content
stringlengths
5
1.05M
from math import cos, pi, sqrt INITIAL_X = 0 # meters INITIAL_Y = 5 # meters INITIAL_THETA = 0 # degrees LANDMARK_1_LOCATION = [6, 4] LANDMARK_2_LOCATION = [-7, 8] LANDMARK_3_LOCATION = [6, -4] LANDMARKS = [LANDMARK_1_LOCATION, LANDMARK_2_LOCATION, LANDMARK_3_LOCATION] STD_DEV_LOCATION_RANGE = 0.1 STD_DEV_LOCATION_BEARING = 0.05 SAMPLE_PERIOD = 0.1 # seconds TOTAL_TIME = 40 # seconds ALPHA1 = 0.1 ALPHA2 = 0.01 ALPHA3 = 0.01 ALPHA4 = 0.1
from requests_html import HTML from spells.forum import Spell from unittest.mock import patch from unittest.mock import MagicMock from utils.utils import load_html from utils.dummy import DummyResponse class DummyItem: def __init__(self, html): self._html = html @property def html(self): return self._html class DummyLink: def __init__(self, links): self._links = links @property def absolute_links(self): return self._links class TestForum: def _create_spell(self, options={}): base = { 'entry': 'http://localhost/index' } return Spell({**base, **options}) def test_name(self): name = Spell.name() assert type(name) == str assert len(name) > 0 def test_intro(self): name = Spell.intro() assert type(name) == str assert len(name) > 0 @patch('spells.forum.HTMLSession') def test_get_items_from_page(self, HTMLSession): html = HTML(html=load_html('basepage')) HTMLSession.return_value.get.return_value = DummyResponse(html) spell = self._create_spell({ 'itemListSelector': '#unselect' }) result = spell._get_items_from_page('test_url') for item in result: assert item @patch('spells.forum.HTMLSession') def test_get_items_from_page_failed_response(self, HTMLSession): HTMLSession.return_value.get.return_value = DummyResponse('', 404) spell = self._create_spell() result = spell._get_items_from_page('test_url') assert len(result) == 0 @patch('spells.forum.HTMLSession') def test_process_item(self, HTMLSession): html = HTML(html=load_html('basepage')) HTMLSession.return_value.get.return_value = DummyResponse(html) spell = self._create_spell({ 'titleSelector': '.title', 'dateSelector': '.date', 'contentSelector': '.description' }) item = DummyLink(['test_link']) result = spell.process_item(item) assert result['title'] == 'title' assert result['pubDate'] == 'date' assert result['description'] == '<div class="description">description</div>' assert result['link'] == 'test_link' assert result['addition'] is None def test_process_item_duplicated_link(self): spell = self._create_spell({ }) item = DummyLink(['test_link', 'test_link2']) result = spell.process_item(item) assert result == {} @patch('spells.forum.HTMLSession') def test_process_item_wrong_selector(self, HTMLSession): html = HTML(html=load_html('basepage')) HTMLSession.return_value.get.return_value = DummyResponse(html) spell = self._create_spell({ 'titleSelector': '.wrongtitle', 'dateSelector': '.wrongdate', 'contentSelector': '.wrongdescription' }) item = DummyLink(['test_link']) result = spell.process_item(item) assert result == {} @patch('spells.forum.HTMLSession') def test_go(self, HTMLSession): html = HTML(html=load_html('basepage')) HTMLSession.return_value.get.return_value = DummyResponse(html) spell = self._create_spell({ 'itemListSelector': '#unselect', 'titleSelector': '.title', 'dateSelector': '.date', 'contentSelector': '.description' }) result = spell.go() count = 0 for item in result: count += 1 assert item assert count == 1 @patch('spells.forum.HTMLSession') def test_go_multi_page(self, HTMLSession): html = HTML(html=load_html('basepage')) HTMLSession.return_value.get.return_value = DummyResponse(html) spell = self._create_spell({ 'page_param': 'page', 'pages': '5', 'itemListSelector': '#unselect', 'titleSelector': '.title', 'dateSelector': '.date', 'contentSelector': '.description' }) result = spell.go() count = 0 for item in result: count += 1 assert item assert count == 5
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'GetCatalogResult', 'AwaitableGetCatalogResult', 'get_catalog', ] @pulumi.output_type class GetCatalogResult: """ A collection of values returned by getCatalog. """ def __init__(__self__, attached_catalog_private_endpoints=None, catalog_id=None, compartment_id=None, defined_tags=None, display_name=None, freeform_tags=None, id=None, lifecycle_details=None, number_of_objects=None, service_api_url=None, service_console_url=None, state=None, time_created=None, time_updated=None): if attached_catalog_private_endpoints and not isinstance(attached_catalog_private_endpoints, list): raise TypeError("Expected argument 'attached_catalog_private_endpoints' to be a list") pulumi.set(__self__, "attached_catalog_private_endpoints", attached_catalog_private_endpoints) if catalog_id and not isinstance(catalog_id, str): raise TypeError("Expected argument 'catalog_id' to be a str") pulumi.set(__self__, "catalog_id", catalog_id) if compartment_id and not isinstance(compartment_id, str): raise TypeError("Expected argument 'compartment_id' to be a str") pulumi.set(__self__, "compartment_id", compartment_id) if defined_tags and not isinstance(defined_tags, dict): raise TypeError("Expected argument 'defined_tags' to be a dict") pulumi.set(__self__, "defined_tags", defined_tags) if display_name and not isinstance(display_name, str): raise TypeError("Expected argument 'display_name' to be a str") pulumi.set(__self__, "display_name", display_name) if freeform_tags and not isinstance(freeform_tags, dict): raise TypeError("Expected argument 'freeform_tags' to be a dict") pulumi.set(__self__, "freeform_tags", freeform_tags) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if lifecycle_details and not isinstance(lifecycle_details, str): raise TypeError("Expected argument 'lifecycle_details' to be a str") pulumi.set(__self__, "lifecycle_details", lifecycle_details) if number_of_objects and not isinstance(number_of_objects, int): raise TypeError("Expected argument 'number_of_objects' to be a int") pulumi.set(__self__, "number_of_objects", number_of_objects) if service_api_url and not isinstance(service_api_url, str): raise TypeError("Expected argument 'service_api_url' to be a str") pulumi.set(__self__, "service_api_url", service_api_url) if service_console_url and not isinstance(service_console_url, str): raise TypeError("Expected argument 'service_console_url' to be a str") pulumi.set(__self__, "service_console_url", service_console_url) if state and not isinstance(state, str): raise TypeError("Expected argument 'state' to be a str") pulumi.set(__self__, "state", state) if time_created and not isinstance(time_created, str): raise TypeError("Expected argument 'time_created' to be a str") pulumi.set(__self__, "time_created", time_created) if time_updated and not isinstance(time_updated, str): raise TypeError("Expected argument 'time_updated' to be a str") pulumi.set(__self__, "time_updated", time_updated) @property @pulumi.getter(name="attachedCatalogPrivateEndpoints") def attached_catalog_private_endpoints(self) -> Sequence[str]: """ The list of private reverse connection endpoints attached to the catalog """ return pulumi.get(self, "attached_catalog_private_endpoints") @property @pulumi.getter(name="catalogId") def catalog_id(self) -> str: return pulumi.get(self, "catalog_id") @property @pulumi.getter(name="compartmentId") def compartment_id(self) -> str: """ Compartment identifier. """ return pulumi.get(self, "compartment_id") @property @pulumi.getter(name="definedTags") def defined_tags(self) -> Mapping[str, Any]: """ Usage of predefined tag keys. These predefined keys are scoped to namespaces. Example: `{"foo-namespace.bar-key": "value"}` """ return pulumi.get(self, "defined_tags") @property @pulumi.getter(name="displayName") def display_name(self) -> str: """ Data catalog identifier, which can be renamed. """ return pulumi.get(self, "display_name") @property @pulumi.getter(name="freeformTags") def freeform_tags(self) -> Mapping[str, Any]: """ Simple key-value pair that is applied without any predefined name, type, or scope. Exists for cross-compatibility only. Example: `{"bar-key": "value"}` """ return pulumi.get(self, "freeform_tags") @property @pulumi.getter def id(self) -> str: """ Unique identifier that is immutable on creation. """ return pulumi.get(self, "id") @property @pulumi.getter(name="lifecycleDetails") def lifecycle_details(self) -> str: """ An message describing the current state in more detail. For example, it can be used to provide actionable information for a resource in 'Failed' state. """ return pulumi.get(self, "lifecycle_details") @property @pulumi.getter(name="numberOfObjects") def number_of_objects(self) -> int: """ The number of data objects added to the data catalog. Please see the data catalog documentation for further information on how this is calculated. """ return pulumi.get(self, "number_of_objects") @property @pulumi.getter(name="serviceApiUrl") def service_api_url(self) -> str: """ The REST front endpoint URL to the data catalog instance. """ return pulumi.get(self, "service_api_url") @property @pulumi.getter(name="serviceConsoleUrl") def service_console_url(self) -> str: """ The console front endpoint URL to the data catalog instance. """ return pulumi.get(self, "service_console_url") @property @pulumi.getter def state(self) -> str: """ The current state of the data catalog resource. """ return pulumi.get(self, "state") @property @pulumi.getter(name="timeCreated") def time_created(self) -> str: """ The time the data catalog was created. An [RFC3339](https://tools.ietf.org/html/rfc3339) formatted datetime string. """ return pulumi.get(self, "time_created") @property @pulumi.getter(name="timeUpdated") def time_updated(self) -> str: """ The time the data catalog was updated. An [RFC3339](https://tools.ietf.org/html/rfc3339) formatted datetime string. """ return pulumi.get(self, "time_updated") class AwaitableGetCatalogResult(GetCatalogResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetCatalogResult( attached_catalog_private_endpoints=self.attached_catalog_private_endpoints, catalog_id=self.catalog_id, compartment_id=self.compartment_id, defined_tags=self.defined_tags, display_name=self.display_name, freeform_tags=self.freeform_tags, id=self.id, lifecycle_details=self.lifecycle_details, number_of_objects=self.number_of_objects, service_api_url=self.service_api_url, service_console_url=self.service_console_url, state=self.state, time_created=self.time_created, time_updated=self.time_updated) def get_catalog(catalog_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetCatalogResult: """ This data source provides details about a specific Catalog resource in Oracle Cloud Infrastructure Data Catalog service. Gets a data catalog by identifier. ## Example Usage ```python import pulumi import pulumi_oci as oci test_catalog = oci.datacatalog.get_catalog(catalog_id=oci_datacatalog_catalog["test_catalog"]["id"]) ``` :param str catalog_id: Unique catalog identifier. """ __args__ = dict() __args__['catalogId'] = catalog_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('oci:datacatalog/getCatalog:getCatalog', __args__, opts=opts, typ=GetCatalogResult).value return AwaitableGetCatalogResult( attached_catalog_private_endpoints=__ret__.attached_catalog_private_endpoints, catalog_id=__ret__.catalog_id, compartment_id=__ret__.compartment_id, defined_tags=__ret__.defined_tags, display_name=__ret__.display_name, freeform_tags=__ret__.freeform_tags, id=__ret__.id, lifecycle_details=__ret__.lifecycle_details, number_of_objects=__ret__.number_of_objects, service_api_url=__ret__.service_api_url, service_console_url=__ret__.service_console_url, state=__ret__.state, time_created=__ret__.time_created, time_updated=__ret__.time_updated)
import sys import os, os.path import subprocess import numpy if __name__ == "__main__": formula = sys.argv[1] kind = sys.argv[2] program = "bsub" params = ["-n", "4", "-W", "04:00", "-R", "\"rusage[mem=4096]\""] run_string = "\"mpirun -n 4 gpaw-python run_doping.py {0} {1} {2:.2f}\"" for fermi_shift in numpy.linspace(-1.0, 1.0, 41): call_cmd = [program] + params + [run_string.format(formula, kind, fermi_shift)] print(" ".join(call_cmd)) choice = input("Should we proceed? [y/n]") if choice in ("y", "Y"): for fermi_shift in numpy.linspace(-1.0, 1.0, 41): call_cmd = [program] + params + [run_string.format(formula, kind, fermi_shift)] proc = subprocess.run(" ".join(call_cmd), shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) print(proc.stdout.decode("utf8"))
from __future__ import division import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.naive_bayes import MultinomialNB pd.options.mode.chained_assignment = None from sklearn.metrics import confusion_matrix from sklearn.cross_validation import cross_val_score, train_test_split print "Step1...reading data..." df = pd.read_csv("../app/static/merged_data.csv") print "Step1...done reading data..." print "Step2...throwing out floats..." essay_df = df[['_projectid', 'RESP', 'essay']] essay_df['new_essay'] = essay_df['essay'].map(lambda x: type(x)) essay_df = essay_df[essay_df.new_essay == str] print "Step2...done throwing out floats" print "percent remaining", len(essay_df)/len(df) print "Step3...decoding data..." essay_df.new_essay = essay_df['essay'].map(lambda x: x.decode('utf-8')) print "Step3...done decoding" print "Step4...transforming data..." documents = essay_df.new_essay.tolist() classes = essay_df.RESP.tolist() print "Step4...done transforming data" print "Step5...vectorizing data..." vectorizer = CountVectorizer(stop_words='english', ngram_range=(1,2)) doc_vectors = vectorizer.fit_transform(documents) print "Step5...done vectorizing data...fitting model..." \ "" model = MultinomialNB().fit(doc_vectors, classes) print "done fitting model" precision = np.mean(cross_val_score(model, doc_vectors, classes, scoring='precision')) cm = confusion_matrix(classes, model.predict(doc_vectors)) print "Precision", precision print "Percentage off", cm[0][1]/(cm[0][0]+cm[0][1]) print cm
from typing import Iterable, Iterator, Sequence, List, Mapping, Dict def f1() -> Iterable[int]: pass def f2() -> Iterator[int]: pass def f3() -> Sequence[int]: pass def f4() -> List[int]: pass def f5() -> Mapping[str, int]: pass def f6() -> Dict[str, int]: pass for x in f1(): pass for x in f2(): pass for x in f3(): pass for x in f4(): pass for x in f5(): pass for x in f6(): pass
import pandas as pd from .medscore import UserMacros from .models import Food from .views import FOOD_BEV, NUTR CAL_FROM_G_PRO = 4 CAL_FROM_G_CHO = 4 CAL_FROM_G_FAT = 9 def getFoodMacros(foods): ## Get the foods that the user ate for the day serve_field = Food._meta.get_field('servings') name_field = Food._meta.get_field('food_text') macros = UserMacros() for food in foods: servings = serve_field.value_from_object(food) food_name = name_field.value_from_object(food) db_food = FOOD_BEV.loc[FOOD_BEV['main_food_description'] == food_name] food_code = db_food['food_code'].iloc[0] food_item = NUTR.loc[NUTR['food_code'] == food_code] macros.calories += float(food_item['energy_kcal']) * float(servings) macros.vitD += float(food_item['vitamin_d_d2_+_d3_mcg']) * float(food.servings) macros.vitE += float(food_item['vitamin_e_alpha-tocopherol_mg']) * float(food.servings) macros.vitA += float(food_item['vitamin_a,_rae_mcg_rae']) * float(food.servings) macros.vitK += float(food_item['vitamin_k_phylloquinone_mcg']) * float(food.servings) macros.vitB12 += float(food_item['vitamin_b-12_mcg']) * float(food.servings) macros.folate += float(food_item['folate,_total_mcg']) * float(food.servings) # convert grams of nutrient consumed to calories obtained from that nutrient macros.energyCHO += float(food_item['carbohydrate_g']) * CAL_FROM_G_CHO * float(food.servings) macros.energyPro += float(food_item['protein_g']) * CAL_FROM_G_PRO * float(food.servings) macros.energyFat += float(food_item['total_fat_g']) * CAL_FROM_G_FAT * float(food.servings) macros.energyCHO = (macros.energyCHO / macros.calories) * 100 macros.energyPro = (macros.energyPro / macros.calories) * 100 macros.energyFat = (macros.energyFat / macros.calories) * 100 return macros
from dark_chess_app import login from flask_login import UserMixin # Note that this is a temporary solution to storing user sessions. # it has the distinct disadvatage that it cannot be shared by # multiple processes/servers. Sooner rather than later this should # probably be refactored to make use of redis or something. users = {} @login.user_loader def load_user(token): return users[token] if token in users else None class User(UserMixin): def __init__(self, token, user_data): # update the session manager self.token = token users[token] = self # Cache user data self.id = user_data['id'] self.username = user_data['username'] self.email_confirmed = user_data['email_confirmed'] self.registration_timestamp = user_data['registration_date']['timestamp'] self.friends = user_data['friends'] def get_id(self): return self.token def as_dict(self): return { 'id' : self.id, 'username' : self.username, }
from .phat import InkyPHAT, InkyPHAT_SSD1608 # noqa: F401 from .what import InkyWHAT # noqa: F401 from . import eeprom def auto(i2c_bus=None): _eeprom = eeprom.read_eeprom(i2c_bus=i2c_bus) if _eeprom is None: raise RuntimeError("No EEPROM detected! You must manually initialise your Inky board.") """ The EEPROM is used to disambiguate the variants of wHAT and pHAT 1 Red pHAT (High-Temp) 2 Yellow wHAT (1_E) 3 Black wHAT (1_E) 4 Black pHAT (Normal) 5 Yellow pHAT (DEP0213YNS75AFICP) 6 Red wHAT (Regular) 7 Red wHAT (High-Temp) 8 Red wHAT (DEPG0420RWS19AF0HP) 10 BW pHAT (ssd1608) (DEPG0213BNS800F13CP) 11 Red pHAT (ssd1608) 12 Yellow pHAT (ssd1608) """ if _eeprom.display_variant in (1, 4, 5): return InkyPHAT(_eeprom.get_color()) if _eeprom.display_variant in (10, 11, 12): return InkyPHAT_SSD1608(_eeprom.get_color()) return InkyWHAT(_eeprom.get_color())
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.conf.urls import url from clock.exports.views import ExportMonth, ExportMonthAPI, ExportContractMonthAPI, ExportNuke urlpatterns = [ # Export URLs url(r'^(?P<year>[0-9]{4})/(?P<month>[0-9]+)/contract/(?P<pk>\d+)/$', ExportMonth.as_view(month_format='%m'), name="contract" ), url(r'^api/(?P<year>[0-9]{4})/(?P<month>[0-9]+)/$', ExportMonthAPI.as_view(month_format='%m'), name="api_all" ), # ListView for all shifts of a contract in a month url(r'^api/(?P<year>[0-9]{4})/(?P<month>[0-9]+)/contract/(?P<pk>\d+)/$', ExportContractMonthAPI.as_view(month_format='%m'), name='api_contract'), url(r'^(?P<year>[0-9]{4})/(?P<month>[0-9]+)/contract/(?P<pk>\d+)/hours/(?P<hours>\d+)/nuke/$', ExportNuke.as_view(month_format='%m'), name="contract_nuke" ), ]
import spotipy from pprint import pprint def main(): spotify = spotipy.Spotify(auth_manager=spotipy.SpotifyOAuth()) me = spotify.me() pprint(me) if __name__ == "__main__": main()
from datasets import load_dataset, load_metric import numpy as np dataset = load_dataset("glue", "sst2") datasetTrain = np.asarray(dataset["train"]) print(type(datasetTrain)) # print(datasetTrain) import data_utils import torch from torch.utils.data import Dataset print(type(Dataset)) print(Dataset) class SST2Dataset(Dataset): """ A torch.utils.data.Dataset wrapper for the BoolQ dataset. """ def __init__(self, dataframe, tokenizer): """ Args: dataframe: A Pandas dataframe containing the data. tokenizer: A transformers.PreTrainedTokenizerFast object that is used to tokenize the data. max_seq_length: Maximum sequence length to either pad or truncate every input example to. """ ## TODO: Use encode_data() from data_utils to store the input IDs and ## attention masks for the data. #HERE ENCODED DATA WILL BE A TUPLE #self.encoded_data = data_utils.encode_data(dataframe, tokenizer) ## TODO: Use extract_labels() from data_utils to store the labels. #self.label_list = data_utils.extract_labels(dataframe) # print("The encoded data is: ") # print(self.encoded_data) def __len__(self): #return len(self.label_list) pass def __getitem__(self, i): """ Returns: example: A dictionary containing the input_ids, attention_mask, and label for the i-th example, with the values being numeric tensors and the keys being 'input_ids', 'attention_mask', and 'labels'. """ ## TODO: Return the i-th example as a dictionary with the keys and values ## specified in the function docstring. You should be able to extract the ## necessary values from self.encoded_data and self.label_list. #So a dictionary of element three pass # infoDICT = { # "input_ids" : self.encoded_data[0][i], # "attention_mask" : self.encoded_data[1][i], # "labels" : self.label_list[i] # } # #print(infoDICT) # return infoDICT
from os import kill import numpy as np from void_mesh import * from functions import * d1 = 1 d2 = 1 p = 6 m = 6 R = 0.2 element_type = 'D2QU4N' defValue = 0.1 #Deformation Value NL, EL = void_mesh(d1, d2, p, m, R, element_type) BC_flag = 'extension' ENL, DOFs, DOCs = assign_BCs(NL, BC_flag, defValue) K = assemble_stiffness(ENL, EL, NL) Fp = assemble_forces(ENL, NL) Up = assemble_displacements(ENL, NL) K_UU = K[0 : DOFs, 0 : DOFs] K_UP = K[0 : DOFs, DOFs : DOCs + DOFs] K_PU = K[DOFs : DOCs + DOFs, 0 : DOFs] K_PP = K[DOFs : DOCs + DOFs, DOFs : DOCs + DOFs] F = Fp - (K_UP @ Up) Uu = np.linalg.solve(K_UU, F) Fu = (K_PU @ Uu) + (K_PP @ Up) ENL = update_nodes(ENL, Uu, Fu, NL) print(K[1:6, 1:6])
from mltoolkit.mldp.steps.preprocessors import BasePreProcessor from mltoolkit.mlutils.helpers.paths_and_files import get_file_paths from numpy import random class GroupFileShuffler(BasePreProcessor): """Reads the paths of group CSV files, shuffles them, and passes along.""" def __init__(self, **kwargs): super(GroupFileShuffler, self).__init__(**kwargs) def __call__(self, data_path, **kwargs): file_paths = [] if not isinstance(data_path, list): data_path = [data_path] for _data_path in data_path: file_paths += get_file_paths(_data_path) random.shuffle(file_paths) new_data_source = kwargs new_data_source['data_path'] = file_paths return new_data_source
#!/usr/bin/env python3 import aiohttp import logging from urllib.parse import quote class Session: def __init__(self, url_builder, headers, user = None, password = None, verify_ssl_certs = True): self.logger = logging.getLogger(__name__) self.url_builder = url_builder self.headers = headers self.basic_auth_credentials = None if (user is None or password is None) else aiohttp.BasicAuth(login = user, password = password) self.verify_ssl_certs = verify_ssl_certs async def __aenter__(self): tcp_connector = None if self.verify_ssl_certs else aiohttp.TCPConnector(verify_ssl = False) self.session = aiohttp.ClientSession(auth = self.basic_auth_credentials, headers = self.headers, connector = tcp_connector) return self async def __aexit__(self, exc_type, exc, tb): await self.session.close() async def get_resource_at_once(self, resource): relative_url = self.url_builder.relative_url_from_resource(resource) absolute_url = self.url_builder.absolute_url_from_relative(relative_url) quoted_url = quote(absolute_url, safe = "%/:=&?~#+!$,;@()*[]") self.logger.debug('Getting resource at URL: {:s}'.format(absolute_url)) async with self.session.get(quoted_url) as response: return await response.content.read()
"""server""" # -*- coding:utf-8 -*-
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-07-05 15:57 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import summer.validators import uuid class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='City', fields=[ ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('name', models.CharField(max_length=100, unique=True)), ('country', models.CharField(blank=True, max_length=100)), ('iata_code', models.CharField(max_length=3, unique=True)), ('timezone', models.CharField(max_length=50, validators=(summer.validators.timezone_exists_validator,))), ('has_dst', models.BooleanField(editable=False)), ('offset_to_utc', models.IntegerField(editable=False)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], options={ 'verbose_name_plural': 'cities', 'ordering': ('offset_to_utc', 'name'), }, ), migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('cities', models.ManyToManyField(to='summer.City')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
import json import yaml from .batch_cli_utils import get_batch_if_exists def init_parser(parser): parser.add_argument('batch_id', type=int, help="ID number of the desired batch") parser.add_argument('-o', type=str, default='yaml', help="Specify output format", choices=["yaml", "json"]) def main(args, pass_through_args, client): maybe_batch = get_batch_if_exists(client, args.batch_id) if maybe_batch is None: print(f"Batch with id {args.batch_id} not found") exit(1) batch = maybe_batch formatter = None if args.o == "json": formatter = lambda s: json.dumps(s, indent=2) elif args.o == "yaml": formatter = yaml.dump print(formatter(batch.status()))
""" Library for predicates during queries. """ import abc import db.rtype as rtype # General superclass for all predicates class Predicate(rtype.RType): @abc.abstractmethod def before_query(self): """ Function to run at the beginning of a query chain. Useful for aggregations that have things to reset, e.g. counters. """ pass def default(self): """ Predicates by default return False. """ return False @abc.abstractmethod def on_record(self, record): """ Function to run on the given record. Args: record (rrecord.Record): the record to process according to the predicate Returns a truthy value if the record is to be included (satisfies the predicate), or a falsy value if not. """ pass # Concrete instances of predicates class Where(Predicate): def __init__(self, func): """ Uses func to evaluate each record to determine satisfaction. In short, acts like the filter class. Useful for examples like Where(lambda record: record['key'] % 2) for filtering results. Args: func (callable): the predicate function. """ self._func = func def before_query(self): pass def on_record(self, record): return self._func(record)
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. import logging import multiprocessing import os import unittest import warnings import numpy as np from monty.serialization import loadfn from pymatgen import SETTINGS from pymatgen.analysis.pourbaix_diagram import ( IonEntry, MultiEntry, PourbaixDiagram, PourbaixEntry, PourbaixPlotter, ) from pymatgen.core.ion import Ion from pymatgen.entries.computed_entries import ComputedEntry from pymatgen.util.testing import PymatgenTest logger = logging.getLogger(__name__) class PourbaixEntryTest(unittest.TestCase): _multiprocess_shared_ = True """ Test all functions using a fictitious entry """ def setUp(self): # comp = Composition("Mn2O3") self.solentry = ComputedEntry("Mn2O3", 49) ion = Ion.from_formula("MnO4-") self.ionentry = IonEntry(ion, 25) self.PxIon = PourbaixEntry(self.ionentry) self.PxSol = PourbaixEntry(self.solentry) self.PxIon.concentration = 1e-4 def test_pourbaix_entry(self): self.assertEqual(self.PxIon.entry.energy, 25, "Wrong Energy!") self.assertEqual(self.PxIon.entry.name, "MnO4[-]", "Wrong Entry!") self.assertEqual(self.PxSol.entry.energy, 49, "Wrong Energy!") self.assertEqual(self.PxSol.entry.name, "Mn2O3", "Wrong Entry!") # self.assertEqual(self.PxIon.energy, 25, "Wrong Energy!") # self.assertEqual(self.PxSol.energy, 49, "Wrong Energy!") self.assertEqual(self.PxIon.concentration, 1e-4, "Wrong concentration!") def test_calc_coeff_terms(self): self.assertEqual(self.PxIon.npH, -8, "Wrong npH!") self.assertEqual(self.PxIon.nPhi, -7, "Wrong nPhi!") self.assertEqual(self.PxIon.nH2O, 4, "Wrong nH2O!") self.assertEqual(self.PxSol.npH, -6, "Wrong npH!") self.assertEqual(self.PxSol.nPhi, -6, "Wrong nPhi!") self.assertEqual(self.PxSol.nH2O, 3, "Wrong nH2O!") def test_to_from_dict(self): d = self.PxIon.as_dict() ion_entry = self.PxIon.from_dict(d) self.assertEqual(ion_entry.entry.name, "MnO4[-]", "Wrong Entry!") d = self.PxSol.as_dict() sol_entry = self.PxSol.from_dict(d) self.assertEqual(sol_entry.name, "Mn2O3(s)", "Wrong Entry!") self.assertEqual( sol_entry.energy, self.PxSol.energy, "as_dict and from_dict energies unequal", ) def test_energy_functions(self): # TODO: test these for values self.PxSol.energy_at_conditions(10, 0) self.PxSol.energy_at_conditions(np.array([1, 2, 3]), 0) self.PxSol.energy_at_conditions(10, np.array([1, 2, 3])) self.PxSol.energy_at_conditions(np.array([1, 2, 3]), np.array([1, 2, 3])) def test_multi_entry(self): # TODO: More robust multientry test m_entry = MultiEntry([self.PxSol, self.PxIon]) for attr in ["energy", "composition", "nPhi"]: self.assertEqual( getattr(m_entry, attr), getattr(self.PxSol, attr) + getattr(self.PxIon, attr), ) # As dict, from dict m_entry_dict = m_entry.as_dict() m_entry_new = MultiEntry.from_dict(m_entry_dict) self.assertEqual(m_entry_new.energy, m_entry.energy) def test_get_elt_fraction(self): entry = ComputedEntry("Mn2Fe3O3", 49) pbentry = PourbaixEntry(entry) self.assertAlmostEqual(pbentry.get_element_fraction("Fe"), 0.6) self.assertAlmostEqual(pbentry.get_element_fraction("Mn"), 0.4) class PourbaixDiagramTest(unittest.TestCase): _multiprocess_shared_ = True @classmethod def setUpClass(cls): cls.test_data = loadfn(os.path.join(PymatgenTest.TEST_FILES_DIR, "pourbaix_test_data.json")) cls.pbx = PourbaixDiagram(cls.test_data["Zn"], filter_solids=True) cls.pbx_nofilter = PourbaixDiagram(cls.test_data["Zn"], filter_solids=False) def test_pourbaix_diagram(self): self.assertEqual( set([e.name for e in self.pbx.stable_entries]), {"ZnO(s)", "Zn[2+]", "ZnHO2[-]", "ZnO2[2-]", "Zn(s)"}, "List of stable entries does not match", ) self.assertEqual( set([e.name for e in self.pbx_nofilter.stable_entries]), {"ZnO(s)", "Zn[2+]", "ZnHO2[-]", "ZnO2[2-]", "Zn(s)", "ZnO2(s)", "ZnH(s)"}, "List of stable entries for unfiltered pbx does not match", ) pbx_lowconc = PourbaixDiagram( self.test_data["Zn"], conc_dict={"Zn": 1e-8}, filter_solids=True ) self.assertEqual( set([e.name for e in pbx_lowconc.stable_entries]), {"Zn(HO)2(aq)", "Zn[2+]", "ZnHO2[-]", "ZnO2[2-]", "Zn(s)"}, ) def test_properties(self): self.assertEqual(len(self.pbx.unstable_entries), 2) def test_multicomponent(self): # Assure no ions get filtered at high concentration ag_n = [e for e in self.test_data["Ag-Te-N"] if "Te" not in e.composition] highconc = PourbaixDiagram( ag_n, filter_solids=True, conc_dict={"Ag": 1e-5, "N": 1} ) entry_sets = [set(e.entry_id) for e in highconc.stable_entries] self.assertIn({"mp-124", "ion-17"}, entry_sets) # Binary system pd_binary = PourbaixDiagram( self.test_data["Ag-Te"], filter_solids=True, comp_dict={"Ag": 0.5, "Te": 0.5}, conc_dict={"Ag": 1e-8, "Te": 1e-8}, ) self.assertEqual(len(pd_binary.stable_entries), 30) test_entry = pd_binary.find_stable_entry(8, 2) self.assertTrue("mp-499" in test_entry.entry_id) # Find a specific multientry to test self.assertEqual(pd_binary.get_decomposition_energy(test_entry, 8, 2), 0) pd_ternary = PourbaixDiagram(self.test_data["Ag-Te-N"], filter_solids=True) self.assertEqual(len(pd_ternary.stable_entries), 49) # Fetch a solid entry and a ground state entry mixture ag_te_n = self.test_data["Ag-Te-N"][-1] ground_state_ag_with_ions = MultiEntry( [self.test_data["Ag-Te-N"][i] for i in [4, 18, 30]], weights=[1 / 3, 1 / 3, 1 / 3], ) self.assertAlmostEqual( pd_ternary.get_decomposition_energy(ag_te_n, 2, -1), 2.767822855765 ) self.assertAlmostEqual( pd_ternary.get_decomposition_energy(ag_te_n, 10, -2), 3.756840056890625 ) self.assertAlmostEqual( pd_ternary.get_decomposition_energy(ground_state_ag_with_ions, 2, -1), 0 ) # Test invocation of pourbaix diagram from ternary data new_ternary = PourbaixDiagram(pd_ternary.all_entries) self.assertEqual(len(new_ternary.stable_entries), 49) self.assertAlmostEqual( new_ternary.get_decomposition_energy(ag_te_n, 2, -1), 2.767822855765 ) self.assertAlmostEqual( new_ternary.get_decomposition_energy(ag_te_n, 10, -2), 3.756840056890625 ) self.assertAlmostEqual( new_ternary.get_decomposition_energy(ground_state_ag_with_ions, 2, -1), 0 ) def test_get_pourbaix_domains(self): domains = PourbaixDiagram.get_pourbaix_domains(self.test_data["Zn"]) self.assertEqual(len(domains[0]), 7) def test_get_decomposition(self): # Test a stable entry to ensure that it's zero in the stable region entry = self.test_data["Zn"][12] # Should correspond to mp-2133 self.assertAlmostEqual( self.pbx.get_decomposition_energy(entry, 10, 1), 0.0, 5, "Decomposition energy of ZnO is not 0.", ) # Test an unstable entry to ensure that it's never zero entry = self.test_data["Zn"][11] ph, v = np.meshgrid(np.linspace(0, 14), np.linspace(-2, 4)) result = self.pbx_nofilter.get_decomposition_energy(entry, ph, v) self.assertTrue( (result >= 0).all(), "Unstable energy has hull energy of 0 or less" ) # Test an unstable hydride to ensure HER correction works self.assertAlmostEqual( self.pbx.get_decomposition_energy(entry, -3, -2), 3.6979147983333 ) # Test a list of pHs self.pbx.get_decomposition_energy(entry, np.linspace(0, 2, 5), 2) # Test a list of Vs self.pbx.get_decomposition_energy(entry, 4, np.linspace(-3, 3, 10)) # Test a set of matching arrays ph, v = np.meshgrid(np.linspace(0, 14), np.linspace(-3, 3)) self.pbx.get_decomposition_energy(entry, ph, v) def test_get_stable_entry(self): entry = self.pbx.get_stable_entry(0, 0) self.assertEqual(entry.entry_id, "ion-0") def test_multielement_parallel(self): # Simple test to ensure that multiprocessing is working test_entries = self.test_data["Ag-Te-N"] nproc = multiprocessing.cpu_count() pbx = PourbaixDiagram(test_entries, filter_solids=True, nproc=nproc) self.assertEqual(len(pbx.stable_entries), 49) def test_solid_filter(self): entries = self.test_data["Zn"] pbx = PourbaixDiagram(entries, filter_solids=False) oxidized_phase = pbx.find_stable_entry(10, 2) self.assertEqual(oxidized_phase.name, "ZnO2(s)") entries = self.test_data["Zn"] pbx = PourbaixDiagram(entries, filter_solids=True) oxidized_phase = pbx.find_stable_entry(10, 2) self.assertEqual(oxidized_phase.name, "ZnO(s)") def test_serialization(self): d = self.pbx.as_dict() new = PourbaixDiagram.from_dict(d) self.assertEqual( set([e.name for e in new.stable_entries]), {"ZnO(s)", "Zn[2+]", "ZnHO2[-]", "ZnO2[2-]", "Zn(s)"}, "List of stable entries does not match", ) # Test with unprocessed entries included, this should result in the # previously filtered entries being included d = self.pbx.as_dict(include_unprocessed_entries=True) new = PourbaixDiagram.from_dict(d) self.assertEqual( set([e.name for e in new.stable_entries]), {"ZnO(s)", "Zn[2+]", "ZnHO2[-]", "ZnO2[2-]", "Zn(s)", "ZnO2(s)", "ZnH(s)"}, "List of stable entries for unfiltered pbx does not match", ) pd_binary = PourbaixDiagram( self.test_data["Ag-Te"], filter_solids=True, comp_dict={"Ag": 0.5, "Te": 0.5}, conc_dict={"Ag": 1e-8, "Te": 1e-8}, ) new_binary = PourbaixDiagram.from_dict(pd_binary.as_dict()) self.assertEqual(len(pd_binary.stable_entries), len(new_binary.stable_entries)) # The two tests below rely on the MP Rest interface. @unittest.skipIf( not SETTINGS.get("PMG_MAPI_KEY"), "PMG_MAPI_KEY environment variable not set." ) def test_heavy(self): from pymatgen import MPRester mpr = MPRester() entries = mpr.get_pourbaix_entries(["Li", "Mg", "Sn", "Pd"]) pbx = PourbaixDiagram(entries, nproc=4, filter_solids=False) entries = mpr.get_pourbaix_entries(["Ba", "Ca", "V", "Cu", "F"]) pbx = PourbaixDiagram(entries, nproc=4, filter_solids=False) entries = mpr.get_pourbaix_entries(["Ba", "Ca", "V", "Cu", "F", "Fe"]) pbx = PourbaixDiagram(entries, nproc=4, filter_solids=False) entries = mpr.get_pourbaix_entries(["Na", "Ca", "Nd", "Y", "Ho", "F"]) pbx = PourbaixDiagram(entries, nproc=4, filter_solids=False) @unittest.skipIf( not SETTINGS.get("PMG_MAPI_KEY"), "PMG_MAPI_KEY environment variable not set." ) def test_mpr_pipeline(self): from pymatgen import MPRester mpr = MPRester() data = mpr.get_pourbaix_entries(["Zn"]) pbx = PourbaixDiagram(data, filter_solids=True, conc_dict={"Zn": 1e-8}) pbx.find_stable_entry(10, 0) data = mpr.get_pourbaix_entries(["Ag", "Te"]) pbx = PourbaixDiagram( data, filter_solids=True, conc_dict={"Ag": 1e-8, "Te": 1e-8} ) self.assertEqual(len(pbx.stable_entries), 30) test_entry = pbx.find_stable_entry(8, 2) self.assertAlmostEqual(test_entry.energy, 2.3894017960000009, 1) # Test custom ions entries = mpr.get_pourbaix_entries(["Sn", "C", "Na"]) ion = IonEntry(Ion.from_formula("NaO28H80Sn12C24+"), -161.676) custom_ion_entry = PourbaixEntry(ion, entry_id="my_ion") pbx = PourbaixDiagram( entries + [custom_ion_entry], filter_solids=True, comp_dict={"Na": 1, "Sn": 12, "C": 24}, ) self.assertAlmostEqual( pbx.get_decomposition_energy(custom_ion_entry, 5, 2), 2.1209002582, 1 ) # Test against ion sets with multiple equivalent ions (Bi-V regression) entries = mpr.get_pourbaix_entries(["Bi", "V"]) pbx = PourbaixDiagram( entries, filter_solids=True, conc_dict={"Bi": 1e-8, "V": 1e-8} ) self.assertTrue( all( [ "Bi" in entry.composition and "V" in entry.composition for entry in pbx.all_entries ] ) ) class PourbaixPlotterTest(unittest.TestCase): def setUp(self): warnings.simplefilter("ignore") self.test_data = loadfn(os.path.join(PymatgenTest.TEST_FILES_DIR, "pourbaix_test_data.json")) self.pd = PourbaixDiagram(self.test_data["Zn"]) self.plotter = PourbaixPlotter(self.pd) def tearDown(self): warnings.simplefilter("default") def test_plot_pourbaix(self): plotter = PourbaixPlotter(self.pd) # Default limits plotter.get_pourbaix_plot() # Non-standard limits plotter.get_pourbaix_plot(limits=[[-5, 4], [-2, 2]]) def test_plot_entry_stability(self): entry = self.pd.all_entries[0] self.plotter.plot_entry_stability(entry, limits=[[-2, 14], [-3, 3]]) # binary system pd_binary = PourbaixDiagram( self.test_data["Ag-Te"], comp_dict={"Ag": 0.5, "Te": 0.5} ) binary_plotter = PourbaixPlotter(pd_binary) plt = binary_plotter.plot_entry_stability(self.test_data["Ag-Te"][53]) plt.close() if __name__ == "__main__": unittest.main()
######################################################################################################## ## pyFAST - Fingerprint and Similarity Thresholding in python ## ## Karianne Bergen ## 11/14/2016 ## ## (see Yoon et. al. 2015, Sci. Adv. for algorithm details) ## ######################################################################################################## ## ## Feature Extraction (Fingerprinting) ## ######################################################################################################## import numpy as np import pywt as wt from sklearn.preprocessing import normalize from scipy.signal import spectrogram from scipy.misc import imresize def init_feature_extractor(params, ntimes): feats = FeatureExtractor(sampling_rate=params['fingerprint']['sampling_rate'], window_length=params['fingerprint']['spec_length'], window_lag=params['fingerprint']['spec_lag'], fingerprint_length=params['fingerprint']['fp_length'], fingerprint_lag=params['fingerprint']['fp_lag'], min_freq=params['fingerprint']["min_freq"], max_freq=params['fingerprint']["max_freq"], nfreq=params['fingerprint']['nfreq'], ntimes=ntimes) return feats class FeatureExtractor(object): def __init__(self, sampling_rate, window_length, window_lag, fingerprint_length, fingerprint_lag, min_freq = 0, max_freq = None, nfreq = 32, ntimes = 64): self.sampling_rate = sampling_rate #/ sampling rate self.window_len = window_length #/ length of window (seconds) used in spectrogram self.window_lag = window_lag #/ window lag (seconds) used in spectrogram self.fp_len = fingerprint_length #/ width of fingerprint (samples) self.fp_lag = fingerprint_lag #/ lag between fingerprints (samples) self.max_freq = self._initialize_frequencies(max_freq) #/ minimum and maximum frequencies for bandpass filter self.min_freq = min_freq self.new_d1 = int(nfreq) #/ number of frequency / time bins in fingerprints (must be power of 2) - TODO: error checking self.new_d2 = int(ntimes) self.d1 = None #/ dimension of spectral images prior to resizing self.d2 = None self.haar_means = None self.haar_stddevs = None self.haar_medians = None self.haar_absdevs = None def _initialize_frequencies(self, max_freq): #/ initializes data structure if max_freq is None: max_freq = self.sampling_rate/2.0 return max_freq def update(self, field, value): if hasattr(self, field): setattr(self, field, value) else: print('WARNING: object has no attribute: ' + field) print('object has the following attributes:' + self.__dict__.keys()) return def get_params(self): mdict = dict() for k in self.__dict__.keys(): if k not in ['haar_means','haar_stddevs','haar_absdevs','haar_medians']: mdict[k] = self.__dict__[k] return mdict #/ returns indicies for overlapping windows def get_window_params(self, N, L, dL): idx0 = np.asarray(range(0, N+1, dL)) idx2 = np.asarray(range(L,N+1,dL)) nWindows = len(idx2) idx1 = idx0[0:nWindows] return nWindows, idx1, idx2 ######################################################################## ## FOR COMPUTING FINGERPRINTS ## ######################################################################## #/ computes spectrogram from continous timeseries data def data_to_spectrogram(self, x_data, window_type = 'hanning'): f, t, Sxx = spectrogram(x_data, fs=self.sampling_rate, window=window_type, nperseg=int(self.sampling_rate*self.window_len), noverlap = int(self.sampling_rate*(self.window_len - self.window_lag))) # Truncate spectrogram, keep only passband frequencies if self.min_freq > 0: fidx_keep = (f >= self.min_freq) Sxx = Sxx[fidx_keep, :] f = f[fidx_keep] if self.max_freq < f[-1]: fidx_keep = (f <= self.max_freq) Sxx = Sxx[fidx_keep, :] f = f[fidx_keep] self.frequencies = f self.times = t return f, t, Sxx #/ breaks spectrogram into overlapping spectral images def spectrogram_to_spectral_images(self, Sxx): nFreq, nTimes = np.shape(Sxx) nWindows, idx1, idx2 = self.get_window_params(nTimes, self.fp_len, self.fp_lag) spectral_images = np.zeros([nWindows, nFreq, self.fp_len]) for i in range(nWindows): spectral_images[i,:,:] = Sxx[:,idx1[i]:idx2[i]] self.nwindows = nWindows nWindows, self.d1, self.d2 = np.shape(spectral_images) #self.new_d1, self.new_d2 = np.exp2(np.floor(np.log2([self.d1, self.d2]))) return spectral_images, nWindows, idx1, idx2 #/ resizes each spectral image to specified dimensions def _resize_spectral_images(self, spectral_images, new_d1, new_d2): new_spectral_images = np.zeros([self.nwindows,new_d1,new_d2]) for i in range(self.nwindows): new_spectral_images[i,:,:] = imresize(spectral_images[i,:,:], (new_d1, new_d2), interp='bilinear', mode='F') return new_spectral_images #/ reshapes output from PyWavelets 2d wavelet transform into image def _unwrap_wavelet_coeffs(self,coeffs): L = len(coeffs) cA = coeffs[0] for i in range(1,L): (cH, cV, cD) = coeffs[i] cA = np.concatenate((np.concatenate((cA, cV),axis= 1),np.concatenate((cH, cD),axis = 1)),axis=0) return cA #/ computes wavelet transform for each spectral image def spectral_images_to_wavelet(self, spectral_images, wavelet = wt.Wavelet('db1')): if (int(self.new_d1)!=self.d1) or (int(self.new_d2)!=self.d2): spectral_images = self._resize_spectral_images(spectral_images, self.new_d1, self.new_d2) haar_images = np.zeros([self.nwindows,self.new_d1,self.new_d2]) for i in range(self.nwindows): coeffs = wt.wavedec2(spectral_images[i,:,:], wavelet) haar_images[i,:,:] = self._unwrap_wavelet_coeffs(coeffs) return haar_images #/ computes (normalized) haar_images from continous timeseries data def data_to_haar_images(self, x_data): f, t, Sxx = self.data_to_spectrogram(x_data) spectral_images, nWindows, idx1, idx2 = self.spectrogram_to_spectral_images(Sxx) haar_images = self.spectral_images_to_wavelet(spectral_images) haar_images = normalize(self._images_to_vectors(haar_images), axis=1) return haar_images, nWindows, idx1, idx2, Sxx, t #/ converts set of images to array of vectors def _images_to_vectors(self,images): N,d1,d2 = np.shape(images) vectors = np.zeros([N,d1*d2]) for i in range(N): vectors[i,:] = np.reshape(images[i,:,:], (1,d1*d2)) return vectors #/ converts set of vectors into set of images (of dimension d1 x d2) def _vectors_to_images(self, vectors, d1, d2): N,D = np.shape(vectors) if D != d1*d2: print('warning: invalid dimensions') return vectors else: images = np.zeros([N,d1,d2]) for i in range(N): images[i,:,:] = np.reshape(vectors[i,:], (d1,d2)) return images def compute_haar_stats(self, haar_images,type = None): if type is 'MAD': shape = haar_images.shape medians = [] for i in range(shape[1]): medians.append(np.median(haar_images[:, i])) self.haar_medians = np.array(medians) mad = [] for i in range(shape[1]): tmp = abs(haar_images[:, i] - medians[i]) mad.append(np.median(tmp)) self.haar_absdevs = np.array(mad) return self.haar_medians, self.haar_absdevs if type is 'Zscore': self.haar_means = np.mean(haar_images,axis=0) self.haar_stddevs = np.std(haar_images,axis=0) return self.haar_means, self.haar_stddevs def standardize_haar(self, haar_images, type = 'MAD'): if type is 'Zscore': haar_images = (haar_images - self.haar_means)/self.haar_stddevs return haar_images elif type is 'MAD': haar_images = (haar_images - self.haar_medians)/self.haar_absdevs return haar_images else: print('Warning: invalid type - select type MAD or Zscore') return None def binarize_vectors_topK_sign(self, coeff_vectors, K): self.K = K N,M = np.shape(coeff_vectors) binary_vectors = np.zeros((N,2*M), dtype=bool) for i in range(N): idx = np.argsort(abs(coeff_vectors[i,:]))[-K:] binary_vectors[i,idx] = coeff_vectors[i,idx] > 0 binary_vectors[i,idx+M] = coeff_vectors[i,idx] < 0 return binary_vectors def vectors_to_topK_sign(self, coeff_vectors, K): self.K = K N,M = np.shape(coeff_vectors) sign_vectors = np.zeros([N,M]) for i in range(N): idx = np.argsort(abs(coeff_vectors[i,:]))[-K:] sign_vectors[i,idx] = np.sign(coeff_vectors[i,idx]) return sign_vectors def sign_to_binary(self, vector): L = len(vector) new_vec = np.zeros((L,2), dtype=bool) new_vec[:,0] = vector > 0 new_vec[:,1] = vector < 0 return np.reshape(new_vec, (1,2*L)) def binarize_vectors_topK(self, coeff_vectors, K): self.K = K N,M = np.shape(coeff_vectors) sign_vectors = np.zeros((N,M),dtype=bool) for i in range(N): idx = np.argsort(coeff_vectors[i,:])[-K:] sign_vectors[i,idx] = 1 return sign_vectors def jaccard_sim(self, vec1, vec2): return sum(vec1 & vec2)/ (1.0*sum(vec1 | vec2))
import logging import random from .Genericgeneration import Generation class Classify(Generation): """ Classification class for classifying and categorizing number guess. Attributes: n(integer) - number of attempts """ def __init__(self, n): super().__init__(n) def guess_number(self): """Function to read in number entered by user in n attempts. Compare the user entered number with the number to be guessed. If any of guessed numbers entered by the user is greater than, lesser than or equal to the number generated by randint function then classify accordingly and break from loop using the loop control statement(break) Args: guess(integer): the user entered number Returns: string: characteristics of guessed number compared to generated number by randint function """ number = random.randint(1, 20) attempts = 0 while attempts < self.n: # Enter a number between 1 to 20 guess = int(input("Enter numbers between 1 and 20: ")) if guess == number: logging.info('Congratulation YOU WON!!!') logging.info('You may start over!!!') break elif guess > number: logging.info(f"Your guess is too high, Guess a number lower than: {guess}") else: logging.info(f"Your guess is too low, Guess a number higher than: {guess}") attempts += 1 if attempts == self.n: logging.info(f"Sorry.. YOU LOSE!!! The number is: {number} ") logging.info("You may start over!!!! ")
