, 4.197131594135688, 3.2050801839635126, 1.8237495692211447, 0.761045410415673, 0.0), # 119 (10.985450507910194, 8.329041189592374, 9.098924988492762, 9.589318797264655, 8.377099757566796, 3.965628007568476, 3.5525479877941515, 3.0041123908996714, 4.293969975815023, 1.7509221049127721, 1.3635708218984832, 0.8067148294933297, 0.0, 11.223717607587115, 8.873863124426626, 6.817854109492416, 5.252766314738315, 8.587939951630046, 4.20575734725954, 3.5525479877941515, 2.8325914339774827, 4.188549878783398, 3.1964395990882193, 1.8197849976985525, 0.7571855626902159, 0.0), # 120 (10.949095678979122, 8.287010932491311, 9.079089073844187, 9.56341651997559, 8.359629051973535, 3.9583015355313718, 3.5371770216155882, 2.9977185783086533, 4.2871975498573995, 1.7448109568796892, 1.3590568579286233, 0.8043745376954222, 0.0, 11.199109540282393, 8.848119914649644, 6.795284289643115, 5.234432870639067, 8.574395099714799, 4.196806009632114, 3.5371770216155882, 2.8273582396652652, 4.179814525986767, 3.1878055066585307, 1.8158178147688375, 0.753364630226483, 0.0), # 121 (10.912348174607825, 8.245342322005756, 9.059200690834711, 9.537486034478269, 8.341826972486187, 3.951052649965064, 3.5219445934716704, 2.9915785770338243, 4.2805269687859555, 1.7387618248621435, 1.3545929456771704, 0.8020426841329501, 0.0, 11.174126651855724, 8.82246952546245, 6.772964728385852, 5.216285474586429, 8.561053937571911, 4.1882100078473545, 3.5219445934716704, 2.8221804642607595, 4.170913486243093, 3.1791620114927572, 1.8118401381669422, 0.7495765747277962, 0.0), # 122 (10.875164355863662, 8.20396893687225, 9.039220428139036, 9.511479655227625, 8.323669420099352, 3.9438620281857477, 3.506823420479303, 2.9856691669739917, 4.273938512241501, 1.7327621513434166, 1.3501693855795087, 0.7997146717704421, 0.0, 11.148732590001085, 8.796861389474863, 6.750846927897544, 5.1982864540302485, 8.547877024483002, 4.1799368337635885, 3.506823420479303, 2.8170443058469625, 4.161834710049676, 3.170493218409209, 1.8078440856278073, 0.7458153578974774, 0.0), # 123 (10.837500583813984, 8.162824355827334, 9.01910887443187, 9.485349696678588, 8.30513229580763, 3.9367103475096172, 3.4917862197553915, 2.979967128027963, 4.267412459864846, 1.7267993788067886, 1.345776478071024, 0.7973859035724276, 0.0, 11.122891002412453, 8.771244939296702, 6.728882390355119, 5.180398136420364, 8.534824919729692, 4.171953979239149, 3.4917862197553915, 2.8119359625068694, 4.152566147903815, 3.1617832322261967, 1.803821774886374, 0.7420749414388487, 0.0), # 124 (10.79931321952615, 8.121842157607551, 8.998826618387923, 9.459048473286083, 8.286191500605618, 3.9295782852528696, 3.4768057084168436, 2.9744492400945455, 4.260929091296797, 1.7208609497355405, 1.3414045235871004, 0.7950517825034348, 0.0, 11.096565536783794, 8.745569607537782, 6.707022617935502, 5.16258284920662, 8.521858182593594, 4.164228936132364, 3.4768057084168436, 2.806841632323478, 4.143095750302809, 3.153016157762029, 1.799765323677585, 0.7383492870552321, 0.0), # 125 (10.760558624067514, 8.080955920949442, 8.978334248681898, 9.432528299505048, 8.266822935487914, 3.9224465187316975, 3.461854603580562, 2.969092283072546, 4.254468686178167, 1.7149343066129532, 1.3370438225631227, 0.7927077115279934, 0.0, 11.069719840809094, 8.719784826807926, 6.685219112815614, 5.144802919838858, 8.508937372356334, 4.156729196301565, 3.461854603580562, 2.801747513379784, 4.133411467743957, 3.144176099835017, 1.79566684973638, 0.7346323564499494, 0.0), # 126 (10.721193158505432, 8.040099224589545, 8.957592353988504, 9.405741489790408, 8.247002501449117, 3.915295725262296, 3.4469056223634564, 2.9638730368607726, 4.248011524149763, 1.7090068919223076, 1.3326846754344757, 0.7903490936106315, 0.0, 11.042317562182317, 8.693840029716947, 6.6634233771723785, 5.127020675766921, 8.496023048299525, 4.149422251605082, 3.4469056223634564, 2.7966398037587825, 4.1235012507245585, 3.1352471632634704, 1.7915184707977012, 0.7309181113263225, 0.0), # 127 (10.681173183907255, 7.999205647264407, 8.93656152298245, 9.3786403585971, 8.226706099483831, 3.908106582160861, 3.431931481882429, 2.958768281358031, 4.241537884852393, 1.703066148146884, 1.328317382636545, 0.7879713317158789, 0.0, 11.014322348597444, 8.667684648874667, 6.641586913182724, 5.109198444440651, 8.483075769704786, 4.1422755939012434, 3.431931481882429, 2.791504701543472, 4.1133530497419155, 3.1262134528657004, 1.7873123045964903, 0.7272005133876734, 0.0), # 128 (10.640455061340337, 7.958208767710564, 8.91520234433844, 9.351177220380043, 8.205909630586648, 3.9008597667435865, 3.4169048992543876, 2.95375479646313, 4.235028047926869, 1.697099517769964, 1.3239322446047141, 0.7855698288082636, 0.0, 10.985697847748446, 8.641268116890899, 6.619661223023571, 5.0912985533098905, 8.470056095853739, 4.135256715048382, 3.4169048992543876, 2.7863284048168473, 4.102954815293324, 3.117059073460015, 1.783040468867688, 0.7234735243373241, 0.0), # 129 (10.598995151872039, 7.917042164664562, 8.893475406731179, 9.323304389594178, 8.18458899575217, 3.893535956326666, 3.4017985915962377, 2.948809362074875, 4.228462293014, 1.6910944432748274, 1.3195195617743691, 0.7831399878523152, 0.0, 10.956407707329298, 8.614539866375466, 6.5975978088718445, 5.073283329824481, 8.456924586028, 4.128333106904826, 3.4017985915962377, 2.781097111661904, 4.092294497876085, 3.1077681298647266, 1.7786950813462359, 0.7197311058785967, 0.0), # 130 (10.556749816569713, 7.8756394168629384, 8.87134129883538, 9.294974180694428, 8.162720095974995, 3.886115828226296, 3.3865852760248853, 2.943908758092075, 4.221820899754594, 1.685038367144756, 1.3150696345808937, 0.7806772118125626, 0.0, 10.926415575033973, 8.587449329938186, 6.575348172904468, 5.055115101434266, 8.443641799509187, 4.121472261328905, 3.3865852760248853, 2.77579702016164, 4.081360047987498, 3.0983247268981433, 1.7742682597670765, 0.7159672197148127, 0.0), # 131 (10.51367541650071, 7.833934103042237, 8.848760609325746, 9.266138908135728, 8.140278832249722, 3.878580059758672, 3.3712376696572353, 2.9390297644135366, 4.215084147789462, 1.6789187318630299, 1.310572763459673, 0.7781769036535342, 0.0, 10.89568509855645, 8.559945940188875, 6.552863817298364, 5.0367561955890885, 8.430168295578923, 4.114641670178951, 3.3712376696572353, 2.770414328399051, 4.070139416124861, 3.088712969378577, 1.7697521218651495, 0.7121758275492944, 0.0), # 132 (10.469728312732395, 7.791859801938998, 8.825693926876983, 9.236750886373006, 8.117241105570947, 3.870909328239987, 3.3557284896101933, 2.934149160938066, 4.2082323167594105, 1.67272297991293, 1.306019248846092, 0.7756344663397593, 0.0, 10.864179925590703, 8.531979129737351, 6.53009624423046, 5.018168939738788, 8.416464633518821, 4.107808825313293, 3.3557284896101933, 2.764935234457133, 4.058620552785474, 3.078916962124336, 1.765138785375397, 0.7083508910853636, 0.0), # 133 (10.424864866332113, 7.749350092289764, 8.802101840163804, 9.206762429861191, 8.093582816933273, 3.863084310986436, 3.3400304530006673, 2.929243727564472, 4.201245686305251, 1.6664385537777375, 1.3013993911755357, 0.7730453028357667, 0.0, 10.831863703830699, 8.503498331193432, 6.506996955877678, 4.9993156613332115, 8.402491372610502, 4.100941218590261, 3.3400304530006673, 2.7593459364188826, 4.046791408466636, 3.0689208099537315, 1.7604203680327608, 0.7044863720263422, 0.0), # 134 (10.379041438367224, 7.706338552831077, 8.777944937860909, 9.17612585305522, 8.069279867331296, 3.8550856853142146, 3.3241162769455603, 2.92429024419156, 4.194104536067791, 1.6600528959407332, 1.2967034908833885, 0.7704048161060852, 0.0, 10.798700080970423, 8.474452977166937, 6.483517454416942, 4.980158687822199, 8.388209072135583, 4.094006341868184, 3.3241162769455603, 2.753632632367296, 4.034639933665648, 3.0587086176850744, 1.755588987572182, 0.7005762320755525, 0.0), # 135 (10.332214389905081, 7.6627587622994735, 8.753183808643008, 9.144793470410015, 8.044308157759612, 3.8468941285395175, 3.3079586785617807, 2.9192654907181383, 4.186789145687842, 1.653553448885197, 1.2919218484050357, 0.7677084091152441, 0.0, 10.764652704703844, 8.444792500267685, 6.459609242025177, 4.96066034665559, 8.373578291375685, 4.086971687005394, 3.3079586785617807, 2.7477815203853697, 4.022154078879806, 3.0482644901366727, 1.750636761728602, 0.6966144329363159, 0.0), # 136 (10.28434008201304, 7.618544299431501, 8.72777904118481, 9.112717596380511, 8.018643589212827, 3.838490317978539, 3.291530374966233, 2.9141462470430146, 4.179279794806213, 1.6469276550944107, 1.2870447641758613, 0.764951484827772, 0.0, 10.729685222724932, 8.41446633310549, 6.435223820879306, 4.940782965283231, 8.358559589612426, 4.079804745860221, 3.291530374966233, 2.741778798556099, 4.0093217946064135, 3.037572532126838, 1.7455558082369622, 0.6925949363119547, 0.0), # 137 (10.235374875758456, 7.573628742963698, 8.701691224161017, 9.079850545421637, 7.992262062685534, 3.8298549309474748, 3.2748040832758227, 2.908909293064995, 4.1715567630637125, 1.6401629570516543, 1.2820625386312503, 0.7621294462081979, 0.0, 10.693761282727667, 8.383423908290176, 6.410312693156252, 4.920488871154961, 8.343113526127425, 4.0724730102909925, 3.2748040832758227, 2.735610664962482, 3.996131031342767, 3.02661684847388, 1.7403382448322038, 0.6885117039057909, 0.0), # 138 (10.185275132208682, 7.527945671632606, 8.67488094624634, 9.046144631988323, 7.965139479172331, 3.8209686447625186, 3.2577525206074553, 2.903531408682887, 4.163600330101148, 1.6332467972402094, 1.276965472206588, 0.7592376962210506, 0.0, 10.656844532406023, 8.351614658431556, 6.38482736103294, 4.899740391720627, 8.327200660202296, 4.064943972156042, 3.2577525206074553, 2.729263317687513, 3.9825697395861654, 3.0153815439961082, 1.7349761892492683, 0.6843586974211461, 0.0), # 139 (10.133997212431076, 7.481428664174767, 8.647308796115487, 9.011552170535499, 7.937251739667823, 3.811812136739866, 3.240348404078038, 2.897989373795498, 4.155390775559333, 1.626166618143356, 1.2717438653372588, 0.7562716378308593, 0.0, 10.618898619453978, 8.31898801613945, 6.358719326686294, 4.878499854430067, 8.310781551118666, 4.0571851233136975, 3.240348404078038, 2.7227229548141896, 3.9686258698339114, 3.003850723511834, 1.7294617592230976, 0.6801298785613425, 0.0), # 140 (10.081497477492995, 7.4340112993267216, 8.61893536244316, 8.976025475518098, 7.908574745166602, 3.802366084195711, 3.222564450804477, 2.892259968301635, 4.146908379079072, 1.6189098622443758, 1.2663880184586478, 0.7532266740021526, 0.0, 10.579887191565495, 8.285493414023676, 6.331940092293238, 4.856729586733126, 8.293816758158144, 4.049163955622289, 3.222564450804477, 2.7159757744255075, 3.954287372583301, 2.9920084918393663, 1.7237870724886322, 0.675819209029702, 0.0), # 141 (10.027732288461786, 7.385627155825012, 8.58972123390407, 8.939516861391049, 7.879084396663268, 3.792611164446249, 3.2043733779036754, 2.8863199721001056, 4.138133420301177, 1.6114639720265487, 1.2608882320061394, 0.7500982076994595, 0.0, 10.539773896434559, 8.251080284694053, 6.304441160030697, 4.834391916079644, 8.276266840602354, 4.040847960940148, 3.2043733779036754, 2.7090079746044635, 3.939542198331634, 2.9798389537970165, 1.7179442467808141, 0.6714206505295467, 0.0), # 142 (9.972658006404808, 7.336209812406179, 8.559626999172925, 8.901978642609278, 7.848756595152423, 3.7825280548076745, 3.185747902492541, 2.880146165089716, 4.129046178866458, 1.6038163899731561, 1.2552348064151186, 0.746881641887309, 0.0, 10.49852238175514, 8.215698060760397, 6.276174032075593, 4.811449169919467, 8.258092357732917, 4.032204631125603, 3.185747902492541, 2.701805753434053, 3.9243782975762116, 2.967326214203093, 1.7119253998345851, 0.6669281647641981, 0.0), # 143 (9.916230992389421, 7.285692847806764, 8.528613246924428, 8.86336313362772, 7.817567241628662, 3.772097432596183, 3.1666607416879793, 2.8737153271692746, 4.119626934415724, 1.5959545585674784, 1.2494180421209704, 0.7435723795302299, 0.0, 10.456096295221217, 8.179296174832528, 6.247090210604851, 4.787863675702434, 8.239253868831447, 4.023201458036985, 3.1666607416879793, 2.6943553089972734, 3.908783620814331, 2.954454377875907, 1.7057226493848856, 0.6623357134369786, 0.0), # 144 (9.858407607482972, 7.234009840763308, 8.496640565833289, 8.823622648901305, 7.785492237086586, 3.7612999751279688, 3.147084612606896, 2.867004238237588, 4.109855966589781, 1.5878659202927967, 1.2434282395590792, 0.7401658235927514, 0.0, 10.41245928452676, 8.141824059520264, 6.217141197795395, 4.763597760878389, 8.219711933179562, 4.013805933532623, 3.147084612606896, 2.6866428393771202, 3.892746118543293, 2.9412075496337686, 1.699328113166658, 0.6576372582512099, 0.0), # 145 (9.79914421275282, 7.181094370012356, 8.463669544574216, 8.782709502884963, 7.752507482520793, 3.750116359719226, 3.126992232366198, 2.8599896781934633, 4.099713555029442, 1.5795379176323916, 1.2372556991648298, 0.7366573770394019, 0.0, 10.367574997365741, 8.103231147433421, 6.186278495824149, 4.738613752897173, 8.199427110058885, 4.0039855494708485, 3.126992232366198, 2.67865454265659, 3.8762537412603963, 2.927569834294988, 1.6927339089148434, 0.6528267609102142, 0.0), # 146 (9.73839716926632, 7.126880014290443, 8.42966077182191, 8.740576010033621, 7.71858887892588, 3.7385272636861506, 3.1063563180827884, 2.8526484269357075, 4.0891799793755155, 1.570957993069544, 1.2308907213736073, 0.7330424428347111, 0.0, 10.321407081432142, 8.06346687118182, 6.154453606868036, 4.712873979208631, 8.178359958751031, 3.9937077977099906, 3.1063563180827884, 2.670376616918679, 3.85929443946294, 2.9135253366778744, 1.6859321543643822, 0.6478981831173131, 0.0), # 147 (9.676122838090825, 7.071300352334116, 8.394574836251083, 8.697174484802217, 7.6837123272964485, 3.726513364344937, 3.085149586873576, 2.8449572643631287, 4.078235519268811, 1.5621135890875346, 1.2243236066207965, 0.729316423943207, 0.0, 10.27391918441993, 8.022480663375276, 6.1216180331039824, 4.686340767262602, 8.156471038537623, 3.9829401701083804, 3.085149586873576, 2.6617952602463837, 3.8418561636482242, 2.899058161600739, 1.6789149672502168, 0.6428454865758287, 0.0), # 148 (9.612277580293695, 7.014288962879912, 