curso = 'Programacao em Python Essencial' def funcao2(): return curso
from datetime import datetime from flask import g, has_request_context, request, abort from gatekeeping.db import get_db from gatekeeping.api.audit import create_audit_log from gatekeeping.api.user import get_users_with_password_reset_tokens from gatekeeping.keys import mail from gatekeeping.api.submission import (get_submissions_effective_date_today, get_submission_changes) from os.path import basename from email.mime.application import MIMEApplication from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.utils import COMMASPACE, formatdate import smtplib import schedule import time from numpy import nan as NaN ALLOWED_EXTENSIONS = set(['txt', 'csv', 'tsv']) LOGIN_REQUIRED_VIEWS = ['home', 'submission', 'position', 'help', 'faq'] ADMIN_REQUIRED_VIEWS = ['admin'] def allowed_file(filename): """Checks file type and name""" return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS def update_position(): """ update positions for approved submissions """ db = get_db() submissions = get_submissions_effective_date_today() if submissions: for submission in submissions: submission_changes = get_submission_changes(submission['id']) for change in submission_changes: db.execute( 'UPDATE position SET ? = ? WHERE position_id = ?', (change['field'], change['value'], submission['position_id']) ) db.commit() # create audit trail in db create_audit_log('127.0.0.1', 'Server', '127.0.0.1', action='Successfully updated position {} on submission effective date'.format(submission['position_id']), table='position', function='UPDATE') else: # create audit trail in db create_audit_log('127.0.0.1', 'Server', '127.0.0.1', action='No positions to update today', table='', function='') def expire_password_reset_tokens(): """ expire all password tokens """ db = get_db() users = get_users_with_password_reset_tokens() if users: for user in users: if user['password_reset_token']: db.execute( 'UPDATE user SET password_reset_token = ? WHERE position_id = ?', ('', user['id']) ) # create audit trail in db create_audit_log('127.0.0.1', 'Server', '127.0.0.1', action='Successfully expired password token for user {}'.format(user['email']), table='user', function='UPDATE') db.commit() else: # create audit trail in db create_audit_log('127.0.0.1', 'Server', '127.0.0.1', action='No password tokens to expire today', table='', function='') def run_scheduler(): while True: schedule.run_pending() time.sleep(1) def send_mail(send_from, send_to, subject, text, files=None, server="127.0.0.1"): assert isinstance(send_to, list) """ Sends an email to stakeholders using microsoft mail """ msg = MIMEMultipart() msg['From'] = send_from msg['To'] = COMMASPACE.join(send_to) msg['Date'] = formatdate(localtime=True) msg['Subject'] = subject msg.attach(MIMEText(text)) for f in files or []: with open(f, "rb") as fil: part = MIMEApplication( fil.read(), Name=basename(f) ) # After the file is closed part['Content-Disposition'] = 'attachment; filename="%s"' % basename(f) msg.attach(part) smtp = smtplib.SMTP(server, 587) smtp.starttls() smtp.login(mail[0], mail[1]) smtp.sendmail(send_from, send_to, msg.as_string()) smtp.close() def is_upload_valid(df): """Checks the contents of the upload""" for index, row in df.iterrows(): if row['Status'] is NaN: print('Status is null at index', index) return False if row['Recruitment Status'] is NaN: print('Recruitment Status is null at index', index) return False if row['Number'] is NaN: print('Number is null at index', index) return False if row['Pillar'] is NaN: print('Pillar is null at index', index) return False if row['Company'] is NaN: print('Company is null at index', index) return False if row['Department'] is NaN: print('Department Name is null at index', index) return False if row['Function'] is NaN: print('Function is null at index', index) return False if row['Title'] is NaN: print('Title is null at index', index) return False if row['FTE'] is NaN: print('FTE is null at index', index) return False return True
print('----------------') print('CAIXA ELETRÔNICO') print('----------------') cd = x = 1 sc = 0 print('\n\033[4;33mNotas disponíveis: [R$50,00] [R$20,00] [R$10,00] [R$1,00]\033[m') v = int(input('\nDigite o valor inteiro que você deseja sacar: R$')) while True: cd = v // x % 10 if cd == 0: break else: if x == 1: print(cd,'nota(s) de R$1,00') elif x == 10: if cd % 2 == 0: print(int(cd/2), 'nota(s) de R$20,00') elif (cd - 1) % 2 == 0 and cd % 5 != 0: print('1 nota(s) de R$10,00') print(int((cd - 1) / 2), 'nota(s) de R$20,00') elif cd % 5 == 0: sc = cd/5 else: print(cd, 'nota(s) de R$10,00') else: sc += (cd/5)*(x/10) x = x * 10 if sc != 0: print(int(sc), 'nota(s) de R$50,00')
import streamlit as st import os from werkzeug.utils import secure_filename import logging from pathlib import Path import ocrmypdf import zipfile logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) ALLOWED_EXTENSIONS = set(['pdf']) CWD = Path(os.getcwd()) UPLOAD_DIRECTORY = CWD / "results_OCR" if not os.path.exists(UPLOAD_DIRECTORY): os.makedirs(UPLOAD_DIRECTORY) st.title('OCR my PDF') uploaded_files = st.file_uploader('Upload your file(s)', accept_multiple_files=True) #if uploaded_files is not None: list_pdf = [] list_txt = [] for uploaded_file in uploaded_files: filename = uploaded_file.name if filename[-3:].lower() in ALLOWED_EXTENSIONS: filename = secure_filename(filename) #make sure we have a proper filename logger.info(f'**found {filename}') full_filename = UPLOAD_DIRECTORY / filename ocrmypdf.ocr(uploaded_file, full_filename.with_suffix(".pdf"), sidecar=full_filename.with_suffix('.txt'), l="fra") #uploaded_file.seek(0) list_pdf.append(full_filename.with_suffix(".pdf")) list_txt.append(full_filename.with_suffix(".txt")) if len(list_txt)==1: pdf_to_download = full_filename.with_suffix(".pdf") pdf_name = filename txt_to_download = full_filename.with_suffix(".txt") txt_name = '{}.txt'.format(filename[:-4]) if len(list_txt) > 1: pdf_to_download = UPLOAD_DIRECTORY / "folder_pdf.zip" pdf_name = "folder_pdf.zip" txt_to_download = UPLOAD_DIRECTORY / "folder_txt.zip" txt_name = "folder_txt.zip" with zipfile.ZipFile(UPLOAD_DIRECTORY / "folder_txt.zip", 'w') as zipMe: for file in list_txt: zipMe.write(file, os.path.basename(file), compress_type=zipfile.ZIP_DEFLATED) with zipfile.ZipFile(UPLOAD_DIRECTORY / "folder_pdf.zip", 'w') as zipMe: for file in list_pdf: zipMe.write(file, os.path.basename(file), compress_type=zipfile.ZIP_DEFLATED) if len(list_txt) > 0: with open(txt_to_download, 'rb') as f: st.download_button('Download Txt', f, file_name=txt_name) # Defaults to 'application/octet-stream' with open(pdf_to_download, 'rb') as f: st.download_button('Download PDF', f, file_name=pdf_name) files = [os.path.join(UPLOAD_DIRECTORY, x) for x in os.listdir(UPLOAD_DIRECTORY)] for f in files: print(f) os.remove(f)
import unittest from katas.kyu_6.which_are_in import in_array class InArrayTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(in_array( ['live', 'arp', 'strong'], ['lively', 'alive', 'harp', 'sharp', 'armstrong']), ['arp', 'live', 'strong'])
import os import tempfile import pyblish.api from pype.vendor import clique import pype.api class ExtractReviewSP(pyblish.api.InstancePlugin): """Extracting Review mov file for Ftrack Compulsory attribute of representation is tags list with "review", otherwise the representation is ignored. All new represetnations are created and encoded by ffmpeg following presets found in `pype-config/presets/plugins/global/publish.json:ExtractReview:outputs`. To change the file extension filter values use preset's attributes `ext_filter` """ label = "Extract Review SP" order = pyblish.api.ExtractorOrder + 0.02 families = ["review"] hosts = ["standalonepublisher"] def process(self, instance): # adding plugin attributes from presets presets = instance.context.data["presets"] try: publish_presets = presets["plugins"]["standalonepublisher"]["publish"] plugin_attrs = publish_presets[self.__class__.__name__] except KeyError: raise KeyError("Preset for plugin \"{}\" are not set".format( self.__class__.__name__ )) output_profiles = plugin_attrs.get("outputs", {}) fps = instance.data.get("fps") start_frame = instance.data.get("frameStart") self.log.debug("Families In: `{}`".format(instance.data["families"])) # get specific profile if was defined specific_profiles = instance.data.get("repreProfiles") new_repres = [] # filter out mov and img sequences for repre in instance.data["representations"]: tags = repre.get("tags", []) if "review" not in tags: continue staging_dir = repre["stagingDir"] for name in specific_profiles: profile = output_profiles.get(name) if not profile: self.log.warning( "Profile \"{}\" was not found in presets".format(name) ) continue self.log.debug("Processing profile: {}".format(name)) ext = profile.get("ext", None) if not ext: ext = "mov" self.log.debug(( "`ext` attribute not in output profile \"{}\"." " Setting to default ext: `mov`" ).format(name)) if isinstance(repre["files"], list): collections, remainder = clique.assemble(repre["files"]) full_input_path = os.path.join( staging_dir, collections[0].format("{head}{padding}{tail}") ) filename = collections[0].format('{head}') if filename.endswith("."): filename = filename[:-1] else: full_input_path = os.path.join(staging_dir, repre["files"]) filename = repre["files"].split(".")[0] # prepare output file repr_file = filename + "_{0}.{1}".format(name, ext) out_stagigng_dir = tempfile.mkdtemp(prefix="extract_review_") full_output_path = os.path.join(out_stagigng_dir, repr_file) self.log.info("input {}".format(full_input_path)) self.log.info("output {}".format(full_output_path)) repre_new = repre.copy() new_tags = [x for x in tags if x != "delete"] p_tags = profile.get("tags", []) self.log.info("p_tags: `{}`".format(p_tags)) for _tag in p_tags: if _tag not in new_tags: new_tags.append(_tag) self.log.info("new_tags: `{}`".format(new_tags)) input_args = [] # overrides output file input_args.append("-y") # preset's input data input_args.extend(profile.get("input", [])) # necessary input data # adds start arg only if image sequence if isinstance(repre["files"], list): input_args.extend([ "-start_number {}".format(start_frame), "-framerate {}".format(fps) ]) input_args.append("-i {}".format(full_input_path)) output_args = [] # preset's output data output_args.extend(profile.get("output", [])) if isinstance(repre["files"], list): # set length of video by len of inserted files video_len = len(repre["files"]) else: video_len = repre["frameEnd"] - repre["frameStart"] + 1 output_args.append( "-frames {}".format(video_len) ) # letter_box lb_string = ( "-filter:v " "drawbox=0:0:iw:round((ih-(iw*(1/{0})))/2):t=fill:c=black," "drawbox=0:ih-round((ih-(iw*(1/{0})))/2):iw:" "round((ih-(iw*(1/{0})))/2):t=fill:c=black" ) letter_box = profile.get("letter_box", None) if letter_box: output_args.append(lb_string.format(letter_box)) # output filename output_args.append(full_output_path) ffmpeg_path = os.getenv("FFMPEG_PATH", "") if ffmpeg_path: ffmpeg_path += "/ffmpeg" else: ffmpeg_path = "ffmpeg" mov_args = [ ffmpeg_path, " ".join(input_args), " ".join(output_args) ] subprcs_cmd = " ".join(mov_args) # run subprocess self.log.debug("Executing: {}".format(subprcs_cmd)) output = pype.api.subprocess(subprcs_cmd) self.log.debug("Output: {}".format(output)) # create representation data repre_new.update({ "name": name, "ext": ext, "files": repr_file, "stagingDir": out_stagigng_dir, "tags": new_tags, "outputName": name, "startFrameReview": 1, "endFrameReview": video_len }) # cleanup thumbnail from new repre if repre_new.get("thumbnail"): repre_new.pop("thumbnail") if "thumbnail" in repre_new["tags"]: repre_new["tags"].remove("thumbnail") # adding representation self.log.debug("Adding: {}".format(repre_new)) # cleanup repre from preview if "preview" in repre: repre.pop("preview") if "preview" in repre["tags"]: repre["tags"].remove("preview") new_repres.append(repre_new) for repre in instance.data["representations"]: if "delete" in repre.get("tags", []): instance.data["representations"].remove(repre) for repre in new_repres: self.log.debug("Adding repre: \"{}\"".format( repre )) instance.data["representations"].append(repre)
# Advent of Code 2020 # Day 19 # Author: irobin591 import os import doctest import re with open(os.path.join(os.path.dirname(__file__), "input.txt"), 'r') as input_file: input_data = input_file.read().strip().split('\n') # Prep Input # input_data = list(map(int, input_data.strip().split('\n'))) re_rule_int = re.compile(r'^(\d+): ([\d |]+)$') re_rule_char = re.compile(r'^(\d+): "([a-z])"$') re_rule_input = re.compile(r'^([ab]+)$') def check_rule(string, rule_to_check, ruleset): # end of string and still a rule to check: no success (and no str to return) if len(string) == 0: return # if rule is a char rule, compare the first char and return the rest as remaining if type(rule_to_check) == str: if rule_to_check == string[0]: yield string[1:] return # for each or (x | x) rule: for rules in rule_to_check: # start with input string as valid remaining string remaining_strings = [string] valid = True # check all remaining strings for each sequential rule for rule in rules: remaining_strings_next = [] for remaining_string in remaining_strings: results = check_rule(remaining_string, ruleset[rule], ruleset) tmp = list(results) remaining_strings_next.extend(tmp) remaining_strings = remaining_strings_next # if a remaining string is available: yield all if len(remaining_strings): yield from remaining_strings def part1(input_data): """ >>> part1(open(os.path.join(os.path.dirname(__file__), "test_part1.txt"), 'r').read().strip().split('\\n')) 2 """ rules = {} count_valid_inputs = 0 for line in input_data: # Regex for combined rule r_rule_int = re_rule_int.match(line) if r_rule_int: # Add rule int: rule_id, rule_set = r_rule_int.groups() rules[int(rule_id)] = [list(map(int, x.split(' '))) for x in rule_set.split(' | ')] continue # Regex for final rules (resulting in a character) r_rule_char = re_rule_char.match(line) if r_rule_char: # Add rule int: rule_id, rule_char = r_rule_char.groups() rules[int(rule_id)] = str(rule_char) continue # Regex for test input (rules have to be progressed first) r_rule_input = re_rule_input.match(line) if r_rule_input: remaining_strings = list(check_rule(r_rule_input.group(1), rules[0], rules)) if "" in remaining_strings: count_valid_inputs += 1 continue return count_valid_inputs def part2(input_data): """ >>> part2(open(os.path.join(os.path.dirname(__file__), "test_part2.txt"), 'r').read().strip().split('\\n')) 12 """ rules = {} count_valid_inputs = 0 for line in input_data: # Regex for combined rule r_rule_int = re_rule_int.match(line) if r_rule_int: # Add rule int: rule_id, rule_set = r_rule_int.groups() # OVERRIDE RULES 8 AND 11 if rule_id == '8': rule_set = "42 | 42 8" if rule_id == '11': rule_set = "42 31 | 42 11 31" rules[int(rule_id)] = [list(map(int, x.split(' '))) for x in rule_set.split(' | ')] continue # Regex for final rules (resulting in a character) r_rule_char = re_rule_char.match(line) if r_rule_char: # Add rule int: rule_id, rule_char = r_rule_char.groups() rules[int(rule_id)] = str(rule_char) continue # Regex for test input (rules have to be progressed first) r_rule_input = re_rule_input.match(line) if r_rule_input: # Output all possible remaining strings remaining_strings = list(check_rule(r_rule_input.group(1), rules[0], rules)) # Check if "" is a remaining string # (this means that everything has been successfully parsed # and nothing remained afterwards) if "" in remaining_strings: count_valid_inputs += 1 continue return count_valid_inputs if __name__ == "__main__": doctest.testmod() print("Part One: {}".format(part1(input_data))) print("Part Two: {}".format(part2(input_data))) pass
'''A Pure Python DB-API 2.0 compliant interface to ThinkSQL. Copyright © 2000-2012 Greg Gaughan http://www.thinksql.co.uk ''' from string import split,replace import struct import cStringIO import warnings import socket import datetime try: from fixedpoint import FixedPoint have_fixedpoint = True except ImportError: have_fixedpoint = False apilevel='2.0' threadsafety=1 paramstyle='qmark' __copyright__ = "(c)Copyright 2000-2012 Greg Gaughan" __author__ = "Greg Gaughan" def connect(dsn=None, user=None, password=None, host=None, database=None, port=None): '''Create and open a connection. connect(dsn=None, user='DEFAULT', password='', host='localhost', database='', port=9075) Returns a connection object. ''' #Defaults _d = {'host':'localhost','port':9075, 'database':'', 'user':'DEFAULT', 'password':''} #todo Parse any DSN #Now use any keywords if (user is not None): _d['user'] = user if (password is not None): _d['password'] = password if (host is not None): _d['host'] = host try: params = split(host,':') _d['host'] = params[0] _d['port'] = params[1] except: pass if (database is not None): _d['database']=database if (port is not None):_d['port'] = port return connection(_d['host'], _d['port'], _d['database'], _d['user'], _d['password']) #Connection class ------------------------------------------------------------- class connection: def __init__(self, host=None, port=None, catalog=None, user=None, password=None): self.state=_stateClosed self.marshalBuffer=marshalBuffer(host, port) self._Server='' self._Catalog=catalog self._Username=user self._Password=password self._Autocommit=False #Python has it right, unlike ODBC, JDBC etc! self.resultErrCode=None self.resultErrText='' if self.marshalBuffer.sendHandshake()!=_ok: #send raw handshake raise HandshakeError, str(_seHandshakeFailed)+' '+_seHandshakeFailedText #Now the server knows we're using CLI protocol we can use the marshal buffer self.marshalBuffer.putSQLUSMALLINT(_clientCLIversion) #special version marker for initial protocol handshake if _clientCLIversion>=93: self.marshalBuffer.putSQLUSMALLINT(_CLI_PYTHON_DBAPI) if self.marshalBuffer.send()!=_ok: raise HandshakeError, str(_seHandshakeFailed)+' '+_seHandshakeFailedText #Wait for handshake response if self.marshalBuffer.read()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText functionId=self.marshalBuffer.getFunction() if functionId!=_SQL_API_handshake: raise HandshakeError, str(_seHandshakeFailed)+' '+_seHandshakeFailedText self.serverCLIversion=self.marshalBuffer.getSQLUSMALLINT() #note server's protocol if self.serverCLIversion>=93: self.serverTransactionKey=self.marshalBuffer.getSQLPOINTER() #note server's transaction key #Now SQLconnect self.marshalBuffer.clearToSend() self.marshalBuffer.putFunction(_SQL_API_SQLCONNECT) self.marshalBuffer.putSQLHDBC(0) #(int)(self) if self._Catalog=='': self.marshalBuffer.putpUCHAR_SWORD(self._Server) else: self.marshalBuffer.putpUCHAR_SWORD(self._Server+'.'+self._Catalog) self.marshalBuffer.putpUCHAR_SWORD(self._Username) self.marshalBuffer.putpUCHAR_SWORD(self._Password) #todo encrypt if self.marshalBuffer.send()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText #Wait for read to return the response if self.marshalBuffer.read()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText functionId=self.marshalBuffer.getFunction() if functionId!=_SQL_API_SQLCONNECT: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText self.resultCode=self.marshalBuffer.getRETCODE() #if error, then get error details: local-number, default-text self.errCount=self.marshalBuffer.getSQLINTEGER() #error count if self.resultCode==_SQL_ERROR: for err in range(self.errCount): self.resultErrCode=self.marshalBuffer.getSQLINTEGER() self.resultErrText=self.marshalBuffer.getpUCHAR_SWORD() raise DatabaseError, str(self.resultErrCode)+' '+self.resultErrText #Ok, we're connected self.state=_stateOpen def cursor(self): '''Create a new cursor on the connection. ''' if self.state!=_stateOpen: raise InterfaceError, str(_seConnectionNotOpen)+' '+_seConnectionNotOpenText return cursor(self) def close(self): '''Close the connection. ''' #Negotiate disconnection if self.state!=_stateOpen: raise InterfaceError, str(_seConnectionNotOpen)+' '+_seConnectionNotOpenText self.marshalBuffer.clearToSend() self.marshalBuffer.putFunction(_SQL_API_SQLDISCONNECT) self.marshalBuffer.putSQLHDBC(0) #(int)(self) if self.marshalBuffer.send()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText #Wait for read to return the response if self.marshalBuffer.read()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText functionId=self.marshalBuffer.getFunction() if functionId!=_SQL_API_SQLDISCONNECT: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText self.resultCode=self.marshalBuffer.getRETCODE() #if error, then get error details: local-number, default-text self.errCount=self.marshalBuffer.getSQLINTEGER() #error count if self.resultCode==_SQL_ERROR: for err in range(self.errCount): self.resultErrCode=self.marshalBuffer.getSQLINTEGER() self.resultErrText=self.marshalBuffer.getpUCHAR_SWORD() raise DatabaseError, str(self.resultErrCode)+' '+self.resultErrText #Try to disconnect from the server self.marshalBuffer.close() #close this connection self.state=_stateClosed def commit(self): '''Commit the current transaction. ''' #Send SQLendTran to server self.marshalBuffer.clearToSend() self.marshalBuffer.putFunction(_SQL_API_SQLENDTRAN) self.marshalBuffer.putSQLHDBC(0) #todo pass TranId? self.marshalBuffer.putSQLSMALLINT(_SQL_COMMIT) if self.marshalBuffer.send()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText #Wait for read to return the response if self.marshalBuffer.read()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText functionId=self.marshalBuffer.getFunction() if functionId!=_SQL_API_SQLENDTRAN: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText self.resultCode=self.marshalBuffer.getRETCODE() #if error, then get error details: local-number, default-text self.errCount=self.marshalBuffer.getSQLINTEGER() #error count if self.resultCode==_SQL_ERROR: for err in range(self.errCount): self.resultErrCode=self.marshalBuffer.getSQLINTEGER() self.resultErrText=self.marshalBuffer.getpUCHAR_SWORD() raise DatabaseError, str(self.resultErrCode)+' '+self.resultErrText def rollback(self): '''Rollback the current transaction. ''' #Send SQLendTran to server self.marshalBuffer.clearToSend() self.marshalBuffer.putFunction(_SQL_API_SQLENDTRAN) self.marshalBuffer.putSQLHDBC(0) #todo pass TranId? self.marshalBuffer.putSQLSMALLINT(_SQL_ROLLBACK) if self.marshalBuffer.send()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText #Wait for read to return the response if self.marshalBuffer.read()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText functionId=self.marshalBuffer.getFunction() if functionId!=_SQL_API_SQLENDTRAN: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText self.resultCode=self.marshalBuffer.getRETCODE() #if error, then get error details: local-number, default-text self.errCount=self.marshalBuffer.getSQLINTEGER() #error count if self.resultCode==_SQL_ERROR: for err in range(self.errCount): self.resultErrCode=self.marshalBuffer.getSQLINTEGER() self.resultErrText=self.marshalBuffer.getpUCHAR_SWORD() raise DatabaseError, str(self.resultErrCode)+' '+self.resultErrText def __del__(self): if self.state==_stateOpen: self.close() #Cursor class ----------------------------------------------------------------- class cursor(object): def __init__(self, conn): '''Open a new cursor (statement) on the specified connection. ''' self._Con=conn self.colCount=None self.col=[] self.paramCount=None self.param=[] self.serverStatementHandle=-1 #=> not connected self.resultSet=False self.prepared=False self._affectedRowCount=None self.lastSQL=None self.lastArraySize=1 #server default self._description=None self.resultErrCode=None self.resultErrText='' #We notify the server of this new command(=stmt) self._Con.marshalBuffer.clearToSend() self._Con.marshalBuffer.putFunction(_SQL_API_SQLALLOCHANDLE) self._Con.marshalBuffer.putSQLSMALLINT(_SQL_HANDLE_STMT) self._Con.marshalBuffer.putSQLHDBC(0) #todo _Con if self._Con.marshalBuffer.send()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText #Wait for response if self._Con.marshalBuffer.read()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText functionId=self._Con.marshalBuffer.getFunction() if functionId!=_SQL_API_SQLALLOCHANDLE: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText serverS=self._Con.marshalBuffer.getSQLHSTMT() #server will return 0 if failed self.resultCode=self._Con.marshalBuffer.getRETCODE() #if error, then get error details: local-number, default-text self.errCount=self._Con.marshalBuffer.getSQLINTEGER() #error count if self.resultCode==_SQL_ERROR: for err in range(self.errCount): self.resultErrCode=self._Con.marshalBuffer.getSQLINTEGER() self.resultErrText=self._Con.marshalBuffer.getpUCHAR_SWORD() raise DatabaseError, str(self.resultErrCode)+' '+self.resultErrText self.serverStatementHandle=serverS #we will pass this reference to server in future calls def close(self): '''Close the cursor. ''' if self.serverStatementHandle<=0: pass else: self._resultSetClose() #close the server cursor, if any #Free the server handle self._Con.marshalBuffer.clearToSend() self._Con.marshalBuffer.putFunction(_SQL_API_SQLFREEHANDLE) self._Con.marshalBuffer.putSQLSMALLINT(_SQL_HANDLE_STMT) self._Con.marshalBuffer.putSQLHSTMT(self.serverStatementHandle) #pass server statement ref if self._Con.marshalBuffer.send()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText #Wait for response if self._Con.marshalBuffer.read()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText functionId=self._Con.marshalBuffer.getFunction() if functionId!=_SQL_API_SQLFREEHANDLE: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText self.resultCode=self._Con.marshalBuffer.getRETCODE() #if error, then get error details: local-number, default-text self.errCount=self._Con.marshalBuffer.getSQLINTEGER() #error count if self.resultCode==_SQL_ERROR: for err in range(self.errCount): self.resultErrCode=self._Con.marshalBuffer.getSQLINTEGER() self.resultErrText=self._Con.marshalBuffer.getpUCHAR_SWORD() raise DatabaseError, str(self.resultErrCode)+' '+self.resultErrText self.serverStatementHandle=-1 #not connected def _resultSetClose(self): if self.resultSet: self._Con.marshalBuffer.clearToSend() self._Con.marshalBuffer.putFunction(_SQL_API_SQLCLOSECURSOR) self._Con.marshalBuffer.putSQLHSTMT(self.serverStatementHandle) #pass server statement ref if self.prepared: self._Con.marshalBuffer.putSQLSMALLINT(0) #keep server plan else: self._Con.marshalBuffer.putSQLSMALLINT(1) #remove server plan if self._Con.marshalBuffer.send()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText #Wait for response if self._Con.marshalBuffer.read()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText functionId=self._Con.marshalBuffer.getFunction() if functionId!=_SQL_API_SQLCLOSECURSOR: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText self.resultCode=self._Con.marshalBuffer.getRETCODE() #if error, then get error details: local-number, default-text self.errCount=self._Con.marshalBuffer.getSQLINTEGER() #error count if self.resultCode==_SQL_ERROR: for err in range(self.errCount): self.resultErrCode=self._Con.marshalBuffer.getSQLINTEGER() self.resultErrText=self._Con.marshalBuffer.getpUCHAR_SWORD() raise DatabaseError, str(self.resultErrCode)+' '+self.resultErrText def _doPrepare(self,sql): self.lastSQL=sql #call server prepare self._Con.marshalBuffer.clearToSend() self._Con.marshalBuffer.putFunction(_SQL_API_SQLPREPARE) self._Con.marshalBuffer.putSQLHSTMT(self.serverStatementHandle) self._Con.marshalBuffer.putpUCHAR_SDWORD(sql) if self._Con.marshalBuffer.send()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText #Wait for response if self._Con.marshalBuffer.read()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText functionId=self._Con.marshalBuffer.getFunction() if functionId!=_SQL_API_SQLPREPARE: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText self.resultCode=self._Con.marshalBuffer.getRETCODE() #if error, then get error details: local-number, default-text self.errCount=self._Con.marshalBuffer.getSQLINTEGER() #error count if self.resultCode==_SQL_ERROR: for err in range(self.errCount): self.resultErrCode=self._Con.marshalBuffer.getSQLINTEGER() self.resultErrText=self._Con.marshalBuffer.getpUCHAR_SWORD() #raise later... resSet=self._Con.marshalBuffer.getSQLUSMALLINT() #Remember this for future state changes if resSet==_SQL_TRUE: self.resultSet=True else: self.resultSet=False if self.resultCode==_SQL_ERROR: raise ProgrammingError, str(self.resultErrCode)+' '+self.resultErrText if self.resultSet: #Now get the cursor column count & definitions self.col=[] self.colCount=self._Con.marshalBuffer.getSQLINTEGER() for i in range(self.colCount): rn=self._Con.marshalBuffer.getSQLSMALLINT() self.newcol=_columnSQL() self.newcol.iFldNum=rn self.newcol.colName=self._Con.marshalBuffer.getpSQLCHAR_SWORD()[:-1] #remove trailing \0 self.newcol.iFldType=self._Con.marshalBuffer.getSQLSMALLINT() if self._Con.serverCLIversion>=93: self.newcol.iUnits1=self._Con.marshalBuffer.getSQLINTEGER() else: self.newcol.iUnits1=self._Con.marshalBuffer.getSQLSMALLINT() self.newcol.iUnits2=self._Con.marshalBuffer.getSQLSMALLINT() self.newcol.iNullOffset=self._Con.marshalBuffer.getSQLSMALLINT() self.col.append(self.newcol) #Now set the description self._description=[] for newcol in self.col: if newcol.iFldType==_SQL_NUMERIC or newcol.iFldType==_SQL_DECIMAL: dsize=newcol.iUnits1+newcol.iUnits2+1 isize=newcol.iUnits1+newcol.iUnits2 elif newcol.iFldType==_SQL_SMALLINT: dsize=5 isize=2 elif newcol.iFldType==_SQL_INTEGER: dsize=10 isize=4 elif newcol.iFldType==_SQL_REAL: dsize=7 isize=4 elif newcol.iFldType==_SQL_FLOAT or newcol.iFldType==_SQL_DOUBLE: dsize=15 isize=8 elif newcol.iFldType==_SQL_TYPE_DATE: dsize=10 isize=4 elif newcol.iFldType==_SQL_TYPE_TIME: dsize=8 if newcol.iUnits2>0: dsize=9+newcol.iUnits2 isize=8 elif newcol.iFldType==_SQL_TYPE_TIMESTAMP: dsize=19 if newcol.iUnits2>0: dsize=20+newcol.iUnits2 isize=12 else: dsize=newcol.iUnits1 isize=newcol.iUnits1 self._description.append((newcol.colName, newcol.iFldType, dsize, isize, newcol.iUnits1, newcol.iUnits2, None)) else: #no result set self._description=None self.colCount=0 #Now get the param count & definitions self.paramCount=self._Con.marshalBuffer.getSQLINTEGER() for i in range(self.paramCount): rn=self._Con.marshalBuffer.getSQLSMALLINT() self.newparam=_paramSQL() self.newparam.iParamNum=rn self.newparam.colName=self._Con.marshalBuffer.getpSQLCHAR_SWORD() self.newparam.iDataType=self._Con.marshalBuffer.getSQLSMALLINT() self.newparam.iArgType=_ptInput #default if self._Con.serverCLIversion>=93: self.newparam.iUnits1=self._Con.marshalBuffer.getSQLINTEGER() else: self.newparam.iUnits1=self._Con.marshalBuffer.getSQLSMALLINT() self.newparam.iUnits2=self._Con.marshalBuffer.getSQLSMALLINT() x=self._Con.marshalBuffer.getSQLSMALLINT() self.param.append(self.newparam) #Now auto-bind all the columns for i in range(self.colCount): self._Con.marshalBuffer.clearToSend() self._Con.marshalBuffer.putFunction(_SQL_API_SQLSETDESCFIELD) self._Con.marshalBuffer.putSQLHSTMT(self.serverStatementHandle) #pass server statement ref self._Con.marshalBuffer.putSQLSMALLINT(_SQL_ATTR_APP_ROW_DESC) self._Con.marshalBuffer.putSQLSMALLINT(i+1) #=colRef(-1) on the server self._Con.marshalBuffer.putSQLSMALLINT(_SQL_DESC_DATA_POINTER) self._Con.marshalBuffer.putSQLPOINTER(1) #= 0=unbound, else bound self._Con.marshalBuffer.putSQLINTEGER(0) if self._Con.marshalBuffer.send()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText #Wait for response if self._Con.marshalBuffer.read()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText functionId=self._Con.marshalBuffer.getFunction() if functionId!=_SQL_API_SQLSETDESCFIELD: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText self.resultCode=self._Con.marshalBuffer.getRETCODE() #if error, then get error details: local-number, default-text self.errCount=self._Con.marshalBuffer.getSQLINTEGER() #error count if self.resultCode==_SQL_ERROR: for err in range(self.errCount): self.resultErrCode=self._Con.marshalBuffer.getSQLINTEGER() self.resultErrText=self._Con.marshalBuffer.getpUCHAR_SWORD() #raise DatabaseError, str(self.resultErrCode)+' '+self.resultErrText def _doExecute(self, parameters): self._Con.marshalBuffer.clearToSend() self._Con.marshalBuffer.putFunction(_SQL_API_SQLEXECUTE) self._Con.marshalBuffer.putSQLHSTMT(self.serverStatementHandle) #pass server statement ref #Write row count self._Con.marshalBuffer.putSQLUINTEGER(1) for row in range(1,2): #Now send the param count & data for this row if parameters is None: self._Con.marshalBuffer.putSQLINTEGER(0) else: self._Con.marshalBuffer.putSQLINTEGER(len(parameters)) for i in range(len(parameters)): self._Con.marshalBuffer.putSQLSMALLINT((i+1)) #Put the data #Put the null flag tempNull=_SQL_FALSE #default if parameters[i] is None: tempNull=_SQL_TRUE self._Con.marshalBuffer.putSQLSMALLINT(tempNull) #Note: we only send length+data if not null if tempNull==_SQL_FALSE: if isinstance(parameters[i],BinaryString): self._Con.marshalBuffer.putpDataSDWORD(str(parameters[i])) #omit \0 if BLOB else : self._Con.marshalBuffer.putpDataSDWORD(str(parameters[i])+chr(0)) if self._Con.marshalBuffer.send()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText #Wait for response if self._Con.marshalBuffer.read()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText functionId=self._Con.marshalBuffer.getFunction() if functionId!=_SQL_API_SQLEXECUTE: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText self.resultCode=self._Con.marshalBuffer.getRETCODE() #if error, then get error details: local-number, default-text self.errCount=self._Con.marshalBuffer.getSQLINTEGER() #error count if self.resultCode==_SQL_ERROR: for err in range(self.errCount): self.resultErrCode=self._Con.marshalBuffer.getSQLINTEGER() self.resultErrText=self._Con.marshalBuffer.getpUCHAR_SWORD() raise DatabaseError, str(self.resultErrCode)+' '+self.resultErrText #Get the row count - only valid for insert/update/delete self._affectedRowCount=self._Con.marshalBuffer.getSQLINTEGER() if self._Con.serverCLIversion>=92: #Now get any late (post-prepare) resultSet definition, i.e. for stored procedure return cursors #False here doesn't mean we have no result set, it means we should use the details from SQLprepare lateResSet=self._Con.marshalBuffer.getSQLUSMALLINT() #Remember this for future state changes if lateResSet==_SQL_TRUE: self.resultSet=True #else leave resultSet as was if lateResSet==_SQL_TRUE: #Now get the cursor column count & definitions self.col=[] self.colCount=self._Con.marshalBuffer.getSQLINTEGER() for i in range(self.colCount): rn=self._Con.marshalBuffer.getSQLSMALLINT() self.newcol=_columnSQL() self.newcol.iFldNum=rn self.newcol.colName=self._Con.marshalBuffer.getpSQLCHAR_SWORD()[:-1] #remove trailing \0 self.newcol.iFldType=self._Con.marshalBuffer.getSQLSMALLINT() if self._Con.serverCLIversion>=93: self.newcol.iUnits1=self._Con.marshalBuffer.getSQLINTEGER() else: self.newcol.iUnits1=self._Con.marshalBuffer.getSQLSMALLINT() self.newcol.iUnits2=self._Con.marshalBuffer.getSQLSMALLINT() self.newcol.iNullOffset=self._Con.marshalBuffer.getSQLSMALLINT() self.col.append(self.newcol) #Now set the description self._description=[] for rn,newcol in self.col: if newcol.iFldType==_SQL_NUMERIC or newcol.iFldType==_SQL_DECIMAL: dsize=newcol.iUnits1+newcol.iUnits2+1 isize=newcol.iUnits1+newcol.iUnits2 elif newcol.iFldType==_SQL_SMALLINT: dsize=5 isize=2 elif newcol.iFldType==_SQL_INTEGER: dsize=10 isize=4 elif newcol.iFldType==_SQL_REAL: dsize=7 isize=4 elif newcol.iFldType==_SQL_FLOAT or newcol.iFldType==_SQL_DOUBLE: dsize=15 isize=8 elif newcol.iFldType==_SQL_TYPE_DATE: dsize=10 isize=4 elif newcol.iFldType==_SQL_TYPE_TIME: dsize=8 if newcol.iUnits2>0: dsize=9+newcol.iUnits2 isize=8 elif newcol.iFldType==_SQL_TYPE_TIMESTAMP: dsize=19 if newcol.iUnits2>0: dsize=20+newcol.iUnits2 isize=12 else: dsize=newcol.iUnits1 isize=newcol.iUnits1 self._description.append((newcol.colName, newcol.iFldType, dsize, isize, newcol.iUnits1, newcol.iUnits2, None)) #else no late result set: leave as was (i.e. don't zeroise self.description) #else young server cannot handle this if self.resultCode==_SQL_SUCCESS or self.resultCode==_SQL_SUCCESS_WITH_INFO: #we SQLendTran now if in autocommit mode & if not select/result-set if not self.resultSet and self._Con._Autocommit: self._Con.commit() elif self.resultCode==_SQL_NEED_DATA: if self.prepared: rn=self._Con.marshalBuffer.getSQLSMALLINT() #this is the parameter id that's missing raise InterfaceError, str(_seMissingParameter)+' '+_seMissingParameterText def execute(self, operation=None, parameters=None): '''Execute the specified SQL operation, possibly opening a result set. ''' self._doPrepare(operation) self._doExecute(parameters) return None def executemany(self, operation=None, seq_of_parameters=None): '''Repeatedly execute the specified SQL operation, once for each set of parameters in the sequence. This is more efficient than repeatedly calling the execute method. ''' self._doPrepare(operation) self.prepared=True for parameters in seq_of_parameters: if self.resultSet: #close any existing query result set on this cursor before we re-execute self._resultSetClose() last=self._doExecute(parameters) return last def callproc(self, procname, parameters=None): '''Call the specified stored procedure with the parameters. May return a result set accessible using the fetchXXX methods. ''' return self.execute('CALL '+procname+replace(replace(str(parameters),'[','('),']',')')) def _setArraySize(self, arraySize=1): '''Tell the server how many rows to return per fetch. ''' self._Con.marshalBuffer.clearToSend() self._Con.marshalBuffer.putFunction(_SQL_API_SQLSETDESCFIELD) self._Con.marshalBuffer.putSQLHSTMT(self.serverStatementHandle) self._Con.marshalBuffer.putSQLSMALLINT(_SQL_ATTR_APP_ROW_DESC) self._Con.marshalBuffer.putSQLSMALLINT(0) self._Con.marshalBuffer.putSQLSMALLINT(_SQL_DESC_ARRAY_SIZE) self._Con.marshalBuffer.putSQLUINTEGER(arraySize) self._Con.marshalBuffer.putSQLINTEGER(0) #bufferLength = n/a here if self._Con.marshalBuffer.send()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText #Wait for response if self._Con.marshalBuffer.read()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText functionId=self._Con.marshalBuffer.getFunction() if functionId!=_SQL_API_SQLSETDESCFIELD: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText self.resultCode=self._Con.marshalBuffer.getRETCODE() #if error, then get error details: local-number, default-text self.errCount=self._Con.marshalBuffer.getSQLINTEGER() #error count if self.resultCode==_SQL_ERROR: for err in range(self.errCount): self.resultErrCode=self._Con.marshalBuffer.getSQLINTEGER() self.resultErrText=self._Con.marshalBuffer.getpUCHAR_SWORD() raise DatabaseError, str(self.resultErrCode)+' '+self.resultErrText #record the latest value self.lastArraySize=arraySize def _fetch(self, arraySize=None): if self.resultSet: res=[] if arraySize!=None and arraySize!=self.lastArraySize: self._setArraySize(arraySize) #call server fetchScroll self._Con.marshalBuffer.clearToSend() self._Con.marshalBuffer.putFunction(_SQL_API_SQLFETCHSCROLL) self._Con.marshalBuffer.putSQLHSTMT(self.serverStatementHandle) self._Con.marshalBuffer.putSQLSMALLINT(_SQL_FETCH_NEXT) self._Con.marshalBuffer.putSQLINTEGER(0) if self._Con.marshalBuffer.send()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText #Wait for response if self._Con.marshalBuffer.read()!=_ok: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText functionId=self._Con.marshalBuffer.getFunction() if functionId!=_SQL_API_SQLFETCHSCROLL: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText #resultCode comes later: first we retrieve any result data #Read row count rowCount=self._Con.marshalBuffer.getSQLUINTEGER() for row in range(rowCount): rowres=[] #Now get the col count & data for this row self.colCount=self._Con.marshalBuffer.getSQLINTEGER() for i in range(self.colCount): rn=self._Con.marshalBuffer.getSQLSMALLINT() if rn<=self.colCount: #Get the null flag tempNull=self._Con.marshalBuffer.getSQLSMALLINT() if tempNull==_SQL_TRUE: rowres.append(None) else: #Note: we only get length+data if not null self.col[i].data=self._Con.marshalBuffer.getpDataSDWORD() #Convert the raw data to Python data if self.col[i].iFldType==_SQL_CHAR or self.col[i].iFldType==_SQL_VARCHAR: rowres.append(self.col[i].data) elif self.col[i].iFldType==_SQL_NUMERIC or self.col[i].iFldType==_SQL_DECIMAL: if have_fixedpoint: fp=str(struct.unpack('<q',self.col[i].data)[0]) fp=fp[:len(fp)-self.col[i].iUnits2]+'.'+fp[len(fp)-self.col[i].iUnits2:] rowres.append(FixedPoint(fp,self.col[i].iUnits2)) else: rowres.append((struct.unpack('<q',self.col[i].data)[0]) / float(10**self.col[i].iUnits2)) #i.e. shift scale decimal places to the right elif self.col[i].iFldType==_SQL_INTEGER: rowres.append(struct.unpack('<i',self.col[i].data)[0]) elif self.col[i].iFldType==_SQL_SMALLINT: rowres.append(struct.unpack('<h',self.col[i].data)[0]) elif self.col[i].iFldType==_SQL_FLOAT or self.col[i].iFldType==_SQL_REAL or self.col[i].iFldType==_SQL_DOUBLE: rowres.append(struct.unpack('<d',self.col[i].data)[0]) elif self.col[i].iFldType==_SQL_TYPE_DATE: p=struct.unpack(_sqlDate,self.col[i].data) rowres.append(datetime.date(p[0],p[1],p[2])) elif self.col[i].iFldType==_SQL_TYPE_TIME: p=struct.unpack(_sqlTime,self.col[i].data) rowres.append(datetime.time(p[0],p[1],int(p[2] / float(10**_TIME_MAX_SCALE)))) #todo Adjust the scale? p[3] elif self.col[i].iFldType==_SQL_TYPE_TIMESTAMP: p=struct.unpack(_sqlTimestamp,self.col[i].data) rowres.append(datetime.datetime(p[0],p[1],p[2],p[3],p[4],int(p[5] / float(10**_TIME_MAX_SCALE)))) #todo Adjust the scale? p[6] elif self.col[i].iFldType==_SQL_LONGVARCHAR or self.col[i].iFldType==_SQL_LONGVARBINARY: rowres.append(self.col[i].data) #todo SQL_INTERVAL etc. else: rowres.append('?') #todo use raw data or None instead? else: raise OperationalError, str(_seInvalidColumnIndex)+' '+_seInvalidColumnIndexText #get row status sqlRowStatus=self._Con.marshalBuffer.getSQLUSMALLINT() if sqlRowStatus==_SQL_ROW_NOROW: break #-> no more data if arraySize>1: res.append(tuple(rowres)) else: res=tuple(rowres) self.resultCode=self._Con.marshalBuffer.getRETCODE() if self.resultCode==_SQL_NO_DATA and arraySize==1: res=None #-> no more data #if error, then get error details: local-number, default-text self.errCount=self._Con.marshalBuffer.getSQLINTEGER() #error count if self.resultCode==_SQL_ERROR: for err in range(self.errCount): self.resultErrCode=self._Con.marshalBuffer.getSQLINTEGER() self.resultErrText=self._Con.marshalBuffer.getpUCHAR_SWORD() raise DatabaseError, str(self.resultErrCode)+' '+self.resultErrText return res else: raise InterfaceError, str(_seResultSetNotOpen)+' '+_seResultSetNotOpenText def fetchone(self): '''Fetch the next row from the cursor's result set. ''' return self._fetch(1) def fetchmany(self, size=None): '''Fetch a number of rows from the cursor's result set. ''' if size is None: size=self.lastArraySize return self._fetch(size) def fetchall(self): '''Fetch all the remaining rows from the cursor's result set. ''' res=[] while 1: r=self.fetchone() if r is None: break res.append(r) return res def _getaffectedRowCount(self): return self._affectedRowCount rowcount=property(_getaffectedRowCount, doc='Number of affected row(s)') def _getdescription(self): return self._description def _getconnection(self): warnings.warn('DB-API extension cursor.connection used') return self._Con description=property(_getdescription, doc='Column description(s)') def _getarraysize(self): return self.lastArraySize arraysize=property(_getarraysize, _setArraySize, doc='Number of rows to fetch with fetchmany()') def __iter__(self): return self def next(self): x=self.fetchone() if x is None: raise StopIteration return x def __del__(self): self.close() #Column/Parameter classes ----------------------------------------------------- class _columnSQL: def __init__(self): self.iFldNum=None self.iFldType=None self.iUnits1=None self.iUnits2=None self.iNullOffset=None self.colName=None self.data=None class _paramSQL: def __init__(self): self.iParamNum=None self.colName=None self.iDataType=None self.iArgType=None self.iUnits1=None self.iUnits2=None self.buffer=None self.bufferLen=None self.isNull=None _clientCLIversion =100 #client parameter passing version _CLI_ODBC=1 _CLI_JDBC=2 _CLI_DBEXPRESS=3 _CLI_ADO_NET=4 _CLI_PYTHON_DBAPI=5 _DriverName='ThinkSQL' _DriverVersion='1.03.01' __version__ = 1, 03, 01 _DriverMajorVersion=1 _DriverMinorVersion=03 _ok=0 _fail=-1 _failString='' _stateClosed=0 _stateOpen=1 _sizeof_short=2 _sizeof_int=4 _sizeof_long=8 _sizeof_float=4 _sizeof_double=8 _sizeof_byte=8 #in bits _sizeof_date=4 _sizeof_dateY=2 _sizeof_dateM=1 _sizeof_dateD=1 _sizeof_time=7 _sizeof_timeH=1 _sizeof_timeM=1 _sizeof_timeS=4 _sizeof_timeSc=1 _TIME_MAX_SCALE=6 _MAX_COL_PER_TABLE=300 _MAX_PARAM_PER_QUERY=300 _SQL_FALSE =0 _SQL_TRUE =1 #parameter types _ptInput = 0 _ptOutput = 1 _EscapeChar='\\' _SQL_ERROR=-1 _SQL_ERROR2=_SQL_ERROR _SQL_SUCCESS=0 _SQL_SUCCESS_WITH_INFO=1 _SQL_STILL_EXECUTING=2 _SQL_NEED_DATA=99 _SQL_NO_DATA=100 _SQL_CHAR =1 _SQL_NUMERIC =2 _SQL_DECIMAL =3 _SQL_INTEGER =4 _SQL_SMALLINT =5 _SQL_FLOAT =6 _SQL_REAL =7 _SQL_DOUBLE =8 _SQL_DATETIME =9 _SQL_INTERVAL =10 _SQL_VARCHAR =12 _SQL_TYPE_DATE =91 _SQL_TYPE_TIME =92 _SQL_TYPE_TIMESTAMP =93 _SQL_LONGVARCHAR =-1 #SQL_BINARY =-2 #SQL_VARBINARY =-3 _SQL_LONGVARBINARY =-4 #future use: SQL_BIGINT =-5 _SQL_API_SQLCONNECT =7 _SQL_API_SQLDISCONNECT =9 _SQL_API_SQLEXECUTE =12 _SQL_API_SQLPREPARE =19 _SQL_API_SQLGETDATA =43 _SQL_API_SQLGETINFO =45 _SQL_API_SQLALLOCHANDLE =1001 _SQL_API_SQLCLOSECURSOR =1003 _SQL_API_SQLENDTRAN =1005 _SQL_API_SQLFREEHANDLE =1006 _SQL_API_SQLSETDESCFIELD =1017 _SQL_API_SQLFETCHSCROLL =1021 _SQL_ATTR_APP_ROW_DESC =10010 _SQL_DESC_ARRAY_SIZE =20 _SQL_DESC_DATA_POINTER =1010 _SQL_ROW_SUCCESS =0 _SQL_ROW_NOROW =3 _SQL_API_handshake =9999 _SQL_HANDLE_STMT =3 _SQL_ROLLBACK =1 _SQL_COMMIT =0 _SQL_FETCH_NEXT =1 _SQL_DBMS_NAME =17 _SQL_DBMS_VERSION =18 #Errors: _seNotImplementedYet=500 _seNotImplementedYetText='Not implemented yet' _seHandshakeFailed=1500 _seHandshakeFailedText='Handshake failed' _seConnectionFailed=1502 _seConnectionFailedText='Communication link failure' _seInvalidColumnIndex=1600 _seInvalidColumnIndexText='Invalid column index' _seInvalidConversion=1602 _seInvalidConversionText='Invalid data conversion' _seInvalidParameterIndex=1604 _seInvalidParameterIndexText='Invalid parameter index' _seConnectionNotOpen=1700 _seConnectionNotOpenText='Connection not open' _seResultSetNotOpen=1702 _seResultSetNotOpenText='No result set' _seMissingParameter=1704 _seMissingParameterText='Not enough parameters passed' _ss08001='08001' _ss08S01='08S01' _ss42000='42000' _ssHY000='HY000' _ssHY010='HT010' _ssHYC00='HYC00' #optional feature not implemented yet _ssNA='NA' _sqlDate='<hbb' #year:smallint; month:shortint; day:shortint _sqlTimezone='<bbbx' #sign:shortint (-1=negative, +1=positive, 0=no timezone); hour:shortint; minute:shortint _sqlTime='<bbxxibxxx' # hour:shortint; minute:shortint; second:integer; (stored normalised as SSFFFFFF where number of Fs=TIME_MAX_SCALE) scale:shortint (used when formatting to dictate how many fractional places to display) _sqlTimestamp='<hbb bbxxibxxx' _TIME_MAX_SCALE=6 #Python specifics #Exception classes ------------------------------------------------------------ class Error(StandardError): '''Top-level DB API exception.''' class Warning(StandardError): '''Top-level DB API warning.''' class InterfaceError(Error): '''Interface error.''' class DatabaseError(Error): '''Database error.''' class DataError(DatabaseError): '''Data error.''' class OperationalError(DatabaseError): '''Operational error.''' class IntegrityError(DatabaseError): '''Integrity error.''' class InternalError(DatabaseError): '''Internal error.''' class ProgrammingError(DatabaseError): '''Programming error.''' class NotSupportedError(DatabaseError): '''Not supported error.''' #ThinkSQL specific errors class HandshakeError(OperationalError): '''Handshake error.''' class ConnectionError(OperationalError): '''Connection error.''' class DBAPITypeObject: def __init__(self, name, *values): self.name = name self.values = values def __repr__(self): return self.name def __cmp__(self, other): if other in self.values: return 0 elif other < self.values: return 1 else: return -1 #Type mappings BINARY = DBAPITypeObject('BINARY', _SQL_LONGVARBINARY) DATETIME = DBAPITypeObject('DATETIME', _SQL_DATETIME, _SQL_INTERVAL, _SQL_TYPE_DATE, _SQL_TYPE_TIME, _SQL_TYPE_TIMESTAMP ) NUMBER = DBAPITypeObject('NUMBER', _SQL_NUMERIC, _SQL_DECIMAL, _SQL_INTEGER, _SQL_SMALLINT, _SQL_FLOAT, _SQL_REAL, _SQL_DOUBLE) STRING = DBAPITypeObject('STRING', _SQL_CHAR, _SQL_VARCHAR, _SQL_LONGVARCHAR) from time import localtime def Date(year, month, day): return '%04d/%02d/%02d' % (year, month, day) def Time(hour, minute, second): return '%02d:%02d:%02d' % (hour, minute, second) def Timestamp(year, month, day, hour, minute, second): return Date(year, month, day)+' '+Time(hour, minute, second) def DateFromTicks(ticks): t=localtime(ticks) return Date(t[0],t[1],t[2]) def TimeFromTicks(ticks): t=localtime(ticks) return Time(t[3],t[4],t[5]) def TimestampFromTicks(ticks): t=localtime(ticks) return Timestamp(t[0],t[1],t[2],t[3],t[4],t[5]) class BinaryString: def __init__(self,s): self.value=s def __str__(self): return self.value def Binary(string): return BinaryString(string) #todo encode/make binary #MarshalBuffer class ---------------------------------------------------------- class marshalBuffer: marshalBufSize=16384 connectionTimeout=30 def __init__(self, host, port): socket.setdefaulttimeout(self.__class__.connectionTimeout) self.clientSocket=socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.buffer=cStringIO.StringIO() try: self.clientSocket.connect((host, port)) except: raise ConnectionError, str(_seConnectionFailed)+' '+_seConnectionFailedText self.clearToSend() #initially clear buffer self.bufferLen=0 self.bufferPtr=0 def __del__(self): self.close() def clearToSend(self): #Clear before send self.bufferLen=0 self.bufferPtr=0 self.buffer.truncate(0) self.buffer.seek(0) return _ok def clearToReceive(self): #Clear before receive self.bufferPtr=0 self.bufferLen=0 self.buffer.truncate(0) self.buffer.seek(0) return _ok def sendHandshake(self): #Send raw handshake try: s=struct.pack('<h',_SQL_API_handshake) self.clientSocket.send(s) return _ok except: return _fail def send(self): '''Send a response and then clear the buffer. ''' try: i=(self.bufferLen+_sizeof_int) #todo assert i=buffer size s=struct.pack('<i', i) self.clientSocket.send(s) self.buffer.flush() sent=0 while sent<(i-4): sent=sent+self.clientSocket.send(self.buffer.getvalue()[sent:]) except: return _fail try: self.clearToSend() #clear send buffer, once sent ok return _ok except: return _fail def read(self): '''Wait for a response (clear buffer before receiving). ''' self.clearToReceive() #try: s=self.clientSocket.recv(_sizeof_int) i=struct.unpack('<i', s) dataCount=i[0] dataCount=(dataCount-_sizeof_int) #inclusive if self.bufferLen+dataCount>self.__class__.marshalBufSize: return _fail #overflow #Read the block data into the marshal buffer while self.buffer.tell()<dataCount: self.buffer.write(self.clientSocket.recv(dataCount-self.buffer.tell())) self.bufferLen=(self.bufferLen+dataCount) self.buffer.seek(0) #reset the get pointer return _ok #except: # return _fail def putSQLUSMALLINT(self, usi): if self.bufferLen+_sizeof_short>self.__class__.marshalBufSize: if self.send()!=_ok: return _fail #buffer overflow if (self.bufferLen+_sizeof_short>self.__class__.marshalBufSize): return _fail s=struct.pack('<H', usi) self.buffer.write(s) self.bufferLen+=_sizeof_short return _ok def getSQLUSMALLINT(self): if self.bufferPtr+_sizeof_short>self.bufferLen: if self.bufferPtr==self.bufferLen: self.read() else: return _fail s=self.buffer.read(_sizeof_short) self.bufferPtr+=_sizeof_short return struct.unpack('<H', s)[0] def getSQLSMALLINT(self): if self.bufferPtr+_sizeof_short>self.bufferLen: if self.bufferPtr==self.bufferLen: self.read() else: return _fail s=self.buffer.read(_sizeof_short) self.bufferPtr+=_sizeof_short return struct.unpack('<h', s)[0] def putSQLINTEGER(self, i): if self.bufferLen+_sizeof_int>self.__class__.marshalBufSize: if self.send()!=_ok: return _fail #buffer overflow if (self.bufferLen+_sizeof_int>self.__class__.marshalBufSize): return _fail s=struct.pack('<i', i) self.buffer.write(s) self.bufferLen+=_sizeof_int return _ok def getSQLINTEGER(self): if self.bufferPtr+_sizeof_int>self.bufferLen: if self.bufferPtr==self.bufferLen: self.read() else: return _fail s=self.buffer.read(_sizeof_int) self.bufferPtr+=_sizeof_int return struct.unpack('<i', s)[0] def putpUCHAR_SWORD(self,ss): if self.bufferLen+_sizeof_short+len(ss)>self.__class__.marshalBufSize: if self.send()!=_ok: return _fail #buffer overflow if (self.bufferLen+_sizeof_short+len(ss)>self.__class__.marshalBufSize): return _fail s=struct.pack('<h', len(ss)) self.buffer.write(s) self.bufferLen+=_sizeof_short self.buffer.write(ss) self.bufferLen+=len(ss) return _ok def getpUCHAR_SWORD(self): if self.bufferPtr+_sizeof_short>self.bufferLen: if self.bufferPtr==self.bufferLen: self.read() else: return _fail s=self.buffer.read(_sizeof_short) self.bufferPtr+=_sizeof_short si=struct.unpack('<H', s)[0] self.bufferPtr+=si return self.buffer.read(si) def putpUCHAR_SDWORD(self, ss): if self.bufferLen+_sizeof_int+len(ss)>self.__class__.marshalBufSize: if self.send()!=_ok: return _fail #buffer overflow if (self.bufferLen+_sizeof_int+len(ss)>self.__class__.marshalBufSize): return _fail s=struct.pack('<i', len(ss)) self.buffer.write(s) self.bufferLen+=_sizeof_int self.buffer.write(ss) self.bufferLen+=len(ss) return _ok def putpDataSDWORD(self, ss): if self.bufferLen>0 and self.bufferLen+_sizeof_int+len(ss)>self.__class__.marshalBufSize: if self.send()!=_ok: return _fail #buffer overflow ui=len(ss) s=struct.pack('<i', ui) self.buffer.write(s) self.bufferLen+=_sizeof_int if self.bufferLen+_sizeof_int+ui>self.__class__.marshalBufSize: #can only happen when sending a large object - we send in multiple segments offset=0 while offset<ui: nextSegment=self.__class__.marshalBufSize-self.bufferLen-_sizeof_int #max. size of next segment that can fit in remaining buffer if nextSegment>(ui-offset): nextSegment=ui-offset #final segment self.buffer.write(ss[offset:(offset+nextSegment)]) self.bufferLen+=nextSegment #todo could/should avoid final Send... i.e. if offset+nextSegment>=sdw if self.send()!=_ok: return _fail #buffer overflow offset=offset+nextSegment #todo assert offset=sdw return _ok else: #fits in a single buffer self.buffer.write(ss) self.bufferLen+=ui return _ok def getpDataSDWORD(self): if self.bufferPtr+_sizeof_int>self.bufferLen: if self.bufferPtr==self.bufferLen: self.read() else: return _fail s=self.buffer.read(_sizeof_int) self.bufferPtr+=_sizeof_int si=struct.unpack('<i', s)[0] #todo <I? if self.bufferPtr+si>self.bufferLen: if self.bufferPtr==self.bufferLen: self.read() #can only happen when reading a large object - we read in multiple segments (or else we must be asking for the wrong data type) res=cStringIO.StringIO() offset=0 while offset<si: nextSegment=self.bufferLen-self.bufferPtr #size of next segment in remaining buffer res.write(self.buffer.read(nextSegment)) self.bufferPtr=self.bufferPtr+nextSegment #todo could/should avoid final Read... i.e. if offset+nextSegment>=sdw self.read() #todo check result! abort, else we've got the next buffer full offset=offset+nextSegment #todo assert offset=sdw res.seek(0) return res.read(si) else: #fits in a single buffer self.bufferPtr=self.bufferPtr+si return self.buffer.read(si) def putSQLSMALLINT(self, si): return self.putSQLUSMALLINT(si) def getSQLPOINTER(self): return self.getSQLINTEGER() def putSQLPOINTER(self, si): return self.putSQLINTEGER(si) def putSQLUINTEGER(self, si): return self.putSQLINTEGER(si) def getSQLUINTEGER(self): return self.getSQLINTEGER() def getpSQLCHAR_SWORD(self): return self.getpUCHAR_SWORD() def putFunction(self, functionId): return self.putSQLUSMALLINT(functionId) def getFunction(self): return self.getSQLUSMALLINT() def putSQLHDBC(self, connectionHandle): return self.putSQLINTEGER(connectionHandle) def putSQLHSTMT(self, stmtHandle): return self.putSQLINTEGER(stmtHandle) def getSQLHSTMT(self): return self.getSQLINTEGER() def getRETCODE(self): return self.getSQLSMALLINT() def close(self): #if not self.buffer.closed: # self.buffer.close() self.clientSocket.close()
#!/usr/bin/env python3 # MEMO #date -r 1584214882 #date -j -f "%Y %j %H %M %S" "2020 12 15 00 00 00" "+%s" import copy import datetime from decimal import Decimal import json import os import subprocess import sys import time import traceback os.system('clear') first_time = True # # order_type: buy/sell # # key: open order key # val: open order value def delete_order(key, val = None): try: cmd = subprocess.Popen(["clikraken", "--raw", "x", key], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) cmd.wait() out, err = cmd.communicate() out_json = json.loads(out) print(out_json['result']) if (val != None): print("DELETED ORDER: %s %s %s %s" % (key, val['descr']['type'], val['descr']['price'], Decimal(val['vol']) - Decimal(val['vol_exec']))) else: print("DELETED ORDER: %s %s %s %s" % (key, "Unknown", "Unknown", "Unknown")) return None except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError def delete_orders(order_type, price = None): try: cmd = subprocess.Popen(["clikraken", "--raw", "ol"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) cmd.wait() out, err = cmd.communicate() out_json = json.loads(out) ol_k = list(out_json['result']['open'].keys()) ol_v = list(out_json['result']['open'].values()) j = 0 print("DELETE ORDERS:") for i in ol_v: if (price == None): if (i['descr']['type'] == order_type): delete_order(ol_k[j], i) else: if (Decimal(i['descr']['price']) == Decimal(price)): delete_order(ol_k[j], i) j += 1 return None except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError # # order_type: buy/sell # start_price: # end_price: # step_price: # def add_orders(order_type, start_price, step_price, order_count, vol, lev, dry_run = False): try: print("PLACE ORDER:") price = Decimal(start_price) for i in range(1, order_count + 1): args = ["clikraken", "--raw", "p", "-t", "limit", order_type, str(vol), str(price)] if (lev != None and lev != "1:1"): args.append("-l") args.append(lev) if (dry_run == True): args.append("-v") cmd = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) cmd.wait() out, err = cmd.communicate() out_json = json.loads(out) try: print(out_json['result']) except: print(out_json) price += Decimal(step_price) return None except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError def show_balance(): try: cmd = subprocess.Popen(["clikraken", "--raw", "bal"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) cmd.wait() out, err = cmd.communicate() out_json = json.loads(out) #print(out_json) bal_xbt = Decimal(out_json['result']['XXBT']) bal_usd = Decimal(out_json['result']['ZUSD']) print("\033[36m{:<20s}{:>15s}\033[00m".format("ACCOUNT BALANCE:", "VOL")) print("\033[96m{:<20s}{:>15.8f}\033[00m".format("BTC", bal_xbt)) print("\033[96m{:<20s}{:>15.8f}\033[00m".format("USD", bal_usd)) #print() return None except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError def show_trade_balance(tot_fee = 0): try: tot_fee = Decimal(tot_fee) cmd = subprocess.Popen(["clikraken", "--raw", "tbal"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) cmd.wait() out, err = cmd.communicate() out_json = json.loads(out) #print(out_json) trade_balance = Decimal(out_json['result']['tb']) margin_used = Decimal(out_json['result']['m']) pos_cost = Decimal(out_json['result']['c']) pos_pnl = Decimal(out_json['result']['n']) try: margin_level = out_json['result']['ml'] except: margin_level = "N/A" print("\033[36mOPEN TRADE BALANCE:\033[00m") print("\033[36m{:<20s}{:>15s}{:>15s}{:>15s}{:>15s}{:>15s}{:>15s}\033[00m".format("TOTAL ASSET (USD)", "", "", "TOTAL COST", "TOTAL MARGIN", "MARGIN LEVEL", "PNL W FEE")) print("\033[96m{:<20.8f}{:>15s}{:>15s}{:>15.8f}{:>15.8f}{:>15s}{:>15.2f}\033[00m".format(trade_balance, "", "", pos_cost, margin_used, margin_level, pos_pnl - tot_fee)) #print() return None except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError def get_ticker(): try: cmd = subprocess.Popen(["clikraken", "--raw", "t"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) cmd.wait() out, err = cmd.communicate() out_json = json.loads(out) #print(out_json) ticker = dict() ticker["price"] = out_json['result']['XXBTZUSD']['c'][0] ticker["vol"] = out_json['result']['XXBTZUSD']['c'][1] ticker["ave"] = out_json['result']['XXBTZUSD']['p'][1] ticker["ask"] = out_json['result']['XXBTZUSD']['a'][0] ticker["bid"] = out_json['result']['XXBTZUSD']['b'][0] ticker["high"] = out_json['result']['XXBTZUSD']['h'][1] ticker["low"] = out_json['result']['XXBTZUSD']['l'][1] #print(ticker) return ticker except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError def show_ticker(ticker): try: print("\033[96m{:<20s}{:>15s}{:>15s}{:>15s}{:>15s}{:>15s}{:>15s}\033[00m".format("TICKER:", "PRICE", "ASK", "BID", "WEIGHTED AVE", "HIGH", "LOW")) print("\033[96m{:<20s}{:>15s}{:>15s}{:>15s}{:>15s}{:>15s}{:>15s}\033[00m".format("", ticker['price'], ticker['ask'], ticker['bid'], ticker['ave'], ticker['high'], ticker['low'])) return None except: print("\033[91m\033[91mUnexpected Error!!\033[00m\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError def show_ticker_and_depth(): # depth try: cmd = subprocess.Popen(["clikraken", "--raw", "d", "-c", "100"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) cmd.wait() out, err = cmd.communicate() out_json = json.loads(out) #print(out_json) asks = out_json['result']['XXBTZUSD']['asks'] asks_ave = Decimal(0) asks_vol = Decimal(0) for i in asks: asks_ave += Decimal(i[0]) * Decimal(i[1]) asks_vol += Decimal(i[1]) asks_ave /= asks_vol bids = out_json['result']['XXBTZUSD']['bids'] bids_ave = Decimal(0) bids_vol = Decimal(0) for i in bids: bids_ave += Decimal(i[0]) * Decimal(i[1]) bids_vol += Decimal(i[1]) bids_ave /= bids_vol return None except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError # ticker try: cmd = subprocess.Popen(["clikraken", "--raw", "t"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) cmd.wait() out, err = cmd.communicate() out_json = json.loads(out) #print(out_json) ticker_p = Decimal(out_json['result']['XXBTZUSD']['c'][0]) ticker_v = Decimal(out_json['result']['XXBTZUSD']['c'][1]) print("TICKER AND DEPTH") print("{:<20s}{:>15.0f}{:>15.0f}".format("ASKS/WALL:", asks_ave, asks_vol)) print("{:<20s}{:>15.0f}{:>10.0f}{:>10.0f}".format("TICKER/SPREADS:", ticker_p, asks_ave-ticker_p, ticker_p-bids_ave)) print("{:<20s}{:>15.0f}{:>15.0f}".format("BIDS/WALL:", bids_ave, bids_vol)) #print() return None except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError # # open positions # def same_pos(pos_v, pos2_v): try: if (pos_v == None and pos2_v != None): return False if (pos_v != None and pos2_v == None): return False if (pos_v == None and pos2_v == None): return True pos_vol, pos_type = get_pos_vol(pos_v) pos2_vol, pos2_type = get_pos_vol(pos2_v) if (pos_type == pos2_type and pos_vol == pos2_vol): return True else: print("Warn!! 2 pos NOT the same: " + str(pos_type) + ":" + str(pos_vol) + " v.s. " + str(pos2_type) + ":" + str(pos2_vol)) return False except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError def get_pos(): try: cmd = subprocess.Popen(["clikraken", "--raw", "pos"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) cmd.wait() out, err = cmd.communicate() out_json = json.loads(out) #print(out_json) #pos_k = list(out_json['result'].keys()) pos_v = list(out_json['result'].values()) return pos_v except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError def get_pos_vol(pos_v): try: pos_vol = Decimal(0) pos_type = None for i in pos_v: if (Decimal(i['margin']) > 0): pos_vol += Decimal(i['vol']) - Decimal(i['vol_closed']) if (pos_type == None): pos_type = i['type'] elif (pos_type != i['type']): print("ERROR!! Position type inconsistency detected!! Abort!!") sys.exit() else: print("\033[91mINFO!! Non-margin position detected. Continue.\033[00m") print(i) return pos_vol, pos_type except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError, TypeError # comment off itemized, use grouped instead #def show_pos(pos_v): # try: # print("OPEN POSITIONS:") # print("{:<25s}{:>5s}{:>15s}{:>15s}{:>15s}".format("ORDERID", "TYPE", "COST", "VOL", "PNL")) # for i in pos_v: # print("{:<25s}{:>5s}{:>15.8f}{:>15.8f}{:>15.2f}".format(i['ordertxid'], i['type'], Decimal(i['cost']), Decimal(i['vol']) - Decimal(i['vol_closed']), Decimal(i['net']))) # # beep sound # #print("\a") # return None # except: # print("\033[91mUnexpected Error!!\033[00m") # print('-'*60) # traceback.print_exc(file=sys.stdout) # print('-'*60) # return TypeError # show grouped/aggregated cost/vol with the same order id and show def show_pos(pos_v): try: pos_copy = copy.deepcopy(pos_v) dist = {} for v in pos_copy: #print("DIST {}".format(dist)) if (v['ordertxid'] in dist): #print("FOUND IN DIST {}".format(v['ordertxid'])) dist_v = dist[v['ordertxid']] dist_v['cost'] = str(Decimal(dist_v['cost']) + Decimal(v['cost'])) dist_v['vol'] = str(Decimal(dist_v['vol']) + Decimal(v['vol'])) dist_v['vol_closed'] = str(Decimal(dist_v['vol_closed']) + Decimal(v['vol_closed'])) dist_v['fee'] = str(Decimal(dist_v['fee']) + Decimal(v['fee'])) dist_v['value'] = str(Decimal(dist_v['value']) + Decimal(v['value'])) dist_v['margin'] = str(Decimal(dist_v['margin']) + Decimal(v['margin'])) dist_v['net'] = str(Decimal(dist_v['net']) + Decimal(v['net'])) dist[v['ordertxid']] = dist_v else: #print("NOT FOUND IN DIST {}".format(v['ordertxid'])) dist[v['ordertxid']] = v tot = None print("\033[36mGROUPED OPEN POSITIONS:\033[00m") print("\033[36m{:<20s}{:>15s}{:>15s}{:>15s}{:>15s}{:>15s}{:>15s}\033[00m".format("ORDERID", "TYPE", "AVE PRICE", "TOTAL COST", "TOTAL MARGIN", "TOTAL VOL", "PNL W FEE")) for v in dist.values(): print("\033[96m{:<20s}{:>15s}{:>15.8f}{:>15.8f}{:>15.8f}{:>15.8f}{:>15.2f}\033[00m".format(v['ordertxid'], v['type'], Decimal(v['cost']) / (Decimal(v['vol']) - Decimal(v['vol_closed'])), Decimal(v['cost']), Decimal(v['margin']), Decimal(v['vol']) - Decimal(v['vol_closed']), Decimal(v['net']) - Decimal(v['fee']))) # # beep sound # #print("\a" if (tot is None): tot = v else: tot['cost'] = str(Decimal(tot['cost']) + Decimal(v['cost'])) tot['vol'] = str(Decimal(tot['vol']) + Decimal(v['vol'])) tot['vol_closed'] = str(Decimal(tot['vol_closed']) + Decimal(v['vol_closed'])) tot['fee'] = str(Decimal(tot['fee']) + Decimal(v['fee'])) tot['value'] = str(Decimal(tot['value']) + Decimal(v['value'])) tot['margin'] = str(Decimal(tot['margin']) + Decimal(v['margin'])) tot['net'] = str(Decimal(tot['net']) + Decimal(v['net'])) # if (tot is not None): # print("\033[36mSUM:\033[00m") # print("\033[36m{:<20s}{:>15s}{:>15s}{:>15s}{:>15s}{:>15s}{:>15s}\033[00m".format("ORDERID", "TYPE", "AVE PRICE", "TOTAL COST", "TOTAL MARGIN", "TOTAL VOL", "PNL W/O FEE")) # print("\033[96m{:<20s}{:>15s}{:>15.8f}{:>15.8f}{:>15.8f}{:>15.8f}{:>15.2f}\033[00m".format("", "", Decimal(tot['cost']) / (Decimal(tot['vol']) - Decimal(tot['vol_closed'])), Decimal(tot['cost']), Decimal(tot['margin']), Decimal(tot['vol']) - Decimal(tot['vol_closed']), Decimal(tot['net']))) #print() if (tot == None): tot_fee = 0 else: tot_fee = tot['fee'] return tot_fee except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError # # open orders # def get_open_orders(): try: cmd = subprocess.Popen(["clikraken", "--raw", "ol"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) cmd.wait() out, err = cmd.communicate() out_json = json.loads(out) #print(out_json) ol_k = list(out_json['result']['open'].keys()) ol_v = list(out_json['result']['open'].values()) return ol_k, ol_v except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError, TypeError def get_next_buy(ol_k, ol_v): return get_next_open(ol_k, ol_v, "buy") def get_next_sell(ol_k, ol_v): return get_next_open(ol_k, ol_v, "sell") def get_next_open(ol_k, ol_v, order_type): try: price = None order = None index = 0 j = 0 for i in ol_v: if (i['descr']['type'] == "buy" and i['descr']['type'] == order_type): if (i['descr']['leverage'] == 'none'): print("\033[91mINFO!! Non-margin buy order detected. Continue.\033[00m") else: if (price == None or price < Decimal(i['descr']['price'])): price = Decimal(i['descr']['price']) order = i index = j elif (i['descr']['type'] == "sell" and i['descr']['type'] == order_type): if (i['descr']['leverage'] == 'none'): print("\033[91mINFO!! Non-margin sell order detected. Continue.\033[00m") else: if (price == None or price > Decimal(i['descr']['price'])): price = Decimal(i['descr']['price']) order = i index = j j += 1 if (order == None): return None, None else: return ol_k[index], order except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError, TypeError def show_next_buy(order_k, order_v): show_next_open(order_k, order_v) def show_next_sell(order_k, order_v): show_next_open(order_k, order_v) def show_next_open(order_k, order_v): try: if (order_v != None): if (order_v['descr']['type'] == "sell"): print("\033[35m", end="") else: print("\033[32m", end="") print("{:<20s}{:>15s}{:>15s}{:>15s}".format("NEXT ORDER " + order_v['descr']['type'].upper() + ":", "PRICE" ,"VOL", "LEV")) print("{:<20s}{:>15s}{:>15.8f}{:>15s}\033[30m".format(order_k, order_v['descr']['price'], Decimal(order_v['vol']) - Decimal(order_v['vol_exec']), order_v['descr']['leverage'])) return None except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError def get_total_buy(open_orders): return get_total_open(open_orders, "buy") def get_total_sell(open_orders): return get_total_open(open_orders, "sell") def get_total_open(open_orders, order_type): try: vol = Decimal(0) for i in open_orders: if (i['descr']['type'] == order_type): if (i['descr']['leverage'] == 'none'): print("\033[91mINFO!! Non-margin %s order detected. Continue.\033[00m" % order_type) else: vol = vol + Decimal(i['vol']) - Decimal(i['vol_exec']) return vol except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError def show_total_buy(vol): show_total_open(vol, "buy") def show_total_sell(vol): show_total_open(vol, "sell") def show_total_open(vol, order_type): try: print("\033[33m{:<20s}{:>15s}{:>15s}\033[00m".format("TOTAL " + order_type.upper() + " ORDER:", "", "VOL")) if (vol != None): print("\033[33m{:<20s}{:>15s}{:>15.8f}\033[00m".format("", "", vol)) return None except: print("\033[91mUnexpected Error!!\033[00m") print('-'*60) traceback.print_exc(file=sys.stdout) print('-'*60) return TypeError
#!/usr/bin/env python # -*- coding: utf-8 -*- from contextlib import redirect_stdout # since 3.4 from contextlib import contextmanager from io import StringIO import sys def f1(): s = StringIO() with redirect_stdout(s): print(42) print('='*20) print(s.getvalue(), end='') print('='*20) def f2(): s = StringIO() stdout = sys.stdout sys.stdout = s print(42) sys.stdout = stdout print('='*20) print(s.getvalue(), end='') print('='*20) def f3(): @contextmanager def redirect(stream): stdout = sys.stdout sys.stdout = stream try: yield finally: sys.stdout = stdout s = StringIO() with redirect(s): print(42) print('='*20) print(s.getvalue(), end='') print('='*20) if __name__ == '__main__': f1() f2() f3()
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from __future__ import unicode_literals import logging import asyncio import time import functools from typing import TYPE_CHECKING, Any, Dict, List, Callable, Optional, Union, cast from uamqp import ( authentication, constants, errors, compat, Message, AMQPClientAsync, ) from .._client_base import ClientBase, _generate_sas_token, _parse_conn_str from .._utils import utc_from_timestamp from ..exceptions import ClientClosedError from .._constants import JWT_TOKEN_SCOPE, MGMT_OPERATION, MGMT_PARTITION_OPERATION from ._connection_manager_async import get_connection_manager from ._error_async import _handle_exception if TYPE_CHECKING: from azure.core.credentials import TokenCredential try: from typing_extensions import Protocol except ImportError: Protocol = object # type: ignore _LOGGER = logging.getLogger(__name__) class EventHubSharedKeyCredential(object): """The shared access key credential used for authentication. :param str policy: The name of the shared access policy. :param str key: The shared access key. """ def __init__(self, policy: str, key: str): self.policy = policy self.key = key self.token_type = b"servicebus.windows.net:sastoken" async def get_token(self, *scopes, **kwargs): # pylint:disable=unused-argument if not scopes: raise ValueError("No token scope provided.") return _generate_sas_token(scopes[0], self.policy, self.key) class ClientBaseAsync(ClientBase): def __init__( self, fully_qualified_namespace: str, eventhub_name: str, credential: "TokenCredential", **kwargs: Any ) -> None: self._loop = kwargs.pop("loop", None) super(ClientBaseAsync, self).__init__( fully_qualified_namespace=fully_qualified_namespace, eventhub_name=eventhub_name, credential=credential, **kwargs ) self._conn_manager_async = get_connection_manager(loop=self._loop, **kwargs) def __enter__(self): raise TypeError( "Asynchronous client must be opened with async context manager." ) @staticmethod def _from_connection_string(conn_str: str, **kwargs) -> Dict[str, Any]: host, policy, key, entity = _parse_conn_str(conn_str, kwargs) kwargs["fully_qualified_namespace"] = host kwargs["eventhub_name"] = entity kwargs["credential"] = EventHubSharedKeyCredential(policy, key) return kwargs async def _create_auth_async(self) -> authentication.JWTTokenAsync: """ Create an ~uamqp.authentication.SASTokenAuthAsync instance to authenticate the session. """ try: token_type = self._credential.token_type except AttributeError: token_type = b"jwt" if token_type == b"servicebus.windows.net:sastoken": auth = authentication.JWTTokenAsync( self._auth_uri, self._auth_uri, functools.partial(self._credential.get_token, self._auth_uri), token_type=token_type, timeout=self._config.auth_timeout, http_proxy=self._config.http_proxy, transport_type=self._config.transport_type, ) await auth.update_token() return auth return authentication.JWTTokenAsync( self._auth_uri, self._auth_uri, functools.partial(self._credential.get_token, JWT_TOKEN_SCOPE), token_type=token_type, timeout=self._config.auth_timeout, http_proxy=self._config.http_proxy, transport_type=self._config.transport_type, ) async def _close_connection_async(self) -> None: await self._conn_manager_async.reset_connection_if_broken() async def _backoff_async( self, retried_times: int, last_exception: Exception, timeout_time: Optional[float] = None, entity_name: Optional[str] = None, ) -> None: entity_name = entity_name or self._container_id backoff = self._config.backoff_factor * 2 ** retried_times if backoff <= self._config.backoff_max and ( timeout_time is None or time.time() + backoff <= timeout_time ): # pylint:disable=no-else-return await asyncio.sleep(backoff, loop=self._loop) _LOGGER.info( "%r has an exception (%r). Retrying...", format(entity_name), last_exception, ) else: _LOGGER.info( "%r operation has timed out. Last exception before timeout is (%r)", entity_name, last_exception, ) raise last_exception async def _management_request_async(self, mgmt_msg: Message, op_type: bytes) -> Any: retried_times = 0 last_exception = None while retried_times <= self._config.max_retries: mgmt_auth = await self._create_auth_async() mgmt_client = AMQPClientAsync( self._mgmt_target, auth=mgmt_auth, debug=self._config.network_tracing ) try: conn = await self._conn_manager_async.get_connection( self._address.hostname, mgmt_auth ) await mgmt_client.open_async(connection=conn) response = await mgmt_client.mgmt_request_async( mgmt_msg, constants.READ_OPERATION, op_type=op_type, status_code_field=b"status-code", description_fields=b"status-description", ) status_code = response.application_properties[b"status-code"] if status_code < 400: return response raise errors.AuthenticationException( "Management request error. Status code: {}".format(status_code) ) except Exception as exception: # pylint:disable=broad-except last_exception = await _handle_exception(exception, self) await self._backoff_async( retried_times=retried_times, last_exception=last_exception ) retried_times += 1 if retried_times > self._config.max_retries: _LOGGER.info( "%r returns an exception %r", self._container_id, last_exception ) raise last_exception finally: await mgmt_client.close_async() async def _get_eventhub_properties_async(self) -> Dict[str, Any]: mgmt_msg = Message(application_properties={"name": self.eventhub_name}) response = await self._management_request_async( mgmt_msg, op_type=MGMT_OPERATION ) output = {} eh_info = response.get_data() # type: Dict[bytes, Any] if eh_info: output["eventhub_name"] = eh_info[b"name"].decode("utf-8") output["created_at"] = utc_from_timestamp( float(eh_info[b"created_at"]) / 1000 ) output["partition_ids"] = [ p.decode("utf-8") for p in eh_info[b"partition_ids"] ] return output async def _get_partition_ids_async(self) -> List[str]: return (await self._get_eventhub_properties_async())["partition_ids"] async def _get_partition_properties_async( self, partition_id: str ) -> Dict[str, Any]: mgmt_msg = Message( application_properties={ "name": self.eventhub_name, "partition": partition_id, } ) response = await self._management_request_async( mgmt_msg, op_type=MGMT_PARTITION_OPERATION ) partition_info = response.get_data() # type: Dict[bytes, Union[bytes, int]] output = {} # type: Dict[str, Any] if partition_info: output["eventhub_name"] = cast(bytes, partition_info[b"name"]).decode( "utf-8" ) output["id"] = cast(bytes, partition_info[b"partition"]).decode("utf-8") output["beginning_sequence_number"] = cast( int, partition_info[b"begin_sequence_number"] ) output["last_enqueued_sequence_number"] = cast( int, partition_info[b"last_enqueued_sequence_number"] ) output["last_enqueued_offset"] = cast( bytes, partition_info[b"last_enqueued_offset"] ).decode("utf-8") output["is_empty"] = partition_info[b"is_partition_empty"] output["last_enqueued_time_utc"] = utc_from_timestamp( float(cast(int, partition_info[b"last_enqueued_time_utc"]) / 1000) ) return output async def _close_async(self) -> None: await self._conn_manager_async.close_connection() if TYPE_CHECKING: class AbstractConsumerProducer(Protocol): @property def _name(self): # type: () -> str """Name of the consumer or producer """ @_name.setter def _name(self, value): pass @property def _client(self): # type: () -> ClientBaseAsync """The instance of EventHubComsumerClient or EventHubProducerClient """ @_client.setter def _client(self, value): pass @property def _handler(self): # type: () -> AMQPClientAsync """The instance of SendClientAsync or ReceiveClientAsync """ @property def _loop(self): # type: () -> asyncio.AbstractEventLoop """The event loop that users pass in to call wrap sync calls to async API. It's furthur passed to uamqp APIs """ @_loop.setter def _loop(self, value): pass @property def running(self): # type: () -> bool """Whether the consumer or producer is running """ @running.setter def running(self, value): pass def _create_handler(self, auth: authentication.JWTTokenAsync) -> None: pass _MIXIN_BASE = AbstractConsumerProducer else: _MIXIN_BASE = object class ConsumerProducerMixin(_MIXIN_BASE): async def __aenter__(self): return self async def __aexit__(self, exc_type, exc_val, exc_tb): await self.close() def _check_closed(self) -> None: if self.closed: raise ClientClosedError( "{} has been closed. Please create a new one to handle event data.".format( self._name ) ) async def _open(self) -> None: """ Open the EventHubConsumer using the supplied connection. """ # pylint: disable=protected-access,line-too-long if not self.running: if self._handler: await self._handler.close_async() auth = await self._client._create_auth_async() self._create_handler(auth) await self._handler.open_async( connection=await self._client._conn_manager_async.get_connection( self._client._address.hostname, auth ) ) while not await self._handler.client_ready_async(): await asyncio.sleep(0.05, loop=self._loop) self._max_message_size_on_link = ( self._handler.message_handler._link.peer_max_message_size or constants.MAX_MESSAGE_LENGTH_BYTES ) self.running = True async def _close_handler_async(self) -> None: if self._handler: # close the link (shared connection) or connection (not shared) await self._handler.close_async() self.running = False async def _close_connection_async(self) -> None: await self._close_handler_async() await self._client._conn_manager_async.reset_connection_if_broken() # pylint:disable=protected-access async def _handle_exception(self, exception: Exception) -> Exception: if not self.running and isinstance(exception, compat.TimeoutException): exception = errors.AuthenticationException("Authorization timeout.") return await _handle_exception(exception, self) return await _handle_exception(exception, self) async def _do_retryable_operation( self, operation: Callable[..., Any], timeout: Optional[float] = None, **kwargs: Any ) -> Optional[Any]: # pylint:disable=protected-access,line-too-long timeout_time = (time.time() + timeout) if timeout else None retried_times = 0 last_exception = kwargs.pop("last_exception", None) operation_need_param = kwargs.pop("operation_need_param", True) max_retries = self._client._config.max_retries while retried_times <= max_retries: try: if operation_need_param: return await operation( timeout_time=timeout_time, last_exception=last_exception, **kwargs ) return await operation() except Exception as exception: # pylint:disable=broad-except last_exception = await self._handle_exception(exception) await self._client._backoff_async( retried_times=retried_times, last_exception=last_exception, timeout_time=timeout_time, entity_name=self._name, ) retried_times += 1 if retried_times > max_retries: _LOGGER.info( "%r operation has exhausted retry. Last exception: %r.", self._name, last_exception, ) raise last_exception return None async def close(self) -> None: """ Close down the handler. If the handler has already closed, this will be a no op. """ await self._close_handler_async() self.closed = True
import asyncio import logging import pyez ZMQ_REQ_PORT = 9999 WORKER_PORT = 9998 LIVELINESS = 3000 SERVER_DURATION = 2000 def assert_eq(exp, act): if exp != act: raise AssertionError( "expected {}, actual: {}".format(exp, act)) return def new_con(): return pyez.WorkerConnection( con_s=f"tcp://localhost:{WORKER_PORT}", service_name=b"TEST", liveliness=LIVELINESS) async def serve(handler): async with new_con() as conn: try: await asyncio.wait_for(conn.serve(handler), SERVER_DURATION / 1000.0) except asyncio.TimeoutError: return return async def test_serve_ok() -> None: REQ = [b"big", b"test"] RES = [b"big", b"response"] async def handler(req: pyez.Frames): assert_eq(req, REQ) return [b"OK"] + RES async def do_req(): async with pyez.ClientConnection( f"tcp://localhost:{ZMQ_REQ_PORT}") as conn: res = await conn.req(b"TEST", REQ) assert_eq(res, ([b"OK"] + RES)) return server_task = asyncio.create_task(serve(handler)) await do_req() await server_task return async def test_serve_err() -> None: REQ = [b"big", b"test"] RES = [b"big", b"response"] async def handler(req: pyez.Frames): assert req == REQ return [b"ERR"] + RES async def do_req(): async with pyez.ClientConnection( f"tcp://localhost:{ZMQ_REQ_PORT}") as conn: res = await conn.req(b"TEST", REQ) assert_eq(res, ([b"SERVICE_ERR"] + RES)) return server_task = asyncio.create_task(serve(handler)) await do_req() await server_task return async def test_timeout() -> None: async def handler(req: pyez.Frames): await asyncio.sleep(100) return [b"OK", b"nothing"] async def do_req(): async with pyez.ClientConnection( f"tcp://localhost:{ZMQ_REQ_PORT}") as conn: res = await conn.req(b"TEST", [b"any", b"thing"]) assert_eq(res, ([b"EZ_ERR", b"TIMEOUT"])) return server_task = asyncio.create_task(serve(handler)) await do_req() await server_task return async def test_no_service() -> None: async def do_req(): async with pyez.ClientConnection( f"tcp://localhost:{ZMQ_REQ_PORT}") as conn: res = await conn.req(b"TEST", [b"any", b"thing"], timeout=10000) assert_eq(res, ([b"EZ_ERR", b"NO_SERVICE"])) return await do_req() return TESTS = [ test_serve_ok, test_serve_err, test_timeout, test_no_service, ] async def main(): logging.basicConfig(level=logging.INFO) for test in TESTS: await test() await asyncio.sleep(LIVELINESS / 1000.0) logging.info(f""" ---------------- test success: {test.__name__} """) return if __name__ == '__main__': asyncio.run(main())
import os from pathlib import Path import torch from torch import optim import torch.nn as nn from tqdm import tqdm_notebook as tqdm from .dataset import generate_batches, CBOWDataset from .utils import set_seed_everywhere, handle_dirs, compute_accuracy from .classifier import CBOWClassifier from .utils import make_train_state from .radam import RAdam class Learner(object): def __init__(self, args, dataset, vectorizer, classifier): self.args = args self.dataset = dataset self.vectorizer = vectorizer self.classifier = classifier self.loss_func = nn.CrossEntropyLoss() # self.optimizer = optim.Adam(classifier.parameters(), lr=args.learning_rate) self.optimizer = RAdam(classifier.parameters(), lr=args.learning_rate) self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer=self.optimizer, mode='min', factor=0.5, patience=1) self.train_state = make_train_state(args) def _set_splits_progress_bars(self): epoch_bar = tqdm(desc='training routine', total=self.args.num_epochs, position=0) self.dataset.set_split('train') train_bar = tqdm(desc='split=train', total=self.dataset.get_num_batches(self.args.batch_size), position=1, leave=True) self.dataset.set_split('val') val_bar = tqdm(desc='split=val', total=self.dataset.get_num_batches(self.args.batch_size), position=1, leave=True) return epoch_bar, train_bar, val_bar def _add_update_args(self, **kwargs): # turn into dict args_dict = vars(self.args) # changes also values in self.args for key, value in kwargs.items(): args_dict[key] = value def train_eval_epoch(self, batch_generator, epoch_index, progress_bar, train_val='train'): if train_val not in ['train', 'val']: raise ValueError running_loss = 0.0 running_acc = 0.0 for batch_index, batch_dict in enumerate(batch_generator): # the training routine is these 5 steps: # -------------------------------------- # step 1. zero the gradients self.optimizer.zero_grad() # step 2. compute the output y_pred = self.classifier(batch_dict['x_data']) # step 3. compute the loss loss = self.loss_func(y_pred, batch_dict['y_target']) loss_t = loss.item() running_loss += (loss_t - running_loss) / (batch_index + 1) if train_val == 'train': # step 4. use loss to produce gradients loss.backward() # step 5. use optimizer to take gradient step self.optimizer.step() # ----------------------------------------- # compute the accuracy acc_t = compute_accuracy(y_pred, batch_dict['y_target']) running_acc += (acc_t - running_acc) / (batch_index + 1) # update bar progress_bar.set_postfix(loss=running_loss, acc=running_acc, epoch=epoch_index) progress_bar.update() self.train_state[f'{train_val}_loss'].append(running_loss) self.train_state[f'{train_val}_acc'].append(running_acc) def train(self, **kwargs): # kwargs are meant to be training related arguments that might be changed for training self._add_update_args(**kwargs) epoch_bar, train_bar, val_bar = self._set_splits_progress_bars() try: for epoch_index in range(self.args.num_epochs): self.train_state['epoch_index'] = epoch_index # Iterate over training dataset # setup: batch generator, set loss and acc to 0, set train mode on self.dataset.set_split('train') batch_generator = generate_batches(self.dataset, batch_size=self.args.batch_size, device=self.args.device) self.classifier.train() self.train_eval_epoch(batch_generator, epoch_index, train_bar) # Iterate over val dataset # setup: batch generator, set loss and acc to 0; set eval mode on self.dataset.set_split('val') batch_generator = generate_batches(self.dataset, batch_size=self.args.batch_size, device=self.args.device) self.classifier.eval() self.train_eval_epoch(batch_generator, epoch_index, val_bar, 'val') self.update_train_state() self.scheduler.step(self.train_state['val_loss'][-1]) if self.train_state['stop_early']: break train_bar.n = 0 val_bar.n = 0 epoch_bar.update() except KeyboardInterrupt: print("Exiting loop") def save_model(self): state = { 'scheduler': self.scheduler, 'state_dict': self.classifier.state_dict(), 'optimizer': self.optimizer.state_dict(), 'train_state': self.train_state, 'args': self.args } torch.save(state, self.train_state['model_filename']) def load_model(self, filename): learner = torch.load(filename) self.scheduler = learner['scheduler'] self.classifier.load_state_dict(learner['state_dict']) self.optimizer.load_state_dict(learner['optimizer']) self.train_state = learner['train_state'] def update_train_state(self): """Handle the training state updates. Components: - Early Stopping: Prevent overfitting. - Model Checkpoint: Model is saved if the model is better :param args: main arguments :param model: model to train :param train_state: a dictionary representing the training state values :returns: a new train_state """ # Save one model at least if self.train_state['epoch_index'] == 0: # torch.save(self.classifier.state_dict(), self.train_state['model_filename']) self.save_model() self.train_state['stop_early'] = False # Save model if performance improved elif self.train_state['epoch_index'] >= 1: loss_tm1, loss_t = self.train_state['val_loss'][-2:] # If loss worsened if loss_t >= self.train_state['early_stopping_best_val']: # Update step self.train_state['early_stopping_step'] += 1 # Loss decreased else: # Save the best model if loss_t < self.train_state['early_stopping_best_val']: self.save_model() # Reset early stopping step self.train_state['early_stopping_step'] = 0 # Stop early ? self.train_state['stop_early'] = \ self.train_state['early_stopping_step'] >= self.args.early_stopping_criteria def validate(self): self.load_model(self.train_state['model_filename']) self.classifier = self.classifier.to(self.args.device) self.classifier.eval() self.dataset.set_split('test') batch_generator = generate_batches(self.dataset, batch_size=self.args.batch_size, shuffle=False, device=self.args.device) running_loss = 0. running_acc = 0. self.classifier.eval() for batch_index, batch_dict in enumerate(batch_generator): # compute the output y_pred = self.classifier(x_in=batch_dict['x_data']) # compute the loss loss = self.loss_func(y_pred, batch_dict['y_target']) loss_t = loss.item() running_loss += (loss_t - running_loss) / (batch_index + 1) # compute the accuracy acc_t = compute_accuracy(y_pred, batch_dict['y_target']) running_acc += (acc_t - running_acc) / (batch_index + 1) self.train_state['test_loss'] = running_loss self.train_state['test_acc'] = running_acc print(f"Test loss: {round(self.train_state['test_loss'], 3)}") print(f"Test Accuracy: {round(self.train_state['test_acc'], 3)}") def pretty_print(self, results): """ Pretty print embedding results. """ for item in results: print("...[%.2f] - %s" % (item[1], item[0])) def get_closest(self, target_word, word_to_idx, embeddings, n=5): """ Get the n closest words to your word. """ # Calculate distances to all other words word_embedding = embeddings[word_to_idx[target_word.lower()]] distances = [] for word, index in word_to_idx.items(): if word == "<MASK>" or word == target_word: continue distances.append((word, torch.dist(word_embedding, embeddings[index]))) results = sorted(distances, key=lambda x: x[1])[1:n + 2] return results def get_closest_words(self, word): embeddings = self.classifier.embedding.weight.data word_to_idx = self.vectorizer.cbow_vocab._token_to_idx self.pretty_print(self.get_closest(word, word_to_idx, embeddings, n=5)) @classmethod def learner_from_args(cls, args): if args.expand_filepaths_to_save_dir: args.vectorizer_file = os.path.join(args.save_dir, args.vectorizer_file) args.model_state_file = os.path.join(args.save_dir, args.model_state_file) print("Expanded filepaths: ") print("\t{}".format(args.vectorizer_file)) print("\t{}".format(args.model_state_file)) # Check CUDA if not torch.cuda.is_available(): args.cuda = False args.device = torch.device("cuda" if args.cuda else "cpu") print("Using CUDA: {}".format(args.cuda)) # Set seed for reproducibility set_seed_everywhere(args.seed, args.cuda) # handle dirs handle_dirs(args.save_dir) if args.reload_from_files: # training from a checkpoint print("Loading dataset and loading vectorizer") dataset = CBOWDataset.load_dataset_and_load_vectorizer(args.cbow_csv, args.vectorizer_file) else: # create dataset and vectorizer print("Loading dataset and creating vectorizer") dataset = CBOWDataset.load_dataset_and_make_vectorizer(args.cbow_csv) dataset.save_vectorizer(args.vectorizer_file) vectorizer = dataset.get_vectorizer() classifier = CBOWClassifier(vocabulary_size=len(vectorizer.cbow_vocab), embedding_size=args.embedding_size) classifier = classifier.to(args.device) learner = cls(args, dataset, vectorizer, classifier) if args.reload_from_files: learner_states = torch.load(Path(args.model_state_file)) learner.optimizer.load_state_dict(learner_states['optimizer']) learner.classifier.load_state_dict(learner_states['state_dict']) learner.scheduler = learner_states['scheduler'] learner.train_state = learner_states['train_state'] return learner