8.358372326536443, 8.652457241645672, 7.647853728627096, 3.71405533901178, 3.0633447558554643, 2.8368929703745334, 4.0668604543501345, 1.5529921481696445, 1.2175446553417821, 0.7254747233294191, 0.0, 10.225074954023084, 7.980221956623609, 6.08772327670891, 4.658976444508932, 8.133720908700269, 3.971650158524347, 3.0633447558554643, 2.6528966707226997, 3.823926864313548, 2.8841524138818913, 1.671674465307289, 0.637662632989083, 0.0), # 149 (9.546817756942277, 6.955779424664377, 8.321013831352694, 8.606376595018924, 7.610988983912421, 3.7011338650028747, 3.04091454214536, 2.828432324868728, 4.0550350642603, 1.5435811127991534, 1.2105441679719486, 0.7215127439578762, 0.0, 10.174838037935576, 7.936640183536638, 6.0527208398597425, 4.630743338397459, 8.1100701285206, 3.95980525481622, 3.04091454214536, 2.6436670464306244, 3.8054944919562104, 2.8687921983396416, 1.6642027662705388, 0.632343584060398, 0.0), # 150 (9.47969972910393, 6.895705316424048, 8.282459939374542, 8.558884859376896, 7.573093994147021, 3.6877296196344136, 3.01783166286017, 2.8195521077445216, 4.042739628640115, 1.5338679254593437, 1.203312444946681, 0.7174258887931072, 0.0, 10.123172083851381, 7.891684776724178, 6.016562224733405, 4.601603776378029, 8.08547925728023, 3.9473729508423303, 3.01783166286017, 2.6340925854531525, 3.7865469970735104, 2.8529616197922993, 1.6564919878749085, 0.6268823014930954, 0.0), # 151 (9.41087985784601, 6.83400021689547, 8.242671239276701, 8.509934349174525, 7.534144660325495, 3.6738232802225945, 2.9940688351167988, 2.8102290989007206, 4.029954427130388, 1.5238400286334952, 1.1958397867013644, 0.713209560799641, 0.0, 10.070040739464476, 7.84530516879605, 5.979198933506821, 4.5715200859004845, 8.059908854260776, 3.9343207384610093, 2.9940688351167988, 2.6241594858732817, 3.7670723301627476, 2.836644783058176, 1.6485342478553402, 0.6212727469904974, 0.0), # 152 (9.340314504235872, 6.770597704815181, 8.201608319733868, 8.459477378866739, 7.4941168834424445, 3.659395524083611, 2.9695987760321514, 2.800440078236131, 4.016659739371929, 1.513484864804889, 1.1881164936713833, 0.7088591629420063, 0.0, 10.015407652468832, 7.797450792362069, 5.940582468356916, 4.5404545944146655, 8.033319478743858, 3.9206161095305836, 2.9695987760321514, 2.6138539457740078, 3.7470584417212223, 2.81982579295558, 1.6403216639467737, 0.6155088822559257, 0.0), # 153 (9.267960029340873, 6.705431358919725, 8.159231769420758, 8.407466262908468, 7.4529865644924636, 3.644427028533658, 2.944394202723137, 2.7901618256495615, 4.002835845005546, 1.5027898764568062, 1.1801328662921224, 0.7043700981847325, 0.0, 9.959236470558428, 7.748071080032056, 5.900664331460612, 4.508369629370417, 8.005671690011091, 3.9062265559093863, 2.944394202723137, 2.603162163238327, 3.7264932822462318, 2.802488754302823, 1.631846353884152, 0.6095846689927024, 0.0), # 154 (9.193772794228362, 6.638434757945644, 8.115502177012075, 8.35385331575464, 7.4107296044701565, 3.62889847088893, 2.9184278323066564, 2.779371121039818, 3.988463023672051, 1.4917425060725265, 1.1718792049989668, 0.6997377694923482, 0.0, 9.901490841427231, 7.6971154644158295, 5.859396024994833, 4.4752275182175785, 7.976926047344102, 3.8911195694557454, 2.9184278323066564, 2.5920703363492357, 3.7053648022350782, 2.7846177719182137, 1.6231004354024152, 0.6034940689041496, 0.0), # 155 (9.117709159965697, 6.569541480629476, 8.070380131182526, 8.298590851860187, 7.367321904370117, 3.612790528465623, 2.8916723818996197, 2.7680447443057092, 3.9735215550122502, 1.480330196135332, 1.163345810227301, 0.6949575798293822, 0.0, 9.842134412769221, 7.644533378123204, 5.816729051136504, 4.440990588405995, 7.9470431100245005, 3.875262642027993, 2.8916723818996197, 2.5805646631897305, 3.6836609521850585, 2.766196950620063, 1.6140760262365055, 0.5972310436935888, 0.0), # 156 (9.039725487620235, 6.498685105707764, 8.023826220606818, 8.241631185680044, 7.322739365186948, 3.59608387857993, 2.864100568618931, 2.756159475346041, 3.957991718666955, 1.4685403891285025, 1.1545229824125098, 0.6900249321603636, 0.0, 9.781130832278372, 7.590274253763999, 5.772614912062549, 4.405621167385506, 7.91598343733391, 3.8586232654844577, 2.864100568618931, 2.568631341842807, 3.661369682593474, 2.7472103952266815, 1.6047652441213638, 0.5907895550643424, 0.0), # 157 (8.957617135686286, 6.424498432849483, 7.973591953902356, 8.180792623486118, 7.274944884696797, 3.5777171334219773, 2.8350640325567142, 2.742898476174686, 3.9406648366396384, 1.4560097748873433, 1.1451191505077887, 0.6847599564194339, 0.0, 9.715783031298415, 7.532359520613772, 5.7255957525389425, 4.368029324662029, 7.881329673279277, 3.840057866644561, 2.8350640325567142, 2.555512238158555, 3.6374724423483986, 2.7269308744953733, 1.5947183907804712, 0.5840453120772259, 0.0), # 158 (8.858744120374082, 6.3393718515594255, 7.906737818402987, 8.103579442909608, 7.212153047825302, 3.551582753604972, 2.8009276580314295, 2.7236067663821912, 3.9145709044888575, 1.4406842982296237, 1.133483387123799, 0.6781362523683109, 0.0, 9.630513176304232, 7.459498776051419, 5.667416935618994, 4.322052894688871, 7.829141808977715, 3.813049472935068, 2.8009276580314295, 2.5368448240035515, 3.606076523912651, 2.7011931476365363, 1.5813475636805976, 0.5763065319599479, 0.0), # 159 (8.741846513885172, 6.242606401394785, 7.821920957955889, 8.008719759367974, 7.133136105077435, 3.517038907233379, 2.7613462490302703, 2.6977995947636733, 3.8789700908914604, 1.4223616955588683, 1.119451901721908, 0.6700501948887847, 0.0, 9.523704730672296, 7.370552143776631, 5.59725950860954, 4.267085086676604, 7.757940181782921, 3.7769194326691427, 2.7613462490302703, 2.512170648023842, 3.5665680525387176, 2.669573253122658, 1.5643841915911778, 0.5675096728540715, 0.0), # 160 (8.607866465503152, 6.134832954888515, 7.7200469719103095, 7.897115253381055, 7.038714499425689, 3.4745040690992197, 2.716608867604126, 2.66580026655489, 3.8343319067996067, 1.4011974579512814, 1.1031483309199415, 0.6605767468907572, 0.0, 9.396448853782916, 7.266344215798328, 5.515741654599707, 4.203592373853843, 7.668663813599213, 3.7321203731768464, 2.716608867604126, 2.481788620785157, 3.5193572497128445, 2.632371751127019, 1.5440093943820619, 0.557712086808047, 0.0), # 161 (8.457746124511628, 6.016682384573562, 7.602021459615496, 7.769667605468694, 6.929708673842563, 3.424396713994519, 2.6670045758038854, 2.627932086991601, 3.781125863165454, 1.3773470764830695, 1.0846963113357242, 0.6497908712841294, 0.0, 9.2498367050164, 7.147699584125422, 5.42348155667862, 4.132041229449208, 7.562251726330908, 3.6791049217882414, 2.6670045758038854, 2.4459976528532277, 3.4648543369212814, 2.5898892018228983, 1.5204042919230993, 0.5469711258703239, 0.0), # 162 (8.292427640194196, 5.888785562982875, 7.468750020420702, 7.6272784961507405, 6.806939071300549, 3.367135316711301, 2.61282243568044, 2.5845183613095624, 3.719821470941162, 1.3509660422304377, 1.0642194795870819, 0.6377675309788032, 0.0, 9.084959443753055, 7.015442840766835, 5.321097397935408, 4.052898126691312, 7.439642941882324, 3.6183257058333878, 2.61282243568044, 2.405096654793786, 3.4034695356502747, 2.5424261653835805, 1.4937500040841403, 0.5353441420893524, 0.0), # 163 (8.11285316183446, 5.751773362649402, 7.321138253675176, 7.470849605947036, 6.67122613477215, 3.3031383520415907, 2.5543515092846794, 2.5358823947445344, 3.650888241078889, 1.3222098462695906, 1.0418414722918394, 0.6245816888846804, 0.0, 8.902908229373192, 6.870398577731482, 5.209207361459196, 3.966629538808771, 7.301776482157778, 3.550235352642348, 2.5543515092846794, 2.3593845371725646, 3.335613067386075, 2.4902832019823458, 1.4642276507350354, 0.5228884875135821, 0.0), # 164 (7.9199648387160195, 5.606276656106095, 7.160091758728169, 7.301282615377426, 6.5233903072298585, 3.2328242947774104, 2.491880858667493, 2.482347492532273, 3.5747956845307916, 1.2912339796767343, 1.0176859260678224, 0.610308307911662, 0.0, 8.704774221257123, 6.713391387028281, 5.088429630339111, 3.873701939030202, 7.149591369061583, 3.4752864895451823, 2.491880858667493, 2.309160210555293, 3.2616951536149292, 2.433760871792476, 1.432018351745634, 0.5096615141914632, 0.0), # 165 (7.714704820122476, 5.452926315885899, 6.9865161349289275, 7.119479204961751, 6.364252031646171, 3.156611619710786, 2.4256995458797714, 2.4242369599085385, 3.492013312249029, 1.2581939335280738, 0.9918764775328559, 0.5950223509696502, 0.0, 8.491648578785155, 6.545245860666151, 4.959382387664279, 3.7745818005842207, 6.984026624498058, 3.393931743871954, 2.4256995458797714, 2.254722585507704, 3.1821260158230853, 2.373159734987251, 1.3973032269857855, 0.4957205741714455, 0.0), # 166 (7.498015255337426, 5.292353214521765, 6.801316981626705, 6.926341055219858, 6.194631750993583, 3.074918801633741, 2.3560966329724047, 2.361874102109088, 3.403010635185759, 1.2232451988998143, 0.9645367633047655, 0.5787987809685459, 0.0, 8.264622461337595, 6.366786590654004, 4.822683816523827, 3.669735596699442, 6.806021270371518, 3.3066237429527234, 2.3560966329724047, 2.196370572595529, 3.0973158754967915, 2.308780351739953, 1.360263396325341, 0.4811230195019787, 0.0), # 167 (7.2708382936444735, 5.125188224546641, 6.605399898170748, 6.722769846671591, 6.015349908244593, 2.9881643153382993, 2.2833611819962822, 2.2955822243696797, 3.308257164293142, 1.1865432668681617, 0.9357904200013762, 0.5617125608182512, 0.0, 8.024787028294753, 6.178838169000762, 4.678952100006881, 3.559629800604484, 6.616514328586284, 3.2138151141175517, 2.2833611819962822, 2.1344030823844995, 3.0076749541222965, 2.2409232822238643, 1.3210799796341497, 0.46592620223151293, 0.0), # 168 (7.034116084327218, 4.952062218493477, 6.399670483910309, 6.509667259836794, 5.827226946371695, 2.8967666356164865, 2.2077822550022947, 2.2256846319260726, 3.2082224105233346, 1.1482436285093212, 0.9057610842405137, 0.5438386534286673, 0.0, 7.773233439036942, 5.982225187715339, 4.528805421202568, 3.444730885527963, 6.416444821046669, 3.1159584846965016, 2.2077822550022947, 2.0691190254403473, 2.9136134731858476, 2.1698890866122653, 1.2799340967820618, 0.450187474408498, 0.0), # 169 (6.78879077666926, 4.773606068895221, 6.185034338194635, 6.2879349752353075, 5.631083308347386, 2.8011442372603246, 2.1296489140413315, 2.1525046300140236, 3.103375884828495, 1.1085017748994974, 0.8745723926400033, 0.525252021709696, 0.0, 7.5110528529444665, 5.777772238806654, 4.372861963200016, 3.325505324698492, 6.20675176965699, 3.013506482019633, 2.1296489140413315, 2.0008173123288033, 2.815541654173693, 2.0959783250784363, 1.2370068676389272, 0.4339641880813838, 0.0), # 170 (6.5358045199542, 4.59045064828482, 5.962397060372978, 6.058474673386982, 5.427739437144163, 2.701715595061839, 2.049250221164283, 2.0763655238692915, 2.994187098160782, 1.0674731971148967, 0.8423479818176697, 0.5060276285712387, 0.0, 7.239336429397638, 5.566303914283624, 4.211739909088348, 3.2024195913446896, 5.988374196321564, 2.906911733417008, 2.049250221164283, 1.9297968536155994, 2.7138697185720817, 2.019491557795661, 1.1924794120745956, 0.4173136952986201, 0.0), # 171 (6.276099463465638, 4.403226829195226, 5.7326642497945866, 5.822188034811656, 5.218015775734522, 2.5988991838130535, 1.9668752384220392, 1.9975906187276353, 2.881125561472354, 1.025313386231724, 0.8092114883913387, 0.4862404369231972, 0.0, 6.959175327776763, 5.348644806155168, 4.046057441956694, 3.075940158695172, 5.762251122944708, 2.7966268662186895, 1.9668752384220392, 1.8563565598664666, 2.609007887867261, 1.9407293449372194, 1.1465328499589174, 0.40029334810865697, 0.0), # 172 (6.010617756487176, 4.212565484159386, 5.4967415058087115, 5.579976740029178, 5.002732767090961, 2.4931134783059927, 1.8828130278654898, 1.916503219824812, 2.7646607857153684, 0.9821778333261846, 0.7752865489788355, 0.4659654096754725, 0.0, 6.671660707462155, 5.125619506430197, 3.8764327448941778, 2.9465334999785533, 5.529321571430737, 2.6831045077547366, 1.8828130278654898, 1.7807953416471376, 2.5013663835454807, 1.859992246676393, 1.0993483011617424, 0.38296049855994424, 0.0), # 173 (5.740301548302412, 4.019097485710249, 5.2555344277646014, 5.332742469559387, 4.782710854185972, 2.3847769533326795, 1.7973526515455251, 1.8334266323965802, 2.645262281841985, 0.9382220294744842, 0.7406968001979856, 0.44527750973796687, 0.0, 6.37788372783412, 4.898052607117634, 3.7034840009899272, 2.814666088423452, 5.29052456368397, 2.5667972853552126, 1.7973526515455251, 1.7034121095233423, 2.391355427092986, 1.7775808231864625, 1.0511068855529204, 0.3653724987009318, 0.0), # 174 (5.466092988194946, 3.823453706380764, 5.009948615011508, 5.08138690392213, 4.558770479992055, 2.2743080836851397, 1.7107831715130346, 1.748684161678698, 2.5233995608043616, 0.8936014657528275, 0.7055658786666139, 0.4242517000205815, 0.0, 6.078935548272969, 4.666768700226395, 3.5278293933330693, 2.680804397258482, 5.046799121608723, 2.4481578263501773, 1.7107831715130346, 1.6245057740608142, 2.2793852399960275, 1.6937956346407106, 1.0019897230023018, 0.3475867005800695, 0.0), # 175 (5.188934225448382, 3.62626501870388, 4.760889666898678, 4.8268117236372525, 4.331732087481704, 2.1621253441553967, 1.6233936498189088, 1.6625991129069244, 2.3995421335546565, 0.8484716332374204, 0.670017421002546, 0.4029629434332179, 0.0, 5.7759073281590085, 4.432592377765396, 3.35008710501273, 2.5454148997122603, 4.799084267109313, 2.327638758069694, 1.6233936498189088, 1.5443752458252833, 2.165866043740852, 1.6089372412124179, 0.9521779333797357, 0.3296604562458073, 0.0), # 176 (4.909767409346319, 3.4281622952125463, 4.5092631827753635, 4.569918609224595, 4.102416119627418, 2.0486472095354746, 1.5354731485140374, 1.5754947913170163, 2.2741595110450277, 0.8029880230044676, 0.6341750638236071, 0.3814862028857779, 0.0, 5.4698902268725496, 4.196348231743556, 3.1708753191180357, 2.408964069013402, 4.548319022090055, 2.2056927078438227, 1.5354731485140374, 1.4633194353824817, 2.051208059813709, 1.5233062030748654, 0.9018526365550728, 0.31165111774659515, 0.0), # 177 (4.629534689172356, 3.2297764084397107, 4.255974761990814, 4.311609241204004, 3.8716430194016906, 1.9342921546173981, 1.4473107296493104, 