#!/usr/bin/python # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # DOCUMENTATION = ''' --- module: nxos_interface_ospf version_added: "2.2" short_description: Manages configuration of an OSPF interface instance. description: - Manages configuration of an OSPF interface instance. author: Gabriele Gerbino (@GGabriele) extends_documentation_fragment: nxos notes: - Default, where supported, restores params default value. - To remove an existing authentication configuration you should use C(message_digest_key_id=default) plus all other options matching their existing values. - C(state=absent) removes the whole OSPF interface configuration. options: interface: description: - Name of this cisco_interface resource. Valid value is a string. required: true ospf: description: - Name of the ospf instance. required: true area: description: - Ospf area associated with this cisco_interface_ospf instance. Valid values are a string, formatted as an IP address (i.e. "0.0.0.0") or as an integer. required: true cost: description: - The cost associated with this cisco_interface_ospf instance. required: false default: null hello_interval: description: - Time between sending successive hello packets. Valid values are an integer or the keyword 'default'. required: false default: null dead_interval: description: - Time interval an ospf neighbor waits for a hello packet before tearing down adjacencies. Valid values are an integer or the keyword 'default'. required: false default: null passive_interface: description: - Setting to true will prevent this interface from receiving HELLO packets. Valid values are 'true' and 'false'. required: false choices: ['true','false'] default: null message_digest: description: - Enables or disables the usage of message digest authentication. Valid values are 'true' and 'false'. required: false choices: ['true','false'] default: null message_digest_key_id: description: - Md5 authentication key-id associated with the ospf instance. If this is present, message_digest_encryption_type, message_digest_algorithm_type and message_digest_password are mandatory. Valid value is an integer and 'default'. required: false default: null message_digest_algorithm_type: description: - Algorithm used for authentication among neighboring routers within an area. Valid values is 'md5'. required: false choices: ['md5'] default: null message_digest_encryption_type: description: - Specifies the scheme used for encrypting message_digest_password. Valid values are '3des' or 'cisco_type_7' encryption. required: false choices: ['cisco_type_7','3des'] default: null message_digest_password: description: - Specifies the message_digest password. Valid value is a string. required: false default: null state: description: - Determines whether the config should be present or not on the device. required: false default: present choices: ['present','absent'] ''' EXAMPLES = ''' - nxos_interface_ospf: interface: ethernet1/32 ospf: 1 area: 1 cost=default username: "{{ un }}" password: "{{ pwd }}" host: "{{ inventory_hostname }}" ''' RETURN = ''' proposed: description: k/v pairs of parameters passed into module returned: verbose mode type: dict sample: {"area": "1", "interface": "ethernet1/32", "ospf": "1"} existing: description: k/v pairs of existing OSPF configuration returned: verbose mode type: dict sample: {"area": "", "cost": "", "dead_interval": "", "hello_interval": "", "interface": "ethernet1/32", "message_digest": false, "message_digest_algorithm_type": "", "message_digest_encryption_type": "", "message_digest_key_id": "", "message_digest_password": "", "ospf": "", "passive_interface": false} end_state: description: k/v pairs of OSPF configuration after module execution returned: verbose mode type: dict sample: {"area": "0.0.0.1", "cost": "", "dead_interval": "", "hello_interval": "", "interface": "ethernet1/32", "message_digest": false, "message_digest_algorithm_type": "", "message_digest_encryption_type": "", "message_digest_key_id": "", "message_digest_password": "", "ospf": "1", "passive_interface": false} updates: description: commands sent to the device returned: always type: list sample: ["interface Ethernet1/32", "ip router ospf 1 area 0.0.0.1"] changed: description: check to see if a change was made on the device returned: always type: boolean sample: true ''' # COMMON CODE FOR MIGRATION import re from ansible.module_utils.basic import get_exception from ansible.module_utils.netcfg import NetworkConfig, ConfigLine from ansible.module_utils.shell import ShellError try: from ansible.module_utils.nxos import get_module except ImportError: from ansible.module_utils.nxos import NetworkModule def to_list(val): if isinstance(val, (list, tuple)): return list(val) elif val is not None: return [val] else: return list() class CustomNetworkConfig(NetworkConfig): def expand_section(self, configobj, S=None): if S is None: S = list() S.append(configobj) for child in configobj.children: if child in S: continue self.expand_section(child, S) return S def get_object(self, path): for item in self.items: if item.text == path[-1]: parents = [p.text for p in item.parents] if parents == path[:-1]: return item def to_block(self, section): return '\n'.join([item.raw for item in section]) def get_section(self, path): try: section = self.get_section_objects(path) return self.to_block(section) except ValueError: return list() def get_section_objects(self, path): if not isinstance(path, list): path = [path] obj = self.get_object(path) if not obj: raise ValueError('path does not exist in config') return self.expand_section(obj) def add(self, lines, parents=None): """Adds one or lines of configuration """ ancestors = list() offset = 0 obj = None ## global config command if not parents: for line in to_list(lines): item = ConfigLine(line) item.raw = line if item not in self.items: self.items.append(item) else: for index, p in enumerate(parents): try: i = index + 1 obj = self.get_section_objects(parents[:i])[0] ancestors.append(obj) except ValueError: # add parent to config offset = index * self.indent obj = ConfigLine(p) obj.raw = p.rjust(len(p) + offset) if ancestors: obj.parents = list(ancestors) ancestors[-1].children.append(obj) self.items.append(obj) ancestors.append(obj) # add child objects for line in to_list(lines): # check if child already exists for child in ancestors[-1].children: if child.text == line: break else: offset = len(parents) * self.indent item = ConfigLine(line) item.raw = line.rjust(len(line) + offset) item.parents = ancestors ancestors[-1].children.append(item) self.items.append(item) def get_network_module(**kwargs): try: return get_module(**kwargs) except NameError: return NetworkModule(**kwargs) def get_config(module, include_defaults=False): config = module.params['config'] if not config: try: config = module.get_config() except AttributeError: defaults = module.params['include_defaults'] config = module.config.get_config(include_defaults=defaults) return CustomNetworkConfig(indent=2, contents=config) def load_config(module, candidate): config = get_config(module) commands = candidate.difference(config) commands = [str(c).strip() for c in commands] save_config = module.params['save'] result = dict(changed=False) if commands: if not module.check_mode: try: module.configure(commands) except AttributeError: module.config(commands) if save_config: try: module.config.save_config() except AttributeError: module.execute(['copy running-config startup-config']) result['changed'] = True result['updates'] = commands return result # END OF COMMON CODE BOOL_PARAMS = [ 'passive_interface', 'message_digest' ] PARAM_TO_COMMAND_KEYMAP = { 'cost': 'ip ospf cost', 'ospf': 'ip router ospf', 'area': 'ip router ospf', 'hello_interval': 'ip ospf hello-interval', 'dead_interval': 'ip ospf dead-interval', 'passive_interface': 'ip ospf passive-interface', 'message_digest': 'ip ospf authentication message-digest', 'message_digest_key_id': 'ip ospf message-digest-key', 'message_digest_algorithm_type': 'ip ospf message-digest-key options', 'message_digest_encryption_type': 'ip ospf message-digest-key options', 'message_digest_password': 'ip ospf message-digest-key options', } PARAM_TO_DEFAULT_KEYMAP = { } def invoke(name, *args, **kwargs): func = globals().get(name) if func: return func(*args, **kwargs) def get_custom_value(arg, config, module): value = '' if arg == 'ospf': REGEX = re.compile(r'(?:ip router ospf\s)(?P<value>.*)$', re.M) value = '' if 'ip router ospf' in config: parsed = REGEX.search(config).group('value').split() value = parsed[0] elif arg == 'area': REGEX = re.compile(r'(?:ip router ospf\s)(?P<value>.*)$', re.M) value = '' if 'ip router ospf' in config: parsed = REGEX.search(config).group('value').split() value = parsed[2] elif arg.startswith('message_digest_'): REGEX = re.compile(r'(?:ip ospf message-digest-key\s)(?P<value>.*)$', re.M) value = '' if 'ip ospf message-digest-key' in config: value_list = REGEX.search(config).group('value').split() if arg == 'message_digest_key_id': value = value_list[0] elif arg == 'message_digest_algorithm_type': value = value_list[1] elif arg == 'message_digest_encryption_type': value = value_list[2] if value == '3': value = '3des' elif value == '7': value = 'cisco_type_7' elif arg == 'message_digest_password': value = value_list[3] elif arg == 'passive_interface': REGEX = re.compile(r'\s+{0}\s*$'.format(PARAM_TO_COMMAND_KEYMAP[arg]), re.M) NO_REGEX = re.compile(r'\s+no\s+{0}\s*$'.format(PARAM_TO_COMMAND_KEYMAP[arg]), re.M) value = False try: if NO_REGEX.search(config): value = False elif REGEX.search(config): value = True except TypeError: value = False return value def get_value(arg, config, module): custom = [ 'ospf', 'area', 'message_digest_key_id', 'message_digest_algorithm_type', 'message_digest_encryption_type', 'message_digest_password', 'passive_interface' ] if arg in custom: value = get_custom_value(arg, config, module) elif arg in BOOL_PARAMS: REGEX = re.compile(r'\s+{0}\s*$'.format(PARAM_TO_COMMAND_KEYMAP[arg]), re.M) value = False try: if REGEX.search(config): value = True except TypeError: value = False else: REGEX = re.compile(r'(?:{0}\s)(?P<value>.*)$'.format(PARAM_TO_COMMAND_KEYMAP[arg]), re.M) value = '' if PARAM_TO_COMMAND_KEYMAP[arg] in config: value = REGEX.search(config).group('value') return value def get_existing(module, args): existing = {} netcfg = get_config(module) parents = ['interface {0}'.format(module.params['interface'].capitalize())] config = netcfg.get_section(parents) if 'ospf' in config: for arg in args: if arg not in ['interface']: existing[arg] = get_value(arg, config, module) existing['interface'] = module.params['interface'] return existing def apply_key_map(key_map, table): new_dict = {} for key, value in table.items(): new_key = key_map.get(key) if new_key: value = table.get(key) if value: new_dict[new_key] = value else: new_dict[new_key] = value return new_dict def get_default_commands(existing, proposed, existing_commands, key, module): commands = list() existing_value = existing_commands.get(key) if key.startswith('ip ospf message-digest-key'): check = False for param in ['message_digest_encryption_type', 'message_digest_algorithm_type', 'message_digest_password']: if existing[param] == proposed[param]: check = True if check: if existing['message_digest_encryption_type'] == '3des': encryption_type = '3' elif existing['message_digest_encryption_type'] == 'cisco_type_7': encryption_type = '7' command = 'no {0} {1} {2} {3} {4}'.format( key, existing['message_digest_key_id'], existing['message_digest_algorithm_type'], encryption_type, existing['message_digest_password']) commands.append(command) else: commands.append('no {0} {1}'.format(key, existing_value)) return commands def get_custom_command(existing_cmd, proposed, key, module): commands = list() if key == 'ip router ospf': command = '{0} {1} area {2}'.format(key, proposed['ospf'], proposed['area']) if command not in existing_cmd: commands.append(command) elif key.startswith('ip ospf message-digest-key'): if (proposed['message_digest_key_id'] != 'default' and 'options' not in key): if proposed['message_digest_encryption_type'] == '3des': encryption_type = '3' elif proposed['message_digest_encryption_type'] == 'cisco_type_7': encryption_type = '7' command = '{0} {1} {2} {3} {4}'.format( key, proposed['message_digest_key_id'], proposed['message_digest_algorithm_type'], encryption_type, proposed['message_digest_password']) commands.append(command) return commands def state_present(module, existing, proposed, candidate): commands = list() proposed_commands = apply_key_map(PARAM_TO_COMMAND_KEYMAP, proposed) existing_commands = apply_key_map(PARAM_TO_COMMAND_KEYMAP, existing) for key, value in proposed_commands.items(): if value is True: commands.append(key) elif value is False: commands.append('no {0}'.format(key)) elif value == 'default': if existing_commands.get(key): commands.extend(get_default_commands(existing, proposed, existing_commands, key, module)) else: if (key == 'ip router ospf' or key.startswith('ip ospf message-digest-key')): commands.extend(get_custom_command(commands, proposed, key, module)) else: command = '{0} {1}'.format(key, value.lower()) commands.append(command) if commands: parents = ['interface {0}'.format(module.params['interface'].capitalize())] candidate.add(commands, parents=parents) def state_absent(module, existing, proposed, candidate): commands = [] parents = ['interface {0}'.format(module.params['interface'].capitalize())] existing_commands = apply_key_map(PARAM_TO_COMMAND_KEYMAP, existing) for key, value in existing_commands.items(): if value: if key.startswith('ip ospf message-digest-key'): if 'options' not in key: if existing['message_digest_encryption_type'] == '3des': encryption_type = '3' elif existing['message_digest_encryption_type'] == 'cisco_type_7': encryption_type = '7' command = 'no {0} {1} {2} {3} {4}'.format( key, existing['message_digest_key_id'], existing['message_digest_algorithm_type'], encryption_type, existing['message_digest_password']) commands.append(command) elif key in ['ip ospf authentication message-digest', 'ip ospf passive-interface']: if value: commands.append('no {0}'.format(key)) elif key == 'ip router ospf': command = 'no {0} {1} area {2}'.format(key, proposed['ospf'], proposed['area']) if command not in commands: commands.append(command) else: existing_value = existing_commands.get(key) commands.append('no {0} {1}'.format(key, existing_value)) candidate.add(commands, parents=parents) def normalize_area(area, module): try: area = int(area) area = '0.0.0.{0}'.format(area) except ValueError: splitted_area = area.split('.') if len(splitted_area) != 4: module.fail_json(msg='Incorrect Area ID format', area=area) return area def main(): argument_spec = dict( interface=dict(required=True, type='str'), ospf=dict(required=True, type='str'), area=dict(required=True, type='str'), cost=dict(required=False, type='str'), hello_interval=dict(required=False, type='str'), dead_interval=dict(required=False, type='str'), passive_interface=dict(required=False, type='bool'), message_digest=dict(required=False, type='bool'), message_digest_key_id=dict(required=False, type='str'), message_digest_algorithm_type=dict(required=False, type='str', choices=['md5']), message_digest_encryption_type=dict(required=False, type='str', choices=['cisco_type_7','3des']), message_digest_password=dict(required=False, type='str'), state=dict(choices=['present', 'absent'], default='present', required=False), include_defaults=dict(default=True), config=dict(), save=dict(type='bool', default=False) ) module = get_network_module(argument_spec=argument_spec, required_together=[['message_digest_key_id', 'message_digest_algorithm_type', 'message_digest_encryption_type', 'message_digest_password']], supports_check_mode=True) for param in ['message_digest_encryption_type', 'message_digest_algorithm_type', 'message_digest_password']: if module.params[param] == 'default': module.exit_json(msg='Use message_digest_key_id=default to remove' ' an existing authentication configuration') state = module.params['state'] args = [ 'interface', 'ospf', 'area', 'cost', 'hello_interval', 'dead_interval', 'passive_interface', 'message_digest', 'message_digest_key_id', 'message_digest_algorithm_type', 'message_digest_encryption_type', 'message_digest_password' ] existing = invoke('get_existing', module, args) end_state = existing proposed_args = dict((k, v) for k, v in module.params.items() if v is not None and k in args) proposed = {} for key, value in proposed_args.items(): if key != 'interface': if str(value).lower() == 'true': value = True elif str(value).lower() == 'false': value = False elif str(value).lower() == 'default': value = PARAM_TO_DEFAULT_KEYMAP.get(key) if value is None: value = 'default' if existing.get(key) or (not existing.get(key) and value): proposed[key] = value proposed['area'] = normalize_area(proposed['area'], module) result = {} if (state == 'present' or (state == 'absent' and existing.get('ospf') == proposed['ospf'] and existing.get('area') == proposed['area'])): candidate = CustomNetworkConfig(indent=3) invoke('state_%s' % state, module, existing, proposed, candidate) try: response = load_config(module, candidate) result.update(response) except ShellError: exc = get_exception() module.fail_json(msg=str(exc)) else: result['updates'] = [] result['connected'] = module.connected if module._verbosity > 0: end_state = invoke('get_existing', module, args) result['end_state'] = end_state result['existing'] = existing result['proposed'] = proposed_args module.exit_json(**result) if __name__ == '__main__': main()
bl_info = { "name": "Add heightmap", "author": "Spencer Alves", "version": (1, 0), "blender": (2, 75, 0), "location": "File > Import > Import heightmap", "description": "Generates a mesh from a heightmap image", "warning": "", "wiki_url": "", "category": "Add Mesh", } import bpy from bpy.types import Operator from bpy.props import FloatVectorProperty, IntProperty, StringProperty from bpy_extras.object_utils import AddObjectHelper, object_data_add from mathutils import Vector from bpy_extras.image_utils import load_image def add_object(self, context): scale_x = self.scale.x scale_y = self.scale.y scale_z = self.scale.z img = load_image(self.filename, self.directory) precision = self.precision width, height = img.size verts = [] edges = [] faces = [] for x in range(0, width, precision): for y in range(0, height, precision): px = (x+(height-y-1)*width)*4 verts.append(Vector((x*scale_x/width, y*scale_y/height, img.pixels[px]*scale_z))) nYVerts = height//precision for i in range(width//precision-1): for j in range(nYVerts-1): face = [j+i*nYVerts, (j+1)+i*nYVerts, (j+1)+(i+1)*nYVerts, j+(i+1)*nYVerts] faces.append(face) mesh = bpy.data.meshes.new(name=img.name) mesh.from_pydata(verts, edges, faces) # useful for development when the mesh may be invalid. # mesh.validate(verbose=True) object_data_add(context, mesh, operator=self) class ImportHeightmap(Operator, AddObjectHelper): """Create a new Mesh Object""" bl_idname = "import_image.to_heightmap" bl_label = "Import heightmap" bl_options = {'REGISTER', 'UNDO'} filename = StringProperty(name="File Name", description="Name of the file") directory = StringProperty(name="Directory", description="Directory of the file") scale = FloatVectorProperty( name="scale", default=(1.0, 1.0, 1.0), subtype='TRANSLATION', description="scaling", unit='LENGTH' ) precision = IntProperty( name="precision", default=16, min=1) def invoke(self, context, event): wm = bpy.context.window_manager wm.fileselect_add(self) return {'RUNNING_MODAL'} def execute(self, context): add_object(self, context) return {'FINISHED'} # Registration def import_image_button(self, context): self.layout.operator( ImportHeightmap.bl_idname, text="Add heightmap") def register(): bpy.utils.register_class(ImportHeightmap) bpy.types.INFO_MT_file_import.append(import_image_button) bpy.types.INFO_MT_mesh_add.append(import_image_button) def unregister(): bpy.utils.unregister_class(ImportHeightmap) bpy.types.INFO_MT_file_import.append(import_image_button) bpy.types.INFO_MT_mesh_add.append(import_image_button) if __name__ == "__main__": register()
#!/usr/bin/env python # Copyright (c) 2013-2018, Rethink Robotics Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SDK Gripper Example: joystick """ import argparse import rospy import intera_interface import intera_external_devices def map_joystick(joystick, limb): """ maps joystick input to gripper commands @param joystick: an instance of a Joystick """ print("Getting robot state... ") rs = intera_interface.RobotEnable(intera_interface.CHECK_VERSION) init_state = rs.state() gripper = None original_deadzone = None def clean_shutdown(): if gripper and original_deadzone: gripper.set_dead_zone(original_deadzone) print("Exiting example.") try: gripper = intera_interface.Gripper(limb + '_gripper') except (ValueError, OSError) as e: rospy.logerr("Could not detect an electric gripper attached to the robot.") clean_shutdown() return rospy.on_shutdown(clean_shutdown) # abbreviations jhi = lambda s: joystick.stick_value(s) > 0 jlo = lambda s: joystick.stick_value(s) < 0 bdn = joystick.button_down bup = joystick.button_up def print_help(bindings_list): print("Press Ctrl-C to quit.") for bindings in bindings_list: for (test, _cmd, doc) in bindings: if callable(doc): doc = doc() print("%s: %s" % (str(test[1]), doc)) def offset_position(offset_pos): cmd_pos = max(min(gripper.get_position() + offset_pos, gripper.MAX_POSITION), gripper.MIN_POSITION) gripper.set_position(cmd_pos) print("commanded position set to {0} m".format(cmd_pos)) def update_velocity(offset_vel): cmd_speed = max(min(gripper.get_cmd_velocity() + offset_vel, gripper.MAX_VELOCITY), gripper.MIN_VELOCITY) gripper.set_cmd_velocity(cmd_speed) print("commanded velocity set to {0} m/s".format(cmd_speed)) # decrease position dead_zone original_deadzone = gripper.get_dead_zone() # WARNING: setting the deadzone below this can cause oscillations in # the gripper position. However, setting the deadzone to this # value is required to achieve the incremental commands in this example gripper.set_dead_zone(0.001) rospy.loginfo("Gripper deadzone set to {}".format(gripper.get_dead_zone())) num_steps = 8.0 percent_delta = 1.0 / num_steps position_increment = (gripper.MAX_POSITION - gripper.MIN_POSITION) * percent_delta velocity_increment = (gripper.MAX_VELOCITY - gripper.MIN_VELOCITY) * percent_delta bindings_list = [] bindings = ( #(test, command, description) ((bdn, ['btnLeft']), (gripper.reboot, []), "reboot"), ((bdn, ['btnUp']), (gripper.calibrate, []), "calibrate"), ((bdn, ['leftTrigger']), (gripper.close, []), "close"), ((bup, ['leftTrigger']), (gripper.open, []), "open (release)"), ((bdn, ['leftBumper']), (gripper.stop, []), "stop"), ((jlo, ['leftStickVert']), (offset_position, [-position_increment]), "decrease position"), ((jhi, ['leftStickVert']), (offset_position, [position_increment]), "increase position"), ((jlo, ['rightStickVert']), (update_velocity, [-velocity_increment]), "decrease commanded velocity"), ((jhi, ['rightStickVert']), (update_velocity, [velocity_increment]), "increase commanded velocity"), ((bdn, ['function1']), (print_help, [bindings_list]), "help"), ((bdn, ['function2']), (print_help, [bindings_list]), "help"), ) bindings_list.append(bindings) rospy.loginfo("Enabling robot...") rs.enable() rate = rospy.Rate(100) print_help(bindings_list) print("Press <Start> button for help; Ctrl-C to stop...") while not rospy.is_shutdown(): # test each joystick condition and call binding cmd if true for (test, cmd, doc) in bindings: if test[0](*test[1]): print(doc) cmd[0](*cmd[1]) rate.sleep() rospy.signal_shutdown("Example finished.") def main(): """SDK Gripper Example: Joystick Control Use a game controller to control the grippers. Attach a game controller to your dev machine and run this example along with the ROS joy_node to control gripper using the joysticks and buttons. Be sure to provide the *joystick* type you are using as an argument to setup appropriate key mappings. Uses the intera_interface.Gripper class and the helper classes in intera_external_devices.Joystick. """ epilog = """ See help inside the example with the "Start" button for controller key bindings. """ rp = intera_interface.RobotParams() valid_limbs = rp.get_limb_names() if not valid_limbs: rp.log_message(("Cannot detect any limb parameters on this robot. " "Exiting."), "ERROR") return arg_fmt = argparse.RawDescriptionHelpFormatter parser = argparse.ArgumentParser(formatter_class=arg_fmt, description=main.__doc__, epilog=epilog) required = parser.add_argument_group('required arguments') required.add_argument( '-j', '--joystick', required=True, choices=['xbox', 'logitech', 'ps3'], help='specify the type of joystick to use' ) parser.add_argument( "-l", "--limb", dest="limb", default=valid_limbs[0], choices=valid_limbs, help="Limb on which to run the gripper joystick example" ) args = parser.parse_args(rospy.myargv()[1:]) joystick = None if args.joystick == 'xbox': joystick = intera_external_devices.joystick.XboxController() elif args.joystick == 'logitech': joystick = intera_external_devices.joystick.LogitechController() elif args.joystick == 'ps3': joystick = intera_external_devices.joystick.PS3Controller() else: # Should never reach this case with proper argparse usage parser.error("Unsupported joystick type '%s'" % (args.joystick)) print("Initializing node... ") rospy.init_node("sdk_gripper_joystick") map_joystick(joystick, args.limb) if __name__ == '__main__': main()
import sys sys.path.insert(1,"../../") import h2o from tests import pyunit_utils from h2o.estimators.glm import H2OGeneralizedLinearEstimator ''' Copied example from Honza to fix bug in 2D pdp. Basically, when no figure is plotted, this bug will thrown an error. Hence, this code just needs to run to completion. No assertion check is necessary for this test. ''' def partial_plot_test_with_user_splits(): train = h2o.import_file(pyunit_utils.locate('smalldata/flow_examples/abalone.csv.gz')) model = H2OGeneralizedLinearEstimator(training_frame=train) model.train(y="C9") model.partial_plot(train, col_pairs_2dpdp=[["C1", "C2"]], save_to_file="pdp.png") if __name__ == "__main__": pyunit_utils.standalone_test(partial_plot_test_with_user_splits) else: partial_plot_test_with_user_splits()
import cv2 def save_image(image, folder, now): """ Save an image using OpenCV and then resaves it using PIL for better compression """ filename = '%s/%s.jpg' filepath = filename % (folder, now) cv2.imwrite(filepath, image, [cv2.cv.CV_IMWRITE_JPEG_QUALITY, 80]) # Resave it with pillow to do a better compression # img = Image.open(filepath) # img.save(filepath, optimize=True, quality=80) def bcdToInt(chars): sum = 0 for c in chars: for val in (c >> 4, c & 0xF): if val > 9: print('Warning: BCD code is beyond 0~9') val = 9 sum = 10*sum+val return sum #class RingBuffer
import numpy as np from mcts import MCTS class Player: def set_player_ind(self, player_ind): self.player = player_ind def get_action(self, board, temp=1e-3, return_prob=False): pass class MCTSPlayer(Player): """ 基于蒙特卡洛树的电脑玩家 """ def __init__(self, policy_value_function, c_puct=5, n_playout=300, is_selfplay=False): """ :param policy_value_function: 论文里面的(p,v)=f(s)函数。接受一个board作为参数并返回一个(动作,概率)列表和在[-1, 1]范围的局面胜率的函数 :param c_puct: 论文里面的c_puct。一个在范围(0, inf)的数字,控制探索等级。值越小越依赖于Q值,值越大越依赖于P值 :param n_playout: 找MCTS叶子节点次数,即每次搜索次数 :param is_selfplay: 是否是自己与自己对局 """ self.mcts = MCTS(policy_value_function, c_puct, n_playout) self._is_selfplay = is_selfplay def set_player_ind(self, p): self.player = p def reset_player(self): self.mcts.update_with_move(-1) def get_action(self, board, temp=1e-3, return_prob=False): move_probs = np.zeros(board.get_action_count()) # alphaGo Zero论文里面由MCTS返回的的pi数组 if len(board.get_available_moves()) > 0: acts, probs = self.mcts.get_move_probs(board, temp) move_probs[list(acts)] = probs if self._is_selfplay: move = np.random.choice(acts, p=0.75*probs + 0.25*np.random.dirichlet(0.3*np.ones(len(probs)))) # 增加一个Dirichlet Noise来探索 self.mcts.update_with_move(move) else: move = np.random.choice(acts, p=probs) # 如果用默认值temp=1e-3,就相当于选择P值最高的动作 self.mcts.update_with_move(-1) if return_prob: return move, move_probs else: return move else: print("WARNING: the board is full") def __str__(self): return "MCTS {}".format(self.player)
import sys import logging import os from lark import Lark __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) def run_parser(script, target, debug): if (debug == True): logging.getLogger().setLevel(logging.DEBUG) logging.info("AZ Script Compiler v 0.1") logging.info("loading grammar") with open(os.path.join(__location__, '../grammar/azsc.lark'), 'r') as f: grammar = f.read() logging.info("loading script file") try: with open(script, 'r') as f: text = f.read() except IOError: error_message = "script {0} file not found".format(script) logging.error(error_message) return "ERROR: " + error_message logging.info("setting up parser") lark = Lark(grammar) logging.info("generating parse tree") tree = lark.parse(text) logging.debug("parse tree:\n" + tree.pretty()) logging.info("importing parse tree transformer") from azsc.transformers.AZSTransformer import AZSTransformer logging.info("compiling") t = AZSTransformer() t.transform(tree) cmd = t.get_command() if (debug==True): logging.debug("context:") ctx = t.get_context() for c in ctx: logging.debug("\t[%s]=%s", str(c), str(ctx[c])) logging.info("done") return cmd
from includes import * ''' python -m RLTest --test tests_dag_basic.py --module path/to/redisai.so ''' def test_dag_load(env): con = get_connection(env, '{1}') ret = con.execute_command( "AI.TENSORSET persisted_tensor_1{1} FLOAT 1 2 VALUES 5 10") env.assertEqual(ret, b'OK') command = "AI.DAGEXECUTE LOAD 1 persisted_tensor_1{1}" \ " |> AI.TENSORGET persisted_tensor_1{1} VALUES" ret = con.execute_command(command) env.assertEqual(ret[0], [b'5', b'10']) def test_dag_local_tensorset(env): con = get_connection(env, '{1}') command = "AI.DAGEXECUTE ROUTING {1} |> " \ "AI.TENSORSET volatile_tensor1 FLOAT 1 2 VALUES 5 10 |> " \ "AI.TENSORSET volatile_tensor2 FLOAT 1 2 VALUES 5 10 " ret = con.execute_command(command) env.assertEqual(ret, [b'OK',b'OK']) # assert that transaction tensor does not exist ret = con.execute_command("EXISTS volatile_tensor") env.assertEqual(ret, 0) def test_dagro_local_tensorset(env): con = get_connection(env, '{1}') command = "AI.DAGEXECUTE_RO ROUTING {1} |> " \ "AI.TENSORSET volatile_tensor1 FLOAT 1 2 VALUES 5 10 |> " \ "AI.TENSORSET volatile_tensor2 FLOAT 1 2 VALUES 5 10 " ret = con.execute_command(command) env.assertEqual(ret, [b'OK',b'OK']) # assert that volatile_tensor does not exist ret = con.execute_command("EXISTS volatile_tensor") env.assertEqual(ret, 0 ) def test_dag_local_tensorset_persist(env): con = get_connection(env, '{1}') command = "AI.DAGEXECUTE " \ "PERSIST 1 tensor1{1} |> " \ "AI.TENSORSET tensor1{1} FLOAT 1 2 VALUES 5 10" ret = con.execute_command(command) env.assertEqual(ret, [b'OK']) # assert that PERSIST succeeded. ret = con.execute_command("EXISTS tensor1{1}") env.assertEqual(ret, 1 ) ret = con.execute_command("AI.TENSORGET tensor1{1} META VALUES") env.assertEqual(ret, [b'dtype', b'FLOAT', b'shape', [1, 2], b'values', [b'5', b'10']]) def test_dag_multilocal_tensorset_persist(env): con = get_connection(env, '{1}') command = "AI.DAGEXECUTE " \ "PERSIST 1 tensor3:{1} |> " \ "AI.TENSORSET tensor1{1} FLOAT 1 2 VALUES 5 10 |> " \ "AI.TENSORSET tensor2 FLOAT 1 2 VALUES 5 10 |> " \ "AI.TENSORSET tensor3:{1} FLOAT 1 2 VALUES 5 10 |> " \ "AI.TENSORSET tensor4:{1} FLOAT 1 2 VALUES 5 10 " ret = con.execute_command(command) env.assertEqual([b'OK',b'OK',b'OK',b'OK'],ret) # assert that PERSIST succeeded. ret = con.execute_command("EXISTS tensor1{1}") env.assertEqual(ret, 0 ) # assert that PERSIST succeeded. ret = con.execute_command("EXISTS tensor2") env.assertEqual(ret, 0 ) # assert that PERSIST succeeded. ret = con.execute_command("EXISTS tensor3:{1}") env.assertEqual(ret, 1 ) # assert that PERSIST succeeded. ret = con.execute_command("EXISTS tensor4:{1}") env.assertEqual(ret, 0 ) ret = con.execute_command("AI.TENSORGET tensor3:{1} META VALUES") env.assertEqual(ret, [b'dtype', b'FLOAT', b'shape', [1, 2], b'values', [b'5', b'10']]) def test_dag_local_tensorset_tensorget_persist(env): con = get_connection(env, '{1}') command = "AI.DAGEXECUTE PERSIST 1 tensor1{1} |> " \ "AI.TENSORSET tensor1{1} FLOAT 1 2 VALUES 5 10 |> " \ "AI.TENSORGET tensor1{1} VALUES" ret = con.execute_command(command) env.assertEqual(ret, [b'OK', [b'5', b'10']]) ret = con.execute_command("AI.TENSORGET tensor1{1} VALUES") env.assertEqual(ret, [b'5', b'10']) def test_dag_local_multiple_tensorset_on_same_tensor(env): con = get_connection(env, '{1}') command = "AI.DAGEXECUTE PERSIST 1 tensor1{1} |> " \ "AI.TENSORSET tensor1{1} FLOAT 1 2 VALUES 5 10 |> " \ "AI.TENSORGET tensor1{1} META VALUES |> " \ "AI.TENSORSET tensor1{1} FLOAT 1 4 VALUES 20 40 60 80 |> " \ "AI.TENSORGET tensor1{1} META VALUES" ret = con.execute_command(command) env.assertEqual([ b'OK', [b'dtype', b'FLOAT', b'shape', [1, 2], b'values', [b'5', b'10']], b'OK', [b'dtype', b'FLOAT', b'shape', [1, 4], b'values', [b'20', b'40', b'60', b'80']] ], ret) ret = con.execute_command("AI.TENSORGET tensor1{1} META VALUES") env.assertEqual([b'dtype', b'FLOAT', b'shape', [1, 4], b'values', [b'20', b'40',b'60',b'80']],ret) def test_dag_load_persist_tensorset_tensorget(env): con = get_connection(env, '{1}') ret = con.execute_command( "AI.TENSORSET persisted_tensor_1{1} FLOAT 1 2 VALUES 5 10") env.assertEqual(ret, b'OK') ret = con.execute_command( "AI.TENSORSET persisted_tensor_2:{1} FLOAT 1 3 VALUES 0 0 0") env.assertEqual(ret, b'OK') command = "AI.DAGEXECUTE LOAD 2 persisted_tensor_1{1} persisted_tensor_2:{1}" \ " PERSIST 1 volatile_tensor_persisted{1} |> " \ "AI.TENSORSET volatile_tensor_persisted{1} FLOAT 1 2 VALUES 5 10 |> " \ "AI.TENSORGET persisted_tensor_1{1} META VALUES |> " \ "AI.TENSORGET persisted_tensor_2:{1} META VALUES " ret = con.execute_command(command) env.assertEqual(ret, [b'OK', [b'dtype', b'FLOAT', b'shape', [1, 2], b'values', [b'5', b'10']], [ b'dtype', b'FLOAT', b'shape', [1, 3], b'values', [b'0', b'0', b'0']]]) ret = con.execute_command("AI.TENSORGET volatile_tensor_persisted{1} META VALUES") env.assertEqual(ret, [b'dtype', b'FLOAT', b'shape', [1, 2], b'values', [b'5', b'10']]) def test_dag_keyspace_tensorget(env): con = get_connection(env, '{1}') ret = con.execute_command( "AI.TENSORSET persisted_tensor{1} FLOAT 1 2 VALUES 5 10") env.assertEqual(ret, b'OK') command = "AI.DAGEXECUTE LOAD 1 persisted_tensor{1} " \ "|> AI.TENSORGET persisted_tensor{1} VALUES" ret = con.execute_command(command) env.assertEqual(ret, [[b'5', b'10']]) def test_dag_ro_keyspace_tensorget(env): con = get_connection(env, '{1}') ret = con.execute_command( "AI.TENSORSET persisted_tensor{1} FLOAT 1 2 VALUES 5 10") env.assertEqual(ret, b'OK') command = "AI.DAGEXECUTE_RO LOAD 1 persisted_tensor{1} |> " \ "AI.TENSORGET persisted_tensor{1} VALUES" ret = con.execute_command(command) env.assertEqual(ret, [[b'5', b'10']]) def test_dag_keyspace_and_localcontext_tensorget(env): con = get_connection(env, '{1}') ret = con.execute_command( "AI.TENSORSET persisted_tensor{1} FLOAT 1 2 VALUES 5 10") env.assertEqual(ret, b'OK') command = "AI.DAGEXECUTE LOAD 1 persisted_tensor{1} |> " \ "AI.TENSORSET volatile_tensor FLOAT 1 2 VALUES 5 10 |> " \ "AI.TENSORGET persisted_tensor{1} VALUES |> " \ "AI.TENSORGET volatile_tensor VALUES" ret = con.execute_command(command) env.assertEqual(ret, [b'OK', [b'5', b'10'], [b'5', b'10']]) def test_dag_with_timeout(env): if not TEST_TF: return con = get_connection(env, '{1}') batch_size = 2 minbatch_size = 2 timeout = 1 model_name = 'model{1}' model_pb, input_var, output_var, labels, img = load_mobilenet_v2_test_data() con.execute_command('AI.MODELSTORE', model_name, 'TF', DEVICE, 'BATCHSIZE', batch_size, 'MINBATCHSIZE', minbatch_size, 'INPUTS', 1, input_var, 'OUTPUTS', 1, output_var, 'BLOB', model_pb) con.execute_command('AI.TENSORSET', 'input{1}', 'FLOAT', 1, img.shape[1], img.shape[0], img.shape[2], 'BLOB', img.tobytes()) res = con.execute_command('AI.DAGEXECUTE', 'LOAD', '1', 'input{1}', 'TIMEOUT', timeout, '|>', 'AI.MODELEXECUTE', model_name, 'INPUTS', 1, 'input{1}', 'OUTPUTS', 1, 'output{1}', '|>', 'AI.MODELEXECUTE', model_name, 'INPUTS', 1, 'input{1}', 'OUTPUTS', 1, 'output{1}') env.assertEqual(b'TIMEDOUT', res) def test_dag_with_string_tensor(env): if not TEST_ONNX: env.debugPrint("skipping {} since TEST_ONNX=0".format(sys._getframe().f_code.co_name), force=True) return con = get_connection(env, '{1}') model_pb = load_file_content('identity_string.onnx') ret = con.execute_command('AI.MODELSTORE', 'm{1}', 'ONNX', DEVICE, 'BLOB', model_pb) env.assertEqual(ret, b'OK') # Execute onnx model whose input is string tensor with shape [2,2], that outputs the input string_tensor_blob = b'input11\0input12\0input21\0input22\0' ret = con.execute_command('AI.DAGEXECUTE', 'ROUTING', '{1}', '|>', 'AI.TENSORSET', 'in_tensor{1}', 'STRING', 2, 2, 'BLOB', string_tensor_blob, '|>', 'AI.MODELEXECUTE', 'm{1}', 'INPUTS', 1, 'in_tensor{1}', 'OUTPUTS', 1, 'out_tensor{1}', '|>', 'AI.TENSORGET', 'out_tensor{1}', 'VALUES') env.assertEqual(ret, [b'OK', b'OK', [b'input11', b'input12', b'input21', b'input22']])
import argparse import glob import io import os import re import ssl from time import sleep import zipfile from selenium import webdriver # from selenium.webdriver.common.keys import Keys from webdriver_manager.chrome import ChromeDriverManager import requests from lxml import etree from scour import scour # Scour removes certain style attributes if their value is the # SVG-defined default. However, this module sets certain style # attributes in doc-level CSS, which overrides the browser default. # E.g. this module sets `text-anchor` to default to `middle`, but # browser defaults it to `start` and thus Scour removes it. # Without having the attribute, this module can't account for # non-module-default attributes in `hoist_style`; so ensures such # attributes aren't removed by Scour. # # TODO: Other props defined in `style` in # `custom_lossless_optimize_svg` might be susceptible to the issue # described above. Consider checking more thoroughly. del scour.default_properties['text-anchor'] # # Enable importing local modules when directly calling as script # if __name__ == "__main__": # cur_dir = os.path.join(os.path.dirname(__file__)) # sys.path.append(cur_dir + "/..") # from lib import download_gzip ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE # Organisms configured for WikiPathways caching organisms = [ "Homo sapiens", "Mus musculus" # "Danio rerio", # "Gallus gallus", # "Rattus norvegicus", # "Pan troglodytes", # "Canis lupus familiaris", # "Equus caballus", # "Bos taurus", # "Caenorhabditis elegans" ] def get_svg_zip_url(organism): date = "20211110" base = f"https://wikipathways-data.wmcloud.org/{date}/svg/" org_us = organism.replace(" ", "_") url = f"{base}wikipathways-{date}-svg-{org_us}.zip" return url def get_pathway_ids_and_names(organism): base_url = "https://webservice.wikipathways.org/listPathways" params = f"?organism={organism}&format=json" url = base_url + params response = requests.get(url) data = response.json() ids_and_names = [[pw['id'], pw['name']] for pw in data['pathways']] return ids_and_names def unwrap_leaf(tree, has_bloat, leaf=None, selector=None): """Helper for `unwrap` function """ ns_map = {"svg": "http://www.w3.org/2000/svg"} if not selector: selector = f"//svg:g[{has_bloat}]/svg:g[{has_bloat}]/svg:" + leaf elements = tree.xpath(selector, namespaces=ns_map) for element in elements: parent = element.getparent() grandparent = parent.getparent() grandparent.replace(parent, element) def get_has_class_clause(raw_class): """Enable typical class selectors in XPath, akin to CSS ".foo" XPath makes it complicated to detect if a string is among class values. That functionality is typical for class selectors, so tailor syntax to ease such common queries. """ normed_class = "concat(' ', normalize-space(@class), ' ')" has_class_clause = 'contains(' + normed_class + ', "' + raw_class + '")' return has_class_clause def unwrap(tree): """Many elements are extraneously wrapped; this pares them """ ns_map = {"svg": "http://www.w3.org/2000/svg"} # XPath has poor support for typical class attributes, # so tailor syntax accordingly wrapped = [ "Protein", "Metabolite", "Rna", "Label", "GeneProduct", "Unknown" ] all_wrapped = " or ".join([ get_has_class_clause(w) for w in wrapped ]) unwrap_leaf(tree, all_wrapped, "rect") unwrap_leaf(tree, all_wrapped, "use") text_sel = f"//svg:g[{all_wrapped}]/svg:g/svg:text" unwrap_leaf(tree, all_wrapped, selector=text_sel) # bloat_groups = ["GroupGroup", "GroupComplex", "GroupNone"] # has_bloats = " or ".join([ # 'contains(' + normed_class + ', "' + b + '")' for b in bloat_groups # ]) # group_child_sel = f"//svg:g[{has_bloats}]/svg:g[{has_bloats}]/*" # unwrap_leaf(tree, has_bloats, selector=group_child_sel) return tree def remove_extra_tspans(tree): ns_map = {"svg": "http://www.w3.org/2000/svg"} sizes = [] texts = tree.xpath("//svg:text", namespaces=ns_map) # print('text_sel', text_sel) for text in texts: # print('text', etree.tostring(text)) tspans = text.xpath('svg:tspan', namespaces=ns_map) if len(tspans) == 1: tspan = tspans[0] content = tspan.text font_size = tspan.attrib["font-size"] sizes.append(font_size) # print('content', content) text.attrib["font-size"] = font_size text.remove(tspan) text.text = content default_font_size = None if len(sizes) > 0: default_font_size = max(sizes, key = sizes.count) return tree, default_font_size def trim_markers(tree): """Remove unused marker elements from diagram """ ns_map = {"svg": "http://www.w3.org/2000/svg"} used_marker_ids = [] # Identify markers that the diagram actually uses elements = tree.xpath("//*") for element in elements: attrs = element.attrib start = attrs["marker-start"] if "marker-start" in attrs else "" start = start.replace("url(#", "").replace(")", "") end = attrs["marker-end"] if "marker-end" in attrs else "" end = end.replace("url(#", "").replace(")", "") if start not in used_marker_ids: used_marker_ids.append(start) if end not in used_marker_ids: used_marker_ids.append(end) # Remove markers that are not used markers = tree.xpath('//svg:g[@id="marker-defs"]/svg:marker', namespaces=ns_map) for marker in markers: attrs = marker.attrib id = attrs["id"] if "id" in attrs else "" if id not in used_marker_ids: marker.getparent().remove(marker) return tree def condense_colors(svg): """Condense colors by using hexadecimal abbreviations where possible. Consider using an abstract, general approach instead of hard-coding. """ svg = re.sub('#000000', '#000', svg) svg = re.sub('#ff0000', '#f00', svg) svg = re.sub('#00ff00', '#0f0', svg) svg = re.sub('#0000ff', '#00f', svg) svg = re.sub('#00ffff', '#0ff', svg) svg = re.sub('#ff00ff', '#f0f', svg) svg = re.sub('#ffff00', '#ff0', svg) svg = re.sub('#ffffff', '#fff', svg) svg = re.sub('#cc0000', '#c00', svg) svg = re.sub('#00cc00', '#0c0', svg) svg = re.sub('#0000cc', '#00c', svg) svg = re.sub('#00cccc', '#0cc', svg) svg = re.sub('#cc00cc', '#c0c', svg) svg = re.sub('#cccc00', '#cc0', svg) svg = re.sub('#cccccc', '#ccc', svg) svg = re.sub('#999999', '#999', svg) svg = re.sub('#808080', 'grey', svg) return svg def prep_edge_style_hoist(tree): ns_map = {"svg": "http://www.w3.org/2000/svg"} edge_class = get_has_class_clause("Edge") selector = '//svg:g[' + edge_class + ']/svg:path' elements = tree.xpath(selector, namespaces=ns_map) defaults_by_prop = { "fill": "transparent", "stroke": "#000", "marker-end": "url(#markerendarrow000000white)" } noneable_props = ["marker-end"] return elements, defaults_by_prop, noneable_props def prep_rect_style_hoist(tree): ns_map = {"svg": "http://www.w3.org/2000/svg"} selector = '//svg:rect' elements = tree.xpath(selector, namespaces=ns_map) defaults_by_prop = { "fill": "#fff", "stroke": "#000" } noneable_props = ["stroke"] return elements, defaults_by_prop, noneable_props def prep_text_style_hoist(tree, defaults): ns_map = {"svg": "http://www.w3.org/2000/svg"} selector = '//svg:text' elements = tree.xpath(selector, namespaces=ns_map) defaults_by_prop = { "fill": "#000", "text-anchor": "middle", # "font-weight": "normal" } if 'text' in defaults: defaults_by_prop.update(defaults['text']) noneable_props = [] return elements, defaults_by_prop, noneable_props def prep_metabolite_rect_style_hoist(tree): ns_map = {"svg": "http://www.w3.org/2000/svg"} has_class_clause = get_has_class_clause("Metabolite") selector = f"//svg:g[{has_class_clause}]/rect" elements = tree.xpath(selector, namespaces=ns_map) defaults_by_prop = { "stroke": "#00f" } noneable_props = [] return elements, defaults_by_prop, noneable_props def hoist_style(tree, defaults): """Move default styles from elements to `style` tag The raw diagram's styles are encoded as attributes on every element. Leveraging CSS specificity rules [1], we can encode that more space- efficiently by "hoisting" style values to the `style` tag, if the style is the default, and setting any non-default styles using the `style` attribute directly on the element. [1] https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity """ ns_map = {"svg": "http://www.w3.org/2000/svg"} for name in ['metabolite_rect', 'edge', 'rect', 'text']: if name == 'edge': e, d, n = prep_edge_style_hoist(tree) elif name == 'rect': e, d, n = prep_rect_style_hoist(tree) elif name == 'text': e, d, n = prep_text_style_hoist(tree, defaults) elif name == 'metabolite_rect': e, d, n = prep_metabolite_rect_style_hoist(tree) elements, defaults_by_prop, noneable_props = [e, d, n] for element in elements: attrs = element.attrib styles = [] # Iterate each property the can be encoded as a CSS style for prop in defaults_by_prop: if prop in attrs: default = defaults_by_prop[prop] value = attrs[prop] # Remove the attribute -- this is where we save space del element.attrib[prop] # If the value of this style prop isn't the default, then # add it to the list of styles to be encoded inline on the # element if value != default: styles.append(f"{prop}:{value}") elif prop in noneable_props: styles.append(f"{prop}:none") # Set any non-default styles on the element. Like the raw diagram, # but this `style` attribute has a higher CSS precedence than # styles set in the `style` tag, *unlike* styles set as direct # attributes. if len(styles) > 0: element.attrib['style'] = ";".join(styles) return tree def trim_symbols_and_uses_and_groups(tree): ns_map = {"svg": "http://www.w3.org/2000/svg"} # Remove unused color attribute in group elements groups = tree.xpath("//svg:g", namespaces=ns_map) for group in groups: if 'color' in group.attrib: del group.attrib['color'] used_symbols = [] group_uses = tree.xpath("//svg:g/svg:use", namespaces=ns_map) for group_use in group_uses: if group_use.attrib["href"] and group_use.attrib["href"] != "#none": # E.g. href="#foo" -> foo used_symbols.append(group_use.attrib["href"][1:]) else: group_use.getparent().remove(group_use) symbols = tree.xpath("//svg:symbol", namespaces=ns_map) for symbol in symbols: id = symbol.attrib["id"] if id not in used_symbols or id == 'none': symbol.getparent().remove(symbol) symbol_children = tree.xpath("//svg:symbol/*", namespaces=ns_map) for sc in symbol_children: if "stroke" in sc.attrib and sc.attrib["stroke"] == "currentColor": del sc.attrib["stroke"] return tree def trim_transform(tree): ns_map = {"svg": "http://www.w3.org/2000/svg"} rects = tree.xpath("//svg:rect", namespaces=ns_map) uses = tree.xpath("//svg:use", namespaces=ns_map) elements = rects + uses for element in elements: if "transform" in element.attrib: matrix = element.attrib["transform"] if "matrix" not in matrix: continue coord_string = matrix.replace("matrix(", "").replace(")", "") coords = [float(c) for c in coord_string.split()] is_significant = any([c > 1.1 for c in coords]) if not is_significant: del element.attrib["transform"] return tree def custom_lossless_optimize_svg(svg, pwid): """Losslessly decrease size of WikiPathways SVG """ ns_map = {"svg": "http://www.w3.org/2000/svg"} svg = re.sub(pwid.lower(), '', svg) svg = condense_colors(svg) svg = svg.replace('<?xml version="1.0" encoding="UTF-8"?>\n', '') tree = etree.fromstring(svg) controls = tree.xpath('//*[@class="svg-pan-zoom-control"]')[0] tree.remove(controls) controls_style = tree.xpath('//*[@id="svg-pan-zoom-controls-styles"]')[0] controls_style.getparent().remove(controls_style) metadata = tree.xpath('//*[@id="' + pwid + '-text"]')[0] metadata.getparent().remove(metadata) icons_id = "icon-defs-ArcPathVisioBraceEllipseEndoplasmicReticulumGolgiApparatusHexagonPathVisioMimDegradationMitochondriaOctagonPentagonPathVisioRectangleRoundedRectangleSarcoplasmicReticulumTriangleEquilateralEastTrianglePathVisionone" icon_defs = tree.xpath('//*[@id="' + icons_id + '"]')[0] icon_defs.attrib["id"] = "icon-defs" tree = trim_markers(tree) tree = trim_symbols_and_uses_and_groups(tree) tree = trim_transform(tree) tree, default_font_size = remove_extra_tspans(tree) font_size_css = "" defaults = {} if default_font_size: defaults = { "text": { "font-size": default_font_size } } font_size_css = "font-size: " + default_font_size + ";" tree = hoist_style(tree, defaults) tree = unwrap(tree) svg = etree.tostring(tree).decode("utf-8") svg = '<?xml version="1.0" encoding="UTF-8"?>\n' + svg font_family = "\'Liberation Sans\', Arial, sans-serif" svg = re.sub('font-family="Arial"', '', svg) svg = re.sub(f'font-family="{font_family}"', '', svg) style = ( "<style>" + "svg.Diagram {" + f"font-family: {font_family}; " "}" + ".Diagram path {" + "fill: transparent;" + "stroke: #000;" + # "stroke-width: 2;" + "marker-end: url(#mea);" "}" + ".Diagram symbol path {" + "fill: inherit;" + "stroke: inherit;" + "stroke-width: inherit;" + "marker-end: inherit;" "}" + ".Diagram rect {" + "fill: #fff;" + "stroke: #000;" + "}" + ".Diagram text {" + "dominant-baseline: central;" + "overflow: hidden;" + "text-anchor: middle;" + "fill: #000;" + font_size_css + # "stroke: #000; " + "}" + # "g > a {" + # "color: #000;" + # "}" + "</style>" ) old_style = '<style type="text/css">' svg = re.sub(old_style, style + old_style, svg) svg = re.sub('xml:space="preserve"', '', svg) # Remove "px" from attributes where numbers are assumed to be pixels. svg = re.sub(r'width="([0-9.]+)px"', r'width="\1"', svg) svg = re.sub(r'height="([0-9.]+)px"', r'height="\1"', svg) svg = re.sub(r'stroke-width="([0-9.]+)px"', r'stroke-width="\1"', svg) svg = re.sub('fill="inherit"', '', svg) svg = re.sub('stroke-width="inherit"', '', svg) svg = re.sub('color="inherit"', '', svg) svg = re.sub('fill-opacity="0"', '', svg) svg = re.sub('dominant-baseline="central"', '', svg) svg = re.sub('overflow="hidden"', '', svg) # Match any anchor or group tag, up until closing angle bracket (>), that # includes a color attribute with the value black (#000). # For such matches, remove the color attribute but not anything else. svg = re.sub(r'<g([^>]*)(color="#000")', r'<g \1', svg) svg = re.sub(r'<(rect class="Icon"[^>]*)(color="#000")', r'<rect \1', svg) svg = re.sub(r'<(rect class="Icon"[^>]*)(fill="#000")', r'<rect \1', svg) svg = re.sub(r'<(text class="Text"[^>]*)(fill="#000")', r'<\1', svg) svg = re.sub(r'<(text class="Text"[^>]*)(stroke="white" stroke-width="0")', r'<\1', svg) svg = re.sub(r'<(text[^>]*)(clip\-path="[^"]*)"', r'<\1', svg) # svg = re.sub(r'<defs><clipPath.*</defs>', r'', svg) svg = re.sub(r'class="([^"]*)( Node)"', r'class="\1"', svg) svg = re.sub(r'class="([^"]*)( textContent)"', r'class="\1"', svg) svg = re.sub(r'id="[^"]*-text-clipPath"', '', svg) # Remove class attributes from elements where it can be deduced svg = re.sub(r'<rect([^>]*)(class="[^"]*)"', r'<rect \1', svg) svg = re.sub(r'<text([^>]*)(class="[^"]*)"', r'<text \1', svg) svg = re.sub(r'<tspan([^>]*)(class="[^"]*)"', r'<tspan \1', svg) svg = re.sub(r'<path([^>]*)(id="[^"]*)"', r'<path \1', svg) # svg = re.sub(r'<path([^>]*)(fill="transparent")', r'<path \1', svg) # svg = re.sub('text-anchor="middle"', '', svg) svg = re.sub(r'markerendarrow', 'mea', svg) svg = re.sub(r'markerendmim', 'mem', svg) svg = re.sub('mea000000white', 'mea', svg) svg = re.sub(r'mea([^white]+)white', r'mea\1', svg) svg = re.sub('mea000000', 'mea000', svg) svg = re.sub('meaff0000', 'meaf00', svg) svg = re.sub('mea00ff00', 'mea0f0', svg) svg = re.sub('mea0000ff', 'mea00f', svg) svg = re.sub('mea00ffff', 'mea0ff', svg) svg = re.sub('meaff00ff', 'meaf0f', svg) svg = re.sub('meaffff00', 'meaff0', svg) svg = re.sub('meaffffff', 'meafff', svg) svg = re.sub('meacc0000', 'meac00', svg) svg = re.sub('mea00cc00', 'mea0c0', svg) svg = re.sub('mea0000cc', 'mea00c', svg) svg = re.sub('mea00cccc', 'mea0cc', svg) svg = re.sub('meacc00cc', 'meac0c', svg) svg = re.sub('meacccc00', 'meacc0', svg) svg = re.sub('meacccccc', 'meaccc', svg) svg = re.sub('mea999999', 'mea999', svg) svg = re.sub('mea808080', 'meagrey', svg) svg = re.sub('000000white', '000', svg) svg = re.sub(r'id="[^"]*-icon" ', '', svg) svg = re.sub(r'id="[^"]*-text" class="[^"]*"', '', svg) svg = re.sub(r'\d*\.\d{2,}', lambda m: format(float(m.group(0)), '.2f'), svg) # svg = re.sub( # r'text-anchor="middle"><tspan\s+x="0" y="0"', # r'text-anchor="middle"><tspan ', # svg # ) return svg def custom_lossy_optimize_svg(svg): """Lossily decrease size of WikiPathways SVG The broad principle is to remove data that does not affect static render, but could affect dynamic rendering (e.g. highlighting a specific gene). Data removed here could be inferred and/or repopulated in the DOM given a schema. Such a schema would first need to be defined and made available in client-side software. It might make sense to do that in the pvjs library. """ # Remove non-leaf pathway categories. svg = re.sub('SingleFreeNode DataNode ', '', svg) svg = re.sub('DataNode SingleFreeNode ', '', svg) svg = re.sub('Shape SingleFreeNode', '', svg) svg = re.sub('SingleFreeNode Label', 'Label', svg) svg = re.sub('Label SingleFreeNode', 'Label', svg) svg = re.sub('Edge Interaction ', '', svg) svg = re.sub('Interaction Edge ', '', svg) svg = re.sub('Edge Interaction', 'Edge', svg) svg = re.sub('Interaction Edge', 'Edge', svg) # svg = re.sub('class="Interaction,Edge" ', '', svg) svg = re.sub('GraphicalLine Edge', 'Edge', svg) svg = re.sub('Metabolite Node Icon', 'Icon', svg) svg = re.sub('Label Node Icon', 'Icon', svg) svg = re.sub('GroupGroup Node Icon', 'Icon', svg) svg = re.sub('GroupComplex Node Icon', 'Icon', svg) svg = re.sub('Group Complex Icon', 'Icon', svg) svg = re.sub('Anchor Burr', 'AB', svg) svg = re.sub(r'class="[^"]*,[^"]*"', '', svg) # Interaction data attributes svg = re.sub('SBO_[0-9]+\s*', '', svg) # Gene data attributes svg = re.sub('Entrez_Gene_[0-9]+\s*', '', svg) svg = re.sub('Ensembl_ENS\w+\s*', '', svg) svg = re.sub('HGNC_\w+\s*', '', svg) svg = re.sub('Wikidata_Q[0-9]+\s*', '', svg) svg = re.sub('P594_ENSG[0-9]+\s*', '', svg) svg = re.sub('P351_\w+\s*', '', svg) svg = re.sub('P353_\w+\s*', '', svg) svg = re.sub('P594_ENSG[0-9]+\s*', '', svg) # Metabolite data attributes svg = re.sub('P683_CHEBI_[0-9]+\s*', '', svg) svg = re.sub('P2057_\w+\s*', '', svg) svg = re.sub('ChEBI_[0-9]+\s*', '', svg) svg = re.sub('ChEBI_CHEBI[0-9]+\s*', '', svg) svg = re.sub('ChEBI_CHEBI_[0-9]+\s*', '', svg) svg = re.sub('P683_[0-9]+', '', svg) svg = re.sub('HMDB_\w+\s*', '', svg) svg = re.sub(' Enzyme_Nomenclature_[0-9_]*', '', svg) svg = re.sub(' PubChem-compound_[0-9]*', '', svg) svg = re.sub(' Chemspider_[0-9]*', '', svg) svg = re.sub(' CAS_[0-9-]+', '', svg) # Other miscellaneous data attributes svg = re.sub(' Pfam_PF[0-9]+', '', svg) svg = re.sub(' Uniprot-TrEMBL_\w+', '', svg) svg = re.sub(' WikiPathways_WP[0-9]+', '', svg) # Group data attributes svg = re.sub('Group GroupGroup', 'GroupGroup', svg) svg = re.sub('Group GroupNone', 'GroupNone', svg) svg = re.sub('Group Complex GroupComplex', 'GroupComplex', svg) svg = re.sub('about="[^"]*"', '', svg) svg = re.sub('typeof="[^"]*"', '', svg) svg = re.sub(r'xlink:href="http[^\'" >]*"', '', svg) svg = re.sub(r' href="#none"', '', svg) svg = re.sub('target="_blank"', '', svg) # svg = re.sub('font-weight="bold"', '', svg) return svg class WikiPathwaysCache(): def __init__(self, output_dir="data/", reuse=False): self.output_dir = output_dir self.tmp_dir = f"tmp/" self.reuse = reuse if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) def fetch_svgs(self, ids_and_names, org_dir): prev_error_wpids = [] error_wpids = [] error_path = org_dir + "error_wpids.csv" if os.path.exists(error_path): with open(error_path) as f: prev_error_wpids = f.read().split(",") error_wpids = prev_error_wpids for i_n in ids_and_names: id = i_n[0] svg_path = org_dir + id + ".svg" if self.reuse: if os.path.exists(svg_path): print(f"Found cache; skip processing {id}") continue elif id in prev_error_wpids: print(f"Found previous error; skip processing {id}") continue url = f"https://www.wikipathways.org/index.php/Pathway:{id}?view=widget" try: driver = self.driver except AttributeError: # Only initializes once, and if not reusing populated cache self.driver = webdriver.Chrome(ChromeDriverManager().install()) self.driver.implicitly_wait(3) # seconds driver = self.driver driver.get(url) try: sleep(1) selector = "svg.Diagram" raw_content = self.driver.find_element_by_css_selector(selector) content = raw_content.get_attribute("outerHTML") except Exception as e: print(f"Encountered error when stringifying SVG for {id}") error_wpids.append(id) with open(error_path, "w") as f: f.write(",".join(error_wpids)) sleep(0.5) continue svg = content.replace( 'typeof="Diagram" xmlns:xlink="http://www.w3.org/1999/xlink"', 'typeof="Diagram"' ) print("Preparing and writing " + svg_path) svg = '<?xml version="1.0" encoding="UTF-8"?>\n' + svg with open(svg_path, "w") as f: f.write(svg) sleep(1) def optimize_svgs(self, org_dir): for svg_path in glob.glob(f'{org_dir}*.svg'): # for svg_path in ["tmp/homo-sapiens/WP231.svg"]: # debug with open(svg_path, 'r') as f: svg = f.read() svg = re.sub("fill-opacity:inherit;", "", svg) # print('clean_svg') # print(clean_svg) original_name = svg_path.split("/")[-1] name = original_name.split(".svg")[0] pwid = re.search(r"WP\d+", name).group() # pathway ID optimized_svg_path = self.output_dir + pwid + ".svg" print(f"Optimizing to create: {optimized_svg_path}") scour_options = scour.sanitizeOptions() scour_options.remove_metadata = False scour_options.newlines = False scour_options.strip_comments = True scour_options.strip_ids = False scour_options.shorten_ids = False scour_options.strip_xml_space_attribute = True scour_options.keep_defs = True try: clean_svg = scour.scourString(svg, options=scour_options) except Exception as e: print(f"Encountered error while optimizing SVG for {pwid}") continue repo_url = "https://github.com/eweitz/cachome/tree/main/" code_url = f"{repo_url}src/wikipathways.py" data_url = f"{repo_url}{optimized_svg_path}" wp_url = f"https://www.wikipathways.org/index.php/Pathway:{pwid}" provenance = "\n".join([ "<!--", f" WikiPathways page: {wp_url}", f" URL for this compressed file: {data_url}", # f" Uncompressed SVG file: {original_name}", # f" From upstream ZIP archive: {url}", f" Source code for compression: {code_url}", "-->" ]) clean_svg = clean_svg.replace( '<?xml version="1.0" encoding="UTF-8"?>', '<?xml version="1.0" encoding="UTF-8"?>\n' + provenance ) # clean_svg = re.sub('tspan x="0" y="0"', 'tspan', clean_svg) clean_svg = custom_lossless_optimize_svg(clean_svg, pwid) clean_svg = custom_lossy_optimize_svg(clean_svg) with open(optimized_svg_path, "w") as f: f.write(clean_svg) def populate_by_org(self, organism): """Fill caches for a configured organism """ org_dir = self.tmp_dir + organism.lower().replace(" ", "-") + "/" if not os.path.exists(org_dir): os.makedirs(org_dir) ids_and_names = get_pathway_ids_and_names(organism) # ids_and_names = [["WP231", "test"]] # print("ids_and_names", ids_and_names) self.fetch_svgs(ids_and_names, org_dir) self.optimize_svgs(org_dir) def populate(self): """Fill caches for all configured organisms Consider parallelizing this. """ for organism in organisms: self.populate_by_org(organism) # Command-line handler if __name__ == "__main__": parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument( "--output-dir", help=( "Directory to put outcome data. (default: %(default))" ), default="data/" ) parser.add_argument( "--reuse", help=( "Whether to use previously-downloaded raw SVG zip archives" ), action="store_true" ) args = parser.parse_args() output_dir = args.output_dir reuse = args.reuse WikiPathwaysCache(output_dir, reuse).populate()
""" Complete the preOrder function in your editor below, which has parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. """ def traverse_in_order_recursive(root): if root: traverse_in_order_recursive(root.left) traverse_in_order_recursive(root.right) print(root.data, end=" ") def traverse_in_order_iterative(root): if root: stack = [root] node = root while node: if node.left: stack.append(node) node = node.left else: print(node.data) node = stack.pop() root = Node("A") root.left = Node("B") root.left.left = Node("C") root.left.right = Node("D") root.right = Node("E") root.right.left = Node("G") root.right.right = Node("F") traverse_in_order_iterative(root)
from flask import Flask, render_template, request, session, redirect, url_for import pymysql app = Flask(__name__) app.secret_key = '!hv@cRsh0nU' class Merchant: name = "" username = "" password = "" organisation = "" abn = None def __init__(self, name, usrnm, passwd, abn, org): self.name = name self.username = usrnm self.password = passwd self.abn = abn self.organisation = org class Customer: name = "" email = "" username = "" password = "" def __init__(self, name, email, usrnm, passwd): self.name = name self.email = email self.username = usrnm self.password = passwd class dataFish: product_id = "" species = "" weight = "" L1 = "" L2 = "" L3 = "" height = "" width = "" storage_temperature = "" estimated_storage_life_in_months = "" nutrients = "" best_before_calculated = "" storage_affecting_factor = "" price = "" def __init__(self, product_id, species, weight, L1, L2, L3, height, width, storage_temperature, estimated_storage_life_in_months, nutrients, best_before_calculated, storage_affecting_factor, price): self.product_id = product_id self.species = species self.weight = weight self.L1 = L1 self.L2 = L2 self.L3 = L3 self.height = height self.width = width self.storage_temperature = storage_temperature self.estimated_storage_life_in_months = estimated_storage_life_in_months self.nutrients = nutrients self.best_before_calculated = best_before_calculated self.storage_affecting_factor = storage_affecting_factor self.price = price class Sql: SERVER = "localhost" USR = "root" PWD = "mypass123" DB = "Fishery" GET_DATA_QRY = "Select product_id,species,weight,L1,L2,L3,height,width,storage_temperature,estimated_storage_life_in_months,nutrients,best_before_calculated,storage_affecting_factor,price from newfishes" MERCH_SIGNUP_QRY = "Insert into merchant (name, organisation, username, password,abn) values('{}','{}','{}','{}','{}')" GET_MERCH = "Select name, organisation, username, password,abn from merchant where isConfirmed is NULL" GET_REG_MERCH = "Select count(*) from merchant where isConfirmed is True and " GET_SINGLE_MERCH = "Select name, organisation, username, password,abn from merchant where username = {}" GET_REG_CUST = "Select count(*) from customer where " CUST_SIGNUP_QRY = "Insert into customer (name, email, username, password) values('{}','{}','{}','{}')" Fish_DATA_QRY = " Insert into newfishes (product_id,species,weight,L1,L2,L3,height,width,storage_temperature,estimated_storage_life_in_months,nutrients,best_before_calculated,storage_affecting_factor,price) values('{}','{}','{}','{}','{}','{}','{}','{}','{}','{}','{}','{}','{}','{}')" MERCH_APPROVAL_QRY = "UPDATE merchant SET isConfirmed = (var1) WHERE username = (var2) values('{}','{}')" # INSERT_FISH_DATA="Insert into newfishes(" def getData(self): with pymysql.connect(host=self.SERVER, user=self.USR, password=self.PWD, db=self.DB) as conn: with conn.cursor() as cursor: cursor.execute(self.GET_DATA_QRY) data = cursor.fetchall() conn.commit() return data def insertMerchant(self, merchant): # try: with pymysql.connect(host=self.SERVER, user=self.USR, password=self.PWD, db=self.DB) as conn: with conn.cursor() as cursor: print(self.MERCH_SIGNUP_QRY.format(merchant.name, merchant.organisation, merchant.username, merchant.password, merchant.abn)) cursor.execute(self.MERCH_SIGNUP_QRY.format( merchant.name, merchant.organisation, merchant.username, merchant.password, merchant.abn)) conn.commit() return True # def # except: # return False # def insertCustomer(self,customer): # with pymysql.connect(host=self.SERVER, user = self.USR, password=self.PWD, db=self.DB) as conn: # with conn.cursor(as_dict = True) as cursor: # print(self.CUST_SIGNUP_QRY.format(customer.name,customer.email,customer.username,customer.password)) # cursor.execute(self.CUST_SIGNUP_QRY.format(customer.name,customer.email,customer.username,customer.password)) # cursor.commit() # return True def insertCustomer(self, customer): with pymysql.connect(host=self.SERVER, user=self.USR, password=self.PWD, db=self.DB) as conn: with conn.cursor() as cursor: print(self.CUST_SIGNUP_QRY.format(customer.name, customer.email, customer.username, customer.password)) cursor.execute(self.CUST_SIGNUP_QRY.format( customer.name, customer.email, customer.username, customer.password)) conn.commit() return True def insertFishData(self, newfishes): # try: with pymysql.connect(host=self.SERVER, user=self.USR, password=self.PWD, db=self.DB) as conn: with conn.cursor() as cursor: # print(f"{fishdata}") cursor.execute(self.Fish_DATA_QRY.format(newfishes.product_id, newfishes.species, newfishes.weight, newfishes.L1, newfishes.L2, newfishes.L3, newfishes.height, newfishes.width, newfishes.storage_temperature, newfishes.estimated_storage_life_in_months, newfishes.nutrients, newfishes.best_before_calculated, newfishes.storage_affecting_factor, newfishes.price)) conn.commit() return True def insertApprovedMerchant(self, username, isApproved): # try: with pymysql.connect(host=self.SERVER, user=self.USR, password=self.PWD, db=self.DB) as conn: with conn.cursor() as cursor: print(f"{username} Approval Processing") # cursor.execute(self.MERCH_APPROVAL_QRY.format(merchant.name,merchant.organisation,merchant.username,merchant.password,merchant.abn)) print( f"Update merchant set isConfirmed = {isApproved} where username = {username}") cursor.execute( f"Update merchant set isConfirmed = '{isApproved}' where username = '{username}'") conn.commit() return True # except: # return False def getMerchantData(self, user): with pymysql.connect(host=self.SERVER, user=self.USR, password=self.PWD, db=self.DB) as conn: with conn.cursor() as cursor: cursor.execute(self.GET_SINGLE_MERCH.format(user)) data = cursor.fetchall() conn.commit() return data def getAllMerchantData(self): with pymysql.connect(host=self.SERVER, user=self.USR, password=self.PWD, db=self.DB) as conn: with conn.cursor() as cursor: cursor.execute(self.GET_MERCH) data = cursor.fetchall() conn.commit() return data def getRegisteredUsers(self, username, password): with pymysql.connect(host=self.SERVER, user=self.USR, password=self.PWD, db=self.DB) as conn: with conn.cursor() as cursor: print( f"{self.GET_REG_MERCH} username='{username}' and password='{password}'") cursor.execute( f"{self.GET_REG_MERCH} username='{username}' and password='{password}'") data = cursor.fetchall() conn.commit() val = str(data)[2] if int(val) == 1: return True else: return False def getRegisteredCustomers(self, username, password): with pymysql.connect(host=self.SERVER, user=self.USR, password=self.PWD, db=self.DB) as conn: with conn.cursor() as cursor: print( f"{self.GET_REG_CUST} username='{username}' and password='{password}'") cursor.execute( f"{self.GET_REG_CUST} username='{username}' and password='{password}'") data = cursor.fetchall() conn.commit() val = str(data)[2] if int(val) == 1: return True else: return False def getAbns(): with open('abns.txt', 'r') as f: return [abn.replace(" ", "") for abn in f.read().split("\n")] @app.route('/', methods=['GET', 'POST']) def index(): return render_template('index.html') @app.route('/customerHome', methods=['GET', 'POST']) def customerHome(): fish_data = Sql().getData() return render_template('customerHome.html', data=fish_data, header=["product_id", "species", "weight", "L1", "L2", "L3", "height", "width", "storage_temperature", "estimated_storage_life_in_months", "nutrients", "best_before_calculated", "storage_affecting_factor", "price"]) @app.route('/marketplace', methods=['GET', 'POST']) def marketplace(): fish_data = Sql().getData() return render_template('marketplace.html', data=fish_data, header=["product_id", "species", "weight", "L1", "L2", "L3", "height", "width", "storage_temperature", "estimated_storage_life_in_months", "nutrients", "best_before_calculated", "storage_affecting_factor", "price"]) @app.route('/verify', methods=['POST']) def verfiy_approval(): global isLogged print(f"{request.form['merchant']} ::::::::::::::::::::::::::::::") username = str(request.form['merchant']).split(",")[2][2:-1] if request.form['merchant'] != pymysql.NULL and request.form['submit'] != pymysql.NULL: isLogged = True sql = Sql() sql.insertApprovedMerchant(username, request.form['submit']) data = sql.getAllMerchantData() return render_template("adminHome.html", merchants=data, header=["Name", "Organisation", "Username", "Password", "ABN"]) else: return "<html><body>error</body></html>" def populateRegisteredUsers(data): for record in data: merchant = Merchant(record[0], record[2], record[3], record[4], record[1]) registeredUsers[record[2]] = merchant registeredAbns.append(int(record[4])) @app.route('/populateListing', methods=['POST']) def populateListing(): global isLogged # if isLogged: # isLogged = False # return redirect(url_for('index')) if "ifadmin" in request.form: if request.form['user'] == "admin" and request.form['pass'] == "admin@123": isLogged = True sql = Sql() data = sql.getAllMerchantData() session['username'] = request.form['user'] return render_template("adminHome.html", merchants=data, header=["Name", "Organisation", "Username", "Password", "ABN"]) else: return "<html><body>error</body></html>" else: if Sql().getRegisteredUsers(request.form['user'], request.form["pass"]): isLogged = True session['username'] = request.form['user'] return render_template("merchantHome.html") # else: # return "<html><body>Authentication Error: Bad Username or password </body></html>" elif Sql().getRegisteredCustomers(request.form['user'], request.form["pass"]): isLogged = True session['username'] = request.form['user'] return render_template("customerHome.html") else: return "<html><body>Authentication Error: User Not registered, please Signup</body></html>" @app.route('/signup', methods=['GET', 'POST']) def signup(): return render_template("signupForm.html") @app.route('/two', methods=['GET', 'POST']) def two(): return render_template("cusMer.html") @app.route('/cust', methods=['GET', 'POST']) def cust(): return render_template("customer.html") @app.route('/login', methods=['GET', 'POST']) def login(): return render_template("newlogin.html") @app.route('/logout') def logout(): session.pop('username', None) return redirect(url_for('index')) @app.route('/saveFishData', methods=['POST']) def saveFishData(): # fishData=f'INSERT INTO newfishes(product_id,species,weight,L1,L2,L3,height,width,storage_temperature,estimated_storage_life_in_months,nutrients,best_before_calculated,storage_affecting_factor,price) values ('+request.form["product_id"],request.form["species"],request.form["weight"],request.form["L1"],request.form["L2"],request.form["L3"],request.form["height"],request.form["width"],request.form["storage_temperature"],request.form["estimated_storage_life_in_months"],request.form["nutrients"],request.form["best_before_calculated"],request.form["storage_affecting_factor"],request.form["price"]+')' newfishes = dataFish(request.form["product_id"], request.form["species"], request.form["weight"], request.form["L1"], request.form["L2"], request.form["L3"], request.form["height"], request.form["width"], request.form["storage_temperature"], request.form["estimated_storage_life_in_months"], request.form["nutrients"], request.form["best_before_calculated"], request.form["storage_affecting_factor"], request.form["price"]) # print(request.form["species"]) sql = Sql() if sql.insertFishData(newfishes): return render_template('merchantHome.html') else: return "<p><b> Error occured: Unable to insert customer, Contact admin. </b><p>" @app.route('/registerUser', methods=['POST']) def registerUser(): # if request.form["abn"].replace(" ","") in abns: # if request.form["user"] not in registeredUsers and request.form["abn"] not in registeredAbns: merchant = Merchant(request.form["firstname"]+" "+request.form["lastname"], request.form["user"], request.form["pass"], request.form["abn"], request.form["org"]) sql = Sql() registeredUsers[request.form["user"]] = merchant registeredAbns.append(request.form["abn"]) if sql.insertMerchant(merchant): return render_template('newlogin.html') else: return "<p><b> Error occured: Unable to insert merchant, Contact admin. </b><p>" # else: # return "<p><b> User or Abn already registered</b></p>" # else: # return "<p><b> Error occured: ABN not registered with admin, contact admin </b><p>" @app.route('/registerCustomer', methods=['POST']) def register(): customer = Customer( request.form["name"], request.form["email"], request.form["user"], request.form["pass"]) sql = Sql() # registeredCustomers[request.form["user"]] = customer if sql.insertCustomer(customer): return render_template('newlogin.html') else: return "<p><b> Error occured: Unable to insert customer, Contact admin. </b><p>" # if 'user' in request.form and 'pass' in request.form: # username = request.form['user'] # password = request.form['pass'] # cursor = mysql.connection.cursor(MySQLdb.cursors.DictCursor) # cursor.execute('SELECT * FROM accounts WHERE username = % s', (username, )) # account = cursor.fetchone() # if account: # msg = 'Account already exists !' # elif not re.match(r'[^@]+@[^@]+\.[^@]+', email): # msg = 'Invalid email address !' # elif not re.match(r'[A-Za-z0-9]+', username): # msg = 'Username must contain only characters and numbers !' # elif not username or not password or not email: # msg = 'Please fill out the form !' # else: # cursor.execute('INSERT INTO accounts VALUES (NULL, % s, % s, % s)', (username, password, email, )) # mysql.connection.commit() # msg = 'You have successfully registered !' # elif request.method == 'POST': # msg = 'Please fill out the form !' # return render_template('login1.html') if __name__ == '__main__': isLogged = False # abns = getAbns() registeredUsers = {} registeredAbns = [] populateRegisteredUsers(Sql().getAllMerchantData()) app.run()
from django.views import View from django.http.response import JsonResponse class HealthCheck(View): def get(self, *args, **kwargs): return JsonResponse(data='Service is up', status=200, safe=False)
from tests.db.data_fixtures import *
import os import tempfile import unittest import logging from pyidf import ValidationLevel import pyidf from pyidf.idf import IDF from pyidf.condenser_equipment_and_heat_exchangers import CoolingTowerTwoSpeed log = logging.getLogger(__name__) class TestCoolingTowerTwoSpeed(unittest.TestCase): def setUp(self): self.fd, self.path = tempfile.mkstemp() def tearDown(self): os.remove(self.path) def test_create_coolingtowertwospeed(self): pyidf.validation_level = ValidationLevel.error obj = CoolingTowerTwoSpeed() # alpha var_name = "Name" obj.name = var_name # node var_water_inlet_node_name = "node|Water Inlet Node Name" obj.water_inlet_node_name = var_water_inlet_node_name # node var_water_outlet_node_name = "node|Water Outlet Node Name" obj.water_outlet_node_name = var_water_outlet_node_name # real var_design_water_flow_rate = 0.0001 obj.design_water_flow_rate = var_design_water_flow_rate # real var_high_fan_speed_air_flow_rate = 0.0001 obj.high_fan_speed_air_flow_rate = var_high_fan_speed_air_flow_rate # real var_high_fan_speed_fan_power = 0.0001 obj.high_fan_speed_fan_power = var_high_fan_speed_fan_power # real var_high_fan_speed_ufactor_times_area_value = 1050000.00005 obj.high_fan_speed_ufactor_times_area_value = var_high_fan_speed_ufactor_times_area_value # real var_low_fan_speed_air_flow_rate = 0.0001 obj.low_fan_speed_air_flow_rate = var_low_fan_speed_air_flow_rate # real var_low_fan_speed_air_flow_rate_sizing_factor = 0.5 obj.low_fan_speed_air_flow_rate_sizing_factor = var_low_fan_speed_air_flow_rate_sizing_factor # real var_low_fan_speed_fan_power = 0.0001 obj.low_fan_speed_fan_power = var_low_fan_speed_fan_power # real var_low_fan_speed_fan_power_sizing_factor = 0.5 obj.low_fan_speed_fan_power_sizing_factor = var_low_fan_speed_fan_power_sizing_factor # real var_low_fan_speed_ufactor_times_area_value = 150000.00005 obj.low_fan_speed_ufactor_times_area_value = var_low_fan_speed_ufactor_times_area_value # real var_low_fan_speed_ufactor_times_area_sizing_factor = 0.5 obj.low_fan_speed_ufactor_times_area_sizing_factor = var_low_fan_speed_ufactor_times_area_sizing_factor # real var_free_convection_regime_air_flow_rate = 0.0 obj.free_convection_regime_air_flow_rate = var_free_convection_regime_air_flow_rate # real var_free_convection_regime_air_flow_rate_sizing_factor = 0.5 obj.free_convection_regime_air_flow_rate_sizing_factor = var_free_convection_regime_air_flow_rate_sizing_factor # real var_free_convection_regime_ufactor_times_area_value = 150000.0 obj.free_convection_regime_ufactor_times_area_value = var_free_convection_regime_ufactor_times_area_value # real var_free_convection_ufactor_times_area_value_sizing_factor = 0.5 obj.free_convection_ufactor_times_area_value_sizing_factor = var_free_convection_ufactor_times_area_value_sizing_factor # alpha var_performance_input_method = "UFactorTimesAreaAndDesignWaterFlowRate" obj.performance_input_method = var_performance_input_method # real var_heat_rejection_capacity_and_nominal_capacity_sizing_ratio = 19.19 obj.heat_rejection_capacity_and_nominal_capacity_sizing_ratio = var_heat_rejection_capacity_and_nominal_capacity_sizing_ratio # real var_high_speed_nominal_capacity = 0.0001 obj.high_speed_nominal_capacity = var_high_speed_nominal_capacity # real var_low_speed_nominal_capacity = 0.0001 obj.low_speed_nominal_capacity = var_low_speed_nominal_capacity # real var_low_speed_nominal_capacity_sizing_factor = 0.5 obj.low_speed_nominal_capacity_sizing_factor = var_low_speed_nominal_capacity_sizing_factor # real var_free_convection_nominal_capacity = 0.0 obj.free_convection_nominal_capacity = var_free_convection_nominal_capacity # real var_free_convection_nominal_capacity_sizing_factor = 0.5 obj.free_convection_nominal_capacity_sizing_factor = var_free_convection_nominal_capacity_sizing_factor # real var_basin_heater_capacity = 0.0 obj.basin_heater_capacity = var_basin_heater_capacity # real var_basin_heater_setpoint_temperature = 2.0 obj.basin_heater_setpoint_temperature = var_basin_heater_setpoint_temperature # object-list var_basin_heater_operating_schedule_name = "object-list|Basin Heater Operating Schedule Name" obj.basin_heater_operating_schedule_name = var_basin_heater_operating_schedule_name # alpha var_evaporation_loss_mode = "LossFactor" obj.evaporation_loss_mode = var_evaporation_loss_mode # real var_evaporation_loss_factor = 29.29 obj.evaporation_loss_factor = var_evaporation_loss_factor # real var_drift_loss_percent = 30.3 obj.drift_loss_percent = var_drift_loss_percent # alpha var_blowdown_calculation_mode = "ConcentrationRatio" obj.blowdown_calculation_mode = var_blowdown_calculation_mode # real var_blowdown_concentration_ratio = 2.0 obj.blowdown_concentration_ratio = var_blowdown_concentration_ratio # object-list var_blowdown_makeup_water_usage_schedule_name = "object-list|Blowdown Makeup Water Usage Schedule Name" obj.blowdown_makeup_water_usage_schedule_name = var_blowdown_makeup_water_usage_schedule_name # object-list var_supply_water_storage_tank_name = "object-list|Supply Water Storage Tank Name" obj.supply_water_storage_tank_name = var_supply_water_storage_tank_name # node var_outdoor_air_inlet_node_name = "node|Outdoor Air Inlet Node Name" obj.outdoor_air_inlet_node_name = var_outdoor_air_inlet_node_name # integer var_number_of_cells = 1 obj.number_of_cells = var_number_of_cells # alpha var_cell_control = "MinimalCell" obj.cell_control = var_cell_control # real var_cell_minimum_water_flow_rate_fraction = 0.50005 obj.cell_minimum_water_flow_rate_fraction = var_cell_minimum_water_flow_rate_fraction # real var_cell_maximum_water_flow_rate_fraction = 1.0 obj.cell_maximum_water_flow_rate_fraction = var_cell_maximum_water_flow_rate_fraction # real var_sizing_factor = 0.0001 obj.sizing_factor = var_sizing_factor idf = IDF() idf.add(obj) idf.save(self.path, check=False) with open(self.path, mode='r') as f: for line in f: log.debug(line.strip()) idf2 = IDF(self.path) self.assertEqual(idf2.coolingtowertwospeeds[0].name, var_name) self.assertEqual(idf2.coolingtowertwospeeds[0].water_inlet_node_name, var_water_inlet_node_name) self.assertEqual(idf2.coolingtowertwospeeds[0].water_outlet_node_name, var_water_outlet_node_name) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].design_water_flow_rate, var_design_water_flow_rate) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].high_fan_speed_air_flow_rate, var_high_fan_speed_air_flow_rate) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].high_fan_speed_fan_power, var_high_fan_speed_fan_power) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].high_fan_speed_ufactor_times_area_value, var_high_fan_speed_ufactor_times_area_value) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].low_fan_speed_air_flow_rate, var_low_fan_speed_air_flow_rate) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].low_fan_speed_air_flow_rate_sizing_factor, var_low_fan_speed_air_flow_rate_sizing_factor) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].low_fan_speed_fan_power, var_low_fan_speed_fan_power) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].low_fan_speed_fan_power_sizing_factor, var_low_fan_speed_fan_power_sizing_factor) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].low_fan_speed_ufactor_times_area_value, var_low_fan_speed_ufactor_times_area_value) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].low_fan_speed_ufactor_times_area_sizing_factor, var_low_fan_speed_ufactor_times_area_sizing_factor) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].free_convection_regime_air_flow_rate, var_free_convection_regime_air_flow_rate) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].free_convection_regime_air_flow_rate_sizing_factor, var_free_convection_regime_air_flow_rate_sizing_factor) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].free_convection_regime_ufactor_times_area_value, var_free_convection_regime_ufactor_times_area_value) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].free_convection_ufactor_times_area_value_sizing_factor, var_free_convection_ufactor_times_area_value_sizing_factor) self.assertEqual(idf2.coolingtowertwospeeds[0].performance_input_method, var_performance_input_method) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].heat_rejection_capacity_and_nominal_capacity_sizing_ratio, var_heat_rejection_capacity_and_nominal_capacity_sizing_ratio) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].high_speed_nominal_capacity, var_high_speed_nominal_capacity) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].low_speed_nominal_capacity, var_low_speed_nominal_capacity) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].low_speed_nominal_capacity_sizing_factor, var_low_speed_nominal_capacity_sizing_factor) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].free_convection_nominal_capacity, var_free_convection_nominal_capacity) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].free_convection_nominal_capacity_sizing_factor, var_free_convection_nominal_capacity_sizing_factor) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].basin_heater_capacity, var_basin_heater_capacity) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].basin_heater_setpoint_temperature, var_basin_heater_setpoint_temperature) self.assertEqual(idf2.coolingtowertwospeeds[0].basin_heater_operating_schedule_name, var_basin_heater_operating_schedule_name) self.assertEqual(idf2.coolingtowertwospeeds[0].evaporation_loss_mode, var_evaporation_loss_mode) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].evaporation_loss_factor, var_evaporation_loss_factor) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].drift_loss_percent, var_drift_loss_percent) self.assertEqual(idf2.coolingtowertwospeeds[0].blowdown_calculation_mode, var_blowdown_calculation_mode) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].blowdown_concentration_ratio, var_blowdown_concentration_ratio) self.assertEqual(idf2.coolingtowertwospeeds[0].blowdown_makeup_water_usage_schedule_name, var_blowdown_makeup_water_usage_schedule_name) self.assertEqual(idf2.coolingtowertwospeeds[0].supply_water_storage_tank_name, var_supply_water_storage_tank_name) self.assertEqual(idf2.coolingtowertwospeeds[0].outdoor_air_inlet_node_name, var_outdoor_air_inlet_node_name) self.assertEqual(idf2.coolingtowertwospeeds[0].number_of_cells, var_number_of_cells) self.assertEqual(idf2.coolingtowertwospeeds[0].cell_control, var_cell_control) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].cell_minimum_water_flow_rate_fraction, var_cell_minimum_water_flow_rate_fraction) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].cell_maximum_water_flow_rate_fraction, var_cell_maximum_water_flow_rate_fraction) self.assertAlmostEqual(idf2.coolingtowertwospeeds[0].sizing_factor, var_sizing_factor)
# Copyright 2019 Arie Bregman # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import from collections import defaultdict from elasticsearch import Elasticsearch from flask import current_app as app from flask import jsonify from flask import request import json import yaml import logging from rhoci.models.job import Job from rhoci.jenkins.osp import get_release LOG = logging.getLogger(__name__) from rhoci.api import bp # noqa PROJECTION = {'name': 1, 'last_build': 1, 'release': 1, 'last_successful_build': 1} @bp.route('/jobs', methods=['GET', 'POST']) def jobs(query_str=None): """All jobs API route.""" q_str = request.args.get('query_str', default={}) if q_str: query_str = eval(q_str) else: query_str = {} results = {'data': Job.find(query_str=query_str, projection=PROJECTION)} return jsonify(results) @bp.route('/jobs/filtered', methods=['GET', 'POST']) @bp.route('/jobs/filtered?filters=<filters>', methods=['GET', 'POST']) def get_filtered_jobs(filters=None): filters = request.args.get('filters') if filters and filters != "undefined": filters_dict = json.loads(filters) else: filters_dict = {} results = {'data': []} es = Elasticsearch(app.config['custom']['elk']['es']['url']) body = { "query": { "bool": {}}, "size": 0, "aggs": { "jobs": { "terms": {"field": "job_name.keyword", "size": 1000}, "aggs": { "builds": { "terms": {"field": "build_num"}, "aggs": { "status": { "terms": {"field": "build_result.keyword"} } } }}}}} if filters_dict: body["query"]["bool"]["filter"] = [] filters_modified = {"{}.keyword".format(k):v for k,v in filters_dict.items()} for f,v in filters_modified.items(): body["query"]["bool"]["filter"].append({ "term": {f:v} }) res = es.search(index="logstash", body=body) for job in res['aggregations']['jobs']['buckets']: if job['builds']['buckets'] and job['builds']['buckets'][-1]['status']['buckets']: status = job['builds']['buckets'][-1]['status']['buckets'][-1]['key'] else: status = "None" results['data'].append({'job_name': job['key'], 'build_number': int(job['builds']['buckets'][-1]['key']), 'status': status}) return jsonify(results) @bp.route('/jobs/<DFG_name>/<status>') @bp.route('/jobs/DFG=<DFG_name>') @bp.route('/jobs/<job_name>') @bp.route('/jobs/all') def get_jobs(DFG_name=None, squad_name=None, component_name=None, job_name=None, status=None): """Returns jobs.""" jobs = defaultdict(dict) results = {'data': []} es = Elasticsearch(app.config['custom']['elk']['es']['url']) body = { "query": { "bool": { "must": [{"exists": {"field": "build_result.keyword"}} ], # "filter": [ # { "term": { "DFG.keyword": DFG_name}} #] }}, "size": 0, "aggs": { "jobs": { "terms": {"field": "job_name.keyword", "size": 1000}, "aggs": { "builds": { "terms": {"field": "build_num"}, "aggs": { "status": { "terms": {"field": "build_result.keyword"} } } }}}}} if DFG_name and status: body["query"]["bool"]["filter"] = [{ "term": { "DFG.keyword": DFG_name}}] res = es.search(index="logstash", body=body) for job in res['aggregations']['jobs']['buckets']: if job['builds']['buckets'][-1]['status']['buckets'][-1]['key'] == status: results['data'].append({'job_name': job['key'], 'build_number': int(job['builds']['buckets'][-1]['key']), 'status': status}) elif DFG_name: body["query"]["bool"]["filter"] = [{ "term": { "DFG.keyword": DFG_name}}] res = es.search(index="logstash", body=body) for job in res['aggregations']['jobs']['buckets']: results['data'].append({'job_name': job['key'], 'build_number': int(job['builds']['buckets'][-1]['key']), 'status': job['builds']['buckets'][-1]['status']['buckets'][-1]['key']}) else: res = es.search(index="logstash", body=body) for job in res['aggregations']['jobs']['buckets']: results['data'].append({'job_name': job['key'], 'build_number': int(job['builds']['buckets'][-1]['key']), 'status': job['builds']['buckets'][-1]['status']['buckets'][-1]['key']}) return jsonify(results)
#! /usr/bin/env python import numpy as np def sparseFrobeniusNorm(X): """ Compute a the Frobenius norm of the observed entries of a sparse matrix. Args: X: a sparse matrix Returns: The square root of the sum of the squares of the observed entries. """ tmp = X.multiply(X) return np.sqrt(tmp.sum()) def test_sparseFrobeniusNorm(): from scipy.sparse import rand X = rand(3, 4, 0.5) print((sparseFrobeniusNorm(X))) print((np.linalg.norm(X.todense(), 'fro'))) if __name__ == '__main__': test_sparseFrobeniusNorm()
import gin import tensorflow as tf @gin.configurable class MultiPolicy: def __init__(self, act_spec, logits): self.logits = logits self.inputs = [tf.placeholder(s.dtype, [None, *s.shape]) for s in act_spec] self.dists = [self.make_dist(s, l) for s, l in zip(act_spec.spaces, logits)] self.entropy = sum([dist.entropy() for dist in self.dists]) self.logli = sum([dist.log_prob(act) for dist, act in zip(self.dists, self.inputs)]) self.sample = [dist.sample() for dist in self.dists] @staticmethod def make_dist(space, logits): # tfp is really heavy on init, better to lazy load import tensorflow_probability as tfp if space.is_continuous(): mu, log_std = tf.split(logits, num_or_size_splits=2, axis=-1) return tfp.distributions.MultivariateNormalDiag(mu, tf.exp(log_std)) else: return tfp.distributions.Categorical(logits)
from flask import session, flash, redirect, current_app from flask import Blueprint, session, redirect, url_for, render_template #request, , , jsonify auth_routes = Blueprint("auth_routes", __name__) # signup route only for email password auth (not implemented) #@auth_routes.route("/signup") #def signup(): # print("SIGNUP...") # return render_template("signup.html") @auth_routes.route("/login") def login(): print("LOGIN...") # this is a login page for either google or email/password auth (but the latter not implemented at the moment): return render_template("login.html") # if not using email/password auth, consider shortcut directly to google login: #return redirect("/auth/google/login") @auth_routes.route("/auth/google/login") def google_login(): print("GOOGLE OAUTH LOGIN...") oauth = current_app.config["OAUTH"] redirect_uri = url_for("auth_routes.google_oauth_callback", _external=True) # see corresponding route below return oauth.google.authorize_redirect(redirect_uri) # send the user to login with google, then hit the callback route @auth_routes.route("/auth/google/callback") def google_oauth_callback(): print("GOOGLE OAUTH CALLBACK...") oauth = current_app.config["OAUTH"] token = oauth.google.authorize_access_token() user_info = token.get("userinfo") if user_info: print("STORING USER INFO IN THE SESSION...") #print(user_info) #> { #> 'iss': 'https://accounts.google.com', #> 'azp': '__________.apps.googleusercontent.com', #> 'aud': '__________.apps.googleusercontent.com', #> 'sub': '__________', #> 'email': 'example@gmail.com', #> 'email_verified': True, #> 'at_hash': '__________', #> 'nonce': '__________', #> 'name': 'First M Last', #> 'picture': 'https://lh3.googleusercontent.com/a-/__________', #> 'given_name': 'First M', #> 'family_name': 'Last', #> 'locale': 'en', #> 'iat': __________, #> 'exp': __________ #> } print("USER INFO:", user_info["email"], user_info["name"], user_info["locale"]) # add user info to the session session["current_user"] = user_info # store the user info in the database: #service = current_app.config["FIREBASE_SERVICE"] #service.update_user({ # "email": user_info["email"], # "verified": user_info["email_verified"], # "given_name": user_info["given_name"], # "family_name": user_info["family_name"], # "picture": user_info["picture"], # "locale": user_info["locale"], #}) else: print("NO USER INFO") return redirect("/") @auth_routes.route("/logout") def logout(): print("LOGGING OUT...") session.pop("current_user", None) # remove user info from the session return redirect("/") # # EMAIL / PASSWORD AUTH (NOT IMPLEMENTED) # #@auth_routes.route("/auth/email_password/signup") #def email_password_signup(): # return ... #@auth_routes.route("/auth/email_password/login") #def email_password_login(): # return ... #@auth_routes.route("/auth/email_password/reset_password3") #def email_password_reset(): # return ...