1.4876945021447328, 2.147721204227634, 0.7573061261301752, 0.5981624437476226, 0.3598964412881627, 0.0, 5.161975403793902, 3.958860854169789, 2.9908122187381125, 2.271918378390525, 4.295442408455268, 2.082772303002626, 1.4473107296493104, 1.3816372532981414, 1.9358215097008453, 1.437203080401335, 0.8511949523981628, 0.29361603713088286, 0.0), # 178 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 179 ) passenger_allighting_rate = ( (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 0 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 1 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 2 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 3 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 4 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 5 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 6 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 7 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 8 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 9 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 10 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 11 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 12 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 13 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 14 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 15 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 16 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 17 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 18 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 19 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 20 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 21 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 22 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 23 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 24 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 25 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 26 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 27 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 28 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 29 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 30 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 31 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 32 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 33 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 34 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 35 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 36 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 37 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 38 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 39 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 40 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 41 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 42 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 43 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 44 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 45 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 46 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 47 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 48 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 49 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 50 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 51 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 52 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 53 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 54 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 55 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 56 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 57 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 58 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 59 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 60 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 61 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 62 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 63 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 64 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 65 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 66 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 67 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 68 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 69 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 70 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 71 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 72 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 73 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 74 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 75 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 76 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 77 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 78 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 79 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 80 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 81 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 82 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 83 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 84 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 85 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 86 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 87 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 88 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 89 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 90 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 91 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 92 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 93 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 94 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 95 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 96 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 97 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 98 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 99 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 100 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 101 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 102 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 103 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 104 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 105 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 106 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 107 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 108 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 109 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 110 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 111 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 112 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 113 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 114 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 115 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 116 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 117 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 118 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 119 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 120 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 121 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 122 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 123 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 124 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 125 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 126 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 127 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 128 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 129 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 130 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 131 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 132 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 133 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 134 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 135 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 136 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 137 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 138 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 139 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 140 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 141 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 142 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 143 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 144 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 145 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 146 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 147 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 148 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 149 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 150 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 151 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 152 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 153 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 154 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 155 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 156 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 157 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 158 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 159 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 160 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 161 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 162 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 163 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 164 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 165 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 166 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 167 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 168 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 169 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 170 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 171 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 172 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 173 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 174 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 175 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 176 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 177 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 178 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 179 ) """ parameters for reproducibiliy. More information: https://numpy.org/doc/stable/reference/random/parallel.html """ #initial entropy entropy = 8991598675325360468762009371570610170 #index for seed sequence child child_seed_index = ( 1, # 0 53, # 1 )
from sqlalchemy import Column, Integer, String, Sequence, Boolean, ForeignKey from app.models.base import * class Returns(Base): __tablename__ = 'returns' id = Column(Integer, primary_key=True) returned = Column(Boolean) date = Column(String(255)) tool_condition = Column(String(33000), nullable=False) booking_id = Column(Integer, ForeignKey('booking.id'), nullable=False) def __repr__(self): return str(self.__dict__)
""" Testing for the base all_in_bottom strategy class """ import pytest as pt import pandas as pd import lib.base_strategy as bs from specific_strategies import all_in_bottom from test_all_tests import get_test_data_path def test_all_in_bottom_start_min(): """ Test that having a min at the start returns expected results """ # Set default buy size to be 10k starting_usd = 10000 # Seconds in a day seconds_in_a_day = 60*60*24 # Number of days days = 1 # Turns days into seconds days = days*seconds_in_a_day price_df = pd.read_csv(get_test_data_path('test_start_min_end_max')) all_in_bottom_strategy = all_in_bottom.base_all_in_bottom( starting_usd=starting_usd, time_between_action=days, price_period_name='test_start_min_end_max', price_df=price_df, save_results=False ) all_in_bottom_strategy.run_logic() # begin tests # make sure we are at the end of the time period assert all_in_bottom_strategy.current_time == all_in_bottom_strategy.price_df['timestamp'].values[-1] assert all_in_bottom_strategy.current_index == all_in_bottom_strategy.price_df.index[-1] # we should start with no USD left assert all_in_bottom_strategy.returns_df['# of USD'].iloc[0] == 0 # we should always end up with no USD left assert all_in_bottom_strategy.current_usd == 0 # make sure we end up with the expected amount of ETH expected_eth = 297.6119 assert bs.unfrac(all_in_bottom_strategy.current_eth) == expected_eth def test_all_in_bottom_end_max(): """ Test that having a max at the end returns expected results """ # Set default buy size to be 10k starting_usd = 10000 # Seconds in a day seconds_in_a_day = 60*60*24 # Number of days days = 1 # Turns days into seconds days = days*seconds_in_a_day price_df = pd.read_csv(get_test_data_path('test_start_max_end_min')) all_in_bottom_strategy = all_in_bottom.base_all_in_bottom( starting_usd=starting_usd, time_between_action=days, price_period_name='test_start_max_end_min', price_df=price_df, save_results=False ) all_in_bottom_strategy.run_logic() # begin tests # make sure we are at the end of the time period assert all_in_bottom_strategy.current_time == all_in_bottom_strategy.price_df['timestamp'].values[-1] assert all_in_bottom_strategy.current_index == all_in_bottom_strategy.price_df.index[-1] # we should always end up with no USD left assert all_in_bottom_strategy.current_usd == 0 # make sure we end up with the expected amount of ETH expected_eth = 297.6119 assert bs.unfrac(all_in_bottom_strategy.current_eth) == expected_eth def test_all_in_bottom_middle_max(): """ Test that having a max in the middle returns expected results Uses test_month.csv as data. """ # Set default buy size to be 10k starting_usd = 10000 # Seconds in a day seconds_in_a_day = 60*60*24 # Number of days days = .5 # Turns days into seconds days = days*seconds_in_a_day price_df = pd.read_csv(get_test_data_path('test_month')) all_in_bottom_strategy = all_in_bottom.base_all_in_bottom( starting_usd=starting_usd, time_between_action=days, price_period_name='test_month', price_df=price_df, save_results=False ) all_in_bottom_strategy.run_logic() # begin tests # make sure we are at the end of the time period assert all_in_bottom_strategy.current_time == all_in_bottom_strategy.price_df['timestamp'].values[-1] assert all_in_bottom_strategy.current_index == all_in_bottom_strategy.price_df.index[-1] # we should always end up with no USD left assert all_in_bottom_strategy.current_usd == 0 # make sure we end up with the expected amount of ETH expected_eth = 13.6629 assert bs.unfrac(all_in_bottom_strategy.current_eth) == expected_eth if __name__ == "__main__": pt.main(['tests/test_all_in_bottom.py'])
#!/usr/bin/env python # Copyright 2017 The LUCI Authors. All rights reserved. # Use of this source code is governed under the Apache License, Version 2.0 # that can be found in the LICENSE file. import sys def main(argv): with open(argv[2], 'w') as f: f.write(argv[1]) return 0 if __name__ == '__main__': sys.exit(main(sys.argv))
import asyncio import logging import sys from crawler.api import create_app from crawler.config import Config from structlog import get_logger config = Config() logging.basicConfig( format="%(message)s", stream=sys.stdout, level=config.LOG_LEVEL.upper() ) logger = get_logger() logger.debug("config:", config=config) loop = asyncio.get_event_loop() app = create_app(config, loop)
import os import re from flaskr.models.file import createFile from flaskr.models.word import createOrUpdateWord class FileToDBService: file_name = None file_content = None word_list = [] def setFileName(self, file_name): self.file_name = file_name def setFileContent(self, content): self.file_content = content def setWords(self): if self.file_content is not None: self.parseFileContent() self.createDB() def saveFromFile(self): if self.file_name is not None: self.readFile() self.setWords() self.removeFile() def readFile(self): file = open(self.file_name, "r") self.file_content = file.read() file.close() def removeFile(self): os.remove(self.file_name) def parseFileContent(self): self.word_list = re.sub(r'[^a-ząćęłńóśźżĄĆĘŁŃÓŚŹŻA-Z0-9\n ]', r'', self.file_content).split() def createDB(self): file = createFile(self.file_name) for word in self.word_list: if len(word) >= 2: createOrUpdateWord(word=word, file=file)
import keras.applications as kapp from keras.preprocessing.image import ImageDataGenerator import os import data_tools as dt import numpy as np import keras.utils from keras.models import Model from keras.layers.core import Dense from keras.layers import GlobalAveragePooling2D from keras_retinanet.preprocessing.csv_generator import CSVGenerator from keras_retinanet.bin import train as kr_train from keras_retinanet.callbacks import RedirectModel from keras.callbacks import ModelCheckpoint from keras.callbacks import TensorBoard from keras.callbacks import ReduceLROnPlateau from keras.models import load_model import cv2 import pickle class ModelConfig: def __init__(self, model_type, input_shape, num_classes, weights, task='classification', backbone=None): if task == 'classification': self.model_struct = model_struct(model_type, input_shape, num_classes, weights) elif task == 'detection': if model_type == 'retinanet': if backbone: self.backbone = backbone else: print('No backbone given') return class TrainingConfig: def __init__(self, model_type, ): return def model_param(model_type): """Returns compilation parameters for each model type""" return { 'densenet121': (32, 'categorical_crossentropy', 'adam', ['accuracy']), 'densenet169': (32, 'categorical_crossentropy', 'adam', ['accuracy']), 'densenet201': (32, 'categorical_crossentropy', 'adam', ['accuracy']), 'mobilenet': (32, 'categorical_crossentropy', 'adam', ['accuracy']), 'mobilenetv2': (32, 'categorical_crossentropy', 'adam', ['accuracy']), 'nasnet': (32, 'categorical_crossentropy', 'adam', ['accuracy']), 'resnet50': (32, 'categorical_crossentropy', 'adam', ['accuracy']), 'vgg16': (32, 'categorical_crossentropy', 'adam', ['accuracy']), 'vgg19': (32, 'categorical_crossentropy', 'adam', ['accuracy']), }[model_type] def model_struct(model_type, input_shape, classes, weights=None, include_top=True): """ Initializes a model instance. :param model_type: :param input_shape: :param classes: int Number of classes :param weights: weights file for initialisation :return: instance of /model_type/ """ if model_type == 'densenet121': return kapp.densenet.DenseNet121(include_top=include_top, weights=weights, input_tensor=None, input_shape=input_shape, pooling=None, classes=classes) elif model_type == 'densenet169': return kapp.densenet.DenseNet169(include_top=include_top, weights=weights, input_tensor=None, input_shape=input_shape, pooling=None, classes=classes) elif model_type == 'densenet201': return kapp.densenet.DenseNet201(include_top=include_top, weights=weights, input_tensor=None, input_shape=input_shape, pooling=None, classes=classes) elif model_type == 'mobilenet': return kapp.mobilenet.MobileNet(include_top=include_top, weights=weights, input_tensor=None, input_shape=input_shape, pooling=None, classes=classes) elif model_type == 'mobilenetv2': return kapp.mobilenet_v2.MobileNetV2(include_top=include_top, weights=weights, input_tensor=None, input_shape=input_shape, pooling=None, classes=classes) elif model_type == 'nasnet': return kapp.nasnet.NASNetMobile(include_top=include_top, weights=weights, input_tensor=None, input_shape=input_shape, pooling=None, classes=classes) elif model_type == 'resnet50': return kapp.resnet50.ResNet50(include_top=include_top, weights=weights, input_tensor=None, input_shape=input_shape, pooling=None, classes=classes) elif model_type == 'vgg16': return kapp.vgg16.VGG16(include_top=include_top, weights=weights, input_tensor=None, input_shape=input_shape, pooling=None, classes=classes) elif model_type == 'vgg19': return kapp.vgg19.VGG19(include_top=include_top, weights=weights, input_tensor=None, input_shape=input_shape, pooling=None, classes=classes) def load_imagenet_model(model_type): """ Loads an ImageNet model instance :param model_type: :return: Model instance and preprocess input function """ if model_type == 'densenet121': return kapp.densenet.DenseNet121(), kapp.densenet.preprocess_input elif model_type == 'densenet169': return kapp.densenet.DenseNet169(), kapp.densenet.preprocess_input elif model_type == 'densenet201': return kapp.densenet.DenseNet201(), kapp.densenet.preprocess_input elif model_type == 'mobilenet': return kapp.mobilenet.MobileNet(), kapp.mobilenet.preprocess_input elif model_type == 'mobilenetv2': return kapp.mobilenet_v2.MobileNetV2(), kapp.mobilenet_v2.preprocess_input elif model_type == 'nasnet': return kapp.nasnet.NASNetMobile(), kapp.nasnet.preprocess_input elif model_type == 'resnet50': return kapp.resnet50.ResNet50(), kapp.resnet50.preprocess_input elif model_type == 'vgg16': return kapp.vgg16.VGG16(), kapp.vgg16.preprocess_input elif model_type == 'vgg19': return kapp.vgg19.VGG19(), kapp.vgg19.preprocess_input # def format_data(train_data, test_data, num_classes): # (x_train, y_train), (x_test, y_test) = train_data, test_data # x_train = x_train.astype('float32') # x_test = x_test.astype('float32') # x_train /= 255 # x_test /= 255 # y_train = utils.to_categorical(y_train, num_classes) # y_test = utils.to_categorical(y_test, num_classes) # return (x_train, y_train), (x_test, y_test) def train_and_save(model, epochs, data_augmentation, weight_file, train_data, val_data, batch_size, regression=False): """ Trains a model. Saves the best weights only cf. ModelCheckpoint callback. :param model: Compiled model to train :param epochs: int Number of epochs :param data_augmentation: bool for real-time data augmentation :param weight_file: name of the weight file :param train_data: :param val_data: :param batch_size: :param regression: :return: None """ (x_train, y_train) = dt.format_data(train_data, 10) (x_val, y_val) = dt.format_data(val_data, 10) if regression: # For regression y_val = val_data[1] y_train = train_data[1] checkpoint = ModelCheckpoint( weight_file, monitor='val_acc', verbose=0, save_best_only=True, save_weights_only=True, mode='auto' ) if not data_augmentation: print('Not using data augmentation.') model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_val, y_val), verbose=0, shuffle=True, callbacks=[checkpoint] ) else: print('Using real-time data augmentation.') # This will do preprocessing and realtime data augmentation: datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by dataset std samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening zca_epsilon=1e-06, # epsilon for ZCA whitening rotation_range=0, # randomly rotate images in 0 to 180 degrees width_shift_range=0.1, # randomly shift images horizontally height_shift_range=0.1, # randomly shift images vertically shear_range=0., # set range for random shear zoom_range=0., # set range for random zoom channel_shift_range=0., # set range for random channel shifts # set mode for filling points outside the input boundaries fill_mode='nearest', cval=0., # value used for fill_mode = "constant" horizontal_flip=True, # randomly flip images vertical_flip=False, # randomly flip images # set rescaling factor (applied before any other transformation) rescale=None, # set function that will be applied on each input preprocessing_function=None, # image data format, either "channels_first" or "channels_last" data_format=None, # fraction of images reserved for validation (strictly between 0 and 1) validation_split=0.0) # Compute quantities required for feature-wise normalization # (std, mean, and principal components if ZCA whitening is applied). datagen.fit(x_train) # Fit the model on the batches generated by datagen.flow(). model.fit_generator( datagen.flow(x_train, y_train, batch_size=batch_size), epochs=epochs, validation_data=(x_val, y_val), workers=4, verbose=0, steps_per_epoch=(50000 / batch_size), callbacks=[checkpoint] ) # score = model.evaluate(x_val, y_val, verbose=0) # print('Test loss:', score[0]) # print('Val accuracy:', score[1]) # model.save_weights(weight_file) def weight_file_name(model_type, tag, epochs, data_augmentation, prefix='', suffix=''): """ Standard for weight file name :param model_type: :param tag: :param epochs: :param data_augmentation: :param prefix: :param suffix: :return: Name of the weight file """ name = "_".join((model_type, tag, str(epochs)+'ep', 'wda' if data_augmentation else 'woda')) if prefix: name = prefix + "_" + name if suffix: name += "_" + suffix print('###---> ' + name + ' <---###') weight_file = name + '.h5' return weight_file def ft_weight_file_name(model_name, ft_data_augmentation, ft_epochs, nametag): """ Builds the model weight file's name according to parameters :param model_name: :param ft_data_augmentation: bool :param ft_epochs: int Number of epochs :param nametag: extra tag for version :return: weight file's name """ if ft_data_augmentation is True: # With DataAugmentation ft_model_name = model_name + '_ftwda' + str(ft_epochs) + 'ep-' + nametag else: # WithOut DataAugmentation ft_model_name = model_name + '_ftwoda' + str(ft_epochs) + 'ep-' + nametag return ft_model_name def load_by_name(model_name, input_shape, weight_file_path): if model_state_exists(weight_file_path): model_type = model_name.split('_')[0] (m_batch_size, m_loss, m_optimizer, m_metric) = model_param(model_type) model = model_struct(model_type, input_shape, 10) model.load_weights(weight_file_path) model.compile(loss=m_loss, optimizer=m_optimizer, metrics=m_metric) return model else: raise IOError('File ' + weight_file_path + ' not found') def model_state_exists(weight_file_path): """ Check for model version weights based on file name :param weight_file_path: Name of the file :return: bool True if the file exists """ return os.path.isfile(weight_file_path) def train2(model_type, tr_data, val_data, epochs, data_augmentation, tag='', path='', weights_file=None): """ Instantiates and trains a model. First checks is it exists. If weights is set, it loads the pre-trained state of the model (for fine tuning). :param model_type: :param tr_data: training data :param val_data: validation data :param epochs: number of training epochs :param data_augmentation: bool for data_augmentation :param tag: additional tag for the weight file's name :param path: path for storing result weight file :param weights_file: weights of previous model's state (for additional training) :return: trained model instance and its weight file name without extension """ input_shape = tr_data[0].shape[1:] if weights_file: new_weights_file = weights_file.rstrip('.h5') + ('_ftwda' if data_augmentation else '_ftwoda') \ + str(epochs) + 'ep-' + tag + '.h5' else: new_weights_file = weight_file_name(model_type, tag, epochs, data_augmentation) model = model_struct(model_type, input_shape, 10) (m_batch_size, m_loss, m_optimizer, m_metric) = model_param(model_type) model.compile(loss=m_loss, optimizer=m_optimizer, metrics=m_metric) print('*-> ' + path + new_weights_file) if model_state_exists(path + new_weights_file): model.load_weights(path + new_weights_file) else: if weights_file: model.load_weights(path + weights_file) train_and_save(model, epochs, data_augmentation, path + new_weights_file, tr_data, val_data, m_batch_size) model.load_weights(path + new_weights_file) # Loading best state according to val_acc # (x_val, y_val) = dt.format_data(val_data, 10) # score = model.evaluate(x_val, y_val, verbose=0) # print('Val loss:', score[0]) # print('Val acc:', score[1]) # model.summary() return model, new_weights_file.rstrip('.h5') def reg_from_(model, model_type): """ Builds a regression model from a classification model. Keeps the classification weights. :param model: Classification model :param model_type: :return: a regression model pretrained with classification data. """ assert isinstance(model, Model) input = model.input model.layers.pop() model.layers.pop() x = GlobalAveragePooling2D()(model.layers[-1].output) output = Dense(1, activation="linear")(x) model = Model(input, output) # model.summary() (m_batch_size, m_loss, m_optimizer, m_metric) = model_param(model_type) model.compile(loss=m_loss, optimizer=m_optimizer, metrics=m_metric) return model def train_reg(model, model_type, tr_data, val_data, tag, epochs, data_augmentation, path=''): weight_file = weight_file_name(model_type, tag, epochs, data_augmentation, 'reg_') input_shape = tr_data[0].shape[1:] (m_batch_size, m_loss, m_optimizer, m_metric) = model_param(model_type) model.compile(loss='mean_squared_error', optimizer=m_optimizer, metrics=m_metric) print('*-> ' + path+weight_file) if not os.path.isfile(path+weight_file): # print('Start training') train_and_save(model, epochs, data_augmentation, path + weight_file, tr_data, val_data, m_batch_size, regression=True) # print('Weight file found:' + path+weight_file + ', loading.') model.load_weights(path + weight_file) model.compile(loss='mean_squared_error', optimizer=m_optimizer, metrics=m_metric) X_val, y_val = val_data X_val = X_val.astype('float32') X_val /= 255 score = model.evaluate(X_val, y_val, verbose=0) # print('Test loss:', score[0]) print('Val accuracy:', score[1]) # model.summary() return model, weight_file.strip('.h5') def ft(model_filepath, ft_gen, val_gen, epochs, save_history=False, tag=''): h5_path = '../res/h5/' tb_path = '../res/logs/' # finetune model_file = model_filepath.split("/")[-1] extension = model_filepath.split(".")