# © 2020 지성. all rights reserved. # <llllllllll@kakao.com> # Apache License 2.0 from .base import * from .naive import * from .pg import * from .predict import *
orig = 'abcdefghijklmnopqrstuvwxyz' new = ['@', '8', '(', '|)', '3', '#', '6', '[-]', '|', '_|', '|<', '1', '[]\/[]', '[]\[]', '0', '|D', '(,)', '|Z', '$', '\'][\'', '|_|', '\/', '\/\/', '}{', '`/', '2'] line = raw_input().lower() trans = '' for ch in line: try: trans += new[orig.index(ch)] except: trans += ch print(trans)
from typing import Dict import torch from torchtyping import TensorType from typing import Dict, Optional from tqdm import tqdm from typeguard import typechecked """ # PCA rationale: # check for the constraints , if small, do nothing # if needed, project the result onto the constraints using the projection parameters # pca_reproject(x_after_step, self.proj_params) to go back to plausible values (if epsilon = 0) # if epsilon non-zero. project onto all evecs (discarded and kept). these are all orthogonal. # you go one by one. if your in the kept eigenvecs, do nothing. if you're in discarded evecs, you're outside constraint space # you have a sclar proj per dim. so in those held out dims, you manually set the projs to be epsilon instead of that high projection that you may encounter. # you modify all the projections onto the discarded evecs. you have a vector which is num_obs x num_evecs. this is the representation of data in the PCA coordinate basis # then, you modify that representation, and you send it back to the original space using the transpose of the evecs. # Temporal rationale: want x_t - x_t-1 to be small. compute the difference per timepoint. choose one direction, say forward. you have two points in # you have 2 points in 2d space. the difference vector is the direction. compute the norm. if norm > epsilon, rescale it so norm is equal to epsilon. diff/epsilon -- now you have a direction and a step size. you define x_t += x_t-1 + diff/epsilon. # the next time point has to be inside a ball with radius epsilon. if it's outside, you project onto the exterior of that ball. if it's inside, keep it where it is. # the result will be different if you start from the end or from the beggining. """ def MSE(preds: TensorType["num_samples", "num_keypoints",2], gt: TensorType["num_samples", "num_keypoints",2]): bp_error = torch.linalg.norm(preds - gt, dim=2) # error per keypoint-frame average_error = torch.nanmean(bp_error, dim=1) # mean over keypoints return average_error @typechecked class ProjectedGD(object): """ projected gradient descent on an L2 ball subject to constraints""" def __init__( self, data: TensorType["num_obs", "obs_dim"] = None, ground_truth: Optional[TensorType["num_obs", "obs_dim"]] = None, confidences: Optional[TensorType["num_obs", "num_keypoints"]] = None, proj_params: dict = None, lr: Optional[float] = None, max_iter: int = 1000, tol: float = 1e-5, verbose: bool = False, lr_decay_factor: float = 0.25, ): """assume you get only the bodyparts of interest for this, irrelevant cols get filtered externally""" self.max_iter = max_iter self.tol = tol self.verbose = verbose self.data: TensorType["num_samples", "num_keypoints", 2] = data.reshape(data.shape[0], -1, 2) self.ground_truth: TensorType["num_samples", "num_keypoints", 2] = ground_truth.reshape(ground_truth.shape[0], -1, 2) self.proj_params = proj_params self.optimized_preds = self.data.detach().clone() # + torch.randn_like(data)*1e-4 # torch.nn.parameter.Parameter(data=data.detach().clone()) self.x_list = [] self.lr_list = [] self.error_list = [] self.confidences = 1.0 self.lr_decay_factor = lr_decay_factor if confidences is not None: self.confidences: TensorType["num_obs", "num_keypoints",1] = confidences.unsqueeze(2) self.confidences = torch.clamp(confidences, min=0.0, max=1.0) if lr is not None: self.lr = lr else: self.lr = self.initialize_alpha() # TODO: modify norm to bo over the last dimension. have num_keypoints norms per sample. # TODO: everything else can remain in this shape? # When conf comes in, reshape it similarly. # currently this is not used. @staticmethod def l2_grad( diffs: TensorType["num_samples", "num_keypoints", 2], scalar: float = 1.0 ) -> TensorType["num_samples", "num_keypoints", 2]: # TODO: test if torch.allclose(diffs, torch.zeros_like(diffs)): # don't divide by zero return diffs else: norm: TensorType["num_samples", "num_keypoints",1] = torch.linalg.norm(diffs, dim=2, keepdim=True) grad = diffs * scalar * (1.0 / norm) return grad def grad_step( self, x_curr: TensorType["num_samples", "num_keypoints", 2] ) -> TensorType["num_samples", "num_keypoints", 2]: norm: TensorType["num_samples", "num_keypoints", 1] = torch.linalg.norm(x_curr-self.data, dim=2, keepdim=True) step: TensorType["num_samples", "num_keypoints", 1] = (self.lr * self.confidences) / (norm + 1e-8) step = torch.clamp(step, min=0.0, max=1.0) x_after_step = (1-step)*x_curr + step*self.data return x_after_step # standard way below # return x_curr - self.lr * self.l2_grad(x_curr - self.data) def project( self, x_after_step: TensorType["num_samples", "num_keypoints", 2] ) -> TensorType["num_samples", "num_keypoints", 2]: # reshape x_after_step = x_after_step.reshape(x_after_step.shape[0],-1) # reproject reprojected = self.proj_params["pca_singleview"].reproject(x_after_step) # reshape back reprojected = reprojected.reshape(x_after_step.shape[0], -1, 2) return reprojected def step( self, x_curr: TensorType["num_samples", "num_keypoints", 2] ) -> TensorType["num_samples", "num_keypoints", 2]: x_after_step = self.grad_step(x_curr=x_curr) # gradient descent on the l2 norm objective x_after_projection = self.project(x_after_step=x_after_step) # project the current x onto the constraints, get plausible x return x_after_projection def initialize_alpha(self) -> TensorType[(), float]: # project projected = self.project(x_after_step=self.data) # compute the difference diff = projected - self.data # X_0 - Y # compute the norm and divide by confidences alpha = torch.max(torch.norm(diff, dim=2, keepdim=True) / self.confidences) return alpha def fit(self) -> TensorType["num_samples", "num_keypoints", 2]: # TODO: measure RMSE per iteration, run for longer, understand whar it's doing x_curr = self.optimized_preds.clone() # project and initialize step size. for i in tqdm(range(self.max_iter)): # projected gradient descent step x_new = self.step(x_curr) if self.verbose: print(f"iteration {i}") print(f"x_curr: {x_curr}") print(f"x_new: {x_new}") if torch.allclose(x_curr, x_new, atol=self.tol): # if no change, you're clamped at step=1.0, too big, decrease and move away from data self.lr = self.lr * self.lr_decay_factor x_curr = x_new.clone() self.error_list.append(MSE(x_curr, self.ground_truth)) self.x_list.append(x_new) # record the new x self.lr_list.append(self.lr) # record the new step size self.optimized_preds = x_new return self.optimized_preds
from models.cbamresnet import * from models.pnasnet import * from models.seresnext import * from models.inceptionresnetv2 import * from models.xception import * __all__ = ['get_model'] _models = { 'cbam_resnet50': cbam_resnet50, 'pnasnet5large': pnasnet5large, 'seresnext50_32x4d': seresnext50_32x4d, 'seresnext101_32x4d': seresnext101_32x4d, 'seresnext101_64x4d': seresnext101_64x4d, 'xception': xception, 'inceptionresnetv2': inceptionresnetv2, } def get_model(name, **kwargs): """ Get supported model. Parameters: ---------- name : str Name of model. Returns ------- Module Resulted model. """ name = name.lower() if name not in _models: raise ValueError('Unsupported model: {}'.format(name)) net = _models[name](**kwargs) return net
#!/usr/bin/env python from __future__ import print_function from distutils.core import setup from distutils import sysconfig from os.path import join as pjoin, split as psplit import sys import platform setup(name='FEniCSopt', version='0.2', description = "FEniCS optimization package", author = "Petr Lukas", author_email='lukas@karlin.mff.cuni.cz', url='https://github.com/lukaspetr/FEniCSopt', classifiers=[ 'Development Status :: 0.2 - Unstable', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 2.7', 'License :: MIT', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development :: Libraries :: Python Modules', ], scripts = [pjoin("scripts", "ind_cross.py")], packages = ["fenicsopt", "fenicsopt.core", "fenicsopt.examples", "fenicsopt.exports"], package_dir = {"fenicsopt": "fenicsopt"} )
# -*- coding: utf-8 -*- # @Brief: 配置文件 input_shape = (320, 320, 3) num_classes = 21 epochs = 50 batch_size = 4 lr = 0.0001 train_txt_path = "/Users/linzhihui/Desktop/Data/VOC2012/ImageSets/SegmentationAug/train.txt" val_txt_path = "/Users/linzhihui/Desktop/Data/VOC2012/ImageSets/SegmentationAug/val.txt" trainval_txt_path = "/Users/linzhihui/Desktop/Data/VOC2012/ImageSets/SegmentationAug/trainval.txt"
"""Support for hunterdouglass_powerview sensors.""" from aiopvapi.resources.shade import BaseShade, factory as PvShade from homeassistant.components.sensor import ( SensorDeviceClass, SensorEntity, SensorStateClass, ) from homeassistant.config_entries import ConfigEntry from homeassistant.const import PERCENTAGE from homeassistant.core import HomeAssistant, callback from homeassistant.helpers.entity import EntityCategory from homeassistant.helpers.entity_platform import AddEntitiesCallback from .const import ( DOMAIN, ROOM_ID_IN_SHADE, ROOM_NAME_UNICODE, SHADE_BATTERY_LEVEL, SHADE_BATTERY_LEVEL_MAX, ) from .entity import ShadeEntity from .model import PowerviewEntryData async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback ) -> None: """Set up the hunter douglas shades sensors.""" pv_entry: PowerviewEntryData = hass.data[DOMAIN][entry.entry_id] entities = [] for raw_shade in pv_entry.shade_data.values(): shade: BaseShade = PvShade(raw_shade, pv_entry.api) if SHADE_BATTERY_LEVEL not in shade.raw_data: continue name_before_refresh = shade.name room_id = shade.raw_data.get(ROOM_ID_IN_SHADE) room_name = pv_entry.room_data.get(room_id, {}).get(ROOM_NAME_UNICODE, "") entities.append( PowerViewShadeBatterySensor( pv_entry.coordinator, pv_entry.device_info, room_name, shade, name_before_refresh, ) ) async_add_entities(entities) class PowerViewShadeBatterySensor(ShadeEntity, SensorEntity): """Representation of an shade battery charge sensor.""" _attr_entity_category = EntityCategory.DIAGNOSTIC _attr_native_unit_of_measurement = PERCENTAGE _attr_device_class = SensorDeviceClass.BATTERY _attr_state_class = SensorStateClass.MEASUREMENT def __init__(self, coordinator, device_info, room_name, shade, name): """Initialize the shade.""" super().__init__(coordinator, device_info, room_name, shade, name) self._attr_unique_id = f"{self._attr_unique_id}_charge" @property def name(self): """Name of the shade battery.""" return f"{self._shade_name} Battery" @property def native_value(self): """Get the current value in percentage.""" return round( self._shade.raw_data[SHADE_BATTERY_LEVEL] / SHADE_BATTERY_LEVEL_MAX * 100 ) async def async_added_to_hass(self): """When entity is added to hass.""" self.async_on_remove( self.coordinator.async_add_listener(self._async_update_shade_from_group) ) @callback def _async_update_shade_from_group(self): """Update with new data from the coordinator.""" self._shade.raw_data = self.data.get_raw_data(self._shade.id) self.async_write_ha_state() async def async_update(self) -> None: """Refresh shade battery.""" await self._shade.refreshBattery()
# Code generated by lark_sdk_gen. DO NOT EDIT. from pylark.lark_request import RawRequestReq, _new_method_option from pylark import lark_type, lark_type_sheet, lark_type_approval import attr import typing import io @attr.s class DeleteDepartmentReq(object): department_id_type: lark_type.DepartmentIDType = attr.ib( default=None, metadata={"req_type": "query", "key": "department_id_type"} ) # 此次调用中使用的部门ID的类型, 示例值:"open_department_id", 可选值有: `department_id`:以自定义department_id来标识部门, `open_department_id`:以open_department_id来标识部门, 默认值: `open_department_id` department_id: str = attr.ib( default="", metadata={"req_type": "path", "key": "department_id"} ) # 部门ID,需要与查询参数中传入的department_id_type类型保持一致。, 示例值:"od-4e6ac4d14bcd5071a37a39de902c7141", 最大长度:`64` 字符, 正则校验:`^0|[^od][A-Za-z0-9]*` @attr.s class DeleteDepartmentResp(object): pass def _gen_delete_department_req(request, options) -> RawRequestReq: return RawRequestReq( dataclass=DeleteDepartmentResp, scope="Contact", api="DeleteDepartment", method="DELETE", url="https://open.feishu.cn/open-apis/contact/v3/departments/:department_id", body=request, method_option=_new_method_option(options), need_tenant_access_token=True, )
import re import os import copy import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist import numpy as np from torchvision.models.densenet import model_urls, _DenseLayer, _DenseBlock, _Transition from torchvision.models.utils import load_state_dict_from_url from collections import OrderedDict from collections import deque from ...utils.Dense_U_Net_lidar_helper import get_config # Structure of code essentially: # https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py class Dense_U_Net_lidar(nn.Module): ''' U-Net like structure | Encoder = DenseNet original | optional secondary stream in encoder processing lidar data Keeping the structure and variable naming of original densenet | allowing to use pretrained weigthts from torchvision.models 1. Added optional lidar stream (stream_2) mirroring the densenet rgb stream (stream_1) 2. Added optional Concat layer to bring together rgb and lidar 3. replacing the classifier with UNet like Decoder | feeding in output of blocks | if split streams using rgb stream 4. Output: Heat Maps for each class ''' def __init__(self, config): ''' There is a cleaner way of implementing this. TODO clean-up Arguments: config: as specified in .utils.Dense_U_Net_lidar_helper ''' super().__init__() self.config = config # original densenet attributes self.growth_rate = config.model.growth_rate self.block_config = config.model.block_config self.num_init_features = config.model.num_init_features self.bn_size = config.model.bn_size self.drop_rate = config.model.drop_rate self.memory_efficient = config.model.memory_efficient self.num_classes = config.model.num_classes # param assignment self.concat_before_block_num = config.model.concat_before_block_num self.num_layers_before_blocks = config.model.num_layers_before_blocks self.concat_after_module_idx = self.num_layers_before_blocks-1 + 2*(self.concat_before_block_num-1) self.stream_1_in_channels = config.model.stream_1_in_channels self.stream_2_in_channels = config.model.stream_2_in_channels self.network_input_channels = self.stream_1_in_channels # Allowing for rgb input or torch.cat((rgb,lidar),1) | added if self.concat_before_block_num == 1 and self.stream_2_in_channels == 0: self.fusion = 'no' elif self.concat_before_block_num == 1 and self.stream_2_in_channels > 0: self.fusion = 'early' self.network_input_channels += self.stream_2_in_channels elif self.concat_before_block_num > 1 and self.concat_before_block_num <= len(self.block_config): self.fusion = 'mid' else: raise AttributeError ### core structure ## Encoder | same as densenet without norm5 and classifier # First convolution | original densenet self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(self.network_input_channels, self.num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ('norm0', nn.BatchNorm2d(self.num_init_features)), ('relu0', nn.ReLU(inplace=True)), ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)), ])) # Each denseblock | original densenet + stack comprising layer sizes for the decoder feature_size_stack = deque() feature_size_stack.append(self.num_init_features + 2*self.growth_rate) num_features = self.num_init_features for i, num_layers in enumerate(self.block_config): block = _DenseBlock( num_layers=num_layers, num_input_features=num_features, bn_size=self.bn_size, growth_rate=self.growth_rate, drop_rate=self.drop_rate, memory_efficient=self.memory_efficient ) self.features.add_module('denseblock%d' % (i + 1), block) num_features = num_features + num_layers * self.growth_rate feature_size_stack.append(num_features) if i != len(self.block_config) - 1: trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2) self.features.add_module('transition%d' % (i + 1), trans) num_features = num_features // 2 ## Decoder # U net like | ugly: should have own class for whole sequence self.decoder = nn.Sequential() num_in_features = feature_size_stack.pop() for i in range(len(self.block_config)): num_features = feature_size_stack.pop() transp_conv_seq = nn.Sequential(OrderedDict([ # denselayer like struct; reduce channels with 1x1 convs ('norm0', nn.BatchNorm2d(num_in_features)), ('relu0', nn.ReLU(inplace=True)), ('conv_reduce', nn.Conv2d(num_in_features, num_features, kernel_size=1, stride=1, padding=0, bias=False)), ('norm1', nn.BatchNorm2d(num_features)), ('relu1', nn.ReLU(inplace=True)) ])) self.decoder.add_module('Transposed_Convolution_Sequence_%d' %(i+1), transp_conv_seq) self.decoder.add_module('Transposed_Convolution_%d' %(i+1), nn.ConvTranspose2d(num_features, num_features, 3, stride=2, padding=1, bias=False)) num_in_features = num_features*2 self.decoder.add_module('Upsampling', nn.Upsample(scale_factor=2)) # final refinement: concat orig rgb & lidar before passing self.dec_out_to_heat_maps = nn.Sequential(OrderedDict([ ('norm0', nn.BatchNorm2d(num_features+self.stream_1_in_channels+self.stream_2_in_channels)), ('relu0', nn.ReLU(inplace=True)), ('refine0', nn.Conv2d(num_features+self.stream_1_in_channels+self.stream_2_in_channels, num_features//2, 3, stride=1, padding=1, bias=False)), ('norm1', nn.BatchNorm2d(num_features//2)), ('relu1', nn.ReLU(inplace=True)), ('refine1', nn.Conv2d(num_features//2, self.num_classes, 5, stride=1, padding=2, bias=False)) ])) ### additional structure depending on fusion mechanism if self.fusion == 'no': # i.e. one stream only pass elif self.fusion == 'early': # i.e. concat rgb and lidar before network pass elif self.fusion == 'mid': # add all the same processing for the lidar data as for rgb data # add concat layer ''' # weirdly gives slower iteration times # Stream_2 mirrors Stream_1 up to concat level self.stream_2_features = copy.deepcopy(self.features[:self.concat_after_module_idx+1]) self.stream_2_features.conv0 = nn.Conv2d(self.stream_2_in_channels, self.num_init_features, kernel_size=7, stride=2, padding=3, bias=False) ''' # First convolution | original densenet | for lidar block self.stream_2_features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(self.stream_2_in_channels, self.num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ('norm0', nn.BatchNorm2d(self.num_init_features)), ('relu0', nn.ReLU(inplace=True)), ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)), ])) # Each denseblock | original densenet + break before concat layer num_features = self.num_init_features for i, num_layers in enumerate(self.block_config): if i == self.concat_before_block_num-1: break block = _DenseBlock( num_layers=num_layers, num_input_features=num_features, bn_size=self.bn_size, growth_rate=self.growth_rate, drop_rate=self.drop_rate, memory_efficient=self.memory_efficient ) self.stream_2_features.add_module('denseblock%d' % (i + 1), block) num_features = num_features + num_layers * self.growth_rate if i != len(self.block_config) - 1: trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2) self.stream_2_features.add_module('transition%d' % (i + 1), trans) num_features = num_features // 2 # concat layer | rgb + lidar | 1x1 conv num_features = self.features[self.concat_after_module_idx+1].denselayer1.norm1.num_features self.concat_module = nn.Sequential(OrderedDict([ ('norm', nn.BatchNorm2d(num_features*2)), ('relu', nn.ReLU(inplace=True)), ('conv', nn.Conv2d(num_features*2, num_features, kernel_size=1, stride=1, padding=0, bias=False)) ])) else: raise AttributeError # Official init from torch repo for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.constant_(m.bias, 0) # get number of parameters of model self.num_params = sum(p.numel() for p in self.parameters()) def forward(self, stream_1_data, stream_2_data): ''' unnecessarily complex because init respects original densenet implementation; see __init__ Arguments: stream_1_data: batch, channels, W, H (W and H as lidar_data!) stream_2_data: batch, channels, W, H (W and H as rgb_data!) ''' # stack of encoding features used in decoder HxW_shape_stack = deque() features_from_enc_stack = deque() # assigning name if self.fusion == 'no': # allowing net to work with lidar only features_from_enc_stack.append(stream_1_data) features = stream_1_data elif self.fusion == 'early': features_from_enc_stack.append(torch.cat((stream_1_data, stream_2_data), 1)) features = torch.cat((stream_1_data, stream_2_data), 1) elif self.fusion == 'mid': features_from_enc_stack.append(torch.cat((stream_1_data, stream_2_data), 1)) features = stream_1_data stream_2_features = self.stream_2_features(stream_2_data) else: raise AttributeError # encoding for i, enc_module in enumerate(self.features): features = enc_module(features) # encode # concat lidar and rgb after transition if self.fusion == 'mid' and i == self.concat_after_module_idx: assert features.size() == stream_2_features.size(), str(features.size()) + ' ' + str(stream_2_features.size()) features = torch.cat((features, stream_2_features), 1) features = self.concat_module(features) # save features for decoder in stack if i == self.num_layers_before_blocks-2: # get size before maxpool before first block HxW_shape_stack.append(features.size()) if isinstance(enc_module, _DenseBlock) and i<len(self.features)-1: # only blocks but skip last features_from_enc_stack.append(features) HxW_shape_stack.append(features.size()) # decoding | ugly quick and dirty implementation for i, dec_module in enumerate(self.decoder): if not isinstance(dec_module, nn.ConvTranspose2d): if i > 0 and not isinstance(dec_module, nn.Upsample): # concat upsampled data and data from encoder features = torch.cat((features, features_from_enc_stack.pop()), 1) # concat features = dec_module(features) # decode else: features = dec_module(features, output_size=HxW_shape_stack.pop()) # decode # scale to heat maps features = torch.cat((features, features_from_enc_stack.pop()), 1) features = self.dec_out_to_heat_maps(features) return features def _load_state_dict(model, config, model_url, progress): ''' load pretrained densenet state dict from torchvision into model copy from https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py !!added sencond part before last line; that's why cannot simply import function ''' # '.'s are no longer allowed in module names, but previous _DenseLayer # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'. # They are also in the checkpoints in model_urls. This pattern is used # to find such keys. pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict_torchvision = load_state_dict_from_url(model_url, progress=progress) for key in list(state_dict_torchvision.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict_torchvision[new_key] = state_dict_torchvision[key] del state_dict_torchvision[key] ### ADDED pytorch version such that it fits the Dense_U_Net_lidar # remove state dict of first module if different from original if model.fusion == 'early' or model.stream_1_in_channels != 3: del state_dict_torchvision['features.conv0.weight'] # update state dict of stream_1 and load state dict back into model state_dict_model = model.state_dict() state_dict_model.update(state_dict_torchvision) model.load_state_dict(state_dict_model, strict=False) # load weights into stream_2 and load state dict back into model if model.fusion == 'mid' : lidar_feature_state_dict = model.stream_2_features.state_dict() feature_state_dict = model.features.state_dict() del feature_state_dict['conv0.weight'] lidar_feature_state_dict.update(feature_state_dict) model.stream_2_features.load_state_dict(lidar_feature_state_dict, strict=False) def _dense_u_net_lidar(arch, growth_rate, block_config, num_init_features, pretrained, progress, config): ''' loads config file if not given creates model loads pretrained weights if wanted ''' if config is None: config = get_config(os.path.join('content', 'mnt', 'My Drive', 'Colab Notebooks', 'DeepCV_Packages')) # for compatibility with densenet original functions config.model.growth_rate = growth_rate config.model.block_config = block_config config.model.num_init_features = num_init_features model = Dense_U_Net_lidar(config) if pretrained: _load_state_dict(model, config, model_urls[arch], progress) return model def densenet121_u_lidar(pretrained=False, progress=True, config=None): r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _dense_u_net_lidar('densenet121', 32, (6, 12, 24, 16), 64, pretrained, progress, config) def densenet161_u_lidar(pretrained=False, progress=True, config=None): r"""Densenet-161 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _dense_u_net_lidar('densenet161', 48, (6, 12, 36, 24), 96, pretrained, progress, config) def densenet169_u_lidar(pretrained=False, progress=True, config=None): r"""Densenet-169 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _dense_u_net_lidar('densenet169', 32, (6, 12, 32, 32), 64, pretrained, progress, config) def densenet201_u_lidar(pretrained=False, progress=True, config=None): r"""Densenet-201 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _dense_u_net_lidar('densenet201', 32, (6, 12, 48, 32), 64, pretrained, progress, config)
from numpy import maximum from numpy import zeros from gwlfe.BMPs.AgAnimal.NFEN import NFEN from gwlfe.BMPs.AgAnimal.NFEN import NFEN_f from gwlfe.BMPs.Stream.NSTAB import NSTAB from gwlfe.BMPs.Stream.NSTAB import NSTAB_f from gwlfe.BMPs.Stream.NURBBANK import NURBBANK from gwlfe.BMPs.Stream.NURBBANK import NURBBANK_f from gwlfe.Memoization import memoize from gwlfe.Output.Loading.StreamBankN import StreamBankN from gwlfe.Output.Loading.StreamBankN import StreamBankN_f @memoize def StreamBankN_1(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef, Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal, NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, n42b, AgLength, UrbBankStab, SedNitr, BankNFrac, n69c, n45, n69, n46c, n42): result = zeros((NYrs, 12)) streambank_n = StreamBankN(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef, Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal, NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, SedNitr, BankNFrac) nstab = NSTAB(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef, Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal, NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, n42b, n46c, SedNitr, BankNFrac, n69c) nfen = NFEN(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef, Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal, NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, AgLength, n42, SedNitr, BankNFrac, n45, n69) nurbbank = NURBBANK(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef, Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal, NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, n42b, UrbBankStab, SedNitr, BankNFrac, n69c) for Y in range(NYrs): for i in range(12): result[Y][i] = streambank_n[Y][i] - (nstab[Y][i] + nfen[Y][i] + nurbbank[Y][i]) if result[Y][i] < 0: result[Y][i] = 0 return result @memoize def StreamBankN_1_f(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef, Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal, NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, n42b, AgLength, UrbBankStab, SedNitr, BankNFrac, n69c, n45, n69, n46c, n42): streambank_n = StreamBankN_f(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef, Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal, NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, SedNitr, BankNFrac) nstab = NSTAB_f(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef, Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal, NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, n42b, n46c, SedNitr, BankNFrac, n69c) nfen = NFEN_f(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef, Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal, NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, AgLength, n42, SedNitr, BankNFrac, n45, n69) nurbbank = NURBBANK_f(NYrs, DaysMonth, Temp, InitSnow_0, Prec, NRur, NUrb, Area, CNI_0, AntMoist_0, Grow_0, CNP_0, Imper, ISRR, ISRA, CN, UnsatStor_0, KV, PcntET, DayHrs, MaxWaterCap, SatStor_0, RecessionCoef, SeepCoef, Qretention, PctAreaInfil, n25b, Landuse, TileDrainDensity, PointFlow, StreamWithdrawal, GroundWithdrawal, NumAnimals, AvgAnimalWt, StreamFlowVolAdj, SedAFactor_0, AvKF, AvSlope, SedAAdjust, StreamLength, n42b, UrbBankStab, SedNitr, BankNFrac, n69c) return maximum(streambank_n - (nstab + nfen + nurbbank), 0)
class Solution: def maxSubArray(self, nums: List[int]) -> int: # ans = -float('inf') # sum_ = -float('inf') # for index, element in enumerate(nums): # sum_ = max(sum_ + element, element) # ans = max(ans, sum_) # return ans n = len(nums) dp = [0 for _ in range(n)] dp[0] = nums[0] for i in range(1, n): dp[i] = max(nums[i] + dp[i - 1], nums[i]) return max(dp)
# -*- coding: utf-8 -*- # # Copyright (c) 2017 - 2019, doudoudzj # Copyright (c) 2012, VPSMate development team # All rights reserved. # # InPanel is distributed under the terms of the (new) BSD License. # The full license can be found in 'LICENSE'. '''Module for Service Management.''' import glob import os import shlex import subprocess class Service(object): '''supported service operate script''' service_items = { 'inpanel': False, 'nginx': False, 'httpd': False, 'vsftpd': False, 'mysqld': False, 'redis': False, 'memcached': False, 'mongod': False, 'php-fpm': False, 'sendmail': False, 'postfix': False, 'sshd': False, 'iptables': False, 'crond': False, 'ntpd': False, 'named': False, 'lighttpd': False, 'proftpd': False, 'pure-ftpd': False, 'smb': False } pidnames = { 'sendmail': ['sm-client'], 'smb': ['smbd'] } subsys_locks = ( 'iptables' ) @classmethod def status(self, service): initscript = '/etc/init.d/%s' % service if not os.path.exists(initscript): initscript = '/usr/lib/systemd/system/%s.service' % service if not os.path.exists(initscript): return None pidfile = '/var/run/%s.pid' % service if not os.path.exists(pidfile): p = glob.glob('/var/run/%s/*.pid' % service) if len(p) > 0: pidfile = p[0] else: # some services have special pid filename if service in Service.pidnames: for pidname in Service.pidnames[service]: pidfile = '/var/run/%s.pid' % pidname if os.path.exists(pidfile): break else: pidfile = None else: pidfile = None if not pidfile: # not always corrent, some services dead but the lock still exists # some services don't have the pidfile if service in Service.subsys_locks: if os.path.exists('/var/lock/subsys/%s' % service): return 'running' # try execute pidof to find the pidfile cmd_ = shlex.split('pidof -c -o %%PPID -x %s' % service) p = subprocess.Popen(cmd_, stdout=subprocess.PIPE, close_fds=True) pid = p.stdout.read().strip() p.wait() if not pid: return 'stopped' if pidfile: with open(pidfile) as f: pid = f.readline().strip() if not pid: return 'stopped' if not os.path.exists('/proc/%s' % pid): return 'stopped' return 'running' @classmethod def autostart_set(self, service, autostart=True): """Add or remove service to autostart list. E.g: chkconfig service_name on|off """ cmdbin = 'chkconfig' status = 'on' if autostart else 'off' cmd = '%s %s %s' % (cmdbin, service, status) cmd = shlex.split(cmd) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, close_fds=True) p.stdout.read() return p.wait() == 0 and True or False @classmethod def autostart_list(self): """Return a list of the autostart service name. """ startlevel = -1 with open('/etc/inittab') as f: for line in f: if line.startswith('id:'): startlevel = line.split(':')[1] break if startlevel == -1: p = subprocess.Popen(shlex.split('runlevel'), stdout=subprocess.PIPE, close_fds=True) startlevel = int(p.stdout.read().strip().replace('N ', '')) p.wait() rcpath = '/etc/rc.d/rc%s.d/' % startlevel enableServicePath = '/etc/systemd/system/multi-user.target.wants/' services = [ os.path.basename(os.readlink(filepath)) for filepath in glob.glob('%s/S*' % rcpath) ] services += [ os.path.basename(filePath).replace('.service', '') for filePath in glob.glob('%s*.service' % enableServicePath) ] return services if __name__ == '__main__': autostart_services = Service.autostart_list() for service in Service.support_services: print('* Status of %s: %s (autostart: %s)' % (service, Service.status(service), str(service in autostart_services)))
# coding: utf-8 from __future__ import annotations from datetime import date, datetime # noqa: F401 import re # noqa: F401 from typing import Any, Dict, List, Optional, Union, Literal # noqa: F401 from pydantic import AnyUrl, BaseModel, EmailStr, validator, Field, Extra # noqa: F401 from aries_cloudcontroller.model.menu_form_param import MenuFormParam class MenuForm(BaseModel): """NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech). Do not edit the class manually. MenuForm - a model defined in OpenAPI description: Additional descriptive text for menu form [Optional]. params: List of form parameters [Optional]. submit_label: Alternative label for form submit button [Optional]. title: Menu form title [Optional]. """ description: Optional[str] = None params: Optional[List[MenuFormParam]] = None submit_label: Optional[str] = Field(None, alias="submit-label") title: Optional[str] = None def __init__( self, *, description: Optional[str] = None, params: Optional[List[MenuFormParam]] = None, submit_label: Optional[str] = None, title: Optional[str] = None, **kwargs, ): super().__init__( description=description, params=params, submit_label=submit_label, title=title, **kwargs, ) class Config: allow_population_by_field_name = True MenuForm.update_forward_refs()
from utils.aioLogger import aioLogger import pandas as pd from typing import List, Tuple, Union from config.aioConfig import heightWeightConfig class heightWeightTimeVerifier: """this class verify the time info""" def __init__(self, sorted_dfs: List[pd.DataFrame]): self.sorted_dfs = sorted_dfs self.logger = aioLogger(self.__class__.__name__).logger @staticmethod def get_start_time_from_df(df: pd.DataFrame) -> int: return df[heightWeightConfig.TIME_COLUMN].iloc[0] @staticmethod def get_end_time_from_df(df: pd.DataFrame) -> int: return df[heightWeightConfig.TIME_COLUMN].iloc[-1] def check_according_start_and_end_time(self) -> bool: """test2 start time should large than test1 end time""" for i in range(len(self.sorted_dfs) - 1): end_time_df_before = self.get_end_time_from_df(self.sorted_dfs[i]) start_time_df_after = self.get_start_time_from_df(self.sorted_dfs[i + 1]) if end_time_df_before < start_time_df_after: self.logger.info(f"time_check for {len(self.sorted_dfs)} dfs -> OK") return True else: return False
from ezcode.list.linked_list import SinglyLinkedList from ezcode.list.stack import Stack, MinStack, MaxStack from ezcode.list.queue import Queue, MonotonicQueue from ezcode.list.lru_cache import LRUCache from fixture.utils import equal_list class Node: def __init__(self, v=None, n=None): self.v = v self.n = n def __repr__(self): return f"Node({self.v})" def test_singly_linked_list_basics(): list_0 = SinglyLinkedList(head=None, data_name="v", next_name="n") list_0_copy = SinglyLinkedList(head=None, data_name="v", next_name="n") list_0_reverse = SinglyLinkedList(head=None, data_name="v", next_name="n") list_1 = SinglyLinkedList(head=Node(1), data_name="v", next_name="n") list_1_copy = SinglyLinkedList(head=Node(1), data_name="v", next_name="n") list_1_reverse = SinglyLinkedList(head=Node(1), data_name="v", next_name="n") list_2 = SinglyLinkedList(head=Node(1, Node(2)), data_name="v", next_name="n") list_2_copy = SinglyLinkedList(head=Node(1, Node(2)), data_name="v", next_name="n") list_2_reverse = SinglyLinkedList(head=Node(2, Node(1)), data_name="v", next_name="n") list_3 = SinglyLinkedList(head=Node(1, Node(2, Node(3))), data_name="v", next_name="n") list_3_copy = SinglyLinkedList(head=Node(1, Node(2, Node(3))), data_name="v", next_name="n") list_3_reverse = SinglyLinkedList(head=Node(3, Node(2, Node(1))), data_name="v", next_name="n") assert list_0_copy == list_0 assert list_1_copy == list_1 assert list_2_copy == list_2 assert list_3_copy == list_3 assert list_0.copy() == list_0_copy assert list_1.copy() == list_1_copy assert list_2.copy() == list_2_copy assert list_3.copy() == list_3_copy assert not list_0 == list_1 assert not list_1 == list_2 assert not list_2 == list_3 assert not list_3 == list_0 assert str(list_0) == "None" assert str(list_1) == "1 ─> None" assert str(list_2) == "1 ─> 2 ─> None" assert str(list_3) == "1 ─> 2 ─> 3 ─> None" assert equal_list(list_0.to_array(), []) assert equal_list(list_1.to_array(), [1]) assert equal_list(list_2.to_array(), [1, 2]) assert equal_list(list_3.to_array(), [1, 2, 3]) list_0_reverse_copy = list_0_reverse.copy() list_1_reverse_copy = list_1_reverse.copy() list_2_reverse_copy = list_2_reverse.copy() list_3_reverse_copy = list_3_reverse.copy() list_0_reverse_copy.reverse() list_1_reverse_copy.reverse() list_2_reverse_copy.reverse() list_3_reverse_copy.reverse() assert list_0_copy == list_0_reverse_copy assert list_1_copy == list_1_reverse_copy assert list_2_copy == list_2_reverse_copy assert list_3_copy == list_3_reverse_copy list_0_reverse.head = list_0_reverse.algorithm.reverse(list_0_reverse.head, list_0_reverse.algorithm.get_next(list_0_reverse.head)) list_1_reverse.head = list_1_reverse.algorithm.reverse(list_1_reverse.head, list_1_reverse.algorithm.get_next(list_1_reverse.head)) list_2_reverse.head = list_2_reverse.algorithm.reverse(list_2_reverse.head, list_2_reverse.algorithm.get_next(list_2_reverse.head)) list_3_reverse.head = list_3_reverse.algorithm.reverse(list_3_reverse.head, list_3_reverse.algorithm.get_next(list_3_reverse.head)) assert list_0_copy == list_0_reverse assert list_1_copy == list_1_reverse assert list_2_copy == list_2_reverse assert list_3_copy == list_3_reverse try: list_0.peek_head() == 0 except IndexError as e: assert e.args[0] == "Peek head at an empty SinglyLinkedList" else: assert False list_1.peek_head() == 1 list_2.peek_head() == 2 list_3.peek_head() == 3 list_3_copy.pop_head() == list_2_copy list_2_copy.pop_head() == list_1_copy list_1_copy.pop_head() == list_0_copy try: list_0.pop_head() except IndexError as e: assert e.args[0] == "Pop head from an empty SinglyLinkedList" else: assert False list_3.delete(set([2, 3])) == list_1 list_2.delete(set([1, 2])) == list_0 def test_reverse_sublist(): lists = [ SinglyLinkedList(head=Node(0), data_name="v", next_name="n"), SinglyLinkedList(head=Node(0, Node(1)), data_name="v", next_name="n"), SinglyLinkedList(head=Node(0, Node(1, Node(2))), data_name="v", next_name="n"), SinglyLinkedList(head=Node(0, Node(1, Node(2, Node(3)))), data_name="v", next_name="n"), SinglyLinkedList(head=Node(0, Node(1, Node(2, Node(3, Node(4))))), data_name="v", next_name="n"), SinglyLinkedList(head=Node(0, Node(1, Node(2, Node(3, Node(4, Node(5)))))), data_name="v", next_name="n"), SinglyLinkedList(head=Node(0, Node(1, Node(2, Node(3, Node(4, Node(5, Node(6))))))), data_name="v", next_name="n"), SinglyLinkedList(head=Node(0, Node(1, Node(2, Node(3, Node(4, Node(5, Node(6, Node(7)))))))), data_name="v", next_name="n"), ] for list_orig in lists: list_orig.print() for i in range(len(list_orig)): list_orig_copy = list_orig.copy() list_orig_copy.reverse(start_index=i) assert equal_list(list_orig_copy.to_array(), [x for x in range(i)] + [x for x in range(len(list_orig) - 1, i - 1, -1)]) list_orig_copy = list_orig.copy() list_orig_copy.reverse(end_index=i) assert equal_list(list_orig_copy.to_array(), [x for x in range(i, -1, -1)] + [x for x in range(i + 1, len(list_orig))]) sublist_length = len(list_orig) // 2 if sublist_length > 0 and i <= len(list_orig) - sublist_length: start, end = i, i + sublist_length - 1 list_orig_copy = list_orig.copy() list_orig_copy.reverse(start_index=start, end_index=end) assert equal_list( list_orig_copy.to_array(), [x for x in range(start)] + [x for x in range(end, start - 1, -1)] + [x for x in range(end + 1, len(list_orig))] ) def test_queue(): queue = Queue() for i in range(3): assert len(queue) == i queue.push(i) assert queue.peek() == 0 for i in range(3): assert len(queue) == 3 - i assert queue.peek() == i assert queue.pop() == i def test_stack(): stack = Stack() for i in range(3): assert len(stack) == i stack.push(i) assert stack.peek() == i for i in range(3): assert len(stack) == 3 - i assert stack.peek() == 2 - i assert stack.pop() == 2 - i def test_lru_cache(): lru_cache = LRUCache(capacity=3) assert lru_cache.get(1) is None lru_cache.put(key=1, value=1) lru_cache.put(key=2, value=2) lru_cache.put(key=3, value=3) assert lru_cache.get(1) == 1 # 1 3 2 lru_cache.put(key=4, value=4) # 4 1 3 (no 2) assert lru_cache.get(2) is None assert lru_cache.get(4) == 4 # 4 1 3 lru_cache.put(key=3, value=33) # 3 4 1 lru_cache.put(key=5, value=5) # 5 3 4 (no 1) assert lru_cache.get(1) is None assert lru_cache.get(3) == 33 assert lru_cache.get(5) == 5 def test_min_max_stack(): min_stack = MinStack() max_stack = MaxStack() for data, min_data, max_data in zip([2, 1, 3, 5, 4], [2, 1, 1, 1, 1], [2, 2, 3, 5, 5]): min_stack.push(data) max_stack.push(data) assert min_stack.get_min() == min_data assert max_stack.get_max() == max_data for min_data, max_data in zip([1, 1, 1, 2], [5, 3, 2, 2]): min_stack.pop() max_stack.pop() assert min_stack.get_min() == min_data assert max_stack.get_max() == max_data def test_monontonic_queue(): mq = MonotonicQueue(is_increasing=True) for data, benchmark in zip([5, 3, 1, 2, 4], [5, 3, 1, 1, 1]): mq.push(data) assert mq.peek() == benchmark mq = MonotonicQueue(is_increasing=False) for data, benchmark in zip([5, 3, 1, 2, 4], [5, 5, 5, 5, 5]): mq.push(data) assert mq.peek() == benchmark
from email.mime import text import random from configparser import SafeConfigParser import email, smtplib, ssl from email import encoders from email.mime.base import MIMEBase from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import sys import os current_dir = os.path.dirname(os.path.realpath(__file__)) parent_dir = os.path.dirname(current_dir) parent_dir = os.path.dirname(parent_dir) sys.path.append(parent_dir) import Packages.logging.log_file as log def choose_random_line(xlist): lines = open(xlist).read().splitlines() return random.choice(lines) def get_server_info(smtpserver): parser = SafeConfigParser() parser.read(smtpserver) ip = parser["EMAIL"]["ip"] port = parser["EMAIL"]["port"] sender_email = parser["EMAIL"]["sender"] password = parser["EMAIL"]["password"] return ip, sender_email, password, port def main(smtpserver, destinationaddresslist, bodylist, subjectlist, attachmentslist): serverinfo = get_server_info(smtpserver) subject = choose_random_line(subjectlist) body = choose_random_line(bodylist) sender_email = serverinfo[1] receiver_email = choose_random_line(destinationaddresslist) password = serverinfo[2] serverip = serverinfo[0] serverport = serverinfo[3] filename = choose_random_line(attachmentslist) # In same directory as script # Create a multipart message and set headers message = MIMEMultipart() message["From"] = sender_email message["To"] = receiver_email message["Subject"] = subject # Add body to email message.attach(MIMEText(body, "plain")) # Decide wheater an attachment should be sent if(random.randint(1,10) < 7): with open(filename, "rb") as attachment: # Add file as application/octet-stream # Email client can usually download this automatically as attachment part = MIMEBase("application", "octet-stream") part.set_payload(attachment.read()) # Encode file in ASCII characters to send by email encoders.encode_base64(part) # Add header as key/value pair to attachment part part.add_header( "Content-Disposition", f"attachment; filename= {filename}", ) # Add attachment to message and convert message to string message.attach(part) text = message.as_string() # Log in to server using secure context and send email context = ssl.create_default_context() with smtplib.SMTP_SSL(serverip, int(serverport), context=context) as server: server.login(sender_email, password) server.sendmail(sender_email, receiver_email, text) log.log_event("Emali send;" + receiver_email)
""" * * Copyright (c) 2017 Cisco Systems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * """ import os import json import pickle tls_fp_dict = None def tls_fp_dict_init(): global tls_fp_dict tls_fp_file = 'res_tls_fingerprints.json' cur_dir = os.path.dirname(__file__) tls_fp_path = os.path.join(cur_dir, tls_fp_file) tls_fp_dict = {} with open(tls_fp_path) as f: for counter, line in enumerate(f): tmp = json.loads(line) fpvalue = pickle.dumps(tmp['fingerprint']['tls']) if fpvalue in tls_fp_dict: print "warning: duplicate tls fingerprint in line " + str(counter + 1) + " of file " + tls_fp_file tls_fp_dict[fpvalue] = tmp['label'] def tls_inference(f, kwargs): global tls_fp_dict if not tls_fp_dict: tls_fp_dict_init() if 'fingerprint' in f: if 'tls' in f['fingerprint']: fpvalue = pickle.dumps(f['fingerprint']['tls']) if fpvalue in tls_fp_dict: return {'tls': tls_fp_dict[fpvalue]} return None
from edutls.record import ContentType from edutls.types import UInt8Enum, UInt16Enum, Protocol class AlertLevel(UInt8Enum): warning = 1, fatal = 2 class AlertDescription(UInt8Enum): close_notify = 0, unexpected_message = 10, bad_record_mac = 20, record_overflow = 22, handshake_failure = 40, bad_certificate = 42, unsupported_certificate = 43, certificate_revoked = 44, certificate_expired = 45, certificate_unknown = 46, illegal_parameter = 47, unknown_ca = 48, access_denied = 49, decode_error = 50, decrypt_error = 51, protocol_version = 70, insufficient_security = 71, internal_error = 80, inappropriate_fallback = 86, user_canceled = 90, missing_extension = 109, unsupported_extension = 110, unrecognized_name = 112, bad_certificate_status_response = 113, unknown_psk_identity = 115, certificate_required = 116, no_application_protocol = 120, class Alert(Protocol): def __init__(self, level: AlertLevel = AlertLevel.warning, description: AlertDescription = AlertDescription.close_notify): self.level = level self.description = description def pack(self) -> bytes: return self.level.pack() + self.description.pack() def unpack(self, data: bytes) -> bytes: self.level, data = AlertLevel.unpack(data) self.description, data = AlertDescription.unpack(data) return data @property def type(self): return ContentType.alert
import dash_core_components as dcc from dash.dependencies import Input, Output, State from urllib.parse import parse_qs, urlparse from app.models import ElementTemplate def layout(): return dcc.Dropdown(id = "elementTemplateDropdown", placeholder = "Select Element Template", multi = False, value = -1) def optionsCallback(dashApp): @dashApp.callback(Output(component_id = "elementTemplateDropdown", component_property = "options"), [Input(component_id = "siteDropdown", component_property = "value")]) def elementTemplateDropdownOptions(siteDropdownValue): return [{"label": elementTemplate.Name, "value": elementTemplate.ElementTemplateId} for elementTemplate in ElementTemplate.query. \ filter(ElementTemplate.SiteId == siteDropdownValue).order_by(ElementTemplate.Name).all()] def valueCallback(dashApp): @dashApp.callback(Output(component_id = "elementTemplateDropdown", component_property = "value"), [Input(component_id = "elementTemplateDropdown", component_property = "options")], [State(component_id = "url", component_property = "href"), State(component_id = "elementTemplateDropdown", component_property = "value")]) def elementTemplateDropdownValue(elementTemplateDropdownOptions, urlHref, elementTemplateDropdownValue): elementTemplateId = None if elementTemplateDropdownValue == -1: if elementTemplateDropdownOptions: queryString = parse_qs(urlparse(urlHref).query) if "elementTemplateId" in queryString: id = int(queryString["elementTemplateId"][0]) if len(list(filter(lambda elementTemplate: elementTemplate["value"] == id, elementTemplateDropdownOptions))) > 0: elementTemplateId = id return elementTemplateId
#!/usr/bin/python # -*- coding: utf-8 -*- ''' @AUTHOR:Joselyn Zhao @CONTACT:zhaojing17@foxmail.com @HOME_PAGE:joselynzhao.top @SOFTWERE:PyCharm @FILE:qie.py @TIME:2020/4/18 20:55 @DES: 命名切片 ''' items = [0,1,2,3,4,5,6] a = slice(2,4) print(items[2:4]) print(items[a]) items[a] = [10,11] #局部替换 print(items) print(a.start) print(a.stop) print(a.step) #None # 具有这三个属性 s = 'Helloworld' print(a.indices(len(s))) #将切片映射到特定大小的序列上。返回(start,stop,step)元组 for i in range(*a.indices(len(s))): print(s[i]) print(range(*a.indices(len(s))))
# Write code using find() and string slicing to extract the number at the end of the line below. Convert the extracted value to a floating point number and print it out. # Desired Output # 0.8475 text = "X-DSPAM-Confidence: 0.8475"; pos = text.find(" ") number = text[pos:] number = number.strip() num = float(number) print(num)
import pathlib import importlib from typing import Any, AsyncIterator, Tuple from dffml import ( config, field, entrypoint, SimpleModel, ModelNotTrained, Feature, Features, Sources, Record, SourcesContext, ) @config class DAAL4PyLRModelConfig: predict: Feature = field("Label or the value to be predicted") features: Features = field("Features to train on. For SLR only 1 allowed") location: pathlib.Path = field("Location where state should be saved",) @entrypoint("daal4pylr") class DAAL4PyLRModel(SimpleModel): r""" Implemented using daal4py. First we create the training and testing datasets **train.csv** .. code-block:: :test: :filepath: train.csv f1,ans 12.4,11.2 14.3,12.5 14.5,12.7 14.9,13.1 16.1,14.1 16.9,14.8 16.5,14.4 15.4,13.4 17.0,14.9 17.9,15.6 18.8,16.4 20.3,17.7 22.4,19.6 19.4,16.9 15.5,14.0 16.7,14.6 **test.csv** .. code-block:: :test: :filepath: test.csv f1,ans 18.8,16.4 20.3,17.7 22.4,19.6 19.4,16.9 15.5,14.0 16.7,14.6 Train the model .. code-block:: console :test: $ dffml train \ -model daal4pylr \ -model-features f1:float:1 \ -model-predict ans:int:1 \ -model-location tempdir \ -sources f=csv \ -source-filename train.csv Assess the accuracy .. code-block:: console :test: $ dffml accuracy \ -model daal4pylr \ -model-features f1:float:1 \ -model-predict ans:int:1 \ -model-location tempdir \ -features ans:int:1 \ -sources f=csv \ -source-filename test.csv \ -scorer mse \ 0.6666666666666666 Make a prediction .. code-block:: console :test: $ echo -e 'f1,ans\n0.8,1\n' | \ dffml predict all \ -model daal4pylr \ -model-features f1:float:1 \ -model-predict ans:int:1 \ -model-location tempdir \ -sources f=csv \ -source-filename /dev/stdin [ { "extra": {}, "features": { "ans": 1, "f1": 0.8 }, "key": "0", "last_updated": "2020-07-22T02:53:11Z", "prediction": { "ans": { "confidence": null, "value": 1.1907472649730522 } } } ] Example usage of daal4py Linear Regression model using python API **run.py** .. literalinclude:: /../model/daal4py/examples/lr/lr.py :test: :filepath: run.py Run the file .. code-block:: console :test: $ python run.py """ CONFIG = DAAL4PyLRModelConfig def __init__(self, config) -> None: super().__init__(config) self.pd = importlib.import_module("pandas") self.np = importlib.import_module("numpy") self.d4p = importlib.import_module("daal4py") self.joblib = importlib.import_module("joblib") self.lm = self.d4p.linear_regression_training( interceptFlag=True, streaming=True ) self.lm_predictor = self.d4p.linear_regression_prediction() self.ac_predictor = self.d4p.linear_regression_prediction() self.lm_trained = None async def __aenter__(self): await super().__aenter__() self.path = self.filepath( self.parent.config.location if not hasattr(self.parent, "temp_dir") else self.parent.temp_dir, "trained_model.sav", ) self.load_model() return self async def __aexit__(self, exc_type, exc_value, traceback): if self.lm_trained: self.joblib.dump(self.lm_trained, self.path) await super().__aexit__(exc_type, exc_value, traceback) def compare(self, alist, bfloat): result = [] for element in alist: if element <= bfloat: result.append(True) else: result.append(False) return result def load_model(self): if self.path.is_file(): self.lm_trained = self.joblib.load(self.path) def filepath(self, location, file_name): return location / file_name async def train(self, sources: Sources) -> None: async for record in sources.with_features( self.features + [self.parent.config.predict.name] ): feature_data = record.features( self.features + [self.parent.config.predict.name] ) # NOTE Duplicate feature data due to regression in oneDAL # See https://github.com/intel/dffml/issues/801 df = self.pd.DataFrame([feature_data] * 2, index=[0, 1]) xdata = df.drop([self.parent.config.predict.name], 1) ydata = df[self.parent.config.predict.name] self.lm.compute(xdata, ydata) self.lm_trained = self.lm.finalize().model async def predict( self, sources: SourcesContext ) -> AsyncIterator[Tuple[Record, Any, float]]: # Iterate through each record that needs a prediction if self.lm_trained is None: raise ModelNotTrained("Train model before prediction.") async for record in sources.with_features( self.parent.config.features.names() ): feature_data = record.features(self.features) predict = self.pd.DataFrame(feature_data, index=[0]) preds = self.lm_predictor.compute(predict, self.lm_trained) target = self.parent.config.predict.name if preds.prediction.size == 1: prediction = preds.prediction.flat[0] else: prediction = preds.prediction record.predicted(target, prediction, float("nan")) # Yield the record to the caller yield record