[-1] print("Fine-tuning " + model_file) model = load_model(model_filepath) model.compile('adam', loss='categorical_crossentropy', metrics=['accuracy']) checkpoint = ModelCheckpoint(h5_path + model_file.rstrip('.' + extension) + '_' + tag + '_ft_ep{epoch:02d}_vl{val_loss:.2f}.hdf5', monitor='val_acc', verbose=0, save_best_only=True, save_weights_only=False, mode='auto') # Train model on selected dataset ft_history = model.fit_generator(generator=ft_gen, validation_data=val_gen, verbose=1, epochs=epochs, use_multiprocessing=True, workers=6, callbacks=[checkpoint] ) if save_history: with open(tb_path + model_file.rstrip('.'+extension) + '_' + tag + '_ft_hist.pkl', 'w') as fd: pickle.dump(ft_history, fd) def create_generators(train_annotations, val_annotations, class_mapping, preprocess_image, batch_size, data_augmentation=False, base_dir=None): if data_augmentation: transform_generator = kr_train.random_transform_generator( min_rotation=-0.1, max_rotation=0.1, min_translation=(-0.1, -0.1), max_translation=(0.1, 0.1), min_shear=-0.1, max_shear=0.1, min_scaling=(0.9, 0.9), max_scaling=(1.1, 1.1), flip_x_chance=0.5, flip_y_chance=0.5, ) else: transform_generator = kr_train.random_transform_generator(flip_x_chance=0.5) # create the generators train_generator = CSVGenerator( train_annotations, class_mapping, transform_generator=transform_generator, base_dir=base_dir, preprocess_image=preprocess_image, batch_size=batch_size ) if val_annotations: validation_generator = CSVGenerator( val_annotations, class_mapping, base_dir=base_dir, preprocess_image=preprocess_image, batch_size=batch_size ) else: validation_generator = None return train_generator, validation_generator def create_callbacks(model, batch_size, weight_file=None, tensorboard_dir=None, snapshots_path=None, backbone=None, dataset_type=None): callbacks = [] if tensorboard_dir: tensorboard_callback = TensorBoard( log_dir=tensorboard_dir, histogram_freq=0, batch_size=batch_size, write_graph=False, write_grads=False, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None ) callbacks.append(tensorboard_callback) # save the model if snapshots_path: # ensure directory created first; otherwise h5py will error after epoch. checkpoint = ModelCheckpoint( os.path.join( snapshots_path, '{backbone}_{dataset_type}_{{epoch:02d}}.h5'.format(backbone=backbone, dataset_type=dataset_type) ), verbose=1, # save_best_only=True, # monitor="mAP", # mode='max' ) checkpoint = RedirectModel(checkpoint, model) else: if not weight_file: weight_file = 'retinanet_unnamed.h5' checkpoint = ModelCheckpoint( weight_file, monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=True, mode='auto' ) callbacks.append(checkpoint) callbacks.append(ReduceLROnPlateau( monitor='loss', factor=0.1, patience=2, verbose=1, mode='auto', min_delta=0.0001, cooldown=0, min_lr=0 )) return callbacks class DataGenerator(keras.utils.Sequence): """ Generates data for Keras' """ def __init__(self, list_ids, labels, batch_size=32, dim=(64,64,3), n_classes=10, shuffle=True): # Initialization self.dim = dim self.batch_size = batch_size self.labels = labels self.list_ids = list_ids self.n_classes = n_classes self.shuffle = shuffle self.on_epoch_end() def __len__(self): # Denotes the number of batches per epoch return int(np.floor(len(self.list_ids) / self.batch_size)) def __getitem__(self, index): # Generate one batch of data # Generate indexes of the batch indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # Find list of IDs list_ids_temp = [self.list_ids[k] for k in indexes] # Generate data X, y = self.__data_generation(list_ids_temp) return X, y def on_epoch_end(self): # Updates indexes after each epoch self.indexes = np.arange(len(self.list_ids)) if self.shuffle: np.random.shuffle(self.indexes) def __data_generation(self, list_ids_temp): # Generates data containing batch_size samples # X : (n_samples, *dim, n_channels) # Initialization X = np.empty((self.batch_size, self.dim[0], self.dim[1], self.dim[2])) y = np.empty(self.batch_size, dtype=int) # Generate data for i, id in enumerate(list_ids_temp): # Store sample # X[i, ] = np.load('data/' + id + '.npy') X[i, ] = cv2.imread(id) # Store class y[i] = self.labels[id] return X, keras.utils.to_categorical(y, num_classes=self.n_classes)
import unittest from checkov.terraform.checks.resource.aws.KinesisStreamEncryptionType import check from checkov.common.models.enums import CheckResult class TestKinesisStreamEncryptionType(unittest.TestCase): def test_failure(self): resource_conf = { 'name': ["terraform-kinesis-test"], 'shard_count': [1], 'retention_period' : [48] } scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.FAILED, scan_result) def test_success(self): resource_conf = { 'name': ["terraform-kinesis-test"], 'shard_count': [1], 'retention_period' : [48], 'encryption_type': ["KMS"] } scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.PASSED, scan_result) if __name__ == '__main__': unittest.main()
import cv2 as cv import os import numpy import numpy as np import torch # uv = torch.tensor([[[345, 240], # 0 # [300, 225], # [255, 195], # [210, 180], # [180, 180], # [195, 255], # 5 # [120, 255], # [90, 255], # [75, 255], # 8 食指指尖 # [210, 300], # [135, 315], # [90, 330], # [45, 345], # [225, 330], # [165, 345], # [120, 375], # [90, 390], # [240, 360], # [210, 375], # [180, 390], # [150, 405]]], device='cuda:0') # uv = uv[0].cpu().numpy() # uv = numpy.flip(uv, -1) def paint_hand(uv, img): # img = np.ones((480, 480, 3), np.uint8) # img[:] = [255, 255, 255] # uv = uv[0].cpu().numpy() # uv = numpy.flip(uv, -1) for test in uv: xy = (test[0], test[1]) cv.circle(img, xy, 4, (0, 0, 255), 1) cv.line(img, uv[0], uv[1], (255, 0, 0), 2) # print(uv[0:5]) # 颜色顺序为BGR cv.polylines(img, [uv[0:5]], False, (0, 0, 255), 2) # 大拇指 cv.polylines(img, [uv[5:9]], False, (255, 0, 0), 2) # 食指 cv.polylines(img, [uv[9:13]], False, (255, 0, 0), 2) # 中指 cv.polylines(img, [uv[13:17]], False, (255, 0, 0), 2) # 无名指 cv.polylines(img, [uv[17:21]], False, (255, 0, 0), 2) # 小拇指 cv.line(img, uv[0], uv[5], (255, 0, 0), 2) cv.line(img, uv[0], uv[9], (255, 0, 0), 2) cv.line(img, uv[0], uv[13], (255, 0, 0), 2) cv.line(img, uv[0], uv[17], (255, 0, 0), 2) return img def get_included_angle(coords1, coords2, coords3): # 通过斜率计算夹角 # k1 = (coords2[1] - coords1[1]) / (coords2[0] - coords1[0]) # k2 = (coords2[1] - coords3[1]) / (coords2[0] - coords3[0]) # # x = np.array([1, k1]) # y = np.array([1, k2]) # Lx = np.sqrt(x.dot(x)) # Ly = np.sqrt(y.dot(y)) # Cobb = int((np.arccos(x.dot(y) / (float(Lx * Ly))) * 180 / np.pi) + 0.5) # 向量计算夹角 arr_0 = np.array([(coords2[0] - coords1[0]), (coords2[1] - coords1[1])]) arr_1 = np.array([(coords3[0] - coords2[0]), (coords3[1] - coords2[1])]) cos_value = (float(arr_0.dot(arr_1)) / (np.sqrt(arr_0.dot(arr_0)) * np.sqrt(arr_1.dot(arr_1)))) # cos_value = format((float(arr_0.dot(arr_1)) / (np.sqrt(arr_0.dot(arr_0)) * np.sqrt(arr_1.dot(arr_1)))), '.9f') if cos_value > 1: cos_value = 1 Cobb = np.arccos(cos_value) * (180 / np.pi) return Cobb def judge_posture(uv): # uv = uv[0].cpu().numpy() # uv = numpy.flip(uv, -1) flag_thumb = 0 flag_forefinger = 0 flag_medius = 0 flag_ring_finger = 0 flag_little_finger = 0 flag_judge = 0 # 拇指弯曲角度 angle0_1_2 = get_included_angle(uv[0], uv[1], uv[2]) angle1_2_3 = get_included_angle(uv[1], uv[2], uv[3]) angle2_3_4 = get_included_angle(uv[2], uv[3], uv[4]) angle3_0_4 = get_included_angle(uv[3], uv[0], uv[4]) # 食指弯曲角度 angle0_5_6 = get_included_angle(uv[0], uv[5], uv[6]) angle5_6_7 = get_included_angle(uv[5], uv[6], uv[7]) angle6_7_8 = get_included_angle(uv[6], uv[7], uv[8]) angle7_0_8 = get_included_angle(uv[7], uv[0], uv[8]) # 中指弯曲角度 angle0_9_10 = get_included_angle(uv[0], uv[9], uv[10]) angle9_10_11 = get_included_angle(uv[9], uv[10], uv[11]) angle10_11_12 = get_included_angle(uv[10], uv[11], uv[12]) angle11_0_12 = get_included_angle(uv[11], uv[0], uv[12]) # 无名指指弯曲角度 angle0_13_14 = get_included_angle(uv[0], uv[13], uv[14]) angle13_14_15 = get_included_angle(uv[13], uv[14], uv[15]) angle14_15_16 = get_included_angle(uv[14], uv[15], uv[16]) angle15_0_16 = get_included_angle(uv[15], uv[0], uv[16]) # 小拇指弯曲角度 angle0_17_18 = get_included_angle(uv[0], uv[17], uv[18]) angle17_18_19 = get_included_angle(uv[17], uv[18], uv[19]) angle18_19_20 = get_included_angle(uv[18], uv[19], uv[20]) angle19_0_20 = get_included_angle(uv[19], uv[0], uv[20]) if angle0_1_2 < 20 and angle1_2_3 < 20 and angle2_3_4 < 20 and angle3_0_4 > 175: flag_thumb = 1 if angle0_5_6 < 20 and angle5_6_7 < 20 and angle6_7_8 < 20 and angle7_0_8 > 175: flag_forefinger = 1 if angle0_9_10 < 20 and angle9_10_11 < 20 and angle10_11_12 < 20 and angle11_0_12 > 175: flag_medius = 1 if angle0_13_14 < 25 and angle13_14_15 < 20 and angle14_15_16 < 20 and angle15_0_16 > 175: flag_ring_finger = 1 if angle0_17_18 < 25 and angle17_18_19 < 20 and angle18_19_20 < 20 and angle19_0_20 > 175: flag_little_finger = 1 if flag_thumb == 1 and flag_forefinger == 1 and flag_medius == 1 and flag_ring_finger == 1 and flag_little_finger == 1: flag_judge = 1 # if flag_judge == 1: # print("识别成功\n") return flag_judge # 失败的拖尾效果QAQ def show_special_effects(uv, img): height = 30 width = 10 # uv = uv[0].cpu().numpy() # uv = numpy.flip(uv, -1) tail = cv.imread('./tail.png') tail = cv.resize(tail, (width, height)) x = uv[8][1] y = uv[8][0] if x - height >= 0 and y - (width // 2) >= 0 and y + (width // 2) <= img.shape[0]: img[x - height:x, y - (width // 2):y + (width // 2)] = tail return img def show_switch_effects(img): pass # 手指进入四角方块的互动 def click_box(uv, img, flag_ul, flag_ur, flag_ll, flag_lr): x = uv[8][1] y = uv[8][0] length = 80 if flag_ul == 0: img[0:length, 0:length] = [0, 0, 0] if flag_ur == 0: img[0:length, 480 - length:480] = [80, 80, 80] if flag_ll == 0: img[480 - length:480, 0:length] = [160, 160, 160] if flag_lr == 0: img[480 - length:480, 480 - length:480] = [255, 255, 255] if x <= length: if y <= length: flag_ul = 1 elif y >= 480 - length: flag_ur = 1 elif x >= 480 - length: if y <= length: flag_ll = 1 elif y >= 480 - length: flag_lr = 1 return img, flag_ul, flag_ur, flag_ll, flag_lr # # 测试函数功能 # img = np.zeros((480, 480, 3), np.uint8) # img[:] = [200, 200, 200] # paint_hand(uv, img) # click_box(uv, img) # # show_special_effects(uv, img) # cv.imshow('img', img) # cv.waitKey(0) # judge_posture(uv) # cv.destroyAllWindows() # cv.imshow('img', img) # cv.waitKey(0) # cv.destroyAllWindows() # a = np.random.randint(1, 10, size=15).reshape((3, 5)) # print(a) # print(a.shape) # print(np.flip(a, -1)) # print(np.flip(a, 0)) # print(np.flip(a, 1)) # 读取图像 # print(os.getcwd()) # img = cv.imread('./materials/demo2.jpeg') # cv.imshow('image', img) # cv.waitKey(0) # cv.destroyAllWindows() # 读取视频 # cap = cv.VideoCapture(0) # if not cap.isOpened(): # print("Cannot open camera") # exit() # while True: # # 逐帧捕获 # ret, frame = cap.read() # # 如果正确读取帧,ret为True # if not ret: # print("Can't receive frame (stream end?). Exiting ...") # break # # 我们在框架上的操作到这里 # gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) # # 显示结果帧e # cv.imshow('frame', gray) # if cv.waitKey(1) == ord('q'): # break # # 完成所有操作后,释放捕获器 # cap.release() # cv.destroyAllWindows()
import numpy as np from advopt.target.search import cached def test_compare(): from scipy.optimize import root_scalar methods = ['bisect', 'brentq', 'brenth', 'ridder', 'toms748'] errors = dict([ (name, list()) for name in methods ]) n_iters = dict([(name, list()) for name in methods]) for _ in range(100): w = 10 ** np.random.uniform(1, 2) c = np.random.uniform(0.1, np.log(2)) f0 = 1e-3 solution = -np.log(f0 / c) / w f = lambda x: c * np.exp(-w * x) - f0 x1 = 100 while f(x1) > -f0 / 2: x1 *= 10 for method in methods: f_c = cached(f) sol = root_scalar(f_c, bracket=(0, x1), method=method, maxiter=100, xtol=10) errors[method].append(np.abs(sol.root - solution)) n_iters[method].append(np.sum(list(f_c.cache.keys()))) for method in methods: print( '%s: %.3lf +- %.3lf [%.1lf +- %.1lf]' % ( method.ljust(10), np.mean(errors[method]), np.std(errors[method]), np.mean(n_iters[method]), np.std(n_iters[method]), ) ) assert False
from pyarrow import feather import numpy as np """ Safe Drugs Data Retrieval Library """ class file_connector: """ read data from filesystem args: datafile: path to feather-formatted file """ def __init__(self, datafile): self.datafile = datafile self.data = feather.read_feather(source=datafile, nthreads=16) def unique_values(self, column): uniq_vals = self.data[column].unique() uniq_vals = uniq_vals[np.argsort(uniq_vals)] return uniq_vals def count(self, query): return self.data.query(query).count().values[0] def counts_by_feature(self, feature, query=""): """ return outcomes data counts for a given feature, e.g. report_year, age_category, drug_category. if "query" is provided, will first filter the dataset on that query string. inputs: feature: column name you'd like to group on, e.g. "gender_code", "report_year" query (optional): optional query string to filter the dataset, e.g. 'gender_code == "F"' returns: struct of this format: {series: array, x: array, y: array, y_norm:array} example: foo = counts_by_feature("report_year", 'gender_code == "M"') """ ds = self.data.query(query) if query else self.data series = (ds.groupby([feature]) .apply(lambda x : x.shape[0])) x = series.index.tolist() y = series.values y_norm = np.round((y / series.sum()) * 100,0) return { 'series': series, 'x': x, 'y': y, 'y_norm': y_norm }
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Copyright 2018-2019, Mingkun Huang # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Optional import torch from numba import cuda from warprnnt_numba.rnnt_loss.utils import global_constants threshold = global_constants.THRESHOLD @cuda.jit(device=True, inline=True) def log_sum_exp(a: float, b: float): if a == global_constants.FP32_NEG_INF: return b if b == global_constants.FP32_NEG_INF: return a if a > b: return math.log1p(math.exp(b - a)) + a else: return math.log1p(math.exp(a - b)) + b @cuda.jit(device=True, inline=True) def div_up(x: int, y: int): return (x + y - 1) // y @cuda.jit(device=True) def maximum(x, y): if x < y: return y else: return x @cuda.jit(device=True) def add(x, y): return x + y @cuda.jit(device=True) def identity(x): return x @cuda.jit(device=True) def negate(x): return -x @cuda.jit(device=True) def exponential(x): return math.exp(x) @cuda.jit(device=True) def log_plus(p1: float, p2: float): if p1 == global_constants.FP32_NEG_INF: return p2 if p2 == global_constants.FP32_NEG_INF: return p1 result = math.log1p(math.exp(-math.fabs(p1 - p2))) + maximum(p1, p2) return result @cuda.jit(device=True, inline=True) def copy_data_1d(source: torch.Tensor, dest: torch.Tensor, idx: int): dest[idx] = source[idx] @cuda.jit() def compute_costs_data(source: torch.Tensor, dest: torch.Tensor, fastemit_lambda: float): block = cuda.blockIdx.x tid = cuda.threadIdx.x idx = block * cuda.blockDim.x + tid length = source.shape[0] if idx < length: copy_data_1d(source, dest, idx) dest[idx] *= -1.0 dest[idx] *= 1.0 + fastemit_lambda def get_workspace_size( maxT: int, maxU: int, minibatch: int, gpu: bool ) -> (Optional[int], global_constants.RNNTStatus): if minibatch <= 0 or maxT <= 0 or maxU <= 0: return (None, global_constants.RNNTStatus.RNNT_STATUS_INVALID_VALUE) # per minibatch memory per_minibatch_size = 0 # alphas & betas per_minibatch_size += maxT * maxU * 2 if not gpu: # // blank & label log probability cache per_minibatch_size += maxT * maxU * 2 else: # // softmax denominator per_minibatch_size += maxT * maxU # // forward - backward loglikelihood per_minibatch_size += 2 size = per_minibatch_size * minibatch return (size, global_constants.RNNTStatus.RNNT_STATUS_SUCCESS) def flatten_tensor(x: torch.Tensor): original_shape = x.shape x = x.view([-1]) return x, original_shape
from flask import request, make_response, render_template from flask import current_app as app, Response from sqlalchemy import exc, func from .models import db, \ SdStatement, \ Property, \ association_table from flask_babel import _ import json @app.route('/v1/sdstatement/create', methods=['GET']) def create_sd_statement(): """Create a sd_statement via query string parameters.""" sd_name = request.args.get('sdName') requires = request.args.getlist('requires') if sd_name and requires != []: properties = Property.query.all() statement_properties = [] properties_not_in_db = [] for prop in requires: is_in_database = False for p in properties: if p.name == prop: statement_properties.append(p) is_in_database = True if not is_in_database: properties_not_in_db.append(prop) if properties_not_in_db != []: return Response(status=400) new_statement = SdStatement( name=sd_name, properties=statement_properties ) db.session.add(new_statement) try: db.session.commit() except exc.SQLAlchemyError as error: if error.__str__().__contains__("UNIQUE constraint failed"): db.session.rollback() return Response(status=409) else: return Response(status=500) res = json.dumps(new_statement.asdict(), sort_keys=False, indent=2) return res, 201 else: return Response(status=400) @app.route('/v1/sdstatement/read', methods=['GET']) def read_sd_statement(): """Read a sd_statement via query string parameters.""" sd_name = request.args.get('sdName') if sd_name: existing_sd_statement = SdStatement.query.filter( SdStatement.name == sd_name ).first() if existing_sd_statement: res = json.dumps(existing_sd_statement.asdict(), sort_keys=False, indent=2) return Response(res, content_type='application/json', status=200) else: return Response(status=404) else: return Response(status=404) def read_sd_statement_by_id(statement_id): """Read a sd_statement via id.""" existing_sd_statement = SdStatement.query.filter( SdStatement.id == statement_id ).first() if existing_sd_statement: return existing_sd_statement.asdict() else: return make_response(_("Sd Statement with id {statement_id} doesn't exist").format(statement_id=str(statement_id))) @app.route('/v1/sdstatement/update', methods=['GET']) def update_sd_statement(): """Update a sd_statement via query string parameters.""" sd_name = request.args.get('sdName') requires = request.args.getlist('requires') if sd_name: existing_sd_statement = SdStatement.query.filter( SdStatement.name == sd_name ).first() if existing_sd_statement: properties_not_in_db = [] for prop in requires: is_in_database = False for p in existing_sd_statement.properties: if p.name == prop: is_in_database = True if not is_in_database: properties_not_in_db.append(prop) if properties_not_in_db != []: return Response(status=400) if update_sd_statement_by_id(existing_sd_statement.name, requires, existing_sd_statement.id): return Response(status=200) else: return Response(status=400) else: return Response(status=400) def update_sd_statement_by_id(statement_name, requires, statement_id): """Update a sd_statement via id.""" existing_sd_statement = SdStatement.query.filter( SdStatement.id == statement_id ).first() print(existing_sd_statement) if existing_sd_statement: existing_sd_statement.name = statement_name existing_sd_statement.properties = [] for r in requires: if r == "All": pass else: existing_property = Property.query.filter( Property.name == r ).first() existing_sd_statement.properties.append(existing_property) db.session.commit() return True else: return False @app.route('/v1/sdstatement/delete', methods=['GET']) def delete_sd_statement(): """Delete a sd_statement via query string parameters.""" sd_name = request.args.get('sdName') if sd_name: existing_sd_statement = SdStatement.query.filter( SdStatement.name == sd_name ).first() if existing_sd_statement: db.session.delete(existing_sd_statement) db.session.commit() return Response(status=200) else: return Response(status=400) else: return Response(status=400) def delete_sd_statement_by_id(statement_id): """Delete a sd_statement via id.""" existing_sd_statement = SdStatement.query.filter( SdStatement.id == statement_id ).first() if existing_sd_statement: db.session.delete(existing_sd_statement) db.session.commit() return make_response(_("Sd Statement with id {statement_id} deleted").format(statement_id=str(statement_id))) else: return make_response(_("Sd Statement with id {statement_id} doesn't exist").format(statement_id=str(statement_id))) @app.route('/v1/sdstatement/search', methods=['GET']) def search_sd_statement(): """Search a sd_statement via query string parameters.""" statements = [] sd_name = request.args.get('sd_name') require_str = request.args.get('requires') if sd_name and require_str: all_statements = SdStatement.query.all() for statement in all_statements: if statement.name == sd_name: properties = Property.query.join(association_table).join(SdStatement).filter( association_table.c.sd_statement_id == statement.id ).all() for prop in properties: if require_str in prop.name: statements.append(statement.asdict()) elif sd_name: existing_statements = SdStatement.query.filter( SdStatement.name == sd_name ).all() for statement in existing_statements: statements.append(statement.asdict()) elif require_str: all_statements = SdStatement.query.all() for statement in all_statements: properties = Property.query.join(association_table).join(SdStatement).filter( association_table.c.sd_statement_id == statement.id ).all() for prop in properties: if require_str in prop.name: statements.append(statement.asdict()) else: return Response(status=400) if len(statements) == 0: return Response(status=204) res = json.dumps(statements, sort_keys=False, indent=2) return Response(res, content_type='application/json', status=200) def search_sd_statement_by_arg(search_str): """Search a sd_statement via arguments""" statements = [] all_statements = SdStatement.query.all() for statement in all_statements: to_append = False statement_str = get_all_sd_statement_str(statement) for item in statement_str: lower_search_str = search_str.lower() lower_item = item.lower() if lower_search_str in lower_item: to_append = True if to_append: statements.append(statement) return statements def get_sd_statement_id(sd_name): """Get a sd_statement id from the sd name.""" sd_statement = SdStatement.query.filter( SdStatement.name == sd_name ).first() if sd_statement: return sd_statement.id else: return -1 def get_sd_statement(sd_name): """Get a sd_statement from the sd name.""" sd_statement = SdStatement.query.filter( SdStatement.name == sd_name ).first() if sd_statement: return sd_statement else: return None def get_all_sd_statement_str(sd_statement): statement_str = [] statement_str.append(sd_statement.name) properties = Property.query.join(association_table).join(SdStatement).filter( association_table.c.sd_statement_id == sd_statement.id ).all() for prop in properties: statement_str.append(prop.name) return statement_str
from django.apps import AppConfig class Djangox2Config(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'djangox2'
# Copyright 2020 Pulser Development Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains the ParamObj and auxiliary classes for object parametrization.""" from __future__ import annotations import inspect import operator import warnings from collections.abc import Callable from itertools import chain from typing import TYPE_CHECKING, Any, Union, cast import numpy as np from pulser.json.utils import obj_to_dict from pulser.parametrized import Parametrized if TYPE_CHECKING: from pulser.parametrized import Variable # pragma: no cover class OpSupport: """Methods for supporting operators on parametrized objects.""" # Unary operators def __neg__(self) -> ParamObj: return ParamObj(operator.neg, self) def __abs__(self) -> ParamObj: return ParamObj(operator.abs, self) def __ceil__(self) -> ParamObj: return ParamObj(np.ceil, self) def __floor__(self) -> ParamObj: return ParamObj(np.floor, self) def __round__(self, n: int = 0) -> ParamObj: return cast(ParamObj, (self * 10**n).rint() / 10**n) def rint(self) -> ParamObj: """Rounds the value to the nearest int.""" # Defined because np.round looks for 'rint' return ParamObj(np.round, self) def sqrt(self) -> ParamObj: """Calculates the square root of the object.""" return ParamObj(np.sqrt, self) def exp(self) -> ParamObj: """Calculates the exponential of the object.""" return ParamObj(np.exp, self) def log2(self) -> ParamObj: """Calculates the base-2 logarithm of the object.""" return ParamObj(np.log2, self) def log(self) -> ParamObj: """Calculates the natural logarithm of the object.""" return ParamObj(np.log, self) def sin(self) -> ParamObj: """Calculates the trigonometric sine of the object.""" return ParamObj(np.sin, self) def cos(self) -> ParamObj: """Calculates the trigonometric cosine of the object.""" return ParamObj(np.cos, self) def tan(self) -> ParamObj: """Calculates the trigonometric tangent of the object.""" return ParamObj(np.tan, self) # Binary operators def __add__(self, other: Union[int, float]) -> ParamObj: return ParamObj(operator.add, self, other) def __radd__(self, other: Union[int, float]) -> ParamObj: return ParamObj(operator.add, other, self) def __sub__(self, other: Union[int, float]) -> ParamObj: return ParamObj(operator.sub, self, other) def __rsub__(self, other: Union[int, float]) -> ParamObj: return ParamObj(operator.sub, other, self) def __mul__(self, other: Union[int, float]) -> ParamObj: return ParamObj(operator.mul, self, other) def __rmul__(self, other: Union[int, float]) -> ParamObj: return ParamObj(operator.mul, other, self) def __truediv__(self, other: Union[int, float]) -> ParamObj: return ParamObj(operator.truediv, self, other) def __rtruediv__(self, other: Union[int, float]) -> ParamObj: return ParamObj(operator.truediv, other, self) def __floordiv__(self, other: Union[int, float]) -> ParamObj: return (self / other).__floor__() def __rfloordiv__(self, other: Union[int, float]) -> ParamObj: return (other / self).