#+ # Copyright 2015 iXsystems, Inc. # All rights reserved # # Redistribution and use in source and binary forms, with or without # modification, are permitted providing that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ##################################################################### from . import sysctl from xml.etree import ElementTree as etree import six _classes = {} _geoms = {} _providers = {} class GEOMBase(object): def __init__(self, xml): self.xml = xml @property def id(self): return self.xml.attrib['id'] class GEOMClass(GEOMBase): @property def name(self): return self.xml.find('name').text @property def geoms(self): for i in self.xml.findall('geom'): yield GEOMObject(i) def geom_by_name(self, name): ret = list(filter(lambda g: g.name == name, self.geoms)) return ret[0] if len(ret) > 0 else None def __str__(self): return "<geom.GEOMClass name '{0}' id '{1}'>".format(self.name, self.id) def __repr__(self): return str(self) def __getstate__(self): return { 'name': self.name, 'geoms': [x.__getstate__() for x in self.geoms] } class GEOMObject(GEOMBase): @property def name(self): return self.xml.find('name').text @property def rank(self): return int(self.xml.find('rank').text) @property def clazz(self): return class_by_id(self.xml.find('class').attrib['ref']) @property def provider(self): try: return six.next(self.providers) except StopIteration: return None @property def consumer(self): try: return six.next(self.consumers) except StopIteration: return None @property def providers(self): for i in self.xml.findall('provider'): yield GEOMProvider(i) @property def consumers(self): for i in self.xml.findall('consumer'): yield GEOMConsumer(i) @property def config(self): config = self.xml.find('config') if config is not None: return {i.tag: i.text for i in config} return None def __str__(self): return "<geom.GEOMObject name '{0}' id '{1}'>".format(self.name, self.id) def __repr__(self): return str(self) def __getstate__(self): return { 'id': self.id, 'name': self.name, 'class_id': self.clazz.id, 'config': self.config, 'providers': [x.__getstate__() for x in self.providers], 'consumers': [x.__getstate__() for x in self.consumers] } class GEOMProvider(GEOMBase): @property def geom(self): return geom_by_id(self.xml.find('geom').attrib['ref']) @property def mode(self): return self.xml.find('mode').text @property def name(self): return self.xml.find('name').text @property def mediasize(self): return int(self.xml.find('mediasize').text) @property def sectorsize(self): return int(self.xml.find('sectorsize').text) @property def stripesize(self): return int(self.xml.find('stripesize').text) @property def stripeoffset(self): return int(self.xml.find('stripeoffset').text) @property def description(self): try: d = self.xml.find("config/descr") return d.text except: return None @property def config(self): config = self.xml.find('config') if config is not None: return {i.tag: i.text for i in config} return None def __str__(self): return "<geom.GEOMProvider name '{0}' id '{1}'>".format(self.name, self.id) def __repr__(self): return str(self) def __getstate__(self): return { 'name': self.name, 'mode': self.mode, 'geom_id': self.geom.id, 'mediasize': self.mediasize, 'sectorsize': self.sectorsize, 'stripesize': self.stripesize, 'stripeoffset': self.stripeoffset, 'config': self.config } class GEOMConsumer(GEOMBase): @property def geom(self): return geom_by_id(self.xml.find('geom').attrib['ref']) @property def mode(self): return self.xml.find('mode').text @property def provider(self): return provider_by_id(self.xml.find('provider').attrib['ref']) @property def config(self): config = self.xml.find('config') if config is not None: return {i.tag: i.text for i in config} return None def __str__(self): return "<geom.GEOMConsumer id '{0}'>".format(self.id) def __repr__(self): return str(self) def __getstate__(self): return { 'geom_id': self.geom.id, 'provider_id': self.provider.id, 'config': self.config } def scan(): confxml = sysctl.sysctlbyname('kern.geom.confxml').strip('\x00') tree = etree.fromstring(confxml) for i in tree.findall('class'): cls = GEOMClass(i) _classes[cls.id] = cls for g in cls.geoms: _geoms[g.id] = g for p in g.providers: _providers[p.id] = p def classes(): return _classes.values() def geoms(): return _geoms.values() def class_by_id(ident): return _classes[ident] def class_by_name(name): ret = list(filter(lambda g: g.name == name, _classes.values())) return ret[0] if len(ret) > 0 else None def geom_by_id(ident): return _geoms[ident] def geom_by_name(classname, name): cls = class_by_name(classname) if not cls: return None return cls.geom_by_name(name) def provider_by_id(ident): return _providers[ident] # Yeah, no, don't do this. On a large system, it was discovered # this module was using ~24MB of resident memory. (tested on ~1240 disk system) # scan()
import numpy as np import sklearn.model_selection class _TemporalDataset: def __init__(self, data): self.X = np.array(data) class TemporalDatasetTrain(_TemporalDataset): def __init__(self, data, ground_truth=None): super(TemporalDatasetTrain, self).__init__(data) self.ground_truth = np.array(ground_truth) @property def X_train(self): return self.X @property def ground_truth_train(self): return self.ground_truth class TemporalDatasetPredict(_TemporalDataset): def __init__(self, data, ground_truth=None, prediction_rule='last_observed', prediction_window=4, random_state=42): super(TemporalDatasetPredict, self).__init__(data) self.prediction_rule = prediction_rule self.prediction_window = 4 # Find time of last observed entry for all rows if self.prediction_rule == 'last_observed': time_of_prediction = self.X.shape[1] - np.argmax( self.X[:, ::-1] != 0, axis=1) - 1 # Find time as nearest (in abs. value) nonzero intro to random integer elif self.prediction_rule == 'random': np.random.seed(random_state) time_of_prediction = np.array([np.argmin(np.abs(np.random.randint( 0, self.X.shape[1]) - np.arange(0, self.X.shape[1])*(x != 0))) for x in self.X], dtype=np.int) # Copy values to be predicted y_true = np.copy(self.X[range(self.X.shape[0]), time_of_prediction]) # Remove observations in or after prediction window for i_row in range(self.X.shape[0]): self.X[i_row, max(0, time_of_prediction[i_row] - prediction_window):] = 0 # Find rows that still contain observations self.valid_rows = np.sum(self.X, axis=1) > 0 # Remove all rows that don't satisfy the specified criteria self.y = y_true[self.valid_rows] self.X = self.X[self.valid_rows] self.time_of_prediction = time_of_prediction[self.valid_rows] self.ground_truth = ground_truth if not(self.ground_truth is None): self.ground_truth = ground_truth[self.valid_rows] @property def X_pred_regressor(self): return self.X @property def y_true(self): return self.y @property def ground_truth_pred(self): return self.ground_truth class TemporalDatasetKFold(_TemporalDataset): def __init__(self, data, ground_truth=None, prediction_rule='last_observed', prediction_window=4, n_splits=5, random_state=42): self.prediction_rule = prediction_rule self.prediction_window = prediction_window self.n_splits = n_splits self.__pred_obj = TemporalDatasetPredict( data=data, ground_truth=ground_truth, prediction_rule=self.prediction_rule, prediction_window=self.prediction_window, random_state=random_state) if ground_truth is None: self.__train_obj = TemporalDatasetTrain( data=data[self.__pred_obj.valid_rows]) else: self.__train_obj = TemporalDatasetTrain( data=data[self.__pred_obj.valid_rows], ground_truth=ground_truth[self.__pred_obj.valid_rows]) kf = sklearn.model_selection.KFold(n_splits, shuffle=False) self.__idc_per_fold = [ idc_fold for idc_fold in kf.split(self.__train_obj.X)] # Instantiate with 1st fold self.__i_fold = 0 self.__idc_train, self.__idc_pred = self.__idc_per_fold[self.i_fold] @property def X_train(self): return self.__train_obj.X[self.__idc_train] @property def X_pred_regressor(self): return self.__pred_obj.X[self.__idc_pred] @property def y_true(self): return self.__pred_obj.y[self.__idc_pred] @property def time_of_prediction(self): return self.__pred_obj.time_of_prediction[self.__idc_pred] @property def ground_truth_train(self): if (self.__train_obj.ground_truth is None): return None return self.__train_obj.ground_truth[self.__idc_train] @property def ground_truth_pred(self): if (self.__pred_obj.ground_truth is None): return None return self.__pred_obj.ground_truth[self.__idc_pred] @property def i_fold(self): return self.__i_fold @i_fold.setter def i_fold(self, i_fold): assert(int(i_fold) < self.n_splits) self.__i_fold = int(i_fold) self.__idc_train, self.__idc_pred = self.__idc_per_fold[self.__i_fold]
import os, sys import time from tqdm import tqdm import argparse def get_parser(): parser = argparse.ArgumentParser(description="PAIB") group = parser.add_mutually_exclusive_group(required=False) group.add_argument( "-pg", "--passgen", action="store_true", help="Generate passwords using keywords given by the user", ) group.add_argument( "-op", "--osint_passgen", action="store_true", help="helps to collect victim's info through inbuilt osint tool and generate passwords using the words collected", ) group.add_argument( "-pt", "--pretrained", action="store_true", help="Generate password on a pretrained model using this command", ) return parser def main(): parser = get_parser() args = parser.parse_args() if args.passgen: os.system("python3 train.py") elif args.osint_passgen: print("[+] Tool Developement in progress") elif args.pretrained: os.system("python3 sample.py") else: parser.print_help() if __name__ == "__main__": main()
# set up logging import logging, os from datetime import datetime, timedelta logging.basicConfig(level=os.environ.get("LOGLEVEL","INFO")) log = logging.getLogger(__name__) import rasterio import numpy as np from datetime import datetime from multiprocessing import Pool from .util import * from .const import * def _zonal_worker(args): """A function for use with the multiprocessing package, passed to each worker. Returns a dictionary of the form: {zone_id:{'value':VALUE,'arable_pixels':VALUE,'percent_arable':VALUE},...} Parameters ---------- args:tuple Tuple containing the following (in order): targetwindow product_path shape_path """ targetwindow, product_path, shape_path, mask_path = args # get product raster info product_handle = rasterio.open(product_path,'r') product_noDataVal = product_handle.meta['nodata'] product_data = product_handle.read(1,window=targetwindow) product_handle.close() # get shape raster info shape_handle = rasterio.open(shape_path,'r') shape_noDataVal = shape_handle.meta['nodata'] shape_data = shape_handle.read(1,window=targetwindow) shape_handle.close() # get mask raster info if mask_path is not None: mask_handle = rasterio.open(mask_path,'r') mask_data = mask_handle.read(1,window=targetwindow) mask_handle.close() else: mask_data = np.full(product_data.shape,1) # create empty output dictionary out_dict = {} # loop over all admin codes present in shape_ uniquezones = np.unique(shape_data[shape_data != shape_noDataVal]) # exclude nodata value for zone_code in uniquezones: valid_pixels = int((shape_data[(shape_data == zone_code)]).size) if valid_pixels == 0: continue masked = np.array(product_data[(product_data != product_noDataVal) & (shape_data == zone_code) & (mask_data == 1)], dtype='int64') value = (masked.mean() if (masked.size > 0) else 0) out_dict[zone_code] = {"value":value,"pixels":masked.size} return out_dict def _update(stored_dict,this_dict) -> dict: """Updates stats dictionary with values from a new window result Parameters ---------- stored_dict:dict Dictionary to be updated with new data this_dict:dict New data with which to update stored_dict """ out_dict = stored_dict for k in this_dict.keys(): this_info = this_dict[k] try: stored_info = stored_dict[k] except KeyError: # if stored_dict has no info for zone k (new zone in this window), set it equal to the info from this_dict out_dict[k] = this_info continue try: # weight of stored_dict value is the ratio of its valid pixels to the total new sum of valid pixels stored_weight = float(stored_info['pixels']) / float(stored_info['pixels'] + this_info['pixels']) except ZeroDivisionError: # if no valid pixels at all, weight everything at 0 stored_weight = 0 try: # weight of this_dict value is the ratio of its valid pixels to the total new sum of valid pixels this_weight = float(this_info['pixels']) / float(stored_info['pixels'] + this_info['pixels']) except ZeroDivisionError: # if the total valid pixels are 0, everything gets weight 0 this_weight = 0 ## weighted mean value value = (stored_info['value'] * stored_weight) + (this_info['value'] * this_weight) out_dict[k] = {'value':value, 'pixels':stored_info['pixels'] + this_info['pixels']} return out_dict def zonal_stats(zone_raster:str, data_raster:str, mask_raster = None, n_cores:int = 1, block_scale_factor: int = 8, default_block_size: int = 256, time:bool = False, *args, **kwargs) -> dict: """Generates zonal statistics based on input data and zone rasters *** Parameters ---------- zone_raster: str Path to input zone raster file data_raster: str Path to raster file n_cores: int How many cores to use for parallel processing. Default 1 block_scale_factor: int Factor by which to scale default raster block size for the purposes of windowed reads. Default 8 default_block_size: int Inferred block size for untiled data raster. Default 256 time: bool Whether to log time it takes to execute this function. Default False Returns ------- A nested dictionary. Outer-level keys are zone id numbers, each of which corresponds to an inner dictionary with keys "value" (the mean for that zone) and "pixels" (the number of pixels in that zone). """ # start timer startTime = datetime.now() # coerce integer arguments to proper type n_cores = int(n_cores) block_scale_factor = int(block_scale_factor) default_block_size = int(default_block_size) # get raster metadata with rasterio.open(data_raster,'r') as meta_handle: metaprofile = meta_handle.profile hnum = meta_handle.width vnum = meta_handle.height if metaprofile['tiled']: blocksize = metaprofile['blockxsize'] * block_scale_factor else: log.warning(f"Input raster {data_raster} is not tiled!") blocksize = default_block_size * block_scale_factor # get windows windows = getWindows(hnum, vnum, blocksize) # generate arguments to pass into _zonal_worker parallel_args = [(w, data_raster, zone_raster, mask_raster) for w in windows] # do the multiprocessing output_data = {} with Pool(processes = n_cores) as p: for window_data in p.map(_zonal_worker, parallel_args): output_data = _update(output_data, window_data) for zone in output_data: if output_data[zone]['pixels'] == 0: output_data[zone]['value'] = np.NaN if time: log.info(f"Finished in {datetime.now() - startTime}") return output_data
class Solution(object): def containsNearbyDuplicate(self, nums, k): """ :type nums: List[int] :type k: int :rtype: bool """ if len(nums) <= 1: return False if k == 0: return False p1, p2 = 0, 1 numSet = set() numSet.add(nums[0]) while p2 < len(nums): if p2 - p1 <= k: if nums[p2] in numSet: return True numSet.add(nums[p2]) p2 += 1 else: numSet.remove(nums[p1]) if nums[p2] in numSet: return True numSet.add(nums[p2]) p1 += 1 p2 += 1 return False
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Lazily-evaluated property pattern in Python. https://en.wikipedia.org/wiki/Lazy_evaluation *References: bottle https://github.com/bottlepy/bottle/blob/cafc15419cbb4a6cb748e6ecdccf92893bb25ce5/bottle.py#L270 django https://github.com/django/django/blob/ffd18732f3ee9e6f0374aff9ccf350d85187fac2/django/utils/functional.py#L19 pip https://github.com/pypa/pip/blob/cb75cca785629e15efb46c35903827b3eae13481/pip/utils/__init__.py#L821 pyramimd https://github.com/Pylons/pyramid/blob/7909e9503cdfc6f6e84d2c7ace1d3c03ca1d8b73/pyramid/decorator.py#L4 werkzeug https://github.com/pallets/werkzeug/blob/5a2bf35441006d832ab1ed5a31963cbc366c99ac/werkzeug/utils.py#L35 *TL;DR80 Delays the eval of an expr until its value is needed and avoids repeated evals. """ from __future__ import print_function import functools class lazy_property(object): def __init__(self, function): self.function = function functools.update_wrapper(self, function) def __get__(self, obj, type_): if obj is None: return self val = self.function(obj) obj.__dict__[self.function.__name__] = val return val def lazy_property2(fn): attr = '_lazy__' + fn.__name__ @property def _lazy_property(self): if not hasattr(self, attr): setattr(self, attr, fn(self)) return getattr(self, attr) return _lazy_property class Person(object): def __init__(self, name, occupation): self.name = name self.occupation = occupation self.call_count2 = 0 @lazy_property def relatives(self): # Get all relatives, let's assume that it costs much time. relatives = "Many relatives." return relatives @lazy_property2 def parents(self): self.call_count2 += 1 return "Father and mother" def main(): Jhon = Person('Jhon', 'Coder') print(u"Name: {0} Occupation: {1}".format(Jhon.name, Jhon.occupation)) print(u"Before we access `relatives`:") print(Jhon.__dict__) print(u"Jhon's relatives: {0}".format(Jhon.relatives)) print(u"After we've accessed `relatives`:") print(Jhon.__dict__) print(Jhon.parents) print(Jhon.__dict__) print(Jhon.parents) print(Jhon.call_count2) if __name__ == '__main__': main() ### OUTPUT ### # Name: Jhon Occupation: Coder # Before we access `relatives`: # {'call_count2': 0, 'name': 'Jhon', 'occupation': 'Coder'} # Jhon's relatives: Many relatives. # After we've accessed `relatives`: # {'relatives': 'Many relatives.', 'call_count2': 0, 'name': 'Jhon', 'occupation': 'Coder'} # Father and mother # {'_lazy__parents': 'Father and mother', 'relatives': 'Many relatives.', 'call_count2': 1, 'name': 'Jhon', 'occupation': 'Coder'} # noqa flake8 # Father and mother # 1
# -*- coding: utf-8 -*- from aserializer.utils.parsers import Parser class MetaOptions(object): def __init__(self, meta): self.fields = getattr(meta, 'fields', []) self.exclude = getattr(meta, 'exclude', []) class SerializerMetaOptions(MetaOptions): def __init__(self, meta): super(SerializerMetaOptions, self).__init__(meta) self.parser = getattr(meta, 'parser', Parser) class CollectionMetaOptions(MetaOptions): def __init__(self, meta): super(CollectionMetaOptions, self).__init__(meta) self.serializer = getattr(meta, 'serializer', None) self.with_metadata = getattr(meta, 'with_metadata', True) self.metadata_key = getattr(meta, 'metadata_key', '_metadata') self.items_key = getattr(meta, 'items_key', 'items') self.offset_key = getattr(meta, 'offset_key', 'offset') self.limit_key = getattr(meta, 'limit_key', 'limit') self.total_count_key = getattr(meta, 'total_count_key', 'totalCount') self.sort = getattr(meta, 'sort', []) self.validation = getattr(meta, 'validation', False)
import sys userpassinfo = ('51reboot', '123456') class Auth(object): def login(self, username, password): if username == userpassinfo[0] and password == userpassinfo[1]: return "login succ.", True else: return "login faild.", False def logout(self): sys.exit(0)
from django.urls import include, path from .views import ( TraderRegisterView, FarmerRegisterView, UserLoginView, UserLogoutView, ValidateOTP, ValidatePhoneNumberSendOTP, ) urlpatterns = [ path("send/otp/", ValidatePhoneNumberSendOTP.as_view(), name="send_otp"), path("verify/otp/", ValidateOTP.as_view(), name="verify_otp"), path( "register/users/traders/", TraderRegisterView.as_view(), name="register_traders", ), path( "register/users/farmers/", FarmerRegisterView.as_view(), name="register_farmers" ), path("login/", UserLoginView.as_view(), name="user_login"), path("logout/", UserLogoutView.as_view(), name="user_logout"), ]
#!/usr/bin/env python """ Reads the example file to a dict This file shows, how to read the data into a dict, that can be used as any other Python dict. Also it shows how to read the attributes available in the file and in a dataset. """ from structure_definitions import * __author__ = "Johannes Hiller" __version__ = "0.8" __maintainer__ = "Johannes Hiller" __email__ = "johannes.hiller@ika.rwth-aachen.de" __status__ = "development" # The file to read h5_file = "l3pilot_cdf_filled_example.h5" # Initialize the dict for storing the data h5_dict = dict() # Open the file with h5py.File(h5_file, "r") as file: # Initialize the ego part of the dict h5_dict[str_ego] = dict() for item in [list1 for list1 in ego_struct if list1.__class__.__name__ == "EgoTop"]: h5_dict[str_ego][item.name] = file[str_ego][item.name] # Initialize the lane part of the dict h5_dict[str_lan] = dict() for item in [list1 for list1 in lane_struct if list1.__class__.__name__ == "LaneTop"]: h5_dict[str_lan][item.name] = file[str_lan][item.name] # Initialize the dict for the different lanes h5_dict[str_lan][str_lan_obj] = dict() for item in [list1 for list1 in lane_struct if list1.__class__.__name__ == "LaneSObject"]: h5_dict[str_lan][str_lan_obj][item.name] = file[str_lan][str_lan_obj][item.name] # Initialize the object part of the dict h5_dict[str_obj] = dict() for item in [list1 for list1 in object_struct if list1.__class__.__name__ == "ObjectTop"]: h5_dict[str_obj][item.name] = file[str_obj][item.name] # Initialize the dict for the different objects h5_dict[str_obj][str_obj_obj] = dict() for item in [list1 for list1 in object_struct if list1.__class__.__name__ == "ObjectSObject"]: h5_dict[str_obj][str_obj_obj][item.name] = file[str_obj][str_obj_obj][item.name] # Initialize the positioning part of the dict h5_dict[str_pos] = dict() for item in [list1 for list1 in pos_struct if list1.__class__.__name__ == "PosTop"]: h5_dict[str_pos][item.name] = file[str_pos][item.name] # Print some information about the file print("The file is in version {} of the L3Pilot Common Data Format and was created by {}, {} at {}" .format(float(file.attrs["metaData"]["General"]["FormatVersion"]), file.attrs["author"], file.attrs["institution"], file.attrs["creation_date"])) # Print some information on a signal in the egoVehicle dataset print("The description of the UTCTime is : \"{}\" and its unit is \"{}\"" .format(file["egoVehicle"].attrs["UTCTime"][0][1], file["egoVehicle"].attrs["UTCTime"][1][1])) # Print the number of timestamps contained in the file print("The loaded h5 file contains {} timestamps".format(len(h5_dict["egoVehicle"]["UTCTime"])))
from .gat import GAT from .sp_gat import SpGAT
from pprint import pprint from bubbl2struct import b2s # Load the simple diagram from the diagras folder converter = b2s('diagrams/simple_diagram.html') # Load as JSON json = converter.as_json() print 'Converted to json format: ' pprint(json) # Load as adjacency adj, nodes, edges = converter.as_adj() print 'Converted to adjacency matrix: ' pprint(str(adj)) print 'Node information: ' for (node, id) in zip(nodes, range(0, len(nodes))): print str(id) + ': ' + node print 'Edge information: ' pprint(edges) print str(adj.shape)
"""Python script to create GnuPlot plots.""" from subprocess import Popen, PIPE # A few constants shared across all plots FONTSIZE = "15" TERMINAL = "postscript eps color solid" LINEWIDTH = "3" OUTPUT_PREFIX = "output/" # The following is the template all GnuPlot script files share. It contains # placeholders for a number of values: # 0. Terminal type (filled from variable TERMINAL) # 1. Output file # 2. Title # 3. Font size for all fonts (filled from FONTSIZE) # 4. Label for X-Axis # 5. Label for Y-Axis # The template will be dynamically extended with the plot commands and other # options (like logscale etc) required to create the desired plots. TEMPLATE = """#!/usr/bin/gnuplot set terminal {0} set output '{1}' set title "{2}" font ",{3}" set xlabel "{4}" font ",{3}" set ylabel "{5}" font ",{3}" set xtics font ",{3}" set ytics font ",{3}" set key font ",{3}" spacing 1.5 """ TARGET = [ { # Graph to display the distribution of share steps "output": "impl-simu-share-time.eps", "xlabel": "Step", "ylabel": "Fraction of Users", "title": "Share Distribution over Time", "options": [ "set xrange[0:10]" ], "plot": [ { "input": "share-step-distribution.csv", "x": "1", "y": "2", "title": "p(n)", "type": "lines", "options": [ "lw " + LINEWIDTH, ] } ] }, # End Share Step Distribution Graph { # Graph to display degree distribution of a scale-free network "output": "impl-simu-scale-free.eps", "xlabel": "Degree", "ylabel": "Number of Users", "title": "Degree Distribution of a Scale-Free Network", "options": [ "set logscale xy", "set xrange[1:1000]" ], "plot": [ { "input": "u100000/user-distribution.csv", "x": "2", "y": "3", "title": "u = 100 000 Users", "type": "lines", "filter": { "column": "1", "value": "0" }, "options": [ "lw " + LINEWIDTH, ] } ] }, # End of degree distribution of a scale-free network plot { # Graph to display how the degree distribution evolves over rounds "output": "impl-simu-user-development.eps", "xlabel": "Degree", "ylabel": "Number of Users", "title": "Median Degree Distribution over Time (100k initial Users)", "options": [ "set logscale xy", "set xrange[1:1000]" ], "plot": [ { "input": "u100000/user-distribution.csv", "x": "2", "y": "3", "title": "Step 0", "type": "lines", "filter": { "column": "1", "value": "0" }, "options": [ "lw " + LINEWIDTH, ] }, { "input": "u100000/user-distribution.csv", "x": "2", "y": "3", "title": "Step 50", "type": "lines", "filter": { "column": "1", "value": "50" }, "options": [ "lw " + LINEWIDTH, ] }, { "input": "u100000/user-distribution.csv", "x": "2", "y": "3", "title": "Step 100", "type": "lines", "filter": { "column": "1", "value": "100" }, "options": [ "lw " + LINEWIDTH, ] }, { "input": "u100000/user-distribution.csv", "x": "2", "y": "3", "title": "Step 150", "type": "lines", "filter": { "column": "1", "value": "150" }, "options": [ "lw " + LINEWIDTH, ] }, { "input": "u100000/user-distribution.csv", "x": "2", "y": "3", "title": "Step 200", "type": "lines", "filter": { "column": "1", "value": "200" }, "options": [ "lw " + LINEWIDTH, ] } ] }, # End of degree distribution over time plot { # Graph to display the VICBF scaling "output": "eval-simu-vicbf-scaling.eps", "xlabel": "Step", "ylabel": "Size (MB)", "title": "Median Size of Serialized VI-CBF over Time (100k initial Users, Orphans only)", "options": [ "set encoding iso_8859_1", "set termoption dash", "set key top left", "set for [i=1:5] linetype i lt i", 'set style line 1 lt 6 lc rgb "red" lw ' + LINEWIDTH, 'set style line 2 lt 1 lc rgb "red" lw ' + LINEWIDTH, 'set style line 3 lt 6 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 4 lt 1 lc rgb "blue" lw ' + LINEWIDTH, ], "plot": [ { "input": "u100000/vicbf-scaling-fpr0.01-proto1.csv", "x": "1", "y": "($20 / 1024 / 1024)", "title": "Uncompressed (FPR=0.01 \261 0.0001, Protocol 1)", "type": "lines", "options": [ "ls 1", ] }, { "input": "u100000/vicbf-scaling-fpr0.01-proto2.csv", "x": "1", "y": "($20 / 1024 / 1024)", "title": "Uncompressed (FPR=0.01 \261 0.0001, Protocol 2)", "type": "lines", "options": [ "ls 3" ] }, { "input": "u100000/vicbf-scaling-fpr0.01-proto1.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.01 \261 0.0001, Protocol 1)", "type": "lines", "options": [ "ls 2", ] }, { "input": "u100000/vicbf-scaling-fpr0.01-proto2.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.01 \261 0.0001, Protocol 2)", "type": "lines", "options": [ "ls 4" ] } ] }, # End of VICBF scaling graph { # Graph to display the VICBF scaling for 1000 users "output": "eval-simu-vicbf-scaling-u1000.eps", "xlabel": "Step", "ylabel": "Size (MB)", "title": "Median Size of Serialized VI-CBF over Time (1k initial Users, Orphans only)", "options": [ "set encoding iso_8859_1", "set termoption dash", "set key top left", "set for [i=1:5] linetype i lt i", 'set style line 1 lt 6 lc rgb "red" lw ' + LINEWIDTH, 'set style line 2 lt 1 lc rgb "red" lw ' + LINEWIDTH, 'set style line 3 lt 6 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 4 lt 1 lc rgb "blue" lw ' + LINEWIDTH, ], "plot": [ { "input": "u1000/vicbf-scaling-fpr0.01-proto1.csv", "x": "1", "y": "($20 / 1024 / 1024)", "title": "Uncompressed (FPR=0.01 \261 0.0001, Protocol 1)", "type": "lines", "options": [ "ls 1", ] }, { "input": "u1000/vicbf-scaling-fpr0.01-proto2.csv", "x": "1", "y": "($20 / 1024 / 1024)", "title": "Uncompressed (FPR=0.01 \261 0.0001, Protocol 2)", "type": "lines", "options": [ "ls 3" ] }, { "input": "u1000/vicbf-scaling-fpr0.01-proto1.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.01 \261 0.0001, Protocol 1)", "type": "lines", "options": [ "ls 2", ] }, { "input": "u1000/vicbf-scaling-fpr0.01-proto2.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.01 \261 0.0001, Protocol 2)", "type": "lines", "options": [ "ls 4" ] } ] }, # End of VICBF scaling graph for 1000 users { # Graph to display the VICBF scaling depending on FPR, u=100000 "output": "eval-simu-vicbf-scaling-u100000-fpr.eps", "xlabel": "Step", "ylabel": "Size (MB)", "title": "Median Size of Serialized VI-CBF for different FPRs over Time (100k initial Users, Orphans only)", "options": [ "set encoding iso_8859_1", "set termoption dash", "set key top left", "set for [i=1:5] linetype i lt i", 'set style line 1 lt 6 lc rgb "red" lw ' + LINEWIDTH, 'set style line 2 lt 1 lc rgb "red" lw ' + LINEWIDTH, 'set style line 3 lt 6 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 4 lt 1 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 5 lt 6 lc rgb "green" lw ' + LINEWIDTH, 'set style line 6 lt 1 lc rgb "green" lw ' + LINEWIDTH, ], "plot": [ { "input": "u100000/vicbf-scaling-fpr0.1-proto1.csv", "x": "1", "y": "($20 / 1024 / 1024)", "title": "Uncompressed (FPR=0.1 \261 0.001)", "type": "lines", "options": [ "ls 5", ] }, { "input": "u100000/vicbf-scaling-fpr0.01-proto1.csv", "x": "1", "y": "($20 / 1024 / 1024)", "title": "Uncompressed (FPR=0.01 \261 0.0001)", "type": "lines", "options": [ "ls 1", ] }, { "input": "u100000/vicbf-scaling-fpr0.001-proto1.csv", "x": "1", "y": "($20 / 1024 / 1024)", "title": "Uncompressed (FPR=0.001 \261 0.0001)", "type": "lines", "options": [ "ls 3" ] }, { "input": "u100000/vicbf-scaling-fpr0.1-proto1.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.1 \261 0.001)", "type": "lines", "options": [ "ls 6" ] }, { "input": "u100000/vicbf-scaling-fpr0.01-proto1.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.01 \261 0.0001)", "type": "lines", "options": [ "ls 2", ] }, { "input": "u100000/vicbf-scaling-fpr0.001-proto1.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.001 \261 0.0001)", "type": "lines", "options": [ "ls 4" ] }, ] }, # End of VICBF FPR scaling graph for u=100000 { # Graph to display the VICBF scaling depending on FPR, u=100000, compressed only "output": "eval-simu-vicbf-scaling-u100000-fpr-compressed.eps", "xlabel": "Step", "ylabel": "Size (MB)", "title": "Median Compressed VI-CBF Size for different FPRs over Time (u=100k, Orphans only)", "options": [ "set encoding iso_8859_1", "set termoption dash", "set key top left", "set for [i=1:5] linetype i lt i", 'set style line 1 lt 6 lc rgb "red" lw ' + LINEWIDTH, 'set style line 2 lt 1 lc rgb "red" lw ' + LINEWIDTH, 'set style line 3 lt 6 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 4 lt 1 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 5 lt 6 lc rgb "green" lw ' + LINEWIDTH, 'set style line 6 lt 1 lc rgb "green" lw ' + LINEWIDTH, ], "plot": [ { "input": "u100000/vicbf-scaling-fpr0.1-proto1.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.1 \261 0.001)", "type": "lines", "options": [ "ls 6" ] }, { "input": "u100000/vicbf-scaling-fpr0.01-proto1.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.01 \261 0.0001)", "type": "lines", "options": [ "ls 2", ] }, { "input": "u100000/vicbf-scaling-fpr0.001-proto1.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.001 \261 0.0001)", "type": "lines", "options": [ "ls 4" ] }, ] }, # End of VICBF FPR scaling graph for u=100000 { # Graph to display the VICBF scaling depending on FPR for u=1000 "output": "eval-simu-vicbf-scaling-u1000-fpr.eps", "xlabel": "Step", "ylabel": "Size (MB)", "title": "Median Size of Serialized VI-CBF for different FPRs over Time (1k initial Users, Orphans only)", "options": [ "set encoding iso_8859_1", "set termoption dash", "set key top left", "set for [i=1:5] linetype i lt i", 'set style line 1 lt 6 lc rgb "red" lw ' + LINEWIDTH, 'set style line 2 lt 1 lc rgb "red" lw ' + LINEWIDTH, 'set style line 3 lt 6 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 4 lt 1 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 5 lt 6 lc rgb "green" lw ' + LINEWIDTH, 'set style line 6 lt 1 lc rgb "green" lw ' + LINEWIDTH, ], "plot": [ { "input": "u1000/vicbf-scaling-fpr0.1-proto1.csv", "x": "1", "y": "($20 / 1024 / 1024)", "title": "Uncompressed (FPR=0.1 \261 0.001)", "type": "lines", "options": [ "ls 5", ] }, { "input": "u1000/vicbf-scaling-fpr0.01-proto1.csv", "x": "1", "y": "($20 / 1024 / 1024)", "title": "Uncompressed (FPR=0.01 \261 0.0001)", "type": "lines", "options": [ "ls 1", ] }, { "input": "u1000/vicbf-scaling-fpr0.001-proto1.csv", "x": "1", "y": "($20 / 1024 / 1024)", "title": "Uncompressed (FPR=0.001 \261 0.0001)", "type": "lines", "options": [ "ls 3" ] }, { "input": "u1000/vicbf-scaling-fpr0.1-proto1.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.1 \261 0.001)", "type": "lines", "options": [ "ls 6" ] }, { "input": "u1000/vicbf-scaling-fpr0.01-proto1.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.01 \261 0.0001)", "type": "lines", "options": [ "ls 2", ] }, { "input": "u1000/vicbf-scaling-fpr0.001-proto1.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.001 \261 0.0001)", "type": "lines", "options": [ "ls 4" ] }, ] }, # End of VICBF FPR scaling graph for u=1000 { # Graph to display the VICBF scaling depending on FPR for u=1000 "output": "eval-simu-vicbf-scaling-u1000-fpr-compressed.eps", "xlabel": "Step", "ylabel": "Size (MB)", "title": "Median Compressed VI-CBF Size for different FPRs over Time (u=1k, Orphans only)", "options": [ "set encoding iso_8859_1", "set termoption dash", "set key top left", "set for [i=1:5] linetype i lt i", 'set style line 1 lt 6 lc rgb "red" lw ' + LINEWIDTH, 'set style line 2 lt 1 lc rgb "red" lw ' + LINEWIDTH, 'set style line 3 lt 6 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 4 lt 1 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 5 lt 6 lc rgb "green" lw ' + LINEWIDTH, 'set style line 6 lt 1 lc rgb "green" lw ' + LINEWIDTH, ], "plot": [ { "input": "u1000/vicbf-scaling-fpr0.1-proto1.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.1 \261 0.001)", "type": "lines", "options": [ "ls 6" ] }, { "input": "u1000/vicbf-scaling-fpr0.01-proto1.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.01 \261 0.0001)", "type": "lines", "options": [ "ls 2", ] }, { "input": "u1000/vicbf-scaling-fpr0.001-proto1.csv", "x": "1", "y": "($21 / 1024 / 1024)", "title": "Compressed (FPR=0.001 \261 0.0001)", "type": "lines", "options": [ "ls 4" ] }, ] }, # End of VICBF FPR scaling graph for u=1000, compressed only { # Graph to display the VICBF scaling depending on FPR, productive KVs only, u=100000 "output": "eval-simu-vicbf-scaling-u100000-productive.eps", "xlabel": "Step", "ylabel": "Size (MB)", "title": "Median Size of Serialized VI-CBF for different FPRs over Time (100k initial Users, Non-Orphans only)", "options": [ "set encoding iso_8859_1", "set termoption dash", "set key top left", "set for [i=1:5] linetype i lt i", 'set style line 1 lt 6 lc rgb "red" lw ' + LINEWIDTH, 'set style line 2 lt 1 lc rgb "red" lw ' + LINEWIDTH, 'set style line 3 lt 6 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 4 lt 1 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 5 lt 6 lc rgb "green" lw ' + LINEWIDTH, 'set style line 6 lt 1 lc rgb "green" lw ' + LINEWIDTH, ], "plot": [ { "input": "u100000/vicbf-scaling-fpr0.1-retronly.csv", "x": "1", "y": "($5 / 1024 / 1024)", "title": "Uncompressed (FPR=0.1 \261 0.001)", "type": "lines", "options": [ "ls 5", ] }, { "input": "u100000/vicbf-scaling-fpr0.01-retronly.csv", "x": "1", "y": "($5 / 1024 / 1024)", "title": "Uncompressed (FPR=0.01 \261 0.0001)", "type": "lines", "options": [ "ls 1", ] }, { "input": "u100000/vicbf-scaling-fpr0.001-retronly.csv", "x": "1", "y": "($5 / 1024 / 1024)", "title": "Uncompressed (FPR=0.001 \261 0.0001)", "type": "lines", "options": [ "ls 3" ] }, { "input": "u100000/vicbf-scaling-fpr0.1-retronly.csv", "x": "1", "y": "($6 / 1024 / 1024)", "title": "Compressed (FPR=0.1 \261 0.001)", "type": "lines", "options": [ "ls 6" ] }, { "input": "u100000/vicbf-scaling-fpr0.01-retronly.csv", "x": "1", "y": "($6 / 1024 / 1024)", "title": "Compressed (FPR=0.01 \261 0.0001)", "type": "lines", "options": [ "ls 2", ] }, { "input": "u100000/vicbf-scaling-fpr0.001-retronly.csv", "x": "1", "y": "($6 / 1024 / 1024)", "title": "Compressed (FPR=0.001 \261 0.0001)", "type": "lines", "options": [ "ls 4" ] }, ] }, # End of VICBF FPR scaling graph for u=100000 for productive KVs only { # Graph to display the VICBF scaling depending on FPR, productive KVs only, u=1000 "output": "eval-simu-vicbf-scaling-u1000-productive.eps", "xlabel": "Step", "ylabel": "Size (MB)", "title": "Median Size of Serialized VI-CBF for different FPRs over Time (1k initial Users, Non-Orphans only)", "options": [ "set encoding iso_8859_1", "set termoption dash", "set key top left", "set for [i=1:5] linetype i lt i", 'set style line 1 lt 6 lc rgb "red" lw ' + LINEWIDTH, 'set style line 2 lt 1 lc rgb "red" lw ' + LINEWIDTH, 'set style line 3 lt 6 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 4 lt 1 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 5 lt 6 lc rgb "green" lw ' + LINEWIDTH, 'set style line 6 lt 1 lc rgb "green" lw ' + LINEWIDTH, ], "plot": [ { "input": "u1000/vicbf-scaling-fpr0.1-retronly.csv", "x": "1", "y": "($5 / 1024 / 1024)", "title": "Uncompressed (FPR=0.1 \261 0.001)", "type": "lines", "options": [ "ls 5", ] }, { "input": "u1000/vicbf-scaling-fpr0.01-retronly.csv", "x": "1", "y": "($5 / 1024 / 1024)", "title": "Uncompressed (FPR=0.01 \261 0.0001)", "type": "lines", "options": [ "ls 1", ] }, { "input": "u1000/vicbf-scaling-fpr0.001-retronly.csv", "x": "1", "y": "($5 / 1024 / 1024)", "title": "Uncompressed (FPR=0.001 \261 0.0001)", "type": "lines", "options": [ "ls 3" ] }, { "input": "u1000/vicbf-scaling-fpr0.1-retronly.csv", "x": "1", "y": "($6 / 1024 / 1024)", "title": "Compressed (FPR=0.1 \261 0.001)", "type": "lines", "options": [ "ls 6" ] }, { "input": "u1000/vicbf-scaling-fpr0.01-retronly.csv", "x": "1", "y": "($6 / 1024 / 1024)", "title": "Compressed (FPR=0.01 \261 0.0001)", "type": "lines", "options": [ "ls 2", ] }, { "input": "u1000/vicbf-scaling-fpr0.001-retronly.csv", "x": "1", "y": "($6 / 1024 / 1024)", "title": "Compressed (FPR=0.001 \261 0.0001)", "type": "lines", "options": [ "ls 4" ] }, ] }, # End of VICBF FPR scaling graph for u=100000 for productive KVs only { # Graph to display the VICBF scaling depending on FPR, productive KVs only, u=1000, only compressed "output": "eval-simu-vicbf-scaling-u1000-productive-compressed.eps", "xlabel": "Step", "ylabel": "Size (MB)", "title": "Median Compressed VI-CBF Size for different FPRs over Time (u=1k, Non-Orphans only)", "options": [ "set encoding iso_8859_1", "set termoption dash", "set key top left", "set for [i=1:5] linetype i lt i", 'set style line 1 lt 6 lc rgb "red" lw ' + LINEWIDTH, 'set style line 2 lt 1 lc rgb "red" lw ' + LINEWIDTH, 'set style line 3 lt 6 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 4 lt 1 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 5 lt 6 lc rgb "green" lw ' + LINEWIDTH, 'set style line 6 lt 1 lc rgb "green" lw ' + LINEWIDTH, ], "plot": [ { "input": "u1000/vicbf-scaling-fpr0.1-retronly.csv", "x": "1", "y": "($6 / 1024 / 1024)", "title": "Compressed (FPR=0.1 \261 0.001)", "type": "lines", "options": [ "ls 6" ] }, { "input": "u1000/vicbf-scaling-fpr0.01-retronly.csv", "x": "1", "y": "($6 / 1024 / 1024)", "title": "Compressed (FPR=0.01 \261 0.0001)", "type": "lines", "options": [ "ls 2", ] }, { "input": "u1000/vicbf-scaling-fpr0.001-retronly.csv", "x": "1", "y": "($6 / 1024 / 1024)", "title": "Compressed (FPR=0.001 \261 0.0001)", "type": "lines", "options": [ "ls 4" ] }, ] }, # End of VICBF FPR scaling graph for u=100000 for productive KVs only { # Graph to display the VICBF scaling depending on FPR, productive KVs only, u=1000, static network "output": "eval-simu-vicbf-scaling-u1000-productive-static.eps", "xlabel": "Step", "ylabel": "Size (KB)", "title": "Median Size of Serialized VI-CBF for different FPRs over Time (1k initial Users, static network)", "options": [ "set encoding iso_8859_1", "set termoption dash", "set key top left", "set for [i=1:5] linetype i lt i", 'set style line 1 lt 6 lc rgb "red" lw ' + LINEWIDTH, 'set style line 2 lt 1 lc rgb "red" lw ' + LINEWIDTH, 'set style line 3 lt 6 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 4 lt 1 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 5 lt 6 lc rgb "green" lw ' + LINEWIDTH, 'set style line 6 lt 1 lc rgb "green" lw ' + LINEWIDTH, ], "plot": [ { "input": "u1000/vicbf-scaling-fpr0.1-retronly-static.csv", "x": "1", "y": "($5 / 1024)", "title": "Uncompressed (FPR=0.1 \261 0.001)", "type": "lines", "options": [ "ls 5", ] }, { "input": "u1000/vicbf-scaling-fpr0.01-retronly-static.csv", "x": "1", "y": "($5 / 1024)", "title": "Uncompressed (FPR=0.01 \261 0.0001)", "type": "lines", "options": [ "ls 1", ] }, { "input": "u1000/vicbf-scaling-fpr0.001-retronly-static.csv", "x": "1", "y": "($5 / 1024)", "title": "Uncompressed (FPR=0.001 \261 0.0001)", "type": "lines", "options": [ "ls 3" ] }, { "input": "u1000/vicbf-scaling-fpr0.1-retronly-static.csv", "x": "1", "y": "($6 / 1024)", "title": "Compressed (FPR=0.1 \261 0.001)", "type": "lines", "options": [ "ls 6" ] }, { "input": "u1000/vicbf-scaling-fpr0.01-retronly-static.csv", "x": "1", "y": "($6 / 1024)", "title": "Compressed (FPR=0.01 \261 0.0001)", "type": "lines", "options": [ "ls 2", ] }, { "input": "u1000/vicbf-scaling-fpr0.001-retronly-static.csv", "x": "1", "y": "($6 / 1024)", "title": "Compressed (FPR=0.001 \261 0.0001)", "type": "lines", "options": [ "ls 4" ] }, ] }, # End of VICBF FPR scaling graph for u=100000 for productive KVs only, static network { # Graph to display the VICBF scaling depending on FPR, productive KVs only, u=1000, static network, compressed only "output": "eval-simu-vicbf-scaling-u1000-productive-static-compressed.eps", "xlabel": "Step", "ylabel": "Size (KB)", "title": "Median Compressed VI-CBF Size for different FPRs over Time (u=1k, static network)", "options": [ "set encoding iso_8859_1", "set termoption dash", "set key top left", "set for [i=1:5] linetype i lt i", 'set style line 1 lt 6 lc rgb "red" lw ' + LINEWIDTH, 'set style line 2 lt 1 lc rgb "red" lw ' + LINEWIDTH, 'set style line 3 lt 6 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 4 lt 1 lc rgb "blue" lw ' + LINEWIDTH, 'set style line 5 lt 6 lc rgb "green" lw ' + LINEWIDTH, 'set style line 6 lt 1 lc rgb "green" lw ' + LINEWIDTH, ], "plot": [ { "input": "u1000/vicbf-scaling-fpr0.1-retronly-static.csv", "x": "1", "y": "($6 / 1024)", "title": "Compressed (FPR=0.1 \261 0.001)", "type": "lines", "options": [ "ls 6" ] }, { "input": "u1000/vicbf-scaling-fpr0.01-retronly-static.csv", "x": "1", "y": "($6 / 1024)", "title": "Compressed (FPR=0.01 \261 0.0001)", "type": "lines", "options": [ "ls 2", ] }, { "input": "u1000/vicbf-scaling-fpr0.001-retronly-static.csv", "x": "1", "y": "($6 / 1024)", "title": "Compressed (FPR=0.001 \261 0.0001)", "type": "lines", "options": [ "ls 4" ] }, ] }, # End of VICBF FPR scaling graph for u=100000 for productive KVs only, static network { # Graph to display the median number of Type I and II orphaned records over time "output": "eval-simu-orphaned-records.eps", "xlabel": "Step", "ylabel": "Number of Pairs", "title": "Median Number of Orphaned Key-Value-Pairs over Time (100k initial Users)", "options": [ "set encoding iso_8859_1", "set key top left", "set format y '%.0s %c'" ], "plot": [ { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "22", "title": "Type I", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "($32 - $22)", "title": "Type II", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "32", "title": "Type I + II", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, ] }, # End of orphaned records over time graph { # Type I + II Orphan boxplot "output": "eval-simu-orphaned-records-1+2-boxplot.eps", "xlabel": "Step", "ylabel": "Number of Pairs", "title": "Number of Orphaned Key-Value-Pairs over Time (100k initial Users)", "options": [ "set encoding iso_8859_1", "set xrange[0:205]", "set key top left", "set format y '%.0s %c'" ], "plot": [ { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "33:35:36:34:52", "title": "Type I + II", "type": "candlesticks", "options": [ "lw " + LINEWIDTH, ], "options_post": [ "whiskerbars" ] }, { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "32:32:32:32:52", "title": None, "type": "candlesticks", "options": [ "lc rgb '#000000'", "lt -1", "notitle" ] }, ] }, # End of boxplot of Type I + II records { # Type I + II Orphan boxplot "output": "eval-simu-productive-records-boxplot.eps", "xlabel": "Step", "ylabel": "Number of Pairs", "title": "Number of Non-Orphaned Key-Value-Pairs over Time (100k initial Users)", "options": [ "set encoding iso_8859_1", "set xrange[0:205]", "set format y '%.0s %c'" ], "plot": [ { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "38:40:41:39:52", "title": "Quartiles / Min / Max", "type": "candlesticks", "options": [ "lw " + LINEWIDTH, ], "options_post": [ "whiskerbars" ] }, { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "37:37:37:37:52", "title": None, "type": "candlesticks", "options": [ "lc rgb '#000000'", "lt -1", "notitle" ] }, ] }, # End of boxplot of Type I + II records { # Type I + II Orphan boxplot "output": "eval-simu-productive-records-static-boxplot.eps", "xlabel": "Step", "ylabel": "Number of Pairs", "title": "Number of Non-Orphaned Key-Value-Pairs over Time (1k Users, Static Network)", "options": [ "set encoding iso_8859_1", "set xrange[0:205]", "set format y '%.0s %c'" ], "plot": [ { "input": "u1000/simulation-rounds-static.csv", "x": "1", "y": "38:40:41:39:52", "title": "Quartiles / Min / Max", "type": "candlesticks", "options": [ "lw " + LINEWIDTH, ], "options_post": [ "whiskerbars" ] }, { "input": "u1000/simulation-rounds-static.csv", "x": "1", "y": "37:37:37:37:52", "title": None, "type": "candlesticks", "options": [ "lc rgb '#000000'", "lt -1", "notitle" ] }, ] }, # End of boxplot of Type I + II records { # Graph to display the number of Type II orphans "output": "eval-simu-orphans-type2.eps", "xlabel": "Step", "ylabel": "Number of Pairs", "title": "Number of Type II Orphans over Time (100k initial Users)", "options": [ "set encoding iso_8859_1", "set xrange[0:205]", "set format y '%.0s %c'" ], "plot": [ { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "($33 - $23):($35 - $25):($36 - $26):($34 - $24):52", "title": "Quartiles / Min / Max", "type": "candlesticks", "options": [ "lw " + LINEWIDTH, ], "options_post": [ "whiskerbars" ] }, { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "($32 - $22):($32 - $22):($32 - $22):($32 - $22):52", "title": None, "type": "candlesticks", "options": [ "lc rgb '#000000'", "lt -1", "notitle" ] } ] }, # End of Type II Orphans { # Graph to display the number of Type I orphans "output": "eval-simu-orphans-type1.eps", "xlabel": "Step", "ylabel": "Number of Pairs", "title": "Number of Type I Orphans over Time (100k initial Users)", "options": [ "set encoding iso_8859_1", "set xrange[0:205]", "set format y '%.0s %c'" ], "plot": [ { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "23:25:26:24:52", "title": "Quartiles / Min / Max", "type": "candlesticks", "options": [ "lw " + LINEWIDTH, ], "options_post": [ "whiskerbars" ] }, { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "22:22:22:22:52", "title": None, "type": "candlesticks", "options": [ "lc rgb '#000000'", "lt -1", "notitle" ] } ] }, { # Graph to display difference between median orphaned records "output": "eval-simu-orphaned-records-compare.eps", "xlabel": "Step", "ylabel": "Number of Pairs", "title": "Median Number of Orphaned Key-Value-Pairs over Time (Comparison, 100k initial Users)", "options": [ "set encoding iso_8859_1", "set xrange[0:205]", "set key top left", "set format y '%.0s %c'" ], "plot": [ { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "32", "title": "Median (Protocol 1)", "type": "lines", "options": [ "lw " + LINEWIDTH, ] }, { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "($32 - $22)", "title": "Median (Protocol 2)", "type": "lines", "options": [ "lw " + LINEWIDTH, ] } ] }, # End of graph to display difference between median orphaned records { # Graph to display the development of the user count over time for 100k initial "output": "impl-simu-user-count-development.eps", "xlabel": "Step", "ylabel": "Number of Users", "title": "Median Number of Active Users over Time (100k initial Users)", "options": [ "set encoding iso_8859_1", "set key top left", "set format y '%.0s %c'" ], "plot": [ { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "2", "title": "Active and Inactive Users", "type": "lines", "options": [ "lw " + LINEWIDTH, ] }, { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "7", "title": "Active Users", "type": "lines", "options": [ "lw " + LINEWIDTH, ] }, { "input": "u100000/simulation-rounds.csv", "x": "1", "y": "12", "title": "Inactive Users", "type": "lines", "options": [ "lw " + LINEWIDTH, ] } ] }, # End of graph to display development of user count over time for 100k initial { # Graph to display the development of the user count over time for 1k initial "output": "impl-simu-user-count-development-u1000.eps", "xlabel": "Step", "ylabel": "Number of Users", "title": "Median Number of Active Users over Time (1k initial Users)", "options": [ "set encoding iso_8859_1", "set key top left", "set format y '%.0s %c'" ], "plot": [ { "input": "u1000/simulation-rounds.csv", "x": "1", "y": "2", "title": "Active and Inactive Users", "type": "lines", "options": [ "lw " + LINEWIDTH, ] }, { "input": "u1000/simulation-rounds.csv", "x": "1", "y": "7", "title": "Active Users", "type": "lines", "options": [ "lw " + LINEWIDTH, ] }, { "input": "u1000/simulation-rounds.csv", "x": "1", "y": "12", "title": "Inactive Users", "type": "lines", "options": [ "lw " + LINEWIDTH, ] } ] }, # End of graph to display development of user count over time { # Graph to display the median number of Type I and II orphaned records over time (u1000) "output": "eval-simu-orphaned-records-u1000.eps", "xlabel": "Step", "ylabel": "Number of Pairs", "title": "Median Number of Orphaned Key-Value-Pairs over Time (1k initial Users)", "options": [ "set encoding iso_8859_1", "set key top left", "set format y '%.0s %c'" ], "plot": [ { "input": "u1000/simulation-rounds.csv", "x": "1", "y": "22", "title": "Type I", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "u1000/simulation-rounds.csv", "x": "1", "y": "($32 - $22)", "title": "Type II", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "u1000/simulation-rounds.csv", "x": "1", "y": "32", "title": "Type I + II", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, ] }, # End of orphaned records over time graph (u1000) { # Graph to display the median performance of VICBF inserts "output": "eval-comp-vicbf-inserts.eps", "xlabel": "Slots", "ylabel": "ms", "title": "Median Performance of VI-CBF Inserts", "options": [ "set encoding iso_8859_1", "set format x '%.0s %c'", "set key bottom left" ], "plot": [ { "input": "< awk '$1 ~ /^insert$/ && $2 ~ /^2$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4 / 1000000)", "title": "k=2", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^insert$/ && $2 ~ /^3$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4 / 1000000)", "title": "k=3", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^insert$/ && $2 ~ /^4$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4 / 1000000)", "title": "k=4", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^insert$/ && $2 ~ /^5$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4 / 1000000)", "title": "k=5", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, ] }, # End of median VICBF insert performance { # Graph to display the median performance of true positive VICBF queries "output": "eval-comp-vicbf-queryp.eps", "xlabel": "Slots", "ylabel": "ms", "title": "Median Performance of VI-CBF Queries (TP)", "options": [ "set encoding iso_8859_1", "set format x '%.0s %c'", "set key bottom left" ], "plot": [ { "input": "< awk '$1 ~ /^queryp$/ && $2 ~ /^2$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4 / 1000000)", "title": "k=2", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^queryp$/ && $2 ~ /^3$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4 / 1000000)", "title": "k=3", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^queryp$/ && $2 ~ /^4$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4 / 1000000)", "title": "k=4", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^queryp$/ && $2 ~ /^5$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4 / 1000000)", "title": "k=5", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, ] }, # End of true positive VICBF query performance { # Graph to display the median performance of true negative / false positive VICBF queries "output": "eval-comp-vicbf-queryn.eps", "xlabel": "Slots", "ylabel": "ms", "title": "Median Performance of VI-CBF Queries (TN / FP)", "options": [ "set encoding iso_8859_1", "set format x '%.0s %c'" ], "plot": [ { "input": "< awk '$1 ~ /^queryn$/ && $2 ~ /^2$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4 / 1000000)", "title": "k=2", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^queryn$/ && $2 ~ /^3$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4 / 1000000)", "title": "k=3", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^queryn$/ && $2 ~ /^4$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4 / 1000000)", "title": "k=4", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^queryn$/ && $2 ~ /^5$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4 / 1000000)", "title": "k=5", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, ] }, # End of TN / FP VICBF Query performance { # Graph to display the median performance of the VICBF serialization "output": "eval-comp-vicbf-serial.eps", "xlabel": "Slots", "ylabel": "ms", "title": "Median Performance of VI-CBF Serialization (10k entries)", "options": [ "set encoding iso_8859_1", "set format x '%.0s %c'", "set key top left" ], "plot": [ { "input": "< awk '$1 ~ /^serialize$/ && $2 ~ /^2$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4)", "title": "k=2", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^serialize$/ && $2 ~ /^3$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4)", "title": "k=3", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^serialize$/ && $2 ~ /^4$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4)", "title": "k=4", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^serialize$/ && $2 ~ /^5$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($4)", "title": "k=5", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, ] }, # End of TN / FP VICBF serialization performance { # Graph to display the median processing time increase when adding compression to serialization "output": "eval-comp-vicbf-serial-comp-increase.eps", "xlabel": "Slots", "ylabel": "ms", "title": "Median Compression Time for Serialized Data (10k entries)", "options": [ "set encoding iso_8859_1", "set format x '%.0s %c'", "set key top left" ], "plot": [ { "input": "< awk '$1 ~ /^serialize$/ && $2 ~ /^2$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($9 - $4)", "title": "k=2", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^serialize$/ && $2 ~ /^3$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($9 - $4)", "title": "k=3", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^serialize$/ && $2 ~ /^4$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($9 - $4)", "title": "k=4", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "< awk '$1 ~ /^serialize$/ && $2 ~ /^5$/' benchmark/vicbf-benchmark.txt", "x": "3", "y": "($9 - $4)", "title": "k=5", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, ] }, # End of TN / FP VICBF serialization performance { # Graph to display the VICBF serialization size with different strategies "output": "app-vicbfser-smart.eps", "xlabel": "Number of entries", "ylabel": "Size (bytes)", "title": "Size of Serialized VI-CBF with Smart Serialization Strategy", "options": [ "set encoding iso_8859_1", "set key bottom right" ], "plot": [ { "input": "serialization/vicbf-serialization-size-smart.txt", "x": "1", "y": "2", "title": "Uncompressed", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "serialization/vicbf-serialization-size-smart.txt", "x": "1", "y": "3", "title": "Compressed", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, ] }, # End of VICBF serialization size with smart strategy { # Graph to display the VICBF serialization size with full strategy "output": "app-vicbfser-full.eps", "xlabel": "Number of entries", "ylabel": "Size (bytes)", "title": "Size of Serialized VI-CBF with Full Serialization Strategy", "options": [ "set encoding iso_8859_1", "set key bottom right" ], "plot": [ { "input": "serialization/vicbf-serialization-size-full.txt", "x": "1", "y": "2", "title": "Uncompressed", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, { "input": "serialization/vicbf-serialization-size-full.txt", "x": "1", "y": "3", "title": "Compressed", "type": "lines", "options": [ "lw " + LINEWIDTH ] }, ] }, # End of VICBF serialization size with full strategy ] for target in TARGET: print "Generate:", target["title"], "=>", target["output"] # Fill in the template output = TEMPLATE.format(TERMINAL, OUTPUT_PREFIX + target["output"], target["title"], FONTSIZE, target["xlabel"], target["ylabel"]) # Add additional options like logscale if target["options"] is not None: for option in target["options"]: output += option + "\n" # Add plot commands plotcmd = "plot " for plot in target["plot"]: target = "" if "filter" in plot.keys(): target = "< awk '${0} ~ /^{1}$/' {2}".format(plot["filter"]["column"], plot["filter"]["value"], plot["input"]) else: target = plot["input"] plotcmd += '"' + target + '" u ' + plot["x"] + ":" + plot["y"] + ' ' plotcmd += "w " + plot["type"] + " " if plot["options"] is not None: for option in plot["options"]: plotcmd += option + " " if plot["title"] is not None: plotcmd += "t '" + plot["title"] + "' " if "options_post" in plot.keys(): for option in plot["options_post"]: plotcmd += option + " " plotcmd += ", " # Merge plot commands into output output += plotcmd[:-2] + "\n" # Execute command to generate Gnuplot pobj = Popen(['/usr/bin/gnuplot'], stdin=PIPE) pobj.communicate(input=output) pobj.wait()
#!/usr/bin/env python # Copyright (c) 2019, the R8 project authors. Please see the AUTHORS file # for details. All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. # Utility script to make it easier to update what golem builds. import gradle import sys import utils import os import retrace_benchmark BUILD_TARGETS = ['downloadDeps', 'downloadAndroidCts', 'downloadDx'] def Main(): gradle.RunGradle(BUILD_TARGETS) utils.DownloadFromX20( os.path.join(utils.THIRD_PARTY, 'gradle-plugin') + '.tar.gz.sha1') utils.DownloadFromX20( os.path.join( utils.THIRD_PARTY, 'benchmarks', 'android-sdk') + '.tar.gz.sha1') utils.DownloadFromX20( os.path.join(utils.THIRD_PARTY, 'remapper') + '.tar.gz.sha1') utils.DownloadFromGoogleCloudStorage(utils.SAMPLE_LIBRARIES_SHA_FILE) utils.DownloadFromGoogleCloudStorage(utils.ANDROID_SDK + '.tar.gz.sha1', bucket='r8-deps-internal', auth=True) retrace_benchmark.download_benchmarks() if __name__ == '__main__': sys.exit(Main())
import numpy as np import pandas as pd import copy class Correlationer: def __init__(self, method="pearson", critical=0.7, movingAverageWindow=2, movingWeightMax=2): self._method = method self._critical = critical self._movingAverageWindow = movingAverageWindow self._movingWeightMax = movingWeightMax self._corrListPositive = None self._corrListNegative = None def fit(self, dataframe, targetColumns, combine=False, removeCombineColumn=False, removeSubCombineColumn=True, removeOriginColumn=False): self._targetColumns = targetColumns self._removeCombineColumn = removeCombineColumn self._removeSubCombineColumn = removeSubCombineColumn self._removeOriginColumn = removeOriginColumn corr = dataframe[targetColumns].corr(method=self._method).to_numpy() corrColumB, corrRowB = np.where((corr > self._critical) & (corr < 1)) corrColumS, corrRowS = np.where((corr < -self._critical) & (corr > -1)) self._corrListPositive = [] self._corrListNegative = [] self._combinedColumns = set() for position in zip(corrColumB, corrRowB): if position[0] < position[1]: name1 = targetColumns[position[0]] name2 = targetColumns[position[1]] self._corrListPositive.append([name1, name2]) self._combinedColumns.add(name1) self._combinedColumns.add(name2) for position in zip(corrColumS, corrRowS): if position[0] < position[1]: name1 = targetColumns[position[0]] name2 = targetColumns[position[1]] self._corrListNegative.append([name1, name2]) self._combinedColumns.add(name1) self._combinedColumns.add(name2) self._combinedColumns = list(self._combinedColumns) if combine: self._corrListPositive = self._combine(self._corrListPositive) self._corrListNegative = self._combine(self._corrListNegative) return self._corrListPositive, self._corrListNegative def generate(self, dataframe): self._generatedColumns = [] for item in self._corrListPositive: vals = [] for name in item: vals.append(dataframe[name].astype(float).values) colName = "_".join(item) dataframe[colName] = self._all_diff(vals) self._generatedColumns.append(colName) for item in self._corrListNegative: vals = [] for name in item: vals.append(dataframe[name].astype(float).values) colName = "_".join(item) dataframe[colName] = self._all_diff(vals) self._generatedColumns.append(colName) if self._removeOriginColumn: dataframe.drop(self._targetColumns, axis=1, inplace=True) if self._removeCombineColumn: dataframe.drop(self._combinedColumns, axis=1, inplace=True) def fit_generate(self, dataframe, targetColumns, combine=False, removeCombineColumn=False, removeSubCombineColumn=True, removeOriginColumn=False): self.fit(dataframe, targetColumns, combine, removeCombineColumn, removeSubCombineColumn, removeOriginColumn) self.generate(dataframe) def getColumnsTarget(self): return self._targetColumns def getColumnsGenerated(self): return self._generatedColumns def getColumns(self): result = set(self._targetColumns.tolist() + self._generatedColumns) if self._removeOriginColumn: result -= set(self._targetColumns) if self._removeCombineColumn: result -= set(self._combinedColumns) return list(result) def _combine(self, corrList): res = [] if len(corrList) == 0: return res for item in corrList: isNew = True item = copy.copy(item) for x in res: if item[0] == x[1]: x_copy = copy.deepcopy(x) res.append(x_copy) x[0].append(item[1]) x[1] = item[1] isNew = False break if isNew: res.append([item, item[1]]) elif self._removeSubCombineColumn == False: res.append([item, item[1]]) return sorted(np.array(res)[:,0].tolist()) def _all_diff(self, vals): my = vals[0] other = vals[1:] diff = 0 if len(other) > 1: diff += self._all_diff(other) myMA = self._moving_average(my, self._movingAverageWindow) for item in other: diff += self._moving_average(item, self._movingAverageWindow) - myMA return diff def transMovingDiffAverage(self, dataframe, targetColumns, windows=3): for colum in targetColumns: dataframe[colum] = self._moving_average(dataframe[colum].values, windows) def _moving_average(self, vals, windows=5): # 가중이동평균을 위한 가중값 생성 weights = np.ones(windows) weightMax = windows if windows < self._movingWeightMax else self._movingWeightMax for idx in range(weightMax): weights[idx] = weightMax-idx # 가중 이동평균 계산 stepVals = [] stepVals.append(vals) temp = vals for idx in range(windows): temp = np.insert(temp[:-1], 0, temp[0]) stepVals.append(temp) result = np.zeros([len(vals)]) for idx, weight in zip(range(windows), weights): result += (stepVals[idx]*weight) - (stepVals[idx+1]*(1 if weight == 1 else weight-1)) return result/weights.sum() def getCorrelationList(self): return self._corrListPositive, self._corrListNegative def __repr__(self): return f'{self._method}[critical: {self._critical}, positive: {self._corrListPositive}, negative: {self._corrListNegative}]'
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def findLeaves(self, root: TreeNode) -> List[List[int]]: heights = {} self.getHeight(root, heights) heights = {key:val for key,val in sorted(heights.items(), key = lambda x: x[0])} allLeaves = [] for height in heights: allLeaves.append(heights[height]) return allLeaves def getHeight(self, root, heights) -> int: if not root: return -1 leftHeight = self.getHeight(root.left, heights) rightHeight = self.getHeight(root.right, heights) currHeight = max(leftHeight, rightHeight) + 1 if currHeight in heights: heights[currHeight].append(root.val) else: heights[currHeight] = [root.val] return currHeight # def findLeaves(self, root: TreeNode) -> List[List[int]]: # all_leaves = [] # while True: # leaves = [] # if not self.deleteLeaves(root, None, leaves): # all_leaves.append(leaves) # break # all_leaves.append(leaves) # return all_leaves # def deleteLeaves(self, root, parent, leaves): # if not root.left and not root.right: # # this is a leaf # leaves.append(root.val) # if parent and parent.right == root: # parent.right = None # elif parent and parent.left == root: # parent.left = None # else: # return False # else: # # has at least one child # if root.left: # self.deleteLeaves(root.left, root, leaves) # if root.right: # self.deleteLeaves(root.right, root, leaves) # return True
import tensorflow as tf from keras import optimizers from keras.layers import Conv2D, MaxPooling2D, Dropout, Dense, Flatten, Activation, BatchNormalization from keras.models import Sequential from keras_layers import ConvGHD, FCGHD, CustomRelu def categorical_crossentropy(y_true, y_pred): return tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_true, logits=y_pred) def ghd_mnist_model(learning_rate, double_threshold, per_pixel, alpha, relu=False): with tf.variable_scope('ghn'): model = Sequential() model.add(ConvGHD(filters=16, kernel_size=[5, 5], double_threshold=double_threshold, per_pixel=per_pixel, alpha=alpha, input_shape=(28, 28, 1), name='conv1')) if relu: model.add(CustomRelu()) model.add(MaxPooling2D(pool_size=[2, 2], strides=[2, 2])) model.add(ConvGHD(filters=64, kernel_size=[5, 5], double_threshold=double_threshold, per_pixel=per_pixel, alpha=alpha, name='conv2')) if relu: model.add(CustomRelu()) model.add(MaxPooling2D(pool_size=[2, 2], strides=[2, 2])) model.add(Flatten()) model.add(FCGHD(units=1024, double_threshold=double_threshold, per_pixel=per_pixel, alpha=alpha, name='fc3')) if relu: model.add(CustomRelu()) model.add(Dropout(0.5)) model.add(FCGHD(units=10, double_threshold=double_threshold, per_pixel=per_pixel, alpha=alpha, name='fc4')) model.compile(optimizer=optimizers.Adam(learning_rate), loss=categorical_crossentropy, metrics=['accuracy']) return model def naive_mnist_model(learning_rate): with tf.variable_scope('naive'): model = Sequential() model.add(Conv2D(filters=16, kernel_size=[5, 5], input_shape=(28, 28, 1), name='conv1')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=[2, 2], strides=[2, 2])) model.add(Conv2D(filters=64, kernel_size=[5, 5], name='conv2')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=[2, 2], strides=[2, 2])) model.add(Flatten()) model.add(Dense(units=1024, name='fc3')) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(units=10, name='fc4')) model.compile(optimizer=optimizers.Adam(learning_rate), loss=categorical_crossentropy, metrics=['accuracy']) return model def bn_mnist_model(learning_rate): with tf.variable_scope('bn'): model = Sequential() model.add(Conv2D(filters=16, kernel_size=[5, 5], input_shape=(28, 28, 1), name='conv1')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=[2, 2], strides=[2, 2])) model.add(Conv2D(filters=64, kernel_size=[5, 5], name='conv2')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=[2, 2], strides=[2, 2])) model.add(Flatten()) model.add(Dense(units=1024, name='fc3')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(units=10, name='fc4')) model.add(BatchNormalization()) model.compile(optimizer=optimizers.Adam(learning_rate), loss=categorical_crossentropy, metrics=['accuracy']) return model
"""Internal Accretion constants.""" ARTIFACTS_PREFIX = "accretion/artifacts/" ARTIFACT_MANIFESTS_PREFIX = "accretion/manifests/" SOURCE_PREFIX = "accretion/source/" LAYER_MANIFESTS_PREFIX = "accretion/layers/"
from django.shortcuts import render, get_object_or_404 from django.urls import reverse_lazy from django.views.generic import ListView, DetailView from django.views.generic.edit import UpdateView, CreateView, DeleteView from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.conf import settings from django.core.mail import send_mail from django.db.models import Count from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.postgres.search import ( SearchVector, SearchQuery, SearchRank, TrigramSimilarity ) from taggit.models import Tag from .models import Post from .forms import ( EmailPostForm, CommentForm, SearchForm ) def post_list_view(request, *args, **kwargs): posts = Post.published.all() tag_slug = kwargs.get('slug') tag = None tag_list = None if tag_slug: tag_slug = kwargs.get('slug').split("-") tag = list(Tag.objects.filter(slug__in=tag_slug)) tag_list = list(Tag.objects.values('id').filter(slug__in=tag_slug)) posts = posts.filter(tags__in=[t['id'] for t in tag_list]).distinct() if request.GET.get('search'): request_search = request.GET.get('search') posts = posts.filter(body__search=request_search) paginator = Paginator(posts, settings.PAGINATION_SIZE) requested_page_number = request.GET.get('page') try: posts = paginator.get_page(requested_page_number) except PageNotAnInteger: posts = paginator.get_page(1) except EmptyPage: posts = paginator.get_page(paginator.num_pages) return render(request, 'blogs/posts/list.html', { "posts": posts, "tag": tag }) def post_details_view(request, *args, **kwargs): slug = kwargs.get('slug') year = kwargs.get('year') month = kwargs.get('month') day = kwargs.get('day') post = get_object_or_404(Post, publish__year=year, publish__month=month, publish__day=day, slug=slug, status='published') comments = post.comments.filter(active=True) comments_paginator = Paginator(comments, 2) requested_page_number = request.GET.get('page') try: comments = comments_paginator.get_page(requested_page_number) except PageNotAnInteger: comments = comments_paginator.get_page(1) except EmptyPage: comments = comments_paginator.get_page(comments_paginator.num_pages) new_comment = None if (request.method == 'POST'): comment_form = CommentForm(data=request.POST) if comment_form.is_valid(): new_comment = comment_form.save(commit=False) new_comment.post = post new_comment.save() else: comment_form = CommentForm() post_tags_ids = post.tags.values_list('id', flat=True) similar_posts = Post.published.filter(tags__in=post_tags_ids) similar_posts = similar_posts.annotate( same_tags=Count('tags') ).order_by( '-same_tags', '-publish' )[:4] return render(request, 'blogs/posts/details.html', { "post": post, "comments": comments, "new_comment": new_comment, "comment_form": comment_form, "similar_posts": similar_posts }) class PostListView(ListView): model = Post context_object_name = 'posts' paginate_by = settings.PAGINATION_SIZE template_name = 'blogs/posts/list.html' def get_queryset(self): return Post.objects.filter(status="published") class PostCreateView(LoginRequiredMixin, CreateView): redirect_url = reverse_lazy('login') template_name = 'blogs/posts/create.html' model = Post fields = ('title', 'body', 'author', 'status',) class PostUpdateView(LoginRequiredMixin, UpdateView): redirect_url = reverse_lazy('login') template_name = 'blogs/posts/update.html' model = Post fields = ('title', 'body', 'author', 'status',) class PostDeleteView(LoginRequiredMixin, DeleteView): redirect_url = reverse_lazy('login') template_name = 'blogs/posts/delete.html' model = Post success_url = reverse_lazy('blogs:posts-list') def post_share(request, *args, **kwargs): post_id = kwargs.get('post_id') post = get_object_or_404(Post, id=post_id, status="published") sent = False if request.method == "POST": form = EmailPostForm(request.POST) if form.is_valid(): cleaned_form_data = form.cleaned_data post_url = request.build_absolute_uri(post.get_absolute_url()) subject = "{} ({}) recommends you reading {}".format( cleaned_form_data['name'], cleaned_form_data['email'], post.title, ) message = "Read '{}' at {} \n\n {}\s comments: {}".format( post.title, post_url, cleaned_form_data['name'], cleaned_form_data['comments'], ) send_mail(subject, message, 'admin@test.com', [ cleaned_form_data['to'] ]) sent = True else: form = EmailPostForm() return render(request, 'blogs/email/share.html', { "post": post, "form": form, "sent": sent }) def post_search(request, *args, **kwargs): form = SearchForm() query = None results = [] if 'query' in request.GET: form = SearchForm(request.GET) if form.is_valid(): query = form.cleaned_data['query'] # search_vector = SearchVector('title', weight="A") + SearchVector('body', weight="B") # search_query = SearchQuery(query) # results = Post.objects.annotate( # search=SearchVector('title', 'body'), # ).filter(search=query) # results = Post.objects.annotate( # search=SearchVector('title', 'body'), # rank=SearchRank(SearchVector('title', 'body'), SearchQuery(query)) # ).filter(search=query) # results = Post.objects.annotate( # search=search_vector, # rank=SearchRank(search_vector, search_query) # ).filter(rank__gte=0.3).order_by('-rank') results = Post.objects.annotate( similarity=TrigramSimilarity('title', query) ).filter(similarity__gt=0.3).order_by('-similarity') print(results) return render( request, 'blogs/posts/search.html', { "form": form, "query": query, "results": results } )
# -*- coding: utf-8 -*- # @Time : 2020/7/13 0:38 # @Author : Zhongyi Hua # @FileName: check.py # @Usage: # @Note: # @E-mail: njbxhzy@hotmail.com """ 把各个部分的check任务全部拆出来,这样方便反复使用 1. 保守基因情况 2. un normal name 3. 重复区域 4. renumber 5. cds check """ import gffutils import portion as pt import pandas as pd from Bio import SeqIO import os get_seq = lambda seq, start, end: seq.seq[start - 1:end] location = os.path.abspath(os.path.join(__file__, '..')) tb_cds = pd.read_table(os.path.join(location, 'ref/cds.txt')) tb_rna = pd.read_table(os.path.join(location, 'ref/rna.txt')) standard_name_list = [record['name'] for record in tb_cds.to_dict('records')] standard_name_list += [record['name'] for record in tb_rna.to_dict('records')] def get_record(record_feature, record_type, attributes): """ Transform a gff feature of to a dict :param record_feature: a record feature (Class gffutils.Feature) :param record_type: gene/CDS/tRNA/rRNA... :param attributes: a list of character that positioned in gff3 column9 :return: gff_df """ feature_record = {'type': record_type, 'start': record_feature.start, 'end': record_feature.end, 'strand': record_feature.strand, 'phase': '.', 'attributes': ";".join(attributes)} return feature_record class CheckCp: standard_name_list = standard_name_list def __init__(self, gff_path): self.gff = gffutils.create_db(gff_path, ':memory:', merge_strategy='create_unique') def check_hs(self): """ Check housekeeping gene: matK, rbcL :return: a message """ gene_name_list = [] for gene in self.gff.features_of_type('gene', order_by='start'): gene_name_list.append(gene.attributes['Name'][0]) if ('matK' not in gene_name_list) and ('matk' not in gene_name_list): print('matK loss!') if ('rbcL' not in gene_name_list) and ('rbcl' not in gene_name_list): print('rbcL loss!') def check_name(self): """ Check unstandard name :return: messages """ gene_name_list = [] for gene in self.gff.features_of_type('gene', order_by='start'): gene_name_list.append(gene.attributes['Name'][0]) for gene_name in gene_name_list: if not ((gene_name in CheckCp.standard_name_list) or gene_name.startswith('orf')): print('check ' + gene_name) def check_region(self): """ check duplicated gene region :return: messages """ region_list = [] locus_list = [] for gene in self.gff.features_of_type('gene', order_by='start'): region_list.append(pt.closed(gene.start, gene.end)) locus_list.append([gene.attributes['Name'][0]]) for i in range(len(region_list) - 1): if not region_list[i] < region_list[i + 1]: print(locus_list[i], region_list[i], ' and ', locus_list[i + 1], region_list[i + 1], ' are duplicated') print('check duplicated region done') def renumber(self, seq_id, species_pre): print('Renumber gene id') feature_list = [] gene_count = 0 for gene in self.gff.features_of_type('gene', order_by='start'): gene_count += 1 gene_id = species_pre + '%03d' % gene_count gene_attributes = ['ID=' + gene_id] gene_type = gene.attributes['gene_biotype'][0] gene_attributes += [_[0] + '=' + _[1][0] for _ in gene.attributes.items() if not _[0] == 'ID'] feature_list.append(get_record(gene, 'gene', gene_attributes)) child_count = 0 if gene_type == 'protein_coding': for cds in self.gff.children(gene, featuretype='CDS', order_by='start'): child_count += 1 cds_attributes = ['ID=' + 'cds_' + gene_id + '_' + str(child_count), 'Parent=' + gene_id, 'product=' + cds.attributes['product'][0]] cds_record = get_record(cds, 'CDS', cds_attributes) cds_record.update({'phase': cds.frame}) feature_list.append(cds_record) else: for rna in self.gff.children(gene, featuretype=('tRNA', 'rRNA')): rna_attributes = ['ID=' + 'rna_' + gene_id + '_1', 'Parent=' + gene_id, 'product=' + rna.attributes['product'][0]] feature_list.append(get_record(gene, gene_type, rna_attributes)) for exon in self.gff.children(gene, featuretype='exon', order_by='start'): child_count += 1 exon_attributes = ['ID=' + 'exon_' + gene_id + '_' + str(child_count), 'Parent=' 'rna_' + gene_id + '_1' ] feature_list.append(get_record(exon, 'exon', exon_attributes)) _result_gff = pd.DataFrame(feature_list) _result_gff['seqid'] = seq_id _result_gff['score'] = '.' _result_gff['source'] = 'GeSeq' _result_gff = _result_gff[["seqid", "source", "type", "start", "end", "score", "strand", "phase", "attributes"]] print('Renumber done') return _result_gff def check_cds(self, seq_path): geo_seq = SeqIO.read(seq_path, 'fasta') print('Auto check start') for gene in self.gff.features_of_type('gene', order_by='start'): if gene.attributes['gene_biotype'] == ['protein_coding']: if gene.attributes['Name'] == ['rps12']: continue seq_combined = "" cds_count = 0 for cds in self.gff.children(gene, featuretype='CDS', order_by='start', reverse=False if gene.strand == '+' else True): if (cds_count == 0) and (not cds.frame == '0'): print('check ', gene.id, ' frame') seq = get_seq(geo_seq, cds.start, cds.end) if cds.strand == '-': seq_combined += seq.reverse_complement() else: seq_combined += seq cds_count += 1 if seq_combined == '': continue elif seq_combined.__len__() <= 33: print('The CDS length of', gene.id, 'is less than 33 bp') try: seq_combined.translate(table=11, cds=True) except Exception as e: print(gene.id) print(e) print('Auto check done') def add_rps12(geseq_gff, new_gff, seq_path, species_pre): """ :param geseq_gff: raw geseq gff file :param new_gff: renumbered gff :param species_pre: :return: """ if type(new_gff) == str: new_gff = pd.read_table(new_gff, comment='#', names=["seqid", "source", "type", "start", "end", "score", "strand", "phase", "attributes"]) raw_gff = pd.read_table(geseq_gff, comment='#', names=["seqid", "source", "type", "start", "end", "score", "strand", "phase", "attributes"]) seq = SeqIO.read(seq_path, 'fasta') gene_count = sum(new_gff['type'] == 'gene') # get rps12 features_list = [] gene_features = raw_gff[(raw_gff['attributes'].str.contains('rps12')) & (raw_gff['type'] == 'gene')] part1 = gene_features[gene_features.duplicated(subset=['start', 'end'])].iloc[0] part2 = gene_features.drop_duplicates(keep=False) err_list = [] for idx, part in part2.iterrows(): gene_count += 1 gene_id = species_pre + '%03d' % gene_count part_attributes = ['ID=' + gene_id, 'Name=rps12', 'gene_biotype=protein_coding' ] cds1 = raw_gff[(raw_gff['start'] == part.start) & (raw_gff['type'] == 'exon')].iloc[0] cds2 = raw_gff[(raw_gff['end'] == part.end) & (raw_gff['type'] == 'exon')].iloc[0] cds1_attributes = ['ID=' + 'cds_' + gene_id + '_1', 'Parent=' + gene_id, 'product=30S ribosomal protein S12'] cds2_attributes = ['ID=' + 'cds_' + gene_id + '_2', 'Parent=' + gene_id, 'product=30S ribosomal protein S12'] cds3_attributes = ['ID=' + 'cds_' + gene_id + '_3', 'Parent=' + gene_id, 'product=30S ribosomal protein S12'] features_list.append(get_record(part1, 'gene', part_attributes + ['part=1/2'])) features_list.append(get_record(part, 'gene', part_attributes + ['part=2/2'])) features_list.append(get_record(part1, 'CDS', cds1_attributes)) features_list.append(get_record(cds1, 'CDS', cds2_attributes)) features_list.append(get_record(cds2, 'CDS', cds3_attributes)) # check translation seq_part1 = get_seq(seq, part1.start, part1.end) if part1.strand == '-': seq_part1 = seq_part1.reverse_complement() seq_combined = '' for feature in [cds1, cds2]: seq_combined += get_seq(seq, feature.start, feature.end) if cds1.strand == '-': seq_combined.reverse_complement() seq_combined = seq_part1 + seq_combined try: seq_combined.translate(table=11, cds=True) except Exception as e: print(gene_id) print(e) err_list.append(gene_id) rps12_df = pd.DataFrame.from_dict({idx: feature for idx, feature in enumerate(features_list)}, 'index') rps12_df.loc[rps12_df['type'] == 'CDS', 'phase'] = 0 rps12_df['seqid'] = new_gff.seqid.to_list()[0] rps12_df['source'] = 'GeSeq' rps12_df['score'] = '.' for err_id in err_list: rps12_df.loc[rps12_df['attributes'].str.startswith('ID='+err_id), 'attributes'] += ';pseudo=true' new_gff = new_gff.append(rps12_df, sort=False) return new_gff def add2_rps12(pga_gb, new_gff, species_pre): def _get_record(location, fea_type, attributes): return {'type': fea_type, 'start': location.start+1, 'end': location.end, 'strand': '-' if location.strand == -1 else '+', 'phase': '.', 'attributes': ";".join(attributes)} if type(new_gff) == str: new_gff = pd.read_table(new_gff, comment='#', names=["seqid", "source", "type", "start", "end", "score", "strand", "phase", "attributes"]) genome = SeqIO.read(pga_gb, 'genbank') features_list = [] err_list = [] gene_count = sum(new_gff['type'] == 'gene') rps12_list = [ele for ele in genome.features if ele.type == 'CDS' and ele.qualifiers.get('gene') == ['rps12']] part1 = [part for part in rps12_list if len(part.location.parts) == 1][0] part2_list = [part for part in rps12_list if len(part.location.parts) > 1] for part in part2_list: gene_count += 1 gene_id = species_pre + '%03d' % gene_count part_attributes = ['ID=' + gene_id, 'Name=rps12', 'gene_biotype=protein_coding' ] features_list.append(_get_record(part1.location, 'gene', part_attributes + [ 'exception=trans-splicing;part=1/2'])) features_list.append(_get_record(part.location, 'gene', part_attributes + [ 'exception=trans-splicing;part=2/2'])) cds_count = 1 cds_attributes = ['ID=' + 'cds_' + gene_id + '_' + str(cds_count), 'Parent=' + gene_id, 'product=30S ribosomal protein S12'] features_list.append(_get_record(part1.location, 'CDS', cds_attributes)) seq_part1 = get_seq(genome, part1.location.start+1, part1.location.end) if part1.location.strand == -1: seq_part1 = seq_part1.reverse_complement() seq_combined = '' for cds in part.location.parts: cds_count += 1 cds_attributes = ['ID=' + 'cds_' + gene_id + '_' + str(cds_count), 'Parent=' + gene_id, 'product=30S ribosomal protein S12'] features_list.append(_get_record(cds, 'CDS', cds_attributes)) if cds.strand == -1: seq_combined += get_seq(genome, cds.start+1, cds.end).reverse_complement() else: seq_combined += get_seq(genome, cds.start+1, cds.end) seq_combined = seq_part1 + seq_combined try: seq_combined.translate(table=11, cds=True) except Exception as e: print(gene_id) print(e) err_list.append(gene_id) rps12_df = pd.DataFrame.from_dict({idx: feature for idx, feature in enumerate(features_list)}, 'index') rps12_df.loc[rps12_df['type'] == 'CDS', 'phase'] = 0 rps12_df['seqid'] = new_gff.seqid.to_list()[0] rps12_df['source'] = 'GeSeq' rps12_df['score'] = '.' for err_id in err_list: rps12_df.loc[rps12_df['attributes'].str.startswith('ID='+err_id), 'attributes'] += ';pseudo=true' new_gff = new_gff.append(rps12_df, sort=False) return new_gff if __name__ == '__main__': import argparse parser = argparse.ArgumentParser( description='Check your chloroplast genome gff file') parser.add_argument('-i', '--info_table', required=True, help='<file_path> meta information table which has five columns: Geseq gff path, seq path, ' 'seqid, locus prefix, renumber result path. If you do not need renumber, just provide gff ' 'and seq') parser.add_argument('-c', '--cds', action='store_true', default=False, help='check cds legitimacy') parser.add_argument('-s', '--hs', action='store_true', default=False, help='check house-keeping gene (matK, rbcL)') parser.add_argument('-n', '--name', action='store_true', default=False, help='check whether gene names are legal name') parser.add_argument('-r', '--region', action='store_true', default=False, help='check whether gene region duplicated') parser.add_argument('-e', '--renumber', action='store_true', default=False, help='renumber gene locus suffix') args = parser.parse_args() info_table = pd.read_table(args.info_table, names=['raw_gff_path', 'seq_path', 'seq_id', 'prefix', 'result']) for ind, row in info_table.iterrows(): print(os.path.basename(row['raw_gff_path'])) tmp_check = CheckCp(row['raw_gff_path']) if args.cds: tmp_check.check_cds(row['seq_path']) if args.renumber: result_gff = tmp_check.renumber(row['seq_id'], row['prefix']) result_gff.to_csv(row['result'], sep='\t', index=False) if args.hs: tmp_check.check_hs() if args.name: tmp_check.check_name() if args.region: tmp_check.check_region()
"""Support for Roku binary sensors.""" from __future__ import annotations from collections.abc import Callable from dataclasses import dataclass from rokuecp.models import Device as RokuDevice from homeassistant.components.binary_sensor import ( BinarySensorEntity, BinarySensorEntityDescription, ) from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.helpers.entity import EntityCategory from homeassistant.helpers.entity_platform import AddEntitiesCallback from .const import DOMAIN from .entity import RokuEntity @dataclass class RokuBinarySensorEntityDescriptionMixin: """Mixin for required keys.""" value_fn: Callable[[RokuDevice], bool | None] @dataclass class RokuBinarySensorEntityDescription( BinarySensorEntityDescription, RokuBinarySensorEntityDescriptionMixin ): """Describes a Roku binary sensor entity.""" BINARY_SENSORS: tuple[RokuBinarySensorEntityDescription, ...] = ( RokuBinarySensorEntityDescription( key="headphones_connected", name="Headphones Connected", icon="mdi:headphones", value_fn=lambda device: device.info.headphones_connected, ), RokuBinarySensorEntityDescription( key="supports_airplay", name="Supports AirPlay", icon="mdi:cast-variant", entity_category=EntityCategory.DIAGNOSTIC, value_fn=lambda device: device.info.supports_airplay, ), RokuBinarySensorEntityDescription( key="supports_ethernet", name="Supports Ethernet", icon="mdi:ethernet", entity_category=EntityCategory.DIAGNOSTIC, value_fn=lambda device: device.info.ethernet_support, ), RokuBinarySensorEntityDescription( key="supports_find_remote", name="Supports Find Remote", icon="mdi:remote", entity_category=EntityCategory.DIAGNOSTIC, value_fn=lambda device: device.info.supports_find_remote, ), ) async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up a Roku binary sensors based on a config entry.""" coordinator = hass.data[DOMAIN][entry.entry_id] unique_id = coordinator.data.info.serial_number async_add_entities( RokuBinarySensorEntity( device_id=unique_id, coordinator=coordinator, description=description, ) for description in BINARY_SENSORS ) class RokuBinarySensorEntity(RokuEntity, BinarySensorEntity): """Defines a Roku binary sensor.""" entity_description: RokuBinarySensorEntityDescription @property def is_on(self) -> bool: """Return the state of the sensor.""" return bool(self.entity_description.value_fn(self.coordinator.data))
"""Definition for aiosql compatible adapters. Adapters here aren't "real" adapters, that can execute queries but just dummy classes with compatible interface. """ # this drivers won't and shouldn't be used as real drivers. # they are required only for queries building. class EdgeQLAsyncAdapter: """Dummy adapter for async driver.""" is_aio_driver = True class EdgeQLSyncAdapter: """Dummy adapter for sync driver.""" is_aio_driver = False
from socket import socket, AF_INET, SOCK_DGRAM, timeout import binascii import json import os from math import ceil FILE_PATH = 'client_storage/innopolis.jpg' CLIENT_PORT = 12345 SERVER_PORT = 12346 SERVER_ADDR = 'localhost' CLIENT_BUF_SIZE = 2048 SERVER_BUF_SIZE = -1 # We don't know yet def get_crc_checksum(file_contents): file_contents = (binascii.crc32(file_contents) & 0xFFFFFFFF) return "%08X" % file_contents def send_file_metadata(): file_info = {} if not os.path.exists(FILE_PATH): print('File does not exist') exit() with open(FILE_PATH, 'rb') as file: file_info['name'] = os.path.basename(file.name) file_info['size'] = os.path.getsize(FILE_PATH) file_info['checksum'] = get_crc_checksum(file.read()) dmp = json.dumps(file_info) s.sendto(dmp.encode(), (SERVER_ADDR, SERVER_PORT)) print('File metadata sent successfully') return file_info def esc(msg): print(msg) s.close() exit() if __name__ == '__main__': s = socket(family=AF_INET, type=SOCK_DGRAM) s.bind(('localhost', CLIENT_PORT)) file_metadata = send_file_metadata() # print('Awaiting server response...') s.settimeout(1) try: data, addr = s.recvfrom(CLIENT_BUF_SIZE) print(f'Server buffer size: {data.decode()}') SERVER_BUF_SIZE = int(data.decode()) except KeyboardInterrupt: esc('User has quit') except timeout: esc("The server isn't available.") # upload file while True: with open(FILE_PATH, 'rb') as f: for i in range(ceil(file_metadata['size'] / SERVER_BUF_SIZE)): data = f.read(SERVER_BUF_SIZE) s.sendto(data, (SERVER_ADDR, SERVER_PORT)) # print('Awaiting server response...') try: data, addr = s.recvfrom(CLIENT_BUF_SIZE) if data.decode() != 'OK': print('Upload error, retrying...') else: esc('File uploaded successfully.') except KeyboardInterrupt: esc('User has quit') except timeout: esc("The server isn't available.")
#!/usr/bin/env python3 # Copyright (C) Alibaba Group Holding Limited. from models.module_zoo.branches.r2plus1d_branch import R2Plus1DBranch from models.module_zoo.branches.r2d3d_branch import R2D3DBranch from models.module_zoo.branches.csn_branch import CSNBranch from models.module_zoo.branches.slowfast_branch import SlowfastBranch from models.module_zoo.branches.s3dg_branch import STConv3d from models.module_zoo.branches.non_local import NonLocal from models.module_zoo.branches.tada_branch import TAdaConv2d
# -*- coding: utf-8 -*- import json import uuid from typing import List, Dict, Tuple, Iterable from requests import Response from TM1py.Exceptions.Exceptions import TM1pyRestException from TM1py.Objects.Process import Process from TM1py.Services.ObjectService import ObjectService from TM1py.Services.RestService import RestService from TM1py.Utils import format_url, require_admin class ProcessService(ObjectService): """ Service to handle Object Updates for TI Processes """ def __init__(self, rest: RestService): super().__init__(rest) def get(self, name_process: str, **kwargs) -> Process: """ Get a process from TM1 Server :param name_process: :return: Instance of the TM1py.Process """ url = format_url( "/api/v1/Processes('{}')?$select=*,UIData,VariablesUIData," "DataSource/dataSourceNameForServer," "DataSource/dataSourceNameForClient," "DataSource/asciiDecimalSeparator," "DataSource/asciiDelimiterChar," "DataSource/asciiDelimiterType," "DataSource/asciiHeaderRecords," "DataSource/asciiQuoteCharacter," "DataSource/asciiThousandSeparator," "DataSource/view," "DataSource/query," "DataSource/userName," "DataSource/password," "DataSource/usesUnicode," "DataSource/subset", name_process) response = self._rest.GET(url, **kwargs) return Process.from_dict(response.json()) def get_all(self, **kwargs) -> List[Process]: """ Get a processes from TM1 Server :return: List, instances of the TM1py.Process """ url = "/api/v1/Processes?$select=*,UIData,VariablesUIData," \ "DataSource/dataSourceNameForServer," \ "DataSource/dataSourceNameForClient," \ "DataSource/asciiDecimalSeparator," \ "DataSource/asciiDelimiterChar," \ "DataSource/asciiDelimiterType," \ "DataSource/asciiHeaderRecords," \ "DataSource/asciiQuoteCharacter," \ "DataSource/asciiThousandSeparator," \ "DataSource/view," \ "DataSource/query," \ "DataSource/userName," \ "DataSource/password," \ "DataSource/usesUnicode," \ "DataSource/subset" response = self._rest.GET(url, **kwargs) response_as_dict = response.json() return [Process.from_dict(p) for p in response_as_dict['value']] def get_all_names(self, **kwargs) -> List[str]: """ Get List with all process names from TM1 Server :Returns: List of Strings """ response = self._rest.GET('/api/v1/Processes?$select=Name', **kwargs) processes = list(process['Name'] for process in response.json()['value']) return processes def create(self, process: Process, **kwargs) -> Response: """ Create a new process on TM1 Server :param process: Instance of TM1py.Process class :return: Response """ url = "/api/v1/Processes" # Adjust process body if TM1 version is lower than 11 due to change in Process Parameters structure # https://www.ibm.com/developerworks/community/forums/html/topic?id=9188d139-8905-4895-9229-eaaf0e7fa683 if int(self.version[0:2]) < 11: process.drop_parameter_types() response = self._rest.POST(url, process.body, **kwargs) return response def update(self, process: Process, **kwargs) -> Response: """ Update an existing Process on TM1 Server :param process: Instance of TM1py.Process class :return: Response """ url = format_url("/api/v1/Processes('{}')", process.name) # Adjust process body if TM1 version is lower than 11 due to change in Process Parameters structure # https://www.ibm.com/developerworks/community/forums/html/topic?id=9188d139-8905-4895-9229-eaaf0e7fa683 if int(self.version[0:2]) < 11: process.drop_parameter_types() response = self._rest.PATCH(url, process.body, **kwargs) return response def update_or_create(self, process: Process, **kwargs) -> Response: """ Update or Create a Process on TM1 Server :param process: Instance of TM1py.Process class :return: Response """ if self.exists(name=process.name, **kwargs): return self.update(process=process, **kwargs) return self.create(process=process, **kwargs) def delete(self, name: str, **kwargs) -> Response: """ Delete a process in TM1 :param name: :return: Response """ url = format_url("/api/v1/Processes('{}')", name) response = self._rest.DELETE(url, **kwargs) return response def exists(self, name: str, **kwargs) -> bool: """ Check if Process exists. :param name: :return: """ url = format_url("/api/v1/Processes('{}')", name) return self._exists(url, **kwargs) def compile(self, name: str, **kwargs) -> List: """ Compile a Process. Return List of Syntax errors. :param name: :return: """ url = format_url("/api/v1/Processes('{}')/tm1.Compile", name) response = self._rest.POST(url, **kwargs) syntax_errors = response.json()["value"] return syntax_errors def compile_process(self, process: Process, **kwargs) -> List: """ Compile a Process. Return List of Syntax errors. :param process: :return: """ url = "/api/v1/CompileProcess" payload = json.loads('{"Process":' + process.body + '}') response = self._rest.POST( url=url, data=json.dumps(payload, ensure_ascii=False), **kwargs) syntax_errors = response.json()["value"] return syntax_errors def execute(self, process_name: str, parameters: Dict = None, timeout: float = None, **kwargs) -> Response: """ Ask TM1 Server to execute a process. Call with parameter names as keyword arguments: tm1.processes.execute("Bedrock.Server.Wait", pLegalEntity="UK01") :param process_name: :param parameters: Deprecated! dictionary, e.g. {"Parameters": [ { "Name": "pLegalEntity", "Value": "UK01" }] } :param timeout: Number of seconds that the client will wait to receive the first byte. :return: """ url = format_url("/api/v1/Processes('{}')/tm1.Execute", process_name) if not parameters: if kwargs: parameters = {"Parameters": []} for parameter_name, parameter_value in kwargs.items(): parameters["Parameters"].append({"Name": parameter_name, "Value": parameter_value}) else: parameters = {} return self._rest.POST(url=url, data=json.dumps(parameters, ensure_ascii=False), timeout=timeout, **kwargs) def execute_process_with_return(self, process: Process, **kwargs) -> Tuple[bool, str, str]: """ Run unbound TI code directly :param process: a TI Process Object :return: success (boolean), status (String), error_log_file (String) """ url = "/api/v1/ExecuteProcessWithReturn?$expand=*" payload = json.loads("{\"Process\":" + process.body + "}") response = self._rest.POST( url=url, data=json.dumps(payload, ensure_ascii=False), **kwargs) execution_summary = response.json() success = execution_summary["ProcessExecuteStatusCode"] == "CompletedSuccessfully" status = execution_summary["ProcessExecuteStatusCode"] error_log_file = None if execution_summary["ErrorLogFile"] is None else execution_summary["ErrorLogFile"][ "Filename"] return success, status, error_log_file def execute_with_return(self, process_name: str, timeout: float = None, **kwargs) -> Tuple[bool, str, str]: """ Ask TM1 Server to execute a process. pass process parameters as keyword arguments to this function. E.g: self.tm1.processes.execute_with_return( process_name="Bedrock.Server.Wait", pWaitSec=2) :param process_name: name of the TI process :param timeout: Number of seconds that the client will wait to receive the first byte. :param kwargs: dictionary of process parameters and values :return: success (boolean), status (String), error_log_file (String) """ url = format_url("/api/v1/Processes('{}')/tm1.ExecuteWithReturn?$expand=*", process_name) parameters = dict() if kwargs: parameters = {"Parameters": []} for parameter_name, parameter_value in kwargs.items(): parameters["Parameters"].append({"Name": parameter_name, "Value": parameter_value}) response = self._rest.POST( url=url, data=json.dumps(parameters, ensure_ascii=False), timeout=timeout, **kwargs) execution_summary = response.json() success = execution_summary["ProcessExecuteStatusCode"] == "CompletedSuccessfully" status = execution_summary["ProcessExecuteStatusCode"] error_log_file = None if execution_summary["ErrorLogFile"] is None else execution_summary["ErrorLogFile"][ "Filename"] return success, status, error_log_file @require_admin def execute_ti_code(self, lines_prolog: Iterable[str], lines_epilog: Iterable[str] = None, **kwargs) -> Response: """ Execute lines of code on the TM1 Server :param lines_prolog: list - where each element is a valid statement of TI code. :param lines_epilog: list - where each element is a valid statement of TI code. """ process_name = "".join(['}TM1py', str(uuid.uuid4())]) p = Process(name=process_name, prolog_procedure=Process.AUTO_GENERATED_STATEMENTS + '\r\n'.join(lines_prolog), epilog_procedure=Process.AUTO_GENERATED_STATEMENTS + '\r\n'.join( lines_epilog) if lines_epilog else '') self.create(p, **kwargs) try: return self.execute(process_name, **kwargs) except TM1pyRestException as e: raise e finally: self.delete(process_name, **kwargs) def get_error_log_file_content(self, file_name: str, **kwargs) -> str: """ Get content of error log file (e.g. TM1ProcessError_20180926213819_65708356_979b248b-232e622c6.log) :param file_name: name of the error log file in the TM1 log directory :return: String, content of the file """ url = format_url("/api/v1/ErrorLogFiles('{}')/Content", file_name) response = self._rest.GET(url=url, **kwargs) return response.text def get_processerrorlogs(self, process_name: str, **kwargs) -> List: """ Get all ProcessErrorLog entries for a process :param process_name: name of the process :return: list - Collection of ProcessErrorLogs """ url = format_url("/api/v1/Processes('{}')/ErrorLogs", process_name) response = self._rest.GET(url=url, **kwargs) return response.json()['value'] def get_last_message_from_processerrorlog(self, process_name: str, **kwargs) -> str: """ Get the latest ProcessErrorLog from a process entity :param process_name: name of the process :return: String - the errorlog, e.g.: "Fehler: Prolog Prozedurzeile (9): Zeichenfolge "US772131 kann nicht in eine reelle Zahl umgewandelt werden." """ logs_as_list = self.get_processerrorlogs(process_name, **kwargs) if len(logs_as_list) > 0: timestamp = logs_as_list[-1]['Timestamp'] url = format_url("/api/v1/Processes('{}')/ErrorLogs('{}')/Content", process_name, timestamp) # response is plain text - due to entity type Edm.Stream response = self._rest.GET(url=url, **kwargs) return response