__floor__() def __pow__(self, other: Union[int, float]) -> ParamObj: return ParamObj(operator.pow, self, other) def __rpow__(self, other: Union[int, float]) -> ParamObj: return ParamObj(operator.pow, other, self) def __mod__(self, other: Union[int, float]) -> ParamObj: return ParamObj(operator.mod, self, other) def __rmod__(self, other: Union[int, float]) -> ParamObj: return ParamObj(operator.mod, other, self) class ParamObj(Parametrized, OpSupport): """Holds a call to a given class. When called, a ParamObj instance returns `cls(*args, **kwargs)`. Args: cls (callable): The object to call. Usually it's a class that's instantiated when called. args: The args for calling `cls`. kwargs: The kwargs for calling `cls`. """ def __init__(self, cls: Callable, *args: Any, **kwargs: Any) -> None: """Initializes a new ParamObj.""" self.cls = cls self._variables: dict[str, Variable] = {} if isinstance(self.cls, Parametrized): self._variables.update(self.cls.variables) for x in chain(args, kwargs.values()): if isinstance(x, Parametrized): self._variables.update(x.variables) self.args = args self.kwargs = kwargs self._instance = None self._vars_state: dict[str, int] = {} @property def variables(self) -> dict[str, Variable]: """Returns all involved variables.""" return self._variables def build(self) -> Any: """Builds the object with its variables last assigned values.""" vars_state = {key: var._count for key, var in self._variables.items()} if vars_state != self._vars_state: self._vars_state = vars_state # Builds all Parametrized arguments before feeding them to cls args_ = [ arg.build() if isinstance(arg, Parametrized) else arg for arg in self.args ] kwargs_ = { key: val.build() if isinstance(val, Parametrized) else val for key, val in self.kwargs.items() } if isinstance(self.cls, ParamObj): obj = self.cls.build() else: obj = self.cls self._instance = obj(*args_, **kwargs_) return self._instance def _to_dict(self) -> dict[str, Any]: def class_to_dict(cls: Callable) -> dict[str, Any]: module = "numpy" if isinstance(cls, np.ufunc) else cls.__module__ return obj_to_dict( self, _build=False, _name=cls.__name__, _module=module ) args = list(self.args) if isinstance(self.cls, Parametrized): raise ValueError( "Serialization of calls to parametrized objects is not " "supported." ) elif hasattr(args[0], self.cls.__name__) and inspect.isfunction( self.cls ): # Check for parametrized methods if inspect.isclass(self.args[0]): # classmethod cls_dict = obj_to_dict( self, _build=False, _name=self.cls.__name__, _module=self.args[0].__module__, _submodule=self.args[0].__name__, ) args[0] = class_to_dict(self.args[0]) else: raise NotImplementedError( "Instance or static method " "serialization is not supported." ) else: cls_dict = class_to_dict(self.cls) return obj_to_dict(self, cls_dict, *args, **self.kwargs) def __call__(self, *args: Any, **kwargs: Any) -> ParamObj: """Returns a new ParamObj storing a call to the current ParamObj.""" obj = ParamObj(self, *args, **kwargs) warnings.warn( "Calls to methods of parametrized objects are only " "executed if they serve as arguments of other " "parametrized objects that are themselves built. If this" f" is not the case, the call to {obj} will not be " "executed upon sequence building.", stacklevel=2, ) return obj def __getattr__(self, name: str) -> ParamObj: if hasattr(self.cls, name): warnings.warn( "Serialization of 'getattr' calls to parametrized " "objects is not supported, so this object can't be serialied.", stacklevel=2, ) return ParamObj(getattr, self, name) else: raise AttributeError(f"No attribute named '{name}' in {self}.") def __str__(self) -> str: args = [str(a) for a in self.args] kwargs = [f"{key}={str(value)}" for key, value in self.kwargs.items()] if isinstance(self.cls, Parametrized): name = str(self.cls) elif ( hasattr(self.args[0], self.cls.__name__) and inspect.isfunction(self.cls) and inspect.isclass(self.args[0]) ): name = f"{self.args[0].__name__}.{self.cls.__name__}" args = args[1:] else: name = self.cls.__name__ return f"{name}({', '.join(args+kwargs)})"
# -*- coding: utf-8 -*- """ Created on Fri Apr 28 11:23:26 2017 @author: rickdberg Create maps """ import numpy as np import matplotlib.pyplot as plt import rasterio import cartopy.crs as ccrs import cartopy from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER from user_parameters import (std_grids_path, ml_inputs_path) # Get template f = rasterio.open(ml_inputs_path + "Martin - porosity productivity distances\grl53425-sup-0002-supinfo.grd" ) newaff = f.transform top_left = f.transform * (0,0) bottom_right = f.transform * (f.width, f.height) lat_interval = (bottom_right[1]-top_left[1])/f.height lon_interval = (bottom_right[0] - top_left[0])/f.width lat = f.xy(0,0)[1] + np.arange(f.height)*lat_interval lon = f.xy(0,0)[0] + np.arange(f.width)*lon_interval lon[lon > 180] -= 360 # Load gridded data # Load WOA bw temp grid fluxes = np.loadtxt(std_grids_path + "woa_temp_std.txt" , delimiter='\t') woat = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woat.write(fluxes, 1) src = woat woat.close() title = '$Bottom\ water\ temperature\ (^\circ C)$' # Load WOA bw salinity grid fluxes = np.loadtxt(std_grids_path + "woa_salinity_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$Bottom\ water\ salinity\ (psu)$' # Load etopo1_depth grid fluxes = np.loadtxt(std_grids_path + "etopo1_depth_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$Water\ depth\ (mbsl)$' # Load 'surface_productivity', grid fluxes = np.loadtxt(std_grids_path + "surface_productivity_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$Surface\ productivity$' # Load 'toc_wood' grid fluxes = np.loadtxt(std_grids_path + "toc_wood_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$Total\ organic\ carbon$' # Load 'woa_o2' grid fluxes = np.loadtxt(std_grids_path + "woa_o2_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$Bottom\ water\ oxygen$' # Load 'surface_porosity' grid fluxes = np.loadtxt(std_grids_path + "surface_porosity_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$Surface\ porosity$' # Load 'coast_distance' grid fluxes = np.loadtxt(std_grids_path + "coast_distance_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$Distance\ to\ coast$' # Load 'ridge_distance' grid fluxes = np.loadtxt(std_grids_path + "ridge_distance_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$Distance\ to\ ridge$' # Load 'seamount', grid fluxes = np.loadtxt(std_grids_path + "seamount_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$Nearby\ seamounts$' # Load 'opal', grid fluxes = np.loadtxt(std_grids_path + "opal_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$Opal\ concentration$' # Load 'caco3', grid fluxes = np.loadtxt(std_grids_path + "caco3_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$CaCO3\ concentration$' # Load 'crustal_age', grid fluxes = np.loadtxt(std_grids_path + "crustal_age_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$Crustal\ age$' # Load 'sed_thickness', grid fluxes = np.loadtxt(std_grids_path + "sed_thickness_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$Sediment\ thickness$' # Load 'acc_rate_archer', grid fluxes = np.loadtxt(std_grids_path + "acc_rate_archer_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$CaCO3\ accumulation\ rate$' # Load 'caco3_archer', grid fluxes = np.loadtxt(std_grids_path + "caco3_archer_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$CaCO3$' # Load 'sed_rate_combined', grid fluxes = np.loadtxt(std_grids_path + "sed_rate_combined_std.txt" , delimiter='\t') woas = rasterio.open('rf.nc', 'w', driver='GMT', height=f.shape[0], width=f.shape[1], count=1, dtype=fluxes.dtype, crs='+proj=latlong', transform=f.transform) woas.write(fluxes, 1) src = woas woas.close() title = '$Sedimentation\ Rate$' # Read image into ndarray im = src.read() # transpose the array from (band, row, col) to (row, col, band) im = np.transpose(im, [1,2,0]) im = im[:,:,0] xmin = src.transform[2] xmax = src.transform[2] + src.transform[0]*src.width ymin = src.transform[5] + src.transform[4]*src.height ymax = src.transform[5] #ax.set_global() # define cartopy crs for the raster, based on rasterio metadata crs = ccrs.PlateCarree() # create figure ax = plt.axes(projection=crs) plt.title(title, fontsize=20) ax.set_xmargin(0.05) ax.set_ymargin(0.10) # ax.stock_img() # plot raster plt.imshow(im, origin='upper', extent=[xmin, xmax, ymin, ymax], transform=crs) # ax.coastlines(resolution='10m', color='k', linewidth=0.2) # plt.colorbar(shrink=0.5) ax.add_feature(cartopy.feature.LAND) # ax.add_feature(cartopy.feature.OCEAN) ax.add_feature(cartopy.feature.COASTLINE, linewidth=0.3) # ax.add_feature(cartopy.feature.BORDERS, linestyle=':') #ax.add_feature(cartopy.feature.LAKES, alpha=0.5) ax.add_feature(cartopy.feature.RIVERS) # ax.add_feature(cartopy.feature.LAND, zorder=50, edgecolor='k') gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, color='gray', alpha=0.1, linestyle='--', ) gl.xlabels_top = False gl.ylabels_right = False gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER plt.show() # eof
# -*- coding: utf-8 -*- # Model_deployment.py # Alessio Burrello <alessio.burrello@unibo.it> # # Copyright (C) 2019-2020 University of Bologna # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from tiling import Tiling import template as template import os import pandas as pd from mako.template import Template from collections import OrderedDict import logging class Model_deployment(): """ Used to manage the PULP graph. By now, supported Convolutions, Pooling, Linear Layers and Relu. """ def __init__(self, platform, chip): self.platform = platform self.chip = chip def copy_files(self, optional, layer_mixed_list,version): ## copy backend and necessary files in the application folder os.system('rm -rf application') os.system('mkdir application') os.system('mkdir application/DORY_network') os.system('mkdir application/DORY_network/inc') os.system('mkdir application/DORY_network/src') os.system('cp ../templates/dory.h ./application/DORY_network/inc/') os.system('cp ../templates/mem_controller.c ./application/DORY_network/src/') os.system('cp ../templates/mem_controller.h ./application/DORY_network/inc/') tk = OrderedDict([]) tk['platform'] = self.platform root = '/'.join(os.getcwd().split('/')[:-1]) tmpl = Template(filename=root + "/templates/mchan_test.h") s = tmpl.render(**tk) save_string = './application/DORY_network/inc/mchan_test.h' with open(save_string, "w") as f: f.write(s) tk = OrderedDict([]) tk['platform'] = self.platform tk['chip'] = self.chip root = '/'.join(os.getcwd().split('/')[:-1]) tmpl = Template(filename= root + "/templates/dory.c") s = tmpl.render(**tk) save_string = './application/DORY_network/src/dory.c' with open(save_string, "w") as f: f.write(s) os.system('cp ../templates/test_template.c ./application/DORY_network/src/') os.system('cp ../templates/network.h ./application/DORY_network/inc/') os.system('cp ../pulp-nn/8bit/' + version +'/include/* ./application/DORY_network/inc/') os.system('cp ../pulp-nn/8bit/' + version +'/src/* ./application/DORY_network/src/') def copy_backend(self, optional, BitIn, BitW, BitOut, BitActivation): layer_mixed_list = [] #################################################################################### ###### SECTION 1: BACKEND FILE SELECTING. SELECTING CORRECT KERNELS TO IMPORT ###### #################################################################################### if optional == 'mixed': for i, nodes_to_deploy in enumerate(PULP_Nodes_Graph[:number_of_deployed_layers]): BitIn = BitOut if nodes_to_deploy.outshift != 'empty': BitOut = 32 - int(nodes_to_deploy.outshift) BitW = 8 if BitOut != 2 and BitOut!= 4 and BitOut!= 8: BitOut = 8 if nodes_to_deploy.groups > 1: layer_mixed_list.append(f'pulp_nn_dw_u{BitIn}_u{BitOut}_i{BitW}.c') else: layer_mixed_list.append(f'pulp_nn_conv_u{BitIn}_u{BitOut}_i{BitW}.c') layer_mixed_list.append(f'pulp_nn_matmul_u{BitOut}_i{BitW}.c') layer_mixed_list.append('pulp_nn_add_u8_u8.c') layer_mixed_list.append('pulp_nn_avgpool_u8.c') layer_mixed_list.append('pulp_nn_maxpool_u8.c') version = str(BitActivation) + 'bit' self.copy_files(optional, layer_mixed_list, version) def create_weights_files(self, PULP_Nodes_Graph, number_of_deployed_layers, BitActivation): #################################################################################### ###### SECTION 2: WEIGHTS FILES CREATION. CREATING .HEX FILES FOR EACH LAYER ###### #################################################################################### file_list_w = [] # Fetching weights,biases, k, and lambda for each node_iterating # 32 bits and 64 bits for Bn and Relu weights are used weights_to_write = [] for i, nodes_to_deploy in enumerate(PULP_Nodes_Graph[:number_of_deployed_layers]): if str(nodes_to_deploy.weights) != 'empty': nodes_to_deploy.weights = nodes_to_deploy.weights.flatten().tolist() for i_w, _ in enumerate(nodes_to_deploy.weights): nodes_to_deploy.weights[i_w] = np.uint8(nodes_to_deploy.weights[i_w]) weights = nodes_to_deploy.weights if str(nodes_to_deploy.k) != 'empty': if str(nodes_to_deploy.outmul) != 'empty': out_mult = np.int32(nodes_to_deploy.outmul) k_byte = [] for i_k, _ in enumerate(nodes_to_deploy.k.flatten()): if BitActivation == 64: val = np.int64(nodes_to_deploy.k.flatten()[i_k])*out_mult else: val = np.int32(nodes_to_deploy.k.flatten()[i_k])*out_mult if BitActivation == 32: k_byte.append(np.uint8(val & 0x000000FF)) k_byte.append(np.uint8((val >> 8) & 0x000000FF)) k_byte.append(np.uint8((val >> 16) & 0x000000FF)) k_byte.append(np.uint8((val >> 24) & 0x000000FF)) if BitActivation == 64: k_byte.append(np.uint8(val & 0x00000000000000FF)) k_byte.append(np.uint8((val >> 8) & 0x00000000000000FF)) k_byte.append(np.uint8((val >> 16) & 0x00000000000000FF)) k_byte.append(np.uint8((val >> 24) & 0x00000000000000FF)) k_byte.append(np.uint8((val >> 32) & 0x00000000000000FF)) k_byte.append(np.uint8((val >> 40) & 0x00000000000000FF)) k_byte.append(np.uint8((val >> 48) & 0x00000000000000FF)) k_byte.append(np.uint8((val >> 56) & 0x00000000000000FF)) nodes_to_deploy.k = k_byte weights = np.concatenate((weights, nodes_to_deploy.k)) if str(nodes_to_deploy.lambd) != 'empty': lambd = np.float64(nodes_to_deploy.lambd.flatten()) * out_mult lambd_byte = [] for i_l, _ in enumerate(nodes_to_deploy.lambd.flatten()): if BitActivation == 64: val = np.int64(lambd[i_l]) else: val = np.int32(lambd[i_l]) if BitActivation == 32: lambd_byte.append(np.uint8(val & 0x000000FF)) lambd_byte.append(np.uint8((val >> 8) & 0x000000FF)) lambd_byte.append(np.uint8((val >> 16) & 0x000000FF)) lambd_byte.append(np.uint8((val >> 24) & 0x000000FF)) if BitActivation == 64: lambd_byte.append(np.uint8(val & 0x00000000000000FF)) lambd_byte.append(np.uint8((val >> 8) & 0x00000000000000FF)) lambd_byte.append(np.uint8((val >> 16) & 0x00000000000000FF)) lambd_byte.append(np.uint8((val >> 24) & 0x00000000000000FF)) lambd_byte.append(np.uint8((val >> 32) & 0x00000000000000FF)) lambd_byte.append(np.uint8((val >> 40) & 0x00000000000000FF)) lambd_byte.append(np.uint8((val >> 48) & 0x00000000000000FF)) lambd_byte.append(np.uint8((val >> 56) & 0x00000000000000FF)) nodes_to_deploy.lambd = lambd_byte weights = np.concatenate((weights, nodes_to_deploy.lambd)) if str(nodes_to_deploy.outmul) != 'empty': PULP_Nodes_Graph[i].outmul = 1 if str(nodes_to_deploy.weights) != 'empty': while len(weights) % 4 != 0: weights = np.concatenate((weights, np.asarray([0]))) weights = np.asarray(weights) weights_to_write.append(weights) string_layer = nodes_to_deploy.name + str(i) + "_weights.hex" file_list_w.append(string_layer) save_s = './application/DORY_network/' + string_layer with open(save_s, 'wb') as f: for l in weights.astype('uint8').flatten(): f.write(bytes((l,))) return PULP_Nodes_Graph, file_list_w, weights_to_write def create_layers_tiling(self, PULP_Nodes_Graph, number_of_deployed_layers, L1_dimension, l2_buffer_size, BitActivation, optional, performance_single_layer, BitIn, BitW, BitOut): #################################################################################### ###### SECTION 3: PARSING OF EACH LAYER INDEPENDENT. TILING + LAYER CREATION ###### #################################################################################### name_list = [] layer_list = [] stringa_features = [] name_layer_list = [] name_layer_list_internal = [] MAC_total = 0 BitOut = 8 Layers_L3_input_act = 0 Layers_L3_output_act = 0 Layers_L3_weights = 0 L2_memory_occupation = 0 for i, nodes_to_deploy in enumerate(PULP_Nodes_Graph[:number_of_deployed_layers]): if 'Conv' in nodes_to_deploy.name or 'Gemm' in nodes_to_deploy.name or 'MatMul' in nodes_to_deploy.name: layer = 'Conv' if 'Pool' in nodes_to_deploy.name: layer = 'Pool' if 'Add' in nodes_to_deploy.name: layer = 'Add' name_layer = "layer" + nodes_to_deploy.name + str(i) ######################## NEED A FIX #################################################### #### OTHERWISE ONLY WEIGHT < L2/2 GO in L2 --> much more L3 tiling not needed############ ######################################################################################### if (i < len(PULP_Nodes_Graph)-1) and ('Conv' in PULP_Nodes_Graph[i+1].name or 'Gemm' in PULP_Nodes_Graph[i+1].name or 'MatMul' in PULP_Nodes_Graph[i+1].name): if PULP_Nodes_Graph[i+1].input_channels*PULP_Nodes_Graph[i+1].output_channels*PULP_Nodes_Graph[i+1].filter_size_h*PULP_Nodes_Graph[i+1].filter_size_w > int(l2_buffer_size/2): weight_overhead = int(l2_buffer_size/2) else: weight_overhead = PULP_Nodes_Graph[i+1].input_channels*PULP_Nodes_Graph[i+1].output_channels*PULP_Nodes_Graph[i+1].filter_size_h*PULP_Nodes_Graph[i+1].filter_size_w +int(PULP_Nodes_Graph[i+1].output_channels*BitActivation/8*2) else: weight_overhead = 0 if optional != '8bit': BitIn = BitOut if nodes_to_deploy.outshift != 'empty': BitOut = 32 - int(nodes_to_deploy.outshift) BitW = 8 if BitOut != 2 and BitOut!= 4 and BitOut!= 8: BitOut = 8 if i == len(PULP_Nodes_Graph)-1: name_layer = name_layer + '_last' BitOut = 32 if performance_single_layer == 'Yes': test_location = 'L3+performance' else: test_location = 'L3' tile_gen = Tiling(layer, nodes_to_deploy.output_channels, [nodes_to_deploy.filter_size_h, nodes_to_deploy.filter_size_w], nodes_to_deploy.stride, [nodes_to_deploy.padding_top,nodes_to_deploy.padding_left,nodes_to_deploy.padding_bottom,nodes_to_deploy.padding_right], nodes_to_deploy.groups, [nodes_to_deploy.input_channels * nodes_to_deploy.groups, nodes_to_deploy.input_h, nodes_to_deploy.input_w], L1_dimension, l2_buffer_size-weight_overhead, self.platform, self.chip, test_location=test_location, BitIn=BitIn, BitW=BitW, BitOut=BitOut, BitActivation = BitActivation, optional_type=optional) str_l = 'ch_in' + str(nodes_to_deploy.input_channels) + 'ch_out' + str(nodes_to_deploy.output_channels) + 'groups' + str( nodes_to_deploy.groups) + 'dim_image' + str(nodes_to_deploy.input_h,) + 'stride' + str(nodes_to_deploy.stride) name = nodes_to_deploy.name for scan_i, _ in enumerate(stringa_features): if str_l == stringa_features[scan_i] and str(layer) == str(layer_list[scan_i]): name_layer = name_layer_list[scan_i] name = name_layer_list_internal[scan_i] stringa_features.append(str_l) layer_list.append(layer) name_layer_list.append(name_layer) name_layer_list_internal.append(name) relu = 0 BN = 0 DW = 0 input_dim_constraint = 0 output_weights_dim_constraint = 0 if i == 0: weight_constraint = 0 if i == 0: input_L3 = 0 elif factor_h_out > 1: input_L3 = 1 input_dim_constraint = out_dim2 output_weights_dim_constraint = l2_buffer_size - weight_overhead - out_dim2_old else: input_L3 = 0 if 'Relu' in nodes_to_deploy.name: relu = 1 if 'BN' in nodes_to_deploy.name: BN = 1 if 'DW' in nodes_to_deploy.name: DW = 1 if 'Gemm' in nodes_to_deploy.name or 'Conv' in nodes_to_deploy.name or 'MatMul' in nodes_to_deploy.name: in_dim2, out_dim2, weights_dim, l1_dim2, L3_tiling, factor_ch_out, factor_h_out, factor_h_in = tile_gen.get_tiling(X=0, Y=0, W=0, relu=relu, BN=BN, DW=DW, has_bias=0, out_mul=nodes_to_deploy.outmul, out_shift=nodes_to_deploy.outshift, name=name_layer, input_L3 = input_L3, input_dim_constraint = input_dim_constraint, output_weights_dim_constraint = output_weights_dim_constraint, weight_constraint = weight_constraint) if factor_ch_out > 1: PULP_Nodes_Graph[i].L3_allocation = 1 else: PULP_Nodes_Graph[i].L3_allocation = 0 Layers_L3_input_act += int(factor_h_in > 1) Layers_L3_output_act += int(factor_h_out > 1) Layers_L3_weights += int(factor_ch_out > 1) if i == 0: out_dim2_old = in_dim2 if factor_h_out > 1: out_dim2 = l2_buffer_size - weight_overhead - out_dim2_old - weights_dim out_dim2_old = out_dim2 elif 'Pool' in nodes_to_deploy.name: in_dim2, out_dim2, l1_dim2 = tile_gen.get_tiling(X=0, Y=0, W=0, relu=relu, out_mul=nodes_to_deploy.outmul, out_shift=nodes_to_deploy.outshift, name=name_layer, type=name) L3_tiling = 0 elif 'Add' in nodes_to_deploy.name: in_dim2, out_dim2, l1_dim2 = tile_gen.get_tiling(X=0, Y=0, W=0, relu=relu, out_mul1=nodes_to_deploy.inmul1, out_mul2=nodes_to_deploy.inmul2, out_shift=nodes_to_deploy.outshift, name=name_layer, type=name) L3_tiling = 0 if weight_overhead == int(l2_buffer_size/2): weight_constraint = int(l2_buffer_size/2) else: weight_constraint = 0 if L3_tiling == 1: name_layer = name_layer + 'L3' name_list.append(name_layer) if 'Gemm' in nodes_to_deploy.name or 'Conv' in nodes_to_deploy.name or 'MatMul' in nodes_to_deploy.name: if i > 0: PULP_Nodes_Graph[i].weights_dimension = PULP_Nodes_Graph[i-1].weights_dimension + weights_dim else: PULP_Nodes_Graph[i].weights_dimension = weights_dim else: PULP_Nodes_Graph[i].weights_dimension = PULP_Nodes_Graph[i-1].weights_dimension if 'Gemm' in nodes_to_deploy.name or 'Conv' in nodes_to_deploy.name or 'MatMul' in nodes_to_deploy.name: if factor_ch_out == 1: if i > 0: PULP_Nodes_Graph[i].weights_dimension_L3 = PULP_Nodes_Graph[i-1].weights_dimension_L3 + weights_dim else: PULP_Nodes_Graph[i].weights_dimension_L3 = weights_dim else: if i > 0: PULP_Nodes_Graph[i].weights_dimension_L3 = PULP_Nodes_Graph[i-1].weights_dimension_L3 + int(weights_dim*factor_ch_out/2) else: PULP_Nodes_Graph[i].weights_dimension_L3 = int(weights_dim*factor_ch_out/2) else: PULP_Nodes_Graph[i].weights_dimension_L3 = PULP_Nodes_Graph[i-1].weights_dimension_L3 PULP_Nodes_Graph[i].input_activation_dimensions = int(in_dim2*BitIn/8) PULP_Nodes_Graph[i].output_activation_dimensions = int(out_dim2*BitOut/8) if i > 0: if PULP_Nodes_Graph[i].input_activation_dimensions != PULP_Nodes_Graph[i-1].output_activation_dimensions: PULP_Nodes_Graph[i].input_activation_dimensions = PULP_Nodes_Graph[i-1].output_activation_dimensions PULP_Nodes_Graph[i].l1_dimensions = l1_dim2 MAC_total += nodes_to_deploy.MACs return PULP_Nodes_Graph, Layers_L3_input_act, Layers_L3_output_act, Layers_L3_weights, name_layer_list, name_list, MAC_total def generate_intermediate_activations(self, PULP_Nodes_Graph, load_dir, number_of_deployed_layers, check_layer, weights_to_write, BitIn, BitW, BitOut, optional): ###################################################################################### ###### SECTION 4: GENERATE CHECKSUM BY USING WEIGHT AND OUT_LAYER{i}.TXT FILES ###### ###################################################################################### x_in = None x_in = pd.read_csv(load_dir + 'input.txt') x_in = x_in.values[:, 0].astype(int) for i, _ in enumerate(x_in): x_in[i] = np.uint8(x_in[i]) BitOut = 8 PULP_Nodes_Graph[0].check_sum_in = sum(x_in) string_layer = "inputs.hex" save_s = './application/DORY_network/' + string_layer with open(save_s, 'wb') as f: for i in x_in.astype('uint8').flatten(): f.write(bytes((i,))) f_w = 0 for f, nodes_to_deploy in enumerate(PULP_Nodes_Graph[:number_of_deployed_layers]): X_in = pd.read_csv(load_dir + 'out_layer' + str(f) + '.txt') X_in = X_in.values[:, 0].astype(int) if f == len(PULP_Nodes_Graph[:number_of_deployed_layers]) - 1: class_out = np.where(X_in == np.max(X_in))[0][0] for i, _ in enumerate(X_in): X_in[i] = np.uint8(X_in[i]) if optional != '8bit': BitIn = BitOut if nodes_to_deploy.outshift != 'empty': BitOut = 32 - int(nodes_to_deploy.outshift) BitW = 8 if BitOut != 2 and BitOut!= 4 and BitOut!= 8: BitOut = 8 Input_compressed = [] z = 0 import copy Loop_over = copy.deepcopy(X_in) for _, i_x in enumerate(Loop_over): if (z % int(8 / BitOut)) == 0: Input_compressed.append(int(i_x.item())) else: Input_compressed[-1] += int(i_x.item()) << (BitOut * (z % int(8 / BitOut))) z += 1 if check_layer == f: act_compare = Input_compressed PULP_Nodes_Graph[f].check_sum_out = sum(Input_compressed) if f == len(PULP_Nodes_Graph) - 1: ww = np.asarray(nodes_to_deploy.weights).reshape(nodes_to_deploy.output_channels,nodes_to_deploy.input_channels ).astype(np.int8).astype(int) X_in = pd.read_csv(load_dir + 'out_layer' + str(f-1) + '.txt') X_out = pd.read_csv(load_dir + 'out_layer' + str(f) + '.txt') X_in = X_in.values[:, 0].astype(int).reshape(X_in.shape[0],1) try: PULP_Nodes_Graph[f].check_sum_out = sum(sum(np.matmul(ww,X_in))) except: PULP_Nodes_Graph[f].check_sum_out = 0 if f != len(PULP_Nodes_Graph[:number_of_deployed_layers]) - 1: PULP_Nodes_Graph[f + 1].check_sum_in = sum(Input_compressed) if 'Gemm' in nodes_to_deploy.name or 'Conv' in nodes_to_deploy.name or 'MatMul' in nodes_to_deploy.name: PULP_Nodes_Graph[f].check_sum_w = sum(weights_to_write[f_w]) f_w += 1 return PULP_Nodes_Graph, class_out def print_model_network(self, PULP_Nodes_Graph, number_of_deployed_layers=29, load_dir='./mnistNet/', check_layer=0, verbose_level='None', performance_single_layer='Yes', L1_dimension = 35000, master_stack = 4096, slave_stack = 3072, l2_buffer_size = 400000, fc_frequency = 100000000, cl_frequency = 100000000, BitIn=8, BitW=8, BitOut=8, BitActivation = 32, optional='8bit'): # Function used to create all the files for the application # copy backend is used to copy all the files of the backend self.copy_backend(optional, BitIn, BitW, BitOut, BitActivation) # create L3 files for weights. These files are .hex which are copied in hyperflash then PULP_Nodes_Graph, weights_files_list, weights_to_write = self.create_weights_files(PULP_Nodes_Graph, number_of_deployed_layers, BitActivation) fileh = logging.FileHandler('Tiling_profiling.log', 'a') formatter = logging.Formatter('%(asctime)s - %(message)s') fileh.setFormatter(formatter) fileh.setLevel(logging.DEBUG) log = logging.getLogger() for hdlr in log.handlers[:]: log.removeHandler(hdlr) log.addHandler(fileh) print("Creating tiling profiling in Tiling_profling.log") # tiling of all the layers. Both tiling and layer generation PULP_Nodes_Graph, num_L3_input_tile, num_L3_output_tile, num_L3_weight_tile, name_layer_list, name_list, MAC_total = self.create_layers_tiling(PULP_Nodes_Graph, number_of_deployed_layers, L1_dimension, l2_buffer_size, BitActivation, optional, performance_single_layer, BitIn, BitW, BitOut) logging.debug(" ") logging.debug(" Layers with L3 input activation: " + str(num_L3_input_tile)) logging.debug(" Layers with L3 output activation: " + str(num_L3_output_tile)) logging.debug(" Layers with L3 weights: " + str(num_L3_weight_tile)) name_layer_list_unique = list(set(name_layer_list)) for i, _ in enumerate(name_layer_list_unique): name_layer_list_unique[i] = name_layer_list_unique[i] + ".c" for i, nodes_to_deploy in enumerate(PULP_Nodes_Graph[:number_of_deployed_layers]): if nodes_to_deploy.L3_allocation == 1: name_layer_list_unique.append(name_layer_list[i] + "L3" + ".c") # compute the checksums for intermediate activations checking if 'Check' in verbose_level or 'Last' in verbose_level: PULP_Nodes_Graph, class_out = self.generate_intermediate_activations(PULP_Nodes_Graph, load_dir, number_of_deployed_layers, check_layer, weights_to_write, BitIn, BitW, BitOut, optional) else: x_in = np.random.randint(2**9, size=(1, PULP_Nodes_Graph[0].input_channels, PULP_Nodes_Graph[0].input_h, PULP_Nodes_Graph[0].input_w)) x_in[x_in > (2**8 - 1)] = 0 x_in = x_in.flatten().astype(int) for i, _ in enumerate(x_in): x_in[i] = np.uint8(x_in[i]) BitOut = 8 class_out = 0 PULP_Nodes_Graph[0].check_sum_in = sum(x_in) string_layer = "inputs.hex" save_s = './application/DORY_network/' + string_layer with open(save_s, 'wb') as f: for i in x_in.astype('uint8').flatten(): f.write(bytes((i,))) if check_layer == 100: act_compare = np.asarray([0, 0]) act_size = [0, 0, 0] else: act_size = [PULP_Nodes_Graph[check_layer].output_h, PULP_Nodes_Graph[check_layer].output_w, PULP_Nodes_Graph[check_layer].output_channels] ## printf the network file. It calls all the layer functions template.print_template_network( weights_files_list, PULP_Nodes_Graph[:number_of_deployed_layers], 'char', name=name_list, test=True, has_bias=True, verbose_level=verbose_level, check_layer=check_layer, act_compare=act_compare, act_size=act_size, class_out=class_out, l1_buffer=L1_dimension, master_stack = master_stack, slave_stack = slave_stack, l2_buffer_size = l2_buffer_size, fc_frequency = fc_frequency, cl_frequency = cl_frequency, MACs=MAC_total, platform=self.platform, BitIn=BitIn, BitW=BitW, BitOut=BitOut) # create the Makefile for the application template.print_template_Makefile(weights_files_list, self.platform)